HYDRIDO and GROUP-IVB DERIVATIVES OF PLATINUM.
HYDRIDO AND GROUP-IVb
DERIVATIVES OF PLATINUM

by

A.F. Clemmit, B.Sc.
(Hatfield College)

A Thesis submitted for the Degree of Doctor of Philosophy in the University of Durham.

September 1970
SUMMARY

The work described in this Thesis can be divided into two parts.

PART A Hydride Complexes of Platinum

The hydrogenation of the silyl complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3)\) yielded the \textit{cis}-hydridochloride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}\). The preparation of this \textit{cis}-hydride led to a reinvestigation of the reported \textit{cis} and \textit{trans} hydrides, \((\text{Ph}_3\text{P})_2\text{PtHCl}\). From a study of their 'H n.m.r. and infra-red spectra it was concluded that the reported \textit{cis}-\((\text{Ph}_3\text{P})_2\text{PtHCl}\) was in fact the \textit{trans} complex, the differences in Pt-H stretching frequencies between the two complexes being due to different crystallographic forms. The structure of the \textit{cis}-hydride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)\) was confirmed by its reaction with 1,2-dibromoethane and the preparation of the deuterium analogue \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtD(GePh}_3)\).

PART B Group-IVb Derivatives of Platinum

The complexes

\[
\begin{align*}
\text{Ph}_2 & \quad \text{Pt} & \quad \text{MMe}_3 \\
\text{Ph}_2 & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

where \(M = \text{Si or Ge}\)

have been prepared by reacting \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) with 1 and 2 molar amounts of the mercury reagent \((\text{Me}_3\text{N})_2\text{Hg}\) respectively. The analogous platinum-tin derivatives have also been obtained by the reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) and \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt(o)}\) with trimethylstannane.

The reactions of some of these complexes with hydrogen and hydrogen chloride have been studied. With hydrogen, cleavage of the platinum-silicon bond in \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3)\) resulted in the \textit{cis}-
hydridochloride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}\). The disubstituted silyl complex at different temperatures with hydrogen yielded \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3)\) and at a higher temperature \([\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2]_3\text{Pt}\). Hydrogen chloride also cleaved the Pt-M bond, selectively eliminating the hydride Me\(_3\text{MH}\) and giving the platinum chloride product.

An interesting series of reactions carried out were silyl-germyl- and stannyl-exchange reactions:

\[
\begin{align*}
\text{PtCl(SiMe}_3) + \text{Me}_3\text{GeH} &\rightarrow \text{PtCl(GeMe}_3) + \text{Me}_3\text{SiH} \\
\text{Pt(SiMe}_3)_2 + 2\text{Me}_3\text{GeH} &\rightarrow \text{Pt(GeMe}_3)_2 + \text{Me}_3\text{SiH}
\end{align*}
\]

The complexes \((\text{chelate})\text{PtCl(MMe}_3\text{H)}\) \(M = \text{Si}\) or Ge, with excess Me\(_3\)SnH gave the octahedral complex \((\text{chelate})\text{PtH(SnMe}_3)_3\) which was also prepared by the addition of Me\(_3\)SnH to \((\text{chelate})\text{Pt(SnMe}_3)_2\). The octahedral complex \((\text{chelate})\text{PtCl(SnMe}_3)_2\) was also obtained by the reaction of \((\text{chelate})\text{PtCl-}
(SnMe}_3)\) with Me\(_3\)SnH, both these additions being reversible.

The kinetics of the hydrogenation of \((\text{chelate})\text{Pt(SiMe}_3)_2\) were shown to be first order with respect to hydrogen and first order with respect to the platinum complex. The equilibrium constant of the reaction

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{Me}_3\text{SiH} \rightleftharpoons \text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3) + \text{H}_2
\]

was also determined.

The 'H n.m.r. and mass spectra of the platinum-group-IVb complexes are also reported.
ACKNOWLEDGEMENT

I would like to express my sincere thanks to Professor F. Glockling for his help and encouragement throughout the work described in this Thesis.

I also wish to thank Dr. J. Walker of the Polymer and Petrochemical Laboratories, I.C.I., Runcorn, for the 220 M Hz. 'H n.m.r. spectra and the Science Research Council for a maintenance grant.
MEMORANDUM

The work described in this Thesis was carried out in the University of Durham between September 1967 and August 1969 and in The Queen's University of Belfast between August 1969 and September 1970. This work has not been submitted for any other degree and is the original work of the author except where acknowledged by reference.
The work described in this Thesis has been the subject of the following publications with F. Glockling:

CONTENTS

Summary

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: General Chemistry of Platinum</td>
</tr>
<tr>
<td>Zerovalent oxidation state</td>
</tr>
<tr>
<td>Quadrivalent oxidation state</td>
</tr>
<tr>
<td>Divalent oxidation state</td>
</tr>
<tr>
<td>Trans-effect and trans-influence</td>
</tr>
<tr>
<td>Cis-effect and cis-influence</td>
</tr>
<tr>
<td>Chapter 2: Organic Derivatives of Platinum</td>
</tr>
<tr>
<td>σ-Organocomplexes</td>
</tr>
<tr>
<td>Olefin complexes</td>
</tr>
<tr>
<td>π-allyl complexes</td>
</tr>
<tr>
<td>Acetylene complexes</td>
</tr>
<tr>
<td>Chapter 3: Hydride Complexes of Nickel, Palladium and Platinum</td>
</tr>
<tr>
<td>Chapter 4: Group-IVb Derivatives of Nickel, Palladium and Platinum</td>
</tr>
<tr>
<td>DISCUSSION</td>
</tr>
<tr>
<td>Chapter 5: Platinum Hydride Complexes</td>
</tr>
<tr>
<td>Chapter 6: Platinum-Group-IVb Complexes</td>
</tr>
<tr>
<td>Chapter 7: Experimental</td>
</tr>
<tr>
<td>Section A</td>
</tr>
<tr>
<td>1. Preparation of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}(\text{SiMe}_3))</td>
</tr>
</tbody>
</table>
Contents (contd.)

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Preparation of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SiMe}_3\text{)}_2)</td>
<td>115</td>
</tr>
<tr>
<td>3. Preparation of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(GeMe}_3\text{)})</td>
<td>116</td>
</tr>
<tr>
<td>4. Preparation of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GeMe}_3\text{)}_2)</td>
<td>116</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2)</td>
<td></td>
</tr>
<tr>
<td>5. With trimethylsilane</td>
<td>117</td>
</tr>
<tr>
<td>6. With trimethylgermane</td>
<td>117</td>
</tr>
<tr>
<td>7. With trimethylstannane</td>
<td>117</td>
</tr>
<tr>
<td>8. With trimethylstannane (neat)</td>
<td>117</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt(o)})</td>
<td></td>
</tr>
<tr>
<td>9. With trimethylsilane</td>
<td>118</td>
</tr>
<tr>
<td>10. With trimethylgermane</td>
<td>118</td>
</tr>
<tr>
<td>11. With trimethylstannane</td>
<td>118</td>
</tr>
<tr>
<td>12. With chlorotrimethylsilane</td>
<td>119</td>
</tr>
<tr>
<td>13. With chlorotrimethylstannane</td>
<td>119</td>
</tr>
<tr>
<td>14. Reaction of ([((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt})_2^{2+2}\text{Cl}^-]) with trimethylsilane</td>
<td>120</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SiMe}_3\text{)}_2)</td>
<td></td>
</tr>
<tr>
<td>15. With anhydrous hydrogen chloride</td>
<td>120</td>
</tr>
<tr>
<td>16. With hydrogen at 40°</td>
<td>120</td>
</tr>
<tr>
<td>17. With hydrogen at 80°</td>
<td>121</td>
</tr>
<tr>
<td>18. With trimethylgermane</td>
<td>121</td>
</tr>
<tr>
<td>19. With trimethylstannane</td>
<td>122</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3\text{)})</td>
<td></td>
</tr>
<tr>
<td>20. With anhydrous hydrogen chloride</td>
<td>122</td>
</tr>
</tbody>
</table>
Contents (contd.)

<table>
<thead>
<tr>
<th>Reaction Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. With hydrogen</td>
<td>122</td>
</tr>
<tr>
<td>22. With trimethylgermane</td>
<td>123</td>
</tr>
<tr>
<td>23. With trimethylstannane</td>
<td>123</td>
</tr>
<tr>
<td>24. With trimethylstannane (excess)</td>
<td>124</td>
</tr>
<tr>
<td>25. With trimethylstannane (excess) for 'H n.m.r.</td>
<td>124</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(GeMe}_3\text{)})</td>
<td></td>
</tr>
<tr>
<td>26. With trimethylstannane (excess)</td>
<td>125</td>
</tr>
<tr>
<td>27. With trimethylstannane (equimolar)</td>
<td>125</td>
</tr>
<tr>
<td>28. With trimethylsilane (excess)</td>
<td>125</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GeMe}_3\text{)}_2)</td>
<td></td>
</tr>
<tr>
<td>29. With trimethylstannane</td>
<td>126</td>
</tr>
<tr>
<td>30. With trimethylsilane (excess)</td>
<td>126</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3\text{)})</td>
<td></td>
</tr>
<tr>
<td>31. With trimethylgermane (excess)</td>
<td>126</td>
</tr>
<tr>
<td>32. With trimethylsilane (excess)</td>
<td>127</td>
</tr>
<tr>
<td>33. With trimethylstannane (excess)</td>
<td>127</td>
</tr>
<tr>
<td>Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3\text{)}_2)</td>
<td></td>
</tr>
<tr>
<td>34. With trimethylgermane (excess)</td>
<td>128</td>
</tr>
<tr>
<td>35. With trimethylsilane (excess)</td>
<td>128</td>
</tr>
<tr>
<td>36. With anhydrous hydrogen chloride (1 equivalent)</td>
<td>128</td>
</tr>
<tr>
<td>37. With trimethylstannane (excess)</td>
<td>128</td>
</tr>
<tr>
<td>38. With hydrogen</td>
<td>129</td>
</tr>
<tr>
<td>39. Reactions of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GePh}_3\text{)}_2)** with deuterium</td>
<td>129</td>
</tr>
</tbody>
</table>
40. Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)\) with 1,2-dibromoethane

41. Reaction of \(\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Et}_3\text{P})(\text{SiMe}_3)\right]^+\text{BPh}_4^-\) with hex-1-ene

42. Reaction of \(\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Et}_3\text{P})(\text{GeMe}_3\right)^+\text{Cl}^-\) with hex-1-ene

43. Kinetic Study of the hydrogenation of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SiMe}_3)\)

44. Reaction of dimethylmercury with trimethylsilane

Section B Platinum Hydride Complexes

1. Preparations of Bailar's \text{cis-} and \text{trans-}(\text{Ph}_3\text{P})_2\text{PtHCl}

2. Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(o)}\) with hydrogen chloride

3. Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) with hydrazine hydrate

4. Reaction of \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} with trimethylsilane

Experimental Methods

Preparation of Starting Materials

Appendix

References

<table>
<thead>
<tr>
<th>Contents (contd.)</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40. Reaction of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)) with 1,2-dibromoethane</td>
<td>130</td>
</tr>
<tr>
<td>41. Reaction of (\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Et}_3\text{P})(\text{SiMe}_3)\right]^+\text{BPh}_4^-) with hex-1-ene</td>
<td>130</td>
</tr>
<tr>
<td>42. Reaction of (\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Et}_3\text{P})(\text{GeMe}_3\right)^+\text{Cl}^-) with hex-1-ene</td>
<td>130</td>
</tr>
<tr>
<td>43. Kinetic Study of the hydrogenation of ((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SiMe}_3))</td>
<td>131</td>
</tr>
<tr>
<td>44. Reaction of dimethylmercury with trimethylsilane</td>
<td>131</td>
</tr>
</tbody>
</table>
SUMMARY

The work described in this Thesis can be divided into two parts.

PART A Hydride Complexes of Platinum

The hydrogenation of the silyl complex $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3)$ yielded the cis-hydridochloride, $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}$. The preparation of this cis-hydride led to a reinvestigation of the reported cis and trans hydrides, $(\text{Ph}_3\text{P})_2\text{PtHCl}$. From a study of their 'H n.m.r. and infra-red spectra it was concluded that the reported cis-$(\text{Ph}_3\text{P})_2\text{PtHCl}$ was in fact the trans complex, the differences in Pt-H stretching frequencies between the two complexes being due to different crystallographic forms. The structure of the cis-hydride, $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)$ was confirmed by its reaction with 1,2-dibromoethane and the preparation of the deuterium analogue $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtD(GePh}_3)$.

PART B Group-IVb Derivatives of Platinum

The complexes

\[
\begin{array}{cc}
\text{Ph}_2 & M \text{Me}_3 \\
\text{P} & \text{Pt} & \text{Ph}_2 \\
\text{Cl} & \\
\end{array}
\quad
\begin{array}{cc}
\text{Ph}_2 & M \text{Me}_3 \\
\text{P} & \text{Pt} & \text{Ph}_2 \\
\text{Ph}_2 & \\
\end{array}
\]

$M = \text{Si or Ge}$

have been prepared by reacting $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2$ with 1 and 2 molar amounts of the mercury reagent $(\text{Me}_3M)_2\text{Hg}$ respectively. The analogous platinum-tin derivatives have also been obtained by the reactions of $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2$ and $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt(o)}$ with trimethylstannane.

The reactions of some of these complexes with hydrogen and hydrogen chloride have been studied. With hydrogen, cleavage of the platinum-silicon bond in $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3)$ resulted in the cis-
The disubstituted silyl complex at different temperatures with hydrogen yielded \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3)\) and at a higher temperature \([\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_3\text{Pt}_4\]. Hydrogen chloride also cleaved the Pt-M bond, selectively eliminating the hydride \(\text{Me}_3\text{MH}\) and giving the platinum chloride product.

An interesting series of reactions carried out were silyl- germyl- and stannyl-exchange reactions:

\[
\begin{align*}
\text{(chelate)PtCl(SiMe}_3\) & \xrightarrow{\text{Me}_3\text{GeH}} \text{(chelate)PtCl(GeMe}_3\) & \xrightarrow{\text{Me}_3\text{SnH}} \text{(chelate)PtCl(SnMe}_3\) \\
\text{(chelate)Pt(SiMe}_3\)_2 & \xrightarrow{2\text{Me}_3\text{GeH}} \text{(chelate)Pt(GeMe}_3\)_2 & \xrightarrow{\text{Me}_3\text{SnH}} \text{(chelate)Pt(SnMe}_3\)_2
\end{align*}
\]

The complexes \((\text{chelate)PtCl(MMe}_3\) M = Si or Ge, with excess \(\text{Me}_3\text{SnH}\) gave the octahedral complex \((\text{chelate)PtH(SnMe}_3\)_3\) which was also prepared by the addition of \(\text{Me}_3\text{SnH}\) to \((\text{chelate)Pt(SnMe}_3\)_2\). The octahedral complex \((\text{chelate)PtHCl(SnMe}_3\)_2\) was also obtained by the reaction of \((\text{chelate)PtCl-(SnMe}_3\)_3\) with \(\text{Me}_3\text{SnH}\), both these additions being reversible.

The kinetics of the hydrogenation of \((\text{chelate)Pt(SiMe}_3\)_2\) were shown to be first order with respect to hydrogen and first order with respect to the platinum complex. The equilibrium constant of the reaction

\[
\text{trans-(Et}_3\text{P})_2\text{PtHCl} + \text{Me}_3\text{SiH} \xrightarrow{\text{trans-(Et}_3\text{P})_2\text{PtCl(SiMe}_3\) + H}_2
\]

was also determined.

The 'H n.m.r. and mass spectra of the platinum-group-LVb complexes are also reported.
CHAPTER 1

GENERAL CHEMISTRY
THE CHEMISTRY OF PLATINUM

Platinum Metal

Atomic number 78. Atomic weight 195.09. Electronic configuration 5d⁸ 6s².

Most abundant stable isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>32.9%</td>
</tr>
<tr>
<td>195</td>
<td>33.8%</td>
</tr>
<tr>
<td>196</td>
<td>25.3%</td>
</tr>
<tr>
<td>198</td>
<td>7.21%</td>
</tr>
</tbody>
</table>

The introduction to this thesis is concerned essentially with the chemistry of platinum, but at times it will be necessary to compare its chemistry with that of nickel and palladium. Particular emphasis will be placed on the +2 oxidation state though the 0, +4, +5 and +6 oxidation states are known.

1. Zerovalent Complexes

The three metals all form complexes in the zerovalent oxidation state, but strongly π-bonding ligands are required for stability of these complexes, e.g. (Ph₃P)₄Pt, (PF₃)₄Pt, Ni(CO)₄. Pd(o) and Pt(o) complexes with phosphine, phosphite and isonitrile ligands may be prepared by reduction of Pd(II) and Pt(II) complexes in alkaline media ¹,².

\[
\text{(Ph}_3\text{P)}_2\text{PtI}_2 + \text{PPh}_3 \text{ (excess)} \xrightarrow{\text{N}_2\text{H}_4} (\text{Ph}_3\text{P})_4\text{Pt}
\]

\[
(\text{Ph}_3\text{P})_2\text{PtI}_2 \xrightarrow{\text{N}_2\text{H}_4} (\text{Ph}_3\text{P})_3\text{Pt}
\]

The reduction of chelating diarsine and diphosphate Pd(II) and Pt(II) salts using sodium borohydride or naphthalenide gave complexes of the type (Chelate)₂Pt ³,⁴.
Cluster compounds of Pt(o) containing PR₃ and CO as ligands have been reported but not all, as yet, have been fully characterised, however, recently some mixed tertiary phosphine carbonyl tri- and tetra-nuclear cluster compounds have been prepared and characterised. The complexes of the type $[\text{Pt}_3(\text{CO})_3L_4]$ (L = PPh₃, PPh₂Me and PPh₂Et) and $[\text{Pt}_3(\text{CO})_3L_3]$ (L = Ph₂PCH₂Ph), were prepared from alkali tetrachloroplatinate and hydrazine in the presence of carbon monoxide.

$$\text{K}_2\text{PtCl}_4 + 2L \rightarrow [\text{Pt(Cl}_2L_2)] + 2\text{KCl}$$

$$[\text{Pt(Cl}_2L_2)] + 2\text{N}_2\text{H}_4 \rightarrow [\text{PtHClL}_2]$$

$$[\text{PtHClL}_2] + \text{KOH} \rightarrow [\text{Pt(CO)}_2L_2]$$

$$5[\text{Pt(CO)}_2L_2] \rightleftharpoons [\text{Pt}_3(\text{CO})_3L_4] + 2\text{PtL}_3 + 7\text{CO}$$

A

The above equilibrium is shifted to the right when a solution of the $[\text{Pt(CO)}_2L_2]$ derivative is boiled, and due to the low solubility in the reaction medium (ethanol) of (A), a complete transformation to a mixture of $[\text{Pt}_3(\text{CO})_3L_4]$ and PtL₃ is obtained.

The tetranuclear complexes were formed by further reaction of the trinuclear species:

$$2[\text{Pt}_3(\text{CO})_3L_4] + 3\text{CO} \xrightarrow{25^\circ, 1\ atm.} [\text{Pt}_4(\text{CO})_3L_4] + 2\text{PtL}_2(\text{CO})_2.$$
phosphine ligands are each bonded to a different platinum atom and the five carbon monoxide bridging ligands span the five bonding edges of the distorted tetrametal tetrahedron. The structure, therefore, has two different kinds of platinum atoms: two seven coordinated, which each form bonds to the other three platinum atoms, to one phosphine and to three carbon monoxide ligands, and two five coordinated which are linked to the two seven coordinated metal atoms, one phosphine and two carbon monoxide ligands, (fig. 1). (For the purposes of clarity the phenyl and methyl groups of the phosphine ligands have been omitted from the diagram). In tris(triphenylphosphine)platinum(o) (fig. 2), the three phosphorus atoms are in a near trigonal arrangement around the platinum atom, the platinum and the three phosphorus atoms are approximately planar\(^9\)\(^b\), the distortion from planarity can be seen from the \(P\)-\(Pt\)-\(P\) bond angles; \(\angle P_1-Pt-P_2 = \angle P_1-Pt-P_3 = 122^\circ\) and \(\angle P_2-Pt-P_3 = 115^\circ\). In the crystal lattice, the molecules are packed in nearly hexagonal layers, the shortest Pt-Pt distance being about 8\(\AA\).

Direct interaction of platinous dichloride and trifluorophosphines has resulted in zerovalent platinum complexes\(^10\).

\[\text{PtCl}_2 + 4L \xrightarrow{60^\circ} \text{PtL}_4. \quad L = \text{PF}_3, \text{PF}_2\text{CF}_3, \text{PF(CF}_3)_2. \]

These Pt(o) complexes are unreactive compared with the triphenylphosphine analogues, giving no reaction with hydrogen chloride, methylchloride, methyl iodide, ethylene or carbon disulphide at 60\(^\circ\). This behaviour contrasts markedly with that of triphenylphosphine complexes of zerovalent nickel, palladium and platinum\(^11\). The high reactivity of the triphenylphosphine complexes in solution is attributed to their ready dissociation and the following equilibria have been established\(^12,13\) in which the trico-ordinated complex is the main species:

\[\text{Pt(PPH}_3)_4 \xrightleftharpoons{\text{PPh}_3} \text{Pt(PPH}_3)_3 \xrightleftharpoons{\text{PPh}_3} \text{Pt(PPH}_3)_2 \]
Fig. 1 X-ray crystal structure of $\left[\text{Pt}_4(\text{PhMe}_2\text{P})_4(\text{CO})_5\right]$

Fig. 2 X-ray crystal structure of $(\text{Ph}_3\text{P})_3\text{Pt}$
No evidence for similar equilibria has been obtained for the tri-
fluorophosphine complexes, the difference probably arises from the different
donor-acceptor properties of the ligands, the triphenylphosphine, being a
stronger σ-donor but a weaker π-acceptor than the trifluorophosphine ligands,
on coordination leads to a build up of electron density on the platinum
which facilitates dissociation to a coordinately unsaturated species which
can then undergo further reaction.

The tertiary phosphine zerovalent platinum complexes have been used
in the preparation of platinum hydrides\(^{14}\) and platinum-silicon complexes\(^{15}\)
but these reaction will be treated in later sections.

2. Quadrivalent Oxidation State

The +4 oxidation state becomes increasingly stable down the group,
for nickel there are relatively few compounds in this oxidation state whereas
for platinum the +4 oxidation state is easily accessible and many compounds
are known \(\text{Palladium(IV)}\) complexes are of two types\(^{16}\), halogen complexes
\(\text{M}_2\text{PdX}_6\) (M is an alkali metal, \(X^9 = F^9, Cl^9, Br^9\)) and diammines of the type
\(\text{PdAm}_2X_4\) (\(X = Cl^9, Br^9\)).

Platinum forms a large number of stable 4-valent compounds which are
6-coordinate and octahedral, however, novel bonding is sometimes required
to achieve this. The trimethylplatinum halides are tetrameric with three-
way halogen bridges. The complexes in the series ranging from hexahalo
complexes to the hexammines, e.g. \(\text{K}_2\text{PtCl}_6, [\text{Pt(NH}_3)_2\text{Cl}_4], [\text{Pt(NH}_3)_5\text{Cl}]\text{Cl}_3\),
form a typical and extensive series of platinum(IV) complexes. Many
combinations of various amines, ammonia, hydrazine, hydroxylamine, halogens
and pseudohalogenes are known to occur in this type of complex.

3. Other Oxidation States

Oxidation states other than 0, +2 and +4 are relatively unimportant
in the chemistry of nickel, palladium and platinum. No palladium or
platinum complexes are known and compounds of nickel are very rare but include \([\text{Ni}_2(\text{CO})_6]^{2-}\) and \([\text{Ni}_2(\text{CN})_6]^{4-}\). Tervalent compounds of nickel are also known, oxidation of \((\text{PET}_3)_2\text{NiCl}_2\) by nitrosyl chloride gave a compound with the composition \([(\text{Et}_3\text{P})_2\text{NiCl}_3]\)\(^{17}\). Although tervalent compounds of palladium and platinum have been claimed none has been characterised and some, shown stoichiometrically to contain the metal in the +3 oxidation state, were in fact compounds with the metal in mixed oxidation levels +2 and +4. Compounds with the metal in an oxidation state higher than +4 are few but include PtF\(_5\) and PtF\(_6\).

4. The Divalent State

In the divalent state, the chemistry of palladium and platinum is similar though the platinum complexes are thermodynamically and kinetically more stable than their palladium analogues. Nickel however, exhibits distinct differences being 4 or 6-coordinate and square planar, tetrahedral or octahedral whereas palladium and platinum compounds are usually 4-coordinate and square planar\(^{16}\). All types of mononuclear complexes of palladium and platinum, \([\text{ML}_2]^2+\), \([\text{ML}_2\text{X}]^+\), \([\text{ML}_2\text{X}_2]^+\), \([\text{MLX}]^-\) and \([\text{MX}_4]^+\) are known (L = neutral ligand, e.g. PET\(_3\), AsPh\(_3\); X = anionic ligand, e.g. halide). Bridged binuclear complexes also exist\(^{18}\), having halogen, thiocyanate, RS and PR\(_2\) bridging groups.

\[
\begin{array}{c}
\text{Pr}_3\text{P} \\
\text{Pt} \\
\text{Cl} \\
\text{Cl} \\
\text{P} \\
\text{P} \\
\text{PPr}_3^n \\
\end{array}
\quad
\begin{array}{c}
\text{R}_2 \\
\text{P} \\
\text{P} \\
\text{Pt} \\
\text{Cl} \\
\text{R} = \text{alkyl or aryl group.}
\end{array}
\]

Although four is the usual coordination number for palladium and platinum(II) complexes there are some well-established cases of 5-coordination, the ions \([\text{Pt(SnCl}_3]_5]^{3-}\) and \([\text{HPt(SnCl}_3]_4]^{3-}\) being prime examples\(^{19}\). More recently\(^{20}\), \(^1\text{H} \text{n.m.r. evidence suggests} \) 5-coordinate intermediates in
ligand replacement reactions between palladium(II) and platinum(II) xanthates and thiocarbamates with methyldiphenylphosphine, when a phosphine adduct is formed as an intermediate prior to ligand substitution.

5. The Trans-Effect and Trans-Influence

The classification of ligands according to their trans-directing properties, i.e., their relative tendency to direct an incoming ligand into a position trans to themselves, for substitution in square planar platinum(II) complexes, has been established for some time. This classification has been extended and the trans-effect defined as the tendency of "a group coordinated to a metal to direct an incoming group into a position trans to itself". The classic example of the trans-effect is the preparation of cis and trans isomers of the ion \([PtCl_2(NH_3)_2]^2^- \). The cis isomer can be made by the action of ammonia on \([PtCl_4]^2^- \):

\[
\begin{array}{c}
\text{Cl} \\
\text{Pt} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\stackrel{\text{NH}_3}{\longrightarrow}
\begin{array}{c}
\text{Cl} \\
\text{Pt} \\
\text{Cl} \\
\text{NH}_3 \\
\end{array}
\text{Cl}
\]

However, if \([Pt(NH_3)_4]^{2+} \) is treated with chloride ions the trans isomer results:

\[
\begin{array}{c}
\text{NH}_3 \\
\text{Pt} \\
\text{NH}_3 \\
\text{NH}_3 \\
\end{array}
\stackrel{\text{Cl}^-}{\longrightarrow}
\begin{array}{c}
\text{Cl} \\
\text{Pt} \\
\text{Cl} \\
\text{NH}_3 \\
\end{array}
\text{NH}_3
\]

It can be seen that substitution always occurs trans to a chloride ion, this can be rationalised by saying that chloride ion has a greater labilising effect on the group opposite than ammonia, i.e. \(Cl^- \) has a greater trans-effect than \(NH_3 \). By studies of similar substitution reactions, a series based on the effectiveness of a ligand to direct a substituent into a
position trans to itself has been built up.\(^\text{25}\)

\[
H_2O < OH < NH_3 < \text{pyridine} < \text{RNH}_2 < \text{Cl}^\Theta < \text{Br}^\Theta < \text{I}^\Theta < \text{R}_3\text{P} < \text{CN} < \text{C}_2\text{H}_4 < \text{CH}_3 < \text{H}
\]

In order to obtain quantitative data on the trans-effect and to establish a mechanism of substitution reactions much work has been done on the kinetics of substitution reactions. The rate of substitution reactions of the type

\[
\text{Pt(A)}_2\text{LX} + Y \rightarrow \text{Pt(A)}_2\text{LY} + X
\]

is given by the expression:

\[
\text{Rate} = k_1[\text{Pt(A)}_2\text{LX}] + k_2[\text{Pt(A)}_2\text{LX}][Y].
\]

\(k_1\) is a first order rate constant for a solvent controlled reaction and \(k_2\) is the second order rate constant for direct substitution by \(Y\).\(^\text{26}\)

For an excess of \(Y\) the experimental first-order rate constant, \(k_{\text{obs}}\), is given by \(k_{\text{obs}} = k_1 + k_2[Y]\). This would require a plot of \(k_{\text{obs}}\) versus \([Y]\) to be linear and for many substitution reactions of square planar complexes this is observed. This two-term rate law requires a two-path reaction mechanism which can be represented as follows:

\[S = \text{solvent}\]
That substitutions are bimolecular is supported by other experimental evidence:

1. Substitution occurs with retention of configuration.
2. Isolation of five and six coordinated systems.
3. Dependence of the rate of reaction on the entering reagent.
4. Steric effects on rates.

As the trans-effect is primarily kinetic, the influence of a group on various ground state observations is often described as the trans-influence to distinguish it from the kinetic trans-effect. How various ground state observations can be correlated to the trans-influence of groups will now be discussed.

(a) X-ray crystallography

If in complexes of the type PtA₂LX a change in the trans-influence of L gives a change in the Pt-X bond strength then a measure of the Pt-X bond strength should give a measure of the trans-influence of L. The determination of the Pt-X bond length by X-ray studies would thus give a measure of the Pt-X bond strength for changing L. X-ray studies have generally been used to establish structures of Pt(II) complexes, however, from the various systems studied there is some evidence to suggest that trends occur as L changes. For example, the compounds in Table 1, have been examined and the Pt-Cl bond length measured. From this, the order of trans-influence is Si>H>P>C=C,~Cl>O, roughly agreeing with the order of trans-effect of ligands. This data shows that the trans-influence of the ligand increases with decreasing electronegativity, this was also concluded by Chatt et al from infra-red data²².
Table 1

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Trans ligand</th>
<th>Pt-Cl bond length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pt(acac)2Cl]$-$</td>
<td>0</td>
<td>2.28 ± 0.0127</td>
</tr>
<tr>
<td>trans-(PET$_3$)$_2$PtCl$_2$</td>
<td>Cl</td>
<td>2.30 ± 0.0128</td>
</tr>
<tr>
<td>(C${12}$H${17}$)$_2$Pt$_2$Cl$_2$</td>
<td>C = C</td>
<td>2.31 ± 0.0129</td>
</tr>
<tr>
<td>cis-(PMe$_3$)$_2$PtCl$_2$</td>
<td>P</td>
<td>2.37 ± 0.0130</td>
</tr>
<tr>
<td>trans-(PPh$_2$Et)$_2$PtHCl</td>
<td>H</td>
<td>2.42 ± 0.0131</td>
</tr>
<tr>
<td>trans-(PPhMe$_2$)$_2$Pt(SiPh$_2$Me)Cl</td>
<td>Si</td>
<td>2.45 ± 0.0129</td>
</tr>
</tbody>
</table>

The crystal structure of trans-(PET$_3$)$_2$Pt(H)Br has been determined and shows that the ligands are in a distorted square-planar arrangement. The Pt-Br distance, 2.56Å, is longer than the sum of the atomic radii and also longer than the reported Pt-Br distance in trans-(PET$_3$)$_2$PtBr$_2$ of 2.43Å. This shows an increase in Pt-Br bond length for hydrogen trans to bromine compared with bromine trans to bromine, attributable to the high trans-influence of the hydride. The position of the Pt-H hydrogen atom was not revealed.

