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S U M M A R Y 

Diels-Alder reactions pf perfluorocyclohexa -1 ,3-diene with compounds 

containing t r i p l e bonds. 

This work provides a synthetic route to a large number of new 

polyfluoro-aromatic and heteroaromatic compounds. The method depends 

upon the i n i t i a l Diels-Alder reaction between perfluorocyclohexa-

1,3-diene, a commercially available product, and the t r i p l e bond of an 

alkyne, n i t r i l e or t h i a z y l chloride. 

Heating the diene with alkynes i n a sealed tube at 200° produces 

1:1 Diels-Alder adducts. The y i e l d s are increased by electron-

donating substituents, thus shov/ing the "inverse electron demand" of 

perfluorocyclohexa -1 ,3-diene i n Diels-Alder reactions with alkynes. 

Ityrolysis of the adducts i n vacuo r e s u l t s i n the elimination of 

tetrafluoroethylene and the formation of 1 , 2-disubstituted tetrafluoro-

benzenes. These are the sole products, except i n cases where the 

substituent groups can also undergo elimination reactions under the 

conditions used. 

The reaction with n i t r i l e s i s l e s s v e r s a t i l e , and boron t r i f l u o r i d e 

added as a c a t a l y s t has no apparent e f f e c t . Adducts are formed only 

with n i t r i l e s containing highly electronegative substituents, and a 

reaction temperature of ca. ^00° i s required. These forcing conditions 



cause the elimination of tetrafluoroethylene i n s i t u , and hence the 

adducts are not normally isol a t e d . The major difference between these 

and the alkyne adducts i s that, on pyrolysis, there i s competition 

between the required formation of a 2-substituted tetrafluoropyridine 

and the reverse Diels-Alder reaction, which merely reforms s t a r t i n g 

materials. At k00° perfluorocyclohexa -1 ,3-diene also forms a D i e l s -

Alder dimer and a 1,2- cycloadduct with tetrafluoroethylene, both 

previously unreported compounds. 

Heating the triraer of t h i a z y l chloride with perfluorocyclohexa-

1,3-diene at 100° produces a compound which has properties consistent 

with the 1:1 Diels-Alder adduct of t h i a z y l chloride monomer and the 

diene. The evidence, however, i s not conclusive, since s t r u c t u r a l 

data i s not unambiguous. 
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F O R E W O R D 

This thesis describes the use of perfluorocyclohexa-1 ,3-diene, 

a commercially available s t a r t i n g material, i n the preparation of 

a large number of highly fluorinated aromatic and a l i c y c l i c compounds. 

Fluorocarbon compounds are unique i n organic chemistry. They 

provide a completely different electronic environment for functional 

groups without s i g n i f i c a n t l y affecting the stereochemistry of t h e i r 

hydrocarbon analogues. A novel set of chemical and physical properties 

ar i s e which are in t e r e s t i n g both academically and i n d u s t r i a l l y . At 

present, aromatic fluorocarbon compounds have not found any r e a l l y 

important commercial outlets. Nevertheless, i n d u s t r i a l research into 

these compounds i s continuing because a l i p h a t i c and a l i c y c l i c fluorine 

compounds are already used i n a wide variety of products, from aerosol 

propellants to thermally stable polymers. 

However, most of the discussion i s concerned with the synthetic 

aspects of the work, and the way i n which the r e s u l t s correlate with 

presently held theories about the Diels-Alder reaction. A broad survey 

of t h i s f i e l d i s given i n the Introduction, which consists of a chapter 

on c y c l i c dienes, followed by chapters on alkynes, n i t r i l e s , other 

dienophiles containing t r i p l e bonds, and possible mechanisms of D i e l s -
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Alder reactions. Although applied studies are beyond the scope of 

the experimental work, there has been s u f f i c i e n t i n t e r e s t i n some of 

the reaction products to warrant the application for a provisional 

patent. Another electron-deficient diene, perchlorocyclopentadiene, 

undergoes s i m i l a r Diels-Alder reactions from which the powerful 

i n s e c t i c i d e s Dieldrin and Aldrin are derived. Many fluorocarbon 

compounds are bi o l o g i c a l l y active and i t i s possible that some of the 

compounds prepared may also be potential i n s e c t i c i d e s or herbicides. 



P A R T I 

I N T R O D U C T I O N 
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CHAPTER 1. CYCLIC DIENES IN THE DIELS-ALDER REACTION. 

1.1] C i s - princ i p l e and the e f f e c t of ring s i z e . 

The Diels-Alder reaction, i n which a conjugated diene ( I ) reacts 

with an unsaturated compound, the dienophile ( I I ) , to y i e l d a s i x 

membered ring i s well-known and has proved very useful s y n t h e t i c a l l y 

and interesting t h e o r e t i c a l l y for many years. 

B 

E 
E 

B 
H 

H 

I I I 

Ear l y workers i n the f i e l d soon recognized the high s t e r e o s p e c i f i c i t y 

of the reaction and r e s u l t s led to the formulation of the " c i s - p r i n c i p l e " . 

This principle has two parts: 

( i ) the r e l a t i v e position of the substituents remains the same i n 

the products as i n the s t a r t i n g materials. Thus, i n the general case 

above, substituents B and C i n the diene and F and G i n the dienophile 

remain c i s to each other. There i s no free rotation about the 

dienophile double bond - hence providing good evidence for a concerted 

one-step mechanism. 
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( i i ) The conjugated double bonds i n the diene must be c i s -

orientated. This can be i l l u s t r a t e d by the addition of maleic anhydride 

to 1-phenylbuta-1,3-diene.^ Butadienes may e x i s t i n transoid (a) and 

c i s o i d (b) conformations, which are shown below for c i s - ( I I I ) and 

trans-1-phenylbuta-1,3-diene ( I V ) . 

Ph Ph 

y\ ph Ph 

I l i a I l l b IVa IVb 

S t e r i c interactions make I l l b energetically l e s s favourable than I l i a 

and consequently conformer I l l b i s present only as a small percentage 

of the equilibrium mixture; no such rotational r e s t r i c t i o n apply to IV. 

Under the same conditions, isomer IV gives a quantitative y i e l d of adduct 

whereas I I I gives only a 5% y i e l d . 

A l l the a l i c y c l i c dienes under consideration i n t h i s Chapter have 

the c i s - orientation of double bonds constrained upon them by t h e i r basic 

structures. I n these cases, therefore, the distance between the termini 

of the conjugated system i s a very important consideration. This i s 
—1 —1 

refl e c t e d by the second order rate constants (k^, i n l.mole sec. ) i n 

the addition of maleic anhydride (MA) and tetracyanoethylene (TCNE) to 

cyclopenta- and hexa-1,3-diene. A greater activation energy (E) i s 
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involved i n going from reactants to tr a n s i t i o n state for hexadiene and 

the considerable reduction of rate can be seen i n Table 1 . l ( i ) . When 

TABLE 1 . l ( i ) . E f f e c t of ring s i z e on rates. 

Diene Interterminal TONE (20°) MA (30°) Diene o 
Distance (A) K 2 k 2 E (kcal.mole ) 

Cyclopentadiene 2*44 4*3 x 1 0 2 9»2 x 1 C ~ 2 8.9 

Cyclohexa -1 ,3-diene 3'0/f 7-3 x 10" 2 1-3 x 10 - 2 F 12.6 

1 , 1-dichlorodifluoroethylene ("1122") i s the dienophile there i s 

competition v/ith the alternative 1 ,2-addition across one double bond. 
0 

Since the bond length of the 1 , 1-dichlorodifluoroethylene i s only 1«34A 

1 , 4 -addition takes place more e a s i l y as the interterminal distance 

reduces [see Table 1 . l ( i i ) ] . ^ 
_ TABLE 1 . l ( i i ) . E f f e c t of interterminal distance with "1122" addition. 

Interterminal 
0 

Distance (A) % 1,4-Addition 

3-35 <1 

3 '04 6 

3 '04 30 

< 3-04 56 

2 .44 84 

Diene 

O a a 
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The difference between, the amounts of 1,4-addition between 

cyclohexadiene (6%) and 1,2-diraethylenepentane (30%) i s large considering 
o 

that both have the same interterminal distance (3*04A). The lack of 

coplanarity of the former [Fig. 1 . l ( i ) } , with consequent l o s s of 

conjugation,is a possible explanation of t h i s e f f e c t . 

6 
1 

F i g . 1 . 1 ( i ) . Conformation of cyclohexa-1,3-diene. 

Cyclo-octa-1,3-diene has p r a c t i c a l l y no a b i l i t y to undergo 1,4-— 
7 8 

addition, ' and i t takes place again only with 1*t- and 15-membered ring 
Q 

dienes (and then under severe conditions). Cyclobutadiene should be 

regarded as a s p e c i a l case. This highly strained rectangular molecule 

has the shortest possible distance for a dienophile to add across 
0 10 ° 10a (calculated 1»51^A or 1«^98A ; but there i s p r a c t i c a l l y no 

—1 10 

conjugation (calculated 0*8 kcal.mole ) . I t i s d i f f i c u l t to 

distinguish Diels-Alder type addition from 1,2-addition but the 

stereospecific c i s addition of dienophiles provides evidence for the 
11 

former mode, i . e . the " c i s - p r i n c i p l e " holds. 
COOMe 

+ l 

COOMe 

II COOMe 
COOMe 
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Another factor which i s dependent on rin g s i z e i s the ease of 

dimerization of c e r t a i n c y c l i c dienes. Thus, cyclobutadiene undergoes 
o 11 dimerization at 0 and has not even been is o l a t e d as the monomer. 

C l fH i f.Fe(CO) 3 
Ce 
0°C 

15# 

83% 

Cyclopentadienes are also r i g i d l y cis-coplanar and have an i d e a l 

interterminal distance to undergo 1,^-addition [Table 1 . 1 ( i i ) ] and 

cyclopentadiene i t s e l f readily forms i t s Diels-Alder dimer at room 

temperature. The reverse reaction at higher temperatures allows the 
12 dimer to be used as a source of cyclopentadiene. Perfluorocyclo-

O 20 v 

13 Ik 15 

pentadiene i s even more susceptible to the same dimerization, ' 

80# when stored a t room temperature for 14 days and 26% at -10° for 

2k hrs. The monomer must be stored at -196° i n vacuo. The reverse 

reaction to cleave the dimer does not quantitatively produce the monomer. 

I t remains unchanged i n a sealed glass tube at 475° for 45 min. and on 

flow pyrolysis the greatest y i e l d i s 17$. There i s a greater tendency to lose the CF^ bridge as difluorocarbene. 15 
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to CXJ 680°/2mm u - r j CF + dimer 

30# 1756 2k% 

( a l l unmarked bonds to F) 

On the other handi perchlorocyclopentadiene i s perfectly stable as 

a monomer at room temperature. This f a i l u r e to produce the Diels-Alder 

dimer d i r e c t l y i s probably due to the s t e r i c e f f e c t of the chlorine atoms 

since Alder described i t as "the diene with the highest possible addition 

a b i l i t y ' 1 . 7 

The geometry of cyclohexadienes i s l e s s favourable for 1,4-addition 

[ F i g . 1 . 1 ( i ) ] . However, Diels-Alder reactions are well established, 

and cyclohexadiene does dimerize (180-200° for 2h h r s . ) , although y i e l d s are 

not quantitative (ca. 30-40$). ^ a 

Perfluorocyclohexa-1,3-diene has been shown to act as the diene i n 
16 17 

Diels-Alder reactions. ' Although no r e l a t i v e rates have been measured 
there are d i s t i n c t product differences compared to the Diels-Alder additions 

18 

with perfluorocyclopentadiene. The l a t t e r may be c l a s s i f i e d as the 

"stronger" diene since i t acts only as a diene with butadiene - giving 

only 1,4-addition products, which include a 2:1 adduct.^ 



7 

C.H 110 
k 6 k>5 days' 

6k% 1# 

At a s i m i l a r temperature perfluorocyclohexa-1,3-diene forms a mixture 

of 1,2-and 1 tif-addition products and i t also acts as a dienophile, by 

1,k-addition to butadiene. 16,17 

+ ck*6 

18% 10 

J>h% 

Again the simplest r a t i o n a l i z a t i o n of these r e s u l t s i s the s i z e 

of the ring involved, as the electronic and s t e r i c e f f e c t s of the 

fluorine atoms w i l l be f a i r l y s i m i l a r . 

I f another diene i s s u f f i c i e n t l y reactive perfluorocyclopentadiene 

can also react as a dienophile. Cyclopentadiene appears to have about 

equivalent "strength" and both possible adducts are obtained (compounds 

V and V I ) . As expected, v/ith anthracene i t behaves only as a 
18 

dienophile to give V I I . 
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VI V I I 

16 19 lyke reports that anthracene undergoes an unusual h+k addition 

with perfluorocyclohexa-1,3-diene r e s u l t i n g i n the formation of V I I I 

(7% y i e l d , 99° for 48 h r . ) . Although the i . r . absorption at 1753 cmT1 

V I I I 

(CF=CF) correlates with that p a r t i c u l a r fluorinated ring system 

(1758 1 6 cmT 1) i t i s unlikely that such a symmetrical molecule should 
19 

have nine separate F n.m.r. resonances [ a t -45*1» -*f3,6, -40*8, —37• ̂» 

-32.6 ( C F 2 ) ; -20.8, -8.2 (=CF-); -6«9, +2.5 (7C-F) ( s h i f t s inp.p.m., 

with respect to hexafluorobenzene)]. These values would be expected by 

the straightforward k+2. addition to anthracene - thus producing the 

adduct corresponding to V I I . 
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1.2] Electronic e f f e c t s . 
7 

The "Alder Rule" states that the rate of addition generally increases 

with electron donating substituents i n the diene e.g. N(Me),,i OMe, Me 

and with electron withdrawing substituents i n the dienophile e.g. CN, 
L 

COOMe, CHO, N02. This i s i l l u s t r a t e d by the r e s u l t s i n Tables 1.2(i) 
20 

and 1 . 2 ( i i ) . The f a c t that the only authenticated 1,4-additions of 

TABLE 1 . 2 ( i ) . E f f e c t of substitution i n the diene. Diene E e l . rate TCNE • • diene addition 

2-Chlorobutadiene 1«0 

Butadiene 5-2 X 10 2 

2-Methylbutadiene L 1 X 10 3 

2,3-Dime thylbutadiene 2-4 X 10* 

1-Me thoxybutadiene 6.0 X 1 0 5 

Perchlorocyclopentadiene 0 

Cyclopentadie ne 4-3 X 10 7 

highly fluorinated butadienes are those of trifluoronitrosomethane with 
21 22 

2,3-dihydro- and perfluorobutadiene ' i s also consistent with t h i s r u l e . 
Here the products were accompanied by considerable amounts of r e s i n , 

o 23 
whereas i t reacts quantitatively with hydrocarbon butadiene at -78 . 
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TABLE 1 . 2 ( i i ) . E f f e c t of electron withdrawal from dienophile. 

Dienophile Bel. rate cyclopentadiene • dienophile 

A c r y l o n i t r i l e 1 

Cis-1,2-dicyanoethylene 91 

Trans-1,2-dicyanoethylene 81 

1 i1-Dicyanoethylene 4.5 X 
f 

Tricyanoe thylene 4.8 X 10 5 

Tetracyanoethylene (TCME) k-3 X 10 7 

Since, as i n Table 1 . 2 ( i ) , the presence of halogen atoms markedly 

reduces the rate of addition, polyhalocyclic dienes might be expected not 

to undergo the Diels-Alder reaction r e a d i l y . This i s not the case. 

A review catalogues about a hundred such reactions of perchlorocyclc— 
2k 

pentadiene. I n such cases, however, the order of r e a c t i v i t y with the 
dienophile i s often inverted compared to i t s addition to an electron r i c h 

25 

diene. Table 1 . 2 ( i i i ) shows how the rates are affected by electron 

withdrawal from the dienophile. The r e s u l t s with perchlorocyclopentadiene 

are the opposite to those expected by using the "Alder Bule" and they 
i l l u s t r a t e a p a r t i c u l a r example of reactions with "inverse electron 

26 27 

demand" * i . e . the rate of addition increases with electron withdrawing 

substituents i n the diene and electron donating substituents i n the 

dienophile. No s a t i s f a c t o r y explanation has been given for these e f f e c t s . 
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TABLE 1 . 2 ( i i i ) . Inverse electron demand. 

Dienophile 
10 6 k 2 (l.mole" 1secT 1) 

Dienophile 
Perchlorocyclopentadiene 9,10-Dimethylanthracene 

p-Methoxystyrene 1-6 x 10 3 50 

Styrene 7«9 x 10 2 70 

p-Nitrostyrene 5*4 x 10 2 6*0 x 10 2 

Cyclopentadiene 1-5 x 10 4 0 

Cyclopentene 59 78 

Maleic anhydride (MA) 29 1-if x 10 6 

Nevertheless, from t h i s i t can be predicted that perfluorocyclohexa-

1,3-diene and other highly fluorinated dienes w i l l take part i n D i e l s -

Alder reactions with "inverse electron demand" and probably with electron 

r i c h dienophiles. 

At present, working from the above p r i n c i p l e s , i t i s not possible 

to explain the ef f e c t of introducing a proton into a fluorinated diene 

system. 2H-Peritafluorocyclopentadiene dimerizes i r r e v e r s i b l y , too f a s t 
28 

for i t to be used i n a Diels-Alder reaction. This i r r e v e r s i b i l i t y i s 

i n contrast to dicyclopentadiene, but nearer the properties of perfluoro-

dicyclopentadiene. The 1H- isomer, which dimerizes slowly (1 month at 

10-15°), does not react with either TONE (predictable by the "inverse 
28 

electron demand") or ethyl v i n y l ether. 
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Orientation problems also a r i s e when dealing with unsymmetrical 

compounds. The reaction of methyl acrylate with 1H-perfluorocyclohexa-

1,3-diene gives both of the possible adducts (compounds IX and X), 

but the y i e l d of each isomer was not quoted. 29 

COOMe 

COOMe 

IX 

The only other fluorinated c y c l i c diene which i s reported to 
30,32 undergo Diels-Alder reaction i s 5»5-difluorotetrachloropentadiene. 

This dimerizes at room temperature and reacts with both electron-rich 

and electron-deficient dienophiles e.g. pentadiene, p-benzoquinone, 

p-chlorostyrene and maleic anhydride. However, no r e l a t i v e rates 

were published. More data needs to be accumulated before accurate 

predictions of r e a c t i v i t i e s can be made for t h i s type of compound. 

1.3] Synthetic applications. 

Diels-Alder reactions of c y c l i c dienes always produce a l i c y c l i c 

p o lycyclic compounds, often s t e r e o s p e c i f i c a l l y and i n good y i e l d . 

Perchlorocyclopentadiene adducts have many i n d u s t r i a l uses. That 
2k 

with maleic anhydride i s used i n f i r e r e s i s t a n t paints and that with 
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bicyclo[2,2,l]hepta-2,5-diene gives the i n s e c t i c i d e s Dieldrin and Aldrin.^ 

CHSCH 

> c i CI 

CI 

Di e l d r i n Aldrin 

B i c y c l i c adducts can often be isomerized or pyrolyzed to produce 

new ring systems - p a r t i c u l a r l y when the dienophile has been an acetylene 

(see Chapter 2 ) . An interesting example, since i t also involves the 

only known 1,4-addition of tetrafluoroethylene, i s the ring expansion by 

pyrolysis of tetrafluorobicyclo[3,2,0]- and [2,2,l]heptenes into 
33 

te trafluoroheptadienes. 

r a O u 475 

700V5 mm a 
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The only product obtained by passing over s t e e l wool Pyke's 

butadiene to perfluorocyclohexa-1,3-diene adducts was 1,2,3,4-tetra-

fluoronaphthalene (XIV). This i s because, under the conditions of 

these reactions isomerization of the adducts takes place and there i s 

dehydrofluorination as well as defluorination. The [4,4,0]deca-2,8-

diene ( X I I I ) i s the most thermodynamically stable form, the [4,2,0]octene (XI) 

XI 

250 00 s t e e l wool 
325 

350 
X I I I XIV X I I F 

isomerizes at 250° and the [2,2,2]octene ( X I I ) at 350°. This explains 

why the naphthalene (XIV), formed from a l l isomers at 425°, i s not formed 

from X I I at 3 2 5 ° . 1 6 ' V 

F i n a l l y there are reactions which r e t a i n the basic ring structure. 

A recent example, involving addition to the double bond i n the 6-

membered ring, i s the cobalt t r i f l u o r i d e fluorination of the adducts of 

methyl aerylate and 1H-perfluorocyclohexa-1,3-diene (IX and X). Many 
29 

products are obtained, including perfluorobicyclo[2,2,2]octane. 
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CHAPTER 2. ALKYNES IN THE DIELS-ALDER REACTION. 

2.1] Reactivity. 
9 Alkynes readily react with dienes i n the Diels-Alder reaction. 

Their t r i p l e bonds have a greater electron density than the corresponding 

olefins and, as expected from the Alder rule (Chapter 1.2), react at a 

slower rate [Table 2 . 1 ( i ) ] . ^ The Alder rule also predicts the increases 

i n rate obtained by increasing the degree of substitution of electronegative 

groups [Table 2 . l ( i ) ] . 
TABLE 2 . l ( i ) . Application of Alder rule to alkynes and o l e f i n s . 

Dienophile Relative rates. Dienophile with 
9,10-dimethylanthracene. 

H«C=C«COOMe 1.00 

H2»C=CH.COOMe . 6.35 

MeCOO•C=C•COOMe 12.if 

MeCOO«CH=CH.COOMe 19*0 

Acetylene i t s e l f has no electron withdrawing groups and i s thus 

expected to react with electron-rich dienes only under forcing conditions. 

I t i s , therefore, for synthetic purposes, considerably safer to react the 

diene with v i n y l bromide and obtain the same product by elimination of 

HBr i n a l a t e r r e a c t i o n . ^ I n spite of the danger a good y i e l d of 

1,2,3,^,7,7-hexafluorobicyclo[2,2,l]hepta-2,5-diene was successfully obtained 
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by heating acetylene with perfluorobicyclopentadiene i n a s t e e l 
18 autoclave. 

C 2H 2 + 

This i s l i k e l y to be a case of "inverse electron demand" 

115765 hr.y (ca. k2%) 

applying. 

However, the Alder rule does apply to the addition of cyclone to 

methyl arylpropiolates with substituents of increasing electron 

withdrawing power. Table 2 . l ( i i ) shows the small increase i n rate (k), 

but f a i r l y constant ac t i v a t i o n energies (E), and A factors of the Arrhenius 
36 

Ph 
rate equation. 

Ph 
P h ^ j ^ V 

COOMe 
I 

Ph 
Ph 

CO 

TABLE 2 . l ( i i ) . Application of Alder rule i n methyl arylpropiolates. 

X 10 5 k (175«6°) E (kcal.mole ) log A 

p-MeO 1-19 20-0 6-8 

p-Me 1-26 2 C 2 6-9 

P-H 1-48 20-0 6-8 

p-Cl 2-25 18-9 6-6 

P-N02 7-75 18.4 6.9 
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There i s a good correlation of these figures with the Hammett "o"" 

parameters obtained from the ionization of phenols. Chapter 5 gives 

reasons for these pieces of evidence supporting a concerted reaction 

mechanism.^ 

The most reactive t r i p l e bond would appear to be i n the highly-

strained arynes - a c l a s s i c a l example being the formation of triptycene 

when o-bromofluorobenzene i s treated with magnesium i n the presence of 
37 

anthracene. 

Perfluorobenzyne i s p a r t i c u l a r l y reactive and i s trapped by a wide 
38 3' 

range of dienes. I t even forms an isolable 1:1 adduct with benzene. 

Very high activation energies must be involved to account for the l o s s of 

aromaticity of benzene i n the t r a n s i t i o n state and the formation of a 

highly strained ring compound. Benzene i t s e l f also adds to the electron 
ko 

deficient perfluorobut-2-yne. The adduct has been isolated, but i n 

only 8% y i e l d , and i t readily eliminates acetylene to give 1 , 2 - b i s ( t r i -

Mg Grignardv 

Anthracene 

COD 
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40.41 

fluoromethyl)benzene. 1 ,2 ,4 ,5-Tetramethylbenzene, a more e f f i c i e n t 

diene than benzene, reacts with alkynes to give highly substituted 

derivatives of b i c y c l o [ 2 , 2 , 2 ] o c t a - 2 , 5 i 7 - t r i e n e , the so-called barrelenes. 
41 42 

These are more stable adducts. ' 

Me 

Me o R • s 
Me C 

R 

R = CFy 41% 

R = CN, 4% 

Certain alkynes also take part i n what has become known as the 
43 

"homo Diels-Alder" reaction. The diene component i s not conjugated, 

the double bonds are separated by a tetrahedral centre, and 3° bonds 

are formed at the expense of 3n bonds - i n the normal Diels-Alder 

reaction 2n bonds give 2o bonds. The example given also i l l u s t r a t e s 
44 

the ease of rearrangement of the t e t r a c y c l i c adduct. 

