W Durham
University

AR

Durham E-Theses

Characterisations of euler n-spheres

Clark, D. E. R.

How to cite:

Clark, D. E. R. (1970) Characterisations of euler n-spheres, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8843/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8843/
 http://etheses.dur.ac.uk/8843/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Characterisations of

Euler n-Spheres

by

D.E.R. Clark

A thesis in partial fulfilment of the degree of Ph.D.
in the University of Durham.

June 1970

SOVENOF R’)
- 6 JULI1970

S, Ll!Br..._




ACKNOWLEDGEMENTS

I am very pleased to express here my sincere gratitude to my
supervisor Professor T.J.Willmore. His continued help, guidance
and encouragement have been invaluable throughout my studentship;

The author is also grateful to him for reading through the manuscript;

I would also like to thank Dr. B.B.Smyth, Dr. J.P.Wilson and
Mr. K, El Hadi for many profitable discussions. I am grateful also
to Dr. B.B;Smyth for bringing to my attention the fact that
theorems A and B have simultaneously and independently been proved

by Professor Y. Katsurada [32] in Japan.

The receipt of a Science Research Council studentship during

the course of this wark is gratefully acknowledged.

Finally I wish to thank Mrs, J. Gibson for typing the manuscript;




Summary

Introduction

Chapter I

Chapter IT

Chapter III

Chapter IV

Chapter V

Conclusion

Bibliography

§ 1.

CONTENTS

Smooth Manifolds

§2, Multivectors and Forms

§ 3.
§ b,
§ 5.
§ 6.

2]
p—
.

§ =.

]

e

KR O O
no
.

The Cartan Calculus
Change of Frame and Global Forms
Submanifolds

Some Definitions

Standard Equations
Generalised Classical Curvature Theory

Canonical curvature theory

The Generalised Minkowski Formula
The Second Generalised Integral Formula

Specialisations of £

Characterisation in Codimension one
Characterisation in Arbitrary Codimension

Generalisations

Algebraic Preliminaries
Geometric Preliminaries
Integral Formula

Specialisations

Page

o F W -

10
15

25
27
32

40
bt
53

62

T
83

88
90
93
o8
101
10k



SUMMARY

The purpose of the present work is to give a multidimensional
generalisation of the Liebmann-Sllss theorem by means of integral
formulas., In order to achieve this it was first necessary to
extend the classical local curvature theory. This was done by using
the mean normal curvature vector (as a canonical cross-section of the
normal bundle) to define generalised second and third fundamental
forms from which curvature invariants could be obtained. Secondly,
using these invariants, we derive a multidimensional generalisation

of the classical integral formula of Minkowski.

As a final application of the integral formula technique we
obtain an integral formula for a volume-preserving diffeomorphism
between two compact immersed submanifolds. Using this we find

conditions under which a diffeomorphism is an isometry. This

generalises similar work of Chern and Hsiung.




INTRODUCTION

One of the most interesting classical results in global

differential geometry is the

Liebmann H-theorem [1l]: The only ovaloids of constant mean curvature

H in Euclidean space E2 are the spheres.

In 1901 Hilbert [2] gave an ingenious proof of this result and further

proved the

Hilbert K-theorem: A closed surface of constant Gaussian curvature

K in E® is a sphere.

These theorems characterise the sphere in E°. In 1929 the
H-theorem was generalised by W. Slss [3] for the case of convex

. . . ' . . . n+1
n-dimensional hypersurfaces (assuming no self-intersections) in E .

In global differential geometry there are available three
!classical! methods of proving general uniqueness theorems: 1. the
'Tndex method?, 2. the Maximum method, 3. the Integral formula
method. The most effective tool used so far for closed strictly
convex two-dimensional surfaces has been the Index method; but this

does not readily generalise to higher dimensions,

The Maximum method is primarily the work of E. Hopf (4]
however in a long series of papers in 1958 A.D.Alexandrov [5] extended

the method to show that convexity is unnecessary for the validity of
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the Liebmann-Slss theorem. Proofs up to 1958 have primarily used
the elementary symmetric functions of the principal curvatures:
however Alexandrov weakened the convexity condition by using more
general functions.

The principal difficulty in using the third method is the
derivation of the integral formulas themselves, - the actual proof
which follows from them is mostly routine. Recently Hsiung [6] and
Feeman and Hsiung [8] have used this method to further extend the
Liebmann-Silss theorem for hypersurfaces gmbedded in a riemannian
manifold of constant curwvature. Heiung was also able to weaken the

convexity condition to a !star-shape! condition.

The Liebmann-Sllss theorem is closely related to the classical
integral formulas of Minkowski. It is thus one of our main aims to
develop multidimensional analogues of the Minkowski formulas for
arbitrary co-dimension, and hence investigate whether the above

mentioned theorems are special cases of more general theorems.

The essential difficulty in the translation of the known methods
of global surface theory to multidimensional differential geometry is
the formal generalisation of the second and third fundamental forms
for codimension greater than one; for each normal vector to an
embedded submanifold gives rise to a corresponding second and third
fundamental form as well as to corresponding curvatures- in particular

the rth— mean curvature, corresponding to these normals,
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The work of Chern [ ], Hsiung(7], Schneider [I2], Gulbinat (B]
and Stong [M] clearly indicates the necessity of extending the known
local theory of submanifolds and, in particular, to define curvature
invariants which depend only on the Normal bundle of the embedding
and not on the selection of special cross—sections of the normal
bundle. The canonical second and third fundamental quadratic forms
defined, from which we obtain such curvature invariants, are meaning-
ful analogues of the second and third fundamental forms of classical
surface theory. The third fundamental form can be interpreted

simply as the metric of the 'spherical image’.

By analogy to the classical relation between the second and
third fundamental forms it is possible to derive simple relations
between the canonical fundamental forms and the global metric of the
submanifold, The aim of this local part of the work is to help
clarify the relationship of these forms to the intrinsic geometry of

the submanifold.

It turns out that with suitable specialisations and restrictions
many of the recent generalisations of the Minkowski formulas can be
derived as special cases of our generalised integral formulas.
Further, by restricting ourselves to co-dimension one we obtain the

results of Sllss [ 3], Hsiung [7]and Yano [5] directly.

In 1963 Chern and Hsiung [17], using integral formulas, obtained
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conditions that a diffeomorphism between two compact submanifolds in
Fuclidean space should be an isometry. We extend their result to

the case where the ambient space is an arbitrary riemannian manifold.

In Chapter I we develop the necessary analytic basis for our
work, and for the first part of this chapter we depend mainly on the
paper of He Flanders [18]. 1In Chapter II we develop a local
curvature theory of the mean normal curvature vector which overcomes
the disadvantage of the earlier theory due to K. Voss [19],
K. Leichtweiss [20] and W. Gulbinat [13] which depended on the
choice of special cross—sections of the normal bundle, In Chapter IIT
we derive the generalised Minkowskl integral formulas; and in
Chapter IV we apply them to give a global characterisation of riemannian
n-spheres and their higher co-dimensional analogue Euler n-spheres.
In Chapter V we generalise the isometry theorem of Chern and

Hsiung [17].

We conclude by indicating possible lines of future research

in this area.



1.

CHAPTER T

In this chapter we develop the basic differential~geometric
theory of isometrically immersed submanifolds of a connected

riemannian manifold.

§ 1. Smooth Manifolds

Let M be an n~dimensional differentiable manifold of class
Cm, i.co on M we assume an infinitely differentiable structure. Let
F(M) denote the space of all C real-valued functions on M. A

tangent vector to M at a point p € M is a real-valued function

v : F(M) » TR satisfying:

a) v(£+g) = v(£) + v(g) f,g € F(M)
b) v(af) = av(f) o a€c R -
¢) v(fg) = v(£)el®) + £(p)v(e).

The set Mp of all tangent vectors et p € M forms an n-@imensional
vector space called the tangent space at pe. If U,(xl, cesy xn) is
a local coordinate neighbourhood of p, then the vectors e,, 1<i <n,
at p defined by: ei(f) = (af/axi)P form a basis for M,.  Any
tangent vector v at p can thus be represented uniquely by v = viei

i .
where v~ are unique constants.

The dual space M; of Mb is called the space of one~forms at
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p, and it is easily seen that the basis of M'; dual to the basis

{e;} of M is ax', ..., ax" .

A mapping X : M - Mp such that p - X(p) ¢ M, is called a
vector field if in each coordinate neighbourhood U the expression
X(p) = vi(xl, cees xn)ei defines C° functions v' on a neighbourhood
of Euclidean n—space E®, We denote by %‘(M) the space of all
vector fields on M over the ring F(M). Similarly we define a

differential l-=form as a function: w : M — M'; .

DEF. 1: Tangent Bundle (TM, m, M): The tangent bundle of M is the

2n—-dimensional fibre bundle TM = U MP it has in a natural way
pEM

a ¢ structure in the following way: if v = vlei at p € M with
local coordlnates xl, cees X then we take the coordinate system

{xl, ceey xn, vl, vaey V }on the neighbourhood U p .
peM

Clearly a vector field on M is simply a cross—section of this bundle,

DEF. 2: Frame Bundle (FM, m, M): A frame at p € M is any basis of

the vector space MP' The set of all frameg at all points of M is
ca.J_‘L‘ecl the frame. bund;l.e of Mo Let e,y «..y e be a moving frame
on U, then (el)p, cery (en)p is one basis of M. The most general
basis of Mp stems from this one by applying an arbitrary non-singular

transformation B = (le ) to it; we get

- : _ond
T = (£, euey i‘n) where f. = b (ej)p .




Clearly the independent variables {xl, ceey xn, 'bf } coordinatise

the neighbourhood of FM, and dim FM = n + n°,

§ 2. Multivectors and Forms.

From the space Mp we can form the space Aqu of g-vectors at
p € M. Similarly we can form the space AqM; of g-forms at p € M.
By considering the union of these respective spaces over all of M,
each of these spaces gives rise to a corresponding bundle on which
the General Linear group acts. The C cross-sections of these

bundles are called fields of g~vectors and q-forms respectively.

Note that F(M) acts on both of the vector spaces ¥%(M) and
x Z(M) of all g-vector fields and g-~form fields respectively. Whence
with F(M) as coefficients we have % = A% over F(M) and '{'Z = Adwx |
Note also that '_;g*g(M) is just F(M). |

We now form the tensor product:
b * p
X; = X.0%
thus forming the space of all p-vectors with q-form coefficients.

We can consider this space as the space of cross-sections of the

bundle of all elements of
q % AP
(A Mm) X ( Mm) me M

this tensor product being taken over IR. Again the ring F(M) acts

as a coefficient ring for ’xg .
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If we form the algebras g¢* = Z @'x; ’ x= 2 @ %P over
q 1Y

F(M) with the usual Grassmann products, we have defined, by linearity,

an operation:

P ro. ptr
¥ xE; 2 ¥

qts
and
_ * *
@®v) , (084¢) = ©, 0B (v , ¢ wex’ ocx?
e X vexP
The operation is associative and distributive and satisfies:

v®ow = (1P @ ve'xg we‘}jz.

§ %3¢« The Cartan Calculus

Let {el, ey en} be a moving frame (i.e. a cro;s—segtion of
FM) on a coordinate neighbourhood U of M, and let {a)l, ceey a)n} be
the dual co-frame. We now form the identity transformation on Mp

and denote it as uswal by dP: aP = w' ®ei 1<i=<n.

Clearly dP € 'xi 5 1s intrinsic, and we shall in future omit
the symbol ® . We can further facilitate calculation if we agree
to use matrix notation. Let o be the 1 X n matrix (a*, ..., @)

and e the n X 1 matrix (e;, ..., en)T and further agree to

identify a 1X1matrix with its single element (where superscript T

denotes transpose). Then the above equation becomes:
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dP = we (1.1)

We define the exterior derivative operation d to be a mapping:

'.f'; - x-;+1 characterised by:

a) Linearity.
b) dd = O.

c) On a local coordinate neighbourhood (U,x", «.e,x)  we have:

of .
af = -3 d.xl f a function on U.
ox
= _1)4 *
a) d(wAe) _dee+(1) w,d 6 we E

q

DEF. 3: An affine connexion on M is simply an operator d: xé - 3€i

satisfying:
i) dlv + w) = dv + dw

ii) d(fv) = 4af v + £ dv.