Recently the crystal structure of Pt$_2$Cl$_4$(AsMe$_3$)$_2$ has been reported as dimeric with two platinum atoms unsymmetrically bridged by two chlorine atoms. The structure shows three types of chlorine atom: bridging trans to arsenic, bridging trans to chlorine and terminal trans to chlorine. The mutually trans Pt-Cl bond lengths of 2.268 and 2.312Å are in reasonable agreement with other X-ray observations28,34. However the Pt-Cl bond length trans to arsenic of 2.39Å approaches the value of 2.42Å found in trans-(PPh$_2$Et)$_2$PtHCl31, suggesting that the trimethylarsine ligand exerts a strong trans-influence.
(b) **Infra-red Spectra**

Chatt et al\(^{35}\), in investigating the *trans*-influence of various ligands, studied the N-H stretching frequencies in complexes of the type *trans-*

\[([\text{NHRR'}]_2\text{PtCl}_2L) \]

\[
\begin{array}{cccc}
\text{Cl} & \text{R} \\
\hline
\text{L} & \text{e} & \text{Pt} & \text{e} & \text{N} & \text{H} & \nu(\text{N-H}) \\
\hline
\text{Cl} & \text{R'}
\end{array}
\]

Fig. 3

As the electron withdrawing power of \(L \) increases there is a movement of electrons as shown in fig. 3 causing the proton to be less strongly bonded to the nitrogen and hence resulting in a decrease in \(\nu(\text{N-H}) \). The results showed a decrease in \(\nu(\text{N-H}) \) as the ligand \(L \) was changed in the order

\[
\text{PR}_3 > \text{SbR}_3 > \text{P(OR)}_3 > \text{AsR}_3 > \text{TeR}_2 > \text{C}_2\text{H}_4 > \text{SeR}_2 > \text{SR}_2
\]

i.e. the Pt-N bond strength increased as the tendency of the ligand to donate electrons to platinum decreased. With the exception of ethylene the order roughly parallels the *trans*-effect order. A linear relationship between \(\nu(\text{N-H}) \) and the electronegativities of the ligand atoms was also observed. The tertiary phosphines were anomalous however, and this was attributed to relatively strong \(\pi \)-bonding between platinum and phosphorus.

A more direct measure of the *trans*-influence of ligands was obtained by investigating the change in Pt-H stretching frequency with changing *trans* ligand\(^{35,36}\) (see Table 2) in a series of complexes *trans-*\((\text{PR}_3)_2\text{PtHX} \). The decrease in \(\nu(\text{Pt-H}) \), which gives a measure of the Pt-H bond strength, again parallels an order of increasing *trans*-effect. Values of \(\nu(\text{Pt-H}) \)
for hydride trans to a tertiary phosphine37,38 suggest that the trans-influence of tertiary phosphines is similar to that of CN$^-$.

The far infra-red spectra of a series of compounds of the type cis- and trans- L_2PtX_2 ($X = Cl$ or Br, $L =$ neutral ligand), and trans- $(PEt_3)_2PtXR$ 39 ($X = Cl$ or Br, $R = H, Me$ or Ph), have been recorded and the values obtained for $v(Pt-X)$ compared. The lowest values of $v(Pt-X)$ were found for the complexes trans-$(PEt_3)_2PtXR$ and the highest values of $v(Pt-X)$ for trans-L_2PtX_2 agreeing with results from platinum hydride complexes. They also show that hydride, methyl and phenyl ligands have a high trans-influence.

Measurements of $v(Pt-Cl)$ in complexes containing a platinum-group-IVb bond 40,41 have shown that silicon and germanium organometallic groups have a very high trans-influence, but it has been found 42 that cis- and trans- $(PPh_3)_2PtCl(SnCl_3)$ have the same infra-red spectra with $v(Pt-Cl)$ appearing at 315 cm.$^{-1}$ as a shoulder on the tin-chlorine stretching frequencies, suggesting that Ph_3P and $SnCl_3$ have similar trans-influences.

(c) N.m.r. spectra

The 1H n.m.r. spectra for the series of compounds trans- $(PEt_3)_2PtLH$ ($L =$ NO$_3$, Cl, Br, I, NO$_2$, SCN, SnCl$_3$, CN) have been recorded19,36. The resonance due to the hydridic proton is found at high-field (discussed on p. 43) and shows a large change in chemical shift with change in L.

\[
\begin{align*}
\text{L} & = \text{NO}_3 \quad \tau = 33.8 \\
\text{L} & = \text{CN} \quad \tau = 17.8
\end{align*}
\]

The gradual decrease in τ correlates with increasing trans-influence of L.

<table>
<thead>
<tr>
<th>X</th>
<th>NO$_3$</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
<th>NO$_2$</th>
<th>SCN</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu(Pt-H)\text{cm}^{-1}$</td>
<td>2242</td>
<td>2183</td>
<td>2178</td>
<td>2156</td>
<td>2150</td>
<td>2112</td>
<td>2041</td>
</tr>
</tbody>
</table>
Parshall, using a series of fluorophenyl platinum complexes studied the 19F n.m.r. in an attempt to estimate the σ and π-bond contributions to the trans-influence. The 19F shielding parameters give a measure of the ability of the fluorophenyl group to compete with the ligand X for the electron density on the platinum. Electrons from X donated by an inductive effect increase the shielding of the 19F nucleus in both the meta- and para-substituted compounds, but groups which donate or withdraw electrons by π-bonding can further shield or deshield the 19F nucleus thus:

\[
\begin{align*}
F & \quad \text{PEt}_3 \\
\text{Pt}^+ & \quad X \\
\text{PEt}_3 & \quad F^- \\
\end{align*}
\]

Therefore, by varying X and noting the change in the shielding parameters, σ and π contributions are obtained. The results provided data supporting the view that the trans-effect ligands are of two types: strong σ-donor ligands of low electronegativity such as H and CH$_3$, and strong π-bonding ligands such as CN and PR$_3$.

Trans-Effect Theory

No one theory has been put forward which can satisfactorily explain the trans-effect. The two main theories advanced are the polarisation or inductive theory and the mesomeric or π-bonding theory.

1. **Polarisation theory**

In a square planar platinum complex LPtX$_3$ the charge on the metal will induce a dipole in the ligand L, this will in turn, induce a dipole on the metal such that this second dipole will be unfavourable to a negative charge on X and will lead to repulsion between X and the metal atom thus weakening the metal-X bond.
The dipole on X will only be induced provided that L is more polarisable than X. This theory accounts for the high trans-effect of hydride and methyl ligands where π-bonding cannot be invoked.

2. \(\pi\)-bonding theory

This theory proposes that ligands such as \(\text{C}_2\text{H}_4\), \(\text{PR}_3\) and \(\text{CO}\) are high in the trans-effect series because of their tendency to stabilise the transition state for a reaction by removal of electron density from the platinum through π-bonding. In a substitution reaction of the type

\[\text{LPtA}_2\text{X} + \text{Y} \rightarrow \text{LPtA}_2\text{Y} + \text{X}\]

the transition state is believed to be trigonal bipyramidal in structure (p.8), Chatt\(^{22}\) proposed that removal of charge from the platinum atom by π-bonding to the ligand L will encourage the addition of Y to form a five-coordinate intermediate.

\[
\begin{array}{c}
\text{A} \\
\text{L} = \text{Pt} \\
\text{Y} \\
\text{A} \\
\end{array}
\]

An alternative approach was put forward by Orgel\(^{44}\), in which he suggested that the stability of the intermediate was increased by the reduction of electron density in the Pt-X and Pt-Y directions by π-bonding. The theory
is supported by experimental results such as retention of configuration and that Y and L will affect the rate of reaction. This theory explains why ethylene in \textit{trans}-Pt(C_2H_4)NH(CH_3)2Cl_2, although having a strong \textit{trans} labilising effect, shows no Pt-N bond lengthening45, i.e. large \textit{trans}-effect but little \textit{trans}-influence, the high \textit{trans}-effect being due to stabilisation of transition states and not due to some ground-state effect. In the structure determination of Zeise's salt46 some Pt-Cl bond lengthening was observed for the bond \textit{trans} to ethylene, the difference between this and the lack of bond lengthening with platinum-nitrogen was explained by the fact that the platinum-chlorine bond may have some π-character and removal of electron density from the platinum by the ethylene will reduce the π-bonding in the Pt-Cl bond thereby causing bond lengthening. Nitrogen, however, has no vacant orbitals of suitable energy with which it can π-bond to the platinum and is thus not affected by the ethylene.

Recent195 Pt n.m.r.47 studies on a number of platinum phosphine halide complexes suggest that the high \textit{trans}-influence of phosphorus is probably due to a σ-bonding mechanism. From theory, it can be concluded that a change in the platinum-phosphorus coupling constant reflects a change in the σ-character of the Pt-P bond. The n.m.r. results show that the Pt-P bond is stronger in \textit{cis} complexes than in \textit{trans} for both Pt(II) and Pt(IV) complexes the difference being similar in both states, as dπ-dπ bonding is considered less important in Pt(IV) complexes a difference in bond strengths between the Pt(II) and Pt(IV) oxidation states would be expected if π-bonding formed a major contribution to the Pt-P bond, that no difference is observed suggests that the bonding between platinum and phosphorus is mainly σ-bonding.

Gray and Langford48, based a \textit{trans}-effect theory on the size of M-L and M-X σ-overlap integrals in complexes of the type LPtA_2X. If the M-L σ-overlap > M-X σ-overlap then the M-L bond is strengthened whilst the M-X
bond is weakened. These calculations gave a similar *trans*-influence order to that obtained from X-ray measurements (p. 9).

Summary

The *trans*-effect can be considered to be transmitted by an inductive effect, a mesomeric effect or a combination of both. The inductive effect is transmitted via σ-bonds and usually involves weakening of the *trans* bond. This influence on ground-state phenomena such as bond length and infra-red stretching frequencies is often referred to as the *trans*-influence. The π-bonding mechanism is transmitted through d-orbitals of the platinum and ligand orbitals which can be either d-orbitals or vacant π-orbitals. It operates by stabilisation of the transition state for a 5-coordinate intermediate though weakening of the *trans* bond can occur if the *trans* ligand is able to π-bond to the platinum.

Cis-Effect

The effect on Pt(II) systems of *cis* ligands is considered to be small. The influence of *cis* phosphines on the Pt-H stretching frequency was investigated\(^{35}\) and \(v(\text{Pt-H})\) was found to rise as the electron withdrawing ability of the *cis* ligands increased (Table 3).

\[
\begin{array}{c}
\text{L} \\
\downarrow \\
X \quad \text{Pt} \quad \leftarrow \quad \text{H} \\
\uparrow \\
\downarrow \\
\text{L}
\end{array}
\]

\(X = \text{Cl}\)

<table>
<thead>
<tr>
<th>L</th>
<th>AsEt(_3)</th>
<th>PMe(_3)</th>
<th>PEt(_3)</th>
<th>PPr(_n)(_3)</th>
<th>PPh(_2)Et</th>
<th>PPh(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(\text{Pt-H}))</td>
<td>2174</td>
<td>2182</td>
<td>2183</td>
<td>2183</td>
<td>2210</td>
<td>2224</td>
</tr>
</tbody>
</table>
The smallness of infra-red shifts\(^{39}\) has prevented a satisfactory characterisation of the \textit{cis}-influence of ligands, however the \(^{35}\)Cl nuclear quadrupole resonance frequency of a coordinated chlorine is sufficiently sensitive to changes in the \textit{cis} ligands and can give a measure of their \textit{cis}-influence\(^{49}\). From the observed frequencies for a series of compounds trans- \(L_2MCl_2\) \(M = \text{Pd(II)}\) or \(\text{Pt(II)}\) the M-Cl bond is weakened as the \textit{cis} ligand \(L\) is changed from left to right:

For \(M = \text{Pd}^{\text{II}}\) \(L = \text{PhCN, EtCN, } n-Bu_3P, n-Bu_3As, \text{pyridine, piperidine}\)

For \(M = \text{Pt}^{\text{II}}\) \(L = n-Bu_3P, \text{pyridine, } (\text{CH}_3)_2\text{NH, NH}_3\)

i.e. the \textit{cis}-influence increases left to right. This ground-state weakening of the M-Cl bond appears to assist nucleophilic substitution in trans- \(L_2\text{PtCl}_2\) as the rate of substitution of chlorine by weak nucleophiles increases in a similar order\(^{50}\) \(L = \text{Et}_3P < \text{Et}_3As < \text{pyridine} < \text{piperidine}\). The \textit{cis}-influence is virtually the reverse order of the \textit{trans}-influence, a possible explanation is that in the \textit{trans}-influence series

\[\text{NH}_3 < \text{RNH}_2 < \text{pyridine} < R_3\text{As} < R_3P\]

the \(\pi\)-acceptor abilities of the ligands increases left to right giving an increased \textit{trans}-influence in the same order whereas the total charge donated by ligands (\(\sigma\)-donation - \(\pi\)-withdrawal) increases right to left therefore, for the ligands in a \textit{cis} position the M-Cl band will become increasingly polarised and therefore weakened.
ORGANIC DERIVATIVES OF PLATINUM

2.1 σ-Organocomplexes

Although methyl derivatives of Pt(IV) have been known for over fifty years51, σ-bonded organo-derivatives of platinum(II) were first reported in 195752. The thermal stability of the σ-bonded organo compounds decreases in the order Pt>Pd>>Ni and for variation of organic groups decreases $\text{Me}<>\text{Et}<>\text{Pr}$53.

Metal carbon bonds are thought likely to dissociate by a radical dissociation54, this could occur by transfer of an electron to an antibonding orbital in the M-C bond or promotion of one electron from the M-C bonding orbital. It would therefore appear that the energy difference, ΔE, between the highest energy bonding orbital and the unfilled orbital of lowest energy is the governing factor on the kinetic stability of the bond. As ΔE increases the M-C bond stability increases. Coordination of the metal with π-bonding ligands leads to greater stability as π-bonding between ligands and non-σ-bonding metal orbitals forms molecular orbitals of lower energy than the non-σ-bonding d-orbitals thereby increasing ΔE. All the known complexes L_2MRX and L_2MR_2 contain π-bonding ligands where L = tertiary phosphines or amines, sulphur ligands, aromatic nitrogen ligands or olefins.

(i) Preparation

The alkyl and aryl derivatives are usually prepared by treating the halide with Grignard or organolithium reagents, e.g. (54, 55, 56, 57).

\[
\begin{align*}
\text{(R}_3\text{P})_2\text{NiBr}_2 + 2\text{PhMgBr} & \rightarrow (\text{R}_3\text{P})_2\text{NiPh}_2 + \text{MgBr}_2 \\
\text{trans-}(\text{Et}_3\text{P})_2\text{PdBr}_2 + \text{MeMgBr} & \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PdMeBr} + \text{MgBr}_2 \\
\text{trans-}(\text{Ph}_3\text{P})_2\text{PdBr}_2 + 2\text{MeLi} & \rightarrow \text{cis-}(\text{Ph}_3\text{P})_2\text{PdMe}_2 + 2\text{LiBr} \\
(\text{Et}_3\text{P})_2\text{PtCl}_2 + \text{C}_6\text{F}_5\text{MgCl} & \rightarrow (\text{Et}_3\text{P})_2\text{Pt(C}_6\text{F}_5\text{)Cl} + \text{MgCl}_2
\end{align*}
\]
The monomethylplatinum derivative trans-(Ph$_3$P)$_2$PtMeI can be prepared by the addition of methyl iodide to tris(triphenylphosphine)platinum(o)54,55.

$\text{(Ph}_3\text{P)}_3\text{Pt} + 2\text{MeI} \rightarrow \text{(Ph}_3\text{P)}_2\text{PtMeI} + \text{Ph}_3\text{PMeI}$

The ethyl complex, trans-(Et$_3$P)$_2$Pt(Et)Cl has been made by reaction of bis(triethylphosphine)platinumhydridochloride with ethylene at $95^0/45$ atm.36

In general, reactions between cis-platinum dihalides with two equivalents give the cis disubstituted derivatives and reaction of equimolar mixtures gives the trans monosubstituted derivatives. However, if cis-(Et$_3$P)$_2$PtMe$_2$ is distilled in vacuo the condensate contains the trans isomer54. Cis monosubstituted halomethyl derivatives can be obtained by cleavage of one methyl group from a disubstituted derivative using one equivalent of dry hydrogenhalide54,55.

\[\text{e.g.} \quad \text{cis-(Et}_3\text{P)}_2\text{PtMe}_2 + \text{HCl} \rightarrow \text{cis-(Et}_3\text{P)}_2\text{PtMeCl}\]

Some of the platinum(II) organic complexes will react further with halogens or alkylhalides to give octahedral platinum(IV) organic derivatives54.

\[\text{e.g.} \quad \text{trans-(Et}_3\text{P)}_2\text{PtMeI} + \text{MeI} \rightarrow \text{(Et}_3\text{P)}_2\text{PtMe}_2\text{I}_2\]

\[\text{cis or trans-(R}_3\text{P)}_2\text{PtPh}_2 + \text{I}_2 \rightarrow \text{(R}_3\text{P)}_2\text{PtPh}_2\text{I}_2\]

(ii) Properties

The dipole moments of many of the palladium and platinum derivatives have been measured in order to determine their stereochemistry. Cis complexes should have a high dipole moment and the trans derivatives zero dipole moments. An interesting phenomenon demonstrated by dipole moment measurements was the apparent isomerisation of cis-(Et$_3$P)$_2$PdMe$_2$ (dipole moment 4.68D.) to trans-(Et$_3$P)$_2$PdMe$_2$. After six months the dipole moment had dropped to 1.4D., indicating a cis→trans isomerisation was taking place56.
The reactions of organic derivatives of nickel, palladium and platinum are generally of two types: those similar to inorganic platinum(II) complexes such as isomerisation and oxidation to platinum(IV) compounds and cleavage of the organic group.

(a) Reactions with hydrogen halides

As mentioned earlier (p. 19) cleavage of the organic group occurs with dry hydrogen halide, but the perfluoroaryl complex cis-(Et₃P)₂Pt(C₆F₅)₂ does not react with hydrogen chloride under the conditions which would cleave a non-fluorinated phenyl group⁵⁸.

(b) Reaction with hydrogen and reducing agents

The M-C bond is often cleaved by hydrogen under very mild conditions⁶⁶,⁵⁹ e.g. cis-(Et₃P)₂PtClPh + H₂ → trans-(Et₃P)₂PtHCl + C₂H₆

(c) Reaction with halogens and alkylhalides

Halogens either cleave the M-C bond or give an oxidative-addition reaction yielding an octahedral platinum(IV) derivative⁵⁴,⁵⁵ e.g. cis-(Et₃P)₂PtMe₂ + Br₂ → cis-(Et₃P)₂PtBr₂ + 2MeBr

trans-(Et₃P)₂PtMeI + I₂ → trans-(Et₃P)₂PtI₂ + MeI

cis or trans-(Et₃P)₂PtPh₂ + I₂ → (Et₃P)₂PtPh₂I₂

With iodine, methyl groups are cleaved whereas with phenyl groups octahedral complexes are obtained, chlorine however reacts by oxidative-addition in both the dimethyl and diphenyl cases to give octahedral platinum(IV) derivatives. Methyl iodide similarly gives an octahedral adduct⁵⁴:

trans-(Et₃P)₂PtMeI + MeI → (Et₃P)₂PtMe₂I₂
(d) Reactions with metal halides

The platinum dimethyl complex cis-(Et₃P)₂PtMe₂ reacts with magnesium iodide giving transfer of a methyl group to yield methyl Grignard reagent, trans-(Et₃P)₂PtI₂ and trans-(Et₃P)₂PtMeI⁵⁴. This reaction gave evidence of the formation of an intermediate complex as an immediate precipitate was formed when the components were mixed though both reactants and final products were soluble in the solvent (diethylether). Stannous chloride also reacts with organoplatinum halides to produce platinum-tin compounds¹⁹.

\[
\text{trans-(Et}_3\text{P)}_2\text{Pt(C}_6\text{H}_4\text{F)}\text{Cl + SnCl}_2 \rightarrow \text{trans-(Et}_3\text{P)}_2\text{Pt(C}_6\text{H}_4\text{F)}\text{SnCl}_3
\]

(e) Other reactions

The insertion reaction by which trans-(Et₃P)₂PtEtCl is made can be reversed by heating the organo derivative to 180° ³⁶.

\[
\text{trans-(Et}_3\text{P)}_2\text{PtEtCl \xrightarrow{180°, 950/65 atm.} \text{trans-(Et}_3\text{P)}_2\text{PtHCl + C}_2\text{H}_4}
\]

With carbon monoxide insertion reactions occur giving acyl derivatives⁶₀.

\[
\text{trans-(Et}_3\text{P)}_2\text{PtMeCl \xrightarrow{900, 6 hr, 80 atm CO} CH}_3\text{CPTCL(Et}_3\text{P)}_2}
\]

The palladium analogue carbonylates under much milder conditions requiring only 1 atmosphere pressure of carbon monoxide⁶₀.

2.2 Olefin, Acetylene and π-allyl Complexes

Since the first olefin complex, K⁺[PtCl₃(C₂H₄)⁻] was prepared in 1830⁶¹ a large number of olefin, acetylene and π-allyl complexes have been reported, and have been described in detail in reviews.⁶²,⁶³,⁶⁴.

(a) Olefin complexes

(i) Bonding

The bonding in transition metal-olefin complexes is believed to involve two types in which the metal forms σ- and π-bonds with the olefin.
The treatment of a palladium(II) or platinum(II) complex with an olefin either refluxing or under pressure has been widely used for the preparation of olefin complexes of palladium and platinum.64

The displacement of ligands such as benzonitrile from palladium and platinum(II) complexes is another commonly used route to olefin complexes:65

\[2(\text{PhCN})_2\text{PdCl}_2 + 2 \text{olefin} \rightarrow [\text{olefinPdCl}_2]_2 + 2\text{PhCN} \]

The use of zerovalent palladium and platinum compounds also provides a route to olefin complexes, and a number of chloro-olefin derivatives have been prepared utilising this method.67

\[(\text{PPh}_3)_4\text{Pt} + \text{C}_2\text{Cl}_4 \rightarrow (\text{PPh}_3)_2\text{Pt(C}_2\text{Cl}_4) \]

This reaction worked successfully for trichloroethylene, 1,2-dichloroethylene and 1,1-dichloroethylene. Reduction of \textit{cis}-(\text{PPh}_3)_2\text{PtCl}_2 with hydrazine followed by the addition of an olefin has led to the formation of olefin complexes with \textit{trans}-stilbene and \textit{trans}-4,4'-dinitrostilbene.68

\(\text{(iii) Chemical properties} \)

The olefin complexes are susceptible to nucleophilic attack and the basis of the industrial conversion of ethylene to acetaldehyde is the nucleophilic
attack by OH\(^-\) on a palladium-olefin complex, a proposed mechanism\(^\text{69}\) is illustrated below.

Usually aqueous solutions of PdCl\(_2\) are treated with ethylene and the ethylene-palladium complex formed is hydrolysed giving acetaldehyde and palladium metal.

This process is not catalytic, but can be made continuous by oxidising the palladium metal with copper(II) chloride

\[
Pd + 2Cu^{2+} + 6Cl^- \rightarrow PdCl_2 + 2\left[\text{CuCl}_2^-\right]
\]

\[
2\left[\text{CuCl}_2^-\right] + 2H^+ + \frac{1}{2}O_2 \rightarrow 2Cu^{2+} + 4Cl^- + H_2O
\]

Another example of nucleophilic attack is the reaction of methoxide ion\(^\text{71}\) on diolefin palladium and platinum complexes:
The complexes also react with carbon monoxide, alcohols and silanes but as these reactions have been extensively reviewed64,70 they will not be described further.

(b) \(\pi\)-Allyl complexes

The three metals, nickel, palladium and platinum all form \(\pi\)-allyl complexes; nickel and palladium forming the largest number of \(\pi\)-allyl derivatives, by comparison platinum derivatives are relatively few.

(i) Bonding

The bonding in \(\pi\)-allyl complexes is similar to that in olefin complexes as the allyl group donates \(\pi\)-electrons to the metal in a \(\sigma\)-bond and accepts electrons from the metal d-orbitals into \(\pi^*\)-antibonding orbitals.

(ii) Preparations

There are several methods available for the preparation of \(\pi\)-allyl complexes, one of the best is the treatment of a metal salt with a \(\pi\)-allyl Grignard reagent:

\[
\text{Diethyl Ether} \quad (\text{C}_3\text{H}_5)_2\text{Ni} \quad 72
\]

The reaction of allyl halides and alcohols with anionic metal salts also yields \(\pi\)-allyl-metal complexes:

\[
\text{Na}_2\text{PdCl}_4 + \text{CH}_2=\text{CH}-\text{CH}_2-\text{Cl} \rightarrow [\pi-\text{C}_3\text{H}_5\text{PdCl}]_2 \quad 73
\]

Other preparative methods include the reaction of olefins with a metal salt74.

\[
2\text{CH}_2 = \text{CHCH}_3 + 2\text{PdCl}_2 \rightarrow [\pi-\text{C}_3\text{H}_5\text{PdCl}]_2
\]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{Cl} \quad \text{Cl} \\
\text{H-C} & \quad \text{Pd} \quad \text{Pd} \\
\text{CH}_3 & \quad / \quad / \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{CH}_3 \\
\text{Cl} & \quad \text{CH}_2 \\
\text{CH}_2 & \quad \text{-2HCl}
\end{align*}
\]
The displacement of benzonitrile from bis-benzonitrile palladium dichloride with allene has also been utilised to prepare π-allyl complexes\footnote{75}.

\[
\text{CH}_2\text{C}≡\text{CH}_2 + (\text{C}_6\text{H}_5\text{CN})_2\text{PdCl}_2 \rightarrow \text{Cl} \quad \text{Pd} \quad \text{Pd} \quad \text{Cl} \\
\text{CH}_2 \quad \quad \quad \quad \quad \text{Cl} \\
\text{CH}_2
\]

Recently\footnote{76} a π-allyl acetylacetonate platinum complex, $[\text{Pt}_2(\text{acac})_2(\text{C}_3\text{H}_5)_2]$, has been prepared from bis-π-allyl platinum and thallium acetylacetonate.

(iii) Reactions of π-allyl complexes

In general, the bis-π-allyl derivatives are more active than the chlorobridged complexes of the type $[\pi\text{C}_3\text{H}_5\text{MCl}]_2$. Bis-π-allyl-nickel is highly reactive and undergoes reactions in which the π-allyl groups are displaced by ligands such as CO and tertiary phosphines\footnote{72}.

\[
\begin{align*}
\text{(π-allyl)}_2\text{Ni} + \text{CO} & \rightarrow \text{diallyl} + \text{Ni(CO)}_4 \\
\text{(π-allyl)}_2\text{Ni} + \text{R}_3\text{P} & \rightarrow \text{diallyl} + \text{Ni(R}_3\text{P)}_4
\end{align*}
\]

Recently the bis-π-allyl palladium and platinum derivatives have been shown\footnote{77} to react with sulphur dioxide which is inserted into one of the π-allyl ligands:

\[
(\text{C}_3\text{H}_5)_2\text{Pt} + \text{SO}_2 \rightarrow \text{C}_3\text{H}_5\text{Pt(SO}_2\text{CH}_2\text{CH}≡\text{CH}_2).
\]

An important reaction of the π-allyl metal chloride dimers is with donor ligands such as amines and trialkylphosphines\footnote{78} when the halogen bridge is split to give monomeric products

\[
[\pi\text{C}_3\text{H}_5\text{PdCl}]_2 + 2\text{Et}_3\text{P} \rightarrow 2(\pi\text{C}_3\text{H}_5)\text{PdClEt}_3\text{P}
\]

The dimers are also hydrolysed readily at room temperature\footnote{74}.

\[
[\pi-(\text{C}_3\text{H}_5)\text{PdCl}]_2 \xrightarrow{\text{H}_2\text{O}} \text{CH}_2\text{CHCHO} + \text{CH}_2\text{CHCH}_3 + 2\text{Pd} + 2\text{HCl}
\]
Treatment of \(\pi \)-allylpalladium chloride with cyclopentadienyl-sodium gives \(\pi \)-allyl-\(\pi \)-cyclopentadienyl-palladium(II), its n.m.r. spectrum indicating a sandwich structure.

\[
\begin{align*}
\text{CH}_2 & \quad \text{\textbf{\;}} & \text{Pd} & \quad \text{C} \\
\text{CH} & \quad \text{\textbf{\;}} & \quad \quad & \text{\textbf{\;}} \\
\text{CH}_2 & \quad \text{\textbf{\;}} & \quad \quad & \text{\textbf{\;}}
\end{align*}
\]

(iv) \textbf{'H nuclear magnetic resonance}

The 1H n.m.r. spectra show three characteristic resonances as shown in Fig. 6.

\[\text{Fig. 6 Typical 'H n.m.r. of a } \pi \text{-allyl complex}\]

Recent investigations at 220 MHz suggest that the 1H n.m.r. spectra of bis-\(\pi \)-allylplatinum and palladium arise from an asymmetrical (\(\sigma \)-\(\pi \)) structure:

\[\text{(I)}\]

\[\text{(II)}\]

and not from an equilibrium mixture of the two isomeric forms (I) and (II) as previously believed.
(c) Acetylene Complexes of Nickel, Palladium and Platinum

(i) Bonding

The bonding is believed to be similar to that in olefin-platinum derivatives where π-electrons are donated from the acetylene to the metal and back bonding occurs when electrons are donated from the metal d-orbitals into π* antibonding orbitals of the acetylene. The platinum-acetylene complexes are less stable than the ethylene derivatives.

(ii) Preparations

The acetylene complexes are prepared by methods analogous to the preparations of olefin complexes

\[\text{e.g. } \text{NaPtCl}_4 + \text{t-BuC} \equiv \text{Ct-Bu} \]

Chatt and co-workers found that complexes of the above type were only stable when the acetylene had at least one tertiary carbon substituent.

\[(\text{Ph}_3\text{P})_4\text{Pd} + \text{PhC} \equiv \text{CPh} \longrightarrow (\text{PPh}_3)_2\text{Pd(PhC} \equiv \text{CPh) \]

81
82
CHAPTER 3
HYDRIDE COMPLEXES OF NICKEL, PALLADIUM AND PLATINUM

Since the discovery in 1957 of a platinum hydride\(^8\) much work has been done on the preparation and properties of platinum hydrides but the first palladium hydride was not reported until 1965\(^4\) with the first stable nickel hydride complex being prepared some four years later\(^5\). The time differences\(^6\), perhaps, some indication of the relative stabilities of the compounds, platinum hydrides being very much more stable than those of palladium and nickel.

Preparations

(1) From phosphine platinum halides

There are several methods available for the preparation of platinum hydrides the most general being the reduction of the halides, \((R_3P)_2PtX_2\), with a variety of reducing agents as will now be described. The cis phosphine halide complexes are generally preferred as starting material, being more reactive than the corresponding trans compounds due to the greater trans-effect of phosphine ligands compared with halides.

(a) Reduction of Hydrazine

The reduction of \(\text{cis-}(Et_3P)_2PtCl_2\) and similar phosphine complexes with aqueous hydrazine gives good yields of the hydride \(\text{trans-}(Et_3P)_2PtHCl\) with the evolution of nitrogen\(^3\). The first step in the reaction is the formation of a hydrazine complex:

\[
\text{cis-}(Et_3P)_2PtCl_2 + N_2H_4 \rightarrow [\text{(Et}_3\text{P})_2\text{Pt}(N_2H_4)\text{Cl}]\text{Cl} \\
\downarrow \text{N}_2\text{H}_4 \\
\text{trans-}(Et_3P)_2PtHCl + NH_4\text{Cl} + N_2 + NH_3
\]

The reduction works for cis-trialkyl and triaryl phosphine or arsine complexes, but the trans-dichloride complexes are not reduced by hydrazine.

In contrast to the above reductions, \((Ph_3P)_2PtI_2\) with anhydrous
hydrazine in ethanolic solution produced the zerovalent complex \((\text{Ph}_3\text{P})_3\text{Pt}\)^2.

(b) **Reduction with Alcoholic KOH**

On heating cis-phosphine platinum dihalides with alcoholic KOH the trans-phosphine hydridochloride is produced in good yield\(^3\)\(^6\).

\[
\text{cis-}(\text{Et}_3\text{P})_2\text{PtCl}_2 + \text{EtOH} + \text{KOH} \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{CH}_3\text{CHO} + \text{KCl} + \text{H}_2
\]

Deuteration studies have shown that the proton is transferred from the \(\alpha\)-carbon of the alcohol\(^8\)\(^6\). Chatt and Shaw\(^3\)\(^6\) have suggested a possible mechanism involving an alkoxyplatinum complex.

As with the hydrazine reduction, triphenylphosphine derivatives tend to form zerovalent platinum complexes\(^2\).

(c) **Reduction with Formic Acid**

This reaction is very similar to the ethanol reaction, trans-(Et\(_3\)P\(_2\))PtHCl being formed on heating cis-(Et\(_3\)P\(_2\))PtCl\(_2\) with formic acid\(^3\)\(^6\).

(d) **Reduction with Metal Hydrides**

Chalk and Harrod\(^87\) found that reactions of platinum(II) phosphine dihalide complexes with silanes fell into three categories:

(i) No reaction, as found with all except the trialkyl- and triarylsilanes.

(ii) Exchange between chloride of the platinum complex and hydride of the silane.

(iii) Reaction between bis(triphenylphosphine)platinum(II) dichloride and trialkyl- or triarylsilanes.

Only the second category of reactions yielded platinum hydrides.
according to the equation:

\[(R_3P)_2PtCl_2 + R'_3SiH \rightarrow (R_3P)_2PtHCl + R'_3SiCl\]

\[R = \text{alkyl, } R' = \text{alkyl or aryl}\]

These reactions were carried out by heating the platinum complex with the silane under nitrogen. With bis(triphenylphosphine)platinum(II) dichloride only a red polymeric material was obtained giving no indication of Pt-H.

