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Abstract

The sensitivity of s and p wave positron-hydrogen atom
elastic-phase shifts, to the presence or absence of various
multipole components of the adiabatic polarisation potential
is discussed. It is concluded that higher multipoles than
the quadrupole component are unimportant and support is
given to the view of Drachman (1965) that in s-wave scattering
the monopole component of the adiabatic potential should be
suppressed.

Then the cross-section for positronium formation by
positron impact on hydrogen is calculated in the two-state
approximation, taking account of the polarisation of the
hydrogen and positronium atoms in e&ch channel. It is found
that the polarisation forces dominate the cross-section near
the threshold for positronium formation and evidence is
presented for the existence of a positronium-proton bound

+

state that gives rise to a resonance in elastic e =~-H

scattering just below the formation threshold.
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CHAPTER ONE

Introduction

Theoretical evaluation of cross-sections for slow
positrons by hydrogen atoms has received considerable atten-
tion recently. The development of high-speed computers and
variational methods have made the problem easier.

Unfortunately, experiment has not provided us with data
about positron-hydrogen scattering. Nevertheless, there is
a growing interest for studying various effects of positron-
hydrogen scattering, especially for comparison with electron-
hydrogen scattering. For example, the mean static interaction
is attractive in the electron case and repulsive in the
positron case. The long-range forces are attractive in both
cases. The two effects therefore oppose each other in the
positron case and combine in the electron case. It is inter-
esting to see which of the effects is the stronger one. We
can also compare between exchange in the electron case and
positronium formation in the positron case, and between
polarization and positronium formation.

It is known that the static field produces negative
phase shifts for positron-hydrogen scattering. It is
interesting to see the relative importance of the various
effects in drawing the phase shift towards the positive

region, and to see whether an effect on a combination of
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effects can alter the sign of it.

Relativistic effects are neglected in this work and the
interaction between the particles is purely coulombic. The
particles iﬂ the interactionare the incident positron, the
proton which is assumed to be infinitely heavy compared with
the electron, and the electron which occupies the ground state
orbit around the proton.

This is a three-body problem. Many-body problems have
no exact solution and are associated with mathematical diff-
iculties. After more than thirty years, there is no general
method that can be applied to the calculation of cross-
sections for particle-atom scattering.

There are various approximation methods for calculating
the cross sections of atomic scattering. Not all of these
methods are practicable. Some of them are not accurate
enough. Some of them are only applicable in restricted
conditions. Two very common methods are the "Born Approxim-
ation" and the "Hartree-Fock" method. Among other methods
which are coming into use now are the "Optical potential"
method and the "Perturbed Hartree-Fock expansion",

A considerable amount of work has been concentrated on
elastic scattering of electrons, especially electron-hydrogen
and electron-helium scattering. Excitation of the target and

rearrangement have not received much attention. They have
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been receiving more attention relatively lately.

In this work the problem is attacked in two stages.

The first stage consists of the elastic scattering of posit-
rons by hydrogen atoms treated in a single-channel calcul-
ation. Then, as a generalisation, a second stage consists
of a two~channel treatment for the rearrangement scattering.
In the latter stage positronium is formed, and its formation
is coupled with the elastic channel.

The basic feature of multichannel scattering is that,
in general, the identities of the scattering systems alter
(permanently or intermediately) throughout the collision.
Each set of identities (simultaneously) determines a channel.

Channels are coupled if the whole system is able to
switch from one of them to anothg;.

Open channels are those channels which are energetically
possible. The other channels are the closed ones.

We shall assume that there are two coupled channels (one
of them open in the first stage). The coupling between these
channels is neglected at first, thus giving the one-channel
scattering. i.e. the elastic scattering ignoring positronium
formation. An improvement in the results is expected in the
second stage where the positronium channel is introduced and
coupled with the elastic channel. Nevertheless the one-

channel calculation can be compared with the two-channel
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calculation to learn something about the effect of each of
the two channels.

While single-channel scattering is determined by the
specification of the phase shift, the multi-channel scatter-
ing is determined by the specification of the eigen-phase

shifts and of the mixing parameter.




1.1 Approximation Methods

To the present, a many-body problem has no exact
solution. With the help of some approximation methods, the
matter of getting reasonable results for the problem becomes
possible. According to the conditions of the scattering
problem (as those concerning the energy or the identities of
the interacting systems) suitable approximation methods can
be used.

For example, if the wave function of the incident part-
icle is expected to remain the same throughout the scattering
(as is the case when the kinetic energy of the incident
particle is large compared with the interaction potentials),
then "Born approximation" provides a very practical tool.

Of course, it 1s expected that the Born approximation breaks
down for low energy of scattering.

As well as the Born approximation there is the optical
potential method. It is derived from the Lippmann-Schwinger
equation. The optical potential method approximates the
distortion of the atomic electron and the incident particle
by an effective interaction. The method introduces a summ-
ation which is impossible to obtain. Usually few terms of
this summation are retained, thus making the approximation.

One of the earliest approximations is the dgen function

expansion method. The idea of this method is to represent




the total wave function by a complete set of eigen functions.
It takes the form of the expansion
b(xr) = i+ g0 () (1.1)

Whereq‘ are the discrete and continuous set of eigen
functions used. F (r) are the coefficients of the expansion.
They are independent of x but dependent on r, the co-ordinates
of the scattered particle.

Usually g, (x) are taken to be the eigen functiorSof the
target atom. In positron-hydrogen scattering they satisfy
(H, -‘eh)¢n =0 (1.2)
where Ho is the Hamiltonian of the hydrogen atom, and € the
energy of the atom in the nth state.

In expansion (l1.1) the summation acts on the discrete
region, and the integration acts on the continuous region
of the atomic energy. When a complete set of eigen functions
is used the expression is exact.

It is possible to describe the elastic scattering of a
particle by an atom without arbitrarily discarding the cont-
inuwum,. The complete set of eigen functions do not have to be
of a physical system. Rotenberg (1962) used what he called
Sturmian functions. They are generated by a differential
equation closely related to the Schrodinger equation, but
in spite of this, they had not been exploited in atomic and

nuclear physics. They have an advantage over Schrodinger
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functions in that they form a complete set without a
continium, regardless of the potentials existing between the
particles. Rotenberg used these functions for the scattering
of electrons by hydrogen atoms.

Expansion (1.1) leads to an infinite set of coupled
integro-differential equations. To make the solution poss-
ible, the summation has to be truncated. This reduces the
equations to a finite set. The terms neglected in this way
are lost, which reduces the accuracy of the solutions. In
practice, the number of terms retained is small enough to
make the solution possible, but large enough to include atomic
levels directly involved in the collision. This succeeded
in some calculations of resonances and excitation.

For obtaining the set of integro-differential equations
according to theeigen function expansion method, expansion

(1.1) is substituted in the Schrodinger equation

(H-E) § (x,x) =0 (1.3)

where E is the total enerqgy of the whole system and H is its

Hamiltonian which satisfies

H=HO-K+V (1.4)

where K is.the kinetic energy operator and V the interaction

between the atom and the scattered particle.
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Equation (1.3) is multiplied then by @#* on the left and
integrated over x leading to an infinite set of coupled

integro~differential equations as follows:

2 2 .
(v = ¥IF (x) = 5+ f]Unm F,(r) (1.5)

where k is the wa¥e number of the scattered particle and

where

Um = f¢;(x) V(x,r)¢m(x)dx (1.6)

If no distortion occurs in the atomic orbitals, the
first term of (1.1) which describes the state before scatt-
ering\continues to do so throughout the collision. Therefore,
all the other te¥ms of (1.1) are there to describe distortion,
and any truncation is-a neglect of part or all of this
distortion. This way of describing distortion is very in-
direct.

In the case of electron-atom scattering expansion (1l.1)

is replaced by the following expansion:
v(x,r) = ¢ AlZ (X)F_(r) (1.7)
! n[n n]

where A antisymmetrizes the function with respect to electron
cosordinate exchange. In this case any truncation of (1.7)
neglects exchange as well as distortion. Usually a few terms

of either of the expansions are retained, giving the so called
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"Close coupling" approximation.

In the optical potential method all steps of the
previous approximation are done., Further, to surmount the
error arising from truncation, an effective interaction po-
tential is added to the orginal potential. The Schrodinger
equation then becomes

(Hy - K+ y = E) § (x,7) =0 (1.8)

where the interaction V is replaced by the optical

potential vy.




-10_

1.2 vVariational Methods

The application of variational principles for scatter-
ing problems was developed in the 1940's by employing proced-
ures analogous to those of the bound state problems.

One starts with a trial function which includes adjust-
able parameters. Then one adjusts these parameters in the
best way possible. From the obtained function it is poss-
ible to extract some scattering parameter and consequently
the cross section is determined.

A certain class of variational methods go as far as
defining upper or lower bounds on the scattering parameters.
Principles of this class are extremum principles. Most of
them are minimum principles.

Stationary variational principles are attributed to
Hulthen and Kohn. Extremum variational principles include
two methods. The first method was derived by Schwinger, for
the values of k cot Ngr where Ny is the partial wave phase
shift; and gives an upper (lower) bound for an attractive
(repulsive) potential that is not strong enough to form a
bound state. The second method is a development from the
Kato identity developed by Spruch et. al. (1960) to obtain
a minimum principle for tan n

Variational principles suffer from the weakness that

they can only be applied over a narrow range of conditions.
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The reason for this is that unless the number of adjustable
parameters in the trial wave function is unreasonably large,
the function fails to describe the complete effects of
distortion., The Hartree-Fock method is excluded from this
as it leaves these effects to be determined in the solutions

of the differential equations.

Hulthen's method starts by defining the quantity I, as

follows

Iz = fuz (L, - kz) uz(r)dr (1.9)

for the 2th partial wave of the scattered particle. Then the
method assumes independent variations of the parameters of

the trial wave function. This leads to the equations

§(I, + kn,) =0 or (1.10)

kn, = kn + I (1.11)
L !.t !.t

which is a variational principle correct to the second order.

The parameters are determined from the fact that this n, of

(1.11) is stationary. This is expressed in the following

equations
anz
Ny
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an

e =0 (1=1, ......n) : (1.13)

A P

where C; are the variational parameters. Equation (1.12)
has been suggested by Hulthen as an improvement to his

original method in which he used the equation
I, =0 (1.14)

instead of the first equation of (1.12).
Hulthen's equations are guadratic. Kohn's equations

which are linear are
5 = s(I2 - k tan “z) = 0 (1.15)

k tan e, = k tan n, - f, ¢£(L—k2)¢zdr (1.16)

L

The Hulthen and Kohn variational principles have been
used by Massey and Moiseiwitsch (1951) who obtained for
electron-hydrogen scattering, satisfactory agreement with the
results of the exact solution of the static approximation(see
section 1.4).

The value of variational principles in scattering prob-
lems is increased when the principles are extremum. The
earliest principles of this class suffered from very strict
restrictions concerning potentials angular momentum and
energies of the incident particle. Further development

widened the range of application.
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l.3 Hartree-Fock Method

The importance of Hartree-Fock equations lies in their
connection with variational methods and with the eigen
function expansion method. The latter method is the general-
isation of the Hartree-Fock method. Instead of using the
target's set of eigen functions one can use any complete
set of eigen functions. In the following, the Hartree-Fock
equations will be derived from a variational principle.

The exact wave function of the whole system satisfies

the equation
*
I =/Y (H- E)Ydv =0 (1.17)

where ¥ is the total wave function and the integration acts
on the co-ordinates of the target electrons and the scattered

particles. If ¥ is expanded in terms of the target atom wave

functions
Yy = & ¢n(x,r) Fo (xr) (1.18)
n

where ¥ describes the target and the angular relative motion
and Fn(r) describes the radial relative motion it has the

asymptotic form

F () s (ke + R C (ko] (1.19)
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Then for a variation 6Y = Vt - ¥ we have
sT =cC2 2B 4 rsp(E - Eoga v (1.20)
2k

Neglecting the term in Gwz equation (1.20) becomes

2 R,

§ (I - C” 5%

=0 _ (1.21)

which means that the quantity (I - CZE%) is stationary with

respect to the variations é6¥. Equation (1.21) can be written

in the alternative form
R =R - 2I, k/C2 (1.22)
_.\t foe t L ]

which is the Kohn variational principle. It is apparent
that neglecting the term in §Y¥ is responsible for the second
order error in Kohn's variational principle.