It can be proved from this that if d is an affine connexion on
M? then d induces a unique collection of operators, which we shall

also simply denote by d, one per space %‘g - xfﬁl satisfying:

a) d(v + w)

dv + dw v,weifg

r
S

b) d(v A w)

q P
dvAcu+(—1) v A dw vexq we X

c) d coincides with the affine connexion on ;{,é and with exterior

derivative on £° = *
q fq .




For a proof of this result see Flanders [1§ .

Now each e, € I; hence de; € %'i , we can thus write

dei = w;)ej or in matrix form:

de = Qe where Q = (wf ) (1.2)

Q is called the connexion matrix and its elements (l-forms) the
connexion forms. In a sense equations (1.1) and (1.2) and the
operator d contain the entire calculus of an affinely connected
n-manifold. For we now simply apply d to these equations and to

the resulting equations.

We define the torsion matrix T of MR to be the 1 X n matrix

of 2-forms:

d(dP) = 1Te where T = dw - ©Q (1.3)

Its elements are called torsion forms and clearly 7Te € ':!,‘; .
Equation (1.3) is the first Cartan structural equation.
We define the curvature matrix © of M" to be the n X n matrix of
2-forms:

d(de) = @e

where @ = 4aq - & (1.4)

Clearly ©e € %'é and we call the elements of © curvature forms.

Equation (l.4) is the second Cartan structural equation.

Applying d to (1.3) gives:




dt + 1@ = w®
and from (1.4) we get the Bianchi identity:
e = QO - 60

Clearly T=0 dw = i
' =

we

0

Flanders has shown that the following identities hold:

1) a8’ = a8" - &'q 2) d(Trace 8) =0
3) a(weF) = 8% + wo'n 4) a(teF) = o't - 7e’a
5) d2r—1P = w@r—le 6) d2r—1e = Q®r—le

®p = 1l r=1,2... e = 0T e .

The above system of equations is closed under d and expresses every
possible result of iterated application of d to any of the basic

quantities.

Let v = Ae be a vector field (i.e. v € SE; ), where X is the
1 X n matrix of functions (A%, ..., A'). Then

aer-1, (D)\)@r‘le where DA = (DA%, ..., DA")

o
<
W
P
(6]
o
=
1]
H

>
N
[ ]

.
[ ]
i}

dx + Af

and we have d(pr) = DA + A8 .



§ 4. Change of frame and global forms

In order to derive the local and global transformation
equations of the above matrices let ¢, e be two moving frames

defined on the same local coordinate neighbourhood U.

Then € = Ae A a non-singular matrix defined on U.
From dP = we = we we have @ = wA™*

From Te = 1€ follows T = TA™?

Differentiation of the first equation yields

& = AQA™* + aaa™? (1.5)
Similarly
® = aepa~t
and from A = ZA™Y we have
DX = DA™

Equation (1.5) is basic to the theory; it tells us how the various
matrices @ associated with the various moving frames e must be
related in the intersection of two neighbourhoods i1f we are to define

an affine connexion on M" globally.

Consider FM(DEF 2) the frame bundle, and define the forms

® = wB* where @ = (@Y, ...,0")




These are l-forms on the part of FM over U; the values of the

~

®” at a point £ ¢ FM given by f, = bf (ej) are

~

» = (wlp)B'l .

e
Note the & are independent of any connexion.

If now U is a second coordinate neighbourhood, & a moving frame
on it and p € U N U then:

e = Ae and © = wA ™t .
If f ¢ FM has coordinatesB wW.re.t. e and B w.r.t. e then

Be = B& = BAe

Thus B = oB™ = (BA) (BA)™ = &537*

This implies that the (linearly independent) l-forms &' are globally
defined on FM and independent of the particular local coordinate
neighbourhoods and moving frames used in their definition. In a

similar way we can construct global connexion forms 53 H

2 = (a)f) = BaB~! + (aB)B~*

and hence finally we define the general torsion and general curvature

forms respectively:
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Note: The classical formulation of the above can be obtained by

expressing all forms in terms of the basic forms o', Thus

J Jj k J _ J k 4
1) ® = IS 2) 267 = RS, ® o
i i J k i i 3
3) 217 = T o' ® LY DA = A, w
3) K ) 3

define the comnnexion coefficients, riemann tensor, torsion tensor

and covariant derivative respectively.

DEF. 4. A Riemannian manifold is the structure consisting of a C.

manifold M together with an inner product on each tangent space

such that whenever v, w are vector fields then their inner product
is a ¢ function on M. One of the salient features of a riemannian
manifold is the existence of a unique symmetric affine connexion d

such that:

d(vew) = dv.w + v.dw

§ 5. Submanifolds

Let M" be an immersed submanifold of a riemannian manifold
T ; with the induced metric. We shall work with the bundle of
adapted frames: let {EA} be an orthonormal frame at p € M such
— - h - —_
that {el, cvey en} are tangent to M~ and {en+1, ceey en+N}
normal to M, We shall agree from now on to the following index

convention:
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A,B,C = 1,2, ..., n, ntl, ..., ntN
i,i,k = 1,2, .., n. (1.6)
a,B,y = n+tl, ..., ntN
From § 3
dP = we + B vwhere e (e e )T (1.7)
- n+tl? °°°7 TN :
a_e = .Qe + Qe
de = e+ QF
- + Ny N = T
vhere & = (o 1, e, @ N), Q= (mf ), 8 = (aﬁo), Q= (wc<).
Also
(—i(d_P) = Te + Te
- ,= ‘=B _ } (1'9)
d(dgA) = 6 &
For a riemannian manifold torsion matrix = 0. Hence
and 5 (1.10)
-B _C =B =B
Aoy = @y oy * G

The equations (1.7) through (1.10) contain the geometry of Mty

Now _

gAB = eA.eB
O, g + @ C 3 dg = 0
—_— A 8B " “s &ca AR ©
_B . _A o
+ =
ah. uh 0 if gAB _ 5
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Now on M ® = 0 (1.11)
=> aw = o and @ = 0. (1.12)

The equations (1.7) through (1.10) together with (1.11) contain the

geometry of M? .

n n+1""’en+N)

DEF. 5. Normal Bundle (TM", =, M): Let (1500058 , €

be an adapted frame then (e is a normal frame

n+1’ "7 en+N)'

: - i
(i.e. an orthonormal basis for the normal space Mp)' The set

; L
(-I M? is called the normal bundle of M with structural group O(N)
peM ' :

acting on the standard fibre ]gy.

DEF. 6. Adapted Frame Bundle: (AFM, m, M): Is the union of all

adapted frames at all points of M, and is a principal bundle with
group O(n) X O(N). It is clearly a sub bundle of the bundle of

orthonormal frames over ﬁn+N restricted to Mn .

If we write aj e, for ae e;, then we have the equation of
J
Gauss:

= k a
djei = W (ej)ek o, Fej)ec (1.13)

The (induced) connexon on M is by definition the tangential
component of this:

= k
djei = tang(djei) = o (ej)ek

de = Qe.
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Weingartens equation is just:

ajec = (.oci —(ej)e.l + a)oB _(ej)ea (1.14)

4
Whence the connexion on the normal bundle d — the so-called 'normal

connexion! is just the normal component of (l.lh):

. i 5 -
djec = Nor(djeo) = o (ej)e5
l.e, 35 - Bé
J _ 9
Note ] (ek) = @ (ei)
torsion zero => ’
w’(e)) = o (e)
i J J i

Tt follows from (1.12) and a lemma of E. Cartan that

w, = A..w. (1.15)

where A% = (Aoij ) is an n X n matrix. The quadratic differential

forms:

are the so-called second fundamental forms of M.

The curvature matrix 0 = (@la ) of the induced connexion on M is

given by:
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14,

@ = dn - o2

n+N

and this is related to the curvature matrix of I\_& by the Gauss

curvature equation:

e = (I>—.(_1§_2T where @:((:)i']) .

The Codazzi-Mainardi equation is:

d(ﬁT) - gl + 8at+ 87t where O = (@io)
which can also be written:
dﬁ = Qﬁ -+ a0 + 6 .

The connexion (matrix) of the normal bundle has curvature matrix

& -6

o

1

tol]]
\V]

L
6 = d

and this is related to the curvature matrix of MP™N by

6P - 8P +ulaP .
a o o i
The Bianchi identity in §3 Decomes:
4@ = Q0 - 00+ BAL - OB
a® = 03 - o0 + 00 - IR where 3:(@5)

o
=)
1
(s
o
1
Lo]
(=)
+
S
1
ol
n
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Note for an orthonormal basis we can write ui? = Wpp s and for

a space of constant riemannian (sectional) curvature K:

QAB = Kuﬁ'A o .

§ 6. Some Definitions.

We end this chapter with some basic definitions that we will

have recourse to later on,

(a) One-parameter transformation group: on a ¢” n-manifold M" is a

set {¢t} t € IR of diffeomorphisms of M onto itself such that

the mapping

®: R XM—> M defined by ©o(t,p) ¢t(p) D EMNM,

satisfies:
(1) ¢ is differentiable
(ii) @(S? o(t,p)) = o(s+t, p), i.e. ® o = 0 O Vs,t

(iii) (0, p) = p i.e. ¢ = identity.

Such a group defines a tangent vector field X on M in the

following way. Let f ¢ F(M) and set:

£(e, (p)) - £(p) d
R O e )

t=0 .
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We can think of this field as follows: at every p € M, the mapping
t - ¢t(p), is a curve through p; we define Xp to be the tangent
vector to this curve at p. The fact that Xp varies smoothly

with p (so that X is in fact a vector field) follows from (i).
The following theorem is a partial converse of the above:

Theorem: Let M be a smooth manifold, X a vector field on M, U an
open set in M with compact closure K. Then we can find

e >0, and for each t with |t| < e, a map ¢£ of Te M

such that

(i) Map ¢ : UXE - MX R (E is the set [t| <€)
is a diffeomorphism onto an open submanifold.

(ii) If |s|,|t| and |s+t| are < e; p and ¢t(p) are in U,
then: ¢S=¢t(p) o ¢s+t(p)-. .

(iii) For each p € U, f € F(M),

X8 = g o)

The map ¢ is completely determined by these conditions.

Corollary: If M is compact, each vector field generates a
Lorol ary s

l-parameter group of diffeomorphisms of M.

DEF. T. A vector field on M is called complete if it generates a

l-parameter group of diffeomorphisms of M. Note that in the product
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M X R the field 0/dt, which maps to zero on the first factor and

to the standard field on the second, is complete, here
¢t(X:S) =(X, s+t )

This serves as partial justification of the term 'tangent!' vector

since clearly such vectors correspond to displacement along M.

(b) Lie derivative £

DEF. 8. The Lie derivative of a tensor T of type (r,s) with

respect to a vector field X is defined:
(iT)(Gl, evey er,xl, coey XS) = X(T(el’ ssay Gr,Xl, ecey XS))
_T(§91,92, ooy 0,X5 wae, XS)

“T(0y, +-ey 6 ,X

X ..,xs_l,[x,xS])

where 6., ..., Gr and X, <.+, XS are respectively arbitrary

1-forms and vector fields on M; and where:

(i) (;%e)(Y) = x(e(y)) - o([x,Y])
(ii) &£Ff = Xf f e T(M)
X

(iii) £Y = [X,Y]. 1In local coordinates X = X' 3/dxt and Y = Y /dx*
X

then £Y
X
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Clearly for a symmetric connexion d : £Y = d4,Y - .
EY = q¥ - X

Theorem: If X is a vector field induced by a l-parameter group of
transformations {¢t} then a tensor field T is invariant

under X (or equivalently under ¢

¢ for each t) iff £T = 0.
X

Note that the Lie derivative is linear over sums and commutes with
contraction; it is also a derivation in that for a product or a

transvection of two quantities ®, ¥ we have the Leibnitz rule:

£(0¥) = (£0)Y + 0(£¥)
X X X

DEF. 9: Affine Mapping: Let M, M be manifolds with linear

connexions. We call the C map ¢ : M > M an affine mapping if the
induced map ¢, : ™M - ™ maps every horizontal curve into a
horizontal curve, i.e. if ¢, wmaps a parallel vector field along
each curve T of M into a parallel vector field along curve ¢(T).

An affine tfansformation is a diffeomorphism of M onto itself-which
is an affine mapping. Geodesics are preserved and the arc length s

receives an affine transformation: s — as+b a # 0, b constants.

