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ABSTRACT .. 

Non-linear optimisation techniques form an important 

subject in non-linear programming. They work by searching 

for an optimum of a function in the hyperspace of its 

variable parameters. The purpose of the present work is 

to test the applicability of the techniques to solving 

non-linear geophysical problems. A problem from each of 

the major branches of geophysics is considered. The 

problem of fitting continental edges is also considered. 

Direct search methods are slow but are robust and, therefore, 

useful in the early stages of the search. Gradient methods 

are fast and are efficient in the proximity of the optimum. 

A gravity or magnetic anomaly due to a two-dim~nsional 
- -- -

polygonal model has a unique solution -in theory. In practice, 

ambiguity arises from the presence of several factors and 

takes the form of a scatter of local minima and elongated 

'valleys', in the hyperspace. The solution becomes less 

ambiguous as the influence of these factors gets less and as 

more parameters in the model are specified. 

The techniques are used successfully to interpret two

dimensional gravity and magnetic anomalies. Their efficiency, 

and flexibility make it possible to tackle a wide range of 

gravity and magnetic problems. The required computer time can 

be reduced by careful programming. The techniques are 

useful in interpreting surface wave dispersion data; the large 

degree of ambiguity associated with the problem may be 

overcome by specifying several parameters. A fast curve 

matching process is deviced for interpreting apparent 



resistivity curves. The method of outputting the results 

reduces the effect of equivalence. A method of fitting 

continental edges, by minimising the gaps and overlaps 

between them, is given. The ambiguity in the precise 

position of the pole of rotation is illustrated using the 

same concept adopted in the gravity, magnetic and seismic 

problems. 



CHAPTER 1 

INTRODUCTION 

1.1. Gener::il Rem'.:trks on Programming Techniques 

.1. 

An optimisation problem is any problem which involves 

the determination of the maximum or the minimum of a function 

of one or more variables. Such problems have been of 

interest to scientists since the eighteenth century and their 

solution was usually sought through techniques based on 

differential calculus. In the early 1950's, however, 

optimisation techniques started being developed as a major 

subject within the newly evolving field of operational research • 

. Their application to meet the increasing demands of industry 

and commerce led to the formulation of seve~al computational 

disciplines which, being accompanied by the advent of digital 

computers, were based oh numerical methods. These are usually 

referred to as programming techniques. 

Linear and quadratic functions subject to linear constraints 

are handled by techniques classed under linear pro~ramming and 

guadratic programming respectively. Programming techniques 

are not required when these functions are unconstrained since 

the solution of such problems is directly obtainable by 

straight-f~rward methods of differential calculus and matrix 

algebra, 

Non-linear nrogramming applies to problems involving 

non-linear functions. A formal solution to an unconstrained 

non-linear problem can be formulated by equating the partial 

derivatives or· the funct:ton to zero and solving the resulting 



equations. However, the use of such a procedure is not 

usually helpful because the_resulting equations are often 

very difficult to solve and, if the solution can be 

obtained, it may represent a local optimum or a saddle point. 

Hence, there are several numerical algorithms to treat the 

unconstrained non-linear problem. 

Non-linear programming fUrther includes multi-stage 

decision processes known as dynamic progrsmming. It also 

-· includes the treatment of problems with linear or quadratic 

functions sub~ect to non-linear constraints (Fig. 1.1) 

Many linear and non-linear problems require the 

additional constraint that the variables should only assume 

integer values._ Techniques dealing with these problems are 

covered by integer program~ing. When only some of the 

variables must be integers, the problem is a mixed programming 

problem. 

However, the classification of programm~ng techniques 

tends to vary with usage. Fig. 1.1 does not, ther~fore, bear 

a relation to a specific author. It _represents a summary_ of 

the foregoing account and illustrates the relation of ~ 

linear optimisation techpiques to the other programming 

techniques. 

The term non-linear optimisation techniques refer~ to the 

methods of treating problems with non-linear functions, con

strained or unconstrained. It constitutes our subject matter 

and must not be confused with the_wider and more general 

problem of non-linear programming. 
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Operational Research 

Optimisation Other Methods 

Calculus Numerical (Programming) 

quadratic linear 
linear constraints 

non-linear integer & mixed 

J 
I 

linear & dynamic 
quadratic programming 
functions 

non-linear non-linear quadratic 

with non-
linear constraints 

functions 
with or without 
constraints 

lineal 

Fig. 1.1. A general sketch illustrating the place of 
non-linear optimisation techniques (underlined) in relation 
to other programming methods. 

1.2. Optimisation Techniques in Geophysics 

Optimisation techniques are cur~ently employed in the 

mineral industry ih various chemical, economic and managerne~t 

problems (Klimpel, 1969). However, their use in geophysics 

has been limited to individual methods, such as that of 

steepest descent and the method of alternating variables 

(see Chapter 3), rather than their application as a whole 

integrated group of programming disciplines. The work of 

Stacey (1965) was the first real application of non-linear 

optimisation techniques in geophysics. He employed them to 

interpret gravity and magnetic anomalies although progress 



was limited by the low. speed of ava~lable computers and by 

difficulties caused by local minima. This was followed by 

the work of Butler (1968) who successfully applied the 

techniques to the interpretation of magnetic anomalies due 

to dykes. 

The importance of non-linear optimisation techniques in 

geophysics is due to the very large number of non-linear 

geophysical problems; the high efficiency of these techniques 

makes it now possible to tackle problems which have proved 

intractable in the past. The demand for linear programming 

techniques appears to be less pronounced, since most problems 

tend to hav~ simple or no constraints so that linear problems 

become amenable to treatmemt by simple algebraic methods. 

There arP. many problems 4emanding the use of other types 

of optimisation techniques. For example, integer or mixed 

programming would be des~rable to determine layer thicknesses 

in resistivity problems where thicknesses are usually given 

as integer multiples of the thickness of the top layer. 

However, the treatment of such problems_falls outside the 

scope of our pre~;ent topic and are not pursued further. We 

shall, therefore, use the term optimisation to imply non-linear 

optimisation, unless otherwise indicated. 

1.3. Scope of the Present Work 

The present work deals with the application of optimisation 

techniques to select~d problems in gravity, magnetic, seismic, 

and electric methods, thus obtaining a general coverage of the 

main methods in applied geophysics. The problem of fitting 
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continental edges is used as an example of a subject not 

directly related to applied geophysics. The work also 

deals with the use of optimisation techniques for investigating 

the non-uniqueness problem in gravity and magnetic 

interpretation. 

The work on the seiomic and the electric problems was 

somewhat less thorough t~an in the case of the ~her problems. 

The ~ntire work, however, provides a general guide to the 

method of utilising and applying optimisation techniques in 

geophysics and also demonstrates the potentialities of these 

techniques as a tool for tackling many geophysical problems. 

The direct concern of the work was to use rather than to 

devise methods of optimisatlon. It was, therefore, necessary 

to rely on external sources for optimi~ation subroutines. 

The use of any optimisation method was, hence, subject to 

tne availability of the relevant ~omputer subroutine. Although 

this was occasionally undesirable, it did not present any 

problem. A good variety of subroutines were actually 

available, all of which were among the most efficient methods 

of optimisation. 

The problems treated in this work are essentially 

interpretational. It is clear, however, that programming 

techniques have an equally promising field of application in 

various design, processing, p~anning and other problems in 

geophysics. Future work will, undoubtedly, show increasing 

signs of such application as the importan~e of optimisation 

techniques become more generally realised. 
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C H A P T E R 2 

BASIC CONCEPTS AND DEFINITIONS 

2.1. The Concept of Optimisation in Geonhysics 

The use of optimisation techniques in geophysics may be 

described in the following manner: Given a set of geophysical 

data that may be· attributed to certain properties of a 

particular system defined by m adjustable parameters 

(m = 1,2, ••• ) and u unadjustable parameters (u = 0,1,2, ••• ), 

it is required to modify the adjustable parameters until the 

relevant output data of the system agree with~the input 

geophysical data within certain requirements. No change in 

the system topology is allowed during the adjusting process. 

The input data may take the form of an observed anomaly 

or some ideal behaviour or performa~ce. The output da~a are 

the corresponding calculated anomaly or behaviour of the system. 

The system is usually in the form of a model. The requirements 

frequently include the condition that the data must be 

satisfied within the range of observational errors. Other 

requirements vary according to individual problems but usually 

include a number of constraints to ~nsure the physical or 

geological feasibility of the optimum model. 

2.2. The Objective Function 

2.2.1. General remarks 

All optimisation procedures work by minimising or 

maximising a single scalar quantity called the objective function 

(or the function). The obJective function depends upon the 

adJustable parameters ~ defined by 
xl 
x2 

~ = • 
• ( 2.1) 0 
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At any particular ~' the objective function gives a measure 

of the agreement betweP.n the input and_output data, i.e. 

the degree of optimality of the system. 

In geophysical work, it is usually more convenient to 

express the objective function in terms of the discrepancy 

between the input and output data. The discrepancy in each 

of the value~ be~ng compared is measured using a discrepancy 

function~(~,~), where~ is a parameter along which the 

input data are distributed. Hence, the objective function is 

defined by j 
1"(~) = .b cp(~.~ ). w(e) d! (2. 2) 

where b is the range Along which the input data· are given 

and w is an appropriate weighting function which makes it 

possible to lay different emphasis on different parts of tbe 

data. 

Input geophysical data are normally given as a set of 

discrete observations. The objective function is, therefore, 

more conve~iently represented by 

r c~ =. t. ~ c~~ ei > w c ~i > c2.3) 
i=l 

where n is the number of input data po~nts. In order to 

obtain a representative optimum system, n must be larger 

than m. 

Bec~uae one is generally dealing with discrepancies 

opt£misation of a ~ystem requires the minimisation of the 

objective function. For this reason the term opti~misation 

will be used synonymously with minimisation throughout the 

text. Individual cases requiring maximisation can be 
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readily dealt with by changing the appropriate signs in the 

optimisation procedure. 

To illustrate the above scheme, consider an observed 

gravity anomaly, A, attributed to a subsurface anomalous mass 

system represen-ted by a model. Suppose tba t the depth to the 

top of the mass is known as well as the regional background 

associated with the anomaly. These are the unadjustable 

parameters. The other coordinate p~ints defining the model 

and the density contrast are the adjustable parameters & 

If n observati~n points h~ve been made along the profile, all 

of which are.equally good, then each point could be given an 

equal weight. Sup~ose now that a trial model, having its top 

at the knOWD depth, be used to represent the anomalous mass. 

Tbe discrepancy function at the itb Gbservation point may be 

defined_by the absolute difference between tbe calculated 

anomaly, c,_due tq the model and the observed anomaly, i.e. 

f/J (~, ~ .> = I Ai - ci I ( 2. 4) 
l. 

where ~i is the distance of the itb point along the profile 

from some arbitr~~Y origin. 

The objective function f (&) for that trial model is the 

sum of·the_n discrepancy functions d~fined by equation (2.4). 

The optimisation procedure attempts to generate a model which 

yields the lowest possible value of f(~) by adjusting the m 

adjustable parameters under certain constraints tbat ensure 

i~s_g~ological feasibility. 

2.2.2. Choice of the objective function 

A tully adequate ob~eotive function is essential for 



obtaining a good solution. Maximum care should, therefore, 

·be taken when choosing the objective fUnction. Because a 

correct Qhoice of the objective functi~n is dependant upon a 

sui table choice of the discrepancy function-, an effective 

measure of discre~ancy must be first established. However, 

this is normally quite straigh~-forward and assumes forms 

similar to that of equation (2.4). 

In ~orne problems the discrepancy fUnction may not be 

immediately obvious. Suppose in the above example that we 

wiab to optimise the function independently of the regional 

background. (assuming that it is horizontal). This could be 

achieved by b~sing ~he obje~tive function on 

r/> (6, ~i) = I(Ai - A
111

) - (ci - C
0

) I (2.5) 

• 9. 

where A and C are the observed and calculated anomaly values 
0 0 . 

at an arbitrary point • 
.. 

In some optimisation proble~s more than one acceptable 

discrepancy criteria can be used. Tbe choice of the criterion 

to be used will usually dep~nd upon the form of the data, the 

main purpose of the problem, the computation time available, etc. 

An example of this is given in Chapter 8 where the misfit 

between contine~tal edges may ~e measured by the area of gaps 

and ~verl~ps o~, alternatively, by the difference in longitude 

between equivalent points on both edges. 

The relation. between the objective. function and the 

discrepancy criterion has to be defined. The choice is usually 

between expressing the objective function as the sum of 

squares of discrepancies or expr~ssing it as the sum of 

absolute values of discrepancies. The first of these is more 
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widely used and is p~rtic~larly usefUl wnen the distribution 

of observational errors i& normal. 

However, the distributton of errors may not, in aome 

case~ be normal. To teat how critical the choice of the 

objective f'unction was, some experimentation was carried out. 

The gr~vity anomaly due to a polygonal model was computed and 

pseudo-random errors were superimposed on the anomaly. 

Different solutions were obtained by optimising three different 

objective functions defined by tne following 
n 

:rl = E t 
( I Ai - ci I) 

i = l 
( 2. 6a) 

n 

:r2 = ~ I Ai - 0i I 
i = 1 

(2. 6b) 

n 

= -r 
i = 1 (2.6c) 

In terms of approximating the original model, and in 

producing minimum residuals, procedures usi~g f 1 were 

invariably inferior to those using f 2 or f
3

• However, there 

wa& no significant diffP.renoe betwe~n using f 2 and t3 ~ 

In view of the _limited amount of experimentation, the 

abmve results are by no means co~clusive; t~ey were accept~d 

as being only provisionally. true_. Moreover, fun at ions in 

the form of t 3 lend th~mselves readily to a linear treatment 

of the density and·magnetisaion contrasts_and the regional 

background, as will be demonstrated later. For these reasons, 

objective functions expressed as the sum of squares gf 

residuals were employed in most interpretations presented 

in tbia work. 



Several other rules concerning the correct choice of 

an objective function may be found in the literature. 

Two relevant rules given by Wilde (1964, p.6) are: 

.ll. 

1. Prefer a representation which can be approximated by 

a low degree Taylor series expansion in the vicinity of the 

optimum. 

2. Prefer a representation in which the variable 

parameters do not interact, i.e. they can be separated in 

different terms~ 

A further rule concerning scaling will be discussed in 

section 2.5. 

2.2,3. Representation of the Objective fUnction 

2.2.3.1. Geometric representation 

The objective function may be represented geometrically 

in an m - dimensional space by constructing a Euclidean 

hyperspace in which each of the m mutually orthogonal axes 

represents one variable parameter. In such a hyperspace the 

objective function is then completely representable by means 

of contours of equal value, The geometrical representation is 

important in studying and understanding the behaviour of the 

objective fUnction qualitatlvely in order to adopt an 

appropriate strategy for tackling a given problem. These 

geometrical studies also ~roved important in demonstrating a 

number of phenomena relating to the ambiguity of gravity and 

magnetic fields as will be shown in Chapter 4. 

The contour surfaces of the objective function may be 

conceived as behaving in the same manner as topographical. 

contours, The use of topographic terms like peaks, troughs 
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and valleys will, therefore, be extended into the multi-
. . 

dimen~ional space. Two-dimensional cross-sections (or maps) 

of these contours provide a convenient m~thod for a direct 

visual inspection of the hyperspace (e.g. Figs. 4.1, 5.2, etc.). 

Geometrical intuition will usually help to pass the 

cross-section through the required points in the hyperspace. 

Only plane cross-sections were used in the present work but 

other forms of sectioning can be used if required. When the 

objective function depends upon two variables only, a two -

dimensional map of the function in the apace of the two 

variables provides a complete representation in the mapped 

range. The solut~on(s) may then be located and their validity 

assessed visually. 

2.2.3.2. Mathematioal representation 

The local behaviour of the objective function is best 

studied with the aid of an m - dimensional Taylor series 

expansion 

?If 6. 
()X. J 

J 

1 
+. 2 

where 8 1 , 82, 0
• o o o ,6 m are the components of parl!lme~er changes 

along each of them mutually or~hogonal axes x1 ,x2 ,.o•••~• 

respectively. 8 is thus an m - dimensional vector given by 

§.= 

• 
• 
8 

m 

(2.8) 

In the vicinity of the optimum, where the objective fUnction 
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can be usually_approximated by a quadratic, higher terms 

in equation (2.7) can be neglected. Adopting a matrix 

notation the truncated Taylor series is given by 

where the prime indicates matrix transposition and 

af',AJ xl 

G= -

H:::a 

i'f'/ox2 • • 
• 

atjax 
m 

• 
• 

• • • • 

• • • • 

H is also known as the Hessian matrix. 

• 
• 

(2. 9) 

(2.10) 

( 2.11) 

Equation (2.9) is the basis for many optimisation 

procedures. It often gives a sufficiently aoourate description 

gf the behaviour of the objective function in regions which are 

not necessarily close to the optimum. 

2 • .3. Solutions and minima 

An ideal optimum solution is obtained when the optimum 

parameters define a system which is an exact solution to the 

problem. Equation (2.2) becomes 

f'(c) =Jb ¢ (6~~ ). w(~) d~ = 0 (2.12) 

Such conditions are rarely realised in practice. The problem 

becomes that_of' searching for the minimum of' f(4) in the 

~ nnerspaoe. 
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Formally, the minimum in an unconstrained problem must 

satisfy 

= • . . . . = = 0 (2.13) 

A sufficient condition when equations (2.13) are satisfied 

is that the principal ~inors of tbe Hessian matrix must all 

be positive (Box et al, 1969, p.5). 

When the problem is constrained the necessary condition 

for a minimum can be f'ound by the method of Lagrangian 

multipliers. 

A more useful definition for the present work is that a 

minimum exists at ~ if it satisfies 

(2.14) 

in the neighbourhood of ~' f'or all sufficiently small values 

of' b. 

Before a minimum can be regarded as a solution it must 

satisfy the requirement that it falls within a feasible region. 

Otber requirements usually include the cGndition 

f' (~ < e (2.15) 

where e is a specific tolerance determined by the magnitude 

of' observational errors. 

Definitions of the relevant terms used in this work are 

as follows: 

1. The coordinates of the solution point ~' in tbe c 
hyperspace, define the_parameters of' an opti~ system. The 

terms solution, minimum and optimum-model will, therefore, be 

used synonymously wben appropriate. 
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2. A global minimum in a given feasible region R is 

the required overall solution in R. 

3. A local minimum is any minimum other than .the global 

minimum. 

4. If only one minimum exists in R then f (x) is 

unimodal in R. If more minima exist then f(x) ·is mul timodal 

in R. Therefore, if a global minimum and one or more local 

minima exist, the solution is unique in R although f(~ is 

multimodal. 

5. The contours defining some minima do not close in 

all directions. These minima are not true minima and will only 

behave as such in some directions. They are called ill-defined 

minima. The term may also be extended to describe minima 

which are extremely shallow. Clearly, the distinction between 

an ill-defined and a well-defined minimum is gradational. 

The following rules were used throughout: 

1. Although a solution exists, a global minimum may not 

exist. Solutions are then given by two or more local minima 

in the feasible region. Therefore, if R includes the entire 

feasible region, the solution in R is not unique. This 

situation arises in many geophysical problems, e.g. in gravity 

and magnetic interpretations. In these oases, it is more 

convenient to refer to all points in a region (or regions) 

bounded by a contour of magnitude e as possible solutions. 

2. In the absence of a global minimum, not every local 

minimum in R is necessarily a possible solution, as ·the 

requirements for a solution may not be satisfied. 

3. A minimum possessing a lower function value than 

another minimum is not· necessarily a better solution.· A 

minimum possessing the least function value is not necessarily 

a global minimum. 
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2.4. General Procedures in Optimisation 

All optimisation procedures (except tabulation methods) 

start the search for a minimum by_evaluating the objective 

function at a given initial point, Co" The adjustment of 

parameters is_carried out iteratively by generating the 

points x1 , x2 , •••••..•.• such that 

i = 0,1,2, •• ~··· 

With 

= 

where hi is the ~ist~nce moved along the m-dimensional 

direction vector, gi. 

(2.16) 

(2.17) 

The choice of higi at each iteration, i.e. the manner in 

whic~ the successive A points are generated, is the feature 

that ~istinguishes the _various optimisation methods from each 

other. It also influences the efficiency of each method in 

adapting its strategy to meet certain situations. 

To comply with the iterative rule of equations (2.16) and 

(2.17), the optimisation process must consist of two essential 

parts. The first part is a procedure which furnishes the value 

of the objective function for a given set of parameters x1• 

This part is usually in the form of an auxiliary programme 

which compu~es.t(~i) using, generally, a method based on 

equation (2.3). The second part is tb~ optimisation subroutine 

or procedure which, given f(~i) and ~i' will search to locate 

the point ~i+l that satisfies equation (2.16). In doing so, 

it may pass the current ~parameters to the auxiliary procedure 

a number of times. 

The process of generating new points according to 
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equation (2.17) continues using, possibly, many previous 

informations about the behaviour of the function. The two 

parts of the optimisation process are thus enclosed in a 

maJor feedback loop until the search is terminated by some 

convergence criterion.· 

Fig. 2.1 shows a simplified flow chart summary of this 

process. r 

NO 

AUXILIARY I 
PROCEDUin; 

I 

Calculate 
c 

Calculate 
f(2E) 

Decision Decision e.g. Locate 
.----1 e.g. r'otate 1----l--l 1--~--l reverse search 

coordinate~ 2Ei+l direction 

YEJ 

OPTHiiSii.'!IION PROCEDUHE 

Fig. 2.1. A schematic representation of the general 
iterative optimisation procedure. 

2.5. Scaling the Problem 

_j 

A well scaled problem is one in which the contours of the 

objective.function are approximately hyper-spherical or they 

are elongated pa~allel to most search directions. Good scaling 

is desirable in all problems because it enables moat 



optimisati~n methods to obtain a solution rapidly and 

aoeura tely. 

The change of scale implies a chang~ in the measurement 

units of individual parameters. However, when the contours 

of the objective function are elongated. in. directions whicb 

are inclined to the parameter axes (Fig. 2. 2 .. ~·), a change 

in the units will only change tbe angle at which these 

directions are inclined. This may improve the conditioning 

of'some problem~ but requires a deta~led study of the behavior 

of the function. Experiments on gravity problems, where the 

objective function is usually very curved, showed that changes 

in the measurement units were incapable of improving the 

scaling of the problem •. 

A better strategy would be to do the inverse, i.e. to 

transform the search axes so that they lie favourably with 

respect to the objective.function in the hyperspace (Fig. 2.2). 

Some optimisation methods are based on this transformation. 

The success of Rosenbrock 1 s method (section 3.4.3) in dealing 

with gravity and ma·gnetic methods is due mainly to its 

capability to rotate the search.axes according to the general 

trend of the objective function. 

2.6.Univariate Search 

In order to carry out the optimisation proce~s in 

accordance with equation (2.17) many optimisation methods 

work by locating a minimum along each of a s~ries of.directions 

in the hyper~u~ace of the variab:J.e parameters •. Each of these 

searches is equivalent to a univariate search, i.e. to 



• 
(a) 

CONTOUR LINE() 

I 

SEARCH PATH ""-~ 
~ 

AXES OF J_ 
SEARCH . 
DIRECTIONS 

(b) 

Fig. 2.2. A two-dimensional illustration of the scaling problem. 

(~) A well-scaled problem. 

(~) A badly-scaled problem. 

(c) Rotating the search axes to improve effective ncaling. 
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searching for the optimum of a function of a single variable. 

Univariate search methods are, therefore, basic to most 

optimisation techniques. The fundamental procedures involved 

in them are given below. 

The older types of univariate search attempt to obtaj_n 

the minimum to a certain accuracy after a specific number of 

iterations.· The dichotomous search involves the reduction 

of a large interval, T, which is known to contain the 

minimum, by successive fUnction evaluations at points placed 

symmetrically inside each new T. Fibonacci search depends 

upon the use of Fibonacci numbers to decide the manner in 

which the successive T intervals are reduced. Search by 

golden section selects the searching intervals symmetrically 

inside T in a manner known geometrically as a golden section:. 

These methods are described fully by Wilde and Beightler 

(1967, p.215-267). 

In recent methods, the minimum is found by processes 

involving the fitting of low order polynomials through a 

number of points. These methods, being more efficient, are 

gradually replacing the older types. However, they laok the 

advf.Jntt-lge o1' being able to p:ur..arnntee to locnte the minimum in 

a given number of iterations. They depend basically upon 

evaluating the function at several points along a given 

direction and use some criterion to indicate that the mini~m 

has been straddled. The points stradd.ling the minimum are then 

used either for quadratic interpolation, as· in the algorithm of 

Powell and that of Davies, Swann and Campey or for cubic 

interpolation, as in Davidon's method 
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(Box et al, 1969, p.l4 and 39). There are many other methods 

both old and recent but the bases are similar to those described 

above. 

The transition ~rom a univariate search to an actual 

problem involving many variables is not just one o~ degree. 

Di~~iculties resulting ~rom the use of a large number o~ 

variables have become popularly known as tile "curse of 

dimensionalitt' (Wilde and Beightler, 1967, p~279). In 

geophysics, tilis curse takes several forms. For example, as 

the number of variables is increased, many ill-defined local 

minima begin to appear in a complex fasilion causing tile problem 

to be ill-conditioned. The vastness o~ the ilyper-volume of a 

multi-dimensional space is another di~ficulty which causes a 

tilorougil searcil of even a small ~raction of the hyperspace to 

be a formidable task. 

2.7. Convergence 

Most optimisation methods gradually reduce the step hi 

(equation 2.17) ·in the vicinity o~ the minimum un.til some 

conditions, called the convergence criteria, are satisfied. 

The search is then said to have converged at the minimum. 

Depending on the metilod, the convergence criteria may usually 

be satisfied when either f(~i+l) -f(~) or ~(~i) falls below 

some specific value or after a given number o~ iterations. 

Convergence will therefore refer to locating tile minimum 

within these conditions. 

If tile problem is rather ill-conditioned, and particularly 

when using a method which is unsuitable for the objective 

function being handled, a rapid reduction in hi can take place 
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without necessarily being in the vicinity of any minimum. This 

causes an erroneous termination of the search and will, here, 

be called local convergence. It mus~ not be confused with 

co~verging at a local minimum. 

A large number of optimisation methods are based on the 

quadratic approximation of equation (2.9) and will, therefore, 

locate the minimum of a quadratic fUnction in a specified 

number of iterations. Such methods are described as 

quadraticallY convergent. Because most functions closely 

approximate a quadratic in the vicinity of the minimum (Box 

et al, 1969 p.28), quadratically convergent methods are of 

particular interest in optimisation techniques. 

2.8. Accuracy of Optimum Parameters 

It may be sometimes desirable to obtain an estimate of 

the possible error in each variable parameter, at the optimum, 

in terms of the residuals between the observed and the calculated 

data. However, a very low value of the objective function at 

the optimum is not necessarily an indication that the values of 

optimum parameters are accurate since the observed data are 

themselves subject to many sources of error. To obtain an 

estimate for the parameter accuracy, ib .terms of observational 

errors and the residuals, is a very difficult task. To simplify 

the procedure, we assume that the· observational errors are 

wholly accounted for by the residuals at the optimum. This is 

usually only partially true. Furthermore, we assume that the 

system being optimised is fully defined by the parameters.· 

This is again frequent~y untrue. For example, in gravity and 
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magnetic interpretations, the number of parameters required 

to represent the anomalous body fully is far too·large to be 

handled practically. Moreover, the corner.points of the 

representative polygonal model are dummy parameters which do 

not have an actual physical standing. In view of these 

gross assumptions plus the many approximations made by the 

model itself, the estimates of parameter accuracy are 

sometimes of limited significance. 

where 

The parameter accuracy may be obtained as follows: 
. 2 

The variance of parameter xi is. Ci Pii 

xi = ii ± a a vpii 

Hence, 

(2.18) 

xi is the value of parameter xi at the optimum, 

a is the confidence factor(= 1.96 for 95% confidence), 

is the element of the inverse matrix of second partial 

derivatives of the objective function with respect to 

the variable parameters, 

a2 is the estimate of the residual variance, 

i.e. ~2 = 8 2 /(n-m) where 8 
2 is the sum of squares of 

residuals at the optimum. Tbe term n-m represent the 

degrees of freedom of the problem. 
-2 .: 

The covariance of parameters xi and xj is a · pij• Tne metllod 

of derivation and the procedures involved in computing these 

estimates are given i~ Appendix l. 



CHAPTER 3 

A REVIEW OF OPTIMISATION METHODS 

3.1. General Remarks 

This review discusses the general suitability of various 

optimisation methods forsolving geophysical problems. Only 

those methods which have a direct relevance or were actually 

used in the present work are described in some detail. A 

fuller account of optimisation ~ethods may be found in several 

books (e.g. Wilde and Beightler, 1967; Box et al, 1969). 

A large number of optimisation methods have been 

introduced during the past fifteen years. Nomenclature and 

classification of these methods vary according to whatever 

criteria are.considered appropriate by different authors. For 

example, Box et al (1969, p.l6) ~all tabulation methods what 

Wilde and Beightler (1967, p.222-230) class as simultaneous 

methods. Rosenbrock and Storey (1966, p.58) regard the method 

of steepest descent as distinct from gradient· methods while 
~ . 

Wilde (1964, p.l07) regards them as synon~ous. 

The classification of Box et al (1969) is the most 

consistent for the purpose of the present work and is, therefore, 

adopted throughout tho toxt. It appears to be a modification 

of an older classification introduced by Spang (1962). 

Accordingly, optimisation methods are divided into two major 

categories: 

(1) Direct search methods are methods which do not 

require the explicit evaluation of any partial derivatives of 
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the objective function in carrying out the search for an 

optimum. They are divided into three· classes: (a) tabulation 

methods, (b) sequential methods and (c) linear search methods. 

(2) Gradient methods include a whole aeries of methods 

which use first order or higher partial derivatives of the 

objective function with respect to the independent variables, 

in selecting the direction of search ~ as defined by equation 

(2.17). 

Several of these methods may be adap~ed so that the search 

is carried out subject to s inequality constraints in the form 

i = 1,2, •••• , 8 (3.1) 

or r equality constraints in the form 

j = 1,2, •••• , r (3.2) 

3.2. Direct Search Methods 

3.2.1. Tabulation methods 

These methods proceed by evaluating the objective function 

at a pre-determined set of points at various intervals in the 

hyperspace of the variable parameters. These points define a 

region within which the minimum 6 is assumed to lie so that 

i = 1,2, ••••• , m 

where Li and Ui are, respectively, the lower and upper bounds 

of the ith parameter. The point giving the lowest function 

value is assumed to be the minimum. 

·Tabulation methods require a large number of function 

evaluations so that their use must be restricted to special 

circumstances. Among methods included are: 

3.2.1.1. Grid method 
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The minimum is approximately ·located by dividing each 

variable parameter into Bi = (Ui - Li) /b intervals \V_~ere 

b is chosen to give an acceptable spacing. The objective 

function is then evaluated at each of the 

M = (B1 + l) (B2 + 1) ••• (Bm + 1) 

nodes of the resulting 11 hYPer-grid 11
• 

(3.4) 

The grid method becomes very useful if the probiem can 

be transformed so that the number of variables is reduced to 

two or three. The method of fitting continental edges 

(Chapter 8) makes use of a two-dimensional grid. It was also 

found that the method provides an efficient way for curve 

matching. The method has, therefore, many possible applications 

in geophysics and has already proved valuable in interpreting 

electric resistivity data (Chapter 7). 

3.2.1.2. Random search methods 

The objective function is evaluated at points whose 

coordinates in the ~ hyperspace are chosen at random. These 

methods have had some geophysical applications in the past, 

usually by generating a series of models by Monte Carlo 

procedure (e.g. Preas, 1968). However, statistical considerations 

snow them to be less efficient than.the grid method (Spang, 

1962). 

3.2.2. Sequential methods 

In its strict sense, the term applies to those methods 

which are based on the evaluation of the objective function at 

the vertices of some geometric configuration in the hyperspace 

of the variable parameters, with an eventual shrinkage of the 

configuration about the minimum. 



With these configurations, sequential methods enJOY a 

powerful strategy in being able to move out of local minima 

that possess higher function values than neighbouring ones. 

They are, therefore, su~ted to problems involving a large 

number of local minima. 

Sequential methods may appear to be an obvious choice 

for many geophysical problems because of their multi-modal 

nature. However, a local minimum with a higher function 

value than a neighbouring one is not necessarily a worse 

solution. Moreover, undulations in the contours of the 

objective function caused by observational errors may be 

largely smoothed out when a form similar to equation· (2.6c) 

is used. Sequential methods are much slower than ma;ny 

linear methods and their choice should, therefore, depend 

on the merit of each individual problem. 

3.2.2.1. The simplex method (Spendly, Hext and Hims·worth, 

1962), modified by Campey and Nickols (1961) and by Nelder 

and Mead"(l965). 

It is a popular sequential method owing to its 

adaptability to suit difficult conditions such as progress 

along narrow valleys. 

Minimisation starts by evaluating the objective function 

Fiat the vertices v1 (i = O,l,2 ••• ,m) of a regular simplex 

in the hyperspace of them variable parameters. 1 Denoting 

those vertices with the highest, next highest and lowest 

1. A simplex is a higher dimensional equivalent of a 
tetrahedron. 
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function V~}UeS by Vh' Vg and Vl respectively, Vh iS 

reflected in the centroid V of the remaining vertices to give 

the new vertex V such that r 

V r V I v-v h = a ( a > o) 

where a is the reflection coefficient. Subsequent 

operations are decided upon in the following manner: 

i) If Fl<F~Fg, Vr replaces Vh and the procedure is 

repeated. 

(3.5) 

ii) IfF <Fl<F , the search is expanded in the direction r g .. 
VhV Vr to the point Ve Which is given by the eXpRnsion 

coefficj.~nt y {y >1) such that 

(3. 6) 

vh is then replaced by whichever of vr and ve possessing a 

smaller function value. 

iii) If Fg< Fr then Vr replaces V11 only if Fr<Fh. In 

either case, a point Vc is located between Vh and V such 

that 

v-;v;v-;:v = p ( o < p. < 1) (3. 7) 

where p is the contraction coefficient. The simplex is 

then modified according to: 

-If Fc<Fh, Vc replaces Vh and the procedure is re-started 

from this new simplex. 

-IfF~ Fh' the mid point between VL and the remaining 

vertices are taken to be the vertices of the new simplex. The 

whole procedure is then re-started. 

Appropriate values of a ,fJ andY are suggested to be 1, 

0.5 and 2 respectively (Nelder and Mead, 1965). The process 

is terminated when the standard deviation of the function 

values at the (n+l) vertices falls below a pre-assigned value. 
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3.2.3. Linear Methods 

These methods carry out the search along a set of linear 

directions. The class includes a large variety of procedures, 

each procedure being more suitable for one type of problem than 

for another although some of them exhibit an ingenious adapt

ability to suit a broad range of problems. 

The alternating variable method: Friedman and Savage 
(1947). 

This is the simplest form of linear methods. A univariate 

search is carried out parallel to each variable parameter axis 

in turn; a change to the next axis is not made until a minimum 

has been located along the current axis. 

Unless the .'p~oblem happens to be well-scaled, the progress 

towards the minimum, ·after the first few iterations, follows a 

slow zig-zag path and the method usually breaks down by local 

convergence. It cannot, therefore, be recommended for general 

geophysical purposes although its simplicity has attracted some 

geophysical applications in the past (e.g. Bullard et al, 1965) 

Pattern search method (Hooke and Jeeves l96l) with 
subsequent modification by Wood (1962). 

This method attempts to align the direction of search with 

the general trend of the objective function. The search starts 

at some initial point B1 by changing tbe parameters one at a 

time, the parameter xi being perturbed by an amount di. If 

this results in a lower function value the new point replaces 

the current point and the parameter xi+l is then considered. 

Otherwise, -di replaces di and the function is evaluated again. 

If this move also fails, the current point is unchanged and the 



parameter xi+l is considered. When all parameters have been 

considered a stage of exploratory moves is completed and the 

final point B2 becomes the new base. In general, if a move 

from Bj to Bj.+l results in a lower function value, a pattern 

~ is made to the point 2Bj+l - Bj from which another set 

of exploratory moves is made to give the new base point 
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Bj+2• If the exploration fails to find a lower function value at 

Bj+2 ' the exploration ~s re-started from Bj+l itself. When all 

explorations about a base Bk fail to find a lower fUnction 

value, di is reduced and the process is re-started from Bk. 

Converge~ce is assumed when di have been reduced to a pre

assigned value. 

The method is speedy and efficient when the minimum lies 

in a valle~ with only slight curYature. Its efficiency stems 

from its ability to treat straight valleys· as a one-dimensional 

case, thus reducing the effective dimensionality of the problem 

(Wilde, p.l45). It has many possible applications in geophysical 

interpretation particularly in cases where the function is not 

very complicated. 

3.2.3.3. The method of rotating coordinates (Rosenbrock, 1960) 

The search is carried out parallel to a series of mutually 

orthogonal directions which are rotated at the end of each 

search stage so that the first of the new directions lies in 

the direction of total progress made during that stage. This 

rotation renders the method extremely flexible in following 

the general trend of the objective function in a fashion 

similar to, but much more powerful than that of the pattern 

search. 



Starting from some initial point ~' each variable 

is usually perturbed independently so that the search 

directions of the first stage are parallel to the coordinate 

axes of the variables. Denoting the i~n direction vector 

at the jth stage by ~i and its respective step-length by ei, 

the search starts from the current point by perturbing along 

each direction by ek Clc::l, 2, •••• , m). If the perturbs tion 

succeeds in finding a function value which is not larger 

than the current value, the current point is replaced by 
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the new point, ek is multiplied by a (a >1) and the direction 

k+l is considered. Otherwise, the perturbation is·a failure, 

the current point remains unchanged, ek is multiplied by 

-b .. · (b < 1) and the k+l ttl direction is also considered. When 

all m directions have been perturbed the cycle is repeated 

starting from the first direction. The process goes on until 

a success followed by a failure has occurred along all m 

directions. This marks the end of a stage. The next stage is 

started by defining new direction vectors in the following 

manner: 

The vectors ~1 , ! 2 •·······•Am are defined by 

!1 = L (3. 7) 

k=i 
where uk is the algebraic sum of all successful ek steps 

during the jth stage. Thus ~ represents the total progress 

made during the jth stage. The direction vector is obtained 

by normalisation. Thus, 

~j+l =~I (~I 
1 

(3.8) 



The mutual orthogonality of the remaining directions is 

re-established using the Gram-Schmidt orthogonalisation 

procedure (Wilde, 1964, p.l55) which is summarised in the 

equations. k-1 

~k = ~- ·~ . (A. nj+l ) Dj+l L --K. -1 -1 (.3. 9) 
i=l 

(.3.10) 
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The search starts now along the new directions from the 

current point and the whole process is repeated. Convergence 

is assumed when ~ falls below a specified limit for several 

consecutive stages. The search may also be terminated after a 

certain number of function evaluations. 

Since its introduction by Rosenbrock (1960) the method has 

claimed wide popularity in various fields of industry. It is 

rtrbust .... and will successfully handle many ill-conditioned 

problems. The rotation of coordinates attempts to orientate 

the search directions so that they are locally the most 

favourable both for following very curved valleys and for 

reducing the difficulties from badly scaled problems. It also 

enables the search to move out of ill-defined local minima • . 
These properties give the method a wide field of application 

in geophysics. The main disadvantage in the method is that it 

is,on the whole, slower than methods which make a direct use of 

equation ( 2. 9) • 

.3.2.3.4. The modification of Davies, Swann and Campey 

Box et al (1969, p.27) describe a modification of 



Rosenbrock 1
6' method aiming at speeding up the computation and 

overcoming certain orthogonlisation difficulties. 

The first aim ia·achieved by carrying out a linear search, 

equivalent to the univariate search of Davies, Swann and Campey 

(section 2.6), only once along each direction instead of 

perturbing cyclically several times at eacb stage. 

Difficulties with orthogonalisation arise when some·of the 

uk in equation (3.7) happen to be zero resulting in linear 

dependance between the search directions. These conditions are 

very unlikely to occur (Rosebrock, 1960) but if they did then 

the orthogonalisation process would fail. The procedure is 

therefore modified so that only those vectors associated with 

non-zero uk's are orthogonalised. Box et al then show tbat the 

orthogonality of the system remains unimpaired and the second 

aim is thus fulfilled. 

3.2.3.5. Poor man's optimiser 

Tbis method is fully described by Wilde (1964, p.l55). It 

is based on techniques similar to the method of alternating 

variables (section 3.2.3.1) but the current base point is found 

by averaging or interpolating between two points possessing the 

lowest function values. 

It is claimed to be well suited for curved valleys and may, 

therefore, be of some use in geophysics. However, its sluggish 

progress makes it a poor substitute for the method of rotating 

coordinates. 

3.2.3.6. Powell's method (Powell, 1964). Procedure P 303. 

Methods which are based on the quadratic behaviour of 



the objective function are of considerable interest because, 

as soon as the search reaches a region where the behaviour is 

essentially quadratic, the minimum is attained rapidly by 

quadratic convergence. Most of these methods, however, are 

gradient methods. The conjugate directions method of Powell 

is, therefore, very useful in that it does not require the 

evaluation of any derivatives, yet it enJoys most of the 

basic advantages in these methods. 
D 

In its simplest form the method starts by setting m 

search directions in the hyperspace of m variable 

parameters, the ith direction of the jth stage being denoted 

by ni and with the direction of the first stage parallel ·to 

the original mutually orthogonal coordinate axes. 

At stage j and starting from a base point ~· a linear 

search.using Powell's algo~ithm (section 2.6) is carried out 

along each search direction in turn. When a minimum is located 

at point &i along nf, x1 becomes the''starting point for the 

search along D~ and so on until all m directions have been 

searched and &m located. The direction D is now defined 

by ~- ~ and a linear search along it locates the new base 

point ~j+l from which the search starts at the (j+l)th stage •. 

D is added to the end of the list of directions and the first 

direction is discarded so that 

Dj+l Dj+l Dj+l Dj Dj Dj D (3 11) 
-1 , ~ , •••• , -m = -2'-3'···•-m,- • 
For a quadratic function, Powell demonstrates that, by 

choosing D in this manner, the m search directions become 

mutually con~ugate1 after m stages. The method is, therefore, 

quadratically convergent. 

1. Two directions Di and Qjare said to be conjugate with respect 

to the linear operator H if QiH ~j = O, (itj). 



This simple procedure may occasionally choose nearly 

dependant directions. In extreme cases, some directions 

could become pemanently lost and the resulting directions do 

not span the whole space. Powell's method incorporates further 

modifications to overcome these problems. 

Convergence is assumed when the change in every variable 

at successive stages has fallen below 10% of the required 

accuracy. The method does not have provisions for the use 

of constraints. Therefore, its use in multi-modal problems 

may not always be desirable. 