Hartree-Fock equations are obtained when we apply the
variation sy on equation (1.17). For electron-hydrogen

scattering these equations are:

2
[d—z - 22(22 + 1) + kﬁl FES (r)
————————————— v
dr r2

= !:' [V‘T" I ] FU8 (1)

vy'! vv'! v'!
)

where all quantities are defined by Percival and Seaton

(1957) . In the positron-hydrogen atom the equations are:
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Ul 2 h
d 2(22 + 1) 2 Ls _
[.&;3 - .&T + kn1Fv (r) _5' V‘I‘»(r) Fv. (xr) +

o L
E' IO Kvu' (r,R)Gu. (R)dR

2 2

2
_g_ _ P2(P2J+ 1) 2 Ls -
[dR {22 + 1<m"ksu (R) : Ve L(RIG (R) +

5K

o Kuyr (R, x) Fv.(r)dt

\,l

where all the quantities are defined by Smith (1961).
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1.4 Static Field Approximation

This approximafion is a special case of the eigen-

function expansion method where only one term of the expan-

sion (1.1) is taken. The eigenfunction expansion method

yields the set of equations

i"lz sx Pl = Fror (v o)) (1.25)
m m

with k2 = il'z-‘ (E - ¢ ) (1.26)

and |

th(rl) = f¢n*(r2)(%12 - %l)wm(rl)drz (1.27)

The static approximation yields the equation

sz +k 2 - i-—’;vm(r)an(r) =0 (1.28)

which is reduced to the radial egquation

%2 + km2 -é’-z" Vi (D) - (.&._i'_:.z_l_)."]p}n.n(r) =0 ' (1.29)

by expanding Fn in terms of Legendre polynomials

F (r) =1 i 1*(22 + 1)e'™n, 19, | (x)P, (cos o) (1.30)

At sufficiently low incident energy the dominant

contribution to the total elastic cross section comes from

the zero order partial wave.

It was McDougall (1931) who
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first solved the radial equation (1.29). He obtained
values for the elastic scattering of electrons by hydrogen.

Breen (1946) has obtained the same results.




-18-

1.5 Correlation

Let us consider the expansion

glryery) =1 ¢y (xry) Foo(xg) (1.31)
n

where wn(rz) represents the wave function of the atom in its
nth state., If we write the first term as representing the
zero-order wave function, as in the static field approxim-
ation, we make no allowance for the mutual interaction of
the atomic electron and the incident particle during the
collision. Such an interaction would be accounted for if Tior
the distance between the electron and the incident particle,
is inserted in the wave function. One would naturally think
of employing variational methods to determine the dependence.
Massey and Moiseiwitsch (1951), who used Hulthen's and
Kohn's variational methods, investigated the effect of
correlation simply by inserting a term depending on Tio in

their trial function as follows;

belryeTy,r,) = 700 h g (r),r00) vy (x,) (1.32)
where

¢t(rl,r2) = (1+a ) -5 [-in k oF1

{a + (b+cr12)e-r1/a°} (1~e~T1/90) g korl:I (1.33)

They have shown that correlation is not important for

low energy scattering.



-19-

1.6 Resonance Scattering

When the energy of the imcident particle is large
enough to excite the target atom then there is a possibility
of producing a resonance. Another possibility of a reson-
ance arises when the incident particle is captured by the
target atom. This state can decay either into the incident
channel or other channels. These possibilities can be
illustrated in the following equations;
a+b+a+b +a+b +e (1.34)

a+b~+(a+B) +a+bh (1.35)

a+b-+(a+b) +»a-+ b*
where a is the incident paticle b the target atom and (a + b)
is the bound state formed by a and b, the star * represent
excitation. Equation (1.34) describes the first possibility
and Equation (1.35) describes the second possibility. These
are two examples of situations where we have resonance.

Let us consider the scattering of an electron by a
potential V(r). The 2th order partial wave satisfies the

following radial equation;

d -
2, + k2 - o2 - vio|g, (kr) =0 (1.36)
d_2 2 27V
r r
Here V(r) is spherically symmetrical. One example of it is
the static field potential. It is assumed to satisfy (Newton

1960) : (To ensure that V-»+1/r at zero and l/r2 atoo) .

|
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s r|v (r) |ar < o (1.37)
o)

P voar < (1.38)
0]

Let S(2k) be the scattering matrix. Then the following
statements are true (Burke 1965)

A - S(g2k) is unitary for real k.

B - If S has a pole at k it has pbles at ;k* and zeroes at
+k* and -k

C - Poles of k on the imaginary axis represent bound states.
D - If a pole is in the upper half of the k plane it must
lie on the imaginary axis.

E - Poles in the lower half are symmetrical with respect to
the imaginary axis.

The cross section is proved to have the approximate

form
2y & 4(28+D) rgr p2
2 S E-E 12 k2 | (1.39)
!'n "n

where %T is the imaginary part of k2 at a pole. If E=E

2
n

and the pole is close to the real axis, the cross section
becomes very large. This resonance can be seen from

r
Gz(kz) = &%+ 5 arc tan %;ﬁgﬁ (1.40)

n E
n

where the second ferm goes through " .
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Let us consider the two-channel generalization. We

introduce two branch points for the s-matrix at

k. = + ‘/3 (1.41)

k = k.“ + a (1.42)

In order to keep the s-matrix single valued in the k plane
we imagine a cut from va to -Ya. When there is no coupling
we have two diagonal elements for the s-matrix. The bound
state poles of the second channel which lie on the imaginary
axis in the k, plane by transformation (1.42), lie in k,
between the two branch points on the real axis. When coup-
ling occurs, these bound state poles move off the real axis
downwards. This gives rise to resonances provided the
coupling is small, i.e. I is small. This is the condition

mentioned after equation (1.39).
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CHAPTER TWO

Polarization

It has long been recognized that if a charged particle
is scattered at low energy by an atom, the atom distorts
slightly in the electric field of the particle. The
induced multipoles produce an attractive potential referred
to as the polarization potential.

If the polarization potential is ignored, the total
wave function takes the form:

‘I’(l,.oo.-.,N) = uo(l)¢o(2'..oo.-'N) (201)

where 1 stands for the set of co-ordinates of the scattered
particle, and 2,......,N stand for the co-ordinates of the
atomic electrons. ¢o is the eigen function of the unpre-
turbed atomic system.

One way of considering polarization is to expand the
total wave function in terms of the atomic eigen functions.

In this case equation (2.1l) becomes

q)(l’......N) = Uo(l)ao'(zluu-o-o,N) + (2.2)

z u (1) ¢i(2'o.oool'N)

i=1 b

where ¢i are the eigen functions corresponding to all the
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other states of the atom. When this total wave function is
substituted in the Schrodinger equation, we obtain a set of
equations in ui(l). Unfortunately the method of using more
terms than one in the expansion (2.2) leads to considerable
difficulties.

In many cases the eigen functions of the atomic system
are not always known. In order to avoid the difficulties
one 1s restricted to a limited number of terms. By doing
this all the other terms which are important in describing
polarization are left out. Even when the number of terms
is restricted to two the calculation of solving the coupled
integro-differential equations is complicated and time con-
suming. This is not the only reason which prevents one from
using this method. Keeping the complete set of terms in
expansion (2.2) is the only way of getting the exact descr-
iption of the collision. We do not know the relative impor-
tance of the different terms including the continuum. It
has been found in some cases (Newstein 1955) that the states
of the continuumare important in describing low-energy
scattering. Apart from hydrogen there is no adequate approx-
imation that uses the continuum states in expansion (2.2).

The eigen function expansion method for describing
polarization therefore ignores the effect of the continuum,

and all eigen functions beyond the trunction. Added to
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this is the difficulty associated with solving the equations
obtained.

Relatively few successful calculations have been made
for Quantitative evaluation of distortion. There are several
techniques in practice. The earliest were rather primitive,
and include ad. hoc. constants. Later development brought
more sophisticated techniques to existence. They are the
same in principle, and they use a perturbation method or

variational methods.
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2.1 Development of the Theory

One of the simplest ways of consideringpalarization
was used by Holtsmark (1930) and Bates and Massey (1947).
They used the potential

T‘L' (2.3)
[( +r2)2

S

where s is a cut off distance inserted for the purpose of
preventing this term from diverging at the origin, p is a
constant, The sign (-) is there to indicate the attractive
nature of the polarization.

This parametric treatment of polarization enables one
to employ it for both polarization and exchange (in the case
of electron-atom scattering). The argqument behind that is
that both polarization and exchange are attractive. By
exaggerating one of them, the other is automatically accounted
for.

This potential is added to the static field potential
in the static approximation or in the exchange approximation.
Bransden (1958) has objected to including both exchange and
polarization in this way arguing that the resulting equation
cannot be derived from a variational treatment of the

Schrodinger equation.
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p and s have been determined by Klein and Brueckner
(1958) for the scattering of electrons by oxygen atoms.
Mittleman and Watson (1959) have used variational methods
together with model calculations to find the best values
of the constants.

Better methods of including polarization have devel-
oped for small systems. The first of these was derived by
Bethe (1943) in studies of core polarization in the excited
states of helium. Modifications of this method have been
used by Bransden and Dalgarno (1953), Martin et. al. (1958)
and Temkin (1257). The method now is referred to as the
"Polarized orbitals" approach.

Later attempts aimed to represent the distortion by an
effective potential. Watson et. al. (1959) developed such
an approach for the calculation of electron and ion scatt-
ering. The weak point of their method is that it requires
a high order perturbation method. That is because of the
lack of orthogonality between the unperturbed wave-functions

and the correction functions.
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2.2 The Method of Polarized Orbitals

Dalgarno and Lewis (1957) have devised a method in
which the distortion is considered as the result of the
perturbation in the Hamiltonian duwe to the presence of the
scattered particle. For the case of electron-hydrogen

scattering, this perturbation is

2 2
v (r,,r ) =—— - = (2.4)
17712 Ty r,

where ry is the distance between the proton and the scattered
electron and p) is the distance between the two electrons.
In the positron-hydrogen case the corresponding potential is
=V. For sufficiently large r,, V can be expanded in terms

of Legendre polynomials according to the following equation:

I
12

z — 7l Pn(COS 8) (2.5)
n=1 ry

™8

Va2

where P (cos ©)is the nth order Legendre polynomial, and ©

is the angle between ry and Tige The perturbation method
provides us with first and second order corrections to the
unperturbed Hamiltonian. Since the eigenfunctions of this
operator are the functions w(rz) of the atomic electron,

then the corrections calculated in this way are independent
of r2, and hence the perturbing potential is dependent on Iy

Here the three-body problem is reduced to a two-body problem.
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The corrections of the first and second order are

Ep = (0[V|0) = sylry) Vy (r,) ar, (2.6)
= (0] V|m) (m|V]O)
E, = I - (2.7)
2 m#l E-ep
where
*
(p|V]|9) = T, V yq dr (2.8)

and wn(rz) is the nth orbital of the atom. The summation
includes integration over the continuum. If we substitute
(2.5) into (2.7) we obtain a series expansion in inverse
powers of ry which represent the long range forces between
the atom and the scattered particle. E1 is the static field
potential. E2 is the correction we are interested in. 1If

all of the terms are retained E2 gives a second order corr-

ection. Dalgarno and Lewis (1957) used the rule

m;I(qulg)fmlzIO) = (0|£g|0) - (0]|£]0) (O|g|O) (2.9)

where f satisfies the equation
2vE. Wy, + wovzf = Vyg - (o|v|0)wo (2.10)

By that they could obtain an expression for the complete long
range forces E2. Unfortunately it will be shown later that
it i1f not the complete polarization potential that we are

interested in, because the monopole part of this potential
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needs suppressing, in which case the different parts of the
potential need to be calculated separately. The expression
obtalned by Dalgarno and Lewls for the complete polarization

is

E =

2 2 {5-(4r2+8r+10) exp(-2r) +

)

(4x3+7245) exp(-4r) -2, {(r+1)?
r

exp(-2r) (L+exp(-2r)E, (2r))+ (r-1)exp(2r)
+(x?42r-3) + (4r+4)exp(-2r)E, -2r

-2(r+1)2exp -2r (l+exp =2r )

(o+Log 2r) } (2.11)

where ¢ is Euler's constant 0,5772157 and

E (x) == f S lexp(-s)as (2.12)

-X
At the same time Temkin (1957) followed slightly

different lines in obtaining his polarization. In the foll-
owing we shall describe briefly his method. The total wave
function of the atom plus scattered particle can be written

in the form

\l’(l'--c'N) = uo(l) ¢0(1'000'N)+¢P(19IIIN)

where the atom has (N-1l) electrons, ¢0 is the wave function
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of the unperturbed atom. ¢p is the correction to be deter-
mined. It describes the distortion in the atomic system
since uo(l) is outside of the brackets. But it is dependent
on 1 (the scattered particle co-ordinates). This is the
basic idea of the polarized orbitals method.

