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ABSTRACT

A new forward dispersion relation is developed to describe
the kaon nucleon interaction by observing that the real part of a
resonant partial wave amplitude goes through a zero at the resonance
position. This relation eliminates some of the practical deficiencies
inherent in the conventional forward dispersion relations.

The (KN and EZ KN coupling constants are determined by using the
conbinations of dispersion relations suggested by Lusignoli et al.
evaluated at the kaon nucleon threshold. Initially the energy inde-
pendent scattering lengths of Kim are used to parametrise the K N
amplitudes in the low energy region in terms of a single chamnel
s-wave zero-range approximation. Just above threshold the KN
amplitudes are parametrised in terms of the constant s-wave scattering
lengths and effective range terms found by Goldhaber et al. and
Stenger et al. Subsequently, the K N s-wave scattering lengths
are given an energy dependence in the unphysical region through the
multi-channel K matrix formalism, Various constraints are placed on
these T = O K N scattering lengths such that the constant elements
oLy, ﬁ,, :0', of the corresponding R-matrix should reproduce the
Y;(lLIOB) resonance with its correct position and width in the ZXTW-ZW
channel, ard also the values of the energy independent scattering
lengths at the K N threshold. Furthermore, an energy dependence is

then introduced into 4o Rg Vo
’



Similarly, using the I = 1 K N energy independent and dependent
scattering lengths in the appropriate dispersion relation gives an
equation for the Z KN coupling constaint which involves the p-wave

E 3
Yl(1385) resonance. The effects of this resonance are approximated
%

1
A brief survey of previous determinations of the M,% coupling

in terms of its position and width and the Y.XN coupling constant.
constants shows that these predictions are consistent within the
large errors, except for a very recent calculation performed by
Kim.

By differentiating specific forward dispersion relations an
attempt is made to calculate the NAKN, TKN and Y;KN coupling
constants explicitly. However, the results indicate a slight incon-
sistency in the values obtained from conventional forward dispersion
relations, while the predictions of the new relations are reasonable
within the large errors.

Finally, the predictions of the new relations are compared with

the experimental data for the Ki'p interactions and the charge

exchange processes. The results are found to be in good agreement.
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CHAPTER T

AN INTRODUCTION TO STRONG INTERACTIONS

1. THE FUNDAMENTAL PARTICLES

(1) in 1932 and

With the discovery of the neutron by Chadwick
the subsequent proposal that an atomic nucleus is composed of protons
and neutrons, arose a dilemma concerning the nature of the force
which binds the nucleon constituents together, as the electrostatic
force only exists between protons and is repulsive.

In 1935 Yukawa(z) proposed the existence of heavy quanta, with
a mass some two hundred times greater than that of the electron,
to account for these strong short-range nuclear forces. Assuming
such a Yukawa coupling between the nucleons, conservation of angular
momentum requires that the spin of the quanta must be an integer,
and consequently they are Bose particles. Also, from a study of the
nucleon-nucleon potential and the empirical evidence that nuclear
forces are charge independent, it was concluded(s) that a triplet
of such particles should exist with positive, negative and zero
charge states.

This hypothesis was upheld through the discovery of pi-mesons

in 1947 by Lattes et al.(u)

who bombarded a very sensitive emulsion
plate with cosmic rays. These particles were identified with the
heavy quanta postulated by Yukawa.

At about the same time Butler and Rochester(S)discovered the
first of a series of particles with a curious anomaly in their decay

TN,

by



rates, that is, some of the decays were very much slower than

(6)

expected. This characteristic led Pais to suggest that these
particles should contain some internal degree of freedom specified
by a quantum number called strangeness. Since then, bubble chambers
and particle accelerators have provided evidence for many more
particles which are identified in terms of their mass and spin

and various internal quantum numbers such as isospin and strange-
ness(7).

Apart from the photon, electron, muon and neutrino, the list
of known particles may be divided into two categories, mesons and
baryons. The meson class contains the pion triplet (u+,-no,“_)
and the strangeness +1 kaon doublet (K+, K°) with its antikaon
counterpart (X , 7°) with strangeness -1, plus the various meson
resonances such as P and X* etc. The baryon class consists of the
nucleons (N), that is the neutron (@) and the proton (p), a hyperon
singlet, doublet and triplet with strangeness -1, -2, -1 respectively,
as well as the nucleon and hyperon resonances.

At the present time the rapid growth in the number of particles
observed is primarily due to the discovery of new resonances. However,
whereas the baryon resonances are comparatively easily established
by using a particle accelerator to impact a meson beam with a
nuclear target, no such mesonic targets exist as the meson life-

time is about 10_8 seconds. Thus the existence of many meson

resonances, which occur through meson-meson interactions, is question-



able.

A1l these particles are not independent objects in the sense
that they interact with each other and are therefore transformed
in various ways. It is customary to divide the elementary particle
interactions into three distinct classes according to their stre-
ngths (that is the coupling of the interaction). These are, the
electromagnetic interactions, the weak interactions and the strong
interactions.

Electromagnetic interactions are responsible for electromagnetic
processes such as the Compton effect, and for other processes based
on the emision or absorption of virtual photons by a charged
particle, and for mass differences within the various particle multi-
plets (e.g. the n-p mass difference). The coupling constant is e,

the electric charge, and in rationalized units

Weak interactions include Q& decay and the decay of strange
particles. The order of magnitude of the coupling constant Y is

approximately

2 -14

gw ~ 10
Strong . interactions occur between mesons and baryons and
are responsible for nuclear forces, the production and absorption
of pions, the production of strange particles and the binding of
hyperons in nuclei. The strength of such interactions is measured

by a coupling constant g, say, and is of the order



2
g ~ 15

To gain insight into the forces acting between the particles
during a strong interaction process it is necessary to introduce

the concept of the scattering matrix.



2. THE S-MATRIX

In an attempt to formulate a theory for strong interactions,

Heisenberg(8a) (80)

regarded three criteria as observable quantities,
which must necessarily be described in any theory. These conditions
led him to investigate the properties of the scattering matrix, or
S-matrix, first introduced by Wheeler(g) in 1937, which was defined
as the operator which transforms the incoming state into the outgoing
state.

Subsequent attempts to describe the effects of strong interaction:
processes were analogous with the methods used to obtain a successful
description of electromagnetic interactions in which the form of the
Lagrangian was surmised from classical physics and the dynamical
equations obtained were formulated as a convergent perturbation
expansion in e2. Note that it was possible to express the S-matrix
in operator form as an integral of a time-ordered product of interaction
Hamiltonian densities HI(Xi) at the space-time points xi(lo). However
this approach fails to account for the dynamics of strong interactions,
even if it were possible to guess the correct form of Whke Lagrangian,
because the resulting perturbation series is non-convergent as the
expansion is made in powers of the coupling constant which is very
large.

More recently a theory has been developed which, instead of

probing into the detailed mechanism of the interaction, is based on a

study of HEisenberg's(8a) S-matrix whose matrix elements are, in



principle, directly observable transition amplitudes.

If the forces involved in strong interactions have a sufficiently
short range than the incoming and outgoing particles may be assumed
to be non-interacting a sufficient time before and after the collision
Zo allow the initial and final states to be thought of as consisting
of free particles. Consequently, these states are specified by the
aggregate of the individual particle momenta and quantum numbers.

For such an initial state|i» the superposition principle of
quantum mechanics allows one to write the final state as S Vi) R
where S is a linear operator. Thus the S-matrix element 4f ¥} S\ i »
may be defined such that for an initial state | i > the probability
of \ £ 7 being a final state is

|2 £151 i»)\?
Similarly, if S* is the adjoint of S, the probability is

1<it st e>?
Thus, assuming that the states | 1 » form a complete orthonoruil
set, conservation of probability implies

s*fs =85t =2

Hence S is unitary. Moreover, if a proper Lorentz transformation L
transforms the state } 1?2 into \iL7, then relativistic invariance
requires that

1< F 1S i>l? =l¢ £\ S| iL>'\2



and the phase of the matrix element can be chosen so that
¢ F1Stiy = ‘fL‘ SiiL>.

It follows that for spinless particles the S-matrix elements
depend on the four-momenta of the particles only through their
invariant scalar products, and for particles with spin the matrix
element is composed of a number of such invariant functi. ns multiplied
by certain vector or spinor terms.

It is convenient to separate the S-matrix into two parts by
subtracting off the term when the particles do not interact at al.

Thus we may write a 'two-by-two' S-matrix element for spinless particles,
that is the matrix element which describes the scattering of two
particles with four momenta Py Q@ into a final state of twp particies
with four momenta Pos dys 35

< p,4,¥Sip;q;> =<pya,\ 1ipiq; > (1.1)

+ 1(om)" $%p +a;prmay)< pya, 1 & | pjay >
where 1 is the identity operator and . he delta functions arising from
translational invariance specify total energy momentum conservation.
The scattefing amplitude F(plqlp2q2), where
F = <p2q214 | pqy 7 (1.2)

is related to the experimentally observable scattering cross section ¢

by

=L, L (vt |fl® da
-
L_S'“)z \"'?1 S Q \ ‘ (1.3)

where p;, by are the centre of mass momenta of particles in the initial

and final states, W is the centre of mass energy and .q is the solid

angle in the final state.



It is convenient to define new variables s, t, u by

s = —(pl+q1)2
t. = _(ql—q2)2 (l.ﬂ)
uo= - (pl-qz)2

th

However p§ = —n§ for the j~ particle, where j =1, 2, 3, 4 and

the overall energy momentum conservation condition

Ptd; = DPyta, (1.5)
implies that
i
2
s+t+u = m- .
s+t+u z i (1.6)
J=1

and so only two of s,t,u are independent. For more than four particles
involved in a scattering process the number of independent varibles
rises sharply. Thus the restriction of considering only two particles
in the initial state and two in the final state is necessary for most
practical calcﬁlations of strong interaction processes.

In addition to the previous assumptions we suppose that F(s,t,u)
has no kinematical singularities and furthermore, apart from the pole
terms discussed later, the only singularities of the S-matrix elements
are those demanded by the unitarity equation. The preswence of the
latter singularities is best illustrated by combining equation (1.1)

and the unitary condition for S which gives

- *

< fi:’cb\ 81 p9,” -<pja; | ) pa, > (1.7)

. - > *
_ A [ A Jo § (pratkgky) < p,0, 18| Kk, > <pa; 19 1 kk, 7
em2 | Wt



9.
where the asterisk denotes the complex conjugate. Above the energy
threshold for inelastic scattering additional terms arise on the
right hand side of equation (1.7) since all intermediate states will
occur which are allowed by energy conservation and quantum number
" selection rules. This implies that the scattering matrix has a
singularity at each energy corresponding to a threshold for a new
allowed physical process. These thresholds are the branch points of
the amplitude F(s,t,u) from which the branch cuts are usually drawn
parallel to the real axis in the complex energy squared plane, or the
s-plane.

The physical sheet is one particular Riemann surface on which the
amplitude is single valued and is defined by any simple closed contour
in the s-plane which coes not cross any of these cuts.

The physical amplitude is defined as the boundary value of the
amplitude when s tends to the real s axis from above, and is for

Lo F(sv+i €, ¢ , W) (1.8)

t=p
Similar]y the amplitude &= <plql\ | \ P35 ? is defined as a
limiting procedure from below and can be related to the physical
amplitude by analytic continuation. Thus the left hand side of equation
(1.7) involves the discontinuity of the amplitude across the branch
cuts. The symmetry condition for the'two-to-twd ' scattering of
spinless particles

iVs\e2=ZLr\s)i7 (1.9)

implies that this discontinuity is twice the imaginary part of the



10.
amplitude.
In particular if | £ 2> = | 1>, and hence t = 0, equation
(1.7) for four equal mass particles gives
T Fou0) - 26 W Y (1.10)
where k,\ﬂ are the centre of mass momentum and energy respectively

of the initial state,and is the total scattering cross-

’Eot
section. This relation is known as the optical theorem.
If F(stu) is the amplitude for the physical scattering process

a;+b, = a +b, (1.11)

1
then the energies and momenta of the four particles are real. If
the particles have equal masses this implies

s2 4m2, ts 0, usoO (1.12)
If s, u and consequently t are considered as complex variables then
by analytic continuation to the region

uzhm’, s€0, t£ 0 (1.13)
the previous assumption that transition amplitudes are the values of
analytic functions on real boundaries, implies that the resulting
function F(s,t,u), evaluated in a suitable limit, now gives the physical
scattering amplitude for the process

al + b2 — a2 + b1

(1.14)
where the bar denotes the anti-particle. Similarly by analytic
continuation to the region

t 2 Un°, s€0, ugoO (1.15)

the function F, again evaluated in a suitable limit, now gives the



11.

physical scattering amplitude for the process

+a. =-»b. +D

a4 T ay=v b+ by

(1.16)

These results are known as'crossing relations' and imply that the

same énalytic function can be used to describe three different physical
processes by a suitable choice of s, t, u. This is illustrated by

the following diagram in which the physical regions for the s, t, u

'channels'! are shaded.

Figure 1: The three physical regions for an interaction involving

four equal mass particles.

K%'D tzo
“‘h I F L3
“\‘ \‘-\“‘*‘l*“"k\-,'/ t ‘h“
\ /
N\ \\ /
/
’/
,"/ . S?-"...‘L
/
] /
¥ —— 3S=z9
a\'\-%"—b Aq® \:‘ / “\":I‘bt\*b‘

If the quantum numbers and selection rules allow the possibility
of a single particle intermediate state less massive than the two
initial particles then the amplitude F(s,t,u) has a pole singularity

at an unphysical value of the variable s = mg for scattering in the



12.
s channel. These poles represent stable particle. If the mass of the
intermediate single particle is greater than the combined masses of
the two initial particles then the singularities, which are off the
real s axis, are said to represent unstable particles, or resonances.

Thus for theequal mass case there are branch points at

s = b, (1)%,....
u = n®, (1% (1.17)
£ = bme, (10)%,....

where Is’ Iu, It denote the first inelastic thresholds for processes

s, u, t respectively. There may also be poles at s = mi , u-="m§ and

2
t = M -
For a fixed value t = to’ say, the branch points in the s plane

are at

- 2 . _ 2
to 4m™ -t - (I) (1.18)

[¢2]
|

and the pole is at

2 2 :
s = m~ - t, - 1) (1.19)

Figure 2: The singularites in the s-plane when t is fixed.

(4-\“ bomwmd) WO
. ] . l &_s e e

N -
-t v



15.
Thus the only singularities of the S-matrix are the poles
corresponding to stable and unstable particles and the further
singularities generated by unitarity. This is the postulate of
'maximal analyticity'. A complete set of assumptions involved
in the formulation of S-matrix theory may be written down
(a) The superposition principle
(b) The existence of a unitary S-matrix
(c) Lorentz invariance of the S-matrix
(d) The disconnectness of the S-matrix due to the short range
forces (i.e. the presence of the identity 1 in equation
(1.1 ).

(e) Maximal analyticity.

To exploit the potential of the theory developed so far it is

necessary to introduce the concept of 'dispersion relations'.



14,

3 DISPERSION RELATTONS

If figure 2 represents all the singularities of F(s,t,u)
on the physical sheet, then for s =e¢, where ¢ 1is conplex and

t fixed, F(s,t) may be written by a Cauchy formula as

(1.20)

Flot) = L & Fis'e) ds'
Wi s'o o
2%,¥,

The contours R, ¥, , ¥, enclose all the singularities and R is
closed by two semi-circles of infinite radii.

Figure 3: The contours of integration on the physical sheet.

- R

S plane
. o B, \
—= & B
AR
Around ¥, the contribution to equ(l.20) is
at [ (o - w*) (1.21)

where g2, the residue of the pnle at m2, is usually written in

terms of the renormalized coupling constants defined in field theory.



15.
Secondly, around ¥, replace s'-¢ by -(w' -U) and ds' by

-du' so we obtain a contribution

3 [ (W - wr
(1.22)
4
where U = M;L.. r-t . (1.23)

A
The integration on the contour enclosing the right hand
cut gives

S LRE'si€, b)) - vishis, )] ds’
7.1!\ sl e o
(1.24)

[ : e etk ] T FG'E)
£20 )4 .
H0w9ve,wl hetwat law D—V‘_‘-‘-\Jt\cakb l‘mel\u ( )
. 1.2
FGer e = ¥ (s, 60 °

where the physical amplitude is written on the right hand side
of the above relation.

Therefore the contribution is

1 r {. F(s'e)ds' (1.26)
“ «

s'-¢

Similarly, on the left hand cut the contribution is
5

# [ dnF0dd
"

- $'- 0o
(1.27)
Hence, .
) { I Fla't A“‘
Frb): -3--+_3_ “S ‘\gsv)ln.% Mu‘Eu)
et oW e e (1.28)



16.
et o -» s+ it , therefore F(e t) {:?L the physical amplitude.

