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ABSTRACT 

POLYFLUOROBIPYRIDYLS 

The chlorination of pyridine and 2-raethylpyridine, using 

phosphorus pentachloride has been developed to give good y i e l d s of 

pentachloropyridine. The reaction between pentachloropyridine and 

potassium fluoride gave high y i e l d s of pentafluoro-, 3-ohlorotetra-

fluoro-, and 3 » 5-dichlorotrifluoro-pyridines. Octachloro - 2 , 2 1 -

b i p y r i d y l , obtained from the reaction between 2 t2*-bipyridyl and 

phosphorus pentachloride has been reacted with potassium fluoride 

affording octafluoro-, 3-chloroheptafluoro-, 3»3'-dichlorohexa-

fluoro-, and 3 i 3 ' » 5 » 5 ,-tetrachlorotetrafluoro - 2 , 2 l-bipyridyls. 

Octafluoro - 3 » 3 ' - » and octafluoro-J+,M-bipyridyls have been synthesized 

from 3-chloro-> and ^-bromo-tetrafluoropyridines respectively, using 

the Ullmann technique. Octafluoro - W+'-bipyridyl has also been 

prepared from the reaction between 2 , 3 » 5 > 6-tetrafluoropyridyl-

magnesium bromide and pentafluoropyridine. Under similar conditions, 

3-chloroheptaf luoro-, and 3 j S-dichlorohexafluoro - ^ A ' -bipyridyls were 

obtained from the reaction between the &rignard reagent and 3-chloro-

tetrafluoro-, and 3 , 5-dichlorotrifluoro-pyridines respectively. 

The polyfluorobipyridyls have been reacted with several nucleo-

p h i l i c reagents and the orientations of the products determined from 

nuclear magnetic resonance spectrographic measurements. 

The reaction between octafluoro-, 3-chloroheptafluoro-, and 3 » 3 ' -

dichlorohexafluoro - 2 , 2'-bipyridyls and sodium methoxide i n methanol 



afforded the mono- and di-ethers, the fluorine atom para to the ring 

nitrogen being replaced i n each case. 

The reaction between octafluoro - 3 , 3'-bipyridyl and nucleophilic 

reagents led to replacement of the fluorine atoms ortho (6) , and para 

(k) to the ring nitrogen. With the nucleophile, X = 0CH^> i n methanol, 

substitution at the 4-position (>93$) occurred when equi-molar amounts 

of octafluoro - 3 , 3 '-bipyridyl and sodium methoxide were used. When 

a 2:1 molar r a t i o of sodium methoxide to the b i p y r i d y l was used, an 

equi-molar mixture of and ̂ ^'-dimethoxyhexafluoro^^'-

bipyridyls was obtained. When X = OCgH^j n-OC^Hy, n-OC^H^, i - O C ^ 

and t-OC^H^ replacement of both the h-- and 6-fluorine atoms took place, 

the amount of ̂ -substitution decreasing with a corresponding increase 

i n 6 -substitution, as the s i z e of the nucleophilic reagent increased. 

When X = OCHj, i n t-C^H^OH, replacement of the 6-fluorine atom 

( > 80^S) occurred and when X = NĤ  and CH^Li, substitution at the 

6-position (>95$) took place. I n the reaction between octafluoro-

3 » 3 '-bipyridyl and sodium i-propoxide, an increase i n the extent of 

replacement of the 6-fluorine atom occurred when ether was added to the 

reaction medium. This solvent effect has also been demonstrated i n 

nucleophilic substitution i n 3>5-ii.chlorotrifluoropyridine. An attempt 

has been made to r a t i o n a l i z e the orientations by consideration of 

s t e r i c and e l e c t r o s t a t i c i n t e ractions, and the solvation of the 

tr a n s i t i o n state. 



Nucleophilic substitution i n octafluoroJM^-bipyridyl led to 

replacement of the fluorine atoms ortho to the r i n g nitrogen. 

Nucleophilic substitution i n 3-chloroheptafluoro-'-i-,it- ,-bipyridyl 

takes place at the 6-position (^9 f$ ) . 
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PART I 

PREPARATION OF POLYFLUOHOBIPYRIDYLS 

CHAPTER 1. INTRODUCTION 



PREPARATION OF FLUORINATED HETEROCYCLIC COMPOUNDS CONTAINING 

NITROGEN WITH REFERENCE TO FLUOROCARBON SYNTHESIS. 

A. REPLACEMENT OF HYDROGEN BY FLUORINE. 

Decomposition of Diazonium S a l t s . 

The i n d i r e c t method for the preparation of aromatic fluoro-

compounds containing a small number of fluorine atoms i s by application 

of the Balz-Schiemann reaction. Aniline was diazotized to form phenyl 

diazonium chloride, which on treatment with fluoroboric acid gave an 

insoluble precipitate of phenyl diazonium fluoroborate. The controlled 

decomposition of the diazonium fluoroborate by heat, led to the 

formation of fluorobenzene• 

0° + C 6H^H 2 + NaN02 + HCl > CgH^N.Cl 

+ + _ 
CgH^N.Cl + HBF^ » CgHj_NsN.BF^ (ppt.) 

C ^ . B F ^ ^ CgH^F + N 2 + BF^. 

This i s now the standard method for the introduction of a small 
2 

number of fluorine atoms into an aromatic system and a large number 

of substituted fiuorobenzenes have been i s o l a t e d i n t h i s manner. 

However, the amount of fluorine that can be introduced into the benzene 
3-6 

r i n g i n t h i s way i s limited. Finger showed that up to four fluorine 

atoms could be introduced into the benzene nucleus i n a stepwise manner. 



- 2 -

Thus fluorobenzene can be nitrated and then reduced to form the amine, 

which on diazotisation and treatment with fluoroboric acid y i e l d s the 

diazonium fluoroborate that gives the difluorobenzene on controlled 

decomposition. Finger repeated the process and obtained 1,2,^,5-

tetrafluorobenzene. 

HNO, 

H 2 S ° 4 

0, 

1) Reduction 
2) Schiemann 

reaction 

1) Reduction 
2) Schiemann 

reaction 

HNÔ  
* H SO, 
F 

Nitration of 1 ,2 ,^,5-tetrafluorobenzene afforded a difluorobenzo-

quinone due to the expulsion of two para fluorine atoms, and not the 

tetrafluoronitrobenzene as expected. 

F 

HNO, 

H 2S 0 / f 

0 
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Application of the Balz-Schieraann reaction to prepare fluoro 

derivatives of heterocyclic compounds has met with more d i f f i c u l t i e s 
7 

and l e s s success. Tschitschibabin and Rjazancev prepared 2-fluoro-
pyridine i n 25% y i e l d by diazotisation of the corresponding amine i n 

g 

concentrated hydrofluoric acid. Beaty also prepared 2-fluoropyridine 

i n 20-22So y i e l d by diazotisation of 2-aminopyridine with sodium n i t r i t e 

i n anhydrous hydrofluoric acid and decomposition of the diazonium s a l t 

• i n s i t u ' at 
Q 

I n 19̂ 7 Roe and Hawkins published t h e i r work on attempts to 

extend the scope of the Schiemann reaction by investigating i t s 

usefulness i n the preparation of heterocyclic fluorine compounds. The 

f i r s t compounds they studied were the three aminopyridines. 2- and 5~ 

Fluoropyridines were prepared i n o v e r a l l y i e l d s of and 50$ 

respectively. I n contrast to the diazonium fluoroborates of most 

aromatic compounds which are quite stable, both 2- and >-pyridine 

diazonium fluoroborates are unstable, and the decomposition i s c a r r i e d 

out i n solution without i s o l a t i o n of the fluoroborates. E f f o r t s to 

i s o l a t e 4-fluoropyridine using t h i s modified Schiemann technique were 

unsuccessful, i t being thought that N-(A—pyridyl)-4-pyridone had been 

formed i n a manner s i m i l a r to that reported by Wibaut and Broekman' 

for 4-chloro-, and 4-bromo-pyridines. 
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Br 

hydrolysis 

N \N N \ N \V—N > r r OH 
\ \ \ OH 

N-(V-pyridyl) -Vpyridone N-( 1t ,-pyridyl)- if-pyridone unstable 

Wibaut and Holmes-Kamminga however, reported that impure h-

fluoropyridine was obtained i n poor y i e l d by diazotisation of ^-amino-

pyridine i n hydrofluoric acid, the reaction product being i s o l a t e d a t 

the reaction temperature. 

Preparation of fluoropyri.dines, u t i l i z i n g the Schiemann reaction, 

has not been r e s t r i c t e d to monofluoropyridines. Using a stepwise 
12 

approach Finger and h i s co-workers prepared 2,3- and 2 ,6-difluoro-

pyridines from 2-fluoro-3-aminopyridine and 2-amino-6-fluoropyridine 

respectively. A l l attempts to i s o l a t e the 2 ,5-difluoropyridine under 

sim i l a r conditions f a i l e d , although i n one instance some of the required 

fluoroborate was i s o l a t e d but the product of the decomposition was 
1 ? 

l o s t i n the work-up procedure. When Roe attempted to prepare 2,6-

difluoropyridine from 2,6-diaminopyridine by simultaneous introduction 
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of two fluorine atoms into the molecule using the Schiemann technique, 
none of the required difluoropyridine was i s o l a t e d . 

Although most of the work carried out on the preparation of organic 

fluorides by the decomposition of diazonium s a l t s has been done with 

fluoroborates, i n a number of cases diazonium s a l t s of other complex 

acids have been used. The stable diazonium s a l t s of these other 

complex fluorine acids behave analogously to the borofluorides since 

on heating they y i e l d fluoro aromatic compounds* 

( A r f y ^ . S i F g - " f 2ArF + S i F ^ + 2N 2 

ArN 2
+.PFg" » ArF + PF,_ + N 2 

ArN *.SbF,~ ) ArF + SbF^ + N_ 

d o y d 

The s i l i c o f l u o r i d e s are formed i n good y i e l d s but t h e i r sub­

sequent decomposition into a r y l fluorides i s much l e s s e f f i c i e n t . 

Beaty and Musgrave prepared 2- and 3-fluoropyridines i n k2% and 36$ 

y i e l d s respectively, "by diazotisation of the corresponding bases i n 

f l u o r o s i l i c i c acid and decomposition of the diazonium s a l t s " i n s i t u " . 

I n some cases the y i e l d of fluorinated product obtained v i a decomposition 

of the s i l i c o f l u o r i d e s was higher than that obtained from the 

corresponding borofluorides, but i n general, cases where t h i s process 

gave better y i e l d s than the Schiemann reaction were exceptional. 

The introduction of fluorine into the heterocyclic nucleus using 
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the Schiemann reaction has not been r e s t r i c t e d to pyridine. A l l the 
15 

monofluoroquinolines (except *t-fluoroquinoline) have been i s o l a t e d 
from the decomposition of the corresponding fluoroborates. 

16 

A recent comprehensive review by Suschitzky on the Balz-

Schiemann reaction has been published. 

Fluorination Using Elemental Fluorine. 

The f i r s t attempts to fluorinate organic compounds d i r e c t l y with 

undiluted elemental fluorine were completely unsuccessful. They were 

accompanied by explosions or at l e a s t charring, carbon being the only 

i s o l a t e d product. The f a i l u r e of the reaction was due to the exceedingly 

high heat of reaction which caused thermal decomposition of both the 

s t a r t i n g material and the reaction products. Several modifications, 

such as d i l u t i n g the fluorine with an i n e r t gas, usually nitrogen, or 

dissolving the organic compound i n an i n e r t solvent, or both, were used 

i n an attempt to regulate the reaction. 
17 

I t was not u n t i l the 19lt0's when Bigelow published h i s work on 

the d i r e c t vapour phase fluorination, or as i t i s sometimes c a l l e d , the 

c a t a l y t i c method of fluorination, that a substantial step forward was 

taken i n the attempt to prepare highly fluorinated organic compounds 

using elemental fluorine. Reaction of a hydrocarbon with fluorine 

proceeds v i a a free r a d i c a l chain mechanism; progressive replacement 

of hydrogen and saturation of any multiple bonds or aromatic systems 
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by fluorine occur. These reactions are highly exothermic, since heats 

of formation of C-F and H-F bonds are high (ca. 105 and 135 k.cal/mol. 

respectively) and the bond dissociation energy of fluorine i s only 37 

k.cal/mol., and unless the heat liberated i s rapidly dispersed, com­

bustion and extensive fragmentation of the carbon skeleton occurs. This 

• c a t a l y t i c * method of fluoridation i s carried out by passage of the 

organic vapour to be fluorinated, and fluorine, usually diluted with 

nitrogen, through a reactor f i l l e d with a divided metal packing, 

usually copper gauze or copper coated with another metal, at elevated 
18 

temperatures. The c a t a l y s t probably serves two purposes; f i r s t , 

to moderate the reaction by reducing l o c a l heating, and secondly to 

promote the reaction, the l a t t e r process supposedly to occur by the 

surface of the metal becoming coated with the metallic fluoride which 
19 

acts as a fluorinating agent. Musgrave and Smith used various 

c a t a l y s t s including s i l v e r , gold, n i c k e l , cobalt and s t e e l wool, but 

found l i t t l e v ariation i n the o v e r a l l y i e l d of fluorinated material 

indicating that the principle function of the 'metal c a t a l y s t ' was 

presumably to disperse the heat of reaction. 
20 

Cady, Grosse et a l . investigated the reaction between elemental 

fluorine and several hydrocarbons including benzene and anthracene 

using a s i l v e r coated copper c a t a l y s t : 
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f ^ l f^Ag/Cu 

265° 
58# 

perfluorocyclohexane 

Cu 

300 

21 
Haszeldine and Smith used a gold c a t a l y s t i n the fluorination 

of many substituted benzenes and obtained high y i e l d s of the perfluoro 
22 

derivatives. Haszeldine then attempted to fluorinate several 

nitrogen-heterocyclic compounds under s i m i l a r conditions using a gold 

c a t a l y s t . Fluorination of lutidine gave low y i e l d s of a compound that 

was i d e n t i f i e d as perfluoro-2 , 6-dimethylpiperidine. Haszeldine 

suggested that the low y i e l d of the fluorinated product was due to 

the formation, and subsequent decomposition by fluorination, of the 

hydrofluorides of l u t i d i n e , and of compounds derived from l u t i d i n e by the 

interaction of one or more atoms of fluorine. When s i m i l a r techniques 
23 

were explored using pyridine as s t a r t i n g material very poor y i e l d s 

of the expected product, perfluoropiperidine were obtained, extensive 

F^Ag-Cu 

280° 
0.3% 
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decomposition having taken place. The elimination of the nitrogen 

atom i n pyridine during the reaction was shown to take place by the 

i s o l a t i o n of the straight chain hydrocarbon C^F^^ nitrogen t r i f l u o r i d e • 

Haszeldine again reasoned that the low y i e l d of product was due to the 

formation of a non-volatile hydrofluoride during the c r i t i c a l stages 

of the reaction and suggested that fluorination of heterocyclic compounds 

already containing fluorine would give superior y i e l d s . More recently 
2k 

Banks and Williamson fluorinated 2-fluoropyridine using a Bigelow 
25 o 

••cool-flame" burner at 150-160 , but reported extensive breakdown 

of the pyridine skeleton and the i s o l a t i o n of perfluoropiperidine i n 

l e s s than 0»1# y i e l d . 

^ \ 150-160' 

r\ / 
+ \ F N—N F 

+CF ,.(CFj...CF:N.CF, + ( C F J •N-N-(CF_)0 

t> c. J ? 5 £ 5 <= 

+CF^»N:CF«CFj + CF^«N:CF2 + ( C F ^ - N F 

+(CF 5) 2.NH + CF 5«NF 2 + CgFyGHFg + CSyCHF.CF^ 

+ n C 5 F 1 2 + C 4 F 1 0 + C^Fg + C 2 F 6 + CF^ + HP, 
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26 

A recent review by Tedder on the fluorination of organic compounds 

using elemental fluorine has been published. 

27 

Electrochemical Fluorination. 

Many organic substances dissolve r e a d i l y i n anhydrous hydrogen 

fluoride to give conducting solutions. When a dire c t e l e c t r i c current 

at low voltage (^f-8v.) i s passed through such a solution, or through a 

suspension of an insoluble organic compound made conducting by the 

addition of an e l e c t r o l y t e , so that free fluorine i s not liberated, 

hydrogen i s evolved at the cathode and the organic material i s 

fluorinated by some unknown anodic process. This method of fluorinating 
28 

organic compounds was discovered by Simons i n 19^1. The e l e c t r o ­

chemical method for fluorinating organic compounds has many advantages; 

the apparatus i s r e l a t i v e l y simple to construct (iron or n i c k e l c e l l s 

equipped with a reflux condenser, n i c k e l anodes and n i c k e l or s t e e l 

cathodes), the d i r e c t source of the fluorine introduced i s the 

r e l a t i v e l y cheap anhydrous hydrogen fluoride, rather than the more 

expensive elemental fluorine, and that during t h i s method of fluorination 

many functional groups are retained unlike fluorination with elemental 

fluorine. The main disadvantage i s that the compound to be fluorinated 

must have an appreciable s o l u b i l i t y i n the hydrogen fluoride. Many 

hydrocarbons l i k e benzene ( s o l u b i l i t y of about 2% at 0°) are not very 

soluble, and i t appears that electrochemical fluorination i s not very 
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e f f i c i e n t for carbocyclic systems. 

More success was obtained when t h i s process was applied to the 
28 

fluorination of heterocyclic bases. Simons and h i s co-workers 

electrolysed a solution of pyridine i n anhydrous hydrogen fluoride at 

low voltage (5*5 - 5*6v.) and obtained along with the required product 

perfluoropiperidine, perfluorodipiperidyl and several decomposition 

products (perfluoropentane was the most abundant). 

2370 g. 

HF ; 

5.5-5.6V. 
26 amps 

888 

+ CF,»CF -OF »CF »CF, 
? c. d. 5 t> 

23̂ 6 g. 

and NF 
3 

9̂1 g. 

93 g. 

Using s i m i l a r conditions Simons and h i s co-workers obtained the f u l l y 

fluorinated derivatives of 1-methylpiperidine, 4-propylpyridine, 

^-isopropylpyridine, morpholine and 1-raethylmorpholine. Banks and 
29 

Haszeldine reported an 8% y i e l d of perfluoropiperidine from the 
e l e c t r o l y s i s of pyridine i n hydrogen fluoride (25 amps, 5 , 5v.) , con-

30 

firming that the main product was perfluoropentane. Haszeldine 

indicated that the low y i e l d of perfluoropiperidine was due to the f i s s i o n 

of the carbon-nitrogen bond and that t h i s breakdown could be reduced 
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by replacement of an a-hydrogen atom by a fluorine atom before 

fluorination. Fluorination of 2-fluoropyridine ( r e a d i l y prepared by 

the Schiemann reaction from 2-aminopyridine) resulted i n a 13$ y i e l d 

of perfluoropiperidine. 

Fluorination Using High-Valency Metallic Fluorides. 

Among the general methods by which fluoro-organic compounds may 

be synthesised are d i r e c t reactions of hydrocarbon-type organic 
31 

derivatives with high valency metallic fluorides. The most important 

member of t h i s group of fluorinating agents i s cobalt t r i f l u o r i d e . 

S i l v e r difluoride, manganese t r i f l u o r i d e , cerium tetrafluoride and lead 

tetrafluoride have also been used to some extent. 

I n t h i s process a deep-seated fluorination of the organic structure 

occurs; a l l substituents on the carbon skeleton can be replaced by 

fluorine and any unsaturation removed yielding highly fluorinated 

products and eventually fluorocarbons. The fluorinating action of 

cobalt t r i f l u o r i d e and the subsequent regeneration of the reagent may 

be expressed by the following equations: 
^CH- + 2CoF 5 = ^ C F - + HF + 2CoF 2 

2CoF 2 + F 2 = 2CoF 5; A H ^ o = -52 k.caVmol. 

From the experimentally found value of the heat of reaction of 
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the regeneration equation (52 k.cal/mol*)» i t can be computed that, 
during the reaction of the organic compound with cobalt t r i f l u o r i d e , 
approximately one hal f of the t o t a l heat of reaction of the fluorination 
of the organic compound with elemental fluorine (102 - 104 k.cal/mol.) 
i s l i b e r a t e d . 

^CH- + F 2 = ^ C F - + HF AH 2 q g = -104 k.cal/mol. 

Fluorination with cobalt t r i f l u o r i d e i s thus a roundabout process 

which exposes the organic compound to only half the thermal s t r e s s of 

direc t fluorination thus leading to l e s s breakdown of the organic 

compound and hence higher y i e l d s of fluorinated product. 

The inorganic fluorides exert t h e i r highest valency and i n the 

course of the reaction the fluorides are reduced to a lower valency 

state, for example; 

~C-H + 2MF > -^C-F + HF + 2MF „ 
^ n n-1 

^ C s C r ' + 2MF $> ^CF-FCC" + 2MF „ 
^- n — n-1 

Reactions between cobalt t r i f l u o r i d e (or other high valency metallic 

fluorides) and organic compounds can be carried out with the l a t t e r i n 

either vapour or l i q u i d phase. I n the l i q u i d phase process the reagent 

i s added to a heated, s t i r r e d , sample of the material to be fluorinated, 

which may be dissolved or suspended i n an i n e r t diluent, usually a 
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high-boiling fluorocarbon. I n the vapour phase fluorinations a stream 

of the organic compound i s swept over a bed of the fluoride i n a heated 

tube. These two methods are quite d i s t i n c t and the vapour phase process 

has been the more useful i n the majority of cases. 

Many aromatic compounds have been fluorinated using cobalt t r i f l u o r i d e • 
33 34 35 36 35 37 Benzene, substituted benzenes, ' * naphthalene, anthracene and 
38 

diphenyl have a l l been converted into the saturated a l i c y c l i c 

fluorocarbons with corresponding carbon skeletons, for example: 

i 2 - t 2 ' 2 £ 2 / V /"A 310-320° Y-V ) - F 2 5 9 # 
COF, \ y j\ / K F? I F diphenyl 2 2 F 2

 r 2 

perfluorodicyclohexyl 

Although the cobalt t r i f l u o r i d e method of fluorination has been a 

large success i n the preparation of fluorocarbons from aromatic hydro­

carbons, p a r t i c u l a r l y by the workers at Birmingham ( y i e l d s generally 

i n the region of 50-70$), the success was limited when t h i s method was 

applied to the fluorination of heterocyclic compounds. 

When pyridine, diluted with nitrogen, was passed over a bed of 

cobalt t r i f l u o r i d e maintained a t 350°, perfluoropiperidine was obtained 
23 

i n 0»2# y i e l d . 
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350° , I F 
^ C o F 3 \ N 

F 

The apparatus consisted of a preheater, maintained at 200° - 250°, 

through which a stream of nitrogen was passed to sweep the pyridine 

into a second furnace containing the cobalt t r i f l u o r i d e , the cobalt 

t r i f l u o r i d e having been prepared * i n s i t u ' by passage of fluorine over 
o 22 the difluoride at 350 • I n a previous note Haszeldine reported that 

the fluorination of lutidine using a s l i g h t modification of the 

cobalt t r i f l u o r i d e process to prevent, as f a r as possible, the 

formation of the non-volatile hydrofluoride of l u t i d i n e , yielded 

perfluoro - (2 ,6-dimethylpiperidine) i n approximately 5$ y i e l d . I n a 
39 

l a t e r communication the author throws some doubt onto the structure 

of perfluoro - (2 ,6-dimethylpiperidine) indicating that i t might have 

contained one hydrogen atom that had r e s i s t e d fluorination but no 

further confirmation has been noted. 

Haszeldine and Smith fluorinated quinoline with cobalt t r i f l u o r i d e 

at J4OO0 i s o l a t i n g heptadecafluorodecahydroquinoline i n 2% y i e l d . 

Fluorination of 2-methyl indole ' led, as with pyridine and 

quinoline, to extensive decomposition of the organic material, although 

i t was reported that one frac t i o n of the product contained organic 

material with the nitrogen ri n g system i n t a c t . 
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S i l v e r difluoride has not been used extensively i n the fluorination 

of heterocyclic compounds. One important r e s u l t was the preparation 

of tetrafluoropyrimidine obtained by the action of s i l v e r difluoride 

on 2 , 4 , 6-trifluoropyrimidine i n the presence of perfluorotributylamine 

as solvent. 

There are thus three methods available for converting hydrocarbons 

and heterocyclic compounds into t h e i r saturated fluorinated derivatives: 

d i r e c t vapour phase fluorination, e l e c t r o l y s i s i n anhydrous hydrogen 

fluoride and i n d i r e c t fluorination with certain high valency metal 

fluorides. 

The discovery i n the l a t e 1950's by the workers of Birmingham 

that saturated fluorocarbons could be defluorinated with hot f i n e l y -

divided n i c k e l or i r o n , l e d to the f i r s t general preparative route 
4"5 

to aromatic fluorocarbons. This method of defluorination consists 

i n passing the fluorocarbon i n a stream of nitrogen through a metal 

tube packed with small pieces of iron gauze, heated to a temperature 

i n the range of 400-600°. I n t h i s way Tatlow and h i s co-workers 

prepared perfluorotoluene from perfluoromethylcyclohexane, perfluoro-

naphthalene from perfluorodecalin and perfluorobi p h.enyl from 

perfluorodicyclohexyl. 
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F F 

F F 

390 
Ni tube 
iron gauze 

N2(21./hr.) 

F (1 

Two groups of workers adopted t h i s defluorination procedure to 

defluorinate perfluoropiperidine, giving amongst other breakdown 

products pentafluoropyridine. Tatlow and h i s co-workers obtained 

pentafluoropyridine i n 12$ y i e l d by passing perfluoropiperidine, 

diluted with nitrogen, through n i c k e l tubes at temperatures ranging 
o 29 from *»00-600 . Haszeldine and co-workers improved the y i e l d of 

pentafluoropyridine using iron wire as the defluorinating agent and 

carrying out the defluorination at reduced pressure* 

F-
• 

F 

580-610 
O mm. pressure 

F contact time 1 sec. 

F (26%) 

30 

More recent work has shown that the defluorination of undeca-

fluoropiperidine with mild s t e e l wool y i e l d s a mixture of perfluoro-

2 , 3 » ^ | 5-tetrahydropyridine(I), perfluoro-(l-methylpyrrolidine) ( I I ) , 

a compound assumed to be perfluoro-(N-butylidine-methylamine) ( I I I ) 

and small amounts of pentafluoropyridine ( I V ) . 
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steel wool 
1*00-600° 

1 atm. 
2 hrs. 

F 

( I ) 

F 

I 

CF^ 

( I I ) 

+ CF_(CF_)_CF=N-CF, 

( I I I ) 

F 

(IV) 
6% 

Halogen Fluorides as Fluorinating Agents* 

Halogen fluorides, such as chlorine t r i f l u o r i d e and bromine 

t r i f l u o r i d e have been used as f l u o r i n a t i n g agents although t h e i r 

reactions with organic compounds are very complicated, thereby 

l i m i t i n g t h e i r a p p l i c a b i l i t y . Musgrave and E l l i s have investigated 

the reaction of chlorine t r i f l u o r i d e with benzene and substituted 
46 

benzenes i n carbon tetrachloride solution, i n the presence of a 

variety of catalysts, and have shown that the main reaction i s one of 

subst i t u t i o n , the products from benzene being fluorobenzene and chloro-

benzene. Some halogenated addition compounds were produced i n small 

quantities. 
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The reaction of pyridine with chlorine t r i f l u o r i d e was investigated 
g 

by Beaty. Chlorine t r i f l u o r i d e , d i l u t e d with nitrogen, was passed 

through a solution of pyridine i n carbon tetrachloride at 0 ° . Low 

yields of 2-fluoropyridine (4-1C#) and 3-chloropyridine were obtained. 

Several metallic fluorides were used as catalysts, and i n the presence 

of potassium fluoride a d i f l u o r o b i p y r i d y l was isolated but the structure 

was not confirmed. 

B. REPLACEMENT OF HALOGEN BY FLUORINE. 

Chlorinated organic compounds have been used i n many cases as 

s t a r t i n g materials i n the preparation of fluoroaromatic compounds i n 

both the carbocyclic and heterocyclic series. The methods f o r con­

verting the chloro compounds i n t o t h e i r fluoro derivatives can be 

roughly divided i n t o three main groups. 

1. Halogen exchange using a l k a l i metal fluorides. 

2. Halogen exchange using metallic fluorides other than 

a l k a l i metal fl u o r i d e s . 

3 . Halogen exchange using non-metallic f l u o r i d e s . 

Replacement of Halogen Using A l k a l i Metal Fluorides. 

This type of exchange was f i r s t observed by Gottlieb, who 

converted 1-chloro -2 ,4-dinitrobenzene i n t o the 1-fluoro-compound i n 
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30$ y i e l d , using potassium fluo r i d e i n nitrobenzene at 200 . 

Vorozhtsov and Yakobson succeeded i n converting 1 , 3-dichloro - 4 , 6 -

dinitrobenzene and 1-fluoro -3-chloro- lf , 6-dinitrobenzene to the 

corresponding d i f l u o r i d e s i n 87 and 95$ yields respectively, by heating 

with anhydrous potassium fluo r i d e at 1 7 0 - 1 9 0 ° . 

On the basis of these early results which yielded mono and 

disubstituted fluorobenzenes, Maynard reacted hexachlorobenzene with 

potassium f l u o r i d e at elevated temperatures using N-methylpyrrolidone as 

solvent to give a mixture of chlorofluorobenzenes* 

CI KF 
i<\ J N-methyl- K J 

pyrrolidone Cl^XN^/X;! c i ^ > / 
F 

23$ 

F 

,50 Vorozhtsov and his co-workers reacted hexachlorobenzene with 

anhydrous potassium fluo r i d e i n the absence of solvent at temperatures 

ranging from ^50-500° and obtained high yields of highly fluorinated 

benzenes. 
CI 

CI autoclave 
i f30-500° 

KF 

F 

21% 

F 

20$ 

^ ^ C I G L ^ ^ 
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51 52 

Hexachlorobenzene has recently been reported * to react with 

potassium fluoride i n sulpholane at 2J0-2.k0° f o r 18 h. to give 

mainly chloropentafluorobenzene (25$), dichlorotetrafluorobenzene 

(isomers) (2*$) and trichlorotrifluorobenzene (30$) with traces of 

hexafluorobenzene• Hexafluorobenzene was readily obtained by reacting 

chloropentafluorobenzene with caesium fluoride i n sulpholane at 

1 6 0 - 1 9 0 ° f o r 18 h. F u l l e r 5 1 also prepared, under s i m i l a r conditions, 

perfluoronaphthalene from perchloronaphthalene and perfluorotoluene 

from trifluoromethylpentachlorobenzene• 

CF. 

CI KF 
sulpholane 
195-250° 

18 h. 

CF. 

F 

2C# 

CI CI 

KF 
sulpholane 
230-2^0° 

50-6056 

Chlorinated nitrogen containing aromatic heterocyclic compounds have 

been used as s t a r t i n g materials i n the preparation of the corresponding 

fluoro-compounds. 
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Finger and S t a r r 5 3 found that potassium flu o r i d e i n dimethyl-

formamide was effective f o r replacing suitably activated halogen 

atoms i n the pyridine nucleus. The chlorine atom i n both 2-chloro - 3 -

nitropyridine and 2-chloro - 5-nitropyridine i s activated by the n i t r o 

group, and can easily be replaced by fluorine using potassium f l u o r i d e . 

CI 

KF/D.M.F. 
150 o /6 h. 

r r " ^ V N 0 2 
?6# 

NO 0„N 
KF/D.M.F. 
1 2 0 ° / 8 h. 

2 V ^ 

N 

Reaction of 2 , 6-dichloropyridine with potassium fluoride i n dimethyl 
o 54 55 sulphone at 200-210 yielded the d i f l u o r o derivative. * ^ 

C l ^ N ^ V - l 

KF 
100 hours 
solvent F 

Under sim i l a r conditions, 2 , 3|5 , 6-tetrachloropyridine gave 2,6-

difluoro - 3,5-dichloropyridine 
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CI 

CI CI 

KF 
dime thylsulphone 

2k hrs. 

Finger was unable to replace the (3-chlorine atoms i n the pyridine 

nucleus using potassium f l u o r i d e i n dimethylsulphone. However, 
^6 

Chambers, Hutchinson and Muegrave' succeeded i n replacing a l l the 

chlorine atoms i n pentachloropyridine using potassium f l u o r i d e i n the 

absence of a solvent at elevated temperatures. Pentachloropyridine 

was reacted with anhydrous potassium f l u o r i d e i n an autoclave f o r 17 h. 

at 480° and was converted i n t o pentafluoropyridine i n 70$ o v e r a l l 

y i e l d . Lowering the reaction temperature to *K)00, 3-chlorotetrafluoro-

pyridine, 3,5-dichlorotrifluoropyridine and pentafluoropyridine were 

obtained. 

CI autoclave 

17 h. 

F 

43% 

F 
CI CI-

F 
N: 

13% 

3-C-hlorotetrafluoropyridine and 3,5-di chl o r o t r i f l u o r o p y r i d i n e were 

obtained, i n the r a t i o 1:10, when pentachloropyridine was reacted with 

potassium fluoride i n dry sulpholane at 190-210° f o r 36 hours. 

Treatment of isomeric tetrachloropyridines (a mixture of 3-hydro 
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and 4-hydro-tetrachloropyridines) with potassium fluo r i d e i n sulpholane 

at temperatures ranging from 210-220°, gave an equimolar mixture of 

>-chlorc-2,4,6-trifluoropyridine and 3»5rdichloro-2,6-difluoropyridine. 

CI. 

CI 

CI 
CI CI. 

+ 
Cl c 

H Civ 
KF 

sulpholane 
Cl 210-220° 

Cl CI 

F F ^ ^ N ^ F 

57 

Haszeldine and his co-workers also prepared pentafluoropyridine 

by t r e a t i n g pentachloropyridine with potassium f l u o r i d e under conditions 

similar to those reported by the Durham workers. 

This method of preparing highly fluorinated pyridines has been 

adapted to the preparation of other highly fluorinated heterocyclic 

compounds. Perfluoroquinoline and perfluoroisoquinoline have recently 
eg 

been prepared by reacting the corresponding perchloro compounds with 
59 

potassium fluoride at elevated temperatures. Perfluoropyridazine 

has been prepared i n a sim i l a r way. Cl 
Cl 

KF 

Cl^-N.' 
sealed tube 
340-350 

N 
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Replacement of Halogen by Fluorine Using Metallic Fluorides. 

Hexachlorobenzene has been shown to react with cobalt t r i f l u o r i d e 
60 

to produce a large number of chlorofluorocyclohexanes. The hexa­
chlorobenzene was vapourised and passed over a bed of cobalt t r i f l u o r i d e 

o 

at 350 to give good yields of chlorofluorocyclohexanes of the general 

formula ^fpl^^-n. ^ w ^ e r e n = • chlorofluorocyclohexanes were 

dehalogenated by passing them over a hot i r o n gauze at 430° to give 

good yields of hexafluorobenzene. 

Hexachlorobenzene has also been fluorinated with cerium t e t r a -
61 62 f l u o r i d e and lead t e t r a f l u o r i d e at elevated temperatures, yielding 

nonafluorotrichlorocyclohexane as the main product. 

