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ABS'IRAar 

A new forward dispersion relation is developed to describe 

the kaon nucleon interaction by observing that the real part of a 

resonant partial wave amplitude goes through a zero at the resonance 

position. This relation eliminates same of the practical deficiencies 

inherent in the conventional forward dispersion relations. 

The 0 KN and [. KN coupling constants are determined by using the 

combinations of dispersion relations suggested by Lusignoli et al. 

evaluated at the kaon nucleon threshold. Initially the energy inde­

pendent scattering lengths of Kim are used to parametrise the K-N 

amplitudes in the low energy region in terms of a single channel 

s-wave zero-range approximation. + Just above threshold the K N 

amplitudes are parametrised in terms of the constant s-wave scattering 

lengths and effective r~ terms found by Goldhaber et al. and 

Stenger et al. Subsequently, the K-N s-wave scattering lengths 

are given an energy dependence in the unphysical region through the 

multi-channel K matrix formalism. Various constraints are placed on 

these I = 0 K-N scattering lengths such that the constant elements 

of the corresponding R-matrix should reproduce the 

* Y
0

(1405) resonance with its correct position and width in the :Elt- X.\T 

channel, and also the values of the energy independent scattering 

lengths at the K-N threshold. Furthermore, an energy dependence is 

then introduced into 



Similarly, using the I = 1 K-N energy independent and dependent 

scattering lengths in the appropriate dispersion relation gives an 

equation for the %. KN coupling constai1t which involves the p-wave 

* Y1 (1385) resonance. The effects of this resonance are approximated 

* in terms of its position and width and the Y
1 

KN coupling constant. 

A brief survey of previous determinations of the 1\, 1 coupling 

constants shows that these predictions are consistent within the 

large errors, except for a very recent calculation performed by 

Kim. 

By differentiating specific forward dispersion relations an 

* attempt is made to calculate the 1\KN, l:,KN and Y1KN coupling 

constants explicitly. However, the results indicate a slight incon-

sistency in the values obtained from conventional forward dispersion 

relations, while the predictions of the new relations are reasonable 

within the large errors . 

Finally, the predictions of the new relations are compared with 

the experimental data for the K±p interactions and the charge 

exchange processes. The results are found to be in good agreement . 
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CHAPrER I 

AN INTRODUCTION TO STRONG INTERACTIONS 

l. THE FUNDAMENTAL PARriCLES 

With the discovery of the neutron by Chadwick(l) in 1932 and 

the subsequent proposal that an atomic nucleus is composed of protons 

and neutrons, arose a dilemma concerning the nature of the force 

which binds the nucleon constituents together, as the electrostatic 

force only exists between protons and is repulsive. 

In 1935 Yukawa (2) proposed the existence of heavy quanta, with 

a mass some two hundred times greater than that of the electron, 

to account for these strong short-range nuclear forces. Assuming 

such a Yukawa coupling between the nucleons, conservation of angular 

momentum requires th::~t the spin of the quanta must be an integer, 

and consequently they are Bose particles. Also, from a study of the 

nucleon-nucleon potential and the empirical evidence that nuclear 

forces are charge independent, it was concluded(3) that a triplet 

of such particles should exist with positive, negative and zero 

charge states. 

This hypothesis was upheld through the discovery of pi-mesons 

. 4 (4) . . l . 1n 19 7 by Lattes et al. who bombarded a very sens1t1ve emu s1on 

plate with cosmic rays. These particles were identified with the 

heavy quanta postulated by Yukawa. 

At about the same time Butler and Rochester( 5)discovered the 

first of a series of particles with a curious anomaly in their decay 

.. ···:''i;'):j')-,.. 
, •r' 

I ~ 1 

. . ' 

' ' 



rates, that is, some of the decays were very much slower than 

expected. 'lhis characteristic led Pais ( 6) to suggest that these 

2. 

particles should contain some internal degree of freedom specified 

by a quantum number called strangeness. Since then, bubble chambers 

and particle accelerators have provided evidence for many more 

particles which are identified in terms of their mass and spin 

and various internal quantum numbers such as isospin and strqnge­

ness (?). 

Apart from the photon, electron, muon and neutrino, the list 

of known particles may be divided into two categories, mesons and 

baryons . 'lhe meson class contains the pion triplet ( 1f +, 1t 0 1t- ) 
1 

and the strangeness +1 kaon doublet (K+, If) with its antikaon 

counterpart (K-, ~) with strangeness -1, plus the various meson 

resonances such as p and K• etc. The baryon class consists of the 

nucleons (N), that is the neutron (~ and the proton (p), a hyperon 

singlet, doublet and triplet with strangeness -1, -2, -1 respectively, 

as well as the nucleon and hyperon resonances. 

At the present time the rapid growth in the number of particles 

observed is primarily due to the discovery of new resonances. However, 

whereas the baryon resonances are comparatively easily established 

by using a particle accelerator to impact a meson beam with a 

nuclear target, no such mesonic targets exist as the meson life­

time is about 10-B seconds. 'lhus the existence of many meson 

resonances, which occur through meson-meson interactions, is question-
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able. 

All these particles are not independent objects in the sense 

that they interact with each other and are therefore transformed 

in various ways. It is customary to divide the elementary particle 

interactions into three distinct classes according to their stre-

ngths (that is the coupling of the interaction). These are, the 

electromagnetic interactions, the weak interactions and the strong 

interactions. 

Electromagnetic interactions are responsible for electromagnetic 

processes such as the Compton effect, and for other processes based 

on the emision or absorption of virtual photons by a charged 

particle, and for mass differences within the various particle multi-

plets (e.g. the n-p mass difference). The coupling constant is e, 

the electric charge, and in ~ationalized units 

= l 
137 

Weak interactions include ~ decay and the decay of strange 

particles. The order of magnitude of the coupling constant ~ .... is 

approximately 

Strong . interactions occur between meso!IS and baryons and 

are responsible for nuclear forces, the production and absorption 

of pions, the production of strange particles and the binding of 

hyperons in nuclei. The strength of such interactions is measured 

by a coupling constant g, say, and is of the order 
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To gain insight into the forces acting between the particles 

during a strong interaction process it is necessary to introduce 

the concept of the scattering matrix. 
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2. THE S-MATRIX 

In an attempt to formulate a theory for strong interactions, 

Heisenberg(Ba)regarded three criteria(Bb) as observable quantities, 

which must necessarily be described in any theory. ~1ese conditions 

led him to investigate the properties of the scattering matrix, or 

S-matrix, first introduced by Wheeler(9) in 1937, which was defined 

as the operator which transforms the incoming state into the outgoing 

state. 

Subsequent attempts to describe the effects of strong interaction·. 

processes were analogous with the methods used to obtain a successful 

description of electromagnetic interactions in which the form of the 

Lagrangian was surmised from classical physics and the dynamical 

equations obtained were formulated as a convergent perturbation 

expansion in e2 Note that it was possible to express the S-matrix 

in operator form as an integral of a time-ordered product of interaction 

Hamiltonian densities Hr(xi) at the space-time points Xi (lO). However 

this approach fails to account for the dynamics of strong interactions, 

even if it were possible to guess the correct form of bbe Lagrangian, 

because the resulting perturbation series is non-convergent as the 

expansion is made in powers of the coupling constant which is very 

large. 

More recently a theory has been developed which, instead of 

probing into the detailed mechanism of the interaction, is based on a 

study of Heisenberg's(Ba) S-matrix whose matrix elements are, in 
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principle, directly observable transition amplitudes. 

If the forces involved in strong interactions have a sufficiently 

short range than the incoming and outgoing particles may be assumed 

to be non-interacting a sufficient time before and after the collision 

to allow the initial and final states to be thought of as consisting 

of free particles. Consequently, these states are specified by the 

aggregate of the individual particle momenta and quantum numbers. 

For such an initial stateli ~ the superposition principle of 

quantum mechanics allows one to write the final state as S l i} , 

where S is a linear operator. Thus the S-matrix element ..C::f ' S \ i .,. 

may be defined such that for an initial state l i )' the probability 

of t f 7 being a final state is 

l..C:f\Sl i>\ 2 

Similarly, if s+ is the adjoint of S, the probability is 

l ~ i l s+ l f > 12 

Thus, assuming that the states 1 i )' form a complete orthon;ornlE!.l 

set, conservation of probability implies 

s+s = ss+ = 1 

Hence S :i.s unitary. Moreover, if a proper Lorentz transformation L 

transforms the state \ i )' into \ i1~, then relativistic invariance 

requires that 

' " f ' s ' i > I 
2 

=I.e:. fL\ s ' iL"> ' 
2 
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and the phase of the matrix element can be chosen so that 

< f 1 S 1 i > = ' fLt S' iL '>. 

It follows that for spinless particles the S-matrix elements 

depend on the four-momenta of the particles only ~hrough their 

invariant scalar products, and for particles with spin the matrix 

element is composed of a number of such invariant functi ns multiplied 

by certain vector or spinor terms. 

It is convenient to separate the S-matrix into two parts by 

subtracting off the term when the particles d~ not interact at al. 

Thus we may write a 'two-by-two' S-matrix element for spinless particles, 

that is the matrix element which describes the scattering of two 

particles with four momenta p1 q1 into a final state of two particles 

with four momenta p2, q2, as 

~ p2q2\Siplql)o =~p2q2\ l\plql '> (l.l) 

+ i(2-1!')
4 ~lt-(pl+ql-p2-q2)<. p2q2J4 l plql > 

where 1 is the identity operator and ,he delta functions arising from 

translational invariance specifY total energy momentum conservation. 

The scattering amplitude F(p1q1p2q2), where 

F = < p2q2 l !J I pl ql .,.. (1.2) 

is related to the experimentally observable scattering cross section ~ 

by 
\ - ~ 

tl'tt) 
o-: 

where pi, Pf are the 

f Yi \Fl"i ~Q. 
"'r~ J \;; 
centre of mass momenta of particles 

(1.3) 

in the initial 

and final states, W is the centre of mass. energy and ..Q.. is the solid 

angle in the final state. 



It lS convenient to define new variables s, t, u by 

2 s = -(pl+ql) 
2 t = -(ql-q2) 

u = -(pl-q2) 2 

8. 

(1.4) 

However p ~ = -m~ for the j th particle, where j = 1, 2, 3, 4 and 

the overall energy momentum conservation condition 

(1.5) 

irrplies that 
4 

2 s+t+u = 2: m. 
J 

(1.6) 

j=l 

and so only two of s, t, u are independent. For more than four particles 

involved in a scattering process the number of independent varibles 

rises sharply. Thus the restriction of considering only two particles 

in the initial state and two in the final state is necessary for most 

practical calculations of strong interaction processes. 

In addition to the previous assumptions we suppose that F(s,t,u) 

has no kinematical singularities and furthermore, apart from the pole 

terms discussed later, the only singularities of the S-matrix elements 

are those demanded by the unitarity equation. The prescence of the 

latter singularities is best illustrated by combining equation (1.1) 

and the unitary condition for S which gives 

it.,~~,~\~' plql;lP -~plql\ !1 \ p2q2 '>* (1.7) 

= ...i... I ~1 dk2 ~4 (pl+ql-kl-k2)c::' p2q2\~, klk2><"plql ,JJ \ klk2 ?* 
(21f)2 w 1. 
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where the asterisk denotes the complex conjugate. Above the energy 

threshold for inelastic scattering additional terms arise on the 

right hand side of equation (1.7) since all intermediate states will 

occur which are allowed by energy conservation and quantwn number 

selection rules. This implies that the scattering matrix has a 

singularity at each energy corresponding to a threshold for a new 

allowed physical pr~cess. These thresholds are the branch points of 

the a.rrpli tude F ( s, t, u) from whd.ch the branch cuts are usually drawn 

parallel to the real axis in the complex energy squared plane, or the 

s-plane. 

The physical sheet is one particular Riemann surface on which the 

amplitude is single valued and is defined by any simple closed contour 

in the s-plane which coes not cross any of these cuts. 

The physical amplitude is defined as the boundary value of the 

amplitude when s tends to the real s axis from above, and is for 

~ (1.8) 

ct._..,. 0 

Similarly the a.rrplitude i;r ~ p1 q1 \ ~ \ p2q2 '? is defined as a 

limiting procedure from below and can be related to the physical 

a.rrplitude by analytic continuation. Thus the left hand side of equation 

(1.7) involves the discontinuity of the amplitude across the branch 

cuts. The syrrnnetry condition for the 1 two-to-tw6". 1 scattering of 

spinless particles 

~i\ s\f>=Lf\S} i'7 (1.9) 

implies that this discontinuity is twice the imaginary part of the 
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amplitude. 

In particular if l f ::> = l i :> , and hence t = 0, equation 

(1.7) for four equal mass particles gives 

(1.10) 

where k, \1 are the centre of mass momentum and energy respectively 

of the initial state
1
and r~ot is the total scattering cross­

section. This relation is known as the optical theorem. 

If F(stu) is the amplitude for the physical scattering process 

(1.11) 

then the energies and momenta of the four particles are real. If 

the particles have equal masses this implies 

2 s ~ 4m , t .S 0, u S 0 (1.12) 

If s, u and consequently t are considered as complex variables then 

by analytic continuation to the region 

2 u a:. 4m , s ~ 0, t :S 0 (1.13) 

the previous assumption that transition amplitudes are the values of 

analytic functions on real boundaries, implies that the resulting 

function F(s,t,u), evaluated in a suitable limit, now gives the physical 

scattering amplitude for the process 

a
1 

+ E
2 
~ a

2 
+ 51 (1.14) 

where the bar denotes the anti -particle. Similarly by analytic 

continuation to the region 

t }! 4m2 , s ~ 0, u !: 0 (1.15) 

the function F, again evaluated in a suitable limit, now gives the 



physical scattering amplitude for the process 

al + a2 ..... 51 + b2 

11. 

(1.16) 

These results are known as' crossing relations' and :imply that the 

same analytic function can be used to describe three different physical 

processes by a suitable choice of s, t, u. This is illustrated by 

the following diagram in which the physical regions for the s, t, u 

'channels' are shaded. 

Figure 1: The three physical regions for an interaction involving 

four equal mass particles. 

\ 

"' 0 

\ 

\---·-

\ .. ~·~ ... ~~t~ / \. I 
\ I 

\ 

'., / 
I 

/ 
I 

/ 
I 

ho 
t :.~ '-

If the quantum numbers and selection rules allow the possibility 

of a single particle intermediate state less massive than the two 

initial particles then the amplitude F(s, t,u) has a pole singularity 

at an unphysical value of the variable s = m~ for scattering in the 
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s channel. These poles represent stable particle. If the mass of the 

intermediate single particle is greater than the combined masses of 

the two initial.par.t:icles then the singularities, which are off the 

real s axis, are said to represent unstable particles, or resonances. 

Thus for the tt:qual mass case there are branch points at 

2 2 s = 4m , (Is) ' .... 

2 2 u = 4m , (Iu) ' ... •" (1.17) 

t = 
2 4m , 2 

(It) ' .... 

where Is, Iu' It denote the fix•st inelastic tr..resholds for processes 

s, u, t respectively. There may also be poles at s = m; , u. =··~and 
2 

t = ~ . 
For a fixed value t = t , say, the branch points in the s plane 

0 

are at 

s = -t 4m2 -t - (I )2 
o' o u 

ru1d the pole is at 

s = 4m2 
- t

0 
- ~ 

Figure 2: The singularites in the s-plane when t is fixed. 

(4-"- t,- .. ~) 
... , . 4 ----, ___ ,... 

"' I. " -1:-..... -T. .. -1.... ~ 

L 

'"'s 
~ 

(1.18) 

(1~19) 
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Thus the only singularities of the S-matrix are the poles 

corresponding to stable and unstable particles and the further 

singularities generated by unitarity. This is the postulate of 

'maximal analyticity'. A complete set of assumptions involved 

in the formulation of S-matrix theory may be written down 

(a) The superposition principle 

(b) The existence of a unitary S-rnatrix 

(c) Lorentz invariance of the S-rnatrix 

(d) The disconnectness of the S-matrix due to the short range 

forces (i.e. the presence of the identity l in equation 

(l.l ) . 

(e) Maximal analyticity. 

To exploit the potential of the theory developed so far it is 

necessary to introduce the concept of 'dispersion relations'. 
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3 DISPERSION RELATIONS 

If figure 2 represents all the singularities of F(s,t,u) 

on the physical sheet, then for s = r , where r is complex and 

t fixed, F(s,t) may be written by a Cauchy fonnula as 

(1.20) 

The contours R, 'r, , '1" enclose all- the singularities and R is 

closed by two semi-circles of infinite radii. 

Figure 3: The contours of integration on the physical sheet. 

r'R 

L - -..., 

-. ---=-=- --=-' ; 
;--- --

~ 

( . -
.-. --...._· 

Around ~. the contribution to equ(l.20) is 

~ 1. I to- - "" ... ) 

S plane 

(1.21) 

where g2, the residue of the pole at m2, is usually written in 

terms of the renormalized coupling constants defined in field theory. 
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Secondly, around T l. replace s 1 - r by - ( ... 1 -u) and ds 1 by 

-du 1 so we obtain a contribution 

~'\. I (~ - ~ \.) 
(1.22) 

't t where U = I flo\' -r- t (1.23) 
~ 

1,.':.1 

The integration on the contour enclosing the right hand 

cut g1.ves 

t l= ~I ~ i £ 1 ~) - l{\ '• ~ ~ .1 \-)] ~ J J 

s'- tr 

{ .. 1'1" ± ( 'F ~· ' i t., l ) 
{~o l~ 

he.·h.:.ti"""" ~"'"."-\ ~ tt'-,t-'-' i ..... ~Le..s 

f ls*, t) - t ~ ~ > (; ) 

(1.24) 

(1.25) 

where the physical amplitude is written on the right hand side 

of the above relation. 

Therefore the contribution is 

i r· ~ ~ (S l \-) ~ 5 I 
, s'-cr •• 

(1.26) 

Similarly, on the left hand cut the contribution is 

(1.27) 
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Let rr ~ s + i £ , therefore F(o- t) ~··_, the physical anplitude. 
c._..O 

Simply take the real parts of both sides and write 

.L ( ~' (\' ~ )(_s , .. ,. ~.Is' '= ::_ l { 3:"" 'F ll' ~.) J t' 

l..,.o \ ~··~)" + t,a. '' , •• s 
(1.29) 

'Ihus 

+ .1. ,. r .., l ~ i=-l .. , .. ) J • ' 
"' lsQ s '- s 

+ J (10 .1- t=t.-' .. ) J "'' 
'11 s, ""' - ~ 

(1.30) 

This integration equation is called a 'dispersion relation' 

(the terminology is due to a previous application of s:imilar 

equations to the theory of the dispersion of light in optics). 

Similar relations can be deduced by keeping u or s fixed instead 

of t. If t = 0 equ ( 1. 30) is known as a 'forward disperison 

relation'. These relations (1.30) are in fact special cases of 

a more general relation first written down by Mandelstam(ll) to 

satisfy all the reasonable requirements imposed on F ( s, t, u.) by 

@~sa6ic unitarity and crossing, and therefore his 'double' 

dispersion relation gives the most analytic form of a two body 

amplitude compat.iable with these conditions. 