Simply take the real parts of both sides and write
Son g A I TS Y 1P ( Inm Fls't) Js'
1 _— =

Evo ) (s-3) o g0 - s
(1.29)
Thus
\ |
ReFise) = 4" r 4t 413 !:’ e FG'E) s
' gem® Wew' w ° sh-s
b3 (CImFeny det O
1 S; K‘ - u

This integration equation is called a 'dispersion relation'
(the terminology is due to a previous application of similar
equations to the theory of the dispersion of light in optics).
Similar relations can be deduced by keeping u or s fixed instead
of t. If t = 0 equ(l.30) is known as a 'forward disperison
relation'. These relations (1.30) are in fact special cases of
a more general relation first written down by Mandelstam(ll) to
satisfy all the reasonable-requirements imposed on F(s,t,w) by
ededbic Unitarity and crossing, and therefore his 'double!
dispersion relation gives the most analytic form of a two body
amplitude compatiable with these conditions.

So far we have been concerned with spinless particles.
To describe the kaon-nucleon interaction it is necessary to generalize

our arguments to include the spin and charges of the particles

involved.



17.
Yy THE EFFECTS OF CHARGE AND SPIN.

To describe a scattering process between charged particles
which involves spin, it is necessary to consider the invariant
amplitude as an operator in spin and isospin space. In particular
for the pseudoscalar meson nucleon interaction there are two
independent spin scalar operators 1 and ¥ ( Gty WM / 1
where 4y, 4, are the initial and final meson four momenta. Thus
the transition amplitudes may be written in terms of two invariant
functions A and B such that

Flovw)z ol Mobed =41 welqran )4 85t ] wlgo)

(1.31)
where u(p;) and u(p2) are four-spinors representing the initial
and final state nucleons with four momenta Py and Pos and Ju.are the
well known matrices.

If the meson is a pion, and the amplitudes for 1‘+p and® p
elastic scattering are denoted by the subscripts (+) and (-)
representively, then crossing symmetry implies

Shqul 8, lpg?: - puldolp - > @32

and it is convenient to define new invariant functions

Rt = _%' kh % “...) 0" ='§_m‘ - b, ) (1.33)

and similarly for B, for which it may be shown that At, B
are symmetric under crossing and A, B* are antisymmetric. These

properties are knownas the 'crossing relations' for A* and BE.



18.

Other useful quantities are the amplitudes defined in terms
of the eigenstates of isotopic spin. The TN system has values
of isospin I=}, -/, and using (1.33) it may be shown that these
pion-nucleon isospin amplitudes can be expressed in terms of the
above crossing-symmetric and anti-symmetric amplitudes as

AL =AY + 287, AS/5 =t - AT (1.34)
and identical relations hold for B, BY/2.

The crossing relation (1.32) can also be used to define four
invariant amplitudes Ai’ Bi for the kaon nucleon interaction, where
t now refers to ¥t, which may be expressed in terms of A Bf as
in equ(l.33). These amplitudes may be decomposed into isospin

amplitudes as follows

ﬂ\n' = RF°°
T 1w - (1.35)
O § lz0 =\
P, L (R R

Correspondingly, if the nucleon involved in the scattering is a

neutron then

I~o Iul
ﬂk_,“ 3 (% + 0 )

§3= (1.36)

.
The isospin amplitudes A°, A" refer to KtN scattering and the
amplitudes A° B% refer to KN scattering. The additional complication

here, as apposed to TN, is due to the fact that after collision the

KN state may decay into a pion hyperon state which has the same



19.
guantum numbers. Note that identical results to (1.35)-(1.36)
hold for the Bf amplitudes.

To complete this introduction to strong interactions let us
briefly consider the success of previous attempts to apply forward

dispersion relations to the pion nucleon interaction.



5 THE PION NUCLEON FORWARD DISPERSION RELATIONS.

Since the original derivation of the charged pion nucleon

(12) (13)

forward dispersion relations , the subsequent improved proofs
have. increased their importénce with the realization that experimental
verification of these relations, in turn, provides a check on the
assumptions of unitarity, relativistic invariance and local
commutativity used in their formulation.

As before

S
S = = Lpr q0) (1.37)

and if Wy is the total incident pion energy in the laboratory
system then
S Wlaal s 2w, (1.38)
where M, » refer to the nucleon and pion masses.
The dispersion relations are sometimes written in terms of
another invariant v , where

v i -
G Lﬁ “.)

(1.39)

Ut Flun
and for t # O are known as fixed momentum transfer dispersion relations
In analogy with equ(1.30) the dispersion relations for the

invariant amplitudes A, B(2l) are

ROt =2t ("’ A LQ!(J!:)L Los o

v -V vigw
Ly " (1.40)
ReBE (v,b) :_C_:t[.\._ 4 +1\’g4v'L8*Lv't){..L.1.L
9" 9'-\0 u'-qu w vy Ulav
Mol (1.41)



21.
where v? denotes the position of the nucleon pole term. The

crossing relations

1]
1
=
H

AT (v k) (v, t)

(1.42)

BY (-v,k) LB (v, )

have been used to yield integrations over physical amplitudes.

G2

is the rationalized renormalized pseudoscalar coupling constant.
Defining
& 3 +
T- L")k) = “- Q‘,") + v 8= (V, ") (1.43)

equations (1.42) imply

nt: L"V\') < % T3 (v) v) (1.44)
From (1.33) .'
Tahe) = T 3 T7(0¢) (1.45)

The dispersion relations for T (v t) become

ReTi(vt)=£rl\,[l > ]

Vo ¥ VatV
¥ . ¢ ¢ (1.46)
+) ERET [.L + 4
*?[ L LT e Lot
Ak
4M

To apply the relations (1.46) to actual scattering problems
it is necessary that the integrals should be asymptotically convergent
For instance if Im T behaved like an nt order polynomial in v then
one way to ensure that the dispersive integrals were at worst

only logarithmically divergent would be to consider the dispersion



22.

relation for
> 1.4
T Tew -7 R Tl AT
t=

where the values of Re T(v,t) are known for v = v, entsmmmby

The application of this technique is known as 'making subtractions'.
However, for a forward scattering amplitude f (s,t=0), Froissart(lu)
obtained the following bound
H
145 591 € conshat 2 5(2a ) a5 s> w0 (1B
Hence the relation for T+(w, t=0) requires a subtraction to obtain

(15)

convergence at high energies. The Pomeranchuk theorem states

1.4
o) - oy () o -49)

" where ri_(}a) are related to Im T+(%,0) by the optical
theorem . With the additional assumption

L) oy ] dnw =2 © (1.50)
the relation for T (w ,0) does not need a subtraction. The non-
forward fixed t dispersion relations suffer from the fact that a
subtraction introduces an arbitrary function of momentum transfer
(i.e. the tg in (1.47) ) instead of a constant as is the case for
the forward dispersion relations. Therefore, it is difficult to
check their predictions.

The most obvious application of forward dispersion relations

is to predict a value for G2, or the pseudo vector coupling
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constant f2, which are related by the equivalence theorem

.c v - l ( G‘» e
b\ Tw | (1.51)

This has been done in several ways which are explained briefly
below.
With the notation
¥ - 3 .0t
THwo) = P (w0 40 RF(w,0)

(1.52)
where Di, At are real functions, consider the subtracted forward

dispersion relations
+ - +
D (w) D (») (1.53)
and
D Qﬂ) ;: TD (,~)
(i.e. the subtraction is made at threshold, where w = M ). Using

the relations (1.45) and (1.46) the following forward dispersion

relation was first obtained by Goldberger et alglz)

Dy o) 22+ 2D+ 4 (-2)Do g0

c L B A \

S CER S N AL (1.54)
i

+'E.‘_ ? SQ d_A:)‘ I.o.tkw’) + 0‘; (u‘) }
% AN '-w) (w'+w)

where ki is the incident pion momentum in the laboratory system and
the suffix L on W has been dropped.
The earlier attempt to use (1.54), by Puppi and Stanghellini(l6),

suffered from a lack of precision in the data measurements from
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which the dispersive integrands were calculated. With corrected

(17)

data measurements Spearman computed the curve for D,(w)

for several values of f2 and compared the result with the'ﬂip
data. He found
i Y= gt 0008
This value is in good agreement with the value of f2 found from the

effective range thoery suggested by Chew and Low(18)

, for the
isospin I=3/2, angular momentum J = 3/2 bion—nucleon resonance.
Schnitzer and Salzmann(lg) re-expressed (1.54) in a form with
a linear dependence on W. Plotting the appropriate dispersive
contributions against W and comparing with the TW¥p data produced
£2 = 0.08 + 0.01
Alternatively, by using the identity

2
\ ) 4 W (1.55)

"'U‘ = ul" u\l— (u‘t_wi)

to increase the asymptotic convergence of the dispersion integrals,

Haber—Schaim(2o)

re-expressed the dispersion relation for D_(u,t=0),
from (1.46), (1.52), as a linear function of w2. The appropriate
dispersive contributions plotted against ygz gave

£ = 0.082 * 0.015.

A1l the dispersion relations used so.far are discussed in
greater detail in Chapter V when they are used to determine the KN
coupling constants.

The dispersion relation for Re B,(wm, t=0) given by (1.33),

2

(1.41), provides a very accurate method of calculating £~ as the
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the major contribution to the principal valued integral arises from
the well known I=3/2, J=3/2 pion-nucleon resonance, and Im B_
(w, t=0) is not involved in a principle valued integral and so
need not be so accurately determined. "The contributions of
the dispersion integrals were estimated from the results of semi-
phenomenological fits to the experimental data, as the opticai
theorem only relates the total cross section to the imaginary
part of the whole forward amplitude. This procedure enabled Woolcock

(21) to obtain

£ = 0.081 ¥ 0.003.

All these results depend on the use of forward dispersion
relations. However, f2 can be determined from photomeson production
with out the use bf dispersion relations if the photomeson
amplitude is assumed anaiytic in the region containing the physical .
region \c<.as 8! <| , and including the crossed pion poie at
cos & = )/ 4y as an isolated singularity (where qy is the pion

velocity in the centre of mass system). With these assumptions

(22) ; 2

Taylor et al. found £~ to be

2

£ = 0.064 * 0.041

Within the errors this is in good agreement with the value of £2

predicted by forward dispersioh relations.

Anderson et al. (23) evaluated the Wt p forward dispersion relations

with f2 ~ 0.08 and fbund good agreement with the low energy

exper'jmental data. This successful agreement was extended by Amblard

(24)

et al. , throughout the region W < 1.98 BeV.
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More recently the §1p comparison with experiment has been
made in the energy region 8 BeV/e «k; <29 BeVJ(EB). The results
at these high energies are virtually independent of f2. Defining
(1.58
SR LN S N >
the closeness of the forward dispersion relation predictions to the
experimental results is very lmpressive for the quantity (el ++ug).
The forward dispersion relations predictions for the quantity
(a(_ - u(+) are of the right shape but differ systematically from
the experimental results. Nevertheless, this does imply a verification
of the Pomeranchuk theorem as k.t_ ~ oy ) is approximately
2T Thus we may conclude that forward dispersion relations do
provide a means of making 'real' theoretical predictions.
The general kinematics for nucleon pseudoscalar meson inter-
actions are formulated in Chapter II, which also contains a
discussion of the complicétions induced by the precsence of an

'unphysical' region in the kaon nucleon forward dispersion relations.

2

N3 g?;_ due to thehAand €

he values of the coupling constants g
poles, are calculated in Chapter III by using a forward dispersion

(26) with which our

relation method suggested by Lusognoli et al.
results are compared.

To overcome the inherent disadvantagés of this method a new
forward dispersion relation is suggested in Chapter IV and the

predictions are compared with those obtained by using the previous

forward dispersion relation.
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EA, g2z
sumarised in Chapter V. Chapter VI contains the predictions

The various methods used to perdict values for g are
obtained by differentiating two dispersion relations with respect
to energy.

Finally, Chapter VII contains the results of a comparison of
the new forward dispersion relation with experiment, and some

general conclusions which may be deduced.



CHAPTER II
THE KAON NUCLEON LOW ENERGY REGION AND KTNEMATICS.

1 INTRODUCTION

Although the forward dispersion relations for the kaon nucleon
process are not on the same firm theoretical basis as those for the
pion nucleon interactions, indeed for K mesons strangeness upsets
the plausibility arguments based on the inherent symmetry of the
pion(27), the successful prediction of the pion nucleon coupling
constant indicated that appropriate forward dispersion relations,
if valid, could provide an accurate determination of the kaon
nucleon coupling constants due to the lambda and sigma poles.

To evaluate the latter relations the effects of the K N absorption
channels have previously been taken into account by Dalitz and

Tuan (28) (29)

and independently by Jackson and Wyld using a multi-
charmel formalism, with the assumptions that the open three-particle
channels are either weak, in particular the ARW channel is
neglected, or have thresholds outside the range of interest. Both
methods depend upon re-expressing the S-matrix in terms of another

matrix, the K-matrix.
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2. THE K MATRIX

In general, the S-matrix may be expressed in operator notation

S = 1+ 2iT (2.1)
where T is the operator which refers to the connected parts of the
S-matrix.

It is useful to define another operator, usually denoted by
K, which satisfies

_ 1+ 1K .
S = TTI% (2.2)

The unitarity of S corresponds to K being a hermitian operator
K =K (2.3)
The relationship between K and T may be expressed through the
following equation(so)
T = K+ iKT (2.4)
The unitarity condition takes a particularly simple form when
expressed in terms of states with a definite total angular momentum

J for which

+ - . + o )
TJ - TJ =21 TJ lJ (2.5)

Formally this is exactly the same as the relation obtained by using
equation (2.1) and the condition S'S = 1.
The counterpart of (2.1) for the matrix S; defined by

S

7 = 1+ 2i TJ (2.6)

is often useful. This is
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SJ SJ- = 1 (2.7)

We can also define K matrix elements in terms of a matrix

K.J where
_ +
KJ = KJ (2.8)
and
TJ = KJ +1KJ TJ (2.9)

This relation (2.9) may be rewritten as

(7= k)T - (2.10)

The importance of this equation arises from the fact the invariance
under time reversal combined with the hermitian property for K
implies that K., and similarly (KJ)_l, is a real symmetric matrix.
Thus equation (2.10) represeitts the separation of (TJ)—1 into its
real and imaginary parts.

The usefulness of these relations may be illustrated by
considering a single channel process involving the scattering of
particles with zero spin. In this case T, and S. are just scalar

J J
amplitudes and equs(2.5)-(2.7) become

In T, = \TJl2 (2.11)
[s,{2 =1 (2.12)
Equations (2.8), (2.10) give
Im (T;)7F = -1 (2.13)
Equation (2.12) allows one to write
s, = e 2i8; | (2.14)

Jd

where the factor 2 in the exponential is introduced to agree with
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standard convention, and gJ is a real scalar function of the centre
of mass momentum k known as the phase-shift for scattering in the
partial wave J.

From equs (2.10)-(2.14) we obtain

~1
(K1) = cot XJ (2.15)
If instead of T‘J we use the partial-wave amplitude fJ defined
by
£z (2.16)
J k°J ‘
then
i§
- J . .
T3 9—}%1“—& (2.17)

Thus, so long as the energy is below the threshold for any in-
elastic processes each partial wave amplitude may be expressed in
terms of a real function of momentum.

In addition, the &A™ partial wave (where f is the arbital
angular momentum, Se JI= L  for spinless particles whilst
J =L 1} for a spin § -spin O interaction), has a further
momentum dependence of k"e’when k ~ 0(31)(this point is discussed

in appendix A). This suggests that in general we should define the

K matrix elements so that the i, jth element is

4+ 3 Ly + %

=k, N .
Kij kl RlJ k.J (2.18)
where k., /éi and kj, /j are the centre of mass momentum, orbital

angular momentum for scattering from the 1 £o the jElg channel.
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Thus the elements of the R-matrix are real and symmetric and do not
contain the threshold branch points associated with the K-matrix.
For spinless particles R = J and so equ(2.15) becomes
Q’Q&‘)“ = W SJ_ (2.19)
Moreover, because t he R matrix elements are analytic in k? (32)
we may express them as a power series in k2. For a single channel
this procedure simply gives the effective rénge formula suggested
to describe the low energy phase shifts, that is
L R A
“s
where the constants a, , r

A L
and 'effective range'. Ir ry = O the relation (2.20) is known as

(2.20)

are called the 'scattering length'

the'zero-range approximation'.

For KN scattering, the isospin I = O state invblves the3
K N channels, and the isospin I = 1 state involves the In, Nn;KI_N
channels. At the present time the lack of knowledge of the values
of all the parameters involved necessitates a further simplification
that is, that the isospin I = 1 absorptive effects are given
entirely by a single pion hyperon channel whose threshold coincides

with that for Nw . Thus for given J the R-matrix becomes

: oo Ko
ig I - Bo B, 42

= < g

o
»
o

(2.21)
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Written in terms of its two disjoint submatrices which refer to
the isospin states I = O, 1. Note that the J suffix on &g , ,(.-' )'6-\
has been suppressed for clarity. From the lack of evidence to the
contrary these elements (.(,- ﬁ,- . ) are normally assumed to be
constant, although section (IV-3) illustrates the results obtained
when an explicit k2 dependence is included in the R-matrix elements.