When highly chlorinated heterocyclic compounds are treated with 

metallic fluorides at lower temperatures no unsaturation i s removed 

and the chlorine atoms are replaced by f l u o r i n e . 
42 

Grundmann and his co-workers studied the reaction between 

tetrachloropyrimidine and s i l v e r f l u o r i d e . 2 , 4 , 6-Trifluoro - 5-chloro-

pyrimidine was obtained v/hen tetrachloropyrimidine was heated with 

s i l v e r fluoride at 9 0 ° f o r 1 hour. Under sim i l a r conditions s i l v e r 

f l u o r i d e converted 2 , 4 , 6-trichloropyrimidine i n t o 2 , 4 , 6 - t r i f l u o r o -

pyrimidine. 
C l s ^ ^ \ N 

c r ^ N - ^ "CI 1 h. 
9 0 ° 
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AgF 
90 v 

N 

S i l v e r f l u o r i d e has been used as the f l u o r i n a t i n g agent i n the 

preparation of 3 » 4~dichloro - 2 t 2 , 5-trifluoropyrrolenine f r o m penta-
6,5 

chloropyrrolenine• 

C l -

Cl-

C l 

C l 

AgF_ 

135" 
2 h. 

Cls 

F« 

C l 

63 

Grundmann synthesized perfluoro - 1-piperideine and perfluoro - 1 -

pyrroline by reacting 2 l 6 , 6-trichloro - 3 , 3 , 4 , 4 , 5 , 5-hexafluoro - 1 -

piperideine and 2 s 5 » 5 - t r i c h l o r o - 3 , 3 » 4 , 4 - t e t r a f l u o r o - 1 = p y r r o l i n e with 

s i l v e r fluoride respectively. The chloro compounds were readily 

prepared from hexafluoroglutarimide and tetrafluorosuccimide respectively 

by treatment with phosphorus pentachloride or phenylphosphorus 

tetrachloride. 

PCl r 

-HC1 

„ O ^ N ^ P O C I ^ 

-P0C1 

C 6 H 5 P C 1 4 

-C 6H 5P0C1 3 
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i 
H 

C 1 ^ \ N ^ C 1 

Silver d i f l u o r i d e has been used to flu o r i n a t e sym. t r i c h l o r o -
64 

t r i a z i n e , sym. t r i f l u o r o t r i a z i n e being obtained i n good y i e l d . Many 
derivatives of sym. t r i f l u o r o t r i a z i n e have also been prepared. 

64 
Grundmann and his co-workers studied the reactions of various metallic 

f l u o r i d e s , - s i l v e r f l u o r i d e , s i l v e r d i f l u o r i d e , mercuric d i f l u o r i d e 

and lead d i f l u o r i d e - on 2,if-bis(pentafluoroethyl)-6-chloro-s-triazine 

and showed that, except i n the case of lead d i f l u o r i d e , good yields of 

the f u l l y fluorinated product were obtained. 

Antimony fluorides have been used as f l u o r i n a t i n g agents i n both 

the aromatic and heteroaromatic systems. 

The reaction between hexachlorobenzene and antimony pentafluoride 
65 

was f i r s t reported by McBee and his co-workers i n 19^7. I t was shown 

that antimony pentafluoride was able to add flu o r i n e to double bonds 

as well as to replace chlorine by f l u o r i n e . 
£ 1 

+ S b F 20-125 

1 ,2-dichloroperfluorocycloalkene 
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66 o Later work revealed that i f the temperature was raised to 150 the 

y i e l d of 1,2-dichloroperfluorocycloalkene was increased to 87%. 
67 

Kober and Grundmann prepared sym. t r i f l u o r o t r i a z i n e i n 91% y i e l d 

by reacting sym. t r i c h l o r o t r i a z i n e with a mixture of antimony t r i f l u o r i d e , 

antimony t r i c h l o r i d e and chlorine. 
CI 

^ N Sbiy SbCl , c i 2 

J 160-180 0 * 
C l ^ N ^ C l 24 h. 

F 

N 

F F 

N 
Triazines of the general formula 

N 

R 1 N " R 2 

where R̂  and R̂  are 

either fluorine or the trifluoromethyl-group, have been prepared by 

exchange of chlorine f o r fluor i n e using antimony fluorides. 
68 

Bigelow and his co-workers treated sym. t r i c h l o r o t r i a z i n e 

with a variety of f l u o r i n a t i n g agents obtaining various amounts of 

subst i t u t i o n . 
SKIT r.i M' NSM 

(71%) 

J} 

CI ̂  CI 

SbF,Cl„ 
3 2 

F ^ \ n . ^ 4 T 

SbF,/SbClc 

(22%) + 

SbF,/SbCl, 5 t> 

N 

CI \N : 

CJ 
N 

(24%) 
F -N-^ F 

(20%) 
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Sym. t r i f l u o r o t r i a z i n e , difluorochlorotriazine and fluorodichloro-

t r i a z i n e have also been obtained from the reaction of sym. t r i c h l o r o -
69 

t r i a z i n e with potassium fluorosulphinate• 

CI 
N N N N N N KSOJ1 

LA 120-150 N N N CI CI CI 

31$ 11$ 3$ 
70 

Perchloro-^-phenylcarbazole has been flu o r i n a t e d with antimony 

pentafluoride and s i l v e r d i f l u o r i d e producing fluorochloro o i l s . No 

def i n i t e structures were given, but i t was indicated that the nitrogen-

carbon bonds were s t i l l i n t a c t . 

Replacement of Halogen by Fluorine Using Non-Metallic Fluorides. 

Hexachlorobenzene has been reacted with various non-metallic 

fluorides to give mixtures of chlorofluorocyclic products. 
"11 

Bigelow and Pearson reported the i s o l a t i o n of hexachlbrotetra-

fluorocyclohexene and hexachlorohexafluorocyclohexane i n small 

quantities by the reaction of hexachlorobenzene, as a suspension i n 

carbon tetrachloride, with elemental f l u o r i n e . 
C 6 C 1 6 + F 2 ^ C 6 C 1 6 F 4 + C 6 C 1 6 F 6 

72 

More recently workers at these laboratories have reacted hexa­

chlorobenzene, as a s l u r r y i n 1,1,2-trichlorotrifluoroethane, with 
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elemental fluorine to give a mixture of saturated chlorofluorocyclo­

hexanes of the general formula ^gCl^F^,^^ where x = 5» 6, 7» De~ 

halogenation of these gave a good y i e l d of a mixture of hexafluoro-

benzene and chlorofluorobenzenes. 

C 6 F 6 

CC1 F.CCIF G 6 C I F 5 
CCC1, + 3F- — — C.Cl F,„_ v ( 90$) > 

6 6 ^ 2 ^ 6 x (12-x) c601^k 

x = mainly 5,6 or 7 C 6 C 1 3 F 3 

73 74 

McBee, Lindgren and L i g e t t * reacted hexachlorobenzene with 

bromine t r i f l u o r i d e at 150° and obtained a mixture of products, the 

average composition corresponding to the molecular formula 
C 6 B r 2 C 1 4 F 6 -

75 
Heyes reacted hexachlorobenzene with various amounts of chlorine 

t r i f l u o r i d e at 240° to give good yields of perchlorofluorocyclohexenes, 

CgClnF,jQ_n where n = 3-6, tetrachlorotetrafluorocyclohexadiene and 

unreacted hexachlorobenzene. 

With a large excess of chlorine t r i f l u o r i d e , hexachlorobenzene 

reacted smoothly to y i e l d chlorofluorocyclohexanes and -cyclohexenes 
of the general formula C-̂ CT F.- where n - 3-7 and C^Gl F.-. where ° o n 12-n o n lu-n 
n = 3-6 respectively. 
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76 

Tullock and his co-workers fluorinated hexachlorobenzene with 

sulphur t e t r a f l u o r i d e at temperatures ranging from 2 0 0 - 4 0 0 ° and obtained 

cyclic CgClgFg and C g C l ^ . 

Sulphur t e t r a f l u o r i d e was used to replace chlorine atoms i n 2 , 4 , 6 -
76 

trichloropyrimidine. Tullock and his co-workers p a r t i a l l y fluorinated 

2 , 4 , 6-trichloropyrimidine by treatment with sulphur t e t r a f l u o r i d e at 225°. 
CI 

SF, 

C I \ N 
225 c r 

N 

N ^ F c i ^ \ N : 

77 

N-Bromoperfluoropiperidine has recently been prepared by the 

reaction of bromine t r i f l u o r i d e on a,a,a'.-trichlorohexafluoropiperidine 

at 50° with subsequent d i s t i l l a t i o n of the reduced mass. 

Hydrogen fluo r i d e has been used to prepare fluororaethyl pyridines 
7 8 

from chloromethylpyridines. McBee prepared 2,6-bis(trifluoromethyl)-

pyridine from 2,6-bis(trichloromethyl)pyridine by tr e a t i n g the chloro 

compound with hydrogen fluo r i d e i n a sealed autoclave fo r 30 h. at 

3 0 0 ° . 
79 

McBee prepared 2 , 4 , 6 - t r i s ( t r i f l u o r o m e t h y l ) - 1 , 3 , 5 = t r i a z i n e by 

reacting the corresponding chloro compound with hydrogen f l u o r i d e i n 

the presence of antimony pentachloride at 240° f o r 24 hours. Several 

lower fluorinated products were also obtained. 
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CC1, CF. 

N HF/SbCl. AX • 
CI CF-C1 

i 2 

C C i ^ - N ^ C C l 3 2 J 0 ^ CF 3^N^^CF 3 CP^ ^ CTj CT^H^ • ^ 

CF2C1 

N" ^ N * 1 CF 2C1" N^ CF2C1 

C. RING SYNTHESIS 

Many fluorinated heterocyclic compounds have been prepared v i a 
80 

r i n g c y c l i z a t i o n methods. Brown prepared a cycl i c imide by reacting 
p e r f l u o r o g l u t a r o d i n i t r i l e with excess l i q u i d ammonia. 

F F
P |2 ! 2 

^ / / G \ F C / C X C F CF_ ĈF_ NH, F-C^ ^CF 0 *2, | 2 
2 | 2 ^ ' 2 , f 2 ' I 

N N HN I NH 

Perfluoropyrazolidine has been prepared^ by the cycl i z a t i o n of malono-

n i t r i l e using elemental fluo r i n e at elevated temperatures. 

,CH, CF„ 
C "C F /ft CF^ 'CF 
III 111 - 2 - _ 
N N 2 5 0 ° > FX-. N-F + + ^ 2 + V 8 + 

CJfV + CF. 2 6 4 
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82 
I n a similar reaction, Bigelow prepared perfluoroazacyclopentane(l) 

which was defluorinated to y i e l d h e p t a f l u o r o - l - p y r r o l i n e ( l l ) • 
C F r C F C F r C F C F r , C F 
I 2 | 2 -p/fl | 2 I 2 | 2 1 2 

C C g 2 • £p> CF„ steel gauze . C F C F 50& 
III HI 7 7 ? * ^ / 2 ' >s2» // ^ 

or I 
A g F 2 F 20$ 

( I ) ( I I ) 

Tetrafluoro-3,4-dihydro-1,2-diazate has been prepared by Emeleus 
O-j, 

and Hurst by the f l u o r i d a t i o n of cyanogen with s i l v e r d i f l u o r i d e . 

C F — 
N i 2 

( C = N ) ? § > I 
c copper tube 1 

AgF2 

90# 

84 
Carpenter and co-workers prepared a number of substituted 

t r i a z o l i n e s . Benzyl azide reacted slowly with perfluoropropene and 

perfluorobutene-2 at 150° to give the t r i a z o l i n e s , 1-benzyl-4,4,5-

trifluoro-5-trifluoromethyl-1 t2,3=triazoline and 1-benzyl=4,5-difluoro-

4,5-bistrifluoromethyl-1,2,3-triazoline respectively. 

CF J} f -
;JV + PhCHJI, ?• ' I I 85# 
J 6 ? 3 PhCH_N J)H 
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CF^CFsCFCFj + P h C H ^ 

85 

P h C H 2 V N . ^ : 

The workers at Durham have recently prepared 5 | 6 , 7 , 8 -

tetrafluoroquinoline by the Skraup reaction from 2 , 3 i ^ f 5-tetrafluoro-

aniline and glyc e r o l . 

F, 

glycerol 
A s 2 0 5 

FeSO^ 
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PREPARATION OF HIGHLY CHLORINATED NITROGEN-HETEROCYCLIC COMPOUNDS. 

I t has been shown that so f a r the only general p r a c t i c a l route 

to highly fluorinated aromatic nitrogen-heterocyclic compounds i s 

by the halogen-exchange reaction between highly-chlorinated heterocycles 

and metal fluorides. 

The success of t h i s method of preparing fluorinated heterocycles 

depends ultimately on the a v a i l a b i l i t y of the chlorinated heterocyclic 

compounds. Although the halogenation of nitrogen-heterocyclic 

compounds has been the subject of many workers, i t has only recently 

become possible, except i n one or two cases, to obtain the perchloro-

heterocycles i n substantial amounts. 

Chlorination of Compounds Containing a Five Membered Nitrogen Ring System. 

P y r r o l e i being very susceptible to e l e c t r o p h i l i c attack, undergoes 

chlorination under mild conditions with subsequent i s o l a t i o n of high 

yields of chloropyrroles. 2-Chloro-, 2 , 5-dichloro-, 2 , 3 » 5 - t r i c h l o r o -

pyrrole have a l l been prepared by reacting pyrrole with sulphuryl 

chloride i n ether at 0 ° . ^ Mazzara^ reacted one mole of pyrrole, 

dissolved i n ether, with four moles of sulphuryl chloride at 0 ° and 

obtained a 60% y i e l d of 2 , 3 » ^ i 5-tetrachloropyrrole. 

When dichloromaleic imide was heated with phosphorus pentachloride, 
88 6^ 

2 , 2 ' , 3 f ^ i 5-pentachloropyrroleniri e was i s o l a t e d i n good y i e l d . ' 
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cci—CO c c i — 

cci—co' 
NH + PCI 

CCI 

c c i — c e i l 
2 

N + 2POCl 5 + HC1 

89 

Highly chlorinated indoles have recently been prepared. The reaction, 

of N-acetylindoline-2-sodium sulphonate with chlorine at 5° produces 

a trichloroindole of unknown structure. Treatment of t h i s t r i -

chloroindole, dissolved i n carbon tetrachloride, with chlorine at room 

temperature resulted i n a 65$ y i e l d of pentachloroindole, again the 

position of the chlorine atoms were not fixed. 1,x,x,x,x,x-Hexa-

chloroindole was obtained i n 73# y i e l d when the reaction was car r i e d 

out i n the presence of a c r y s t a l of iodine. Heptachloroindole was 

obtained i n 60$ y i e l d when the trichloroindole was heated with 

phosphorus pentachloride at 290° for approximately s i x hours. 

PCI, 

290 
6 h. 

autoclave 

Carbazole has been chlorinated by many of the well-known 

chlorinating agents. 3~Chlorocarbazole. and 3 :6-dichlorocarbazole 

are obtaining i n good y i e l d when carbazole i s reacted with sulphuryl 

c h l o r i d e . ^ 0 
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C l 
c i 

N A H 

1 , 3 » 6-trichlorocarbazole has been prepared by passing chlorine 

through a solution of carbazole i n g l a c i a l acetic acid for h hours. 

I f the reaction time i s prolonged 1 ,3 f 6,8,x,x,-hexachlorocarbazole 

i s obtained. 

C l C l C l 

H 01 
CH_C00H prolonged N 

I 
H 

C l 

\ N 
C l C l C l C l H 

When chlorine i s passed through a solution of carbazole i n 

carbon tetrachloride, 1 , 3 , 6 , 8-tetrachlorocarbazole i s obtained i n good 

y i e l d . ^ Zal\cindard and Konarenko^ obtained 1 , 2 , 3 >

l * - » 5 i 6 , 7 , 8 -

octachlorocarbazole i n low y i e l d , when chlorine was passed through 

a solution of 1 , 3 , 6 , 8-tetrachlorocarbazole, dissolved i n carbon 

tetrachloride, to which a c r y s t a l of iodine had been added. 



- 38 -

Weith has also prepared octachlorocarbazole by reacting 1 ,3»6 ,8,x,x-

hexachlorocarbazole with antimony pentachloride at 1 0 0 ° . 

Chlorination of Compounds Containing a Six Membered Nitrogen Ring System. 

Chlorination of Pyridine. 

The introduction of chlorine into the pyridine nucleus has 

been studied i n considerable d e t a i l by a large number of workers. 

A review of the l i t e r a t u r e has shown that although there are a 

considerable number of routes to lower chlorinated pyridines, i t i s 

only i n recent publications that methods for preparing highly chlorinated 

pyridines i n substantial amounts have been noted. 

Preparation of l i g h t l y chlorinated pyridines. 

The direct chlorination of pyridine using elemental chlorine has 
94.95 

been extensively studied by Wibaut and h i s co-workers. Pyridine 

mixed with chlorine and diluted with nitrogen was passed through a 

tube packed with pumice at elevated temperatures. Y/ibaut showed 

that the position of substitution varied with temperature. To effect 

3 - or 3 » 5-substitution the reaction i s carried out at 2 0 0 ° . At 270° 

the main products were 2-chloro- and 2 , 6-dichloropyridines: 

270 

/ CI N i c r \ N ^ c i c i N N 

J> gas N phase n ^ c i c i c i ^ - ^ c i 

200 
N 
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The presence of 1 - ( 2-pyridyl)pyridinium chloride was indicated 

by the i s o l a t i o n of 2-aminopyridine from the reaction products upon 

hydrolysis. I f the reaction temperature was raised to ^tOO0 much 

carbonization took place, with formation of 2 , 6-dichloropyridine as 

the main product. 2-Chloropyridine was also prepared when chlorine 
o 96 

was reacted with pyridine i n carbon tetrachloride at ^00 i n the 

vapour st a t e . 
97 i r 

S e l l and Dootson obtained 2 , 3»^jO-tetrachloropyridine as the 

main product when they passed chlorine through a solution of pyridine 

saturated with hydrogen chloride for one week. 

CI. 

CI 
r ^ ^ r c i 

HCKaq.) C 1 > \ N ^ C 1 

7 days 0 1 ^ C 1 

,95 

CI CI. 

N 

-CI 

C I C l 

trace 

Wibaut and N i c o l i obtained s i m i l a r r e s u l t s when they passed chlorine 

through fused pyridine hydrochloride at 1 7 0 ° . 

HCl (fused) 
C I . C l / < ^ C l Cl, 

170 

C l C l 

C l ^ . N ^ C l 

small amounts 
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Low y i e l d s of 2-chloro- and 4-chloropyridine were obtained when 
98 pyridine N-oxide was chlorinated with .gaseous chlorine i n chloroform. 

99 

Bobranski and co-workers reported that pyridine 1-oxide and sulphuryl 

chloride gave a 65$ y i e l d of a mixture of 2-chloro- and *t-chloro-

pyridines with a small amount of pentachloropyridine. 

0 

SO C I 
HCl g g » 

sealed tube 
2 h., 120° 

57% 

100 

Thionyl chloride has also been used to chlorinate pyridine. 

The formation of 1-( lf-pyridyl)pyridinium chloride hydrochloride from 

the reaction between pyridine and thionyl chloride suggested the 

intermediate formation of 't-chloropyridine. 

S0C1 ,100°(1) 
3 h. 

...fjx^ room temp. (2) 
3 days 

CI 

-N .s4 

N' 

N-

CI 

• HC1 
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Chlorination of pyridine with aqueous HCl/KClO^ mixture yielded 

a small quantity of chlorinated products but i f the chlorination was 

carried out with dry HC1 and KCIO^ a mixture of trichloropyridines 

were obtained. 

^-Nitropyridine N-oxide has been used as the s t a r t i n g material i n 

the preparation of chloropyridines. VNitropyridine N-oxide can 
102 103 

readily be prepared by n i t r a t i o n of pyridine N-oxide. * When 

refluxed with aqueous hydrogen chloride, the n i t r o group i s replaced 

to give an 80$ y i e l d of 4-chloropyridine N-oxide The y i e l d i s 

s l i g h t l y increased i f a c e t y l chloride i s used to bring about the 
, 105 exchange. 

NO, 

1) cone. aq.HCl. r e f l u x ̂  
2) CH C0C1, warm 

1 
0 

2,*f-Dichloropyridine, with small amounts of 2,3i^»5~tetrachloropyridine 

were obtained when ^f-nitropyridine N-oxide was heated with sulphuryl 
... . . 106,10? chloride. * 

-N 

s o 2 c i 2 

C l 

Cl 

0 
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The reaction of 4-nitropyridine N-oxide with phosphorus oxychloride at 

7 0 ° gave a mixture of 4-chloropyridine N-oxide and 2 , 4-dichloro-
104 

pyridine. 

S e l l and Dootson^ 0" obtained a mixture of d i - , t r i - , t e t r a - , and 

pentachloropyridines when they chlorinated pyridine with phosphorus 

pentachloride i n sealed tubes at 2 1 0 - 2 2 0 ° . 

PCI,. 

sealed tube 
2 1 0 - 2 2 0 ° 
15-20 h. 

CI 

N-
(+ two isomers) 

CI 

CI 

+ • 

C l ^ N 

.01 

^Cl CI ^N-^ CI 

109 
S e l l and Dootson had previously, a f t e r e a r l i e r attempts by 

110 

Behrmann and Hofmann, is o l a t e d pentachloropyridine by treating 

c i t r a z i n i c acid with a mixture of phosphorus pentachloride and 

phosphorus oxychloride. 
Highly Chlorinated Pyridines 

108 
The method used by S e l l and Dootson to obtain chlorinated 

111,56 pyridines was reinvestigated by Chambers, Hutchinson and Musgrave. 
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Pyridine and excess phosphorus pentachloride where heated to 2 1 0 - 2 2 0 ° 

for 72 h. i n a sealed autoclave to produce mainly t r i c h l o r o and tetrachloro-

pyridines, with pentachloropyridine formed i n 1«5# y i e l d . The y i e l d of 

pentachloropyridine was increased to 15$ when the reaction was carried 

out at 28O-285 0 . 

sealed autoclave 
280 - 2 8 5 ° 

PCl^, 50 h. C l ^ N 
+ C-HCl.N + C_H_C1_N 

15% 18# 3»5# 

Rechlorination of mixtures of d i - and trichloropyridines led to good 

y i e l d s of pentachloropyridine and mixed tetrachloropyridines. Thus, by 

chlorinating pyridine with phosphorus pentachloride reasonable y i e l d s 

of pentachloropyridine can be obtained. 
57 

Another group of workers have recently reported the reaction 

between pyridine and phosphorus pentachloride. Haszeldine and co-workers, 

using a large excess of phosphorus pentachloride obtained pentachloro­

pyridine i n 96$ y i e l d . 

The flow method for producing chloropyridines used by Wibaut and 
qif 95 112 N i c o l a i 1 has been investigated further i n recent months. 

The mixed vapours of pyridine, or 2-chloropyridine, and chlorine were 

passed through a s t e e l tube containing coconut carbon at 300-^50° 
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producing pentachloropyridine and lower chlorinated products i n good 

ov e r a l l y i e l d . 

I n the l a s t few years reports on several i n d i r e c t methods leading 

to the preparation of pentachloropyridine have been published. 

Pentachloropyridine has been synthesised from hexachlorocyclo-
113 

pentenone. Reaction of the hexachlorocyclopent-1-ene-3-one with 

l i q u i d ammonia i n ether solution gave the amide of pentachloro-penta-2,*f-

dienoic acid. Further chlorination of the amide i n benzene solution, 

followed by heating to eliminate hydrogen chloride and phosphorus oxy-

chloride, produced pentachloropyridine i n 58$ o v e r a l l y i e l d . Perchloro-
2-pyridone was produced as a by-product. 

CI 

C1C CC1 

CI 
CI 

CC1 

C=0 -HCl 

-HCl 

CI 

-P0C1, 
CI 3 

C1C-C1 .C-OPCl^ C 1 \ N ^ 0 P C 1 . 
HN 

CI 

c i ^ ^ c i _ CISN^O 
H 0PC1. 

The gas-phase chlorination of carbamoyl chlorides has led to the 
11*f 

preparation of highly chlorinated heterocyclic compounds. Piperidine-

N-carbonyl chloride was prechlorinated with chlorine using kieselguhr 
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impregnated with copper I I chloride as ca t a l y s t at 50-150°. The pre-

chlorinated compound was then further chlorinated with chlorine at higher 

temperatures to give pentachloropyridine* 

Highly chlorinated pyridines have also been prepared from methyl-

pyridines. Chlorination of 3 » 5-dichloro - 2-trichloromethylpyridine with 

chlorine for 23 hours at 190-210°, while i r r a d i a t e d with u l t r a - v i o l e t 
115 

l i g h t , produced 2 , 3 » 5 | 6-tetrachloropyridine. Using a s i m i l a r 

procedure, pentachloropyridine and 2 , 3 l^i5-tetrachloropyridine have been 

obtained from p a r t i a l l y chlorinated pyridines, 

Pentachloropyridine was prepared when 2-methylpyridine was 

chlorinated with chlorine by passing the mixed vapours, diluted with 

nitrogen or carbon tetrachloride, over coconut carbon at elevated 
112 1l6 temperatures. Holtschmidt and Zechler obtained tetrachloro- and 

pentachloropyridines from the chlorination of N-methylpiperidine. 

Chlorination of Methyl Pyridines. 

The e a r l i e s t observations into the chlorination of the picolines 
117 118 

were carried out by S e l l . • 2-Methylpyridine hydrochloride was 

f i r s t prepared by saturating 2-methylpyridine with hydrogen chloride. 

The hydrochloride was then chlorinated at 105-100° by passing a stream 

of chlorine through the hydrochloride. A 52% y i e l d of 3 » ^ » 5-trichloro-

2-trichloromethylpyridine was obtained. 
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HC1 

52% 
CCl. 

Following these e a r l i e r investigations by S e l l , the chlorination 
78 

of picolines has been further studied by McBee and co-workers. 

McBee showed that substitution i n the side-chain took place f i r s t , 

but i f s u f f i c i e n t l y vigorous conditions were employed, chlorine was 

introduced into the nucleus. McBee chlorinated mono-, d i - and t r i -

methyl pyridines using elemental chlorine at elevated temperature i n 

the presence of water, acting as solvent to dissolve any hydrochlorides 

that were formed. 

H20, u.v. 

-H^ CH. C 1 2 
rai s e d 
temperature 

CCl, 

C I 

N- XCC1 3 \ N / C C 1 3 

Gl 

" N ^ C C l . 
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CH CCI 1C1 n c i 
50-150 
H.O H/̂ CCI CH CCI 

3 U.V. C l 
33-9% 

C l . 

. A H_0 
C H ^ N / ^ C H 3 ^ 

50-180c 

CCI, - N ^ ^ C C l . 

C l 

C C l l ^ N ^ ^ C C l 
3 3 

CCI CH A: C l 
H_0 CCI CCI CH N CH raised temp 

U.V. 
Several highly chlorinated 2-methylpyridines have been prepared 

119 by chlorinating p a r t i a l l y chlorinated 2-methylpyridines. 

C l 
C l C l C l ^ 

Cl„ 

P C l 5 / A l C l 3 A e C l 3 

3 200° 

C l C l 

'3 ^-N-^CCl^ C l ^ N ^ c c ^ 
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C]> c i C l . 

CC1, 150 CC1 

Perchloro-a-picoline has also been obtained by photochemical 
120 

chlorination of a-picoline. 

I f s u f f i c i e n t l y vigorous conditions are employed chloropyridines 

are obtained from the chlorination of picolines, the chlorinated side 
112 115 ' 

chain being replaced by chlorine. ' 

C l 
C l . 

u.v. 
190 - 210 

C l C l 

Chlorinated B i p y r i d y l s . 

A review of the. l i t e r a t u r e has shown that only one chlorinated 
121 

bipyridyl has been prepared. 5 » 5 ,-dichloro - 2 , 2 '-bipyridyl was 

prepared i n 8$ y i e l d by the Ullmann reaction from 2-bromo-5-chloro-

pyridine. 
Chlorination of Quinolines. 

L i t t l e work on the dire c t chlorination of quinoline and isoquinoline 
122 

has been reported i n the l i t e r a t u r e . Gordon and Pearson chlorinated 
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the aluminium chloride complexes of isoquinoline and quinoline to give 

i n good y i e l d , halogen derivatives substituted i n the benzenoid ring. 

5-Chloro75 f 8-dichloro-, and 5 i 7 » 8-trichloroquinolines were obtained when 

chlorine was passed through the aluminium chloride complexes of quinoline 

and isoquinoline 

A1C1. 
N CI 

75 

1*f h. 

31# 

A1C1 

90-130 
A1C1 

A1C1 

8?# 

Complete chlorination of the benzenoid ring was achieved i n the 

case of quinoline giving 5 , 6 , 7 , 8-tetrachloroquinoline. 

A1C1_ 
4——2-4 
^ 5 0 ° 

C 1 2 
k h. 
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58 Workers at Durham have developed Gordon and Pearson 1 s method, 
and by prolonging the reaction time managed to substitute chlorine into 
the heterocyclic r i n g . Thus, the complex formed between quinoline and 
aluminium chloride was chlorinated at 110-190° over *t8 hours. The 
product was decomposed with i c e to y i e l d a mixture of t e t r a - and 
pentachloroquinoline. Further chlorination of t h i s mixture with 
phosphorus pentachloride at 315-330° yielded heptachloroquinoline i n 
?8# y i e l d . 

CI CI CI 
CI CI CI CI A1C1 PCI 

CI auto CI N N C I clave 
110-190 315-330 

3 h. 

Si m i l a r l y the chlorination of the aluminium chloride complex of 

isoquinoline was developed to y i e l d hexachloroisoquinoline which on 

further chlorination with phosphorus pentachloride, gave a good y i e l d 

of heptachloroisoquinoline• 

CI CI CI 
CI 

PCI AlGl CI 
auto N CI N 

V 
C I clave 

150 
270 50 h. 

87# 
68# 
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Heptachloroquinoline has also been prepared by the chlorination of 

1 ,2 ,3 ,4 -tetrahydroquinoline N-carbonyl chloride at elevated temperatures. 1 1^ 

Chlorinated Diazines. 

The three isomeric perchlorodiazines have a l l been prepared. 

Pyrazine. 

Lightly chlorinated pyrazines have been obtained by the reaction of 
123-127 

chlorine with the heterocycle at elevated temperatures u t i l i z i n g 
95 

an extension of the flow method used by Wibaut and N i c o l i y to obtain 

l i g h t l y chlorinated pyridines. Thus chlorine and pyrazine, preheated 

to 200° and mixed with water vapour, were passed through a metal tube 

maintained at 400-420° to give mostly dichloropyrazines with some 

2-chloropyrazine• 

ci. 
400-420° 
contact time 20 sec. 

• CI 

CI 

N CI 

2-Chloropyrazine, prepared by replacing the hydroxy group i n 

2-hydroxypyrazine with chlorine using phosphorus oxychloride, has been 

further chlorinated with phosphorus pentachloride to give tetrachloro-
A • ^ 128 pyrazine i n good y i e l d . 
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N OH 

N 

POC1 
2-» 

trace 
E2S0k 

N 

N" 

•Gl CI 
PCI, 

IT CI 

° C l ^ N - ^ C l 300 
quantitative 

116 Holtschmidt and Zechar obtained tetrachloropyrazine from the 

chlorination of N tN*-dimethylpiperazine or K,N 4-bis(hydroxyethyl)-

piperazine 
CH. 

i 
CI, 

C I 

N' 
I 
CH 

20-300 

'CI 

CI ^-N-^ CI 

Pyrimidine. 

Chlorinated pyrimidines have been readily prepared from the 

chlorination of barbituric acid and hence no attempt has been made to 

prepare highly chlorinated pyrimidines from the d i r e c t chlorination of 

pyrimidine. 

The reaction between barbituric acid and phosphorus oxychloride, 

carr i e d out i n sealed tubes at elevated temperatures, was developed to 
129 130 give 2,^,6-trichloropyrimidine. Baddiley and Topham improved the 

y i e l d of 2,4,6-trichloropyrimidine by carrying the reaction out i n the 

presence of dimethylaniline. 
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OH CI 

N 

* 4 

P0C1 N 

HCJ^N-^OH reflu x 5 rains, 
dime th y l a n i l i n e 

C l ' ^ - N ^ C l 

Two groups of workers ' prepared tetrachloropyrimidine from 
132 

barb i t u r i c acid. Childress and McKee obtained a 37$ y i e l d of 

tetrachloropyrimidine on refluxing barbituric acid with a mixture of 

phosphorus pentachloride and phosphorus oxychloride. 

Pyridazine 

Pyridazine has not been chlorinated d i r e c t l y , but several chlbro-

pyridazines have been prepared by exchange of hydroxyl groups for 

chlorine i n substituted pyridazines. 

Gabriel 1 obtained 3-chloropyridazine from the reaction of phosphorus 
134 

oxychloride with 3-hydroxypyridazine. Hizzoni and Spoerri prepared 

3 , 6-pyridazine-diol from maleic anhydride and hydrazine hydrochloride 

and replaced the hydroxy groups using phosphorus oxychloride. 

C I PC1../P0C1 N 37% r e f l u x overnight 
C l ^ N - " " ^ C I HO N OH 

OH PI 
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H C 
II 

H C 

\ 
0 + NA'2mi r & 

3 h. / 

OH 

-H 
N-H' 

OH 
POCI 3 

r e f l u x 
3 h. • 

CI 

8\% 

CI 

By similar routes 3 » 4 » 6-trichloropyridazine 1^^' 1^^ and 3,4,5,6-
136 

tetrachloropyridazine have been prepared from monochloromaleic an­

hydride and dichloromaleic anhydride respectively. 

Cl-C 

0 

A 

H-C^ C/ overnight H-C^ y N-H r e ~ 
f l u x 

CI 

I 

CI 

C l - C ^ \ NH-HO 
Cl-C / EtOH 

^ C 

0 II 

C l - C ^ N-H 
Cl-C /N-H 

P0C1 

CI 
ex. 

c r 

•N 
I 
N 
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3 , ^ , 5-Trichloropyridazine has also been prepared,''^ 

HO 
Cl-C 

II 
Cl-Gs, COOH 

.138 

0 1 

OH 

N MCI, 
I = 
N 

N 

CI 
C I 

Recent workers 1*" threw some doubt on the purity of the chloro-

pyridazines obtained by these methods and outlined several processes 

by which the chloropyridazines could be pu r i f i e d . 
59 

Chambers, MacBride and Musgrave prepared tetrachloropyridazine 

i n 5°% y i e l d from the chlorination of 3»o-dichloropyridazine using 

phosphorus pentachloride 

PCl r 

CI 

autoclave 
280-2900 CI 

c i 
0 1 v ^ 5 ^ -

18 h. CI CI 

small amounts 

Chlorinated T r i a z i n e s . 

The chlorination of 1 , 3 » 5-triazine has been developed to give 
139 

the perchloroheterocycle, 2 , 4 , 6-trichloro-1 , 3 , 5-triazine. A mixture 

of s - t r i a z i n e and carbon tetrachloride-chlorine solution was heated 

i n a sealed tube at 200° to give a 25$ y i e l d of perchloro-s-triazine 

with small amounts of dic h l o r o - s - t r i a z i n e . 



- % -
CI Gl 

7 h . C 3 > N / ^ C 1 \ CI 

116 

Holtschmidt and Zecher obtained t r i c h l o r o - s - t r i a z i n e from the u l t r a ­

v i o l e t chlorination a t elevated temperatures of hexamethylenetetramine. 
79 

Several polychloromethy1-s-triazines have been prepared. McBee 

obtained 2, iJ - , 6-tris(trichloromethyl ) - 1 , 3 t 5-triazine from the 

polymerisation of t r i c h l o r o a c e t o n i t r i l e i n the presence of anhydrous 

hydrogen chloride. 
c c i 5 

^ C 1 3 C N autoclave > j j J * * 
room temp. CC± N--lK X^CC1 
100 h. 3 3 

The t r i c h l o r o a c e t o n i t r i l e was obtained by the.following sequence of 

reactions. 