Let HO be the unperturbed Hamiltonian of the target.

It can be written in the form

Hy = N g2+ ¥ 2&"1%1-’-- g r ri (2.14)
Iy 1 i=2 i i’g = 2 i3

The atomic wave functions ¢0(2,...,N) are the eigen
functions of Y and they are supposed to be known before
hand. The total Hamilton H has the form

2,201 _ § _2

+ r
1 i=2 rij

2
0 vy (2.15)
In some approximations the scattered particle is assumed
to be static at distance rye in which case the kinetic energy

operator is neglected. Here the co-ordinates r., of the

1
scattered particle are treated as parameters. The solution
of this problem will be a function of the co-ordinates

27e0:,M, Therefore ¢P°l

is similar to ¢0 in this respect.
This is the adiabatic approximation., The distortion of the
atomic orbitals from their unperturbed form is represented

by the function ¢pol. Having obtained the total wave function

for the system we can treat it in the same was as in the
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no-polarization case. That is, to substitute it in the

Schrodinger eguation

(H-E) y =0 (2.16)
which can easily be reduced to an infegro-differential
equation. The difference between this equation and the no-
polarization one is the existence of additional terms.

The other approximation apart from the adiabaticity
in Temkin's method is done after noticing that polarization
effects arise at distances of the scattered particle which
are greater than the average radius of the electron douds of
the atom. This enables us to neglect terms like 1/rn when-
ever n 1s larger than two. If the perturbing potential is

expanded in terms of Legendre polyhomials as in the equation

n
N N « 2r
2———(1: L. % = 2——(er) - I I ——"?;+i p, (cos 915 (2.17)
1 j=2 T1j 1 j=2 n=1 r

where pn(cos eij) is the nth order Legendre polynomial and

eij is the angle between ry and rj, then it is a reasonable
n

approximation to replace r<d by rj and hence neglect
n+l n+
r, 5
all but the first two terms in the summation. The perturb-

ing potential now becomes:

V.-

'
o

N 27

'——% cos ei. (2.18)
j=2 r J
J 1
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This is referred to as the dipole approximation. In
order to justify this approximation we recall the fact that
due to the boundary condition at the origin, the multiplic-
ation of r, by the scattered particle wave function is
necessarily small. Because of that it is expected that the
main interaction near the origin is the nuclear coulombic
interaction. The coulombic interaction of the orbital
electrons is small in comparison.

In this approximation, summation (2.18) is added to the
Hamiltonian Ho of the unperturbed atom. H, the total

Hamiltonian, becomes

N 2
H = Ho + I 4—% cos ©

(2.19)
j=2 r; '

1j
The same assumption, namely r, > rj ¢ 18 used again to
enable us to consider the deviation of the Hamiltonian
relatively small, which is what the perturbation method
requires. In this case the unperturbed wave function Q)goes
over to @ and can be determined either by the perturbation

method or variational methods.
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2,3 The Adiabatic Approximation

The adiabatic method has been considered for some time.
Its advantage 1s its simplicity. Its incompleteness, how-
ever, has been also recognised, and consequently prevented
one from taking it quite seriously.

The adiabatic approximation employs the assumption that
the scattering particle wave function in the perturbed atomic
orbital equation is stationary. This reduces the exact
equation to one similar to the unperturbedeguation,

The error produced by the adiabatic approximation is
expected to increase with the velocity of the scattered
particle. This may also be seen from the following analysis.
For very low velocity of the incident particle, the atomic
electrons move sufficiently fast to adjust themselves to
the slow changes in position of- the incident particle. How-
ever, as the velocity of the incident particle increases,
either by increasing the initial velocity with which that
particle starts its motion towards the target, or under the
effect of .accelaration caused by the attractive polarization
potential, the point is soon reached where the changes in-
position of the incident particle are too large for the atomic
electrons to follow. When this occurs, the statically
derived perturbed orbitals gilve essentially an over-estimate

of the attractive polarization potential.
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The excess of attraction introduced by the adiabatic
second order potential can be traced to the monopole or
short-range part (Drachman 1965).

Higher-order adiabatic calculation should naturally
improve the qualitative situation. One may then rely on the
adiabatic approximation. In particular, E., A, Hyllaraas
(1931) has used the complete adiabatic potential for the H,
ion. The complete adiabatic problem assumes two fixed
positi?e particles in whose field an electron moves within
the frame work of guantum mechanics. Adiabaticity is moré
justifiable for heavier incident particles in which case
rearrangement is more probable. The reason for this is that
the adiabatic approximation is based on émphasizing the
movement of the atomic electrons compared with that of the
incident particle, and this is more so for heavy incident
particles. The mass centre of the heavy incident particle
plus atomic electron is nearer to the incident particle,

The atomic electron does most of the movement induced by the
mutual interaction as well as the nuclear interaction.

The adiabatic theory is correct in the limit when the
distance between the target and the scattered particle is
large and when an inelastic collision is energetically

impossible. At large separations the dipole moment has a

large effect on attracting the colliding particle. This
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particle is subject to a potential

Vﬁ " - ;fz (2.20)
which is the dipole moment induced in the target atom, x
being its polarizability.

One consequence of the adiabatic approximation is that
by approaching the nucleus, the incident particle reaches a
situation in which it can exchange with the atomic electron _
if it is an electron or pick it up if it is a positron. Thus,

the adiabatic approximation partly includes exchange (or

partly includes pick-up).
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2.4 Corrections to the Adiabatic Approximation

The édiabatic approximation consists of including
only the static polarization potential part of the distortion
effects through second order in the interaction of the atom
with the scattered particle. Thus, all the velocity dep-
endent interactions are neglected in this approximation.

Allowance for non-zero velocities of the scattered
particle is made by coupling the wave function representing
the motion of the scattered particle into the equation for
the perturbed atomic orbitals. This polarization of the
atomic orbitals is consistent with the motion of the scatt-
ered particles for all wvelocities. The interaction results
from the opetration of thé kinetiec énergy opérator of the
scattered particle obtained in the adiabatic atemic orbitals
(Labahn and Callaway 1966). The effect of this interéction,
thus, tends to correct the error produced by the use of
perturbed orbitals to describe polarization when the incid-
ent particle has a large wave number,.

The wave function of the atom, being dependent on the
co-ordinates of the incident particle means that there is a
contribution to the kinetic energy of the system from the
action of the kinetic energy operator of the scattered
particle on the atomic wave function. This contribution

depends on ry (the co-ordinates of the incident particle),
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and it contributes to the effective potential experienced

by the scattered particle. This effect is repulsive. That
is, it tends to counterbalance the attractive polarization
potential. It is given the name "Distortion potential"

by Laban and Gallaway (1966). They have added it to the
adiabatic potential in the calculation of electron-helium,
electron-hydrogen, positron-helium, and positron-hydrogen
scattering. Their work yielded fairly good agreement with
assumed exact results of rigorous variational calculations.
The monopole polarization which over-estimates the attraction

has been successfully suppressed.
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CHAPTER 3

Rearrangement Collisions
General Theory

3.1 Formal expressions for the scattering amplitude:

Let us consider the following processes: electron
capture by ions or atoms from atoms, exchange in electron-
atom scattering, and the formation of positronium by
positron impact on atoms. During the collision between the
two systems of particles in these processes one or more
particles are exchanged between the two systems. We refer
to these processes as rearrangement collisions.

Let the number of interacting particles be three. Let
particles (2) and (3) be initially bound in a state (2+3).
As a result of the collision there is a certain probability
that particle (1) and (2) will be bound in a state (2+1)

and particle 3 set free. Let the Hamiltonian be

H=K+V, +V, +V (3.1)

1 2 3

where K is the kinetic enerqgy operator of the whole system.

VqeV and V, are the potentials acting between particles

2 3
(2) and (3), (3) and (1), and (1) and (2) respectively. We
define the resolvents (Green's functions) G(n) and, Gu(n)

as the following:
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G(n) = (n - 1)1 (3.2)

G = (n-x-v)™l  a=0,1,2,3 (3.3)

where Vp=0. We note that Gq and G3 are the appropriate
resolvents to the initial and final states respectively.

Initially V2 and V3 are zero. The Schrodinger equation

is
- (1) _ .
(R + vy En)¢n (En) = 0 (3.4)

where ¢n(1)(En) is the nth state of the system. It represents
a bound-state and a plane wave. The Schrodinger equation

of the complete system is
I (+) =
(H ni)¢i (E;) =0 (3.5)

where (+) stands for the out-going wave, in which (2+3) are
initially bound and (1+2) finally bound. From (3.3),(3.4)

and (3.5) we have

+
where
b e+t = g, Y e ey B (Vv x v P (Epe)

(3.7)
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and

(1 - 5, - i)y P B +e) = teg, V) E)

(3.8)

If we operate on (3.2) on the left and right by (n-k) we

obtain -the following equations for G.

6 = G, 1+(vl+v2+v3)c;1 = [1+G(V1+V2+V3)] G,
and

G = Gl[l+ (V2+V3)G:l = £1+G(V2+V3):\G1

From (3.10) and (3.2) we have
[l-Gl(V2+V3)][l+G(V2+V3)] =1

From (3.7) and (3.11) we have

1" mrie) = [ 1eetmrte) (vpv]e, Vi)

By operating on (3.11) by (E+iewK-Vl), then by Gy,

rearranging we obtain

\_}—-G3 (V1+V3.)] E!.+G(V2+V3)] = 1+G3(V3—Vl)

This leads to

[1-—(;3(v1+v2)] b " E e = [-1+G3(v3—v1)] g, (&)

g (1)
= 1eG3¢i (Ei)

and

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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and consequently
by (By+ie) = 6y +1e) [Leg, M e+ a4, ) (m41e)] (3.15)

Lippmann (1956) has shown that the first term on the
right-hand side of (3.14) contains no singularity and hence,
vanishes with e+0 except for the case when all three part-
icles are unbound initially and finally. Equations (3.17)

and (3.15) may be written in the form:

by e = 0, ) [uin g6 By +ie)] vy, Y e 3a16)

ey [}1m€+os3(Ei+ie{1(vl+v2)¢1‘+’(Ei) (3.17)

(3.16) represents the case where no rearrangement occurs.
(3.17) represents the case where rearrangement occurs. The

final state of the rearrangement collision satisfies

_ (3) _
(K+V3 Em)¢m (Em) =0 (3.18)
From (3.15) it is easily shown that the transition rate W
is
(+) 2 2e 1Tyel?

_ 9 (3) = Lim____~+~ (3.19)
Wig =3t 1< 7 lvi > 20 R (g,-E.) %4e?
where

= (3) (+) @
Ty = (@ 7 (EQ) V4V, |9, 77 (B))) (3.20)

but since
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. € _
Lim 3 = in6 (%) (3.21)

€>0 X“+

Wif becomes

27

_ _ 27 2
Wp = S(E;~E2) & ITif| (3.22)

In the same way it can be shown that

o - (1)
Tey = (be (Ep) |V,4V4g, 77 (E))) (3.23)
where here the process is reversed. The wave functionut(—)
satisifies

V7 w10 = 0, (B (B 1e) (Vv 4, ) (Eg~ie)  (3.24)

Castillejo et. al (1960) have used an explicit config-
uration space treatment and obtained the same results for

the electron-hydrogen atom scattering.
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3.2 Eigenfunction Expansions

This method has its major application for low-energy
scattering, although it is by no means confined to that

situation. Instead of using the usual expansion

(+) _ (1) . (1)
by T(E)) =TIy (RDF, "7 (xy) (3.25)

n

n

where Rl is the relative position vector of particles 2
and 3 (R2 and R3 are defined in a similar way), in rearr-

angement problems we use

LRI L (3) g

(1)
I (Rl)Fn(rl)+ ;wm

n 3) G (1) (3.26)

(3)

where y_ is the mth orbital of the system (1+2), and Fq

and Gy have the asymptotic forms

1 .
Folry) ~ exp(ik,,r;)+r; “exp(ik;,r;)f(e,,#,) (3.27)

Golry) ~ r, “explik, r,)g(e,,4,) (3.28)

where £ and g are the scattering amplitudes for the direct
and rearrangement collisions respectively.