Furthermore, let us assume that for a given isospin state,
in which case we are dealing with 2 x 2 matrices, the T-matrix

elements refer to the various channels as follows -
kw— hw Rw ->Ypq )

Yw = ®w v >y (2.22)

with the hyperon Y = G,\) for the isospin state I = (9). For

a given isospin state equ(2.9) becomes
) . t . L4
‘u-‘\'\" Lq*).l‘\ﬂ \~ \'\u+ v 4 (ﬁ{) ﬂ
T -
WU+l T
(- =i 'e) + (g0 A8
(2.23)

where k, g are the KN, Y& centre of mass momenta. The denominator
of this expression may be written as
A= (_\-" (‘UHB) [‘ - '\’&\“'d + L’cu\)‘u-‘ﬁ" (2.24)
1= q¥'Y
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Thus the generalization of equ(2.16) to

1), = 1)y
44

.Y

(2.25)
where 1 1
S .
TI = 4 7 Swm ST (2.26)
-—J —
gives the KN=»KN partial wave amplitude
(£,), = ¥ as cgti(a )
" b (2.27)
Similarly the Y =» YW partial wave amplitude is
T : \
@) = s (us e (gu2))
I
N (2.28)
Below the KN threshold k becomes imaginary
= ik (2.29)
where K = \k| . (2.30)
For s waves (&= 0) we may write
a =& - gtypr/ (14 4wt
' (2.31)

b = ﬂﬁz/ U_‘_ ‘l‘t.‘t)
In the KN=DKN channel we obtain the following relation from (2.19)

(2.25) (2.27) (2.31) for the s-wave phase shift

.1 (2.32)
k cot S,g:o T @b

Thus the absorptive effects may be incorporated into the single

charnel s-wave zero ranges formula for the KN.channel by a&.—lew-i.ngh\ﬁm}
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the scattering length to beeema complex.: cowstawt.

In the

amplitude is
11
0

from (2.31).

")

Above the KN

Iwm §,

Re €,

Below the KN
Twd, =

v

R,

Equations (1.

centre of mas

zero range approximation the KN s-wave centre of mass

given by (2.27), and is for isospin I

(ag+ib;) /(‘ -t h(agsiby)) (2.33)

threshold (dropping the I suffix for clarity)

b o+ b Latep®)

: N (2.34)
L\'O' A\,)v + Um)
o (2.35)
QO+ b)Y 4 (o)
threshold
b (2.36)
(1 k) & (k0T
(2.37)

o + kt+bt)
ek & (hw)?t

35) and (1.36) give the decamposition of the K p, K n

s s-wave amplitudes in terms of the isospin amplitudes.
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Without the complications due to absorption channels the KN

s-wave amplitudes may be written in terms of the usual effective

range approximation (2.20) as

fo = B2l -1 hBy)

where

(2.38)

B = Ol N 1 o sl d) (2.39)

The s-wave centre of mass amplitude for K+p which is pure isospin

I=1 from (1.35), is given

_ 1
a,” =a, the s-wave I

S |
+. = ry the s-wave I

by equs(2.38)-(2.39) with

1 scattering length and

1 effective range.

The K'Hi s-wave centre

of mass amplitude involves both isospin I = 1 and I = O from (1.36)

and thus requires a knowledge of a+0 , the KtTN I = O s-wave

scattering length.
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3 KN KINEMATICS

In addition to the modifications due to charge and spin it

is convenient to introduce an extra energy factor into the relation

(33)

for the elastic S-matrix which then becomes

d

i
$: Sh— 10“)" 3"(@,-\-1.-9;-‘\.)( ht )TkLT “, (2.40)

heE,we,

and S (:° O unless the initial and final states are identical when
S‘_‘ = 1. Also wi=(p"+?\§')§' and Ei:Q‘\N F?)l‘ where .. , M are the
kaon and nucleon massses and P15 Py and d5 95 refer to the initial,
final four momenta of the nucleons and mesons respectively. As
before Uy and u, are the Dirac spinors for the initial and final

nucleon states and u u = 1.

The re-defined invariant amplitudes are then expressed as

—\- - - “ + ‘_B)‘ (q‘*‘"t)}\ ’E (2.41)
2

If kZ’ wL are the incident kaon momen’ga and eﬁergy in the
laboratory system then
sz Mty ut 42N oW, (2.42)
with N
W< ( )‘-L + -zul .) b (2.43)
using our previous definition of s, t, u (i.e. equ.(1.4) ).

The total energy in the centre of mass (c.m.) system is

WIS AD SR PLS AR L (2.48)
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where k is the c.m. momentum and s = blz for scattering in the s
channel.
Therefore (2.44) implies
L (s- e s (') ] bs (2.45)
Equs(2.42), (2.43) (2.45) give
W

kl = M k (2.46)

With the definitions (1.4), t is the invariant momentum transfer,
and for a c.m. scattering angle &
b = - 24 - we) (2.47)
It is helpful to express the invariant amplitude, defined by
equ (2.41), in terms of the amplitudes £1 (&), £, (®) which are
related in a simple way to the helicity amplitudes of Jacob and
Wick(Bu). Thus, if Y19 and |2 » are the Pauli spinors for the

initial and final nucleon spin states then

NowTe: -<2) fw+ @3)(05.) 40 11> @48
yv .
q

The negative sign is conventional',ztr is the nucleon spin and
41, Qo the initial and final c.m. meson momenta. From equations
(2.41)-(2.48) we deduce
"‘: E+n {“ +(Wn)3‘]
T (2.49)

(2.50)

'{'t s E_—i{—h+ Q«)-&»H)'E]
grw

2,12\ ™ :
where E = LM +K ) is the energy of the nucleon in the c.m. system.
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Inverting these relations gives

g WMy - wW-n f (2.51)
hm E+mn E-n

AR = I | ¢ (2.52)
ye E+pn + £ -m T

The partial wave amplitudes {l‘ corresponding to total

angular momentum J =,£ * 1 are expressed in terms of the phase
shifts %Li by equ(2.17) i.e.

_&:

.}

Lzzt‘“_

1.4

(2.53)
From reference (34) the following relations are obtained
> ' )
“'\LQ)- 2 G.u P.® - £. 7‘_.(:\)) (2.54)
see (2.55)

L®s S (4, £..) 0w

where x = cosf;(}) denotes differentiation with respect ¥ x,
and Ph_are Legendre polynomials.
Using the orthogonality relation

) 1
Sm. Ny \_. dx ?4,‘ ® U;“w = B.-.w ) (2.56)

the inverse relations become

RTINS

At W

This relation makes it possible to express the partial wave

(2.57)

amplitudes in terms of the A .and B amplitudes and thus gives the
analytic properties of the partial waves. As the behaviour of -gﬁ

is like k¥ for small k, in general only a few partial waves are

necessary to describe the behaviour of the A, B amplitudes at low
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energies. For this region the low energy KN, KN contributions to
the forward dispersion relations are assumed to arise wholly from
the £ = O partial waves apart from the special case of the
Yl*(1385) (see section (IV-4).
The forward scattering amplitude f(s,t) in the c.m. system is

(QL,GO) (-‘Bt.)9 ) + '{'t G"» 6=0) (2.58)

from equ(2.48). Note that t = O when &= O from (2.47).
By (2.49), (2.50) and (2.42)

FR,d>=1n (M+ w.T)
[N RN (2.59)

The optical theorem (1.10) becomes

Iw LL“,D) = E Thot

41 (2.60)
However if the nucleon is at rest (i.e.in the laboratory
frame) the optical theorem assumes the form(35)
Tw (—LU‘, 0) = '9:.. Oy (2.61)
(M)
where
- (2.62)
‘FLL{'L O) "l:.“(“ +”L3)

is the forward laboratory amplitude.
Because of the presence of W in equation (2.59) the forward

dispersion relations must be written in terms of the analytic



b1.

laboratory forward scattering amplitude fL(w,t) where
o)« 2l @6

from (2.59) and (2.62).

In keeping with our previous notation we define

THw,0) = B (w0) +wBFlw,0) (260

which satisfies the crossing relations (1.44) when t = O.

The KN forward amplitudes are defined by
- - 2.6
Towo = T 3 T(w,e) @O

With these definitions the kaon nucleon forward dispersion

relations may be written down in analogy with equation (1.46).



CHAPTER IIT

THE CONVENTIONAL FORWARD DISPERSION RELATIONS FOR

KAON NUCLEON SCATTERING

1. THE FORM OF THE RELATIONS.

The relative simplicity of the form of the forward dispersion
relations (1.46) depends on the symmetry under crossing of the
pion - no new competing channels are opened up. However the
prescence of absorption channels in the KN process means that
Im T (w,t) is non-zero in the region

Myt pe € W € N0+ i (3.1)
that is, below the kaon nucleon threshold but above the pion
hyperon threshold)gzéethe centre of mass energy W is given by
equation (2.44).

The cut diagram for the KN interaction in the w plane is

shown below.

Figure 4:
M
“hx wa v Uy Yim T A
R I N R
ke R tr Y= 13 ke

Taking account of the 'unphysical' region (3.1) leads to a

forward dispersion relation for KN which is
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-D., (w,t20) f 5" x(¥) + 1 ( D'_(w‘u) A’
Wyt w B e Tw't w (3.2)
4..1 Vb Ralwo)dw' I Re (000 bt
w' & W \..n— Tt — W

in unsubtracted form Where the t refer t the KN scattering

amplitudes in the laboratory frame, and the numerators of the

pole terms in (3.2) may be rewritten in terms of the field theoretic
unrationalized renormalized coupling constants by using Feynman(36)

rules. Thus

xly) = gy -m* - ,»*" (3.3)

hnhng
The signs in equ(3.3) rely on the relative parities assigned to the

strange particles. The relation (3.3) is discussed in appendix D.

Alternatively, equation (3.2) may be rewritten using (2.65).
- .t
P wo) = T 4y XLY)[ L L
’ Y w-u

Wy $w
¥d Q !"" 02 (N rw o'y u)d‘g'
”Yw
+4d (lw' [“Q"“)( +~!w+w) (3.4)
Zﬂp +&+(u0)(u-w to'tw)

whw?
The asymptotic behaviour of equs(3.2), (3.4) is fixed by the

(1)

Froissart bound, equ(1.48), and the assumption of the

(1%) equ(1.49), so that only the relation for

Pomeranchuk theorem
D (w) is useful in unsubtracted form. Consequently . we shall in
future mean the dispersion relation for D—(wp) when we refer to

equation (3.4). Di(w) are given by the s-wave scattering lengths
wherwhen equ(3.4) is evaluated at threshold, w = A, to determine

the coupling constants g2y. The values of €2Y may then be compared
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with previous results and in particular with the predictions of the
SU(3) symmetry scheme discussed in chapter V.
Note that the contribution from the ﬁnphysical region is
complicated further by the presence of two experimentally observed
resonances with the KN quantum numbers - the s-wave (£=0) Yo*(lllOS)

and the p-wave (L=1) Y‘,*(1385)
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2 THE CALCULATION OF THE COUPLING CONSTANTS

In this section the values of the rationalized renormalized

coupling constants g2l\1—{N and ggi_KN are redetermined using the method

(26). 2

of Lusognoli et al. A

Firstly,g was found by considering the
Kip -1 Kn combination of the dispersion relations of the type (3.4),
which eliminates both the ¥ pole and the Yl*(1385) resonance
contribution through equations (1.35)-(1.36), and assuming that the
integral over the unphysical region is correctly given by extrapolation
using the I = O s-wave KN scattering length ag+ib, with the values
determined by Ki (37).

Similarly, the Kin dispersion relations of the type (3.4)
gave an upper bound for gi when the s-wave contribution to the integral
over the unphysical region was evaluated by extrapolation using the
values given in reference (37) for the I = 1 KN scattering length
a1+ib1. This inequality arises because the sign of the Yl* contri-
bution is fixed by the imaginary part of the p-wave amplitude,
which gives an effect of constant sign in the resonance region,

2

and in addition remenbering the p wave k factor which is 4K2 in
this case.

Rewriting equ(3.4) with the pole terms on the left hand side
of the equation, the contributions on the right hand side may be
denoted by

C G Gyt T 2 (%) (3.5)
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where

o
n

1 term involving Dy (g

c, = K (s-wave) contribution from wy, to wy = 5742 MeV.
cg = K cross section integral from wp to 20 GeV.

cy = K* cross section integral from p to 20 Gev.

Cy = the integral involving ¢y above 20 GeV.

Z(Yl*) is a posifive quantity representing the effect of the Y;(1385)

contribution. Note that Zn(Yl*) = ZZp(Yl*) from charge independence

where the n, p subscript denotes the nucleon involved, and

g ﬁfi n - 2g DEOR - neglecting the very small mass difference effect.
The contributions c, and c_, were calculated using the energy

1 2
(37)

independent scattering lengths of Kim for RN, the I =1 scattering

(38) for K&p, and in

length and effective range of Goldhaber et.al.
addition the I = O scattering length of Stenger et.al. (39) for Kt n.
The K+p s-wave scattering length and effective range and hence the
s-wave amplitude are fairly well determined near threshold, while
although, not so well known, the I = O s-wave scattering length gives
a very small contribution to the K*n s-wave amplitude. Therefore,

up to energy Wy = 514 MeV whére the KN total cross section data
commences, the contributions from the dispersive integrals are well
determined and comparatively small. In the range wlcw' < 20 GeV

(40)

the K*N total cross section data was used to give the contribution

cy. Above w, the RN total cross section data’'l) gives c5. Above

W' = 20 GeV the combined effects of the KN and KN dispersive integrals
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were estimated by using the formalism of Phillips and Rarita(42).
An excellent feature of this relation is the way the total cross
sections subtract so that the only contributions from the asymptotic
region come from the p and w meson trajectories. Further details
are given in appendix B. The results of this calculation for w = m

(26). The

are compared in table 2 with those of Lusognoli et.al.
values of the parameters used to determine the low energy contributions
are shown in the foilowing table.

Table 1: The input value (in fermis) of the low energy parameters

for the present calculation.

[ KN | KN

\ a® = -1.67*0.04 | a} = -0.29%0.015

| b0 = o.72fo.on | r} = 0.5%0.5

i al = -0.07¥0.06 | & = 0.0430.04 |
| bt = 0.68%0.05 | 0= 0 i

The nucleon, lambda, sigma, kaon and pion masses were taken to be

938.2, 1115.4, 1195, 493.8 and 138 MeV respectively.
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Table 2: The contributions to the (Kip) and (Kn) dispersion relations
of the type equ(3.4)in units 10~7 MeV 2. Colums 2,3 contain the
results of references (26) and the present investigation respectively.

(Only the combination cqteytey is known for column (2) ).

Kfp (@) Kin | Kip (3) K<n

—_ - - - —

o ! 5.5 1.3
Coe 102.2 29.8
cs 2 -81.3 -63.5  -8l.2 -63.5
oy 4.5 43.8
i os | 5.3 -3.3 -5.1 3.1
e teqtey | 101.0 75.6  (101.2) (77.9)
Total | 14.4 8.8 . 14.9 11.3

~

(26) sed the RN scattering lengths given

Note that Luisggnoli et.al.
by Kim(MB) as opposed to those of Kim in reference (37) shown in
table 1. The value of a, differs appreciably between these two ref-

erences.

The values of the coupling constants were calculated from

2.12gi = Kip-1 Kn (3.6)
and

3.66g§0 ¢ K (3.7)
Thus, Luts®gnoli et.al$26) obtained

g2 = 4.8 80§ 3-2 (3.8)

The results in column 3 of table 2 imply

gﬁ = 4.3 g2io € 3.1 (3.9)
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Apart from the differences in the KN scattering length as
which contributes to ¢y for K n, a slight discrepancy in the values
predicted for the coupling constants (3.8), (3.9) could arise from
the small scattering length a © = 0.04 fermi %) whicn Lusignoli et.al.
(26) possibly neglected. This point is discussed by Rood(uq).

The previous table shows the acute dependence of the equ(3.4)
on the cancellation of the contributions arising from the integrations
over the unphysical region Wy € w'ep and the term containing the
real part of the amplitudes, both of which are large and have large
errors associated with them. When evaluated in terms of the energy
independent scattering lengths an estimate of these errors may be
ascertained from the uncertainty in the scattering lengths in table 1.
The size of the contribution of the unphysical region depends, to
some extent, on the fact that the dispersive integrand contains the
imaginary part of a resonant amplitude in the appropriate isospin and
orbital angular momentum states - in the calculation of %h? the Yo*
contributions in the s-wave isospin I = O KN amplitude. The
contribution from this effect is opposite in sign to that from the
Di()u) term, so the value of their sum is much smaller. The second
disadvantageous feacture of equ(3.4) is the principle-valuedness of
the integrals containing the KN amplitudes. Under such an integration
it is clear that the errors associated with the KN amplitudes due
to the uncertainties in the scattering lengths in table 1, will be
(37)

stressed when w =J. The quoted erros on ao,al,bo,bl in reference

enable one to conclude that gi is more sensitive to variations in a,
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than b, and 3.39 < gi < 4,34, whilst - the upper bound on gio
than the rather small a

is more dependent on b scattering length

1 1
and 2.77<gf0< 3.42. Note that the KN energy independent scattering
lengths were varied in both the ranges Wyg € Wepand pe W' < W,
to give these results.

