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ABSTRACT

This thesis deals with some general work on the use of
inverse amplitude dispersion relations to describe low—energy
7 1 and K scattering, and how the sub-threshold amplitudes

may then be used to describe non-leptonic decays.,

In chapter one we introduce the ideas which form the background
to the structure of meson-meson scattering.

In chapter two we investigate a four parameter family of
solutions to the w+T partial-wave dispersion relations using
the inverse amplitude method assuming elastic unitarity. The
S-waves have sub-threshold zeros consistent with the Adler condition
and inelastic effects are estimated and found to be small below

the rho-meson mass,

In chapter three we analytically continue the sub=-threshold
1 amplitude found previously to fit the structure of the

Dalitz plot in the non-leptonic decays K — 31 and 7-493-n- .

In chapter four we review the unitary effective-range
expansions which have heen used to describe 1T scattering, and
we examine a new unitary effective-range expansion which we use
to describe the S-waves of 1K scattering giving some estimate of

the left-hand cut coatributions to the amplitude.

In chapter five we extend these amplitudes by moking a careful
analysis of the left-hand cut and circle cut contributions to the
7T K partial-wave dispersion relations using the inverse

amplitude method.

Finally in chapter six we investigate how the 1 and its



associated SU(3) generalization, the & (962), f£it into the overall

picture we are able to conclude from our caleulation;.




CHAPTER 1.

INTRODUCTION

1.1 S-matrix approach

A complete knowledge of the S-matrix (1) is the ultimate
aim of hadron physics. The S-matrix approach directly links theory
and experimentj all experimental data is immediately related to
the scattering matrix. In principle all the matrix elements should
be obtainable from experiment, but in practice only those with
two initial particles are directly accessible, when further the
target is either a proton or s compound nucleus, The details of
other interesting processes can be explored, however, by exploiting
some of the general properties of the S-matrix. Current evidence
suggests that S-matrix elements possess properties of analyticity,
unitarity and crossing symmetry, and in this thesis we use these
three principles (together with various physical assumptions and
approximations) to study the low-energy interagtion of the lightest

pseudoscalar mesonsi- pions and kaons.

The +rrv and +r K processes we study are, of course, not
directly accessible to experiment. However, hecause they involve
the lightest and simplest mesons which are freely produced in
collisions and decays, they have an immediate and considerable effect
on other processes which are directly measurable in detail. For
example, the +v K interaction plays an important role in processes
involving kaons, such as KN scattering. The force of longest range
comes from the exchange of a pion pair in éhe isotopic spin state

I =20 (g). Such an exchange takes place through the reaction.

~tm = Kk —> NN. (1.1)
A knowledge of the pw, K, and v N interactions is thus necessary

to determine this process. Moreover their property of kinematical
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simplicity makes v and +r K systems well suited to the testing

and development of dynamicel ideos, free of complications.

In the rest of this chapter we briefly state the main ideas
which will later be used in calculations and comparisons with
experiments. This is terse and descriptive, with the detailed
technicalities confined to a series of appendices. We conclude
this introductory chapter with a discussion of the Venezieno
model, which has had notable success in describing =ivv and

1K processes and with which we compare our results.

1.2 Kinematics

Appendix A sets out in deteil the usual s,t,u kinematical
variables which we use and defines notation, normelization,
isospin crossing matrices, phase space factors etc. These results

are entirely standard.

1.3 Experiments

Appendix B describes how we derive our knowledge of the
amplitudes for wrr and w K scattering from high energy peripheral
meson production using the ideas of Chew, Low and Goebel (g).
Figure (1.1) is a diagrammatic representation of how we extract
the = omplitudes, and figure (1.2) shows the "up-down" ambiguity

in the phase shifts which results from the extropolation procedure.

l.4 Rigorous constraints and sumn rules

The v 1T system was the first to which the consideretions of
unitarity and analyticity were applied (g), because it was recognized
thot this system has simple features, namely:

(i) Complete crossing symmetry.

(ii) Stability of the particles and nbsence of unphysical cuts
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and anomalous thresholds due to the small mass of the pion.

Many people have since been searching for the solution to
the problem of finding a class of functions A(s,t,u) compatible
with crossing, analyticity and unitarity, and describing the nt > rmmnm
amplitude. In porticular the main areas of research are

(i) Finding the minimum input in addition to the ahove
constraints to completely determine the low energy amplitude

(ii) Are current algebra constraints compatible with
unitarity and if so what is their extrapolation to the resonance
region?

found
Although a uniqgue amplitude has not yet beenpthe class of

functions A(s,t,u) is severely restricted by the rigorous

analyticity constraints developed by Martin et al. (§), and also

by the crossing sum rules developed by Balachandran and Nuyts (g)

and by Roskies (7). In appendix C we rederive some of the earlier
constraints found by Jin and Martin (g) and &lso five of the crossing

sum rules found by Roskies et al. (6-9).

1.5 Soft meson theory

Any model thet predicts nw and wK phase shifts from a
dispersion relation has to be able to give some prediction for the
subtraction term in the dispersion relotion, which is usually the
value of the amplitude at some point below threshold. The most
successful models so far have been based on current algebra and
the hypothesis of partially conserved axial-vector current (PCAC).
These models give good predictions for the S-wave scaltering
lengths, and the amplitudes are anelytic and crossing symmetric but

not unitary. Because they are parsmeter free we rederive in appendix
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D the models of Weinberg (10) and Griffith (11) for ner andrrK
scattering respectively as their results will be used in later
chapters. We nlso give there a simple derivation of one of the
most powerful constraints on meson-meson scattering - the Adler

consistency relations (12).

1.6 Veneziano model

The current algebre results depend on the idea of single
meson dominance. It is now helieved that there is a series of
partigles, equally spaced in (mn.ss)2 with each sapin and set of
internal quantum numbers e.g. In addition to the P there should
be f;, ff etc. This belief comes not from experiment (where the f;
and ﬁ have not yet been abserved) but from the widesprend success
in strong interaction phenomenology which has followed from the
Veneziano model (15) which assumes the existence of linear Regge

trajectories with equally spaced daughters. Thus instead of a

factor
__&8 (1.2)
2
qf - S

in calculations we should have something like

gl x g2 x g3 X ——— (1.3)
2 . 2, _ 2. _
Mf - 8 Hf S Mf’ S

which is equivalent to the use of the [ function

M1 -a(s)) (1.4)

where in the cese we asre considering A (s) is the Regge trajectory.
g F Heg y

The Veneziano amplitude ny (syt) is defined by


http://ce.se

Voy (808) = T - & (s)) ' (1 - (1)), (1.5)

P - o (s) - o (t)

The invarient amplitude A(s,t,u) for mmscattering is given by

A(s,t,u) = ﬁ(vﬂ,(s,t) + fo(s,u) - vﬁ,(t,u)) (1.8)

and that for wK-=-nK is given by
K (sytyu) = Y (vge, (250) * Vi (ust)) (1.7)

where f and ¥ are normalization constants, akf(s) is the exchenge

degenerate linear f -f - A2 - w trajectory, and o(th (s) is the

exchange degenrate linear k¥ (820) - ¥* ™ (1420) trajectory.

If we now just consider the m n = nnamplitude then the sihgle
Veneziano term hes many properties in agreement with current algebra
(18).

(i) It satisfies the Adler consistency condition as equation

(1.5) has & factor a\f,(s) + o(f(t) ~ 1 and this is zero when

2
o{/(}l-)=’1“ (1.8)

which agrees with the phenomenologiecal }oﬂegge trajectory.

(ii) The Veneziano amplitude assumes the existence of an I = 0
S-wave resonance in nrscattering (o) and an I = ¥ S-vave resonance
in K scattering () as they are the first daughters of the/ and
k¥ (890) respectively. It predictsthe equality of the r and o~y
and K* (890) and It masses, and also the following reletion for the

ratio of the widthss

reg) = 2 (1.9)
I' (o) 9

Both of these predictions are in agreement with current algebra (17).
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(iii) The scattering lengths are within 10% of those
predicted by Weinberg (lg).

(iv) If we assume soft-kaon PCAC we get the obvious
generalization of (1.8)

A w(n®) =% (1.10)

and we obtain the two SU(8) sum rules

2 2 2 2

mes - m = mp - (1.11)
2 2 2 2 5
m A, m, = my, e (1.12)

If s = 0 then {1.12) agrees with the deduction of Weinberg (17)

(v) When we take one of the external pions off mass-shell
to a lerge positive mass, we consider the 3+ decay of a particle
withe the same guantum numbers as the pion. This will have the
same Regge trajectory as nm scattering so the Veneziano form can
only differ by some overall constent. ¥ith a single Veneziano term
we can then predict everything except the total decay rate. A single
term expansion gives good fits to the K-» 3 and q—a3rr Dalitz plots.

Thie is discussed further in chapter three.

The basic model a8 stated above is not unitary as all the poles
appear as poles on the real axis. Since unitarity requires Regge
trajectories to become complex ebove threshold the simplest
phenomenological prescription has been to add imaginary parts to the
ci's above threshold and leave them unchanged below. However, not
only does this introduce ancestors and violate crossing and unitarity,
but it violates unitarity badly in that resoﬁunces such as the 7 and
o~ get equnl widths although they heave different couplings. Note

elso that ag the I = 2 chammel is exotic the I = 2 amplitude stays
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real. Lovelace's K-matrix technique (¥§) partly overcomes these

difficulties.

For o partiol wave projection of the Veneziano formula YL we

write

A () = v, (s) / (1+p(s) Vv, (s)) (1.13)
where Ing,(s) = -2x/ /8. (1.14)

This form satisfies elastic unitarity and the poles move off the
real axis with finite widths. Phase shifts may now be predicted for
meson-meson scattering and figures (1.3) and (1.4) show the results
for nn o nn and m K= nK processes. It can be seen that both S—-waves

"up- dowa’
favour the "down———up" solution.

The above equations (1.13) and (1.14) do not put any constraint
on Re fl_(s) and the equations as written above have lost their simple
crossing symmetry at the expense of gaining elastic unitarity.
Several models (19) have been proposed for Rep; (s) giving it some
analyticity on the left and right hand unitarity cuts, and using
the crossing sum rules of Roskies (7) to regain crossing symmetry

in some global sense. The resultant phase shifts are still in

agreement with those of figures (1.3) and (1.4).
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Fig. 1.2

ambiguity.

sZxperimental I = O S-wave phase shifts
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CHAPTER 2

LOW-ENERGY v T SCATTERING

2.1 Introduction

It is a common feature of all low—energy n rmrmodels, which
satisfy analyticity, unitarity and crossing symmetry (e.g. (gg, 21))
and allow a resonating P-wave, that they give S-wave scattering
lengths in close agreement with current algebra. In contrast the
work of Atkinson and Kupsch (22) has shown us that there are on
infinity of functions which satisfy the fundamental requirements,
and s0 in principle we might expect to find models with wide ranges
of values of S—wave scattering lengths, Dilley (g?) has indeed
foundy using a perameterization that allows him to extend his
amplitude above threshold (24), that there exists a large number
of solutions for the an S-wave amplitude in the low energy region.
(Similar results have also been found by Ader et al (25) for sTK
scattering). His solutions fall into two distinct classes:

(i) The S~wave dominant type originally studied by Chew,
Mandelstam and Noyes (g§) and which were found by them to give only
e small P-wave amplitude.

(ii) The P-wave dominant type obtained by most axiomatic
models. Within this class current algebra S-wave scattering lengths
ar8 favoured.

The relationship between nn models which incorporate the
existence of the rho-meson and those which incorporate current
algebra input is explained by Dilley's results as his second class
of S-wave amplitudes are cheracterised by having zeros below
threshold. It is easy to see how this is related to the physical
requirements of a resonating P-wavej; for whilst the P-waves have

kinematic zeros at threshold, the S-waves are in principle only

bounded by unitarity which gives
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P
Bl > \Ai(s)] (2-1)

Thus we would expect the S-~wave to dominate the whole

scattering amplitude in the low energy region. However we

know that if the S-~waves do dominate we can have no rho resonance
(26), but, of course, the converse is not obvious i.e., It may be

possible to have large P-waves and large S—waves.

Since kinematics and unitarity alone do not allow the P-waves
to dominate, we are forced to introduce dynamical zeros into these
partial wave amplitﬁ&es in order to guarantee the existence 6} the
Pennington and Pond (27) have shown that such zeros which must be
present in physical nvT) S-waves are identical with those implied

by the Adler comsistency condition.