CC1,C00H + EtOH H°> . » CC1 COOEt + H„0 83# 
3 reflux 6 h. 3 2 

CCl^COOEt + NH^ e t h 6 r ) CC15C0NH2 + EtOH 91# 

CC1_C0NH. + P.0„ > CC1 CN 
3 2 2 o 3 

67 

Kober and Grundmann prepared 2 , 4-dichloro - 6-trichloromethyl-s-

t r i a z i n e from the vapour phase chlorination of either 2,'t-dichloro-6-
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t h y l - s - t r i a z i n e or 2,4-dichloro - 6-dichloromethyl-s-triazine. 

GC1 C H C 1 2 

C l ^ N ^ C l C l ' \ f f ^ C l 170-190°C C l ^ N / ^ b 
U.V. 
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DISCUSSION OF EXPERIMENTAL. PART 1. 

The three isomeric octafluoro - 2 , 2 ' - j -3>3 ,-» and -4 A'-bipyridyls 

have "been prepared together with several chlorofluorobipyridyls. The 

route to these polyfluorobipyridyls i s represented schematically i n 

DIAGRAM 1. 

The synthesis of octafluoro -3»3*-(V), octafluoro - 4 A'-(Vl), 

3-chloroheptafluoro-4j4'-(VIl)» and 3»5-dichlorohexafluoro«4,4'=(VTII )= 

bi p y r i d y l depends ultimately on:-

(1) the a v a i l a b i l i t y of pentachloropyridine(l), and 

(2) the halogen-exchange reaction between chlorine and 

fluorine i n pentachloropyridine to give pentafluoro-

p y r i d i n e ( l l ) , 3 - c h l o r o t e t r a f l u o r o p y r i d i n e ( l I l ) , and 

3 , 5-dichlorotrifluoropyridine(lV). 

The synthesis of octafluoro - 2 , 2*-(lX), 3-chloroheptafluoro -2 ,2'-(X), 

3 » 3 ,-dichlorohexafluoro - 2 , 2 ,-(Xl), and 3 , 3 ' , 5 » 5'-tetrachlorotetrafluoro-

2>2 ,-(XII) bip y r i d y l s has been accomplished by the halogen-exchange 

reaction between chlorine and fluorine i n octa c h l o r o - 2 , 2 f - b i p y r i d y l ( X I I l ) 

using potassium fluoride. 

The only previously prepared fluorinated bipyridyls were the mono-

and difluoro-bipyridyls obtained from the reaction of potassium amide 

on 3-fluoropyridine i n l i q u i d ammonia. 1^ 
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KNH, 
Liq.NH, 
7h. -
-33° 

\ 

Chlorination of Pyridine. 

Although several routes to highly chlorinated pyridines have 

recently been reported i n the literature,^2 - 1 1 6 ^ ^ e time t h i s 

research programme was i n i t i a t e d none had been reported that gave 

pentachloropyridine i n substantial y i e l d s . 

Pentachloropyridine was f i r s t prepared by S e l l and Dootson 

by reacting pyridine with phosphorus pentachloride i n sealed tubes at 
o 56 210-220 . Chambers* Hutchinson and Musgrave developed t h i s reaction 

obtaining mixtures of t r i - , t e t r a - , and pentachloropyridines, the y i e l d 

of pentachloropyridine being approximately 15$. 

PC1 C 

2—* <-cH0Cl,N + C5HC0^N + 280-285 5 2 3 
•w^ 50 h. 

C l 
-IK 
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The lower chlorinated pyridines could then "be rechlorinated 

with phosphorus pentachloride to give mainly t e t r a - and pentachloro-

pyridine. Thus, although t h i s route was tedious» pentachloropyridine 

could be obtained i n approximately 5Q# o v e r a l l y i e l d . 

As the demand for pentafluoropyridine and the chlorofluoropyridines 

increased i t soon became apparent that a better route to pentachloro­

pyridine had to be found. The main disadvantage of the two stage reaction 
56 

used by the Durham workers was the time spent i n preparing the 

pentachloropyridine« usually up to a period of fourteen days being 

required to complete the two stage synthesis. 

On the basis of the r e s u l t s obtained by S e l l and Sootson and 

the workers at these laboratories a detailed study of the reaction 

between pyridine and phosphorus pentachloride was c a r r i e d out eventually 

leading to preparation of pentachloropyridine i n 70-80/2 y i e l d i n a one 

step process. The r e s u l t s are recorded i n TABLE 1. 

Procedure. 

The autoclave^ charged with the reactants, was heated for the 

required time and then allowed to cool. The hydrogen chloride, formed 

during the reaction, was allowed to escape before the autoclave was 

opened. The contents of the autoclave were hydrolysed with i c e and 

water. The chloropyridines, obtained by steam d i s t i l l a t i o n , were 

extracted into methylene dichloride and the solvent removed by 

d i s t i l l a t i o n , ( i n l a t t e r reactions, when the product consisted mainly 
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of t e t r a - and pentachloropyridine, the chloropyridines were f i l t e r e d 

off, dispensing with the use of the organic solvent). The chloro­

pyridines were dried by azeotropic d i s t i l l a t i o n with benzene and then 

d i s t i l l e d through a 20 i n . column packed with Dixon gauze into two 

fr a c t i o n s : -

( i ) d i - , t r i - and tetrachloropyridines, which were then r e -
chlorinated with phosphorus pentachloride. 

( i i ) pentachloropyridine, which was used without further 
p u r i f i c a t i o n to prepare the fluoropyridines. 

Reaction 1 i s t y p i c a l of the e a r l i e r reactions carried out by 
56 

Hutchinson except that the autoclave had been f i t t e d with a 

st a i n l e s s s t e e l l i n e r to prevent, as f a r as possible, corrosion of the 

inner faces of the autoclave by the phosphorus chlorides and 

hydrogen chloride. The autoclave was heated e l e c t r i c a l l y by means of 

heating elements around the outside of the v e s s e l . The temperature 

was controlled by means of a variable transformer which was set at 

a precalibrated value so that the temperature of the inside of the 

autoclave, measured by means of a thermometer i n a central thermometer 

well i n the autoclave head, was attained slowly and then maintained 

at the preset value. As with the reactions carried out by Hutchinson, 

the main products of the reaction were the isomeric tetrachloro-

pyridines. 



- 6k -

When a thicker l i n e r was f i t t e d to the autoclave (reactions 2,3) 

a considerable drop i n the o v e r a l l y i e l d of chlorinated pyridines was 

obtained although the percentage of pentachloropyridine i n the product 

showed a sli g h t increase. At t h i s time i t was reported that when 

a similar reaction was carried out i n which the autoclave had been 

f i t t e d with a mild s t e e l l i n e r (introduced because of the r a p i d i t y with 

which the s t a i n l e s s s t e e l l i n e r s were being corroded) a considerable 

drop i n the y i e l d of chloropyridines wag noticed, pentachloropyridine 

being present i n only trace amounts. This j u s t i f i a b l y l e d to the 

b e l i e f that a component (or components) present i n the s t a i n l e s s s t e e l 

i n trace amounts was 'catalysing 1 the reaction. Several reactions were 

carried out i n which a t r a n s i t i o n metal or metal chloride was added 

to the reactants i n an attempt to improve the o v e r a l l y i e l d of 

pentachloropyridine. These reactions are t y p i f i e d by reactions 5*6,7 

and 8 i n which f e r r i c chloride, f i n e l y divided s t a i n l e s s s t e e l turnings, 

molybdenum and copper(II) chloride were added i n c a t a l y t i c amounts. 

There was no noticeable change i n the y i e l d or composition of the 

chloropyridines obtained. I t was o r i g i n a l l y thought that the i n c l u s i o n 

of copper(II)chloride had had a b e n e f i c i a l effect on the reaction 

but a control reaction under the same conditions (reaction 9 ) , without 

the 'catalyst* being present, produced the same r e s u l t . 

To reduce the number of reactions that were necessary to prepare 

a substantial amount of pentachloropyridine a 5 - l i t r e autoclave, f i t t e d 
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with a n i c k e l l i n e r , was constructed. This autoclave was heated 

e l e c t r i c a l l y but the temperature of the reaction was controlled i n a 

different way to that previously described. I n t h i s heating system 

the heating elements were v i r t u a l l y i n contact with the wall of the 

autoclave and the e l e c t r i c power was controlled thermostatically by a 

thermocouple i n the centre of the autoclave, such that f u l l power was 

maintained with the elements glowing red-hot, u n t i l the centre of the 

reaction vessel attained the pre-set temperature (usually 300°) . With 

t h i s system of heating the equilibrium temperature was reached very 

rapidly (approx. 2 h. ) . 

Typical of the reactions c a r r i e d out i n the large autoclave were 

Reactions 11, 12 and 13« A considerable improvement i n the y i e l d of 

chloropyridines was obtained and i n the case of Reaction 13 a 75$ y i e l d 

of pentachloropyridine and 5$ y i e l d of the tetrachloropyridines were 

obtained. 

Conclusions. 

E f f e c t of Time. 

The majority of the chlorination reactions were ca r r i e d out over 

a period of 2k h. L i t t l e variation could be found i n the composition 

of chloropyridines by prolonging the reaction time. 

E f f e c t of cata l y s t . 

None. 
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E f f e c t of Temperature. 

The r e s u l t s i n the table (reactions 1-9) show that to replace a l l 

the hydrogen atoms i n pyridine with chlorine a temperature greater than 

300° i s required. The reactions carried out i n the larger autoclave with 

the new system of heating gave v i r t u a l l y complete replacement of the 

hydrogen atoms even though the maximum temperature recorded at the centre 

of the autoclave was 300° (Reactions 11-13)» However with the new 

system of heating i t i s probably true to say, that as the outer walls 

of autoclave are v i r t u a l l y i n contact with red-hot elements, they must 

be at a considerably higher temperature than 300°. I t i s probable that* 

as the autoclave i s heating up to the preset temperature the walls of 

the autoclave are at a temperature i n the region of 350-500° and t h i s i s 

the temperature at which reaction i s taking place. 

A comparison of the r e s u l t s (Reactions 1-9) from t h i s reaction of 

pyridine with phosphorus pentachloride w i l l show that the thinner the 

l i n e r the better the o v e r a l l y i e l d of chlorinated pyridines with a 

corresponding increase i n the percentage of pentachloropyridine. At the 

time these reactions were performed t h i s effect was not d i r e c t l y 

connected with the temperature of the reaction, but i n the l i g h t of the 

l a t t e r r e s u l t s , i t could be concluded that as the thickness of the l i n e r 

was increased the thermal capacity of the autoclave increased, causing 

a lowering of the temperature of the inside w all of the autoclave. 
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Mechanism of the Chlorination of Pyridine 

From the r e s u l t s of the elemental chlorination of pyridine by 
95 

Wibaut and co-workers, i t has been shown that at l e a s t two different 

substitution mechanisms p r e v a i l at different temperatures* On 

chlorinating pyridine i n the gas phase at 270° & good y i e l d of 2-chloro-

pyridine was obtained together with a small quantity of 2 ,6-dichloro-

pyridine. I f the reaction i s c a r r i e d out at 400° the main product i s 

2 ,6-dichloropyridine. Chlorination i n the gas phase takes place very 

slowly at about 200°; at t h i s temperature 3-chloro-, and 3»5-dichloro~ 

pyridines are obtained with smaller amounts of 3»k , 5-trichloropyridine. 

Thus, at the lower temperatures at which pyridine reacts with 

halogens to give (3-substituted products i t seems l i k e l y that the course 

followed i s one of e l e c t r o p h i l i c attack. At temperatures above 270°, 

free r a d i c a l s w i l l be formed due to the homolytic f i s s i o n of the 

chlorine-chlorine bond, and the position of substitution by free r a d i c a l 

attack i s mainly at the a positions. These positions of substitution, 

whether e l e c t r o p h i l i c or free r a d i c a l , are i n agreement with t h e o r e t i c a l 

considerations involving substitution reactions i n pyridine. 

Pyridine contains a conjugated system of s i x w-electrons, one being 

contributed by each atom i n the ring. The electron a f f i n i t y of nitrogen 

i s greater than that of carbon and as a r e s u l t the 7r-electrons tend to 

be drawn towards the nitrogen which thereby acquires a negative charge. 

I n terms of the resonance approach, the electron density at various 
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positions of the pyridine nucleus i s derived from the summation of the 

contributing structures shown below. 

N 

Thus, the resonance method predicts from the summation of a l l the 

contributing structures that there w i l l be a p a r t i a l positive charge at 

the 2tkt and 6 positions i n pyridine. The assumption i s made that an 

el e c t r o p h i l i c reagent w i l l attack at the position of greatest electron 

density, and hence,electrophilio substitution takes place i n the 3> and 

5 positionSo 

For free r a d i c a l attack, the free valence (the free valence i s 

defined as the difference between the maximum bond number of a carbon 

atom ( N m a x = 3+ J~3) and the actual bond number, which i s the sum of the 

bond orders for a l l bonds the carbon atom i n question makes with other 

atoms) i s calculated and i t i s assumed that a free r a d i c a l w i l l attack 
142 

at the position of maximum free valence. 

P'45 
^0-39 
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Thus free r a d i c a l attack w i l l take place i n the 2 and 6 positions* 

Although no investigation into the mechanism of the reaction between 

phosphorus pentachloride and pyridine has been carr i e d out, Wyman and 
1̂ 3 

co-workers chlorinated various alkylated aromatic hydrocarbons using 

phosphorus pentachloride showing that the chlorination proceeded i n 

either a thermal or catalysed (benzoyl peroxide) reaction: 
RH + PC1 C » RC1 + HCl + PCI, 

A detailed study of the mechanism was not made, but i t was 

suggested that dissociation of phosphorus pentachloride into phosphorus 

t r i c h l o r i d e and chlorine, followed by thermal f i s s i o n of the chlorine-

ohlorine bond to give chlorine r a d i c a l s which then abstracted hydrogen 

from the hydrocarbon was a possible reaction mechanism* 

Drakesmith has postulated a similar type of reaction scheme 

which could apply i n the chlorination i n pyridine using phosphorus 

pentachloride. 

C J U T + PC1 C > CCH, C1N + PCI, + HCl 
5 5 5 5 * 3 

PC1 K^=± PCI, + C l _ 5 3 2 

C l 2 2C1' (thermal) 

R-H + C I ' * R* + HCl 

One mole-equivalent of PCl^ i s required to replace each hydrogen atom 

i n pyridine. 
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R" + PCl^ » RCl + PC1^ # 

PC 3^* + R-H — » HPC^ + R" 

HPCl^ — » HC1 + PC1 5 R = C ^ N 

PCl^' P C l j + CI* 

I n the f i r s t instance, i t would seem reasonable to suppose that 

as the autoclave was warming up there would be some e l e c t r o p h i l i c 

attack i n the pyridine r i n g at positions (3 to the nitrogen i n view of the 
95 o fact that Wibaut and co-workers have shown that at 200 e l e c t r o p h i l i c 

substitution with chlorine does take place. 
56 

However Chambers, Hutchinson and Musgrave have shown that of the 

three possible isomers of tetrachloropyridine, only those with hydrogen 

atoms i n either the 3 - or the 4-position are formed. I n view of the 

t h e o r e t i c a l considerations already mentioned, the fa c t that 3-hydro-

tetrachloropyridine was obtained probably rules out the p o s s i b i l i t y of 

e l e c t r o p h i l i c attack, and hence the reaction between phosphorus penta-

chloride and pyridine i s e s s e n t i a l l y a free r a d i c a l reaction. 

Chlorination of 2-methylpyridine. 

I t was i n i t i a l l y considered that a possible route to a 2-substituted 

tetrafluoropyridine could be achieved by the chlorination of 2-methyl­

pyridine giving perchloro(2-methylpyridine) which on reaction with 

potassium fluoride and hydrofluoric a c i d would give the corresponding 
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perfluoro(methylpyridine). Although perchloro - (2-methylpyridine) has 
119 

been prepared by the photochemical chlorination of 2-methylpyridine, 

i n view of the success recorded i n the chlorination of pyridine using 

phosphorus pentachloride, i t was decided to react 2-methylpyridine under 

similar conditions as those used to prepare pentachloropyridine. 

However, the reaction of phosphorus pentachloride with 2-methyl­

pyridine did not give the expected perchloro-(2-methylpyridine) but, as 

can be seen i n TABLE 2, good y i e l d s of pentachloropyridine were obtained. 

I t soon became apparent that t h i s route to pentachloropyridine 

had certain advantages over the chlorination of pyridine. I t was the 

f i r s t time that pentachloropyridine had been obtained without being 

contaminated with lower chlorinated pyridines (Reactions 1 and 2) , and 

hence i t was unnecessary to f r a c t i o n a l l y d i s t i l the product which had, 

in the previous preparations, been necessary and time consuming. The 

reaction time (8 h.) was only a t h i r d of the time required to chlorinate 

pyridine enabling the production of pentachloropyridine to be speeded 

up considerably, and also having the b e n e f i c i a l effect of reducing 

the corrosion to the autoclave. 

Mechanism of ohlorination of 2-methylpyridine. 

The reaction probably proceeds v i a a free r a d i c a l process similar 

to the one postulated for the chlorination of pyridine. McBee and 

co-workers photochemically chlorinated 2-methylpyridine, 2,k-

dimethylpyridine and 2 ,6-dimethylpyridine and obtained the respective 
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heterocycles with the methyl side chains f u l l y chlorinated. I n view 

of these r e s u l t s i t i s probable that i n the reaction of 2-methyl- 1 

pyridine with phosphorus pentachloride, free r a d i c a l attack takes 

place primarily i n the side chain to give 2-trichloromethylpyridxne. 
78 

McBee also obtained from the photochemical chlorination of 2-raethyl-

pyridine appreciable amounts of 3 » 5-dichloro-trichloromethylpyridine 

which has been further chlorinated at 190-210° under u l t r a v i o l e t l i g h t 
1 1 5 

to give 2 , 3 » 5 » 6-tetrachloropyridine. Thus i t i s probable that i n 

the chlorination of 2-raethylpyridino with phosphorus pentachloride 

some chlorine i s substituted i n the pyridine nucleus before f i s s i o n of 

the carbon-carbon bond joining the methyl group to the ring takes place. 

CI PC1 C 

< 5 

(n = 0-20 

CC1, 

thermal f i s s i o n 

/ ^ H n C 1 ( U ) Hn C 1(2,-n) 
CI + CCl^' 

cci5» + CI* 

or CC1,* + PC1_ CCl^ + PC3^' 
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Chlorination of 2 , 2 t-Bipyridyl. 

A convenient route to octafluoro - 2 » 2'-bipyridyl would of course 

have been v i a the Ullmann reaction on a 2-halogenotetrafluoropyridine, 

but although several routes to such a compound have been vi s u a l i z e d , 

a 2-halogenotetrafluoropyridine has not yet been prepared. 

I t was decided that provided the octachloro - 2 , 2'-bipyridyl could 

be prepared, the halogen-exchange reaction, used to replace chlorine 

for fluorine i n the preparation of pentafluoropyridine, would be a 

convenient way of preparing octafluoro - 2 , 2*-bipyridyl. 

The reaction between 2 , 2*-bipyridyl and phosphorus pentachloride wa 

carried out i n the 5 - l i t r e autoclave with conditions similar to those 

used i n the chlorination of pyridine and a-picoline. The chlorinated 

material was recovered using the sublimation procedure as outlined i n 

the preparation of pentachloropyridine from 2-methylpyridine. 

Fract i o n a l sublimation, followed by r e c r y s t a l l i z a t i o n from benzene, 

yielded the octachloro - 2 , 2 t-bipyridyl. The r e s u l t s of the chlorination 

reactions are shown i n TABLE 3« 

I n the chlorination of 2 , 2'-bipyridyl an equilibrium had to be 

reached i n which chlorination of the r i n g system took place but thermal 

f i s s i o n of the carbon-carbon bond joining the two rings was kept to 

a minimum* I n reaction 1 an a u x i l i a r y heating element was used i n 

conjunction with the main heating element with the r e s u l t that a con­

siderable amount of f i s s i o n of C-C bond took place y i e l d i n g pentachloro-
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pyridine. I n reactions 2 and 3» the ausci l i a r y heating system was 

disconnected and although a temperature of 300° was s t i l l recorded at 

the centre of the autoclave, good y i e l d s of octachloro - 2 , 2 I-hipyridyl 

were obtained. (Although the reaction temperature recorded was 300° 

i n each of the three reactions, i t i s presumed that i n reaction 1, when 

the a u x i l i a r y heating elements were used, that a higher temperature at 

the walls of the autoclave would have been recorded than i n reactions 

2 and 3 ) . 

Mechanism of the chlorination of 2 , 2 t-bipyridyl. 

I t i s already known that bromination of pyridine i n the vapour 

phase at 500° gives 2-bromo and 2,6-dibromopyridine, which, s i m i l a r l y 

to the chlorination of pyridine at 270°, i s thought to proceed v i a free 

r a d i c a l attack. E u r s t a l l found that application of t h i s bromination 

process to 2 , 2'-bipyridyl gave mainly 6-bromo-, and 6 ,6 ,-dibromo-2,2'-

b i p y r i d y l which i s i n agreement with the th e o r e t i c a l considerations 

regarding free r a d i c a l replacement. I t i s presumed that 2 , 2 *-bipyridyl 

i s chlorinated v i a a free r a d i c a l mechanism analogous to that described 

for the chlorination of pyridine. 

Fluorination of Pentaohloropyri&irie. 
56 

Workers at these laboratories have already shown that the halogen-

exchange reaction between chlorine and fluorine using potassium fluoride 

i s a good route for preparing pentafluoro-, and perfluorochloropyridines 
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•from pentachloropyridine. Fluorination of pentachloropyridine with 

potassium fluoride i n sulpholane at 190-210° gave good yi e l d s of 3,5-

dichlorotrifluoropyridine with small amounts of 3-chlorotetrafluoro-

pyridine. As a higher temperature i s required for the replacement of 

the (3-chlorines i n pentachloropyridine the solvent was dispensed with 

and the reaction between pentachloropyridine and potassium fluoride was 

investigated i n the absence of solvent. The r e s u l t s obtained from t h i s 
56 

reaction by the Durham workers have been published and are shown i n 

TABLE k. 

The fluorination reactions were carried out i n a 120 ml. autoclave, 

heated e l e c t r i c a l l y i n a furnace. From the re s u l t s i t can be seen that 

by varying the temperature from between kOO to 480° good yi e l d s of 

pentafluoropyridine, 3-chlorotetrafluoropyridine and 3 , 5-dichlorotri-

fluoropyridine were obtained. 

The reaction betv/een pentachloropyridine and potassium fluoride vias 

further investigated using a 150 ml. autoclave heated i n a s i m i l a r 

fashion to the one described above. The r e s u l t s of t h i s investigation 

are shown i n TABLE 5, and i t can be seen that from a comparison of these 

r e s u l t s with those obtained by the previous workers (TABLE h) s i m i l a r 

y i e l d s and composition of products were obtained. 
Procedure. 

The autoclave, charged with the reactants, was heated for the 
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prescribed period at the temperatures denoted. While the autoclave was 

s t i l l hot the product was d i s t i l l e d out from the autoclave. The products 

from several reactions were combined and fractionated through a 

concentric-tube column into three main fractions: 

(1) pentafluoropyridine. 

(2) 3-chlorotetrafluoropyridine. 

(3) 3»5-dichlorotrifiuoropyridine. 

A comparison of TABLES K and 5 w i l l show that the halogen-exchange 

reactions depicted i n TABLE 5 were carried out at lower temperatures 

than those recorded i n TABLE U- which gave the same approximate 

percentage composition of products. This i s possibly due to the 

di f f e r e n t autoclaves used i n the reactions, although i t i s important 

to note that fluctuations i n the mains voltage (especially overnight) 

cause considerable variations i n the reaction temperatures. The mains 

voltage f l u c t u a t i o n i s probably the reason why i d e n t i c a l reaction 

conditions gave varying amounts of replacement. 

As the a v a i l a b i l i t y of pentachloropyridine increased and the demand 

f o r highly fluorinated pyridines grew, i t became advantageous to flu o r i n a t e 

pentachloropyridine on a larger scale. A 750 ml. stainless steel 

autoclave was constructed of similar design and similar heating arrange­

ments as the smaller autoclaves. The results obtained using t h i s 

larger autoclave have been tabulated i n TABLE 6. 
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Again, by varying the temperature of the reaction between 380 and 

k-60° good yields of highly fluorinated pyridines were obtained. The 

products were obtained as above and fractionated through a 3' tube packed 

with glass helices, f i t t e d with an automatic take-off head int o three 

main fra c t i o n s : 

(1) pentafluoropyridine, 

(2) a mixture of 3-chlorotetrafluoro- and 4-chlorotetrafluoro-

pyridines (mole r a t i o approximately 4:1 respectively), 

(3) 3»5-dichlorotrifluoropyridine. 

The main difference between halogen-exchange reactions carried out 

i n the small autoclave to the reactions carried out i n the larger 

autoclave i s that i n the former only one isomer of monochlorotetra-

fluoropyridine (3-chlorotetrafluoropyridine) was produced, whilst i n the 

l a t t e r a mixture of isomers of monochlorotetrafluoropyi-idine was obtained. 

The isomers were i d e n t i f i e d as 3- and 4-chlorotetrafluoropyridine by 

fluorine-19 nuclear magnetic resonance spectra and by reducing the mixed 
145 

chlorotetrafluoropyridines, using hydrogen and palladium catalyst to 

It-hydro- and 3-hydrotetrafluoropyridines. The monohydrotetrafluoro-

pyridines were i d e n t i f i e d from t h e i r i n f r a r e d spectra. 

E Pd 

250-300 

H 

(isomer r a t i o 4:1). 
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Drakesmith has shown that the path taken by the pentachloro-
pyridinepotassium f l u o r i d e reaction i s as follows. 

P '\N^ NP 

Cl 

^Cl Cl 

isomer r a t i o 3:2 

F ^ - I \ r F 

1 

This r e s u l t , coupled with the e a r l i e r observations hy Chambers* 
56 

Hutchinson and Musgrave who showed that the (3-chlorine atoms i n 

pentachloropyridine were the l a s t to be replaced, i t would be highly 

u n l i k e l y that i n the reaction i n the large autoclave the p-chlorine 

atoms had been replaced p r e f e r e n t i a l l y to the Y-chlorine atom. I n 

the reaction between pentachloropyridine and potassium f l u o r i d e , 

potassium chloride i s formed as a by-product and under certain 
conditions i t has been shown that the f l u o r i n e atom can be replaced 

1V7 
by chlorine. The reaction between potassium chloride and 

pentafluoropyridine at 520° i n an autoclave produced an equimolar 

mixture of 3- and i^-chlorotetrafluoropyridines, although when the 
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reaction was carried out at k-SO0 no reaction took place. As the 

f l u o r i d a t i o n of pentachloropyridine was carried out at a considerably 

lower temperature than 520°, there must have been some localized heating 

i n the large autoclave to produce t h i s unexpected r e s u l t . 

Although the format'ion of k--chlorotetrafluoropyridine i n the 

halogen-exchange reaction can be explained by the nucleophilic attack 

of chloride ion on pentafluoropyridine i t i s d i f f i c u l t to ra t i o n a l i z e 

the presence of 3-chlorotetrafluoropyridine from the reaction of 

pentafluoropyridine and potassium chloride. I t i s now a well established 

fact that nucleophilic substitution i n pentafluoropyridine takes 

place p r i m a r i l y i n the y - p o s i t i o n . ^ ^ ' ^ ^ I n no case has P-

substitution been recorded i n pentafluoropyridine, and hence the 

formation of 3-chlorotetrafluoropyridine i s not by simple nucleophilic 

attack on pentafluoropyridine. I t i s possible that at the considerably 

high temperature employed to bring about the substitution some 

thermal rearrangement has taken place similar to those reported i n the 

high temperature defluorination of perfluoro(dimethylcyclohexanes). 

Fluorination of 0ctachloro-2,2 l-bipyridyl. 

The halogen-exchange reaction between chlorine and fl u o r i n e using 

a l k a l i metal fluo r i d e s has been shown to be a good method f o r 

preparing pentafluoro-, 3-chlorotetrafluoro-, and 3 , 5 - d i c h l o r o t r i -
56 

fluoropyridines. This halogen-exchange reaction has been adapted 
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to the preparation of highly fluorinated 2j2 ,-bipyridyls from 

octachloro-2,2'-bipyridyl, the results of which are summarised i n 

TABLES 7 and 8. 

Fluorination i n the absence of solvent (TABLE 7) 

Under similar conditions to those used f o r the preparation of 

pentafluoropyridine and the perfluorochloropyridines from penta­

chloropyridine (TABLES k-t 5 and 6) only decomposition products were 

obtained when octachloro-2,2'-bipyridyl was fluorinated with potassium 

f l u o r i d e (Reactions 1 and 2). I t has already been suggested that at 

high temperatures f i s s i o n of the carbon-carbon bond j o i n i n g the two 

rings takes place. Comparison of reactions 6 and 7 indicates that 

the f i s s i o n of the C-C bond probably takes place more r e a d i l y i n 

highly fluorinated 2>2'-bipyridyls than i n the p a r t i a l l y f l u o r i n a t e d 

2,2'-bipyridyls (based on the fact that caesium f l u o r i d e i s a stronger 

f l u o r i n a t i n g agent than potassium f l u o r i d e and under similar con­

ditio n s more replacement would have taken place with caesium 

f l u o r i d e ) . 

Fluorination i n the presence of a polar solvent (sulpholane) TABLE 8 

Fluorination of octachloro-2,2 ,-bipyridyl with potassium f l u o r i d e 

i n sulpholane at 200° yielded a mixture of octafluoro-2,2 l-bipyridyl, 

3-chloroheptafluoro-2,2 ,-bipyridyl and 3»3 ,-dichlorohexafluoro-2,2 l-

b i p y r i d y l . 
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Cl 

KF 
sulpholane 

200 
13-5 h. (20'CB5) 

Cl Cl 

H N N 
(31-8#) 

Mechanism and Orientation of Products of the Fluorination of 

Pentachloropyridine and 0otachloro-2t2 t-Bipyridyl, 

From the t h e o r e t i c a l considerations already mentioned i t would 

be expected that nucleophilic attack would take place f i r s t at the a 

and y positions i n the pyridine nucleus. Similar considerations 

show that the a and Y positions i n 2,2'-bipyridyl would be the most 

susceptible to nucleophilic attack. 

The halogen-exchange reaction between potassium f l u o r i d e and the 

perchloroheterocycles almost c e r t a i n l y goes v i a a nucleophilic mechanism. 

The orientation of the products from the reaction of aromatic 

polyhalo compounds with nucleophiles can be discussed by considering 

the t r a n s i t i o n state s t a b i l i t i e s i n terms of Wheland-type intermediates. 
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The para quinonoid resonance hybrid w i l l be considered to st a b i l i z e 

the t r a n s i t i o n state to a greater extent than the ortho quinonoid 

resonance structure. This assumption i s based on the r e s u l t s of 

advanced molecular o r b i t a l calculations which show that i n the 

t r a n s i t i o n state the charge density d i s t r i b u t i o n i s delocalized t o a 
151 152 greater extent at the para position. Other workers, on the basis 

of t h e i r experimental r e s u l t s , have also argued that the para-quinonoid 

structure i s more important that the ortho quinonoid structure i n 

nucleophilic aromatic substitution. 

The t r a n s i t i o n states f o r the three positions of nucleophilic 

substitution i n pentachloropyridine may be expressed i n terms of the 

following Wheland-type intermediates:-

N = nucleophile 

.Cl 
Cl 

C I 
c i X I 

C l ^ N ^ ) i C I ^ N ^ . Cl 

C l ^ N - c i 

Cl 

Cl' 

Cl 

Cl 
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XN CI vN yjCl 
C J ^ ^ ^ X C I C j ^ ^ ^ C l 

* * I 

C l ^ N ^ C l C l ^ - l K C l 

As the ring-nitrogen i s able to accommodate the negative charge 

to a greater extent than a carbon bearing a chlorine atom, i t i s 

clear from the Wheland intermediates that nucleophilic substitution 

w i l l be f a c i l i t a t e d i n the a- and Y~Posi'ti°ns compared with the |3-

position ( i n nucleophilic substitution at the (3-position the 

negative charge cannot be delocalized onto the ri n g nitrogen). Thus, 

to a f i r s t approximation i t i s clear that nucleophilic attack w i l l 

take place at the a- and y p o s i t i o n s i n pentachloropyridine. I n view 

of the fact that a para quinonoid resonance form sta b i l i z e s the 

t r a n s i t i o n state to a greater extent than the ortho quinonoid form, i t 

would be expected that nucleophilic attack i n pentachloropyridine 

would take place i n i t i a l l y at the Y -P o si'tion followed by attack at the 

a-position. 

Drakesmith, however, has shown that nucleophilic attack takes 

place at the cc-positions followed by attack at the y-position. This 

could possibly be rationalized by the fact that the Y ~ P o s i t i o n i n 

pentachloropyridine i s flanked by two ortho chlorine atoms and 

considerable st e r i c hindrance i s present. The a-position has only one 

chlorine atom flanking the position and i s hence s t e r i c a l l y more 

favourable. 

N CI 
CI 

CI N CI 
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The orientation of the products, and the r e l a t i v e ease of halide 

ion exchange i n octachloro-2,2'-bipyridyl as compared with penta­

chloropyridine, can be rationalized by consideration of the Wheland 

type intermediates of the fluorochloropyridines and the fluorochloro-

2,2-bipyridyls. 

As i n i t i a l l y stated f l u o r i n a t i o n of pentachloropyridine with 
o 

potassium fluoride at 200 f o r 36 h. gives 3i5-dichlorotrifluoropyridine 

and 3~chl°rotetrafluoropyridine i n the r a t i o 10:1. Fluorination of 

octachloro-2,2'-bipyridyl at 200° f o r 13*5 h. gives 3,3'-dichlorohexa-

flu o r o - , 3-chloroheptafluoro-, and octafluoro-2,2'-bipyridyl i n the 

r a t i o 4:2*8:1. I t had previously been found that 3»3'|5,5 1-tetrachloro-

te t r a f l u o r o - 2 , 2 1 - b i p y r i d y l i s formed when octachloro-2,2'-bipyridyl i s 

reacted with potassium flu o r i d e at 300° i n the absence of solvent. This 

l a t t e r r e s u l t i s i n agreement with the fact that a- and Y- c nl° ri n e atoms 

are replaced f i r s t , as i n pentachloropyridine. From these experimental 

results i t has been shown that the p-chlorine atoms i n 3»3i5,5'-

t e t r a c h l o r p t e t r a f l u o r o - 2 , 2 1 - b i p y r i d y l ( I ) ( i t i s considered that t h i s 

tetrachlorotetrafluoro-2,2'-bipyridyl i s formed when the reaction i s 

carried out i n solvent as i s the case when carried out i n the absence 

of solvent) are more easily replaced than the (3-chlorine atoms i n 

3 , 5 - d i c h l o r o t r i f l u o r o p y r i d i n e ( I I ) . 
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CI CI 

V N XN V 

( I ) ( I D 

By consideration of the Wheland intermediates shown below i t 

can be seen that replacement of the p-chlorines i n the perchlorofluoro-

b i p y r i d y l i s more favourable than i n 3,5-dichlorotrifluoropyridine. 