DEF. 10. Conformal transformation: Is a diffeomorphism ¢ from M

onto itself such that the induced tensor g¥ = ¢¥g is another
riemannian metric, Note that ¢, preserves orthogonality and dilates

uniformly.
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Theorem: A transformation on a C  riemannian manifold (Mn,g) is
conformal iff I a positive real-valued o function f on
M such that: g = fg or g¥ = exp(20)g

whereeecm:M—>]R.

A conformal vector field is one that generates a conformal

l-parameter transformation group.

DEF. 11, Projective Transformation: Is a c” homeomorphism of M onto

itself leaving geodesics invariant, the affine character of parameter
s not necessarily being preserved.
A transformation ¢ on M is projective iff 3 a covector p(®) depending
on ¢ such that: _

i

r = I 4+ p (0)sd +p (o)8t
ik 3k P30 T Pttt

If X is a vector field on (Mn ,g) which induces a l-parameter group of
transformations on M, Then in order that X define:
(i) an isometry (motion) is:

= X, .+X,, = 0

£g. . .
XglJ 1,4 Jat

the comma denoting covariant derivative.

(ii) an affine collination is:

i i - i 4
= + =
%Pj X X L3,k Rj k2 X 0]
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(iii) a projective motion is: £T, = 0
x Jk
where
1 . ) . )
- 1 1 1 1
I = I - T + I
jk jk (5j k2t % j ! )

(iv) = homothetic transformation is:

£g13 = 2c gij ¢ = constant
X

(v) a conformal transformation is:

= 2¢ .
285 8 5

Clearly for ¢ = O in (iv) we have (i); we thus call (iv), such that

c # 0, a proper homothety. Note also that from the definition

ery = e (e )+ (8ey) - (Sr),,)

thus (i) and (iv) are examples of (ii).

Proofs of these results are to be found in Yano!s book 'The Theory

of Lie Derivatives and its Applications?.

(c) Generalised vector product

Considerable use will be made of the vector product due to

Hsiung [6]. Namely, let (Mn,g) be a riemannian manifold (n = 3),
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and consider a fixed orthonormal frame {p, e ooy en} at p e M.

1?2

Let a, (1 < i <n-1) be n-1 vectors at a point in M" whose contra-
. o

variant components w.r.t. frame Py€1, ess, € AT a, l1<o=n.

We define the vector product of the n-1 vectorsai to be a vector

. n .
in M" denoted a, X ... X a1 whose contravariant components are

given by:
e; s s e e e e,
a’ a al
€121 7 8g2®1 0 -t - Egp?y
o} n
E51%2 2 Bgofo s ¢ - - Epyfo
n-1
X o = (= . .
a, X an—l (-1)
o 20 20
851%n-1° 802%n-17 * * * Eonn-1

From the definition of scalar product of any two vectors a; and aj

. ax B

. A . = . . i X ene X ]
viz al aJ gaB al aJ it follows that a, an—l is
orthogonal to ay 1<is<n-1.

Clearly if =m is a permutation of the set {1,2, cesy n} then:

a1(1) X vee X & (me1) = (sign n)al X oo Xa

where sign m is *+1 or -1 as © is even or odd.

If (ag) are differentiable functions of the n-1 variables then from

the definition:
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) Ja :
-a—}—c-i—(alx...Xa Z(a X...Xa_1X:Xa x...xan_l)

In a determinant whose columns are the components of vectors or
vector-valued differential forms, we make the convention that in the
expansion of the determinant the multiplication of differential
forms is in the sense of exterior multiplication. A similar
convention will be observed for vector products involving differential
vectors.

For the differential vectors dPi = wije. 1sisn we
define:

ky

t= B w

IIdPl, eer, dP_| Kk .k QL Acce A®
1 n

n

il
€, +ee, ©
where | | means a determinant of order n whose columns are

components of the respective vectors e;, ..., e .
n

(d) Newton's Formula

Let A0 be matrix of second fundamental form in normal direction
e, (see (1.15)). Then we define the principal curvatura;li(c)

1<i<natapoint p e M to be the roots of the equation:

a
4% -26] = o G = (&)

and consider the kth elementary symmetric function of the li(o) :

S i= . (0) oo A, (0O S. =1
. )y (@ (@) o

0 ] l
1l<"'<1k
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k
Set P = (xi(c)) .

Then the relationsbetween Sk and P, are given by the formulas of

X
Newton:
P -8 =0
P, - 8P +25, = O
P, -SP, +SP -35 = 0
P o-SP _ FSP o= ...+ (—1)n‘lsn_lpl + n(-1)" s, = 0.

We can thus express Sk in terms of P,, ..., P as:

k
s, = P
o 2
2l 5, = -P, + P;
3
3! 84 = 2P, - 3PP, + P
2 2 4
hi's, = 6P, + 8PP, -~ 6P2P, + 32 + P
tl+n-.+t +k
(—1) " tl n
S = P ... P
k T Ty "1 n
b0t + Thant o (BB (Bpt)e (8 )22 0
1 2 n
t, 20
1
tl+-.-+t +n
(-1) n t, t

S = }: P ... p I
n 1 ' 1Yo 02 th 1 . n
tl+2t2+...+ntn=n(tl‘)(t2')'"(tnf)e e..n

t. 20
i
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On the other hand we have the identity:

n-%k
— slsk - (k+1)sk+1

1 2 g
P, @ e, @
i, <i,

13<"'<1k+1

DEF. 12: For the normal direction eo we define the kth mean

curvature Mk(c) to be:

n n
< K > Mk = Sk where ( K > is the binomial

coefficient.

Whence:

MM - _ g f(ok=1)! O. (o) - 1. (0))22 A
Mo - Mg = KT i 1 3 e Ny
. . . 2. 3 k+1
_ . i, < 12

<...<i

is Kk+1
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CHAPTER II

We now develop the local curvature theory of a riemannian
n-manifold immersed in Euclidean (n+N)-space; the results however
are easily translated without any-esséntial change to submanifolds
of a space of constant curvature. We first develop the more
classical theory with more recent extensions due to Chern [11],

Hsiung [ 7], Gulbinat [13] and Leichtweiss [20].

§ 1. Standard Equations

Consider an immersion x : M — EnTN, we denote the position
vector of x(M) relative to a fixed origin O by x. If (u!, ..., ")
are local coordinates on M then the (induced) metric onx(M) is |

given by:

= < > = O0x/O i .
8 3 X3 %, X, %/ ou

As before we define the outer product [az, ceey an+N] of the vectors

a in the (oriented) Euclidean space En+N

22 ttes By by defining

Va .

< a,la 1> = Ja,ay, «..; &

ceey 8
2’ 7 “ntN n+N|

We choose the orientation of the orthonormal basis {eo} of the
normal bundle so that:

X evey X e ceey € >0
I 17 i n’ n+l’ s n+NI
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Clearly
x, aee X. e ] e = €, -
i’ 774 ? Tnt+l’ 7 Tn+N i...1
1 n 1 n
and
A n+o-1
[x, ves, X, e teey €., eee, € 1= (-1 €, ., e
R 77 7 Tp+l? N 7 Tn+N (-1) i...i T«
1 n 1 n

s

where as usual the carat " denotes omission of that element, and

where the Ricei e-tensor on MP is:

1

- . _
eil"'in = g°sign(iy, «es) 1n) where g det(gij)
and hence
ieeedy
€. . € X . = k!j{;g_ ] ceeB. 7. y(sign m)
1001 S NISERTE: L Jk+1n(1k+l) Jnn(ln)_

(2.1)

summed over all permutations m leaving (il, ooy ik) fixed.
We also have:

i
(X, 5 coey, X. 5 veey X, ,€ 15 eeey & ] =€, A . X,
i i i nt+l n+N 1 eeel, ewed i
1l k n 1 k n

A
X

corresponding to each normal vector e, we have defined the symmetric

second fundamental form tensor:

A, = -<x,de >
ij i’ Tj o
(2.2)
_ _ Jk,0 4o P S
die = -g A:ikxj ® (xi)e[3



27.

where

a)cB (xi) = <d; e, ey > and u)f (xi) +o.)BU _(xi) = 0.

The conditions of integrability are:

g (¢] g [8)

Ringg = Paxbye ~Ai5hw
o o o ) v} B
- + - =
Aise "R,y T 9 (x A ij ~“g (Xj)A i = O
' (2.3)
4 e’ + GLp0 WY £j,0 Y
‘”o(xi),k s (Xk),i 8 Aty Ay h sk

B 4 B 4
+ 1 - =
w (xi)DB () = o (g leg (x;) 0
where R, ,, . 1is the curvature tensor.
ifk]

DEF. 13. Mean normal curvature vector 7 : is defined by:

1 o
(-r-l ) Trace A = g(eo, ) 14 e,

whence:
1
1 = <— > (Trace A%)e .
n (s}

§ 2. Generalised classical curvature theory

We now define generalised second fundamental forms which enable
us to define generalised mean curvatures. ILet e, be normalised

L
cross—~sections of TM , and define:
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o a a ¢
A = A. o A. . -'OA. .
I(r)J(r) 1,3, isds 14,
and -
. : j
AUI( )J(r) = A% J1al 2 a° 7
r) . i, i i,
where I(r) := {i,, ..., ir} , I(r) := {jl, ceey jr} are ordered

sets of numbers.

We can now define a tensor symmetric in (ij) as follows:

14 i -.-i ii n--i j -ooj j
o, a 1] 1 s s, +2 n vl S
11!C< esse k> = € k k c k . N
: ry T lsk+2"'ln
oy, Oy
X A eas A
I(r )d(r,) I(r )3 (r,)
(2.4)
. )
and where U I(rt)II{is IRPIEEEY in} ={1, ..., n}
t=1 . k
and I(rs) n I(rt) = ¢ s£t.

And clearly there exists an analogous relation to (2.4) for the

sets of indices J(r;), ..., J(rk) .

From (2.4) we define the generalised mean curvature of the sub-

manifold to be:

fu]
VAN
Q
'—J
")

IWQ
N
I
Q
N
= Q

'_l
WQ
N4
[
[}
[0}¢]
|
[
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Clearly the curvatures depend on the choice of the normal
vectors e, - In case k = 1 the curvature functions H(:) are
simply the usual curvature functions with respect to tﬁe normals e,
namely the rth (normalised) elementary symmetric function of the

principal curvatures xi(o). We note that

g -1 g
nC > = G and H = 1 where G = (g..) .
0 0 e

If ea and e are two orthonormal vectors then e

B

where \/_Ee = ey + eB

is a unit normal vector, and we have:

Lemma 1 (Gulbinat): The rt? curvatures H(:‘), H(i) and H(f_) are

related to the unit normals eyr ©p and e by the relation:

ru(2) x () (2)- 3 (D= (2.

From (2.3) we have the well-known

o
R = A% - nH( . >A° (where R = (Rij))
(2.5)
Whence for the scalar curvature K we have:

n(n-1)K = -Trace R = RlJiJ_ .
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Hence from the first equation of (2.3) we have the well known

generalisation of Gauss'® theoremaegreéium:

a
Theorem 1: On x(M), X = 2 H < 2> ;
’ a

the right hand side depends only on the metric and not

on the normal space.

Proof Transvect the first equation of (2.3) with

g n I'j
€

and use the properties of the outer product defined earlier, together

with the fact that:
ikis...in o
€ A ik S 0]

recalling that € is skew symmetric.

Lemma 2: Let e, be an arbitrary normal to x(M), then it follows:

a (1J a i ik 4 «
(a) 1’1(1’1—1)0(1) = nH(l)gla - gl gJ Akz .

o1 @, ij _ifa Km jn
(®) n(n-1)(n-2)c(,)  =nm-1)H(,)e™ + 27 A & g A

(v4 21 ki,
- 2nH( l)g g A % .
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Proof: From definition of tensor C

wre(©yH ikig...i
!

i
m
m

ij kr ir kj y,2
(n-2)t (g & - g g9 A, _

@, ij ki fj «
(n-2)1(aH( [ )e™ -g g A, ).

