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The problem ot the elotron capture by :fast charsed parti-

.cles passins thraup a gas is n:am:lned mathematicall;y. The appli

cations ot theoretical teabni~es to simple capture processes are 

cliscussed, with emphasis on the scatterins of protons by helium for 

WhiCh experimental results are more readil;y available. 

The thesis begins with a discussion of the treatm&Dt by 

classical methods of the mecha.Dism of the capture process. ThB 

revival of interest in the classical approaCh to the problem is 

mentioned. It is shown that the distinction between the classical 

and ~antum treatments is not complete and that in the asymptotic 

energy region the two descriptions have features in common. This 

is :followed by a short discussion on the general tneor,r of scatterins 

and the derivation of the :formal expressions :for the scatterins 

amplitude. The Born series expansion of the scattering matr.ix is 

discussed and the convergence dif'ficulty aasociated with the series 

is mentioned. The arsument that the inter.nuoleon potential Should 

not contribute to the probability ot electron capture is mentioned 

and it is Shown that this difficulty is eliminated in the impulse 

approzimation. The impact parameter method: is examined in detail 

and its equivalence with the wave formalism is mentioned. It is 

sh"P.wn that the refined treatment of Bates l19.58) removes the dif

:ficulties associated with the lack of orthogonality 'between the 

initial and final sta tea and eliminates the apparemt dependence on 

the internucleon term. The continuum distorted wave method is 

discussed and the similarity bet~en its asymptotic form and that of 

the second Born appro:x:imation is mentioned. 



The impact parameter method is used to oaloulate the 

aDS& sections for the following processes 1D the anergy ramges 

indicated& 

~ 2 + li) H + Hel1s )-+Hl1s) +He (1s) 3()keV- 10 MeV 

+ 2 + liiJ H + Ha(1s) ~Hl1s, 2s, 2p) +He (1s) 1 kaV- 11eV 

The sansitivi~ at the calculated cross section with the choice ot 

the grOUDd state helium wave f'Unction is izivastigated by caloulatiq 

the cross section for reaction (i) using three approximate wave 

tunotions. The results for the reactions li) and lii) are compared 

and the atomic expansion method is discussed. A brief description 

of the numerical methods used is given. 
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CI-IAP'J.Illi ONE 

Introduction 

'tie shell consider mainly fa.st collisions, in which the 

velocity of the projectile is mu.ch greater than the orbital 

velocity of the captw:·ed electron. 

1.1 Classical Methods 

'llle first calculation on the cha.rge exchange for an atomic 

process 111as made by Thomas (1927). In his model the exchans·e 

occurs by t1:tO successive two-body Rutherford scattering:;·. 

T"ne elect:r:on is first sca.ttered by the heavy incident particle 

tow<.·rds the target nucleus and acquires the speed of the incident 

particle, \·ihich continues to move in it~ original ·~rajectory. 

'The angle of scattering is determined, by the ·conservation of 

ene:r:·sy- and momentlun, to be 60° in the laboratory frame. The 

electron is then scattered by the nucleus, so that it now moves, 

with the speed unaltered, in the same direction as the incident 

particle. 

The classical cross section of ~llamas has the high velocity 

dependence * 
_,, 

v , as for the second Born approximation 

(Drisko, 1955) and. the impulse approximation (Bransd.en and 

Che::~hire, 1963). 'l~e similarity between the classical and 

the quantum mechanical calcula·tions is striking, but Cooke (1963) 

shm.,reu by using the uncertainty principle that the ~llamas 

* Atomic units will be used throughout, unless othenrise 

stated. V = 1 corresponds to a proton velocity of 2.188.108 

em/sec • 
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process carmot be a high energy classical limit. Hecently, 

Bates and Mapleton (1966) have pointed out that, in the model of 

Thomas, the d.istribution function for the electrons of the target 

does not take into account the shell structure of the target atom 

and so overestimates the probability of finding an electron at 

small radial distances. Bates and Mapleton (1966) have introduced· 

a modification to the calculations of Thomas and developed a classical 

theory for symmetrical resonance in slo1rr encounters. The method 

is found to be very successful. 

Since the development of the quantum theory little work was 

done on classical methods until Gryzinski (1959) showed that they 

could be used for a wide v~~ety of processes. Recently, by 

making use of a high speed. computer, Abrines and Percival {1966) 

calculated by means of the Monte Carlo method the cross section 

for the electron capture by protons in hydrogen for a few 

energies in the range 38 to 218 keV. The quanta! system is 

represented. by a macroscopic classical mod.el, and the scattering 

is considered entirely in terms of classical statistical 

mechanics. 1~e Newton's equations for the three-body motion 

of the electron and the t\·To protons are solved by munerical 

integration for a number of orbits. The calculated cross 

sections are rather higher than the experimental data. 

The as~nptotic form of the classical cross section for 

H .f + IU 1s) _., H C1 s) + 1-1.,. has been examined by Bates and 

f'lapleton (1965). Both the classical theory and quantum 

mechanics are found to show, if the protons are considered 
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_, 
distinguishable, the same ·u- velocity dependence and to 

have almost the same constant of proportionality. 
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1.2 Formal Theory of Rearrangement Collisions. 

The scattering amplitude for a rearrangement collision can 

be obtained most easily by the method of Lippman (1956). The 

formal expressions for the matrix element 111ill be derived from 

the time-independent theory, but the same results would follow 

from the time-dependent theory. We consider the process 

1 + (2 + 3) _,. (1 + 2) + 3, 1.1 

in \orhich an initial state, consisting of a particle (1) incident 

of an electron (2) bound to a core (3), is transformed in·to a 

final state, consisting of a bound s·tate of particles (1 + 2) 

and a free particle (3). Fbr simplicity, the particles are 

assumed to be non-identical and spinless. 

Let x and k be the position and momentum vectors of (2) 
- --x 

relative to (3), g- and ~. of (1) relative to the centre of mass 

of (2 + 3). 'r.he vectors appropriate to 'the initial configuration 

are In a similar 111ay, the vectors 

appropriate to the final configuration are given by ( ~, f, ~n~~-

The momentum vectors ~ and kr are related to the initial and 

final velocities of relative motion, Yj_ and .Y.r• by the equations 

lz. :.:: M. "11'. -c. • -.. ·-t.. = J 

where t·he reduced masses t'i and t-'r are given by 

1"1, { i + 1"1,) ' 
1. 't 1'1,...-1"13 

with~. as the mass of particle i. 
~ 

1.2 

1.3 
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·If ~( is the eigenfunction of (2 + 3) and ~f of ( + 2), 

then the initial and final unperturbed states of the system are 

described by 

~i. ( E,) 
'-!t.·!!" 

;, ( ~) J - e. 

jf ( Ef) 
i. ~~ • .f ¢.f (~). = e. 1.5 

'l'hese states belong to the comp;Lete sets of orthogonal states, ~ 
l'1 

and -~ln , which satisfy the Schrodinger equ.a.tions 

( H '- - £.,,") ~ -n ( E"-n) - 0) 1.6 

( Hl - EW\) 41m (£"") = 0} 1.7 

where Hi = K + V 
23

, Hf' = K + v12, K is the total kinetic energy 

operator, and V .. is the (oulomb interaction between the particles 
~J 

i and j. 

The total Hamiltonian H in the centre-of-mass system is 

H can be written as H = Hi +Vi ... Hr+Vf, Vi and Vf being the 

initial and final perturbing potentials 

1.8 

1.10 
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'r.he Schrodinger equation for the complete system is 

-+ 
(H - E.) Y: (E.) 

~ ... ~ 
= o. 1.11 

-\11( is the outg'Oing wave function corresponding to an initial S~to.te. .fc: 
and outgoing waves \vhich describe elastic scattering, inelastic 

scattering, and rearrangement processes. ]'or capture 

into the final state f, it has the asymptotic form 

.... 
'"'*'·· '-

\ii th e =c. DS1 (~i • ~)' and j(e) as the scattering a.mpli tude 

from the initial state ~t to the final state 4f • 
The capture cross section is then given by 

I 'J. 

s ~ ~ f If (a) I ~ (~ 9) · 
'"\1" i. -· '"l 

'l'o obtain f (Q) f:r:-om 'iJ! t , we first define the three-

particle Green's functions 

-. 
( 1: i. ·+ l. e. - H Ll ~ ja""' l~~><~"" \ ) 

E'i..·,.. i.E.·- E.,. 

1.12 

1.13 

1.14 

Ct=c. ·ti.£ -H;r' ~ Jr1\"<f\ 1 ,.:'>z~""' ) 1.15 

Ei.. . .-&.t:- IE"" 
where ~ is an arbitrary positive real quan·ti ty, and ~"'and iw. 
satisfy (1.4) and (1.5). vie denote the operators 

1.16 

1.17 
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(E. +'-f.) (E. +i.e. r' G = -K 
0 ~ ~ 

·-· G (Ei + L.e. ) = (E. +i.E - H) 
~ 

From the theory of differential equations, ~; satisfies 

the eqUE..tion 

with 

1.18 

1.19 

1.20 

By ope:r:ating on the equation (1.19) to the left and right 

by (E. + l.f. - H.), vre find 
~ ~ 

and similarly we obtain 

G- · = G- [1 - v · G-. ·1 = [ 1- G. V. ]G-
(.. "" IL. ' IL. ) 

so that 

and hence 

1.21 

Using (1.20) and (1.21), \oJe have 

1.22 
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Operating on (1.17) first by (E. +i.E. - H.), then by Gf and 
]. ]. 

rearranging, we obtain 

1.23 

so that 

1.24 

The term on the right-hand side C&_n be l-TOrked out to the 

simple form 

1.25 

= (. E. 

k;_ -+ L.t:- ,.,:f 
The Schtodinger equation describing the rearrangement 

collision can then be written as 

1.26 

The transition rate \o/if for a rearrangement process depends only 

on the second term on the right-term side of (1.26); the first 

has no singularity and so vanishes as e~ o+, except in the 

special case when the three particles are unbound both in the 

initial and final states. Using the spectral representation of 
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Gf (1.15), "'e find 

"\"f".l+( :'\ f 1~"')(1"...\~t~·~C"E";;+i.~> 1.27 
xi ;;t +~£.1 ~ ol'W\ . • 

£ t + t.e. - E W\ 

·""i£1 contains the time dependence exp (iEi t -e.t )/""" , so that 

1.28 

where 

1.29 

Since 

L ~ LJ - l"il ~(~) [x. +£. C.) 

we obtain 

'lhe scattering a.mpli tude f~f(&) is related to Tif by the equa·tion 

- f'Af .-r-
- 'i.f· ~·rr . 

In a similax marmer, the incoming .ave solution '"!P.- can 
f 

be written as 

and the transition matrix Tif becomes 

1.33 
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\ole now consider -~he scattering ma.ti:ix, or simply the 

S-matrix. Let the channels of the process be denoted by ~,~,YJ 

etc. We eA."JJress "i: as a linear combinations of the "f,: 

1.34 

From the orthog'Onali ty of the scattering sta·tes we obtain 

'rhis is the S-ma:~:r:ix. The importance of the S-me.trix lies 

in the fact that it is unitary. By using (1.34) and (1.35), 

we find 

* bee~ ., r c; s -::: 
T ll"o~o "lt(b 

r ~b' s(&: = ~otp ) 

and hence 

1. 

'!'he unitary nature of the S-matrix has an important physical 

meaning ; it ensures the conservation of flux or probability in 

a collision. 

'!'he present proof for the uni tari ty of the S-matrix is 

unsatisfactory. It is based on the assumption -~hat the ,.,ave 

functions in different channels ax·e orthogonal to each other. 

'rhis is not the case in rearrcmgement collisions, where the 

colliding particle and the collision products are composite 
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fragments, so that the channels overlap. An alternative proof 

is given by Jauch and Marchab~d (1966) a11d it shows unitarity to 

be a direct consequence of the asymptotic conditions and 

no~hing more. 
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1.3 'f.he Born Series. 

In any gener£tl theory of scattering it is not difi"iCl.U t to 

derive exact expressions for the transition ma·~rix of any 

collision. It is in the e.ctual calcu.lations that the difficulty 

arises. In almost all cases it is impossible to obtain an 

exact solution for ..... ~~. ... ......-,-1-'!:t"c. o-r '::t"f and, in practice, 

variOt$ methods are used to find approxiu~te solutions. A 

frequently used approximation is that of Born, and it consists 

in iteratine; the integral equation. 