COOMe 
I 
C 
PI c I 
COOMe 

100 

OOMe 

150 CO COOMe 
COOMe 
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2.2] Preparative aspects. 

In comparing the reactions of alkynes and alkenes with c y c l i c dienes 

one immediate difference i s i n the s i m p l i c i t y of the stereochemistry. 

The products of alkene addition have the p o s s i b i l i t y of exhibiting 

endo/exo isomerism e.g. 

/6y 0 
endo- exo— 

The r e l a t i v e amounts of endo- and exo- isomers which are formed, 

vary. From purely experimental observations of the proportions the 

Alder "endo" rule has been derived. This s t a t e s that the formation of 

the endo- adduct i s favoured, accompanied by the "maximum concentration of 

unsaturated centres" i n the t r a n s i t i o n s t a t e . This has generally been 

taken to imply that there are "secondary a t t r a c t i v e forces" between the 

addends i n the t r a n s i t i o n state, but recent theoretical considerations 

(Chapter 5) show that such forces need not be invoked. Although there 

are exceptions, the endo- adducts are usually the l e s s thermodynamically 
_1 

stable by about 5 kcal.mole , probably owing to s t e r i c crowding. Thus, 

there i s k i n e t i c control of the r a t i o of the reaction products. 

Absolute configurations are usually d i f f i c u l t to determine by 

chemical means. Aldrin can be shown to have completely endo configuration 
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by the formation of a cage compound on i r r a d i a t i o n . 46 

c i 

C l 

CI C l 

C l bonds formed on i r r a d i a t i o n 

C l 

Aldrin 

However, the equivalent adduct of norbornadiene and perfluorocyclc— 

pentadiene has two isomers formed i n the r a t i o 68:32, but i t was not 
18 

possible to assign t h e i r structures. 

Acetylenes produce a planar ring junction containing a double bond 

and hence there can be no endo/exo isomerism. 

Strained b i c y c l i c dienes are produced when acetylenes add to c y c l i c 

dienes such as cyclopentadiene and cyclohexadiene. Thus, i n order to 

release t h i s s t r a i n , there i s a driving force to produce either an 

aromatic compound and/or eliminate a gas of low free energy such as 

nitrogen or carbon monoxide. This e f f e c t has been used i n the synthesis 

of hexaphenyl benzene, 
Ph Ph Ph 

Ph 

Ph 
Ph 

+ C 
lit 
C 

-co P h f ^ ^ p 

Pht^Jp PhSS. ^<Ph 
Ph Ph 
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and for the structure determination of c e r t a i n cyclohexadienes e.g. 

a-terpinene. 

6 COOMe 

COOMe 
III 

COOMe COOMe 

COOMe 

Examples i n fluorine chemistry of t h i s kind of synthetic use of the 

Diels-Alder reaction are s t i l l somewhat limited. 1,2,3t*HTetrafluoro-

naphthalene i s produced by the pyr o l y t i c elimination of acetylene from 
38 39 

the adduct of tetrafluorobenzyne and benzene. Oxidation of the 
39 

adduct v/ith permanganate produces tetrafluorophthalic acid. 

G F 

KMnO 

COOH 

COOH 
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Difluorocarbene i s the entity l o s t when dimethyl 1,4,5i6»7i7-hexa-

fluorobicyclo[2,2,l]hepta-2,5-diene-2,3-dicarboxylate i s pyrolyzed. 

COOMe 

COOMe 480 
COOMe 

COOMe 
CF 2: (35%) 

Again i t i s only an aromatic system which i s stable under such d r a s t i c 

conditions. 

The ring s t r a i n may also be released by ring expansion, as i n the 
49 

475 

pyrolysis of norbornadiene. 

CH 
+ III " 

CH 

This s o r t of case i s uncommon,where there i s no p o s s i b i l i t y of 

aromatic resonance s t a b i l i z a t i o n . However, i n the example given on 

page 18,' a naphthalene i s readily formed by the rearrangement of a 
44 

t e t r a c y c l i c diene. 

L i t t l e has been published about the Diels-Alder addition of alkynes 

to larger ring dienes. Attempts to add alkynes (including benzyne) to 

cis,trans-cycloocta-1,3-diene succeeded i n forming only the 1,2 addition 
8 products by a non-concerted mechanism. 

C 
lit 

R 

R 

R. 

H 

R = COOMe (17%) 
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CHAPTER 3. NITRILES IN THE DIELS-ALDER REACTION. 

3*1] Reactivity of n i t r i l e s . 

From the large amount of work by J a n z ^ i t i s clear that n i t r i l e s 

undergo Diels-Alder addition i n an analogous fashion to alkynes. However, 

there are three major differences i n the mode of reaction: 

( i ) Reactions must be c a r r i e d out at higher temperatures. Although 

these reactions can be predicted to be thermodynamically feasible between 

25 and 550° by the negative value of the free energy change (AG°), a 

temperature i n the order of ltO0°C i s required before a reasonable rate 

of reaction i s obtained.^ 0 Some values of AG° at 327°, together with 

t h e i r associated equilibrium constants (K ) , are given i n Table 3^1(i) 
P 

51 

(page 2k), As temperature increases both these values decrease and 

the rate of reaction increases. The lack of correlation with y i e l d s 

simply shows that many other k i n e t i c factors have to be considered when 

attempting to predict the outcome of a reaction, such as activation 

energies, s t a b i l i t y of reactants, a l t e r n a t i v e reaction paths, etc. 

( i i ) P rior to the work reported i n t h i s t h e s i s , the primary Diels-Alder 

adduct has not been stable at the elevated temperatures required for i t s 

formation. I n the case of the n i t r i l e additions to butadiene 

[Table 3»l(i)], i t i s postulated that there i s spontaneous elimination of 

hydrogen from the dihydropyridine formed i n the addition step,thus 

accounting for the 2-substituted pyridines being the observed products. 
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R a H 400 
III 

R R N N N 

TABLE 3 « 1 A d d i t i o n of n i t r i l e s to butadiene. 

N i t r i l e R % Y i e l d (ltO0°C) AG° (327°C) log K p (327°C) 

CF^- 99.O -11.8 

97 - -
97 - -

CN- 3*f -31*0 11.3 

C1CF2- 12 - -
Ph- 1-*f - 7-7 2-8 

H- 1-0 -21.2 7-7 

Me- 0.1 - 9.9 3-6 

E t - 0-0if -12.5 k'5 . 

CH2=CH- 0 -16.3 5-9 

At these high temperatures the aromatic ring has a lower free energy content 
52 

and the cyclohexadienic system i s thermodynamically unstable. 

As with the addition of diphenylacetylene, tetracyclone 
53 

spontaneously eliminates carbon monoxide when added to benzonitrile, 

the i n i t i a l adduct being unstable with respect to an aromatic compound 

and a low free energy gas. 
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Ph 
Ph Ph 

P h ^ ^ > . P h 

III Ph Ph Ph N N 
Ph 

+ CO 

( i i i ) Only n i t r i l e s containing highly electronegative groups react 

successfully with dienes, as apparent from the y i e l d s given i n Table 3.1(i)» 

This i s i n agreement with the Alder Rule (Chapter 1*2) and i t seems that 

Ph, Me, E t and H have no favourable electronic factors which can activate 

the cyano- group's dienophilic properties. Therefore, i n reactions with 

other dienes, polyfluoroalkyl cyanides and cyanogens are expected to be 

the only e f f i c i e n t dienophiles. This i s the case i n pyridine syntheses 
5k 

with various butadienes such as isoprene and chloroprene. 

Yet another consequence of the high temperature of reaction i s the 

p o s s i b i l i t y of competing side reactions which not only reduce y i e l d s but 

also produce unexpected by-products. Several examples occur i n the 

butadiene-propionitrile reaction. a a III 
N 

NH Et N 

a E t 
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The thermal dimerization of butadiene to v i n y l cyclohexene, followed 

by rearrangement and elimination of i s an explanation for the 

formation of ethyl benzene. 55 Likewise, the n i t r i l e i s postulated to 

rearrange before c y c l i z a t i o n , aromatization being achieved a f t e r another 

rearrangement. 5^ 

CH,-CH -C=N 
3 2 

CH3-CH=C=NH 

HC-Me 
I! 
c 
II 
NH 

Thermodynamic calculations are i n accord with these r e s u l t s since 

the AG° values at 400° for the formation of these compounds i s ethyl-

pyridine ca. -10, a n i l i n e ca. -7, ethyl benzene ca. -35i and v i n y l 
-1 57 

cyclohexene ca. -9 kcal.mole . 

3.2] C a t a l y s i s of n i t r i l e additions. 

The Diels-Alder addition of n i t r i l e s to dienes i s susceptible to 

heterogeneous c a t a l y s i s on alumina and chromium oxide surfaces. Yields 

of the pyridine product are increased, p a r t i c u l a r l y with polarizable 

n i t r i l e s 5 8 [see Table 3 . 2 ( i ) 5 9 ] . 

Both the o l e f i n i c double bond, and the n i t r i l e t r i p l e bond are 

th e o r e t i c a l l y able to act as the dienophilic function i n the addition 

of a c r y l o n i t r i l e to butadiene. 
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a H 
CN N 

Uncatalysed 77% 0 

Catalysed 10% 1% 

TABLE 3 . 2 ( i ) . Heterogeneous c a t a l y s t s with butadiene at 400°C. 

N i t r i l e R % y i e l d catalysed % y i e l d uncatalysed 

Ph- 60 1-4 

E t - 16-4 0.04 

Me- 3-6 C 1 

CH2=CH- 1«2 0 

H- 1.01 1.0 

I n non-catalysed conditions the C=C group has been calculated to react 

5800 times more rapidly than the CSN group, and no v i n y l pyridine has 

been observed experimentally. However, i n the presence of c a t a l y s t i t 

reacts only 9*15 times f a s t e r (judged by product y i e l d s ) , and both v i n y l 

pyridine and cyanocyclohexene are formed.^ 
61 

The most e f f i c i e n t c a t a l y s t surfaces are a c i d i c , and the rate of 
reaction i s more sen s i t i v e to substitution i n the diene. The introduction 

62 
of a methyl group into butadiene enhances the rate s i x - to tenfold. 
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A proposed mechanism for heterogeneous c a t a l y s i s thus involves the i n i t i a l 

R X Ill 
N 

4- O" 

6. 1 
C-R 
II N 

N 

adsorption of the diene at an acid s i t e (S) followed by the attack of the 
62 

dienophile on the positive centre produced. Thus, the a v a i l a b i l i t y of 

the lone pair on the nitrogen of a c r y l o n i t r i l e could explain the observed 

preferential c a t a l y s i s e f f e c t s . However, since ammonium carbonate has 

sometimes been found as a side product, i t i s probable that there i s also 
62 

chemisorption of the n i t r i l e at some stage. 

Homogeneous c a t a l y s i s studies have not been carried out for n i t r i l e s 

i n spite of numerous examples of general acid c a t a l y s i s by phenols, 

Friedel-Crafts c a t a l y s t s etc. i n low temperature Diels-Alder r e a c t i o n s . ^ 5 
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CHAPTER 4. OTHER TRIPLE BONDS AS DIENOPHILES. 

4.1] Possible t r i p l e bond systems. 

The number of compounds containing t r i p l e bonds i s small and 

limited to the elements B, C, N, 0 and S. Acetylenes and n i t r i l e s 

were discussed i n Chapters 2 and 3» leaving the following compounds 

as possible dienophiles:- Ar-B^N-Ar, CJ^O, N=N, Ar-N=N, N=0, 

N=S-X and N=SFy 

The only reported case of Diels-Alder addition has been with the 

monomeric borazynes. They add to the very reactive diene, dimethyl 
64 

1,2,4,5-tetrazine dicarboxylate. 

C^F-.BCl- + ArNH 6 5 2 2 CgF^«B = N-Ar 

CgF^'B=N'Ar + 

COOMe 

T I 
COOMe 

COOMe 
Ar 

°6F5 

II I 
B . N 

COOMe 

N-

The reaction of benzene diazonium chloride gives Diels-Alder-type 

products, but i t probably involves a multistage ionic mechanism not 

involving a 1,4-addition. 

CH 
I I 2 + 

OEt 

N 

I C I © 
OSt Ph 

OEt 

EtO, 

OEt OEt 

EtO 



4.2] 30 

Apart from t h i a z y l chloride (reported i n this thesis) none of the 

other compounds, a l l gases, have a record of dienophilic properties. 

I t i s an inte r e s t i n g observation that only the borazynes and t h i a z y l 

halides form stable rings by dimerization, trimerization etc. Cyanuric 

compounds ( i . e . 1,3i5-triazines) and benzenes are, of course, the c y c l i c 

trimers of cyanogens (or n i t r i l e s ) and acetylenes. 

k.2] Sulphur-nitrogen halides. 

There are many compounds containing j u s t sulphur, nitrogen and 
66 

halogen. They are a l l shown i n Table h.2.(.l). 

Table 4 . 2 ( i ) . Sulphur-nitrogen halides. 
No. of S+N atoms Fluorides Chlorides Bromides 

2 
NSF 

NSF^ 

NSC1 

-

S N F 3 2 2 

S ^ C l 

S 3N 2C1 2 

S,N_Br 3 2 

6 
(NSF)^ 

S-.N-C1 
3 3 
(NSC1)-. 3 

-

7 vy V 3ci S ^ B r 

8+ (NSF)^ - (NSBr) 
X 
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They can a l l be prepared, d i r e c t l y or i n d i r e c t l y from tetrasulphur 

te t r a n i t r i d e (S^N^). Of the compounds containing t r i p l e bonds t h i a z y l 

t r i f l u o r i d e (NSF^) i s the l e a s t reactive. Unlike t h i a z y l fluoride (NSF) 

and t h i a z y l chloride (NSC1) i t does not polymerize and i t r e s i s t s 

h y d r o l y s i s . ^ NSF i s an unstable gas, producing green-yellow c r y s t a l s 

of S y ^ * ^ ^ storing i n glass vessels a t room temperature below 

67 
atmospheric pressure. I t i s readily hydrolysed by water. 

Although the sulphur-nitrogen l i n k s are being considered as t r i p l e 

bonds, bond length measurements indicate that bond orders are l e s s than 

^68-70 After NSF^, NSF has the highest bond order of any sulphur-nitrogen compound. 

1.ifl6A ( „ 1.¥t6A 
1-552A 116°52' 

o 
1.646A 

Bond order 2«7 Bond order 2«5 

Monomeric t h i a z y l chloride has a s i m i l a r structure to t h i a z y l 

fluoride. I t can be conveniently prepared as a green gas by heating 

i t s trimer, t r i t h i a z y l t r i c h l o r i d e , i n vacuo at 100°C. The reaction 

i s r e v e r s i b l e . 

N CI 
Cl-S A X S - C l „„o 

v / x 100 vac. it) . 
N X ^ V N R o o m T e m p . 

^ S ^ 
I 
i 

CI 

3 N = S 
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However, under the conditions of the Diels-Alder reaction, compounds 

i n addition to NSCl are l i a b l e to be produced. Mechanisms and 

rearrangements i n this f i e l d of inorganic chemistry are by no means 

well-defined and different types of sulphur-nitrogen ring systems tend 

to readily interconvert, either under the influence of heat or i n the 

presence of sulphur halides. For instance, i f (NSCl)^ cracked and 
66 72 

formed sulphur chloride a l l the following reactions are possible. 

w l S — S 
s 2 c i s - s s c i N'SICI© 

heat J NSCl + S C l 2 + S - ^ C l 

(NSCl)^ readily acts as a chlorinating agent, e.g. with aromatic 

amines, with the formation of S^N^Cl and a variety of unspecified side 

products. I t i s common to form unidentifiable, a i r - s e n s i t i v e , polymeric 
73 

red o i l s i n any reactions involving t h i s compound. 
Although sulphur-nitrogen multiple bonds have been u t i l i z e d i n the 

7k 75 Diels-Alder reactions of S^N^ v/ith olefins and acetylenes they have 

always been associated with the diene component. 

The numerous unpublished reactions of (NSCl)^ with chlorinated 

o l e f i n s , dienes, n i t r i l e s and acetylenes also do not yet appear to 

76 
include the 1,4-addition of NSCl as a dienophile. 
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CHAPTER 5. MECHANISM OF THE DIELS-ALDER REACTION. 

5.1] Possible mechanisms. 

The Diels-Alder reaction can be defined as the formation of a s i x 

membered ring compound from a diene which contributes four atoms to 

the ring and a dienophile which contributes two. The diene must be 

conjugated with the double bonds cis-orientated at the time of reaction, 

but the dienophile can be p r a c t i c a l l y any unsaturated compound. 

I II 

Two new o-bonds are formed at the expense of two Tt-bonds. 

I t i s possible to envisage three d i s t i n c t reaction paths:-o ( i ) 

( i i i ) t ( i i ) 

e 

( i ) One-step, v i a a concerted mechanism. 

( i i ) Two-step, with a zwitterionic intermediate. 

( i i i ) Two-step, with a b i r a d i c a l intermediate. 
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k 12 
There are several reviews e.g. ' on t h i s topic, so that a l l the 

pathways w i l l not be treated f u l l y and examples kept to a minimum. 

The majority of the r e s u l t s support a synchronous, rather than a two-step 

mechanism, although evidence i s also accumulating that a whole range 

of mechanisms may occur under appropriate conditions. 
5.2] Kinetics and description of the tra n s i t i o n state. 

As expected the Diels-Alder reaction obeys second order k i n e t i c s : -

Rate = k^ [diene] [dienophile] 

Chapters 1-3 gave many examples of the relevant electronic e f f e c t s of 

substitution i n the diene and dienophile and, although the eff e c t s on 

rate are large i n absolute terms, application of the Hammett equation 
i 

show that they are f a r too small to agree with a zwitterionic intermediate. 

The change of rate caused by replacement of MeO with NÔ  i n a t y p i c a l 
77 8 78 Diels-Alder (1:10) i s f a r l e s s than i n a s o l v o l y s i s reaction (1:10 ) . 

Ie0 
1CN0. 

_1_ 
10 

X = MeO, N0„ hypothetical 
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He V CI CI 
Me 

1 SleO 
T_8 10 

The Hammett p values are always low, ca. 0»3 i n the case of the 
36 

phenyl propionates (Chapter 2 ) , thus signifying a non-ionic mechanism, 

but the s l i g h t l y polar nature of the t r a n s i t i o n state i s shown by the 

correlation of rates with a" values [ F i g . 5 . 2 ( i ) ] . 

NO 

T c i log rate 

m H substituted phenyl 
propiolate 

AeO 

FIG. 5 . 2 ( i ) . Application of Hammett equation to Diels-Alder reaction 
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The low p o l a r i t y of the t r a n s i t i o n state i s also demonstrated by 

comparable rates i n the gas phase, and by the small solvent e f f e c t , 

which rarely increases by a factor of more than 10 by changing to a 
8o 

solvent of higher solvating power. 

Diels-Alder associations are equilibrium reactions which are 

exothermic i n the forward d i r e c t i o n , activation parameters being useful 

guides to mechanisms. Activation energies (E) are generally r e l a t i v e l y 
-1 81 

small (8 - 27 kcal.mole ) and log A factors (k*0 to 7*5) are also 

small compared to the bimolecular c o l l i s i o n theory value (ca. 11, A i n 

l.mole"" secT ). Activation entropies are large, negative and 

reasonably constant (-31 to -J>6 e.u.). The l a t t e r i n p a r t i c u l a r 

indicates a highly-ordered t r a n s i t i o n state with a high degree of 

formation of both bonds, strong evidence i n favour of the concerted 

mechanism. 

On the other hand, although s t i l l supporting the synchronous 

mechanism, the magnitude of the secondary k i n e t i c isotope e f f e c t i s 

small and indicates only a s l i g h t change i n hybridization at the reaction 

centres i . e . the t r a n s i t i o n state i s more l i k e the reactants than the 

product e.g. . 
Q[-

Host, but not a l l , c a t a l y t i c a c t i v i t y has been r e s t r i c t e d to 

Lev/is acids (AlCl^, TiCl^ etc.) which can form a complex with a c t i v a t i n g 

substituents i n the dienophile (e.g. the carbonyl group i n maleic 
86 

anhydride, methyl aerylate e t c . ) . Since the " c i s " p r i n c i p l e i s s t i l l 



5.2] 37 

87 obeyed, together with a greater tendency to form the endo- adduct, 

there i s probably no change i n mechanism. However, i n the case of 

heterogeneous catalysis i n the n i t r i l e - p y r i d i n e synthesis (Chapter 3.2) 
88 

and catalysis with acids and phenols, there has been some discussion 

of ionic intermediates. 

As q u a l i t a t i v e l y expected from the stoichiometry of the reaction, 
gq 

the rate and y i e l d i s increased by increasing the pressure. A 55$ 

y i e l d of 2-cyanopyridine i s obtained at 100° i f cyanogen and butadiene 

are heated together i n a sealed tube, whereas the atmospheric pressure, 

gas-phase reaction yields only 3^% at 400°.^ 

Kinetic studies have not led to any unequivocable mechanism f o r the 

common p r e f e r e n t i a l formation of the endo- adduct, f o r i n certain cases 
91 

the exo- isomer i s k i n e t i c a l l y favoured. Methods which involve 
92 

secondary non-bonding interactions such as dipole induction forces, 
93 

charge transfer, "maximum accumulation of unsaturation", and o r b i t a l 
symmetry cannot explain, f o r example, the exclusive formation of the 

95 
endo- adduct i n the reaction of cyclopentadiene with cyclopentene or 

cyclopropene.^ 

In overall energy terms, however, the difference between the 

isomers i s small (ca. 3 kcal.mole ), so that, under the influence of 

so many external factors, i t i s not surprising that i t has proved 

impossible to predict exo- : endo- r a t i o s with any certainty. 

Nevertheless, t h i s r a t i o has been used to derive an empirical scale of 
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solvating power,fl, which, increasing as solvent p o l a r i t y increases, 
91 97 

par a l l e l s other solvent functions. 
The above evidence would give an incorrect, biased picture. There 

98.99 
are instances which are better explained by a radical mechanism. ' 

For example, perfluorocyclopentadiene and cyclopentadiene y i e l d a mixture 

of XVI and XVII i n constant r a t i o (l6:8if) which i s solvent and 

* II 
XVI 

V (16%) 
XV XVII 

temperature independent. Since the compounds have not been made to 

rearrange to each other, the best i n t e r p r e t a t i o n i s the formation of 
99 

both via a common, bi r a d i c a l intermediate XV. 

Thus a complete description of the mechanism of the Diels-Alder 

reaction i s not possible. "A graded continuum f o r systems of d i f f e r e n t 

structure, from a completely symmetrical four-centre mechanism to a 

f u l l y developed two-step mechanism"''^ should be envisaged. However, f o r 

the majority of cases there i s probably a c o l l i s i o n of the four reacting 

centres i n a favourable orientation, rapidly followed by passage through 

an asymmetric t r a n s i t i o n state which has a high degree of bond formation 

and some s l i g h t polar character. 
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5.3] 1,2-Cycloadditions. 

1,2-Cycloaddition i s the commonest cy c l i z a t i o n process f o r 
101 

fluorinated o l e f i n s , and i t often competes with 1 ,4-cycloaddition i f 

the diene''^'''^ or d i e n o p h i l e ^ ' ^ ' ^ contains flu o r i n e atoms. Table 1 . l ( i i ) 

shows the large range of values f o r the competing 1,2-addition of 

1 ,1-dichloro -2 ,2-difluoroethylene ("1122") with various c i s - constrained 

dienes (16-99%), where the governing factor seems to be the distance 

between the termini of the conjugated system. In that case i t i s 

impossible to distinguish between the concerted or two-step modes of 

r i n g closure.^ 
Most of the stereochemical evidence favours a b i r a d i c a l process 

101 
f o r thermal 1 ,2-cycloadditions. This i s strongly supported by the 

102 
free r o t a t i o n about the 2,3 double bond i n additions to hexa-2,4-dienes. 

(16%) 

"1122" 

Often, t h i s i s assumed to be the correct mechanism i n other cases e.g. 

On the other hand Table 5 . 3(i) i l l u s t r a t e s the opinion that the 

mechanism of competing 1,if-cycloaddition changes according to the type 

of dienophile. I f there i s a p o s s i b i l i t y of s t a b i l i z i n g a d i r a d i c a l 

(84%) 

103 
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TABLE 5 . 3 ( i ) . 1,4-Addition competing with 1 ,2-addition. 