If should be noted that the terms at the first summation
are not orthogonal to the terms of the second summation,
but the whole expansion is complete. It is common to avoid
the calculational difficulties to take the first term of

each summation. This corresponds to considering the initial
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state and the final state of the rearrangement collision.
Proceeding according to the Hartree-Fock method we

form the quantity

I

dt{wi*(H-E)wi} (3.29)

whereu& is substituted from (3.26). If we use the property
that I is stationary under the independent variations of

Fo and G, we obtain the Euler equations of I which on using

(1)

the Schrodinger equations forupO and wo(s) become

[7:, +k12+U11(rl{lF (ry) = ;% raxy (oM " (r))
_ (3)(R ){- -k +—z§ (V1+V2{]Go(r3)} (3.30)
[vr32 +kf2+U33(r3ilGo(r3) =-;§[dR3{¢0‘3’(R3)
"’o(l) (Rl)[—vrlz—k12+ -i—z-}- (V3+v2)] Fq(xy) (3.31)

where hki and hkf are the initial and final relative momenta
of the colliding particles respectively. U, and Uj4 are
the static potentials in the initial and final states

respectively. They satisfy the following equations:

_=2"1 (1)* (1)
Uypley) = =5 SaR g (R ¥ (Ry) (V54V5)) (3.32)
-}
Ugqlry) = “23rar, oy 3 " (R 4y ¥ (ry) (v 4v,)) (3.33)
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Equations (3.30) and (3.31) can be reduced in different
ways according to the type of systems in hand. For example,
for low-energy electron-atom or positron atom scattering Fi
and Gi are expanded in partial waves. If, on the other
hand, the bound system is much heavier than the colliding
particle, then the system of equations is converted to
coupled differential equations rather than integro-diff-

erential equations (Bates (1958).
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3.3 Charge exchange reactions:

We define charge exchange reactions as those in which
one or more electrons bound to one system are picked up or
captured by another. Let ion B be incident on ion (A+e).

Then the interaction is described by the following equation:
B + (Ate) + (B+e) + A (3.34)

An example of this reaction is the case of a proton
scattered by a hydrogen atom in the ground state. The
result of the interaction is that the electron is picked-up
by the incident proton to form a new hydrogen atom (not
necessarily in the ground state). We can describe this in

the following equation:

+ + -
H @+ Ho + Ha + H (3.35)

~where O and a are the ground state and the ath state of the
hydrogen atom respectively. In this case Tif defined in

equation (3.20) takes the form

* -
Ty ¢ = JargfdRyly,” (Ry)exp(~ikE.n) [V, (Ry)+V; (Ry) v, (x) R)) )
(3.36)
where wa(R3) is the ath state of the hydrogen atom. From

Tif it is easy to obtain the total cross section for the

scattering
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+1 2
Qg =2 [; |a(®)|” d cos © (3.37)
where
.M
?(6) =3 Ty (3.38)

Here we have taken the mass of the electron equal to one
-

+ 1
and that of the proton equal to M. and cos © = (—ki-kf/kikf)

=

and Vl(x) = v3(x) = -vz(x)_= -

the solution of this problem can be simplified by consider-
ing the fact that the potential between the two protons
should not contribute to the scattering amplitude. This has
been indicated by Oppenheimer (1928) and Brinkman and Kramers

(1930). The reason for this is that rq satisfies
r, = -Rz + [}](M+1{]R3 {3.39)

and the mass M of the proton is much greater than that of
the electron. Hence ry = -R2 to the order of 1/M and VZ(RZ)
can be replaced by V(r3). But since any potential which is
a function of the distance between the centre of masses of
the two colliding particles does not contribute to rearran-
gement or excitation we can ignore V2(r3). i.e. V,(ry) in
equation (3.36) should be neglected. Another way of just- -
ifying this is by considering the fact that due to the great
incident energy of the proton, the de-Broglie wave length

is negligible compared with the atomic dimensions.
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Consequently, we can treat the relative motion classically.
It follows that direct and exchange scattering amplitudes
can be obtained separately, even if A and B were identical.
The trajectories of the protons are affected negligibly

from the cilassical ones, which are straight lines defined
by an impact parameter. In thils case v, does not contribute
to the scattering amplitude. This is true unless the stage
of close distances plays the most important role in deter-

mining the scattering (Fennema 1%3).
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3.4 The Born Approximation

When the incident particle has a large velocity
compared with that of the orbital electron, a plane wave
approximation may be used (Brinkman and Kramers (1930)).

The incident wave is seriously distorted. The energy of
the incident particle should be considerably above 25 k.e.v.

Bates and Dalgarno (1952) have used the cross section
calculated by Brinkman and Kramers using plane waves and
omitting the internuclear potential for electron capture
by protons in helium. They used tlieé simple variational
wave function for the helium atom ‘

3
N (X,y) = X expl-a(x+y) 3, ™ = 1.6875 (3.40)

w

They found out that the Brinkman-Kramers cross section is
several times too large.

The potential which acts between the two nuclei should
not be dropped as has been suggested in the preceding approx-
imation. For better results one would look for higher-
order terms in the Born series. The second term in this
series is retained. Unfortunately the second Born approx-
imation has so far resisted complete evaluation, but Drisko
(1955) has examined the high enerqy behaviour of this
approximation and obtained some interesting results. For

electron capture by protons in hydrogen,
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B (3) (1)
2 =
T, ¢ (@77 |V V) 4 (V +V,) 6oV, +V4) |8, T7) (3.41)
where G0 is given by
1
Go(T3rRy Ty Ry) =
exp 1{13.(r -r31)+P3(R3-R31)

-6
(2r) “rdg.srdp
3773 .2 ~E -F
k fk 3+E +i Eg3 EP3

where it has been represented in configuration space. Eq
is the energy at the (lg) ground state of hydrogen and Pj
is the relative momentum of particles of 2 and 1. 93 isg

the momentum of 3 relative to the center of mass of (2+3).

P3 and g4 are given by
Py = (m2+m1) [mykp = mk;7 (3.43)
2

and the reduced mass uy is given by

m, (m.+m,)
u o= 31 2 (3.45)
3 3+m2+m1
The crosssection in the high-energy limit becomes
QBz " -32n + 16x 2

———————— f ———
am® 2/ (14023 Q2 (v2/2- gY2+aiv

_ 5nv
= {0.2946 s &/ } Opx (3.46)
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where Qpk stands for the Brinkman-Kramers cross section.
These results are interesting. It has been shown that the
internuclear potential is cancelled by the second order
term. No matter how high the energy, the Born series does
not converge to its first term. The second term in (3.46),
which dominates the cross section, changes the velocity

12 11

dependence from V ~“ to V_

if the energy is high enough.
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CHAPTER 4

Review of previous work

Electron-atom scattering is closely connected with
positron-atom scattering. The electron and positron have
the same mass and the same magnitude of chamge (one
negative and the other positive). In most calculations one
can obtain the equations of one of the two problems from
those at the other by simply altering some signs. One can
learn about various effects by comparing the two problems.
Therefore it is interesting to review the previous work done
for electron-atom scattering as a stage leading to positron-
atom scattering calculations, especially since most approx-
imations have been originally devised for electron-atom

scattering.
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4.1 Electron-atom scattering

One of the earliest works on electron-atom scattering
was done by MacDaugall (1933) on electron-helium scattering.
He attempted to determine the atomic wave function using
the Hartree approxihation. Morse and Allis (1933) empha-
sised the importance of exchange and used antisymmetrical
wave functions to describe the scattering. Later, various
works completed the treatment of the problem by consider-
ing polarization and correlation as well as exchange.

Among various collision problems, those of electron-
hydrogen and electron-helium have received the most attention.

It is natural to include exchange and distortion in
the electron-helium scattering problems. Moiseiwitsch (1960)
has found good agreement between his results and experiment.
The relative error was (X 158). This led him to conclude
that the most important affects in this scattering are
exchange aﬁd distortion, and that all other effects lead to
small corrections. In his calculations which involved both
solving the integro-differential equations and the use of
variational methods, the scattering length was (1.442)
atomic units.- |

O'Malley on the other hand (1963) extrapolated his
scattering length and it was (1.19) atomic units. These

two figures are to be compared with the experimental
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figure which is (1.32). It is quite reasonable to believe
that the difference is caused by neglecting ﬁolarization.

Total elastic cross sections for the scattering of
electrons from hydrogen in its (ls) state have been cal-
culated by Burke and Smith (1962), allowing for virtual
excitation to the (2s) and (2p) states and for incident
energies below (10.2) electron volts. They showed that
the virtual states are important.

Massey and Moiseiwitsch (1951) have applied the
Hulthen and Kohn variational methods for electron-hydrogen
scattering allowing for exchange and polarization. They

have shown that exchange is more important than polarization.
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4.2 Positron-Hydrogen Scattering

Although no experimental results exist for positron-
hydrogen scattering, comparison can be made between the
results of various approximations to learn more about the
physics of the process.

It has been realized that, to some extent, the
calculation of the positron-hydrogen atom phase shift is
not reliable, There is some doubt about the rigorous upper
bounds for the scattering length (Spruch and Rosenberg 1960,
Schwartz 1961). TFor although Schwartz has used as many as
fifty variational parameters in obtaining his scattering
length and phase shifts, Rotenberg (1962) using Sturmian
functions has obtained phase shifts considerably larger than
those of Schwartz.

Since the positron and the atomic electron are disting-
uishable, then the problem of antisymmetrization does not
exist, However, the possibility of the formation of posit- -
ronium produces the necessity of adding terms similar to
those for electron atom scattering.

Virtual positronium formation produces an attractive
potential which has the effect of reducing the absolute
value of the negative phase shift given by the mean static
approximation. It is not enough, though, to change the

sign form negative to positive. The reduction is consistent
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with Percival's theorem (1960). This theorem states that
any furéher allowance for distortion of the atomic wave
function will appear as an effective attraction tending to
reduce the magnitude of the negative phase shift.

There are two points which play a basic role in
positron hydrogen scattering. The first point is that at
close distances the positron feels the repulsion of the
positive proton. The second point is that at far distances
it feels the attraction of the induced dipole moment of the
hydrogen atom. Solving the problem o positron-hydrogen
scattering then determines the combination of those two
extreme cases.

The impertance of the study -of positron reactions was
emphasised by Massey and Mohr (1954), who calculated the
cross-section for the positronium formation reaction (1)
from threshold (6.75 ev) to 32 ev in the first Born approx-
imation. They also calculated the cross-section at 13.5 ev,
in a distorted wave approximation in which the 1 =0
partial cross-section was corrected by employing the wave-
function of a positron moving in the static field of a
hydrogen atom, in place of a plane wave. The cross-sections
obtained by the two methods disagreed (see figure 1),
showing that a plane wave approximation was not adequate.

To go beyond first order methods, Cheshire (1964) applied
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a version of the impulse approximation, but as ﬁultiple
scattering could not be included this procedure is diff-
icult to justify. The results he obtainéd are also shown
in fig. 1 and are within a factor of two of those of the
Born approximation. |

Massey and Moussa (1958) have used the stétic approx-
imation for 1 = 0 for k = 0.2, 0.5 and 1.0 Smith et al
(1960) have checked these results and solved the problem
for k = 1.0, 1.2, 1.5 and 2.0 for all significant partial
wave contributions to the elastic scattering cross section.

Smith et. al (1960) have used the strong coupling
approximation for k = 1.0, 1.2, 1.5 and 2.0 for all sig-
nificant partial waves. '

Moussa (1959) has applied the Hulthen and Kohn var-
iational methods in which he took polarization into account.
The results supported the idea that polarization is attract-
ive. )

Smith and Burke (1961) have calculated the S and P and
D waves by the strong coupling approximation including
excitation to the 2s state.