We consider the series expansion of the operator 

On using the operator identity 

1.39 

and setting· 

A =. ( f t ... ~f..' - H~) , B:: - V~ , 

we obtain 

G = G. + G. V. G. 1.40 
~ ~ ~ 

As G-:::=: G., the series representation is g-iven by 
~ 

G =G. +G. V. G. +G. V. G. V. G. + ••••• , 
~ ~ ~ ~ ~ ~ 1 ~ ~ 

and in a similar precedure 

1.41 
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The transition matrix is 

) 

with 

Using (1.41), '"e get the series 

·-rL} = < ~f I 'i' gjL > +- ( ~f '~ G-t '(I~'> 
·+ < ~fl ~ Gi v£ Gtvt 1 ~c:> ..- · · · u 

\rlhen only the first term in this expansion is retained, "'e 
obtain ·!;he first Born ~pproximatio.n, often simply r.eferred. to as 

the Born approximation. \ole denote it by 

The alternative expression for Tif' 

can be iterated in terms of Gf (Ef -'e.) by a similar procedure. 

In this case, the first term in the series expansion is 

&± 
The two forms of the Born apllroximation, 'f,"f , using 

the post and prior interactions respectively, are identical 

provided the wave functions ~. and ~ are exact. 
'- f 

'l'hey give 
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different Vf:.lues if either g?, or~~ is not exact; this is the 

source of the post-prior discrepancy and it is impossible on 

physical grounds to predict which interaction will give a better 

estimate of the transition matrix. 

The terms beyond the first few in the ser:ies expansion of 

Tif are difficult to evaluate; they mu~t be negligible if WJY 

calculation based on this series is to be valid. It is 

shown by Zemach and ICLein (1958) that, except for sufficiently 

high energies, the series expansion of the Green's function 

diverges. Aaron, Amado and Lee (1961) have found that for 

a class of potentials, includir~· the Coulomb potential, the 

Born series diverges. 

is probably correct. 

Their proof is not rigorous, but the result 

However, Dettman and Leibfried (1966) have 

re-examined the Born series and expressed the views that the 

commonly used arguments to prove its divergence for rear:rang-ement 

collisions at all energies do not hold. They treated in 

detail the one-dimensional three-body collision with S-function 

interactions and found that, in this particular case, the series 

converged. The proof is not rigorous and their conclusion 

is open to question. 

The problem is also investigated in the framework of the 

distorted-wave formalism by Greider and Dodd (1966). In this 

case too, the iterative solution of the integral equation is 

found to diverge. 
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A e·enert•.l and rie-orous mE~ thema tical proof that the 

ordinar-y or the rJ.istorted - t·ravo Born model is or is not valid 

wou~d be ext:r·emely valuable, but probably difficult to find. 

It Uiay "rell be that for potentials of practical importance the 

series diverges, so ·that the validity of the ayplica·tion of 

the :Born aPproximation to atomic collisions remains in doubt. 

Accurate rcsul ts a:ce ho,·lever obtained f01.' some processes form 

the first one or t\'10 terms in the I~orn series. The 

ap}?roximation often \ororks much better tha..'l may be expected. 

1.4 1he Imptlise Apnroximation. 

Chew (1950) first attempted to forr.·ulate the scattering 

amplitude in terms o i' exact t\oro-body m.."'. tr ix el ernen tc· ·• The 

method rests on the aSSUlllption that, for the process 

-1 + 

if the velocity of 1 is ntuch gr~ater than the orbital velocity 

of electron 2 in the bound system (2 + 3), the struck particle 2 

may be regarded as a. free p. :r·'ticle dtrring the collision. 

'lhe eiTects of the binding potential V 
23 

can be neglected, 

al thot~gh it deterr:ines the initial state cp . . 
L 

We define the t11ro-body M~ller opere.·tor \·1;.
2 

by 

w,: J(.(~,~~= [:1 + (£ 115 ..- Ettf+ 4t. -K-V..,.Y'v,:~.] X (~5 .. ~~ 
:: .-L ( k.. k' 
- I ··""-' -fl) 

1.46 

where the momentl.Ull vectors ~ and ~ are defined as in section 

(1.2), and X (!a, kf) is a plane wave. 
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X(~, ~) and . ....,_, (~, .!ir) satisfy the Schrcklinger equations 

X(~,~) is the plane wave function for the three particles when 

there is no interaction between them. ~~(ks,kf) is the product 

of a \"tave ftu1ction for scattering of 1 by 2 with the potential 

v12 a..TJ.d energy ~cs, and a plane "'ave describing the motion of 

3, 1rlith energy 1\f' relative to the centre of mass of (2 + 3). 
-t 

We define the __ ~ller matrix .n by 

) 1.49 

so that from (1.22) 

' 
and from (1.29) 

. '"'""" After some manipulation (Che1rt and Goldberger, 1952), .J.L. can be 

written in the form 

_n..:i- = ( ~.-! -+ c..>~ - :t) + G [ v,_~, ( w-~,_ + w: .. !t)J 

+ G-[V.,.(~:~-i) -t- vl)(w,+.,_ -i)J ~ 1.52 

~he second term on the right-hand side of(l.5~vanishes on 
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neglecting the binding potential v
23

, in accordance \'lith the 

impulse approximation. The ·third term represents successive 

scatterings of the incident particle by the potentials v
12 

and 

v13 ; these multiple - scattering effects axe negligible for 

chara·e transfer collisions. 

The transition matrix is then 

From the al ternetive eJ_Cpression of 'l1if in terms of ~
f 

, \'te find 

1.54 

It is expected on physical grounds that ·the internuclear 

potential v13 ca... .. lilOt affect the electron capture cross section· 

S .± etting ....,,~ o.. .i. , we obtain 

:I 

< i 1 I ~ I CAl~ ~i > --r.f .- 1.55 - ) 

n. < c..):~ ~ \ VL I ~,> 1.56 ~f -
· It is evident from the ass·llmptions used that the impulse 

approximation will be better the weaker are the interactions. 

Its application to the collision of a particle l·Jith a neutral 

atom is intuitively plausible, but it cloes not follo\'t that the 

extension to processes involving interparticle Coulomb potentials 

is exactly valid 

The present formulation of the impulse approximation in 

unsatisfactory, for ·the Coulomb potentials have only in part been 
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eliminated by the use of two-body operators. Moreover, the 

t\'10 forms of the transition matrix, T~f and Tif of (1.55) and 

(1.56) respectively, are not automatacally identical, and this may 

introduce a 'post-prior' discrepancy. ~nese defects have been 

overcome in the ne\'1 formulation by Fadeev (196la, b, 1963). 
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1. S Impaot Paz:ameter !Ol"JJ!U,la tigp 

ID all oollisiaas between atomic ~stama conta1n1ns 

heavy particles, the motions ot the heavy particles az:e 

essantialq UD&l.tered by a_,v eleotrcmic excitation or re

arr&Dpa8Dts UDl.ess the aerg: ot relative motion is ver.r 

low (Bates ad Boyd; 1962a, b,). It is thaD advaataseous 

::ln clesoribiDg these processes to treat the eleotrGDio motions 

by quatum Eolumios but the motions ot the heav particles by 

classical Dl8ohlmics. The tol'llllll.ation which follows is JDB1n]y 

due to Bates (1958). 

Let 1 aDd l: be the position vector aDd velocity, respectiveq, 

ot particle 1 relative to 3, fiDd .£ the position v.eotor ot the 

electron 2 relative to the mid-po::lnt ot I• We choose a 

oo-ardiDate system with the :z.- azis alaq the direction ot 

motion, so that 

R = f + y t , :a ::: vt . 1.57 

The time-t is choaeD such that at t = 0 the particles 1 aDd 3 

have a m1nillli1D separation f , known as the nimpaot paz:8118ter" 

ot the collision. 

The eleotrODio wave funotiOD ~ tor the complete ayst811l 

satisfies the time-dependent SchroaiJJsar equation. 

1.58 

with 

H = _ .1. ",. + v.,_ + v . 
2 y 13 
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~ is expressed in the form of a series expansion of 

eigenfU11ctions; the set of basis functions is chosen so that 

each term in the expansion is a solution of (1.58) in the 

limit of infinite nuclear separation (Bates and MCCarroll, 

1958). \ole write 

~(:f.~) = ai.(f)¢~(r+tE)·~p{-'-(:t'"lZ·!"~f~~-f .. f;.t)1 

-1- b~ (t) ~f ( 1: -;f_ ~) ~~{ i. ( i "}_(·!'- i""'"t- ~t)"} 

+ Y ( r> t). 1.60 

¢i and ¢f are the wave functions of the bound states (2 + 3) and 

( 1 + 2) , respectively. 1( ( r, t) is orthogonal to the other t\lro 

terms on the right-hand side of (1.60) and may be expanded in 

the alternative forms 

and 

Continuum states may also be included in ~(r,t). In this 

section, for simplicity \·re consid.er t\vO states only and set CY':::. 0 

this is equivalent to assuming ·that coupling through all states 

other than i and f are negligible. 

The expansion coefficients ai(t)"and bf(t) depend on~ 

although this dependence is not indicated explicitly. The 
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initial conditions are 

The probability amplitude for electron capture from an initial 

st~te i to a final state f is then bf(+aO). 'lbe probability 

of capture at a particular value of the impact parwneter is 

I b:f(...Gi)l'l and the total capture cross section is 

where 

K~s (t) =- f ~ .. ( r 4- i ~) V':l~ ,pf (::r- f ~)e. i.1!· r r;~:!, 

l<f · (i) ·= J ,/,. r(·-r-.!. !J\ V th, (~ + L R\ e: i. ""t·! ot -r " '~"F - '].. =J 1'1. r" - "&....),I _, 

h · · ( ~) ·::. f A.- (..,. + J. R \ 11 "'· (-r + l ,i\ d -f . "" Yt - 1. ..: J v,'1. 'f'.. - ~ .::1 -) 

1.64 

1.65 

1.66 

1.67 
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1.68 

By substituting 

o(i. :::: ~"' - S:f K.ft ~f ::: ~.u - s.it K'·\f 
) 

1 ·ls~f\~ .1 - \Stll. 
and 

\: 0 t 
D 

f.tt e,.p{ i.J ol~d.t} b1 .:: b:f .1.1-p~ 1 s P.tolt J ) "l ::. ., 
-d) -a:. 

in (1.68)and (1.69), we obtain 

0. 

~t 

o I" 
Df 

,.,.here 

t 
bj_} = s ( o( t - p~) t! t 

-dJ 

t 
~ _L ( h a - ~fl cl t 

If vre make the assumption 

which implies neglecting back-coupling from ·the final to the 

initial states, we obtain 

lbf(+dl)j = l 0b:f(~~~ == I£ M~lcitl) 
1.77 



where 

Since 

23 -

Ki•- sr ~" """"' -t(.<,ft+ b,f) 
1 - Sqi"J. 

( 1(1 t - ~.f ~ h~~ "-"' }=»-i (t[~t + f,,~. 

J '4* (£ -{ !) [ ~1 (:r- ~B)+ V,!t (B.~¢, (1: +l B.)e i: "'I·! J. ..,_ 
1.80 

.:: K..f l + V, ~ ( g) S .§ l > 
and 

:; 

s~ (! +! .8) [v.~( ~ -~ g)~v.~ (gi ~ ("!+ \.~) d "f 

1.81 
') 

it is evident that Mif is independent of the internucleon 

potential vl3. 

'.Phe phase term btf comes from the difference bet\.,.een 

the effects of the interaction of the colliding systems \vhen 

in the initial state ~1d when in the final state. Its 

inclusion in {1.72) and (1.73) allows for distortion. This 

is expected to be important for charg·e transfer processes 

because of the large contribution from close encounters (Bates 

oo1d McCarroll, 1962). 

In the case of synnnetrical resonance, b'f vanishes since 

the initial and fine.l states are identical (Bates, 1958). 

Moreover, the equations (1.72) and (1.73) become sufficiently . 
sbnple to be solved exactly and so allows completely for 
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back-coupling from the final to the initial states (McCarroll, 

1961). 