CI 
/ 

CI F Y o N 
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i .CI CI -CI C] 
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From the Wheland-type intermediates i t i s possible i n the case of 

tetrafluorotetrachloro-2,2'-bipyridyl f o r the t r a n s i t i o n state to be 

s t a b i l i z e d by d e r e a l i z a t i o n of the charge i n t o the other r i n g whether 

attack takes place i n the 3- ( I I I ) or 5 - (IV) position. The t r a n s i t i o n 

state i n 3 i 5 - d i c h l o r o t r i f l u o r o p y r i d i n e cannot be s t a b i l i z e d i n any 

such way but only by d e r e a l i z a t i o n of the negative charge onto carbon 

atoms bearing fluorine atoms, which by consideration of the 1^ 

e f f e c t , ' do not s t a b i l i z e a negative charge as well as a carbon 

bearing a chlorine atom. 

Consideration of Wheland-type intermediates I I I and IV w i l l show, 

by analogy with pentachloropyridine, that position 5 i s more favourable 

to nucleophilic substitution than position 3 by virtue of the fact that 

i n nucleophilic attack at position 5 (IV) the negative charge can be 

delocalized via a para quinonoid form throughout the molecule, whereas i n 

structure I I I the d e r e a l i z a t i o n of charge i s only p a r t i a l l y by a para-

quinonoid form. This fact i s i l l u s t r a t e d by the i s o l a t i o n of 3»3'~di-

chlorohexafluoro-2,2 1-bipyridyl uncontaminated by either 3,5_, 3»5'-» °r 

5,5'-dichlorohexafluoro-2,2'-bipyridyl. 

Thus, by analogy with pentachloropyridine the order of replacement 

of chlorine by fluorine i n octachloro-2,2'-bipyridyl i s as follows. 
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The Ullmann Synthesis of Polypyridyls* 

A general method fo r the preparation of a b i a r y l consists i n the 

coupling of two moles of aromatic halide i n the presence of a metallic 
155 156 

agent with the elimination of metal halide. 

RX + R'X + M — > R-R' + MX„ 
2 
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Work by F. Ullmann ^ r showed that copper was effective i n t h i s 

coupling reaction so that b i a r y l or polyaryl formation with the 

elimination of copper halide has become known as the Ullmann reaction. 

The Ullmann reaction has been e f f e c t i v e l y used i n the preparation 

of perfluorobiaryls, the results of which are shown i n TABLE 9. 

The success of any Ullmann reaction i s dependent upon the nature 

of the aromatic halide. Chlorine, bromine or iodine (an aromatic 

fluorine atom has never been reported to be active i n Ullmann reactions) 

may be eliminated of which the order of r e a c t i v i t y i s I ) Br ) CI. 

This order of r e a c t i v i t y i s i n agreement with the results obtained i n 

TABLE 9. Perfluorobiphenyl 1 5 8 and o c t a f l u o r o - 4 , V - b i p y r i d y l 1 5 9 were 

obtained from pentafluorobromobenzene and 4-bromotetrafluoropyridine 

respectively under less severe conditions than those required to obtain 

perfluorobiphenyl and octafluoro-3,3 1-bipyridyl from the respective 

monochlorofluoro derivatives. Fluorine could not be eliminated from 

pentafluoropyridine to form a b i p y r i d y l . 

Substituents i n the aromatic nucleus can affect the overall success 

of the Ullmann reaction. Certain electronegative groups i n the ortho 

and para position to the halogen atom, activate the l a t t e r through 

operation of t h e i r inductive and mesomeric effects leaving the carbon 

atom to which the halogen i s attached with a residual positive charge. 

On the basis of t h i s assumption i t would be expected that an electron-

donating group substituted i n t o the nucleus would have the reverse e f f e c t , 

tending to deactivate the halogen atom. The results obtained i n the 
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pyridine s e r i e s are i n agreement with t h i s assumption. 4-Bromo-2-

raethoxytrifluoropyridine and 4-bromo-2,6-dimethoxydifluoropyridine do 

not undergo condensation under conditions that effected coupling i n k-

bromotetrafluoropyridine. This r e s u l t i s i n dire c t opposition to the 
161 

r e s u l t s obtained by Forrest who showed that a methoxy group present 

i n the aromatic nucleus, irrespective of orientation, increases the 

a c t i v i t y of the halogen. 

The mechanism of the Ullmann reaction i s not yet f u l l y understood 

but recent evidence for the existence of a copper intermediate i n the 

Ullmann reaction has been discovered. 

Ar-X + 2Cu — ^ — » ArCu + CuX 

ArCu, ArX 
Ar-Ar Ar-Ar Ar-H + Cu + 

Since the formation of the intermediate step 1 would involve the 

donation of electrons from the copper to the a r y l compound, electron 

withdrawing groups present i n the ring system s t a b i l i z e the t r a n s i t i o n 

state. Conversely electron-donating groups would tend to destabilize the 

tr a n s i t i o n state. This explanation i s i n agreement with the r e s u l t s 

obtained. The reaction of phenyl copper with protons to give benzene i s 
163 

an expected and known reaction and explains the formation of 2-amino-

3,5,6-trifluoropyridine from 2-amino- if-bromotrifluoropyridine when the 

Ullmann reaction was carried out i n dimethylformamide. 
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The Ullmann reaction between copper powder and 3-chlorotetrafluoro-

pyridine was investigated more f u l l y , the r e s u l t s of some of the reactions 

are shown i n TABLE 10. When the reaction was carried out i n dimethyl-

forrnamide no bipyridyl was formed. Several products were obtained, the 

structures of which could not be elucidated, although the presence of 

carbon-hydrogen bonding i n the products was indicated from t h e i r i n f r a ­

red spectra. V/hen the reaction between copper powder and 3-chlorotetra-

fluoropyridine v/as carried out i n the absence of solvent octafluoro-3,3'-

bipyridyl v/as obtained i n y i e l d s of up to 70^» 

The Ullmann reaction has been used to prepare many polyfluorinated 

polyphenyls from the respective bromofluorobenzenes, the r e s u l t s of which 

are shown i n TABLE 11. Under more forcing conditions, the reaction 

between copper, 3~chlorotetrafluoro-, and 3|5-dichlorotrifluoro-

pyridine resulted i n the preparation of perfluoro-3,3' ^ " - t e r p y r i d y l 

and perfluoro-3t3'i3"»3' ' 1-quaterpyridyl. Analysis of the reaction 

product by a n a l y t i c a l - s c a l e vapour phase chromatography indicated the 

existence of several other products which have been tentatively 

i d e n t i f i e d as the intermediate chlorofluoropolypyridyls. 

3-Chloroheptafluoro-2,2 1-bipyridyl afforded perfluoro-2,2 1,3j3" l
-

2",2* 1 1-quaterpyridyl but under s i m i l a r conditions 3~chioroheptafiuoro-

kth%-bipyridyl remained unchanged. I n an attempt to prepare perfluoro-

2,2' ,3»3'-bipyridylene from the reaction between copper powder and 

3,3'-dichlorohexafluoro-2,2'-bipyridyl,3,3'-dichlorohexafluoro-2,2' -
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b i p y r i d y l was recovered unchanged at 190-210° and i f the reaction 

temperature was raised to 230-240° t o t a l decomposition resulted. 

Reactions of other polyfluorochloropyridines and polyfluorochloro-

bipyridyls with copper obviously provide a route to a considerable 

number of polyfluoro- and polyfluorochloropolypyridyls. 

The reaction betv/een equimolar amounts of 4-chloro-, and 3-chloro-

tetrafluoropyridine and copper at elevated temperatures was investigated. 

A white c r y s t a l l i n e product v/as obtained which showed up as one component 

on vapour phase chromatography, the retention time of which v/as the 

same as octafluoro-3,3'-bipyridyl. From i t s i n f r a r e d and fluorine-19 

nuclear magnetic resonance spectra the product was i d e n t i f i e d as a 

mixture of octafluorobipyridyls, octafluoro-4,4 1-bipyridyl being the 

main component of the mixture. 

The reaction between 4-bromo-2-nitrotrifluoropyridine and copper 

powder afforded only traces of what was thought to be the d i n i t r o -

b i p y r i d y l . 

Synthesis of Polyfluorinated Polyaryls via the Grignard Intermediate. 
164 

Pentafluorophenylmagnesium bromide has been found to be a valuable 

intermediate i n the synthesis of polyfluorinated polyphenylenes. 

Pentafluorophenylmagnesium bromide, prepared from pentafluorobromobenzene 
• 164,166,153 . . , and magnesium turnings, ' has been found to decompose i n 
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r e f l u x i n g tetrahydrofuran to give fluorinated polyphenylenes, containing 

bromine, of r e l a t i v e l y high molecular weight. When the decomposition 
1 was carried out i n the presence of decafluorobiphenyl at room temperature, 

perfluoro-p-terphenyl^quaterphenyl and -quinquephenyl were isolated. 

The formation of these para-linked polyphenylenes strongly supports 

the suggestion that the build-up of the polymers from the decomposition 

of CgF^MgBr, both alone and i n the presence of decafluorobiphenyl, 

involves repeated nucleophilic attack on a pentafluorophenyl group. 

The production of these para-linked compounds i s consistent with the 

results obtained by the Birmingham workers that i n the majority of 

cases the second substituent enters a position para to the f i r s t 

substituent. 
1 (3*7 

Brooke and Musgrave have shown that the reaction of pentafluoro-

phenylmagnesium bromide with pentafluoronitrobenzene i n tetrahydrofuran, 

at -10 to k°, gave a mixture of products i d e n t i f i e d as ( i ) pentafluoro­

nitrobenzene 06$); ( i i ) decafluorobiphenyl (1$); ( i i i ) nonafluoro-

2-nitrobiphenyl (6$>); ( i v ) nonafluoro-4-nitrobiphenyl and (v) 

2,4-bispentafluorophenyl-3,5,6-trifluoronitrobenzene (13$), by simple 

nucleophilic replacement of f l u o r i n e . The presence of decafluorobiphenyl 

has been a t t r i b u t e d to the nucieophilic displacement of bromine i n 

pentafluorobromobenzene by pentafluorophenylmagnesium bromide. 

4-Bromotetrafluoropyridine readily forms a Grignard reagent at low 

temperature with magnesium i n tetrahydrofuran and has been shown to react 
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at -35 to -kO with pentafluoropyridine to give octafluoro-4,4 1-
159 

b i p y r i d y l . This synthesis of octafluoro-4,*f'-bipyridyl was extended 

to prepare 3-chloroheptafluoro-, and 3»5~dichlorohexafluoro-4,V-

b i p y r i d y l by adding 3-chlorotetrafluoro-, and 3,5-dichlorotrifluoro-

pyridine respectively to 2,3»5i6-tetrafluoropyridylmagnesium bromide 

at -^0°. Under similar conditions the Grignard reagent did not react 

with 3"hydrotetrafluoro- or 3»5 _<iinydrotrifluoropyridine. 
159 

Chambers, Hutchinson and Musgrave showed that although penta-

fluorophenylmagnesium bromide reacted with pentafluoropyridine to give 

*f-(pentafluorophenyl)tetrafluoropyridine, pentafluorophenylmagnesium 

bromide did not react with hexafluorobenzene under the same 

conditions. This i s consistent with present observations (which 

w i l l be discussed more f u l l y l a t e r ) that pentafluoropyridine i s 

more susceptible to nucleophilic attack than hexafluorobenzene. 

2-Methoxyheptafluoro- if, k* - b i p y r i d y l was prepared by reacting 

2-methoxy-3,5 t6-trifluoropyridylmagnesium bromide with pentafluoropyridine 

at -liO°, Under similar conditions, the reaction between pentafluoro­

pyridine and 2,6-dimethoxy-3f5~difluoropyridylmagnesium bromide did 

not a f f o r d the expected 2,6-dimethoxyhexafluoro- ii-, if l-bipyridyl, but 

2,6=dimethoxy-3»5-difluoropyr-idine was obtained upon hydrolysis. 
"1 60 

I n a recent publication the preparation of a Grignard reagent 

from chloropentafluorobenzene i n d i e t h y l ether using magnesium activated 

by 1,2-dibromoethane has been described. When the Grignard reagent was 
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prepared i n tetrahydrofuran, polymeric material similar to that which 

was obtained when reacting bromopentafluorobenzene with magnesium i n 

"boiling tetrahydrofuranj was produced i n good y i e l d . 

Similar r e s u l t s were obtained when the Grignard reagent from 3-

chlorotetrafluoropyridine was prepared i n tetrahydrofuran; polymeric 

material, t e n t a t i v e l y i d e n t i f i e d as consisting of polyfluoropyridyl 
146 

units, being obtained. 

I n an attempt to prepare octafluoro-3,V-bipyridyl by adding penta-

fluoropyridine to a s t i r r e d solution of 2,4,5,6-tetrafluoropyridyl -

magnesium chloride i n tetrahydrofuran only a dark brown s o l i d which did 

not sublime (150°/()*1 mm.) was isolated. The s o l i d product was shown 
1^6 

by infrared spectra to be similar to that obtained by Drakesmith from 

the decomposition of 2,k,5,6-tetrafluoropyridyl-magnesium chloride. 

The formation of polymeric material i s probably due to the 

nucleophilic attack of the Grignard reagent at the ̂ -position i n any 

unreacted 3-chlorotetrafluoropyridine and also at the ^-position i n 

2,'+,5f6-tetrafluoropyridylmagnesium chloride. Thus, a chain mechanism 

can be set up leading eventually to high-molecular weight polypyridyls. 
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Introduction of Halogen into the Pyridine Nucleus v i a the Diazonium 

Reaction 

The v e r s a t i l i t y of the diazonium reactions i s well known i n aromatic 

chemistry as they provide a route to a variety of compounds not available 

by other methods. 

Wall, Pummer and co-workers^^ have prepared pentafluoroiodo- and 

pentafluorobromobenzene by diazotisation of pentafluoroaniline i n 

anhydrous hydrogen fluoride followed by addition of potassium iodide and 
cuprous bromide/potassium bromide mixture respectively. Brooke and co-

169 
workers diazotised pentafluoroaniline i n 80$ hydrofluoric a c i d and 

prepared chloro-, bromo-, and iodo-pentafluorobenzene by treatment with 

the usual reagents. 
170 

4-Aminotetrafluoropyridinej r e a d i l y obtained by the reaction 

between aqueous ammonia and pentafluoropyridine, has been shown to be 

a useful intermediate i n the synthesis of other substituted t e t r a -

fluoropyridines. Diazotisation of negatively substituted aromatic 

amines usually requires special considerations but diazotisation of 4-

aminotetrafluoropyridine was further complicated by the possible l o s s of 

fluoride ion from the diazonium s a l t , a d i f f i c u l t y that has been 

encountered by other workers using fluorinated aromatic amines. 
159 

Workers at Durham have found that 80$ hydrofluoric a c i d i s 

suitable for the preparation of 4-bromotetrafluoropyridine from the 

addition of aqueous hydrogen bromide/cuprous bromide mixture to 2,3»5»6-

tetrafluoropyridinediazonium f l u o r i d e at -20 to -25°» Under similar 
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reaction conditions *V-iodo- and 4-chlorotetrafluoropyridine have been 

prepared by addition of potassium iodide and aqueous hydrochloric a c i d / 

cuprous chloride respectively to 2»3»5»6-tetrafluoropyridine diazonium 

fluoride at -20 30°. 

k-Aminotetrafluoropyridine was obtained when 2,4-diaminotrifluoro-

pyridine was diazotised i n anhydrous hydrofluoric a c i d and the r e s u l t i n g 

2-diazonium-3f5»6-trifluoro-*i—aminopyridine fluoride allowed to decompose 

i n solution. The ease of replacement of a-araino groups by fluorine i n 

polyfluoroheterocyclic compounds has also demonstrated i n the case of 
171 

1-aminohexafluoroisoquinoline. When an attempt to replace the amine 

group of 4-aminotetrafluoropyridine was made a red s o l i d was obtained 

which could have been a fluorinated azoaminopyridine. 

A route to mixed chlorobromofluoropyridines was shown to be available 

as 2»6-difluoro-3»5-dichloro-4-bromopyridine was obtained from the 

diazonium s a l t of 2,6-difluoro-3,5-dichloro-Jf-aminopyridine. 

The r e s u l t s of these reactions are shown i n TABLE 12. 

Nucleophilic Substitution i n Polyfluoropyridines« 

Several substituted fluoropyridines, used as startin g materials i n 

the preparation of polyfluorobipyridyls, have been prepared from the 

reaction of nucleophilic reagents with polyfluoropyridines. Nucleophilic 

substitution i n polyfluoroaromatic and polyfluoroheteroaromatic compounds 

i s dealt with i n Chapter 5« 
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Infrared ( i . r . ) spectra were recorded using a Grubb-Parsons» 

type G.S.2.A. or Spectromaster spectrometers. Refractive index 

were measured on a Bellingham and Stanley Abbe type refractometer. 

Chemical analyses were carried out by Mr. T . F . Holmes> and in the 

case of fluorine analyses using the biphenyl-sodium method of 

decomposition.^ ^ 

Qualitative analytical-scale vapour phase chromatography ( v . p . c . ) 

was performed on Perkin Elmer and Gr i f f in and George type instruments. 

Quantitative analytical-scale vapour phase chromatography was 

performed on the Gr i f f in Gas Density Balance type instrument. 

Preparative-scale vapour phase chromatography was performed on an 

Aerograph "Autoprep" instrument unless otherwise stated. 

The orientations of compounds were determined from nuclear 

magnetic resonance spectra (n.m.r.) and are reported in Chapter 

8. 
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CHLORINATION REACTIONS. 

The chlorination reactions were carried out in a high pressure 

reaction vessel of 1*5» 3> or 5 l i t r e capacity. The autoclaves were 

constructed from stainless steel giving a wall thickness of approximately 

i inch. The heads of the autoclaves were constructed of heavy stainless 

steel and f i t t ed with a needle valve, thermocouple wel l , and in the case 

of the 5 - l i t re autoclave a "bursting disc assembly. The head of the 

autoclave was sealed to the flange on the body by a copper gasket and 

held in position by steel bolts. The body of the autoclave was f i t ted 

with a heavy metal l iner to prevent as far as possible corrosion of the 

inner stainless steel wal l . 

The autoclaves were heated by a 2 kilowatt element arranged in the 

shape of a spiral so that the body of the autoclave f i t t ed inside. 

Chlorination of Pyridine. 

The pyridine was dried by refluxing over potassium hydroxide pellets 

for several hours followed by d i s t i l la t ion from potassium hydroxide under 

an atmosphere of dry nitrogen. 

In a typical experiment, an autoclave (3 l i t r e ) charged with dry 

pyridine (250 g., 3*16 mole) and phosphorus pentachloride (2,500 g., 

12 mole) was heated to 29k" over a period of 6 hr. and then at that 

temperature for h. After allowing the autoclave to cool to room 

temperature the hydrogen chloride generated during the reaction was 

released before the vessel was opened and then the product was hydrolysed 



CHLORINATION AUTOCLAVES 

L3FT: 1*5 L i t r e SIGHT: 5 l i t r e 
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"by slowly adding i t to a mixture of ice and water. When the hydrolysis 

was complete) the organic product was steam d i s t i l l ed and the d i s t i l l a te 

extracted with methylene dichloride. The solvent was removed by 

d i s t i l la t ion to yie ld a mixture of chloropyridines. (20k g.) . The 

water was then removed by azeotropic d i s t i l l a t ion with benzene. The 

chloropyridines were d i s t i l l e d through a 20 i n . column packed with 

Dixon gauze into two fractions; 

( i ) b.p. 1'+0-278° which was shown to be a mixture of t r i - and 

tetrachloropyridines with a l i t t l e pentachloropyridine by 

analytical-scale v .p .c . by comparison of retention times 

(silicone elastomer on celite at 200°) with authentic 

samples of polychloropyridines. 

( i i ) b.p. 278-280°. This fraction was redis t i l l ed to give 

pentachloropyridine b.p. 279=280°, m.p. 123-12^° (from 

benzene) ( l i t . 5 6 b.p. 279-280°, m.p. J\2k.°). 

The composition of the original product was estimated by analyt ical -

scale v .p .c . to be C^HgCljN, 30; C^HCl^N, 50; C^Cl^N, 20 mole-$. 

In a typical reaction an autoclave (5 l i t r e ) charged with 

pyridine (100 g., 1*26 mole) and phosphorus pentachloride (2,500 g., 

12 mole) was heated rapidly to 300° (2 h.) and then heated at this 

temperature for 22 h. After allowing the autoclave to cool to room 

temperature, the hydrogen chloride generated during the reaction was 

released before the vessel was opened and then the product was hydrolysed 

by slowly adding i t to ice . When this was complete, the organic product 
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was steam dis t i l l ed to give a mixture of chloropyridines (250 g.). The 

white solid material was f i l t ered off and the remaining water wa3 removed 

by azeotropic d i s t i l la t ion with benzene. The chloropyridines were 

d i s t i l l ed through a 20 in . column packed with Dixon gauze into two 

fractions; 

( i ) b.p. 2^0-258° shown by analytical-scale v .p .c . and 

infrared spectra to be essentially tetrachloropyridines 

( l i t . 5 6 b.p. 2W-252 0 ). 

( i i ) 279-280° (225 g.» 7 $ ) , which was red i s t i l l ed to give 

pentachloropyridine b.p. 280°i m.p. 123-124°. 

The composition of the original product was estimated by analyt ical -

scale v .p .c . to be C^HC]^N, 5; C^Cl^N, 95 mole-$. 

Reaction of Phosphorus Pentachloride with T r i - and Tetrachloropyridines. 

In a typical experiment an autoclave ( 3 - l i t r e ) charged with a 

mixture of t r i - and tetrachloropyridines (582 g.) (obtained from previous 

experiments) and phosphorus pentachloride (2»000 g., 9'6 mole) was 

heated at 296° for 8 h. The reaction was worked up as in previous 

experiment to y ie ld after d i s t i l l a t i o n , pentachloropyridine (365 g«) 

m.p. 124°» and a mixture of t e tra - and pentachloropyridine (150 g.) . 

Chlorination of 2-Methylpyridine. 

In a typical experiment an autoclave (5 l i t r e ) charged with 

2-methylpyridine (30 g.» 0*32 mole) and phosphorus pentachloride (1350 g.> 
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6*5 mole) was heated rapidly to 300° (2 h. ) and then heated at this 

temperature for a further 6*5 h. The autoclave was allowed to cool and 

vented to remove the hydrogen chloride formed during the reaction. The 

contents of the autoclave were then hydrolysed by slowly adding to ice 

and the solid material f i l t ered off. The water was removed under 

vacuum ^2^5) a n < * * n e s 0 ^ ^ sublimed under reduced pressure (0-2 mm., 

180°) to give a white solid (72 g») . Dis t i l la t ion through a short s t i l l 

head gave pentachloropyridine (72 g. , 89/S) m.p. 120-124°. Analytical-

scale v .p .c . indicated that there were no lower-chlorinated pyridines 

present. 

Chlorination of 2,2'-Bipyridyl . 

In a typical experiment, an autoclave (5 l i t r e ) charged with 

2,2'-bipyridyl (40 g., 0*26 mole) and phosphorus pentachloride (2,000 g., 

9*6 mole) was heated rapidly to 300° (2 h.) and then heated at this 

temperature for a further 10 h. The autoclave was allowed to cool and 

vented to release hydrogen chloride formed during the reaction before the 

vessel was opened. The product was then hydrolysed by slowly adding i t 

to ice . When this was complete the chlorinated product was f i l t ered off 

and dried (PgO^)* after which the product was sublimed under reduced 

pressure to give a white solid (101 g.) . Fractional sublimation (0*2 mm. 

Hg raised temperature) afforded three main fractions. 
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( i ) Pentachloropyridine (2*0 g.) m.p. 120-123 (from benzene)* 

identif ied by i t s infrared spectrum. 

( i i ) A white solid (0*5 g») m»P« 175-178° which was thought to be 

a mixture of hexa- and heptachloro-2»2 , -b ipyr idyls . 

( i i i toctaohloro^^' -b ipyr idyl (97 g.» 87%) m.p. 1&V-187° (from 

benzene). 

(Found! C, 27*9; C I , 65*6. C^ClgNg requires C, 27'8j 

C I , 65*736). 

Replacement of Chlorine by Fluorine in Pentachloropyridine. 

The potassium fluoride used was reagent grade and was dried before 

use by heating for 2-3 days in a nickel beaker. 

The autoclave was a high pressure reaction vessel constructed out 

of stainless steel of 120 or 150 ml. capacity. The autoclave head, 

f i t ted with a needle valve, was screwed into the body of the vessel and 

sealed with a copper or aluminium gasket. The temperature was recorded 

using an external thermocouple fixed to the side of the autoclave. 

In a typical experiment an autoclave (150 ml.) charged with 

pentachloropyridine (30 g., 0*12 mole) and anhydrous potassium fluoride 

(80 g., 1*38 mole) was evacuated before being heated to Vl0° for 17*25 h. 

While the reaction vessel was s t i l l hot the product (21 g.) was 

d i s t i l l ed out under vacuum. Dis t i l la t ion through a 2k in . concentric 

tube column of the combined products from several reactions gave three 

fractions: 
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( i ) Pentafluoropyridine b.p. Sk° ( l i t . 5 6 ' 2 9 b.p. 84° , 83.30) 

i d e n t i f i e d from i t s infrared spectrum, 

( i i ) 3-Chlorotetrafluoropyridine, b.p. 118-119° ( l i t . 5 6 b.p. 119°) 

the infrared spectrum of which was i d e n t i c a l with that of an 

authentic sample. 

( i i i ) 3 , 5-Dichlorotrifluoropyridine b.p. 158-159° ( l i t . 5 6 159-160°) 

the infrared spectrum of which v/as i d e n t i c a l with that of an 

authentic sample. 

Replacement of Chlorine by Fluorine i n Octachloro - 2 , 2 '-bipyridyl. 

a) Using potassium fluoride i n the absence of solvent. 

Octachloro - 2 , 2 '-bipyridyl (5 g., 0«007 mole) and anhydrous 

potassium fluoride (15 g»» 0«26 mole) were sealed under vacuum i n a 

Carius tube and heated to 296-316° for 16-25 h. The tube was allowed to 

cool and the contents added to water. The aqueous mixture v/as extracted 

with ether and the combined extracts dried (MgSO^). The ether was 

removed by d i s t i l l a t i o n to give a clear l i q u i d which when d i s t i l l e d 

under reduced pressure afforded a thick o i l (2»1 g.) that was shown by 

an a l y t i c a l v.p.c. ( s i l i c o n e o i l on c e l i t e at 200°) to be a mixture of two 

components i n the r a t i o 9i1. F r a c t i o n a l d i s t i l l a t i o n under reduced 

pressure gave 3 , 3 * , 5 , 5 '-tetrachloro-A-,*)- 1 , 6 , 6 '-tetrafluoro - 2 , 2 '-bipyridyl 

(the main component of the mixture), (b.p. 305-308°), (Found: C, 32»8; 

F, 20-7; C I , 38-5. C 1 0 F / f C l / N 2 requires: C, 32-8; F, 20-8; CI, 38»8#). 

The other component i n the reaction was thought to be 3 | 3 ' i 5 _ 
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trichloropentafluoro-2,2'-bipyridyl but was not isolated. 

b) Using potassium fluoride in sulpholane. 

Octachloro-2,2*-bipyridyl (20 g., 0»046 mole)) potassium fluoride 

(100 g. , 1*7 mole) and dry sulpholane (310 g.) were vigorously stirred 

at 200° for 15*75 h. The contents of the reaction flask were cooled to 

room temperature and water was added. The aqueous mixture was extracted 

with etherj and the combined extracts washed well with water. The 

extracts were dried (MgSO )̂ and the solvent removed by d i s t i l la t ion to 

give a black o i l (10*4 g.). Dis t i l la t ion under reduced pressure, 

(64-70°/0*9 mm.), afforded a clear o i l (8*9 g«)» the composition of 

which was shown by analytical scale v.p.c . (sil icone o i l on cel ite at 

170°) to be a mixture of three components in the ratio 10:27:63. The 

three components were separated using preparative scale v .p .c . (sil icone 

elastomer on cel ite at 160°) to give: a) octafluoro-2,2 1-bipyridyl 

(6*3$) (Found: C, 39*8; F , 50'2. C ^ F g l ^ requires, C, 40'0; F , 

50*67^) as a low melting solid b.p. 223° - 224°. 

b) 3-chloroheptafluoro-2,2 1-bipyridyl (16«2#) (Found: C, 38»0j 

F , M«7; C I , 11*8. C 1 Q F 7 C 1 N 2 requires C , 37*9; F , 42*0; C I , 11'2$) 

b.p. 233-234°. 

c) 3J3 ?-diohlorohexafluoro-2,2'-bipyridyl (36*6/2), (Found: 

C, 36*3; F , 33*5; C I , 20-7- C ^ F g C l ^ requires: C, 36-04; F , 34-2; 

C I , 21 '3%) m.p. 45-48°. 
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Preparation of k-Bromotetrafluoropyridine from 4°Aminotetrafluoro-
. , . 170 pyridine. 

In a typical reaction, to a s t irred solution of the amine (28*0 g.) 

0*17 mole) in aqueous hydrofluoric acid (200 ml. , 80/5 w/w) in a polythene 

beaker f i t t ed with a polythene l i d and metal s t i r r e r , was added sodium 

n i t r i t e (28*0 g.) at -25 to -30 over 25 minutes. The solution was 

st irred for a further 15 min. with the temperature maintained at - 2 5 ° . 

A solution of cuprous bromide in hydrobromic acid (made by dissolving the 

cuprous bromide produced from hydrated copper(ll)sulphate (160 g . ) , 

potassium bromide (120 g.) and hydrated sodium sulphite (60 g. ) in 

hydrogen bromide (20 ml. 5*$ w/w)) was added dropwise over h-3 minutes 

to the diazonium sal t , the temperature being kept constant at -30° . 

After a further 2 h . , during which time the reaction vessel had warmed to 

room temperature, the mixture was diluted with water (2 1.) and extracted 

with ether. The ether extracts were washed well with water and then 

dried (MgSO^). The solvent was then d i s t i l l ed off to y ie ld a brown l iquid 

(33 g»)> which when d i s t i l l e d (from P„0 C ) gave 4-bromotetraflucre­'s D 

pyridine (30 g., 77/0 b.p. 132-134° ( l i t . I3k-135°) . 

Preparation of 4-Chlorotetrafluoropyridine from k-Aminotetrafluoropyridine. 

To a st irred solution of the amine (6 g., 0»036 mole) in aqueous 

hydrofluoric acid (50 g., 80/2 w/w) was added sodium n i t r i t e (6 g. ) at 

-25° over 30 minutes. With the temperature maintained at -25° to -30° a 

solution of copper(l)chloride in hydrochloric acid (made by dissolving the 

copper(l)chloride produced from hydrated copper(ll)chloride (30 g.) and 
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sodium thiosulphite (22*8 g.) in hydrochloric acid (60 ml . , w/w.)) 

was added dropwise over 30 minutes. After a further 2 h . , during which 

time the solution had warmed to room temperature, the mixture was 

diluted with water (750 ml.) and extracted v/ith ether. The ether 

extracts were washed well with water and then dried (MgSO^). The 

solvent was then removed by d is t i l la t ion to yield, a pale brown l iquid 

(4*1 g . ) , which when d i s t i l l ed (from PgO^) afforded k-chlorotetra= 

fluoropyridine (3*5 g. > 52*2$) (Pound: C , 32*8; F , it-0• 6; C I , 19*1. 

C5C1P^N requires C, 32-4; F , Vl-0; C I , 19*1$), b.p. 122-123°; njj° 

1 -it-315. 

Preparation of k-Iodotetrafluoropyridine from 4-Aminotetrafluoropyridine. 

To a s t irred solution of the amine (6 g., 0#036 mole) dissolved in 

aqueous hydrofluoric acid (50 g., 80$ w/w.) was added sodium n i tr i t e 

(6 g.) at -30° over 30 minutes. With the temperature maintained at -30° 

an aqueous solution of potassium iodide (12 g.) was added slowly over 

30 minutes. The solution was then allowed to warm slowly to room 

temperature before being diluted with water (1 1 . ) . The aqueous 

solution was extracted with methylene dichloride and the combined 

extracts well washed with water. The extracts were dried (MgSO )̂ 

and removed by d i s t i l la t ion to give a red solid (2°0 g. ) . Sublimation 

under reduced pressure afforded a white sol id , k-iodotetrafluoro-

pyridine (1 «5 g. > 15$) (Found: C, 21*5; F , 27*2; I , U»-'8. 

CjIP^N requires C, 21*66; F , 27«1»-; I , ^5*8$) m.p. K-8*5° - 49-5° 

(resublimation). 
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Attempted replacement of Amino group by Fluorine in 4-Aminotetra-

fluoropyridine. 

To a st irred solution of the amine (3*32 g., 0*02 mole) in 

aqueous hydrofluoric acid (44 g., 80$ w/w.) was added sodium n i t r i t e 

(1 *4 g.) at -30° over 30 minutes. The mixture was st irred at -30° 

for a further 15 win, and then allowed to warm slowly to room 

temperature (2*5 h . ) . The mixture was diluted with water (500 ml.) and 

the aqueous mixture then extracted with methylene dichloride, which 

after washing well with water and drying (MgSO )̂ was removed by 

d i s t i l la t ion to afford a red solid. No pentafluoropyridine was 

detected. The red solid did not sublime (130°» 0*1 mm.) and was thought 

to be a fluorinated azoaminopyridine. 

Replacement of the Amino group by Fluorine in 2,4-diaminotrifluoro-

pyridine. 

To a stirred solution of the amine (3*26 g., 0*02 mole) dissolved 

in anhydrous hydrofluoric acid (54 ml.» 100$) was added sodium n i t r i t e 

(1 *4 g.» 0*02 mole) at -30° over 25 minutes. The solution was s t irred 

for a further 15 minutes at -30° and then allowed to warm slowly to 0° 

(1*5 h . ) . The hydrofluoric acid was allowed to evaporate off leaving an 

orange coloured l iquid. Water was added and the aqueous solution 

extracted with methylene dichloride, which after washing well with water, 

drying (MgSOĵ ), was removed by d i s t i l l a t ion to give a red solid (0*9 g. ) . 

Sublimation under reduced pressure afforded a pale yellow solid which 

after recrystal l izat ion for petroleum-ether (40-60° fraction) gave 
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4-aminotetrafluoropyridine (0*7 g«» 21*2$) m.p. 85-86° ( l i t . 

85-86°) . The compound had an infrared spectrum identical with that of 

an authentic sample. 

Preparation of 2,6-difluoro-3f5-<iichloro-4-bromop.yridin-e from 

2 ,6-difluoro-315-dichloro-4-aminopyridine. 

To a st irred solution of the amine (10 g., 0*05 mole) in aqueous 

hydrofluoric acid (80 ml. , 80$ w/w.) was added sodium n i tr i t e (10 g.) 

at -25 to -35 over 30 minutes. The solution was st irred for a further 

30 minutes. A solution of copper(l)hromide in hydrobromic acid (made 

by dissolving the copper(l)bromide produced from hydrated copper(II) 

sulphate (20 g . ) , potassium bromide (40 g.) and hydrated sodium sulphite 

(20 g. ) in hydrogen bromide (12 ml . , 54/o w/w.)) was added dropwise to 

the diazonium sa l t , the temperature being maintained at - 3 0 ° . The 

solution was st irred for a further 30 min. and then allowed to warm 

slowly to room temperature. The mixture was diluted with water and the 

aqueous mixture extracted with methylene dichloride, which after 

washing well with water, drying (MgSO^), was removed by d i s t i l l a t ion to 

give a dark brown solid (9*4 g. ) . Sublimation under reduced pressure 

gave 2,6-dif luoro-3»5-dichloro-4-bromopyridine (8*5 g»» 64*4%), 

(Found: C , 23*0; F , 14-15. C ^ E r C l ^ N requires C, 22-81 j F , 14-4%), 

m.p. 42-44° (from petroleum-ether, 40-60° fraction.) 