(b) is proved analogously using the fact that from (2.5) we get

a a o ki £j o
n(n—l)H(2) = nsz(l)_Aj_nggJAk£°

Note finally that we have:

S @y ik o ik
2c(;) & A, = H(,)g" - (n-2)c(,)

Jt

whence by (2.4t) and (2.5)

a,B. a 5., O B o ki £ B
n(n—l)H(lll) = nH(l)H(l)—-Aijg gt AL, -
These two equations together with (2.4%) have been used
extensively in investigations in minimal surfaces and umbilic sub-

manifolds.
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§ 3. Canonical curvature theory

We now develop a curvature theory of the mean normal curvature
vector. In order to do this we generalise the classical second and

third fundamental forms of surface theory.

DEF. 1l4. The second fundamental form of x(M) is defined to be the

quadratic form:

A, dut duwd = <x .,n>dut du’ .
1J 1yd

DEF. 15. The third fundamental form of x(M) is defined to be the

quadratic form:

i J : ' rk i J
Eij du” du < Xi,k’ xr,j > g du du* .
These forms are clearly independent of the choice of special sections
of the tangent respectively normal bundle., In the case of co-
dimension 1 (i.e. hypersurfaces) this third fundamental form
coincides with the classical one but this second fundamental form

is distinguished from the classical one Kij du” du? by a factor:

A = nH(1)A A= (Aij) A=(A.)

1]
where H(1) is the mean curvature of the hypersurface.

Note: The above generalisation of the second fundamental form is
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meaningful in the sense that it is in general impossible to normalise
n globally since there may be points where 1 =0, In case 1 #£0

on x(M) then we can normalise it and hence:
= =<
Aij din, x:j >
thus

A = nH(T)A“

DEF. 16. We define the principal curvaturesof x(M) to be the n

roots ki 1<i<n of:
A -] = 0

and we further define the (normalised) elementary symmetric

functions of the principal curvatures; in particular we call:

1 1 i
H = H = = TraceA = = g9 A,
1 n n 1J

the (first) mean curvature of x(M).
From this:
nH = <71, n> =2 0

A submanifold for which H = 0 identically globally is called a

minimal submanifold,



We can now derive the derivative equations and the conditions of

integrability (i.e. (2.5)) for 7 .

Let x, be any point not in x(M). We agree to identify points

in En+N with their position vectors in the usual manner.
Then
X =X, = (%)gij di(< XX, X~Xg >)xj + < xXg, €, > e, -
Now from:
N o= nH(] e,
and <g-x,, 1> = nH(;[) < X-Xgy €, >

we get the derivative equations:

kj B B o
an = -g° Ay X, + n{diH( 1) +w, (xi)H( 1 )} eq

If we denote the term: n{ } by aB, (= < d, m, eq > ) we get for
the conditions of integrability:

Aij,k - Aik,j = A i3 Tk ik

' S - *
- + - =
By~ B e Ay Ay meT Ay A

In what follows we use the:
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Theorem: The mean curvature of a submanifold for any normal

orthogonal to the mean normal curvature vector is zero.

In case H# O on a neighbourhood U of a point then n is normalisable

1
inUs Letp=+<n,n1>2>0

then nﬁ(i) =%l->0 .

Further let e, ntl € o < ntN, be an orthonormal basis for the

normal space such that e is in the direction of 1. Then

nt+l
1) A(1) = pa where A(1) is the second fundamental form in

direction e
ntl

2) B(}) =

3) < X=Xg, e py > = B <xxg, N> .

We now discuss the relationship of these generalised funda-
mental forms and curvatures derived from them to the intrinsic
geometry of x(M). We first generalise the classical relation between

the three fundamental forms of a surface in ES.

Theorem: On x(M) R=E - A E = (Eij)
. N Ik o o o
Proof: From Rij =A,, 8 A Y nH( 1) A i3

and DEF. 14 and 15,
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using n(n-1)K = -Trace R
and theorem 1 gives

R+ (n-1)KG = E - A + (n—l)z H(g)G
« Q.E.D.

Now every riemannian 2-manifold is an Einstein space, thus the left
hand side vanishes in this case, Whence using

A = nH(1)A
we get the classical relation:

E - 2H(1)A + H(2)G

]
(o]
L]

We have thus proved:

+
Theorem: On any 2-manifold in E2 N we have
E-A+KG = 0.

Theorem: The following three tensors are intrinsic:

(a) E = A + (n-1)XG

©) ) c($)” 6™ 4",

no

(c) X C(g)ij . n >
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15 . . . .
Proof From Lemma 2. n(n—l)C((;) / =n]-[(ic)g1J - gll ng Aalk
hence
a\id Ik « il 5k
n(n—l)zc(l) g Ay, = & g (A -Ey)
il kj
= - R,.
g 8 23
and
o a id ij il jk
n(n 1)ZnH(1)c(1) = dHg™” - g g Ay
o
and for n > 2, again from Lemma 2
n(n-1)(n-2)c( 0L)ij = n(n—l)H(a)gij + 2gli A* . gn @
2 2 xt & & mn
o il ik ,a
enH(,) & & Ay

that

]

2 ) 6(5) = 1)) 13D 6 2 &M, -y

n(n-1)X g9 + 2r*Y

whence

kg'd) = 2@®Y + (n-1)Kkg?)

(-1 (n-2)(n ) 0(5)"

a

i1
2g" &0 (B = Ay + (n-1)Kg )

Q.E.D.
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We note finally that it is possible to generalise the tensors (b)

and (c) of this theorem as follows:

N
b
N
ot

c)d = Zc(;)ij 0

o

ik g
J [0 4
8" Ayy

AT =) el 2

Qa

However in this generality little if anything appears to be known.

We end this chapter with a theorem which we shall use implicitly

throughout the remainder of our work.

Theorem: Let M' be a riemannian n-manifold and €y wees € be an
orthonormal basis for the tangent space on a neighbourhood

U of M, then

n
Proof: From (1.2) de, = w9 e.
—_— i i J
and since <e,, e, > = b,. !
1 | 1J
d<e,,e.> = <de,, e.>+t<e,, de.> = 0
1 J 1 J 1 J
thus
<w k e e, >+ <e w e > = o J + w oo 0]
i k’ i? 75 k i J *



Hence

1A

A

e
n

I
s

K
il
it

n

[
]
) ot

e PP e. a, PRI
1 AAS AY S AG A

e

Q.E.D.

9.

n
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CHAPTER IIT

In this chapter we derive our main integral formulee for a
submanifold of a riemannian manifold admitting a complete wvector
field., We shall then derive the formulae in case of some special

vector fields.

§ 1. The generalised Minkowski formula

Lemma: Let (M,g,d) be an n-dimensional riemannian manifold with a

connexion d, and let (U, u*, ..., u") be an allowable

a/aui.

coordinate chart on M with local coordinate field e:.L

Xle.
i

Then the Lie derivative of g w.r.t. a vector field X

on U is given by:

(1) (ig)iJ (}%g)(ei,ej) =< d'lx) ej >+ < ei, dJX >

or

ii £g), . a.X, + d X, .
(1) (£8);; = 4%+ ax

Proof: (i) From the definition of £ and the fact that M is

riemannian
Y - dX = [X,Y] = £
and

dg = 0 equivalently d<Y,Z2>=<dY¥,2>+<Y, 4% >



hi.

we have:

(;Eég)(ei ej) X<e, e > -~ <[X,ei], e >-<eg, [X,ej]>

(3.1)

< dye, - [X—,ei], e >+ <e,, dxej - [X,ej I>

<d.X, e.>+<e,, d.X>.
1 J 17 d

. . k I k
(ii) djei = o (ej)ek = de, = X o, (ei)ek

Also : i
[X,ei] = - ei(X )ej

So in local coordinates (3.1) can be written

(£e);= (£6)(ej,e;) = (e(X%) + X o) (e))gyy + (o)(x")

I k
+ % 0 (e )y

gkj diXk + 81y dj Xk'

d X, +4.X,
iJ Ji
Q.E.D.
Let £ : M > M be an isometric embedding of the manifold

. } o
(M%,g) into the C manifold (M" N, g). In terms of local

coordinates (ul, oeey un) on a neighbourhood of a point p € M and
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n+N )

local coordinates (x*, ..., x on a neighbourhood of f(p) € M

we have

& o= P, u?) (3.1A)

where at each point

A A 3
rank (X, ) = n where x; = —;
1 aul
and
) 0
g,. = <—=5,—=>- g = (g,,)
1 dut dud 8 AB

Let M admit a one-parameter group T of transformations generated

by a vector field &, the transformation being given by:
X = x+ £dt .

We assume that the submanifold M lies in a domain of M which
is simply covered by the orbits of the transformations generated by
the vector field £ . The field & is assumed of class* C and non-
vanishing on Mn, and at no point of M" does it lie entirely in the

tangent space to Mp.

In this section we work with the adapted frame bundle AFM (DEF.6)

{e., e .}, e. being tangent to M" and e normal to M. Let e(t) be
i’ 7o T Y

% Actually C° (r = 3) is sufficient.
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a unit vector normal to M" that lies in the (n+1)-dimensional vector

space spanned by the linearly independent wvectors:

{el, rees €5 L} .

We can choose a basis of the normal space to M" so that the vector
is included in it, and we will assume this basis ordered so that:

e 1 = e(t), i.e. e(t) is the first normal vector.

At each point of M" we consider the following differential

(n-1)-form A

A

1 t= lle(®)ye oy eves e LnE, AP, wu., aP|| (3.2)

n-1

which is by definition:

- le(g),en+2, *0 e,y en+N, g, e.

g0 eees &y |w Acre AW

1 n-1

where dP is the identity transformation on the tangent space at each
point.

Note that this form is independent of any origin and depends only on

¢ and Mp .

Whence:

dA 4 d”en+1,en+2, sees © L E, AP, ..., aP|
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”den+1,en+2, e e 8P, .l ap||
”en+1,de FOYEEETPRL W €, dP, «.., dP”
+ e PN +

+”en+1J see) en+N,d§, apP, ..., dP” (3.3)

We note that since M" is riemannian: d(aP) = ©
and av = v'. wl or Dv1 = vl _uﬂ
1 »d
i
Now dec = O e,
o i
R L
i.e. e d,eU = on_
1 J 1)
Hence

' N(Wn-1 .
l,den+l:en+21'”;en+N,§:d-P;-")dP” = n!(-1) (wn )H(i)P(g) * 1

where
H(i ) is the (first) mean curvature in direction e(&) = € 41
p(E) = <e_ 4, >
¥l = volume element on Mt = ot .. o’
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Similarly for each normal vector e n+t2 € ¢ < n+tN we have:
o2
Hen+1, ey degy weny e o £ AP, L, ap||

_ n!(_l)N(l\Hn—l)H(Ci) <ey E>*1 (3.4)

Now by definition the vector & lies in the (n+l)-dimensional vector

space spanned by:
{el, EPRCAY e(t)}

Hence the right hand side of (3.4) is zero. Thus

le(e), S e R wween £,dP, ..., dP|| = ©

ntl < o € ntN .,

On the other hand, from the lemms, the last term on the right hand

side of (3.3) becomes:
”e(E,),en+2, TEPRCI at, dP, ..., dP||

= (n-1)1 () (-)N¥R-L) e(2)
g

where

Trace f*(£g) = gi‘j(:f*(.f‘,é))..
g - & g 1

Collecting together we have:
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=
!

1
= dﬂe_(g),emg, ooy € £, 4P, L, ap||

(_l)N(N+n—1) { H( f )P(g)*1+§% Trac; f‘*(,{g‘, g) }

Integration over M now gives:
L [p o (o)Nawn=]) fH(g)p(E)*1+ A+ [Trace f*(£§)]>*1
n! n-1 J 1 2n g £
oM e =

where OM is the boundary of M .

Now in case Mn is closed (i.e. compact and without boundary) we use

Stokes! theorem to get:

Theorem A: Let M be a ¢C riemannian (n+N)-manifold admitting a
complete vector field &, and M* o closed n-submanifold
lying in a domain which is s.imply covered by the orbits
of E. If M does not contain any singular points of £
and the set of points of M where £ lies entirely tangent

to M is null; then:

[r(Dp@x1 s [amace exz@ 1 = o (3.5)
M | M"

This integral formula generalises to arbitrary dimensional sub-
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manifolds in riemannian spaces of arbitrary co-dimension an integral

formula obtained by Chern [11] in 1952.

We may interpret An— in the following way: consider the

1
tangential component of &

i
tang £ = § e,

Now take its dual l-form and denote it by K

If we now apply the Hodge star operator to this we get:

¥ = Zgl (—1)1—1 a)lA A(ID\J‘A Awn
i

which is precisely An—l .

