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Sumery

The problem of the elotron capture by fast charged parti-
cles passing through a gaes is examined mathematically. The appli-
cationzs of theoretical techniques to simple capture processes are
discussed, with emphasis on the scattering of protons by helium for
which experimental results are more readlly available.

The thesis begins with & discussion of the treatment by
classical methods of the mechanism of the capture process. The
revival of interest in the classical approach to the problem is
mentioned, It is shown that the distinction between the classical
and quantum treatments is not complete and that in the asymptotic
energy region the two descriptions have features in common. This
is followed by a short discussion on the general theory of scattering
and the derivation of the formal expressions for the scattering
amplitude. The Born series expansion of the scattering matrix is
disoussed and the convergence difficulty associated with the series
is mentioned. The argument that the internucleon potential should
not contribute to the probability of electron cl;.pture is mentioned
and it is shown that this difficulty is eliminated in the impulse
approximation. The impact parameter method: is examined in detail
and its equivalence with the wave formalism is mentioned. It is
shfwm that the refined treatment of Bates (1958) removes the dif-
fioulties associated with the lack of orthogonality between the
initial and final states and eliminates the apparemt dependence on
the internucleon term. The continuum distorted wave method is
discussed and the similarity between its asymptotic form and that of

the second Born approximation i8 mentioned.



The impact parameter method is used to caloulate the

anss seotlions for the following processes in the energy ranges
indicated:

(1) H + He(152)——>H(1s) + He+(1a) 30keV = 10 MoV

(11) H' + He(18%) —>H(1s, 2s, 2p) + He*(18) 1 keV - 1HeV
The sensitivity of the calculated oross section with the choice of
the ground state helium wave function is investigated by caloulating
the cross section for reaction (i) using three approximete wave
functions. The results for the reactions (i) and (ii) are compared
and the atomic expansion method is discussed. A brief de-soript:i.on

of the numerical methods used is given.
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CHAPTER ONE

Introduction

Ve shell consider mainly fast collisions, in which the
velocity of the projectile is mwch greater than the orbital
velocity of the captured electron.

1.1 Classical Methods

The first caleculation on the charge exchange for an atomic
process was made by Thomas (1927). In his model the exchange
occurs by two successive two-body Rutherford scattering:s,

The electron is first scattered by the heavy incident particle
towerds the target nucleus and acquires the speed of the incident
particle, which continues to move in ite original trajectory.

The angle of scattering is determined, by the -conservation of
energy and momentum, to be 60° in the laboratoxry frame, The
electron is then scattered by the nucleus, so that it now moves,
with the speed unaltered, in the same direction as the incident
particle.

The classical cross section of Thomes has the high velocity
dependence * v , as for the second Born approximation
(Drisko, 1955) and the impulse epproximation (Bransden and
Cheshire, 1963)., The similarity between the classical and
the quantum mechanical calculations is striking, but Cooke (1963)

showed by using the uncertainty principle that the Thomas

* Atomic units will be used throughout, unless otherwise
stated. V = 1 corresponds to a proton velocity of 2.188.108

cm/sec,



process camot be a high energy classical limit. Recently,

Bates and Mapleton (1966) have pointed out that, in the model of
Thomas, the distribution function for the electrons of the target

does not take into account the shell structure of the target atom

and so overestimates the probability of finding an electron at

small radial distances. Bates and Mapleton (1966) have introduced’
a modification to the calculations of Thomas and developed a classical
theory for symmetrical resonance in slow encounters. The method

is found to be very successful,

Since the development of the quantum theory little work was
done on classical methods until Gryzinski (1959) showed that they
could be used for g wide variety of processes, Recently, by
meking use of a high speed computer, Abrines and Percival (1966)
calculated by means of the Monte Carlo method the cross section
for the electron capture by protons in hydrogen for a few
energies in the range 38 to 218 keV, The gquantal system is
represented by & macroscopic classical model, and the scattering
is considered entirely in terms of classical statistical
mechanics. The Newton's equations for the three~body motion
of the electron and the two protons are solved by numerical
integration for a number of orbits. The calculated cross
sections are rather higher than the experimental data.

The asymptotic form of the classical cross section for

H' L W(1s) 5 Hs), v has been examined by Bates and
Mapleton (1965). Both the classzical theory and quantum

mechanics are found to show, if the protons are considered
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distinguishable, the same v  velocity dependence and to

have almost the same constant of proportionality.



1.2 Formal Theory of Rearrangement Collisions,

The scattering amplitude for a rearrangement collision can
be obtained most easily by the method of Lippman (1956). The
formal expressions for the matrix element will be derived from
the time-independent theory, but the same results would follow

from the time-dependent theory. We consider the process
1 + (2+3) — (L+2) + 3, 1.1

in which an initial state, consisting of a particle (1) incident
of an electron (2) bound to a core (3), is transformed into a
final state, consisting of a bound state of particles (1 + 2)
and a free particle (3). For simplicity, the particles are
assumed to be non-identical and spinless.

Let x and l_gx be the position and momentum vectors of (2)
relative to (3),a and k; of (1) relative to the centre of mass
of (2 + 3). The vectors appropriate to "the initial configuration
are (x,o, ke, R:)- In a similar way, the vectors
appropriate to the finzl configuration are given by ( 8,%, '3,,13_;).
The momentum vectors _l_c_l and k. are related to the initial and

.-f

final velocities of relative motion, v and Ve by the equations

k&’”ifi ’ b; = 'A;Y; ) 1.2
where the reduced masszes r‘i and Nf are given by

My (1+M) 1.3
‘1+M|+M3

= M (1L+M)
i - v
r 1.1M|-|-M3 ? ’u.}

with M, as the mass of particle i.



‘If ¢, is the eigenfunction of (2 + 3) and ¢; of ( + 2),
then the initial and final unperturbed states of the system are

described by

) tk;. o
3. (g) = = #: (), 1.4

@, (e = ettt b5 (3). 1.5

These stetes belong to the complete sets of orthogonol states,éfh

and ﬂ%ﬂ , which satisfy the Schrddinger equations

(HL‘En) é_“(E'-,h O) 1.6

0, 1.7

(HJ - EM) @m (EW)

whereHi=K+V H.=K + 7V

23" °f 1

operator, and Vij is the Coulomb interaction between the particles

o) X is the total kinetic energy

i and j.

The total Hamiltoniean H in the centre-of-mass system is

B i 1.8
& K + V12 + Vl3 + V23

H can be written as H = Hi + Vi = Hf+Vf, Vi and Vf being the

initial and final perturbing potentiels

= 1.
Vi = V12 + V13 , 9
Vf = V13 + V23 . 1.10



The Schrddinger equation for the complete system is
(H-5) ¥ (8) =0 11
H - i) .L i = . 1-

‘\I/: is the outgoing wave function corresponding to an initial state §¢.
and outgoing waves which describe elastic scattering, inelastic
scattering, and rearrangement processes. For capture

into the final state f, it has the asymptotic form

v o~ &+ %@ iJ._) 1.12

< Y=y e0

with 6 = cos (Ei . Ef), and JZ(G) as the scattering amplitude
from the initial state §i. to the final state 5* .

The cgpture cross section is then given by

|
Qq = 4% I I§ ()] d CesB) - 1.13
A L, Y

To obtainJ.' @ from -\Pi"’ , we first define the three=-

particle Green's functions

(E, + ie- Hﬂ-. = Jd#\ | @y {Fa| , 1.14

E.+rié - En

(6 rie -HY = fdw (8548 | 1.15

kc_ + L€ — EW\ .
where ¢ is an arbitrary positive real quantity, and §“ and §M

satisfy (1.4) and (1.5). Ve denote the operators

. . Y
G, (B, +i€) = (B, +*e-H) 1.16

G (Ei + &) (Ei +LE - Hf) , 1.17



. . -1
G, (Ei + Lt ) (Ei +ie - K) 1.18

-f
G (Ei +ie) (Ei +i& -H) , 1.19

From the theory of differential equations, ‘\Y: satisfies

the equetion
i i . . + L
'?L‘f(E't-'- LE) = iL(Ei\i‘ G(_q‘,@c (El ""'E), 1.20

with

‘\]Z:(E,J = ain\_’_ Q:(IEU—'(.E)-

ES0
By operating on the equation (1.19) to the left and right

by (Ei + g - Hi), we find

G: = Gl1+ Vit ] = [4+6.v.] 6

and similarly we obtain

G:. = G-[:l -V; C-;_'] = [i’G’aVL]G'y

so that

o= l-qule sl Gudlvevid,

and hence
[i-G—LVL]L1+G-V‘] = i . 1,21

Using (1.20) and (1.21), we have

P (6 +i€) =[4+€ (EiriE) U] & (ED)- 1.22



Opereting on (1.17) first by (Ei +LE - Hi), then by G, and

rearranging, we obtain

[1-6v,]l4+6v;]= 1+ Gy (Vi-Vy) 1.23
so that
[4-G,Vy1F, (£0i0) = [146, ()] B, (E2) - L.24

The term on the right-hand side czn be worked out to the

simple form

[1+ 6V -WIS(E) =] Ea+i£—H;+V;_‘V£] b, (E)

E"_ f'l'.t'.—H;

= [ Ejvi£- R H:] 3. (€,

E;pie-Hy 1.25

—tt & (E)-

£, 4ie- H;
The Schrddinger equation describing the rearrangement

collision can then be written as

\I/:'(L-" rig)= G;(Eu-i.e)l_ia@;(&)-f\/&-g_‘,: (€, .+a,)}. 1.26

The transition rate wif for a rearrangement process depends only
on the second term on the right-term side of (1.26); the first
hgs no singularity and so vanishes as £- O+, except in the
special case when the three particles are unbound both in the

initial and final states, Using the spectral representation of



Gp (1.15), we find

WH(E, +i6) - I’M FAICAARNGEN) Y 1.27
E;_ +Le —Ewm
‘5‘_‘7: contains the time dependence exp (iEit -et )/‘k , S0 that

\/\/-L g_:_b( .@_‘")l Qi 9 - 1.28
s =t >0 % <EL'E,|«) >

where

Ty = <G @) v\ ¥ (- e

Since
£ A
Ly Bl = oo,
we obtain

Wi = b(E-Ep) %gr |T+| . 1.30

The scattering amplitude JC{ :\"® is related to Tif by the equation

4:1;(9) = P*,L 1’4 | 1.31

In & similar mammer, the incoming wmave solution \_P can

be written as
T (E-ie) = B (6) + G (-1, F (E,-ie), 1.32

and the transition matrix Ti £ becomes

1.33

Ty = CE (BIV] 8 -



We now consider the scattering metrix, or simply the

S-maetrix, Let the channels of the process be denoted by d)FﬁL

etc. We express '\I’: as a linear combinations of the ~J -
-+
v, = Z '\_I/ S’ 1.34

From the orthogonality of the scattering states we obtain

<’\_T(': |- 1.35

This is the S-matrix. The importance of the S-matrix lies

in the fact that it is unitary. By using (1.34) and (1.35),

we find
»*
;grasxp - 6“13’ 13
. >
2 %S - b
and hence
gst - S-tS = 1. 1.38

The unitary nature of the S-matrix has an important physical
meaning ; it ensures the conservation of flux or probability in
a collision.

