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ABSTRACT .,

Non-linear optimisation techniques form an important
subject in non-linear programming., They work by searching
for an optimum of a function in thne hyperspace of its
variable parameters, The purpose of the present work is
to test the anplicability of the techniques to solving
non-linear geophysical problems. A problem from each of
the ma)or branches of geophysics 1is considered., The
problem of fitting continentel edges is also considered.
Direct search methods are slow but are robust and, therefore,
useful in the early stages of the search, Gradient methods
are fast and are efficient in the proximity of the optimum,

A gravity or magnetic anomaly due to a two-dimensional
polygonal model has a unique solution in theory. In préctice;_
ambiguity arises from the presence of several factors and
takes the form of a scatter of local minima and elongated
‘valleys', in the hyperspace, The solution becomes less
ambiguous as the influence of these factors gets less and as
more parameters in the model are specified,

The technigues are used successfuliy to interpret two-
dimensional gravity and magnetic anomalies, Their efficilency,
and flexibility make 1t possible to tackle a wide range of
gravity and magnetic problems. The required computer time can
be reduced by careful programming, The techniques are
useful in interpreting surface wave dispersion data; the large
degree of ambiguity associated with the problem may be
overcome by specifying several parametérs. A fast curve

matching process is deviced for interpreting apparent



resistivity curves. The method of outputting the results
reduces the effect of equivalence. A method of fitting
continental edges, by minimising the gaps and overlapys
between them, is given., The ambiguity in the precise
position of the pole of rotation is illustrated using the
same concept adopted in the gravity, magnetic and seismic

broblems.
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CHAPTER 1
INTRODUCTION

lele General Remarks on Proecramming Techniques

An optimisation problem is any problem which involves
the determination of the maximum or the minimum of a function
of one or more variables, Such problems have been of
interest to scientists since the eighteenth century and their
solution was usually sought through techniques based on
" differential calculus., In the early 1950's, however,
optimisation techniques started being developed as a major
sub ject within the newly evolving field of operational research,
.Thelr application fo meet the increasing aemands of iIndustry
and commerce led to the formulation of severel computational
disciplines whicb, belng accompanied by the advent of digital
computers, were based oh numerical methods, These are usually

referred to as prqgramming,technigues.

Linear and quadratic functions subject to linear constraints

are handled by techniques classed under linear programming and

quedratic programming respectively, FProgramming techniques

are not required when these functions are unconstrained since
the solution of such problems 1s directly obtainable by
straight-forward methods of differential calculus and matrix
algebra,

Non-linear orogramming applies to problems involving
non-linear functions. A formal solution to an unconstrained
non-linear problem can be formulated by equating the partial

derivatives of the function to zero and solving the resulting
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equations. However, the use of such a procedure is not
usually helpful because the resulting equations are often
very difficult to solve and, if the solution can be

obtained, it may represent a local optimum or a saddle point,
Hence, there are several numerical algorithms to treat the
unconstrained non-linear problem,

Non-linear programming further includes multi-stage
decision processes known as dynamic programnming, It also
" includes the treatment of problems with linear or quadratic
functions subject to non-linear constraints (Fig, 1,1)

Many linear and non-linear problems require tﬁe
additional constraint that the variables should only assume
‘integer values. Techniques dealing with these problems are
covered by integer programming, When only some of the '
variables must be integers, the problem is a mixed programming
problem,

However, the classification of programming technigues
tends to vary with usage. Flg. 1.1 does not, therefore, bear
a relation to a specific author., It represents a summary of
the foregoing account and 111ustrétes the relation of non=-

linear optimisation techniques to the other programming

techniques.

The term non-linear optimisation technigues refers to the
methods of treating problems with non-linear functions, con-
strained or unconstrained. It constitutes our subject matter

and must not be confused with the wider and more general

problem of non-linear programming.



Operational Research

I 1
Optimisation Other Methods
I
{ - 1
Calculus Numerical (Programming)
!
quadratic linear
linear constraints
non=linear integer & mixed
] |
| | I [ | L
linear &« dynamic non-linear non-linear quadratic 1linea:
quadratic programming functions
functions with or without
with non- constraints

linear constraints

Fig, 1l.1. A general sketch illustrating the place of
non-linear optimisation techniques (underlined) in relation
to other programming methods.

l.2., Optimisation Technigues in Geophysics

Optimisation techniques are currently employed in the
mineral industry in various chemical, economic and management
problems (Klimpel, 1969). However, their use in geophysics
has been limited to individual methods, such as that of
steepest descent and the method of alternating variables
(see Chapter 3), rather than their application as a whole
integrated group of programming disciplines. The work of
Stacey (1965) was the first real application of non-linear
optimisation technigues in geophyslcs., He employed them to

interpret gravity and magnetic anomalies although progress
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was limited by the low speed of available computers and by
difficulties caused by local minima. This was followed by
the work of Butler (1968) who successfully applied the
techniques to the interpretation of magnetic anomalies due
to dykes.

The importance of non-linear optimisation technigues in
geophysics is due to the very large number of non-linear
geophysical problems; the high efficiency of these techniques
" makes it now possible to tackle problems which have proved
intractable in the past, The demand for linear programming
techniques appears to be less pronounced, since most broblems
tend to have simple or no constraints so that linear problems
become amenable to treatment by simple algebralc methods.

There are many problems démanding the use of other types
of optimisation techniques. For example, integer or mixed
programming would be desirable to determine layer thicknesses
in resistivity problems where thicknesses are usually given
ag integer multiples of the thickness of the top layer,
However, the treatment of such problems falls outside the
scope of our present topic and are not pursued further, We
shall, therefore, use the term optimisation to imply non-linear
optimisation, unless otherwise indicated.

1.3. Scope of the Present Work

The present work deals with the application of optimisation
techniques to selected problems in gravity, magnetic, seismic,
and electric methods, thus obtaining a general coverage of the

main methods in applied geophysics., The problem of fitting
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continental edges is used as an example of a subject not
directly related to applied geophysics., The work also

deals with the use of optimisation techniques for investigating
thé non-uniqueness problem in gravity and magnetic
interpretation,

The work on the seismic and the electric problems was
somewhat less thorough than in the case of the ot her problems.
The entire work, however, provides a general guide to the
" method of utilising and applying optimisation techniques in
geophysics and also demonstfates the potentlialities of these
techniques as a tool for tackling many geophysical problems,

The direct concern of the work was to use rather than to
devise methods of optimisation, It was, therefore, necessary
to rely on external sources for optimisation subroutines.

The use of any optimisation method was, hence, subject to

the availability of the relevant computer subroutine, Although
this was occasionally undesirable, 1t did not present any |
problem. A good variety of subroutines were actually
available, all of which were among the most efficient methods
of optimisation,

The problems treated in this work are essentially
interpretational, It is clear, however, that programming
 techniques have an equally promising field of application im -
various design, processing, planning and other problems in
geophysics. Future work will, undoubtedly, show lncreasing
signs of such spplication as the importance of optimisation

techniques become more generally realised.
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CHAPTER 2
BASIC CONCEPTS AND DEFINITIONS

2s1. The Concept of Optimisation in Geonhysics

The use of optimisation techniques in geophysics may be
described in the following manner: Given a set of geophysical
data that may be attributed to certain properties of a
particular system defined by m adjustable parameters
(m = 1,2,...) and u unadjustable parameters (u = 0,1,2,...),
it is required to modify the adjustable parameters until the
relevant output data of the system agree with the input
geophysical data within certain requirements. No change in
the system topology 1s allowed during the adjusting process.

The input data may take the form of an observed anomaly
or some ldeal behaviqur or performance, " The output data are
the corresponding calculated anomaly or behaviour of the system,
The system is usually in the form of a model., The requirements
frequently include the condition that the data must be
satisfied within the range of observational errors. Other
requirements vary according to individual problems but usually
include a number of constraints to ensure the physical or
geologlical feasiblility of the optimum model.

202 The Objective Function

2,2.1l. General remarks
All optimisation procedures work by minimising or

maximising a single scalar gquantity called the gbjective function

(or the function). The objective function depends upon the

adjustable parameters x defined by

1

x = 2

(2.1) -

Mo e KNk
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At any particular x, the objective function gives a measure
of the agreemenj between the input and output data, i.e.
the degree of optimality of the system,

In geophysical work, it is usually more convenient to
express the cbjective function in terms'of the discrepancy
between the input and output data., The discrepancy in each
of the values being compared is measured using a discrepancy
function $(x,¥ ), where & is a parameter along which the
input data are distributed., Hence, the objective function is
defined by

f(;)=/b¢(ag,5). w(() ag (2,2)
where b 1s the range along which the input date are given
and w 1s an appropriate weighting function which makes it
possible to lay different emphasis on different parts of the
data,

Input geophysical data are normally given as a set of
discrete observations, The objective function is, therefore,

more convenlently represented by

£ (2 =i *(z, & ) w(Z) (2.3)
i=1

where n 1s the number of input data points, In order to
obtain a representative optimum system, n must be larger
than m,

Because one 1s generally dealing with discrepancies
optimisation of a system requires the minimisation of the
objective function. For this reason the term optimisation
will be used synonymously with minimisation throughout the

text, Individual cases requiring maximisation can be
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readily dealt with by changing the appropriate signa in the
optimisation procedure,

To illustrate the above scheme, consider an observed
gravity anomaly, A, attributed to a subsurface anomalous mass
system represented by a model. Suppose that the depth to the
top of the mass 1s known as well as the regional background
aggocliated with the anomaly. These are the unadjustable
parameters, The other coordinate points defining the model
and the density contrast are the adjustable parameters x
If n observation points have been made along the profile, all
of which are equally good, then each point could be given an
equal weight. Suppose now that a trial model,.having its top
at the known depth, be used to represent the anomalous mass.

th ebservation point may be

The discrepancy function at the 1

defined by the absolute difference between the calculated

anomaly, ¢, due to the model and the observed anomaly, 1i.e.
¢ (.JS’ El) = | Ai - Cil (2,4)

where Ei is the distance of the 1th

point along the profile
from some arbitrary oerigin,

The objective function £ (x) for that trial model is the
sum_of-the_n discrepancy functions defined by equation (2.4)
- The optimisation procedure attempts to generate a model which
yields the lowest possible value of £(x) by adjusting the m
adjustable parameters under certain constraints that ensure
its geological feasibility.

2.2,2, Choice of the objective funetion

A fully adequate objective function is essential for



obtaining a good solution, Maximum care should, therefore,
‘be taken when choosing the objective function. Because a
correct choice of the objective function is dependant upon a
suitable choice of the discrepancy function, an effective
measure of discrepancy must be first established, However,
this 1s normally quite straight-forward and assumes forms
similar to that of equation (2.4).

In some problems the discrepancy function may not be
immediately obvious, Supposg in the above example that we
wish to optimlise the function independently of the regional
background. (assuming that it is horizontal). This could be
achieved by basing the objective function on

$(z, £;) = (&, = 4)) - (c; -c)l (2.5)

where Ao and C° are the observed and calculated anomaly values
at an arbitrary point.

In some optimisatibn problems more than one acceptable
discrepancy criteria can be used, The c&oioe of the criterion
to be used will usually depend upon the form of the data, the
main purpose of the problem, the computation time available, etc,
An example of this is given in Chapter 8 where the miasfit
between continental edges may be measured by the area of gaps
and overlaps or, alternatively, by the difference in longitude
between equivalent points on both edges.

The relation between the objective function and the
- discrepancy criterion has to be defined. The cholce 1is usually
between expressing the objective function as the sum of
squares of discrepancies or expressing it as the sum of

absoiute values of discrepancies. The first of these is more
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widely used and is particularly useful when the distribution
of observational errors is normal.

However, tﬁe distribution of errors may not, in some
cases, be normal, To test how critical the choice of the
objective function was, some experimentation was carried out.
The gravity anomaly due to a polygonal model was computed and
pseudo-random errors were superimposed on the anomaly,
Different solutions were obtained by optimising three different

objective functions defined by the following
: n

= ) (ag-c i (2.62)
i =1
n

£, = 8 | & = Gy | (2. 6b)
Ly T

' n

N 12 (2.60)

| 2

In terms of approximating the original model, and in
producing minipum residuvuals, procedures using fl were

invariably inferior to those using f2 or f3. However, there
was no significant difference between using f2 and f3’

In view of the limited amount of experimentation; the
abéve results are by no means conclusive; they were accepted
as beihg only provisionally true, Moreover, funotions in
the form of fs lend themselves readily to a linear treatment
of the density and magnetisaion contrasts and the regional
background, as will be demonstrated.later. For these reasons,

objective functions expressed as the sum of gguares of

residuals were employed in most interpretations presented

in this work,
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Several other rules concerning the correct choice of
an objective function may be found in the literature.
Two relevant rules given by Wilde (1964, p.6) are:

l. Prefer a representation which can be approximated by
a low degree Taylor series expansion in the vicinity of the
optimum,

2. Prefer a representation in which the variable
parameters do not interact, i.e. they can be separated in
different terms,

A further rule concerning scaling will be discussed in
section 2,5.

2.2.3. Representation of the Objective function
2.2.3.,1. Geometric representation

The objective function may be represented geometrically
in an m - dimensional space by constructing a Euclidean
hyperspace in which each of the m mutually orthogonal axes
represents one variable parameter. In such a hyperspace the
objective function is then completeiy representable by means
of contours of egual value, The geometrical representation is
important in studying and understanding thé behaviour of the
objective function qualitatively in order to adopt an
appropriate strategy for tackling a given problem. These
geometrical studies also vroved important in demonstrating a
number of phenomena relating to the ambiguity of gravity and
magnetic fields as will be shown in Chapter L,

The contour surfaces of the objective function may be
conceivea as behaving in the same manner as topographlcal

contours, The use of topographic terms like peaks, troughs



and valleys will, therefore, be extended into the multi-
dimensional space. Two-dimensional cross-sections (or maps)
of these contours provide a convenient method for a direct
vigual inspection of the hyperspace (e.g. Figs. 4.1, 5.2, etc.).
Geometrical intuition will usually help to pass the
cross~-section through the reqﬁired points in the hyperspace.
Only plane cross-sections were used in the present work but
other forms of sectioning can be used if required. When the
objective function depends upon two variables only, a two -
dimensional map of the function in the space of the two
variables provides a complete representation in the mapped
range, The solution(s) may then be located and their validity

agsessed visually.,

2¢2.3.2¢ Mathematical representation
The local behaviour of the objective function 1s best
studied with the aid of an m - dimensional Taylor series

expansion
' m m 2

m — T f
£(x+d) = £(x) + f 5y * z > 2 8 8 + .u.e (2.7)
/. XX I k
J =t k= !

where 8 1! 52, !“',Sm are the components of parameter changes

along each of the m mutually orthogonal axes Xy9XpseesesXps

respectively, 8 1is thus anm - dimensional vector given by

54 .
8= 5, (2.8)

5

mj -
In the vicinity of the optimum, where the objective function
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can be usually approximated by a quadratic, higher terms
in equation (2,7) can be neglected, Adopting a matrix
notation the truncated Taylor series 1s given by

f=r +8 3+438' 03 | (2.9)

where the prime indicates matrix transposition and

- -
afﬁixl
af/'.ax2
Ga= : (2.10)
af/ax
L f/ m |
[ 2e/ox. 3x ar/ ax. ox ]
1 1 - o _ 1 m
Ha= . . (2.11)
2r/0x 3 x 228/ ax @
ﬂ‘ 1 [ ] L ] L ] [ ] % xm

H is also known as the Hessian matfix.

Equation (2.9) ig the basis for many oeptimisation
procedures, It often gives a sufficliently accurate description
of the behaviour of the objective function in regions which are
not necessarily close to the optimum,

2.3. Solutions and minima

An ideal optimum solution is obtained when the optimum
parameters define a system which 1s an exact solution to the
problem. Equation (2,2) becomes

£(x) =Jv ¢ (x,8). w(E) dE =0 (2.12)

Such conditions are rarely realised in practice., The problem
becomes that of searching for the minimum of f(;) in the

X hyperspace,
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Formally, the minimum in an unconstrained problem must

satisfy

@
s
@
H
s}
s ]

(2,13)

[
(o]

o
o
[ ol
@
M
N
Y
]

A gufficient condition when equations (2.,13) are satisfied
is that the principal minors of the Hessian matrix must all
be positive (Box et al, 1969, p.5).

When the problem is constrained the necessary condition
for a minimum can be found by the method of Lagrangian
multipliers.

A more useful definition for the present work is that a

minimum exists at X if it satisfies

£ (X) < £(X+ by (2.11)
in the neighbourhood of X, for all sufficiently small values
of he
Before a minimum can be regarded as a solution it must
satisfy the reqﬁirement that it falls within a feasible region,
Other requirements usually include the coendition
£(X) < e ' (2,15)
where e 1s a specific tolerance determined by the magnitude
of observational errors.
Definitions of the relevant terms used in this work are
as follows:

in the x

1, The coordinates of the solution peint X
hyperspace, define the parameters of an optimum system. The
terms solution, minimum and optimum model will, therefore, be

used synonymously when apprepriate,
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2¢ A global minimum in a given feasible region R 1is

the required overall solution in R,

3. A local mipnimum_is any minimum other than the global
minimum, .

L. If only one minimum exists in R then f (x) is
unimodal in R, If more minima exist then f(x) 1s multimodal
in R. Therefore, if a global minimum and one or more local
minima exist, the solution is unigue in R although f(x) is
multimodal,

5. The contours defining some minima do not close in
all directions., These minima are not true minima and will only
behave as such in some directions, They are calléd ill-defined
- minima, The term may also be extended to describe minima
which are extremely shallow, Clearly, the distinction between
an ill-defined and a well-~defined minimum is gradational.

The following rules were used throughout:

l. Although a solution exists, a global minimum may not
exist, Solutions are then given by two or more local minima
in the feasible region. Therefore, if R includes the entire
feasible region, the solution in R is not unique. This
situation arises in many geophysical problems, e.g. in gravity
and magnetic interpretations. In these cases, 1t is more
convenient to refer to all points in a region (or regions)
bounded by a contour of magnitude e as possible solutions.

2. In the absence of a global minimum, not every local
minimum in R is necessarily a possible solution, as ‘the
requirements for a solution may not be satisfied.

3. A minimum possessing a lower function value than
another hinimum is not necessarily a better solution.-_A
minimum possessing the least function value is not necessarily

a global minimum,
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2.4. General Procedures in Optimisation

All optimigation procedures (except tabulation methods)
start the search for a minimum by evaluating the objective
function at a given initial point, X, The adjustment of
parameters is carried out iteratively by generating the

pointe X x2,.{........ such that

£(x141) < £z 1=0,1,2,...... (2.16)

with

141 < &4 & h,d, (2.17)

where hi iz the distance moved along the m-dimensional
direction vector, gi.

The choice of h,d, at each iteration, i.e, the manner in
which the successive x points are generated, is the feature
that distinguishes the various optimisation methods from each
other, It also influences the efficiency of each method in
adapting its strategy to meet certain situations.

To comply with the iterative rule of equations (2,16) and
(2.17), the optimisation process must consist of two essential
partss The first part is a procedure which furnighes the value
of the objective function for a given set of parameters X40
This part is usually in the form of an auxiliary programme
which computga,f(;i) using, generally, a method based on
equation (2.3). The second part is the optimisation subroutine
or procedure which, given f(zi) and Xy will search to locate
" the point X441 that satisfies equation (2,16). 1In doing so,
it may pass the current x parameters to the auxiliary procedure
a number of times,

The process of generating new points according to
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equation (2,17) continues using, possibly, many previous

informations about the behaviour of the function. The two

parts of the optimisation process are thus enclosed in a

ma jor feedback loop until the search is terminated by some

convergence criterion,

Fig. 2.1 shows a simplified flow chart summary of this

DProcess,
Input
ALE

Input
X0

[ — — ™

Calculate
| C
AUXILIARY
PROCEDURI: * |
Calculate
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Decision
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coordinates

Locate

—_— S —_— —_ S

A

Decision e.g.

X.
=i+l

OPTIMISATION PROCEDURE

reverse search I
direction

Fig. 2.1. A schematic representation of the general
iterative optimisation procedure.

2.5. Scaling the Problem

A well scaled problem is one in which the contours of the

objective function are approximately hyper-spherical or they

are elongated parallel to most search directions., Good scaling

is desirable in all problems because it enables most
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optimigsation methods to obtain a solution rapidly and
acgurately,

The change of scale implies a change in the measurement
units of individual parameters., However, when the contours
of the objective function are elongated in directions which
are inclined to the parameter axes (Fig. 2,2%’), a change
in the units will only change the angle at which these
directions are inclined, This may improve the conditioning
of "some problems but requires a detailed study of the behavior
of the functlon., Experiments on gravity problems, where the
objective function is usually very curved, showed that changes
in the measurement units were incapable of improving the
scaling of the problem.

A better astrategy would be to do the inverse, i.e, to
transform the search axes so that they lie favourably with
respect to the objective function in the hyperspace (Fig. 2,2).
Some optimisation methods are based on this transformation.
The success of Rosenbrock's method (section 3.4.3) in dealing
with gravity and magnetic methods is due mainly to its
capability to rotate the search axes according to the general

trend of the objective function,

2,6,Univariate Search

In order to carry out the optimlsation process in
accordance with equation (2,17) many optimisation methods
: work by locating a minimum along each of a series of directlons

in the hyperspace of the variable parameters. Each of these

searches 1s equivalent to & univariste search, i.e, to



CONTOUR LINE y

SEARCH PATH =
L]

AXES OF
SEARCH
DIRECTIONS

Fig. 2.2. A two-dimensional illustration of the scaling problem.
(») A well-scaled problem.
(b) A badly-scaled problem.

(¢) Rotating the search axes to improve effective ncaling.
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searching for the optimum of a function of a single variable,
Univariate search methods are, therefore, basic to most
optimisation techniques. The fundaméntal procedures involved
_ in them are given beldw.

The older types of univariate search attempt to obtain
the minimum to a certain asccuracy after a specific number of

iterations, ' The dichotomous search involves the reduction

of a large interval, T, which is known to contain the
minimum, by successive function evaluations at points placed

symmetrically inside each new T, Fibonaccl search depends

upon the use of Fibonacci numbers to decide the manner in
which the successive T intervals are reduced, .Search by
golden section selects the searching intervals symmetrically
inside T in a manner known geometrically as a golden sectiona
These methods are described fully by Wilde and Beightler
(1967, p.215-267).

In recent methods, the minimum is found by vrocesses
involving the fitting of low order polynomials through a
number of points. These methods, being more efficlent, are
gradually replacing the older types., However, they laok the
advantage ot being able to guanrantee to locate the minimum in
a given number of iterations. They depend basically upon
evaluating the functlom at several points along a given
direction and use some criterion to indicate that the minimum
has been straddled. The points straddling the minimum are then
used eithér for quadratic interpolation, as-;n the algorithm of
Powell and that of Davies, Swann and Cawpey or for cubic

interpolation, as in Davidon's method
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(Box et al, 1969, p.l4 and 39), There are many other methods
both 0ld and recent but the bases are similar to those described
above,

The transition from a univariate search to ah actual
problem involving many variables is not just one of degree,
Difficulties resulting from the use of a large number of
variables have become popularly known as the “curse of
dimensionality" (Wilde and Beightler, 1967, p.279). 1In
geophysics, this ocurse takes several forms, For example, as
the number of variables is increased, many 1ll-defined local
minima begin to appear in a complex fashion causing the problem-
to be ill-conditioned. The vastness of the hyper-volume of a
multi-dimensional space 1s another difficulty which causes a
thorough search of even a small fraction of the hyperspace to

be a formidable task,

2,7, Convergence
Most optimisation methods gradually reduce the step hi

(equation 2,17) in the vicinity of the minimum until some
conditions, called the convergence criteria, are satisfiled,
The search i1s then said to have converged at the minimum,
Depending on the method, the convergence criteria may usually
be satisfied when either f(;1+l) =f(;1) or f(;i) falls below
some specific value or after a given number of ;terations.
Convergence will therefore refer to locating the minimum
within these conditlons.

If the problem is rather ill-conditioned, and particularly
when using a method which is unsuitable for the objective |

function being handled, a rapid reduction in h1 can take place
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without necessarily being in the vicinity of any minimum., This

causes an erroneous termination of the search and will, heré,

be called local convergence., It must not be confused with
converging at a local minimum.

A large number of optimisation methods are based on the
quadratic approximation of equation (2,9) and will, therefore,
locate the minimum of a guadratic function in a specified
number of iterations. Such methods are described as
guadraticalli convergent, Because most functions closely
.approximate a quadratic in the vicinity of the minimum (Box
et al, 1969 p.28), quadratically convergent methods are of

particular interest in optimisation techniques,

2,8. Accuracy of Optimum Parameters

It may be sometimes desirable to obtain an estimate of
the possible error in each variable parameter, at the optimum,
in terms of the residuals between the observed and the calculated
data, However, a very low value of the objective function at
the optimum is nét necessarily an indicafion that the values of
optimum parameters are accurate since the observed data are
themselves subject to many sources of error. To obtain an
estimate for the parameter accuracy, ih terms of observational
errors and the residuals, is a very difficult task, To simplify
the procedure, we assume that the observational errors are
wholly accounted for by the residuals at the optimum, This is
usually only partially true. Furthermore, we assume that the
system being optimised is fully defined by the parameters.-

This is again ffequeﬁt;y untrue. For example, in gravity and
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magnetic interpretations, the number of parameters required
to represent the anomalous body fully is far too-large to be
handled practically., Moreover, the corner points of the
representative polygonal model are dﬁmmy parameters which do
not have an actual physical standing. In view of these
gross assumptions plus the many appfoximations made'by the
model itself, the estimates of parameter accuracy are
sometimes of limited significance,

The parameter accuracy may be obtained as follows:
~ 2

The variance of parameter Xy is &7P;; Hence,

Xy, =X *ago w/'pii (2.18)
where

Ei is the value of parameter X, at the optimum,

a 1s the confidence factor (= 1,96 for 95% confidence),

QJ is the element of the inverse matrix of second partial
derivatives of the objective functiqn with respect to
the variable parameters,

18 the estimate of the residual variance,

Qr,

1.e. 32 =* 2/(n-m) where s 2 15 the sum of squares of
residuals at the optimum. The term n-m represent the
degrees of freedom of the problem,

-2

The covariance of parameters Xy and xj is ¢ .piJ’ The method

of derivation and the procedures involved in computing these

estimetes are given in Appendix 1.
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CHAPTER 3

A REVIEW OF OPTIMISATION METHODS

3els GQOeneral Remarks

This review discusses the general suitability of various
optimisation methods forsolving geophysical problems. Only
those methods which have a direct relevance or were actually
used in the present work are described in some detall., A
‘fuller account of optimisation methods may be found in several
books (eegs Wilde and Beightler, 1967; Box et al, 1969).

A large number of optimisation methods have been
introduced during the past fifteen years. Nomenclature and
classification of these methods vary according to whatever
criteria are. considered appropriate by different authors. Fér
example, Box et al (1969, p.16) call tabulation methods what
Wilde and Beightler (1967, p.222-230) class as simultaneous
methods. Rosenbrock and Storey (1966, p.58) regard the method
of steepest descent as distinct from gradiént'methods while

¢ WIlde (1964, p.iO?) regards them as synonymous.

The classification of Box et al (1969) 1s the most
consistent for the purpose of the present work and is, therefore,
adopted throughout the toxt. It appears to be a modification
of an older classification introduced by Spang (1962).

.Accofdingly, optimisation methods are divided into two major
categories:

(1) Direct search methods are methods which do not

-require the explicit evaluation of any partial derivatives of



o 24,

the objective function in carrying out the search for an
optimum. They are divided into three classes: (a) tabulation
methods, (b) sequential methods and (¢) linear search methods.

(2) Gradient methods include a whole series of methods
which use first order or higher partial derivatives of the
objective function with respect to the independent variables,
in selecting the direction of search gi as defined by equation
(2,17).

Several of these methods may be adapted so that the search
is carried out subj)ect to s inequality constraints in the form

t,(x0) >0 1 = 1,2,0000y B (3.1)

or r equality constraints in the form

a(x) = 0 3 =1,2,0000, T (3.2)
3.2, Direct Search Methods
3¢2¢.1. Tabulation methods

These methods proceed by evaluating the objective functiqn
at a pre-determined set of points at various intervals in tne:
hyperspace of the variable parameters, These points define a

region within which the minimum g is assumed to lie so that

Li\<x1<Ui i = 1,2,....., m (303)
where L1 and U1 are, respectively, the lower and upper bounds
th

of the 1 parameter, The point giving the lowest function
value is assumed to be the minimum,

Tabulation methods require a large number of function
evaluations so that their use must be restricted to special
circumstances. Among methods included are:

3e2s1l.1. @Grid method
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The minimum is approximately located by dividing each
variable parameter into B, = (U1 - Li) /b intervals ﬁpgre
b 1s chosen to give an acceptable spacing, The objective
function is then evaluated at each'of the

M= (B +1) (B, +1) ... (B +1) (3e4)
nodes of the resulting "hyper-grid".

The grid method becomes very useful if the problem can
be transformed so that the number of variables is reduced to
two or three, The method of fitting continentsl edges
(Chapter 8) makes use of 8 two-dimensional grid, It was also
found that the method provides an efficlent way for curve
matching, The method has, therefore, many possible applications
in geophysics and has already proved valuable 1In interpreting
electric resistivity data (Chaptef .
3s2ele2e Random search methods

The objective function is evaluated at points whose
coordinates in the X hyperspace are chosen at random, These
methods have had some geophysical applications in the past,
usually by generating a series of models by Monte Carlo
procedure (e.,g. Press, 1968). However, statistical considerations
ghow them to be less efficient than. the grid method (Spang,
1962),
3.202s Sequential methods

_ In its strict sense, the term applies to those methods
' which are based on the evaluation of the objective function at
the vertices of some geometric configuration in the hyperspace
of the variable parameters, with an eventual shrinkage of the

configuration about the minimum,
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With these configurations, sequential methods enjoy a
powerful strategy in being able to move out of local minima
that possess higher function values than neighbouring ones,
They are, therefore, sulted to problems involving a large
number of local minima,

Sequential methods may appear to be an obvious choice
for many geophysical problems because of their multi-modal
nature, However, a local minimum with a higher function
value than a neighbouring one is not necessarily a worse
solution, Moreover, undulations in the contours of the
objective function caused by observational errors may be
largely smoothed out when a form similar to equation’(2.6c)
is used, Sequential methods are much slower than many
linear methods and their choice should, therefore, depend
on the merit of each individual problem,
3¢20201s The simplex method (Spendly, Hext and Himsworth,
1962), modified by Cahpey and Nickols (1961) and by Nelder
and Mead  (1965).

It is a popular sequential method owing to 1ts
adaptability to suit difficult conditions such as progress
along narrow valleys,

Minimisation starts by evaluating the objective function
F, at the vertices V, (+ = 0,1,2.,..,m) of a regular simplex
in the hyperspace of the m variable parameters.1 Denoting

those vertices with the highest, next highest and lowest

l. A simplex is a higher dimensional equivalent of a
tetrahedron,
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function values by V., V_and V, respectively, Vh is

h’ g L
reflected in the centroid V of the remaining vertices to give
the new vertex Vr such that

VV/VV, =a (2>0) (3.5)
where a 1is the reflection coefficient, Subsequent
operations are decided upon in the following manner:

1) 1fr FL<Fr<:Fg » V, replaces V, and the procedure is

repeated,

11) Ir Fr<F63Fg , the search is expanded in the direction

VhV Vr to the point Ve which is"given by the expansion
coefficient ¥ (¥ >1) such that
Vh is then replaced by whichever of Vr and Ve possessing a
smaller function value,

1ii) If Fg( F then V_ replaces V, only if F_ <F In

h h*

elther case, a polint Vc is located between V. and V such

h
that

VoWV TV = g (0¢p ¢ 1) (3.7)
where B is the contraction coefficient., The simplex is
then modiflied according to:

-If Fc<F Vc replaces Vh and the procedure is re-started

h’
from this new simplex,

-If Fg Fh’ the mid point between VL

vertices are taken to be the vertices of the new simplex., The

and the remaining

whole procedure is then re-started,

Appropriate values of ¢ ,f and? are suggested to be 1,
0.5 and 2 respectively (Nelder and Mead, 1965). The process
is terminated when the standard deviation of the function

values at the (n+l) vertices falls below a pre-assigned value,
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3¢2.3. Linear Methods

These methods carry out the search along a set of linear
directions, The class includes a large variety of procedures,
each procedure being more suitable for one type of problem than
for another although some of them exhibit an ingenious adapt-

ability to suit a broad range of problems,

36243010 T?e al?ernating variable method: Friedman and Savage
1947).

This 1s the simplest form of linear methods, A univariate
search is carried out parallel to each varlable parameter axls
in turn; a dhange to the next axis is not made until a minimum
has been located along the current axis,

Unless the :problem happens to be well-scaled, the progress
towards the minimum, after the first ?ew iterations, follows a
slow zig-zag path and the method usually breaks down by local
convergence, It cannot, therefore, be recommended for general
geophysical purposes although its simplicity has attracted some
geophysical applications in the past (e.g. Bullard et al, 1965)

3,2,3.2. Pattern search method (Hooke and Jeeves 1961) with
subsequent modification by Wood (1962).

This method attempts to align the direction of search with
the genersal trend of the objective function. The search starts

at some initial point B, by changing the parameters one at a

1
time, the parameter X, being perturbed by an amount di' If

this results in a lower function value the new point replaces
the current point and the parameter X541 is then cons;dered.

Otherwise, -d, replaces d1 and the function is evaluated again,

i
If this move also fails, the current point 1s unchanged and the
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parameter X1 is considered, When all parameters have been
considered a stage of exploratory moves is completed and the
final point 32 becomes the new base, In general, if a move

from Bj to 131_._1 results in a lower function value, a pattern

move is made to the polint 2B +1 - Bj from which another set

J

of exploratory moves is made to give the new base point

B If the exploration fails to find a lower function value at

j+2°
Bj+2, the exploration ;s re-gtarted from Bj+l
fail to find a lower function

itself, When all
explorations about a base Bk
value, di is reduced and the process is re-started from Bk'

Convergence is assumed when d, have been reduced to a pre-

i
assigned value,

The method is speedy and efficient when the minimum lies
in a valley with only slight curvature. Its efficiency stems
from its ability to treat straight valleys as a one-~dimensional
case, thus reducing the effective dimensionality of the problem
(Wilde, P.145). It has many possible applications in geophysical

interpretation particularly in cases where the function is not

very complicated,

3¢24.3.3, The method of rotating coordinates (Rosenbrock, 1960)
The search 1s carried out parallel to a series of mutually
orthogonal directions which are rotated at the end of each
search stage so that the first of the new directions lies in
the direction of total progress made during that stage. This
rotation renders the method extremely flexible in following
the general trend of the objective function in a fashion
similar to, but much more powerful than that of the pattern

search,
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Starting from some initial point Xq9 each variable
i1s usually perturbed independently so that the search
directions of the first stage are parallel to the coordinate

th

axes of the variables, Denoting the 1" direction vector

at the 30

stage by Qi and its respective step-length by €y
the search starts from the current point by perturbing along
each direction by ek(k=l,2,....,m). If the perturbation
succeeds in finding a function value which 1s not larger

than the current value, the current point is replaced by

the new point, e, 1s multiplied by a (a >1) and the direction
k+1 is considered. Otherwise, the perturbation 1s-§ failure,
the current point remains unchanged, x is multiplied by

-b (b ¢1) and the k+1%® direction is also considered. When
all m directions have been perturbed the cycle is repeated
starting from the first direction., The process goes on until
a success followed by a fallure has occurred along all m
directions, This marks the end of a stage., The next stage is
started by defining new direction vectors in the following
manner:

The vectors él’ 42 ,.......,ém are defined by

4 = }_ Uy By (3.7)
k=1
where u is the algebraic sum of all successful ey steps
during the jth stage, Thus A represents the total progress

-1

;b8 stage. The direction vector is obtained

made during the J

by normalisation, Thus,

g;*l =4 / | 4| (3.8)
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The mutual orthogonality of the remaining directions is
re-established using the Gram-Schmidt orthogonalisation
procedure (Wilde, 1964, p.155) which is summerised in the

egquations. K-1
- I j+l j+l
Boo=do- ) (&) (3.9)
i=1
Dj+1 _
¢ =&/ 1Bk | (3.10)

- The search starts now along the new directions from the
current point and the whole process is repeated. Convergence
is assumed when Al falls below & specified limit for several
consecutive stages, The search may also be terminated after a
certain number of function evaluations.

Since its introduction by Rosenbrock (1960) the method has
claimed wide popularity in various fields of industry. It is
ro_.bust- and will successfully handle many ill-conditioned
problems, The rotation of coordinates attempts to orientate
the search directions so that they are locally the most
favourable both for following very curved valleys and for
reducing the difficulties from badly scaled problems, It also
enables the search to move out of ill-defined local minima,

These properties give the method a wide field of application
in geophysics. The main disadvantage in the method is that it
is,on the whole, slower than methods which make a direct use of

‘equation (2,9),

3.2.3.4. The modification of Davies, Swann and Campey
Box et al (1969, p.27) describe a modification of
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Rosenbrock's: method aiming at speeding up the computation and
overcoming-certain orthogonlisation difficulties,

The first aim i& achieved by carrying out a linear search,
equivalent to the univariate search of Davies, Swann and Campey
(section 2,6), only once along each direction instead of
perturbing cyclically several times at each stage,

Difficulties with orthogonalisation arise when some of the
Uy in equation (3.7) happen to be zero resulting in linear
dependance between the search directions., These conditions are
very unlikely to occur (Rosebrock, 1960) but if they did then
the orthogonalisation process would fail, The procedure is
therefore modified so that only thosé vectors assoclated with

non-zero u,_'s are orthogonalised, Box et al then show that the

k
orthogénality of the system remains unimpaired and the second

aim is thus fulfilled,

3¢2e¢3+5. Poor man's optimiser

This method 1s fully described by Wilde (1964, p.155). It
is based on techniques similar to the method of alternating
variables (section 3.2.3.1) but the current base point is found
by averaging or interpolating between two points possessing the
lowest function values,

It is claimed to be well suited for curved valleys and may,
therefore, be of some use in geophysics. However, 1ts sluggish
progress makes it a poor substitute for the method of rotating
coordinates.
3.2.3.6. Powell's method (Powell, 1964). Procedure P 303.

Methods which are based on the quadratic behaviour of
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the objective function are of considerable interest because,
as soon as the search reaches a region where the behaviour 1is
essentially quadratic, the minimum is attained rapidly by
gquadratic convergence, Most of these methods, however, are
gradient methods., The conjugate directions method of Powell
is, therefore, very useful in that it does not require the
-evaluation of any derivatives, yet 1t enjoys most of the
basic advanEages in these methods,

In its simplest form the method starts by setﬁing m
search directions in the hyperspace of m variable
parameters, the 1th direction of the Jth stage being denoted
by Qi and with the direction of the first stage parallel to
the original mutually orthogonal coordinate axes.

At stage j and starting from a base point Xy 8 linear
search'using Powell's algotithm (section 2,6) is carried out
along each search direction in turn., When a minimum is located
at point .9} along D{, X
search along Qg and so on until all m directions have been

becomes the 'starting point for the

searched and x_ located, The direction D is now defined
by X, ~ %o and a linear search along it locates the new base
3+l

point x, from which the search starts at the (j+l)th stage. -

D is added to the end of the list of directions and the first
direction is discarded so that
o*l, p*,...., D" = pd,nd,....0) s D (3.11)
For a guadratic function, Powell demonstrates that, by
choosing D in this manner, the m search directions become

mutually conjugatel after m stages. The method is, therefore,

quadratically convergent.

le Two directions Qi and Qjare sald to be conjugate with respect

to the linear operator H if QiH QJ = 0, (143).
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This simple procedure may occasionally choose nearly
dependant directions, In extreme cases, some directions
could become pemenently lost and the resulting directions do
not span the whole space. Powell's method incorporates further
modifications to overcome these problems.

Convergence 1s assumed when the change in every variable
at successive stages has fallen below 10% of the required
accuracy. The method does not have provisions for the use
of constraints., Therefore, i1ts use in multi-modal problems
may not always be desirable,
3e3. Gradient Methods

These methods are based on approximating the behaviour of
the objective function by the first few terms in equation
(2.7). Hence, they use the first or higher order partial
derivatives of £(x) with respect to x,(i=1,2,....,m) to
determine the search direction. In comparlison with direct
search methods they are generally much faster and can also
handle many more vériables. However, they are quite sensitive
to curvatures and local gradients so that the search could
terminate by local convergence when the particular function
happens to have many ill-defined local minima. Moreover,
approximating the behaviour of the function by a truncated
Taylor series may be very unrepresentative especi@lly in
fegions which are far from the solution(s). These features,
combined with the frequent difficulty in providing the
derivatives analytically, can reduce the extent to which
gradient methods may be recommended to solve a given

geophysical problem.
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3¢3e1ls1s The method of steepest descent (Cauchy, 18L47)
This is the simplest gradient mqthod énd is based on a
local linearisation of the objective function by neglecting

the second order and higher terms in equation (2.7). Thus,

N O9f (x)
f(x +35) = £(x) + AT 33 (3.12)
J=l J
which in our matrix notation becomes
£f-f,=8" (3.13)

where the prime indicates matrix transposition

Equation (3.13) shows that, for a fixed magnitude of § ,
the greatest reduction in the function value takes place in
the direction of -G, hence the name steepest descent, This
direction is locally orthogonal to the contours since
f-fy=0when 8 1s orthogonal to G,

The search direction Qi at the ith
from the normalised gradient vector af the current polnt Xyo

iteration is obtained

The search for a minimum X541 in this direction is then carried

out linearly or by using a constant steplength. x then

i+l
becomes the current point and the process is repeated until
a minimum is located with the required accuracy.