1~e impact parameter methol satisfies the requirements 

of the detailed balancing (Bates, 1958 b; Green, 1965). In the 

\Y'Ork of Bates (1958 b) dete.iled balancing is proved for processes 

heving small transition probabilities. Green (1965) considers 

the general case and shm-Ts that the impact parameter method 

satisfies detailed balancing· even though o~~Y a finite number 

of states is included in ·(;he expansion set. He c.:.·nsider the 

expansion of ·""]( 

1.82 

where the symbol C is used to distinguish solutions corresponding· 

to different conditions, a.nd ¢ is a set of orthonormal ftmctions. 
n 

Let 

stz-n == < s6" \ c/>1\) , 1.83 

H~~ ==- (¢~t\l~-t~jrP") · 1.84 

He take the z-axis to be in the direction of the incident 

particle. \ole define 

1.85 

so that 

-~ 

Q. R 'Y'\ (C.~ t) :: €¥\ q Y\ ( C j _ t) , 
J 

1.86 
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+ 
\.fe define also t\-ro ptu:ticul&r solutions ""'gg-(kjt) 

\'lhich have the propert;l' tht>.t as 

1.8'7 

'l~e essential time-reversal relations are 

1.88 

i l.k ( t) ~ c; .... E ..... \-t ..... W\ ( f_\ . 1"1'1\W\- •••••• , ;') 1.89 

'liTe \'lri te 

<""'I'; c ·"':, t) I Y ~ ( ~ _; t)) 

= 

'fhe pi·oof of the tLetailed balancing then follo\'IS. 

Approxim::,t:ions corresponding to each of those described 

above can also be obtained in the '1-Tave formalism which allO\'IS for 

the non-orthogonality of the ini tiEd and final eis;enf'unc tions 

(Bates, 1958). In the simple case \·There distortion and back-

coupling are isnored, the matrix element is obtained by replacing 

V f in '11if by the effective in·t;era.ction 

i . [ V (x -1 .B)- "i.tJ · 
I 

'

'2. 1"1. 2.. 

1- s\t 
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1l'hese results can also be obtained by a variational method, 

using the fttnctional 

Let F"'V\ (cr) and G-n (f) be the coefficients of the initial and. 

final bound states in the t\V'O-state expansion. of '"'12 . The 

method consists in using the property that I is stationary 

unQer all independent variations of F and G that leave the 
n n 

asymptotic forms ofF and G unaltered. 
n n 

Bassel and Gerjuoy (1960) have used the operator: formalism 

of Gell•Mann and Goldberger (1953) to derive the distorted 

wave approximation. '!his method gives similar results as that 

of Bates, but the \S.:~T· term is no1r1 not obtained. 

Let ~'- {CZ') ~d ~J (f) be arbitrary short range potentials, and 

Xi and Xf be solutions of the equations 

1l'hen the incoming wave solution is given by 

1. 

'E~ - tt: - K _ v2.~-+ ~~ 

t < E ~(!f)~ ( V,,rV,. +~)~; (£~~ ) 
and hence the trru1sition matrix is 



27-

The method consists in substituting·~i by hii and ~-f by hff' 

since any other choice would be inconsistentin the light of the 

derivation using the-variational principle. ~he term cont4ining 

the internucleon potentie.l v
13

· is of the order "w.ljr~ and. is thus 

negligible. 

Sil (1960) has e:A.-plicitly used a variational method to 

obtain a forrnalism equivalent to that of the impact parameter. 
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1.6 ~~e Continuum Distorted Wave Method. 

Cheshire (1963b, 1964-b) has suggested a new approach to 

the distort~d wave n1ethod and developed an approximation which 

has the virtue of including continuum intermediate states. 

'The initial and. final states ~,~and ~f (t) ; \IThich satisfy 

the equations 

are given by 

~f (t) - ¢:F (!) ·llJ1.~ f L ( i ·Y·!-; -v~f- ~ff)} · 
!.fue complete wave functions ·~G:)and ~(t)are then written 

as 

~'-(t) ·- ~t(t)JL(-~)) 

·'}-.f (t) .::: g?:f (t) J:f (i) ) 

where J..i ( t) and t/f( t) are solutions of the eq·uations 

'I. 

( ., 'C'7 1 1 · ~ ~ nY, :~t. J! i ~ + - - - + "- - ·- v . .., . - - . "\1 .,.. s ,:t 'bt '2. - 'f' .. -- .,.. i. ') 
X. 

and have the b<Wndary conditions 

. 1.99 

1.100 
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t. W\ ;/. ::: ..( "• M o:P 
t""""P- aO \ t~+d) f 

1.101 

First order approximations to ~.and J.f' denoted. by £J a.nd 
1 L 

£i, are obtained by neglecting the rieht-rUUKi sides of (1.99) 
i , 

and (1,100). At high velocities li and~f are expected to be 

good approximations to o(i and~f respectively, over the regions 

which contribute to the scatterin,_; amplitude. 

1l'he tra...'lsi tion amplitude based on f . ./.· and f. J 1 
as 

• \ J. f 
distorted waves is then given by 

JJ 

. ..,.-.f ::.- i..J ottJct!" [~;"k,f ~-~- \ll. ·]· 
'" -r j c. X y '" 

-QC) 

1.102 

This formula is exact. But ·the method does not take back-

coupling into account and is therefore expected to be valid 

only at ene~gies above 25keV. ~~e calculated cross sections for 

1-1+ + 1-t('fs)~ H(1s)-+ \-t" a.:t·e ver:y close to those obtained with the 

i~pulse approximation at energies bet~een 80 keV and 1 MeV, but 

bet\'reen 40 and 80 keV the results are nearer to the calculations 

of 1-lcCru::roll. The asymptotic form of this method at high 

energies is exa.c tly that o.f the second Born ap}lroxima tion. 



CHAPTER 'x\10 

Review of Existing Calculations\ 

2.1 'l'he First .Born Apuroximationoi 

It was shown earlier that the Born approximation cotud be 

expressed as 

2.1 
} 

;: < ~r I v +- v I ~. ) . 
~ ·~ 12. ' 

2.2 

Oppenheimer (1928) and Brinlanan and Kramers (1930) argued 

that the internucleon potential v
13 

should not contribute to 

the probability of an electronic transition. 1'!1is ca;n be 

considered in the following wa;y. At the energies Lhe 

approximation may be valid (fo:t· incident protons the energy is 

much greater than 25keV) the relative velocity of the heavy 

incident and target nucleons is much greater than the orbital 

velocity of thr~ electron. Any electron excitation ·or c~pture 

causes negligible change in the relative momentum of the nucleons, 

~,orhich t'•erefore movE:: in strai3ht line trajectories. It is then 

evident that the potentic.l v
13 

cannot affect the cross section. 

[This result might not be valid when there is a laxge 

contribution to the scattering amplitude from very close 

encounters ( l•'enn.ema, 196 3) .] 

'lb.e fir:st dete.iled calcula"l:;j_ons for the process 
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,.,.ere made by Brinkman and Kramers (1930). 'I'he first Born 

approximation was used, but the inte:r:·nucleon terrn v
13 

in it \V'as 

neglected. We shall refe:r:· to the approximation when v
13 

is 

neglected as the Brinkman-Kramers approximation, and 111hen v
13 

is retained as the Born approximation. 

For the process (2.3) the Brinlonar:-Kramers c:r:·oss sec·tion, 

in units of (1f~ ), is given by 

:: ., 

where "\f is the velocity of the incident proton in atomic units, 

so that the incident energy is E = 24.97 v
2 

keV. 'lbe cross 

sections for capture into excited state.P have been determined 

by Bate1;1 and. :t-icCar:r:·oll (1962). 

Brru1sden, Dalgarno and Ki~(l954) used the Brinkman-

Kramers approxima·tion to make the first calculations for 

the process 

2.5 

'l'he simple variational wave function for the belium atom1 

cl:: 1· b815,., 2.6 

is usee!, so that the post-prior descrepa!.wy is present. 

Since it is impossible to lmO\·T which interaction 111ill give a 

better result, the prior interaction is used as it cont~::1.ins 

fe111er terms than the post. Bransden, Dalgarno and King (1954) 
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calculated QP.!K( 1~i-ne.) 1s) ( n(:.1~'1i11.p) and estimated 

Q
8

( 11)'1.11~.) 1s ) , but the Born matrix ,.,as evaluted approximc.tely 

to reduce the cGJDputational difficulties enco·l.lntered. 

Compe..rison ,.,i th the e.vailable ex_·,erimental data up to 200 keV 

shows that Q&l(is too lar:;·e and t:t.e.t Q 6 agrees better \·lith 

experiment. 

It i::= expected on physical g-.councls thG.t the internucleon 

potential v
13 

should not affect the probability of an electronic 

transition. However, Betes and Dalga:r:no (1952) end .Jackson 

and Schiff (1953) independently argued that the neglect of the 

term v
13 

in the transition matrix element \·ras unjustified. 

The initial a..TJ.d final ,.,ave fur1ctions {/Ji and 92.f, respectively, . 

are not eigenfunctions of the same Hamiltonian. 'There is 

thus a lack of orthogonality between ~t and ~f this defect 

accounts for the large value of Q3 1(.. Since v
13 

is of the 

same magnitude but of op)OSi te sign as the remaining potential 

term in T~f' the inclusion of v
13 

in the matrix element may correct 

the over estimate in the Brinkma.n.-Kramers approximation. 

Mapleton (196la) b:..-.8 used the Born approximation to me:lke 

extensive calculations on the p:rocess 

in the energy r.'arlt.::;e 7 keV to 1 MeV. He calcuJ.a ted the p~trtial 

cross sections for capture into the ls,2s,2p"1 3s,3p 1 or 3d s·~ates 
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of hydrogen, leaving the resid~~l heliumion in one of the 

l.s, 2s, or 2p states. Since the inexact helium wave function 

(2.6) is used, different values a.re obtained for cross sections 

using the ini tie.l and final interactions. The post-prior 

discrepancy rises to a factor of almost 4 for Q~(...,?'lf-;,,;1~) at 

1 ~eV, but it is not serious if the beliumion is left unexcited. 

l-iapleton (1961) has also used the "'-!1 rule ~f Oppenheimer (1928) 

to evaluate the total cross section 

2.8 

and has found that the post-prior discrepancy for the total cross 

section never exceeds 20%. 

'lhe results of Mapleton (1961) for Q& (h...,1s.J1s.) are 

roughly 2.5 times larger than the values obtained by Bransden, 

Dalgarno and King (1954). In Figs. 1 and 2 , the mean of 

the post and prior total cr·oss sections are compared l'ri th the 

experimental values of Stier and Barnett (1956), Barnett and 

Reynolds (1958), and Allison (1958). 'lhe agreement is generally 

good, ~JUt at high energies the theoretical curve falls too 

rapidly. 

Another calcula-tion for Q 6 ( 11jo2.J 1s, 1s ) "1as made by l>lapleton 

(1963a), nsi:n.e- now the Hylleraas six-pa.J:·ameter \-Tave f~u1ction for 

helium 
. ~ . 

N [1 + c., I :r, - '!,. \ + c.,_ (--r, _.,.. ,_) + c~ ( ..,.,·t-1"1.) 

+ ~(.,..,+.,.~"" + c.sl:r.-:!1.\J~ri-«Yt.(.,.,·~:r1.)}) 
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where c1 are vazoiat1onall1' determined coDstuts. It was 

pointed out by Bates ad McCarroll ( 1962) tbat the s1mpl.e 

Yariational. helium wave function (2.6) Ullderestimated the 

hip momeJltum oomponats 81ld 1 t •s thoupt that the use 

ot 8ll improYed wave :tunotion would provide more accurate 

results at hip eDersies. Ill the Dew calculations ot 

Mapleton ( 1963)., the post-prior aiaorepuClf is reduced to 

about 1", but the t1aa1 results are Dot 1D. better ·asreemeZJ.t 

w:l th exper:l.merltal aata. However, the Br:I.Dkmaza-Eramers croaa 

aeotiOD tar the same process ahows si&Difio81lt aharlge at h1&h 

energies. .&ltb.oup the old azul raew ~ agee 1d:tlwa 1$ at 

111eV, the Dn values ot ~ at 10 MeV a:ceeda the old value 'h7 It,.,_. 
Maplatoa (1962) has also oaloulated the ratio R = Q_r'~, 

as a tlmction at eaer17, tar electron oapture by protODs 1D 

qdropa azul 1D heliwa. !he ratio:.l is r011gb4r the same for 

both processes; tor ezample, at 2S keV ~(H) = 0.196 azul 

R(He) = 0.128, while at 1MeV R(H) = 0 • .3.37 8lld R(Be) = 0.271. 

llapletaa ( 1962) augeated that this 8imilarity 1D. the ratio could 

be aintaiDed for electron oapture from a more complex atom 8Dd 

that this relatioa could be used to estimate ~ from ~· 

!he hiP eaer17 beha'Yiour ot the Bom approximatiOD tor the 

electron capture by prot~ ill hydrogeD has been ~Yestipted 

by JaoksGD aDd Sohitf' (195.3) 8ll4 Mapleton (1964&). Both 

-12 
~ azul~ have the nlooiv depadezaoe V , azul 

2.10 
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-12 '!'his V dependence comes from the contribution to the cross 

section of scattering in fo:rwa.rd direction. There is also the 

contribution of scatterins in the backward direction; this has 

-6 the asymptotic form V <~d is ultimately the dominant contribution. 