So far we have been concerned with spinless particles. 

To describe the kaon-nucleon interaction it is necessary to generalize 

our arguments to include the spin and charges of the particles 

involved. 
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4 THE EFFECTS OF CHARGE AND SPIN. 

To describe a scattering process between charged particles 

which involves spin, it is necessary to consider the invariant 

amplitude as an operator in spin and isospin space. In particular 

for the pseudoscalar meson nucleon interaction there are two 

independent spin scalar operators 1 and 

where q1, q2 are the initial and finaJ. meson four momenta. Thus 

the transition amplitudes may be written in terms of two invariant 

functions A and B such that 

where u(p1 ) and u(p2) are four-spinors representing the initial 

and final state nucleons with four morrenta p1 and p2, and ts,....are the 

well known matrices . 

+ -If the meson is a pion, and the amplitudes for '1t p and 1t p 

elastic scattering are denoted by the subscripts (+) and (-) 

representively, then crossing symmetry implies 

<,", ... ' 4 .. 1,.,, 7 ':: <-", r\, I ~-' r· -"".,. 
and it is convenient to define new invariant functions 

(1. 32) 

and similarly for B~, for which it may be shown that A+, B-

are symmetric under crossing and A-, B+ are antisyrrmetric. These 

properties are knownas the 1 crossing relations 1 for A± and B±. 
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Other useful quantities are the amplitudes defined in terms 

of the eigenstates of isotopic spin. The nN system has values 

of isospin I=~, 3;2 aQd using (1.33) it may be shown that these 

pion-nucleon isospin amplitudes can be expressed in terms of the 

above crossing-symmetric and anti-symmetric amplitudes as 

1 - + -A2 - A + 2A , (1. 34) 

and identical relations hold forB~, B3/2. 

The crossing relation (1.32) can also be used to define four 

invariant amplitudes A+, B+ for the kaon nucleon interaction, where 

± now refers to 1C:, which may be expressed in terms of A± B± as 

in equ(L33). These amplitudes may be decomposed into :Luospin 

follows amplitudes as 

Ak+ 

' 
: ~teo 

1\k-, = t( p~· ... t.:t••) 
(1. 35) 

Correspondingly, if the nucleon involved in the scattering is a 

neutron then 

-... 

.. - (1. 36) 

The isospin amplitudes A0 , Ai refer to K+N scattering and the 

amplitudes A0 A1 refer to ~N scattering. The additional complication 

here, as apposed to nN, is due to the fact that after collision the 

K-N state may decay into a pion hyperon state which has the same 
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quantum numbers. Note that identical results to (1.35)-(1.36) 

hold for the B± amplitudes. 

To complete this introduction to strong interactions let us 

briefly consider the success of previous attempts to apply forward 

dispersion relations to the pion nucleon interaction. 
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5 THE PION NUCLEON FORWARD DISPERSION RELATIONS. 

Since the original derivation of the charged pion nucleon 

fo~~ard dispersion relations(l2), the subsequent improved proofs(l3) 

have.increased their importance with the realization that experimental 

verification of these relations, in turn, provides a check on the 

assumptions of unitarity, relativistic invariance and local 

commutativity used in their formulation. 

As before 
'1. 

s : - l ,, -t '\' ) (1.37) 

and if WL is the total incident pion energy in the laboratory 

system then 

s : (1. 38) 

where M, ~ refer to the nucleon and pion masses. 

~!.he dispersion relations are sometimes written in terms of 

another invariant '\1 , where 

" :. 
(l. 39) 

and for t -1- 0 are known as fixed :momentum transfer dispersion relations 

In analogy with equ(l.30) the dispersion relations for the 

invariant amplitudes A, B ( 21 ) are 

~Q'tlu 1:)-=- l f (oe J,/ ~\)!(v't)l _L. 4- ..l... ] 
' '1f \ v'-v v'+" 

,..~ t"l '+"' eo ( l. 40 ) 

~ 1± lv,~): !"lJ...:;. ..1. 1+.lf I ~~~·L.&±(,y·~JL.l- ~ .J.. J 
\"" ",-~~ v l'i u ,. lv'·" u • +" 

f ....... ~_... (1.41) 
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Vihere vf denotes the position of the nucleon pole term. The 

crossing relations 

A± (-v ~) = :!: A± (v, t) 

B~ - + (1.42) 
(-v,t) = B- (v, t) + 

have been used to yield integrations over physical amplitudes. 

G2 is the rationalized renormalized pseudoscalar coupling constant. 

Defining 

(1.43) 

equations ( l. 42) imply 

l:! (:-vr):. 
. , (1.44) 

From (1.33) 

1! L'~,t-J = 1+l",~J + r-(.,Jt:J (1.45) 

The dispersion relations for T:l: ( v t) become 

Re T:!: (v t) = Crt ( .1. : ..1 ] 
-" v·f \Jt"~ a."' t r 

~ J +l tf av' L1 ~&'\-) r .1 • ...L 
1\" L '\- " II I ... II 

(1.46) 

A+~ 
'+"" 

To apply the relations (1.46) to actual scattering problems 

it is necessary that the integrals should be asymptotically convergent 

For instance if Im T behaved like an ~ order polynomial in v then 

one way to ensure that the dispersive integrals were at worst 

only logarithmically divergent v1ould be to consider the dispersion 



relation for 

-- 'Z. 
t--, 

where the values of Re T(v,t) are known for v = v. 
l 

a 3 • 
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(1. 47) 

The application of this technique is known as 'making subtractions' . 

However, for a forward scattering amplitude f (s,t=O), Froissart(l4) 

obtained the following bound 

14-ls ,~'o)l ~ t.o~ .. ~-"~ ~ s( R~ r) 1 a.s s.-...o (.l~8) 
Hence the relation for T+(w, t=O) requires a subtraction to obtain 

convergence at high energies. The Pomeranchuk theorem(l5)states 

rr- ~) -· tr+ tloo)) ~ 
w .... 

0 (1.49) 

where are related to Tm T+( ~ ,0) by the optical 

theorem With the additional assumption 

l a- .lw) - o- + lw)] 1~w ;!. 0 
(1.50) 

the relation forT- ( w ,0) does not need a subtraction. The non-

forward fixed t dispersion relations suffer from the fact that a 

subtraction introduces an arbitrary ~unction of momentum transfer 

(i.e. the t' in (1.47) ) instead of a constant as is the case for 

the forward dispersion relations. Therefore, it is difficult to 

check their predictions. 

The most obvious application of forward dispersion relations 

is to predict a value for a2, or the pseudo vector coupling 
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constant r2, which are related by the equivalence theorem 

~ \. :: 

(1. 51) 

This has been done in several ways which are explained briefly 

below. 

With the notation 

(1.52) 

where D±, At. are real futrctions, consider the subtracted foi'\t.Tard 

dispersion relations 

(1.53) 

and 

(i.e. the subtraction is made at threshold, where w = jL ). Using 

the relations (1.45) and (1.46) the following forward dispersion 

(1. 54) 

where kL is the incident pion momentum in the laboratory system and 

the suffix L on w has been dropped. 

The earlier attempt to use (1.54), by Puppi and Stanghellini (l6), 

suffered from a lack of precision in the data measurements from 
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~Thich the dispersive integrands were calculated. With corrected 

data measurements Spearman ( 17 ) computed the curve for D+ ( w ) 

for several values of f 2 and compared the result with the~±p 

data. He found 

0·0& '1 O· ooS 

This value is in good agreement with the value of f 2 found from the 

effective range thoery suggested by Chew and Low(l8), for the 

isospin_I=3/2, angular momentum J = 3/2 pion-nucleon resonance. 

Schnitzer and Salzmann(lg) re-expressed (1.54) in a form with 

a linear depend~nce on ~. Plotting the appropriate dispersive 

contributions against W and comparing with thelf:!:p data produced 

f 2 = 0.08 ± 0.01 

Alternatively, by using the identity 

--w' L- ~" 
.. 

WI\. 

'I. w (l. 55) 

to increase the asymptotic convergence of the dispersion integrals, 

Haber-Schaim( 20) re-expressed the dispersion relation for D-(w,t=O), 

from (1.46), (1.52), as a linear function of.,}. The appropriate 

dispersive contributions plotted against ,,.} gave 

2 8 + f = 0.0 2 - 0.015. 

All the dispersion relations used so far are discussed in 

greater detail in Cl1apter V when they are used to determine the KN 

coupling constants. 

The dispersion relation for ReB+(~, t=O) given by (1.33), 

(1.41), provides a very accurate rnethod of calculating f 2 as the 
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the major contribution to the principal valuet integral arises from 

the well known I=3/2, J=3/2 pion-nucleon resonance, and Im B_ 

( w , t=O) is not involved in a p:r_•:i.nciple valued integral and so 

need not be so accurately determined. ~Lbe contributions of 

the dispersion integrals were estj~ted from the results of semi-

phenomenological fits to the experimental data, as the optical 

theorem only relates the total cross section to th~ imaginary 

part of the whole forward amplitude. This procedure enabled Woolcock 

(2l) to obtain 

f 2 = 0.081 ± 0.003. 

All these results depend on the use of forward dispersion 

relations . However, f 2 can be determined from photomeson production 

without the use of dispersion relations if the photomeson 

amplitude is assumed anaJ.ytic in the region containing the physical 

region \ cos & \ .::.. I , and including the crossed pion pole at 

cos 9 = l I ~"" as an isolated singularity (where '\w is the pion 

velocity in the. centre of mass system). With these assumptions 

Taylor et al. (22 ) found f 2 to be 

f 2 ·= 0.064 :!: 0.041 

Within the errors this is in good agreement with the value of f 2 

predic.ted by forward dispersion relations. 

Anderson et al. (23) evaluated the 1\:!: p fOI'\ATard dispersion relations 

with f 2 
IV 0. 08 and fbund good agreement with the low energy 

experimental data. This successful agreement was extended by Arnblard 

et al. ( 24 ) , throughout the region \IJ <. 1. 98 BeV. 
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More recently the '( :!:p comparison with experiment has been 

made in the energy region 8 BeV /'c. kL < 29 BeV /'t.5). The results 

at these high energies are virtually independent of f 2 . Defining 

(1. 58) 

the closeness of the forward dispersion relation predictions to the 

experimental results is very impressive for the quantity (o( + 0(. ) • 
+ -

The forward dispersion relations predictions for the quahtity 

\.oi. _ - .t...,.) are of the right shape but differ systematically from 

the experimental results. Nevertheless, this does imply a verification 

of the Pomeranchuk theorem as \.t-- .l+) is approximately 

2.T7 Thus we may conclude that forward disp1:-::rsion relations do 

provide a means of making 'real' theoretical predictions. 

The general kinematics for nucleon pseudoscalar meson inter-

actions are formulated in Chapter II, which also contains a 

discussion of the complications induced by the prec.sence of an 

'unphysical' region in the kaon nucleon forward disper::.d.on relations. 

T11e values of the coupling constants g2
f\ , g; due to the A and 1: 

poles, are calculated in Chapter III by using a fonrard dispersion 

relation method suggested by Lusognoli et al. (26) with whlch our 

results are compared. 

To overcome the inherent disadvantages of this method a new 

forward dispersion relation is suggested in Chapter IV and the 

predictions are compared. with those obtained by using the previous 

forward dispersion relation. 
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The various methods used to ~Bdict values for g21\, g2! are 

surrnnarised in Chapter V. Chapter VI contains the predictions 

obtained by differentiating two dispersion relations with respect 

to energy. 

Finally, Chapter VII contains the results of a comparison of 

the new forward dispersion relation with experiment, and some 

general conclusions which may be deduced. 



CHAPTER II 

THE KAON NUCLEON LOW ENERGY REGION AND KINEMATICS. 

l INTRODUCTION 

Although the forward dispersion relations for the kaon nucleon 

process are not on the same firm theoretical basis as those for the 

pion nucleon interactions, indeed for K mesons strangeness upsets 

the plausibility arguments based on the inherent symmetry of the 

pion(27 ), the successful prediction o~ the pion nucleon coupling 

constant indicated that appropriate for,,.iard d:lspe:c.sion relations, 

if valid, could provide an accurate determination of the kaon 

nucleon coupling constants due to the lambda and sigma poles. 

To evaluate the latter relations the effects of the K-N absorption 

channels have previously been taken into account by Dalitz and 

Tuan( 2B) and independently by Jackson and Wyld(29) using a multi-

channel formalism,with the assumptions that the open three-particle 

channels are either weak, in particular the 1\'lt~ channel is 

neglected, or have thresholds outside the range of interest. Both 

methods depend upon re-expressing the S-matrix in terms of another 

matrix, the K-matrix. 



29. 

2. THE K MATRIX 

In general, the S-matrix may be expressed in operator notation 

as 

S = l + 2iT (2.1) 

where T is the operator which refers to the connected parts of the 

s-mtrix. 

It is useful to define another operator, usually denoted by 

K, which satisfies 

s = l + iK 
l- iK (2.2) 

The unitarity of S corresponds to K being a hermitian operator · 

(2.3) 

The relationship between K and T may be expressed through the 

follo~dng equation(30) 

T = K + ilcr' (2. 4) 

The unitarity condition tal<:es a particularly simple form when 

expressed in terms of states with a definite total angular momentum 

J for which 

Formally this is exactly the same as the relation obtained by using 

equation (2.1) and the condition s+s = l. 

The counterpart of (2.1) for the matrix SJ defined by 

(2.6) 

is often useful. This is 
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(2. 7) 

We can also define K matrix elements in terms of a matrix 

KJ where 

and 

TJ = KJ +iKJ TJ 

This relation (2. 9) may be revl:r•:i..tten as 

(T )-l = (K )-l -i 
J J 

(2.8) 

(2.9) 

(2.10) 

The importance of this equation arises from the fact the invariance 

under time reversal combined with the hermitian property for K 

implies that KJ, and similarly (KJ)-1, is a real symmetric matrix. 

Thus equation (2.10) represents the separation of (TJ)-1 into its 

real and imaginary parts . 

The usefulness of these relations may be illustrated by 

considering a single channel process involving the scattering of 

particles with zero spin. In this case T J and SJ are just scalar 

amplitudes and equs(2.5)-(2.7) become 

ImTJ= \TJl
2 

(sJ{ 2 
= 1 

Equations (2.8), (2.10) give 

Im (T )-l - -1 J -

Equation (2.12) allows one to write 

S _ e 2iiJ 
J -

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where the factor 2 in the exponential is introduced to agree with 
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standard conventionJand ArJ is a real scalar function of the centre 

of rrass momentum k lmown as the phase-shift for scattering in the 

partial wave J. 

by 

then 

From equs (2.10)-(2.14) we obtain 

(KJ)-l = cot ~J (2.15) 

If instead of T~ we use the partial-wave amplitude fJ defined 

(2.16) 

(2.17) 

Thus, so long as the energy is below the threshold for any in-

elastic processes each partial wave amplitude may be expressed in 

terms of a real function of momentum. 

In addition, the J. ,~ partial wave (where ).. is the arbital 

angular momentum, ~ o 'J '= J. for spinless particles whilst 

J = Jl. :!:: ~ for a spin ~ -spin 0 interaction), has a further 

momentum dependence of k .J., when k N 0 ( 3l) (this point is discussed 

in appendix A). This suggests that in general we should define the 

K matrix elements so that the i, j th element is 

K.. = k.ti + ~ R .. k. £j + ~ 
lJ l lJ J 

(2.18) 

where k.,j. and k.,). are the centre of mass momentum, orbital 
l l J J 

angular momentum for scattering from the i th to the j th channel. 
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Thus the elements of the R- matrix are real and symmetric and do not 

contain the threshold branch points associated with the K-matrix. 

For spinless particles Jt = J and so equ(2.15) becomes 

\ '\l J..)- \ : -t._ l.l .. I c,.;t ~ J.. ( 2 .19) 

Moreover, because t he R matrix elements are analytic in k2 (32) 

we may express them as a power series in k2 . For a single channel 

this procedure simply gives the effective range formula suggested 

to describe the low energy phase shifts, that is 

(2.20) 

where the constants a J.. , r J.. are called the 'scattering length' 

and 'effective range'. If r~ = 0 the relation (2.20) is known as 

the'zero-range approximation'. 

For fu~ scattering, the isospin I = 0 state involves the~]![ 

K-N channels, and the isospin I = l state invo~ ves the r1t, l\1t ;K -N 

channels. At the present time the lack of knowledge of the values 

of all the parameters involved necessitates a further simplification 

that is, that the isospin I = l absorptive effects are given 

entirely by a single pion hyperon channel whose threshold coincides 

with that for t.\r . Thus for given J the R-matrix becomes 

Gto '0 .Q 
~J flo 'ao : 

.c., (l, 
~ /l, 1S, (2.21) -
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Written in terms of its two disjoint submatrices which refer to 

the isospin states I = O, 1. Note that the J suffix on ri· 1.. 1S· 
" 'r"J ' 

has been suppressed for clarity. From the lack of evidence to the 

contrary these elements (.t, fl;. .._., ) are normally assumed to be 

constant, although section (IV-3) illustrates the results obtained 

when an explicit k2 dependence is included in the ~matrix elements. 

Furthermore, let us assume that for a given isospin state, 

in which case we are dealing with 2 x 2 matrices, the T-matrix 

elements refer to the various channels as follows -

(2.22) 

with the hyperon Y = {;-") for the isospin state I = (~). For 

a given isospin state equ(2.9) becomes 

(2.23) 

where k, q are the KN, Y1r centre of mass momenta. The denominator 

of this expression may be written as 

b =- (1- ·, ,u•• 11 ) [ 1 - \ -t. >t•'o~ + (. 1&+1 J \.i..~} fJ1. (2.24) 

\- \.~,., ... ,, 



Thus the generalization of equ(2.16) to 

where 

--

l11: ) .. 
l \ j 

r:---;-­
,1 '\ ~ -~ 

gives the KN ..,.KN partial wave amplitude 

-... ~1.! t .t _. i. ~U41 (ti\- oelJ)) 
b 

Similarly the Y1t _. Y 'It partial wave amplitude is 

--
Below the KN threshold k becomes imaginary 

.'. k = ik 
where 1C = \ k \ . 

For s waves (J.. = 0) we may write 

a= J.. A.l'U~\./ l'-t ~\~'-) 

b = c;,/Jl I (I.,. lt"' '1S'a.) 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

In the RN~RN channel we obtain the following relation from (2.19) 

(2.25) (2.27) (2.31) for the s-wave phase shift 

k cot ~ =O = 
1 

a+ib 
(2. 32) 

Thus the absorptive effects may be incorporated into the single 

channel s-wave zero rangea formula for the RN. channel by alleuingtll\t: "~ 
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the scattering length to be~ complex.· c.o"st-~~t. 

In the zero range approximation the KN s-wave centre of mass 

ampl :i.tude is given by ( 2. 27), and is for isospin I 

(2.33) 

:from (2.31). 