Most of the results that favour the "up" solution above the f
mass are of the type where a model for the totalmn mass spectrum
is assumed as input to the celculetion e.g.. the Veneziano model
input in the work of Tryon (28) and the Regge pole model with
unitarity cuts of Moffnt et al. (29). Their final amplitudes can
be made to give current algebrea scattering lengths, ond satisfy
all the constraint equations and crossing sum rules below thresholdj
howvever, it seems to us that one of the mein objectives in
scattering is to determine the mass spectrum in the energy region
below 1 GeV., given only that the P-vwave is f’ dominated, and D -
and higher waves are small. Assuning the existence of the ¢~ near the fp
vill always generate phase shifts of the conventional Breit-Wigner
"down-up" type, and thus these models loose a lot of their predictive

powe Te

In this chapter we present a simple model for the nm interaction
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in the region Is < 1 GeV, (§p), using inverse amplitude dispersion
relations, and by not assuming any mass spectrum for the S-waves
ve are able to investigate the existence of the g and its

relationship with the f

The approoch leads to a four parameter family of crossing-
symmetric and unitary S-, P- and D- wove amplitudes. Vhile the
four parameters may be varied to study within a single framework
the properties of s large class of models, in the present work we
concentrate entirely on calculating amplitudes which on the one hand
satisfy as closely as possible all the general theoretical constraints
which have recently been discovered (e.g. (é})), and which on the other
interpolate available experimental data to give a detailed picture

of the low-erergy region.

A central dynamical assumption is the existence of the 1’
meson at its physical mass. Its width is (essentially) one of the
aveilable veriable parameters. No attempt is made to explnin (or

bootstrap) this particle.

In addition there are four major physical approximationss

(i) only S-, P-, and D-waves contribute in the region of
interest, §8 £ 1 GeV.

(ii) the S-wave scattering lengths are small.

(iii) elastic unitarity holds for Js £ 1 GeV,

(iv) the left hand cuts of the partial-wave amplitudes can

be estimated directly from the crossed-channel partial-wave series.

O0f these, both (i) and (iii) appear to be supported by all
analyses of peripheral pion production (%9, g}). However, we cannot

disregard the fact that through analyticity and crossing both
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higher partial waves and absorptive effects in the region
YEE} 1 GeV can influence significantly the lower waves in
j:::& 1 GeV. Such possibilities are considered in detail in

the numerical calculations.

The approximation of small S-wave scattering length (1i) is
perhaps the most restrictive. However, it is suggested by most
current theoretical models ({g, 23, Qg), and indeed has positive
experimental support, as we describe below. It should be noted,
however, that in the original work of VWeinberg we have the choice
between saying that small scattering lengths imply the VWeinberg
linear expansion is valid, or vice Versa, which was the way the
model was originally proposed. This dichotomy has now bheen solved

by recent experimental data.

The fourth approximation allows the use of crossing to close
the calculational system of integral equations. It is equivalent to
disregarding the presence of the third double spectral function, which
is at least consistent with the ideas of exchange degeneracy (§§).
In practice, the partial-wave dispersion relations are subtracted and
repidly convergent, and hence insensitive to deteails of the distant
left-~hand cut. Our ignorence of £his region is absorbed into

subtraction constants.

The next section describes in detail the construction of the
inverse amplitude dispersion relations for £_$;2 (Qg), and describes
how they are solved when subtraction constants and pole terms
(amplitude gzeros) are specified. This is the place vhere the four
variable parameters enter, according to a subtraction scheie relying

on assumption (ii) above - that the thresholds are wveak.
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The partial waves in the Mandelstam triangle (s, t, u all
positive) are linked together by an approximate representation
in terms of e crossing - symmetric quadratic polynomial expression,
vhich parameterizes the subthreshold amplitudes in terms of four
independent real coefficients. These may be taken to be the P-wave
scattering length, the two S-wave scattering lengths, and the Chew-
Mandelstam coupling constant (g). Choosing values of these quantities
fixes the dispersion~relation subtraction constants, and determines

the amplitude zeros (which lead to pole-terms).

Therefore, the output phase shifts are expressed through
subtrections in terms of the r?-qmeson mass and four low-energy
parameters, and connected in a controllable and explicitly crossing-
symmetric way to the size, shape and zero-structure of the subthreshold

amplitudes.

The input parameters (including extra phenomenologicel inelastic
terms, and higher partial waves) may be varied to séek satisfaction
.of detailed analyticity and crossing constraints, and to obtain
agreement with various pieces of experimental information. 1In the
process, the self-consistency of the model can be checked, (details

are given in section 3).

The numerical results presented in section 4 show that there
are solutions to the model which satisfy all but one of the
desirable constraints and properties — this in itself is not trivial.
Moreover, the range of possible acceptoble solutions is guite narrow
and agrees rather well with the results of related but substantially

different approaches.

The principal feature of the results is the strong preference
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for a resonant isoscalar S-wave - a super broad g— with the phase
shift choosing a down behaviour above the 90° position. This is
true even when inelasticity (expected to be strong in this wave

about 1 GeV.) is taken into account (see section 5).

2,2 Method
The first part of this section describesthe inverse-amplitude
dispersion relations (34), and the second gives details of the

polynomial amplitudes which tie them together.

A. Dispersion Relations.

The analytic properties of 11 (s) in the s—plane are well known
(4). Defining ﬁi(s) = (Ai_(s))-l, on the right-hand cut elastic
unitarity reads

In B, (s) = - Als) (2.2)

wherelﬂ(s) = ((s-@)~2)/s)%. Then e dispersion relation for Bi(s)
may be written
By (8) = H(s) - H(s)) +Bi(s) +Ly(s) + By(s) +R(s) (2.3)

where a subtraction is made at s = s, (which may depend on I and{ ).

The advantage of this expression is that from (2.2) the elastic
right-hand cut contribution H can be evelusted once and for all in

closed form independent of I a.nd.l;
oo

H(S) =

1 —p(s') as'
™ (s'=s)

-1 f(u,( s) + 1) 824/3. (2.4)



- 14 -

For 8<£4 2, H is eveluated by encircling the branch-points

anticlockwise.

0f the other terms in (2.3) 1(so) and B (so) are subtraction

constants, and the left-hand cut contribution is

<]

Ly (8) = = (s-s,) 1AL (4) s’
™ \aj(é)r (s'-s) (s' -s,)
—cP

(2.5)

Possible poles of Bi(s) (zeros of A (s) are represented by PI(B)’

which for one simple pole at s = sp, has the form

(s-so) c

(=) (s -5,)

where ¢ = da (s) -1

ds 8=8

The imnelastic part of the right-hand cut contributes

. o0
R = -(s - s)) i(3) p(sr) as (2.6)
n (s'-s) (&' -3s)
S

where ri fs) is the ratio of inelastic to elastic partial-vave

cross — sections and from equations (A33) and (A34) is

f‘:: (S) = - (,)1;)2 2
\91 ExP(&SI) - \\

with jE;n > 1 GeV (assumption (iii)).

(2.7)

There are fivepartial waves in the model, and the amplitudes

‘are calculated interatively, es follows.,
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The first step is the specification of each velue of so,
I 3
Bl(so)’ 1’:(3) and l‘.i(s).. Then with an initial choice of L,(s)
(zero is convenient, but other choices lead to the same result)
1
B&(s) may be calculeted for s ranging from some left—hand cutoff - /\

to a convenient right-hand point, ( s 2 1 GeV), and Ai(s) constructed

by inversion.

Now a better approximation to the amplitude is calculated by
using an estimate of L{(s) obtained from (2.5) by integrating over

a left-hand discontinuity given by crossing (4) (assumption (iv))s

((u:u: )2,@ 2(:2.2”)? A(1a b_s_ )I“ﬂi:(t) At

H2-8

hep 2 2 !
eyt @ (25 A g @X ) % (128 | TRl de
b2 S-kx ) £ ’ ' U-f 2
ot 3-0 Lo

We can combine these two expressions into one by noting that

-Im('\ (S)

P (-z) = (-1) P&(z) and hence the second expression is equal to

Tat'a s

the first except for a factor (-1)~ but as we have

Bose statistics I + 4 is even and hence we obtain

T & () = %__ﬁ)(u a2t 2,@ 2£+|P(I+2)lﬂ (—)J 28)

bpl-s
The imaginary part of Ak(s) for 524/&2 is nceded in (2.8)

I
and the real part of A*(s) for 840 is needed in (2.5); both are
given by the previous estimates. The integral in (2.5) is cut off

at 8 = ~/\, and for s<~/\ we assume

In By(s) = Im By(-A) x (a/-A" (2.9)

The results for the phase shifts for s & 50/«_2 (where they

are most likely to be relinble) are insensitive to the precise values
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of A andol, provided®<0 and AP225 2. For all the results guoted

hereA = 0.

This straightforwvard iterative application of crossing symmetry
is repeated until two successive cycles agree. Convergence is eosy
to prove, and in practice further changes are small after 4 or 5

cycles and neglible after about 14U,

Thus by application of crossing, anslyticity and unitarity
(which is explicit at each stage) output amnlitudes are produced
depencing - on the chosen input values for s, Bi(so), Pi(s) and

Ri(s). This is where the approximate polynomial amplitudes are used.

B. Polynomial Amplitudes
It is convenient to use the standaerd Chew-Mandelstem invariant
amplitude f(s,t,u) symmetric under the interchange t=—>u and related

to the s - channel isospin amplitudes by equations (A22 - 24)

A% = 8a(s,tyu) + A(tys,u) 4 A(u,s,t)
Al = A(tys,u) - A(u,sd) (2.10)
22 - A(tysyu) + A(u,s,t)

Neglecting the threshold branch points (assumption (ii)) aud
partial waves with 12 2 (assumption (i)), we may write quite
generelly

A(sytyu) = a + b (t+u) + ctu + d(t.+u)2 (2.11)

This is an explicitly crossing-symmetric S-, P- and D-wave
description of the mn interaction at and below threshold in
terms of four real coefficients. If provides a four-parameter
subtraction scheme for the inverse-amplitude partial-wave dispersion

T
relations, and specifies any pole terms E&(s) to be inserted below
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threshold, and at threshold for 12 0. In the first category we
have in mind especially zeros of the S—waves below threshold;

the second category is the usual angular momentum zeros.

Instead of the constants a, b, ¢y d it is more convenient to
perametrise the subthreshold amplitudes in terms of the following
four alternaotive independent quantities:

(i) the ratio of isoscalar and isotensor S-wave scattering
lengths, R = a.O/a2 5

(ii) the t - channel isovector combination of scattering
lengths, L = (2a  ~ 552)/6;

1

(iii) the P-wave scattering length, a) =4 dA

ds s
t

“%L

u=20

(iv)  the Chew-landelstam coupling constant N = —A2(s=t=u=@,?/3)/2

These guentities are more convenient for direct comparison with

experiment, and with other models.

%e record here the relation between n,b,c,d and R;L;al,)\ s

2 2

B = 5a + 8. b + 32.7d (2.12)
2 2
2a + 8,b + 3%,~d
2 2
L = -4~ (b + 4,.24) (2.13)
2 2
a, = -4 (b + 4,°c + 8.°d)/8 (2.14)
A= -(a+ S/Eh/3 + 1@,3 (c + 4d)/9) (2.15)

Note that we have of course (10) gquetion (D33)

L = %,? a, + D-wave corrections (2.16)
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2.3 Constraints

The inverse ;mplitude is extremely convenient for implementing
unitarity and for enforcing some parts of the desirable provertics
of anolyticity and crossing symmetry. Illovever, it suffers fron
tvo theoretical drawbaecks - that it mey in feet lead to importent

violations of both crossing symmetry and annlyticity.

First the anclyticity nroperties of Ai_(s) uay be unoaceepteble
because either Biﬂs) constructed from (£.3) haes physical-shcet
zeros thot give ghost-poles in the auplitudes, or else converscly

A{ﬂs) has important zeros left out of Pi(s), (or perhaps both).

Second, crossing is necessarily violated on the left-hand
cut = not simply through uncritical use of (2.8) but because Rcii(s)
calculated dispersively does not agree with that calculated from

crossing, (via o subtracted Froissart-Gribov projection).