The calculation involving the use of the I_iN energy dependent
scattering lengths given by equ(2.31), has been performed by Rood(lm)
using various sets of #, , Bo "C, throughout the low energy region
Wy < w' W, for the Kip -1 ¥*n combination of equ(3.4). The
corresponding variations in the position and width of the Y o* in
the TT - ¥R cha nnel are reproduced below.

Table 3: Some results of reference (44).

e SN — i
%o (L) T, 0 My - T
-1.01 0.3 0 1401 22
0.1 160 %2
0.5 1399 49
-1.51 0.4 0 ok 26
0.5 1404 37
; 0.6 140% 56
|- -
i -1.61 0.l 0 1408 21
0.5 1408 30
0.6 oy b1 |
Z1.51 0.3 0.1 1405 19
0.1 1ok 29
0.5 1404 45
0.3 0.2 1405 21
0.4 ok 35
0.5 1404 58
0.3 0.3 1405 24
0.4 1404 43
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The conclusion of this investigation was that gi = 7.4% 1.2,
However, it does seem feasible that since the energy independent
scattering lengths have been fitted to the experimental data for
pew'ew, , the KN amplitudes may be assumed to be given by
these constant scattering lengths, in this region apart from the
uncertainty induced by the errors in table 2. Moreover, the effects
of the absorption channels on the KN amplitudes must vanish at the
pion-hyperon threshold. However, energy independent scattering
lengths do not fulfull this condition as br is a non-zero constant
(see equ(2.31) ). Consequently, if only s-waves are important, the
region Wyn ¢ W' & may be parameterised in terms of the s-wave

ol ’/3)'3 - which satisfy this requirement using equs(2.31),(2.34)
-(2.37). In addition, the scattering lengths must be continuous
through the kaon nucleon threshold and for the I = O state
can be adjusted until fgg reproduces the experimentally observed
position and width of the Y; (1405) resonance, and thence T

11
may be evaluated in the dispersion relations with these values of

“0‘ po' Uo .
An alternative treatment of the KN I = O low energy region, which

(26)and Rood(uu)

combines the methods of Luisognoli et.al. used
to obtain the results in table- 2 and table 3 respectively, is presented
below. |

Fixing the contribution of the region u &w'<w, by using the

energy independent scattering lengths (this is done in all our
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subsequent calculations), the unphysical region Wyp < w'e @
was parameterized by keeping ¥. as an input parameter and fitting
2, and g, to the energy independent scattering lengths ays bo
at threshold w = g through equ(2.31). The position and width of
the YO* resonance nhow output may be compared with their experimental
values in the TW-€W channel. The results of this calculation are

shown in the following table.

Table 4: The variation in gz,\ and the ¢, contribution to the

Kip-1Ktn relation. Wp and ™ are the position and width of the peak
in the imaginary part of the I=0, tw~cr amplitude (The first line of
the table corresponds to the energy ind_epder;e_nt a'O,bO) .

; o ¢
7, ! WR r ' 02 gA
- = - S N
0.4 1396 70 95.50 8.2
0.2 1404 65 95.4 8.2
| 0 1409 y1 oL.8 7.9
-0.2 1413 31 93.6 7.4
-0.4 W15 .25 91.9 6.6

The shape of the resonance in the TIW-IW channel was found to be very

2

asyrr';etrical. Note that this procedure increases the value of g A

significantly.
The disparity between this calculation and one using the energy

dependent scattering lengths throughout the region w“‘< w' < W, may
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be estimated by using %y, Ao, ¥y to calculate the energy dependent

a bO given by (2.31) at w' = Wy

o’

Table 5: The values of the energy dependent ays bO at w' =p, W

using the “q ﬂ,:a, shown.

‘ Lo (ﬁo) i; ) ?n___ %o (») \‘o(.» ) aglwa) b (ey)
| -1 1 0.887 0.4 -1.67 -0.71 -1.81  0.85
' -1.54 | 0.810 0.2 ' -1.67 -0.T1 -1.75  0.90
l -1.67 | 0.784 0 -1.67  -0.71 -1.67  0.92
| -1.80 | 0.810  -0.2 -1.67  -0.71 -1.59  0.90
\ -1.93 | 0.887  -0.4 ~  -1.67 -0.TL -1.53  0.85

As gzh is more sensitive to variations in a, than in D> it
appears that \%,)£0.3 is required to give reasonable agreement between
the calculations illustrated in tables 2, 4. However table U4 indicates
that ¥e»0 to obtain a width for the Y o* resonance i@ reasonable
agreement with experiment. This is in agreement with: the values
of Mg chosen by Rood and shown in table 3, that is O< ¥, < 0.3.

We may conclude that it does seem necessary to reduce the
variations in g2“ shown in equ(3.9) and tables 3, 4, due to the
contribution of the unphysical region to the forward dispersion
relations. Equivalently , the contribution of the Yo* resonance to
the I = O unphysical region must somehow be suppressed. A suggestion

to obtain this effect is ...
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outlined in the following Chapter and the results of the subsequent

forward dispersion relations are compared with those of equation

(3.4).



CHAPTER IV
THE NEW FORWARD DISPERSION RELATTONS FOR KAON-NUCLEON SCATTERING

1.  INTRODUCTION

The disadvantages of the previous forward dispersion relations
equs(3.2)-(3.4) may be summarized as follows. For w = m
a) Only equ(3.4) is useful in unsubtracted form at w = p.
b) The contribution ¢, depends on both D_( M ), with its
corresponding errors, and Di( » ).
¢) The contribution from the unphysical region arises from an
integration over the imaéiﬁary part of a resonant amplitude.
d) The errors on the previous two contributions are emphasized
by the fact that they subtract to gi&e a comparatively small total.
e) The low energy region is principal-valued when the coupiing
constants are determined.
For general w
f) An eiaborate subtraction is necessary for equ(3.2) (see
reference (4.5) ).

To reduce the errors associated with this lisﬁr%ote that the
real part of the resonant amplitude goes through zero at the
resonance position. This gives a clue for an alternative treatment

of the unphysical region.
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2 THE NEW FORWARD DISPERSION RELATIONS

Keeping the notation of section (I.5) | via

Ty )= Dy +i By W) (4.1)

refer to the laboratory amplitudes for KN scattering, consider

. the amplitude
T_(w,9) (4.2)

JT“"/A) ( w-w,)

in the complex laboratory energy plane w, where Wep €W,y < po

The extra cut due to E - J(w-,\)( wew ) is shown
below.
Figure 5.
R E L
Wen Wo »
In the complex energy (W) plane we may write
2: | u-pmla? (4.3)
2 r Jw-w Vat? (4.4)
where 9,9' are the arguments of #, &' in the Argand diagram.
| Defining E to be positive for w = J s J—';—a-‘ becomes
Figure 6.

— R - 'L____“___c..-_r? “__5{
Wwo - F‘{‘ »~
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Therefore T _((«,.'q)/]i'l:)is defined above and below the cut as follows.

Figure 7.
Do o+ 0.
~_+ B ~ M
| T, =
= b l = I T —
— [ .
Wy T

By Cauchy's theorem (in analogy with section (I.3) ).

1. (waie, O) = Pole terms + X (wf"w' $“5"[LKW'U/J_§:D]
2w

wil-w-1¢
,]{(w i) “ e (4.5)
44 { 4 d' @\sc L T'(l“”/,lg_@.) ]
YA o cw vk
where 0¢ & << 1 , ad W, denotes the end of the left-hand discontinuity.

Using the propefrties of crossing,equ(l.44) we obtain the forward
dispersion relation.
Do . -f xW gy L (PR By do'
Y .
Tt Tty oy .,,m oo (w-wy O
RSt g WY
- "'*‘“ ST e THeD )
- _\ N, ") A
M j (-w) (w +w )
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where X(Y) is defined as in section (IIT-1). Note the subtle

change in the contribution from the unphysical region compared with
equ(3.2). The third term on the right hand side of equ(4.6) involves
an integration over the real part of the KN forward amplitude.

Likewise, or by the crossing relation when W => =\

w'
Dal) -7 MO (R W
[T ¥ Jga Gare) " vyg 1) (o '+
(8.7)

-1 (A Dwhdw' 4 * N-(') dw'
R e T A T

-4 g.b By !

)
M JE_L-NTS (‘u'-w’)

It is clear that the convergence of the asymptotic integrals is
inherent in equs(4.6)-(4.7) so that no subtractions are necessary.
Also the usefulness of the optical theorem is retained as opposed

to the method adopted by Gilbert(%)

for pion nucleon,which is illus-
trated in appendix C.

Unfortunately, when evaluated at threshold w = ol the dispewion
relation for D_(w,0), (4.6), requires a knowledge of the s-wave
effective range terms and the p-wave scattering lengths for the KN
scattering amplitudes. This is easily seen by the following argument.

For sinmplicity, consider the case when the RN scattering amplitude

is given by the energy independent scattering lengths. Remembering



59.

that the dispersion relations equs(4.6)-(4.7) have been written in
terms of laboratory variables, equ(2.63) and equ(2.37) give, just

below threshold

QL:\"‘ = Pt "}'_"[ ay + 1(("-:'.“’;) - Cr'lTlJ )
W kag+ hagteby) (4.8)

for the appropriate isospin (I) amplitude in the laboratory
systenb bhere G represents the s-wave effective range and p-wave

scattering length terms.
Writing x = i’g -w , we obtain
L L
P — Cl:._")*z + (by - a5) Jl,.. %~

xXPp

(4.9)
(X
+X‘[ 2‘#" (ai'zbz\!:-c\—) —_0;{_
A o né s
¥ O(x})
In an obvious notation
P RT + UT x4 VIxT ¥ 0D
(4.10)

Just above threshold equs(2.63)-(2.34) yield

I.T2= Rt = .!\./[ by 4 "&-(*;"'\’1‘2) + N .el‘l.]
l+2ﬂ\.14&‘(¢£+¥;) (4.11)

where H represents the s-wave effective range and p-wave scattering

length terms in this case.

Ify = \‘ Ly 7 8
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h* — C".‘.")\vx v (ag ‘Bf)ﬁ;j

4> (4.12)

+|3 ['L)‘H (,loz'ga;\o "'H)-l-iI]
+ 04y

Again, write

1
At = @,I + uIJ +y U J"+ O(js) (4.13)
The troublesome part of equ(4.6) as w o ut is

Do) ‘?? Do b’ 417 Al A
By T st T e

This may be evaluated by rewriting the integrals in the form
2 gy;’_“’o-p_@.') ~R-wx dg (4.15)

T |
o W) m Wy nt
where wy & ﬁ 3 /U. and

9 m ) (4.16)
'TTg o) - Q- 'Uu\ 3

o 53}—\0 +5

where R, U, V, @,'u,;v refers to the K N combinations of the

(4.14)

isospin states, and x,y are as before.
Considered in this manner the mutual cancellation of apparently
non-existent terms at w = ja becomes evident. At w = equ(4.14)

reduces to
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4.17)
where % = S w' - Wy -

Thus for w'a u  the integrands of equ(4.15) and equ(4.16)

which contribute to equ(4.17), contain a dependence on V, U~

respectively, which in turn depend on G,

H the s-wave effective
range and p-wave scattering length terms.

For the KN amplitude given by the energy dependent scattering
lengths of section (II-2), the above reasoning still applies.
Here, the energy dependence of ary, bI is given entirely in terms of

g, the c.m. momentum of the pion-hyperon channel appropriate to
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the isospin state, whose only effect is to change the coefficients

of x2 y2

in the expansions equ(4.9) and equ(4.12). Therefore it
is possible to conclude that the principal-valuedness of equ(4.6),
coupled with the square-root in the dispersive denominators in
equ(4.14) emphasizes the KN s-wave effective range terms and the
p-wave scattering lengths. Hence eqli(’-l.'?) must bé used for the
initial determination of the coupling constants g'gq’ A
g2 K.P 5o However, having done this, an interesting point is

that it should be possible, in principle, to return to equ(i.6)

and

and calculate G, H) dé&lthough in practice the accuracy of the
calculation does not permit this.

For w in the range w,<w< 20 GeV equ(4.6) can be used to
determine D_(w,0) which can then be compared with the experimental
data points. This is done in Chapter VII.

The attractive features of the D,(w 0), (4.7), forward
dispersion relation when evaluated at w = are as follows. Firstly,
the term D,/ (-w) dépends solely on the K'N scattering lengths,
thus eliminating an important source of error in equ(3.4) due to
the errors on the KN parameters lin table 1. Secondly, the inte-
gration over D_ in the resonance region W& W) A contains a
self-cancelling effect as Re fi = 0 at the resonance position.

The overall size of this contribution is also diminished as the
integral is not principal valued. Note that the previous two
contributions are additive, thus lessening the uncertainties in

equ(3.4) due to IV-1(d). Thirdly the principal-valued integrals
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only emphasize the imaginary parts of the K'N forward amplitudes.
The curves for the K'N total cross sections plotted against energy
are very smooth and known within very fin& limits from the measure-

ments of Cool et al.(uo).

Accordingly the corresponding principal-
valued integrals should not induce any serious inaccuracies.

It is again possible to rewrite equ(%.%) with the pole terms
on the left hand side, and the right hand side in the form of
equ(3.5) where the c; are defined in exactly the same way. However,
because the real part of the p-wave amplitude changes sign at
the Yl*(1385) resonance and the magnitude of this contribution also
depends on w,, it is impossible to give prior comment concerning
the sign of 3(Y;"). Neglecting the Y;" effect the results are
tabulated below when the KN and the KN low energy regions are
determined from the energy independent scattering lengths in table 1.
cg was determined from the appropriate formula in appendix B.

Table 6: The conditions to the (K¥p) and (K*n) dispersion relations

of the type equ(®.¥) (in units 1077 MeV™2).
Wo in equ(%.¥) is chosen to be 401-2 MeV corresponding to

The energy

a total c.m. energy Wo=1370MeV.

- T T 1

Kip n
¢y © 23,9 10.3
c, . 28.9 20.3
¢ =751 -59.4
ey BECR BN &

c -5.1 © =3.1
> Total | 85 | B
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These results are to be compared with those obtained in
table 2 for the conventional forward dispersion relation of the

type equ(3.4) which yield.
2

2.l2gh = 14.9 - 3(11.3) (4.18)
3.66gio:= 11.3 (4.19)
whereas the relations of the type equ(4.7) predict
2.u0gfo = 18.0 - 1(12.8) (4.20)
4.2ug® = 12.8 (4.21)
3
that is
2 = 4.8; | 2 =30 (4
gA k-p - . ) gtoK—p - 30 ( -22)

if Z(Y;) = 0. These results are in close agreement.

To test the sensitivity of equ(4.7) to the value chosen for
Wos the calculation was repeated with different values of W
covering its acceptable range, that is, for 1340 MeV < wd‘1395MEV,
where W, w  are related by equ(2.42). These results are shown
below.

2 2
Table 7: The effect of wO on gh_and %LO'

) |
W, gi : gio
1340 454 2.78
1355 h.74 2.89
1370« 4.82 2.97 |
1380 ., 4.80  3.01
1395 | 474

3.05
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Therefore the variations in wy play a relatively unimportant

2 2
A and gto.

possible sources of error are threefold. In the first instance

role in the predictions for g The more important

any ill-determined points for the KN, KN total cross-sections

- may affect the accuracy with which gi and gio

are determined. The
data for XK'N is especially vulaerable as the corresponding dispersive
integral is principal-valued for w »W, . However, very accurate

(4o)

experimental measurements have recently become awvailable for
just this process. If the high energy (w » 5 BeV) values of
7, ot (KN) and rtot(RN) are not changed radically then an estimate
of *0.3 would probably cover the range of variation of gi for
small changes in the structure of the input cross-sections.
Secondly the coupling constants depend on the particular
model chosen to reproduce the correct asymptotic behaviour of
the KN, KN amplitudes. The model of Phillips and Rarita(uz)

(see appendix B) gives a contribution ~ -1.5 to g2" and ~ -1.1 to
2
38

Thirdly there remains the question of the effects of the

g

unphysical region wY'<w‘ 4 and its associated errors. For the
reasons discussed earlier the KN amplitudes in the regionpew < W

are assumed to be given by the energy independent ar by in table 1.
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3 THE EXTRAPOLATION OVER THE UNPHYSICAL REGION.

As emphasized by Rood(uu)

and section (III-2), a; and by
must surely contain some energy dependence, even in the zero range
approximation. Consider first the determination of %i. Here the

zero range approximation gives the I = O KN extrapolation with

2 2 2 . %
o Ao B q
a = ok -—iq' S byt T ala (4.23)
1+q Uo 1+q 70

from equ(2.31). Thus unless |¥eo}3 | fermi, and tables (2)-(4)

o -

indicate that r!.\ is smaller than this limit, R is expected to be
much more energy dependent than a_ in the unphysical region. Now

+bO where aO 1.7

in equ(2.37) b only occurs in the fomma
fermi and boa1(3.7 fermi, and so in comparison to equ(2.36), equ(2.37)
is much less susceptible to uncertainties in the energy dependence
of bo' Consequently the error associated with the extrapolation into
the unphysical region should be much less in equ(4.7) than in equ(3.4).
This conclusion is borne out by computation. Similar reasoning also
applies to the uncertainties in the energy independent scattering
lengths where the errors on a_,b in table 1 give h.63 < gi( 5.01
(c.f. 3.39 ¢ g§'< 4.34 from equ(3.4) ). Note that this reasoning
does not apply to the calculation of g?O.USing (4.3), and the errors
1 shown in table 1 givés

2
2.67¢ g%

of al b

2
o€ 3:2b (c.f. 2.77¢ g:o<3.112)
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Under the assumption that only s-waves contribute to the I = O
KN unphysical region there are four constraints which one may
impose. These are the values of the energy independent a, bO
at w = » and the position (WR) and width ( " ) of the Yo* resonance
in the ®w-¥W channel. Some,or all, of these restrictions have been
used in the following attempts to parametrize this region.