- 126 -

Reaction "between 3-Chlorotetrafluoropyridine and Copper. 

a) 3-Chlorotetrafluo.ropyridine (7*6 g., 0*0k1 mole) was sealed 

under vacuum in a Carius tube with copper powder (5 g . > 0*08 mole) and 

heated to 250-260° for 120 h. The tube was cooled, opened and the 

contents extracted with ether. The ether extracts were dried (MgS0^)» 

and the solvent removed by d i s t i l la t ion to give a light brown o i l . 

Sublimation under reduced pressure (50° , 0*1 mm.) afforded white 

crystals of octafluoro-3,3'-bipyridyl (4*2 g., 68$), (Found: C , 40*0; 

F , 51-1. C 1 0 FgN 2 requires C , 40*0; F , 50/67$), m.p. 38*0 - 38*5° 

(from petroleum-ether, 40-60° fract ion) . 

b) 3-Chlorotetrafluoropyridine (1 *85 g., 0*01 mol), NN-dimethyl-

formamide (27*8 g. ) and copper pov/der (2 g.) were st irred and heated 

under reflux for 48 h. After this time the mixture was allowed to cool 

and poured into water. The aqueous mixture was extracted into 

methylene dichloride, which after being washed well with water, dried 

(MgSO^), was removed by d i s t i l la t ion to give a red solid. Sublimation 

under reduced pressure afforded a white solid (0*2 g . ) , m.p. 80*5 - 81° 

(from methanol), (Found: C, 48*2; F , 31*'$). No further investigation 

of the structure was attempted. 

Reaction of 3-Chlorotetrafluoropyridine and 3«5-Dich lorotr i f luoro-
pyridine with Copper powder. 

3-Chlorotetrafluoropyridine (0*93 g.» 0*005 mole), 3i5-dichloro-

trifluoropyridine (0*5 g» • 0*0025 mole) and copper pov/der (1 *45 g» ) 
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were sealed under vacuum i n a Carius tube and heated at 2 5 0 - 2 6 0 ° f o r 

96 h. The tube was cooled, opened, and the contents v/ere transferred 

to a sublimation apparatus. Sublimation under reduced pressure afforded 

a tacky s o l i d (0*45 g.) which was shown by ana l y t i c a l v.p.c. (silicone 

elastomer as stationary phase, 200°) to consist mainly of three 

components with several other components present i n trace amounts. 

The three main components i n the %-age r a t i o 72 : 23: 2*5 v/ere separated 

by preparative v.p.c. (silicone elastomer on c e l i t e at 260°) to give 

i ) o c t a f l u o r o - 3 , 3 1 - b i p y r i d y l , m.p. 39°» which had an 

infr a r e d spectrum i d e n t i c a l with that of an authentic sample, 

i i ) p e r f l u o r o - 3 . 3 ' . 5 " ~ t e r p y r i d y l (a soft glassy material) 

b.p. 3 0 1 - 3 0 2 ° ( s l i g h t decomposition), (Found: C, 4 l « 5 ; 

F, 48 . 5 . C 1 5F 1 1N 3 requires C, V l . 7 6 ; F, 4 8 . 5 ) . 

i i i ) p e r f l u o r o - 3 i 3 ' » 3 " i 3 ' ' ' - q u a t e r p y r i d y l , m.p. 111 -113° 

(from ether), (Found: C, 42*4; C^F^N^ requires C, 42»7#) . 

There v/as i n s u f f i c i e n t sample for a fluor i n e analysis. 

Reaction of 3 « 5~Dichlorotrifluoropyridine with Copper powder. 

3 , 5~Dichlorotrifluoropyridine (1«0 g., 0*005 mole) was sealed 

under vacuum i n a Carius tube with copper powder (2 g.) and then heated 

at 230" f o r 104 h. The tube was cooled and the contents were transferred 

to a sublimation apparatus. Sublimation under reduced pressure 

( 2 0 0 ° , 0*1 mm.) did not af f o r d any material. The contents of the 

flask were then extracted with ether but again no so l i d material was 

obtained. Extraction of the product with tetrahydrofuran afforded a 
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black s o l i d which had an inf r a r e d spectrum similar to that obtained 
146 

from a mixture of polyfluoropolypyridyls. As the so l i d would not 

sublime below 220° at reduced pressures i t i s probable that there are 

more than f i v e pyridine rings joined together. 

Reaction of 3 -» and 4-Chlorotetrafluoropyridine with Copper. 

3-Chlorotetrafluoropyridine (1 g., 0*0054 mole) and 4-chloro-

tetrafluoropyridine (1 g., 0*0054 mole) were sealed under vacuum i n a 

Carius tube with copper (2*0 g.) and heated to 250° f o r 48 h. The tube 

was allowed to cool to room temperaturej opened, and the contents 

transferred to a sublimation apparatus. Sublimation under reduced 

pressure afforded a white s o l i d (0*7 g«) which was shown by a n a l y t i c a l 

scale v.p.c. to consist of one component, the retention time of which 

was i d e n t i c a l with that of perfluoro - 3 » 3-bipyridyl. As the compound 

melted over a range ( 2 5 - 6 0 ° ) i t was probably a mixture of perfluoro - 3 i 3 

3 , '+' - , and 4 , 4'-bipyridyls. The i n f r a r e d spectrum was similar to that 

expected from a mixture of octafluorobipyridyls. 

Reaction of 3-Chloroheptafluoro - 2 , 2 l-bipyridyl with Copper powder. 

3-Chloroheptafluoro - 2 , 2*-bipyridyl (0 '3 g. , 0*00095 mole) was 

sealed under vacuum i n a Carius tube with copper powder (3 g.) and then 

heated to 190 - 210 f o r 96 h. The tube was cooled and the contents 

were transferred to a sublimation apparatus. Sublimation under reduced 

pressure afforded, a f t e r r e c r y s t a l l i z a t i o n from petroleum-ether 

(40 -60° f r a c t i o n ) , perfluoro - 2 , 2 ' , 3 » 3 " > 2 " , 2 '''-quaterpyridyl (0*1 g., 

37-5$) (Found: C, 42*7; F, 46-3 . CgO^lA. r e 1 u i r e s > C, 42*7; 
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F, k7-3$), m.p. 128-130 0 . 

Reaction of 4-Bromotetrafluoropyridine with Copper powder. 

a) I n a t y p i c a l reaction, 4-bromotetrafluoropyridine (6 g., 

0*026 mole) and copper pov/der (6 g.) were sealed under vacuum i n a 

Carius tube and then heated to 200° f o r 48 h. The tube was allowed to 

cool to room temperature and the contents v/ere transferred to a 

sublimation apparatus. Sublimation under reduced pressure gave octa-

f l u o r o - 4 , 4 1 - b i p y r i d y l (1»6 g., 41%), m.p. 8 1 - 8 2 ° (from petroleum-ether 
o 159 o (40-60 f r a c t i o n ) ) ( l i t . ^ 81-82 ) , the in f r a r e d spectrum of which v/as 

i d e n t i c a l with that of an authentic sample. 

b) I n a t y p i c a l reaction, 4-bromotetrafluoropyridine (4 g., 

0«017 mole), copper pov/der (2 g., 0»032 mole) and dry NN-dimethy1-

formamide were refluxed f o r 3 h. The contents of the fla s k were 

allowed to cool and then added to v/ater. The white precipitate that 

was formed was extracted i n t o methylene dichloride and the combined 

extracts washed well with water. The extracts were dried (MgSO^), 

and the solvent removed by d i s t i l l a t i o n giving a brown o i l . Sublimation 

under reduced pressure, followed by r e c r y s t a l l i z a t i o n from petroleum-

ether (40 -60° f r a c t i o n ) , afforded octa f l u o r o - 4 , 4 1 - b i p y r i d y l (1*5 g»« 

57'%) , m.p. 8 O - 8 1 0 . 
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Reaction of 2-Nitro^-bromotrifluoropyridine with Copper powder. 

Copper powder (1 g.), 2 n i i t r o-Wbromo-trifluoropyridine (0*5 g. > 

0*002 mole) and NN-dimethylformamide were s t i r r e d and heated to 1 5 0 ° 

f o r 2 h. The mixture was allowed to cool and then poured into water. 

The aqueous mixture was extracted with methylene dichloride, the 

combined extracts washed we l l with water, dried (MgSO^), and the solvent 

removed by d i s t i l l a t i o n to give a brown o i l (0*4 g.). D i s t i l l a t i o n 

and sublimation of the brown o i l afforded 2-nitro - 4-bromotrifluoro-

pyridine (0*3 g.) and a pale yellow s o l i d (0*05 g.) which was thought 

to be 2 , 2*-dinitrohexafluoro-k,V~bipyridylj m.p. 1 1 7 - 1 1 8 * 5 ° . 

Preparation and Reactions of 2»3 '5?6-Tetrafluoropyridylmagnesium Bromide. 

A three-necked flask f i t t e d w ith s t i r r e r , dropping funnel, and 

condenser, containing magnesium turnings (1*5 g«) and dry tetrahydro-

furan (25 ml.), was purged with dry nitrogen and cooled to - 2 0 ° to - 1 5 ° . 

A solution of 4-bromotetrafluoropyridine (6*9 g. , 0*03 mole) i n dry 

tetrahydrofuran (h- ml.) was added and aft e r several minutes the reaction 

commenced. The mixture was allowed to warm to - 1 0 ° to 0° and 

maintained at t h i s temperature f o r 1 h. before further reactants were 

added. 

(a) Reaction with pentafluoropyridine. 1 ̂  To the G-rignard reagent 

was added pentafluoropyridine (5*07 g., 0*03 mole) at -W3. A f t e r a 

few minutes the solution became dark blue and remained t h i s colour while 

the mixture was s t i r r e d f o r 1 h. at -40°. With the temperature 
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maintained at -40° the mixture was then hydrolysed w i t h d i l u t e 

sulphuric acid and the mixture extracted with ether. The combined 

ether extracts were dried (MgSO^) and the ether d i s t i l l e d o f f to give 

a dark brown c r y s t a l l i n e material. Sublimation under reduced pressure 

afforded octafluoro-4,4 1 - b i p y r i d y l (2*9 g.» 32*232) i d e n t i f i e d from i t s 

i n f r a r e d spectrum, m.p. 80-82° ( l i t . 1 ^ 81 -82°) (from l i g h t petroleum-

ether (40 - 6 0 ° ) ) . 

(b) Reaction w i t h 3-chlorotetrafluoropyridine. To the Grignard 

reagent from 4-bromotetrafluoropyridine (2*3 g« > 0*01 mole) and magnesium 

turnings (1*0 g.) was added 3-chlorotetrafluoropyridine (1*85 g. • 

0*01 mole) at - 3 5 ° to -40°. Again a f t e r a few minutes the reaction 

mixture became dark blue and remained t h i s colour w h i l s t the reaction 

mixture was maintained at -40° over a period of 1 h. The mixture was 

then hydrolysed with d i l u t e sulphuric acid and the aqueous mixture 

extracted with ether. The ether extracts were washed we l l with water 

and then dried (MgSO^). The ether was removed by d i s t i l l a t i o n to give 

a brown c r y s t a l l i n e material. Sublimation under reduced pressure 

(4-5°» 0*1 mm.) afforded 3-chloroheptaf luoro-4.4* - b i p y r i d y l , (1 *7 g« • 

54$) m.p. 54*5° - 55*5° (from petroleum-ether, (40 - 6 0 ° ) ) . (Pound: 

C, 38'3; Cl, 11*2: Calc. fo r C ^ C I P ^ : C, 37'9i G l s 11-2/0. 
(c) Reaction with 3»5-dichlorotrifluoropyridine. To the Grignard 

reagent, prepared from 4-bromotetrafluoropyridine (2*3 g., 0*01 mole) 

and magnesium turnings (1*0 g.), was added 3,5-dichlorotrifluoropyridine 
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(2*02 g. , 0*01 mole) at -'t-0°. After a. few minutes the reaction mixture 

turned to a deep blue colour and remained t h i s colour whilst the 

reaction mixture was s t i r r e d f o r a further 1 h., the temperature being 

maintained at -35° to —is-0°. The mixture was then hydrolysed with d i l u t e 

sulphuric acid and the aqueous mixture extracted with ether. The ether 

extracts v/ere washed well with water and then dried (MgSÔ  ). The ether 

was removed by d i s t i l l a t i o n to give a dark brown c r y s t a l l i n e material. 

Sublimation under reduced pressure (55°> 0*1 mm.) gave 3»5-dichloro-

hexafluoro-4,V-bipyridyl (0*9 g., 27m3%)> m.p. 67*5 - 68*0° (from 

petroleum-ether, h-0-60° f r a c t i o n ) . (Pound: C, 36*4-; F» 33*6; 

CI, 20*8. Calc. for C 1 QC1 2F 6N 2: C, 36* (A-; P, 3^*2; CI, 21 

(d) Reaction with 3-h.ydrotetrafluoropyridine. To the G-rignard 

reagent prepared from 4-bromotetrafluoropyridine (2*3 g., 0*01 mol) and 

magnesium turnings (1*7 g«) was added 3-hydrotetrafluoropyridine 

(1*5 g«> 0*01 mm.) at -40°. No colour change was observed as the 

mixture was s t i r r e d for 1 h. at -30° to -^0°. The mixture v/as hydrolysed 

with d i l u t e sulphuric acid and the aqueous mixture extracted w i t h ether. 

The combined ether extracts were washed w e l l with water and dried 

(MgSO^). The ether v/as d i s t i l l e d o f f to leave a dark brown o i l which 

afforde d. cL d e a r l i q d i s t x l i a t xen under reduced pressure. No 

sublimable product was obtained. The l i q u i d was shown by a n a l y t i c a l 

v.p.c. to consist mainly of two peaks of nearly equal retention time. 

The retention times were consistent with those from samples of 3-> and 
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hydrotetrafluoropyridines. No further investigation was carried out. 

e) Reaction with 3 i 5-dihydrotrifluoropyridine. To the G-rignard 

reagent, prepared from 4-broraotetrafluoropyridine (1*15 6«> 0*005 mole) 
/ \ 1^ ' and magnesium turnings (0*5 g« ) was added 3 , 5-dihydrotrifluoropyridine " 

(0*67 g.» 0*005 mole) at - 4 0 ° . The solution was s t i r r e d at -40° f o r a 

further 1 h., again no colour change was observed. The mixture was 

hydrolysed with d i l u t e sulphuric acid and the aqueous mixture extracted 

with ether. The ether extracts were dried (MgSO^) and the ether 

removed by d i s t i l l a t i o n to give a black o i l . D i s t i l l a t i o n under reduced 

pressure gave a clear l i q u i d which analytical-scale v.p.c. showed to 

consist mainly of two components. One component had a retention time 

similar to 3 , 5-dihydrotrifluoropyridine and the other a retention time 

similar to k-hydrotetrafluoropyridine. No further investigation of 

these compounds was carried out. No b i p y r i d y l was isolated. 

Preparation of 2-Methoxy-3,5>6-trifluoropyridylmagnesium Bromide and 

Reaction w i t h Pentafluoropyridine. A three necked flask f i t t e d with 

s t i r r e r , condenser and dropping funnel, containing magnesium turnings 

(0*4 g.) and dry tetrahydrofuran (8 ml.), was purged with dry nitrogen 

and cooled to -10°. A solution of 2-methoxy-3,5»6-ti-ifluoro-J4--
159 

bromopyridine (0*5k g« > 0*0022 mole) i n tetrahydrofuran (3 ml.) was 

added and a f t e r 15 minutes the reaction commenced. The mixture was 

s t i r r e d at between 0° and 15° f o r a further 30 minutes. The mixture 

was cooled to 0° and pentafluoropyridine (0*37 g« > 0*0022 mole) added 
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dropwise over 10 minutes. The mixture was s t i r r e d at between 0 and 

- 1 0 ° f o r a further hour and then hydrolysed with d i l u t e sulphuric acid. 

The aqueous mixture was extracted with ether and the ether extracts 

washed well with water. The solvent was removed by d i s t i l l a t i o n affording 

a black c r y s t a l l i n e material. Sublimation under reduced pressure gave 

2^methoxyheptafluoro -4 ,4'-bipyridyl (0*05 g. > T/o) m.p. 97 -99° (from 

petroleum-ether, 40 -60° f r a c t i o n ) and was characterised from i t s infrared 

spectrum by comparison with that of a previously prepared sample. 

Preparation of 2,6-dimethoxy-3,5-difluorop.yridylniagnesium Bromide and 

the attempted reaction with Pentafluoropyridine. A three necked flask 

f i t t e d with s t i r r e r , dropping funnel and condenser, containing magnesium 

turnings (1 g.) and dry tetrahydrofuran (15 ml.), was purged w i t h 

dry nitrogen and cooled to 0 ° . A solution of 2 ,6-dimethoxy -3»5-difluoro-
159 

4-bromopyridine (1*27 g. > 0*005 mole) i n dry tetrahydrofuran (2 ml.) 

was added over 10 minutes. A f t e r addition of dibromoethane (1 ml.) and 

constant s t i r r i n g and s l i g h t warming the reaction commenced. Af t e r 0 °5 

h. the reaction vessel was cooled to 0° and pentafluoropyridine 

(0*85 g., 0*005 mole) added. The mixture was s t i r r e d for a further 

1 h. and then hydrolysed by the addition of d i l u t e sulphuric acid. The 

aqueous mixture was extracted with ether and the ether extracts washed 

well with water. The solvent was dried (MgSO^) and then removed by 

d i s t i l l a t i o n to give a dark-brown solid. Sublimation under reduced 

pressure afforded 2 , 6-dimethoxy - 3 i 5-difluoropyridine (0*5 g-» 58$) 
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m.p. 86*5 - 87*0° ( l i t . m.p. 8 7 ° ) i d e n t i f i e d from i t s infrared 

spectrum. 

Preparation of 2A,5»6-Tetrafluorop.vridylmagnesium Chloride and 

attempted reaction with pentafluoropyridine. A three-necked f l a s k 

f i t t e d w ith s t i r r e r , dropping funnel and condenser, containing magnesium 

turnings (1 *8 g. ) and dry tetrahydrofuran (25 ml.) v/as purged with dried 

nitrogen. The magnesium was activated by the entrainment method wi t h 

dibromoethane. A solution of 3-chlorotetrafluoropyridine (1*85 g., 0*01 

mole), dibromoethane (2 ml.), and dry tetrahydrofuran (2 ml.) was added 

dropwise over 15 minutes. The reaction did not s t a r t and required 

addition of several more drops of dibromoethane and heating before the 

reaction commenced. The mixture was cooled to - 3 0 ° and pentafluoro­

pyridine (1*7 g«> 0*01 mole) added. The mixture was s t i r r e d f o r a 

further 1 h. and then hydrolysed with d i l u t e sulphuric acid. The 

mixture was extracted with ether and the ether extracts dried (MgSO^). 

The solvent was removed by d i s t i l l a t i o n to y i e l d a black t a r . 

Prolonged pumping under high vacuum gave a dark brown s o l i d which did 

not sublime under reduced pressure and raised temperature. 

The sol i d had an infrared spectrum similar to that of polyfluoro-
14-6 

p y r i d y l s . 
170 

Reaction of Pentafluoropyridine with aqueous Ammonia. 

( i ) Pentafluoropyridine (20 g., 0*118 mole) and ammonia (30 ml., 

s.g. 0*88) were sealed i n a Carius tube and l e f t for 2h h. at room 
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temperature. A f t e r t h i s time the organic layer had s o l i d i f i e d . The 

contents of the tube were added to water and the aqueous mixture 

extracted w i t h methylene dichloride. The combined extracts were dried 

(MgSO^) and the solvent removed by d i s t i l l a t i o n to give a white s o l i d 

(18 g.). Sublimation under reduced pressure ( 9 0 ° / 0 * 1 mm.) afforded 

4-andnotetrafluoropyridine (18 g., 3Z?0) m.p. 84 -85° ( l i t . 1 7 0 8 5 - 8 6 ° ) 

i d e n t i f i e d from i t s infrar e d spectrum. 

( i i ) Pentafluoropyridine (13 g»> 0*077 mole) and ammonia (20 ml. 

s.g. 0*88) were sealed i n a Carius tube and heated to 130° f o r 17 h. On 

cooling the organic layer s o l i d i f i e d and the contents of the tube were 

then added to water. The aqueous mixture was extracted with methylene 

dichloride, the combined extracts dried (MgSO^), and the solvent 

removed by d i s t i l l a t i o n to give a brown s o l i d (9*7 S«)• Sublimation 

under reduced pressure afforded 2 , 4-diaminotrifluoropyridine (9*2 g., 

7tyo) m.p. 1 1 2 - 1 1 3 ° ( l i t . 1 7 5 1 1 1 - 1 1 2 ° ) i d e n t i f i e d from i t s i n f r a r e d 

spectrum. 

159 

Reaction of 4-Bromotetrafluoropyridine with Ammonia. 

4-Bromotetrafluoropyridine (6*0 g., 0*026 mole) and ammonia 

(10 g., s.g. 0*88) were sealed i n a Carius tube and heated at 80-100° 

for 6 h. On cooling the organic layer s o l i d i f i e d , which together with 

the remaining contents of the tube was added to cold water. The 

aqueous mixture was extracted with methylene dichloride, the combined 

extracts dried (MgSO^), and the solvent d i s t i l l e d o f f to give a dark 
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brown s o l i d (4*3 &» )• Sublimation under reduced pressure afforded a 

pale pink s o l i d . 2-anuno -4-bromotrifluoropyridine (3*7 g« J &3%) m.p. 

116-118° ( l i t . 1 ^ 116 - 117° ) » i d e n t i f i e d from i t s infrar e d spectrum. 

Oxidation of 2-Amino -4-bromotrifluoropyridine. 

A mixture of methylene dichloride (60 ml.), t r i f l u o r o a c e t i c 

anhydride (15 ml.), and ca. 80$ hydrogen peroxide (6*0 ml.) was s t i r r e d 
159 

and heated under r e f l u x f o r 20 min. A solution of 2-araino-4--bromo-

t r i f l u o r o p y r i d i n e (5*14 g* » 0*0023 mole) i n methylene dichloride 

(50 ml.) was then added to the r e f l u x i n g solution and the mixture 

immediately became bright green. The colour changed to pale yellow 

a f t e r 4-5 min. Hydrogen peroxide (3 ml.) was added a f t e r a further 

15 min., and then again a f t e r 3 h., together with t r i f l u o r o a c e t i c 

anhydride (3 ml.) and methylene dichloride (3 ml.). The mixture v/as 

s t i r r e d and refluxed for a further 16 h. and then allowed to cool. Water 

was then added carefully and the methylene dichloride layer separated 

o f f . The organic layer was then washed w e l l w i t h water, dried (MgSO^), 

and the solvent d i s t i l l e d o f f through a 12" Vigreux column to leave a 

pale brown o i l . D i s t i l l a t i o n under reduced pressure (90-94°/l '5 - 2 mm. ) 

of the residual l i q u i d (from P 2^5^ a f f o r d e < 3 - a yellow l i q u i d , 2 - n i t r o -
o 20 

4-bromo-trifluoropyridine (3*2 g. , b%) b.x>. 214-216 , 1 "5311. 

(Pound: C, 2 3 ' 8 ; P, 21*9; Br, 31 "3. C^OgFjBrNg requires: C, 23*4-; 

P, 22*2; Br, 31 ' 1 $ ) . 
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159 Reaction of k-Bromotetrafluoropyridine with Sodium Methoxide. 

( i ) To a s t i r r e d solution of bromotetrafluoropyridine (2*3 g . J 

0*01 mole) i n dry methanol (25 ml.) was added slowly, at 0 ° , a solution 

made f r o m sodium (0 ' 2 7 g« > 0*012 mole) and dry methanol (20 m l . ) . The 

r e a c t i o n was allowed t o warm to room temperature and then s t i r r e d f o r 

1 h . Water was then added and the aqueous mixture extracted with 

methylene dichloride. Removal of the solvent from the dried (MgSO^) 

extracts afforded a pale yellow l i q u i d (1*9 g. )• D i s t i l l a t i o n under 

reduced pressure afforded 4-bromo -2 ,3»5-trifluoromethoxypyridine 

(1*5 g. » 62/0 b.p. 1 8 9 - 1 9 1 ° ( l i t . 1 5 9 1 9 3 - 1 9 i f ° ) , i d e n t i f i e d from i t s 

i n f r a r e d spectrum. 

( i i ) To a s t i r r e d solution of 4-bromotetrafluoropyridine (V*6 g., 0* 

mole) i n dry methanol (U-0 ml.) was added dropwise, at room temperature, 

a solution made from sodium (1*12 g. , 0*05 mole) dissolved i n dry 

methanol (35 ml.). The reaction mixture was refluxed f o r '+5 min. and 

then treated as above. Sublimation of the product (3*9 g.) under 

reduced pressure followed by r e c r y s t a l l i z a t i o n from petroleum-ether 

(40 -60° f r a c t i o n ) afforded 4-bromo-3,5-ii-fluorodimethoxypyridine 

(2*7 , 53^) m.p. 121° ( l i t . 1 5 9 120*5 - 1 2 1 * 5 ° ) , i d e n t i f i e d by i t s 

i n f r a r e d spectrum. 

Reaction of 3 » 5 - d i c h l o r o t r i f l u o r o p y r i d i n e with Ammonia. 

3 , 5-Dichlorotrifluoropyridine (8*1 g., 0*04 mole) and ammonia 

(20 ml. s.g. 0*88) were s t i r r e d at 20° u n t i l the organic layer 

s o l i d i f i e d (ca. 2 h.). Water was added to the mixture and the aqueous 



- 139 -

mixture extracted with methylene dichloride. D i s t i l l a t i o n of the dry 

(MgSO^) extracts afforded a white s o l i d (7_'2 g. ). Sublimation under 

reduced pressure afforded 4-amino -3»5-dichlorodifluoropyridine (7*0 g., 

86)S) m.p. 114-°, ( l i t . 112-113°) ' i d e n t i f i e d by i t s i n f r a r e d spectrum. 

Reaction of 4-^hlorotetrafluoropyridine w i t h Ammonia 

4-Chlorotetrafluoropyridine (0*5 g. , 0*0027 mole), ammonia 

(2*0 g., s.g. 0*88) and acetone (5 ml.) were sealed i n a Carius tube 

and heated fo r 6 h. at 8 0 ° . The tube was then cooled, opened, and the 

contents added to water. The aqueous mixture was extracted with 

methylene dichloride, the combined extracts dried (MgSO^), and the 

solvent d i s t i l l e d o f f to give a brown s o l i d (0*35 g«)• Sublimation 

under reduced pressure followed "by r e c r y s t a l l i z a t i o n from petroleum-

ether (40-60° f r a c t i o n ) afforded white crystals of h— chloro - 2 , 3 » 5 -

trifluoroaminopyridine (0*3 g« > 60/0 m.p. 11'7-117'5° (Found: 

C, 33*1; H, 0*93. C^H^CU^requires C, 32*9; H, 1*1$). A correct 

halogen analysis could not be obtained. 

14-5 

Catalytic Reduction of 3-Chlorotetrafluoropyridine. 

3—Chlorotetrafluoropyridine (15*0 g., 0*08 mole) was dropped, 

over 2*5 h., into a f l a s h - d i s t i l l a t i o n f l a s k heated to 200°,through 

which a stream of dry hydrogen (50r-60 ml./min. ) was passing. The 

chlorofluoropyridine was immediately vapourised and carried i n the 

hydrogen stream over a palladised-carbon catalyst maintained at 250°. 

The product was collected i n a cold-trap ( l i q u i d a i r ) and dried by 
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vacuum d i s t i l l a t i o n from ¥<fi^' ^ n e product (7_*2 g. ) was shown by 

analytical-scale v.p.c. to consist of one main compound which was 

separated from the minor impurities by preparative-scale v.p.c. 

( t r i t o l y l phosphate as stationary phase at 1 2 0 ° ) and i d e n t i f i e d from 

i t s i n f r a r e d spectrum as 3-hydrotetrafluoropyridine (4*6 g., 38$ ) . 

145 

Catalytic Reduction of 3 » 5-Dicblorotrifluoropyridine. 

Using the same procedure as above, 3 , 5 - d i c h l o r o t r i f l u o r o p y r i d i n e 

(8*0 g., 0*04 mole) was flasked d i s t i l l e d at 240° and passed, i n a 

stream of dry hydrogen over the catalyst at 2 8 0 ° . The product was 

isolated as above, p u r i f i e d by preparative-scale v.p.c., and i d e n t i f i e d 

by i t s in f r a r e d spectrum as 3 , 5-dihydrotrifluoropyridine (2*7 g., 

52$) . 

Reaction between Pentafluoropyridine and Potassium chloride. 

Pentafluoropyridine (8*5 g«, 0*05 mole) and potassium chloride 

(120 g.) were heated i n a sealed autoclave (150 ml.) at 520° f o r 17 h. 

The autoclave was vented whilst s t i l l hot and the products collected i n 

cold trap ( l i q . a i r ) . Analytical-scale v.p.c. showed that the product 

( k ' 7 g. ) consisted of two major components i n the r a t i o 2:3* The f i r s t 

component had a retention time equal to that of pentafluoropyridine and 

the second component had a retention time equal to that of monochloro-

tetrafluoropyridine. The second component was isolated by preparative-

scale v.p.c. ( s i l i c o n e elastomer on c e l i t e at 1 0 0 ° ) and i d e n t i f i e d as an 
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equi-molar mixture of 3 - and 4-chlorotetrafluoropyridines, b.p. 118 

(Found: C, 32*3. C^CIN requires C, 32*3$)» The orientation of 

the chlorotetrafluoropyridines were determined from nuclear magnetic 

resonance spectra. 



PART I I . 

NUCLSQPHILIC SUBSTITUTION IN POLYFLUOROBIPYRIDYLS 

CHAPTER 5 

INTRODUCTION 
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Nucieophiiic Substitution i n Aromatic and Heteroaromatic Polyfluoro-

Compounds. 

Tlie introduction of functional groups i n t o the polyfluoro-

aromatic nucleus via nucieophiiic substitution reactions has been 

extensively investigated mainly by the workers at Birmingham and at 

The National Bureau of Standards. Nucieophiiic substitution i n poly-

fluoropyridines has been investigated by the workers here at Durham 

and to a minor extent by the workers at Manchester. 

Nucieophiiic substitution reactions which involve the elimination 

of f l u o r i d e ion probably occur by way of a reactive intermediate 

complex analogous to that proposed by Bunnett and Zahler f o r 

aromatic bimolecular nucieophiiic s u b s t i t u t i o n . 

175 17o" 
Nucieophiiic substitution i n Hexafluorobenaene. 

F 

+ N 

F 

+ F 

Hexafluorobenzene has been reacted with a number of nucieophiiic 

reagents and a whole series of pentafluorophenyl derivatives have been 

obtained; the conditions under which these reactions take place are 

shown i n TABLE 13. 
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TABLE 13 
Nucleophilic Substitution i n Hexafluorobenzene 

Nucleophile Reaction Conditions Product Reference 

CH 0 CĤ OH, CĤ ONa, r e f l u x CcF..OCH, 178,179 3 D ? 6 o 3 
p-OCH3C6FifOCH3 

CĤ OH, CĤ ONa, pyridine.CgFOCH^ 177 
r e f l u x 

CgHjCT C^OH, C^OK, re f l u x CgF^OC^ 180 

C,HcCH_0~ Ĉ H-CH-QH, Ĉ H-CH-ONa, CJ_0CHoC,H_ 168 6 5 2 6 5 2 ' 6 5 2 6 5 2 6 5 
re f l u x 

OH KOH, pyridine, ethanol, CgF OH 177 
r e f l u x C6F^(OH)2 

KOH, pyridine, r e f l u x CgF̂ OH 177 

t-butanol, KOH, C f ; F q 0 H 1 8 0 

r e f l u x 5 

KOH aq. C 6 F 5 ° H 1 6 8 

MaOH aq., heat No reaction 180 

168 
CgĤ O D.H.F., 120 , CgĤ OK CgF̂ -O-CgĤ  

CgF^o" D.M.F., r e f l u x CgF̂ OK CgF^-O-CgF^ 

SH~ NaSH, pyridine, r e f l u x CgF̂ SH 181 

CgH^S" PhSK, pyridine, r e f l u x p-CgH^S-CgF^-S^ 182 

F 
P h S ^ ^ ^ S P h 

PhS Y SPh 
F 
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Nucleophile 

p-HCgF^S' 

o-NH2CgH^S 

NH2 

(C 6H 5) 2N-

NH, 

CĤ NH, 

TABLE 13 (Cont.) 

Reaction. Conditions Product 
p-HCgFjSK, pyridine, p-HCgF^S-CgF^-SCgFjH 
r e f l u x 

o-NH CgHjSNa, pyridine,p-NHgCgH^S-CgF^-SCgF^N^ 
r e f l u x 

NaNH2, NH l i q . CgF^H, 

NaH, CgH^NHg, dioxan, CgF̂ NHCgĤ  
r e f l u x 

CeF^ll2, Na, l i q . NĤ , CgF^NHC^ 
ether 

NaH, (CgH^NH, dioxan,CgF^-N(CgH^)2 

copper powder p(CgH ^-CgF^-NCCgH ) 2 

(C 6F 5) 2NH, p-Tolyl- CgF^N (CgF^ 2 

sodium, heptane,dioxan 

aq. ethanolic NH^, 
167°/18 h. 

aq. NH?, 235°/2 h. 

C6F5NH2 

C6F5NH2 

W N V 2 

CHyNI^, C^OH, H20 p-CĤ NH-CgF̂ -NHCĤ  
270 0/12 h. 
PIT T'.ITT C H OH W D C -F WHCT-T 

115°/2^ h. 
aqueous CĤ NHg CgF̂ NHCĤ  
220°/3 h. 

p-CH NH-CgF̂ -NHCH 

Reference 

182 

182 

183 

184 

184 

184 

185 

168 

168 

185 

185 

168 

168 
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Nucleophile 

(CH ) KH 3 2 

H2N.NH2 

TABLE 13 (Cont.) 

Reaction Conditions Product 

aq.(CH 5) 2NH,235°/2 h. CgF^CCH^) 2 

C 6F i fD^(CH 3) 2] 2 

H2N .NH2. H20., H20, C^OH CgF̂ NHNĤ  
re f l u x 

Reference 

168 

166 

185 

CH. 

CH,CH CH.CH-
3 2 2 2 

CH5.CH=CH 

GH2=CH 

H 

CH^Li,e ther,pentane 
r e f l u x 
CH^MgBr, ether 

CgF5CH3 

C6F5CIS 
CH,CfT CH CH_Li, ether C,Fr-CH_CHnCH,,CH-. 3 2 2 2 ' 6 5 2 2 2 3 

-10 
CH,CH=CI-ILi, ether 

3 
r e f l u x 1 h. 