Dienophile Diene % 1 ^ A d d i t i o n Ij^l-Mechanism Ref. 

0.86 (60°) to 2.32 (176°) radical 104 

"1122" 
R 

1.6 (R,Me) to 45 (R,C(Me)3) radical 98 

not reported - 102 

CH 
It 

99-98 concerted 105 

II 
CH2 

100 - 105 

CH 
I I d-

>^ 77 to 91 concerted 106 
II 

,K 
CN OAc 

_ ^ \ _ 99-6 concerted 106 

intermediate, as with "1122", yields of 1,4-addition products are 

r e l a t i v e l y low, and the radical reaction i s f a v o u r e d . ^ ' H o w e v e r , 

a concerted mechanism i s considered to operate with olefins having a 

greater electron density i n the ir-system, and yields of 1,4-adducts are 

much greater (77-100&). 1° 5 , 1 0 6 

In spite of the above, i t cannot always be assumed that every thermal 

2+2 cycloaddition involves the dir a d i c a l mechanism since the cyclic 

dimerization of tetrafluoroethylene to perfluorocyclobutane appears to 
107 

be concerted. However, the absence of cyclobutane products does not 

necessarily imply the absence of 2+2 addition, since i t i s considered 
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that a six membered cyclohexene i s thermodynamically more stable than 

a four membered cyclobutane.''^'^^ 

Molecular o r b i t a l approaches. 

Consideration of the symmetry and energy of the highest occupied 

molecular o r b i t a l of one reactant and the lowest unoccupied molecular 

o r b i t a l of the other reactant, ( i . e . the f r o n t i e r electron method), 

the properties of the remaining o r b i t a l s , and energy l e v e l correlation 

diagrams lead to a set of selection rules f o r concerted cycloaddition 
110 111 reactions. There i s quantitative support f o r these theories. 

The d i f f e r e n t stereochemical ways available f o r the simple terminal 

cycloaddition of an m u-electron system to an n it-electron system 

are shown i n Fig. 5.Mi), and the selection rules f o r thermal (A) and 

photochemical (hv) cycloadditions are given i n Table 5.Mi). 

TABLE 5.Mi). Hoffmann-Woodward selection rules f o r cycloaddition. 

m+n A hv 

cis-trans cis- c i s 

trans-cis trans-trans 

kq+2 
c i s - c i s 

trans-trans 

cis-trans 

trans-cis 
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c 
K 

Y 

ci s - c i s 

C 
x trans-trans 

c 3 
cis-trans 

t —» b indicates that the top face ( t ) of the lower 

component i s adding to the bottom face (b) of the 

upper (Y-substituted polyene f i r s t ) . A trans-cis mode 

also exists which i s d i s t i n c t from, the cis-trans mode. 

FIG.5.Mi). Stereochemical modes of cycloaddition. 
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The Diels-Alder reaction i s an example of a 4+2 — 6 electron 

system where the components add i n a c i s - c i s fashion. I n other words, 

the rules predict that the reaction i s "thermally allowed", assuming 

that i t i s concerted. 

I t i s apparent that the trans-trans or cis-trans approach of any 

components i s s t e r i c a l l y unfavourable, but not impossible. The 

assumption that 2+2 cycloaddition must proceed via a diradical process 

i s incorrect. Concerted thermal dimerization of tetrafluoroethylene 

i s symmetry allowed provided that the molecules are at r i g h t angles 

i n the t r a n s i t i o n state, to give r i s e to a puckered cyclobutane r i n g . O o Q OTD O CIS 
trans 

I n the diagram above, the cis-lobes of the rc-molecular o r b i t a l of the 

v e r t i c a l o l e f i n are overlapping with trans-lobes on the horizontal one, 

i. e . a cis-trans 2+2 addition [see Table 5 . 4 ( i ) ] . 

Zimmermann's method arrives at the same conclusion by using the 

concept of Mobius-type o r b i t a l s i n twisted it-electron systems i . e . 

concerted 2+2 cycloadditions are thermally allowed, but require a 
112 

greater activation energy than i n the photochemical case. 
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I n certain f o r t u i t o u s cases e.g. i n the dimerization of butadiene 
9k 

to produce v i n y l cyclohexene, i t i s possible to invoke secondary 

o r b i t a l interactions v/hich are favourable to the formation of the endo-

isorner i n k+2 cycloadditions. The same methods also successfully 

predicted, before the reaction was performed, that 6+k cycloadditions 
113 

should lead p r e f e r e n t i a l l y to the exo- adduct. 

Extended Hiickel calculations arrive at the same results, but f o r 
11^- 115 

di f f e r e n t reasons. 1 For the dimerization of cyclopentadiene 

calculations give an energy difference of k*7 kcal.mole i n favour 

of the endo- t r a n s i t i o n state, i n agreement with observed values. 1 

of t h i s value i s accounted f o r by overlap at the primary centres 

alone, i . e . those eventually forming the o-bonds. 

Thus, there i s l i t t l e need to invoke any "secondary a t t r a c t i v e 
118 

forces" to explain the preponderance of endo- adducts, and such 

quantitative methods should work with dienophiles not having any of these 

"forces" available e.g. cyclopentene etc. (page 37). 
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5.5] Reverse Djels-Alder reaction. 

Diels-Alder addition i s an equilibrium reaction which i s unimolecular 
_ -i 

i n the reverse dir e c t i o n . Activation energies (E) (26-57 kcal.mole ) 

are higher than the corresponding values f o r the forward reaction 

(8-27 kcal.mole ). This i s the natural consequence of the forward 

reaction being exothermic overall, and both reactions employing the 

same t r a n s i t i o n state. 

Whereas high negative entropies of activation have been noted f o r 

the forward reaction (Chapter 5.2), the reverse reaction i s 

characterized by very low values, some comparative activation parameters 

are given i n Tables 2 . l ( i i ) ^ and 5«5(i).^'' 
TABLE 5 . 5 ( i ) . Kinetic parameters of forward and reverse additions. 

Addends Forward 
_log_A_ E AS* 

Reverse 
log A E AS 

2 xO 
CHO 
0 

7-5 27«5 -30«6 

6-1 16-7 -35*2 

6*2 15*2 -35*0 

6*5 11«6 -35*6 

12.9 57«5 -5-4 

13*0 33*7 +1*4 

12«3 33*6 -7«2 

12*6 29*0 -3*0 
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The entropy figures p a r t i c u l a r l y indicate that t r a n s i t i o n states are 
119 

closer to adducts than addends. 

From a synthetic viewpoint the most useful adducts are those which 

are able to undergo a d i f f e r e n t reverse Diels-Alder reaction, e.g. i n 

the preparation of 1,2-bis(trifluoromethyl)benzene the alternative 
ifO.4-1 

elimination of acetylene takes place: 
CF, 
I 3 

C 

CF, 

+ C2 H2 

Where there i s such a choice of products the mode of retrogression 

i s governed by t h e i r free energy, A reaction becomes more favourable 

i f , f o r instance, there i s resonance s t a b i l i z a t i o n i n an aromatic 
119 

product, as i n scheme No.1 below [Table 5 . 5 ( i i ) ] . 

Of the various reactions i n the table, No.1 i s the only one which 

takes place readily; AG° becoming negative at about 400°C. 2a and 3a 

eventually take place at 700 - 800° with the elimination of ethylene, 

not acetylene. However, tars are also formed, so that, because the 

s t a r t i n g materials are not stable at such high temperatures, the 

decomposition may take place v i a a multistep mechanism, not a concerted 
119 

reverse Diels-Alder reaction. 
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TABLE 5 » 5 ( i i ) . Calculated free energies of some retrodiene reactions. 

No. Reaction Temperature 
300 500 700 1000 1200 a 5'6 -if.O 

+ -C=C-

-0.8 -13*9 -22.5 

21.9 2.4 -10.5 

a a 
+ -C3C-

-o«3 -15*1 

26.7 5'2 



P A R T I I 

D I S C U S S I O N 



J+8 

CHAPTER 6. ADDITION OF ALKYNES TO PERFLUOROCYCLOHEXA-1,3-DIENE. 

6,1] Preparation of the adducts. 

The expected 1 . 4-addition of alkynes across the conjugated diene 

system took place* No 1 , 2-addition was observed. 

X 0C III 
• 

i 

i I I 

TABLE 6.1(1). Addition of alkyne to perfluorocyclohexa-l^-diene. 

Alkyne ( I ) Yield ( I I ) Temp. Time 
No. X Y % (°C) ( h r . r 

I a H Me 9k 180 kO 

l b H CF? 92 200 100 

Ic H CH2C1 88 180 17 

I d H Ph 5k 175 20 

Ie Me Me 71 200 19 

I f CH2C1 CH2C1 62 200 kO 

I g Me CF? k9 220 63 

I n COOEt COOEt k7 215 18 

I i CF^ CF^ 36 225 18 
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As shown i n Table 6 . 1 ( i ) , nine alkynes ( l a - I i ) were heated with 

perfluorocyclohexa-1,3-diene i n sealed Pyrex tubes also containing a free 

ra d i c a l i n h i b i t o r (dipentene) and i n each case a 2,3-disubstituted 

1i /t»5»6,7,7 l8,8-octafluorobicyclo[2 f2,2]octa-2,5-diene (Ha - I l i ) was 

formed. 

Although only q u a l i t a t i v e comparisons can be made, because no 

attempt was made to standardize conditions or optimize y i e l d s , i t seems 

that the Diels-Alder reactions of perfluorocyclohexa-1,3-diene do require 
25-27 

"inverse electron demand" i n the dienophile. Propyne, containing 

the electron donating methyl group gives the best y i e l d (9k%) and, 

of the symmetrical butynes, dimethyl acetylene gives the greatest y i e l d 

(71$). The = C-H grouping appears to have the greatest activating 

influence, except i n the case of phenyl acetylene, where there was a large 

amount of t a r r y product formed. The f i v e butynes (Ie - I i ) d e f i n i t e l y 

follow the trend of "inverse electron demand", perfluorobut-2-yne ( I i ) 

giving the lowest y i e l d (36$), and the others intermediate values up to 

71$, f o r but-2-yne ( I e ) , However, a greater y i e l d of H i can be achieved 

(ca. 90$) by increasing the temperature to 264° and the time to 22 h r s , ^ ^ 

Competition reactions would have given more precise values of the r e l a t i v e 

activating influences of substituent groups. 

Because the yields are reduced by the competitive dimerization of 

perfluorocyclopentadiene, i t may be unwise to i n f e r too much from the 

figures, but, a higher r e a c t i v i t y i s indicated f o r t h i s five-membered r i n g 
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diene since lower reaction temperatures seem to be required; 115 f o r 

the addition of acetylene (42$, 65 n r . ) , and 133° f o r dimethyl acetylene 

dicarboxylate (22#, 72 n r . ) . 

The properties of the adducts confirm the basic r i n g structure as 

being a bicyclo[2,2,2]octa-2 t 5-diene (Structure A), formed by the 

1,If-addition of the alkynes, and exclude the alternative bicyclo[4,2,0]octa-

2,7-diene (Structure B), which would have been the re s u l t of 1,2-addition. 

or 

A B 

A l l adducts showed an absorption i n the range 1763-1777 cm. assigned 

to the CF=CF stretching frequency of the C5 to C6 double-bond, and a l l 

except l i e and I l f showed a second C=C stretching absorption i n the region 

1630-1680 cm. assigned t o the 2,3 double-bond. The l a t t e r frequency 

i s consistent with a double~bond i n a six-membered r i n g , rather than 
—1 121 

a four-membered r i n g , which i s required f o r Structure B ( ca. 1566 cm. ) . 

The absence of a second absorption i n the double-bond region when the 

substituent i s -CH^Cl i s anomalous; a l l y l chloride shows the expected 
—1 122 

C=C stretching absorption (16^5 cm. )• 
19 

Further strong evidence f o r Structure A i s provided by the F n.m.r. 

spectral data given i n Table 6 , l ( i i ) : 
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TABLE 6.1(H). yF N.m.r. spectra l data for alkyne adducte ( I I ) . 

Adduct ( I D Chemical S h i f t a 

No. X Y CF 2-CF 2 CF=CF •JC-F i CF 3 

H a H Me -40. 4 -8-4, -7.5 47«2, 49.7 

l i b H CF 5 -40.0 -10.6, -9.6 46 .8, 52.0 -99.8 

l i e H CH2C1 -if 1.8 -10O, -8.6 46.6, 51*9 

l i d H Ph -4 1«0 -9.4, -8.4 45«2, 47.4 

H e Me Me -39-2 -7-8 50»1 

H f CH2C1 CH GL -40*8 -8-9 52.7 

H g Me CF^ -10.6 47.8, 51«6 -103.8 

I l h b COOEt COOEt -41-6 -10.3 50.5 

H i CF^ - 4L4 -12.4 5C3 -108.8 

Notes: P.p.in. from i n t e r n a l hexafluorobenzene i n neat l i q u i d 

(- dovmfield, + up f i e l d ) . 

^ Saturated solution i n ether. 

( i ) The adducts of the symmetrical alkynes (He, f, h, and i ) have 

simple n.m.r. patterns which are only compatible with a symmetrical structure. 

( i i ) The s i m i l a r i t y of the chemical s h i f t s throughout the s e r i e s 

indicates a common s t r u c t u r a l unit. 

( i i i ) The t e r t i a r y fluorine resonances occur at high f i e l d (+45*2 

to +52*0 p.p.m. upfield from C^F^) which correlates well, not only with the 
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equivalent resonances i n Pyke's 1 ,*+-adducts of perfluorocyclohexa -1 ,3 -

16 
diene with olef i n s (+31*7 to 9), but also with the analogous 
1 f ^,5 ,6 ,7 ,7-hexafluorobicyclo [2 ,2 tl]hepta -2 ,5-diene system (+k&*7 and 

18 

+^9*9)» 1,2-Addition of olefins produces fused four- and six-membered 

rings and the t e r t i a r y fluorine resonances are shifted downfield (+35*5 

to - 6 - 9 ) . 1 6 

( i v ) The s h i f t s of the v i n y l i c , and fluorine atoms bonded to C7 

and C8 are q u a l i t a t i v e l y as expected. 

Unfortunately the fine structure of these spectra was complex and 

spin-spin coupling constants could not be determined. For instance, 

the geminal fluorine atoms on C7 and C8 are b a s i c a l l y of type AA' BE 1, 
12*f 

but the resonances are much broadened by multiple long-range coupling, 

and, i n Table 6 . l ( i i ) , only the approximate centre of gravity of many 

resonances i s quoted. 

The pyrolysis of the adducts- discussed below provides evidence which 

i s incompatible with any structure other than the bicyclo [2 ,2 ,2]octadiene 

skeleton (A). 

6.2] Etyrolysis of the Diels-Alder adducts. 

In addition to st r u c t u r a l evidence, one of the important reasons 

for carrying out the pyrolyses of the adducts was the hope that an ortho-

disubstituted tetrafluorobenzene would be the major product a f t e r the 

elimination of the -CF^-CF^- bridge i n a reverse Diels-Alder type of 
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TABLE 6 . 2 ( i ) . Pyrolysis products ( I I I ) of alkyne adducts ( I I ) . 

Mass spec, 
base peak Product ( I I I ) No. 

[ C12H
6V+ 

CC8H
6V+ 

[ C 9 H 5 F 4 ° 2 ] + 

6101 

630c 

6ool 

550' 

6001 

600" 

600" 

550' 

50cr 

CF7 

'CH2C1 

.CH 

H 
Ph 

Me 
Me 

H 

C CH 

Me 
CF, 

H 
H 

H 

COOH 

CF_ 

( I l i a ) 

( I l l b ) 

( I I I c ) 

( n i d ) 

( H i e ) 

( I l l f ) 

( I l l g ) 

( I l l h ) 

( I l l i ) 

(nid) 

( I l l k ) 

Note. A l l unmarked bonds to fluorine. 
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reaction (Chapter 5.5). This was thought to be p a r t i c u l a r l y valuable 

sy n t h e t i c a l l y for two reasons:-

( i ) Nucleophilic substitution i n pentafluorobenzene derivatives 

generally forms para- disubstituted products, ortho- and meta- derivatives 

usually only being present i n an isomeric mixture which i s often d i f f i c u l t 

to separate. 

( i i ) Alternative routes to ortho- derivatives suffer from a 

combination of low y i e l d s , experimentally d i f f i c u l t techniques or exotic 
39 126—129 s t a r t i n g materials e.g. ' 

As can be seen from Table 6 . 2 ( i ) , the hoped for reaction occurred, 

i . e . tetrafluoroethylene (TE*E) was released from the strained b i c y c l i c -

[2,2,2]octa-2,5-dienes ( I I ) i n every case, simply by pyrolysis (500-630°) 

at reduced pressure. 

In most cases, where the substituents are only H, Me, CF^ or Ph, 

i . e . i n adducts I l a , b, d, e, g, and i , there i s an almost quantitative 

y i e l d (71-99$) of the expected ortho- disubstituted tetrafluorobenzene. 

The -Ch\>Cl group eliminates HC1 under these conditions and leaves a 

reactive carbene to undergo further reaction. There i s no evidence 

showing the stage at which the elimination of HC1 takes place; the 

trans - 2 , 2 1 , 3 i 3 ' , 5 i 5'-octafluorostilbene ( H i d ) must be the r e s u l t 

of an intermolecular dimerization, e.g. 
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CH->C1 
F (50%) H 

y CH^Cl 

H 

H 
CH 

H 

(20#) H 

and the 2 , 3»^ ,5-tetrafluorophenylacetylene ( I l l g ) most l i k e l y a r i s e s from 

the intramolecular rearrangement of an intermediate carbene and possibly 

v i a a benzocyclobutene as i n the diagram below. 

0C CH CH_C1 H — 2 C_F 
F 2HC1 

CH_C1 CH 

4, 

C 

CH 

05" H H 

(8296) 
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A si m i l a r c y c l i c rearrangement has been postulated i n the pyrolysis of 

xylenes at reduced pressure.^® 

Ethylene and carbon dioxide were formed i n addition to TFE i n the 

pyrolysis of diethyl 1,1+,5,6,7,7,3,8-octaf l u o r o b i c y c l o ^ ^ ^ o c t a ^ ^ -

d i e n e ^ ^ - d i c a r b o x y l a t e ( I l h ) , the exact r a t i o of the products probably 

depending on the temperature and pressure conditions. The pyrolysis 

of the analogous perfluorocyclopentadiene adduct, at a lov/er temperature 

(^80° i n a sealed tube), produces carbon dioxide and an unidentified gas. 

However, only the y i e l d of the phthalate diester i s quoted , even 
18 

though the degraded products are also presumably present (page 22). 
Table 6 . 2(i) also adds weight to the theory that the mass spectrum 

of the adduct can often p a r a l l e l the behaviour of the adduct on vigorous 
131 

pyrolysis. Thus, for adducts I l a , b, d, e and g the base peak of the 

mass spectrum corresponds (apart from charge) to the product of py r o l y s i s . 

Further, the base peak a r i s e s from the molecular ion by expulsion of a 

molecule of TFE; a process which was substantiated i n each case by the 

observation of the appropriate metastable peak. Although not the base 

peak, m/e 286 [ C g F ^ ] * , corresponding to the pyrolysis product, perfluoro-

o-xylene ( I l l k ) , i t i s present as 7k% of the base peak a t m/e 100 C^F^]"1". 

Hov/ever, such correlations between mass spectra and pyrolyses must 

be used with some caution, since the fragment ions of l i e , I l f and I l h 

corresponding with the main pyrolysis products were often of low i n t e n s i t y . 

Thus, although the monochloromethyl ( l i e ) and bismonochloromethyl ( i l f ) 
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adducts both have a base peak corresponding to the los s of C^F^ and CI 

from the molecular ion, the r e l a t i v e proportions of the peaks 

corresponding to the major aromatic pyrolysis product showed a large 

variation i . e . 

—C F 
H e 2 k > [ C ? H 3

3 5 C 1 F 4 ] + m/e 198 (74%) 

H f 
—C F 

Likewise, l i t t l e can be deduced from the mass spectrum of the diester 

adduct ( H h ) . The base peak, m/e 221 [CgH^F^O^]"^ corresponds to the 

loss of COOEt and ^ e P e a ^ s corresponding to the i d e n t i f i e d 

aromatic products were of only r e l a t i v e l y low inte n s i t y . 

[ C ? H 2 F I 0 2 ] + m/e 194 (16-1%) 

Hh 

[ C 6 H 2 F Z f ] + m/e 150 (1-6%) 

No d i f f i c u l t y was experiencedin characterizing the products of 

pyrolysis. The gases could a l l be i d e n t i f i e d by means of i . r . and mass 

spectrometry; the aromatic products by analysis, i . r . , u.v., mass and 

n.m.r. spectrometry. 

The n.m.r. resonances i n Table 6 . 2 ( i i ) were assigned to p a r t i c u l a r 



TABLE 6.2(11). 1 ^ F n.m.r. spectral parameters for ortho disuostituted tetrafluorobenzenes. 

2-F 
3-Fl 

Compound Chemical Shifts a F-F coupling constants b 

X Y 2-F 3-F 4-F 5-F 3 J 2,3 J 2.5 \ » J3.5 A s 
I l i a H Ke -17v»t (-19-0) -5-3 (-6-9) -2«2 (-3-4> - 2 L 7 (-22*2) - 19-8 8.2 13.0 19'8 2-0 19*8 

I l l b H CF 3 -23«4 (-22*9) -9«6 (-10.8) -13'3 (-15-3) -25.3 (-26-1) -100.0 18-5 7-7 13-3 19*2 3*8 18.6 0 

I I I c H CI^Cl -10.V-8.it -3'3 -3«3 • -8.V-10.4 - Not 1st order 

H i d H -24-0/-20-0 -7-6 -7-6 -2O-0/-24.O - Not 1st order 

H i e H Hi -23«7 (-19«0) -6-9 (-8.3 -1+.9 (-6.4) -27-6 (-23«6) - 19«8 2.8 12.lf 19*8 2*4 20.4 d 

I l l f Me He -19-0 (-17.3) -1.0 (-1.7) -1.0 (-1*7) -19-0 (-17.3) - Not 1st order 

I l l g H C=CK -28.9 (-28.9) -8.8 (-1L7) -10-8 (-13-2) -25-0 (-27-0) - 19.3 11.9 19.5 2.9 20.0 

I l l h Ke CF 3 -21«6 (-2L2) -3'2 (-5*6) -10.4 (-13-6) -21.6 (-21«2) -106.0 Not 1st order 

HU H COOH -29-8 (-23-8) -9»1 (-9>4) -16.8 C-11-5) -2i*«5 (-24-7) - 19*8 10-5 13-9 19.5 2«V ; 21«o d 

I H k CF 5 ^3 -30»6 (-25*1) -17.4 (-17.5) -17-4 (-17-5) -30-6 (-25«1) -108.8 Not 1st order 

Notes. 
Neat liquids, with respect to CgFg as external reference, predicted values (see text) i n parentheses. Average values, 
better than 1 0»5 Hz. c (CF^-aromatic fluorines) 13»4(2), 0.8(3), WCO, 0-6(5). d Saturated solution In CCl^. 

VJ7 Co 

http://-10.V-8.it
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fluorine atoms by a combination of chemical s h i f t and spin-spin coupling 

data. Chemical s h i f t s can be predicted by assuming that shielding 

parameters are obtainable from the appropriately substituted pentafluoro-
132 133 

benzene and that they are additive for tetrafluorobenzenes. ' The 
133 

values of Bruce were used for the predictions i n the table. Most of 

the predicted s h i f t values, as expected, agree to within ±3 p.p.m. but 

the presence of larger variations i s not disturbing, considering that 

the solvent e f f e c t on the reference used (CgFg), by diluting i t to a 5% 
13k 

solution i n CCl^, s h i f t s the resonance downfield by 5*25 p.p.m. The 

only exception appears to be 2 ,3»^«5-tetrafluorobenzoic acid ( i l l j ) , where 

there i s a r e v e r s a l of the 2-F and 5-F s h i f t s . However, i f the alternative 

assignment were made i t would require an abnormally high meta-HF coupling 
constant (10«0 Hz) and an abnormally low ortho-HF coupling constant 

133 
(6«5 Hz). Other spin-spin coupling constants, where they could be 
obtained from f i r s t - o r d e r s p l i t t i n g patterns, are generally within the 

133 13^ 

ranges of published values e.g. 