The present proof for the unitarity of the S-matrix is
unsatisfactory. It is based on the assumption that the wave
functions in different channels are orthogonal to each other.
This is not the case in rearrangement collisions, where the

colliding particle and the collision products are composite



- 11 -

fragments, so that the channels overlap. An alternative proof
is given by Jauch and Marchand (1966) and it shows umiterity to
be a direct consequence of the asymptotic conditions and

nothing more,



1.3 The Born Series.

In any general theory of scettering it is not difiicult to
derive exact expressions for the transition matrix of any
collision, It is in the actual calculations that the difficulty
arises. In almost all cases it is impossible to obtain an
exact solution for '\P'._ * oY ’?;- and, in practice,
various methods are used to find approximate solutions. A
frequently used approximation is that of Born, and it consists
in iterating the integrsl equation,

We consider the series expansion of the operator
- L
C = (Evie-H) = (Egete-H.-V.) .
On using the operator identity
. - N . -1
(h+8)' = n'[1-B(r+BY |, 1.39
and setting
A = (E£~+’»£'-H-J ) Bz -V,
vwe obtain

G=G, +G, V, G. 1,40
1 1l 1

As G = G, the series representation is given by

and in & similar precedure

G = G'u + c'o (\/.,_+ v. 3t \4.3)(;5 + G:, (V. =.+V,5+V,3)G;(\(,_+\{5+\/,_;)G’ 4-en- 142



The transition matrix is

_Ti;

<'¢% | V§|'\§1 :> p)

with

c

'\P.+ . "1"' th] @;_ ’
Using (1.41),.we get the series

. . 1.
+ <§f|\,fGi\/cG;_v‘_|§‘_> 4+ +

Vhen only the first term in this expansion is retained, we
obtain the first Born approximation, often simply referred.to as
the Born approximation. Ve denote it by

&+

Ty = {glvlg) - L

The alternative expression for Tif’

_r;§ = <:Agaﬁ l\/i‘§§i:>:
can be iterated in terms of Gg (Ef -t£&) by a similar procedure.

In this case, the first term in the series expansion is

p 5
Val o) - 1.45
B
The two forms of the Borm approximation,‘11§ s using

®-

the post and prior interactions respectively, are identical

provided the wave functions éEi and l& are exact. They give



different vzlues if either éz or é;’ is not exact; this is the
source of the post-prior discrepancy and it is impossible on
physical grounds to predict which intersction will give a better
estimate of the fransition matrix.

The terms beyond the first few in the series expansion of
Tif are difficult to evaluate; they must be negligible if any
calculation based on this series is to be valid. It is
shown by Zemach and Klein (1958) that, except for sufficiently
high energies, the series expansion of the Green's function
diverges. Aaron, Amado and Lee (1961) have found that for
a class of potentials, including the Coulomb potential, the
Born series diverges. Their proof is not rigorous, but the result
is probably correct. However, Dettman and Leibfried (1966) have
re-examined the Borm series and expressed the views that the
commonly used arguments to prove its divergence for rearrangement
collisions at all energies do not hold. They treated in
detail the one-dimensional three-body collision with §—function
interactions and found that, in this particular case, the series
converged. The proof is not rigorous and their conclusion
is open to question.

The problem is also investigated in the framework of the
distorted-wave formalism by Greider and Dodd (1966). In this
case too, the iterative solution of the integral equation is

found to diverge.



A generwl and rigorous methematical proof that the
ordinary or the distorted - wave Born model iz or is not valid
would be extremely valuable, but probably difficult to find,
It way well be that for potentials of practiical importance the
series diverges, so that the validity of the application of
the Born approximation to atomic collisions remains in doubt,
Accurate rosults are however obtained for some processes form
the first one or two terms in the Born series. The
apnroximation often works much better than may he expected.
1.4 The Impulse Approximation,

Chew (1950) first attempted to forrulate the scattering
amplitude in terms of exact two-body matrix element:, The

method rests on the aszsumption that, for the process
1+ (2+3) — (1+2Q) +3,

if the velocity of 1 is much greater than the orbital velocity
of electron 2 in the bound system (2 + 3), the struck particle 2
mey be regarded as s free p. rticle during the collision.

The etiects of the binding potential V2 can be neglected,

3
although it deternines the intial state a% .
We define the two-body Mgller operator W;z by
-1
+ - -
W, x(bs,ha_-: [;1 + (Ehs“'E";"' & "K‘Vn) \/,,,]X (!‘s J_xb 1.46
z "I"(BS‘, .L‘.a;

where the momentum vectors Es and are defined as in section

k.

(1.2), and X (gs, kf) is a plane wave.



X(lc_s, l_c_f) and ~y (Es , lc_f) satisfy the Schrddinger equations

(K- Eym By )% (5,8 = O, 1.47

(K +Va - Eks'Eh;‘)#’(.‘is;kb =0 -
1.48

X(x_,k.) is the plane wave function for the three particles when

~s

there is no interaction between them, '\{é;(ks,kf) is the product

of a wave function for scattering of 1 by 2 with the potential

Vlz and energy Eks, and a plane wave describing the motion of

3, with energy Ekf’ relative to the centre of mass of (2 + 3).

+
We define the Mfller matrix SL by

+

so that from (1.22)

v o= O &, 1,50

& 3 ?

and from (1,29)

’rcf_ = (%‘V;‘Qfé‘) ) 1.51

R
After some manipulation (Chew and Goldberger, 1952), LL can be

written in the form

..(]-.F = (Q).: + ‘4)..; ‘i) + G [Vq_5)(w.l‘;-+ w.'r")]

+ G'[Vm.(‘“its'i) + Vny (‘-‘fm. "i)J - 1.52

The second term on the right-hand side of (1.52) vanishes on



neglecting the binding potential V23, in accordance with the
impulse approximation, The third term represents successive

scatterings of the incident particle by the potentials V., and

12
Vl3 ;3 these multiple - scattering effects sre negligible for
charge transfer collisiong,

The transition matrix is then
I . _
T;_; B <§f"\4(w,:+d,3—1)lét> . 1.53

From the alternative expression of Ti

¢ in terms of W;; , we find

Ty = <& + 4z -Dy|B,)- C s

It is expected on physical grounds that the internuclear

votential V

15

Setting w;‘.g =1 , we obtain

T = (glylaE),

cannot affect the electron capture cross section:

’r&;_ = <‘*’;§;‘th§‘> . '1'56

It is evident from the assumptions used that the impulse
approximation will be better the weaker are the interactions,
Its application to the collision of a particle with a neutral
atom is intuitively plausible, but it does not follow that the
extension to processes involving interparticle Coulomb potentials
is exactly valid

The present formulation of the impulse approximation in

unsatisfactory, for the Counlomb potentials have only in part been



eliminated by the use of two-body operators. Moreover, the
two forms of the transition matrix, Tif and Tif of (1.55) and

(1.56) respectively, are not automatacally identical, and this may
introduce a 'post-prior' discrepancy. These defects have been

overcome in the new formulation by Fadeev (196la,b, 1963).
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1.5 Impact Parameter Formlation
In all collisions between atomic systems containing

heavy particles, the motions of the heavy particles are
essentially unaltered by any electronic excitation or re-
arrangements unless the energy of relative motion is very

low (Bates and Boyd; 1962a, b,). It is then advantageous

in describing these processes to treat the electronic motioms
by quentum mechanics but the motions of the heavy particles by
classical mechanics, The formulation which follows is mainly
due to Bates (1958).

Let R and y be the position vechor and velooity, respectively,
of particle 1 relative to 3, and r the position veotor of the
electron 2 relative to the mid-point of R, We choose a
co-ordinate system with the z- axis along the dlrecotion of
motion, so that

R = ot , =2 =z~1 . 157

The time 1 is chosen such that at ¥ = 0 the particles 1 and 3
have a minimum separation ¢ , known as the "impact parameter"
of the collision,
The electronic wave function W for the complete system
satisfles the time-dependent Schrodinger equation.
HW(rt = 15% E (1,t), 1,58

with
2
- ; 1.
H --%VY+V|1+V.3. 59



“ﬂ? is expressed in the form of a series expansion of
eigenfunctions; the set of basis functions is chosen so that
each term in the expansion is a solution of (1.58) in the
limit of infinite nuclear separation (Bates and McCarroll,

1958). We write

W e ) = o, (D (141 1 R) onp{-i(ywr + éﬁheﬂ]
4-b @ ¢§;(1’ 1 ﬁ).m*b{ 1vr -éﬂf%-—ﬁﬂb}
+Y (54). 1.60

¢i and ¢f are the wave functions of the bound states (2 + 3) and
(1 + 2), respectively. ¥ (r,t) is orthogonal to the other two
terms on the right-hand side of (1.60) and may be expanded in

the alternative forms
¥ (14 = Z a (956 (vl R)MH (v #L é—+£_“+)} 1.61

and

te ) e

Y(r,k\fé}bmﬂw’m(f— 1R)erpfi(dwr- 2
Continuum states may also be included in ¥ (r,t). In this
section, for simplicity we consider two states only and set ¥=0
this is equivalent to assuming that coupling through all states
other than i and f are negligible,

The expansion coefficients ai(t)'and bf(t) depend on §

although this dependence is not indicated explicitly. The



initial conditions are

The probability amplitude for electron capture from an initial
state i to a final state f is then bf(~+n0). The probability
of capture at a particular valuve of the impact parameter is

2
lb}(@l and the total capture cross section is

G-._j_. = QJ‘ILJ_.(q-oo)l"g Adp . 1.64
Using (1.58) end (1 59), we obtain

"(‘.‘z+ '-" S e t)= ahi; +l}Ktjce£t

,c 1.65
(a5 5 = a3
q; ;e + :F) = q,K.e 4_5;, T 1.66
vhere
EL-S' = - E‘fl'. = E&; —E; »
5, s(t) S @ = j¢ (1',1&)45;(7_; R)e “Tdy
KL.S @ = [‘ﬁc*('“ig)\/zs ¢f(1’—;':ﬂ)ei?rdi 1.67

-L-u'_

L (478D v ulran
ho (8 ,M (x+1 B)V, & (1 1R)ds

hye (6 =f¢;(-z—£ R)V,, ¢, (£-1B)dx.



