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Abstract

The present work is aimed toward the study of manifolds which
admit k-harmonic metrics. These generalize the "classical" harmonic
manifolds and in their definition, the k-th elementary symmetric
polynomials of a certain endomorphism ¢ of the fibres in the tangent
bundle play a role similar to that of Ruse's invariant in classical
harmonic spaces, We investigate some proﬁerties of k-harmonic
manifolds analogous to those enjoyed by harmonic manifolds and obtain
some results relating k-harmonic manifolds to harmonic ones. For
instance we prove:

(a) a k-harmonic manifold is necessarily Einstein,

(b) a manifold is simply l-harmonic iff it is simply n-harmonic.

- We also work out a general formulation of k-harmonic manifolds
in terms of the Jacobi fields on the manifold. This enables us, in
particular, to generalize the equations of Walker, and obtain in the
case of symmetric spaces, a finite set of necessary conditions for
k-harmonicity. As an application of this we are able to show that if
a locally symmetric space 1s n-harmonic then it is k-harmonic for all
k. Under the further assumption of compactness we prove that an
irreducible k-harmonic manifold is necessarily a symmetric space of
rank one. Consequently:

(1) a compact simply connected riemannian symmetric manifold,
k-harmonic for one k is k~harmonic for all k; and

(2) by a theorem of Avez we can drop the assumption of symmetry

in (1) but assume instead that the manifold is n-harmonic.



INTRODUCTION

Harmonic riemannian spaces, as their name implies, are
intimately related to the study in riemannian spaces of the
generalized harmonic functions. A real-valued function ¢ on an open

set U in a riemannian manifold M is harmonic in U if

ij
ALd = $ .. = 0
2 & s1d

where Z&z is the Laplace-Beltrami operator on U. It is natural
to ask whether these functions possess certain properties enjoyed by
harmonic functions in euclidean space. This question was attempted
in 1930 by H.S.Ruse [1]who obtained an explicit formula for the
elementary solution of Laplace's equation and claimed that it holds
in a general riemannian space.- His claim however was later shown
to be false, Copson and Ruse [1], as it rests on the implicit
assumption that a s6lution to Laplace's equation exists which depends
only on the geodesic distance from thé pole. The claim, nevertheless,
holds for a substantial class of riemannian spaces, the harmonic
riemannian spaces. The subsequent years witnessed the development
of the subject in the work of Ruse, Walker, Willmore, Lichnerowicz
and Ledger.

In Chapter I we give a resumé of the theory of locally harmonic
riemannian manifolds as developed by its authors in the 40's and 50!s.
The chapter culminates in the recurrence formulae of Ledge? which

enable us to derive wvarious properties of harmonic metrics. Here
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the main source of material is the book on "Harmonic Spaces" by
H.S.Ruse, A.G.Walker and T.J.Willmore, hereafter referred to as

RWW. We also develop in this chapter some baéic differential
geometric theory of affine connections - riemannian connections in
particular - which serves as a logical background to the rest of the
chapter and to the subsequent ones, Here we adopt the definition

of connection due to J. Koszul.

We find that in a general riemannian manifold the conditions
of harmonicity as derived from Ledger's or equivalent formulae are
extremely complicated and only the fifst few of them are of
practical use. However, in certain classes of manifolds, e.g.
symmetric spaces, these conditions become more manageable as a
consequence of the richness of the structure with which they are
endowed. -

In Chapter IT we give a condensed account of the theory of
symmetric spaces and the cannonical connection on them and discuss
some of their properties. Here we make use of Helgason [1]and

Kobayashi and Nomizu vol. II.

In Chapter III we outline some theory and properties of Jacobi
fields which we use in the global description of harmonic manifold
theory. We obtain Allamigeon's result that such manifolds are
eilther diffeomorphic to euclidéan space or cohomologous to a

symmetric space of rank one. The chapter concludes with Avez's
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theorem that a compact simply connected globally harmonic manifold

with definite metric is symmetric.

In Chapter IV k-harmonic manifolds are defined as a generalization
of harmonic manifolds. We investigate some of their properties and
obtain some results analogous to the harmonic ones. We then use the
general formulation of k-harmonic manifolds in terms of Jacobi fields
to generalize the equations of Walker [3], [4]which provide in the
case of symmetric spaces a set of conditions for harmonicity. We
also inclpde the result, and certain corollaries thereof, that a
compact simply connected riemannian symmetric space which is k-harmonic
for one k is k-harmonic for all k. This latter result is contained

in a joint paper by Willmore and El Hadi [1].

The present work, however, leaves open many questions. A
paramount one is the fundamental conjecture of harmonic spaces, namely
that a locally harmonic manifold with positive definite metric is
locally symmetric. This remains unsettled. Secondly I believe that
theorem (9) of Chapter IV is of an essentially local nature and it
would be interesting to furnish a proof that dispenses with the

assumption of compactness.

As indicated above, all this work arises from considerations
of sclutions of Laplace's equation. There are many other equations
of interest in physics, e.g. the heat equation, the wave equation

etc. Each of these will give rise in a similar manner to special
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classes of riemannian spaces. An interesting problem which I
propose to investigate in the future is to classify such riemannian

manifolds.



CHAPTER I

HARMONIC MANIFOLDS

l.1. Origin of harmonic manifolds

The study of harmonic spaces was initiated by H.S.Ruse [1] in
an attempt to obtain a simple formula for the elementary solution of

Laplace’s equation

1 3 . ov

AV = —— — g13~fé —_— = 0
2 1 J
Jg  Ox ox

in an n-dimensional analytic riemannian manifold with any given

metric ds® = Igij dx" dx’|. He obtained a formula of the form
S ds
v(s) = A[ J/-\/—ggo e
a

where A and a are constants, s the geodesic distance from the origin

0 (xi) to the variable point P(x'), g det(gij), g, = g evaluated

320 ,

at 0 and J = det (—-—T——* > where 0= %es® . It was, however,
dx* dx!

shown in a subsequent paper, Copson and Ruse [1] that the above

formula is not valid in general, as it was implicitly assumed that the

manifold was homeomorphic to euclidean n-space and that a solution




exists which depends only on & and not otherwise on the path from
the base point. The particular class of manifolds for which

Ruse's formula is valid for one choice of base point were then
calléd centrally harmonic and those for which it holds for any
choice of base point were called completely harmonic. Manifolds of

constant curvature were shown to belong to this class.

An infinite set of necessary and sufficient conditions for a
space to be harmonic were given; these imposed certain restrictions
on the curvature of the metric to be admitted by a harmonic space.

An immediate consequence is that a harmecnic metric 1s necessarily
Einstein. In view of these restrictions it was then conjectured
that all harmonic metrics are of constant curvatures and this was
shown to be the case in dimensions <= 3. However Walker [2], [3],
[4] soon gave examples of harmonic manifolds of dimensions = L
which were not of constant curvature, thereby establishing the false-
hood of the conjecture. Thus harmonic manifolds were of some
interest in that they do not coincide with the "trivial" class of
manifolds of constant curvature and are included in the class of

Einstein manifolds.

1.2 Basic Connection Theory

a) Vector fields

Let M be a C* manifold, m € M. We denote by C (M,m) the set



of all C" real-valued functions with domain a neighbourhood of M.

Definition (1). A tangent X toMatmis a map: c¢’(M,m) - R

such that for all a,b € R and f,g € C (M,m)
i af + =
(1) x (af +vg) = aX (f) + vX (g)

(11) X (fg) = X (f)g(m) + £(m) X ().

The tangents to M at m form an n-dimensional linear space

denoted by Tm(M) .

Definition (2) A vector field X on U € M is a mapping which

assigns to each m € U a vector X in Tm(M).

If £ e ¢ (M,m) then Xf is the function defined for m € U N {domain f}

by Xf(m)

me. The vector field X is C if U is open and for every

f e ¢ (Mym) 5 (X£)(m) = X f is ¢® on U N {domain £} .

We denote by X(M) the set of all C vector fields on M. This
forms a Lie algebra over IR with bracket operation
[X,Y]f = X(Yf) - Y(X£), f e C (M).

Let M and N be C manifolds and ¢ : M - Nbe C. FormeM

we define the differential of ¢ at m, (¢*)m : Tm(M) - T¢(m) (N) vy:

if XeT (M) and fe ¢” (N,0(m)) then (0,) (X)T = X(foe).
Let X e ¥ (M) and Y € 3 (N); we say that X and Y are ¢-related

if (d,*)m(xm) = I¢(m) for every m in the domain of X.



The Cm—mapping ¢ : M > N is a diffeomorphism if it is one-

to-one, onto and ¢7% is .

A l-parameter group of transformations of M is a mapping of

IR XM into M, (t,p) e R XM - ¢t(p) € M which satisfies:

(1) for each t ¢ R, L ¢t(p) is a transformation of M,

(2) for all t,s € R and p € M, ¢t+s(p) = ¢t(¢s(p)) .

Each l-parameter group of transformations ¢t induces a vector
Tfield X as follows. For pe M Xp is the vector tangent to the
curve ¢t(p), called the orbit of p, at p = ¢,(p). The orbit ¢t(p)
is an integral curve starting at p. Conversely for every vector
field X on M and each P, € M there exists a neighbourhood of Pgy &
‘ positive number € and a local l-parameter group of transformations
| 60, 1 U > M, [t] < € which induces X (Cf Kobayashi and Nomizu I
p. 13).

b) Affine Connections

Definition (3) An affine connection on a ¢ manifold M is a function

V which assigns to each X € (M) a linear mapping

Y X (M) - X (M) satisfying

(1) Vey,oy = T% *8%

(2) V&(fY) = fYY + (xX£)Y ,




where X,Y ¢ % (M) and f,g e C (M).

The operator ?x is called covariant differentiation w.r.t. X.

Let 7 : I - M be an arbitrary ¢” curve in M and let &(t) be the
vector field along 7 defined by 7(t) = (7*)t (a/dt). Let X(t) be
an arbitrary vector field along y. We say that X(t) is parallel

Weret., 7y if v.( X(t) = o.

7(t)

Definition (1) A C curvey : t = 7(t), te IC R is a
2

geodesic 1f the family of tangent vectors &(t) is parallel w.r.t. 7.
A geodesic is maximal if it i1s not the proper restriction of any

geodesic.

Let 7(t) be a € curve in M with tangent field 7(t). For
each vector Y ¢ TV(O)(M) there is a unique C field Y(t) along 7y
such that Y(0) = Y and the field Y(t) is parallel along y (cf Hicks

1 . 58). The mapping T ¢ T M) - T M) defined b
(1], p. 58) pping Ty o 7(0)( ) 7,(t)( ) y

Y —» Y(t) is thus a linear isomorphism called parallel transport along

y frem y(0) to y(t).

As a consequence of the existence and local uniqueness for
solutions of ordinary differential equations with prescribed initial

values, we have the following:

Proposition Letm e M, X e Tm(M). Then for any real number tg,
there exists an interval I containing t, and a unique maximal geodesic
7(t) defined on I such that y(t,) = m and 7(t,) = X.  Such a maximal

geodesic we denote by 7 _(t).
m,X"



Definition (5) Let M be a Cmmanifbld with an affine connection V

and let X,Y € EE(M). We define the torsion and curvature tensor

fields of V as follows:

T(X,Y) = VY - VX- x,v]
= V - V., -— .
R(X,Y) xY T WX T VK, Y]

Thus T(X,Y) is a vector field on M and R(X,Y) a linear transformation

on ¥ (M).

For m € M denote by Dm the set of those vectors A ¢ Tm(M) for
which the geodesic Ym A(t) is defined on an interval containing the
2 .

point t = 1.

Definition (6) TFor an arbitrary X e D we define the exponential
mappin e : D - Mby expX =7 (1).
pping  e€xp, m XPpy m,X
'We say that an affine connection is complete if every geodesic

can be infinitely extended or, equaivalently if each exponential

mapping is defined on the whole tangent space.

Definition (7) 1Let (M, V) and (M, ¥) be two affinely connected C

manifolds. A diffeomorphism

¢ : M-> M

is called an affine mapping if

¢*(VXY) = V¢*X(¢*Y) for all X,Y € X (M).



Let ¢ : (M, V) > (M, V) be an affine mapping. Let T(T)
and R(R) be the torsion and curvature tensors of WV(V) and let
X, Y, Z € (M) be ¢-related to X, ¥, Z ¢ 2€(M), then we have

(Cf Kobayashi and Nomizu I p. 225):

(a) ¢ maps every geodesic of M into a geodesic of ﬁ, and consequently

¢ commutes with the exponential mappings.

(b) The fields v, T(X,Y) and R(X,Y)Z are ¢-related to the fields

%f, T(%,7) and R(X,1)Z.
A diffeomorphism of M onto 1tself is called an affine

transformation if it is an affine mapping.

c¢) Holonomy

Let M be a C manifold wi?h an affine connection V  and let
m € M. Given any piecewise ¢” closed curve T at m then parallel
transport along T, is a linear transformation of Tm(M). The
totality of these linear transformations for all piecewise C00
closed curves at m foma group. It is called the holonomy group
at m of the connection V and denoted by @(m). It was shown by
Borel and Lichnerowicz that ®(m) is a Lie subgroup of the general
linear group. If we restrict our attention only to those piecewise
¢” closed curves at m which are homotopic to zeroc we get the restricted

holonomy group ¢b (m) which turns out to be the identity component

of ®(m).



Ambrose and Singer [1] proved the following theorem about

holonomy:

Theorem: The Lie algebra of the holonomy group ®(m) is equal
to the subspace of linear endomorphisms of Tm(M) spanned by all

elements of the form:

(Tt R)(X,Y) = T loR(X,)or

where X, Y € Tm(M) and T is parallel transport along an arbitrary

00
piecewise C curve T starting at m.

d) Riemannian Connections:

Definition (8) A Riemannian (pseudo-riemannian) structure on a C.

manifold M is a tensor field g of type (0,2) satisfying:
(a) g(X,Y) = g(Y¥,X) for all X,Y ¢ % (M)

(b) for each m ¢ M, g, is a positive definite (non-degenerate)

bilinear form on Tm(M) X Tm(M).

(£9]
A riemannian (pseudo—riemannian) manifold is a C manifold

equipped with a riemannian (pseudo-riemannian) structure.

The fundamental theorem of riemannian geometry asserts that:
k
On a (pseudo-) riemannian manifold there exists one and only

one affine connection - the (pseudo-) riemannian connection - V

satisfying:




(a) the torsion tensor is zero, i.e. VkY - V}X = [X,Y] for all

X,Y € ¥ (M), and

(v) parallel transport preserves the inner product on the tangent

spaces, i.e.

=0 for all Z € ¥ (M).

Definition (9) Let M and M be two riemannian manifolds with

riemannian structures g and é and ¢ a diffeomorphism of M onto M.

¢ is called an isometry if ¢%¥z = g, i.e. if for all X,Y ¢ ¥ (M)
(exg) (X,¥) = B(o,X, 0,Y) = g(X,Y).
On a riemannian manifold the tensor field of type (O,4)

defined by

R(X,Y,Z,W) = g(R(X,Y)z,W)

is called the riemannian curvature tensor field. It satisfies the

following symmetry relations:

R(X)Y)Z)W) _R(Y)X'JZJW)

-R(X,Y,W,Z)

R(Z,W,X,Y) .

A riemannian manifold is said to be flat if its curvature tensor

vanishes identically.



10.

Definition (10) The Ricci tensor S of a riemannian manifold with

riemannian curvature tensor R is defined as follows:

S(X,Y) = trace U v R(X,U)Y, X,Y,U e 2% (M).

A riemannian manifold with metric g is said to be Einstein if

S(X,Y) = 2g(X,Y) for some scalar A and all X,Y e ¥ (M).

Definition (11) Tet p e Mand £ a 2~-dimensional subspace of

TP(M). The sectional curvature K(Z) at p is defined by

g_’p (RP(.X’Y)Y,X)

K(Z) T
(A(x,Y))2

where X,Y are two linearly independent vectors in X and A the area of

the parallelogram spanned by X and Y.

1.3 Normal Neighbourhoods

Definition (12) A neighbourhood V. of the zero vector in Tm(M) is
normal if it is starlike, i.e. ¥ A eV jand 0<s =1,
sA € V and if the mapping exp is defined on V, (i.e. Vo < D)

and is a diffeomorphism onto some neighbourhood V(m) of m.

The neighbourhood V(m) = exp V_ is called a normal neighbourhood

of m ¢ M,

The significance of normal neighbourhoods stems out of the

| fact that an arbitrary point m' in a normal neighbourhood V(m) can be

o
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joined to m in V(m) by a unique geodesic. Specifically m and m!
can be joined by the geodesic 7m.A(t) where A is a vector for which
2

expmA =m'.
It has been shown by Whitehead [1] that:

Every- point p, in a space M with an affine connection has a

neighbourhood V which is a normal neighbourhood of each of its points.