In the ca.pt1.1re process in the forward direction, the electron 

is 1 picked up 1 by the incident pi.•oton, which is essentially 

undeflected. On the other hand, capture in the backward 

direction occ·urs when the incident proton makes a violent 

collision with the target proton, ejecting it from the atom and 

taking its place. 

Mapleton (1964b) has investigated the asymptotic forms of 

the cross sections in the Born approximation and the distorted 

wave method for the resonance process w"'·..-14(1s) ..::p ll(io;.) + •1+ 

If the protons are considered distinguishE:.ple, both methods give 

-6 the V dependence; but if the protons are considered 

indistinguishable, the cross section is not defined, because 

the contribution in the backward direction interferes with the 

direct scatterj.ng amplitude. 'lhese features have also been 

found in the impulse approxim~tion (Coleman and McDowell,l964). 

:F'or nonresonant capture the situation is different; there is 

no significant contribution from the backward direction, and the 

-12 Born cross section behaves ul~imately as V • 'l'hus , in the 

electron capture by protons in helium, both the Born approximation 

and the distorted wave method. are found to have the SCJnte asymptotic 



form ~1.s t:.le Brinkman-Kramei:s approximation (l•Iapleton, 1964b). 

2. 2. 'l'he Second Born Approxima. tion. 

'The large unphysical contribution from the internu.cleon 

term in the first Born approximation sho\·TS that this approximation · 

is unsatisfactory and that the apparent agreement with 

experiment may be coincidental. It is important then to 

consider also the higher tez.'ffis in the Born series. Unforttma tely, 

these terms are difficult to evaluate; so far it is impossible 

·~o calcu1a te even the second term in the series. However, 

Drisko (1955) has examined the high energy behaviour of the 

second Born approxime;~ion, in which the first t\'10 terms in the 

series are retained, for the process 

H,.. + H ( 1 s) --+ 1-i ( 1 s) + H-t · 
2.li 

From (1.29) and (1.42), the second Born approximation can 

be written as 

·-
where G is the free particle Greens function. 

0 

Let Ef be the energy of the bound system (1 + 2) in the 

2.12 

ground state H(ls), ~the position vector of 2 relative to 3, 

and. ~ of 2 rela.tive to 1. If r-"i is the mas:$ of pz·oton and 1, .of· 

electron, 111e set 

r = 
M (1-+-M) 
1 .;. :1 r1 

M 
) 

) C'.\ =- ·1 + M 

~ = kf - a.kt (! ~~-CA.%. 
2.13 

:= 
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We define the Fourier transforms 

t k-x. . 
- 5 (L. ·- ¢~ ( ~) « e, 

t~·S *" 
= J e.- - - ¢:& (!) tA ~ • 

G
0 

can be represen·~ed. expHci t1y as 

I 
where ~ · = ~ - ~ 

~~ i. f '!'. (! -f·) + ~-(1- ~~] 
-k"~-/2 ~ + E:l +i.E. -"v

1hd -t{/ ':J.. r-
.a..,.p i { (!f-!)·(:t-t)+i·(~-.§jJ 
- ~'¥2,. + E:f +i.E.+(! +ir:!)· ~ - 4'1./~IA. 

Using (2.12) and (2.14), we find 

where 

with 

g("•!.>v.,_)= ~-~- (o.! + 1!.· .. 1-Y
1

9, C~-3)~s(-a~-t-)) 

4 (V.~, \1, 3) = ~ lt-y11 ~ +I!+ ,._)
1

9, (-~ !-~-!3-t!) j:F {-a.k- ~> 

. ~ (~!I' v,'l.) = k_,_((A! 1- P- +.?tJ'I.'' (~ !-i-3-tJ)js(~ a-~) 

2.14 

2.15 

2.16 

2.19 

2.20 

2.21 

2.22 
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11'he term ~ (v13 , v12) has a maximum at !s, = ~ and .i = _1_ !_, 
l+M 

so that E~ t high energies \Y'e find 

Similarly, we obtain 

0 - '.Z.( \4) 
o( '!!·t- !, 

so that in the hish energy limit 

Drisko also shows that the term \vhich describes the 

2.23 

2.24 

2.25 

2.26 

2.27 

internucleon interaction twice, (v
13 

G
0 

v
13

), decreases faster 

than the BrlJ.:lkn1.811- Kra..-ners term and the term corresponding ·to a 

double scattering of the electron, first by v
23 

and then by v
13

• 

At sufficiently high energies, the last term in (2.27) is given by 

2.28 

In the high velocity limit, the second Born approximation 

becomes 
'2. 

ol. "{.,-'/~ -1~':;;. ... t ~ ,( C>t '} 2.29 

2.30 
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Dr:isko (1955) estimated that ·the inclusion of the third term 

in the Born series 1110uld give 

2.3 The Impulse Approximation. 

Pradhan (1957) first showed ·that the impulse approximation 

would be very useful for treating the charge transfer in fast 

atomic collisions. He considered the process 

a.nd found the initial and final wave functions to be orthogonal 

to each other in the limit !~ = 0, .thus showing the cross 
p 

section to be independent of the internucleon potential. 

Detailed calculations Oil the same process have since also 

been mad.e by Jl1cDmvell (1961), Cheshire (l963a), and Pra.dha.n and 

Tripathy (1963). 

In the impulse approximation, the scattering amplitude may 

be ~;.rri tten in either of the forms (Pra.dh.an, 1957; McDo\otell, 1961) 

Pradl1an (1957) and PrE-.dhan and 'l'ripathy (1963) calculated Tif 

by replacing vf with the incorrect vl2' so that the matrix 
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element now involves a double scattering by the incident proton. 

McDowell (1961) used the correct form of Vfin Tir but, to ease 

thE! nu.merical computations, he u.sed an approximation in the 

momentum distribution of the unperturbed. hydrogen atom. 

Let the position andmomentum vectors appropriate to the 

final configuration be denoted by (~, .£., ~' ~f)' as defined 

in section (1.2). The wave function which describes the 

unperturbed initial state of the system in momentwn space is 

On using (1.4), we find 

<!s,~fl ~~) ·.: (:lrrY}JcA~tAf cf>t:(~)e.-~o~f-i.(.ks·~+~.{2-~;.·!!")j 
3/2. . . \ 

·= b(~5 -o.kf+k~(c21T~ ~~~o.-k)~~-~ hs) 

= (~·,)3tJ:z..~ (ks- r.\kr#-.!!i.)9t.(~+~( As+!~' 2. 36 

"'here 

To find w~2 g?~ 'lte insert a complete set of plane 111aves between 

c.l~2 and g?i , so tha·t 
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On using (2.36) and (2.38), we obtain 

~~2 ~t = (o?11'flh.js(&s- o.~f+ ~i)e.i.lzr~.~9!o {f!) ~' (c3 + cf(Bs+ l!))t.l~s t!~f 
_'l/2. :..!..~t·ff il,~·f + ~ 

::. (.1·rr) e. a d.! e. ~ (~) t Gc + ~ ( ~ + ~1), 2. 39 

where ~(~)is the Coulomb function 

--rr~/2. :\. l~·~ F ( ._ .... "" LL • I.. '\ 
"""'s(~) ;:_ ;_ r(1·fo'v\)}e. I I -4.-v; ..L) ll!rf- L :i•j}, 2o40 

\llith 

·'\) = - a/k. • 

From (2.33) we find 

:J: -lh _t);t:•! lj(~i.+!)·.f 
·-r;.f = (~·rr) C1- 3Jt!l!ci~t.lfe. ~(!)'ie. ·-+~(~) 

where 

After integratir~ over ~ amd £, we have 

.;r_ J: _ .rr . ..t fd.~ 9..(c.:!+J (!+ e» ·[~< ~ . J.. (! + f!)-1 ( 8 > -!- ~)1 
1"J -'¥;!jl Q J - (.~ T !)'L "f JI"J 'f ~) 2o44 

where 

'11he first term in the bracket of (2.44) comes from the 

internucleon potential v13• In the limit l = 0 it vanishes 
~I 

since 4 (~,o) = o, as ¢f ~~) and·va (~) are different 

eigenfunctions of the same Hamiltonian (Pradhan, 1957). 
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'l'he high velocity linrl t of the impulse approxim~ .. tion has 

been investigated by Bransden and Cheshire (1963), \lrho 

considered for simplicity the process H+ + H(ls)~H(ls) + H+. 

Since 1. ._. 0, 
J•l 

p 

-'f. I: (1s 1s' = - -~ ·..!. Ja ~ '"1 J 'I \'~ o. 

415 (!_,-k-_!) is a slmv-ly varyin3" f1mction ~J.rhile g1 ~ (.!!, + 1. (lf. + !) ) 
- a 

is strongly peaked. about ]£ = -(! + a,!) = a~ , so that at high 

velocities 

After integrating ove:t· .!_ and ta..l<:ing the limit !. --?' 0, we find 
M 

I 
~f 

p 

so that the cross section in the hie;h velocity limit is given by 

'lb.is is similar to the high energy behaviour of the second Born 

approximation. However, in (2.49~. the second term, \·rhich 

ultimately dominates the cross section, is lPxger by a factor 2. 

Bransden and Cheshire (1963) have applied the impulse 

approximation to the process 

The simple variational wave function of (2.6) for the helium 
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atom is used. 

Let 1, 3, 2, and 4 denote the incident proton, the helium 

nucleus, the captured electron, and the passive electron, 

respectively. The ·~ra.nsi tion ma·trix for the capture of the 

electron 2 from an initial statel.to a final state f can be 

wz:i tten as 

2.51 

'.l!he interaction between "the proton and the helium nucleus 

is expected to have a negligible effect on the transition 

probability, so that ,.,e can set tof-
3 

= 1. The in·teraction 

between the proton and the passive electron 4 is also expected 

to be unimportant and \ole \a:ite 6>f
4 

= 1. 

then becomes 

~~e equa.tion (2.51) 

X - -
In the matrix element 1it of (2.52) the operator tJ

34 
describes 

the distortion of the wave function bj the electron-electron 

interaction. 1~is term is difficult to evaluate, but an 

approximt·.te value of 1:~; is obtained by settine· 6:1;
4 

= 1 and 

modifying the z:eme.inine; term w;
3 

such that tJ;
3 

\ (23) is the 

scatteri1~ function for the captured electron in a 'screened' 
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Coulomb field of charge Z = 1.6875, instead of Z = 2. 'r'ne 

I -matrix element Tif is then 

'l'he mementum transfe:c of the passive electron 4 is neglected, 

so that the ini tia.l and. final unpe:rturbed wt~ve functions are 

~' -y.., <~) t) e. 
'- ~t -~ - ) 

'~f"! 
2.55 

qjf )( f (!) cP f (iJ = L , 

where ~i (~,1) ~s the grom1d state helium wave function, ¢f (~) 

the hydrogen gTound state function, and Xf (1) the ground state 

function of the helilun ion. The neglect of the IilOmentlun 

transfer of the passive electron simplifies considerabl::f the eval-

uation of the matrix elements and was used. previously by Bransden, 

Dalgarno and King (1954). To check the error introduced in 

the calculation of I~$. (is~ l·b, 1!. ) by this approximation, 

Br~sden and Gheshire ( 196 3) evaluated Q~f ( 1~-a..li~ .. 1~ ) using 

the approximation and compared them with the results of 

Mapleton (196la), who did not use this approximation. 'l'he 

agreement is better than 2!{o above 100 keV. 

The cross section 1Q. (1s .... /is_,i~) is calculated from both 

- I -.l'l'~f and T if. Ho\tever, the 

evalua;te. exactly, s0 tha. t the 

term from (1.).;
4 

is difficult to 

results obtained from 
1T~f are 

not considered to be reliable and below 4\.:0 keV the post-p:t'ior 

discre11anCy is serious. 
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In Jt'igs 1 and 2 the results of 1
Q+ (1!.'Ll'£ii: ) 1 which 

includes a correction for capture into excited states, ar·e CC"mpared 

with the experimented measurements and 'llri th the Born approximation 

calculations of ~~pleton (196la). ihe agreement is good in 

the r~~ge 50 keV·to 700 keV, but above this energy both 

QB (1s'i"I:~'t. ) and IQ.+(1r;'"/'E..j"£.) seem to be too sm~ll. 