CH"2=CHLi, ether, 
r e f l u x 

CgH^Li, ether, 
Zh h./20° 

CgH^Li, ether 

r e f l u x 3 li« 

C,-F -CH=CHCH, 6 5 3 

C6F5-CH=CH2 

C6V C 6 H 5 

C 6 F

5 - C 6 H 5 

P-C6H5"C6 F4-C6H5 
LiAlH^, ether, r e f l u x , CgEVH 
8 h. 
LiH, ether, r e f l u x . No reaction 
or 200°/2ii- h. 

168 

177 

168 

168 

168 

168 

186 

168 

168 

HOCĤ CH 0 

H0CH2CH2NH2 

NaOH, ethylene g l y c o l , CgF OCHgGH OH 
ref l u x 

NH2CH2CH20H,C2H50H, 
H20, 110°/22 h. 

C^NHCH^CH OH o p 2 2 

187 

187 



- Ik6 -

TABLE 13 (Cont.) 

Mucleophile Reaction Conditions Product 

NH2CH2CH2NH2 NI^CEyiH^H^, CgH OH, 
H20, 110°A3 h. 

Reference 

187 

H0CH2CH2S H0CH2CH^SH,K2C0 , 
dioxan, r e f l u x 

p-HOCĤ CH-S-C.F,-SCH.CH-OH 18? 2 2 0 H 2 2 
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I n general, nucieophiiic substitution reactions proceed readily 

and high yields ( i n the region of 70%) of the pentafluorophenyl 

derivatives are obtained. The functional groups introduced i n t h i s 

way can be further treated to give other pentafluorophenyl derivatives 

using the standard reactions of organic chemistry. For example, 
177 178 

pentafluoroanisole can be demethylated with HI, HBr or AlCl 
178 

yielding pentafluorophenol, and as already shown, pentafluoroaniline 

can be diazotised i n hydrofluoric acid with sodium n i t r i t e . ' 

OCH. 
AlCl. 

3 h. 
120° 

(58%) 

Nucieophiiic Substitution i n Pentafluorophenyl Compounds 175 

6 5 N-CgF̂ -X + F 

Many nucieophiiic replacement reactions of pentafluorophenyl 

derivatives are known and are l i s t e d i n TABLE 14. Nucieophiiic 

substitution i n pentafluorophenyl derivatives takes place under 

conditions similar to those under which hexafiuorobenzene i s substituted, 

with the following general proviso: "The more electron-withdrawing 

the substituent X i s over f l u o r i n e , the more readily the substitution 

w i l l proceed r e l a t i v e to hexafluorobenzene, and conversely, the more 
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TABLE 14 

Reaction of Pentafluorophenyl Derivatives v/ith Nucleophilic Reagents 

C,FJ + N o 5 

Pentafluoro­
phenyl 
derivative 
C 6 V 

N-CgF̂ -X 

Nucleophilic Reagents 
N 

+ F (N = nucleophile) 
Orientation of Products „ „ 
(> 9Q# unless stated) Reference 
ortho meta para 

CF. 

CF2CF3 

GH. 

C 6 H 5 
H 

NO 

LiAlH^jCH^Li,KSCgH,_, 
NH2NH2,NaSH,NH3, 
C2H ONa 

KOH (t.butanol) 

LiAlH^,CH^Li,NH2NH2, 
NH,,CH,ONa 

3 3 
KOH (t-butanol) 

CH50Na,NH2NH2,NH3, 

CH,Li 
3 

NHgNHgjHH ,NaSH 

NaSH,KSCgH , o-NiyjgH^SNa, 
KSCgF̂ H.CH ONa.NH 

LiAlH, 

NH2.NH 

CH,ONa 
3 

(CH3)2NH 

CE^2 

para 188 

7 

3 

(polyphenols) 

para 189 

1 

'0.5 

(No) 

( C 8 F 8 0 )n 
para 

para 

para 

para 

92 

96-5 

>90 

>90 

(60) 

190 

166 

186 

T75.1S2, 
185,181 

191 

191 

192 
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TABLE 14 (Cont.) 
Pentafluoro­ Nucieophiiic Reagents Orientation of Products Reference 
phenyl 
derivative 
C 6 F 5 X 

N ( > 90% unless stated) 
ortho meta para 

X 

COOH NaOCH 
NaSCH^ 

90 

90 
decarboxylation 193 

CH3NH2 37 63 
(CH ^ H 45 55 

N0 2 NH^ 
CH^!H2 

69 
65 

31 
35 

194 

(CH ^ H 19 81 195 
CĤ ONa 3 92 

OCH, 3 CH ONa 16 32 52 190, 168 
CH^Li 10 3^ 56 190 

CI LiAlH^jNH .CHjONa, 
NH .NH 

25 5 70 196 

Br KOH 
CH ONa.NH 

(20) (80) 
para 

168 
168 

I CHjONa.KOHjNHj para 168 

OH KOH (t.-butanol) >90 190 

NH2 NH^ 0 87 13 
CH^flH 
(CH^gNH 

0 
0 

88 

90 

12 
10 197 (185) 

CĤ ONa 5 79 16 

NHCH, NH, 3 
CH5NH2 

(CH ^ H 

0 40 60 NH, 3 
CH5NH2 

(CH ^ H 

60 

52 

40 
48 

197 (185) 

CH ONa 5 93 52 
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Pentafluoro-
phenyl 
derivative 
C 6 F 5 X 

X 

N(CH 3) 2 

TABLE 14 (Cont.) 

Nucleophilic Reagents Orientation of Products Reference 
( > 90$ unless stated) N 
ortho meta para 

NH_ 
3 

CĤ NHg 

(CH 

CĤ ONa 

0 

3 

1 

7 

6 

5 

2 

93 

9k 

92 

97 

197 
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electron-donating X i s over f l u o r i n e , then replacement i s only 

accomplished i f more forcing conditions are used." 

The introduction of a further substituent i n t o the pentafluoro-

phenyl nucleus has given r i s e to some in t e r e s t i n g o r i e n t a t i o n a l problems 

Varying amounts of ortho, meta, and para substitution have been recorded 

the orientations depending on the group already present i n the f l u o r o -

aromatic r i n g . When X = CĤ , CF^, Ĉ F̂ , CgH,., Br, I and H nucleophilic 

substitution takes place mainly at the para position r e l a t i v e to X. 

When X = CĤ O and CI substantial amounts of ortho, meta, and para 

replacement take place, although the para isomer s t i l l predominates. 

When X = OH and NH,, nucleophilic substitution takes place at the meta 

position, although nucleophilic substitution i n pentafluoroaniline gives 

some cf the para isomer. 'When X = NO,,! COOH and NO varying amounts of 

ortho and para substitution are obtained depending upon the nucleophilic 

reagent used. 

I n i t i a l l y i t was suggested that the fi v e fluorine atoms i n the 

benzene r i n g determined the position of replacement which was para to X, 
19*f 

and that X i t s e l f may either enhance or oppose t h i s e f f e c t . This 

suggestion i s based on the observation that e l e c t r o p h i l i c substitution 

i n fluorobenzene takes place para to the fluorine atom and hence by 

analogy t h i s position should be the least susceptible to nucleophilic 

attack. Thus fo r pentafluorobenzene the combined e f f e c t of the f i v e 

f l u o r i n e atoms should leave the fluorine atom para to the hydrogen atom 
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most susceptible to nucleophilic attack. Substituents i n place of 

hydrogen can be considered as having a modifying influence on t h i s 

directing e f f e c t of the f i v e fluorine atoms. Groups only weakly electron 

a t t r a c t i n g or re p e l l i n g would be expected only to influence the r e l a t i v e 

rate of replacement of the fluorine atom para to them. Groups strongly 

electron-repelling, however, should increase by a conjugative mechanism, 

the electron density at the ortho and para positions more than at the 

meta position, the amount of meta replacement, as compared with penta-

fluorobenzene, should therefore increase, while the overall rate of 

reaction decreases. Strongly electron-attracting substituents should 

decrease the electron density at the ortho and para positions and 

increase the rate of reaction of substitution at these positions. 

Although t h i s argument gives a general picture for the orientation 

of nucleophilic replacement i n pentafluorophenyl derivatives of hexa-
154 

fluorobenzene, Burdon has pointed out that i t i s unsatisfactory i n 

a number of cases. 
168 

Pummer and Wall have suggested that the r e a c t i v i t y of the 

nucleophilic reagent plays an important role i n determining the 

orientation of the products. From the results i n TABLE 14 i t i s 

obvious that the nucleophilic reagent used has some bearing on the 

orientation of the products and so also has the solvent ( t h i s v / i l l be 

discussed more f u l l y l a t e r ) i n which the reaction i s ca.rried out. 
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15N 

Burdon has rationalized the orientations of the products obtained 

when pentafluorophenyl derivatives are reacted with nucleophilic 

reagents by considering the r e l a t i v e s t a b i l i t i e s of the Wheland-type 

intermediates involved. 

The high ortho replacement i n pentafluoronitrobenzene, pentafluoro-

benzoic acid, and pentafluoronitrosobenzene with amines has been 
135 197 

at t r i b u t e d to hydrogen bonding, ' the amount of ortho substitution 

derninishing when sodium methoxide was reacted v/ith the pentafluorophenyl-

derivative. 

The va r i a t i o n i n the position of substitution i n pentafluoro-aniline, 

-N-methylaniline, and -NN-dimethylaniline has been a t t r i b u t e d to st e r i c 
197 

i n h i b i t i o n of resonance. With pentafluoro-NN-dimethylaniline, the 

ortho fluorine - N-methyl interactions have been postulated to bend or 

twis t the NN-dimethyl group out of the plane of the ri n g and hence the 

eff e c t of the nitrogen lone-pair on the r i n g i s reduced. The NN-dimethyl 

group therefore behaves largely as an i n e r t substituent analogous to 

pentafluorobenzene and as can be seen leads to pr e f e r e n t i a l para 

replacement. Similarly with N-methylpentafluorobenzene, the same ef f e c t 

w i l l operate but not to the same extent and as seen i n TABLE 1N 

approximately equal ortho-para s u b s t i t u t i o n i s observed. With penta-

fluo r o a n i l i n e no ortho fluorine interactions take place and the lone pair 

can i n t e r a c t v/ith n-electron system of the r i n g , deactivating the ortho 

and para positions towards nucleophilic attack. 
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Nucleophilic Substitution i n Tetrafluorobenzene Derivatives. 

X-CgF̂ -Y + N" > X.Y.CgF̂ N + F~ 

Disubstituted tetrafluorobenzenes have been reacted with various 

nucleophilic reagents, the results of which are shown i n TABLE 15. 

The orientations of the products can be determined by the summation 

of the effects due to each substituent X, Y i n the r i n g , and comparing 

them with the observations outlined i n determining the orientations i n 

substituted pentafluorophenyl derivatives. 

Nucleophilic Substitution i n Pentafluoropyridine. 

R 
3 

N 
F 6 ^ •N i 

Nucleophilic attack i n pentafluoropyridine takes place i n the 

majority of cases at the ^-position, followed by substitution at the 
/ 

2- and 6-positions. The reactions between nucleophilic reagents and 

pentafluoropyridine are l i s t e d i n TABLE 16. Only two cases of pr e f e r e n t i a l 

replacement of the 2—fluorine atom have been reported i n the l i t e r a t u r e . 

Phenyl-lithiura reacts readily with pentafluoropyridine to give mainly 

Jf-phenyltetrafluoropyridine ( > 95$) and another isomer (< 5$>) i t h i s 

isomer presumably being 2-phenyltetrafluoropyridine. The more i n t e r e s t i n g 
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TABLE 15 

Nucleophilic Substitution i n Polyfluorobenzenes Containing two 
Functional Groups. 

Starting Material Nucleophilic Reagent(N) Orientation of Product Ref. 

• F 

F 

CĤ ONa, NH2NH2, 
LiAlH, 

N 

F 

198 

CĤ ONa, NH2NH2 

LiAlH, 
198 

F CĤ ONa -N 198 

CF 
CF 3 NaSH,NH2NH2,NH5 

CF-
.CF. 

F 
199 

CF. 

^CF. 

NH2NH2,N aSH,CH^Li, 
CĤ ONa 

200 

N 
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TABLE 15 (Gont.) 

Starting Material Nucieophiiic Reagent (N) Orientation of Product Ref. 
CF CF. 

F 

i 
CF. 

CH^Li,CgH^Li,CH^ON a, 
NH5,NH2NH2,KSC6H5, 
NaSH.LiAlH^ 

F 

CF. 

N 
199 

NO, 
.NH, 

NO, 

r-iii. 

NO 

C^ONa 

NH_ 

NH. 

OC_H 

NO, 
NH, 

F 

NK 

NO, 

194 

OCH. 
F 195 
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TABLE 16 

Reaction between Pentafluoropyridine and Nucieophiiic Reagents 

Nucleo-
phile 

Reaction Conditions Product Reference 

CĤ O CHjCi^CH ONa, 
0 ° , 15 min. 

CH_0H,CH,0Na 
20 , 15 min. 

2,4(OCH 3) 2.C 5Fyi 

148 

148 

OH 

NH_ 

3 2 ' 

CH,0H,CH,0Na 
3 3 

4-OCH^.C^^N (57%) 149 

r e f l u x , 3 h» 

CĤ OHjCH CNa 2,4 f6-(0CH ) .C^gN (74%) 149 
r e f l u x , 6 h. 

2,4 f6-(0CH ) .C^gN (74%) 

aq.KOH, 85°, 20 h. 4-OH.C^FjN (63%) 148 

KOH, t-butanol, 
r e f l u x , 90 min. ^ O H - c

5

F 4 N ( 9 ^ ) (65%) 
2-0^0^^1(10%) 

148 

aq.NaOH, re f l u x , 2 h. 4-OH.C^N (58%) 149 

40% NaOH, 80°, 12 h. 2,4-(OH) g . t y y i (20%) 149 

KOH, t-butanol, 
r e f l u x , 2*5 h. 

4-OH.C^N (64%) 149 

NH^ aq., 80° , 2 h. (70%) 148 

NH^ aq., 130° 2,4-(NH 2) 2.C 5F^t 201 

ethanol, NH^ aq., 
110°, 8 h. 

4-NHp.C^N (81%) 149 

(CH ^H,ethanol,0° 4-(CH 5) 2N . 0 ^ ( 5 1 % ) 149 

(CH ) 2NH,ethanol 2 ,4-((CH 5) 2N) 2.C 5F 5N (82%) 149 

100 , 20 h. 
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Nucleo- Reaction Conditions Product Reference 
phile 

NH2.NH2 NH2.NH2.H20, dioxan, ^-NI^NH.C^N (70$) 148 
refluxed, 2 h. 

NH2.NH2.H20, ethanol, Jf-NHgNH.C^N (755*) 1̂ 9 
0°, 2 h. 

C 6 H
5 " ^ L i , ether, ( > 95*) ( 2 ^ y 1« 

r e f l u x , 1 h. x-CgH .C^N (< 5$) 

CHj.GH=GH CH3.CH=CHLi, ether I H C H C H = C H . C _ F . N (66#) 1̂ 9 
-20° to 20° (equi-mole) ^ 5 

GHj.CHsCHId, ether 2,4-(CHjCH=CH) 2.C^N (62#) 1̂ 9 
-20° 
1:2) 
-20° to 20° (mole r a t i o 

H LiAlH^, ether, i n i t i a l l y -̂H.Ĉ F̂ N 1̂ 9 
at 0°, then r e f l u x h h. 
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case of 2-substitution i s the reaction of potassium hydroxide with 

pentafluoropyridine. When potassium hydroxide i s reacted with penta-

fluoropyridine i n aqueous solution only 4-hydroxytetrafluoropyridine 

i s obtained. When the reaction i s carried out i n t-butanol 2-, and 

4-hydroxytetrafluoropyridines ( i n the r a t i o 1:9) are obtained. The 

difference between reactions carried out i n aqueous solution and t-butanol 

has been a t t r i b u t e d to the active part played by the t-butoxide ion i n 

the reaction. 

Nucleophilic Substitution i n Perhalogenofluoropyridines. 

The preparation of pentafluoropyridine involves the halogen exchange 

reaction between chlorine and fluor i n e i n pentachloropyridine and as a 

consequence substantial amounts of 3"chlorotetrafluoropyridine and 3t5-

d i c h l o r o t r i f l u o r o p y r i d i n e are obtained as by-products. These 

chlorofluoropyridines have been reacted with various nucleophilic reagents, 

the results of which are shown i n TABLE 17 • 3-Chlorotetrafluoropyridine 

reacts with ammonia, hydrazine and l i t h i u m aluminium hydride to give the 

^-substituted chlorofluoropyridine. With potassium hydroxide a d i f f e r e n t 

r a t i o of isomers i s obtained depending on whether the reaction i s carried 

out i n aqueous solution or i n t-butanol. With aqueous potassium 

hydroxide a mixture of k- and 6-substituted hydroxy compounds i s 

obtained ( r a t i o 9S1)» whereas when the reaction i s carried out i n t -

butanol *f-, 6-, and 2-hydroxychlorofluoropyridines ( i n r a t i o 5505:10) 
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TABLE 17 

Reaction between Halogenofluoropyridines and Nucleophilic Reagents. 

Nucleophile 

3-Chlorotetrafluoropyri-
dine 

OH" 

NH, 

NH2.NH2 

H 

^-Chlorote t r a f l u o r o -
pyridine 

NH. 

^—Bromotetrafluoropyri-
dine 
NH 

OH" 

CĤ O 

Reaction Conditions Products Ref. 

KOH, t-butanol, 
r e f l u x , 90 min. 

KOH aq. 85 , 20 h. 

NH^ aq., 80 , 1 h. 

N H ^ H . H O , 20°, 
dioxan, 15 min. 

LiAlH^, ether 
r e f l u x , JO min. 

If-OH.C^F C1M (55/*) 

6-OH.C^FjCIN (33*)(79#) 202 

2-OH.C^FjCIB dog) 

4-0H.C,_F C B I(90%) 
^ * (63%) 202 

6-011.0^01^(10^) 
5 3 

4-NH2. C ^ C I M (85^) 202 

4-MH2NH. C^F C1M (7QS£) 202 

^-H.C^CIK 57 

NĤ OH, 80 , 6 h. 2-NH2.C5F3ClH (60#) 
acetone 

NH aq., 85 , 2 h. 

t-butanol,KOH, 
r e f l u x , 2 h. 

CĤ 0H,CĤ 0Na, 
0-20°, 30 min. 

CH,0H,CH,0Na 3 3 
r e f l u x , .?0 min. 

2-NH .CJT BrN(86^) 159 

2-OH.C5F5BrN(9^i) 159 

2-OCH,.C_F_BrN(903lQ 159 
3 5 3 

2,6-(0CH5)?.C5F2BrN 159 
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Nucleophile 

TABLE 17(Cont.) 

Reaction Conditions Products Kef. 

^,3-Dichlorotrifluoro-
pyridine 

OH 

CĤ O 

KOH, t-butanol, 
r e f l u x , 90 min. 

KOH, water, 85 , 
20 h. 

GH70H,CH^0Na, 
10 , 20 rnin. 

2-OH.C_F„Cl_N(70&) 202 

4-0H.G5F2Cl2M(3^) 

k-OE. C^Cl^N (90^) 202 

2-0H.C5F2Cl2N(l0%) 

4-0CH_.C_F_Cl_N( 80$g) 202 J? y 2 2 
214-(0CHJ_.C_FC1 _N 

3 2 5 2 
( 2020 

NH2.NH NH2.NH2.H20, dioxan ^-NH^H.C^Cl^(90g) 202 
10-20°, 20 min. 

NH NH3 aq., 80 , 15 m i n . ' H N I ^ . C ^ C l ^ I ( 2 0 2 
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are obtained. The same trend i s observed i n 3,5-dichlorotrifluoropyridine 

which reacts with sodium methoxide i n methanol»ammonia i n aqueous 

solution and hydrazine i n dioxan to give only replacement of the k-

f l u o r i n e . However, with aqueous potassium hydroxide a mixture of isomers, 
if-hydroxy-3,5-dichloro-, and 2-hydroxy-3,5-dichlorodifluoropyridines 

( i n the r a t i o 9:1) i s obtained, but when the reaction i s carried out i n 

t.-butanoi the r a t i o of ̂ -hydroxy-, to 2-hydroxy-3,5-dichlorodifluoro­

pyridine i s 3s1* 

Again the var i a t i o n of the r a t i o of isomers has been explained by 

the p a r t i c i p a t i o n of t.-butoxide ion i n the reaction. 

Nucleophilic substitution i n *f-chloro-, and ^-bromotetrafluoro­

pyridine takes place at the 2-position. 

Order of Reactivity between Pentafluoro-, 3~0hlorotetrafluoro-, and 
20? 

3,3~Dichlorotrifluoro-pyridines. 

The order of r e a c t i v i t y ; determined by competition experiments 

v/ith ammonia, tov/ards nucleophilic substitution increases i n the 

series Ĉ F̂ N < 3-ClC,_FiN < Cl^^F^N i n the r a t i o 1:3-7:12*6 respectively. 

This trend i s consistent v/ith the known greater resultant (of inductive 

and mesomeric effects) electron withdrawing capacity of chlorine over 

fluorine i n aromatic systems. 

Nucleophilic Substitution i n 4-Substituted Tetrafluoropyridines. 

As already indicated 't-halogenotetrafluoropyridines react with 

nucleophilic reagents with displacement of the fluorine atom from the 
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2-position. This trend i s followed with ^amino-, and 4-methoxy-tetra-

fluoropyridines. *t-Aminotetraf luoropyridine reacts with ammonia at 
o 1̂ f9 150-135- to give 2,^-diaminotrifluoropyridine. S i m i l a r l y Haszeldine 

has reacted ^-methoxytetrafluoropyridine with sodium methoxide obtaining 

2, ̂ f-dime t h o x y t r i f luoropyridine. 

Nucleophilic substitution i n A—nitrotetrafluoropyridine has been 
201 

investigated by the i^orkers at Durham, and as i n the case of 

pentafluoronitrobenzene, the electron withdrawing effe c t of the n i t r o 

group has rendered the r i n g system more susceptible to nucleophilic 

attack. ^-Nitrotetrafluoropyridine reacts with ammonia at 0° to give 

the products shown. 
MO 

NH NH_.ether 
+ ft 

0 

(27 mole %) (A-8 mole %) (25 mole %) (trace) 

Unlike pentafluoronitrobenzene, ^ - n i t r o t e t r a f l u o r o p y r i d i n e reacts 

with ammonia with displacement of the n i t r o group leading to 4-amino-

tetrafluoropyridine. This i s the f i r s t reported nucleophilic sub­

s t i t u t i o n reaction i n which a n i t r o group has been replaced i n preference 

to f l u o r i n e . The high percentage y i e l d of 3-a-mino-^f-nitrotrifluoro­

pyridine has been a t t r i b u t e d to hydrogen bonding between ammonia and the 



- -\6k -

n i t r o group, which i s consistent with the results obtained by the 
igZj. 195 

Birmingham -workers 1 from the reaction of ammonia v/ith penta-

fluoronitrobenzene. 

Reaction of 4-nitrotetrafluoropyridine with sodium methoxide has 

been investigated and again replacement of the n i t r o group by the 

attacking nucleophile i s observed. 

MO NO NO OCH 
OCH CHONa 

CH'OH 
N 0 

(70 mole %) (7 mole %) (23 mole %) 

Rationalization of Orientation and Reactivity of Nucleophilic Replacement 
Reactions i n Pentafluoropyridine. 

Analogies have been drawn betv/een pentaf luoropyridine and 

pentafluorobenzene to ration a l i z e the replacement of the fluorine atom 

at the *f-position by nucleophilic reagents. Nucleophilic substitution 

i n pentafluorobenzene takes place para to the hydrogen, the position of 

substitution being said to be governed by the overall e f f e c t of .the 

f i v e fluorine atoms. Simi l a r l y i n pentafluoropyridine the nucleophile 

enters the position para to the nitrogen and by comparison with penta-

fluorobenzene, the orientation was said to be governed by the f i v e 

fluorine atoms. 
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The nitro-group i n tetrafluoro-4-nitropyridine has been shown to be 

displaced by nucleophilic reagents, but not i n pentafluoronitrobenzene 

or 2,3,5,6-tetrafluoronitrobenzene. As the nitro-group and fluor i n e are 

comparable i n t h e i r e f f iciency as leaving groups i n nucleophilic aromatic 
174 

substitution, i t has been concluded that the r i n g nitrogen i s the 

greatest single factor i n determining the orientation of nucleophilic 

attack i n pentafluoropyridine. 

Pentafluoropyridine has been shown to undergo nucleophilic d i s ­

placement of fluoride ion more readily than hexafluorobenzene. Quantitati' 

reaction of pentafluoropyridine with aqueous ammonia occurs at 80° over 

2 h. (by the author at 20° over 2h h.), whereas a temperature of 16?° 

i s reported for the corresponding production of pentafluoroaniline from 

hexafluorobenzene. The same ease of replacement of fluorine i n penta­

fluoropyridine over hexafluorobenzene i s again noted i n the reactions 

with sodium methoxide. Sodium methoxide reacts rapidly with pentafluoro­

pyridine at 0° affording the mono-ether and at 20° quantitative conversion 

to the diether i s obtained. For the analogous preparation of penta-

fluoroanisole from hexafluorobenzene, the substrate has to be refluxed 

for 1 h. with sodium methoxide to give the mono ether* I t has also 

been shown that pentafluoropheriylmag-nesium bromide reacts with penta— 

fluoropyridine to give 4-(pentafluorophenyl)tetrafluoropyridine whereas 

pentafluorophenylmagnesium bromide w i l l not react with hexafluorobenzene 
159 

under the same conditions. 
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This increased r e a c t i v i t y of pentafluoropyridine over hexafluoro-

benzene i s consistent with the electron-withdrawing e f f e c t of the r i n g -

nitrogen i n pyridine, deactivating the r i n g system towards electro-

p h i l i c attack, and by analogy, activating the system towards nucleophilic 

attack. 



C H A P T E R 6 

DISCUSSION OF EXPERIMENTAL, PART I I . 
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Nucleophilic Substitution i n Polyfluorobipyridyls. 

Several polyfluorobipyridyls have been reacted with various 

nucleophilic reagents and the orientation of the products determined 

from nuclear magnetic resonance spectra (CHAPTER 8). 

The introduction of substituent groups i n t o the bipyridyls can be 

regarded, i n general, as being similar to nucleophilic substitution i n 

pentafluoropyridine and i t s derivatives. 

Nucleophilic Substitution i n Polyfluoro-2,2'-bipyridyls. 

Octafluoro-2,2 1-bipyridyl(l) reacts at room temperature with one 

equivalent of sodium methoxide to give the mono-(ll) and d i - e t h e r ( l l l ) 

i n the r a t i o 1 respectively. 

OCH OCH OCH 1 2 

=J N N K 20 

( I ) ( I I ) ( I I I ) 

The position of substitution has been shown to be para to the 

nitrogen i n each r i n g system, consistent with results obtained fo r 
148 149 

nucleophilic attack i n pentafluoropyridine. ' 

Reaction of sodium methoxide with 3-chIoroheptafIuoro-2,2'-

b i p y r i d y l ( l V ) at room temperature produced two isomers of the mono-

ether, 3-chloro-^-methoxyhexafluoro-2,2'-bipyridyl(V) and 3-chloro-V-

methoxyhexafluoro-2,2'-bipyridyl(Vl), i n the r a t i o 2:1, along with the 
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di-ether, 3-chloro-4,4 1-dimethoxypentafluoro-2,2 1-bipyridyl(VIl) 

CI OCH CI OCH 3 / 

X CHONa 
CH_OH 
20 

r a t i o 2:1 IV) (V) (V. I ) 

CI OCH 5 1 

H F 
(VII) 

Again the orientation of the products i s that expected from 

considerations i n the polyfluoropyridine series. The i s o l a t i o n of two 

isomers of the mono ether i s in t e r e s t i n g i n view of the work carried 
202 

out on 3-chlorotetrafluoropyridine. 3~Chlorotetrafluoropyridine 
reacts with sodium methoxide to give predominately ( ~} 95%) 3-chloro-

141 
4-methoxytrifluoropyridine. 'With potassium hydroxide, i n aqueous 

solution or t-butanol, a mixture of isomers i s obtained, the cause 

being a t t r i b u t e d to st e r i c hindrance. 3-Chlorotetrafluoropyridine 

also afforded a mixture of isomers when i t was reacted v/ith sodium 

iso-propoxide i n iso-propanol. I n 3-chloroheptafluoro-2,2'-bipyridyl 

there are two positions i n the molecule that w i l l be of similar 

r e a c t i v i t y towards nucleophilic reagents i . e . the h- and the Ap­

positions. The k-position should be the more reactive of the tv/o due 
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to the known greater resultant (of inductive and mesomeric effects) 

electron withdrawing capacity of chlorine over flu o r i n e i n an 

aromatic system. However, as indicated the ^-position i n 3-chloro-

tetrafluoropyridine i s s l i g h t l y s t e r i c a l l y hindered towards nucleophilic 

attack and presumably the same state of a f f a i r s exists i n 3-chloro-

heptafluoro-2,2'-bipyridyl. Thus, the increased r e a c t i v i t y of the 

^-position due to the ortho chlorine atom i s reduced on s t e r i c grounds 

and hence some substitution w i l l also take place at the next reactive 

s i t e . 

'The reaction of sodium methoxide with 3»3' -dichlorohexafluoro-

2,2*-bipyridyl(VIIl) yields the mono- and di-ethers, 3»3'-dichloro-

4-methoxypentafluoro-2,2*-bipyridyl(IV) and 3 i 3 l - d i c h l o r o - ^ , V -

dimethoxytetrafluoro-2,2 1-bipyridyl(X), the orientations of the products 

being those expected from comparison with nucleophilic substitution 

i n 3-ctilorotetrafluoropyridine. 

Although no competition reactions have been carried out between 

the three polyfluoro-2,2'-bipyridyls ( I , IV, V I I I ) , from the results of 

CĤ O CI CI CI CI OCH CH-0 CI CI 

H 
M \l 

5 CH_0Na 
F F 

V i — K X N — v 
CH_OH 

20 

(IX) (X) 
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the sodium methoxide reactions, the probable order of r e a c t i v i t y towards 

nucleophilic reagents i s : -

Cl CI vCl 

M M N 

( V I I I ) (IV) ( I ) 

Nucleophilic Substitution i n O c t a f l u o r o ^ ^ 1 - b i p y r i d y l (TABLE 18) 

Octafluoro-3,3'-bipyridyl (XI) has been reacted with several 

nucleophilic reagents and some in t e r e s t i n g orientational results have 

been obtained. Reaction with (1) an equi-molar amount, (2) a 2:1 

molar r a t i o of sodium methoxide to the b i p y r i d y l , i n methanol, afforded 

i n the f i r s t case k-methoxyheptafluoro- ( X I I ) , and i n the second case 

an equi-molar mixture of ̂ f,^1-dimethoxy- ( X I I I ) , and ̂ ,6'-dimethoxy-

hexafluoro- (XIV) -3,3'-bipyridyls. 

OCH 5 < 1 equxv 

< CH_0H XII 
CĤ O OCH CH_0 2 equiv 5 C1-L.0H 

> 
(XI 3 CH_0H 

( X I I I ) (XIV) 
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TABLE 18 

Nucieophilic Substitution i n Octafluoro-3,3'-Bipyridyl. 

Nucleophile Solvent Orientation of Products 
(Estimated from Gas Chromatography 
and nuclear magnetic resonance 

spectra measurements) 
^•-position 6-position x - p o s i t i o n 

CĤ O 
CĤ O" 

C2H50 

CH-OH 3 
CH CH, 

^ c X 

/ \ 
CH3 OH 
C_HcOH 2 5 

>95# 
20% 

8 # 

orfo 

8c# 

15# 

CH5CH2CH20 CH_CH_CH_OH 3 2 2 
CH3CH2CH2CH20 CH5CH2CH2CH2OH 

CHO 
CH. 

.CH-OH 
CH. 

80$ 

72% 

20# 

28#* 

6o# 

C?3 / C H 3 X. 
CH_ 0 
CH^Li 
NH, 
NH2NH2 

CH, CH, X 
CH, OH 
(C 2H 5) 20 
(C 2H 5) 20 
Dioxan 

37# 

>95# 
>95# 

(polymer) 
<5^ 

*Compounds not isolated, but r a t i o of isomers determined 
from gas chromatographic evidence. 
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As the size of the nucleophilic reagent i s increased and the alcohol 

i s varied, nucleophilic replacement of the k-fluorine atom i n octa-

fluoro-3,3'-bipyridyl decreases v/ith a corresponding increase i n 

replacement of the fluorine atom at position 6 (TABLE 18) 

(R = CJL-O, n-C_H_0, n-C,HnO, iso-C-IL.0 and t-C,H-0) 3 7 

When the reaction between octafluoro-3,3'-bipyridyl and sodium 

methoxide was carried out i n t e r t i a r y butanol, the main products of the 

reaction were 6-methoxyheptafluoro- (XV) and suspected 6,6'-dimethoxy-

hexafluoro- (XVT) 3>3'-bipyridyls. Analytical-scale v.p.c. of the 

reaction product indicated the presence of another isomer of mono-

methoxyheptafluoro-3,3'-bipyridyl (<^20% of the mixture of mono-

substituted derivatives), but due' to the poor resolution of the n.m.r. 

spectra the orientation could not be completely determined. However 

i n view of the previous results obtained, i t i s probable that t h i s 

minor isomer i s 4-methoxyheptafluoro-3,3 1-bipyridyl ( X I I ) . 
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)CH_ 
CH„ONa 

(XV) (X I I ) 

(XVI) 

Reaction of octafluoro - 3 , 3 '-bipyridyl with ammonia and methyl 

lithium i n ether afforded the 6-substituted-heptafluoro - 3 , 3 '-bipyridyl 

(>95#). 

(N = MĤ  ( X V I I ) , CH^Li ( X V I I I ) ) 

I n the reaction between the bipyridyl and methyl lithium a further 

product was is o l a t e d but the composition or structure could not be 

elucidated. 

Reaction of the bipyridyl with hydrazine hydrate afforded a deep 

red coloured s o l i d that would not sublime (220°/0*01 mm.). A possible 
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explanation i s that i n i t i a l attack of hydrazine takes place giving the 

monohydrazinoheptafluoro-3,3' -bipyridyl which then attacks (acting as 

a nucleophilic reagent) a molecule of octafluoro - 3 , 3 '-bipyridyl. I n 

th i s way i t i s possible to form long-chain polymers by subsequent 

nucleophilic attack by hydrazine on the 1,2-di - ( 6 , 6 '-heptafluoro - 3 , 3 1 -

bipyridyl)hydrazine, at the 6-position i n the unsubstituted ring. 

A solvent effect i n the reaction betv/een octafluoro - 3 , 3 1-bipyridyl 

and sodium iso-propoxide has been investigated, the r e s u l t s of which 

are shown i n TABLE 19. I n ether containing very l i t t l e iso-propanol 

i t was found that a larger percentage of 6-substitution occurred than 

when the reaction was carried out i n iso-propanol. The same e f f e c t was 

also found with 3 , 5-dichlorotrifluoropyridine, more 2-substitution 

NH-NH 
F F X-fXJ NHNH dioxan 

10 5 2 
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TABLE 19 

Nucleophilic Substitution i n Octafluoro-313'-bipyridyl i n a 

Mixture of Solvents. 

Nucleophile Ratio of Ether/Alcohol Orientation of Products 
(v/v) (determined from Gas 

Chromatography Evidence) 
Ether : Appropriate , .,. c ... 

Alcohol position o-position 

CH^O" 0 : 1 >95& 

CH^O" 10 : 1 >95# 

CH, 
;£H0 0 : 1 kCtf, 6C$ 

4 : 1 20$ 80$ 

19 : 1 16$ 84# 

70 : 1 16# 84§6 

CH_ 
5> 
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talcing place when ether was added to the reaction solution. (TABLE 20). 

