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ABSTRACT 

The Stokes (U.V.) and anti-Stokes (A.S.) photo-excited emissions 

of large, doped and undoped CdS single crystals, grown under controlled 

partial pressures of cadmium and sulphur, at liquid helium 

temperatures were examined to establish a correlation between the 

crystal growth conditions and the spectral distribution of the green 

edge and exciton emissions. Anti-Stokes excitation spectra were also 

obtained. 

Two longitudinal optical phonon assis.ted series constituted the 

green emission. The "high energy series" (H.E.S.) was attributed to 

the recombination of free electrons with holes bound to acceptors 

some O.l7eV above the valence band, the "low energy series" (L.E.s.) 

to a distant-pair recombination process involving electrons bound 

to donors some 0.03eV below the conduction band and holes bound to the 

same acceptor. The mean separation between the donors and acceptors 

was about 100 i. Only the L.E.S. was observed in A.S. excited green 

emission. 

The I
1 

and I 2 bound excitons which dominated the blue emissions 

are associated with exciton recombination at neutral acceptors and 

neutral donors respectively. I~ emission, associated with excitons 

bound to neutral donors lposing some of their recombination energy in 

raising the donor electron to an excited state of the donor, was 

obs.erved and used to evaluate a donor ionisation energy of 0.026eV .. 

Blue emission was excited by A.S. radiation in several crystals and 

ascribed tentatively to I~ emission .. 

A model is developed to explain the variation of the emission 

characteristics with crystal growth conditions. A cadoium vacancy­

donor impurity complex is suggested as the acceptor involved in the 

green and I 1 exciton emissions, with the hole in an excited state of 

. i 



the complex, and as the centre through which the two-step A.S. excitation 

·process proceeds. Sulphur vacancy-acceptor impurity complexes and 

donor impurities are suggested to explain the donors associated with 

the L.E.S. and I 2 emissions. 
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CH.A.P'i'ER 1 

FROPERl'Ili:S OE' CADMIIDI1 SULPF.IDE 

1.1 Introduction 

Ca~ilL~ sulphide is a II-VI compound which normally crystallises 

in the wurtzite structure·. The lattice of' wurtzite crystals consists 

of two interpenetrating hexagonally packed lattices, one containing the 

anions (S--), and the other the cations (Cd++). The interatomic" 

distance between the cadmium ion and its four tetrahedrally arranged 

nearest sulphur neighbour ions is 2.52 ~. The lattice parameters are 

a=!~.l368 ~ and c=6. 7163 ~(1). CdS is also found in the cubic, zincblende 

phase, out it is not so co~~on (2). 

Tne investigation of the exciton spectra of CdS by Thomas and 

Hopf'ield (3, 4) established that the extrema of the principel band edges 

..-;ere at the same point, ~:: 0, in the Brillouin zone. The generally accepted 

values for tha forbidden energy gap at temperatures of 300°K (room), 77°K. 

(liquid nitrogen) and 4.2°K (liquid helium) are 2.1+3, 2.52 and 2.582 eV 

respectively (3, 5). 

In its intrinsic form, pure stoichiometric ca~T.ium sulphide is an 

. 1 t . t ' . th . ... . . ' . t ~ h 101 0 hm J.nsu a or at room empera-r.ure, \U · resJ.SuJ.vrcJ.es grea er c .. an o 1. 

However~ native 1:::. ttice der"'ects and foreign impurity atoms greatly affect 

the electrical and optical properties of the n:-a. terial D The forr.us that 

these imperfections take, and their influence on some of the.properties, 
a,d is 

is discussed belowLfollowed by an account of the evaluation of the band 

structure. This is followed by a sum:r:ary of the principal properties 

and applications of CdS. 

1.2 Imna:r-f'ections :l.n CdS 

,,-,-y.1 
·--.; ( \?ith the 

em. 
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impurities ~native defects) into high resistivity n-type CdS 

produces lo\·t resistivity n-type zraterial (6). Shallow donor levels 

some o.O)eV below the conduction band are formed when these I· 

impurities substitute for sulphur atoms. Group IIIb (In, Ga, Al) 

impurities substitute for cadmium atoms producing siWilar donor 

levels which are generally accompanied by compensating acceptor 

levels (7). Shallow donor levels may be found in CdS due to a 
I. 

,. 

d~:.ficiency of sulphur, which results either in the formation of cadmium 
i 

interstials or sulphur vacancies. Group Ib, (Cu, Ag, Au) and group Vb 

impurities form acceptor levels about one electron volt above the valence 

band (8). Cadmium vacancies will produce similar levels. The concen-

tration of donors is generally greater than that of acceptors, and 

·since ·the holes cannot be thermally ionised from these deep acceptors 

at room temperatures, p-type CdS cannot be produced. Woods and 

Champion (9) demonstrated p-type conduction in highly copper doped CdS, 

however this was· probably due to conduction in an impurity band. 

The effect of imperfections on the optical and electronic 

properties of CdS may be su~narised as follows. 

(1) Levels within the band gap may provide alternative radiative 

recombination paths and centres for free electronitas and holes, other 

than free exciton recombination. The resultin~ "edge emission 11 ancl 

"inf'ra-red emission 11 of CdS vtill be discussed in Chapter two and section. 

1.5.1. 

(2) Optical absorption attributable to donor-acceptor-associates is 

introduced (10), and will be discussed in Section 1.5.1. 

(3) Since cadmium sulphide is generally n-type, donors •.vill increasef 

and acceptors decrease the dark conductivity. 

(4) Free carriers v1hich have been created by photons with less than 

band gap enerr,y via imperfection levels lead to the photoconductive 
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respor.se being extended to the long viavelength side of the absorption 

edge. Alternatively, the electrons and holes may recombine producing 

11.1\nti-Stokes" luminescence, which will be discussed in Chapter two. 

· (5) The imperfections which act as recombination centres reduce the 

photoconductive. efficiency, whereas these centres that have a large 

cross section for capture of photo-excited holes but a s1~ll one for 

the capture of electrons after capturin8 t..t,;e holes, may increase the 

sensitivity by increasing the free electron lifetime. 

(6) Imperfections may trap free carriers for a time before they can 

be thermally freed. Thus they effectively reduce the carrier rno-~ili ty, 

and the speed of response of the photoconductivity is reduced. 

1.3 Eand Structure of CdS 

1'he conduction band of cadmiwn sulphide may be considered to 

originate from the 5s atomic levels of the cadmium ions and the 

valence band from the 3p atomic levels of the sulphur ions. Utilising 

the s~milarities of the crystallographic lattices and the iso-electronic 

nCLture of many of' the materials, Herman (11) developed a semi-

empirical method of' deducing the band structure of zinc-blende 

materials from those of the diamond type materials, germanium and 

silicon •. Birman (12) noticed that in a direction parCLllel to the c-axis, 

the electronic states of' the \'.urtzite lattice may be considered 

equivalent to the zinc-blende states in the (111) direction, provided· 

that a small hexagonal crystal field perturbation is taken into account. 

Pigure 1.1 illustrates the extrema of the three doubly degenerate 

valence bands (A, B and C) and the conduction band of the wurtzite 

structure at k=O. The diagram illustrates the combined effects of 

"spin orbit" (so) and "cryste.l field" (cr) perturbations on t.he simplest 

zinc-blende case (13). The selection rules (14) governing the allowed 

. ' 

... 



Figure 1.1. The band structure and selection rules 

for the zinc hlende ancl •mrtzi te ·structures at _!:: = 0; 
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transitions between the various symmetry representations are shown 

for the electric vector of the photon parallel and perpendicular to 

the c-axis of the wurtzite crystal. 

Experimental evidence supporting ·this model was provided by 

Thomas and Hopfield (3). '.rhree exciton series were observed in 

reflection measurements on CdS which could be associated with electrons 

in the conduction band and with holes in the three valence bands, 

according to the selection rules arising from the symmetry requirements. 

The group theo~ calculations performed by Balkanski and des Cloiseaux 

(15) produced a band structure model vmich supported Birman's symmet~ 

representation. 

High resolution transmission spectra of selected CdS single 

crystals obtained by Thomas and Hopfield (16) showed deviations from 

the exciton binding energies, reduced messes and band gaps predicted 

· oy the 11spherical hydrogenic" mo<iel. The deviation of the vmrtzite 

lattice f~om cubic symmetry results in an alteration of the constant 

ener~ surfaces of the valence and conduction.ba.nds from the spherical 

shape effected in the cubic case. Possible toroidal (17) and 

ellipsoidal (18, 12, 13) energy sm·faces and L'!Ul ti-valley band structures 

(15) ta.ve been suggested t)y various authors. All three, omcl or 

intermediate cases are possible in principle in the same crystal within 

different temperature ranges. In all experimental work, the valence 

bands are assumed to have their extrema at ~=0, since this is the 

simplest case and does not invalidate the results. The problem is then 

to establish the shape of the conduction band. 

Dutton (19), and Thomas et al (20) ex~lained their measurements 

of' the absorption of Cd.S single crystals in terms of direct exciton plus 

IJhonon processes rather th£Ln via indirect absorption, although Balkanski 

,•. 

, .. 

I ·! .. 
! . 

I • • 

I : 
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and des Cloiseaux (21) reported indirect absorption spectra in 

support of their many valley model (15). Hopfield and Thomas (4), 

however, showed that this interpretation was incorrect, ·and provided 

further support for their single ellipsoidal iaodel using magneto­

optical measurements of the exciton spect~~. Zook and Dexter (22)· 

interpreted their measurements of the magneto resistivity tensors of 

CdS in terms of a single valley model at temperatures above 77°K, with 

the possibility of a toroidal system below 77°K in which the extrema 

lie close to k=O. They also emphasised the diffictil ties of interpreting 

such results because of c~stal inhomogeneity and contact effects, and 

suggested that Masumi's (23) results. may have been similarly o.f'fected. 

J..'iasumi had supported the many valley model. 

The single valley model for the conduction band is strongly 

supported by electron effective mass (m~) measurements. Piper and 

Halsted (24) measured the temperature dependence of the Hall constant 

and Hall mobility of semi-conducting n-type' CdS. L"lterpreting their 

results in terms of a simple hydrogen-like model f'or the donor level, 

they obtained an effective mass for an electron of O.l9me'- where me is 

the free electron mass. Piper and Marple (25) measured the contribution 

of free electrons to the infra-red absorption of CdS, obtaining an 

average value of the electroO: effective mass of (0.22:!:0.0l)me• The 

electron effective mass was measured parallel (m~//) and perpendicular 

(m~~) to the c-axis in one crystal at room temperature. The ratio 
m*~ c 
~/ = 1.08 ! 0.04 gave a measure of the anis~ropy of t~e conduction 

band which egrees with that observed by Thomas and Hopfield (!"") from 

their rneasuren:ents of the magneto-optical splitting of the exciton 

emission. Thomas and Hop:eield found m~=(0.2CU, . .:!:.O.OlO)m
8 

to be isotropic 

to rii thin 51:~. 'l'I1e ef'f'ecti ve masses of t:b.e holes in the valence band 

:parallel (m}!/ /) and perpendicular (mh~) to the c-axis were found to be 

~ ··- --

i·' 
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(5.0 ! 0.5) me and(0.7 ± 0.1) me respectively. 

The 5~b anistropy in the electron effective mass was confirmed by 

Baer and Dexter (26) and Sawamotto (27) in cyclotron resonance 

measurements performed at microwave frequencies. The piezoelectric-

phonon interaction (28) was used to account for the 157~ reduction in 

the electron effective mass as measured by cyclotron resonance. compared 

with previous measurements. Baer and Dexter observed only one·resonance 

absorption at each orientation, which they attr:ibutedto electrons, and 

which is consistent with tr..e single ellipsoidal model. The electron 

effective masses determined at 4.2°K,: with the c~stal c-axis parallel 
? 

and perpendicular to the magnetic field were (0.171 ± 0.003) me and 

(0.162 :!: 0.003) n1e respective~y. Sav1amotto did not measure the angular 

dependence, but com'irmed the value of 0.17 me for cyclotron electron 

mass as well as observing another resonance absorption, which he 

attributed. to holes. His value of 0.8lme is in agreement with the value 

for mfiJ. obtained by 'l'homas and Hopfield (4). 

The single valley model for the conduction be.nd of CdS, with 

anisotropy 0! .. the order of a few percent, is generally accepted. T'nus 

a simple single valley model is a good approximation. The values for 

the separation of the A ru1d B, and the B and C valence bands are 0.016 

. and 0.057 eV respectively, at 4.2°K and ~=0, as determined by Thonas 

and Hopfield (3). 

1.4- · :i!:lectrical Properti~ 

1.4.1 Introduction 

At any fixed temperature above absolute zero, the electrical 

conductivity of &. 1:1.::'1 terial is determined by the num"\Jer of' charge 

carriers availe..ble for conduction, and their mo.bility. The temperature 

dependence of the mobility over a e;iven te::1perature range gives an 

i:-!dication of' tbe carriel· scatterin5 mechanisms operating 1d thin the 

I 

!'. 

,· 
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material over that range. The principal scattering mechanisms 

affecting the currier mobility are brief'ly described below, followed 

by an account of the effect of the absorption of radiation upon the 

conductivity. A description· ·of" the acoustoelectric effect and of 

electron spin resonance st~dies in cad.miu.."'l sulphide completes the . 

section. 

1.4. 2 Mobility 

Table 1.1 summarises the temperature dependence of mobility 

f'or the principal scatt~ring mechanisms which may operate within a 

material. 

(1) Lattice scattering. Charge carriers travelling through a crystal 

at a temperature above absolute zero have their mobility reduced by 

interactions with the thermal vibrations of the lattice. The lattice 

can vibrate in 'both acoustic and optical modes. In covalent elemental 

semiconductors, su~~ as germanium and silicon, acoustic mode lattice 

scattering is t.~e dominant mechanism, 'becoming increasingly important 

as the temperature increases. Optical mode lattice scattering is the 

principal mechanism in ionic crystals. The movement of the different 

constituent atoms of a compound semiconductor causes dipoles·in the 

crystal that can interact with the carriers, resulting in polar mode 

lattice scattering. Lattice vibrations in piezoelectric materials 

give rise to electric fields which result in the piezoelectric 

scattering of carriers. 

(2) Impurity scattering. Neutral impurities can give rise to scatter­

ir..g effects in c:.c-.;rstals, hol'rever the theory is uncertain and indicates 

only a slight temperature dependence. Charged impurities can produce 

large scattering effects. The density of impurities determines the 

importance of the process compared vii th other competing mechanisms. 

The temperatu:::·e dependence of impurity scattering, see Table 1.1, 



-------·------------------

Table 1.1. The temperature dependence of mobility for·the principal 
carrier scattering mechanisms in a crystal. 

Scattering Mechanism 

Lattice : optical mode 

: acoustic mode 

: polar mode 

: piezoelectric 
mode 

Lnpurity : neutral 

: charged 

Dislocation : charged 

Dependence of. mobility on T and m ~, 

( -1/, ( ) 
T'~)(exp ej'r)-1 

e is the equivclent temperature 
of the optical phonons. 

(T-%) (m•i•-%) 
_3/ 

(e>..-p T) (m•:• 12 ) 

Uncertain slight temperature 
dependence 

3f. _,, 
('r' 2) (m'~ /2) 

Linear temperature dependence 

Reference 

38 

37 

39 

32 

40 

41 

30 

r 

' 
' ! . 

·.i 

I -~ 

, I 
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indicates how this process becomes particularly important at lower 

te!ilperatures, when lattice scattering decreases. 

(3) Carrier-carrier scattering. When the effective mass of holes is 

larger than that of electrons, electron - hole collisions can reduce 

the electron mobility showing a similar dependence to charg.ec1 

i1npuri ty scattering. Electron - electron scattering is more complicated 

and particularly in the case of cadmium sulphide, can generally be 

neglected. However at very high current densities, carrier - carrier 

scattering can become important. 

(4) Dislocation scattering. For dislocation densities greater than 

108 cm- 2
, the effect on mobility should theor~tically become apparent 

(29). The temperature dependence of ·mobility for charged dislocation 

scattering was found to be linear by Read (30). 

The temperature variation of' the Hall mob~lity of cadmium sulphide 

l~d been attributed to optical and acoustic mode lattice scattering by 

K.r8ger et al (7), and optical plus impurity scattering by Miyazawa et al 

(31) before Hutson (32) pointed out the importance of piezoelectric mode 

scattering. Piper and Halstead (24-), Zook (33), and F'ujita et al. (34) 

found progressively better agreement between experimental and theoretical 

mobility versus temperature curves when optical and piezoelectrical mode 
i m~fo'le.co\.. 

scattering only w~ere considered, using Hutson's ~e uir"g values of the 

piezoelectrical constants. The apparent absence of impurity scattering 

is pro·bably due to the neutralisation of the compensated acceptors by 

the trapped holes. Figure l. 2 shows the temperature dependence of the 

Hall oooility in n-type CdS, illustrating the onset of ionised impurity 

scattering. (35). 

Spear and J,{ort (36) measured the drift mobility of electrons and. 

holes in CdS using short pulses of electron beam excitation to create 

t· 
' 

' 
'' 

I . 

•'' 
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free carriers. The electron mobility varied from sample to sample, 

being of the order of 300 em~ V- 1 sec. -,, in ~greement with other 

room temperature values. The hole mobility was found to be ·between 

10 and 18 em. 2 v:' -, sec •• 

1.4.3 Photoconductivity 

'lne absorption of radiation by a photoconductor creates free 

electrons and or holes which contribute to the electrical conductivity 

of the material until they are trapped or recombine. Photons ~~th an 

energy greater than the band gap energy of the crystal create eq_ual 

numbers of free electrons and holes. Lower energy photons niay liberate 

electrons or holes from centres lying within tte ·band gap of the 

material, extending the spectral response of the photoconductivity to 

longer wavelengths. In pure, perfect CdS, the electron and hole 

lifetimes of photoexcited carriers are short, of the order of micro-

seconds. By the introduction of suitable imperfections, the crystal 

may ·be made more "photosensitive", and the electron lifetime incre1:3-sed 

to milliseconds while the hole lifetime is decreased to nanoseconds. 

The centres that five rise to high photosensl. tivi ty are compensated 

acceptors, produced by impurities such as copper, or cadmium vacancies 

resulting in levels some 1.1 ev aoove the valence band. These centres 

are known as "Class II centres", following the nomenclature of Rose (42), 

with a."'l effective negative charge in thermal equilibrium. Their capture 

cross-section for free holes is rome 104 to 106 ti~es greater than their 

subsequent capture cross-section for a f'ree electron. In "pure" 

insensitive me. terial, recom.oina tion centres knovm as 11 Class I centres" 

are present. These produce a small majority carrier li:f'eti.:ne, since 

they have an approxin·.a. tely equal captura cross-section for electrons 

as f'or holes. ( 11 Class III centres" are def'ii'.s d as having larger capture 

cross-sections for electrons than holes). 

:. I 

f.' 

i :1 

" 
j· 
;• 

' . '· 
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Tne centres described so far have been introduced as recombination 

centres. The Class II centres may, under certain conditions of 

illwnination and temperature, "be regarded as hole "traps 11
• A centre 

acts as a trap when there is a greater pro·oabili ty that the carrier, I '• 

associated with the centre, be thermally excited back to its respective 

band. The centre acts as a recombination centre when it is more probable 

that a carrier of the opposite sign recombines ·with the first carrier i. 
i' 

at that centre. The term "demarcation level" has been introduced by 

Rose, its significance is that \men it coincides with the energy level 

of a centre, there :?-s an equal probability of the ,centre acting as a trap 

or a recom.bination centre. T"nus in Figure l.3(a),. the hole demarcation 
I, 

level (H.D.L.), which is always in the lower half of the band gap, is :'. i 
~ ' I 

below the Class I centres, so that they act as recombin.9.tion centres. 

In Figure l.3(b), Class II centres have been introd~ced, but the H.D.L. •.•'1 

I 

is above them, so they act only as hole traps·, and clo· not sensi tise the ~ · .. · 

material. In li'igure l.3(c), the H.D.L. is below the Class II centres 
.. I 

which now act as sensitising recombination centres. As the H.D.L. slowly 

passes through the level corresponding to the Class II centres as the 

light intensity is increased or the temperature decreased, the photo-

current-intensity relation becom.e superlinear. This effect is used to 

deternlh":.;: the depth of t~oe Class II centres. 

Figure l. 3(d) illustrates how the simultaneous irradiation of CdS vii th 

inf'ra-red and. the r-wnping exci ta ti on may be used to quench the photo-

conductivity. Poles e.re liberated from the Class II centre oy the 

infra-red (1), and tre.vel vL t!"!e valence bend (2) recoiil·Gj.nir:,; '.Vi th 

electrc~s at the At 3_00°K, inf"ra-red 

9_uenchin.;: of the r)l':otoconG.ucti vi ty of CdS is effected in two s,ectral 

bands with r~:.::'"Lxima at wavelengths of' 0.92 and 1.45 microns. 'l'he 1.45 

micron band is !·wt prese~t e;.t 77°K.. 'ro explain these results, two 
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levels some 1.1 and 0.2 eV above the valence band are suggested (5). 

The number of electron traps is usually much greater than that 

of sensitising centres. .It is generally accepted that there are at 

least six prominent traps in CdS crystals (43, 44). The density, 

and possibly the existence of some of these traps shows a strong 

dependence upon the preparative conditions of the crystal, its physical 

history and photocheillical reactions as desc~ibed by Woods and Nicholas 

(45). The technique of thermally stimulated conductivity (TSC) is used 

to evaluate the energy depths, capture cross sections, and densities 

o.f the traps. (The method consists essentially of observing the changes 

in the conductivity while the traps are being emptied by raising the 

temperature at a linear rate). A single discrete set of traps gives 

rise to·a maximum in the TSC. The trap density can then be determined 

f'rom the area under that portion of the TSC curve (48). The following 

is a· list of the six electron trapping levels most commonly reported 

for CdS. The depth is the energy of the level below the conducti-on 

band in electron volts; (a) 0.05, (b) 0.15, (c) 0.25, (d) 0.41, (e) 0.63 

and (f) 0.83. Woods and Nicholas assigned the a and b levels to isolated 

sulphur vacancies, the c level to a complex association of sulphur 

vacancies, the d and f levels to a complex association of sulphur and 

cadmium vacancies in nearest neighbour sites and the e levels to a 

complex of associated cadmium vacancies. Cowell and Woods (4-6) have 

shO\'iTI that one 0.63 eV trap rr.:J..y be created photochemically from two 

0.85 eV traps, &.-TJ.d suggest that the centre responsible for the 0.63 eV 

trap is an associate~ of two cadmium vacancies, while the 0.85 eV trap 

is an association o:t' a cadmium ancl sulphur vacancy, coP.firmins the 

assignz::.ents of ::'.'oods e.nd i'Jicholas. 

Photoexcita.tion may also lead to a change in the mobility of the 

., 
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carriers as a result o!"' change in the mw\i:l~·r or the charge of the 

scattering centres, or the onaet' of two carrier conductivity. The 

change in the charge of' scattering centres ·ay the addition or removal 

of electrons or holes causes a change in mobility which may be used .to 

evaluate the effective charge, the energy depth and the·_scattering cross­

::rection of the imperfection centre. Bube and Ma.cdonald (49) have gi. ven 

a detailed account of the evaluation of the properties of CdS using such 

"photoHall 11 data. Onuki and Hase (50) measured the a.c. photoHall effect 

in CdS under d.c. illumination as a function of wavelength. They interpreted 

the mobility decrease for excitation wavelengths below 0.53 microns in 

terms of two carrier effects. Assuming an electron-mobility of 225 em~ V.- 1 

-, 2 -, -, sec. , they calculc-~ted the hole mobility to be 38 em. V. sec. , a value 

comparable to those obtained by Spear and i' .. tort (36) in their drift mobility 

experiments. 

Park and Reynolds (51) observed maxima in the spectral response of the 
']:>oiQ ri~11.c{ 

photoconductivity, using pQlarasied light, of CdS at Lr.2 and 77°K. T.~e 

maxima corresponded to the maxima o·oserved in the absorption coefficient. 

T'nis indicates that the initial ab::;orption of photons with the exciton 

energy leads to the forme. tion of intrinsic excitons, associated with 

transitions involving the A., ·B, and C valence ·bands of CdS. The exci tons 

then dissociate into current carriers, and contribute to the pl:otoconduct;ivity 

so that maxir.-~a appear in the spectral response of the photoconductivity. 

I'he d.issoci.::ttion may occur e Hher by interactior. with an irnpu:ci ty CeLtre or 

by absorption or emission of phonons. The energies corresponU.ing to those 

of an exciton plus multiple longitudinal optical pl"1onon energies give rise 

to n:inL:;a, wh1ch have oeen observed. by Parle and L~mg;er (51),, in the spE:ctral 

respon:>a at hit)1 cnergie s. 

i 
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1000 V.cm- 1
• Above a threshold voltage, when the electron drift 

velocity exceeds the phase velocity of acoustic waves (which may 

originate from thermal vibrations within the crystal), travelling 

wava am.plii'ica.tion of the a::oustic w:,~.ves c:an t.-1lca !Jl.·;.c,; because of the 

st::-o~ ljiez·)-dectric inter.::.ction in CdS. (53, 51+-, 55). 'rhe acoustic 

waves are ref'lected at the ends of the cr-ystal, and the crystal may 

break into self-sustained oscillations if the rouni trip gain exceeds 

unity (56). The acousto-electric current associated with the 

amplification or oscillations subtracts from the d.c. current, as energy 

is t:::-ansferred from the applied f'ield to ultrasonic energy, resulting 

in deviations from Ohm's lavt. The acoustic flux causes a non-uniform 

electric f'ield ·distribution, so tr.a t a-bove the threshold there exists a 

region of high electric field near the anode in samples that have uniform 

low-f'ield properties (57, 58). Brillouin scattering, involving the 

scattering oi' lit;ht by phonons, ·has demonstrated the involvement of 

acoustic domains (59). 

Hutson et. al. (60) attached quartz transducers to the ends of a 

CdS cr-ystal. Radio frequency pulses applied to the input transducer 

produced pulses of' ultrasonic waves ~\hich travelled through the CdS to 

the output transducer. Drift fields were applied to the crystal via 

indium contacts. Ultrasonic gain of 38 do at l1-5 Mc/s was achieved f'or 

'lrii't f'ielcls higher tha.n a critical field of' about 700 V.cm: 1
• k~ the 

critical field, the electron drift velocity equalled. the appropriate shear 
.,.. 

wave velocity of' sound. Losses occu"tng in tLe transducers were .so great 

th::i.t t.l!ere was no overall ampli:f'i.cation of the r.f'. signal. It is hoped 

to ilSe ev::1po1~ated f'il;I!:; of' CdS as transducers . (61), which hs.ve a greater 

efficiency at higher frequencies -'ch<m mechanically applied. quartz trans-

clucers. 

Elect::-olu::::...r.escence of GdS sin.:::;le cryst.s.ls und.er d.c. field.s, using 

;. 
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ohmic contacts, has been knovm since 1952 (62). More recently, CdS 

l\'iOS diodes have been used to investigate theemission (63). The diodes 

were of the In-CdS-SiO -Au configuration, with the In contact as the 
X 

cathode. 
0 -, • 

At 77 K, using fiele!Ji of the o~der o~ 50 V. em , lum~nescence 

appeared close to the anode. Blue, green anQ infra-red components 

were observed. As the current density was increased, the blue component· 

became more dominant. The blue emission has been assigned to the radiative 

annihilation of an exciton bound to a neutral acceptor, assisted by 

acoustic and optical phonons (61~). The green emission has been attributed 

to the donor-acceptor pair recombination;process. These recombination. 

processes are describ~d in detail in Chapter 2. 

1.4.6 Electron Spin Resonance 

Elect~on spin resonance has been enniliyed as a te·chnique to investigate 

the properties of defects in CdS. 3railsford and Woods (65) found a 

correlation between their "D" line and the intensity of the L.E.S. green 

edge emission and the I 2 bound exciton emission o·oser·/ed in the photo-

luminescence of their crystals. Both these lu:ninescent processes are 

associated with sl"~llow donor levels. They associated the D line with a 

sulphur vacancy centre. They suggested that the line which they denoted 

us 11A11 was associated with a cluster of fqur nearest-neighbour caclmium 

vacancies which forms an acceptor some 0. 7 eV a·oove the valence band. 

Centres arising from sulphur and cadmium vacancies have also been reported 

by Morigaki and Hoshina (66), to explain the variations observed in the 

ES3. signal under different conditions of illumination. T'ne electron 

transfer processes which they proposed may be explained., with reference 

~o figure 1.4, as follows: 

(a) B~md gap radia.tion e:t:cites free electrons and holes : l 

(b) ~le ctron:> c~r:::: trapped by sulphur vacancies : .3, or by electrons traps : 2. 

(c) r:oles are tra:;ped ~y cac!.rniuin vacancies : 6. 

;. 
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(d) Holes can be excited by 0.95 micron radiation from the cadmium 

vacancies to the valence band : 6, reverse of' (c). 

(e). After mechanisms (a) and (d),. radiation of energy greater than 

1.5 eV excites electrons from cadmium vacancies into the 

conduction band 5; which are subsequently trapped by sulphur 

vacancies : 3. 

(f) P~ter mechanisms (a) and (c), 1.4 micron radiation can raise holes 

trapped in the cadmium vacancies to excited states 7. 

(g) Af'ter mechanisms (a) and (b), electron transfer from electron traps 

to sulphur vacancies can occur vi~ the conduction band. This 

required excitation by radiation with an energy greater than or of 

the order of 0.5 eV : 4 and 3. 

It is normally a ssumed that a simple sulphur vacancy would have 

two trapped electrons, which would most probably result in a diamagnetic 

syste!f!. It is possible that the levels described result from the formation 

of' donor-acceptor cor.:plexes. 'l'hus the cad.o.iu111 vacancy complex may be an 

associate./ of a cadmium vacancy iVi th a singly ionisable donor on u near-

ne:Lgh-oour site. This concept is expanded in the discussion cb:1.pter. 

1.5 Optical Pronerties of C~S 

The ubsor:ption, tran.smis sion, reflection and emission spectra of 

cadidu:n sulphiC.e may_ be divided. into "edge" a!1d. "infra-red" components. 