If W is known then o, ¢ an be found from equ(2.28) as
Re f‘2 EE;Z= 0O at the resonance position. Therefore

1+Kg kg =0 (4.24)

Furthermore Z, and ¥, can now be determined explicitly by equ(2.31)
when v = p if the values of ay b, given in table 1 are correct.
The results are shown below.
Table 8 The value of gi when «, A, ¥, are determined explicitly
from the resonance position and the energy independent scattering
lengths at threshold.
! 2y _l‘b$ ‘ Vo ‘ Ea 7 Pﬁ ] St“ ‘

“1.51 } -0.824  0.249  1l03 60 - 7.14|
. : I

Alternatively, if ¥, is allowed to vary freely then the
energy independent a5 by and (2,31) at w = p fix the values of

o, fo. The results from this procedure are comparable to those

7

in table 4. c, is in units 10 MeV ™2 and is given by the K'p-3K'n
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combination of (4.7).
Table 9: The values of g2n‘and c, from a threshold fit of the

energy dependent scattering lengths to ag and bg. (The
first line corresponds to the energy independent a,, bg).

T, ! Ca 3:
- | 18.8 | 4.2
0.4 246 7.25 |
o 2h.2 7.09 |
.0 23.6 6.8l i
2 0.2 | 22.8 6.50
' -0.1 21.8 6.08

Note that the variations of gi are much less in Table 9 than in
Table 4.

Clearly the trial values of ee £, ¥, in Tables, 4, 9 are not
in close agreement with the observed parameters Wg = 1405 MeV,
M = 35 MeV, of a symmetric Yo* resonance. Therefore the integral
over the unphysical region was calculated using various sets of
the reaction matrix parameters, each consistent with the YO*
and each in tolerable agreement with a,, b  at threshold w =M.

The results are shown in the following table.
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Predictions for g2n obtained using the reaction matrix

parameters consistent with a symmetric

V=|=

The

threshold values of a,, b, calculated from these

parameters are also shown.

0.6

Table 10:

a) ¥, 0 _
oo ﬂny Yo
-1.51 0.5 -0.4
0.7

0.9
i 0.5 -0-3
0.6
0.6 -0.2
0.65
0.7
0.8
0.5 -0.1
| 0.6
-1.41 0.6 -0.1
-1.61 -0.1

e e

Ek
1405
1404

1403

1405
1404

1404
1404
1404
1403

1405
1404

1400
1408

v
27
38

51

27
33

3l
38
12
49
28
36

43
30

i
'

.10
.23
.36
.63

(S O ) BV S|

U

.23

5.18

| 5.82

&o(p)

S b2 T -1.37

-1.31

-1.40

-1.42
-1.11

-1.38

-1.47
-1.46

-1.%6

by (m)
T 0.40

0.56
0.72

0.42

0.51

0.53,

|

0.57 !

0.61"

0.70

0.45 |

|

0.54 ,

0.54

~0.54
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b)ono

\ l d 0 ;.1- Xp . E [} P 3: “0 (r) LD‘}\-)

!—1.51 0.5 o ! 1405 30 5.5 -1.51 0.45

g 0.6 1404 38  5.84  -1.51 0.54

-1.41 0.4 1401 28 4.91  -1.41 0.3%6

-1.61 0.5 1408 26 5.88 -1.61 0.45

-1.51 0.5 0.1 1405 32 5.81  -1.55 0.45:
0.6 WOk M1 6.1 -1.56  0.54 |
0.5 0.2 1404 35 6.01  -1.59 0.4l

! 0.6 1404 Wy 6.33  -1.6L 0.53

|

: 0.4 0.3 1405 28 5.83 -1.60 0.34

j 0.5 1405 39 6.16 -1.63 0.4

g 0.6 1404 49  6.49  -1.65 O0.51
0.3 0.4 1405 23  5.59 -1.60 0.24
0.45 1405 37 6.09  -1.64 0.36
0.5 1405 42 6.26 -1.66 0.40

From the above table it is clear that increasing either
Wp or I increases gzn. Also with increasing ¥, , the values of
A 02 for the correct width decreases and the value obtained for
g;nz increases. %, is essentially fixed by Wg. This prodecure
cannot be applied to the conventional forward dispersion relation
(3.4), because the principal valued integral at w = ) demands that
by is continuous through threshold.
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The parameterization of the I = O KNamplitudes can be made
more stringent by the inclusion of R x> R P and R\,, the effective
range terms corresponding to the R matrix elements ot, /3 .T .

In this way it is possible to fit WRand the I = O threshold
scattering lengths exactly. Although theoretically it is possible
to reduce the input parameters to two, it is easier in practice
to input ¥, , R, , R y and use the value of T as an output
constraint. Note that it is impossible to expand the R-matrix
elements in a power series about threshold, when the scattering

lengths a_, b o are fitted there, otherwise no useful information

is obtained. Therefore the expansion was made about the resonance

position. Thus,

briedm o)
rEE RO S P & R A (4.26)
_;- -éo* .{ﬂ,(‘n;-‘n‘) (4.27)
From equ(4.24)
g =+ - L (4.28)
L

From equs(4.23), (4.25), (4.27)

R,--2 = -l e
* y \?ﬁ 11 Yo b 'l )

0+ 4R Yo%)
dhere A is the LW - LW momentum and the suffix T refers to

the threshold w = M.
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Also equ(4.78) gives

b 2
A2- o 1* (%) (4.30)

Vg

X~ (say)

Therefore

B,-

2 he 2 +
Ry X tﬁ roox

2(1 - Rfﬁ’kn” )
b

(4.31)

Hence o s Ab’ R, are given in terms of 36, R, , R, . The results

¥ A

for this parametrization of the unphysical region are given below.

Table 11: Predictions for g?n obtained from equ(4.7) by fitting
Wp and ays bo at threshold with effective rnage terms
included in the reaction matrix elements. The values
of the energy dependent a,, by are calculated at
w = wo and listed in the last two colums.



Table 11

Ao /go ! 1rO 'R|£ 12,3 121,

-1.503 -1.261 ; 1 -1.391  -0.2 0
~1.20 0
-1.08 0.4
-1.03 0.6
-0.99 0.8
~0.96 -1.178 0.4
-1.02 ~1.675 ~0.4
-1.15 0.8 -0.902  -0.2 0
-1.09 0
-1.04 0.2
-1.00 0.4
~0.96 0.6
-1.01 0.6 -0.511 0 o
-0.97 -0.511 0.2
-0.93 ~0.555 0.4  -0.3
~0.93 ~0.511 0
~0.92 -0.471 0.3
~0.89 ~0.511 0.6 0
-0.90 0.4 -0.19 0.2 0

-0.87

0.4

Wae
1402

1403
1404

" 1403

e 9k
54 2.05
49 2.09
43 1.99
39 1.86
37 1.69
46 2.65
32 0.64
60  3.19
54 3.40
48 3.54
43 3.63
40 3.66
58 . 4.77
49 1 5.09
52 5.01
Iy j 5.34
46 ; 5.63
39 5.53
52 6.71
45 7.14

% 59(“;)

- -1.31
-1.45
-1.95

T -2.38

| =3.07

-3.16

| -1.37

' 2.36

bts('\'s )[
0.58 ’
0.71
1.13
1.50
2.09

1.64

0.62
0.75 |
0.91
1.41
1.47

0.80
0.96
1.10
- 1.17
1.23
1.47

1.01 |
1.22 f

el




°
-1.503

-1.66

~-0.90
-0.85
-0.82
-0.85
-0.89
-0.92

_-0:96_
-0.98

~-0.88
-1.14
-1.01

Yo
0.2

0.4

0.8

Ra

0.076

0.301

-0.59

-1.46

Ra
0
0.3
0.4
0.2

~0.2

-0.2 -

-0.2
0.4
-0.2
0.4

Table 11 (cont.)

0 1402 60
1403 54
1403% 50
0 o2 -
wor
1399 .
T
0 1409 Lo
28
38
Lo

9

7.53
8.68
9.10
9.69
8.45
7.01
5.09
3.99
4.66
1.60
1.50

Q.(}u,z>
-1.83
-1.89
-1.92
-2.14
-2.14
-2.14

-3.29

-1.37

-1.61
-1.24
-1.73

tn(uzz
0.90

1.15

1.27
1.08
0.92

C.79

0.75

0.73
1.22
0.62
1.14

"l
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These results can be summarized as follows.

(a) For ¥, increasing with R, and R £ fixed:

[
lao) and Vbol  both decrease to a minimum which depends

on the fixed values of R,‘ s R 2" 0 ang gi both decrease.

(b) For R, increasing with ¥, R y fixed:

}a,| decreases whilst lbg] , P, gﬁ all increase.

(¢c) ForR A increasing with ¥, R.‘ fixed:

la \ and Ib) increase whilst I decreases. The value of 5]2\
increases when ‘60 is fixed to the less than 0.8 fermi and decreases
when ‘60 =1 fermi.

(@) If ¥ < O,the resonance width, and for more negative ¥,
the position, are undefined.

In these conclusions (a), (), (c), (d) the position of the
YO* resonance was input as Wg = 1405 MeV. However, the last
four lines of table 11 contain the results for an asym%tric )
resonance with an input position Wy = 1410 MeV. This produces
better agreement between the output © , a,(wp) and by (wo). The
value &, is essentially determined from the resonance position
Wg by equ(4.28).

The sensitivity of gﬁ to the dispersion relation was tested
by evaluating equ(3.4) for several sets of the parameters listed
in table 11. The same conclusion was reached as before, that is,
gﬁ is less sensitive to the unphysical region in equ(4.7) than

in equ(3.4).
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Table 11 shows that the parameters behave in a maximal ( or
minimal) way, that is their values reach a maximum (or minimum)
deperdent on the other paramebess )indicating that this technique
should be used in conjunction with an optimisation procedure.

The results of tables 8, 9, 10 are consistent with the following

value of the coupling constant
2

g A

If %] in equ(4.27) is small, then table 11 indicates that gzh is

= 5.8+ 1.8 (4.32)

increased. If Jogl is increased then gzh is decreased.

If s, p waves contribute to the KN scattering amplitudes
for w' & W, then the dispersive contribution to the I =0 Cs
in the range m¢ w' < W, should still be fairly well determined as
-18.24 + 0.24 lO'7 MeV_2 from table 6.) 2Ak1though this means that
the energy dependent s-wave scattering lengths given by (2.31)
cannot be fitted at threshold to the ap,by,a),b; in table 1. This
fact invalidates equ(3.4) because of the principal valued integral
and makes (4.7) approximate unless the procedure of Rood(Lm) is
carried out, whereby all the partial waves are considered throughout

the region <w'<w, and fitted to gim's 37 data.

\"Yw
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l THE KN I = 1 UNPHYSICAL REGION

It is interesting to compare the results obtained from equ (3.4)
and equ(4.7) for the KN I=1 unphysical region - here the three
channel reaction matrix has been approximated by the assumption that
the form of the energy dependence of a; and b1 is completely
represented by the AW centre of mass momentum. The results are
showh below when ¥, was input and «, , 3, were fitted to a;, by
at w = @ through equation (4.23).

Table 12: Predictions farggio(if Z(¥1*) = 0 ) obtained by matching

the KN I =1 energy dependent and energy independent
scattering lengths at threshold. The values of aj(w)
by(w) at v = wp are listed also. The values of g2t .
from (4.19), (4.22) are shown in the first row.

. L B |
£ AN ave) by luny g5 9% ']
e | 3.10 2.96 |
0.2791 0.670 ; 0.4  -0.170  0.742 | 1.47 0.60
o.1ou% 0.565 { 0.2 ' -0.133 ' 0.783 | 2.02 0.50 |
-0.07 ' 0.530 -0.07 , 0.802 | 2.84 0.85
-0.244 . 0.565 | 0.2~ -0.008 | 0.783 | 4.01 1.98 |
-0.419] ©0.670 | -0.4 ' 0.030 | 0.742 | 5.60 4.02 |

Note that equ(4.7) yields much smaller values for 827. o» when
Z[ Yl*] = 0, than equ(3.4) until ¥, A~ - 0.4, As mentioned
before the values quoted for g:20 are upper bounds inthe case of

equ(3.4). However, the values given by equ(4.7) lack such a positive
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definition without a more thorough examination of the role played
by the I = 1 resonant p-wave contribution.

The amplitudes for the decay of a p-wave resonance into two

open channels A, B may be written(W) as
fa: W (ET L) /0 (4.33)
fag = Tslat/ a2 )/ R
' (4.35)
f0° Yo (ot /g™ ) /a
where
3 3
T Wp-W =i -\ elvg-W,) +¥ o(wg- Wy ) ) (4.36)
b () (Ka(%')&g o) 0(3;) (4-")
where

k refers to the c.m. momentum of channel A
q refers to the c.m. momentum of channel B
VW, refers to the threshold energy of channel A

W,' refers to the threshold energy of channel B

0if X &€ O
1if X > 0

& (x) denotes the step function

The total width ' of the resonance in terms of its partial widths
P, Py is

F =0+ (4.37)

P, = 'r,r('}:*)? S U (* )3 (4.38)
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These equations (4.33)-(4.35) satisfy two-channel unitarity. If
A denotes the KN charmel and B the YT channel then equ(l.33)
may be extrapolated backwards to the KN unphysical region to give
the KN amplitude for the decay of a resonance below the channel

threshold. Thus in the unphysical region equ(4.33) becomes
T ds 1 3
I R AL

ke -kw v .
"o (wg-w)- \ ¥y (&)‘

- (4.39)

Ghere g2 represents a kinematical term with the dimensions of energy

which includes the gng* N goupling constant. From reference (48)

1 | 3 L r _
1 ‘M;,\ 18 wa [(n“ﬁn) /"t] (4.40)
\2h? Mg

where MYl* is the mass of the Yl*(1385) resonance. As g2 is a
smoothly varying function of energy the evaluation of equ(4.39)

was carried out with g2 considered as a constant given by its value
at the resonance energy. From equ(4.40)

g2 = 1.849 g%l* MeV (4.41)

Thus the Yl* contribution to the dispersion relations may be
determined in terms of the coupling constant g;%l*l-m remembering

that the forward scattering amplitude is, from equ(1.51)-(1.49)-(1.50),

=. 13\ KL :LI“ R
T (w0 ?'“,... Cpore AR Lot )
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Where hy o and hy_;, are the KN I=1 s-wave and p(J=3/5) wave
partial wave amplitudes which include an explicit LU dependence and
all other partial waves are assumed to give a negligible contri-
bution in the region wWyy < w < M-

Including this effect we obtain the following results for the

energy independent scattering lengths.
Equ(3.4) gives

2 2 _
3'66gto + 2.94 g = 11.28 (4.43)

Equ(4.7) gives (with W, = 1370)
’4.25g2zo + 6.83g° = 12.63 (4.44)

This means that the values quoted for gt20 which are derived from
equ(3.6), are also upper bounds.

Although it is possible to determine gfo(~ 3.24) and g2lv-0.2)
by solving equs(4.43)-(4.44) the answers are not to be taken seriously
due to the discrepancy in the predictions of ga from equ(3.9) and
equ(4.22) (4.3 and 4.8 respectively). Thus we may conclude that it
is necessary to obtain another relation between gzh . gzz and g2 for
both the conventional and new dispersion relations. In this way
the three values of the couplings should be determined explicitly.
Before attempting this procedure let us compare ouf predictions for

the t\.g coupling constants with previous determinations of their values.



CHAPTER V

PREVIOUS DETERMINATIONS OF THE KAON NUCLEON COUPLING CONSTANTS

1 FORWARD DISPERSION RELATIONS

Several alternative methods have been proposed for the
determination of the kaon nucleon coupling constants, most of which
are simply adaptions of the forward dispersion techniques mentioned
in section (I.5). On the whole the predictions of forward dispersion
relations are reasonably consistent in that gf::5.8i1.8 agrees

(49), 5 & g% € 6, and Rimpault

with the values given by Dufour
g%_= 4.4, who analysed AK productions by photons and T mesons
respectively using specific theoretical models. A certain degree
of freedom in the results is allowed by the choice of the KN s-wave
energy independent scattering 1engths(37) (43) (51) In the methods

discussed p waves have been neglected.