The terms in (1.65) and (L.66) are rearranged to give

_ o . _ ig, b
L(i— ‘Sis|)Q; = aa(h“_—s,'.s K_f.}'{’b; (Kt;—SE:;"\;he‘ s )

TN . < it .
i(i"l s‘;\ )b; = ql(Kf‘l— S{_L hlbe% . b;(h*&_s-’th;) .

By substituting

= hu-SgKe o o o kii's;:KE
- |S»;\’- ‘St:jl

and

¢ o - ¢
‘a, = aorpifsdt] o by < bpaspff prat],

in (1.68)and (1.69), we obtain

i = - [k Kig- Sighgg } eab{i(ge 80}

)}

gt
DE% = —‘-q [ .? -Egjn_{l“fF -L(E 44-8g£)}
where

t _
€
g__[o (“LL'L{f\A{-

If we make the assumption

11;(*5 = j. )

which implies neglecting back-coupling from the final to the

initial states, we obtain

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77



M. = Kpi-S5hi _u;o_a(&;t,,si;')
§ —1_:15]: 1.78
== (K;a-SJat\;hM}a—i(atg‘t+3a_;\' 1.79

Since

§4 (£ -1 O[Valr-1 4V, (B (ray e T

1.80
= Ko+ V(DS
and
J (e g A v (g-1 8) oy, (R] (o8
1.81

= L;L + \ﬂ;(ﬁ) >

it is evident that Mi is independent of the internucleon

£
potential V.

13°

The phase term 5a¥ comes from the difference between
the effects of the interaction of the colliding systems when
in the initial state and when in the final state. Its
inclusion in (1.72) and (1.73) allows for distortion. This
is expected to be important for charge transfer processes
because of the large contribution from close encounters (Bates
and McCarroll, 1962).

In the case of symmetrical resonance, 8&; vanishes since
the initial and final states are identical (Bates, 1958).
Moreover, the equations (1.72? and (1.73) become sufficiently

simple to be solved exactly and so allows completely for



back-coupling from the final to the initial states (McCarroll,
1961),

The impact parameter methol satisfies the reguirements
of the detailed balancing (Bates, 1958 b; Green, 1965). In the
work of Bates (1958 b) detailed balencing is proved for processes
heving small transition probabilities. Green (1965) considers
the general case and shows that the impact parameter method
satisfies detailed balancing even though only a finite number
of states is included in the expansion set. We cinsider the

expansion of 'ﬁE

'?(cjt) =§a“(C;’f) b 1,82

where the symbol C is used to distinguish soiutions corresponding
to different conditions, and ¢n is a set of orthonormal functions.

Let
S,.. = <tulda¥ 1.83

Hin = | H- T

Ve take the g-axis to be in the direction of the incident

¢, - 1.84

particle, We define
*
-‘@R (c Sx"b%’{:) = T(C; x,4- % ,—‘f\) ? 1.85

so that

+*
% n (¢,4) = €.a, (c,}_a , 1.86



b 4
vhere €,=x1. We define also two particulsr solutions W ( k;ﬁ

vhich have the property thot as t> F w0

+ . ‘ ;
(k) = P (=y52,51) . L.87
The essential time-reversal relations asre

oo (D =e, 605 (8, 1.88

Hoo (£) = en € Hum (B 1.89
Vie write

“+k (“ ;“”3 = tl-i-)"_\o ﬂ”“:*ﬂ '\PY“ 3{»

= Lim <‘\')2; ('M-)’c)"i’; (k3+)>

t 5400

Liwn  Cen¥ o 4)]e, 2 "k, )

£ +e0

1.90

é“‘&h<zt. (hj¢ag .

The proof of the wetailed balancing then follows,
Approximations corresponding to each of those described

above can also be obtained in the wave formalism which allows for

the non-orthogonality of the initial and final eigenfunctions

(Bates, 1958). In the simple case vhere distortion and back-

coupling are ignored, the matrix element is obtained by replacing

V. in 'J.‘if by the effective interaction

f
1_Ts‘;‘5_ [V Gx-28)- ] -




These results can also be obtaeined by a variational method,

using the functional

I = [’Q”(H-EY@ dv .

Let Fu(@) and Ga(f) be the coefficients of the initial end
final bound states in the two-state expansion.of"z . The
method consists in uwsing the property thst I is stationary
uncer all independent variations of I"n and Gn that leave the
asymptotic forms of Fn and Gn unaltered.

Bassel and Gerjuoy (1960) have used the operator formalism
of Gell=Mann and Goldberger (1953) to derive the distorted
wave approximation, This method gives similar results as thet
of Bates, but the \S‘-_;ll term is now not obtained.
Let ’\Sb@.’.‘) a;rld \3; (2) be aerbitrary short range potentials, and

Xi and Xf be solutions of the equations

(K+ Vo, _’\)L(q) - E;\X;(E;\ = 0, 1.91

(K+ Vi, =) (-EQX,(E)= 0.

Then the incoming wave solution is given by

- 1
¥, (E) -

E;..-lt: - K "'st.‘.”\j;
[_ t EX; ( E}N (V. ,fvn.n%'\y;(gé) , 1.92

and hence the transition matrix is

T*; = <’T{- |\/‘5+V‘1+\5; lx-:> . 1.93



The method consists in substituting \Si by kii and \Sf by kﬁ.,
since any other choice would be inconsistentin the light of the
derivation using the veriational principle. The term contadining

the internucleon potential V.

13

"is of the order /M and is thus
negligible.
Sil (1960) has explicitly used a variational method to

obtain a formalism eguivalent to that of the impact parameter.



1,6 The Continuum Distorted Wgve Method.

Cheshire (1963b, 1964b) has suggested & new approach to
the distorted wave method and developed an approximation which
has the virtue oif including continuum intermediate states.,

The initiel and final states@®and @ (), which satisty

the equations

(£9, +2+:2)8,() - 0, 1.94

(£ v +i+cb\§ @®-o0, 1.95

are given by

@, (t) = ¢c' ("—‘)"’*l"{“i({-'\."f+iv‘t+ezﬂ} 7 1,96

8
& () = ¢, ()enp {i (%.‘_,.I_%_‘#_%t-)} ' 1.97

The complete wave functions i_&)and 'f*({)are then written

as

) = Qa(ﬂ L @ |
T = s0Ld, 1.98

where 'Ii(t) and & f('I:) are solutions of the equations

(¥, ri-geiy "VV="E" N L, " 1.99
(%V:+ %-—%‘-+i—%+%-_\j-v_ry}=_§; \7 ‘j 1,100

and have the beundary conditions



'Q'uMEQ: t('-m °£

= 4. 1,101
to— o0 tye+0 T
. I

Yirst order approximations to aﬂia.nd i’f, denoted by a[’,L and

i;, are obteined by neglecting the right-hand sides of (1,99)
1 !
and (1,100). At high velocities 53:;_ and &; are expected to be
good approximations to d& andéﬂf respectively, over the regions
which contribute to the scatterin_ amplitude,
. L] [}

The transition amplitude based on Q.{ and Q;J} as

distorted waves is then given by
D . ,
"r. P lJ d.t dr 5 £ a.__s__- v 1 - 1-102
*f A B
)
This formula is exact. But the method does not take back-
coupling into account and is therefore expected to be valid
only at energies above 25keV, The calculated cross sections for
+

HY & H('Is\—? H(1s)a+H  are very close to those obtained with the
impulse approximation at energies between 80 keV and 1 MeV, but
between 40 and 80 keV the results are nearer to the calculations
of McCarroll. The asymptotic form of this method at high

energies is exactly that of the second Born approximation.



CHAPTER 'TWO

Review of Existing Calculations%

2.1 The First Born Apwroximationi

It was shown earlier that the Born approximation could be

expressed as
iy = <§’C\V,3+Vu'§£> , 2,1

Ty = KGV VLl 8 - -

Oppenheimer (1928) and Brinkman and Kramers (1930) argued
that the internucleon potential Vl3 should not contribute to
the probability of an electronic transition. This can be
congidered in the following way. At the energies ihe
approximation may be valid (for incident protons the emergy is
much greater than 25keV) the felative velocity of the heavy
incident and target nucleons is much greater than the orbital
velocity of the electron. Any electron excitation or capture
causes negligible change in the relative momentum of the nucleons,
which trerefore move in straight line trajectories. 1t is then
evident that the potentiel V13 cannot afiect the cross section,
[This result might not be valid when there is a large
contribution to the scattering amplitude from very close

encounters (irennema, 1963)J

The first detailed calculations for the process

H  + H(1s) — H(1s) + HT 2.3



were made by Brinkman and Kramers (1930). The first Born

approximation was used, but the interrnucleon terrnV.

13

neglected., We shall refer to the approximation when V13 is

neglected as the Brinkman-Kramers zpproximation, and vhen V.

13

in it was

is retained as the Born approximation.

For the process (2.3) the Brinkman-Kramers cross section,
in uwnits of (a2 ), is given by

&8
an = ——_—_-_5(1+V‘/4)5:\rt ? 2.4

where V7 is the velocity of the incident proton in atomic units,
80 that the incident energy is E = 24.97 v2 keV. The cross
sections for capture into excited states have been determined
by Bates and McCarroll (1962).