3.3. Gradient Methods 

These methods are based on approximating the behaviour of 

the objective function by the first few terms in equation 

(2.7). Hence, they use the first or higher order partial 

derivatives of f'(A) witn respect to xi(i=l,2, •••• ,m) to 

determine the searcn direction. In comparison with direct 

search metnods tney are generally much faster and can also 

handle many more variables. However, tney are quite sensitive 

to curvatures and local gradients so tnat the search could 

terminate by local convergence wnen the particular function 

happens to nave many ill-defined looal minima. Moreover, 

approximating the behaviour of the function by a truncated 

Taylor series may be very unrepresentative espec1~lly in 

regions which are far from the solution(s). These features, 

combined with the frequent difficulty in providing the 

derivatives analytically, can reduce the extent to which 

gradient methods may be recommended to solve a given 

geopnysical problem. 
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3.3.1.1. The method of steepest descent (Cauchy, 1847) 

This is the simplest gradient method and is basea on a 

local linearisation of the objective fUnction by neglecting 

the second order and higher terms in equation (2.7). Thus, 
m 

f'(6 + ~) = f'(~) + I : ~ ...... (x) 
J=l J 

(3.,12) 

which in our matrix notation becomes 

f - ro = Q '.§ (3.13) 

where the prime indicates matrix transposition 

Equation (3.13) shows that, for a 1'ixed magnitude of'! , 

the greatest reduction in the function value takes place in 

the direction of' -Q, hence the name steepest descent. This 

direction is locally orthogonal to the contours since 

f' - fo = 0 when ! is orthogonal to Q. 

The search direction Qi at the ith iteration is obtained 

from the normalised gradient vector at the current point ~i. 

The search for a minimum Ai+l in this direction is then carried 

out linearly or by using a constant ste~length. &i+l then 

becomes the current point and the process is repeated until 

a minimum is located with the required accuracy. 

The neglect of the higher terms in equation (2.7) imposes 

severe drawbacks and, although the vector G provides the 

direction with the greatest !'unction change, this effect is only 

local and the direction of steepest descent does not in general 

coincide with that leading to the minimum. Consequently, 

although the initial stages may attain large reductions in the 

function value the progress towards a solution would generally 

take a zig-zag form, becoming gradually slower or terminating 



by local convergence. 

This situation has inspired the design of several 

variations from the basic scheme. Booth (1957) has suggested 

starti.ng each new iteration from some point other than the 

minimum in the ourrent direction. Marquardt (1963), on the 

other hand, starts the search in the direction of steepest 

descent but gradually changes to that given by the least 

squares procedure (see section 3.3.1.4). However, owing to 

the linearisation of the Taylor series expansion, steepest 

descent and its modifications remain essentially of little 

promise in tackling but the simplest forms of functions. 

Several alternatives are now available (e.g. Davidon's method) 

for solving geophysical problems. 

3.3.1.2. Newton-Raphson method 

It is clear that the next step in gradient methods 

is to include the second order terms of equation (2.7). The 

inclusion of the second order derivatives is quite basic 

since all informations relating to the curvature of the 

function are usually essential in leading to the optimum. 

All first and second order partial derivatives of the 

objective function are assumed to be available at the current 

point ~· If the minimum is at e + i then differentiating 

the objective function with respect to ~-k and equating that 

to zero, we obtain from the truncated equation (2.7) 
m m 

~f(;!) ar(x + i) = 0 a r. (;,) +~I a2 r(,;) 8 +iJ: = 
a 8k a x a a i oxia~ 

k i=1 
x1 x k 

k = 1,2, •••..•• ' m (3.14) 

which, in view of the symmetry of the Hessian matrix, may be 

simpli~d to give 

8 
k 



a2f(x) a 
a a i, k = 1,2, •••• ,m xi xk 

(3.15) 

or in our matrix notation 

(3.16) 

lis obtained by solving them linear equations for them 

unknown 6 i' s and the iterative move 

~+1 = ~ + i (3.17) 

is then made. 

The method is quadratically convergent since if f were 

quadratic, equation (2.9) would be an exact representation and 

the minimum would be attained in one move. Obviously,~ this is 

seldom the case and an iterative process is usually necessary 

for locating the solution. 

The progress towards a minimum is only ensured if the matrix 

of the second order derivatives, H is positive definite and if 

the quadratic approximation is not grossly violated. These 

conditions are, generally, satisfied in the vicinity of the 

minimum but are not guaranteed if the initial estimates 

happened to be far from the solution. 

Further obstacles are presented by the frequent difficulty 

in providing the second order partial derivatives of the 

objective function analytically a_nd by the necessity to solve 

the m linear equations at each iteration. 

P~st geophysical-applications of the method are not 

uncommon (e.g. Vosoff, 1958). However, it is not recommended 

for general use in geophysics owing to its many drawbacks. 
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3.3.1.3. Davidon's method (Davidon, 1959), refined by Fletcher 

and Powell (1963). Procedure P306 

We have seen that, away from the minimum, the method of 

steepest descent usually achieves a rapid reduction in function 

value whereas the efficiency of Newton-Raphson's method is 

restricted to the neighbourhood of the minimum. The success of 

Davidon's method has largely depended upon making use of both 

features, starting initially as steepest descent and changing 

gradually to Newton-Raphson, as the optimum is approached. 

The basic iterative procedure of Davidon's· method is 

(3.18) 

where M is a symmetric matrix which must be positive definite p 

and where hp is the required step-length, from the current 

point, to locate the minimum along the direction 

D = M G -p p-p (3.19) 

Starting with a unit matrix so that the first move is in 

the direction of steepest descent, M is updated at every 

iteration such that it would continually and increasingly teod 

to H • M is updated using values and first derivatives of the 

objective function and, as H is approached, the later stages 

become essentially a Newton-Raphson procedure. In the 

essentially quadratic neighbourhood of the minimum, the latter 

is attained in one move, i.e. the method is quadratically 

convergent. In this way, not only the main objectives of the 

method are realised but, also, the need for providing a matrix 

of second derivatives is completely avoided. 



At the end of the ptn iteration wnen ~+l nas been 

located, f(~+l) and ~+l are evaluated. M is then updated 

by setting the matrix 

M+A +B p p p (3. 20) 

where, if we denote ~+l _ ~ by·~ and -nPMP~ by 9p tnen 

A p 

and 

= Y y' I y' d 
-p-p -p -p 

I I 

B =-MYY .M/X:UY p p-p-p .. p -p p-p 

(3. 21} 

(3. 22) 

Fletcher and Powell (1963) demonstrate that AP ensures that 

the successive M matrices converge to g-l while B ensures 
p p 

that the successive Mp+l remain positive definite. Consequently, 

this form of updating results into an extremely effective matrix 

which adapts itself to suit various situations. The process is 

repeated until convergence. 

The difficulty of providing first order partial derivatives 

of the objective function analytically can be a major task. 

However, S~~wart (1967) tlas presented a method for use in 

conjunction with Davidon's method whereby the first order 

partial derivatives are calculated numerically. Stewart's 

method is claimed to be very successful and should provide a 

much needed sophistication to an already powerfUl optimisation 

method. 

Davidon's method is one of the most efficient optimisation 

methods but, suffers from the drawbacks of gradient methods 

mentioned earlier. This causes many difficulties in the 

general use of the method. Its application in many magnetic 
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and gravity problema fails when the initial estimates in the 

e hyperspace are far from the region containing satisfactory 

solutions. The failure is usually due to the vanishing of all 

the first partial derivatives of the objective function at an 

ill-defined local minimum (A.K. Datta, private communication). 

On the other hand, its progress in the relative absence of 

ill-defined minima or when the initial estimates are close to 

a solu~ion, is extremely rapid. In general, however, if the 

objective function is not essentially unimodal, an efficient 

use of the method may have to be restricted to the later 

stages of the search. 

3.3.1.4. The method of least squares 

The formulation of the method is attributed to Gauss 

(Wilde and Beightler, 1967 p.299). As the name indicates, the 

method is only applicable 
n 

--\ 2 1'(~ G ei 
i=l 

to functions o:f' the :f'orm 

where e(c) is a non-linear function of ~· 

Let ~ 1ei i=l,2, ••• ,n 
~ij = 

j=l,2, ••• ,m 

and define the n X m matrix 

p = [Pij] 

and the vector 

el 
e2 

! = • 
• 
• 
e 

n 

(3. 24) 

(3. 25) 

(3. 26) 



Differentiating f(~) with respect to xj gives 

'df(x) 
2 t ei ()ei 

'Ox~ = 
i=l 'Oxj 

(3. 27) 

whicn in matrix notation becomes 

I 

Q; = 2PE (3. 28) 

Gauss noticed that if e1 (~) were all linear functions of 

~ tnen the matrix P does not change from one point to another. 

Tbe gradient at the minimum ~ + ~ is tben approximated by 

(3. 29) 

An approximation for ! is obtained from tne truncated 

Taylor expansion about ~ 
I 

! (~ + !) ~ !C~J + ~E~x) i 

~ !(~) + p ~ 

Since the g~~dient vanisnes at the minimum, equation (3.29) 

becomes 
I 

0 = 2 P (E + P l) (3.31) 

which gives 

,! = -(P' P J-lp' E (3.32) 
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When ei(~) are linear in~ the procedure is exact and the 

minimum is attained in one move. This is equivalent to a linear 

regression in statistics. However~ for non-linear fUnctions, 

an iterative procedure where ~k+l replaces ~k+!k' is usually 

necessary. 

The method is widely used in various application including 

geophysics (e.g. Corbato, 1965). 
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However, the linear approximations involved in the assumptions 

render the method rather inefficient. When the initial point 

is remote from a solution and the quadratic approximation is 

poor, the procedure behaves erratically and the search will 

usually fail altogether (Wilde and Beightler, 1967, p.302). 

Marquardt (1963) suggested a method which modifies 

equation (3.32) to 

(3.33) 

where I is an m x m unit matrix and ~ is an arbitrary constant 

(~ ~ 0). .When A= 0, equation (3. 33) reduces to the Gauss 

procedure. For very large A , equation (3.33) becomes 

so that the required excursion is in the direction of steepest 

descent. 

Marquardt suggests using a large A at the initial stages 

where steepest descent achieves a rapid reduction in the function 

value. The changeover to Gauss method is achieved by 

progressively reducing A as the solution is approached. 

Johnson (1969) used Marquardt procedure to interpret 

linear and non-linear magnetic problems. 

This procedure is probably the best modification of 

steepest descent and least squares but appears to be inferior 

to Davidon 1 s method which makes use of the second order 

properties of the ObJective function. 

3.4. Constrained Optimisation 

The description is now extended to problems subJect to 

constraints in the form of equations (3.1) or (3.2). Both 

t (&) and q(~) may be lineur or non-linear in ~· However, 
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constraints in geopnysical work are usually some upper or lower 

bound on eacn variable parameter serving as a guard against 

geological or pnysical unfeasibility. Tne constraints will, 

therefore, be of a very simple form. 

For illustration, consider an example where the depth, 

defined by xk' to some magnetically anomalous body is known 

to be greater than z kms. Expressing this as 

xk - z > 0 (3. 35) 

gives the inequality constraint tk(xk) > 0. 

In view of this simplicity, it is more useful to briefly 

discuss the broad outline of the general case, which is usually 

non-linear, and to detail only those points which are of 

direct interest. 

3.4.1. Variable transformation (Box, 1966). 

The simplest approach to constrained optimisation is to 

transform the variable such that the constraints are removed 

from the formulat-ion of the problem. · An uncons.trained 

optimisation may then be carried out. The general method is to 

express the variable xk in terms of a second variable which, 

when used unconstrained, will not violate the conditions 

imposed on the problem. 

Consider, for instance, the example given in equation 

(3.35). Writing 

xk = z + 'yk' 

or 

xk = z + 2 
(3.36) yk 

or 

xk = z + eYk 
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reduces the problem to finding the optimum with respect to 

the new variable yk. Suppose that it was turtner required 

that tne depth xk should not exceed Z kms, i.e. 

Z > xk> z 

Tne transformation may then be achieved by 

xk = z + (Z - z)sin~yk 

with yk' in equations (3.36 and 3.37) being completely 

unconstrained. 

There are several methods for transforming variables, 

following tne same general idea. Tne pr1ncipal advantage of 

varia·ble transformation is that it is directly applicable to 

the type of simple '· constraint usually encountered in 

geophysical work. However, it becomes of_ little use when 

tne constraints are more complex in which case one of the 

methods considered below would become necessary. The method 

bas also other disadvantages. The -transformation is often 

tedious and introduces the risk of human error. Tne increased 

complexity of the new variables causes a further disadvantage 

where the derivatives with respect to the variable parameters 

are to be furnished. 

For geophysical purposes, however, the method of variable 

transformation is, probably, the best first aid tre~tment of 

constraints and is often also one of the best final treatments. 

3.4.2. Direction Modification 

The cofistrained problem may also be treated by changing 

the direction of search when a constraint is encountered. 

The main disadvantage of such methods is that when t 1he 

·--



constraint is highly non-linear, many direction modifications 

may become necessary, involving a large number of computations. 

3.4.2.1. Riding the constraint : Roberts and Lyvers (1961). 

This method assumes that when a constraint is violated 

along the direction of search the true minimum for a unimodal 

function must lie on the unfeasible side of the constraint. 

The search will, therefore, follow that constraint and not 

leave it at any subsequent stage. The increments chosen in 

following the constraint depen·d upon the partial derivatives o:t' 
:.""'; 

the constrained function with respect to the variables. The 

progress can be very slow for very non-linear constraints. 

3.4.2.2. Hemstitching : Roberta and Lyvers (1961). 

In ita original form, the method is only applicable to 

search by steepest descent. When a constraint is violated, 

a step is taken back into the feasible region in a direction 

locally orthogonal to the constraint. Thus, by moving into 

and back from the unfeasible region, the progress assumes a 
.. 

pattern that justifies the name. 

Difficulties arise ih relocating the feasible region when 

more than one constraint is violated. Certain modifications 

succeed in overcoming such difficulties but the method still 

suffers from the poor convergence properties of search by 

steepest descent (Box et al 1969 p.47) 

3.4.2.3o Davidon's method with constraints 

Davidon (1959) suggested that his method is applicable 

to problems involving linear equality constraints by reducing 

the rank of the matrix M defined in equation (3.20) by the 
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number o~ active equality constraints. If during the 

optimisation process it happens that better progress will be 

made by relaxing a certain constraint, the rank o~ M must be 

increased by 1 using a certain recurrence formula. When 

inequality constraints are involved, the search is carried 

out unconstrained until an inequality constraint.is violated. 

Tnis is th~treated as an active equality constraint and the 

process continues as before. 

Non-linear constraints in Davidon's procedure may be 

treated using the method of created response surface (section 

3.4.3.). Davies (1968) also extends the method of handling 

linear constraints described above to treat ~nctions subject 

to inequality constraints by incorporating techniques based 

on hemstitching. 

3.4.2.4. The 11 Complex" method (Box, 1965). Procedure 301 

This is a modification o~ the simplex method described 

in section (3.2.2.1.) where the term 11 coroplex11 refers to a 

s-implex in a- constrained problem. The complex is constructed 

as follows: 

An initial point is given in the ~easible region, i.e. it 

satisfies 

i=l,2 ••• ,m,m+l, ••• ,L· 

where the implicit variables ~+1 , ••• ,xL are functions o~ the 

independent variables x1 ,x2 , ••• ,~. .li and ui are lower and 

upper limits respectively and can be constants or functions of 

xl' • • • '.x:..n· 
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The remaining k-1 (k ~ m) vertices of the complex are 

constructed in the following manner. A point is generated 

with coordinates 

j = 1,2, ••• ,m (3.39) 

where the random numbers rj lie in the interval Q-1 so that 

the explicit constraints cannot be violated. If this point 

violates an implicit constraint, it is contracted towards the 

centroid of the points already selected. The process is 
";) 

repeated until all_ vertices have been generated. The search 

is then carried out by methods similar to those described 

in section (3.2.2.1.). Whenever a constraint is violated the 

relevant vertex is moved back into the feasible region along 

the same expansion line. 

k = 2m is recommended but may be too large form> 10 

(Box et al, 1969, p.53). 

3.4.3. Function modification 

With this technique, the function is modified at the 

constraints such that a minimum can always be found within 

the feasible region. Consider, for example, a modification 

of (c) so that the problem is to minimise 

F(~) = f(c) + Lwi t~ (c) (3.40) 

where ~he summation involves only those ~onstraints that 

have been violated and where Wi is an appropriate weight 

and ti is defined in equation (3.1). The constraint is then 

effectively replaced by a 1 hill' whose.sides get steeper away 

from the feasible region. The particular form of equation 



(3.40) is not convenient since it could involve fUnction 

evaluations outside the ~easible region. Using the same 

concept, Rosenbrock (1960) and Carroll (1961) suggest 

methods which overcome these di~ficulties. 

3.4.3.1. Rosenbrock's method: Procedure PlOO 

A boundary zone.of width (ui- Li) 10~4 is assumed on 

the feasible aide o~ each of the constraints. The search 

is carried out as in the unconstrained case until a 

constraint is violated in which case the trial is deemed a 
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~ailure equivalent to ~i+i> fi. The basic search procedure 

is then resumed. 

When at any stage, a point ~alls within a boundary zone 

the fUnction f is modified by replacing it by 

F = r- (~- f 0)(3b- 4b2 +.2b3) 

where f 0 is the lowest function value obtained thus far 

outside the boundary zone and where b is the fractional dept~ 

of penetration of the boundary zone. 

At the edge of' the boundary, b = 0 and F = f while at 

the constraint, b = 1 and F • f 0• Rosenbrock (1960) shows 

that for a function which decreases as the constraint is 

approached, this modification creates a minimum witnin the 

boundary zone. Thus, an unconstrained minimum exists for 

some b between 0 and 1. 

While this method of treating constraints is very 

successful in conjunction with the method of rotating 

coordinates (section 3.2.3.3.) it has generally proved less 

ef~ective with other methods (Box et al, 1969,p.50). 
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3.4.3.2. Carroll's method 

Tn~ constrained problem is repl~ced by an unconstrained 

procedure using L 

F(A, W) = f(~) + W ~ 
1= 1 

w 
i· 

wnere W and wi are positive constants. 

(3.42) 

As tne constraint is approached, ti tends to zero and 

the fUnction becomes extremely large. Tbus, an unconstrained 

minimum of F(~,~ is produced in tne feasible region. In tbe 

actual application, each wi is initialised to zero until tne 

respective constraint is violated wnen wi assumes its specified 

value. W is reduced at each of the successive optimisation 

stages. Tnis finally results in convergence to tbe true 

minimum of the feasible region (Davies, 1968). 

Carroll's created response surface technique bas been 

applied successfully to many unconstrained algorithms, 

particularly in conjunction witn Davidon's method (Davies, 

1968). 

3•5.Conclusions 

The use of the methods of steepest descent, Newton

Rapbson and least squares bas been traditional in tne solution 

of non-linear problems, in various branches of scie.n-ce 

including geophysics. This is because tney nave nad an 

unrivalled monopoly from tne time of their introduction 

until the advent of digital computers. Tne methods of 

alternating variables and random search have also.nad a wide 

range of application. However, all these methods are 



relatively slow and suffer from severe drawbacks which 

make them unsuitable to meet the demands of geophysical 

problems except on a limited scale. 

More recent elaborations, e.g. Davidon's method, use 

a combination of the good features of some of these methods 

.so. 

and have generally proved quite successfUl. However; gradient 

methods are v~ry powerful only in an essentially unimodal 

region and seem to break down when applied to problems which 

are rather ill-conditioned. --The slower but more ro~bust' 

direct search methods enjoy a superior strategy with multi

modal functions. 

The rule in treating most geophysical problems is to 

start the initial search stages using a direct search method 

and to change to a gradient method at the later stages when 

the search has converged to an essentially unimodal region. 

This usually corresponds to equation (2.9) becoming a closer 

representation of the behaviour of the objective function. 

The objective functions encountered in gravity and ma-gnetic 

problems are typical of the fUnctions which qualify for this 

kind of approach. 

However, within the general principles outlined aoove, 

the choice of the particular optimisation method is not very 

critical. Fleischer (1965) comments on this by quoting 

J.D. Williams in the book the Compleant Strategyst ''As with 

all models of performance, the shoe has to be tried on each 

time an application comes along to see whether the f!t. is 
I 

tolerable; but, it is well known, in the Military Establishment 

for instance, that a lot of eround can be covered in shoes that 

do not fit properly." 



CHAPTER 4 

AN INVESTIGATION OF NON-UNIQUENESS IN GRAVITY AND 

MAGNETIC INVERSE PROBLEMS 

,4.1. Introduction 
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Ambiguity in tne solution of gravity and magnetic problems 

is a well established fact. We shall, in this work, view tne 

problem of ambiguity through a number of factors wnicn most 

significantly contribute to it. Each factor is dealt with 

separately since a combined treatment would tend to confuse 

tne picture. These factors are: 

I) Potential theory considerations snow tnat a given 

gravity (or magnetic)anomaly on some plane H may be produced 

by an infinite number of possible solutions below H, down to 

a certain depth (see, for example, Skeels, 1947; Parasnis, 

1962, p.46). Tne solutions usually involve non-uniform density 

distributions and· no particular restrictions regarding the 

shape of the anomalous body. This factor imposes an inherent 

non-uniqueness but may be seve-rely li-mited by using certain 

· restrictive conditions which we snall give later. 

II) Incomplete knowledge of tne full length of the anomaly 

is a factor which is a direct result of our practical 

limitations. 

III) The geological setting is invariably represented by 

models wnicn are substantially simpler. Tnis factor results 

into a number of models, all satisfying the observed anomaly 

to within an acceptable· range but each, individually, 

emphasising a certain aspect of the anomalous feature. 

A turtner related point is the lack of adherence to the 
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conditions assumed by the model. A familiar example is the 

use of two-dimensional models to interpret anomalies which 

are only approximately two-dimensional. 

IV) Observational errors resulting from measurement, 

reduction etc. are always present on field anomalies. This 

factor causes a multitude of possible but widely differing 

solutions that approximate the observed anomaly within the 

amplitude of the errors. 

Other factors in ambiguity are less general and will be 

dealt with when encountered, as appropriate. 

For the sake of simplicity, all investigated cases are 

two-dimensional but an extension of the result~ to three

dimensional cases should follow in a general way. cit is 

also more convenient to present the problem using mostly 

gravity anomalies although most cases below have been verified 

to be true for magnetic problems as well. 

The anomaly is assumed measurable at each point (x,O) 

along the horizontal x-axis in .a Cartesian system· with the 

z-axis pointing vertically downwards. 

The following conditions have been assumed for the 

anomalous body and for the model representing it throughout 

this investigation: 

1. They are bounded by a finite number of straight 

sides so that they are both of a polygonal cross-section. 

2. They have a uniform, not necessarily known, density 

(or magnetisation) contrast with a uniform surrounding medium. 

3. Any line vertical to the x-axis will not meet the 

Qounding surface more than twice. The absence of cavit~es is 
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an important implication of this condition. 

These conditions are usually quite adequate geologically. 

The use of polygonal models has been adopted in most 

interpretational procedures since the introduction of the 

general method by Talwani, Worzel and Landisman (1959). Tbe 

conditions imposed here do not, therefore, represent any 

deviation from an established routine. They have, for our 

purpose, the further advantage of completely overcoming the 

effect of factor I as will be shown in the next section •. 

4.2.The Case of Exact Models 

A hypothetical case is now considered where factors 

III and IV are assumed absent. The N-sided anomalous body 

can, therefore, be exactly represented by a model. 

Consider the case where the anomalous pOlygon has a 

density contrast ei With the surrounding medium. Using a 

formula given by Heiland (1940, p.l53) for a semi-infinite 

step-model, the gravity anomaly at the k th point is then 

given by 

N L2j 1 x2. -ek -1 xlj -~k k ~= (2GR - J zlj tan z2 - tan zl 
1 j ' j 

-lx13 iIi sin i 
(x2 -~) 2 + z~? 

s~.n i + zlj log j j cos 
(xlj -~) 2 ·:'2 

+ Zl .. j 

J 

+ cos i (tan-1 x2
j - ~k - tan-1 

z2j 

xl j - 2;k ) j ) 
zlj 

(4.1) 

where G is the gravitational constant, x1 3, zlj, x2j, z2j are 

the-coordinates defining respectively the top and bottom 

L 



corners of the j th semi-infinite step-model. ~k is tbe 

x-coordinate of the k tb anomaly point and may assume any 

value between -OOand +00, and 

i = sin-1 [ (x2j-xl 3)/ l (z2
3
-z1

3
) 2 + (x2j-xlj) 2 l i] 

Simplifying we write 
N 
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. ~ = 2Gp1~ T;lk (k = 1, 2, •••••• , - ) (4.2) 

I 
A second N - sided polygon of density contrast p 2 will 

produce I 
N 

~ = 2Gp 2 r, (4.3) 
j=l 

I 

Tbe values of ek Whic~ Will satisfy ~=\are. given by the 

roots of the equation 
I 

5; ·N, 

pl ~=1 ~ 
I . 

~ 2 I = T~k I Tjk ·. (4.4) 
j=l 

For any particular ratio P2/ P 1 = R-,- equation (4. 4) is 

reduced to 

I 

Tjk = 0 (4.5) 

I 

In order tbat A = A for each and every l; k' equation 

(4.5) has to be similarly satisfied for each and every ~k. 

A sufficient condition is the trivial case where 
I 

N = N 



By referring to equation (4.1), it may be readily 

conjectured that equation (4.5) will not be otherwise 

satisfied for all possible values of ~ and the implied 

geometrical considerations lead to the conclusion that the 

solution is unique. 

However, a rigorous mathematical proof that equations 

(4.6) are the only conditions that satisfy equation (4.5) 
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for all possible values. of 2; , is obtaina·ble by showing that 

the harmonic continuation of the second derivative of some 

complex function of the external gravity field is singular at 

each corner of the N-sided polygon (R.A. Smith, private 

communication). This means that a second N-sided polygon 

producing exactly the same external field will necessarily 

have all its corners coincident with those of the first 

polygon. 

For N' > N, the above results are still obtainable since 

this simply implies that the extra N' - N sides will define 
-

co-linear segments on one or more of the sides and no extra 

corners will appear. However, an exact solution of an 

anomaly caused by an N-sided polygon is unobtainable if the 

solution is represented by an N' - sided polygon, when N'< N. 

This is the main cause of factor III and is discussed more 

fully in section 4.4. 

The applicability of our conclusions were tested using 

non-linear optimisation techniques. We set up a Euclidean 

hyperspace defined by M mutually orthogonal axes where M is 

the number of parameters (including density contrast) that 

represent the polygon. The objective function is then defined 



by 

{4. 7) 

where ~ is an M-dimensional vector representing the parameters 

defining the model, n is the number of observation points and 

Sk is the calculated anomaly of a polygon defined by ~· 

The search is carried out using an anomaly A due to a 

polygon defined by ~· When starting from an arbitrary initial 

point ~i the search ends either at £a or at some local minimum 

for which F{~) > o. The practical aspect of the facts 

established above is hence verified. 

Therefore, under the conditions imposed in section 4.1, 

factor I is entirely removed and, in the hypothetical absence 

of the other factors, the solution is unique. No coordinate 

or density parameter need be specified. 

The case_of regular polygons is of particular interest. 

Let us start by considering the gravity anomaly A due to an 

equilateral triangle with radius r 0 and density contrast P 0 
and wit~ its centre1 at the point x0 , z0• One apex is made 

to point vertically upwards in order to unify the aystem of 

orientation when compared with other regular polygons. 

The objective function is 
n 

F(r,P ) = ~ (Ag - sk)
2 {4.8) 

where Sk is the calcula_ted anomaly due to a regular triangle 

with the same orientation and with its centre at x0 , z0• 

F{r, p ) is mapped for the ra·nge 0 < r< z0 anq for the 

1. The radius and centre of a regular polygo_n refer to those 
of the ascribing circle. 
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corresponding range of P that would result in the same 

mass/unit length as the triangle at r 0 ,P 0 , (Hlg. 4.1). 

This range of mapping is sufficient to show the behaviour 

of the objective fUnction over all feasible possibilities. 

Fig. 4.1 shows the unique solution at r 0 , f 0 distinctly 

situated along an axis of low values or a 1 trough 1 • All 

points along the middle of this trough have tbe same 

mass/unit length as the triangle at r 0 , P0• 

F(r,p ) is similarly mapped for a square (Fig 4.2) 

and a hexagon (Fig 4.3). The uniqueness of solutions is 

again clearly demonstrated in both cases. However, the 

increase in the number of sides is accompanied by a rapid 

increase in the length of every contour in the trough 

containing the solution. As N continues to increase and the 

body asymptotically approaches a circular cross-section, the 

trough stretches further and uniqueness becomes acceptable 

only if computer truncation errors are allowed for. At N = 00, 

it is clear that, even down to zero to:J,;erancE;', all points 

(r,P) having the correct mass/unit length provide a solution 

and the ·case ~ecomes completely non-unique. 

Similar experiments on other geometrical shapes, such as 

ellipses, do not show any ambiguity as N is increased. The 

observation is, therefore, not related to employing a large 

number of aides to define the model, a factor whose role will 

be explained more fully in section 4.4. 

These results are of fundamental importance for they show 

that the widely advocated use of a horizontal cylinder (or a 

sph~re) to illustrate basic amb:igui ty is unre;presentative since 
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as we have seen, a circular cross-section is a singular case 

in a problem in which the solution for a polygon is unique. 

However, for practical purposes, where exact 

representation and measurement are not possible, this would 

show that bodies which approximate a cir.cle in cross-section 

cause more ambiguity than those which deviate from such 

shapes. It is possible that other shapes causing a similar 

amo1guity may exist although our limited investigation of 

this possibility was inconclusive. 

4.3. Influence of Anomaly Length and Number of Points 

The range of n in a given objective function should, in 

theory, include all points ( ~ , 0) and should extend to 

infinity on both sides of the model. In practice, the 

limitation is two-fold. 

1. The anomaly is usually known only for a finite range 

because of the influence of neighbouring anomalies. 

2. The measurements are usually made or digitised at 

a fin.ite number of discrete points. 

The effect of the two limitations was studied by mapping 

the objective function in the parameter hyperspace. 

When the length of the profile gets smaller but is still 

sufficient to extend on both sides of the model, only the 

sharpness of definition of the solution at ~ is reduced; 

So is now a vector defining a general po~ygon which causes 

the anomaly, i.e. the global solution. As the profile is 

shortened further, new minima in the hyperspace begin to 

appear rapidly and new solutions become, therefore, 

accep~able within some tolerance. 
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The second limitation similarly influences the sharpness 

of definition of the solution at £o when the density of the 

observation points is still sufficient to describe the anomaly 

adequately. When the density of points decreases fUrther, new 

solutions also appear but, generally, less rapidly than in the 

first case. However, the appearance of new solutions is such 

that many of them develop in.feasible regions quite remote 

from that containing 2o• Hence, a batholitn•like structure 

may satisfy an anomaly caused by a basin-like structure 

(Fig. 4.4). This is probably related to the inaccurate 

definition of the higher derivatives of the gravity profile 

as the density of points decreases; the second derivative 

has already been suggested as a criterion to distinguish 

basin-like structures from batholith-like structures (Bott, 1962) 

Unless otherwise suggested, it will be assumed in the 

subsequent text that a finite but sufficient length of the 

profile, with a sufficient number of poi"nts, is being 

considered. 

4.4,Model Approximation 

4.4.1. A~_qU;at~ .models 

An adequately representative model is defined as one 

which gives a concise 'summary' of the anomalous feature, 

outlining all its essential aspects. Thus, a model, at its 

best, can be no more than a fairly adequate representation. 

The number of sides defining the anomalous feature, N, is 

never actually known and is frequently prohibitively large 

for an exactly representing model. Moreover, the model 
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assumes straight and well defined contrast boundaries and 

a homogeneously distributed density (or magnetisation). 

Whilst these assumptions are sometimes closely approximated 

when the overall anomalous feature is considered on the 

surface, deviations from such assumptions are common in 

practice. Two-dimensional work suffers from the additional 

drawback that conditions along the y-axis are seldom as 

uniform as assumed. These and other familiar causes combine 

to give rise to the ambiguity discus~ed below. 

Assuming that the number of parameters defining the 

anomalous feature and the model representing it are M and M1 

respectively, an exact solution was shown in section 4.2 

to be unique for N' ~ N and unobtainable for N' <:: N. In 

practice, one is faced with the problem where N'~N and it 

is strictly this situation that we shall discuss now 

(M = 2 (N+l)+l if we include the density contrast). 

The absence of an exact solution results into the 

development of a number of approximate solutions. This is 

more easily visualised by constructing an M' - dimensional 

hyperspace, each of its mutually orthogonal axes representing 

a model parameter. Each solution is then a local minimum for 

which 

O<F(~ <: (J (4. 9) 

where a- is a tolerance limit and F(~) is defined by 

n 

F(,g.) = 2 (~ - sk) 2 (4.10) 

k=l 

2 being now an M' - dimensional vector representing the 
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parameters of the model. S is the anomaly caused by the model 

while A is the observed anomaly. a-· is determined in practice 

by the amplitude of observational errors to be presented in 

section 4.5 but, for the sake of clarity, we shall treat them 

separately. 

There are two distinct roles played by M'. Firstly, a 

large number of parameters on the model is sometimes necessary 

in order to represent tbose anomalous features which do not 

behave as simple bodies. Secondly, when the M' dimensional 

hyperspace is considered, a large M' causes the development of 

a large number of possible solutions. This is due to the 

increased number of possible combinations that would give a 

reasonable fit between A and s. Hence, while a large number 

of parameters can increase representation it can also increase 

ambiguitYo The relative contribution to either factor depends 

upon the particular problem being solved. However, the 

situation is usually simpler in practice due to the decrease 

of the resolving power of gravity and magnetic methods with 

depth. 
-

A large number of local minima may appear in regions that 

a_re geologically unfeasible. We shall assume, h.owever, that 

the hyperspace could be constrained so that we may exclusively 

deal with geologically feasible regions. 

The'solution minima in the feasible region are generally 

clustered within a region whidh would have contained the 

unique global solution had the anomalous body been simple 

enough so that M = M'. The parameters defining these 

solutions are, therefore; of the right order of magnitude, 
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an important statement which will be more accurately 

qualified when the region containing the cluster of minima 

is discusse.d more f'ully. 

Figs. 4.5 and 4.6 show a hypothetical case (only factor 

III being effective) where an anomalous 30-sided body is 

represented by a six-sided model. The orientation of Fig. 4.6, 

parallel to the density contrast axis, is adopted to show 

the effect or not specifying the density contrast and will 

help later discussions. 

The behaviour or the objective function, as revealed in 

Figs 4.5 and 4.6 is typical of its general behaviour in the 

multi-dimensional space. A similar study of a large number· 

of such problems, both real and hypothetical has helped to 

formulate the following: 

i) Minima satisfying F < a are all good solutions. 

Depending on its particular coordinate in the hyperspace, each 

solution emphasises certain aspects of the anomalous feature. 

Minima H and U in Fig 4.5 are examples of su·ch different emphases 

both of which represent satisfactory solutions. 
-

ii) The value of a determines the extent of the region 

containing acceptable solutions. For example, minimum V 

(Fig 4.6) is regarded as a good solution for quite a low value 

of a while minimum W would also become an acceptable solution 

if a is increased proportionately. In this sense a solution 

can no longer be represented by a single point in the 
. . 

hyperspace but has to refer to a neighbourhood of this point 

bounded by a contour of ma~ni tude a • Therefore, the trough 

conta~ning U and H (Fig. 4.5)'~nd that containing U and V · 



(Fig. 4.6) are each a •valley of ambiguity• because for some 

reasonable value of a , all points along these valleys, 

not necessarily in the plane of the diagram, would provide 

a solution. 

The range of acceptable solutions can only extend 

between certain limits determined by the boundaries F = a 

Viewed inve~sely, this means that for each parameter there 

exists a certain range beyond which no acceptable solution 

is obtainable. For example, teats using optimisation 

techniques show that the value of density contrast for 

solution V (Fig. 4.6) is about the limit which an acceptable 

solution could give within that particular a • Figs. 4.5 

and 4. 6 also show that increasing a would rapidly increase 

the extent of the region containing acaeptable solutions. 

A familiar predecessor is the work on limiting depth 

estimation (e.g. Bott a~d Smith, 1958; Smith, 1959, 1960). 

We have used a hyperspace illustration to snow that there 

is in fact a limiting range (increasing with increased 

tolerance) not only for the depth parameters but for every 

parameter defining the polygonal model. 

• 

iii) For a given a , the range limiting each parameter 

increases rapidly as the extent and interaction of the factors 

causing ambiguity ic~crease. 

ivj' Specifying any parameter prior to the procedure of 

obtaining the solution is merely equivalent_ to confining the 

search to a space orthogonal to that particular axis at the 

specified value. Any uniqueness thus obtained is only relative 
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for there are always solutions that would emphasise a 

certain aspect of the body even if ~he specified parameters 

happened to be extremely representative. Fig. 4.7 shows a 

hypothetical example of a magnetic anomaly caused by a 

seven-sided body for which a solution is sought in terms of 

a four-sided model. Although the bottom or the model and 

the magnetisation contrast are specified at their actual 

value, there are several possible solutions. Two of these 

solutions are shown in Fig. 4.7. 

v. The ill-conditioning of a problem may develop for a 

number of reasons such as using a very large number of 

parameters to define the model (Fleischer, 1965). I~ny 

gravity and magnetic _problems are, in fact, ill-conditioned. 

The distribution of local minima in these problems is such 

that groups of solutions would cluster into a number of almost 

isolated regions in the hyperspace. Hence, extensive 

ambigui"ty exists when the entire feasible region is considered. 

However, within each region, some relative uniqueness may be 

attained. Which of these regions would give a solution depends, 

primarily, on the position of the initial search point in 

the hyperspace. This is a definite advantage because one 

has generally some idea, from the regional geology, about the 

anomalous feature being investigated such as its approximate 

depth or shape.· The initial point can, therefore, be placed 

at a favourable position. This effectively limits the search 

to tne desirable region and the ambiguity in· ttle hyperspace, 

as a whole, is thus largely eliminated. However, in the 

complete absence of information about _the feature, the case 
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can become extremely ambiguous (see, ~or example, Skeels, 

1947, Fig. 5). 

The position o~ the initial point is also import.ant 

in determining, within a given region, the minimum to which 

the search will converge. This gives the possibility ot 

biasing the solution towards certain aspects o~ the 

anomalous ~eature, if desired. 

vi. From an extension of ii - 1v, it follows that 

methods which search for a solution by setting a parameter 

hyperspace may be ef~ectively employed ~or range estimation 

o~ the parameters. The estimation o~ the possible range of 

the basic parameters (see section 4.7) is particularly 

useful. 

4.4.2.Inadequate models 

When the number of parameters is not sufficient to define 

an adequately representative model or when the position of 

the initial search point in the hyperspace is such ~hat an 

adequately representative solution would not be obtained, 

the outcome of the interpretation procedure varies widely. 

There is a complete gradation from an adequate hyperspace 

setting to an inadequate one. As the hyperspace setting 

becomes less adequately representative, solutions (F <a-) 

pass from being an actual description of the essential 

features'of the anomalous body to a mere averaging out of 

such features. When the setting becomes completely inadequate, 

a solution with F ~~is very difficult to obtain and would, 

anyway, be usually so unrepresentative that it is often· 

discarded on geological bases. 



4.5. Presence of Observational Errors 

The consequences of the presence of observational 

errors, up to a magnitude e , can be illustrated bv max J 

investigating the objective function 

where A k = 0 if 

and A k = 1 if I A.k - sk 1 < e max 

(4.11) 

• 66. 

The presence of e imposes, on the objective function, max 
a tolerance E wnicb is equivalent to u discussed in the 

previous section. Therefore, the statements made in i - vi 

in the previous section follow~in exactly_the same way. In 

particular, a solution, defined as any point in· the feasible 

region satisfying F < E, refers to a domain bounded by a 

contour of value E. Fig. 4.8 illustrates the effect of 

assuming ~max = 1.5 milligals on the behaviour of the 

objective function shown in Fig 4.6. It is clear that several 

oolutiona would become occeptuble even f'or quite a low value 

of E and that the problem as a whole has become less well-

conditioned. The value of e is not low but it serves to max 
compensate for the fact that other factors have been largely 

suppressed. The magnitude of e is perhaps the most vital max 
of all factors, in practice, as it has a direct bearing on 

E and a • When other factors are present on a more tangible 

scale, a small increase in emax causes the development of a 
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large number of local minima.and the rapid expansion of the 

limiting ranges of parameters. Non-representative solutions 

may therefore appear even if e were quite small. The max 
expansion is most appreciable in the direction of elongation 

of' the objective function. This point implies that if the 

trend of the objective function bears some parallelism to 

certain.parameters, these parameters will suffer the most 

increase in ambiguity. The details of' this remark will be 

discussed in section 4.7. 

In extreme cases, where emax is very large, the region 

containing permitted solutions becomes so vast that it may 

occupy a large portion of the geologically feasible hyper

space and the validity of any solution would not be accepted 

without extensive external control or assumption. 

4.6.The Regional Background 

A limited amount of theoretical and experimental work 

has shown that the conclusions reached about the density (or 

magnetisation) contrast apply, in a general way, to s 

horizonta~ regional background, i.e. that which can be 

represented by a zero order polynomial. Higher order terms 

cause extensive ambiguity unless their coefficients are 

specified. 

Desvite this ambiguity, Corbato (1965) and Johnson 

(1969) have successfully used higher order polynomials in 

various interpretations. For the purpose of' the present 

work, however, problems involving the regional background 

as an additional unknown have been restricted to determining 
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tne zero order term. 

4.7. Tne Question of Uniqueness 

Various authors have been able to establisn conditions 

which would ensure, at least in theory, a unique solution 

(e.g. Sretenskii, 1954; Smitn, 1961; Roy, 1962). Although 

these authors have usually dealt with factor I only, their 

-theoretical considerations have provided us witn a strong 

foundation for uniqueness. Hence, in complying with these 

conditions, the usual present-day practice is to assume 

the density contrast of the anomalous feature and one or 

more depth parameters and to solve for the other parameters 

(e.g. Bott, 1960; Corbato, 1965). Tbe significance of these 
- ' conditions can be judged by investigating the behaviour of 

the objective function in the parameter nyperspace. 

Broadly speaking, the parameters defining a model fall 

into two categories. Firstly, some parameters describe the 

general properties of the model such as its density contrast, 

the depth to its top, in tne case of a basin-like model, and 

the depth to its bottom, in the case of a batholith-like 

model. The regional background is a~so an important parameter. 

We shall call these the basic parameters. Fig. 4.9 shows 

the behaviour of the objective function of the anomaly due 

to the. basin shown in Fig. 4.4. Tne section is parallel to 

the axis representing the depth to the top of the basin and 

is inclined to the axes of the other parameters. Secondly, 

all other coordinate points describe the details of the 

model and could therefore emphasise one aspect of the anomalous 

body·or anotner. The pre~enc~ of these coordinate points a~ 
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a whole is essential to the model but the deletion or 

creation of individual ones will not cause a loss of generality. 

These are, therefore, secondary parameters. Intuition, 

experience end experiments suggest that the objective fUnction 

beers much more parallelism to the axes of the basic 

parameters than to those of the secondary parameters. It is 

difficult to demonstrate parallelism on cross-sections since 

it is highly dependent upon the orientation of the section. 

However, if we consider a particular contour whose value 

is determined by the tolerance of the problem then parallelism 

to a given parameter, in the hyperspace, may be thought of 

in terms of the extent of this contour in the direction of 

the parameter. Figs. 4.6 and 4.9 may, in this way, be used 

to give some indication of the parallelism to the density 

contrast and depth parameters, respectively. Fig 4.9 also 

illustrates the idea of maximum depth estimation, within the 

realm of the factors discussed so far. 

It follows from this parallelism that two anomalies 

similar to within a small value of cr or E are not 

necessarily produced by bodies that are approximately similar. 