Above the KN threshold (dropping the I suffix for clarity) 

~ ... e..t .. \+\,1.) 

u~ ~~)~ + l~ ... )\ 

Below the RN threshold 

~ + 1t lQ. \. "' "~) 
l\t-\rA.)'" • l'h ~)\. 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

Equations (1.35) and (1.36) give the decomposition of the K-p, K n 

centre of mass s-wave amplitudes in terms of the isospin amplitudes. 
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\llithout the complications due to absorption channels the K+N 

s-wave amplitudes may be written in terms of the usual effective 

range approximation ( 2. 20) as 

(2.38) 

where 

(2.39) 

The s-wave centre of mass amplitude for K+p which is pure isospin 

I=l from (1.35), is given by equs(2.38)-(2.39) with 

a+I = a+1 the s-wave I= 1 scattering length and 

r+I = r+1 the s-wave I= 1 effective range. The K+h s-wave centre 

of mass amplitude involves both isospin I = 1 and I = 0 from (1.36) 

and thus requires a 1rnowledge of a+o , the K+N I = 0 s-wave 

scattering length. 
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3 KN KINEMATICS 

In addition to the modifications due to charge and spin it 

is convenient to introduce an extra energy factor into the relation 

for the elastic s-matrix 1tvhich then becomes <33) 

J. 

S:. ~~~.- i.(?n>"" ~ct(,,+,,-v"-~">( ,_.'L )'""\;. ... 1' ""' (2.4o) 
It E1i"a.""•"'a 

and ~.{. ~ = 0 unless the initial and final states are identical when 

~.(.~ = l. Also wi:(pL+'t}\ and tt:~"',.,~)t where )A-, Mare the 

kaon and nucleon masses and p1, p2 and q1 , q2 refer to the-initial, 

fi~l four momenta of the nucleons and mesons respectively. As 

before u1 and u2 are the Dirac spinors for the initial and final 

nucleon states and u u = 1. 

The re-defined invariant amplitudes are then expressed as 

T = -a + ~'lS~ t,,+ ,,).k ""t (2.41) 

'l 

If kz., w'L are the incident kaon momen~a and energy in the 

laboratory system then 

~-:. n'L-t 14 1. ~'2. n ""a.. (2 ... 42) 

with 

(2.43) 

using our previous definition of s, t> u (i.e. equ.(l.4) ). 

The total energy in the centre of mass (c.m.) system is 
- I w : \ h t+ e.. 1. )~ (2.44) 
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where k is the c .m. momentum and s = V for scattering in the s 

channel. 

Therefore (2.44) implies 

i..~ = ls- lrt+J")''}( ~- lM-,..-)') / Lt-s. 

Equs(2.42), (2.43) (2.45) give 

w 
kt = iVi k 

(2.45) 

(2.46) 

With the definitions ( l. 4 ) , t is the invariant momentum transfer, 

and for a c.m. scattering angle • 

(2.47) 

It is helpful to express the invariant amplitude, defined by 

equ (2. 41)' in tenns of the amplitudes f l (. ) ' f 2 ( e ) \vhich are 

related in a simple way to the helicity amplitudes of Jacob and 

Wick ( 34 ) . Thus, if \ l? and 12 ,. are the Pauli spinors for the 

initial and final nucleon spin states then 

... <."2. \ +\lt)~ Ct·;"){o-.~d+-a(9) l';> <2 · 48 ) 

"'\. 
The negative sign is conventional',ft'" is the nucleon spin and 

q1 , q2 the in:i:tial and final c.m. meson momenta. ltrom equations 

(2.41)-(2.48) we deduce 

t - ·E+rt [ \) + ( w -11) "l J 
' - a .. "' (2.49) 

~ -'l. - E'-M f -~ + lW+.-.)"B J (2.50) 

11T~ 

( ' 2 2)"""· . t where E = \...M +k lS the energy of the nucleon m the c .m. sys em. 
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Inverting these relations gives 

1 ~ - \J+t'\ 4, w-M 4\. (2.51) 
't'ft -

t-t-11 r-..-. 
.l i - \ 

""· 
+ I '\. (2.52) -"lt t!+l"' &:'•M 

The partial wave amplitudes fJ.:. corresponding to total 

angular momentum J = J. ! ~ are expressed in terms of the phase 

shifts ~ ~ by equ(2.17) i.e . 
.J.-

+ I" ,., 

_, --
(2.53) 

From reference ( 34) the following relations are obtained 

4 \ li> : i. lJ. ..t 4" v J.l/rA C:V - '-,l• t ~-A l~) (2.54) 
.a.~ I) 

.t.l lt) ': =2: l +~ .. - .fA .. ) P./ (J'J 
.&. .. I 

(2.55) 

where x = cos9;(') denotes differentiation with respecttot x, 

and p ..l are Legendre polynomials . 

Using the orthogonality relation 
\ I 

~.t..J..-= l, AY. \t,..) t~ .. ,l'~'J- ~_,0'J) 
the inverse relations become 

I 

+..tt = i r ~'II ( P,~.~~cJf, -~- '.1':!:, + ... ) 
-· 

(2.56) 

(2.57) 

This relation makes it possible to express the partial wave 

amplitudes in terms of the A .. and B amplitudes and thus gives the 

analytic properties of the partial waves. As the behaviour of -".A 

is J.i:l~e k 11-- for small k, in general only a few partial waves are 

necessary to describe the behaviour of the A, B amplitudes at low 
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energies . For this region the low energy KN, KN contributions to 

the forward dispersion relations are assumed to arise wholly from 

the J. = 0 partial waves apart from the special case of the 

* Y1 (1385) (see section (IV-4). 

The forward scattering amplitude f(s,t) in the c.m. system is 

from equ(2. 48). Note that t = 0 when & = 0 from (2 .47). 

By (2.49), (2.50) and (2.42) 

The optical theorem (1.10) becomes 

I \eO\ .t.lfa, o) -:. ~ 17 ~.~ 
411 

(2.59) 

(2.60) 

However if the nucleon is at rest (i.e .in the laboratory 

frame) the optical theorem assumes the form ( 35) 

"lWII\ +Ll~~ O) '::: ~ .. O'+ot (2.61) 
f+'t( 

where 

(2.62) 

is the forward laboratory amplitude. 

Because of the presence of W in equation (2.59) the forward 

dispersion relations must be written in terms of the analytic 



laboratory forward scattering amplitude fL (w, t) where 

from (2.59) and (2.62). 

In keeping with our previous notation we define 

1!lw, o) = ~~ (w,Q) + w &tlwJ 0) 

which satisfies the crossing relations (1.44) when t = 0. 

The K±N forward amplitudes are defined by 

--

41. 

(2.63) 

(2.64) 

(2.65) 

With these definitions the kaon nucleon forward dispersion 

relations may be written down in analogy vvith equation (l. 46). 



CHAPI'ER. III 

THE CONVENTIONAL FORWARD DISPERSION RELATIONS FOR 

KAON NUCLEDN SCATI'ERING 

l. THE FORM OF THE RELATIONS. 

The relative simplicity of the form of the forward dispersion 

relations (1.46) depends on the symmetry under crossing of the 

pion - no new competing channels are opened up. However the 

prescence of abso1ption channels in the K-N process means that 

Im T_(w,t) is non-zero in the region 

t1N +}A-te (3.1) 

that is, below the kaon nucleon threshold but above the pion 
whe,_~ 

hyperon threshold J aR8: the centre of mass energy W is given by 

equation (2.44). 

The cut diagram for the KN interaction in the w plane is 

shown below. 

Figure 4: 

-Jl- IJ•"D' "'i.lt A ~ ~~ 
w.,. "'t I I· I --·· --- .. L [ 

. _, 
- -. ·){·- Ji.· .I --

1\N " i: lilt tv 1~ Y: ~N 

Taking account of the 'unphysical' region (3.1) leads to a 

forward dispersion relation for KN which is 
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)A 

}+ lw,\::o) =-r ~; "JtlV) +" .l r A-_~·o) t0-w' 
- Y Wyt. w 1T w \111''1 w (3.2) 

IC'lf 

+ .1 rb A- + lw. u) ~' .... .l. r"' \\.! l"' \ IJ) ~ \ 
11 ,. ~I + "" "'\\ II' "". + """ 

in unsubtracted form. Where the ± refer to the K-N scattering 

amplitudes in the laboratory frame, and the numerators of the 

pole terms in (3.2) may be rewritten in terms of the field theoretic 

unrationalized renormalized coupling constants by using Feynman(36) 

rules. Thus 

(3.3) 

4 M l"\"'" 
The signs in equ(3.3) rely on the relative parities assigned to the 

strange particles. The relation (3.3) is discussed in appendix D. 

Alternatively, equation (3.2) may be rewritten using (2.65). 

):i two) 
J 

~~ )(_tv) r -l... i ...L.. J 
~ w~-w ~y~w 

\~ ~-{,w'o).(w'"'w't w 1 ~w)dw 1 

w'~-w ~ 

(3.4) 

The asymptotic behaviour of equs(3.2), (3.4) is fixed by the 

Froissart(l4) bound, equ(l.48), and the assumption of the 

Pomeranchuk theorem(l~) equ(l.49), so that only the relation for 

D- (w) is useful in unsubtracted form. Consequently . we shall in 

future mean the dispersion relation for D- (w,o) when we l'efer to 

equation (3.4). D+(w) are given by the s-wave scattering lengths 

whenwhen equ(3.4) is evaluated at threshold, w = ~' to determine 

the coupling constants g2y. The values of g2y may then b~ compared 



44. 

with previous results and in particular with the predictions of the 

SU(3) symmetry scheme discussed in chapter V. 

Note that the contribution from the unphysical region is 

complicated further by the presence of two experimentally observed 

* resonances with the KN quantum numbers - the s-wave (..2=0) Y (1405) . 0 

and the p-wave <R.=l) Yt,* (1385) 
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2 THE CALCULATION OF THE COUPLING CONSTANTS 

In this section the values of the rationalized renormalized 

coupling constants g21\KN and g~ KN are redeterrnined using the method 

of Lusognoli et al. ( 26 ) . Firstly 
1
g2

1\ was found by considering the 

K±p - ~ K±n combination of the dispersion relations of the type (3. 4), 

which eliminates both the t' pole and the Y 1 * ( 1385) resonance 

contribution through equations (1.35)-(1.36), and assuming that the 

integral over the unphysical region is correctly given by extrapolation 

using the I = 0 s-wave KN scattering length aa+ibo with the values 

determined by Kim< 37 ). 

Similarly, the K±n dispersion relations of the type (3.4) 

0Lve an upper bound for gi when the s-wave contribution to the integral 

over the unphysical region \Alas evaluated by extrapolation using the 

values given in reference (37) for the I = l KN scattering length 

a1 +ib1. This inequality arises because the sign of the Y1 * contri·­

bution is fixed by the imaginary part of the p-wave amplitude, 

which gives an effect of constant sign in the resonance region, 

and in addition remeri1bering the p wave k 'li factor which is -1<2 in 

this case. 

Rewriting equ(3.4) with·the pole terms on the left hand side 

of the equation, the contributions on the right hand side may be 

denoted by 

(3.5) 
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vlhere 

cl = term involving D± (.p.) 

c2 = K- (s-wave) contribution from wyw to w2 = 574·2 MeV. 

c3 = K- cross section integral from w2 to 20 GeV. 

C4 = K+ cross section integral from )I- to 20 GeV. 

c5 = the inte~al inv::>l ving r t above 20 GeV. 

g(y1*) is a positive quantity representing the effect of the Y~(l385) 

contribution. Note that gn(Y1*) = 2gp(yl*) from charge independence 

where the n, p subscript denotes the nucleon involved, and 

g2f"r - n = 2g2 pzoR - neglecting the very small mass difference effect . 

The contributions c1 and c
2 

were calculated using the energy 

independent scattering lengths of Kim( 37 ) for KN, the I =l scattering 

length and effective range of Goldhaber et.al. <38 ) for K+p, and in 

addition the I = 0 scattering length of Stenger et.al. (39) for K+n. 

The K+p s-wave scattering length and effective range and hence the 

s-wave amplitude are fairly well determined near threshold, while 

although, not so well known, the I = 0 s-wave scattering length gives 

a very small contribution to the K+n s-wave amplitude. Therefore, 

up to energy w1 = 514 MeV where the K+N total cross section data 

commences, the contributions from the dispersive integrals are well 

determined and comparatively small. In the range w1 c. w' c::::. 20 GeV 

+ . ( 40 ) . th . b . the K N total cross sect1on data was used to g1ve e contr1 ut1on 

-KN . da (4l) . Ab c4. Above w2 the total c;ross sect1on ta g1ves c3" ove 

w' = 20 GeV the combj_ned effects of the KN and KN dispersive integrals 
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were estimated by using the formalism of Phillips and Ra.rita <42 ). 

An excellent feature of this relation is the vJay the total cross 

sections subtract so that the only contributions from the asymptotic 

region come from the p and w meson trajectories . Further details 

are given in appendix B. The results of this calculation for w =)A­

are compared in table~ with those of Lusognoli et.al. (26 ). The 

values of the parameters used to determine the low energy contributions 

are shown in the following table. 

Table l: The input value (in fermis) of the low energy parameters 

for the present calculation. 

f KN KN 
0 

-1. 67~0.04 1 -0.29±0.015 a = a+ = 

bo + .1. + = 0.71-0.04 r+ = 0.5-0.5 

a1 -0.07±0.06 0 0.04±0.04 = a+ = 

bi = 0.68±0.03 ro = 0 + -- - ---- ---·-

The nucleon, lambda, sigma, kaon and pion masses were taken to be 

938.2, 1115.4, 1195, 493.8 and 138 MeV respectively. 
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Table 2: The contributions to the (K±p) and (K±n) dispersion relations 

of the type equ(3.4)in units lo-7 MeV-2. Columns 2,3 contain the 

results of references (26) and the present investigation respectively. 

(Only the combination c1+c2+c4 is known for column (2) ). 

lCp (2) K±n + (3) .J. 

K-p K..;..n 

cl -45.5 4.3 

c2 102.2 29.8 

c3 -81.3 -63.5 -81.2 -63.5 

c4 44.5 43.8 

c5 -5.3 -3.3 -5.1 -3.1 

Cl+C2+C4 101.0 75.6 (101.2) (77.9) 
Total 14.4 8.8 14.9 11.3 

- -- . 
Note that Luisignoli et.al. (26 ) used the KN scattering lengths given 

by Kim( 43 ) as opposed to those of Kim in reference (37) shown in 

table l. The value of a1 differs appreciably between these two ref-

erences. 

The values of the coupling constants were calculated from 

2 K+ , K+ 
2.12~ = -p-2 -n 

and 

2 + 
3.66~0 $ K-n 

Thus, Luisegnoli et.al~26 ) 
2 
~ = 4.8 

obtained 
2 

g s 3.2 ,o 
The results in column 3 of table 2 imply 

~ = 4.3 

(3.6) 

(3.7) 

(3. 8) 

(3.9) 
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Apart from the differences in the KN scattering length a1, 

which contributes to c1 for K-n, a slight discrepancy in the values 

predicted for the coupling constants (3.8), (3.9) could arise from 

the small scattering length a+0 = 0.04 fermi( 39 ) which Lusignoli et.al. 

(26 ) "bl gl t d . . . di b" <44 ) possl y ne ec e . This polnt lS .scussed y Rood • 

rr.he previous table shows the acute dependence of the equ(3.4) 

on the cancellation of the contributions arising from the integratiOns 

over the unphysical region wy 
11 

~ w' '~ and the term containing the 

real part of the amplitudes, both of which are large and have large 

errors associated with them. When evaluated in terms of the energy 

independent scattering lengths an estimate of these errors may be 

ascertained from the uncertainty in the scattering lengths in table 1. 

The size of the contribution of the unphysical region depends, to 

some extent, on the fact that the dispersive integrand contaLnB the 

imaginary part of a resonant amplitude in the appropriate isospin and 

orbital angular momentum states - in the· calculation of ~2 the Y
0
* 

contributions in the s-wave isospin I = 0 KN amplitude. The 

contribution from this effect is opposite in sign to that from the 

D± ()A-) term, so the value of their sum is rmch smaller. The second 

disadvantageous feacture of equ(3.4) is the principle-valuedness of 

the integrals containing the KN amplitudes. Under such an integration 

it is clear that the errors associated with the ~ amplitudes due 

to the uncertainties in the scattering lengths in table l, will be 

stressed when w =~. The quoted erros on a
0
,a1,b

0
,b1 in reference< 37 ) 

enable one to conclude that g~ is more sensitive to variations in a
0 
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than b 0 and 3. 39 c. ~ <. 4. 34, whilst · the upper bound on ~0 
is more dependent on b1 than the rather small a1 scattering length 

and 2.77cg2 c 3.42. Note that the KN energy independent scattering ro 
lengths were varied in both the ranges wy

11 
c. w'•}'loand JAc. w' < w2 

to give these results. 

The calculation involving the use of the KN energy dependent 

scattering lengths given by equ(2.31), has been performed by RoodC 44 ) 

using various sets of DC 0 , ~~ , "1 0 throughout the low energy region 

for the K±p - ~ K±n combination of equ ( 3. 4) . The 

* corresponding variations in the position and width of the Y
0 

in 

the 1: '1t - 'En cha nnel are reproduced below. 

Table 3: Some results of reference (44). 

. ~ 

o{ 0 : <..~.) 
-- --- ------ --

-1.41 0.3 

I 
( -1.51 

I 
I 
I 
I 
1-

; -1.61 

-1.51 

0.4 
0.5 

0.4 
0.5 
0.6 

0.4 
0.5 
0.6 

0.3 
0.4 
0.5 

0.3 
0.4 
0.5 

0.3 
0.4 

ts, 
0 

0 

0 

0.1 

0.2 

0.3 

\.JR 

1401 
1460 
1399 

1404 
1404 
1403 

1408 
1408 
1407 

1405 
1404 
1404 

1405 
1404 
1404 

1405 
1404 

~'"'a 
22 
32 
49 

26 
37 
56 

21 
30 
41 

19 
29 
45 

21 
35 
58 

24 
43 
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2 + The conclusion of this investigation was that~= 7.4- 1.2. 

However, it does seen1feasible that since the energy independent 

scattering lengths have been fitted to the experimental data for 

the KN arrq:>litudes may be assumed to be given by 

these constant scattering lengths, in this region apart from the 

uncertainty induced by the errors in table 2. Moreover, the effects 

of the absorption channels on the KN amplitudes must vanish at the 

pion-hyperon threshold. However, energy independent scattering 

lengths do not fulfull this condition as b1 is a non-zero constant 

(see equ(2.31) ). Consequently, if only s-waves are important, the 

region ""t'l " w
1 
tL.~ may be parameterised in terms of the s-wave 

oe. A 'Y which satisfy this requirement us i nO' equs ( 2 • 31) , ( 2. 34) 
I ~~) . -'1::> 

-(2.37). In addition, the scattering lengths must be continuous 

through the kaon nucleon threshold and for the I = 0 state 

can be adjusted until f22 reproduces the experimentally observed 

position and width of the Y~ (1405) resonance, and thence r11 

may be evaluated in the dispersion relations with these values of 

II( 111 ' f!,l "'S 0 • 

An alternative treatment of the Kl'J I = 0 low energy region, which 

combines the methods of Luisognoli et.al. (26 )and Rood< 44 ) used 

to obtain the results in table- 2 and table 3 respectively, is presented 

below. 