The neglect of the higher terms in equation (2,7) imposes
severe drawbacks and, although the vector G provides the
direction with the greatest function change, this effect is only
local and the direction of steepest descent does not in general
coincide with that leading to the minimum, Consequently,
although the initial stages may attain large reductions in the

function value the progress towards a solution would generally

take a zig-zag form, becoming gradually slower or terminating

r
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by local convergence,

This situation has inspired the design of several
variations from the basic scheme., Booth (1957) has suggested
starting each new iteration from some point other than the
mininum in the ourrent direction, Marquardt (1963), on the
other hand, starts the search in the direction of steepest
descent but gradually changes to that given by the least
squares procedure (see section 3.3.1.&). However, owing to
the linearisation of the Taylor series expansion, steepest
descent and its modifications remain essentially of little
promise in tackling but the simplest forms of functions.
Several alternatives are now available (e.g. Davidon's method)
for solving geophysical problems,

303.1.2., Newton-Raphson method

It is clear that the next step in gradient methods
is to include the second order terms of equation (2.7). The
inclusion of the second order derivatives is quite basic
since all informations relating to the curvature of the
function are usually essential in leading to the optimum.

All first and second order partial derivatives of the
objective function are assumed to be available at the current
point x. If the minimum is at x + & then differentiating
the objective function with respect to S'k and equating that
ﬁo zero, we obtain from the truncated equation (2.7)

H(x +  8)_ o - 2£(x) +1 zazf§x25 +1_m ot

K = 1,2)0000000, I (3.14)

k

Q)

which, in view of the symmetry of the Hesslan matrix, may be

~simplified to give
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3 m a2
%}l - - Zl ﬁ(ﬁs g k=1,2,0...,m (3.15)
k 4 I 7k
=

or in our matrix notation
= - g1
8 =-H"G . (3.16)

% is obtained by solving the m linear equations for the m

unknown 51'3 and the iterative move

X4 =X, ¢ & | (3.17)

is then made,

The method is quadratically convergent since if f were
quadratic, equation (2.9) would be an exact representation and
the minimum would be attained in one move, Obviously,® this is
seldom the case and an lterative process is usually necessary
for locating the solution.

The progress towards a minimum is only ensured if the matrix
of the second order derivatives, H is positive definite and if
the quadratic approximation 1s not grossly violated. These
conditions are, generally, satisfied in the vicinity of the
minimum but are not guaranteed 1f the initlal estimates
happened to be far from the solution,

Further obstacles are presented by the frequent difficulty
in providing the second order partial derivatives of the
objective function analytically and by the necessity to solve
the m linear equations at each iteration.

Past geophysical applications of the method are not
uncommon (e.g. Vosoff, 1958)., However, it is not recommended

for general use in geophysics owing to its many drawbacks.
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3.3.1.3. Davidon's method (Davidon, 1959), refined by Fletcher
and Powell (1963)., Procedure P306

Yie have seen that, away from the minimum, the method of
steepest descent usually achleves a rapid reduction in function
value whereas the efficiency of Newton—ﬁaphsonis method 1s
restricted to the neighbourhood of the minimum., The success of
Davidon's method has largely depended upon making use of both
features, starting initially as steepest descent and chénging
gradually to Newton-Raphson, as the optimum is approached,

The basic iterative procedure of Davidon's method 1is

=x - h M - .
Ep+l ;p bp pgb (3.18)

where MP is a symmetric matrix which must be positive definite
and where np is the required step~-length, from the current

point, to locate the minimum along the direction

D=4 & - (3019)

Starting with a unit matrix so that the first move is in
the direction of steepest descent, M is updated at every
iteration such that it would continually and increasingly temd
to H, M is updated using values and first derivatives of the
objective function and, as H is approached, the later stages
become essentially a Newton-Raphson procedure. In the
essentlially quadratic neighbourhood of the minimum, the latter
is attained in one move, i.e, the method is quadratically
convergent., In this way, not only the main objectives of the
method are realised but, also, the need for providing a matrix

of second derivatives is completely avoided.
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th lteration when x has been

Sp+l
located, f(;p+1) and gp+1 are evaluated, M is then updated

At the end of the p

by setting the matrix

M =M+A4 + B .
- Lt A ; (3.20)
where, if we denote G G by Y - MG by d th
‘ ® Zpel - Zp PV 5, and =b N, by 4, then
/ ’
A =YY /Y .
. _p_p/_.pd (3.21)
and ’ ‘
B, =-MYY M/YNM .
p Aoty B/L MY (3.22)

Fletcher and Powell (1963) demonstrate that Ap ensures that

the successive Mp matrices converge to H71 while Bp ensures

that the successive Mp+1 remain positive definite., Consequently,
this form of updating results into an extremely effective matrix
which adapts itself to suit various situations., The process is
repeated until convergence,

The difficulty of providing first order partial derivatives
of the objective function analytically can be a major task.
However, Stewart (1967) has presented a method for use in
| conjunction with Davidon's method whereby the first order
partial derivatives are calculated numerically, Stewart's
method is claimed to be very successful and should provide a
mach needed sophlistication to an already powerful optimisation
method,

Davidon's method is one of the most efficient optimisation
methods but,'suffers from the drawbacks of gradient methods
mentioned earlier. This causes many difficultlies in the

general use of the method. Its application in many magnetic
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and gravity problems fails when the initial estimates in the
X hyperspace are far from the region containing satisfactory
solutions, The failure is usually due to the vanishing of all
the first partial derivatives of the objgctive function at an
1ll-defined local minimum (A,K, Datta, private communication).
On the other hend, its progress in the relative absence of
.ill-defined minima or when the initial estimates are close to
a solution, is extremely rapid. In general, however, 1f the
objective function 1s not essentially unimodal, an efficient
use of the method may have to be restricted to the later

stages of the search,

3¢3.1lelie The method of least squares
The formulation of the method is attributed to Gauss
(Wilde and Beightler, 1967 p.299). As the name indicates, the

method is only applicable to functions of the form
n

f(x =

gl

ef (x) (3.23)

fure

=1

where e(x) is a non-linear function of Xx.

28y 1=1,2,...,D
Let Py, = __ (3.24)
ax j=l’2’o.o'm

J

and define the n X m matrix
P = [Pij] (3.25)

and the vector

(3.26)

[
"
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Differentiating f£(x) with respect to x, gives

n
@, ) o 2 (3,20
3 i=1 'axj

which in matrix notation becomes

G = 2PE (3.28)

Gauss noticed that if ei(;) were all linear functions of
X then the matrix P does not change from one point to another,

The gradient at the minimum x + & is then approximated by

glx + 5) ~ 2 P(x)E(

=
I

+ 8) (3.29)

An approximation for E is obtained from the truncated

Taylor expansion about x

E(x + 8) = E(x) +%3‘-)-§
% E(x) + P23

(3.30)

Since the gradient vanishes at the minimum, equation (3.29)
becomes

0=2P(E+PS§) (3.31)
which gives

s =[P P]"PE (3.32)

When ei(;) are linear in x the procedure is exact and the
minimum is attained in one move, This 1s equivalent to a linear
regression in statistics. However, for non=-linear functions,
an lterative procedure where Xeol replaces ;k+§k, is usually
necessary., )

The method 1s widely used in various application including

geophysics (e.g. Corbato, 1965).
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However, the linear approximations involved in the assumptions
render the method rather inefficient, When the initial point
is remote from a solution and the quadratic approximation is
poor, the procedure bhehaves erratically and the search will
usually fail altogether (Wilde and Beightler, 1967, p.302).

Marquardt (1963) suggested a method which modifies
equation (3.32) to

§=-[PFP-A1]"1 P g (3.33)
where I is an m x m unit matrix and A is an arbitrary constant
(A>0). WhenA= 0, equation (3.33) reduces to the Gauss

procedure, For very large A , equation (3.33) becomes
§==h" P E=-1A"10a (3.30)

s0 that the required excursion is in the direction of steepest
descent,

Marquardt suggests using a large A at the initial stages
where steepest descent achieves a rapid reduction in the functlon
value. The changeover to Gauss method is achieved by
progressively reducing A as the solution is approached.

Johnson (1969) used Marquardt procedure to interpret
linear and non-linear magnetic problems.

This procedure is probably the best modification of
steepest descent and least squares but appears to be inférior
to Davidon's method which makes use of the seocond order
properties'of the objective function.

3.4, Constrq;ned Optimisation

The deécription is now extenddd to problems subject to

constraints in the form of equations (3.1) or (3.2). Both °

t (x) and q(x) may be linear or non-linear in x. However,
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constraints in geophysical work are usually some upper or lower
bound on each variable parameter serving as a guard against
geological or physical unfeasibility., The constraints will,
therefore, be of a very simple form,

For illustration, consider an example where the depth,
defined by X to some magnetically anomalous body 1s known

to be greater than 2 kms. Expressing this as

X, = 2>0 (3.35)
gives the inequality constraint tk(xk) > 0.

In view of this simplicity, it is more useful to briefly
discuss the broad outline of the general case, which is usually
non-linear, and to detail only those points which are of

direct interest.

3e4.1, Variasble transformation (Box, 1966).

The simplest approach to constrained optimisation is to
transform the variable such that the constraints are removead
from the formulation of the problem, ' An unconstrained
optimisation may then'be carried out. The general method is to
express the variable X, in terms of a second variable which,
when used unconstrained, will not violate the conditions
imposed on the problem.

Consider, for instance, the.example given in equation

(3.35). Writing

X, =2+ |yk|
or _

= Z + 2 | '
Xy = Vi (3.36)
or ' '

=2 + eyk

Xy



ollte

reduces the problem to finding the optimum with respect to
the new variable Ve Suppose that it was further required
that the depth Xy should not exceed Z kms, i.e.

Z2>x,> 2z
The transformation may then be achieved by

X =2+ (2 - z)sin-zyk . (3.37)

with y,, in equations (3.36 and 3.37) being completely
unconstrained,

There are several methods for transforming variables,
following the same general idea. The principal advantage of
varlable transformation is that it is directly applicable to
the type of simple :. constraint usually encountered in
geophysical work, However, it becomes of little use when
the constraints are more complex in which case one of the
methods considered below would become necessary. The method
has also other disadvantages. The transformation is often
tedious and introduces the risk of human error., The increased
complexity of the new variables causes a further disédvantage
where the derivatives with respect to the variable parameters
are to be furnished.

For geophysical purposes, however, the method of variable
transformation is, probably, the best first aid treatment of

constraints and is often also one of the best final treatments.

3elo2e Direction Modification
The coiistrained problem may also be treated by changing
the direction of search when a constraint 1s encountered,

The main disadvantage of such methods 1is that when the
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constraint 1s highly non-linear, many direction modifications

may become necessary, involving a large number of computations,

3.4.2+1. Riding the constraint : Roberts and Lyvers (1961).
This method assumes that when a constraint is violated
along the direction of search the true minimum for & unimodal
function must lie on the unfeasible side of the constraint.
The search will, therefore, follow that constraint and not
leave it at any subsequent stage. The increments chosen in
following tpe congtraint depend upon the partial derivatives of
the constralned function with respect to the wariables. The

progress can be very slow for very non-linear constraints,

3.4.2.2, Hemstitching : Roberts and Lyvers (1961).

In its original form, the method is only applicable to
search by steepest descent, When a constraint is violated,
a step is taken back into the feasible region in a direction
locally orthogonal to the constraint, Thus, by moving into
and back from the unfeasible region, the progress assumes a
pattern that jﬁstifies the name, '

Difficulties arise ih relocating the feasible region when
more than one constraint is violated. Certain modifications
succeed in overcoming such difficulties but the method still
suffers from the poor convergence properties of search by

steepest descent (Box et al 1969 p.L7)

3elis 263, Davidon's method with constraints
Davidon (1959) suggested that his method is applicable
to problems involving linear equality constraints by reducing

the rank of the matrix M defined in equation (3.20) by the



number of active equality constraints. If during the
optimisation process 1t happens that better progress will be
made by relaxing a certain constraint, the rank of M nust be
increased by 1 using a certain recurrence formula. When
inequality constraints are involved, the search is carried
out unconstrained until an inequality constraint is violated.
'Tnis is then treated as an active equality cbnstraint and the
process continues as before, |
Non-linear constraints in Davidon's procedure may be
‘treated using the method of created response surface (section
3.4.3.). Davies (1968) also extends the method of handling
linear constraints describéd above to treat functions subject
to inequality constraints by incorporating techniques based

on hematitching.

3.4.2.4. The "Complex" method (Box, 1965). Procedure 301
This is a modification of the simplex method described
in section (3.2.2.1.,) where the term "complex" refers to a
simplex in a constrained problém.- The coﬁplex is constructed
as follows:
An initial point is given in the feasible region, i.e. it
satisfies

Liéxié ui i=1,2100’m,m+1’00091" (3038)

where the implicit variables X412 000 Xg, 8T€ functions of the
independant variables X, 9Xp90 00 9 Xpe _l.1 and u, are lower and

upper limits respectively and can be constants or functions of

xl,...,xm.
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The remaining k-1 (k) m) vertices of the complex are
constructed in the followlng manner, A point is generated

with coordinates
xJ = LJ + rj (uj - LJ) J = 1,2,...,111 (3.39)

where the random numbers rj lie in the interval O-1 so that
the explicit constraints cannot be.violated. If this point
violates an implicit constraint, it 1s contracted towards the
centroid of the points already selected. The process is
repeated’until all vertices have been generated., The search
is then carried out by methods similar to those described

in section (3.2.2.1.). Whenever a constraint is violated the
relevant vertex is moved back into the feasible region along
the same expansion line,

k = 2m is recommended but may be too large for m> 10

(Box et al, 1969, p.53).

3elie 3o Function modification

With this technique, the function is modified at the
constraints such that a minimum can always be.found within
the feasible region. Consider, for example, a modification
of (x) so that the problem is to minimise

F(x) = £(x) + ES?i tf (x) (3.40)

where the summation involves only those constraints tnat
have been violated and where Wi is an appropriate weight

and t, 1s defined in equation (3.1). The constraint is then

i
effectively replaced by a 'hill' whose sides get steeper away

from the feasible region., ‘The particular form of equation



. ‘ ' .’48.

(3.40) 1is not convenient since it could involve function
evaluations outside the feasible region, Using the same
concept, Rosenbrock (1960) and Carroll (1961) suggest

methods which overcome these difficulties.

3.4e3.1., Rosenbrock's method: Procedure P300 _

A boundary zone of width (ui - Li) 10”4 is assumed on
the feasible side of each of the constraints. The search
18 carried out as in the unconstrained case until a
constraint 1s violated in which case the trial is deemed a
failure equivalent to fi+f> fi' The basic search procedure
is then resumed,

When at any stage, a point falls within a boundary zone
the function f is modified by replacing it by

F=fo(f-2.)(3 = b2+ 203 (3.41)
where fo is the lowest function value obtained thus far
outside the boundary zone and where b is the fractional depth
of penetration of the boundary zone.

At the edge of the boundary, b = O and F = f while at
the constraint, b = 1 and F & f,. Rosenbrock (1960) shows
that for a function which decreases as the constraint is
approached, this modification creates a minimum within the
boundary zone. Thus, an unconstrained minimum exists for
some b between O and 1. |

While this method of treating constraints is very
successful in conjunction with the method of rotating
coordinates (section 3.2.3.3.) it has generally proved less

effective with other methods (Box et al, 1969,p.50).
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3.l4e 3.2, Carroll's method
The constrained problem is replaced by an unconstrained

procedure using L

w
Pz, W) = £(x) + W ;Z:l E;Téf— (3.42)

where W and w, are positive constants.

As the constraint is approached, t, tends to zero and

i
the function becomes extremely large. Thus, an unconstrained
minimum of F(x,W) is produced in the feasible region. In the
actual application, each LA is initiallsed to zero until the
respective constraint is violated when ﬁi assumes its specifled
value, W is reduced at each of the successive optimisation
stages. This finally results in convergence to the true
minimum of the feasible region (Davies, 1968).

Carroll's created response surface technique has been
applied auccéssfully to manylunconstrained algorithms,
particularly in conjunction with Davidon's method (Davies,

1968).

3.5.Conclusions

The use of the methods of steepest descent, Newton-
Raphson and least squares has been traditional 1n the solution
of non-linear problems, in various branches of science
including geophysics, This is because they have had an
unrivalled monopoly from the time of their introduction
until the advent of digital computers. The methods of
alternating variables and random search have also had a wide

range of application. However, all these methods are
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relatively slow and suffer from severe drawbacks which
make them unsuitable to meet the demands of geophysical
problems except on a limited scale,

More recent elaborations, e,g., Davidon's method, use
a combination of the good features of some of these methods
and have generally proved quite successful, However,; gradient
methods are very powerful only in an essentially unimodal
region and seem to break down when applied to problems which
are rather i1ll-conditioned., The slower but more rd-bust’
direct search methods enjoy a superior strategy with multi-
modal functions,

The rule in treating most geophysical problems is to
start the initial search stages using a direct search method
" and to change to a gradient method at the later stages when
the search has converged to an essentially unimodal region.
This usually corresponds to equation (2.9) becoming a closer
representation of the behaviour of the objective function.

The objective functions encountered in gravity and magnetic
problems are typical of the functions which qualify for this
kind of apprsach.

However, within the generzl principles outlined above,
the choice of the particular optimisation method is not very
critical, Fleischer (1965) comments on this by quoting
J,D, Williams in the book the Compnleant Strategyst "As with
all models of performance, the shoe has to be tried on each
time an application comes along to see whether'the fit is
tolerable; buf, it is well known, in the Military Establishment
for instance, that a lot of ground cail be covered in shoes that

do not fit properly,"
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CHAPTER L

AN INVESTIGATION OF NON-UNIQUENESS IN GRAVITY AND
MAGNETIC INVERSE PROBLEMS

4.1, Introduction

| Ambiguity in the solution of gravity and magnetic problems
is a well established fact. We shall, in this work, view the
problem of ambiguity through a number of factors which most
significantly contribute to it. Each factor is dealt with
separately since a-combined treatment would tend to confuse
the picture, These factors are:

I) Potential theory considerations.show that a given
gravity (or magnetic)anomaly on some plane H may be produced
by an infinite number of possible solutions below H, down to
a certain depth (see; for example, Skeels, 1947; Parasnis,
1962, p.46). The solutions usually involve non-uniform density
distributions and no particular restrictions regarding the
shape of the anomalous body., This factor imposes an inherent
non-uniqueness but may be severely limited by using certain
restrictive conditions which we shell give later,

II) Incomplete knowledge of the full length of the anomaly
is a factor which is a direct result of our practical
limitations,

III) The geological setting is invariably represented by
models which are substantially simpler. This factor results
into a number of models, all satisfying the observed anomaly
to within an acceptable range but each, individually,
emphasising a certain aspect of the anomalpue feature,

A further related point is the lack of adherence to the

\
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conditions assumed by the model, A familiar example 1s the
use of two-dimensional models to interpret anomalies which
are only approximately two-dimensional,

IV) Observational errors resulting from measurement,
reduction etc, are always present on field anomalies. This
factor causes a multitude of possible but widely differing
solutions that approximate the observed anomaly within the
amplitude of the errors,

Other factors in ambiguity are less general and will be
dealt with when encountered, as appropriate.

For the sake of simpliéity, all investigated cases are
two-dimensional but an extension of the results to three-
dimensional cases should follow in a general way., ‘It is
also more convenient to present the problem using mostly
gravity anomallies although most cases below have been verified
to be true for magnetic problems as well,

The anomaly 1s assumed measurable at each point (x,0)
along the horizontal x-axis in a Cartesian system with the
z-axis pointing vertically downwards, |

The following conditions have been assumed for the
anomalous body and for the model representing it throughout
this investigation:

1, They are bounded by a finite number of straight
sldes so that they are both of a polygonal cross-section.

2, They have a uniform, not necessarily known, density
(or magnetisation) contrast with a uniform surrounding medium,

3, Any line vertical to the x-axis will not meet the

bounding'surface more than twice. The absence of cavities is
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an important implication of this condition,

These conditions are usually quite adequate geologically,
The use of polygonal models has been adopted in most
interpretational procedures since the introduction of the
general method by Talwani, Worzel and Landisman (1959)., The
conditions imposed here do not, therefore, represent any
deviation from an established routine. They have, for our
purpose, the further advantage of completely overcoming the

effect of factor I as will be shown in the next section.,-

L.2.The Case of Exact Models

A hypothetical case 1s now considered where factors
III and IV are assumed absent., The N-sided anomalous body
can, therefore, be exactly represented by a model.

Consider the case where the anomalous pOlygon has a
density contrasi fl with the surrounding medium. Using a
formula given by Heiland (1940, p.153) for a semi-infinite
step-model, the gravity anomaly at the k th point is then

" given by

' J j ' 3

(x2, -Ei)z + zlzgj1
- =3

(xlj -Ek) + 21%,

N
x2. =& _, x1, =&
Ak JZ p{ZZ tan-l—‘lﬁ—ls-zljtanl——gl—-lg_}

sin 1 + zla cos 1}{% sin 1 log

+ cos 1 (tan-l x_z..‘)._-_E_E - tan" T x_l..l_-_él.{. )j ) (4e1)
223 le

where G 1s the gravitational constant, le, ZIJ’ xzj, zzj are

the coordinates defining respéctively the top and bottom
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corners of the j th semi-infinite step-model, Ek is the
x-coordinate of the k th anomely point and may assume any
value between -00and +00, and
-1 2 2, %
i = sin 2 .-x1 z2 -zl + 2 .-
[ (x2,-x1,)/ [(22-21 )% + (x2,-x1,)%) 7]

Simplifying we write
N

Ak = 2GP1Z Tjk (k =1y 290cescoy @ ) (he2)
. J= '

A second N - sided polygon of density co_ntrast,p2 will

produce

Nl

[} ’

A, =26p, X Tjk (Lo 3)
J=1

The values of 5£ which will satisfy AzA are given by the

roots of the equation
Ni : N|

PV % v /) Ty ()
=1 j=1

For any particular ratio z/' pl = R, equation (holt) 1is

reduced to
. /

’

N'—\ \'H\ ’
| 2 Tye - R ; Tk = 0 (4e 5)
J=i =i

, .

In order that A = A for each and every Ek’ equation
(45) has to be similarly satisfied for each and every'Ek.
A sufficient condition is the trivial case where

4
N=N ,pl=p2,

x1l, = xl'J, x2, = x25, zl'j, 223 = z2'._j (3=1, 250000,N) (L4eb)

J
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By referring to equation (4.1), it may be readily
con jectured that equation (L.5) will not be otherwise
satisfied for all possible values of £ and the implied
geometrical considerations lead to the conclusion that the
solution is uniqpe.'

However, a rigorous mathematical proof that equations
(L.6) are the only conditions that satisfy equation (L.5)
for all possible values of & , is obtainable by showing that
the harmonic continuation of the second derivative of some
complex function of the external gravity field is singular at
each corner of the N-sided polygon (R.A., Smith, private
communication). This means that a second N-sided polygon
producing exactly the same external field will necessarily
have all its corners coincident with those of the first
polygone.

For N' > N, the above results are still obtainable since
this simply implies that the extra N' - N sides will define
co-linear segments on one or more of the sides and no extira
corners will appear, However, an exact solution of an
anomaly caused by an N-sided polygon is unobtainable if the .
solution is represented by an N' - sided polygon, when N'< N,
This is the main cause of factor III and is discussed more
fully in section 4.U4.

The applicability of our conclusions were tested using
non-linear optimisation techniques. We set up a Euclidean
hyperspace defined by M mutually orthogonal axes where M is
the number of parameters (including density contrast) that

represent the polygon. The objective function 1s then defined



.56.

by

F(g)= i (A, - 5,.)2 (Le7)

k=1

where ¢ is an M-dimensional vector representing the parameters
defining the model, n is the number of observation points and
Sk is the calculated anomaly of a polygon defined by gc.

The search is carried out using an anomaly A due to a
polygon defined by Sy° When starting from an arbitrary initial
point g4 the search ends either at gy oOr at some local minimum
for which F(g) > O, The practical aspect of the facts
established above 1s hence verified,

Therefore, under the conditions imposed in section 4.1,
factor I is entirely removed and, in the hypothetical absence
of the other factors, the solution 1s unique. No coordinate
or density parameter need be specified.

The case of regular polygons is of particular interest.
Let us start by considering the gravity anomaly A due to an
equilateral triangle with radius ro and density contrast o
and with 1its centre1 at the point Xg » Zge One apex is made
to.point vertically upwards 1in order.to unify the system of
orientation when compared with other regular polygons.

The objective function is
n '

F(r,p ) = Z (a, - 5,)° (408)
k=

where S, is the calculated anomaly due to a regular triangle

k
with the same orientation and with its centre at xo, zo.

F(r, p ) 1is mapped for the range 0<r< z, and for the

l., The radius and centre of a regular polygon refer to those
of the escribing circle, '
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an objective function defined by equation (4.8). The obser-
ved anomaly is due to a regular triangle of radius 8 km

and density contrast 0.6 gm/cﬁﬂ The uniqueness of solution

is clearly demonstrated.
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corresponding range of P that would result in the same
mass/unit length as the triangle at rg 2 ” 0’ (Rig. 4.1),
This range of mapping is sufficient to show the behaviour
of the objective function over all feasible possibilities.
Fig. L.1 shows the unique solution at ry, f, distinctly
situated along an axis of low values or a 'trough'. All
points along the middle of this trough have the same

mass/unit length as the triangle at r.,

o’ "0°

F(r,e ) is similarly mapped for a square (Fig 4.2)
and a hexagon (Fig 4.3). The uniqueness of solutions is
again clearly demonstrated in both cases, However, the
increase in the number of sides 1s accompanied by a rapid
increase in the length of every contour in the trough
containing the solution. As N continues to increase and the
body asymptotically approaches & circular cross-section, the
trough stretches further and uniqueness becomes acceptable
only if computer truncation errors are allowed for, At N = 00,
it is clear that, even down to zero tolerance, all points
(r,?) having the correct mass/unit length provide a solution
and the case becomes completely non-unique.

Similar experiments on other geometrical shapes, such as
ellipses, do not show any ambiguity as N is increased. The
observation is, therefore, not related to employling a large
number of sides to define the model, a factor whose role will
be explained more fully in section L.4.

These results are of fundamental importance for they show
that the widely advocatsd use of a horizontal cylinder (or a

Sphere) to illustrate basiq ambiguity is unrepresentative since
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as we have seen, a circular cross-section is a singular case
in a problem in which the solution for a polygon is unique.
However, for practical purposes, where exact
representation and measurement are not possible, this would
show that bodies which approximate a circle in cross-section
cause more ambigulty than those which deviate from such
shapes. It 1s possible that other shapes causing a similar
ambiguity may exist although our limited investigation of

this possibility was inconclusive,

Le3. Influence of Anomaly Length and Number of Points
The range of n in a given objective function should, in
theory, include all points ( € , 0) and should extend to
| infinity on both sides of the model. In practice, the
limitation is two-fold.

1l. The anomaly is usually known only for a finite range
because of the influence of neighbouring anomalles.

2, The measurements are usually made or digitised at
a finite number of discrete points.

The effect of the two limitations was studied by mapping
the objéctive function in the parameter hyperspace.

When the length of the profile gets smaller but is still
sufficient to extend on both sides of the model, only the
sharpness of definition of the solution at S5 is reduced;

Sq is now a vector defining a general polygon which causes
the anomaly, i.e. the global solution, As the profile 1is
shortened further, new minima in the hyperspace begin to
appear rapldly and new solutions become, therefore,

acceptable within some tolerance.
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The second limitation similarly influences the sharpness
of definition of the solution at So when the density of the
observation points is still'sufficient to describe the anomaly
adequately. When the density of points decreases further, new
solutions also appear but, generally, less rapidly than in the
first case, However, the appearance of new solutions is such
that many of them develop in feasible regions quite remote
from that containing Coe Hence, a batholith-like structure
may satisfy an anomaly caused by a basin-like structure
(Fig. L.L4). This is probably related to the inaccurate
definition of the higher derivatives of the gravity profile
as the denslity of points decreases; the second derivative
has already been suggested as a criterion to distinguish
basin-like structures from batholith-like structures (Bott, 1962)

Unless otherwise suggested, it will be assumed in the
subsequent text that a finite but sufficient length of the
profile, with a sufficient number of points, is being

consldered,

L4 Model Approximation
Lels1l. Adequate models
An adequately representative model 1s defined as one
which gives a concise 'summary' of the anomalous feature,
outlining all its essentlal aspects. Thus, a model, at its
best, can be no more than a fairly adequate representation.
The number of sides defining the anomalous feature, N, is
never actually known and is frequently prohibitiwely large

for an exactly representing model. Moreover, the model
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aséumes stféight and well defined contrast boundaries and

a homogeneously distributed density (or magnetisation).
Whilst these assumptions are sometimes closely approximated
when the overall anomalous feature is considered on the
surface, deviations from such assumptions are common in
practice, Two~dimensional work suffers from the additional
drawback that conditions along the y-axis are seldom as
uniform as assumed. These and other familiar causes combine
to glve rise to the ambiguity discussed below,

Agssuming that the number of parameters defining the
anomalous feature and the model representing it are M and M'
respectively, an exact solution was shown in section 4.2
to be unique for N'>= N and unobtainable for N' < N, 1In
practice, one is faced with the problem where N'<< N and it
is strictly this situation that we shall discuss now
(M = 2 (N+1)+1 if we include the density contrast).

The absence of an exact solution results into the
development of a number of approximate solutions, This is
more easily visualised by constructing an M' - dimensional
hyperspace, each of iﬁs mutually orthogonal axes representing

a model parameter., Each solution is then a local minimum for

which
. o<Rg < o (4.9)
where ¢~ is a tolerance limit and F(g) is defined by
' n
Flo) = > (a4 - 82 ' (4.10)
k=1

¢ being now an M' - dimensional vector representing the
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parameters of the model, S 1s the anomaly caused by the model
while A is the observed anomaly. o is determined in practice
by the amplitude of observational errors to be presented in
section L.5 but, for the sake of clarity, we shall treat them
separately,

There are two distinct roles played by M'. Firstly, a
large number of parameters on the model is sometimes necessary
in order to represent those anomalous features which do not
behave as simple bodies, Secondly, when the M' dimensional
hyperspace is considered, a large M' causes the development of
a large number of possible solutions, This is due to the
increased number of possible combinations that would give a
reasonable fit between A and S. Hence, while a large number
of parameters can lncrease representation 1t can also increase
ambiguity. The relative contribution to either factor depends
upon the particular problem being soived. However, the
situation is usually simpler in practice due to the decrease
of the resolving power of gravity anﬁ magnetic methods with
depth,

A iarge number of local minima may appear in regions that
are geologically unfeasible, We shall assume, however, that
the hyperspace could be constrained so that we may exclusively
deal with geologically feasible regions.

The solution minima in the feasible region are generally
clustered within a region which would have contained the
unique global solution_had the anomalous body been simple
enough so that M = M', The parameters defining these

solutions are, therefore; of the right order of magnitude,



Contours of Objective Function Values

Surface

..... Approximate Model
Original Model '
5 OKm

MODEL U MODEL H
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of the section) is a 'valley of ambiguity' for a function
value <10. ' '
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an important statement which will be more accurately
qualified when the region containing the cluster of minima
is discussed more fully.,

Figs. L.5 and Lie6 show a hypothetical case (only factor
III being effective) where an anomalous 30—sided body is
represented by a six-sided model. The orientation of Fig, L6,
parallel to the density contrast axis, 1s adopted to show
the effect of not specifying the density contrast and will
help later discussions,

The behaviour of the objective function, as revealed in
Figs 4.5 and 4,6 is typlcal of its general behaviour in the
malti-dimensional space, A similar study of a large number -
of such problems, both real and hypothetical has helped to
formulate the following:

i) Minima satisfying.F <o are all good solutions,
Depending on its particular coordinate in the hyperspace, each
solution emphasises certain aspects of the anomalous feature,
Minima H and U in Fig L.5 are examples of such different emphases
both of which represent satisfactory solutlons.

115 The value of © determines the extent of the region
containing acceptable solutions, For example, minimum V
(Fig 4.6) 1s regarded as a good solution for quite a low value
of o while minimum W would also become an acceptable solution
if 9 1is increased proportionately. In this sense a solution
can no longer be represented by a single point in the
hyperspace but has to refer to a neighbourhood of this point
bounded by a contour of magnitude ¢ ., Therefore, the trough

contaiﬂing U and H (Fig. 4.5)‘and that containing U and V.
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(Fig. 4.6) are each a 'valley of ambiguity' because for some
reasonable value of o , all points along-these valleys,
not necessarily in the plane of the dlagram, would provide

a solution.

The range of acceptable solutions can only extend
betﬁeen certain limits determined by the boundaries F = o0 ,
Viewed inversely, this means that for each parameter there
exists a certain range beyond which no acceptable solution
1s obtainable, Ior example, tests using optimisation
techniques show that the value of density contrast for
solution V (Fig. L4.6) 1s about the limit which an acceptable
solution could give within that particular ¢ . Figs. L.5
and 4.6 also show that increasing ¢ would rapidly increadse
the extent of the region containing acceptable solutibns.

A familiar predecessor is the work on limiting depth
estimation (e.g. Bott and Smith, 1955; Smith, 1959, 1960).

We have used a hyperSpace illustration to show that there
is in fact & limiting range (increasing with increased
tolerance) not only for the depth parameters but for every
parametér defining the polygénal model.,

1i1i) For a given o , the range limiting each parameter
increases rapidly as the extent and interaction of the factors
causing ambiguity lncrease.

1v9’ Specifying any parameter prior to the procedure of
obtainiﬁg the solution 1is merely equivalent to confinlng the
search to a space orthqgonal to that particular axis at the

specified value., Any uniqueness'thus obtained is only relative
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for there are always solutions that would emphasise a
certain aspect of the body even if the specified parameters
happened to be extremely representative, Fig, L.7 shows a
hypothetical example of a magnetic anomaly caused by a
seven-sided body for which & solution is sought in terms of
a four-sided model. Although the bottom of the model and
the magnetisation contrast are specified at their actusl
value, there are several possible solutions, Two of these
solutions are shown in Fig, 4.7.

ve The ill-conditioning of a problem may develop for a
number of reasons such as using a very large number of
parameters to define the model (Fleischer, 1965). Many
gravity and magnetic problems are, in fact, ill-conditioned.
The distribution of local minima in these problems is such
that groups of solutions would cluster into a number of almost
isolated regions in the hyperspace. Hence, extensive
ambiguity exists when the entire feasible region is considered,
However, within each region, some relative uniqueness may be
attained, Which of these regions would give a solution depends,
primarily, on the position of the initial search point in
fhe hyperspace, This is a definlite advantage because one
has generally some idea, from the regional geology, about the
anomalous feature being investigated such as its approximate
depth or shape, - The initial point can, therefore, be placed
at a favourable position, This effectively limits the search
to the desirable region and the ambiguity 1in the hyperspace,
as a whole, is thus largely eliminated, However, in the

complete absence of information about the feature, the case
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Fig. 4.7. A cross-section in the ¢ hyperspace of an objective function
corresponding to a magnetic anomaly caused by a seven-sided
model and interpreted using a four-sided model. The section
demonstrates that a unique solution is unobtainable even if
the lower (or upper) boundary and the magnetisation contrast

are fixed at their precise values,
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can become extremely ambilguous (see, for example, Skeels,
1947, Fig. 5).

The position of the initial point is also important
in determining, within a given region, the minimum to which
the search will converge, This gives the possibility of
blasing the solution towards certaln aspects of the
anomalous feature, if desired.

| vi. From an extension of 1ii - iv, it follows that

methods which search for a solution by setting a parameter
hyperspace may be effectively employed for range estimation
of the parameters, The estimation of the possible range of
the baslc parameters (see section h;7) is particularly
useful,
L.4.2.Inadequate models

When the number of parameters is not sufficient to define
an adequately representative model or when the position of
the initial search point in the hyperspace is such that an
adequately representative solution would not be obtained,
the outcome éf the interpretation procedure varies widely.
There is a complete gradation from an adequate hyperspace
setting to an inadequate one., As the hypcrspace setting
becomes less adequately representative, solutions (F<< o)
pass from being an actual description of the essential
features ‘'of the anomalous body to a mere averaging out of
such features. When the setting becomes completely inadequate,
a solution with F <o is very difficult to obtain and would,
anyway, be usually so unrepresentative that it is often -

discarded on geological bases.
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L.5. Presence of Observational Errors

The consequences of the presence of observational

errors, up to a magnitude e s can be illustrated by

max
investigating the objective function

n
2
P(g) = Z (A = 8)2 5, (4 11)
=1
where A . = 0 if | A - Skl £ e -
and A, =11f |A -8 |<e

The presence of ©max imposes, on the objective function,

a tolerance E which is equivalent to o discussed in the
prev;ous section. Therefore, the statements made in 1 - vi
in the previous section follow: in exactly the same way.' In
particular, a solution, defined as any point in the feasible
region satisfying F <E, refers to a domain bounded by a
contour of value E, Fig. 4.8 illustrates the effect of

assuming gma# = l.5 milligals on the behaviour of the

objective function shown in Fig L4.6. It is clear that several
solutions would become acceptable even for quite a low value
of E and that the problem as a whole has become less'well-
conditioned. The value of € max is not low but it serves to

compensate for the fact that other factors have been largely

suppressed, The magnitude of L is perhaps the most vital

ax
of all factors, in practice, as it has a direct bearing on

E and 9 . When other factors are present on a more tangible

scale, a small increase in emax causes the development of a
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large number of local minima.and the rapid expansion of the
limiting ranges of parameters., Non-representative solutions
may therefore appear even if €max WETe quite small, The
expansion is most appreciable in the direction of elongation
of the objective function. This point implies that if the
trend of the objective function bears some parallelism to
certain. parameters, these parameters will suffer the most
increase in ambiguity. The details of this remark will be
discussed in section L.7.

In extreme cases, where e x is very large, the region

ma
containing permitted solutions becomes so vast that it may
occupy a large portion of the geologically feasible'hyper-
space and the validity of any solution would not be accepted

without extensive external control or assumption,

Lis 6. The Regional Background

A limited amount of theoretical and experimental work
has shown that the conclusions reached about the density (or -
magnetisatiop) contrast apply, in a general way, to &
horizontal regional background, i.e., that which can be
represented by a zero order polynomial., Higher order terms
cause extensive ambigulty unless their coefficlents are
specified.

Despite this ambiguity, Corbato (1965) and Johnson
(1969) have successfully used higher order polynomials in
various interpretations, For the purpose of the present
work, however, problems ihvolving thé regional background

as an additional unknown have been restricted to determining'
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the zero order term,

4.7. The Question of Uniqueness

Various authors have been able to establish conditions
which would ensure, at least in theory, & unique solution
(e.g. Sretenskii, 1954; Smith, 1961; Roy, 1962). Although
these authors have usually dealt with factor I only, their
theoretical considerations have provided us with a strong
foundation for uniqueness. Hence, in complylng with these
conditions, the usual present-day practice is to assume
the denslty contrast of the anomalous feature and one or
more depth parameters and to solve for the other parameters
(e.go Bott, 1960; Corbato, 1965), The significance of these
conditions can be judged by investigating the behaviour of
the objective function in the parameter hyperspace.

Broadly speaking, the parameters defining a model fall
into two categories. Firstly, some parameters describe the
general properties of the model such as its density contrast,
the depth to its top, in the case of a basin-like model, and
the depth to its bottom, in the case of a batholith-like
model. The regional background is also an important parameter.
We shall call these the basic parameters, Fig. 4.9 shows
the behaviour of the objective function of the anomaly due
to the basin shown in Fig. 4.L. The section 1s parallel to
the axis repreeenting the depth to the top of the basin and
is inclined to the axes of the other parameters. Secondly,
all other coordinate points describe the detalls of the
model and could therefore emphasise one aspect of the anomalous

body or another. The presence of these coordinate points as
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a whole is essential to the model but the deletion or

creation of individual ones will not cause a loss of generality.
These are, therefore, secondary parameters, Intuition,
experience and experiments suggest that the objective function
bears much more parallelism to the axes of the basic
parameters than to those of the secondary parameters. It is
difficult to demonstrate parallelism on cross-sections since
it is highly dependent upon the orientation of the section,
However, if we consider a particular contour whose value

is determined by the tolerance of the problem then parallélism
to a given parameter, in the hyperspace, may be thought of

in terms.of the extent of this contour in the direction of

the parameter, Figs., L.6 and 4,9 may, in this way, be used

to give some indication of the parallelism to the density
contrast and depth parameters, respectively. Fig L.9 also
1llustrates the idea of maximum depth estimation, within the
realm of the factors discussed so far,

It follows from this parallelism that two anomalies
similar to within a small value of o or E are not
necessarily produced by bodies that are approximately similar,
By specifying the basic parameters, the search for a solution
is confined to a hyperspace in which the objective function
bears little parallelism to any axis and in which the domain
containing accebtable solutions is very limited. Thus, by
reducing the dimenﬂonality of the problem, in this manner, a
vast ambiguous region is avoided and a relatively unique

——solution may be expected, However, absoiute uniqueness ié

st1ll unobtainable (iv, section L.4).
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A cross—-section, parallel to the axis reoresenting the depth
to the top of the model, in the hyperspace of an objective
function corresponding to a gravity anomaly caused by a basin.
The section gives some indication of the 'parallelism' which
the function bears to the axis representing the depth to the
top of the model. The back-swing of the function is an indic-
ation of the maximum depth which the model can have and which
increases with increased tolerance.
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The extent of parallelism to any parameter varies
according to individual problems, When the factors causing
ambiguity are limitgd, the tolerance is very low and only
little parallelism will be possible., Starting from a good
initial point and without assuming any parameter, solutions
thus obtained will be of the correct order of magnitude.