By specifying the basic parameters, the search for a solution 

is confined to a hyperspace in which the objective function 

bears little parallelism to any axis and in which the domain 

containing acceptable solutions is very limited. Thus, by 

reducing the dimendonality of the problem, in this manner, a 

vast ambiguous region is avoided and a relatively unique 

--sa-1-u-t-!on may be expected. However, absolute uniqueness is 

still unobtainable (iv, section 4.4). 
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The extent of parallelism to any parameter varies 

according to individual problems. When the ractors causing 

ambiguity are limited, the tolerance is very low and only 

little parallelism will be possible. Starting from a good 

initial point and without assuming any parameter, solutions 

thus obtained will be of the correct order of magnitude. 

This is especially useful when the basic parameters cannot 

be established with accuracy e.g. when interpreting basement ·~ 

features. An underestimation of 10% of the density contrast 

in the problem of Fig 4.5, for example, leads to a solution 

(not in the plane of the diagram) which is far less 

satisfactory than would have been obtained had the density 

contrast no~ been specified. 

In general, the adherence to the 'order of magnitude' 

depends on the presence and interaction of the various factors 

causing ambiguity. In many cases, when these factors are not 

small but also not extensive, a satisfactory solution may be 

still obtainable by specifying one of the basic parameters 

only. However, when the presence of ambiguity factors is 

more conspicuous so that possible solutions are scattered ib 

a vast region, it is obvious that the usual procedure of 

obtaining a number of solutions, by specifying t·he basic 

parameters at a set of intervals, is both desirable and 

necessary. 

·4.8. Discussion of Some Examples 

In attempting to warn against the dangers of ambiguity, 

past work has tended to over-emphasise these dangers. We 
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shall use the classical example of Skeels (1947, Fig. 1) for 

illustration. .The example presents a gravity anomaly of a 

maximum amplitude of 4 milligals and shows seven different 

models which should satisfy the anomaly within 0.1 milligal. 

The main source of ambiguity in the example is the 

decrease in the resolving power of the gravity method when 

the width of successive anomalous features becomes small 

compared with their depth (e.g.Bullard and Cooper, 1948). 

This source, which is related to the ill-conditioning of the 

problem, is not representative of the major factors in 

ambiguity and is a drawback shared with almost all other 

geophysical methods. It is true that ·extensive ambiguity 

is present but, if one has even a rough idea about the 

anomalous feature, a good choice of the initial search 

point would be possible. The ambiguity is then largely 

reduced (v, section 4.4). 

Moreover, a re-computation of the anomalies caused by 

three of the seven models was made (Fig 4.10). These models 

were approximated by open polygons which did not differ from 

them by more than the thickness of the line representing each 

model. Equation 4.1 was used in the calculation. It is clear 

that, despite occasional agreement, the three anomalies are 

. essentially different. Adherence to Skeel's suggestion is not 

verified and discrepancies of up to 13 times the claimed 

limit are present. The situation will not be remedied by 

assuming a different density contrast or changing the 

background anomaly. 
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Other points must also: be considered. The amplitude of 

the anomaly is quite low and, therefore, tends to attenuate 

the discrepancies in absolute terms. Also, had a fuller 

length of the profile been considered, relative disagreement 

between the anomalies would have been more apparent, 

particularly as the deeper models would cause longer anomalies. 

It is conceivable that better agreement may be obtained 

if certain modifications to the model were made. Such 

modifications, however, will fall within the realm of the 

factors discussed already. 

The above-mentioned discrepancies would not have 

escaped detection had better computing facilities been 

available. Hence, while this example has served the 

excellent purpose of showing that an absolutely unique 

solution is unrealisable in practice, the lack of computing 

facilities appears to nave led to overlooking the existence 

of situations where ambiguity could be extremely limited. 

Let us now consider an example solved in the light of 

the facts presented in this work. A negative gravity anomaly 

across the Pennines is attributed. to the Weardale Granite 

which a centrally placed borehole encountered at a depth 

of 400 metres. The density contrast with the country rook 

is estimated to be -0.11 to -0.15 gm/cm3 (Bott, 1967a) whereas 

the regional background could range from 9 to 14 milligals. 

End corrections (Nettleton, p.ll7) were applied to reduce 

the anomaly to a two-dimensional case and the accuracy of 

each point is about 0.5 milligal. 

The anomaly was interpreted using the method of rotating 
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coordinates (section 3.4.3.1), and assuming a polygonal 

model or a uniform density contrast with the surrounding 

country rock. All parameters (including the density 

contrast and the regional) were left unspecified and, 

virtually, no limit was imposed on the range in which 

each parameter could vary except that the model s~ould be 

geologically £easible. 

Two interpretations, each starting from a different 

initial point, are shown in Fig.4~1. These two models are 

representative of a large number of other solutions all of 

which show a remarkable agreement between themselves as 

well as with the geological occurrence. The depth to the 

top, the density contrast and the regional background fall 

well within the expected order of magnitude. The depth to 

the bottom varies within an estimated range obtained 

independently by' an interpretation procedure based on 

specifying the density contrast, the regional and the depth 

to the top (Bott, 1967a; Tanner, 1967). 

4.9.Conclusions 

A gravity or magnetic anomaly caused by a two-dimensional 

polygonal model has a unique solution in theory. In practice, 

ambiguity arises from the presence of observational errors, 

lack of adherance to the ideal conditions assumed by the 

model, inadequate definition of the anomaly over its entire 

length and other factors. The resulting ambiguity takes 

the form of a sea tter of local minima or an elongated !.valley 

of ambiguity'. Possible solutions will agree between 

themselves to an order of magnitude determined by the extent 
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of the region(s) they occupy and, therefore, by the tolerance 

of the problem. The agreement between these solutions, i.e. 

the degree of uniqueness in the general solution to the 

problem, increase as the effect of the factors causing 

ambiguity decreases and as more basic parameters are 

specified. The position of the initial point in the hyper-

space determines the particular solution to which the search 

will converge. 

Absolute uniqueness is not generally obtainable because 

there are usually other solutions which would emphasise 

different aspects of the anomalous feature. A high degree 

of relative uniqueness is only obtainable within specified 

basic parameters. However, if some or all of the basic 

parameters are unspecified, the outcome of the search in the 
' 1 hyperspace is not unpredictable. • In these cases, the role 

of specifying the basic parameters is substituted by the 

position of the initial point while uniqueness is replaced 

by the concept of the 'order of magnitude'. Under favourable 

conditions, solutions may agree between themselves to a close 

'order of magnitude'. However, conditions are not usually 

favourable so that specifying some or all of the basic 

parameters becomes necessary. 

1. Search by sequential or random methods is an obvious 
exception. 



CHAPTER 5 

GRAVITY INTERPRETATION 

5.1. Introduction 

The common methods of i"nterpreting gravity anomalies 

are based on the "forward" approach, i.e •. given a model 

simulating a geological feature it is required to calculate 

its graY±~y anomaly. The calculated anomaly is then 

compared with the observed one and the model's parameters 

are re-adJusted until a satisfactory fit is obtained. This 

is an indirect procedure. 

There are several direct procedures. They include 

transforming the anomaly by upward or dovmward continuation 

(e.g. Peters, 1949; Dean, 1958). The first and second 

derivatives of the anomaly may be obtained using other 

transformations (e.g. Baranov, 1953; Evjen, 1936; Rosenbach, 

1953). The purposes of these transformations are usually 

qualitative. The sin x/x method (Tornado and Aki, 1955) 

and methods which use certain estimators on the anomaly 

(e.g. Jung, 1953; Smith, 1959) are· of more quantitative 

objective. However, direct methods of interpretation are 

not of immediate concern to us here and will not be 

discussed further. 

When computing facilities were limited, dot charts 

and graticules (Levine, 1941; Hubbert, 1948) provided 

suitable means for calculating the anomaly caused by a 

model. Mechanical integrators (Siegert, 1942) 
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were also in use. The increased availability of computers 

caused two major changes. Firstly, faster and more accurate 

methods for calculating the anomaly were introduced (e.g. 

Talwani et al, 1959; Bott, 1969a). Secondly, it became 

possible to perform the process of adjusting the model 

parameters automatically using some iterative procedure 

(e.g. Bott, 1960; La Porte, 1963; Tanner, 1967). These 

procedures attempt to determine the geometrical details 

of the anomalous feature, the density contrast(s) being 

specified. The inverse problem involved is, therefore, 

basically non-linear (Bott, 1967b). 

Non-linear optimisation techniques offer an immediate 

advantage by being especially designed to treat non-linear 

problems. Their use in interpreting gravity anomalies was 

introduced by Stacey (1965) but only limited progress was 

made because of difficulties with local convergence and low 

speed of available computers. The present attempt has 

largely overcome these difficulties. The techniques have 

been developed to apply to a two-dimensional polygonal model 

(open or closed) having a uniform density contrast with the 

surrounding medium. Provisions are also made for cases 

requiring a number of density contrasts within the model. 

Applicability to three-dimensional problems follows 

in the same way by employing a suitable computational method 

(e.g. Talwani and Ewing, 1960). However, three-dimensional 

models usually involve a large number of anomaly poin·ts and 

unknown parameters. Therefore, the required computer time 

may not be practical. Approximation to a two dimensional 
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model using end corrections (Nettleton, 1940, p.ll7) 

can be used when appropriate. Alternatively, some 

apparantly successful iterative procedures for interpreting 

three-dimensional models (e.g. La Porte, 1963; Cordell and 

Henderson, 1968) may be used. 

5.2. The Auxiliary Procedure 

The auxiliary procedure consists of two main parts. In 

the first part, the gravity anomaly due to the polygonal model 

is calculated. In the second part, the objective function is 

calculated. Its value is then returned to the calling 

optimisation procedure •. 

5.2.1. Calculating the anomaly 

The adjustable parameters of the model are passed from 

the optimisation subroutine. The model is then defined by 

a series of instructions which allocate the adjustable 

parameters to the appropriate corners of the model and specify 

those parameters which are unadJustable. The instructions 

also define other details of the model, e.g. models requiring 

a horizontal side are defined by specifying two successive 

points to be at the same depth, etc. 

After defining the model, its gravity anomaly is computed. 

We adopt a two-dimensional Cartesian system with the anomaly 

profile taken along the horizontal ~ - axis perpendicular to 

the strike of the anomaly and with the z;- axis pointing 

vertically downwards. Fig. 5.1 illustrates the symbols and 

adopted convention. Using a formula by Heiland (1940, p.l53) 

and following the familiar method of summing up the effect of 
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Fig. 5.1 Diagrammatic illustration of the adopted symbol and convention 
used for the gravity formula at point P(Xk,Zk) due to a two
dimensional polygon. 



M semi-infinite horizon tal step models (Tal wani. et al, 

1959; Bott, 1969a), the gravity ~nomaly at the kth 

observation point P (~, Zk), due to the resulting M

sided polygon, is given by 
M 

ck = 2G L' ~isik 
i=l 

{5.1) 

where G is the gravitational constant multiplied by a 

scaling factor appropriate to the units of length being 

employed, ei is the. density contrast across the ith side 

and· 

(5.2) 
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For convenience of representation we shall include in 

Ck the regional background, B, after reducing it to a 

horizontal one {see-section 4.6). Hence, assuming a uniform 

·density contrast for the model, 
M 

ck = B + 2Ge [ sik 
i=l 

= B + 2G~Tk 
M 

where Tk = L Sik 
i=l 

(5.3) 

Equations {5.2) and (5.3) show that Ck is linear in 

e and B and non-linear in the coordinate parameters defining 
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the model. We shall refer to these as the linear and 

non-linear parameters, respectively. For the purpose 

of obtaining an optimum solution any of these parameters 

may be specified at some fixed value or left as an 

adJustable parameter. However, whether or not to specify 

a certain parameter must be subject to the considerations 

discussed in Chapter 4. 

5.2.2. The Objective function 

A number of objective fUnctions are presented below, 

each being suitable for treating a certain type of problem. 

The simplest form is given by 

r(l£) = L, (Ak - B - 2GrTkl 
2 

k=l 

(5. 4) 

where ~ is an m-dimensional vector representing the unknown 

parameters, ~ is the observed gravity anomaly at P(Xk,Zk) 

and n is the number of observation points. Equation -(5.4) 

is most suitable when the linear parameters are specified. 

As was shown in Chapter 4, there are situations where 

it may be desirable to obtain a solution without specifying 

the density contrast. This is obtained by working with a 

normalised anomaly. Normalisation is achieved by comparing 

each anomaly value with that at the qth point. Hence, 

n 

f(&) = £=~ (A'k- T'k)2 (5.5) 

where 

A' - k 

and 
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Arter an optimum solution is obtained, the density contrast 

may be recovered from the relation given in equation (5.7). 

Alternatively, use may be made o~ the linear relationships 

between C and f 

at the optimum 

• Thus, using equation (5D4), we have 

The 

ar 
"iP = 0 = -2 t (A - B - 2GfT ) ( 2GTk) 

k k 
k=l 

n 

e = [ ) Tk (~ - B) J 1 
:~ fu 

D. 
[2G \' 

~ 
objective function 

n 
is therefore given by 

f(A) = )' [ Ak- B- 2GP(A,T,B) 

lt;'l 

2 
Tk J 

(5. 6) 

T~ J (5. 7) 

(5. 8) 

The procedure may be extended to include situations where 

the two linear parameters are unspeci~ied. Thus, at the optimum 
n 

~ = o = -2 L (Ak - B - 2G r Tk> <5• 9) 
k=l 

. (5.11) 

The objectiv~,~nction 

~(A) = L [ Ak-

is then given by 

J 
2 

B(A,T) - 2G P(A,T) Tk ( 5.12) 

k=l 
The objective functions defined by (5.8) and (5.12) both 

reduce the problem to obtaining a solution by adjusting the 

model coordinates only. Besides reducing the number of 

variables, this procedur~ improves the conditioning of the 
I .. 

_problem for .treatment by~on~linear methods becatise it 
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involves only those parameters which are properly non-linear. 

The main disadvantage is the difficulty in obtaining the 

derivatives with respect to the variable parameters, analytical!~ 

Equations (5.8) and (5.12) are, therefore, unsuitable for use 

in a gradient method. 

The general procedure in obtaining equation (5.12) may be 

extended to problems involving two density contrasts and a 

regional background, none of which is specified. The solution 

will probably be ambiguous and will not qualify for the consid

erations presented in Chapter 4. However, this procedure may be 

useful in rare cases when several body coordinates are known and 

it is required to show that the gravity evidecce is not against 

a certain pattern of density distribution. 

5.3. Available Programmes 

The programmes listed below are available in PL/1 F-level. 

They vary according to the auxiliary procedure which each one 

incorporates. GAD is for use with P306 (section 3.3.1.3). The 

other programmes are for use in conjunction with a direct search 

method and are adapted for P300 (section 3.4.3.1), P301 (section 

3.4.2.4) and P303 (section 3.2.3.6). In all programmes, any 

coordinate parameter defining the polygonal model can be 

specified or left as an adjustable parameter. 

1. GRANOP: Programme specification no. 3a. 

The auxiliary procedure is based on equation (5.4). It is 

most suitable for problems in which the regional background and 

the denaity_contrast are specified. However the procedure can 

also handle either or both of them as variable parameters. 

As presented, the programme will only accept one density

contrast. It may be modified to accept m density contrasts (m< 

number of sides) by declaring the density contrast as· 

an array of m elements, each of which is assigned~. 
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to tne appropriate aide(s). 

2 - GAD: Programme specification no.4. 

Tne auxiliary procedure is based on equation (5.4). In 

addition. tcf' tne objective function, tne procedur.e provides 

tne first partial derivatives of tne objective function witn 

respect to the variable parameters. The method of obtaining 

these derivatives is given in Appendix 2. 

Eitner or both of the linear parameters may be specified. 

The auxiliary procedure can also be modified, on tne bases of 

equation (5.1), to accept a number of density contrasts all of 

which ~st be specified. 

3. GREGNOP: Programme specifi~ation no.3b. 

Tne auxiliary procedure is based on equation (5.8). 

It is most suitable for problems in which tne density contrast 

is unknown and tne regional background is specified. However, 

it is unsuitable for problems which specify the density 

contrast. 

4. GRAVOP: Programme specification no.30. 

Tne auxiliary procedure is based on equation (5.12). 

It is specifically designed for problems involving unspecified 

linear parameters and is unsuitable when either of them is 

specified. 

5. GRATIOP: Programme specification no. 3d. 

The auxiliary procedure is baaed on equation (5.5). Its 

other details are similar to GREGNOP. 

A summary of the use of these programmes is given in 

Table 5.1. 
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Specified Parameters 

rand B B None 

GRANOP X 0 0 

GREGNOP X 0 

GRAVOP X 

GRATIOP X 0 

GAD X 0 0 

Table 5.1. A summary of the use of available programmes. 
X denotes appropriate programmes. 0 denotes 
possible alternatives. 

5.4. Nature of the Objective Function 

Understanding the general behaviour of the objective 

function in gravity problems is essential for a correct 

application of optimisation techniques. In Chapter 4, the 

behaviour was investigated using, mainly, theoretical models. 

Our present investigation illustrates the practical aspects 

of the problem using an actual field example. 

The bei.1aviour of all the obJective functions enlisted 

in section (5.2) is basically similar. For convenience, 

the objective function given by equation (5.12) has been 

chosen for illustration. 

The field example is a negative anomaly in the 

Northern Pennines which was interpreted by Bott (1967a) 

as being caused by a granitic bathol! th, the .1Wensleydale 

Granite'. We chose a different profile and adopted a 

slightly different gradient on the regional background .• 

Two-dimensionality was assumed throughout. 
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The first cross-section (Fig. 5.2) is taken across a 

relatively large portion of the-~ hyperspace. It clearly 

reveals the complexity and multi-modality of the function. 

Points which represent slight undulations in the fUnction, 

such as C, or ill-defined local minima, such as D, can 

trap the search and cause local convergence. These 

difficulties may be overcome by choosing an appropriate 

optimisation method. Other minima are quite well-defined. 

Minimum A gives a reasonable model. Minimum B, however, 

gives a geologically impossible model. Both minima possess 

a very low function value and illustrate the necessity to 

use constraints in order to confine the search to a feasible 

region. 

Within a feasible region, the second section (Fig. 5.3) 

shows a 'valley of ambiguity'. Considering the possible 

magnitude o:f,_ observe tional errors, a tolera·nce in f(~) of 6 

is reasonable. Therefore, points within a domain bounded by 

a contour of value 6 produce possible solutions. The model 

produced by point E is shown. The gradation from A to E is 

accompanied by a general reduction in the size of the model 

and an increase in the density contrast. 

The parameters defining models A and E are of the same 

order of magnitude. However, Fig 5.3 clearly shows that the 

basic pa·rameters must be specified in order to obtain any 

form·of uniqueness. Such conditions are closely approximated 

in the third cross-section_(Fig. 5.4) where the basic 

parameters of solutions A and G are almost identical. The 

general dimensions of the two models are similar. However, 
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solution A emphasises ~eatures on the top o~ the batholitb 

while solution G emphasises features on its northern side. 

5.5. Method o~ Application 

In view o~ the nature o~ the objective ~notion in 

gravity-problems described in Chapter 4 and in section 5.4, 

the application o~ non-linear optimisation techniques in 

interpreting gravity anomalies requires usually the following 

stages: 

1. The problem is assessed, as a whole. All parameters 

that are known or could be estimated reasonably accurately 

are speci~ied. The magnitude of factors causing ambiguity 

and I or the ultimate aim of the interpretation in~luences 

the cboice 6~ whether to speci~y all, some or none of the 

basic parameters (Chapter 4). 

Time considerations may also be important. The time 

taken to produce a solution varies according to the 

optimisation method used, the closeness ~f the initial 

point to a solution, .the number of variable parameters, the 

number of sides defining the model, the number of observation 

points, the accuracy to which the solution is s·ought, and the 

behaviour of the particular objective function being 

considered. An example of execution times is given in 

section 5.7. 

2. The initial polygonal model is chosen according to 

available information.. Methods of depth estimation (e.g. 

Smith, 1960) may be used for this purpose. When such 

in~ormation is lacking, the immediate task becomes t.hat of 

selecting an initial point in a region which contains a 
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correct solution. This is particularly important when the 

problem-is badly conditioned. For example, in the problem 

or Fig. 4.4, a basin-like initial model will generally 

produce a basin-like optimum model and a batholith-like 

initial model will produce a batholith-like optimum model. 

The number or sides used in the model must be carefully 

chosen. Too many sides increase the computation time and 

the possibility or ill-conditioning the problem. A small 

number of sides does not represent the feature adequately, 

For an isolated anomaly, between 4 and 8 sides provide 

usually a convenien_t compromise. 

The initial point can be made to emphasise a certain 

aspect or the anomalous feature so that the optimum solution 

would be biased towards that aspect. This may involve the 

need to use additional coordinate points in the emphasised 

parts or tne model. 

3. Constraints are inserted to ensure geological 

feasibility. In order to achieve this, it is usually 

sufficient to prevent neighbouring points from overlapping 

in the /;- direction. Other constraints may also be inserted 

to ensure the adherence or the solution to known information 

about the anomalous feature. 

4. An auxiliary procedure is chosen according to the 

requirements of the problem. 

5. An appropriate optimisation method is chosen. The 

initial choice is usually restricted to direct searcn methods. 

The method of rotating coordinates is recommended. The 
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'Complex' method or the method of conjugate directions may 

be more suitable in a number of problems (see Chapter 3). 

In general, about 100-200 iterations per variable are 

sufficient to locate the minimum. However, the first 50 

iterations usually achieve a rapid progress so that t~e 

search converges to a region which is suitable for using a 

gradient method. Davidon's method is recommended. 

6. The procedure may be repeated according to the 

requirements of the problem. For example, in problems 

solved by a'pecifying all basic parameters, the interpretation 

process is usually repeated at a set of intervals of these 

paramete·rs. Even in problema which arrive at a solution 

without specifying the basic parameters, it is frequently 

desirable, in the next stage, to obtain solutions at a set 

of specified intervals of these parameters. 

1. After the basic solution or group of solutions are 

obtained, a certain amount of detailing may be_required. We 

recommend starting from the basic mo.del as an initial point; 

the extra coordinate points are placed on the relevant sides 

of the model. 

A gradient method should normally be used for detailing 

the model. This usually involves no risks since the initial 

point (the basic model) is already in the vicinity of a 

solution in the new hyperspace. 

Detailing reduces the residuals especially at observation 

points vertically above those parts being detailed. It should, 

therefore, be preferred below those parts with high residuals. 

However, detailing is unjust11'1ed when the residuals are 
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already smaller than the magnitude of observational errors. 

5.6. Advantages and Limitations of Optimisation Methods in 

Gravity Interpretation 

In the following account, we mean by optimisation methods 
) . 

those which were recommended for use in gravity interpretations, 

e.g. the method of rotating coordinates. A comparison with 

other iterative methods is implied in this account so that an 

assessment of optimisation methods, as interpretational means 

in gravity problems, may be made. 

5.6.1. Advantages 

1. Optimisation methods are at least as efficient as 

any other method in terms of obtaining a satisfactory model 

with a satisfactory fit between the observed and the 

calculated data. 

2. Any parameter defining the model may or may not be 

specified. It is also possible to constrain or inter-relate 

these parameters,_ e.g. a vertical fault may be established 

in the model by specifying two successive points to have the 

same e - coordinate. This flexibility makes it possible to 

use all available information about the anomalous feature. 

In other iterative methods, it is necessar~ to specify certain 

parameters but it is not usually possible to specify any of 

the bthers. 
~~ 

I . . 

;3. The mod~l is of ·a g~neral·~qly~onal shape whrch is·: 
\• . ' ' ; 

completely unrestricted. Th~s is a desirable feature which 
i : 

other iterative methods l~ck. 
I 

An:t _number of ob"serv\atio~ points may "Q.e used on the 
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profile being interpreted, c.f. methods·which employ a 

completely determined system (e.g. Allerton, 1968). 

5. The position of the initial point may be used to 

bias the interpretation towards a certain aspect of the 

anomalous feature (sections 4.4 and 5.5). 

5.6.2. Limitations 

1. Direct search methods are, generally, slower than 

other iterative methods. This limitation may be largely 

reduced by careful programming and good choice of the initial 

model. 

2. Difficulties in optimisation techniques such as 

local convergence and convergence at an undesirable local 

minimum are possible. These difficulties are not important 

and can be readily avoided by considering the facts discussed

in Chapters 2,3, and 4. 

5.7. Examples 

Three examples are described below, each one presenting 

rather different problems from the others. The first example 

is described in slightly more detail~ 

· 5.7.1. The Weardale anomaly 

Details of the anomaly were given in Chapter 4. Two 

models obtained without specifying any parameter were shown 

in Fig. 4.11. 

The general dimensions of the batholith for a set of 

density. contrasts were obtained by specifying the depth of 

a point on the upper surface of the batholith from 
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information obtained from the borehole. The regional 

.background was also specified. Models for density contrasts 

of -0.11, -0.13 and -0.15 gm/c~ are shown in Fig. 5.5. 

They all represent satisfactory solutions with a good 

agreement between the calculated and the observed anomaly. 

Using equation (2.18) estimates of the possible error 

in the coordinate parameters of the model of density contrast 

-0.13 gm/c~ were obtained. They are given in Table 5.2. 

The limited significance of these estimates was discussed in 

section 2.8. They are, therefore, expected to give only a 

·very rough idea. on the accuracy of the parameters. 

Point no. 1 

2 

3 

4 

5 

6 

7 

a 

Table 5. 2. 

Horizontal Error 
distance 

from origin 

40.6 0.1 

38.4 0.2 

36.7 0.2 

21.3 0.4 

20.1 0.6 

15.6 0.1 

14.8 0.4 

12.9 0.1 

Depth below 
datum 

7.8 

6.5 

0.1 

Specified 

0.3 

1.8 

6.8 

7.6 

Error 

0.1 

0.3 

0.4 

0.4 

0.1 

0.2 

0.4 

Estimates of possible error in the coordinate 
parameters of Fig. 5.5b. The figures are in 
kilometers. 

Typical times required to produce a satisfactory solution 

such as .the models shown in Fig. 4.11, using IBM 360/67 

computer are: 
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Method of rotating coordinates (P300) 7 minutes 

Method of conjugate directions (P303) 6 minutes 

The 'Complex' method (P301) 14 minutes 

Davidon's method (P306) 30 seconds 

Davidon's method was employed here only for comparison. 

The models obtained from the direct search methods were 

sufficiently detailed so that further detailing by a 

gradient method was unnecessary. 

The Weardale anomaly was also used to demonstrate the 

use of optimisation techniques for maximum depth estimation 

"(section 4.4). This was done by specifying the depth to the 

top of the batholith at a set of intervals for which the 

optimum density contrast was computed using GREGNOP. The 

regional background was specified at 10.2 milligals. Fig. 

5.6 shows the yariation of the density contrast vs. t~e~ 

depth to the top. Assuming that a density contrast in 

excess of-0.16 gm/cm3 is un_reasonable, the maximum depth 

to the top of the batholith becomes about 550 metres. 

5.7.2. Gravity "low" C- North of Scotland 

This negative anomaly was outlined in a marine 

geophysical survey conducted by the University of Durham 

during the 1968 cruise of RRS John Murray. It was interpreted 

by Bott and Watts (1970a) as a sedimentary basin having a 

lower density than the adjacent crystalline basement. The. 

presence of the basin_ was supported by magnetic and seismic 

evidence. Geological and other considerations suggest the 

following: 

'. 



1. ~he basement is probably Lewisian while the 

sediments are probably post-Devonian. 

2. The depth to the bottom of the basin is at 

least 2.5 km but is unlikely to exceed 6 krn. 

3. The density contrast may range from -0.25 to 

-o.so gm/cm3• 

4. The majority of observations are accurate to 

Within 4 mgal. 

(A.B. Watts, private communication). 

.92. 

The regional background was reduced to a horizontal 

.one by subtracting a gradient of 0.14 mgal/km, increasing 

towards the N.W. 

The first interpretation was made without specifying 

any parameter (Fig. 5.7a). The fit between the observed 

and the calculated anomalies is well inside the amplitude 

·of observational errors and is, therefore, not significant. 

The parameters defining the model are of comparable 

magnitudes to the probable values. However, tbe depth to the 

bottom of the basin is outside the predicted range, the 

density contrast is lower than expected and the top of the 

basin is about 400 metres deeper than values predicted from 

geological evidence. This emphasises the importance of 

specifying the basic parameters when observational errors 

are large. The models of Fig. 5.8 are obtained in'this 

manner. A reasonable solution (Fig 5.7b) was also obtained 

by constraining the depth to the bottom as an alternative 

to specifying the density contrast • .. 
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The general dimensions of the basin.were obtained by 

fixing the top of the model and the regional background for 

a range of density contrasts between·-0.3 and -0.5 gm/c~. 

The model with -0.5 gm/cm3 is probably too shallow. Other

wise, the resulting solutions were reasonable geologically 

with good agreement between the observed and the calculated 

anomalies (Fig. 5.8). 

The persistent feature in all solutions was the 

probable faulting which bounds the basin on the southeastern 

side. Geologic and seismic evidence support the presence of 

this fault (A.B. Watts, private communication). 

5.~.3. The gravity high in southeastern Minnesota 

Craddock et al (1963) describe a southward trending 

major gravity high in southeastern Minnesota and western 

Wisconsin, u.s.A. which locally reaches 130 mgal and which 

is attributed to a belt of Pre-Cambrian basic igneous rocks. 

We have chosen traverse no.9 of this survey for interpretation 

by optimisation methods • 

. Craddock et al (1963, Fig. 8) interpret the anomaly 

on this traverse as being caused by a feature with inward 

sloping sides, extending to a depth of about 24 km and 

having a density contrast of +0.2 gm/crn3 with the basement 

rocks. The supposed thickening of the o~erlaying rocks 

to about 2 miles below the gravity maximum appears to 

account for the shape of the chosen regional background. 

The agreement b_etwe.~n the observed and the calculated 

anomalies is within 7 mgal. This is justified in view of 
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the large magnitude or reduction errors. The ambiguity is 

further enhanced by the lack of good geologic control. 

Thererore, the model of Craddock et al (1963, Fig 8) is 

probably correct in a general manner but the details 

may be incorrect. For example, specirying the basic 

parameters at values close to those assumed by Craddock 

et al, we obtained a model with outward sloping sides 

(Fig. 5.9 a). 

The anomaly was also re-interpreted assuming a linear 

regional background which increases eastwards by 0.16 mgal/km. 

The contact with the overlaying rocks was assumed horizontal 

in the investigated part of the traverse (Fig. 5.9b and o). 

An interpretation based on specifying the density contrast 

and the top of the model at appropriate values yielded a 

similar model to that of Craddock et al (Fig 5.9b). Many 

other models were also possible. 

Interpreting the anomaly without specifying any 

-parameter also produced several possibilities. A model with 

outward sloping sides is shown in Fig. 5.9c. In fact, models 

with outward or inward sloping sides were obtainable whether· 

the basic parameters were fixed or not. 

This traverse demonstrates the high degree of 

indeterminacy arising in problems where observational errors 
I 

are large and geologic control is l~cking; specifying the 

basic parameters does not improve the situation. The fact 

that optimisation methods have achieved a much better 

agreement between the observed and the calculated anomalies 

is of _no importance owing to the magnitude of observational 

errors. 
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CHAPTER 6 

MAGNETIC INTERPRETATION 

6.1. Introduction 

The problems involved in interpreting magnet~c 

anomalies are broadly similar to those met in gravity 

interpretation but there are some differences which 

render magnetic anomalies more difficult to treat. The 

magnetisation contrast is a vector quantity which does 

not necessarily lie in the direction of the ambient field 

because of the presence of remanent components. The ambient 

field, which is usually the earth's magnetic field, varies 

in direction according to geographical position. In magnetic 

methods one may, therefore, encounter vertical field 

anomalies, horizontal field anomalies or total field anomalies. 

Further difference from the gravity problem is caused by the 

nature of the featuresbeing interpreted; in magnetic problems 

these features are usually ore veins, dykes or some basement· 

features which are quite deep. Because of these problems, 

progress in developing interpretational techniques was quite 

slow and assumed rather a different trend from that in 

gravity me=~hods. 

Direct methods of interpretation were quite useful. 

Depth and width estimation using certain estimators from the 

anomaly curve received wide attention (e.g. Vacquier et al, 

1951; Smith, 1959; Bruckshaw and Kunaratnam, 1963)~ 

Transforming tne· anomaly· so t.h.a t it would acq,uire th.e simp~e 
. ' I 



• 96. 

form usually exhibited by a gravity anomaly was introduced 

by Baranov (1957). The transformation was further extended 

to two-dimensional models and to models with a different 

direction of magnetisation from the ambient field (Bott 

et al, 1966). Transformation by upward or downward 

continuation (e.g. Peters, 1949; Henderson and Zeitz, 1949a; 

Dean, 1958} and methods for obtaining first and second 

derivatives (e.g. Baranov, 1953; Henderson and Zeitz, 1949b; 

Danes, 1962) were developed parallel to those in gravity 

methods. 

There is · also a variety of indirect methods of 

interpretation. The normalised anomaly of a dyke-like 

structure may be matched with a set of master curves to 

obtain various parameters (e.g. Hutchinson, 1958; Gay, 

1963). The anomaly of less regular models may be calculated 

using special graticules (e.g. Pirson, 1942; Henderson and 

Wilson, 1967; Grant and West, 1965, p.342). However, the use 

of graticules is now superseded by computer methods for 

calculating the anomaly due to polygonal models (e.g. Talwani 

and Heirtzler, 1964; Bott, 1969b). Automated iterative 

adjustment of the model parameters is basically more attractive 

than processes of trial and error involving human judgement. 

Optimisation techniques were used by Stacey (1965) to interpret 

magnetic anomalies with limited progress as described in 

Chapter 1. Later, Batt and Butler (Butler, 1968) employing 

an equivalent technique to that used in deriving equation 

(6.13) succeeded in using optimisation techniques to interpret 

magnetic anomalies due to dykes. Johnson (1969) was able to 
\ 



• 97 •. 

solve some linear and non-linear magnetic problems using a 

procedure based on Marquardt method (section 3.3.1.) 

The work described in this Chapter applies to any two-

dimensional model of a polygonal cross-section, open or 

closed. The magnetisation con~rast vector, i, is. assumed 

uniform but cases requiring a limited number of magnetisation 

contrasts can be easily dealt with. 

Applicability to three-dimensional problems involves a 

straight-forward extension of the general procedure presented 

below. Calculation of the anomaly due to the model may be 

made using any convenient method (e.g. Bott, 1963). However, 

as in gravity methods, it is expected that the large number 

ot parameters and observation points will limit a routine 

use of optimisation techniques. 

6.2. The Auxiliary Procedure 

The magnetic model is defined within the auxiliary 

procedure by the adjustable parameters which are passed from 

the optimisation procedure and by the unadjustable parameters 

which are specified in the procedure. Th~ magnetic anomaly 

due to the model is then calculated and used to provide the 

value of the objective fun.ction. 

6.2.1. Calculating the anomaly 

We adopt a two-dimensional Cartesian system with the 

anomaly profile taken along the horizontal e- axis, 

perpendicular to the strike of the anomaly and with the 
I 

t- ~xis, pointing vertically dowriwards. To u~dff ~he system 
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of reference we further assume that the !- axis points 

towards a northerly direction, i.e. S-N, SE-NW or SW-NE. 

The magnetic anomaly at point P(Xk, Zk) due to an 
:.:: 

m-sided polygon formed by the addition of m semi-infinite 

horizontal step-models is given by 

(6.1) 

where J and J represent, respectively, the horizontal 
Ci Si 

component, resolved in the direction of the profile and the 

vertical component of the magnetisation contrast vector 

across the ith side. If Ck refers to the anomaly in the 

direction of the earth 1 s magnetic field then 

u 1k = 2 sin ei (Rik cos I sin d- 8ik sin I) (6.2) 

vik = 2 sin Gi (Sik cos I sin d + Rik sin I) (6.3) 

where 

Rik = <Pik cos e i + log (r2/rl)ik sin 91 

(Bott, 1969b). 

Fig. 6.1 illustrates the symbols and the adopted 

convention. 

We assume that J is constant in magnitude and direction 

throughout the model unless otherwise s~ated. For converiience, 

we include in Ck the regional background, B, after reducing 

it to a horizontal one. Hence, 



Fig. 6.1 
Diagrammatic illus
tration of the 
adopted symbols and 
convention used in 
deriving a formula 
for the magnetic 
anomaly at a given 
point P(X,Z) due to 
a two-dimensional 
polygon. 
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ck = B + J uk + Jo vk s (6.4) 

where 

rn rn 
uk = L uik and vk = ~ vik (6.5) 

1=1 1=1 

We refer to J , J and B as the linear parameters and s 0 

to the coordinates defining the polygonal model as the 

non-linear parameters, according to their relationship to 

Ck (Bott, 1967b). Any of these parameters may be specified 

or treated as an adjustable parameter. 

The present work is devoted to anomalies measured in 

the direction of the total field because these are currently 

the most common type of measured anomalies. Anomalies 

measured in a horizontal direction, a vertical direction or 

any otqer direction may be treated in a s~milar way as this 

will entail only s~ight modifications in the objective 

function. 

6.2.2. The objective function 

A simple form of the objective runction is given by 

t(l!;) = ~ ('\,- B.·- JsUk- Jc Vk)2 

bi 
( 6. 6) 

where ~ is an m-dimensional vector representing the adjustable 

parameters ,,·.·,;·1. n is the number of observation points and Ak 

is the observed anomaly at the kth observation point. 

~quation (6.6) is.mdst useful when the linear parameters 

are ~pecified or when us~ng a gradient method. 
• • l 

~n.situations where it is de~irable to ~n~¢~pret the 
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anomaly without specifying J (Chapter 4), use can be made of 

the linear relationship between C and i· Hence, at the 

optimum 

= 0 = -2 f-'. (A - J U - J V - B) Uk L k sk ck 
k=l 

The two equations are linear in Js and J
0 

giving, 

where 

J 8 = (Qv D - ~ G) I (D2 - GH) 

J 0 = (~ D- Qv H) I (D2 - GH) 

~-[ ' 
k=l 

D = L 
k=l 

u = \' 
bi ' H= ~ 

k=l 

Details of the derivation are given· in Appendix 4. The 

objective function is now given by 
n ,. 

r(~) = L [~-B-UkJs(A,B,U,V)-VkJc(A,B,U,V) ]
2 

k:l 

(6. 7) 

(6. 8) 

(6. 9) 

( 6.10) 

,. 

( 6.11) 

For obtaining a solution without specifying any of the 

linear parameters, the same procedure is followed. Thus, at 

the o;ptimum, 

·~r ~n 
3B = 0 = -2 

=1 

(6.12) 
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Equations (6.7), (6.8) and (6.12) can be solved for Js, 

Jc and B. The final expressions are too large to be listed 

here. They are given in Appendix 5 together with the method 

of their derivation. The objective function in this case is 

given by 

t(x) = t [ Ak- B(A,U,V)- UkJ
8
(A,U,V)- VkJ

0
(A,U,V)) 

2 

k=1 

Equations (6.11) and (6.13) reduce the problem to 

obtaining a solution by adjusting the model coordinates 

only. As in gravity methods, this approach reduces the 

number of unknowns by three and renders the method more 

( 6.13) 

suitable for treatment by non-linear techniques. Similarly, 

these functions are unsuitable for use in conjunction with 

a gradient method because of the difficulty of provlding the 

derivatives of the function. 

By analogy with the normalisation procedure of equation 

(5. 5) the optimisation may be carried out independ.e·ntly of 

the intensity of magnetisation fJI.. This approach is less 

useful here since the direction of magnetisat~on will still 

have to be defined. 

When more than one magne·tisati on contrast are present, 

we use the objective fUnction 

:r(x) = f <'\; - ck - B)2 

k=l 

(6.14) 

where Ck is defined by equation (6.1). If no ambiguity is 

tolerable in the soluti~ri tn~se co·ntras_ts must be s-pec.ifi~d. 
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6.3. Available Programmes 

Tne computer programmes are constructed on similar 

bases to tnose used in gravity methods. Tney are written 

in PL/1 F-level. MAGD is for use with P306 (section 3.3.1.3). 

The others are adapted for use with the direct search 

procedures P300 (section 3.4.3.1), P301 (section 3.4.2.4) 

and P303 {section 3.2.3.6). They are constructed su~h 

that it should be possible to specify or leave unspecified 

any coordinate parameter defining the polygonal model. 

1. MANOP: Programme specification no.5a. 

The auxiliary procedure is baaed on equation (6.6). It 

is most suitable for problems in which the linear parameters 

are specified but can also handle any or all of them as 

variable parameters. 

2. MAGD: Programme specification no. 6 

The auxiliary pr_ocedure is based on equation { 6. 6). It 

is designed for use with P306. It provides the objective 

function and its first partial derivatives with respect to 

the variable parameters. The var~able parameters may include 

none, some or all of the linear parameters. The method of 

obtaining the partial derivatives is given in Appendix 3. 

The procedure may be modified on the bases of equation 

(6.14) to accept a number of magnetisation contrasts 

appropriate to each side of the model, all of which must be 

specified. 

3. MREGNOP: Programme specification no. Sb. 

·The auxiliary procedure is based on equation {6.11). It 

is 4eaigned for problema in·which B is specified an~ i is· 
f ~ 
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unspecified. B can also be a variable parameter but the 

procedure is unsuitable for problems which specify l· 
4. W~GOP: Programme specification no.Sc. 

The auxiliary procedure is based on equation (6.13). 

It is specifically designed for problems which do not specify 

the linear parameters and is unsuitable when any or them is 

specified. 

5. MULTIJ: Programme specification no.5d. 

The. auxiliary procedure is based on equation (6.14). 

It is similar to MANOP but more than one l may be used. 

Specifying these contrasts is an option but it is unusual 

in practice to leave more than one or two contrasts unspecified 

in view of the extensive ambiguity that would arise. 

A summary of the use of these programmes is given in 

table 6.1. 

MANOP 

MREGNOP 

MAGOP 

MULTIJ 

MAGD 

i and B 

X 

X 

X 

Specified Parameters 

B 

0 

X 

0 

0 

None 

0 

0 

X 

0 

0 

Table 6.1. A summary of the use of available programmes. 
X denotes appropriate programmes. 0 denotes 
possible alternatives. .. 

6.4. Nature of the Objective Function 

The emphasis in Chapter 4 was on gravity problems. 
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The general behaviour o~ the objective ~unctions in magnetic 

problems is almost identical. We shall assert the practical 

aspects o~ these ~eatures using an actual field anomaly. 

The obcjective functions given in section 6. 2 are 

similar in general behaviour to each other. Each of the 

illustrations used below shows an objective function 

appropriate to the particular aspect being discussed. 

However, the discussion applies to all o~ the objective 

.functions of section 6.2 in a general way. 

The field example is an aeromagnetic anomaly south of 

the Isle of Wight between National Grid Coordinates 

SZ 080367 and SZ 120493. Three sections constructed 

obliquely through the ~ hyperspace are used for illustration. 

The first cross-section (Fig. 6.2) covers a large range 

of each parameter and illustrates the complexity and multi

modality of the objective function. Minima A and C are well

defined and have low function values which qualify them as 

solutions. Both solutions are physically possible but 

solution C is geologically unreasonable. In applying 

optimisation techniques all such minima are isolated by 

constraints. 

Tests on other local minima, such as D, show them to be 

ill-defined. It is difficult to determine how many of the 

minima shown in the section close in all directions but it 

is probable that most of them do not. 

In the second section (Fig. 6.3), solutions A and E are 

both feasible. In fact, the valley A-E is a 'valley of 

ambiguity' with all the points in the domain bounded by a 
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contour of value 75 qualifying as solutions. The gradation 

from A to E is ~ccompanied by a change in the size of the 

model and the magnetisation contrast vector. However, the 

parameters defining the model are of the same order of 

magnitude. 