Fixing the contribution of the region y. ' w 1 < w a. by using the 

energy independent scattering lengths (this is done in all our 
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subsequent calculations), the unphysical region Wyll < W1 c JA 

was parameterized by keeping ~, as an input parameter and fitting 

and ~- to the energy independent scattering lengths a , b r o o 

at threshold w = JA through equ ( 2. 31) . The position and width of 

* the Y
0 

resonance now output may be compared with their experimental 

values in the 't1T - ~ 1t channel. The results of this calculation are 

shown in the follmdng table. 

Table 4: The variation in g2" and the c2 contribution to the 

K±p-!K±n relation. WR and r are the position and vddth of the peak 

in the imaginary part of the I=O,t~·cn amplitude (The first line of 

the table corresponds to the energy 

I 't, WR ; r 
I 
I 

0.4 
0.2 

I o 

l 
-0.2 
-0.4 

I 
I.. 

1396 
1404 
1409 
1413 
1415 

~70 
65 
41 
31 
25 

c2 

87.3 
95.50 
95.4 
94.8 
93.6 
91.9 

4.34 
8.2 
8.2 
7.9 
7.4 
6.6 

The shape of the resonance in the t'11-i:1r channel was found to be very 

asymftrical. Note that this procedure increases the value of g2~ 

significantly; 

The disparity between this calculation and one using the energy 

. ' dependent scattering lengths throughout the reg1on w < w < w2 may 
%'11" 
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be estimated by using ~"~,fto,'f,D to calculate the energy dependent 

a
0

, b
0 

given by (2.31) at w' = w2. 

Table 5: The values of the energy dependent ao, b at w' =,., w2 0 

using the ~0 ~.,. shown. , , 

olo (,A.) I.' "'· ..,o (p-) ~.~> A.olw") b0 (w..,) 
- ---·--- --- -- - ... 

-1.41 0.887 0.4 -1.67 -0.71 -1.81 0.85 
! -1.54 0.810 0.2 -1.67 -0.71 -1.75 0.90 

-1.67 0.784 0 -1.67 -0.71 -1.67 0.92 
-1.80 0.810 -0.2 -1.67 -0.71 -1.59 0.90 

-1.93 0.887 -0.4 -1.67 -0.71 -1.53 0.85 
---- -- -

As g~ is more sensitive to variations in a
0 

than in b
0

, it 

appears that l10\~0.3 is required to give-reasonable agreement between 

the calculations illustrated in tables 2, 4. However table 4 indicates 

* that ~0~o to obtain a width for the Y
0 

resonance ia reasonable 

agreement with experiment. This is in agreement with· the values 

of 1 0 chosen by Rood and shown in table 3, that is 0' Y 
0 

< 0. 3. 

We may conclude that it does seem necessary to reduce the 

variations in g~ shown in equ ( 3. 9) and tables 3, 4, due to the 

contribution of the unphysical region to the forward dispersion 

* relations. Equivalentay· , the contribution of the Y
0 

resonance to 

the I = 0 unphysical region must somehow be suppressed. A suggestion 

to obtain this effect is ... 
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outlined in the following Chapter and the results of the subsequent 

forward dispersion relations are compared with those of equation 

(3.4). 



CHAPI'ER N 

THE NEW FORWARD DISPERSION RELATIONS FDR KAON-NUCLEON SCATrERING 

1. IN'IRODUCTION 

The disadvantages of the previous forward dispersion relations 

equs(3.2)-(3.4) may be summarized as follows. For w = ~ 

a) Only equ ( 3. 4) is useful in unsubtracted form at w = )"- • 

b) The contribution c1 depends on both D_ ( p- ) , with its 

corresponding errors, and D+ ( ~ ) . 

c) The contribution from the unphysical region arises from an 

integration over the imaginary part of a resonant amplitude. 

d) The errors on the previous two contributions are emphasized 

by the fact that they subtract to give a comparatively small total. 

e) The low energy region is principal-valued when the coupling 

constants are determined. 

For general w 

f) An elaborate subtraction is necessary for equ(3.2) (see 

reference (4.5) ). 
• . we 

To reduce the errors associated with th1s l1stAnote that the 

real part of the resonant amplitude goes through zero at the 

resonance position. This gives a clue for an alternative treatment 

of the unphysical region. 



56 .. 

2 THE NEW FORWARD DISPERSION RELATIONS 

Keeping the notation of section (I.5) , ~'' 

(4.1) 

refer to the laboratory amplitudes for KiN scattering, consider 

the amplitude 

(4.2) 

in the complex laboratory energy plane w, where ""'t 
11 

< w 
11 

< }A-

The eXtra cut due to ~t(.w) : J lw-r) ( w-"" • ) is shown 

below. 

Figure 5. 

1- . - ---- ·-l 
wt 1T w o 

In the complex energy (w) plane we may write 

.., :. I · I :e. c: w-r ..0.. 

• & I 

~· -:.. J w ... ""o \ J.. • 

(4.3) 

(4.4) 

where a, &1 are the arguments of g, g' in the Argand diagram. 

Defining ~ to be positive for w > ~ , · J ~ !- ' becomes 

Figure 6. 

- -----=· ~ ~R 
·L ____ ----- -·· l--__li __ 
~0 - ~ l-t r-
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Therefore Tj~}»)/Ji(w>is defined above and below the cut as follows. 

Figure 7. 

')_ +,a._ 
-t~_ ... ~- .. 

-~--a -.--J:f--~--
.. -·--

r{ 
r 

-. 

1-
;-

wh -b_,. d~ .. w, 
~, 

~ 1>_ ... dl_ - ... 6l -

fi R IT 

~Cauchy's theorem (in analogy with section (I.3) ). 

i_lw+it.., 0) . = Pole terms + .l (.o ~ 1 ~i.~~ [ T..lw'~)/J l ~J J 
-::======-:-. 1 '\T~ 

J IJ W I •.,J • \ " ( 4 5) l lw "" t '- ) "' 't11 • 
.. .l. { .. ~ ' ~ \ s ( L l- ~. 0) I J \ {., •) ] 
1~; ---.-------

-110 "" - w - ~' 
where o~ £. << 1

1 
and ·wA.. denotes the end of the left-hand discontinuity. 

Using the properties of crossing,equ(l.44)~we obtain the forward 

dispersion relation. 

(4.6) 

- ..l l 1 ~ '))-~ 'J J.w. + .!. 1> r· .. -~ ~ ~ , 
1r ~, )-\lw'J l'-' '-w) '1r I" J it~:.> ~ '-w) 

- ~ ~0() ~ ... lw') ~' 
~ lil-w') lw' +w) 
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where X(Y) is defined as in section (III-1). Note the subtle 

change in the contribution from the unphysical region compared with 

equ(3.2). The third term on the right hand side of equ(4.6) involves 

an integration over the real part of the KN forward amplitude. 

Likewise, or by the crossing relation when W -"> - W 

wo 
= -r ~~ x(¥) - ~ { ~- ~~ ~. 

y J(t~)l""'t ... vJ) "'rtr ft{;•)l~'+-w) 
(4. 7) 

It is clear that the convergence of the asymptotic integrals is 

inherent in equs(4.6)-(4.7) so that no subtractions are necessary. 

Also the usefulness of the optical theorem is retained as opposed 

to the method adopted by Gilbert<46 ) for pion nucleon~which is illus­

trated in appendix C. 

Unfortunately, when evaluated at threshold w = r- , the dispeli:i..on 

relation for D_(w,O), (4.6), requires a knowledge of the s-wave 

effective range terms and the p-wave scattering lengths for the KN 

scattering amplitudes. This is easily seen by the following argument. 

For sin~lioity, consider the case when the RN scattering amplitude 

is given by the energy independent scattering lengths. Remembering 
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that the dispersion relations equs(4.6)-(4.7) have been written in 

terms of laboratory variables, equ(2.63) and equ(2.37) give, just 

below threshold 

'IU. 13. :: ):r ~ '!:f [ o.I _. 'k(_._£ +~') -

r\ \+ l'k"-1 + 1fll~\+ ~l) 

Gr 1t 1.J 
(4.8) 

for the appropriate isospin (I) amplitude in the laboratory 

system) ~ere G represents the s-wave effective range and p-wave 

scattering length terms. 

Writing x = J f- -w , we obtain 

) I. --. I~) a.z +- l b:- - A. i ) J l.l"'- ~to 
~ ... D \.. f'\ 

~ -. •[ 1.~1" ( .. ! -l ~ ~ -Cr) 
"" ... .1"' 

~ ·ol~~) 

In an obvious notation 

"')>::t. :. 

Just above threshold equs(2.63)-(2.34) yield 

bl.... -fa. ( 4.; + \,i ) ..).. 
l +-1 f.. ~l4 f& L(a~ .. lt~) 

(4.9) 

-~ 1 
ru·~ 

(4.10) 

H ~'lJ 
(4.11) 

where H represents the s-wave effective range and p-wave scattering 

length terms in this case. 

If y = J w - )J-.. 
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The troublesome part of equ ( 4 . 6) as w ~)A-"" is 

~ ~ ~~ 
- :..~) - l ~ I )) -~~ ~ \ "'"'.l., I A-~\) dw \ 1 (4.14) 

J\lw.> 11'" w., Jik,') lw'·"") -,r Jl' Ji,~·)~ 1 -w) 
This may be evaluated by rewriting the integrals in the form 

~ { ~;" .... )> _(.w 'J - 12- l.l >C J ,c. (4.15) 

1f 0 1ool. J JA- - w 0 + )&. ~ 
and 

(4.16) 

isospin states, and x,y are as before. 

Considered in this manner the mutual cancellation of apparently 

non-existent terms at w = )A becorres evident. At w = )4 equ(4.14) 

reduces to 



- \ ~. 'J)_ @) h 
0 l,. - w 0 - ' ) Jl'\o ": -~--w-, fff 

+! ~SF~ l>_ t<> - ~- V...lC ).., 

lt' o .,.,a.. J ,..-w, - ')("' 

-

~- ~) - (].- 'U. ~ ol J 
'1'"l JI-•Wo +' ~~ 

J w 1 - w • - J }'Co-""" o 

J ""J..- w 0 "" J .r- w 0 

where g = J w' - w 
0 

• 
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(4.17) 

Thus for w' "' p. the integrands of equ ( 4 .15) and equ ( 4 .16) 

which contribute to equ(4.17), contain a dependence on V, 1Ui 

respectively, which in turn depend on G, H the s-wave effective 

range and p-wave scattering length terms. 

For the KN amplitude given by the energy dependent scattering 

lengths of section (II-2), the above reasoning still applies. 

Here, the energy dependence of a1, b1 is given entirely in terms of 

q, the c.m. momentum of the pion-hyperon channel appropriate to 
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the isospin state, whose only effect is to change the coefficients 

of x2 y2 in the expansions equ(4.9) and equ(4.12). Therefore it 

is possible to conclude that the principal-valuedness of equ(4.6), 

coupled with the square-root in the dispersive denominators in 

equ(4.14) emphasizes the KN s-wave effective range terms and the 

p-wave scattering l?ngths. Hence equ(4.7) must be used for the 

initial dete:rnri.nation of the coupling constants gq 1\ and 

g2 k""p ::S:.,. However, having done this, an interesting point is 

that it should be possible, in principle, to return to equ(4.6) 

and calculate G, H, a,Although in practice the accuracy of the 

calculation does not permit this. 

For w in the range w2 <w ~ 10 GeV equ(4 .6) can be used to 

determine D _ ( w, 0) which can then be compared with the experimental 

data points . This is done in Chapter VII. 

The attractive features of the D+(w 0), (4.7), forward 

dispersion relation when evaluated at w = ~ a..re as follmvs. Firstly 
1 

the term D+/ J '[ (-w) depends solely on the l~N scattering lengths, 

thus eliminating an important source of error in equ(3.4) due to 

the errors on the KN parameters in table 1. Secondly, the inte-

gration over D _ in the resonance region w 
0 

c. w c. )A. contains a 

self-cancelling effect as Re ~ = 0 at the resonance position. 

The overall size of this contribution is also diminished as the 

integral is not principal valued. Note that the previous two 

contributions are additive, thus lessening the uncertainties in 

equ(3.4) due to IV-l(d). ~1irdly the principal-valued integrals 



only emphasize the imaginary parts of the K+N forward amplitudes. 

+ The curves for the K N total cross sections plotted against energy 

are very smooth and known within very finalimits from the measure­

ments of Cool et al. <40 ). Accordingly the corresponding principal-

valued integrals should not induce any serious inaccuracies. 

It is again possible to rewrite equ(lt-.~) with the pole terms 

on the left hand side, and the right hand side in the form of 

equ(3.5) where the ci are defined in exactly the same wey. However, 

because the real part of the p-wave amplitude changes sign at 

* the Y1 (1385) resonance and the magnitude of this contribution also 

depends on w0 , it is impossible to give prior comment concerning 

. * Neglect1ng the Y1 effect the results are 

tabulated below when the KN and the KN low energy regions are 

determined from the energy independent scattering lengths in table 1. 

c
5 

was determined from the appropriate formula in appendix B. 

Table 6: The conditions to the (K~) and (K±n) dispersion relations 

of the type· equ(-4.1) (in units lo-7 MeV-2). The energy 

w0 in equ(4.a) is chosen to be 401-2 MeV corresponding to 

a total c.m. energy W0 =1370MeV. 

K±p + K-n 

cl 23.9 10.3 i 
c2 28.9 20.3 . 

c3 -75.1 -59.4 ' 

c4 I 45.4 44.7 ' 
I 

c ~ .::.2:.1. : 5 Total! l 12~8 1 
I 

_ .. 
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'Ihese results are to be compared with those obtained in 

table 2 for the conventional forward dispersion relation of the 

type equ(3.4) which yield. 

2 2.12g ~ = 14.9 - HlL3) 
2 3. 66g 0 11.3 
t 

whereas the relations of the type equ(4.7) predict 

2 2.40g 0 = 18.0- ~(12.8) 

" 2 4.24g 0 = 12.8 
'! 

that is 

2 
g E ol(" P = 3. 0 

* if Z(Yl) = 0. 'Ihese results are in close agreement. 

(4.18) 

(4 .19) 

(4.20) 

(4.21) 

(4.22) 

To test the sensitivity of equ(4.7) to the value chosen for 

w
0

, the calculation was repeated with different values of w
0 

covering its acceptable range, that is, for 1340 I•'!eV c. W
0
c.l395MeV, 

where W, w are related by equ(2.42). 'Ihese results are shown 
0 0 

below. 

Table 7: 2 2 'Ihe effect of w 
0 

on g"' and \
0

• 

----

w 2 2 
0 

g,_ g~o 

1340 4.54 2.78 

1355 4.74 2.89 ' 

1370 4.82 2.97 
1380 4.80 3.01 

1395 4.74 3.05 



Therefore the variations in w0 play a relatively unimportant 

role in the predictions for g: and g2 The more :iJnportant ... IO 
possible sources of error are threefold. In the first instance 

any ill-determined points for the KN, RN total cross-sections 

may affect the accuracy with which g2 and g2
0 

are determined. The 
' t: 

data for ~N is especially vuherable as the corresponding dispersive· 

integral is principal-valued for w ~ wi. However, very accurate 

experimental measurements ( 40 ) have recently become available for 

just this process. If the high energy (w > 5 BeV) values of 

r tot (KN) and r tot (KN) are not changed radically then an estimate 

of ±0.3 would probably cover the range of variation of g~for 

small changes in the structure of the input cross-sections. 

Secondly the coupling constants depend on the particul~ 

model chosen to reproduce the correct asymptotic behaviour of 

the KN, RN amplitudes . The model of Phillips and Rari ta ( 42 ) 

(see appendix B) gives a contribution ,., -1. 5 to g2" and N -1.1 to 

2 
g o· t 

Thirdly there remains the question of the effects of the 

unphysical region wy., < w' c.;.- and its associated errors. For the 

reasons discussed earlier the KN amplitudes in the region }1-C. w .:. w2 

are assumed to be given by the energy independent a1 br in tabie 1. 
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3 THE EXTRAPOLATION OVER THE UNPHYSICAL REGION. 

As emphasized by Rood( 44 ) and section (III-2), ai and bi 

must surely contain some energy dependence, even in the zero range 

approximation. Consider first the determination of ~· Here the 

zero range approximation gives the I = 0 KN extrapolation with 

b o· = (4.23) 

from equ(2.3l). Thus unless l'Yo),,.. I fermi, and tables (2)-(4) 

indicate that l'«o \ is smaller than this limit, b
0 

is expected to be 

much more energy dependent than a
0 

in the unphysical region. Now 

in equ(2.37) b
0 

only occurs in the f011m1a 2+b 2 where a "' -1.7 
0 0 0 

fermi and b0~ 0.7 fermi, and so in comparison to equ(2.36), equ(2.37) 

is much less susceptible to uncertainties in the energy dependence 

of b
0

• Consequently the error associated with the extrapolation into 

the unphysical region should be much less in equ(4.7) than in equ(3.4). 

This conclusion is borne out by computation. Similar reasoning also 

applies to the uncertainties in the energy independent scattering 

lengths where the errors on ao,bo in table l give 4.63~ ~< 5.01 

(c.f. 3.39 < ~ < 4.34 from equ(3.4) ). Note that this reasoning 

does not apply to the calculation of ~ 
0

. Using ( 4 .1·) , and the errors 

of a1 b1 shown in table 

2 
2 . 67 ~ g 0 ~ 3. 2b 

t 

l gives 

2 (c.f. 2.77<. g 0 <3.42) 
s: 



67. 

Under the assumption that only s-waves contribute to the I = 0 

KN unphysical region there are four constraints which one may 

impose . These are the values of the energy independent a
0 

b 
0 

. * 
at w = p. and the position (WR) and width ( r ) of the Y

0 
resonance 

in the i:.~ -~w channel. Some ,or all, of these restrictions have been 

used in the following attempts to parametrize this region. 

If WR, is known then oL, c an be found from equ ( 2. 28) as 
I=O 

Re f 2 2 = 0 at the resonance position. Therefore 
l.=O 

1 + KR Q(. 0 = 0 (4.24) 

Furthermore ~o and 15, can now be determined explicitly by equ(2.31) 

when \1 = p. if the values of a0 b
0 

given in table 1 are correct. 

The results are shown below. 

Table 8 The value of g~ when oto ~o 1~~:~ are determined explicitly 

from the resonance position and the energy independent scattering 

lengths at threshold. 
! ~ ,_ 

-1.51 -0.824 
l ------- ---- . 