Bransden, Delgarno and Kiq9(1954) used the Brinkman-
Kramers approximation to make the first calculaticns for

the process
HY + He(15*) — H (O + He (45). 2.5

The simple varigtional wave function for the belium atom,

$(1,1) = ;%-BMP{—d(Y.»«-fz)'} d=1-6875, 2.6

is used, so that the post-prior descrepancy is present,
Since it is impossible to lmow which interaction will give a
better result, the prior interaction is used as it contains

fewer terms than the post. Bransden, Dalgarno and King (1954)



calculated an( 'Is‘j“‘l,‘\s) (wl=1525,2p) and estimated
G;(";’ 15,15 ), but the Born matrix was evaluted. approximztely
to reduce the computational difficulties encountered.
Comparison with the svailable ex erimental data up to 200 keV
shows that Q“is too large and that &B agrees better with
experiment,
It iz expected on physical groumds thzt the internucleon

potential ‘\Tl should not affect the probability of an electronie

3
transition. However, Bates and Dalgaxno (1952) and Jackson
and Schiff (1953) independently argued that the neglect of the
term Vl3 in the transition matrix element was unjustified.,

The initial and final wave functions @-‘ and §-§-) respectively, .
are not eigenfunctions of the same Hamiltonian, There is

thus a lack of orthogonality between @, and ﬁ_;_ ; this defect
accounts for the large value of QBK' Since Vl3 is of the

same magnitude but of oprosite sign as the remaining potential
term in TEf’ the inclusion of Vl5

the over estimate in the Brinkman-Kramers approximation.

in the matrix element may correct

Mepleton (1961a) bis used the Born approximation to make

extensive calculations on the process

HY + He (1s7) — HQ + Ho_+(~\'f') 2.7

in the energy ranse 7 keV to 1 MeV, He calculated the partial

cross sections for capture into the 1s,2s,2p,3s,3p, or 3d states



of hydrogen, leaving the residual heliumion in one of the

l.s, 23, or 2p states. Since the inexact helium wave function
(2.6) is used, different values are obtained for cross sections
using the initizl and final interactions. The post-prior
discrepancy rises to a factor of almost 4 for Qb(*Is?‘“s,:)]:) at

1 MeV, but it is not serious if the beliumion is left umexcited.
Mapleton (1961) hes also used the w> rule of Oppenheimer (1928)

to0 evaluate the total cross section

& B“Szl z Z\ =-n%w2' Ry (15,1, 2.8

and has found that the post=prior discrepancy for the total cross
section never exceeds 20%.

The results of Mapleton (1961) for Qg (1541s,1s) are
roughly 2.5 times larger than the values obtained by Bransden,
Dalgarno and King (1954). In Figs. 1 and 2 , the mean of
the post and prior total cross sections are compared with the
experimental values of Stier and Barnett (1956), Barnett and
Reynolds (1958), and Allison (19%8), The agreement is generally
good, but at high energies the theoretical curve falls too
rapidly. .

Another calculation for QB (1sY1s,1s ) was made by Mapleton
(1963a), using now the Hylleraas six-parameter wave function for
helium

¢ ('fl,'ft = N [1 + & |'f| —f').\ + C.‘_('r,-'r.,)!-+C5 (Tn"‘f'l).

4 c,,_(f.+fb" + Ls'fn-?f.z‘ﬂ%”{'“("r"’-"bh 2.9
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where ci are varlationally determined constants, It was
pointed out by Bates and MoCarroll (1962) that the simple
variational helium wave funotion (2.6) underestimeted the
high momentum compoments and it wes thought that the use
of an improved wave functiom would provide more acourate
results at high energies. In the new caloulations of
Mapleton (1963), the post=prior discrepancy is reduced to
about 1%, but the fimal results are not in better -agreement
with experimentel data, However, the Brinkman-Kramers oross
seoctlion for the same proocess shows significant chenge at high
energies. Although the old and new Qy agree within 4% at
1MeV, the new values of Qu, &t 10 MeV exceeds the o0ld value by 478,

Mapleton (1962) has also caloulated the ratio R = QB/QBK’
as a funotion of emergy, for electron oapture by protons in
hydrogen and in helium, The ratio: is roughly the same for
both proocesses; for example, at 25 keV R(H) = 0,196 and
R(He) = 0.128, while at 1MeV R(H) = 0,337 and R(He) = 0,271,
Mapleton (1962) suggested that this similarity in the ratlo oould
be mainteined for eleotron oapture from a more complex atom and
that this relation could be used to estimate QB from QBK'

The high energy behaviour of the Bora approximation for the
electron capture by protons in hydrogen has been investigated
by Jackson and Schiff (1953) and Mapleton (1964a). Both

Qp @24 Q. have the velooity dspendence v'2, ana

Q, ~ 06614 . 2.10



This V_12 dependence comes from the contribution to the cross
section of scattering in forward direction. There is also the
contribution of scattering in the backward direction; +this has
the asymptotic form V"'6 znd is ultimately the dominant contribution.
In the capture process in the forwerd direction, the electron
is 'picked up' by the incident proton, which is essentially
undeflected, On the other hand, capture in the backward
direction occurs when the incident proton makes a violent
collision with the target proton, ejecting it from the atom and
taking its place.
Mapleton (1964b) has investigated the asymptotic forms of
the cross sections in the Born approximation and the distorted
wave method for the resonance process Ht+H(1s) - n(1s)+H* .
If the protons are considered distinguisheble, both methods give
the V'_6 dependence; but if the protons are considered
indistinguishable, the cross sec£ion is not defined, because
the contribution in the backward direction interferes with the
direct scattering amplitude. These featwres have also been
found in the impulse approximation (Coleman and McDowell,1964).
T'or nonresonant capture the situation is different; there is
no significant éontribution from the backward direction, and the
Born cross section behaves ultimately as VFlz. Thus, in the
electron capture by protons in helium, both the Born approximation

and the distorted wave method are found to have the sume asymptotic



form as the Brinkman-Kramers approximation (Mapleton, 1964b).

2.2, The Second Born Approximztion,

The large unphysical contribution from the internucleon
term in the first Born approximation shows that this approximation -
is msatisfactory and that the apparent agreement with
experiment may be coincidental. It is important then to
consider also the higher terms in the Born series. Unfortunsately,
these terms are difficult to evaluate; so far it is impossible
to calculate even the second term in the series, However,
Drisko (1955) has examined the high energy behaviour of the
second Born approximation, in which the first two terms in the

series are reteined, for the process

+
H* + H(S) —» H(1s) + H'. 2 1i

From (1.29) and (1.42), the second Born approximation can

be written as
8,
Ty = <§:F l V{ +V;F va_t‘§:->) 2,12

where Go is the free particle Greens function,

Let €, be the energy of the bound system (1 + 2) in the
ground state H(ls), X the position vector of 2 relative to 3,
and $ of 2 relative to 1, If M is the mass of proton and 1, of

electron, we set

poo MM M
1+amM 1+M

) 2.13
&( = kf—ak{ 7 '_S_ = k:-ak{-
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We define the Fourier transforms

' Lhx
9, (&) = e 4 (Ddx,
k. 2.14
_tR-S »*
Go can be represented explicitly as
i 1. ?_¢o e
G—o ; (ﬂﬂ)-bj‘dﬂ/d‘ir' Mlbt{‘& (- 2)"'5’ (.5_ _§')} 2.15

~R2p + € 4 it ~%/2a -‘1:72|*

= ('an\"’folg ik =P 5{(%—5'(2-2')»*?:-(&-5‘)} 2.16
- h"/zr +e{_+i.£+ (e +at.g().l_¢ _q'z/g“

where & = k. - k
Using (2.12) and (2.14), we find
<§f| V:F Govi\§l>
4 . X - 2.17
= 4.@n) jd@d_lsl-;? +éf+(E+aL§)-k-%+as.] I(vH),
where
p4C R ISR TOARVA I X (VARVA TRV RVAWE: TR A TR T
with
4(V.5,V,Q= K (ak+pra) % ('—"E‘)ﬂ}('“k-i% 2.19
L=l w
ORARNCISE ('%""B_ﬂ'-s-e)ﬁ-f(‘“k‘ﬂ 2,20
-2 -2
Iy )= K kv B4) 3, (Fnk-2-2-dffha-9), 2

4(\/,5,\/,3\ ==-|fz(a|5+P_+ﬂ()_19‘- (k- o) 3;( 1_k_ 3,)_ 2,22

1+M



The term ¢ (V. , V ) has a meximum at k =& and g = _1 k,
13' 12 = = T

so that &t high energies we find

3(%3;%:) =~ :‘@)zgi(g-g)%(_ak_?\> 2.23
. — 34 . 2.24
<§f\ Vo.‘s GD V.z' @L> - 0(.'(0_( + @)4

Similarly, we obtain

| 2
(| Va 6Vl &) =~z 2.25
s 64 2,26

(Glv,| 8 = @it

so that in the high energy limit

<¢f‘ \/13 + V,-;GO\/,,_"'VB Govl3| §L> = O : ] 2.27

Drisko &also shows that the term which describes the
internucleon interaction twice, (Vl3 Go V13), decreases faster
than the Brinkmen- Kramers term and the term corresponding to a

double scattering of the electron, first by V.. and then by V.

23 13°
At sufiieiently high energies, the last term in (2.27) is given by

16 . .
<@5\\/z3lc'ovn| §L> = ?(«r!/ﬂ—d:"/-a.;.iAma 2.28

In the high velocity limit, the second Born approximation

becomes
R

B2 1 [ J_3ar 16 2
&~ 4-"1”1,,4[ o’ -2+ i) ) 2

{O-&qtlb A+ ———5:;‘: } Qak - 2.%0



Drisko (1955) estimated that the inclusion of the third term

in the Born series would give

a.""‘ ~ {0-31‘1 + - gj';"’ } Rpx - 2.31

2.3 The Impulse Approximation.
Pradhan (1957) first showed that the impulse approximation

would be very useful for tresting the charge transfer in fast

atomic collisions. He considered the process
ik A +
H* + H(13) — H(‘Is) + H 2.32

end found the initial and finel wave functione to be orthogonal
to each other in the limit '"VMP = 0, thus showing the cross
section to be independent of the internucleon potential,
Detailed calculations on the same process have since also
bcen made by McDowell (1961), Cheshire (1963a), and Pradhan and
Tripathy (1963).
In the impulse approximation, the scattering amplitude may

be written in either of the forms (Pradhan, 1957; McDowell, 1961)
i I + |
Tt; = <§f\\/§ \ Wy, §‘> P 2.33

Ty = (e V| B 2.54

Pradhan (1957) and Predhan and Tripathy (1963) calculated Tif

by replecing Vf with the incorrect V12, go that the matrix



element now involves a double scattering by the incident proton.