The third section (Fig. 6.4) shows the behaviour of the 

objective function in a hyperspace which is orthogonal to 

the axes of the magnetisation contrast vector, the depth 

coordinates of the bottom of the model and the regional 

background. This is, therefore, a problem in which the 

basic parameters are specified. Multi-modality ie caused 

by emphasising different aspects of the anomalous body (iv, 

section 4.4). Solution B, for example, brings out features 

on the northern part of the body while solution A gives even 

emphases to the body as a whole. Usually, all such solutions 

are similar in the general outline. 

Within the assumptions made about the model we may view 

the whole complex of 'valley of ambiguity' and valleys or regions 

containing solutions with various emphases, as constituting 

the "global solution" of the problem. 

6.5. Method of Application 

The stages followed in using optimisation techniques to 

interpret magnetic anomalies are usually similar to those 

followed in gravity problems with a step-by-step correspondence. 

We shall not, therefore, go into the details of the application. 

However, two differences require pointing out. 

Firstly,· magnetic interpretation often deal with 
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basement features. The basic parameters in these problema 

ere difficult to establish particularly as the remanent 

component of the rnagnetisation contrast vector may be quibe 

significant (see for example Girdler and Peter, 1960). 

There will, therefore, be more temptation to overlook stages 

in which the basic parameters are specified. It is difficult 

to recommend any kind.of decision to be taken in this respect; 

whether fixing the basic parameters will produce a better 

solution depends on the particular problem at hand. 

Secondly, when the model is being detailed the anomaly 

points most influenced by the addition of new aiaesare not 

necessarily those situated vertically above these sides. 

Detailing cannot therefore be preferred vertically below 

points where residuals are high. 

6.6. Advantages and Limitations of Optimisation Methods in 
Ma·gnetic Interpretatton 

Optimisation techniques are the only available 

automated iterative procedures for interpreting magnetic 

anomalies. The role which they play in magnetic interpretation 

is, .therefore, in itself an important advantage. They also 

enjoy all the general advantages d~scussed in gravity 

inte . .rpretation (section 5. 6); efficiency and flexibility 

are the most important features. The possibility of 

obtaining a solution, without the necessity to specify the 

basic parameters, i.s an important asset because information 

about these parameters .is often· lacking in basement 

., 
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interpretation problems. In particular, no restrictive 

assumption about the direction of m~gnetisation is required. 

This overcomes a common difficulty in currently used 

interpretation techniques. 

The limitations are again similar to those mentioned 

in gravity interpretation. We may add here that occasional 

difficulties arise when interpreting very steep-sided 

anomalies caused by shallow features. These difficulties are 

probably caused by the invalidity, at shallow depth, of the 

approximation that the anomalous feature is effectively 

homogeneous. Furthermore; the steep gradient on such 

anomalies causes high residuals between the observed and the· 

calculated anomalies for small errors in positioning. These 

high residuals often confuse the search for a solution. The 

difficulties would be probably overcome by minimising an 

objective fUnction in the form of area of discrepancy between 

the calculated and the observed anomalies (equation 2.2). 

Moreover, if certain assumptions about the shape of the 

feature can be made, the solution may be sought in terms of 

the variation in the magnetisation distribution within tbe 

feature. The latter problem is linear. It is soluble by 

matrix algebra (e.g. Hutton, 1970) and is outside the scope 

of the present work. 

6.7. Examples 

A number of examples are chosen from the aeromagnetic 

map of Great Britain to illustrate the applicability of 
I . 

optimisation techniques. Th~ teo.hniques have a~sQ h~d equ:a+ 
' 

success in interpreting l~nd. and ship-borne data (e.g. 
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Dobinson, 1970). 

The first example is described in detail to show the 

general method of approach. 

6.~.1~ The Solway Firth and Southern Uplands anomaly 

This anomaly extends over the Solway Firth and, on land, 

occupies a small part of the Southern Uplands. Within the 

Solway Firth, the anomaly is negative and the region is 

occupied by a sedimentary basin which is mainly of 

Carboniferous and younger rooks. This basin was deduced 

from gravity measurements by Batt (1965) who also demonstratea 

that the magnetic negative cannot be attributed to a 

magnetisation contrast between the basin and the Lower 

Palaeozoic rocks immediately below it. In the Southern 

Uplands the anomaly is positive and t~e area is complicated 

by strong folding of the Lower Palaeozoic roc~s. In botn 

areas the general structural trend is Caledonian. 

MAGOP in conjunc~ion with the method of rotating 

coordinates was used to obtain the model shown in Fig 6.5. 

The fit between the observed and the calculated anomalies is 

very satisfactory. The model indicates that the anomaly is 

caused by a contrast within the basement; a magnetic basement 

underlies a layer of less magnetic rocks. 

~he trough causing t.he anomaly at the Solway Firth is 

in r~markable parallelisiwith the sedimentari ba~in 
i 

sugg~~ting that the two s~ructures, ~re closely ~s~oc~~ted~ ·· 

However, the rise in the ~outhern.Uplands seems to represent 

a general rise of the-magnetic basement underneath the 

complete tectonics of the r;egion. ,T,he ap.parert .smoothn·ess of 
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the contact may have well been enhanced by the comparatively 

large depth to the magnetic basement. 

The magnetisation contrast vector is shown in a plane 

parallel to the profile. Assuming that the true vector 

lies in a plane parallel to the geographical north the 

vector would have a magnitude of 0.001 e.m.u./cm3 and 

would be inclined at 77°. These values, together with a 

regional of- 12 gammas are well within the expected range 

.and indicate quite a good solution. 

The procedure was repeated using the method of' con ;)uga.te 

directions, f'or comparison purposes. Convergence to the 

minimum was usually faster than in the method of rotating 

coordinates. However, the procedure has no provision f'or 

constraining the parameters and there was occasional 

tendency f'or converging to geologically unfeasible minima. 

The residuals obtained with the model of' Fig. 6.5, 

compared with the accuracy of observations, did not JU&tif'y 

further detailing on the model. However, f'or the purpose 

of illustration, a detailed model was attempted using 

Davidon's procedure. The extra coordinates in the new model 

defined points that were already on straight segments between 

the original coordinates indicating the relative straightness 

of the contrast plane. 

Other possibilities were also surveyed. A closed body 

within the basement was assumed and the model was optimised 

starting from various initial points. However, all solutions 

gave models that were geologically unreasonable and the 

model shown in Fig. 6.5 was regarded as the best ava1lable 

. ) 



.110. 

approximation to the true geological picture. 

The volcanic activity during Lower Ordovician might 

appear to provide reasonable grounds for attributing the 

anomaly to a contrast between such volcanic rocks and 

overlying non-magnetic Lower Palaeozoic and younger rocks. 

However, the basic nature of these volcanic rocks is not 

persistent even within the Southern Uplands. Furthermore, 

the postulated depth to the contrast plane is not compatible 

with the known depth of Lower Ordovician rocks in the 

interpreted part of the Soutl1ern Uplands (Pringle, 1948). 

It would, therefore, seem probable that the magnetic basement 

is Pre-Cambrian; the contribution from the Lower Ordovician 

is probably not significant. 

Interpretation of the anomaly corresponding to the 

Solway Firth alone is shown in Fig. 6.6b. The parameters 

defining the model are similar to those of Fig. 6.5. Two 

more· models were .produced by specifying the direction of the 

contrast vector, the depth to the top of the basin and the 

regional background at values similar to those of Fig. 6.6b. 

The magnitude of the magnetisation contrast was specified at 

half and twice that of Fig. 6.6b, respectively (Figs. 6.6a 

and 6.6c). ·The three models are reasonable geologically. 

However, the high residuals associated with model(a)suggest 

that the magnetisation contrast is probably much ··larger or 

that the basic parameters had not been specified correctly. 

Table 6.2 gives es~imates of the accuracy in the 

coordinate parameters of the model of Fig. 6.6b., using 
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eQuation (2.18). As in the gravity models these estimates 

have a limited significance. They serve to give only a 

rough idea on the possible error in the 11 dummy11 parameters 

within the simplications assumed by the model. 

Horizontal distance Error Depth below 
from origin flight level 

Point no. 1 31.3 o.a 3.1 

2 41.6 o.s 4.0 

3 57.3 1.1 9.4 

4 74.5 3.1 6.0 

5 85.9 0.7 3.7 

Table 6.2. Estimates of possible error in the coordinate 
parameters of Fig. 6.6b. The figures are in kilometers. 

The time taken to obtain a solution in magnetic 

interpretation depends upon the same factors as in gravity 

methods (section 5.5). As an example we quote typical 

times required to obtain the model of Fig. 6.5 using an 

IBM 360/67 computer: 

Method of rotating coordinates (P300) 8 minutes 

Method of conjugate directions (P303) 6 minutes 

The 'Complex' method (P301) 15 minutes 

Davidon 1 s Tiiethod (P306) 50 seconds 

6 •. 7. 2. The English Channel anomalies 

Error 

0.5 

o.6 

1.3 

0.7 

0.5 

Four moderately isolated anomalies in the English Channel 

were chosen to demonstrate the efficiency of optimisa~ion 

techniques in magnetic interpretation (Figs 6.7 and 6.8). 

All models were obt~ined using a direct search method, 
' . 

. ~ 
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usually the method of rotating coordinates. They are all 

interpreted as features, within the basement, owing their 

origin partly to faulting and perhaps partly to igneous 

or metamorphic activities. 

The interpretation of anomalies 1 and 2 (end solution 

A in Figs. 6.2, 6.3 and 6.4) is in good agreement with the 

structural features of the overlying Mesozoic and Tertiary 

rocks in this area (R. Dingwall, private communication). 

The anomaly no. 4 was interpreted by Allan (1961) as 

being a basic intrusion which has been subject to some 

thrusting. Whilst the model of Fig. 6.8 would support such 

a proposition the depth to the top, suggested by Allen to be 

1-1.5 miles, is about one mile shallower than that given by 

this model. 

6.7.3. The Moray Firth 

Two profiles were chosen across the Moray Firth at 

approximately right angles to the predominantly Caledonian 

trend. The method of rotating coordinates was used to obtain 

a general model end wes followed by Davidon's method to obtain 

the required detail. 

The two profiles (Fig. 6.9) show the presence of two 

important high features in the basement with the development 

of a basin-like structure between them. The 'high' in the 

north-west is bounded on the south-east by a fault Which 

appears to be a continuation of the Helmsdale fault. The 

1 high 1 in the south-east is separated from the basin-like 

structure by a fault which appears as an extension of the 

., 
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Great Glen Fault. Fig. 6.10 represents a likely conclusion 

from such interpretation. 

The solutions are not unique. In particular, profile 

II may be interpreted using different magnetisation contrasts; 

an appropriate value would be a contrast similar to that 

obtained from profile I. Such assumptions tend to influence 

the depth coordinates mainly while the general picture 

remains basically unaltered. 

If the displacement along the Great Glen Fault was 

predominantly of lateral nature it would be expected to 

bring masses of contrasting magnetisations in contact.· The 

assumption of uniform magnetisation of Fig. 6.9 would no 

longer be valid and the apparently good fit would be a normal 

consequence of ambiguity. The two profiles were, therefore' 

re-interpreted using MULTI~ programme with contrasting 

magnetisations across the supposed transcurrent fault. The 

optimisation process showed a tend~ncy to bring the 

magnetisations, on e1..-her side of the f'aul tl: closer together. 

A good f'it was actually only obtainable when the two 

magnetisations were not signif'icantly diff'erent. 

The results of this limited investigation are incon

clusive. They suggest that the displacement along the 

Great Glen Fault is predominantly vertical. The whole 

interpretation is in favour of the following hypothesis. The 

Great Glen Fault is not a single f'ault but is a complex 

fault system imvolving a wide region on either side (including 

the Helmsdale f'ault). The f'aults are not always detectable 

in the magnetic basement \owing to its ~arge .depth. The 



Fig. 6.10 A map of the 
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rault system culminates in the development of a 'trough' 

along the middle of the basin-like structure. The Loch 

Ness 'trough' is its inland extension. The fault marked 

GGF in Fig. 6.9 is a major fault in the fault complex. 

The general structure is then similar to a 'rift system'. 

The regional structural picture is not against this 

hypothesis. However, the hypothesis is difficult to 

reconcile with the increasing evidence in favour of the 

displacement along the Fault being predominently lateral 

(e.g. Kennedy, 1946; Holgate, 1969). 

Further details of this matter are not central to our 

present topic and a lot of work is obviously needed before 

the struct~ral aspects of. the area are tully understood • 

.. 
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CHAPTER 7 

SEISMIC .AND ELECTRICAL RESISTIVITY EXAMPLES 

PART I 

INTERPRETATION OF 

SURFACE WAVE DISPERSION 

7.1. Introduction 

The velocity of propagation of surface waves in layered 

media is frequency dependant. This is a consequence of the 

attentuation of particle displacement with de~th, which 

increases rapidly as the frequency increases. For a given 

wave train, the relationship between the phase velocity, 

C( C4l ) and the frequency, (I) , varies according to the tx, p, f 
and t parameters of the layers through which the waves are 

propagated, where 

~ = velocity of propagation of dilatational waves, 

p = velocity of propagation of rotational waves, 

(' = density, 

t = thickness. 

The relationship between C( w ) and w is conv_eniently 

represented by a curve known as the phase velocity dispersion 

curve. 

Those Fourier components which are momentarily in phase 

travel coherently as a group. The group velocity U(~) is 

directly_obtainable from 
-1 

u( w ) = c( w) [l- cCw) 2&] 
d(l) 
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Interpreting the phase and group velocity curves in 

terms of 0( '~· r and t can provide important information 

on the phy~}cal properties of the layers being traversed. 

The method is widely used in seismology to study the broad 

crustal and upper mantle structure of the earth. 

Haskell (1953), modifying an older version by Thomson 

(1950), formulated the basic method for computing the phase 

velocity dispersion curve for a model of n horizon·tal layers. 

The formulation is applicable to Rayleigh and Love waves. 

The final expression which involves C(k) as a fUnction of k 

(k being the wave number ) is too complicated -to enable 

obtaining C(k) directly from k. 
.. 

A univariate search procedure 

is used as an alternative. 

Dorman et al (1960) adapted Haskell's formulation for 

carrying out the computation by digital computer. Harkrider 

and Anderson (1962) introduced other modifications to increase 

the range of frequency which the procedure can handle 

accurately. 

The simplest interpretation of phase and group velocity 

curves is by trial and error. There are also procedures based 

on the method of steepest descent (e.g. Dorman and Ewing, 

1962) etc. Matching the dispersion curve with a set of 

standard curves is also sometimes employed (e.g. Raju, 1968). 

The problem is non-linear and invites a full utilisation 

.of non-linear optimisation techniques. 

7.2. Interpretation Using Optimisation Techniques 



A simple objective runction is given by 

t 
i=l 

(A - D )2 ] t 
i i 

where Ai is the observed phase or group velocity value 
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th ( at the i rrequency or period) and Di is the corresponding 
.. 

calculated value. The m variable parameters ~ can include 

the oc 1 {J, f and t or all the layers involved. The number of 

variables may be reduced by expressing oc in terms of p 
through the appropriate relationship. 

The immediate choice of optimisation method is 

restricted to a direct search method for two reasons. Firstly, 

the relation between D and ~ is complicated so that an 

explicit expression for ar (j = 1,2, ••• ,m) is dirficult 
ox 

to provide. Secondly, the j behaviour of f (~ in the x 
hyperspace is apparently very complicated so that the use 

of a gradient method is unjustiried until the rinal stages 

or the search. 

To ensure the reasibility or the variable parameters 

simple constraints or the rorm given in equation (3.36) are 

sufricient. The method of conjugate directions can, 

therefore, be used. However, the method or rotating 

coordinates would probably be at least as efricient. The 

latter method was only available in PL/1. It could not be 

used in the investigation owing to problems arising from 

language compatibility with the auxiliary procedure which 

was only available in Fortran IV. 

The investigation was started by interpreting a 

Rayleigh pbase velocity curve computed for a theoretical 
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2-layer model. The oc, p, f and t parameters of the layers 

were not specified. Using the objective function defined 

by equation (7.2), the search was started from a reasonably 

distant initial point. The progress was quite slow and 

terminated without locating the original model. 

The phase and group velocity curves were then combined 

using 

t(~ = [ ~ 

where the prime denotes group velocity. The search, in 

this case,_terminated at the true solution after achieving 

a very rapid progress. 

These experiments were substantiated by a number of 

other trials from different initial points. The results 

tentatively suggest that the inverse solution for a 

theoretical problem is probably unique. The incorporation 

of group velocity data cannot be the cause of this 

uniqueness since the group velocity is directly obtainable 

from the phase velocity. The original model could not be 

recovered by using phase velocity alone probably because 

the poin·ts with very low function value lie in a narrow-_ 

trough (Fig. 7.1) causing the search to terminate by local 

convergence. The incorporation of group velocity data has 

probably improved the conditioning of the problem. 

- The conditioning of the problem can be further improved 

by incorporating the Love dispersion curve, the latter being 

an independent observation of the Rayleigh dispersion curve. 



CONTOURS OF OBJECTIVE FUNCTION VALUE 5 X 30 

Fig. -7 .1. An oblique section through the x h.vperspace of the 

objective function corresponding to a Raleigh phase 

velocj ty dispersi o.n curve of a. two-layer model. Point 

M represents the true solution. Points wi~h low function 

values occupy a long narrow regl.on (not l-tholly 'in the 

plane of the section). 
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This was supported by a limited amount of experimentation. 

From a practical point of view, the indeterminacy 

of the inverse solutions seems to be more pronounced than 

in the case of gravity and magnetic problems. Any 

combination of phase and group velocity curves of Rayleigh 

and Love waves would, therefore, be highly desirable. 

However, not all these data are usually available. The 

accuracy of the data may also impose a limitation. The 

best practical approach is to specify as many parameters as 

possible. 

A test on actual field data was carried out using phase 

and group velocity of Rayleigh waves to investigate the 

crustal and upper mantle structure in the East African rift 

area. 1 -

The model was divided into fourteen different layers 

(Fig. 7.2). To limit the indeterminacy, the a, p and t 

parameters of all layers were specified; Dorman and Ewing 

(1962) suggest that these conditions are sufficient to ensure 

the uniqueness of the solution within tbe limitation of 

observational errors. 

Results of the interpretation (Fig. 7.2) do not appear 

to be realistic. The oscillation in the values of p is 

probably due to the decrease of the resolving power of the 

method with increased depth. Some of the layers were 

therefore combined and the resulting model consisted of 

1. This test was carried out by Mr. K. Sundaralingam. 
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seven layers only. The p values of the top two layers and 

of the bottom layer were also specified. The solution was 

quite satisfactory in this case (Fig. 7.2). although the 

R.M.S. deviation (= 0.9) was higher than that of the first 

. model, the agreement between the observed and the calculated 

data was still inside the range of observational errors. 

However, in view of the limited amount of experimentation, 

the results given above must be sub~ect to further test1ngD 
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P.ART II 

INTERPRETATION OF APPARENT RESISTIVITY CURVES OVER 

LAYERED JViEDIA 

7.3. Introduction 

The variation of electrical resistivity with depth is 

usually studied by interpreting a plot of apparent 

resistivity vs. electrode spacing known as the apparent 

resistivity curve. Most methods of interpretation are 

based on the assumption that the ground consists of n 

horizontally stratified layers of infinite extent and which 

are uniform and, usually, isotropic. These methods are 

usually based on a formulation by Stefanesco (1930) for the 

potential V at a distance r from a point source of current 

I on the surface of the ground. This is given by 

V(r) = LfL [ 1+ 2r 2.n r 

where 

QOI 

J K(t) J
0
(rt) dt J 

0 

el = :~resistivity of the top layer 

(7.4) 

J = Bessel function of first kind and zero order 
0 

t = parameter of integration 

K = the kernel function determined by layer depths 

resistivities. 

A common method of interpretation is to compare the 

apparent resistivity curve with a set of standard curves 

(e.g. La Compagnie Generale de Geophysique, 1955; Mooney 

and Wetzel, 1956). Vosoff (1958) works with the kernel 
.. 

and 

function and uses the methods of Newton and steepest descent 



.122. 

(section 3.3) to determine the parameters of the layers. 

Other methods treat the observed curve directly. Koefoed 

(1968) decomposes the curve into a number of partial 

apparent resistivity curves and uses a 'raised kernel function' 

at the final stages to determine the depths and resistivities 

of the layers. 

However, most methods require lengthy calculations or 

tedious operations. Moreover, although the solution to the 

inverse problem in electric resistivity is, theoretically, 

unique (Langer, 1933), a large number of widely contrasting 

models can usually produce apparent resistivity curves which 

agree closely between themselves. This phenomenon is known 

as the "principle of equivalence". ·These dif'fioul ties are 

f'urther increased by deviations f'rom the theoretical 

conditions assumed by the model, by the presence of 

.observational errors and by the decrease in the resolving 

power of' the resistivity method with depth. Optimisation 

techniques do not overcome these difficulties. A caref'ul 

ap~lication of the techniques, however, can substantially 

reduce the limitations and increase the reliability of the 

interpretation. 

7.4. Interpretation Using Ontimisation Techniques· 

An iterative procedure baaed on minimising the 

discrepancy between an observed and a calculated apparent 

resistivity curve requires very unreasonable computer time. 

Even under favourable circumstances and using efficient 

methods (e.g. Van Dam, 1965; Mooney et al, 1966), the 
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computation of a single curve due to a four-layer model 

would require about 10 seconds on IBM 360/67 Computer. 

Gradient methods would reQuire at least 20 iterations and 

are not expected to perform efficiently in the earlier stages 

of the search, as was indicated in parts of the work of 

Vosoff (1958). Sequential and linear direct search methods 

would require some 100 or more iterations per variable. In 

all cases, the computer time involved is quite considerable· 

on an industrial scale. 

To overcome the question of computer time, a curve 

matching process is adopted to provide a value for the 

objective function, with minimum computation. This process 

constitutes the auxiliary procedure. -The main optimisation 

procedure is based on a modification of grid tabulation 

techniques (section 3.2.1.). The method consists of the 

following stages: 

1. A set of standard curves, referring to a specific 

number of layers (four in our case) and covering a wide 

range of resistivity and depth ratios, are digitised. Each 

curve is identified by a uniQue number denoting its depth 

and resistivity ratios. 

2. The number of variable parameters is reduced to 

two, namely the depth ratio and the resistivity ratio of the 

layers. In the resulting two-dimensional space, the objective 

function will be known only at points for which standard 

curves exist. Since these curves are computed for discrete 

intervals in the two parameters, there results a two-dimen

sional grid in which the 9bjective function is known at t~e 

. nodes only. 
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3. The observed curve is digitised at the same 

intervals as the standard curves. The observed curve is 

compared systematically with all standard curves in the 

required range of depth and resistivity ratios. The 

objective function at each node is represented by the sum 

of squares (or absolute values) of residuals between the 

observed curve and the standard curve corresponding to the 

particular node. 

4. The best fitting standard curve, i.e. the node with 

the lowest function value, does not generally represent a 

true solution, partly because of equivalence and partly 

because the ground being tested does not usually consist 

of layers in the .same ratios of depth and resistivity as any 

·of the standard curves. However, this 'optimum' fit can give 

a rough estimate of the depths involved; the depth ratios being· 

converted to actual values by using the appropriate conversion 

parameters. 

s. The value of each objective function is output 

near or at the corresponding node on the grid. A convenient 

representation of these values is to use alphameric characters 

denoting the range in which each value falls. An example 

of such output is shown in Fig. 7.3. 

6. Those standard curves producing a reasonable fit 

are determined by visual inspection of the grid. The general 

scatter of these curves, throughout the grid, makes it possible 

to determine those depth and resistivity ratios which are 

more likely than others. 

7. Using external control, all ratios which do not 



.H .H .G .G .G .G .G .G .F .F .F .G .G .F .G .G .G .G .G .G 

.G .G .G .F .F .F .0 .0 .C .tl .u .C .0 .D .F .F .D .F .G .G 

.G .G .G .F .F .F .0 .0 .C .C .D •" .0 .C .D .F .D .F .G .J 

.G .G .G .F .F .F .D .D .D .U .D .iJ .D .0 .0 .F .0 .F .G .G 

.H .G .K .J .H .K .K .K .J .G .G .G .G .F .F .F .F .c .F .G 

.F .G .G .F .F .F .F .D .F .F .H .F .C .F .0 .F .0 .F .G .G 

.J .H .H .G .L .K .K .M .L .M .1'-1 .M .M .L .L .K .J .J .H .H 

.H .H .G .K .K .L .L .K .K .K .K .K .K .J .J .J .H .G .G .G 

.F .G .F .F .G .11 .H .H .H .H .J .H .H .G .G .G .F .0 .F .0 

.B .C .C .C .C .C .C .0 .D .D .D .D .C .C .B .F .A .0 .o .C 

.F .F .F .F .F .F .F .F .F .F .B .B .A .B .A .A .B .c .C .C 

.G .H .H .H .H .H .H .H .H .H .H .H .H .H .H .H .H .H .H .H 

.G .F .F .G .H .H .H .H .H .H .H .H .N .N .J .H .H .H .H .H 

.0 .c .0 .F .F .F .F .G .G .F .F .F .F .F .G .G .F .F .F .G 

.0 •* .A .C .C .A .A .F .U .C .A .B .C .C .D .0 .B .C .C .F 

.G .F .F .F .H .H .H .H .H .J .J .J .J .H .H .H .G .G .G .G 

.J .1-1 .G .G .K .K .J .K .K .K .L .L .S .K .K .K .J .J .J .J 

o~K .J .J .H .L .L .K .M .L .M .M .M .M .M .M .M .L .L .L .L 

Fig. 7.3. An example of a grid output. The alphameriC' 

chnr~oter~ indiont~ tho dc~roe of fjt wjth, ench 

ul;nndard curvo in a::t:1•n!1jn{~ order ::o thiJ:L a 

fit of degree A is better than a fit of degree 

B. The asterisk denotes the standard curve with 

the best fit. The 0 indicates the standard curve 

with the next ~est fit. 



conform with available informations can be discarded and 

a final interpretation may then be made. 

The method has many advantages. Firstly, it is 

extremely fast; the average computer time per curve is 

.125. 

just over half a ~econd on an IBM 360/67 computer. Secondly, 

tile "principle of equivalence" is overcome appreciably by · 
-

outputting a whole aeries of possible solutions rather than 

a single one. Tllirdly, no tedious operations or calculations 

are involved. 

Tile method has also a number of limitations. Firstly, 

it is only applicable to a specific number of layers. 

Secondly, it requires tile provision of a set of standard 

curves wllich may nave to be constructed if the desired d~pth 

or resistivity ratio intervals are unavailable. The 

standard curves usually also require a very large storage 

space in the computer. Thirdly, it is only possible to 

provide the solution at discrete intervals. 

The applicability of the method to field data was 

·tested by interpreting a number of apparent resistivity 

curves obtained over glacial drift. A borehole log was 

available close to the position of each of the resistivity 

probes so tllat a direct assessment of the solution was 

possible. 

Tile depth to the lowest interface obtained from the 

optimum fit, in each of the interpretations, was used as a 

reference to convert the uepth ratios to actual values. The 

probable interpretation was then generally worked out in the 

manner de~cribed above. Some of these interpretations are 



FEET BH ! BH 11 BH ~ 0 ---0 C) 

0 
0 0 - -WT'? 

5 0 
0 

I )OO oo .... 
0 :::~·.: .... oo .. . ·.:-.-.. oo 

10 ··~·-- :=:·~· 'O ~oo ... 
. ·.··· oo ·.·;:• -- 1)0 .:\::·~· -,J .. 