Although the Born and the impulse approximations give 

very similar total cross sections, they do not predict the same 

angular distributions. Both show strong· peaks in the for\·ra.rd. 

direction~ But in the Born approximation the distribution 

has a large anglr:1 tail; this is unphysical and comes entirely 

~rom the internucleon potential. 

Another unsatisfactory feature of the Born approximation is 

that as the impact parameter tends to zero the probabality of 

capture diverges a..."ld. violates uni tarity badly, (Schiff 1 1954). 

Bransden and Cheshire (1963) evahtated the probability at 70.3 keV 

and 703 keV 1 using the impulse approximation, and found that 

it never exceeded unity. 

'l'he impulse approximation descr:ibes the capture process 

fairly \V"ell at high energies. It feils at lo'llt energies 

because it does not take into account ~bacl<:-coupling 1 fr:om the 

initial to the final states and so violates unitary. 
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2.4 The Imuact Parameter Method. 

l·icCarroll (1961) has used the two-state approximation in 

the impac·t paramete:r:· formatism to evaluate the cross section for 

the process 

~r" + ~ c 1 ~1 -~ \·H 1s) ... H 1' 

in the energy ra.nge 0.1 keV to 1 MeV. This wo:r:·k has been 

extenued to ca.IJture into the 2s and 2p states by l•1cElroy (1963). 

'The results confir111 that above 25 keV be..ck-coupliP..g is not 

important, but at low energies it greatl;:.r reduces the cross 

section and , if neglected, the calculated probability of charge 

transfer may exceed unity. 

Distortion has no effect on the symmetrical resonance 

process (2.56), as was pointed out ~n section (1.5), but it 

is expected to be important fo:r:· an asynunetrical reaction. The 

calC\:U.&.tions of 1-icCa.rroll and 11IcEJ..:r·oy (1962) on 

2.57 

show that distortion increeses the cross section consiuerably at 

moder::.te ~~nereies, because the Coulomb rep1.1lsion re<l.uces the 

sepe:~ra tion bet\oteen the initial and final potential surfe:1.ces. 

It has an ex·tremely IJI.arked effect for ca.1Jture into excited 

sta·tes over the energy range 25 to 80 keV 

l!'or the process 

(J1icx:lroy, 196 3) • 
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if allowance is made for distortion the cross section tends 

to zero as the energy of relative motion is decreased 

indefinitely, but if no allowance is made the cross section 

tends to infinity. 

Lovell and Mcill.roy (1965) have formulated a four - state 

approximation for the collision process between the proton and 

hydrogen atom. 1he method consists in retaining fat~ terms in 

the expansion of·~ in (1.60). Their calculations over the 

range 1 to 50 keV sho\'1 that the tvso - state approximation is 

accurate for capture into the ground state over this energy 

region, but unsatisfactory for the captw::e into the 2s state e.t 

energies below 25 keV, Vlhen the extl.'a. channels represented in 

the wave function become important. It \oJould seem from 

these restu.ts that, under the conditions when the (2s) hydrogen 

states ar-e important, the (2p) states would also be important, 

requiring a six - s·tate approximation. 

Recently, \~ilets and Gallaher (1966) have rnade calculations 

on the H+ + H scatterine, using- an expt=".nsion which includes 

ls, 2s, and 2p states, and in some calculations 3s and 3p states. 

The results for excitation and for capture into the 2p state 

are smaller.· bjr a factor of 2 than ·the experimental d.e.ta. IJ.'he 

inclusion of the 3s aJ1d 3P states does not change the ls and 2p 

cross sections, but the 2s cross sections are affected, 

1Jarticularly at 9 keV. 
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1he two - state Bates approxim~tion is used by Green, 

Stanley a11d Chiang (1965) for calculations on the process 

The helium w~ve function employed is of the open shell type 

(Eckart, 1930)' 

\.,rhere o(. and (b are varie.tionally determined constants. 

2.59 

2.60 

Since this \·le.ve function is approxim;:;.te, to satisfy detailed balancing 

the equLtions corresponding to (1.72) and (1.73) are derived 

by requiring that the internal helium \oJ:::.ve function satisfies only 

the expression 

2.61 

where H is the Hamiltonian of the helium atom and E. the 

variationally determined energy for this \·tave function. 

'l'he calculations of Green, Stanle~·· and Chiang (1965) 

are given in Table 1. '!'he re~;~ul ts confirm tha.t distortion 

and back-coupling are very important belm·i 30 keV and thE~t the 

cross section becomes increasin.s-1;:.- sensitive to distortion 

as the energy is decreased. In '11able 2 the calculated cross 

section is compared with the experimental measurement, ,,hich 

includes capture into excited stf'.tes and excitation and so is 

expected [on the basis of the Born ap};roxirn:. .. tion calculations 
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of l•'Iapleton ( 196la) J to be about 15 - 20% above the calculated 

values. Compa.rison. shm·1s that the calcul~<..ted cross section 

is, in fact~ roughly equal to the experimental value over the 

energy range 15 to 100 keV. Above 100 keV the calculated cross 

section is clee.rly too large; at 400 keV it is nearly t\"rice 

the experimental measurement. On the lov1 energy side of 

the cross section maximtun (at e.bout 25 keV), the a.gcrreement with 

experiment is poor; the theoretical cross section is too large 

by about 50% at 6.25 keV, and too small by a factor of 14 at 

1 keV. 
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CHAPTER 'l'HREE 

3 Present Calculations:. 

Introduction·: 

Th~ impact parameter method is used for calculations on 

the electron capture by protons in helium. The first part 

deals l.fith the capture into the g-L"otmd E..:tate and with the sensitivity 

of the calculated cross section ,.,i th the choice of the helium 

wave function. ~nis ·is followed by an investigation using the 

coupling of the ls, 2s, and 2p sta.tes of hydrogen. 

3.1 'r.he 1wo-State Approximation. 

We consider the process 

'rhe relative velocity y between the proton and the nucleus 

of the helium atom is asstwed to remain constant during the 

collision. This condition is satisfied unless Y. is extremely 

lO'tl. Bates and Boyd (1962b) have used the actual classical 

orbit of the projectile in the short range field presented by 

the neutral target system to calcul:-.te the effect of dep8.rture 

f:r:om rectilinear motion on cross sections dete:cm.ined within 

first-order approximations. 'f.he effect is found to be 

negligible a·t energies above a fe\'1 electron volts. 

r~et R be the posti tion vector of the incident proton p 
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relative to the nu.cleus n of the helium atom. \.fe choose a 

co-ordinate system with the z-a.xis along the direction of motion, 

so that 

R = t + -vi ) z = vt } 

\'There 'l is the impact parameter and tho time ·t is chosen such 

tr~t at t = 0 p and n ar.e at their closest distance of approach. 

'l'he origin 0 is chosen to be at the mid-point of g. Let r., 
-J._ 

r . , and r . denote the position ve_ctors of the electron i 
-p.~o.· -1u 

relative to O, p, ~~d n, respectively. 

\·ie consider the electron 1 to be captured and the electron 

I • I • 

2 as pass~ve dur~1~ the collision. 'l'he two-state approximation 

for the electronic wave function of the system is then given by 

\·there a
0 

( t) and ~ ( t) are time-dependent coefficients 

correspond.ing to the initial and final states ·i'.:. and ·~ 1 • 

If ¢1 (!1>1 ) is the wave functton and "'1. the bind.irr.g energy of 

H(ls), "f"(r ) and rv of He+ (la), and X(r l' r ) and.£_ of 
~~ ~ ~1 -

2.. . 
He (ls ) , \-.re \'trite 

-~o(-'!.~!'l.'lt) "'"X(!1\1)1n~Q.'I(~l~i{ll.,t+'\f'L{ +f":C•(:!",+-"t'l.)fl "1 3.4 

~ ( r. ,"!11~) == cp.(:r,.)-+(tn~e.-,tp[- tf(,.·r~ ... ,.~ + i:'ll"· (-:r .... -r~)J} 3. 5 
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The inclusion on the right-hand sides of (3.4) and (3.5) of -~he 

terms C·Jnta.ining- the veloci t~c :! allo\·Ts for the t:r·anslational 

motion of the electron, according to the nucleus it is a·~tached in 

the limit cif infinite internucleon separa·~ion (Bates and McCarroll, 

1958). 

'fhe ·total Hamiltonian of the electronic system is 

Nhe:r·e the kinetic enersy operators are given by 

V . and V . are the interactions on the electron i by p and n, 
P~ n~ 

respectively, and v
12 

is the electron-electron interaction. 

The wave functions ¢1 (r 1 ) and ·~ (r ) satisfy the 
-p -nz 

equations 

<- 1 v,.:, +vtl~.- r~~(!W\~:: o . 

As X. (r 1 , r ) may not be an exact wave function for He(ls2) 
-n -rl2. 

,.,.e use the condition 
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,.,here £ 11 is determined va.:r:iationa11y. 

The time-depencJ.ent Schr~dinger equation is 

).11 

The equations c.:on:esponding to (1.64) are 

~ J -*' ' ' &.-~·-!· i.t., t 
501 (!):. S1o (~) = ""1- (!"I ,:ln~ Cj6, ( :!paf*-' J!""J.J e. e. 

1 
d-r J. -r -· -~' 

Aoo(t) ::: I~*( ~u "! n;, l V pi+" f"2.] "X( !,11 )!. t\~ c:l! 1d "f 2.-, 

& 11 ({-) ::: J ¢; (l"p~·..,.,""(~;)[ Vp2. -t~, ... v~J r,6.(r,~"+ f:rn~ 4 ·r, c:lt2.., 

' I i.Y··:fl ~~~t *'( [ 
K0 , n, :.. e e. ·y._ :!", )!n~ Vr-:z. + V'~'~ .-.-V,l.J 

"' ¢, (~p~-1-' (-rn~ d ! 1rA '!1. ) ' J _ L"\\•Ya 4t:..11t ~ #'( · 
.Kio(b :: e - - e. ¢'. {!p~""' :!n~ 

We write 

J..: 
0 1 - ISo,I'J. 

Q( I ::: 

aD 

~01 = I ( o<o- at~dt, 
-co 

so that the equations corresponding to (1.64) and (1.65) are 

, . . " l !(,,- s., B,] ..... ~ L i (-.. + ~~J 3.15 QQ == - c. a, 
1-1~,1'2. I 

1 
) 

0 • 
• 0 [ K - s,.A .. ] H . (" q] 3.16 a., :: -c. Qo ao 2 A.~ -L i:ol+ al • 

1-ISa~' 
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'The coefficients a
0 

( t) and a1 ( t) are time-dependent e..nd 

have the L:.i"tial conditions 

Co\ I (- a0) : 0 • 3l7 

'The cross section for the capture of the first electron is 

so that the coupled eq·uations (3.15) and (3.16) must be solved 

to evaluate a1 ( + w ) • 

'rhe wew'e functions ¢1 (!:'.Pl) and "i' (~12) are given 

explicitly as 

tj>, ( :t) 
_..,. .l 

•e 11-- .. ·: 1f ) l,- '2. , 

It is diffictut to obtain an exact helium gTotmd-state wave function 

because of the electron-electron interaction. He he.ve 

mentioned earlier the suggestion that the use of an improved 

wave function than ·the simple variational function (2.5) might 

give more accurate results. Accordingly, the calculations are 

performed by usinc three appro:dmate ground-state helium \Y"ave 

functions 

1. The simple variational func"tion 

~(•> ~ ~ e1-~ [ -ol(,-, +"f~)} , 

rJ.-= 1·6815, N=o(.!. ,e.-= -:2·8415 ; 
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2. The separa1)le three-paramete:r:· function of Green et 

al. (1954) 

c( = -~~455 ;qq , r---=:2o( i C.-:. 0·6) 

"' :: [ "{ ci."'1~ + (:~), JJ-Y~, ~"-=- ~· 861 '7- ~ 
3. 'l'he open shell function of Eckart (1930) 

In each the parameters are determined variatio11ally. Coulson 

and 1-Ieilson (1961) have examined the accuracy of several 

approximations to the ground state helhun function by 

cc.lculating the mean electron-electron separation (r12) for 

each approximation. 11}-).e simple function X(l) gives the 

smallest value of (r
12

), and the function xC3) is found to be 

a rather g'ood approximation to the accurate six-parameter 

Hylleraas function, \·Jhich c;ives ·~he largest value of (r
12

). 