As far as ghosts are concerned, their prescnce is obvious vhen
they appeor as antiresonances (i.c. close to the physical w»ert
of the real axis) because then the phase shift plunges dovnward
through =7/2. The omission of other zeros of Aiﬁs) from Bi(s)
(épart from thoae.;pecified by the polynomial amplitudes) is justified
only on grounds of simplicity and agrecement with experiment. The
violations of crossing we exnect to have minimnl effects on the
physical phose shiftsbecause, firstly the partigl wave amplitudes
are constrained below threshold (0 < 5:54/5) to match quite closely
an explicit crossing-symmetric amproximetion, and secondly the

iterntive calculations are very atable nnd rapidly convergent.

However, stringent checlks are possible of the degree to vhich

our celculated amplitudes possess acceptable properties of analyticity,



r/

-19 =

crossing symmetry and unitarity, beccause these desirable attributes
have a multitude of rigorously prover consequences (sum rules,

inequalities, bounds etc.) whose satisfnction can be tested.

The rest of this section occunies two main parts. The first
enunerates some of these theoretical constraints vhich we apply:
to n1t amplitudes, and the scecond considers the possible raage
of phenomenological values which con be wssigned to the four
polynomial porameters B,.L,u.i, nnd)\ . There is also some
discussion of the question of inelasticity aud of higher partinl

vaves (132).

Our philosophy regarding the various kinda of constraints ig
that the phenomenological results give sowe iden of the values
of the input quantities and aan estinnte of reasonnble limits of
variation, vhile the theoreticel constrvints are to be imposed
on the output amplitudes (if possible) by adjustment of input

parameters within their.ullowed renge .

A Rligorous Theorems

The rigorougqtheoretical resultas fall ianto two classess suwa
rules from crossing alone that are sufficient as well as neccasary,
and inequalities and bounds combining elso analyticity and
unitarity. The latter are merely necessary conditions, but their

pover to rule out otherwise anparently plousible models iscoasidernble

(e.g. (35)).

The crossing sum rules are the five involving only S-= end P-vaves

. given in Appendix C.

Sum rules involving D-waves and higher are not examined in
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detail because the predicted sizes of the amplitudes for Az e
are uniformly small, and their effects via crossing on the larger
and more interesting S— and P-waves are entirely neglible (see

section 4).

In all cases, the S— and P-waves obey equations
(c3s, 37, 39, 43, 45) accurately, and we are confident that the

violations of crossing symmetry can he disregarded in practice,

0f the many constraints that follow from the additional
properties of analyticity and unitarity (positivity), historically
the first to be established were the geometrical inequalities of
Martin (5) and of Common (36), lately extended by Auberson et al,(37).

These apply to partial-wave amplitudes for s & (0, 9&2).

There is also a large class of more recently discovered
" integral inequalities (QL, 38, Qg), of vhich the most useful seem to
be those derived and tested by Yen and Roskies (39). These authors
find inequalities involving integrals over the physical partial-wave
amplitudes (s:>%,?), and by comparison with previously known
results and by the explicit testing of some models, the new

o o

constraints as they apply to the n n —_ n?_r|° S-wave

amplitude are shown to be more restrictive than those found before.,

These present calculations proceed by building in at the outset
satisfoction of the simplest of the geometricel inequalities
(g, 36, qz) by imposing them explicitly on the subtraction
polynomial amplitudes. Then the output amplitudes are checked for
detailed satisfaction of the geometrical constraints gnd of the most

restrictive neutral-pion S-wave Yen~Roskies conditions. Note
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incidentelly that the detailed check of the geometrical comstraints
is a valuable test of the consistency with analyticity and unitaerity

of the polynomial approximation.

The constraints built into the polynomial amplitudes (and thus
to o good approximation into the partial-wave amplitudes) are the
simple inequelities applying to the r\o n® = no rro S-wave
amplitude :-"(s) defined in Appendix C. In addition to the
ones proved there (C7, 11, 18, 26) we also have the following

additional constraints.

:_1~§°() < 0 0¢s < 1.05 2 (2.17)

a%¢°° o

¢’ > 0 0<s ¢ 1.7 (2.18)

ds

£2° (43 > -4 (2.19)

4/? (a7 (s) - 4 Aﬁ(s)) ds < 6,.2 Aﬁ(o) (2.20)
and lgo(s) has & unique minimum in the region (41)

2

1.127 2 ¢ s ¢ 1.897 (2.21)

Within the framework of the quadratic polynomial approximation
this and all the other simple subthreshold geometrical S-wave
constraints (5, 36, 37, 40 — 42) are satisfied if and only if the
D-wave no 11° scattering length is positive, (a condition of
course required by the validity of the Froissart-Gribov projection

for L= 2, plus positivity).

Therefore there is an inequality connecting the quadratic
coefficients in (2.11), namely
¢ £ ad. (2.22)

Translated into a relntion between scattering lengths and the
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Chew-Mandelstam coupling constant we have

&, + 2a, + oA >0 (2.23)

Note that a, (vhich essentially controls the fwidth) is not

constrained because the P-~wave does not contribute to

o o o .
n A > n  B8cattering.

The constraints of Yen and Roskies (39) which we use may be
expressed as follows. Define first the following moments of the

n° h°_7 .-.° no S-vave amplitude below thresholds

hyy = 1 <(4,f‘ - s) (10s2-_32,,\2 « 182 £%° (s)> (2.24)

8
256,
22 4 8y 00
Ag, = 1024 <(4,~-s) (355 - 1808" + 2408 - 64.1) fo (s)>
7 (2.25)
23 4 2 6
Ay =1 (4 -s) (126a*-896,28° 4+ 2016,..8" - 1536..8
4098 10
/~
8, .00
+ 256,.) fq‘(s)i::) (2.26)

vhere <-—-—-—-> denotes 4 ( (——) ds. Introduge also the

three qua n'b:.ties

Cy = (-1) (2 Imfoo(s) (Q (z) - L+1(z)> ds

2 (L'l-l’h_/h
(L= 2,3,4) (2.27)
where z = s/2,g' =1 and QL(z) is the second - kind Legendre
function. Note that (2.27) involves the absorptive part of f. (s)

in the physical region, and the convergence of the integrals is

rapid, 83 or faster. (They can be cut off safely at s = 50/.3).
Then:

L. .78 G0
207 2 . (2.28)



and (z, y) € D where x = BAy, 5, Y = BA,
24 5 L{ (2.29)
o 0

(x,- y)éD, vwhere x = ~Cq » ¥ = C
C, T, (2.30)

(x, ) « D where X= x-px’, J = y-py (2.31)
l-p 1-p

with p = 5C,
2450

The three regions D, Do and D are shown in figure (2.1), and it

has been shown that these restrictions are almost optimum (and
almost sufficient)s Like Yen and Roskies, we find (2.31) to be in
practice the most exacting constraint. It is particularly
interesting because it relates amplitudes ahove threshold (via

x°, y°) to those below threshoid (via x, y).

It is vital to stress the origin of the results (2.28 - 2,31)
ogg). They include not only the assumption that the S-waves have
positive imaginary parts above threshold, but also they rely heavily
on positivity in higher partial waves, including .l:;2 (which is
relevant via crossing). Therefore, although the present model does
not include explicitly scattering in Fy G, H — waves, its lower
partinl waves are constrained to obey at least some of the stronger
consequences of belonging to physically fully realistic n rr
amplitudes e (s,tyu) where there is some scattering (however small)

in all angular momentum states.

We note the relevance of the above comment to any model with a

finite number of partial waves (43). Even though the model may be



exactly crossing-symmetric have all its physical absorptive parts
positive, and have correct analytic properties, its S-wave
amplitudes may still violate the consequences of positivity in
higher (neglected) angular momenta, unless these are explicitly

enforced.,

In the calculations described in section 4, constraints (2.23)
and (2.28 - 2.31) are demonstrated to lead to o fairly narrow range
of acceptable solutions to their model, happily including the

physical ones.

B. Phenomenological Information
All the experimental inferences are rather indirect, but some

more 80 than others.

From peripheral pion production (nN ->nrN with T exchange)-
broad featuyes of the two S-wave amplitudes in the region of the
meson can be deduced from study of interference patterns (20, 21).
It is currently accepted that both amplitudes have neglible inelasticity
in this region, and vhile the isoscalar phase shift is large
(probably resonating), the isotensor phase shift is much smaller
and negative, attaining a value of perhaps -10° to -20° at

s=m2
f.

Also from analysis of production data it is observed that the
onset of significant inelasticity into e.g. 4nm, KK etc. is at
about J8 =1 GeV, and the results are consistent with small

contributions from partial waves with L>2 in the elastic region.

Closer to threshold, recent determinations have been made from
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peripheral prodiaction of the ratio R of S-wave scattering lengths.

Gutay et al. (44) have studied the forward - backward
n+ n_ asymmetry in T P -a.$ — n, and by meking a model for -
the off-shell rr amplitude (in¢luding the Adler consistency
condition (12)) they deduce

R ~ - 3.2. .-  (2.82)

C line at al. (g§) have found a similar value from study of the
charged ‘branching ratiqs- R, = o( n° élo)y&( nt nt) and R, =
o n° 1%/ o( n*'n7) near threshold. _ After correcting for small
P- and ded§es effects the two ratios give consistent values for R
of

"R = =3.2 ¥ 1.1.. (2.33)

Especially in view of the fact that these two determinations
rely on different assumptions,.their agreement with each other, and
‘with the usual currént algebra result (10)

R.= =3.5 _ ' . (2.34)

is impressive. ' Note the (perhaps_not surprising)_consistency with

the apparent behavionr_of the phase shifts at higher'energies.
There are also predictions for both L and 8,4

The value of L can be calculatéd from an unsubtracted forward
dlsper51on relation for the combination of amplltudes correspond;ng
to pure I = 1 in the t - cheounnel. COnvergence follows from the
Pomeranchuk theorem, and Regge ra exchange gives an estimate of

high energy contributions.



Both Olsson (468) and Morgan and Shaw (47) have considered
this sum rule in deteil and agree on a "universal value."

L x~ 0.10 (2.35)

The "universality" refers to the fact that the value does not

depend on which of the alternative experimental S-wave phase shifts
solutions are used in the calculation. Note that (2.35) agrees well
with the Weinberg SU(2)(X) SU(2) current algebra prediction (10),

and taken together with (2.32 ~ 2.34) is the main piece of evidence
for the assumption (ii) underlying the polynomial approximation -
veaknéss of S-wave thresholds (as gauged by the size of the scattering

lengths).

The value of a, can be calculated also from a dispersion
relation. This was done several years ago by Olsson (48) with

the result

a, < (0.03 - 0.04),.2 (2.38)

This number is not sensitive to S-wave contributions, and is in
quite good agreement with a simple-minded linear effective - range
extrapolation from thefﬂ meson, mass 765 MeV, width sbout 125

MeV. In the next section the numerical results are seen to

justify the extrapolation in detail.

Note that the sum rule (2.16) is satisfied with (appropriately)
smell D-wave corrections. In fact the D-wave corrections can be
celculated from a sum rule which has a rigoroup foundation, and
which converges quickly (gg). Using phenomenologically - based

estimates of the low partial waves the agreement of the numbers

(2.35) and (2.36) with the sum rule (2.16) is found to be very

satisfactory.
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The cousistency of the number (2.33) calculated from current
algebra with the scattering length (2.36) obtained from fﬂ dominance
has been remarked upon before (§9) in comnection with the KSRF

relation (51).

There do not seem to be any direct estimates of the value of
the fourth parameter of the polynomial amplitude, namely the
Chew-Mandelstam coupling constant A . However its size may
be expected to be close to the current algebra estimate ( \ = -0.007)
since Ry L and a

, ere approximately equal to Weinberg's values.and

the D-wave corrections, (though important in principle) are small.

There are also bounds on ) . One is that in terms of e, and
a, (or R and L) following from the Martin geometrical constraints
applied to the polynomial amplitude, i.e. eq. (2.23). With L = 0.10

and B X =-3.5 we have

»> - 0.008. (2.37)

The second bound is the phenomenological are derived by Shaw
(52). It involves integrals over physical phase shifts, and with
reasonable phenomenological estimates leads to

™\ £ 0.10 (2.38)

In summery, theXe are fairly good indications of the wvalues of
three of the four polynomial amplitude parameters, (R, L and a,),
while the fourth ()) is at least bounded. All are slightly
adjustable (if necessary) to seek satisfaction of the rigorous

theorems.