To 
0.249 

E. a 
1403 

r~ 
60 

Alternatively, if 1. is allowed to vary freely then the 

energy independent aa bo and (2,31) at w =,.. fix the values of 

ol
111 
Po. The results from this procedure are comparable to those 

in table 4. c2 is in units l0-7 .MeV-2 and is given by the rp-·~K+n 
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combination of (4.7). 

Table 9: The values of g2A and c2 frorr1 a threshold fit of the 

energy dependent scattering lengths to a0 and b0 • (The 

first line corresponds to the energy independent a0 , b
0

). 

- ---- ....-- --- ---

1fo 
'-c.'\. 

- - --·--- ~-~- -- ~ 
18.8 4.82 

I 

0.4 24.6 '7.25 
0.2 24.2 7.09 
0 23.6 6.84 

i 

i 
-0.2 22.8 6.50 
-0.4 21.8 6.08 

----

Note that the variations of ~ are much less in Table 9 than in 

Table 4. 

Clearly the trial values of olo {l. "f. in Tables, 4, 9 are not 
I ' 

in close agreement with the observed parameters WR = 1405 MeV, 

* M = 35 MeV, of a symmetric Y
0 

resonance. Therefore the integral 

over the unphysical region was calculated using various sets of 

* the reaction matrix parameters, each consistent with the Y
0 

and each in tolerable agreement with a
0

, b
0 

at threshold w = JJox· 
The results are shown in the following table. 
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Table 10: Predictions for g2n obtained using the reaction matrix 

para.rreters consistent with a symmetric Y
0 
*. The 

threshold values of aa, bo calculated from these 

parameters are also shown. 

a) cr < 0 .. 
,.-------·0 ___ --- --

I 
\"' 

-1.51 

-1.41 

-1.61 

~D'-
0.5 

0.7 

0.9 

0.5 

0.6 

0.6 

0.65 

0.7 

0.8 

0.5 

0.6 

0.6 

0.6 

'Yo 
-0.4 

-0.3 

-0.2 

-0.1 

-0.1 

-0.1 
---- ___ , __ _ 

E 1\. 

1465 

1404 

1403 

1405 

1404 

1404 

1404 

1404 

1403 

1405 

1404 

r 
27 

38 

51 

27 

33 

34 

38 

42 

49 

28 

36 

1400 43 

1408 30 

4.37 

4 .• 85 

4.46 

4.65 

5.10 

5.23 

5.36 

5.63 

5-23 

5.50 

5.18 

5.82 

-1.31 

-1.25 

0.56 II' 

0.72 
I 

-1.40 o.42 1 

-1.37 0.51 

-1.42 0.53 

-1.41 0.57 

-1.40 0.61 ' 

-1.38 0. 70 

-1.47 0.45 

-1.46 0.54 

-1.36 

-1.56 

0.54 

0.54 
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b) l ~ 0 

0 

I Olo ~ .... "2JD £ fl. r ~ 

~" ~o~J 1-,\"') 

[-1-.51 0.5 0 1405 30 5-55 -1.51 0.45 
I 
I 

! 
' 

0.6 1404 38 5.84 -1.51 0.54 

-1.41 0.4 1401 28 4.91 -1.41 0.36 

-1.61 0.5 1408 26 5.88 -1.61 0.45 ' 
-- -~ 

: 
-1.51 0.5 0.1 1405 32 5.81 -1.55 0.45 : 

I 

0.6 1404 41 6.11 -1.56 
I 

0.54 1 

i 

0.5 0.2 1404 6.01 
I 

35 -1.59 0.44 I 

0.6 1404 44 6.33 -1.61 0.53: 

0.4 0.3 1405 28 5.83 -1.60 0.34 

0.5 1405 39 6.16 -1.63 0.42 

0.6 1404 49 6.49 -1.65 0.51 

0.3 0.4 1405 23 5-59 -1.60 0.24 

0.45 1405 37 6.09 -1.64 0.36 

0.5 1405 42 6.26 -1.66 0.40 
-----·--------- . 

From the above table it is clear that increasing either 

WR or r increases g2 'h. Also with increasing ~ o , the values of 

;.'
0
2 for the correct width decreases and the value obtained for 

~2 increases. D£ 0 is essentially fixed by WR" This prodecure 

cannot be applied to the conventional forward dispersion relation 

(3.4), because the principal valued integral at w = ~ demands that 

br is continuous througp threshold. 
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The parameterization of the I . = 0 KNarnplitudes can be made 

more stringent by the inclusion of R(l(. , R,& and Ry, the effective 

range terms corresponding to the R matrix elements o1-, tS , "Y . 

In this way it is possible to fit WRand the I = 0 threshold 

scattering lengths exactly. Although theoretically it is possible 

to reduce the input parameters to two, it is easier in practice 

to input ~ 0 , R ~ ~ , and use the value of r as an output 
I 

constraint. Note that it is impossible to expand the R-matrix 

elements in a power series about threshold, \vhen the scattering 

lengths a
0

, b
0 

are fitted there, otherwise no useful information 

is obtained. Therefore the expansion was made about the resonance 

position. Thus, 
J. 0::. .l ... .1. il J { .~ .\ - 'k .. ) .... IIIlo l. 
.l. :. .J. .... ~ ill' l ~i - 'k"') f' ~0 1.. 

.!. ::. .1 ~ 

lS ~" 
t ~'If ( 'lt; - ~" ) 

From equ(4.24) 

From equs ( 4 . 2~ ) , 

- .l. 

"· (4.25), (4.27) 

\1'lo~. l 
~ -t .La. ..... 'k/) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

? 
J 

(4.29) 

Wltere Clr is the 1:. 'If - t 'II momentum and the suffix ~p refers to 

the threshold w = )1- . 



Also equ(4.2)) gives 

,.1' 2 = b 0 (1 + (C1r ~..,)2 ) 

C1r 
= x2 (say) 

Therefore 

~ 0 = 
R x2 1f. 2 :!: 2X " . 
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(4.30) 

(4.31) 

Hence oL , I , R"" are given in terms of '¥ , R.., , R . The results 
o,"t:J o ~ ~ 

for this parametrization of the unphysical region are given below. 

Table 11: Predictions for g2" obtained from equ ( 4 . 7) by fitting 

vJR and a
0

, b
0 

at threshold with effective mage terms 

included in the reaction matrix elements . The values 

of the energy dependent a0 , b0 are calculated at 

w = w2 and listed in the last two columns. 



ol 0 ~o 
- ---0:-

-1.503 -1.261 
-1.20 
-1.08 
-1.03 
-0.99 
-0.96 
-1.02 

-1.15 
··1.09 
-1.04 
-1.00 
-0.96 

'Yo ~o( 

1 -1.391 

-1.178 
-1.675 

0.8 -0.902 

12/J 
-0.2 

0 

0.4 
0.6 
0.8 

-0.2 
0 

0.2 
0.4 
0.6 

'Rll 
0 

0.4 
-0.4 

0 

-- - --------- --- ---------
-1.01 
-0.97 
-0.93 
-0.93 
-0.92 
-0.89 

-0.90 
-0.87 

0.6 -0.511 
-0.511 
-0.555 
-0.511 
-0.471 
-0.511 

0.4 -0.19 

0 

0.2 
0.4 

0.6 

0.2 
0.4 

0 

-0.3 
0 

0.3 
0 

0 

Table 11 

w, 
1402 
1403 
1404 

1402 
1403 

1404 

1403 

1404 

1403 

rr. 
54 
49 
43 
39 
37 
46 
32 

60 
54 
48 
43 
40 

l. 

~I\ 
2.05 
2-09 
1.99 
1.86 
1.69 
2.65 
0.64 

3.19 
3.40 

3-54 
3-63 
3.66 

Cl\o(w._) 

-1.31 
-1.45 
-1.95 
-2.38 
-3.07 

I 

I 
~IJ ("'a. >i 

I. 

0.58 l 
0.71 ' 
1.13 1 

1.50 I 
i 

2.09 
I 

-2.87 I 2.36 I 
I I ' I 

I ~3~16 +1.64 I 
l -1.37 I 0.62 1 

I 
-1. 4 9 I o. 75 ; 
-1.6s I o.91 

I I 

i -1.86 ,1.41 
-2.17 1 1.47 

----~-- ---- r - · · I 
58 ' 4. 77 I -1.55 0.80 
49 i 5.09 
42 I 5.01 

44 1 5-34 
: 5-63 
I 

46 

39 

52 
45 

I 

5-53 

6.71 
7.14 

I -1.67 
: -1.84 
! 
I 

1 -1.a2 
I 

I -1.80 
I 
; -2.03 

: -1.74 
-1.83 

0.96 
1.10 
1.17 
1.23 
1.47 

1.01 
1.22 ! -.J 

~ 
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~. 

-1.503 

-1.66 

lo 
-0.90 
-0.85 
-0.82 
-0.85 
-0.89 

1 -0.92 
-0.96 
-0.98 
-0.88 
-1.14 
-1.01 

~. 
0.2 

0 

0.4 

0.8 

~cl 'Ril 
0.076 0 

0.3 
0.4 

0.301 : 0.2 
0 

-0.2 
i -0.2 

. .j --

-0.59 -0.2 
0.4 

-1.46 -0.2 
0.4 

Table 11 (cont.) 

fl?T 
0 

0 

0 

wt 

1402 
1403 
1403 
1402 
1401 

r£ 
60 
54 
50 
~-

1399 :____ l 
_,.,. _, 

---· I 
-- ~-

--- I. 
1409 40 

28 
38 
40 

~\. 
7-53 
8.68 
9.10 
9.69 
8.45 
7.01 
5.09 

3-99 
4.66 
1.60 
1.50 

._..tw") 
-1.83 
-1.89 
-1.92 
-2.14 
-2.14 
-2.14 
-3.29 
-1.37 
-1.61 
-1.24 
-1.73 

b.( ... ~ 
o.96-i 
1.15 ' 
1.27 
1.08 
0.92 
0.79 I 

0.75 
-

0.73 
I 

1.22 I 
I 

0.62 ' 
I 

1.14 i 

-..J 
.j::-
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These results can be swnmarized as follows. 

(a) For ~0 increasing with R'ZJ and R,& fixed: 

'a0 \ and 'bol both decrease to a minimum which dependS 

on the fixed values of R l , R ~ • f1 and ~ both decrease. 

(b) For R ~ increasing with ~, R,t fixeq.: 

'ao) decreases whilst lbol ' r ' ~ all increase. 

(c) For R/i increasing with "?10 , Ry fixed: 

lao\ and lbJ increase whilst r decreases. The value of ~ 

increases when 1S0 is fixed to the less thaYl 0. 8 fermi and decreases 

when "1S
0 

=l fermi. 

(d) If 11
0 
~ 0 

1
the resonance width, and for more negative "r0 

the position, are undefined. 

In these conclusions (a), (b), (c), (d) the position of the 

Y0 * resonance was input as ~ = 1405 MeV. However, the last 

four lines of table 11 contain the results for an asyiDetric . 
~ 

resonance with an input position WR = 1410 MeV. This produces 

better agreement between the output t" ' aa<w2) and bo(w2). The 

value ~. is essentially determined from the resonance position 

Wfl by equ(4.28). 

The sensitivity of ~ to the dispersion relation was tested 

by evaluating equ(3.4) for several sets of the parameters listed 

in table 11. The same conclusion was reached as before, that is, 

~ is less sensitive to the unphysical region in equ(4. 7) than 

in equ ( 3. 4) . 
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Table ll shows that the parameters behave in a maximal ( or 

minimal) way, that is their values reach a rn.a.xirnum (or minimum) 

deperiient on the other param~ }ndicating that this technique 

should be used in conjunction with an optimisation procedure. 

The results of tables 8, 9, 10 are consistent with the following 

value of the coupling constant 

2 g = 5.8 ± 1.8 1\• 
(4.32) 

If l~ol in equ(4.27) ~s small, then table ll indicates that g~is 

increased. If' \a&. 0 \ is increased then g2"' is decreased. 

If s, p waves contribute to the RN scattering amplitudes 

for w' ~ w2 then the dispersive contribution to the I = 0 c2 

in the range )A( w'. C: w2 should still be fairly well determined as 

-18.24 ± 0.24 10-7 Mev-2 from table 6, aAlthough this ·means that 

the energy dependent s-wave scattering lengths given by (2.31) 

cannot be fitted at threshold to the ao.bo ,al,bl in table l. This 

fact invalidates equ(3.4) because of the principal valued integral 

8.0d makes ( 4. 7) approximate unless the procedure of Rood ( 44 ) is 

carried out, whereby all the partial waves are considered throughout 

the region ""'hr < w'<w"L and fitted to llim's <37 ) data. 
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4 THE KN I = 1 UNPHYSICAL REGION 

It is interesting to compare the results obtained from equ (3. 4) 

and equ(4.7) for the KN I= 1 unphysical region- here the three 

channel reaction matrix has been approximated by the assumption that 

the form of the energy dependence of a1 and b1 is completely 

represented by the 1\lT centre of mass momentum. The results are 

showh bel0w when ¥, was input and .c., 
1 
~, were fitted to a1 , b1 

at w = )'- through equation ( 4. 23) . 

Table 12: Predictions for g~ 
0 
(if Z (Y 1 *) = 0 .J obtained by matching 

the RN I = 1 energy dependent and energy independent 

scattering lengths at threshold. The valuE;!s of a1 (w) 

b1 (w) at \·: ·= w2 are listed also. The values of g21: 
0 

from (4.19), (4.22) are shown in the first row. 
·---· I 

~1.4-) (&t.,) I 
,J\ ft, ... '1, ~'""'") lt 1 lw,.) : ~ 1.~ D ' 'j I o 

1- -

I 
3.10 2.96 

I 

0.670 0.4 -0.170 0.742 1.47 0.60 0.279 i 
0.565 0.2 I -0.133 0.783 2.02 0.50 0.104 jl 

-0.07 I 0.530 0 -0.07 0.802 2.84 0.85 
-0.244. 0.565 -0.2 -0.008 0.783 4.01 1.98 
-0.4191 0.670 -0.4 0.030 0.742 5.60 4.02 

Note that equ(4.7) yields much smaller values for g~ 0 , when 

Z [ Y 1 * ) = 0, than equ ( 3. 4) until 'l', N - 0. 4 . As mentioned 

before the values quoted for eio are upper bounds in the case of 

equ(3.4). However, the values given by equ(4.7) lack such a positive 
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definition without a more thorough examination of the ro~e played 

by the I = 1 resonant p-wave contribution. 

The amplitudes for the decay of a p-wave resonance into two 

open channels A, B may be written( 47) as 

~'" : "" ( l
1 

I-t..:~ ) I b (4.33) 

+,& : 1s e ( ", I o.l ) I b. 

t~ 1 = J\-r, l '\t /lt, ,, )11
,.) /A 

vJhere 

where 

k refers to the c.m. momentum of channel A 

q refers to the c .m. moiTEntum of channel B 

W0 refers to the tl1reshold energy of channel A 

W0 ' refers to the threshold energy of channel B 

. = 0 if X < 0 t (x) denotes the step funct1on = 1 if X ~ 0 

(4.34) 

(4.35) 

The total width r of the resonance in terms of its partial widths 

(4.37) 

where 

(4.38) 
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These equations (4.33)-(4.35) satisfy two-channel unitarity. If 

A denotes the KN channel and B the Y1f' channel then equ ( 4 . 3 3) 

may be extrapolated backwards to the RN unphysical region to give 

the RN amplitude for the decay of a resonance below the channel 

threshold~ Thus in the unphysical region equ(4. 33) becomes 

-- -'k,_f I \-4.,~ 
lw,-w)- i.'t! l?")s (4.39) 

~ere g2 represents a kinematical term with the dimensions of energy 

which includes the g2 y 
1 

* RN coupling constant. From reference ( 48) 

1.. , = (4.40) 

where My
1
* is the mass of the Y1*(1385) resonance. As g2 is a 

smoothly varying function of energy the evaluation of equ(4.39) 

was carried out with g2 considered as a constant given by its value 

at the resonance energy. From equ(4.40) 

g2 = 1.849 ~ * MeV 
l 

(4.41) 

Thus the Y1* contribution to the dispersion relations may be 

determined in terms of the coupling constant ~ 
1 

*RN remembering 

that the forward scattering amplitude is, from equ(l.5l)-(1.49)-(1.50), 

(4.42) 
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Where h.l =O and hJ=l+ are the RN I=l s-wave and p(J=3/2) wave 

partial wave amplitudes which include an explicit ~~ dependence and 

all other partial waves are assumed to give a negligible contri­

bution in the region wy, .t. w' ~ JJ-r.· 
Including this effect we obtain the following results for the 

energy independent scattering lengths. 

Equ(3. 4) gives 

3.66g~o + 2.94 g2 = 11.28 (4.43) 

Equ(4.7) gives (with W0 = 1370) 

2 2 4.25gt: 0 + 6.83g = 12.63 (4.44) 

This means that the values quoted for g~0 which are derived from 

equ(3.6), are also upper bounds. 

Although it is possible to determine ~0(-3.24) and g2(~-0.2) 

by solving equs(4.43)-(4.44) the answers are not to be taken seriously 

due to the discrepancy in the predictions of g~ from equ ( ~. q) and 

equ(4.1"2> (4.3 and 4.8 respectively). Thus we may conclude that it 

is necessary to obtain another relation between g~, g~ and g2 for 

both the conventional and new dispersion relations. In this way 

the three values of the couplings should be determined explicitly. 

Before attempting this procedure let us compare out- predictions for 

the~~ coupling constants with previous determinations of their values. 
a 



CHAPrER V 

PREVIOUS DETERMINATIONS OF THE KAON NUCLEON COUPLlliG CONSTANTS 

1 FORWARD DISPERSION RELATIONS 

Several alternative methods have been proposed for the 

determination of the kaon nucleon coupling constants, most of which 

are sirr[Jly adaptions of the forward dispersion techniques mentioned 

in section (I.5). On the whole the predictions of forward dispersion 

relations are reasonably consistent in that g2 ~ 5. 8±1. 8 agrees 
(\ 

with the values given by Dufour(4g), 5 ~ g~ ~ 6, and Rimpault 

2 -gl\ = 4. 4, who analysed {\ K productione by photons and '11' mesons 

respectively using specific theoretical models. A certain degree 

of freedom in the results is allowed by the choice of the RN s-wave 

energy independent scattering lengths(37) <43 ) (5l) In the methods 

discussed p waves have been neglected. 