The cl1s.re.cteristics or· the edge emission are the subject of this tnesis, 

s.r,d .::o the optical properties associated. with processes nee.r -'.;he l'i.i.r:.d.a.mental 

edge ~~re co!isiC.~recl in e;reats::r detail in chapter t-!lo. Tne cl".a:cr::.cte::.·i.stics 

Co:-: (67) 

i:fi:.S.):i.~;;.::-_ 6.1; l,) 6 J l "e :?i.!"ld. 2 a 05 :--:l:i.c·c,")T! Z:. ~.,'h-2-~·r R tt.ri butecl t} .. :e e:r:.iS SiOJl to tbe 
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the highest valence band (0.83 eV above the highest valence band when 

unoccupied), with holes in the three valence bands of CdS. Bryant and 

Cox (68) also observed emission bands with maxima at 0.73 to 0.78 microns 

and 1.06 microns. These emission bands req_uired band gap light for their 

excitation, whereas the three longer wavelength· bands could not be 

excited by be.ncl gap light, but required light in the range 0.6 to 1.05 

or 1.3 to 1.65 microns. 'l'hey showed that the excited state responsible 

for the 0.73 to 0.78 micron emission could be changed, by heat treatrent 

under broad band illumination, into the comp+ex centre which is at the 

same time the 0. 73 to 0. 78 and the 1.06 ¥,~icron ground .state and the 1.5 

to 2. 2 micron excited state. The propos~d energy leve.l scheme and 

·transitions are shovm in figure 1.5. 

Cox et. al. (69) have· explained th~ infra-red emission in terms of 

a cadmium vacancy and .defect configurati~n containing copper atoms. It is • 

suggested that the centre giving rise to the levels denoted X in figure 1 • .5 

is a cudmium vacancy, and tr~t the 0.78 and 1.06 micron emissions arise 

from transitions from the copper impurity centre to the levels of the 

cadilliunl vacancy. 'l'he 1.5 to 2. 2 micron emission may be e:>..-plained in terms of 

trc.nsitions within the energy levels of the vacancy or fro;n the levels to 

the valence band. Cowell and Woods (46) hs.ve suggested that the centre 

responsiole for the level denoted X in figure 1.5 is associated with a 

defact consisting substantially of sulphur vacancies, since the 1.06 micron 

emission was decreased c.s crystals •:;are treated in increa£;ing pressures of 

sulphU!' vapour. 

:·~~a:d.m:.:. i~ tl;.e a-bsorptton coefficient of CdS in the i11f'ra-red. have 

been attributed to intrinsic d.efects" TI.!.e energ:y lev~~l scl~~eine ancl t'he 

De.zi::::a o:;:~ corresponding trc:.nsi tions and tteir assignments suggested by 

Boyn (70) to e::-..l_Jl3.i;:-: his inf':::·a-red absor·ption measurements are shown in 

:. .. ,. 
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to Boyn, with the energy levels of cadmium vacancies. '.l'he ene:::-gy 

levels above the valence band are in reas~onable agreement with those 

associated with infra-red emission. The maxima associated with the 

levels C and D were attributed to cadmium inte.rstitials. The A and :a 

bands were associated with transitions within donor-acceptor associates. 

He suggested that a cadmium vacancy associated with a donor on a lattice 

site vtas responsible for the A band, in agreement with the assignment 

made by C~ede (71) to explain the 2.0 eV emission band. Boyn suggests 

that the strong polarisation of the B bands indicates that the associated 

co•.uplex is an aggregate of cadmium interrti tials with acceptors on 

lattice sites. 

i·,~ost studies of the infra-red properties of CdS have been carried 

out at temperatures close to 80°K. As the te:nperatur~ is decreased, the 

intensity of the infra-red emission is g~nerally reduced and the edge • 

emission becomes more intense. The infr§t-red processes, involving 

largely cadmium vacancies and donor-acceptor associa:tes, are probably 

closely linked v.rith the edge emission processes. It is hoped to explain 

the characteristics of the edge emission reported in this thesis in terms 

of transitions involving these or similar centres. 

1.6 Conclusion 

:Many of the electrical and optical properties of CdS described in 

this chapter may be explained in terms of centres vii th approximately 

equal energy separation frora the valence or conduction band. It is 

becoming generally accepted that these levels are associated in some way 

with intrinsic def'ects. Evidence of association between intrinsic 

defects and impurity centres is also suggested to explain certain properties. 

It is necessary to study the defect centres involved in the hope 

that an understanding of the relationship between the observed physical 

properties and the defect centres will lead to improvements in the 
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preparation of the material and hence the possible applications of 

Cd8. These applications involve both bulk and thin film material. 

Bulk mE'. teria.l is more important in the study of the def'ect centres. 
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CHAPTER 2 

RECOMBINATION PROCESSES RESPONSIBLE FOR THE ".BAND EDGE EMISSION" OF CdS 

2.1 Introduction· 

The term.band edge emission is loosely employed to describe 

radiative recombination processes occuring within several tenths of an 

electron-volt of the band gap energy. These processes become 

predominall:t in the recombination spectra observed in crystals at low 

temperaturEtJ.and under strong excitation conditions~ ~e edge emission 

·of cadmium sulphide excited by 3650 1 radiation at liquid heliUm 

temperatures consists of two maJor components described as the "green" 

and the 11blue" emission (1 ).· 

The blue edge emission has been shown to be due to the emission 

of radiation associated with the recombination or annihilation of free 

and bound excitons. The green edge emission has been associated with 

the recombination of free electrons and of electrons bound to donors 

with holes bound t.o; acceptors. ·The recombination processes suggested 

to account for the components of the blue and green emissions are· 
I 

.described in this chapter •. 

At very high excitation intensities, crystals of suitable geometry 

may be made to "lase". The sugge_sted lasing .transitions of CdS_ .are 

briefly summarised at the.end of the chapter. Anti-Stokes ·excited edge_,. 

emission is also described. ( 

/ 
2.2 Blue Edge Emission 

Radiative recombination associated with the recombination or 

annihilati~n of "free" and "bound" exciton& has been shown to be 

responsible for the blue edge emission of CdS. Consequently the 

properties and characteristics of exaitons in CdS ·are described below. 

·.J'•. 
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2.2.1 Free ~xcitons 

The free exciton may be thought of as ·an excited state of the 

crystal comprised of an electron and hole in orbit about one another. 

The recombina.tion of the electron and hole may result in the emission 

of a photon·· with an energy equal to the band gap energy less the 

bindine energy of the exciton, E • Similarly, a photon with an_ · ex 

energy EG - E · may be absorbed to create a free exciton, where EG is ex . . 

the band gap energy. By anaJ.ogy to the hydr:ogen atom, 

E = 13.6 ,lA- , (eV) 
ex M ellnE . 

0 • 

where~8 is the low frequency dielectric con~tant, which is required 

to scale the 13.6 eV ionisation energy of"the hydrogen atom to the 

crystal lattice environment of the exciton. Since the electron and 

hole are of roughly comparable mass,· me* and·~·, 

reduced mass ,P, where ~ = (l/me • + l/llb •), must 

re.specti vely, .a 

be used. m is the 
0 

electron rest mass, n is an integer, n = 1 for the ground stat"e energy •. 

The concepts of free excitons have been derived from absorption and 

transmission measurements which are described below. 

Thomas and Hopfield (2) studied the reflection spectra from CdS 
0 .. 

crystaJ.s at 4..2 K. ~sitometer traces are shown in figures 2.1 (a) 

and (b). In addition to the parent transitions A, B, and C involving 
, ,. 

the three valence bands, the .structure if. and B was observed. The 
. I 

. polarisation properties of Jt and If indicate that they are associate~/ 

with the trans:itions A and B respectively. The energy separati~ns 

between A-A
1 

and B-B1 are identicai and equal to 0.021 eV. It is 

reasonable to assume·that A and B correspond to the ground state 

/ 

,,. .. 

excitons associated with the first and second valence bands respectively. 

The weaker transitions A1 and B"' result from the n=2 s·tate of the 

parent transitions. If the excitons .are hydrogen-like, an. estimate of 

the binding energy can be made, e.g. Eex, = 4/3 x 0.021 = 0.028 eV. .I 
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Using this value for the binding energy and the expression (5) 

where ·e is the electL"onic charge and h is Planck's constant, the 

reduced exciton mass was calculated giving a value of 0.18. E'rom 

the analyses of their reflection data, Thomas and Hopf'ield deduced 

many of the para.meters relating to the band structure of CdS (see 

figure 2.2) as follows: 

EG - EexA = 2.554 eV. 

EG - (EB-EA) - EexB = 2.570 eV. 

E - (E -E ) - E = 2.6}2 eV. G C A exC 

E ren. resents the binding ener1;rv of exciton A end similarly for B exA OJ 

and C. Assuming EexA = EexB then EA-EB ~ 0.016 eV, with Eex.A :: 0.028 eV, 

the·band gap is EG = 2.58~ eV. In order to determine (EC- EA) it was 

necessary to co!Ilpute E C which was done using a quasi cubic model · ex 

based on the similarity between the vrurtzite and zincblende structures. 

The values obtained were EexC = 0.026 eV and (EA - EC) = 0.073 eV. 

To interpret the exciton spectra fully in vrurtzite crystals, it 

i~ necessary to account for the interaction betw·een exci tons and the 

electric polarisation waves in the crystal. Excitons contribute to the 

·dielectric constant of the c rysta.l and so are closely related to 

quantised waves of electric polarisation with which an electromagnetic 

field interacts strongly (6). In the wurtzite lattice, it is possible 

to clausify the polarisation waves as purely transverse or purely 

longitudinal when~ (the exciton wave vector) is in the principal 

directions (i.e. I i or_!_ to the c axis). However, light not propagat-

ing in a principal direction can interact vii th 11mixed 11 longitudinal -

and - transverse excitons (l~). Transmission spectra of CdS at 1.8°K 

enabled Hopfield and Thomas (J) to esta.blish the energies of the 

·[: ,, 
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lf 
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intrinsic exciton absorption bands o~ CdS, see table 2.1. Zeeman 

effect studies have shown that the line just below 1ST is the lS 

state with r6 ·symmetry, formed with electron and hole spins parallel.· 

(the antiparallel·.configuration gives 1ST and has the r5 symmetry). 

The energy·difference between the r
5 

and r6 .states is thought to 

arise, in part, fro~ the configurational mixing of the r5 states of 

series A and B and, .. in part,; from ·the long range electrostatic 

interaction of r5. Although the r6 .transition' is dipole forbidden, 

it could be observed as a "forbidden" transition because momentum 

is supplied by the excito~-creating radiation. The line seen just 

above 1ST was identified as.the associate~ nearly-longitudinal 

exciton .lSL. These three excitons· belonging to then.= 1, A s·eries, 

r6, r5T arid r5L are the principal free exoitons occurring in CdS. 

a discussion of the other exoitons, see ·reference 7. 

The radiative recombination of a free exciton at the exci.ton 

For 

"resonant." energy and of the exoi ton with the simultaneous emission 

or one or more longitudinal optical (L.O.) phonons have been 

.definitively identified (8). Grosset. al. (9) car.ried out detailed 

experimental investigation of the shape of the emission peaks for a 

range or temperatures. This has renewed interest in the theoretical 

aspects of intrinsic exciton emission. The theoretical work is now 

very briefly summarised. 

Hopfield (6) introduced the quantum-mechanic~ concept of 

•polariton" states which are the eigenstates of the interacting exciton­

photon system or stationary state.s of the coupled exciton-plus-photon 

fields. Near exciton resonance energies, excitons and photons cannot 

be treated as independent entities. Polariton waves propagate through 

the crystal with "apparent absorption" resulting from the scattering of 

these waves to other polariton states by crystal imperfections. This 

, .• 



I.inP. identification Photon energy (ev) 

SeriP.s A. n = 1, s 6 2.5524 

s~. 2.5537 

·SL 2.55455 

n = 2, p 
0 

2.57508 

P+· • ~ 2.57575 ·-1' •JL 

n = 3, n!2 2.57977 

n = 4, P, D 2.58094 

SP.ries B. n = 1, ST. 2.5686 

ST. 2.568? 

n = 2, 2.59085 

The s, P and D !'efer to the hydroaenic states of the exciton. 

Subscri:pts T ann JJ refer to transverse or loriei tudiTial 

character. The uavef1.mctlons, :p, are defined a.s 

:P~l= I>x ! ipy and p
0 

:= pz' where px transforms like x Ate., 

with z //c, al?d ·p:!;T ~nd. p
0 

· ~orresponding to states l·rith-·:tl 

fl.nd 0 units of a.ngulA.r momentum about the c-axis·. 

Table 2.1. The enereies of the intrins1.c exciton absorption 

bl'l.ndo observ~cl in CdS at J.. 8 °K. 
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interpretation is in contrast with ~e more familiar interpretation 

where the absorption is said to have occurred after the radiant energy 

(photons) has transformed into excitona. The contribution of the 

scattering of.polaritons by acoustical phonons to absorption was 

evolved by ·Tait and Weiher (10). These authors later (11) showed that 

the first longitudinal optical (L.O.) ph~non replica of the free 

I . exciton of CdS at 77°K, i.e. the emission band approximately 0.038 eV 
' i· 

below the exciton resonance energy EexA' is due to the inelastic 

·scattering of polaritons. Figure 2.3 shows the dispersion curve .tor· 

polaritons, see appendix 2.1. The solid curve gives the energy of the 

polaritons and the dashed curves give the energies of the uncoupled 

photons and exoi tons. The first phonon replica, and perhaps the 

simultaneous creation of two, three, etc, L.O. phonons, is explained 

1

1

. by the inelastic scattering or· polari tons above the knee of the lowest 

lying polariton branch (at (a)).to states below the knee (at (b)) with 

i I . 
I . 
' 
~ .. 

the simultaneous creation of L.O. phonons. _The emission band close to 

the resonance energy is also due primarily to the scattering of 

polaritons by L.O. phonons. Segall and Mah~n (12) calculated the 

. properties of the spectra of the free exciton emission for"direot gap 

. compound s emiconduotors using an interacting exciton-phonon system, 

·however they found it necessar,y~to pay particular attention to 

polariton effects at high·(about 77°K) temperatures. 

2.2.2 Bound F~oitons 

Thomas and Hopfield (13) observed liDes to the low energy. side 

,/ 

of the intrinsic (tree) excitons of CdS and _interpreted them'in terms 

ot "bound" excitons, following the suggestion of Lampert (14) that the 

+ -centres may be described as states analogous to H2 , H.i and H • The 

·exoitons are bound to ionised or neutral defects, and the coulombio 

.. ·. 

/ 
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·energy of the environment of the defect disturbs the energy of the 

exciton. Only the lowest states of the complexes were conside.red 

and the theor,y includes models of complexes which can be formed 

used holes from either of. the top two valence bands. In considering 

transitions involving bound exciton& formed from holes in th~ top (A) 

valence .band, the g value of the· ·electron is isotropic while the g 

value of the hole has the form g=~ oos 9, where 9 is the angle between 

the c-axis of the crystal and the direction of the magnetic field. 

Transitions involving bound excitons formed from holes in the second 

(B) valence'band are more energetic by the energy separation between 

the top two valence bands. · In the case of the neutral donor associated 

with band B, the transitions ~re unpolarised. The other bound exciton 

complexes associated with band B can be identified utilising the Ze~man 

effect. 

The principal lines observed in the absorption and emission spectra 

reported by Thomas and Hopfield were designated r1 and 12• The 

·characteristics Of the behaviour of these lines in a magnetic field. 

and the conclusions drawn from the observations are shown in table 2.2. · 

From the zero g value for the ground a tate and the one unpaired 
....... 

electronic particle, it was concluded that the complex associated 

with the r1 line is an exciton bound to a neutral acceptor site. 

·The characteristics of the 12 line indicated that the complex is an / 
I 

exciton bound to a neutral donor site. 

A line at 4.861.7 1, designated r3, was detected in absorption 

only. The behaviour of this line in a magnetic field was different 

/ 

' 

from that of 11 and r2•. At zero field, only the high energy component 

was observed. At appro:xi~tely 10 KG and with ,2. l !:!. the low energy 

component appeared, which when extrapJlated back.to zero field, showed 

that the line is zero field split. No,thermaliaation was observed for 

absorption with .2, .ll! indicating that' ·the ground state is a sine;let 
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(g=O) state. The zero field splitting arises from an exchange 

interaction between an unpaired eiectron and an unp~ired pole in the 

upper state. Such an interaction can occur in li~es resulting from 

an ~xciton bOUnd to ionised donors or acceptors. The small binding 

energy of the exciton to the centre suggests- that the complex is an 

exciton bound to an ionised donor. 

Thomas and Hopfield found that I 1 and I 2 decreased in intensity 

while I 3 increased when t~e lines were observed in a·bsorption _while 

the sample was simultaneously illuminated with infra-red radiation. 

The infra-red radiation was of an appropriate energy to ionise the 

acceptors. preferentially. It was concluded that the free holes then 

ionised the donors, so that the population of neutral centres was 

decreased whil~ that of the ioniaed centres increase4,. confirming "the 

identification of the complexes. 

Reynolds and Litton (15) observed the I 3 line in the emission of · 

CdS crystals at about 1 °K, vd. th two components in zero magnetic field. 

ZeerAan measurements were in good agreement with the correspon~ing 

absorption measurements. _ Reynolds and Litton also observed a strong 

emission line, denoted Is (4869.~4 ~), which they attributed, using 

Zeeman measurements, to a transition involving an exciton bound to a 

neutral acceptor sito. The same authors later attributed ·this line to./ 

an exoi ton bound to a neutral donor (16) ,. following the suggestion or' 

Handi.man and Thomas (17). 

In the spectral range 6 to 8 meV below the intrinsic exciton 

~ine, numerous sharP lines have frequently been observed and referred 

to as I2 lines (13). These lines all behave very si10ilarly in a 

magnetic field. 

Following the nomenclature of Handelman and Thomas and the other -
I -
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authors mentioned above, the major e~ssion lines in the blue edge 

emission of CdS at 4.2°K, and their assignments, are listed in 

table 2.3. It now remains to describe the nature of the defects 

to which the .excitons become bound. 

The intensity of the emission of' the It exciton may be . 

decreased by annealing the c~stal in cadmium vapour and increased 

by annealing in vacuum. This suggests that the acceptor associated 

with It is a cacL-nium vacancy 1 which is expected. to have two hol~s · · 
... , .. 

-.•.• ...,.._:· ·: 
in its ground state. The It line' s.ometimes appears as ·a closely 

spaoed doublet (15). Thomas et. al. (18) studied the emission of 

doped cr,ystals of ·cdS and concluded that to explain the doublet nature 

and the singly ionisable nature of the centre responsible for the 

It bound exciton complex, it was reasonable to suppose that the 

double acceptor vacancy is associated with-a singly charged donor. 

For the low energy line (4888.75 1, 2_.53527 eV), it was suggested 

that the donor was a chlorine ion substituted on a. nearest neighbour 
.. 

·site to the cadmium vacancy.· (In fact, _aqy halogen impurity produced 

the same emission line). The proposal for the higher energy line 

(4888.40 1, 2.53545 eV) was that it was associated with a complex in 

which the donor was an aluminium ion say substituted on a cadmium 

site. It was found that the orientation of neither Cl nor Al ion 

affected the symmetr,y properties of' the line, and both lines showed / 
• I 

the same Zeeman splitting pattern. Thomas et. al. also observed .· 

lines which they associated with exoitons bound to the isolated· 

halogen and aluminium donors. These they denoted I 2Cl and I 2Al 

corresponding to lines at 4869~4 1 (2.5453 eV) and 4869.95 i. 

(2.5450 eV), respectively •. 

' 

' 

Handelman and Thomas (17) performed ·various hea.t treatments on -

I 



• 
ISne \·/aw~lerigth (~) Enerey (eV) Binding Centr8 

Enerey (ev) 

Il 4888.5 2.53595 0.018 Neutrf.'J. 
Acceptor 

I2.Ji. 4867.15 2.5471 0.007 Neutrf:'.l 
Donor 

I2B (I5) 4869.1 2.5460 0.008 Neutral 
Do :nor 

I 2C 4870.2 2.5455 0.008 Neutral 
Donor 

. 

I3 ' 4861.66 2.5A984 1\10.003 Ionbed 
4862.25 2. ~"·953 Donor 

1:I.:..&:. The subscripts A, B and C do not r-efer to the three 

valence bands of Cds.· 

Table 2. 3. Th~ principal emission lines associated w·ith the 

bound excitons of CdS at 4.2 °K. 
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CdS cr,ystals and observed the-resultant effects upon the 

photoluminescence. Their re~ults implied that the I 2C line (4870.2 1) · 

is associated with a sulphur vacancy. It is perhaps worthwhile 

remarking that the many I 2 lines may be associated with different 

acceptors associated with the sulphur vacancy. This suggestion is 

expanded in the discussion chapter. 

2.2.3 Vibrational Spectra of Bound Exciton Complexes 

Lampert (14) pointed out that in addition to the gross energy 

level or electronic level scheme of the H~ complex, there will exist 

a fine structure for each electronic level similar to the vibrational- . 
. + 

rotational level scheme of H2 • This type of spectrum was observed in 

the emission of selected CdS.·platelets at 1.2°K by Reynolds et. al. · 

(19) and Collins et. al. (20). The following points_ confirm the 

interpretation: 

{~) A series of converging levels fitted a standard vibrational-

electronic term scheme. There was also a series of rotational 

lines. 

(2) The line intensity distributioDJ conformed to a Boltz.mann 

distribution. at a temperature in reasonable agreement with the 

actual temperature of measurement. 

(3) The level schemes extrapolated to known exciton states. In 

fact two series were evolved. The band head for the series that / 

converged to the r 5 free exciton (4B53 1) was the 4861.7 1, Il 

I 
I 

· lines described by Thomas and Hopfield (13). The band head for 

the series that converged to the r 6 free exciton (4857 1) was at 

4865.08 1. Since the energy difference between the band heads 

of the two series was the same as the energy difference between 

the convergence limits of t~ two series, it was su~gested that . 

the 4865.08 1 line is due to the r6 , exciton associated with the 
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Il complex. 

2.2.4 "Excited States" of Bound Exciton Complexes. 

Reynolds et. al. (16) reported the observation of "excited 

states" of bou~d exciton complexes. Using a Zeeman analysis of the 

emission, they were· a·ble to identify the emission maxima at 4907.15, 

4908.7, 4912.4, 4915.32 and_4916.5 1 with what they called the 

"excited states" of.the.I5 and I 2 c (4870.2 l) excitons. 

Theemission me.xima are associated with the emission of a photon 

which has originated from the annihilation of an ·r2C or I; bound 

exciton, but which has lost some energy before being emitted in 

exciting the neutralising electron of the donor from the ground state 

to an excited state of the donor. Using a simple ~drogenio model 

for the donor, it is easy to see that the photon will hav~ lost 3/4 ED 

eV in exciting the neutralising electron from the ground state (n=l) 

to the first excited state (n=2) of the donor, where ED is the ionisation 

energy of the donor. Similarly it would lose 8/9 E0 and 15/16 E0 iri. 

exciting ·the electron to the ~=3 and n=4 excited states re·spectively. 

A value of E0=0.026 eV provided good agreement between the 

observed and ca~culated "excited states" of the I 2C and I 5 excitons. 

This agree:s with previously reported donor ionisation energies in 

CdS, see for example (18). An electron effective mass of 0.18 times 

the electron rest mass gave a good theoretical fit to the experimental 
I 

data of the magnetic field splitting of the·lines. No·emission 

attributable to the "excited states" of neutral acceptors has been 

observed. 

2.2.5 Phonon Replicas of Bound Excitons 

/ 

,. 
/ 

•' 

Thomas and Hopfield (13) noted that, at energies less than that 
' / 

corresponding to the I, lines, a number. of fluorescent lines are 

observed in CdS .~t; 1.6°K which are described as phonon replicas of the 
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I 1 and I 2 transitions. Exciton recombination occurring with the 

simultaneous emission of phonons is suggested by the facts that 

(a) some of the lines oocur at known phonon intervals. and (b) at low· 

temperatures there is ·no absorption corresponding to the emission. 

The spectrum could be accounted for using the following phonon 

energies: Longitudinal Optical (L.O.) = 0.0377eV, Transverse Optical 

(T.O.) = 0.0}44eV and Transverse Acoustic (T.A.) = 0.0206 eV. The 

assignment of T. 0. and. T .A. phonons was tentative·. 

The co-operation of I 1 with.low-energy acoustic phonons was seen 

as· a small peak about 0.001 eV below I 1 which tailed out to the peaklet 

I, - TA, which presumably marked the energy of acoustic phonons at the 

zone boundary. Similar effects were. o·bserved on the low energy side of 

the I, - LO peak. With the I 1 line, phonon co,-operat.ion was much 

gre~ter than for the I 2 line. This is probably due to the greater 

binding energy of the I, ·complex. No co-operation wi-:th .low energy 

acoustic phonons was seen with the I 2 lines, while the relative 

intensities of the LO phonon replies of I 2 were much less than those 

of the I, exciton. 

To. observe bound exciton emission, without what may be termed 

excessive phonon co-operation, it is generally accepted that the CdS 

cr,ystal be maintained at 20°K or lower (21). At temperatures above 

about 20°K, the majority of the excitons remain free, and intrinsic 

exciton emission is observed. ,_ 

2.3.1 ~reen Edge Emission 

In CdS, the green emission can contain two phonon-assisted series. 

·.The higher energy of the two series has its zero-order phonon component 

centred on about 51401. This series will be denoted H.E.S., standing 

for ~igh energy series". The ~ower energy-series has its zero-order 

component located at about 5170 1, and will .. be denoted r •• E.S., for 

"low energy series". The basic recomb~nations _process suggested for 

' I . ! 

·.I . I 
I . ! 
·I 

l 
.. 1' 

' I ~ 

I 
.. 1 

'I 

~ I 
i 
'I 

·I 

I 
/ 

r .. 

J .. 

~ 
. ~~ 

(I 
~~ 
·~ ~ !I 
ll'~ 
J'~ ., 
tl: 
1\j 
1;: 
j·.; ,., 

u 
l1l .,, 
li;: 

t;·; 

r ~~ 
~J 

i/.r: 
!Vi 
t~; 
I;; 
r~~ 
"' 



- 30 -

the green emission has been disputed, and·the reader is.referred to 

the survey by Reynolds et. al. (l). The essentials of the presently 

accepted models are discussed below. 

Hopfield· (22) was able to fit a Poisson distribution to the 

heights of the maxima of' the phonon components of the ·green edge 

emission of CdS recorded by lQ.iok (2}). (This procedure haa been used 

on results obtained during the course of this thesis, and the reader 

is referred to chapter four for details of the application). The 

mean of the Poisson distribution was found to be 0.87. This suggests 

that for ever,y hundred photons emitted, there are 87 phonons emittedi 

and that the number of phonons emitted per photon is described by a 

Poisson distribution. According to Hopfield the mean number of 

phonons detennined .. by this fitting process provides (a) a measure 

of the mass of the heavy ca1•rier if recombination of free carriers 

occurs or (b) a measure of the radius of the trapped carrier if the 

recombination process involves a trapped carrier. The mass required 

for the heav,y particle is about 5 me if the green emission is d~e to 

a free electron to free hole transition or to exciton recombination ·in 

the field of an impurity. In view of this, Hopfield concluded that a 

trapped carrier was involved, and its orbiting radius was ll 1, which 

is consistent with the model •. However, whether the hole or the 

electron was trapped was not resolved. 

Spear and Bradberr,y (~) showed that their measurements of the 

intensity of the green emission of CdS as a function of temperature 

and excitation could be predicted if the radiative recombination too~ 

place between a free electron and a hole trapped at a class II type 

centre situated 0.1} to 0.15 eV above the valence band. Photo-

conductive measurements and other experiments verified the. existence· 

of that centre. Spear and Bradberry thereby conf'irrnod the p~stulate 

I 
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of Pedrotti and Reynolds (25) that the transition of a free electron 

to bound hole explains the single green series at 77~. Pedrotti and 
0 . 

Reynolds noted that as the temperature was reduced below 77 K, the 

"77"K series
11 

decreased in intensity, while at about 30°K, a second 

series appeared,. which we have alreaQy introduced as the L.E.S. The 

"77°K series" became the H.E.S. at liquid helium temperatures. A 

transition between a bound electron.and a bound hole was postulated to 

explain the L.E.S. The electrons become ionised at~ elevated temperatures,· 

while the holes are bound to the same acceptors in both processes. Thus 

the H.E.S. dominates at 77°K while the L.E.S. dominates at 4.2°K. 

The model so far is that: 

(1) The H.E.S. is due to the recombination of free electrons with holes 

bound_ to acceptors some 0.14 eV above the valence band. 

(2) The L.E.S. is due to the recombination-of electrons bound to donors, 

some 0.023 eV below the conduction band, with holes bound to the same 

0.14 eV acceptors. 

(3) The replicas at lower energies result from the simultaneous emission 

of one or more longitudinal optical phonons. 

(4) The large width of the individual components of the emission may be 

associated with acoustic lattice vib~atiorts, the influence of imperfect­

ions on the binding energy of the trapped hole, or lifetime broadening 

(22). 'l'he_ explanation of the L.E.S. recombination process has been 

modified by the concept of distant-pair recombination which is treated 

in the following section. 