Beaides the four polynomial coefficients, the inelastic terms

T
R&(s) in (2.3) need to be specified. The simplest approximation, and



the one usually mede, is Ri(a) = 0, perhaps on the grounds that din

is too large for the term to be significant. This is not necessarily
true, especially in the I = 0 S-wave (which is probably the most
interesting channel). Here the isoscalar KK threshold opens at

J8 ~950 MeV ahd is expected to have a large contribution to the
ratio rg(s) (eq (2.7)) of S—wave I = 0 inelastic to elastic cross=—

sections because of the presence of the S* effect.

In the numerical calculations estimates of R;(s) are made, using
information both from Hoangs analysis of the S* effect (53) and from

the Toronto — Wisconsin phase shifts for J/s £ 1.4 GeV. (54).

The I = 2 amplitudes stay fairly elastic in the region 1.0 ~ 1.4
GeV as-several of the two-body channels that open up do not couple to

I a2 €ele Kﬁ, T, Nﬁo

Rather surprisingly, although the inelastic effects are
individually large, their effects on the phase shifts for s < mﬁ,
are quite amnll because of cancellations between direct — chanmnel
contributions and contributions from the crossed—channels via

T
L,(s). There is then possible justification for simply neglecting

inelagsticity below the f"

The model as formulated neglects the existence of higher partial
waves (2:7 2) - except, of course, in the rigorous constraints
discussed above — and in fact as already mentioned the numerical sizes

of predicted D-waves and higher are extremely small.

Some consistency checks can be made by inserting by hand
contributions from higher resonances (£°, g etc.) and studying their

effects both on the Dy, F waves etc. as well as in the S—- and P- waves.
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As the next section discusses in detail the effects are exceedingly
small.
2.4 Results
2
The subtraction point s  is fixed at the-%/“’(symmetry point)
in all but the P-wave where the f meson is inserted through a

subtraction at s_ = m; = (765Mev)® with By (Hi’ = 0.

The choice of subthreshold subtraction ppint is made well away
from the physical branch—point at s = @45 80 that the approximation of
weak thresholds can be tested and its possible inconsistency can be
detected by comparison of polynomial and dispersion-relation threshold

S-wave amplitudes.

The range of parameter values investigated in detail is R ==3.2% l.1,
L = 0.08 0,04 ana & ={(0.03 * 0.0ILﬁJT%ﬂmh)choaen in accordance with
the geometrical inequality (2.23). We find that in any attempt to
construct solutions with (2.23) violated, one of the predicted D-waves
at least contains ghosts (the phase shifts violates Wigner's Theorem),
and if the violation is more than slight, the 82 wave also has a
ghost. Conversely, if (2.23) is satisfied there are no obvious

ghosts below |8 = 1 GeV in any of the partial waves.

For the above range of values of Ry L and &y it also turns out
that satisfaction of (2.23) by a good margin (i.e. replacing the
right~hsnd side by 0.08), and the consequent imposition of the

rigorous geometrical constraints on the polynomial amplitudes leads to

the satisfaction of the same constraints on the calculated output
amplitudes, If (2.23) is only marginally obeyed, some constraints are

violated by the computed amplitudes, and at the same time the 82 phase
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shift shows signs'of a ghost above the upper end of the energy range -
the phase shift is large and negative and steeply falling at about

‘1 GeV.

Satisfaction of the geometrical_consprhinis in fact is correlated
with the agreement of the two versions of the ampiitude_below
threshold. In the acceptable cases the pplynomiml approximation is
accurate and the caiculaiiongi assumptibn; are consistent. Figﬁre (2.2)
illustrates the agreement hetween the polyﬁomial and cniculated 11° iyl -

S=vave bglow threshold in & favoured case.

Satisfaction of (2.23) above is however not very restrictive ( \is
bound only on one side) -and a wide range of possibilities are allowed.
There are some general features in common, pevettheless,-namel;.
.as_large positive S, phase shift ghd a sﬁaller 32 fhase shift, a very
symmetric P-wave (iﬂi resonance, and extremely.small D-waves. The
general agreement with the peripheral production ihplications_.

is already evident}

As remarked in the ﬁrevious sectioﬁ,.the croasiné sum'ruleSu&re--
alwvays accuritely satisfied. Furthermore, the crossing sum rules and’
‘all the other constraints investigated, (;specially those on thé. |
larger output S- and P—waves) are unaffected by the.contributions
of the D-wave phase shifts, because they are so small ( < 5 )

If the calcglation is modified 80 tbat cross—=channel D—waves
amplitudes are  fgnoied. on the left hand cut, the S and P wave
amplitudes are changed b& at most 1%, which is neglible. This is
:tru; in all the calculations.made here, including cases where the
contribution of the £° (1260) meson (in the D wmve) is inserted

by hand with [’ = 150 MeV. This resohance contributes 81gn1f1eant1y
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only to the distant left-hand cut, which is damped by the ‘subtre.p"t.ioh.

The deteiled behaviour of the P-wave phase shift in ull cases

“(whether or not 1ne1aat1c1ty is included) is controlled malnly

by the value chosen for 8, This parameter determ;nes the width
of the f’resonence in the_ogtput phase shift, approximately according

to the simple effective-rarée extrapolation formula (30)-
A: (8) = &1 (1 ;_ké/q22 - 1 _1':2 a.]-f)-l EERT (2._39-‘)-‘
where 4 q° | -1t - gk 1 the ]éme-son nass and
po -t Gy
ritlx.- a..l e P/8q5: R . - (2.41) -

Flgure (2. 3) shows the remarkdble 11nearity of the P—wave
effective - range plot for a typxcal set of . parameters. Thus there -

is detalled dynamlcal justification for the rho-dom1nance der1vations

.of the KSRPF formnla referred to .in section 3 (50), and - we conflrm the :
.results found previously (4§), The velue.al = °'°€A~ determxnes a.

' reasonable physical value of || x 125 MeV.

The range of possible solutions allowed by (2.23) and the
crogsing sum rules is considermbly nerrowed by imposftion-ef the -

Yen-Rolkies constra;nts (2 28 - 2.31). " In fact, these constraints .are

~ 8o strong thnt they cannot’ be completely let1sf1ed, but an attempt to

minimise the vxolat1ons determznes‘not only'%_but also preferred values -
for the other two parameters L end R, and conaequently leads to an -

lmost complete determination of the two S-mave amplitudes,

The:theoreiieally most autisfactprj eﬁﬁlitude; which we have found
ﬁwf%ﬁ”no'inelestic terms, i.e. Ri = 0) is shown in figure (2.4).

This solution obeys all the constraints (2.28 - 2.31)except for a
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small violation of (2.31). (See figure 2.1) This is a measure of
the severity of the approximation of neglecting 1_;;3 partial waves,
and perhaps would be improved if for example the polynomial
subtraction amplitudes included cubic and higher terms.

The main features of the results in figure (2.4) are (i) a
large So phase shift, passing through 71/2 near Ja = 540 MeV. and of
the "down" type above the/oma.ss; (ii) the S, phase shiff; much smaller,
falling to about -12° at [ = 1 GeV,

There is a distinct correlation between the point where the S°
phase shift passes Tr/2 and the size of the 82 phase shift ~ the
higher the former, the larger the latter. If So resonates at s = ﬁ;
then the 82 phase shift falls to about -15° at & = 1GeV. However this
possibility (included in figure (2.4) does violate (2.30) as well as
(2.91) - see figure (2.1).

All the solutions which come close to satisfying (228 - 2.31)

have zeros in the S  and S, amplitudes for se (o, Q/u?) (at s(o) and

.(2)

respectively). These may be identified as on-shell manifestations

of the Adler zeros (12) demanded by PCAC - not because they are at the

Wieinberg positions (10) (s(o) - 0.§p?, 3(2) = %;E) but because they

satiafy the Pennington—Pond sun rule (23).
2

4 s(°) +5 8(2) = 1240 (2.42)
This result (2.42) is more general than Weinberg's, which relies on a
linear off-shell extrapolation in s,t,u.

The actual zero positions for the two solutions of figure (2.4)

are very close at ’(0) . 10§ﬁ§ (2.43)
5(2) 9 1.2;5

It is interesting to note that the solutions with )\ chosen

relative to R and L so as to satisfy (2.23) only marginally have Sco)n—

(2)

0.§§~nnd 8 q;l.!,f; closer to the current algebra positions, and the

output phase shifts are similar to those of Brown and Goble (55)
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showing evidenge of an important ghost in the S, channel.

Note that the theoretically best solution of figure (2.4) agrees
very well with the central solution in the range found by Le Guillou,
Morel and Navelet (58), who comstructed amplitudes satisfying
constraints simiilar to those used here. The parameterisation and
iteration methods of Le Guillou et al. are very different from ours,
but the very close agreement between the results suggests that
possibly all low energy nT models which obey these conseguences

of analyticity etc. should give the same predictions.

2.5 Inelastic effects
Although our model is strictly a low energy model and no
strong predictions can be made near 1 - GeV. we do predict that the
phase shift stays near 90° above the r’mass. This is in agreement
with the results obtained by the Berkeley group (éj) from analyses of the

reactions

- + + = 4+
! nPosn n A
|

atp 5K K AT (2.44)

at 7 GeV/C, as experimentally the S-P interference term passes through
o

zero near 980 MeV, If we assume 70 dominance of the P-wave then Sl x 150

and thus from equation (B5) we have S: ~ 60° or 180°. The croas

section date shows that the S-yave must be at its maximuym value near

(]
950 MeV (&0 =90°) and drop to & minimum at 980 MeV ( § ,x180°).

Morgan (58) has also analysed the nri phase shifts near the KK

threshold using a K-~matrix formalism. His two solutions smoothly
join up with either the "up" or "“dowh" branch of the data of Baton et
al. (59) at 800 MeV. The opening up of the KK channel will make

the inelasticity 1 : decrease above 2m as (s - 4m2)i and with




this decrease we will get a large rapid increase -°f£:. near 595 MeV.
For both solutions he found the I = 0 S—wave has a zero near the KK
threshold. The solution joining the "down" branch at 800 MeV.

has the nt n mass spectrum showing a sharp drop just before

the KK threshold. The "up" golution, however, camnnot have this

over

behaviour as the amplitude is near the bottom of the Argand diagram all
this enstgy range. . _
the—empiTbude Preliminary date (QQ, Q}) does seem to prefer the “dowm"

branch beloyw 850 MeV.

Further support for this explanation of the nn -> KK threshold
is given by Hoang (§§) who fits the cross—section data for at hT =
K* X~ with & bound state pole of the KK system (S*) with mass 957

MeV.

It is interesting to note that the Lovelace-=Veneziano formula
also has a zero at 915 MeV. due to the S¥, although in this model

the S* only couples weakly to KK.

Againgt this evidence we have the work of Johnson and Bemnett (62)
who do a phenomenological analysis of nrriannscaﬁteriﬁg using a .
generalised effective-range expangion for the S-waves based on
inverse amplitude dispersion relations. They get S: c:.180§- near
1 GeV, but they also find the cross-section ratio r:(s) is a factor
of four larger than the peak value in the 1.1 GeV rggion calculated from_
Hoang's result. 1This disérepuncy is probably due to the fact that they
do not put in any physical sheet amplitude zero nearrl.GeV, and so if
the I=0 S-wave {s as heavily absorbed as they predict, then we
would expect more absorption in the I=2 S-wave even though it

couples to fewer channels.



- 35 =

To investigate the effects of inelasticity, the experimental
results of Oh et al,(54) were used. These give information on r‘I_ (s)
for .J;_between 1.0 and 1.4 GeV. There are two possibilities for
the So channels one has 7':,?:-0.5 at 1050 MeV and 5; of the "down"
type above the 2 , whilst the other has 4, < 0 at 1080 MeV and & is
of the "up" type above the re The values for rz (s) derived and
used here are given in figure (2.5). In the absence of any other
information it was assumed that the valuesof ri (a) for > 1.4

GeV. are constant and equal to the values at /8 = 1.4 GeV.