Since any two points p and g € V can be connected in V by a

unique geodesic it then follows from Whitehead's theorem that:

Every point p, in a space with an affine connection has a
neighbourhood V any two points of which can be joined in V by a

unique geodesic, Such a neighbourhood V is called simple convex.
For p € M let {Ai} be a basis for Tp(M), then there is a
linear isomorphism a : RR® - TP(M) defined by
a = (a'y, ..., a") e R » alAi . Suppose that

E = eqkoa : RY > M.

Then the mapping E™t is a diffeomorphism of the normal neighbourhood
V(p) onto the open set a_l(Vo) C R'. We shall call the corresponding
local coordinates (y*, ..., y®) at the point P (with coordinate

neighbourhood V(p)) the normal coordinates (defined by the basis

A, ..., An} ) at the point p.  Thus
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E() = (y'(Q), .- ¥ (a)), q € V(p) -

From this it follows that, for an arbitrary vector A = alAi € Tp(M),

y (exp_A) = &

P
Using the property of geodesics that 7A(s) = 7SA(1), it then
follows that every geodesic 7A(s) is expressed in terms of normal
coordinates (y', ..., y ) in the neighbourhood V(p) by the linear

function
i i
y(s) = a's (1)
Let *F;k(y) denote the components of affine connection relative
to the system yl of normal coordinates of origin p,. Then since

the differential equations

a2yt ; dya'dyk
+ M (y) —— =0 (2)
at2 J at  dt

are satisfied by yl = alt, we have

- ik
ij(at)a a 0

for all values of a'. In particular at t =0 (*ng)oalak =0

for all al and hence

(i) = © (3)



If now the connection i1s a metric connection and if *gij
are the components of the metric w.r.t. the normal system (yi), then
a necessary and sufficient condition for (yl) to be a normal

coordinate system is (Cf R.W.W. [1], p. 12)

(*gij ) = (*gij)o Yoo ()

1.4 Two-point invariant functions

a) The distance function Q

Let W be a simple convex neighbourhood on a riemannian manifold
M and let py € W. Then any point p € W determines a unique vector

u e T_ (M) which is tangent to the geodesic 7 (r) = exp_ ru and
Pq u Py

= eXx U.
p xppo

Let T(W) be the restriction to W of the tangent bundle of M.

We define a map
1.2
Q:TW) » IR by ru - 3re .

In terms of an allowable coordinate system (xl) covering W, £ is a
symmetric function of the coordinates (xé), (xl) of P, and p.
If in particular we have a normal coordinate system yl of origin P,

and let yl be the coordinates of p then

where *gij a a = e,



the indicator of the geodesic arc (po, p), and Q(po, p) = %'er .

1k,

2

If the geodesic arc (po, p) is not null then e # O and the

parameter s above is numerically equal to r, the arc length of

(pg» P). Hence
- 1.2 _ 1/(x 0
Q = 2 €S8 - 2(¥g.LJ)o -YJ y (5)
Now
on 3 ;
—_— = (% = %
T (*g;5)o ¥ 83 ¥ (6)
hence
.. 00 . dyi
i;
oy ds
where — is differentiation along (Pos P)-

This is a tensor equation and

system (x),

From (6)

*

therefore relative to any coordinate

15 o0 dx"
g‘J—-E = § (8)
ox ds
i 0N o0 _ i3
— = = (*g, oy ¥ = 20
dy" dyY td

and hence in any coordinate system,
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i3 ost o
A Q = g —_—— = 20 (9)
t dx" dxY

where A, 1is the first differential parameter of Beltrami . In
(8) p, is regarded as fixed and p variable. If instead p is kept
fixed and p, varied, we get by the symmetry of Q ,

on dyi

= o(-— ),

(gij)0

Q/
0]
o .

and by virtue of (7)
i ij o0
y o= -8 3 (10)
ox
o
where (y) are the normal coordinates of P derived from (x ) and

having P, @s origin.

b) Ruse's Invariant p

Let (xl) be an allowable coordinate system covering a simple
convex neighbourhood W on a riemannian manifold M. Let & be the

distance function. For P_ (xol) and P(x") denote by J the

o320
()
on dxd

and let IJI be its modulus.

determinant
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Definition (13) Ruse's invariant is the scalar function

p s WXW- R

given by

(po, p) € WX W +afdet (gp) det(gp ) /]3] (11)

where we take the positive square root.

It is clear that p is everywhere positive. That it is in
fact a 2-point invariant may be shown (Cf RWW pp.18-19) by considering

its behaviour under a coordinate transformation.

In terms of normal coordinates (11) reduces to

p = Nﬂiéf(*gp) / det(*gpo) = Jﬁet(*g;; *gp) (12)

from which it follows that p - 1 as p = Py -+

The relation between p and 9 is moreover expressed by (Cf RWW. p2l1)

d
AR = n+ ok — log o (13)
ox

where ‘AZQ is the laplacian of @ given by

g - 1 d 13 J] 1ol
AR = gda.. = - < g det g| — >
: s1d V]aet g| ' ox?

1.5 Locally harmonic riemannian spaces

Let U and V be any two ¢” manifolds and let ¢ and ¥ be two c”
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mappings of U into V. We say that ¢ is a function of ¥ or ¢
factors through V by ¥ if there exists a ¢’ mapping £ of V into

itself such that the following diagram commutes,

U t >V
\\\\\\\\ //////7 iees ¢ =FfoV
™,

Definition (1k) A riemannian manifold M is said to be locally

harmonic (denoted by Hh) if one of the following three conditions is
satisfied for every point P, € M in some normal neighbourhood W of
origin Pj :

(A) Laplace’s equation 152u = O possesses a non-constant solution
which is a function of Q@ alone. Such a function is called a

on
harmonic function/W and u = W(Q) is called the elementary function.

(B) A% is a function of Q only, A,Q = X(Q) called the

characteristic function.
(C) Ruse's invariant is a function of Q only.

Proofs that these three conditions are in fact equivalent are given
in (RWW pp. 36-40). It turns out that in a harmorc space H the

characteristic and the elementary functions satisfy:

X(®) = 8,8 = n+ 2@ log o(7) (14)
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and Q

dw
V() = Af—l—m—'—)“-“B (15)

. | p(w

where a, A and B are arbitrary constants.

From (14) it follows that

X(w) = n
p(Q) = exp[ — dw (16)
0 2w

the constant of integration being determined by the fact that
p(?) - 1 as Q = 0. Thus if any of the functions p(Q), X(Q)
or V() is known the other two may be determined by the above

formulae,

Definition (15) An Hn is simply harmonic if one of the following

conditions is satisfied:

@) w@ = . a/leB2 L 3 (n > 2)

Alog |0 + B n =2

A,B being arbitrary constants.
(B') X(9) 1is a constant.

(¢') p(Q) is a constant.

The equivalence of (A'), (B'), (C') follows from the equivalence

of (A), (B) and (C) in definition (14). The constants in (B!) and

(C') are respectively n and 1.
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Mean Value Theorem Willmore [1]

Let M be a riemannian manifold with positive definite metric 5
Po € M and N any normal neighbourhood of origin pg. Let ¢ be a
positive number small enough that on any geodesic ray emanating
from p, there is a point of N whose geodesic distance in N from p,
is equal tc ¢. The geodesic sphere gn~1 (pys ¢) of centre p, and

radius c¢ is the (n-1)-hypersurface consisting of all points in N

at geodesic distance c¢ from p,.

Now let u(u; Py r) denote the mean value of a harmonic function

u over 77t (pO; r) then

1

u dv

u(u; py; r) = 01

Cn_l(r) Sn_l(Po;r)

where Cn_l(r) and an_l denote respectively the volume and volume

element of Sn_l(po,r).

Theorem (Willmore [1]):

M is harmonic at p, € M iff the mean value over every geodesic
sphere centre p, of every function harmonic in any neighbourhood

containing Sn_l(po,r) is equal to the value of the function at Do



20.

1.6 Conditions for harmonic manifolds

Let (yl) be a system of normal coordinates of
origin P, covering a simple convex neighbourhood W of py in an
analytic riemannian manifold M. M is not assumed harmonic for the

moment. W.r.t. this system:

= *i
AR = Q’i (17)

and by (7) we have *Q" = y'.  Therefore

A_Q = trace(*Ql.)
’d

i, oed K
. trace(Sj + ij v) (18)

Now *F;k are analytic functions of the (y") and admit therefore
a convergent Maclaurin's series representation in a sufficiently

small neighbourhood of Pyt

o0

JJ L
i _ 1 i 1 D
*FJk(Y) - 2 p! (Ajkzlzz..‘l )O y L y (19)
p=1 P
where *ng(o) =0 and
i 9 9 i
A - aase *T 20
( jkzl...zp)o {aylp aylt () } (20)

are the affine normal tensors at py, (Veblen [1], p. 89-90).
It (a ) is the tangent vector at Py to the geodesic yl =a' s, where

= 0 at p, and (gij)o al ad = e, then




21.

o
1,4 k "1 b p1
AQ = n+ Z ;— (Aikzl...ll )oa at...a"s (1)
p=1

If we now assume M to be harmonic we must have

[s.e]

A0 = X(0) = Z -I-anx(m)(o)nm (22)

m=0

0]

B 1 (m) T g2m
- Ziﬂ.\m! XT0)eT s

m=0
as Q= %esz.
On putting
+
h = X(m)(o) / (2" 1.m.m!), m=1,2,3, ...
(23)
we get w
AR = X(0) + Z (2m)n_ M P (24)
m=1
For a harmonic space (21) and (24) must be equal and hence by
equating coefficients of Sk we get:
(A? ) = h_§( g cee )
ikfyfpeei by 170 m " ks Bg s by o b g
i
(Aikzlzz...z Jo =0 m=1,2,3 ...

om (25)
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where S denotes summation over all permutations of the free indices.

Ledger's Formulae, Ledger [1]

Consider a coordinate system (xl) about po(xo) € M and let
X" = &(x,,7), y= = a's, be the equation of a geodesic a through Pos

where i _
i dx P
a~ = <-—-—> and (8;.), 2 ad = e .
ds “s8=0 +J

Regarding (xi)) as fixed, A, becomes a function of the x", so if
we keep the al constant, we obtain a function of s having for

sufficiently small values of |s| the Maclaurin expansion:

r r

r=0

r
<—-‘—1— AQ) .
as’ 2 s=0

This is the same as (21) if we put:

- N (26)

where A
T

_ i kK "1 r-1
A, = r(AikZl...lr_ Jama T ... a . (27)

Hence according to (25) the required conditions for a harmonic manifold

are:
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£
2r kN L1 2r-1 = '
i L (2r). (2r)inSlegy -oey oy )

2r+l kN b or B
and (9 / da %t ... da ))2r+1 = 0 - (28)

Now let D denote covariant differentiation along a. For any

tensor of type (1,1)

p !

DT, = T, a ees B
J J,Zl...lr

Using matrix notation T = (Tz) let us denote (D" Tg) by T_; and

let wus introduce the following matrices:
A= (@) (29)

and I = (H%) = Rizj X ot . (30)

Since the operations of covariant differentiation and taking the

trace commute we get:

[D* trace 9*.]
»d s=0

trace [Ar]s=0

r
[D A2Q]S=O = xr

Also ) kK £

trace II = Ri!i ak a = Rkl a a R

where sz is the Riceci tensor.
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By twice differentiating the identity

oo, = 20

,1
and raising suffixes when appropriate, Ledger obtains, by a
judicious use of the Ricci identity and Leibniz theorem,the following

recurrence formulae:

(r+ 1)Ar = r(r-1) I, - rf <;> Aq Ar_q (31)
Q=2 '

r =2,

where the matrices AT and Bi are evaluated at p, .

These impose certain conditions on the curvature of a harmonic space

which we now proceed to investigate.

1.7 Some consequences of the curvature conditions

On putting r = 2,3,... we get from (31) at D, >

k

sz a az .

Hence if the manifold is Hn it then follows from (28) that

2
XE = trace 1\.2 = 3 trace II =

Wi

o
SRy = bhog (32)

lee, sz = kl g for some constant k, and this demonstrates

that any Hn is Einstein.
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Putting r = 3 in (31) we see

_ - 2
}s = trace /\.3 = 3 trace Hl

I
PO

sz;m a a a ,

and therefore by (28) for an H

Regnm® R ¥ Ruac,g = O (33)

which is a consequence of (32).

Putting r = 4 in (31) we get

_ X 2
A, = G trace (9]I - 2I%).

Since trace I, = 0 by (32) we get, using (28)

P q —
(Rijq Rk.@p) = Kk S(gij & ) (34)
for some constant k2 .

For r = 5 we get

S e R
S(Rij,klm Rijq Rklp,m) = 0 (35)
which follows because of (32) and (34) and thus yields nothing new.

By the same process we get for r = 6 in (31),

r

D q '
S(BEngq szr Rmnp 1Jq,m Rklp, = 3 s(gij Y gmn) (26)

where ks is constant.
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The calculation of more such conditions is straightforward
but becomes, with larger r, exceedingly laborious. Unless some
additional properties are enjoyed by the manifold - e.g. local
symnetry - the above conditions, essentially (32), (34) and (36)
are almost all the tools at our disposél in dealing with locally

harmonic spaces. As a consequence of them we have:
Theorem 1  An Hn is of constant curvature if
(a) n=2,%

(b) H_ is conformally flat, i.e. locally conformal to a flat
n

manifold.

(e) H 1is of normal hyperbolic metric.
I

Proof (a) TFor any M® the curvature K at any point is given by

= in - _1.,1id k¢
K = R1212/ & ~3R = -328 ijk £
Hence, if M® is an H, then from (32)
R = 2kl and thus K = .—kl.

By a result of Schouten and Struick [1] every Einstein
3-manifold and also every conformally flat n-manifold are of constant

curvature. This proves (a) for n = 3 and also (b).

(c) has been proved by Lichnerowicz and Walker [1].



Corollary:

A simply harmonic SHn is locally flat if

(a) n = 2,3,

(b) SH_

(c) SH_

is conformally flat.

is of normal hyperbolic metric.

27-
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CHAPTER IT

SYMMETRIC SPACES

2.1 Basic facts about Lie algebras

Definition (1) A Lie group is a group G which is also an analytic

manifold such that the mapping (g, g,) » glg;l of G X G - G is

analytic.

Let G be a Lie group and p € G. The left translation
Lp : g » pg of G onto itself is an analytic diffeomorphism. A
vector field Z on G is called left invariant if (Lp)* Z, = ch for_
all o,p € G. Given a tangent vector X at the identity X € Te(G),
there exists exactly one left invariant vector field X on G such

that ie = X. X is necessarily analytic and is given by

(Cf Chevalley [1], p. 102)

X = (L)X
P (p)*

It is easy to see that the sum of two left invariant vector fields,
their bracket and the product of a left invariant vector field by a

scalar are again left invariant vector fields,

Definition (2) The Lie algebra g of a Lie group G is the set of all
left invariant vector fields on G. As a vector space g 1is

isomorphic to Te(G).
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More generally let g be a vector space over a field K of characteristic
zZero. Then g is a Lie algebra over K if there is given a rule of

composition (X,Y) - [X,Y] in g satisfying:
(a) [X,X] = 0 for all X ¢ g and

(b) The Jacobi identity I[X,[Y,2]] + [¥,[z,x]] + [Z,[X,Y]] =0 for

XY, 2 e g

The Lie algebra of definition (2) is clearly a Lie algebra

over IR.

Every A € g generates a global l-parameter group of transformations

of G. Indeed if ¢t is a local l-parameter group of transformations

generated by A and ¢,e is defined for Itl < e, then ¢ _a can be

t t

defined for |[t| < € for every a € G and is equal to La(¢te) as ¢t

commutes with every La' Since ¢ta. is defined for |t| < ¢ for every

a€G, ¢a is defined for |t] < © for every a € G. We set

ap = ¢te; then 8o = 8 &g for all t,s € R, and a, is the l-parameter
subgroup of G generated by A. It is the unique curve in G such that its

tangent vector é‘t at a_ is equal to L, A  and that a, = e.  Denote
t

a, = ¢, by exp A. It follows that exp tA = a; for all t. The

mapping A — exp A of g into G is the exponential map.

A vector subspace h ¢ g is a subalgebra of g if [}.'_1, Q] C h and
is an ideal if [_1_’_1, _g] C h. A linear mapping o : g, — g, 1is a Lie

algebra homomorphism if o([X,Y]) = [oX, oY] for all X,Y € g,;
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0(59 is a subalgebra of g and the kernel o {0} is an ideal in B

If 671{0} = {0} then o is an isomorphism into.