Conclusive evidence that many of the structures are as drawn i s 

provided by the f a c t that f i v e of the products produced by t h i s pyrolysis 
126 

method are known compounds: l ^ ^ j ^ t e t r a f l u o r o b e n z e n e ( i l l i ) , 
-I TEC *\1\f\ 

exact,2,3»^»5-heptafluorotoluene ( I l l b ) , perfluoro-o-xylene ( I l l k ) , 
2 t 3 , k , 5-tetrafluorobenzoic acid ( I l l j ) , 1 2 7 ' 1 2 9 t 1 5 7 and 2 , 3 , 4 , 5-tetra-

39 
fluorobiphenyl ( H i e ) . The data agrees well, except that Vorozhtov's 

137 
group has in c o r r e c t l y assigned the structure of the l a t t e r compound ( H i e ) 
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39 to the Diels-Alder adduct of tetrafluorobenzyne and benzene. The 
137 

oxidation of th i s product to give H l j i s possibly correct, but the 
sample was probably impure since the melting point (79-80°) was 

127 129 

considerably l e s s than those reported e a r l i e r (92-92*5, and 86-86*5 ) • 

The 2 , 2 ' , 3 , 3 ' , 5 , 5 ' - o c t a f l u o r o s t i l b e n e ( H i d ) was assigned the 

trans-geometry on the basis of the s i m i l a r i t y of the wavelength and shape 
138 

of the absorption i n the u.v. spectrum to that of trans-stilbene. The 

fluorinated compound showed a multiplet absorption (v , 293 nm.) 

simi l a r to trans-stilbene (v , 29*f nm., multiplet), unlike that of 
max. 139 ci s - s t i l b e n e (v , 280 nm., smooth absorption curve). 

03EOC • 
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CHAPTER 7. ADDITION OF NITRILES TO PERFLUOROCYCLOHEXA-1,3-DIENE. 

7.1] Comparison with addition to butadiene. 

The r e s u l t s of Diels-Alder addition of n i t r i l e s to perfluorocyclo-

hexa-1,3-diene are summarised i n Table 7 . 1 ( i ) . 

Or R 
I N N N 

IV V VI 

TABLE 7 . 1 ( i ) . Successful reaction of n i t r i l e s with perfluorocyclohexa-

1 t3-diene. 

N i t r i l e (IV) Temp. Time Y i e l d % 
R (°C) (hr.) V VI 

IVa CF^ 400 16 - 40 

IVb Br 500 15 - 40 

IVb Br 380 12 9 18 

IVc (CF 2) 3CN 350 64 - 10 a 

IVc (CF 2) 3CN 350 16 4 1 

IVd °6 F 5 390 64 - 4 

Note. a Together with perfluoro -1 ,3-bis -2 ,2 l-pyridylpropane (Vie) 10% 
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Many aspects of t h i s reaction r e f l e c t the pattern established by 

Janz and h i s co-workers (see Chapter 3). The only s i g n i f i c a n t 

difference i s that i n t h i s work i t was possible to i s o l a t e , for the 

f i r s t time, the primary Diels-Alder adduct of a n i t r i l e and a diene 

i . e . compoundsVb and Vc i n Table 7 . l ( i ) . I n previous work the primary 

adduct was inferred as an intermediate i n the reaction by the nature 

of the is o l a t e d pyridinic products. More points of s i m i l a r i t y and 

difference between th i s work and that reported previously are discussed 

below: 

( i ) Although a reaction temperature of 350-400° was also required, 

t h i s was under s t a t i c conditions, whereas Janz almost always used a 

flow system. The s t a b i l i t y of the reactants and products a t high 

temperatures i s , therefore, possibly more important i n obtaining a 

successful reaction. 

( i i ) The addition was attempted with seven n i t r i l e s , but i t was 

successful i n only four cases; no pyridinic products were detected when 

Me, Ph or CH^Cl were the substituents i n the n i t r i l e , i . e . contrasting 

with the f i n i t e , though small, amounts of 2-substituted pyridines formed 

i n homogeneous gas phase reactions with butadiene, MeCN (0*1%) and 
51 

PhCN (1»if?o). Although the y i e l d s are l e s s than those with butadiene, 

the best y i e l d s are nevertheless obtained from n i t r i l e s containing a 

highly electronegative substituent, kO& with CF-.CN or BrCN. 
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( i i i ) There was always an elimination of tetrafluoroethylene 

(TFE) from the intermediate strained heterobicyclic system (V) which 

resulted i n the formation of the corresponding 2-substituted pyridine 

( V I ) . This i s analogous to the loss of hydrogen from the postulated 

intermediate, dihydropyridine, i n the butadiene additions. 

( i v ) Competing side reaction consumed s t a r t i n g materials and 

reduced y i e l d s ; for example, i n every case there was 1,2-addition of 

TFE to perfluorocyclohexa -1 ,3-diene to give perfluorobicyclo [4 ,2 ,0 ]oct-

2-ene, 26% of t h i s adduct was recovered from the reaction involving the 

addition of perfluoroacetonitrile and 1,3-diene, but t h i s y i e l d was not 

always recorded since t h i s 1,2-adduct was usually collected i n a l i q u i d 

f r a c t i o n containing the unreacted s t a r t i n g materials and was not 

separated. The most forcing conditions used i n previous attempts to 

produce an adduct between TFE and perfluorocyclohexa -1 ,3-diene were to 

heat the compounds at 250° for 36 nr. At 400° t h i s i s a f a c i l e reaction. 

Another unexpected product was the dimer of the diene, formed i n small 

proportions (4 to 5$) during the reactions l a s t i n g 64 nr. 

Starting materials were l o s t i n many other ways; etching of 

the glass reaction tube produced s i l i c o n tetrafluoride, perfluoro-

cyclohexa-1,3-diene isomerized to i t s 1,4-isomer, and there was the 

inevitable "coke and t a r " . The addition involving cyanogen bromide 

produced a complex mixture of reaction products, p a r t i c u l a r l y at the higher 
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temperature. The TFE eliminated from the primary 2-bromobicyclic 

adduct (Vb) reacted with cyanogen bromide and free bromine to produce 

1-bromo-2-cyanotetrafluoroethane and 1,2-dibromotetrafluoroethane 

respectively. Also isolated were monocyclic addition products of CNBr 

to the 1,3-diene and there was mass spectroscopic evidence for compounds 

with molecular formulae CgBrF-p, C^BrFgN, C^BrF^N, C ^ B r ^ N and C^Br^N, 

which can only be accounted for i n terms of a complicated sequence of 

addition and elimination reactions. I n view of the complexity of the 

mixture of minor products they were not extensively investigated. The 

temperatures recorded i n Table 7 . l ( i ) are probably close to the optimum 

values for the reactions, since at lower temperatures no adducts were 

formed and higher temperatures led to greater amounts of side-products 

and degradation. 

7.2] Comparison with additions to alkynes. 

The y i e l d s presented i n Table 6 . l ( i ) indicated that alkynes showed 

a r e a c t i v i t y consistent with an "inverse electron demand" i n the 

dienophile, Me being an activating substituent. This i s c l e a r l y not 

the case i n the addition of n i t r i l e s , and the trends of the Alder rule 

appear to be obeyed. I t i s , however, worth pointing out that a l l the 

products are thermally stable, f u l l y fluorinated compounds. Judging 

by the large amounts of S i F ^ produced, i t i s possible that the reagents 

containing hydrogen form reactive r a d i c a l s which abstract fluorine from 
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fluorinated molecules and produce species, such as HF, which can etch 

the glass ampoule. Janz has pointed out that y i e l d s of pyridinic 

products are much reduced by using such thermally unstable n i t r i l e s . 

Thus, i n the presence of such f a s t decompositions, i t i s not r e a l l y 

j u s t i f i a b l e to express even a qualitative idea of the r e a c t i v i t y of 

the n i t r i l e group i n the cases of benzonitrile, a c e t o n i t r i l e or mono-

chloroacetonitrile. The u t i l i t y of these n i t r i l e s w i l l also be reduced 

by the i r tendency to form 1 , 3 , 5-triazines a t 400° under pressure and one, 

2 , 4 , 6-triphenyl - 1 , 3 , 5-triazine was i s o l a t e d . Carrying out these 

reactions at lower pressures i n the gas phase by a flow process may, 

perhaps, be more successful. 

As with the addition of alkynes an important reason for carrying 

out these reactions was -the possible synthetic value of the products. 

Because nucleophilic substitution of pentafluoropyridine takes places 

primarily i n the ̂ -position and 2-substituted tetrafluoropyridines are 

j s t r i c t e 
lMf,1*f5 

not e a s i l y obtained. Their preparation i s generally r e s t r i c t e d 

to i n d i r e c t fluorination techniques followed by aromatization. 

Unfortunately d i r e c t routes to a large range of these compounds v i a 

n i t r i l e additions also seems unpromising, since no n i t r i l e containing 

hydrogen has yet proved successful. Hov/ever, t h i s drawback may be 

al l e v i a t e d by preparing derivatives of perfluoro-2-bromopyridine e.g. 

the Grignard reagent. Only one such reaction was attempted; the 

copper coupling of two molecules gave perfluoro - 2 , 2'-bipyridyl. 
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2 F 

N 
Br 

Cu/DMF. 

The l o s s of the -CF 2-CF 2- bridge from the 2-azabicyclo [2 ,2 ,2]octa-

2,5-dienes (V) i s exactly analogous to i t s l o s s from the alkyne adducts 

on pyrolysis (Chapter 6), but, owing to the high temperatures involved, 

the elimination step appears to take place i n s i t u and shortly a f t e r the 

formation of the n i t r i l e adduct. Thus, i t was possible to i s o l a t e only 

two adducts, perfluoro-3-bromo- (Vb) and 3-(3-cyanopropyl)-2-azabicyclo-

[2,2,2]octa-2,5-diene (Vc). 

There i s , however, one major difference i n the respective adducts. 

Only the 3-bromo adduct (Vb) was available i n s u f f i c i e n t quantity for 

pyro l y s i s , but t h i s had an almost equal propensity for the reverse 

Diels-Alder reaction, not observed at a l l with any alkyne adduct. An 

inter e s t i n g comparison between the mass spectrum of th i s adduct and the 

Br 
F II 

N 

(CFo)-zCN 

Vb Vc 

Br C-F 
CNBr* or Br 

+ 

Vb 42% 58% 
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alkyne adducts predicted that t h i s retrodiene reaction was l i a b l e to 

occur. H/e 224 [CgFg] + was the base peak for Vb and the peaks 

corresponding to the pyridine product [C^BrF^N] had a t o t a l i n t e n s i t y of 

only 57$. This contrasts with the majority of the alkyne adducts, i n 

which the base peak corresponded to the eventual aromatic product; m/e 

22k was always i n s i g n i f i c a n t l y small. Vc had a base peak at m/e 100 

[C^F^]" 1", owing t-o the abundance of CF^ groups i n the molecule, but here 

also, 5/e 22k (k?%) was far larger than nj/e 326 [ C g F - ^ ] * (3.5%). 

This indication that the cyanopropyl adduct (Vc) i s even more l i k e l y to 

undergo reverse Diels-Alder addition i s borne out by the lower o v e r a l l 

y i e l d s of products, the elimination of TFE having to compete with the 

f a s t e r retrodiene reaction. 

A possible reason for these r e s u l t s i s that the C-N single bond 
— 1 —1 

energy (66 kcal.mole ) i s lower than the C-C bond energy (80 kcal.mole ) 
146 

and i s thus more e a s i l y broken. As shown i n Table 5»5(i)» the 

activation energy for a forward Diels-Alder reaction involving c y c l i c 

dienes i s only about 18 kcal.mole l e s s than the activation energy for 

i t s reverse. An adduct formed with a n i t r i l e w i l l have these values 

even closer, since the major difference i s the cleavage of a C-N bond 

rather than a C-C bond. The ef f e c t , therefore, should be to enable 

both the forward and reverse reactions to occur almost equally e a s i l y . 
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7.3] Characterization of the n i t r i l e adducts and 2-substituted pyridines. 

Only one 2-azabicyclo[2,2,2]octa-2,5-"diene has been reported 

previously and t h i s was without any i . r . data. ' However, the 

i . r . absorptions at 1765» 3-bromo derivative (Vb), and 1775 cm. 

3-(3-cyanopropyl) derivative (Vc) can be readily assigned to the CF=CF 

stretching frequency by analogy to the alkyne adducts (1763 to 1777 cm. ), 

The C=N stretching absorption of Vc occurs at 1660 cm. , within the 

range expected (1680 to 1630 cm. ) , but the value for Vb i s s l i g h t l y 

lower, 1615 cm. , owing to the s i m i l a r known reduction of C =C stretching 
lA-9a 

frequencies by bromine bonded to an o l e f i n i c carbon atom. 
The cyanogen bromide adduct has three possible structures: 

( i ) [ r J CN 
Br 

( i i ) ( i i i ) 
^Br 

Structure ( i ) can be eliminated not only by the i . r . evidence, which 

does not include a CsN stretching vibration, but t h i s , or i t s monocyclic 

isomers, also occured as i d e n t i f i e d by-products. Both ( i i ) and ( i i i ) 

could be expected to have s i m i l a r n.m.r. spectra, but the ring s t r a i n 

i n a ^t-membered ring should reduce the C=N stretching frequency to 

ca. 1570 cm. , and only ( i i i ) has a structure compatible with an 

equally f a c i l e reverse Diels-Alder addition of CNBr and elimination of 

TB*E. The same basic structure must be envisaged for the 1 : 1 
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1,3-dicyanopropane adduct (Vc) to account for the observed formation 

of the pyridirdc products. 
19 

The F n.m.r. spectra can be analysed purely on the basis of 

chemical s h i f t s , as with the alkyne adducts, into t e r t i a r y , v i n y l i c and 

methylene fluorine resonances, as shown i n Table 7 . 3 ( i ) . I n s u f f i c i e n t 

TABLE 7 . 3 ( i ) . F n.m.r. spectra of n i t r i l e adducts. 

Compound Chemical Slu Lft ( r e l . i n t e n s i t y i n brackets) Compound 
^C-F CF=CF CF 2 

Vb a 

Vc 

+29-4(1), +9*4(1) 

+48*2(1), +14*1(1) 

-10-5(1), -17'7(D 

-8-4(1), -16.2(1) 

-42-5(4) 

-4L4 ( 6 ) , -50.2(2), 
-58.6(2) 

a b Notes. neat l i q u i d , external Cg*g; 20% solution i n CC1 

in t e r n a l C J V . 

work has been done on model compounds to assign precisely a l l the 

resonances, but those at +9*4 (Vb) and +14*1 (Vc) are presumably of 

the t e r t i a r y fluorines adjacent to the nitrogen atoms, since r i n g 

nitrogen always causes a large s h i f t to lower f i e l d when i t replaces a 

carbon atom. 

I n spite of t h e i r high l a b i l i t y , i t may be possible to i s o l a t e a l l 

the adducts, under suitable conditions. The most l i k e l y precursor of 
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the b i s p y r i d y l compound i s the adduct of perfluoro-2-(3-cyanopropyl)-

pyridine and perfluorocyclohexa-1,3-diene, although there i s no 

chemical evidence. 

F 

The 2-substituted tetrafluoropyridines were characterized, as 

usual, by analysis, i . r . , u.v., mass and n.m.r. spectroscopy. The 

data for perfluoro -2-methylpyridine agrees well with that published 

previously. * ̂  Although not s t r i c t l y applicable, owing to the 
151 152 

nitrogen atom perturbing the ir-electron system, * the values of 
19 

F n.m.r. substituent shielding parameters obtained from pentafluoro-

pyridine and substituted pentafluorobenzenes were used to assign 

chemical s h i f t s [see Table 7.3(ii ) 3 . Apart from the fluorine atom 

adjacent to the nitrogen (6-F), the predicted values agree reasonably 

with the measured values. F i r s t - o r d e r spin-spin coupling patterns 

enabled coupling constants to be evaluated. They agreed q u a l i t a t i v e l y 
150 

with published values and are i n t e r n a l l y consistent e.g. J c < (22*7 
to 2^*9 Hz) i s always l e s s than J , c (25»^ to 28.1 Hz). The s h i f t s of 

3,o 

the a l i p h a t i c fluorine atoms i n the pyridyl propanes were assigned by 

comparison with the values of the s h i f t s i n 1,3-dicyanohexafluoropropane. 



TABLE 7 . 3 ( i i ) . F n.m.r. spe c t r a l parameters of 2-substituted tetrafluoropyridines (VI) •vJ 

Substituent Chemical S h i f t a F-F Coupling Constants b 

Notes Substituent 
3-F 4-F 5-F 6-F V \? \ 6 

Notes 

CF^ -21-4(-20.6) -28.o(-28.5) -13«5(-12.7) -82.0(-76.3) 17 •? 10-1 28.1 17»0 19»8 24.1 c,d 

Br -33-2(-27«9) -29»3(-28.2) -7-5(-5»7) -82.6(-72*0) 18.2 4.6 25*6 17*2 17*0 22.7 c 

C6 F5 -22.7(-22'6) -24.7C-28.3) -8.2C-9-5) -8L7(-76.3) 17*4 4.7 25*4 17«2 17-8 24-9 e,f 

(CF 2) 3CN -23*4 -28.0 -83.2 17*8 — 26*5 17*8 18.8 24.3 

(CF 2) C ^ N -23 «4 -26.8 -12.4 -82.3 18.2 — 27*4 18-2 18.6 24-2 i t j 

Notes. Predicted values i n parentheses. Average values, generally better than I0«3 Hz. Neat l i q u i d , 

external C^F^. d CF^ chemical s h i f t at -97«5. 6 30 v o l . % i n CCl^, i n t e r n a l CgFg. f C^F^ 

chemical s h i f t s at -1*2 (meta- to p y r i d y l ) , -12«0 (para-) and -22*1 (ortho-). g 50 vol. % i n CCl^, 

i n t e r n a l CgFg. h C F 2 chemical s h i f t s at -51*2 (a, adjacent to p y r i d y l ) , -39«8 ( p ) , and -58»0 ( y ) . 
i 20 v o l . % i n CC1., i n t e r n a l CJ",. J CF chemical s h i f t s at -50-0 (a) and -39*0 ( p ) . 
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7.4] Other cycle-additions of perfluorocyclohexa-1,3-diene. 

As b r i e f l y mentioned above-, perfluorocyclohexa-1,3-diene formed 

a 1,4- Diels-Alder adduct with i t s e l f and a 1,2- addition product with 

TFE under the conditions of the n i t r i l e addition reactions. The 

numbers of possible structures for these compounds i s increased by the 

presence of perfluorocyclohexa-1,4-diene, which, as shown i n a separate 

experiment, i s the r e s u l t of the isomerization of the 1,3-diene. 

Since the TFE adduct has only one CF=CF stretching frequency 

(1740 cm. ) only the b i c y c l i c structures ( i ) to ( i i i ) need be considered. 

Of these, the perfluorobicyclo[4,2,0]oct-3-ene ( i i ) , and [2,2,2]oct-2-ene o ( i ) ( i i i ) ( i i ) 

( a l l unmarked bonds to F) 

19 

( i i i ) can be eliminated simply on symmetry grounds, the F n.m.r. 

spectrum shows eight d i s t i n c t resonances [Table 7 . 4 ( i ) ] . I t was, of 

course, possible to prepare t h i s compound by heating the 1,3-diene and 

TFE at 400°. Unfortunately, i t was not always possible to purify i t 

by t h i s route since i t has almost the same retention time as 1,4-diene 

on the g.l.c. columns used. The quantity of 1,4-diene produced was 

variable, ranging from zero to 40% even though conditions were s i m i l a r . 

No TFE was recovered, i t always dimerized to perfluorocyclobutane. 
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The stereochemistry of the ring-junction of the adduct has not 

been elucidated. There are two possible arrangements of the t e r t i a r y 

fluorine atoms, either trans-disposed ( I ) , on opposite sides of the 

ring system, or cis-disposed ( I I ) . The most l i k e l y means of 

( A l l unmarked bonds 
to F) 

I Trans- I I C i s -
Perfluorobicyclo[k,2,0]oc t-2-ene 

ascertaining t h i s would be by studying the n.m.r. of th i s adduct and 

other cyclobutane derivatives, (feasible only i f spin-decoupling 

equipment were a v a i l a b l e ) . With these symmetrical addends, hov/ever, 

i t i s not possible to prove v/hether the addition takes place by a 

thermally concerted or a r a d i c a l mechanism. The Woodward-Hoffmann 

rules for 2+2 cycloaddition (see Chapter 5.5) predict that the trans-

isomer ( I ) can a r i s e from a thermal t r a n s - c i s addition (trans-lobes 

of a diene double-bond overlapping with the cis-lobes of TFE) or a 

r a d i c a l trans-trans addition. I I could a r i s e from either a thermal 

c i s - t r a n s addition or a r a d i c a l c i s - c i s addition. 
101 

Chapter 5*3 pointed out that 2+2 cycloaddition i s normal for TFE 

so that the [^,2,0] octene was the expected product. I t came as a 

surprise that, i n one isolated attempt to prepare t h i s material, the product 

was largely bicyclo[2,2,2]oct-2-ene ( i i i ) , even though the conditions 
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appeared p r a c t i c a l l y i d e n t i c a l . This has the same molecular weight, 

but a different i . r . , cracking pattern i n the mass spectrum (base peak 

at m/e 155» not m/e 255)i and n.m.r., which shows a completely 

symmetrical structure. The l a t t e r also provided the only evidence 

supporting the [ 2 , 2 , 2]-bicyclic skeleton, since the high upfield 

position (+59°k p.p.m.) of the t e r t i a r y fluorine atoms indicates that 

they are not attached to adjacent carbon atoms''^"^ [Table 7 . M i ) ] . 

TABLE 7 . 4 ( i ) . F n.m.r. of isomeric perfluorocyclohexa -1 ,3-diene adducts. 

Compound Chemical S h i f t ( r e l . i n t e n s i t y i n brackets) 
( a l l perfluoro-) C F 2 CF=CF ^ CF 

On -46»5 to -38-5(8) -21.8, -19»0 +25*3, +34.7 

-40.0(8) -14.2(2) +59«4(2) 

60endo? -59-2 to -34.2(8) 
-24*2, -21.4 

-20-2, -14.2 

-3*4, +16«6 

+48-8(2) 

GO-8* -64.6 to -32-6(8) 
-27-4, -23»4 

-20.6, -17*6 

-12«2, +4.6 

+44.4, +47*2 

Unfortunately, t h i s impure product was is o l a t e d i n only one experiment 

and attempts to repeat i t s preparation have, so f a r , been unsuccessful. 
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Presumably t h i s anomalous r e s u l t was due to the presence of isomeric 

impurities i n the recovered s t a r t i n g materials or some unidentified 

impurities. 

Further v e r i f i c a t i o n of these structures should have been possible 

by permanganate oxidation of the double-bonds, but, for some reason, 
16 

also found by Pyke, some fluorinated b i c y c l i c systems do not appear 

to produce stable polybasic acid products which can be i d e n t i f i e d v i a 

any of the usual derivatives. 

Prolonged heating of perfluorocyclohexa -1 ,3-diene at 390° for 

Ikk nr. produced a f a i r y i e l d (ca. hQf&) of a dimeric product (m/e kk8), 

shown by a combination of g . l . c . and n.m.r. to consist of a mixture 

of two very s i m i l a r isomers i n a r a t i o of about 1 : 8. Also the i . r . 

absorptions occur at p r a c t i c a l l y i d e n t i c a l frequencies, so that they are 

c l e a r l y exo-endo isomers. Possible structures should include 1,*t-

and 1,2-addition products of perfluorocyclohexa -1 ,4-diene since t h i s 

was also produced i n the reaction i . e . o 
( i ) i i i ) ( i i 00 CO 

( i v ) (v) ( v i ) 

( A l l unmarked bonds to F) 
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Structure ( v i ) i s the only one compatible with the F n.m.r. spectra 

[Table 7 . 4 ( i ) ] . ( i ) to ( i v ) can be eliminated on grounds that 

adjacent t e r t i a r y fluorine atoms could not account for the upfield 

resonances at about +45 p.p.m., (see also Chapter 6.1, page 52), and 

(v) i s untenable since i t posseses a plane of symmetry. Perfluoro-
2 7 

tricyclo [ 6 . 2.2 . 0 ' ]dodeca-4,9-diene (v) actually has an unsymmetrical 

stereoisomer i n which the adjacent t e r t i a r y fluorine atoms on C2 and 

F F Cfl /, 
( A l l unmarked bonds to F) F ( A l l unmarked bonds to F) F 

c i s - trans-

C? are trans-disposed, but such a structure should not be formed i n a 

Diels-Alder reaction, since t h i s would be contrary to the " c i s - " 

p rinciple (Chapter 1.1). Again unidentifiable products rendered 

permanganate oxidations useless for structure confirmation. However, 

pyrolysis of the major isomer produced p r a c t i c a l l y only 1,3-diene (there 

were traces of TFE i n the gases), thus supporting structure ( v i ) . 