This is especially useful when the basic parameters cannot

be established with accuracy e,g. when interpreting basement :-
features, An underestimation of 10% of the density contrast
in the problem of Fig L,5, for example, leads to a solution
(not in the plane of the diagram) which is far less
satisfactory than would have been obtained had the density
contrast not been specified. I

In general, the adherence to the 'order of magnitude'
depends on the presence and interaction of the various factors
causing ambiguity., In many cases, when these factors are not
small but also not extensive, a satisfactory solution may be
still obtainable by specifying one of the basic parameters
only, However, when the presence of ambiguity factors is
more conspicuous so that possible solutions are scattered ih
a vast region, it 1s obvious that the usual procedure of
obtaining a number of solutions, byHSpecifying the basic

parameters at a set of intervals, is both desirable and

necessary,

‘48. Discussion of Some Examples

In attempting to warn against the dangers of ambiguity,

past work has tended to over-emphasise these dangers., We
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shall use the classical example of Skeels (1947, Fig., 1) for
" 1llustration, The example presents a gravity anomaly of a
maximum amplitude of 4 milligals and shows seven different
models which should satisfy the anomaly within O,1 milligal.

The main source of ambiguity in the example 1is the
decrease in the resolving power of the gravity method when
the width of successive anomalous features becomes small
compared with their depth (e.g.Bullard and Cooper, 1948).
This source, which is related to the ill-conditioning of the
problem, is not representative of the major factors in
ambiguity and is a drawback shared with almost all other
geophysical methods., It is true that extensive ambiguity
is present but, if one has even a rough idea about the
anomalous feature, a good cholice of the initial search
point would be possible. The ambiguity is then largely
reduced (v, section L.l4).

Moreover, a re-computation of the anomalies caused by
three of the seven models was made (Fig 4.10). These models
were approximated by open polygons which did not differ from
them by more than the thickness of the line representing each
model, Equation L.l was used in the calculation. It is clear
that, despite occasional agreement, the three anomalies are
_essentially different, Adherance to Skeel's suggestion is not
verified and discrepancies of up to 13 times the claimed
limit are present., The situation will not be remedied by
assuming a different density contrast or changing the

N

background anomaly.
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Other points must also?be considered, The amplitude of
the anomaly 1is quite low and, therefore, tends to attenuate
the discrepancies in absolute terms., Also, had a fuller
length of the profile beén conslidered, relative disagreement
between the anomalies would have been more apparent,
parficularly as the deeper models would cause longer anomalies.

It 1s conceivable that better agreement may be obtained
1f certain modifications to the model were made. Such
modifications, however, will fall within the realm of the
factors discussed already.

The above-mentioned discrepancies would not have
escaped detection had better computing facilities been
available, Hence, while this example has served the
excellent purpose of showing that an absolutely unique
solution is unrealisable in practice, the lack of compﬁting
facilities appears to have led to overlooking the existence
of situations where ambiguity could be extremely limited,

Let us now consider an example solved in the light of
the facts presented in this work, A negative gravity anomaly
across the Pennihes is attributed to the Weardale Granite
which a centrally placed borehole encountered at a depth
of LOO metres. The dénsity contrast with the country rock
15 estimated to be =0.11 to ~0.15 gm/cm’ (Bott, 1967a) whereas
the regional background could range from 9 to 14 milligals,
End corrections (Nettleton, p.117) were applied to reduce
the anomaly to a two-dimensional case and the accuracy of
each point 1is about 0,5 milligal.

The anomaly was interpreted using the method of rotating
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and the resulting parameters are of the correct order of magnitude. D = the resulting depth to
the top of the borehole position. € = density contrast.
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coordinates (section 3.4.3.1). and assuming a polygonal
model of a uniform density contrast with the surrounding
country rock. All parameters (including the density
contrast and the regional) were left unspecified and,
virtually, no limit was imposed on the range in which
each parameter could vary except that the model should be
.geOIOgically feasible,

Iwo interpretations, each starting from a different
initial point, are shown in Fig.ildl. These two models are-
representative of a large number of other solutions all of
which show a remarkable agreement between themselves as
well as with the geological occurrence., The depth to the
top, the density contrast and the regional background fall
well within the expected order of magnitﬁde. The depth to
the bottom varies within an estimated range obtained
independently by an interpretation procedure based on
specifying the density contrast, the regionalland the depth
to the top (Bott, 1967a; Tanner, 1967).

L.9.Conclusions

A gravity or magnetic anomaly caused by a two-dimensional
polygonal model has & unique solution in theory. In practice,
ambiguity arises from the presence of observational errors,
lack of adherance to the ideal conditions assumed by the
model, inadequate definition of the anomaly over 1its entire
iength and other factors. The resulting ambiguity takes
the form of a scatter of local minima or an elongated 'valley

of ambiguity'. Possible solutions will agree between

themselves to an order of magnitude determined by the extent
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of the region(s) they occupy and, therefore, by the tolerance
of the problem, The agreement between these solutions, i.e.
the degree of uniqueness in the general solution to the
problem, increase as the effect of the factors causing
ambiguity decreases and as more basic parameters are
specified. The position of the initial point in the hyper-
space determines the particular solution to which the search
will converge.

Absolute uniqueness is not generally obtainable because
there are usually other solutions which would emphasise
different aspects of the anomalous feature, A high degree
of relative unliqueness is only obtainable withln specified
basic parameters, However, if some or all of the basic
parameters are unspecified, the outcome of the search in the

1. In these cases, the role

hyperspace is not unpfedictable.
of specifying the basic parameters is substituted by the
position of the initial point while uniqueness is replaced
by the concept of the 'order of magnitude'. Under favourable
conditions, solutions may agree between themselves to a close
'order of magnitude'. However, conditions are not usually

favourable so that épecifying some or all of the basic

parameters becomes necessary.

1. Search by sequential or random methods is an obvious
exception,
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CHAPTER 5

GRAVITY INTERPRETATION

5.1 Introduction

The common methods of interpreting gravity anomalies
are based on the “forward" approach, i,e..given a model
simulating a geological feature it is réquired to calculate
its gravity anomely., The calculsted anomaly is then
compared with the observed one and the model's parameters
are re-adjusted until a satisfactory fit is obtained. This
is an indirect procedure,

There are several direct procedures, They include
transforming the anomaiy by upward or downward continuation
(eeg. Peters, 1949; Dean, 1958). The first and second
derivatives of the anomaly may be obtained using other
transformations (e.g. Baranov, 1953; Evjen, 1936; Rosenbach,
1953)., The purposes of these transformations are usually
qualitati&e. The sin x/x method (Tomado and Aki, 1955)
and methods which use certain estimators on the anomaly
(esge Jung, 1953; Smith, 1959) are of more quantitative
objective, However, direct methods of interpretation are
not of immediate concern to us here and will not be
discussed further,

When computing facilities were limited, dot charts
and graticules (Levine, 1941; Hubbert, 1948) provided
sultable means for calculating the anomaly caused by o

model. Mechanical integrators (Siegert, 1942)
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were also in use. The increased availability of computers
caused two major changes. Firstly, faster and more accurate
methods for calculating the anomaly were introduced (e.g.
Talwani et al, 1959; Bott, 1969a). Secondly, it became
possible to perform'the process of adjusting the model
parameters automatically using some iterative procedure
(e.g. Bott, 1960; La Porte, 1963; Tanngr, 1967). These
procedures attempt to determine the geometrical details

of the anomalous feature, the density contrast(s) being
specified, The inverse problem involved is, therefore,
basically non-linear (Bott, 1967b).

Non~linear optimisation techniques offer an immediate
advantage by being especially designed to treat non-linear
problems, Their use in interpreting gravity anomalies was
introduced by Stacey (1965) but only limited progress was
made because of difficulties with local convergence and low
speed of avallable computers, The present attempt has
largely overcome these difficulties, The techniques have
been developed to apply to a two-dimensional polygonal model
(open or closed) having a uniform density contrast with the
surrounding medium, Provisions are also made for cases
requiring a number of density contrasts within the model.

Applicability to three-dimensional problems follows
in the same way by employing a suitable computational method
(e.g. Talwani ahd Ewing, 1960), However, three-dimensional
models usually involve a large number of anomaly points and
unknown paramefers. Therefore, the required computer time

may not be practical. Approximation to a two dimensional
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model using end corrections (Nettleton, 1940, p.117)

can be used when appropriate, Alternatively, some
appearantly successful iterative procedures for interpreting
three-dimensional models (e.g. La Porte, 1963; Cordell and

Henderson, 1968) may be used,

52. The Auxiliary Procedure

The auxiliary procedure consists of two main parts. In
the first part, the gravity anomaly due to the polygonal model
is calculated. In the second part, the objective function is
calculated, Its value 1s then returned to the calling

optimisation procedure. .

5¢2.1. Calculating the anomaly

The adjustable parameters of the model are passed from
the optimisation subroutine., The model is then defined by
a series of instructions which allocate the adjustable
parameters to the appropriate corners of the model and specify
those parameters which are unadjustable, The instructions
also define other detalls of the model, e.,ge models requiring
a horizontal side are defined by specifying two successive
points to be at the same depth, etc, )

After defining the model, its gravity anomaly is computed,
We adopt a two-dimensional Cartesian system with the anomaly'
profile taken along the horizontal E - axis perpendicular to
the strike of the anomaly and with theZ:- axis pointing
vertically downwards, Fig., 5.1 illusfrates the symbols and
adopted convention., Using a formula by Heiland (1940, p.153)
énd'following the familiar method of summing up the éffect of
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Diagrammatic illustration of the adopted symbol and convention
used for the gravity formula at point P(Xk,Zk) due to a two-
dimensional polygon.
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M semi-infinite horizontal step models (Talwani. et al,

1959; Bott, 1969a), the gravity anomaly at the kB

observation point P (Xk, Zk)’ due to the resulting M -

slded polygon, is given by
M

C, =26 Y €5, (5.1)

et ~

i=1

where @ 1s the gravitational constant multiplied by a
scaling factor appropriate to the units of length being

th

employed, (; is the'density contrast across the i side

and

Sk = Si41 By - Cicblik'[fi sin 6, * Sy cos 8 ][s1n0 doglry/y).

. cos 91 (¢21k -cblik)] | : (5.2)

For convenience of representation we shall include in
Ck the regional background, B, after reducing 1t to a
horizontal one (see section 4.6)., Hence, assuming a uniform

‘density contrast for the model,

M
Ck = B + 2Ge Z Sik
i=1
=B + 2G?Tk
M
)’ (5.3)
where Tk = EJ Sik .
i=1

Equations (5.2) and (5.3) show that Ck is linear in

e and B and non-linear in the coordinate parameters defining
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the model. We shall refer to these as the linear and
non-linear parameters, respectively. For the purpose

of obtaining an optimum solution any of these parameters
may be specified at some fixed value or left as an
adjustable parameter, However, whether or not to specify
a certain parameter must be subject to the considerations

discussed in Chapter 4.

5.2.2, The Objective function
A number of objective functions are presented below,
each being sultable for treating a certain type of problem,

The simplest form is given by
n

£(x) = Z (4, - B - 2G(’Tk)2 (5.4)
k=1

where x is an m-dimensional vector representing the unknown
parameters, Ak is the observed gravity anomaly at P(Xk,Zk)
and n is the number of observation points. Equation (5..4)
is most suitable when the linear parameters are specified,

As was shown in Chapter 4, there are situations where
it may be desirable to obtain a solution without specifying
the density contrast, This is obtained by working with a
normalised anomaly. Normalisation is achieved by comparing

each anomaly value with that at the th point. Hence,

n

£(x) = 2; (a', - 1'))° (5.5)
where
Al = (A - B) / (a = B)
and '
T'k = Tk/ Tq
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After an optimum solution is obtained, the density contrast
may be recovered from the relation given in equation (5.7).
Alternatively, use may be made of the linear relationshiﬁs
between C and ¢ . Thus, using equation (5.4), we have

at the optimum

n
ar ) _
7 =0=-2 ) (a4 -B- 26em) (261,) (5.6)
k=1
n :g
2
€=[Y Tk(AK-B)J/ [2(}/ Tk] (5.7)
* =1 K=1
The objective function is therefore given by
n
\ 2
£(x) = [ 4, - B - 26¢(a,7,8) 1] (5.8)
k=1

The procedure may be extended to include situations where

the two linear parameters are unspecified, Thus, at the optimum

TR
&l

n
=o=-2> (Ak-B-ZG(’Tk) (5:9)
k=1

Equations (5.6) and (5.9) are linear in ¢ and B giving

n n \
P =[n i‘ AT, - (Zl-Ak) (>‘1 7)) /26 n (12)
= K= =

k=1
¢
() 1?] (5.10)
k=1
n\ n
B=1] E (a) -2GPZ () ] . (5.11)
S = k=1
The objective _function is then given by 0
£(x) = (4 - B4 -26 e(a,m 7, ] . (5.12)
k=1

The objective functions defined by (5.8) and (5.12) both
reduce the problem to obtaining a solution by adjusting the
model coordinates only., Besides reducing the number of
variables, this procedur% improves the condifioniﬁg of the

problem for treatment byinonJIineéf methods because 1t



.81,
involves only those parameters whlch are properly non-linear,
The main disadvantage is the dlfficultJ in obteining the
derivatives with respect to the variable parameters, analyticall]
Equations (5.8) and (5.12) are, thefefore, unsuitable for use
in a gradient method,

The general procedure in obtaining eguation (5,12) may be
extended to problems involving two density contrssts and a
regional background, none of which is snecified. The solution
will probably be ambiguous and will not qualify for the consid-
erations presented in Chapter L4, However, this procedure may be
useful in rare cases when several body coordinates are known and
it is required to show that the gravity evidence is not against
a certain pattern of density distribution, |

5.3. Available Programmes

The programmes listed below are available in PL/1 F-level.
They vary according to the auxiliary procedure wﬁich each one
incorporates, GAD is for use with P306 (section 3.3.1.3). The
other programmes are for use in conjunction with a direct éearch
method and are adapted for P300 (section 3.4.3.1), P30l (section
3.4.2.4) and P303 (section 3.2,3,6). In all programmes, any
coordinate parameter defining the polygonal model can be
specified or left as an adjustable parameter,

l. GRANOP: Programme specification no, 3a.

The auxiliary procedure is based on eguation (5.4). It is
most sulitable fpr problems in which the regional background and
the density contrast are specified. ﬁowever the procedure can
also handle either or both of them as variable parameters.,

As presented, the programme will oﬁly accept one denslity -
contrast, It may be modified to accept m density contrasts (mg
number of sides) by declarinu the density contrast as’

an array of m elements, each of which is assigned
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to the appropriate side(s).

2 - GAD: Programme specification no.l.

The auxiliary procedure is based on equation (5.,4). In
addition to’ the objective function, the procedure provides
the first partial derivatives of the objective function with
respect to the variable parameters. The method of obtalining
these derivatives 1s glven in Appendix 2.

Either or both of the linear parameters may be specified,
The auxiliary procedure can also be modified, on the bases of
equation (5.1), to accept a number of density contrasts all of
which rust be specified,

3. GREGNOP: Programme specification no.3b,

The auxiliary procedure 1s based on equation (5.8).
It is most sultable for problems in_which the density‘contrast
is unknown and the regional background is specified. However,
it is unsuitable for problems which specify the density
contrast,

Lo GRAVOP: Programme specification no.36.

The auxiliary procedure is based on equation (5.12).
It is specifically designed for problems involving unspecified
linear parameters and is unsuitable when either of them 1is
specified,

5. GRATIOP: Programme specification no. 3d.

The auxiliary procedure is based on equation (505). 1Its
other details are similar to GREGNOP,

A summary of the use of these programmes is givgn in

Table 5 1.
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Specified Parameters

¢ and B B None
GRANOP X 0o 0
GREGNOP X 0
GRAVOP X
GRATIOP X o
GAD X 0o

Table 5,1. A summary of the use of available programmes,
X denotes appropriate programmes, O denotes
possible alternatives,

504. Nature of the Objective Function

Understanding the general behaviour of the objective
function in gravity problems is essential for a correct
application of optimisation technigues., In Chapter L, the
behaviour was investigated using, mainly, theoretical models,
Our present lnvestigation illustrates the practical aspects
of the problem using an actual field example,

The beuaviour of all the objective functions enlisted
in section (5.2) is basically similar, For convenience,
the objective function given by equation (5.12) has been.
chosen for illustration,

The field example is a negative anomaly in the
Northern Pennines which was interpreted by Bott (1967a)
a8 being caused by a granitic batholith, the ‘'Wensleydale
Granite'. We chose a different profile and adopted a
slightly different gradient on the regional background.

Two-dimensionality was assumed throughout.
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Fig. 5.2. An oblique section in the x hyperspace of the objective
function corresponding to the Wenslydale Granite. The
section illustrates the multi-modality of the chjective
function. Model B is ge‘ologically unreasonable.



The first cross~section (Fig. 5.2) 1s taken across a
relatively large portion of the x hyperspace., It clearly
reveals the complexity and multl-modality of the function.
Points which represent slight undulations in the function,
such as C, or ill-defined local minima, such as D, can
trap the search and cause local convergence. These
difficulties may be overcome by choosing an appropriate
optimisation methéd. Other minima are quite well-defined.
Minimum A gives a reasonable model. Minimum B, however,
gives a geologically impossible model., DBoth minima possess
a very low function value and 1llustrate the necessity to
use constraints in order to confine the search to a feasible -
region,

Within a feasible region, the second section (Fig. 5.3)

" shows a 'valley of ambiguity'. Considering the possible
magnitudé of observational efrors, a tolerance in f(i) of 6
is reasonable, Therefore, points within a domain bounded by
a contour of value 6 produce possible gsolutions, The model
produced by point E is shown. The gradation from A to E is
accompanied by a general reduction in the size of the model
and an increase in the density contrast,

The parameters defining models A and E are of the same
order of magnitude., However, Fig 5.3 clearly shows that the
basic parameters must be specified in order to obtain any |
form of uniqueness, Such conditions"are closely approximatea
in the third cross-section (Fig., 5.4) where the basic
parameters of solutions A and G are élmost ;dentical. The

general dimensions of the two models are similar. However,
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Fig. 5.3. An oblique section in the same hyperspace as

Fig. 5.2 showing a 'valley of ambiguity'.,
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Fig. 5.4. A section in the same hyperspace as Fig. 5.2. Solution A
emphasises features on the top of the batholith while solution

G emphasises features on its northern side.
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solution A emphasises features on the top of the batholith

while solution G emphasises features on its northern side.,

5.5, Method of Application

In view of the nature of the objective function in
gravity problems described in Chapter L and in section 5.4,
the application of non-linear optimisation techniques in
interpreting gravity anomalies requires usually the following
étageéi

l. The problem is assessed, as a whole., All parameters
that are known or could be estimated reasonably accurately
are specified, The'magnitude of factors causing ambiguity
and / or the ultimate aim of the interpretation influences
the choice of whether to specify all, some or none of the
. basic parameters (Chapter 4). |

Time considerations may also be important, The time
taken to produce a solution varies according to the
optimisation method used, the closeness of the initial
point to a solution, the number of variable parameters, the .
number of sides defining the model, the number of observation
points, the accuracy to which the solution is sought, and the
behaviour of the particular objective function belng '
considered. An example of execution times.is given 1in
section 5.7.

2. The initiasl polygonal model is chosen gccording to
available information . Methods of depth estimation (e.ge
Smith, 1960) may be used for this purpose. When such
information 1is 1ack1ng; the immediate task becomes that of

selecting an initial point in a region which contains a
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correct solution., This is particularly important when the
problem-is badly conditioned., For example, in the problem
of Fig. L.L4, & basin-like initial model will generally
produce a basin-like optimum model and a batholith-like
initial model will produce a batholith-like optimum model,

The number of sides used in the model must be carefully
_ chosen., Too many sides increase the computation time and
the possibility of ill-conditioning the problem, A small
number of sides does not represent the feature adequately,
For an isolated anomaly, between 4 and 8 sides provide
usually a convenient compromise,

The initial point can be made to emphasise a certain
aspéct of the anomalous feature so that the optimum solution
would be biased towards that aspect. This may involve the
need to use additional coordinate points in the emphasised
parts of the model.

3. Constraints are inserted to ensure geological
feasibility. Iﬁ order to achieve this, it 1is usually
sufficlient to prevent'neighbouring points from overlapping
iﬁ the E- direction, Other constraints may also be inserteéed
to ensure the adherance of the solution to known information
about the anomalous feature,

L. An suxiliasry procedure is chosen according to the
requirements of the problem. (

5. An appropriate optimisation method is chosen. The
initial choice is usually restricted to direct search methods,

The method of rotating coordinates is recommended. The
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'Complex' method or the method of conjugate directions may
be more suitable in a number of problems (see Chapter 3).

In general, about 100-200 iterations per variable are
sufficient to locate the minimum, However, the first 50
lterations usually achieve a rapid progress so that the
seerch converges to a region which 1s suitable for using a
gradient method., Davidon's method is recommended,

6. The procedure may be repeated according to the
requirements of the problem. For example, in problems
solved by gbecifying all basic parameters, the interpretation
process is usually repeated at a set of intervals of these
parameters, Even in problems which arrive at a solution
Without specifying the basic parameters, it is frequently
desirable, in the next stage, to obtain solutions at a set
of specified intervals of these parameters,

7. After the basic solution or group of solutions are
obtained, a eertein amount of detailing may be required. We
recommend starting from the basic model as an initial point;
the extra coordinate pointis are placed on the relevant sides
of the model,

A gradient method should normally be used for detailing
the model. This usually involves no risks since the initial
point (the basic model) is already in the vicinity of a
solution in the new hyperspace,

Detailing reduces the residuals especially at obseryation
points vertically above those partis being detailed. It should,
therefore, be preferred below those parts with high residuals.

However, defailing is8 unjustiried when the residuals are
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already smaller than the magnitude of observational errors,

5.6. Advantages and Limitations of Optimisation Methods in

Gravity Interpretation

In the following account, we mean by optimisation methods
those which were recommended)for use in gravity interpretatiohs,
e.g. the method of rotating coordinates, A comparison with
other iterative methods is implied in this account so that an
assessment of optimisation methods, as interpretational means

in gravity problems, may be made,

5.6.1. Advantages

1, Optimisation methods are at least as efficient as
any other method in terms of obtaining a satisfactory model
with a satisfactory fit between the observed and the
calculated data.,

2, Any parameter defining the model may or may not be
specified., It is also possible to eonstrain or inter-relate
these parameters, e.g. a vertical fault may be established
in the model by specifying two successive points to have the
seme E - coordinate, This_flexibility makes 1t possible to
use all available information about the anomalous feature,
In other iterative methods, it is necessary to specify certein
.perameters but i1t is not usually possible to specify any of

the others. '
. \ ]

'{3. The model is of a general polygonal shape which 1s=

'

completely unrestricted.' This is a desirable feature which

other iterative methods lack

h. Any number of observptioq points may Qe_ﬁeed on the

)
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profile being interpreted, c.,f, methods which employ a
completely determined system (e.g. Allerton, 1968).

5. The position of the initial point may be used to
bias the interpretation towards a certain aspect bf the

anomalous feature (sections L.L and 5.5).

5062, Limitations

1, Direct search methods are, generally, slower than
other lterative methods, This limitation may be lafgely
reduced by careful programmihg and good choice of the initial
model,

2, Difficulties in optimisation techniques such as
local convergence and convergence at an undesirable local

jod

minimum are possible, These difficulties are not important

and can be resdily avoided by considering the facts discussed -

in Chapters 2,3, and 4,

5.7, Examples

Three examples are described below, each one presenting
rather different problems from the others, The first example

is described in slightly more detail,

"5e7ele The Weardale anomaly

Details of the anomaly were given in Chapter 4. Two
models obtalned without specifying any parameter were shown
in Fig. L.11.

The general dimensions of the batholith for a set of
density contrasts were obtained by specifying the depth of

a point on the upper surface of the batholith from
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information obtained from the borehole. The regional

.background was also specified, Models for density contrasts

of -0.11, =0,13 and =0,15 gm/cm” are shown in Fig. 5.5.

They all represent satisfactory solutions with a good

agreement between the calculated and the observed anomaly.
Using equation (2.18) estimates of thé possibleé error

In the coordinate parameters of the model of density contrast

-0.13 gm/cm3 were obtained, They are given in Table 5.2.

The limited significance of these estimates was discussed in

section 2,8. They are, therefore, expected to give only a

very rough idea on the accuracy of the parameters.

Horizontal Error Depth below . Error
distance datum
from origin '

Point no. 1 LO. 6 0.1 7.8 | 0.1
2 38.4 0.2 ' 6.5 0.3
3 36.7 0.2 0.1 O. L
n 21,3 . O.L Specified
5 20,1 0.6 0.3 O &
6 15,6 0.1 1.8 . 0.1
7 14.8 Ol 6.8 0.2
& 12,9 0.1 7.6 O.4L

Table 5.2. Estimates of possible error in the coordinate
parameters of Fig. 5.5b. The figures are in
kilometers,

Typical times requiredé to produce a satisfactory solution

such as .the models shown in Fig., L.11, using IBM 360/67

computer are:



|
o
¥
o

~016-

NSITY CONTRAST [gm/cmi]
S

E
|
o
o

1 1 1

- 010

Fig

02 0-4 0-6 08 10
DEPTH TO TOP OF GRANITE [KM]

.« 5.6. Variation of the optimum density contrast with the
assumed depth to the top of the Weardale Granite.
- The regional background is 10.2 mgal. o

1.2



« 91,

Method of rotating coordinates (P300) 7 minutes
Method of conjugate directions (P303) 6 minutes
The 'Complex' method (P301) 14 minutes

Davidon's method (P306) 30 seconds

Davidon's method was employed here only for comparison,
The models obtained from the direct search methods were
sufficiently detailed so that further detailing by a
gradient method was unnecessary.

The Weardale anomaly was also used to demonstrate the
use of optimisation techniques for maximum depth estimation
‘(section L.4). This was done by specifying the depth to the
top of thg batholith at a set of intervals for which the
optimum density contrast was computed using GREGNOP, The
regional background was specified at 10.2 milligals., Iig.
5.6 shows the variation of the density contrast vs, the.-
depth to the top, Assuming that a density contrast in
excess of-0,16 gm/cm3 is unreasonable, the maximum depth

to the top of the batholith becomes about 550 metres,

5¢ 7.2, Gravity "low" C - North of Scotland
This negative ahomaly was outlined in a marine

geophysical survey conducted by the University of Durham
during the 1968 cruise of RRS John Murray. It was interpreted
by Bott and Watts (1970a) as a sedimentary basin having a
lower density than the adjacent crystalline basement., The.
presence of the basin was supported by magnetlc and seismic
evidence. Geological and other considerations suggest the

following:
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l. The basement is probably Lewisian while the
sediments are probably post-Devonian,

2, The depth to the bottom of the basin is at

least 2,5 km but is unlikely to exceed 6 km,
| 3. The density contrast may range from =0,25 to
-0, 50 gm/cm3.

L. The majority of observations are accurate to
within 4 mgal,

(A,B, Watts, private communication).

The regional background was reduced to a horizontal
one by subtracting a gradient of O.1ll4 mgal/km, increasing
towards the N,W,

The first interpretation was made without specifying
any parameter (Fig, 5.7a). The fit between the observed
and the calculated anomallies is well inside the amplitude
-of observational errors and is, therefore, not significant,
The parameters defining the model afe of comparable
magnitudes to the probable values. However, the depth to the
bottom of the basin is outside the predicted range, the
density contrast is lower than expected and the top of the
basin is about LOO metres deeper than values predicted from
geological evidence, This emphasises the importance of
specifylng the basic parameters when observational errors
are large, The models of Fig. 5.8 are obtained in this
manner, A reasonable solution (Fig 5.7b) was also obtained
by constraining the depth to the bottom as an alternative

to specifying the density contrast,
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The general dimensions of the basin Were obtained by
fixing the top of the model and the regional background for
a range of density contrasts between -0,3 and -0,5 gm/cm3.
.The model with =0,5 gm/cm3 is probably too shallow, Other-
wise, the resulting solutions were reasonable geologically
with good agreement between the observed and the calculated
anomalies (Fig., 5.8).

The persistent feature in all solutions was the
probable faulting which bounds the basin on the southeastern

'side, Geologic and selsmic evidence support the presence of

this fault (A.B, Watts, private communication).

5.7¢3, The gravity high in southeastern Minnesota
Craddock et al (1963) describe a southward trending
major gravity high in southeastern Minnesota anﬁ western
Wisconsin, U.S.A, which locallf reaches 130 mgal and which
is attributed to a belt of Pre-Cambrian basic igneous rocks.
We have chosen traverse no.,9 of this survey for interpretation
by optimisation methods. |
 Craddock et al (1963, Fig. 8) interpret the anomaly
on this traverse as being caused by a feature with lnward
sloping sides, extending to a depth of about 24 km and
having & density contrast of +0,2 gm/cm3 with the basement
rocks, The supposed thickening of the overlaying rocks
to about 2 miles below the gravity maximum appears to
account for the shape of the chosen regional background,.
The agreement between the observéd and the calculated

anomalies is within 7 mgal., This is Jjustified in view of
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A linear regional background was assumed in models (b) and (c);
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the large magnitude of reduction errors. The ambiguity is
further enhanced by the lack of good geologic control.
Therefore, the model of Craddock et al (1963, Fig 8) is
probably correct in a general manner but the detaills

may be incorrect. For example, specifying the basic
parameters at values close to those assumed by Craddock

et al, we obtained a model with outward sloping sides
(Fig. 5.9 a).

The anbmaly was also re-interpreted assuming a linear
regional background which increases eastwards by 0,16 mgal/km,
The contact with the overlaying rocks was assuhed horizontal
in the investigated part of the traverse (Fig, 5.9b and ©).

An interpretation based on specifying the dénsity contrast
and the top of tﬁe model at appropriate values yielded a
similar model to that of Craddock et al (Fig 5.9b). Many

other models were also possible,

Interpreting the anomaly without specifyiné any
-parameter also produced several possibilities, A model with
outward sloping sides is shown in Fig, 5.9¢c, In fact, models
with outward or inward sloping sides were obtainable whether
the basic parameters were fixed or not.

This traverse demonstrates the high degree of
indeterminacy arising in problems where observational errars
are large and geologic control 1s lacking; sﬁecifying the
basic parameters does not improve the situation. The fact
that optimisation methods have achieved a much better
agreement between the observed and the calculated anomalies
1s of no importance owing to the magn;tude of observational

errors,
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CHAPTER 6

MAGNETIC INTERPRETATION

6.1, Introduction

The problems involved in interpreting magnetic
anomalies are broadly similar to those met in gravity
interpretation but there are some differences which
render magnetic anomalies more difficult to treat. The
magnetisation contrast is a vector quantity which does
not necessarily lile in the direction of the ambient field
because of the presence of remanent components, The ambient
field, which is usually the earth's magnetic field, varies
in direction according to geographical position, In magnetic
methods one may, thérefore, encounter vertical field
anomalies, horizontal field anomalies or total field anomalies.,
Further difference from the gravity problem is caused by the
nature of the features being interpreted; in magnetic problems
these features are usually ore veins, dykes or some basement
features which are quite deep. Because of these problems, |
progress in developing interpretational techniques was quite
slow and assumed rather a different trend from that in
gravity meihods,

Direct methods of interpretation were guite useful.
Depth and width estimation using certain estimatQrs from the -
anomaly curve received wide attention (e.g. Vacquier et al,
1951; Smith, 1959; Bruckshaw and Kunaratnam, 1963).

Transforming the anomaly so that 1t would écqyire the simple
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form usually exhibited by a gravity anomaly was introduced
by Baranov (1957)9 The transformation was further extended
to two-dimensional models and to models with a different
direction of magnetisation from the ambient field (Bott

et al, 1966). Transformation by upward or downward
continuation (e.g. Peters, 1949; Henderson and Zeitz, 1949a;
Dean, 1958) and methods for obtaining first and second
derivatives (e.g. Baranov, 1953; Henderson and Zeitz, 1949b;
Danes, 1962) were developed parallel to those in gravity
methods,

There is * also a variety of indirect methods of
interpretation. The normalised anomaly of a dyke-~like
structure may be matched with a set of master curves to
obtain various parameters (e.g, Hutchinson, 1958; Gay,

1963). The anomaly of less regular models may be calculated
using special graticules (e.g. Pirson, 1942; Henderson and
Wilson, 1967; Grant énd West, 1965, p.342). However, the use
of graticules is now superseded by computer methods for
calculating the anomaly due to polygonal models (e.ge. Talwani
and Heirtzler, 1964; Bott, 1969b). Automated iterative
adjustment of the model parameters is basically more attractive
than processes of trial and error involving human judgement,
Optimisation techniques were used by Stacey (1965) to interpret
magnetic anomalies with limited progress as described in
Chapter 1, Later, Bott and Butler (Butler, 1968) employing

an equivalent technique to that used in deriving equation |
(6.13) succeeded in uging optimisation technigues to interpret

magnetic anomalies due to dykes. Johnson (1969) was qble tq'

fnd

i
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solve some linear and non-linear magnetic problems using a
procedure based on Marquardt method (section 3.3.1.)

The work described in this Chapter applies to any two=-
dimensional model of a polyéonal cross-section, opeﬁ or
closed, The magnetisation contrast vector, J, is assumed
uniform but cases requiring a limited number of magnetisation
contrasts can be easily dealt with,

Applicability to three-dimensional problems involves a
stralght-forward extension of the general procedure preéented
below., Calculation of the anomaly due to the model may be
made using any.convenient method (e.g. Bott, 1963). However,
as in gravity methods, 1t is expected that the large number
of parameters and observation points will limit a routine

use of optimisation techniques.

6.2. The Auxiliary Procedure

The magnetic model is defined within the auxiiiary
procedure by the adjustable parameters which are passed from
the optimisation procedure and by the unadjustable parameters
which are specified in the procedure. The magnetic anomaly
due to the model is then calculated and used to provide the

value of the objective function,

62,1, Calculating the anomaly

We adopt a two-dimensional Cartesian system witnh the
anomaly profile taken along the horizontal & - axis,
_ perpendicular to the strike of the anomaly gnd with the

T- éxis, pointing vertically downwards, To uﬁify the system
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of reference we further assume that the &- axis points

towards a northerly direction, 1i.e, S=-N, SE=-NW or SW-NE,
The magnetic anomaly at point P(Xk, Zk) due to an

m-sided pof&gon formed by the addition of m semi-infinite

horizontal step-models is given by

C, = (J&Ji My + Joy V5 (6.1)

where Jci and J31 represent, respectively, the horizontal
component, resolved in the direction of the profile and the

vertical component of the magnetisation contrast vector

across the :I.th side, If Ck refers to the anomaly in the

direction of the earth's magnetic field then

o

1k cos I sin d - S

2 sin 91 (R sin I) (6.2)

ik ik

Vik

2 sin 91 (Sik cos I sin 4 + R, sin I) (643)

where

Ry, = cbik cos 91 + log (ry/r )y 8in 8
8,k =(b1k sin 91 - log (r2/r1)ik cos 6,

(Bott, 1969b).

Fig. 6,1 illustrates the symbols and the adopted
convention,

We assume that J is constant in magnitude and direction
throughout the model unless otherwise stated. For convenience,
we include in Ck the regional background, B, after ?educing

it to a horizontal one, Hence,



Fig. 6.1
Diagrammatic illus-
tration of the
adopted symbols and
convention used in
deriving a formula
for the magnetic
anomaly at a given
point P(X,Z) due to
a two-dimensional
polygon.

Ei=y,, €080, +l0g (6/1,),,SiN6;

R =2 sin©,(E,coslsind -E,sinl)

C--g‘-’- Pri o ke Q)

arth’s Magnetic
Fielg

d isthe angle between magnetic
north and strike of model

E2=W,;sin@, - log(r:/n), cosd,

q_i=2 sinB,(E; cos | sind «E,sin|)
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C,=B+J U +7, v, (6.4)
where
: m , m
Uk = E: LT and Vk = zz: Vi (645)
i=1 i=1

We refer to Js’ Jc and B as the linear parameters and
to the coordinates defining the polygonal model as the
non-linear parameters, according to their relationship to
Ck (Bott, 1967b). Any of these parameters may be specified
or treated as an adjustable parameter,

The present work 1is devoted to anomalies measured in
the direction of the total field because these are currently
the most common type of measured anomalies, Anomalies
measured in a horizontal direction, a vertical direction or
any other direction may be treated in a similar way as this
will entail only slight modifications in the objective |

function.

662.2, The objective function

A simple form of the objective function is given by

£(x) = (4 - B=JU =T V)2 (6.6)

k=

k

where x is an m-dimensional vector representing the adjustable

parameters , i n is the number of observation points and Ak

kth

is the observed anomaly at the observation point,

Equation (6,6) is most useful when the linear parameters
are specified or when using a gradient method.

: : ! . : -
In.situations where 1t 1s desirable to interpret the
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anomaly without specifying J (Chapter L), use can be made of

the linear relationship between C and J. Hence, at the

- optimum
3 _ o= | - - -
77 = 0= -2i (Ak J U - IV, - B) U (6.7)
k=1
2 _0-=- A, - - -
55, =0 =2 (&, = T U = 3T, V.- B) V. (6.8)
- k=1

The two equations are linear in Js and Jc giving,

3 = (q,D-aq 6 / (0* - on) (6.9
g = (4, D-Q, H / (D® - GH) (6.10)
where n n
Q“=Z (Ak-B) U @,v=zl (Ak-B) Ve s
k=1 _ K= .
D = _ U Yy s
k=1
G = Uzk ’ H = i Vi
k= k=1

Details of the derivation are given in Appendix 4. . The

objective function is now given by
n -
. _ 2
£(x) = z [Ak-B-UkJS(A,B,U,V)-Vch(A,B,U,V)] (6.11)
k=1
For obtaining a solution without specifying any of the

linear parameters, the same procedure is followed, Thus, at

the 6pt1mum, . i

_z—ﬁ P Z: (A, - B -3, -3, vk-),,.. o _(6_.12)
=1 '
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Equations (6.7), (6.8) and (6.12) can be solved for I

Jc and B, The final expressions are too large to be listed
here, They are given in Appendix 5 together with the method
of their derivation, The objective function in this case is

given by

n
£(x) = Z [Ak - B(4,0,V) - UJ (4,U,V) - V,J_(4,U,V) ]2
k=1
(6413)

Equations (6.11) and (6.13) reduce the problem to
obtaining a solﬁtion by adjusting the model coordinates
only. As in gravity methods, this approach reduces the
number of unknowns by three and renders the method more
suitable for treatment by non-linear techniques, Similarly,
these functions are unsulitable for use in conjunction with
a gradient method because of the difficulty of providing the
‘derivatives of the function,

By analogy with the normalisation procedure of equation
(5.5) the optimisation may be carried out 1ndependentiy of
the intensity of magnetisation Igl. This approach is less
useful here since the direction of magnetisation will still
have to be defined,

When'more than one magnetisation contrast are present,

we use the objective function
n

t(x) = ) (4 - C - B (6.18)
k=1 :

where C, 1s defined by equation (6.1). If no ambiguity is

tolerable in the solution these contrasts must be specified.
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6.3, Available Programmes

The computer programmes are constructed on similar
bases to those used in gravity methods., They are written
in PL/1 F-level, MAGD is for use with P306 (section 3.3.1.3).
The others are adapted for use with the direct search
procedures P300 (section 3.4e3.1), P301 (section 3.L4.2.4)
and P303 (section 3.2.3.6). They are constructed such
that it should be possible to specify or leave unspecified
‘any coordinate parameter defining the polygonal model.

1, MANOP: Programme specification no,5a.

The suxiliary procedure is based on equation (6,6). It
is most suitable for problems in which the linear parameters
are specified but can also handle any or all pf them as
variable parameters,

2, MAGD: Programme specification no, 6

The auxiliary procedure is based on equation (6,6). It
is designed for use with P306, It provides the objective
function and its first partial derivatives with respect to
the variable parameters., The variable parameters may include
none, some or all of the linear parameters. The method of
obtaining the partial derivatives is given in Appendix 3,

The procedure may be modified on the bases of equation
(6.14) to accept a number of magnetisation contrasts
appropriate to each side of the model, all of which musf be
specified.