C. Schwartz (1961) has calculated the phase shifts for
1 = O using Kohn's variational principle with 50 trial

functions of the type introduced by Hylleraas. He calculated
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the phase shift for energies up to 10 e.v. The solution
did not converge as rapidly as in the case of electron-
hydrogen scattering. The results were of probable error
of about ¥ 0.001 radians. For the scattering length he
found the upper bound a,«< -2.17.

Bransden (1961) hasfestimated the effect of real or
virtual positronium formation by a perturbation method.
In this method fhe effect of the static field potential of
the hydrogen atom is automatically allowed for. The results
support the fact that the positron is attracted to the
atom at low energies.

Cody et. al (1964) have included polarization and
found that it does change the sign of the phase shift for

k2

< 0.16 showing that for low energies of impact, the
positron experience an effective attraction. When they
combined both' polarization and positronium formation the

.phaseshift remained positive up to the threshold for
positronium formation. From these results it is concluded
that positronium formation is an important effect of an
attractive affective potential. Recalling that it could not
alone change the sign of the phase shift, while polarization
could, we conclude that it is less important than polariz-
ation. In the electron-hydrogen scattering in contrast,

excﬁange plays the most important role rather than polariz-

ation.

rf
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Drachman (1965) has used the complete Dalgarno-Lunn
second order adiabatic potential to calculate the s-wave
elastic scattering below the threshold of positronium
formation. He showed that the potential is too attractive,
and proposed a simple one parameter modification related
to the monopole term of the polarization which leads to
exact agreement with Schwartz's value for the scattering
length.

Kleinman et. al. (1965) have applied the minimum prin-
ciple formalism for a number of incident energies below the
threshold of positronium formation. They obtained rigor-
ous lower bounds for the phase shifts in the s-wave and
P-wave scattering. Because thieir trial function has not
included a positronium channel the convergence was slow
for obtaining the solution.

Drachman (1967) has used a trial function of the form

$%,0) = {un) + FEOIGX, 1) () (4.1)

where @#(r) is the atomic. ground state function and G(X,r)
is the adiabatic correlation function satisfying the

equation

[G,HO-V(r) = Iv - vl:lsz(r) (4.2)

His coupled equations gave 80% of the difference
between the unpolarized results G+0 and those of Schwartz

(1961) .
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CHAPTER 5

The present calculations

5.1 The co-ordinate system

Let the positron (e+) of wave number ko be scattered
by a hydrogen atom in the ground state. Let (P) be the
proton and (e ) be the electron of the hydrogen atom. The
result of the collision will be the elastic scattering of

the positron or the formation of positronium (e+ ). The

two alternatives are described by the following two equations.
et + | et + m (5.1)

e+ 4+ H ———eemeeee e+—+ P (5.2)

Because the proton is much heavier than the other two
particles we may consider it stationary, and we may consider
it the centre of mass of the system. Consequently the co-
ordinate system of the centre of mass coincides with that
of the Laboratory. P will be the origin of co-ordinates.

Let § be the co~ordinate of the electron, and f the
co-ordinate of the positron. It will be convenient to
change the co-ordinates for the positronium channel. 1In
that channel the formed positronium atom travels away from
the proton. So we want one vector to describe its centre-

of -mass motion, and an other vector to describe its internal
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motion. Let R be the co-ordinate of the positronium centre-

et 2

of-mass, and the vector joining the positron to the
electron. The relations between the two co-~ordinate systems

are shown in the following equations

r+%t=R (5.3)

s-%t=R (5.4)
hence

R=% (r+s), r=s5 ~-Ltf2 (5.5)

From these it is possible to obtaln s and t in terms of R

and r
s = 2R -r (5.6)
t = 2R -2r (5.7)
P4
€
S
R
?
7]
(I
»
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5.2 The scattering equations

The solution of this problem will consist of two parts.
In the filrst part we solve the equations for a particular
trial wave function. In the second part we add variational
corrections. On the other hand we can divide the calculat-
ions into those of the one-channel treatment and the two-
channel treatment. We shall find that the one-channel cal-
culations are a special case of the two-channel calculations.
Therefore, we proceed by doing the formulation of the
general case. Let us start with the following trial

function.
$(1,2) = yo(s)Fu(r) + @,(t)G,(R) (5.8)

where 1 and 2 stand for e’ and e~ reSpeétively, and y,(s)
is thé ground state wave function of the hydrogen atom, and
@,(t) the ground state function of positronium. F,(r) and
Go(r) are the wave functions of the relative motion. Determ-
ining them is the purpose of these calculations. The two
terms on the right-hand side of equation (5.8) are the first
terms in the summation of equation (3.26).

The Hamiltonian with its kinetic energy part and

potential energy part can be written as

H=T+ V + vy, : (5.9)
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where

- 2 _ 2 _ o2 _ .92
T = %Vl kvz Vt iV (5.10)

and where Vij is the potential acting between particles 1
and j, with 1 and j taking the values 1, 2, and 3.

If we substitute our wave function in the Schrodinger
equation as a first step in the eigen function expansion

method we obtain the equation
(T+V—E)[@o(s)F(r)+¢o(tyco(R)] =0 (5.11)

where we have written V to stand for the three potentials.
%*
If we multiply on the left by ¥, (s) and integrate over s,

*
then repeat by multiplying on the left by @, (t) and integrate
Y plying 0 g

over t we obtain the Hllowing coupled integro-differential

equations
fwo*(s)(r-v-E)yds =0 (5.12)
f¢o*(t)(T-V—E)Wdt =0 (5.13)

These two equations are what one gets from applying inde-~

pendent variations to I defined by

T = ry" (T+V-E) gdr (5.14)
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If we substitute for ¥ in equations (5.12) and (5.13) from

(3.8) we obtain

(-3v_2-2?)r (x) = —fds¢o*(s)[(T-E+v)¢(t)
. r ;

X GO(R)+(V1P+V12)wo(s)Fo(r)l (5.15)

(—%VRZ—%KZ)GO(F) = -/at ¢o(t)(!T-E+V)wo(s) X o (£)4+ (V) +V, )

x B, ()64 (R) ] (5.16)

Here we have split the total energy E into two parts. One

part is the energy of the incident particle and the other is

the energy of the atom which is a known constant. This is

seen in the equation

2 1.2
E = ¥k“ + €q = EK® + g (5.17)

where k is the wave number of the positron and K is the
wave number of the positronium in its motion relative to
the proton. € is the ground state energy of the hydrogen
atom and o is the ground state energy of the positronium
atom. Hence the two equations (5.15) and (5.16) take the

form
(kv _2-3k%)F_(r) = -rdsy. (s) (~kv_2-%k%)@(£)G. (R)
o 0 -~ 0 R 0

~Upo (DI Fr)=rdsy, (s) (V) +V, M (£) Gy (R) (5.18)




-65~

(-47°-5K%) Gy (R) = ~ratgy” (8) (-39 %-3k?) 4 (s) Py (x)

—Idt¢(t)(V1P+V12)wo(s)Fo(r) (5.19)
where

*
Uoo(r) = [y (§)(V1P+V12)wo(s)ds (5.20)

which is the repulsive static field potential acting by the

hydrogen atom on the positron. It has the value
_ 1 -2r
Uoo(r) = (l+§) 8 (5.21)

In equation (5.19) we have used the symmetry of the situation
in the positronium channel which yields

*

f¢o (t)(vl +V

p 2p)¢(t)dE = 0 (5.22)

Here the need arises for using the other set of co~ordinates.
According to the transformation of eguations (5.6) and (5.7)

the integrals are transformed to the form

fds f(r,s) = 8sdR f'(r,R) (5.23)

Jdt=f (t,R) 8/dr £'(x,R) (5.24)

which, when applied to equations (5.18) and 5.19), yields
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V.2 2
232 = - ~R_k
(-39, 25k (x) = -8faR G(R) (—5 - X)
x {4 (8)@y(t)} = Uy (X)F, (x)
=8/ ARy (8)G, (1) (V) ,#V, ) Gy (R) (5.25)
(-89, - 3k3) Gy (R) = -8rdr Fo(r) (-4v_2-kk?)

{¢o(t)wo(s)—SIdrwo(s)¢o(t)
X (V1p+V12)Fo(f) (5.26)

In equation (5.25) we have used integration by parts to

interchange GO(R) and wo(s). On the right-hand side of

2 2

these equations the kinetic energy operators v and V.

R
are acting on ¢o(t)¢o(s). We want to replace these two
operators by -other ones which are in terms of s and t
instead of R and r. Using the transformation equations and
the property of a Laplacian operating on a physical system
(Schrodinger equation) for the case of hydrogen and posit-

ronium we obtain

2 2

v 20y (s)G(E)} = (4v_2-4v %+87_.v ) y(s)g(t) (5.27)
R

2

2 2
V. {¢O(S)¢(t)} = (VS +4vt +4vs.vt)w(s)¢(t) (5.28)

2 = -
Vg v(s) = (27, -2¢,) y(s) (5.29)
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2
" glt) = (Vlz—no)¢(t)

(5.30)

substituting (5.27) and (5.28) in (5.25) and (5.26) we have

sz{upo(s)Q!(t) b= (BV, #4V) =B ctany)
x (819, (£)+8 (ExEyt ()" (1)

2
V. lig(s)g,(t) = (2V2p+4V12‘250+l|no)

x |p0(5)¢(t)+4( )nb'(s)¢ (t)

(5.31)

(5.32)

where y'(s) and @'(t) are the first derivatives of y(s) and

@(t) with respect to s and t respectively.

Now we substitute

these kinetic energy operators into equations (5.25) and

(5.26) to obtain

(v, 2+%)F(x) = 20, F(x)+16 faR "KOI(E,m X G(R)

(VR2+K2)G(R) 32fd{ KlO(R,r)F(r)

where
K5y (/R = 22223 ¢ (s)@" (&)
+{ ~E+2 y+2 'b+vlp+V2p—Vl2 Yu(s)g(t)

and

ol(Rsx) = -2(2=t )w (s)g'(t)

+{-E-v2p+v1p—v12-v2p+2 no+2eo}¢ (s)@(t)

(5.34)

(5.35)

(5.36)
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The kernels thus defined are identical, and this can be

expressed by the symmetry
Klo(R,r) =.K01(r,R) . (5.37)

The usual way of dealing with equations (5.33) and (5.34)
is to reduce them to radial equations by expanding F and G

in Legendre polynomials.

= £, (x) L
F(r) = (22+1) i Pz(cos er) (5.38)
L= r
© gz(R) .
G(R) = I (22+1)1 Pn(cos el) (5.39)
2=0 R R

where er is the angle between the incident beam and the

scattered particle in the first channel and 91 is the

. R
corresponding angle for the xecond channel.
O = ko' and 517 %"} (5.40)

By sutstituting (5.38) and (5.39) into (5.33) and (5.34) an
infinite set of integro--differential equations are obtained.

Each palr corresponding to a particular ? are coupled.

do -2

. +1 .

(< . - 2(a+l) 2 _ i

2 5" + k )fn(r) =r f du Pz(u)2
dr r -1

x[;Uoo(r)Fo(r)+16fd§Kol(r,R)G(Ri] (5.41)
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+1 R
(ng _ 2(2+%) + Kz)g(R) =R [ du Pn(u')%
dr R -1

X 32fdf KIO(R,r)F(r) (5.42)

These are the equations we want to solve in order to
obtain fn and g, At this stage we know that they must

have the asymptotic forms

0

£,(r) v A sin(kr£1§)+ B®cos (ky-%21) (5.43)

g, (R) ~ A" sin(kr - £5)+8% cos(xr - £7) (5.44)
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5.3 The adiabatic potential

Polarization can be considered as a correction to the
trial wave function which determines the distortion in the
orbitals. It can be considered also as an effective po-
tential, which is to be added to the static potential. The
polarization potentials in the two channels can be shown to
have a simple relation with each other. One is eight times
the other. Therefore it is sufficient to calculate one,
then multiply by eight to get the other. Let us consider

the interaction governed by the equation.

(HO+V—E)¢; =0 (5.45)
where y is the total wave function of the system. V = - %«%)

is the potential which causes the distortion and which is
assumed to be small enough to be treated as a perturbation.
In the adiabatic approximation the incident particle ié
assumed to be stationary. Hence r is a fixed parameter.