2.3.2 Light from Distant Pairs 

C~stals of gallium phosphide frequently shaw remarkable photo­

luminescent spectra\ at temperatures below 20°K. Immediately to· the low · 

energy side of the bound exciton emission, a large number of ve~ sharp 

lines are seen, which are more closely spaced at lower energies, and 

.,· 
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eventually merge into a broad band, vthich is replicated at lowe·r 

.energies by phonon emission. The lines can be explained in terms of 

the recombination of an electron trapped at a donor with a hole · 

trapped o.t an acceptor which is separated by a dista."lce r from the 

donor (26). Wben r is large compared to the radii of the donors and 

acceptors, the energy of the photon enutted, E(r), is given by 

E (r) = EG - (EA + ED) + e
2 

4"1ffsf~ 

where EG is the band gap energy, EA and ED are the acceptor and donor 

binding energies respectively, e is the electronic charge and E. 5 is the 

low frequency dielectric constant. The final term is due to the 

coulombic interaction of the donors and acceptors. Numerous discrete 

lines occur because the donors and acceptors are substituted on lattice 

sites so that r can only assume certain discrete values. It has been 

shown that by doping with different donors and acceptors which can 

substitute on either the Ga or P sub-lattices, different values f'or EA 

and ED and hence differept line spectra can be obtained. Using the 

e_quation, the value of (EA + ED) for a particular pair of impurities 

can be derived.. The broad emission is typical of "e~ga emission" 

observed in many II - VI compounds at low temperatures. The broad 

emission is clearly associated with the pair lines for it also shifts 

when (EA" + ED) is varied. 'fhe r values. associated the pea..'<: of the 

broad emission are 50·-· 15oR, which sug{:;ests that the distant pairs 

may merge to a continuum. Little information can be d.eriv.ed about 

these pairs from simple spectra obtained under continuous (D.C.) 

excitation. 

Since the lifetime of' the pairs· is expected to vary vtith r, it 

was anticipated that a study of the spectral distribution durin€$ the 
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decay of the broad band emission would be instructive. Thomas et .. al. 

(27) developed the theory and applied the results t·o GaP and CdS. 

Colbow (28) extended the measurements on CdS, and made measurements 

using the technique of "time ref:Jolved spectroscopy" at different 
e.t. 

temperatures. Thomas ~ al. (18) extended the measurements on CdS 

0 at 4.2 K by observing the spectral distribution of the emission after 

a ~ nanosecond del~ using pulsed electron beam excitation. The 

major conclusions of their work are as follows: 

(1) The spectra observed at long times (50 microseconds) after the 

flash consists. of sharp peaks, at shorter times (10- 100 nanoseconds) 

the peaks occur at ~horter wavelengths and are broader on the high 

energy side, see figure 2.4. This .is becau~e at large separations 

a variation in r changes the energy .very ~ittle, while at smaller .. · 

separations a change in r has a profound effect, yet lifetime is affected 

equally by a given~ no matter what the value of r. Hence if a certain 
/: 

range of lifetimes is being examinea, which is achieved by observing, 

for a short time, the spectra after a time t, for small t there will 

be considerable coulombic broadening,. but at lon~er times there will b~ 

less broadening. (It was necessar,y to use the shape of the spectra 

observed at long times, when there is little coulombic broadening, to. 

calculate the line shape constants for the evaluation of theoretical / 

line shapes for GaP because no aocount of acoustic phonon co-operation 

or broadening::of the line due to other impurities could be included in 

the evaluation). 

(2) Colbow studied the decay of photoconductivity and the intensity of 

the H.E.S. and of the L.E.S. at 4.2°K. H~ concluded that (a) the free 

electron concentration varied as n{t) =n t-0 •20 after excitation, 
0 

(b) The H.E .s. decayed as t -l.i, which on the basis of a :('ree to bound 

transition, implies that the product of the free electron concentration -
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n {t) - and neutral acceptor concentration - N {t) - dec~s as a 

n{t) Na {t) = M t-1•2, with M a constant, {c) At short times after 

excitation, the L.E.S. decays as t-l.O, ·which on the interpretation 

of a bound to bound transition is equivalent to the .decay of the 

neutral acceptors. This is consistent with {a·) and {b) since 

1.2 - 1.0 = 0.2, i.e. the neutral acceptor dec~ index leaves the 

free electron decay index when sub~tracted from the free-to-bound 

decay index. To explain the large photoconductivity observed at 

low temperatures and relatively long times after excitation, Colbow 

postulated a deep trap for holes which is not active in the edge 

recombination process. 

{3) The bin~ing energy of the acceptor determined by Colbow was 

169.6± o.~ meV. The binding energy of the donor was 30.5 ± 0.5 ~eV. 

The donors and acceptors r~~:p_ons:iJ>!~ f~r ~he ):..E .s. ~mission were 

separated by about ~27 R after 10~ ~econds and 199 R after 0.1 seconds. 

Colbow also attributed what may b·e calied "ripples'i on the emission 

bands of both series and their LO phonon replicas .to the emission and 

absorption of transverse optical phonons with an energy of 5.5 meV. 

This was not con:t'irmed by Thomas et '!. .al. 

The effects of the distant pair recombination process observed in 

spectra excited by continuous excitation, and other characteristics of 

these spectra, are now described. .' 

{1) Since the transition probability for radiative recombination tends 

to decrease with i~creasing separation r, the spontaneous lifetime of a 

pair increases with increasing r, · and so a shift in the mrudmum of the 

emission should be observed when the intensUy of the excjjation is 

changed. That is, as the intensity of exc~tion is increased, the low 

energy pairs {i.e. pairs at ~arger r) would be occupied by holes and 

·electrons first, and then the higher energy pairs would be filled. 

Thus as the intensity of excitation is increased, the observed emissi~n , 

I 

I 
. ~ 
I 

I 
.l 

1 
I 
I 

~ 
I 
l ., 

·I 
I' 
.j 
! 

~ 
~ 
I 



- 35-

should shi~t to higher energy •. This has been observed by Condas and 

Yee (29) and Orr et. al. (30). From the. shi~t o~ the maxima per order 

of magnitude change in the intensity o~ excitation, Orr et. al.·were 

able to show that r must be o~ the order of 100 R, in agreement with 

Colbow's value o~ mean pair separations. (This is demonstrated in 

Chapter ~our). 

(2) Because o~ the spe9tral shi~ with intensity o~ excitation, it 

is difficult to evaluate the binding energy of the donors and acceptors 

involved in the recombination process. It was also observed, by 

Handelman and Thoma~ (17), that the position o~ the two series varied 

as layers of the cr,ystal were removed, which was probably not 

associated with changes in the nature of the centres. It is suggested 

that there is a range 0~ possibl~values ~or the zero phonon maxima 0~ 

the two series •. The range ~or the H.E .• S. is about 5135 .:!:. 15 R, ·while 

the L.E.S. is about 5175 .:!:. 15 R. 
(3) lCingston et. al. (31) observed ~i~e series in the.green emission 

o~ CdS, with zero phonon·peaks at 5128, 5140, 5163, 5179 and 5234 R, 
. 0 

at 4.2 K •. They proposed the·existence of two acceptors, separated by 

0.006 eV, to explain the multiplicity o~ the series. They also suggested 

that bound-to-bound transitions were involved, but were unable to 

demonstrate any shi~t with variation of excitation intensity. Nyberg 

and Colbow (32) were more convincing in their demonstration of the 

observation of free-to-bound and bound-to-bound recombination radiation 

associated with a new acceptor level 0.131 eV above the valence band, 

\'lhich they attributed to a nitrogen impurity. 

Summaz:z 

The current explanation o~ the green edge emission o~ undoped Cd.S 

excited by continuous "band gap" radiation is now summarise.d. A wide 

variety of spectral ourves·may be expected depending upon the cr,ystal 

/ 
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used and the intensity of excitation. Even in the same crystal, 

different surface preparation techniques may result in variations in 

the proportion of incident radiation.absorbed, which in turn affects 

the spectral emission (32, 33). Usually at 4.2°K, the L.~.s. 

dominates (zero phonon maximum within th~ 5175 ~ 15 R rangeh however 

some crystals can be foun,d wpich show al.Bf9_s:f;~eJC;~.lusi:vely·the H.E .•. s. (zero 

phonon maximum within the 5135 ± 15 R range)._ Generally both series 

occur together. The shift of the L.E.S. to lower energies as the 

excitation intensity is decreased confirms the exp~anation in terms 

of a donor-acceptor pair (bound-to-bound) recombination process. The 

ionisation energy of the donor is about 0.03 eV, while that of the 

. acceptor is some 0.17 eV. The H.E.S. -·shmvs little, if any, shift with 

;---

excitation intensity which is consistent with the emission arising 

from a ~rea-to-bound transition, in which holes ~r~_b_?\Ul~ to ~h~_s_~--

acceptors as in the L.E.S. recombination process. It has been 

suggested by Thomas· et. al. (18), that any shift. observed in the H.E.S. 

may be due to changes in the el~ctric fields within the c~stals 

arising from the variation of the degree to which the compensating 

donors arid acceptors are neutralised. 

Since in CdS there must always be at least as many donors as there 

are acceptors due to autocompensation (see discussion chapter), the 

prominence of the H.E.S. at 4.2°K is difficult to exp~ain. Colbow 1 s 

postulate of a deep hole trap to explain the large photoconductivity 

at low temperatures at relatively long times after ·flash e~citation (28) 

means th'at there ~s probably a high free electron concentration at all 

times under continuous excitation. This may possibly explain the 

occurrence of the H.B.S. in the emission of CdS below about 40°K. 

/ 

The variation from crystal to crystal, of the intensity of the green 

edge emission may be_ correlat~d.with the intensity of the I1 bound 

,.· 
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exciton (17, 30). It seems very probable that the same acceptor is 

involved in both the ~ and the edge emission. The nature of the 

donors is rather more open to discussion, and may be associated with 

both impurities and native defects probably suphur vacancies (17, 18, 

30). 

2.4 Edge Emission Excited by Anti-Stokes Radiation 

The observation· of green edge emission excited by photons with 

energies less than the band gap energy (anti-Stokes (A.S.) radiation) 

was reported for CdS at 77°K by Halste~d et. al. (34)~ This effect 

has been seen in doped and undoped CdS, and in other II-VI materials 

at 4 •. 2°K, by Broser and Broser-V/arminsky (35). The excitation 

mechanism suggested is a two step process across the band gap using 
i "re.n'llee\. iQt~~.. 

an i~tePmea~aP,Y level. This level has been attributed to copper since 

it was found in , c:rystal.s which showed the effect and because the 

effect can be optimised by preparing CdS with a minimal donor impurity 

and stoichiometric compensation by the copper (36). The preparative 

0 9 conditions implied that the copper is largely present as CuCd' 3d , 

(i.e. substituted on a cadmium site, with no charge excess with respect 

to the lattice and with nine 3d electrons) in the unilluminated state. 

Condas and Yee (37) have questioned the role of copper as the centre 
j 1\ j-e,r M ec{ \ ~ j-e_. 

:responsible for the :irntcumotHaey level since their crystals, with an 

u ~ / impurity content of the order of 10 atoms em , contained no detect~ 

able copper. Brown et. al. (38) sug~est a model in which the centres 

normally associated with deep centre lUminescence are associated with 

the excitation process and are involved in the.recombination process. 

(This will be amplified in the discussion chapter.) 

The L.E.S. generally dominates the green emission of CdS at 4.2°K 

excited by.A. s. radiation·(37), however the H.E.S. has been observed 

in selected crystals (38).- The spectral shift of the series as the 
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intensity of excitation is varied confirms that the same recombination 

process is responsible for the A.S. excited emission as for the "band 

gap" excited emission. The absence of a shift of the H.E.S. confirms 

the free-to-bound nature of the transition. The absorption 

~oefficients corresponding to the "red" (A.S.) and "band gap" 

excitations are. of the order of 1 and 1o? c~-~ resp~ctively (39, 7). 

Possibly a.s a consequence, the donor-acceptor pairs involved in the 

A.S. excited L.E.S. tend to be more distant than those involved in the 

band gap excited emission, and the A.S. excited L.E.S. tend to have 
" 

sharper, narrower peaks (38). 0 Above about 40 K the H.E.S. becomes 

the dominant emission process. 

Blue edge emission has been observed in CdS at liquid heliwn 

temperatures excited by A.S. radiation (38). The pr~cise nature of 

__ --·- ~h~ __ recombination process_ r_:m~ins ~-n ~-i~pute, h~wever_ ~~ a_pyear~hat 

either the I 2 bound exciton or the free exciton or a contribution from 

both types, together with L.O.· phonon co-operation, m~ be responsible 

·for the emission. This will be discussed later in this thesis. 

Light amplification by stimulated emission of-radiation has been 

observed using sample cavities cut from thin platelets of CdS (typica~ly 

a few microns thick, up to 0.5 mrn wide and ·1 to 2 mm long), with micro- : 

second pulsed electron beam excitation (up to 60 ICV at 20 mA over a 

0.5 mm diamter) impinging on the larger platelet face, normal to the 

o-axis. The spectral emission occurs in the blue region of the edge 

emission. There are basically two types of CdS laser, which may be 

te~ned intrinsic and extrinsic. 

Benoit A ,la Guill~um~ et. al. (40) distinguished three proce:::::lv:"\ 

0 which can lead to lasing action in intrinsic CdS below 77 K. 

(a) The annihilation of a free exciton with the emission of a photon 

and an L.O. phonon, which has only a weak gain. 
. . 
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(b) The interaction of. two free excitons resulting in an exciton 

with no momentum (which is then able to be emitted as a photon since 

a photon has .no momentum~ conservation of' momentum), and one exciton. 

The .emission 11:ne is 27 meV below the free exciton line, which implies 

that the photon gives up this energy before being emitted. The energy 

released would ionise the remaining exciton and create an electron hole 

pair. This process has medium gain. 

(3) A free exciton interacts with an electron and transfers its 

momentum to it. As a result, ;the exciton may become a photon. This is 

a high gain process. 

Litton and Reynolds (41) ·showed that the two extrinsic laser lines 

~f' ·cdS, which they ~alled r8P (4896 R) and I1 (4888 R), are associated. 

Using-conventional .u.v. exc~tation of CdS platelets at 1.2°K, they made 

the following observations and conclusions: 

(a) 

(b) 

The two lines had identical Zeeman splitting and hole g values. 

The intensity of' the r8P line increased at the expense of the ·I1 

line as the concentration of' excess cadmium was increased from cr,ystal 

to or,ystal. 

(c) They confirmed that the I 1 line is a bound exciton-~utral complex. 

(d) They observed discre_te lines between the I1 and r8P peaks. They 

assigned these lines and r8p to near neighbour donor acceptor pairs, 

suggesting t~at· the acceptor involved in r1 was associated_ with donors 

arising from cadmium interstials or sulphur vacancies. l'he lines also 

showed Zeeman splitting and g values identical to that of' I1 • 

Crystals which had been heavily doped with cadmium no longer showed 

the r1 line or the intermediate lines, but did show the ~8P line and a 

line at 4869 R which Litton and Reynolds assigned to the r
5 

complex·. The 

authors did not investigate any of' the characteristics associated with 
. . 

donor- acceptor pair recombination~ It would be more self-consistent if 
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the 4869 R line had in fact been assigned to the I 2c complex, which 

Handelman and Thomas (17) suggested was.a sulphur vacancy. (The 

authors differed from Hurwitz (42) in the value .of the wavelength 

they observed ~or the r8P laser line). It is possible then that the 
i 1"1 t(.rsh ~ IQ.l. 

r8 complex is in fact associated with a cadmium intePetial. p . This 

is not ruled out by Zeeman measurements, as there is some doubt .as 

to whether the r8P line is associated with a neutral acceptor or a 

n~utral donor. This would not preclude the possibility of donor-

acceptor pairs at lower· ·cadmium doping levels.' 

The extrinsic process appears to be more efficient than the 

intrinsic ones in obtaining amplification. Hurwitz (43) observed 

lasing· with 11 keV electrons in CdS crystals grown under excess 

cadmium oonditions. The electron beam was pulsed with 50 -: 200 nano­

second pulses at·a repetition rate of 60 cycles per second. The 

maxim~ attanable output power (about 350 watts) and efficiency · 

(overall power efficiency about 27%) remained essentially ~onstant 

over the temperature range 4.2 to ll0°K, while the threshold current 

rose slmrlY (50 to 80 microamps). With further increase in temperature, 

the threshold current rose very rapidly with a corresponding decrease 

in efficiency until at 250°K_the laser threshold was at 22mA, 60 KeV, 
; 

the maximum capacity or· the gun. CdS lasing at room temperature had 

· been observed by Nicoll (44). 

The edge emission of cadmium sulphide consists of. the "blue" and 

"green" components. The blue emission is associated with the 

recombination or annihilation of intrinsic or free excitons and bound 

excitons. The free exciton emission is presently beine used to analyse 

the mechanisms associated with the excited states of crystals. The 

study of the bound exciton emission, which may be an:.uy:..H~d in terms of 
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"hydrogen-molecule complexes", provides information about the nature 

of imperfections in CdS. The green emission, at temperatures below 

about l1-0°K, is associated with two, phonon assisted series lmown as 

the high ener~ (H.E.s.) and low energy (L.E.S.) series. 0 Above 40 K, 

the L.E.S. disappears. The H.E.S. is attributed to the recombination 

of free electrons with holes bound to acceptors some 0.17 eV above the 

valence band. The L .E .s. is attributed t.o a distant donor-accept or 

pair mechanism, involving donors some 0.03 eV belmv the conduction 

band and the ~arne acceptors as those involved in the H.E.S. The 

intensity of the I 1 , neutral acceptor bound exciton, and the green 

emission are affected by heat · t.reatment in cadmiul"!l vapour, :indicating 

that the acceptor involved in the recombination process is associated 

with a cadmium vacancy. The donors involved in the edge emission are 

associated with native or impurity defects. The donor-acceptor 

associate model is now being· tentatively applied to the centres· 

in edge emission. 

Edge emission may be excited in various ways. Time resolved 

spectroscopy - involving "flash" excitation - is the most efficient 

method of determining the ionisation energies of donors and acceptors 

associated with the green edge emission. Continuous band-gap (u.v.) 

excitation is used to stu~ the exciton components and the variation 

of the green emission from cr,ystal to cr,ystal. Electron-beam 

excitation can cause CdS to lase. Anti-Stokes excitation excites green 

and blue emission and should prove useful as a tool to·investigat~ the 

levels lying in the middle of the band-gap. .· 

I 



APPENDIX 2.1 

The Lorentz model of excitons considers the exciton as an 

oscillator, consisting of a particle of mass me' negative charge e, 

vibra.t:i.ng about some equal:lbrium position,; with a. natural frequency 

,(,;)
0

, o.t wM.ch a posit:i.v~ chare;~ of equal mag..."litude is :i:'ix'='d· ·The 

dynamical behaviour of the exc:i.tons under the influence of electro­

magnetic wave (wavelength 2'1f'/'?) leads to th~ di_spersion curves for the 
1\ 

l~itudinal (L) and _transverse (T) waves, see figure A2.1 (a) ("Excitons", 

D. L. Dexter and ~. s. Knox, 1965 Interscience Tracts on Physics and 

Astrono~ No. 25).· The introduction of the notion that the oscillators 

or excitons may be_coupled.results in a curving of the~ curve of 

figure A2.1 (a) which is analogous to the curvature of an exciton band, 

see figure A2.1 (b). 

Thus a photon, P entering the crystal may become either a 
0 

p.olariton P1 or -Pi-, :...which cor-respond--to-photons-to-which--di:f-ferent- ----

refractive indices (n :C1{~), but the same frequency can be assigned. 

Thus if the P
0 

photons produce approximately equal .numbers of P1 and P{ 
pola:i:'itons, and if P1 and PJ. are not scattered, these ~rH?:d!~git~~ig_ps of 

the c1~stal m~ optically interfere with one another.· Hopfield and 

Thomas (1963, Phys. Rev. 132, 563) showed.that this "spatial dispersion" 

affects the reflection spectrum of CdS in a region of strong dispersion. 

The Lorentz model predicts lOo% reaectivity for incident photons between 

W
0 
and~ because there e.re no modes of the system available. in this . _. 

energy range, see figure A2.1 (a). Spatial dispersion introduces allowed 

. modes, with the curvature of the exciton band leading to an exciton 

effective mass of 1.80 m , and reduces the peal<: ref:,_ection to 65%. . e 

'. 
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CHAPl'ER 3 

EMISSION SPEC'l'ROSCOPY : EXPERD.lliNTAL APPARATUS 
------· AliiD .fp..Oq_Jill.U.!§.. _____________ _ 

Th1der continuous band gap excitation a wide variety of edge 

emission spectra may be observed, depending upon the cadmium sulphide 

crystal used, and the intensity of excitation. One of' the purposes 

of this work has been to examine the photo-excited edge emission of 

large CdS single C~Jstals at liquid helium temperat~res in an 

attempt to establish a correlation between the crystal growth conditions 

and the spectral distribution of the edge emissions. This chapter 

describes the material preparatio:r, the cryostat, the optical 

apparatus and the experiments performed to analyse the "green" and 

"blue" CdS edge emissions. 

The cadmium sulphide crystals studied during the course of this 

research were grown in the Department of Applj e d Physics, Durham 

University, .by Dr. L. Clark and Dr. K. Burr. This section serves as 

a brief description of the method of growth fpr the purpose of· discuss.:.. 

ing the results of the thesi-s. 'l'he details of the growth technique 

a.7ld the crystal properties have already been fully described (1). 

Initial purification, by an argon flow technique, of British Drug 

Houses "Optrai'l11 grade or Derby Luminescents "electronic" grade 

material was used to obtain the CdS charge for the preparation of the 

large single crystals. 'l'he vert~cal furnace arrangement, and a 

typical quartz glass tube used in the large crystal growth technique 

are shown in figure 3 .1. A procedure of evacuation, balcint; and flush-

ing with argon was used to remove volatile impurities from the tube. 
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Figure 3.1. Fur:n.ace arrangement sho~:m l·rith a growth tube in 

the initial position. 



The procedure was repeated when the excess of sulphur. or (cadmium); 

the first component of the charge, had been placed in the tube. The 

final component was the purified CdS. .Any deliberate dopant was 

generally mixed with the 30 grns. of CdS before it was added. to the 
,.,. 

tube. After several hours further evacuation to 10-0 torr, the tube 

was sealed from the vacuum system and inserted in the furnace in the 

position indicated in figure 3.1. 

The excess sulphur (or cadmium) sublimed from the upper vessel 

into the cooler reservoir as the furnace system warmed up. The·tube 

was pulled through the furnace system when the temperatures were 

sta,ble. As a result the temperature gradient effectively moved 

across the growth chamber and led to the vapour transport of the 

CdS from the charge to the upper point of the tube, where the boule 

f~rii'~ec!• _The rese.rvoir V!~;>.Jllaintained at a steady: ·tem.2_erature };;o'----------

ensure a constant elemental partial pressure during growth. The 

pull was usually stopped when about half the charge had sublimed. 

The crystals we+e either cooled rapidly by removing the tube from tha 

·furnace system or, more usually, were cooled slowly over a period of 

some 70 hours, which resulted in the boules containing less·strain. 

The changes in the physical properties .of the "doped" crystals, 

compared with those of 11 pure" crystals grown under the same temperature 

conditions, confirmed that transpo1~ of the dopant from the charge to 

the boule had t~cen place. 

3.3 Sample Preparation 

Cadmium sulphide crystals which had been cut and polished needed 

to be etched before any green edge emission was observed under ultra-

violet excitation at liquid nitrogen temperatures. It was not 

necessary to treat the cleaved face of a crystal in a:ny way before 
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luminescence was observable under the same conditions. Samples of 

11 as grov:n" crystals were obtained by cleaving the bou+e and selecting 

a c:cystal :f'rom the central volume of the boule, thus avoiding the 

strain and damage produced by cutting and polishi.11gs, and ENoiding 

conta'llin.ation from the gro·wth tube wall. It was necessary to etch 

samples which had been given a post growth treatment in a chromic 

acid solution at 80°C for several minutes to obtain observable 

lurainescence. Cleaving the crystals meant that the sample geometry was 

irregular, althour;h the size of all crystals was approximately the same, 

5 to 10 by 2 to 5 by 1 to 3 mms. 

3 .1+ !h~,p_ry_o~ 
~ue al metal helium cryostat, shown diagramatically in 

figure 3.2, was manufactured by The .Oxford Instrument Co. Ltd., and has 

been modified slightly. The essential features are: 

--(1-)- - 1.} l-itr-e- -capacity l-iquid- hel-i-um pot .• 

(2) 2 litre capacity liquid nitrogen jacket. 

(3) 1'wo carbon resistors, mounted on a thin stainless steel tube, i'or 

use as depth indicators in the liquid helium pot. 

(4) The facility for electrical connections to be made to the srunple 

froo outside the cryostat. 

(5) Demountable copper sample holder, copper (liquid nitrogen temp-

erature) radiation shield.., and outer vacuum walls surroundin·g 

the tail. 

(6) One centioetre diameter, optically flat silica vrindows in the 

demountable outer vacuum vrall. 

(7) Sanple maintained under vacuum. 

A conventional vacuum system,incorporating an ES 150 rotary 
f 

pump and a11 EO 1 oil di~ssion pump (manufactured by Edwards High 

Vacuum Limited), was used to evacu·ate the cryostat. Provision was made 

.._, • 1· xh · +o be recovered, alternatively, the contents for ~.ne ne ~um e aus·r; gas v 

of the helium pot could be evacu\ated using the rotar,y pump. 
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Inclium was used to attach the cadmium sulphide samples to the 

cold copper finzSer. 'l'he ·cold finger vras detached from the crcJostat 

and heated until the indium, covering the sample area, ·was molten. 

The heating was then stopped, and the crcJstal placed on the indium 

just before it resolidified. The indium provided a good electrical 

and thermal contact between the crystal and the cryostat. Nyberg and 

Colbow (2) reported that heating CdS crystals for a few seconds in a. 

nitrogen or air ambient to the point where the crystal turned red 

produced green edge emission bands, which they associated with nitrogen 

acceptor levels 0.131 eV above the valence band. No similar series 

have been observed in the emission spectra observed during the course of· 

this research. It was assumed that the effect of an.y accident~al "heat 

treatment 11 upon the samples during the course of mounting upon the 

copper block was probably very small. 

Monitoring the resistance of the carbon radio resistors gave an 

indication of the temperature of the helium pot, and greatlyassisted the 

estimat:im of the stage reached during the transfer of liquid helium. A 

0.03At % Fe.-Au versus chromel thermo-couple (material man,ufactured by 

Johnson Matthey Metal Limited) 'l'tas used to measure the temperature of the 

crystal under the various illuminations used during the course of the 

research. With liquid helium in the helium pot, and the thermocouple 

reference junction in liquid helium, the temperature recorded with and 

~ithout incident U .V •. radiation was 8 to 10°K, rising to 23 to 25°K under 

OR2 excitation, and falling to 12 to J.4. °K vrhen two HAl filters \7ere 

added to the OR2 exciting beam. With liquid nitrogen in the helium 

pot, and the reference junction in liquid nitrogen, the temperatures 

recorded under the same excitation con<l:itions were 80, 89 and 81°K 

respectively. The thermocouple was attached to the face of the crystal 

upon which the radiation was incident, so that the temperatures 



recorded - particularly in the case of excitation via OR2 filters when 

a high proportion of' infra-red radiation was present - were probably 

the hi5hest that the crystal would experience. 

Photo-excitation -----------
Stokes and anti-Stokes excited emission spectra were recorded 

for the majority '!f crystals studied. This section describes the 

equipment used to produce the different excitation conditions, and the 

arrangement to excite and collimate the emis7ion. 

Stokes excitation was provided by a 500 watt mercury lamp 

filtered by two Chance glass OX 1A r.,ilters to pass 3650 R radiation. 

Data, supplied by Engelhard Hanovia lamps on one of their 100 watt 

medium pressure mercury arc tubes (~rc length 1.85 inches, tube 

diameter 12 mm), indicates that the total radiative flux vras 25.2 watts 

input. Assuming a linear relationship, the radiative output of the 

500 watt lamp, underrun at approximately 90 volts, 5 amps, stabilised 

d. c., should be approx.imately 110 watts. Table 3.1 shows the percent-

age of the radiant energy emitted in the region of the transmission of 

the OX lA filter~, and the effect of two filters on the emission.· The 

total percentage of' the emitted radiant energy which is transmitted by 

two OX lA' s is the sum of the fourth colum.'l, and is 8.28}~, being 

largely composed of the· .3650..~ transition (8.04.~~). Thus the radiant 

energy which was available to be focussed onto the crystal was of" the 

order of 9 watts. 

Anti-Stokes excitation was provided by a 50 watt tungsten micro­

scope lamp filtered by a Chance elass ORl or OR2 or a 7700~ interference 

filter (bandwidth 150.R at half height). Where the general terms red or 

A.S. (anti-Stokes) excitation are used, the incident radiation was 

provided by the tungsten lamp filtered by the OR2 filter. The same 
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effects were observed using the ORl filter, hovrever the green emission 

intensity was reduced by approximately lOf~ with this excitation. The 

emission intensity vtas reduced by a factor oi' the order of' one hundred 

when the TtOcft. interference f'il ter replaced the OR2 filter. This 

meant that the luminescence excited' by the 77002~ filter was below the 

limit of detection in some crystals. Figure 3.3 shows the transmission 

characteristics of some filters used in the excitation and detection 

of CdS edge emission. Assuming that the microscope lamp had a 

luminous efficiency of 10 lumens per watt input; then there were 

500 lumens of radiant power emi-tted. in the visible spectrum. This 

is approximately 0.8 watts. Bearing in mind that the shape of the 

spectral distribution of a tungsten lamp, the radiation tra.YJ.srni tted 

by the OR2 filter between .0.62 and 0. 74 microns vrould be approximately 

75/; of' the __ ~isible o~tput,_i.e. 0.6 vratt_s_~--~his portion of the 

spectrum is probably largely responsible for the A.S. excitation of 

the green edge emission (see Chapter 7 on Excitation Spectroscopy). 

Thus a conservative estimate of the radiant enerey available to be 

focussed or-to the c~stal in the form of A.S. excitation is 0~6 watts. 

The arrangement used to excite and collimate the lu.rninescence 

into the Optica spectrophotometer is shown in figure 3 .4. Y/incloVT 

"one" was used vthen the sample was to be irradiated with u.v .. Single 

beam A.S. radiation - OR2 irradiation -·was focussed onto the crystal 

via window "two". The sample could be simultaneously irradiated by 

an auxiliary beam, through ·window "one", provided by a seconcl filtered 

tungsten source, using 1.205 or 0.953 micron (150.R bandwidth at half 

peal-c) interference filters or a 1 IrLTJl thick slice of silicon. 