The remaining problem i s the stereochemistry of the Diels-Alder 

addition pf the dimerization. The reasons for naming the longer 

endo- (ca. 89%) exo- (ca. 11%) 
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retained, major isomer as the endo-adduct are tenuous; ( i ) the 

empirical Alder "endo" rule predicts that the isomer produced i n the 

greatest y i e l d w i l l have endo- orientation of the double bonds 

(Chapter 2.2); ( i i ) consideration of 3-dimensional models seems to 

indicate that the t e r t i a r y fluorine atom on C-2 and C-7 w i l l be l e s s 

shielded i n the endo- form (-3*4, +16«6 p.p.m.) by the C-9 to C-10 

double bond than i n the exo- form (-12*2, +4*6 p.p.m.), Only 
19 

measurements of long-range F n.m.r. coupling constants i s l i k e l y to 

produce confirmation of t h i s postulate. 

7.5] C a t a l y s i s with boron t r i f l u o r i d e . 

N i t r i l e additions to butadiene are f a c i l i t a t e d by alumina/chromium 

oxide c a t a l y s t s (Chapter 3.2), but since BF^ has been used as a c a t a l y s t 
153 

i n 1 , 3-dipolar additions involving n i t r i l e s i t was hoped that t h i s 

easily-handled gas would also be eff e c t i v e i n the Diels-Alder reaction. 

E i t h e r a reduction i n reaction temperature or an acceleration of 

addition would have reduced the p o s s i b i l i t y of unproductive side-reactions. 

Although a f u l l study was not undertaken, BF^ appeared to have no 

favourable c a t a l y t i c a c t i v i t y . No reaction took place by heating CF^CN 

and 1,3-diene i n the presence of BF^ at 200° for 16 nr. and there was 

not f u l l conversion of st a r t i n g materials at 300° for 2k hr. The 

green and orange colours observed before heating were probably owing to 

some complex formed between the n i t r i l e and BF,. Hov/ever, i t i s l i k e l y 
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CF_—C=N —> BF, 

that this complex dissociated at the temperature of reaction, and the 

possible favourable reduction i n electron density of the n i t r i l e t r i p l 

bond was not present. 

The other attempts at c a t a l y s i s were made with MeCN, which does 

not add under normal conditions. Again, there was no positive e f f e c t 

at low temperature (195° for 28 hr.) only s t a r t i n g materials were 

recovered, and at 400° for 17 hr. the only r e s u l t was deep etching of 

the glass reaction tube and a residual hard, black, carbonaceous 

material. 
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CHAPTER 8. ATTEMPTED DIELS-ALDER REACTION OF THIAZYL CHLORIDE. 

8.1] The reaction of t h i a z y l chloride with perfluorocyclohexa-1 ,3-diene. 

The trimer of t h i a z y l chloride, (NSCl)^, was heated with perfluoro-
o 71 154 cyclohexa-1 ,3-diene at 100 . The l i t e r a t u r e * shows that t h i s 

should dissociate into t h i a z y l chloride, NSC1, enabling the t r i p l e 

bond of the molecule to act as the dienophile i n a Diels-Alder reaction. 

This i s probably the best explanation for the observed products, since 

a 1:1 adduct, CgFg.NSCl, was separated from the reaction mixture when 

there was excess 1,3-diene, equation A. Another product, CgFg.NS^, 

was also formed; to the exclusion of CgFg.NSCl when the reactants were 

i n approximately equimolar proportions, equation B; 

A: CgFg + (NSC1) 3 CgFg.NSCl + CgFg.NS., 

20.k mmoles 12*3 mmoles (NSC1) k% 27% 

B: C 6Fg + (NSC1) 3 c 6Fg.NS 2 + red o i l 

11*5 mmoles 9'5 mmoles (NSC1) 75% (w.r.t. NSC1) 

Unfortunately subsequent experiments could not d e f i n i t e l y assign 

their structures, partly owing to the d i f f i c u l t i e s involved i n handling 

these a i r - s e n s i t i v e substances and also due to the absence of any 

si m i l a r compounds i n the l i t e r a t u r e . I t cannot be d e f i n i t e l y claimed 

that CgFg.NSCl i s the r e s u l t of 1, It-addition of NSC1, since t h i s 
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proposed dienophile was not actually observed at any stage. 

8.2] The products of the reaction. 

CgFg.NSCl, a colourless v o l a t i l e l i q u i d , has several possible 

structures from the i . r . and mass spectra: 0= 0= S-Cl N 
I ( i ) a I ( i ) b 
N S-Cl 

0 ci N 
( i i ) a F Ml ( i i ) b ( i i i ) 

CI 
CI 

The parent molecular ion occurs at m/e 305 (P+2 indicating one 

chlorine atom) and prominent i . r . absorptions are observed a t 1?40 
-1 ISS (CF=CF) and 1490 cm. (S-N multiple bond). ^ This l a t t e r frequency 

corresponds to bond order appreciably i n excess of two. This may be 

considered to be due to either a formal t r i p l e bond, or a formal 

double bond with further bonding contributions a r i s i n g from (a) an 
6+ 6-

ionic component N = S and/or (b) Tt-donation i . e . the interaction between 

the lone-pair of electrons i n a nitrogen p-orbital and the vacant 

d-orbitals of sulphur. Highly electronegative atoms attached to 

sulphur enhance both (a) and (b). For example, MeN=S0F5 has a formal 
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RO-CH=CHR RO-CH-CHR 

RO-SO -N=S-» 0 
R-SO 

N—S 

of N-sulphinylsulphonamides and v i n y l ethers being s i m i l a r l y unstable. 

A c l e a r c r y s t a l l i n e s o l i d i s formed on exposure to a i r or on 
19 

contact with water, with the exothermic evolution of a gas. The F 

n.m.r. spectrum shows a multiple of s i x fluorine atoms; two GF^ groups 

(-45*5 and -33*6 p.p.m.), and two CF groups (-26»3 and +2»4 p.p.m.). 

The CF resonance at -26»3 p.p.m. i s a broadened t r i p l e t , i . e . i t appears 

to be adjacent to a nitrogen atom. The proton n.m.r. spectrum 

indicates at l e a s t seven hydrogen atoms and the i . r . spectrum shov/s that 

a carbonyl group (1735 cm. ) may be present i n the molecule. The mass 

spectrum has highest m/e at 236» which normally indicates an even number 

of nitrogen atoms. No structure could be devised which i s consistent 

with a l l t h i s data. By analogy with the hydrolysis of the ̂ ^-adducts 
1 '-tR 

of N-sulphinyl compounds and butadiene, the gas produced i s probably 

a mixture of SO and HC1. However, a s i m i l a r ring-opening or c NHPh SO 
H c Ph o Oh so N-Ph 
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c y c l i z a t i o n i s prevented from occuring by the C 2F^ bridge i n CgFg.NSCl. 

CgFg.NSCl i s not formed when (NSCl)^ and CgFg are reacted i n 

stoichiometric proportions. I t was only formed when there was a 66% 

excess of 1,3-diene, and even then, the second product CgFg.NS^ was 

observed. The l a t t e r compound, a viscous pale-yellow l i q u i d , was a 

most unexpected product. I t appears to be an odd-electron molecule 

or free r a d i c a l , for which i t i s impossible to s a t i s f y the common 

valencies of sulphur and nitrogen by normal two-centre bonds, i . e . 

This structure seems to be the one most consistent with the 

spectroscopic evidence. The i . r . spectrum showed a CF=CF stretching 

vibration at 1750 cm. , and the highest peak i n the mass spectrum was 

form was considered, but an approximate cryoscopic molecular weight 

determination (M, 330) at l e a s t showed that i t was not a dimer i n 

benzene solution. The molecule i s symmetrical since there are only 

three resonances i n the n.m.r. spectrum [ a t -36*2 (CF^), -15*3 ( v i n y l i c 

fluorine) and at +26»2 p.p.m. ( t e r t i a r y fluorine) v/ith t o t a l r e l a t i v e 

i n t e n s i t i e s 2 : 1 : 1 ] , One fact that does not correlate v/ell i s that 

N 

correct at m/e 302. Since the compound i s not very v o l a t i l e a dimeric 
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the t e r t i a r y f l u o r i n e resonance appears further u p f i e l d than expected, 

by comparison with CgFg.NSCl (+8»4 or +12*0 p.p.m.). The n.m.r. 

spectrum also does not rule out symmetrical structures which involve 

a five-raembered r i n g i n the b i c y c l i c system. Lack of data on similar 

F • N-S=S S-N=S 

compounds makes the d e f i n i t e assignment of structure d i f f i c u l t . 

Although only circumstantial, certain evidence favours the [3*2,2] 

b i c y c l i c system since cyclic S-N-S sequences have been i d e n t i f i e d i n 

other systems, e.g. 

S —S 
R-N N-R W 

159 160 

An alternative to the odd-electron molecule, which v/ould not show 

chlorine i n the mass spectrum, i s an ionic form: 

N+.C1" 

\2J 
Hov/ever, i t s v o l a t i l i t y and separation by g.l.c. exclude such a structure. 
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In addition, although elemental analyses seem unreliable with 
73 

sulphur-nitrogen halogen compounds i n general, the carbon analysis 

was correct f o r CgFg.NS,,. Halogen analyses were invariably high, one 

explanation being that CNS® , formed during the potassium fusion, 

interferes with the estimation procedures used. 

8.3] Possible mechanisms. 

Preliminary experiments were carried out at about 200°C, i . e . 

i n comparable conditions to the alkyne addition. This resulted i n 

etching of the glass tube, unidentified gaseous products, dichloro-

octafluorocyclohexene, and unidentified polymeric o i l s and solids. 

One reaction tube exploded. These temperatures were obviously too 

high, causing decomposition of s t a r t i n g materials and/or products, and 

only i l l u s t r a t e d the chlorinating a b i l i t y of t h i a z y l chloride. 

Reproducible results were possible by lowering the temperature of 

reaction to 100°C. Thus, i t could be concluded that the t r i p l e bond 

i n NSC1 i s f a r more reactive than i n either alkynes or n i t r i l e s , which 

require reaction temperatures of ca. 200 and ca. k00° respectively. 

A method f o r proving t h i s theory would be to carry out the experiment by 

using genuine NSC1 monomer, e.g. i n a gaseous flow reaction, and compare 

the y i e l d obtained with other dienophiles i n sim i l a r conditions. 

From present evidence i t cannot be categorically stated that the 

reaction involves the 1,4-cycloaddition of the t r i p l e bond i n t h i a z y l 
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chloride. The compound heated i n the reaction tube i s i t s trimer, 

(NSCl)^ t and although i t depolymerizes above 50°*''''^ there can be no 

guaranteee that t h i s occurs before other reactions take place. As 

i l l u s t r a t e d i n Chapter k, there are many possible fragmentation paths 

available f o r the trimer, and other compounds containing multiple N-S 

bonds are p o t e n t i a l l y capable of reacting as dienophiles cf, N-sulphinyl 
* 158 compounds: 

Thus, i t i s possible to devise alternative mechanisms involving, 

f o r instance, the trimer i t s e l f . 

CI 

CI CI <3 y N 
F 

N 
N CI CI 

CI 

+ 2NSC1 

Similarly the hetero-atoms i n 

trimer, but mass spectral evidence 

precursor of C^-FQ.NS , at least i n 

CgFg.NS2 may arise d i r e c t l y from the 

suggests that CgFg.NSCl may be the 

the mass spectrometer and possibly 
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INTRODUCTION. 

This i s a summary of the apparatus and instruments used f o r 

obtaining the results throughout the Experimental section. 

Vacuum system. - An e f f i c i e n t vacuum system, employing a two-stage 

rotary o i l pump and mercury d i f f u s i o n pump, capable of at t a i n i n g a 

"s t i c k i n g " vacuum (ca. 10 mm.) was used f o r transferring v o l a t i l e 

compounds i n vacuo, storage and measurement of gas. Small amounts of 

gases (< 10 mmoles) were measured by noting the pressure i n a small 

bulb (485 t 5 ml,) f i t t e d with a wide bore manometer, and, by increasing 

the volume to 4020 i 30 ml., larger amounts could be measured. This 

section u t i l i z e d mercury f l o a t valves. 

Infrared spectra, - Spectra were recorded on Perkin Elmer 137 and 

157 sodium chloride spectrophotometers. 

U l t r a v i o l e t spectra. - Unicam SP800 u.v. spectrophotometer. 

Mass spectra. - A.E.I. MS9 spectrometer. 

N.M.R. spectra. - Perkin Elmer R10 spectrometer, operating at 
19 1 o 56*46 MHz f o r F and 60 MHz for H spectra, operating temperature 33*5 • 

Unless otherwise stated, the chemical s h i f t s are i n p.p.m. from an 

in t e r n a l reference i n the neat l i q u i d , hexafluorobenzene or tetramethyl-

silane (-ve downfield). Coupling constants are i n Hz. 

Analytical g.l.c. - A Perkin Elmer 4-52 with a variety of stationary 

phases using hydrogen c a r r i e r gas and a hot wire detector were used. 

Peak areas were measured by a Honeywell Integrator Model 5530000. 
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Preparative g.l.c. - A l l instruments used nitrogen c a r r i e r gas. 

Column A: 4*9 m. x 75 mm. diam., dinonyl phthalate-Celite, 1 : 2; 

ca. 60 l . / h r . 

Column B: 6*1 m. x 13 mm. diam., dinonyl phthalate-Celite, 1 : 2; 

ca. 10 l . / h r . 

Column C: As column B, but silicone elastomer-Celite, 1 : 2. 
I I 

Column D: Perkin Elmer F21 Praparativer Gaschromatograph, 

4*5 m. x 9*5 mm. diam., di-n-decyl phthalate-Chromosorb P, 

1 : 4 ; ca. 12 l . / h r . 

Column E: As Column D, but silicone oil-Chromosorb P, 1 : 4. 

Column F: Perkin Elmer F21, 11 m. x 10 mm. diam., glass column; 

dinonyl phthalate-Celite, 1 : 2; ca. 6 l . / h r . 
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CHAPTER 9. EXPERIMENTAL FOR CHAPTER 6 - ALKYNE ADDITION. 

9.1] Reagents. 
"16*1 162 163 Perfluorocyclohexa-1 ,3-diene ' and 3 » 3 » 3-trifluoropropyne 

were prepared by the published routes. 1 , 1 , 1-Trifluorobut - 2-yne was 

prepared by a modification of an existing route. The other alkynes 

were commercially available and a l l were r e d i s t i l l e d , dried (P^O^) and 

degassed before use. 

9.2] Preparation of 1 , 1 , 1-trifluorobut - 2-yne. 

Direct dehydroiodination of c i s - and t r a n s - 1 , 1 , 1 - t r i f l u o r o - 3 -

iodobut-2-ene by molten potassium hydroxide produced 1 , 1 , 1 - t r i f l u o r o b u t -
16 A- 165 

2-yne. E a r l i e r preparations of the o l e f i n ' were p r i o r to the 

general introduction of g.l.c. and f a i l e d to separate the mixed isomers, 

c i s - (839o) and trans- (17$). The s t r u c t u r a l assignment i s based on 

consideration of Courtauld models which indicate an unfavourable s t e r i c 

i nteraction between the c i s - disposed trifluoromethyl and iodine i n 

trans-1,1,1-trifluoro - 3-iodobut - 2-ene, the minor product. This 
166 

assignment i s consistent with the marginally easier dehydroiodination 

of the trans-isomer (loss of trans- disposed H and I ) as compared with 

the cis-isomer (loss of c i s - disposed H and I ) but i t cannot be regarded 

as d e f i n i t i v e owing to the lack of knowledge about reaction mechanisms 

under the dehydroiodination conditions used. 
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(a) Addition of trifluoromethyl iodide to propyne. - Propyne 

(4*12 g., 103 mmoles) and trifluoromethyl iodide (17*7 g., 90»3 mmoles) 

were i r r a d i a t e d (500 watt U.V. lamp) i n a 100-ml. Pyrex ampoule f o r 

36 nr. at ca. 5 0 ° to give: ( i ) propyne (5*63 mmoles); ( i i ) a mixture 

of c i s - and trans-1,1 , 1-trifluoro - 3-iodobut - 2-ene (19*81 g., 84*0 mmoles, 
19 

93$)i 83$ cis-isomer by "T n.m.r.; ( i i i ) t a r (0«88 g.). The mixture 

of c i s - and trans-1 , 1 , 1-trifluoro= 3-icdobut - 2-ene was separated by 

preparative g.l.c. (Column A, 100°) and i n a t y p i c a l run (25*50 g.) gave: 

( i ) cis - 1 , 1 , 1-trifluoro - 3-iodobut - 2-ene (19*71 g.), [Found: M (mass 

spectrometry), 235*931011. c^Si^'jl
1 requires M, 235*931165], b.p. 9 4 * 0 ° / 

749 mm., I.E. No.1 v 3060 ( v i n y l C-H), 2920 (Me), 1645 cmT1 (C=C). 
19 1 The F n.m.r. spectrum showed a resonance at -104*0. The H n.m.r. 

spectrum showed resonances at -6*25 ( v i n y l i c proton) and -2*62 (Me) with 

respect to benzene (-7*27) as i n t e r n a l reference. J ™ 2*0 (Me protons), 
l i e 

7*7 ( v i n y l proton), 1*5; ( i i ) trans - 1 , 1 , 1-trifluoro - 3-iodobut - 2-ene 

(4«12 g.), [Found: M (mass spectrometry), 235*929867. C^H^I requires 

M, 235*931165], b.p. 1 l 4 ° / 7 4 6 mm., I.R. No.2 v 3030 ( v i n y l i c C-H), 
max 

— 1 19 2960 (Me), 1658 cm. (C=C). The F n.m.r. spectrum showed a resonance 
at -103*0. The H n.m.r. spectrum showed resonances at - 6 « 1 3 ( v i n y l i c 

proton) and - 2 » 5 8 (Me) with respect to benzene (-7*27) as i n t e r n a l 

reference. J ™ 2*1 (Me protons), 7*1 ( v i n y l proton), J„ H 1*5. 
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(b) Dehydroiodination of 1 , 1 , 1-trifluoro - 3-iodobut - 2-ene. -

(1) cis - 1 , 1 , 1-Trifluoro - 3-iodobut - 2-ene (1*103 g., 4«68 ramoles) was 

passed (nitrogen c a r r i e r ) through molten potassium hydroxide at 1 8 0 ° , 

the products were collected i n a trap cooled i n l i q u i d a i r and 

separated by vacuum transfer to give: ( i ) c i s - 1 , 1 , 1 - t r i f l u o r o - 3 - i o d o b u t -

2-ene (0*075 g., 0*32 mmoles); and ( i i ) 1 , 1 , 1-trifluorobut - 2-yne (Ig) 

(2«50 mmoles, 57% y i e l d , 93^ conversion), [Found: M (mass spectrometry), 

108. Calculated f o r C^F^: M, 108], v m a x 2310(m) and 2275(s) cmT1 

(CSC) ( l i t . 1 6 5 230Mm) and 2273(s) cmT1). (2) By using the same 

procedure as i n ( 1 ) , trans - 1 , 1 , 1-trifluoro - 3-iodobut - 2-ene (1*176 g., 

4*98 mmoles) was dehydroiodinated to give: ( i ) unreacted iodide (0«082 g. 

0»35 mmoles); ( i i ) 1 , 1 , 1-trifluorobut - 2-yne (3*58 mmoles, 77% y i e l d , 

91% conversion). (3) By using the same procedure as i n ( 1 ) , dehydro­

iodination of cis-/trans - 1 , 1 , 1-trifluoro - 3-iodobut - 2-,ene gave c i s - 1 , 1 , 1 -

trifluoro - 3-iodobut - 2-ene and 1 , 1 , 1-trifluorobut - 2-yne, both v/ith 

correct i . r . spectrum. 

9.3] Diels-Alder reactions of perfluorocyclohexa -1 ,3-diene. 

(a) With propyne. - Perfluorocyclohexa-1,3-diene (10«86 g., 48«5 

mmoles), propyne (2*13 g.1 55*3 mmoles) and dipentene (ca. 0*07 g.) were 

heated at 180° f o r kO hr. i n a 100-ml. Pyrex ampoule, which had been 

sealed under vacuum. The products were separated by conventional vacuum 

l i n e techniques to give: ( i ) a gaseous f r a c t i o n (1»49 mmoles) which was 
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shown by i . r . and mass spectroscopy to contain hydrocarbons (mainly 

propane) and perfluorocyclohexa -1 ,3-diene; ( i i ) 2-methy1-1,4 ,5 ,6 ,7 ,7 ,8 ,8-

octafluorobicyclo [ 2 , 2 , 2 ]octa - 2 , 3-diene ( I l a ) (12*07 g., 45*8 mmoles, 9k%) » 

[Found: C, 40«6; H, 1-3; F, 57*2#; M (mass spectrometry), 264. 

( y i j F g requires C, 40.9; H, 1*5; F, 57*6#; M, 264] , b.p. 1 3 8 ° / 7 6 3 mm., 

I.R. No.3 v 3060 ( v i n y l i c C-H), 2910 (Me), 1763 (CF=CF) and 1655 cm?1 

max 
(CH=C(Me)). The H n.m.r. spectrum showed resonances at - 6 » 1 4 ( v i n y l i c 

proton) and -2'10 (Me); ( i i i ) an i n v o l a t i l e viscous brown o i l ( t r a c e ) . 

(b) With 3 i 3 t 3 -trifluoropropyne. - By using the same procedure as 

i n ( a ) , perfluorocyclohexa -1 ,3-diene (11'52 g., 51*5 mmoles), 3 i 3 » 3 -

trifluoropropyne (5*05 g., 53*7 mmoles) and dipentene (ca. 0«07 g.) were 

heated i n a 100-ml. Pyrex ampoule at 200° to give: ( i ) a gaseous 

f r a c t i o n (7*51 mmoles), the i . r . spectrum was consistent with a mixture 

of trifluoropropyne and tetrafluoromethane; ( i i ) perfluorocyclohexa - 1 , 3 -

diene (0«25 g., 1*12 mmoles); ( i i i ) 2 - t r i f l u o r o m e t h y 1 - 1 , 4 , 5 » 6 , 7 , 7 , 8 , 8 -

octafluorobicyclo [ 2 , 2 , 2 ]octa-2 , 5 -diene ( l i b ) (14*83 g., 47*6 mmoles, 92%), 

[M (mass spectrometry), 317*9872. c
g

I I F
1 1 requires M, 317*9903], b.p. 

1 0 l . 5 ° / 7 5 9 mm., I.R. No.4 v 3080 ( v i n y l i c C-H), 1760 (CF=CF) and 
max 

-1 1 1667 cm. (CH=C(CF^)), The H n.m.r. spectrum showed a broad 
resonance at -7*0. 

(c) With 3-chloropropyne. - By using the same procedure as i n (a), 

perfluorocyclohexa -1 ,3-diene (10«76 g., 48»0 mmoles), 3-chloropropyne 
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(3*8^ g.» 51*5 mmoles) and dipentene (ca. 0*07 g.) were heated i n a 

100-ml. Pyrex ampoule at 180° f o r 17 hr. to give: ( i ) a mixture of 

3-chloropropyne and perfluorocyclohexa -1 ,3-diene (1»16 g.); ( i i ) 2-

monochloromethyl -1 ,4 ,5 ,6 ,7 t7 t8 ,8-octafluorobicyclo [2 ,2 ,2]octa -2 ,5-diene 

(He) (12-58 g., k2»1 mmoles, 88%), [Found: C, 36 .3; H, 1»1; CI, 12-0; 

F, 50*7%; M (mass spectrometry), parent ion (P) m/e 298, P+2 i n d i c a t i n g 

one chlorine atom. C^H^ClFg requires C, 36*2; H, 1«0; CI, 11»9j 

F, 5C9%; M, 298.^6], b.p. l 6 i f ° / 7 5 9 mm., I.R. No.5 v 1763 cmT1 

max 

(CF=CF), The H n.m.r. spectrum showed resonances at -6*87 ( v i n y l i c 

proton) and -*»'51 (Ch^Cl protons) v/ith respect to tetramethylsilane as 

external reference. 