For X € g the linear transformation ¥ — ([X,Y] of g
denoted by ad X satisfies: ad([X,Y]) = adXadY - adYadX = [adX,adY]
i.e., ad 1s a Lie algebra homomorphism. Now let V be a vector
space over a field K and let gi(V) denote the vector space of all
endomorphisms of V with bracket operation [A,B] = AB - BA. Then
&(W) is a Lie algebra over K. Let g be a Lie algebra over X,

then a homomorphism
p: g = gi(V)

is called a representation of g on V. In particular the mapping
X adX (X € 5) is a representation of g on g called the adjoint
representation and is denoted by adg or simply ad. The kernel of
adg is called the centre of g. If the centre of g equals g then

& is said to be abelian. Thus g is abelian iff Lghg] = {O} .

The derived series of a Lie algebra g is the decreasing

sequence of ideals D?g, ng, ... of g defined inductively by:
+1
Dog = g, Dp g = [DPE, ng] .

The descending central series of g i1s the decreasing sequence of

ideals C°, C'g, ... of g defined inductively by
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0 Cp+1 g

g = g, (g, cPgl .

Evidently D°g C Pg and D'g =0 iff g is abelian.

Definition (3) 8 is nilpotent if ng = 0 for some p. It is

solvable if D?g = 0 for some p.

Every Lie algebra g has a unique maximum nilpotent ideal n,
i.e. a nilpotent ideal which contains every nilpotent ideal of g;
and a unique maximum solveble ideal r called the radical of g. g
is called semi-simple if its radical is zero and simple if it is not

abelian and has no non-zero ideal other than g itself. (Cf Jacobson

[11, p. 2k-26).

Definition (4) The Killing form B of a Lie algebra g is the

symmetric bilinear form on g defined by
B(X,Y) = trace adX adY¥ for X,Y € g.

If o« is any automorphism of g, we have addoX = oo adXo o™t and so

B(aX, oY) trace(adaX ado¥) = trace(a adX adY o™1)

)

trace(adX adY) = B(X,Y).

Since trace(AB) = trace(BA) for any endomorphisms A and B, we

have,
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trace(ad[Z,X]adY) = trace({(adZ adX - adX adZ)adY)
= trace((adY adZ - adZ adY)ad%i = trace(adlY,Z]adx)
and thus we have |
B(X,[Y,z]) = B(Y,[z,x]) = B(z,[XY]) .
If a is an ideal of g, the Killing form of a is the restriction

of B to a. For a subalgebra a of g, denote by _e_ml' the subspace:

at = {Xeg, BX,Y) = 0 V Ye a}

If a is an ideal of g then so is g._"L . Denoting by n and r the
maximum nilpoint ideal and radical of g respectively, we have:

g>r>g'> n.

Equivalent to the semi-simplicity of g are the following conditions

(Xobayashi and Nomizu II)
(1) TIts radical r = O (definition).

(2) Its maximum nilpotent ideal n = 0. This is so because any

nilpoint ideal is solvable (Jacobson [1], p. 25).

(3) g~ =0, i.e. its Killing form is non-degenerate. This is

\oQ

Cartan's Criterion for semi-simplicity (Cf Jacobson [1], p.69).
(k) every abelian ideal of g is zero.

(5) g is isomorphic to the direct sum of semi-simple Lie albegras.
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(6) Every finite-dimensional representation of & is semi-simple,

i.e, completely reducible.

2.2 Symmetric Spaces

Let M be an affinely connected n-manifold. For x € M the
symmetry SX at x is an involutive diffeomcrphisp of a neighbourhocod
of x opto itself which sends exp X — exp (X), X ¢ TX(M).

If (xl, ooy xn) is a normal coordinate syétem at x then Sx sends
(x%,0ee,x) = (x*,.e., -x"). The differential of 8, is equal

to —IX, the identity transformation on TX(M).

Definition (5) An affinely connected manifold M is said to be

affinely locally symmetric if each x € M has an open neighbourhood
on which the symmetry SX is an affine transformation. If for each
X €M, SX can be extended to a global affine transformation of M,

then M is called affine symmetric.

The definition of affine local symmetry is equivalent to the
vanishing of the torsion tensor and V,R = O for all Z € x (M).

(Helgason [1], p. 163).

It is known (Cf Kobayashi and Nomizu II p.22L4) that every
affine symmetric space is complete and that a complete simply
connected affine locally symmetric space is affine symmetric, Also

if A(M) is the Lie group of affine transformations of an affine
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symmetric space M and G its identity component, then both A(M)
and G act transitively on M.

For m ¢ M we define the isotropy subgroup H of G at m by

H = {geClgm) =mh

H is a closed subgroup of G and the map G/H — M. given by
gh - gmis Cw, one to one and onto. Thus M may be regarded as

a homogeneous space G/H.

Definition (6) The linear isotropy representation is the

homomorphism X ¢ h ~— (dh)m of H into the group of linear
transformations of Tm(M). MH) = H' is called the linear

isotropy group at m.

Proposition (1) Let M be an affine symmetric space and G
the largest connected group of affine transformations of M. Let
0 € M and H the isotropy subgroup at O, so that M = G/H. Let S,

be the symmetry at O and o the automorphism of G given by

-1
g S,0 go So g € G,

)

Let G0 be the closed subgroup of G consisting of those elements

fixed by o . Then H lies between G0 and its identity component.
Proof See (Kobayashi and Nomizu IT, p. 224).

In view of the above proposition we give the following

definition:
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Definition (7) A symmetric space is a triple (G, H, o) where o

is an involutive automorphism of a connected Lie group G and H a

closed subgroup of G lying between Go and its identity component.

(G, H, o) is effective if the largest normal subgroup of G

contained in H is the identity element.

Given a symmetric space (G, H, o) we construct for each point
X ih the quotient space M = G/H an involutive diffeomorphism Sx’
the symmetry at x for which x is an isolated fixed point. For
the origin 0 ¢ G/H, Sy is defined to be the involutive diffeomorphism
of G/H onto itself induced by the automorphism o of G. To show
that O is in fact an isolated fixed point of S_; let g(0) be a

fixed point of § , g € G. This means o(g) € gH. Set

h =g to(g) e H. Since oh = h, we have

h® =ho(h) = g ta(g)oleg™o(g)) = g to(g)o(eg™)e = e.

If g is sufficiently close to the identity so that h is also near
the identity element, then h itself must be the identity and hence
o(g) = g. Being invariant by ¢ and near the identity element, g
lies in the identity component of G0 and hence in H. This implies

that g(0) = 0.

For x = g(0) we define
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Thus S, is independent of g such that g(0) = x. Indeed if

x=g,(0) =g (0) = 0=g'e g (0) so that

- o1 ’ -1
So = 8 g, o° SO o g2 g, and thus

-1 -1
ng Son gl - g2° soo g2 .

2.3 Transvections

Let M be an affine symmetric space and T a geodesic joining
two points x, y € M. Then the product of two symmetries Sx and
Sy is called a transvection along T . If G is the largest

connected group of affine transformations of M and if we write

Sx = chSoo gt where x =g-0, g¢G
. _end S = g'eScgT  for y=g'e0, g €G
then
S8, = @ > (S s g% gfo S.)e gf'l.

On the other hand by definition of So we have

So° g™t gle So = o(g™te g') € G, and thus
- -1
SXO Sy = goO'(g lo g’)o g’ € G-,

i.e. every transvection belongs to G whereas a symmetry may not.

Let us write 7= x 0t <lha with x=x Y= x and
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consider for each t the symmetries S_ , S and set
X X
t 3t
f. = 8, « 8_. Then £ is the identity,
t XBt xt o)

and fa(x) =y, which shows that the set of transvections generates

a transitive subgroup of G.

Definition (8) A symmetric Lie algebra (or involutive Lie algebra)

is a triple (5, h, o) where o is an involutive automorphism of
the Lie algebra g and h is the subalgebra of g

h = {x e glo(x) = x}.

(g, h, o) 1is called effective if h contains no non-zero
ideal of g.

We shall use the abbreviation SLA for a symmetric Lie algebra.
To every symmetric space (G, H, o) there corresponds a SLA (g,g,o)
where g and h are the Lie algebras of H and G respectively and the
automorphism o of g is that induced by o of G. Conversely if
(g, h, o) is a SIA and G a connected, simply connected Lie group
with Lie algebra g, then the automorphism ¢ of g induces an
automorphism o of G (Cf Chevalley [1], p. 113) and for any
subgroup H lying between G0 and its identity component the triple

(G, H, o) is a symmetric space.

Let (g, h, o) be a SLA. Since ¢ is involutive its eigen-

values as a linear transformation of g are t1, and h is the
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eigenspace for +1. Let m be the eigenspace for -1. Then the

decomposition
g = h+m
is called the cannonical decomposition of (g, h, o). Under the

usual identification of g with Te(G)}g.is seen to be isomorphic

to Tn(e)(G/H) under the differentiai of the natural projection

n: G- GH, and h = ker dn .

Proposition (2)

(b) [hm] ¢ m

Proof

(a) holds because h is a subalgebra.

(b) Let Xeh, Yem then

o([X,Y]) = [dX, o¥] = [X, -¥Y] = -I[X,Y].
(¢) Let X,Y e m then
o([x,Y]) = [oX, o¥] = [X, -Y] = I[X,Y].

The above inclusion relations characterize a SLA in the following

sense. Given a Lie algebra g and a vector space direct sum
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g =h + m satisfying (a), (b) and (c), let o be the linear trans-
formation of g defined by G(X) = X, X e hand oY) =-Y, Yem

Then ¢ is an involutive automorphism of g and (5, h, o) is a SIA.
If G is moreover effective and semi-simple then we can strengthen

(¢) by [m,m] = h. (Cf Lichnerowicz [1], p.183).

Proposition (3) TLet (G, H, o) be a symmetric space and (g, h, o)

its SLA. Ifg=h+mis the-cannonical decomposition then

—

ad (H)m C m.

Proof Let X em, heH. Then o(adh.X) = ada(h).o(X) =

adh(-X) = -adh.X .

2.4 The Cannonical connection on a symmetric space

Definition (9) TLet M = G/H be a homogeneous space on which a
connected Lie group G acts transitively and effectively. We say
that M is reductive if the Lie algebra g of G is decomposed into a

vector space direct sum:
g = h+m hNm = 0 such that

ad(H)m ¢ m.

The existence and properties of invariant affine connections

on homogeneous spaces were studied by Nomizu [1]. A generalisation

of this study has been made by Wang [1]. Here we state a

specialisation to the reductive case of a theorem by Wang [11]
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(cf Kobayashi and Nomizu II, p.l191).

Theorem (1) Let G/H be a reductive homogeneous space with
cannonical decomposition g =h + m. Then there is a one to one
correspondence between the set of G-invariant connections on G/H

and the set of linear mappings:
Am:m - gt(n, R) such that
M(adh(X)) = ad(a(h))(Mm(X)) for X e m, h € H,

where A\ denotes the linear isotropy representation

H - GL(n,IR).

Definition (10) The G-invariant connection on G/H defined

by An = 0 is called the cannonical connection (w.r.t. the

decomposition g =h + E)'

The torsion and curvature tensors at O € G/H of the

cannonical connection satisfy (Cf Kobayashi and Nomizu, p. 193)
(1) (@), = -boyl,
(3) VI = VR = 0

where X,Y,Z e m and [X,Y]m (resp [X’Y]h) denotes the m (resp. h)-

component of [X,Y]l e g .

Since for a symmetric space [m,m] ¢ h it follows that the
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cannonical connection on a symmetric space is torsion free. More-
over it is the only affine connection on M = G/H invariant by the

symmetriesof M.

Many of the nice properties of the cannonical connection are

summarized in the following theorem (Cf Kobayashi and Nomizu II, p.231)

Theorem §2) With respect to the cannonical connection of a
symmetric space (G, H, c), the homogeneous space M = G/H is a

(complete) affine symmetric space with symmetries S, and has the

following properties:

(1) T=0, VR=0 and R(XY)z = -[[XYI], 2], X,Y,Zem

where m is identified with'To(M), 0 being the origin of M.

(2) For each X € m, parallel displacement along w(exp tX)

- coincides with the differential of the transformation exp tX on M.

3) For each X € m, mn(exp tX) = (exp tX)o O 1is a geodesic starting
m,

from O; conversely every geodesic from O is of this form.
(4) Every G-invariant tensor field on M is parallel.

(5) The Lie algebra of the linear holonomy group o with reference

point O is spanned by {R(X,Y)O = adm([X,¥]), X,Y em} .

Corollary If G is assumed effective and semi-simple then the Lie

algebra of the restricted linear holonomy group coincides with the
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Lie algebra of the Linear isotropy group (Cf Lichnerowicz [1], p.183).

2.5 Riemannian symmetric spaces

Definition (11) A riemannian manifold M is called riemannian

locally (globally) symmetric if it is affine locally (globally)

gymmetric wer.t. the riemannian connection.

For each x in a riemannina locally symmetric space the
symmetry SX is an isometry. From properties of affinely symmetric
spaces it follows that a riemannian manifold is locally symmetric
iff its curvature tensor field is parallel, The properties of
affine symmetric spaces referred to at the beginning of this chapter
could easily be formulated in the language of riemannian symmebtric
spaces; for instance every riemannian globally symmetric space is
complete and a complebte simply connected riemannian locally symmetric

space is globally symmetric.

Theorem (3) Let (G, H, o) be a symmetric space. A G-
invariant pseudo-riemannian structure on M = G/H, if there exists

any, induces the cannonical connection on M.

Proof  Such a metric is parallel w.r.t. the cannonical cénnection
by theorem (2). Since the cannonical connection is also torsion

free it must be the riemannian connection, qecede
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There is a large class of symmetric spaces which admit

invariant pseudo-riemannian structures as shown by:

Theorem (4) TLet (G, H, o) be a symmetric space with G
semi-simple and let g = h + m be the cannonical decomposition.
The restriction of the Killing form B of g to m defines a G-invariant

pseudo-riemannian metric on G/H by:
B(X,Y) = g(X,Y)O for X,Y € m.

Proof Since the Killing form of a semi-simple Lie algebra is non-
degenerate and invariant by all automorphisms of g, the theorem follows

from the following

Lemma Let (g, h, o) be a SLA with cannonical decomposition
g=h+m If B is a symmetric bilinear form on g invariant by o
then B(E’Q) = 0O, If B is moreover non-degenerate, so are its

restrictions Bh and Bm to E and m .

— -—

Proof If X ¢ E and Y € mn then

B(XI,Y) = B(GX.,GY) = B(X, -Y) = -B(X,Y) = B(é, ﬁ) = O.

It is clear that B is non-degenerate iff both Bh and Bm are SO. g.€.d.

Theorem (5) Let M be a riemannian symmetric space, G the
largest connected group of isometries of M and H the isotropy group

at a point 0 € M. Let SO be the symmetry of M at O and o the
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involutive automorphism of G defined by g »— Soo gc»S;l, g € G.
Let Gc be the closed subgroup of G consisting of elements left

fixed by o . Then
(1) G is transitive on M so that M = G/H.

(2) H is compact and lies between Gc and its identity component.

Proof
(1) Let X,y be any two points of M. Since M is complete these
could be joined by a geodesic (t), O <+t <la, say. Then as
before

f., = 8 o S defines a l-parameter
t KBt Xy

group of transvections along T which is transitive since fa(x) = Y.
Now SX and SX being isometries shows that the group of
3t t
transvections is a subgroup of G and thus G itself is transitive.
(2) Let I(M) be the group of isometries of M, then I, (M) the
isotropy subgroup of I(M) at O is compact (Cf Kobayashi-Nomizu I p.49).

Being the identity component of I(M), G is closed in I(M). Hence

H=60N IO(M) is compact.

That H lies between G0 and its component of the identity follows

from proposition (1). gq.e.d.
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2.6 Decomposition of Riemannian Symmetric Spaces

Let M be a connected riemannian manifold with metric g and
®(X) its linear holonomy group at x € M. Then M is said to be
reducible (irreducible) according as ¢(X) is reducible (irreducible)
as a linear group acting on Tx(M)'_ From the deRham decomposition
thearem (Cf Kobayashi and Nomizu I, p. 187) we get the following

analogous theorem for symmetric spaces.

Theorenm §6) Let M be a simply connected riemannian symmetric
space and M = M, X M, X ... X Mk its de Rham decomposition, where
M.0 is euclidean and each M.i is irreducible. Then each Mi is

riemannian symmetric.
Another important decomposition of a simply connected
riemannian symmetric space is the following

M = M XM XM where M is euclidean
[e} - + Q

and M, (resp. M ) is a compact (resp. non-compact) riemannian
symmetric space. (Cf Helgason [1], p. 208). To achieve this we

introduce the following definition.

Definition (12) TLet (g, h, o) be a SLA. If the connected Lie
group of linear transformations of g generated by aég(g) is compact

then (g, h, o) is called an orthogonal symmetric Lie algebra (OSLA).
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Proposition (4) (Kobayashi and Nomizu II, p. 247-250).