~ --,..., ,..., -,..., 80 -15 so -

FEET 
8H 7 BH 21 BH 16 --,...-,....., 

~~ 
0 0 

0 
()0 

300 
~-· 

OQ 

~~~;-
C) 

0 
20 00 

~· .. i 0 
bOO 

· .... ,_ 
:~.::9: .,..J 

~ 
}IJO 

10 ......... -30 - ,_...., - ,....., 
,..- ,..-.J 

00 - ?SO .,..J 
,.- -_, ,..., 

~_:-. Oo ,..., ,, _, ,..., _, 
40 -~:~· ~:·· 

soo 

IS: I CLAY t/::?/J SAND- .lg"~0~GRAVEL 

Fig. 7.4. Comparison of interpretation of apparent resisti "Ti ty 

curves with boreho~e results drjlled in tWe vicinity 

of each depth probe. 

Underlined fieures represent the code num.ber of the .. 
depth probe. Fieures inside the columns represent 

resistivity in ohm. ft. estimated very roughly.· 

BH = Bor~hole log 

WT = Water t~ble 

., 



.126. 

shown in Fig. 7.4. Most or them show quite a good agreement 

with the borehole log indicating that the method is, 

probably, at least as erricient as'most other methods. 



C H A P T E R 8 

THE FITTING OF CONTINENTAL EDGES 

8.1. Evolution of the Concept of Continental Drift 

The first serious attempts to establish continental 

drift were those made by Taylor and, more significantly, 
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by Wegener, more than fifty years ago (Holmes, 1965 p.ll99). 

However, due to the lack of a plausible mechanism for the 

drift, this early work was subjected to sharp criticisms 

which checked further advances. Thus, the concept of 

continental drift remained no more than an embarassing 

possibility. Most palaeontologists had still to make do 

with some unreasonable land bridges to ferry the various 

migrating species across both •ides of the Atlantic while 

paleao-climatic findings were being explained away by 

polar-wandering speculations. 

Early in the fifties, however, a vast amount of 

palaeomagnetic data began to furnish fresh and powerful 

evidence for continental drift, exemplified by the works of 

Blackett, Creer, Irving, and Runcorn, among many others. 

With the support of this new and independent evidence, all 

major geological and palaeo-climatic·results were integrated 

to provide grounds for the rapidly evolving concept 9f ocean

floor spreading by the inJection of new material along oceanic 

ridges (Dietz, 1961; Hess, 1962). The significance of 

magnetic lineations was being rapidly realised (Vine and 

Matthews, 1963; Pitman and Heirtzler, 1966) and the role of 
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transform faults in the growth of ocean-floor, and hence . 

in continental. drirt, was becoming more apparent (Wilson, 

1965). The continuous flow of data and the gradual 

elaboration of ideas led to the collection of all the 

evidence under yet another new concept, now popularly known 

as 11 plate tectonics". 

According to the new concept, the outer part of the 

globe is formed by the lithosphere, a relatively rigid 

material about 100 kms. thick (and therefore includes the 

crust and the uppermost part of the mantle) resting on a 

layer, about 700 kms. thick, of effectively no strength, 

called the asthenosphere. The lithosphere consists of a 

number of blocks (e.g. McKenzie and Parker, 1967; Morgan, 

1968); each block is relatively aseismic and is defined by 

seismically active _boundaries (Sykes, 1967; Isacks, Oliver 

and Sykes, 1968). The relative movement between the blocks 

is associated with the creation and destruction of the 

lithosphere and is consistent and interrelated on a global 

scale (Le Pichon, 1968). The boundaries of each block do 

not in general coincide with continental boundaries but 

continental drift is imp~icit in these relative motions. 

The mechanism for the motion is usually sought in terms of 

convective processes. However, regardless of whether the 

concept of plate tectonics and the mechanisms behind it 

continue to be supported by fresh evidence, we shall assume 

continental drift to be a real geologic process. The actual 

mechanism causing the drift is not an essential part of the 

pres Em t work. 
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~ 

8.2. The Significance of the Fit 

Restoring the original position of continents by 

fitting corresponding lines along which fracturing and 

separation is supposed to have taken place was the most 

tempting method to demonstrate continental drift. Except 

in very special cases, the irrelevance of the actual coast 

line for the fitting process is quite obvious. Continents 

are usually delimited by the continental slope which is 

usually quite steep. Any isobath between 500 and 1000 

fathoms will normally represent the edge of the continent, 

adequately. However, it cannot be.assumed that the initial 

break up was effected at a uniform depth nor can the passage 

into. oceanic crust be expected to take place at the same level. 

No single isobath, therefore, can define the original break 

up. This is further complicated by the deformation that may 

accompany fracturing and drifting and by the depositional 

and erosional processes subsequent to separation. Therefore, 

for a given fit, the presence of gaps and overlaps is not 

always serious. They can be the result of any of th~ factors 

mentioned above. Therefore, these factors can become 

important in asserting the plausibility of a given fit. 

However, they can also shed extensive doubt on the validity 

of the position of the pole of rotation obtained on the bases 

of minimising the misfit between the edges being matched 

(section 8.5). 

Occasionally, it may become impossible to employ the 

continental slope in the fitting procedure •. Depositional or 

extrusive activities may reach such an extent that they 
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could completely obscure the cont~nental slope, e.g. the 

Red Sea. Separation may also have not progressed 

sufficiently far for a continental slope to develop, e.g. 

The East African rift system. The continental edges in 

these cases, are approximated by methods_appropriate to 

each individual case. For these reasons, we shall use the 

term 'edge' in a general way to denote the sides of 

continents being fitted, regardless ot whether these sides 

represent a coastline, a continental slope or any other 

feature. 

The reality of the fit must also be translated 

geologically since the shape fit is merely the first 

criterion. This was well discussed by Westoll (1965) 

who also points out that a detailed matching of structures 

is difficult although the correlation may be improved by 

drilling, sample dredging, etc. Examples of the use of 

geological criteria, in restoring continents to their 

pre-drift relative position will be given later. 

8.3. Fitting Procedures 

8.3.1. General remarks 

Continents may be restored to their original relative 

position by making use of a. theorem due to Euler, namely 

that any displacement of a rigid shell on the surface of a 

sphere is equivalent to a rotation about an axis through 

the centre of the sphere (Bullard et al, 1965). This axis 

meets the surface of the sphere at two points known as the · 

centres or poles of rotation. The geographical position of 

one of the two centres of rotation is sufficient to define 
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the axis on the surface of the earth assuming that the earth 

is practically a sphere. 

Continentai drift may be envisaged as the rotation of one 

continent relative to the other about a given centre of rotation 

Determination of the geographical position of the centre 

and the amount of rotation are sufficient to restore the two 

continents to their pre-drift relative position. 

~he rotation at various stages could have been achieved 

about successively different centres (see for example Fox 

et al, 1969). It is the resultant relative displacement that 

must be determined in these cases. 

The position of the centre of rotation may be determined 

using transform faults or other data from ocean-floor spreading 

(e.g. Morgan, 1968; Le Pichon, 1968). Palaeomagnetic 

evidence may also be used for the purpose (Frencheteau and 

Sclater, 1969). However, these methods are usually concerned 

with the movement between plates at various stages of their 

geological history rather than with establishing original 

relative position of continents. Our present topic is 

concerned with determining the centre of rotation directly 

from the fit between the two continental edges regardless 

of what paths these continents followed in acquiring their 

present position 

8.3.2. Bases of the method 

The edge of a continent can be defined by the latitudes 

and longitudes of a series of points placed sufficiently 

close for the form of the continental edge to be interpolated 

between them. We can consider the centre of rotation as a 
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geographical pole and convert the latitudes and longitudes 

of all these points to correspond to the new pole, using 

the fo~lowing equations (Young and Douglas, 1968): 

t = sin-l (sin T sin a + cos T cos a cos B) (8.1) 

e = -1 [ tan cos T sin B I ( cos T sin 8 cos B-

sin T cos a)] (8. 2) 

where 

T = latitude of any point 

E = east longitude of any point 

a = latitude of new pole (centre of rotation) 

b = east longitude of new pole 

t = latitude of point with respect to new pole 

e = east longitude of point with respect to new pole 

B = E - b. 

The problem is then to find the position of a centre of 

rotation which would give an optimum fit between the two 

edges being matched. 

There are several possible criteria for the optimum 

fit. Bullard et al (1965) use the function 
N 

Q2 = 2i [b_ (sn - so)2 + (s~ - so)2 J ( 8. 3) . 

where 

N = the number of points on each side, 

sn = the longitude difference between the nth point on 

the first edge anCI. its interpolated equivalent (on 

the same latitude) on the second edge. 
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sn = the longitude difference between the nth point on 

the second edge and its interpolated equivalent 

on the first edge. 

I 

(s + s ). n n 

All measurements refer to the centre of rotation as the 

new pole. 

a and b are the only variable parameters of Q. Bullard 

et al (1965) use the method of alternating variables (section 

3.2.3) to minimise Q(a,b). The values of a and bat the 

optimum give the required position of the centre of rotation 

while S is numerically equal to the amount of rotation 
0 . 

necessary to b-ring the two edges in contact. However, although 

the procedure of Bullard et al is very sound in principle it 

suffers from the drawbacks of the method of alternating 

variables and from the possibility of converging at a local 

minimum. 

Our method is based on the same principle but the 

optimisation is carried out differently in order to avoid 

the drawbacks mentioned above and to gain certain advantages. 

We define an objective function Q by 

Q = ~o~!.N [ ( t ( sn - so) 2 ~ wn) i + 

(s - s )2 H w )t] m o m m (8.4) 

where 

N = number of points on the first edge . 
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M = number of points on the second edge 

H = cos2 (t). Appropriate factor to allow for longitude 

difference at different latitudes, i.e. to emphasise 

the actual distance of mis-fit. 

· W = appropriate weighting function according to the 

reliability of the part of the edge involved. 

, 

then 

S = t (S + S ) 
0 u v 

The fact that Q is fU.nction of' two variables only is of' 

fundamental importance. We make use of this by mapping ~ in 

the two dimensional space of a and b. This has the advantage 

of' providing a complete description of the behaviour of Q 

within the range being mapped. The presence of any local 

minima becomes, therefore, readily detectable. More important 

is the possibility of asserting how we"Il defined is the global 

minimum and, therefore, its validity when compared with other 

points in its neighbourhood. The importance of this feature 

will become evident when the sienificance of the position of 

the pole of rotation is discussed. 

To map the function we use the grid tabulation method 

(section 3.2.1). Each node of the grid is defined by its 

appropriate (a,b) value. Q is·thus evaluated for a range 

of values of a and b sufficient to cover all possible 

solutions, at intervals determined by the required accuracy. 

According to the grid method the node possessing the lowest 
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value of ·Q is considered the required minimum. However, such 

a solution does not achieve any of the advantages mentioned 

above. We therefore print out the whole grid. The printed 

values of Q are arranged in such a manner that the b - axis 

is the horizontal axis of the grid and the a-axis is the 

vertical one. Each node has the corresponding Q value printed 

on it. The resulting grid is then contoured for equal 

values of Q and a map of Q for the specified range of a and 

b is produced. 

In practice, the numerical values of Q are not output. 

Instead, an alphameric character denoting the.range in which 

Q falls, is output at each node, similarly to the method of 

section 7.4. This renders the contouring process easy 

without much loss in accuracy. 

The recommended procedure is to cover a wide range of 

a and b vaiues on an initial map, using a coarse interval. 

Once the solution is localised, a high resolution may be 

achieved by mapping the appropriate range of a and b at a 

much smaller interval; the accuracy to which a solution may 

be obtained by this method has no limit. However, a high 

resolution is often unnecessary in view of the large 

·possible variation in the position of the optimum pole of 

rotation for a given tolerance. Usually, thi~ tolerance 

depends upon the density and accurqpy of the digit~sed 

points. It also depends upon how well do the fitted edges 

represent the original continental edges. 
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8.4. Description of Programme 

The essential features of the computer programme are 

shown by means of a flow chart (Fig. 8.1). The blocks 

marked by broken lines constitute the auxiliary part of 

the optimisation programmeD This auxiliary part may also 

be used with any other optimisation method when an 

alternative to mapping Q is sought. 

The procedure works with each point (a,b), in turn. 

The current point is assumed to be the new pole so that 

all the coordinates are converted with respect to it. For 

each of the digitised points, u , on edge U, an equivalent . n 

point, vn' on edge V is then located i.e. a point which falls 

on the same latitude as un with respect to the new pole. The 

process is then repeated for all the digitised points, vm' on 

edge v. 

The equivalent of un is found by a linear interpolation 

between two successive points vm and vm+l on edge V where 

or 

Since Tv 
n 

= T , it is sufficient to determine E in order 
Un vn 

to define vn. The linear interpolation gives 
T T 
vn vm 

T T + Evm 
vm+l vm 

(8.5) 

The actual relationship in spherical trigonometry is 

more complicated and entails several cumbersome evaluations 

However, if the difference between Vm and vm+l is less than 
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Fig. 8.1. A flow chart outlining the basic method of obtainigg grids 

for the objective functions Q ; Q~and Q. Blocks of the auxiliary part 
·l "" 

are marked by broken lines. 

.\ 
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2° the error in E is less than 0.002°, which is adequate 
vn 

for practical purposes. 

Three kinds of objective function are computed 

simul·taneously so that three maps corresponding to Q1, 

Q2 and Q are produced, where 
N 1 

h. [[ 2 2 

~= (a - su) • H • wn J (8. 6) n n 
n=l 

(8. 7) 

The maps of~ and Q2 serve as a qualitative criterion 

for assessing the validity of the solution; when the minimum 

is well-defined, agreement between the three maps is quite 

strong. 

The execution time depends upon the number of grid 

points, the number of points defining each edge and somewhat 

upon the shape of the edges being matched. If individual parts 

of the edges are given different weights, the computation 

time is increased further. For 30 latitude values and 

30 longitude values (900 nodes) on each of the grids ar 

~' Q2 and Q, and with 60 points defining each of the 

two edges, a typical time reouired on an IBM 360/67 

computer is about 6 minutes. Although this time is quite 

practical, it is somewhat large and constiutes a drawback 

in the method. Only 10 seconds will probably be sufficient 

for the same problem if another optimisation method (the 

:. 
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pattern search method for example) was used. However, this 

would mean the loss of the advantages of mapping Q. 

The second drawback arises in the presence of special 

types of infolds on the fitted edges. If an infold 

is present on edge V then a given point, uk, on edge U 

may have two equivalent points on V~ While our method 

of finding an equivalent will deal with most types of 

infolds properly, there are certain· situations Vlhen the method 

will fail. However, such situations are very rare; should 

they arise, the programme could be appropriately modified to 

deal with them. McKenzie et al (1970) attempt to overcome 

difficulties with turns and infolds by minimising the total 

area of misfit. However, it is necessary with such an 

objective function to use the angle of rotation as a third 

variable. 

The third drawback concerns the need for a large 

storage space in the computer; at least 120 K bytes are 

required in most problems. 

8.·5. Significance of the Position of the Pole of Rotation 

The method of restoring continents to their pre-·drift 

position by regarding their relative displacement as a 

rigid rotation about a given pole, has received wide 

attention since its introduction by Bullard et al (1965). 

However, although the pole position and the angle of 

rotation completely define the displacement, the inverse 

problem, i.e. the determination of the pole position and 

the amount of rotation, is not unambiguous in practice. 
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Most methods determine this pole by assuming it to produce 

minimum gaps and overlaps, i.e. the 'best fit' between the 

edges being matched. This is probably the best available 

criterion but the pole determined in this manner is only 

correct in as far as saying that the 'best fit' determines 

the original relative juxtaposition of the continents 

concerned. This is far from being rigorous. We have already 

seen that the presence of gaps and overlaps is not always 

critical because the original 1 line 1 of break up can rarely 
~ 

be defined with precision. It follows that the possible 

positions of the pole of rotation spread geographically over 

an area determined by the tolerance of the particular problem. 

In terms of the objective function, this area is defined by a 

contour wnose value is equal to the tolerance. When the 

minimum is bounded by steep sides, the solution may be 

localised within a small area even for very large tolerance. 

However, such·well-defined problems are rare. Only a slight 

deviation from the 'best fit' is usQally sufficient to cause 

the area of possible solutions to extend over many degrees of 

latitude and longitude. 

The actual position of an optimum pole of rotation is, 

therefore, not significant. A meaningful solution must refer 

to an area which is defined by the permitted tolerance. 

Methods which 1 home' onto a solution are, therefore, 

inadequate for the purpose. A procedure based on mapping 

the objective function, such as the one presented in this 

Chapter, must be used. 
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External control is very important. Any available 

geological informations must be used to reduce the 

ambiguity. Data obtained from transform faults, 

palaeomagnetic work, etc., are similarly useful although, 

by their very nature, such data exhibit a comparable 

ambiguity. However, being independant criteria, they may 

be used by superimposing the contour of maximum tolerance, 

given by each of these methods, on the contour of maximum 

tolerance of Q to obtain an area common to all of them. The 

solution may thus be localised further and its 'accuracy' 

increased. 

8·. 6. Examples 

The examples presented below demonstrate the use of 

the general procedure and the problems associated with the 

position of the pole of rotation. 

8.6.1. The fit of Greenland to Northern Europe 

The continental edges of Greenland and Northern Europe 

were mainly represented by the 500 fathom line. The fitted 

segments were approximately the same as those used by Bullard 

et al (1965) for a similar purpose. 

Iceland and the ridges joining it to Greenland were 

assumed to be post-drift in origin. The continental edge 

in the vicinity of these ridges was defined by a number of. 

widely separated points. 

On the European side, a plateau (marked N, Fig. 8.3) 
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Fig. 8.2. Contours of Q values for the fit between Greenland and 
Northern Jwrone. Poles of rotation indicated are.: 
A = Bullard e~ al (1965) 
B = Le Pichon (1968) 
C = Bott and Watts (1970b) 
D = Pole used to obtain the fit of Fie. 8.3. 
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. 
formed by young sediments fans out in the Norwegian Sea 

The continental edge across this plateau was estimated by 

assuming it to be parallel to the magnetic lineations in the 

neighbouring oceanic crust. Near the Faroe Islands, an· 

assumed deviation of the edge from the 500 fathom line was 

also necessary in order to follow the boundary suggested 

for the continental crust from gravity data (Bott and Watts, 

1970b). 

In the fitting process, various parts of both edges 

were weighted according to ·the confidence attached to each· 

part. A map of_Q for a range of 90°N to 18°3 and 65°E to 

155°E, is shown in Fig. 8.2. The map of Q1 and Q2 are 

.roughly similar to this map. Details of the optimum pole 

of rotation from the three maps are indicated below 

(in degrees) 

latitude (~ longitude (E) Rotatio 

Fit on Europe Ql = 0.13 42.0 119.0 9.9 

Fit on Greenland Q2 = 0.10 65.0 110.0 13.5 

Combined fit Q = 0.12 45.0 117.5 10.3 

The pole positions are widely different but they all fall 

within the axis of the trough in Fig. 8.2, indicating the 

validity of the map as a whole and the insignificance of 

the individual pole positions. In fact, Fig. 8.2 shows that 

if the tolerated value of Q is only 10~ higher than that at 

the optimum the possible positions of the pole of rotation 
··o 

would occupy a zone about 3° wide and extending for 32 • 



When no weigl1ts are placed on the :function, an increase of' 

10% cor~esponds to an extent or 20°. I~ both cases, ·the 

range is large and illustrates the practical di:f:ficulty in 

assessing the validity or a given pole without re:ference 

to some other criteria. 

A close resolution or the main trough in Fig. 8.2 

indicates the presence of' many ill-de:fined local minima. 

This illustrates how search by 1 homing 1 techniques could 

terminate erroneously. Fig. 8.2 also shows the optimum 

poles or rotation adopted by Bullard et al (1965), A, Le 

Pichon (1968), B, and Bott and Watts (1970b), c. All of' 

these poles :fall within the main trough. 

The maps or Q1 , ·~ and Q, when no weighting :functions 

were used, were similar to the map of' Fig. 8.2. The optimum 

poles in the three maps were in good agreement between 

themselves. Greenland was :fitted to Europe (Fig. 8.3) 
0 0 using the optimum pole of Q, at 58.3 N, 113 •. 0 E with a 

0 rotation angle of 12.4 • This pole is indicated by point 

D in Fig. 8.2. It was use~ instead of the. corresponding 

pole of the weighted function merely for convenience, being 

a point on the axis of the trough in Fig. 8.2 and because 

of its agreement with the optimum poles of Q2 and Q. 

The fit (Fig. 8.3) is quite satisfactory and produces 

no unreasonable gaps or overlaps. The overlap of plateau N 

suggests that the extent of the continental edge is even 

lesa·than was indicated from following. the magnetic lineations. 

The overlap which includes the Faroes is probably caused by 
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Fig. 8.3. i\ fit of the Gra~nl<J.nd e.nd thr! N~.Y European assumed continental 
edges (mn.rked by brokfm lines). The fit is obtained by rotating 
the Greenland shelf l:?.t( about a pole of rotation at 58.3° N, 
ll3.ifE. The shaded area indic~tes the relative position of the 
western side of the Caledonian fold belt reconstn1ct~d ~imilarly 
to Batt and Watts (1970b). 



an overestimation of the extent of the continent on the 

Greenland side, which was badly defined ~n this part. 
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The relative position or the Caledotiian fold belt 

boundary on the Greenland side is in agreement with that 

on the European side. This match was indicated by Batt 

and Watts (1970b) who obtained a similar result using the 

pole indicated in Fig. 8.2. This geologic control is an 

example or an external criterion which may be used to 

localise the possible solutions. P~les which produce a good 

fit between the two ~os: but do not match the fold belts are 

rejected on these bases. 

8.6.2. Movement between the Arabian, Nubian and Somalian plates 

8.6.2.1. Introduction 

Through a vast amount or geological and geophysical work, 

it is now generally recognised that the crustal structure or 

the Red Sea and the Gulf of Ad~n is essentially oceanic and 

that the Arabian plate is moving away from the African 

continent at an average rate of about 2cm/year (Girdler, 

1958; Vine, 1966; Laughton, 1966, inter alia). The relative 

movement across the Red Sea is slightly different from that 

across the Gulf of Aden. This difference is allowed for by 

the relative movement between the Somalian and the Nubian 

plates across the East African rift. McKenzie et al (1970) 

have studied the relative moyement between the three plates. 

They deduced the pole of rotation Nubia - Somalia from the 

difference between the rotations Arabia - Nubia and Arabia 



- Somalia. This pole was approximately located At 8.5°S, 

3l.0°E with a rotation angle of 1.9° indicating an opening 

of the rift by 65 km in northern Ethiopia and 30 km in 
1 Kenya. 

8.6.2.2. The Red Sea 

The actual coastlines were assumed to represent the 

continental edges and were used in the fitting process. 

This has been justified by McKenzie et al (1970) on the 

grounds that the marginal seas are complicated by thick 

evaporite deposits. 

A map of Q (Fig. 8.4) shows a well-defined minimum 

with an optimum pole of rotation at 37.1°N, 18.5°E 

corresponding to a rotation angle of 6.1°. This position 

(M) is close to that obtained by McKenzie et al (K). 

It was used to construct the fit between the Nubian and 

the Arabian plates (Fig. 8.5). The maps of Q
1 

and Q2 
are very similar to that of Q with the respective optimum 

poles in close agreement with that given above. 

8.6.2.3. The Gulf of Aden 

The continental edges on both sides of the Gulf of 

.Aden were represented by the 500 fathom line. Another 

representation was also possible by assuming the break in 

the continental slope to represent the passage from continental 

to oceanic crust. The anaglyph map of Laughton et al (1970) 

was used for the puryose. However, the results obtained 

fm>m both representations were very 

1. A re-computation based on the same data showed that the _, 
figur~~ for the opening are underestimated by at least 10% 
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Fig. 8.4. Contours of Q val.nes fo:r the openning- a.cross the Hed 
sea. 
M = The pole position with minimum misfit 
K = The pole position ~~ggested by Mckenzie et al 
(1970). 
Other arbitrary points-used in Table 8.1 are also 
shown. 
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Aden 500 fathom line~ (shown 
in broken lines) presented 
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similar; most discussion will be limited to the 500 fathom 

line representation. 

In fittfng the two edges of the Gulf, the Socotra 

shelf was first included as part of the Somalian plate in 

ita true relative position. Results of mapping Q are shown 

in Fig. 8.6. Minimum A is locally an optimum solution with 

coordinates 22.9°N, 31.6°E and a rotation angle of 12.0°. 

This pole position was used to produce the fit between the 

two plates as shown in Fig. 8.5. The fit is not as 

spectacular as in the case of the Red Sea. A better fit 

would be obtained if the Socotra shelf' was excluded, in 

the same way as was suggested by Laughton (1966) and by 

McKenzie et al (1970). 

Q was mapped with the Socotra shelf excluded, giving 

another locally optimum minimum at 23.4°N, 28.2°E, with a 
0 rotation angle of 9.5 • The resulting fit is shown in 
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Fig. 8.7 and indicates a definite improvement over the first 

fit. However, the first fit has three important features. 

Firstly, it does not require a displacement of the Socotra 

shelf as an independent 'fragment'. Secondly, it suggests 

even better geological continuity across the fitted edges 

than was originally demonstrated by Laughton (1966). 

Thirdly, it is consistent with the Island of Socotra being 

originally close to the Kuria Muria islands. The gaps and 

overlaps are nowhere excessive and, therefore, cannot be 

used as an evidence against the fit. 

Therefore, despite the better fit obtained by excluding 
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Fig. 8.6. Contours of Q values for the opanninG across the Gulf 

of Aden when the Socotra shelf is included as part 

of the Som~lian plate. 

A = ThP. pole 1wed to obtain the fit of Fir;. 8.5. 

D = The optimum pole positi~n when the Socotra 

shelf is excluded. 

E = The pole position of Mckenzie et al. (1970). 
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Projection: .Mercat6r 

Fig.·8~7. A fit between :the Arabian and the Somalian plates, using 
0 D 

a pole of rotation: at ~3.4 N, 28.2 E and a rotation angle 
0 

of 9.5. This pole is obtained by. excluding the Socotra 

~helf. T:he 500. fathom line is marked red on the Arabian 

.side and green on the Somalian side. 

Plot.ting ·programme after A". G. M·cKay. 
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Socotra, the overall evidence is in better agreement with 

the fit shown in Fig. 8.5. This again shows the 

vulnerability of the 'best fit 1 as a criterion for 

establishing the original relative position of continents. 

Fig. 8.6, in fact, suggests that a better fit is 

b 0 0 o tainable from a solution like B at 18.5 S, 10.0 E, with 
0 a rotation angle of 3.4 • A similar local minimum also 

appears when the Socotra shelf is not included. 

·Solution B corresponds to a fit correlating points 

X and Yon Arabia with points X' and Y1 on Somalia, 
. . 

respectively (Fig. 8.5). However, such fit is difficult 

to reconcile with the geological features on land and the 

magnetic lineations in the Gulf(Laughton, 1966; Laughton 

et al, 1910). Thus, the better fit of solution B is also 

eliminated in favour of the more definite criteria 

suggested by using the pole at A. 

8.6.2.4. Determination of the movement across the East 

.African rift. 

The ambiguity in the position of the pole of rotation 

invalidates its use in processes involving accurate 

quantitative determinations. We use, as an example, the . 

attempt of McKenzie et al (1970) to determine the movement 

across the East African rift by a vectorial addition of the 

-movement across the Gulf of Aden and that across the Red 

Sea. Clearly, the fit of the edges across the Red Sea 

is so good that, even if the area of misfit is increased 

by 30~~, the resulting fit would stfll be inside the 

tolerable limit. For the data presented by McKenzie et al 



(1970, Fig. 2), this is equivalent to a range of 4° in 

latitude and 7° in longitude. For illustration, we used 

the point P (Fig. 8.4) to produce a fit of the two edges 

of the Red Sea (Fig. 8.8). Despite a shift from the pole 

of the 'best fit' by 3° latitude and 8.5° longitude, the 

resulting fit is quite satisfactory. In the same way, 

a large nu'1'ilber of other points may be shovm to provide a 

possible pole of rotation for the displacement across the 

Red S~a. Each of these poles, when added vectorially 

to the pole for the movement across the Gulf of Aden, will 

produce a different pole for·the movement across the 

East African rift. Results of the vectorial addition of 

some of these poles are given in table 8.1. For the 

movement across the Gulf· of Aden, .the pole of .McKenzie 

et al was used to simplify compari~?n 

Pole for the Pole for the rift (degrees) Displacement (km) 
Red Sea 
(Fig. 8.4) Lat. (N) Long •. (E) Rotation Central Ethiopia Keny1 

.M -8.0 28.9 . 2.0 65 35 

p 5.8 34.1 3.3 (45) (-45: 

T 0.3 32.6 2.6 55 (20: 

R -7.1 27.0 2.2· 80 

s -1£. 9 26.8 1.6 90 

Table 8,1. Variation of the resultant movement across the East 

African rift according to the pole adopted for the 

Red Sea. This is always larger than the 

displacement in a direction perpendic~lar to the 

sides of the rift. Figures in brackets indicate 

displacements which are more than twice the 

apparent displacement per~endicular to the sides. 
; . ' . ' 

·The minus sign indicates. compressior;1al mpvemen~. 
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Fig. 6.8. A fit between the Arabian and the Nubian plates using 

an arbitrary pole of rotation. The Arabian side is 

marked red and the Nubian side is marked green. 



.148. 

The displacements in Table 8.1 are significantly 

different. Displacements, obtained by using the same poles 

as Figs. 8.5 or 8.7 to represent the movement across the 

Gulf, are similarly varied but are more suggestive of 

compressional movements in Kenya and tensional movements 

in Ethiopia. The pole obtained using the anaglyph ma_p of 

Laughton et al (1970) produces displacements similar to 

those of Table 8.1 but of smaller magnitudes. None or these 

results is intended to indicate tbe actual movement across 

the East African rift. They are used to demonstrate the 

difficulty of obtaining meaningful quantitative results from 

a pole position estimated on the grounds of 'best fit'. Had 

all possible pole positions for the movement across the Gulf. 

of Aden been considered the results would have been even more 

varied. Although a large number of the resulting poles for 

the movement across the East African rift could be discarded 

as being geologically unreasonable the basic indeterminacy 

remains unresolved. 

Qualitative deductions are generally easier. Within the 

tolerance of each problem it is usually possible to establish 

relative movements in a general manner. For instance, the 

contours of Q for the Red Sea do not overlap with tho~e of Q 

for the Gulf of Aden for any reasonably large tolerance • 

. This establishes a displacement across the East African rift. 

The nature of this displacement can only be given as a broad 

range of possibilities. Geological and other relevant 