§ 2. The second generalised integral formula

—n+N
We first specialise the ambient manifold M to be one of
constant riemannian (sectional) curvature. On the submanifold M we

consider the following differential (n-1)-form B(r)n_1 :

B(r)n_1:=lle(g);en+2:'--:en+N: g:fofzi;;;iffEE)) dP, ... ,dP||
r n-r-1

where 1 < r < n-~1

Whence to each fixed r, there corresponds a differential (n-1)~-form

B(r)n_l .
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From the classical Codazzi-Mainardi equation it follows that on

the submanifold M we have:

i ki B i _ ai
dwo O wB = @0
(3.6)
_T =T =T =L
ieee a@) = 8 a-00 + 93

where ® is the curvature tensor of M. Now M has by assumption

constant riemannian curvature, hence:
a(ae(g)) = o . (3.7)

Hence by applying the operator d to B(r)n_1 we have:

dB(r)n—l

d"e(g),en+2,...,en+N,é,de(é),...,de(é),dP,...,dP”
= ”de(g)’en+2"”’en+1\l’ _E,,de(ﬁ),...,de(g),d'.p,...,dP“

+ [le(8),qe_,pyenese o 6s08(E)s .0 de(E),dP, ..., aP]|

+ ||e(§),en+2,...,den+N,§,de(§),...,de(é),dP,...,dP”
+ ||e(§),en+2,...,en+N,d,§,de(§),...,de(_E,), d-P:"':dP”

*lle(8),e ppreerse qpr Bra(de(E)), ..., ae(E),dp, ... ,aP|



Lo,

+tllel€)se 1nrenesre, g bsde(E), .0 d(de(8)),ap,...,aP|| .

Now from (3.6) we have:

le(€),e yeeese . ,&,d(de(E)),...,de(t),dP,...,dP|| = O .
n+2 n+N

And from (3.3A) we have:

l|de(§),en+2,...,en+N,g,de(g),...,de(g),dr,...,dPH =

- nz(-ﬁ(NJ’n'l)'rH( : > p(E) * 1

r+l

where H <;£1> is the (r+1)th mean curvature of M" in the direction

e(t), i.e. if ki(g) 1<i<n are the solutions of

n+l

[A" " -2 = O

then H <;El> is the (r+1)th elementary symmetric function of the

ki(é) divided by the number of terms:

<r21>H<r-El> h z kil(g) kiz(g) kir+1(§') .

i, <12<... <1r+1

Note: From a theorem in linear algebra it is known that the rth

elementary symmetric function of the characteristic roots of matrix

n+l +1

A is equal to the sum of all r-rowed principal minors of A"
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n £
Hence H <' defined above is equal to the sum of all (r+1)-
r+l r+l1

+
-rowed principal minors of A" 1. In particular

+
Trace An 1

o ( $)

1

H( fl ) det A

g n
} ii
o < —1> Z A
i=1
1

14 + +
where A11 is the cofactor of Ai? 1 in det An .

It follows further from (B;BA) and the definition of generalised

vector product, given earlier, that the vectors:

e(t) x de ., X C a3 Xe o X €y X w) X dP X +e0 X dP

r n-r-1

e(t) x € 4o X den+3x...><en+N X de(€) X...xX de(€) X @PX ... XaP

e(t) x e X .eo X de X de(€) X veo X de(E) X dP X ... X dP

nt+2 N

have the same direction as e, ceey € respectively.

+27 Sn+3’ N

Hence:
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||e(§),den+2,en+3,...,en+N,g,de(g),...,de(E),dP,...,dPll = 0
Ile(g),en+2,den+5,...,en+N,§,de(§),...,d_e(g),d_'P,...,dP” = 0
lle(e), ..., den+N,§,de(§), ee., de(€),dP, ..., dP] = ©

since the vector £ lies in the (n+1)-dimensional vector space

spanned by the vectors:
{elJ ey G e(t)}
Now the vector:

e(t) x € pp X cee X & 0 X de(€) X ... xde(E) X dP X ... X dP

+2 N

is orthogonal to the vectors .e(t), e and from (3.3A)

ssey e

n+2’ n+N’

de(g) = wn+11 sy We have:

Ile(g),en+2,...,en+N,d§,de(§),...,de(g),dP,...,dPl

1
= n! (_l)N(N+n—l)-r (Eﬁ) Trace[C( i) f*'(fg)]* 1

E £ .,1]
where C(r) = (C(r) )
o8y 1 Zil o1 M .o, et n+l .
r (a1) 13, M3 80
LN J gi J‘
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where as before ¢ n= is the Ricci €~-symbol of the sub-

manifold MD .

Hence we have finally:

'r'%f d”e(g)’en+2’”"en+N’ g,de(g),...,de(g),dP,...,dP”

O (4 s ()

XTrace[C(rg) f‘*(iéé)]*l} .

1
nt d:B(r)n—l

Integrate both sides of this equation over M

. . .
ar [ ”e<§)’en+1""’en+N’ g}de(§)7"')de(§)JdP)‘")dP”

oM™

- (_1)1.‘7(1“““1)‘I'JL [H <rf'_l>p(§)*1 + (%)[Trace[c(f)f* (£§,§)]*1
M M

and in case M is closed we use Stokes! theorem to get:

Theorem B: Let M be a € (ntN)-dimensional riemannian manifold of
constant curvature admitting a complete vector field §, and M
a closed n-submanifold lying in a domain which is simply covered
by the orbits of E. If M" does not contain any éingular points
of & and the set of points on M" where E lies entirely tangent

to M'n is null; then:
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fH <Ij1>p(§)*l + (%)/Trace[c(:)f*(f,é)]* 1 =0
M _ M" ' '

(3.8)

This is the second of our two generalised Minkowski integral formulas.
The remainder of our work will involve the various specialisations

of (3.5) and (3.8) and the applications which follow therefrom.

§ 3. Specialisations of ¢

Theorem 1: If M is a € riemannian (n+N)-manifold admitting a one-
parameter c® group T of éonformal transformations
generated by a vector field E&. If further M- is an
embedded closed orientable € n-submanifold which is
simply covered by the orbits of T, and does not contain

any singular point of E. Then

[ a5y s+ [ ex1 2o (3.9)
| T |

where ¢ is the characteristic function of § .
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ardin case M is a riemannian manifold of constant

curvature we have also:

[H(rfl>pF§)%l+f ¢H(i)*1 = 0 (3.10)
M M

Proof: In case T is conformal & satisfies:

g = = 2¢ 8
%g gl)j ¥ gJﬂ- €
=> Trace f*(£§g) = 2no (3.11)
g : _ .
Also Trace[C(Ig') f*(agé)] = 2r_1¢H(f) (3.12)

Substitution of (3.11) and (3.12) in (3.5) and (3.8) respectively

gives the result. Q.E.D.

Theorem 2: If M is a C riemannian (n+N)~manifold admitting a one~
parameter C° group T of hémothetic transformations
generated by a vector field &, and M? is an embedded C
closed orientable n-manifold which is simply covered by
the orbits of T and does not contain any singular points

of £ , then:
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fn(i)p(g)*1+cv(M) = 0 (3.13)
M

where c = constant and V(M) is the total volume of M".

In case M is of constant riemannian curvature

fH <ri1> p(€) *1 + cf H(j)*l = 0 (3.14)
M M

l<sr<n-1.

Proof: In case T is homothetic then ¢ = constant in (3;11) and

(3.12) above., Hence:

£g = 2cg
3
Tracef* (£g) = 2nec
g 3
=
Trace [C( °) £%(£8)] = 2ncH()
r 3 r

And again the result follows by substitution in (3.5) and (3.8).

Q.E.D.
Note that in this case M becomes Euclidean (n+l¥)-space since:
~ntN
Theorem: If M is a riemannian manifold of constant curvature

admitting a one-parameter group T of homothetic trans-

— +
formations, then either M is E N or T is isometric.
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Theorem 2 has the following important corollary:

Corollary:

_n+N
With the conditions as in theorem 2, if M - 1s taken to

N

J

+ +
be EV N and assume M" contains the origin O of En

then if we take for & the (homothetic) radial vector field,
where the orbits are simply the linés through O then

%é==2§ giving for (3.5) and (3.8) respectively:

fﬂ(i)p(g)*wv(Mn) =0
EAR o

and fH(rpo(g)*l +fH(i)*l = 0
Va e

lsr=sn-1.

These generalise the two corresponding formulas of Hsuing [7 ] for

hypersurfaces to arbitrary co-dimension. The formulas of Hsuing

themselves being generalisations of two integral formulas due to

Chern [11] for surfaces in ES.

Theorem 3%:

ntN
If M is a € riemannian (n+N)-manifold admitting a

one-parameter c® group T of iéometric transformations

generated by a vector field £, and M’ is an embedded C
closed orientable n-manifold which is simply covered by
the orbits of T and does not contain any singular point

of §, then:
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[ (e = o (5.15)
PR

In case M has constant riemannian curvature we have:

3

[n( )p(e)*-l - 0 (3.16)
rt . 1 <r <n-1

Mn

Proof: In case T is isometric then ¢ = 0 in (3.11) and (3.12)

whence the result follows by substitution as before. Q.E.D

As a final specialisation of the field & we can consider the so-called
tension field of the embedding. This we explain briefly - for a

more detailed exposition see Eells and Sampson [21] .

Let (M,g) and (M,Z) be complete C manifolds of dimension n
and n+N respecfively, and suppose M closed. For each point p € Mt
let <, >§ denote the inner product on the space of 2-covariant

tensors of Mﬁ defined:

. ik .
. ik 5! + i
< a,b >b i= aij bkﬂ g g where g gkj = Sj

and a = (aij), b = (bij). Let f € C ¢ M - M, then through f,

g induces a ﬁetric f*Z on M. We can thus define the functional on M:

p - < g(p), (f%é)(p) >
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We call

e(f)(p) = < g(p),(f*g)(p) >

the energy density of f at p. Its dual n-form e(f)* 1 can then

be integrated over M, and we define the energy of f;E(f):

E.(f) = f e(f)*1 .

Then from (3.1A)

*— E—4
€3 g)ij £, £ By
Hence
= 1 5 A B iy
E(f) = 3 ngBfl fj g 1
M’
i.e.
E(f) = %fTrace (r¥g)*1
g
where ) ij A . B _
integrand = g fi fj Ern

Let H(M,M) be the totality of smooth maps: M — M. Then for each
£ ¢ H(M,M) the set of C° maps u : M > T such that: nou = f is a
vector space, which we denote H(f), with algebraic operations

defined point-wise. We call a typical element u € H(f) a wvector
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field along f. Space H(f) is given the inner product (denoted

<, 2f) defined:

<u, v o= [ < u(p), v(p) >f(p)*' 1 u,v € H(f)

'

For any u € H(f) the directional derivative of E in direction u

i.e.

VED) = g (5(£) where £,(p) = expyr s (tv(p))
t=0

t e R
is the end point of the geodesic segment in M starting at f(p) and
determined in length and direction by wvector tv(p) € ﬂf(p) . We

can thus define a unique field T(f) along f:

qu(f) = -< T(f)l, u > u € H(T)

f

This field is called the tension field of f. Whence:

T(f) = Af + Trace £¥&
g

Where w is connexion matrix on M and where A is the Laplace-Beltrami

operator on M,

Maps for which T(f) = O are called harmonic. In case M is flat
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. . s s n+N
then t(f) = Af; in particular if M is E then a map
Mﬁ' o ontN . ' .
f: - E is harmonic iff f = constant, by Hopf!s Maximum

principal

Let £ : M » M be a riemannian immersion, whence for each
peEMN, f*(P) maps M.P isometrically into ﬁf(P) , i.e. g=°f%g.,

We use the féllowing theorem due to Eells and Sampson [l ] .

Theorem: ‘Let f: M- M be a riemannian immersion. Then
e(f) = n/2 and 7(f) coincides with the mean normal

curvature vector.

Note that for any N ¢ M normal to M we have:
£(p) P

< t(f), N> = Trace A(N)

A(N) being the second fundamental form for N. Hence in case £ is

the tension field of the (isometric) embedding:
<e(t), £> = H = (first) mean curvature of M

and where we assume implicitly that &€ # 0 on M.