Let (_g, h, a) be an OSLA with decomposition g=h+m Let B bethe
Killing form of g. Then

(A) 1If h N centre of g = O then B is negative definite on h.

(B) If g is simple then
(1) ad(h) is irreducible on m.

(2) B is (negative or positive) definite on m.

Definition (13) An OSIA (g, h, o) with g semi-simple is of the
compact (resp. non compact) type according as the Killing form B

of g is negative (resp. positive) definite on m.

Let (g, h, o) be an OSLA and suppose (G, H, o) is the
symmetric space associated with it. Then (G, H, o) is of the
compact (non compact) type according to (g, h, o). A riemannian

symmetric space M = G/H with a connected semi-simple group of

isometries is of the same type as the symmetric space (G, H, a).

Theorem (7) (Helgason p. 205) Let (g, h, o) be an OSLA

with an associated symmetric space (G, H, o) with H connected and
closed, Let g be an arbitrary G-invariant riemannian structure on
G/H. If (G, H, o) is of the compact (resp. non compact) type then

G/H has sectional curvature everywhere =0 (resp. <O0).
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2.7 Rank of a symmetric space and two-point homogeneous spaces

Definition (14) Tet M be a riemannian manifold and S a connected
submanifold of M. S is said to be geodesic at p € M, if each
M-geodesic which is tangent to S at p is contained in S. S is

totally geodesic if it is geodesic at each of its points.

Definition (15) The rank of a riemannian symmetric space M is the

maximal dimension of a flat totally geodesic submanifold of M.

Theorem (8) (Helgason p.210) Let M be a riemannian

symmetric space of the compact or non-compact type of rank £ .
Let A, A' be two flat totally geodesic submanifolds of M of

dimension £ .

(1) Tet q e A, q' € A'. Then there exists an element x € G

such that x.A = A' and x.q = q?.

(2) Let X e Tq(M). Then there exists k € G such that

keg = q and dk(X) e Tq(A).
(3) A and A' are closed topological subspaces of M,

There is another equivalent definition of rank which i§
algebraic., For this we need to define a Cartan subalgebra h of
a semi-simple Lie algebra g; h is a maximal abelian subalgebra
of g such that for each H € h,ad(H) is semi-simple, i.e. each of

its invariant subspaces has a complementary invariant subspace.
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It is known that every semi-simple Lie algebra has a Cartan
subalgebra and that/ﬁf‘and 22 are two Cartan subalgebras of g; then
there is an automorphism ¢ of g such that ch, = 22. In
particular all Cartan subalgebras of a semi-simple Lie algebra

have the same dimension.

Definition (16) Tet M = G/H be a riemannian symmetric space

with cannonical decomposition g =h + m of its OSLA. Since m
is semi-simple (the Killing form being non-degenerate on m) it
has a Cartan subalgebra of dimension £, say. Then £ is the

rank of M.

Definition (17) A riemannian manifold is two-point homogeneous

if for any two point pairs (p;, p.), (a;, q2) € M satisfying
a(p,, p2) = d(ql, qz)h_ﬁhere is an isometry g of M such that

gp; =q;- 1= 1,2,

Theorem (9) Let M be a riemannian symmetric space of rank

one. Then M is two-point homogeneous.

Proof Write M = G/H where H is compact. The symmetric space
(G, H, o) is then either euclidean, in which case M = R or st or
else is of the compact or non-compact type. We thus invoke

theorem (8), with £ = 1 and the conclusion immediately follows. q.e.d.

Two-point homogeneous spaces have been classified completely
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by Wang [2] in the compact case and Tits in the non-compact case.
The results show that the two-point homogeneous spaces are the
euclidean spaces the circle St and the symmetric spaces of rank one

of the compact and non-compact type.
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CHAPTER IIT
JACOBI VECTOR FIELDS

3.1 Variations

Let M be an n-dimensional riemannian manifold and 7y : I - M
an arbitrary segment of a regular curve in M with end points
p=7(t) and g = y(t,). TLet G denote the subset of the plane R®

consisting of all points (t,e) for which

t(e) < & < t(c)
€, < € < € ’ €5 > 0,

where t,(€), t,(e) are ¢” functions defined for |e| < €, such

that:

i
o

t(e) <t(e), £,(0) =1, t,(0) =1,

Definition (1) The surface

¢ : G- M

is called a variation of 7y if the curve ¢,(t) = ¢(t,0) = 7(t).

Every variation ¢ defines on M two (not necessarily regular)

bounding curves:
0,(c) = o(ty(c), ) amd 6 (e) = o(t,(e), ¢,

passing through the points p and q respectively.
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If these curves are degenerate, i.e. ¢p(e) = D, ¢q(€) =q for all
|e| < €5, then the surface ¢ defines a variation with fixed end

points.

There are two vector fields on M defined by the variation ¢:

%%’ (t,e) and g; (t,€) for (t,e) € G.

In particular at each point of y(t) we have the vector fields:

d0

~t 7(t), the tangent vector field to 7(t),

(t;O)

and
-g-g (t,0) = X(t), called the vector field associated with

the variation ¢ .

At the end points p and g we have:

0,(0) = £,(0) 7(5,) + X(t,)

$,(0) £,(0) 7(t5) + X(t;) .

Thus if ¢ is a variation with fixed end points,

X(t,) = -£,(0) »(t,)

X(t,) = -t,(0) 7(t,)-

In particular if G € R? is a rectangle t,(e) =t,, t_(e) =t
1 1 2 2

for all |e| < €, and ¢ an arbitrary variation with fixed points:
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3.2 Jacobi Variations

We recall that an affinely connected manifold is complete if
geodesics are defined for the whole range of the affine parameter or
equivalently if the exponential mappings exp  are globally defined

on each tangent space.

In what follows we assume that M is a complete riemannian
manifold. Let 7y : IR > M be an arbitrary non-degenerate
maximal geodesic in M,

The variation

¢: RXI->M I = (-6, €¢) for some €5 >0
of the geodesic 7y is called a Jacobi variation if for each € € I
the curve

¢€(t) = o(t;€); te R is a geodesic and

0, (t) 7(t).

For each fixed to € IR the Jacobi variation ¢ defines a smooth curve

ale) = o, (e) = ¢(to; e); € eI,

and a vector field
Ale) = T (tg, €) ceel

on the curve a(e). Since

A(e) = ée(to) e el
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the vector A(e) uniquely determines the geodesic ¢€(t) for
arbitrary € ¢ I. Hence a Jacobi variation is uniquely determined
by the curve a(e) and the field A(e) along it. These are related

to 7(t) at t, by:

a(0) = r(t), A(0) = 7(t;) . (1)

These conditions are not only necessary but also sufficient for

the curve a(e) and the field A(e) to determine a Jacobi variation ¢
of the geodesic y(t). That is for an arbitrary smooth curve a(<)
in M and an arbitrary vector field A(e) on a(e) which are related

to 7(t) by (1), there exists a Jacobi variation ¢ of ¥ such that

. o0
afe) = o(t,, €) and Ae) = 5t (ty, €).
The variation is given by:
¢(t, € = t the maximal geodesic through
( ) ) ')'a(e)’A(e)( ); g g

the point a(e) with initial tangent vector A(e). Thus for each ¢
the variation may be regarded as the image under expa(e) of the

ray t = tA(e) in Ta(e)(M) into M, 1i.e.

o(5,6) = expy)(t ACe)) . (2)

Definition (2) A vector field X(t) along a geodesic y(t) is a

Jacobl field if there exists a Jacobi variation ¢ of ¥y such that

X(t) = %E (t,0) for every t € R, i.e. X(t) is associated witha
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It follows from the above discussion that:

Proposition (1) An arbitrary Jacobi field X(t) along a geodesic

y(t) is uniquely determined by giving a curve ®(€) and a vector

field A(e) along it satisfying (1).

Consequently for any two vectors A,B e T )(M) there
o}

7 (t
exists on the geodesic y(t) a Jacobi field X(t) such that

X(t,) = 4, %% (t,) = B (3)

\%
where T denotes covariant differentiation along 7 .

To construct this field it is sufficient to construct a curve

a(e) such that
a(0) = r(t)), af0) = A
and to construct on this curve a vector field A(e) such that
. VA '
A0) = 7(t), (o) = B,

and then obtain the Jacobi wvariation (2).

We then see that,

Xey) = 5 (e) | = &0) = a
t=tg
and
vX v | o0 VA
= (to) -——-[-—-—(te) ] = — (0) = B
dt ‘° dt | de ‘7’ e=0 1 tet dt
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Theorem Sl} A vector field X along 7(t) is a Jacobi field

iff

XL ox(t) + R oy (X(t), () #(t) = o (1)

at dt

Proof Let ¢(t,e) be the Jacobi variation with which the field

X(t) is associated. On the surface ¢(t,e) we have the operators

g% and g% of covariant differentiation w.r.t. the parameters t

and € respectively. The vanishing of the torsion tensor implies

that the vector fields %{ and %g satisfy:

v ¢ Vv 9¢ %
at a ( ’€ ) = a at (t ) ( )

. d 9o
since [ SE, St J $ = 0.

Also the curvature tensor field satisfies

VV V V 30 a¢> (%%)

""""" Rot,e) \ 3¢’ 5t

Q0
which applied to the field o (t,e) gives

Vv ¥ 06 vV VvV 9¢
SE'SESE(t’ €) T3 e 5t (tye)

Ro(t,e) (g (t, e), (t, ) > (t,€).

Because of (*) this is equivalent to:
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v
535 (59 -3 3 e (b9 =

Ro(s, e) (t €), at  (t,¢) -%% (t,e) )

Setting € = 0 and since S% (t,0) = 7(t) and -%g (£,0) = X(t),

we get

- = X(t) = ) x(t), 7(£)) 7(%),

R
7 (t

On the other hand let Al(t), ceny An(t) be a linear frame
along 7(t) and let Xi(t) denote the componénts of X(t) w.r.t. this
frame. Equation (h)-would thus be equivalent to a system of n
ordinary second order differential equations for the unknown
functions X*(t), ..., X (t). By appealing to the theorem on the
existence and uniqueness of solutions to such a system, every
solution of (4) and in particular every Jacobi field is uniquely
%%E. But

cbviously these values are uniquely determined by conditions (5),

determined by the values at t = t5 of Xl(t) and

which by themselves determine a unique Jacobi field. g.e.d.

Corollary The space €(y) of all Jacobi fields along ¥ is 2n-
dimensional - this being the space of solution of (4) which is

linear.




Of particular interest are the Jacobi fields in e(y) that

vanish at a point 7(to). The space of such fields we deﬁote by

e (1)
€t0(7) = {Xee()[X(t,) = o}.

Since (3) uniquely determines X(t) € e(y) it follows that for a

non-zero X(t) e €, (7), %% (t,) # O. Thus the mapping
o .

VX A . . .
x(t) - I (to) is an isomorphism of €,

OF7) onto Ty(to)gM?.

In particular dim (et (r)) = n.
o

By (2) a field X(t) € € (y) 1is associated with a variation
_ 0.

¢(t,e) having a degenerate bounding curve ofc) = 7(t0) for

all e , i.e.
o(6,6) = exmy )t A(E)) 5)

In this case the variation factors through Ty(t )(M),
o/
¢ = e oS '
Xp?(to) (5_)

where S is a rectangle in T (M). Hence X ¢ ¢, (y) would arise
7<to)_ tO_

as the image under (expy(t ))* of a vector field Y(t) along the
o .

ray p in T7(to)(M) which goes into 7 (t) under expy(to). If in

(5) we take the field A(e) to be linear in € ,
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Ale) = F(t) + e (b)),

then the rectangle S in (5!) would be

S(t,e) = t(F(ty) + e xx (8)) , (6)

and o(t,e) = expy(to)c)S(t,e) (61)
so that

X(t) = (e>c107(t ) )y Y(t) (7)

Definition (3) A linear homogeneous vector field along a ray p

in Tm(M) is a curve Y above p in T(Tm(M)) - the tangent bundle to
Tm(M) - such that Y(0) = 0 and Y"(0) = 0 (differentiation is possible

here since Tm(M) is a linear space).

For every Z, € T, (Ty(M)) there is a unique linear homogeneous
vector field Y(t) such that Y'(0) = Z,. From the above construction

of S we have:

If X(t) is a Jacobi field along 7(t) = exp o0 p which~vanishes

at m, and Y is the linear homogeneous vector field along p such

that
70 = (o), (0) then
x(t) = (exp )y Y(t) . (1)
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3.3 Some Properties of Jacobi Fields

Let 7(t) be an arbitrary geodesic in a riemannian manifold
M; then there are two Jacobi fields admitted in a natural way by
y(t): one is given by 7(t) and the other is t¥(t). This latter
we denote by ;\(t). Tt is trivial to verify that-f'(t) and ?(t)

satisfy Jacobi's equation.

Proposition (2) Every Jacobi field X along a geodesic 7 in a

riemannian manifold can be uniquely decomposed in the following form:
. A
X(t) = ay(t) + by(t) + ¥(t)

where a, b are real numbers and Y(t) is a Jacobi field along y(t)

everywhere orhtogonal to y(t).

Proof Let g be the riemannian metric on M and assume that

y(t) is parameterized by its arc length. Set

a = g(r(0), x(0))
b = g(7(0), T (0))
Y = X-ay -bvy .

. A
Since X, 7, 7 satisfy the Jacobl equations so does Y.
From the Jacobi equations for Y we get:

2

. —Y,y'>+g<R(Y, 3%, 3) = 0
at2
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The 2nd term vanishes by the skew-symmetry of R(Y, 7), hence the

Vv . :
first term also vanishes. From '557 = 0 and Vg = 0 we get
d4® - ) v o vY | V2 .
— g(¥,7) = —glt,7) = —ag(—,7) = g(—17%,7) =
at® at? at  dt at2
Thus
g(¥, ) = At + B, A,B are some constants.

Since %(0) = 0, we have

B = g(¥(0), 7(0)) = g(x(0), 7(0)) - ag(7(0), 7(0))
= a-a = 0.
Now %—% =%3t -b % ?(t) = %‘% - b y(t) as y(t) is a geodesic.
Hence
d . vX . . .
b= e Nl = o (B0, 50)) - %G, 760))
= b-b = 0

Thus g(Y, 7) = O and Y is orthogonal to 7 everywhere.

To prove uniqueness let

X(t) = ay +b)+2
be another decomposition of X such that Z is orthogonal to 7 .
For each t we have

X(t) = (a+bt) y(t) + ¥(t) = (a) +bt) 7(t) + 2(t).
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Since both Y(t) and Z(t) are orthogonal to y(t) we have
a+bt = a, +bt, Y(t) = z(t)

b

a b and Y = Z. g.e.d.

and hence a

1’ 1?

Corollary (1) If X(t) is orthogonal to 7¥(t) at two points then

it is orthogonal to it at all points of y .

Proof Suppose X(t) orthogonal to y(t) at t = s, and t = r,
r # s. Write

X(t) = a7 (t) + 7 (t) + Y(¢)
with a,b and Y as above. Then at t = r,
0 = g(x(r), 7(r)) = (a+bor)glr(r), 7(r)) = a+br

similarly a + bs = O and since r # s we must have a = b = 0. g.e.d.

Corollary (2) If X(t) € e,(7) 1is orthogonal to 7(t) at any one

point y(s), s#0, then X(t) is orthogonal to 7(t) at all points of

7(t).

Proof For such a field the scalar a occurring in the decomposition
is necessarily zero. Also orthogonality of X(t) to y(t) at t = s

implies that
a+bs = 0, hence a = b = 0. g.e.d.

Since the behaviour of the y-component is known it is

sufficient to study those Jacobl fields which are orthogonal to ¥ .
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Proposition (3) TFor X,Y € e(y),

vY VX +
g<x’d"E>" g(a—E, Y>= constant (8)
Proof
a vY vX VY\ va3y
Le(nZ) e o (ETY) e(n
dt at / at dt at>

VX VY \ oy .
g ( at’ at > g(X, R(Y, )7 ) Dby Jacobi

equations for Y. Similarly

da (X
fie(Bor)

and dnce

VX VY ey o
(T ) - st R(x, 5)7)

g(X, R(Y,7)7) g(¥, R(X, 7)7),  we get

d vY vX o) L
f(e(2F)-e(F1)) -

and hence (8). d.e.d.

Corollary (1) For X, Y ¢ € (7)
O .

s, ) = (XX y (9)
(n%) - e(Zv)

3.t Conjugate Points

Definition (4) TLet y(t) be a geodesic in M. Two points 7(ty) and

7(tl) are said to be conjugate to each other along y if there
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exists a non-zero Jacobi field X(t) which vanishes at both points,

i.e. 1if the subspace
’ -
€ {r) = e () ne_ () Celr)
tos by 1 ) tl_ ]
is not empty.