information may decide which of these. possibilities ·a.re 

more likely. 
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SUMMARY JU.l]) CONCLUSIONS 

1. In applying optimisation techniques to a given. 

geophysical problem the procedure would usually consist 

of the following stages: 

(a) The behaviour of the objective function is 

studied, preferably by means of cross-sections. This is 

important in establishine the modality of the function, 

the degree of ambiguity expected in the solution, the nature 

and scaling of the function and any other special features. 

{b) The constraints of the problem are worked out 

so as to ensur~ the physical or geological feasibility of 

the optimum model. The term "constraints" may be ext~nded 

to denote the specification of some parameters at certain 

values in order to improve the validity or uniqueness of the 

solution. 

(c) An auxiliary subroutine is constructed to provide 

the objective function for a given set of model parameters •. 

0 A suitable optimisation subroutine is then chosen. The 

choice depends on the problem. For exam~le, the method of 

rotating coordinates is well suited for curved and complicated 

functions; the simplex method is suitable for problems with 

many isolated local minima, etc. Generally, gradient methods 

are fast but tend to break do~m when the current point is 

remote from a solution or when the function has many 

11~-defined local minima. Direct search methods are slow 

but do n~t usually have the disadvantages of gradient methods. 

A good strategy is to use direct search methods at the early 

',". 
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stages of the search and to change to a gradient method 

when the solution is approached. 

2. In all of the investigated cases, a unique 

solution to the problem appears to exist in theory but a 

high degree of' non-uniqueness arises in practice. The 

non-uniqueness is primarily due to observational errors and 

to the lack of adherence to the ideal conditions assumed 

by the model. The tolerance of the problem is usually 

determined by the magnitude of observational errors. In the 

parameter hyperspace, this gives rise to a 'valley of 

ambiguity' where all points bounded by a contour of value 

equal to the tolerance qualify as possible solutions. 

3. In gravity and magnetic problems, uniqueness in 

practice is only obtainable within specified basic parameters. 

However, if some or all of the basic parameters are 

unspecified the outcome of the search in the hyperspace is 

not unpredictable; the position of the initial point will 

generally decide the solution to which the search will 

converge. The optimum parameters will be usually of the 

correct order of magnitude. 

4. Optimisation techniques may be used to interpret a 

two-dimensional gravity anomaly in terms of a polygonal model. 
:.:._""l. 

The method is formulated such that any of the parameters 

defining the model can be specified or treated as an unknovm. 

The use of optimisation techniques renders the interpretation 
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more flexible and efficient than is generally obtained 

using other methods. The disadvantage of requiring 

long computing time may be largely overcome by careful 

prograrnming. 

5. The use of optimisation techniques in interpreting 

two-dimensional magnetic anomalies has the same general 

features as those of gravity interpreta~.on. It has the 

additional advantage that efficient iterative methods 

for interpreting magnetic anomalies are generally lacking. 

6. Surface wave dispersion data may be interpreted by 

optimisation techniques. However, it seems necessary to 

specify a large number of parameters in order m overcome 

the high degree of non-uniqueness which arises in practice. 

1. A fast method for interpreting apparent resistivity 

curves is based on transforming the problem so that there 

_are only two variable para.meters. The observed curve is then 

matched with a set of standard curves and the results are 

printed on the corresponding two-dimensional grid. The 

solutions seem to be satisfactory and problems associated 

with equivalence are substantially reduced. 

B. A modified two-dimensional grid method can be used 

to locate a pole of rotation for the relative displacement 

between two continents. External control may reduce the 

ambiguity in the solut~on. The use of the 1 optimu_m ,. pole 

position for quantitative determinations is unJustified. 
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9. There is a very wide scope for applying optim~sation 

techniques to solving non-line:ar geophysical problemso 

Specific problems of interest arising from the present work 

are the interpretation of three-dimensional gravity and 

magnetic anomalies and a fuller investigation of the problem 

of surface wave dispersion. 
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Appendix 1 

Calculation of the Accuracy of Optimum Parameters. 

In the vicinity of the optimum, the hyper-surface of a non-linear 

function behaves asymptotically as a hyper-plane so that an 

approximation to the linear case, at the optimum, is quite justified. 

If a multi-variate regression is fit ted by ·minimising 

-n 

2 
6 = (A1.1) 

then the p.g_rameters x. have variances and covariances given by the 
J 

elements of the matrix 2 -1 a- L \>there 

n 

• 
2 

b 1k 

k=1 

L= (A 1.2) 

0 • • 

Each of the elements of 1 may be derived from 

2 
··--. 

L 2 2 2. 
b .k a s. 

~ } a-cr-
x. X. 
~ J 



2 
s 

The general non-linear case is represented by 

n 

= 

By approximation to the linear case, the elements of the matrix Q, 

which is the equivalent of L in the linear case, are also givcn;by 

equations(3). 

The computation of the second 
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(A 1. 4) 

partial derivatives may be carried 
){• 

J 1.c+----2 h ----~· II 2 

out numerically by perturbing from 

the optimum parallel to each of x. 
~ 

and x. as in the diagram. A 
J 

perturbation in the order of 15; of 

the value at the optimum is probably 

adequate. 

given by 

a x.2 
J. 

and 

= 

2 
a 
a 

The derivatives are then 

2 
s 

X. ax. 
~ J 

2 
s -5 

= 

2s 2 
0 

4 h e 

5JI. 

l 
e 

(A1.5) 

2 
- s 1 (l\1.6) 

The symmetric matrix Q is then inverted to obtain the matrix P.a · 2 . 

the estimate of residual variance is calculated from 

2 
= 

2 s 

n-m 
(A 1. '?) 

? a..... and the diagonal elements of P may then be used in equation 

(2.18) to estimate the possible error in parameter xi. 
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Appendix 2 

Method of obtaining the Partial Derivations of the Objective 

Function in Equation (5.4). 

The variable parameters include all unkno\m coordinate 

parameters defining the polygon and the linear ·parameters vthen 

unspecified •::.~ 

The derivatives with respect to the coordinate parameters 

may be obtained in the following manner. 

Equation (5.4) may be re-vtritten as 

n m 
<~ 

(~-B-2G p ) 
;_/ 

(A2.1) 

i=1 

where S.k is the geometrical term of the ith slab at the k th 
. J. 

observation point as defined by equation (5.2). 

If a coordinate parameter of the ith "slab is referred to by 

a f =-4 a P 
a Pi 

n 

k=1 

a 
-s ] a p. ik 

J. 

(A2.2) 

Hence, the problem is reduced to obtaining a general expression 

for the derivatives of the objective function with respect to the four 

coordinate parameters defining the i th slab. 
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For convenience, the symbols used in the text are replaced 

by the following: 

8 = 9 
i' 

v = x2., 
~ 

w = 

[( ) 2 ' )2-.-.1 b = u-v + w-t J 2 

t = 

tp I 
1 

Equation (5.2) may hence be re-\-Jri tten as 

Sik = t ~ 
2 

- w r/J 
1 

- (u sin 9 + \'1 cos 8) ( i R _sin 8+ ¢cos 8 ) (A2.3) 

= t¢ -w¢- \oJH 2 1 (A2.4) 

where 
-~ 

vi = u sin~ 8 + w cos 8 

and 

H = ~ R sin 9 + rp cos 9 

Expressions for the derivatives of individual factors in equation 

(A2.3) are given as follows: 

a sin a 
-b cos (J sin () i3 sin 8 

b cos e sin () 
au = av = 

a sine 2 
a sin (J = .b cos2 8 = -b c·os 8 

a w at 



'· v• 
8cos0 

b sin 2 
() 8cosB b . 2 

au = =- s~n f) av-
8cos& = b cos () 
a;-

sin 8 a cos() gr-- = -b cos ()sin() 

oR -2R (u-X. ) oR = 2R2 (v - ~) au = 1 K a; 

oR = 2R < \~-z ) aR =-2R2 ( t-Zk) ow 1 
k 

at 

~ = __:2.. w R1 (w-Zk) 8<1? ..L -R (t-Z ) = = iii = 
a u au 1 2 k 

av av 2 

.aiii 
a iii1 -R(u-~) 1 oiii _a_ iii = = = R2(v-~) a w = aw at a.t 2 

It therefore follows that 

I 

w = arr II 
u 

au 
= sin 6 ( 1- bu cos() + bw sin 8 ) 

I 

\·I = aw = sin e(bu cos() - b\·1 sin 8 ) 
v av 

I 

w = 8";';. = cos (J (1- bu cos8 + bw sinO) 
w 

aw 
I 

'vi t = aw = case (bu cos() - bw sine ) 
a t 

H = aH = b sine ( iii sin 8 - ~ R cos() ) + R1 [Cu-~) sin()+ (w-Zk) 
u 

au 

I 

H v = a H 
a v 

= b (iii-H cosO)+ R 1 [(u-~) sin() + (\ol-zk) cos 8 J 

= b (H cos 8 -iii ) - R2 [(v-~) sinO + (t-Zk) cos 8 J 

I 

~R) R
1 
[(u-~) Cvt-Zk) 

-· 
H = a H = b (H sine - + cos (J - sinO J 

w a w 
I 

8 H = b(~R [(v-~) (t-Z ) 
-

H = - _I-1 sinO ) - H coso - sine j 
t at 2 k 
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cos () j 
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The above expressions are very similar, causing considerable 

saving in computing time. They can be used directly to obtain: 

a au 

a 
av 

a 
aw 

(A2.5) 

I I 

sik = -t R (t-Z ) - H\'i - ioJH (A2.6) 
2 k v u 

I I 

sik = wR1 (u-~) - H\1 - vm -~ (A2.'7) w w 

(A2.3) 

Substituting in equation (A2.2), the required derivatives are 

obtained. 

Since, in general, the coordin~te parameter x. of the polygon is 
J 

the p~:rameter v. of the i· th slab and is also the parameter u. 1 of the· 
1 ~ 

i+1 th slab, the derivative with respect to the parameter x. is obt~ined 
J 

from 

a f 
ax. 

J 
= + 

',ilhe same is ·also true for t. and w. 1• 
1 1+ 

However, the first and the last points of an open polygon are 

used only once .• Also 1 polygons with vertical. or: horizontal si:.o.es have 

some parameters common to more than t\·10 slabs. For all such cases, 

appropriate definitions must be mDde in the gradient specification part 

of the programme (see programme specification no. 4). 
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The derivatives with respect to the- density contraGt and the 

regional background follO\oJ directly from equation (A2.1). Hence, 

n m m 

2_~ 
, .... 

i ar -4G BA -B-2Gp )_,. 
sik) s.l J (A2.9) = 

ap lc.=1 k 1=1 i=1 l.K 

n m 
,~ ·~ 

= -2 L (Ak-B-2G P ) . sik) 
.___. 

(A2.10) 

lc::1 i=1 
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Appendix 3 

Method of Obtaining the Partial Derivatives of the Objective 

Function in Equation (6.6) . 
~ 

The variable parameters include all unkno~n1 coordinate parameters 

defining the polygon and the lineo.r _parameters when unspecified. 

The derivatives ~1ith respect to the coordinate param~ters may be 

obtained following a procedure similar to that used in Appendix 2. 

Equation (6.1) may be re-\·Jri tten as 
n m m 

~ 
.,---, '""""""""'\ 

)___, pik 
\ 2 

f (!S) = (A -B-J - J ) ·~ik) (A3e1) 
k s c 

k::1 i=1 i=1 

where Pik and ~~ik replace uik and _vik in equations (6.2) and (6.3) 

respectively. 

If we again define a coordinate p.:.~rameter on the i th slab by 

pi 1 it follows that 

n 
af 

. . 

I 
,, 

a 
) [~-B-Js L)~ik> (J a 

·=-tik) J = -2 P.k- J pik + J 
a Pi J. c sap. c ap; -· J. J. 

k=1 

(A3.2) 

'.rherefore 1 the method depends on deterr;Jining the derivatives of Pik 

and ~lik with respect to each of the four para.meters defining the two corners 

of the i th slab. 

He use the same symbols as in Appendix 2 so that equations (6.2) 

and (6.3) may be re-vlri tten as 

pik = 2 sin 8 (H cos I sin d G sin I) 

'ctik = 2 sin 8 (G cos I sin d - H sin I) 

where G = ~ sin 8 1 R cos8 2 
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Derivatives of 8 1 R, ¢ and H 111ere also presented in Appendix 2. 

Derivatives of G are given by the following: 

' a a 
G = av = bH sinO - R2[(v-~) cos 8 + ( t-Zk) sin. 8 J v 

' a a 
- R1 [(u-~) G =a; = -bH cos 8 sin 8 + (w-Zk) cos 8 j 

w 

' aa cos 8+ R
2 

[(v-~) sin 8 + ( t-Zk) J G t = ot = bH cos 8 

The derivatives of Pik and Qik may now be obtained. directly. Thus, 

a ' ' - 2 b cos 8 sin 8 au pik = 2 sin 8 (H cos I sin d - G sin I) (H cos I 
u u 

sin d - G sin I) 

' ' = 2 sin 8 (H cos I sin d - G sin I) - b pik cos 8 (A3.3) 
u u 

..2-p 
I ' = 2 sin 8 (H cos I sin d - G sin I) + b pik cos 8 (A3~4) 

av ik v v 

a ' ' a-w Pik = 2 sin 8 (H cos I sin d - G sin I)-b pik cos 8 tan 8 (A3.5) 
w w 

a I I 

(A3.6) at pik = 2 sin 8 (H t cos I sin d - G sin I) + b P ik cos 8 tan 8 
t 

a ' ' (A3. 7) ;u Qik = 2 sin 0 (G cos I sin d - H sin I) - b Qik cos 8 u u 

a ., I I 
. (A3.8) - '~' = 2 sin 8 (G cos I sin d - H sin I) + b Qik cos 8 

. a v '"ik v v 

a I I 
cos 8· tan 8 (A3.9) a; Qik = 2 sin 8 (G cos I sin d - H sin I) -b .;,) 

\'I w "ik 

a ' I 

Qik cos 8 tan 8 (A3.10) -'1 = 2 sin 8 (G t cos I sin d - H sin I) + b 
a t·"'ik t 



Substituting in equation (A3.2), the r~quired derivatives are 

obtained. 

As in the gravity case, a given coordin[lte parameter x. of the 
J 

polygon may be common to one, t\oJO or more slabs. Appropriate specifications 

must, therefore, be made in the gradient specification part of the 

. Of programme in order to obta~n ~ • 
uX. 

J. 

The derivatives with respect to the lineaz;parameters Rre directly 

obtainable from equation (A3.1). Hence 

Of 
o--:f = -2 

5 

of 
oJ 

c 

i. 
I 

n 

~ 
k::1 

[(A - B - J 
k 5 

i=1 

~~ 

) pik 
'-I 

i=1 

m m 
';: ·--. ·.· -, 

- Jc L.Qik) ( Ltik) j 

- J c 

i=1 i=1 
m 
~--\ 

)_}ik)J 

m. ___ . 

i=1 i=1 

!ll_ 

iQik)J 

i=1 

(A3.11) 

(A3.12) 

(A3.13) 
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Appendix 4 

Derivation of Equations (6.9) and (6.10) 

Equations (6.'() and (6.8) give,·· respectively 

(A - J U - J V - B) k s k c k (A4.1) 

(Ai.j.2) 

(A4.3) 

(A4.4) 

where .the summation is taken over the range 1 to n and 

l-1ultiplying equation (A4.3) by ·)-yz k and equation (A4.Lj.) by 
.,-~ 

2___.ukvk, we obtain 

'--' 

';--'\ \"""\ 2 
() ~kuk)() v 1<:) - J s 
,_l -'-

c;akvk)(:>·~ ukvk) - Js(f ukvk)2 - Jc( ~;ukvk)()~ vk2) :0 
-· -· ·-· ·-· ~ 

By solvinc equations (A4.5) and (A4.6) for J , equation (6.9) 
s 

follo~tls directly. 

(A4.6) 

.-...., 
Similarly, by multiplying equation (A4.3) by ) . u1/k and equation 

\-"-"; -· 
(A4.4) by .> ~1/, and solving the resulting equations for J c 1 equation (6.10) 

'---' 

follows directly. 



n 
,~ 

Appendix 5 

Derivation of An Expression for Equation (6.13) 

Equations (6 .• '{), (6.8) and (6.12) give, respectively 

~ (Ak - J 8 uk - J 0 vk -B) .uk = o 

. I 

), ·(A. - J U - J V - B) Vk • o 
.'-.1 .K s :k c k 
k=1 
p..""'\ 
) (1\- JsUk- JcVk- B) 

Ei 
= 0 

Hence, r AkUk - B uk ~ Js D2k - Jc :[~kvk = 0 

':---'\) A. - nB - J \~ - J ')\'v = 0 -lt s ! k c k 
1-." :~ .. · _! 

where the summation is taken over the range 1 to n. 
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(A5.1) 

(A5.2) 

(A5.4) 

(A5.5) 

(A5.6) 

Nultiplying equation (A5.4) by n and (A5.6) by uk, \-le obtain 

the pair of equations 

n ~' \c Uk - n B )' U~ - n J 8 > ' Uk 
2 

- n J c > ijk V k = o ( A5, 7) 

(~ 1\)( 'fuk) - ~.[uk - Js ( ~)~uk)2 - Jc( :~uk)( ~~ vk) = o (A5.8) 

Subtracting,we get 

P - J R - J W = o s c 
(A5.9) 



Similarly, by multiplying equation (A5.5) by n and equation 

(5.6) by r vk and subtracting \•Je get . 
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Q- J W- J S = o (A5.10) 
s c 

where 

S = n 2._,v~ - ( r Uk)2 

Solving (A4.9) and (A4.10) for J and J , we have 
s c 

J = D(\·IQ - SP) 
s 

where 

D = 1/(\-1
2 

- HS) • 

B may now be obtained from (A5.3), 

1 -:--'\ ·-· >----. B=-(\A_ -J ')U -J V) 
n } -1< s 1<: c k 

L___ L-· -1 ' 

(A5.11) 

(A5.12) 

\'lhere J and J are defined by equations (A5.11) and (A5.12), respectively. 
s c 

Equation (_2.13) follows directly from equations (A5.11), (A5.12) and ,., 
(A5.13) •. 
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PROGRAMME SPECIFICATIONS 

Programmes number 3a, 3b, 3c, 3d, 5a, 5b, 5c, and 

5d are compatible with the method of rotating coordinates, 

P300 (Rosenbrock, 1960), the 'Complex' method, P301 (Box, 

1965) and the method of conjugate direct_ions, P303 (Powell, 

·1964). Only the P300 version is given in each of the 

corresponding print-outs. To adapt the programmes to either 

P301 or P303, the steps indicated in the print-out of 

GRANOP (specification no. 3a) must be followed. 

Programmes 3-6 are constructed such that any of the 

coordinate parameters defining the polygonal model can be 

specified or treated as a variable parameter. 

All. programmes have been written in PL/1 for·use on 

the NUMAC IBM 360/67-computer. Data items other than 

integers and strings may be written in any of the valid 
:::. 

forms appropriate to PL/1, but will normally be written as 

fixed point decimal data items. 

Procedures P300, P301, P303 and P306 have been kindly 

lent .·by I. c. I. Ltd. on the condition that their use must 

be confined to the Department of Geology, University.of. 

Durham.· 
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Specification No, ·3a 

Title: GRANOP 

Purpose: This programme progressively modifies the 

parameters defining a two-dimensional polygonal model in 

order to minimise the discrepancy between an observed 

gravity anomaly and the calculat~d anomaly due to the model. 

The resulting parameters define an 'optimum' model. 

Use: The programme is most suitable for problems in which 

the regional background and the density c.ontrast are 

specified but can also handle either or both of them as 

variable parameters. As presented, it will only accept one 

density contrast. It may be modified to accept m density 

·contrasts (m ~number of sides) by declaring the density 

contrast to be an array of m elements each of which is 

assigned to the appropriate side(s). 

Description: The main programme deals with inputting, 

outputting and editing of the data. The optimisation procedure 

is called by a sui table CALI, statement in which the initial 

estimates a~e passed. The optimisation procedure passes the 

current values of the variable parameters to the auxiliary 

procedure AG, The auxiliary procedure then calculates the 

anoma·ly in a manner similar to that of GRAVN (specification 

no. 1, Bott, 1969a) so that the addition of the s~ep-models 

is carried out in an anitclockwise order. The objective 

function is then calculated according to equation -(5.4) and 

its value is returned to the optimisation procedure. The 

process is iterated, 
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The details of the model are specified in the model 

definition part in the auxiliary procedure by a series 

of instructions. These include allocating the variable 

parameters to the appropriate coordinates of the model 

and assigning values to the coordinates required to be 

fixed. The density contrast and the regional background 

are also defined. In the print-out for GRANOP, an ·example 

is given where all the coordinates are defined as adjustable 

parameters, the density contrast is specified at +0.15 gm/cm3 

and the regional background is specified at 5.5 mgal. 

Input data: The data are input in the following order:· 

Data notes: 

9JU1!. 

'NAME' 

nata nx mx 

data; 

wtf 

zs 

xs obs 

g X h 

lmg 

notes 

3.1 

. 3.3 

3.4 

3.5 

3.6 

3.7 

3.1. Each new set of data must commence with a name 

consisting of up to 80 characters enclosed in single 

quotation marks. 
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3. 2. 

nata = Number of observation points 

nx = Total number of variable parameters 

mx = Total number of coordinates. If the.polygon has 

v corners then 

m.x = 2v for an open polygon and 

m.x = 2(v+l) for a closed polygon. 

3.3. The following are integers which may be altered by lihe 

GET DATA statement. 

so: A scaling factor appropriate to the measurement 

units. The default units are kilometers. For 

other units, sc must be set equal to 

unit of measurement ; 1 kilometer. 
'i" 

iter: Number of required iterations per variable. Between 

100-200 iterRtions are usually·adequate. The 

default value is 200. 

zaza: If set to l the effect of change in the height 

of the observation point from the datum plane 

will be considered. The default value is 0. 

lp: If ~et to 1 it indicates that after the specified 

number of iterations, the optimisation procedure 

is to be called again with 1/5 the original 

number of iterations. This occasionally helps 

re-setting the search directions more favourably. 

The default value is o. 
wt: If set to 1, weighting functions will be used. The 

default value is zero. 

lmg: see note 3.8 



.170. 

An example is SC = 0.001, ZAZA = l; 
Tne semi-colon should be punched even if no data items ·were 

needed. 

3.4. wtf is an array of nata elements. Each element contains 

a weighting function appropriate to the observation point so 
th that the 1 observation is weighted by a factor WTF(I). 

The input_ command is only activated by setting WT = 1. 

Otherwise, no data are required. 

3.5 zs is an array of nata elements. tn The i element 

denotes the difference in the height of observation of the 

ith point from a reference datum passing through the origin 

(see note 3.6). This allows for changes in topography, et~. 

along the profile. The measurement is +ve downwards so that 

points nigher than the datum are assigned -ve zs and vise 

versa. The input command is only activated by setting 

ZAZA = 1. Otherwise, no data are required. 

3.6. xs is an array of nata elements. The ith element 

denotes the horizontal distance of the ith observation point 

from the origin. The origin is chosen arbitrarily and is 

retained for reference throughout the problem. 

obs is an array of nata elements. The ith element 

denots the anomaly value at the ith observation point in 

milligals. The -complete xs data list must be input before 

inputting ~bs. 

3.7. g is an array of nx elements. The jth element denotes 

the lower bound (constraint) on the jth variable parameter. 

xis an array of nx elements representing the initial. 



point in the hyperspace. The jth element denotes the 

initial estimate o~ the jth variable parameter. 

ol71. 

h is an array o~ nx elements. The jth element denotes 

the upper bound on the jth variable.parameter. 

The data are input in the order: all g, all x, all h. 

3.8. lmg is an integer controlling the re-entry into the 

main programme a~ter the optimisation process has terminated. 

This allows using the programme ~or di~~erent problems in the 

same run or ~or the same problem under di~~erent condiUons 

or assumptions. Every time the optimisation process is 

activAted, the integer II is incremented by 1 from an initial 

value of o. 

Model de~inition: 

The polygonal outline o~ the body is de~ined by the 

coordinates o~ the corner (xi, zi) with re~erence to the 

arbitrary origin (note 3.6). In the model definition part 

o~ the auxiliary procedure these are defined by the elements 

of the arr~y xa. They ar~ de~ined in an anitclockwise 

direction in the order x1 , z1 , x2·, ••• ,~, zm• Hence the 

(2j-l)th and the 2jth elements of xa refer to the x and z 

coordinates of the jth corner, respectively. A closed pQlygon 

has the first and last corners coincident. This is speci~ied 

by 

XA(MX-1) = XA(l); XA(MX) = XA(2); 

The array xx consists of nx elements. It passes the 

current value of the variable parameters to the auxiliary 



procedure. Adjustable xa elements are assigned the 

appropriate xx elements. Unadjustable xa elements are 

assigned the required value. Therefore: 

XA(l):XX(l); XA(2)=3.4; XA(3)=XA(l); 

XA(4)::XA(2)-XX(2)••2; DO J=5 TO MX; 

XA(J):XX(J-2); END: RH0:0.25; REG=7.0; 
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defines a model where the first corner is 3.4 units deep with 

an adjustable x-coordinate, the second corner is vertically 

above the first one. All of the other corners have adJustable 

coordinates. rho refers to· the density contrast in gm/cm3 

reg refers to the regional background in milligals. 

Output: The output data list consists of 

(1) The name 

(2) The number of observation points, the number of variable 

parameters and the number of body coordinates. 

(3) Three columns representing the lower bounds, the initial 

estimates.and the upper bounds, respectively. 

(4) A print out of the current objective fUnction value and 

parameter values at the beginning of each search stage. 

(5) The values of variable parameters at the 1 optimum •.· 

(6) The values of the coordinate points at the 'optimum'. 

(7) The values of the regional background and the density 

contrast at the 'optimum'. 

(8) Four columns representing xs (note 3.6), obs (note 3.6)", 

the calculated anomaly due to the 'optimum' model and 

the residuals. 

(9) The 'optimum' fUnction value. 

(10) ·The numver or iterations per variable. 
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Specification No. 3b 

Title: GREGNOP 

Purpose: As in specification No. 3a 

Use: The programme is most suitable for problems in whicn 

the resional background is specified and the density contrast 

is unspecified. It can also handle the regional background as 

a variable par~meter. rho must not appear in the body 

definition part. 

Description: The objective function is calculated according 

to equation (5.8). 

All the remaining details are as in specification No. 3a. 

Specification No. 3c 

Title: GRAVOP 

Purpose: As in specification No. 3a. 

~= The programme is only suitable for problems in which 

the density contrast and the regional background are 

unspecified. Neither rho nor·:reg must appear fn the body 

definition part. 

Description: The objective function is calculated according 

to equation (5.12). 

All the remaining details are as in specification No. 3a. 



Specificatiob No, 3d 

Title: GRATIOP 

Purpose: As in specification No. 3a. 

Use: As in specification No. 3b. 
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Description: Tne objective function is calculated according 

to equation (5.5). 

All tne remaining details· are as in specification No. 3a. 



GRANCP:PRCC OPTIONS (MAIN); I* MoAL-CHALABI JAN.l969 *I 
ON- ENDFILEISYSIN) GO TO FIN; 
DCL NAME CHARACTER ( 80); 
DCLINSTA,NX,fJX,MSICEJFIXEO BIN; 
DCL II FIXED RIN INITIAL(Q); 

Ll:GET LISTINAME); 
GET LISTINSTA,NXtMX); 
MSICE=fJX-3; 
PUT PAGE EDITCNAME)( X(30) ,A); 
PUT E C I T ( ' T HER E A R E 1 , N S T A , 1 0 B S E R V 1\ Tl 0 N P 0 I N T S , 1 , N X , 
'UNKNOWNS ANC',MX, 1 COORCINATE PARAMETERS 1 )(SKIP(4),A, 
3(f(3) ,X~l) ,!\)); 

BEGIN; 
CCL((GrXrHHNXlrFM,F)FLOATC1l:),I FIXED BIN, 
P3CO ENTRYIENTRY,FIXED BI~,FIXEC BIN,FIXEO BIN,FIXED BINt 
F I XED B IN , ( * ) F LOA T( 1 (: ) , I * ) F l CAT ( 16) , ( * ) F L 0 A T (l 6 ) , F L 0 AT 116 ) t 
FLOAT(l6),FIXED BIN)EXT,AG ENTRYIFIXED BINrFIXED BIN, 
I*) FLOAT (l6 ) , ( *) F L C 1\ T 116 ) , ( *) F L CAT ( 16 ) , FL 0 AT ( 16 ) ) ; 
I* * * * * * * * * *· * * * * * * * * * * • • * * * * • *I 
I* --. *I 
I***** FCR P301 REPLACE LAST STATEMENT BY THE FOLLOWING **** 
DCU IG,X,H) (f\X) rRESUFLOAT(l6) ,IRES2,RES3lFIXEO BIN, 
P301 ENTRYIENTRY,FIXED BIN,FIXED AIN,FIXED BIN,FIXED BIN, 
FIXED BIN,(t)FLOAT(l6),(t)FLOATI16),(*)FLOAT(l6),FLOATC16), 
FIXED RIN,FIXED BIN)EXT,AG Ef\TRYCFIXEO BINrFIXED BIN, 
FLOAT( 16),FIXt.:D BIN)EXT,I\G Ef\TRYIFIXED BIN,FIXEO BIN, 
* * * * * * * * * • • * * • • * * • • • • • • • * • • • * 

• 
****** FOR P303 REPLACE LAST STATEfJENT BY THE FOLLOWING**** 
DCL (IX, BAC) IN X), FF, EEC )FLOA 11 1 (:); 
DCL ~303 ENTRY(ENTRY,FIXED BIN,FIXED BIN,FIXED BIN,FLOAT(l6), 
FIXED BIN ,FIXED Bl N, I*) FLCAT (16), C*) FLOAT (16), FLOAT( 16 ), 
FIXED BIN,FIXED BIN)EXT; ••• * •••••••••••••••••••••••• *I 
I* . ~I 
DCLI ( XSrOASrANrRESIDlr~TF) lt\STA) rXA(fJX) ,RHO,REG,SC, 
GS C ) F L 0 AT ( 1 6 ) , 
I ITER , L P, Z AlA, W T ) F I X ED B IN ; 
DC U V , Y , Z , T , F I l , F I 2 , Rl , R2, H A, W, ( S, C) ( MS I IJ E ) J FLO AT ( 16 ) ; 
DCL lSI l:NSTA)FLOATI 16) INI TIALCINSTA)OJ; 
CCL LMG FIXED BIN INITIAL(Q); 
SC=1; ITER=200; lAZA,LPrWT=O; 

L2:GET DATA; 
GSC=2*6.l:67*SC; 
IF WT=l THEN GET COPY LIST CWTF) i 
IF ZAZA=l THEf\ DC; 
GET LISTCZS); PUT LISTCZS); 
END; 

L3:GET LISTIXS,OBS); 
L4:GET LIST(G,X,H); 

PU T S K I P ( 2 ) ; 
DO 1=1 TO NX; 
PUT EDITCG(I),X(I),H(I))(SI<IPr3 Fll5r5)); END; 
PUT SK IPC 2); 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* "*I 



I** FOR P303 REPLACE STATE~E~TS 32-35 BY THE FOLLOWING *** 
L4:GET LISTlX,OAC,EECJ i 

** •• 
THE ITH ELE"'E~T CF THE BAC ARRAY Sl-iOULD CONTAIN THE 
REQUIRED ACCURACY FOR THE ITH PARA~ETER Xll). EEC IS T~E 
HUTIAL STEP-LENGTH FACTOR. BAC(IJ*EEC GIVES THE ITH SlEp. 
* •• * * * * * * * • * * ••••••• * * * * * •••• , 

L5:CALL P300(AG,NX,NX,-l,ITER,1,G,X,H,F~,F,IJ; 
IF LP= 1 THEN DO i I TER=I TER 15; 
CALL P300 (AG,NX,NX,-1, ITER, 1,G,x,H,FM,F, IJ; 
END; 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* *I 
I* FCR 1'301 REPL.,CE CALL STATEMENTS BY: 

L5:CALL P3C1(AGrNX,~X,-l,ITERr1rGrX,~,RES1,RES2rRES3); 
*I 

I* FCR P303 REPLACE CALL STATEMENTS BY: 
L 5 : C A L L P 3 03 ( A G , NX , -1 , I T E R , E E C , 1 , 1 , X , 0 A C, F F, 0, I ) ; 

• • * * * * * * * * * * * * * * * * * * * * * * * * * • *I 
I* *I 
PUT PAGE EOIT(NAME)(X(20),A)i 
PUT EOI T( 'OPTI~U~ VARIABLE VALUES') (SKIP(2 ),.4 ); 
PUT SKIP i 
PUT EDIT((X(J) CO J=1 TO NXJ)(F(15,5)); 
PUT SKIP(8); 
CALL AGCNX,MX,G,x,H,FJ; 
PUT EDIT('BOCY CO.URDINATES AT OPTIMUM')(A); PUT SKIPi 
PUT EDIT((X.cl(J) CO J=1 TO MX))(F(l5,5)); PUT SKIP(5); 
PUT EDIT( 'REGICNAL' r'DENSITY CCNTRAST') CSKIP(2J ,X (10), A, 
X(l5J,AJ; 
PlJ T ED IT ( REG , RH 0 ) ( S K l P, X ( 10 ) , F ( 12, 5 ) , X ( 1 0 ) t F ( B , 4 ) ) i 
PUT EDIT(•CO~PARISCN OF ANCfJ . .ALIES AT OPTIMUM 1 J(SKIP(3),A)i 
puT E 0 I T( ' X s I ' ' 00 s I ' • AN ' ' ' R E s I 0 u A L. ) ( s K I p 'X ( 6 ) ' A ' 
XllOJ,A,X(lOJ,A,X(9),A) i 
DO K=1 TC NSTA; 
RESIDLlKJ=ORS(K)-(AN(KJ+REGJ; 
PlJ T E 0 IT ( X S ( K ) , 0 B S ( K ) , A N ( K ) , R E S I 0 L( K ) ) ( S K I P , 4 F ( 1 2 , 2 ) ) ; 
END; 
PUT EDITC'OPTifJUfJ FUNCTIGN VALUE' rFr 1 NUt<I.BER CF ITERATIONS PER 
V A R I A B L E 1 , I T E R ) ( SK I P , A , E ( 2 3 , 5 ) , S K I P , A , F ( 8 ) ) i 
I F L ,_. G =0 T H EN G 0 T 0 F IN ; 
IF LMG=q THE~ GET DATA; 
li=II+1; 
PUT PAGE; 
GET LIST (L~GJ; 
IF LMG=l THE~ GO TC U; ELSE IF L~G=2 Tt·EN GC TG L2i 
IF LMG=3 THEN GO TO L3; ELSE IF LMG=4 THEN GC TO L4; 
ELSE IF L~G=5 THEN GO TO LSi ELSE GO TO FIN; 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
1*. *I 
I* AUXILIARY PART *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AG:PROCCN,M,~G,XX,~H,RJ; 



DC L l N , M ) F I XED 8 IN , ( l GG, X X , H H )( * ) , R ) F LOA TC 16 ) ; 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* ~CDEL OEFI~ITICN PART *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
XA=XX; RH0=0.15; REG=5.5; 
I* *I 
I* * * • * * * * * * * * * * * * * * * * * * * * *·* * * • * ., 

CO I= 1 BY 2 TO M SIDE ; 
HA=SCRT ( lXA( I )-XA( I+2) )lfrlfr2+lXA( I+l)-XA( 1+3) 1**2); 
Sli)=(XA(I+3)-XA(1+1))1~~; 

C ( 1 ) = ( XA ( I ) - XA ( I+ 2) ) /H A; 
END; 

R=O.OO; 
DO J=1 TO NSTA; 

AN(J)=O.CO; 
DO [ = 1 BY 2 TO M SIC E; 

IF S ( I ) ., = C THEN DC; 
V=XAl I )-XSl J); Y=XA( 1+2)-XS( J); 
Z=XA(I+1)-lS(J); T=XA(I-+3)-ZSlJ); 
V=V+lE-20*(V=Ol; Y=Y+lE-20*(Y=Q); 

R 1 = V * * 2 + Z * * 2 ; R 2 = Y * * 2+ T * * 2 ; 
F I 1 = AT AN ( l , V ) ; F I 2= AT AN l T t Y ) ; 

. W=0.5*Slll*LCGlR2/Rll+Clll*lFI2-FI1); 
A~(J)=AN(J)+RHO*GSC•lT*FI2-Z*Fil-W*lV*SliJ+Z*Cll))); 
EN C; 
END; 

END; 
IF WT=l THEN DO 1=1 TO NSTA; 
R= R + ( ( 0 8 S ( I ) - R E G- AN ( I ) J * W T F ( I ) ) * * 2 i 
ELSE 00 I=l TO NSTA; 
R=R+(OBSli)-REG-AN(Ill**2i 
EN C AG; 

END; 

END; I*** END OF BEGIN BLOCK *****I 
FIN :END GRAMJP; 

END; 

.. 



GREGNCP:PROC OPTIONS CMAINJi I* M.AL-CHALABi MARCH l9f9 */ 
ON ENDFILECSYSINJ GO TO FIN; 
DCL NAME CHARACTERC8CJ; 
DC L ( 1\ S T A , NX , fJ X , MS I C E J F I X ED B IN ; 
DCL II FIXED Bll\ I~ITIALIOJ; 

ll:GET LISTCNAMEJ; 
GET LISTINSTA,NX,MXJ; 
~SIOE=fJX-3; 
PUT PAGE EDIT( NAME) I XC30) ,A) i 
PUT EOITC 'ThERE ARE',NSTA, 'OBSERVATION POINTS,' rNX, 
'UNKNOWNS ~NC',MX,'COORCINATE P~RAMETERS 1 )(SKIPC4),A, 
3CFC3) ,X(l) ,A)J; 

BEGIN; 
CCLCIG,XrHJINX),FM,FJFLOATIH:J,I FIXED BIN, 
P3CC ENTRVIEI\TRV,FIXED BIN,FIXEC 8IN,FIXED BIN,FIXED BINr 
F I X E 0 B IN , I * ) F lOA T I 16) , I * ) F L C A T I 1 6) , I* ) F L 0 AT 116 ) , F L CAT ( 16 ) , 
FLOAT116J,FIXED BINJEXTtAG ENTRYIFIXED BINrFIXED BIN, 
( * ) F L 0 AT 116 ) , I * ) F L C ~ T 116 ) , ( * ) F L CAT ( 16 ) , FL 0 AT ( 16 ) ) ; 

DCL I I XS ,OR S ,AN rAR ,RE SIDL rhTF) C NSTA) ,XA I "'X J, Rl-!0, REG,S C, GSC, 
SOBS,SAQ,SOAJFLOATI16),(1TER,ZAZA,LP,WT)FIXED BIN; 
DC LC V , Y , l, T , F 11 , F I 2, R 1 , R2, H ~, W, ( S, C ) ( M SIDE ) ) FLOA Tl 16) ; 
DCL ZSC1:NSTAJFLCATI16) I~ITIALIINSTAJOJ; 
DCL LMG FIXED BIN INITIAUCJi 
SC=1; ITER=200; ZAZA=O; LP=O; WT=O; 

L2 :GET DATA; 
GSC=2*f.f67*SC; 
IF WT=l THEN GET COPY LISTIWTFJ; 
IF Z~ZA=1 THEN CO; 
GET LIST(ZSJ; PLT LISHZSJ; 
END; 

L3 : G E T L I S T I X S , 0 BS J ; 
l4:GET LISTCG,X,H); 

PUTSKIP12); 
CO 1=1 TO NX; PUT EDITCGCIJrXCIJrHCIJJISKIP,3 F(l5r5JJ;END; 
PUT SKIPC2J; 
SDOS-=SUMIORSJ; 

L5:CALL P3001AG,NXrNX,-l,ITER,l,G,X,H,FM,F,I); 
IF LP=l THEN=>DO; ITER=ITER/5; 
CALL P3CCCAG,NX,I\X,-l,ITERrltGrXrHrFfi,F,IJ; 
END; 
PUT PAGE EDITINAMEJCXC2Q),AJ; 
PUT ED I T ( ' 0 P T I fJ U fJ VARIABLE V ~ LU ES ' ) ( S K I P ( 2 ) , A ) ; 
PUT SKIP; 
PUT EDIT((X(J) DO J=l TO NXJ)(FC15,5)); 
PUT- SKIP15); 
CALL AGINX,NX,G,X,H,FJ; 
PUT EDITI'OPTIMU~1 BODY COORDINATES'JISKIP,X(5),A,SKIP); 
PUT SKIP; 
PUT EDITIIXI\(K) DC K=l TC fJX))(F(l5,5)Ji 
PUTSKIP15J; 
PUT EDITI'REGIONAL'r'DENSITY CONTRAST'JCSKIPI2J,XI10J,A, 
X ( 15) rA) ;-
PUT EDITCREG,RHO)( SKIP,XC 10) ,Fil2,5) ,XClO),FC8,4) ); 
PUT EDIT( 'COMPARISON OF ANOMALIES AT OPTIMUM') C SKIPC3) rAJ; 
PUT ED I T C' X S' , ' 0 B S' , 1 AN ' , 1 RES I DUAL 1 ) ( & K I P r X ( 6 ) , At 
XC lC) tAr XC lCJ ,A,XC c;) ,A); 

"__/"''- -
. . 

.... ___ . 



T-"· 

DO K=1 TC NSTA; 
RESIDL(K)=OBS(K)-(AN(K)+REG); 

.... ~ ---·--... - ~--·· ·- ... -... . ..-.... --·. 

PUT EDIT(XS(K),OBS(K),ANCKJ,RESIDL(K))(SKIP,4 f( 12,2)); 
END; 

-.i..:.J:- . -·~· . 

PUT EDIT( 'OPTIMLM FUNCTION VALUE' ,F, 1 NUMBER CF ITERATICNS PER 
VA R I ABLE 1 , ITER ) ( SK IP, A, E ( 2 3, 5) , SKIP, A, F ( B) ) ; 
IF L~G=O THEN GO TC Fl~i 
IF LMG=~ THEN GET DATA; 
11=11+1; 
PUT PAGE; 
GE T li S T ( L ~G) ; 
IF LMG=l THEN GO TO L1i ELSE IF L~G=2 THEN GC TC L2; 
IF LMG=3 THEN GO TO L3; ELSE IF LMG=·4 THEN GO TO L4i 
ELSE IF L~G=5 THE~ 'C TC L5; ELSE GO TO FIN; 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* *I 
I* AUXlLIARY PJ!RT *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AG:PRCCCN,M,GG,XX,~H,RJ; 
DC L( N , ~) FIXED B I 1\, ( ( G G, X X , 1-' H ) ( * ) , R ) Fl 0 AT (16 ) ; 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* MODEL DEFINITION PART *I 
,. * • * * * * * * * * • * • * • * •• * •••• * •• *I 
XA=XXi REG=5.5; 
I* , ... *I 

••• * * • * * * * • * * * * • * * * ••••• * * * *I 
DO 1=1 BY 2 TO MSICE·; 

HA=SQRT(CXACI)-XA(I+2))**2+(XA(I+l)-XA(I+3))**2); 
S ( I ) = ( XA (I+ 3)- XA ( I+ 1) ) IHA; 

C ( I ) = (X A ( I ) -X A ( I+ 2 ) ) I HA i 
END; 

R,SOA,SAQ=C; 
CO J= 1 TO N S TA; 

AR(J)=O.OO; 
DO 1=1 BY 2 TO MSIDE; 