(52) evaluated the dispersion relations for D (w 0O),

Zovko
(3.4) for the K? system using the KN energy independent scattering
lengths of Kim(HB) to approximate the KN integrals over the region
WYT<.1N'< Wo, and the K'p scattering length and effective range
of Goldhaber et al.(38) to determine the K+p contribution in the
range p & w' & W, and obtained the following expression

0.654 gpgy + 0-566 goopy = 9-6 (5.1)

The KN energy independent scattering lengths of Sakitt et al.(Sl)
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change the contribution of the unphysical reéion and thus the
right hand side of equ(5.1) which becomes
0.654 gigy + 0.566 g%EORN_ = 8.2 (5.2)
Note that above w' = 5 BeV Zovko(52) calculated the dispersive
contributions from the following extrapolation through the total |

cross section data points

20.8 k °/7% millibarmes

(34.6+20.8k" 2/ 3)m

o_(w') - o (w')

o (w') + g (w')
where k (in BeV/c is the KN centre of mass momentum.

The Kip -1 KX n combination of equ(3.4) has been dealt with in
detail in chapter IIT, it suffices to list the results obtained.

Table 13: The value of gi and the upper bound on g2:O using the energy

independent scattering lengths for (a) - (g). The procedure
' (4h)

mination was carried out is also listed. The references

of' Rood gives (k). The value of w at which the deter-

to the calculation and the KN scattering lengths used are

shown in the last two colums.

W g2 - Upperbound :Reference to the Reference for the :
o ! on g_2: o. _ calculation KN scatterlng lengths
A hL3h 3.1 Chapter IIT Kim¢37)
:M.8il 3.2 uswgnoli et al. Klm(”u) .
- 15.0f1.6 0.4 (26) Sakitt et a1,V
16.082.1  3.9:3.7 Davies et al. - Kim(3")
500 Mev'6.3%2.1  L.0%2.6 (48) B
%512 Sv '5.982.0  L.241.5 L
1525 v i5.3%1.8  4.5%1.4 g
I ‘7.”11.2 . Rood (44) —

The results (a) (b), (c), (h) neglect the mass differences
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between the K p and K°n systems as it is debateable whether or not a
theory for strong interactions should contain the reult of an electro-
magnetic effect.

Alternatively, the technique of Haber-Schaim 20’

may be applied
to the Ki'p system by replacing the denominators of the pole terms

in (3.4) by (w2_wp2) where LY %(w“+ Wi)' This gives a single
effective pole and is expected to be a good approximation if the
energy w at which the subsequent dispersion relations are evaluated,

is sufficiently large compared with We - The identity (1.55)

transforms equ(3.4) into

LKN)E(NL-U;') Poln) - )* Lu)]

2w
St (0 ) (e - e, on) d
LY A . (R LNI\- -wt) (5-4)
- N‘-wt (A Q- QU') d‘wo
w U'“ “01._“'.'
b s (L (e e

" g "
where F(Y) represents the pole terms, and for the Kipsystem,

(5.6)

!
T“h)-‘ 3:’ X\’\) Y 3;0 X(Y)
Plotted versus W2, L(w) gives F(Y) from the w = O intercept from
equ(5.5).
Using the KN energy independent scattering lengths(LB) (51)

in the range u‘ <w'e w - the K+p scattering lengths and effective
T
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range terms in table 1 and the data for the total cross sections
plus equation (5.3) for w' » 5 BeV, Zosko(52) found the best straight

line to give

0.654 g2 + 0.566 gz20 = 8.6%5.7 (5.7)
Correspondingly redefine
M )
“@) 3 LLN) + N;(N‘ -“Pb) S “- Lw.) ‘lw (5-8)
o RN RS
"

(48)

Davies et.al. found that the value of H(w) dependend strongly

*
on the unphysical region and, in particular on the Y, (1385)
contribution. The new form of equ(5.5) was computed for five

values of w in the range 0.63-3.46 BeV. A straight line

~

- Iy * ™
H = M) = B (W' swe) (5.9)
was fitted through the five points thus determined, by an optimization

procedure. This gave

2 2
gk+ 0.79 gio

when the high energy contributions were evaluated using a Regge pole

9.7%5.4 (5.10)

model.

As the Yl*(1385) contributes to (5.5) through the imaginary part
of a p-wave amplitude, it may be included as a delta function contri-
bution (c.f section (IV.4) ). In addition to the previous points

(48)

Davies et al. evaluated (5.4), (5.5) at w = p and the optimisation

procedure gave

1if 8;2Y1* Kp = 0= g2“+ 0.79 gzro = 11.1%1.7 (5.11)
2 2 2 +

I ¥ o~ = 2 + 0. = 6.6-1. .12

fg Y Kp g‘\ 79 gro 7 5 )
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According to equ(5.5) and equ(5.8), the derivative of the linear

Haber-Schaim function with respect to w2 is

dHLw) © \
oSN (N PSSR P
dw* ym* » o ( )
5.13
.l ‘ P N Q_(“.) A”'
1‘ —b
Nr“ !
This provides a check on the consistency of the results as equ(5.9)
gives
A = - f (5.14)
Aw?

This condition (5.14) was found to be well satisfied for both (5.11)
and (5.12).
Similarly, the pion nucleon forward dispersion (1.54) was extended

by Zovko(52) to kaon nucleon scattering through (3.2). Write

Ty () = DT(R) ¥ 30 D () (5.15)
where now
Jt) i Dalw) - *37 C_bw' oy ey
e by letw) (5.16)
—g: ko (Q ;‘:_"" 0 W)
[ (i L G aw)

=ll;ﬁ;

K" LA COTS N 4y X (1)

wr G ATT YW (e te)
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Moreover, if we define a function f(w) such that

fw) = J,_ (W) for W 3 pm

fw) = J_(<w) for w < (5.17)
then

f(w) = C; + w C, (5.18)

where Cl’ C2 are numerical constants. A plot of f(w) against w gives
a straight line from (5.18), and the constants ¢y, C, may be adjusted
to give the best fit to the Kip data.

Equation (5.16) was applied to t he Kip system by Zovko(52)
and the low energy KN integrations were evaluated from the energy

independent scattering lengths of Kim(MB)

which gave the result
O.654gi . 0.566g2zo = 5.2 (5.19)

(48)

An attempt has also been made by Davies et al. to determine

the values of the coupling constants from the once subtracted dispersion
relation for T (w)(3.2). Although relations of this type possess the
advantage of suppressing the importance of the KN low energy region
when evaluated for physical energies w, it was not found possible to
obtain reliable values for the coupling constants for energies

W ~ p  due to the very strong cancellations between the various
contributions. Because of the sensitivity of this relation to the K'p
low energy region when evaluated for the Kip system, the values

a+1 = -0.31 fermi, ryl = 0(38), were found to give values of the

coupling constant incompatible with previous determinations. The



87.
alternative values for these parameters shown in ta¥de 1 produced
agreement within the very large errors. At higher energies the
calcellations were not so strong and neglecting the Yl"'E (1385) contri-
bution the following results were obtianed.

Table 14: Results from the once subtracted dispersion relation for
T, (w) for the Kip system using the KN energy independent

scattering lengths(37).
W f Relation
i | "
1.09 GV gy + 0.62 g%o = T.TF 2.5
1.27 GeV g + 0.62 g2:0 = 6.5%3.8
2.03 GeV g2 + 0.62 g0 = 9.4%3.3 |

| H
Using the values of a,° and r,° in table 1 to give the Ktn

low energy amplitudes, the following upper bounds were obtained for

g 20 (i.e. neglecting the Yl*(1385) ).

Table 15: The upper bounds on gi.from the relation (3.2) for the Kfw

system using the KN energy independent scattering lengths(37).

; 2
W ' . & 5o
. 0.605 GeV | 0.9%2.1
© 0.724 gev | -u.2%*2.0
0.810 Gev | 2.2%2.4
' 0.950 GeV 4.0%2.0

l )
Thus we may conclude that the values of the g%\coupling constant

predicted by (4.7) and the methods just mentioned using the KN
energy independent scattering lengths, are fairly consistent within

the large errors, whilst the gQio coupling constant is not so well
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2

defined except to say that it appears to be somewhat smaller than g%y .

Recently Kim(BM) has performed on inverse K matrix analysis of the

low energy K p data involving many more parameters than his previous

(43)

analysis , in particular allowing an effective range dependence

of the diagonal elements of the s-wave inverse K-matrix. On extra-
polating into the unphysical region he how predicts a Yo*(1403)

resonance of width 50 MeV and upon using equ(3.4) he finds
2 _ + . 2
gp ° 162.5,g:0

The large increase in the value of gi.appears to arise from the inclusion

= 0.3%0.5

of the s-wave effective range terms, since using a comparable constant
2

K-matrix we find g,

~ 8 even allowing for a Yo* width of 50 MeV

(see table 10). Clearly the efrors quoted in equ(l4.32) are much too
conservative. However, it is also probable that errors found by Kim
are not a measure of the true uncertainty in the coupling constants
since it remains to be seen how the predictions depend on the part-
icular form of the parametrization used to analyse the low energy K p
data. For exampele, in view of the importance of the s-wave effective
range terms, it is essential to investigate the sensitivity of the
coupling constant predictions to some small effective range dependence
in the off-diagonal elements, of the inverse K-matrix. The importance
which may be attached to these new values of the coupling constants

is realized when we discuss the SU(3) symmetry scheme in the next

section.
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However, a subsequent calculation by Martin and Ross (65) uses
the once subtracted dispersion relation (3.2) to yield
2 2 _ +
gn t 098¢, = 6.1 = U.7

which is in accord with our result (4.32).
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2 THE SU(3) SYMMETRY SCHEME

Alternatively, it is possible to use the SU(3) symmetry scheme
to obtain ratios between the various meson-baryon coupling constants.

"“\e', va\uas_ of q':yﬁN obkamed From "orwa.f—ﬂ leSPQHéou. +o_la.+!ws ahg
Ehls_prmade&anmiependﬂmmon_thaxalues_oﬁ.g_m“ohtamed

Ywetaloug wn tmpor awt test rhe vahdit
ﬂmm_ﬁgmard.disper‘éion_nelations . & Ty of su®

By comparing the Lagrangian for the most general interaction between
baryons and pseudoscalar mesons with the SU(3) symmetric interaction,

De Swart(53) was able to list the relations between the various

coupling constants. In particular
5»4 Nm - 3

3"!\“ -g()+ 2J') (5.20)

iw = (‘-2«)

where oL is the F/(F+D) ratio. The pion nucleon coupling constant, g,
can be written in terms of its symmetric (gj) and anti-symmetric (g;2)
couplings as

- 4
3 E 4 ¢ = 92 (5.21)

With this notation

oL = 31/3“3- (5.22)

Thus & = O means pure symmetric, or D-type, coupling and e = 1 means

pure antisymmetric, or F - type, coupling.

454

Experimental results indicate that oA O. in which case
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1
q TOne \ (5.2

'31n L) 21

)

(8]

This corresponds to an F/D ratio of 2/3. If g? = 4.8 then (5.23)
predicts ng o=O.18. These values have been used by Snow et.al. (45)
to evaluate the once subtracted dispersion relations for D, (w,0)
(see equs(5.15), (5.16) ) throughout the physical energy spectrum

for w, and hence to obtain a comparison with experimental measurements

for Dé(w) / Ay (w).

2

However, (5.20) predicts that g A

~ 15 which is clearly irl compatible
with the results of forward dispersion relations, except for the

calculation performed by Ki (54).

Moreover, some of the major sources
of error in the forward dispersion relation (3.4) are suppressed when
we use (U4.7) (from the list in section (IV.1l) ). Therefore, if the
SU(3) predictions sre valid then our basic assumption that only
s-waves contribute to the low energy KN region, may be in error.

So far, the value of gzr, has been obtained dependent on g2Y1*

(see equs(L4.43), (4.4h4), (5.11), (5.12) ) for which SU(3) symmetry

. 5.,(48)

*
implies a value g2Y1*K'p by comparing the width of the Yy

resonance with that of the pion nucleon N*(l238) resonance. A model
which incorporates symmetry breaking, due to Wali and Warnock(55)
leads to good agreement with observations for gZYl*pK = 1.9

If we differentiate chosen forward dispersion relations with
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respect to w then the resulting expressing give independent relations
between the coupling constants. In principle this extra relation could
enable an unanmbiguous determination of their values. The results of

this procedure are discussed in chapter VI.



CHAPTER VI

THE DERTVATIVE DISPERSION RELATIONS

1 INTRODUCTION

If the fixed momentum transfer dispersion relations are diff-
erentiated it is possible, in principle, to use the resulting equations,
together with either equation (3.4) or equation (4.7),to determine
the three coupling constants ggh ) gzzb s g2Y1* . Under differentiation
with respect to t, the momentum transfer variable, the form of the
dispersion relations is changed as the dispersive integrals now contain
a term involving the derivative of an amplitude with respect to t.

This means that the dispersive contributions in the range

wy,2% we 20 BeV cannot be evaluated from just the optical theorem,
but also require a knowledge of the complete spectrum of differential
cross sections. Therefore the dispersion relations are differentiated
with respect to w, the kaon laboratory energy. It remains to choose
the actual relations which are best suited to this treatment.

Clearly, the errors associated with the scattering amplitudes
near threshold are emphasized when the differentiated dispersion
relations are evaluated at w = W . Thus the relations must ensure

that the better known KN scattering amplitudes are contained in the

principal-valued integrations rather than the KN amplitudes.
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2 THE FORM OF THE DERIVATIVE RELATIONS

The conventional dispersion relation most suited to differen-
tiation is equation (3.2) for D, (w 0), certainly it fulfills the
previous requirements.

Differentiation with respect to w for w £ wy yields

Ao~ 2 b M o1 (TR e b
dan) Y L)t v wep (W'+w)
Y py [ My dw (6.1)
clw?'“ (,» (w'-w)

sl ;\f L. [»,,@) - el } d!
L% : (\w‘-w)\' Qu'{-w)"

5y

where kL is the kaon laboratory momentum.

Any error in equ(6.1) due to the uncertainty in the Ktn
scattering length is removed if the relation is considered for the
Kip system. This has the added advantage that the s-wave effective

(38)

range term is known so that ary additional p-wave effects are

very small. This eliminates another possible source of error.
Furhtermore, the integration over the unphysical region involves

K p amplitudes, and therefore gives a relation contajn_jng the three
coupling constants. This provides a check on the value of g2'\ s

obtained from equ(3.4).

There is no need for a subtraction in (6.1) as the asymptotic
convergence is guaranteed. With w»Mn<€¢20 GeV the asymptotic

cross sections subtract approximately to give a small contribution
from the high energy region. More comprehensive details
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are contained in appendix B.

\;le‘rlv o "wf,
The term involving the differential of a principal-valued integral

must be treated with great care. As w < wy this term can be written as
\

d A r' BG) - % Ra) !
n

dw -

w'-w

+ 1 g‘ hq-tw) & &w’
h - W | (6.2)

Equations (2.38), (2.39) show that (A, (w)/k_ )| exists.

N!-}q.
The first integral could be evaluated for two close values of w and
its gradient with respect to w found, whilst the second integral
could be solved analytically and then differentiated with respect

to w. This method agrees with the following procedure. Equation (6.2)

becomes \ A
d w, L‘_ . &) - “ W) o Q"""") é “ (w) )
" & L:T"..,r[ s, %. o \ T, )JA”

(
*3 ﬂ(“%i’)( e 0

The first integral was computed numerically for w = w and the second

integral gives (at w =}L)

-}‘c«;t(‘!’) (‘"\-r JT:_?) -2 j____"'\*"* (6.4)

M~ Teom
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The third integral gives

LAO) (A (e leiat)

T e\ &
W 3
Therefore we are able to conclude that (6.1) is well behaved
when evaluated at w = M
For the reasons discussed previously the derivative of equation
(4.7) is considered f or the K'p system, and if w< Wy is
L w
) b o \
-4 ("zﬁ*‘ ) LA (TR )
w A T
o\ few | G Ty ™0 e

A \ v, (6.6)
LTI N WP
wo (w'sw) F'ﬁ:.) dw T - '-w) Ii_(‘.“')

-}
-1 NEAD + oY) ]dw'
4% [(u'w)" iiu) (u‘-w)" iQw')

2 ®

Again, the principal-valued integral was written in the form
k ' »

A N ‘ ) D*(u\) - L"/*‘\.h*(\‘u Juw

-— w

TS SR Cab DR [IRIPSTRME

“w (6.7)
) ‘ :
w

' “*‘(w) {.:_ &w‘
» W, (u‘-w),l(_u‘.\-,s)(“"*”")

The first integral was calculated numerically at w = j, as before,

and the second integral becomes
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w

P a1 ] e )
w'ew Jku\_»)(w\‘,w.)

ol (6.8)

This reduces to
- 2 2 T
r{prw,) { Wimp

CLAAE) b (E )

The interchange of differentiation and integration gives an identical

) » W are neglected in comparison to wl ? 20 GeV then
the assymptotic cross sections add in equ(6.6). This is compensated
for by the extra power of w' in the denominators of the dispersive
integrals. The overall effect is to retain a comparatively small
high energy (w'» 20 GeV) contribution. The exact form of these

integrals is given in appendix B.
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3 THE EVALUATION OF THE DERIVATIVE DISPERSION RELATIONS

Both equation (6.1) and equation(6.6) were evaluated at w = p,
in the first instance by using the energy independent scattering
lengths of kim37) to determine the EN s-wave amplitudes for
Wy o€ w'€ wy. The contributions to the two equations are tabulated
below following the procedure of section (III.2) but in addition
4 denotes the contribution of the Yl*(1385) resonance in the

unphysical region. Equation (3.5) becomes

= Z (6.10)
Z- Cv = 3 C.L y
ey

where g2 is defined in section (1V.4) and g2 = 1.85 gi, from (4.41).