3. MREGNOP: Programme specification no. 5b.

.Phe auxiliary procedure is based on equation (6.11). It

is designed for problems in which B is specified and d is-

1
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unspecified. B can also be a variable parameter but the
procedure is unsuitable for problems which specify J,

L, MAGOP: Programme specification no.5c.

The auxiliary procedure is based on equation (6.13).
It is specifically designed for problems which do not specify
the linear parameters and is unsuitable when any of them is
specified,

5. MULTIJ: Programme specification no,5d.

The auxiliary procedure is based on equation (6,1L),
It is similar to MANOP but more than one J may be used.
Specifying these contrasts is an option but it is unusual
in practice to leave more than one or two contrasts unspecified

in view of the extensive ambiguit y that would arise.

A_summary of the use of these programmes 1s given in

table 6.1.
i - Specified Parameters
J and B B - None
MANOP _ X o 0
MREGNOP X 0
MAGOP X
MULTIJ X 0 0
MAGD X 0o 0

Table 6.1, A summary of the use of available programmes,
X denotes appropriate programmes, O denotes
possible alternatives,

6.4, Nature of the Objective Function

. The emphasis in Chapter L4 was on gravity problems.
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The general behaviour of the objective functions in magnetic
problems 1s almost identical, We shall assert the practical
aspects of these features using an actual field anomaly.,

The objective functions given in section 6.2 are
similar in general behaviour to each other, Each of the
illustrations used below shows an objective function
appropriate to the particular aspect belng discussed.
However, the discussion applies to all of the objective
functions of section 6,2 in a general way,

The field example is an aeromagnetic anomaly south of
the Isle of Wight between National Grid Coordinates
SZ 080367 and SZ 120493, Three sections constructed
obliquely through the x hyperspace are used for illustration,

The first cross-section (Fig. 6.2) covers a large range
of each parameter and illustrates tﬂe complexity and multi-
modality of the objective function., Minima A and C are well-
defined and have low function values which qualify them as
solutions, Both solutions are physically possible but
solution C is geologlically unreasonable. In applying
optimisation technigues all such minima are isolated by
constraints,

Tests on other local minima, such as D, show them to be
ill=defined, It is difficult to determine how many of the
minime shown in the section close in all directions buf it
is probable that most of them do not.

In the second section (Fig. 6.3), solutions A and E are
both feasible. In fact, the valley A-E is a 'valley of
ambiguity' with all the points in the domain bounded by a
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contour of value 75 qualifying as solutions, The gradation
from A to E is accompanied by a change in the size of the
model and the magnetisation contrast vector., However, the
parameters defining the model are of the same order of
magnitude, | |

The third section (Fig. 6.4) shows the behaviour of the
objective function in a hyperspace which is orthogonal to
the axes of the magnetisation contrast vector, the depth
coordinates of the bottom of the model and the regional
background, This is, therefore, & problem in which the
basic parameters are'specified. Multi-modality 1s caﬁsed
by emphasising different aspects of the anomalous body (iv,
section 4.4)., Solution B, for example, brings out features
on the northern part of the body while solution A gives even
emphases to the body as a whole, Usually, all such solﬁtions
are simllar in the general outline,

Within the assumptions made about the model we may view
the whole complex of 'valley of ambiguity' end valleys or regions
containing solutions with various emphases, as constituting

the "global solution" of the problem.

6.5, Method of Application

The stages fol;owed in using optimisation techniques to
interpret magnetic anomalies are usually similar to those
féllowed in gravity problems with a step-by-step correspondance.
We shall not, therefore, go into the details of the application.
However, two differences require pointling out,.

Firstly, magnetic interpretation often deal with
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basement features. The basic parameters in these problems

ere difficult to establish particularly as the remanent
component of the magnetisation contrast vector may be quibe
significant (see for example Girdler end Peter, 1960).

There will, therefore, be more temptation to overlook stages
in which the basic parameters are specified. It is difficult
to recommend any kind of decision to be taken in this respect;
whether fixing the basic parameters will produce a better
sélution depends on the particular problem at hand.

Secondly, when the model is being detailed the.anomaly
points most influenced by the addition of.new sides are nof
necessarily those situated vertically above these sides,
Detailing cannot therefore be preferred vertically below

points where residuals are high.

6.6. Advantages and Limitations of Optimisation Methods in
Magnetic Interpretation

Optimisation techniques are the only available
automated iterative procedures for interpreting magnetic
anomalies, The role which they play in magnetic interprétation
is, therefore, in itself an important advantage. They also
enjoy all the general advantages d;scussed in gravity
interpretation (section 5.6); efficiency and flexibility
are the most important features, The possibility of
obtaining a solution, without the necessity to specify the
basic parameters, is an important asset because information

about these parameters,is often-lacking in basement
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interpretation problems. In particular, no restrictive
assumption about the direction of magnetisation is required.
This overcomes a common difficulty in currently used
interpretation techniques.

The limitations are again similar to those mentioned
in gravity interpretation, We may add here that occasional
difficulties arise when interpreting very steep-sided
anomalies caused by shallow features, These difficulties are
probably caused by the invalidity, at shallow depth, of the
approximation that the anomalous feature is effectively
homogeneous. Furthermore; the steep gradient on such
anomalies causes high residuals between the observed and the
calculated anomalies for small errors in positioning, These
high residuals often confuse the search for a solution. The
difficulties would be probably overcome by minimising an
objective function in the form of area of discrepancy be;ween
the calculated and the observed anomalies (equation 2,2),
Moreover, if certain assumptions about.the shape of the
feature can be made, the solution may be sought in terms of
the variation in the magnetisation distribution Within tbe.'
feature, The latter problem is linear, It is soluble by
matrix algebra (e.g. ﬁntton, 1970) and is outside the scope

of the present work,

6e 7» Exampies

A number of examples are chosen from the aeromagnetic
map éf Great Britain to 1i1ustrate fhe applicability of |
Optiﬁisation techniques.  The tecﬁniques have-a}SQ héd eq@pi

i

success in interpreting land.and ship-borne data (e.g.
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Dobinson, 1970).
The first example is described in detall to show the

general method of approach,

6.7.1. The Solway Firth and Southern Uplands anomaly

| This anomaly extends over the ﬁolway Firth and, on land,
occuples a small part of the Southern Uplands. Within the
Solway Firth, the anomaly is negative and the region is
occupled by a sedimentary basin whieh is mainly of
' Carboniferous and younger rocks, This basin was deduced
from gravity measurements by Bott (1965) who also demonstrated
that the magnetic negative cannot be attributed to a
magnetisation contrast between the basin and the Lower
Palaeozoic rocks immediately below it, In the Southern
Uplands the anomaly is positive and the area is complicated
by strong folding of the Lower Palaeozoic rocks. In both
areas the general structural trend is Caledonian.

MAGOP in conjunction with the method of rotating
coordinates was used to obtain the model shown in Fig 6,5.
The f1t between the observed and the calculated anomalies 1is
very satisfactory. The model indicates that the anomaly is
caused by a contrast within the basement; a maghetic basement
underlies a layer of less msgnetic rocks,

The trough causing the anomaly at the Solway Firth is
in remarkable parallelism with the sedimentary basin '
suggesting that the two structures are closely associated
However, the rise in the Southern Uplands seems to represent
a general rise of the magnetic basement underneath the

complex tectonics of the region. The apparent smoothness of
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the contact may have well been enhanced by the comparatively
large depth to the magnetic basement,

The magnetisation contrast vector is shown in a plane
parallel to the profile, Assuming that the true vector
lies in a plane parallel to the geographical north the

vector would have a magnitude of 0,001 e.m.u. /o

and
would be inclined at 770. These values, together with a

- regional of - 12 gammas are well within the expected range
.and indicate quite a good solution.

The procedure was repeated using the method of conjugate
directions, for comparison purposes. Convergence to the
minimum was usually faster than in the method of rotating
coordinates, However, the procedure has no provision for
constraining the parameters and there was occasional
tendency for converging to geologically unfeasible minima,

The residuals obtained with the model of Fig., 6.5,
compared with the accuracy of observations, did not Justify
further detailing on the model, However, for the purpose
of illustration, a detailed model was attempted using
Davidon's procedure, The extra coordinates in the new model
defined points that were already on straight segments between
the original coordinates indicating the relative atraightnesg
of the contrast plane,

Other possibilities were also surveyed. A closed body
within the basement was assumed and the model was optimised
starting from various initial points. However, all solutions
gave models that were.geologically unreasonable and the

model shown in Fig, 6.5 was regarded as the best available
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approximation to the true geological picture.

The volcanic activity during Lower Ordovician might
appear to provide reasonable grounds for attributing the
anomaly to a contrast between such volcanic rocks and |
overlying non-magnetic Lower Palaeozoic and younger rocks,
However, the basic nature of these volcanic rocks is not
persistent even within the Southern Uplands. Furthermore,
the postulated depth to the contrast plane is not compatible
with the known depth of Lower Ordovician rocks in the
interpreted part of the Southern Uplands (Pringle, 1948),

It would, therefore,.seem probable that the magnetic basement
is Pre-Cambrian; the contribution from the Lower Ordovician
is probably not significant.

Interpretation of thé anomaly corresponding to the
Solway Firth alone is shown in Fig., 6,6b, The parameters .
defining the model are similar to those of Fig, 6.5. Two
more models were produced by specifying the direction of the
contrast vector,'the depth to the top of the basin and the
regional background at values similar to those of Fig, 6,6b,
The magnitude of the magnetisatioﬁ contrast was specified at
half and twice that of Fig, 6.6b, respectively (Figs. 6.6a
and 6.,6c). ' The three models are reasonable geologically,
However, the high residuals assoclated with model (a) suggest
that the magnetisation contrast is probably much ~lafger or
“that the basic parameters had not been specified correctly.
Table 6.2 gives estimates of the accuracy in the

coordinate parameters of the model of Fig., 6.6b., using
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equation (2,18). As in the gravity models these estimates

have a limited significance, They serve to give only a

rough idea on the possible error in the "dummy" parameters

within the simplications assumed by the model,

Error

Horizontal distance Error Depth below
from origin flight level
Point no. 1 31.3 0.8 361 0.5
2 L1.6 0.5 Le O 0.6
3 5703 1.1 9.4 1.3
by The 5 3.1 6.0 0. 7
5 85,9 0.7 3e7 0.5

Table 6.2, lEstimates of possible error in the coordinate
parameters of Fig, 6.,6b, The figures are in kilometers,
The time taken to obtain a solution in magnetic
'interpretation depends upon the same factors as in gravity
methods (section 5.5). As an example we quote typical
times required to obtain the model of Fig, 6.5 using an
IBM 360/67 computer:

Method of rotating coordinates (P300). - 8 minutes
Method of conjugate directions (P303) 6 minutes
The 'Complex' method (P301) _ 15 minutes
Davidon's niethod (P306) 50 seconds

6..7.2. The English Channel anomalies

Four moderately isolated snomalies in the English Channel
were chosen to demonstrate the efficiency of optimisation
~ techniques in magnetic interpretation (Figs 6.7 and 6.8),

'All models were obtéined using a direct search method,



LANMA

200
SSw NNE \
100
Observes
s Calcutatec
l /
o J
o L] 10 KM
——eeee
=100} Bachgrouna
\
A A
! MNATIONAL GRIC COORDINATES:
‘C-J A Tv 037320 8 SZ 370572
-y

AT Tv 178857

ANOMALY 1

EAST OF THE ISLE
OF WIGHT

8" Sz 212924

GAVIVA
50
SSE NNW
0
-3
4-10¢
Baragrounyg
/ M
=139
8 8
- [+
M LS
emak~t
[
-\v
ANOMALY 2

WEST OF THE ISLE
OF WIGHT

FIG.6.7.




Fig. 6.8
Anomalies 3 and 4
l%e to the south-
east and south of
Plymouth respect-
ively. Beyond the
edge of the aero-
magnetic map an
extrapolation
based on data pro-
duced by Allan
(1961) was used.

LAvUA
IOOr

-10Q

-200

Ssw

10
L1

ANOMALY 3

PAWIA
~i00

NNE (3] NE
/
v

. 4 \
— OB s | Aeeumagretir ) f . \\
- = = Opvervralf srapulatea.Alian 1961) ’ ® \

® Calcutea ’ '

»
° [y 10 WM 14
L . — o ] -
' 4
r)
»
‘.
.° Heeo i
- B \/’/ |
¢ o D
Q
NATIONAL GRID COORDINATES:

c: Sx 10014 0: 5x 331000
¢ Sx 830184 o> sx 500200

ANOMALY 4




-9 112. ’

usually the method of rotating coordinates., They are.all
interpreted as features, within the basement, owing their
origin partly to faulting and perhaps partly to igneous
or metamorphic activities.

The interpretation of anomalies 1 and 2 (and solution
A in Figs., 6.2, 6.3 and 6.4) 1is in good agreement with the
structural features of the overlying Mesozoic and Tertiary
rocks in this area (R, Dingwall, private communication).

The anomaly no, 4 was interpreted by Allan (1961) as
being a basic intrusion which has been subject to éome
thrusting; Whilst the model of Fig, 6.8 wéuld support such
a proposition the depth to the top, suggested by Allsn to be
1-1.,5 miles, is about one mile shallower than that given by
this model.

6¢7¢3s The Moray Firth

Two profiles were chosen across the Moray Firth at
approximately right angles to the predominently Caledonian
trend. The method of rotating coordinates was used to obtain
a general model snd was followed b& Davidon's method to obtain
the required detail.

The two profiles (Fig. 6.9) show the presence of two'
important high features in the basement with the development
of a basin-like structure between them. The 'high' in the
north~west is bounded on the south-east by a fault which
asppears to be a continuation of the Helmsdale fault., The
'high' in the south—eaét 1s separated from the basin-like

structure by a fault which appears as an extension of the
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Great Glen Fault, Fig, 6.10 represents a likely conclusion
from such interpretation.

The solutions are not unique. In particular, profile
II may be'interpreted using different magnetisation contrasts;
an appropriate value would be a contrast similar to that
obtained from profile I. Such assumptions tend to influence
the depth coordinates mainly while the general picture
remains basically unaltered.

If the displacement along the Great Glen Fault was
predominently of lateral nature it would be expected to
bring masses of contrasting magnetisations in contact, The
assumption of uniform magnetisation of Fig, 6.9 would no
longer be valid and the apparently good fit would be a normal
consequence of ambiguity. The two profiles were, therefore,
re-interpreted using MULTIJ programme with contrasting
magnetisations across the supposed transcurrent fault, The
optimisation process showed a tendency to bring the
magnetisations, on elther side of the faulty; closer together,
A good fit was actually only obtainable when the two
magnetisations were not significantly different.

The results of this limited investigation are incon- .
clusive, They suggest that the displacement along the
Great Glen Fault is predominently vertical., The whole
interpretation is in favour of the following hypothesis. The
Great Glen Fault is not a single fault but is a complex
fault system imvolving a wide region on either side (including
'the Helmsdale fault)., The faults are not always detectable

in the magnetic basement iowing to its large -depth. ?hg
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fault system culminates in the deveélopment of a 'trough'
along the middle of the basin-like structure, The Loch
Ness 'trough' is its inland extension. The fault marked
GGF in Fig. 6,9 is a major fault in the fault complex.
The general structure is then similar to a 'rift system'.
The regional structural picture is not against this
hypothesis, However, the hypothesis 1s difficult to
reconcile with the lncreasing evidence in favour of the
displacement along the Fault being predominently lateral
(e.g. Kennedy, 1946; Holgate, 1969).
Further details of this matter are not central to our
present topic and a lot of work is obviously needed before

the structural aspects of the area are fully understood.
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= CHAPTER 7

SEISMIC AND ELECTRICAL RESISTIVITY EXAMPLES

PART I
INTERPRETATION OF

SURFACE WAVE DISPERSION

7.1. Introduction

The velocity of propagation of surface waves in layered
media 1s frequency dependant, This i1s a consequence of the
attentuation of particle displacement with depth, which
increases rapidly as the frequency increases, For a given
wave train, the relationship between the phase velocity,
C(w) and the frequency, w , varies according to the o, g, f
and t parameters of the layers through which the waves are

propagated, where

& = velocity of propagation of dilatational waves,
p = velocity of propagation of rotational waves,

¢ = density,

t = thickness.,

The relationship between C(w ) and w is conveniently

represented by a curve known as the phase velocity dispersion

curve.,
Those Fourier components which are momentarily in phase
travel coherently as a group. The group velocity U(w) 1is

directly obtainable from
-1

we) =clw) [1- 55 1 (7.1)
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Interpreting the phase and group velocity curves in
terms ofcx,p,(’ and t can provide important information
on the phyi}cal properties of the layers being traversed.

The method is widely used in seismology to study the broad
crustal and upper mantle structure of the earth,

Haskell (1953), modifying an older version by Thomson
(1950), formulated the basic method for computing the phase
velocity dispersion curve for a model of n horizontal layers.
The formulation is applicable to Rayleigh and Love waves.

The final expression which involves C(k) as a function of k

(k being the wave number ) is too complicated to enable
obtaining C(k) directly from ks A univariate search procedure
is used as an alternative, ,

Dorman et al (1960) adapted Haskell's formulation for
carrying out the computation by digital éomputer° Harkrider
and Anderson (1962) introduced other modifications to increase
the range of frequency which the procedure can handle
accurately.

The simplest interpretation of phase and group velocity
curves is by trial and error, There are also procedures based
on the method of steepest descent (e.g. Dorman and Ewing,
1962) etc, Matching the dispersion curve with a set of
standard curves is also sometimes employed (e.g. Raju, 1968).

The problem is non-linear and invites a full utilisation

of non-linear optimisation techniqgues.

7.2. Interpretation Using Optimisation Technigues
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A simple objective function is given by
n

£(x) =[5 z (4, - D)2 )% (7.2)
i=1

where Ai is the observed phase or group velocity value

at the 18

frequency (or period) and D, is the correspondihg
calculated value. The m variable pgrameters X can include
the o, 8, ¢ and t of 8ll the layers involved, The number of
variables may be reduced by expressing ot in terms of p
through the appropriate relationship.

The immediate choice of optimisation method is
restricted to a direct search method for two reasons, Firstly,
the relation between D and x is complicated so that an
explicit expression for 23f (j = 1,2,,..,m) is difficult
to provide. Secondly, thzxj behaviour of f (x) in the x
hyperspace is apparently very complicated so that the use
of a gradient method is unjusfified until the final stages
. of the search,

To ensure the feaslbility of the variable parameters
simple constraints of the form gliven in equation (3.36) are
sufficient, The method of conjugate directions can,
therefore, be used. However, the method of rotating
coordinates would probably be at least as efficient. The
latter method was only available in PL/1, -It could not be
used in the investigation owing to problems arising from
language compatibility with the auxiliary procedure which
was only available in Fortran IV,

The investigation was started by interpreting a

Rayleigh phase velocity curve computed for a theoretical

i
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2-layer model, The cx,ﬁ,f’and t parameters of the layers
were not specified. Using the objective function defined
by equation (7.2), the search was started from a reasonably
distant 1£1t1a1 point. The progress was quite slow aﬁd
terminated without locating the original model,

The phase and group velocity curves were then combined

using
& $ $ %
£(x) = [& (a, =0)%7" + [L) @! -pH2] (7.3)
n 2;1 i i ] nzi; 1 1

where the prime denotes group velocity. The search, in
this case,:terminated at the true solution after achieving
a very rapld progress.

These experiments were substantiated by a number of
other trials from different initiai points. The results
tentatively suggest that the inverse solution for a
theoretical problem is probably unique., The incorporation
of group velocity data cannot be the cause of this
unigueness since the group velocity is directly obtainable
from the phase velocity., The original model could not be
recovered by using phase velocity alone probably because
the polnts with very low function value lie in a narrow.
trough (Fig., 7.1) causing the search to terminate by local
convergence, The incorporation of group veloclity data has
probably improved the conditioning of the problem.

. The conditioning of the problem can be further improved
by incorporating the Love dispersion curve, the latter being

an independant observation of the Rayleigh dispersion curve.
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Fig. 7.1. An oblique section through the x hyperspace of the
objective function corresponding to a Raleigh phase
velocity dispersion curve of a two-layer model. Point
M represents the true solution. Points with lew function
values occupy a long narrow region (not wholly in the

plane of the section).
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This was supported by a limited amount of experimentation,

From a practical point of view, the indeterminacy
of the inverse solutions seems to be more pronounced than
in the case of gravity and magnetic problems., Any
combination of phase and group velocity curves of Rayleigh
and Love waves would, therefore, be highly desirable.
However, not all these data are usually available. The
accuracy of the data may also impose a limitatiop. The
best practical approach 1is to specify as many parameters as
possible,

A test on actual field data was carried out using phase
and group velocity of Rayleigh waves to investigate the
.crustal and upper mantle strﬁcture in the EBast African rift
area.l

The model was divided into fourteen different layers
(Fige 7.2). To limit the indeterminacy, the o, P and t
parameters of all layers were Specified; Dorman and Ewing
(1962) suggest that these conditions are sufficient to ensure
the uniqueness of the solution within‘the limitation of
observational errors.

Results of the interpretation (Fig. 7.2) do not appear
to be realistic. The oscillation in the values of p is
probably due to the decrease of the resolving power of the
method with increased depth. Some of the layers were

therefore combined and the résulting model consisted of

1, This test was carried out by Mr. K. Sundaralingam,
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seven layers only. The {3 values of the top two layers and

of the bottom layer were also specified, The solution was

quite satisfactory in this case (Fig. 7.2). 4Although the

R.M,S. deviation (= 0,9) was higher than that of the first

-model, the agreement between the observed and the calculated

data was still inside the range of observational errors,
However, in view of the limited amount of experimentation,

the results given above must be subject to further testing,
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PART II

INTERPRETATION OF APPARENT RESISTIVITY CURVES OVER
LAYERED MEDIA

7.3. Introduction

The variation of electrical resistivity with depth is
usually studied by interpreting a plot of'apparent
resistivity vs. electrode spacing known as the apparent
resigtivity curve, Most methods of interpretation are
based on the assumption that the ground consists of n
horizontally stratified layers of infinite extent and which
are uniform and, usually, isotropic. These méthods are
usually based on a formulation by Stefanesco (1930) for the
potentiel V at a distance r from a point source of current

I on the surface of the ground., This is given by

[
I
v(r) = 335 [ 1+ 2r iK(t) g (rt) at ] o (7.0)
where
el = .resistivity of the top layer
Jo = Bessel function of first kind and zero order

parameter of integration

K = the kernel function determined by layer depths and.

resistivities, _

A common method of interpretation is to compare the
apparent resistivity curve with a set of standard curves
(e.go La Compagnie Génerale de Géophysique, 1955; Mooney
and Wetzel, 1956), Vosoff (1958) works with the kernel

function and uses the methods of Newton and steepest descent
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(section 3,3) to determine the parameters of the layers.

Other methods treat the observed curve directly., Koefoed
(1968) decomposes the curve into a number of partial

apparent resistivity curves and uses a 'raised kernel function'
at the final stages to determine the depths and resistivities
of the layers,

However, most methods require lengthy calculations or
tedious operations., Moreover, although the solution to the
inverse problem in electric resistivity is, theoretically,
uniqgue (Langer, 1933), a large number of widely contrasting
models can usually produce apparent resistivity curves which
agree closely between themselves, This phenoﬁenon is known
as the “principle of equivalence"., These difficulties are
further increased by deviations from the theoretical
conditions assumed by the model, by the presence of
observational errors and by the decrease in the resolving
power of the resistivity method with depth. Optimisation
techniques do not overcome these difficulties, A careful
apnlication of the techniques, however, can substantially
reduce the limitations and increase the reliability of the

interpretation.

7.4, Interpretation Using Optimisation Technigues -

An iterative procedure based on minimising the
discrepancy between an observed and a calculated apparent
resistivity curve requires very unreasonable computer time,
Even under favourable circumstances and using efficient

methods (e.g. Van Dam, 1965; Mooney et al, 1966), the
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computation of a single curve due to a four-layer model

woulé require about 10 seconds on IBM 360/67 Computer.
Gradient methods would reguire at least 20 iterations and

are not expected to perform efficlently in the earlier stages
of the search, as was iﬁdicated in parts of the work of
Vosoff (1958). Sequential and linear direct search methods
would require some 100 or more iteratlions per variable, In
"all cases, the computer time involved is quite considerable"
on an industrial scale,

To overcome the question of computer time, a curve
matching process is adopted to provide a value for the
objective function, with minimum computation, 'This process
constitutes the auiiliary procedure, The main 6pt1misation
procedure is based on a modification of grid tabulation
techniques (section 3.2.1.)., The method consists of the
following stages:

l. A set of standard curves, referring to a specific
number of layers (four in our case) and covering a wide
range of fesistivity and depth ratios, are digitised. Esch
curve 1s identified by a unigue number denoting its depth
and reslstivity ratios.

2, The number of variable parameters is reduced to
two, namely the depth ratio and the resistivity ratio of the
layers, In the resulting two-dimensional space, the objective
function will be known only at points for which standard
cﬁrves exist., ©Since these curves are computed for discrete
intervals in the two parameters, there results a two-dimen-
sional grid in which the objective function 1s known at the

.nodes only.
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3. The observed curve is digitised at the same
Intervals as the standard curves, The observed curve is
compared systematically with all standard curves in the
requlred range of depth and resistivity ratios. The
objective funcpion at each node is represented by the sum
of squares (or absolute values) of residuals between the
observed curve and the standard curve corresponding to the
particular node,

L. The best fitting standard curve, i,e, the node with
the lowest function value, does not generally represent a
true solution, partly because of equivalence and partly
because the ground being tested does not usually consist
of layers in the .same ratios of depth and resistivity as any
‘of the standard curves, However, this 'optimum' fit can give
a rough estimate of the depths involved} the depth ratios beihg'
converted to actual values by using the appropriate conversion
parameters,
| 5. The value of each objective function is output
near or at the corresponding node on the grid. A convenient
representation of these values 1is to use alphameric characters
denoting the range in which each value falls. An example
of such output is shown in Fig. 7.3.

6. Those standard curves producing a reasonable fit
are determined by visual inspection of the grid. The genersl
scatter of these curves, throughout the grid, makes 1t possible
to determine those depth and resistivity ratios which are
more likely than others,

7. Using external control, all ratios which do not
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conform with available informations can be discarded and
a final interpretation may then be made,

The method has many adventages. Firstly, it is
extremely fast; the average computer time per curve is
just over half a second on an IBM 360/67 computer., Secondly,
the "principle of equivalence" is overcome appreciably by
outpﬁtting a whole series of bossible solutions rather than
a single one, Thirdly, no tedious operations or calculations
are involved,

The method has also a number of limitations. Firstly,
it is only applicable to a specific number of layers.
Secondly, it requires the provision of a set of standard
curves which may have to be constructed i1f the desired depth
or resistivity ratio intervals are unavailable. The
standard curves usually also require a very large storage
space in the comﬁuter. Thirdly, it is only possible to
pro§1de the solution at discrete intervals,

The applicability of the method to field data was
tested by interpreting a number of apparent resistivity
curves obtained over glacial drift, A borehole log was
available close to the position of each of the resistivity
probes so that a direct assessment of the solution was
possible.

The depth to the lowest interface obtained from the
optimum fit, in each of the interpretations, was used as a
reference to convert the aepth ratios to actual Valqes. The
probable interpretation was then generally worked out in the

manner described above, Some of these interpretations are
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shown in Fig. 7.4. Most of them show quite a good agreement
with the borehole log indicating that the method is,

probably, at least as efficient as ‘most other methods.
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CHAPTER 8

THE FITTING OF CONTINENTAL EDGES

8.1. Evolution of the Concept of Continental Drift

The first serious attempts to establish continental
drift were those made by Taylor and, more significantly,
by Wegener, more than fifty years ago (Holmes, 1965 p.1199).
However, due to the lack of a plausible mechanism for the
drift, this early work was subjected to sharp criticisms -
which checked further advances. Thus, the concept of
continental drift remained no more than an embarassing
possibility. Most palaeontologists had still to make do
with some unreasonable land bridges to ferry the various
migrating species across both sides of the Atlantic while
paleao-climatic findings were being explained away by
polar-wandering speculations,

Early in the fifties, however, a vast amount of
palaeomagnetic data began to furnish fresh and powerful
evidence for continental drift, exemplified by the works of
Blackett, Creer, Irving, and Runcorn, among many others.

With the support of this new and independent evidence, all

ma jor geological and palaeo-climatic results were integrated
to provide gfounds for the rapidly evolving concept of ocean-
floor spreading by the injection of new material along oceanic '
ridges (Dietz, 1961; Hess, 1962), The significance of

- magnetic lineatlons was being rapidly realised (Vine and
Matthews, 1963; Pitman and Heirtzler, 1966) and the role of
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transform faults in the growth of ocean~floor, and hence

in continental drift, was becoming more apparent (Wilson,
1965). The continuous flow of data and the gradual
elaboration of ideas led to the collection of all the
evidence under yet another new concept; now popularly known
as "plate tectonics",

) According to the new concept, the outer part of the
globe is formed by the lithosphere, a relatively rigid
material about 100 kms., thick (and therefore includes the
crust and the uppermost part of the mantle) resting on a
layer, about 700 kms, thick, of effectively no strength,
called the asthenosphere, The lithosphere cohsists of a
number of blocks (e.g. McKenzie and Parker, 1967; Morgan,
1968) ; each block is relatively aseismic and is defined by
seismically active boundaries (Sykes, 1967; Isacks, Oliver
and Sykes, 1968). The relative movement between the blocks
1s assoclated with the creation and destruction of the
lithosphere and is conslstent and interrelated on a global
scale (Le Pichon, 1968)., The boundaries of each block do
not in general coincide with continental boundaries but
continental drift is implicit in these relative motions,.
The mechanism for the motion is usually sought in terms of
convective processes, However, regardless of whether the
concept of plate tectonics and the mechanisms behlnd it
continue to be supported by fresh evidence, we shall assume
continental drift to be a real geologic process. The actual
-mechanism causing the drift is not an essential part of the

presént work,.
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8. 2. Thehéignificance of the Fit

Restoring the original position of continents by
fitting corresponding lines along which fracturing and
separation is supposed to have taken place was the most
tempting method to demonstrate continental drift, Except
in very special cases, the irrelevance of the actual coast
line for the fitting process 1s quite obvious, Continents
are usually delimited by the continental slope which is
usually quite steep. Any isobath between 500 and 1000
fathoms will normally represent the edge of the continent,
adequately. However, it cannot be.assumed that the initial
break up was effected at a uniform depth nor can the passage
into oceanic crust be expected to take place at the same level,
No single isobath, therefore, can define the original break
up. This is further complicated by the deformation that may
accompany fracturing and drifting and by the depositional
and erosional processes subsequent to separation, Therefore,
for a given fit, the presence of gaps and overlaps is not
always serious, They can be the result of any of the factors
mentioned above, Therefore, these factors can become
important in asserting the plausibility of a given fit,
However, they can also shed extensive doubt on the validity
of the position of the pole of rotation obtained on the bases
of minimising the misfit between the edges being matched
(section 8,5). (

Occasionally, it may become impossible to employ the
continental slope in the fitting procedure, . Depositional or

extrusive activities may reach such an extent that they
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" ecould comp}etely obscure the continental slope, e.g. the
Red Sea, Separation may also have not progressed
sufficiently far for a continental slope to develop, €.ge
The East African rift system, The continental edges in
these cases, are approximated by methods appropriate to
each individual case, For these reasons, we shall use the
term 'edge' in a géneral way to denote the sides of
continents being fitted, regardless of whether these sldes
represent a coastline, a continental slope or any other
feature,

The reality of the fit must also be tranglated
geologically since the shape fit is merely the first
criterion, This was well discussed by Westoll (1965)
who also points out that a detailed matching of structures
is difficult although the correlation may be improved by
drilling, sample dredging, etc. Examples of the use of
geological criﬁeria, in restoring continents to thelr

pre~-drift relative position will be given later,

8.3. Fitting Procedures

8,301, General remarks

Continents may be restored to their original relative
posit;on by making use of a. theorem due to Euler, namely
that any displacement of a rigid shell on the éurface of a
sphere is equivalent to a rotation about an axls through
the centre of the sphere (Bullard et al, 1965). This axis
meets the surface of the sphere at two points known as the -
centres or poles of rotation. The geographical position of

one of the two centres of rotation is sufficlent to deflne
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the axis on the surface of the earth assuming that the earth
is praétically a sphere,

Continental drift may be envisaged as the rotation of one
continent relative to the other about a given centre of rotatior
Determination of the geographical position of the centre
gnd the amount of rotation are sufficient to restore the two
continents to their pre-drift relative position.

The rotstion at various stages could have been achieved
about successively different centres (see for example Fox
et al, 1969). It is the resultant relative displacement that
must be determined in these cases.

The position of the centre of rotation may be determined
using transform faults or other data from ocean-floor spreading
(esg. Morgan, 1968; Le Pichon, 1968)., Palaeomagnetic
evidence may also be used for the purpose (Frencheteau and
Sclater, 1969), However, these methods are usually concerned
with the movement between plates at various stages of their
geological history rather than with establishing original
relative position of continents, Our présent toplc is
concerned with determining the centre of rotation directly
from the fit between the two continental edges regardless
of whét paths these continents followed in acquiring their

present position

8.3.2. Bases of the method

The edge of a8 continent can be defined by the latitudes
and longitudes of a series of voints placed sufficiently
close for the form of the continental edge to be interpolated

between them. We can consider the centre of rotation as a
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geographical pole and convert the latitudes and longitudes
of all these points to correspond to the new pole, using

the foilowing equations (Young and Douglas, 1968):

t = sin~t (sin T sin a + cos T cos a cos B) (8,1)
e = tan-l[;cos T sin B/ ( cos T sin a cos B =

sin T cos a)] : (8.2)

where

T = latitude of any point

E = east longitude of any point

a8 = latitude of new pole (centre of rotation)
b = east longitude of new pole

t = latitude of point with respect to new pole

[
"

east longitude of point with respect to new pole

B=E-b.

The proflem is then to find the position of a centre of
rotation which would give an optimum fit between the two
edges being matched,

There are several possible criteria for the optimum

fit, Bullard et al (1965) use the function
N
2 1 2 ' 2 |
- [Z (s, - 8%+ (s, -5)%] (8.3
nN=

where
N =-the number of points on each side,

th

S_ = the longitude difference between the n point on

n
the first edge and its interpolated equivalent (on

the same latitude) on the second edge,
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S = the longitude difference between the nth point on

the second edge and its interpolated equivalent
on the first edge.

8 = 2 iﬁ (s« 5, ).

o 2N /. n n
n=1

All measurements refer to the centre bf rotation as the
new pole.

a and b are the only variable parameters of Q. DBullard
et al (1965) use the method of alternating variables (section
3.2.3) to minimise Q(a,b). The values of a and b at the
optimum give the required position of the centre of rotation
while So is numerically equal to the amount of rotation
necessary to bring the two edges in contact, However, although
the procedure of Bullard et al is very sound in principle it
suffers from the drawbacks of the method of alternating
variables and from the possibility of converging at a local
mininmm, -

Our method is based on the same principle but the
optimisation is carried out differenfly in order to avoid
the drawbacks mentioned above and to gsin certaln advantageé.

We define an objective function Q by

N
1 1

Q = M+N [( }Z; (Sn - 30)2 B wn)? +

IT=

M
o - 1
( z (8, = 8))% H W)7] (8.L)
m=1
where

. N = number of points on the first edge
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M = number of points on the second edge

H = cos® (t). Appropriate factor to allow for longltude
difference at different latitudes, i,e, to emphasise
the actual distance of mis fit,

"W

appropriate weighting function according to the
reliability of the part of the edge involved,

- 4 _ L
Su"NX: Sn ’ Sv'M Zsm
n=1 m=1
then
- 1
S, = % (su + sv)

The fact that Q is function of two variabies only is of
fundamental importance, We make use of this by mapping @ in
the two dimensional space of a and b, This has the advantage
of providing a complete description of the behaviour of Q
within the range being mapped., The presence of any local
minima becomes, therefore, readily detectdable. uiore important
is the possibility of asserting how well defingd is the global
minimum énd, therefore, its validity when compared with other
points in its neighbourhood. The importance of this feature
will become evident when the significance of the position of
the pole of rotation is discussed,

To map the function we use the grid tabulation method
(section 3.2.1). Each node of the grid is defined by its
appropriate (a,b) value. Q is thus evaluated for a'range
of values of a and b sufficient to cover all possible
solutions, at intervals determined by the required accuracy,.

According to the grid method the node possessing the lowest

1
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value of Q@ is considered the required minimum, However, such
a solution does not achieve any of the advantages mentioned
above, We therefore print out the whole grid. The printed
values of @ are arranged in such a manner that fhe b - axis

is the horizontal axis of the grid and the a-axis is the
vertical one., Each node has the corresponding @ value printed
on it, The resulting grid is then contoured for equal

values of @ and a map of @ for the specified range of a and

b is produced,

In practice, the numerical values of { are not output.
Instead, an alphameric character denoting the range in which
q falls, is output at each node, similarly to the method of.
section 7.4. This renders the contouring process easy
~without nmuch loss in accuracy.

The recommended procedure is to cover a wide range of
a and b values on an initial map, using a coarse interval,
Once the solution is localised, a high resolution may be
. achlieved by mapping the appropriate range of a and b at a
much smaller interval; the accuracy to which a solution may
be obtained by this method has no limit. However, a high
resolution is often unnecessafy in view of tﬁe large
‘possible variation in the position of the optimum pole of
rotation for a given tolerance, Usually, this tolerance
depends upon the density and accuracy of the digitised
points, It also depends upon how well do the fitted gdges

represent the original continental edges.
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8.4. Description of Programme

The essential features of the computer programme are
shown by means of a flow chart (Fig, 8,1). The blocks
marked by broken lines constitute the auxiliary part of
the optimisation programme, This auxiliary part may also
be used with any other optimisation method when an
alternative to mapping @ is sought.
The procedure works with each point (a,b), in turn.
The current point is assumed to be the new pole so that
all the coordinates are converted with respect to it. For
each of the digitised points, u s on edge U, an equivalent
point, Vs on edge V is then located i.e. a point which falls
on the same latitude as u, with respect to the new pole. The
process 1s then repeated for all the digitised points, Vs On
edge V, (
The equivalent of u, 1is found by a linear interpolation

between two successive polints Vo and Vel OO edge V where

Ty < Ty < T or T, > Tum> T

n Vm+l Vm+1l
Since T =T , it is sufficient to determine E in order
Vn Up ) vn
to define Ve The linear interpolation gives
Tv - Tv
= - S « T—. 8e
Evn B (Evm Evm+1) v -1 * Evm (8.5)
m+1 m

The actual relationship in spherical trigonometry is
more complicated and entails several cumbersome evaluatlons

However, if the difference between Vm and vm+l is 1less thgn
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2° the error in Ev is less than 0.002°, which is adequate
for practical purpgses.

Three kinds of objective function are computed
slmultaneously so that three maps correspouding to Q1,

Q2 and @ are produced, where

N $
9 = % [E:: (Bn - s’u)2 . Hy oo W ] ' (8.6)
n=1 .
M. 5

m=1

The maps of Ql and Q2 serve as a qualitative criterion
for assessing the validity of the solution; whén the minimum
is well-defined, agreement between the three maps is gquite
strong,

The execution time depends upon the number of grid
points, the number of polints defining each edge'and somewhat
upon the shape of theé edges being matched. If individual parts
of the edges are given different weights, the computation
time is increased further., TFor 30 latitude values and
30 longitude values (900 nodes) on each of the grids of
Ql’ Q2 and Q, and with 60 points defining each of the
two edges, a typical time required on an IBM 360/67
computer is sbout 6 minutes. Although this timé is quite
practical, it is somewhat large and constiutes a drawback
in the method, Only 10 seconds will probably be sufficient

for the same problem if another optimisation method (the
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pattern search method for example) was used, However, this
would mean the loss of the advantages of mapping .

The second drawback arises in the presence of special
types of infolds on the fitted edges. If an infold
is present on edge V then a given point, U, on edge U
may have two equivalent points on V; While our method
of finding an equivalent will deal with most types of
infolds properly, there are certain situations when the method
will fail, However, such situations are véry rare; should
they arise, the programme could be appropriately modified to
deal with them, McKenzie et al (1970) attempt to overcome
difficulties with turns and infolds by minimising the total
area of misfit, However, it is necessary with such an
objective function to use the angle of rotation as a third
variable,

The third drawback concerns the need for a large
storage space in the computer; at least 120 K bytes are

required in most problems,

8.5. Significance of the Position of the Pole of Rotation
The method of restoring continents to their pre-drift

positlon by regarding their relativg displacement as a
rigid rotation about a givén pole, has received wide
attention since its introduction by Bullard et al (1965),
However, although the pole positlon and the angle of
rotation completely define the displacement, the inverse
problem, i.e. the determination of the pole position'and

the amount of rotation, is not unambiguous in practice.
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Most methods determine this péle by assuming it to produce
minimum gaps and overlaps, i.e. the 'best fit' between the
edges being matched, This is probably the best available
criterion but the pole determined in this manner is only
correct in as far as saying that the 'best fit' determines
the original relative juxtaposition of the continents
concerned, This is far from being rigorous. We have already
seen that the presence of gaps and overlaps 1is not alﬁays
critical because the original 'line' of break up can rarely
be defined with precision. It follows that the possible
positions of the pole of rotation spread geoéraphically over
-an area determined by the tolerance of the particular problem.'
In terms of the objective function, this area is defined by a
contour wnose value is equal to the tolerance, When the |
minimum is bounded by steep sides, the solution may.be
localised within a small area even for very large tolerance,
However, such well-defined problems are rare., Only a slight
deviation from the 'best fit' is uswally sufficient to cause .
the area of possible solutions to extend over many degrees of
latitude and longitude.