A set (50, 30, 10 and l:l~ transmission) of' neutral density gelatin 

filters (manufactured by Barr and Stroud Limited) was used to vary 

the intensity of the excitation~ The transmission characteristics of 

the neutral filters showed a "flat topped" response in the region 
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,...0.34 to 2.6 microns. (Optica absorption measurements shm1ed the 

following characteristics: 

365oR value 
IR value 0 

Filter (different detector) 
6200 a value 

50~ 52.5% 45~~ 50){ 

30)~ 35~; 25% 30J~ 

10)~ 125~ 7}~ 10)~ ) 

3.6 Optica CP LJ-lU 

The Optica CF ~J~l is a double beam, recording, grating spectra-

photometer, principally designed as an absorption measuring instrument, 

and has a workable spectral range of 0.185 to 3.200 microns. As an 

emission measuring instrument, the spectral range is reduced by the 

response of the detectors. The Optica proved to ~e a reliable and 

swift means of determining the relative intensity of the various 

For absorption spectroscopy, two sources were provided; a 

hyclrogen lamp for the 0.185 to O.L~o50 micron range and a tungsten lamp 

for the 0.32 to 3.20 micron range. A rotatable,wheel was mounted over 

the input aperture of the monochromator. The wheel contained a 

selection of filters for the. suppression of the higher spectral orders 

of the gratings, and stray light. No filters were necessary when the 

hydr-ogen lamp was used, nor in the visible region. However, when the 

tune;sten lamp was used, or when analysing ~mission spectra, the 

appropriate filter had to be ~nserted. These were: 

F 1 A blue filter for the 0.32 o.L1-0 micron range 

F2 A red filter for the 0.62 1.20 micron range 

1"3 -An infra-red filter for the 1.2 - 1.8 rnic:!'on range 

Fl1- An infra-red filter for the 1.8 - 3.1 micron re.nge 

The monochromator was of the Littro\7 type, with two interchange-
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able plane gratings as the dispersive elements. For the ultraviolet 

~~d visible regions (0.185 to 1.000 microns), a 600 lines/wm ruled 

grating with a dispersion of i~/mm was provided. For the near infra-

red region (0.9 to 4.0 microns), a 300 lines/IDI!l ruled grating with a 

dispersion of 32JV' min'was used. The grating could be changed by turn-

ing a handle on the monochromator. ~'he focal lengths of the common 

collimator was 0.8 meters, and its diameter 80mm. The wavelength scale 

followed a helical path on a disc rigidly attached to the vravelength 

drive unit. 

The light leaving the monochromator entered the double bearn 

system, a unit rigidly bolted to the monochromator. A lens, the only 

lens in the instrument, cond,ensed the ,light onto a system of mirrors, 

see figure 3 .5. A rotating mirr·or a.11d a fixed mirror in each beam 

passed the light through the reference and sample cells al ter-.aati vely, 

at 18 cycles per second.. The single detect·or always saw the light from 

the tr10 cells along the same optical path. For absorption measurements, 

this system avoided any necessity to compensate for the spectral 
. . 

response of the detector, the spectral emission of the s.ource and My 

absorption due to sample holders or containers - provided that a 

matched pair of containers were always used. An induction generator, 

connected with the rotating axis of the mirrors, provided an electrical 

signal to ~ relay which sr1itched the two measured and amplified 

det.ector signals. The ratio was displayed on the Honeywell chart 

recorder. 

The slit width of the monochromator vras servo controlled by the 

reference signal level, so that the output from the detector due to 

radj_ation which had !Jassecl through the ref'e.rence cell uas kept at a 

constant value. When switched to the "single beam mode" for the study 

of an emission spectrum focussed onto the monochromator input aperture, 

I 
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an independent electrical reference signal replaced that provided 

·by the reference beam on the detector. Thus a constant reference 

level was provided, and the ratio system of recording was preserved; 

whilst the servocontrol of the slit system was no longer required. 

The slits vrere set to suit the intensity of light being stud.ied, and 

the bandwidth or resolution required. 

An RCA type 1P28 (9 stage, S-5 response) photomultiplier was 

the detector provided for the 0. 2 to 0. 62 micron range. A Koda.lc 

Ektron lead sulphide detector was provided for the 0.62 to 3.2 micron 

range. The spectral sensitivities .of these detectors are shown in 

figure 3.6, notice the difference in the scale of the two character-

is tics. A transistorised E .H.T. stabilised pov:er unit, which 

incorporated six push-buttons (noted P.V. 1 to 6)• to provide sensitivity 

variation, supplied 850 volts to the photomultiplier. Figures 3.7 

shows the effect of the P.V. setting for a·constant monochromator slit 

width, and the effect of the sl:i.t variation for a constant P. V. setting, 

upon an inciclent emission spectrum signal (i.e. the instrument 

operating in the single beam mode). The y-a.xis, or 11 factor11 was 

obtained by dividing the recorder deflection at the variable P.V. or 

slit setting by the deflection obtained at P.V.6 or slits 1 respect-

ively. These "factors" were used., where necessary, to estimate the 

intensity of the emission components of. different crystals relative 

to the standard P.V .(), slits 1. 'l'hroughout the course of these 

recorded experiments, the 11 time constant" of the system was set at 

"normal", and the amplifier "gain" at 6 (in the range 0 - 10). 1'hese 

settings were used to keep the noise at a reasonable level whilst 

maintaining a pen response in keeping with the spectra being studied. 

Synchronous motors i7ere used to drive both the paper advance of 

the recorder and the grating - wayelength scale system. Since the 
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dispersion of a grating is linear, the wavelength analysis of the 

paper record was s:imPJ.e. 'l?he wavelength scan speeds were approx­

imately 0.5, 1 a.>1cl 2 A per seconcl, or with another motor; 3, 6 ru1d 

12.~ per second. 'l'he chart speeds available were 2, 4, 6 and 8 inches 

per minute. The 2inches per minute chart speed used in conjunction 

with the slower ila.Velen;=;th drive motor was found to· Bive good, 

reproducible records of the green edge emission spectra.. 

The emission spectra of cadmium, sodium, mercury, helitm and 

neon discharge tubes in the spectral range of particular interest 

(O.l1-8 to 0.56 microns) ·were recorded using the Optica. The wavelengths 

were on average 5.±.1 R higher. than the accepted values for the el!'ission 

l).nes. The emission lines were reproducible to within one to two 

Angstroms. Thus the Optica was useful as an instrument to investigate 

the edge emission under different excitation conditions_, and_ to --------- --------- - ------· ----

differentiate between the various exciton lines. To obtain more 

accurate wavelength measurements, it was necessary to use the Bausch 

and Lomb spectrograph. 

A model 12 Bausch and Lomb 1.5 metre grating spectrograph, was 

used to recora. the emiss:i.on spectra. · The spectral ranges 0.45 to o. 70 

microns and'0.225 to 0.35 microns were covered by the first and second 

orders of the .grating, with dispersions of approximately 10 and 5 ..fl/'mm 

respectively. The instrument is shown diagrammatically in figure 3.8(a.). 

The slit system incorporated four components: 

i) A simple shutter, manually operated • 

. ii) A step-filter-field lens, which focussed incoming radiation 

onto the grating. 'l'hree light tra.>1smission values (6, 25 

and 10~~ transmission) were available for quru1titive analysis. 

Rotating the lens through a right angle allowed f'ulJ. 1007; 

transmission, the normal w~rkine position. 
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iii) A Hartmann slide which controlled the height of the 

spectrum recorded on the film. A sliding fish tail could 

be used to va~J the height of the spectrum from 1.0 to 

15 mm. Alternatively, a diagonal slit in the sHde, 

providing a fixed spectral height of la5 mm, could be 

moved across the input aperture allowing eleven exposures 

to be made on the same film. This latter system was 

normally used, since it reduced the interference of the 

1 

calibration lines with the spectrum being investigated. 

iv) A fi.xed slit assembly providing three fixed slit widths 

of 10, 32 and 60 microns which could be inserted into the 

optical pall:th as required. A second, "Durham-made"slit 

assembly, slit width 0.5mrn, was sometimes used for the 

investigation of weak spectral emissions which did not 
--------- -------- - ------ --

require ~uch high resolution. 

1'he light travelled through the field lens, the Hartmann slide, 

and the slit, down a 'dre.w tube, which reduced scattered light, through 

a "st~at:l.~ing" lens, and onto a 8rating (635.3 grooves per m.rn). The 

"stigma~izing" :).ens corrected for the ast~tism which is associated 

with ·any Rowland circle spectrograph. The radiation was diffracted 

onto the film which was held in a specially curved cassette, such 

that the dispersion remained linear along the length of the film. 

Koda..'l<: "'l'ri-X" Pan 35mm film v1as used to record the spectra. The 

spectral response of this film, shown in figure 3 .8(b), is substant-

ially uniform over the spectral range of interest. Undiluted 

"Microdol-X" in a tank ·was used to develop the films, vrhich were then 

rinsed and fixed in "Kodafix" before a final thirty minute wash. 

The same arrangement was used to collimate the luminescence as 

that shown in figure 3.4. In cases of' weak spectral emission, the 

. i . ' 
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luminescence, excited via window "one", was collected via window 

"two". This meant that the full face of the CI"JStal was "seen", 

rather than the edge, and so more light could be collectede The 

exposure required to obtain a measureable image intensity depended 

upon the alignment and the focussing of the image on the slits, and 

upon the nature of the spectra. Weak el'!lission due to the excitons 

Tias more easily distinguished from the background than that of weak 

broad emission due to t;reen edge recombination. 

! . A Hilger and Watts Microdensito_meter was used to analyse the 

films. A helit~ discharge tube provided calibration lines,_ and 

allowed measurement of the dispersion for each film. The optic_al 

density of the film l7as monitored by measuring the light transmitted 

by the film. The _ligh:!__was focussed onto the· film, __ an<l_q9_U.ect~Q,_O_I'!_ • 

the other side by a microscope objective arrangement; which focussed· 

the transmitted light onto an adjustable slj,t system in front of a 

selenium cell. The output from the cell, was displayed on a 

galva.nomet~r. 'l'he slit width was adjusted to be as narr.ow as possible 

whilst still providing a measureable signal level, and was maintained. 

constant throughout the scanning of a film. 1'he most convenient slit 

width was found to be about o.Bnun. A screw system vras used to move 

the table on t7hich the f'ilms were clamped, thus passi:-J.g the film 

across the field of vievr of the objective. The screw was turned by 

hand, the distance traversed was read off a drum, and the film density 

was obtained from the galvanometer deflection. 

The spectrographic results vrhich are discussed later are presented 

in terms of v1avelength versus the gal vonometer deflection observeda 

'l'o obtain cmy form of comparison between crystals·, it would be necessary 



-54--

(1) to ensure that the focussing and alignment of the collimation 

system was maximised for each sample. This is possible when using 

the Optics. with a meter output, but very difficult with the 

spectrograph. 

(2) to correct for the logarithmic response of the film, the slit 

width of the spectrog-raph and "the response and slit width of the 

microdensitometer. 

(3) to allow for the possibility of' variations in developing 

eff'ectiveness. 

Since the narrowest bandwidth of the spectrograph was approximately 

equal to the reported apparent linewidth of the bound exciton emission 

lines, (3), no measurements of the linewidth of any exciton spectra 

were made. 

The chart output of the Optica provided a record of the ern:i.ssion 

intensity per unit wavelength interval versus wavelength. The sens-

itivity of the photomultiplier fell only·by about 5o% of its value at 

0.~8 microns by the time it was in the 0.56 micron region. It was not 

nec~ssary t~ correct the chart output of the Optica for the response 

of' the photomultiplier because no comparison of· the intensities of the 

green edge a.t1.d exciton emission was required. The results from the 

Optica are therefore presented wHhout correction. The peak heights 

obtained from the charts were corrected to the 'standard setting' of 

P.V.6, slits 1, as described in the section concerning the Optica, in 

order to compare the intensities of the components of the different 

crystals. The peak intensities of the satellite phonon peaks of the 

green edge emission were corrected f'or the photomultiplier response 

prior to the evaluation of the distribution of the nunilier of emitted 

phob.ons per:rhoton. 

i 

I 
i 
I 
I 

-------1 
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(3) D. G. Thomas and J. J. Hopfie1d (1962) Phys. Rev. 128, 2135. 
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CHAPrER 4 

STOKES EXCITED EDGE EMISSION OF UNDOP.ED CADMIUM SULPHIDE 

4.1 Introduction _;;.;-~---..-:;;---. 

The edge em~ssion of undoped cadmium sulphide excited by Stokes 

(ultra-violet) radiation was studied at liquid helium and liquid 

nitrogen temperatures. The crystals were grown under controlled 

partial pressures of the constit~ent elements, as described in 

Chapter three. At liquid nitrogen temperatures, longitudinal optical 

(L.o.) phonon assisted free exciton and green edge emission was 

observed. As the temperature was reduced, ~he intensity of the 

emission generally increased. At liquid helium temperatures bound 

exciton recombination and two green edge emission series could be 

detected in the majority of crystals. 

of the U.V. excited emission at liquid helium temperatures could be 

correlated with the conditions under which crystals were grown, 

provided that the starting charge was-of a consistent, good quality. 

The Optica spectrophotometer was used to determine these basic trends, 

while the Bausch and Lomb grating spectrograph was used to· make a more 

detailed stu~ of the components of interesting spectra. 

In this chapter, a brief description of ·the characteristics of the' 

edge emission at liquid nitrogen temperatures is followed by a -' 

description of the characteristics at liquid helium temperatures, and 

their dependence upon crystal growth con~itions. Recorded observations 

of some individual crystals are presented as illustrations of the 

characteristics. Unless oth~rwise specified, the measurements were 

recorded by the Optica, and are presented uncorrected for possible 

wavelength variation or photomultiplier response. When two recordings 

have been superimposed in the same figure, the emioaion intensitites 
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are not directly comp~rable where the term "Emission· intensity 

(arbitrary units)" is used. "Relative emission intensity" means 

-· 

that the curves may be compared directly. The characteristics of the 

edge emission of cr,rstals supplied by A.E.I. Limited and Hull 
- . 

University, which were much the same as those of crystals grown at 

Durham, are briefly described. Table ~.3 'outlines the features of the 

emission characteristics illustrated in the figures of this chapter. 

~.2 E4ge Emission Characteristics at Liquid Nitrogen Temperatures 

The "blue" and. "green" components (1) of the u.v. excited edge 

emission of a crystal (No. 180) grown under an excess of cadmium 

pressure of approximate~ one atmosphere are shown in figure ~.1. 

This illustrates-the form of the edge emission of CdS at·liquid nitrogen 

temperatures. The blue edg~ emission contained emission "lines" which 

were proad compared with the sharp bound exciton lines which are observed.at 
------------------------

liquid helium temperatures. The major "blue" maxima were ~bserved at 

approximately ~88 and ~95oi, and are attributed t~ the zero and first 

_longitudinal optical (· L.o.) phonon replicas of the emission which 

accompanies the annihilation of a free exciton. These ~esults are in 

agreement with the maximum. of ~83R observed by Voigt and Spi$g~lberg (4) 

which they ass·ociated with a zero phonon replica of anexciton transition 

. having the highest energy point of the distribution of the emiss-ion at . . / 

2.5~3eV (~875R). As the intensity of the excitation was varied, the; 

height of -the first L.O. c-omponent of the blue emission -varied as fl, . 
where I is the excitation intensity and n the index. Figure 4.2-shows 

the excitation intensity dependence of the height of the first L.O. 

component, the value of the index (n) obtained was 1.5+ 0.1. 
' -

The first maximum in the spectral _distribution of the green emission 

.occurred at 51~ R. Replic~s of this first component were observed on the 
\ 

low energy side of the emission, see figure ~.1. The separation of the 
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components was about 35 meV, which is approximately equal to the L.O. 

phonon energy of 38 meV. The green edge emission at liquid nitrogen 

temperatures has been attributed to phonon assisted recombination 

between free electrons and_holes bound to acceptor levels some o.~ 

(2) to 0.17 (3) eV above the valence band. This "Sch8n-Klasens" 

(5 & 6) model·is supported by the photoconductivity and luminescence 

measurements of Spear and Bradberr,y (7). Variation of the intensity 

of_ excitation by two orders of magnitud~ did not lead to any 

displacement in the wavelengths_ ot the maxima. However the height ot 
n the zero phonon component_af the green edge emission varied as I , 

' where I is the excitation intensity and n was, typically, 0.93 ~ o.~. 

see figure ~. 2. · 

The broad nature ot the edge e~ission at "liquid nitrogen temper-

__ a~~r~s mad~· t~e_p_!ecise measu~yt~-~---~t the maxima of the components 

difficult. For example, the values ot the L.o. phonon energy obtained 

for the green and blue components, see figure ~.1, were different. 

The widths at half height of ~he green emission components at liquid 

nitrogen temperatures were approximatel~ twice those at liquid helium 

. temperatures. As a result, the spectra could ·not be readily_ resolved 

into separate phonon components, and no attempt.was made to fit any 
. . 

·mathematical form of distribution to the height~ ·of the; phonon components. 

The value of 51~ R for the first ~ax~um o~ the green edge emission.ieads to 

a value of (2.57 - 2.~0) = 0.17 eV for the sepa~ation of the acceptor 

level from the valence band, assuming· the band gap is 2.57 eV at liquid 

nitrogen temperatures. This provides close .agreement with Col bows .(3) 

value ot. the acceptor energy of the 0.17 eV. 

4 • .3.1 Edge Emission Characteristics at Liq"uid Helium Temperatures 
. I ' , 

The edge emissio~ ~t cadmiUm .sul~h~~e excited-by 3650 R radiation 
. , . 

. , .· 
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at liquid helium temperatures consists of two major components 

·described as the "green" and the ·"blue" emission (1). The green 

emission can contain two L.O. phonon assisted series. The higher 

energy series has its zero phonon component at 5~0 R, whereas the 

iower energy series_has its zero order component at 5170 R. The 

high e~ergy series (H.E.s.)· has been assigned to recombination between 

free electrons and·~oles bound to acceptor levels some 0•17 eV above 

the vale~ce band (3). The low energy series is due to the distant 

pair recombination or electrons bound to shallow donors and holes 

bound to the accceptors (3) •. The "blue" emission is attributed to the 

annihilation of free and boUnd excitons, and their phonon replj.cas. 

From Zeeman effect studies 0~ the Il (4889 R) and I2 (~867 R) exciton 

line·s,. Thomas and Hopfield (8) iden~_ified I1 and I 2 with the· 

annihilation of excitons bound to neutral acceptors and donors respect-
- .. ---·--- ·- ··- -------..,....-

ively. 

Edge emission components w~re identified by comparing their wave­

lengths with the reported values. The behaviour of these components 

under different excitation conditions and the variations of the 

.spectra from cr,ystal to cr,ystal suggest that these assignments·were 

correct. With the except~on of.one sample, the.I2 emission could not 

be resolved using the Optica. How~ver with the Bausch and Lomb 1 
I 

spectrograph, it was possible to demonstrate that the I 2 e~ission // 
.. 

often contained several compo~ents. The components of the r2·emission 

may be oorrelated.with I2A (~867.2 R. neutral donor, doublet nature), 

I 2B or r5 (~69.1 R neutral donor) and I 2C (4870.2 R neutral. donor) 

emhsion (8, 9, 10). · Although the r
3 

(~861.7 R ionised donor) emission 

was not observed, _it is sufficiently far removed from the I 2 exciton to . 
have been resolved by the Optioa. In·o~nolusion therefore, the "I2 

emission" recorded by the Optioa is essentiallY an integration of the 
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emission of all the excitons bound to neutral donors. The green edge 

emission components were more readily resolved. 

4.3.2 Green Edge Emission 

Figures 4.3 and 4.4 show clearly the pr69.ance of the two aeries in 

the green edge emission of u.v. excited cadmium sulphide at liquid 

helium temperatures. In figure 4.3 the intensity of the H.E.S. was 

greater than that of the L.E.S., The zero order phonon component of 

the H.~.s. was observed at about 5~0 R, with repeated components at 

lower energies with energy spacing of 37 meV. Similarly in figure 4.4, 

where the intensity·or the L.E.S. was greater than that of the H.E.S., 
' 

the zero order phonon comp~nent, at about 5188 R, was repeated at 

~ower energies with spacings of 37 meV. This repetition is associated 

with the simultaneous emission of a longitudinal optical phonon (11). 

______ Th!!J spa~J..ngaa•~i_n agre_e_!!len~_wit!l __ t_!l~ _!~UeLfor_ the L-.o. _p)lc;m~!l..:. energy: ___ ___.:_ 

in CdS obtained from infra red reflectivity measurements (12). The 

maximum of· the zero phonon component of the L.E.S. in figure 4.3. was at 

approximately 5180 R, while the first maximum of the H.E.S. in 

figure 4.4 w:as at approximately 5141 R. It will become evident, as · 

further results are presente~, that the positions of the maxima of 

· the zero order phonon components of the green edge emission of undoped 

and doped crystals were not observed at one fixed wavelength, but felli 

within a range of wavelengths. The max~ of the zero order phonon 

components which lay within the range 5135 to 5155 R were assi_gned to 
. . 

~he H.E.S., while those within the range 5170 to 5200 R were a~signed 

to the L.E.S. recombination processes. Handelman and Thomas. (9) made 

the same assignments having observed·simiiar variations in the position 

of maxima. These authors also reported that there was no change in 

the relative intensities of the·H.E.S. and L.E.S. at temperatures of 

; .. 

.. 
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20, 4.2 and 1.6°K,· when both series were simultaneouslY present in 

a crystal. 

Two spectra have been superimposed in figures 4:3 and 4.4, to 

illustrate the effect of the variation of the intensity of 

excitation, using neutral density filters, upon the position of the 

maxima. The L .E .s. was observed to shift towards longer wavelengths· · 

as the excitation intensity was reduced. This is more obvious in 

figure 4.4 than figure 4.3. The shift.is.illustrated more clearlY in 

figure 4.5 which shows the spectral distribution of the L.E.S. 

dominated green edge"emission of a CdS crystal under 100 and o.~ 

u.v. excitation. Figure 4.6 shows the shift with excitation intensity 

of the energy of th~ maximum of the zero phonon component of the L.E.S. 

emission of the ceystal. of figure 4.5. .The gradient of the best fit 

__ ob_t_ained ror·this ·c!'.Y.:stal, the so!_:iA_Jine of fi~~4_.6,_was Q..qll.J!.l_tJL ______ 
1 

2.2 meV per order of magnitude change in the excitation intensity. 

The Shift in the maximum of the zero phonon component of the L.E.S. 

emission averaged over five undoped crystals was ~t.2 ±. 0.4 meV per 

order of magnitude change in the excitation intensity. This error was 

used to obtain the dashed lines of figure 4.6. The estimated 

experimental error of three points 1~ within the calculated error of 

the mean. 

Since the H.E.S. was never found without a. substantial L.E.S. 

component at liquid helium temperatures, it was difficult to determine 

whether there was any wavelength shift of the H".E .s. series with 

excitation intensity.· The zero phonon maximum of the green emission 
0 . 

of cry_stal number 78, grown at 1150 C under a "controlled" cadmium 

pressure of 0.3mm which showed the highest H.E.S. to L.E.S. intensity 

ratio, was·· observed to shift from ~150 to 5157 .to 516lt. i as the· 

excitation intensity was reduced from 100 to,lO to l%. The asymmetry 
. ,: 

,; 
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of the zero phonon component indicated that there was some L.E .s .: : 

emission present. Anti-stokes excitation, which was found to excite 

the emission of the L.E.s·. alone in all crystals (see chapter fi~e), 

confirmed that the L.E.S. recombination mechanism was operative in this 

cr,ystal. The observed shift could possiblY be explained by the L.E.S. 

to H.E.S. intensity ratio increasing as the excitation intensity 

decreased. The resultant envelope would then appear to shift towards 

longer wavelengths as the relative size of the L.E.S. increased, and 

shifted to longer wavelengths, while the H.E.S. remained constant. 

The dependence of the height of the zero phonon component upon the 

excitation intensity was higher than average in this crystal, i.e. 

n = o. 75 .:!:. 0.01. This could be explained if the first maximum is an 

enve~ of_ the first maxima.of the two series. 

j. 

_ __ The_ maximum_of_the_zer.o_phonon_component __ of_the_H.E.~S_._shown_in. ______ _ 

figure 4.3 was ·shifted slightly to longer wavelengths as the excitation 

intensity reduced. This, once again., may be interpreted as the influence 

of the L.E.S. upon the observed em:lssion. Since there was no shift v1ith 

variation of excitation intensity of the green e~ge emission at liquid 

nitrogen temperatures, and.as the H.E.S. recombination process at liquid 

helium temperatures was the same as that at the higher temperature (this 

was confirmed by monitoring the emission maxima as the crystal was cooled/ 

to liquid helium temperatures) it was concluded that there was lit.tle / 

shift of the H.E.S. as the excitation intensity was varied. 

The heights of the maxima of the zero phonon components of the 

spectra obtained under different intensities of excitation were corrected 

to the'~tandard" of intensity, (see chapter-on Experimental apparatus 

and procedure). Figure 4.7 shows the relationship between the corrected 

emission intensity and the exoitati~n"intensity. 1~ emission was that 

obtained when no neutral density filter_waa inserted in the exciting beam • 

-~ 
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The experimental values are those obtained from cr,ystal No. 68 

used in compiling figures 4.5 and ~.6. The "l% excitation intensity" 

points in figures 4.6 and 4.7 were both rather low compared with the 

other points, indicating that there may have been a systematic error. 

The value obtained for the intensity dependence index, n, for the 

cr,ystal was 0.86 ±. 0.02. The. mean value of n· for the green edge 

emission, averaged ove·r seven undoped cr,yst~s, was 0.85 ±. O.Q4.. 

A Poisson distribution, for a fixed mean number of emitted 

phonons N, was fitted to the heights of the maxima of the p~~non 

components of the green edge emission. Hopfield (13) showed that the 

transition probability for a multi-phonon process, P (m), is described 

by a Poisson distribution, 

· P(m) = (N .,m/m~), exp ( -N), 

_ --. where_.m_is_the_number_of_phonons.,_and_N_the_mean_number_of __ emit.t.ed ___ ------:--:--

phonons "per event". The measured heights of the L.O. phonon components 

of the green edge emission were corrected for photomultiplier response 

and converted from the units recorded direotly by the Optica, i.e. 

emission intensity per unit wavelength interval, to number of photons 

emitted per unit energy interval. (Multiplying by a factor of 
. 2 . . 

(wavelength) + 1.24, where the energy of the photon is in electron 

volts and the wavelength in microns, converted the wavelength interval 
I 

to an energy interval.. Multiplying by a t'urthe·r f'actor(wavelength)" 

+ 1.24 converted the "emission intensity" into_ "number of e~tted 

photons".) The corrected heights were normalised so that the height 

of the zero phonon component (111::0) was unity. The normalj.sed values 

obtained for the "100}& excitation intensity" spectrum of the green 

edge emission of figure 4.5 (crystal No. 68) are compared vdth the 
. -m 

values of N Ymt in table 4.1. The ~al~e of N is simply the 

normalised_height of ~he first L.o. phonon component of the emission, 



i. 

A compar:i.son of the experimental and the theoretical 

phonon component heights, indicating a Poisson distribution 

having a mean N = 0.82. 

Number of 
· Phonons (m) 

0 

1 

2 

Measured peak 
height (normalised) 

1.00 

0.82 

0.31 

Theoretical peak height ::o:m, -N 1 m~ for N = 0.82 , 

1.00 

0.82 

0.34 
------------1-------- ----------- ----------- ~---- -- ----
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and was fixed for the evaluation of N m/ml for any one cryst-al. The 

agreement between the measured and calculated heights, with N equal to 

0.82 for this crystal, indicateS that the·probability of a multiphono~ 

emission process is described by a Poisson distribution. 

Val~es of N obtained for other crystals ranged between the extremes 

of 0.78 and 1.00. The mean of the mean of the distribution was 0~86 ~ 

0.02, averaged over eleven crystals. The analysis included green 

emission spectra which were dominated,by the H.E.S~ 

p_iscussion 

Hopfield (13) developed a theory of the transition probability for a 

multi-phonon-process involving ·recombination. where one of the carriers is 

trapped at a level with a binding energy greater than the energy of.the 

L.O. phonon. The result obtained was that the Poisson distrj.bution 

described in the previous section should be observed. Fitting this 

distribution to the measurements of the peak heights of the edge emission 

de~errnined by Klick (14), Hopfield found that ~- ·= 0.87 for CdS at 4.2°K. 

I~ order to check the theory and the model, he calculated the radius "a" 

of the bound . -1State corr~sponding to N = o.87' assuming that the charge 

distribution of the trapped carrier could be approximated by a Gaussian, 

then 

ii = ~2 ( ~} t ( ~!.o.) ( ~ _ Eo) 
where e is the electronic charge, EL.o. the ener~ of the longitudinal 

optical phonon, n the optical· index of refraction and ~o the statio 

dielectric constant. Substituting N = 0.87, the value of a for CdS was 

found to be approximately 11 R, or approximately two lattice constants. 

' In k space, this is approximately one-sixth of the distance from the 

centre ~o the edBe of the ·Brillouin zone. Hopfield pointed. out that 

the value of a obtained, and.henoe the -limited k space extena:i.on of the 
.-

'·.·· 

. ·' 
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trapped carrier seemed to be consistent with the original assumption 

of near cubic symmetr,y for the trapping potential well which requires 

that the component wave functions for the trapped particle must _be 

contained in a small part of the Brillouin Zone. He also felt that 

a mean radius of 22 R or 2a was not inconsistent with the binding 

energy of the trapped carrier. 

The value of N = 0.86 which was obtained from the results 

described in the present work for the H.E.S. and L.E.S •. of the green 

edge emission and the corresponding value of a, approximately 11 R, 
are in excellent a~reement with the values obtain~d by Hopfield. 

This indicates that at least· one trapped carrier is involved ·in the 

recombination processes associated with the high and._low e_nergy series. 

The shift of the L.E.Se to lower energies with decreasing excitation 

intensity indicates that the emission-was due to the phonon assisted 

recombination of an electron bound to a donor with a hole bound to a 

distant accept()r (15). The magnitude of· the shi:ft agrees with that 

observed by Thomas, Dingle and Cuthbert (19). The observation o:f the 

Poisson distribution of the phonon series, and the comparison of the 

positions of the maxima with those of other works (3), lead to.the 

conclusion that the H.E.S. is due to the phonon assisted recombination 

of free electrons with holes bound to acceptors. The same acceptor 

level was probably involved in both recombination.mechanisms (3). 