I F S ( I ) -.= 0 T HEN DO ; 
V=XA(I)-XS(J); Y=XA(I+2)-XS(J); 
l=XACI+U-ZSCJ); T=XAli+3J-ZS(J); 
V=V+1E-20*lV=OJ; V=V+1E-2C*lV=CJ; 

R1=V**2+Z**2i R2=Y**2+T**2i 
F.ll =AT A 1\ ( l , V) ; F I 2 =AT AN (T , Y ) ; 
W=0.5*Sl I J*LOGCR21RlJ+C( I )*(FI2-FI lJ; 

AR(J )=AR (J )+(T*FI2-Z*FI 1-W*( V*S( I )+Z*CC I))); 
ENC; 

END; 
S 0 A= S 0 A+ ( AR ( J ) * C 0 B S ( J ) -REG ) ) ; 
SAQ=SAC+AR(J)**2i 
END; 
RHO=SOAI( SAQ*GSC); 
IF WT=1 THEN DO 1=1 TO NSTA; 
AN(I)=ARCI)*RHC*GSC; 
R = R + ( ( OB S ( I ) -REG-AN ( I ) ) * h TF ( I ) ) ** 2; END; 
ELSE CO 1=1 TO NSTA; 

AI~ ( I ) = AR ( I ) *RHO *G SC ; 
R=R+(CBSCI)-REG-ANCIJ)**2i END; 

END AG; 
END; I* END OF BEGIN BLCCK****I 

F IN : EN C GR E GN 0 P ; 

,~--



GRAVOP:PRCC CPTICNS (~~~~); I* ~.AL-C~ALABI FEB.l969 t/ 
ON ENDFILEISVSIN) GO TO FIN; 
CCL NA~E CH~RACTERI80); 

DCLINST~rNX,~X,~SIDEJFIXEC BIN; 
DCL I I F I XE 0 13 IN IN I T1 A l( C l ; 

L1:GET LISTINAMEJ; 
GET LISTINST~,NX,MXJ; 
M S I 0 E = M X- 3; 
PUT PAGE E 0 IT IN AM E ) I X ( 3 C ) , A ) i 
PUT EDIT ('THERE ~RE' ,NSTA, 'OBSERVI\T ION POINTS, 1 rNX, 
't.:NKNCkt\S AND' ,II'X,'CCOROINATE P~RAMETERS' )(SKIPI4),A, 
3(F( 3J,X( l),A)); 

8EGIN; 
DCLI(G,X,H) (r\X) ,F~,F)FLCAT(l6),1 FIXED BIN, 

... .:. · •• : •.. ~ ~v .... "' • 

P3CC ENTR~IENTRV,FIXED BIN,FIXED AIN,FIXEO P.INrFIXEC eiN, 
FIXED BIN, I*)FLOATI16l, I *lFLOATI 16lrl*lFLOAT( 16) rFLOATC16), 
FLCAT(16J,FIXED Bir\lEXT,~G E~TRYCFIXED BIN,FIXEO BIN, 
I *)FLOAT ( 16) , I* ) FlOAT( 1 6) , ( *) F l CAT 116) , F l 0 AT 116 ) ) ; 
CCL( CXS,OBS,AN,AR,RESIOL,WTFliNSTAl ,xAIMX) ,RHO,REG,SC,GSC, 
SAR,SOBS,SAC,SOA)FLOAT 116), ( ITER,ZAZA,LP,WTJFIXED BI-N; 
DC l ( \J , ~ , l , T , F I 1 , F I 2 , R 1 , R2 , H A , ~ , ( S , C ) ( ft'.S I C E ) ) F l 0 AT ( 16 ) i 
DCL lSI 1: N S TA) FLOAT( 16) IN I TI A l( ( N S TA) 0 J ; 
CCL l ,_, G F I X E 0 B IN IN IT I AL ( 0 ) ; 
SC=1i ITER=200i ZAZA,LP,WT=Oi 

L 2 : G E T DA 1 A ; 
GSC=2*6.667*SC; . 
IF wT=1 THEN GET COPY LISTIWTF)i 
IF ZAZA=l THEN DO; 
GET LISTIZSJ; PUT LISTtZSJ; 
END; 

L3:GET LISTIXSrCOS); 
L4:GET LISTIG,X,H); 

PU T S K I P ( 2 ) i 
DO I=1 TC NX; 
PUT EDITIG(I),X(IlrH(I.))(SI<IPr3 Fl15,5}); END; 
PUT S K I P ( 2 ) ; 
SOBS=SU~IOBS); 

L5 : C A L L P3 C 0 ( A G , NX , "X , -1 , IT E R , 1 , G , X, H, f M, f, I ) ; 
IF LP=l THEN DO; ITER=ITER/5; . 
CALL P300(AG,NX.,NXr-lr ITERrlrGrXtHrFM,Ftl) i 
END; 
PUT PAGE EDITINA~E)(X(2Q),A); 
PIJT EDITI'OPTIMUM VARIABLE 'JALL:ES')(SKIPI2J,A); 
PUT SKIP; 
PUT. EDIT((X(J) DC J=1 TO t\X))(f(l5,5)); 
PUT SKIP( 5); 
CALL AGINX,,.,X,GrXrHrFli 
PUT EDIT (' BCDY CCCRDINATES AT CPT IMUM') IX ( 15 ), A) i 
PUT SKIP;PUT EDIT((XA(J) DO J=1 TC ,.,X))(f(l5,5)); 
PUT S K I P ( 5 ) i 
Pu T e o 1 T 1 1 R e G 1 oN A L 1 , • D E N s IT v c c NT R As T 1 > 1 s K 1 P ' 2 , , x 1 1 o > , A , 
X(15),1\)i 
PU T E D IT ( R E G , R H D ) I S K I P , X ( 1 C ) , F ( 1 2 , 5 ) , X ( 1 0 ) t F ( 8 t 4 ) ) ; 
PUT EDIT(•COMPARISON OF ANOMALIES AT OPTIMUM'JlSKIP(3J,AJ; 
PUT EDITI 1 XS 1

1
1 CBS' , 1 AN 1 , 1 RESICUAL' JCSKIP,X(6),A, 

XI lOJ,A,X( 10J,A,XC9J ,AJ; 

. -/ 
~--

'. ·, .. ' 



DO K= 1 TO NSTA; 
RESICLIKJ=OBSIKJ-IAN(KJ+REGJ; 
PUT ED l T ( X S ( I< J , 0 B S ( K) , A t\ ( K J , RES I C L I K J J ( S K I P, 4 F ( 12, 2 J J ; 
END i 
PUT EDITC'OPTIMUM FUNCTION VALl!E 1 ,F, 1 NUMBER CF ITERATIONS PER 
VA R I II B L E 1 , IT E R J ( SK I P, A, E ( 2 3 , 5 ) , S K I P , A , F ( 8 ) ) ; 
IF L~G=C THE~ GC TO FIN; 
IF LMG=9 THEN GET DATA; 
II=II+1; 
PUT PAGE; 
GET LISHLMGJ; 
IF LMG=l THEN GO TO Lli ELSE IF LMG=2 THEN GO TO L2i 
IF L~G=3 THEN GO TO L3; ELSE IF LMG=4 THEN GO TO_ L4; 
ELSE IF LMG=5 THEN GO TO L5; ELSE GC TO FIN; 
I* * * * * * * * * * t * t * * t * * * * * * * * * * * *I 
I* *I 
I* AUXILIARY P~RT *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AG:PROCCN,~,GG,XX,HH,R); 
DCLCN,M)FIXED BIN,( IGG,XX,HHJ 1*1 ,RJFLOAT(l6); 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* MODEL DEFINITION PART *I 
I* * * * * * * * * * * * * * * * * * * * * * * t * * * *I 
XA=)IX i 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 

DO I=l B~ 2 TO ~SICE; 
HA=SQRTl ( XA( I J-XA( I+2J 1**2+( XAC"I+l)-XA(I+3) )**2) i 

S C I ) = (X A I I+ 3 J -X A (I+ 1) ) I t-!A; 
C ( I J =I X A ( l ) -X A ( I +2 ) ) I H A i 

END; 
R,SOA,SAQ=Oi 

CO J=l TC NSTA; 
AR(JJ=G.CC; 
DO I= 1 A Y 2 T 0 M S I DE i 

IF SCIJ~=O THEN CO; 
V=XAIIJ-XSIJJ; Y=XAII+2)-XS(J}; 
Z=XAI I+lJ-ZS{J); l=XAII+3J-ZS(J); 
V=V+lE-20*CV=OJ; Y:Y+1E-20*CY=CJ; 

R1=V**2+Z**2; ::-R2 =Y**2+T**2; 
F I 1 =AT AN I l , V J ; F I 2 =A TAN ( T , Y) ; 
W = 0 .• 5 * S ( I ) *L 0 G I R 2/R 1 J +C I I ) * C F I 2- F I U i 

A R ( J ) = A R ( J J + (T * F I 2 - l * F 11-W * ( V * S ( I ) + Z *C ( I ) J ) ; 
END; 

END; 
SGA=SO~+(AR(J)tOBSCJJ); 

SAQ=SAQ+AR I Jl**2; 
END i 
S AR=SUM ( AR J ; 

RHC=CNSTA*SOA-SOBS*S.AR)I ( CNSTAJOSAQ-SAR**2)tGSC); 
REG=CSOBS-RHO*SAR*GSC)/NSTA; 

IF WT=1 THEN DO 1=1 TO NSTA; 
AN(IJ=ARII)*RHOtGSC; 
R=R+I CCBS (I )-REG-ANI I) l*WTFC I) }tl02i END; 
ELSE DC 1=1 TO f\STA; 
AN I I J =A R ( I J *RHO *G SC i 
R=R+COBSIIJ-REG-ANCIJl**2i •• 
END; 
END AGi 

END; I* END OF BEGIN BLCCK****I 
FIN:ENC GRAVOPi 



. -·- ... -___ ..... ·- .. ·. ... . . ~~- ....... •···· .: ._ ..... ·:_.:::: .. ~:. .. ~ 

GRATIOP:PROC OPTIUNS (MAIN); I* M.AL-CHALABI FEB.l969 *I 
CN ENDFILECSYSI~) GO TC FI~; 

DCL NAME CHARACTERC80)·; 
CCLCNST~,NX,MX,MSIDE,MSTAlFIXED BIN; 
DCL II FIXED BIN INITIAL(O); 

Ll:GET LlST(N~~E); 
GET l ISTCNSTA,NX 1 MX); 
~SICE=~X-3; MST~=CNSTA/2)+1; 
PUT PAGE EDITCNA~EJCXC30),~); 

PUT ED I T( ' THERE ARE ' , N S T A , 1 CBS E R VAT I C N P 0 IN T S, 1 , N X , 
'UNKNOWNS ANO',MX, 'COORDINATE PARAMETERS') (SKIP( 4) ,A, 
3(F(3) ,X(l) ,A)); 
BEGIN; 
CCLCCG,X,H)(NX),FM,FJFLOATClt),l FIXED BIN, 
P300 ENTRY(ENTRY,FIXED BIN, FIXED BIN, FIXED BIN,FIXEO BIN, 
FIXED BIN,(*)FLC/\TC16), C*)FLCAT(lb) d*)FLOAT(lb),FLOAT(l6), 
FLOAT( 16),FIXED BIN)E~T,AG ENTR'r(FI XED BIN,FIXEO BIN, 
( * ) F l CAT ( 16 ) , ( * ) F L 0 AT ( 1 6 ) , ( * ) FL 0 A TC 1 t ) , F L 0 A T( 16 ) ) ; 
DCLCCXS,OBS,AN,AR,RESIDL,RCB,RAN,WTF)(NSTA),XA(MX),RHO,RR, 
REG,SC,GSC,SAR,SOBSJFLOATC16) ,CITER,ZAZA,LP,kTlFIXEC BINi 
CCL(V,Y,ZrTtFil,FI2,R1,R2rHA,W,(S,CJCMSIDE))FLOATC16); 
DCL ZSC1:NSTAJFLCAT(16) I~ITIALCCNSTA)Ol; 
DCL LMG FIXED BIN INITIAL(Q); 
SC=l; ITER=2CO; ZAZA,LP,WT=O; 

L2 : G E T D AT A ; 
G SC = 2* l:. l: 6 7* SC; 
IF WT=1 THEN GET COPY LIST(hTF); 
IF ZAZA=1 THEN DOi 
GET LISTCZS); PUT LISTCZSJ; 
END; 

L3:GET LISTCXS,OBSJ; 
l4 : G E T L I S T ( G , X , H ) ; 

PUT SKIP(2); 
DO 1=1 TO NX; PUT EDIT(G(I),X(l),H(I))(SKIP,3 FC15,5));ENO; 
PUT SKIP (2) i 
SOBS=Sl~COBS); 

LS:CALL P3CC(AG,NXrNX,-1,ITER,1,G,X,H,F~,F,I); 
IF LP=l THEN DO; ITER=ITER/5; 
CALL P300(AG,NX,NX,-1, ITER,1,G,XrH,FM,Fr I); 
ENU; 
PUT PAGE EDIT(NAME)(X(2Q),A); 
PUT EOIT('OPTI~UM VJIRIABLE VALUES'HSKIP(2),A); 
PUT SKIP; 
PUT EDIT(( X( J) DO J=1 TO NX)) (F (15,5)); 
PUT· SKIPCS); 
C A L L A G ( N X , -~X , G , X , H , F ) ; 
PUT EDIT( 1 0PTIMU~ BODY COORDINATES') (SKIP,X (5),A,SKIP)i 
PUT SKIP; 
PUT EDIT((XA(K) CO K=1 TO MX))(F(15,5)); 
PUT SKIP(5); 
SAR=SUM(ARJ; 
RHO=CSCBS-REG*NSTAl/SAR; 
PUT ED I T ( 1 REG I 0 N A l 1 , ' DENS IT Y C C NT R AS T 1 ) ( S K I P ( 2 J , X C 10 ) , A , 
X(l5),A); 
PUT E 0 IT (REG, RHO )( SKIP , X ( 10) , F ( 12, 5) , XC 10) , F ( 8, 4) ) ; 
PUT EOITC'CO~PARISCN GF ANC~~LIES AT OPTIMUM')CSKIPC3J,A); 

l ••. 



puT E D I T ( I X s I ' • 0 B s I ' I /\N I ' I R E s I DU A L I ) ( s K I p' X ( 6 ) ' A' 
X I 1 C) , A , X l 1 C) , A , X ( 9) ,A ) ; 
HR=O; 
D 0 I<= 1 T 0 NS T A; 
AN(I<)=/\R(K)*RHC; 
RESIDLlKJ=OASIKJ-lAN(KJ+REGJ; 
R R= R R + (RES I CL ( K ) ) * * 2 ; 
PUT EDITIXSlKJ,IJBSIKJ,ANIKJ,RESIOL(K)J(SKIP,4 F( 12,2)); 
END; 
PUT EDIT( •OPTIMUM FUNCTION VALUE• ,F ,•NUMBER OF ITERATICNS PER 
VA R I 1\ B L E 1 , ITER) ( S K I P, A, E ( 2 3, 5 ) , SK IP, A, F ( 8) ) ; 
IF L~G=O TilEr\ GO TC FII\; 
IF LMG=~ THEN GET DATA; 
II=II+l; 
PUT PAGE; 
GET LI STI LfJGJ; 
IF LMG=l THEN GO TO L1; ELSE IF LfiG=2 THEN GC TC l2; 
IF LMG=3 THEN GO TO L3; ELSE IF LMG=4 THEN GO TO L4; 
ELSE IF l~G=5 THEN GC TO LS; ELSE GO TO FINi 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * 
I* 
I* AUXILIARY P~RT 

I* 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * 
AG:PROCIN,M,GG,XX,HH,Rl; 
DClll'\,tJ.JFIXED 811\,( (GG,XX ,HH) l*),R)FLOAT(l6); 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * 
I* MODEL DEFINITION PART 

I* * * * * * * * * * * * * * * + * * * * * * * * * * * 
XA=XX; REG=5.5; 
I* 

*I 
*I 
*I 
*I 

*I 

* * * ., 
*I 

*I 

*I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 

DO 1=1 BY 2 TO MSICE; 
HI\= SQR T I ( XA I I ) -X A I I+ 2 ) ) * *2 + (X A ( I +1 ) -X A II +3) ) * *2 ) ; 

S I I ) = ( XA I I+ 3)- XA I I+ 1) ) /HA; 
C ( I ) = (X A ( I ) -X A ( I+ 2 ) ) I HA; 

END; 
R=C.CO; 
DO J=l TO NSTA; 

AR(J)=O; 
~0 I=l BY 2 TO MSICE; 

IF S I I ) -.= 0 THEN D 0 ; 
V=XA(IJ-XSlJJ; Y=XIHI+2J-XSIJJ; 
l =XI\ ( I+ 1 ) -z S I J) ; T =X A I I+ 3 J- ZS I J ) ; 
V=V+ lE- 2C*I V=OJ; V=V+ lE-20* ( V=C); 

R1=V**2+l**2; R2=Y++2+T**2i 
Fll=ATJ\NIZrV); F12=J\TANlT,YJ; 
W= O. 5* S I I)* LOG I R 21Rl) +C (I)* l F I 2 -F I 1); 

A R ( J ) = A R ( J l + G S C * l T * F I 2- Z * F I 1- W * ( V * S ( I l + Z * C ( I ) ) ) i 
END; 

END; 
END; 
CO 1=1 TO NSTA; 
RAN I I ) =A R I I ) I AR ( fiST A ) ; 

ROBIIJ=lCBSIIJ-REGJilOBSIMSTAJ-REGJ; 
Etm; 
IF HT=1 THEN DO I=l TO NSTA; 
R = R + ( I R C B ( I ) -RAN I I ) hW T F ( I ) ) * * 2 ; END ; 
ELSE DO I =1 TO 1'\STA; 
R=R+lROBC I )-RAN( I) l**2i 
ENC; 
END AG; 
END; I* END BEGIN BLCCK * * * * *I 
FIN: END GRA T lOP; 



.176. 

Specification No. 4. 

Title: GAD 

Purpose: As in specification No. 3a. 

Use:. The programme is most suitable ror problems in whicn 

the regional background and the density contrast are 

specified but can handle either or both of them as variable 

parameters. It may be modif1ed to accept m density contrasts 

(m~ number of sides) all of which must be specified. 

Description: The programme is specifically constructed for 

use in conjunction with Davidon's procedure, P306 (Fletcher 

and Powell, 1963). Expressions for the rirst order partial 

derivatives of the objective function with respect to the 

variable parameter~ are provided in the auxiliary procedure • 

. These derivatives are allocated to the appropriate variable 

parameters in the gradient definition part of the auxiliary 

procedure. The example given in the print out derines an 

8-sided polygon (18 coordinate parameters) with five specified 

coordinate parameters. 

The remaining details are similar to specification No. 3a. 

Input data: The data are input in the following order: 

~ notes 

1 NAME 1 3.1 
nata nx mx nxa 4.1 

data; 4.2 
zs 3.5 
xs obs 3.6 
x opt bac 4.3 
lmg 3.t8 



Data notes: 

nsta = Number of observation points 

nx = Total number of variable parameters 

mx = Total number of coordinates 

.177. 

nxa = Number of variable coordinate parameters. 

4.2. The following are integers which may be altered by 

the GET DATA statement. 

so: As in note 3.3 

zaza: As in note 3.3 

lmg: .As in note 3.3 

jd: If set to 1 will cause exploration about the 

optimum after the termination of the search. 

X = As in note 3. 7. 

opt = An estimate of: the value of the objective function 

at the optimum. 

bac = The required accuracy in each parameter. 

o.oo1 is an adequate order of magnitude. 

Model definition: When either or both of rho and reg are 

required as variable parameters, rho must be defined as the 

(nxa+l)th element of xx and reg as the nxth element of xx. 

The remaining details are as in specification No. 3a. 

Gradient definition: The gradient is computed in four 

two-dimensional arrays each of which is : .. mside X nsta large 

where m aide = mx-3. gv and gz det:ine the derivatives with 

respect to the x and z coordinate parameters of the first 

corner of the appropriate side while gy and gt det:ine those 



of the second corner respectively. Therefore, 

GV( I,J) 

represents the derivative with respect to the x coordinate 

of the first corner of the ith side at the jth observation 

point. The sides are numbered 1,3,5, ••• , m$ide in an 

anticlockwise direction. 

Each coordinate parameter defining the polygon (except 

the first and the last corners of an open polygon) is common· 

to at least two sides. gx is an array of nxa elements. The 

kth element denotes the derivative of the objective function 

with respect to the kth coordinate parameter at the jth 

observation point. Its value is obtained by summing up the 

contribu~ion of all the sides in which the kth parameter 

occurs. lx is an array of nxa elements, which follow the 

same order as the gx elements. The example given in the 

print-out illustrates the allocation of the derivatives to 

the appropriate parameters for the model defined in the 

first part of the auxiliary procedure. 

The derivatives with respect to the density contrast 

and the regional background are given by 

GG(NXA+l) and GG(NX), 

respectively. When either or both parameters are specified, 

the pertinent card(s) is reserved in the space allocated 

for reserving suspended cards at the end of the auxiliary 

procedure. 

Output: This is similar to specification No. 3a but instead 

of the lower and upper bounds, the values of opt and bac 

are printed. 



:PROC OPTIONS (~AINJ; /* ~.AL-CHJ\L.ABI ~IW 1969 *I 

GAD: PROC OPT 101-.J S ( M/\ IN) ; I* M .AL-CHALAB I MAY 1 C169 *I 
CN E~DFILE(SYSIN) GO TC FI~i 

DCL NA~1E CHARACTER ( eC); 
DCL(NSTA,NX,MX,MSIDE,NXA)FIXED BIN; 
OCL II FIXED BIN INITI.AL(Q); 

l 1 : GE T ll S TC NA fold:) ; 
GET L ISTCNSTA,NX,MX,NXA); 
f"SICE=~X-3; 
PUT PAGE EDIT(NA~E)lX(30),A); 

PUT EDIT( 'THERE ARE',NSTA, 1 CASERVATICN PCINTS,• ,NX, 
'UNKNOWNS AND',MX, 'COORDINATE PARAMETERS') ( SKIP(4) ,A, 
3(F(3) ,X(l) ,.A)); 

BEGIN; 
CCL (IX, GJ (NX) )FLOAT( 16); 
DCL(CPTrBAC,F)FLOJ\T(l6J; 
DCL P30~ ENTRYlENTRY,FIXED BIN,FIXED BIN,FIXED BIN,FLOJ\TC16) 1 

FLOAT( 16),FIXED BIN,(-*)FLDAT(!E:) 1 l*)FLOAH16) 1 FLOATC16), 
FIXED P.INJEXT; 
DCL AG ENTRY(FIXED 13IN,(*JFLCATll6) 1 (*)FLOAT(l6),FLOAT(l6)); 
DCL((XS,OBS,AR,AN,RI:S,RESIDU lNSTA) ,XA(~X) ,(P,S,CJ CMSICEJ,GN,. 
GX ( NX A ) , ( GV , G Y, G l , G T ) ( M S I DE , N S T A ) , R H 0 , REG , SC , G SC , V , Y , l , T , F J l , F I 2 , 
PH,Rl,R2,FI,w,w~,TW,SWrWW,VVrBH,TR,CW)FLO/\T(l6); 

OCllDSVrDSYrDSZ,DST,DCV,DCY,DCZ,DCT,O~GV,DLGY, 
DLGZ,OLGT,DFIV,DFIY,DFIZ,DFIT,DFI1V,DFI2Y,DFI1Z·1 DFI2T, 
DMV,D,..Y,O~Z,OMT,CWV,CWY,DWZ,DWT)FlOATl 16); . 
DCLlJD,JJO,ZAZAJFIXED BI~; 
DCL ZS( l:NSTAJFLOAT( 16) INITIAL((NSTAJO); 
SC=l; Z~ZA=O; JD=O; 

l2 :GET DA T A; 
GSC=2*(:.~67*SC; 
I F l AlA= 1 T t-: EN DO ; 
GET LIST(ZS); PUT LIST(ZSJ; 
END; 

LJ:GET LISTCXS,OBSJ; 
l4:GET LlST(X,OPT,O.AC); 

PUT EDIT('ESTIMATED FU~CTICN VALUE AT CPTIMUM(OPTl'r · 
0 P T )( SK I P I 2 ) , A , E ( 12 , 3) ) ; 
PUT EOIT('P/\RAMETER ACCURACY 1 ,BAClCSKIPrArEl12,3l); 
I*** IF CHANGE IN EJ\CH "PARA,..ETER IS L.T. OAC SEARCt-: 
WILL TERMINATE *******/ 
PUT ECIT('IIHTIAL ESTIMATES'liSKIP,A); 
PUT EDIT((X(J) CO J=l TO NXJJ(F(l5,5)); 
PUT SKIP( 2) i 

L5:CALL P306CAG 1 NX,-1,l,OPTrOAC,JD,X,G,F,JJD); 
PUT PAGE Eo· IT ( NAME ) ( X ( 2 0 ) , A ) ; 
PUT EDIT( 1 0PTIMU,.. VARIABLE VALUES 1 )(SKIP(2),A); 
PUT SKIP; 
PUT E 0 IT ( C X I J ) DO J = 1 T 0 N X ) ) I F I 15 , 5 J ) ; 
PUT SKIP(8); 
ChLL 1\GINX,x,G,FJ; 
PUT EDITl 'BODY COORDINATES 1\T OPTIMUM') lA); PLT SKIP; 
PUT EDIT((XA(J) CO J=1 TO MX))(F(l5 1 5)); PUT SKIP(5); 
PUT EDIT( 'REGIONAL' ,'DENSITY CCNTR4ST 1 )(SKIP(2),X(10),A, 
Xll5),A); 
P IJ T E 0 I T ( R E G , R HO ) ( S K I P , X I 1 0 ) r F I 1 2 , 5 ) , X I 1 0 ) , F ( 8 , 4 ) ) i 
PUT EOIT( 1 CO~PI\RISCN OF 1\r\C~A-LIES AT OPTIMUM')(SKIP(3),AJ; 



PUT EDITI'XS' ,'OBS' , 1 /J.!·J' ,'RESIDUAL' l(SKIP,X(t:),A, 
X( 101 ,I\, X( 1Cl ,1\,X(<;) ,1\); . 
DO K=l TO NSTI\; 
RESIDLIKl=OBS(K)-(/J.NIK)+REGli 
PUT EDITlXS(I<) rOBSIKl,/J.I\(Kl,~ESICL(Kll(SKIP,4 F(l2r2lli 
E:\1 D; 
PUT EDITI'FUNCTION VALUE 1 ,F, 'NUMBER OF FUNCTlDN EVALUATIONS', 
JJOl (SKIP ,ArE 123,14 l rSKI P,A ,F (8)) i 
IF LMG=C THEN GO TO FIN; 
IF LMG=9 THEN GET DATI\; 
II=II+l; 
PUT PAGE; 
GET LISHLMG); 
IF LMG=l THEN GU TO L1i ELSE IF L·MG=2 THEN GO TO L2; 
IF l~G=3 THEN GO TO L3; ELSE IF L~G=4 THEN. GO TO L4; 
ELSE IF LMG=5 THEN GO TO L5; ELSE GC TO FIN; 

I* * * * * * * * * * * * * * * * * * * * * * * * * 
I* 
I* 
I* 

* * *I 
*I 

AlJXILI ARV PART 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * 
AG:PROCIN,XX 1GG,Rl; 
DC L ( X X ( * l , G G ( *) , R ) F LOA T ( 16) , N F I X E 0 B I N; 

*I 
*I 

*I 

DCL LXINXA) LABEL; 
1*******************************************************1 
I* ~CDEL DEFINITICN PART *I 
1*******************************************************1 
DO I=l TO 6; XAIIl=XXII); END; XA(7)=36.5; XAI8l=XXI7); 
XA(q)=25.5; Xl\(10)=0.39; XAll1l=20; DO I=l2 TO 17; 
XA( l l=XI\( I-4); END; XAI 18) =XA(2)+0.06; 
RHO=O.l4i REG=XXlNXl; 
1*******************************************************1 
1*******************************************************1 

DO I=l AV 2 TO MSIDEi 
P(I)=SQRT( IXA( Il-XA( I+2l l**2+(XA(l+ll-XA( 1+3) l**2l; 

S (I)= ( XA ( I +3 l -X A (I+ 1 l lIP (I) ; 
C ( I ) = ( XA I I ) - XA I I+ 2 ) ) I P I I ) ; · 

END i 
GG=O; GV,GY,GZ,GT=Oi 
R=O; 

DO J= 1 TO N STA i 
A R ( J ) =0 ; 

IHl I=J. 1\Y 2 TC ~SICE; 

V= XI\ I I )-X S ( J) ; V= Xfl( I+ 2)- X S ( J I ; 
Z=XAli+1l-ZS(J); T=XI\(1+3)-ZSIJl; 
V=V+lE-20*1V=Ol; Y=Y+1E-20+IY=O); 

Rl=V**2+l**2; R2=Y**2+T**2i 
F ll =AT 1\ N I l, V ) ; F I 2= AT AN I T, V) ; 
GN=0.5*LCGIR2IR1);Ft=FI2-FI1i 
'AM=V*SI I) +l*CI I); W=Gr..*S (I l+F I*C I I); 
I\R(J)=ARIJ)+T*Fl2-Z*Fil-W*W~; 
DSY= C ( I ) *S I I liP ( I ) ; 
0 S T=C (I l *C I I l /PI 1 l; 
DC V= S I I ) * S I I ) IP I 1 ) ; 



DSV=-DSY;DSZ=-OST; 
CCY=-DCV;DCZ=DSY;DCT=DSV; 
DLr,V=-~/Rl;CLGY=Y/R2; 

DLGZ=-Z/Rl;ULGT=T/R2; 
DFIV=-CLGZ;CFIY=-DLGT; 
DFIZ=DLGV;DFIT=CLGY; 
DF11V=-DFIV;DFI2Y=DFIY; 
DFI1Z=-DFIZ;DFI2T=DFIT; 
DMV=V*CSV+S(I)+l*DCV; 
DMY=V*CSY+l*DCY; 
DMZ=V*DSZ+C( I )+Z*DCZ; 

-• • ·•--• ,._a_.,., ... ..,,_,,,-..;o.;_ ... _l•~· ........ _ ... ,. ••·----· """' _...:,.,, ....... --·--.1.- G 

DMT=V*CST+Z*DCT; 
DWV=GN*DSV+S(I)*DLGV+FI*CCV+C(I)*DFIV; 
OWY=GN*DSY+S(l)*DLGY+Fl*DCV+C(J)*CFIY; 
DWZ=GN*DSZ+S(I)*DLGZ+FI*DCZ+C(JJ*DFIZ; 
DWT=GN*DST+S(IJ*DLGT+FI*CCT+C(I)*DFIT; 
GVCI,JJ=-Z*DFllV-W*D~V-DWV*W~; 
GY( l,J)=T*DFI2Y-W*DMY-DWV~W~; 
GZ(J,J)=-Fil-Z*DFilZ-W*DMZ-DWZ*WM; 
GT(I,J)=FI2+T*DFI2T-W*D~T-DWT*W~; 

END; 
ENC; 

DO J=1 TC NSTA; 
AN(J)=GSC*RHO*AR(J); 
RES(J)=(OBS(J)-REG-AN(J))*2; 
R=R+(0.5*RES(J))**2i 
END; 
DO K=l TO NXA; DO J=1 TO NSTA; 
GO TO LX(K); 
!*******************************************************! 
!*****.****** ******* GRADIENT DE F I NI TI CN PART ***********/ 
I***********************************************~******* I 

LX ( 1 ) : GX ( 1 J = GV (1 , J) ; 
GOTO TOT; 

LX ( 2 ) : GX ( 2) = G l ( 1, J ) +G T( 15, j )'; 
GCTC TOT; 

LXC3J :GX(3)=GV(3,J)+GY(l,J); 
GO TO TO Tc:; 

LX (4 J: GX (4 )=GZ (3,J J+GTC 1,J); 
GOTC TOT; 

LX ( 5) : G X ( 5) =G V ( 5, J) + G Y ( 3 , J) ; 

GOTO TOT; 
LX (6) :GX (6) =GZ (5, J J +GT ( 3, J J; 

GOTO TOT; 
L X ( 7 ) : G X ( 7 ) = G l ( 7, J ) +G T( 5 , J) ; 

GOTO TOT; 
LX( B) :GX(8)=GZU1 ,J)+GT(9,J)~ 

GO TO TOT; 
LX ( 9 ) : GX ( 9 J = GV ( 13, J J + G Y ( 11, J ) ; 

GOTC TOT; 
LX ( 1 0) : G X ( 10) =G l ( 13 , J J + G T lll , J ) ; 

GOTO TOT; 
LX(ll):GX(l1J=GVC15,JJ+GY(l),J); 

GOTO TOT; 



LX(l2):GXI12l=Glll5,J)+GTI13,J)i 
GOTO TOT'; 

LX I 13 ): GX I 13)=GY( 15,J l; 
TOT:GGIKl=GGIKl-RES IJl*GSC*Rt-O*GX(K) i 
END; END; 
GGINX)=O-SUMIRES); 

'' ·•·• . 1 .., •o, ,, .._,;..-~ I ~,' • :-.1 ~ -· ... •I ... :· .~ .. :.:. . , .... , 

l*************•·····~··············••*******************l 
!*******************************************************! 
I**** THIS PART IS FOR RESERVING SUSPENDED C~RDS ********** 
****************************************************** 

DO J=l TO NSTA; GGINXA+ll=GG(NXA+ll-RESIJl*"R(J)*GSC;·ENDi 
******************************************************' 

'*******************************************************! 
END AG; 

END; /*E~D OF BEGIN *I 
FIN:END GAD; 

.' . .. :_ ... . . ~ 
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Specification No, Sa 

Title: MANOP 

Purpose: This programme progressively modifies the parameters 

defining a two-dimensional polygonal model in order to 

minimise the discrepancy between an observed magnetic anomaly 

and the calculated anomaly due to the model. The resulting 

parameters define an 'optimum' model. 

Use: The programme is most suitable for problems in which 

the linear parameters are specified but can also handle any 

or all of them as variable parameters. 

Description: The auxiliary procedure AM calculates the 

anomaly in a manner similar to that of MAGN (specification 

No, 2, Batt, 1969b) so that the addition of the step-models 

is carried out in an anticlockwise order. The objective 

function is calculated according to equation (6,6). All 

remaining details are similar to specification No, 3a. The 

print-out shows an example where the second side of the 

polygon is horizontal and the regional background is -12 

gammas. The vertical and horizontal components of the 

magnetisation contrast vector resolved in the direction of 

the profile are specified at 200 and 40 in (e,m,u./c~)-x 105• 

Input data: The data are input in the following order: 

data notes 
1NAME 1 3.1 
nata nx mx 3.2 
data; 5.1 
fi fa 5.2 
wtf 3.4 
ZB 3.5 
xs obs 5.3 
g X h 3~7 

lmg 3.8 



.180. 

Data notes 

5.1. The integers which may be altered by the GET DATA 

statement are the same as those of specification No. 3a except 

that sc does not exist here. 

5.2. fi and fa are the values of the dip and azimuth of the 

Eartb 1 s field, in degrees. The azimuth is measured from the 

strike towards the positive horizontal axis. The dip is 

measured from the aximuth direction downwards towards the 

positive vertical axis. 

5.3 xs is an array of nata elements. The it~ element denotes 

the horizontal distance of the itb observation point from the 

origin. The origin is chosen arbitrarily and is retained for 

reference throughout the problem. The borizontal axis must 

increase towards a northerly direction, i.e. S-N, SE-NW or 

SW-NE. 

obs is an array of nsta elements. The ith element 

denots the anomaly value at the ith observation point in 

gammas. The complete xs data list must be input before 

inputting obs. 

Model definition: The coordinate parameters of the polygonal 

model are defined in the same way as in specification No. 3a. 

reg, ajs and ajc must be defined in the auxiliary procedure. 

ajs and ajc denote the vertical and horizontal components 

of the magnetisation contrast vector resolved into the_ 

direction cr the profile. They are measured in 105x e.m.u./c~. 

If aj denots the intensity of magnetisation in e.m.u./c~ 
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then 

-ajs = 105 X sj X sin bi 

ajc = 105 
X sj X COS bi sin ba 

where bi and ba are the dip and azimuth of the magnetisation 

contrast vector in degrees measured in the same sense as 

fi and fa. ajs and ajc may be defined by fixed values, 

variable parameters or any combination of these, e. g. 

(a) AJS = 120; AJC = XX(NX); 

(b) AJS = 150 * SINDi; (XX(NX)); 

AJO = 150. • COSD1.: (XX(NX)) ~ O. 5; 

etc. 

reg denotes the regional background measured in gammas. 

Output: The output data list is similar to specification 

no. 3a except that aja and ajc are printed instead of the 

density contrast. The values of fi and fa are also printed. 

Specification No. 5b 

Title: MREGNOP 

Purpose: As in specification no. 5a• 

Use: The programme is most suitable for problems in which 

the regional background is specified and the two components 

of the magnetisation contrast vector are unspecified. It 

can also handl~ the regional background as a variable parameter 

Neither of ajs or ajc may appear in the model definition part. 

Description: The objective function is calculated according 

to equation (6.11). 

All the remaining details are as in specification no. 5a. 
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Specification No, 5c 

. Title: MAGOP 

Purpose: As in specification No, Sa. 

Use: Tne programme is only suitable for problems in wnich 

tne linear parameters are unspecified. None of ajs, ajc or 

reg may appear in tne model definition part, 

Description: The objective.tunction is calculated according 

to equation (6.13). 

All the remaining details are as in specification No, Sa. 

Specification No. 5d 

Title: As in specification No, Sa. 

Purpose: As in specification No, 5a. 

Use: Tne programme is most suitable for problems involving 

more than one magnetisation contrast, Only one magnetisation 

contrast can be used across eacn side, Any of the contrasts 

may be specified or treated as a variable parameter. Two is 

tne maximum recommended number of unspecified magnetisa·tion 

contrasts, 

Descrip*ion: aJS and ajc are declared as arrays, each 

consisting of ::-mside elements (·:.·.mside = m.x-3). Tne k_th 

element of each array-denotes the magnetisation contrast 

component appropri~te to the kth side, Tne sides are 

numbered 1,3, 5, ••• , i~··tn:;ide in an anticlockwise direction. 

The numbering of the elements of ajs and ajc therefore 

increments from 1 by steps of 2 (see example in tne print-out), 

All of these elements must be defined in the model definition 
part, The objective function is calculated according to 

equation (6.14). All the remaining details are as in 



....... ····· .: ... -· ...... 

OP:PROC OPTIONS (MAIN); I* M.AL-CHALABI FEB. l96q *I 

r41\NOP:PROC OPTICNS I~AIN); I* ~.AL-Ct-:1\LABI FEe. 1969 *I 
ON ENDFILEISYSIN) GO TO FIN; 
CCL ~A~E CH~RACTER(80); 

DCLINSTA,NX,~X,~SIDElFIXED BIN; 
DC L I I F I X E lJ 0 IN IN I Tl A U C) ; 

L1:GET LIST(NAME); 
GET LISTINST~ 1 NX,MX); 
MSIDE=MX-3; 
PUT PAGE ED IT (NAME ) ( X ( 3 C ) , A ) ; 
PUT EDITI'THERE ~RE',NST~t'OBSERVATION POINTS,',NX, 
1 UNKNOkNS AND' ,~X, 1 CCORDINATE PJlRA~ETERS' )(SI<lP(4hAt 
3 ( F ( 3 ) , X ( 1 ). , A ) ) ; 
DEGII\:; 
DCLIIG,X,H) INX) 1 Fr-' 1 F)FLCAT(l6),I FIXED BIN, 
P3CC ENTRY(ENTRY,FIXEO BIN,FIXED AIN,FIXED RINeFIXEC BIN, 
FIXED OIN 1 1*lFLOATI16} 1 (*lFLOATI16),(*)FLOAT(l6l,FLOATl16), 
FLOAT(16) ,FIXED EINlEXT,A~ E~TRYIFIXED BIN, FIXED AIN, 
1*-lFLOATC 16) ,(*)FLOAT( 16) 1 (*)FLCAT(l6) ,FLOAT 1161); 
DC L ( (X S , 0 BS , AN, RES I DL , W T F ) I N S T A ) , XA I M X) , I S , C ) I M S I DE ) , P .X E , P Z E , 
HA,REG,AJS,~JC,EA,EB,V,Y,Z,T,R1,R2,AB,AD,UP,UN,ANG,GN, 

E 1 , E 2) FLOAT I 16) , 
IFI,FAlFIXED DECIMAL,IITER,ZAZA,LP,WT)FIXED OIN; 
DCL LfJG FIXED BIN INITIALIOI; 
DCL lSI1:NSTAlFLCATC16) If\ITIAL((NSTA)O); 
ITER=2CC; ZAZA,LP,~T=C; 

L2: GET CAT A; 
GET LISTIFI ,FA); PUT EDITI'FIELC DIP & AZIMUTH', 
FI,FA)ISKIP,A,XI2lr2 Fl6,l)); · 
IF WT=l THEN GfT COPY LISTIWTF); 
IF ZAZA=1 THEN COi 
GET LI S T( l S) ; P LT liST ( Z S) ; 
END; 

L3:GET LISTIXS,OBSJ; 
L4:GET LISTIG,X,Hl; 

PUT SK I PI 2) ; 
DO I=1 TO NX; PUT EDITIG(I),X(I),H(Il)(SKIP,3 FI15,5)·);END; 
PUT SKIP12l; 
PXE=COSDI FI l*SINDIFA); PZE =SINDIFI); 

L 5 : C A L L P 3 0 0 ( M1 , N X , I~ X , - 1 , I T E R , 1 , G , X , H , F M , F , I ) ; 
IF LP=1 THEN DO; ITER=ITER/5; 
CALL P3CCIA~ 1 NX,NX,-l,ITERr1rG,X,H,F~,F,I)i 
END; 
PUT PAGE EDITIN~~E)(X(20l,Al; 
PUT EDITI'CPTII\I,ufJ VARIABLE VALUES'liSKIPI2),A); 
PUT SKIP; 
PUT E D IT ( ("X I J ) 00 J = l T 0 N X ) ) I F ( 1 5 , 5 ) ) ; 
PUT EDIT( 1 BCCY CCORDINATES' liSI<IPI2lrAl; PUT SKIP(2}; 
CALL AMINX,NX,G,x,H,F); 
PUT EIJIT((XA(K} DO K=l TO MX))(F(l5,5)); PlT SI<IP(2); 
PUT ED I T ( 1 J S' , ' J C' , ' REG 1 ON A L ' ) I S K I P I 2 ) , 3 I X I 1 0 ) , A ) ) ; 
PUT EDITIAJS,AJC,REGliSKIP,3(F(l2,3))); 
PUT ED IT I 1 C 0 M PAR I SON 0 F AN 0 MAL I E S A T 0 P T I MUM ' ) ( S K I P I 3 ) , 1\ ) ; 
PUT ED IT ('X S 1 , ' 0 BS 1 , ' AN 1 , 1 R-ES IOU AL 1 ) ( SK I P, XU: ) tAr 
X( lC) ,A,X(lC) ,A,X(9) ,A); 
DO K= 1 TO N S TA ; 
RESICLCK)=OBSIK)-CANIKl+REGJ; 

. ; 



PUT E D IT ( X S ( K ) , 0 B S ( K ) , AN ( K l , R E ~ I 0 L( K ) l ( SKI P , 4 F ( 12 , 2) ) ; 
END; 
P~T EDIT! 'OPTIMUII' FUf\CTICfx V~LlJE' ,F,'NU~BER CF ITERATIOf~S PER 
V A R I A B L E 1 , I T E R ) ( SK 1 P , A , E ( 2 ~ , 5 ) , S K I P , A , F ( 8 ) ) ; 
IF L~G=O THEN GO TO FIN; 
PUT PAC,E; 
II=II+li 
GF.T LISTCLMGJ; 
IF L~G=1 THEN GO TO L1i 
IF L MG = 2 THE 1\ G 0 T C L 2 ; 
IF LMG~3 THEN GET OATA; 
IF L~G=3 THEN GO TO L3; 
ELSE IF L~G=4 THEr'\ GC TC L4; 
ELSE IF LMG=5 THEN GO -TO L5; 
ELSE GO TO FIN; 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* *I 
I* AUXILIARY PART *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
1\M:PROCCN,M,GG,XX,HH,RJ; 
DC L ( N, M ) FIXED B IN, ( ( GG, X X, H H ) ( * ) , R) F L 0 AT( 16) i 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* MODEL DEFINITION PART *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
X A ( l) =X X (l ) i X A ( 2 ) =X X ( 2 ) i X A ( 3 ) =X X (3 ) ; X A ( 4 ) =X X ( 4) i X A ( 5) =X X ( 5) ; 
DO I=7 TO MX; XA(l)=XX(I-l); ENC; 
XI\(6)=XAC4); 
AJS=200; AJC=40; REG=-12; 
I* *I 
I*·** • * * * * * * * * * * * * * * * * * * * ********I 

CO 1=1 BY 2 TO MSIDEi 
H A= S CRT ( (X~ ( I ) -X A ( I+ 2 ) ) * *2 + (X A ( I+ 1 ) -X A ( I+ 3) ) * * 2 J i 

C ( I J = ( XII. ( I ) - XA ( I+ 2 J J IH A; 
S ( I ) = (X A ( I+ 3 ) -X A C I+ 1 ) J I HA ; 
END; 

R-=0.00; 
DO J=l TO NSTA; 

ANCJI=O.OO; 
DC I=1 BY 2 TC ~SIDE; 

IF SCI),=~ THEN DO; 
V=X A (I )-XS C J I i 
Y =X A ( I +2) -X S ( J) i 

Z=XACI+U-ZS(J)i T-=XI\(1+31-ZSCJ); 
R1=V**2+Z**2i R2=Y**2+T**2; 

AB=V/Zi AC=Y/T; UP=AB-AD; UN=l+AB*AD; ANG=ATAN(UP,UNli 
GN-=0.5*LOGCR21R1); 
E1=ANG*SC I 1-GN*CC I l i 
E2=GN*S C I )+ANG*CC I I; 

EA=2*S C I I* ( PXE*E2-PZ E*E1 I; 
EA=2*SCI)*CPXE*El+PZE*E2J; 

ANCJl=ANCJ)+AJS*EA+AJC*EB; 
END; 
END; 

END; 
IF WT=1 THEN DO I=l TO NSTA; 
R=R+((OBSCII-REG-1\N( IIJ*WTFC Ill**2i END; 
ELSE. DC 1=1 TO NST~; 
R=R+(OAS( I 1-REG-MH I) l**2i 
END; 
END All'; 
END; I* END OF BEGIN* * * *I 
FIN:END MANOP;. 



GNOP:PRCC CPTICNS IMAINJ; I* M.AL-CHALAIH MARCH lq6CJ *I 

MREG~OP:PROC OPTIONS I~AINJ; I* M.AL-CHALABI MARC~ 1969 *I 
ON EN C F I L E I S Y S IN ) G 0 T 0 F IN ; 
DCL N~~E CHARACTERI80); 
DCLINSTA,~X,MX,MSIDEJFIXED OIN; 
DCL II FIXED 13IN INITIALIOJ; 

Ll:GET LISTINA~EJ; 
GET LISTINSTA,NX,~X); 

t~S IDE=MX-3; 
PUT PAGE EDITIN~~EJIXIJO),A)i 

PUT E:DI Tl 'THERE ARE' ,NSTA,• CIJSERVAT ICN POINTS,' rNX, 
'UNKNOwNS AND',MX,'COORDINATE PARA~ETERS') ISI<IPI4),A, 
31F(3),X(1),AJJ; 
BEGIN; 
DCLIIG,X,H)(NXJ,FM,F)FLOAT( 16) ,I FIXED BIN, 
PJOO ENTRYIENTRY,FIXED BIN,FIXED niN,FIXED RINrFIXED AIN, 
F I XED B I N , ( * ) F L 0 AT ( 16 ) , ( * ) F L 0 AT ( 16 ) , ( * ) FLOAT ( 16 J , F L 0 AT ( 16) , 
FI_.OAT( 16) ,FIXED AINJEXT,Af" ENTRV(FIXED BINrFIXED eiNr 
( * J F L 0 AT I 16 ) , ( *) FL 0 A Tl 16 ) , ( *)FLOAT( 16) , FLOAT( 16) ) ; 
DC L ( (CBS , AN, X S , E A, E B, RES I DL , W T F ) ( N S T A ) , P X E, P Z E , 
ALPHA,BETA,GAf"f"A,PI, 
DEL TA,SIGMA,EAS,EOS,OBSS,AJS,AJC,REG,XAI~XJ, (S,CJ Cf'ISICE), 
H A, V, Y, Z, T, R 1, I{ 2, A B, AD, UP, UN, A NG, GN, E 1, E 2) FLOAT( 16) , 
(FI ,FAJFIXEC OECII"AL,IITER,Z~ZA,LP,WTJFIXED BINi 
DCL LMG FIXED RIN INIT1AL(OJ; 
DCL ZS I 1:NSTAlFLO.I\TI 16) INITIAL((NSTAJO); 
ITER=200; ZAZA,WT,LP=O; 

L2:GET DATA; 
GET l I S T ( F I , FA ) i PUT E 0 I T( ' F I E L D D I P & A Z I M L' TH 1 , 

FI,FJI)(SKIP,A,X(2),2 F(6,1) Ji 
IF ~T=1 THEN GET CCPY LISTCWTFJ; 
IF ZAZA=1 TH~~ DO; 
GET LISTIZSJ; PlJT LIST(ZSJ; 
END; 

L3:GET LJST(XS,OBSJ; 
L4.:GET LIST(G,X,H); 

PUT SKIPI2li 
DO I=1 TC NX; PLT EDIT(G(I) ,X(I),~(I))(SKIP,3 Fll5,5)J;ENO; 
PIJT SKIPI2Ji 
PXE=COSCIFI l*SINC(FAJ; PlE=SII\JCIFI ); 

L5:CALL P3CCCA,.,,NX,~X,-1,ITER,1,G,X,H,Ff",F,IJ; 
IF LP=l THEN DO; ITER=ITERI5; 
CALL P300(AM,NX,NX,-l, ITER, l,G,X,H,FM,F,Il; 
END; 
PUT PAGE EDIHNAME)(X(20J,A); 
PUT EDIT('UP.TIMUM V.ARIAALE VAll:ES')(SKIP12l,A); 
PUT SKIP; 
PUT EDIT((X(J) DG J=l TC I\X)J(F(l5,5)); 
PUT EDITI'BODY COORDI"'ATES')ISKIP(2),A'); PL'T SI<IPI2); 
CALL Af"(NX,NX,G,X,H,F); 
PUT EDIT((XA(K) DO K=l TC f"Xll(F(15,5)); PUT SKIP(2J; 
PUT ED I T( 1 J S ' , 'JC ' , 'REG I DNA L ' ) ( S I< I P ( 2) , 3 ( X 11 ()) , Jl ) ) i 
PUT E C IT ( 1\J S, AJ C, REG J ( S K I P , 3 ( F ( 12, 3) ) ) ·; · 
PUT EDIT('CC~P.ARISCI\ CF Af\C~ALIES AT OPTIMUM')(SKIP(3J,AJ; 

. PUT ED I T ( ' X S ' , ' OA S' , 'AN' , 1 RES I D t.; A L' ) (SKI P , X ( 6 ) , A, 
X(lQ),.A,X(lC),A,X(9),A); . 
DO K=l TC NSTA; 



RESIDL(K)=OAS(K)-(AN(K)+REGli 
PUT EDIT(XS(K) ,CI3S(K),Af\(Kl,RESIDL(K))(SK1Pr4 f(12r2lli 
END i 
PUT EDIT('OPTIMUM FUNCTION VALUE•,F, 1 NUM13ER OF ITERATIONS PER 
VARIABLE' riTE R l (SKI P, A, E ( 23 , 5) , SKIP, -A, F ( 8) ) i 
IF LMG=C THEN GO TO FIN; 
PUT PAGE i 
11=11+1; 
GE T Ll S T( L MG) ; 
IF LMG=1 THEN GU TO Lli 
IF L~G=2 THEN GO TO L2i 
IF L~G=3 THEN GET DATA; 
IF LMG=3 THEN GO TO L3; 
ELSE IF LMG=4 THEN GO TO L4; 

. ELSE IF L~G=5 THEN GOTO L5; 
ELSE GO TO FIN; 
I***·********* t * * * * * * * ********I 
I* *I 
I* ALXILIARY PART *I 
I* *I 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AM:PROC(N,~,GG,XX,HH,R); 

OCL (N,M )fiXED AIN,( (GG,XX,HHl I*) ,R)FLOAT(l6); 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ • *I 
I* MODEL DEFINITION PART *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
X A ( 1 ) =X X ( l) ; XA ( 2 ) =X X ( 2 ) i XA ( 3) =X X ( 3 ) ; XA ( 4 ) =X X ( 4) ; X A ( 5 ) =X X ( 5 ) ; 
XA(6)=XA(4); 
DO 1=7 TO MX; XA(I)=XX(I-lli ENC; 
REG=-12 i 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * ·* * *I 

DO I=l BY 2 TO ~SlCEi 
.HA=SQRT( ( XA( I )-XA( 1+2) )**2+( XA( 1+1)-XIdl+3) )**2); 

S( I )=(XA( J+3)-XA(I+l) liHA; 
C ( I) = ( XA (I) -X A (I +2) ) I HA; 

END; 
R,ALPHA,BETA,GAMMA,DELTA,SIGMA=O; 

CO J=l TO NSTA; 
EA(J),EB(J)=C; 

DO I=l BY 2 TO MSIDE;· 
IF S (I h=O THEN CO; 

V=XA (I )-XS( J); 
Y=XA( 1+2)-XS(J); 

l=XA(I+ll-ZS(J); T=XA(I+3)-ZS(J); 
Rl=V**2+Z**2i R2=Y**2+T**2i 

AB=VIZ; AD=YIT; UP=AB-AD; UN=l+AB*AD; ANG=ATAN(UP,UN); 
GN=Q.5*LOG(R21Rl)i 
El=ANG*Slil-GN*Cfi)i 
E2=GN*S( I )+ANG*C(I) i 

EA(J )=EA(J l+2*S( I l*IPXE*E2-PZE*El ); 
EU(J)=EB(J)+2*S(I)*(PXE*El+PZE*E2); 
END; 
END; 



1\LPHA=ALPHA+EA( J}*(OOS( Jl-REG); 
RETA=BETA+EAIJ )*IOASIJ )-REG); 
-GA~~A=GA~MA+EA(J)**2; 

DEL T l\ =DELTA+ E A I J) * E A I J) ; 
SIGM/\=SIGMA+ERIJ)**2i 

ENC; 
PI=DELTA**2-GA~MA*SIGMA; 
AJS=IBETA*DELTA-ALPHA*SIG~A)/PI; 

AJC=IALPHA*DELTA-BETA*GAMMA)/PI; 
IF WT=1 THEN DO 1=1 TO NSTA; 
AN( I) =AJS*CAI I )+AJC*[B( l); 
R=R+( IOBSI I )-REG-ANI I) )*~TF I I) l**2i 
END; 
ELSE DC 1=1 TO NST/i; 
1\NII)=AJS*EAII)+AJC*EAII)i 
R=R+IOeSIIl-REG-AN(l)l**2i 
ENlJ; 
END 1'\M; 
END; !*~****END THE BEGIN ALOCK **********/ 
FIN: ENC MREGNOP; 



)P:PR.OC OPTIONS IMAINl; I* M.AL-Ct-~LIIBI FEB. 1969 */ 

MAGOP:PROC OPTIONS (~AIN); I* ~.AL-CHALABI FER. 1969 *I 
Oi~ ENCFILEISYSirn GO TO FIN; 
DCL NA~E CHARACTERI80); 
DCLINSTA,NX,MX,MSIDEIFIXED BIN; 
CCL II FIXED BIN lrUTIALIO); 

L1:GET LISTIN~~Eli 
GET LIST(NSTA,NX,~X); 

MS IDE=MX-3; 
PUT PAGE EDITINA,..EliX(30),AI; 
PUT EDIT( 'THERE ARE' ,f\STA,• CeSERVAT ION POINTS, 1 ,NX, 
'UNKNOwNS ANO',MX, 'COORDINATE PARA,..ETERS') CSKIP(4) ,A, 
3(F(3),X111,A)); 
BEGIN; 
DCL((G,X,H)(NX) 1 FM 1 f)FLOATI 16) ,I FIXED BII".J 1 

P300 ENTRYCENTRY,FIXEO AIN,FIXED OIN,FIXED OIN,FIXED OIN, 
F I X E 0 B I N, ( * ) F L 0 AT (16 ) , I * ) F L 0 AT ( 16 ) , ( * ) FLOAT ( 16 ) , F L 0 AT l 1 h) , 
FLOAT( 16) ,FIXED B.IN)EXT,AII' ENTRYlFfXED BIN,FIXED AIN, 
(*)FLOAT( 16), l*lFLOATl16),( *)FLOAT( 16) ,FLOATC 16)); 
DC L ( ( 0 BS , AN, X S , E ~, E B, RES I CL , WT F ) l N S T A ) , P X E, P Z E , 
ALPHA 1 BETA,GA,..MA, 
DEL T A , S I GM A , E A S , E [3 S , 00 S S , A J S , A JC , REG , X A ( ,.. X ) , l S , C ) ( fJ S I C E ) , 
XM,XN,ZM,YM,YN,YZ, 
HA,v,v,z,T,R1,R2,AB,AC,UP,U~,ANG,GN,E1,E21FLOATI16), 

IFI,FAIFIXEO DECIMAL,liTER,ZAZA,LP,WTIFIXED BIN; 
CCL LMG FIXED BIN iNITIALIC); 
DCL ZSil:NSTAlFLOATI16) INITIALIINSTA)O); 
ITER=2CO; lAZA,LP,WT=O; 