If we apply first order perturbation theory we obtain the
static potential. The second order perturbation is what

we are interested in. The different energy terms are

E = eo+E(1)+E(2)+... (5.46)

k is dropped as implied by the adiabatic approximation, E(Z)

is given by
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g2 _

* )
n#o[|fds¢n () Vo (s) | ] (5.47)

€0 7 tn

If we use equation (2.9) this becomes

E(Z) - fwo*(s)[Y'E(l)lw(l)(s)dS

= fugls) ve'H (s)as (5.48)
if Yoo w(l) are orthogonal where y'(s) satisfies
(g egdo ™) = 8Ny — vy (5.49)

It has been usual to expand V in terms of Legendre poly-
nomials as

vV = i Kz(r,s) Pz(cos ers) (5.50)
If we expand the correction y'(s) in spherical harmonies

and substitute it together with V of (5.50) in (5.47) the
evaluation of E(z).is reduced to the evaluation of the

various terms of the expansion
= ¢ g (2 (5.51)

The term corresponding to n = O is called the monopole,
that corresponding to n = 1 the dipole and that correspond-

ing to n = 2 the quardupole. It is known that the dipole
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potential is the most important one and all the terms of

q}2 are negligible. The other terms have been calculated
by Reeh (1960). We have carried out the calculation and

found agreement with Reeh's calculations. El(Z) has the

form

(2) _ 2 _/2!.4'1 .4n
Eﬂ. = .fo 5°ds Vz(r,s)wo(S) ‘pilo(s'r)' an 2T

=(Ter § s%as vyims)vge, P s, (5.52)
and
s = 1 s eiMery, (e,

2=0 m

~£1)
% (s,r) satisfies

1l 3 .23 _a(eel) 1 _ ‘X (1)
[: 252 B8 s* 33 ) g~ g W (8,1)

_ (1)
= G;OE -V, (r,s)v(s) 22+1 (5.53)

This equation is solved and the following solution is

obtained. For 1>0 we have

s>r s) B F, + Y

(1)(r,

%0 2 (5.54)

s<r ¢z o(l)(r,s)

a(Fl—F2)+Y1 (5.55)
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where F, and F, are determined according to 1.

case 1 = 1 they are

Ji, 2 -s
F, (s) ‘Ls*s* 2] e

_ 1, _+s - :
F2(S) = §2 e, Fy F, —— limit as S+0
In the case 1 = 2 they are

1 3 1 1l{ _-s
F, (S) =[— + + = + —Ie
1 s3 232 S 3

Fz(s) =[-§§ - igfle+s

Y1 and y, are given by

K . .
- =5 -s,1 -8

Y, < P2.+I Ce (337 + 2(z+I))
_ r. - 1 5

Y < ) Ce " rFy * 37

for 1 = 1, 8 and a are given by

a = -@e Tarpic

'- 3 1

B =oa - (1- =,)C
k] 22

for 1 = 2, a and B are given by

1 3,3
+E)(1+§+;§)'c

a = % e-2r(1

In the

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)
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3

- | 1,3 _ 3
B =a 7 (1+;)6;§ = +1) ¢C

where C = ET%T'

In the case of 1 = 0 we have different solutions

is given by

¢00(1)(r,s) =y; t (% - a) f% + uFl s<r
woo(1’<r,s) =y, + 8 F s>r
with

a = -(l+%) e'zr(log 2 +a+klog r) +3(% - 1)

X Ei(-Zr) + e'zrol— + % - ir)

4r

g = (1+%1:e-2r(¥§i(2r) - %log r - log 2 - a)

-% +%(% -1) {E, (-2r)-1log ri+e” 2T
1l .
X (-4—!: + % - kr) ;
_ =S
+s

- . Ce = -S
F2(S) = 3 + 2C Ei (2S)e
where
—-— X et *
Ei(x) = [ e dt = Ei (x)

(5.65)

(5.66)

(5.67)

€5 .68)

(5.69)

(5.70)

(5.71)

(5.72)
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© =t
= - e __
Ei(-x) = =/ m dt (5.72)
X
when we substitute these solutions in equation (5.52) we

get the required polarization potential. The dipole is

given by
(1) 91 |. %t 2.20 3
(r) =— =11 (142r+6r°+=—= r
113 3 3
w5 et - 2 7 en! ] ' (5.73)

In the asymptotic region it behaves like -9/4-r4. Near the

origin it behaves like -(2/3)r®. The quadrupole is given by

y (2 _ -15 -2r 4.2.1.3,2 4
p (r) -—3{1 -2e (1+2r+sr +3rtgr
2.5 1 6 1 7 1 8 2 9 8 10
YT HET T TxIBT * TxIST - Ixi5° ) toxIsT
x (E; (-2r)+e” ¥ (1+are28rPrer s 2irtidyd +-—§)} (5.74)
Asymptotically it hehaves like l%rG and near the origin it

goes to zero faster than r2. The monopole has the form

(0) _ =2r, 2 1,5 1,1
Vp (r) =e {——;2+%E+§+r+2(log r + &)LEL+§)+

1 2,1
+E (- - - Y.
Ei( 2r) (1 r2) + log r (=2r+l = r2)

1

- a (—+4+4r)+8(2+4r) }+——+(1 )
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-r, 2 71 5 , =
X Ei( 2r) +e {;5 +35 2+ S+r Ei(2r)
1l 1 2
X (S3+3+4+2r) + (5+2+1) logr (5.75)
r r r

where o and 8 are defined in equation S (5.68) and (5.69)
and C = 0.577215665..).
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5.4 Variational Corrections

In this section we shall add corrections to the trial
function (5.8), and see the effect of that on the scattering
parameters. This can be done in different ways. The first
is to insert these corrections in the scattering equations,
and then solve them. The second is to use a minimum principle
which provides a bound on some scattering parameter using
the results of the unperturbed equations. 1In both of these
methods we are going to use projection operator techniques.

Let us take the total wave function VY. It consists
of the original part (5.8) and the correction part. It is
very natural to use the adiabatic corrections calculated in
the previous section as the correction part in this variational

treatment. The wave function has the form
¥ = x(1,2) + yy(s)F,(r) + B,(£)Gq(R) (5.76)

where x(1,2) is defined by

- (1)
x(1,2) = z;o ab,q  (8,r)Fy(r)Y,  (cos 6 )
+ 88,V (£, RIG (R Y, (cos @ 1) (5.77)

where wzo(l) and ¢20‘1) are defined in (5.54) and (5.55).

Until recently, the fact that ¢o(t)Fo(r) and wo(s) GO(R) are
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not orthogonal has produced a difficulty for obtaining
minimum principles. This has been solved by Hahn (1966) by
constructing a simple form of projection operators applicable
in general rearrangement and exchange processes. According
to Hahn's method, each of the two open channel configurations
will be associated with a component of a two dimensional wave

function. This is written in the form

Y1
¥y = () (5.78)
2
where
¥y v yg(s) Fylrx) for large r (5.79)
¥y v O for large R
¥o v O for large r
?o a ¢O(t)G(R) for large R

By using the matrix form for H and E, the Schrodinger equation

becomes
- E H-E (4 _ g (5.80)
H - R H - E "’2 : e

We define two projection operators in the following

P, (r,s,r',s') = wo(s)fdg'wo(s')fdf's(r~r') (5.81)
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P2(t,R,t'.R') = ¢O(t)fdf'¢o(t')IdR'E(B—g') (5.82)

Then P =P

P 0
P = (O P ) (5.83)

Let Q be the projection operator which projects into the

closed channels. It must satisfy
Q=1-P (5.84)

so that Q2 = Q and PQ = QP = O. In the matrix representation

the scattering equations are
P(H - E)Yp ¥ = -P(H - E)Q ¥ (5.85)

which can be written in the form

Py (H - E)P,y +P) (K = E)P,y; = -PyH 0 y,-P; (H - E)Q,¥, (5.86)
P, (H = E)P,y+B, (H - E)P gy = ~P,HQ ¢ =P, (H = E)@ ¥, (5.87)
where

0¥, = 8, PRy, (cos ©,.) (22+1)1%p, (cos o, )IEBL (5 gg)

_ 2,0 0% R o tR’" R y

and

091 = ¥, M (x,8)¥] (cos B_ ) (20+1)1'p (cos o 1ELZL  (5.89)

’
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5.5 The perturbed coupled equations

The left~hand sides of equations (5.86) and (5.87) are the

same equations (5.33) and (5.34). The first terms on the

right are the polarization terms. The second terms are to

be calculated and then substituted in the equations.

start by Pl(H - E)Q2¢2. It must be multiplied by Legendre

polynomials as in eguation (5.41), then integrated over er =

.o
we have

-— 3 g 1 p :
A = 167 é dedmrfdwE\?o(s )Pz(cos eR)PE(cos er)

g, (R) (28+1) (rxR) [V (£, RG], (£,RIY 4 (ER)

y
_vz.(t,R)¢o(t)Y£.'o(t,R)\‘ﬁ-.,_l g]

Let
K(r,R) = i P, (cos eRr)kn(r,R)(gigl)
Then
+1 (1)
K,= { d cos ©_p Pz(cos erR){V(t'R)gz' (t,R)

- 47
Yz',O(t’R) - Vz.(t,R)Qo(t)Yz.o{EI:I Ix wo(s)

A can be expanded in the form A=2A1where Aﬂ is
2

Az(r) = é kz(r,R)gz(R)

k., r and multiplied by r. Let us call what we obtain A. Then

(5.90)

(5.91)

(5.92)
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with

_ +1

kz= 327 (r.R) fl d cos erR Pn(cos erR){V(t,R)

¢'(t,R)Yz.(€R) -~V ¢(t)Y2,(t:R)}¢O(S) (5.92)

which in terms of r and R becomes

+1
K (r,R) =32 1 P,(wdu.e B&IY & - L
2 -1 g ¥ BA r B
oM Gon g - 2 B g e (5.93)

where A and B are defined in (6.17) and (6.17'). We have two

(1)

regions in which @ and 61 have different values. In

region

an'ZR(u-}_,)z + (1- lz)]} (5.94)

A
“61(A,R) = =

RZ

(1) 4 [-A ~A, A 3 _-2R, 12
¢l (AZR) —/g—ljgz e (¥+z) g e (1+§)

1 2 -A 1l +A
X {(—A-2-+-K+ 2)e ";‘2-6 }] (5.95)
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In regioh (1) both Xl and ¢£l) aR as R goes to zero. Hence
k goes to zero with R. In region (2) %1 and ¢ _ oA so that
the integrand is finite in (5.93) at A = 0. At B = O there
is a singularity.

In the same way we can calculate Pl(H ~ E)Qlwl. The

corresponding kernel is

+1 -A
K(R,r) = 64n(r.R)F 1 OKP (0 e
‘ "F*B%'_’]E]E% ‘%‘A)“’;l) (e,m) ) - v, (B,r)e”® 1 (5.96)
i (1) Bo>r
3 _r
¥y =23
bW (r,m) =2 e-B{;;.—z(!5+B) - %(i-z +24+2
~2r ,1 19
xfe#mdsn+a- %) “75 (5.97)
(2) B«<r
¥=2;
2
(1) _4fB_ ,,.B,. -B _ 3 -2r, .12
L =3 [rz (3+7)e g e (1+)
01 L 2 B 1 _-B
xy=, + 5+ 2) e -2 e (5.98)
}Bz B 52 g]
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at A = O there is a singularity for k(r,R).