1'he methods for evaluatint-;; the integ-L·ala in (3.12) are 

outlined in Appendices A and B. 'lhe integrals using the 

simple helium ,.,ave function X(l) are listed inAppendix C; those 

using x( 2) and x(3) can be easily obtained also. 



56 

'lhe results of the calcule..tion a.:ne sho\'m in Table 2, 

together \'lith tho:=::e of Green et al. (1969) and vti th the 

results of experj.men·ts, which me .. ~sm·e the cross section for 
d. iffct 1'&1\c.e. bl!.twu"' 1\. 

capture summed over all final states. It is seen that the ~'bi1111um. 

results of the present calculation is less than 5% in the energy 

range 30 keV to 1 l'IeV, and about 1<>% at 10 MeV. This 

difference is not confined. to the total cross section, but 

extends to the differential cross sections, expr:essed as a 

function of the impact parameter. On the basis of the Born 

approximation calculations of ~fupleton (196la), it is 

expected that for comparison with experimental values the 

calculated cross sectipns have to be increased by a fuctor of 

up to 30% to allO\·T for capture into excited states. It is 

then evid·ent that the considerc.ble disae;reement with expeJ:iment 

is not substantially improved by employing the refined \·rave 

functions x< 2) and x(3) rather than the simple function x(l) 1 

'l'his lack of sensitivity is in accord \-ri th the work of 

1~alJleton (1963), ,.,rho found that the Born approximation cross 

sections calcul;:"!.ted with the simple func-tion X(l) and \•lith 

a six-parameter Hylleraas function did not c1iffer by more than 

5 to 15'fo u:p to 1 l-1eV. 

Comparison between the present results ~d th those of Green 

et al. (1965) shaHS that ·the agreement is very close at 400 keV 

anc":. to within lQ7b at 30 ke V. The small differences one 

attributed to the effect of the electron exchange in the final 

,.. 
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state employed by -~reen et al. (1965). In their work the 

final state wave function 1i' 1 is symmetrized tn the co-ordinates 

of the two electrons,. which are in a singlet spin state. 

Since the initial state wf!,ve function "'Ci'., is symmetric this 

:procedure does no't alter the COUilling terms bet\-Teen the 

initial ana final terms in (3.15) and (3.16), but it allows for 

electron excha.1:1ge to first order in that part of the wave 

function describing elastic scattering of H by He+ in the final 

state. ]~'irst-order exchanGe calculations are often misleading, 

so that in the pr:esen·t \-TOrk an unsymmetrical final-state wave 

f~ction is used. 'l'he effect of the exchange decreases 1-Ti th 

increasing veloci·ty, as expected, and it is not very 

important at the energies ttnder consideration. 
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3.2 1lhe Four - State Approxime.tion. 

It v1as seen earlier ·~hat the two - state approximation of Bates, 

while giving fairly good results in the intermediate enersy range 

30 - 100 keV, shows considerable disa.gz·eement 11tith experiment at low 

and high energies. •f.he e~Jeriments measure however the cross 

sections for capture summed over all f.inal states. It is then 

natural, by takir~ also into account the work of Lovell and McElroy 

(1965) on the effect of coupling in collisions between fast protons 

and hydrogen a·toms, to ask whether the inclusion of excited states 

in the expa..TJ.sion of the complete wave function would improve the 

·agreement of the theory 11ri th experiment. 

At the range of energies under consideration all channels are 

open, and this would suggest the need to consider a.11 infinite 

mwbe:r· of discrete states. Ho,.rever, the enersy levels of the 

excited states of hydrogen are lower than those of the helium ion, 

so that in a second-order approximation the excited states of 

hydrogen should be considered first. 

In the present calculations we consider the capture into the 

ls, 2s, and 2p states of hydrogen, leaving the helium ion in the 

ground state : 

H + + He (1s~ --7' H ('ls.,Js .. ~~) + He.+ (1s). 3.24 

We use the same se·t of co-ordinates as in section (3.1), and 

we choose the plane of collision, \..rhich contains the prot·.:m and the 

helium nucleus, to be the x - z plane. It is ~~en seen that, if 
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·the 2p states of hydrogen are represented by the fl.mctions 9'H (2px)' 

¢H (2py), and ¢H (2pz), the contribution from the st:.te ¢H (2py) 

vanishes. 

\.Je \otri te 

4 

~ (!,I !2. ,-t) :::. r: tlt (t) -of', (r,,-!LJ-t) I 

l:o 

where 

1fhe subscript i = l, 2, 3, 4 corresponds to ·l:;he ls, 2s, 2p , and 
X 

2p states of hyd:rogen, respectively. z 

these states are 

¢, (1s) 
_.., 

•e. 
~ 

~1e explicit forms of 

I 
-rt~ =- - i" ) 

1.Lhe function X(L, , r ) is tht sinrple helium \-lave function (3. 21), 
-u..L -n2. 

1-!(r ) is the wave func·don of the helium ion in ·the ground state and 
""""112. 

is g:i.ven explicitly in (3.20). 



- 60 -

T"ne time-dependent Schrodinger eqt1.a.tion can he '.rritten as 

4 

(~- ;.~)f, Cl1 (t)~~(r.;!1.,~: o 

By ur:;ing the o;uations 

( '!' .... (-<, -( ~'I H- tllt. 0.,· (t-)·-q;. 6:.' '(:).} t)' :::. 0 3.30 
j - ,_.,_... '1 lt ~~0 L - ( 

1 :. 011_, 2.., ~ .. 4 ) 

He obtain a set. oi c:·upled. differentia.J .. equation~;; in the 

m~.trLx form 

1 A i~ 1-" Ko3 Ko4 ao --ol -\. o2 00 

s1o '.1 0 0 0 K .. BlJ. B12 Bl3 B a1 J.O 1/~ 

i 
,.. 

0 1 0 0 ,.:;.._ 
...:o a2 = K~ 

.... B,? :a23 321.. a.~ 3.31 . .::o ~21 "'-·- 'T r: 

s .. 0 0 1 0 
.)0 

a., r B:n B32 
..... 

B34 a3 ;.: ~0 0
33 

SJ 0 0 0 1 .. ~o 
. 

K4o BLjl B4" 
..... B a,, o,~ a, .,. ,_ 

"lo-' M~ L~ 

\-!here 

E... - (to-·1~- ~~ CIL 
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T'.ne coefficients ai ( t) arE:! time-dependent and have the 

ini t.ia.1 conditions 

0.. n (- cO~ - :1 ) 
a. i (- ca) =- o 
l #:-o 

'l'he cross section for the capture L"rliio the state :L of 

hydrogen is then 

3.33 

3.34 

The L11tegrals in (3 .32) have the time reversl3J relations 

Hhere 

.. 
so .. ( -t) -
• (-t) Ki.c. :. 
"it 

(-l::) Q •. 
LJ -

... . 
E:. s . (t) 

.I 
1<0 ;.{- t) -::. ~:-._ KDi. (-!-) ~ I. 01. 

.:, K .. o (~ 1\: ( -t) ::: A10 ( t\ 
f=;. 'j e.,jU)) 

~i.. ·: 1 
t. Jl 

"4 -: - .1 . 
.IJ"~o4 • 

It theE.'; fo1lol-ts, by usrng tne proof of Green 

section (1. 5), that the equa:t.ion (3 • .31) sa.tisfies t.he 

of det.ailed bala."rlcing. 

.3.35 

outlined in 

requ.:Lrernen ts 

The methods for evaluating the integrals in (3.31) are given 

in Appendices A a."rld B. ~Qese integrals are listed in Appendix D. 

In Figs. 1 and ::? the present results for the total capture into 

the 1s, 2s, and 2p states of h;y-drogen are compared idth the Born 

approx:iJ!la.tion and the impulse appro:ldmation calculations, artd idi:.h 

the experi'llental data of' Hasted (1955 ), Stier and Barnett (1956 ), 

Barnett and Reynold.s (195(;), and All:i.sion (195:::). It :is seen tha.t 

the presen t calculation shoHs quite good agreement Hith e:Jo:periment 

in the energy range 25 to 100 keV. 
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At high energies the decrease of' the calculated crcss section with 

energy appears to be too ~. A similar discrepancy occurs on the 

low aergy ot the cross section maimum (about 2.5 X:eV), but at 

lower energies the theoretical cross sections become small.er than the 

available measurements (Hasted, 19.5.5) by a factor ot .5 at 1 KeV. It 

is e:x:pected of course that for low veloci v collisions the expansion 

based on atomic wave functions is no longer appropriate and that the 

expansion using molecular eigenf'&mctions, f'crmed by the collicHng 

system at :rJ.xed internuclear separation, lllq' be used. 

In Fig. 3 the results f'or the capture into the 1 s state are 

compared with the results using the two-state e:x:pansion. It is seen 

that at energies above 30 KeV the coupling due to the 2s and 2p 

states has little effect on. the calculated cross section for capture 

into the ground state. The present results are appreciab]J greater 

than those ot Green et al. ( 196.5) at low energies, by a factor of' 2 

at 1 KeV. These differences are partq attributed to the use of a 

spmmetrised final state wave tunction in the work ot Green et al. and 

this has the effect of allow.lng for ellectron ezohange. The inclusi011 

ot electron to first order does not usua~ give better results, as 

was pointed out iD section (3. 1). Its effect in this system is quite 

unimportant at energies above 30 lfeV, but it is expected to be 

appreciabla at low energies. 

Experimental cross sections for the partial captures 

into the 2s and 2p states ot h;ydrogen are availaliB UDfortunate:q 

f'or the small energy range .5 to 40 XeV onq. Fig. lt. shows the 

e:x:perimental data, the present results and the Born approximation 
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calculations of' Mapleton ( 1961) f'or the capture into the 2s state. 

It is seen that the pl"8&8Dt results asree quite well with the measurements 

ot Jaecks et al. ( 1965) and Andree~ et al. ( 1966), but those ot 

Colli et al. ( 1962) are larger by a factor of up to 6. In Fis. 5 

the present calculations tar the capture into the 2p state are 

compared with the Born approximatiOD calculations ot Mapleton (1961) 

aDd With the experimental data. It is seen that the present 

results show quite good asreement with the measurements ot De Beer 

at al. ( 1963), but those of Pretzer at al. ( 1963.) and .ADdreeY at: 

al. ( 196~) one smaller by a factor ot about 2 • 

.An altemative wq of' comparing the theor.y with the 

ezperiment is to consider the theoretical precHctions and the 

measuremants tor the capture probability tor a tixed value ot 

the product ~ ot the scatteriDI BD81• and the incident proton 

energy. To a sood approximation constant 9! corresponds to a 

constant clistance of' closest approach and to a constant impact para

meter. It is seen in Pig. 9 that the asreement with experiment tor 

the capture over all f'inaJ. states is sood at hish enerstes, but 

poor at low enersies. The posi tiODs of the ma:dma and minima are 

precHcted quite well by the theory, but the theoretical capture 

probability is .srossq iD error at low enerliea• 

. 

Fis. 10 shows the present results tor the probability ot 

capture into the 1s state and those ot Green ( 1966) tor 9T = 20. 

The agreement is good at high energies. At low enersies the result& 
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ot GreeD are appreciab~ smaller; this ma.v be partq attributed 

to the e:f'f'ect of electron exchange in his calculations, as we have 

pointed out earlier. 

The calculations on the probability of capture into the 

2s and 2p states tor 9.r = 20 are shown in Figs. 11 ancl 12, 

respectively. Dose ancl Mayer ( 1966) have repartecl recent~ their 

measurem8Jlt11 on the. probabUity of capture into 2s state at a 

0 
scatterins angle of .2.2 in the enrgy r&l'lge 4..5 to 60 KeV. 

Comparision between the results given in Figs. 1 mel 2 

&Dd those in Fig. 3 shows that the inclusion ot the excited states 

ot eydropn in the exp&D8ion method cloe s nat; alter appreoiab~ 

the calculated cross section. This would suggest that the 

considerable disagreement with experiment would not be substlllltiall,y 

imprOYecl by employing an expansion based on several discrete states 

rather thau the lowest two-state apprOJd.mation. Taking also into 

account the result ot caloulations in the impulse approximation, 

to recluce the calculated cross section substantial~, it would 

seem necessar,y to represent the continuum intermediate states in 

some way. 
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4.1 ItwDerioal Methods 

The evaluaticm ot the cross seoticm usiDg the ezp8D8icm 

Mthoda ot Bates involves a triple iD.tesrat:lon onr z, the time 

t 1 aDd the :l.mpaot parameter f' • We ahall ocma:lder ma1 n]y the 

DWDeri.oal •thoda employed iD the oaloulat:lona us:lD& the f'our-s;t;ate 

approz:lmaticm. The oalculat:lona u~g the two-state approximation 

are easier to pertorm, but similar 1Bolmiques om be applied. 