After integration to give Ri_(s), the size of this term turns
out to be of the same order of magnitude as H(s) (see figure (2.8))
and thus would seem to have a large effect on the phase shift.
Howevep there is also a change in L{(s) from crossed-channel
absorption, which is for & < mzf, opposite in mign and about the same
in magnitude and the met result in all the partial waves up to
. the resonance region is & change of less than 5% in the phase shift
see figure (2.7). This is true whichever of the two posaibilities
for r:(s) is used. Although the inelastic effects do increase the
phase-shifts above the rﬂ they do so smoothly and not sharply as
experiment suggests (§]). The only way for our model toobtain
e zero near the KK threshold would be to insert it as a dynamical

z€ro,

The result of including inelastié: effects, vhich was not entirely
anticipated, provides judtification for the usual practice of

neglecting absorption in calculating the low energy phase shifts.
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Because of the small net influence of these phenomenological
absorption contributions near threshold and the rapid convergence
of the integrals in (2.27), satisfaction of the rigorous theorems
of section 3 is not affected, and so the optimum predictions for

the S~ and P-waves remain of the form shown in figure (2.7).

2.6 Conclusions
We have described a simple and flexible model for the low~
energy nmn interaction, and investigated some of its solutions.
We have concentrated on finding amplitudes that are theoretically
as satisfactory as possible and which give good agreement with experi;

ment. It is not neceasarily trivial that this is possible.

The numerical predictions of amplitudes and phase shifts are in
full accord with the results of the most ambitious of other calculations
that aim from different points of view of satisfaction of the
rigorous consequences of analyticity, crossing—symmetry, and
unitarity. In particular we note the strong similarity between our
predicted S-wave phase shifts and those of Le Guillou, Morel,
and Navelet (56). Like these authors, we favour the existence
of a broad ¢ (or £) resonance just below the f in mass, and

predict that the S, phase shift above the resonance is of the "dowm"

type .

Below threshold both S—wave amplitudes have simple gzeros, not
in the VWeinberg current algebra positions but slightly displaced in
reasonable agreement with the favoured results of a recent
phenomenological analysis (qg). The zero-positions obey a general
relation first emphasised by Pennington and Pond, and therefore they

are on-shell manifeatations of the Adler condition. The extrapolation



to zero pion mass is significantly non-linear, because the simplest

Martin geometrical constraints demand non-linearity even on-shell.

Vle have discussed the effects on the phase shifts below

J8 = 1GeV of inelasticity at higher energies. The phase shifts
are affected in two ways via analyticity and crossing, one
contribution coming from direct—~channel thresholds, the other from the
crossed~channel through the left-~hand cut term. Somewhat surprisingly
with inelastic effects calculated from available experimental analyses,
ve have found for /s <.nv, almost complete cancellation between
the two terms, which individually are large. This perhaps provides some
justification for the hitherto general practice of ignoring absorption

altogether.

Ve are not able to make firm claims of uniqueness for the
favoured solution. However, in view of the work of Dilley (23)
and others (e.g. (47)) the existence of physically and theoretically
acceptable amplitudes of a radically different kind for Js < 400MeV

seems highly unlikely.

Furthermore the possibility of bootstrap solutions in the old-
fashioned sense has not yet been properly explored. We are not
optimistic about this possibility unless further assumptions are
injected as the left—hand cut contributions to the amplitudes are small,
and so inserting the P into the left hand cut for the I = 0 S=wave

.will not generate enough force to create the o and vice versa. This
is in agreement with the recent result of Tryon (qg) who has done a
phenomenologicael analysis of the distant left-~hand cut, and concludes
the forces present are not strong emough to generate the Z# and

in fact are only able to make S: ~ 20° at the / meson mess.
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CIIAPTER 3.

NON - LEPTONIC DECAYS

3.1 Introduction
In this chapter we use our understanding of on = shell rrn
scattering to investigate a simple model of the non-~leptonic

decays K, — 3

The besic physicel sssumption is thet in both procecsses the
non-strong inte;action is reletively structureless and responsible
only for the trensition from the initial K or 1 to a massive
"pion" which decays strongly to three pions. Then all the structure
in the decay matrix element is due to the hadronic final state
interaction - rmscattering with one pion off-shell (figure (3.1)
gpives diagrammntic illustration). This is perhaps the simplest
possible model of these decays, giving a notural exnlanation of

their rather similar Dalitz plot distributions.

Current algebra techniques have been apnlied to non-leptonic
decays, and although soft-pion methods have been applied to K = 3w
with great success (qg), they have not been as successful when
applied to the phenomenologically similar 1 - 3dmdeecay as it hes
been shown by Sutherland (Q§) that if we impose current algebra
constraints on e linear matrix element for N> 31 decay then the
matrix elements must be identically zero and thus the decay is

forbidden,

In the next section we give a parameterization for the decoy,
then we present our model for the description of the decays aud
the results we obtain, and compare them with other phenomenological
analyses. Next we discuss the current algebra predictions and the

effect of higher order terms in the porameterizations, and we
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conclude with a discussion of the structure of our model and

of the Lovelace-Veneziano model.

3.2 Parameterization

The theory of the enalysis of the structurein three-pion
decays was developed by Weinberg (66). The matrix element for the
decay is expanded as a powver series in the coordinates of the

Dalitz plot:

>
]

3 (1, - 1,)/e, (3.1)
(sry - 0)/0,

<
fi

vhere Ti are the pion kinetic energies, T3 referring to the odd
pion and T1 + T2 +Tg=0=m- 3 ,vhere m is either the K or 1

mass. The matrix element for the decay is novw given by:

IM‘Q < | F gg + Og (%_‘:)2 R “3(%)*+_____ (3.2)

m

The constant of proportionality is just given by the phase-space
integral for the Dnlitz plot. Note that we have assumed the
decays are C invariant as otherwise there would be left-right
asymmetry in the Dalitz plot, and terms linear in X would be

needed to describe this.

To relate the Weinberg variablesX, Y to the Mandelstam variables
s, t, u we go to the rest frame of the kaon and from figure (3.1)

ve have the total pion energies Ej given by

E; = (/9/'. + m'2 - s)}/2m, (3.3)
E, = (,3 + mt - t)/2m,
E, = (,3 + ma - u)/2m.

The kinetic energy of each particle is given by

o= Fg-my,




and thus T

(- m)2 - 8)/2m, (3.5)
1 ((/“-" m)) - t)/.?.m,

3
[/

T, = (- w)® - u)/2m,
hence 1) 4 = (m2 + q»g - 35)/2m2, (3.8)
X = [B(t-u)/20>

3.3 Model
Our model is to analyticelly continue our m 1w subthreshold
amplitude and take oue of the external pions off mass-shell and

put its four-momentum equal to either the K- or 1 — wass.

The calculation of the matrix element proceeds by assuming
pion-pole dominance (16, 67) as illustrated in figure (3.1).
From this wve are able to write the amplitude for the decay of

particle m, (pd) to pions :‘ra(%), rrb(pb), Trc(pc) proportional to

Ad M

/U.J -y d-=oabe ) (3'7)

where )d;s the electromagnetic coupling constant for 9 decay and

the weak coupling constent for K decay, and

M

is the invariant amplitude for the scattering of dc>ab pions in

3.8
& abe = gksdbﬁ(5.i=,u)+ Solbsacﬂ(e's'u)-r SJ.Sch"'E-")( )

vhich ¢ is crossed into the finanl stete and pion d is off mass—shell

(68). From (2.11) A(s,t,u) is given off-shell by

A(s,tyu)= at+bs + c(t+u) + d(t2+u2) + ea(t4-u) +sS 4 gtu. (3.9)

Vhen we are on-shell these seven perameters reduce to four which are

conveniently giveu in terms of the four experimental parameters




N Ry L and a, (see section (2.2B)). To find the other three
equations needed to determine the parameters we use the soft-
pion techniques of Weinberg given in Appendix D. Vhen s = t = u =/M?

A(sytyu) = 0, and hence
2 2 -4 4 4 4
8+ b + 2cu + 2dut 20 + £ + Ba = O (8.10)

When we toke 2 piona off-shell simultencously (D17) and (D19)

give
& + bﬁg + c)E + d/i + e,f + fﬁf = 0, . (3.11)
2b - 2¢ - 4duS + 48,5 = 1 -L . (3.12)
16w £ 2,2

The other four equations come from putting (3.9) on-shell and then
using equations (2.12 - 2.15). Ve thus determine our seven parameters

in terms of A, R, L and LI

The K° (qo)-an* " \-ro amplitude is now given by the e’ 170_9
nf ™ amplitude, which is just A(s,t,u), which we rearronge as

A(s,tyu) = B, + B, 0¥ + Ba(QY)a +B, (QX) 2,

m m m
2 y 2.
= B(1+R + R, @%) + na(%x_) )s (3.13)
where o 0

B, =a+ (b+2¢)(m“+3)/3 + (m2+3)“ (f+2e +2d+g)/9,
By = m” (2(c-b)/3 + (n°43) (4d + 2g - 4f - 2)/9),

4 (3.14)
By =m (4f - 4e +2d +g)/9,
B, = m (2d-g)/3.

The matrix element for the decay is_\M‘a and 80 we have

lM‘a el 1 +2Ry QY + Qg_y)z (Rf +21,) + (g)aana + (QY)a 2R R,
m ™) m
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+ (Q>3 x2y 20 Ry + < QY)4 R: + (QK>4 Rg + (Q)4X2Y2 2R, Ry (3.15)

Similerly for x° (10)--53 ° the matrix element is proportional to

38, + 3(By + B,) (x24+7%) (3 212 (3.18)
= 2

and for charged kaon decay Kt "n; 11-: n_; we have

2 212
2B1 B B2 %z +'2L (B3 + 3B4) (2!) +L(3B3 + B4) GE) (3.17)
m 2

3.4 Results

The range of the four parameter valuesis as in chapter 2,
namelys R = =3.2 £ 1.1, L =0.08% § ga. (o s -2

’ 0.04, a,=(0.03 = 0.01)ux

with X\ chosen in accordance with the geometrical @nequality (2.23).
Experimentally it is found that the matrix element only has a very
small Y2 dependence and thus our solutions must have 2R2 -1 -Ri
or at least R, €0. The X2 dependence is also neglible on all

experiments up to date and this imposes the constraint that

H.3,~u 0.

A global analysis of the K?_-a YT+ m n° data by Murphy

(69) suggests that R, lies in the range -2.5 to -2.6. If we fit
= g

1
the data of Albrow et al. (70) and put R, = -2.56 then the minimum
value of R?_ compatible with the constraints on\, Ry L and 8 is
-0.17, and then R3 = 0,32, It is interesting to note that whenever
we have a solution with Rl and R2 negative then R3 is always small
with \Ra\ & 0.9. Thus having fitted the Y denendence we always

predict the x2 dependence to be small. Given our values for R,
R, and R, figure (3.2) is a fit to the data of Albrow showing a
linear fit and also the effect of quadratic terms. We find cubic

and higher order terms have no effect that can be shown on the scale
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of our figure.

The data of Albrow et al. (70) obviously requires a large cubic
dependence in Y to account for the behaviour of the matrix element
at either end of the spectrum, and Albrow's fit does indeed have
the coefficient of (QY/m)3 as about 50, However, it should be
remembered that any systematic errors in the experiment could be
more important at the ends of the energy spectrum, and the cubic
terms may be spurious. Indeed the data of Buchanan et al.(!}),
nltho;gh giving a rather low value for Rl, is perfectly compatible
with o linear fit; and dota from Ford et al. (72) on K — % % ﬂ—:
and Mast et al. ([§) on Kt-9TT—-Tf— TT+ are also compatible with no

X dependence and a linear Y dependence.

To calculate the q-a3 r decay matrix elements we just take
the parameter values given by the best fit to the K >3 process
and simply change the K-mass to the ) -mass in the computer programme
Taking the fit shown in figure (3.2) our new values for the ratios
ares Ri = =-2.7, R2 = =0.21, R3 = 0.41, and figure (3.3) shows
the linear fit and also the effect of higher order terms. Again
we find that the effect of cubic terms in Y is neglible and there is
no significant X dependence. However, the quadretic terms in Y
do have a bigger effect than in the K-decay results. WYhen we
compare our prediction for the q ~decay rate with recent experimental
results we find the agreement is not as good as the K decay results,

although it is non-triviel that we are able to get agreement within

15%.