Table 16: The contributions in umits 1077 MeV-2 to equ(6.1)-(6.6)
at w = p using the energy independent scattering lengths.

ey ; equ(6.1) | equ(6.6)

c; | 7.43 17.51

¢, -6.54 37.51

C4 ~143, 64 -33.31

cy | 41.88 : 3.71

c5 | -3.93 | -1.22
total \ t1=4.80%0.25 t,=24.20%0,23

cg . i 0.11640.01 ! 1.97%0.14

1> © are determined from the errors on the KN

scattering lengths, and on cg from the position (Wg = 1385%2 MeV)

The errors on €
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and width (T = 37+3 MeV) of the Y. resonance' "’ .

1
Equ(6.1) gives

0.937 gi O+l.632gi +0.116¢° = t, (6.11)
Equ(6.6) gives
3.29 gio + 4.2 g8 + 1.978° = ¢, (6.12)
Eliminating the Yl* contribution between equ(l4.43) and equ(6.11)
2 2 _
3.48 gi ot 7.15 g - 19.08 (6.13)
This gives an upper bound (g%zo = 0) of
gZA = 2.67 (6.14)
which is to be compared with the value obtained from equ(3.4),
gzh= 4,34,
Similarly equ(4.44) and equ(6.6) give
0.533 g220 +1.10 g% =..5.21 (6.15)
This gives an upper bound of
2 _ y.7l
g\ = U7 (6.16)

This value may be compared with the value obtained from equation (4.7)
gi = 4,87. Thus the new dispersion relation (4.7) gives a more
consistent result for gi . With the assumption that g2 is positive
equ(6.13) gives the following ranges of values for the three couplings
2.96& ¢°%1.16, O < g2=o <3.10, 3.80@ g°® 0

Similarly, equ(6.15) gives

h7hR gh R3.29, 0 ‘g280< 2.97, 1.0 @ 2 @ 0.

If the additional constraint of SU(3) is imposed, g?‘,,/g;2 . L/o7,

equ(6.13) implies
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2 _ L2 -
g, = 2.62; gto 0.10; g 3.71 (6.17)
Equation (6.16) imples
2 . 2 2
= U.64;; = 0.1 = 1.74 .
g\ 404 g g 01T g = 1.7 (6.18)

Alternatively the KN amplitudes in the unphysical region may
be parameterized by using (4.23) with KI as input parameters and «q, ﬁ:
determined by matching the energy dependent and independent scattering
lengths at w = 4. The results of this investigation are shown in
table 18. Also tabulated are the values of gi using this procedure

for the undifferentiated dispresion relations (c.f. table 4 and

2
A

method to that which gave equation (6.13) and equation (6.16)

table 9), and the upper bounds on g~ obtained by the equivalent

(i.e. by using the tabulated t1 and t2). The corresponding o, , 2,

are shown in table 5.

Table 18: The results of (6.1), (6.6) by matching the energy dependent
and independent scattering lengths at threshold. Columns
(5) and (7) glve the upper bounds on 820\ from (6.1),
(6.6) respectively. Columns (6), (8) give the values of

gzh from tables 4, 9 respectively.

’ Conventional Relationi New Relq’cion
 Bound on l Bound on
. 2 2 2 2
_xo L £y t g\ g & Ea
0.7 0.2 .67 21,68 2.69 8.24 5.62 7.25
0 h.88 ' 25.68 2.74 5.75
-0.2 5.28 28.70 2.88 6.13
0 0.2 4.3% . 23.26  2.48 7.94 5.28 6.84
0 4,54 24,27 2.54 5.42
-0.2 4,94 27.28 2.68 5.80
- i : - i
~0.4 0.2 @ 4.06 21.06 2.31 6.58 | W.77 6.08!
0 . b,27 . 22.06 2.37 4,90 i
| -0.2 | 4.66  25.08 251 | 528 1
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From table 18 we see that the agreement between the conventional

forward dispersion relations (3.4), (6.1) is very poor. However
the new dispersion relations (4.7), (6.6) indicate that ¥, is
regative and ¥,4-%WAlso, as ¥, decreases the general trend is
towards a small discrepancy between the predictions of (4.7), and
(6.6). Unfortunately this disagrees with the Y o* parameters which
require 0 & P, < 0.3. If we use values «,= -1.51, A, = 0.5, %04
for equ (6.6), which are given toberable agreement with the Yo*
position and width, then ao(wl) is consistent with the eneré;y
independent scattering length a, in the range pe w'ew, , and
the upper bound is g2k = 5,22. This compares with the value
g2'\= 6.09 shown in table 10. Similarily, taking «,= -1.51,
A:'= 0.6, %, = -0.2, for which bo(wl) is consistent with the energy

independent scattering length b, in the range ;Lw'l W, then the

2

N 4,55, This compares with the value g2h = 5.10

upper bound is g
in table 10. Even now, the differentiatefdispersion relations still
appear to underestimate the value of gzh . This inconsistency could
be attributed to either the way in which the Yl* contribution is
evaluated, or a defect in our assumption that only zero range s waves
contribute to the low energy K N amplitudes, if the cross-section
data measurements and asymptotic region parametrization are accurate.
However this fault is more obvious in the case of the conventional
forward dispersion relations than our new dispersion relation.
~Nevertheless, the fact that we have obtained a value for the sum of

L )

,--.?’ Lot ‘the pole terms and the unphysical region contribution, albeit
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at w =jn, enables us to evaluate Dy (w,t=0), (4.7), for general
values of w and compare with the experimental data. The comparison
with experiment of D-(w,t=0), (4.6), is also discussed in the

subsequent and final chapter.



CHAPTER VII

THE COMPARTSON OF THE NEW RELATIONS WITH EXPERIMENT

1 THE RELATTVE MERITS OF THE VARIOUS RELATTONS.

So far, the forward dispersion relations have been used to
predict values of the NKN and ¥ KN coupling constants. Having
done this it is possible to predict the real parts of the K¥p and Kin
forward scattering amplitudes and compare the results with experiment.

As discussed in section (IV-3) the most serious problem is
the evaluation of the forward dispersion relations for KN scattering
is due to the uncertainties associated with the N and ¥ pole term
contributions and the computation of the dispersion integrals over
the unphysical region below the KN threshold. Let us consider

(26) and Queen(56)

the two methods adopted by Lusignoli et al , and compar:
these relations with ou¥ new dispersion relations (4.6), (4.7).

The sum of the pole terms and the unphysical region contribution

in (5.16) for D, (w) used in Lusignoli et al.(26) may be written as
F 1 \ — x«)‘ LS
“T s Wi Re) & 9% (7.1)
W [1' oy T ¥ (uygrw)lwgtspt)

Note that equ(5.16) is essentially a twice subtracted dispersion

relation. An alternative form is the once subtracted relation for

(56)

D+(w), equ(3.2),which has been evaluated by Queen , Where now the

unphysical region contribution is given by

IQQ..)= (N-»)‘jlr "\ Doehdw' T __‘.QQ_J:\'_ (7.2)

N‘“(N'hp)lu\bﬂ) Y (uyrm) Lwgtw)



104,

The corresponding relations for the real part of the K N amplitudes
are obtained by using the crossing relation

D_(w) = D,(-w) (7.3)
However, as table 13 shows, the fluctuations in the predicted value
of the coupling constants arise mainly from the particular way in
which the unphysical region is parameterized because of the large
canelllations which occur between the various terms. It is therefore
desirable to calculate Di(w) from a relation in which the errors
compensate each other as much as possible. For example, for
sufficiently large \W] the errors on some of the individual contri-
butions to equation (5.16) are correlated since using the unsubtracted
relation (3.4) and (7.1) we find

> b ) =T>.~(:’)] A1 (e 2 [ °—‘°+ ! (7.

kﬂ”
gwﬁﬂnp . That is, at high energies the error due to the combined

contribution to equ (5.16) of the second subtraction constant, the pole

terms and the integral over the unphysical region, is simply equal

to the error on the right hand side of equ(7.4). Although the relation

(56)

used by Queen does not enjoy a similar advantage, this is offset

to some extent as it only involves one subtraction as opposed to the
two subtractions in equ(5.16).

(5T

Consider now the unsubtracted dispersion relation (4.7
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with v, % 0.4 GeV, and write
I =\ JEem\f s ‘ Awd' (Do b
re || ') TRl ee)

\
+Z X‘.Y)J,‘ 2
' \ £ )\ (WV*W) ‘f (7.5)

Since equ(l.7) is convergent in unsubtracted form we can calculate
IP(p) and I" () directly frome,and D,(a). Further, from the
form of equ(7.5) the computed values of I(w) are expected to be
almost independent of w except when w is in the neighbourhood of

the KN unphysical region. The important point is that if equ(4.7)
is used to calculate Di(w), the large errors associated with the
extrapolation and the coupling constants are correlated in such a
way that the total error on I(w) 1s expected to be comparable to
that for I(w), except near w = - J&~ . In the next section we shall

describe how the values of D4(w) are calculated from equ(4.7).
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2. THE EVALUATION OF THE NEW RELATIONS

It is convenient to write equation (4.7) in the form

s
D,(w) = z‘ c. (w) (7.6)
i=1
where the c; in (3.5) have been redefined as ci(w).y,__g.-u) and ¢y

now refers to the contribution of the pole term, so that

Iw) = cy(w) + ¢, (w) (7.7)

From table 6 we find

= 1.04%0.09 GeV t

_ (7.8)
0.73%0.20 gev ! .

1
-
—
=
~
|

T »)
In tables 19, 20 we show the various contributions to D+p (w)

and Dy "™ (w) respectively at a few selected momenta. The tabulated
value of T(W) corresponds to the constant scattering length
extrapolation. The calculation of I(w) was repeated using various
K-matrix extrapolations, each consistent with the Kim(37) RN
scattering lengths and a Yo* resonance, but they produced a
negligible change in the value of T(w) except for w in the low
energy region. As the calculation was completed before Kim's<54)
new parameters were available we did not explicitly verify that the
extrapolation with these parameters also produces no change
in I(w). Notice from tables 19, 20 that, as predicted, the value
7N

of I V(w) ~ iN( M) except for w in the low energy K N region.

The tabulated errors on I(w) reflect the errors shown in equ(7.8)
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Therefore equ(l4.7) is particularly suitable to the calculation of
Dy(w) as the total error on I(w) is comparable to that for I( m)
except for w & - M
Independent confirmation of the constancy of TP (w) with respect
to w is obtained- by evaluation the derivative form of equ(4.7),
that is equ(6.6), at the K'p threshold. Using the known parameters

(38)

of the K+p s-wave effective range expansion and the evidence that

the K+p p~-wave scattering lengths are small, gives

°_\_3r : ~0as & 625 Gav-?

Aw T (7.9)
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The contributions(in units of GeV_l) to D+P(w) from

Table 19:
different parts of the dispersion relation of equ(4.T7).
The notation is that of equ(7.6).
! | DP N
%(va/o) g‘ﬁff)' * COSZ%S‘;W“& e oy | cow oer
|
!_ 0.52  -1.51+2.60 (iéﬁcl)? .(13:8% 001 (;8183 (s0.18)
0.97 -1.37+2.48 (icliﬁ ;(;g:gg) (:g:% (;8:83) (Eg:gg)
K'p ; 197 -1.23#2.34 (4573 :Zicl) ?8) (ig)ﬁﬁ (0.09) (;gﬁ)
s aaseas (10 D] SR s
9.80  -1.10+2.17 (ié:(l).)z Zié:§2> (+C2J gs)3 (+c7> §§> &82%
0.415 -0.38-1.22 (;é:g% (i(l)zig) 0.0 (18:%82,"%869)
0.95 =-0.68+1.20 (18:23) (ig:gi) (Iéjgﬁ) (ig:gi) (ié%)
1.975 -0.87+1.76 (ig:ig) (ié:gg) (Igﬁgg> (ié:gg) (00”2)
e 3.46  -0.95+1.93 (18:2% (tgﬁﬁg) (383) (ig:gi) (%3?2)
5.0  -0.99+1.99 (1(13:28) (ié:%) (18 33) (ig:gg) (i(f?)
o oo (%)% | ED|EH|ED
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Table 20: The contributions (in units of Gev ©) to Di(w)
from different parts of the dispersion relation of equ(4.7).

The notation is that of equ(7.6).

f |

| (Gev/c) Poles + Continuum = I!
' 0.52 -1.09+1.81 0.72 ' -6.35  5.61 0.3
(0.2) (30.1) (%0.4)| (%0.01) |
0.97 -1.0141.73  0.72 =[.45  7.18| -0.36 |
(¥0.2) (%0.1) (%0.3)| (¥0.02)
K'n  1.97 -0.93+1.63 0.70 -9.65 7.46| -0.30
(#0.2)  (#¥0.2) (%0.2)| (*0.02)

|

3.50 . -0.88+1.57  0.69 -12.2 8.50: 0.28
(70.2)  (=0.3) (#0.5)"' (0.03)

9.80  -0.84+1.51 ,0.67 '-17.9 2.76  9.27
0.415  -0.32-0.57 -0.89 1.43  -0.52 | 0,08
(¥0.8)  (¥0.3) . (*0.09) (*0.002)

0.95 -0.65+0.89  0.33 2.24! -1.54  0.31 |

. ((0.4)  (*0.3)  (Y0.14) (%0.01)

1.975 = -0.69+1.24  0.55 2.30° -3.35  0.97

Kn ; (20.25) (20.5) - (40.15) (0.04
| 3.46 - -0.75+1.35 0,60 L3940 <5370 2.
| (f0.2) (70.8); (0.2), (70.11) :
|
5.0 -0.77+1.40 0.63  3.73| -6.95] 4.51
: (%0.2) .(70.8) . (%0.3): (%¥0.25) "
9.0 -0.79+41.43  0.64  -1.51° <9.7h! 13.3

(20.2) (#1.7) (20.4): ((0.7)

(f0.2)  (}1.0) (#1.5), (#0.32).
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3 THE COMPARTSON WITH EXPERIMENT
In figures 1, 2 the disperison relations pfedictions for
o(: : 'DQ_P | WP are shown jfogether with the values that are obtained
from extrapolating the differential cross sections for Kip elastic

(58)(59)

scattering to the forward direction, where

de \Bb .

nl : \D \1' + A

do /. (7.10)

20

The uncertainty in the disperison relation predictions for e« can
be egtimated from the tabulated errors on the predictions for D(w),
The signs of the experimental values of ety are undetermined and in
figures 1, 2 we have taken the sign which is in better agreement
with the calculated curves. Above w = 5 GeV we also show the
predictions fro w4 that are obtained from the Phillips and Rarita
Regge-pole parameters (see appendix B). Since these Regge para-
meters are used to calculate the asymptotic contribution to the
dispersion relations the two predictions must agree asymptotically.

For completeness figures U4, 5, 6, 7 show the values cbtained for

D‘:\..)' b!@), ) :(w) and D':(w) respectively plotted against w.
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Figure Captions

Figure 1: The energy dependence of the ratio « for K+p. The
solid curve is the prediction of the dispersion relation, eq(47),
and the dashed curve is the Regge -pole prediction. The experimental
points are obtained from the following references: @ (38); v (58a); a
(580); 0 (58c); e (58d); & (58e); s (58f); » (58g); & (58n),

o (581).

Figure 2: The ratio et for K p. The solid (dashed) curve is the
dispersion relation (Regge-pole) prediction. The experimental
points are obtained from the following references:-.-.- (59a);

v (5%); 1 (59%); (59d); ¢ (59); s (591); e (59g)

o (59n); a (591).

Figure 3: The dispersion relations predictions of e for Kin.
(The dashed curve represents the Regge-pole predictions).
Figure 4: The dispersion relation predictions for D (K'p).
Figure 5: The predictions for D_(Kp).

Figure 6: The predictions for D+(Kfn).

Figure 7: The predictions for D_(K'n).

From figure 1 we see that for K+p there is good agreement
between the dispersion relation predictions and the experimental
value of e , except at the two high energy points and the two points

near 2 GeV. It is interesting to note that in the experiment
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performed at 1.96 GeV/c(58e)

the measured total K'p cross section

was found to be 2 millibarnes greater than the more recent measure-
ments. Using the new value for o-+7 and scaling the differential

cross section accordingly we find o{:= -0.47%0.17, which is in

much better agreement with the dispersion relation prediction.

The origin of the discrepancy with the somewhat earlier experimental
result at 1.97 GeV/c(58f) is probably simply that the error associated
with the extrapolation of the differential cross section to the
forward direction was underestimated.