Hence in this case (3.9) and (3.10) become respectively:

/ﬁ (H2 + 0)*1 = O
o

f(MﬁHH+¢H&»*1= 0 l1<r<

'



(3.13), (3.14) become respectively:

fH2*1+cV(M) =0
o )

[ (H(r+1)H + cH(r))*1 = 0
o -

and finally (3.15), (3.16) become respectively:

M

61,
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CHAPTER IV

In this chapter we use the integral formulas (3.5) and (3.8)
and their various specialisations to prove some characterisation

theorems.

§ 1. Characterisation in codimension one

DEF. 17. Normal coordinates: Let O be a peoint in a riemannian
~ntl
(n+1)-manifold M , and U a sufficiently small neighbourhood of O,

éuch that in U there exists a unique geodesic y joining O to every
point p € U, Let 7i 1 =i < n+l, be n+tl mutually orthogonal
geodesics through O. Then the normal coordinates {yi} of p w.r.t.
the geodesic from O, 7,, .es, 7, are defined by: yi = s cos(7,7i)
where (7, 7i) is the angle between 7 and 75 at 0, and s is arc

length from O to p along y. Clearly X cos®(7, 7i) =1, If on
i , ;

_n+l
M there exists a unique geodesic arc with minimal length joining

a fixed point O to every point p, then we have a global normal

coordinate system at O.

In what follows we shall have need of the following two lemmas,
the proof of which is to be found in Hardy, Littlewood and Polya -

Inequalities (pp. 52, 104, 105).
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Lemma 1 (Newton): Let 8. be the poh elementary symmetric function
of n real non-zero numbers ki’ 1 <i=<n, and define

n
H =1and ( r)Hr =8, for r=1, ..., n. Then:

H, ,H, -HEZ <0 1 <r<n-l
if in addition Hr’ Hr—l’ e, Hr—i are positive

=
H /Hr H

> >
r-1 ro/ Bpp Z e B o/ B

where equality for any r = k= ... = kn .

Lemma 2 (Maclaurin): Let k, 1<is<n, H,andH, be as in the
previous lemma. If H e, H, 1 <s <n are
positive then:
1
2
Hl = H2 = H.3 Z e s

1
3

A\
s

where equality at any stage — k, = ... =k

DEF. 18. An umbilic point: Is a point p in a hypersurface M" where

Ap = AL, where Ap is the secogd fundamental form at p, A is a scalar
and I is the identity transformation on M@. At an umbilic point

all principal curvatures are equal and all direc£ions are directions
of principal curvature. If all points of M are umbilic, M? is
called totally umbilic.

The following important lemma will be used:

+
Lemma 3: A point p € M embedded in a riemannian manifold Mp 1 of

dimension n = 2 is umbilic if k, = ... = kn at p.
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Proof: The principal curvatures ki 1<1i<n are extremal values

of the quantity: Aij el ed / gi. ei ed at p for an arbitrary

J

tangent vector e = (el) of Mn. Hence if kl = ... = kn at p then
the given ratio is independent of e so Aij = (:gij Vi,jatop,
where ¢ is a scalar invariant. Hence b is umbilic.

DEF. 19. Riemann n-sphere: Is a closed hypersurface Mn in a

_n+l
riemannian manifold M (n = 2) such that every point of M" is

umbilic.

_nt+l
Theorem 1: Let M be a riemannian (n+l)-manifold (n = 2) with

constant riemannian curvature éuch that there ekists a
global normal coordinate system at a fixed point O.

Then for a closed orientable embedded C3 hypersurface M
+ * = = ces
/q(Hr_1 H, p) ¥ 1 0 r=1, , n

and where p = Y. e +1 where e 11 1s the unit normal
vector to M" at a point q and Y is the position wvector

of g wer.t. the global coordinate system.

Proof: The procedure is exactly as for theorem B where in this case

we take £ = Y and e 41 = e(Y), and use the (n-1)-form:
B, = llay, ..., av, ¥, CPPIL CINPPRPOY den+1”
— e ——

n-r r-1
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Applying the operator d to this and using the facts that
a(dy) = ©
and

= nt(=1)F *
dY/\ e s /\dY Aden+1/‘"' Aden+1 = n.( 1) HI' en+1 » 1

the result follows immediately by integration and application of

Stokes?! theorem. Q.E.D.

From this theorem several important characterization theorems may

be deduced:

Theorem 2 (Feeman - Hsiung): Let M (n = 2) be a hypersurface of a

- _n+i
riemannian manifold M

satisfying the conditions of
theorem 1., If there exists an integer s, (1 < s <n),

/H

& i < - rp =
such that H, > 0, and either p Hs—l/Hs Of D Ho 4

at all points of M then M" is a riemann n-sphere.

Proof Case (i) 1< s <n-1
The inequalities in the theorem are respectively equivalent to:

Hp +H 0 and Hp+ H 0 since H_ > 0.
] s- 5 s— 5

S =
1 1
Now theorem 1 for r = s, together with either of these inequalities

= p = —Hs_l/HS : and on substituting this value of p into

theorem 1 for r = s+1 gives:
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1 2
/h ﬁ; (HS h Hs—l Hs+1) ¥l =0 (k1)

From lemma 1 for r = s the above integrand is non-negative and

hence (4.1) holds iff:

2— =
HS Hs—l HS+1 0.

Hence from lemma 1, k, = ... = kn at all points of Mn, and it then

follows from lemma 3 that M? is a Riemann n-sphere.

Case (ii) s = n:

Apply theorem 1 with r = n

f(Hn_l+an)*l = 0
. o

and since the integrand is of fixed sign then p = —Hn_lfﬂ .

Now apply theorem 1 with r = n-1

—
=
5
no
—
—
0
]
—
jusn}
=
—
-
[

[}
L~
= s

=]
i
~
e

=]
~r
.k
b=

1 2 * —-
or an (Hn_1 H Hn_g) 1 =0
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and a similar argument to case (i) proves the result. Q.E.D.

Theorem 3 (Hsiung): Let o (n = 2) be a hypersurface of a riemannian
.manifoid ﬂP+l saéisfying the conditions of theorem 1.
Suppose there exists an integer s, (1 < s < n) such that
at all points of Mp, p is of the saﬁe sign, Hi > 0 for

. . n . .
1<i=<gs, and Hs is constant. Then M is a Riemann

n-sphere,

Proof: Case (i) s < n.

From lemma 1 for r = 1, ..., s and the assumption that Hi >0

for i =1, ..., s we obtain:

H H H
B U 12 S
Hy H, Hs
In particular
> L,
H) H H iy (k.2)

where equality = kl = aes =kn' From theorem 1 for r = 1 and the
assumption H, > O and p is of constant sign on all of Mp, it
follows that p is negative. Multiply both sides of (4.2) by p and
integrate over M and apply theorem 1 for case r =1 énd r = stl;

it thus follows from the assumption that Hs is constant:

- ¥]1 = *1 < * = *
HS /ﬁ -l ]ﬁ Hy HS P '1 /ﬁ Hs+1 P .1 HS /~ 1

M M M M
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whence

- ¥1 =
[ (H, H Hs+l)p 1=0 (k.3)
Now (4.1) == this integrand is non-positive and hence

Hl Hs - HS+1 = 0

whence by lemma 1 we have: kl T hee = kn on all of Mp and

application of lemma 3 proves this part.

Case (ii) s =n:

Using the assumption Hi >0 (1<1i<n)and lemma 2 we have:

j-

1/ (n-1 1
H, > H ../H( )BH/n
2 n-1 n

A%

= c (k.k)

where ¢ = constant > 0. From theorem 1 for r = n and inequalities

(4.4) we have:
H p*1 = -] H %1 < -1 [%1 (4.5)
n _ n-1 _ ¢
M M M
Also from theorem 1 for r = 1 and inequalities (4.4) and the fact

that p < 0 we have:

M ' T '

\
(¢
d
Pt
35“~\j
=
1
o)
E S
—
|
|
¢]
=]
=
‘\
x>
—
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From (h 5) and (h 6) we thus have:

/(H —H)p*l: 0

Also (h.4) => this integrand is non-negative and hence

whence lemma2=y k, = ... = kn on all M". Hence by lemma 1 the

result follows. : Q.E.D.
_n+l
In the case where M is Buclidean (n+1)-dimensional space
+ .
g and M is a convex:c2 hypersurface the integral formula in

theorem 1 was obtained by Minkowski [22] for the case n = 2 in the

well-known form

f(Kp+H)*1 = 0
Yl '
where H and K are the mean curvature and Gauss curvature respectively

at a point q € M?, and p is the oriented distance from a fixed

point O € E® to the tangent space Méz of the ovaloid M®. The theorem

was extended for general n by Kubota [23].

n+1 +
Also in the case where M is En 1 and Mn is a convex C2

hypersurface theorem 2 with the restriction that s = 1 and the
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equality on p:

being satisfied - (rather than the two corresponding inequalities

in theorem 2) - was proved by Grotemeyer [24] for the case n = 2:

[(HZ ~K)p *l = %[ gika(xz)iiﬁl

where p is distance from tangent plane to the origin, ¥ is the
square of the radius vector and (x2)i, H_ the derivatives of ¥° and

H wer.t. the surface parameters. Again this was extended to the case
_general n by Silss.

Finally theorem 3 is essentially the well-known Liebmann-Siiss
theorem, which was obtained by Liebmann [ 1 ] for the case n = 2 in

the form:

Liebmann H-theorem: The only ovaloids with constant mean curvature

H in E® are the spheres.

The extension of this theorem to a convex hypersurface in E" was given

by Stiss [ 3 1.

Finally we note that by using different methods Hsiung [ 7]
obtained theorem 1 for the cases r = 1 and r = n and some special

cases of theorems 2 and 3; and also theorem 1 for 1 < r < n,
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together with theorems 2 and 3 in the special case of a c® (instead
of the ¢ condition of theorems 2 and 3) hypersurfaces in Euclidean

space.

Theorem 4 (Stong): Under the assumptions of theorem 1, if there
are integers s and i (1 <1 <s < n), with Hy, «.o,H, >0
and constants cj Z0forisjs s—i such that on all

of B_/-In we have Hs

ch}% then M? is a Riemann

n-sphere.
Proof: From theorem 1

H., . H. H H. :
_;l__.l:l=< J>< S‘1-3‘1>>o
H H H H,

s S j

s-1 i<jss-1

and equality holds everywhere only if M' is a Riemann n-sphere.

H. H._1

1 = }: c. <:—j > = EE C. <j—ﬂ——
I\ g J\g

s s=-1

Hence:

or
- =
Hs-—l Z c‘_j H,j—l 0
and again equality holds everywhere only when M is a Riemann n-sphere.

From theorem 1:
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/N(HS_1 -ch Hj_l)fl

M M

1
{
\
g
L~
=3
]
1
(¢]
.
=
.
X
—

so that H = j{; cj Hj—l on all of Mn

Q.E.D.

Theorem 5 (Stong): Under the assumptions of theorem 1, if there
exist integers s and i, (0<i<s<n), with

Hs+1’ coey Hi+1 > 0 and constants cj >0 for i < J = s~-1

such that at all points of M, Hy = Zc,H, and if p is
of fixed sign on all of Mn, then M' 1is a Riemann—

n~sphere.

Proof: Apply procedure of previous theorem in reverse

- <
HS+1 E: cj Hj+1 0]

and equality only if M' is a Riemann n-sphere. By theorem 1
- * - - *
f (HSJrl Z ¢ Hj+1)p _1 f (Hs Z e HJ.) | 1
M M

= 0

and since the integrand on the left hand side is of fixed sign

everywhere.

1 Q.E.D.

HS+1 = chHJ+
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Theorem 6: If there is an integer s, (1 < s <n), with H >0 and

a constant ¢ with Hs = cHS_ at all points of Mn, then

1

M" is a Riemann n-sphere.

: 1 fixed i ign.
Proof: H, >0 = c # 0 and H,_, must be fixed in sign. From

1

lemma 1

So Hs_1 - CHS—2 is of fixed sign and vanishes identically only if

M' is a Riemann n-sphere. Theorem 1 gives:

/ﬁ'(HS_l —CHS—E) *¥*1 = [ (cHS_1 - Hs.)p * 1

and this implies:

H = cH on all Mn

Q.E.D.