The actual position of an optimum pole of rotation is,
therefore, not significant., A meaningful solution must refer
to an area which is defined by the permitted tolerance,
Methods which 'home' onto a solution are, therefore,
inadequate for the purpose., A procedure based on mapping -
the objective function, such as the one presented in this

Chapter, must be used.
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External control is very importanf. Any available
geological informations must be used to reduce the
ambiguity. Data obtained from transform faults,
palaeomagnetic work, etc., are similarly useful although,
by their very nature, such data exhibit a comparable
ambiguity. However, being independant criteria, they may
be used by superimposing the contour of maximum tolerance,
given by each of these methods, on the contour of maximum
tolerance of Q to obtain an area common to all of them, The
solution may thus be localised further and its ‘accuracy'

increased.

8,6, Examples
The examples presented below demonstrate the use of
the general procedure and the problems associated with the

position of the pole of rotation,

8.6.1, The fit of Greenland to Northern Europe

The continental edges of Greenland and Northern Europe
were mainly represented by the 500 fathom line, The fitted
segments were approximately the same as those used by Bullard
‘et al (1965) for a similar purpose.

Iceland and the ridges jolning it to Greenland were
assumed to be post-drift in origin, The continental edge
in the vicinity of these ridges was defined by a number of
widely separated points,

On the European side, a plateau (marked N, Fig. 8.3)
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formed by young sediments fans out in the Norwegian Sea

The continental edge across this plateau was estimated by
assuming it to be parallel to the magnetic lineations in the
neighbouring oceanic crust, Near the Faroe Islands, an-
assumed deviation of the edge from the 500 fathom line was
also necessary in order to follow the boundary suggested

for the continental crust from gravity data (Bott and Watts,
1970b).

In the fitting process, various parts of both edges
were welghted according to the confidence attached fo each’
part, A map of Q for a range of 90°N to 18°S and 65°E to
155°E, is shown in Fig, 8.2. The map of Qy and Q, are
.roughly similar to this map. Details of the optimum.pole
of rotation from the three maps are indicated below _

(in degrees) _
latitude (N) 1longitude (E) Rotatio

Fit on Europe Ql = 0,13 L2,0 119.0 . 969
Fit on Greenland Q2 = 0,10 65,0 110,0 - 13,5
Combined fit Q =0,12 45,0 117.5 10.3

The pole positions are widely different but they all fall
within the axis of the trough in Fig. 8.2, indicating the
validity of the map as a whole and the insignificance of
the individual pole positions, In fact, Fig, 8,2 shows that
if the tolerated value of ¢ i1s only 10 higher than that at
tte optimum the possible pdsitions of the pole of rotation '

o
would occupy a zone about 3° wide and extending for 327,
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When no weights are placed on the function, an increase of
1056 corresponds to an extent of 200. In both cases, the
range is large and illustrates thelﬁractigal difficulty in
assessing the validity of-a given pole without reference
to some other criteria. .

A close resolution of the main trough in Fig, 8,2
indicates the presence of many ill=defined local minima.
This illustrates how search by 'homing' techniques could
terminate erroneously. Fig. 8.2 also shows the optimum
poles of rotation adopted by Bullard et al (1965), A, Le
Pichon (1968), B, and Bott and Watts (1970b), C., All of
these poles fall within the main trough.

The maps of 4., Q2 and Q, when no weighting functions
were used, were similar to the map of Fig, 8.2, The optimum
poles in the three maps were in good agrekment between
themselves, Greenland was fitted to Europe (Fig. 8.3)
using the optimum pole of Q, at 58.3°N, 113.0°E with a
rotation angle of 12.&0. This pole is indicated by point
D in Fig., 8.2, It was used instead of the corresponding
pole of the weighted function merely for convenience, being
a point on the axis of the trough in Fig. 8,2 and because
of its agreement with the optimum poles of Q2 and Q.

The £it (Fig. 8.3) is quite satisfactory and produces
no unreasonable gaps or overlaps. The overlap of plateau N
suggests that the extent of the continental edge is even
less than was ipdicated from following the magnetic lineations,

The overlap which includes the Faroes is probably caused by
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an overesfimation of the extent of the continent on the
Greenland side, which was badly defined in this part,

The relative position of the Caledonian fold belt
boundary on the Greenland side is in agreement with that
on the European side. This match was indicated by Bott
and Watts (1970b) who obtained & similar result using the
pole indicated in Fig, 8.2, This geologic control is an
example of an external criterion which may be used to
locallse the possible solutions, Poles which produce a good
fit between the two &ldes: but do not match the fold belts are

rejected on these bases,
8.6.2. Movement between the Arabian, Nubian and Somalian plates

8.6.2.1. Introduction

Through a vast amount of geological and geophysical work,
it is now generally recognised that the crustal structure of
the Red Sea and the Gulf of Aden 38 essentially oceanic and
that the Arabian plate is moving away from the African
continent at an average rate of about 2cm/year (Girdler,
1958; Vine, 1966; Laughton, 1966, inter alia), The relative
movement across the Red Sea is slightly different from that
across the Gulf of Aden, This difference is allowed for by
the relative movement between the Somalian and the Nubian
‘plates across the East african rift., McKenzie et al (1970)
have studied the relative movement between the three plates,
They deduced the pole of rotation Nubia - Somalia frpm the

difference between the rotations Arabia -~ Nubia and Arabia
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- Somalia, This pole was approximately located at 8.5°S,
31.0°E with a rotation angle of l.9° indicating an opening
of the rift by 65 km in northern Ethiopia and 30 km in
Kenya.l
8.6,2.2, The Red Sea

The actual coastlines were assumed to represent the
continental edges and were used in the fittiné process,
This has been justified by lMcKenzie et al (1970) on the
grounds that the marginal seas are complicated by thick
evaporite deposits.

A map of § (Pig, 8..4) shows a well=defined minimum
with an optimum pole of rotation at 37,1°N, 18.5°E
corresponding to a rotation angle of 6.1°. This.position
(M) is close to that obtained by McKenzie et al (K).
It was used to construct the fit between the Nubian and
the Arabian plates (Fig. 8,5). The maps of Q, and Q,
are very similar to that of @ with the respective optimum
poles in close agreement with that given above,
8,6.2.3. The Gulf of Aden

The continental edges on both sides of the Gulf of
Aden were represented by the 500 fathom line, Another
representation was also possible by assuming the break in
the continental slope to represent the passage from continentsal
to oceanic crust. The anaglyph map of Laughton et al (1970)
was used for the purvose. However, the results obtained |

from both representations were very

1. A re-computation based on the same data showed that the
figures for the opening are underestimated by at least 10



LATITUDE

/ CONTOQURS OF OBJECTIVE FUNCTION

7 VALUES

-1, v T, T LIS Y T

0 10 20 30
LONGITUDE

Fig. 8.4. Contours of Q valnes for the openning across the Red

sea.
M = The pole position with minimum misfit
K = The pole position suggested by Mckenzie et al

(1970). -

Other arbitrary points-used in Table 8.1 are also
shown.



/

Fig. £.95. Fit of the Red Sea
coastlines and the Gulf of
Aden 500 fathom lines (shown
in broken lines) presented
in a median position between
the edpes heing fitted. The
corresponding poles of rota-—
tion are given in Figs. 8.4
and 8.6 respectively.

OVERLAPS

PROJECTION
MERCATOR




.lL"s.

simllar; most discussion will be limited to the 500 fathom
line representation,

In fitting the two edges of the Gulf, the Socotra
shelf was first included as part of the Somalian plate in
its true relative position, Results of mapping @ are shown
in Pig, 8,6, Minimum A is locally an optimum solution with
coordinsates 22.9°N, 31.6°E and a rotation angle of 12.0°,
This pole position was used to produce the fit between the
two plates as shown in Fig, 8,5, The fit is not as
spectacular as in the case of the Red Sea, A better fit
would be obtained if the Socotra shelf was excluded, in
the same way as was suégested by Laughton (1966) and by
McKenzie et al (1970).

Q was mapped with the Socotra shelf excluded, giving
another locally optimum minimum at 23.u°N, 28,2°E, with a
rotation angle of 9.5°. The resulting fit is shown in
Fig, 8,7 and indicates a definite improvement over the first
fit, However, the first fit has.three important features,
Firstly, it does not require a displacement of the Socotra
shelf as an independant 'fragment'. Secondly, it suggests
even better geological cbntinuity'across the fitted edges
than was originally demonstrated by Laughton (1966).
Thirdly, it is consistent with the Island of Socotra belng
originally close to the Kuria Muria islands. The gaps and
overlaps are nowhere excessive and, therefére, cannot be
used és an e&idence ageinst the fit, |

Therefore, despite the better fit obtained by excluding

f
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Socotra, the overall evidence 1s in better agreement with
the fit shown in Fig. 8.5. This again shows the
vulnerability of the 'best fit' as a criterion for
establishing the original relative position of continents,

Fig, 8,6, in fact, suggests that a better fit is
obtsinable from a solution like B at 18.5°S, l0.0oE, with
a rotation angle of 3.u°. A similar local minimum also
appears when the Socotra shelf is not included.

‘Solution B corresponds to & fit correlating polints
X and Y on Arabia with points X' and Y' on Somalia,
respectively (Fig. 8.5). However, such fit is difficult
to reconcile with the geological features on land and the
magnetic lineations in the Gulf(Laughton, 1966; Laughton
et al, 1970). Thus, the better fit of solution B is also
eliminated in favour of the more definite criteria

suggested by using the pole at A,

8.6.2.L4. Determination of the movement across the East
rﬁfrican rift,

The ambiguity in the position of the pole of rotation
invalidates its use in pnrocesses involving accurate
quantitative determinations., We use, as an example, the .
attempt of McKenzie et al (1970) to determine the movement
scross the East African rift by a vectorial addition of fhe
_movement across the Gulf of Aden and that across the Red
Sea, Clearly, the fit of the edges across the Red Sea
is so good that, even if the area of misfit is increased
by 30%, the resulting fit would still be inside the

tolersble limit., For the data presented by McKenzie et al
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(1970, Fig., 2), this is equivalent to a range of L4° in
latitude and 7° ih longitude, For illustration, we used
the point P (Fig. 8.4) to produce a fit of the two edges
of the Red Sea (Fig, 8,8). Despite a shift from the pole
of the 'best fit' by 3° latitude and 8.5° longitude, the -
resulting fit is'quite satisfactory. In the same way,

a large nuinber of other points may be saown to provide a
possible pole of rotation for the displacement across the
Red Sea, Each of these poles,'when added vectorially

to the pole for the movement across the Gulf of Aden, will
produce a different pole for the movement across the

East African rift. Results of the vectorial addition of
some of these poles are given in table 8.,1. For the
movement across the Gulf of Aden, .the pole of lcKenzie

et al was used to simplify comparison

Pole for the Pole for the rift (degrees) Displacement (km)
Red Sea . _
(Fig, 8,4) ZLat.(N) Long.(E) Rotation Central Ethiopia Keny

M -8,0 28.9 2,0 65 35
p 5.8 34,1 3.3 (15) (=45
7 0.3 32,6 2.6 55 (20
R -7s1 27.0 2,2 80 Lo
S -15 9 26,8 1.6 90 - ' 60

Table 8,1. Variation of the resultantlmovement across the East
African rift according to the pole adopted for the
Red Sea., This is always larger than the
displacement in a direction perpendicular to the
sides of the rift., Figures in brackets indicate
displacements which are more than twice the
apparent displacgment perpepdicular to the sigdes.

-The minus sign ihdicates_éompressional MQvement{
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The displacements in Table 8.1 are significantly
different, Displacements, obtained by using the same poles
as Figs, 8.5 or 8,7 to represent the movement across the
Gulf, are similarly varied but are more suggestive of
compressional movements in Kenya and tensional movements
in Ethiopia, The pole obtained using the anaglyph map of
Laughton et al (1970) produces displacements similar to
those of Table 8.1 but of smaller magnitudes, None of these
results 1s intended to indicate the actual movement across
the East African rift, They are used to demonstrate the
difficulty of obtaining meaningful quantitative results from
a pole position estimated on the grounds of 'best fit'. Had
all possible pole positions for the movement across the Gulf
of Aden been considered the results would have been even more
varied., Although a large number of the resulting poles for
fhe movement across the East African rift could be discarded
as being geologically unreasonable the basic‘indeterminacy
remains unresolved,

Qualitative deductions are generally easier, Within the
tolerance of each problem it is usually possible to establish
relative moveﬁents in a general manner, For instance, the
contours of Q for the Red Sea do not overlap with those of Q
for the Gulf of Aden for any reasonably large tolerance,

This establishes a displacement across the East African rift.
The nature of this displacement caﬁ only be given as a broad
.range of possibilities, Geological and other relevanf
information may decide which of these possibilities are

more likely,
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SUMMARY AND CONCLUSIONS

l. In applying optimisation technigues to a given-
geophysical problem the procedure would usually consist
of the following stages: |

(a) The behaviour of the objective function is
studied, preferably by means of cross;sections. This is
important in establishing the modality of the functioﬁ,
the degree of ambiguity expected in tane solution, the nature
and scaling of the function and any other special features.

(b) The constraints of the problem are worked out
so0 as 10 ensure the physical or geological feasibility of
the optimum model. The term "constrainfs" may be extended
to denote the specification of some parameters at certain
values in order to 1lmprove the validit& or unlqueness of the

- solution,

(¢) An auxiliary subroutine is constructed to provide

the objective function for a given set of model parameters, .
%A sultable optimisation subroutine is then chosen., The

choice depends on the problem. For examnle, the method of
rotating coordinates is well suited for curved-and complicated
functions; the simplex method is suitable for problems with
many isolated local minima, etc. Generally, gradient methods
are fast but tend to break down when the current point is
remote from a solution or when the function has many
ill-defined local minima, Direct search methods are slow
but do not usually have the disadvantages of gradient methods.

A good strategy 1s to use direct search methods at the early

.
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stages of the search and to change to a gradient method

when the solution is approached,

2, In all of the investigated cases, a unique
solution to the problem appears to exist in theory but a
~high degree of non-uniqueness arises in practice, The
non-uniqueness is primarily due to observational errors and
to the lack of adherence to the ideal conditions assumed
by the model. The tolerance of the problem is'usually
determined by the magnitude of observational errors. In the
parameter hyperspace, this gives rise to a 'valley of
ambiguity' where all points bounded by a contour of value

equai to the tolerance qualify as possible solutions.

3¢ In gravity and magnetic problems, uniqueness in
practice is only obtainable within specified basic parameters.
However, if some or all of the basic parameters are
unspecified the outcome of the search in the hyperspace is
not unpredictable; the position pf the init;al point will
generally decide the solution to which the search will
converge. The optimum parameters will be usually of the

correct order of magnitude,

L, Optimisation technigues may be used to interpret a
two-dimensional gravity anomaly in terms of a polygonal model,
The method is formulated such that any of the parameters
defining the model can be specified or treated és'an unknown,

.The use of optimisation technigues renders the interpretatlion
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more flexible and efficient than is generally obtained
using other methods, The disadvantage of requiring
long computing time may be largely overcome by careful

programming,

5. The use of optimisation techniques in interpreting
two-dimensional maghetic anomalies has the same general
features as those of gravity interpretation., It has the
additional advantage that efficient iterative methods

for interpreting magnetic anomalies are generally lacking,

6. Surface wave dispersion data may be interpreted by
optimisation technigques. However, it seems necessary to
specify a large number of parameters in order to overcome

the high degreé of non-uniqueness which arises in practice,

7. A fast method for interpreting apparent resistivity
curves is based on transforming the problem so that there
are only two variable parsmeters, The observed curve is then
matched with a set of standard curves and the results are
printed on the corresponding two-dimensional grid. The
solutions seem to be satisfactory and problems assoclated

with equivaleﬁce are substantially reduced,

8. A modified two-dimensional grid method can be used
to locaté_a pole of rotation for the relative displacement
between two continents. External control may reduce the
ambiguity in the solution, The use of the 'opt}mum"pole

position for quantitative determinations is unjustified.

[}
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9. There is a very wide scope for applying ontimisation
techniques to solving non-linear geophysical problems,
Specific problems of interest arising from the present work
are the interpretation of three~dimensional gravify and

magnetic anomalies and a fuller Investigation of the problem

of surface wave dispersion,

U
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Appendizx 1

Calculation of the Accuracy of Optimum Parameters.

In the vicinity of the optimum, the hyper-surface of a non-linear

function behaves asymptotically as a hyper-plane so that an

approximation to the linear case, at the optimum, is quite justified.

If a multi-variate regression is fitted by minimising

.n )
-
52 = (y -g-b x,=b_, x - -b  x )2 (A1.1)
, TR K0T ok _
k=1

then the parameters xj have variances and covariances given by the

>
elements of the matrix o ~ L = where

] |
) _

z 2k -zb‘lkak - Z‘?mbmk

k=1

——

(A1.2)
= Lumn!
\ o

> b. b . . . Y b

J. mk 1k Z;J,mk _
Bach of the elements of L may be derived from
8252 = 2 Zba 3 232 2>~\
3 x2i : ik}) a-—xa—x = ‘-—‘bikbjk (A1.3)

i7J
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The general non=-linear case is represented by

n .
&2 = ZE: (Ak- Ck(x1’x2"""xm))2 : (A1.4)
k=1

By approximation to the linear case, the elements of the matrix Q,.
which is the equivalent of L in the linear case, are also givewﬁy
equations(3) .

The computation of the second A

partial derivatives may be carried * 1 xe 2h _ > x2

out numerically by perturbing from

the optimum parallel to each of x, 0 6
1 5% oftimum *
and xj as in the diagram. A I
e
perturbation in the order of 1% of l
44 x x3
the value at the optimum is probably '
adequate. The derivatives are then x; >
given by N
3 2 s2 562+ sg - 2502
= S (A1.5)
0 x.2 h
i
2 2 s 2_ s 2 + s 2 _ s 2
and d_s _ 4 3 2 1 (A1.6)
9 x, 9x_ Lhe :
i)
-2

The symmetric matrix @ is then inverted to obtain the matrix PO ,'

the estimate of residual variance is calculated from

5 = | f (A1.7)

9 » -
- and the diagonal elements of P may then be used in equation

(2.18) to estimate the possible error in parameter X, .
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Appendix 2
Method of obtaining the Partial Derivations of the Objective

Function in Equation (5.4).
The variable parameters include all unknown coordinate

parameters defining the polygon and the linear parameters when

unspecified.,
The derivatives with respect to the coordinate parameters

may be obtained in the following manner.

Equation (5.4) may be re-written as
m .
(42.1)

n
: —
y 2
£(x) = /, (Ak-B—EG p L sik)
k=1 1=1
where Sik is the geometrical term of the ith slab at the k th
observation point as defined by equation (5.2).

If a coordinate parameter of the ith slab is referred to by

P then
m
—
)

(A-B - 26, }_J W) ?p—i Sk (a2.2)

=

Kes
—

n

. s
-2—1: =k GP> i

i —

k=1

Hehce, the problem is reduced to obtaining a general expression

for the derivatives of the objective function with respect to the four

coordinate parameters defining the i th slab.
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For convenience, the symbols used in the text are replaced

by the following:

+
L]
0

: 2 2
R = My Bo= VY 2, R = log (R,/R,)

=

b = [(u-v)% + (w-t)2]"

Equation (5.2) may hence be re-written as

Sik = t ¢ > _w¢‘l - (usinf+ wcos8) (7R sin 6+ ¢cos 6 ) (a2.3)

= t¥,-we, - WH (A2.4)

where

W

usin 9+ w cos 8 : .

and

o8
it

32 Rsinf+¢ cosd

Expressions for the derivatives of individual factors in equation

(A2.3) are given as follows:

3 sin 0 3 s

= - _bcosfsin 6 , 0sinb  _y cosf sin 0
du v )

O sinf 2 sinf =1 cosae

= R
8 w ' 8t



gLo§_0__ =b sin2 2] ) dcoséd =-b sinza

u aV

dcos¢ =Dbcos @ sin 6 , dcos§ =-b cos gsing
Oy ot

g% = -2R, (u-X ) . o= = 2R, (v - )

v

9R = 2R (w-Z ) , eR =-2R (t-2, )
a—w 1 k 3t 2 k
9% _ ==~-_8 5 - -7 35 =
5 u 5u 2q = Rylw-g) 5—;—-‘%;“
.0

— = = _@_ i) = -R(u— )’ i@_ = 0 &
o w ow 1 xk t ot

It therefore follows that

W= 3% = sinf (1- bu cos® + bw siné)
ou :
]
W_= 0W = singbu cosf ~ bw sinb )
ov
t
W v = 0% = cosd (1~ bu cos@ + bw sind )
ow
[ ] .
W, = 0% =cosf@ (bucosd - bw sing )
t —
ot
1
Hu = 0H =
ou
=b (% -H cosf ) + R,I[(u-)Lk) sin 6 + (w-zk) cos 6 J
1 .
H = O9H =b (Hcos 6 -3 ) - RZL(V-Xk) sing + (t-ék) cos 0 J
oV
] -
- _ T . - 1 =7 - arra .
H = 9H="» (ising - 3R) + R [(u-X) cos § - (w-2,) sing J
ow
1
H,= OH

FoT

= b(3R - H sing ) - R, L(v-X) cosg - (t-Z)) sing i

«157.

b sing (& sing - 3 R cosg ) + R,I[(u-Xk-) sing+ (W-Zk) cos @ J
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The above expressions are very similar, causing considerable

saving in computing time. They can be used directly to obtain:

a r ,| 1. ! A
5u Sik = -wR,] (w-ék) - HW u WH a (a2.5)
2 5 (t~2,) - HW _ = wH 12.6
6-\7 ik = =t R2 t-dk - HW v wH u (A2.6)
2 s R, ( ' ‘o2 '
5w Sik = VR, u-)Ck) - v - WH - (A2.7)
0 S R ( ) (] ] "
6-1? ik =t > V-Xk - HW £ WH t + & — (42.9)

Substitﬁting in equation (A2.2), the required derivaﬁives are
obtained.

Since, in g;neral, the coordinate parameter xj of the polygon is
the parameter Vi of the i th slab and is also the parameter u, of the

i+1

i+1 th slab, the derivative with respect to the parameter xj is obtained

from
0f _ 2f 8¢
e ] xj ;) A 0 L

The same is ‘also true for t, and w. ..
i i+
Howevar, the first and the last points of an open polygon are
used only once. Also, polygons with vertical or horizontal siies have
some parameters common to more than two slabs. For all such cases,

appropriate definitions must be made in the gradient specification part

of the programme (see programme specification no. ).
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s

The derivatives with respect to the density contrast and the

regional background follow directly from equation (A2.1). Hence,

n m m
-\.—\ \'—\ KN .
CRA 2_ [(Ak-B-ZGp .)_ s.k) L S.,.J (A2.9)
3p k=1 i=1 1 i=q 2K
n m
af N N
B --2) (B2, )80 (42.10)
k=1 i=1
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Appendix 3

Method of Obtaining the Partial Derivatives of the Objective

Function in Equation (6.6)
S

The variable parameters include all unknown coordinate parameters
defining the polygon and the lineor parameters when unéﬁecified.

The derivatives with respect to the coordinate parameters may be
obtained following a procedure similar to that ﬁsed in Appendix 2.

Equation (6.1) may be re-written as

n m m
A . (o e -
2 -
£ (x) = Z (A -B-J_ Z P = e ) %) (43.1)
=1 i=1 =
where P, and g, replace u and'vik in equations (6.2) and (6.3)_
respectively.

If we again define a coordinate purameter on the i th slab by'

Py it follows that

.11_‘ T
of N : < 5 s )
a-I;i = =2 2_'[Ak'B-Js Z Pix ~ 9 L,Qik) (Jsapi P * 9, 35, -faik)J (a3.2)

k=1

k

Therefore, the method depends on determining the derivatives of Pi
and Qik with respect to each of the four parameters defining the two corners

of the i th slab.
Wle use the same symbols as in Appendix 2 so that equations (6.2)

and (6.3) may be re-written as

Pik =2 sin 8 (Hcos I sin d - G sin I)
Qik =2 s5in 60 (GcosI sind = H sin I)
where G = & sin § - 2 R cosé
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Derivatives of 6, R, ¢ and H were also presented in Appendix 2.

Derivatives of G are given by the following:

' dq .
= T = - s nb ) ,l ht : ¥ o \ \
G, =75 b sinf ( ¢cosf + % R sin 6) + R,l[(u .Ak) cos 0 + (w Ak) sin 8]

= =b H sin 9 + R,][(u—Xk) cos 8 + (w-Zk) sin 0]

bH sinf - R2[(v-xk) cos 6 + (t-Zk) sin 6 j

-bH cos § - R,l[(u-)(k) sin 8 + (w-Zk) cos 6 ]

bH cos 0+ RZ [(v-Xk) sin 0 + (t-Zk) cos 6

The derivatives of P, and {,, may now be obtained directly. Thus,

ik ik
] []
53 Pix = 2 sing(H cos Isind=-G_sinI) -2b cos @ sin@ (H cos I
sin d - G sin I)
] t
=26ing(E cosIsind=-G sinI) -b P, cos O (43.3)
0 ' 1 .
~5 Py = 2 sinf® (H v ©o8 I sind -G v sinI) + b Pik cos 8 (A3.4)
0 ' 1 -
i Pik =2 sind (H v ©98 Isind -G . sin I)-b Pik cos @ tan 8 (A3.5)
] 1 :
a—% P, =2sin 6(H cosIsind=-G sinI) +bP, cosftand (A3.6)
[ ] L]
5a Qy = 2 sing (G g 08 I sind -H  sin I) - b Qyy ©Os 6 (43.7)
0 1 ' ) "
5 Qik = 2 sin 6 (G ycos Isind-H v sin I) + b Qik cos 6 (A3.,8)
0 ' ' - 8- 8 (4
5w Qik = 2 sinf (G y O I sind=-H y sin I)=-b Elik cos? tanY (A3.9)
o ' K ' .
5T %) = 2 sin® (G, cosIsind-H, sin I) +b Qg cos & tanf (A3.10)
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Substituting in equation (A3.2), the raquired derivatives are

obtained.
As in the gravity case, a given coordinate parameter xj of the
polygon may be common to one, two or more slabs. Appropriate specifications

must, therefore, be made in the gradient specification part of the

&
programme in order to obtain 5§ .
3
The derivatives with respect to the lineapﬁarameters are directly

obtainable from equation (A3.1). Hence

n m m m_
3¢ N\ N N N .
53" =2 ) M =B -d )R e )QO() BT (A3.10)
k=1 i=1 i= i=1
n m_ m__ m_
°f _ -2‘—“ [(A, -B =-J ° \P -3 N Q) ( >\Q )1 (A3.12)
aJc 2;} Ak szljik c JL: ik / ik °
k=1 i=1 i=1 i=1
n n m_
-2 >““L"‘(Ak -B -4 >'“ P - I, LQ“‘” (A3.13)
L L
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Appendix 4

Derivation of Equations (6.9) and (6.10)

Equations (6.7) and (6.8) give,"respectively

n
z (Ak alCAUEI A B) U =o ' ‘ (A4.1)
gl
>_’(Ak = I = IV B) V= o (4ih.2)
k=1
Hence,
T ) VY .
> G Uy - g Zuk -3 > UV, = o (Al.3)
- . /.
r"'\ N b
) 'Gk v, - Jg ) Jc> VS =o (AL, 4)

where .the summation is taken over the range 1 to n and

Multiplying equation (AkL, 3) by > V2 and equation (Ak.hk) by

> U, Vk’ we obtain

— 2 o2
(LG )(> v DIEE () e )(> )—J(‘) UV)(L'Vk)=0 (Al.5)

j— 2 _ NI ! 2 -0 .
(\/ Gv)(> U V) - Js(> U V) - I ( )Ukvk)(> v - (AL.6)
By solving equations (A4;5) and (A4.6) for Jg» equation (6.9)
follows directly.
Slmllarly, by multiplying equation (Ak4.3) by > Vi and equation
(AL.4) by > U , and solving the resulting equations for J_, equation (6 10)

follows directly.
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Appendix 5

Derivation of An Expression for Eguation (6.13)

Equations (6.7), (6.8) and (6.12) give, respectively

' ,

Q(AK-JS U -J V=B U =o (45.1)

.>_,'(Ak = I IV =B Y mo (A5.2)

Je=A

o,

> (Ak = I - IV - B) =o (45.3)

=

Hence,

'\-\ _ Fem _ Y 2 ) ._' \ _

/AT - B 2_.Uk s /) Tk " e .)_JUka =° (A5.4)

';'—1A Ut o )

>'kvk-B>Vk-JsZUkvk-Jcl>Yk-° (A5.5)
- \ - \ =

>Ak"nB J k J}—\’k ° (AS5.6)

— A !

where the summation is taken over the range 1 to n.

Multiplying equation (AS5.4) by n and (A5.6) by U, we obtain

the pair of equations

NATE N ) = -
ZARU nB)U > c/) Uka—o (A5.7)

<) ADC )—nBLU (3u)2 é\u><>v> o (45.8)

I\’ ]

Subtracting,we get

P~ JsR - ch =0 (15.9)
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where,
YEYRY
P=n y Uk ( /A )( L_Pk)
- ( >U )2

W

n
=3

Rl

Uka - (ZU )(>

Similarly, by multiplying equation (A5.5) by n and equation
- .

(5.6) by > V, and subtracting we get
/.

Q-J W-J, 5=0 (A5.10)
where
Q = Zlékvk ( }E%)(}LUK)
S = n>—\V§ - (}-\Uk)2
-

Solving (A4.9) and (AL.10) for J_ and J_, we have

J_ = D(ig - SP) - | (A5.11)

J = D(WP - RY}) | (45.12)
(] ' .

where

D = 1/(W° - KS).
B may now be obtainéd from (A5.3),

1,70 3 \ .
B = n (:) Ak - Js /_)_Uk - Jc > ‘:,k) (""5'13)'

fa—

where J_ and J_ are defined by equations (45.11) and (A5.12), respectively.

Equation (6.73) follows directly from equations (A5.11), (A5.12) and

(A5.13) "
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PROGRAKME SPECIEICATIONS

Programmes number 3a, 3b, 3c, 3d, 5a, 50, 5c; and
5d are compatible-with the method of rotating cobrdinates,
' P300 (Rosenbrock, 1960), tae '"Complex' method, P301 (Box,
1965) and the method of conjugate directions, P303 (Powell,
1964). Only the P300 version is given in each of the
corresponding print-outs., To adapt the programmes to either
P301 or P303, the steps indicated in the print-out of
GRANOF (specification no. 3a) must be followed.

Programmes 3-6 are constructed such that any of the
coordinate parameters defining the polygonal model can be
specified or treated as a variable parameter,

All programmes have been written in PL/1 for use on
the NUMAC IBM 360/67.computer, Dats items other than
integers de strings may be written in any of the valild
forﬁs appropriate to PL/1, but will normally be written as
Tixed point decimal deta items,

Procedures P300, P301, P303 and P306 have been kindly
lent by I.C.I. Ltd, on the condition that their use must

be confined to the Department of Geology, University of.

Durham,
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Specification No, -3a

Title: GRANOP

Purpose: This programme progressively modifies the
parameters defining a two-dimensional polygonal mecdel in
order to minimise the discrepancy between an observed i}
gravity anomaly and the calculatéd anomaly due to the model.
The resulting parameters define an 'optimum' model.

Use: The programme 1s most suitable for problems in which
the regional background and the density contrast are
specified but can also handle either or both of them as
variable parameters. As presented, it will only accept one
density contrast, It may be modified to accept m density
"contrasts (m 5;; number of sides) by declaring the density
contrast to be an array of m elements each of which is
assigned to the appropriate side(s).

Description: The main programme deals with inputting,
butputting and editing of the data., The optimisation procedure
is éalled by a sultable CALL statement in which the initial o
estimates are passed, The optimisation procedure passes the
current values of the variable parameters to the auxiliary |
procedure AG, The auxiliary procedure then calculates the
anomaly in a manner similar to that of GRAVN (specification
no. 1, Bott, 1969a) so that the addition of the step-models
is carried out in an anitclockwise order. The objective
function 1s then calculated according to equation‘(S.u) and

its value 1is returned to the optimisation procedure. The

process 1s iterated,
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The details of the model are specified in the model
definition part in the auxiliary procedure by a éeries
of instructions, These include allocating the variable
parameters to the appropriate coordinates of the model
and assigning values to the coordinates required to be
fixed, The density contrast and the regional background
are also defined. In the print-out for GRANOP, an example
is given where all the coordinates are defined as adjustable
pafameters, the density contrast is specified at +0,15 gm/cm3
and the regional background 1s specified at 5.5 mgal,

Input data: The data are input in the following order:-

data ' notes
'NAME' 3.1
nsta nx mx . 3e2 .
data; _ .33
wtf o " 3k
zs 365
Xs obs 3.6
g xh : 37
1mg ' 3.8

Data notes:

3.1l. BEach new set of data must commence with a name
consisting of up to 80 characters enclosed in single

quotation marks.

fod
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3624
nsta = Number of observation points
nx = Total number of variable parameters
mx = Total number of coordinates. If the polygon has

v corners then

mx 2v for an open polygon and

mx = 2(v+l) for a closed polygon.

3«3, The following are integers which may be altered by the
GET DATA statement,
g8c: A scaling factor appropriate to the measurement
units, The default units are kilometers., For
other units, sc must be set equal to
unit of measurement ; 1l kilometer,
iter: Number of required iterations per variable., Between
100-200 iterations are usually adequate., The
default value is 200. |
zaza: If set to 1 the effect of change in the height
of the observation point from the datum plane
will be considered. The default value is O,
1p: If set to 1 it indicates that after the specified
number of iterations, the optimisation procedure
is to be called again with 1/5 the original
number of iterations. This'occasionally helps
re-gsetting the search directions more favourably,
The default value is O,
wte If set to 1, weighting functions will be used. The
default value is zero,

1mg: see note 3.8
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An example is SC = 0,001, ZAZA = 1;

The semi-colon should be punched even if no data items were

needed,

3.4, wtf is an array of nsta elements. Each element contains

a weighting function appropriate to the observation point so

th

that the 1" observation is weighted by a factor WIF(I).

The input commend 1is only activated by setting WT = 1,

Otherwise, no data are required,

th

3«5 28 1s an array of nsta elements., The 1 element

denotes the difference in the height of observation of the
ith point from a reference datum passing through the origin
(see note 3.6). This allows for changes in topography, etc.
along the profile. The measurement is +ve downwards so that
points higher than the datum are assigned =ve zs and vise

versa, The input commend is only activated by setting

ZAZA =1, Otherwise, no data are reqguired.,
3.6, x8 1is an array of nsta elements, The 1th element

th

~denotes the horizontal distance of the 1 observation point

from the origin, The origin is chosen arbitrarily and is

retained for reference throughout the problem,

th

obs 1is an array of nsta elements., The 1 element

denots the anomaly value at the ith

observation point in

- milligals, The complete xs data list must be input before
inputting cbs, |

367 g is an array of nx elements, The Jth element denotes
_the lower bound (constraint) on the j°P variable parameter.

~x 1s an array of nx elements representing the initial.
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point in the hyperspace, The jth element denotes the
initial estimate of the jth varlable parameter,
h is an array of nx elements. The jth element denotes

th

the upper bound on the j° variable parameter,

The data are input in the order: all g, all x, all h,

308. lmg is an integer controlling the re-entry into the

main programme after the optimisation process has terminated.
This allows using the programme for different problems in the
same run or for the same problem under different condit ons
or assumptions, ZEvery time the optimisation process is
activated, the integer II is incremented by 1 from an initial

value of O,

Model definition:

The polygonal outline of the body is defined by the
coordinates of the corner (xi, zi) with reference to the
arbitrary origin (note 3.6). In the model definition part
of the auxiliary procedure these are defined by the elements
of the array xa. They are defined in an anitclockwise
direction in the order X1y Zys Xoy eensXpy 2 Hence the

th

(23‘-1)th and the 2j°" elements of xa refer to the x and z

th

-coordinates of the J corner, respectively. A closed palygon

has the first and last corners coincident, This is specified
by

XA(X-1) = XA(1); XA(MK) = XA(2); |

The array xx consists of nx elements. It passes the

current value of the variable parameters to the auxiliary
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procedure, Adjustable xa elements are assigned the
approprilate xx elements. Unadjustable xa elements are
assigned the required value. Therefore:

XA(1)=xx(1); XA(2)=3.u4; Xa(3)=Xa(1);

XA(L)=XA(2)-XX(2) =« 2; DO J=5 TO MX;

XA(J)=xX(J-2); END: RHO=0,25; REG=7.0;

defines & model where the first corner is 3,4 units deep with
an adjustable x~-coordinate, the second corner is vertically
above the first one, All of the other corners have adjustable
coordinates, rho refers to the density contrast in gm/cm3

reg refers to the regional background in milligals,

Output: The output data 1list consists of

(1) The name

(2) The number of observation points, the number of variable
parameters and the number of body coordinates.

(3) Three columns representing the lower bounds, the initial
estimates .and the upper bounds, respectively.

() A print out of the current objective function value and
parameter values at the beginning of each search stage,

(5) The values of variable parameters ét the 'optimum',

(6) The values of the coordinate points at the 'optimum’,

(7) The values of the regional background and the density
contrast at the 'optimum'.

(8) Four columns representing xs (note 3.6), obs (note 3,6),
the calculated anomaly due to the 'optimum' model and

_ the residuals.
(9) The 'optimum' function value,

(10) The number of iterations per variable.
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Specification No, 3b

Title: GREGNOP

Purpose: As in specification No., 3a

Use: The programme is most suitable for problems in which

the regional background is specified and the density contrast
is unspecified. It can also handle the regional background as
a variable parameter, »rho must not appear in the body
definition part.

Description: The objective function is calculated according
to equation (5,8). | |

All the remaining details are as in specification No. 3a.

Specification No, 3ec

Title: GRAVOP

Purpose: As in specification No. 3a, .

Use: The programme is only suitable for problems in which
the density céntrast and the regional background are
unspecified, Neither rho nor:reg must appear in the body'
definition part.

Description: The objective function is calculated according

to eguation (5,12).

4All the remaining details are as in Specificafion No. 3a.
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Specificatioh No, 34

Title: GRATIOP
Purposgse: As in specification No. 3a.

Use: A4s in specification No. 3b.

Description: The objective function is calculated according
to equation (5.5).