(d) With phenylacetylene. - Ey using the same procedure as i n ( a ) , 

perfluorocyclohexa -1 ,3-diene (8*79 g. 1 39*21111110163), phenylacetylene 

(4*15 g.» ^0»7 mmoles) and dipentene (ca. 0«07 g.) were heated i n a 

150-ml. Pyrex ampoule at 175° f o r 20 hr. to give: ( i ) perfluorocyclo-

hexa-1,3-diene (0*62 g., 2*8 mmoles); ( i i ) a black s o l i d which was 

extracted with ether [insoluble material (0*68 g . ) ] , evaporation of the 

ether solution followed by d i s t i l l a t i o n at reduced pressure gave: 

(a) 2-phenyl-1 , 4 , 5 , 6 , 7 , 7 t 8 , 8-octafluorobicyclo [ 2 , 2 , 2 ]octa - 2 , 5 -diene ( l i d ) 

(6«87 g., 21.3 mmoles, 5k%) % [Found: C, 51.9; H, 1-8; F, if6-7%; 

M (mass spectrometry, 326. C^H^Fg requires C, 51»6; H, 1«8; 

F, 46*6$; M, 326] , m.p. 3 2 . 5 ° , b.p. 119°/25 mm., I.R. N 0 . 6 v 3070 
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(vinylic/aromatic C-H), 1763 (CF=CF) and 1630 cmT1 (CH=C(Ph)). The 
1 

H n.m.r. spectrum showed resoances at - 6 « 1 5 ( v i n y l i c proton, and -7*23 

(aromatic protons); (b) a black t a r (4*39 g.). 

(e) With but-2-yne. - By using the same procedure as i n ( a ) , 

perfluorocyclohexa -1 ,3-diene (5*71 g.• 25*4 mmoles), but-2-yne (1*48 g., 

29*3 mmoles) and dipentene (ca. 0«07 g.) were heated i n a 100-ml. Pyrex 

ampoule at 200° f o r 19 hr. to give: ( i ) a mixture of perfluorocyclohexa-

1,3-diene and but-2-yne (1*97 g.); ( i i ) 2 , 3 -dimethy1 - 1 , 4 , 5 . 6 , 7 , 7 . 8 , 8 -

octafluorobicyclo[2 , 2 , 2 ]oc ta -2 ,5-diene ( l i e ) (4«98 g., 17*9 mmoles, 71%). 

[Found: C, 43*0; H, 2*4; F, 5^*7%; M (mass spectrometry), 2?8. 

C 1 0 H 6 F 8 r e 1 u i r e s C ' ^3*2; H, 2«2 ; F, 54*7%; Mi 278] , m.p. ca. 2 0 ° , 
b.p. 1 5 8 ° / 7 5 2 mm., I.R. No.7 v 2910 (Me), 1770 (CF=CF) and 1680 cmT1 

max 

(CMe=(Me)). The H n.m.r. spectrum showed a broad resonance at -2*0; 

( i i i ) a brown t a r (0*26 g.). 

( f ) With 1 ,4-dichlorobut -2-yhe. - By using the same procedure as 

i n ( a ) , perfluorocyclohexa -1 ,3-diene (6»93 g.1 31*0 mmoles), 1 , 4-dichloro-

but-2-yne (4*13 g.• 33*6 mmoles) and dipentene (ca. 0«07 g.) were heated 

i n a 100-ml. Pyrex ampoule at 200° f o r 40 hr. to give: ( i ) perfluoro-

cyclohexa-1,3-diene (1*70 g., 7*6 mmoles); ( i i ) a dark viscous residue, 

which on d i s t i l l a t i o n gave 2 ,3-bis(monochloromethyl ) -1 ,4 ,5*6,7*7*8,8-

octafluorobicyclo [ 2 , 2 , 2 ]octa - 2 , 5-diene ( l l f ) (6«65 g.1 19*2 mmoles, 62%), 

[Found: C, 34*3; H, 1*2; CI, 20.3; F, 43*5%; M (mass spectrometry), 
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parent ion m/e 346, P+2 and P+4 m/e indicating two chlorine atoms. 

Cjgfi^ClgFg requires C, 34*6; H, 1-2; CI, 20«5? F, 43*8%; M, 346-92], 

b.p. 4 0 ° / 2 mm., I.R. No.8 v 2960 (C-H) and 1766 cmT1 (CF=CF). The 
max 

-] 

H n.m.r. spectrum showed a resonance at - 4 '76 . There was no 

d i s t i l l a t i o n residue (0*59 g.); ( i i i ) a black s o l i d (2*22 g.). 

(g) With 1 , 1 , 1-trifluorobut - 2-yne. - By using the same procedure as 

i n ( a ) , perfluorocyclohexa -1 ,3-diene (3*91 g., 17*45 mmoles), 1 ,1,1-

trifluorobut - 2-yne 0*78 g., 16*50 mmoles) and dipentene (ca. 0*07 g.) 

were heated i n a 75-ml. Pyrex ampoule at 220° f o r 63 hr. to give: ( i ) 

1 , 1 , 1-trifluorobut - 2-yne (2«88 mmoles); ( i i ) a mixture (2*30 g.) shown 

by g.l.c. to consist of perfluorocyclohexa -1 ,3-diene with trace amounts 

of 1 , 1 , 1-trifluorobut - 2-yne, cis - 1 , 1 , 1-trifluoro - 3-iodobut - 2-ene and 

2-me thy 1 - 5 -trifluorome tliyl- 1 , 4 , 5 , 6 , 7 , 7 , 8 , 8-oc tafluorobicyclo [ 2 , 2 , 2 ]oc t a -
19 

2,5-diene; ( i i i ) a mixture (2*96 g.), shov/n by F n.m.r. spectroscopy 

to consist of 2 -methyl= 3 -trifluoromethy1 = 1 , 4 , 5 , 6 , 7 , 7 , 8 , 8-octafluoro-

bicycio [ 2 , 2 , 2]octa - 2 , 5-diene ( I l g ) (2-65 g., 8*00 mmoles, 49$) and 

perfluorocyclohexa -1 ,3-diene (0»31 g., 1*41 mmoles). Preparative g.l.c. 

(Column B, 105°) on the combined fractions from several experiments gave 

2-me thy 1 - 3 -trifluorome thyl-1 , 4 , 5 , 6 , 7 , 7 , 8 , 8-oc tafluorobicyclo [ 2 , 2 , 2 ]oc t a -

2,5-diene, [Found: C, 35*9; H, 1«0; F, SZ>3%\ M (mass spectrometry), 

332. C ^ R y ^ requires C, 36*1; H, 0-9; F, 62»9%5 M, 332] , b.p. 

1 1 0 ° / 7 4 2 mm., I.R. No.9 v 1770 (CF=CF) and 1670 cmT1 (C(Me)=C(CFj). 
max 3 

1 
The H n.m.r. spectrum shov/ed a resonance at -2«45« 



9.3] 97 

(h) With d i e t h y l acetylenedicarboxylate. - By using the same 

procedure as i n (a), perfluorocyclohexa-1,3-diene (6*22 g., 27»8 mmoles), 

die t h y l acetylenedicarboxylate (4«21 g., 24«8 mmoles) and dipentene (ca. 

O 0 7 g.) were heated i n a 100-ml. Pyrex ampoule at 215° f o r 18 hr. to 

give: ( i ) perfluorocyclohexa -1 ,3-diene (2«37 g., 10»6 ramoles); ( i i ) a 

brown semi-solid product, r e c r y s t a l l i s e d from d i e t h y l ether to give 

d i e t h y l 1,4,5,6,7,7,8,8-oc tafluorobicyclo [ 2 , 2 , 2 ]oc ta - 2 , 5 -diene - 2 , 3 -

dicarboxylate ( i l h ) (4»61 g., 11-7 mmoles, 47%), [Found: C, 42*5; 

H, 2«6; F, 38*4%; M ( mass spectrometry), 394. C^H^FgO^ requires 

c, 42*5; H, 2*5; F, 38*6%; H, 394], m.p. 65° , I.H. No.10 v 1772 
max 

(CF=CF), 1745 and 1725 (COOEt) and 1658 cmT1 (C(GOOEt)=C(COOEt)). 

( i ) With perfluorobut -2-yne. - By using the same procedure as i n 

(a), perfluorocyclohexa-1,3-diene (6«80 g., 30'4 mmoles), perfluorobut-

2-yne (4«59 g., 28-3 mmoles) and dipentene (ca. 0»07 g.) were heated i n 

a 100-ml, Pyrex ampoule at 2 2 5 ° f o r 18 hr. to give: ( i ) perfluorobut - 2 -

yne (2»46 g., 15»0 mmoles); ( i i ) a mixture (8*51 g.) which was separated 

by g.l.c. (Column A, 8 5 ° ) to give perfluorocyclohexa -1 ,3-diene, and 

perf luoro-2,3-dime thy l b i c y c l o [ 2,2,2] oc ta-2,5-diene ( H i ) (3*46 g., 8«96 

mmoles, 67$ y i e l d , 5k% conversion), [Found: C, 30»9; F, 68«5$5 M (mass 

spectrometry), 386. C i o F l 4 r e ( l u i r e s c i 31*1 J F, 68«9$; M, 386], b.p. 

40°/50 mm., I.H. No.11 v 1770 (CF=CF) and 1663 cm?1 (C(CF,)=C(CF,)). 
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9.^] Pyrolysis of Diels-Alder adducts. 

The apparatus consisted of a s i l i c a tube (59 cm. x 1'*f cm. i n t . 

diam.) l i g h t l y packed with s i l i c a wool, a Pyrex reservoir containing the 

compound to be pyrolysed was attached at one end and a Pyrex trap at the 

other end of the tube; both reservoir and trap could be cooled i n l i q u i d 

a i r , a l l connections were through ground glass j o i n t s , the e x i t from the 

trap v/as connected to a vacuum system. The middle kk cm. of the s i l i c a 

tube were heated i n an e l e c t r i c furnace, the temperature at the outer 

surface of the tube was measured using a Chromel-alumel thermocouple. 

The sample to be pyrolysed was placed i n the reservoir, which was then 

cooled i n l i q u i d a i r . The apparatus was evacuated (ca. 10~^ mm.) and the 

trap was cooled i n l i q u i d a i r whilst the reservoir warmed up to room 

temperature. When a l l the material had evaporated from the reservoir 

(the less v o l a t i l e materials required heating), the contents of the trap 

were allowed to warm up. Gaseous products were expanded i n t o the 

calibrated gas measuring system, a v o l a t i l e l i q u i d f r a c t i o n was obtained 

by bulb to bulb transfer, and other products were worked up by vacuum 

d i s t i l l a t i o n or r e c r y s t a l l i s a t i o n . 

(a) 2-Me thyl- 1,if , 5 , 6 , 7 , 7 » 8 , 8-oc tafluorobicyclo [ 2 , 2 , 2 ]octa - 2 , 5 -

diene ( I l a ) (0«383 g.» 1»^5 mmoles) was pyrolysed at 610° to give: 

( i ) a gas, shown to be tetrafluoroethylene (TFE), with an impurity 

(Probably CF̂ CT̂ CF.,), by i . r . spectroscopy; ( i i ) 2 , 31 k,5-tetrafluoro-

toluene ( I l i a ) (Q>22h g., L37 mmoles, 95%), [Found: C, 50»9; H, 2-3; 
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F, 46*5%; M (mass spectrometry), 164. G 7 H i (
F i f requires C, 51*2; 

H, 2«5; F, 46*3%; M, 164], b.p. 122°/753 mm., I.R. No.12 v 2920 
max 

(C-H), 1525 and 1490 cmT1 (aromatic nucleus), A 262*5 nm. (e 686) i n 
max 

cyclohexane (0«203 g . / l . ) . The H n.m.r. spectrum showed resonances 

at -6-8 (aromatic proton J°£ t h° 10-7, J ^ t a 1-5, J ^ a 2*4), and -2-3 

(Me), s h i f t s calculated with respect to benzene as in t e r n a l reference 

(-7*27). 

(b) 2-Trifluoromethy1-1,4,5 ,6 ,7i7,8 ,8-oc tafluorobicyclo [ 2 , 2 , 2 ]oc t a -

2,5-diene ( l i b ) (2*024 g., 6*36 mmoles) was pyrolysed at 630° to give: 

( i ) a gas (6*10 mmoles), shown to be mainly TFE by i . r . spectroscopy; 

( i i ) aaa ,2 ,3«4,5-heptafluorotoluene (1«30 g., 5*96 mmoles, 94%) with a 

trace of higher b o i l i n g impurity. P u r i f i c a t i o n by preparative g.l.c. 

(Column C, 100°) gave aa<x ,2,3»4,5-heptafluorotoluene ( I l l b ) , [Found: M 

(mass spectrometry), 217*9967. Calculated f o r ̂HF,.,: M, 217*9966], 

b.p. 10L5° /759 mm. ( l i t . 1 5 5 102-105*5°), I.R. No. 13 v 1530 and 1500 
max 

cm. (aromatic nucleus), A 264 nm. (e 965) i n cyclohexane (0*244 g , / l . ) . 
IftclX 

The 1H n.m.r. spectrum showed a resonance at -7*3 (J™^° 9*2, J ^ ^ a 5*5 
ilc Hi) 

and 7-4, j g r a 2*6). 

(c) 2-Monochlorome thyl-1,4,5,6,7*7,8,8-oc tafluorobicyclo [ 2 , 2 , 2 ]octa-

2,5-diene (He) (1*99 g.» 6*66 mmoles) was pyrolysed at 600° to give: 

( i ) gas (10*27 mmoles, 154%), shown to be TFE and hydrogen chloride by 

i . r . and mass spectrometry; ( i i ) q-chloro - 2 , 314 , 5 -tetrafluorotoluene 

(0*681 g.) containing a lower b o i l i n g impurity. P u r i f i c a t i o n by 
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preparative g.l.c. (Column C, 1 5 0 ° ) gave cx-chloro - 2 , 3 , 4 , 5-tetraf luoro-

toluene ( i l l c ) , [Found: M (mass spectrometry), parent ion m/e 198, P+2 

m/e indicating one chlorine atom. C^H^CIF^ requires M, 198*46], b.p. 

l66-l69 ° / 7 6 3 mm., I.E. No.14 v 1330 and 1490 cm71 (aromatic nucleus), 
max 

A™„„ 2 6 5 nm. ( <r 8*1-0) i n cyclohexane (0*300 g . / l . ) . The 1H n.m.r. 
max 

spectrum shov/ed resonances at -7*30 (aromatic proton), and -4*80 (CH^Cl) 

with respect to external tetramethylsilane; ( i i i ) t r a n s - 2 , 2 ' , 3 , 3 ' , 4 , 4 ' , 

5 , 5'-octaf luorostilbene ( H i d ) (0*214 g., 0*661 mmoles, 19*8$) , which 

a f t e r p u r i f i c a t i o n by preparative g.l.c. (Column C, 1 8 0 ° ) and sublimation 

gave pure H i d , [Found: C, 51*9; H, 1*3; F, 46*3$; M (mass 

spectrometry), 324 . C^HjFg requires C, 5 1 - 8 ; H, 1*2; F, 46*9$; 

M, 3 2 4 ] , m.p. 9 4 ° , I.R. No.15 v 3010 (C-H), 1620 (C=C), 1520 and 
max 

1480 cm. (aromatic nucleus), A 193 nm. (mult i p l e t ) (* 18 ,800) i n 
max 

cyclohexane (0*0286 g . / l . ) . The H n.m.r. spectrum (CCl^ solution) 

showed tv/o overlapping resonances at ca. - 7 * 5 with respect to external 

tetramethylsilane. 

(d) 2-Phenyl - 1 , 4 , 5 t 6 , 7 i 7 . 8 , 8-octafluorobicyclo [ 2 , 2 , 2]octa - 2 , 5 -

diene ( l i d ) (1*988 g., 6*10 mmoles) was pyrolysed at 5 5 0 ° to give: 

( i ) TFE (6*15 mmoles), with correct i . r . spectrum; ( i i ) 2 , 3 « 4 , 5 - t e t r a -

fluorobiphenyl ( H i e ) (0*984 g., 4*35 mmoles, 7 1 $ ) , [Found: C, 63*2; 

H, 2*5; F, 33*2%; M (mass spectrometry), 226 . Calculated f o r 
C 1 2 H 6 F 4 : C ' 6 3 * 7 ? H' 2* 8' F ' 5 3 ' 6 ^ ; M ' 2 2 6^» m'P* 6 6 _ 6 7 ° ( f r o m C C 1 V 
and sublimed) ( l i t . 1 5 7 7 5 - 7 6 ° ) , I.R. No.16 v 1525 and 1480 (aromatic 

max 
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nucleus), A 2̂ f1 run. (<? 13 ,800) i n cyclohexane (0-0256 g . / l . ) . The nicix 
H n.m.r. spectrum (saturated solution i n CCl^) showed resonances at 

-7*3 (Ph) and - 6 . 9 (C-6 proton, jJJ t h° 1 1 . 0 , J ^ t a 7 - 9 , j g ™ 2-4) 

( l i t . 1 ^ - 6 - 8 and - 5 * 2 respectively). * L i t . 1 ^ values suspect, see p.60. 

(e) 2,3-Dime t h y l - 1 , 4 , 5 » 6 , 7 , 7 , 8 , S - o c t a f l u o r o b i c y c l o [ 2 , 2 , 2 ] o c t a - 2 , 5 -

diene ( l i e ) (0*965 g.» 3*47 mmoles) v/as pyrolysed at 6 0 0 ° to give: 

( i ) TFE (3*41 mmoles), with correct i . r . spectrum; ( i i ) 3 * 4 , 5 * 6 -

tetrafluoro-ortho-xylene ( i l l f ) (0«614 g., 3*45 mmoles, 99%)» [Found: 

C, 5 4 . 0 ; H, 3*4; F, 42*6%; M (mass spectrometry), 178. CgH^F^ 

requires C, 53*9; H, 3*4; F, 42.7%; M, 178], b.p. 1 l 8 ° / 7 5 5 mm., 

I.R. No.17 v 2920 (C-H), 1510 and 1495 cm71 (aromatic nucleus), A 
rricix nicOC 

(doublet) 260 and 263*5 nm. ( e 453) i n cyclohexane ( 0 « 2 2 g . / l . ) . The 
1 
H n.m.r. spectrum showed a resonance at -2*14. 

( f ) 2,3-Bis(monochlorome t h y l ) - 1 , 4 , 5 , 6 , 7 » 7 » 8 , 8 - o c tafluorobicyclo-

[ 2 , 2 . 2]octa - 2 , 5-diene ( i l f ) (1*571 g.1 4*53 mmoles) was pyrolysed at 
; 3 f r a c t i o n s . Fraction ( i ) 

6 0 0 ° to give/ was a gas(10*33 mmoles, 228%) shown to be TFE and hydrogen 
^ Fraction ( i i ) 

chloride by i . r . and mass spectrometry.^ was a pale yellow l i q u i d 

(0*647 g.) shown by ana l y t i c a l g.l.c. to be predominantly one component, 

preparative g.l.c. (Column C, 175°) gave 2 , 3 , 4 , 5 -tetrafluorophenylacetylene 

( I l l g ) , [Found: M (mass spectrometry), 174*0098. c g H 2 F 4 r e < l u i r e s 

M, 174*0093]1 b.p. 135-136°/760 nun., I.R. N0.18 v 3280 (acetylenic 
max 

C-H), 3040 (aromatic C-H), 1520 and 1480 cm. (aromatic nucleus), A 

274.5 nm. (e 1 , 4 3 0 ) , 279 nm. (f 1 ,460) and 283*5 nm. (* 1 ,360) i n 
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cyclohexane (0*193 g . / l . ) . The H n.m.r. spectrum showed resonances 

at - 7 . 3 3 (aromatic proton J°£th° 9 - 7 , jj£ t a 5 -6 and 7 - 4 , j g ^ a 2-24) 

and -3*48 (acetylenic proton with f l u o r i n e atoms two and four ca. 
lit 

0*9) with respect to external tetramethylsilane. After several days 
Fraction ( i i i ) 

i t polymerizes to an unidentified yellow s o l i d * ^ was a residue (0*223 g.) 

of 2 , 3 , 4 , 5-tetrafluorophenylacetylene and several higher b o i l i n g 

materials-

(g) 2-Me thy 1 - 3 -trifluorome t h y 1 - 1 , 4 , 5 » 6 , 7 , 7 , 8 , 8 - o c tafluorobicyclo-

[ 2 , 2 , 2]octa - 2 , 5-diene ( i l g ) (2*057 g . i 6 « 1 9 nimoles) was pyrolysed at 

6 0 0 ° to give: ( i ) TFE (6*17 mmoles), with correct i . r . spectrum; 

( i i ) 1-me thy 1 - 2 -trifluorome thy1 - 3 , 4 , 5 , 6 -tetrafluorobenzene ( I l l h ) 

( 1 « 3 6 7 g.. 5*89 mmoles, 95$) containing traces of low b o i l i n g impurities. 

Preparative g.l.c. (Column B, 105°) separated pure I l l h , [Found: 

C, if 1*4; H, 1*7; F, 57*7$; M (mass spectrometry), 232*0113. 

CgRyV, requires C, if1*if; H, 1*3; F, 57*3%S Mf 232*0123] , b.p. 1 2 9 - 1 3 0 ° / 

742 mm., I.R. No.19 v 2920 (C-H), 1520 and 1490 cmT1 (aromatic 
max 

nucleus), A 269*5 nm. (<r 1 ,400) i n cyclohexane ( 0 « 1 2 0 g . / l . ) . The 
fflcDC 

1 

H n.m.r. spectrum showed a resonance at -2*53 with respect to external 

te trarae thylsilane. 

(h) Diethyl 1 , 4 , 5 » 6 , 7 , 7 , 8 , 8 - o c t a f l u o r o b i c y c l o [ 2 , 2 , 2 ] o c t a - 2 , 5 -

diene -2 ,3-dicarboxylate ( i l h ) (0*908 g., 2*33 mmoles) was pyrolysed at 

5 5 0 ° to give: ( i ) gas (10*83 nimoles, 465%), shown to be a mixture of 

TFE, hexafluorocyclopropane, carbon dioxide and ethylene by i . r . and 
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mass spectrometry; ( i i ) a l i q u i d mixture (0*276 g.), which was shown 

to be predominantly 1 , 2 , 3 » 4-tetrafluorobenzene (ca. 90#) and another 
19 

tetrafluorobenzene derivative, by i . r . , F n.m.r. and mass spectrometry. 
19 

Hie F n.m.r. spectrum of the minor component showed resonances at 

- 2 1 « 9 t -17*0 and -5*7 ( t o t a l r e l a t i v e i n t e n s i t i e s 1 : 1 : 2 ); the 

mixture shov/ed a peak i n the mass spectrum at m/e 264 (ethyl t e t r a f l u o r o -

phthalate parent m/e, 2 6 6 ) ; ( i i i ) 2 , 3 i 4 , 5-tetrafluorobenzcic acid ( i l l j ) 

(C325 g., 1*68 mmoles, 2 3 $ ) , [Found: C, 4 3 . 4 ; H, 0 -8; F, 39-3%; 

M (mass spectrometry), 194. Calculated f o r C ^ F ^ : C, 43*3; H, 1 « 0 ; 

F, 39*2%; M, 1 9 4 ] , m.p. 8 8 . 6 - 8 8 . 8 ° ( r e c r y s t a l l i s e d from CCl^) ( l i t . 

9 2 - 9 2 . 5 ° , 1 2 7 8 6 - 8 6 . 5 ° , 1 2 9 7 9 - 8 0 ° 1 3 7 ) , I.E. No.20 v (KBr disc) 1690 
max (CO H), 1530, 1490 cmT1 (aromatic nucleus), ( l i t . 1 5 7 v (CC1.) 1?15» c. max *\ 

-1 1 
1505» 1495 cm. ), The II n.m.r. spectrum showed a resonance at -12*3 
(carboxyl proton) and -7*7 (aromatic proton, J°£*^° 1 0 « 1 , J^E* a 6*5 and 

rlc lie 
8 . 3 , J g r a 2 - 6 ) . 

( i ) Perfluoro - 2 , 3-dimethylbicyclo [ 2 , 2 , 2]octa - 2 , 5-diene ( H i ) 

( 1 . 093 g., 2»84 mmoles) was pyrolysed at 5 0 0 ° to give: ( i ) WE (2*38 

mmoles), with correct i . r . spectrum; ( i i ) perfluoro-ortho-xylene ( I H k ) 

(O.786 g., 2*73 mmoles, 97%), [Found: C, 3 3 ' 4 ; F, 66-8%; M (mass 
spectrometry), 286 . Calculated f o r cs F - i o : C ' 3 3* 6» F, 66«4Sfe; M, 2 8 6 ] , 

b.p. 1 2 2 ° / 7 5 3 mm. ( l i t . 1 - 5 6 1 2 8 ° ) , I.R. No.21 v 1630, 1530 and 1485 cmT1 

max 
(aromatic nucleus),A 272 nm. (e 1 ,560) i n cyclohexane (0*217 g./l.) 

max 
[ l i t . 1 3 6 272 nrn. (e 1 , 7 5 3 ) ] . 
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CHAPTER 10. EXPERIMENTAL FOR CHAPTER 7 - NITRILE ADDITION. 