L2: GET DATA; 
GET LIST(FI,Ftd; PUT EDIT('FIELD DIP & AZIM~TH', 
FI,FA)(SKIP,A,X(2),2 F(6,l)); 
IF WT=1 THEN GET COPY LISTI\oiTF); 
I F Z AlA= 1 T HEN DO ; 
GET LISTlZSl; PUT LISTIZSl; 
END; 

L3:GET LISTIXS,OOSl; 
L4:GET LIST(G,X,H); 

PUT SKIP( 2); 
DO I = 1 T 0 t J X ; J> U T E 0 I T ( G ( I ) , X ( I ) , H ( I ) )( S K I P , 3 F 11 5 , 5 ) ) ; E N D ; 
PUT SKIP(2); 
SO !l S = S U' I OB S) ; 
P X E =COS 0 ( F I ) *SIND I FA ) ; P Z E =SINO IF I ) ; 

L5: CALL P300(AM,NX 1 NX,-l, ITER, l,G,X,H,FM,F ,I); 
IF LP=1 THE~ DO; ITER=ITER/5; 
CALL P3CCIAII',NX,NX,-l,ITER,1,G,X,H,Ft-',F,Il;_ 
END; 
PUT PAGE EDIT(NA~E)(X(20),A); 

PUT EDITC 1 0PTI~~II' VARIABLE VALUES')ISKIP(2),A); 
PUT SKIP; 
PUT E D IT ( ( X ( J ) DO J = 1 T 0 N X ) ) ( F I 1 5, 5 ) ) ; 
PUT EDIT('RQ.CY CCORDINATES 1 )(SKIP(2),A); PUT SKIPl2l; 
CALl AM(NX,NX,G,x,H,F); 
PUT E 0 IT ( ( X A ( K ) DO K = 1 TO M X ) ) ( F ( 15 , 5 ) ) ; P l T SKI P ( 2 ) ; 
PUT EDIT ( 1 JS' ,• JC', 1 IHGIONAL') CSK IP( 2 ), 3(X( 10),A)); 
PUT EDITCAJS,AJC,REG) ISI<IP,3(F(l2,3)) ); 
PUT EDIT( 'COMPARISON OF ANOMALIES AT OPTIMUM') ISI<IPI3l ,AI; 
PUT EDITI'XS•,•OBS•,•AN•,•RESICUAL')(SKIP,X((:),A, . 



X (10), A, X( 10 ), /\ 1 X(9) ,1\); 
00 K=1 TO NSTA; 
RESIDLCK)=OAS(K)-(AN(K)+REGl; 
PUT E 0 IT ( X S ( K ) , fJ 0 S ( K ) , AN ( K l , R E S I D L( K ) ) ( SKI P , 4 F ( 12 , 2 I ) ; 
END; 
PUT EDIT( 'OPTI~L'P' FUI\CTICr\ VALUE' rFr' NU~BER CF ITERATIONS PER 
VA R I A A L E ' , I T E R ) ( SK I P , 1\ , E ( 2 3 , ~ ) , SKI P , A , F ( 8 ) l ; 
IF LP'G=O THEN GO TO FIN; 
PUT PAGE; 
II=II+1; 
G E T L IS T ( U1 G l ; 
IF LP'G=l THEN GO TO L1; 
IF L~G=2 THEr\ GO TC Lli 
IF LMG=3 THEN GET DATA; 
IF L~G=3 THEN GO TO LJ; 
ELSE IF L~G=4 THE!\ GC TC L4i 
ELSE IF LMG=5 THEN GOTO L5; 
ELSE GO TO FIN; 
I* * * * * * * * * * * * * * * * * * * * * * *' * * * * *I 
I* *I 
I* o AUXILIARY PART *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AM:PROCCN,M,GG,XX,HH,R); 
DCL(N,M)FIXEO BIN, ( (GG,XX,HH)( *lrRlFLOAT( 16); 

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* MODEL DEFINITION PART *I 
I* * * * * * * * * * * * * • * * * * * * * * * * * * * *I 
X A I 1) =X X ( 1 ) ; X fd 2 ) =X X ( 2 ) i X A ( 3 ) =XX (3 ) ; X A ( 4 ) =XX ( 4) i XA ( 5) =X X ( 5) i 
XA ( t) = XA ( 4) i 
DO 1=7 TO MX; XA(I)=XX(I-1); END; 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 

DO I=1 BY 2 TO MSIDE; 
H A= S Q R T ( ( X A ( I ) -X A ( I + 2 ) ) * * 2 + I X A ( I + 1) -X A ( I + 3) ) * * 2 ) i. 

S(I )=(XA( 1+3 )-XA( 1+1) )IHA; 
C( I)=( XA( I l-XAI 1+2) liHA; 

ErJ D ; 
R,ALPHA,BETA,GA~MA,OELTA,SI(MA=O; 

DO J=1 TO 1\STA; 
EA(J),ERCJl=O; 

CO 1=1 BY 2 TO MSICE; 
IF SCI)-,=') THEN DO; 

V=XA(Il-XSCJJ; 
V=XA ( 1+2 l-XS (J l; 

Z=XA(I+1l-ZS(J); T=XACI+3l-ZS(J); 
Rl=V**2+Z**2; R2=Y**2+T**2; 

AO=VIl; AC=VIT; UP=AA-AD; UN=1+AB*AD; ANG=ATAN(UP,UNJ; 
GN=0.5*LCGCR21Rlli 
E l=ANG*S( I l-GN*C (I l; 
E2=GN*S( I l+/\NG*C( I l; 

EA(Jl=EA(Jl+2*SCI)*(PXE*E2-PZE*El); 
EB(JJ=EB(J)+2*S(I)*(PXE*E1+PZE*E2li 
END; 



END; 
ALPI-A=ALPHA+EA(J J*UBS(J J; 
BF.TA:BETA+EB(JJ*CBS(JJ; 
GAMMA=GAMMA+EA(J)$*2; 
DELTA=DELTA+EACJ J*EBCJ J; 
SIG~A=SIGMA+EBCJJ**2i 

END i 
EAS=SUM(EAJ; EOS=SUMCEBJ; 

XM=NSTA*ALPHA-SUBS*EAS; XN=NSTA*BETA-SOBS*EBS; 
ZM=NSTA*DELTA-EAS*ERS; Y~=~STA*GA~~A-EAS**2i 
YN=NSTA*SIGMA-EA5**2; 
Yl=YM*YN-ZM**2i 

AJS=(X~*YN-XN*ZMJ/YZ; 

AJC=CXN*Y~-XM*ZM)/Yli 
REG=CSOAS-AJS*EAS-AJC*EASJ/NSTA; 

IF WT=l THEN DO J=l TO NSTAi ANCJJ=AJS*EACJJ+AJC*EBCJJ; 
R=R+CCOBSCJJ-REG-A~CJJJ*WTFCJJJ**2i ENDi 
ELSE DO I=l TO NSTA; ANCIJ=AJS*EA(IJ+AJC*EB(l); 
R=R+COBS(IJ-REG-ANCIJJ**2; END; 
END A~; 

END; I* END OF BEGIN** * *I 
FIN:ENC MAGOP; 



MULTIJ:PROC OPTIONSCMAIN); I* M.AL-CHALABI JULV 1969 •i 
CN ENOFILECSYSI~J GC TC FI~; 
OCL NAME CHARACTERf60); 
CCLCNSTA,NX,MX,MSIDEJFIXED BIN; 
DCL II FIXEC BIN INITIAL(OJ; 

Ll:GET LIST(NI\t<IE); 
GET L ISTCNSTA,NX,MX); 
t'SICE=t<IX-3; 
PUT PAGI:: EOIT.fNAt<IE)(X(30),A); 
PUT EDIT( 'THERE ARE',NSTA,'CRSERVATICN PCINTS,• ,NX, 
'UNKNOWNS AND I I MX I 'COORDINATE PARAMETERs., (SKIp ( 4) ,A' 
3(F(3) ,X(l) ,,J J; 
OEG HI; 
CCL((G,X,HlH-1Xl 1 FM. 1 FJFLOATC tE:),I FIXEO BIN, 
P300 ENTRV(ENTRV,FIXED BIN,FIXED IHN,·FIXED BIN,FIXED BIN, 
FIXED RIN 1 I*)FLCAT(l6), C*lFLC.AT(l6) ,(*JFLOAT(l6),FLOAT(l6), 
FLOAT( 16),FIXED AINJEXT,AM ENTR'f'(FIXED BIN,FIXED BIN, 
l*lFLCAT(l6), (*)FLOAT(l6), (*)FLOAT( H:J,FLOAT( 16)); 
DC Ll ( X S , OR S , AN, R E s'I D L, WT F ) ( f\S T .A ) , X A ( MX ) , 
(S,C,AJS,AJCJ(MSIDEJ, 
HA,REG,PXE,PZE,EA,EO,V,Y,Z,T,Rl,R2,AB,AD,UP,~N,ANG,GN, 

E l , E 2) F L 0 AT (16 ) , 
IFI ,FA)FIXED DECI~AL,(ITERrZ,Z.A,LP,WTJFIXED erN; 
DCL LMG FIXED RIN INITIAL(OJ; 
CCL lSil:NSTJI)FlOAT(l6) INITIAL((NSTAJO)i 
ITER=2COi ZAZA,LP,wT=Oi 
L2:GET DATA; 
GET L IS T ( F I , F 1\ ) ; PUT ED I T ( 1 F I E L D D I P & A l I M U TH 1 , 

FI ,FA) ISKIP,.A,X(2) ,2 F(6,l J ); 
IF WT=l THEN GET COP'f' LISTl~TFJ; 
IF lAZA= 1 THEN 00; 
GET LISTCZSJ; PUT LISTlZS); 
END; 

L3:GET LISTCXS,ORSJ; 
L4 :GET L IS T ( G, X , H J i c;. 

PUT SKIP(2J; 
DO 1=1 TO NX; PLT EDIT(G(IJ ,>c(IJ ,H(I)J (SKIP,3 FUS,SJJ;END: 
PUT S K I P ( 2 ) ; 
PX E =COS C ( F I ) *SIN C ( FA J; P Z E =S INC ( F I ) ; 

LS:CALL P3CClAM,NX,NX,-1,ITER,l,GrXtH,F,.,,F,J); 
I F L P = 1 T HEN DO ; I T E R = I T E R /5 ; 
CALL P300(.Af<' 1 NX 1 NX 1 -l, ITER 1 1 1 G,X,H 1 FM,F,I); 
END; 
PUT PAGE EDIT(NJ\ME)(X(20) 1 A); 
PUT ECIT( 1 llPTIMUM VARIABLE V.ALUES')(SKIP(2J,AJ; 
PUT SKIP; 
PUT EDITC(X(J) DO J=l TO NX))(F(l5,5)); 
PUT EDIT('BODY COORDINATES')(SKIP(2),A); PUT -SKIPC2Ji 
CALL A~(NX,NX,G,X,~,FJ; 

PUT EDIT((XA(K) DC K=l TO t<IXJ)(F(l5 15)); PUT SKIP(2J; 
PUT ED I T ( IRE G I 0 N A L I , REG ) ( s K I p ( 2 , ' X ( 5 ) 'A ' X ( 2 ) 'F ( 6 I 4, ) ; 
PUT EDIT( 1 COP.PAIUSON OF .ANOMALIES AT OPTIMUM 1 )(SKIP(3),AJ; 
PUT EDIT( 'XS' ,• COS' ,• Af\ 1 ,• RESICUAL') lSK IPrX (6 ),A, 
X( lO),A,X( 10J,A,X( '1) 1 1\) i 
CO K=l TO NSTA; 
RESICLIK)=ORSIKJ-(A~(K)+REG)i 



PUT ED I T ( X S I K ) , 0 B S ( K I , /1 N ( K I , R E S I C LC K I ) ( S K I P, 4 F I 1 2, 2) ) ; 
ENO i 
PUT EDIT('0PTH1UM FUNCTION \IALUE•,F,'NUMBER CF ITERATICNS PER 
V ,'J. R I ABLE 1 , IT E R ) C S K I P, A, E C 2 3, 5 I , SK I P, A, F I 8 ) ) ; 
IF L~G=O THE~ GC TC FIN; 
PUT PAGE i 
II=II+1; 
GET LIST(LMG); 
IF L~G=1 THEN GO TO L1i 
IF LMG=2 THEN GO TO L2; 
I F L ~ G = 3 T HEN G ET DATA i 
IF LMG=3 THEN GC TC L3; 
ELSE IF LMG=4 THEN GO TO L4; 
ELSE IF LMG=5 THEN GOTO L 5; 
ELSE GO TO FIN; 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* *I 
I* AUXILIARY PJIRT *I 
I* *I 
I* • • * * * * * * * * * * * * * * * * * * * * * * * * *I 
AM:PROC(N,M,GG,XX,HH,R); 
DCL(N,P'IFIXED BII\,IIGG,XX,I-'HIC*I,RJFLO/IT(l6); 

I* • * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
I* MODEL DEFINiTION PART *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 

XA( l) =XX( 1); XA(2) =XX(2); X/1 (3J=XAC1 )+XX (3 J; XA(4 1=0.15; 
X A ( 5 ) = XA C 1 ) -X X I 4) i XA ( 6) = XA ( 4) ; XA ( 7) = XA [ 5) +X X ( 5 ) ; 
X A C 0 I =X A C 6 I +X X C 6 ) ; 

AJSI1)=XX(7); AJCili=AJS(1)*0.175i AJSI31=AJSI1li 
AJC(3J=AJC(l); AJSI51=>cX(8Ji AJCC5J=AJSC5J•O.l75; 

REG= XX ( 9); 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *I 

DO 1=1 BY 2 TO ~SIDE; 
HA=SQRT( CXA( I )-XAC 1+2) 1**2+( XAC I+l)-XA( 1+31 1**2); 

C ( I ) = (X A ( I I -X A I I +2 I ) I H A i 
S ( I ) = C XA ( I+ 3)- XA I I+ 1 ) ) /HA; 
ENC i 

R=O .00; 
DO J=1 TC 1\STA; 

ANCJI=C.OO; 
DO I= 1 BY 2 T 0 M S IDE ; 

' IF Sl 1)-.=0 THEN DC; 
V= XA ( I ) -X S C J I i 
V=X/\(1+21-XSCJ); 

l=XII(I+li-ZSIJI; T=XAC lf3J-ZSCJ); 
~l=V**2+l**2i R2=Y**2+T**2i 

AU=V/Z; AU=Y/T; UP=AO-AD; UN=l+AB*AD; ANG=ATANCUP,UNii 
GN=0.5*LCGCR2/R1); 
E 1 =A NG* SCI ) -G ~*C C I I i 
E2=GN*SC I I+ANG*CI I I; 

EA=2*S C I l*lPXE*E2-PZE*E 1 I; 
E B =2 * S C I I* C P X E * El + P l E * E 2 ) i 

A 1\J ( J J = AN ( J ) + A J S ( I I * E A +A JC C I I * E B ; · 

END; 
END; 

ENC; 
IF WT=1 THEN DO 1=1 TO NSTA; 
R=R+I CCOSCJ 1-REG-/\f'\CII l*hTFCII l**2i END; 
ELSE DO 1=1 TO NSTA; 
R=R+IOBSIII-REG-ANCIII**2i 
END; 
E'JD AM; 
END; I* END OF BEGIN * * * *I 
F I N : EN C MU L T I J ; 
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Specification No. 6. 

Title: MAGD 

Purpose: As in specifj_cation No. Sa. 

Use: The programme is most suitable for problems in whicll 

the linear parameters are specified but can also handle 

any of them as a variable parameter. It may be modified 

to accept m magnetisation contrasts (m~ number of sides) 

all of which must be specified 

Description: As in specification No. 4. 

Input data: The data are input in the following order: 

data lio tea 

'NAME' 3.1 

nato, nx, mx, nxa 4.1 

data; 6.1 

fi fa 5.2 

zs 3.5 

xs obs 5.3 

x opt bac 4.3 

lmg 3.8 



Data notes: 

6.1 The integers which may be altered by the GET DATA 

statement are the same as in specirication~o. 4 except 

that so does not exist here. 
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Model definition: The same as in specification No. Sa. 

Gradient definition: The principle of defining the 

derivatives is given in Appendix 3. The pr~cedure has been 

formulated here on the same bases as in GAD (specification 

No. 4). The derivative with respect to each coordinate 

parameter consists of _two terms corresponding to_P and Q 

in Appendix 3. Each term is calculated separately resulting 

in eight two-dimensional arrays, -eav, eaz, eay, eat, ebv, 

ebz, eby, and ebt. The two terms corresponding to the x 

coordinate of the first point of the ith side at the jth 

observation point are 

EAV(I,J) and EBV(I,J) 

and so on. The process or derining the derivatives consists 

of the same steps as in GAD, each step being repeated to 

account for the second term. The rirst term is computed in 

the array gxa and the second in the array gxb. The derinition 

of each element of these arrays is similar to that of the 

array gx in GAD. An example is given in the print-out 

illustrating the definition of these derivatives. All of the 

coordinate parameters have been treated as variable parameters. 

The derivatives with respect to ajs, ajc and reg are 

respectively g~ven by 

GG(NXA+l), GG(NXA+2) and GG(NX). 
When any of these parameters is specified the pertinent card(s) 
is r~served in th~ space ;allocated for reserving suspended cards 
the end of the auxiliary'procedure. 

' ' ' 

Output: This is similar to specification No. 5a bu~ instead of 
r bon h v of t a ba -a r n ·d 



D: PROC OPT IONS CMA IN); I* M .AL-CHALAB I MAY 1969 *I 

MAGD:PRCC OPTIONS (~AI~); I* ~.AL-C~ALABI MAY 1969 t/ 
ON ENDFILECSYSINJ GO TO FIN; 

CCL ~A~E CH~RACTERCBOJ; 
DCLCNSTA,NX,~X,~SIDE,NXA)FIXEC eiNi 
DCL I I FIXED BIN IN I Tl A LC 0) ; 

Ll:GET LISTCNAMEJ; 
GET LISTCNSTA,NXrMX,~XAJ; 
MSI OE=M X- 3; 
PUT PAGE EDITCNAMEJ(X(30) 1 AJ; 
PUT EDITC'THERE ARE 1 ,NSTA, 1 0BSERVATION POINTS,•,NX, 
'llNKNOhNS AND' ,~X,'CCGRDit\ATE PARAMETERS• )(SI<IP(4),A, 
3(F( 3) 1 XC l),A)); 

BEGIN; 
DC L ( ( X , G ) C N X ) J F L CAT C 16 J ; 
DC L ( 0 P T , R A C , F J F LOA 1( 16) ; 

OCL P306 ENTRYCENTRY,FIXED BIN,FIXED BIN,FIXED BIN,FLOATC16), 
F l 0 AT Cl6 J , F I XED B IN, ( t J F L CAT (16 ) , ( t ) F L 0 AT ( 16 ), FL 0 AT ( 16 ) , 

FIXED BHI)E>cT; 
DCL AM ENTRYCFIXED 13IN,(t)FLOATC16) ,C*JFLOAT(l6J ,FLOATC16JJ; 
DC L ( (X S , CBS , RES I CL, RES, AN, S E a, S E B J ( N S T A ) , X A ( M X) , ( P , S, C ) ( M SIDE J , 
CEAV,EBV,EAY,EBY,EAZ,EBZ,EAT,EeTJCMSIDErNSTAJ,(GXA,GXB)(NXAJ, 
V,Y,Z,T,PXE,PZE,AJC,AJS,Rl,R2rAB,AD,UP,UNrANG,GN,REGr 

E 1 r E 2 r E a, E B, X 11, X 12) FLO A TC 16) ; 
oCLCDSv,Dsv,osz,DsT,DCv,ocv,ccz,ccT,cLGV,DLGY,DLGZ,DLGT, 
DFIVrDFIY,DFIZ,DFIT,DE1VtDE1VrDElZ,DE1T,DE2V,OE2Y,CE2ZrCE2Tr 
CXI1V,CXI1Y,DXI1Z,DXI1T,DXI2V,DXI2YrDXI2ZrDXI2TJFLOATC16); 
DCLCFI,FA)FIXED CECI~AL,CJD,JJD,ZAZAJFIXED BIN; 
DCL ZSC1:NSTAJFLOATC16) INITIALCCNSTA)OJ; 
CCL LMG FIXED BIN INITIALCCJ; 
l A Z A =0 ; J D =0 ; 

L2:GET DATA; 
GET LISTCFI 1 FAJ; PUT EDITC'FIELD DIP & AZI~LTH', 
FI,FA)(SKIP,a,x(2),2 f(6,l) J; 
IF ZAZA=l THE~ DC; 
GET LISTCZSJ; PUT LISTCZSJ; 
ENC; 

L3:GET LISTCXSrOBSJ; 
L4:GET LIST(X,CPT,BACJ; 

PUT EDITC'ESTIMATED FUNCTION VALUE AT OPTI~U~COPT)•, 
CPT ) ( S K I P ( 2 J , A, E ( 12, 3 ) ) ; 
PUT EDIT( 1 PARA~ETER ACCURACY•,eACJ(SKIPrArEC12,3JJi 
/ttt IF CHANGE IN EACH PARA~ETER IS L.T. BAC SEARC~ 
WILL TERMINATE tttt•tt/ 
PUT ED I TC 1 I~ IT I A l EST I to' AT ES ' J (SKIP, A) ; 
PUT EDIT((X(J) DO J=1 TO NX)J(FC15,5)); 
PUT S K I P ( 2 ) ; 
PXE=COSDCFI)*SINCCFAJ; PZE=SINCCFIJ; 

L5:CALL P3C6CA~,NX,-1,l,OPT,BAC,JO,X,G,F,JJO)i 
PUT PAGE EDITCNAMEJCXC2CJ,AJ; 
PUT EOIT('OPTIMUM V~RIABLE VALUES')(SKIP(2),AJ; 
PUT SKIP; 
PUT EDJT((X(J) DO J=l TO N>c))(F(l5,5J); 
PUT ECITC 1 BODY COORDINATES 1 JCSKIPC2J,A)i PUT SKIPC2Ji 
CALL A~CNX,XrGrFJ; 
PUT EDJT((XA(K) DO K=1 TO ~X)J(f(l5r5J); PUT SKIPC2Ji 
PUT EDITC 1 JS', 1 JC•, 'REGIONAL')( SKIPC2J ,3CXC 1CJ ,AJ J; 



PUT EDITCAJS,AJC,REG)C SKIP,3CFC 12,3))) i 
PUT EDITC'CO~PARISON OF ~NOM~LIES AT OPTIMUM'lCSKIPC3),A); 
PUT EDIT(' XS' ,• CBS' ,• AN' ,• RESICUAL 8 ) CSI<IP,X (6 ),A, 
XC lO),A,XC 1Q),A,X( 9),A); 
CO K=1 TO NSTA; 
RESIDLCKJ=OBSCI<l-CAN(K)+REG); 
PUT ED Ill X S C K ) r 00 S C K ) , AN ( I< ) , R E S I D L( K) ) C S I< I P , 4 F Cl2 , 2 ) ) ; 
ENC; 
PUT ECITC'FUNCTICN V~LUE 1 tfr 1 NUMBER OF FUNCTION EVALUATIONS•, 
JJD)CSKIP,A,EC23,14) ,SKIP,A,FC8)); 
IF LMG=O THEN GO TO FIN; 
IF L~G=9 THEN GET CATA; 
11=11+1; 
PUT PAGE; 
GET L 1ST (LMG); 
IF L~G=1 THEN GO TO L1; ELSE IF LMG=2 THEN GO TO L2i 
IF LMG=3 THEN GC TC L3; ELSE IF. L~G=4 T~EN GC TO L4; 
ELSE IF LMG=5 THEN GO TO LSi ELSE GO TO FIN; 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I ,. ., 

b 
I* AUXILIARY PART *I 
I* *I 
I* * * * * * * * * * * * * * * * * * * * * * * * * * * *I 
AM:PROCCN,XX,GG,RJ; .. 
CCLCXXC•J,GGC•J,R)FLOAH 16J,N FIXED BINi 
DC l l X C NX A J LABEL i , ....................................................... , 
I* MODEL DEFINITICN PART *I , ....................................................... , 
D 0 I = 1 T 0 14 ; X A ( I ) =X X C I ) i EN C ; 

AJS=XX( 15) i AJC=XXC16); REG=O; , ..••................................................... , , ....................................................... , 
DO 1=1 BY 2 TO ~SICE; 

P ( I ) = S Q R T ( ( X A C I J - X A ( I + 2 ) ) * * 2 + ( X A ( I + 1 ) - X ~ ( I + 3 ) ) * *2 ) ; : . . 
SCI J=CXAC 1+3)-XAC I+l) )/PC I); 

CCIJ=CXACI)-XA(I+2))/P(I); .. 
ENDi 

GG=Oi R=O; 
CO J=1 TO NSTA; 

ANC J) ,SEACJ) rSEBCJJ=Oi 
DO 1=1 BY 2 TO MSIDE; 

V=XACIJ-XSCJ); Y=XACI+2)-XSCJ); 
l = XA ( I+ 1 ) - Z S ( J) i T =X A ( I +3)- ZS ( J); 

R1=V**2+Z**2i R2=Y**2+T**2i 
AB=V/Z; AO=Y/T; UP=AB-AD; UN=1+AB*ADi ANG=ATANCUP;UN); 
GN=0.5*LCGCR2/Rl); 
E l=ANG* SeC I) -GN*C C I ) ; 
E2=GN*SCI)+ANG*CCI); 

XI1=2*CPXE*E2-PZE*E1 li 
XI2=2*CPXE*El+PZE*E2J; 
EA=SCI)*XI1; EB=SCI)*XI2; 
ANCJ)=ANCJ)+AJS*EA+AJC*EB; 
SEACJJ=SEACJ)+EA; 



SEOCJl=SEBCJl+EB; 
DSY=C( I l*SC I )/PC I) i 
CST=CC I l*CC I l/P( I l; 
DC V = S ( I ) * S C I ) I P ( I ) ; 
DSV=-DSY;DSZ=-DST; 
DC Y=- DC V iDC Z =D S Y ; DC T =D S Vi 
CLGV=-V/Rl ;CLGY=V/R2; 
DLGZ=-Z/Rl;CLGT=T/R2; 
DFIV=-DLGZ;DFIY=-DLGT; 
C F I Z= DL GV; D FIT= Dl G Y; 
DElV=ANG*DSV+S(I)*CFIV-GN*DCV-C(I)*DLGV; 
DElY=ANG*DSY+S(Il*DFIY-GN*DCV-CCil*DLGY; 
DElZ=ANG*DSZ+SCil*DFIZ-GN*DCZ-CCil*DLGZ;. 
DElT=ANG*DST+SCIJ*OFIT-GN*DCT-CCIJ*DLGT; 
DE2V=GN*DSV+SCil*DLGV+ANG*DCV+CCI)*OFIV; 
DE2Y=GN*DSY+SCil*DLGY+ANG*DCY+CCI)*DFIY; 
DE2Z=GN*DSZ+SCI)tDLGZ+ANG*DCZ+CCIJ*DFIZ; 
DE2T=GN*DST+SCIJ*DLGT+ANG*DCT+CCIJ*OFIT; 
DXI1V=2*CPXE*DE2V-PZE*DE1V) 
CXI1Y=2*(PXE*DE2Y-PZE*DE1Y) 
DXI1Z=2*(PXE*DE2Z-PZE*DE1Z) 
DXI1T=2*CPXE*DE2T-PZE*DE1T) 
DXI2V=2*CPXE*DE1V+PZE*DE2V) 
DXI2Y=2*CPXE*DE1Y+PZE*CE2Y) 
DXI2Z=2*(PXE*DE1Z+PZE*DE2Z) 
DXI2T=2*CPXE*DE1T+PZE*DE2Tl 
EAV C I,J J=SC I )*DXflV+XIl*DSV 
EAYCI,JJ=SCI)*CXIlY+XIltOSY 
E A Z ( I , J ) = S C I ) * D X I 1 Z + X 11 *D S Z 
EAT ( I,J )=SCI l*DXIlT+XIl*DST 
EBV(I,Jl=SCil*CXI2V+XI2*CSV 
EBY( I ,J) =S( I l*OXI2Y+XI2*DSY 
EBZC I,J J=SC J)*OXI2Z+XI2*0SZ 
EBTCI,Jl=SCil*CXI2T+XI2*0ST 
END; 
END; 
CO K=l TO NSTA; 
RESCKl=2*COeSCK)-REG-ANCK)); 
R=R+C0.5*RESCK))**2i 
ENC; 
DO K=l TC NXA; 
DO J=l TO NSTA; 
GO TO LX C K) ; , ....................................................... , 
/****************** GRADIENT CEFINITION PART ***********/ , ................................................•.•.... , 

LX (1 ) : GX A (1 ) = E AV ( 1, J ) ; G X B ( 1 ) = E B V ( 1, J ) ; 
GOTC TCTi 

LX( 2) :GXA( 2l=EAZCl,J); GXBC2J=EBZC1 ,J); 
GOTO TOT; 

LXC3):GXAC3J=EAV(3,J)+EAYCl,JJ; 
GXBC3J=EOVC3,JJ+EBYCl,J); 

GOTO TOT; 
LX(4):GXAC4l=EAZ(3,J)+EATClrJJ; GXBC4J=EBZ(3,J)+EBTCl,JJ; 



GOTO TOT; 
l X ( 5 J : G X A l 5 J = E .a V C 5 , J J + E JIY C 3 , J J ; GX B C 5 J = E BV C 5, J J + E BY ( 3, J ) ; 

GO TO TOT; 
LX ( 6 ) : GX A l 6 J= E A l ( 5, J ) +EAT l 3, J J ; G XB ( 6) =EB l C 5, J) + E B T ( 3, J) ; 

GOTC TCT; 
LX ( 7) :G XI\ l 7 J =E A V C 7, J J + E AY ( 5, J J ; G X e ( 7 ) = E BV (7, J ) + E BY ( 5, J ) ; 

GOTO TOT; 
LX(8):GXAl8J=E.aZC7,J)+EAT(5,J); GXBCBJ=EBZ(7,JJ+EBT(5,J); 

GOTO lCT; 
LX(~):GXAC~J=E8~(9,JJ+EAYC7,J); GXBl9J=EBV(9,JJ+EBY(7,JJ; 

GOTO TOT; 
l X Cl 0 J : G X .a (1 0 ) = E A Z C 9 , J J +EAT (7 , J ) ; GX B C 10 J = E B l ( 9, J J + E B TC 7, J J ; 

GOTO TOT; 
LX ( ll J: GX A ( 11 J= EAV ( 11, J J +EA Y C 9, J ) ; G XB C ·11) =E 8 V C 11, J) + E BY ( 9 1 J); 

GOTC TCT; 
l X ( 12 J : G XA l 12) =E A l C 11 , J) +EAT l 9, J ) ; G X B U2 J = E B l ( 11 , J J + E BT C 9, J ) ; 

GOTO TOT; 
l X (13 J : GX A ( 13 ) = E JIY C 11, J ) ; GX B ( 13 J = E BY ( 11, J J ; 

GO TO TG T; 
LX( 14) :GXA( 14J=EATC 11 ,J); GXB( 14) =EBTC11 ,J); 

TOT:GG(KJ=GG(KJ-RES(JJ*lAJS*GXACKJ+AJC*GXBCKJJ; 
END; END; 

T DO J=1 TO NSTA; GG(NXA+1J=GGCNXA+1J-RESlJJ*SEA(J); 
GGlNXA+2J=GGlNXA+2J-RESlJJ*SEBlJJ; END; , .....................••................................ , , ..................•.................................... , 
I**** THIS PART IS FOR RESER~ING SUSPENDED CARCS ********** 
•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

GO TO TCT; 
GO TO TOT; 
GGCNXJ=O-SUMCRESJ; 

······································~·············••! !*****··················································/ END AM; 
END; /*END OF BEGIN *I 
FIN:ENC MAGD; 
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Specification No. 7 

Title CONFIT 

Purpose:. This programme uses a set of geographical positions 

for the pole o~ rotation for the r~lative movement between 

two continental edges and determines the misfit between the 

two edges when brought in contact by rotating about each 

pole position. The pole position giving a minimum misfit is 

determined and a grid is printed out of the values of the 

misfit at each pole position. 

Use: To aetermine a possible pole o~ rotation for restoring· 

two continents to their pre-drift relative position. 

Description: see section 8.4 in the text. 

Input data: The data are input in the following order: 

@ll. notes 

nata msta ns ne ms me ·7.1 

data; 7.2 

ctl cgl 7.3 

ct2 cg2 7. L~ 

wtn wtm wtl wt2 7.5 

ftl f'it fgl fig 7.6 

1 NAME 1 3.1 

le 7. 7 



.186. 

Data notes: 

7.1 If we denote the rirst edge by N and the second edge 

by M then 

nsta = Number of digitised points on edge N. 

msta = Number of digitised points on edge M. 

ns and ne =All points between ~he nsth point and the 

neth point on edge N are the active points in the 

matching process. An equivalent to each of these points 

is found on edge M by interpolating between any of the 

msta points. 

ms and me define the rirst and the last active points 

on edge M. 

7.2. The following programme parameters may be altered by 

the GET DATA stat·ement: 

nt = Number of the required latitude intervals f'or the 

pole of' rotation. 

ng = Number of the required longitude interval's for the 

pole or rotation. 

The default value or NT and NG is 30. 

saz = If the ratio of' the total number of active points 

to the dif'f'erence between the number of' active points on 

both edges is smaller than saz a grid of Q, equation 

(8.4), will not be constructed. The grids of~ and Q2 

will be constructed as usual. The def'ault value is 3.0. 

fan and fsm =For a given position of the pole of rotation 

it may happen that the jth point on edge N does not ha.ve 

an equivalent point on edge M. If' the ratio of' the 

number of points on edge N which have an equivalent to 
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the total number of active points on edge N is less than 

fsn, the ~ value for that particular pole position will 

be assigned a very large value (1020). fsm is the 

corresponding factor on edge M. The default value of 

both factors is o.66. 

wt = If set to any value different from zero weighting 

fUnctions will be used (note 7.5). The default value 

is zero. 

mints = If set to 1, the figures after ·the decimal point 

in the input latitude and longitude data will be regarded 

as minutes. Otherwise, they are regarded as decimal 

fractions of a degree. The default value is 1. 

7.3 ctl is an array of nsta elements. The ith element 

denotes the latitude of the ith point on edge N. cgl is a 
th similar array with the i element denoting the east longitude 

of the itn point on edge N. The data are given in degrees 

with the decimal point followed by either minutes or decimal 

fractions of a degree. The data are input in the order: 

CTl(l), CGl(l), CT1(2), CG1(2),_~tc. 
0 0 The latitudes vary from 90 to -90 • The east longitudes 

vary from 0° to 360°. 

7.4 ct2 and cg2 are the corresponding arrays on edge M. 

7.5. wtn is an array of nsta-1 elements. The kth element 

denotes the weight on the segment between the kth and the 

a+lth points of edge N. wtm is the corresponding array for 

the segments on edge M. 

wtl is an array of ne-ns+l elements. The jth. element 
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.. 
denotes the weight on the jth active point on edge N. 

wt2 is the corresponding array for the active points on 

edge M. 

The data are input in the order: all wtn elements, 

all wtm elements, all wtl elements, all wt2 elements. 

rt1 = The latitude value of the first position of the 

pole of rotation. 

fit = The increment by which the latitude is decreased 

(the co-latitude increased) at each interval of 

latitude. 

t~g1 = The east longitude of the first position or the 

pole or rotation 

fig = The increment by which the east longitude is 

increased at each interval of longitude. 

fit and fig are given in degrees and a decimal 

fraction or a degree. ft1 and fg1 are given in degrees with 

the decimal point followed by either minutes or decimal 
( 

fractions of a degree accordin~_to. the option MINTS. ft1 
can assume values from 90° to -90°. tg1 can assume values 

from 0° to 360°. 

7.7. le is an integer controlling the re-entry into the 

main programme after all grids have been printed. This 

allows using the programme for different problems in the 

same run or for the same problem under different conditions 

or assumptions. 

Output: The output data list consists of 

(1) nsta, msta, ng, nt, ns, ne, ms, me (notes 7.1 and 7.2). 

(2) ft1 , fg1 , fit, fig (note'7.6). 



(3) 

{4) 

(5) 

(6) 

(7) 
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Latitudes and longitudes of points on first edge. 

Latitudes and longitudes of points on second edge. 
1 NAME 1

• 

Results of the fit on the first edge. They consist 

of the pole position giving the least misfit (the 

'optimum' pole), the value of Q1 at that position, the 

value of~ at the position with the next least misfit 

and the angle of rotation required to close the 

continents about the 'optimum' pole. 

A grid of the ~ values at each of the assumed pole 

positions. The values are printed as alphabetic 

characters (see section 8.4) in ascending order so that 

a point of value C has a lower Q1 value than a point of 

value D. The 1 optimum 1 pole is marked with an asterisk. 

The alphabetic characters can be converted to absolute 

values using the assignments in the block labelled A~. 

(8) The output (6) and {7) is repeated for Q2 and Q. If the 

number of active points on one of the edges is much 

larger than on the second edge, saz becomes relatively. 

small and a grid of Q will not be constructed. 

(9) The rotation angle for each pole position for the grid 

of Q is printed in degrees and decimal fractions. If 

a grid for Q is not constructed these angles will not 

be printed. 



CONFIT:PROC OPTIONSIMAIN); 
UN ENCFILEISYSIN) GOTO FIN; 
DCLlNST~r~STA,NG,NT,~S,NE,~S,~ElFIXED BIN; 
OCLIFIG,FIT,CP,SP,SC,A~,B~,S~,S~,,T,DIF1,DIF2,AK,UP,UN, 
UNP,UPP,UPK,PP,PQ,PQl,PQ2,Q1,Q2,QA,QB,C1,C2tD1tD2t 
SAZ,FSN,FS~,CSN,CS~)FLOATI16li 

DCL ZZIC:23) CHJ\RI2li 
ZZIOl='.A'; ZZill='.R'; ZZ12l=•.C•; Zll3J='.O'; ZZI4l='.F'i 
ZZ15)=•.G•; ZZI6l=• • ..,•; ZZl7l='.J'; ZZI8l='.K'i ZZ19l='·L'i 
ZZ(lOl='.~'i Zlllll='.l\'; Ztll2l='•P'i ZZll3l='.Q'i ZZ11itl='.R'; 
ZZI15)='•S'i ZZ116l='•T'i ZZ117)=•.u•; ZZ(l8J='.V'; ZZll91= 1 .W'; 
ll120J='.X'i lZ12ll='.Y'; Zll22J=•.z•; ZZI23l= 1 .E'i 

ll :GET LISTir-.:STA,~STA,I\S,I\E,~S,~E); 
NST=NSTA-1; MST=MSTA-1; 
NT,NG=30i SAZ=3i FSN,FSM=O.l:6; WT=Oi MINTS=1i GET O~TA; 
I** * * ~INTS=1 WHEN LATS & LCNGS ARE GIVEN IN DEGS & MINUTES t*/ 
PUT ED I T IN S T A , M S T A , NG , NT , N S , f\ E , ~ S , pt. E l l SKI P , X I 10 ) , 
FI4),F[5),6 F13)); 
SN=NE-NS+(; 
SM=ME-P'S+1i 
QT=I SN+SM liSAZ-ABSl SN-5111) i 
C S N = F S N * S N ; I * D S • • I S TH E L 0 wE R L I M I T f 0 R * 
DSM=FS~*S~; I* THE NC. Of CORRELATED POINTS * 
BEGIN; 
CCL I FG lNG ), l FT, CA, SA) l NT), 
l C G 1 , C T 1 , P G 1 , PT 1 , CT H 1 , S T ~ 1 ) INS T A ) , I P E G 2, P N , F , F X )( N S: N E ) , 
ICG2,CT2,PG2,PT2,CTH2, STH2) i~STA) rlPEGl ,PP',G,GX) lrJ.S:ME), 
I CL1rCL2,CL) I NG,NT), 
IVA1,VA2,Vfl3rVA)ING,NT))FLO~Til6),LBI2) LABEL INITIALILC,LOJ, 

CTINT,t\G)CHARI2) ,t\A~E CHARI80)i 
DC L I W TN I N S T ) , W T M I M S T) , I ~ T 1 , ~ T A , ~ T F 1 ) INS : N E ) , l W T2 , ~ T 8 , W T F2 ) 
I M S : M E ) ) FL 0 AT I 16 ) ; 

L3:DO 1=1 TO NSTA; GET LISTICT111),CG11Il)i END; 
L4:oo 1=1 TO MSTA; GET LISTICT21IJ,CG211lli END; 

IF WT-.=0 THEN GET LISTIWTNdiTM,~Tl,wT2); 
/*READif\G CCORDS. ANC CALC. TRIG. VALUES OF PTS. ON EACH COAST*/ 
PUT PAGE; 
PUT EDITI 'LATITtDES AND LCNGITUDES CF POINTS ON FIRST COAST') 
I X I 30 ) , A ) ; PUT SKIP I 2) ; 
DO J=l TO NSTA; 
PUT ED I T I C T 1 I J ) , C G 1 I J l ) I S I< I P ,6 If l 15 , 3) ) ) ; 
IF MINTS=l THEN DO; ICT=CTliJli ICG=CGl(J); 
CT 1 I J) = 9 0- I I C Tl I J ) - I C T ) I 0 • 6 + I C T J ; 
CGliJJ=CCG1CJJ-ICGJ/0.6+ICGi 
END; 
ELSE CT1 IJ)=90-CT11J); 
S TH 1 I J) = S I N D I C T 1 l J ) ) i C T H 1 l J ) = C C S C I C T 1 l J ) ) i 
END i 
PUT SKIP i 
PUT EDITI'LATITUCES ANC LONGITUCES OF POINTS ON SECOND COAST') 
IXI3C),A); PL"T SKIP(2)i 
DO J=1 TO MSTA; 
PUT ED IT ( CT 2 ( J ) , C G 2 l J ) J ( S K I P, 6 I F I 15, 3 ) ) ) ; 
IF MINTS=l THEt\ DC; ICT=CT2 (J); ICG=CG2(J ); 
C T 2 ( J ) = 9 0- l I C T 2 C J ) - I C TJ I C. ~ + I C T ) ; 
CG2lJJ=CCG2(JJ-ICGJI0.6+ICG; 



ENC; 
ELSE CT2CJ)=q0-CT2CJ1; 
S TH 2 C J ) = S I N D ( C T 2 C J ) ) ; C T H 2 ( J ) = C C S D C C T 2 C J ) ) ; 
El~ C; 

L2 : G F. T Ll S T ( FT (1 ) , F IT , F G ( 1 ) , F I G ) ; 
PUT EDIT C'PCLE PCSITICNS:LATS ANC LCNGS OF FIRST POINT 
AND INCREMENTS')( SKIP( 4) ,XC 1() ,A); 
PUT ED IT ( FT Cl ) , FG C 1) , F IT, F I G ) ( SK I P, 4 ( F C 1 0, 2 ) ) ) ; 
IF MINTS=1 THEt\ DC; IFT=FTCl);IFG=FGCl); 
FTC 1 ) = C FTC 11-1 F T) I 0. !:+IF T; 
FGC1 )= CFGC1 1-IFG)/0.6+1FG; 
END; 
'******************************************************' 
!•WORKING OUT POLE POSITIONS AND TRIGON. VALUES *I , ..............................•....................... , 
GLONG =FG ( 1) ; 
TL A T = 9 0- F T ( 1) i 
CO I= 1 TO N G i 
AI =1-1; 
FG(I)=GLONG+FIG*AI; 
I F F G ( I ) > 3 6 0 THEN F G ( I ) = F G ( I ) - 3 E: 0 ; 
I*** TC ALLCW CROSSING ZERO LONGITUDE FROM LARGER ANGLES *******/ 
END; 
DO I= 1 TO NT; 
AI=I-1; 
FTCI)=TLAT+FIT*AI; 
IF FHI)<O THEN FT(I)=-FTCI)i/* TC ALLOW GCII\G OVER ~Tt-' POLE & 
COWN TbE OTHER SIDE *****************************************/ 
CA(I)=CcSC(FT(I)); SACIJ=Sit\CCFT(I)); 
END; , ........................................................ , 
!************••············································••! 
DO IG=1 TO t\G; 
DO IT= 1 TO NT; 
P EG1 =800; P EG2=800; 
kTA=O; WTB=O; 
ASN=SN; ASM=SM; , ........................................ , 
!******* CONVF.RSION TO NEW POLE *********/ 
!****************************************' 
DO lA= 1 TO NSTA; 
P P = C G 1 C I II ) - F G C I G ) ; I F P P < 0 T t-: EN P P = P P + 3 6 0 ; 
CP=CCSDCPP); SP=Sit\D(PP); 
SC=CP*STHU lA); 
AK=CTI-'1 ( 11\l*CAC ITJ+SC*SI\C IT) i 
UP=STH1 ( IA)*SP; UN=SC*CA( IT )-CTHlCIA)*SA( IT); 
IF UN=C THEN UN=lE-20; 
IF AK=O THEN ftK=lE-15; 
UNP=UP/UN; 
PG1CIA)=ATAt\DCUt\P); . 
P G l( I A ) =P G 1( I A ) + 18 0 * ( ( PG 1( I A)< 0) + ( SP< 0 1 + ( ( PG 1 C I A) =0 ) * ( F T ( IT)> 
CTl(IA)))); /**PLACING ANGLE AT CORRECT QUADRANT******/ 
UPP=SQRTU-A1<**2); UPK=UPP/JiK; 
PTl( IA )=ATANDC UPK); 

- - - . -···. --. -.. ---···- .. 
' 

~ .. -



:PRCC OPTIONS(MAIN)i 

IF- PTl( 11\J<C THEN PT1CIAJ=PTl(IA)+180; 
Ef~ C; 
CO I B=1 TO ~STA; 

PP=CG2(1BJ-FG(IGJ; IF PP<O Tt-'EI'\ PF=PP+360; 
CP=COSD(PP); SP=SIND(PP); 
SC=CP*ST~2 (I e J; 
AK=CTH2 (IA)*CA(IT)+SC*SACIT J; 
UP=STH2( In) *SP i UN=SC*CA (I T)-CTH2 (I BJ* SA (IT); 
IF UN=O THEN UN= 1E- 20; 
IF AK=O THEN AK=lE-1~; 

U"'P=UP/L;I'I; 
PG2CIB)=ATANC(UNPJ; 
PG2 ( I B J = P G2 ( I B J + 18 0 * ( ( P G2 ( I B J <O J + ( S P <O J + ( ( P G 2 ( I B ) = 0) * ( F T( I T) ) 

CT2(1B)JJJ; 
UPP=SQRT( 1-AK**2J; UPK=UPP/AK; 
PT2 (I B) =AT ANC (U PK J; 
IF PT2CIBJ<O THE~ PT2CIBJ=PT2Cif)+180; 
END; 

I••••········~······································••• I I**** FINDING E~UIVALENT ANC CALCULATING ITS LONG. ****I 
/******************************************************/ 
K=O i 
CO I=NS TO NE; 
JM=~STA-1<-1; 

DO J=1 TO JM; 
JK=J+Ki 
DIF1=PT1(1J-PT2(JK)i IF CIF1=0 THEN DOi 
PEG2CIJ=PG2(JK)i GCTC L~; E~C; 
DIF2=PTl(IJ-PT2CJK+1); IF DIF2=C THEN DO; 
PEG2(IJ=PG2(JK+l);GOTO LA; END; 
T=-DIF1/DIF2i IF T>O THEN CC; 
A=PG~(JKJ; B=PG2(JK+l); 
IF A<90 THEN IF 8>270 THEN A=A+36C; 
ELSE IF 8(90 THE!'\ IF A>270 T~EN f=B+360; 
P[G2(IJ=(A+B*T)/(T+1J; hTA(I)=hT~CJK); 

GO TO LAi 
END; 
E NO; 
IF PEG2C I J=BCO THEN DOi 
PN(IJ=Oi ASN=ASN-li IF ASN<DSN THEN GOTO BAL; END; 
GOTO AAL; 
LA : PN ( I ) =P G 1 ( I ) - PE G2 ( I ) ; 
IF PN ( IJ<O THEN PN( I J=PNC I )+360; 
K=JK-1; 
/*FORMLLA ~ILL 1'\CT WCRK IF C(ASTS CRCSS EACH OTHER,W~ICH IS AN 
IMPOSSIBLE SITUATION *****************/ 

AAL:END; 
BAL :K=O; 

DO I =M S TO ME ; 
JN=NSTA-K-1; 
DO J=l TO JNi 
JK=J+K; 
OIF1=PT2CIJ-PT1(JKJ; IF DIFl=O THEN DO; 
PEGl(IJ=PGlCJKJ; GO TO LV; ENCi 



DIF2=PT2(1)-PTl(JK-+l); IF CIF2=C THEN DO; 
JlEGl(Il=PGl(JK+U; GC TC LV; ENC; 
T=-DIFl/OIF2; IF T>C THEN DC; 
A=PGllJK}; B=PGUJK+l); 
IF A<90 THE~ IF B>270 THEN A=~+360; 
ELSE IF B<~C THEN IF A>270 THEN B=B+360; 
PEGl(I)=(A+B*Tli(T+U; kTBli)=WTN(JK); 
GCTC LV; 
[NO; 
E.'l D ; 
IF PEG1(1)=800 THEN DO; 
PM(Il=O; AS~=AS~-li IF AS~<CS~ THEN GOTO CAL; END; 
GOTO CAL; 
LV: PM (I )=PG2( I )-PEGU I); 
IF P~(Il<O THEN PM(I)=PMCI)+360; I* THIS TAKES CARE OF COASTS 

~HICH CRCSS FRC~ 1ST TC 4T~ QUACRANT CR VISE VERSA 0/ 
K=JK-1; 

CAL:ENC; 
DAL:IF \\T=O THEI\ DC; DC I=NS TC 1\E; WTFl(I)=SINC(PTl(IJ); END; 

DO I=MS TO ME; ftTF2lU=SIND(.PT2(1}); END; ENC; 
ELSE DO; 
DO I=NS TO NEi WTFl(I)=SINC(PTUil)*WTA(I)*WTl(IJ; END; 
DO I=~S 10 ~E; k1F2(1)=SINC(PT2(1)l*WTB(I)*WT2(1J; ENC; ENC; 
!*********************************************! 
!***CALCULATING OBJECTIVE FUNCTIONS **********/ 
!*********************************************' 
IF ASN<DSN THEN DO; VAUIG,Il)=lE20; GOTO EAL; ENC; 
PQl=SUM CPN )/ ASN; 
Cll(IG,ITl=PC.:l; 
00 l =N S 10 NE; 
F(L >= ( (PQl-PN(L l )t(PN(L )-.=0) l**2*~TF 1( U; 
END; 
Ql=SQR1(SU~(f));· 

VA 1 ( I G , I T ) = Q 1/ A SN ; 
EAL:IF AS~<DSM "THEN DO; VA2(IG, IT)=lE20; GOTO FAL; END; 

PQ2=SL~(P~)/AS~; 

CL2( IG,IT)=PQ2; 
CO L=MS TO ME; 
G ( L) = ( ( P C.:2- P ~ ( l ) ) * ( P ~ ( L ) .... =0 ) ) * * 2 *WT F 2 ( L ) ; 
END; 
Q2=SQRT CSUM (G)); 
V A2 ( I G , IT ) = C2/ AS~; 

FAL:IF CT>O THEI\ DC; 
IFCDSN<ASN)~(DSM<ASM)THEN DO; 
ClrCl=PQl; C2rD2=PQ2; 
IF Cl>C2 THEI\ Cl=360-Cl; 
ELSE C2=36G-C2; 
I****** THIS HAS THE EFFECT OF REDUCING ~EASUREMENT OF ONE COAST 
SA~E SENSE & SA~E ABSOLUTE VALUE BECAUSE IF PX ~APPENED TO B~ -VE 
(PX=PN OR PM) THEN FINAL ANGLE IS PX+360 & HENCE 360-(PX+360)=-P> 
WHICH IS +VE,I.E. WE ARE MEASURING THE DIFFERENCE IN THE SA~E SEt 
BOTH CASES ************************************~****************~ 
PQ=(Cl+C2) /2; 
CL ( IGr IT )=PQ; 



IF Dl>D2 THEN DO; 
CO . L -=N S T 0 N E i 
F X ( l) = ( ( P Q + P ~ ( L) -3 6 0 ) * ( P N (L ) -. =0 ) ) * * 2 *W T F 1 ( l ) ; 
END i 
CO L=MS TO ME; 
GX ( U = ( ( PC-P"'- ( L ) ) * ( PM ( L -b= 0 ) ) * * 2 *WT F 2 ( L ) ; 
END; 
END i 
ELSE DO; 
DO L=NS TG NE; 
FXCU=((PQ-Pt-dlJ)*(PNCL)-uQ))**2*WTFl(L); .,. .. , 
END i 
CO L=MS TO ME; 
GX (L)=( lPC+Pfi(L)-360)*CPM(L )-.:Q))**2*WTF2(L); 
END; END; 
QA=SQRTCSUMCFX)) i 
Co=S<;;RT (SUM (GX J); 
VA3liG,ITJ=(QA+QB)/(ASN+ASfl)i 
END; 
ELSE IF CASN<DSN)&CASM<DSM) THEN VA3(1G,IT>=1E2C; 
E L S E VA 3 ( I G , I T J =VA 1 C I G , IT ) • ( C S N <AS N ) + V A 2 ( I G, IT ) * ( 0 SM <A SM ) ; 
I** I.E. VA3=THE FUNCTION OF THE COAST HAVING A SUFFICIENT NUMBER C 
CORRELATING POINTS *I 
END; 
END; END; 
GET LISTCNAMEJ; PUT PAGE EDITCNAME) (X(30) ,A); 
PUT EDITC'FIT ON FIRST EDGE 1 )(SKIPC4),XC45J,A); 
LK=O; 
VA=VAl; GOTO MP; 

LC:VA.=VA2; 
PUT PAGE EDITC'FIT ON SECOND EDGE 'JlSKIP(4J,XC45J,A); 
GOTO MP; 

LD: IF QT>C THEN VA=VA 3·; ELSE GCTC lli 
PUT PAGE EDIT( 'COMBINED FIT ON BOTH EDGES 1 ) 

CSKIPC4) ,X(45) ,A); 
MP:RM=VA( ltl); AM=\JA(2 1 1J; 

11=1; JJ=l; 
DO 1=1 TC NG; CO J=l TO NT; 
IF VACI,JJ<OF- THEN DC;Bt~=VA(I,JJ; II=Ii JJ=·J; ENC; 
END; END; 
PUT SKIPC2); 
PUT LISTCII,JJ); 
PUT SKIP ; 
CO 1=1 TONG; DO J=l TO NT; 
IF(VA(I,JJ<A~)&CVACI,J})Bfl) THEN AM=VA(I,J); 
END; END; 
PUT EDITC'OPTIMur~ POSITION OF POLE OF ROTATICN')(SKIPC3),X(4),A); 
PUT E D IT ( ' L C N G IT U D E ' , F G C I I ) , ' C 0-L AT IT U DE 1 , F T C J J ) ) ( SK I P , X C 6 J , 
A,F( 6,1) ,X(4) ,A,F(6 1 ll); 
PUT EDIT( 'DEGREE OF FI T(BM)' rAM)( SKIPC2J ,X(4) ,A,EC9,2)); 

. PUT EDITC'OEGREE OF SECOND BEST_FITC.AM)',AM)(SKIP,XC4J,A,E(9,2)J; 
IF LK=n THE~ . . . 
P U T E D I T( • L 0 N G I T \JD E D l i= F E R E .N C E '. = ' , C L1 ( I I , J j J ) ( S K I P ( 4 ) , A , F ( 6 , 2 ) ) ; 
E L S E I f L K = 1 T HEN . 



flU T ED IT ( 'L ON G I TUDE 0 I F FER [ NC E = ' ,C l 2 ( I I t J J ) ) ( SKI P ( 4 ) , /J , F C 6 , 2 ) ) ; 
ELSE IF LK=2 THEN ' 
PUT ED I T ( ' l C r-.G I T l. DE D IFF ERE r-. C E =' , C l ( I I , J J) ) ( S K I P ( 4 ) , A, F C 6, 2 ) ) ; 
!*****************************************************! 
!*****************************************************' 

MAP : D 0 I = 1 T 0 1\G; DC J = 1 T 0 rn; 
IF VAl I,J)<AM THEN Cl(J,I)='•*'i 
I**** A~ IS THE DEGREE OF SECOND BEST FIT ****/ 
ELSE IF VA([,J)=AII' THEI\ CT(J;IJ='.O'i 
ELSE IF VA(I 1 J)(J\M*1.1 THEN CT(J,I)='*E'i 
ELSE IF VI\( I,J )(J\M*1.2 THEN CTCJ.I)='*G'; 
ELSE IF VA([,J)<~M*1.3 T~Er-. CT(J,I)='*H'i 
ELSE IF VA(I,J)<AM*l.4 THEN CT(J,I)='*P 1 ; 

ELSE DO; 
LAR=2*LCGCV~([,J)//JM); 

IF LAR<24 THEN CTCJ,I)=ZZCLMn; ELSE CT(J,()= 1 .fl 1 i 
END; 
EN C i E NC; 
PUT PAGE EDIT(CT)((NG)(A(3)),SKIP(2)); 
!*****************************************************' , ..................................................... , 
LK=LK+1; 
IF LK=2 THEr-. 
IF QT>O THEN DO;. 
PUT EDIT('ANGLES OF ROTATION FOR ALL Q FITS')(A); 
PUT SKIP(3); 
DO J=1 TO NT; PUT SKIP( 2); DC 1=1 TC NG; 
PUT EDIT(CL(I 1 J))(F(6,2));IF 1=16 THEN PUT SKIP(2); 
END; Et\0; 
END; 
IF LK>2 THEN GOTO LL; 
G CT C l e ( l K) ; 

LL:GET UST(LE); PUT PAGE; 
IF LE=1 THEN GOTO L1; ELSE IF LE=2 THEN GOTO L2; 
ELSE IF LE=3 THEN GOTO L3; ELSE IF LE=4 THEN GOTO. L4; 
END; 

FIN :END CONF IT; 
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