We ocma:lcler t:lrst the eYaluat:lOD ot the matrix ele~nta ill 

(3.32). The moat d:lf'f':loult terma to calculate are thCB e which 

relate the initial to the f'inal states : soi, sio' ltoi azaa 
~o· Ezpresa:lona tor these matr:lx elements are ot the f'orma: 

:1. I ll.4, • :a. -t 
I :: e -i.y ~J x ,..(1-x'-w~[!.. + ..1..) e..- e. ~·v x. dx. 

I ;I & 8 , 
0 

2.L "1._1 

1 ~ ·- e:-i. "f ·t; j' ~ ~ ( 1--~)-M[ ~ + ~! + ~] Q-IU:. e.~ v ,;xolx, 

D 4.1 
:a.~ • ~1 

- ~ ~ 1; I 'W\ 3> '1. -RA" ,.., T.JC 

I·~ -=- e. I -x-"'(1-·"-) [ ~4 .;. !J + 2-R + ~ J e.. e Jx, 

where 

These fw:lotiODa depend em the protOD Yeloo:l ty .,. and they 

oseillate rapidly tor larp 'Values at v • ~aia ot these 

terms llhowa that tor a gi"Ven 'Value ot v, the maiD ocmtributicma 

come traa values of z near the ends ot the range of' integration. 

It is therefore convenient to divide the razap ot intesratiOD 

O"Ver z into three aeotiODB : D ~ x. ~ 0 · ' 5", o . 15 ~ ·'I: ~ o . s s > _ 
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aad o.as ~ x. ::::; 1. The integration tor each section is 

pertOl"'lled by means ot the GaussiaD interpol& ticm method. At 

30 KeV the DUmber at Gaussian points used tor these three ranges 

at integration are 14, 7, azul 5, respectivel.y, to obtain aD 

accuracy ot better thaD 1 part :111105• The iDteP"ands 

oscillate repidl,y as "\f' increases, so that at high eDersies aore 

Gaussi&D points are required iD order to achieve the same 

accuracy; at 1 MeV the number at points used are 20, 20, and 10, 

respeotiveq. 

The t:lae-reversal relations ot the aatriz eluents 1D 

(3.31) are ezploited to :f'iDd the valles of these terms at time 

+t troa those at -t. 

The coupled dittereatial equations ot (3 • .51) oa be writta 

oompaotq iD the form 

i Sa• .... = a a, 

where S and It are matrices &Dd a is a oolWIID. vectcr. Since s, Jt, 

and a are oomple~ f\mctions ot tilDe it is oonveDiat to define 

s. S' . s'' ' = .... 1:. 

I<.' 
. ,, 

1<. - + (. 
K ' 4.3 

i. 
, 

a. ::: a. + tl ' 
iD which S', 911

, X', x•, a' aDd a• are real. The equaticm 

(4.2) oan th8D be writtaD as 

c;' II o• i<" I<' 
I 

--s a. 

= ) 
4.4. 

,, 
-K' K'' " s ~· 

. ,, 
G ~ 
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which is ot the fOZ'ID 

To solYe (4.5) we need to find first the in'v'.erse 1:' S"" 
1 

u K J 

so that 

Go • 

Cl 

The li1tta-llerscm method (:rcat, 1962) is used to aoln 

' 

the ooupled diff'erential equations of (4.6). This •thod :I.e 

reported to be mare efficient than the comm~ used 

ltlmp-Kutta method. It prcw:ldes a check on the accuracy c1uriDa 

the :I.Dtepoai:l.on ad it alters automatic~ the step size at 

every stage at the :I.Dtesration to g:l.Ye the accuraoy required. 

!he r&Dge at integration onr t depends clear]3 an the 

Yeloo:l.v ot the incident proton. It is found that, it :a...z is 

the maz·hnnm i.Dte:muoleon cli.stance, R = 16 provides a sood 
JII8Z 

range ot intesration tor the couverpuce ot the teru in (4.6). 

The Chebyshn is used to obtain the iDterpolatiOD points of 

(II s-' UK) at eYery Yalue ot t durins the iDtesratiOD. The raqe 

ot :I.Dtesrat:I.OD ewer t, I tmaz l , :l.s divided into two parts tmaz to 

it..z , and tf;maz to o. It is found that tor these two raDges 

by using 10 &lid 15 ChebyaheY points, respeotiwq, aD aocuraoy 

at better than 1 part :l.n 3 x 103 is obta:l.ned at 30 KaV. At 1 MeV 

the DWIIber at points required are 15 aDd 25, respective]¥. 

S:I.Doe by detiDi tian the probability never exceeds UDi. ty, 

this oozad:lticm prcw:l.cles a useful oheok em the calculations. 

Jlorecwer, detailed bal.anc:I.Dg is checked tor each of the two-state 

reactions ot (3.24). 



-6 ~ --

Ill the equaticm (3.31) the matrix el81118DtS soi. sio• 
-R). 

~o' and Xoi OODta:lD the 8ZpODeDtial fancticm. e. 81ld SO cJacrease 

rapi~ to sere as R iDcreases. The other tel'lls,A00 and Bi~' 

-1 
are the Cwlomb t81'118 8lld they have the aa;ymtotio t01'118 ot It , 

-2 iE.··t -2 B. a 'J , aaa. It , eto. It is then evideD.t that sipitiOBDt 

ooupliD8s ot the amplitudes 081l occur eveD at the lBI'ge ::btarpolaticm 

tistances, so that it is importazat to extrapolate the amplitudes 

a1 ( + tmaz) to find ai ( + oD ) • The common dialonal. t81'11 ~ 

causes onq a ohaDp in the phase and so does not affect the capture 

il·~t -2 
amplitude. The tel'll e ~J R does not siva 8113 appreciable max 

-2 
contributicm., 81ld the terms which c1ecrease taster thaD~ caza 

be neslected. There is however sipifioant coupl.ins betweeD the 

2s aDd 2p states due to the a-2 t81'11. .Ana.qsis shows that mu:: 
the extrapolation oorrecticm. is given by 

o. 1 !t (+oO) ·= Q2 'i ( -t t"""~ cos(- 3/vl..f--~ ·- ~D..Zt"z (tt....,..)s: n(-~J,,t~) 

4.7 
o.. 2.~-z.( ... a&) ·:. «~h(++,.,..J c.os(-·~r.,:--~ "".;-,- ~ Q.l 5 (+thLA~ sin(- ;)j,l:f~. 

The tiDal integration over the impact parameter is clcme 

by usiDI the Gaussian extrapolation method. AD 8-point GauasiaD 

method is uaualq adequate tor enersias above 30 K.eV, but at lower 

enersias the r~e ot integration. is aub-clivided and the G&ussiaza 

method is applied to each sub-division. It is estimated that the 

o:rarall accuracy is better than ~ tar the total aDd the 1s 

capture cross sections, and 101' tor the cross sections tar captures 

into 2s azad 2p states ot Jvdrosen. 
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4.2 Caaclusion 

The present oaloulatiOQs indicate that the inclusion ot more 

clisorete states iD the expansion method ot Bates would not improve 

the considerable disasreement with uperiment at hip eners:Les. 

If this can be ccmfirmecl, it would suggest that the methal is 

iDadequate because it does not take continuum transitions into 

account, whereas the results of the second Born and the impulse 

approzima.tions indicate that ultimately continuum intermecliate 

states pl~ an important part in the capture process. 

However, little experimental work is doae on the eleotrCI'l 

capture by protons in helium at hish energies and the measurements 

ot Barnett and Reynolds ( 19.58) onq are available. Further investi

gation, both theoretical aDd experimental, is desirable. 
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Appendiz A 

Evaluation of the intep-ala 

I, I -~·Y"'ftl - t" ...,.,., i.y.:r, 
cJ.. '!, = e. Q. e. 

I 

!2. ·-
J -J\·r""' -t-'·..,..P1 C..1f·r.d. 

·y Q. Q.. Q. -( I 
~ - , 

.I~ -
J ->-1""'' -~·1",.1 i..Y·r, d 

x e. Ci!.. e. r.) pi 

- ).y"'' - t"Trl i. ·1[. r. 
I J e E!. e. cJ..r~ , -4 . ..,.. 

"¥\I 

- )1."1"'"1 I 
- t'"1" ... i.·y·! I 

15" - I e. e. .e. c.\"'( - -I ........ 

Let 0 be the mid-point at 
_.. 
OA 

80 that 

., 

-~ 
a e , 

R = - ~ e + B A ) -~ f>l ..... Tl - B A ., "!"""I;: ·r I - ~ 1!1 • 

UsiDs the :rourier transforms 

- )\·-r 
_ _!_ f ~ i ~-! 

e - ( >-,1. ·t '\-1 ya. e. d~) 11"1. 

_).y 

~:~J 1 i.~ • .,... 
e. e. -c:A~ ·- ·- ()\l.·+tt.-"1.) "Y 

l 

A·1 

A·;il 

A·3 

A-4 

~·5 
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we OIID write 

The integration over d. r. :l.s eaa:l.J.7 performed to s:t.ve 

and em :l.ntasrat:l.Dc over "- ~ 'l we have 

l, 

A· ·1 o 

where 

A-1·1 

Usiq the fo1'111llla (PeynmaD, 1949) 

I 

...:!.__ ::. J . 1 . ~~ ~ :IC 

~ b ... L~·x.. + b(1-.,c) ' 
A ··12. 

with the aubst:l.tutiODS 

P -= ~~ + "! ( 1-x) ) 
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1 :"\"1 'z. )\ x. + ( 1- "):I~ + -x:.(1-xrv , 

we write 

By maJd Dl use at the standard iDtesraJ, 

I 

z.. _RA 
= .:!.- e.. 

A 

~ = ·-rrz. 1 d~ e.~rf- t·"'!· ~(1-~- R~ -·±-
CI 

so that 

1. 

with 
2 

v.R = vt aDd v.R - - - - = 

A·16 

The intesrala I 2 azul 1
3 

are evaluated by uai.Dg the tranaf'ormatioaa 

lz. 

A·li 
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where (A • A , A ) are the position oo-or4inatea ot p relative 
X '3 Z 

too. 
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Appanc11:1: Bi 

Evaluation at the illtagrala 

r, B·i 

·I __ J . .., -)...., -r+r- .sl y ·""' (r; .~, \ d..., 
2 

--t e e. .( , J .,.., J - J 

·r = J ., . .-T\ e.-).-r ·y ~ ( 9, r1> ~ r1 '"t' • 

~ I!'- ~I l J •J -

We use the e:x:p&Daion aeries (Watacm, 1958) 

b:- !I 
_ f. <:ze ... -1) K.ht (rR) 'I.r+y,{l"'.,.~ li (U6~ • 
- R-.o ~ .;::; ' 

azul the atanclard formula 
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Q() ~ 
1 1 .t-o ( +) ~ (UJS9) ·y ~ ~ :: -l"l"-81 ·y :II 

dfJ B·5" 
1 Eo ( ~~( Pt c~e) ""'R ·- ·- ) R 

where 

(&. :~t/'1 ) aD4 ( B,_,t/J-a.) are the polar aqles ot .£ ud !• 

The integrals I 1 8l'ld I_, ou then be evaluated easiq for def'inite 

values ot n, m., and 1. The integral I 2 is oalaula ted in the 

same "ll8tJ" attar ezpresaina it as 

- 'b I . if• 

The integrals rill be listed in the tOI'IIlB of t( V\' ').} t ) and 

B( -n , ~,tt 1 ( ) , where 

f( .. ,>-,t) y; (9,,¢>.) = 4:r I-,... ,r·;1 
y; (9,, -~>J dr, 

!= (.Y\})..) t-t J .l) y (WI ( B,._,iJ = . .i_f.., " i "'~-!I ~)...,.l.:l-t _:!_ ., y (W\ (D, A~)~. 
4 rr lr-!1 11:-BU 

8·1-
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We also clanota 

~-
1 

~ ( ) - (.:t+c<) R 
- .R - :J.+c( + * e. . 