All the remaining details are as in specification No. 3a,



GRANCP:PRCC OPTIONS (MAIN); /% MoAL-CHALABI JAN.1969 */
ON- ENDFILE(SYSIN) GO TO FIN;
ODCL NAME CHARACTER(80Q);
DCLINSTA,NX y X, MSICE)FIXED BIN;
DCL II FIXED BIN INITIALI(OQ);

L1:GET LISTI(NAME);
GET LIST(NSTAJNXyMX);
MSICE=NMX-3;
PUT PAGE EDIT(NAME)(X{30),A);
PUT ECIT('THERE ARE'pNSTAp'UBSERVATIUN POINTS,'oNX,
YUNKNCOWNS ANC®,MX,*CCORCINATE PARAMETERS*)(SKIP(4),A,
3(F(3),X<_(1)ph));

BEGIN;
CCLI(GsXsH)INX)oFMy F)FLOAT(1€)y 1 FIXED BIN,
P3C0C ENTRY(ENTRY,FIXED BIN,FIXEC BIN,FIXED BIN, FIXED BINy
FIXED BIN,(*)FLOAT(L1€),(*}FLCAT{16),(*)FLOAT(16) FLOAT(16),
FLOAT(16),FIXED BIN)EXTyAG ENTRY(FI XED BIN,FIXED BIN,
(%) FLOAT(16) s {*)FLCAT{16),(*)FLCAT(16), FLOAT(16)):
/**********.***************#*#/
/% */
/%x%%¥k FCR P301 REPLACE LAST STATEMENT BY THE FOLLOWING #%%%%
DCLU(G,yX,H) (NX) yRESLYFLCAT(16) 4(RES2,RES3)FIXED BIN,
P301 ENTRY(ENTRY,FIXED BIN,FIXED BIN,IXED BINyFIXED BIN,
FIXED BINy (*)FLOAT (16}, (*¥)FLOAT(18), (*)FLOAT(16),FLOAT(16),
FIXED BINZFIXED BIN)EXT,AG ENTRY{(FIXED BIN,FIXED BIN,
FLOAT(16),FIXED BINIEXT,AG ENTRY(FIXED BINL.FIXED BIN,
ok b A ok & K b % A B % & ok B & & & & & % k x & &k & & ¥ &
*

*xfexkk FOR P303 REPLACE LAST STATEMENT BY THE FOLLOWING #*%%%
DCLO(XyBAC) (NX)yFF,EEC)FLOAT(1€);
DCL F303 ENTRY (ENTRY,FIXED BIN,FIXED BIN,FIXED BIN,FLOAT(16),
FIXED BIN,FIXED BIN.{(*¥)FLCAT(16), (*)FLOAT(16),FLOAT(16)},
FIXED BINL,FIXED BIN)EXT;
% ok ok ok & ok ok ok % & ¥ ok % ok K & ok ok ok &k % %k % k ok ¥ %k ¥k %X/
/% _ %/
DCL(( XS,0RS)ANJRESIDLyWTF) (NSTA) 4XA(VMX) sRHOyREG,SC,
GSC)FLOAT(1¢), "
(ITER,LP,ZAZAyWT )FIXED BIN;
DCLUVyY s ZyToFILoFI24RL,R2,HA i, (S, C)(MSICE)’FLOAT(I6)-
DCL 2s(1:s NSTA)FLOAT(lb) INITIAL((NSTA)O)-
CCL LMC FIXED BIN INITIALI(O); .
SC=1; ITER=200; 2AZA4LP4WT=0;

L2:GET DATA;
GSC=2%€.667%*SC;
IF WT=]1 THEN GET COPY LIST(WTF);
IF ZAZA=1 THEN DC;
GET LIST(ZS)s PUT LIST(ZS);
ENC3

L3:GET LIST(XS,0BS);

L42GET LIST(G,yXyH);
PUT SKIP(2);
DO I=1 TO NX;
PUT EDIT(G(TI) o X{I) H(I))Y{(SKIPs3 F({(15+5)); ENU;
PUT SKIP(2); ' '
/****#********#**#***********,
/% - %/



/%% FOR P303 REPLACE STATENENTS 32-35 BY THE FOLLOWING ##*%
L4:GET LIST(X,BAC,EEC) ;

%% E 2

THE ITHK ELENMENT CF THE BAC ARRAY SEKOULD CUNTAIN THE

REQUIRED ACCURACY FOR THE ITH PARAMNETER X(I). EEC IS TFE

INITIAL STEP-LENGTH FACTOR. BAC(I)*EEC GIVES THE ITH S1EP.

ook o e & & ok ok & &% % & %k ok o % % ok & K ¥ &%k ok & ¥k %k %k &k &/

L5:CALL P300(AG,NX,NX,-1.ITER,I,G,X,H,FM.F,I);

IF LP=1 THEN DO; I TER=ITER/5;

CALL p300(AGINX1NXO-1!lTERyl'G,x'H'FM'Fpl);

END;

/% ; * ok &k % %k %k o %k ok ok %k ok ok ok Kk Kk &k %k ok ok Xk %k %k ¥k Xx %/
/% */
/% FCR P301 REPLACE CALL STATEMENTS BY:

L5:CALL P3CL(AGyNXyNX9=1 s3I TERyL +sGoX9sFsRES1,RES2,RES3)};
*/
/% FCR P303 REPLACE CALL STATEMENTS BY:
L5:CALL P303(AGyNX y=1 ITER,EECy1s1l9XyBACy FFy0,1)3;
* %k ok & sk % % Kk ok Xk o ok ok ok ok & ok %k ok £ ok &k ok &k ok ok & X X/
/% x/
PUT PAGE EDIT (NAME)(X(20),A);
PUT EDIT('OPTIMULM VARIABLE VALUES')(SKIP(2),A);
PUT SKIP;
PUT EDIT((X(J) CO J=1 TO NX))(F(15,5));
PUT SKIP(8);
CALL AGINXyMXy3GoXyH,yF) 3
PUT EDIT('BOCY COORDINATES AT OPTIMUM')(A); PUT SKIPp;
PUT EDIT((XA(J) CO J=1 TO MX))(F(15,5)); PUT SKIP(5);
PUT EDIT('REGICNAL® y*DENSITY CCNTRAST! ) (SKIP(2),X(10), A,
X{15),A);
PUT EDIT(REGyRHO)(SKIP,X(10)yF(12,5)9X(10)yF(By4));
PUT EDIT(*CONMPARISCN OF ANCMALIES AT OPT IMUM® )(SKIP(3),A)}
PUT EDIT('XS','OBS",'AN' ,*RESIDUAL?) (SKIP»X(6)9Ay
X(10), A X(10),AsX(9),A);
DO K=1 TC NSTA;
RESIDL(K)=0BS(K)-(AN(K)+REG);
PUT EDIT(XS(K)yOBS(K),AN(K) RE<IDL(K))(SKIP 4 F(12,2));3
END;
PUT EDIT('OPTIMUN FUNCTIGN VALUE® F,*NUMBER CF ITERATIONS PER
VARTABLE s ITER)(SKIP4A,E(23,5) 4 SKIP,A,F(8));
IF LMG=0 THEN GO TO FIN;
IF LMG=9 THEN GET ODATA;
II=11+1;
PUT PACE;
GET LIST(LMG);
IF LMG=1 THEN GC TC Ll; ELSE IF LMG=2 TFEN GC TC L2;
IF LMG=3 THEN GO TQ L3; ELSE IF LMG=4 THEN GC TC L4;
ELSE IF LMG=5 THEN GO TO LS; ELSE GO TO FIN;
/% % ok ok % ok % & % %k % ¥ ok ok k% K ¥ %k Xk Xk & k % % & % %k %/

/% - */
/* AUXIL IARY PART _ */
/% */

J% % % k % ok ok ok ok &k ok % K &k k % &k x % k &k k ¥ & X % % B/
AG2 PROC(NyMy GGy XXy HHyR ) ;



DCLIN,M)FIXED BINo{(GGy XXyHH)( *) ,R)FLDAT(16);
7% % & & %k ¥ %k ok % % & % & & & H ok ok %k B %k & % %k & ¥* % % % ¥k ¥/
/* MCDEL DEFINITICN PART */
7% % ¥ & ok & & %k %k ok %k ok ok ok o ok ok k ok ok &k &k &k & X% ¥ % %/
XA=XX; RHO=0.15; REG=5.5;
/% */
J% % ok % ok & % ok ok & & ok ok ok &k & k & & %k & & & ok &k .ok % % % * #/
CO I=1 BY 2 TO MSIDE;
HA=SQRT ( (XA(I)=XA(I+2))#*324+(XA([+]1)- XA(I+3))**2)'
SII)=(XA(I[+3)=-XA(I+1))/kA; : .
CiI)=(XA{I)=-XA(1+2)) /HA;
END;
R=0.00;
DO J=1 TO NSTA;
AN(J)=0.C0}
DO [=1 BY 2 TO MSICE;
IF S(I)~=C THEN DC3;
V=XA{I)=XS{J); Y=XA(I+2)=-XS(J)}
Z=XA(I+41)=-2S(J); T=XA(I+43)=-2S(J);
V=V+1E=20%(V=0); Y=Y+1E-20%(Y=0);
R1=V*X24Z2%%2; R2=Y*%24T%%2;
FI1=ATAN(Z,V); FI2=ATAN(T,Y);
"HW=0.5%S(I)*LCG(R2/RL)I+C(I)*(FI2=FI1);
AN(J)=AN(J)+RHO*GSC*{ T*F[2~-Z*FI1- N*(V*S(I)*Z*C(I)))v
ENC

END;
END; -
- IF WT=1 THEN DO I=1 TO NSTA;
R=R+({OBS(I)-REG=AN(I))*WTF(I))*%2; END;
ELSE DC I=1 TO NSTA; ' ot
R=R+(OBS(I)-REG-AN(1))*%2; END; '
ENC AG;

END; /#%%% END OF BEGIN BLOCK ####%/
FIN:END GRANGP;



GREGNCP:PROC OPTIONS (MAIN); /* M-AL—CHALABi MARCH 19¢S %/
ON ENDFILE(SYSIN) GO TO FIN;
DCL NAME CHARACTER(8C);
DCLINSTA,NX VX4 MSICE)FIXED BIN;
DCL II FIXED BIN INITIAL(O):
L1:GET LIST{(NAME);
CET LISTINSTASNX,MX);
MSICE=VMX-3;
PUT PAGE EDIT(NAME)(x{3(0),A);
PUT ECITI'THERE ARE*yNSTA, '*OBSERVATION POINTS," oNX,
TUNKNCWNS ANC*,MX; * COORLCINATE PARAMETERS*)(SKIP(4),A,
3(F(2) ,X{1) ,A));
BEGIN;
CCLU(C X sH) (NX)FMy, FIFLOAT(1¢)y 1 FIXED BIN,
P3CC ENTRY{ENTRY,FIXED BIN,FIXEC BIN,FIXED BIN, FIXED BIN,
FIXED BIN,(*)FLOAT(16) 4(*)FLCAT(16),(*)FLOAT(16),FLCAT(1l6},
FLOAT(16), FIXED BIN)JEXT4yAG ENTRY{FIXED BINsFIXED BIN,
(*)FLCAT(16) 9 (*)FLCAT(16),y(*)FLCAT(16), FLOAT(16)); ]
DCL((XSyOBSsANJARRESIDL ¢WTF) (NSTA) XA (MX)4REO,REC,SCy GSCy
SOBSySAQ,SOA)FLOAT(16) 9y ITERZAZAZLPWT)FIXED BIN;
CCLIV Y 92T 4FI14FI2,R1,R2,HA, W, (S,C)IIMSIDE))FLOAT(16)3
DCL ZS{1:NSTAYFLCAT(16) INITIAL((NSTA)O)};
DCL LMG FIXED BIN INITIAL(C)
SC=1; ITER=200; ZAZA=0; LP=0; WT=03
L2:GET DATA;
GSC=2%¢.667%*SC 5
IF WT=1 THEN GET COPY LIST(WTF);
IF ZAZA=1 THEN CO;
GET LIST(ZS): PLT LIST(ZS);
END;
L3 :GET LIST{XS,0BS);
Le:GET LISTU(G,X4H) 3
PUT SKIP(2);
CO I=1 TO NX; PUT EDIT(G(I)sX(I)}»H(I))(SKIP,3 F(15v5)) END;
PUT SKIP{(2);
SOpS=SUM(OBS);
L5: CALL P200(AGysNXsNXy—1y ITER, lyG,x,H gFM'F 'I) H

IF LP=1 THEN_DO; ITER= ITER/5;
CALL P3CC(AG)NX,NXy=1,ITER L +GosXsHsFVMyFy1);
END;

PUT PAGE EDIT (NAME) (X(20),A);

PUT EDIT{*OPTINUNM VARIABLE VALUES*)(SKIP(2)sA);

PUT SKIP;

PUT EDIT((X(J) DO J=1 TO NX))(F(1545)) 3

PUT SKIP(5);

CALL AG(NXyNXyGeXsHsF):

PUT EDIT('OPTIMUM BODY COORDINATES')(SKIPyX(5) 4AsSKIP);
PUT SKIP;

PUT EDIT((XA(K) DC K=1 TC MX))(F(15+5));

PUT SKIP(S5); .

PUT EDIT("REGIONAL ", *CENSITY CONTRAST*)(SKIP(2):X(10),A,
X(15) 4A);

PUT EDIT(REG,RHO)(SKIP4X{10)4F(12,5)4X{(1C),F(By4));

PUT EDIT('COMPARISUN OF ANOMALIES AT OPTIMUM') (SKIP(3),A);
PUT EDIT(*XS*,*GBS' »*AN' s *RESTCUAL*)(SKIPsX(E)y Ay

X{1C) sAe X(1C) yApX(G) 4A);

"



Cle mmaeais 8 e msa e sE = s v emmd W

DO K=1 TC NSTA;

RESIDL(K)=0BS(K)=(AN(K)+REG) ;

PUT EDITI(XS(K)sOBS(K), AN(K)yRESIDLIK))(SKIP,4 F(12,2));
END;

PUT EDIT('OPTIMUM FUNCTION VALUE',F,*NUMBER CF ITERATICNS

VARIABLE', ITER)(SKIP,A,E{23+5)ySKIPsAsF(8));

IF LNG=0 THEN GO TC FIN;

IF LMG=G THEN GET DATA;

II=11I+1;

PUT PAGE;

GET LIST(LNG);

IF LMG=1 THEN GO TO L13 ELSE IF LMG=2 THEN GC TC L23;

[F LMG=3 THEN GO TO L35 ELSE IF LMG=4 THEN GO TO L4;

ELSE IF LNMG=5 THEN GC TC L5; ELSE GO TO FIN;3

J% & ok ok ok &k ok x %k ok Kk %k ok %k &k &k ok % & %k & & * % % ¥ Xk &/

/* */
/% AUXTL IARY PART . */
/* */

/% ¥ & & & %k ok %k % %k ok &k %k ok ok ok ok &k ok %k %k & %k &k ok ¥k %k X/
AG:PRCC(N,M,GG,XX,"‘H'R);
DCLINJM)FIXED BINy((GGyXX oFE)(*),R)FLOAT(16);
J% % % % & ok & &k %k %k ok ok sk ok %k ok ok ok ok &k 3k ok &k ok % % Xk Xk Xk
/* MODEL DEFINITION PART x/
J% % % ok &k %k ok & k ok %k &k ¥ ¥ ok H % k & &k * &% ¥ ¥ % &%k %k ¥/
XA=XX3 REG=5.5;
/* */
J% % % % & ok ¥k & ok % % %k ok ¥ %k % ok dk Xk k &k %k ¥k &k & ¥ &k % ¥
CO I=1 BY 2 TO MSICE:;
HA=SQRT{(XA(I)- XA(I#Z))**2+(XA(l+1)'Xﬂ(1+3))**2)9
S(IN=(XA(I+3)=XA(I+1)) /HA} . ] -
CII)=(XA(I)-XA(I+42))/HA;
END;
Ry SOA, SAQ=C3
CO J=1 TO NSTA;
AR(J)=0.00;3
DO I=1 BY 2 T0 MSIDE;
IF S(I)-=0 THEN DO;
V=XA(I)=XS{J); VY=XA(I42)-XS(J);
L=XA{I+1)-2S(J); T=XA(I+43)-21S(J
V=V+1E-20%(V=0); Y=Y+1E-2C*{Y=(C
R1=V#*X2472%%2; R2=Y#424T**2;
FIL=ATAN(Z,V); FIZ=ATAN(T,Y);
W=0.5*S(1)*LOGI(R2/R1)+C(I)*(FI2-FI1)3;
AR(J)I=AR(JI I H(THFI2-Z%F 1 1-WA(VES{I)+2*C(I)))3
ENC;

)3
)3

CND 3

SOA=SOA+{AR(J)*{0BS{J)-REG)};
SAG=SAC+AR(J)*%2;

END

RHO=SOA/(SAQ*GSC) ;5

IF WT=1 THEN DO I=1 TO NSTA;
AN(I)=AR(I)*RHC*GSC;
R=R+((0BS{I)~REG~-AN(I))*wTF(]))*%2; END;
ELSE CO I=1 TO NSTA;

AN(I)=AR({I)*RHUO*GSC; .
R=R+ (CBS(I)-REG=-AN(I))*%2; END;
END AG;
END; /* END OF BEGIN BLCCK*&%%/
FIN:ENC GREGNOP; '

PER



GRAVOP :PRGC CPTICNS (MAIN)3 /% M.AL-CHALABI FEB.1969 %/
ON ENDFILE(SYSIN) GO TO FIN; e
CCL NANE CHARACTER(80);
DCLINSTAZNX y¥X 4 ¥SIDE)FIXED BIN;
DCL II FIXED BIN INITIAL(C);

L1l: GET LIST(NAME);
GET LIST(NSTA,NX ,MX);
MSIDE=MX-3;
PUT PAGE EDIT(NAME)(X(3Q),A);
PUT EDIT(*THERE ARE',NSTA, 'OBSERVATION POINTS, "sNX,
"UNKNCWNS AND' ¢MX,* CCCRDINATE PARAMETERS')(SKIP(4),A,
J(F(2),X(1),A));
BEGIN;
DCL((G X oH) (NX) yFM,FIFLCAT(16), 1 FIXED BIN,
P3CC ENTRY(ENTRY,FIXED BIN,FIXED RIN,FIXED BIN,FIXEC BIN,
FIXEDC BIN, (#)FLOAT(16), { *)FLOAT(16),(*)FLOAT(16) FLOAT(16),
FLCAT(16)+FIXED BIN)EXT,AG ENTRY(FIXED BINs,FIXED BIN,
(*)FLOAT(16) y(%)FLOAT(16),(%)FLCAT(16),FLOAT(16));
CCL{(XSyOBSyANy ARy RESIDL yWTF)I{NSTA) yXA(MX) RHO,REG ,SC4GSCy
SAR,SCBS,SAC,SOA)FLOAT(16), (ITER,ZAZA,LP,WT)FIXED BIN;
DCL(VyYsZ,yToFI1,FI2,RL4R2yHA W s {(SsC)(MSICE))IFLOAT(16);
DCL ZS(1:NSTA)FLOAT(16) INITIAL((NSTA)O);
CCL LMGC FIXED BIN INITIAL(0);
SC=1; ITER=200; ZAZA,LP,WT=0;

L2:GET DATA;
GSC=2%6.667%5C; _
IF wT=1 THEN GET COPY LIST(WTF);
IF ZAZA=1 THEN 0DO;
GET LIST(2S); PUT LISTIZS);
END;

L3:GET LIST(XS,CBS);

L4:GET LIST(GyXsH);
PUT SKIP(2);
DC I=1 TC NX;
PUT EDIT(G(I)sX(I)H(I))(SKIP,3 F(15,5)); END;
PUT SKIP(2);
SOBS=SUM(OBS ) ;

L5:CALL P3CO(AG yNX yAX y=1 o ITER,L 4Gy Xy Hy FMy Fy I)3

IF LP=1 THEN DO ITER=ITER/S;
CALL P300(AG,NXsNXy=19 ITERy» 19Go XsHoFMyF 1)
END;

PUT PAGE EDIT(NAME)(X{20),A);

PUT EDIT('OPTIMUM VARIABLE VALUES*)(SKIP(2),A);
PUT SKIP;

PUT. EDIT((x(J) DC J=1 TO NX)I){(F{15+5));

PUT SKIP(5): ’

CALL ACI{NX s MXyGoXyHyF)

PUT EDIT (*BCDY CCCRCINATES AT CPTIMUM®')({X(15),
PUT SKIP;PUT EDIT((XA(J) DO J=1 TC MX))(F(15,5)
PUT SKIP(S5);

PUT EDIT(*REGIONAL' y*CENSITY CCNTRAST*)(SKIP(2)sX(10),A,
X(15)4A);

PUT EDIT(REGyRHO)(SKIP s X{1C)yF(1245) 4X{10) oF(8y4));

PUT EDIT{*COMPARISON OF ANOMALIES AT DPTIMUM{)(SKIP(3),A);
PUT EDIT("XS® ,'CBS* »* AN q* RESICUAL® ) (SKIPsX(6)9Ay

XU10) A X(1C) A, X(9) ,A);

A)s
)



DO K=1 TO NSTA;

RESICL(K)=0BS(K)-{AN(K)+REG) ;

PUT EDITIXS(K),CBS{K),AN(K),RESICL(K)})(SKIPy4 F(12,2));
END;

PUT EDIT('OPTIMUM FUNCTION VALUE',F,*NUMBER CF ITERATIONS PER
VARIABLE' , ITER) (SKIP, A, E(2345)9SKIPyA,F(8));

IF LMG=C THEN GC TO FIN;

IF LMG=9 THEN GET DATA;

I1=11+13

PUT PAGE3S

GET LIST(LMG);

IF LMCG=1 THEN GO TO L1; ELSE IF LMG=2 THEN GO TO L2}

IF LMG=3 THEN GO TO L3; ELSE IF LMG=4 THEN GO TO L4;

ELSE IF LMG=5 THEN GO TO L5; ELSE GC TO FIN;

7% % % ¥ &k % & o ¥ ¥ % %k ok ok %k § ok %k ok % %k & %k %k k ¥k Xk ¥/

/% : % /
/% AUXILIARY PART */
/% */

/*******#*******************.*/
AG :PROC(NyM,GGsXX yHH,R) 3

DCL(N,MIFIXED BINy( (GG 4XX,HH) (%) ,R)YFLOAT(16):

J% % % % & % % ok o % of & % & ok % ok ok ok ok e % ¥ ok ok ok Kk K & % *k/

/% MOCEL CEFINITION PART */
J% % ok Kk &k %k %k k % ok & %k % % % % & % %k % & % % B ¥ ¥ & %/
XA=XX3;

/* ®/

J% % ok %k & k ok ok & %k & %k & & & F % Fk % & % &K %k %k & % %k ¥ %k & X/
DO I=1 BY 2 TO MSICE;
HA=SQRT({ XA(T)=XA(I42))%%x24 ( XA{T+1)=XA(I+3))%%2);
S(I)=(XA(I+3)-XA(I+1))/HA;
CUI)=(XA(LI)=XA(I+2))/HA}
END 3
RyS0A,SAQ=03
0O J=1 TC NSTA;
AR( J)=C.CC3
DO I=1 BY 2 TO MSIDE;

IF S(I)~=0 THEN CO;

VEXA(I)=XS(J)s  Y=XA([+42)=XS{J)3

Z=XAU141)=-ZS(J); T=XA(I1+3)=-2S(J

V=V+1E=-20%(V=0); Y=Y+1E-20%(Y=(C

Rl=VEk242%%2; R2=Y*#24T%%2;
FIL=ATAN(Z,V); FI2=ATAN(T,Y);
W=0.5%S(I)%LOG(R2/R1)+C(I)*(FI2=-FI1); .
AR(J)=AR(J)+(THFI2=Z*FI1-WA{VAS(I)+Z%C(1)));
END;
END;

SCA=SCA+{AR(J)*0BS (J));

SAQ=SAQ+AR( J)*%2;

END ; :

SAR=SUM (AR ;
RHC=(NSTA%SOA~-SOBS *S AR)/ ( (NSTA2SAQ-SAR#%2)2GSC ) ;
REG={ SOB S-RHO* SAR%GSC) /NSTA;

IF WT=1 THEN DU I=1 TO NSTA;

AN(I)=AR(I)*RHO*GSC; :

R=R+ ((CBS (I )-REG=AN(I))*WTF(I))#22; END;

ELSE DG I=1 TO NSTA;

AN ( T)=AR(1)#*RHO*GSC ;

R=R+(0BS ( [)-REG-AN( I))*#2;

END;

END AG;

)3
)3

END; /% END OF BEGIN BLCCK#**%x/
FINSENC GRAVOP 3 ' .
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GRATIOP:PROC OPTIUNS (MAIN); /% M.AL-CHALABI FEB.1969 */
CN ENDFILE(SYSIN) GC TC FIN;
DCL MNAME CHARACTER(8Q);
CCLINSTAyNXyMX,MSIDE,MSTA)FIXED BIN;
OCL Il FIXED BIN INITIAL(O);

LI:GET LIST(NAVNE);

GET LISTINSTA,NX,MX);
MSICE=MX-3; MSTA=(NSTA/2)+1;
PUT PAGE EDITI(NANE) (X(30),A);
PUT EDIT(*THERE ARE ' ,NSTA,'CBSERVATICN POINTS, " ysNX,
'UNKNOWNS AND';MX, "COORDINATE PARAMETERS') (SKIP(4) ,A,
3CF(3),X(1)sM));
BEGIN;
CCLI(CyXeH)INX)y FMy FIFLOATI2€),1 FIXED BIN, _
P300 ENTRY (ENTRY,FIXED BIN, FIXED BIN,FIXED BINyFIXED BIN,
FIXED BIN,(*)FLCAT(16), (*)FLCAT(16),(*)FLOAT(16),FLOAT(16),
FLOAT(16)sFIXED BIN)EXT,AG ENTRY(FI XED BIN,FIXED BIN,
(%)FLCAT(16 )y (*)FLOAT(16)y (*)FLOAT(1€6)yFLOAT(16));
DCL{{XS+CBSsANyARyRESICLsRCByRANyWT F)(NSTA), XA{MX),RHO,RR,
REGy SCyGSCy»SAR ySOBS)FLOATI(16) y(ITERyZAZA,LP,WT)FIXEC BIN;
" CCLAVeYyZyTsFI1,FI2;R1,R2/HA W, (S, C)(MSIDE))FLDAT(lé)-

OCL ZS(l'NSTA)FLCAT(lb) INITIAL(INSTA)O); '
DCL LMG FIXED BIN INITIAL(Q);
SC=1; ITER=200; ZAZA,LP,yWT=0;

L2 :GET CAT A;
GSC=2%¢€s €E67%SC3
IF wT=1 THEN GET COPY LIST(hTF)o
IF ZAZA=1 THEN DO;
GET LIST(ZS); PUT LIST(ZS);
END;

L3:GET LIST(XS,0BS);

L4 sGET LIST(GyX,H);
PUT SKIP(2);
DD I=1 TO NX3; PUT EDIT(G(I) +X{(I)sH(I))(SKIPs3 F(1545));END;
PUT SKIP(2);
SoBS=SLM(QOBS);

L5:CALL P3CC(AG, NXvNXp-lolTER 1,G X yHoFVMyF,o1)3

IF LP=1 THEN 0O; ITER=ITER/5;
CALL P300(AGyNXyNXy =1y ITERy1sGyXsHeFMyFy1);
END;

PUT PAGE EDIT(NAME)(X(20),A);

PUT EDIT('OPTIMUM VARIABLE VALUES')(SKIP(2)4A);

PUT SKIP;

PUT EDIT((X(J) DO J=1 TO NX))(F(15,5));

PUT SKIP(5);

CALL AG(NX¢NXyGsX9HyF)3

PUT EDIT('OPTIMLUM BODY CUORDKNATES')(SKIP.X(S) Ay SKIP)3
PUT SKIP;

PUT EDIT((XA(K) CO K=1 TO MX))I(F(15,5));

PUT SKIP(S);

SAR=SUM(AR)} ;

RHO=(SCBS-REGENSTA)/SAR;

PUT EDIT(*REGICNAL® ;*OENSITY CCNTRAST')(SKIP(2),X(101},A,
X(15),A);

PUT EDIT(REGJRHO)I(SKIPsX(10)sF(12,5)9X(10),F(By4a));

PUT EDIT(*CGNPARISCN CF ANCMALIES AT OPTIMUM® )(SKIP{(3),A);



PUT EDITU('XS',"0BS"y"AN"',*RESIDUAL*)I(SKIPyX(€)yA,

X(ELC) sAp XU1C) gA9X(9) 4A);
RR=0;

DO K=1 TC NSTA;

AN(K) =AR{K) *RHC;
RESIDL(K)=DBS{K)=-(AN(K)+REG);
RR=RR+(RESICL(K))**2;

PUT EDIT(XS (K)o0OBS(K)y AN(K),RESICL(K)){(SKIP,4 F(12y2));

END;

PUT EDIT('OPTIMUM FUNCTION VALUE!' ,F,'NUMBER CF ITERATICNS PER
VARIABLE' , ITER)(SKIP, Ay E(23,5),SKIP,A,F(8));

IF LMG=0 THEN GG TC FIN;
IF LMG=G THEN GET DATA;
[I=11+13

PUT PAGE;

GET LIST(LNMG);

IF LMG=1 THEN GO TO L1; ELSE IF LN¥G=2 THEN GC TC
IF LMG=3 THEN GO TO L35 ELSE IF LMG=4 THEN GO TO

ELSE IF LMG=5 THEN GC TC L5; ELSE GO TO FINs

[ & %k ok & & ok Sk % %k ok ok ok %k ok % ok % N ok &k & k Xk

/*
/% AUX IL TARY PART
/*

7% % & & ok % &k ok &k k Kk k %k * ¥k ¥k x % ¥k * ¥k ¥k ¥k

AG:PFROC(NyM; GGy XXy HHyR) ;

DCLINyMIFIXED BIN, ((GGyXXyHH) (*),R)FLOAT(16)3
7% % ok % & & ok ok ok k %k & ok % % %k & k & ¥ %k k %

/* MODEL DEFINITION PART

J% % ok ok &k ok ko x & % ok % ok ¥ % % ¥ % ¥ % X % %
XA=XX3 REG=5.5;

Vi,

% & & ok &k ¥ % % ok % &k ok k ok ¥ %k &k ¥k k ¥ % Xk %k

CC I=1 BY 2 TO MSICE;

*

L2;
L43

*

x

* % %/
x/
*/
*/

x % %/

* % & %
%/
* % %/

*/
*x ok %k %

HA=SQRT( (XA (1)- xA(1+2))**2+(xA(1+1)-xn(1+3))##2)-'

S(I)=(XA({I+3)=XA(1+1)) /HA;
ClI)=A(XA(I)-XA(I+2))/HA;S

END;
R=G.GO;
DO J=1 TO NSTA;

AR{J) =0;
DO 1=1 BY 2 TO MSICE;

IF S(I1)=-=0 THEN DO;
V=XA({I)=-XS(J); Y=XA(I+42)-XS(J);
Z=XA(I+1)-2S(J)s T=XA(143)=-25(J)
V=V+1E=-2C%(v=0); Y=Y+]1E-20%(Y=C)
Rl=y#%2 42%%2 3 R2=Y#424T%%2;
FI1L=ATAN(Z4V); FI2=ATANI(T,Y);
W=0.S%S(I)*LOG(R2/R1)+C{I)*({FI2~FI1

)3

AR(J)=AR(J)+GSCH(THFI2-Z*F 1-W(V*S(I)+Z2*C(I)))3

END;
END;
END 3
CO I=1 TO NSTA;
RAN(I)=AR(I)/AR(NSTA);

ROB(I)=(CBS(I)-REG)/(0BS (MSTA)-REG
END;

IF WT=1 THEN DO I=1 TO NSTA;

R=R+( (RCB(I)=RAN(I)}#WTF (1) )#%2;
ELSE DG I=1 TG NSTA;
R=R+(ROB(I)=RAN{I))**2;

ENC;

END AG;

END; /* END BEGIN BLCCK * % -* % %/
FIN:END GRATIOP;

END;

%

»/



«176.

Specification No, L,

Title: GAD

Purpose: As in specification No. 3a,
Use: The programme is most suitable for problems in which
the regional background and the density contrast are
specified but can handle either or both of tngm as variable
parameters, It may be modified to accept m density contrasts
. (mg number of sides) all of which must be specified.
Degcription: The programme is specifically constructed for
use in conjunction with Davidon's procedure, P306 (Fletcher
and Powell, 1963), Expressions for the first order partial
derivatives of the objective function with respect to the
variable parameters are provided in the auxliliary procedure.
. These derivatives are allocated to the appropriate variable
parameters in the gradient definition part of the auxiliary
prodedure. The example given in the print out defines an
8-sided polygon (18 coordinate parameters) with five specified
coordinate parameters,

The remaining details are similar to specification No{ 3a.

Input data: The data are input in the following order:

data notes
'NAME' 3.1
nsta nx mx nxa L.1
data; bhe2
zs 365
X8 obs 3.6
x opt bac _ Le3

lmg ' ' 3.8



0177,

Data notes:
Lol
nsta = Number of observation points
nx = Total number of variable parameters
mx = Total number of coordinates
nxa = Number of variable coordinate parameters.
Le2, The following are integers which may be altered by
the GET DATA statement.
sc! As in note 3.3
zaza: As in note 3.3
lmg: As in note 3.3
ja: If set to 1 will cause exploration about the

optimum after the termination of the search.

L. 3.
x = As 1n note 3.7.
opt = An estimate of the value of the objective function
at the optimum,
bac = The required accuracy in each parameter,

0,001 is an adequate order of magnitude.
Model definition: When either or both of rho and reg are
required as variable parameters, rho must be defined as the

(nxa+l)th element of xx and reg as the nxth

element of xx,
The remaining details are as in specification No. 3a,
Gradient definition: The gradient is computed in four
two-dimensional arrays each of which is .mside X nsta large'
where m side = mx=3. gv and gz define the derivativés with

respect to the x and z coordinate parameters of the first

corner of the appropriate side while gy ané gt define those
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of the second corner respectively, Therefore,
Gv(I,J)
represents the derivative with respect to the x coordinate

of the first corner of the 1th side at the jth

observation
point., The sides are numbered 1,3,5,..., mMside in an
anticlockwise direction,

Each coordinate parameter defining the polygon (except
the first and the last corners of an open polygon) is common’
to at least two sides. gx is an array of nxa elements, The
kth element denotes the derivative of the objective function
with respect to the kth coordinate parameter at the jth
observation polnt, Its value 1s obtained by summing up the
contribution of all the sides in which the kth parameter
ocours, lx is an array of nxa elements, which follow the
same order as the gx elements. The example given in the
print-out illustrates the allocatlon of the derivatives to
the appropriate parémeters for the model defined in the
first part of the auxiliary procedure.

| The derivatives with respect to the density contrast
and the regional background are given by

GG(NXA+1) and GG(NX),
respectively. When either or both parameters are specified,
the pertinent card(s) is reserved in the space allocated
for reserving suspended cards at the end of the auxiliary
procedure.

Qutput: This is similar to specification No. 3a but instead

of the lower and upper bounds, the values of opt and bac

are printed.



PROC OPTIONS (MAIN); /% N AL-CHALABI MAY 1969 */

GAD: PROC OPTIONS (MAIN); /* MJAL-CHALABI MAY 1669 */
CN ENDFILE(SYSIN) GG TC FIN;
DCL MAME CHARACTER(8G);
CCLINSTA,NXyMXyMSIDE,NXA)FIXED BIN:
DCL Il FIXED BIN INITIAL(O);
LL1:GET LIST(NANE)
GET LISTINSTA;NX,MX,NXA);
MSICE=NMX-3;
PUT PAGE EDIT(NANE) (X{(30),A);
PUT EDIT(*THERE ARE*',NSTA,'CBSERVATICN PCINTS,' 4NX,
UNKNOWNS ANC*,MX, "COORDINATE PARAMETERS'){(SKIP(4) ,A,
3(FU3) o X(1)yA));
BEGIN;
CCLO(XyG)Y(NX))IFLOAT(16);
DCL(CPTyBAC,F)FLOAT (16);
DCL P30€ ENTRY(ENTRY,FIXED BIN,FIXED BIN,FIXED BINyFLOAT(16),
FLOAT{16),FIXED BINs (*)FLDAT(1¢)(%)FLOAT(16)FLOATI(16),
FIXED BIN)EXT;
DCL AG ENTRY(FIXED BIN, (*)FLCAT(16), {*)FLOAT(16), FLOAT(16));
DCL(({XSyOBSsAR yAN,RES,RESIDL) (NSTA) ¢ XA(MX) y(P,S,C) (MSILE)SCN,.
GX (NXA)y (GV4GY, GZyGT )(MSIDE NSTA),RHO,REG:SCsGSCsVyYsZ,TyFIl,,FI2,
PWyRLyRZyFIsWoeWNMyTWoSWoeWWsVVBW,TRy,CW)FLOAT(16);
pCcL(DSv,DSY,DSZ,DST,DCV,DCY,DCZ,DCT,4DLGV,DLGY,
cLGz,COLGT,DFIV,DFIY,DFIZ,OF1T,DFI 1V,DF12Y,DFI12Z, DFIZT-
DMV,0MY yDMZ yCMT y CWV o CWY ,CWZ,OWT)FLOATI( 16);
DCLUJDyJJDyZAZA)FIXED BIN;
DCL ZS(I:NSTA)FLDAT(lb) INITIAL((NSTA)C);
SC=1; ZAZA=03; JD=0;
L2:GET DATA;
GSC=2%¢.€67%*SC ;
IF ZAZA=1 TEEN DO
GET LIST(ZS); PUT LIST(ZS);
~ END;
L3: GET LIST(XS,0BS);
L4 :GET LIST(X,CPT,BAC);
PUT EDIT('ESTIMATED FUNCTICN VALUE AT OPT[MUM(DPT)'
OPT)I(SKIP(2),A4EL1243))3
PUT EDIT('PARAMETER ACCURACY'",BAC)(SKIP,AE(1253));
/%%% 1F CHANGE IN EACK PARANETER IS L.T. BAC SEARCEK
WILL TERMINATE #dk&kikxk/
PUT ECIT('INITIAL ESTIMATES*)(SKIP,A});
PUT EDIT((X(J) CO J=1 TO NX))(F(154,5));
PUT SKIP{2);
L5:CALL P306{AGyNXy=1y1,0PTyBAC+JDXyGsF,JJD);
PUT PAGE EDIT(NAME)(X(20),A);
PUT EDIT('QOPTIMUM VARIABLE VALUES')(SKIP(2),A);
PUT SKIP;
PUT ECIT((X(J) DO J=1 TO NX)})I(F(15,5));
PUT SKIP(8);
CALL AGINXyXyGyF);
PUT EDIT('BODY COORDINATES AT OPTIMUM')(A) PUT SKIP;
PUT EDIT((XA(J) CO J=1 TO MX))(F(15,5)); PUT SKIP(5);
PUT EDIT(*REGIONAL® ,"DENSITY CCNTRAST* ) (SKIP(2)+X(10)yA,
X(15),A); )
PUT ECIT(REGyRHOI(SKIPsX(10)sF (1295} X(10)sF(8y41)1};
PUT EDIT( COMPARISCN GCF ANCMALIES AT DPTIMUM')(SKIP(B) A).