1 0 . 1 ] Reagents. 
161 162 

Perfluorocyclohexa -1 ,3-diene was prepared as previously. ' 
167 168 Perfluoroacetonitrile, and 1,3-dicyanohexafluoropropane were 

prepared by published routes from perfluoroacetamide and perfluoro-

g l u t a r y l chloride respectively. Commercial samples of cyanogen bromide 

and perfluorobenzonitrile were used. As i n Chapter 9 a l l reagents v/ere 

r e d i s t i l l e d , dried (P^Q^) degassed before use. 

1 0 . 2 ] Diels-Alder reactions of perfluorocyclohexa -1 ,3-diene with n i t r i l e s . 

(a) With pe r f l u o r o a c e t o n i t r i l e . - By using the same procedure as 

i n Chapter 9«3» perfluoroacetonitrile (3*24 g., 35*1 mmoles), perfluoro­

cyclohexa-1 ,3-diene (7*81 g., 3^*9 mmoles) and dipentene (ca. 0 « 0 7 g.) 

were heated at 4 0 0 ° f o r 16 hr. i n a 90-ml. Pyrex ampoule to give: ( i ) 

a gaseous f r a c t i o n (2*38 mmoles) shown by i . r . spectroscopy to consist 

of a mixture of unreacted perfluoroacetonitrile and tetrafluorosilane; 

( i i ) a l i q u i d mixture (8*06 g.) which was separated by preparative g.l.c. 

(Column B, 1 2 5 ° ) i n t o 2 fractions. The shorter retained was perfluoro-

bicyclo [ 4 , 2 , 0 ]oct - 2-ene ( 2 « 8 9 g., 8 « 9 mmoles, 26%). The longer 

retained component was perfluoro - ( 2-methylpyridine) (Via) (2*91 g., 

1 3 . 9 mmoles, 3 9 « 8 # ) , [Found: C, 32*9; F, 60«5%; M (mass spectrometry), 

2 1 8 . 9 9 2 5 . Calculated f o r C^N: C, 3 2 - 9 ; F, 60.7%; M, 2 1 8 » 9 9 1 9 ] , 
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b.p. 1 O 2 - 1 0 3 ° / 7 5 8 mm., I.R. No.22 v 1480 cm71 ( l i q u i d f i l m ) . A 
max 1 1 max 

256 nm. (e 2340) i n cyclohexane ( 0 -162 g . / l . ) , [ l i t . 1 ^ b.p. 1 0 2 - 1 0 3 ° / 

767 nm., v 1430 cm. (vapour), A. 256 nm. (e 2320) (hexane)]. max max 

(b) With cyanogen bromide - Experiment I . - By using the same 

procedure as i n ( a ) , perfluorocyclohexa -1 ,3-diene 0 4 « 6 1 g,, 65*3 mmoles), 

cyanogen bromide (9*68 g., 91*2 mmoles) and dipentene (ca. 0 « 0 7 g.) were 

heated i n a 100-ml. Pyrex ampoule at 3 8 0 ° f o r 12 hr. to give three f r a c t i o n s . 
The f i r s t ( i ) a 
l i q u i d mixture (15*06 g,)t F n.m.r. showed the major components to be 

perfluorocyclohexa -1 ,3 -diene (50%), perfluorocyclohexa-1,4-diene (ca. 2%), 

perfluoro -2-aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene (vT3) (ca. 5 $ ) , 

1- bromo-2-cyanotetrafluoroethane (ca. 2 $ ) , 1 ,2-dibromotetrafluoroethane 

(29$) and perfluoro -2-bromopyridine (VIb) ( 1 2 $ ) , where the figures i n 

parenthesis are mole percent v/ith respect to t o t a l moles of fluorinated 

material. Analytical g.l.c. did not resolve a l l these compounds but 

showed the presence of cyanogen bromide. D i s t i l l a t i o n accomplished a 

p a r t i a l separation i n t o a l i q u i d mixture (7*46 g.) (b.r. 2 8 - 5 6 ° ) , s o l i d 

cyanogen bromide (ca. 0 « 5 g.) ( 5 6 - 6 0 ° ) , and a d i s t i l l a t i o n residue 

(5*32 g.). The l i q u i d mixture was separated by preparative g.l.c. 

(Column B, 1 1 0 ° ) to give: (a) impure [contaminated with perfluoro­

cyclohexa-1 ,4-diene (ca. 15%)» by i . r . and n.m.r. spectroscopy] 1-bromo-

2 - cyanotetrafluoroethane, v
m a x 2280 cm. (-C2R). Mass spectrometry 

79 + 
showed the parent molecular ion at m/e 205» [C^ BrF^N] , P+2 m/e 
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indicating one bromine atom, the base peak was at m/e 126, [C^F^N] . 
19 

The F n.m.r. spectrum showed resonances at - 9 4 » 2 and - 5 8 « 8 [ t r i p l e t s 

(J 10 Hz) of equal t o t a l r e l a t i v e i n t e n s i t y ] ; (b) perfluorocyclohexa-

1,3-diene with correct i . r . spectrum; (c) 1 ,2-dibromotetrafluoroethane 

with correct i . r . s p e c t r u m , b . p . 47-48° /763 mm. [ l i t . 1 7 0 46 * 4 ° ] , 

M (mass spectrometry), parent ion m/e 258, P+2 and P+4 m/e indicating 
19 

two bromine atoms, and the F n.m.r. spectrum showed a sharp resonance 

at - 1 0 2 « 4 . The d i s t i l l a t i o n residue was a complex mixture of not less 

than 12 components, by ana l y t i c a l g.l.c., but only the three major long 

retained peaks were separated, preparative g.l.c. (Column D, 1 1 5 ° ) • The 

f i r s t f r a c t i o n ( 0 « 3 9 g.) was two compounds, v 2250 (CHN), 1740 cm. 
max 

no + (CF=CF). The mass spectrum showed parent ion in/e 329 [C^ r >BrFgN] , 
P+2 m/e indicating one bromine atom, the base peak was at m/e 250 + 19 [C^FgN] . There was i n s u f f i c i e n t material f o r a diagnostic F n.m.r. 
spectrum. This data i s consistent with an isomeric mixture of bromo-

cyanocyclohexenes. The second f r a c t i o n was pure perfluoro - 2-aza - 3 -

bromobicyclo [2 ,2 ,2]octa -2 ,5-diene (0*95 g., 2.-9 mmoles, 4'4%), [Found: 

C, 25*7; Br, 24*1; F, 46«5%; M (mass spectrometry) at parent ion m/e 

329» P+2 indicating one bromine atom (with base peak at m/e 224 [CgFg] +, 

and a peak at nj/e 229 [C^BrF^N]* (57*3%)). C^BrFgN requires C, 25*5; 

Br, 24«5; P i 46-1%; M, 3 3 0 ] , b.p. 1 3 3 - 1 3 5 ° / 7 6 9 mm., I.R. No.27 \> 
ITloLX. 

1765 (CF=CF), 1615 cmT1 (C=N). The f i n a l f r a c t i o n was perf l u o r o - 2 -

bromopyridine (VIb) ( 1 ' 5 3 g . t 6-7 mmoles, 10*2%), [Found: C, 25*8; 
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Br, 35*4; F, 33*4%; M (mass spectrometry) parent ion m/e 229, P+2 

indicating one bromine atom. C^BrF^N requires C, 26*1; Br, 34*8; 

F, 33*1%; M, 2 3 0 ] , b.p. 1 4 0 - 1 4 2 ° / 7 6 9 mm., I.R. No.23 v 1610, 1515. 
max 

1465 cm. (pyridine nucleus),A 265 nm., (e 36OO) i n cyclohexane 
Fraction ( i i ) was _̂ 

(0*103 g.A«)̂ ^ also a l i q u i d mixture (5*86 g.), F n.m.r. indicated 
only perfluoro -2-aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene (21%) and 

perfluoro -2-bromopyridine (79%), but a n a l y t i c a l g.l.c, also detected 

several shorter retained components. Preparative g.l.c. (Column D, 

1 1 0 ° ) gave the same fractions as the d i s t i l l a t i o n residues above: 

a mixture of isomeric bromocyanocyclohexenes (0*31 g*)« perfl u o r o - 2 -

aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene (0*946 g., 2*9 mmoles, 4*4% 

y i e l d ) ; perfluoro -2-bromopyridine (1*854 g., 4*3 nimoles, 7*5%); 

residual components (0*984 g.)« The residue ( i i i ) was a black s o l i d (1*74 g.). 

Experiment I I . - Perfluorocyclohexa -1 ,3-diene (7*52 g., 33*6 

mmoles), cyanogen bromide (10*58 g., 100 mmoles) and dipentene (ca. 

0*0? g.) were heated i n a 90-ml. Pyrex ampoule at 400° f o r 15 hr. to 

give free bromine, s t a r t i n g materials, 1 ,2-dibromotetrafluoroethane, 

perfluoro -2-bromopyridine and several brominated by-products; the 

mass spectrum showed ions at m/e 322 [ C g 7 9 B r F g ] + , 329 [C 7
7 9BrFgN] +, 

367 [ C ?
7 9 B r F 1 0 N ] + , 389 [ C 7

7 9 B r 2 F ? N ] + , 427 [ C ?
7 9 B r F g N ] + , and the i . r . 

spectrum showed a characteristic absorption at 2280 cm. (C5N). Only 

perfluoro -2-bromopyridine ( VIb ) (2*77 g., 12*0 mmoles, 40%) was 

separated from t h i s complex mixture by preparative g.l.c. (Column C, 2 0 0 ° ) . 
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Copper coupling of perfluoro -2-bromopyridine. - Perfluoro - 2 -

bromopyridine ( 0 « 9 0 g., 3*9 mmoles) and copper bronze pov/der (2 g.) 

were refluxed f o r 18 hr. i n dry (BaO) DMF. The solution was extracted 

with ether, and the extract v/ashed with water to remove excess DMF 

before drying (MgSO^) and evaporating. Sublimation ( 1 0 0 ° , ca. 1 0 ~ 2 mm.) 

of the crude ether extract yielded a l i q u i d / s o l i d mixture (ca. 0*2 g.) 

v/hich had the same i . r . spectrum as an authentic specimen of perfluoro-
145 

2 . 2 - b i p y r i d y l , but the mass spectrum also showed peaks at m/e 431 

( t r i p y r i d y l ) and 562 ( t e t r a p y r i d y l ) . 

(c) With 1,3-dicyanohexafluoropropane. - Experiment I . - By using 

the same procedure as i n ( a ) , 1,3-dicyanohexafluoropropane (4*90 g., 

24*2 mmoles), perfluorocyclohexa -1 ,3-diene ( 1 1 » 1 6 g., 49*8 mmoles) and 

dipentene (ca. 0-07 g.) were heated i n a 90-ml. Pyrex ampoule at 3 5 0 ° 

f o r 16 hr. to give: ( i ) a gas ( 3 « 4 8 mmoles) shown to be a mixture of 

st a r t i n g materials and tetrafluorosilane by i . r , spectroscopy; ( i i ) 
19 

a mixture (13*02 g.) shown by F n.m.r, to consist of perfluorocyclo­

hexa-1 ,3-diene (39*2 mmoles) and 1,3-dicyanohexafluoropropane (20*9 mmoles) 

[-60*7 ( t o t a l r e l a t i v e i n t e n s i t y 2 ) and -41*7 p.p.m. ( t o t a l r e l a t i v e 
i n t e n s i t y 1 ) ] ; ( i i i ) a pale yellow l i q u i d (1*82 g.) shown by i . r . and 
19 

F n.m.r. spectroscopy to consist p r i n c i p a l l y of perfluorocyclohexa-

1 . 3 - diene (ca. 45%), perfluoro - 2-aza - 3 - ( 3-cyanopropyl)bicyclo [ 2 , 2 , 2 ]octa-

2,5-diene (Vc) (ca. 35%), perfluoro - 2 - ( 3-cyanopropyl)pyridine (Vic) 

(ca. 12%) and perfluoroglutaramide (ca. 8%). On preparative g.l.c. 
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(Column E, 90 ) , 1*424 g. of th i s mixture gave: (a) perfluorocyclo­

hexa-1 ,3 -diene (0*282 g.); (b) perfluoro -2-aza -3 - (3-cyanopropyl)-

bicyclo [ 2 , 2 , 2]octa - 2 , 5-diene (0*431 g . i 1*01 mmoles, 4 * 2 $ ) , [Found: M 

(mass spectrometry), 425*9837* C^\-]F-]l^2 r e < l u i r e s M» ^ 2 5 * 9 9 1 0 ] , I.R. 

No.28 v 2280 (C=N), 1775 (CF=CF) and 1660 cm71 (C=N); (c) perfluoro-max 
2- (3-cyanopropyl)pyridine (0*038 g., 0*21 mmoles, 0*99a), [Found: C, 32*9; 

F, 58*1$; M (mass spectrometry), 325*9906. C^F^I^ requires C, 33*2; 

F, 58*2%; K, 325*9974] , b.p. 1 6 1 - I 6 3 ° / 7 6 9 mm., I.R. No.24 v 2280 
max 

(C=N), 1625, 1530 and 1485 cm. (fluorinated pyridine nucleus), A 

257*5 nm. (e 3320) i n cyclohexane (0*1053 g . / l . ) ; (d) a mixture 

(0*203 g.) i n the residual components trap, shown to contain the previous 
19 

components and perfluoroglutaramide, by F n.m.r. spectroscopy. 

Experiment I I . - Perfluorocyclohexa -1 ,3-diene (8*79 g*» 39*2 mmoles) 

and 1,3-dicyanohexafluoropropane (4*23 g., 20*9 mmoles) were heated i n 

an 80-ml. Pyrex ampoule at 3 5 0 ° f o r 64 hr. to give: ( i ) a gas (2*35 

mmoles) consisting p r i n c i p a l l y of tetrafluorosilane; ( i i ) a mixture 

(2*02 g.) of s t a r t i n g materials and perfluorobicyclo [ 4 , 2 , 0]oct - 2-ene; 
19 

( i i i ) a l i q u i d mixture (8*37 g*) shown by F n.m.r. to contain 1 , 3 -

dicyanohexafluoropropane (ca. k%), perfluorobicyclo [ 4 . 2 . 0]oct - 2-ene 

(ca. 33$)» perfluorocyclohexa -1 ,3-diene (ca. 1 1 $ ) , the dimer of 

perfluorocyclohexadiene (ca. 5$)*. and perfluoro - 2 - ( 3-cyanopropyl)pyridine 

(ca. 4 7 # ) . Preparative g.l.c. (Column D, 1 1 0 ° ) of th i s mixture (7*41 g.) 

gave perfluorocyclohexadiene dimer (0*63 g.» 1*40 mmoles, 3*o%) and 
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perfluoro - 2 - ( 3-cyanopropyl)pyridine (1*29 g., 3*96 mmoles, 10%); ( i v ) 

a brown o i l (0*97 g.). D i s t i l l a t i o n (45-55°/ca. 1 0 - 1 mm.) yielded 

perfluoro-1 , 3-bis- ( 2 , 2 *-pyridyl)propane (Vie) (0*87 g., 1 « 9 3 mmoles, 

ca. 10%), [Found: C, 34*8; F, 5 8 . 8 ; M (mass spectroscopy), 449*9904. 

C 1 3 F 1 4 N 2 r e < l u i r e s c« 34*6; F » 59*1%; M, 449*9910] , I.E. N0.26 v m a x 

1620, 1525 and 1480 cm. (fluorinated pyridine nucleus),A 258*5 nm. 
max 

( € 6410) i n cyclohexane (0*0860 g . / l . ) . 

(d) With perfluorobenzonitrile. - By using the same procedure as i n 

(a), perfluorocyclohexa -1 ,3-diene (10*14 g., 45*3 mmoles), perfluoro­

benzonitrile (8*94 g., 46*3 mmoles) and dipentene (ca. 0*07 g.) were 

heated i n an 80-ml. Pyrex ampoule at 3 9 0 ° f o r 64 hr. to give: ( i ) a 

gas (7*12 minoles), shown to be tetrafluorosilane by i . r . spectroscopy; 

( i i ) a mixture (7*16 g.) shown by i . r . spectroscopy and anl a y t i c a l g.l.c. 

to contain p r i n c i p a l l y perfluorocyclohexa - 1 , 3 - and 1,4-diene and 

perfluorobicyclo [ 4 , 2 , 0]oct - 2-ene; ( i i i ) a mixture (9*18 g.) estimated 

by a n a l y t i c a l g.l.c. to contain perfluorocyclohexadiene dimer (10%), 

perfluorobenzonitrile (86%) and perfluoro - 2-phenylpyridine (VId) (2%). 

This mixture was d i s t i l l e d and the f r a c t i o n d i s t i l l i n g below 1 5 0 ° 

(7*63 g.) was separated by preparative g.l.c. (Column D, 1 0 0 ° ) to give: 

(a) perfluorocyclohexadiene dimer (0*37 g., 0*83 mmoles, 3*6% y i e l d ) ; 

and (b) perfluorobenzonitrile (4*88 g.); ( i v ) a sticky residue, which 

was extracted with acetone, the extract was combined with the d i s t i l l a t i o n 

residues (1*55 g.) of the previous f r a c t i o n , and on vacuum d i s t i l l a t i o n 
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(ca. 10~ mm.), gave a pale yellow o i l (1«14 g.). Preparative 

g.l.c. (Column E, 1 2 5 ° ) yielded pure perfluoro - 2-phenylpyridine 

( 0 » 6 0 g., 1-9 mmoles, 4*2% y i e l d ) , [Found: C, 41«4; F, 53*k% M 

(mass spectrometry), 3 1 6 . 9 8 6 7 . C..FQN requires C, Vl « 6 ; F, 53*9%; 

M, 3 1 6 « 9 9 2 3 ] I b.p. 2 0 0 ° / 7 5 9 mm., I.R. No.25 v 1660, 1623, 1520 
max 

(pyridine nucleus), 1480, 1105, 1050, 1000 and 750 cmT1A 265 nm. 
max 

(<r 9100) i n cyclohexane (O.OU56 g . / l . ) . 

10.3] Pyrolysis of perfluoro - 2-aza - 3-bromobicyclo [ 2 , 2 , 2]octa - 2 , 5-diene. 

Perfluoro -2-aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene ( 0 « 2 3 0 g., 

O.85 mmoles) was pyrolysed at 6 0 0 ° by using the same procedure as i n 

Chapter 9,k to give: ( i ) a gas ( 1 « 3 4 mrnoles, 158%) shown by i . r . 

spectroscopy to consist of TFE, perfluorocyclohexa -1 ,3-diene and a trace 

of tetrafluorosilane. No cyanogen bromide was detected; ( i i ) perfluoro-

2-bromopyridine ( 0 « 0 8 6 g., ca. 0 » 3 7 mmoles, ca. k2%) with correct i . r . 

spectrum, but shown by anal y t i c a l g.l.c. to be contaminated with ca. 3% 

of perfluoro -2-aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene and other lower 

b o i l i n g material. 
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1 0 . 4 ] Unsuccessful additions. 

N i t r i l e 

MeCN 

MeCN 

MeCN 

MeCN + BF. 

MeCN + BF, 
3 

PhCN 

PhCN 

C1CH?CN 

C1CH2CN 

Temp.( C) 

200 

320 

400 

195 

400 

325 

390 

340 

400 

Time (hr.) 

40 

42 

24 

28 

17 

3 

32 

17 

16 

Recovery 

Starting materials. 

SiF^, s t a r t i n g materials, 
acetic acid, black s o l i d . a 

SiF^, intractable black s o l i d . 

Starting materials. 

SiF^, intractable black s o l i d . 

Starting materials. 

SiF^, black solid.* 5 

SiF^, s t a r t i n g materials, 
black s o l i d . ^ 

SiF^, black s o l i d . 

a Notes. Soxhlet extraction v/ith acetone separated an ester consistent 
v/ith methyl pentafluorobenzoate; v 1760, 1680, 1650 cm. , 

- I Q M A X 

m/e 226 , 7F n.m.r. resonances at -19*7 ( 2 ) , - 6 « 0 ( 1 ) , - 0 « 6 ( 2 ) . 

Small quantity of white s o l i d sublimed out, m/e 309» 

corresponds to (PhCN)^. 

Contaminated v/ith several protonated and chlorinated 
fluorocarbons (mass spectrum) but not isolable by preparative 
g.l.c. 

Soxhlet extraction with water separated a sublimable inorganic 
white s o l i d ; C, absent; H, ca. 6; CI, ca, 50; F, ca. 7> N, 
ca. 20%. 
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1 0 . 5 ] Addition of TFE to pei-fluorocyclohexa-1 ,3-diene. 

Only two examples of t h i s addition are described. Experiment I 

i s f a i r l y t y p i c a l of the reaction i n most cases, except that no 1 ,4 -

diene was detected, whereas Experiment I I i s most unusual and could not 

be repeated. 

Experiment I . - Perfluorocyclohexa -1 ,3-diene (6*10 g., 27*2 mmoles) 

and TFE (2*64 g., 26*4 mmoles) were heated at 400° f o r 47 hr. i n a 

90-ml. Pyrex ampoule. By using the same procedure as i n the previous 

addition reactions the reaction mixture was separated i n t o three 

fractions: ( i ) perfluorocyclobutane ( 1 » 3 1 g.» 6 » 5 6 mmoles, 50% y i e l d ) 
171 123 with correct i . r . ' and n.m.r. spectrum; ( i i ) a l i q u i d mixture 

( 6 « 5 3 g.) which was shown by n.m.r. and ana l y t i c a l g.l.c. to consist of 

perfluorocyclobutane (O.758 g., 3 -79 mmoles, 29% y i e l d , w.r.t. TFE), 

perfluorocyclohexa -1 ,3-diene (3*75 g.» 17*5 mmoles, 64% recovery), and 

perfluorobicyclo[4 , 2 , 0]oct - 2-ene (2*02 g., 6 » 2 3 mmoles, 23% y i e l d ) . 

Preparative g.l.c. (Column D, 40°) separated pure perfluorobicyclo-

[ 4 , 2 , 0]oct - 2-ene, [Found: C, 2 9 « 5 ; F, 70*1%; M (mass spectrometry), 

parent molecular ion at m/e 324 [ C g l r
1 2 ] + (6«3% of base peak at m/e 255 

[ C ? F g ] + , other peaks at m/e 305 ( 6 « 3 ) , 224 ( 9 8 ) , 205 ( 8 2 ) , 174 ( 3 5 ) , 

155 ( 9 3 ) , 100 (46), 69 ( 7 9 ) , 31 ( 1 9 ) . CgF 1 2 requires C, 2 9 - 6 ; F, 

70-4%; M, 3 2 4 ] , b.p. 9 0 - 9 2 ° / 7 6 9 mm., I.R. No.29 v 1750 cmT1 (CF=CF) 
max 

— 1 19 
and a characteristic t r i p l e t at 870, 865 , 825 cm. The F n.m.r. 
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spectrum i s given i n Table 7.4(i) (page 72); ( i i i ) a l i q u i d 

mixture (0« 6 2 g., 1«38 mmoles, 5% y i e l d ) shown by i . r . and a n a l y t i c a l 

g.l.c. to consist of both isomers of perfluorodicyclohexadiene. 

Experiment I I . - By using the same procedure as i n Experiment I , 

perfluorocyclohexa-1,3-diene (ca. 6*0 g., 26«8 mmoles) also containing 

perfluorocyclohexa-1,4-diene (ca. 13%) and perfluorodicyclohexadiene 

(ca. 9%) and TFE (5'49 g., 54*9 mmoles) were heated at 400° f o r 51 hr. 

i n an 80-ml. Pyrex ampoule to give: ( i ) perfluorocyclobutane with 

correct i . r . spectrum; ( i i ) a l i q u i d mixture estimated by n.m.r. 

spectroscopy to consist of perfluorocyclobutane (ca. 14 mole % ) , impure 

perfluorobicyclo[2,2,2]oct-2-ene (ca. 24 mole % ) , perfluorocyclohexa-

1,4-diene (ca. 42 mole % ) , and perfluorocyclohexa-1,3-diene (ca. 20 mole 

% ) . Preparative g.l.c. (Column D, 3 0 ° ) separated impure perfluoro-

bicyclo[2,2,2]oct-2-ene, I.R. No.30 v 1770, 1?45 (CF=CF), 1330, 
max 

1240, 1100, 1025. 995, 970, 940 cmT1 [Found: M (mass spectrometry), 

parent molecular ion at m/e 324 (11*5% of base peak at m/e 155 

[ C 5 F 5 ] + ) f other peaks at nj^e 305 [CgF^]"** (9-5), 255 [ C ^ ] " * " (13-5), 

224 [C 6Fg] + (66), 205 [ C 6 F ? ] + ( 6 6 . 5 ) , 186 (14-5), 174 (34), 155 (100), 

131 (48-5), 124 (32), 100 ( 61-5), 93 ( 3 0 ) , 69 (50-5), 31 (31-5). 
CgF^ requires M, 324], I t i s a glassy s o l i d at room temperature, but 

b.p. or m.p. could not be taken owing to i t s great v o l a t i l i t y . The 
19 
F n.m.r. spectrum i s given i n Table 7,4(i) (page 72); ( i i i ) a trace 

of a colourless o i l . 
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Several attempts at the oxidation of perfluorobicyclo[4 , 2 , 0]oct-
172 

2-ene both with potassium permanganate/acetone and aqueous 
173 

permanganate produced only very low (ca. 10$) yields of a hygroscopic 

s o l i d which showed two peaks on an a l y t i c a l g.l.c. I t was not possible 

to isolate either the pure anilinium or S-benzylthiouronium derivative. 
1 0 . 6 ] Djmerization of perfluorocyclohexa -1 ,3-diene. 