No variation i n isomers was found by including ether i n the reaction 

medium when octafluoro-3,3 1-bipyridyl was reacted with sodium methoxide. 

Rationalization of Orientation i n the Nucleophilic Replacement Reactions 

of Octafluoro-3 f3'-bipyridyl. 

I t has been shown that octafluoro-3,3'-bipyridyl reacts with 

nucleophilic reagents (N) to replace the fluorine atoms ortho (k) and 

para (6) to the carbon-carbon bond joining the two rings. When N=0CH^ 

(i n CH^OH) the ̂ -fluorine atom i s the one that i n replaced ( > 95$). 

When N = OĈ H,., n-OC^, n-OCjHg, i - O C ^ and t - O C ^ varying amounts 

of replacement of the fluorine atoms at the k- and 6-positions i s 

obtained, the percentage of ̂ -substitution decreasing with a corresponding 

increase i n 6-substitution as the siz e of the alkoxide group increases 

from OC H t-0C,Ho. When N = i-OC^H^, a larger percentage 

of 6-substitution has been found to take place when ether has been 

added to the reaction mixture. When N = OCH^ ( i n t-C^HgOH), the 6-

fluorine (> 80$) i s replaced and when N = NH^, CH^Li ( i n ether) the 

6-fluorine ( > 95/0 i s replaced. 

Octafluoro-3,3 1-bipyridyl i s one of the few known fluorine-containing 

compounds that has two positions ( i n one ring) which are of equal 

s u s c e p t i b i l i t y towards nucleophilic attack. Because of t h i s , e f f e c t s , 

that do not af f e c t the position of nucleophilic attack (to any large 

extent) i n pentafluoropyridine, have been shown to be important i n 
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TABLE 20 

Nucleophilic Substitution i n 3 i 5-Dichlorotrifluoropyridine 
i n a mixture of solvents 

Nucleophile Ratio of Ether/lso-propanol Orientation of Products 
t / \ (determined from Gas 
— ^ — Chromatography Evidence) 

Ether : Alcohol ^-position 2-position 

CH, 
^CHO 0 : 1 7TA 2.J0> 

CH_ 
10-5 : 'I 60# Wo 

35 : 1 60% kQP/b 
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determining the orientation of products i n oct a f l u o r o - 3 , y - b i p y r i d y l . 

An attempt has been made to ra t i o n a l i z e the orientation of products 

obtained from octafluoro - 3 , 3 1-bipyridyl by consideration of (1) s t e r i c 

interactions, (2) solvation of the t r a n s i t i o n state and (3) e l e c t r o ­

s t a t i c interactions. 

Rationalization of Orientation based on S t e r i c Considerations* 

The if-position i n octafluoro - 3 , 3 '-bipyridyl has been shown to 

be s t e r i c a l l y hindered by the ortho fluorines present i n the other 
203 

ring. From n.m.r. spectra measurements, the position of minimum 

energy i n decafluorobiphenyl has been shown- to be when the rings are 

at an angle of 50° to one another, the distortion of the rings being 

attributed to the s t e r i c interactions between the ortho fluorines. 

By analogy, t h i s interaction between the ortho fluorines would be 

expected i n octafluoro - 3 , 3 '-bipyridyl, the probable position of 

minimum energy being when these two rings are at an angle of a* 30° to 

each other. 

Experimental evidence also indicates that there i s considerable 

s t e r i c hindrance between the k- and V - p o s i t i o n s . One mole-equivalent 

of KaOCH, i n methanol reacts with the bipyridyl to give 4-methoxy-

heptafluoro - 3 , 3 '-bipyridyl (> 95$), and with a 2:1 molar r a t i o of 

NaOCHj to the bipyridyl an equi-molar mixture of k,k*-, and 4,6'-

dimethoxyhexafluoro - 3 , 3 l -t)ipyridyls i s obtained. Neglecting s t e r i c 

interactions, i t would have been expected that only 4,^'-dimethoxyhexa-
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fluoro- 3 , 3 '-bipyridyl would have been obtained. The r e s u l t implies 

that the OCH^ group i n the 4 -position i s s t e r i c a l l y hindering the V -

position to a large extent, and substitution i s also talcing place at 

the next most reactive position i n the molecule (the 6 '-position). 

As the siz e of the nucleophile i s increased(C,,H,_0 t-C^H^O ) , 

substitution at the *f-position decreases with a corresponding increase 

i n 6-substitution. I n i t i a l l y i t was thought that the r a t i o of isomers 

obtained (k- and 6-substitution) was d i r e c t l y proportional to the size 

of the nucleophile, but spectroscopic evidence indicates that 

replacement of CH^ by C^H^, n-C^H^ or n-C^H^ does not greatly increase 

the s t e r i c i nteraction as the chains of the longer n-alkyl groups can 

orientate themselves so that they do not greatly increase the s t e r i c 

hindrance. Branched chain a l k y l groups do increase the s t e r i c i n t e r -
205 

actions with respect to the straight chain a l k y l groups. 

Reaction of octafluoro - 3 , 3 '-bipyridyl with NaOCH, ( i n t-C.H OH) 

gives 6-methoxy- ( > 80$) and (k-methoxy- (<20$)) heptafluoro - 3 , 3 ' -

b i p y r i d y l s . Based on s t e r i c grounds, t h i s r e s u l t implies that the 

nucleophile i s solvated by the alcohol thereby increasing i t s effective 

s i z e . I f th i s 'solvation of the nucleophile 1 by the alcohol i s a true 

picture of the reaction conditions, then for a l l the reactions between 

octafluoro - 3 , 3 '-bipyridyl and sodium alkoxides, the effective s i z e of 

the nucleophile v a i l be increased. Thus, as the siz e of the alkoxide 
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group increases i t s effective size w i l l also be increased as i t w i l l be 

solvated by a larger solvent molecule. This solvation e f f e c t w i l l 

probably be more important with branched chained alcohols. 

Thus, nucleophilic substitution i n octafluoro - 3 , 3 1-bipyridyl, 

based purely on s t e r i c interactions, probably depends on, (1) the s i z e 

of the nucleophilic reagent and (2) the eff e c t i v e s i z e of the nucleophile 

a f t e r solvation. 

Rationalization of Orientation based on the Solvation of the Transition 

State. 

The reaction of nucleophilic reagents with polyfluoroaromatic- and 

polyfluoroheteroaromatic compounds has led to replacement of fluorine 

with i s o l a t i o n of isomeric products. This r a t i o of isomers has been 

shown to vary when ether i s added to the reaction medium. Pentafluoro-

nitrobenzene reacts with NaOCH^ ( i n CH^OH) to replace ( > 90$) the 

fluorine aitom para to the nitro-group. However, i n ether containing 

very l i t t l e methanol, sodium methoxide replaces both the ortho and 
206 

para fluorine a.toms i n approximately equal amounts. The same ef f e c t 
has been observed i n nucleophilic substitution i n ̂ -nitrotetrafluoro-

201 

pyridine. ^-Nitrotetrafluoropyridine reacts with sodium methoxide 

i n methanol to replace, besides the nitro-group, the 2- and 3-fluorine 

atoms i n the r a t i o J>: 1 respectively. When the reaction i s carried out 

i n an ether/methanol (9:1 v/v) mixture, the replacement at the 2- and 

3-positions i s i n the r a t i o 3:2 respectively. 
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This variation of isomer r a t i o s , due to ether, has also been 

recorded i n nucleophilic substitution reactions with octafluoro - 3 , 3 1 -

bipyridyl and 3 , 5-dichlorotrifluoropyridine. (TABLES, 19,20). Sodium 

iso-propoxide i n iso-propanol reacts with the bipyridyl to replace the 

4- and 6-fluorines i n the r a t i o 2:3 respectively. I n ether containing 

a l i t t l e iso-propanol, sodium iso-propoxide replaces the 4- and 6-

fluorines i n the r a t i o 1:4. Sodium iso-propoxide i n iso-propanol reacts 

with 3 » 5-<iichlorotrifluoropyridiiie to replace the fluorine atoms i n the 

4- and 2-positions i n the r a t i o 3:1» I n ether containing very l i t t l e 

iso-propanol, sodium iso-propoxide replaces the 4- and 2-fluorines i n 

the r a t i o 3:2. Reaction of octafluoro - 3 , 3 '-bipyridyl with ammonia 

and methyl lithium i n ether gives predominantly ( /• 95%) 6-substitution. 

Hence, i n octafluoro - 3 » 3 ' - b i p y r i d y l , i t appears that ether i s directing 

the nucleophile into the 6-position. 

Provided that the two most important t r a n s i t i o n states are A and 

B (the para quinonoid forms of the Wheland-type intermediates) for 

nucleophilic attack at the 4- and 6-positions i n octafluoro - 3 , 3 1 ~ 

bipyridyl, then the r a t i o of isomers obtained from the nucleophilic 

replacement of fluorine i n the b i p y r i d y l can be rationalized by 

postulating the solvation of the t r a n s i t i o n state. 

F 

< > 
F F 

Fs •N 

(A) (B) 
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The charge dispersion i n A i s l e s s than i n B and A w i l l therefore 

be solvated to a greater extent by more polar solvents ( i . e . those with 

a high d i e l e c t r i c constant) than by non-polar solvents. This increased 

solvation of A over B means that the tr a n s i t i o n state A w i l l be more 

s t a b i l i z e d than B and hence w i l l be more favoured i n nucleophilic 

substitution. The d i e l e c t r i c constants of the solvents used i n the 

nucleophilic substitution reactions have been measured and are l i s t e d 
20? 

i n TABLE 21. ( 

TABLE 21 

SOLVENT DIELECTRIC CONSTANT 

CĤ OH 32» 6 
3 

CJ^OH 24-3 

n-C-^OH 20« 1 

n-C^OH 17-1 

i - C ^ O H 18«3 

t-C^OH 10* 9 

( c 2 H 5 ) 2 o if. 3 

Comparison of the isomer r a t i o s obtained for the mono-ether 

(TABLE 18) v/ith the d i e l e c t r i c constants of the solvents shov/s that 

as the d i e l e c t r i c constant of the solvent decreases ( i . e . the solvent 

becomes l e s s polar and i s unable to s t a b i l i z e t r a n s i t i o n state A as 

readily) the amount of substitution i n the 6-position increases. The 

effect of adding ether to the reaction medium causing more 6-
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substitution could then be explained on the basis that the d i e l e c t r i c 

constant of the solvent medium w i l l be lowered giving l e s s 

s t a b i l i z a t i o n of the t r a n s i t i o n state A and causing the equilibrium to 

be moved towards 6-substitution. 

Rationalization of Orientation based on E l e c t r o s t a t i c Interactions. 

Pyridine reacts with phenyl lithium to give 2-phenylpyridine, i t 

being postulated that the reaction proceeds v i a an intermediate of the 

type C. 

I t i s possible with octafluoro-3,3'-bipyridyl for the same 

intermediate complex to be present i n the reaction between the bipyridyl 

and methyl lithium. This a t t r a c t i o n between the positive lithium 

and negatively charged ring nitrogen would have the ef f e c t of 

attr a c t i n g the nucleophilic reagent towards the 6-position, and i t i s 

therefore not surprising that with methyl lithium a preponderance of 

6-substitution i s obtained. S i m i l a r l y , hydrogen bonding between the 

ring nitrogen and ammonia could explain the i s o l a t i o n of 6-aminohepta-

fluoro-3,3'-bipyridyl. 

+ LiH 

N %C.H 6n5 6 
: 6" 
L i 

(O 



- 184 -

CONCLUSIONS. 

Nucleophilic attack i n octafluoro-J,3'-bipyridyl cannot be readily 

rationalized by any one of the three considerations discussed. A 

combination of a l l three e f f e c t s i s necessary before an adequate ex­

planation i s obtained. S t e r i c interactions could possibly explain the 

isomer r a t i o s obtained with sodium alkoxides, and t h i s , coupled with 

e l e c t r o s t a t i c interactions, explains the variation of substitution at 

the 4- and 6-positions. However, a combination of both these e f f e c t s 

does not explain the effect of d i l u t i n g the alcohol with ether giving 

more 6-substitution. Conversaly, the combination of s t e r i c interactions 

and solvation of the t r a n s i t i o n state does not completely r a t i o n a l i z e 

a l l the r e s u l t s . I t would have been expected that when the reaction 

between the bipyridyl and sodium iso-propoxide i n ether containing very 

l i t t l e iso-propanol was carried out, i t would have eventually 

terminated ( i f s u f f i c i e n t ether was added) v/ith t o t a l 6-substitution 

occurring. From TABLE 19 i t i s seen that at l e a s t 16% of the 4-

isomer i s obtained, even when large amount of ether i s used. A 

combination of e l e c t r o s t a t i c interactions and solvation of the t r a n s i t i o n 

state cannot completely explain a l l orientations, as the reaction 

between the bipyridyl and sodium iso-propoxide i n iso-propanol gives 

more replacement of the 6-fluorine atom than the reaction of sodium 

n-propoxide i n n-propanol, although from the p o l a r i t y of the solvents 

the reverse would be implied. 
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Thus, i t i s possible that a l l three e f f e c t s are necessary to explain 

completely the orientation of nucleophilic replacement reactions i n 

octafluoro-3,3'-bipyridyl. 

I t i s clear that before any definite reaction mechanism can be 

postulated, more controlled experiments w i l l have to be performed. 

Reactions are envisaged betv/een 3,5~tiichlorotrifluoropyridine and 

various nucleophilic reagents i n different solvents. 

Hucleophilic Substitution i n Polyfluoro-^iV-bipyridyls. 

Octafluoro-4,k *-bipyridyl has been reacted with sodium methoxide 

( i n methanol) and ammonia to give a mixture of the mono- (XIX) and 

di-substituted-4,V-bipyridyls (XX). 

Octafluoro-4,k '-bipyridyl was reacted with excess sodium methoxide 

but only four fluorine atoms could be replaced: 2,2',6,6'-tetra-

raethoxytetrafluoro-4,V-bipyridyl (XXI) being i s o l a t e d i n good 

y i e l d . 

A X \ i \ / 
N F f i + 

(XIX) (XX) 

(X = OCH_, NH ) 
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CH 0 OCH 
3~> v / 3 

/ = \ / = \ CH ONa /=7\ /=7̂  
c h3° (xxi) ^ 

2-Methoxyheptafluoro-*t-,V-bipyridyl ((XIX), when X = OCH^) has 

also been prepared by adding pentafluoropyridine to 2-methoxytri-

fluoropyridylmagnesium bromide (XXII) at low temperature. 

CH_0 

CĤ O CH30 

(XXII) 

3-Chloroheptafluoro-4,-bipyridyl (XXIII) reacted readily at 0° 

with a solution of sodium methoxide i n methanol, giving 3-chloro-6-

methoxyhexafluoro-4, *t' -bipyridyl (XXIV) ( > 95$) and a trace of 

an isomer, the structure of which has not yet been elucidated. 

CI CI Xll 
/ = \ / = \ CH,CNa / = \ / = \ / = \ / = = \ 

° CH„G V — 
2 

( X X I I I ) (XXIV) (XXV) 
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Rationalization of Orientation i n Substituted-polyfluoro-4,V-bipyridyls. 

The replacement of the fluorine atom ortho to the nitrogen i n 

polyfluoro-4,4'-bipyridyls i s consistent with the r e s u l t s expected by 

comparison with nucleophilic attack i n 4-X-tetrafluoropyridine (X = 

OCH^, NH,,, Br and C l ) , with which octafluoro-4,4 1-bipyridyl can be 

d i r e c t l y related by considering i t to be 4-(tetrafluoropyridyl)-

tetrafluoropyridine. The known activating e f f e c t , towards nucleophilic 

replacement, of the chlorine atom i s again indicated by the i s o l a t i o n 

of 3 -chloro-6-methoxyhexafluoro-4,4*-bipyridyl (> 95%) from the reaction 

of ^"chloroheptafluoro-4,4*-bipyridyl with sodium methoxide. 



C H A P T E R 7 

EXPERIMENTAL PART I I 
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P u r i f i c a t i o n of Solvents* 

The alcohols, methanol, ethanol, propanol and isopropanol. 

The commercial grade alcohol was refluxed with sodium p e l l e t s 

for 10 minutes and then d i s t i l l e d from the reaction f l a s k under a 

current of dry nitrogen. The alcohol (50-100 ml.) was added slowly 

to dry magnesium turnings (5-10 g.) containing a c r y s t a l of iodine and 

heated gently for 10 minutes u n t i l the iodine had disappeared. 

Alcohol (1000 ml.) was added and refluxed for 3 h. The alcohol was 

d i s t i l l e d under a current of dry nitrogen and stored under dry nitrogen 

u n t i l used. 

The alcohols, n-butanol and t e r t i a r y butanol. 

The same procedure outlined above was used except that powdered 

aluminium was used instead of magnesium turnings. 

Diethyl-ether. 

The ether was refluxed with sodium p e l l e t s for 2 h. and then 

d i s t i l l e d from the reaction f l a s k . The ether was stored under sodium 

u n t i l required. 
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The Reaction of Polyfluorobipyridyls and Polyfluoropyridines with 
Sodium Alkoxides i n Alcohol. 

General Procedure. 

A three necked f l a s k f i t t e d with a dropping funnel, gas i n l e t tap, 

reflux condenser, and a magnetic s t i r r e r v/as flushed with dry nitrogen 

for 30 minutes prior to use. During the reaction a stream of dry 

nitrogen was passed through the apparatus. 

To a s t i r r e d solution of the polyfluoroheterocyclic compound 

dissolved i n dry alcohol, was added dropwise over a period of 5 - 30 min., 

at temperatures varying from -20 to 2 0 ° , a solution of sodium alkoxide 

(prepared by adding the required amount of sodium to alcohol) i n dry 

alcohol. The solution was s t i r r e d for a further 20 to 60 min. and then 

poured into cold water. The white precipitate which resulted was 

extracted into organic solvent (ether or methylene d i c h l o r i d e ) , washed 

well with water, dried (MgSO^), and the solvent removed by d i s t i l l a t i o n . 

The composition of the reaction product was investigated using 

a n a l y t i c a l - s c a l e gas chromatography and the products p u r i f i e d by 

preparative-scale g . l . c , unless otherwise stated. 

The percentage y i e l d s of the products pu r i f i e d by preparative-

scale g.l.c., were obtained by estimation of peak areas from a n a l y t i c a l -

scale g.l.c. and based on the actual amount of reactant used. This was 

necessary as a true value for the y i e l d s of the products could not be 

obtained af t e r p u r i f i c a t i o n , as the recovery from the preparative-

scale g.l.c. apparatus was very low. I n general, the conversion of the 
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s t a r t i n g material into the mono- and di-substituted products was i n 

the region of 70-90=6. 

I n the reactions between octafluoro - 3 , 3 '-bipyridyl and sodium 

alkoxides, compounds believed to be disubstituted derivatives of the 

bipyridyls were detected on gas chromatography apparatus but were not 

is o l a t e d . 

Reaction between Octafluoro - 2 ,2'-bipyridyl and Sodium Methoxide. 

To a s t i r r e d solution of the bipyridyl (0*835 g*» 0*0028 mole) 

dissolved i n methanol (15 ml.) was added dropwise over 5 min., at 2 0 ° , 

a solution of sodium (0*068 g., 0*003 mole) i n methanol (20 ml.). The 

reaction solution was s t i r r e d for a further 30 min., then treated as 

described. The reaction products (0*81 g.) were separated by 

preparative-scale v.p.c. and i d e n t i f i e d as: ( i ) unreacted octafluoro-

2,2'-bipyridyl. ( i i ) 4-methoxyheptafluoro-2,2'-bipyridyl (?5&), 

(Found: C, 42*2; H, 0*94; F, k2-0. C ^ H ^ O F ^ requires: C, if2*3; 

H, 0*96; F, ̂ 2*6$), m.p. 39-^'5°, ( i i i ) *fr,V-dimethoxyhexafluoro-

2,2'-bipyridyl (16#), (Found: C, ^3*9; H, 1*?6. C ^ H ^ F ^ 

requires: C, kk'k; H, 1*85^. There was i n s u f f i c i e n t compound 

available for a fluorine analysis;, m.p. 50-51 • 

Reaction between 3-Chloroheptafluoro-2.2'-bipyridyl and Sodium Methoxide. 

To a s t i r r e d solution of the bipyridyl (0*826 g., 0*0026 mole) 

dissolved i n methanol (20 ml.) was added dropwise over 10 min., at 2 0 ° , 

a solution of sodium (0*06 g., 0*0026 mole) i n methanol (20 ml.). 
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The solution was s t i r r e d for a further 30 min., then treated as 

described. The reaction products (0*73 g«) were separated by 

preparative-scale v.p.c. and i d e n t i f i e d as: ( i ) unreacted 3-chloro-

heptafluoro - 2 , 2 '-bipyridyl, ( i i ) a 2:1 molar r a t i o of 3-chloro -A-

methoxyhexafluoro -2 1 2 1-bipyridyl and 3-chloro-4'-methoxyhexafluoro-

2 . 2 ' - b i p y r i d y l (67$), (Found: C, 40-3; H, 0«95; F, 35*5; CI, 11-0. 

C 1 1H 50F 6C1N 2 requires: C, A0«2; H, 0 « 9 1 ; F, 3^-7; CI, 10.8%), 

b.p. (of mixture) 2 7 3 - 2 7 6 ° , ( i i i ) 3-chloro-*f,V-dimethoxypentafluoro-

2 , 2 ' - b i p y r i d y l 0 ' $ ) , (Found: C, if1«3; H, 1-71. C^H^OgF C1M2 

requires: C, *f2«3; H, 1'76%. There v/as i n s u f f i c i e n t compound 

available for a fluorine a n a l y s i s ) , m.p. 72-7^°« 

Reaction between 3 » 3 '-Dichlorohexafluoro - 2 , 2 *-bipyridyl and Sodium 

Methoxide. 

To a s t i r r e d solution of the bipyridyl (1»12 g., 0»003 if mole) 

dissolved i n methanol (15 ml.) was added dropwise over 13 min., at 2 0 ° , 

a solution of sodium (0«078 g., 0»003l+ mole) i n methanol (20 ml.). The 

solution was s t i r r e d for a further 30 min., then treated as described. 

The reaction products (1'05 g.) v/ere separated by preparative g.l.c. 

and i d e n t i f i e d as ( i ) unreacted 3 ) 3 I-dichloro-hexafluoro - 2 , 2 ' -

bipyridyl, ( i i ) 3i3'-dichloro - 4-methoxypentafluoro - 2 , 2 l-bipyridyl 

(68y£), (Found: C, 38* 1; H, 0-92; F, 27-1; CI, 20-8. C^H^OF C l ^ 

requires: C, 38'26; H, 0-87; F, 27*5; CI, 20-6$) , b.p. 2 9 9 - 3 0 1 ° , 

( i i i ) 3 > 3 '-dichloro - ^ , 4 1-dimethoxytetrafluoro - 2 , 2 *-bipyridyl (l6?o) f 
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(Found: C, ifO-1; H, 1-70; F, 20*1; CI, 19*8. C

1 2

H 6 0

2

F 4 C 1 2 N 2 

requires: C, *t0*3; H, 1-68; F, 21*3; CI, 19-990 . m.p. 1 3 5 ' 5 ° . 

Reaction between Octafluoi-o - 3 , 3 1-bipyridyl and Sodium Methoxide. 

a) I n methanol* To a s t i r r e d solution of the bipyridyl (2*13 g»» 

0*0071 mole) dissolved i n methanol (30 ml.) was added dropwise over 

20 min., at 0 ° , a solution of sodium (0*165 g., 0*0072 mole) i n methanol 

(50 ml.). The solution was s t i r r e d for a further ^5 min. sis i t warmed 

slowly to room temperature, then treated as described. The reaction 

product (2*0 g.) was puri f i e d by preparative-scale g.l.c. and i d e n t i f i e d 

as *f-methoxyheptaf luoro - 3 , 3 '-bipyridyl (88$) , (Found: C, ^2»if; 

H, 0*9^5 F, Jf2»7. c - n H 3 0 F

7

N 2 r e c l u i r e s : c» ^2«3; H, O.96; F, *t2*6#), 

b.p. 2 5 6 ° . Only a trace ( \ 1$) of unreacted s t a r t i n g material v/as 

detected by gas chromatography. 

To a s t i r r e d solution of the bipyridyl (0*064 g., 0*00213 mole) 

dissolved i n methanol (50 ml.) was added dropv/ise over 15 min., at 2 0 ° , 

a solution of sodium (0*0985 g., 0*00^-3 mole) i n methanol (30 ml.). 

The solution v/as s t i r r e d for a further 20 min., then treated as described. 

The reaction products (0*6 g.) were separated by preparative-scale 

g . l . c . and i d e n t i f i e d as: ( i ) 4-methoxyheptafluoro -3 ,3 1-bipyridyl 

(9$), i d e n t i f i e d from i t s infrared spectrum, ( i i ) an equi-molar 

mixture of k,k'-dimethoxyhexafluoro-313'-bipyridyl and k,6'-dimethoxy-

hexafluoro - 3 , 3 *-bipyridyl ( ? * $ ) , (Found: C, Mf«3; H, 2*20; F, 35*0. 

C 1 2 H 6 ° 2 F 6 N 2 r e < l u i r e s : c» ^ , 2 f » H» 1 "9; F, 35*2$), b.p. (of mixture) 
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2 6 7 - 2 6 9 ° . 

Evidence of isomers of trimethoxypentafluoro - 3 , 3 '-bipyridyl was 

indicated from gas chromatography, but only present i n small amounts, 

b) I n t-butanol. To a s t i r r e d solution of the bipyridyl (1*13 g., 

0»0038 mole) i n t-butanol (kO ml.) was added dropwise over 15 min., 

at 2 0 ° , a solution of sodium alkoxide (obtained from dissolving sodium 

(0.096 g., 0.0042 mole) i n methanol (10 ml.) and d i s t i l l i n g off the 

methanol under a current of dry nitrogen) i n t-butanol (k5 ml.). 

The solution was s t i r r e d for a further 60 min., then treated as 

described. The reaction products 0«95 g« were separated by preparative-

scale g . l . c . and i d e n t i f i e d as: ( i ) unreacted o c t a f l u o r o - 3 , 3 1 -

b i p y r i d y l , ( i i ) a mixture of 6-methoxyheptafluoro -3 1 3'-bipyridyl and 

presumed if-methoxyheptafluoro -3 ,3 l-bipyridyl ( i n %-a.ge r a t i o > 80:< 20 

C, 42*3; H, 0*96$), b.p. (of mixture) 2^0-2^2°, ( i i i ) 6,6'-dimethoxy-

hexafluoro - 3 . 3 1-bipyridyl (30%), (Found: C, k2>2; H, 2«90 . 

isomer of the dimethoxy derivative v/as indicated either from n.m.r. 

spectra or gas chromatography, but i t i s probable that the 6,6*-

dimethoxy derivative i s s l i g h t l y contaminated by other isomers. 

Reaction between 0 c t a f l u o r o-3i3 '-bipyridyl and Sodium Ethoxide. 

To a s t i r r e d solution of the bi p y r i d y l (1 • g., 0«0038 mole) 

respectively) (k3%), (Found: C, k2'5; H, 1*34. C..H_0S ^OFJl^ requires: 

C 1 2 H 6 ° 2 F 6 W 2 r e c * u i r e s : C » H » 1' 8 5f°) b'P- 2 7 9 - 2 8 0 ° . No other 
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dissolved i n ethanol (20 ml.) v/as added dropwise over 10 min., at 2 0 ° , 
a solution of sodium (0*095 g., 0*00^1 mole) i n ethanol (20 ml.). The 
solution was s t i r r e d for a further 20 min., then treated as described. 
The reaction products (0*92 g.) were separated by preparative-scale 
g . l . c . and i d e n t i f i e d as: ( i ) unreacted octafluoro - 3 , 3 1 "bipyridyl, 
( i i ) a mixture of 4-ethoxyheptafluoro -3 .3 ' - b i p y r i d y l and 6-ethoxyhepta-
fl u o r o - 3 , 3 ' - b i p y r i d y l ( i n %-aga r a t i o 85:15) (62$), (Found: C, VfO; 
H, 1*72; F, 1*0-3. G 1 2H 50F 7N 2 requires: C, Vf«2; H, 1*53; F, 40-8#) 
b.p. (of mixture) 2 6 0 - 2 6 2 ° . Compounds which were thought to be d i -
substituted - 3 , 3 ' - b i p y r i d y l were detected by gas chromatography but not 
iso l a t e d . 

Reaction between 0 c t a f l u o r o - 3 , 3 '-bipyridyl and Sodium n-Propoxide. 

To a s t i r r e d solution of the bipyridyl (1*1 g., 0*0037 mole) 

dissolved i n n-propanol (15 ml.) was added dropwise over 10 min., at 

0 ° , a solution of sodium (0*083 g., 0*0036 mole) i n n-propanol (15 ml.). 

The solution was s t i r r e d for a further 60 min. as i t warmed slowly to 

room temperature, then treated as described. The reaction products 

(0*9 g-) were separated by preparative-scale g.l.c. and i d e n t i f i e d as: 

( i ) unreacted octafluoro - 3 , 3 *-bipyridyl, ( i i ) a mixture of isomers i n 

ra t i o ki1, 4-n-propoxyheptafluoro -3 i3 '-bipyridyl and 6-n-propoxyhepta-

fl u o r o - 3 , 3 ' - b i p y r i d y l (63%) (Found: C, 45*8; H, 1*79; F, 38*9. 

C 1 5H ? 0 F 7N 2 requires: C, 45*9; H, 2*06; F, 39«1?0 b.p. 2 6 0 - 2 6 5 ° . 

Compounds which were thought to be isomeric di-n-propoxy -3 ,3 ' -
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bipyridyls were detected by gas chromatography but not i s o l a t e d . 

Reaction between Octafluoro - 3 , 3 '-bipyridyl and Sodium iso-propoxide. 

To a s t i r r e d solution of the bipyridyl (1*5 g*, 0*005 mole) 

dissolved i n iso-propanol (15 ml*) v/as added dropwise over 10 min., at 

0 ° , a solution of sodium (0*114 g., 0*005 mole) i n iso-propanol (15 ml.). 

The solution was s t i r r e d for a further 30 min. as i t warmed slowly to 

room temperature, then treated as described. The reaction products 

(1*4 g.) were separated by preparative-scale g.l.c. and i d e n t i f i e d as: 

( i ) unreacted octafluoro - 3 , 3 '-bipyridyl, ( i i ) a mixture of isomers i n 

the r a t i o 2:3i 4-iso-propoxyheptafluoro - 3 , 3 '-bipyridyl and 6-iso-propoxy-

heptafluoro - 3 , 3 '-bipyridyl (82$), (Found: C, 46*0; H, 2*22; F, 39*3. 

C ^ H ^ O F ^ requires: C, 45*9; H, 2*06; F, 39'1$) , b.p. (of mixture) 

2 5 9 - 2 6 0 ° . 

Traces (K 2$), of compounds thought to be isomeric d i - i s o -

propoxyhexafluoro -3 ,3' -bipyridyls were detected on gas chromatography 

but were not iso l a t e d . 

Reaction between Octafluoro - 3 , 3 '-bipyridyl and a) sodium 1-butoxide and 

b) sodium-t-butoxide. 

The reaction between octafluoro - 3 . 3 '-bipyridyl and the alkoxides 

were carr i e d out under the usual conditions using equi-molar amounts 

of the bi p y r i d y l and sodium alkoxide. The two sodium butoxides were 

dissolved i n thei r respective alcohols and added to the bipyridyl i n the 

same alcohol. The products of the reaction were not is o l a t e d but only 
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investigated on gas chromatography. The products of the reaction were 

tentatively i d e n t i f i e d as isomers of monosubstituted -3 ,3'-bipyridyls by 

comparison with previous reactions. 

Reaction between Octafluoro - 4 , 4 1-bipyridyl and Sodium Methoxide. 

To a s t i r r e d solution of the bipyridyl (1«2 g., 0 0 0 4 mole) 

dissolved i n methanol (30 ml.) was added dropwise over 10 min., at -10 

to - 1 5 ° i a solution of sodium (0»092 g., O'OOk mole) i n methanol (15 ml.). 

The reaction solution was s t i r r e d for a further 20 min. as i t warmed 

slowly to room temperature, then treated as described. The reaction 

products (1*1 g.) were separated by preparative-scale g . l . c . and 

i d e n t i f i e d as: ( i ) unreacted octafluoro-^,^ 1-bipyridyl, ( i i ) 

2-methoxyheptafluoro -4 ,V-bipyridyl (?C$), (Found: C, 42*1; H, 1.11; 

F, 42 -9 . C^H^OF,^ requires: C, 42«3; H, O.96; F, 42 . 6# ) , m.p. 

1 0 1 - 1 0 1 . 5 ° (from pet. ether, 4 0 - 6 0 ° f r a c t i o n ) , ( i i i ) a white s o l i d 

m.p. 127° (15$) . 

To a s t i r r e d solution of the bipy r i d y l (0*75 g., 0«0025 mole) 

dissolved i n methanol (15 ml.) was added dropwise over 10 min., at 2 0 ° , 

a solution of sodium (0-12 g., 0*0052 mole) i n methanol (20 ml.). The 

solution was s t i r r e d for a further 30 min., then treated as described. 

The reaction products (0*7 g.) were separated by preparative-scale 

g . l . c . and i d e n t i f i e d as: ( i ) 2-methoxyheptafluoro -4 ,4 '-bipyridyl 

(10$O), i d e n t i f i e d from i t s infrared spectrum, ( i i ) 2.2 1-dimethoxy-

hexafluoro - 4 .V-bipyridyl (75$), (Found: C, kk*k; H, 1«93; F, 35-0. 
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C 1 2 H 6 ° 2 F 6 N 2 r e q U l r e s : G ' Z , i f" Z f ; H ' 1 ' 8 5 ; F ' m'P* 128-129° 

(from pet. ether, 4 0 - 6 0 ° f r a c t i o n ) . The compound i s o l a t e d i n the 

previous reaction, ( f r a c t i o n i i i ) , was shown to be i d e n t i c a l to 

2 ,2*-dimethoxyhexafluoro -4 ,4*-bipyridyl by comparison of infrared spectra. 

To a s t i r r e d solution of the bipyridyl 0 * 0 g., 0-0033 mole) 

dissolved i n methanol (15 ml.) was added at 20° a solution of sodium 

(0-5 g., 0-022 mole) i n methanol (30 ml.). The solution was refluxed 

for 60 mins., then treated as described. The reaction product 0 - 0 5 g.) 

was pu r i f i e d by sublimation affording 2 , 2 ' , 6 , 6 '-tetramethoxytetra-

f l u o r o - 4 , V - b i p y r i d y l (0-95 g-, 8250 , (Found: C, 48 . 1 ; H, 3'38; 

F, 22-1. C ^ H ^ O ^ F ^ requires: 0,48 - 3 ; H, 3*/*35 F, 21-80), 

m.p. 230-233 0 (resublimed). 

Reaction between 3~chloroheptafluoro - 4 , 4 *-bipyridyl and Sodium Methoxide. 