Zovko(52) evaluated the dispersion relations forD (w 0), 

(3.4) for the Kp. system using the RN energy independent scattering 

lengths of Kim( 43) to approximate the RN integrals over the region 

wy1rc. w' <. w2, and the :rp scattering length and effective range 

of Goldhaber et al. (38) to determine the K+p contribution in the 

range JA ~ w 1 
' 11\J 1 and obtained the following expression 

0.654 g~ + 0.566 ~oRN = 9.6 (5.1) 

The RN energy independent scattering lengths of Sakitt et al. (5l) 
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change the contribution of the unphysical region and thus the 

right hand side of equ(5.1) which becomes 

o.654 g~KN + 0.566 g2toRN. = 8.2 (5.2) 

Note that above w' = 5 BeV Zovko(52) calculated the dispersive 

contributions from the following extrapolation through the total 

cross section data points 

v_(w')- v+(w') = 20.8 k-2/3 millibarnes 

cr.(w' ) + o+ (w') = (34. 6+20. 8k - 21 3)" 

where k (in BeV/c is the KN centre of mass momentum. 

The Kip-~ K± n.combination of equ(3.4) has been dealt with in 

detail in chapter III, it suffices to list the results obtained. 

Table 13: The value of g~ and the upper bound on g2ro using the energy 

independent scattering lengths for (a) - (g). The procedure 

of Rood ( 44 ) gives (1{) • The· value of w at wh~ch the deter­

mination was carried out is also listed. Tne references 

w 

to the calculation and the KN scattering lengths used are 

shown in the last two columns. 

2 
g~ Upperbound :Reference to the 

on 2 calculation . g_tO· 

Reference for the 1 

RN scattering lengths; 
·a JA. '4.34 3.1 Chapter III 

lr.US~ignoli et al. 
f (26) 

Kirri(37) -1 

b . 4.8~1 
.. !5.0±1.6 

:6 ± : .0 2.1 
I 

e 500 MeV:6.3±2.1 

: f 512.5n :5.9±2.0 
' + g 525 " i 5. 3-l. 8 

i h :7 .4±1.2 
I 

'--------·'· --- - -- - ---

3.2 

0.4 

3.9±3-7 
4.0±2.6 

4.2±1.5 

4.5±1.4 

Davies et al. 

(48) 
.. 

' Rood (44) 

Kim(44) 
Sakitt et al. (5l) 
Kim(37) 

.. 

.. 

The results (a), (b), (c), (h) neglect the mass differences 



between the K-p and ROn systems as it is debateable whether or not a 

theory for strong interactions should contain the reult of an electro-

magnetic effect. 

Alternatively, the tecl!nique of Haber-Schaim(20) may be applied 

to the K±p system by replacing the denominators of the pole terms 

in (3.4) by (w2-wp2) where w = ~(w + w~). This gives a single 
p " • 

effective pole and is expected to be a good approximation if the 

energy w at which the subsequent dispersion relations are evaluated, 

is sufficiently large compared with w S: . The identity ( l. 55 ) 

transforms equ(3.4) into 

L lw) :.. (w'-- ""r) l ') -l'-~.J - '1>+ l-.l J 
2~ 

&. l ... w -w1 

" 
("" 
"'r n 

l~ ( ,._ (.w ') • f' + l..,!J) ct.w • 

.... " l"''"- ..,".) 

'- ~~ ,t.w' 
""'"·w'' 

= 1=- l") ~ .,. " . ~ ,.. c· t.: ( "". (to ·J ... ,. ... ~ ~ > A "' • 
.. ,... ~ :-... + 

where FlY) represents the pole terms, and for the K-psystem, 

2 Plotted versus· w , L(w) gives F(Y) from the w = 0 intercept from 

equ(5 .5). 

Using the RN energy independent scattering lengths(43) (5l) 

(5.4) 

(5.6) 

in the range w~'1f < w1 ~ IN '1., the K+p scattering lengths and effective 
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range terms in table l and the data for the total cross sections 

plus equation (5.3) for w' ~ 5 BeV, Z~ko( 52 ) found the best straight 

line to give 

2 2 + 0.654 g + 0.566 g 0 = 8.6-5.7 
~ t 

Correspondingly redefine 

\.\~) i LL'-'J + w""(w"-'-'p) 
1t 

(""' ~ ... ~') ,Lwl 

) "-''' (_w''\-w") 
w 

(5.7) 

(5.8) 

(48) 'f1\ 
Davies et.al. found that the value of H(w) dependend strongly 

* on the unphysical region and, in particular on the Y1 (1385) 

contribution. The new form of equ(5.5) was computed for five 

values of w in the range 0.63-3.46 BeV. A straight line 

(5.9) 

was fitted through the five points thus determined, by an optimization 

procedure. This gave 

2 2 + g + 0.79 g 0 = 9.7-5.4 ,. t (5.10) 

when the high energy contributions were evaluated using a Regge pole 

model. 

As the Y1*(1385) contributes to (5.5) through the imaginary part 

of a p-wave amplitude, it may be included as a delta function contri-

bution (c.f section (IV.4) ). In addition to the previous points 

Davies et al. <48 ) evaluated (5.4), (5.5) at w =~and the optimisation 

procedure gave 

2 = 0:- 2 2 + (5.11) If g y * g t\ + 0. 79 g t' 0 = ll.l-1. 7 
l rp 

2 g2 + 0.79 g2 + (5.12) If g y * K-p = 2;. = 6 .6-l. 7 
l 1\ ro 
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According to equ(5.5) and equ(5.8), the derivative of the linear 

Haber-Schaim function with respect to w2 is 

d ~lw) _ -

-; \ ~ 
"'r« ..,, " 

(5.13) 

-
This provides a check on the consistency of the results as equ(5.9) 

gives 

- -A (5.14) 

tlw" 
This condition (5.14) was found to be well satisfied for both (5.11) 

and (5.12). 

Similarly, the pion nucleon forward dispersion (1.54) was extended 

by Zovko(52) to kaon nucleon scattering through (3.2). Write 

(5.15) 

where now 

J t (!o);: ~~ twJ - !:-: "1 \ oo .~' o-:! 
... ,. ... ~ ..... l~' .. w) (5.16) 

- ~~ "-1) r ~ iw' o-- "w:) 
- ,., - + 
't-1i \. ~ i. ~ l \t \ "'"" ) 

- :-: \)A. J.wl \\.l~') 
-n- ~lt l w t ~ "") \~ ... 



then 

Moreover, if we define a function f(w) such that 

f(w) = J+ (w) 

f(w) = J_ (..(w) 

for 

for 

86. 

(5.17) 

where c1, c2 are numerical constants. A plot of f(w) against w gives 

a straight line from (5.18), and the constants c1, c2 may be adjusted 

to give the best fit to the K±p data. 

Equation (5.16) was applied to t he K±p system by Zovko( 52 ) 

and the low energy KN integrations were evaluated from the energy 

independent scattering lengths of Kim( 43) which gave the result 

2 2 
0. 654g fl. + 0. 566g t 0 = 5. 2 ( 5 .19) 

An attempt has also been made by Davies et al. <48 ) to determine 

the values of the coupling constants from the once subtracted dispersion 

relation for T+(w)(3.2). Although relations of this type possess the 

advant~ of suppressing the importance of the RN low energy region 

\~en evaluated for physical energies w, it was not found possible to 

obtain reliable values for the coupling constants for energies 

w ""' }J- due to the very strong cancellations between the various 

contributions. Because of the sensitivity of this relation to the K+p 

low energy region when evaluated for the Kip system, the values 

a+l = -0.31 fermi, r+l = o<38), were found to give values of the 

coupling constant incompatiple with previous determinations. The 



alternative values for these parameters shown in talae 1 produced 

agreement within the very large errors. At higher energies the 

calcellations were not ~o strong and neglecting the Y1• (1385) contri­

bution the following results were obtianed. 

Table 14: Results from the once subtracted dispersion relation for 

T+ (w) for the K±p system using the RN energy independent 
scattering lengths(37) 

w Relation 

1.09 GeV 2 2 7.7± 2.5 g,_ + 0.62 g tO = 
2 2 + 1.27 GeV g .. + 0.62 g 10 = 6.5-3.8 

2.03 GeV 2 2 9.4±3.3 g"' + 0.62 g s:o = 

Using the values of a+o and r+0 in table 1 to give the K+n 

low energy amplitudes, the following upper bounds were obtained for 

g 2
0 (i.e. neglecting the Y1*(1385) ). 

Table 15: The upper bounds on g~ 0from the relation (3.2) for the I¢.~ 
system using the RN energy independent scattering lengths( 37). 

w 

0.605 GeV 

0. 724 GeV 

0.810 GeV 

0.950 GeV 

2 
g"i:,O 

+ 0.9-2.1 
-4.2±2.0 

+ 2.2-2.4 
4.0±2.0 

.. J 

Thus we may conclude that the values of the g~ coupling constant 

predicted by (4.7) and the methods just mentioned using the KN 

energy independent scattering lengths, are fairly consistent within 

the large errors, whilst the g~ 0 coupling constant is not so well 
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defined except to say that it appears to be somewhat smaller than g2,_.. 

Recently Kim( 54 ) has performed on inverse K matrix analysis of the 

low energy K-p data involving many more parameters than his previous 

l . (LI3) . . l . f . ana ys1s , 1n part1cu ar alloWlng an ef ect1ve range dependence 

of the diagonal elements of the s-wave inverse K-matrix. On extra­

polating into the unphysical region he how predicts a Y0 *(1403) 

resonance of width 50 MeV and upon using equ ( 3. 4) he finds 

2 6+ 2 + g,.._ = l-2.5; gt 0 = 0.3-0.5 

The large increase in the value of g2 appears to arise from the inclusion 
Pt. 

of the s-wave effective range terms, since using a comparable constant 

K-matrix we find g2~ IV 8 even allowing for a Y
0 
* width of 50 MeV 

(see table 10). Clearly the efibrs quoted in equ(4.32) are much too 

conservative. However, it is also probable tha.t errors found by Kim 

are not a measure of the true uncertainty in the coupling constants 

since it remains to be seen how the predictions depend on the part­

icular form of the parametrization used to analyse the low energy K-p 

data. For exampe:Jt, in view of the importance of the s-wave effective 

range terms, it is essential to investigate the sensitivity of the 

coupling constant predictions to some small effective range dependence 

in the off-diagonal elements,. of the inverse K-matrix. The importance 

which may be attached to these new values of the coupling constants 

is realized when we discuss the SU(3) symmetry scheme in the next 

section. 
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However, a subsequent calculation by Martin and Ross (65) uses 

the once subtracted dispersion relation (3.2) to yield 

2 2 6 + 4 g " + 0. 79 g [ 0 = .l - . 7 

which is in accord with our result ( 4 • 32) • 
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2 THE SU ( 3) SYMMEI'RY SCHEME 

Alternatively, it is possible to use the SU(3) symmetry scheme 

to obtain ratios between the various meson-baryon coupling constants. 
·1~e. v,.\.,llS 11f 'i .. YWN o\,t'"-n•eA +h- iotwa.+-J J,s~f~2o.,.. t-Q..~h.:. ... s «1-€ 
This prmd des an independent check...on_tbe-..v:alues-oL.g~b.tained 
rl..ua.\-o.,Q. "-". ,-...._fo~\-A."'* ~~~\; 1 t-ke. V.:L\)d·,l-lc of S~J'1) 
~spei!SJ.On_relat:LOnS. .J \..: 

By comparing the Lagrangian for the most general interaction between 

baryons and pseudoscalar mesons with the SU(3) symmetric interaction, 

De Swart(53 ) was able to list the relations between the various 

coupling constants. In particular 

~NN'ft - j -

~1'11\h 
': -.;. v~ 1at) (5.20) 

Ji 

~N).\o( - j l'- ~,c.. ) -

where -' is the F/(F+D) ratio. The pion nucleon coupling constant, g, 

can be written in terms of its symmetric (gl) and anti-symmetric (g2) 

couplings as 

j - flo ~ 1 ~ l. ~ a. .. 
J\). 

(5.21) 

With this notation 

~ - ~1 I .. 
jhl 

(5.22) 

Thus oL = 0 means pure symmetric, or D-type, coupling and o(. = l means 

pure antisymmetric, or F - type, coupling. 

Experimental results indicate that OlN0.4(54) in which case 
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l. _1_,; '\'\- p -- .l (5.23) 

"\'l .. 
J "k f 1'1 

This corresponds to an F/D ratio of 213. If g2 = 4.8 then (5.23) 

predicts g~ 0=0.l8. These values have been used by Snow et.al. (45) 

to evaluate the once subtracted dispersion relations for D±(w,o) 

(see equs(5.15), (5.16) ) throughout the physical energy spectrum 

for w, and hence to obtain a comparison with experimental measurements 

for Df(w) I A± (w). 

However, (5.20) predicts that g2
1\ N 15 which is clearly irQompatible 

with the results of forward dispersion relations, except for the 

calculation performed by Kim(54). Moreover, some of the major sources 

of error in the forward dispersion relation (3.4) are suppressed when 

we use (4.7) (from the list in section (IV.l) ). Therefore, if the 

SU(3) predictions are valid then our basic assumption that only 

s·waves contribute to the low energy RN region, may be in error. 

So far, the value of g2
1

• has been obtained dependent on g2
y

1
* 

(see equs(4.43), (4.44), (5.11), (5.12) ) for which SU(3) symmetry 

implies a value g2
y

1
*K-p = 2.4<48 ) by comparing the width of the Y1* 

resonance with that of the pion nucleon N*(l238) resonance. A model 

which incorporates symmetry breaking, due to Wali and Warnock( 55) 

2 leads to good agreement with observations for g y
1

*pK = 1.9 

If we differentiate chosen forward dispersion relations with 



92. 

respect to w then the resulting expressing give independent relations 

between the coupling constants. In principle this extra relation could 

enable an unambiguous determination of their values. The results of 

this procedure are discussed in chapter VI. 



CHAPrER VI 

THE DERIVATIVE DISPERSION RELATIONS 

1 INTRODUCTION 

If the fixed momentum transfer dispersion relations are diff-

erentiated it is possible, in principle, to use the resulting equations, 

together \i.Lth either equation (3.4) or equation (4.7) to determine , 
the three coupling constants g2

1\, g~ 0 , g2
y
1 
* . Under differentiation 

with respect to t, the momentum transfer variable, the fOI'm of the 

dispersion relations is changed as the dispersive integrals now contain 

a term involving the derivative of an amplitude with respect to t. 

This means that the dispersive contributions in the range 
I 

w1,2c w 4::. 20 BeV cannot be evaluated from just the optical theorem, 

but also require a lmowledge of the complete spectrum of differential 

cross sections. Therefore the dispersion relations are differentiated 

with respect to w, the ka.on laboratory energy. It remains to choose 

the actual relations which are best suited to this treatment. 

Clearly, the errors associated with the scattering amplitudes 

near threshold are emphasized when the differentiated dispersion 

relations are evaluated at w = JA. • Thus the relations must ensure 

that the better known KN scattering amplitudes are contained in the 

principal-valued integrations rather than the RN amplitudes. 



94. 

2 THE FORM OF THE DERIVATIVE RELATIONS 

The conventional dispersion relation most suited to differen-

tiation ig equation (3.2) for D+(w 0), certainly it fulfills the 

previous requirements. 

where kL is the kaon laboratory momentum. 

Any error in equ(6.l) due to the uncertainty in the K+n 

scattering length is removed if the relation is considered for the 

K±p system. This has the added advantage that the s-wave effective 

range term is known( 38 )so that any additional p-wave effects are 

very small. This eliminates another possible source of error. 

Furhtermore, the integration over the unphysical region involves 

K-p amplitudes, and therefore gives a relation containing the three 

coupling constants. This provides a check on the value of g2
1\ , 

obtained from equ(3.4). 

There is no need for a subtraction in (6.1) as the asymptotic 

convergence is guaranteed. With w--p.~c.20 GeV the asymptotic 

cross sections subtract approximately to give a small contribution 

from the high energy region. More comprehensive details 
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are contained in appendix B. 
J.eA·, v o.. h"t.. 

The term involving the dj f£i'~Rtiiil.l of a principal-valued integral 

must be treated with great care. As w ..: w1 this term can be 1.,ri tten as 

tl 

\ 
""• ": ~+(."') ~ { ~. t..·J ... - ,t...' 

~t.l) "''" ~ w'- W 

t +.1. (' ~~~) ~~ ~· 
11' -

Jl' f..~. w' .. w (6 .2) 

Equations (2.38), (2.39) show that (A~(w)/k ) I exists. 
• ... t.J .. ~ 

The first integral could be evaluated for two close values of w and 

its gradient with respect to w found, whilst the second integral 

could be solved analytically and then differentiated with respect 

to w. This method agrees with the following procedure. Equation ( 6. 2) 

(6.3) 