Definition (5) The index A(y; t_,t,) of the pair 7(t,) ana ()

as conjugate points is the dimension of the subspace Et .t (7).
07 ™y
We now give aninterpretation of conjugate points directly in terms

of the map expy @ Tm(M) - M.

Definition (6) A point u e Tm(M) is called a conjugate point of

m in Tm(M) if exp is singular at u (i.e. if the Jacobian matrix

of exp, is singular at u).

Proposition () If u e Tm(M) is a conjugate point of m in Tm(M),
then n = exp u € M is a conjugate point of m along the geodesic
y(t) = expmtu, o<t =1, Conversely every conjugate point of m

can be thus obtained.

Proof If X is conjugate to m in Tm(M) then (eme)* is singular

at u. Let Ye T (T (M)), Y # 0 be a vector such that (exp ) ¥=0.
u''m . m’ 3,

Let Y be the associated constant vector field on Tm(M). [Y is

defined as follows:

Ve TmM - Y-v = T]V(Y), where

I Tm(M) - Tv(Tm(M)) is the natural

v

identification of the two tangent spaces. If e ceey € is a

l)
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basis of Tm(M) and w,, ..., W its dual basis and if Y = Za e,
then ¥ = = ai( 3%7 )1.

Then the field (expm)*i:? is a non-trivial Jacobi field along 7(t)
which vanishes at m(t = 0) and n = exp U (t = 1). Conversely lét

Z be a non-trivial Jacobi field along y(t) = expmtu such that

Z(0) = z(1) = 0. DLet A =V Ze Tm(M) and let A be the associated

constant field on Tm(M). Let

z(t) = (expm)*tzﬁ, then
Vuz = Vu[t(e@m)*ﬂ]
= (expm)* A+ £ [(expm)*.i] . At t =0,
VhZ(O) = (expm)* A = A = VLZ, since at O
(expm)* A, = A. Thus by the uniqueness of Jacobi
fields Z = Z; hence
zZ(1) = (expm)* Eu = 0. Since Z is non trivial

A # 0 and thus exp is singular at u.

Proposition (L4) establishes the equivalence of the two
definitions of conjugate points. By virtue of it we have an
equivalent definition for the index of a conjugate point in the

tangent space.

Definition (7) The index of u € Tm(M) as conjugate to m in Tm(M)
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is equal to the dimension of the space:

6, = ker(expm)* at u.

Going back to equation (7') we see that if u € Tm(M), where
m = y(0) then every Z, € Tu(Tm(M)) determines a Jacobi field

X(t) € eo(yu(t)). The linear mapping
J:2 - X(t) is easily seen to be bijective and

maps Gu onto eo,l(yu(t)).
Define 7' (u) = {?—;—t{ (0), X e eo,l(yu(t)) } (10)

i _ _
and let T (u) be the space generated by T'(u) and u. TLet T2(u)
[resp. T2(u)] denote the orthogonal compliment of T!(u) (resp.T!(u)).

Then we have (Cf Allamigeon [1])
72 (u) - {x(0), X e € (7, (t)) and g(x, 7) = o} ~ (11)
and T™(u) = {x(0), x e e (7, (£))]} (12)
To demonstrate (12) let X € el(7u(t)) and Y € eo,l(yu(t)) then
g <f%% (0), x(0) ) - <T%% (0), ¥(0) ) =0

put  dim({X(0), X e €, (r, (t))}) = dim(e (7, (£))) - dim(e, , (v (t)))
= n - dim(T'(u) = aim(T2(u)).

Similarly for (11).
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The value of the concept of conjugate points is conditioned

by the following assertion. (Cf Hicks p. 147).

Proposition {(5) If two points 7(t0) and 7(tl) are not

conjugate along 7(t), then for arbitrary vectors
AeT M BeT M there exists a unique
y(5,) M y(6,) M) E
Jacobi field X(t) € e(y) such that

X(to) = A and X(t,) = B.

Tt is well known (Cf for instance Milnor [1], p. 82) that if
7(t) is a geodesic in M then there is a neighbourhood (-8, &) of O
such that if t € (=5, &) then y(t) is not conjugate to 7(0) along 7.
Moreover the set of points conjugate to 7(0) along the eﬁtire geodesic

v has no cluster points.

Now let u € Tm(M) and let y(t) = exp tu, O St <« bea half
geodesic issuing from m. Since exp, is non-singular at the origin
of Tm(M), there is a positive number, say a, such that there is no
conjugate point of m on 7(t), for 0 <t <a., If there are

conjugate points of m on y(t), let
§ = {r>0, 7(r) is a conjugate point of m along 7(t),

0<t<r})., Let s =inf S. Since exp 1is singular
at ru, it is singular at su, i.e. 7(s) is a conjugate point of m.

We call y(s) the first conjugate point of m along y and denote by
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LS(7) the distance of y(s) fromm = y(0). The totality of all such
points y(s) along all hélf geodesics issuing from m is called the
first coﬁjugate locus or the residual locus Rm of m; its complement
CRm is a maximal normal neighbourhood of m. If m* € CRm then there
exists only one minimal geodesic joining m tc m?!. | The significance

of the residual locus stems from the fact that:

Proposition (6) A geodesic y issuing from m does not minimize

distance from m beyond the first point conjugate to m.

A proof of this proposition (Cf Ambrose [1]) depends on
considerations of the first and second variations of arc length.
Let ¢ : [a,b] - M be any piecewise smooth curve in M then the arc

length of ¢ is
b

d
L(c) = f||a§||dt.
' a

We define the distance d on M XM » R U {+w} by

d(a,b) = inf L(c), where I(a,b) is the set of all
cel'(a,b)

piecewise C” curves fromm = y(a) to n = 7(b). A geodesic segment

y(t) a <t <b is minimal if

L(y) = a(r(a), 7(v)).

Closely related to the concept of conjugate point is that of
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a cut point. Let 7(t), 0 £t <o be a half geodesic issuing from
m = 7(0). Let A be the set of positive numbers s such that the
segment of y(t) from m to y(s) is minimal, If s € A and t < s then
then t € A; and if r is a positive number such that every positive
number s < r lies in A then r € A, Thus A is either of the form

A = (O, w) and we say that there is no cut point of m along 7y ; or
else A = (0,r] for some r > 0 and we call y(r) the cut point of m
along 7 . The totallity of cut points to m along all half
geodesics iésuing from m is called the cut locus C(m) of m. It

1s immediate from the definition that the first conjugate point along
a geodesic always occurs hefore or simultaneously with the cut point.
There are instances however where the first conjugate locus coincides
with the cut locus as in the case of simply connected riemannian

symmetric spaces, (Crittenden [1]).

If m' = y(r) is the cut point of m = 7(0) along y(t) then
either m' is the first point conjugate to m along 7 or there exist
at least two minimizing geodesics joining m to m?. (Kobayashi

and Nomizu II p. 96).
Corresponding to the cut point m' of m along 7(t) we consider

the vector X € Tm(M) such that

- 1 — .
y(t) = exp tX and m' = exp X ;

we call X the cut point of m in Tm(M) corresponding to m'.
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5.5 Jacobi fields and Curvature

By considering the Jacobi equations it is natural to expect
a close relation between the curvature of M and the distribution of
conjugate points on M, if there exists any. In the case of

manifolds with non-positive sectional curvature we have:

Proposition (7) Let M be a complete riemannian manifold with non

positive sectional curvature and p any point in M, Then M contains

no points conjugate to p.

Proof Let ¥y be a geodesic issulng from p and X a Jacobi field along

7, then
ve
X+ RX, y)y = O0; so that
dt
v2 .
(5% x) = e )3, 0 > o,
Therefore
d VX v3X VX VX O\ o
E%g<’ci'£’x>‘ °<dt’ > <dt’?1"€>’°'

Thus the function g <<7§, X > is monotone increasing, and strictly

SO if"%% # 0. If X vanishes both at p and q = 7(r), r >0, say,

then the function vX X also vanishes at p and q and hence
g dt,

must vanish identically throughout the interval [0,r]. This

implies that X(0) = Zﬁ 0 so that X is identically zero. gq.e.d.
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Theorem (2) (Cartan-Hadamard) Let M be a complete riemannian

manifold with non-positive sectional curvature and let p € M. Then
the pair (TO(M), expp) is a covering manifold of M. In particular

if M is simply connected then M is diffeomorphic to Hin.

Proof It follows from proposition (7) that M has no conjugate points
and hence for each p € M the mapping exp, TP(M) - M is regular.
Let us furiish Tp(M) with the riemannian structure induced from M

via expp. With this structure TP(M) is complete - the geodesics
through the origin in TP(M) being straight lines. j}he theorem then

follows from the following lemma due to Ambrose ([2], p. 360).

Lemma Let V and W be two riemannian manifolds, V complete and ¢
a differentiable mapping of V onto W. If d¢, is an isometry for

each v € V. Then (V,%) is a covering space of W. q.e.d.

Manifolds with strictly positive curvature form a subject of
considerable interest. By the study of conjugate points and the
cut locus on them some insight is gained into their topology as
exemplified in thg work of Myers, Klingenberg, Rauch and Berger.
Of the earliest results is the following theorem originally due to

Bonnet who proved it for surfaces:

Theorem (3) (Bonnet) TLet M be a riemannian manifold and K(Z)

the sectional curvature of a plain section ¥ tangent to a geodesic

y(t) in M. If
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0<k. < K(Z) < k

(¢} 1

for all such planes X , where k, and k, are positive constants,
then the distance d along y(t) of any two consecutive conjugate
points satisfies:

o Jk

5 £ 4 = n/-Jko .

Bonnet theorem follows immediately from the comparison
theorem of Rauch (Rauch [1]) which relates the length of Jacobi

fields on manifolds to thelr respective sectional curvatures.

Theorem (&) (Rauch) TLet M and N be n-dimensional riemannian

manifolds with metrics g and h respectively. Let o(t) (resp. (%)),
a <t <b be a geodesic in M (resp. N) and X (resp. Y) a non-zero
Jacobi field along o (resp. T) and orthogonal to it, which vanishes

at t = a. Assume further:
vX vY
W NI = 1E @I,

(2) o(a) (resp. T(a)) has no conjugate point on o{t) (resp. T(t))

forast<st,

(3) for each t € [a,b] if Z is a plane in the tangent space at

o(t) and n a plane in the tangent space at T(t), then

K(Z) = K(n),

where KM(Z) and KN(n) are the sectional curvatures for I in M and

® in N resp.
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Then we have
g(X(t), X(t)) < n(¥(s), Y(t)) for every t € [a,b] .

Theorem (3) then follows from theorem (4) if we take M to be
the sphere of radius kl and N to be M of theorem (5), and if we

then take N to be the sphere of radius ko.

If we further assume that M is a connected complete riemannian
manifold then Bonnet theorem immediately implies that M is a compact

manifold whose diameter is at most n/~fko. (Myers [11).

3.6 Jacobi fields and globally harmonic manifolds

The technique of Jaccobi fields was successfully used by
Allamigeon ([1], [2]) in the study of harmonic manifolds. This
enabled him to obtain in a harmonic manifold M certain fibrations
of geodesic spheres in Tm(M) by spheres Sl and then show that X

must be equal to 1, 3 or 7, by virtue of the following:

Theorem  If the sphere s" is differentiably fibred by
compact connected fibres F then F is homeomorphis to 8*, 8% or §7,
the proof of which rests on Adam!s work on maps with Hopf invariant

onee

The results of Allamigeon depend upon a global definition of
harmonic manifolds (not necessarily riemannian) which we give below.

Let M ve an affinely connected manifold on which is defined a
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volume element T - an n-form on M invariant under parallelism.
Let p € M and V(p) a simple convex neighbourhood of p, V(p) = expp(Vo)
where Vo is some neighbourhood of the zero vector in M. Let

_ - th
q = exppu, u e Vo' The n

exterior power of the dual mep expp*
pulls the volume element Tq to an n-form at p. Moreover this
n~-form at p must be a scalar multiple of the volume element at p.

Thus we have defined on Vo a real valued function RP by
exp ¥(7 = T XR (u . 1
@ *(1) = T xR (W) (13)

However, there is another real-valued function defined on VO,

namely

L :V - 1R
(o]
u - 3 |ul|®.

Suppose that Rp factors by L through the reals, i.e. the following

diagram commutes:

then the manifold is said to be locally harmonic at p.

Suppose now that M is complete, then expp is defined on the

whole of TP(M) and is surjective. If the diagram
vV, —R R

AN
L p
N
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commutes, then M is globally harmonic at p.

The relation between R and Ruse's p is given by

p(p,a) = R (u) (14)
where q = e}mpu.

Now let M be a riemannian manifold and 7 a geodesic issuing from
m € M with initial tangent vector u. Let g8 be the oriented segment
such that for every s € [0,1] gt(s) = y(st).

Let Xi(t) 1<i<n bvea basis for eo(y(t)). Thus

xi(t) = (expm)* Yi(t) where

Y, () = tvxl (0)

where as usual we identify Tm(M) with To(Tm(M)). If 7 is the element
of volume on M then
VX

, 1
() () © = (0), (erm )y b3(0) )

Ty(t)(Xl(t)’ . "’Xn(t))

vX

t ((exp )* 1 (t))( (o), , — (0))

dt

VX vX

" R(w) T (— (0),...,—2(0) )
.oat dt -

by virtue of (13), vx VX

= % olg) T (— (0),.., =2 (0))
. - dt dt

(15)
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Theorem (8) (Allamigeon) Let M be a complete riemannian mani-

fold globally harmonic at m. . Then there exists a real number I = O
(possibly infinite) and an integer A = O such that the first point
conjugate to m along any half geodesic issuing from m is at the same

distance L and have the same index A .

Proof TLet Xi(t) and g(t) be as in (15).
Since M is harmonic at m then for any geodesic segment y(t) issuing
from m we have Ruse's invariant satisfying

p(m, 7(t)) = olg) = £(L(g,))

where f is an arbitrary function. We may assume that the geodesic

is parameterized by its arc length so that

(g, ) = £(¢)
Thus (15) becomes:-
| n le vxn
T () K (8, X (8)) = thE(t)T o5 ( :;:<0),---, :;: (0) )

(16)

The left hand side is zero iff t = 0 or y(t) is conjugate to 7(0).
Consequently, LS(7) is equal to the smallest positive zero of the
function f(t) or to +o if f(t) has no zeros. In the latter case
the manifold is free from conjugate points and the result trivially
follows. So let us consider the first case and we take L to be the

smallest positive zero of f.




Define
ii{t) = L Xigt? T {M)

where Tt L denotes parallel transport along 7|[t,L].
Ly

the {Xi} so that (Xl,...,Xx) form a basis for eO,L(y), then

VX,
ii(t) = (t-L)— (@) +0o(t -1) (1< 1
at - . ) .
ii(t) = Xi(L) + 0(1) (A<i
Hence
Ty(t)(xl(t?,...,xn(t)) = L) (il(t),...,ingt))
VX vxk
(t L) X T (L) ( (L)) *v at (L)’X)\+1(L)""
- +0(E - 1)M.
This implies that
£(t) = A x (¢ -L)*+0((t - 1)V,
where - _ a
VX, VX,
(L) ( (L);.- o _(L), XMI(L),---,XH_(L))
A =
VX, VX

" x T . (0) ( (0),.. Ef _(o))

N

T6.

Choose

)

n) .

X_(1))
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In order that X does not depend on y it is sufficient to

show that A is finite and # 0. But

Vxn v Xi
(a) 7(0) ( (0), :;; {O} # O because the 7;; SO? are

linearly independent, and X;(0) =

VX, VX,
/ / \ .
(®) = (~— (L)yees, —= (L), X,,,(L),.. ;X (L)) #0 (%)
y (L) gt at . A+l n s
because
(1) Xk+1(L)’°°"Xn(L) are non-zero independent vectors, being

part of the transported basis of Ty(t)(M)'

VX VX
1 A . .
(2) — (L),..., —= (L) are also linearly independent fr
dt dt
Aovx, A
if Z ¢, — (L) = 0, letW = Z C, X, be a Jacobi field
J dt .
i=1 =
. . VW . .
which vanishes at L. Also =7 (L) = 0 which would imply that

= 0 by the uniqueness theorem for Jacobi fields, Thus Ci =0

VX,
and —= (L) 1 <4i <\ are independent.
dt

(3) for 1<i<2A and A< j<n

VX,

g( — (1), X, (L)) = 0 (¥*) .
dt .

From (8)
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VX, VX.
g( ‘_}; X,) - g(xi’ — ) = const
coat 9 . dt

along 7(t). Since X, and Xj both vanish at y(t) and X, venishes

at y(L) we get (*¥).

VX,
Therefore the set —= (L), Xj(L), 1
dt . .

A

i €A, A<j<n form

a basis for Ty(L)(M) and (¥) follows, thus completing proof of the

theorem. d.c.d.