Theorem 7: If there is an integer s (1 < s <n) with H, > 0 for

(1 i <s) and a constant c with:

1 -1 1/s
H/(S ) =z c = H/
s-1 s

on all of M? and if p is of fixed sign on M then M is

a Riemann n-sphere.
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Proof: p of fixed sign and theorem 1 with r =1 = p <O. _ By

lemma 2, H, Z c. Choose the orientation of M" for which g=0

throughout Mt = f g ¥ 120, Then theorem 1 gives:

= —[ cs—lle * 1

= all terms are equal and: [p(Hl -c) ¥1 = 0.

So Hl = C. By theorem 5 with s = 1 and i = 0 we get the required

result. Q.E.D.

Theorem 8:(Stong): If there is an integer s (1 < s < n) with Hs’

Hs—l > 0 and a constant c with:
H H

s-1 > o = s-2
H H

s s-1




[

on all Mn, and if p is of fixed sign throughout M? then M* is a

Riemann n-sphere.

Proof: From theorem 1 with r = s we have that p <O.

Choose the orientation as in the previous proof, then from

theorem 1 we get:

Hence all these terms are equal, so

- * -
[p(HS_l cHS) 1 = 0

Mn

- <0 — = .
and p(HS_1 CHs) O =» H_, = cH, onall of M Hence by

theorem 6, M" is a Riemann n-sphere.
Q.E.D.

Corollary: If 2 is a closed orientable surface of class cS twice

differentiably embedded in E® with H, > 0, then either
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inf HY < Sup H, or £ is a sphere.

gex geX
Proof: Hadamard's theorem =» ¥ is the boundary of a convex body,
thus, choosing the origin to be inside the body, p is of fixed sign.

If inf Hf > Sup H, J a constant ¢ >0 such that

2 > a2 >
Hl = ¢ = Hé

Since Hl is continuous, either H, = ¢ or H; < —c,. In the first
case theorem 7 implies every point of Z is umbilic = Z is a
sphere (see Willmore [25] , p. 128). 1In the second case p must be

positive and choosing the orientation as before:

—f cle*l =[c*1

z )
< —[H1*1= [pH2*1
5 z
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Thus all the terms are equal and we have:

I% = —cHl

By theorem 6 every point is umbilic and £ is a sphere.
Q.E.D.

§ 2, Characterisation in arbitrary co-dimension

The characterisation in the previous section resulted from a
specialisation of the integral formula (3.8) to the case of co~
dimension one, In this section we shail sfudy the question as to
what similar characterisation is possible in arbitrary co-dimension.

In what follows we shall assume that the vector e(&) coincides
with the Buler-Schouten vector e (i.e. the unit vector in the
direction of the mean normal curvafure vector); we shall further
assume that the vector field € is, at each point of Mn, contained in
the (n+1)-dimensional space spanned by the tangent space to Mt and
the vector e. In this case the integral formulas (3.5) and (3.8)

become respectively:

M[H(i) \p-(E) * 1 + <§1?1>M[ Trac; [f*(iéé) ]*1 = 0 (4.7)

and
/:’1H<ril>pF§)fl +<—21?1> [ Trace[c_(i)f*(,zsg) J*l =0
M

M’ (4.8)
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and in case the group T generated by £ is conformal these become

respectively:
[ a1+ [ ox1 = o (5.9)
Vel | M

and

Mn

fH(rf1>p(§)*1+ f ¢H(‘;)*1 = 0 (4,10)
M

By analogy to DEF. 19 we now define:

DEF. 20. An BEuler n-sphere: Is a closed orientable embedded n-

dimensional ‘submanifold such that every point is umbilic with respect

to the Euler-Schouten vectorT

_n+N w
Theorem: Let M be an (n+N)-dimensional (n*N = 3) C riemannian

space form¥, admitting a ¢° one—pafameter group of
conformal transformations generated by a vector field £ ;
and M" be a closed orientable embedded submanifold. If
p(t) is positive (or negative) at each point of M and M
has constant (first) mean curvature H then M is an

Euler n-sphere.

Proof: Multiply (4.9) by the constant H, giving:

*¥ i,e, riemannian manifold of constant curvature.
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[Hzp(ﬁ)*1+f SH*1 = O
M M

From (4,10) with r = 1 we have:

[H(Z)p(g)*l+f¢H*l = 0
M M

Hence

f(He -H(3)) p(8)*1 =0
M

Whence from the assumption on p(&) this is true iff

B -H(;) = 0

since

HE—H(Z) = -—-1-— 2 (xi-x.)2 = 0

2
n® (n~1) e

Hence at each point of M? we have:

Hence each point of M" is umbilic with respect to e.
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ntN o0
Theorem: Let M be an (n+N)-dimensional (ntN = 3) € riemannian

space form, admitting a C° one-parameter group of
conformal transformatiéns generated by a vector field £ ;
and M' be a closed orientable embedded submanifold. If
p(E) is positive (or negative)"on Mp, and if the principal

curvatures k., k_, .

. n
10 X cey kn at each point of M are

positive andiH(i) is constant for any r (1 <r < n-1)

then M is an Euler n-sphere.

Proof: Multiply (%.9) by the constant H(i) and we get:

[ HH(;)P(E)*1+[¢H(§)*1 = 0 (h,11)
M M
Hence from (4.10) and (4.,11) we get:
[(HH(?)—H(I_E1>>I>(§)*1 = 0

From the assumption on p(&), this holds iff

HH() -H<Tf1> = 0

since

. e r! (n-r-1)! .
HH(r) —H<r+1> = — Z kil kir—l (kr - kg )

n (n!)

0.

\%




81.

Thus at each point of Mp we obtain:

Whence each point of MU is umbilic with respect to the direction e.

Hence M" is an Euler n-sphere.
Q.E.D.

_n+N
Theorem: Let M be an (n+N)-dimensional (n+N = 3) ¢© riemannian

space form.admitting.cO one-parameter group of conformal
transformations generated by a vector field €, and M
be a closed orientable embedded n-dimensional submanifold.

Tf on all of M the following hold:
(i) p(t) is positive (or negative)

(ii) Hp(g) + ¢ = 0 (or<0)

then Mn is an Euler n-sphere.

Proof: We can rewrite (4.9) as:

[<Hp<g>+~»>*1 =0

Then from the assumptions we have:

¢ + Hp(t)

1l
o

Substitute this into (4.10) with r

1. Whence we have:

[
R 1B
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e -ng) ) e =0

and the required result follows. .
Q.E.D.

_n+N 00
Theorem: Let M be an (n+N)-dimensional (n+N = 3).C riemannian
space form admitting a C° one-parameter group T of
conformal transformations generated by a vector field £ ,

and Mn be a closed orientable embedded n-dimensional

submanifold. If
(i) H is positive (or negative) on all of M"

(i1) T is such that ¢ is positive (or negative), for which

U ¢
i + = = + = <
either p H 0 or p T 0

on all of MD,

Then M" is an Euler n-sphere,

Proof: Rewriting (4.9) as follows:

[aee) +§r%1 = o

Mn

o .
Hence from the assumptions H> 0 (or < 0) and p(E) + 7 = 0O

(or < 0) on all M' we have:
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p(t) +3 = 0O

Substituting this in (4.10) with r = 1, we have:
20 ® -H(®) )*1 =0
H 2
M
It now follows from our assumptions that this is true iff:

H2-H(S) = 0

Whence the required result follows. Q.E.D.

§ 3. Generalisations of § 1

In all our work so far we have been restricted to ambient
manifolds of constant riemannian curvature, It is clearly of
interest and importance to investigate to what degree this restriction
can be removed and/or replaced by weaker assumptions on the ambient
space. To this end we have the following theorem due to Feeman-
Hsiung.

_n+l .
Theorem 9: Let M be a riemannian manifold of dimension n = 2

such that there is a normal coordinate system of Riemann
n+l

at a fixed point O covering the whole of M . Then for

a closed orientable hypersurface M" of class C® embedded
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er_1*1+[Hrp*l =0 (k.12)

r is an odd integer less than or equal to n, and p is

as defined in theorem 1.

Proof: The proof is exactly the same as that of theorem 1 except
that this time r is an odd integer and the vanishing of the fourth
member of the derivative of the right hand side of the form Bn—l

in theorem 1 is due to the pairwise cancellation of its terms.

Q.E.D.

From this we have immediately:

Theorem (Feeman-Hsiung): Let M© (n = 3) be a hypersurface on a
_nt+l
riemannian manifold M satisfying the conditions of
theorem 9, Suppose that there exists an odd integer s,
(1 < s <n) such that H, >0 for i =s, s-1, s-2, and
. < o S .
either p Hs—l/Hs or p Hs-I/Hs at all points

of Mn. The M" is a Riemann n-sphere.

Proof: By the same argument as in the proof of theorem 2, equation

(4.12) for r = s, together with either of the two inequalities:
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+ < + = = =
Hsp Hs—l 0 and Hsp Hs- 0 =17 H

1 /HS.

s-1
Substituting this value of p in equation (4.12) for r = s-2 , which

is an odd integer by assumption we obtain:

. _
[ T < By 5 Hg - H o H > ¥1 = 0 (k.13)
M

Since Hs—l and Hs-2 are positive, from lemma 1 for r = s-~1 and

r = s—2 we obtain:

Hs-3 < Hs-2 < Hs—l
Hs-2 Hs—l Hs
from which it follows that
H H -H H < 0. (ho1k)

s-% s s~2 “s-1

Thus the integrand on the left hand side of (4.13) is non-positive,
and the equality in (4.14) holds. From lemma 1 it follows |
immediately that k; = ... = kn at all points of M? and thus
by lemms 3 the theorem is proved.

Q.E.D.

Theorem: Let M (n = 3) be a hypersurface on a riemannian manifold

n+1
M satisfying the conditions of theorem 9. If there

exists an even integer s, (1 <s < n), with Hs’ Hs—l >0
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and p < —Hs_l/ZHS at all points of M', then M is a Riemann

n-sphere.

Proof: By lemma 1 p < -H ./H < -H ,./H and by theorem 9:

s-1 s s~-2 s-1
* =
f(Hs—2+ pHs—l) 1 =0
M-
S < - = .
8o P Hs—l/ Hs Hs—E/ Hs-l P
Thus Hs—l Hs—2
= at all points of M
H
s s-1
and by the lemma Mp is a Riemann n--sphere. Q.E.D.
Theorem: with similar conditions to previous theoren. If there

is an even integer s, (1 < s < n) with H, H,, >0 and
p » -H__,/H_ atall points of MY, then MY

is a Riemann n-sphere.

. > - > ; .
Proof: By lemmal , p = Hs_l/IHS > HS/HS+l and by theorem 9:

* =
f(HS + pHS+1) 1 0
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S0

P2 —Hs—l/Hs 2 —Hs/Hs+1 = P

Therefore

Hs-l / Hs = Hs/ Hs+l

at all points of Mn, thus M is a Riemann n-sphere.
Q.E.D.
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CHAPTER V

In this chapter we shall obfain, by the methods already
developed, an integral formula for a pair of compact embedded sub-
manifolds, We shall then use this integral formula to find
conditions under which a volume-preserving diffeomorphism between
the submanifolds is an isometry. This generalises somewhat a

similar theorem by Chern and Hsiung [17].

§ 1. Algebraic Preliminaries

Let V be an n-dimensional vector space with a bilinear
functional G ¢+ VXV - 1R on it. If {el, ceey en} is any basis,

then G is completely determined by the values:

= <i, 5 <n.
8 5 G(ei, ej) 1<i, j<n

If we change the basis with a matrix T = (tia) such that

e = Te

then the matrix G = (gij) is changed according to

T(}tT tT denotes transpose.

If H is a second bilinear functional and

hij = H(ei, ej)
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we can consider the determinant:

det(G + M) = det G + n)LP(gij, hij) + e + 2N  det H .

Note that under a change of basis the ratio of any two coefficients
in- this polynomial will be multiplied by (det T)® and is thus
independent of the choice of basis. In particular if G is non-

singular:

H 1= P(gi

o 52 hij)/ det G (5.1)

depends only on G and H. Clearly in case G = I = id

1 1
H, = (-r-l)‘l‘raceH = -r—lz b,

Since the construction (5.1) is linear in H, a similar construction
can be carried out in the case that H is a vector-valued bilinear

function on V.

We shall have recourse to the following simplified form of a

lemma due to Lars Garding [26] .