Assuming that the models are correct, that the same_acceptor levels. 

are involved in both me~hanisms; that the values .of 5~0 and 51BO R 

are representative of those obtained :for the maxima of the zero order 

phonon components of the H.E.S. and L.E.S. respectively, and that the 

band gap energy of CdS at liquid helium temperatures is 2.5826 eV (16), 

the acceptor and donor binding energies obtained by simple subtraction 
. . 

of values are 0.170 and·o.Ol8 eV, re·spective;Ly. The value of the 

/ 

· acceptor binding e~ergy ·is in agreem~nt with ~~~t deduced_ by Col bow (3) • 
.. 
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However, in the evaluation of the donor binding energy, no allowance 

was made for the Coulombic energy component which arises from the 

attraction between the bound hole and bound electron, and the value 

of 0.018 eV compares unfavourably with Colbow's value of 0.0305 eV. 

To evaluate the effect of the Coulombic tenn, consider the 

relationship between. the various energies involved. The enerey, EB' 

of the zero phonon component of the L .E .s., bound to bound transition 

. is described by EB=EG-(EA+En)+E0 , where EG,EA' and .ED are the band gap, 

·acceptor and donor_ energies, re~pectively. E
0
.is the Coulombic _term 

appropriate to a donor acceptor se~arat.ion ~~ where Ec = -~!._ . If 
· · . 4r£tf.r 

the. dielectric ~onstant is taken as 10.33 (17), r = 1.39/E0, where r is 

in R and Ec in eV. The problem. is to determ:i:ne r. It was observed 

that the L.E.S. shifted 2.2 eV to lcwter energy per order of magnitude 

decrease in the excitation intensity. Any change in EB' dEB' must be 

due to a change dEC in EC, since EG' EA and ED remain constant under 

2 .different intensities of excitation. Thus dEB= dEC= 1.39dr/r. For 

2 -3o dEB = 2.2 meV, dr ~ r 10 A. dr represents the change in the mean 

separation of t~e donor acceptor pairs through which the recombination 

is proceeding when the excitation intensity is changed by one order of 

magnitude. It r -10 R., 9-r-0.1 R; such a small change in r could not 
I'· . . 

encompass a sufficient humber of donors and acceptors to account for 

the change in the luminescent intensity. If r~lOOO R., dr-1000 R., :/ 

which would imply that the luminescent intensity should saturate with 

I 
I 

increasing excitation intensity; this is not observed. It follows 

therefore that r must be of the order of 100 R, when dr~lO R, an 

estimate which is in agreement with Colbaws (3) conclusions. Thus a 

value for EC of o.o~ eV was used as a correction for the Coulombic 

interaction, giving a value of ~ of 0.03_2 eV, w~ioh agreed more closely 

with Colbow' a value of 0.0305 + 0.0005 eV •. - ' 

' , .. I.",,, • 

.·. ., 
. . ' - . . . 
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Thus the conventional spectra obtained under continuous exc:i.tation 

could be analysed to provide a measure of the binding energies of the 

donors and acceptors involved in the green edge emissions. However, 

the variation in the position of the maxima of the.series from crystal 

to crystal where the positions were expected_t~ be the same, and through 

the depth of the crystal in the work of Handelman and Thomas (9), 

indicates that precise measurement of binding energies can only be 

obtained using some other method. Time resolved spect~oscopy _is 

undoubtedly the best method of determining accurately any differences 

in the level or levels responsible for the green edge emission in CdS, 

for example see the paper of.Colbow (}). It is however reassuring to 

note the agreement between the estimates of r, EA and ED determined by 

the two methods. 

4.3.3 ~ue Edge Emiss~ 

Figure 4.8 illustrates the components and the phonon replicas 

which comprise the blue edge emis~ion spectrum of two different CdS 

crystals at liquid helium temperatures, as recorded by the Optica. The 

major components of the curves a and b, r2 and r1 respectivelY, were 

deliberately allowed to drive the pen orr-scale in order to show more 

clearly the phonon replicas. The spectrum or figure 4.8(a) was 

· "dominated by the r1 exciton emission, with ·the maxim'!UJl at about 4897 .R . .­

·recorded by the Optica, and the first ~d second· L~O. phonon replica~,./ 

at about 4970 and 5050 .R respectively. The I_2 ex~iton maximum was 

observed at about 4873 R in thi~ crystal, which was grown under excess 

sulphur pressure. The spectrum of figure 4.8(b) was dominated by the 

r2 exciton emission, with its first and second L.O. phonon replicas 

at about 4954 and 5034 .R respectively. The presl\ience of r1 exciton 

emission in this crystal (No. 172), whic~ was .g.rown under excess cadmium 

pressure~, was evident as a slight shoulder on the long wavelength side 

•:" 
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of the r2, r2 + L.O. and I 2 + 2L.o. emissions. The emission maxima 

at about 4930 .R, designated r2 •., was tentatively ascribed-to the 
. . ..... 

"excited states" of the excitons bound to n~utral ·donors (10). 

Any. precise measurement of the wavelengths of the maxima of the 

·emission components was extremely difficult with the Optica because 

of the error in the wavelength drive, th~ large bandwidth required to 

obtain a measurable signal and the speed of response of the instrument. 

Increasing the bandwidth of the instrument resulted in the broadening. 

of the emission so that individual components became lost in a single 

unresolved "band". The spectrographic measurement· of the emission 

spectrum of the crystal used. ·to obtain figure 4.8(b) confirmed the 

assignment of the I 2 emission, the pres~enc~. of I1 emission and the 

tentative assignment of the r2• emission, see figure_4.9. The "I2 peak", 

which spanned the wavelength range from 4850 to 1,.880 .R, was shown to 

contain ·che following separate· components: the r;· free exciton (4857 .R), 

the ~ exciton associated ~ith the r
3 

complex· or another neutral donor 

line (called ·hare r2D) ~4865 R), the I2A exciton (4867 R) and the I 2B 

(alternatively r5) or I2c exoiton (4870 i). The r1 emission was 

resolved from the II I2 composite peak"' and was located at 4889 R-. 1'he 

-first and second L.o. phono~ replica of the ~ f~e exci_ton were 

observed at about 4827 and 50~ R, respectively. The first and.secon4 

L.o. phonon replicas of the 11 I2 composite peak" were observed at about_~ 

4942 and 5019 R respective~y. r2• and r2• + L.O. emissions were 

observed at about 4910 and 4990 R. The fine structure of the r2• 

emission will be discussed at the end of this section. The wavelen1;ths 

and energi~s of the components of the major maxima and their assignments 

are displayed in table 4.2. 

The comparison of the observations made with the Optica spectre-

photometer with those or the Bausch and Lomb spectrograph confirmed 

that the identification of _the emissions -~t ·about. ~97 and 4873 R, as 
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Table 4.2. The positions of the emission maxima of figure 4.9; 
their assignment and an indication of the accuracy 
of the assignments. ED = 0.026 eV. 

Maximum Energy eV Assignment Energy of Assignment 
(assumine ED=0.026~V) Wa(RJength . ' 

4865 2.54807 I2D or r3 c .r6> 

4870 2.54546 I2B (i.e.I5) or I2c 

4867 2.54703 I 2A 

4857 2.55227 rJ free exciton. 

4889 2.53556 . Il 

.4902.6 2.52853. I2D -·lED 2.52857 
.4 

4904-.3 !. 2.52765 I2A- lED 2.5?753 
4 

I 
r5 - lED 2.52610. 

!·· 4 
4909 2.52523 I2D - 8 E 2.52496 - D 

.. 9. ·- -·· 
I2A -§.ED 2.52392 

9 
I5 - §. ED 2.52235 

9 
. I2D -~ED· 2.52370 

. 4916 - 2.52169 1 . 
I-2A • *ED 2.52266 

I .. 

( I5- *ED 2.52109 

4925 2.51708 ~1(free exciton) 
+ L.o. .. 

4927 2.51601. ·~ (free ~xciton) I 
I · + L.o. . ./ 

I 

4942 2.50863 "I2 peak" + L.o •. ' 
I 

! 

4989 2.48q.59 "1~916 R. peak" + L.o. 

5004- 2.47729 ~ + 2 L.O. 

5019 2.47014 "I2 pea.k" + 2 L.O • 

. ' 
~ 

... 
.. 

. . 
. . 

.. 
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recorded by the Optica, to the recombination of excitons at neutral 

acceptors (I1) and neutral donors (~2 ), respectively, was correct. 

No facilities for the measurements of the Zeeman splitting of these 

lines, wh:i.ch would have been desirable, were available to confirm 

the assignments. The agreement between the spectrographically 

observed em:i.ssi~n maxima and the previously reported values was assumed 

to be sufficient to verify the conclusions. Similar:cy-,. the agreement 

between the observed and expected maxima of the energies of the I 2° 
emission was assumed to be satisfactory- verification of the assignments, 

see table 4..2, and discussion following. The fact that the em:i.ssion 

m~~ima at about 4.920 and 5000 R (I2• and r2• + L.O.), as recorded.by 

the Optica, were only observed in crystals with a stron~ I 2 component, 

confirmed the assumption that they were in some way associated with the 

I2 em:i.ssion. 

The I1 exciton coupled much more strongly with both the optical 

and acoustic branch phonons than the I 2 excitons. This is in accord 

with the fact that e,xcitons are more tightly bound to the acceptor 

centres than to the donor centres (8), In two samples, the first L.o. 

phonon replica· of I1 was more intense than the zero order line. The 

value of the L.O. phonon energy obtained from the replicas of the blue 

edge emission was in agreement with that.obtained from green edge 

measurements, i.e. it was 37 :,.1 meV. Acoustic phonon wings were 

seldom observed with 12, whilst I1 was generally accompanied by a low 

energy acoustic wing. The L.O. phonon replicas of I 2 were some 

hundred times less intense than the zero order exciton em:i.ssion, which 

often meant that they were not observed. 

Variation of the intensity of excitation, using neutral f~.lters 

pro~uced no me~sureable wavelongth.shift of the components of the 

blue edge emission. The intensity of the .exci-ton em:i.ssion was more 

dependent than the intensity ~f the green edge emission upon the 
. ~· 

:' 
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intensity of the exciting radiation. Figure ~.10 shows the dependence 

of the emission intensity of the zero phonon replica of the I 2. 

exciton upon the excitation intensity. The index (n) obtained for 

the intensity dependence· of the I2 emission of this crystal (No. 80) 

was 1.~1 ± o.os. The mean of the values of n obtained for both 

major exciton. c_omponent 8, (the zero phonon component 8 of I 1 and I 2, ) 

averaged over ~ive'undoped cr,ystals was 1.~ ± 0.1. The rapid 

intensity dependence and the necessity to increase the bandwiqth of 

the detector to obtain a measureable spectrum made the measurement 
( 

rather difficult. 

The assignment of the emission at about ~897 and ~73 R, recorded 

by the Optica, to I1 (neutral acceptor) and I2 (neutral donor) exciton 

emission was confirmed by the spectrographic analysis of the emission 

spectra from the same samples. Also, the· intensity of the components 

of the green ed.ge emission tended to confirm the assignments.. This · 

will be described more fully in the next section, however to illustrate 

the point, consider figure ~.8. In figure ~.8(a), the spectrum is 

seen to rise sharply at about 5100 R, due 'to the very strong green edge 

emission. The I 1 excit~n emission dominated 'P9 ~he blue edge e_mission 

of this_ crystal. -However in figure ·~.8 (b)'· where the I2 exciton 

emission was very much greater than that of the I1 exciton, there was 

no rise near 5100 R, and in fact the -green edge emission was very weak. 

~mission_maxima lying between 4900 and ~920 R have been reported 

by Yee and Condas (18) .and- Reynolds, L_itton and Collins- (10) -with 

conflicting explanations of the recombination process. Yee and Condas 

observed peaks at ~906.o(a), lt-913.3 (b) an9, ~922.6 R(o) superimposed 

on a broad background,· and-suggested either that the emission was due 

to an impurity pair process with average donor to acceptor separations 

- ; 
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of 12.27, 12.60 and 12.9~ R for a, b, and o respectively, or that 

(a) was the L02 (0.02~ eV), .(b) the T0
3 

(0.0236 eV) and (c) the 

TO{, (0.0284 eV) phonon replicas or the I2 exciton e~ission. Thomas, 

Dingle and Cuthbert (19) reported pair recombination associated with 

a band h~ving a max:i.mum at 4900 R in crystals heavily doped with 

chlorine, bromine or iodine, which they suggested could be associated 

with a hole trapped nt a neutral' acceptor recombining with an electron 

trapped at a donor. Thomasuet. al. suggested that the acceptor was a· 

complex_ comprising a cadmium vacancy (double acceptor) next to a 

sj.ngly charged donor1 such as a Cl atom, which would be at a nearest 

neighbour sulphur site. They suggested that isolated substitutional 

·chlorine atoms provided the donors. The ~900 R emission was the only 

band that Thomas et •. al. have a.ssociated with pair recombination in 

the blue emission of CdS. Reynolds et. al. have recently demonstrated 

however, using Zeeman splitting, that the lines (in zero field) at 

4907.15, 4908.7, 4912.~, 4915.32 and ~916.5 R can b"e_ identified as 

thA emission of photons, resulting from the annj_hilation of th:e I 
5 

. . . 
and I 2C ~xcitons bound to neutral donors, which had los~ some of their 

recombination energy in exciting the neutralising el~ctrons or the 

donors to their exc:tted state~. A donor i9nisation energy or 0.026 eV 
. ' 

provided the best fit to the calculated and .experimental-ly' determined / 
/ 

ionisation energies of the r
5 

and I 2C neutral donors, assuming a 

"hydrogenic donor" model. 

· This model provides a reasonable explanation of the moxima 

observed between 4900 and 4920 R, see figure 4.9 and table 4.2. Thus 

the 49·04.3 R maximum in the I2 • emis_sion o~ figure· ~.9 corresponds to 

the emission or photons following the annihilation of excitons. which 

had be~n bound to the _-I2A (4867 R) n~u~rai ":~nor, b~t whioh had los_t 

energy in exciting t~e neutralising electron from the ground state of 

•• : . . j ; 
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the donor (ED eV below the. conduction band) to the first excited 

state (n=2) of the donor. The ener~ lost· is ·equal to (1 - (~1).2) E..]) '' 

-
3 E eV -.- 4 D • The value of 0.026 eV for ED used by Reynolds et. al. 

provides a good fit to our 4902.6 and ~904-.3 R emission maxima, and 

can be assumed to account reasonably well for the remaining .broader 

emission.- The reason for the "merging" of the emission associated 

w:i.th the excitation of the electron to higher excited states into 

complex peaks is probably due to the higher temperature of 10°K 

(kT = 0.001 eV) at which our measurements were made oompa;red with the 

0 1.2 K temperature bath used by Reynol_ds :et.- al •. 

It is of interest to note that if a ~drogenic model could be used 

to describe the energy ~evels of the acceptor thought to be responsible 

for the I 1 bound exciton and the g~en edge emission, then the · 

energy of the photon emitted associated with the 1 1 exci~_o~ losing 

sufficient energy to raise the hole to its first excited state~· 

.(~ = 2), would be I1 -~A. Substituting the accepted values for I1 

and EA of 2.53585· and 0.17 eV respe-cti~ely, the r1• (n = 2) emisf!ion 

would have, a maximum of 2-.40835 ~V, or __ · 5lJt.7 .3 · R. The r1• (n=3) emission· 
8 . . 

maximum would be at (Il - 9 EA) = 2.384.7~ eV. or -5198.2 R~ The coincidence 

between these energies and those of the zero order phonon green emission 

peaks is remarkable. Hopfield (13) pointed out that, if exciton 

recombination in the field of an impurity. is responsible for the green· 

edge emission, a heavy carrier mass of about 5 m is required to raise 
. e 

the mean number of emitted phonon& to theaxperimentally observed value 

of one. Ho~ever the existence of strong phonon replicas of the I1 

exciton itself could well be thought to be sufficient evidence to. 

indicate strong coupling of tnis exciton to the lattice. The binding 

energy of an exciton·to a neutral acceptor was determined by Thomas 

and Hopfiel.d (8). The value ~btained, 0.018 eV, agreed remarkably 
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\'lell 'rvith the simple extrapolation of the hydrogen-molecule binding 

energy for the appropriate configuration. The temperature at which 

0 kT = 0.018 eV is approximately 200 K, the temperature at which the . 

intensity of the green edge emission is seen to be reduced rapidly. 

There are numerous objections to _the suggestion that I 1 *. 

emission is responsible for the green edge emission •. 

(1) The L.E.S. often dominates the. green emissi9n at liquid helium 

temperatures. If the model is correct, this would require the 

r1• (n=3) emission to be involved in ~reference to the I 1* 

(n=2) emission. 

(2) The intensity of the !1 bound exciton emission line is often 

less than the green emission intensity in certain c~stals. 

This would require the I1° emission process.t~ be a preferred 

process to the recombination of·the simple r1 bound exciton. 

(3) The observed width and shape of the green emiss:i.on at low 

temperatures is d;ue to acoustic-:lattice vibrations, and or life­

time broadening. Time resolved spectroscopy measurements, 

pe.rformed by Thomas, Dingle and Cuthbert .. ·(19), have shown a 
. . 

large shift of the L.E.S. to higher energies and a broadening 

of the emission in spectra observed at decreasing intervals 

after excitation. The zero order phonon maxi~a shifted to 

energies greater than 2.41 eV. The I1° emission cannot explai~ 

the shift or broadening of the ·L.E.S.green emission. 

(4) The green edge emission·deoays more slowly than the blue edge 

emission. The I1* model could not explain the large difference 

·in decay time. 

· (5) It seems unlikely that the I1 • emission should have a weaker 

excit~tion intensity dependence than _the r1 bound exciton. 

No_doubt· other objections,could be. raised against this model. 

However t}lis section serves to illustrate. w~ .-· .. the r1 • . emission_ ~ 
. .· . . . . : ........ ·.·.:_ .·.. : . : .··. :·::-·: . ·, . ·. ,. -· .. " . 
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not be observed. Even if the hydrogenic model of the acceptor must 

undergo strong perturbations, the maxima of the Ii emission probablY ·. 

lie in the region of the zero order phonon peak of the green edge 

emission. The acceptor ~sponsible for the green edge emission is 

also thought to be the same as the acceptor·associated with the I1 

exciton, see following section. Thus although the Ii emission cannot 

explain the green edge emission, the mechanism may still be operative. 
) 

But because the green edge emission is also associated with the same 

acceptor, the Ii emission may be swamped by the green edge emission. 

4.3.4 Deperid~r:!£_L2f_the Intens~t:i::_'!_s of the Ede;e Emission ComponeJ!.i! 

Upon ~z..l:stal Growth Pa111meters 

Figure 4.11 shows the variations· of the U .v. excited edge emission 

components in crystals grown under different partial pressures of 

sulphur with the upper CdS crystal growth chamber controlled at 

temperatures of (a.) 1150°C and (b) 1125°C~ Figure 4.12 shows the 

variationsof the u.v. excited edge emission components in crystals 

Brown under partial.pressures of oadmi~ with the CdS at 1150°C. 

(Figures 4.11 and 4.12 are presented as a guide to assist the exp~anation. 

i of the trends observed and should not be taken too literally because ·or 

the small nunfuer of points an~ the difficulty of making absolute 

intensity measurements). Spectra measured on the Optica were used in/.· 

the compilation of the results concerning the comparison of emission· 

intensities throughout this section. 

· As the partial pressure of sulphur above·the growing CdS was 

increased_from crystal to crystal, the intensity of the.I1 component 

was observed to increase at first, reaching a maximum in figure 4.11 (b) 

when the. sulphur reservoir temperature was 350°C. Figure 4.8 (a) sho-rts 

the spectral distri~ution of th~ blue edge emission of the crystal 

grown with the CdS·.at .1125 °C under an excess p~essure ._of about 150mm • 
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The intensity of the I1 component de~reaaed as the partial pressure 

o~ the cadmium above.the growing CdS was increased. These trends 

suggest that the acceptors to which the I1 excitons are bound are 

associated with cadmium vacancies. 

The most intense I2 lines were found in cr,ystals grown under high 

cadmium pressures. This sugg~sts that the donors at which exci~ons 

recombine, to give at least a large part of the I 2 emission, are 

sulphur vacancies. Cr,ystals grown under an equilibr~um sulphur 

vapour pressure (such that the sulphur vapour pressure above the CdS 

at the growth temperature was approximately equal to th.at of the 

sulphur vapour pressure controlled by the taj.l temperature, i.e. of 

-the order of tens of millimetres of merour,y) d~d not exhibit the I 2 

emission, which indicated a low donor ·concentration. Further increase 

in the sulphur parti~l pressure resulted'in the unexpected reappearance 

of the I 2 emission. It is concluded that growth in a high pressure of 

sulphur vapour leads to a high acceptor concentration, as evidenced 

by the increased intensity of I1 e~ssion, but ~hat at the same time 

an approximately equal concentration of dqnors ~s introduced. This 

~utomatic compensation mechanism which produced "insulating (1010 -· 

1012 .ohm. em.), n- type cr,ystals with poor photoconductive response, 

is discussed in the summar,y, section ~.4. i 
I . 

. . / 
The inten~ity of the high energy green emission series (H.E.S.),/ 

arising from the recombination of free electrons with holes bound to 

acceptors, decreased as the excess vapo~r pressure of either cadmium 
. . 

I 
! 

or sulphur was increased. The intensity of the low energy green 

emission series (L.E.S.), aris~ng from the recombination of electrons 

bound to donors with holes bound to acceptors, increased as the excess 

vapour pressure of either constituent was--increased, reaching maxima 

when the cr,ystal growth temperature was "1150°c·, see figures 4.11 (b) 
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and l 1 •• 12. The increase in the intensity of the L.E.S. was probably 

due to the increase in the number of donors, which is illustrated 

by the increase in the intensity of the I 2 series. There is a 

correlation between the shapes of t~e L.E .s. and I 1 curves. For 

example in figure 4-.11 (a), the L .E .s. culV8 continued to increase 

with increasing. sulphur pressure at much the same rate as the I 1 

exciton intensity. In figure 4-.11 (b), the L.E.S. curve. reached a 

maximum at the same pressure as the I 1 curve reached a maximum. The 

strong correlation between the magnitude of the intensity of the· 

green emission and of ~he r1 emission imp~ies that the same acceptor 

is responsible for the green emission and the I 1 exciton emission. 

The L.E.S. also showed an interrelatio~. w:ith .the· intensity of the I 2 

exciton emission, indicating that the donors a~sociated with the I 2 

emission ara probably involved in the bound to bound recombination of 

the L.E.S •• 

Figura 4-.13 shows the u.v. excited spectral emission distribution· 
. . . . 0 . 

of.a crystal (No. 171) grown at 1150 C under_l80·mm excess cadmium 

pressure as recorded by the spectrograph. The -~jor components .of the 

"I2 peak" were I2A (4-867 R), I 2B or I 2C (4869 i) and the f';. free 

exciton (4-857 i). The remainder of the spectrum as presented, was 

recorded at about ten times the bandwidth used in the resolution of the · 

i I 2 emission, and as a result, the L.O. phonon replicas of the I 2 //' 

exciton and the I 2* emission· merged into a broad band. The green 
I 

/ 

emission intensity was weak. A very broad red emission band dominated 

the emission spectrum. Similar red emis&ion band~ were found :i.n· other 

crystals grown under cadmj.um rich oonditi,ons. These crystals often 

luminesced bright· orange on warming from H.quid. nit~ogen teMperatures. . . . . 

·It was concluded that the prese~ce of ex.cess c~dnrl.um ·vapour pressure 
.. 

dur:i.ng growth: · .- ... ·. : .-.:··. 

,_· .. ,•, . 

;. -~ 
. .. 

/ 
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(1) encouraged the formation of donors as indicated b.Y the intense I2 
emission, 

(2) inhibited the formation of acceptors as indicated by the· relative 

absence of the lJ. exciton and. green edge em:i.ssion, 

(3) resulted in the increased effic~ency of radiative recombination . 

processes other than "band edge" processes. 

C~stals grown under the same excess vapour pressure, but at 

different CdS growth temperatures, did not emit id.entical spectra. 

This may be seen by comparing figures 4..11 (a) and 4-~11 (b), 

illustrating the va~ations of the compo~ents of the u.v. excited 

green edge emission, in crystals grown under different partial·. 
. . 0 

pressures of sulphur with the CdS 90ntrolled at (a) 1150 C and (b) 

ll25°C. The int~nsities of the various components were not equal· 

in any two c~stals grown at different. temperatures but under the same 

excess partial pressure. (The experimental points at the lowest 

pressure in both fi~res were obtained from the same crystal {No. 77) 

which was grown at 1150°C} However the same trends, such as the 

increase in the intensity of the L.E.S. at the expense of the H.E.S. 

and the increase in the intensity of the I 2 component, were observed 

with increasing excess vapour pressure at both growth temperatures. 

The largest difference between the two curves was se~n in the intensit~/ 

of the excitons. 

Consider the crystals grown under 150mm excess sulphur pressure,· 

the emission of the 1150°C grown c~stal (No. 80) was dominated by 

the "I2 composite peak" with the_I1 exciton somewhat lost in the long 

wavelen1~h edge of this p~ak. The emission of the crystal grown at 

1125°C (No. 68) was dominated by the L.E.S •. green emission, the 

photoexcited carriers associated with donors preferring to recombine 

via the green edge e~bsion, with the I1 emission domina·ting the blue 

emission, . The spectrum of·. a third· ~rystal (No. 174), grown at 1075 ~C 
. . : ... . . . . . .·•. ,. . ; i . . , ... -;. .• ·.· 

·-·''. 
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under 150 nw excess sulphur pressure, showed that the intensity of 

the green edge emission was approximately three times that of the 

exciton emission. The green edge emission-, recorded by the Optica, 

is shown in figure 4.~ (~). By subtracting the anti-Stokes 

excited green emission (which only contains the L.E.S. ·- see chapter 

five) from the u.v. excited emission, it was possible to demonstrate 

that·.the U.V. excited emission contained both the L.E.S. and H.E.S. 

at approximately_ equal intensities. Spectrographic analysis of the 

blue emission, see fj_gure 4.14 (b), sho~ed maxima at J+-867 .6 K (I2A) 

~nd at 4869.3 R (I2B or r5). (The width at half height of the I2A 

emission was 6.3 X 10-4 eV, ~hich was gre~ter than the -bandwidth 

~sed in the measurement (0 .• 6 R). This was probably due to the doublet 

nature of the I2A emission). Comparing the emission characteristics 

of ~hese three crystals illustra~es the refuction ~n the intensity 

of the exciton emission, relative to the other emission with decreasing 

.growth chamber control temperatures ... In their search for Cd.S laser 

material, Thomas and Hopfield (20) preferred flow-grown platelets to 

large cr,ystals because of the inability to grow large perfect crystals • 

. . The reduction in the intensity of the ·exciton emission "_\Yith decreasing 
. ' . 

growth temperature observed in our experiments perhaps indicates a 

decrease in the crystalline quality of crystals grown at lower temper-

atures. 

The characteristics of the exciton edge emission of three crystals 

supplied by A.E.I. Ltd. and one from Hull University were much the 

same as those of crystals grown at Durham. Howeve.r, an interesting 

result was observed with the blue emission Of a crystal grown by. 

A.E.I. Ltd., crystal 578. Figure 4.15 shows the u.v. excited exciton 

emission of the crystal, wh~ch was semi-conducting (resistivity 

~0 ohm em.) The intensity -~or._ ~he ·_I~ an_d I 2B . e~ssions wa~ small ·· 

.. 

• i 
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compared with the emission 1n the 4672 R region, which was p_robably 

associated with some-unidentified "donors". The donors were probably 

resp-onsible for the low resistivity, and may have been associated _ ·. 

with impurities. 

4-.4- Summary 
!!I 

The green edge emission of CdS crystals at Hquid helium 

temperatures contains two L.o. phonon assisted series. ·The zero 

phonon component of the high energy series (H.~.s.) is due to the 

recombination of free. electrons with holes trapped at ac~eptor . 

levels some 0.17 eV above the valence band. The zero phonon component 

or the low energy series (L.~.s.) is due to the recombination of 

electrons bound to donors (some 0.03 eV below the conduction band) 

with holes bound to the same acceptor levels. The magnitude of the· 

shift of the maxima of the L.E.S. to longer wavelengths as the 

excitation intensity was redllced, was used to calculate the mean 

se·paratj.on between ~he donors and acceptors involved j_n the recombination. 

The separation was ·of the ord.er of hundreds of Angstroms. Th_e 

components of the blue emission spectra have been assigned to the 

-phonon assis~ed recombination of free and bound excitons, and the 

excited states of donor bound excitons, ~y comparing the positions of 

the emission maxima with those-of previous workers. 

The observation ·of the emission associated Vlith excitons bound to: 

the neutral donors lo-sing some. or their recombination ene~gy ·in 

·,. 
I 

raising the donor electron to an excited state of the donor, 12 emission,_ 

was used to evaluate a donor ionisation· energy of 0.026 eV. The·excitons 

were (a) I2A' (b) I2B (i.e. I5) or perhap~ I2c (these two excitons were · .. 
M I ·. 

not ·resolved separately) and (c) perh~ps the '6 free exciton associated-. 
. . 

with ~he 1
3 

fonised.donor or another exciton bound to a neutral· donor, 

s~ I 2rl, at 4665 R~ The d~n~rs which are- ~sponsible for a·large _part 

: .. · 

l '· 

ll 
I 
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of the nr
2 

composite pea..'li.:" are probably also involved in the L • .B.S. 

recombination process, despite the slic;htly diff'erent ionisation 

ener~y (ED = 0.032 eV) obtained. 'l'he ED value obtained from the 

green edge emission measurements had been corrected for a Coulombic 

interaction. The correction applied was simply an order of magnitude 

correction obtained from the order of magnitude estimate of' the donor-

acceptor separation. Using the. value of ED of 0.026 eV and vtorking 

b~ck, the separation obtained is 174 X, once again in reasonable 

agreement vrith the values of Colhow (3). 