The reduction of trans-(Et_3P)_2PdCl_2 with trimethylgermane at 40° yielded a palladium hydride, trans-(Et_3P)_2PdHCl, a free radical mechanism is believed to be involved. The reduction of trans-(Et_3P)_2PdBr_2 was slow in the absence of palladium black. No parallel to those reductions could be obtained using trimethylsilane though trans-(Et_3P)_2PdCl_2 after being sealed for four weeks with trimethylsilane showed evidence (infra-red) of the presence of a palladium hydride.

The purple nickel complex (Et_3P)_2NiBr_2 also reacted with trimethylgermane giving a brown solution from which colourless crystals were obtained at -20°. The nickel containing product was liquid at room temperature and its infra-red spectrum showed v(Ni-H) at 1937 cm\(^{-1}\), but no pure product could be obtained. Further evidence for the formation of a nickel hydride from this reaction was obtained later when the \(^1\)H n.m.r. spectrum of (Et_3P)_2NiBr_2 sealed with Me_3GeH in benzene, showed a resonance at 31.7\(\tau\) attributable to a nickel hydride. Lithium aluminium hydride has been used to prepare platinum hydrides but is not a particularly satisfactory method due to the formation of some metallic platinum, it does, however, have the advantage that it will reduce both cis and trans phosphine platinum dihalides. Chatt and Shaw applied this method to (Et_3P)_2PdCl_2 and although no pure product was isolated an infra-red frequency ascribable to v(Pd-H) was observed.
Sodium borohydride in T.H.F.-ethanol (4:1) has been used to prepare a stable nickel hydride. The reduction of bis(tricyclohexylphosphine)-nickeldichloride with sodium borohydride under argon produced a stable nickel hydride, trans-(bistricyclohexylphosphine)nickel hydridochloride. It was later shown that this nickel hydride, when treated with sodium borohydride in a mixed acetone-ethanol solvent gave a crystalline complex formulated as (I)

\[
\begin{array}{c}
\text{PR}_3 \\
\text{H} \\
\text{Ni} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{PR}_3 \\
\end{array}
\]

\(R = \text{cyclohexyl} \)

This complex acts as a hydridic reducing agent and will reduce \((R_3P)_2MX_2\) (\(M = \text{Ni or Pd}\)) forming new hydride complexes. For \(R = \text{Et, Pr}^n\) or \(\text{Bu}^n\) and \(M = \text{Ni}\), nickel hydride resonances in the 'H n.m.r. of the reaction solutions indicated the presence of both cis- and trans-(\(R_3P\))\(_2\)NiHX species.

(e) **Reduction with Hydrogen**

Gaseous hydrogen has been used in a number of cases to produce platinum hydrides though reaction conditions vary widely as can be seen from the examples:

\[
\begin{align*}
\text{cis-(Et}_3\text{P)}_2\text{PtCl}_2 + \text{H}_2 & \overset{95^\circ}{\text{50 atm.}} \rightarrow \text{trans-(Et}_3\text{P)}_2\text{PtHCl} & \text{(36)} \\
\text{trans-(Et}_3\text{P)}_2\text{PtCl}(\text{SiMe}_3) + \text{H}_2 & \overset{20^\circ}{\text{1 atm.}} \rightarrow \text{trans-(Et}_3\text{P)}_2\text{PtHCl} + \text{Me}_3\text{SiH} & \text{(41)} \\
(\text{Diphos})\text{Pt(GePh}_3)_2 + \text{H}_2 & \overset{50^\circ}{\text{100 atm.}} \rightarrow (\text{Diphos})\text{Pt(GePh}_3)_2\text{H} + \text{Ph}_3\text{GeH} & \text{(37)}
\end{align*}
\]

The reaction of hydrogen with palladium complexes has however failed to give any pure palladium hydrides as products. On reacting (\(\text{Et}_3\text{P})_2\text{Pd(GePh}_3)_2\)
with hydrogen at one atmosphere extensive decomposition occurred but no hydridic species produced, hydrogenation at 100 atm. pressure did produce a residue showing infra-red bands attributable to ν(Pd-H) but no pure palladium-hydride product could be isolated.

(f) Reaction with Grignard and Lithio Reagents

It was observed during the reaction of cyclohexyl- and styrylmagnesium bromides with cis-(Et₃P)₂PtCl₂ that moderate yields of the hydride trans-(Et₃P)₂PtHBr were obtained. A re-examination of this reaction concluded that a two stage process was involved with the formation of a platinum Grignard reagent by halogen-metal exchange.

\[\text{cis-}(\text{Et}_3\text{P})_2\text{PtBr}_2 + \text{C}_6\text{H}_{11}\text{MgBr} \rightarrow (\text{Et}_3\text{P})_2\text{Pt(MgBr)}\text{Br} \]

\[\text{H}_2\text{O} \]

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtHBr} \]

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtBr}_2 \]

Similar halogen-metal exchange reactions have been observed between bistriethylphosphineplatinum(II)iodide complexes and triphenylgermyllithium:

\[(\text{Et}_3\text{P})_2\text{PtI}_2 + \text{Ph}_3\text{GeLi} \rightarrow \text{Ph}_3\text{GeI} + (\text{Et}_3\text{P})_2\text{PtLiI} \]

\[\text{H}_2\text{O} \]

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtHI} \]

\[(\text{Et}_3\text{P})_2\text{Pt(Ph}_3\text{H)} + \text{Ph}_3\text{GeLi} \rightarrow (\text{Et}_3\text{P})_2\text{Pt(Ph}_3\text{H)}_2 + (\text{Et}_3\text{P})_2\text{PtLi(Ph}_3\text{H)} \]

\[\text{H}_2\text{O} \]

\[(\text{Et}_3\text{P})_2\text{PtH(Ph}_3\text{H)} \]
(2) From Zerovalent Platinum Complexes

The reaction of zerovalent platinum phosphine complexes with acids has produced a number of ionic platinum hydrides\(^\text{14}\). Tris(triphenylphosphine)-platinum(o) gave different reaction products depending on the acid or reaction medium used. Reaction of aqueous or dilute alcoholic acid with a suspension of the platinum complex produced an ionic platinum(II) hydride according to the equation:

\[
(\text{Ph}_3\text{P})_3\text{Pt} + \text{HX} = [(\text{Ph}_3\text{P})_3\text{PtH}]^+X^- \\
X^- = \text{ClO}_4^-, \text{BF}_4^-, \text{HSO}_4^-, \text{CH}_3\text{OSO}_3^-
\]

Conductance data agreed with their formulation as 1:1 electrolytes. When gaseous HX \((X^- = \text{Cl}^-, \text{CN}^-)\) was bubbled through a benzene solution of the zerovalent platinum complex no ionic hydride was produced, only a diamagnetic, non-conducting hydride:

\[
(\text{Ph}_3\text{P})_3\text{Pt} + \text{HX} = (\text{Ph}_3\text{P})_2\text{PtHX} + \text{Ph}_3\text{P}
\]

Aqueous HCl and HNO\(_3\) gave hydrides but the conductance data were low for a 1:1 electrolyte. It rose however, to the correct value on the addition of excess triphenylphosphine, this was explained by an equilibrium reaction:

\[
(\text{Ph}_3\text{P})_2\text{PtHX} + \text{Ph}_3\text{P} \rightleftharpoons [(\text{Ph}_3\text{P})_3\text{PtH}]^+X^-
\]

Thus it seems that when \(X\) is an anion of low coordinating power ionic hydrides are formed and if \(X\) has a high coordinating power covalent hydrides are produced. For ions, such as Cl\(^-\), NO\(_3^-\), of intermediate coordinating power either ionic or covalent hydrides were formed according to reaction conditions. Palladium and nickel zerovalent compounds gave no hydridic species in analogous reactions, similarly the reaction of bis(1,2-bisdiphenylphosphinoethane)platinum(o) with acids produced no Pt-H bonds but formed platinum(II) salts of the type \([(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt}]^{2+}2X^-\).
Platinum hydrides have also been formed by the oxidative-addition of hydrogen cyanide and 1-ethynylcyclohexanol to zerovalent phosphine platinum derivatives96. It has now be shown that some imides can be oxidatively added to tetrakis(triphenylphosphine)platinum(o) to give, in good yield, imide-hydride complexes of platinum.96a Derivatives characterised have been prepared from succinimide, phthalimide and saccharin. From the 1H n.m.r. a \textit{trans} configuration is postulated:

\[
\begin{array}{c}
\text{H} \\
\text{Ph}_3\text{P} \quad \text{Pt} \quad \text{PPh}_3
\end{array}
\]

\textbf{(3) By Ligand Exchange}

These ligand exchange reactions convert one hydrido platinum complex into another, for example, \textit{trans}-\textit{(Et}_3\text{P})\textsubscript{2}\text{PtHCl} can be converted into the analogous bromide, iodide, cyanide, cyanate, thiocyanate and nitro complexes by solutions of the appropriate alkali-metal salt36. A binuclear dihydride has been prepared18 by a ligand exchange reaction on \textit{trans}-\textit{(Et}_3\text{P})\textsubscript{2}\text{PtHCl}:

\[
\begin{array}{c}
\text{Et}_3\text{P} \\
\text{Pt} \\
\text{Cl} \\
\text{H} \\
\text{Et}_3\text{P}
\end{array}
\xrightarrow{\text{HPPh}_2} \left[\begin{array}{c}
\text{Et}_3\text{P} \\
\text{Pt} \\
\text{H} \\
\text{PPh}_2
\end{array} \right] + \left[\begin{array}{c}
\text{Et}_3\text{P} \\
\text{Pt} \\
\text{PPh}_2 \\
\text{Cl}^-
\end{array} \right]
\]

\[
\begin{array}{c}
\text{base} \\
\text{Ph}_2
\end{array}
\]

\[
\begin{array}{c}
\text{Et}_3\text{P} \\
\text{Pt} \\
\text{P} \\
\text{H} \\
\text{PPh}_2
\end{array}
\]

\[
\begin{array}{c}
\text{Ph}_2 \\
\text{Pt} \\
\text{P} \\
\text{H} \\
\text{PET}_3
\end{array}
\]

Similarly a platinum-tin complex, \textit{trans}-\textit{(Et}_3\text{P})\textsubscript{2}\text{PtH(SnCl}_3\text{)} has been prepared
by adding stannous chloride to the analogous hydridochloride19.

The addition of a chelating phosphine (1,2-bisdiphenylphosphinoethane) to trans-(Et\textsubscript{3}P)\textsubscript{2}PtHCl has recently been shown97 to result in a cationic hydride.

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{diphos} \xrightarrow{C_6H_6} ([\text{diphos}](\text{Et}_3\text{P})\text{Pt}(\text{Et}_3\text{P})\text{H})^+\text{Cl}^- \quad \text{(II)}
\]

\[
\text{diphos} = 1,2\text{-bisdiphenylphosphinoethane}
\]

Complex II had previously been prepared38 by the hydrogenation of \[(\text{diphos})\text{Pt}(\text{MMMe}_3)\text{Pt} \] \text{Cl}^-, M = Si or Ge. Addition of stannous chloride to II converts the anion to SnCl\textsubscript{3} leaving the cation unaffected. The use of monodentate phosphine ligands instead of a chelating ligand also results in cationic hydrides analogous to II.

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHX} + \text{PR}_3 \xrightarrow{C_6H_6} \frac{C_2H_4Cl_2}{\text{or}} \left[(\text{Et}_3\text{P})_2\text{Pt}(\text{R}_3\text{P})\text{H} \right]^+\text{X}^- \quad \text{(X = Cl or CN, R}_3 = \text{Et}_3, \text{Bu}_3, \text{EtPh}_2 \text{ or Ph}_3) \]

When \(R = \text{Bu} \text{ or Ph} \) the replacement of \(X \) in dichloroethane is accompanied by a slower, partial displacement of triethylphosphine. An equilibrated mixture (Pt:PPPh\textsubscript{3} = 1) displayed a slight decrease in conductivity with time, a simultaneous change in \(\nu(\text{Pt-H}) \) also being observed, thus the reaction can be summed up as two equilibria as follows:

\[
\text{trans-}\left[(\text{Et}_3\text{P})_2\text{Pt}(\text{R}_3\text{P})\text{H} \right]^+\text{X}^- \]

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHX} \xleftrightarrow{\text{PR}_3} \left[(\text{Et}_3\text{P})\text{Pt}(\text{R}_3\text{P})\text{HX} \right] \]

Cationic platinum(II) hydrides have also resulted from ligand
exchange reactions of \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} \) in the presence of sodium perchlorate \(^{98}\) or tetraphenylborate \(^{99}\).

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} \xrightarrow{L} \text{NaClO}_4 \xrightarrow{\text{trans-}} \left[\text{(Et}_3\text{P})_2\text{PtHL}\right]^+\text{ClO}_4^-
\]

\((L = \text{CO, Ph}_3\text{P, Et}_3\text{P}, (\text{MeO})_3\text{P, (Ph}_0)_3\text{P, Me}_3\text{CNC}).\)

The values obtained for \(\nu(\text{Pt-H})\) and the chemical shift of the hydrides gave an indication of the \text{trans}\-influences of the ligands.

(4) Miscellaneous Preparations

(a) Pyrolysis of organoplatinum complexes

Chatt and Shaw \(^{36}\) demonstrated that \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} \) could be obtained by heating the ethyl derivative \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtClEt}\), ethylene being eliminated. The reaction is in fact an equilibrium:

\[
\underbrace{\text{trans-}(\text{Et}_3\text{P})_2\text{PtClEt}}_{180^\circ} \xrightarrow{95^\circ/40 \text{ atm.}} \underbrace{\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{C}_2\text{H}_4}_{95^\circ/40 \text{ atm.}}
\]

Deuterium studies \(^{92}\) on this reaction show that the platinum hydride originates from both the \(\alpha\) and \(\beta\) carbon atoms of the ethyl group. The action of heat on \(\text{trans-}(\text{Et}_3\text{P})_2\text{Pt(CD}_2\text{CH}_3)\text{Br} \equiv \) evolves a mixture of platinum hydride and deuteride in proportions not significantly different from the statistical ratio \((1.5:1)\). This hydrogen-deuterium scrambling is consistent with the carbon atoms of the ethyl group being symmetrically placed with respect to the platinum atom in the transition state.

\[
\text{(Et}_3\text{P})_2\text{PtBr(C}_2\text{H}_5) \xrightarrow{\text{heat}} \left[\begin{array}{c}
\text{(Et}_3\text{P})_2\text{HBrPt} \\
\downarrow \\
\text{C}_2\text{H}_4 + \text{(Et}_3\text{P})_2\text{PtHBr}
\end{array}\right]
\]

(b) Cleavage of group-IVb derivatives

The cleavage of platinum-group-IVb bonds by HCl and \(\text{H}_2\) has led to the
formation of platinum-hydride complexes. These reactions will be treated later as reactions of platinum-group-IVb derivatives.

(c) **From carbonyl derivatives**

Platinum hydridohalides, \textit{trans-} \((R_3P)_2PtHX\), \(X = \text{halide}, R = \text{Et or Ph}\), have been prepared \(^{100}\) from cationic carbonyl complexes, \textit{trans-} \([(R_3P)_2PtXCO]^{\text{BF}_4^-}\). The carbonyl complexes which can be synthesised by a variety of routes, \(^{98,99}\) can be hydrolysed to give good yields of the hydridohalide. The reaction is thought to proceed via a carboxylic acid:

\[
\begin{align*}
\text{[} & \text{(Et}_3\text{P)}_2\text{PtCl(CO)}\text{]}^{\text{BF}_4^-} + \text{H}_2\text{O} \rightarrow \text{(Et}_3\text{P)}_2\text{PtCl} + \text{BF}_4^- \\
\text{[} & \text{OH} \rightarrow \text{CO}_2
\end{align*}
\]

\textit{trans-} \((\text{Et}_3\text{P)}_2\text{PtHCl}\)

A novel palladium hydridocarbonyl has resulted from the reaction of palladous chloride and carbon monoxide in alcoholic solution \(^{101}\).

\[\text{PdCl}_2 + \text{CO} \rightarrow \text{[PdH(CO)Cl}_2]\]

The addition of triphenylarsine to the solution afforded the neutral carbonyl complex \([\text{PdCO(AsPh}_3\text{)}\text{Cl}_2]\) with no hydridic species.

Properties of the Hydrides

(1) **Stability**

The stability of the hydrides of nickel, palladium and platinum varies enormously, the \textit{trans-} hydridoplatinum(II) complexes are air and water stable whereas palladium and nickel hydrides are much less stable, decomposing in solution, and \((\text{Et}_3\text{P)}_2\text{PdHCl}\) decomposes above \(55^\circ\) in a nitrogen atmosphere. The nickel hydride, bis(tricyclohexylphosphine)nickelhydridochloride decomposes within minutes when a solution is exposed to air \(^{85}\); the solid form is, however, stable in air over several hours. The high stability of
this hydride relative to other tertiary phosphine nickel derivatives is believed due to the bulky tricyclohexylphosphine groups hindering rearrangement of the square-planar form to a tetrahedral arrangement and also limiting attack of other molecules.

The lower alkylphosphine derivatives of platinum are surprisingly volatile and thermally stable\(^{36}\), \((\text{Et}_3\text{P})_2\text{PtHCl}\), for example, can be sublimed at \(75^\circ /10^{-2}\) mm.

(2) Chemical Reactions

The reactions of platinum hydrides can be generally regarded as being of two types:

(a) those similar to normal platinum(II) complexes such as ligand exchange, oxidation to platinum(IV) derivatives and isomerisation;

(b) those involving the hydride directly such as reductions and additions to unsaturated compounds.

Many of the ligand exchange reactions where a new hydride complex is produced have already been discussed (p. 34). The hydride can be replaced in some reactions to give cationic complexes\(^{98,100}\), addition of water to the cationic derivatives yields the original hydrido complex:

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{CO} + \text{HBF}_4 \xrightarrow{120^\circ \text{C}_6\text{H}_6} \text{trans-}[(\text{Et}_3\text{P})_2\text{PtCl(CO)}]^+\text{BF}_4^- \xrightarrow{\text{H}_2\text{O}} \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{CO}_2
\]

\[(\text{Et}_3\text{P})_3\text{PtH}]^+X^- (X^- = \text{Cl}^- \text{ or CN}^-) \text{ does not however react with carbon monoxide}^{97}.\]

It is a general feature of \(\sigma\)-bonded platinum-hydride and -carbon complexes that the most stable derivatives occur when the platinum atom is bonded to strong \(\pi\)-accepting groups (p. 18) which can remove negative charge from the metal, thus one would expect positively charged \(\sigma\)-bonded platinum complexes to be more stable than neutral complexes.
The palladium hydride \((\text{Et}_3\text{P})_2\text{PdHCl}\) reacted with potassium iodide to give the corresponding iodide, with potassium cyanide, in methanol however, the straightforward exchange was not observed, the final product being the dicyanide derivative. The reaction was believed to proceed via the hydridocyanide derivative.

\[
\begin{align*}
\text{(Et}_3\text{P})_2\text{PdHCl} & \xrightarrow{\text{KCN}} \text{Et}_3\text{P} \quad \text{CN} \quad \text{Pd} \quad \text{Et}_3\text{P} \\
\text{Et}_3\text{P} & \quad \text{H} \\
\text{Et}_3\text{P} \quad \text{MeOH} & \quad \text{MeO} \quad \text{Et}_3\text{P} \\
& \downarrow \quad \text{KCN} \\
\text{(Et}_3\text{P})_2\text{Pd(CN)}_2 &
\end{align*}
\]

The oxidative-addition of hydrogen chloride to \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}\) has resulted in an octahedral dihydride complex which can be reverted to the hydridochloride by heat or water. A similar reaction occurs for the triphenylphosphine analogue.

Deuterium oxide with a catalytic amount of hydrogen chloride reacts with \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}\) replacing the hydride thus.

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{D}_2\text{O} \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtDCl}
\]

The role of the hydrogen chloride is believed to be to produce platinum(IV) intermediates such as \((\text{Et}_3\text{P})_2\text{PtHDCl}_2\), elimination of HCl then produces the deuteride.

The platinum hydrides are mild reducing agents, MeI, EtI, n-BuBr, CCl₄ and CHCl₃ all react with \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}\) to give the corresponding dihalide. Carbon tetrachloride undergoes an analogous reaction with \((\text{Et}_3\text{P})_2\text{PdHCl}\) to give the palladium dihalide and chloroform. Cleavage of the Pt-H bond also occurs with halogens, again giving the platinum dihalide complex.
Hydride derivatives of platinum are known to react with group-IVb compounds to give platinum-metal bonds, for example, trans-(Ph₃P)₂PtHCl reacts with stannic chloride to give the platinum(IV) complex (Ph₃P)₂PtCl₂(SnCl₃)₂⁴². Trichlorosilane and triarylsilanes react with trans-(PhMe₂P)₂PtHCl to give trans-(PhMe₂P)₂PtClSiR₃, this provides a useful route for the synthesis of platinum-silicon complexes⁰³.

An important and interesting class of reactions of the hydrides is their reaction with unsaturated organic compounds. The reaction of trans-(Et₃P)₂PtHCl with ethylene has already been discussed. Hex-1-ene reacts with trans-(Et₃P)₂PtHCl only under forcing conditions (22 hours at 180°) when 22% is converted to the hex-2-ene⁰⁴, however in the presence of hydrochloric or perchloric acid in ethanol trans-(Et₃P)₂PtHCl will reduce olefins to the corresponding alkane⁰⁵. The reduction has been carried out for hex-1-ene, cyclohexene, oct-1-ene and 2-methyl-2-butene. No hex-2-ene was produced during the course of the reaction. The proposed reaction mechanism can be seen in Fig. 7.

The reaction was investigated kinetically under pseudo-first-order conditions by using an excess of all other reactants with respect to the metal complex concentration. The data thus obtained indicated that the
pseudo-first-order rate constants were dependent on the concentration of mineral acid, chloride ion and olefin. The dihydride \((\text{Et}_3\text{P})_2\text{PtH}_2\text{Cl}_2\) was found\(^{36}\) to be ineffective towards olefin hydrogenation. Perfluoro-olefins react differently, eliminating HF to produce fluorovinyl derivatives\(^{106}\).

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{C}_2\text{F}_3\text{H} \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{Pt}(\text{CF} = \text{CFH})\text{Cl} + \text{HF}
\]

In an analogous reaction an olefin intermediate complex was detected.

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{C}_2\text{F}_4 \rightarrow (\text{Et}_3\text{P})_2\text{PtCl}(\text{C}_2\text{F}_4) \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{Pt}(\text{CF} = \text{CF}_2)\text{Cl} + \text{HF}
\]

Reactions of tetracyanoethylene with the complexes \(\text{trans-}(\text{R}_3\text{P})_2\text{PtHX}\)

\(R = \text{Et}, X = \text{Cl, Br, I, NO}_2, \text{CN, NCO}; R = \text{Ph, } X = \text{Cl, Br, I, CN,}

have been studied\(^{107}\). \((\text{R}_3\text{P})_2\text{Pt}(\text{C}_2\text{CN}_4)\) was obtained in good yield for \(X = \text{Cl and Br but only in trace amounts or not at all for other } X \text{ groups.}

Kinetic data obtained indicated a 1:1 adduct forming as an intermediate.

Fig. 8 depicts a possible reaction mechanism:

![Fig. 8](image)

Tetrachloroethylene behaves differently leading to \((\text{Et}_3\text{P})_2\text{PtCl}_2\)\(^{106}\). A useful synthetic route to arylplatinum derivatives has been devised from the ability of \(\text{trans-}\)hydridoplatinum complexes to add to aryldiazonium compounds, treatment of the resulting salts with base produces azoplatinum complexes which on the addition of neutral alumina liberate nitrogen to yield the arylplatinum derivative\(^{108}\).
(3) Structure Determination

For the series of compounds trans-(R₃P)₂PtHX infra-red and nuclear magnetic resonance data support a square-planar arrangement of the ligands about the platinum. The structures of trans-(Et₃P)₂PtHBr and trans-(Ph₂EtP)₂PtHCl have been determined by X-ray studies. Both structure determinations show that the phosphorus atoms are trans to each other and together with the chlorine (or bromine) atom lie at three of the four corners of a distorted square. The hydride is assumed to be at the fourth corner as its position has not been determined.

\[
\begin{array}{c|cc}
 & P_1 & Bond Angles \\
H & 2.267Å & P_1 - Pt - Cl 92.6° \\
Pt & 2.422Å Cl & P_2 - Pt - Cl 94.5° \\
 & 2.269Å & P_1 - Pt - P_2 188.8° \\
P_2
\end{array}
\]

The Pt-Cl distance is longer than that predicted by the sum of the covalent radii (2.30Å), consistent with the high trans-influence of the hydride. Similarly in trans-(Et₃P)₂PtHBr the Pt-Br bond distance is greater than that predicted by radii sum calculations. During the structure determination the hydridobromide, which was mounted in air, was found to be sensitive to X-rays and thus not allowing as greater refinement as was achieved for the hydridochloride.

Infra-red Spectra

The metal-hydrogen stretching frequency is very characteristic of transition metal hydrides. The values for \(v(M-H) \) vary, depending on the ligands attached to the metal, but are usually in the 1,900 to 2,200 cm\(^{-1}\) region for nickel, palladium and platinum. Typical values are given in Table 4.
As can be seen from the table, for variation of the metal down the group there is an increase in \(v(M-H) \) implying an increase in metal-hydrogen bond strength on going from nickel to platinum.

The value of \(v(M-H) \) is particularly dependent on the other ligands bonded to the metal atom, with \(v(M-H) \) decreasing as the trans-influence of the group trans to the hydride increases.

Nuclear Magnetic Resonance

The high-field resonance of the metal bonded hydride can, in many cases, allow the stereochemistry of the complex to be unambiguously assigned. The hydridic protons show a large chemical shift to high field, generally in the 15-35\(\tau \) region. The large chemical shifts have been explained by paramagnetic shielding of the proton by the d-electrons of the transition metal\(^{110} \). According to this theory the paramagnetic shielding constant and hence \(\tau \) is most significantly changed by changes in the distance the proton is from the metal atom. The variation in \(\tau \) with trans ligands can thus be explained by changes in Pt-H bond length associated with changes in

Table 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>(v(M-H)) cm(^{-1})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-(Et(_3)P)(_2)PtHCl</td>
<td>2183</td>
<td>36</td>
</tr>
<tr>
<td>trans-(Ph(_3)P)(_2)PtHCl</td>
<td>2235</td>
<td>40</td>
</tr>
<tr>
<td>(Diphos)PtH(GePh(_3))</td>
<td>1998</td>
<td>37</td>
</tr>
<tr>
<td>[(Diphos)PtHPet(3)]Cl(-)</td>
<td>2043</td>
<td>38</td>
</tr>
<tr>
<td>trans-(Et(_3)P)(_2)PdHCl</td>
<td>2035</td>
<td>88</td>
</tr>
<tr>
<td>trans-(Et(_3)P)(_2)PdHI</td>
<td>2004</td>
<td>88</td>
</tr>
<tr>
<td>([C_6H_{11})_3P]_2NiHCl)</td>
<td>1916</td>
<td>85</td>
</tr>
</tbody>
</table>
the ligands.

In the complexes, \textit{trans-}(R_3P)\textsubscript{2}PtHX, the hydride resonance appears as three triplets36. The molecule contains two equivalent \textit{31}P nuclei (spin = \(\frac{1}{2}\), 100\% abundant) which couple with the hydride and split the resonance into a 1:2:1 triplet, the coupling constant \(J(\textit{31}P-H)\) being in the region of 15Hz. This triplet is further split by the \textit{195}Pt nucleus (spin = \(\frac{1}{2}\), 33.8\% abundant) giving two triplet systems, one upfield and one downfield of the central triplet, (the isotopes not of spin \(\frac{1}{2}\) leave this central triplet unsplit), thus the overall hydride resonance occurs as three triplet systems in the ratio of 1:4:1.

\[J(Pt-H) = 1276 \text{ Hz}. \]

\[\text{Fig. 9} \quad \text{Hydride resonance of \textit{trans-}(Et}_3\text{P)}\textsubscript{2}PtHCl \]

The corresponding arsine complexes however, show only a triplet due to coupling with the \textit{195}Pt nucleus109. The coupling constant \(J(\textit{195}Pt-H)\) is very large being about 1200 Hz, for both phosphine and arsine complexes.

\textit{Trans-}(Et\textsubscript{3}P)\textsubscript{2}PdHCl showed the hydride as a singlet resonance, in contrast to the platinum analogues coupling with the \textit{31}P nucleus was not observed88, presumably because of reversible dissociation of triethyl phosphine in solutions of the complex. The hydride resonance in the \(\textit{1}H\) n.m.r. spectrum of [(C\textsubscript{6}H\textsubscript{11})\textsubscript{3}P]\textsubscript{2}NiHCl appeared as a triplet at \(\tau34.6\), again coupling with the \textit{31}P nuclei is observed and a \textit{trans} configuration assigned85.
Fig 10 Highfield 100M Hz spectrum of [(Ph₂PCH₂CH₂PPh₂)Pt(PEt₃)H] Cl
The \(^1\)H n.m.r. spectrum of the \textit{cis} hydride \(\left(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2\right)\text{Pt}(\text{PEt}_3)\text{H}\)\(\text{Cl}\) differed significantly from the spectra of the \textit{trans} hydride complexes.\(^3\) The hydride couples to the \textit{trans} \(^{31}\)P nucleus with a coupling constant \(J(\text{\(^{31}\)P-H}) = 168.1\) Hz to give a doublet, which is further split by the two non-equivalent \textit{cis} \(^{31}\)P nuclei into an eight lined signal (Fig. 10). The upfield satellite system due to coupling with the \(^{195}\)Pt nucleus was observed but the low field system was obscured by other signals. As with the platinum-hydrogen stretching frequency the chemical shift of the hydride is susceptible to changes in ligand bonded to the metal (see p. 12). The chemical shifts of the hydrides and the platinum-hydrogen stretching frequencies were measured in various solvents for a series of complexes \textit{trans}-\((\text{Et}_3\text{P})_2\text{PtHL}\) (L is an o-, m- or p- substituted benzoato ligand or acetato ligand).\(^1\) A linear correlation was found between \(v(\text{Pt-H})\) and \(\tau\text{Pt-H}\) thus supporting the view of Buckingham and Stephens\(^1\) that changes in the platinum-hydride distance is the main contributing factor to changes in the paramagnetic shielding constant and hence in the chemical shift of the hydride. The platinum-hydrogen coupling constant has been shown\(^1\) to depend mainly on the amount of platinum 6s orbital involved in the platinum-hydrogen bond, if the \(s\)-character is increased then the coupling constant is increased. A consequence of the increase in \(s\)-character of the bond is a shortening of the bond which in turn will increase the chemical shift of the proton (discussed earlier), thus a correlation between \(J(\text{Pt-H})\) and \(\tau(\text{Pt-H})\) is predicted and has been found.\(^1\) It has thus been concluded that variation in \(s\)-character of the bond is the most likely source of variation in the platinum-hydrogen coupling constant.

The \(^{31}\)P n.m.r. spectra of the series \textit{trans}-\((\text{Et}_3\text{P})_2\text{PtHX}\) (X = Cl, Br, I, CN, NCO, NCS, SCN, NO\(_3\), NO\(_2\)) have been reported\(^1\)\(^3\)\(^,\)\(^1\)\(^5\)\(^9\), a good correlation was found between the chemical shift of the \(^{31}\)P resonance and the Pt-H
stretching frequency, also the chemical shift is shifted to lower field as the electronegativity of X is increased.
CHAPTER 4
GROUP-IVb DERIVATIVES OF NICKEL, PALLADIUM AND PLATINUM

Over the last decade there has been a great interest shown in compounds containing metal-metal bonds, and complexes containing silicon, germanium, tin or lead bonded to most of the d-block transition elements have been isolated. This upsurge of interest in metal-metal bonded compounds is probably due to two reasons: the increased sophistication of spectroscopic techniques for the detection of metal-metal interactions and their possible industrial applications as catalysts. The chemistry of metal-metal bonded complexes has been the subject of a number of reviews in recent years114,115,116,117.