The first integral was computed numerically for ''~ =)A- and the second 

integral gives (at \•i = )J-) 

~~~ l !') t "1 + ~r-w-~-.. -~ ~) - 1. j J (6.4) 
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The third integral gives 

~ !. { ll;,:>) l J.,.~_ ,.~ • r lj ( .. , + ~··-J' ~ ) J 
w•,. 

(6.5) 

Therefore we are able to conclude that (6.1) is well behaved 

when evaluated at w = p. . 

For the reasons discussed previously the derivative of equation 

(4.7) is considered for the ~p system, and if w< w1 is 
\, w 

- ! ( }~) ) : l ~ y )( (V t .l r 0 

~ • lw 1) clw I 
~w Jib~) (.~tow)" J\,(wr) 1t '--'f• lw'+-w)""' J{l'-'~ 

)'.. w (6.6) 
+ i f ) -l" ') J.,.,. ' - ~ ll ( ' ~ + l w ~ """'' 

""o l~o~'•w)'- J-U·d ~ 1t ~ ~'-w) Jt l-w:l 
ao 

- ..l f ~ ~ r r • tw'J • 0"*' (~ 1) J J.w I 

411" W. " l(.w',.,)" jl'w'J (w' . ..,)" J(~w') 
• 

Again, the principal-valued integral was written in the form 

.l "\, \"' ~+ lw') - .f..~ I~. 1\ .. l .... J J.,..,. 

~~ !#" l'-'' ·"" ) J \...w '+ ~) l w ' + w o) 

(6.7) 

-
~ ... lw'- w) J tw'.&. .1"- ){"~~ '~ ""',) 

The first integral was calculated numerically at w =~as before, 

and the second integral becomes 
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(6.8) 

+ 1 [ J. ( !).+ lwJ)] .l') (J w,- JA- ~ J W \ 't- W 11) 
~ ~ '-"~ J)A-Of:Wo 

(6.9) 

The interchange of differentiation and integration gives an identical 

result at w = Y,. • 

If w
0

) )'- , w are neglected in corr:parison to w1 '1' 20 GeV then 

the assymptotic cross sections add in equ(6.6). This is corr:pensated 

for by the extra power of w' in the denominators of the dispersive 

integrals. The overall effect i.s to retain a corrparatively small 

high energy (w' > 20 GeV) contribution. The exact form of these 

integrals is given in appendix B. 
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3 THE EVALUATION OF THE DERIVATIVE DISPERSION RELATIONS 

Both equation (6.1) and equation(6.6) were evaluated at w =~ 

in the first instance by using the energy independent scattering 

lengths of Kirn( 37 ) to determine the KN s-wave amplitudes for 

wywC w'< w2. The contributions to the two equations are tabulated 

below following the procedure of. section (III.2) but in addition 

c~ denotes the contribution of the Y1*(1385) resonance in the 

unphysical region. ,. -2.. c.\ -

Equation ( 3. 5) becomes 

(6.10) 

where g2 is defined in section (lV.4) and g2 = 1.85 g2 • from (4.41). l, 
Table 16: The contributions in units 10-7 Mev-2 to equ(6.1)-(6.6) 

at w = )1- using the energy independent scattering lengths . 

c· l 

c. 
l 

equ(6.1) 

7.43 

-6.54 

-43.64 

41.88 

-3.93 

t~=4.8o±o.25 

0.116±0.01 

equ(6.6) 

17.51 

37.51 

-33.31 

3.71 

-1.22 

t2=24.20±0.23 

+ 1.97-0.14 
.! . _I 

The errors on t 1, t 2 are determined from the errors on the KN 

scattering lengths, and on c6 from the position (WR = 1385±2 MeV) 



and width (r = 37±3 MeV) of the Y1* resonance(7). 

Equ(6.l) gives 

0.937 g~ 0+1.632g; + O.ll6g2 = t 1 

Equ(6.6) gives 

2 4 2 2 3.29 ~0 + .2 g" + l.97g. = t2 

Eliminating the Y1* contribution between equ(4.43) and equ(6.ll) 

99. 

(6.11) 

(6.12) 

2 2 
3.48 gf 0+ 7-15 gf\ = 19.08 (6.13) 

rrn.... • ( 2 
~rrls g1ves an upper bound g 10 = 0) of 

2 
g" = 2.67 

which is to be compared with the value obtained from equ(3.4), 
2 g,. = 4. 34. 

Similarly equ(4.44) and equ(6.6) give 

2 2 
0.533 g 0 + 1.10 g,.. =--··· 5.21 

l 
'Ihis gives an upper bound of 

g2f\. = L!. 71~ 

(6.14) 

(6.15) 

(6.16) 

'Ihis value may be compared with the value obtained from equation (4.7) 

g~ = 4.87. 'Ihus the new dispersion relation (4.7) gives a more 

consistent result for g2 . With the assumption that g2 is positive 
"' 

equ(6.13) gives the following ranges of values for the three couplings 

2.96' g2~Ll6, 0 c. g2 0 c 3.10, 3.80 ~ g2 i 0 
"' 1 

Similarly, equ(6.15) gives 

4 4 ~ 2 :.iirt. 2 l. 84 ~ g2 ~ 0 . 7 ~ g .. "lOIII( 3. 29' 0 < g < 2. 97' . . , ,o 
If the additional constraint of SU(3) is imposed, gi0 /g2 R = 1/27, 

equ(6.13) implies 



~0 
0.4 

0 

-0.4 
i 

j_ -- . - -

100. 
2 2 2 g = 2.62; g = 0.10; g = 
,. '[0 

3.71 (6.17) 

Equation ( 6 .16) :iJnples 

g~ = 4 . 64 : ; g~ D= 0. H7; 
2 

g = 1. 74 (6.18) 

Alternatively the KN amplitudes in the unphysical region may 

be parameterized by using (4.23) with lS1 as input parameters and o~. 1 , Pz. 
determined by matching the energy dependent and independent scattering 

lengths at w = p.. The results of this investigation are shown in 

table 18. Also tabulated are the values of g~ using this procedure 

for the undifferentiated dispresion relations (c.f. table 4 and 

table 9) , and the upper bounds on g~ obtained by the equivalent 

method to that which gave equation (6.13) and equation (6.16) 

(i.e. by using the tabulated t 1 and t 2). The corresponding oe.,. p. 

are shown in table 5. 

Table 18: The results of (6.1), (6.6) by matching the energy dependent 

and independent scattering lengths at threshold. Columns 

lrl 

0.2 
0 

-0.2 

0.2 
0 

-0.2 

0.2 
0 

1. -0.2 

( 5) and ( ri) give the upper bounds on g2
1\ from ( 6 .1) ' 

(6.6) respectively. Coiumns (6), (8) give the values of 
2 g 1\ from tables 4, 9 respectively. 

--~-----------,------ ----------------------- - -·· ' 
Conventional Relation 

Bound on 

tl t2 g2 2 
gf\ ,.. 

4.67 24.68 2.69 8.24 
4.88 25.68 2.74 

I 5.28 28.70 2.88 
-----+- ------ -·-- ----

4.34 23.26 2.48 I 7.94 
4.54 24.27 2.54 
4.94 27.28 2.68 

4.06 21.06 2.31 
4.27 22.06 2.37 
4.66 25.08 2.51 

-·- . ----.- --- -- - --

New Relation 

Bound on 
? 

g~ 

5.62 
5·75 
6.13 

5.28 
5.42 
5.80 

4.77 
4.90 
5.28 

2 
gAo 

7.25 

6.84 

i 
6.08: 
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From table 18 we see that the agreement between the conventional. 

forward dispersion relations (3.4), (6.1) is very poor. However 

the new dispersion relations ( 4. 7), ( 6. 6) indicate that "1, is 

regative and "l, ~- o·I+.Also, as 110 decreases the general trend is 

towards a small discrepancy between the predictions of (4.7), and 

(6.6). Unfortunately this disagrees with the Y
0
* parameters which 

require 0 <. 
a. 

11Q < 0.3. If we use values .::JC..= -1.51, tfo = 0.4~ ~.~o·4 

for equ ( 6 . 6 ) , which are given toberable agreement with the Y
0
* 

position and width, then aa<w1) is consistent w-ith the energy 

independent scattering length aa in the range )A c. w' <. w~. ) and 

the upper bound is g2,.. = 5. 22. This compares with the value 

g~= 6.09 shown in table 10. Similarily, taking ~,= -1.51, 

~'L = 0.6, "'• = -0.2, for which b
0

(wl) is consistent with the energy 

independent scattering length b
0 

in the range ,.l..t~~ 14 w~, then the 

upper bound is g~ = 4. 55. This compares with the value g~ = 5 .10 

in table 10. Even now, the differenti~Aiispersion relations still 

appear to underestimate the value of g2~ . This inconsistency could 

be attributed to either the way in which the Y1* contribution is 

evaluated, or a defect in our assumption that only zero range s waves 

contribute to the low energy K-N amplitudes, if the cross-section 

data measurements and asymptotic region parametrization are accurate. 

However this fault is more obvious in the case of the conventional 

forward dispersion relations than our new dispersion relation. 

:'"-.Nevertheless, the fact that we have obtained a value for the sum of 
.· 1 
.</the pole terms and the unphysical region contribution, albeit 
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at w = ~, enables us to evaluate D+ (w, t=O), ( 4. 7), :for general 

values of w and compare with the experimental data. The comparison 

with experiment of D-(w,t=O), (4.6), is also discussed in the 

subsequent and final chapter. 



CHAPI'ER VII 

THE COMPARISON OF THE NEW RELATIONS WITH EXPERQVJENI' 

l THE RELATIVE MERITS OF THE VARIOUS RELATIONS. 

So far, the forward dispersion relations have been used to 

predict values of the 1\ KN and 1 KN coupling constants. Having 

done this it is possible to predict the real parts of the K±p and K±n 

forward scattering amplitudes and compare the results with experiment. 

As discussed in section (IV-3) the most r.-;erious problem is 

the evaluation of the forward dispersion relations forKN scattering 

is due to the uncertainties associated with the 1\ and t: pole term 

contributions and the computation of the dispersion integrals over 

the unphysical region below the RN threshold. Let us consider 

the two methods adopted by Lusignoli et al(26 ) and Queen(56), and camp~ 

these relations with ou~ new dispersion relations (4.6), (4.7). 

The sum of the pole terms and the unphysical region contribution 

in (5.16) for D+(w) used in Lusignoli et al. (26 ) may be written as 

- 1 Lw) : "-. '( l ( ~ .l .. ') ~' + t lC (.Y) • ts ""'( (7 .l) 
'- 11 ..,,

11
'1.'"'(""'" .. ) V tw'C+-')(wv\.·,-") 

Note that equ(5.16) is essentially a twice subtracted dispersion 

relation. An alternative form is the once subtracted relation for 

D+(w), equ(3.2),which has been evaluated by Queen<56 ), where now the 
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The corresponding relations for the real part of the K-N amplitudes 

are obtained by using the crossing relation 

(7.3) 

However, as table 13 shows, the fluctuations in the predicted value 

of the coupling constants arise mainly from the particular way in 

which the unphysical region is parameterized because of the large 

canelllations wf.rich occur between the various terms. It is therefore 

desirable to calculate D± (w) from a relation in which the errors 

con:pensate each other as much as possible. For example, for 

sufficiently large \Wl the errors on some of the individual contri­

butions to equation (5 .16) are correlated since using the unsubtracted 

relation (3.4) and (7.1) we find .. 
~ L 1>.Lw) ... 1>~(.w) J 4-1 ... (.w) ~ : r 
t~ ~~~ 

}l-

0" ... - .,. .. 4.w' 
"'-' 

(7. 4) 

as lwt~.o . That is, at high energies the error due to the combined 

contribution to equ (5.16) of the second subtraction constant, the pole 

terms and the integral over the unphysical region, is simply equal 

to the error on the right hand side of equ(7.4). Although the relation 

used by Queen (56) does not enjoy a similar advantage, this is offset 

to some extent as it only involves one subtraction as opposed to the 

two subtractions in equ(5.·16). 

Consider now the unsubtracted dispersion relation (4.7)<57 ), 
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with w
0 
~ 0.4 GeV, and write 

i r· A .lw') lw I + .I I"' 1>- ~·) L,., I 

wll \ Jil:•J \ lw' ._w) 1t w D J f·l ~')) l "~ 'h•) 

+[ 
~ 

xU'J jl.Y 
\ J t lWv) \ (w'tt-w) 

7 
s (7.5) 

Since equ(4.7) is convergent in unsubtracted form we can calculate 

Ip ( JA) and I ~ ( ~ ) directly. from r+ and D + (JA ) . Further, from the ... 
form of equ(7.5) the computed values of I(w) are expected to be 

almost independent of w except when w is in the neighbourhood of 

the KN unphysical region. The important point is that if equ ( 4. 7) 

is used to calculate D+(w), the large errors associated with the 

extrapolation and the coupling constants are correlated in such a 

way that the total error on I(w) is expected to be comparable to 

that for I ( 1'-) , except near w = - )1- . In the next section we shall 

describe how the values of D+(w) are calculated from equ(4.7). 



2. THE EVALUATION OF THE NEW RELATIONS 

It is convenient to write equation (4.7) in the form 

D+(w) = )5_ ci(w) 

i=l 

106. 

(7 .6) 

where the. ci in (3.5) have been redefined as ci (w~Jtt-w)and c1 

now refers to the contribution of the pole term, so that 

(7.7) 

From table 6 we find 

IP<" ) = 1.04±0.09 GeV-l 

In(,.) + GeV-l = 0.73-0.20 
(7.8) 

In tables 19, 20 we show the various contributions to D±P(w) 

and D± V\ (w) respectively at a few selected momenta. '!he tabulated 

value of 'J{f.4.) corresponds to the constant scattering length 

extrapolation. '!he calculation of I(w) was repeated using various 

K-f!'Ja.trix extrapolations, each consistent with the Kim ( 37) 'RN' 

scattering lengths and a Y0 * resonance, but they produced a 

negligible change in the value of I(w) except for w in the low 

energy region. As the calculation was completed before Kim's (54) 

new parameters were available we did not explicitly verifY that the 

extrapolation with these parameters also produces no change 

in I(w). Notice from tables 19, 20 that, as predicted, the value 

of I N(:!:w) ~ rNC~) except for w in the low energy K-N region. 

The tabulated errors on I ( w) reflect the errors shown in equ ( 7. 8) 
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Therefore equ(4. 7) is particularly suitable to the calculation of 

D± ( w) as the total error on I ( w) is corrparable to that for I ( ~) 

except for w ~ -~ 

Independent confirmation of the constancy of rP(w) with respect 

tow is obtained by evaluation the derivative form of equ(4.7), 

that is equ ( 6. 6), at the rp threshold. Using the known parameters 

of the K+p s-wave effective range expansion(3B) and the evidence that 

the K+p p-wave scattering lengths are small, gives 

(7.9) 
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Table 19: The contributions(in units of GeV-1) to D±P(w) from 

different parts of the dispersion relation of equ(4.7). 
The notation is that of equ(7.6). 

I k c t' -I 
1 (G 1 ) Poles + on 1nuum~ 
' ev o Cl(w) C2(w) 
I 

-7.98 
I c±o.o7) 
I 

l.ll i -9.29 
(+0.1) ! (±0.08) 

; 0.97 -1.37+2.48 
t 

oP 
-1 (Gev ) 

5.20 -0.56 -2.25 
(±0.1) (±0.01) (±0.16) 

6.82 -0.67 -2.03 
C±O.l) (±0.02) (±0.16) 

-1.23+2.34 l.ll :-11.89 7.45 -0.79 -4.12 
(±O.l) r(±O.lO) (±O.l) (±0.02) (±0.17) 

' 

3.50 -1.16+2.26 1.10 
(!O.l) 

1-14.83 
1(±0.16) 

8.42 -0.54 -5.85 II 

(!0.2) (!0.03) (±0.27) 

9.80 -1.10+2.17 

0.415 -0.38-1.22 

I 

1 0.95 -0.68+1.20 

1.975 -0.87+1.76 

Kp 
3.46 -0.95+1. 93 

5.0 -0. 99+1. 99 

1.07 
c±o.1) 

I 
;-21. 33 I 
1 c±o. 36) 

2.98 7.28 -10.0 
(±0.5) (!0.32) (!0.7) 

-1.60 1.62 -0·.51 
(±0.87) (±0.18) (!0.04) 

0.52 3.42 -1.50 
(±0.32) (±0.21) (±0.04) 

o:~12 1-·.0.36 
c±o.oo2D c~o. 9) 

I 
I 

0.43 I 2.87 
(±0.01) (±0. 4) 

0.89 1.57 -3.27 1.30 0.48 
C:tO.l2) (±0.29) (±0.05) (±0.04) (~0.3) 

0.98 l 2.20 -5.25 3.05 1 0.98 
c±o.ll) 

1
c±o.46) C±0.07) c±o.ll) 1 c±o.5) 

1.00 1 1.53 -6.79 5.49 1.23 
(±0.10) (±0.58) (!0.09) (±0.25) (±0.7) 

I 

il I 1.00 I -4.82 I -9.53 115.23 1.88 
--~~-9_.o ____ -_l_.o_2_+2_._o2 ____ <±_o_.l_o_)~:<_±o_._8_6)~1 _<±_o_.l_3_)~1 c_±_o_.7_2_)~(-±l_._7_)~ 
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Table 20: 'Ihe contributions (in units of Gev -l) to D±n(w) 

from different parts of the dispersion relation of equ(4.7). 

The notation is that of equ(7.6). 

-

k ~ C ,l~ ) C .... ~) I ( ,lC..w) 

(Gev/c) 'Poles + Continuum = rl Cok-J I Cs-(w) ; ~ 
I<Gev-1) 

- ~ 
I 

0.52 -1.09+1. 81 0.72 ' -6.35 5.64 -0.32 -0.3 ! 
(±0.2) c±o.1) c±o. 4) (:!:0.01) ! c±o.5) I 

0.97 -1.01+1. 73 0.72 ·-~.45 7.18 -0.36 1 +0.1 
c±o.2) ( -0.1) c±o.3) (±0.02) ; (±0.4) 

rn 1.97 -0.93+1.63 0.70 -9.65 7.46 -0.30 I -1.8 I 

(::1:0.2) (:1:0.2) (±0.2) (::1:0.02) ' (±0. 3) : 

-0.88+1.57 0.69 
I 

0.28 3.50 -1~.2 8.50: -2.7 
(±0.2) ( -0. 3) (±o. 5) ' (±0.03) c±o.6) 

9.80 -0. 84+1.51 0.67 -17.9 2.76 9.27 -5.2 
c±o.2) (:!:1.0) (:1:1. 5) (±0. 32) I (±1.8) 

~~- -- ------ .. - ------ --- . - - . . . . -- -- --- - - - . -
0.415 -0.32-0.57 -0.89 1.43 -0.52 I 0.08 o.1 I 

(±o.8) c±o.3) . (±0.09) (:!:0.002) (±0.9) 
I 

1.3 I 0.95 -0.65+0.89 0.33 2.24! -1.54 0.31 ! 
c±o. 4) (:!:0.3). (:!:0.14) (±O.Ol) (±0. 5) I 

1.975 -0.69+1.24 0.55 2.30. -3.35 0.97 0.5 
K-n (±0.25) (±0.5) . (•0.15) (::1:0.04 (±0. 6) i 

! I 

3.46 -0. 75+1. 35 0.60 +3.94 : +5-37: +2.41 1.6 1 

(±0.2) ( -0 • 8) j ( -0 • 2) I (-0.11) : c±o. 8) i 
I 

5.0 -0. 77+1.40 0.63 3-731 -6.951 4.51 I 1.9 ! I 

(±0.2) . < ±o . 8 ) , < ±o . 3) : (±o. 25) : c±o. 9) I 
9.0 -0.79+1.43 0.64 -1.51: -9.74! ~;3-3 2.7 

c±o.2) < ::1:1. 7) · < ±o. 4) , (-0. 7) (±1.9) 
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3 THE COJ.VIP ARISON WITH EXPER.IMEN.I' 

In figures 1, 2 the disperison relationa predictions for 

~l: l~p / ~t? are shown_,together with the values that are obtained 

from extrapolating the differential cross sections for J<±p elastic 

scattering(5S)(59)to the forward direction, where 

( ~ )i.l. :. \1>\,_ + lA 1,. 
\.. ~ ~~~ (7 .10) 

The uncertainty in the disperison relation predictions for-.. can 

be estimated from the tabulated errors on the pPedictions for D(w). 

The signs of the experimental values of o(! are undetermined and in 

figures 1, 2 we have taken the sign which is in better agreerrent 

with the calculated curves. .Above w = 5 GeV we also show the 

predictions fro .t" that are obtained from the Phillips and Rarita -
Regge-pole parameters (see appendix B). Since these Regge para-

meters are used to calculate the asymptotic contribution to the 

dispersion relations the two predictions 111U.St agree asymptotically. 

For completeness figures 4, 5, 6, 7 show the values obt~for 

""' and D-(w) respectively plotted against w. 
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Figure Captions 

Figure 1: + The energy dependence of the ratio o(. for K p. The 

solid curve is the prediction of the dispersion relation, eq(4.7), 

and the dashed curve is the Regge -pole prediction. The experimental 

points are obtained from the following references: () (38); • (58a); A 

(58b); o (58c); .., (58d); • (58e); D (58f); • (58g); • (58h)·J 

• (58i). 

Figure 2: The ratio oe. for K p. The solid (dashed) curve is the 

dispersion relation (Regge-pole) prediction. The experimental 