McDowell (1961) used the correct form of Vein TJ;_ but, to ease

f

the numerical computations, he used an approximation in the
momentum distribution of the unperturbed hydrogen atom.

Let the position andmomentum vectors approprizate to the
final configuration be denoted by (s, £, k., ]_cf), as defined
in section (1.2). The wave function which describes the

unperturbed initial state of the system in momentum space is
- <3
Cook| 3D =@ fasds B apf-i(bese o)} - 235

Cn using (1.4), we find
(bl B) = (anV [dsds gula)esbf-1(hest bp-io)]

- §(k,-okrk) (o s{a-Dbi-2 )
- @S (k- akgeh)g (ke 8), 2036

~3f2 { g X 2.51
vhere ‘_’)g(k\ = (g.“\ fd?.E ‘f’i(?.‘)& .

To find w{z @a we ingert a complete set of plane waves between

W' and §§c sy So that

12
00 B, = [l [k (hokg| B d hadbg

- @ N Ok By by



On using (2.36) and (2.38), we obtain

“"rz ¢, = @“’)-yzfs(ks-ak +ki)€lkr£'wbs(§) 9, (‘i-*a—:(-'-‘s* ﬂ))dksdkf

3’2 l.—‘- e ‘lk - +

= (an e dke 4@(5)&(44-3';('3*—3\),

where -1/“(5) is the Coulomb function

_'1r-§/zr,(“-u°)e-th 5 F, (_1_°3 1 ; Lths -t k.b,

with
3 = -alk .- 2.41
From (2.33) we find
z h thp ta(beRS
Ty =(am o [dkdsdfe " gy e” +, (8)
2.42
® 9, (S +E‘-(B+ E))'
-1 -1
where \If = l_j_’-(f—o)g, - |2+as] . 2.43
After integrating over s amd £, we have
9«+i('f+é) k.t (8+@)q(k,-k- ]
"1 i Jue 4 - B) s (o4 0,0 g), 2.44
h ) * (s Ly 2.45
where h - . e S . .
(6,0 =g (s) v, () s
The first term in the bracket of (2.44) comes from the
internucleon potential V... In the limit 1 = O it vanishes

13
M
since 9 (k,0) = 0, as ¢f ts) and ¥4, (s) are different

eigenfunctions of the same Hamiltonian (Pradhan, 1957).



The high velocity limit of the impulse approxim:.tion has
been investigated by Bransden and Cheshire (1963), who
considered for simplicity the process H' + H(ls)—s H(1s) + H'.

Since 1L — 0,
M

5 (1549 = ~AE -4 48 ﬂ-sgj‘g:é» 9 (h,-kef). 2.6

q,s(g,ﬁg:g) is a slowly varyinz function while g (@ +1 (k + B))

g™

- a
is strongly peaked about k = -(B + a®) = a a¥ , so that at high

velocities
T 3
T, = -42.4 dp (g (h8)) 2.47
T\._’: — v:- o g(ﬂ"_",ﬂi’)] (k pﬁ)’-
After integrating over k and teking the limit 1 — O, we find
M
I a-1 -

so that the cross section in the high velocity limit is given by
Ca . 5V
®, s ds) ~ (0-2446 + -3——) Qg (1s,19) . 2.49

This is similar to the high energy behaviour of the second Born

approximation. However, in (2.49) the second term, which

wltimately dominates the cross section, is larger by a factor 2,
Bransden and Cheshire (1963) have applied the impulse

approximation to the process

U 4 He(ds) — RUs) + He'(1s). 2.50

The simple variational wave function of (2.6) for the helium



atom is used.

Let 1, 3, 2, and 4 denote the incident proton, the helium
nucleus, the captured electron, and the passive electron,
respectively. The transition matrix for the capture of the
electron 2 from an initial statelto a final state f can be
written as

+

. + .
* T‘«f = (Q‘F\ V.-; "'Vz;"' qu "‘V-;_4\ (&J:.; + Uni;. Wiy - :) §‘> ) 2.51

T = (g ronr AN B 2

The interaction between the proton and the helium nucleus
is expected to have a negligible effect on the transition
probability, so that we can set wiﬁz’ =1, The interaction
between the proton and the passive electron 4 is also expected
to be unimportant and we write 6)%4 =1, The equation (2.51)

then becomes

T 4+ .
/r‘f = <§f\ -\/ls'*\éa*'v;q."'v-zAl et §‘> . 23

£ -
In the matrix element 'r;{_ of (2.52) the operator @ 34

the distortion of the wave function by the clectron-eleciron

describes

interaction. This term is difficult to evaluate, but an

approxim:te value of IT:; is obtained by setting 6.0; 4 = 1 and
23

scattering function for the captured electron in a 'screened'

modifying the remaining term & such that w‘és X (23) is the



Coulomb field of charge Z = 1.6875, instead of 2 = 2. The

matrix element IT;f is then

Ii__- =z - i . ,
Ly = Ty (2-1-6375) = <§;wu\vn"'\/;;*\,m‘§l) ] 2.54
The mementum transfer of the passive electron 4 is neglected,

so that the initial and final unperturbed wuve functions are

ﬁi = 'Y’;,("—‘:t) el_k;-g-

)

2.55

ihe-g
éf = X}(f) 95;(5)& d >

where 1& (x,t) is the ground state helium wave function, ¢f ()
the hydrogen ground state functicn, and X, (t) the ground state
function of the helium ion. The neglect of the momentum
transfer of the passive electron simplifies considerably the eval-
vation of the matrix elements and was used previously by Bransden,
Dalgarno and King (1954). To check the error introduced in

the calculation of Iqls (1s}4s5,1s ) by this approximation,

Brensden and Cheshire (1963) evaluated fo (1sl1s,15) using

the approximation and compared them with the results of

Mapleton (1961a), who did not use this approximation. The

agreement is better than 2% above 100 keV,

The cross section IQ (15*Hs4s) is calewlated from both

Tpt  ana To7 -
if ™ if. However, the term from u334 is difficult to
evaluate. exactly, so that the results obtained from ITT are

if

not considered to be reliable and below 44:0 keV the post-prior

discrepancy is serious,



In Figs 1 and 2 +the results of IQ,+ (‘1% E ), which
includes a correction for capture into excited states, are ccmpared
with the experimental measurements and with the Born spproximation
calculations of Mapleton (196la). The agreement is good in
the range 50 keV' to 700 keV, but above this energy both
Q,B 92,5 ) and I(Z,fF (1s*1Z ;Z ) seem to be too small.,

Although the Born and the impulse approximations give
very similar total cross sections, they do not predict the same
angular distributions. Both show strong peaks in the forward
directions But in the Borm approximation the distribution
has a large angle tail; this is unphysical and comes entirely
from the internucleon potential.

Another gnsatisfactory featu;e of the Born approximation is
that as the impéct parameter tends to zero the probabality of
capture diverges and violates unitarity badly, (Schiff, 1954).
Bransden and Cheshire (1963) evaluated the probability at 70.3 keV
and T03 keV, using the impulse approximation, and found that
it never exceeded unity.

The impulse approximation describes the capture process
fairly well at high energies. It feils at low energies
because it does not take into account !back-coupling' from the

initial to the final states and so violates unitary.



2.4 The Impact Perameter Method.

McCarroll (1961) has used the two-state approximation in
the impact parameter formatism to evaluate the cross section for

the process
; + -
TR H(4s) — HUs) + H | 2.56

in the energy range 071 keV to 1 MeV. This work has been
extended to capture into the 2s and 2p states by McElroy (1963).
The results confirm that above 25 keV back-coupling is not
important, but at low energies it greatly reduces the cross
section and , if neglected, the calculated probability of charge
t;ansfer may exceed unity.

Distortion has no effect on the symmetrical resonarnce
process (2.56), as was pointed out in section (1.5), but it
is expected to be important for an asymmetrical reaction. The

calculetions of McCarroll and McElroy (1962) on
2+
B+ He  — HT, et (4s) 2.57

show that distortion increzses the cross section considerably at
modercte energies, because the Coulomb repulsion reduces the
seperation between the initial and final potential surfaces.

It has an extremely marked effect for capture into excited
states over the energy range 25 to 80 keV  (Mcklroy, 1963).

For the process

H(1s) + He' — A 4 He+(95;3'>) 5 2.58



if allowance is made for distortion the cross section tends
to zero as the energy of relative motion is decreased
indefinitely, but if no allowance is made the cross section
tends to infinity.

Lovell and Mcilroy (1965) have formulated a four - étate
approximgtion for the collision process between the proton and
hydrogen atom. The method consists in retaining four terms in
the expension of "¢ in (1.60). Their calculetions over the
range 1 to 50 keV show that the two - state approximastion is
accurate for capture into the ground state over this energy
region, but unsatisfactory for the capture into the 2s state at
energies below 25 keV, when the extra chamnels represented in
the w;ve functién becomé important. It would seem from
these results that, under the conditions when the (2s) hydrogen
states are importent, the (2p) states would also be important,
requiring a six - state approximation.

Recently, Wilets and Gallaher (1966) have made calculations
on the H' + H scattering, using an expansion which includes
l1s, 2=, and 2p states, and in some calculations 3s and 3p states,
The results for excitation and for capture into the 2p state
are smaller by a factor of 2 than the experimental data. The
inclusion of the 3s and 3p states does not change the ls and 2p
cross sections, but the 2s cross sections are affected,

particularly at 9 keV.



The two - state Bates approximation is used by Green,

Stanley and Chiang (1965) for calculations on the process
HY « He () — H(1s) + He' (1), 2.5%

The helium wazve function employed is of the open shell type

(Eckart, 1930),

Ve, 1) = N[arb botrepe) 4 axp (-t p) 2.60

where ol and p are variationally determined constante.