(1) Synthesis of Transition-metal-group-IVb Bonds

(a) From alkali metal derivatives of group-IVb

The use of alkali metal derivatives of the group-IVb elements provides perhaps the most versatile route available for the preparation of platinum and palladium-group-IVb complexes.

\[
\begin{align*}
\text{(Et}_3\text{P)}_2\text{PtCl}_2 + 2\text{Ph}_3\text{GeLi} & \rightarrow \text{(Et}_3\text{P)}_2\text{Pt(GePh}_3\text{)}_2 + 2\text{LiCl} & 95 \\
\text{(Et}_3\text{P)}_2\text{PdCl}_2 + 2\text{Ph}_3\text{GeLi} & \rightarrow \text{(Et}_3\text{P)}_2\text{Pd(GePh}_3\text{)}_2 + 2\text{LiCl} & 93 \\
\text{(Diphos)}\text{PtCl}_2 + 2\text{(MePh}_2\text{SiLi)} & \rightarrow \text{(Diphos)}\text{Pt(MePh}_2\text{Si)}_2 + 2\text{LiCl} & 103 \\
\text{(Et}_3\text{P)}_2\text{PtCl}_2 + \text{Ph}_3\text{SnLi} & \rightarrow \text{(Et}_3\text{P)}_2\text{PtCl(SnPh}_3\text{)} + \text{LiCl} & 42 \\
\text{(Et}_3\text{P)}_2\text{PdCl}_2 + 2\text{PbPh}_3\text{Li} & \rightarrow \text{(Et}_3\text{P)}_2\text{Pd(PbPh}_3\text{)}_2 + 2\text{LiCl} & 118
\end{align*}
\]

By this method, Pt-Si, Pt-Ge, Pt-Sn, Pt-Pb, Pd-Ge and Pd-Pb bonds have been prepared, the use of Ph\textsubscript{3}GeLi with (Et\textsubscript{3}P\textsubscript{2})\textsubscript{2}NiBr\textsubscript{2} did not result in a nickel germanium bond, only starting material and hexaphenyldigermane were isolated. Equimolar quantities of phosphine platinum dihalide and Ph\textsubscript{3}GeLi resulted in a mixture of unreacted platinum dihalide and the disubstituted complex, no
monosubstituted derivative was isolated. Triphenylphosphine platinum(II) bromide and Ph3GeLi gave only a yellow polymeric material95. A further limitation on the reaction is the availability of the alkali-metal derivative, trimethylgermyl-lithium, for example, has to be prepared from bis(trimethylgermyl)mercury, or in very reactive solvents such as liquid ammonia or amines.

'Mixed metal' complexes have also been prepared by reacting triphenylgermyl-lithium with monosubstituted platinum-silicon or platinum-germanium complexes

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3) + \text{Ph}_3\text{GeLi} \rightarrow (\text{Et}_3\text{P})_2\text{Pt(GePh}_3)(\text{SiMe}_3) + \text{LiCl} \]

This method of preparation is also applicable to the titanium and copper groups119,120.

(b) From transition-metal anions

This method is complementary to (a), but has not been applied to the nickel group. It has been used extensively for chromium, molybdenum, tungsten, manganese, iron and cobalt where the transition metal anions are easily prepared:

\[\text{NaMn(CO)}_5 + \text{Me}_3\text{GeBr} \rightarrow \text{Me}_3\text{GeMn(CO)}_5 + \text{NaBr} \]

\[\pi\text{-C}_5\text{H}_5\text{Mo(CO)}_3\text{Na} + \text{R}_3\text{GeCl} \rightarrow \pi\text{-C}_5\text{H}_5\text{(CO)}_3\text{MoGeR}_3 + \text{NaCl} \]

\[(R = \text{Me, Et or n-Pr})\]

(c) From metal-metal bonded complexes

A convenient method for the preparation of monosubstituted trimethylsilyl- and trimethylgermyl-platinum derivatives is the use of bis(trimethylsilyl)mercury or [trimethylgermyl]mercury41.

\[(\text{Me}_3\text{Si})_2\text{Hg} + \text{cis-}(\text{Et}_3\text{P})_2\text{PtCl}_2 \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3) + \text{Hg} + \text{Me}_3\text{SiCl}. \]

\[(\text{Me}_3\text{Ge})_2\text{Hg} + \text{cis-}(\text{Et}_3\text{P})_2\text{PtCl}_2 \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(GeMe}_3) + \text{Hg} + \text{Me}_3\text{GeCl} \]
The use of two equivalents of the mercury reagent failed to give the disubstituted complexes, forming a red oil from which only the monosubstituted derivative could be isolated in low yield.

The reported preparation of \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl}(\text{PbPh}_3) \) from bis(triphenyllead)mercury and \(\text{cis-}(\text{Et}_3\text{P})_2\text{PtCl}_2 \) was later refuted as bis(triphenyllead)mercury had not in fact been prepared.

(d) From zerovalent complexes

The use of zerovalent platinum complexes has led to the formation of Pt-Si, Pt-Sn and Pt-Pb bonds. Tetrakis(triphenylphosphine)platinum(o) on reaction with \(\text{Cl}_3\text{SiH}, \text{Ph}_2\text{SiH}_2 \) or \(\text{Si}_2\text{Cl}_6 \) gives the disubstituted complexes:

\[
(\text{Ph}_3\text{P})_4\text{Pt} + \text{Cl}_3\text{SiH} \xrightarrow{\text{reflux}} (\text{Ph}_3\text{P})_2\text{Pt}(\text{SiCl}_3)_2 + \text{H}_2
\]

Fluorinated silanes of the type \((\text{C}_6\text{H}_4\text{X})_3\text{SiH} (X = \text{F or CF}_3)\) produced hydrido silyl complexes:

\[
(\text{Ph}_3\text{P})_4\text{Pt} + (\text{C}_6\text{H}_4\text{F})_3\text{SiH} \rightarrow \text{trans-}(\text{Ph}_3\text{P})_2\text{Pt(H)Si(}\text{C}_6\text{H}_4\text{F})_3
\]

With triphenylsilane no reaction occurred. Platinum-tin bonded complexes have been prepared from \((\text{Ph}_3\text{P})_4\text{Pt}\) using hexamethyldistannane and triphenyltin chloride:

\[
(\text{Ph}_3\text{P})_4\text{Pt} + \text{Me}_6\text{Sn}_2 \rightarrow \text{trans-}(\text{Ph}_3\text{P})_2\text{Pt(}\text{SnMe}_3)_2
\]

The same product is obtained reacting hexamethyldistannane with the ethylene complex, \((\text{Ph}_3\text{P})_2\text{Pt}(\text{C}_2\text{H}_4)\).

The use of triphenyltin chloride gives the monosubstituted derivative:

\[
(\text{Ph}_3\text{P})_4\text{Pt} + \text{Ph}_3\text{SnCl} \rightarrow \text{trans-}(\text{Ph}_3\text{P})_2\text{PtCl(}\text{SnPh}_3) + 2\text{Ph}_3\text{P}.
\]

By analogous reactions, Pt-Au and Pt-Hg bonded compounds have been produced:

\[
(\text{Ph}_3\text{P})_4\text{Pt} + \text{Ph}_3\text{PAuCl} \rightarrow (\text{Ph}_3\text{P})_2\text{PtCl(AuPPPh}_3) + 2\text{Ph}_3\text{P}.
\]
In a similar reaction triphenyllead chloride and tetrakis(triphenylphosphine)platinum(o) gave the monosubstituted lead derivative $\text{trans}-(\text{Ph}_3\text{P})_2\text{PtCl}(\text{PbPh}_3)$.

Cis disubstituted silyl derivatives have been obtained using (diphos)$_2\text{Pt}(o)$ ($\text{diphos} = 1,2$-bisdiphenylphosphinoethane) and Cl$_3$SiH or Ph$_2$SiH$_2$.

(e) From platinum-hydrides

Several silicon hydrides have been found to react with $\text{trans}-(\text{PhMe}_2\text{P})_2\text{PtHX}$ ($X = \text{Cl}$ or Br), eliminating hydrogen and forming the monosubstituted silyl derivative:

$$\text{R}_3\text{SiH} + \text{trans-}(\text{PhMe}_2\text{P})_2\text{PtHCl} \rightarrow \text{trans-}(\text{PhMe}_2\text{P})_2\text{PtCl(SiR}_3) + \text{H}_2$$

($R = C_6H_5$, C_6F_5, m-FC_6H_4, p-ClC_6H_4, m-p-ClC_6H_4, p-$\text{CF}_3C_6H_4$, Cl$_3$SiH).

The analogous Ph$_3$Ge- and Et$_3$Sn- derivatives were prepared similarly using Ph$_3$GeH and Et$_3$SnH. Trimethyl-, triethyl- and tribenzyl-silanes did not react at all. Trimethylgermane has however, been shown to react with $\text{trans}-(\text{Et}_3\text{P})_2\text{PtCl}$ to give $\text{trans}-(\text{Et}_3\text{P})_2\text{PtCl(GeMe}_3)$ in low yield.

Compounds of the type $\text{trans}-(\text{Et}_3\text{P})_2\text{PtX(MH}_2\text{Y})$ ($M = \text{Si}$ or Ge; $X,Y = \text{Cl}$, Br or I) have been prepared from the analogous platinum hydridohalide and the substituted silane or germane.

$$\text{trans}-(\text{Et}_3\text{P})_2\text{PtHCl} + \text{H}_3\text{SiCl} \rightarrow \text{trans}-(\text{Et}_3\text{P})_2\text{PtCl(SiH}_2\text{Cl}) + \text{H}_2$$

The interaction of platinum hydrido complexes and amido derivatives of tin has resulted in platinum-tin compounds.
A series of compounds containing platinum-germanium bonds has been prepared by reacting solutions of trichlorogermane in concentrated hydrochloric acid with potassium tetrachloroplatinitene followed by the addition of tetramethylammonium chloride or triphenylphosphine, or alternatively with bis(triphenylphosphine)platinum(II) chloride\(^{129}\).

\[\text{trans-(Ph}_3\text{P)}_2\text{PtCl + Me}_3\text{Sn-NMe}_2 \rightarrow \text{trans-(Ph}_3\text{P)}_2\text{PtCl(SnMe}_3\text{) + Me}_2\text{NH.} \]

(f) Miscellaneous Preparations

A series of compounds containing platinum-germanium bonds has been prepared by reacting solutions of trichlorogermane in concentrated hydrochloric acid with potassium tetrachloroplatinitene followed by the addition of tetramethylammonium chloride or triphenylphosphine, or alternatively with bis(triphenylphosphine)platinum(II) chloride\(^{129}\).

\[
\text{e.g. Cl}_3\text{GeH + K}_2\text{PtCl}_4 \xrightarrow{\text{conc. HCl}} \frac{\text{Me}_4\text{N}^+\text{Cl}^-}{\text{Me}_4\text{N}^+\text{Cl}^-} \rightarrow [\text{Me}_4\text{N}] [\text{(GeCl}_3\text{)}_5\text{PtH}]
\]

No analogous reactions occurred when using trichlorosilane. A trichlorosilyl derivative of nickel has been prepared by heating \([\pi\text{-C}_5\text{H}_5\text{NiCO}]_2\) with trichlorosilane\(^{130}\).

\[
[\pi\text{-C}_5\text{H}_5\text{NiCO}]_2 + \text{Cl}_3\text{SiH} \xrightarrow{100-180^\circ} \text{Cl}_3\text{SiNi(CO)C}_5\text{H}_5
\]

A series of nickel-germanium complexes, \(\text{NiCp(R}_3\text{P)}\text{GeCl}_3\) have been made\(^{131}\) by the reaction of caesium trichlorogermanite with \(\text{NiCp(R}_3\text{P)}\text{X}\):

\[
\text{NiCp(R}_3\text{P)}\text{X + CsGeCl}_3 \rightarrow \text{NiCp(R}_3\text{P)}\text{GeCl}_3
\]

(Cp = cyclopentadienyl, X = Cl, Br or I, \(R_3 = \text{Et}_3\), Et\(_2\)Ph, Ph\(_3\), nPr\(_3\), nBu\(_3\)).

Finally, the interaction of organosilicon hydrides with \(\text{cis-(PhMe}_2\text{M)}_2\text{PtCl}_2\) (M = P or As) in benzene-triethylamine has resulted in platinum-silicon derivatives\(^{103}\) according to the equation

\[
\text{R}_3\text{SiH + cis-(PhMe}_2\text{M)}_2\text{PtX}_2 + \text{Et}_3\text{N} \rightarrow \text{trans-(PhMe}_2\text{M)}_2\text{PtCl(SiR}_3\text{) + Et}_3\text{NHCl}
\]

The silicon hydrides, PhMe\(_2\)SiH, (PhCH\(_2\))\(_3\)SiH, Me\(_3\)SiH and Et\(_3\)SiH did not undergo the reaction. Excess of the silicon hydride did not replace the second chlorine atom to give the disubstituted derivatives.
Chlorotin Derivatives

As such a wide variety of platinum-tin complexes containing the SnCl$_3$ ligand are known, these compounds will be treated as a class of their own. The simpler reactions involve insertion of SnCl$_2$ into a Pt-Cl bond; trans-bis(triethylphosphine)platinum(II) hydridochloride reacts with stannous chloride in methanol19:

$$\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{SnCl}_2 \rightarrow (\text{Et}_3\text{P})_2\text{PtH(SnCl}_3)$$

The platinum-hydrogen stretching frequency at 2105 cm$^{-1}$ indicated that SnCl$_3$ is a ligand of fairly high trans-influence.

The reaction of stannic chloride with trans-bis(triphenylphosphine)platinum(II)hydridochloride results in an octahedral platinum(IV) complex42:

$$\text{trans-}(\text{Ph}_3\text{P})_2\text{PtHCl} + \text{SnCl}_4 \rightarrow (\text{Ph}_3\text{P})_2\text{PtCl}_2(\text{SnCl}_3)_2$$

Anionic complexes containing platinum-tin bonds are numerous and are prepared from mixtures of tin and platinum chlorides e.g. the addition of methyltriphenylphosphonium chloride to a solution of chloroplatinic acid and stannous chloride (ratio 1:6) in methanol precipitates out

$$[(\text{C}_6\text{H}_5)_3\text{PCH}_3]_3[\text{Pt(SnCl}_3)_5]$$

as a red crystalline solid. Similarly the addition of triphenylphosphine in ethanol to a solution of K$_2$PtCl$_4$ and stannous chloride (ratio 1:10) in 3M, hydrochloric acid gave orange crystals of $[\text{Ph}_3\text{P}]_2[\text{Pt(SnCl}_3)_2]$132.

Determination of the crystal structure of the $[\text{Pt(SnCl}_3)_5]^{3-}$ anion133 has shown it to be a trigonal bipyramid with a central platinum atom surrounded by five SnCl$_3$ ligands attached through platinum-tin bonds. Parshall and co-workers19 have studied the σ- and π-bonding properties of the SnCl$_3$ ligand using 19F n.m.r. shielding parameters of fluorophenyl platinum complexes (see p. 13). As a result of this investigation it was concluded that the SnCl$_3$ ligand is a weak σ-donor, but can π-bond strongly.
Mössbauer studies on a number of chlorotin platinum derivatives such as \((\text{Et}_4\text{N})_3\text{Pt}(\text{SnCl}_3)_5\) have shown that the tin is in the +4 oxidation state and not +2 as had previously been thought.

Trichlorotin derivatives of platinum have been used as catalysts in the reduction of acetylenes and short chain olefins to alkanes under mild conditions. A solution of stannous chloride and chloroplatinic acid in methanol effected quantitative hydrogenation of mixtures of ethylene with hydrogen and acetylene with hydrogen at room temperature and one atmosphere pressure. The hydrogenation of polyenes to dienes and monoenes and the isomerisation of polyenes is also catalysed by trichlorotin derivatives of platinum.

The most important steps in these catalytic reactions are the formation of a platinum-hydride and coordination of the olefin to the platinum. A hydride species, \([\text{HPt}(\text{SnCl}_3)_4]^{3-}\), has been detected under conditions of catalysis.

In contrast to the behaviour of platinum complexes and stannous chloride, the analogous palladium(II)-tin(II) chloride system is unstable, metallic palladium eventually precipitating out of ethanolic solutions. An ill-defined palladium-tin complex has been isolated and on the basis of analytical data only has been formulated as \([\text{PdCl}(\text{SnCl}_3)_2]^4-\).

(2) Reactions of the Complexes

The characteristic reactions are (1) cleavage of the metal-metal bond with halogens, organic halides, halogen acids and hydrogen; (2) exchange reactions

(a) Halogens and hydrogen halides

With halogens the reaction is usually straightforward with the metal-metal bond being cleaved giving the corresponding transition metal and group-IVb halides.
In both reactions, no evidence of single cleavage was obtained. The reaction of $\text{cis-(PhMe}_2\text{P)}_2\text{Pt(SiMePh}_2\text{)}_2$ did however react with chlorine (molar ratio 1:0.5) to give $\text{trans-(PhMe}_2\text{P)}_2\text{PtCl(SiMePh}_2\text{)}$. With equimolar ratios cleavage of both silyl groups resulted. An exception to the cleavage of a metal-metal bond occurred when hydrogen was bonded to the silicon

$$
\begin{align*}
\text{(Et}_3\text{P)}_2\text{Pt(GePh}_3\text{)}_2 + 2\text{I}_2 & \rightarrow \text{(Et}_3\text{P)}_2\text{PtI}_2 + 2\text{Ph}_3\text{GeI} \\
\text{(Et}_3\text{P)}_2\text{Pt(PbPh}_3\text{)}_2 + 4\text{Br}_2 & \rightarrow \text{(Et}_3\text{P)}_2\text{PtBr}_2 + 2\text{Ph}_2\text{PbBr}_2 + 2\text{PhBr}
\end{align*}
$$

The hydrogen being replaced in preference to cleavage of the metal-metal bond. Hydrogen halides cleave the metal-metal bond, the products varying on the type of complex. With disubstituted platinum silicon complexes of non-chelating phosphines, the Pt-Si bond is cleaved in opposite directions on reaction firstly with 1 molar quantity of HCl and then with a second molar quantity:

$$
\begin{align*}
\text{cis-(PhMe}_2\text{P)}_2\text{Pt(SiMePh}_2\text{)}_2 + \text{HCl} & \rightarrow \text{trans-(PhMe}_2\text{P)}_2\text{PtCl(SiMePh}_2\text{)} + \text{Ph}_2\text{MeSiH} \\
\text{trans-(PhMe}_2\text{P)}_2\text{PtCl(SiMePh}_2\text{)} + \text{HCl} & \rightarrow \text{trans-(PhMe}_2\text{P)}_2\text{PtHCl} + \text{Ph}_2\text{MeSiCl}
\end{align*}
$$

The platinum-lead complex, $\text{trans-(Et}_3\text{P)}_2\text{Pt(PbPh}_3\text{)}_2$, with 1 molar quantity reacts as the silicon complex but the addition of a second molar quantity gives the platinum dihalide and not the hydridochloride.
\[\text{trans-}(\text{Et}_3\text{P})_2\text{Pt}(\text{PbPh}_3)_2 \xrightarrow{\text{HCl}} \text{trans-}(\text{Et}_3\text{P})_2\text{PtCl}(\text{PbPh}_3) + \text{Ph}_3\text{PbH} \]

\[\downarrow \text{HCl} \]

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl}_2 + \text{PbCl}_2 + \text{C}_6\text{H}_6 \]

The monosubstituted silyl and germyl platinum derivatives, \(\text{t-}(\text{Et}_3\text{P})_2\text{PtCl}(\text{MMe}_3) \) \((\text{M} = \text{Si} \text{ or Ge})\) cleave as for the above complex, \((\text{I})\), giving the hydrido-chloride and the chlorotrimethylsilane (germane) \(^3\).

The palladium complexes \(\text{(Et}_3\text{P})_2\text{Pd(MPh}_3)_2 \) \((\text{M} = \text{Ge, Pb})\) with \(\text{HCl} \) gave no compound resulting from a single cleavage but in both cases the palladium dihalide was produced:

\[\text{(Et}_3\text{P})_2\text{Pd(GePh}_3)_2 \xrightarrow{\text{HCl}} (\text{Et}_3\text{P})_2\text{PdCl}_2 + \text{Ph}_3\text{GeH} \]

\[\text{(Et}_3\text{P})_2\text{Pd(PbPh}_3)_2 \xrightarrow{\text{HCl}} (\text{Et}_3\text{P})_2\text{PdCl}_2 + \text{Ph}_3\text{PbCl} + \text{Ph}_2\text{PbCl}_2 + \text{PbCl}_2 \]

These reactions probably indicate the greater reluctance of Pd(II) compared with Pt(II) to undergo oxidative-addition reactions leading to 6-coordinate intermediates.

The disubstituted tin complex \(\text{trans-}(\text{Ph}_3\text{P})_2\text{Pt(SnMe}_3)_2 \) undergoes a unique reaction with \(\text{HCl} \), giving the platinum hydridochloride and hexamethyldistannane \(^{125}\).

\[\text{trans-}(\text{Ph}_3\text{P})_2\text{Pt(SnMe}_3)_2 \xrightarrow{\text{HCl}} \text{trans-}(\text{Ph}_3\text{P})_2\text{PtHCl} + \text{Me}_6\text{Sn}_2 \]

The hydrogen chloride cleavage of \(\text{trans-}(\text{Et}_3\text{P})_2\text{Pt(GeMe}_3)(\text{GePh}_3) \) is extremely selective \(^{38}\), the trimethylgermyl group being cleaved, predominantly as \(\text{Me}_3\text{GeH} \). It has been suggested \(^{140}\) that the course of the cleavage reactions depends greatly on the group-IVb metal, particularly on its electronegativity.

With a chelating phosphine complex both platinum–silicon bonds are cleaved in the same direction to give the platinum dichloride complex \(^{103}\).
This contrasts with the non-chelating phosphine derivatives, the difference being attributed to the high trans-effect of the silyl group. In the chelate complex both silyl groups are necessarily trans to the phosphine ligand, whereas in the non chelate complexes one silyl group is trans to a phosphine ligand but in trans-(PhMe₂P)₂PtCl(SiMePh₂) i.e. the second stage of the cleavage, the silyl group is trans to a chloride ion.

The disubstituted complex,

only reacted with an excess of hydrogen chloride giving (Ph₂PCH₂CH₂PPh₂)PtCl₂ and triphenylgermane. Samples of the complex with one and two equivalents of HCl did not undergo reaction 37.

The cleavage reactions probably proceed via an octahedral intermediate, complexes of the type trans-(Et₃P)₂PtH₂Cl₂, formed by the addition of HCl to trans-(Et₃P)₂PtHCl, being known 36. The reaction of an ionic platinum-germanium complex with hydrogen chloride gave initially an intermediate complex containing the HCl₂⁻ anion. This intermediate, on solution in methanol, formed an ionic platinum hydride and Me₃GeCl³⁸.
After reacting for several days in benzene a number of products were isolated:

\[
\left[\text{Ph}_2\text{PC}_2\text{H}_4\text{PPh}_2 \right] \text{Pt} \left(\text{PET}_3 \right) \text{H} \right] \text{Cl}^+ \right\} \text{Cl}^- + \text{Me}_3\text{GeCl}
\]

Recently, an octahedral platinum complex formed by the addition of HI has been isolated. The adduct decomposed slowly at room temperature with the evolution of hydrogen: \[\text{trans-} \left(\text{ET}_3\text{P} \right)_2 \text{PtHCl},\]

\[\left[\text{Ph}_2\text{PC}_2\text{H}_4\text{PPh}_2 \right] \text{Pt} \left(\text{ET}_3\text{P} \right) \text{H} \right] \text{Cl}^+ \text{Me}_3\text{GeH} \text{ and Me}_3\text{GeCl}.
\]

Recently\(^{141}\) an octahedral platinum complex formed by the addition of HI has been isolated. The adduct decomposed slowly at room temperature with the evolution of hydrogen:

\[\text{trans-} \left(\text{ET}_3\text{P} \right)_2 \text{Pt} \left(\text{SiH}_2\text{I} \right) \text{I} \rightarrow \left(\text{ET}_3\text{P} \right)_2 \text{PtI}_2 \left(\text{H} \right) \left(\text{SiH}_2\text{I} \right) \rightarrow \text{H}_2 \rightarrow \text{trans-} \left(\text{ET}_3\text{P} \right)_2 \text{Pt} \left(\text{SiH}_2\text{I} \right) \text{I}
\]

No analogous hydrogen chloride adduct was detected.

(b) Organic halides

1,2-Dibromoethane reacts with metal-metal bonded complexes liberating ethylene, often quantitatively:

\[(\text{ET}_3\text{P})_2 \text{Pt} \left(\text{GePh}_3 \right) \text{I}_2 + \text{C}_2\text{H}_4\text{Br}_2 \rightarrow (\text{ET}_3\text{P})_2 \text{PtBr}_2 + 2\text{Ph}_3\text{GeBr} + \text{C}_2\text{H}_4 \quad 95\]

\[\text{trans-} \left(\text{ET}_3\text{P} \right)_2 \text{PtCl} \left(\text{SiMe}_3 \right) \text{ with ethylene dichloride}^{41} \text{ did not however give the stoichiometric quantity of ethylene, the amount of chlorotrimethylsilane formed was in excess of that expected from the amount of } (\text{ET}_3\text{P})_2 \text{PtCl}_2 \text{ isolated.}\]

Methyl iodide also reacts with metal-metal bonds\(^{95,103}\) cleaving the metal-metal bond:
The hydrogenation of metal-metal bonds has received much attention, and the reaction conditions vary widely from room temperature and low pressure to high temperature and pressure conditions.

\[
\text{cis-(PhMe}_2\text{P)}_2\text{Pt(SiMePh}_2\text{)}_2 + \text{CH}_3\text{I} \rightarrow (\text{PhMe}_2\text{P)}_2\text{PtI}_2 + \text{Ph}_2\text{SiMe}_2 + \text{trace Ph}_2\text{MeSiH}
\]

(c) **Hydrogenation**

The palladium analogue required more forcing conditions (100 atm. for 1 week), the reaction then proceeding as for the platinum complex. The palladium-lead complex; (Et\textsubscript{3}P\textsubscript{2}Pd(PbPh\textsubscript{3})\textsubscript{2} however, hydrogenated at 0°C, to give palladium metal, triethylphosphine and hexaphenyldiplumbane, this contrasted also with the platinum analogue which gave the platinum hydride.

\[
(\text{Et}_3\text{P})_2\text{Pt}(\text{GePh}_3)_2 + \text{H}_2 \xrightarrow{\text{20 mm partial pressure}} \text{trans-}(\text{Et}_3\text{P})_2\text{PtH}(\text{GePh}_3) + \text{Ph}_3\text{GeH}
\]

The palladium analogue required more forcing conditions (100 atm. for 1 week), the reaction then proceeding as for the platinum complex. The palladium-lead complex; (Et\textsubscript{3}P\textsubscript{2}Pd(PbPh\textsubscript{3})\textsubscript{2} however, hydrogenated at 0°C, to give palladium metal, triethylphosphine and hexaphenyldiplumbane, this contrasted also with the platinum analogue which gave the platinum hydride.

\[
(\text{Et}_3\text{P})_2\text{Pt}(\text{PbPh}_3)_2 + \text{H}_2 \xrightarrow{\text{200°C, 1.5 atm.}} \text{trans-}(\text{Et}_3\text{P})_2\text{Pt}(\text{PbPh}_3)_\text{H}
\]

These hydrogenations again show the different tendencies of palladium(II) and platinum(II) complexes towards oxidative-addition reactions.

The **trans** complexes, **trans-**(Et\textsubscript{3}P\textsubscript{2}PtCl(MMe\textsubscript{3}), (M = Si or Ge) reacted smoothly with hydrogen at room temperature and atmospheric pressure giving the hydridochloride:

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(MMe}_3\text{)} + \text{H}_2 \xrightarrow{\text{Room Temp., 1 atm.}} \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl + Me}_3\text{MH}
\]

The reversibility of this reaction has also been demonstrated. Similar reactions, the hydrogenation of **cis-**(PhMe\textsubscript{2}P\textsubscript{2}Pt(SiMePh\textsubscript{2})\textsubscript{2} and **trans-**(PhMe\textsubscript{2}P\textsubscript{2}PtCl(SiMePh\textsubscript{2}) have also been shown to be reversible.

\[
\text{cis-}(\text{PhMe}_2\text{P)}_2\text{Pt(SiMePh}_2\text{)}_2 + \text{H}_2 \xrightarrow{\text{trans-}(\text{PhMe}_2\text{P)}_2\text{PtH(SiMePh}_2\text{)} + \text{Ph}_2\text{MeSiH.}}
\]

(The products, **trans-**(PhMe\textsubscript{2}P\textsubscript{2}PtH(SiMePh\textsubscript{2}) and Ph\textsubscript{2}MeSiH were indicated by
infra-red spectra, but a separation was not achieved. The reversibility of these reactions suggests that a common intermediate is involved, most readily formulated as a 6-coordinate intermediate. The chelate phosphine complexes \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{GePh}_3)_2\) and \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PCH}_2)\text{Pt}(\text{SiMePh}_2)_2\) did not react with hydrogen at low pressure and temperature\(^{41,103}\), however at 100 atmospheres pressure the germyl complex reacted but only one germyl group was cleaved.

\[
\begin{array}{c}
\text{Ph}_2 \quad \text{GePh}_3 \\
\| \\
\text{Pt} \\
\| \\
\text{GePh}_3 \\
\| \\
\text{Ph}_2
\end{array}
\]

\[
\begin{array}{c}
\text{Ph}_2 \\
\| \\
\text{Pt} \\
\| \\
\text{GePh}_3 \\
\| \\
\text{Ph}_2
\end{array} + \text{H}_2 \xrightarrow{\text{100 atm.} 200^\circ} \begin{array}{c}
\text{Ph}_2 \\
\| \\
\text{Pt} \\
\| \\
\text{GePh}_3 \\
\| \\
\text{Ph}_2
\end{array} + \text{Ph}_3\text{GeH}
\]

(d) **Ligand replacement reactions**

In complexes \((\text{R}_3\text{P})_2\text{PtCl(MR}_3)\) \(\text{RR}' = \text{alkyl, M} = \text{(Si or Ge)}\), replacement of chloride ion can be carried out by \(\text{Br}^-\), \(\text{I}^-\), \(\text{OH}^-\), \(\text{OR}^-\), \(\text{CN}^-\) or \(\text{NCS}^-\) by using the appropriate salt\(^{41,95}\). With the compounds \(\text{trans-}(\text{Et}_3\text{P})_2\text{M}'(\text{PbPh}_3)_2\) \((\text{M}' = \text{Pd or Pt})\) the reaction with \(\text{CN}^-\) leads to breakage of the \(\text{M}'-\text{Pb}\) bond giving the tetracyano cation and hexaphenyldiplumbane\(^{118,140}\);

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{Pt}(\text{PbPh}_3)_2 + \text{CN}^- \longrightarrow [\text{Pt(CN)}_4]^{2-} + \text{Ph}_6\text{Pb}_2 + \text{Et}_3\text{P}
\]

The replacement of the phosphine ligands in some cases has been achieved, in complexes having only one metal-metal bond, chelating phosphines produce either anionic or zerovalent complexes\(^{37,38}\):

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3) + \text{Diphos} \longrightarrow [(\text{Diphos})\text{Pt}(\text{Et}_3\text{P})(\text{SiMe}_3)]^{+}\text{Cl}^- + \text{Et}_3\text{P}
\]

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{Pt(GePh}_3)\text{H} + 2\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2 \longrightarrow \text{Diphos}_2\text{Pt} + :\text{Et}_3\text{P} + \text{Ph}_3\text{GeH}
\]

The addition of a chelating phosphine to disubstituted complexes results in a direct replacement of the two non-chelating phosphine ligands\(^{103+140}\).
The silyl group in \((\text{Et}_3\text{P})\text{PtCl(SiH}_2\text{Cl)}\) can be displaced by chlorogermane to give \((\text{Et}_3\text{P})_2\text{PtCl(GeH}_2\text{Cl)}\) which slowly decomposes\(^{127}\).

(e) **Miscellaneous reactions**

(i) **Pyrolysis**

The pyrolysis of a number of compounds has been studied and free radicals are involved. The palladium complex decomposes in vacuo to give a variety of products\(^{93}\) which parallel those from the pyrolysis of the platinum analogue\(^{95}\).

\[(\text{Et}_3\text{P})_2\text{Pd(GePh}_3\text{)}_2 \xrightarrow{97-107^\circ} \text{Pd} + \text{Ph}_6\text{Ge}_2 + \text{Ph}_4\text{Ge} + \text{Et}_3\text{P} + \text{C}_6\text{H}_6 + \text{C}_2\text{H}_4 + \text{H}_2\]

A much higher temperature \((230^\circ)\) was required to effect pyrolysis of the platinum complex.

Pyrolysis of the lead derivative, \((\text{Et}_3\text{P})_2\text{Pt(PbPh}_3\text{)}_2\) again gave a variety of products\(^{140}\).

\[\text{trans-}(\text{Et}_3\text{P})_2\text{Pt(PbPh}_3\text{)}_2 \rightarrow \text{Pt} + \text{Et}_3\text{P} + \text{Ph}_6\text{Pb}_2 + \text{Ph}_4\text{Pb} + \text{unidentified residue containing Pt and P.}\]

(ii) **Hydrolysis**

The \(\text{Me}_3\text{Ge}\) and \(\text{Me}_3\text{Si}\) derivatives are moisture sensitive\(^{38,41}\), the silyl derivatives being more susceptible to hydrolysis than the germyl complexes.

\[\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3\text{)} + \text{H}_2\text{O} \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \frac{1}{2}(\text{Me}_3\text{Si})_2\text{O}\]

The reaction is thought to proceed by proton attack on the platinum. Phenyl analogues do not undergo reaction with water\(^{95}\).