points are obtained from the following references:-.-.- (59a); 

., (59b); Q (59c); • (59d); ., (59e); • (59f); • (59g) 

o (59h); A (59i). 

Figure 3: The dispersion relations predictions of ~ for K±n. 

(The dashed curve represents the Regge-pole predictions). 

Figure 4: TI1e dispersion relation predictions for D+(rp). 

Figure 5: The predictions for D_ (K-p). 

Figure 6: The predictions for D+ (K+ n). 

Figure 7: The predictions for D_ (:!Cn). 

From figure 1 we see that for K+p there is good agreement 

between the dispersion relation predictions and the experimental 

value of ot.. , except at the bro high energy points and the two points 

near 2 GeV. It is interesting to note that in the experiment 
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performed at 1.96 GeV/c(5Be) the measured total K+p cross section 

was found to be 2 rnillibarnos greater than the rrore recent measure­

ments . Using the new value for cr+ Y' and scaling the differential 

cross section accordingly we find~= -0.47±0.17, which is in 

much better agreenent with the dispersion relation prediction. 

The origin of the discrepancy with the sonewhat earlier experimental 

result at 1.97 GeV/c(5Bf) is probably simply that the error associated 

with the extrapolation of the differential cross section to the 

forward direction was Qnderestim~ted. 

Now consider K-p and the comparison in figure 2. Gelfand et al. 

(59a) have measured the K-p angular distribution at twenty two 

values of momenta in the range 0.8 to 1.2 GeV/c. The resulting 

predictions for ~! are smoothed as a function of momentum and are 

shown as a dot-dash curve on .figure 2 together with a· typical 

error bar. There is reasonable agreement with the dispersion 

relation prediction for ol_, . However, as pointed out previously 

by Lusignoli et al. ( 45) a discrepancy exists between the ~ispersion 

relation prediction and the experimental points in the region 1.5 

to 2 GeV/c. Above 2 GeV/c ~! is predicted to be very small 

and the experimental value for ot 2.. is then the small difference 

between two large quantities. In view of the large experimental 

errors it is not surprising that disagreement is observed in this 

region. 
~ 

In figure 3 we show the dispersion relation predictions for ~~ 
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At present the only experimental information concerning ol.'!:.~ is that 

obtained indirectly via the observation of the charge exchange 

K+n ~~P (or to be precise K+d -.tJpp) and K-p..,.. i<On . The 

forward amplitudes for these processes are 

T (I(" p _..,. i<On) = T p_T n - --
(7 .11) 

and so given the value of off we can, in principle, determine ot If\ from 

the data for small angle charge exchange scattering. It is useful 

to define the ratio of the real to the imaginary parts of the 

charge exchange amplitudes to be 

te 
oL.,.. --

(7.12) 

Data exists for the process K+ d ~l(Opp at 2. 3 GeV I c ( 60 ) . 

Glauber and Franco (6l) have analysed this data, carefully allowing 

for the deuteron effects, and estimate rJ..~"IV- 0. 76 and .c+c.~ -6.8, 

which are to be compared with the dispersion relation predictions 

of oe; ...., -0.23 and tl~t"'~ -8.4. Unfortunately in their analysis 

of the data they assume ""'+ t ,.., -0.34 whereas it now seems 

probable that 11.!"' -0.55 at this energy. With the latter value, a 

. ( 62) " rough calculatlon shows that "'+IV -0 .13 or -0. 97. 

Turning now to the other charge exchange process K-p ...- i{On 

we find that ~lar distribution data exists at many energies(63) 

However, in this case, the forward scattering amplitude is found to 
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be predominantly imaginary at most momenta and so prohibits an 
c.t. 

accurate experimental prediction of -- .In table 21 we list the 

experimental values of the forward differential cross section for 

K-p _.ROn for momenta above l GeV/c together with the disp•.=rsion 

. I C.&)"· relation predictions. Only for roomenta at which \.~ _ 1s 

appreciably different from zero (for example in the region of 

1.5 GeV/c) is the comp~ison a significant test of the dispersion 

relation predictions for D~(w) and n_P(w). The agreement with 

experiment is good and in particular the discrepancy noted by 

Lusignoli et al. <64 ), in the region around 1.5 GeV/c, is resolved. 
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Table 21: Comparison between the dispersion relation predictions and 

the experimental values of the forward differential cross section. 

for K-p ~ i(Dn in the c .m. frame. 

k 

Gev/c 

1.022 

1.08 

-·--·------------
Dispersion relation Experiment 

(-£:Cl),. --·- -- ( t-)0 ------- --- t t). --o- ;.~.:-.:. r 

1 mb. /ster. mb. /ster. , 1 

0.56 

0.04 

-- --·--------·----- ----·-·· -------- \ I 

1.22 ± 0.40 ! 1.58 ~ 0.28 

+ 1.54 - 0.28 + 1.40 - 0.25 63a 

1.13 

I 1.18 

0.01 

0.17 

+ 1.02 - 0.22 

o·. 70 :!: 0.22 

+ 0.94 - 0.24 

+ 0.66 - 0.22 
I 

0 

i 1.22-- ---r0.3~-~ 0.33 ± 0.21 ----r 0.27 + 0.05------- --

1 + 0,76 I 0,18- 0,15 1.42 + 0.21 - 0.04 

+ + 6 0.81 i 0.39 : 0.18 0.38 + 0.03 3b I 
0.18 0.47 - 0.12 0.43 - 0.09 1 

1.51 
i 
I 1.6 
I 

j_l_._7 ___ 
1 

__ o_._o_4 ___ -_o_._5_2_:!:_o_.l_o __ -r--o_._4_9_:!:_o_.o8 __ --\- __ ____ _ _ -1 

11.8 0 . ~o-35 + 0:~~ -~ ~3~~ OoO! ____ [ __ ~c -1 
1 2.24 o.o5 0.39 ± o.1o o.29 + o.o6 63d j 

r 3 0 5 0 0 04 0 0 42 ~ ~~~5-:--;~-32 ~-0-.-0;---- --~--_-_ ~~~ -~ 

I 5.0 o.o1 0.23 ± 0.16 + 0.29 0.07 

17 .l 0.07 
+ 0.22 0.20 0.25 --± 0.04 63f 

I 

9.5 0.06 + 0.20 - 0.12 + 0.26 0.05 
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4 • CONCLUSIONS. 

Except for the analysis performed by KimC54), all the cal­

culations of the lambda coupling constant discussed in Chapter 

V support the value deduced in Chapter IV, that is 

,..<i t \·8 

(7 .13) 

The results shown in table 11 indicate that this error may be 

rather conservative and that a more realistic value may be 

(7.14) 

Note that the inclusion of the correct pole term factor (as 

discussed in appendix D) A.ecreases these values slightly. In 

any case the new forward dispersion relations do seem to d:i.m.inish 

the importance of many of the undesirable features in the con­

ventional forward dispersion relations. This certainly appears 

to be so from the discussion presented in Chapter IV. Unfortun­

ately there is still a significant contribution from the unphysical 

region when equation (4.7) is evaluated at the kaon nucleon thres­

hold to determine the lambda coupling constant. Consequently 



there is still an ambiguity in the exact value of g2~~o ,as shown 

in the above results (7.13) and (7.14). This should be reso~lved 

by obtaining more precise values of the isospin I = 0 R-mat~ix 

elements in the low energy region to fit the known data. At 

the present time efforts are being made( 65) to resolve this 

dilemma. 

As suggested in Chapter V th~ situation regarding the sigma 

coupling constant is even less transparent, as very little is 

* known about the Y1 (1385) resonance. Attempts have been made by 

Davies et al. <48 ), and in Chapter IV, to resolve the isospin I= l 

s-wave and p-wave contributions to the RN low energy region. 

Success in this direction could well produce a very low value for 

g2
1 

which may satisfy the SU ( 3) prediction of g~,"" 0. 5 ~ Due 

* to the signs of the Y1and ~ pole term effects in equation (4.44), 

a decrease in the value of g2t entails a compensating increase 

2 * in g Y
1

• 

The use of derivative dispersion relations in Chapter VI 

appears to show the superiority of our new approach in that more 

consistent results are obtained from relations of the type ( 4. 7) 
.,f"OW'-

than~the conventional forward dispersion relations. Taken to 

their logical conclusion they indicate that \ g2'l I is very small. 
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This fact is deduced from the arguments concerning the con-

2 sistency of the predictions for g~ • From equation (6.16) 

one may also deduce that g2RNY~ - 1, if g2[ 0 is neglected. 

Even though the exact values of the coupling constants may 

still be slightly suspect, the results of Chapter VII enable 

one to assert that the stage has almost been reached where the 

dispersion relation predictions for the real parts of the forward 

amplitudes can be used to nomalize the experimental angular 

distributions for ka.on nucleon scattering. This is true simply 

because the results indicate that the sum of the pole term and 

unphysical region contributions influencesthe real parts of 

the amplitude in a fixed way. 

The conclusions reached in this thesis are, we believe, the 

extent of present knowled~ in this rapidly growing field. 
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.1\PPENDDC A 

PARriAL WAVE AIVIPLrrliDES 

For equal mass (m) spin-zero particles the partial wave 

amplitude f).. (k2) may be defined in terms of the invariant ampli­

tude F(st) ~ F(k2,cost) by the formula 

l (Al) 
~J.tt.") ... i \ ~l~•) l>J.(.IM•) l=-(t..~ ....... ) ,., 

and in this case ( l. 4) becomes 

!. :. "" (f..l •*".) 

\- '=- - ~ f.." ll - "" • ) (A2 ) 

\A. .... -!t..~0 ~,.,g.) 

where k is the centre of mass momentum. By using the orthogonality 

property of the Legendre functions the total amplitude may be 

expressed in tenns of the partial wave arnplitudes by .. 
f(t..~ Coft&-):. 'r.lU.·H.) {.J.ll\) t..tlc...t.) (A3) 

J..:. 0 

Hence, the integraals in the dispersion relations give rise to 

tenns of the form 

' 
t { 

-· 
,l.l~ f) 'J>"' l'"" 9 ) \ 

s'-tl~"(J t ,._.,,.) (A4) 

which are simply Lengendre functions of the second kind. Certain 

important properties of these integraals may be seen by inspection. 

(a) For small k2 they behave like (k2)J. 

(b) For large s' they behave like (s')-1-l 
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Condition (a) shows that we should really consider the quantities 

defined by 

(A5) 
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APPENDIX B 

THE HIGH-ENERGY CONTRIBUTIONS 

In this appendix we derive the exact forms of the high-

energy contributions to the ordinary and differentiated, conventional 

and new dispersion relations. The way in which this region, w1 ~ 20GeV, 

is treated is in accord with the formalism of Phillips and Rarita 

( 42 ) and the values of the parameters they obtained are used as 

input numbers. By writing the kaon nucleon scattering amplitudes 

in terms of five crossed channel poles, Phillips and Rarita fitted 

the experimental data for the total and differential cross sections. 

'Ihe various amplitudes of interest have the form 

K-p -">K-p = Tp + Tpl + TR + TW + T p 

+ + T + TR- Tw- T f Kp-->Kp = + T I p p 

K-n """'>K-n = Tp + Tpl - TR + Tw- T f (Bl) 

+ + T +T 1 -T -Tw-T· · K n~K n = p p R . r 
where the suffices P, P 1

, R, &~~, f refer to the appropriate 

Regge trajectories. 

The amplitudes Ti associated with each trajectory (i) are given 

by 

( '1.t ( 1- I ) l ~ • ) II( L J:""" "T. - t\ .t· ... . L - ' (B2) 
't1T 

~ ,.~ - - ~ c.nTotl 't \ 11 ... 1i (B3) -
~~ 1t el' 
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'Ihe (±) sign is the signature factor and is (-) for t.he I' 
1 

w 

trajectories and (+) for the R, P, P' trajectories. 

The Ci are constants given in reference(42). The .,, are 

parameters associated with each trajectory (i) and ws is a scaling 

factor taken to be l GeV. 

Table I: Values of the constants in equ(B2) 
,----- -- --\- -- -- -- - --------r 
\ ~ (\ o(' (lc<~ .. 1) J 'Wsfl(t,l 

O·O,tll 
0 . 0 'lit,~ 

O·Oof'i't 

o·o'utt .. 

(a) _The equ(3.4): For this relation the relevant dispersive integral 

to consider is 

J. ( 
110 

'. Lw:) - ~+lw'J 
1f l w'" p w"' 

ao "'v 
(B4) 

Writing 

-- (B5) 

~\ 
(B6) 

(B7) 

(B8) 

) 
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The ± sign refers to the fact that the dispersion relation was 

v~ritten for a nucleon N where N = (Pn) and this changes the 
• J 

sign of the B ~ contribution accordingly, to (±) respectively. 

(b) The equ(4.7): Here the relevant integrals to consider one 

The integrals may be expressed in the fonn (as w0 , p. .:: < w'), 

~- -
w'"{J - W/w•) (B.lO) 

+ i\... J ..... l' - w I w I ) . 

Integration yields 

(B.ll) 

10 a. ... 
l~, .. a,,t i"') ~ ~ w \."'+1· .(i 

' ~-tl• ~i) X 

- li ... -: -a,..)~~ l:..:: :c) 1. u .. l-It. 

This is true for all · W ~ 20 GeV. The :!: sign refers to 

N = (Pl\ ) • 
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(c) The derivative equ(6.1): The relevant integrals here are 

• 
- ~ ( ~ .lw'J ~· 

~ (._w'+w)~ 

+ 
(B.l2) 

The integrands can be expressed in the form 

- (B.l3) 

Thus after expanding in terms of ( w I w' ) and integrating we obtain 

(B.l4) 

This is true for w <. 20 GeV. 

(d) The derivative equ ( 6. 6) : The appropriate integrals to consider 

are 
00 .. 

-.l f ILl_..') ~ ... I -.1 I 't l .. ') 4-, 1 (8.15) 

"n lll'-"'+w)'"lw'-)4 \(w'·w.) 1l l(l'-''·w)'J{"''+~)(wliw•) 

The integrands can be expanded for w < w' and re-expressed, as 
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Integration gives 

.1 ij,..:!&,.) ~ r u ..,lA-• 
21\" " I lu-~, .. ·J )(\i-tt-~' (B.l7) 

-~, +B,~t irl) £ ~ lJ!-•.) ~ 14 ~-1(. 
\ I lit-".) "" ' 

-li.,.:t ip) ~ r w W-ttU-\) 
\o I l'U+l-~l) )C.l(ot\• -i,: 

True for w < x. 

(e) The egu ( 4. 6) : The relevant integrals to consider are 

.l ( Q .. ~') ~~ -.l ( \\. ... ( .. '} tiw' (B.l8) 

~ l\.,.'·w) Jt"''-,.)(w•.w,) '1t }l~'+w) Jt w'+J')(w't-""o) 

The integrands may be expressed as 

~- ~~~*~----
'-~''(•· w}~•) "*'" {! + ""'J w 1 ~ 

..y (l.M."-~ 0) /l. w I 1] l c.- I t \ - w I~ • ) .. 

Integration yields 

(B.l9) 

~~ /ll + w/...,•) 1 
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\.9 :2. o) 

Fer W <. .,c. • 
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APPENDIX C 

THE 'NEW'' PION NUCLEDN DISPERSION RELATION 

Consider a fUnction G(z) of z which satisfies the following 

conditions 

(a) G(z) is analytic in the upper half of the complex z plane. 

(b) G(z) is less than z at infinity in this plane 

(c) The real part of G ( z) is an odd fUnction on the real axis, 

the imaginary part is an even function on the real axis. 

(d) Irn G(z) is zero on the real axis for -1 c z c. 1, with the 

exception of a delta-fUnction contribution 

(Cl) 

We may write G(z) ! B+(s,t=O) as B+(.given by (1.4l))satisfies 

the conditions (a)-(d), and z! w~ where w is given by (1.38) 

and )1- is the pion mass • 

Gilbert< 46 ) suggested that one should look at the function 

-.. 

(C2) 

where J z2-~2 is that branch of the function that is analytic in 

the upper half plane and is positive for w real w,,.) and negative 

for w negativ~_ -and w· .c.-~ and is positive imaginary for w real 



The function F(w) has the following properties 

(a) It is analytic in the upper half plane 

(b) It goes to zero at ini'inity 

128. 

(c) The limit of the function to the real axis from above has an 

even real part and an odd imaginary part. 

(e) The real part of this function is zero for - p. ~ w c p. and w 

real with the exception of the two delta functions, and 

Using Cauchy's theorem 

'l~f l,._(.w) J :. -~ w1 {'0 ~I '2t. "l"'lw' o.) 

L J \ ... 'J l ~·'·~V') J ""''L- M.' w •JA ~ ,-

The left hand side 
l.- a•tw ,0) 

J w"-- ~ & 

- lt. U. +c,.w, o ) 

J~"-w' 

~ w Gr'l 
~"- w/' t1 J J4 '· w; 

of this relation is 

4o~ 

(C3) 

(C4) 

(C5) 

There is an infinite discontinuity in this relation as the threshold, 

w = )A. , is approached from below, since ImB+ goes to zero at 

threshold while Re B+ is like a constant in the neighbourhood 

of w = JA-· Similar relations can be written for A± and B-. 

Having taken care of the singularities in the integrals, and 

the convergence of these relations, the integrands must be evaluated 

from the known phase shifts, as the optical theorem is inapplicable. 

Clearly this method cannot be applied to the KN problem in its 

present form as the only facts known with any degree of certainty 
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are the total cross sections, a.l though a recent phase shift 

analysis ( 66 ) has been applied to ~ p. 
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APPENDIX D 

THE POLE TERM CONI'RIBilliONS 

Until recently the pole terms have been evaluated with the 

factor M v.. in equation (1. "3 ) taken to be My, where Y denotes 

either the lambda or si@llB. particle. However, a recent 

s~stion has been made* that this is erroneous, and in fact 

M "'-should be replaced by the nucleon mass 1'\J· In order to make a 

meaningful comparison with previous calculations the former 

method has been adopted throughout this thesis . This means that 

the values of the 1\ and t: coupling constants should be multi-

plied by (M(II /MK) and (~IVt) respectively. The derivation of 

this result is sketched below. 

** Using the normalisation and notation of Gasiorowicz , the 

1\ pole term gives a contribution 

where 

* 

"'"-+ \ lt lp ... 'l) 
'l ,., 1\ 

) 

h" "'"' +- t \ "r. ~~ fJ 
1. ..,#\ 

_, 
A.D. Martin - private communication 

** W. Gasiorowicz - Fort. d. Physik~ 665 (1960) 

) ~ (D.l) 

(D.2) 
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and from (l. 3) 

I ~ 
(d. 3) 

'How 

i (1•- T) -: -4-n t1~ ~ (s- ~"") l+ T (D.4) 

Hence 

A'·._ = ~~- t1 .. - ..,._. 

s- ..... \ 
'i ,, "' ~ - ~ 1. 

s - t14\ 1 

Therefore from (2.62) 

~ .... ~ = .l l~ + w ~ ) f p \f 
41T 

where 

The last relation shows that MIA.= 1\J· 

(D.5) 

(D. 6) 

(D. 7) 
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