This way of forming Pl(H - E)sz2 and P2(H - E)Ql‘p1

enables us to add them to the scattering equations (5.33)
(5.34) in a way such that all that is needed to be done is
to have a new kernel in each channel. Each kernel is the
sum of the original kernel (5.35) and the new one. The new

equations are solved as in the first time.
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5.6 The variational principle

Hahn (1965) has obtained a variational principle for
the scattering phase shift. If tan 6? 1s the %th partial
wave phase shift obtained in the exact solution of equation

(6.24) then

) (5.99)

i)

tan &, 3 tan GzA -(Zuk)-l(Q¢Az'(H - E)y

where A stands for the trial wave function and § for the
particular partial wave. The second term in (5.99) is

written in the form

Fo(r)
1= s g (r,s)):H - EigP (z,8) + uis))

F(r _
X —E—ég df = Il + 12 (5.99")

where I, and I2 correspond to the first and second terms in
the brackets { } respectively. By using the Schrodinger
equation for hydrogen and the orthogonality of wo(s) and

¢(1)(r,s) we obtain

2
I, = f—F—-—(§)de¢p(r.s) (3 - $)yg(s)as (5.100)

r

and by using the property
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(1)

(Hy = eg)@,(r,5) = By ()8

Il becomes

+ I + I + I

12 13 14

w0 V¢o(s)

2 2
= rrE (L) gP 2,k 1.1
I,, = /S 2 [@* (x,s) | “ ¢ 5 + £+ §) drds
F () | ,p 11
I12 = -fﬁ—;i" | @ (rpS)(? - E)wo(S) dE d§
I = -!ﬁgzi£)¢9(r 3) (l + 1) e—er (s) dr ds
13 = 2 81 7 o) r ds
1, = IEEWP(r,5)7 % 0P (x,) 2 Ekr as

when I1 is added to Iz, 112 cancels out with I,.

left are the terms 111,113 and 114.

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

What is
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CHAPTER SIX
Solution of the equations

6.1 The linear equations:

One of the methods of solving equations (5.33) and
(5.34) is to reduce them to a set of simultaneous algebraic

equations. We start by writing them in the form

az2 2 (2+1) 2

(==, - ==L 4+ k%) £ _(r) = @(r) (6.1)
dr2 r2 n

a2 2 (2+1) 2

(==, - === 4+ K°) g (R) = O(R) (6.2)
dR2 RZ n

Mott and Massy (1949) have obtained the solutions to

these equations. The solutions are

£ (r) = A W_(kr) +i fodr'Lno(r,r')¢(r')dr' (6.3)
g (R) = A'W_(KR) + % [ dR'L' (R,R')D(R')AR’ (6.4)
0

Wn(x) = x j(x) and where

L (x,x') = xx' j (x) %(x>) with (6.5)

kr and x' = k'
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Here jn(x) and n,_(x) are the nth order spherical Bessel

~ functions apd Neumann functions respectively. The signs

< and > are there to indicate when x takes the wvalue x°'.
In (6.4) it is meant that jn(x) takes the value jn(x) for
x{x' and the value i, (x') otherwise. The same is said
about the Neumann function. The boundary conditions for fn
and 9n require that they both go to zero with r and R and
in the asymptotic region they have the forms

fn(r) v A o sin(kr—%nn)+Bio cos (kr-%nw) (6.6)

i

gn(r) " Ail sin(KRr%nn)+Bil cos (KR-%nw) (6.7)

with B satisfying

L kn) 3 (kn)@() ar (6.8)
0

B = -k

We substitute for #§ and ® from equations (5.33) and (5.34).

Equation (6.3) becomes
= xa° T
kfn(r) = kA Wn(kr) + é dr'Ln(r,r')ZUOO(r')fn(r')

+ é dr § (r,R) g, (R) _ (6.9)
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with
h (r,R) = 16 sar'L_(r,r')i_(r',R)r . R.2r
0 n n
and
1 +1
k.n(r IR) = -{ duK"fr,R)Pn(u) n =

Equation (6.4) becomnes

Kg, (R) = KA W_(KR) + E; dr En(R,r) £,{r)
with
'ﬁn(R,r) = 32 Z dR'Ln(R',R)‘En(R',r).(R'xr)zn(r)
where
+1

kn(R',r) = _{

du Klo(R'.f)Pn(u)

cos er.R

Here uy is the cosine of the angle between R' and r.

notice that according to the definition of Ky

must satisfy the symmetry

Ki0(Rrr) = Ky, (r,R)

o)

and K

(6.10)

(6.11)

(6.12)

(6.14)

We

ol

they

(6.15)



These kernels, as defined after equation (5.34), need to

be expressed in terms of r and R only. Thus, they take the

form

1 - - flems
k(r,R)=%%§L%—§—k2-2+%+%+%1eAB (6.16)
where

A = /R" + r2 -2rRy B

fl
j
o
+
Ly ]

1
>
v
5]

=

(6.17)

and

C = 2R% + r? - 3Rry (6.17)"

k(r,R) goes through a singularity for R = r and r = 2R. 1In
equation (6.16) the wave functions of hydrogen and posit-
ronium have been written explicitly. The values -% and -%

have been assigned to e, and o respectively.

0

Our coupled equations are now (6.9) and (6.12). At
this stage they can be reduced to a set of'algebraic linear
equations. That can be done by replacing the integration
by a summation. With fn(r) and anR) the unknowns, the

two equations are




N N

AOkWn(kr) = kf (r) + i a; (r)£(xy) + g bj(R)g(Rj) (6.18)
N

A'KWn(KR) = Kgn(R) + i ci(r)fn(ri) (6.19)

We can have 2N equations by assigning to r and R all the N

values taken in the summation., These are

0 -
A kWn(krl) = kfn(rl) + allfn(rl) + alzfn(rz) +...+alen(rn)

"'+bllgn(Rl) + blzg(Rz) +...+blNgn(RN)

0. _ .
A kwn(krz) = kfn(rz) + azlfn(rl) + a22fn(r2) +...+a2an(rN)

? —
A KWn(KRl) = Kgn(Rl) + Cllfn(rl) +one

A'Kwn(Knl) = Kg_ (R,) + C, £, (ry) +... (6.20)

These equations with the 2N unknowns f£(r,), f(rz)...
g(Rl),g(Rz)... have a matrix of coefficients which is 2N x 2N,
It consists of four submatrices. Sub-matrix 11 is of elements

ay4 except the diagonal to which k is added. Sub-matrix 12
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is of elements bij' Sub-matrix 21 is of elements cij' The
elements of sub-matrix 22 are all zeros or polarization if
it is present except the diagonal where K is added. The
left-hand side of the equations form a column matrix of

length 2N, -aij,b. and Cijhave the forms

ij
aij = Ln(ri,rj) ZUOO(rj) (6.21)
bij = hn(ri,Rj) Cij = En(Ri,rj)

If we denote the submatrices by a, b and ¢ the equations

in matrix notation are

a |\ b £, (xr)
- -
(c ‘0 > gn(R))

Here fn(r), gn(R), Wy and'W2 are all N long column matrices.

Wl(r).k
x (6.22)
WZ(R).K



-92-

6.2 The one channel case:

As a special case we take b and c¢ to be zero. This
corresponds to the set of N linear equations

(a) (£ (r))= (W(r) x k) (6.23)

In this case the kernels are equal to zero, which
means that there is no coupling. Channel 1 alone is con-

sidered. Equation (6.23) is the solution of

a2 g (2+1) 2 Y
I =L - 222 4k + UL (p)]d (r) =0 (6.24)
dr2 r2 00 ]éh

This is the static field approximation. By simply
altering the sign of Ugo ve obtain the corresponding equation
for the electron-hydrogen scattering. Equation (6.24)
constitutes the basis of the single-channel calculation of
our problem. The effective poiarization potential can be
inserted in it to study the different effects of the diff-

erent multipoles of polarization. In this case aij becomes
aij = Ln(ri'rj) X (2U00 + Vp) (6.25)

Where VP is the polarization potential considered. To
check numeriéal work we have tried (Vb=0) and compared the
result with previous work of the static field approximation.
If we take Ao = 1 then Bo gives cot qlwhere qlis the phase

shift.
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6.3 Two-channel case

Let us go back to equations (6.20). We want to
determine b and ¢ equations following (6.20). After sub-
stituting them, the set of linear equations are solved
which yields two column matrices, the elements of which are
all the various fn(ri) and gn(Ri) with the asymptotic elements
satisfying (5.43) and (5.44) with

(1) _ (1) '
/vi 13j = i'Rjk A /vk . (6.26)
where
v, = k v, = K

In order to obtain the four elements of the reactance
matrix from eguation (6.26) we need two sets of A's and B's,
This corresponds to solving the equations (6.22) twice.

Each time, different values are assigned to the A's. 1In the

R

special case when All =1, Azl = O and then A12 = 0 and
2
A2 =1, Rij have the values
- (1) _ (2), 2k
11 = By Rip =B VF
(6.27)
= (2) _ (1) , K_
Rya = By~ Ryy =B 7Y 3k

This R matrix should be symmetric and real. It has the

simple relation with the S matrix
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_ 1+ iR

which in turn is related to the transition matrix T by

1
T ='53‘f1 - s} (6.29)
hence

R
T = T—T1R

The cross section for the scattering from channel i to
channel j is

crl . = K (kiz

> =0 "Tji(”)|24%(22+1) (6.30)

where the values 1 and 2 are given to 1 in ki which yields
k and K respectively. The R matrix is the generalization
of the phase shift. It can be diagonalized by the unitary

matrix

_ (COS ¢ sin ¢)
U= (sine cose (6.31)

where ¢ is the mixing parameter. The relation between the

R matrix and the diagonalized matrix is

R = U+ tan n U (6.31)"
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where tan n is given by

o)

522 § (1) an 5(2))

tan n

61 and §2 are the eigen phase shifts. Equation (6.31) is

written
=-sin e
(SO8 € SN & . (tan §(1) o
sin ¢ cos € (o tan §(2) )
x (cos € sins) R R
-sine COSE€ = (Rll 12) (6.33)
21 R22

This is equivalent to four algebraic equations in ¢,
tané (1) and tané(2). In terms of the R matrix elements

the latter parameters are

R + R

21 12
tan 2¢ = =Sm——=%
R.. + R
=12 21
tans (1) = %|R,, + R +—_——l
[11 22 sin 2¢
R.. + R
tans (2) = 5 Ry) + Ry, - ‘I:Tri_l]
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.6.4 Extrapolation

Since results exist only for energies below the thres-
hold for positronium formation we had to extrapolate our
results into the energy region below the threshold for the
purpose of comparison with existing results. The reactance
matrix is too sensitive to enerqgy changes especially in the
cases of reéonance. We can use calculations based on the

so called M matrix (Ross and Show (1961)) defined by

M, = ki‘“"%’ (R 1) . k(D+¥) (6.35)

ni ij

where no summation rule applies. The Matrix (Rhl)ij (the

inverse reactance matrix) has the elements.

R
-1 22
(R ), = - (6.36)
11 Ry Ry»"RyoRy
-R
-1 -1 12
(R ™) = (R V) - ~ (6.37)
12 12 Ry Ry3~RyaRy
1 R1a
(R 7) = — (6.38)
22 Ry 3Ry5"Ry1Ry,
For extrapolating the M matrix we use the expansion
M,, =M + M., . k% + M k4+ (6.39)
ij oij = T1lij™ 215 *-e *

The evaluation of the phase shift of the elastic scattering

is based on the evaluation
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-1
kK cat n = Rei(MTiE) ] (6.40)
11
where
Loy o Mo Moo ,
therefore
()L = My, - ik, - y)° (6.42)
M=-1ik - 11 11 M - 1k y
22 22
and finally
M2 ?
kll cot n = M11 - M22+A (6.43)

where k = i . A=K and where kll =k. The value of the phase
shift thus obtained ¢an be compared with existing elastic
scattering results.

The extrapolation above does not hold when long range

potentials are present. It needs modification for that case.
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6.5 Computation

For each energy of the incident particle a different
set of linear algebraic equations was solved. As required
for the accuracy of the reactance matrix obtained and its
symmetry the number of points for the radial integration
should not be less than forty-eight. They are distributed
between zero and twenty five. This corresponds to a set
of 96 linear equations (as will be seen later), and a
matrix of coefficients consisting of 9216 elements.

Either we enter the subroutine of solving the equations
with the coefficients in hand, in which case we need 9216
stores, or we solve them by taking two equations at a time,
The lattér case requires unnecessary repetition of eval-
uating the kernels (see following details).

There are 2304 different (bij)‘'s in the coefficient
matrix. Each of them includes the summation of 48 ferms
. with 48 kernels.

Unless repetition and symmetry are exploited there
will be needed 2304 x 48 evaluations. From this we see
what a large amount of computing time is consumed.

The capacity of the K. D. F.J9 of the University of
Newcastle-upon-Tyne is 14,000 stores. If 9216 of them are
reserved for .the coefficients less than 5,000 stores are to

be used for different parts of the program and the program
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itself. That would not have been possible had we obtained
bad accuracy in the results which would require more points
and a larger matrix. If this had been the case we would
have been forced to perform the longer procedure of taking
two equations at a time, We have tested two rows of the
matrix and found that in such a case the evaluation of the
whole matrix would require about three hours. But if
various steps of economizing are taken the time is squeezed
to 10 minutes.