(3) **The Complexes**

(a) **The transition metal**
It has been observed that in metal-metal bonded complexes the complexes of the third row transition metals are generally more stable than those of the first and second rows. For example, the platinum compound (Et₃P)₂Pt(GePh₃)₂ is air and water stable⁹⁵, decomposing at 230° whereas the palladium analogue decomposes at 107° in the solid state and -20° in solution⁹³. The nickel analogue has so far eluded preparation. The germanium- and tin-transition metal complexes appear to be more stable than silicon and lead derivatives. Similarly for the series of complexes π-C₅H₅(CO)₃-M'-R₃ (M = Cr, Mo or W; M' = Ge, Sn or Pb; R = Me or Ph), decomposition under nitrogen occurs after several weeks for the chromium complexes but the molybdenum and tungsten derivatives remain stable indefinitely¹⁴².

(b) Ligands bonded to the transition metal

Metal-metal bonded complexes not having π-bonding ligands such as tertiary phosphines and carbon monoxide bonded to the transition metal are few, notable exceptions being Li[Ph₃GeH₂Au].₄Et₂O

A change in the ligand bound to the transition metal can greatly affect reactions. For example, the reaction of (R₃P)₂PtCl₂ and Ph₃GeLi gives satisfactory yields of (R₃P)₂Pt(GePh₃)₂ for R = Et and n-Pr, but for R = Ph only ill-defined polymeric material could be isolated⁹⁵. In the gold complexes, Ph₃PAuGePh₃ and Me₃PAuGePh₃, the phenyl complex is stable to air and water whereas the methyl analogue decomposes rapidly in air¹²⁰, the difference probably being due, in part, to stabilisation by π-bonding between the metal and the triphenylphosphine ligand removing negative charge from the gold into the aromatic rings.

(c) The group-IVb metal

Although little systematic work has been done on the stability of complexes with different group-IVb elements some trends do occur. The silicon complexes, trans-(Et₃P)₂PtCl(SiMe₃) and [(Ph₂PCH₂CH₂PPh₂)Pt(Et₃P)(SiMe₃)]⁺Cl⁻.
are hydrolysed more readily than the germanium analogues38,41. In the series of complexes, $\text{Ph}_3\text{Mn(OO)}_5$, $\text{M} = (\text{Si,Sn or Pb})$ thermal stability increases in the order $\text{Sn} > \text{Pb} > \text{Si}143$. Although compounds containing germanium, tin and lead bonded to palladium have all been isolated, no palladium-silicon complexes have been prepared, this again giving some indication of the lower stability of complexes having a silicon-metal bond.

Platinum complexes involving Ph_3Pb, Ph_3Sn, Ph_3Ge and Ph_3Si have all been prepared42,95,140, on the basis of decomposition temperatures, germanium and tin derivatives appear to be more stable than those of silicon and lead, it therefore seems probably that optimum overlap conditions occur with germanium and tin.

(d)

\textbf{Effect of the substituent on the group-IVb metal}

The general order of stability of metal-metal bonded complexes for variation of the group-IVb metal substituent is found to be

$X_3\text{M} > R_3\text{M} > R'_3\text{M} > H_3\text{M}$ ($X = \text{halogen}$, $R = \text{aryl}$, $R' = \text{alkyl}$, $\text{M} = \text{group-IVb metal}$).

This stability of complexes with halogen as substituent is best illustrated by a series of rhodium complexes (Table 5)144.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Complex & Decomposition temp. & Solution stability \\
\hline
$(\text{Ph}_3\text{P})_2\text{RhH(SiMe}_3\text{)}\text{Cl}$ & 95° & instant dissociation \\
$(\text{Ph}_3\text{P})_2\text{RhH(SiMe}_2\text{Cl})\text{Cl}$ & 125° & \\
$(\text{Ph}_3\text{P})_2\text{RhH(SiMeC}_1\text{Cl})\text{Cl}$ & 145° & slow dissociation \\
$(\text{Ph}_3\text{P})_2\text{RhH(SiC}_1\text{Cl})\text{Cl}$ & 170° & stable \\
\hline
\end{tabular}
\caption{Stability of the complexes $(\text{Ph}_3\text{P})_2\text{RhH(SiMe}_n\text{Cl}_{3-n})\text{Cl}$}
\end{table}

The difference between alkyl and aryl groups as substituents can be seen from the complexes trans-$(\text{PhMe}_2\text{P})_2\text{PtCl(SiPh}_3\text{)}$ and trans-$(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3\text{)}$.

\textbf{- 63 -}
the triphenylsilyl complex being water stable whereas the trimethylsilyl complex is rapidly hydrolysed to hexamethyldisiloxane and \(\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} \). Similarly the complex \(\pi\text{-C}_5\text{H}_5(\text{CO})_2\text{FeSiMe}_3 \) is unstable towards oxygen but the triphenylsilyl analogue is unreactive.

The Nature of the Metal-metal Bond

The metal-metal bond in these compounds is thought to consist of a \(\sigma \)-bond and a \(\pi \)-bond contribution. Metal-metal bond distances, infra-red and nuclear magnetic resonance data support \(\text{d} \rightarrow \text{d} \) \(\pi \)-bonding. Nearly all reported metal-metal distances show shortening from lengths calculated from covalent radii, though steric effects and electronic effects other than \(\text{d} \rightarrow \text{d} \) \(\pi \)-bonding can cause bond shortening. In the series \(\text{R}_3\text{Sn-Mn(CO)}_5 \) the Mn-Sn bond length was found to be independent of \(\text{R} \) and less than the sum of the covalent metal radii, replacement of a carbonyl group \(\text{trans} \) to \(\text{R}_3\text{Sn} \) by a tertiary phosphine group of lower \(\pi \)-bonding ability produced a further shortening of the Mn-Sn bond, consistent with an increase in multiple bond character of the Mn-Sn bond as a result of less competition by the phosphine group for the \(\text{d} \)-electrons of the manganese.

The Fe-Sn bond lengths in the series \([\pi\text{-C}_5\text{H}_5\text{Fe(}\text{CO})_2]_2\text{SnX}_2 \) (\(\text{X} = \text{ONO}, \text{Cl}, \text{C}_5\text{H}_5 \) or \(\text{Me} \)) have been measured. It was found that as the electron withdrawing ability of the substituent \(\text{X} \) increased, a shortening of the Fe-Sn bond occurred, again consistent with \(\pi \)-bonding between the iron and tin. An order of \(\pi \)-bonding thus appeared to be \(\text{Cl}_2\text{Sn>(ONO)}_2\text{Sn>(C}_5\text{H}_5)_2\text{Sn>Me}_2\text{Sn} \).

\(^{19}\text{F} \) n.m.r. has been used to estimate the relative importance of \(\sigma \)- and \(\pi \)-effects in \(\text{SnCl}_3 \) when bonded to platinum \(\text{(p.13)} \) from the data it was concluded that the \(\text{SnCl}_3^- \) anion is a weak \(\sigma \)-donor but a strong \(\pi \)-acceptor.

Tin-proton coupling constants \((J^{119}\text{Sn-Me}) \) from the n.m.r. of \(\text{Me}_4\text{Sn}, \text{Me}_3\text{Sn-M} \) and \(\text{Me}_2\text{Sn-M}_2 \) (\(\text{M} = \text{transition metal} \)) have been found to decrease as...
a methyl group is replaced, this implies that the S-character of the tin orbitals bonding to the methyl groups is decreased151, or equivalently that the tin atom uses a high degree of S-character in its bonds to transition metals142,152,153. This is supported by Mössbauer studies on tin-transition metal derivatives (using 119Sn), these spectra also suggest some dπ-character154.

Nuclear quadrupole resonance spectra of \textit{X}_3M-Co(CO)\textsubscript{4} complexes (M = Si, Ge, Sn or Pb; \textit{X} = Cl, Br, I or Ph) show that the Co-M bonds have appreciable π-character as well as a strong σ-component155.

In square planar platinum(II) complexes the \textit{R}_3M (M = Si, Ge, Sn or Pb) have a high trans-influence as can be seen from the lowering of Pt-H and Pt-Cl stretching frequencies (Table 6 and 7). This high trans-influence is indicative of a strong Pt-M σ-bond (the SnCl\textsubscript{3}-group being an exception as mentioned earlier).

Determination of Stereochemistry

(a) **Infra-red**

In square planar platinum(II) complexes the strong platinum-hydrogen and platinum-chlorine stretching frequencies are dependent on the trans-ligand. From Tables 2 and 6 it can be seen that the range of values of ν(Pt-H) are from 1940 cm-1 (trans to Ph\textsubscript{3}Pb) to 2242 cm-1 (trans to NO\textsubscript{3})-; for ν(Pt-Cl) (Table 7), from 238 cm-1 (trans to Me\textsubscript{3}Ge) to 340 cm-1 (trans to Cl), thus, the values for ν(Pt-H) and ν(Pt-Cl) in the complexes are indicative of their stereochemistry.

(b) **X-ray determination**

The X-ray structure determination of a number of nickel group - group-IVb complexes has been carried out95, 131,133.

The ethoxy complex, (Et\textsubscript{3}P)\textsubscript{2}Pt(OEt)(GePh\textsubscript{3}), has been subjected to a partial X-ray study95, which suggests a square planar, trans configuration.

The configuration of the [Pt(SnCl\textsubscript{3})\textsubscript{5}]3- anion has been described on p. 53.
The structure of the nickel complex, π-C$_5$H$_5$Ni(Ph$_3$P)GeCl$_3$, has also been determined131, the nickel, germanium and phosphorus atoms are located in a plane approximately perpendicular to that of the cyclopentadienyl ring which is significantly distorted. The nickel-germanium bond length is considerably shorter than the sum of the covalent radii, this is probably due to appreciable dπ-π bonding between the nickel and germanium.

(c) **Nuclear magnetic resonance spectroscopy**

(i) 1H n.m.r.

The 1H n.m.r. spectra of compounds containing Me$_3$Ge, Me$_3$Si and Ph$_2$MeSi allow the stereochemistry of the complexes to be assigned unambiguously, this is perhaps best illustrated by the examples $^{\text{trans-}}$(Et$_3$P)$_2$PtCl(GeMe$_3$) and $^{\text{cis-}}$(Et$_3$P)$_2$PtPh(GeMe$_3$)41, (Fig. 11).

![Fig. 11](image)

In the trans complex the methyl protons of the germyl group appear as a 1:4:1 triplet due to coupling with the 195Pt nucleus (spin $\frac{1}{2}$, 34% abundant) (see n.m.r. of hydrides, p.44), $J(^{195}\text{Pt}-\text{Ge-C'-}^1\text{H}) = 20$ Hz. In the cis complex however the three lines due to the coupling with the 195Pt nucleus
<table>
<thead>
<tr>
<th>Complex</th>
<th>ν(Pt-H) cm$^{-1}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtHCl}$</td>
<td>2183</td>
<td>36</td>
</tr>
<tr>
<td>$(\mathrm{Ph}_2\mathrm{PCH}_2\mathrm{CH}_2\mathrm{PPh}_2)\mathrm{PtH(GePh}_3)$</td>
<td>1998</td>
<td>37</td>
</tr>
<tr>
<td>$(n-$-Pr$\mathrm{P})_2\mathrm{PtH(GePh}_3)$</td>
<td>1957</td>
<td>95</td>
</tr>
<tr>
<td>$(\mathrm{Et}_3\mathrm{P})_2\mathrm{PtH(SiPh}_3)$</td>
<td>2056</td>
<td>42</td>
</tr>
<tr>
<td>trans-$\mathrm{(PhMe}_2\mathrm{P})_2\mathrm{PtH(SiMePh}_2)$</td>
<td>2040</td>
<td>103</td>
</tr>
<tr>
<td>trans-$\mathrm{(Ph}_3\mathrm{P})_2\mathrm{PtH(SnMe}_3)$</td>
<td>2042</td>
<td>125</td>
</tr>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtH(PbPh}_3)$</td>
<td>1940</td>
<td>140</td>
</tr>
</tbody>
</table>

Table 7

Characteristic Platinum-chlorine Stretching Frequencies in Platinum-IVb Complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>ν(Pt-Cl) cm$^{-1}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtCl}_2$</td>
<td>340</td>
<td>39</td>
</tr>
<tr>
<td>trans-$\mathrm{(Ph}_3\mathrm{P})_2\mathrm{PtCl}_2$</td>
<td>345</td>
<td>42</td>
</tr>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtHCl}$</td>
<td>269</td>
<td>39</td>
</tr>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtCl(SiMe}_3)$</td>
<td>238</td>
<td>41</td>
</tr>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtCl(GeMe}_3)$</td>
<td>235</td>
<td>41</td>
</tr>
<tr>
<td>trans-$\mathrm{(Et}_3\mathrm{P})_2\mathrm{PtCl(SnMe}_3)$</td>
<td>278</td>
<td>128</td>
</tr>
<tr>
<td>trans-$\mathrm{(Ph}_3\mathrm{P})_2\mathrm{PtCl(PbPh}_3)$</td>
<td>286</td>
<td>42</td>
</tr>
</tbody>
</table>
are each further split into doublets due to coupling with the trans ^{31}P nucleus (spin 1/2, 100% abundant), $J(^{31}\text{P}-\text{Pt-Ge-C-H}) = 1.4$ Hz, this six line signal being indicative of a cis configuration.

The ^1H n.m.r. of the protons of the phosphine groups can also allow the stereochemistry of complexes to be assigned, this has been applied to phosphine-platinum hydrides and halides \(^{156,157,159}\) as well as group-IVb complexes \(^{41,103}\), for example, in $\text{trans-}(\text{PhMe}_2\text{P})_2\text{PtBr}(\text{GePh}_3)$ the methyl groups of the phosphine appear as a 1:4:1 triplet due to coupling with the ^{195}Pt nucleus, each line of the triplet is further split by the two trans ^{31}P nuclei into a 1:2:1 triplet, giving as an overall signal three 1:2:1 triplets.

In cis complexes e.g. $\text{cis-}(\text{Ph}_2\text{Me}_2\text{P})_2\text{PtCl}_2$, the methyl resonances appear as a 1:4:1 triplet as before, each of these is split into a doublet by coupling with a ^{31}P nucleus, (coupling with the cis ^{31}P nucleus is not observed \(^{157}\)), thus the overall resonance appears as three doublets.

Recently \(^{158}\) the ^{31}P n.m.r. of a number of platinum-group-IVb complexes has been reported. For a series of complexes, $(\text{PhMe}_2\text{P})_2\text{PtXY}$ (X = Cl or Br; Y = alkyl or aryl silicon or germanium grouping) the ^{31}P resonance appears as a singlet line split into a 1:4:1 triplet due to coupling with the ^{195}Pt nucleus, the complexes are therefore assigned a trans configuration. (A cis configuration would have resulted in two ^{31}P resonances as the two phosphorus atoms would then be in different environments). The platinum-phosphorus coupling constant has been shown to depend on the covalency of the Pt-P bond and the magnitude of the S-character of the platinum orbital involved in the Pt-P bond \(^{47}\), therefore when the Pt-P bond is trans to a group of high trans-influence such as Me, Ph, or Silyl the coupling constant $J(\text{Pt-P})$ is reduced because the covalency of the bond is reduced, this has been utilised \(^{158}\) to establish the configurations of disubstituted silyl- and germyl-platinum complexes $(\text{R}_3\text{P})_2\text{Pt(MR')}_2$ $(\text{RR'} = \text{alkyl or aryl)}$.
M = Si or Ge), by comparing the coupling constants $J(\text{Pt-P})$ with those of isomeric bisphenylplatinum phosphine complexes $(R_3P)_2\text{PtPh}_2$.
CHAPTER 5

DISCUSSION
Platinum Hydride Complexes

During the investigation into the reactions of platinum-group-IVb complexes, the hydrogenation of the silyl derivative, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl-}\)(SiMe\(_3\)), at atmospheric pressure yielded \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}\).

Previously only one cis hydridohalide of platinum, cis-(Ph\(_3\)P)\(_2\)PtHCl, had been reported\(^{161}\). This had been prepared by the reduction of cis-bis-(triphenylphosphine)platinum(II) chloride with hydrazine hydrate. This reported cis hydride showed two bands in its infra-red spectrum ascribable to \(v(\text{Pt-H})\) at 2260 and 2225 cm\(^{-1}\). The hydride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}\), however showed only one band in this region at 2002 cm\(^{-1}\). As this complex and the reported cis hydride complex both have phosphine ligands trans to the hydride (i.e. a P-Pt-H arrangement) the difference in the platinum-hydrogen stretching frequencies seemed unduly large and led to a reinvestigation of the reported cis hydridochloride.

Chatt and Shaw\(^{36}\) established that trans-hydridochlorides were produced from a variety of cis-or trans-platinum dichloride complexes, e.g.

\[
\text{cis- or trans-}(\text{Et}_3\text{P})_2\text{PtCl}_2 \xrightarrow{\text{N}_2\text{H}_4} \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}
\]

By contrast, cis-bis(triphenylphosphine)platinum(II) chloride was reported\(^{161}\) to yield both cis- and trans- hydridochlorides on reduction with hydrazine hydrate, the trans form separating from a benzene-methanol mixture as colourless prisms of the methanol adduct and the cis-form, prepared at a lower temperature, separating with one molecule of benzene of recrystallisation as colourless scaly crystals from a benzene-diethylether mixture.

The preparations were repeated and the \(^1\text{H n.m.r. spectra of the cis and trans samples were recorded. In chloroform solution the platinum hydride resonance of both complexes appeared as a 1 : 2 : 1 triplet (\(\tau 26.0\)) due to coupling of the Pt-H proton to two equivalent \(^{31}\text{P}\) nuclei [spin\(_1\), 100% abundant, \(J(\text{\(^{31}\text{P-Pt-H}) = 13.2\text{Hz}\}, flanked by two satellite
systems (1 : 2 : 1 triplets) due to coupling to the ^{195}Pt nucleus \[\text{spin} \downarrow, \]
34% abundant, \(J(^{195}\text{Pt-H}) = 1184 \text{ Hz} \). The high chemical shift indicated that the Pt-H proton was \textit{trans} to a group of low \textit{trans}-influence, i.e. Cl rather than \(\text{Ph}_3\text{P} \). The splitting of the Pt-H proton is consistent with a \textit{trans} configuration not a \textit{cis} (discussed earlier), thus, on the ^1H n.m.r. evidence, in solution both forms have the \textit{trans} configuration. This was confirmed by their solution infra-red spectra in chloroform when both complexes gave only one band ascribable to ν(Pt-H) at 2235 cm$^{-1}$.

On the above evidence however, the possibility exists that the 'cis form' isomerises rapidly in solution to yield the \textit{trans} isomer, therefore the platinum-hydrogen and platinum-chlorine infra-red stretching frequencies of the \textit{cis} and \textit{trans} forms were measured with the complexes in the solid state. The \textit{trans} form, either as a hexachlorobutadiene mull or as a potassium bromide disc, had a single Pt-H stretching frequency at 2230 cm$^{-1}$, whereas the 'cis isomer' had four bands in this region at 2210, 2232, 2265 and 2279 cm$^{-1}$, the strongest and sharpest being the 2232 cm$^{-1}$ band.

Fractional recrystallisation of the 'cis-isomer' at room temperature from a benzene-diethylether mixture yielded two fractions, the first showing two bands at 2211 and 2232 cm$^{-1}$ whereas the second fraction had only one band in this region at 2232 cm$^{-1}$. Crystallisation of the \textit{trans} form under similar conditions produced crystals having three bands in this region attributable to ν(Pt-H) at 2211, 2250 and 2265 cm$^{-1}$, the same sample on crystallisation from a benzene-methanol mixture had previously shown only one band at 2230 cm$^{-1}$. As can be seen from Table 8, all the values of ν(Pt-H) are consistent with structures in which hydrogen is \textit{trans} to chlorine rather than phosphorus. In two authenticated hydrido-platinum complexes having the grouping \textit{trans}-\(\text{R}_3\text{P}\)-Pt-H the platinum-hydrogen stretching frequencies are much lower (2043, 1998 cm$^{-1}$) due to the higher \textit{trans}-influence of the tertiary phosphine compared to that of the chloride.
Table 8

<table>
<thead>
<tr>
<th>Complex</th>
<th>ν(Pt-H) cm$^{-1}$</th>
<th>ν(Pt-Cl) cm$^{-1}$*</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-(Et$_3$P)$_2$PtHCl</td>
<td>2183 (C6H${14}$)</td>
<td>269.3</td>
<td>35,36,39</td>
</tr>
<tr>
<td>trans-(PhMe$_2$P)$_2$PtHCl</td>
<td>2205 (Nujol)</td>
<td>282</td>
<td>40</td>
</tr>
<tr>
<td>trans-(Ph$_3$P)$_2$PtHCl</td>
<td>2235 (CHCl$_3$)</td>
<td>274</td>
<td>This work</td>
</tr>
<tr>
<td>(diphos)PtH(GePh$_3$)</td>
<td>1998 (Nujol)</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>[(diphos)PtH(PEt$_3$)$_2$</td>
<td>2043 (Me$_2$CO)</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>(diphos)PtHCl</td>
<td>2002 (KBr)</td>
<td>286</td>
<td>This work</td>
</tr>
<tr>
<td>(diphos)PtCl$_2$</td>
<td>292,315</td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>

*As nujol mulls

The platinum-chlorine stretching frequencies of these supposedly cis and trans isomers were examined as nujol mulls and were very similar, the values obtained were consistent with chlorine being trans to hydrogen ν(Pt-Cl), trans form: 274s, 'cis form': 277s, cm$^{-1}$. Thus from the solid state infra-red data it can be concluded that both the trans and reported cis isomers are in fact trans hydridochlorides having the grouping Cl-Pt-H. The multiplicity of bands in the region attributable to ν(Pt-H) being due to different crystallographic forms of the trans isomer, this is supported by conversion of crystals of the trans form having a single ν(Pt-H) band to crystals having a multiplicity of bands and vice-versa by varying the solvents during the crystallisation process.

Similar solid state effects have been observed for other metal-hydride complexes. For example, as a mull trans-(PhEt$_2$P)$_2$PtHCl shows a variable number of bands in the 2200 cm$^{-1}$ region ascribable to ν(Pt-H),
though its 'H n.m.r. spectrum is that of the trans-complex. Wilkinson et al. found a multiplicity of bands due to $v(\text{Ir-H})$ in the solid phase spectra of $(\text{Ph}_3\text{P})_3\text{IrHCl}_2$ and $(\text{Ph}_3\text{P})_3\text{IrHCl(SnCl}_3$. For solids, the selection rules applicable when discussing infra-red spectra are, in general, different from those used for isolated molecules. A unit cell containing more than one molecular unit can therefore, by intermolecular coupling, give rise to more than one metal-hydride stretching frequency even though the individual molecular units have only one metal-hydrogen bond. It can therefore be concluded that the reported cis and trans isomers are in fact different crystallographic forms of the trans isomer and in solution a unique trans form exists.

A recent publication confirmed these findings and observed three crystalline modifications which were easily interconverted according to the method of purification. Adducts of methanol, benzene and acetone were also isolated. Molecular weight determinations showed that a single species was always present in solution.

The hydridochloride, $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}$, prepared from the hydrogenation of $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3$ (this reaction will be discussed more fully in the next chapter) exhibits platinum-hydrogen and platinum-chlorine stretching frequencies consistent with the groupings P-Pt-H and P-Pt-Cl (see Table 8). Unfortunately, due to the low solubility of the complex its 'H n.m.r. spectrum was not obtained, its mass spectrum did however, at a source temperature of 270-280°, produce ions due to the loss of hydrogen from the parent ion, i.e. $[(\text{diphos PtCl})^+]$. High resolution mass measurements on the main PtCl isotope combinations agreed to within 10 p.p.m.

A number of attempts were made to prepare this cis-hydridochloride by methods other than the hydrogenation reaction. The reduction of
(Ph₂PCH₂CH₂PPh₂)PtCl₂ with hydrazine hydrate proved unsuccessful. During the course of the reaction a pale yellow solution was obtained and some platinum metal deposited. Removal of all volatile material left a pale yellow residue which contained in its infra-red spectrum no band attributable to ν(Pt-H). An attempt to prepare a cis-hydridochloride by reducing (Me₂PCH₂CH₂PMe₂)PtCl₂ with lithium aluminium hydride under mild or vigorous conditions has also proved unsuccessful162, coloured solutions being obtained from which only unchanged starting material could be isolated.

Cariati and co-workers14 reacted the zerovalent platinum complexes (Ph₃P)₄Pt and (Ph₃P)₃Pt with various acids e.g. HCl, HClO₄ (aqueous and alcoholic) and obtained both ionic and covalent hydrides. With the bischelate complex (Ph₂PCH₂CH₂PPh₂)₂Pt, however, no hydride species were produced only the salts [(Ph₂PCH₂CH₂PPh₂)₂Pt]²⁺ 2X⁻ (X⁻ = Cl⁻, ClO₄⁻ or HSO₄⁻).

The use of anhydrous hydrogen chloride with the bischelate platinum(o) complex again did not yield the cis-hydridochloride. On bubbling HCl into a benzene solution of (Ph₂PCH₂CH₂PPh₂)₂Pt a white precipitate of [(Ph₂PCH₂CH₂PPh₂)₂Pt]²⁺ 2Cl⁻ immediately formed and no hydridic material was obtained. This difference in reactivity between the chelate platinum complex and the monodentate ligand complex, (Ph₃P)₄Pt, is probably due to the triphenylphosphine complex dissociating in solution to give the reactive (Ph₃P)₃Pt and (Ph₃P)₂Pt species which then react with the hydrogen chloride.

\[
(\text{Ph}_3\text{P})_4\text{Pt} \xrightarrow{-\text{Ph}_3\text{P}} (\text{Ph}_3\text{P})_3\text{Pt} \xrightarrow{\text{HX}} \text{PtH(Ph}_3\text{P)}_3\text{X}
\]

\[
(\text{Ph}_3\text{P})_2\text{Pt} \xrightarrow{\text{HX}} (\text{Ph}_3\text{P})_2\text{PtHX}
\]

A similar dissociation would be unlikely to occur for the bischelate complex.
Thus attempts to prepare the cis-hydridochloride other than by hydrogenation of the silyl complex have so far failed.

The cis-hydridochloride is a golden-yellow air stable solid, too insoluble in benzene to obtain a proton nuclear magnetic resonance spectrum, though recrystallisation from benzene can be achieved.

Hydrogenolysis of Pt-Si and Pt-Ge bonds has been used to prepare the complexes I and II in which hydrogen is trans to one phosphorus atom of a chelating phosphine

\[
\begin{align*}
\text{Ph}_2 & \quad \text{P} & \quad \text{H} & \quad \text{Pt} & \quad \text{Ph}_2 \\
\text{P} & \quad \text{Ph}_2 & \quad \text{GePh}_3
\end{align*}
\]

(I) \hspace{1cm} \text{(II)}

The structure of (II) is fully confirmed by its 'H n.m.r. spectrum (p.45) whereas complex (I), because of its low solubility failed to show the expected 'H n.m.r. spectrum due to the platinum proton, though the n.m.r. integration of phenyl to methylene protons was correct. Confirmation of its structure was obtained by deuteriolysis of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GePh}_3\text{)}_2\) at 5 atmospheres pressure and 60°. This reaction yielded the deuterium analogue of (I), showing \(\nu(\text{Pt-D})\) at 1428 and \(\delta(\text{Pt-D})\) at 538 cm\(^{-1}\), together with deuteriotriphenylgermane, \(\nu(\text{Ge-D})\) at 1471 cm\(^{-1}\).

The reaction of complex (I) with 1,2-dibromoethane proved very interesting as the two products (1,2-bisdiphenylphosphinoethaneplatinum(II) bromide and triphenylgermane) were not those expected by the normal mechanism. The reaction with 1,2-dibromoethane has become diagnostic of a metal-metal bond usually cleaving it to give the appropriate metal bromides according to the scheme:
However, this four centre intermediate does not explain the products obtained in the reaction of complex(I) with 1,2-dibromoethane. They are perhaps best explained by postulating a concerted attack by the dibromoethane as in Fig. 13.

The dibromoethane attacks in the plane perpendicular to the plane of the complex as in intermediate (A), this is followed by the elimination of ethylene quantitatively to give the octahedral complex (B), which then undergoes a cis elimination of triphenylgermane to give the platinum dibromide complex (C).
The reaction probably proceeds by this mechanism rather than a 4-centre intermediate as previously postulated because of the bulky phenyl groups on the phosphorus and germanium sterically hindering attack by the dibromoethane along the Pt-Ge bond. The dibromoethane cleavages of other platinum complexes, e.g. \((\text{Et}_3\text{P})_2\text{Pt(GePh}_3)_2\)\(^{95}\) could also be explained by this mechanism.

The reversibility of the reaction,
\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(GeMe}_3) + \text{H}_2 \rightarrow \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl + Me}_3\text{GeH}
\]

has been demonstrated\(^{38}\), though the hydrogenation of the germyl complex is the most favoured reaction, being quantitative during 24 hours at 20\(^{\circ}\)\(^{41}\). From the reversibility of the reaction it is probable that a common intermediate exists in both the forward and reverse reactions, possibly an octahedral complex of the type \((\text{Et}_3\text{P})_2\text{PtH}_2\text{Cl(GeMe}_3)\). Similar reversible processes have been reported for iridium complexes\(^ {87,166}\). Little thermodynamic work has been reported on the reactions of platinum(II) complexes, and so reaction (2) was selected for more detailed study, aimed at obtaining further information on the mechanism of the reaction:

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3) + \text{H}_2 \xrightarrow{k_1 \over k_2} \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl + Me}_3\text{SiH}
\]

The hydridochloride, \text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}, and an equimolar quantity of trimethylsilane reacted in benzene in a sealed flask, the hydrogen produced in the reaction was measured to give the position of equilibrium. The flasks were sealed for a period of six weeks to allow the reaction to reach equilibrium.

At 25\(^{\circ}\), equilibrium constant, \(K = 4.4 \times 10^{-3}\).

At 35\(^{\circ}\), equilibrium constant, \(K = 2.7 \times 10^{-3}\).

These values give a heat of reaction for process (2) of \(-8.8\) kcal.mole\(^{-1}\).

(For calculation see appendix). This implies an exothermic reaction i.e.
a decrease in equilibrium constant as the temperature is raised. Thus, an increase in temperature favours the hydrogenation of the silyl complex, i.e. in reaction (2), the rate constant $k_1 \gg k_2$. The hydrogenation of the germyl complex (equation (1)) was reported to be quantitative after 24 hours at 20°, this is supported to some extent by the small equilibrium constants, in fact at equilibrium at 25° only 6.2% of the platinum hydridochloride had been converted into the silyl complex, implying that the hydrogenation of the silyl complex proceeds to about 94% completion. The fact that the reaction of the hydridochloride with the trimethylsilane proceeds to such a small extent perhaps brings in the greatest errors in the experiment as such small quantities of hydrogen are being measured (c.a. 3 N.c.c.).

The equilibrium constants and heats of reaction for reactions of the type,

$$\text{Ir(CO)}X(L_2) + H_2 \rightarrow \text{Ir(CO)}X(L_2)\cdot H_2$$

$X = \text{Cl, Br or I} \quad L = \text{tertiary phosphine}$

have been measured recently 185, as with the hydrogenation of the platinum-silicon complexes, these reactions have a small equilibrium constant and are exothermic reactions with a heat of reaction of the order of -10 kca{l}s.
Platinum - Group-IVb Complexes

Since the preparation in 1956 by Wilkinson and co-workers of the first silicon- and germanium-transition metal derivatives, \(\text{Me}_3\text{Si-Fe(CO)}_2\text{Cp} \) and \(\text{Ph}_3\text{Ge-Fe(CO)}_2\text{Cp} \), complexes of the group-IVb elements bonded to most of the transition metals have been isolated. For a particular transition metal the stability of the complexes is usually in the order \(\text{Sn} \rightarrow \text{Ge} \rightarrow \text{Si} \).

Many of the cleavage reactions of the platinum - Group-IVb compounds are believed to proceed via an oxidative-addition reaction giving an octahedral platinum(IV) intermediate. (Discussed in detail later in this chapter).

This work was undertaken to prepare platinum complexes of silicon, germanium and tin to obtain a comparison of their stabilities and reactions. In order to clarify to some extent the stereochemistry of octahedral intermediates formed in cleavage reactions chelating phosphine platinum complexes were employed in most of the reactions discussed. (Chelate = 1,2-bis(diphenylphosphino)ethane).