'rhe relative intensities of the rna.jor components of' the ede,-e 

emission were correlated with the excess partial pressures of the 

constituent elements under which the crystals had been grown. The 

variations led to the following conclusions: 

(l) Tha acceptor ;i;:'g' responsible for the r
1 

bound exciton emission is 

also involved in the g1~e;:m edge recombination processes.. ·~'he 

acceptor is associated with a cadmium vacancy, even though other 

donor impurities may be juxtnposed with the vacancy (19) •. 

(2) 'l'he donors which o.re responsible for a large part of the r 2 

bound .. exciton emission and the L.E.S. green emission are 

probably associated in some vray with sulphur vacancies and/or 

cadmium interstitials. Sulphur vacancies have previously been 

suggested as possible centres for the recombination of' excitons 

to produce th~ r
2

C (4870.2 K) emission (9). 

( 3) The I2 emission was observed in CI"'J;>tals showing an intense r2 

emission. 

(4) As the number of' acceptor· levels involved in the green edce 

emission was reduced by using excess caclmium pressures during 

growth, alternative rad.iative recombination processes became 

more obvious. Red emission was ohserved in many such crystals 

grown at .Durham. · 'rhe low resistivity cr'Ystal grown by A.E.I. Ltd. 

',) 
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appeared "white" under u.v. excitation due to the blue, green 

yellow and no doubt other recombination processes. The red 

emission centre m~ be associated in some way with the centre 

responsible for part of the r2 emission. This possibility will 

be expanded j_n the discussion of the anti-Stokes excitation 

mechanism in the followj.ng chapters. 

(5) The appearance of r2 emission in the U.V. excited spectra of 

crystals grown under high excess pressures of sulphur indicates 
e. . 

that there is a strong tendl\ncy for an autocompensatory 

mechanism to operate in CdS. A possible system for the expl.~ation 

of this 'effect is propos.ed in c.hapter eight. 

; ' 
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Table lt-.3 The features of the emission characteristics illustrated 
in the figures of' Chapter 4. 

Figure Crystal Growth Excess 'Pressu~ Features 0 Temp. C mms. 

1 180 1150 Cd 760 blue and green S.D. 

2 H59 - - - blue and green I VS J 

3 AEI537 - - - green S.D. dJ 

4 AE~578 - - - green S.D. dJ 

5 68 1125 s 150. green S.D. dJ 
.. 

6 II II II II 'II dE vs J 
., 

7 II II II n II I VB J . 
8(a) II II II n blue S.D. 

8(b) 172 1100 Cd 180. II " 
9 n " II II II " (B & L) - .. .. 

10 80 1150 s 150 " I VB J . - .. 

11 77 " n ·12 I(blue &: Green) VB p 
·S 

·ao II II .. 150 II 

68' 1125 II n II 

94 1150 " 760 II 

69 1125 II II " 
12 78 1150 Cd 0.3 I(blue & green) vs PCd 

127 II II 30 
.. 

" 
; 

I 
' 129 " " 180 " ' I 

91 II II 760 II 
.. 

13 171 " II 180 green, blue & red S.D.(B&L) 

l.lt-( ~) 174 1075 s 150 green S.D. 

(b) II II " " blue S.D~ (B&L) 

15 AEI578 - - - II 
: 

-. 
S.D. spectral distribution, I emj_ssion intensity, J excitation 

I · intensity, B & L spectrographic rec_ord, P pressure of' constituent. 
' 

; 

.. ;. . 
.. : . . 
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CHAPTER 5 

ANTI-STOKES EXCITED EDGE EMISSION OF UNDOPED CAD~ITUM SULPHIDE 

5.1. Introduction 

The edge emission of undoped cadmium sulphide excited by 

anti-Stokes radiation was studied at liquid nitrogen and liquid 
under 

helium temperatures. The ~r,ystals were grown~ontrolled.partial 

pressures of the constituent elements. At liquid nitrogen 

temperatures the green edge emission excited by anti-Stokes (A.S.) 

radiation was identical with that excited by u.v. radiation. At 

liquid helium temperatures, only one g~een edge series (L.E.S.) was 

observed under A.S. excitation. This was accompanied by weak exciton 

emission in some crystals. 

The relationship between the crystal growth conditions and the 

intensity of the A.S. excited green emission at liquid helium 

temperatures was investigated. The Optica spectrophotometer was 

used to determine these basic trends, while the Bausch and Lomb 

spectrograph w~s used to determine the precise wavelength of the 

emission. In this chapter the characteristics of the A.S. excited 

edge emission at liquid nitrogen temperatures and liquid helium 

temperatures are described first. This is follow~d by an account of 

the way in which the edge emission at liquid helium temperatures varied 

depending on the conditions under which the crystal had been grown. 

Table 5.1. outlines, the features of the emission illustrated in the 

figures of this chapter. 

5.2. Edge emission characteristics at liquid nitrogen temperatures 

No blue emission was observed in the A.S. excited emission spectra 

of CdS crystals at liquid nitrogen temperatures. The first maxima of 

·the U.V. an~ A.S. excited green emissions were centred on 

I ' 

r 

., 
• II 

~ 
'·' ' ~: 
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Table 5.1. The features of the emission characteristics illustrated 

in the figures of Chapter 5. 

Figure Crystal Growth Excess Pressure Features 
• 0 

Temp. C mm. 

1 H59 - - - u.v. & A.S. green S.D. 

2" II - - II II II II I vs J -
3 77 1150 s 12 II II II II S.D. 

4 68 1125 s 150 II II II II II 

5 174 1075 s 150 II II II II II dJ 
' 

6 H59 - - - A.s. green S.·D., dJ 

7 215 1150 Cd 30 u.v. & A.S. green I vs J 

8 216 1150 s 50 II II I! II' II 

9 60 1075 s - II II II blue S.D. I 
I 

I 
10 77 1150 s 12. II II II II II 

I ' 

11 172 1100 Cd 180 II II " " " 
12 See figures 4.11 and 4.12 and table 4.3, Chapter 4. 

S~D. spectral distribution, I emission intensity, J excitation 

intensity, dJ effect of the variation of J. 
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approximately the same wavelength. Both.spectra indicated similar 

L.O~ phonon assisted recombination. Figure 5.1. illustrates these 

features. The A.S. excited green emission was assigned to the same 

recombination process as the U.V. excited green emission at liquid 

nitrogen temperatures, that is a free efectron recombining with a 

hole bound to an acceptor some 0.17 eV above the valence band. 

Variation of the intensity of excitation, using neutral density 

filters, did not lead to any displacement in the wavelengths of the 

maxima of either the A.S. o~ u.v. excited green edge emission. 

However the height of the zero phonon component of the green edge 

emission varied as tn, where· I is the excitation intensity-and 

n was typically 0.93 ! 0.04 for the u.v. and 2.26 ! 0.06 for the 

A.S. excited emissions. These values refer to the. same crysta~, 

see figure 5.2. It was imposs~ble to check the dependence of the 

A.S. excited emission intensity over several orders of intensity of 

excitation because of the strong intensity dependence and the weak 

emission intensity of the green edge emission. The linear dependence 

of the Stokes (u.v.) excited emission intensity compared_with the 

square law dependence of the A.s •. excited emission inte~sity implies·· 

that a two step excitation pr~cess was operating under A.S. · 

excitation (1). This will be discussed more fUlly in chapter eight. 

5.3.1. Anti-Stokes edge emission characteristics at liquid helium 

temperatures. 

Green and blue emissions were observed in undoped CdS c_rystals 

at liquid helium temperatures under A.S. excitation. The green 

edge emission consisted of the L.E.S. alone, typical of the bound-to- · 

bound recombination mechanism. The blue edge emission was not 

detected in all crystals, and was only recorded as a ·broad step . 

... 
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leading to the rising edge of the green emission in JD8l'lY crystals. 

(This was due to the large slit widths which had to be employed to 

detect the radiation.) Although no sharp 11exciton-like11 lines were 

recorded, the position of maxima, which were resolved in three 

crystals (see 5.5.,.), indicated that the blue emission was due to·· .--

the L.O. phonon assisted.emiseion of photons, resulting from the 

annihilation of exciton& bound to neutral donors, which had lost 

some of their recombining energy in exciting the neutralising 

electrons of the donors to their lower excited states. The resulting 

emission is that which has been d~noted I~ earlier. Phonon replicas 

of I~ as_ well as I 2 are possibly supe~rmposed in the observed_speotra. 
--

The assignment of the emission to the I~ excitons was made on the 

basis that the positions of the maxima recorded by the Optica were 

similar to those observed under u.v. excitation. This assignment is 

rather tentative. 

5.,.2. Green edge emission 

The anti-~~okes excited green edge emission of all undoped 

CdS crystals at liquid helium temperatures consisted of the low 

energy series (L.E.S.) alone, even in some crystals which 

preferentially emitted the shorter wavelength series (H.E.S.) under 

u.v. excitation. Figure 5·'· shows the green edge emission spectra 

excited by A.S. and U.V. radiation of a crystal in which the U.V. / 

excited emission was dominated by the H •. E.S. The asymmetry of the 

component bands of the u.v. excited emission indicated that there was 

some L.E.S. present. As can be seen in figure 5.3, the A.S. excited 

emission consisted of a sharp, L.O. phonon assisted series, with its 

llia.xima corresponding to those of the U. V. excited L.E.S. observe·d 

in other crystals. Figure 5·4· shows· the u.v. and A.S •. excited 
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green edge emission of a crystal in which the U.V.·excited emission 

was dominated by the L.E.S. The slight shift of the A.S. excited 

series to longer wavelengths compared with the U.V. excited L.E.S., 

the narrowness and bottoming of the A.S. excited series were typical 

characteristios of the A.S. emission. This figure also demonstrates 

that the L.O. phonon energy involved was the same for both methods 

of excitation, and that the distribution of the phonon components of 

the A.S. excited emission could also be described by a Poisson 

distribution with the same mean number of emitted phonons as the 

u.v. excited emission. Figure 5.5a illustrates how the subtraction 
,. 

of the zero order phonon components of the green edge emission of the 

A.S. excited series from the u.v. excited spectrum can be-used to 

est.ablish the ex~stence of the H.;E.S., when both L.E.S. and H.E.S. 

were approximateiy equal intensities in the U.V. excited emission. 

The effec.ts of varyiJ18 the intensity of the U.V. and A.S. 

excitations is well demonstrated by comparing figures 5.5a and 5.5b. 

The intensity of the U.V. excited emission is directly comparable· 

with the intensity of the A.s.· excited emission for both the 100% 

excitation intensity, figure 5.5a, and the 10% exc~tation intensity., 

figure 5.5b, emission spectra. However the emission intensities of 

figure 5.5a are not directly comparable with those of figure 5.5b. 

The reduction in the intensity of excitation resulted in the shift 

of the A.S. excited series to longer wavelengths. In figure 5.5 

the shift of the ~imum of the zero phonon component of.the A.S. 

exci_ted emissi~n was f~~· .5180 to' 51~0! as the e~ci tation intensity 

was reduced by an order of magnitude. The shift, observed in the 

emission of another crystal, is illustrated more clearly in figure 5.6 •• 

The shift indicates that the .recombination mechanism which was 
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responsible for the A.S. excited series is the same as that 

responsible for the U.V. excited L.E.S •• However, the energy shift 

of the zero phonon maxima per order of· magnitude change in the 

excitation intensit.y was approximately lo·to 10~~ larger than the 

shift observed under u.v. excitation. In figure 5.5, the intensities 

of the 10~ U.V. excited and 10~ A.S. excited emissions were 

approximately equal. At 10% excitation intensity the U.V. excited 

series was more intense than the A.S. excited emission, indicating 

a difference in the excitation intensity dependence of the two 

series. A typical example of ~he·excitation intensity dependence 

of the peak heig~t of the zero-order phonon component of the A.S. 

excited series compared with that of the U.V. excited dependence 

is shown in figure 5.7. The intensity dependence indices of the 

U.V. and A.S. excited emissions of this crystal were 0.82! 0.03 

+ and 1.2 - 0.2 respectively. Averaged over four crystals the indices 

were 0.95! 0.05 ·and 1.23 ! 0.04 for the U.V. and A.S. excited 

emissions respectively. One "unusual" crystal showed an intensity 

dependence which was stronger than that observed in other crystals. 

Curves "a" and "b" of figure 5.a.· show the dependence of the height 

of the zero phonon component of the u.v. and A.S. excited emissions, 

respectively. The indices obtained were n (AS) • 1.89 ! 0.09 and i 

n (UV) • 1.12 ! 0.07 •. The result_s "c" were obtained by measuring the 

"total edge emission output" at low intensities of excitation, 

using two OR2 plus two HAl filters in the exciting beam. The "total 

edge emission output" was the signal produced as a result of the 

A.S. excited emission passing through a three inch cell containing 

~saturated solution of copper sulphate before falling.on a 

photomultiplier. The copper sulphate cell was capable_ of absorbing 
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all the ex~iting beam, whilst allowing sufficient green radiation 

through to allow the measurement of a variation of three order_s of 

magnitude cha~ge in light intensity. The index obtained from this 

measurement wa~ n (AS) • 2.08 ! 0.04, in good agreement with the 
' 

value obtained by the conventional peak height meth~d, and which 

was performed at a higher excitation intensity and included infra-red 

radiation in the exciting beam. 

Discussion 

The shift of the A.S. excited green emission spectrum to longer 

wavelengths as the intensity of the excitation was reduced indica tea _ 

' that the recombination process is the same as that in the u.v. 
excited L.E.S., namely the bound-to-bound transition. As in the 

case of the u.v. excited emission, the position of the maximum of 

the zero-phonon component varied from crystal to crystal. However, 

the variation in the position of the maximum in different crystals 

cannot be taken as an indication of a variation in the donor or 

acceptor ionisation energs for the following reasons --: 

(a) the bound to bound nature of the recombination results in the 

variation of the position of the maximum with the intensity of excitation, 

(b) the variation of the ratio of the intensities of the U.V. to A.S. 

excited emissions from crystal to crystal indicates a variation in the 

efficiency of the excitation process - (this is described in section 5.4.) 

The larger shift of the zero phonon maximum per order of magnitude 

change in excitation intensity, the lower energy of the zero phonon 

maximum and the narrower nature of the emission components of the 

A.~. excited emission compared with the u.v. excited emission are 

consistent with the recombination having taken place between donors 

and acceptors with a greater separation than those involved in the 
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I 
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U~V. excited L.E.S. recombination process. It was concluded that the 

same donors and acceptors are involved in the u.v. and A.S. excited 

L.E.S. recombination processes, but that the separation of the pairs 

of the recomb~nation are greater in the A.S. excited process •. Thus 

a larger volume of the crystal was probably involved in the A.S. 

exc~ted recombination, which is consistent with the fact that the "red" 

exciting radiation would be able to penetrate the CdS crystal to a 

much greater depth than the U.V. excitation before being absorbed. 

The absorption coefficients corresponding to "red" and "band gap" 

exc~tation are of the order of 1 and 105 respectively (2,~). 

·A crude theory of a two step excitation process requires that 

the intensity dependence of the A.S. excited emission should follow 

a square law. An intensity dependence index of two was observed in 

an "unusual" crystal, however the index normally observed was 

approximately 1.2. This suggests that more than one excitation 

mechanism may be op~rative in the majority of 9rystals. The 

possible transition involved in the excitation, and possible reasons 

for the appearance of only the L.E.S. under A.S. excitation will 

be propose_d in chapter eight. 

5.3.3. Blue Edge Emission .. 
.. 

Blue edge emission was observed in several undoped crystals 

at liquid helium temperatures under A.S. excitation. The intensity 

o£ the emission was weak, and it was necessary to increase the 

bandwidth of the Optica in order to obtain a reasonable spectrum. 

As a result, no sharp exciton-like lines were observed. Similar 

difficulties were experienced with the u.v. excited blue emission 

at low excitation intensiti~s. The A.S. excited blue emission 

observed in some crystals was not resolved into meaningful maxima, 

I 

I 
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but consisted of a broad step running into the rising edge of the 

gre~n emission. The emission observed in three other.cr,ystals 

showed distinct maxima and will be described more fully. 

Figur~ 5.9. shows the U.V. and A.S. excited blue emission 
0 . 

spectra of a crystal grown at 1075 C with a "sulphur tail temperature" 

of 50°0. The partial pressure due to the tail temperature was less 

than that due to sulphur ever the growing CdS. The U.V.·excited 

blue emission spectrum contained both the I 1 and I 2 bound exciton 

emissions. The principal maxima of the A.S. excited blue emission 

were at approximately 4920 and 5010.R. Similar A.S. blue emission 

maxima, figure 5.10, were observed in a crystal grown at 1150°0 

under a sulphu~ pressure of 12mm., approximately less than or 

equal to the sulphur partial pressure over the growing CdS. 

The u.v. excited blue emission of this crystal was dominated by 

the I 1 bound exciton emission. The u.v. excited green emission 

spectra of the crystals of figures 5.9. and 5.10. were both dominated 

by the H.E.S. emission, however the asymmetry of the components 

indicated the pres-ence of L.E.S. emission. In both crystals, 

the intensity of the A.S. excited blue emission was approximately 

two orders of magnitude less intense than the A.S. excited green 

emission. 

Figure 5.11. shows the.u.v. and A.S. excited blue emission / 
0 . . 

spectra of a crystal grown ·at 1100 C under an excess cadmium pressure 

of 180mm.. The U.V. excited emission was completely dominated.by 

I 2 emission. The u.v. excited exciton emission of this pr,ystal 

was resolved using the spectrograph,,. see chapter four; and contained 

peaks designated I~ and I~ + L.O.. The corresponding maxima were 

located at approximately 4916 and 4990i as determined with the 
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spectrograph, and at approximately 4920 and soooi as recorded by 

·the spectrophotometer. The intensity of the U.V. exci~ed green 

emission of this crystal was very low. The intensities of the A.S • 

. excited green and blue emissions were approximately equal. 

Discussion 

Comparing the spectra.of figure 5.11. it appears that the A.S. 

excited emission of this crystal may be associated with the I~ 

and I~ + L.O. emissions, and possibly the first and second L.O. 

phonon replioas of the I 2 exciton. Similarly the emission maxima 

at.approximately 4920 and 5000i in figures 5.9. and 5.10. are 

probably associated with I~ and I~ + L.O. ·emission. The spectrographic 

analysis of the u.v. excited emission showed that the I~ "peak" 

consisted of several maxima which could be assigned to the emission 

of photons which had resulted from excitons bound to the neutral 

donors losing some of their recombination energy in raising the 

donor electron to different excited states of the-donor. Because 

of the broad nature of the recorded maxima of the A. S. exc_i ted 

emission, and the absence of a spectrographic recording of the·. 

emission, these assignments are rather tentative. 

It is significant that the intensity of the L.E.S. of the u.v. 
excited emission was low compared with that associated with other 

recombination processes in all the three.cr,ystals. in which excitons 

were observed in the A.S. excited emissions. The intensity ratio 

of the H.E.S. to L.E.S. of the u.v. excited ~een emission of the two 

cr,ystals whose spectra are illustrated in figures 5.9. and 5.10. 

was approximately two. In contrast, the intensity of the u.v. excited 

I 2 exciton emission was approximately two orders of magnitude 

greater than the intensity of the first component of the u.v. excited.· 

. I 
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L.E.S. It was concluded, therefore, that A.S. excited blue emission 

is only observed in cr,ystals in which the normal L.E.S. recombination 

process is inefficient compared with the H.E.S. or exciton 

recombination processes. Because of the low intensity of the emission, 

no intensity dependence measurements could be obtained. 

5.4. Effects of crystal growth conditions upon A.S. excited emission 

Figure 5.12. illustrates the way in which the relative intensities 

of the u.v. and A.S. excited green edge emissions varied in undoped 

crystals grown under different partial pressures of cadmium and 

sulphur. The ratio of the intensities of the. A.S. to U.V. excited 

L.E.S. is also shown. The intensities of the A.S. excited emission 

followed reasonably closely the same trends as the U.V. excited 

L.E.s •••. However, the plots of the ratio of the A.S. to u.v. excited 

L.E.S. intensities were not straight horizontal lines. As the 

excess sulphur pressure was increased above lOOmms., the A.S. to U.V. 

ratio decreased. For excess cadmium pressures above about lOmms., the 

A.S. to U.V.' ratio decreased. Although there were dif.f'erences in 

the actual intensities of the components of crystals grown under 

excess sulphur pressure in which the CdS was maintained at 1150 and 

1125°C during growth, the same trend was observed in the ratio of 

the A.S. to U.V. excited L.E.s. intensities. 

The crystalsgrown with the CdS held at l075°c, one under lSOumi •. 

cadmium pressure, the other under 150mm. sulphur excess pressure, 

showed higher A.S. to u.v. intensity ratios than the crystals 

which had been grown under the same excess pressures, but with the 

CdS at higher temperatures. However, the U.V. excited emission of both 
. . 

·1075°C crystals showed a very ~eak exciton emission compared to· 

those grown at the higher temperatures. This is the reverse of'- the 

/ 
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effect mentioned in the precel\ding section, where A.S. excited exciton 

emission probably appeared because the L.E.S. recombination process 

was so inefficient compared with exciton recombination. The crystal 

grown under l~mm. sulphur pressure, which showed A.S. excited blue 

emission, was one of those used in the compilation of figure 5.12. 

If the A.S. excited carriers had recombined. via the bound to bound 

rather than the exciton process, the A.S. to U.V. intensity ratio 

may have shown a more emphasised decrease with increasing sulphur 

pressure. 

Anti-Stokes excited green edge emission was detected in the 

crystals supplied by A.E.I.Ltd. and Hull University. The intensity 

of the A.S. excited emission was almost the same as that of the u.v. 
excited L.E.S. emission in two crystals. The emission characteristics 

were the same as those of crystals _grown at Durham, and some A.S. 

excited blue emission was detected in one crystal. These observations 

indicated that the A.S. excitation of edge emission is an effect 

observabl_e in CdS crystals other than those grown at Durham, possibly 

involving a native defect. This was further supported by the increase 

of the A.S. to u.v. excited L.E.S. emission intensity ratio by at 

least two orders of magnitude in a Durham crystal, initially grown 

under a high excess cadmium pressure, which had subsequently been 
0 . / 

i treated at 800 C tor three hours under a pressure of sulphur ot I 

180 torr. 

Discussion 

The decrease in the A.S. to U.V. excited L.E.S. intensity 
o-r 

ratio with increasing pressure of either cadmium ~ sulphur may be 

explained in terms of a reduction in the overall efficiency of the 

excitation process, or an increase in the number of alternative 
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recombination mechanisms. It appears that the alternative green 

edge recombination process, the free to bound transition, is in 

some way "forbidden" under A.S. excitation or requires higher input 

powers than we~e available. The observation of the I~ emission in 

the absence of the bound exciton (I2) emission itself implies that 

complex recombination selection rules may be operating in the blue 

emission excited by A.S. radiation. The efficiency of this 

recombination process is certainly very low judging by the absence 

of A.S. excited blue emission in crystals which had intense u.v. 
excited blue emission. Recombination via mechanisms other than 

band edge processes, either rBdiative or non-radiative, ~ certainly 

be effected by growth condi.tions. For example, the drop in the A.S. 

to. U. V. ratio above about lOmm. excess cadmium pressure is probably 

due to the onset of the red (2.0 eV, 0.62 microns) recombination 

process observ~d in -~he U. V. excited emission of "cadmium rich" 

crystals .. reported in the prece~ding chapter. A donor-acceptor , 

associate (DAA) model has been suggested to describe the emission 

and absorption processes in the 2.0 eV region (4,2). Goede (4) 

observed two emission bands, one was ascribed to cadmium vacancies 

with donors substituted on nearest neighbour sites forming singly 

ionisable acceptors (v0d_D) 1 , the other to cadmium i~terstitials with 

acceptors substituting on nearest neighbour sites forming singly 

ionisable donors (Cdi A)• ~ To explain the results of the 

variation of the A.S. excited green emission intensity with crystal· 

growth conditions, a m~del involving a donor acoeptor associate · 

level will be used, see chapter eight. 

The single green edge emission series of CdS crystals at 
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liquid helium temperatures observed under A.S. excitation is 

attributed to the L.O. phonon assisted recombination of electrons 

bound to donors some 0.03 eV below the conduction ban4 with holes 

bound to acceptors some 0.17 eV above the valence band. The 

recombination process is similar to that observed in the U.V. excited 

L.E.S. emission except that the separation of the donor-accepto_r 

pairs is assumed to be slightly larger in the A.S. than the U.V. 

excited emission, probably as a result of. the higher absorption 

coefficient at the shorter wavelengths. Evidence for the greater 

separation is the larger energy shift per order of magnitude 

change in excitation in~ensity, the lower energy of the zero phonon 

·maximum and the narrower nature of the emissio~ components of the 

A.S. excited emission compared with ~he U.V. excited emission. 

The blue edge emission observed in several crystals is 

attributed, by comparison of U.V. and A.S. excited emission spectra, 

to the emission or photons which have lost some of their energy in 

exciting the neutralising electrons of the donors .to which they 

were bound. This assignment is rather tentative. However, since 

the H.E.S. was never observed, it s~ems highly probable that the 

same donor levels are involved in both green and blue edge emissions. 

The variation of the ratio of the intensities of the zero 

phonon components of the A.S. to u.v. excited L.E.S. emission with ~e 
I 

conditions under which the crystals had been grown indicated that · 

there was a dependence upon the consti·tuent pressures. The effects 

and mechanism of other competing recombination·processes must not 

be forgotten when considering the excitation mechanisms. This will 

~ be discussed in later chapters. 

The green emission excited by A.S. radiation may be observed 
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from a suitable CdS crystal immersed in liquid nitrogen and irradiated 

by an OR2 filtered microscope lamp. The green can be resolved from 

the red by the naked eye generally, hollever an .auxiliary copper 

sulphate filter was helpful ·occasionally~ The incorporation of 

suitable dopants increased the "efficiency" of the process, as 

described in the next chapter •. The external efficiency, which 

relates the number of photons incident and the number emitted, of 

Durham grown crystals was determined by Brown et al. (5), at 

Christchurch, to be some one percent. The H.E.·S. :was· observed 

in the A.S. excited emissio~ of several CdS crystals at liquid 

helium temperatures by the workers at Christchurch. They suggested 

that these crystals were more pure than those in which the L.E.S. 

emission was the more intense emission. 

I 
I 

I 
I 

I 
I 

I 

' 

~ 
l: 

I 
I !1 ., 

/ I 

!~ 
i 

r 

! I 

I . 

I 
[ 

,, 
I; 

li ,, 
··i 

1:: 

'· :) 
t' 



CHAPTER 5 

REFERENCES 

1. I. ~roser and R. ~roser-Warminsky, Luminescence of Organic and 

Inorganic Naterials, H.P. Kallmann and G.M. Spruch, Eds. 

(J. Wiley and Sons, Inc., New York, 1962)", p. 402. 

2. R. Boyn (1968) Phys. Stat. Sol. 12, 307. 

3. ~. Segall and D.T.F. Marple (1967) "The Physics and Chemistry 

o£ II-VI Compounds" Chapter 7. 

4. o. Goede (1968) Phys. Stat. Sol. ~' K 167. 

5. M. R. ~rown, A.F.J. Cox, D.S. Orr, J .M •.. Williams, ·and J. Woods 

(to be published). 

I 
I 

I 

/ 

I 



<' 

- 95-

CHAPTER 6 

EDGE EMISSION OF DOPED CADI>mm SULPHIDE CRYSTALS 

6.1. Introduction 

The U. V •. and A. S. excited edge emissions of aluminium, 

antimony, chlorine, copper and sodium doped cadmiUm sulphide cry~tals 

measured at liquid helium temperatures are described in this chapter. 

The dopant, in suitable form, was added to the cadmium·sulphide 

charge prior to the growth of the boule. The materials used were 

aluminium, antimony, cadmium chloride, cuprous sulphide, sodium and 

sodium sulphide. The effects upon th~ edge emission of maintaining 

· excess pressures of cadmium or sulphur during crystal growth were 

compared for aluminium, chlorine and copper doped crystals. Unless 

otherwise specified, the.crystals were all grown with the upper 

furnace oontrol set at 1150°C. 

The edge. emission characteristics of deliberately doped 

cadmium sulphide crystals were essentially the same as those of 

undoped crystals. There were changes in individual components in 

certain cases. F~r example, the green emission of sodium doped 

crystals was much broader than the emission of undoped crystals 

grown under similar conditions. The exciton emission of doped. 

crystals was often so weak that it could not be resolved into 

individual components. However, some doped crystals .showed well 

resolved exciton emission, so that abs-ence of exciton emission in 

particular crystals probably indicated poor crystal quality. The 

intensities of the components of the A.S. and U.V. excited edge· 

emission of doped crystals differed from those of undoped crystals 

grown under the same conditions. This indicated that the dopant 

was incorporated in the crystals. 

.,. 
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The relative intensities of the peak heights of the major 

components of the u.v. and A.S. excited edge emission of doped 

crystals are compared with those of undoped crystals gro'-m under 

similar conditions in Table 6.1. The table, which was compiled from 

the recordings of the spectrophotometer, provides the quantitative 

basis of this chapter. The emission characteristics are described 

and discussed in sections which deal with the individual dopants. 

In order to facilitate the presentation, the crystals will be 

referred to as (X,Y) and "undoped", wher~ X was the dopant element, 

Y the element of the excess pressure during growth and "undoped" 

refers to the crystal or·crystals grown under similar conditions 

without the addition of any deliberate dopant. 