PUT EDIT(*XS',*'GBS',"AN' ,*RESIDUAL" Y(SKIP,X (&) A,

XCL1G) g Ap XU L1C) yA g X(S) yA); '

DO K=1 TO NSTA;

RESIDL(K)=0OBS(K)=(AN(K)+REG);

PUT EDIT(XS(K) ,OBS(K) ,AN(K) ,RESICL(K))(SKIPs4 F(12,2));
END

PUT ECIT(*FUNCTION VALUE'yF, '"NUMBER OF FUNCTION EVALUATIONS',
JID)(SKIPSAZE(23,14) ySKIP,A,F(8));

IF LMG=C THEN GO TO FIN;

IF LMG=9 THEN GET DATA;

[II=I1I+1;

PUT PAGE;

GET LIST(LMG); ' _

IF LMG=1 THEN GO TO Ll; ELSE IF LMG=2 THEN GO TO L2;

IF LMG=3 THEN GO TO L3; ELSE IF LMG=4 THEN GO TO L4}

ELSE IF LMG=5 THEN GO TO LS5; ELSE GC TO FIN;

/% % ok % A % % & % & % ok b ok k & ok &k k %k f ok ¥k k ¥ %k ¥k ¥/

/% , ®/
/% AUXILIARY FART */
/% */

J% % s ok ok ok ok ok % ok ok ok of ok ok ok ok kx % ok %k ok k Kk ok &k Xk &/
AG :PROC(N XX GG 4R) ; '
DCL(XX(%*),GG(*),R)FLOAT(16),N FIXED BIN;
CCL LX (NXA) LABEL;
/%% e e st s e s s ok e o e e o e oo ofe e ke e ko ok B kol b ek kA Ak A dokok ok p ok ok /
/% MCDEL DEFINITICN PART %/
/% % ok sl e ok o b o ok oh S sk ok o e o ok o sk e o ok ol ale sje ade e ade ofe e o e ol ok ol sl e e e ol ik ol ol ek e ok ek ol ek o /
DO I=1 TO 63 XA(I)=XX(I); END; XA(7)=36.5; XA(B)=XX{7);
XA(9)=25.5; XA(10)=0.39; XA(11)=20; CO I=12 TO 17;
XA(I)=XA(I-4); END; XA(18)=XA(2)+0.06;
RHO=0.14; REG=XX(NX);
J e e e vle e e ek stk ek e ke R ok ek p bR AR kM bk R bk ok h ko kA pkhE/
/***************************************#***###*########/
DO I=1 BY 2 TO MSIDE;
P(I)=SQRT((XA(I)=-XA(I+2))%%2+(XA(I+1)=XA{1+3) )%x%2);
S(I)=(XA(I4+3)=-XA(I+1))/P(1);
COIY=(XA(I)=-XA(I+2))/P(I)3}:
END
GG=0; GV,GY,GZ,GT=0;
R=0;
DO J=1 TO NSTA;
AR(J)=0;
DO [=) BY 2 TC NSICE:
V=XA(T)=XS{J) s  Y=XALI+2)=-XS(J);
Z=XA{I+41)-2S(J); T=XA(I+3)-250J);
V=V+1E-20%(V=0); Y=Y+1E-20%(Y=0);
R1=VE#24%%2; R2=Yik24TH%2;
FIL=ATAN(Z,V); FI2=ATAN(T,Y);
N=0.5%LCG(R2/R1); FI=FI2-FI1;
WM=VAS(T)+Z*%C(I1); W=GN.S(T)+FI*C(1);
AR (J)=AR(J)I+THF [2=2*F[ 1-WkWN;
DSY=C(L)*S(I)/P(1);
DST=C(I)*C(I)/P(1);
DCV=S{I)*S{ ) /P(1);
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DSV=-DSY;DSZ=~DST;
CCY=-DCV;DCZ=DSY;DCT=DSV;
DLGV==V/R1;CLGY=Y/R2;
DLGZ=-2Z/R1;0LGT=T/R2;
DF [V==CLGZ;;CFIY==DLGT;
DF1Z=DLGV;DFIT=CLGY;
DFT11v==DFIV;DFI2Y=DFIY;
DFI11Z=-DFIZ;DFI12T=DFIT;
CMV=V*CSV+S(1)+.#DCV;
DMY=V*CSY+Z*DCY;
DMZ=V%DSZ+C(1)+Z2%NCZ
DMT=V*CST+Z*CCT 3
DWV=GN*DSV+S(I)*CLGV+FI*CCV+C(I)*CFIV;
DWY=GN*DSY+S{T)*DLGY+FI1*DCY+C(T)*LCFIY3
DWZ=GN=#DSZ+S(I)*DLGZ+FI*DCZ+C(I1)*DFIZ3
CHT=GN%DST+S(TI)*CLGT+FI%CCT+C(I)*DFIT;
GVIIyJ)==Z2Z*DFILV=WXDNV-DWV*yN;
GY(1,J)=TEDFI2Y=-WEDMY=-DWY*W¥;
GZ(I1yJ)==FI1=Z#DFI1lZ-W*DMZ-DWZ*HWM}
GT(I9J)=FI2+TXDFI2T-WADNT-DWT*WVN;

END;

ENC3
DO J=1 TC NSTA;
AN(J)=GSC*RHO*AR(J);
RES(J)=(0OBS(J)-REG~AN(J ) )%2;
R=R+ (0 «5%RES (J) ) *%2;
END ; -
DO K=1 TO NXA; DO J=1 TO NSTA3;
GO TO LX(K}3
7% 3% e s o s ok ok ok e ol s ok ol ok ol o o sl o o ol oh b ok Sl kR o R ROk R R R R R R R R A R R AR S %/
JxA ke ek otk odskdokkkx GRADIENT DEFINITICN FPART %okskdkdkkdkkkdk/
/**#*#*#*#####*##*#############4*#**********#**#********/

LX(1):GX(1)=GV(l,J);

GOTO T0T; _

LX(2):6X(2)=GZ(15J)+GT(15,J)3;
GCTC TOT;

LX(3) :GX(3)=GV(3,J)+GY(1,J);
GOTO TOT3

LX(4)2GX(4)=6Z(3,J )4GT{1,J)3
GOTC TOT;

LX(5)26X(5)=GV(5,J14GY(3,4);
60TO TOT;

LX(6):GX (6)=GZ(5,J)4GT(3,J);
GOTO T0T;

LX(7)2GX(7)=GZ(T,JI+GT(5,J) 3
GOTO TOT;

LX(8) 3GX(8)=GZ(L1,J)+GT(9,J);
GOTO TOT;

LX(9):GX(9)=GV(13,J)4GY(11,J);
GOTC TOT;

LX{10):6X(10)=6GZ(13,J1+4GT(11,J);
GOTO TOT;

LX(11):GX(11)=GV(15,J)+GY(13,J);
GOTGC TOT;



LX(12):6X(12)=GZ(15,J)+GT(13,J);
GOTC T1OTS
LX{13):GX(13)=GY(15,d);
TOT:GG(K)=GG(K)=RES (J)*GSC*RFO*CX (K ) ;
END; END;
GG(NX)=0-SUM(RES) 3
J koo g dokok d d ko ok R b B b okod b b ks otk ook ok ek ook R b R Rk %k /
/33 3 e e o s e e sk e oo ot ko o o o ok R b o KRR RO RN R R R R R AR R A AN #/
/#%%x THIS PART 1S FOR RESERVING SUSPENDED CARDS #¥%¥ikksk
ook ook ok ook b b o o ob o ook o ok ok ok oo b o ok ok o oo i ol e ke o o el e e e ke
DO J=1 TO NSTA; GGI(NXA+1)=CG(NXA+1)~-RES(J)*AR(J)I*GSC; END;
s o ok o o e e ook o 2 o s ok oo ool ool ok ok o ool o el ol ek ok e ok R ok ok kR Rk X /
J Ao od ko 4B ok ok ok ok ok b b ok b b b oh o o ok o ool ol o ool o o i ol ol kol gk ok ok /
END AG;
END; /*END CF BEGIN */
FIN:END GAD;
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Specification No, 5a

Title: MANOP

Purpose: This programme progressively modifies the parameters

defining a two-dimensional polygonal model in order to

minimise the discrepancy between an observed magnetic anomaly

and the calculated anomaly due to the model. The resulting

parameters define an 'optimum' model.

Use: The programme is most suitable for problems in which

the linear parameters are specified but can also handle aﬁj
or all of them as variable parameters.

Description: The auxiliary procedure AM calculates the

anomaly in a manner similar to that éf MAGN (specification

No, 2, Bott, 1969b) so that the addition of the step-models

1s carried out in an anticlockwise order., The objective

- function 1s calculated according to equation (6.6)., A4All

remaining details are similar to specification No, 3a., The

print-out shows an example where the second side of the

polygon is horizontal and the regional background is ~12

gammas. The vertical and horizontal components of the

magnetisation contrast vector resolved in the direction of

the profile are specified at 200 and 4O in (eom.u./cm) - x 102,

Input data: The data are input in the following order:

data notes
'NAME' , 3.1
nsta nx mx 3.2
data; 5.1
fi fa 502
wtf : 3ol
zs _ 345
Xxs obs 5¢3
g xh 3¢7
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Data notes

51, The integers which may be altered by the GET DATA
statement are the same as those of specification No. 3a except
that sc does not exist here,

502. fi and fa are the values of the dip and azimuth of the
Earth's field, in degrees, The azimuth 1s measured from the
strike towards the positive horizontal axis.,  The dip is
measured from the aximuth direction downwards towards the

poslitive vertical axis,

th

53 xs 1s an array of nsta elements, The i element denotes

th

the horizontal distance of the 1 observation point from the

origin, The origin 1s chosen arbitrarily and is retained fdr
reference throughout the problem. The horizontal axis must
increase towards a northerly direction, i.é. S-N, SE-NW or
SW-NE,

obs 1is an array of nsta elements. The 1th element

th observation point in

denots the anomaly value at the 1
gammas, The complete xs data 1ist must be input before
inputting obs.

Model definition: The coordinate parameters of the polygonal

model are defined in the same way as in specification No. 3a.
reg, ajs and ajc must be defined in the auxillary procedure.

ajs and ajc denote the vertical and horizontal components

of the magnetisation contrast vector resclved into the
direction cf the profile. They are measured in 105x e.m.u./cm3.

If aj denots the intensity of magnetisation in e.m.u./cm3
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then

ajs = 105 X 8) x sin bi

ajc = 105 X 8) x cos bl sin ba
where bl and ba are the dip and aziﬁﬁth of the magnetisation
contrast vector in degrees measured in the same sense as
fi and fa, ajs and ajc may be definéd by fixed values,
variable parameters or any combination of these, e.g.

(a) AJS = 120; AJC = XX(NX);

(b) AJS = 150 # SINDi: (XX(NX));

AJC = 150. % COSD: (XX(NX)) % 0.5;

etc.

reg denotes the regional background measured in gammas,
Output: The output data list is similar to Specifiqation
.no. 3a except that ajs and ajc are printed instead of the
density contrast., The values of fi and fa are also printed.

Specification No., 5b

Title: MREGNOP

Purpose: As in specification no. 5a,

Use: The programme is most sultable for problems in which

. the regional background is specified and the two components

of the magnetisation contrast vector are unspecified, It

can also handle the regional background as a variable parameter
Neither of ajs or ajc may appear in the model definition part.

Descriptiont The objective function is calculated according

to equation (6,11).

811 the remaining details are as in specification no, 5a.
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Specification No, 5c¢

.Title: MAGOP

Purpose: As in specification No, 5a,.

Use: The programme is only suitable for problems in which
the linear parameters are unspecified., None of ajs, ajd or

reg may appear in the model definition part,

Description: The objective. function is calculated according
to equation (6.13),

All the remaining details are as in specification No, 5a.

Specification No, 54

Title: As in specification No, 5a.

Purpose: As in specification No, 5a,
Use: The programme is most suitable for problems involving
more than one magnetisation contrast, Only one magnetisation
contrast can be used across each side., Any of the contrasts
may be specified or treated as a variable parameter., Two 1is
tne)maximum recommended number of unspecified magnetisation
contrasts,
Descripﬁioh: ajs and ajc are declared as arrays, each
consisting of ~Mgide elements (~Mside = mx-3). The Kth
element of each array denotes the magnetisation contrast

kth

component appropriate to the side, The sides are

numbered 1,3,5,0.., “Mside in an anticlockwise direction,
The numbering of the elements of ajs and ajc therefore
increments from 1 by steps of 2 (see example in the print-out).

All of these elements must be defined in the modgl definition
part, The objective function is calculated according to
equation (6,14). All the remaining details are as in



0P: PROC OPTIONS (MAIN); /* M,AL-CHALABI FEB. 1969 %/

MANQOP :PRCC CPTIGNS (NAIN)S /% N AL-CHALABI FEB. 1969 */
ON ENDFILE(SYSIN) GO TO FIN;
CCL NAME CHARACTERI(80);
DCL{NSTA ,NX4NMX,NMSIDE)FIXED BINS
OCL II FIXED BIN INITIAL(CQC);

L1: GET LIST(NAME);
GET LIST(NSTA,NX MX);
MSIDE=MX-33
PUT PACGE EDIT(NAME)(X(3C),A);
PUT EDIT(*THERE ARE'yNSTA,"OBSERVATION POINTS, 'sNX,
*UNKNOWNS AND®* ,MX,'CCGRDINATE PARAMETERS' )(SKIP(4),A,
3(F(3)yX(1)A)) 3
BEGIN;
DCLU(GyXyH) (NX) 4FM,FIFLCAT(16),1 FIXED BIN,
P3CC ENTRY(ENTRY,FIXED BIN,FIXED BIN,FIXED RINJFIXEC RIN,
FIXED BINy (*)FLOAT(16), (*)FLOAT({16)s(*)FLOAT(16)FLOATI{16),
FLOAT(16) FIXED BIN)EXT,ANM ENTRY(FIXED BIN, FIXED BIN,
(%*)FLOAT(16)(*)FLOAT(16),(*)FLCAT(16) 4FLOAT(16));
CCL(XS,0BSyAN,RESIDLyWTF){NSTA) ,XA(MX) 4{S,C) (MSIDE) yPXE4PLE,
HA,REG,AJS yAJC,EA,EByV,+YyZyTyR1,R2,AByADyUPyUNy ANGyGN,
E1,E2)FLOAT(16),
(FIyFA)FIXED DECIMAL,(ITER,ZAZA,LPWT)FIXED BIN;
DCL LMG FIXED BIN INITIAL(O);
DCL ZS{1:NSTA)JFLCAT(16) INITIAL((NSTA)O);
ITER=2CC; ZAZA,LPyWT=(3

L2:GET CATA;
GET LIST(FI FA); PUT EDIT('FIELC DIP & AZIMUTH?,
FI+FA)USKIPyA3X(2)42 F(6,41))3
IF WT=1 THEN GET COPY LIST(WTF);
IF ZAZA=1 THEN CO;
GET LIST(ZS); PUT LIST(ZS);
END;

L3:GET LIST(XS,0BS);

L4:GET LIST(GyXyH);
PUT SKIP(2);
DO I=1 TO NX3i PUT EDIT(G(I)yX{T)yH(I))I(SKIP,3 F(15,5));END;
PUT SKIP(2); :
PXE=COSD(FI)*SIND(FA); PZE=SINDI(FI);

L5: CALL P300(AMyNXyNXs=19 ITERy 1 4Gy XyHyFMyF,1)3

IF LP=1 THEN DO; ITER=ITER/S;
CALL P3CC(AN NXyNXy=1yITERyL+GosXyHyFVNyF,I)3
END 3

PUT PACE EDIT(NAME)(X(20),A);

PUT EDIT(*CPTIMUM VARIABLE VALUES')ISKIP(2),A)3

PUT SKIP;

PUT ECIT((X(J) DO J=1 TO NXJ))I(F(15,5));

PUT EDIT(*BCCY CCORDINATES'" J(SKIP(2)sA); PUT SKIP(2);
CALL AM(NXyNXyGyXyH,yF);

PUT EDIT((XA(K) DO K=1 TO MX))(F(15,5)); PUT SKIP(2);
PUT EDIT('JS*,*JC*','REGIONAL")(SKIP(2),3(X(10),A));

PUT EDIT(AJS,AJCREG) (SKIPy3(F(1243)));

PUT EDIT('COMPARISUN OF ANOMALIES AT OPTIMUM') (SKIP(3),A);
PUT ECIT{(*XS*,'0BS*y "AN*, 'RESIDUAL?)(SKIPyX{€)yA,

XCLC) yA4X(1C) »A,X(9) 4A); '

DO K=1 TO NSTA;

RESICL (K)=0BS(K )-{AN(K )+REG) ;



PUT EDIT(XS(K),OBS{K),AN(K)RESIDL(K))(SKIP,4 F(12,2));
END; .

PUT EDIT('OPTIMUM FUNCTICN VALUE' WF,*NUMBER CF ITERATIONS PER
VARIABLE*, ITER)(SKIPsA,E(22,5),SKIP,A,F(8B));

IF LNG=0 THEN GG TO FIN;3

PUT PAGE;

[I=11+1;

GET LIST(LMG);

IF LFNG=1 THEN GO TO L1;

IF LMG=2 THEN GO TC LZ2;

IF LMG=3 THEN GET DATA;

IF LFMG=3 THEN GO TO L3;

ELSE IF LMG=4 THEN GC TC L4

ELSE IF LMG=5 THEN GO T0O L5

ELSE GO TO FIN;
/% Kk ok ok &k ok ok &k ok X ok ok % k ok & ok ok ok ok K ok ok ok Kk ¥ & W/

/% %/
/* AUXILIARY PART * /
/% */

EEEEERE. B ok % & Kk ok ok & ok K & Kk % & h & % ok % */
AM:PROCIN MGGy XXy, HH,R ) 3
DCL(N,M)FIXED BINy ((GGyXXsHH)(*),R)FLOAT(16);
J% % ok ok ok & ok & ok ok & Ak o & ok A ok ok ok ok &k ok K o ok % % % ¥ % X/
/% MODEL DEFINITICN PART : */
SR % % & & & & %k % %k ok k& A A & A& & %k % &k %k k % k Kk %k ¥ %/
XA(L)=XX(1)3XA(2)=XX(2)3sXA(3)=XX{3);XA(4)=XX{4):3;XA(5)=XX(5);
DO I=7 TO MX; XA(I)=xx{(I-1)3 ENC;
XA(6)=XA(4)3
AJS=200; AJC=40; REG=-12; '
/% %/
N % A d o ok % ok ok ook ok K ok ok & ok &k & k ok % % %k & ¥ % & Kk & ¥k %/
Co I=1 BY 2 TO MSIDE;
HA=SGRT({ (XA(I)~- XA(I+2))**2+(XA(I+1) XA(I+3))**2).
CIN=(XA(TI)=XA{1+2))/HA; .
S(I)-(XA(I+’) XA(I+1))/HA;
END;
: R=0.00;
DO J=1 TO NSTA;
AN(J)=0.00; .
DC I=1 BY 2 TC NMSIDCE;
IF S(I)~=6 THEN DO;
V=XA(T)=XS(J);
Y=XA([+2)-XS5(J);
Z=XA(I+1)=-2S(J)s T=XA{I+3)-2S5(J);
RI=V*¥2472%%2; R2=Y*%2+T*%2;
AB=V/2; AC=Y/T; UP=AB-AD; UN=1+AB%AD; ANG=ATAN{(UP,UN);
GN=0.5%LOG{R2 /R1); : o
E1=ANG*S(I)=-GN*C(1I);
E2=GN*S (I )+ANG*C( 1)
EA=2%S (1 )% (PXE*XE2-PZE*ELl);
ER=2%S(I)*(PXE*E14+PZE*E2);
A (J)=AN(J ) +AJS*EA+AJC*EB;
END;
END:
END;
IF WT=1 THEN DD I=1 TO NSTA;
R=R+((OBS{I)-REG-AN(L))*WTF(I))*%*2; END;
ELSE DC I=1 TO NSTaA;
R=R+(0BS(I)-REG=AN(1))*%23
END
END AN;
EMND; /% END OF BEGIN # * % %/
FIN:END MANDP;-



NOP:PRCC CPTICNS (MAIN); /* M AL-CHALABL MARCH 1969 */

MREGNOP :PROC OPTIONS (MAIN); /% M AL-CHALABI MARCKF 1969 #/
ON ENCFILE(SYSIN) GO TO FIN;
DCL NAMNE CHARACTER(80);
DCLINSTA,NX,MX,MSIDE)FIXED BIN;
CCL Il FIXED BIN INITIAL(O);

L1:GET LIST(NANME);
GET LISTINSTAyNX,VMX);
MS IDE=MX-133;
PUT PAGE EDIT(NANME) (X(30),A);
PUT EDIT(*THERE ARE®  NSTA,'CBSERVATICN PQOQINTS, ' sNX,
*UNKNOWNS AND*,MX, *COORDINATE PARANETERS') (SKIP(4),A,
3(F(3)9yX(L),yA));
BEGIN;
DCL({Gy Xy H)(NX) ,FM,F)FLOAT(16),I FIXED BIN,
P300 ENTRY(ENTRY,FIXED BIN,FIXED BIN,FIXED BIN.FIXED BINM,
FIXED BINy(*)FLOAT(16),y (*)FLOAT(16)s(*)FLOAT(16),FLOAT(16),
FLOAT(1€),FIXED BIN)EXT,A¥ ENTRY(FIXED BIN,FIXED BIN,
(*)FLOAT(16), (%) FLOAT(16),(*)FLOAT(16),FLOAT(16))};
DCL((CBS yAN,XS,EAyEByRESICLyWTF)(NSTA),PXE,PZE,
ALPHA yBETA,GANNMA,PI,
DELTA,SIGMA,EAS,EBS+OBSSyAJSH)AJC,REGyXA(NMX) 5y (S9sC) (NSICE),
HA'V'Y' Z,T’ Rl,RZ,AB,AD’UP'UN,ANG'GN'EI’EZ)FLDAT( 16’ ?
(FIFA)FIXEC DECINMAL,(ITER,ZAZA,LPyWT)FIXED BIN;
DCL LMG FIXED BIN INITIAL(Q);
CCL 2S(1:NSTA)FLOAT(16) INITIAL({(NSTA)Q);
ITER=200; ZAZAHT,LP=0;

L2:GET DATA;
GET LIST(FI,FA); PUT EDIT('FIELD DIP & AZIMUTH',
FIsFA)(SKIPAyX(2)92 F(6y1)); .
IF wT=1 THEN GET CCPY LIST(WTF);
IF ZAZA=1 THEN DO;
GET LIST(ZS); PUT LIST(ZS);
END;

L3:GET LIST(XS5,0BS);

L42GET LIST(GyXyH);
PUT SKIP(2);
DO I=1 TC NX; PLT EDIT(G(I) »X(I)sF(IV)(SKIPy3 F(1545))3END;
PUT SKIP(2)3 .
PXE=COSC(FI)*SINC(FA); PZE=SINC(FI);

L5:CALL P3CCIANM NXyNX)=15[TERy1+GoXskEyFMyFyl);

IF LP=1 THEN DO ITER=ITER/5;
CALL P3O0 (AMyNX yNXy=1y ITERs» 19Gys XyHyFMyF,yI) 3
END;

PUT PAGE EDIT(NAME)}(X(2C) ,A);

PUT EOIT(*UPTIMUM VARIABLE VALUES')(SKIP(2),A);

PUT SKIP;

PUT EDIT((X(J) DC J=1 TC NX)){F(15+5));

PUT EDIT('BODY COORDINATES') (SKIP(2),A); PUT SKIPI(2);
CALL AM{NXyNXsGeXsHyF); '

PUT EDIT({XA(K) DO K=1 TC MX))(F(15,5)); PUT SKIP(2);
PUT EDIT(*JS*,*JC?, 'REGIONAL')(SKIP(2)93(X(10)7A))-

PUT ECIT(AJS)»AJCLREG)(SKIP,»2(F(12,3)))%

PUT EDIT(*CCNMPARISCN CF ANCMALIES AT UPTIMUM')(SKIP(3) A)s
PUT EDIT(*XS?,*ORS* y*AN?® ,*RESIDUALY) (SKIPyX(6) A,
X(10)s Ay X{LIC)sApX(9),A); ' '

DO K=1 TC NSTA;



RESIDL(K)=0OBS(K)-(AN(K)+REG);

PUT EDIT(XS{K) CBS{K)4AN(K),RESICLIK))(SKIP 4 F(12+2))}
END ;

PUT ECIT('OPTIMUM FUNCTION VALUE®*,F, '"NUMBER OF ITERATIONS PER
VARTABLE' yITER) (SKIP,A,E(23,5),SKIP,A,F(8))}

IF LMG=C THEN GO TO FIN;

PUT PAGE;

II=I1+1;

GET LIST{LMG)

IF LMG=1 THEN GU TO L1;

IF LMG=2 THEN GO TO LZ2;

IF LMG=3 THEN GET DATA;

IF LMG=3 THEN GD T0O L3;

GELSE IF LMG=4 THEN GO TO L4;
"ELSE IF LMG=5 THEN GCTOD LS5

ELSE GO TO FIN;
AR BE R R B B BE I A I AN R R R * /

/% . %/
/% AUXILIARY FART %*/
/* - %/

J% ok ok ok & % ok ok ok ok % o ok o &k %k & ok & ok %k %k Kk &k ok &K %k &/
AM:PROC(N MGG yXXyHH4R) ; '
DCLINyM)IFIXED BIN,((GGyXX4HH) (%) ,R)FLCAT(16);
/% & & % ok & & ok ok & & % % % & ¥ Kk ¥k &k Kk %k &% & %k *k % %k % & &k ¥/
/% MODEL DEFINITION PART %/
J% % e ok ok ok sk ok ok %k %k ok % ok Kk ok %k ok % Xk K ok &k X Kk * & &/
XA{L)=XXEL) s XA(2)=XX(2)3XA(2)=XX{3)s XA{4)=XX(4); XA(5)=XX(5);
XA(6)=XAl4);
DO I=7 TO MX; XA{I)=XX(I-1); ENC;
REG=-12; )
/% . */
/*************#****#*******-**-*.**/
DO I=1 BY 2 TC MSICE;
HA= SQRT((XA(I)-XA(I+2))**2+(XA(I*I)-XA(I+3))**2)v
S{II=(XA([+3)-XA(I+1))/HEA;
COI)=(XA(I)=-XA(I+2))/HA;
END;
Ry ALPHA,BET Ay GAMMA, DELTA, SIGMA=0;
CO J=1 TO NSTA;
EA(J)EB(J) =C;
00 I=1 BY 2 TO MSIDE;
IF S(I)-=0 THEN CO;
V=XA(I)=-XS(J)3s
Y=XA(I+2)=-XS(J);
I=XA(1+41)=2S(Jd)5 T=XA(I+3)=2S(J);

Rl=Vkk247%%2; R2=Y%¥24+T%%2; .
AB=V/2; AD=Y/T; UP=AB-AD; UN=1+AB%AD; ANG=ATAN(UP,UN);
GN=0,5%L0G(R2/R1);

E1=ANGXS (I)-GN*C(1I);
E2=GN*S(I)+ANG*C(1);
CA(J)=EA(J)+2%S(I)*(PXE*E2-PZE*E]);
EB(JY=EB(J) +2%S{I)*(PXE*EL14PZE*E2);
END;
END;



ALPHA=ALPHA+EA( J)*(0OBS( J)=REG) 3

RETA=BETA+ER(J)*(0OBS(J)-REG);

.GAMNA=GANMA+EA(J)*%2;
DELTA=DELTA+EA{ J)*EB(J);
SIGMA=SIGMA+ER( J) *%2;

ENC;

Pl =DELTA%*%2-GAVMMAXSICMA;

AJS=(BETA*DELTA-ALPHAXSIGMA) /PI;

AJC=(ALPHAXDELTA-BETAXGAMMA) /P 1;

IF WT=1 THEN D0 I=1 TO NSTA;

AN(I)=AJSXCA(I)+AJC*ECB{I);

R=R+((0BS{I)=REG=AN(I))*WTF (1)) %%x2;

ENC;

ELSE DC =1 TO NSTA;

AN(T)=AJSHEA(T)+AJC*EB(I);

R=R+(0RS(I)=REG=AN( 1)) **2;

END;

END AM;

END; /%#3%3% END THE BEGIN BLOCK Hdkdkdfdtkk /

FINS:ENC MREGNOP;



P:PROC OPTIONS (MAIN); /% M AL-CHALABI FEB. 1969 */

Ll

L2

L5

MAGOP :PROC OPTIODONS (MAIN); /7% N AL-CHALABI FER. 1969 %/
ON ENCFILE(SYSIN) GO TO FIN;

DCL NANME CHARACTER({80);

DCL(NSTANX,MX,MSIDE)FI XED BIN;

CCL II FIXECD BIN INITIAL(O)

GET LIST(NANE);

GET LIST{NSTA,NX,MX);

MS IDE=MX=-33

PUT PAGE EDIT(NAME)(X(30)4yA);

PUT EDIT('THERE ARE" NSTA,*CRSERVATICN POINTS,* ,NX,
YUNKNOWNS AND*,MX, 'COORDINATE PARANETERST) (SKIP{4),A,
J(F(3)yX(L)yA));

BEGIN;

DCLI(Gy Xy HYINX) yFMF)FLOAT(16),]1 FIXED BIN,

P300 ENTRY(ENTRY,FIXED BIN,FIXED BINLFIXED BINJFIXED BIN,
FIXED BINy (*)FLOAT(16), (*¥)FLOAT(16)y(*)FLOAT(16),FLOAT(16),
FLOAT(16)FIXED BIN)EXT,AM ENTRY(FIXED BIN,ZFIXED BIN,
(*)FLOAT(16) s (%)FLOAT(16)( *)FLOAT(16) +FLDAT(16))3
DCL((OBSyANyXS+EA, EByRESICL WTF)(NSTA),PXE,PZ2E,

ALPHA yBETA ,GANNMA,

DELTA,SIGMA,EAS,EBS,0BSS,AJS,AJC,REG, XA(VX’!(SvC)(NS[CE)!
XMy XNy ZMyYM3YN,YZ,

HAyVsYy2Z49TyRY 4R2 4AB4AC,UP,UN,ANG,GN,yELyE2)FLOAT(16),
(FI+FA)FIXED DECIMAL,(ITERyZAZAJLPsWT)FIXED BIN;}

CCL LMG FIXED BIN INITIAL(Q);

DCL ZS{1:NSTA)FLOAT(16) INITIAL((NSTA)OQ);

I TER=2C0; ZAZAZLP W T=03

GET DATA;

GET LIST(FI,yFA); PUT ECIT(*FIELD DIP & AZIMUTH?®,
FIZFA)(SKIPsAX(2) 42 F{641));

IF WT=1 THEN GET COPY LIST(WTF);

IF ZAZA=]1 THEN 00;

GET LIST(ZS); PUT LIST(ZS);

END 3

GET LIST{XS,08S);

GET LIST(GsX4H);

PUT SKIP(2); . .
00 I=1 TO NX; PUT EDIT(G(I)+X(I)sH(I))(SKIPy3 F(15,45));END;
PUT SKIPL(2); : ’
SOBS=SLM(OBS);

PXE=COSD(FI)*SIND(FA); PZE=SINDI(FI};

CALL P300(AM,NX.NX,-1, ITER, I.G,X,H.FM,F,I) H

IF LP=1 THEN DO; ITER=ITER/5;
CALL P3CC(AN,NXyNXy=1, ITERolvG.XvaFN'F I)s
END 3

PUT PAGE EDIT(NAME)(X(20),A);

PUT EDIT(*COPTIMUNM VARIABLE VALUES')(SKIP(2),A)35

PUT SKIP;

PUT ECIT((X(J) DU J=1 TO NX})(F(1545));

PUT EDIT(*BOLY CCORCINATES' J(SKIP(2)yA); PUT SKIP(2);
CALL AM(NXy;NXyGyXyHyF)3 :

PUT ECIT((XA(K) DO K=1 TO MX))(F(15,5))3 PLUT SKIP(2)3;

PUT EDIT('JS*,*JC*,*REGIONAL')(SKIP(2),3(X(10),A));
PUT EDIT(AJS,AJCREG) (SKIP+3(F(12,43)));
PUT EDIT('COMPARISON OF ANOMALIES AT OPTIMUM'){SKIP(3),A);

PUT EDIT('XS','OBS','AN'y'RESIEUAL')(SKIP{X(C’,A'



X(10), Ay X(10)yApX(9)4A) 35

DA K=1 TO NSTA;

RESIDL{K)=0BS(K)=-(AN(K)+REG) ; :

PUT ECIT(XS(K),0OBS(K),AN(K),RESIDLIK))(SKIP,4 F(12,2));
END;

PUT EDIT('CPTIMUN FUNCTICN VALUE' +Fs*NUMBER CF ITERATICNS PER
VARTABLE's ITER)Y(SKIPyA4E(22,5) 3 SKIP,A4F(8));

IF LNG=0 THEN GO TO FIN;3;

PUT PAGE;

II=11+13

GET LIST(LMG);

IF LMG=1 THEN GO TO L1;

IF LMG=2 THEN GC TC LZ3

IF LMG=3 THEN GET DATA;

IF LFG=3 THEN GO TO L33

ELSE IF LMG=4 THEN GC TC L4;

ELSE IF LMG=5 THEN GOTO LS5;

ELSE GO TO FIN;3

7% % %k %k ook ok %k Kk ok ok ok ko % o ok % & ok ok &k ok Ak k¥ K Kk X d/

/% */
/% > AUXILIARY PART */
/% */

J% % % ke ok ok o e ok ok &k ok ok ok sk ok ok ok ok % d % ok X %k &k Xk %/
AM:PROC(NsM,GGy XXyHH,4R) 3
DCL{NyM)FIXED BINsy ((GGyXXyHH)(*)yR)FLOAT(16)
J% & %k ok fe & %k %k ok ok &k ok ok & & ok ok ok ok K k ok &k ok ok ok %k k X kh %/
/% MODEL DEFINITICN PART */
/% ok ok ok ok % %k %k % %k % ok % % ok ok ok %k & Kk ok ok Kk &k ¥k kx %k %/
XA(L)=XX(1):3XA(2)=XX(2) s XA(3)=XX{3):XA(4)=XX{4)iXA(5)=XX{5);
XALE)Y=XA(4); .
DO I=7 TO MX; XA(I)=XX{(I-1); END;
/% %*/
J% &k ok ok ok &k ok ok &k & &k ok ok ok ok & %k ok & ok %k ok k & k X ¥ % X ¥ %/
DO I=1 BY 2 TO MSIDE;
HA=SQRT( (XA(I)- XA(I+2))**2+(XA(I+1’ XA(I+3))**2)0
S(I)=(XA(I+3)=-XA(I+1))/EA}
ClIV=(XA(I)-XA(I+2))}/HA;
END; "
DO J=1 TC NSTA;
EA(J),ER(J)=03
cn I=1 BY 2 TO MSICE;
IF S{I1)-~=19 THCN DO;
V=XA(T1)=-xS(J);
Y=XA([+2)=-XS(J]);
I=XA(I+1)=-25(J); T=XA(143)-25(J);
Rl=Vx%2+7%%2; R2=Y¥k%24T%%2;
AB=V/l; AC=Y/T; UP=AB=-AD; UN=1+AB*AD; ANG=ATAN(UP,UN};
GN=0.5%LCG(R2/R1);
E1=ANG*S(I)-GN*C(I);
E2=GN*S{ I )+ANG*C(1);
EA(J)=CA(J)42%S (1) *(PXE*E2-PZE*E]1);
ER(J)=EB(J)+2%S(I)* (PXE*EL+FZE*E2);
END;



END;

ALPFA=ALPHA+EA(J )*0BS(J )

BETA=BETA+EB(J)%CBS(J);

GAMMA=GAMMA+EA( J) %%2;

DELTA=CELTA+EA(J )*EB(J);

SIGMNA=SIGMA+EB(J)%*2;

END;

EAS=SUM(EA); EBS=SUM(EB); '
XM=NSTA*ALPHA-SUBS*EAS; XN=NSTA*BETA-SOBS*EBS;
IM=NSTA*DELTA-EAS*EBS; YN=NSTA*GANNMA-EAS*%*2;
YN=NSTA*SIGMA-ERB S#%2;

- YISYMXYN-IM*%2 3

AJS=(XMEYN=XN*ZM)/YZ}
AJC=( XN*YNM=XM*ZIM) /Y3
REG={SORS-=AJS*EAS~-AJC*EBS)/NSTA;
IF WT=1 THEN DO J=1 TO NSTA; AN(J)=AJS*EA(J)+AJC*EB(J);

R=R+((0BS(J)~REG-AN{J) VY XWTF (J) ) %x%2; END;
ELSE DO I=1 TD NSTA; AN(I)=AJS*EA(I)+AJC%*EB(I);
R=R+(0BS(I)=-REG=AN(1))%*%*2; END;

END AWN;

END; /* END OF BEGIN * % * x/
FIN: ENC MAGOP;



MULTIJ:PROC OPTIONS(MAIN); /7* M AL-CHALABI JULY 1969 %/
CN ENDFILE(SYSIN) GC TC FIN;
DCL NAME CHARACTER({8C);
CCL(NSTAyNX,MX,MSIDE)FIXED BIN}
OCL Il FIXEC BIN INITIAL(O);

L1:GET LIST(NANE);
GET LISTINSTAsNXyMX);
MSILCE=NX=3;
PUT PAGE EDITI(INANE) (X (30),A);
PUT EDIT('THERE ARE*NSTA,'CBSERVATICN PCINTS,? 4NX,
*UNKNOWNS AND*yMX, 'COORDINATE PARAMETERS') (SKIP(4) 4A,
J(F(3),X(1)sA));
BEGINM;
CCLI{GyXgH)INX},FMy FIFLDAT(1¢),41 FIXED BIN, '
P300 ENTRY (ENTRY,FIXED BIN, FIXED BINyFIXED BINsFIXED BIN,
FIXED BIN(*)FLCAT(L6), (*)FLCAT(16),{*)FLOAT(16)sFLOAT (16},
FLOAT(16),FIXED BIN)EXTyAM ENTRY(FI XED BINLFIXED BIN,
(*)FLCAT (16 )y (%)FLOAT(16), (*)FLOAT(1¢€),FLDAT(16));
DCLI(XS»0BS AN, RESIDL,NTF’(hSTﬂ).XA(MX),
(SyC,AJS,AJC)(MSIDEY),
HA, REG,PXEjPZE' EA’ EB’V’ Y,Z,TpRl,RZ.AB ’AD,UP'UN'ANG’GN'
EL,E2)FLCAT (16),
(FIFA)FIXED DECIMAL(ITERyZAZAJLPWT)FIXED BIN;
DCL LMG FIXED BIN INITIAL(Q);
CCL ZS(1:NSTA)FLOAT(16) INITIAL((NSTA)OQ);
ITER=2CO; ZAZAZLPsWT =03
L2:GET DATA
GET LIST(FI,FA); PUT EDIT('FIELD DIP & AZIMUTH®,
FI+FA)Y (SKIPA,X{2)42 Fl6,41)):
IF WT=1 THEN GET COPY LIST(WTF)3
IF 2ZAZA=1 THEN 0O;
GET LIST(ZS); PUT LIST(ZS);
END;

L3:GET LIST(XS,0BS); :

L4 :GET LISTI(G.XyH) =
PUT SKIP(2);
DO I=1 TO Nx3 PLT EDIT(G(I) yX(T) H(I)) (SKIP,3 F(15v5’) END3?
PUT SKIP(2);
PXE=COSC(FI)I®SINC(FA); PZE=SINC(FI);

LS5:CALL PI3CC(AM NXyNXy=L1 3 ITER sl yGosXsHsFNyF,y1)3

IF LP=1 THEN DO ITER=ITER /5
CALL P300 (M’,NX.NX.-I. ITER, l,G’x,H,FM’F'I);
END;

PUT PAGE EDIT(NAME)(X(20),A);

PUT ECIT('OPTIMUM VARIABLE VALUES')(SKIP{2),A):

PUT SKIP;

PUT EDIT((X(J) DO J=1 TO NX})(F{(15,5));

PUT ECLIT({'BODY COORDINATES?®*)({SKIP(2),A); PUT SKIP(2):
CALL AM(NXgNXyGyXyHyF);

PUT EDIT((XA(K) DC K=1 TO MX))(F{15,5)); PUT SKIP(2);
PUT EDIT('REGIUNAL *yREG)I(SKIP(2) sX(5) 4A4X(2) yF(B,y4));
PUT EDIT(*CCMPARISON OF ANOMALIES AT OPTIMUM')(SKIP(3),A);
PUT EDIT(*XS*,"COS' " AN " RESICUAL" )(SKIP¢sX(6)9A,

X(10) A X{1CY A4 X(9),A);

CO K=1 TO NSTA;

RESICL(K)=0BS(K)=-(AN(K)+REG);



PUT EDIT(XS(K),0OBS(K),AN(K)sRESICL(K))(SKIPy4 F(12,2))}
END3

PUT EDIT('OPTIMUM FUNCTION VALUE® ,F,'NUMBER CF ITERATICNS PER
VARIABLE', ITER) (SKIPy Ay E(2395),SKIPyAyF(8))};

IF LMG=0 THEN GC TC FIN;

PUT PAGE;

II=11+1;

GET LISTI(LMG);

IF LMG=1 THEN GO TO L1s

IF LMG=2 THEN GO TO L2;

IF LVG=3 THEN GET DATA;

IF LMG=3 THEN GC TC L3;

ELSE IF LMG=4 THEN GO TO L4;

ELSE IF LMG=5 THEN GOTOD L5;

ELSE GO TO FIN;

Jx & ok o &k ok ko &k %k &k & ok & ok ok %k % &k k ok X%k & % k H ¥ & %/

/* */
/% AUX IL IARY PART */
/% */

7% % % & ok o e ok ok ok ok ok ok ok %k ok sk ok Kk sk ok ok %k Xk Kk ¥k k &/
AM: PRCC(NyM,GGy XXy HHyR) 3
DCLI{N,M)FIXED BIN,((GGoXXsFH) (%), R)FLOAT(16); .
% % ok & ok &k ok ok ok ok %k ok ok ok ok ok %k ok ok o ok Kk k % %k &k x X % %
/% MODEL DEFINITION PART %/
J% % % %k & X ok sk ok & ok ok % % X % & ok &k % & k %k %k ¥ %k ¥k %/
XACL)=xX(1)s XA{2)=XX(2); XA{3)=XA(L)+XX(3); XA(4)=0.15;
XA(5)=XA{1)=XX(4); XA(6)=XA(4); XA(T)=XA(5)+XX(5);
XA(B)=XA(6)+XX(6)}
AJS({L1)=XX{7); AJC(1)=AJS(1)*0.175; AJS(3)=AJS(1);
AJC(3)=AJC(1);3 AJSI5)=xX(8); AJC(5)=AJS(5)%0,175;
REG=XX(9)3
/% : %*/
J% % % % %k ¥ % ok ok % ok Xk K ok % % % &% % ok %k % % % ¥ ¥ % & ¥k %
DO I=1 BY 2 10 MSIDE;
HA=SQRT((XA(I)=-XA(I+2)) %22+ ( XA[I+1)=XA([+3))%%2);
C(IN=(XA(I)=XA(I+2))/HA;
S(I)=(XA(I+43)-XA(I+1))/HA;
ENC;
R=0.00;
DO J=1 TC NSTA;
AN(J)=C.00;
DO I=1 BY 2 TO MSIDE;
IF S(1)-~=0 THEN DC;
V=XA(1)=-XS(J);
Y=XA(142)-X5(J);
2=XAL141)=-25(J); T=XA(143)=-2S(J);
RL=Vak 24 22825 R2=Ye&Q4T%22;
AB=V/Z; AD=Y/T; UP=AB-AD; UN=1+AB*AD; ANG=ATAN(UP,UN);
GN=0.5%*LCG(R2/R1); : -
E1=ANG*S(I)-GN*C(I);
E2=GN*S{ 1)+ANG*C(I);
EA=2%S (I )*(PXE*E2-PZE#*E1) ;
EB=2%S ([ )% (PXE*XEL4PZE%E2);
AN(J)Y=AN(J)+AJS{TI*EA+AJC (T )*EB; -

END
END;

ENC3

[F WT=1 THEN DO I=1 TO NSTA;
R=R+((CBS(I)-REG-AN{I))*WTF(I))%*%2; END;
ELSE DO I=1 TO NSTA;
R=R+{0OBS(I)-REG=AN(I))*%23
END 3 -
END AM;3

END; /* END OF BEGIN * * % »/
FINSENC MULTIJ;



.183,

Specification No, 6.

Title: MAGD

Purpose: As in specification No, 5a,

Use: The programme is most suitable for problems in which
the linear parameters are specified but can also handle
any of them as a varliable parameter, It may be modified
to accept m magnetisation contrasts (m < number of sides)
all of which must be specified

' Description: A4s in specification No. L.