Since this wave function is approximete, to satisfy detailed balancing
the equ:. tions corresponding to (1.72) and (1.73) are derived

by requiring that the internal helium weve function satisfies only

the expression

A, | HE - e[ ¥ (00 = 0, 2.61

where H is the Hamiltonian of the helium atom and £ the
variationelly determined energy for this wave function,

The calculations of Green, Stanle;y and Chiang (1965)
are given in Table 1. The results confirm that distortion
and back-coupling are very important below 30 keV and that the
cross section becomes increasingly sensitive to distortion
as the energy is decreased. In Table 2 the calculated cross
section is compared with the experimental measurement, which
includes capture into excited states and excitation and so is

expected [_on the basis of the Borm apiproxim.tion calculations



ol Mapleton (1961a)] -to be about 15 - 20% above the calculated
values, Comperison shows that the calculsated cross section

ig, in fact, roughly equal to the experimental value over the
energy range 15 to 100 keV, Above 100 keV the calculated cross
gsection is clearly too large; at 400 keV it is nearly twice

the experimental measurement. On the low energy side of

the cross section meximum (at about 25 keV), the agreement with
experiment is poor; the theoretical cross section is too large
by about 50% at 6.25 keV, and too small by a factor of 14 at

1 keV,
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CHAPTER THREE

3 Present Calculations.
Introduction..

The impact parameter method is used for calculations on
the electron capture by protons in helium. The first part
deals with the capture into ths growund :zitate and with the sensitivity
of the calculated cross section with the choice of the helium
wave function, This 'is followed by an investigation using the
coupling of the 1s, 2s, and 2p states of hydrogen,

3.1 The Two-State Approximation.

We consider the process
H+ -+ H&("S") “9 H("S) + He+(’ls)- 3¢l

The relative velocity ¥ between the proton and the nucleus
of the helium atom is assumed to remain constant during the
collision. This condition is satisfied unless v is extremely
low, Bates and Boyd (1962b) have used the actual classical
orbit of the projectile in the short range field presented by
the neutral target system to calcul-le the effect of departure
from rectilinesr motion on cross sections determined within
first-order approximations, The effect iz found to be
negligible at energies above a few electron volis,

Let R be the postition vector of the incident proton p



relative to the nucleus n of the helium atom, We choose a
co-ordinate system with the z-axis along the direction of motion,

so that
R=2+vt | 2.4t 3.2

vhere ¥ is the impact parameter and the time + is chosen such
that at t = 0 p and n are at their ciosest distance of approach.,
The origin O is chosen to be at the mid-point of R. Let L
r.., and r ., denote the position vectors of the electron i
=pi =ni
relative to 0, p, and n, respectively.

We consider the electron 1 to be captured and the electron

2 as passive duri.g the collision. The two-state approximation

for the electronic wave function of the system is then given by

’Y ("_l". ,'!1.}{) = Qo(t) Tn ('!I)'I'l-;a +Q, (t\'?'('\:niz,f), 5.3

vhere a_ (t) and &y (t) are time-dependent coefficients
corresponding to the initial and final states ¥, and 'ﬁk.-
If ¢1 (Epl) is the wave function and ¥, the binding energy of
R .
H(1s), y/(gp,‘_) and M, of He (18), and x(;nl, ;m) end £, of

He (1s*), we write

'?o ('1'! Ta \{') =X ('-'-rnl )in'l) Q‘*P [_ ¢ {b';t + v‘{- + i‘:q’(‘r' +I’)ﬂ 7 3.4

¥, (r,1. 9 = Bl ) vlerp|- Ot w‘ngy.(-;,,,-g.‘)}]. 5.5



The inclusion on the right-hand sides of (3.4) and (3.5) of the
terms c.ntaining the velocity v allows for the translational
motion of the electron, according to the nucleus it is attached in
the 1imit of infinite internmucleon separation (Bates and McCarroll,
1958).

The total Hamiltonian of the electronic system is

H=-5'_V

<t
Tl

2
= ':1. vﬂ +VPI"' Vrl"'vnl"‘\l-nz "‘Vl-n 3.6

where the kinetic energy operators are given by

'V:, = V.,:. + Vr‘“ - Vi+2 V:=\'L:-V.,,,-Vk+z'- V: > 5.7
Vo= Voo + Yoo Vo + 2 Vi » 3.8

Vpi and vni are the interactions on the electron i by p and n,
respectively, and V12 is the electron-electron interaction.
The wave functions ¢1 (Epl) and -y (E‘nz) satisfy the

equations

('"'i V:;n "'Vpo""m éG,)= 0> 3.9a
(‘i VT:'L +Vor" M*(fh) =0- 3.9b

a 3 2
As X(;nl, Em.) may not be an exact wave function for He(1s%)

we use the condition

Jx(I‘UI'") \:’ '1V‘:| _’—i- vf:z+\l'" "'Vnz+ "'-"E"]X(Inp!nhdt =0, 310



vhere &, is determined variationally.

The time-dependent Schrddinger equation is

W (a0t = 13 ¥ (*r.,-zz,’c) -
The equations correspunding to (1.64) are
R
S0 = 0@ = [X (10,5 A (x)¥, e '-rltu"tdz'.d-.rz,
Aeol®) = | x<:n.,~:“al Vi tVpo] Xm0 drd 1,

B = [ G+ Ve Vi A1) ¥ (1) drds,

o,(Q J- LY., J..{'X (-nu )[Vn*_vm’_v ]

* @, -r)'f’('frn) d-r,d-i.,_,
-1-\:-1', ot »
.Kio(ﬂ '-'-'Je en g™ ¢|("’r\ 246, 'D

% [— iV, -1 V-.- Vot YtV e Vom 6 ]X("" o) dyd 1y

3.12

We write
. “o. - S’. K", B - S K
A 2 ——— o, = A Tte tol .
1 -lSal® U1 -1s, P >3
Sol = f (°(0" o(-)oH', 514
o0

so that the equations corresponding to (1.64) and (1.65) are

", = -, | S —ls,l"] ep[i(aril], 5,15

°a, -Ua,[ S,.,Ao.] “H T )] 3.16

4 -1%.*

1]



The coefficients a (t) and aq (t) are time-dependent and.

have the initial conditions

a,(~0) =1 a,(-)=0. 317
The cross section for the capture of the first electron is

o = &J‘l“.(ﬂcb’lf‘\f’ ’ 3,18

so that the coupled equations (3.15) and (3.16) must be solved

to evaluate a; (e w ),

, s . , .
The weve functions ¢1 (Epl) and ﬂw(gnz) are given

explicitly as

é (1) = & &’ »N= -2 2 3.19

v () = q/go_'u , Po= =2 - 3,20

It is difficult to obtain an exact helium grownd-state wave function
because of the electron-electron intersasction, Ve hzve

mentioned earlier the suggestion that the use of an improved

wave Tunction than the simple variational function (2.5) might

give more accurate results. Accordingly, the calculations are
performed by using three approximate ground-state helium wave

functions 3
1. The simple variational function
®

x =M evu,»{-d(.r.a,f;)] »

d =1-6875, N=> £, = -2-8475 ; 3.21



2. The separable three-parameter function of Green et

al. (1954)

x® - N [av.k o)+ ceq.li(-pf.)] [m':(—o(-f.,) ¢ conp(- F"‘DJ,

of = 4-455 #49 ) P:‘_zo( ; c=0-6 5 3,22
- i 64 -
N = [a{ o?p? * (oug)"}] > Ep=-2-861 6F

3. 'The open shell function of Eckart (1930)

X < [ () nbeped s sappdenpatsd)],
3.23
A =2-1832,p=1-1885 , N=2-202 908 , &= -2-875%.

In each the parameters are determined variationally, Coulson
and Neilson (1961) have examined the accurscy of several
approximgtions to the ground state helium funciion by
cclculating the mean electron-electron separation (rlz) for
each approximation. The simple function X(l)

(3) |

iz found to be

gives the

smallest value of (r and the function X

12)’

2 rather good approximation to the accurate six-psrameter

Hylleraas function, which yives the largest value of (rlz).

The methods for evaluating the integrals in (3.12) are

outlined in Appendices A and B. The integrals using the

simple helium wave function X(l)

(2) and. X(B)

are listed insAppendix C; those

using X can be eagily obtained also,



The results of the calculation are shown in Table 2,
together with those of Green et al. (1965) and with the
results of experiments, which messure the cross section for

difference batween

capture summed over all final states. 1t is seen that the maximvm
results of the present calculation is less than 5% in the energy
range 30 keV to 1 MeV, and about 10% at 10 MeV. This
difference is not confined to the total cross section, but
extends to the differential cross sections, expressed as a
function of the impact parameter, On the basis of the Born
aprroximation calculations of Mapleton (196la), it is
expected that for comparison with experimental values the
calculated cross sections heve to be increased by a factor of
up to 30% to allow for capture into excited states. It is
then evident that the considercble disagreement with experiment
is not substantially improved by employing the refined wave
functions X(z) and X(B) rather than the simple function X(l).

This lack of sensitivity is in accord with the work of
Mapleton (1963), who found that the Born approximation cross
sections calculated with the simple function X(l) and with
a six-parameter Hyllerass function did not differ by more than
5 to 15% up to 1 MeV.

Comparison between the present resvlts with those of Green
et al. (1965) shows that the agreement is very close at 400 keV
ané to within 10% at 30 keV. The small differences one

attributed to the effect of the electron exchange in the final



state employed by -ireen et al. (1965). In their work the
final state wave function™¥, is symmetrized in the co-ordinates
- of the two electrons, which are in a singlet spin state.

Since the initiel state wave function ¥, is symmetric this
procedure does not alter the coupling terms between the

initial and final terms in (3,15) and (3.16), but it allows for
electron exchange to first order in that part of the wave
function describing elgstic scattering of H by He' in the final
state. ¥irst-order exchen;e calculations are often misleading,
so that in the present work an unsymmetrical final-state wave
finction is used. The efiect of the exchange decreases with
increasing velocity, as expected, and it is not very

important at the energies under consideration.



3.2 'The Four -~ State Approximation.

It was seen earlier that the two - state approximation of Bates,
while giving fairly good results in the intermediate energy range
30 ~ 100 keV, shows considerzble disagreement with experiment at low
and high energies. The experiments measure however the cross
sections for capture summed over all final states. It is then
natural, by taking also into account the work of Lovell and McElroy
(1965) on the effect of coupling in collisions between fast protons
and hydrogen atoms, to ask whether the inclusion of excited states
in the expansion of the complete wave function would improve the
‘agreement of the theory with experiment.

At the range of energies under consideration all chamnnels are
open, and this would suggest the need to consider an infinite
numbexr of Jdiscrete states. However, the energy levels of the
excited states of hydrogen are lower than those of the helium ion,
so that in a second-order approximation the excited states of
hydrogen should be considered first.