6.2. Aluminium doped c;ystals 

Two aluminium doped crystals were studied, the (Al,Cd) sample 

was grown under a low pressure of cadmium, and the (Al,S) one under 

a high pressure of sulphur. It was hoped that these growth conditions 

would allow the aluminium to substitute for cadmium, and form a 

donor. The U.V. excited emission spectra of these two crystals were 

different from one another, and their undoped counterparts. The 

presence of the H.E.S. was more obvious in the (Al,Cd) crystal 

than in the '(Al,S) crystal, although the two L.E.S. emission peaks 
I 

were approximately equal. The blue edge emission of the (Al,Cd) 

crystal was dominated by I 2 exciton emission, with the first 

longitudinal optical (L.O.) phonon.replica of the r
1 

exciton rising 

above the broad background emission. This background was probably 

due to ·the I1 exciton, the I~ emission and L.O. phonon assisted I
2 

emission. The exciton emission of the (Al,S) crystal, which was a 

broad peak at 490oi·(30i wide at half height), was not resolved 



Table 6.1. A comparison of the emission intensities of doped and 

undoped cadmium sulphide crystals. (The dopant concentration, 

in :p.:p.m. a.tomic 9 uas that calculated from the proportions by ,.,eight 

of the dopant element to the CdS charge. - - 0.01- - indicates a 

broad emission band 'l-Tith a maximum emission intensity of Oo07) 

PCd or Ps Dopant U.V. Excited emission A .. S., Excited 

mm .. of Hg PoPoiDo Il_ I2 I·* 2 H.E.S. L.E.S. L.E.S. Blue 

(crystal no.) 

s 12 (77) - - 3.0 0 .. 05 - 85 26 6.; o.o8 

s 12 (179) Cu 180 o .. ; 132 Oo3 2o7 22 0 6- 9o8 0.05 

s 150 (80) - - lo6 100 1 .. 6 12 24 3.7 -
s 150 (155) Cu ;6 - - 0.16- - 3o7 . 25o8 45.8 -
s 150 (153) C1 13 - - 0.02- - 5 126 85 -
s 760 (94) - - 5 1.9 - 13 52 2 .. 0 -
s 760 (104) Al 3500 - - 0.62- - ;.6 21.9 6.0 -
s 760 (135) Sb 714 - - - 2 19 .. 3 16 .. 7 -
s '760 (120) Na 1850 - - 0.02- - 13 82 2 -

Cd o.; (78) - - 48 100 2.6 22 2 .. 6 Ool7 -
Cd 4o5 (109) Al 3000 Oo2 3o7 0.2 11 22 0-.42 -
Cd 30 (127) - - 2o4 130 1.2 1.6 11.2 2.1 -
Cd 180 (129) - - 1 480 1 Oo65 65 1 .. 8 -
Cd 180 (154) C1 13 - - Oo07- - Oo35 7o7 141 -
Cd 180 (152) Cu 22 - - 0.1 - - Oo3 14 29 -
Cd 180 (177) Cu 180 1 168 7o3 0.11 2.0 0 .. 42 0 .. 14 

• ··-·- ., •. ,._-, __ ., •.• _ .... •_:·.·· '":"""i''''"', ..... -
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into components because of its weak intensity. The emission was 

probably largely due to 11 exciton recombination, although only a 

weak ~irst L.O. phonon replica was observed. The intensity o£ the 

A.S. excited L.E.S. of the (Al,S) crystal was approximately ten 

times that of the (Al,Cd) crystal. There was no A.S. excited blue edge 

emission detected from either of the aluminium doped cr,Ystals. 

No measurements were made upon an undoped crystal grown under 

exactly similar growth conditions to the (Al,Cd) crystal. However, 

in comparison with those grown under comparably low cadmium pressures, 

the intensity of the u.v. excited exciton emission was lower, and 

probably as a consequence, the green emission intensity was higher in 

the doped crystal. The A.S. to U.V •. excited L.E.s. emission ·intensity 

ratio of the (Al,Cd) crystal was less than that of the undoped crystals. 

(This was the only case recorded where the additi~n of a deliberate 

dopant to the starting. charge had a possible adverse effect upon 

the A.S. to U.V. intensity ratio~) The intensity of the A.S. excited 

emission of the (Al,S) crystal was approximately three times that 

of the undoped crystal. The A.S. to u.v. intensity ratio was 

' increased by approximately an order of magnitude as a result of 

the addition of the dopant. 

6.3. Antimony doped c;rstal 

Only one antimony doped crystal was· studied, which was grown 

.under an excess sulphur pressure, (Sb,S). If antimony substitutes 

for cadmium, it would probably be trivalent and act as a single 

donor, using two of its three 5p electrons to satisfy lattice 

bonding requirements. The two 5s ele~trons would remain ineffective. 

The crystal was a brownish-yellow colour, having a resistivity of 

the order of l·o3ohm.cm •• No blue emission was detected in either the 

~. 

/ 

I 

t ,, 
,, 

I 
!:. 
\ 



- 98 -

U.V. or A.S. excited spectra. This was probably a result of poor 

crystal quality, as will be discussed in the summary at .the end of 

this chapter. 

Figure 6.1. shows the relative intensities of the A.S. and U.V. 

excited green emission of the (Sb,S) crystal. The L.E.S. dominated 

the U.V. excited emission, which was sharper than the A.S. excited 

emission although the A.S. excited. emission was clearly shifted 

to longer wavelengths. This is unusual. Figure 6.2. shows the shift 

of the A.S. excited green emission series to longer wavelengths with 

reduced excitation intensity. The shift to lower energy of the 

zero phonon peak of the green emission per order of magnitude· 

decrease in ex~itation intensity was 2.9 meV under U.V. and 5.3 meV 

under A.S. excitation. The larger shift under A.S. excitation indicates 

that recombination was associated with distant pairs having a greater 

separation than those under u.v. excitation. The unusual feature· 

that the A.S. excited series was broader than the U.V. excited aeries, 

despite the larger shift of·the A.S. series, may have been associated 

with a change in the coulombic nature o1 the donor under A.S. 

excitationp as discussed in the summary. The intensity dependence 

indices (n) for the U.V. and A.S. excited zero phonon peaks were 
/ 

0.96! 0.01 and 1.21! 0.04, respectively. 

The intensity of the U.V. excited green emission of the 

undoped crystal grown under corresponding conditions was approximately 

three times the intensity of the (Sb,S) crystal •. The intensity of 

the A.S. excited emission of the doped crystal was approximately 

eight times that of the undoped crystal. This indicated that the 

addition of antimony to the starting charge of the growth·system 

had improved the A.S. to U.V. intensity ratio by a factor of 
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approximately twenty. 

6 • .4. Chlorine doped cr;ystals 

Two chlorine doped cr,ystals were studied, (Cl,Cd) and (Cl,S), 

grown under excess pressures of approximately 180 and 150 mm, of 

cadmium and sulphur respectively. The U.V. excited blue emission 

of both crystals was we&c. The blue emission of the (Cl,Cd) crystal 

was the most intense, and was recorded as a broad band (40i at half 

height) centred at approximately 4885i. The green emission of both 

crystals was dominated by the L.E.s., although the zero order phonon 

peaks of the (Cl,Cd) and {Cl,S). crystals were observed to be at 

approximately 5189 and 517d; respectively while the A.S. _excited 

peaks were at 5188 and 5177i respectively. However such small 

differences in the position of the maxima of continuously excited 

photoluminescent spectra oannot be taken as posi t_ive variations 

in the ionisation energy of a carrier as has been mentioned in 

preceeding chapters. 

The intensity of the U.V. ·excited green emission of the (Cl,S) 

crystal \<18.S greater than that of the undoped ... and · (Cl,Cd) crystals, 

see table 6.1 •. The intensity of the U.V. excited green emission 

of the (Cl,Cd) crystal was less than that of the undoped crystal. 

However, the intensity of the A.S. excited emission of the {Cl,Cd) 

crystal was about t'rJenty times the intensity of the u.v. excited 

emission, and more intense than the U.V. excited emission intensity" 

of the (Cl,S) crystal. This implies that the cadmium atmosphere 

had assisted the incorporation of chlorine on sulphur sites, and 

that the resultant donors are closely associated in some way with 

the level _responsible for the A.S. excitation mechanism. 

-~ 
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6.5. Copper doped c;rstals 

Two sets of crystals were studied which had been deliberately 

doped with different concentrations of copper. The low concentration 

set (30. p.p.m!.) will be considered firstly. The U.V. excited blue 

emission consisted of broad, low intensity bands centred at 4885 

and 4890j for the (cu,Cd) (No.l52) and (Cu,s) (No.l55) crystals 

respectively. There was no blue emission detected under A.S. 

· excitation. The L.E.S. dominated all green edge emission spectra. 

The intensity of the U.V. excited green emission of the (Cu,Cd) crystal 

was less than that of the undoped crystal, whereas the intensities 

of the (cu,s) and undoped crystals were comparable. (This was 

p.robably due t.o the tenaincy of the cadmium atmosphere to inhibit 

the formation of native acceptors). The intensity of the A.S. 

excited green emission of the doped cr.ystals was at least an order 

of magnitude greater than that of the undoped crystals. Thus the 

A.S. to U.V. ratio was con~iderably improved by light copper ·doping, 

and was slightly higher in the (Cu,Cd) crystal, probably·due to the 

growth conditions favouring the autocompensatory formation of 

donors, see chapter ~ight. 

The U.V. excited emission spectra of both heavily doped 

cr,Ystals were dominated by I 2 exciton emission, see figures 6.} 

and 6.4(a). The (Cu,s) crystal (No.l79) was grown ~der a sulphur 

pressure which was less than the sulphur partial pressure above 

the CdS charge. The pressure, 12mm, was probably insufficient to 

prevent the autocompensatory formation of donors (I2), resulting 

from the introduction of the large number of copper acceptors. The 

I 1 emission line or. the (Cu,S) crystal, figure 6.}, was ·more intense 

/ 

than that of the (Cu,Cd) (No.l77) crystal, figure 6.4('a). I* emission 
2 



A 

......... 
l1l 
+' 
·r-1 
§ 

6 

5 

t-?4 cd . 
s... 
+' 
·r-1 

1: 
Cll 

.......,.3 

E 
~ 
"-1 

~ 2 
H 

z 
0 
H 
Ct') 
U) 

t;j 
r4 1 

0 

!2 

0.485 

Il 

(J) 
bl) 

§ 
..c: 
0 

(J) 
r-1 
cd 
0 
l1l 

Figure 6o .3o The s. E. Do of the blue and green emission 

of the copper doped crystal, noo 179, 

excited by U .. V. radiationo 

(Ba...rl.dwid th Oa 6 i) 
!2+10 

I 2+2L0 

~ 

I I I _ I I · · I I _ I I I 
O .. l,.90 0.495 0.500 0 .. 5"05 0.510 0.51.5 0 .. 520 0.525 0.530 0 .. 5)5 

WAVJ::LENG'I'H jPm) ---~ 



.. -- . ---

-~-12 12+10 12+210 
7r I ' Figure 6oho The SoEoDo of the green and blue emission 

12 
of' the copper do_ped crystal, no.., 177, excited by 

(a) Uo Vo and (b) A. So radiationo 6 I~+LO 

i (a) - Uo V. exci tationo (Bandwidth Og "6 ~) 

~ (b}'--- A. So exci tationo (Bandwidth 5 ~) ........ 
ca 
+>5 <!) 
.,.; ~ rt § 9 

~C: 

~ 0 

til <!) 

!14 r-l 
til 

\ 
.,.; 0 I I I \ I I I I ..0 a.l 
~ 
til 

'"-" 

:>t 
;::.3 
ra 

I It I I 
,,, i4 II "\j v \I \. I 8 

I ?-; I H 
I \ 

-r ~~~ ~ ~ )/ 
,.._,? 
0-
H .. en en 
H 

r~ 
Ill\ c 1 

I 
I 
I 

I 

" "' I ..... 
Oo485 Oo490 Oo495 Oo500 0.505 Oo510 Oo515 Oo520 Oo525 Oo 5.3.0 Oo5)5 

WAV.i~LENG1'H ym) :> 



101 

' maxima were resolved in the microdensitometer recordings of the 

spectra from both crystals. The I 2 and I~ emission intensities 

Here more intense in the (Cu,Cd) crystal. The U.V. excited green 

emission spectra of both doped crystals were dominated by the L.E.S., 

with the H.E.S. being more obvious in the (Cu,s) crystal. The·. 

intensities of the U.V. excited green emission spectra of the doped 

crystals were less intense than those of the undoped crystals. No 

difference was observed in the positions of t~e blue or green 

components of the copper doped crystals compared with those of 

undoped crystals. 

The A. S. excited emiss.ion spectra of both of the heavily doped 

-crystals sho,.red both green and blue edge emission. Figure 6.4(b) 

shows the A.S. excited green emission of the (Cu,Cd) (No.l77)·crystal, 

as recorded by the spectrograph. The complete spectrum, as recorded 

by the spectrqphotome.ter, is shown in figure 6.5. The emission 

spectrum of the {Cu·,S) (:No.l79) crystal was similar, however the 

intensity of the blue edge emission was weaker while that of the green 

emission ,,as stronger than the respective intensities of the emission 

of the (Cu,Cd) crystal. As with the blue emission of undoped 

crystals excited by A.s.· radiation, the intensity was too weak 

to enable the precise nature of the emission to be resolved, and the 

maxima have been assigned to I~ and I~ + L.O. emission by 

comparison of the spectra obtained under the two different excitation 

conditione. This tentative assignment is supported by the fact 

that the exciton emission was more inte~se in the (cu,Cd) than the 

{cu,s) crystal, which is. consistent with the fact that, under u.v. 
excitation, the I~ emission was most readily observed in undoped 

<?rystals grown under excess pressures of cadmium vapour. 
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Because.the blue emission provides a competitive recombination 

process for the A.S. excited electrons and holes, the A.S. to U.V. 

excited emission intensity ratio was lower in the heavier doped 

.crystals compared with that in the more lightly doped samples. At 

both doping levels, the most intense u.v. and A.S •. excited green 

emission was observed in the crystals which had been grown under 

an excess pressure of sulphur. The intensities of the U.V. excited 

green emission of both the (cu,S) crystals were approximately 

equal to those or the corresponding undoped crystals. In contra_st, 

the intensities or the u.v. excited green emission or both or the 

·(Cu,Cd) were less than those ·of the undoped crystals. The A.S. to 

u.v. intensity ratio was increased by copper doping. The largest. 

ratios were obtained in the crystals with the lower doping 

concentrations, which were of poorer crys~alline quality which 

reduced the efficiency of the potentially competitive exciton 

recombination processes. 

6.6. Sodium doped c;ystals 

It was found that the silica growth tubes were very easily · 

attacked by sodium during the course of a growth run. To minimise 

the attack and possibility of oxi~ation, growth was carried out 

very rapidly and consequently the resultant "boules" \'iere small. 

Three sodium doped crystals were studied which had been obtained 

.. using the normal growth technique, while a fourth was post-treated,.: 

in sodium vapour. The characteristics of the emission described 

below and recorded in table 6.1. are typical of those observed 

. in all four crystals. The particular crystal described was grown 

under an excess sulphur pressure of approximately one atmosphere. 

The blue edge ·emission excited by U.V. radiation was weak and 
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broad. No blue emission was detected under A.S. excitation. Figure 6.6. 

shows the spectral emission distribution of the U.V. and A.S. 

excited green edge emission of the sodium doped crystal. The most 

unusual feature of the edge emission of sodium doped crystals of 

cadmium sulphide was the broad nature of the A.S. excited emission. 

Similar broad·spectra were observed in other crystals when it was 

necessary to increase the bandwidth of the instrument to obtain 

a reasonable recording. However the emission intensity of the sodium 

doped crystals was sufficient to allow a relatively narrow b~dwidth 

to be employed. The shape of the spectrum is not unlike the form 

of the ~een edge emission of CdS· at liquid nitrogen temperatures • 
.. 

. Thus the sodium doped crystals appear to interac~ with acoustic. 

phonons more strongly under A.S. excitation than under U.V. 

excitation; since the U.V. excited spectra were not in any way so 

unusual. 

The intensity o·f the green edge emission excited by U. V. 

radiation for the sodium doped crystals was greate.r than that of the 

corresponding undoped crystals. The intensity of the A.S. excited 

emission of the doped crystal was approximately equal to that of 

~he undoped crystal. Thus the A.S. to U.V. emission intensity ratio 

was not increased by doping with sodium. This fact and the unusual 

shape of the A.S. excited spectra support the hypothesis that the 

sodium ion, substituting on a cadmium site, reduces the number of 

cadmium vacancies, but at the same time can create an acceptor. The 

result is that (1) the intensity of the U.V. excited green edge is 

only slightly modified, since new acceptors replace the old, 

(2) the efficiency of the A.S. excitation is reduced since the· 

concentration of cadmium vacancies (which are believed to be 
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associated with the excitation mechanism) is reduced. 

6.7. Further properties of the crystals 

This section describes some interesting results obtained by 
0.. 

iny collres in the Department of Applied Physics. The results 

appertain to doped and undoped crystals. Table 6.2. shows the 

pertinent results of the mass spectrometer analysis of four doped 

crystals, work performed outside the University. ·The level of the 

particular element of the deliberate dopant was significantly greater 

than th~ level found for that element in other doped (and-undoped) 

crystals, for example see the antimony-doped crystal. The results 

regarding other "difficult" elements must be viewed with caution, for 

example the level of chlorine in the four crystals. The silicon 

content was also alarming in certain crystals, however in the case 

of the antimony doped sample, the result was probably due to the 

fact that the crystal wa·s small and the sample for analysis came 

from close to the wall of the growth tube. 

The- resistivity of crystals grown from material which 

contained aluminium, chlorine and antimony as deliberate dopants. 

was less than or of the order of 103ohm.cm •• Copper doping resulted 

in photoconductive crystals. Sodium doped crystals were less 

photosensitive and had a high dark resistivity compared with the 

copper doped crystals. Infra-red emission bands having maxima at 

2.04 and 2.35 microns were observed from sodium doped crystals, 

\·thich also shol-red unusual thermally stimulated current curves 

suggesting a continuum of traps from 0.2 to 0.8 eV below the 

conduction band. 

The comparison of the intensity of the exciton emission with 

the magnitude-of the Hall and drift mobilities of three, nominally 

/ 
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Table 6.2. The results of a mass spectrometer analysis of four 

doped CdS crystals, concentra~ions in p.p.m.. Not all the 

elements listed in the original table have been included. 

Element Deliberate dopant and crystal number 

detected COPPER(l82) ANTIMONY(l34) SODIUM(l21) CHLORINE(l54) 

Na 0.4 0.4 1.8 0.1 

Al 0.2 < 0.2 0.3 <o.2 

Si 4 600 (3 (2 

p 0.06 0.6· 0.12 0.02 

ci 0.6 ' 3 1.5 1 
·- -· ---

1( 0.1 0.4 < 0.03 < 0.02 

Cu o.a 0.2 o.o:; 0.02 

Zn <4 (4 9 <4 

Ga <0.04 0._6 < 0.1 1 

. In < 0 .• 2 2 0.09 <o.o6 

Sb <o.o4 1.2 < 0.06_ (0.04 



- 105 -

undoped, A.E.I. crystals suggested a correlation between these 

quantities. The mobility decreased as the intensity of the exciton 

emission, relative to the standard settings of the spectrophotometer,.-

decreased. S~milarly a low drift mobility was observed in a copper 

doped crystal· (no.l55) having a relatively low intensity exciton 

·emission. The possible correlation, which needs further experimental 

verification, may indicate that a decrease,in the crystal quality 

was responsible for the decrease in these measured values. 

6.8. Summary and Conclusion 

The comparison of the relative intensities of the components of 

the edge emission of the doped crystals with those·of undoped 

crystals, table 6.1., and the mass spectrometer analysis, taole 6.2., 

indicates that the deliberate addition of a dopant to the starting 

charge of the boule growth system resulted in the incorporation 

Qf the dopant in the resultant crystal. The resistivity of the 

doped crystals supports this conclusion. 

The exciton excited by u.v. radiation was resolved in three 

doped crystals only, two with copper and one with aluminium as the 

dopant elements. The blue ~pectrum of these CrYstals was dominated 

by the I 2 and I~ emissions. The donors, associated with I 2 and I~, 

probably originated from the autocompensation of the copper impurities 

and from the substitution of aluminium ions on cadmium lattice sites./ 

~ere were no observable differences in the positions or shapes of the 

u.v. excited exciton emission of the doped crystals comp~ed with 

that of the undoped crystals. The exciton emission of other doped 

crystals excited by U.V. radiation consisted of a broad unresolved 
.. 

band. The absence of remolvable exciton emission was regarded as 

indicating poor crystal quality. Exciton emission, assigned 
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tentatively to the I~ process, was observed in both the copper 

doped crystals under A.S. excitation. 

The intensity of the green edge emission of doped crystals 

excited by u.v. radiation was on the whole less than that of 

undoped crystals, with the following exceptions. 

(1) The chlorine doped crystal grown under an excess pressure of 

sulphur vapour, which probably favoured the formation of the cadmium 

vacancy-chlorine donor complex. It will be proposed in chapter 

·eight that this donor-acceptor associate, which occurs as a singly 

ionisable acceptor, is the acceptor associated w~th the I 1 exciton 

and the green edge emission~ If this proposition is correct, an 

increase in the intensity of the green edge emission of this doped 

crystal would be expected. 

(2) The aluminium doped crystal grown under a pressure of cadmium 

which was less than the pressure of cadmium above the CdS in the 

growth chamber. These growth conditions probably favoured the 

formation of cadmium vacancy-~luminium donor complexes, which 

would act as singly ~onisable acceptors and may also be associated 

. with the green emission as suggested above. 

(3) The sodium doped crystals were also efficient emitters of 

·green edge emission. A sodium ion substituting on a cadmium site acts, 
I 

as a singly ionisable acceptor which m~ be·associated with the 

increase in the efficiency of the green edge emission. The L.E.S. 

was always present in the.green emission which indicates that some 

donors may have been introduced into the crystal by the autocompen~ation 

mechanism. The suggestion that sodium impurities give rise to a 

new acceptor which is involved in t~e green emission may explain 

the unusual nature of the green emission excited by A.S •. radiation 
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in the sodium doped crystals. Stronger acoustic phonon cooperation 

associated with the sodium acceptor is also a possible explanation. 

There were no observed differences in the shapes or positions 

of the U.V. and A.S. excited green emission of the doped crystals 

compared with the emission of the undoped crystals with the 

exception of the sodium doped crystal, just mentioned, and the 

antimony doped crystal. The unusual feature of the antimony 

doped crystal was that the components of the green emission spectrum 

excited by A.S. radiation were broader than those excited by U.V. 

radiation. An explanation of this effect could have been that the 

. separation of the donor and acceptors involved in the recombination 

was smaller in the case of the A.S. excited emission than in the U.V. 

excited emission, were it not for the fact that the maxima of the 

A.S. excited series were to the long wavelength side of·the maxima 

of the U. V •. excited series ,,hich indica tee that the separation 

is larger. Bearing in mind the unusual nature of the core of the 

proposed antimony donor, it is possible that the A.S. excitation 

modifies the coulombic nature of the donor compared with its state 

under U.V. excitation, thus the shape of the emission components 

is slightly altered. Additional acoustic phonon cooperation 

seems an unlikely explanation since it would probably have broadened 

the U.V. excited emission also. 

The deliberate introduction of chlorine, copper and antimony . ' 

impurities resulted in an increase in the ratio of the intensities 

of the U. V. to A. S. excited emission compared l·li th the ratio 

observed in undoped crystals. The ratio was also increased in the 

case of the aluminium doped crystal grow.n Under an excess pressure 
of 
ef1 sulphur. Co.mparing the A. S. to U. V. intensity ratio of doped 
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crystals grown under excess pressures of sulphur vapour with those 

·gro~m under cadmium pressures, it was concluded that (a) excess 

sulphur pressure permitted alu~inium ions to substitute for cadmium 

to form donors, (b) excess cadmium pressure permitted chlorine ions 

to substitute for sulphur to form donors, (c) excess sulphur 

pressure permitted copper ions to substitute for cadmium to form 

acceptors. The fact that the intensity of the A.S. excited emission 

was greater than the intensity of the U.V. excited emission in two 

copper doped and in a chlorine doped sample may indicate that the 

centre responsible for the A.S. excitation mechanism is also 

associated with the recombination process. The nature of the centre 

is changed by the incident radiation in such a way that the 

recombination process becomes apparently more efficient under A.S. 

excitation. 

Visible green emission was excited by infra-red radiation. 

incident upon the antimony doped crystal at liquid helium 

temperatures. This effect and other infra-red effects observed in 

doped crystals are described in the nex~ chapter. 
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CHAPTER 7 

ANTI-STOKES EXCITATION SPECTROSCOPY· 

7.1. Introduction. 

The intensity of the edge emission varied according to whether 

the tungsten lamp excitation radiation was passed through the ORl, 

OR2 or 7700R interference filter. It was also observed that certain 

crystals emitted green radiation when excited by infra-red radiation. 

In order.to establish the energy of the photons responsible for the 

A.S. excitation of green edge emission, the measurements described 

in this chapter were made. 

The effects of infra-red radiation upon the intensity of the 

green edge emission, measured using the Optica spectrophotometer, 

are described first. This is followed by a description of the 

experimental apparatus used to observe the.excitation spectra, and . . - ._ 

the results obtained from the measurements. 

7.2. Single and double beam effects. 

The edge emission excited by A.S. radiation, provided by a 

tungsten lamp filtered by an OR2 filter, has been described i~ the 

two prece-ding chapters. The same emission was observed using an 

ORl filter, however ~he emission intensity-was reduced by 

approximately 1~ using this excitation. The emission intensity 

was reduced by a f89tor of the order of one hundred when the 7700i 

interference filter replaced the OR2 filter. This meant that the 

.luminescence was below the.limit of detection in some cr,ystals. 

The chlorine doped crystal grown;under an excess pressure of cadmium, 

when irradiated by infra-red onlyf using either the silicon, 0.953 

or 1.205 micron interference filters, emitted visibie green 

luminescence. The most-intense emission was obtained when the 
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0.953 micron filter was used. A »ellingham and Stanley monochromato~ 

was used as the source of excitation for the emission spectrum in an 

attempt to establish the excitation spectrum. The results were 

inconclusive because the intensity of the emission was too low to 

produce a measurable spectrum on the Optica. However the 

monochromator could be used as a source of primar,y excitation in the 

double beam experiments. 

In the case of the chlorine doped sample grown under excess 

cadmium pressure and a copper doped sample grown under excess sulphur 

pressure, the green edge emission produced by a primary excitation 

of 6700i from the monochromator was enhanced bT some 5o% when 

auxiliary infra-red was focussed onto the crystal. The 0.953 micron 

filter produced the largest effect on the chlorine doped sample, 

and the silicon filter was most effective on the copper doped crystal. 

The green emission of the chlorine doped sample grown under exce.ss 

sulphur pressure also showed infra-red enhancement effects. The 7700i 

filter produced luminescence which was increased slowly by 1~ 

when 0.953 micron radiation was added. 

The A.S. emission produced by the 7700i excitation of two 

sodium doped crystals grown with a low reservoir temperature, was 

increased by some 12~ by the addition of any of the three auxiliary 

infra-red filters. The only other crystal which showed this·7700i 

plus infra-red enhancement was "undoped", but grown, under similar 

growth conditions, from a starting material in which the preparative 

conditions employed by the manufacturers may have produced sodium 

and phosphorus contamination.- The 30'fo enhancement observed, 

confirmed the suspicion that the starting material was contaminated 

in this case. The enhancement ~s shown in the two superimposed 
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spectra in figure 7.1. However in the majority of cases, where 

the 770oR excited .. emission was detectable, the si~l was reduced by 
·-

some 50% by the addition of infra-red radiation. 

The emission intensity produced by ORl and OR2 excitation 

was never increased by the addition of auxiliar,y infra-red r~d~ation. 

It was generally unatfected, but decreased slowly by about some 1~ 

in some samples, however this may have been a heat~ng ·eff~ct. The 

removal of infra-red from the exciting radiation.of ORland OR2, by 

the introduction of one Chance glass heat a~sorbing (HAl) filter, 

increased the intensity of the emission. Addition of further 

HAl's tended to reduce the intensity of the emission since the 

absorption of red by the HAl then became more significant than the 

effect of removing fUrther infra-red radiation. It was concluded that 

the effect was largely assoc~ated with the infra-red causing the 

temperature of the cr.ystal to incr~ase. This was confirmed by 

the decrease in the intensity of the emission, excited by s~ the 

OR2 filtered lamp, to a steady level after initial ill~nation. The 

emission quenching effect of additional infra-red from the 

auxiliar,y source was approximately doubled when HAl's were used 

in conjunction with ORl or OR2. 

Resistance measurements were made on several crystals. 

Red excitation, provided by ORl and OR2 filtered sources, reduced 

the dark resistivity to approximately the same level as that 

observed under u.v. excita~ion. Removal of the infra-red from 

these sources, by·HAl filters, increased the resistivity. 

Simultaneous irradiation of the OR+ HAl.~xcited crystal with 

auxiliar,r infra-red ~educed 'the resistivity again, however only 

slightly. 
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7.~.1. The measurement of A.S. excitation spectra 

The Optioa spectrophotometer is essentially a two component 

instrument consisting of a grating monochromator and a double 

beam detection system. The monochromator of the Optica was used as 

the input of the excitation measurement system. The 75 watt ~stan 

lamp incorporated in the Optioa monochromator was replaced by a 

500 watt, 240 volt, tungsten projector lamp, unde~run at about 

220 volts (400 watts}, focussed onto the input aperture of the· 

.monochromator. The arrangement of the experimental apparatus is 

demonstrated diagramatically in figure.1.2. 

The output of the monochromator was focussed, using a lOom. 

foc&l length bi-convex lens, down a telescopic tube (A), through the 

cr,yostat window (number one) onto the crystal. The same metal helium 

cr,yostat was used, as in the emission measurements. The radiation 

passing through window number two was focussed, using the telescope­

lens system B,· through a 12" diameter; 8 blade chopper (C) and a 

~hree inch cell containing a saturated solution or copper sulphate (E) 

onto the photomultiplier (P.M.). The copper sulphate oell absorbed 

the reflected exciting radiation, except for a small breakthrough 

band at 1.05 microns, and transmitted in the green and blue regions 

or the spectrum, see figure ~.3. Thus. the cell acted as a broad 

band fi~ter transmitting the edge emission of CdS. Dry batteries, 

in a screened box, were used as the power supply for the EMI type 
6 . 