Input data: The data are input in the following order:

data . Hotes
'NAME' " 3.1
nsta, nx, mx, nxa L.1
data; | 6.1
fi fa : 5.2
zs : 3.5
Xxs obs 53
x opt bac - Le3

1mg 3.8



.18k

Data notes:

6.1 The integers which may be altered by the GET DATA
statement are the same as in specification No. 4 except
that sc does not exist here,

Model definition: The same as in specification No, 5a,

Gradient definition: The principle of defining the
derivatives is given in Appendix 3. The procedure has been
formulated here on the same bases as in GAD (specification
No. 4). The derivative with respect to each coordinate
parameter consists of two terms corresponding to. P and @
in Appendix 3. ZEach term is calculated separately resulting
in eight two-dimensional arrays, -eav, eaz, eay, eat, ebv,
ebz, eby, and ebt. The two terms corresponding to the x

th 146 at the 3

coordinate of the first point of the i
observation point are _

EaV(I,J) and EBV(I,J)
and so on, The process of defining the derivatives consists
of the same steps as in GAD, each step being repeated to
account for the second term. The first term is computed in
the array gxa and the second in the array gxb. The definition
of each element of these arrays is similar to that of the
array gx in GAD, An example 1s given in the print-out
illustrating the definition of these derivatives, All of the
coordinate parameters have been treated as variable parameters.,

The derivatives with respect to ajs, ajc and reg are
respectively given by

GG(NXA+l), GG(NXA+2) and GG(NX).
When any of these parameters is specified the pertinent card(s)

1s reserved in the space allocated for reserving suspended cards
the end of the_auxiliary?procedure. _

Qutput: This is similar to specification No. 5a but instead of
+he lower and unner bounds. the valuesg of ont and bac are nrinted



): PROC OPTIONS (MAIN); /* M.AL-CHALABI MAY 1969 */

MAGD :PRCC OPTIONS (NMAIN); /% M AL-CHFALABI MAY 1969 =/
ON ENDFILE(SYSIN) GO TO FIN;
CCL NANME CHARACTERI(BO)
DCLINSTA JNX yMX s NSIDENXA)FIXEC BIN;
DCL II FIXED BIN INITIAL(Q);
LL:CET LIST(NAME);
GET LISTINSTANXMX NXA)3
MSIDE=MX-33;
PUT PAGE EDIT(NAME)(X(30),A);
PUT EDIT(*THERE ARE®*NSTA, YOBSERVATION POINTS, *yNX,
*UNKNOWNS AND* s MX,*CCCRDINATE PARAMETERS' ) (SKIP(4),.A,
3(F(3)yX{1),A))3
BEGIN;
DCLU(XyG)Y(NX))FLCAT(16);
OCL(OPT,BAC,F)FLOAT(16);
OCL P306 ENTRY(ENTRY,FIXED BIN,FIXED BIN.FIXED BIN,FLOAT(16),
FLOAT(16) sFIXED BINy(*)FLCAT (16),(%*)FLOAT{(16),FLDATI(16),
FIXED BIN)YEXT;
DCL AM ENTRY(FIXED BIN,(*)FLOAT(16) o(*)FLOAT(16) 4FLOAT(L16));
DCL{(XSyCBS yRESICLyRESy ANy SEA,SEB)(NSTA)XAIMX),(P,S,C)(MSIDE),
(EAVEBVEAY EBYEAZ,EBZJEATLERT)(MSIDESJNSTA){GXA,GXB){(NXA),
VeYeZyToePXE,PZEZAJCsAJS9yR14R2,AByAD4yUP yUN4JANG yGNREG,
ELyE2+EALEBy XI1yXI2)FLOAT(16);
DCL(DSV,DSY4DSZ,4DST,0CV,0CY, LCZH,CCT,CLGV,DLGY,DLGZ,DLGT,
DFIV,DFIYDFIZ,DFIT,DE1V,DE1Y,DELZ,DE1T4DE2VyDE2YCE2Z,CE2T,
CXI1V4,CXI1lY,DXI1Z,DXI1T,DXI2V,DXI2Y, DXIZZ:DXIZT)FLDAT(I6).
DCL(FI,FAYFIXEC CECINAL,(JO»JJDoZAZA)FIXED BINS
DCL ZSUL1:NSTA)YFLOAT(16) INITIAL((NSTA)O};
CCL LMG FIXED BIN INITIALI(C):
2AZA=0; JD=0;
L2:GET DATA;
GET LIST(FI,FA); PUT EDIT('FIELD D[P & AZIMUTH® ,
FIsFA)ISKIPyAyX(2)92 Fl6s1));
IF ZAZA=1 THEN DC;
GET LIST(ZS); PUTY LIST(ZS):
ENC3
L3:GET LIST(XS,08S);
L4sGET LIST(X,CPT,8BAC);
PUT EDIT('ESTIMATED FUNCTION VALUE AT UPTINUP(OPT)'
CPT)(SKIP(2),A0E(12,3))3
PUT EDIT({*PARANETER ACCURACY',RAC)(SKIPyAyE(12,43)):
/%% IF CHANGE IN EACH PARANETER IS L.Te. BAC SEARCF
WILL TERMINATE #*334%%/
PUT EDIT(*INITIAL ESTINMATES') (SKIP,A)};
PUT EDIT((X{(J) DO J=1 TO NX))(F(15,5));
PUT SKIP(2);
PXE=COSC(FI)®SINC(FA); PZE=SINC(FI1);
LS:CALL P3C6(AMyNXy=141,0PT4yBACyJD X sGyFyeJJD)3
PUT PAGE EDIT(NAME)(X{2C),A);
PUT EDIT(*OPTIMUM VARIABLE VALUES')(SKIP(2),A)3
PUT SKIP;
PUT EDITI(X(J) DO J=1 TO NX)){(F(15,45));
PUT ECIT('BODY CODRDINATES')(SKIP(2),A); PUT SKIP(2):
CALL ANM(NX X 3GoF)3
PUT EDITIIXA(K) DO K=1 TO MX))}(F(15+5)); PUT SKIP(2);
PUT EDIT(%JS', *JC%y 'REGIONAL *)(SKIP{2) 43(X{1C),A)):



PUT EDIT(AJS,AJC,REG)I(SKIP,3(F(12,3)))3 _

PUT ECIT(*CONPARISON OF ANOMALIES AT OPTIMUM*)(SKIP(3),A);
PUT EDIT(*XS?4*CBS? " AN ,*RESICUAL® J(SKIP¢X(6)yA,y
X(10)sAsX{1C)yAX(G)A);

CO K=1 TO NSTA;

RESIDL(K)=0BS(K)-(AN({K)+REG);

PUT EDITUXS{K) OBS(K) ,AN(K) ,RESIDL(K)) (SKIP,4 F(12,2))3
ENC;

PUT ECIT(*FUNCTICN VALUE'yF,*NUMBER OF FUNCTION EVALUATIONS?,
JJD) (SKIP,A,E(23,14) ,SKIP,A,F(8));

IF LMC=0 THEN GD TO FIN;

IF LNG=9 THEN GET LCATA;

II=11+1;

PUT PAGE;

GET LIST(LMG);

IF LMG=1 THEN GO TO L1; ELSE IF LMG=2 THEN GO TO L2}

IF LMG=3 THEN GC TC L3; ELSE IF LNMG=4 THEN GC TC L4

ELSE IF LMG=5 THEN GO TO L5: ELSE GO TO FINs;

J%* % & % % % % X % % % & % ¥ B % % & & &k %k K ¥ % ¥ *x & &/

/% . _ #/
/* ° AUXILIARY PART %/
/% ®/
J% % ok & %k k &k &k o % % X % % & % &% % * * %k & &% % ¥ & %k %/
AM:PROC(N,XXyGG,R); ~

CCL (XX (#*),GG(*),R)FLOAT(16),N FIXED BIN;
DCL LX (NXA) LABEL;
AZ2: 2RSS TR 22 2222 R R0t ii s i b i i b i a2 R RRRRRRE SR V)
/% MODEL DEFINITICN PART */
J %ok o ol b o o o o od o o o ol o o ok ob D o ol ol ol o o oD o ok ol o ol o ok o ok e o e ok o o ol ok ook ok ok ik ok k k ok
DO I=1 YO 14; XA(I)=XX(I); ENC;
AJS=XX{15); AJC=XX(16); REG=0;
J RN ok ok o o ol ok ok ok ok o o o e ok e s o e o o ok o o o e ae o o ok e o o e e o e ode ok ko ke ok k ok ik kk /
/*##############**####*###t#####**###########*#######*#*l
DO I=1 BY 2 TO MSICE;
P(I)=SQRT((XA(I)=XA(I+2))%%2+(XA(I+1)- XA(!+3))**2).-
S(I)=(XA(I+3)=-XA(I+1))/P(1);
COI)=(XA(I)=-XA(I+2))/P(I);
END;
66=03 R=03
CO J=1 TO NSTA;
AN(J) ySEALJ) ySEB(J) =0;

, DO I=1 BY 2 TO MSIDE;
V=XALL)=XS(J); Y=XA(I+42)-XS(J)
Z=XA(I+41)-2S(J); T=XA(I1+3)-2S(J)

RISVA#24Z#%2; R2=YH424TH%2;
AB=V/1; AD=Y/T; UP=AB-AD; UN=1+AB*AD; ANG=ATAN(UP;UN);
GN=045%LCG (R2/R1 )3 :
E 1=ANG*STI)=GN*C( 1)}

E2=GN#®S (I)+ANG*C(I);
X11=2% (PXE*E2-PZE*EL);
X1 2=2% (PXEXEL+PZE*E2);
EA=S(I)#XIl; EB=S(I)*XI2;
AN(J)=AN(J)+AJSHEA+AJCREB;
SEA(J) =SEA( J)+EA;



SEB(J)=SEB(J)+EB;
DSY=C(I1)*S(I)/P(1)3;
CST=C(I)*C(I)/P(1);
DCV=S{I)*S(I1}/P(I);
DSV=-DSY;DSZ=-DST;
DCY==-DCV;DCZ=DSY;DCT=DSV;
CLGV==V/R1;CLGY=Y/R2}
DLGZ=~Z/R1;CLGT=T/R2;
DFIV==DLGZ;DFIY=-DLGT;
CFIZ=CLGV;DFIT=DLGY;
DELV=ANG*DSV+S (I )*CFIV-GN*DCV-C(I)*DLGV ;
DE1Y=ANG%*DSY+S(I)%DFIY-GN*CCY=-C(I)*DLGY;
DE1Z=ANG#*DSZ+S(I)*DFIZ-GN*DCZ~C(I)*DLGZ;
DELT=ANG*DST+S (I )*CFIT~-GN*DCT-C(1)#*DLGT;
DE2V=GN*DSV+S(T1)*DLGV+ANG*DCV+C(I)*OFIV;
DE2Y=GN*DSY+S{I)*DLGY+ANG*DCY+C(I)*DFIY;
CE2Z=CN*DSZ+S{I)*DLGZ+ANG*DCZ+C(I)*DFIZ;
DE2T=GN*DST+S(I)*CLGT+ANG*DCT+C(I)*DFIT
DXI 1v=2%*(P XE*DE2V~PZE*DE1lV);
CXI1Y=2*(PXE*DE2Y-PZE*DELY) ;
OX11Z=2*(PXE*DE22-PZE*CELZ);
DXI1T=2%(PXEXDE2T-PZEX*DELT)}
DXI2v=2%(PXE*DE 1V+PZE*DE2V) }
DX12Y=2%(PXE*DEL1Y+PZE*CE2Y);
OXI22=2%(PXE*DELZ+PZE*DE2Z);
DXI2T=2*%(PXE*DE1T+PZE*DE2T) 3}
EAV (I,J)=S(1)*DXI1V+XI1%DSV;
EAY(1J)=S(I)*CXILY+XI1*0SY;
EAZ(I,J)=S(I)*DXI1Z+XI1%DSZ;
EAT (14J)=S{I)*DXILT+XI1*DST3
EBV(IJ)=S (1)*CXI2V+XI2*CSV;
EBY(I »J)=S(I)*DXI2Y+XI2%DSY;
EBZ(IyJ)=S{1)*DXI2Z+XI2%DSZ;
EBT(I,J)=S(I)*CXI2T+X12%DST;
END;
END;
CO K=1 TO NSTA;
RES(K)=2* (0OBS(K)-REG-AN(K));
R=R+( Qo 5%RE S(K) ) %%23
ENC;
DC K=1 TC NXA;
DO J=1 TO NSTA;
GO TO LX(K)3 '
JABIARSRL DR AR R R AR RN AR 2 AN S F AR R doooRRkdokk AR Rk kok Kk /
SRRk Rk kkkdkhdkk GRACIENT CEFINITION PART ##23d34%23%/
AR AR ARk gtk ok ok dokokkdok Rk R kR R R R G R AR Rk &/

LX{L):GXA(l)=EAV(1,J); GXB(1)=EBV(1sJ);
GOTC TCT;

LX(2):GXA(2)=EAZ(14J); GXB(2)=EBZ(1l,4J);
GOTO TOT3

LX{(3)3GXA(3)=EAV(3,J)+EAY(1,J);

GXB(3)=EBV(3,J)+EBY(1,J);
GOTO TOT;

LX(4)2GXA(4)=EAZ(39J )+EAT(1,J)3 GXB(4)=EBZ(3yJ)+EBT(1,J);



GOTO TOT;

LX(5) :GXA(5) =EAV(54J)+EAY (3,J); GXB(5)=EBV(59J)+EBY(3,J);
GOTO TOT;
LX(6):GXA(6)=EAZ(S9JI+EAT(3,4J); GXB{6)=EBZ(S5,J)+EBT(3,J)3
GCTC TCT;
LXC7)3GXA(7)=EAV(T9J)+EAY(54J)F GXB(T)=EBVI(T,J)+EBY(5,J)3
GOTO TOT;
LX(8):CGXA(B)=EAZ(TyJ)+EAT(5,J) GXB(8)=EBZ(TyJ)+EBT(5yJ)3
GOTO TCT;
LX(S):GXA(S)=EBV(SG,yJI+EAY(TyJ); GXB(9)=EBV(9,J)+EBY(T74J);
GOTO TOT;
LX(10) :GXA(10)=EAZ(9,J)+EAT(7,J); GXB(10)=EBZ(9sJ )+EBT(T79J)3
GOTO TOT;
LX(LL)SGXA(11)=EAV(119J)+EAY(9,J); GXB(11)=EBV(11,J)+EBY(9,J);
GOTC TCT;
LX{(12):GXA(12)=EAZ(11,J)+4EAT(9,J); GXB(1l2)=EBZ(11l,J)+EBT(9,J);
GOTO TOT;
LX(13):GXA{13)=EAY(11l,J)3 GXB(13)=EBY(1l1l,J);
GOTO TCT;

LX(14) :GXA(14)=EAT{11,J); GXB(14)=EBT(1l,J);

TOT:GG{K)=GG(K)=RES(J)*(AJS*GXA(K)+AJC*GXB (K));

END;  END;

DO J=1 TO NSTA; GGUNXA+1)=GG(NXA+1)=RES (J)#SEA(J);
GGINXA+2)=GG(NXA+2)-RES(J)*SEB(J); END;

Attt it 2t iR SRS RERRRRRERR SRS LR W)
/%% e s e ek ol e e o ol ol ek ok e ok R e ok R R R R AN AR R A AR DR D R DA N AR AN NN/
/#4%% THIS PART IS FOR RESERVING SUSPENDED CARCS #%#s6sxtss
e e o o ol ok ol ol ol ol o b ol ok ok of o o ol ol o o o ol o ok o o otk o s o e ol ofie ok e o afk o ok ofe ok ofe el ok oy A e o

GO T0 1GT;

G0 TO TOT;

6GINX)=0-SUM(RES); “
222332223 R R R R RRRRRRRR R R R R LR R R L EL S W)
/**#*1&'**##*#*******#*****####lﬁ###***#####_#######'####*##/
END AM; ' A

END; /*END OF BEGIN #/

FIN:ENC MAGD;



Specification No, 7

Title CONFIT

01850

Purpose: This programme uses a set of geographical positions

for the pole of rotation for the rélative movement between

two continental edges and determines the misfit between the

two edges when brought in contact by rotating about each

pole position, The pole position giving 8 ﬁinimum misfit 1is

determined and a grid is printed out of the values of the

misfit at each pole position,

Use: To determine a possible pole of rotation for restoring.

two continents to their pre-drift relative position,

Description: see section 8,4 in the text,

‘Input data: The data are input in the following order:

data

nsta msta ns née ms me
data;

ctl cgl

ct2 cg2

wtn wtm wtl wt2

ft, fit fg, fig

1
'NAME'

le

notes

7-1

7.2
Te3
7.4

7.5

7.6
3.1

7.7
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Data notes:
7.1 If we denote the first edge by N and the second edge
by M then

nsta Number of digitised points on edge N,

msta = Number of digitised points on edge M,

th

ns and ne = All points between the ns point and the

neth point on edge N are the active points in the
matching process, An equivalenf to each of these points
1s found on edge M by interpolating between any of the
msta points,
ms and me define the first and the last active points
on edge M,
72, The following programme parameters may be altered by
the GET DATA statement:
nt = Number of the required latitude intervals for the
pole of rotation.
ng = Number of the required longitude intervals for the
pole of rotation,
The default value of NT and NG is 30,
saz = If the ratio of the total number of active points
to the difference between the number of active polnts on
both edges is smaller than saz a grid of Q, equation
(8.4), will not be constructed. The grids of Q, and Q,
will be constructed as usual, The default value is 3.0,
fsn and fsm = For a given position of the pole of rotation
it may happen that the jth point on edge N does not have
an equivalent point on edge M., If the ratio of the

number of points on edge N which have an equivaient to
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the total number of active points on edge N 1s less than

fsn, the Ql value for that particular pole position will

20). fsm is the

be assigned a very large value (10
corresponding factor on edge M, The default value of
both factors is O, 66,

wt = If set to any value different from zero welghting
functions will be used (note 7,5). The default value

is zero,

mints = If set to 1, the figures after the decimal point
in the input latitude and longitude data will be regarded
as minutes. Otherwise, they are regarded as decimal
fractions of a degree., The default value is 1.

th

743 ctl is an array of nsté elements, The 1 elemeht

th

denotes the latitude of the 1 point on edge N. cgl is a

similar array with the ith element denoting the east longitude

of the 18

point on edge N, The data are given in degrees
with the decimal point followed by either minutes or decimal
fractions of a degree. The data are input in the order:
cri(1), cai(1), cri(2), cei(2), ete.
The latitudes vary from 90° to =90°, The east lpngitudea
vary from 0° to 360°.
7.4 ct2 and cg2 are the corresponding arrays on edge M.
7.5. wtn is an array of nsta-l elementé. The kth element

th

denotes the weight on the segment between the k™ and the

Ii+1th points of edge N, wtm 1s the corresponding array for

the segments on edge M,

th

wtl is an array of ne-ns+l elements, The j ~ element
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denotes the weight on the jth active point on edge N,

wt2 1s the corresponding array for the active points on
edge M. |
The data are input in the order: all wtn elements,
all wtm elements, all wtl elements, all wt2 elements.
ftl = The latitude value of the first position of the
pole of rotation.
fit = The increment by which the latitude is decreased
(the co-latitude increased) at each interval of
latitude,
fgl = The east longitude of the first position of the
pole of rotation
fig = The increment by which the east longitude is
increased at each interval of longltude,
fit and flg are given in degrees and a decimai

fraction of a degree., ft, and fgi are given in degrees with

1
the decimal point followed by either minutes or decimal
fractions of a degree according to the option MINTS, ftl
can assume values from 90° to -90°, fgl can assume values
from 0° to 360°,

7e7. le is an integer controlling the re-entry into the
main programme after all grids have been printed., This
allows using the programme for different problems in the
same run or for the same problem under different conditions
or assumptions,

Output: The output data list consists of

(1) nsta, msta, ng, nt, ns, ne, ms, me (notes 7.1 and 7.2).

(2) ft,, fg,, fit, fig (note'7.6).



(3)
(4)
(5)
(6)

(7

(8)

(9)

.189,

Latitudes and longitudes of points on first edge.
Latitudes and longitudes of points on second edge.
'NAME',

Results of the fit on the first edge. They consist

of the pole position giving the least misfit (the
'optimum' pole), the value of Q, at that position, the
value of Ql at the position with the next least misfit
and the angle of rotation required to close the
continents about the 'optimum' pole.

A grid of the Ql values at each of the assumed pole
positions., The values are printed as alphabetic
characters (see section 8.4) in ascending order so that
a point of value C has a lower Ql value than a point of
value D, The ‘'optimum' pole is marked with an asterisk,
The alphabetic characters can be converted to absolute
values using the assignments in the block labelled MAP,
The output (6) and (7) is repeated for Q2 and Q, If the
number of active points on one of the edges is much
larger than on the second edge, saZ becomes relatively.
small and a grid of Q will not be constructed.

The rotation angle for each pole position for the grid
of Q is printed in degrees and decimal fractions. If

a grid for Q is not constructed these angles will not

be printed.



CONFIT:PRNOC OPTIONSIMAIN) 3
ON ENCFILE(SYSIN) GOTO FIN;
CCLINSTA,MSTANGyNT,NSyNEJNS,ME)FIXEC BIN;
DCL(FIGyFIT4CP,SP,SC ,AM,BN,SNySV,CT,DIF1,DIF2,AK,UP,yUN,
UNPsUPP,UPK,PP,PQ,PQ1,PQ2,Q1,Q2,QA,QB8,C1,C24D1,D2,
SAZyFSNyFSM,CSN, CSM)FLOAT(16);
DCL ZZ(C:23) CHAR(2);
2Z(O)='AY; Z2(1)=,B'; ZZ(2)=%.C*; 2Z2(3)='.D"'; ZZ21{4)=".F';
ZZ{5)=v.G"; 22(6)=2.kE'; 2Z2{(7)="J"; 2Z(8B)='.K*'; ZZ(9)="'.L";
ZZ(10)="a N5 ZZ(11)="aN'; 22(12)=".P'; 22(13)=%.Q'; ZIZ(1l4)=°,R"*;
Z2Z015)=%,S"; Z22(16)=".T%; Z22(17)=*,U'; Z2Z(18)=",V'; Z2Z(19)=%.W*;
ZZ(20)=',X*; Z2Z2(21)=".Y ' Z2Z2(22)=",12"; 22(23)='.E"';

L1:GET LIST(NSTAZNSTA,NSyNE,NS,VE);
NST=NSTA=-1; MST=MSTA-1;
NT yNG=30; SAZ=3; FSNyFSM=0.¢&6; WT=0; MINTS=1l; GET DATA;
/% %k % MINTS=1 WHEN LATS & LCNGS ARE GIVEN IN DEGS 8 MINUTES #**/
PUT EDIT(NSTAsMSTA (NGsNT NS ,NE yNSHyME) (SKIP,X (10,
Fl4),F(S)y6 FU3));
SN=NE-NS+1;
SM=ME-NS+1;
QT=(SN+SM)/SAZ-ABS( SN-SM) ;

CSN=FSN#SN; /* DS.. IS THE LOWER LIMIT FOR *
DSM=FSMxSM; /x% THE NC. OF CORRELATED POINTS *
BEGINS

CCL{FGI(NG)y (FT,CA,SA}INT),
(CGL 4CT1 PGl 4PT1yCTHLySTEL)(NSTA),(PEG2,PNyFoFX)I(NSINE),
(CG2yCT24yPG2,PT2,CTH2,STH2) (NSTA) y(PEGL+PVMyGyGX) (MS:ME),
(CL1,CL2,CL)(NGyNT),
(VA1 VA2 ,VA3;VA) (NGyNT))FLOATI(16),LB(2) LABEL INITIAL(LC,LD),
CT(NTyNG)CHAR({2) 4NANE CHAR(80);
DCL{WTN(NST) s WTMIMST) y (WTLywTAsWTFL1) (NSINE) 9 (WT2 ,WTB,WTF2)
(MS:ME))FLOAT(16)3

L3:00 I=1 TC NSTA; GET LISTI{CT1(I)sCGl(I)); END;

L4:D0 I=1 TO MSTA; GET LIST(CT2(I) ,C6G2(I)); ENC;
IF WT-=0 THEN GET LIST(WINyWTMyWT1,KT2);
/*READING CCORDS. ANC CALC. TRIGe. VALUES OF PTS. ON EACH COASI*/
PUT PAGE;
PUT EDIT('LATITLDES AND LCNGITUDES CF POINTS ON FIRST COAST*)
(X(30),A); PUT SKIP(2); '
DO J=1 TC NSTA;
PUT EDIT(CTL(J)COLIJUI)(SKIP46(F(15,43)))3
IF MINTS=1 THEN DO; ICT=CT1(J); ICG=CG1l(J)}
CT1(J)=90-((CT1(J)-ICT)/0.6+ICT);
CG1(J)=(CGL(J)-ICG) /0.6+ICG;
END 3
ELSE CT1(J)=90-CT1(J);
STH1(J) =SINC{CTL(J)):;CTHL(J)=CCSC(CTL(J))3
END 3
PUT SKIP3
PUT EDIT(*LATITUCES ANC LONCITUCES OF POINTS ON SECOND CDASTY)
(X{3C),A); PLT SKIP(2);
DO J=1 TO MSTA;
PUT EDIT(CT2(J),CG2(J))(SKIPy6(F(1543)));
IF MINTS=1 THEN DC; ICT=CT2(J); ICG=CG2(Jy )3
CT2(J)=90-((CT2(J)=-ICT) /C. €+ICT) 3
CG2{J)=(CG2(J)-ICG)/0.6+I1CG



ENC;
ELSE CT2(J)=90-CT2(J);
STH2(J)=SIND(CT2(J))3CTH2(J) =CCSD(CT2(J) )3
ENC;

L2:GET LIST(FT(1),FIT,FC(1),FIC);
PUT EDIT (*PCLE PCSITICNS:LATS ANC LCNGS QF FIRST POINT
AND INCREMENTS'*)(SKIP(4),X(1C) ,A);
PUT ECITIFT(1),FG(1),FIT,FIG)(SKIP,4(F(10,2)));
IF MINTS=1 THEN DC; IFT=FT(L);IFG=FG(1);
FTO1)=(FT(L)-1FT) /0. &+1FT;
FG(1)= (FG(1)-1FG)/0.6+IFG;
END;
/*************##******#*************ﬁ*******#**#*#*##**/.
/ *WORK ING OUT POLE POSITIONS AND TRIGON. VALUES #*/
VAt izt i 22 2R s 2R R R R RRRRRRARRER RS R R SRR LT )
GLONG=FG(1);
TLAT=90-FT(1);
CO I=1 TO NG;
Al=1-1;
FG(I)=GLONG+FIG*AI;
IF FG(I)>360 THEN FG(I)=FG(I)-360;
/%%% TC ALLCW CROSSING ZERQ LONGITUDE FROM LARGER ANGLES ##k%assk/
END;
DO I=1 TO NT;
Al=1-13
FT(I)=TLAT+FIT®AI;
IF FT{1)<0 THEN FT(I)==FT(I);/%* TC ALLOW GCING OVER ANTF POLE &
COWN TFE OTHER S IDE %% o skskok b s o8 sl ok o o oo se sk e e o e o o ok o e ok o o o ok o ok ofe s ok e e oke ope Xk /)
CA(I)=CCSC(FT(I)); SA(I)=SINC(FT(I));
END;
J 0% Aok ob o ok o ok b o ok o o ok o 0B o0 ob o ok ol ol ok ob B o ok ok o o el i o afe sk o e ol o o afe ok ok oe o e ol o e ofe e e e /
a2 23223232 222 ER R R SRR RRRRRRREER RS R R R LRt L W)
DU 16=1 TO AG; |
D0 IT=1 TO NT;
PEG1=8003 PEG2=800;
WTA=0; WTB=0;
ASN=SN; ASM=SM;
/ZAtE22 RS2 ESRRR AR RRERRER R RS EE R L IY
J*wksskk CONVERSION TO NEW POLE ####344%%/
/% ¥ e vk s ol dhe e o s e o o s ode e e o e o o e ol el ofe o o el oo ok ko ok ok ok /
DO IA=1 TO NSTA;
PP=CC1 (IA)=FG(IG); IF PP<O THEN PP=PP+360;
CP=CCSD(PP);  SP=SIND(PP);
SC=CP*STHI(IA);
AK=CTHEL (IA)#CA(IT)+SC*SA(IT);
UP=STHL (TA)%SP; UN=SC*CA(IT)=CTHL(IA)*SA(IT);
IF UN=C THEN UN=1E-20;
IF AK=0 THEN AK=1E-153
UNP=UP/UN;
PGL(IA)=ATAND(UANP); _ '
PGL(IA)=PGL{IA)+180%((PGL(IA)<Q)+(SP<O)+((PGLIIA)=0)*(FT(IT)>
CTL(IA)))); /#*%PLACING ANGLE AT CORRECT QUADRANT #####x/
UPP=SQRT(1-AK%#2); UPK=UPP/ AK}
PT1(IA)=ATAND(UPK);



PRCC OPTIONS (MAIN);

IF-PT1(IA)KC THEN PT1(IA)=PT1({1A)+180;
ENC; ]
CC 1B=1 TO NMSTA; .
PP=CG2(IB)-FG(IG); IF PPLQO TEHEN FF=PP+360;

CP=COSD(PP) ; SP=SIND(PP);
SC=CP*STH2(1B);
AK=CTH2 (IB)*CA{(IT)+SC*SA(IT);
UP=STH2(ID)*SP ;3 UN=SC*CA(IT)=-CTH2(IB)%SA(IT);
IF UN=C THEN UN=1E-=20;
IF AK=0 THEN AK=1E-15;
UNP=UP /LN _
PG2{IB)=ATANC(UNP ); .
PG2(IB)=PG2(IB)+180%((PG2(IB)KO)+(SPLO)+((PG2(IB)=Q)X(FT(IT)>
CT2(IB))))s
UPP=SQRT( 1-AK*¥2) 3 UPK=UPP /AK;
PT2(IB)=ATANCI(UPK) ;
IF PT2(IB)<0Q THEN PT2(IB)=PT2(18)+180;
END;
/%0 sk ok ook oo o o ok o ob o ol ok o o) o o o o o oo o b o ol o o ek o ol s o kot o ok o e ol skl ok ik ok ok o/
J¥*%%k FINDING EQUIVALENT ANC CALCULATING ITS LONG. *%%%x/
/2% 5% i sk sfe e o ok ook o e e ok sdeode ok kol ke ook e ko R ok Bk Ak Rk R Rk AR Ak RNk N Nkl /
K=03; '
CO I=NS TO NE;
JM=NMSTA-K-1;
DD J=1 TO JM;
JK=J+K 3
DIF1=PTY1(I)-PT2(JK); IF CIF1l=0 THEN DO
PEG2{I)=PG2(JK); GCTC LA; ENC3
DIF2=PTI(I)-PT2(JK+1); IF DIF2=C THEN DQ;
PEG2(I)=PG2 (JK+1);GOTO LA; END;
T==-DIF1/DIF2; IF T>0 THEN CCs
A=PG2(JK); B=PG2(JK+1)3
[F A<90 THEN IF B>270 THEN A=A+36C;
ELSE IF B£90 THEN IFf A>270 TEEN B=B+360;
PEG2(I)=(A+BxT)/(T+1); WTA(I)=WTN{JK)};
GO TO LA
ENDC;
END;
IF PEG2(1)=8C0 THEN DO;
PN(I)=0; ASN=ASN-1; [IF ASN<DSN THEN GOTO BAL; END;
GCTO AAL;
LAsPN(I)=PG1{I)=-PEG2(1);
IF PN(I)<Q THEN PN(I)=PN(]1)}+3260;
K=JK=1;
/%FORMULA wILL NCT WCRK IF CCASTS CRCSS EACH OTHERyWHICKH IS AN
IMPOSSIBLE SITUATION sk sk sk e ok deofesge 8%k /
AAL:END;
BAL :K=0;
DO I=MS TD ME;
JN=NSTA-K-13
DO J=1 TO JN;
JK=J+K}
DIF1=PT2(I)=-PT1(JK); IF DIF1=0 THEN DO;
PEGL(I)=PG]l (JK); GO TO LV3; ENC;



DIF2=PT2(1)-PT1(JK+1); IF CIF2=C THEN DO;
PEGL(I)=PGL(JK+1)s GC TC LV; ENC;
T=-=DIF1/DIF2; IF T>C THEN DC;
A=PGL{JK); B=PGl(JK+1);
IF A<90 THEN IF B>270 THEN A=A+360;
ELSE IF B<SC THEN IF A>270 THEN B=B+360;
PEGLIT)=(A+B2T)/(T+1); WTB(I)=WTN(JK);
GCTC LV;
END;
END;
IF PEG1(I)=800 THEN DO ;
PM(1)=0; ASM=ASM-1; IF ASNM<CSM THEN GOTO CAL3; END;
GOTO CAL;
LV:PM(I)=PG2(I)-PEG1(I);
IF PM(I)KO THEN PM{I)=PM(1)4360; /#* THIS TAKES CARE OF CDASTS
WHICH CRCSS FRGM 1ST TC 4Tk QUACRANT CR VISE VERSA #/

K=JK=-13

CAL:ENC;

DAL:IF wT=0 THEN DC; DC I=NS TC NE; WTFL(I)=SINC(PT1(I)); END;
D0 I=MS TO ME; WYF2(I)=SIND(PT2(I)); END; ENC;
ELSE CO;
DO I=NS TO NE; WTFL(I)=SINC(PTL{I))*WTA(LI)*WT1(I)
DO 1=MS TO ME; WTF2(I)=SINC(PT2(I))*WTB([)*WT2(I)
/%0 %k ok ook b o o ol o ok o ol o o ok o ok ol e o e ol ol ok ol el b o ok e e ool o e kel e kol
/%% %CALCULAT ING OBJECTIVE FUNCTIONS #¢2%2%8%%%/
7 % e e o ol dfe e sl e e e e sk okl ol ko ok ok ok ok ok ok ok h ok kbR R R b Sk YA/ .
IF ASNSDSN THEN DO; VA1{IG,IT)=1E20; GOTO EAL; ENC;
PQl=SUM (PN )/ASN ;
CLL1(IG,IT)=PCL;
DO L=NS TO NE;
FIL)=({PQL-PN(L ) )*(PN(L)~=0))%# 2%k TF (L) ;
END;
Q1=SQRT(SUNM(F)) ;-
VAL{IG, IT)=Q1/ASN;

EAL:IF ASNMCKDSM THEN DO; VA2(IG, IT)=1E20; GOTO FAL; END; .
PQ2=SUN(PM) /ASN; =
CL2(IG,1T)=PQ2;

CO L=MS TO ME;
G(L)=((FG2- PN(L))*(PN(L)*'O))**Z#HTFZ(L).
END;
Q2=SQRT (SUM(G));
VA2 (1G,IT)=C2/ ASM;

FAL:IF QT>0 THEN DC;
IF(DSN<ASN) 8(DSM<A SM) THEN DO;
Cl,Cl=PQl; C2,D2=PG2;
IF C1>C2 THEN Cl=360-Cl;
ELSE €C2=3606-C2;
/#%444% THIS HAS THE EFFECT OF REDUCING MEASUREMENT OF ONE COAST
SAME SENSE & SAME ABSOLUTE VALUE BECAUSE IF PX HAPPENED TO BE -VE
(PX=PN OR PM) THEN FINAL ANGLE IS PX+360 & HENCE 360-(PX4360)==P)
WHICH IS +VE,I+E. WE ARE MEASURING THE DIFFERENCE IN THE SAME SE!
BOTH CASES A%k sddddddddddddddddddtddddd b dd st daddpghatatdhy,
PQ={(C1+C2)/2;
CLUIG,IT)=PQ;

3 END
+ ENC;

ENC;



IF D1>D2 THEN DO;

CO.L=NS TGO NE;
FX(L)=((PQ+PN(L)=360)%(PN(L)=~=0))*%2%dTF1(L )3
END;

CO L=MS TO ME;

GX (L)Y=((PC=PMIL))I*(PM(L-)~=0))*%22WTF2(L};

END;

END 3

ELSE CO;

CO L=NS TG NE; :
FXCL)=((PQ=PN(L) )X (PN(L)~=0) )**2%WTFL(L); R
END 3

CO L=MS TO ME;
GX(L)=((PC+PNM(L)=360)*(PM(L )==0))2%2%WTF2(L)
END; END;
QA=SQRT(SUM(F X)) 3
CB=SCRT (SUM(GX));
VAZ(IG,IT)=(CA+QB)/ (ASN+ASN)};
END;
ELSE IF (ASN<DSN)A&(ASM<DSM) THEN VA3{IG,IT)=1E2C;
ELSE VA3 (IGIT)=VAL(IGeIT)*(CSNCASN)+VA2(IG, IT)*(DSMCASM)
/%% [.E., VA3=THE FUNCTION OF THE COAST HAVING A SUFFICIENT NUMBER (
CORRELATING POINTS 2/
END;
END; END;
GET LIST(NAME); PUT PAGE EDIT(NAME) (X(30),A);
PUT EDIT('FIT ON FIRST EDGE ') (SKIP(4)sX(45),A);
LK=0;
VA=VAl; GOTO MP;
LC:VA=VA2; '
PUT PAGE EDIT(*FIT ON SECONC EDGE *)(SKIP(4)9X(45),A);
GOTO MP; _ :
LD:IF QT>C THEN VA=VA3; ELSE GCTC LL3
PUT PACGE EDIT('COMBINED FIT ON BOTH EDGES *)
(SKIP(4) 4X(45)4A);
MP:BM=VA(1l,1); AM=VA(2,1);
II1=1; Jd=1;

00 I=1 TC NG; CO J=1 TO NT; _
IF VA(I,J)<BM THEN DC;BM=VA(I,J)}; II=I; JJ=J3 ENC3
END; END;

PUT SKIP(2);

PUT LIST(II,JJ);

PUT SKIP;

CO I=1 TO NG; 00O J=1 TO NT;
“IF(VA(L,J)<AM)B(VA(TI+J)D>BNM) THEN AM=VA(I,J);

END; END;

PUT EOIT('OPTIMUM POSITION OF POLE OF ROTATICN') (SKIP(3)4X(4)4A);
PUT EDIT("LCNGITUCE®*,FG(II)y "CO-LATITUDE'yFT(JJ))I(SKIPyX(6),
AyFLE9L) 9 X(4) JAF(6,1))3

PUT EDIT('DEGREE QF FIT(BM)*,BM){SKIP(2) sX(4)sA4E(9,2))3

. PUT EDIT('NDEGREE OF SECOND BEST FIT(AM)'.AM)(SKIP.X(4)pApE(9,2)).
IF LK=0. THEN

PUT EDIT(*LONGI TUDE DIFFEREACE oCLl(Il,JJ))(SKIP(4)-A.F(6.2)),
ELSE IF LK 1 THEN' E '



PUT EDIT('LONGITUDE DIFFERCNCE =',CL2(IT19JJ))(SKIP(4) yA,F(6,2));
ELSE IF LK=2 THEN ' ‘
PUT EDIT('LCAGITUDE DIFFERENCE =*yCLITIIJJ))(SKIP(4)y A Fl642));
/%8 ok ko o b ok ok ok ok o dkofeolodeok B o ok ob o ol o ok ok ol o o ok ok o ok o o ofe e ke ok ok ol e ok ok
FALEREE T IS SRR R R R 2R R AR RRERRRRR SRR R R R L W

MAP:DO I=1 TO NG; DC J=1 TG NT;
IF VA(I,J)<AM THEN CT{J,I)=0,%¢;
/**%% AM IS THE DEGREE OF SECONC BEST FIT #29%/
ELSE IF VA([,J)=ANM THEN CT(Jj1)=*.0";
ELSE IF VA(I,J)<AM%1.1 THEN CT(J,I)="%E"';
ELSE IF VA(I,J)<AM#*1.,2 THEN CT(J,I)="%G";
ELSE IF VA(I4J)<AM#%1.3 TFEN CT(Jypl)="%H?;
ELSE IF VA(I,J)<AM%1,4 THEN CT(J,I)=t%pr;
ELSE CO;
LAR=2XLCGI(VA(L;J)/7AM);
IF LAR<C24 THEN CT(JyI)=2Z(LAR); ELSE CT(Jol)='.H";
END ;
ENC; END; .
PUT PAGE EDIT(CT) ((NG) (A(3)),SKIP(2));
/% % o ob b o o b ok o o o ol ok ok o e o ol dfe ok e ok e e e ok o s o ok e e e e ek ol ke e e e ko ok gk B ok )/
/#*#######*###O###4###*######*####*t**#******##**#***#/
LK=LK+1;
IF LK=2 THEN
IF QT>0 THEN DO
PUT EDIT('ANGLES OF ROTATION FOR ALL Q FITS')(A);
PUT SKIP(3);
DO J=1 10 NT3 PUT SKIP(2); DC I=1 TC NG;
PUT EDIT(CL(I;J)}) F(6,2)):IF I=16 THEN PUT SKIP(2):
ENC; END; '
END
IF LK>2 THEN GDTO LL;
GCTC LB(LK);

LLSGET LIST(LE); PUT PAGE;

IF LE=1 THEN GOTO L1l; ELSE IF LE=2 THEN GOTQ L2;
ELSE IF LE=3 THEN GOTO L33 ELSE IF LE=4 THEN GDTO L4.
END; .

FINZEND CONFIT;
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