Now consider K p and the comparison in figure 2. Gelfand et al.
(592) have measured the K p angular distribution at twenty two
values of momenta in the range 0.8 to 1.2 GeV/c. The fesul’cing
predictions for u.' are smoothed as a function of momentum and are
shown as a dot-dash curve on figure 2 together with a typical
error bar. There is reasonable agreement with the dispersion
relation prediction for ol_' . However, as pointed out previously

by Lusignoli et al. (45)

a discrepancy exists between the dispersion
relation prediction and the experimental points in the region 1.5
to 2 GeV/c. Above 2 GeV/c d.' is predicted to be very small

and the experimental value for ol,‘ is then the small difference
between two large quantities. In view of the large experimental
errors it is not sur'prisihg that disagreement is observed in this

region.

' "
In figure 3 we show the dispersion relation predictions for ots .



113.
At present the only experimental information concerning 01; is that
obtained indirectly via the observation of the charge exchange
K'n =K% (or to be precise K*d = K%p) and Kp ~» K°n . The

forward amplitudes for these processes are

T(K'n =»Xp) T P-T,"

(7.11)

T(Kp=»k’n) = TFP-7n

and so given the value of ot we can, in principle, determine o from
the data for small angle charge exchange scattering. It is useful
to define the ratio of the real to the imaginary parts of the
charge exchange amplitudes to be
Ce P ¢
oy = D + - D +

- (7.12)
ﬁ--;' = “t "

Data exists for the process K*a =>K°pp at 2.3 GeV/ c(6o).

(61)

Glauber and Franco have analysed this data, carefully allowing

for the deuteron effects, and estimate &,"~ =0.76 and R:QN -6.8,
which are to be compared with the dispersion relation predictions
of ot: v -0.23 and & _;_"‘N -8.4. Unfortunately in their analysis
of the data they assume *;P ~ -0.34 whereas it now seems
probable that o : ~ -0.55 at this energy. With the latter value, a
rough calculation(62) shows that A:N -0.13 or -0.97.

Turning now to the other charge exchange process K p =»K°n
we find that arllgular distribution data exists at many energies(63)

However, in this case, the forward scattering amplitude is found to
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be predominantly imaginary at most momenta and so prohibits an
accurate experimental prediction of &:Jiln table 21 we list the
experimental values of the forward differential cross section for
Kp “>X%n for momenta above 1 GeV/c together with the dispersion
relation predictions. Only for momenta at which (d_fe)gs
appreciably different from zero (for example in the region of
1.5 GeV/c) is the comparison a significant test of the dispersion
relation predictions for DY (w) and D_P(w). The agreement with
experiment is good and in particular the discrepancy noted by

(64)

Lusignoli et al. , in the region around 1.5 GeV/c, is resolved.



Table 21:
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Comparison between the dispersion relation predictions and

the experimental values of the forward differential cross section

for K p->E&’n in the c.m. frame.

Dispersion relation

Experiment
| k ' v | f[dry\ 1de ' o
e (7| Gk (), ] e
| 1.022 0.56 | 1.22 ¥ 0.10 1.58 £ 0.28
{ 1.08 0.04 ! 1.54 % 0.28 . Lo 2o0.25 63a
! 1.13 0.00 ! 1.02%0.22 i 0.94 £ 0.24
' 1.18 | 0.17 E 0.70 % 0.22 F 0.66 £ 0.22
1.0 -_Mi 0.31 32;33 o l 0.27 ¥ 0.05
1.42 { 0.76 , 0.18 X 0.15 ; 0.21 T 0.04
1.51 ! 0.81 0.39 ¥ 0.18 i 0.38 ¥ 0.03 ; 630
1.6 | 0.8 0.7 fo0.12 0.43%0.09 |
1.7 % 0.04 " 0.52 % 0.10 0.49 % 0.08 j_______
1.8 i 0 1 0.35 £ 0.10 % 0.33 ¥ 0.07 ; 63c
o oos omtos  omToms | g
3.5 o0 0M2%o0.as | 0.32 % 0.06 . 63
5.0 0.07 0.23%t0.16  0.20fo0.07 i o
7.1 0.07 0.22 £ 0.20 0.25°% 0.04 . 63f
£ 9.5 0.06 x *

0.20
1

0.26
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4,  CONCLUSIONS.

Except for the analysis performed by Kim(5”)

, all the cal-
culations of the lambda coupling constant discussed in Chapter

V support the value deduced in Chapter IV, that is

(7.13)
The results shown in table 11 indicate that this error may be
rather conservative and that a more realistic value may be

g = Lo t2s§

(7.14)
Note that the inclusion of the correct pole term factor (as
discussed in appendix]D)Agwreases these values slightly. In
any case the new forward dispersion relations do seem to diminish
the importance of many of the undesirable features in the con-
ventional forward dispersion relations. This certainly appears
to be so from the discussion presented in Chapter IV. Unfortun-
ately there is still a significant contribution from the unphysical
region when equation (4.7) is evaluated at the kaon nucleon thres-

hold to determine the lambda coupling constant. Consequently



11y,
there is still an ambiguity in the exact value of gzh ,as shown
in the above results (7.13) and (7.14). This should be resowmlved
by obtaining more precise values of the isospin I = O R-matrix
elements iIn the low energy region to fit the known data. At

(65)

the present time efforts are being made to resolve this

dilemma.
As suggested in Chapter V the situation regarding the sigma
coupling constant is even less transparent, as very little is
known about the Y:(1385) resonance, Attempts have been made by
(48)

Davies et al. , and in Chapter IV, to resolve the isospin I =1

s-wave and p-wave contributions to the KN low energy region.

Success in this direction could well produce a very low value for

g2

A
*

to the signs of the Y,and & pole term effects in equation (4.44),

which may satisfy the SU(3) prediction of gi »~ 0.5, Due

a decrease in the value of g2t entails a compensating increase
. 2Y*
in g7¥;.

The use of derivative dispersion relations in Chapter VI
appears to show the superiority of our new approach in that more
consistent results are obtained from relations of the type (4.7)

Lvomn

than )the conventional forward dispersion relations. Taken to

their logical conclusion they indicate that | g2‘| is very small.
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This fact is deduced from the arguments concerning the con-
sistancy of the predictions for gi . From equation (6.16)
one may also deduce that gz_KNY; ~ 1, if g2£o is neglected.

Even though the exact values of the coupling constants may
still be slightly suspect, the results of Chapter VII enable
one to assert that the stage has almost been reached where the
dispersion relation predictions for the real parts of the forward
amplitudes can be used to normalize the experimental angular
distributions for kaon nucleon scattering. This is true simply
because the results indicate that the sum of the poie term and
unphysical region contributions influencesthe real parts of
the amplitude in a fixed way.

The conclusions reached in this thesis are, we believe, the

extent of present knowledge in this rapidly growing field.
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APPENDTX A

PARTTAL. WAVE AMPLITUDES

For equal mass (m) spin-zero particles the partial wave
amplitude £, (k°) may be defined in terms of the invariant ampli-
tude F(st) 3 F(k2,0080) by the formula

. \ (A1)
* !
JYCADIRS 3 ‘ Awne) Pper) FUEwme)
-

and in this case (1.4) becomes
S = l., (ﬁt A:M")
Y YA 'S (h2)
w= -2b%() + w0)

where k is the centre of mass momentum. By using the orthogonality
property of the Legendre functions the total amplitude may be '
expressed in terms of"the partial wave amplitudes by

F(LY wp) =:§ e+ £ (&%) ¥, (me) (A3)

Hence, the J'_ntegr';.'l‘.’s in the dispersion relations give rise to
terms of the form \

Q@ )= 2 Alws) Palery +

' s'a 4 (1t ) (AY)

which are simply Lengendre functions of the second kind. Certain

important properties of these integrals may be seen by inspection.

2 they behave like (k° y*

)‘1"1

(a) For small k

(b) For large s' they behave like (s'
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Condition (a) shows that we should really consider the quantities

defined by

h,= 4y (45)
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APPENDTX B

THE HIGH-ENERGY CONTRIBUTIONS

In this appendix we derive the exact forms of the high-
energy contributions to the ordinary and differentiated, conventional
and new dispersion relations. The way in which this region, w'w 20GeV,
is treated is in accord with the formalism of Phillips and Rarita
(42) and the values of the parameters they obtained are used as
input numbers. By writing the kaon nucleon scattering amplitudes
in terms of five crossed channel poles, Phillips and Rarita fitted

the experimental data for the total and differential cross sections.

The various amplitudes of interest have the form

K-p —>K_p

= Tp+Tp'+TR+Tw+TP
Kp=»K'p = T, + Ty + Ty - Ty = Tp
Kn=»sKn = To+Tpr ~ TR+ Tw-Tp (B1)
KnsK'n = T + Ty - Tp - Tw=Tp

where the suffices P, P', R, W, lp refer to the appropriate
Regge trajectories.

The amplitudes T, associated with each trajectory (i) are given

. of:
Loowp (e +0 (2 ) ¢
et (. \ ) W (B2)

W T, o= - i“""ditl 11»1; (B3)
Swa Wu,

by
T T
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The () sign is the signature factor and is (=) for the P W
trajectories and (+) for the R, P, P' trajectories.
The C; are constants given in reference(42), The «; are
parameters associated with each trajectory (i) and wy is a scaling

factor taken to be 1 GeV.

Table I: Values of the constants in equ(B2)

e - _l__ -

[ 4(24 -n)/w [ __t-al'.

——-—y

’ ; o-o\e; +omic ': LR 1
W o-0ak - XS]
'\i T 000844 - o

' o040 . 05

R0 )oby . o321

(a) The equ(3.4): For this relation the reélevant dispersive integral

to consider is

1 S'° Bowy - Y W

* (B4)
o ok u\\ - W
Writing
Q: (w) = w -B-g (w) (B5)
gives \
d B. @y = 36D A

wv-% (I -wr /W)
Using (B5) to extend the notation to B; gives for w & 20 GeV.

1 ‘”(8\.,-‘ dvemty. ) dw! (B7)

n‘ \‘ ok hl‘

where ol refers to the appropriate o, , and x = 20GeV. This integration

can be done analytically to yleld

1 (3,18, w¥-?
oy >i_.,'{, 2. (Zi-' *)(“u alea )(B8)
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The ¥ sign refers to the fact that the dispersion relation was
written for a nucleor} N where N = (131'1) and this changes the
sign of the B  contribution accordingly, to (¥) respectively.

(b) The equ(li.7): Here the relevant integrals to consider one

w0 )
By duw

4 .\‘ A &' 3
v R (H‘-u) th\ip)‘u‘6w°)\3'9)

T e [T

The integrals may be expressed in the form (as wy, M < < w'),

Q. By

WHhery WU ) (B.10) -
V1 (ate. R- 4 By ]
T\ W N\tbw/w.) wt - wle) G
mteyatz:n Yi;ld)s v u- L | ,‘
| S EO2 2 Gy e
o . u-\
B8t 8) 2T s u-wi (.11)
M g, t8 v _w .
*( w‘) ?,4 P \\) : °Q,...§1"-¢i) x\,u-ol-‘c
o B4
-@ )
L £ Z Lu-»: d)%u*s‘“

This is true for all -

N = (P“).

W & 20 GeV. The & sign refers to
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(c) The derivative equ(6.1): The relevant integrals here are

M»')Aw' N 18 N, o'

(u+w) % w-w)

(B.12)

The integrands can be expressed in the form

‘K —g;—— - by ] (B.1
w\t(‘*u/u.)t w'_‘t\-w/ul)! -3)

Thus after expanding in terms of (w/ 1) and integrating we obtain

—l(} 4?)1_;(u')~“1‘
(R wi”

l;-l

(B.14)
WUt

W 2= ¢

v R g2, )7 T e
“(ue2-4p) x

This is true for w &€ 20 GeV.

(d) The derivative equ(6.6): The appropriate integrals to consider

are

-1 FA-Lw') dw' -_; R, Ao (B.15)
ey Tt A TRty

The integrands can be expanded for w € w' and re-expressed, as

Wor W& W', as



125,
-\ Q. + Ny ] 5
p=s N"(|+'~/ .) W'l (\ - W/ .)‘L
-1 LA-{.w‘,)[ “‘ - = _QJ__
Al Wt Vew )t W Y- w ) (B.16)
Integration gives
L[ ysg 2 W |
1 V(U)W (B.17)
Le +8 ‘tg“) Lu-l) Iuou -2
| "8, +8, r—.‘) w R )

e \.(F*""o) (eu-g ) ?_ 7.' w¥t(u- -\)
am NCTIEPTD N LA

(B8, 28,05 T u wi!
\ |Lu‘52 4) u41‘ ol

True for w £ X.

(e) The equ(#4.6): The relevant integrals to consider are

D ) deo’ - gp, (v dao’ (B.18)
Qw'-w)ﬂu‘w)("‘-wo> n LN"’”)RN‘#}\)(W"'”O)

The integrands may be expr'essed as
“ - -

Nr(.l'w/..)l) w'® L+N/W'> (B.19)

[lm»wo)h_ .;][& /(\-u[wu) >+ B /U...w/u.)]

Integration yields




126.
( S LW 7
" e o(uﬂ-ﬁ)xuﬂ <
*@P"'Rw'e )?..Y Lu_'_
: (u..z-..) Ut~ (8.20)
..J
L SIDINTS *B)zs: w2 -1
' 'Quu-l ) i«
+8,48, 22 )T T M-t
R e

For W< w,
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APPENDIX C

THE 'NEW! PION NUCLEON DISPERSION RELATTION

Consider a function G(z) of z which satisfies the following
conditions
(a) G(z) is analytic in the upper half of the complex z plane.
(b) G(z) is less than z at infinity in this plane
(c¢) The real part of G(z) is an odd function on the real axis,
the imaginary part is an even function on the real axis.
(d) Im G(z) is zero on the real axis for -1« z € 1,

with the
exception of a delta-function contribution

T S(2-b) + S(arh) oD
?.n[ (} * @+ J

We may write G(z) B+(s,t=0) as B (given by (l.Lll))satisfies
the conditions (a)-(d), and z 2 W/)._ where w is given by (1.38)

and g is the pion mass.

Gilber't(%) suggested that one should look at the function

Fw = Y+('°. 0)

wle pt
(C2)
where z2— P-2 is that branch of the function that is analytic in

the upper half plane and is positive for w real wwp  and negative

for w megative and w «=p@ and is positive imaginary for w real
and -l W p.
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The function F(w) has the following properties

(a) It is analytic in the upper half plane

(b) It goes to zero at infinity

(c) The limit of the function to the real axis from above has an
even real part and an odd imaginary part.

(e) The real part of this function is zero for - he WS Ju and w

real with the exception of the two delta functions, and
RF) = I BTAW) b cpewen  (03)

,’pt.wt

Using Cauchy's theorem '
In{ 'B"‘(u) _ -2 w? ‘oo ) ?‘L‘E*(“" °)
TG

'W‘) H‘t-)g

>

whop . (Ch)
- w &
witewg M ]__”m_,,;
;?e lgft haﬁg side of this relation is
Ma Sw (-}
I ewe tor WO (c5)
-2 B*w,0) $ 0% W<
|Mt_w\

There is an infinite discontinuity in this relation as the threshold,
W = M., 1s approached from below, since TmB* goes to zero at
threshold while Re B' is like a constant in the neighbourhood
of w = . Similar relations can be written for AY and B .
Having taken care of the singularities in the integrals, and
the convergence of these relations, the integrands must be evaluated
from the known phase shifts, as the optical theorem is inapplicable.
Clearly this method cannot be applied to the KN problem in its

present form as the only facts known with any degree of certainty
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are the total cross sections, although a recent phase shift

(66)

analysis has been applied to K'p.
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APPENDIX D

THE POLE TERM CONTRIBUTIONS

Until recently the pole terms have been evaluated with the
factor M, in equation (3.3 ) taken to be My, where Y denotes
either the lambda or sigma particle. However, a recent
suggestion has been made” that this is erroneocus, and in fact
Mushould be replaced by the nucleon mass MN In order to make a
meaningful comparison with previous calculations the former
method has been adopted throughout this thesis. This means that
the values of the N and E coupling constants should be multi-
plied by (MN/M]\) and (M“N&) respectively. The derivation of
this result is sketched below.

*

*
Using the normalisation and notation of Gasiorowicz , the

N pole term gives a contribution

TYY = 4 R( hyt ¢ ¥ (pry) ) W

(D.1)

[
R 1 14y, .
= 3,‘ w ( MaNy ';:\ (1*1))%

where

T N w
\

el . e

]
A.D. Martin - private communication
* %k ) .
W. Gasiorowicz - Fort. d. Physik 8 665 (1960)



and from (1.3)

Ll &0

LM

Now
(T*-7) = -tnn, $G-m2) T47

Hence

ﬁ?ok= Sl n,- ", © gk

- kX
s-n} ’ —3_
Therefore from (2.62)
e, g tole
v 4% (ﬁ» +wl )

s )((ﬁ) 3!3
Was W
where
() = LH,\- V\“)\' _#L
b hy

The last relation shows th_at Mu-= MN
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(d.3)

(D.4)

(D.5)

(D.6)

(D.7)
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