The silyl and germyl complexes were prepared from the chelate platinum dichloride with bis(trimethylsilyl- or germyl)mercury. Before the preparations of these compounds are treated some comments on the synthesis of the bis(trimethylsilyl- and germyl)mercury are perhaps pertinent. Two methods previously described for the preparation of bis(trimethylgermyl)mercury and bis(trimethylsilyl)mercury involved the reaction of bromotrimethylgermane or chlorotrimethylsilane in cyclohexane with sodium amalgam and in the case of the germylmercury reacting trimethylgermane with diethylmercury. The first method was adapted, instead of shaking the reactants in a sealed flask they were stirred under nitrogen, as shaking was not involved it was thought that larger quantities could be prepared. This method however, gave only a 9% yield, the low yield was probably due to two reasons:
1. Leakage of air into the reaction flask during the reaction time (e.g. three weeks.)

2. The rather difficult work up, requiring a number of extractions of the reaction mixture with cyclohexane.

Undoubtedly the best method for the preparation of the complexes was shaking (under argon) bromotrimethylgermane or chlorotrimethylsilane with a 0.5% sodium amalgam in a round bottomed flask fitted with a 'rotaflo' tap. The 'rotaflo' tap greatly facilitated both the setting up and work up of the reaction as the flask could be sealed without requiring stoppers or glassblowing and easily opened against a current of dry nitrogen. The yield by this method was about 30%. The major disadvantage was that only about 5-6 grams of the mercury complex could be made because the flask required vigorous shaking thus limiting the amount of sodium amalgam used. An attempt was made to prepare bis(trimethylsilyl)mercury by sealing trimethylsilane and dimethylmercury in an evacuated flask. After three days at room temperature no visible change occurred and the flask was heated at 40° for one week again with no visible change. This lack of reaction is possibly due to the greater energy (58.4 Kcals.)\(^{169}\) required to dissociate dimethylmercury (\(\text{Me}_2\text{Hg} \rightarrow \text{Hg} + 2\text{R}\)) compared with that required to dissociate diethylmercury (48.4 Kcals)\(^{169}\), and the Si-H bond strength being greater than the Ge-H bond strength. Ditertiarybutylmercury has recently been shown\(^{170}\) to give good yields of \((\text{R}_3\text{M})_2\text{Hg}\) compounds (\(\text{R} = \text{alkyl, M} = \text{Si, Ge or Sn}\)) when reacted with \(\text{R}_3\text{MH}\), again the low energy required for dissociation of the (t-Bu)\(_2\text{Hg}\) probably being the prime reason for the reaction proceeding.

Preparations of Platinum-Group-IVb Complexes

Bis(trimethylsilyl)- and **bis(trimethylgermyl)-mercury** have been used to prepare platinum-silicon and platinum-germanium complexes. The reaction
of (Et₃P)₂PtCl₂ with an equimolar quantity of the mercury complex replaced
one chloride to give the trans derivative (Et₃P)₂PtCl(MMe₃) M = Si or Ge.
The use of two moles of the mercury reagent failed to replace the second
chloride ion. We have found that the chelate phosphine platinum com-
plex, (Ph₂PCH₂CH₂PPh₂)PtCl₂, as a suspension in hot benzene, reacted with
an equimolar amount of bis(trimethylsilyl)- or bis(trimethylgermyl)-mercury
giving the monosubstituted derivative (Ph₂PCH₂CH₂PPh₂)PtCl(MMe₃) M = Si
or Ge. The use of two moles of mercury compound did in fact give the
disubstituted complex in good yield (c.a. 60-70%). This contrasts markedly
with the (Et₃P)₂PtCl₂ reaction when two moles of (Me₃Si)₂Hg gave deep red
or green solutions from which only the monosubstituted derivatives could be
isolated in low yield. This difference in reactivity is most probably due
to the high trans-influence of the Me₃M moiety, with (Et₃P)₂PtCl₂ the
first replacement gives trans-(Et₃P)₂PtCl(MMe₃) the second replacement would
involve the Me₃M-Pt-MMe₃ grouping and as the Me₃M groups have a high trans-
inefluence this is probably unstable at room temperature and thus cannot be
isolated. With the chelate phosphine complex however, both Me₃M moieties
must be trans to a phosphine group which has a relatively lower trans-
inefluence, leading to a greater stability of the complexes.

\[
\begin{array}{c}
\text{(III)} \\
\text{Ph}_2 \text{P} \text{Pt} \text{Cl} + (\text{Me}_3\text{M})_2\text{Hg} \rightarrow \text{Ph}_2 \text{P} \text{Pt} \text{Cl} (\text{Me}_3\text{M})_2 \text{Hg} \\
\text{Ph}_2 \text{P} \text{Cl} + \text{Me}_3\text{MCl} + \text{Hg}
\end{array}
\]

\[
\begin{array}{c}
\text{(IV)} \\
\text{Ph}_2 \text{P} \text{Pt} \text{Cl} + 2(\text{Me}_3\text{M})_2\text{Hg} \rightarrow \text{Ph}_2 \text{P} \text{Pt} \text{Cl} (2\text{Me}_3\text{M})_2 \text{Hg} \\
\text{Ph}_2 \text{P} \text{Cl} + 2\text{Me}_3\text{MCl} + \text{Hg}
\end{array}
\]
The chelate platinum complex (III), due to its very low solubility in benzene, was reacted as a suspension with no apparent side reactions. This again contrasts with the behaviour of bis(triethylphosphine)platinum (II) chloride when complete solution in benzene was found to be essential to obtain high yields of the silyl or germyl derivatives. The silyl and germyl derivatives (IV) and (V) are white crystalline solids and in the solid state are stable in air.

Attempts to prepare the complexes (IV) and (V) and the analogous tin derivatives by other methods were also made:

1. From \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\)

The chelate phosphine complex (III) was reacted with excess trimethylsilane, trimethylgermane and trimethylstannane in benzene. The reactants were sealed in break-seal tubes. After heating for one week at 40° the trimethylsilane and trimethylgermane were unreacted. The reaction with trimethylstannane did however yield \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3)\) in low yield (8%). The reaction of trimethylstannane with (III) possibly reflects the greater reducing ability of trimethylstannane compared with trimethylsilane and trimethylgermane.

The trimethylstannane reaction was repeated without solvent, a yellowish reaction mixture was obtained which, over ten days, gradually changed to red-brown and some platinum metal was deposited. Removal of the volatile material which contained \(\text{Me}_6\text{Sn}_2\) and \(\text{Me}_3\text{SnCl}\) left a dark solid showing \(v(\text{Pt-H})\) at 1960 cm\(^{-1}\) and a broad absorption between 280-290 cm\(^{-1}\) attributable to \(v(\text{Pt-Cl})\). On recrystallisation from benzene \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3)\) was obtained. The experiment was repeated but the recrystallisation of the dark solid was carried out in a sealed tube and the volatiles examined to give trimethylstannane, tetramethylstannane and hydrogen. From the products obtained and the Pt-H stretching
frequency, the dark solid is best formulated as the octahedral complex.

\[
\text{Ph}_2\text{SnMe}_3\text{PtP} = \text{Ph}_2\text{H}\text{Cl}
\]

(VI)

This, on dissolving in benzene, eliminates trimethylstannane to give the trimethyltin derivative \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3\text{)}\). The isolation of some tetramethylstannane is however, puzzling and is probably formed by decomposition of the trimethylstannane thus:

\[4\text{Me}_3\text{SnH} \rightarrow 3\text{Me}_4\text{Sn} + \text{Sn} + 2\text{H}_2\]

Such decompositions are known to occur for the alkyl tin hydrides in the presence of metals, grease or acids\(^{53}\). The isolation of hydrogen is also indicative of some decomposition. The low platinum-hydrogen stretching frequency is consistent with the hydrogen being trans to a group of very high trans-influence, i.e. \(\text{Me}_3\text{Sn}\) rather than Cl or phosphine, thus an overall reaction mechanism can be postulated as a series of oxidative-additions and eliminations:

\[
\text{Scheme A}
\]

\[\text{Me}_3\text{SnH} \rightarrow \text{Ph}_2\text{P} = \text{Ph}_2\text{SnMe}_3\text{PtP} \rightarrow \text{Ph}_2\text{PtP} = \text{Ph}_2\text{HCl}\]

(VII)
The chlorotrimethylstannane found is probably formed by cleavage of trimethylstannane with hydrogen chloride as no hydrogen chloride was detected. An alternative mechanism could involve the elimination of chlorotrimethylstannane from (VII) giving the platinum hydridochloride which then undergoes further reaction thus:

\[
\begin{align*}
\text{Ph}_2 & \quad \text{P} \quad \text{SnMe}_3 \quad \text{Pt} \quad \text{H} \quad \text{Cl} \\
\text{Ph}_2 & \quad \text{P} \quad \text{Pt} \quad \text{Cl} \\
\text{Ph}_2 & \quad \text{P} \quad \text{SnMe}_3
\end{align*}
\]

(VIII)
It is perhaps surprising that the octahedral complex (VI) does not eliminate HCl or Me₃SnCl, but it is quite stable as a solid, being unaffected by air after three months. Only in solution in the absence of trimethylstannane does decomposition occur to give (Ph₂PCH₂CH₂PPh₂)PtCl⁻(SnMe₃). This final process has been shown to be reversible, the addition of trimethylstannane to complex (VIII) yields the octahedral derivative (VI).

Scheme B

As mentioned earlier, transition metal-tin complexes are more stable than those of the other group-IVb elements, this seems to be supported by the isolation of this tin complex. Hexamethyldistannane, hydrogen and platinum metal were produced in both Schemes (A) and (B); they most likely result from a free radical decomposition of trimethylstannane. These products were also obtained in other experiments where an excess of trimethylstannane was reacted. Trimethylstannane is known to react by both ionic and free radical mechanisms⁵³, although the production of hydrogen, hexamethyldistannane and platinum is best explained by free radical decomposition, the isolation of an octahedral adduct would indicate a polar mechanism, so it seems likely that both free radical and polar mechanisms are operative.

2. From Zerovalent Complexes

The preparation of platinum-group-IVb complexes from zerovalent platinum derivatives has been reported (p. 50), it was therefore decided
to attempt to prepare complexes with a platinum-metal bond by the reaction
of the bischelate platinum(o) complex, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt}\), with the
alkyl metal hydrides \(\text{Me}_3\text{MH} (\text{M} = \text{Si}, \text{Ge} \text{or} \text{Sn})\).

The platinum complex was sealed with a large excess of the neat
group-IVb metal hydride. The trimethylsilane and trimethylgermane showed
no sign of reaction even after 5 weeks at 70\(^\circ\). The trimethylstannane
however, reacted immediately at room temperature to give a white solid.
This again illustrates the greater reactivity of the trimethylstannane over
the analogous silicon and germanium hydrides. The white solid showed
\(\nu(\text{Pt-H})\) at 1960 cm\(^{-1}\) and by infra-red comparison with a previously prepared
sample was shown to be

![Diagram of complex IX](image)

(IX)

Recrystallisation of complex (IX) from benzene gave the disubstituted
derivative (X).

![Diagram of complex X](image)

(X)

(These complexes had previously been obtained from the reaction of
\((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{PtCl(SiMe}_3)\) with excess of trimethylstannane, their full
characterisation will therefore be dealt with later when the reactions of
the silyl complexes are discussed).
Due to the similar solubility of complex (X) and free chelate in benzene, the presence of free chelate was not detected. An oxidative-addition mechanism can again be postulated for this reaction:

\[
\begin{align*}
\text{Ph}_2 & \quad \text{P} \quad \text{Pt} \quad \text{P} \quad \text{Ph}_2 \\
\text{Ph}_2 & \quad \text{P} \quad \text{Pt} \quad \text{P} \quad \text{Ph}_2 \\
\text{Me}_3\text{SnH} & \quad \rightarrow \\
\text{Ph}_2 & \quad \text{P} \quad \text{Pt} \quad \text{P} \quad \text{Ph}_2 \\
\text{Ph}_2 & \quad \text{SnMe}_3 \quad \text{SnMe}_3 \quad \text{SnMe}_3 \\
\text{Me}_3\text{SnH} & \quad \rightarrow \\
\text{Ph}_2 & \quad \text{P} \quad \text{Pt} \quad \text{P} \quad \text{Ph}_2 \\
\text{Ph}_2 & \quad \text{SnMe}_3 \quad \text{SnMe}_3 \quad \text{SnMe}_3 \\
\text{Me}_3\text{SnH} & \quad \rightarrow \\
\text{C}_6\text{H}_6 & \quad \text{Ph}_2 \quad \text{SnMe}_3 \quad \text{SnMe}_3 \quad \text{SnMe}_3
\end{align*}
\]

As with the complexes (VI) and (VIII) the interconversion of (IX) and (X) was demonstrated by adding trimethylstannane to the disubstituted derivative (X).

The reaction of tetrakis(triphenylphosphine)platinum(o) with trimethylstannane has been reported to give low yields of the disubstituted
tin complex, the above reaction however, produced the disubstituted complex in 80% yield. As with other reactions involving an excess of trimethylstannane hydrogen was produced. The reaction did however proceed cleanly without separation of platinum metal, and this provides the best route for the preparation of the disubstituted complex.

Attempts to prepare platinum-silicon and -tin complexes were made by reacting the bis chelate platinum(o) complex with chlorotrimethylsilane and chlorotrimethylstannane. Excess of the group-IVb compound was added to a benzene solution of the platinum complex. In both cases an immediate reaction took place at room temperature to produce a yellow sticky solid which after stirring or shaking for thirty minutes gave a white microcrystalline solid. Removal of volatile material and washing the solid with hot benzene yielded the bis chelate salt \[
\left(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2\right)\text{Pt}^2+2\text{Cl}^-.
\] This was confirmed by the addition of sodium tetraphenylborate to a methanol solution of the complex when a flocculent white precipitate of the tetraphenylborate salt was obtained. The volatile material contained \((\text{Me}_3\text{M})_2 (\text{M} = \text{Si or Sn})\).

Platinum-lead and -tin complexes have been prepared by reacting triphenyllead- and triphenyltin chlorides with tetrakis(triphenylphosphine)-platinum(o), the non-formation of platinum-metal bonds with the chelating phosphine complex is probably due to the lack of dissociation of the complex in solution whereas with the triphenylphosphine complexes dissociation does occur.

Summary

Of the preparative methods attempted only the reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) with trimethylsilyl- and (trimethylgermyl)mercury were found to be successful for the production of trimethylsilyl (or germyl) platinum complexes. The reaction of trimethylstannane with
disubstituted tin derivatives respectively. The failure to obtain silyl and germyl complexes by analogous methods is probably due to the weaker and more polar nature of the tin-hydrogen bond compared to the silicon- or germanium-hydrogen bonds. The reaction of the zerovalent platinum complex with trimethylstannane provides a convenient route to the di-substituted tin complex. The monosubstituted derivative, although it can be prepared as discussed above, is perhaps prepared more conveniently by hydrogen chloride cleavage of the disubstituted derivative as will be discussed in the next Section.

Reactions of the Complexes

The reactions involving cleavage of platinum-metal bonds are, in general, believed to proceed via an octahedral platinum(IV) intermediate. In the reactions studied the products can be shown to be consistent with such a mechanism, and in a number of cases octahedral adducts were isolated.

Hydrogen chloride reacted with the monosubstituted silyl derivative \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3\text{)}\) in equimolar quantities, cleaving the platinum-silicon bond to give the phosphine platinum dichloride complex and trimethylsilane. These products could originate from addition of HCl to the complex followed by the elimination of trimethylsilane from the resulting octahedral complex. No evidence of a Pt-H bond was obtained and chlorotrimethylsilane was not detected, thus the cleavage appears to be quite specific. If cis elimination from the octahedral intermediate is assumed then it can be best formulated as (XI)

\[\text{(XI)} \]

or an isomer.
The Me₃Si group will always be cis to a Cl, but elimination as trimethylsilane rather than chlorotrimethylsilane occurs. This contrasts with the behaviour of non-chelate trans complexes when the Me₃M moiety (M = Si or Ge) is cleaved as the chloroderivative yielding the platinum hydridochloride. Similarly, the reaction of the disubstituted silyl complex (Ph₂PCH₂CH₂PPh₂)Pt(SiMe₃)₂ with two equivalents of hydrogen chloride cleaves both Me₃Si moieties in the same direction producing the phosphine platinum dichloride and eliminating the Me₃Si exclusively as trimethylsilane. Again no evidence of a Pt-H bond was obtained. This reaction is also in sharp contrast to the cleavage of cis disubstituted non-chelate complexes when the two silyl groups are cleaved in opposite directions to give the hydridochloride, R₃SiH and R₃SiCl\(^{103}\). Thus it appears that chelate complexes give the platinum dichloride and non-chelate complexes yield the hydridochloride. The overall reaction of the chelate derivatives with HCl can be explained by oxidative-addition of HCl followed by elimination of trimethylsilane:
The cleavage of the monosubstituted derivative being the second stage of the disubstituted complex cleavage. The actual stereochemistry of the octahedral derivatives cannot be assigned unambiguously from a knowledge of the products but assuming cis elimination the Me₃Si and H must always be cis.

This high degree of specificity in the cleavage reactions can be due purely to kinetic factors, but the relative stabilities of the products may also be important in determining the course of the reaction. The non-chelate complexes yield the hydridochloride and eliminate chlorotrimethylsilane whereas the chelate complexes give the dichloride and eliminate trimethylsilane. This elimination may be preferred due to the formation of the stable phosphine platinum dichloride rather than the elimination of chlorotrimethylsilane, which would leave the less kinetically stable cis hydridochloride in which the Pt-H bond is trans to a phosphine group of high trans-influence thus making it quite labile. In the non-chelate complexes the hydridochloride formed is the trans compound in which the hydride is trans to Cl which has a relatively low trans-influence, and is therefore kinetically more stable.

The differences in behaviour can also be interpreted in terms of the stereochemistry of the 6-coordinated intermediate, the cleavage of the first Pt-Si bond in both chelate and non-chelate complexes results in elimination of R₃SiH. If then the phosphine groups are mutually cis, as in the chelate complexes they must necessarily be, then the silicon group is most likely to be cis to the hydrogen of the second molecule of HCl as in (XI)

![Diagram](image)

(XI)
and elimination of R_3SiH occurs again. In non-chelate complexes however, after the cleavage of one Pt-Si bond the phosphine groups may not be cis and on addition of a further mole of HCl the silyl group may be trans to hydrogen as in (XII) and cis elimination of R_3SiCl occurs to yield the platinum hydridochloride.

The complex $(Et_3P)_2Pt(GePh_3)_2$, which exists in solution as both cis and trans forms, on reaction with HCl gave both $(Et_3P)_2PtHCl$ and $(Et_3P)_2PtCl_2$. This supports the above mechanism that if the phosphine groups are trans then elimination of the chloro-metal compound occurs to yield the hydridochloride whereas with cis phosphine groups the group-IVb-metal hydride is eliminated to leave the platinum dichloride complex.

The cleavage of the disubstituted tin derivative $(Ph_2PCH_2CH_2PPh_2)Pt(SnMe_3)_2$ with one equivalent of hydrogen chloride yielded the monosubstituted tin compound $(Ph_2PCH_2CH_2PPh_2)PtCl(SnMe_3)$ and trimethylstannane, again the group-IVb moiety being cleaved exclusively as the hydride and not as the chloroderivative. The cleavage proceeded smoothly at room temperature in benzene and provides perhaps the best route for the preparation of the monosubstituted tin derivative. These products are also consistent with an oxidative-addition mechanism to give an octahedral intermediate followed by elimination of trimethylstannane.
The hydrogenations of the mono- and disubstituted silyl derivatives have been studied, and both react with hydrogen at atmospheric pressure. Earlier reports of hydrogenations of chelate complexes indicated that high pressure conditions were required. The ease of hydrogenation of these trimethylsilyl derivatives reflects the general trend in platinum-group-IVb complexes of greater reactivity of methylsubstituted group-IVb complexes compared to aryl substituted.

The complex (Ph₂PCH₂CH₂PPh₂)PtCl(SiMe₃) hydrogenated at one atmosphere pressure and 70°C to yield the cis hydridochloride (Ph₂PCH₂CH₂PPh₂)PtHCl. Trimethylsilane and hexamethyldisilane were identified in the volatile material. Removal of the volatile material left the hydridochloride as a yellow-brown solid, (ν(Pt-H) at 2002 cm⁻¹), which proved difficult to purify. A recrystallisation from benzene was finally achieved by slow evaporation of the solvent. The 'H n.m.r. spectrum of the hydridic proton was not obtained due to insufficient solubility of the complex, the phenyl and methylene proton resonances however, were obtained and the observed ratio of protons was 4.8 : 1; (the cis hydridochloride requires 5 : 1). Its mass spectrum at a source temperature of 270-280°C produced ions due to loss of hydrogen from the parent i.e. (chelate PtCl)⁺. High-resolution mass measurements on the main PtCl isotope combinations agreed to within 10 p.p.m. (Table 9).

Hydrogenation of the disubstituted silyl complex proceeded at 1 atmosphere pressure, but the product was found to be dependent on the reaction temperature. Between 25°C and 40°C cleavage of one silyl group occurred, but at 60-80°C both silyl groups were cleaved.
<table>
<thead>
<tr>
<th>Nominal mass</th>
<th>Ion</th>
<th>Mass observed</th>
<th>Mass calc.</th>
<th>Δm. p.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>627</td>
<td>chelate 194Pt35Cl</td>
<td>627.06428</td>
<td>627.07045</td>
<td>9</td>
</tr>
<tr>
<td>628</td>
<td>chelate 195Pt35Cl</td>
<td>628.06996</td>
<td>628.07245</td>
<td>3</td>
</tr>
<tr>
<td>629</td>
<td>chelate 194Pt37Cl</td>
<td>629.06888</td>
<td>629.06750</td>
<td>2</td>
</tr>
<tr>
<td>630</td>
<td>chelate 195Pt37Cl</td>
<td>630.06841</td>
<td>630.06950</td>
<td>1</td>
</tr>
<tr>
<td>631</td>
<td>chelate 196Pt37Cl</td>
<td>631.06856</td>
<td>631.06970</td>
<td>1</td>
</tr>
</tbody>
</table>

The cleavage of one silyl group as trimethylsilane, (some hexamethyldisiloxane was also found due to the admission of some air during work up of the volatiles), yielded the hydride derivative $(\text{Ph}_3\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3\text{)}$ as a yellow brown solid showing ν(Pt-H) at 2000 cm$^{-1}$, (KBr disc). This is consistent with the hydride being trans to a phosphine group, e.f. ν(Pt-H) at 2002 cm$^{-1}$ in the cis-hydridochloride. The solid was obtained by removal of the solvent onto a vacuum line and a satisfactory recrystallisation was not achieved. As with the cis hydridochloride the complex was not sufficiently soluble to allow the detection of the highfield hydridic proton in its 1H n.m.r. spectrum. The reaction mechanism can again be postulated as addition of hydrogen forming an octahedral intermediate, followed by elimination of trimethylsilane:
The addition of hydrogen could be a cis addition if, in solution, a Pt-P bond is momentarily broken, this would give the octahedral complex (XIII).

\[
\text{(XIII)}
\]

Cis elimination of trimethylstannane from this complex would then give the required product, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3\))

The reaction of the disubstituted silyl derivative with hydrogen (1 atm., 70°) resulted in cleavage of both silyl groups as trimethylsilane. Removal of volatiles left a yellow-brown solid, its infra-red spectrum showed neither \(\nu(\text{Pt-H})\) nor methyl rock of the \(\text{Me}_3\text{Si}\) moiety. Only resonances due to protons of the chelate were obtained in its \('\text{H n.m.r.}\) spectrum, therefore, from this evidence and the analytical data the product can be postulated as a zerovalent cluster compound \([\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}_4]\).

An osmometer molecular weight determination gave a molecular weight of 2,190, this agrees to within 10% of the 1974 required for the cluster compound. A possible structure of this complex could involve an approximately tetrahedral arrangement of the four platinum atoms with the three phosphine chelates bonding between different platinum atoms. (Fig. 14)
Pt₁ will be in an approximately octahedral environment.

Hydrogenation of the disubstituted tin complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}-(\text{SnMe}_3)_2\) at 25° was not achieved, reflecting the general trend that platinum-tin compounds are more stable than analogous platinum-silicon complexes. The tin compound, \(\text{trans-}(\text{Ph}_3\text{P})_2\text{Pt}(\text{SnMe}_3)_2\), has been hydrogenated to give the hydride \(\text{trans-}(\text{Ph}_3\text{P})_2\text{PtH(SnMe}_3)_2\). This difference in reactivity is probably due to the high \text{trans}-influence of the \text{Me}_3\text{Sn} group facilitating cleavage in the \text{trans} complex, \((\text{Ph}_3\text{P})_2\text{Pt(SnMe}_3)_2\).

The complexes \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}\), \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SnMe}_3)\) and \([\text{Pt}_4(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)]\) are all yellow-brown solids and in the solid state are air-stable. Apart from the hydridochloride the complexes do not melt sharply but decompose over a temperature range. The cluster compound showed no visible change on heating to 150° in vacuo, but slowly darkened and charred as heating was continued.

An interesting series of reactions was carried out on the mono- and disubstituted derivatives (IV) and (V) involving exchange with \text{Me}_3\text{MH} compounds (M = Si, Ge or Sn). For the monosubstituted complexes, the exchange reactions proceed as in Fig. 15.

\[
\begin{align*}
\text{(chelate)PtCl(SiMe}_3) & \\
\text{Me}_3\text{GeH} & \leftrightarrow \text{Me}_3\text{SiH} & \text{Me}_3\text{SnH} \\
\text{(chelate)PtCl(GeMe}_3) & \rightarrow \text{Me}_3\text{SnH} & \text{(chelate)PtCl(SnMe}_3)
\end{align*}
\]

\text{Fig. 15}

Similarly, for the disubstituted complexes the exchange reactions proceed as in Fig. 16.
The reactions were carried out in benzene in break-seal tubes and the exchanges favoured (chelate)Pt-MMe₃ products in the order M = Sn>Ge>Si, i.e. the exchanges Pt-Si→Pt-Ge→Pt-Sn proceeded smoothly (typically 12 hours at 40°C), giving the product in an almost quantitative yield eliminating Me₃MH. However, the reverse order exchanges could not be achieved except for a small Pt-Ge→Pt-Si conversion. For both the mono- and disubstituted derivatives in the Pt-Ge to Pt-Si conversion no solid product could be isolated containing a Pt-Si bond due to its formation in very small yield, but the eliminated trimethylgermane was detected. A large excess of trimethylsilane was required to effect elimination of a small quantity of trimethylgermane in the reverse reactions, whereas the exchanges in the order Pt-Si→Pt-Ge→Pt-Sn could be achieved using the stoichiometric amounts of Me₃MH.

The reversibility of the Pt-Si→Pt-Ge conversions suggests that they are equilibrium reactions with the position of equilibrium favouring the product with platinum bonded to the heavier metal. This is further evidence supporting the general trend that complexes involving Pt-Sn and Pt-Ge bonds are more stable than the analogous Pt-Si complexes. Again an oxidative-addition mechanism can be postulated, from the reversibility of the reaction Pt-Si→Pt-Ge it seems reasonable that there is a common intermediate which can be formulated as the 6-coordinated platinum(IV)
intermediate (XIV). c.f. the hydrogenation of trans-(Et₃P)₂PtCl(GeMe₃)³⁸.

None of the stoichiometric reactions in Figs. 15 and 16 produced direct evidence of octahedral adducts but the reaction of complexes (IV) (M = Si, Ge or Sn) with excess trimethylstannane did yield an octahedral platinum(IV) complex (IX):

(The same complex was also isolated in the reaction of (Ph₂PCH₂CH₂PPh₂)₂Pt (o)
with Me_3SnH (p. 87), chronologically it was first obtained from the exchange reactions above therefore its characterisation will be treated here).

On removal of the volatile material which contained H_2, Me_3MH, Me_3SnCl and Me_6Sn_2, from the reaction of complexes of the type (IV) with excess trimethylstannane a white crystalline solid was obtained (IX). This solid (contaminated with some platinum metal formed in the reaction) showed $\nu(\text{Pt-H})$ at 1960 cm$^{-1}$.

The same complex was obtained when either the platinum-silicon or the platinum-germanium compound was used as the starting material. Recrystallisation of the complex (IX) from benzene yielded the disubstituted tin complex ($\text{Ph}_2\text{P}\text{CH}_2\text{CH}_2\text{PPh}_2\text{Pt}(\text{SnMe}_3)_2$). Recrystallisation of the complex in a sealed system and an examination of the volatile products again produced the disubstituted tin complex together with trimethylstannane and small quantities of tetramethylstannane and hydrogen. The addition of trimethylstannane to the disubstituted tin complex produced a white solid showing $\nu(\text{Pt-H})$ at 1960 cm$^{-1}$, its infra-red spectrum being identical to that of the solid obtained from the exchange reaction. Thus it appears that the octahedral solid, in solution, is only stable in the presence of excess trimethylstannane, its decomposition however being reversible:

![Chemical structure](image)

The low Pt-H stretching frequency of 1960 cm$^{-1}$ is consistent with the hydride being trans to a group of high trans-influence i.e. the Me_3Sn group, therefore the stereochemistry of the octahedral complex can be assigned uniquely as that shown in (IX).

Although the octahedral complex decomposes rapidly in benzene solution,
like the octahedral complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl(SnMe}_3)\text{2}\) (VI), it is air-stable in the solid state, a sample being unchanged after three months in air.

Further information on the reaction was obtained by reacting the monosubstituted silyl complex with excess trimethylstannane and obtaining the \(^1\text{H}\) n.m.r. spectrum of the resulting mixture. This spectrum showed a broad resonance centred on \(\approx 15.25\) ppm attributable to the Pt-H proton. The broadness is probably due to the proton being coupled to \(^{195}\text{Pt}\) (spin \(^1\), 34\% abundant), both \(^{31}\text{P}\) nuclei (spin \(^1\), 100\% abundant) and both magnetic isotopes of the three tin atoms: \(^{117}\text{Sn}\) (spin \(^1\), 7.61\% abundant; \(^{119}\text{Sn}\) (spin \(^1\), 8.5\% abundant). The hydridic proton of the displaced Me\(_3\)SiH showed eight of the expected ten lines due to coupling with the nine protons of the methyl groups, \(J(\text{H-Si-CH}_3) = 3.5\) Hz. whereas the resonance due to the hydridic proton of Me\(_3\)SnH was not resolved (the spectrum of Me\(_3\)SnH in benzene did have the Sn-H resonance resolved), but merely broadened* This implies a rapid exchange of free trimethylstannane with the octahedral complex (IX). This rapid exchange would also lead to broadening of the Pt-H resonance as was observed. The 9-10\(\pi\) region of the spectrum proved complex, due to methyl resonances of Me\(_3\)SnH, Me\(_3\)SiH and Me\(_3\)Sn bonded to platinum together with its coupling to \(^{195}\text{Pt}\), \(^{31}\text{P}\), \(^{117}\text{Sn}\) and \(^{119}\text{Sn}\).

As described earlier, a similar octahedral platinum (IV) complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl(SnMe}_3)\text{2}\) was isolated from the reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) and trimethylstannane.

A satisfactory analysis of the complex (IX) had previously been marred by the fact that some platinum metal was formed in the reaction and due to decomposition of the solid a recrystallisation was not possible. However some colourless crystals which appeared to be free of platinum metal were formed in the n.m.r. tube and a satisfactory elemental analysis for \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SnMe}_3)\text{3}\) was obtained.