6094 B photomultiplier. The series resistor E! (10 ohms) made the 

arrangement less lethal. The photomultiplier current was passed 

through the resistor R2(104ohms), and the voltage .developed.fed 

through the 0.47 microfarad capacitor into the phase sensitive 

detector (P.s.D.). 
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Figur_~ 7·2. Sclheme for e1ccotar~ion spec'll:roscopy. 
A and B : telescope tubes, Incorporating IOcm focal length lenses 

II 

C : 12 diameter , 8 blade chopper . 
'• 

D : Synchronous motor and gearbol( driv12: 

E : 3 .. long cell containing a saturated solution o1· copper sulphate 

F: Source and Detector supplying reference signal ·to P. S.D • 
. G: Scr\i!w adjustment of phose 
P.M.: Photomultiplier 

P. S.D. : Phase sensitiw:r detector · 

I, 2 and 3: Windows of cryostat 
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The reference signal for the P.S.D. was provided by means 

ot a small lamp and a photoconductive detector (F) which were placed 

. on opposite sides of the chopper blade. The source and detector · 

were mounted on an adjustable platform, such that the phase of the 

reference and signal inputs could be v~ied by means of the screw G. 

The synchronous motor was geared down so that the drive (D) rotated 

the chopper at 66 revolutions per second. The P.S.D. consisted of a 

Brookdeal (model MS 320) meter unit/phase shifter used in conjuncti~n 

with a Brookdeal .(m~del FL3.55) look-in amplifier. The time constant 

of the sy~tem was set at zero. The output of the P.S.D. was 

displayed on a Honeywell Electronik class 19 recorder, lOmv· fUll 

scale deflectio~. 

The crystals were cool~d down to liquid helium temperatures 

in the dark. The wavelength of the exciting radiation was set at 

1 micron, and the crystal illuminated. The crystal was illuminated 

with this radiation for the time required for the recorder chart 

to travel one inch, i.e. 20 seconds, and then the wavelength was 

adjusted manually, to 0.99 microns. This process was repeated ·down 

to 0.60 microns in 0.01 micron steps every 20 seconds, to complete 

a run. The mean of .. the recorded trace, ignoring the first and 

last tenths of the trace, was taken as the signal corresponding to 

a particular wayelength setting in ~ run. 

It was necessar,y to correct the results obtained for the 

' 
-.:' 

spectral response of the exciting radiation. It was assumed that the 

output of the detection system was uniform with respect to incident 

intensity. To determine the response of the excitation system, a 

linear vacuum thermopile replaced the cryostat at the end of the 

~elescope tube A. The ~utput of the thermopile was fed into a 
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Hilger and Watts FAl photo-electric relay, which produced a signal 

that could be displayed on a galvanometer. In order to correct 

for the intensity dependence of·the gree~ edge emission excited by A.S. 

radiation the galvanometer deflection was raised to the power n, 

. where n is the intensity dependence index. No measurement of the 

spectral dependence of n was possible because of the lack of 

sensitivity of the apparatus. However it had been reported that 

there was no intensity dependence to be observed on similar crystals (1). 

Multiplying t~e corrected intensity by a faotor (wavelength)3 ~ (1.24) 2 

converted the intensity of emission into "number of photons emitted 

per unit enerey interval". The error bars employed in the graphs 

displaying the results arise from the errors involved in correcting 

for the intensity of the exciting radiation. The scatter of the 

p·oints was taken as an indication of the errors of measurement. 

7.3.2. The A.S. excitation speotra obtained 

Figure 7.3 shows the A.S. excitation spectra obtained for the 

36 p.p.m. copper doped crystal grown under an excess pressure of 

sulphur (crystal no. 155). The curves (a) and (b) were obtained with 

the crystal maintained at liquid helium and liquid nitrogen 

.-temperatures respectively. ,The spectra are those obtained without 

· the crystal having previously been illuminated. The "lift-off" 

points occurred at approximately the same photon energy at both 

temperatures, i.e. 1.65 ev. 

The spectra presented in figures 7.4, 7.-5. and·7.6. were 

obtained with the crystals maintained at liquid helium temperatures. 

The spectra denoted (a) were those obtained without the crystal 

having previously been illuminated. The spectra denoted (b) were 

those obtained after the crystal had been irradiated with shorter 
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wavelength excitation. Figure 7.4. shows the spectra for.crystal 155, 

copper doped, as in figure 7.3. Figure 7.5. shows the spectra for 

crystal 135, the antimony doped crystal, and figure 7.6. for crystal 

153, the chlorine doped crystal grown under an excess pressure of 

sulphur. 
+ -

Thresholds within the range 1.63- 0.05 eV were observed in 

all the spectra obtained without the crystals having previously 

been illuminated. A second threshold at 1.29! 0.03 eV was observed 

in the curves obtained after the first run. 

The "b" curves rose from the second threshold to a maximum 

at approximately 1.4 eV, then went through a minimum before 

following the shape of the "a" c'lirves at higher photon energies. The 
_../ 

curves of figure 7.6. indicate that there may be some structure in the 

high energy peak. However, more sensitive apparatus, and more· 

sophisticated measurement and correction techniques are required to 

confirm this suggestion. 

Because of the breakthrough of the copper sulphate filter at 

about 1.05 microns, see figure 3.3, a narrow band 5200i interference 

filter was added to the detection system in an attempt to determine 

a double beam excitation spectrum. A standing level was obtained 

using a tungsten lamp filtered by two ORl plus two HAl filters, and 

the monochromator scanned to-the long wavelength side of 9ne micron. 

Unfortunately, no additional signal .was observed. 

7.4. Discussion 

The second threshold at 1.29!.0.05 eV was not observed in the 

- _I 

' I 
I 

' 

excitation spectra unless the crystal had been pr~viously illuminated. 

This indicates that higher energy photons are necessary to- create the 

required state for the excitation process involving the 1.29 eV -

photons. It may be that the carriers which were plaoe.d in exoi ted 
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>l·b eV 

energy levels by the ~ photons are liberated, by the 1.29 eV 

photons, to levels which permit radiative recombination. It is 

probably no more than remarkable that the energy 1.29 eV is approximately 

half the accepted band gap energy of CdS at liquid helium temperatures. 

Two photon excitation involving an intermediate phonon state requires the 

very much greater incident flux densities of pulsed lasers (2). 

The principal excitation threshold_for the A.S. excitation of 

band edge emission was observed to be 1.63! 0.05 eV in three crystals 

grown with three different dopants. An attempt to determine the 

threshold for an undoped sample was unsuccessful because of the 

lack of sensitivity. However, since the threshold·remained remarkably· 

unchanged despite the variety of the dopants, it was concluded that 

the threshold indicated that the level involved in the excitation · 

was probably closely associated with native defects. 

Thresholds of 1.52! 0.02 eV for single beam exci.tation and 
. + . 
1.19- 0.02 eV for double beam excitation have been reported (1). 

These measurements were made at S.R.D.E., Christchurch. The 

correspondence between the 1.63 and 1.29 eV thresholds reported here 

indicate perhaps 

(a) that the 1.29 eV threshold corresponds to the double beam 

threshold and hence requires previous higher.energy excitation, and 

(b) that the discrepancy ~ arise from the zero employed ~ 

determining the lift off. 
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CHAPTER 8 

CONCLUSION AND DISCUSSION 

8.1. Introduction 

It has been suggested in prece~ding chapters that the 

appearance of I 2 exciton emission in the U.V. excited emission spectra 

ot crystals grown under excess partial pressures o£ sulphur vapour 

indicates that there is a strong tendency tor an automatic or 

self-compensatory mechanism to operate in CdS. In this chapter the 

model of the acceptor associated with the I 1 exciton and the ~easured 

energy values for the "new halogen band" at 4900i proposed and 

reported by Thomas, Dingle and Cuthbert. (1) have been developed to 

obtain an estimate of the binding energies of the acceptor levels 

involved. A donor-acceptor associate (D.A.A.) model has also been 

used to explain donor levels which include 'native defects. Then, the 

·D.A.A. model coupled with the concepts of auto-compensation have been 

employed to explain the observed tr~nds of the components o~ the edge 

emission wi·th growth condi tiona. The model has also beeri used to 

explain the mechanisms of the anti-Stokes excitation and emission 

processes. 

8.2.1. The singlY ionisable"acceptor complex 

~Thomas et al. (1) suggested that the line at 4888.75i was due 
' ' 

to the emission associated with the recombination of an exciton bound .. 

to a neutral acceptor, and that the acceptor -..,as an associated pair 

composed of a cadmium vacancy and a chlorine ion substituted on a 

nearest neighbour (N.N.) sulphur site. They also observed a line 

·at 4888.40i which they s~ggested was associated with the recombination 

ot an exciton·bound to a neutral acceptor·composed of a cadmium 

vacancy and an aluminium ion at a neighbouring cadmium site. The 

I 
I 
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centre has a strong tendency to bind a hole. The neutral fo~ of 

the complex will be denoted[@@+]. 

Thomas et al. also reported a new halogen band at 49002. The · 

emission was associated with the recombination of a hole bound to a 

neutral acceptor, i.e. the complex centre described above, with an 

electron bound to a chlorine donor. Since one of the constituents, 

the acceptor, has a neutral ground state, little or no coulombic 

interaction would be involved. This was confirmed by the.··very small 

shift or the maximum or the emission with variation or the intensity . . 

of the excitation. The binding energy or the chlorine donor (~) 

was quoted as 0.024 eV. 

These results are used here to find th~ binding· energy of the 

hole to the neutral aooeptor, EA' using the simple equation for the 

energy_of the 4900.R recombination transition, ET' 

• 

The band gap energy, EG' ~s 2.5826 eV (2), thus we-find EA • 0.0772 eV. 

EA is the energy which binds the hole to the neutral acceptor and is 

denoted as E~® +]+. This state may be reasonably considered analogous 

to th~ hydrogen atom binding an electron to itself and forming an 

g- ion. Comparing the ionisation energy of the neutral state with 

the electron attachment energy ot the charged state ot the hydrogen 

analogy and the present complex (3), we m~ write the equation 

El@® +J + , 0.75 

E~® + J • 13.6 

Ec@@ + J '· •. 1.40'6 ev. 

... 0.055 

Thus 

This value for the binding energy of the first hole to the 

acceptor is in close agreement with the value ot 1.3 -eV which Morigaki 

and Hoshina (4) used to explain their E.S.R •. studies in CdS. They 

.... 
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ascribed the centre to a simple cadmium vacancy, however there was no 

experimental evidence to support this model as opposed to a complex 

centre (see chapter one). It is·assumed here that the• level is 

associated with the oomplex of a cadmium vacancy with a chlorine ion 

substituted on a sulphur N.N. site, denoted (v0d,c15) and that the 

approximations which were used in the calculation of the binding 

energy of the first ~ole to the complex were reasonable. The next 

problem is to find the ionisation energy which is associated with a 

simple cadmium vacancy. 

8.2.2. The cadmium vacancy - a double acceptor 

In order to find th~ ionisation energy of the first hole 

bound to this double acceptor we consider the formation of·the 

complex acceptor described in the previous section. Assume that the 

binding energy of the acceptor·complex is the s~·of the binding 

energy of the double acceptor, E [@ t J , the donor binding energy, 

[[® -] or En• and the work done :in bringing the chlorine 

donor from infinity to the N.N. position through the medium of the 

cadmium sulphide. This work done, W.D., is approximately equal to 

(+2e).(-e)/4~f~ which equals -2.78/r. r is the separation of the 

donor and acceptor in i, the work done ·.is·. in eV and E. -10.33 (5). 

The energy required to remove the sulphur ion to allow the chlorine 
- . 

ion substitution is assumed to b~ negligf,ble compared with the other / 

energies because the substitution takes place during the growth of the· 

crystal, when it is supposed that the native elements will be 

sufficiently mobile to move about readily; whilst.foreign elements 

are more affected by the .environment of cadmium and sulphur. Thus we 

obtain the equation 

~ 1' . @@-f] . [~+] + EcEB-] 
- .. 

+ w.D • 

/ 
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For CdS the nearest neighbour separation is 2.52R, thus 

W.D. • -1.1031 eV, and ~~:F] a 1.4036 - (-1.1031 + 0.024) m 2.4827 eV. 

This is the ionisation energy of the first hole of the doubly . 

charged acceptor arising from an isolated cadmium vacancy. This 

corresponds to an acceptor level some 0.10 eV below the conduction 

band, a value in remarkable agreement with that of 0.09 eV reported 

by Lorenz and Woodbur,r (6) to explain some of their electrical 

measurements. 

8.2.3. The singly ionisable donor complex 

The donors associated with the I 2 exciton emission are 

thought to ·be singly ionisable (7). In this section, the same . 

principles used in the previous·· section are applied to a sulphur 

vacancy - acceptor pair complex.· The complex investigated consists of 

a sulphur vacancy with an impurity ion acting as a singly ionisable 

acceptor substituted on a N.N. cadmium site. It is assumed that 

(a) 0.026 eV is a reasonable value for the binding energy of the 

second electron to the double donor,~ ~ , formed by the isolated 

sulphur vacancy as proposed·by Morigaki and Hoshina (4), 

(b) the. binding energy of (lie complex, E[@G~' is some .0.03 eV as 

determined from the bound exciton and green edge emission as reported 

earlier in this thesis and elsewhere, 

(c) the work done in bringing the donor and the acceptor together 

is the same as in the double acceptor-chlorine donor case, i.e. -1.1 eV, 

(d) the en~rgy required to remove the cadmium ion to allow 

substitution may be neglected, as assumed previously. Then using the 

equation 

Ec{i) ~ + Ere+ J + W.D.' 
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the binding energy of the impurity ion required to form the complex 

is 0 .• 87 eV. This is the magnitude of the binding energy associated 

with impurities, such as copper, acting as singly ionisable 

acceptors in CdS. See figure 8.1. 

8.3. Substitution on next nearest neighbour sites 

It has been shown that the substitution of a chlorine ion on 

a N.N. sulphur site will reduce the binding energy of the first· 

hole to a cadmium vacancy by 

~ +]- E{oo-B -2.48 - 1.40 - 1.08 ~v, 
and produce a singly rather than a doubly ionisable vacancy. The 

substitution of a copper ion on a N.N. ·cadmium site will reduoe the 

binding energy of the first electron to a sulphur vacancy by 

E~ J- Ec®e-J .. 0.~6- 0.03 .. 0.23 eV, ... 

and produce a singly ra.th~r than a doubly ionisa.ble donor complex., 

denoted (VS' CUCd). 

Similarly, reductions in the binding energy and changes to the 

singly ionisable stat~ ~ be effected by substituting impurities 

on next nearest neighbour (N .N .N.) si tea which would act as singly ·· .. 

ionisa.ble donors or acceptors as appropriate. For example, in the 

substitution of aluminium ions which associate with a cadmium 

vacancy (VCd' AlCd)' the separation would be 4.14i so that the work 
. . 

done in.bringing the i~urity to the site is only about 0.663 eV. 

Then the binding energy of the complex for a. hole is approximately' 

1.85 eV, and the substitution of the aluminium ion reduces the 
' 

binding energy of the first hole of a cadmium vacancy some 0.6~ ev. 

Similarly, substitution of a group Vb impurity ion (N,P, ••• ) on a 

N.N.N. sulphur s~te would be expected to reduce the binding energy 

.of the first electron.of a sulphur vacancy, forming a (Ys•Ns) complex. 
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However, unless the binding energy of the acceptor is less than or 

equal to 0.43 eV, the binding energy of the (v5,N5) complex will be 

greater than that of the (vs,eucd) complex. 

Two points arise in the comparison of the complexes formed 

by N.N. substitution with those formed by N.N.N. substitution. Firstly, 

in the case of the complexes arising from the cadmium vacancy, the 

calculated differences in the binding energies of the (v0d,c15) and 

<.v Cd, Al0d) systems are very large compared with the change in the 

position of the two emission maxi~ associated with the recombination 

of excitons bound to the complexes (1). Obviously the models used 

to evaluate the binding energies of the complexes and the isolated 

cadmium vacancy are primitive and in the case of the (VCd' Al0d) 

complex no allowance was made for any screening of the v0d centre 

by sulphur ions. However, it seems more probable that there is a 

larger difference in the binding energies of the two complexes than 

might be inferred from the difference in the position of the emission 

of the excitons, on the assumption that the exciton is bound to the 

neutral acceptor in its ground state. However, if one considers 

.the excited states of these complexes, the differences in the 

"binding energy'.' of the hole become less striking. Table 8.1. 

shows the energies associated with the excited states of the complexes , 

assuming a simple hydrogenic model. The energy required to ionise 

the hole from the nth state is denoted EOn , where n ... 0 for the 

ground state. ,Even for n • 1, the values of EOn of the two complexes 

are more nearly equal, and the difference decreases as n increases. 

The EOn values are also nearer to the accepted values, 0.14 to 0.17 eV, 

for the binding energy of the acceptor thought to be associated with 

the green emission as well as the I1 .emission. It is suggested, from 
j· 
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from this rather crude theory, that the hole is in an excited state 

of the acceptor complex which is involved in these edge emission 

processes. 

Secondly, there is a greater gain of energy in the formation of 

a complex composed of a N.N. a~~ociated pair ( i.e. (VCd'Cl5) and 

(v
8

, cu0d)) than the formation of a N.N.N. associated complex (i.e. 

(VCd'Al0d) and (v5, N5)). Thus it appears that the N.N. pair 

would be formed in preference to the N.N.N. pair given identical 

concentrations of the respective impurities. 

8.4. Auto-compensation and complex formation 

The introduction or electrically active impurities into a 

semiconductor host lattice induces the formation of electrically 

active native defects, vacancies, interstitials et cetera, which 

tend at least to partially compensate the electrical activity.of 

the impurity (8). This auto- or self-compensation may: be analysed 

simply in terms of an energy balance equation. That is, if the 

energy gained by compensation, i.e. the energy of recombi·nation of 

the carriers from the impurity centres with those of the native 

detect, exceeds the energy required to be supplied by the crystal 

to form the compensating defect, the.defect will form and compensate 

the impurity centre. Thus. only insulating crystals w.il be grown 

under equilibrium processes. Clearly, if the energy of defect 

formation is large compared with the energy gained by compensation, 

very little auto-compensa~ion will take place. 

In the case of cadmium sulphide, with 'the possibility of the 

formation of complex pairs of donor-acceptor associates, there are 

essentially two alternative auto-compensation mechanisms. FOr ex~ple, 

to compensate a donor impurity either ·a cadmium vacancy (a doubly 

ionisable acceptor) or a complex. of a cadmium vacancy in·~ssooiation. 
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with a singly ionisable donor (a singly ionisable acceptor complex) 

~ be formed. It has been shown that the binding energy of the 

complex is some one electron volt less than that ·or the simple native 

defect, thus it is more probable that the complex would be formed 

in preference to the simple defect whenever possible, i.e. whenever 

the donors comprising the complex are available. Similarly, it is 

more probable that any complex involving cadmium or sulphur vacancies 

or interstitials would be formed in preference to the simple defect, 

sinoe the energy gained by the compensation process 'is larger. 

8.5. Explanation of results 

The variation of the intensities of _the components at the 

u.v. and A.S. excited edge emission with the conditions under which 

the crystals were grown may be explained in terms of native defects 

as described in the following sections. 

8.5.1. Dono~ centres 

The cr,Ystals studied during the course of this research were 

generally grown under excess partial pressures of the constituent 

elements, so that the compensatory processes were controlled to some 

extent by the excess pressures. The appearance of the emission 

associated with the I 2 (neutral donor) bound excitons in the u.v. 

excited emission spectra of crystals which had been grown under high 

excess partial pressures of sulphur m~ be explained in the following 

manner. Under high partial pressures of sulphur, the native defects' 

most l_ikely to be, formed are cadmium vacancies and sulphur intersti tials. 

As the crystal grows, donor impurities may be expected to be -

"dragged in" to compensate for the acceptors induced by the ambient. 

It is reasonable to suppose that at low exces~ pressures,- less 

than ·about 100 torr, cadmium vacancies have a higher probability 
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of being formed than sulphur interstitials, whilst as the pressure 

increases above this range the probability of sulphur interstitial 

formation will increase. Interstitial migration at room temperature 

is rapid (9), and it is expected that the interstitials formed 

during the growth of the crystal will migrate to the surface, to 

sulphur vacancies or to defect clusters during the period between 

the removal of th:e crystal from the growth tube and the observation 

of the emission characteristics. As a result, there would be a 

number of donor impurities remaining in the crystal which had been 

introduced during the growth to compensate the sulphur interstitials. 

These donors may be the centres which are associated with the 

unexpected "12" exciton emission of these crystals. 

There appear to be several exci tons bound to neutral and 

ionised donors in the emission spectra of CdS. The values obtained 

for the binding energy of the I 2 and r
5 

neutral donor excitons are 

approx~mately equal to those of the donors involved in the distant 

pair recombination process of the green emission. _Therefore it 

appears that the same centres are involved in both processes. Both 

native and impurity defects have been sugges~ed as possible centres 
. . 

for the processes (1,10), and the impurity donor has already been 

used to explain some of the "I2" emission observed. Using the ideas 

discussed in chapters one and two and the results of this thesis, 

it is suggested that sulphur vacancies are involved to some extent 

in these donors. The results of ionic bombardment also indicate 

that the. appearance of excitons bound to neutral donora may be 

attributed to the creation of sulphur vacancies (11). In order·to 

explain the singly ionisable nature of these centres, it is 

necessar,y to postulate that·there are singly ionisable acceptors 
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associated with these vacancies so that complexes are formed. 

8.5.2. Acceptor centres 

The exciton bound to a neutral acceptor, I 1 , has been 

assigned to the recombination of an exciton bound to a singly 

ionisable acceptor oomposed of a cadmium vacancy and a neighbouring 
' 

singly ionisable donor forming a donor-acceptor complex (1). The 

correlation between the intensity of this exciton and the intensity 

of the green edge emission observed in crystals grown under controlled 

conditions indicates that the same acceptor is involved in both 

mechanisms. In order to obtain a reasonable correlation between 

the binding energy of the acceptor observed experimentally and that 

derived for the complex earlier in this chapter, it is ne~essar,y to 

postulate that the hole is in an excited state.of the acceptor complex • 
. 

It is of interest to consider, once again, t~e energy of the 

photon that would be emitted if_ t~e 11 exciton lo.st sufficient energy 

to raise the neutralising hole (a) from its ground state to the 

first excited state, (b) from its first excited state to the second 

-and (c) from its second excited state to the third. Considering 

the "case of the (VCd'Cl5) complex, the values of the energy lost in 

exciting the hole will be (a) 1.0527, (b) 0.1061 and {c) 0.1572 eV, 

see table 8.1.. The energy of the 11 exciton maximum is 2.53585 eV, 

thus the photon would have an energy of 1.4832, 2.4299 and 2.3787 eV · 

for a, b and c respectively. The corresponding wavelengths are 

about 8350, 5100 and 5296R, respectiv~ly. The spectral region of 

8350i was not examined in the experiments performed during the course 

of this research. An emission maximum at 5296i would probably have 

been swamped by the green edge emission. Emission bands having 

·maxima at about 5lOOi have been observed in the emission of several 
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crystals, however the third longitudinal optical phonon replica of the 

I
2 

emission also occurs at ~bout this wavelength. Therefore it is 

difficult to positively identify the maximum as the I! emission. 

8.5.3. A.S. excitation and emission mechanisms 

The cadmium vacancy-donor impurity complex may be used to 

explain the phenomena of the A.S. excitation and emission spectra. 

The .binding energies or the complexes involving cadmium-vacancies 

are very similar to the threshold energy of the A.S. excitation 

spectrum observed without the crystal having previously been 

illuminated, namely 1.63 .:!: 0.05 eV. The second threshold, at 

1.29 ~ 0.03 eV observed after the crystal had been illuminated at that 

J temperature, may correspond to (l) the energy required to excite a 

hole in the complex to an.excited state of the complex so that 

recombination may take place,_ or to {2) the energy req~ired to excite 

an electron from the complex to a state from which it may recom~ine. 

The excitation processes described-in this section are illustrated 

diagramatically in_figure 8.2 •• 

In the model or the excitation process, it is desirable to be 

able to explain the strong tend~cy for the distant. pair, bound-to-

bound, recombination process to be so dominant in ~he emission 

-spectra excited by A.S. radiation. The creation or excitons in 
·' 

some crystals under A.S. excitat~on conditions must also be explained. 

There are always a large number of donors in CdS, with ionisation 

energies. of some 0.024 ·ev. The radius of these donors is given by 

1.39/~ • 30~. With such a large "sphere of in£luence", the donors 

which are associated with the acceptor complex and. those electrically 

in_dependent of the complex will .very probably capture the electron 

before it has the opportunity of recombining with a bound holG to 
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produce the free-to-bound, high energy series. It is therefore 

tentatively suggested that the donors associated with the complex 

through which the electron is excited may capture the photoexcited 

ele.ctron before it has sufficient time to recombine. 

The observation of excitons in the emission spectra excited 

by A.S. radiation indicates that .free carriers must be created. The 

u.v. excited emission of this type of crystal showed very intense 

I 2 and I~ exciton emission, with very weak green emission. It is 

suggested that the'blue emission excited by A.S. radiation is due 

to I~ and or L.O. phonon assisted 12 annihilation. (Further experiments 

are required to positively identify this emission. A.F.J. Cox, 

in a private communication, has suggested that such emission-is 

largely due to the phonon assisted annihilation of free excitons, 

which he has observed at higher temperatures, however he does not 

ignore the possibility of excitons bound to neutral donors ~eing 

involved in the low temperature emissions). No doubt the appearance 

of excitons in the A.S. excited emission spectrum of these crystals 

is due to the fact that the potentially competitive green edge 

recombination processes were relatively.inefficient, as evidenced 

by the U. V. excited emission. If there w.ere fewer donors than 

acceptors in a crystal, one might expect to see an A.S. exoited high 

energy series emission as the hole bound to the acceptor recombines 

with a free electron. 

From the observation of the distant pair, L.E.s., emission 

process exclusively under A.s·. excitation, it was concluded that 

the centre involved in the excitation process is closely associated 

witn the donors involved in the recombination process. It is 

suggested that this centre consists of a cadmium vacancy with a 
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singly ionisable donor in a neighbouring substitutional pos~tion. 

The variations of the ratio of the intensities of the A.S. to u.v. 
excited emission with the growth conditione of the crystal confirm 

this suggestion. Crystals grown·under increasingly high ~admium 

pressures showed a gradual reduction in the ratio of the intensities. 

If the probability of forming sulphur interstitials rather than 

cadmium vacancie-s is higher for excess partial pressures of 

.sulphur above 100 torr, and if the interstitials do migrate from 

active to inactive positions as assumed in section 8.5.1., then the 

number of cadmium vacancies in crystals grown under excess sulphur 

pressures above about lOOtorr might be expected to saturate and 

possibly decrease. The intensity ratio of these crystals was 

found to decrease with increasing sulphur pressure. 

The changes in the intensities and observable features of 

the emission following the deliberate addition of dopants to the 

starting charge of the growth system tend to confirm the correctness 

of the model proposed for the centres involved in the emission 

and excitation processes. For example, the addition ot chlorine 

dramatically increased the efficiency of the A.S. excited emission 

process, supporting the suggestion that the (v0d,c1
5

) centre takes 

part in the A.S. excitation mechanism. There was also a large 

increase in the efficiency of the copper doped crystals. This 

latter m~ have been due to the formation of native, sulphur vacancy, 

donors in association with copper ions, where the impurity acceptor 

acted as the centre responsible for the two-step e~citation process 

and the donor-acceptor associate was responsible for the donor 

involved in the recombination process. 

p 



- 130 -

The model described above is similar to that presented by 

Brown et al. (12). They suggest that some form of centre involving 

a cadmium vacancy, in association with other defects or alone, is 

responsible for the excitation mechanism.of the A.S. excited 

emission. It is further suggested that, in the recombination 

processes of the green edge emission of CdS., the hole is probably 

bound in an excited state of the acceptor formed by a cadmium 

vacancy. The donor acceptor associate model presented here 

appears to explain the results of this work more tully. 

8.6. Conclusion 

The edge emission and exciton recombination spectra of a 

number of cadmium sulphide crystals at liquid nitrogen and liquid 

helium temperatures have been observed. The spectra obtained with 

the crystals at liquid helium temperatures contained more interesting 

components which were more easily resolved and thus were of 

primary concern. It was possible to excite visible emission using 

radiation with photon energies greater than the band gap, i.e. 

u.v. excitation, and less than the band gap,i.e. A.S. excitation. 

The crystals were gro~t.n under controlled partial pressures 

of the constituent elements. The variation of the relative 

intensities of the emission comp~nents was related to the growth 

conditions of the crystal. This variation and the analysis of the 

emission characteristics indicated that the recombination 

mechanisms involved donors and acceptors of native origin. A theory 

based upon cadmium and sulphur vacancies associated with impurity 

ions was used to explain the results. It is further suggested that 

the impurity ions associated with the vacancies, lying on 

neighbouring substitutional sites, take part in the recombination 

! 
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processes. This is supported by the effects observed in the 

intensity and characteristics of the emission following the 

introduction of impurities to the starting charge.of the crystal 

growth system. 

Further investigat~on of the somewhat unexpected emission 

of excitons excited by A.S. radiation is required in order 

positively to identif.y the recombina~ion process. A systematic 

programme of observing the emission of crystals grown under various 

pressures of cadmium and sulphur from charges containing a variety 

of dopan~s would provide a useful determination of the precise 

nature of the centres involved and may lead to a useful device. 

Anti-Stokes excitation spectra of these crystals, obtained using 

more sensitive apparatus, would indicate the location of the centres 

within the band gap. Precise monitoring of the electrical 

resistance during the excitation measurements would provide 

information on whether free carriers are created. Double beam 

excitation measurements would, under these conditions, prove very 

useful. Zeeman effect measurements of the u.v. and A.S. excited 

exciton·emission of doped and undoped crystals'is an essential extension 

of this work, providing verification of the assignments of all. the 

bound excitons and the I2 emission. It may also be possible to 

observe differences in the Zeeman splitting of an exciton line 

according to which dopant element is associated with the complex 

to which the exciton is bound. If the proposed model is correct, 

it ought to be possible to correlate the components of the edge 

emission with those of the red and infra-red emissions. 
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