List of l!!t•FalB l ('" • )\ , ( ) 

(i) 

(i~) 1(~~~)0) = -~[ ~~- (R"'"+ ¥ + -k!- + R:l,:)e._R}.J-

(<) :fC~,>-,i'l = ~L~~-(R~~ ¥+ ~T~~+~~F"l 
~ l ( ~ -R.j). ' f('~ '- .:~ .. 1 ·144 R"'. &~ .24 . 1-::t 144 144 

(vi1 rA~"~-" ·- "-:;F P.3>.5- + ·-;:::- + F "1" R» + ~ + p • .'J'A-s t!.. • 



- 7 7-

(·,' ,.. ( :'\ __ ::t [ 1 ~ t"' )'. (. 81'A) J -)1. R 
,I r o,~)t' .. OJ T ·;r + T- R& 1 + T · e 

+ ~~ [c2 .,. ~ ( 1 . ._ ~)] ~-rf{ 

(ii) r=(1~~~~)o) _ f[RC; + ;~)- ·¥-(1+ ~:) 

(h,) F(;~)~)~)O) = "-[ f.(f+ ~~')- l~R(1-+ ~~)+})~(r\~~'+ ~t':~~) 

~ (· 1. ._:z. . 4f"(3f'A;_5~')\l;AA 
- Rh"' fA+" -+ & ~ 
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.A.ppentix C 

L:lat ot iDtesraJ,a tor B+ + He(1a
2
) ~ B(1a) + He+(1a), 

uai.Dg the helium wave (3.21) 

c., =. 

·K01 = -c.{~.-1 (~/1}1}1,5\ +!l"I(o(,1.~o)·1J~ 

C.-~ 

-+ (.:t+o(}l.(:2.+:1o~/f, 1) 1)5) ... :1 :I (2.:+ '2.o(} ,O..r( .. ~ · C.· 4 



List ot integrals tor JJt + He(1a2)~B(1s, 2a, 2p ) + He+(1a), 

ullin& the helium wave tlmotion (3.21). 

The iD.tesraJ,a ~c:o' J, ,, , S ,, , It"' and K,, are siveD :iD 

Appand:lz C. 

c = 1-

503 

s.4 

B,l. 

:::. 

--

= 

~ y 'z I ( ot, 0· 5 ) 1 ,ia > 5) 

.:t '> [.,t I ( .,(, o. 5, i ,:I, 5) _ ';f !( .. ,o.s, a,a, 1~ 

-b [ .2f(o)-1·5~q -f(-1~1-,.)~ 

·t- ~ F ( o, 1· ') 4) o) - F ( 1 1 ·1· ~) 4 J q} 

B,~ = - b [ -f ( 1 , -f. 5; 1) + F ( ~ ~ 1 · 5 ~ 4, 1)) -f 

B, 4 = -b[t(-1)1·=>~1) + F(1 7 1·5 1 4J~J4 

1> ·1 

"]). ~ 

"D ·3 

J>·4 

b-5 
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Bu. - 1. _if(o)1:~0) +; f(1~1;,0)- i J(:2,·1)o) 
:t 

_ ~ F"(o>11 4)o) +f F(~~11 410)- tF(JJ1J4,~ ·n-1 

B'J.} - lR_ [ ~f(1, 1) 1) -f ( ~ ,1 ,1)-..~F(1J1,4/1)- F(:l1 11 41 -1)] 1). tg 

B2.4 ·- ~ [ '-f(1,1,1) - f (.2,1,1) +~F(1,1,4,1)-F(:1,1,4,-1)] "J>·q 
'8R 

B.:r~ ·- 1. - ,_~[f(:~,1,0) -f(~ ,1,2)+ F(~,1.4,D)-!=(~.1,4,!1)] 

- ~[ .f (.a,i,ll) + F('-,1,4,2)] ")) .1 0 

B34 =--~[:f(~l-1,~) + F(~,1)4,:l)1 ·n.·t1 

B +~ - g_ - d
4

[ f(.2,1 ,o) + F(.:1,1,4,o)J 

+ ( t,-~ )ft(2,1,:1) + F ( ~ ,1 ,It-,.:~)] D·-1:1 

KD1. == - c.,f 8l ~.-I(at'»o-5.,·1,1, s) + 41 (d.,o·5",011,3) 

-t (4+:la() I (~+:lac) o· 5',1~1, s) + 41 (~+l«,D·5P,1)·3) 

-; ~ •. I(ct,0·5/I,Jl,'f)_ I.(o()0·5",0;,~)s) 

- (1..- i) J (1+ 2.o<)o· s) 1J:l,7-) -l(:l-t2.o<,o·5 ,o ~~ s~ "b·1·~ 



·+ ( ,. .... oe) 1(2. ... 2cl.
1 
o-5")1~"-~5> +.2T (2.+1o( p·s; o.~~~3>] "b ··14 

K.+ =- - c~ -vt l fi (a~,D-5", 1 ,.a,s) + :n (a~ ,o-s, o,.:~,3) 

+ i C~"'\J"[ ~~ •. I(~J 0·5" ,~):l) ~ ·t- :"I(«_, D·S", 1 J ,J 5) .: 

('2. .... ~ I (2-+2D<)O· 5, '1.1'2.}-1) ... ..1_ I ('1-t:2o(J0·5_.1J '2._,5) 1 
i' (1.+2at) (1~ ~ b·15' 

K. .. o 
(. ::: .() 2.} 3) 4- . 

"* \:t.3o = - "• ~[a I (ot, o. 5,1,:1, s)- :Ia\ l(ot, o-s, o, ._,~+::II (a~,o· 5",1),~ 1>·1i 

114o = - c,_-.t [" 1 (o~.,o-5, 1,:1, 5)- ~a\I(o~,o-5,0, :z,~+2l(o~.,o-5",1,1, "!.1• 
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:FIGURE LEGENDS 

:FIG. 1 & 2 

+ 2 + Total cross sections for the reaction H + He(1s ) ~H + He • 

Curve 1 Born approzimation (Mapleton, 1961) 
h 

Curve 2 Impulse approximation (Bransden ancl Ches,:tre, 1963} 

CUrve 3 Present c~loulations H++ ~~~(1s.'L)~ J-l(i,.J2s.,~:z.~)-tHe+(h.) 

X : Experimental points lA1l5son, 19,58. Barnett aDd 

Reynolds, 1958) 

FIG, 3 

Cross sections for the capture into the state H l1s) 

Curve : PreseDt calculations H+ +He l1s)~Hl1s, 2s, 2p) + He+l1s) 

Besults of Green et al (19&5) 

+ Results of BrBDida et al (1"966) 

&:+ 
+ 2 + are calculated for H + He l1s) ~Hl1s) + He (1a) 

:FIG. 1,. 

Cross sections for tbe cap~e into the state H(2a) 

CUrve 1 : Average of the post· aDd prior cross sections in 

the Born approximation (Mapleton, 1961). 

+ 2 + 
H + Hel1s ) ~ Hl2s) + He (1s) 

CUrve 2 + 2 + Present calculations H + Hel1a )~Hl1s, 2s, 2p} + He l1s) 

Experimental points K:+ + Hel1 s~ ~ Rl2a) + He+ 

G Colli et al (1962) 

:x: Jaeoks et al l1965) } .Andreev et al l19&&) 

nG. 5 

Cross section for the capture into the state Hl2p) 

Curve 1 : Average ot the post and prior cross sections in 
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the Born approximatioza (Mapleton, 1961 J 

~ 2 + H + Ha(1a )_. H(2p) + He ( 1e) 

+ 2 
Curve 2: Present calculations H + Ha{1s )~(1s, 2s, 2pJ + 

Hc,+(1a) 

Experimental Points .X = Anclreev at al ( 1966) , Pretzer et al 

( 1963) 

a = de Hear at al ( 1963) 

+ 2· . + H + He(1a J_. H(2p) + He 

FIG, 6 

Prob&H[i~ x impact parameter for capture into H(1s) 

~ 2 + B! + Ha(1s )-+H(1s, 2s, 2pJ +He (1s) 

Normalisation Facter is:-
a. 

~ =I·~ 1--.1o at 1 keY, N = .:l·'l4 at 6,25 keV, 

I .... S' Cl 4 .. N = · ~ at 30,2 keV, ·N = 1•4Qi.IO at l MeV 

FIG. Z 

Probability .x impact parameter for capture into H(2s) 

~ 2 + H + He(1B·)~Hl1s, 2a, 2p)·+ He {1s) 

Normalisation Factor is:-
l 1. 

N = 4-65J.IO at kaY, N = 1~2.5""' 0 at 6,25 keY, 
s 

N = ~-q2--.1o at 30,2 kaV, N = \·2.~ .,_,., at 1 MeV, 

FIG, ts 

Probabili~ x impact parameter tor capture into H(2p) 
~ 2 . + 

B( + Be{1s )~H(1s, 2a, 2p) +He (1a) 

Normalisation Faotor is:-
~ 

N =1•4lall1D at1kaV, N = ~·81 .,.,o at 6,25 kaV, 

" · N: = 4·45"lliO at 30,2 kaV, N = 1-·9Hio at 1 MeV~ 
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PIG, 9 

Tatal capture probabiliV 

+ 2 + . 
Present ,.-ork B + He(1a ) .-.Bl1a, 2a, 2p) + He l1a) 

Experimental raaul ta (Helbig at al,, 196lt.) a• + Jre( 1a2) ~B + lie+ 

PIG, 10 

Probability for capture into Hl1a) 

Curve 1 : Results of Green (1966) 

+ 2) + H + Be(1a _.B(1a) +He (1a) 

Curve 2 : Preaeot calculations 

B:+ + He(1a2).-. H(1a, 2a, 2p) + He +l1s) 

]\IG. 11 

Probability for capture into B(2a) 

+ 2) ( + H + Be(1a _. B 1a, 2s, 2p) +Be (1a) 
"K: C:o·T1'e.spo~di~~ u..,.pe:ri·ft\e.~taf poi"t of ·oose. rAM7.4·- "''e.'je.Y Cicr&,) "I f)T::2o. 

liG, 12 

Prob&biliV for capture into H(2p) 

+ 2 + B + He(1s ) -+H( 1s, 2a, 2p) + He ( 1s) 
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TADLE 1, 

Cross Sections for H+ + He (ls2) ~ H(ls) +Be+ (ls)) 

calculated by Green, Stanley, and Chiang (1965). 

Proton Cross Sections (lo-16 cm2) 
Energy 
(KeV) (1) (2) (3) (4) 

1 7.852, - 1 ~.862, - 3 1.815, - 1 3-553, - 3 

~-25 4·571 1.025 1.95 7.48, - 1 

30.2 2.393 2.274 2.015 1.916 

100 2.666, - 1 2.897, - 1 2.553, - 1 2.756, - 1 

400 3.412, - 3 3-543, - 1 

(1) Calculated with distortion and probability co!'lservF.tion 

neglected; (2) calculated with only probability conservation neglected; 

(3) Calcvlatecl with only distortion nea·lected; (4) calculated with 

both distortion end probability conservation t&cin into account. 
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TABLE 2. 

Cross sectio.1s for H+ + He (ls2) --=Jo H( 1.s) + He +(ls). 

Proton Cross Sections (lo-16 cm2) 
Energy 
(KeV) (1) (2) (3) (4) (5) 

1 3-55, - 3 5.0, - 2 (a) 

6.25 7.46, - 1 5.6, - 1 o.t7keV (b) 

30.2 2.19 2.14 2.02 1.92 1.95 (b) 

100 2.90, - 1 2.93, - 1 2.85, - 1 2.76, - 1 3.0, - 1 (b) 

400 3.66, - 3 3.66, - 3 3.51, - 3 3.54, - 3 2.0, - 3 (c) ·-.. .i 
1,000 - _J-.4., - 5 7 ,1_, - 5 5.0, - .5 (c) 

10,000 3.1, - 10 3.4, - 10 (1.2 ± 0.4),-10 (d) 

(1) Calculated ,.,i th simple helium wave function X(l); (2) calculai;ed 

with helium \v-ave function X( 2) of Green et al. 1954; (3) calculated 

\-lith" helium wave f'unct_icn x(3) of Eckart 1930; (4) results of Green et 

al. 1965; (5) experimental total cr.·oss sections. (a) Hasted 1955; 

(b) Stier and Bal.'ne·tt 1956; (c) Barnett er.u.'l. Reynolds 1958; (d) Berkner 

et al. 1965, University of California Rep. UCRL- 16054 (~1is experiment 

employed 21 MeV deuterons). 

(1), (2) arill (3) are present calculations. 
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