*See p. 142
As with other reactions involving excess trimethylstannane quantities of hydrogen, hexamethyldistannane and some platinum metal were produced, most likely from free radical decomposition of some trimethylstannane. However, the reaction mechanism can be best explained by a series of oxidative-additions followed by cis eliminations:

\[
\begin{align*}
\text{Ph}_2 \text{Ph}_2 \text{Pt} & \quad \text{Me}_3 \text{SnH} \\
\text{Ph}_2 \text{Ph}_2 \text{Pt} & \quad \text{Me}_3 \text{SnH} \\
\text{Ph}_2 \text{Ph}_2 \text{Pt} & \quad \text{H} \\
\end{align*}
\]

\[(M = \text{Si or Ge})\]

HCl +

\[
\begin{align*}
\text{Ph}_2 \text{Pt} & \quad \text{SnMe}_3 \\
\text{C}_6 \text{H}_6 & \quad \text{Me}_3 \text{SnH} \\
\end{align*}
\]

The complexes, \([\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \text{PtH(Et}_3 \text{P)}]^+ \text{Cl}^-, \quad [\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \text{PtSiMe}_3(\text{Et}_3 \text{P})]^+ \text{BPh}_4^-, \quad \text{trans-}^{\text{Et}_3 \text{P}}_2 \text{PtPh(GeMe}_3)\) and \(\text{trans-}^{\text{Et}_3 \text{P}}_2 \text{PtCl(SiMe}_3)\) were all tested for catalytic activity in hydrogenations but were found to be negative. The reactions of \([\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \text{PtGeMe}_3(\text{Et}_3 \text{P})]^+ \text{BPh}_4^-, \quad \text{trans-}^{\text{Et}_3 \text{P}}_2 \text{PtCl(GeMe}_3)\) and \([\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \text{PtGeMe}_3(\text{Et}_3 \text{P})]^+ \text{Cl}^-\) with hex-1-ene were also carried out, but even after heating at 60° for several days no reaction occurred, possibly due to steric reasons.
Infra-red Spectra

The infra-red spectra of the platinum-group-IVb complexes prepared were very similar, the bands due to \(\nu(\text{Pt-Cl}) \), \(\nu(\text{Pt-H}) \) and methyl rock, \(\rho(\text{CH}_3) \) of the \(\text{Me}_3\text{M} \) grouping being the most characteristic features of the spectra. These values are summarised in Table 10.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\rho(\text{CH}_3))</th>
<th>(\nu(\text{Pt-Cl}))</th>
<th>(\nu(\text{Pt-H}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(chelate)PtCl(SiMe_3)</td>
<td>825</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>(chelate)Pt(SiMe_3)_2</td>
<td>822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(chelate)PtCl(GeMe_3)</td>
<td>818</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>(chelate)Pt(GeMe_3)_2</td>
<td>815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(chelate)PtCl(SnMe_3)</td>
<td>742</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>(chelate)Pt(SnMe_3)_2</td>
<td>742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(chelate)PtH(SiMe_3)</td>
<td>819</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>(chelate)PtHCl(SnMe_3)_2</td>
<td></td>
<td>280-290</td>
<td>1960 (broad)</td>
</tr>
<tr>
<td>(chelate)PtH(SnMe_3)_3</td>
<td>742</td>
<td></td>
<td>1960</td>
</tr>
</tbody>
</table>

Values are in cm\(^{-1}\); samples run as CsI discs.

Proton Magnetic Resonance

The use of 'H n.m.r. spectroscopy in determining the stereochemistry of platinum-group-IVb complexes has already been described (p. 66). The 'H n.m.r. parameters of the complexes are given in Table 11. The silyl and germyl derivatives gave the expected spectrum for the methyl protons of the \(\text{Me}_3\text{Si} \) and \(\text{Me}_3\text{Ge} \) groupings in a cis configuration.
Table 11

<table>
<thead>
<tr>
<th>Complex</th>
<th>τ(MMe$_3$)</th>
<th>$J^{\text{195} \text{Pt-M-C'-H}}$</th>
<th>$J^{\text{31P-Pt-M-C'-H}}$</th>
<th>$J^{\text{117} \text{Sn-C'-H}}$</th>
<th>$J^{\text{119} \text{Sn-C'-H}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(chelate)Pt(SiMe$_3$)$_2$</td>
<td>9.36</td>
<td>26.0</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>(chelate)PtCl(SiMe$_3$)</td>
<td>9.41</td>
<td>16.9</td>
<td></td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>(chelate)PtH(SiMe$_3$)</td>
<td>9.2</td>
<td>31.5</td>
<td></td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>(chelate)Pt(GeMe$_3$)$_2$</td>
<td>9.23</td>
<td>18.1</td>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>(chelate)PtCl(GeMe$_3$)</td>
<td>9.37</td>
<td>12.2</td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>(chelate)Pt(SnMe$_3$)$_2$</td>
<td>9.62</td>
<td>8.9</td>
<td></td>
<td>29.9</td>
<td>39.2</td>
</tr>
<tr>
<td>(chelate)PtCl(SnMe$_3$)</td>
<td>9.5</td>
<td>8.3</td>
<td></td>
<td>28.4</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Samples run in C$_6$D$_6$.
The methyl resonance appeared as a six line signal (three doublets) in the ratio 1:4:4:1:1 due to coupling with the ^{195}Pt nucleus and the trans ^{31}P nucleus as explained on p. 66 (Fig. 17). The coupling constants, $J(^{195}\text{Pt-M-C-}'\text{H})$ and $J(^{31}\text{P-Pt-M-C-}'\text{H})$ are consistent with values reported for other platinum-group-IVb complexes.\footnote{38,41} The solubilities of the complexes proved a difficulty in obtaining the spectra, and the methylene protons of the phosphine were not well resolved because of this poor solubility.

The ^1H n.m.r. spectra of the mono- and disubstituted tin derivatives differed from the analogous silyl and germyl complexes in that coupling with the ^{31}P nucleus was not observed, hence the methyl resonance appeared as a 1:4:1 triplet due to coupling with the ^{195}Pt nucleus, flanked by two doublets due to coupling with the ^{117}Sn and ^{119}Sn nuclei (Fig. 18). This absence of observable long range coupling to the trans phosphorus nucleus is probably due to the high trans-influence of the Me$_3$Sn group producing reversible breaking of the Pt-P bond. The $^{119}\text{Sn-CH}_3$ coupling constants shows a decrease from the value in tetramethylstannane (54.0 Hz)151. As mentioned in the introduction, this phenomenon was also observed in trimethylstannyl derivatives of molybdenum and tungsten142 and indicates that the tin orbitals used in bonding to the platinum have appreciable π-character leaving the methyl-bonded tin orbitals with reduced s-character resulting in a smaller coupling constant.
Mass Spectra

The complexes (III) and (IV)

![Diagram of complexes III and IV]

(III) (IV)

differed in their mass spectra in that the disubstituted derivative gave a molecular ion at \(m = 739 \) whereas the monosubstituted complex gave the parent-methyl at \(m = 686 \), no molecular ion being observed. The other ions observed can be seen from the fragmentation diagrams in Figs. 19 and 20. The analogous germanium complexes showed similar fragmentation patterns, the most abundant ions in the four complexes being due to \((\text{chelate})\text{Pt}^+, (\text{chelate})\text{Pt}(\text{SiMe}_3)^+, (\text{chelate})\text{Pt}(\text{GeMe}_3)^+, (\text{chelate})\text{Pt}(\text{SiMe}_3)^- (\text{SiMe}_2)^+ \) and \((\text{chelate})\text{Pt}(\text{GeMe}_3)(\text{GeMe}_2)^+\).

The mass spectra of the two tin complexes \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt}(\text{SnMe}_3)_2\) and \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3)\) however, differed from the silicon and germanium analogues in that their spectra showed ions at masses = 608 and 592 whereas the silicon and germanium complexes showed only an ion at mass = 593 i.e. \([\text{(chelatePt)}]^+\). The ion at mass = 608 can be attributed to \([\text{(chelatePt-CH}_3]^+\) and must be formed by transfer of a methyl group across a Pt-Sn bond. Processes of this type are well established\(^\text{186}\), and in this case may be due to the following decomposition:
The ion at mass = 592 is formed by the elimination of methane from (XV), and this process is supported by a metastable peak at 576.4.

The ion (XVI) could presumably have the structure (XVII) or (XVIII).

The disubstituted complex showed a weak molecular ion at mass = 920. The monosubstituted complex however, did not give a molecular ion but an ion due to methyl loss at mass = 777 was detected. In both complexes, the ion at mass = 758 \([(\text{chelate})\text{Pt(SnMe}_3)\text{]}^+\) was the most abundant. The
mass spectrum of the monosubstituted derivative did contain ions of higher mass than the molecular weight of the complex, e.g. \([(\text{chelate})\text{Pt} (\text{SnMe}_3) - (\text{SnMe}_2)]^+\), these are presumably due to rearrangements in the mass spectrometer. The fragmentation diagram of the disubstituted complex is given in Fig. 21.

Kinetic Study of the Hydrogenation of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt} (\text{SiMe}_3)_2\)

The hydrogenation of the complex was carried out in toluene solution at 25° with an initial hydrogen pressure of 613 mm Hg. The data showed that the reaction appeared to be first order with respect to hydrogen and first order with respect to the platinum complex. The rate constants were calculated to be: (1) \(4.14 \times 10^{-2} \text{ l}_\text{m} \text{s}^{-1}\)

\(2) 6.0 \times 10^{-2} \text{ l}_\text{m} \text{s}^{-1}\)

(1) was calculated from the reduction in hydrogen pressure, (2) was calculated from the rate of reaction of the platinum-silyl compound. (For calculation and results see appendix). The discrepancy in the two measurements is considered to be within experimental error for such rate determinations. The rate constants and order are in agreement with values obtained in kinetic experiments involving addition of hydrogen to square planar iridium complexes\(^{166}\).

e.g. \(\text{trans-IrX(CO)(Ph}_3\text{P)}_2 + \text{H}_2 \rightarrow \text{IrX}_2\text{(CO)}(\text{Ph}_3\text{P})_2\)

\(X = \text{Cl, Br or I}\)

and are consistent with an oxidative-addition of hydrogen to the platinum followed by elimination of trimethylsilane.
Work up of the reaction mixture gave \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3)\) and under the conditions of the experiment, the reaction went essentially to completion, but cleavage of only one silyl group occurred.

A description of the experimental technique and apparatus used is given on p.131.

An attempt to study the kinetics of the hydrolysis of trans-(Et₃P)₂PtCl(GeMe₃) using ultra-violet spectroscopy was made, but preliminary measurements on the spectra of the starting material and the hydrolysed sample containing trans-(Et₃P)₂PtHCl and (Me₃Ge)₂O showed insufficient differences in the spectra for the method to be used hence no kinetic measurements were made.
Fragmentation Diagram of (Ph$_2$PCH$_2$CH$_2$PPh$_2$)Pt(SiMe$_3$)$_2$
Fig. 20 Fragmentation Diagram of (Ph₂PCH₂CH₂PPh₂)PtCl(SiMe₃)
Fig. 21. Fragmentation Diagram of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3)_2\)
1. The Preparation of 1,2-bisdiphenylphosphinoethanetrimethylsilylplatinum(II) chloride

Bistrimethylsilylmercury (1.04 g., 3.0 mmole) in benzene (20 ml.) was added dropwise to a suspension of (Ph₂PCH₂CH₂PPh₂)PtCl₂ (2 g., 3.0 mmole) in benzene (650 ml.) at 60°. Mercury was deposited and the reaction mixture turned yellow-brown. The reaction mixture was stirred for 2 hours at 60°, cooled and filtered to remove mercury. The solvent, which was removed under vacuum, contained chlorotrimethylsilane (v.p.c.). The light brown solid was transferred to a schlenk and recrystallised from benzene to give white crystals of 1,2-bisdiphenylphosphinoethanetrimethylsilylplatinum(II) chloride, (Ph₂PCH₂CH₂PPh₂)Pt(Cl)SiMe₃, m.p. 205-208°. \[0.7 \text{g.}, 64\%; \]

\[
\nu(\text{Pt-Cl}) \text{ at } 299 \text{ cm}^{-1}. \text{ Found: C, 49.4; H, 4.86\%. C}_{29}H_{33}ClP_{2}PtSi \text{ requires C, 49.6; H, 4.7\%.}
\]

Further crystallisation of the remaining solid yielded 1,2-bisdiphenylphosphinoethanetrimethylsilylplatinum(II), (Ph₂PCH₂CH₂PPh₂)Pt(SiMe₃)₂, m.p. 220-223° (d) (0.12 g.).

2. The preparation of 1,2-bisdiphenylphosphinoethanetrimethylsilylplatinum(II) (Ph₂PCH₂CH₂PPh₂)Pt(SiMe₃)₂

Bistrimethylsilylmercury (1.7 g., 4.9 mmole) in benzene (20 ml.) was added dropwise to (Ph₂PCH₂CH₂PPh₂)PtCl₂ (1.60 g., 2.41 mmole) in benzene (500 ml.) at 60°. Mercury was deposited and the reaction mixture turned yellow-brown. The mixture was stirred for 2 hours at 60°, cooled and filtered to remove mercury. The solvent, which was removed under vacuum, contained chlorotrimethylsilane (v.p.c.). The pale-brown solid was recrystallised from benzene to give 1,2-bisdiphenylphosphinoethanetrimethylsilylplatinum(II).
methylsilylplatinum(II) m.p. 220-223° [1.3g., 73%; Found: C, 52.2; H, 5.8%. $\text{C}_{32}\text{H}_{42}\text{P}_{2}\text{PtSi}_{2}$ requires C, 51.98; H, 5.7%]

3. The preparation of 1,2-bisdiphenylphosphinoethanetrimethylgermylplatinum(II) chloride $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Cl)GeMe}_3$

Bistrimethylgermylmercury (1.5g., 3.4 mmole) in benzene (20 ml.) was added dropwise to $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2$ (2.0g., 3.7 mmole) in benzene (500 ml.) at 60°. Mercury was deposited and the reaction mixture became a yellow-brown colour. After stirring for 2 hours at 60° the mixture was cooled and filtered. After removal under vacuum of the solvent, which was shown to contain chlorotrimethylgermane (v.p.c.), the light brown solid remaining was recrystallised from benzene to yield white crystals of 1,2-bisdiphenylphosphinoethanetrimethylgermylplatinum(II) chloride $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(Cl)GeMe}_3$ m.p. 216-220° [1.8g., 72%; ν(Pt-Cl) at 300 cm$^{-1}$ (nujol); Found: C, 46.71; H, 4.23%. $\text{C}_{29}\text{H}_{33}\text{ClGeP}_2\text{Pt}$ requires C, 46.6; H, 4.42%].

4. The preparation of 1,2-bisdiphenylphosphinoethanebistrimethylgermylplatinum(II) Pt(Ph$_2$PCH$_2$CH$_2$PPh$_2$)$_2$(GeMe$_3$)$_2$

Bistrimethylgermylmercury (4.4g., 10.0 mmole) in benzene (20 ml.) was added dropwise to $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2$ (3g., 5.0 mmole) in benzene (500 ml.) at 60°. During the reaction mercury was deposited and the reaction mixture turned yellow-brown. After stirring for 2 hours at 60° the mixture was cooled, filtered and the solvent, which contained chlorotrimethylgermane (v.p.c.), was removed under vacuum. The remaining light-brown solid was recrystallised from benzene to give white crystals of 1,2-bisdiphenylphosphinoethanebistrimethylgermylplatinum(II), $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)$ Pt(Ph$_2$PCH$_2$CH$_2$PPh$_2$)$_2$(GeMe$_3$)$_2$ m.p. 210-215 (d). [2.8g., 75%; Found: C, 46.50; H, 5.30%; $\text{C}_{32}\text{H}_{42}\text{Ge}_{2}\text{P}_{2}\text{Pt}$ requires C, 46.21; H, 5.05%].
5. Reaction of (Ph₂PCH₂CH₂PPh₂)PtCl₂ with trimethylsilane

Trimethylsilane (excess) and benzene (5 ml.) were condensed onto (Ph₂PCH₂CH₂PPh₂)PtCl₂ (0.6 g., 9.0 mmole) in a tube fitted with a break-seal. After heating at 60° for six days the tube was opened to a vacuum line and volatile products removed. An infrared spectrum of the remaining solid showed only starting material.

6. Reaction of (Ph₂PCH₂CH₂PPh₂)PtCl₂ with trimethylgermane

Trimethylgermane (excess) and benzene (5 ml.) were condensed onto (Ph₂PCH₂CH₂PPh₂)PtCl₂ (0.5 g., 0.78 mmole) in a break-seal tube and heated at 60° for six days. The tube was opened to a vacuum-line and volatiles removed, leaving only starting material.

7. Reaction of (Ph₂PCH₂CH₂PPh₂)PtCl₂ with trimethylstannane

Trimethylstannane (excess) and benzene (5 ml.) were condensed onto (Ph₂PCH₂CH₂PPh₂)PtCl₂ (0.5 g., 7.8 mmole) in a break-seal tube. After one week at 40° a small amount of platinum metal was deposited. The tube was opened to a vacuum line. Hydrogen gas (70.0 N.c.c.) and volatiles were removed. The benzene solvent contained chlorotrimethylstannane, hexamethyldistannane and trimethylstannane (v.p.c. identification). The white solid was washed with hot benzene, leaving insoluble starting material. Removal of the benzene gave a white solid, which was recrystallised from benzene to give 1,2-bisdiphenylphosphinoethanetrimethylstannyplatinum(II) chloride, m.p. 205-208 (d). [0.052 g., 8.8%].

8. Reaction of (Ph₂PCH₂CH₂PPh₂)PtCl₂ with neat trimethylstannane

The complex (1 g., 1.5 mmole) was sealed with trimethylstannane (3 ml.) and heated at 40°. After one week a yellow solution was formed which,
after heating for a further week, turned to a reddish-brown solution.

The tube was opened to a vacuum line, hydrogen gas (80.8 N c.c.) and chlorotrimethylstannane were identified (mass spectrum and v.p.c.) in the volatiles. The remaining reddish-brown solid showed v(Pt-H) at 1960 cm\(^{-1}\) and a broad band attributable to v(Pt-Cl) at 280-290 cm\(^{-1}\).

Recrystallisation of the solid from benzene gave colourless crystals of 1,2-bis(diphenylphosphinoethane)trimethylstannylplatinum(II) chloride (Ph\(_2\)PCH\(_2\)CH\(_2\)PPh\(_2\))Pt(Cl)SnMe\(_3\), m.p. 205-208 (d). [0.51 g., 43%; Found: C, 43.02; H, 4.56; Cl, 4.1%; C\(_{29}\)H\(_{33}\)ClP\(_2\)PtSn requires C 43.8; H, 4.2; Cl, 4.4%].

9. Reaction of (Ph\(_2\)PCH\(_2\)CH\(_2\)PPh\(_2\))Pt with Me\(_3\)SiH

Trimethylsilane (excess) was condensed into a break-seal tube containing the complex (0.25 g., 0.25 mmole) in benzene (3 ml.). After heating at 70\(^\circ\)C for 1 week the tube was opened to a vacuum line and the volatiles removed leaving a yellow solid which by its infra-red spectrum was shown to be starting material.

The experiment was repeated using neat trimethylsilane. The complex (0.2 g., 0.2 mmole.) was sealed with trimethylsilane (excess). After heating at 70\(^\circ\)C for 1 month no visible change had occurred; removal of volatile material yielded only the original starting material.

10. Reaction of (Ph\(_2\)PCH\(_2\)CH\(_2\)PPh\(_2\))Pt with Me\(_3\)GeH

The complex (0.2 g., 0.2 mmole) was heated at 80\(^\circ\)C for 1 month with excess trimethylgermane. No visible change took place and removal of the trimethylgermane left only solid starting material.

11. Reaction of (Ph\(_2\)PCH\(_2\)CH\(_2\)PPh\(_2\))Pt with Me\(_3\)SnH

Trimethylstannane (excess) was condensed onto the complex (0.25 g.,
0.25 mmole) in a tube fitted with a break-seal. On warming to room temperature a reaction took place, the yellow starting material turning white, some effervescence occurring. The tube was then heated at 60° for three hours before opening to a vacuum line. Work up of the volatiles yielded hydrogen (26.7 N.c.c.), trimethylstannane and hexamethyldistannane (v.p.c. identification). The white solid residue showed ν(Pt-H) at 1962 cm\(^{-1}\) and its infra-red spectrum was identical to that of the solid obtained in experiment 24. Recrystallisation of the solid from benzene yielded colourless crystals of 1,2-bisdiphenylphosphinoethanebistrimethylstannylplatinum(II), \((\text{Ph}_2\text{PCCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3)_2\), m.p. 207-210 (d). [0.18 g., 78%, Found: C, 41.88; H, 4.54; \(\text{C}_{32}\text{H}_{42}\text{P}_2\text{PtSn}_2\) requires C, 41.6; H, 4.55%].

12. Reaction of \((\text{Ph}_2\text{PCCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}\) with \text{Me}_3\text{SiCl}

Chlorotrimethylsilane (1 ml.) was condensed onto the complex (0.3 g., 0.3 mmole) in benzene (3 ml.). After warming to room temperature a greenish-yellow sticky solid formed which, on shaking, became off-white in colour. After being heated at 60° for two days the tube was opened and all volatile material, which contained \text{Me}_6\text{Si}_2\,\text{Cl}_2, removed. Recrystallisation of the solid residue from methanol yielded white crystals of bis(1,2-bisdiphenylphosphinoethane)platinum(II) dichloride, \([(\text{Ph}_2\text{PCCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}]^2+2\text{Cl}^-\), m.p. > 300 (d). [0.27 g., 90%].

13. Reaction of \((\text{Ph}_2\text{PCCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}\) with \text{Me}_3\text{SnCl}

Chlorotrimethylstannane (0.2 g.,) in benzene (2 ml.) was added slowly to a solution of the complex (0.2 g., 0.2 mmole) in benzene (8 ml.). The resulting mixture was stirred for 5 minutes when a yellow oil formed which after 30 minutes at 70° gradually changed to a white precipitate, the mixture also became a paler yellow. The mixture was
filtered and the solid recrystallised from methanol to give white crystals of bis(1,2-bisdiphenylphosphinoethane)platinum(II)dichloride,
\[[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt}]^{2+}2\text{Cl}^- \]
\text{m.p.} > 300° (d). [0.17 g., 85%].

14. Reaction of \[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt}]^{2+}2\text{Cl}^- \text{ with Me}_3\text{SiH}

The complex (0.4 g., 0.4 mmole) in benzene (4 ml.) was sealed with an excess of trimethylsilane in a tube fitted with a break-seal. The tube was heated at 70° for one week and then opened to a vacuum line to yield hydrogen (7.4 N.c.c.), trimethylsilane, hexamethyldisilane (n.m.r. detection), and unreacted solid starting material.

Reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt(SiMe}_3)_2\)

15. With Anhydrous Hydrogen Chloride

Anhydrous hydrogen chloride (8.16 N.c.c., 0.36 mmole) and benzene (5 ml.) were condensed onto the complex (0.135 g., 0.18 mmole) in a break-seal tube. After two days at room temperature the tube was opened to a vacuum line and hydrogen gas (0.56 N.c.c.) removed. The volatiles were collected and separated by fractional condensation to yield trimethylsilane (5.2 N.c.c. 84%) and the benzene solvent. The remaining white solid was washed several times with hot benzene leaving \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{PtCl}_2 \) (0.084 g., 93%).

16. With Hydrogen at 40°

The complex (0.3 g., 0.405 mmole) in benzene (4 ml.) reacted with hydrogen at atmospheric pressure. After four days at 40° a brown solution was formed. The tube was opened and the volatiles removed to yield trimethylsilane (4.1 N.c.c., 45% available silicon). The residual yellow solid showed \(\nu(\text{Pt-H})\) at 2000 cm\(^{-1}\). Attempts to recrystallise the solid from benzene and cyclohexane proved unsuccessful but after washing
several times with cold hexane \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(SiMe}_3\text{)}\) was obtained as a yellow-brown solid; decomposes \(>165^\circ\), \(0.21\) g., 78%, Found: C, 51.74; H, 5.11%; \(C_{29}H_{34}P_2PtSi\) requires C, 52.1; H, 5.09%.

17. **With Hydrogen at \(80^\circ\)**

The complex (0.2 g., 0.27 mmole) in benzene (4 ml.) was reacted with 1 atmosphere of hydrogen in a sealed tube at \(80^\circ\). After one hour the solution became pale brown and gradually darkened over one week. The tube was opened to a vacuum line, excess hydrogen was removed by pumping and the remaining volatiles were fractionated to yield trimethylsilane (11.4 N.c.c., 94%) and the benzene solvent. The yellow-brown solid remaining was recrystallised from a benzene-cyclohexane mixture to yield a yellow-brown solid showing no bands attributable to \(v(\text{Pt-H})\) or \(\rho(\text{CH}_3)\) in its infra-red spectrum and its \(^1H\) n.m.r. spectrum gave only resonances due to phenyl and methylene protons. The complex was formulated as \([\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}]_3\text{Pt}_4\), \(0.09\) g., 69%

Found: (a) C, 47.8; H, 3.9; P, 10.4%

(b) C, 48.1; H, 3.6; P, 10.1%

Osmometer Molecular Weight: 2190

\(C_{78}H_{72}P_4\text{Pt}_4\) requires C, 47.4; H, 3.6; P, 9.4%; Molecular Weight: 1974.

\(C_{104}H_{96}P_4\text{Pt}_4\) i.e. (chelatePt)\(_4\) requires C, 52.6; H, 4.0; P, 10.5%; Molecular Weight: 2372.

18. **With Trimethylgermane**

The complex (0.5 g., 0.67 mmole) was reacted in benzene (5 ml.) in a break-seal tube with trimethylgermane (30.3 N.c.c., 1.3 mmole). After three days at \(50^\circ\) some white solid crystallised out of the pale yellow solution. The tube was opened to a vacuum line, the volatiles removed and separated by fractional condensation to yield hydrogen gas (1.15 N.c.c.)
and trimethylsilane contaminated with a trace of trimethylgermane (30.3 N.c.c.). The solid was recrystallised from benzene to give colourless crystals of 1,2-bisdiphenylphosphinoethanebistrimethylgermyl-platinum(II), m.p. 210-215 (d). [0.47 g., 84%].

19. With Trimethylstannane

Trimethylstannane (30.3 N.c.c., 1.3 mmole) and benzene (5 ml.) were condensed onto the complex (0.5 g., 0.67 mmole) in a vacuum tube. After one week at 50° the volatiles were removed and separated to give hydrogen (3.35 N.c.c.) and trimethylsilane (29.9 N.c.c., 98%). The white solid remaining was recrystallised from benzene to yield colourless crystals of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3\text{)}_2\), m.p. 205-210 (d). [0.54 g., 87%].

Reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SiMe}_3\text{)}\)

20. With Anhydrous Hydrogen Chloride

Anhydrous hydrogen chloride (6.6 N.c.c., 0.29 mmole) and benzene (4 ml.) were condensed onto the complex (0.21 g., 0.29 mmole) in a tube fitted with a break-seal. After two days the tube was opened to a vacuum line and the volatiles removed. The volatiles were separated by fractionation to yield hydrogen (1.3 N.c.c.), trimethylsilane (5.7 N.c.c., 86%) and the solvent benzene. The residual solid was refluxed with benzene and filtered to give insoluble \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\), m.p. > 325°, (0.16 g., 84%) and some solid starting material (0.012 g., 5%) recovered from the benzene.

21. With Hydrogen

The complex (0.73 g., 1.04 mmole) was hydrogenated in benzene (6 ml.) at atmospheric pressure for four days at 60°. A brown solution was
obtained. The volatiles were removed and separated by fractionation to yield trimethylsilane (5.8 N.c.c., 25%) and hexamethyldisilane (\(^1^H\) n.m.r. identification). The solid showed \(v(\text{Pt-H})\) \(2004 \text{ cm}^{-1}\) (KBr), and after repeated recrystallisations from benzene gave \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(H)}\text{Cl}\).

\[(0.41 \text{ g., } 61\% \); Found: C, 48.6; H, 4.12%. \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(H)}\text{Cl}, \text{C}_{26}\text{H}_{25}\text{ClP}_2\text{Pt}\) requires C, 49.6; H, 3.97%). Satisfactory accurate mass measurements were obtained on \((\text{C}_{26}\text{H}_{24}\text{ClP}_2\text{Pt})_n\).

22. With Trimethylgermane

Trimethylgermane (8.9 N.c.c., 0.4 mmole) and benzene (3 ml.) were condensed onto the complex (0.28 g., 0.4 mmole) in a sealed vacuum tube and heated at \(60^\circ\) for three days when colourless crystals separated out. The tube was opened to a vacuum line and hydrogen gas (1.8 N.c.c.), trimethylsilane (7.8 N.c.c., 88%) and benzene were removed. The remaining white solid was recrystallised from benzene to give colourless crystals of 1,2-bisdiphenylphosphinoethanetrimethylgermylplatinum(II) chloride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(GeMe}_3\text{)}\), m.p. 216-220\(^\circ\). \[0.28 \text{ g., } 95\%\].

23. With Trimethylstannane

Trimethylstannane (9.5 N.c.c., 0.42 mmole) and benzene (3 ml.) were condensed onto the complex (0.3 g., 0.42 mmole) in a sealed vacuum tube. After two weeks at \(60^\circ\) the volatiles were removed and separated to give trimethylsilane (5.8 N.c.c., 61%) and benzene. The white residual solid was recrystallised from benzene to give colourless crystals of 1,2-bisdiphenylphosphinoethanetrimethylstannylplatinum(II) chloride, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3\text{)}\), m.p. 205-208\(^\circ\) (d), \[0.21 \text{ g., } 60\%\], \(v(\text{Pt-Cl})\) at 284 cm\(^{-1}\). (CsI disc).
24. **With Trimethylstannane (excess)**

Trimethylstannane (excess) and benzene (5 ml.) were condensed onto the complex (0.5 g.) in a vacuum tube and heated for three days at 60°. A green solution resulted with some platinum metal deposited. The tube was opened to a vacuum line and the volatiles were removed and fractionated to yield hydrogen gas (16.1 N.c.c.), trimethylsilane (14.4 N.c.c., 91% available silicon) and chlorotrimethylstannane (v.p.c. identification).

The off-white solid showed ν(Pt-H) at 1960 cm⁻¹ and was recrystallised from benzene to give colourless crystals of \(\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2\text{)}\text{Pt(SnMe}_3\text{)}_2 \), m.p. 207-210°, \([0.59 \text{ g., 91%; Found: C, 41.71; H, 4.75%; osmometric molecular weight: 891, } \text{C}_{32}\text{H}_{42}\text{P}_2\text{PtSn}_2 \text{ requires C, 41.6; H, 4.55%; molecular weight: 923}.\]

After the recrystallisation, the Schlenk smelled strongly of trimethylstannane. The experiment was repeated to investigate the volatile products obtained on recrystallising the solid showing ν(Pt-H) at 1960 cm⁻¹. A sample (0.5 g.) of this solid was transferred to a break-seal tube and benzene was condensed onto it. After heating for three days at 40° the tube was opened to a vacuum line and the volatiles removed. Hydrogen gas (6.9 N.c.c.), trimethylstannane and tetramethylstannane were identified in the volatiles. The white solid residue, which did not now show a band attributable to ν(Pt-H), was recrystallised from benzene to give \(\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2\text{)}\text{Pt(SnMe}_3\text{)}_2 \).

25. **With trimethylstannane (excess) for 'H n.m.r.**

The complex in deuterobenzene was sealed in an n.m.r. tube with excess trimethylstannane and the spectrum recorded (discussed on p.101). After two weeks, large colourless crystals separated out of the green solution. The tube was opened and the volatiles removed. An analysis of the crystals which showed ν(Pt-H) at 1960 cm⁻¹ gave C, 37.62; H, 4.83%; \(\text{C}_{35}\text{H}_{52}\text{P}_2\text{PtSn}_3 \text{ requires C, 38.5; H, 4.77%} \).
Reactions of \(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2\)PtCl(GeMe_3) \\

26. With Trimethylstannane (excess)

Trimethylstannane (excess) and benzene (5 ml.) were condensed onto the complex (0.17 g., 0.23 mmole) in a break-seal tube. A yellow-green solution was formed after heating for twenty four hours at 40°. Hydrogen gas (4.36 N.c.c.), trimethylgermane (contaminated with some trimethylstannane) and benzene were removed. A complete separation of the trimethylgermane and trimethylstannane was not achieved, 6.2 N.c.c. of the mixture were obtained, (a 100% yield of trimethylgermane = 5.2 N.c.c.). The off-white residue showed \(v(\text{Pt-H}) \) at 1961 cm\(^{-1}\) in its infra-red spectrum which was identical to the spectrum of the solid obtained in experiments 11, 24 and 25. Recrystallisation of this solid from benzene gave colourless crystals of \(\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3\text{)}_2 \), [0.17 g., 81%].

27. With Trimethylstannane (equimolar)

Complex (0.16 g., 0.2 mmole) in benzene (4 ml.) was reacted with trimethylstannane (4.8 N.c.c., 0.2 mmole) at 40° in a break-seal tube. After 6 days the tube was opened to a vacuum line and the volatile material removed. The volatiles were separated by fractional condensation to give hydrogen (0.3 N.c.c.), trimethylgermane and benzene. Recrystallisation of the solid from benzene yielded colourless crystals of \(\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3\text{)}_2 \), [0.13 g., 76%].

28. With Trimethylsilane (excess)

Excess trimethylsilane and benzene (5 ml.) were condensed onto the complex (0.23 g., 0.31 mmole) in a break-seal tube. After six days at 70° no visible change had taken place and the tube was opened to a vacuum line. Hydrogen gas (0.3 N.c.c.) was evolved. The other volatile material was removed and separated by fractional condensation to give trimethylsilane.
with a small amount of trimethylgermane (identified by infra-red comparison). Successive crystallisations of the solid remaining produced only starting material \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(GeMe}_3\text{)}\). No compound having a Pt-Si bond could be isolated.

Reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GeMe}_3\text{)}_2\)

29. **With Trimethylstannane**

 The complex (0.15 g., 0.18 mmole) in benzene (4 ml.) was reacted with trimethylstannane (8.1 N.c.c., 0.36 mmole) in a sealed tube. After 24 hours at 40° some colourless crystals formed on the side of the tube which was then opened to a vacuum line. A small quantity (0.15 N.c.c.) of hydrogen was evolved. Removal of the volatiles and separation by fractionation yielded trimethylgermane (7.2 N.c.c., 89%) and the solvent benzene. Recrystallisation of the remaining white solid from benzene gave colourless crystals of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3\text{)}_2\) [0.15 g., 88%].