In the present celculations we consider the capture into the
ls, 28, and 2p states of hydrogen, leaving the helium ion in the

ground state :
HY & He(1s) 5 H(4s,259p) 4 He' (19). 3.24

We use the same set of co-ordinates as in section {3.1), and
we choose the plane of collision, which contains the protun and the

helivm nucleus, to be the x - z plane. It is then seen that, if



the 2p states of hydrogen are represented by the functions ¢H (2p.),

¢H (2py), and ¢H (2pz), the contribution from the stste ¢H (2p.)

vanishes,
Ve write
_ 4
Frn,nb) = T a0 (.9, 3.25
l=0

where

1

’\IJ (« 1,1, ,{'-) x(!’,‘,,‘“\) utlb[_ ~{a,{' vty iy 1_' __‘_)}] 3.26

L

E (6,15 = Bilx )vb(*u)u;»[-cj(q ptatesy Cra 1';)}}, .27

The subscript i

i, 2, 3, 4 corresponds to the ls, 2s, 2p., and

2pz states of hydrogen, respectively. The explicit forms of

these states are :

r

$.(1) = Lo M. -4

al-

¢_‘_ (ﬂs) = L (1—13;%1

'Yl,‘-= _—'7

4V5r 8
-dr 5.28

) b - -1

3 Gp) = > o= -5

-3
i - -4,
¢4(2|°z\=;,-5";ze T+ =" 3

"he function X(x . , Epz) is th. simple helium wave function (3,21),

‘H(;nz) is the wave funciion of the helium ion in the ground state and

is given explicitly in (3.20).
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The tims-dependent Schrodinger equation can he written as

(H "b)z a,(OE.(1,,1,,H=0. 3429

By using the cquations

- . <4 _ .
<\P (-r')fua H— LB—BE lzoq;(ﬁlgi (‘!'71'11&)) = o 3'36
j . '3 = 014321314 )
we obtain a set of corupled differentisl eguations in the
metrix form
(=] [a] 1 n . i -l_r - -
1 Yol o2 603 804 o L00 Lol "oz n03 1“ol,. %
Slo 1 0 8] 0 .y LI Bl ] Blz B13 Bl 4 aq
i 320 0 1 0 . a, = I's.go 351 B22 3'23 }32,,+ 8. 3.31
0 : B
S)G 0 0 1 0 aq 1130 le 339_ a3 33 4 ay
~ ~ o - ™ T
040 O 0 C 1 a . K Ao B‘L,| 1 B 42 B 42 B m a’_}
where
= (Eo-"fl;_,-l‘) 143= 1,2,3, 4)
Suil®) = s £ _J'
() XC””WD¢( DW(NDdfd{) 3,32

Ao () = Jx*(-rn.,f_nb [v,,w z]x('fm,:(“,,)d-!' dv,

., = 5;; (+)=f A ‘lD W(:.\\l YA N] ¢ (L) ¥(5.drdy,
K. :fe'""'r'ew“tX(rn.,rnb[vwv Vo B 1) F (5, o

ol =[N ¥

[_iv: -'Jl. v“':t'i'\(bl"'vp:ﬂ' V‘M"'\/n 1.+\/l7.' E"’]X(Innin'hir'dfl :
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The coefficients a;(t) are time-dependent and have the

initial conditions

a,(-) =4 | a;(-9)=0 - 3.33
Lto

The cross section for the capture intio the state 1 of

hydrogen is then
o saflacal'tdy  cstana o

The integrals in (3.32) have the time reversal relations
* . *
5°'~ ('_E) = eisol({) p) KD‘L(-E\ = &i-Kol ("é‘,
} 3.35
Koo (-0 = & Ko ), Ra(-0) = A, (), 335
o
BI", (" t\ ele:’ E‘J(‘n)

vhere
LJ'} ':4_,7.,'5,4 é‘t":f e4=—1'
g
W4 2 T s
It them, follows, by using the proor of Gresen outlined in
section (1.5), that the equation (3.31) satisfies the requirements

of detailed balancing.

The methods for evalusting the integrals in (3.31) are given

in Appendices A and B, These integrals are listed in Appendix D,

In Figs., 1 and 2 the present resulte for the total capture into
the 1s, 2=, and 2p states of hydrogen are compared with the Born
approximation and the impulse approximation caleculations, and with
the experimental data of Hasted (1955), Stier and Barnmett (1956),
Barnetl and Reynolds (1953), and Allision (1952). It is seen that
the presen 1 calcwlation shows nquite good agreement with experiment

in the energy range 25 to 100 keV.
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At high energies the decrease of the caloulated oross section with
energy appears to be too small, A similar discrepancy occurs on the
low energy of the oross section maximum (about 25 KeV), but at

lower energies the theoretical cross sections become smaller than the
available measurements (Hasted, 1955) by a factor of 5 at 1 KeV., It
is expected of ocourse that for low velocity collisions the expansion
based on atomic wave functions is no longer appropriate and thet the
expansion using molecular eigenfunctions, farmed by the colliding
system at fixed internuclear separation, may be used.

In Fig. 3 the results for the capture into the 1s state are
compared with the results using the two-state expansion. It is seen
that at energles above 30 KeV the coupling due to the 2s and 2p
states has little effect on the calculated oross section for capture
into the ground state. The present results are appreciably greater
than those of Green et al. (1965) at low energies, by a factor of 2
at 1 KeV, These differences are partly attributed to the use of a
symmetrized final state wave function in the work of Green et al., and
this has the effect of allowing for ellectron exchange. The inclusion
of electron to first order does not usually give better results, as
was pointed out in section (3. 1). It s effect in this system is quite
unimportant at energies above 30 KeV, but it is expected to be
appreciable at low energles.

Experimental oross sections for the pgrtial captures
into the 28 and 2p states of hydrogen are availalis unfortunately

for the small energy range 5 to 40 KeV only. Fig. 4 shows the

experimental data, the present results and the Born approximation
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calouletions of Mapleton (1961) for the capture into the 2s state.
It is seen that the present results agree quite well w:l.th.the measurements
of Jaecks et al. (1965) and Andreey et al. (1966), but those of
Colli et al. (1962) are larger by a factor of up to 6. In Fig. 5
the present ocalculations for the capture into the 2p state are
oompared with the Born approximation calculations of Mapleton (1961)
and with the experimental data. It is seen that the present
results show quite good agroement with the measurements of De Heer
et al. (1963), but those of Pretzer et al. (1963) and Andreev et:
al. (1966) one smaller by a factor of about 2,

An alternative way of comparing the theory with the
experiment is to consider the theoretiocal predictions and the
measurements for the capture probability for a fixed value of
the product O of the scattering angle and the incident proton
energy. To a good approximation constant OT corresponds to a
constant distance of closest approach and to a constant impact para-
meter. It is seen in Fig. 9 that the agreement with experiment for
the capture over all final states is good at high energies, but
poor at low energies. The positions of the maxima and minima are
predicted quite well by the theory, but the theoretical capture
probability is grossly in error at low energies.

Fig. 10 shows the present results for the probability of
capture into the 1s state amnd those of Green (1966) for 6T = 20,

The agreement is good at high energies. At low energies the results
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of Green are appreciably smaller; this may be partly attributed
to the effect of electron exchange in his calculations, as we have
pointed out earlier,
The calculations on the probability of capture into the
28 and 2p states for O = 20 are shown in Figs. 11 and 12,
respeotively. Dose and Mayer (1966) have reparted recently their
measurements on the probabmw of capture into 28 state at a
scattering angle of 2.2° in the enrgy range L.5 to 60 KeV,
Comparision between the results given in Figs, 1 and 2
and those in Fig. 3 shows that the inclusion of the excited states
of hydrogen in the expansion method does not alter appreciebly
the calculated cross section. This would suggest that the
considerable disagreement with experiment would not be substantially
improved by employing an expansion based on several disorete states
rather than the lowest two-state approximetion. Taking also into
account the result of calculations in the impulse approximation,
to reduce the caloulated cross section substantially, it would
seem necessary to represent the continuum intermedlate states in

SOme way.
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CHAPTER ROUR
4.1 DNumerical Methods
The evaluation of the cross section using the expansion
methods of Bates involves a triple integration over x, the time
t, aidd the impact parameter ¢ . We shall consider meinly the
nunerical methods employed in the ocsloulations using the four-state
approximation, The calculations using the two-state approximation
are easier to perform, but similer tschniques cen be applied.
We oonsider first the evalustion of the matrix elements in
(3.32). The most difficult terms to calculate are those which
relate the initial to the final states : S

S K _ and

o1’ 10’ Tod
K:l.o' Expressions for these matrix elements are of the forms:

R . -Ra vt
= g
°
-11;,."": LI n R"- 3R , 37 -RA iviix
Iz = & J'JL (1"1‘) [-&"‘E"'E]Q e alx,
o

. _ he
- "-'¥t ! ", w3 > 15R . IS R vix -
2 [ KOS [R G RG] T,

>

H

where
A’- = )\11 <+ (4-'::3('*1*1‘1!’3 and n,m 2 0.

These funotions depend on the proton velocity v and they
oscillate rapidly for large values of v . Analysis of these
terms shows that for a given value of <, the main cantributions
oome from values of x near the ends of the range of integration,
It is therefore convenient to divide the range of integration

over x into three seotions ¢ 0O < x < 015, 0-15€x ¢ 085, .
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and 0.85 < x € 1. The integration for each section is
performed by means of the Gaussian interpolation method. At
30 KeV the number of Gaussian points used for these three ranges
of integration are 14, 7, and 5, respectively, to obtain an
accuracy of better thamn 1 part :In105. The integrands
osolllate repidly as < increases, so that at high energies more
Gaussian points are required in order to achieve the same
accuracy; at 1 MeV the number of points used are 20, 20, and 10,
respectively. _

The time-reversal relations of the matrix eleménts in
(3.31) are exploited to find the véues of these terms at time
+t from those at ~t,

The ooupled differential equations of (3.31) can be written
compactly in the form

i sa = Ka, 4o

where S and K are matrices and a is a oolumn vectar, Since S, K,

and a are complex functions of time it is convenient to define

s = &' L 8",
ko= Ko i K, b3
o = 0«.' + & a"J

in which 8', %, X', K", a' and a" are real. The equation
(4.2) can then be written as

g' |8 ic" K| |a'
_ Lodp
= ?
! f (N} 1 [ "
S 5 o' -K K o
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which is of the form
“S'a = K °a ) 4e5
NS I}

To solve (4.5) we need to find Pirst the inverse S K,
so that

r.a. < (-S-l DK) .,a . "-.6

The Kutta-Merson method (Fox, 1962) is used to solve
the ocoupled differential equations of (4¢6)s This method is
reported to be more efficient than the commonly used
Runge-Kutta method. It provides a check on the accuracy during
the integrakiion and it alters automatically the step size at
every stage of the integration to give the accuracy required,

The range of integration over t depends clearly on the
velocity of the inecident proton. It 1s found that, if Rmax is
the maximum internucleon distance, Rmax = 16 provides a good
range of integration for the convergemoe of the terms in (4.6).
The Chebyshev is used to obtain the interpolation points of

(*s™ °K) at every value of + during the integretion. The rangs
of integration over t, |t ml » is divided into two parts t__ to
Yty » and 3t to O. It is found that for these two ranges
by using 10 and 15 Chebyshev points, respectively, an accuracy
of better than 1 part in 3 x 103 is ocbtained at 30 KoV, At 1 MeV
the number of points required are 15 and 25, respectively.