Experiment I , - Perfluorocyclohexa -1 ,3-diene (0*73 g., 3*2 mmoles) 

was heated i n a 20-ml. Pyrex ampoule at 3 9 0 ° f o r 15 hr. to give: 

( i ) a l i q u i d mixture ( 0 « 6 6 g., 3*0 mmoles, ca. 92$ recovery) estimated 

by analytical g.l.c. to consist of perfluorocyclohexa - 1 , 3 - (ca. 90$) 

and -1,4-diene (ca, 1 0 $ ) ; ( i i ) a trace of a less v o l a t i l e l i q u i d 

which could not be i d e n t i f i e d by i . r . spectroscopy; ( i i i ) a black 

s o l i d residue which was insoluble i n acetone. No dimerization was 

detected. 

Experiment I I . - Perfluorocyclohexa-1,3-diene (11»24 g., 50*2 mmoles) 

was heated i n an 80-ml. Pyrex ampoule at 3 9 0 ° f o r iMf hr. to give: 

( i ) s i l i c o n t e t r a f l u o r i d e ( 0 « 1 1 6 g., 1*11 mmoles) with correct i . r . 
19 

spectrum; ( i i ) a l i q u i d mixture (6*12 g., 27*4 mmoles) estimated by F 

n.m.r. to consist of 1,3-diene (ca. 87$) and 1,4-diene (ca. 13$ ) i but 

anal y t i c a l g.l.c. also showed the presence of the presumed exo- (ca. 2%) 

and endc— (ca. 6%) dicyclohexadiene; ( i i i ) a l i q u i d mixture (4*85 g.» 
19 

10*83 mmoles, ca. kj>*5% y i e l d ) estimated by F n.m.r. to consist of 
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exo- dicyclohexa -1 ,3-diene (ca. 15$) and endo- dicyclohexa -1 ,3-diene 

(ca. 85%). Again a n a l y t i c a l g.l.c. also showed the presence of other 

compounds, perfluorocyclohexa -1 ,3-diene (ca. 55») and a s l i g h t l y longer 

retained unidentified compound (ca. k%). Preparative g . l . c . (Column F, 

65;°) was very d i f f i c u l t owing to p r a c t i c a l l y i d e n t i c a l retention times, 
2 7 

but separated: (1) the shorter retained exo-perfluorotricyclo [ 6 , 2 , 2 , 0 * ] 

dodeca-*f,9-diene (0«32 g., 0-71 mmoles, 2«8# y i e l d ) , [Found: M (mass 

spectrometry, Mf8. C-] 2
F16 r e c l u i r e s M ' b»P« l62°/755 mm., I.R. 

N o «32 v m _ 1770, 1735 (CF=CF), 1370, 1300, 9k5, 770 (doublet) cmT1 The 
1 ^ F n.m.r. i s given i n Table 7 . M i ) (page 72) ; (2) endo-perfluoro-

2 7 

bicyclo[6.2 , 2 , 0 , f]dodeca-3«9-diene (3*05 g., 6»81 mmoles, 27«2#), 

[Found: M (mass spectrometry), kkS, ^-|2F16 r e c l u i r e s M* ^ 8 ] , b.p. 
l63°/256 mm., I . E . M0.31 v 1770, 1735 (CF=CF), 1370, 1300, 9^5 

max 
— 1 19 

(doublet), 770 cm. The ? F n.m.r. i s given i n Table 7 . M i ) (page 72) . 
172 

Oxidation of the endo- isomer with acetone/permanganate did 

give an anilide with a sharp melting point (19^195°) 1 but not having 

the properties of the expected tetrabasic acid, [Found: C, 50*^; 

H, 3*87; F, 29«2#; highest m/e i n mass spectrum 524. C^gH^F^N^Og 

requires C, 56*0; H, 3*67; F, 30«8#; M, 776] , The i . r . spectrum 

showed absorptions at 2630, 1775 (CF=CF ? ) , 1660 (carbonyl), 1*f95» 1375. 
— 1 19 

1150, 990, 96O, 815, 7^5, 685 cm. The 7 F n.m.r. spectrum i n acetone 

solution indicated that decomposition of the compound had occurred, since 

only one resonance was detected (no reference). 
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10.7] Pyrolysis of perfluorodieyclohexadiene. 

By using the same procedure as i n Chapter 9.3» the presumed endo-
2 7 

perfluorotricyclo [ 6 , 2 , 2 , 0 "]dodeca -3 ,9-diene (C268 g., 0-60 ramoles) 

was pyrolysed at 600° to give: ( i ) a gas (0»625 mmoles), shown by i . r . 

spectroscopy to consist mainly of perfluorocyclohexa-1,3-diene, with a 

trace of tetrafluoroethylene and an unidentified gas (1130, 1030 cm. ) 

There were no absorptions corresponding to the 1,it-diene; ( i i ) a l i q u i d 

mixture (0«199 g.), the i . r . spectrum only showed 1,3-diene but 

an a l y t i c a l g . l . c . showed that i t also contained the startin g material 

(ca. 5%) and shorter retained compounds (ca. 5 % ) . 
10.8] Attempted use of BF^ as a c a t a l y s t . 

(a) With perfluoroacetonitrile. - By using the same procedure as 

i n 10.2 (a) perfluoroacetonitrile (2»¥f g., 25*8 mmoles), perfluoro-

cyclohexa-1,3-diene (k'75 g.» 21*2 mmoles), boron t r i f l u o r i d e (0*7^5 g.1 

^•9^ mmoles) and dipentene (ca. 0*07 g.) were heated i n an 80-ml. 

Pyrex ampoule at 200° for 16 hr. and work up subsequently showed no 

apparent reaction. The same reagents v/ere used i n the second experiment 

and heated i n an 80-ml. I^rex ampoule at 300° for 2k hr. to give: 

( i ) a gas (3*^ mmoles), shown to be p r i n c i p a l l y t r i f l u o r o a c e t o n i t r i l e 

by i . r . spectroscopy; ( i i ) a l i q u i d mixture (3*87 g.) which was shown 

by i . r . and a n a l y t i c a l g.l.c. to consist of s t a r t i n g materials, 

perfluorobicyclo [ 4 , 2 ,0]oct - 2-ene and perfluoro -2-methylpyridine ( V i a ) . 
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Preparative g . l . c . (Column B, 100 ) separated pure Via (0»50 g., 

2*3 mmoles, 11%); ( i i i ) a black residual s o l i d (ca. 3 g.). 

(b) With a c e t o n i t r i l e . - As shown i n 10.if no addition products 

were observed i n reactions at either 195 or 400°. 
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CHAPTER 11 . EXPERIMENTAL FOR CHAPTER 8 - THIAZYL CHLORIDE ADDITION. 

11.1] Preparation of t r i t h i a z y l t r i c h l o r i d e . 

Tetrasulphur t e t r a n i t r i d e (S^N^) was prepared by a published 

route from disulphur dichloride and ammonia. ^ w a s 

placed i n one limb of a Schlenk tube under an atmosphere of dry nitrogen. 

On the addition of sulphuryl chloride (25 ml.) SO^ was evolved, the 

large orange c r y s t a l s of S^N^ broke up and produced the smaller bright 

yellow c r y s t a l s of (NSCl)^. The suspension was s t i r r e d (3 nr.) v/ith a 

magnetic s t i r r e r and the product separated from the dark red liquor by 

f i l t r a t i o n at the s i n t e r i n the Schlenk tube. The (NSCl)^ was 

r e c r y s t a l l i s e d from sulphuryl chloride and excess solvent removed i n 

vacuo (rotary o i l pump). The contents of the Schlenk tube (2»72 g,, 

26% y i e l d ) v/ere weighed and transferred while inside a dry nitrogen 

glove-box. This i s probably not an e s s e n t i a l procedure since (NSCl)^ 

does not seem excessively a i r - s e n s i t i v e while i n large c r y s t a l l i n e form 

and i t can be transferred i n a i r between receptacles which are well 

flushed with dry nitrogen. 

11.2] Attempted addition of t h i a z y l chloride to perfluorocyclohexa -1,3-diene. 

Experiment I . - By using the same procedure as i n Chapter 9«3 

t r i t h i a z y l t r i c h l o r i d e (1*00 g., 12*3 mmoles as NSC1) and perfluoro­

cyclohexa -1 ,3-diene (4*56 g., 20»*f mmoles) were heated i n a 50-ml. Pyrex 
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ampoule at 100 for 62 nr. (no reaction was observed at 60 for 10 

minutes), to give' a l i q u i d mixture (4*91 g.) estimated by 1 % 

n.m.r. to consist of perfluorocyclohexa-1 ,3-diene (2-18 g., 9*7 mnioles, 
iand compounds provisionally assigned the structures! 

48% recovery) perfluoro-2-chloro-2,3-thiazabicyclo[2,2,2]octa-2,5-diene 

(1*71 g.» 5*6 mmoles, 45% y i e l d w.r.t. SNC1), and 2 , 4 , 3-dithiaza-

1 ,5 ,6 ,7 ,8 ,8 ,9 ,9 -octafluorobicyclo [3,2,2]non -6-ene (1«02 g., 3*4 mmoles, 
27%). The mixture was separated by preparative g.l.c. (Column D, 30°) 
to give three fractions.I 

Fraction ( 1 ) , a c l e a r v o l a t i l e l i q u i d , perfluoro-2-chloro-2 , 3-thiaza-

bicyclo[2,2,2]octa-2,5-diene (0»60 g., 2*0 mmoles, 16*1%), [Found: 

Parent molecular ion at m/e 305% P+2 indicating one chlorine atom 

(10*7 and 3*8% respectively of base peak at m̂ e 139 [ c y y i S ] + ) » other 

peaks at m/e 302 [CgFgNS^* (16»7), 240 [ C 6 F 7 C 1 ] + (11«3), 224 [CgFg]"1" 

(29-4) , 193 (16-0), 169 (12-0), 155 (21.4) , 143 (18*0), 139 (100), 

124 (15-3) , 112 (16-7) , 100 (12-0), 94 (17*3) , 93 (46 - 7 ) , 69 (38*0), 

64 [ S 2 ] + (18 .7) , 46 [SN] + (64 - 7 ) . CgFg.NSCl requires M, 305*5], I.R. 

No.33 v m a x 17^0 (CF=CF), 1490 (S=N?), 1380, 1340, 1270, 1175, 1145, 1120, 

1035, 980 (doublet) cmT1 The 1 9 F n.m.r. spectrum (20% i n CCl^) 

consisted of two AB quadruplets ( t o t a l r e l a t i v e i n t e n s i t y 2 ) , one at 

-56*0, -51*0, -39*0 and -34-0 and the other at -46»2, -41*2, -27*6 and 

-22«6 assigned to the two CF^ groups; two peaks assigned to the 

v i n y l i c fluorine atoms on C5 and C6 (i n t e n s i t y 1) at -19*0 and - 9 *8 ; 

and two peaks assigned to the t e r t i a r y fluorine atoms on C1 and C4 
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( t o t a l r e l a t i v e i n t e n s i t y 1) at +8«4 and +12«0 p.p.m. {'Fraction (2) , perfluoro-

cyclohexa -1,3-diene (0*97 g.» 4«3 mmoles) with correct i . r . spectrumf'Fraction 

[_(3) t̂ a pale yellow viscous l i q u i d , 2 , 4 , 3-dithiaza - 1 , 5 , 6 , 7 , 8 , 8 , 9 , 9 -

octafluorobicyclo [3 ,2 ,2]non -6-ene (0«82 g., 2«7 mmoles, 22%), [Found: 

C, 2k»"\%] halogen analyses were high and unreliable; highest peak i n 

mass spectrum at n^e 302 [CgFgNS 2] + (10.3% of base peak at n^e 139 

[C^NS]" 1", other peaks at nj/e 221 (6*9) , 193 (15*9) s 1^3 (15*0), 139 

(100), 112 (15-0) , 9k (17«8), 93 ( 3 ^ 1 ) , 69 ( 2 C 3 ) , 64 (11 .9) , 46 (19«4); 

M (cryoscopic i n benzene solution), 330. ^g F 8 N S 2 r e ( l u i r e s ^» 23*8; 

F, 50'k%; M, 302] , b.p. 125°/759 mm., I.R. No.34 v 1750 (CF=CF), 
IH80C 

1370, 1310, 1140, 1030, 980, 925 cmT1 The 1 9 F n.m.r. spectrum 

consisted of resonances centred at: ( i ) -36*2 ( t o t a l r e l a t i v e i n t e n s i t y 

2 ) , doublet ( J 15) assigned to CF2groups; ( i i ) -15*3 ( i n t e n s i t y 1 ) , 

v i n y l i c fluorine atoms; ( i i i ) +25»2 ( i n t e n s i t y 1 ) , t e r t i a r y fluorine 

atoms. 

A tube containing a 20$ solution of perfluoro - 2-chloro - 2 , 3-thiaza-

bicyclo [ 2 , 2 , 2]octa - 2 , 5-diene i n CCl^ accidentally had some water added. 

There was an exothermic reaction and evolution of gas. Evaporation of 

the l i q u i d l e f t a c l e a r unidentified c r y s t a l l i n e s o l i d with parent ion 

m/e 236'0157 (base peak), other peaks at m/e 233 (8756 of base peak), 

221 (12) , 205 (96) , 186 (40), 171 (44) , 143 (88) , 112 (40), 93 (80) , 

59 (42), 15 (93) . The only ion containing nitrogen with a s i m i l a r 
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mass i s CgFgN0pH^, m/e 236*0146. The i . r . spectrum showed absorptions 

at 3320 (amide ? ) , 1735 (CF=CF ? ) , 1455 and 995 cm71 The 1 9 F n.m.r. 

spectrum (10# solution i n acetone, Varian A-56/60) indicated a multiple 

of s i x fluorine atoms and consisted of resonances at: ( i ) -45*2, a 

double ( J 20) of doublets ( J 12) of t r i p l e t s ( J 6«5) assigned to a 

CF^ group; ( i i ) - 33 # 6 , a quartet ( J 6»5) assigned to a CF„, group; 

( i i i ) -26«3t a t r i p l e t ( J 12«5) broadened presumably by being adjacent 

to a nitrogen atom assigned to a CF group (either t e r t i a r y or v i n y l i c ) ; 

( i v ) +2«3i a t r i p l e ( J 20) of quartets ( J 6»5) assigned to a CF group. 

The H n.m.r. spectrum (1C# solution i n acetone, external TMS, Varian 

A-56/6O) indicated more protons than compatible with the mass spectrum 

and consisted of resonances at: ( i ) -5*03 ( t o t a l r e l a t i v e i n t e n s i t y 2 ) , 

broad peaks, possibly an amide proton; ( i i ) -3*04 (intensity 3)1 

doublet ( J 2 ) ; ( i i i ) -0«65 ( i n t e n s i t y 2 ) , doublet ( J 6»5). 

Experiment I I . - By using the same procedure as i n Experiment I , 

t r i t h i a z y l t r i c h l o r i d e (0»77 g«» 9*46 mmoles as NSC1) and perfluoro­

cyclohexa- 1,3-diene (2*57 g.1 11«5 mmoles) were heated i n a 20-ml. 

Pyrex ampoule at 100° for 17 hr. to give: ( i ) a l i q u i d mixture 

(2*39 g.) shown by a n a l y t i c a l g.l.c. to consist p r i n c i p a l l y of 2,4,3-

dithiaza-1,5 ,6 ,7»8,8,9»9-octafluorobicyclo [3,2,2]non -6-ene (ca. 90$). 

This i s equivalent to ca. 7*1 mmoles and a y i e l d of ca. 75# w.r.t. SNC1; 

( i i ) an unidentified viscous l i q u i d (0«36 g.); ( i i i ) a residual dark 

red o i l (ca. 0«5 g.). 
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INFRARED SPECTRA. 

I.R. No. Name of Compound 

1 . C i s - 1 ,1 ,1-trifluoro -3-iodobut -2-ene. 

2. Trans- 1 ,1 ,1-trifluoro -3-iodobut -2-ene. 

3. 2-Me thy1-1,4,5*6,71718,8-00 tafluorobicyclo [ 2 , 2 , 2 ]oc t a -

2,5-diene ( H a ) . 

h. 2-Trifluorome thy1-1 ,k , 5 f 6 ,7 ,7 ,8 ,8-oc tafluorobicyclo-

[ 2 ,2 ,2]octa -2 ,5-diene ( l i b ) . 

5. 2-Monochlorome thyl-1,4,5i6,7»7»8,8-oc tafluorobicyclo-

[ 2 ,2 ,2]octa -2 ,5-diene ( l i e ) . 

6. 2-Pheny1-1,4,516,71718,8-oc tafluorobicyclo [ 2 , 2,2] oc ta-

2,5-diene ( l i d ) . 

7. 2 ,3-jDimethyl -1,if ,5 i6 ,7 ,7»8,8-octafluorobicyclo [2 ,2 ,2 ] -

octa -2 ,5-diene ( l i e ) . 

8. 2,3-Bis(monochlorome thyl ) -1 ,4 ,5»6 ,7 i7 i8 ,8-oc tafluoro-

bicyclo [ 2 , 2 , 2 ]octa - 2 , 5-diene ( I l f ) . 

9. 2-Methy1-3-trifluorome thy1-1,k ,5»6,717»8,8-oc tafluoro-

bicyclo [ 2 , 2 , 2]octa - 2 , 5-diene ( I l g ) . 

10. Diethyl 1 , 4 , 5 , 6 , 7 t 7 i 8 , 8-octafluorobicyclo [ 2 , 2 , 2]octa-

2,5-diene -2 ,3-dicarboxylate ( I l h ) . 

11. Perfluoro -2 ,3-dimethylbicyclo [ 2 ,2 ,2]octa -2 ,5-diene ( H i ) , 
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I.R. No. Name of Compound 

12. 2 ,3,4 ,5-Tetrafluorotoluene ( I l i a ) . 

13. * aoc<x,2,3,4,5-Heptafluorotoluene ( I l l b ) . 

14. a-Chloro -2 ,3,4 ,5-tetrafluorotoluene ( I I I c ) . 

15. Trans- 2 ,2 ' , 3 , 3 ' ,4,4' , 5 , 5'-octafluorostilbene ( H i d ) . 

16. * 2 ,3,4 ,5-Tetrafluorobiphenyl ( H i e ) . 

17. 3,4 ,5 ,6-Tetrafluoro-ortho-xylene ( I l l f ) . 

18. 2 ,3,4 ,5-Tetrafluorophenylacetylene ( I l l g ) . 

19. 1-Methyl -2-trifluoromethyl -3,4 ,5 ,6-tetrafluorobenzene ( I l l h ) . 

20. * 2 ,3,4 ,5-Tetrafluorobenzoic acid ( I l l j ) . 

2 1 . * Perfluoro-ortho-xylene ( I l l k ) . 

22. * Perfluoro -2-methylpyridine ( V i a ) . 

23. Perfluoro-2-bromopyridine (VIb). 

24. Perfluoro -2 - (3-cyanopropyl)pyridine ( V i c ) . 

25. Perfluoro -2-phenylpyridine (Vld). 

26. Perfluoro -1 ,3-bis -2 ,2'-pyridylpropane ( V i e ) . 

27. Perfluoro -2-aza -3-bromobicyclo [2 ,2 ,2]octa -2 ,5-diene (Vb). 

28. Perfluoro -2-aza -3 - (3-cyanopropyl)bicyclo [ 2 ,2 ,2 ]oc t a -

2,5-diene (Vc). 

29. Perfluorobicyclo[4,2 ,0 ]oc t-2-ene. 

30. Perfluorobicyclo [ 2 , 2 , 2 ]oct - 2-ene, 
2 7 

3 1 . Endo-? perfluorotricyclo [ 6 , 2 , 2 , 0 ' ]dodeca-3,9-diene. 
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I . E . No. Name of Compound 

2 7 

32. Exp-? perfluorotricyclo [ 6 , 2 , 2 , 0 '']dodeca-3i9-diene. 

33. Perfluoro - 2-chloro - 2 , 3 -thiazabicyclo [ 2 , 2,2] oc ta -2 ,5-diene? 

34. 2,4,3-Dithiaza-1,5«6,7,8,8,9»9-oc tafluorobicyclo-

[3»2,2]non-6-ene? 

* 
Note. Previously published compounds. 
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i n the s y n t h e t i c r e a c t i o n s . I n the mass spectrum of pure jC £Y Q.NSC1 
o o 

the peak a t m/e 302 [CgFg.NS2] + i s more intense than t h a t a t m/e 

305 [CgFg.NSCl] +, and a l l the fragment ions observed i n the spectrum 

of pure CgFg.NS^ are also observed i n the spectrum of pure CgFg,NSCl. 

No explanation of t h i s phenomenon i s f u l l y s a t i s f a c t o r y . For instance, 

a complicated f a s t r e a c t i o n a t the i o n source i n v o l v i n g the cleavage of 

a C-N bond and the i n s e r t i o n of a sulphur atom seems h i g h l y u n l i k e l y . 

Further discussion of the possible mechanisms i s not p a r t i c u l a r l y 

f r u i t f u l since even the s t r u c t u r e of the adducts i s s t i l l i n doubt. 

More research i n t o t h i s system must be c a r r i e d out before reasonable 

conclusions can be drawn. Nevertheless, the evidence presented above 

i s c o n s i s t e n t w i t h the occurence of a D i e l s - A l d e r r e a c t i o n between 

perfluorocyclohexa - 1 , 3-diene and the hetero-dienophile t h i a z y l c h l o r i d e . 

I n p a r t i c u l a r , the weight of the n.m.r. evidence s t r o n g l y supports the 

p r o v i s i o n a l assignment of the s t r u c t u r e p e r f l u o r o - 2 - c h l o r o - 2 , 3 - t h i a z a -

bicyclo[2,2,2]octa-2,5-cLiene t o the 1:1 adduct. 



8.2] 81 

double bond, but the i . r . absorption at 1493 cm. indicates a bond 

order of 2*6, whereas the formal t r i p l e bond of N=S-F, absorbing at 

1372 c m 7 \ would appear to have a bond order of only 2 * 5 . 1 ^ 

The F n.m.r. spectrum strongly favours structure ( i i i ) . The absence 

a resonance at ca. -30 p.p.m., expected for a fluorine atom geminal 

to a chlorine atom, eliminates structures ( i i ) . The observed s h i f t s of the 
'tertiary fluorines (+8*4 and +12-0 p.p.m.) are much higher than those expect 

iifrom structures ( i ) . The t e r t i a r y fluorines i n the carbocyclic [4,2,0] 

isystem, occur at l e a s t 25 p.p.m. downfield from those i n the carbocyclic 
16 

[2,2,2] system, and an additional downfield s h i f t of ca. 40 p.p.m. i s 

.'expected for the adjacent nitrogen atoms [by analogy, see Table 7 » 3 ( i ) 3 and 

sim i l a r e f f e c t i s expected for sulphur; thus a s h i f t i n the region -20 to -

ip.p.m. i s expected for t e r t i a r y fluorines i n ( i ) . F i n a l l y the s h i f t s of the 

CFg groups (AB quadruplets at ca. -40 p.p.m.) and v i n y l i c fluorines (-19*0 

:and -19*8 p.p.m.) and the ove r a l l appearance of the spectrum closely 

resembles that of the unambiguous 1,4 adducts described e a r l i e r . 

By comparison with the additions of the other t r i p l e bonds, the 

[4,2,0] ring system ( i ) seems the l e s s l i k e l y alternative. Evidence 

from other compounds containing sulphur and nitrogen i n four membered 

rings does not exclude either p o s s i b i l i t y . Disulphur d i n i t r i d e (S 2N 2) 

and i t s derivatives are thermally unstable and explode above 30°, 1^4,157 

which does not correlate v/ith CgFg.NSCl being stable at 200° i n 

preparative g.l.c. However, there i s no report of the 1,2-cycloadducts 