Lemna.: Let G and H be symmetric positive-definite bilinear real-
valued functions over V X V. Let g = det G and

h = det H, Then

K, > (.g)l’“

where equality holds iff H = pG for some p.
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§ 2. Geometric Preliminaries

Let (Mln, 8,5 Q,), (Mzn, g, 92) be two € riemannian
n-manifolds, and £ : M, » M, be a ¢® immersion. On M, there are
now two connexions - firstly the riemannian (metric) connexion
obtained from g, and secondly the induced connexion derived from
the induced metric f*'gz. The second of the two connexions can
also be obtained in the usual way, simply by using the pull back of
the riemannian (metric) connexion on Mé, i.e, the second connexion
is simi)ly: £¥q, .

The difference between these two connexions on M, is also a
connexion, which we denote simply by D = (Dij). By means of the
construction in §1 we can, using D, construct a vector field D(gl)

on M._L as follows:
D(g,) = g (g (o) - (£%2,);9(e))e (5.2)

Let X = (Xl) be a tangent vector field on Ml. The divergence of
X (denoted div X) can be defined in (at least) two entirely

equivalent ways; on the one hand, as the function on Ml defined by:
X(¥1) = (aivx)*1 (5.3)

where ¥1 is a fixed volume element on M. We are of course assuming

implicitly that M.:L is orientable, - It follows immediately from the
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definition of Lie derivative that (5.3) is equivalent to:

(div X)*1 = £(*1) ;
X

on the other hand, on a local coordinate neighbourhood U, with local
coordinates (ul, ey un), the above definitions take the more

classical form:

d

1

BV X = — }: — (Ve x. > (5.4)
\[él dut 1

where X = Xi d/dut on U. In terms of covariant derivatives we
can write (5.4t) simply as:

BYX = g9 X . .
1 1sd

DEF. 21. By means of the induced metric on M_.L (i.e. f*'gz) we
can define an analogous function which we shall call the induced
divergence with respect to mapping f of the field X, and we shall
denote it simply by div(f)
. SIPE SRR B R
aiv(f) X = (£%g,) xi’j .
Consider, now two embeddings X,, X, of an abstract n-dimensional

_n
orientable differentiable manifold into a riemannian manifold M
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of dimension n + N.  Further let f : x,(M) - x,(M) be a diffeo=~

morphism. We thus have the commutative diagram as follows:

X x, (M) = M
M I T

XZ\A

XZ(M) = M

We call the mapping f an isometry if at a point p e M
< dx;(p), dx,(p) > = < ax,(p), dx,(p) > (5.5)

i.e. if it maps the induced riemannian metric of the embedded sub-
manifold (M, x,) into the induced riemannian metric of the embedded
submanifold (M, xz). In terms of the cotangent map f* we can

write (5.5) simply as:
g, = f¥g,
Over the abstract manifold M we now have two metrics namely

g, ¢+ <ax(p), ax, (p) >

and

g, : < ax,(p), ax,(p) > = <d(fox)(p), a(fox )(p) >

In what follows, unless it is obvious or specifically stated to the

contrary, we will work on the manifold M, with the (induced) metric g,
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The notion of frames e,, ..., e, having measure 1 and
coherently orientated with that of M thus has a sense in both metrics.
At a point p € M any such frame can be obtained from a fixed one by
a linear transformation.of determinant 1. The induced map dx, on
the tangent spaces-is univalent, so we can identify e, and
dxl(ei). Tet o', ..., @ .be the dual coframe of €5 seey €,

n

then the volume element on M is:

We call the above mapping f volume-preserving if it maps the volume

element of one manifold into that of the other, i.e.

*
fw, = wy

where w

1 and w, are respectively the volume elements of Ml and Mé.

It follows immediately from the definition that a volume-~
preserving diffeomorphism exists only if M is oriented and the

diff'eomorphism f is then oriention-preserving.

§ 3. Integral Formula

Let (M,g) be a C* riemannian manifold of dimension (ntN),
which admits a €~ vector field &. Further let M" be a C° n-

dimensional orientable manifold with two compact C* immersions X,
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and x, into M; and let f : xl(M) - X%, (M) be a volume-preserving
diffeomorphism. Assume § lies-nowhere éntirely in the tangent

space of x (M).

We shall work with the bundle AFM over x, (M) We shall write

simply M,, M_ respectively for x (M), (M)
RN 1 X

As seen in §1 the manifold Ml inherits a metric g, from M as

does M, inherit a metric g+ On M, we thus have the two metrics:
_ % _ (¥
gl - (% 1J )) t . 82 - (f %)13 2

At points of Ml we can thus represent the vector field & :

E = te + %
Hence
k
where
pi(g) = < g, e >§ .
Thus
< dt, ey >g + < E, de; >§ = dii

.. < Q8 e >o H <k dye; o o= 4E _(5.7)
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Now from (1.13) we have:

de, = w.k e, +w e
i i k i o
k o
+
= dj e, = (ej)ek w, (ej)ec

whence from (5,7)
<d.t, e > +<t m.k(e e >...+<§,. (e e >
i i g ?71 Y37k g 77190 T g
= d.t . (5.8)
Now use g, °*
Wocak, e > g <k, 0 e e, >-
&1 377 % 7g T & » % 1%57% T g
Iy 5 54
+ g J < ¢, w, (ej)e0>g_ = g Jae .
Hence

ij §.

ij ‘ ij ., o
<d.,t, e, > + < &, w, (e.le.>. = . .
€ i %17g & 71 ( J) T g ¢ 1,3

1

The right hand side of this equation is simply div € , and
o a k
@, (ej) = A, ® (ej) . (from (1.15))

Further, the mean curvature H in the direction e, 1s by

definition: Trace AG

€,
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: 1 Ai. = Trace AcJ
1 J g,

Thus we have:

div € ,

ij ' o]
g <8, e >z +II: Py (&) |

where s () = <&, eq >

Note: We use H to denote the (first) mean curvature with respect
1 i
to the (induced) metric g, .

Finally the above equation becomes:

() Trace x, ¥(£g) + " pa(g) = div & (5.9)

Whence:

(3) Trace x,%(£g) +H p (&)  *¥1=0.
oo g1 3 1 )
[}

In exactly the same manner, beginning with (5.8) and by

using this time the second induced metriec on M;L viz. f*gg we get
% yiJ + (e ¥, )i k
(£ .ga) < djg, e; >é ( ga) < ¢, w, (ej)ek >.g..

x yid_, o o (p¥ g )i
+ (f_gz) < &, w; (ej)ea>é = (f_gz) djgi
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If we agree to write simply g9 for (f*'gz)lJ we have
2 - .

(3) race 1 *(£8) + g, o, (e))n (8) + B py(8) = 8,7 aje,

8> 2

where H° 1is the (induced) mean curvature in the direction e; with

2
. . - iJj . o g
respect to the second induced metric g,™“, i.e. H = Trace A .
2 8o
Finally we get:
(3) Trace x *(£g) + H' p (&) = div(f)t (5.10)
. g Tt 2 O .

whence:

Il

M[{(‘%‘> Trace x,"(£8) + H° PG{E)} *1 »/41 SICTERR

This extends the corresponding integral formula of Chern and Hsiung [17].

If we now subtract (5.9) from (5.10) and use Stokes! theorem

we arrive at our basic integral formula.

Theorem 1: If (M,g) is a riemannian manifold admitting a ¢ vector
field &, and M,, M, are a pair of compact ¢”  immersed
equidimensional submanifolds which do not contain any

singular points of E , and such that & is almost nowhere
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(i.e. at most on a set of measure zero) tangent to M,
then for a volume-preserving diffeomorphism f : Ml - M2

we have:

(%)[ (Trace - Trace ) x, *(£g)*1 + f(HU - Ho)pa(ﬁ) *1
. : g g . & : 2 1 _
M, 2 1 M,

/1 daiv(f£)e * 1

My

We note immediately that in case f is an isometry the right hand

side of this equation is zero. By analogy to the work of Chern and
Hsiung [17], we make the following:

DEF. 22. A mapping f for which div(f)f = O is called an almost isometry.

§ k. Specialisations

We now consider the integral formula in case f and £ are
specialised. In particular in all that follows we shall assume that

T is an almost isometry.

In case & is a conformal field:

jp (Trace g, -1 )¢ * 1 + /ﬂ @’ - 1% pc(é) *¥1 = 0
M ; g . .2 1 . .
1 2 1

(5.11)
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Hence

/H Trace g, ¢ ¥ 1 - /p %1 + /\(Hc ) po(ﬁ) *1 = 0
g, . 51 T
M | M M,

(5.12)

In case & is proper homothetic we have:

[ arace g x1+d [ @ -w)p(8) ¥ 1 = w0 (5.13)
8o P 2 1 . . .
1

1

In case & is isometric:

JECARE RO (5.14)
e _ |

We can now generalise a theorem of Chern and Hsiung [/7] .

Theorem: Let x,, X, ¢ M - M be two imbedded compact submanifolds
of riemannian manifold M which admits a conformal vector
field & with the properties of theorem 1. If f has
the properties:

(i) ¢ and pc(g) are positive (or negative),

(i1) H° = H°,
2 1

then f is an isometry.
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Proof: From the conditions of the theorem and Garding?!s lemma we
get
Trace g, - Trace g, = O
82 g1

and conditions (i) and (ii) give us

g, = 1

whence Gérding’s lemma gives us immediately that:

Q.E.D.

N and & is the homothetic

+
Killing vector field on E" N with components EA = XA, xA being

+
Note that in case the ambient space is E"

rectangular coordinates with a point in the interior of M as origin,
then the orbits of the transformations generated by & are simply
the lines through the origin and we have

£8 = 2¢
3

and our integral formula of theorem 1 reduces to that of Chern and

Hsiung [17].
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CONCLUSION

In the foregoing we have not concerned ourselves with the global
existence of linearly independent sections of the normal bundle.
Although in a neighbourhood of a point there are linearly independent
sections, the existence of a single section globally is an open
question. Work in this direction can be found in Stiefel [28],
Hirsch [29] (who showed that the immersion problem is essentially a
cross—sectioﬁ problem for the normal bundle), Kervaire [30] and

Handel [31].

Problem 1: It is clear from the foregoing work that the mean normal
curvature vector 7 contains much important geometric information
about the immersion/embedding. It is clearly desirable in the future
to study its properties in more detail. An obvious generalisation

of n is: the rth mean normal curvature vector n(r), defined:

n(r) := H(:)ecj | (c.1)

whereZH(g) is the rth mean curvature in the normal direction e; to
the submanifold., Clearly n(1) is just the classical mean normal
cﬁrvature vector. We can thus ask: what are the analogous

properties of n(r)?
Problem 2: Do analogues of theorems A and B exist for 7(r)?

Problem 3: TIn Chapter IV we have been restricted to a space of
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constant curvature, we can thus ask: to what extent can this condition
be relaxed and/or replaced? Theorem 9 shows that in certain cases

at least it is redundant.

Problem 4: What is the nature of the umbilic set of a submanifold?
Can _it only be either: (i) a discrete set

or (ii) the submanifold/nul set ?

Problem 5: What is the connection between curvature and the umbilic
set? Concerning this we have the following example: consider a

3-dimensional space M® with fundamental form:

<Z (y)2>c i (d;y )2 ¢ = constant

(= 2)

Calculation shows that M® - (0, 0, 0) is not of constant curvature

and that every point of the surface in M3 given by:

y; = sinucos v
v, = sin u sin v is umbilic.
Yo = cosu

Problem 6: In Chapter V we have been concerned with a volume-preserving
diffeomorphism, It is thus important to ask: what restrictions does

the existence of such a diffeomorphism impose on the ambient manifold?
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Problem 7: We say two riemannian manifolds (M,g), (M,g) are 'isocurved!
if I a sectional-curvature-preserving diffeomorphism f : M — M

i.e. for every p € M and every 2-plane section m of Mé we have:

K(n) = K(f*n) .

Clearly two diffeomorphic manifolds of the same constant curvature
are isocurved but need not be globally isometric. Kulkarni [27]

has proved:

Theorem: If dimM = L then isocurved manifolds with analytic
metric are globally isometric except in the aforementioned
example of diffeomorphic non-globally isometric manifolds

of the same constant curvature.

We can thus ask what is the connexion between isocurvature and the

volume-preserving property of a diffeomorphism?

The integral formula method is clearly a very powerful
technique, particularly in the solution of uniqueness problems, Its
further application in the future could lead to the solution of an

even wider class of geometric problems.
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