The average value of Rl from recent experimental results agrees

with that of Cnops et al. (74), namely R, 5 -2.2, end this

implies that the value of Rl for q ~lecay should be less than that
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for K ~ decay. W¥e find, however, that for all our solutions where
R1<~0 the value for? —decey is always greater than the corresponding
value for K~decay. The effect of the quadretic terms is also
larger in q —decay as besides R2 being bigger in numerical value,
the multiplicative factor (Q/m) is 0.245 for q —decay whilst it is
only 0.15 for K-~decay. This larger value of g/m for7 ~decay will
also mean the series expansion in X and Y will comnverge more slowly
than the corresponding one for K-decay ﬁnd thus we might expect

quadratic ond higher order terms to be more important.
3.5 Current Algebra predictions

From the commutation relations for the axial charge with the
wegk interaction Hamiltonian we discover various simple relations for
the matrix elements for K-> 31et the points where one of the
Final ;tate pions has zero four-momentum (Zg). For Kkt decay

these results ares

M(K-l-—i; 1T+ -‘-r+ i q"_ = 0) = M(K -1 10 'n'+§ Qoo = 0) = 0’
o
M(1{+-—') 11-+ n_+ 1T-— ; qn+ = 0) a —_1 M(K >t "T-);
2f
m
0 o + Q
L{(K"'_,“_ - T 3 qn+ = 0) = :L M (I{ -3 1T T )o (3.18)
2f"

In a similar fashion the commutotion relations between the
axial charges and the electromaegnetic Hamiltonian lead to the result
that the matrix element for ,)..z,a = venishes at each of the soft
pion points (Zg)s
M(’)-—? e q.0 = 0) = i q--a11+ o3 1.0 =0) =0,

M(r)-—)3‘n’o; a0 =0) = 0. (3.19)

The extrapolated matrix elements for K—=> 3 rr decay obtained
from linear fits are compatible with the current algebra predications

1o within the experimental errors. The 0 ~decay results in the




linear model, however, fail to show the zero in the 1 snt o’

matrix element at the soft—pion point for the odd pion ().

Similarly, in the linear model, the 9 -3 ° amplitude is constant

as can be seen from (3.16) and thus cannot show the current algebrea
zero. Ye are thus led to the conclusion that, esnecially in q -decay
the hipgher order structure, neglected in the linear model, could

be important.

3.6 Higher order spectrum

In chapter 2 we found we required at least a quadratic polynomial
to describe the sub-~threshold mT1 amplitudes, in order to satisfy
all the crossing sum rules and anslyticity constraints. It is
nov clear that a similar amplitude is required if we are going to be
able to fit theq-av3vr decay amplitudes to the current algebra
constraints. A quadratic Ww1r amplitude will enable us to expand
the matrix element for the decays up to quartic terms in X and Y.
Phenomenological annlyses hove been done (Z§) including third
order terms in the matrix element and, although the errors for the
extrapolated cubic spectrum are, expectedly, larger than thoze for
the linear model, the extrapolated.q - 31 amplitudes cen be made

completely compatible with all the soft-pion zeros.

If we now look at the K= 3+ results we see the uncertainty in
the higher order terms reflected in the large errors. Even so, the
inclusion of the extra terms has tended to make the agreement with
current algebra worse than in the linear model - in complete comtrast

toq-a 3 where the agreement improved considerably.

Although the current algebra constraints make very strong

predictions it should be pointed out that the matrix element
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expansion is not strictly valid at the soft-pion points. For
instance in K~ =» n_ 1, 1 at the point when the odd pion

(1)
has zero energy we have T3 = =y 8 =,~: + m2, =u=/E.and hence

Y =-1, and X =0 .- (3.20)
m

Similorly at the other soft—pion pointss

g =1 ox = 3 (3.21)
m 2 ’ m 4

Ve obtain the same result for n- ﬁ+ n TTO , and for n-> 31r°
et q ;¢ = 0 we haves
2 .2 2 3,3 2
9" (X*+Y) = 1, 0" (y -38gy) = =l.(3.22)

In the absence of a definite model in which Rl’ R2, R, etc.

3
themselves fall off reasonably fast, therefore, expansion (3.13)

need not converge at the odd-pion zero-momentum points, and may

converge only slowly at the other soft-pion poihts.

Ve have seen that the current algebre predictions are very
difficult to satisfy for 4 —decay. In section (3.1) we discussed
Sutherland's results (65) for q ~decay and the only way round this
paradox is to assume thot whilst linear terms fit K~decay perfectly
well, quadratic and cubic terms are essential for 1 decay to satisfy
the current algebra constraints. This conclusion is thus in
agreement with that of the previous chapter, in that any process
involving two or more pions can be described by an emplitude which

is at least quadratic in the usunl st,u variables.

3.7 Discussion
Lovelace (1§) has fitted the K- and 9 —decay processes with a
Veneziaono model for mn -» myp scattering continued off-shell to

either the K or 1 nass. Thus, for example, from equations (1.5)
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and (1.6) we obtain

U (go 0" w7 w?) = <q1n (V(s,t) + V(s,u) - V(t,u)),
wvhere < g '"°>-¢m describes the electromagnetic mixing of the n
and the off-shell rro. This model has the feature that it possesses
Adler zeros (12) for either of the charged pions but none for the
neutral one as the 7 does not lie on the Ve trajectory or any

of its dnughters.

The related decay 0 —= 3rr° may be handled analogously and
here the Veneziano form (V(t,u) + V(s,t) + V(s,u)) possesses no

Adler zeros at all for any 6f the neutral pions.

Similar results were obtained for K53 using now the wealk
mixing of the kaon and the off-shell pion. It should he noted,
howevep, that, as our results indicate, once one of the decays
(K orr)) has been fitted and the results used as a zero parameter
prediction of the other decay, the new results are not guite

in agreement with experiment.

Our results are thus in agreement with those of the Veneziano
model in that when going from the K-decay to theq —-decay we only
change the mass and thus ocur two amplitudes will have the same

structure of zeros,

The extrapolation off mass—shell from the K to the q is
small and, a priori, we would expect them to have the same structure
of zeros. The above discussion suggests that the 7 ~decay may
hegye o more complicated interaction structure than at present
imagined. If the entire structure in the three-pion final state
comes from final state interactions, while the interaction

Hamiltonion merely determines the strength of the decay, then K
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and q-ay 3 it should be structurally the seme, but having rates
according to their weak and electromagnetic natures respectively.
This simple expectation does not seem to be borne out at the
present and would seem to indicate that at least some of the

structure of the decay is intrinsic in the interaction Ilamiltonien.




NOW -g STRONG .
N TRoNG INTERACT ION
\ TERQCT|°~ T\0 o
md_ d.
M| ——>,

b .

S C Py 'i’z)‘JL
k. ( Py -I"a)l
W= (p, _?.)‘

Pig . 3 I The pion pole contribution to the 311 decays of the K(rl)' meson with A being

the week (electromagnetic) coupling constant .



{
e .
Y

l. \'-

v

N\ \

\
N\
: \
i ..,.\\ \
i \-.l

\ -

e
N . O
et : %
- 5 \\- )
— i 5
-~ N
- 1] \
’ i \ .
- i ., -
~ ! N3
\

Ca
/;-/\
/

i . .
.-y . L] .Sy VT . =i
ey -n-o wr = B ot

‘-
S =t 1)
{ ' oL \ 7
L) oot vy
Y 4

Ffig. 3.2 The w° kinetic energy spectrum divided by phase space for
K° = w* w” 1°. The data is from Ref.(70) with the solid line a linear

fit and the dashed line showing quadratic and cubic effects.



3.2 -

4
10 20 30 ho 50 60 70 8o

Tqe (Mev)

Fig. 3.3 The m° kinetic energy spectrum divided by the phase space for

1° < & n m°. The data (solid line) is from Ref.(74) with the linear

fit (—=—e —-=s) and quadratic and cubic effects (— — - ~=) also shown.



CHAPTER 4

EFFECTIVE-RANGE EXPANSIONS FOR 1T M AND 17 K SCATTERING

4.1 Introduction

In this chapter we investigate the effective-range expansions
vhich enable us to analytically continue the T and "TK current
algebra models of Weinberg (10) and Griffith (11) above threshold,
and thus enable us to do a phenomenological analysis of recemnt
experimental data. The work is based on an article by the

author (76).

We do not investigate any of the P-wave effects as the 79 is
well fitted by the effective-range expansion (2.39), and from the

shape of the phase-shifts the K* (892), can be similarly treated.

In the next section we reyiew the work of Brown and Goble (55)
in extending Weinberg's amplitudes for T scattering up to the
resonance region, and how their analysis has been modified (77, 78)
80 a8 to make the I = 0 S-wave resonate near the f’ mass. Then we
investigate how the work of Dilley (gg) fits into the two extrapolation
schemes, In section 3 we firstly extend the current algebra model
of Griffith (Ll1) for 77K scattering to the resonance region, and
then we constrain the I = % S-wave to resonate, and compare our
predicted phase-shifts with recent experimental data. Finally
we compare our predictions with those of the Lovelace-Veneziano model

(18).

4,2 Effective~range expansions for nim scattering
A simple extrapolation of Weinberg's current algebra
scattering amplitudes consistent with elastic unitarity has been

proposed by Brown and Goble (§§), and they make predictions for



the I = 0 and I = 2 S-wave phase-shifts up to energies around the
kaon mass. The value they obtained forsz - Si at the kaon
mass agrees well with that obtained from K - 2 m decay rates.
In addition the P-wave amplitude, when continued to higher energies
via an effective-range expansion, with parameters fixed by
requiring a resonance of the /~ mass, leads to a slightly modified
vergion of the KSRF relatiom (g;) determing the width of the
in terms of its wass and the pion decay constant in good agreement
with experiment.

The current algebra nn amplitudes are givem in Appendix D

(D23 -~ 25) and can be written as

PP (s) = (28 -,.%a/1.5 (p23)
Fl(s) = (s-40) s /4 (D24)
FE (s) - (s - 2/3) 8, /2/3, (pe5)

where a, 8,y 8, are the scattering lengths,

oLl
Ve now write an unsubtracted dispersion relation for the

inverse amplitude with the only branch-—cut being the right-hand
unitarity cut which gives a contribution H(s) to the inverse

amplitude, where H(s) is given by equation (2.4).

We now define qf(a) by

(@] - e + gt (4.2)

so that gi‘s) represents the contributions of the poles in the

dispersion relation (2.3), and is a meromorphic function except for the
inelastic unitarity cut along the poaitive real axis for
LI qukg’ and a cross-channel cut along the negative real axis

eftecliie ma
(s < 0). VWe can write the pétti&i-wuv expansion as
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plo) ot 5, = (B(e) + 1 p(s)) + gi(s) = Beyla) | 7, a>4

4.2)
The current algebra S~wave amplitudes both vanish in the gap
0< 8< 42 below thedastic threshold, and thus from (4.1) it is
clear that gi(s) has a pole in this gep, and hence it is not
possible to parameterise it as a finite polynomial in s.
Accordingly we shall insteed write the inverse function as a first
order polynomial in 8. Ve determine the coefficients of this
expansion by fitting it to the current algebra amplitude at the
point where the latter vanishes, and thus we obtain the same simple
form for the unitarily correéted amplitude as from the Lovelace
K-matrix method (18) (1.13), namely

A(s) = Fls) (2.3)

The phase-shifts that follow from this assumption are shown as
dashed lines on figure (4.1) where it cen be seen that both phase-

~

shifts are small with 5: o~ 80° and Sf . =40° at 700 MeV.

Enough data is now available to compare the S-wave phase-shifts

obtained from Brown and Goble's method with experiment, as has been
discussed in chapter 2, The predictions for 'Si are too

large, while the predictions for S: are too small above the kaon
mass a; there is no O~ resonance predicted, and if we believe

the work of Weinberg on the algebraic realizations of chiral

symmetry the 79 and 0" masses are equal.

There have been several generalisations Q[?, Zg) of Brown and
Goble's procedure to improve the predictions for 5; in the region

500 = 1000 MeV. so as to include the c— a8 an S-wave resonance,

\\

.-("\5‘ ?"H'Q,h;‘
e, 29 9“:.“-,,
PR

1L1RY



and we follow here the method of Greemberg (78) although all the
methods are basically just different parameterisations for gf(s)
s0o as to put in the o, Ve give three parameterisations for

go(s)s

(1/)/(1+ ck?) + bi>,
(1/ + bk%)/(1 + ck®), (4.4)
(140/(1 + o) + b, '

1) g(s)
2) g(s)
3) g(s)

vhere o is the scattering length, ¢ is determined by the Adler
zero in the I = 0 S-wave current algebra amplitude at 8 = 0.§p?.
The comstant by which can be thought of as giving some measure of
the left—~hand cut contribution to the amplitude, is determined by
requiring that there is a resonance near the f’ mass and at the

[
resonance position we have ctg 50 = 0.