Another difficulty causing time consumption was the
behavior of the kernels at some points. They have singul-
arities at r = R and at r = 2R. One way of going about
this was to have two different mesh points for r and R, But
this is not very effective as when the intervals between
these points are divided according to a Gaussian integration
method some of the dividing points might coincide with the
mesh of the other r. Another way 1s explained in the.
following.

Because we use tﬁe Gaussian method for the interval -1
to +1 we need to change the variables so as to transform the
region -1 to +1. Two of the points dividing each interval
are very close to, but not on the ends. Therefore if we
divide the r first, then for each point we have a different

mesh for the R by inserting this point in the mesh of R.
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When Gauss division comes this point will be automatically
avolded. This method had its success. But when the
accuracy required many points the points crowded enough

to give rise to a singularity again.

Finally we turned to the kernel itself. With some
simple change of variables the singularity was removed.
Then we were free to increase the points without fear of
the kernel blowing up. In fact although the kernel goes
through a sinqgqularity its integration is meaningful. The
error comes from the discreteness of numerical techniques
(representing curves by steps).

The program briefly goes as follows., Let us consider
the elements bij ='h(r1,Rj) of equation (6.21). Because of
the integration it is a summation of terms dependent on rl.
To see the construction move precisely we introduce the
elements of a three dimensional matrix (see diagram in
figure (6). As in the diagram, these elements occupy stores
which are numbered in three directions. The horizontal
one is i, the vertical one is j and the third one is k.

From equation (6.10) it is seen that Si x can be factored

= 3
]_ —
into bik X bjk where
o =L (r,r}) and, B., = k(r: , R.)rE, R (6.44)
ik = tp'tyT ) and, B4y = k r 5Tk Ny .
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This enables us to evaluate Sjk once and for all for each
column i, store copies of it in the appropriate stores,

and multiply each with Bik‘ By doing that the time of
calculating the kernels is saved. If this is repeated for
all the other elements k (the third dimension) from 1 to
48, each time adding a new Sijk to what has been accumulated
in the corresponding store, we end up by having all the
integrations in one column done. The procedure is repeated
for all columns. The symmetry of the kernels is exploited
by storing copies of them when forming the b sub-matrix,
and then using them later for forming the ¢ sub-matrix. 1In
order to be able to reverse the k matrix it must be square.
Unfortunately when we used 48 points for the intermediate
integration it was not accurate enough. By increasing the
number the matrix became rectangular. The other dimension
of it is already in its maximum. Therefore this symmetry

was not used.

RTIET

o
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CHAPTER 7

Results and Conclusion

7.1 One channel case:

The s- and p~- wave phase shifts for various polarization
potentials calculated in the one-channel treatment are shown
in tables (1) and (2) respectively. In column (1) of these
tables the phase shifts are listed when only the dipole part
of the polarization is included. This is the most important
contribhution to polarizatioh. The next most important part
is the quadrupole. Column (2) of the table shows the phase
shifts when the dipole and the quadrupole terms are included.
The monopole contribution to the polarization is of short
range. Drachman (1965) has shown that the monopole term
provides a potential which is too_large. The phase shifts
when including dipole, quadrupole, and monopole terms are
shown in column (3).

In column (4) we include the phase shifts using the
complete polarization calculéted by Dalgarno and Lynn (1957)
and used by Deachman (1965). 1In column (6) we include
Schwartz's wave phase shifts (196l1). Schwartz results are
expected to be accurate. But there is some doubt about

that. Cody et. al(1964) found that by allowing for virtual
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positronium formation the results exceeded those of Schwartz'
bounds. Stone (1966) suggested that the results should
improve when more multipoles are added in the polarization.
Heoonsidered Schwartz results as accurate and hence showed
some doubt about the results of Drachman whose phase shifts,
with the complete potential exceed those of Schwartz con-
siderably. We have recalculated the phase shifts with the
complete potential and obtained results which agree to
within 1% with those of Drachman.

Temkin and Lamkin (1961) introduced a polarization
potential based on a wave function containing a step function
that forces the perturbed wave function to be zero when
the incident particle lies within the target atom. In table
(1) column (5) we include the phase shifts calculated by
Cody et. al (1964) based on this approximation. Their
approximation is in principle equivalent to the dipole
approximation,

‘The results of Stone (1966) using a dipole wave function
obtained by variational methods are in good agreement with
the corresponding approximation (column 1). They are not

included in the tables.
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7.2 The two-channel case

The elastic scattering cross=-sections Qll have been
caiculated for incident wave numbers up to 1 atomic unit.
The results for the s-wave are shown in figure (2). Those
of the p-wave are showvn in figure (3). The different graphs
correspond to different approximations which have been used
in the calculations. A is the approximation of including
vertual positronium formation, and no polarization is
included. B(l) is the same as A but with the dipole poten-
tial included in channel 1 and channel 2, B(2) is the
same as A but with the dipole and quadrupole potentials
included in the first channel and only the dipole in the
second channel. B(3) is the same as A but with the dipole,
quadrupole and the monopole potentials included in the first
channel and only the dipole in the second channel.

The reason for including only the dipole in the second
channel in approximations B(2) and B(3) is that they are
identically zero in that channel.

The cross section for positronium formation Q5 is
shown in figure (4) for the s-wave and in figure (5) for
the p-wave. Approximations A and B(l) have been used to
calculate the cross sections for 1 = 2 Table (4). They
show that the 1 = 2 wave has little contribution to make

for the cross sections compared with the 1 =0 and 1 =1
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cases. Polarization emphasises the effect of this wave in
the elastic scattering.

If the reactance matrix is diagonalized we obtain
results that can be compared with the phase shifts of the
existiﬁg one-channel approximation results, for the multi-
channel scéttering process 1is determined by the specif-
ication of the eigenphase shifts and of the mixing para-
meters. Diagonalizing the reactance matrix was done by
help of the real orthogonal U matrix defined in equation
(6.31). In Table (6) the mixing parameters are included
together with the eigenphase shifts. It must be noted

that physical effects are not affected by the addition of

multiples of 2H-in eigen phase éhifts.

In figures (4) and (5) cross sections are included for
the Positronium formation Q5 in two cases 1 = 0 and 1 =1
respectively. It is noticed that in the no-polarization
case the cross section for positronium formation is very
small. We can interpret that as the result of decoupling
of the two channels when ¢ is too small. Although the
feature has often been noticed (Bransden 1965) in methods
based on variational principles, it seems that this case
is an extreme. The behaviour of the total positronium

formation cross sections

0= I 0, (1) | . (7.1)
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which rise to a miximum in magnitude of order ag

momentum k = 1.0 (a.u.) is, in contrast, entirely what would

at

be expected.

It was interesting to check numerical work by compar-
ing the extrapolation of our msults to the region below
the threshold of positronium formation with those of Cody et.
al. (1964). The M matrix (Ross and Shaw 1961) was extra-
rulated for 1 = 0. The agreement was very good considering
the extrapolation involved.

When polarization is present, the picture gets more
complicated., In the case when 1 = O the mixing parameter
is large now. The coupling is consequently important. The
scattering is affected by producing a bigger probability of
positronium formation. Q15 is then increased considerably,
while Qll is reduced. This is not the case when 1l =1, For
then an opposite effect is produced. Q2 which was large
for no-polarization is reduced and Q11 increased. 1In this
case Q,, rises slowly above threshold but for 1 = O Q15 has
a peak just above threshold, then drops very steeply when
the energy increases. The position of the peak is (k =
0.7071) . But since it is not possible to get very good
calculations in the neighburhood of the threshold we say

that the peak is near (k = 0.71).
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The general feature of the s~wave scattering cross
section suggests that the reactance matrix has a pole just
below threshold, probably representing a bound state in the
positron-proton channel. The behaviour of 62 is incon-
sistent with this. Our first attempt to confirm this
picture was to extrapolate below threshold using the M
matrix method. The second attempt was to calculate directly
from the scattering equations. The M matrix elements were
too sensitive for accurate results to be obtained. Direct
calculations break down just below threshold. However, the
results strongly suggest that a bound state exists in channel
2, giving rise to a resonance in the et - # channel near

k = 0.706. For 1l =1 and 1 = 2 no trace of a pole is seen.
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7.3 Conclusion

The conclusion that can be drawn from the results of
our one-channel calculations is that polarization effects
arise mailnly from the contribution of the dipole and quad-
rupole terms of the polarization series. All higher terms
are unimportant. We also conclude that the monopole should
not be included for s-wave scattering. Perhaps instead of
the monopole one should use long-range correlation terms to
be determined variationally, as has been done by Burme and
Taylor (1966) for electron-hydrogen scattering.

As in the one-channel treatment the cross sections in
the two-channel treatment are seen to be rather sensitive to
the details of the polarization potential used. It is
noticed, though, that the difference between approximation
A and any of the approximations (B) is large compared with
the differences between the different approximations (B).
This leads us to derive the conclusion that proper account
must be taken of polarization effects in this reaction. We
feel that this is most probably the case for rearrangement

collisions in general.
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FIGURE LEGENDS

FIGURE 1

The cross-section for positronium formation calculated
by Massy and More (1954).

Curve l: First Born Approximation

Curve 2: Distorted wave Approximation
FIGURE 2

The elastic partial cross-section for et-n scattering
for the partial wave | : ¢

Curve (A): No polarization included

Curve (Bl): Dipole potential included

Curve (B2): Dipole and Quadrupole potentials included

Curve (B3): Dipole Quadrupole and Monopole potentials

included

FIGURE 3

The elastic partial cross-section for et-n scattering
for the partial wave {:) (a),(Bl),(B2), and (B3) represent
the same approximations mentioned above.
FIGURE 4

The positronium formation cross-section for et-n
scattering for the partial wave Q:.v
FIGURE 5

The positronium formation cross-section for et-n

scattering for the partial wave @ = |
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FIGURE 6
Illustration of storage for kernels K01(r'R) and

Klo(R,r) in a three dimensional matrix.
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Table 3

Variational corrections to siv:ave hase shifts
— TncTuding the dlpole potemtlal —
k Phase Shift Correction
0.1 0.098 0.01025
0.2 0.114 0.00853
0.3 0.087 0.00688
0.4 0.041 0.00569
0.5 -0.010 0.00486
0.6 -0.062 0.00435
0.7 -0.111 0.00388

0.8 =-0.157 0.00347



kl(a.u)

0.72
0.74
0.8
0.9

Table 4

A B(1l)

04 Q5 Q4 0,
1.7x10™3 1.6x10 2 0.30 3.6x10"°
2.0x10"3 1.2x10"2 0.31 3.2x10"2
3.3x10" 3 6.3x10"2 0.30 1.2x10"2
7.6x10"3 8.1x10"2 0.30 8.3x10™2

The cross-sections for 1 = 2 using wave
functions in approximations A and B(l)

Qll = elastic cross-section for e+-H scattering

in units of ag

le = positronium formation cross-section in
2

units of a5
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k(a.u) ) r
0.7 -0.29 -0.286
0.6 -0024 -0¢238
005 -0.20 -00186
004 -0.15 -00134
Table 5 Phase shifts (1 = 0) for elastic
scattering of positrons by hydrogen.

§ is the 1 = 0 phase shift obtained

by extrapolating the results of
approximation (A) below the
positronium formation threshold.

8 is the 1 = O phase shift computed

directly by Cody et al. in the
same approximation.



Eigenphase shifts and Mixing parameters for 1 = O
near threshold

No polarisation

k{a.u)
0.71
0.715
0.72
0.73
0.74
0.77

N\

=123~

Table 6

Approximation A

8y
-0.294
-0.296
-0.299
-0.303
-0.307

-0.332

2

-0.413
-0.548
-0.721
-0.826
~1.168

N

€
-0.006
+0.004
0.003
0.003
0.004

0.005

-0.022
-0.039
=-0.052
-0.074
-0.096

Polarisation

Approximation B(1l)

4

62 €
1.819 0.285
1.412 0.263
1.198 0.292
0.937 0.324
0.768 0.440
0.463 0.569

-O. 159
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