Coroliary (1) Under the same hypothesis of theorem (8) geodesics

issuing from m are either:
(1) all without conjugate points to m, or

(2) =all simply closed and with the same length 2L.

Proof fl} If f has no zeros then L = Ls(y) = +ow and expm“_is
everywﬁere of maximal rank. -

(2) So let y(t) be a geodesic segment of length I with
extremities m = y(0), m' = y(L). Since m and m' are conjugate,
there exists another geodesic 7' (t) with the samé length and
extremities. Assume that theirlﬁangent vectors coincide at m! so
that y' prolongs y . Letm = y(L/2) and m, = y(3L/2); theﬁ
the geédesic arc m. m' m, is of length L and hence realizes a

1

minimum. Also the distance of m, to m, along the broken arc

m

L mom, being equal to L implies that mom m, is an arc of a geodesic
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and so the tangent vectors to y and 7' also coincide at m. This

proves the assertion. g.e.d.

Corollary (2) Under the same hypothesis M is either

(a) diffeomorphic to R", or

(b) compact.
Proof (a) is a consequence of theorem (2) (Cartan-Hadamard),
since exp Tm(M) - M is regular.

(b) any point m! could be joined to m by a geodesic arc

of length <= L, hence by Myer's result M is compact. dec.d.

Corollary (3) The integral cohomology ring of M is that of a

symmetric space of rank one.

This follows from Bott!'s results on manifolds all of whose

geodesics are closed, Bott [1].

This restricts considerably the class of riemannian manifolds
that admit harmonic metrics. It does not appear, however,
sufficient to settle the conjecture (Lichnerowicz [2]) that such
manifolds are necessarily locally symmetric. For manifolds of
dimension up to 4 it is known (RWW [1], p. 142) that every locally
harmonic manifold with positive definite metric is locally
symmetric. For higher dimensions Avez [1] proved that every

simply connected globally harmonic riemannian manifold is locally
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symmetric (hence globally symmetric) under the additional
assumption of compactness.

So let M be a compact simply connected manifold of dimension n
equipped with a positive definite riemannian metric g. Denote by &
the laplacian (of g) on C (M) [for the validity of Avez's theorem
we need only consider C2 functions on M ] . We define for C (M) a

global scalar product by

<f,e> = [ ) g6 7,

M

where TX is the element of volume of M.

Theorem (9) (Avez [1]) Tet M be a compact simply connected

globally harmonic riemannian manifold; then M is locally symmetric.

Proof Since M is compact it follows from corolla;y (1) of
theorem (8) (Allamigeon) that all geodesics issuing from a point

Xy € M are closed and all have the same length 2L, and that all
geodesics of arc length less than L are free from conjugate points.

Hence we can define the symmetry sx WeTr.To X globally over M.

o]

In fact if x belongs to the residual locus of X, then sx x = x and
0

if x does not belong to the residual locus of x, then S, X is the
0

symmetric point of x w.r.t. x, on the geodesic (x,x).

Let f be a characteristic function of A , i.e.
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(af)(x) = Af(x) (17)

for some scalar )\ and all x € M. Let N(x,y) be the slementary

solution of A, so that
AX N(X:y) = SX(Y) ’
where in the above equation y is regarded as a (fixed) pole, B is

the Dirac's delta function and Ax is the Laplacian when y is kept

fixed.

Now since M is compact the operator A is self-adjoint w.r.t.

the scalar product <, > (Cf de Rham [1], p. 126). So we have

< N(XJ.V); (af)(x) > <AX N(X)Y)) f(x) >

[RECROEORS
) _

[ o, 260 =,

M

£(y). (18)

(17) and (18) then imply that

A < N(x,y), £(x) > = f(y) . (19)

In (18) put x = syz and note that 7T 1is invariant under the

symmetries (Lichnerowicz [2]) i.e. ., = T, and note also
Sy :

that N(x,y) depends only on the distance of x from y so,

N(s 2 ¥) = Wz .

-
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Hence,
2) = r [Nz, v) 2(s2) T,
M y
= X[N(z,y) f(syz) T
. .
that is
A < N(x,y), f(syx) > = f(y). (20)

Let h(y) be another characteristic function of A )
(an)(y) = un(y) ;
if w# X then <f,h> = 0.

Then we deduce from (20) that

< f(y), h(y) > =o0.

A< N(X:Y); f(syx) > hiy) >

But in the neighbourhood of y, N(x,y) =__O_(s2

1), where s is the
distance from x to y. The integral < N(x,y), f(syx) > is therefore

absolutely convergent in y on M and Fubini'’s theorem gives:
< W(xy),£(sx) > h(y) > = < Neoy)Lhly) >, £(sx) >
Hence,
<<.N(x,y), h(y) >, f(syx) > = 0.

Noticing that N(x,y) = N(y,x) and applying relation (19) to h(y)
we get

u < N(x,y), h(y) > = h(x),
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and thus

< h(x), f(syx) > = 0.

The function f(syx) is therefore orthogonal to the set E of
eigenfunctions corresponding to eigenvalues distinct from A.

Because the metric is elliptic the set
E® {f, Af = Af}
is dense in the space of functions defined over M. Therefore
f(syx) e {f, Af = AT}, and
AfT)(s x = Af(s x) .
(8)(s %) = Af(sx)

We now define another metric g on M obtained from the harmonic
metric g by:
g(x) = g(syx) for all X.
We denote by A the Laplacian corresponding to g. This can be
expressed as

(Af)(x) = Af(x).
We therefore deduce from (17) that for all eigenfunctions
(A - A)f = 0.

But, to every function F(x) of class €2 we can make correspond a
sequence of finite linear combinations of eigenfunctions of A which
converge uniformly to F(x), [Kolomogroff as cited by Avez [1]),

the same property being valid for the partial derivatives of order

<

~z

2.
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Hence, for every function F(x) of class CZ,

(A - A) = 0 . (21)

Let x be any point of M and let (xa) be a system of normal
coordinates at x wer.t. g. Let X be an arbitrary vector at x.

If we take

O, F)(x) = 0, Qg F)(x) = X, X
At the point x, (21) gives
é(x} X) = g(X) X)'

Since x and X are arbitrary, it follows that Z =g, i.e.

g(x) = g(syx) for every y € M, and M is therefore locally symmetric.
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CHAPTER IV

k-HARMONIC MANIFOLDS

L,1 Algebraic preliminaries

Let V be an n-dimensional vector space with a symmetric
bilinear functional G : VXV —» 1R on it. If {ei} is any basis,

then G is completely determined by the values:

= <i,i <n.
8 5 G(ei, ej) 1<i,j<n

If we change the basis with a matrix T = (t;) such that
e = Te
then the matrix G = (gij) is changed according to
tT t
TG , where T denotes transpose.

If H is a second symmetric bilinear functional and

hij = H(ei, ej)

we may consider the determinant:

n
k .n-k
det(xgij —hij) = Z(—l) A 8, (g,h).
k=0

Note that under a change of basis the ratio of any two coefficients
in this polynomial will be multiplied by (det T)2 and is thus an
invariant independent on the choice of basis. If moreover gij is

non-singular one then has
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det(2rg, . - h,.) —
8ij i3’ . }J (-1)K 20K o, (g,h) (1)
k=0

where the coefficients
are all invariants.

The equation det(kgij - hij) = 0 gives the characteristic
polynomial of hij WeTetoe gij and its roots are the eigenvalues
of hij WeT.t. gij' Apart from their order they are intrinsically
associated with H and G.

The invariants occurring in (1) are explicitly the elementary

symmetric polynomials of hij WeTraote gii and are given by:

= gid
o (g,h) = det'('hij)/deu(gij)
and in general
€11 ** 81p
: 1 hi 1 h, n
det(g, .) . . | hy ; ««. b,

ij7 1;<...< 1 Lkl 11

8a1 " &mn )

We recall that for a square matrix A the kth elementary
symmetric polynomial of the eigenvalues of A is equal to the sum of
all k-rowed principal minors of A -~ i.e. those minors whose diagonal

is part of the diagonal of A.



Now given any two symmetric bilinear functionals of V, G and H

with G non-degenerate there is a natural endomorphism
: V>V
associated with G and H and given by

a(®, Y) = H(X,Y)

(2)

for all X,Y € V. ® , thus defined, is a symmetric endomorphism

w.r.t. G. This fcllows from the symmetry of G and H:

G(@X;Y) = H({X,Y) = H(Y,X) = G(@Y,X) = G(X,9Y).

If w.r.t. a basis {ei} X and Y are given by

i i

X = X' e., Y = Y e, and © = (o)
i i j
then (2) becomes
kK i _ i Ld°
gkj ¢i XYy = hij X 1y, for all X,Y € V,
where hij = H(ei, ej), Gij = G(ei, e

Since this is true for all X and Y we must have

k .
hij = gkj ¢i or explicitly
i ik
¢ . = h A
J & kj

If we form the characteristic polymmial of @ ,

ik

i i ik ik
det (28~ - oY ) = det (X . - n .) = det -h
et ( ; J) (2g By ~ & ) (g (>\ng X

kj

n

- aesOgy - by )leet(ey) = ) (1S X g ()

k=0

(3)

)

dJ
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by (1); so that the symmetric polynomials of @ are exactly those
of H relative to G. In particular

trace (2) = o;(g,h) = glk hy

and det (@) = on(g;h) = det(hij)/det(gij).

L.2 Geometric preliminaries

Let M be a complete riemannian manifold with metric tensor g
and let p, € M. Let u be a unit tangent vector at P, and 7u(t)

the geodesic issuing from P, tangential to u,

= t < .
7,(t) exp, B, 0<t<ow
The differential of expP at tu is a linear map:
o

(exPpo)*tu Ty, (T, M0) > T, (0.

] o P,
We identify T, (T (M)) with T (M) by the usual procedure of

tu_ Po . Po

parallel transport (To,tu)-l along the curve t —» tu in T(M) (which
is euclidean) from tu to the origin, then followed by the

identification of TO(Tp (M)) with Tp (M) by the isomorphism ng
. ~0. .

o}

which sends each vector in TO(Tp (M)) into its end point in Tp (M).
o o

Let us set

£, = (exppo)*tuc)fo,to M ()
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then f is a linear map : T M) -» T (M) where = e tu.
tu P Pof ? p( ) P xppo

The riemannian structure on M defines an inner product gp
on each tangent space TP(M). Let us denote by h the pull-back of

&, to TPO(M) via £~ i.e.

h(GY) = (£}, &)(KY)

gp-(ftu*x, £, 4Y) for all X,¥ e TPO(M)-

In the manner of (2) we can define an endomorphism:

¢ ¢+ T (M) » T (M b

T 5 00 v

gy (04, XY) = h(GY) (5)
for all X,Y € TP (M). We can also form the various elementary

(e}

symmetric polynomials of ¢, which are precisely those of h relative

tu
to g, @s given by (1).
o .

In terms of local coordinates at p, we have by (3)

i ik
(07 = &by - (6)

If we have a system of normal coordinates (yl) centred at Pys then
the exponential mapping is essentially represented by the identity

transformation and h_. is then equal to (g;;) relative to y~, i.e.
J l']p

i ik
(o)) = (&™), () (7)

(e}

where as before ¥ denotes that components are w.r.t. a normal

roordinate giwretem
coordingte sSystTeo

3y m. In particular

(o4
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det(¢tu) = det(fgp)/ det(fgpo)

and we thus see that det (¢tu) is non other than the square of

Ruse's invariantp(t,u) given in Chapter I.

4.3 k-harmonic manifolds

The concept of k-harmonic manifolds was introduced by
T.J.Willmore [2] as a natural generalization of harmonic manifolds
discussed earlier. We recall that one of the definitions for a
manifold M to be harmonic at a point P, € M is that there is a
normal neighbourhood W of p, on which Ruse's invariant p factors
through the reals by the distance function h . This is equivalent

to the commutativity of the diagram

Tiw) P .w

where now we regard both p and Q as being defined on T(W), the

restriction of the tangent bundle of M to W.

We may similarly regard the elementary symmetric polynomials
of ¢_ as real valued functions defined on T(W). For each
(po,tu) e T(W) there corresponds by (5) an eﬁdomorphism of the fibre
through Po

ot W (pg) =t (pg)

The observation that:
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P o oaate Y
o= (t,u) = det(¢tu) = o,

(o,)

u

leads to the following:

Definition (1) A riemannian manifold is k-harmonic at p_ if

ck(¢tu) is a function of Q only, ck(¢tu) = f£(Q), i.e. if the

following diagram commutes:

Ko /

e

Otherwise said: ok(¢tu) is constant on geodesic spheres centred
at Po*
Note that with this definition the n-harmonic manifolds are

non other than the usual harmonic manifolds.

Definition (2) A riemannian manifold is simply k-harmonic if

qk(¢tu) is constant.

Willmore's original definition of k-harmonic manifolds
(Willmore [2]).was given in a different but equivalent way: let
Po,P be any two points in M and k& (Xa), (Xi) denote coordinate
systems in a neighbourhood of Pos P respectively. It T(po)
(resp T(p)) is the vector space of tensors at p, (resp. p) we denote
by

T(pys p) = T(py) @ T(p)

the space of bi-tensors over (py, p).
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An example of a bi-tensor is

20
Q. = —5—= = 9. .
1 dx - Ox’ 1

We can raise or lower Greek suffixes by means of (gaﬁ) and (gaB)

at Py and similarly raise or lower Roman suffixes by means of

gij and gij at p. Thus we have

= &7 o,
and Qé = gij QBj .
Consider then the pure bi-tensor:

wg = Q? Qé

and. similarly m? . Its determinant is given by

det(gmEi Q

qetgwg)

1] Q
b1 £ %)

(det(Qia))2/[<det g, ) det(gp)]

(e}

l/p2 .

The definition originally given by Willmore was in terms of
the elementary symmetric polynomials of wg . We maintain that the
two definitions are equivalent. In fact the linear transformation
a .
of T (M) » T_ (M) represented by (¢, )5 w.r.t. a coordinate
Po Po tu’p
system (xa) is the inverse of the transformation represented by wg -

and thus have reciprocal eigenvalues - as could be seen from the
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following sequence of maps:

ti gij té gaB
24

T (M) 5 T (M) - ¥ (M) - ¥ (M) - T (M),

Po i1 P Po. Pq

given by:

« i« i 3 ijo By .J i @&

R PR 8; 5 t,o A - tB g 5 t, A - (g ta 8 5 ta)m
= a7 }\(T. B (8)
a

where AT e TP (M) and t; represents the linear transformation:
)

(B, Duy Ty 000 = T, (4

e} [0}

with the usual identification. It is obvious that the matrix

(az) in (8) is in fact ¢Z as given by (6).

. i
We now assume that the local coordinates (x~) are chosen so

that they are normal centred at Pgoe In this special system
t; = 6; . Moreover using equation (17) p. 17 of RWW we get in

the present notation

o a o
Yy =—gBQﬁ = =0
Yy ool ik B o _ ik B
and @y = {8 = g gg K Y = & 8y O B
whereas o = By g 59 &t
ij B T«

which proves our assertion.
The above analysis was given by Willmore to indicate the gecometrical

s o i o
significance of ah and

B



4L.L  Some properties of k-harmonic manifolds

Theorem (1) (Willmore [2]) A two-point homogeneous riemannian

manifold with positive definite metric is k-harmonic for all k.

Proof Let p and q be any two points lying on a geodesic sphere of
radius r centred at py € M. From the definition of two-point
homogeneity it follows that there exists an isometry of M which
carries p into q and leaves py fixed. In terms of normal
coordinates centred at p, we have by (7)

)

i i
o, = (*
3 (»g

poggkj)P )

It follows that the matrix ¢3 has the same eigenvalues at all points

on the same geodesic sphere. Thus Ok(¢) depends only upon £ and

the space is k-harmonic for all k. q.e.d,
Corollary The complex projective plane is a compact riemannian

manifold, k-harmonic for all k but does not have constant curvature.
Thus the apparently plausible conjecture that k-harmonic for all k

implies constant curvature is false.
Theorem (2) A k-harmonic manifold is Einstein.