The amplitude Ag(s) is now given by a generalised effective ~
renge expansion and it matches the current algebra amplitude at.
threshold and the Adler zero. Ve can now use equation (4.2) to
predict the phase shifts, and the width of the resonance is
obtained by evaluating twice the difference in J& of the phase-shifts

at 45° and 900.

The best fit to the data is shown on figure (4.1). This
comes from model 1) for g(s) as the other two parameterisations
result in a width greater than the resonance mass, and phase-shits
smaller than the experimental values when s is greater than mf_.
The best fit comes from taking the resonance position to be at

730 MeV and then we predict the width of the o to be 250 MeV.

An interesting feature of the amplitude in equation (4.2) is that
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l.tn'\ ﬂz (5) —~ ‘/A" ) (4.5)

S —x o0
This is just the behaviour expected for A:(s) if the high-energy
N T scattering is dominated by Pomeranchuk exchange with a

constant residue function and linear Regge trajectory.

The technique used by Dilley (23) which has heen mentioned
earlier (see mection (2.1)) gives predictions for the amplitudes
in the region 8 = @,E to s = 8,2, We expand the invariant

amplitude A(a,t,u) in a power seriems in ks, k, and ku vhich are

t
defined by (24).

k, = % /4~ = 8y
k, = # [£.2 %, (4.6)
k“ = % /4/3 - U.

Thus below the physical mm ~nnthreshold at s = eﬁg the amplitude
will be purely real and aq%e continue the amplitude above
threshold some of the terms will develop imaginary parts. Next
we impose elastic unitarity on the amplitude by defining

Rl(s) = Im AL(s) (4.7)

fa—s, 2170 al(e) ®

where Hl(s) = ] for exact elastic unitarity. we now define the

root-mean-square deviation of Rl(s) from unity in the interval

2 2
4,.~<82 8. as "
Se¥(s) = 1 g RI(s,) - 1)% 2% (4.8)
) Jn ( :

where 8, are equally spaced points in the interval. Ve now vary

the coefficients of the power series expansion so as to minimize
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SRI(B). Fixing the S-wave scattering lemgth a, = 0.16 we find the
hest it gives 5,%15° and 5, —5° at & = 8.5 (400 MevV.%), This
agrees with both the solutions, with (77, 78) and without (53),
putting in the o~, but in this case we have not inserted any
kinematic zero in the amplitude at the o mass, 80 we can consider

Dilley's type II solutions as having a non-resonant I = 0 S-wave.

4.3 Effective-range expansions for 1T K scattering

Having obtained a phenomenologicel description of the low-energy
T data up to near 1 GeV we now extend our analysis and investigate
thetrK system which is similar to the rm Tgsystem in that there
is a strong resonance in the I = ¥ P-wave, the K¥ (892), with a
broad S-wave resonance lying somewhere mear it. First of all we
investigate the effect of unitarity corrections to the current
algebra model in the same way as Brown and Goble (55) and then we
analyse the effect of forcing the I = ¥ S-vave to contain a broad

reasonance.

Ve again write for the phase-shift

2% etg G = H(s) + 2ik +£h)-m[é@ﬂ'ﬂ (4.2)
JB: 5

where now we have unequsal mass kinematics and

¥ = (8= (m+9?) (8- (m =9%)/2s. (a12)

The function H(s) is chosen as before so as to enforce elestic
unitarity and is given by a once subtracted dispersion relation for
the inverse amplitude with the only branch-cut being along the

right-hend unitarity cut in thecomplex s-plane
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oo
H(s) = 8 = (m +)° - 2k(s) das (4.9)
uE L JT (e (e - (m 4
()

The discontinuity of H(s) across the right-hand cut is -2k/ /& as

required by unitarity, and it is well behaved asymptoticelly as

lim. Re H(s) .~ lus. (4.10)
S o

A subtrection is put in at threshold so as to force
B (s = (m+4®) = o0, (4.11)

and at threshold the amplitude is then given just by g;[,(s) which

will give the correct scettering length.

The current algebra amplitudes of Griffith (11) can be written

ri (8) = at (28 -3® -’20, (pa7)
4

3 2 2

Fo (s) = a3/p (s = m™ - %), (p48)
2m .

where a% and 53/2 are the scattering lengths. These amplitudes have
zeros at & = 11.95,3 for P%' and 8 = 13.45/4,? for ls'%, and by fitting
a first order polynomial for {gg (s)‘l =1 to the current algebra
amplitudes at the points where the latter vanish we again find the
unitarized amplitude Aﬁ'(s) is given by equation (4.3). The
phase—shifts that this ensatz produces are shown as dashed lines

in figures (4.2) and (4.3) with the scettering lengths given by
current algebra as a} = -2a3/p = 0.22, Similar to the

case the I =g— S-wave phase-shift is too big being -67° at
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1250 MeV, whereas the I = # S~wave shows no tendency to resonate

and is too small, being 32° at 1250 MeV.

Ader et al. (23) have generalized the approach used by Dilley
(238) to 7T K scattering. They give polynomial expansions for

AY (s,t,u) in terms of the following variebles

% = % Je)® -
q = % /4/3 -t (4.12)
g = % /(m+,«)2-u,

They then impose elastic unitarity in the strip ((m +/~)2,

(m + 2/«)2) by defining

. SR(a) = i(( 1= 8 (e))® ¢ (- 62 (o))
here itz
B'(s) = In ag(s) ( 4.7)
w/ i | @) °

and s; are equally spaced in the interval. They obtain minimum

values for SR(s) for S-wave scattering lengths in the region

ay =0.12% o.05,

o2 = -0.085 % 0.04, (4.13)

and the P-wave scettering length is given by a Breit-Wigner

expression for the K* (892) with width 50 MeV.

Their predictions for the phase-~shifts at 900 MeV are

o+ 0
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This agrees well with the non-resonant solutions shown in figures
(4.2) and (4.3) in that the I = 4 S-wave is too small whilst

the I =2 S-wave is too large at 900 MeV.

Before we consider the effect of making the I = 4 S-wave
resonate somevhere mear the K* (892) it is interesting to see

what the experimental results are.

K+ phase-shift aneclyses have recently been performed

(79 - 81) using the reactions

p - kF o= AT, (4.14)

£p -k n® A", (4.15)

and we compare our predicted phase shifts with the data.

Trippe et al. (zg) have performed a pole-extrapolation

analysis of reactions (4.14) and (4.15) use Dérr — Pilkuhn
form—factors and they showed that the observed moments of the

K+ angular distribution have the properties of a slowly

increasing I = % S-wave phase-shift reaching 90° near 1100 MeV.
They obtain a rough compatibility with the date by assuming a
Breit-Wigner of mass 1100 MeV and width 400 MeV, although this does

give incorrect threshold hehaviour.

The Johns Hopkins group (80) have extrapolated the d%r/dmdt<i¥:j>
quantities for both reactions to the pole, and performed an on-shell
partial-wave analysis. They obtain an ambiguity in the phase-shifts
similar to that in nrm (82) in that two solutions are obtained,

one of which goes slowly through 90° at 1100 MeV, whilat the




other goes rapidly through 90° neer the K#*(892), but by comparing

the extrapolated cross-section they prefer a resonance near 1100MeV,

A similar analysis to that of the Johns Hopkins group has been
done by the Brussels ~ CERN - UCLA collaboration (81), with again
an ambiguity in the phase-~shifts, and one solution going rapidly
through 90° at 900 MeV.

Yute et al. (83) have analysed the K phase-shifts from

Kp ~» K +ta, (4.16)

and obtained S—-wave phase-shifts in good agreement with those of
references (80, 81) so we will only compare our predictions to those

of the first two sets of data.

Following Greenberg (78) we make three parsmeterisations for
g%(s) labelled 1) 2) 3) in figure (4.2)
1) g(s) = (&) / (1 + o®) + widP
2)  g(s) = (1/ok + bk )/ (1 + k), (4.4)
3)  g(s) = (/A / (1+ek®) 4,

whereolis the I = ¥ S-wave scattering lengths and ¢ is chosen to give the
zero at the same point as the I = 3 S—-wave given by Griffith (L}), while

b is again chosen so as to give a resonance at 8 = H2 by making ctg

5:‘: (s = %) = 0.

We consider three values of the scattering lengths ol = 0.17, 0,22
~ Griffith's current algebra value, and <A = 0.27, so that we can
test the sensitivity of our results. Setting M = 1100 MeV
throughout the predicted widths of the resomance are given in
table 1, and the resulting phase-shifts and their fit to the data
are shown in figures (4.2) and (4.4). Ve find, similar to the

n r case the best fit to the data is with model 1) and A = 0,22
although o= 0.17 fits nearly as well. In geherel, a variation in

of_ of 25% produces a variation in phase-shift at 900 MeV of 15%.
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The position of the pole in g(s) is dependent on the way
we extrapolate off mass—shell to the Adler zero, and this is not
uniquely defined (section (2.4)). However, our predictions
for the width are relatively insensitive to the exact position
of the zero and a change in the position of the pole of 40%

results in a change in the predicted width of less than 10%.

If we use the current algebre amplitude for gﬁ(s)

gi(s) = 4 man + bk>  (4.17)

s (28 - 8K - 2m° - 2.4)

then we get phase-shifts in good agreement with model 1) and a
predicted width of 480 MeV, which is not too surprising as the
two parameterisations are constrained to be equal at three pointss

Adler zero, threshold and resonance position.

If we take the constant b as some contribution from the
left—=hand cut in a dispersion relation for the inverse amplitude,
and assume that the I = %- S=wave has the seme left-hand cut

contribution i.e. we put

B o +bk®  (4.18)

aﬁ 3/2(8 -ll?-/uu)

22(s) -

then we find the I --% S-wave phase-shift is considerably reduced
3
end for e = ~0.11 we find So° = -25° at 1250 eV as is

shown in figure (4.3). The gépresponding Velue for a-% = = 0,085
issza -m - 1900

4.4 Discussion
We can thus conclude that the current algebra amplitude for

K scattering when extrapolated above threshold by means of an
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effective-range expansion which imposes elastic unitarity on the
amplitude is compatible with experimental data for the S-waves in
thats
(i) the I = % S-wave is large, positive and resonates near
1100 MeV;

(ii) the I = g- S-wave is small and negative.

Our fit to the data of references (80, 81) is good even out to
1250 MeV although we are neglecting inelastic effects and contributions
from the cross—channel on the left-hand cut are only approximated
by the effective-range expansion for g(s). This suggests that

these effects may be small up to 1250 MeV.

The two sets of data have ambiguities in their I =« ¥ S~wave
phase~shifts as discussed earlier, but the Johns Hopkins group
(§g) prefer a solution which is in good agreement with ours. It
is interesting to note that Lovelace predicts a resonance under
the K* (892) using a unitarised Veneziano model (18) (see figure
(1.4)), as here the resonance is forced to be & daughter of the
K* (892). If we make our model resonate at 900 MeV by altering b
we get a predicted width for model 1) with & = 0.22 of 130 MeV
as against the 210 MeV predicted by Lovelace, and more in agreement

with the rapidly varying phase-shifts indicated by the data.

In principle we can discriminate between the two solutions
by meeasuring the K* elastic cross-sections at the K#* (892),
but up to date the statistics have not been sufficiently accurate
(84). However, the present results show no evidence for a narrow
S-wave resonance on top of the K* (892), end if such an effect were
'present it should elso be observed in the physical K¥ mass

spectraj but no such effect has yet been reported.



Table 1

Predicted widths for scattering lengths a, and different models

0.17 325 375 420
0.22 b0 525 375

0.27 520 575 635
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CHAPTER 5

LOW-ENERGY y7 K SCATTERING

9.1 Introduction

Now that detailed experimentel studies of ;K-> K scattering
are becoming possible there is growing interest in theoretical
predictions for this process. The model which is presented in
this chapter is similar in comstruction to the one given in chapter
2, The basic assumption is made that the appropriate scattering
amplitudes are smooth and simple functions of the energy-momentum

variables on and near the mass-shell.