Since by definition the probability never exceeds unity,
this condition provides a useful check on the calculations,
Moreover, detailed balancing is cheocked for each of the two-state
reactions of (3.24).
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In the equation (3.31) the matrix elements S5, S4.»
RN
K.i.o’ and Ko:l oontain the exponential function € and so decrease

rapidly to zero as R increases, The other terms,Aoo and B:l. 30

are the Couloub terms and they have the asymtotic forms of B ',

22 2%t | ana B2, eto. It is then ovident that significant
couplings of the amplitudes can occur evenm at "l:he large irerpolation
distances, so that it is important to extrapolate the amplitudes
ay(+ ¢, ) to find a (+0 ). The common diagamal tern R

csuses only a change in the phase and so does not affect the capture
amplitude, The term ei E‘jt Rsz does not give any appreciable
contribution, and the terms which decrease faster than R;:.x can

be neglected. There is however significant coupling between the

-2

28 and 2p states due to the Rmax term. Analysis shows that

the extrapolation correction is given by
a,, (+0) = a, (+tua)cos (- 3h2¢,) - iAZrz('rfw)Sin(-!*lv‘f....,),
47
A2p, (+o8) = “zh("'rmub cos(- .5/"}{"'\") - 18y (tay) sin (- 3"\"4'“,) .
The final integration over the impact parameter is doms
by using the Geussian extrapolation method. An 8-point Gaussian
method is usually adequate for energies above 30 KeV, but at lower
energlies the range of integration. is sub-divided and the Gaussian
mothod is applied to each sub-division. It is estimated that the
overall accuracy is better than 5% for the total and the 1s
capture cross sections, and 10% for the cross sections for captures

into 28 and 2p states of hydrogen,
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4.2 (Conclusion

The present calculations indicate that the inclusion of more
disorete states in the expansion method of Bates would not improve
the considerable disagreement with experiment at high energles.
If this can be confirmed, it would suggest that the methal is
inadequate because it does not take continuum transitions into
acoount, whereas the results of the second Born and the impulse
approximations indicate that ultimately continuum intermediate
states play an important part in the capture process.

However, little experimental work is dome on the electron
capture by protons in helium at high energies and the measurements
of Barnett and Reynolds (1958) only are available. Further investi-

gation, both theoretical and experimental, is desirable.
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Evaluation of the integrals
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wo can write

e s iyl

The integration over d 7, is easily performed to give
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and on integrating over 4 %, we have
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Using the formula (Feynman, 1949)
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with the substitutions
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By making use of the standard integral
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so that
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with
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The integrals 12 and I5 are evaluated by using the transformations
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where (Ax, Ay, A‘) are the position co~ordinates of p relative
to O,

! - -RA _iv- R 4-\

I4 = .?wpe.‘! ﬁﬂf [-2—,-‘+-13](1 -x)e e ¢ J"ol;‘;, A-20
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Appendix B

Evaluation of the integrals
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We use the expansion series (Watson, 1958)
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where

ws B = c058,u86; & Sih9‘53h91c05(¢‘--¢,)
and

(@.,#,) and (6,,¢) are the polar angles of r end R.
The integrals 11 and I} can then be evaluated easily for definite
values of n, m, and 1. The integral 12 is calculated in the
sane way after expressing it as
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The integrals will be listed in the forms of £(w,%,{) and
F(n ,\M,{), where
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Appendix C

List of integrals for E* + He(1s2) —» H(1s) + He'(1s),
using the helium wave (3.21)
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Appendix D

List of integrals for H' + He(192)-7 H(1s, 2s, 2p ) + He'(1s),
using the helium wave function (3.21),
The integrals h;a_o, h, s S,s K, and K ere given in
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FIGURE LEGENDS

FiG, 1 & 2
Total oross sections for the reaction H' + He(152) —»H + He'.
Curve 1 : Born approximation (Mapleton, 1961)
Curve 2 : Impulse approximation (Bransden and che:}re, 1963)
Curve 3 : Present caloulations H+ He (15D = |‘|05a25;1}’)+H2+(")
X : Experimental points (Allison, 1958, Barnett and

Reynolds, 1958)

i (I
Cross seotions for the capture into the state H (1s)
Curve : Present caloulations H' + He (1s)->H(1s, 2s, 2p) + He'(1s)
Results of Green et al (1965)
+ Results of Brandden et al (1966)
& + are caloulated for H' + He2(1s) —>H(18) + He+(1s)
FIG. 4
Cross seotions for the capture into the state H(2s)
Curve 1 : Average- of the post and prior oross sectlons in
the Born approximation (Mapleton, 1961).
H+ + Ha(132)—-> H(28) + He+(1s)
Curve 2 : Present caloulations H' + He(132)—>ﬂ(1s, 2s, 2p) + He+(1s}
Experimental points H' + He(1s% ->H(28) + He'
® Colli et al (1962)

x Jaeoks et al (1965) 3 Andreev ot al (1966)

Cross sectlon for the capture into the state H(2p)

Curve 1 : Average of the post and prior oross sections in
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the Born approximation (Mapleton, 1961)
H + He(18)—s H(2p) + He'(18)
Curve 2 : Present calculations H' + He(132)-al-l(1s, 2s, 2p) +

He' (1s)

Experimental Points X = Andreev et al (1966) , Pretzer et al

(1963)
)

de Heer et al (1963)
B He(182)—> H(2p) + He'
)
Proballity x impact parameter for ocapture into H(1s)
" + He(152)-—->ﬂ(1s, 28, 2p) + He"'Us)
Normalisation Facter is:-
N =I-37%0 at 1 keV, N =294 at 6,25 keV,
N =135 at 30,2 keV, N = 1-48+/0% gt 1 Mev
FIG, 7
' Probability x impact parameter for captuire into H(2s)
H 4+ He(1s-2)—>H(1s, 2s, 2p) + He+(1s)
Normalisation Factor is:=-
N = 4650 gt keV, N =125%/° gt 6,25 keV,
N =39240 at 30,2 keV, N =1-23%/5 at 1 MeV,
FIG, 8

Probability x impact parameter for capture into H(2p)
" + He(132)->H(1s, 2s, 215) + He+(1s)

Normallisation Factor is:-

N =l'46‘”°; atikeV, N =38 *0 af 6,25 keV,

6
- N = 4-45%0 gt 30,2 keV, N =790%0 at 1 MeV,
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FIG
Total capture probability
Present work H' 4 He(1sz) —H(18, 25, 2p) + He'(1s)
Experimental results (Helbig et al., 1964) H* + He(1s%)»H + He'
FIG, 10
Probability for capture into H(1s)
Curve 1 : Results of Green (1966)
B+ He(132)-—> H(1s) + He*(u)
Curve 2 : Present calculations
) He(132)—bH(1s, 2s, 2p) + He+(1s)
A&, 11
Probability for capture into H(2s)
H + He(132)-9 H(1s, 28, 2p) + He+(1a)

X: COTTESPDV\diV\g un#efi-m@.n"ae point of Dose omd” Nle\je:r (M‘G‘ al 8T=2p.
FIG, 12

" Probability for capture into H(2p)

) W He(152) —>H(18, 28, 2p) + He+(1s)
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TABLE 1,

Cross Sections for HY + He (152) ~> H(1s) + Be" (15),

calculated by Green, Stanley, and Chiang (1965).

Proton
Energy
(xev)
1
6.25
30.2
100

400

(1)
7.852, - 1
4.571
2,393

| 2.666, - 1
5.412, - 3

Cross Sections (10~
(2) (3)
5.862, - 3 1,815, - 1
1,025 °  1.95
2.274 2,015
2.897, - 1 2,553, - 1

3-543! -1

16 cm2)

(4)
3¢553, = 3
7.48, - 1
1.916
2,756, - 1

(1) Calcuvlated with distortion and probability conservetion

neglected; (2) calculated with only probability conservation neglectod;

(3) Calcvlated with only distortion neglected; (4) calculated with

both distortion and probability conservation tékin into account.



- 1 00—~

TABLE 2,

Cross sectio.s for H' + He (192) —> H(1s) + He™(1s).

Proton Cross Sections (1070 ¢n?)
Energy
(KeV) (1) (2) (3) (4) (5)
1 3.55, = 3 5.0, - 2 (a)
6.25 748, =1 5.6, - 1 &TkeV (b)
30,2 2,19 2,14 2,02 1.92 1.95 (b)
100 2.90, -1 2.93, -1 2.85, -1 2.76, -1 3.0, -1 (b)
400 3.66, ~ 3 3.66, -3 3,51, -3 3,54, -3 2,0, -3 (c) w;
1,000 . _T.dy =5 Tel, = 5 5.0, = 5 (e)
10,000 3.1, - 10 3.4, = 10 (1.2 + 0.4),=-10 (d)

(1) Calcvlated with simple helium wave function X(l); (2) calculaied
with helium wave function X(z) of Green et al. 1954; (3) calculated
with heliuwn wave functicn X(s) of Eckart 1930; (4) results of Green et
al. 1965; (5) experimental total cross sections. (a) Hasted 1955;

(b) Stier and Barnett 1956; (c) Barnett znd Reynolds 1958; (d) Berkner
et al. 1965, University of California Rep. UCRL - 16054 (this experiment
employed 21 MeV deuterons).

(1), (2) and (3) are present calculations.
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