Proof Let (yl) be a system of normal coordinates at Pge The
coordinates of a point p distant s from p, are

i i
y = 8a ,

where a’ are components of the unit tangent vector at p, to the
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geodesic arc (p, p),

i3
*g. a  a = e .
( glJ)PO

Consider the Taylor expansion of the metric *gij about Py ¢

d*g. . 32 *g. my Mo
*g. (y) = *g. .(0) + (___ﬁiﬂ §m1+ <' _ g1%2 ) yo v .
. = dy A, 3 * ¥y 2 /p, 2t

where the coefficients are the metric normal tensors (Cf Veblen [1]
D. 97). The first normal tensor
O*g. .
<.__§£Q > = 0
my
dy Po

since the Christoffel symbols at the pole of the normal coordinate

system are zero. The second normal tensor satisfies:

o *g
i3 ) 1 :
—————t = = (R, . R, .
<-8yml aymz /;o 3 ( im, jm, Jm, im, ) (9)
substituting yl = als we get
* 1 = ¥ + 1 + mo o, 5 3
gij(a s) -gijgo) 8¥Rimljm2 ijlimz) a | a 2 s + 0(s%).
Now
k ik
o = (% *g, ). =
; (*g )po ( gla)p
: m
*glk(O)[*g..(O) + L (R, . +R. . )a lam2 s + 0(s3)]
ij [3 imy gmy Jmy img
m
e, oS =bi+zPf R +E . Jat a2 + 0(s3) (11)
J J m, Jm,, My, gy .

Also we have ck(¢) satisfies:
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det(l&? - ¢. S— (-1)% 2K ROP

k=0

So by (1) we have

n
-k
Z (-1)% "o (8) = aet(x8" - 2 n )
dJ dJ
where
x = (A-1), and
m
= 'é(Rk _ + R Yat a? + o(s) .
3 m, jm, m, m,
Now
k X k
det(x8. - szm%) = det(s®( — 5. - e ) )
J J g2 J dJ
n n-1 n-2
n X X X
— + —_— + —_ + ...+
[<52> ql<2> q2<2> qn:l
8 s
where g; = sum of all i-valued minors of (m?)
= p; * o(s), where
p; = sum of all i~valued minors of
_ m m
& - (R +RS . JataZz .
J m, Jm,, my Jmy
Therefore
n
k n -k 4 n—2 2n
(-1) o (¢) = x + q s°x + q,5%x .t aqs

k=0
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K+ (o, + 0(s))s®" ™+ (p + 0(s))et P+ L+ (p_+0(s))s™"

-1
X+ plszxn + 0(s®).

Comparing coefficients of xk on both sides:

() ne (7] o
(-1)" <n_ >[—-——+ps ]+0(s3)

1

(-1 5 (0)

which yields,

@ = (0" ()] et | o
o (¢ = -1 - + s + 0(s
k k-1 ) x| F1
where
1 k m m,
= -~ trace (R + R a
P 6 ( 1M szml)
= 1 R . a'lg' -
3 mym,
where R is the Riceci tensor. So that
o, m,
n 1 m m, 5 J 3
o (o = -1 =R a a s + O(s
(0 = ot () Sedn, ()

(12)
If the manifold is k~harmonic then

¢ = Q).
6 (0) = 2(9)
Using the Taylor expansion for f£(Q) :

£(Q) = f£(0) + 9 £1(0) +—§E (o) + ...
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and substituting

Q = %esz, we get

£(Q) = £(0) + % es?r' (0) + h——léT e s* (0) + ... (13)

(12) and (13) must be identical if M is to be k-harmonic. Hence

comparing coefficients:
7 n
n
£(0) = (-1) ( >
k

n-1 m .
and $ef'(0) = (-1)° ( >—1 R a'l g2 for all a~ .
k-1 /5 mm,

Hence,

=s}
1

X , 1
m;m, gmlmz (1)

w0/ ()

which shows that M must be Einstein. g.e.d.

N R

where k= (-1)%

Theorem (3) [Willmore] An n-harmonic manifold is l-harmonic.

Proof We first use the identity (9) of Chapter I,

oo = 20
a
which we differentiate covariantly w.r.t. x* and raise the suffix
to get

J

We differentiate again w.r.t. x* to get
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e +o%a . = @ i.e.
J oy J i’
i
@, = Ql, - Qa Q,
J sd Jr,a

where in the last term we have interchanged the order of covariant

differentiation w.r.t. xJ and. xa . Thus

i o
trace(wj) = AEQ - Q (AZQ)(I . (15)

Now if M is n-harmonic then

AR = X(Q) .
Hence
i o
trace(aﬁ) = X(Q) - @ X’(Q)QOt
which is a function of Q alone. g.e.d.
Corollary A simply n-harmonic riemannian manifold is simply

1-harmonic.
Proof If M is simply n-harmonic then A_Q =n and hence by (15)
i
trace(aﬁ) = n. q.e.d.
The converse to theorem (3) is by no means evident and we

suspect it is false. However we have the following converse to the

corollary:

Theorem h) A simply l-harmonic riemannian manifold is

simply n-harmonic.
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Proof If the space is simply l-harmonic then
trace w§ = n.

(15) would then become

04
n = AQ-Q (Azﬂ)a

a
If we use normal coordinates (y ) centred at p, then

o a
Q = -y , and we would have
« O
n = AQ+y __.a(Azsz) .
Y
Putting
f = A Q-n
2
this could be written as
« ©
o
oy \

04
and f > 0 as y - O i.es as p - P, -

To solve (16) we are going to apply the following theorem in linear

partial differential equations (Cf Kells [1] p. 352).

Theorem If ui(xl, cenes xn,z) = ¢, i=1, ..., n are

independent solutions of the  ordinary differential equations:

dxl dx2 dxn dz

Pl(xl,...,xn) | PZ(Xl""’Xn) Pn(xl,...,xn) R(xl,...,xn,z)
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3uN3106 9,
ST

then
o(u, -ee, un) = 0

is the gaeral solution of

dz dz dz
— + P~ 4 ...+ =
Fa dx Y2 dx *n dx ®
1 2 n

where ¢ represents an arbitrary function.

So in our case we find solutions to the equations

dy af
—_ = — «=1,...,n (17)
v ~-f
of the form
. n
ua(yl, esey y 3 f) = Ca .

Then the general solution of (16) would be
O(U, s ooy un) = 0,

where ¢ is an arbitrary function.

Rewrite (17) as:

o
dy+* dy
—_— = —— o =2,...,0
o ) J
vt y
dy?* af
—_— =~
' -t
solutions of which are
a
Yy
—— = ]
a
yl

o = 2,...,n (18)
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where the c¢'s are arbitrary constants.

So the general solution of (16) is

¥ oy y°
¢{ - "'J_—>=O' (19)
vty vt

This solved for fyl gives:

n

) v oy v

fy = ¥ — = °":—_>
vyt v

(199

for some arbitrary ¥ .

Now for the point p with coordinates (yd) the geodesic (po p)

is given by

Yy = a s, where
o« B

* —3

(gaB)oa a € J
hence along'this geodesic we have
2 .3 n
lg = a_ & a_
fa's = W(;I: 1 ”"a1> (20)

is a constant. Hence taking the limit as s —» O we have

1 a2 an
0 = 1lim fa"s = V{ =7, ..., =7
S—0 a a

This implies that £ = 0. Hence

A5,Q = n and the space is simply n-harmonic.

Remark: that f = O really follows from (18) where we have
fyl = constant. Letting p = pg yl becomes zero and thus the

constant must be zero. g.e.d.
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4,5 Equations of Walker

Formal series of linear operators:

Imﬂ;fﬂ be an assoclative algebra with unit over the reals,
and denote by 7} ([X]) the algebra of formal power series in one

indeterminate X with coefficients in El,

AlX] = }: a, Xk, a, € A .
k=0
If F e R([X]),
L .
Flx] = Ekak, £ e R
k=0
we may write formally
- k
F(A) = szxA .
k=0

If the constant term aj of A is the unit I, we define

* k-1
(-1) k
log A = —_— (A-I)" .
k
k=1

If A is invertible we write

A~ = (I—A)k .
k=0

Finally we write DA for the derived series
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DA[X] = k a xk“l.
k
kZl

Now suppose that & is the algebra of linear endomorphisms of
a finite dimensional vector space V and put

[s¢]

trace A[X] = 2 trace (ak) Xk, trace A[X] € R ([x]) .
k=0

If ag=1 let us write

A = TI+7T, then

k-1
DlogA=DU+ ...+ (-:—1-)-—*(Uk"1.DU F U2 00U + e+ DU + L

k
Using the formula
trace (AB) = trace (BA), we get
o0
trace (D log A) = trace < 2 (—U)k . DU >
k=0
= trace ((I +U)™r.DU) .
Hence
trace (D log A) = trace (A™'..DAa).

Now if £ : IR - a\ isaC mapping of a neighbourhood of zero
we denote by Tay (f[t]) the Taylor expansion:

[¢]

Tay (£[t]) = 2 %f(k)(o) £
k=0
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Clearly f - Tay (f) is an algebra homomorphism and moreover
Tay(f') = D(Tay(f)).
Temma (1) TLet f: R - Hom (V,V) be a C" mapping of a neighbour-
hood of zero satisfying f£(0) = I. Then
Tay(log det(f)) = trace(log(Tay(f))) .
Proof It is sufficient to compare the derived series since the

constant term of each side is zero. We note first that f(t) is

invertible in a neighbourhood of zero, and

D(Tay(log det(f))) = Tay( =t (det(r)) x (det(£))™),
but
é% (det{f)) = trace{f‘l. ff) x det (f).
Consequently
D(Tay(log det(f))) = Tay(trace(f™t.f')) =
trace{ [Tay(f)]™* x DlTay(f)]} = D(trace(log Tay(f))). q.c.d.

Now let M be a riemannian manifold and let m € M. For each
u e Tm(M) let us define the endomorphism:
r(u) Tm(M) - Tm(M)
given by

Fr(u)x = RE,uwu (21)

for X ¢ Tm(M), where R is the curvature tensor. Let y(t) = exp_tu
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be a geodesic through m and i(t) its tangent field. We define

the field of endomorphisms:
L(y) ¢ T M) » T M
() & Ty () 00 = Ty () M0
along 7(t) as in (21).

P(7(6)) X(t) = REK(t), 7(£))7(8), X(8) e\ 00).
For any Tield of endomorphisms S(t) along 7(t) let us denote
g% $(y(t)) by §(t) . So in particular
R = £ TGE)
With this set up we now state:

Theorem (5) (Walker [1l]) Tet M be a riemannian manifold

and m e M. For u € Tm(M) let y(t) be the geodesic through m

tangential to u,

y(t) = exp_tu.

Let Ck(t) be a field of endomorphisms along y(t) defined recursively

by
Co(t) = 0, Cl(t) = I
' (22)
Cap(®) = 26, (8) - € MORINORION
If p(t,u) is Ruse's invariant along 7(t), then
N Cl((o) k-1
Tay(log p(t,u) = trace(log< X ———— g >> (23)
. = k.l

We postpone the proof of Walker!s equations till section (7)

where we obtain a generalization thereof.
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Let us now write

o0

(1§ 1)) - § 0

k=1

Then we have:

Corollary (1) A necessary and sufficient condition for M to be

harmonic at m is that there exist constants k, r= 1,2,... such
that

Wy (0) = k_(g(u,u)”

W, ,,(0) = o.

Proof For M to be n-harmonic we must have p(t,u) = F(Q(t)) for
some function F, where -

e(t) = 3e(r(t), 7(t))t2
Let us write the Taylor serieé for loé F as

s ]

Tay(log F(t)) = }; 2" : k., £5 .
= (2r)f

Then

Tay(log o(t,u)) Tay {log F(£g(y, 7)t%}

C 1 *  s\\T 2T
= z -k, (e(r, 7)) ¢
= (2r)f i

But by Walker'!s equations this equals

00

2 W_(0) £7

r==0
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hence by comparing coefficients and evaluating at m the result

follows. qeced,

This method of obtaining necessary and sufficient conditions
for n-harmonicity is equivalent to Ledger's method. In fact
(Cf RWW p. 66) the W's of Walker are related to the A's of Ledger's

recurrence formulse by

T
lr T or+l Wr :

Thus all properties of n-harmonic manifolds stated in Chapter I

could be obtained using Walker's equations.

A considerable simplification of the recurrence formulae ( 29
is achieved when we further assume that the manifold is riemannian

symmetric (locally). In this case I'(t) = O and thus

Cpp(t) = 20, (t) - G (8) - ¢ (t). I(t) (2)

which could be solved in terms of I' only to yield:

CEm(t) = 0

’ m=0,1,2,... (25)
m .

Cprpq(8) = (-L(5))
We can demonstrate (05) by induction on m. From (oL ) it is easily
seen to hold for m = 0,1; Assume its validity for all m < r, say,
then

- . = _ r

CEr 2C2r—1 C2r—2 C2r—2

the last two terms being zero by the induction hypothesis.
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Also
o0 - o Yyl o ae Oy o
26,.1 = 23 [ (-I') ] = 0 as 3 rly) = o
this proves Cgr(t) = 0. (26)
In
Cort1 = 2Cop ~Cop g ~Cpp g T s

the first term vanishes because of (26), the second term

L] 2 —
02 1 = Vi (—P)r 1 \ = O Dbecause %% I' = 0.
o dt? / ‘
Thus
Copr1 = ~Copy+T = Cppy - (1)

(—F)r-l. (-I') vy induction

(-r)* as was to be demonstrated.

Hence in a symmetric space (23) becomes

Tay(log p(t,u)) = trace ( log< i —(lllﬁl)—)-}—{ 2K >> (27)
_ 2 )

(2k+ 1)1
and we have the following proposition:

Proposition (Walker [4]) Let M be a riemannian locally symmetric

space and m € M, then there exists a neighbourhood of m on which

[#0]

Tay(log p(t,u)) = ;{; o, trace (-I'(u))
. S .

k t2k
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where ak is the coefficients of tk in the expansion

[ ¢]
Tay < log EE%—E > = E: a2k t2k . g.e.d.

k=1

Corollary (Walker [4]) A riemannian locally symmetric space is

n-harmonic at m € M if and only if for any u € Tm(M) the eigenvalues
of I'(u) : Tm(M) - Tm(M) are constant multiples of g(u,u). It
is simply n-harmonic if and only if all eigenvalues of I'(u) are

ZE€Tr0.

4.6 Application of a Formula of Helgason

Let M = G/H be a riemannian symmetric space with a (G-invariant)
riemannian metric g, where G is the connected component of the group
of isometries of M and H the isotropy group at the origin p, € M.

As in Chapter II let

be the cannonical decomposition of the Lie algebra of G. For each

h ¢ G denote by L(h) the diffeomorphism

L(h) : xH - hxH of G/H onto itself.
Then by the invariance of g under the action of G we have at each
point p € M,

gp(dL_(h)xo, dL(h)YO) = gpo(xo, Y,) (28)

Xo, Yo € T (M).
pO
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In section (2) we defined for each unit vector u € TP (M)

o]
the endomorphism ¢ tu of TPO (M) by
gp(ftu (o124 tu O) = gpo(¢tuxo} Yo) (29)
X, Yo € T (M), where p = exppotu and f, is given

by (). We are now going to obtain an explicit formula for ¢tu
using an expression given by Helgason (Helgason [1], p. 180) for

the differential of the exponential mapping at tu as

o

k
(6,,)
(59, Jayy = (e, tw) o) —E— 60 )
o : !
: =2 (2k + 1)1 :
where 6, ~ denotes the restriction of (adtu)® to m
Let us write
0 k
}: (etu)
Atu =

(2k+ 1)!

k=0

Using (&) and (30 ), (29) would become

gpo(¢tu X, YO) = gp(dL(exppotu) oA, X, dL(exppotu)c>AtuYo)
= gp (Atu o’ AtﬁYo) by (29)
= (A) Y)

tu o’ o
where (Atu)* denotes the adjoint of the operator Atu'

Thus we have

¢tu = (Atu)* (Atu)'
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Now since ad(tu) is a skew symmetric operator with respect to the

riemannian inner product, we have etu &8 a symmetric operator and

hence Atu is symmetric too.

Therefore

(ad tu)™®
tu ('Atu)z <Z (2Zi 1), >
ad (a u)2k
<k;) ——-——-——-—(2kd+ Y £ 2K >2 . (31)

In section (5) we have TI'(u) defined by TI'(u) = R(X,u)u,

a
]

but 1in a riemannian symmetric space we saw in Chapter IT, that

R(X,u)u -[X,ul,u]l = [u, [X,ul]

(ad u)([X,ul) = (ad u)(-adu(X))

- (adu)?(X).

Hence we can rewrite (31) as
(L@ e 2
< 2 < (gipl)' 21 > (32)

We have ¢tu related to Ruse's invariant by

p(t,u)® = det(¢tu)°

Hence (32) would give:
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N ok
o(t,u) = det(Z oo 1), >

Taking log o(t,u) and using the fact that
log (det(A)) = trace (log A) we get

equation (27) and this establishes Walker's equations in the

symmetric case.

4,7 Generalization of Walker's equations

As another application of Jacobi fields we are going to obtain
generalized Walker—type equations satisfied by the endomorphism ¢tu
similar to those satisfied by p(t,u). Letme Mand u e Tm(M) and

let

y(t) = exp, tu.
Tet Y e Tm(M). Then as we had in Chsp ter III Y determines a
unique Jacobi field X(t) such that

X(0) = 0, Y = %’—t((o).