30. **With Trimethylsilane (excess)**

 Trimethylsilane (excess) was condensed onto the complex (0.16 g., 0.19 mmole) in benzene (4 ml.). After two weeks at 60° the tube was opened to a vacuum line, hydrogen gas (0.15 N.c.c.) was evolved. The remaining volatile material was separated by fractionation to give trimethylsilane with a trace of trimethylgermane, and benzene. Only starting material, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(GeMe}_3\text{)}_2\), could be isolated from the solid residue.

Reactions of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl(SnMe}_3\text{)}\)

31. **With Trimethylgermane (excess)**

 A benzene solution of the complex (0.2 g., 0.25 mmole in 5 ml.) was
reacted with excess trimethylgermane in a vacuum tube. No visible change occurred after one week at 70° when the tube was opened to a vacuum line. A small quantity of hydrogen gas was evolved. Removal and separation of the volatiles produced only trimethylgermane and benzene leaving unreacted starting material, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}(\text{SnMe}_3)\).

32. With Trimethylsilane (excess)

The complex (0.2 g., 0.25 mmole) in benzene (5 ml.) was reacted with excess trimethylsilane in a tube fitted with a break-seal. After five days at 70° the tube was opened to a vacuum line. Hydrogen gas (0.6 N.c.c.) was evolved. Separation of the remaining volatiles produced only trimethylsilane and benzene, leaving unreacted solid starting material.

33. With Trimethylstannane (excess)

The complex (0.2 g., 0.25 mmole) was heated at 50° with neat trimethylstannane (approx. 1 liquid ml.). After 24 hours the tube was opened to a vacuum line and the volatile material removed leaving a pale yellow solid with some platinum metal. The infra-red spectrum of this solid was identical to the spectrum of the solid in experiment 8, and showed \(\nu(\text{Pt-H})\) at 1960 cm\(^{-1}\) and a broad absorption between 280-290 cm\(^{-1}\) attributable to \(\nu(\text{Pt-Cl})\). This solid, formulated as \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtHCl}(\text{SnMe}_3)_2\) was then sealed with benzene (3 ml.) and heated at 60° for three days. Work up of the volatile material yielded hydrogen (1.3 N.c.c.), trimethylstannane and tetramethylstannane (v.p.c. identification). The remaining solid which did not now show a band attributable to \(\nu(\text{Pt-H})\) was recrystallised from benzene to give colourless crystals of starting material, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}(\text{SnMe}_3)\).
Reactions of \(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \)Pt(SnMe_3)_2

34. With Trimethylgermane (excess)

Excess trimethylgermane was condensed onto a benzene solution of the complex (0.15 g., 0.16 mmole in 4 ml.) in a tube fitted with a break-seal. After nine days at 50° the tube was opened and the volatiles removed leaving unreacted starting material. Work up of the volatiles gave only trimethylgermane and benzene.

35. With trimethylsilane (excess)

The complex (0.13 g., 0.14 mmole) in benzene (4 ml.) was heated at 50° for 10 days with excess trimethylsilane. The tube was opened to a vacuum line and volatile material removed leaving unreacted starting material, \(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \)Pt(SnMe_3)_2. Examination of the volatile material yielded only trimethylsilane and benzene.

36. With Anhydrous Hydrogen Chloride (one equivalent)

Anhydrous hydrogen chloride (4.6 N.c.c., 0.21 mmole) and benzene (4 ml.) were condensed onto the complex (0.19 g., 0.21 mmole) in a tube fitted with a break-seal. After one week at room temperature, the tube was opened and volatile products were removed and separated by fractional condensation to yield hydrogen (1.9 N.c.c.), trimethylstannane and benzene. (A complete separation of the trimethylstannane and benzene was not achieved). The white solid residue was recrystallised from benzene to give colourless crystals of \(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2 \)PtCl(SnMe_3), \(\text{[0.13 g., 81%; } \nu(\text{Pt-Cl}) \text{ at } 285 \text{ cm}^{-1} \) (CsI disc).

37. With Trimethylstannane (excess)

Excess trimethylstannane (approx. 1 liquid ml.) was condensed onto the complex (0.15 g., 0.16 mmole) in a vacuum tube. The tube was heated
at 40° for two weeks during which time some platinum metal was deposited. The tube was then opened and hydrogen (14.5 N.c.c.) evolved. The off-white solid showed a band attributable to \(v(Pt-H)\) at 1964 cm\(^{-1}\) in its infra-red spectrum which was identical to the spectra of the solids obtained in experiments 11, 24 and 26. The solid was therefore formulated as \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH}(\text{SnMe}_3)_3\). A satisfactory analysis could not be obtained due to the platinum metal. Recrystallisation of the solid from benzene yielded colourless crystals of starting material, \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{SnMe}_3)_2\), thus in the experiment trimethylstannane adds on to the complex giving the octahedral complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH}(\text{SnMe}_3)_3\) which on recrystallisation eliminates trimethylstannane to give the original starting material.

38. With Hydrogen at 25°

The complex (0.17 g., 0.18 mmole) in toluene (40 ml.) was vigorously stirred at 25° for 20 hours under 1 atmosphere of hydrogen. Removal of the hydrogen and toluene left only unreacted starting material.

In all the preceding reactions where an excess of trimethylsilane, trimethylgermane or trimethylstannane is referred to approximately 0.5 to 1.0 liquid ml. were used.

39. Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{GePh}_3)_2\) with Deuterium

(a) Atmospheric Pressure

\((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{GePh}_3)_2\) (0.25 g., 0.21 mmole) was sealed with benzene (20 ml.) and deuterium at atmospheric pressure. The tube was opened after three weeks at room temperature, removal of the deuterium and benzene left only starting material.

(b) Five Atmospheres

\((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{GePh}_3)_2\) (0.25 g., 0.21 mmole) was reacted in
benzene (20 ml.) with deuterium at five atmospheres. After heating for four days at 60° the deuterium and benzene were removed by pumping.

Extraction of the remaining solid with light petroleum ether gave insuble \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtD(GePh}_3)\) which was recrystallised from benzene to give light buff crystals, m.p. 157-162°, \([0.17 \text{ g.}, 91\%], \nu(\text{Pt-D}) 1428 \text{ cm}^{-1}; \delta(\text{Pt-D}) 538 \text{ cm}^{-1}]; \text{ Found: C, 58.74; H, 4.73\%]; C_{44}\text{H}_{39}\text{DGeP}_2\text{Pt requires C, 58.67; H, 4.56\%]. The light petroleum ether was pumped from the filtrate to leave deuterotriphenylgermane (characterised by its mass and infra-red spectra, } \nu(\text{Ge-D}) 1471 \text{ cm}^{-1}).

40. Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)\) with 1,2-dibromoethane

The chelate platinum-hydride complex \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtH(GePh}_3)\) (0.16 g., 0.18 mmole) was reacted in a sealed tube with 1,2-dibromoethane (4 ml.). A colourless solution was formed after heating for two days at 70°. The tube was opened and the volatiles removed. Separation of the volatiles by fractional condensation gave ethylene and 1,2-dibromoethane. The solid was extracted with 60-80° petroleum ether to give insoluble \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtBr}_2\); \([0.11 \text{ g.}, 84\%]). \text{ Removal of the petroleum ether from the filtrate left triphenylgermane } [0.06 \text{ g.}, 70\%, \nu(\text{Ge-H}) \text{ at } 2086 \text{ cm}^{-1}].

41. Reaction of \[\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(}\text{Et}_3\text{P})(\text{SiMe}_3)\right]^+\text{BPh}_4^-\] with Hex-1-ene

The complex (0.18 g., 0.16 mmole) was sealed with hex-1-ene (5 ml.) in a vacuum tube and heated at 60°. After 20 days the tube was opened to a vacuum line and the volatile material removed leaving only unreacted starting material.

42. Reaction of \[\left[(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(}\text{Et}_3\text{P})(\text{GeMe}_3)\right]^+\text{Cl}^-\] with Hex-1-ene

Hex-1-ene (5 ml.) was condensed onto the complex (0.17 g., 0.2 mmole) in a break-seal tube. The tube was heated at 60° for eight days then
opened to a vacuum line and the volatile material removed leaving unreacted starting material.

43. Kinetic Study of the Reaction of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SiMe}_3\text{)}_2\) and Hydrogen

The complex (0.1843 g.) in toluene (43.89 ml.) was reacted with hydrogen at 25° at an initial pressure of 613.57 mm. Hg. The rate of reaction was followed by measuring the reduction in hydrogen pressure using a 'Langham-Thompson Type U.P.4' transducer. The signal from the transducer was fed to an amplifier, the output from which was fed into a chart recorder having a linear calibration, hence a direct measure of pressure reduction and time was obtained.

The hydrogenation was carried out in a glass reaction vessel connected to the transducer. The thermostating was achieved by circulating water at 25° through the glass jacket of the reaction vessel. (Schematic diagrams of the apparatus and reaction vessel are given in Figs. 22 and 23).

I would like to thank Dr. M.G. Burnett and Mr. R.J. Morrison for the use of the hydrogenation apparatus and their helpful discussion of the results.

44. Attempted Preparation of bis(trimethylsilyl)mercury

Trimethysilane (5 ml.) and dimethylmercury (5 ml.) were condensed into a flask fitted with a break-seal, to give a colourless solution. After three days at room temperature no visible change occurred so the flask was heated at 40° for one week, again no formation of bis(trimethylsilyl)mercury occurred.
Fig. 22 Hydrogenation Apparatus

Fig. 23 Reaction Vessel
SECTION B

Platinum Hydride Complexes

1. The samples of trans-(Ph₃P)₂PtHCl used to show that the reported cis and trans isomers were both trans species were made as reported by Bailar and Itatani.¹⁶¹

Trans-(Ph₃P)₂PtHCl

Bis(triphenylphosphine)platinum(II) chloride (3 g., 3.8 mmole) was dissolved in ethanol (75 ml.) containing hydrazine hydrate (1.9 g., 3.8 mmole). The solution was refluxed on a steam bath for 5 minutes, acetic acid (1.8 g.), water (30 ml.) and ethanol (15 ml.) were added. The mixture was then cooled and colourless crystals separated out. The crystals were filtered, washed with methanol and recrystallised from a benzene-methanol mixture (1:2) to give colourless crystals of trans-(Ph₃P)₂PtHCl. CH₃OH, [ν(Pt-H) at 2230 cm⁻¹].

Reported cis-(Ph₃P)₂PtHCl

Cis-bis(triphenylphosphine)platinum(II) chloride (2 g., 2.6 mmole) was dissolved in a mixture of methanol (80 ml.) and diethyl ether (80 ml.) containing hydrazine hydrate (1.3 g., 2.6 mmole). The mixture was refluxed on a steam bath for 15 minutes then acetic acid (0.9 g.) and water (60 ml.) were added. On cooling, colourless crystals separated out. These were collected, washed with methanol and recrystallised from benzene and diethyl ether at room temperature to give colourless crystals of "cis"-(Ph₃P)₂PtHCl. C₆H₆ ν(Pt-H) at 2210, 2232, 2265 and 2279 cm⁻¹. The strongest and sharpest being at 2232 cm⁻¹, (hexachlorobutadiene or KBr).

A slow fractional recrystallisation of the "cis" form from a benzene-diethyl ether mixture gave two fractions, the first showing ν(Pt-H) at 2232 and 2211 cm⁻¹, the second showing only one band at 2232 cm⁻¹.
Crystallisation of the trans form from a benzene-diethyl ether mixture yielded crystals showing three bands at 2211, 2250 and 2265 cm\(^{-1}\).

2. Reaction of \((\text{Ph})_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}(\text{o})\) with HCl

The complex (0.2 g., 0.2 mmole) was dissolved in benzene (8 ml.) giving a yellow solution. Anhydrous hydrogen chloride was bubbled through the solution and a white precipitate formed immediately, the solid showed no \(v(\text{Pt-H})\) and recrystallisation of this precipitate from methanol gave white crystals of \([\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt}]^{2+}2\text{Cl}^-\), m.p. 300-310° (d). \([0.18 \text{ g.}, 90\%]\).

3. Reaction of \((\text{Ph})_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{PtCl}_2\) with Hydrazine Hydrate

The complex (1.0 g., 1.4 mmole) was heated in refluxing benzene (60 ml.) containing hydrazine hydrate (0.6 g., 1.2 mmole) for 2 hours. Some platinum metal was deposited and removal of solvent from the pale yellow solution left a yellow solid, showing no bands attributable to \(v(\text{Pt-H})\), from which only starting material could be isolated.

4. Reaction of trans-(\text{Et}_3\text{P})_2\text{PtHCl} with Trimethylsilane

Trimethylsilane (59.8 N.c.c., 2.67 mmole) and degassed benzene (15 ml.) were condensed onto the complex (1.25 g., 2.67 mmole) in a flask fitted with break-seal and stirrer. The flask was sealed and the contents vigorously stirred in a thermostat at 25°. After six weeks, when it was assumed that the reaction had reached equilibrium, the flask was opened to a vacuum line and the quantity of hydrogen measured using a Töpler pump. The experiment was repeated at 25° and two further flasks were set up at 35°. The equilibrium constants at 25° and 35° were then calculated (see appendix).

At 25° quantity of hydrogen liberated = 3.72 N.c.c.
At 35° quantity of hydrogen liberated = 2.83 N.c.c.
Experimental Methods

Nitrogen

All operations involving air-sensitive compounds were carried out in an atmosphere of dry, oxygen-free nitrogen. Purification was effected by passing commercial nitrogen through copper turnings at 400° to remove oxygen and through a molecular sieve column and a spiral trap at -196° to remove water.

Solvents

Hydrocarbon solvents, benzene, toluene, petroleum-ether, ether and cyclohexane were redistilled from phosphorus pentoxide and dried by standing over sodium wire for 1 week. Tetrahydrofuran was distilled from lithium aluminium hydride before use.

Analyses

Analyses were carried out in the microanalytical laboratories of Durham and Queen's Universities or by Drs. Weiler and Strauss, Banbury Road, Oxford.

Infra-red Spectra

Infra-red spectra in the region 2.5-25μ were recorded on a Grubb-Parson's Spectromaster, G.S.2A or Perkin-Elmer 457 Spectrophotometers. Solids were examined as pressed discs in KBr or as Nujol Mulls unless otherwise stated. Liquids were examined as contact films between KBr plates. A Grubb-Parson's DM2 Spectrophotometer and a Perkin-Elmer 457 Spectrophotometer were used to examine the region 20-50μ, solids being examined either as Nujol mulls between polythene protected CsI plates or as CsI discs.
Proton Magnetic Resonance

Proton magnetic resonance spectra were recorded, usually in benzene or deuterobenzene on either a Perkin-Elmer R10 Spectrometer or a Varian H.A.100 Spectrometer.

Mass Spectra

Mass spectra were recorded on an A.E.I. M.S.9 instrument.
Preparation of Starting Materials

1. 1,2-Bisdiphenylphosphinoethane\(^{173}\)

Lithium foil (10.6 g., 2 equivalents) was dissolved, by stirring for one hour, in a solution of triphenylphosphine (200 g.) in T.H.F. (1000 ml.), during which the temperature rises to 48°. The golden-brown mixture was then cooled in ice-water and ethylene dichloride (60 ml.) in T.H.F. (100 ml.) was added over one hour. The mixture was then boiled for 20 minutes and cooled. Methanol (1500 ml.) was added, followed by the slow addition, with stirring, of sufficient water to precipitate the crystalline phosphine which was then filtered and recrystallised from 40-60° petroleum ether. Yield 70%.

2. 1,2-Bisdiphenylphosphinoethaneplatinum(II) chloride\(^{174}\)

Sodium tetrachloroplatinitne (8 g.) in ethanol (100 ml.) was treated with 1,2-bisdiphenylphosphinoethane (6 g.) in methylene chloride (30 ml.). A pink precipitate formed immediately and was collected, washed with water, then heated with equal volumes of concentrated hydrochloric acid and ethanol (100 ml. total) under reflux for four hours. The residue was separated, washed with ethanol and recrystallised from dimethylformamide by the addition of equal volumes of light petroleum and diethyl ether to give 1,2-bisdiphenylphosphinoethaneplatinum(II) chloride. [10g., 80%].

3. Bis(1,2-bisdiphenylphosphinoethane)platinum(II) dichloride\(^{174}\)

(Ph\(_2\)PCH\(_2\)CH\(_2\)PPh\(_2\))PtCl\(_2\) (2.8 g.) in dimethylformamide (60 ml.) was treated with 1,2-bisdiphenylphosphinoethane (1.7g.) in chloroform (10 ml.). A few millilitres of water were added to ensure solution, followed by methanol (75 ml.) and diethyl ether (700 ml.). A precipitate was formed which was recrystallised from hot dimethylformamide by the addition of methanol to give \([\text{(Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2\text{Pt]}^{2+}\text{2Cl}^-\).
4. **Bis(1,2-bisdiphenylphosphinoethane)platinum(o)**

Sodium borohydride (conc. aqueous solution) was added in small quantities to a hot ethanol/water (8%) solution of \([(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2)_2 \text{Pt}] \text{Cl}_2 \). A vigorous reaction ensued and the bis chelate platinum (o) complex precipitated out. It was filtered and recrystallised from a benzene/methanol mixture to give the complex as bright yellow crystals, m.p. 252–255°.

5. **Bistrialkylphosphineplatinum(II) chlorides**

Bistrialkylphosphineplatinum(II) chlorides were prepared by adding a slight excess of two equivalents of the phosphine to a suspension of \(\text{PtCl}_2 \) in refluxing ethanol. \((\text{Et}_3 \text{P})_2 \text{PtCl}_2 \) was recrystallised from ethanol and \((\text{Ph}_3 \text{P})_2 \text{PtCl}_2 \) by dissolving in chloroform and precipitating out with pentane or hexane. \((\text{Ph}_3 \text{P})_2 \text{PtCl}_2 \) can also be prepared by the addition of triphenylphosphine to an aqueous solution of potassium tetrachloroplatinum.

6. **Trans-(bistriethylphosphine)platinum(II) hydridochloride**

Trans-(bistriethylphosphine)platinum(II) hydridochloride was prepared by the method of Chatt and Shaw by reducing \((\text{Et}_3 \text{P})_2 \text{PtCl}_2 \) with hydrazine hydrate.

7. **Germanium- and Tin-tetramethy1s**

These were prepared by the standard method of reacting excess Grignard reagent with the metal tetrachloride and distilling the tetramethyl derivative from the reaction mixture.

8. **Bromotrimethylgermane**

Bromotrimethylgermane was synthesised by the method of Mironov and co-workers.
Bromine (64 g.) was added to tetramethylgermane (50 g.) in n-propyl bromide (50 ml.). The mixture was refluxed for 24 hours, the temperature rising to 80° and the solution gradually decolourising. The mixture was then fractionated through a column packed with glass helices, the fraction boiling between 90 and 120° was redistilled to give bromotrimethylgermane b.p. 113.5°. Yield 95%.

9. The Group-IVb Hydrides

Me₃SnH, Me₃GeH and Me₃SiH were synthesised by reduction of the trialkyl metal halide with lithium aluminium hydride in dioxane or di-n-butyl ether, the product being distilled from the reaction mixture and purified by fractionation on a vacuum line.

10. Triphenylgermyl-lithium

Triphenylgermyl-lithium was made by reacting triphenylgermane with one equivalent of n-butyl-lithium in ether. It can also be prepared by cleaving hexaphenyldigermane with lithium in 1,2-dimethoxyethane.

11. The Platinum-germanium Complexes

(Ph₂PCH₂CH₂PPh₂)Pt(GePh₃)₂ and (Ph₂PCH₂CH₂PPh₂)PtH(GePh₃) were prepared from (Ph₂PCH₂CH₂PPh₂)PtCl₂ and triphenylgermyl-lithium, the hydride was then obtained by high pressure hydrogenation of the disubstituted germyl complex.

12. Bis(trimethylsilyl)mercury and Bis(trimethylgermyl)mercury

Sodium amalgam, prepared from mercury (200 g.) and sodium (2 g.), was shaken in a flask fitted with a 'rotaflo' tap with cyclohexane (30 ml.) and chlorotrimethylsilane or bromotrimethylgermane (10 ml.) until an intense green colouration formed (this varied between one to four weeks). The mixture was extracted with cyclohexane, which was then removed by pumping and the yellow residue purified by sublimation. Yield 10-35%.
APPENDIX

1. Kinetic Study of Hydrogenation of \((\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPPh}_2)\text{Pt(SiMe}_3\text{)}_2\)

The results of the kinetic study are tabulated in Tables 1 and 2. The pressure reduction at the completion of reaction \((P_\infty)\) is obtained by extrapolation from graph 1. The rate constants with respect to hydrogen and platinum complex were calculated by standard methods. Assuming a first order rate with respect to hydrogen, the integrated rate equation becomes

\[
\ln \frac{P_\infty - Pt}{P_\infty} = k_1 t
\]

\[
\log \frac{P_\infty - Pt}{P_\infty} = \frac{k_1 t}{2.303}
\]

Graph 2 is a plot of \(\log \frac{P_\infty - Pt}{P_\infty} / t\)

gradient = \(\frac{k_1}{2.303}\)

From graph (2), gradient = \(4.9 \times 10^{-5}\)

\(\therefore k_1 = 1.13 \times 10^{-4} \text{ s}^{-1}\)

The rate constant is obtained by dividing this rate by the concentration of hydrogen in solution.

In toluene at 298 K, hydrogen concentration = \(2.73 \times 10^{-3} \text{ ml}^{-1}\).

rate constant \(k_2 = \frac{k_1}{[H_2]} = \frac{1.13 \times 10^{-4}}{2.73 \times 10^{-3}}\)

\(= 4.14 \times 10^{-2} \text{ ml}^{-1} \text{ s}^{-1}\)
Similarly, with respect to platinum complex, the concentration of the platinum-silyl complex in moles litre$^{-1}$ is obtained from the expression:

$$ \text{concentration} = \frac{n}{v} = \frac{P}{RT} $$

$$ R = 0.08206 \text{ atm m}^{-1} \text{ mol}^{-1} \text{ K}^{-1} $$

$$ T = 298 \text{ K} $$

As before, the gradient of a plot of $\log \left(\frac{[\text{Pt}]}{[\text{Pt}]_0 - [\text{Pt}]} \right)$ /t (graph 3) gives $k_1/2.303$.

From graph 3, gradient $= \frac{0.475}{6,600}$

$$ k_1 = \frac{0.475 \times 2.303}{6,600} = 1.65 \times 10^{-4} \text{ s}^{-1} $$

rate constant, $k_2 = \frac{1.65 \times 10^{-4}}{2.73 \times 10^{-3}}$

rate constant, $k_2 = 6.0 \times 10^{-2} \text{ m}^{-1} \text{s}^{-1}$ with respect to platinum complex.

Therefore, as the plots of graphs 2 and 3 are linear the reaction appears to be first order with respect to hydrogen and first order with respect to the platinum complex.

N.B. The calculation does not include an allowance for the volume difference of hydrogen in liquid and gas phases, i.e. gas phase is three times the volume of the liquid phase, as the reduction in pressure of the gas phase is measured, for the system to remain in equilibrium the pressure reduction in the liquid phase must be three times the measured gas phase reduction, but for the first order rate equation this does not affect the calculation as in the $\frac{P_\infty - \text{Pt}}{P_\infty}$ expression this factor of three would cancel out thus $\frac{3P_\infty - 3\text{Pt}}{3P_\infty}$.
2. Reaction of $\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl}$ with Me_3SiH

\[
\text{trans-}(\text{Et}_3\text{P})_2\text{PtHCl} + \text{Me}_3\text{SiH} \rightleftharpoons \text{trans-}(\text{Et}_3\text{P})_2\text{PtCl}(\text{SiMe}_3) + \text{H}_2
\]

Equilibrium constant $K = \frac{[\text{Et}_3\text{P})_2\text{PtCl(SiMe}_3)] [\text{H}_2]}{[(\text{Et}_3\text{P})_2\text{PtHCl}] [\text{Me}_3\text{SiH}]}$

At 25°, hydrogen liberated = 3.72 N.c.c. = 0.166 mmole.
Initial concentrations of hydridochloride and Me_3SiH = 2.67 mmole.

\[
K = \frac{0.166}{2.67-0.166} \frac{0.166}{2.67-0.166}
\]

\[
K_{25} = 4.4 \times 10^{-3}
\]

Similarly at 35°, hydrogen liberated = 2.83 N.c.c. = 0.131 mmole.

\[
K = \frac{0.131}{2.67-0.131} \frac{0.131}{2.67-0.131}
\]

\[
K_{35} = 2.7 \times 10^{-3}
\]

\[
\frac{d \ln K}{d(1/T)} = \frac{-\Delta H}{R}
\]
 Integrating, \[
\ln K_{25} \frac{K_{35}}{K_{35}} = \frac{-\Delta H}{R} \left(\frac{1}{298} - \frac{1}{308} \right)
\]

\[
\ln \frac{4.4}{2.7} = \frac{-\Delta H}{8.3143} (0.00011)
\]

\[
\therefore \Delta H = -8.8 \text{ kcals.}
\]
<table>
<thead>
<tr>
<th>T.min.</th>
<th>Pressure Reduction mm.Hg.</th>
<th>$\frac{1}{T}$</th>
<th>$\frac{P_r-P_t}{P_r}$</th>
<th>$\log \frac{P_r-P_t}{P_r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11.14</td>
<td>0.1000</td>
<td>0.9119</td>
<td>0.0401</td>
</tr>
<tr>
<td>20</td>
<td>19.91</td>
<td>0.0500</td>
<td>0.8426</td>
<td>0.0744</td>
</tr>
<tr>
<td>30</td>
<td>27.64</td>
<td>0.0333</td>
<td>0.7815</td>
<td>0.1070</td>
</tr>
<tr>
<td>40</td>
<td>35.15</td>
<td>0.025</td>
<td>0.7221</td>
<td>0.1414</td>
</tr>
<tr>
<td>50</td>
<td>40.79</td>
<td>0.02</td>
<td>0.6791</td>
<td>0.1680</td>
</tr>
<tr>
<td>60</td>
<td>46.28</td>
<td>0.0167</td>
<td>0.6341</td>
<td>0.1978</td>
</tr>
<tr>
<td>70</td>
<td>52.20</td>
<td>0.0143</td>
<td>0.5923</td>
<td>0.2275</td>
</tr>
<tr>
<td>80</td>
<td>57.77</td>
<td>0.0125</td>
<td>0.5433</td>
<td>0.2650</td>
</tr>
<tr>
<td>90</td>
<td>62.64</td>
<td>0.0111</td>
<td>0.5048</td>
<td>0.2969</td>
</tr>
<tr>
<td>100</td>
<td>66.12</td>
<td>0.0100</td>
<td>0.4773</td>
<td>0.3212</td>
</tr>
<tr>
<td>120</td>
<td>73.36</td>
<td>0.00833</td>
<td>0.4200</td>
<td>0.3768</td>
</tr>
<tr>
<td>140</td>
<td>80.04</td>
<td>0.00714</td>
<td>0.3672</td>
<td>0.4351</td>
</tr>
<tr>
<td>160</td>
<td>86.48</td>
<td>0.00625</td>
<td>0.3165</td>
<td>0.4996</td>
</tr>
<tr>
<td>180</td>
<td>90.83</td>
<td>0.00556</td>
<td>0.2819</td>
<td>0.5499</td>
</tr>
<tr>
<td>200</td>
<td>93.26</td>
<td>0.00500</td>
<td>0.2627</td>
<td>0.5806</td>
</tr>
<tr>
<td>210</td>
<td>94.72</td>
<td>0.00476</td>
<td>0.2512</td>
<td>0.6000</td>
</tr>
<tr>
<td>220</td>
<td>95.70</td>
<td>0.00455</td>
<td>0.2434</td>
<td>0.6137</td>
</tr>
<tr>
<td>230</td>
<td>95.97</td>
<td>0.00435</td>
<td>0.2413</td>
<td>0.6175</td>
</tr>
</tbody>
</table>

$P_r = 126.5$ mm.Hg.
Table 2
Rate Constant Results with Respect to Platinum Complex

<table>
<thead>
<tr>
<th>min</th>
<th>Pressure Reduction mm Hg.</th>
<th>$\frac{P}{RT}$ ml⁻¹</th>
<th>$[\text{Pt}]_o - [\text{Pt}]_t$</th>
<th>$\log \left(\frac{[\text{Pt}]_o - [\text{Pt}]_t}{[\text{Pt}]_o} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11.14</td>
<td>0.000599</td>
<td>0.005083</td>
<td>1.1178</td>
</tr>
<tr>
<td>20</td>
<td>19.91</td>
<td>0.001071</td>
<td>0.004611</td>
<td>1.2323</td>
</tr>
<tr>
<td>30</td>
<td>27.64</td>
<td>0.001487</td>
<td>0.004195</td>
<td>1.3545</td>
</tr>
<tr>
<td>40</td>
<td>35.15</td>
<td>0.001891</td>
<td>0.003791</td>
<td>1.4988</td>
</tr>
<tr>
<td>50</td>
<td>40.79</td>
<td>0.002194</td>
<td>0.003488</td>
<td>1.6290</td>
</tr>
<tr>
<td>60</td>
<td>46.28</td>
<td>0.002490</td>
<td>0.003192</td>
<td>1.7801</td>
</tr>
<tr>
<td>70</td>
<td>52.20</td>
<td>0.002808</td>
<td>0.002874</td>
<td>1.9770</td>
</tr>
<tr>
<td>80</td>
<td>57.77</td>
<td>0.003108</td>
<td>0.002574</td>
<td>2.2075</td>
</tr>
<tr>
<td>90</td>
<td>62.64</td>
<td>0.003370</td>
<td>0.002312</td>
<td>2.4576</td>
</tr>
<tr>
<td>100</td>
<td>66.12</td>
<td>0.003557</td>
<td>0.002125</td>
<td>2.6739</td>
</tr>
<tr>
<td>110</td>
<td>73.36</td>
<td>0.003947</td>
<td>0.001735</td>
<td>3.2749</td>
</tr>
<tr>
<td>120</td>
<td>80.04</td>
<td>0.004306</td>
<td>0.001376</td>
<td>4.1294</td>
</tr>
<tr>
<td>130</td>
<td>86.48</td>
<td>0.004653</td>
<td>0.001029</td>
<td>5.5219</td>
</tr>
<tr>
<td>140</td>
<td>90.83</td>
<td>0.004887</td>
<td>0.000795</td>
<td>7.1472</td>
</tr>
<tr>
<td>150</td>
<td>93.26</td>
<td>0.005018</td>
<td>0.000664</td>
<td>8.5572</td>
</tr>
<tr>
<td>160</td>
<td>94.72</td>
<td>0.005096</td>
<td>0.000586</td>
<td>9.6962</td>
</tr>
<tr>
<td>170</td>
<td>95.70</td>
<td>0.005149</td>
<td>0.000533</td>
<td>10.6604</td>
</tr>
<tr>
<td>180</td>
<td>95.97</td>
<td>0.005164</td>
<td>0.000518</td>
<td>10.9691</td>
</tr>
</tbody>
</table>

$\frac{P}{RT} = 0.08206 \text{ atm} \cdot \text{ml}^{-1}; \ T = 298 \text{K}; \ [\text{Pt}]_o = 0.005682 \text{ ml}^{-1}$.
HYDROGENATION OF

GRAPH 1. PRESSURE REDUCTION \(\times \frac{1}{T} \)
GRAPH 2.

\[
\log \frac{P_a - P_t}{P_t} \times 10^2
\]

GRAPH 3.

\[
\log \frac{[P_t]_0}{[P_t]_0 - [P_t]_t} \times 10
\]
The 'H n.m.r. spectrum of the complex (Ph_2PCH_2CH_2PPh_2)Pt(SnMe_3)_2 with excess trimethylstannane in deuterotoluene was run at +25, +10, -10 and -30°. The resonance due to the hydride of trimethylstannane at 25° appeared as a broad signal which on cooling resolved into eight of the expected ten lines due to coupling with the protons of the methyl groups (Fig. 24). This confirms that the initial broadening is due to the trimethylstannane being in rapid exchange with the octahedral complex (IX), on cooling the exchange slows down (or ceases) and the coupling is then observed.
Variable temperature 1H n.m.r. of $(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)\text{Pt(SnMe}_3)_2 + \text{Me}_3\text{SnH}$, showing hydride resonance of Me_3SnH.

Fig. 24
REFERENCES

89. F. Glockling and A. McGregor, Unpublished Observations.
138. G. Wilkinson and J.F. Young, unpublished results, see ref. 115, p. 119.
162. R.S. Coffey, personal communication.
176. O.H. Johnson, Inorg. Syntheses, 5, 64.