To a s t i r r e d solution of the bipyridyl (0-64 g., 0*002 mole) 

dissolved i n methanol (15 ml.) was added dropwise over 10 min., at - 2 0 ° , 

a solution of sodium (0-05 g., 0*0022 g.) i n methanol (15 ml.). The 

solution was s t i r r e d for a further 60 min. as i t warmed slowly to room 

temperature, then treated as described. The reaction products (0«6 g.) 

were separated by preparative-scale g.l.c. and i d e n t i f i e d as: ( i ) 

unreacted 3 -chloroheptafluoro - 4 , 4 '-bipyridyl, ( i i ) 3-chloro-6-methoxy-

hexafluoro - 4 , 4 '-bipyridyl (77$) , (Found: G, 40-2; H, 1-00; CI, 10»3 . 

C^H^OFgCU^ requires: C, 40-2; H, 0*91; CI, 10-80), m.p. 9 7 - 1 0 1 ° . 

Because of the large range over which the compound melted, there i s 
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probably present a small amount of another isomer (< ,5$) , the structure 

of which has not been elucidated. 

Reaction between Pentafluoropyridine and Sodium iso-propoxide. 

To a s t i r r e d solution of pentafluoropyridine (0*904 g., 0*054 mole) 

i n iso-propanol (20 ml.) was added dropwise over 5 min., at 2 0 ° , a 

solution of sodium (0*123 g., 0*054 mole) i n iso-propanol. The reaction 

was s t i r r e d for a further 20 min., then treated as described. 

D i s t i l l a t i o n of the product afforded 4-iso-propoxytetrafluoropyridine 

(0*7 g., 62*5$), (Found: C, 46*1; H, 3*49; F, 36-0. Cg^OF^N 

requires: C, 45*9; H, 3*35; • F, 36*4$), b.p. 1 7 9 * 5 ° . 

Reaction between 3~Ghlorotetrafluoropyridine and Sodium iso-propoxide. 

To a s t i r r e d solution of 3-chlorotetrafluoropyridine (0*976 g., 

0*0053 mole) i n iso-propanol (20 ml.) was added dropwise over 10 min., 

at 2 0 ° , a solution of sodium (0*121 g., 0*0053 mole) i n iso-propanol 

(20 ml.). The solution was s t i r r e d for a further 20 min., then treated 

as described. D i s t i l l a t i o n of the product afforded a mixture of 

isomers ( i n So-age r a t i o 80:16:4) of mono-iso-propoxy -3-chlorotrifluoro-

pyridine (0*72 g., 6O*5$0. The main isomer was i d e n t i f i e d as 

4-iso-propoxy - 3-chlorotrifluoropyridine and i t i s probable that the 

other isomers are 6-iso-propoxy -3~cb-lorotrifluoropyridine and 2-iso-

propoxy - 3-chlorotrifluoropyridine respectively. (Found: C, 42»8; 

H, 3'26; F, 25*4; CI, 15*8. CgH^F^ClN requires: C, if2*6; H, 3*12; 

F, 25*3; CI, 15*7#), b.p. (of mixture) 2 0 5 - 2 0 8 ° . 
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Reaction between 3 . 5-Dichlorotrifluoropyridine and Sodium Iso-propoxide» 

To a s t i r r e d solution of 3 « 5-dichlorotrifluoi-opyridine (1*06 g., 

0*0053 mole) i n iso-propanol (15 ml.) was added dropwise over 15 min., 

at 2 0 ° , a solution of sodium (0*116 g., 0*005 g*) i n iso-propanol 

(4-5 ml.). The solution was s t i r r e d for a further 15 mins., then treated 

as described. D i s t i l l a t i o n of the product under reduced pressure 

afforded a mixture of isomers, i n the r a t i o 77:23, and were i d e n t i f i e d 

as, 3 , 5-dichloro - 4 -iso-propoxydifluoropyridine and 2-iso-propoxy-3,5~ 

dichlorodifluoropyridine respectively (0*64 g., 50$), (Found: C, 40*2; 

H, 3'06; F, 15*7; CI, 29*2. CgH ?0F 2Cl 2N requires: C, 39-7; H, 2*89; 

F, 15*7; CI, 29*3$), b.p. (of mixture) 2 3 0 - 2 3 2 ° . 

Reaction of Octafluoro - 3 , 3 '-bipyridyl and 3 , 5-dichlorotrifluoropyridine 
with Sodium Isopropoxide i n Iso-propanol/Ether mixtures. 

General Procedure. 

The apparatus was the same as described for the reaction of sodium 

alkoxides with polyfludro-bipyridyls. 

To a s t i r r e d solution of the polyfluoro-heterocyclic compound 

i n a solution of iso-propanol and ether, was added dropwise over 10 min., 

at 2 0 ° , a solution of sodium i n iso-propanol/ether mixture, the r a t i o of 

which was the same as that i n which the heterocycle was dissolved i n . 

The solution v/as s t i r r e d for a further 30 min., then poured into water. 

The ether layer v/as separated off, v/ashed well with water, dried (MgSO^) , 

and the ether removed by d i s t i l l a t i o n . The composition of the product 
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was investigated using a n a l y t i c a l - s c a l e gas chromatography and the 

products i d e n t i f i e d by comparison of retention times with known samples 

of the products. The r e s u l t s and reaction conditions are shown i n 

TABLE 22. 

Reaction between Qctafluoro= 3 « 3 '-bipyridyl and Ammonia. 

i ) To a s t i r r e d solution of octafluoro - 3 , 3 '-bipyridyl (0«6 g., 

0*003 mole) i n dry ether (15 ml.) v/as added ammonia (0«7 g., 0*88 s.g.) 

i n ether (15 ml.) at 2 0 ° . The solution was s t i r r e d vigorously for a 

further 30 min. and then poured into water. The ether layer v/as 

separated off, dried (MgSO^), and the ether removed by d i s t i l l a t i o n 

to give a l i g h t brown s o l i d ( a f t e r prolonged pumping) (0*45 g.), which 

sublimed ' i n vacuo* as a tacky gum. Analytical-scale g.l.c. ( s i l i c o n e 

elastomer on c e l i t e at 180°) showed that the gum consisted of two 

components i n the r a t i o 1:3 (from peak areas), the minor component 

( i . e . the one with the shortest retention time) having a retention time 

i d e n t i c a l to that of octafluoro - 3 , 3 '-bipyridyl. The major component 

was p u r i f i e d by preparative-scale g . l . c . ( s i l i c o n e elastomer on c e l i t e 

at 200°) and i d e n t i f i e d as 6-aminoheptafluoro=3,3'-bipyridyl (0*17 g., 

28$), (Found: C, 40»6; H, 0«87; F, 44«4 . C^QE^FJl requires: 

C, 40*4; H, 0.67; F, 44-8$), m.p. 7 9 - 8 6 ° . 

Due to the large range over which the compound melted, i t i s 

probable that another isomer i s present « 5$)• This isomer could not 

be detected from nuclear magnetic resonance spectra. 
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i i ) When the reaction between octafluoro - 3 , 3 1 -bipyridyl and 

ammonia was carried out i n methanol, 4-methoxyheptafluoro-3,3' -bipyridyl 

was i s o l a t e d i n good y i e l d and i d e n t i f i e d from i t s infrared spectrum. 

159 s 

Oxidation of 6-Aminoheptafluoro-3.3' - b i p y r i d y l . 

To a refluxing solution of t r i f l u o r o a c e t i c anhydride 0 ' 2 5 ml.), 

800 hydrogen peroxide (0*5 ml.), and methylene dichloride (5 ml.) was 

added dropwise a solution of 6-aminoheptafluoro -3 ,3 '-bipyridyl (95/° 

pure; 0*3 g., 0«0017 mole) i n methylene dichloride (15 ml.). The 

solution was refluxed for 1 h., during which time the solution had 

turned bright green, and then a further 0«25 ml. of hydrogen peroxide 

was added. After a further 2 h. hydrogen peroxide (0-25 ml.), t r i f l u o r o ­

a cetic anhydride (0-25 ml.) and methylene dichloride (5 ml.) were added. 

The reaction mixture was refluxed and s t i r r e d for a further 16 h. during 

which time the bright green colour i n i t i a l l y obtained had turned yellow. 

The solution was allowed to cool and water v/as c a r e f u l l y added. The 

methylene dichloride layer was separated off, washed well with 2N. 

^SO^, dried (MgSO^), and the methylene dichloride then removed by 

d i s t i l l a t i o n yielding a pale yellow s o l i d (0«5 g.), the composition of 

which was shown by a n a l y t i c a l - s c a l e g.l.c. to consist of unreacted 

s t a r t i n g material and a component of longer retention time. The major 

component ( i . e . the one v/ith the longer retention time) was purified 

by preparative-scale g . l . c . ( s i l i c o n e elastomer on c e l i t e at 230°) 

and i d e n t i f i e d as 6-nitroheptafluoro - 3 i 3 *-bipyridyl (a pale yellow 
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solid) (0*1 g., 18$), (Found: C, 36*4; F, 41*1. C ^ C y y i requires: 

C, 36*7; F, 40 .7$) , m.p. 7 0 - 7 1 ° (from petroleum-ether, 4 0 - 6 0 ° f r a c t i o n ) . 

Reaction between Qctafluoro - 3 . 3 f-bipyridyl and Hydrazine Plydrate. 

To a s t i r r e d solution of the bipyridyl (1*0 g., 0*003 mole) i n 

dioxan (10 ml.) v/as added dropwise over 20 min., at 2 0 ° , a solution of 

hydrazine hydrate (0*5 g., 0*01 mole) i n dioxan (15 ml.). After the 

addition of three drops of the hydrazine solution to the bipyridyl the 

reaction mixture turned a deep red colour. After the addition of the 

hydrazine solution was complete, water was added to the reaction 

solution. The aqueous mixture v/as extracted with ether, the combined 

extracts washed well with water, dried (MgSO^), and the solvent removed 

by d i s t i l l a t i o n to give a dark red s o l i d that did not sublime 'in 

vacuo* ( 2 2 0 ° / 0 * 0 1 mm.). No further investigation of t h i s s o l i d was 

carried out. 

Reaction between Octafluoro - 3 . 3 '-bipyridyl and Methyl Lithium. 

To a s t i r r e d solution of the bipyridyl (1*0 g., 0*0033 mole) i n 

dry ether (20 ml.) was added dropwise over 30 min., at 2 0 ° , a solution 

of methyl lithium (0*0033 mole) i n dry ether (20 ml.). On addition of 

the methyl lithium to the bipyridyl, a red coloured solution was obtained 

which rapidly dispersed to give a yellow-green solution. The solution 

was s t i r r e d for a further 60 min. and then poured into water. The ether 

layer v/as separated off, v/ashed well with v/ater, dried (MgSO, ) , and 



- 20k -

the ether d i s t i l l e d o f f to give a pale yellow s o l i d (0«8 g.), the 

composition of which was shown by analytical-scale g.l.c. to consist of 

three components i n the approximate r a t i o 2:1:1 (from peak areas). The 

three components were separated by preparative-scale g.l.c. (silicone 

elastomer on c e l i t e at 220°) and i d e n t i f i e d as: ( i ) unreacted octa-

fluoro-3,3'-bipyridyl (largest component i n mixture), ( i i ) 6-methyl-

heptafluoro-3»3'-bipyridyl (the component with the intermediate 

retention time), (Found: C, kk»5i H, 1-06; F, Vf«9. C^H^F^ 

requires: C, Vf«6; H, 1*01; F, H»9#), m.p. ̂ 3-/+5°t ( i i i ) a white 

s o l i d (Found: C, 42-1; H, 0*90; F, k7'2%), m.p. h2-kj>°. The 

structure of t h i s compound could not be resolved. 

Reaction between Octafluoro-4,4 1-bipyridyl and Ammonia. 

( i ) Octafluoro-4,4'-bipyridyl (0-7 g., 0*0023 mole), ammonia 

(1»0 ml., 0*88 s.g.), and acetone (5 ml.) were sealed i n a Carius tube 

and heated f o r 2»5 h. at 80°. The tube was then cooled, opened, and the 

contents added to water. The aqueous mixture was extracted with 

methylene dichloride and the combined extracts dried (MgSO^). The 

solvent was d i s t i l l e d o f f leaving a yellow s o l i d (0«5 g«) which a f t e r 

f r a c t i o n a l sublimation ' i n vacuo1 and r e c r y s t a l l i z a t i o n from ether 

afforded 2-aminoheptafluoro-4,V-bipyridyl (0*23 g., 33$), (Found: 

C, to***; H, O.75; F, 44-7. C 1 ( )H 2F 7N 5 requires: C, kO»k; H, 0*67; 

F, ¥f«8$), m.p. 124-125° ( s l i g h t decomposition). 
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( i i ) 0ctafluoro-4,V-bipyridyl (2*0 g., OOO67 mole) and ammonia 

(10 ml., 0*88 s.g.) were sealed i n a Carius tube and heated at 160° f o r 

31 h. The tube was shaken throughout the time of the reaction. The 

tube v/as then allowed to cool, opened, and the contents added to water. 

The aqueous mixture v/as extracted with ether and the combined extracts 

dried (MgSO^). The ether was removed by d i s t i l l a t i o n giving a dark 

brown s o l i d (1*2 g.). Sublimation ' i n vacuo', followed by r e c r y s t a l l i z a -

t i o n from ether afforded 2,2'-diaminohexafluoro-^,^ 1-bipyridyl (0«7 g.» 

36>o), (Found: C, 41-3; H, 1-1*; F, 38.5. C^H^FgN^ requires: C, JK>«8; 

H, 1*36; F, 38»8#), m.p. 2^3-2^6° (decomposition). 



PART I I I 

CHAPTER 8 

ELUCIDATION OF ORIENTATION IN SUBSTITUTED POLY-

FLUOROBIPYRIDYLS (MP SUBSTITUTED FLUOROPYRIDINES) 

FROM NUCLEAR MAGNETIC RESONANCE SPECTRA MEASUREMENTS. 
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Elucidation of Orientation i n Substituted Polyfluorobipyridyls 
(and substituted fluoropyridines) from Nuclear Magnetic Resonance 

Spectra Measurements. 

Nuclear magnetic resonance (n.m.r.) spectra v/ere recorded on an 

A.E.I. R.S.2. spectrometer at 60 Mc./sec. Samples were examined as 

neat l i q u i d s or as solids dissolved i n i n e r t solvents, with hexa-

fluorobenzene or trichlorofluoromethane as i n t e r n a l reference. 

Chemical s h i f t s measured r e l a t i v e to CFCl^ were related to C^Fg by 

incorporating the relationship that the Fluorine-19 chemical s h i f t 

due to CgFg i s 162«28 p.p.m u p f i e l d from CFCl^. 

The effect of the solvent on the chemical s h i f t s i s neglected as 

the determination of the orientations i s made purely on an emperical 

basis to the nearest 2-3 p.p.m. 

The structures of the various substituted polyfluorobipyridyls were 

deduced from t h e i r n.m.r. spectra by incorporating the known effects 

of substituent groups on the Fluorine-19 chemical s h i f t s i n penta-

fluoropyridine and related compounds. As already mentioned an octa-

f l u o r o b i p y r i d y l can be considered as a monosubstituted-tetrafluoro-

pyridine and to a f i r s t approximation the e f f e c t of a substituent on 

the Fluorine-19 chemical s h i f t s i n pentafluoropyridine w i l l be of the 

same order as the e f f e c t the same substituent group would have on the 

Fluorine-19 chemical s h i f t s i n octafluorobipyridyl. Thus, i f a group 

X i n ̂ -X-tetrafluoropyridine s h i f t s the chemical s h i f t of the ortho 

flu o r i n e by y p.p.m. r e l a t i v e to the chemical s h i f t of the same fluorine 
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i n pentafluoropyridine, then i n 4-X-heptafluorobipyridyl the same 

eff e c t on the chemical s h i f t of the ortho f l u o r i n e r e l a t i v e to octa-

f l u o r o b i p y r i d y l can be expected. 

From the Fluorine-19 chemical s h i f t data l i s t e d i n TABLE 23, i t 

i s possible to calculate the chemical s h i f t s for any substituted 

p o l y f l u o r o b i p y r i d y l . When two substituents are present i n one r i n g 

then the combined effects of both substituents are incorporated to 

calculate the. expected chemical s h i f t s . I n monosubstituted hepta-

fluorobi p y r i d y l s i t has been assumed that the substituent has l i t t l e 

or no e f f e c t on the chemical s h i f t s due to the fluo r i n e atoms i n the 

other r i n g . When more than one orientation i s possible the chemical 

s h i f t s have been calculated f o r a l l possible orientations and the 

correct structure assigned on the assumption that the. calculated 

chemical s h i f t s for any orientation must closely agree with the 

measured values of the chemical s h i f t s . 

Although the Ullmann synthesis of b i a r y l s has been used i n many 

instances as a method of confirming orientations i n substituted 

b i a r y l s , the structures of the octafluorobipyridyls can be further 

confirmed from n.m.r. data. I n monosubstituted-tetrafluoropyridines 

i t has been found, without exception, that the chemical s h i f t s due 

to the fluo r i n e atoms ortho to the r i n g nitrogen are found to 

low f i e l d , the chemical s h i f t s due to the fluorine atoms meta to the 

r i n g nitrogen are found to high f i e l d , and the chemical s h i f t due to 
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the flu o r i n e atom para to the r i n g nitrogen i s found to middle f i e l d . 

Thus, by considering octafluorobipyridyl to be a mono-(tetrafluoro-

p y r i d y l ) - t e t r a f l u o r o p y r i d i n e , the chemical s h i f t s due to the fluorine 

atoms can be readily assigned. Further confirmation of the structure 

of an octafluorobipyridyl i s obtained by comparison of the Fluorine-19 

chemical s h i f t s obtained from the b i p y r i d y l with those obtained from 

decafluorobiphenyl. 

EXAMPLE. Elucidation of the Structure of 2-Hethoxyheptafluoro-4,V-

Confirmation of Orientation of Octafluoro-**,V-bipyridyl ( r e f . X, 

From the symmetry of the compound, two chemically sh i f t e d peaks 

of equal i n t e n s i t y would be expected. I n polyfluoropyridines, the 

chemical s h i f t s due to the fluor i n e atoms ortho t o the nitrogen are 

always found to l o w - f i e l d (-70 + 20 p.p.m.), and the chemical s h i f t s 

due to the fluorine atoms meta to the nitrogen are always found 

to high f i e l d (-5 + 20 p.p.m.), r e l a t i v e to CgFg as indicated i n 

TABLE 23« Considering o c t a f l u o r o - ^ , ^ 1 - b i p y r i d y l to be a 4-substituted-

b i p y r i d y l . 

2' \ 
\ / 
6' 

0CH_ 
\ " 

N. N ( r e f . XI, TABLE 2k) 

TABLE 2*0 
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tetrafluoropyridine, two chemically s h i f t e d peaks, one to low f i e l d 

and one to high f i e l d would be expected. The n.m.r. spectrum of 

octafluoro-4, k1 - b i p y r i d y l consists of two chemically shifted peaks, 

-72*3 and -23*7 p.p.m. downfield of C^Fg, and because of the very 

large difference i n the values of the chemical s h i f t s and their 

close comparison with the values obtained f o r the a and p fluorines 

i n polyfluoropyridines, they can be assigned to the 2,6 and 3»5 

fluorines respectively i n octafluoro-^,^'-bipyridyl. 

Further confirmation of the sturcture of octafIuoro-4,^'-bipyridyl 

i s obtained by comparison with decafluorobiphenyl. (This comparison 

i s more important i n determining the values of the chemical-shifts i n 

octafluoro-3,3'~i and. 2,2'-bipyridyls.) Decafluorobiphenyl can be 

considered as a mono-substituted pentafluorophenyl derivative. To a 

f i r s t approximation the e f f e c t of the CgF^ group i n decafluorobiphenyl 

on the chemical s h i f t s of the ortho and raeta fluorines w i l l be of the 

same order as the e f f e c t of a Ĉ F̂ N group i n octafluoro-*f,V - b i p y r i d y l 

on the respective fluorine atoms. From TABLE 23» i t can be seen that 

a CgF^ group s h i f t s the chemical s h i f t s due to the ortho and meta 

fluorines i n decafluorobiphenyl downfield by -2.k and -1»5 p.p.m. 

respectively ( r e f . K), r e l a t i v e to hexafluorobenzene. Thus, i n octa-

f l u o r o - ^ V - b i p y r i d y l the ortho and meta fluorine chemical s h i f t s w i l l 

be equivalent to the chemical s h i f t s due to the 3 and 2 fluorines i n 

pentafluoropyridine moved downfield by -2k and -1»5 p.p.m. respectively. 
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Pentafluoropyridine ( r e f . A, TABLE 23) has three non-equivalent 

fluorines, and the chemical s h i f t s due to the 3 and 2 fluorines are 

-0«3 and -7^*7 p.p.m. respectively. Hence, the chemical s h i f t s due 

to the 3 and 2 fluorines i s octafluoro-^f, 4'-bipyridyl w i l l have the 

calculated values of: 

i ) -0-3 + -2h = -24-3 p.p.m. (3 fluorine) 

i i ) -7^»7 + -1-5 = -76*2 p.p.m. (2 fluorine) 

r e l a t i v e to hexafluorobenzene. 

The measured values of the chemical s h i f t s are -23*7 and -72*3 

p.p.m. and have been assigned to the 3 and 2 f l u o r i n e atoms respectively 

as these measured values agree closely to the calculated values. 

Confirmation of Orientation of 2-Hethoxyheptafluoro-41A-' - b i p y r i d y l . 

From an examination of the s t r u c t u r a l formula, the Fluorine-19 

n.m.r. spectrum of 2-methoxyheptafluoro-if,ii-1 - b i p y r i d y l v/ould be 

expected to consist of f i v e d i f f e r e n t chemically s h i f t e d peaks of 

di f f e r e n t i n t e n s i t y . The chemical s h i f t s due to the fluorine atoms 

at positions 2' and 6', w i l l have the same values as both fluorine 

atoms are magnetically equivalent. Simi l a r l y the chemical s h i f t s due 

to the fl u o r i n e atoms at 3' and 5' w i l l be the same. The chemical 

s h i f t s due to the fluorine atoms at positions 3i 5 and 6 are non-

equivalent, and w i l l be only half the i n t e n s i t y of the chemical s h i f t s 

due to the pairs of flu o r i n e atoms i n the other r i n g . I t i s assumed 

that the e f f e c t of a substituent group i n one ri n g does not ef f e c t 
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the values of the chemical s h i f t s due to the fluorine atoms i n the 

other r i n g . Thus, the values of the chemical s h i f t s due to the fluor i n e 

atoms at positions 2', 6* and 3', 5 1 w i l l be equivalent to the values 

for the same fluor i n e atoms i n octafluoro-4,4*-bipyridyl, i . e . -72-3 

and -23*7 p.p.m. respectively. From TABLE 23, a methoxy group s h i f t s 

the value of the chemical s h i f t due to an ortho fluorine u p f i e l d by 

+2 p.p.m., a meta fluorine (across nitrogen) u p f i e l d by +3 p.p.m., and 

a para fluorine u p f i e l d by +9 p.p.m. ( r e f . D). By application of these 

s h i f t s i n 2-methoxyheptafluoro-4,4'-bipyridyl, the chemical s h i f t s due 

to the 3» 5 and 6 f l u o r i n e atoms can be calculated; 

i ) -23*7 + +2 = -21*7 p.p.m. (3 fluorine) 

i i ) -23*7 + +9 = -14-7 p.p.m. (5 fluorine) 

i i i ) -72*3 + +3 = -69*3 p.p.m. (6 fluorine) 

r e l a t i v e to C^Fg. 

The measured values of the chemical s h i f t s due to the fluorine 

atoms i n 2-methoxyheptafluoro-4,4'-bipyridyl are: -74*2 ( i n t e n s i t y 

2); -71*2 ( i n t e n s i t y 1); -24-7 ( i n t e n s i t y 1); -23*7 ( i n t e n s i t y 2); 

and -13*0 ( i n t e n s i t y 1) p.p.m. r e l a t i v e to CgFg. The peaks of 

double i n t e n s i t y can unambiguously be assigned to the fluorine atoms 

21,6' (-74-2 p.p.m.) and 3',5' (-23*7 p.p.m.) as they are i n agreement 

with the calculated values and also by comparison with pentafluoro-

pyridine. Comparison of the calculated values of the chemical s h i f t s 

due to the fluorine atoms at positions 3«5 and 6 and the measured 

s h i f t s allow only one possible assignment i . e . , —71•2 (6 f l u o r i n e ) ; 
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-2k»7 (3 fluorine) and -13»0 (5 f l u o r i n e ) . Thus the n.m.r. spectrum 

of the compound i s i n agreement with the substituent entering the 

position ortho to the nitrogen i . e . 2-methoxyheptafluoro- if,*f l-

b i p y r i d y l . 

This method of approach has been used to elucidate the structures 

of the compounds l i s t e d i n TABLES 2h and 25. 
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TABLE 2k 

.Fluorine-19 Chemical Shifts in Derivatives of Octafluorobipyridyls. 
(position of the fluorine atom in parentheses) 

Compound 
(intensity ratio of peaks 
in parentheses in order 
of increasing value of the 
chemical shift from low to 
high f i e l d ) 

k 3 

Chemical shift from,hexa- Reference 
fluorobenzene (p.p.m.) CompoundTs) 
(+ve shifts are measured (incorporating 
to higher field) Table 20) 

Measured 

-20*9 
-25'k 
- 9*1 
-81 *2 

(3) 

(5) 
(6) 

Calculated 

-2k 
-30 
-12 
-76 

Kj A 

(1:1:1:1) 

(3) 23*8 23 OCH 

< 
5) 10 

< 3 (6) 76-6 76 I I e r e / 5 
3') 20*3 21 

( V ) 23*8 25 
(1:1:2:1:1:1) 5') 

(6«) -81 79-7 

OCH OCH 

6 

(3) 2k 23*2 
5) Q'k I I I I I 5 
6) 76-1 77 

(1:1:1) 
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TABLE 2k (Cont.) 

Compound 

CI 

w W W 
(2:1:1:1:1:1) 

OCH 

Chemical shift from hexa- Reference 
fluorobenzene CP.P.m.) Compound's) 
Measured Calculated 

ft) •J* 
-6»0 (5) -7 
-80*9 (6) -83 
-21 »8 (3«) -21 
-2k'9 (V). -25 
- 8*6 (5») -9 
-80« 8 (6«) -81 

(5) -7 
-75.6 (6) -76 

-19'V (3«) -21 

(A)-22«8 ( V ) -25 

- 5*3 (5') -9 
-78*k (6«) -81 

I ; IV; C 

isomers in ratio 2:1(A to B) ft) -W 

(3:2:1:1:3:2:1 :V:1) - 3'3 . (5) -6 
-78.^ (6) -81 

(B) -22'6 (3') -22 

-7-1 (5«) -10 
-74-8 (6«) -76 

IV; I ; C 



- 216 -

TABLE 2h (cont.) 

Compound 

,C1 CI 

(1:1:1 ) 

OCH, CI CI 

(1:1:1:1:1) 

V I I I 5 

OCH, CI CI OCH, 
JLU \ / 3 

Chemical shift from hexa- Reference 
fluorobenzene (p.p.m. ) Compound(s) 
Measured Calculated 

I X CI-

•45*8 (*•) - W 
- 5«6 (5) -6 IV 

-81 -h (6) -81 

-6 M (5) -7 

-77 -1 (6) -76 
- 4 V 8 ( V ) «W V I ; 

-k'h- (50 -6 

-80-3 (6«) -81 

- 5-2 (5) -6 
V I I 

-76*8 (6) -77 

-66-7 fr) -65 I ; 
-95.6 (6) -98 

(111) 
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TABLE 2U- (cont.) 

Compound Chemical shift from hexa- Reference 
fluorobenzene (p.p.m.) CompoundTs) 

X N F F ,N 

(1:1) 

OCR", 
^ 3 3 y 2' 

6 5 5' 6' 

(2:1:1:2:1) 

^ 3 ^ ' 0 C H ' 

ra W W 
6 5 

(1:1:1 ) 

CCH3 5 OCHj 

XI I I N F />—(v -c. N 

d) 
'0CH3 OCH, 

Measured Calculated 

-72*3 (2,6) -76 K; 
-23-7 (3,5) -24 

- 2 W (3) -22 

-13*0 (5) -15 
X; -71*2 (6) -69 X; 

-7^-2 (2», 6') -72 

-23-7 ( 3 1 , 5') -24 

-2 .̂-1 (3) -25 
-13-0 (5) -13 XI 
-70-2 (6) -71 

-6*8 (3) -15 XII; D 
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TABLE 24 (cont.) 

Compound Chemical shift from hexa- Reference 
fluorohenzene (p.p.m.) CompoundTs) 

XIV 

NH„ 
\ 2 3 3* 2' 

6 5 5* 6 1 

(2:1:2:1:1) 

2 3' 2' / H /=\ 
XV N F />-A\ F ,N 

6 5 5' 6' 

(1:1:2:1:2) 

F .N XVI N 

(1:2:1:2) 

Measured Calculated 

-21 '9 (3) -25 
- 5-9 (5) -14 
-71 *3 (6) -65 X; 
-23*7 (3«,5«) -24 
-73'4 ( 2 S 6 - ) -72 

-91-9 (2) -92 
-24*2 (5) -23 
-77*1 (6) -74 X; 
-23'8 (3 ' ,5 ' ) -24 
-74-9 (2»,6«) -72 

-89*0 (2) -89 

-24 • 9 (5) -25 XV; 
-24*0 ( 3 « , 5 ' ) -24 
-74*2 ( 2 S 6 « ) -75 

X; B; J; A 

XVII 

£—< V -94*5 (2,6) -94 
/ AY , \ "23-5 ( 3 S 5 - ) -24 X; XV; ft VLy _78,lv (2 , ,6 , ) ~72 

6 CI 5 f 6 1 

(1:1:1) 
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TABLE 24 (cont.) 

Compound 

5 4 

XVIH6\^ 
•N. 

2 

(1:1:1:1 ) 

OCH 

XIX V / / \ It 

(1 :1 :1 :1:1:1:1 ) 

5 4 

XX NH^\ P 

V 5' 

2 2' 

(1:1 :1:1:1:1:1 ) 

XXI CH 

Chemical shift from hexa- Reference 
fluorobenzene (p.p.m.) """ CompoundTs) 
Measured Calculated 

(2:1:1:1:1:1) 

-94*4 (2) -99 
-52*2 (4) -52 

-.-47 (5) —̂  
-86_'6 (6) -87 

-88 '6 (2) -89 
-2-4 (5) -3 

-82 '0 (6) -81 
-92*3 (2-) -94 

-49*5 ( V ) -52 
-3-4 ( 5 0 -2 
-82 «9 (6 ' ) -87 

-86-3 (2) -86 
-40'4 (*•) -44 
- 2*4 (5) -3 
-94*3 (2 ' ) -94 

(4 ' ) -52 
+2*4 (5«) -2 
-82'0 (6«) -87 

-95*6 (2) -89 
.4.3.4 (M -47 
-11 '2 (5) -20 
-95.6 (2-<«) -94 
-50-7 ( V ) -52 
+ 3*12 (5») -2 
-81 *3 (6 ' ) -87 

X V I I I ; C 

X V I I I ; B 

X V I I I , E 
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TABLE 2K (Cont.) 

Chemical shi f t from hexa- Reference 
fluorobenzene _Gl*Jg*i!!?tl Compound(s) 

n Measured 

w v ) 6 , ( A ) :?::3

8 

Calculated 

XXII 
(A) 

-90*8 (2) -91 
+ 4'3 (5) -6 
-78*2 (6) -8^ 
-95*0 (2«) -9'+ 
-50*8 ( V ) -52 
+ 0*8 (5 ' ) -2 
-80*0 (6«) -87 

isomers in ratio (A to B) 
(5:1 :*4-:5:ks5:1:5:k:1) -92 «8 

(B) -»+2«5 
- 5*3 
-95-0 
-50*8 
+ 0*8 
-80*0 

0C,H I S O 

P 7 L L 

XXIII 

i s o C ^ O 

-89-3 

\ y -76-6 
(A) -93-1 

->?.8*8 

+ 5*7 
6'(B) _ 7 8 . 7 

isomers in ratio 2:3 (A to B) 
(5:3:2:3:2:5:3:2:5:3) 

-91 '0 
-V0*5 
+ 6*23 

(B) -93-1 
-J+8-8 

+ 5-7 
-78-7 

(2) 
('+) 
(5) 
2 ' ) 
V ) 

5') 
6') 

2) 

5) 
6) 
2 ' ) 
V ) 
5 0 
6') 

2) 

fc) 
5) 
2 ' ) 
•'+') 
5 ') 

-91 
-t9 
-6 

-9^ 
-52 
-2 
-87 

-91 
-6 

-% 
-52 

-87 

-91 
-^9 
-6 

-52 
-2 

XVIII ; P 

XVIII ; F 

XVIII ; F 

XVIII ; P 

6') -87 
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TABLE 24 (Cont.) 

Chemical shift from hexa-
fluorobenzene "(p.p.m. ) ~ 

Reference 
Compound(s) 

Measured Calculated 

XXIV 

OC„H 

isomers in ratio (17:3) (A to B) 

10 peaks of different intensity. 
Characteristic of spectrum obtained from XXII and X X I I I . 
Due to low intensity of spectrum; the chemical shifts were not able 
to be measured accurately. 

XXV 

F 

(2:2:.2:1:2:2) 

F 

OCH, 0CH2 3 s 3 

XXVI 

mixture of isomers ratio 1 :1 
(A to B) 
(1:3:3:1:3:1 ) 

-9U--0 (2) -94 
_>44* 0 CO -52 
+ 3*0 (5) -2 

-82*5 (6) -86 

-66-3 ( V ) -76 
-100*9 (2«) -106 

- 89-5 (2) -89 
(A)- 76-2 (6) -82 

+ 2*1 (5) 

- 89-5 (2) -89 
(B)-76-2 (6) -82 
3 + 2*1 (5) -3-4 

-91 -5 (2 ' ) -91 
-1+2'3 ( f ) -J+6 
+ 9'U- (5*) +0*3 

X V I I I , K 

XIX 

XIX; X V I I I ; D 
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TABLE 2k- (Cont.) 

Compound 

5 k 

X X V I I C H 5 ° ^ g g ^ > 

(1:1:1:1:1:1:1 ) 

6' 

Chemical shift from hexa- Reference 
fluorobenzene (p.p.m.) CompoundTs) 
Measured Calculated 

-93*1 (2) -91 
-k-3'0 r u • i s 
+ 5*2 (5) 0 

(2«) -9V 
-50-7 ( V ) -52 
+ 3*2 (5«) -2 
-80*5 (6«) -87 

D ; X V I I 

-91-7 (2) -93 

>V//V/"> ? ™ 
X X V I I I 

CH,0 

(1:1:1 ) 
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TABLE 25 

Fluorine-19 Chemical Shifts in Derivatives of Polyfluoropyridines 
(position of the fluorine atom in parentheses) 

Compound 
(intensity ratio 
of peaks in 
parentheses) 

Chemical shift from hexafluoro- Reference 
benzene (+ve shifts are Compound 
measured to higher f i e l d 

CI 

2 f 

-95*1(2) H 

OC.H 1 3 0 

' 3 7 c i 

F (A) -91*1(2) H; F 

Cl CI 

0C3H7 

F (B) -90-3(2); -63-59(4) 

isomers in ratio 
87:13 (A to B) 
(6*5 : 1) 

iso 
3H7 

P 
- c i 

(A) -88-2(2); -3*0(5); -73*3(6) 

OC 3H 7 

isomers in approx. 
ratio 5:1 (A to B) 
(6:5:1:5:1) 

H; P 

&; P 

(B) -88-2(2); -»+1 *0(M; +1*8(5) G; F 



CHAPTER 9 

INFRARED SPECTRA 
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