We recall the construction of X(t). Let Y be that vector in

To(Tm(M)) obtaned from Y by the identification

ng: T (M) > T (T (M)).

Let Y(t) be the vector field in T(M) along the curve
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p:t - tu given by
= - v Z
Y(t) EXT 4 Y (33)
TO & being parallel translation from O to tu along p .
2
Then we put

X(t) = (exp )y, Y(t)
and X(t) is the required Jacobi field.

Now consider along 7(t) a set of n linearly independent
Jacobi fields xl(t), «.ey X (t) that vanish at t = 0. From above
n

each Xi is the image under exp of some linear fields Yi along p .

X, (8) = (exp )yp, ¥;(t)

Yi(t) = t.'ro,toa)i (34)
VX.

. = —= (0)

aﬁ no < at (

For each t ¢ domain of definition of 7y we let b(t) be the

endomorphism of Ty(t)(M) such that for X{t) € eo(y),

VX,
X, (t) = p(t) o7y, 0 ——tl (0) (35)
) a

TR\ A7\
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From (34)
’ vXi ,
B = (e, (6 X 70 01, — (0) ) (36)
Hence
b(t) o 75 ¢ = (explyp, 0t 0% o (37)

i.e. we have the commutative diagram

T ()T (o () 2 BT, (T ()
T (€x4> )
o Mk tuw
v

lb(t\ Q;T;ﬂt) (M‘)

ey (M)

Note that T, . in the right side of (37) is translation in the
2

tangent bundle along p, whereas on the left side TO & is
M

transaltion in M along 7.

Now since Xi(t) is a Jacobi field,
v2 . g
38 % (8) + Ty (8)) x, () = o (38)

where I'(y(t)) is the operator defined by (21).

From (35)
VX, v VX, v VX.
= = —b(t) o 1y —= (0) * b(t) — (1, , — (0))
dt dt 77 dt dat 77 dt
v VXi
= — b(t) o7y, — (0) (39)
dt ? dt
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Hence
v2 ve vxi
— X, (t) = —b(t)orT —= (0)
at2 *t at 0, 4t
but
v2
—_ = - v )
] vxi
= -I(y) = —= (0)
0,t 3t
therefore
v2
— b(t) + I'(y) b(t) = oO. (ko)
at

Also from (35) b(0) = O and by (34)

Vb . .
It (0) = I > the identity on Tm(M).

So we see that the field of endoﬁorphisms b(t) behaves like

the Jacobi fields xi(t) (in that it satisfies the same differential
equation ).
From (40) it is evident that b(t) maps eo(y(t)) onto itself. We
should note here that b also depends on the geodesic y(t) or what
amounts to the same thing on u. To make this dependence explicit
we write b(tu) for b. Also for eachlleTm(M) and each 0 <t < o

we have defined by (5) the endomorphism L

& (00X Y) = g,y (7K, 1Y), X,Y e T (M)
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where f is given by (&) as

f

i

(eme)*tu ° TO,t ° M,

1

t o b(t) o 1 by (37)

By the invariance of the inner product under parallel translation

we get
g, \(fX, fY) = g (1.7 o X, T.-, o fY)
7(1;) ’ m O,t ’ ,t
1 - —_
= o gm(b(t)X, b(t)Y)
where
- -1
b(t) = To,t o b(t) o TO,t : Tm(M) - Tm(M)-

Hence we have

¢ = 1

tu T b*(t) o b(t) (41)

where as before * denotes adjoint.

We now set out to get a formal Taylor's expansion for B(t) as

e

Tay (5(t)) = i (%)k 5(0) &
k=0

From (40) the second order covariant derivative of b(t) is a function
of b(t) only, so it is natural to expect that all higher order

\Y
derivatives of b(t) be expressible in terms of b(t) and = b(t) only,

i.e. that
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k
(%) b(t) = A(6) b(t) + ¢ (b) 32 (t) (+2)

where Ak(t) and Ck(t) are operators, functions of t and u to be

determined by induction.

For k =0, 1, 2 we have

Ao(t) = T 5 Co(t) = 0
Al(t) = 0 s c (t) = I
A () = ~[(r(8)),  Cu(t) = O.

Assuming (42) to hold for all j < m, we have

(£) o0 = (%))

= g% (.A (t) b(t) + C (t) (t) >

v
= 3¢ A (8).0(t) + A (). 3% Y u(t) +
+_V_c(t) (t)+c(t)o~—b(t) =

[ g% Am(t) - cm(t).r(&)] o b(t) + [Am(t) + é% Cm(t)J ) g% b(t).

Thus (42) is also valid for j =m + 1 with
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AV */,
Ay (8) = 2 (t) - c(v) LG(8) (=)
(43)
Cup(8) = A (8) + = C (t) (6)
mtl m dt
We now solve (43) to obtain recurrence relations for Cm(t) as
follows:
c ., (t) = A .(t)+%c  (t)
m+2 m+1 dt “mtl
= ¢ (B) - G (8) TG(8) + 2= A ()
dt “m+l‘” J
but 5
v £y - _vZ
% Am(u) = 3 cm+1(t) r Cm(t). Therefore
{1 . V__ -y 5 {- — —
Cunlt) = 23 ¢ . (6) - c (t) T(F(t)) dt m(t) - (1)
The first few C's are:
C,b, = 0, ¢, = I, ¢, = 0, C; = -I(7)
v L] ] v 2 -
Co = -2-T(), Cs = [2() - 3(——) r(7)
dt dt
Ce = h(dt> F(7)+2Fo P(’)’)+)-I- F(')’)QP(’)')
etc.

Now from (42)

vE vk
—Eb(o) = Eb(o) = ck(o)
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and therefore

_ = €, (0)
Tay(B()) = ) ¢ (15)
k=0 k g.c.d.

We lnow that Ruse's invariant satisfies

o(t,u)®2 = det T

and by (k1)

o = %2 b*(t) b(t)

so that N
o(t,u)2 = ;%E det kﬁ*(t) o E(t)} = [det( % E(t))]

and hence,
k-1

ot i _..S_l_....> )

Tay (log p(t,u))

)

ot

=

o

0

o
/1:7\

[o)

m
N
Mg

Q
e i
o ~~

(@]

N”
ct.

ad

-
N
N

Which proves Walker's equation (5).

We can write (41) explicitly as

o k

c;(o) o ck_r(o)‘> D
t

Tay(e, ) =
T r! (k-x)!

k=0 r=0

Lemma, ci(o) ck_r(o) = ck_r(o) c;(o) (46)
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Proof Use induction onk and r <k. For k=1, r =0,l1

For k = 2, r = 0,1,2, C_= CZ = 0 and hence (46) holds for
r<k=1,2.

Assume (46) to hold for all r <k <m.

Fork=m+ 1, r =%k (6) follows trivially so need only verify

(46) for k =m + 1, r <k.

2
* ¥rn V
= —_— _ r - —
Cr Cm+l—r Cr(2 dt Cm—r cm—r—l © dat Cm—r-l )
\ % * V2 *
= 2= - I - =

2 dt Cm-r © Cr cm—r—l © Cr © dt Cm—r—l © Cr

by induction hypothesis and assuming that
*

vV % _ _?_ '

dt Cr - <'dt Cr > (467)
Moreover if

* *
r =T N
c¥o o c¥ (*7)
we would get
c*ocC o< ¢ - r —Ec c*
r mtl-r dt "m-r m-r-1 ° dt m-r-1 ° r
*
Cm.+1—r ° Cr

and this proves (46) modulo (46%') and (L47).

For (46') we have by definition
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vVoooN v Y, 4 . \
<?.1—tc*x=a—t(c*x)-c*<—>, X €% (M).

Now let Y € % (M),

(& )wr) = e(F emia)-a(er(F)ox)
- Geemn e (on F) -0 (o (T ) v)
& oo s (oo (F)) - e (% o)
(5 5 @) -2 (xe (F))
(@) - (%) )= 8 - (B)

Proof of (47) Again use induction on r, let r = 0,1,2, C_ = O,

]

C, =I, C, =0 and (47) holds trivially so assume (L7) to hold

for all r < p, say, then

72
* * * *
r = i - ¥ - r
CP.+1 o) < C _ oC -1 it CP_1 > o
V2
= T — -™* ol %  _ T o = ¥
o2 t C ol o Cp‘_1 Sy Cp—l
= * i ic.
I' o Cp_+l as is symmetric
This proves (47) and completes proof of lemma. q.e.d.

From (46) it follows that

b*(t) o b(t) = b(t) o b¥(t)
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i.e. B(t) is a normal operator. From the properties of normal
operators it follows that if A is an eigenvalue of b(t) then A is
also an eigenvalue of b (t) with same eigenvector, and thus by (41)

it would follow that tZA® is an eigenvalue of ¢

tu

4.8 Case of Symmetric space

If we now assume that the manifold M is locally symmetric
then (44) would simplify considerably and as in (25) we get
m
sz(o) = 0, 02m+1(o) = (-I(w))" , m=0,1,2,..
and hence

] © o))k 42t
Tay(b(t)) = }; . (18)

1
0 (2k+ 1)

From which it follows that E(t) is an operator symmetric w.r.t. the
inner product g,

Thus for a symmetric space,

© (_r(e)f 12 2
Tey(o, ) = (k; (2k+1:)!> (49)

which generalizes (27) in a natural way.

Now if A is an eigenvalue of I'(u) with eigenvector X,

i.e. T'(u)X = XX, then (—X)k is an éigenvalue of (—l"(u))k with
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same eigenvector,

(T@)*x = (-0 x.
Thus by (49)
¢tux -= A2X, where
(-T )" £
A = ———
w2 (2k + 1)
oo (—F(u))k tgk o] -I'(u k,x t2k
) pe ) SR
k=0 (2k+ 1)! k=0 (Ek + 1)!
0 _ L)k t2k
(Y L.Z:’.....)X,
=2 (ek+ 1)1 -
so that
¢X=A2X=A(A.X).= (Z S >X
tu (2k+1)'
2 (F P (-0 2K
= AX = X
<kZo (2k+1)'> <Z (2k + 1) >
sin t V2
= ————X.
ta
Th F g . sin tNFK . .
us i is an eigenvalue of I'(u) then ——;17——— is the corresponding

eigenvalue of ¢tu .
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We recall Walker’s criterion for a locally symmetric space
to be n-harmonic at m - that the eigenvalues li of I'(u) be constant
on geodesic spheres centred at m for all u € Tm(M). By above if

ki is an eigenvalue of I'(u) then.fiE_E:£Zi is an eigenvalue of ¢

£, tu

Thus if M is n-harmonic all eigenvalues of ¢tu would be constant

on geodesic spheres centred at m and we thus have the following:
Theorem (6) Let M be a locally symmetric riemannian manifold.
If M is n-harmonic at m then M is k-harmonic at m for all k. g.e.d.
Corollary If M is locally symmetric and is
(1) simply n-harmonic, then it is simply k-harmonic for all k.

(2) simply l-harmonic, then it is simply k-harmonic for all k.

4,9 k-harmonic symmetric manifolds

Riemannian locally symmetric spaces which admit positive definite
n—harmonic metrics are fully characterized. Those with decomposable
metrics have been shown (Lichnerowicz [2]) to be necessarily flat
(Cf RWW p. 216). Those with indecomposable metrics were shown by
Ledger [2] to be precisely the symmetric spaces of rank one. In this
section we are going to obtain similar results for k-harmonic metrics
under the additional assumption of compactness. So our results are

necessarily more restrictive.
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Theorem (7) (Willmore and El-Hadi [1]) Let M be a compact,

simply-connected n-dimensional ¢ manifold equipped with an
irreducible positive definite riemannian symmetric metric. Let M
be k-harmonic for some k. Then M must be a symmetric space of

rank one.

Note it is sufficient to assume M only locally symmetric
since the hypothesis of simple-connectedness and compactness imply

global symmetry [Helgason [1], p. 187 ] .

Proof In proving theorem (7) we follow closely the treatment given
by Rauch [2] of the Jacobi equations on symmetric spaces. So let

Py € Mand u ¢ Tp (M) a unit vector. TLet y(t) = expp tu, be a
o o

geodesic issuing from P, tangential to u. Let Z be a unit vector
perpendicular to p(t) = tu in TPO(M). Then the set of tangent
vectors tZ defined at points distant t along p(t) will map under_
(exppo)* ;nto a Jacobi field X(t) along y(t). It is proved

(Rauch [2], p. 117) that by a suitable choice of orthonormal basis
(u, 2, +.., zn) of TP (M) that the components of X satisfy equations

o]
with constant coefficients, namely

x; tK X =0 a (not summed) = 1,2,...,n - 1. (50)

Here K, is the sectional curvature at Py of the plane specified by
uand Z,. In fact it follows from section (1) of Chapter II and

theorems (2) and (4) there, that
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2
K, = | [, Z,] | = o

when the norm is taken w.r.t. the (definite) Killing form of G

when M is considered as the coset épace

M = G’/Ho

We are interested in solutions of (50) such that

xa(o) = 0, and
VX
—= (0) = 2z,
dt
Thus we have
X, = tZa’ for K, = O, and
X = "‘l—(sint\/-K)Z for K_ # O
a — Jx a/ “a? o

o

(51)

Suppose now that of the set '{K(x }, exactly £ are zeros — the non-zero

Ka's may, of course, occur with various multiplicities. Then this

gives a cannonical form (diagonal) for the pull-back metric

h = (e
(xppo K

values of this form are exactly the symmetric polynomials_of ¢

as was shown in (5). Thus we have in particular:

1 .
o, = It + '\/—K sin t\/—K:L + ... F ‘\/-K sin tJ_Kn_z
1 n— £
; Sin t\/_Kl sin tJ_Kn_£
[0} = t . T X LRI X"m

n Jk, JK

n-£

)*(gy(t))' The symmetric polynomials o, of the eigen-

tu

(52)
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Now we assume M to be k-harmonic, i.e. we impose the condition
that 9. is a function of t alone, i.e. Uk.is independent of u.
It follows that in particular f must be independent of the choice

of u.

Consider now the group theoretic picture of M as a homogeneous
coset space G/H. Here G is the connected component of the group
of isometries of M, and H is the compact isotropy group at b,e The
assumptions of compactness and simple-connectedness of M imply that
G must be compact and simple. According to the corollary to
theorem (2) of Chapter II we can identify the linear holonomy group
Hé at P, with the linear isotropy group H'! there. An important

implication of this identification is given by the following

Lemma (Rauch [2]) TLet P, € M and 7 a geodesic issuing from p, with

unit tangent vector u, and_let Za be a unit eigenvector at Po
belonging to the eigenvalue Ka > 0. Then there exists a one-
parameter subgroup of H whose image in the holonomy group Hg is
transitive on the unit vectors issuing from.po which lie in‘the two
plane determined by u and Za . We have as a consequence of the

Lemma:

Corollary (1) An eigensolution of (50) belonging to the positive

Ka and such that Xa(O) = 0 is obtained as follows: Take the one~
parameter group of the lemma, apply it to a point of y and differentiate
the coordinates of the orbit w.r.t. the group parameter and set the

latter equal to zero.
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Indeed the group takes 7 into geodesics which also emanate
from p,, and the group parameter plays the role of the coordinate
€ in the variation defining the Jacobi field. Moreover, the
eigenvalues and their multiplicities are not necessarily the same
for all geodesics issuing from Py but only for those which are

transformable into 7 by the holonomy group at pg .

Now, to require ¢ to be independent of the choice of u, we
require that the holonomy group acts transitively on the unit
sphere Sn_l in TP (M). For this we refer to the results of

o]

Berger [1] and Simons [1]. In particular theorems (8) and (9) of

Simons [1] give:

Theorem (8) (Berger-Simons) Let M be a compact, simply

connected, irreducible riemannian symmetric manifold. Let py, € M
and let Hé be the connected component of the linear holonomy group,
acting transitively on Sn—1 in Tp (M). Then M is a symmetric space

o)
of rank one.

From this theorem (7) immediately follows. qe.c.d.

Theorem (9) (Willmore - E1 Hadi [1]) TLet M be a compact

simply-connected, n-dimensional ¢” manifold equipped with a positive
definite irreducible riemannian symmetric metric. Let M be k-harmonic

for some k., Then M is k-harmonic for all k.
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Proof By theorem (7) M is a symmetric space of rank one.
Theorem (9) of Chapter II shows M then to be two-point homogeneous.
But theorem (1) asserts that a two point homogeneous manifold with

a positive definite metric is k-harmonic for all k. g.e.d.

The result of Avez [1] stated as theorem (9) of Chapter III
shows that a compact n-harmonic manifold is locally (and hence

globally) symmetric. Combining this with theorem (9) we get:

Theorem (10) Let M be a compact simply connected manifold

with a positive definite riemannian n-harmonic metric. Then M is

k-harmonic for all k. q.e.d.
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