There are two dynamical essumptionss
(i) the existence of the K* (892) meson in the I = %
L= 1 amplitude;
(ii) the dominance of the I =1 = 1 nn—=>KK amplitude by

the Io meson.

In addition we make physical assumptions similar to those we
made for the nn = 1rmw calculation in chapter 2,
(iii) only S- and P-waves contribute in the region of interest
J8 £ 1.3 GeVs
(iv) the S-wave scattering lengths are smallj
(v) elastic unitarity holds over the entire region of interest;
(vi) the contributions to the partial-wave series from the
left-hand cut and circle cut can be evaluated directly from the

crossed channel partial wave series.

The discussion of the validity of these expressions is the same
as that given in chapter 2 and is reviewed briefly for the sake of

completeness,
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In maeking these assumptions we are aware that through analyticity

and crossing both higher partial-waves and absorptive effeets in
the region /8 < 1.3 GeV can influence the lower partial waves.

These possibilities are discussed in the calculations.

The assumption of small S-wave scattering lengths is very
restrictive but is well supported by current theoretical models

(1, 18, 25, 29, 85, 86).

The sixth assumption is equivalent to disregarding the
presence of third double spectral functions and in practice as our
dispersion relations are subtracted, the results are insensitive
to the distant left-hand cut. The assumpti;n is necessary in

order for us to obtain a closed system of equations.

In the next section we give the construction of the inverse
amplitude dispersion relations for L £ 2 and show how they are
solved when expressed in terms of subtraction constants and zeros

of the amplitude. A model for the amplitudes below threshold is

then given and we see how this is constrained by analytic constraints

and crossing sum rules similar to those used in previous chapters.

Finally we discuss the numerical results we obtain.

6.2 Method

The partial wave amplitude Ai (s) has the following
singularities in the complex s—planes

(i) a right-hand cut (m fﬂ)2 < 8< o0

(11) o pipy-hend cat - oco<s & (m -2 ;

(iii) a circle cut |s] = n® - 2.

We define a function q{(s) by
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G (s) =1/(%(s) aj(s) (s-g,)),
and also we define Bi(s) = (A}(s))'l, then on the right hand

cut elastic unitarity can be expressed as
Im Bi(s) = =2k(s) / JA.

In the complex s—plane very high energy scattering contributes
through crossing around the point 8 = 0. Now k2-7 oo a8 B8 5 0
80 these high energy contributions are suppressed and also the
effect of unknown distant singularities is very much reduced. A
subtraction is made as s = 8, (which may depend on I and 1) so as

to further dampen the unknown large 8 behaviour of the amplitude.

A dispersion relation for Gi() may be written (93)

By(s) = H(s) - B(s,) + k>(s) B(5,)/6’(s ) + Li(s) +C(s) +

Pi(s). (5.1)

The elastic right-hend cut contribution cen be eveluated in

closed form independent of I and 1 to give
o

H(s) = -k2‘s! 2k(s’) ds' ,
T ) EKE) (¢ )
(m +/A)2

= -2k(s) g [ 2= me - 22 - 2k(s) /7 \(5.2)

TTJ!_ 2m/vs-
and gimilarly we have
Hp) = k(s) 2 tan' [2k(s,) s,
T k(s,) /% s, ~n° -u’

wvhen (-2 < 8 < (m+/u)2.

The left-hand cut contribution is



(@)
Li(s) = (s-a,) k2 (s) In Bi(s’) ds’ (5.3)
T ® (s') (¢ -s) (' -s,)

-0
and the contribution from the circle cut is

cle) = (s-5,) K(s) § NABNE)  asf (5.4)

i K(a’) (s -8) (4 -s,)
\S\:m’“_),}

where A Bi(s) is given by

ABNs ) = 1in. (B)((1sl +£)e®) - By((18) —e) h),  (5.5)

€20
vhere |s| = a® -/f and 8 = sl i/

Zeros of the amplitude at threshold (ka(s) = 0) are given by

X
the term P,L(B)'

The S-wave amplitude does not vanish when k2->0 and k2 has

two zeross at s = (m—,u)a =X and 8 = (|n+,-»--)2 = Y and we obtain

I’:(s) = kz(s) (s-s,) - 4Y -
(Y - x) ( Y-8,) AL(Y) (¥-8)

4X | (5.6)
(X - ¥) (X-3,) (x-8) AL (%)

The P-wave amplitude vanishes when k2—>0 and thus P::(s)

has contributions from two second order poles. If we have All =

I

o(kawhens=x and A =pk2 when 8 = Y +then

1
P:(s)=k2$) (s-s,) | a_ - 18(s')2 .
: ds (s - Y)2°((8' -8 )& - 8)
s'= X
d [ __=16(s)" (5.7)
as’ \ (& -X)%8(d =8) (& =s,)
$-y
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The discontinuity across the crossed physical cut 0 £ 8 &

(o - /,«.)2 is given in terms of the imeginary part of the physical

K scattering amplitude.

The circle cut discontinuity is given in terms of the absorptive

part of the amplitudes for the t—chaennel proceas nn -> KK.

All the processes discussed above contribute to the left hand
cut -9 <g«<0, but in addition there are meny other contributions
from, for example, the mom massive intermediate states in the t-chanmnel
(4rr, 6, KK etc.) Some of these contribute also to the back of

the circle cut (s =,-2 - |n2) GeZe nn—>l&'.

Thus for any value of s on the cut ~ o <8 <& (m—,«)2 we have by

crossing
c(s)
Im HL(S)z—_‘_ ("fg%;‘i)ia(.rf?(nl’f‘l)&,(‘}ﬁs I H (“-)alu
F-s 4
-4k (5.8)
+9(9_§ ‘*t EX i 2 RA+1) P, m}m J I F (t)dt

4R? X pg

vhere (k) refers to— the u—channel three momentum with
e(s) = (®-,H%  whem 04 s < (ap)?,
= (m +,¢~)2 when 8 < 0.

The second term in (5.8) includes the contribution from where the

circle cut crosses the left-hand cut at s =,u2 - m2.

On the circle cut we introduce a variable ) (93) defined by

st (Za2x+ 022 f21 S (nend) (-2 =B,

so that
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sI(») = m® -J“?’
k2(t) = >\ .

The discontinuity of the scattering amplitude across the circle

cut is given by

AR, (5:0) =t¢x P(h >TZDX Za(:u“)(ﬁgp mm xq) o] :,)(e)cxt.

The a.mplitudes on the circle cut are given bys

I+

A}(st - CAi( 8)

Bi(st-) - CBi(s)

i Anl(s), (5.10)
i AB)(s), (5.11)

+1

where the discontinuity of the inverse amplitude is required for
the dispersion relation. It should be noted that the functions

CAi() and CB (s) are themselves complex functions.

For each value of AB}_(S) we calculate the contribution from

the circle cut as follows.

Ve transform the integral over s to two integrals over A
one being the contribution of the cut from the lower half of the

circle (s_), and the other from the top half of the circle (s+)

and we obtains

c(s) = (s-s,) k2gs) ax
LAl >\ (s+-8) (8+-s,)

1

« <d_s; A Bl (s-) ax
) d) A (s -8) (s_-4a,)

Although A B‘{(st is a complex function, it is a real analytic

function in that



1 I*
ABL(S"') - -AB,  (s),
and so for s real we obtain ci(s) also real.

Ve evaluate ABi(st) using the following iterative procedures

(i) first time through we put A B{(s) = 0 and then using
the value of CBi(s) obtained by evaluating Bi(s) on the circle
cut from equation (5.1) we have Bi(st) from (5.11);

(ii) we invert Bi(st) to get Li(s'-"):;ro the knowvledge of
AL}(st) we calculate cni(st) from (5.10)3

(iii) the second time through the programme we have new values
forAA}_(st) and CB{(S.!-) and we use these with the previous estimate
for CAi(s) to calculate ABi(s);

(iv) on the ot

time through we use the values of AAi(s)
and CB‘{(S) from the n'" iteration and the value of CAi(s) from

the (n-l)t'll iteration to calculate A Bi().

It should be noted that the n'" iteration for CB}_(s) uses
the value of A Bi() from the (n-l)t'h iteration for G_E(s)

and also the (n-l)t'h value of ImB'{() when evaluating L}L(s).

The unitarity condition for 1-';{(1'.) requires that it has the same
phase as the pion—pion amplitude for 4,0%915 glG,;E. Then the
quantity Fi(t) Di(t) where Di(t) has the phase exp (—151:( nw = mTe )
has the following singularities in the t—planes

(i) the right—-hand cut 16_,3. et L o0y

(ii) the left-hand cut -t £ 0.

¥e write the following once-—-subtracted dispersion relation for

Fy(t)
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o
De) E{() = (i=t,) | ToER (¢) DIH) @t o El(e )ok(y,),
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vhere the right-hand cut is neglected, essuming that four-pion and
other higher mass intermediate states contribute very little in the
lov—-energy region. These small effects are absorbed into the
subtraction consteants which ares

(i) for I =0 L=0, ¢, -o.s,.f, and if we . assume a
linear off mass—shell extrapolation from the Adler zero (12) then
we have Dg(O.Q/E) = 03

(i1) forI =1 A al, t, = 4.2 and hence ni1(4,£) -0

as this is at the physical mnm threshold.

On the left~hand cut the discontinuity is given by

¢-+9-)’
{ 1
Inr\ F:(t) = 'j/ \ 1a PL(S' +-g1',. q" iﬁ_‘[f z\(;li'-i 9?11 (li) Im ﬁj, (S') JS'
B(p-9-) Lpq o CLY
(SN T - (5.13)

where (p—)2 = -p2 and (q_)2 = -q2 as on the left-hand cut ¢ <0.

Note that the Legendre expansion on the right-hand side is
valid only for t'>'-32,§, 80 the dispersion integral (5.12) is
cut off at ¢t = -32,3 and the comtribution of the rest of the
left-hand cut absorbed into the subtraction terms. The

" sensitivity of our results to these subtraction terms is discussed

later.

In order for us to be able physically to do the integrals we
have to introduce a cut-off (s =A) in the left-hand cut integral.

This is chosen to be 8 = -3gu? as the Legendre expansion for




A}_(s) is only valid up to this point. For s £ /A we assume

I o
In B (s) = InB) (A) (5/A).

The results for the phase-shifts for J8 <1.3 GeV are insensitive to the
precise value of A and X provided AL~ 32/;.2 and A £ 0. For all

the results quoted here o = 0.

There are nov four partial waves in the model and the amplitudes
are calculated interatively as followss

(i) we specify s, and from our sub-threshold models for nK
and nn we have predictions for Bi(so), Pi(s), D’{(t);

(ii) for the first iteration we put L}E(s) 0= _ci(s) and
calculate H(s), H(s,) and then calculate Bl{(s) from the cut~off
point A\ to a point on the right-hand cut where we believe elastic
unitarity still holds ( Js ==1.3 GeV). This also gives a prediction
for Bz'(s) on the circle cuts

(iii) use these values of Bi(s) to get values of Ai(s)
between =322 and 70,2 (1210 MeV®)s

(iv) use (5.13) to get ImFJIL(t) with t on the left~hand cutj

(v) use (5.12) to obtain a prediction for Imi'i(t.) with
t 5403

(vi) with this new prediction for Imﬁ{(t) vwe calculate
Ina}(s) on the left~hand -cut (5.8), and ReAf(s) on the left-hand cut
comes from the dispersion relation (5.1). These then give a better
estimate for ImBi(s) on the left-hand cutj

(vii) we obtain a new estimate for A A}_(si) from ImF'{(t) in
(5.9) and using the estimate for CBi(B) from (5.1) we get a better
estimate for A Bi(s) as previously explained}

(viii) now recalculate Bi(s) with the improved estimates for

L{(s) and Ci(s);
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(ix) go to (iii) and cycle to couvergence.

This procedure is basically a gemeralisation of that used in
the original application of the inverse amplitude method, and its

convergence has been proved.

5.3 Sub—-threshold amplitudes

In this section the m K isospin amplitudes are constructed from
suitably crossing-symmetric polynomials in the usual s,tyu variables.
Terms up to quadratic are included and the absence of prominent
isospin-% resonances is incorporated in a conventional way. The
polynomials are chosen so0 that amplitudes obey the Adler comsistency
condition (12). Alsom mass-shell o dominance of the I = 1
2_= 1 nn>KK amplitude imposes further constraints on the polynomials
in terms of the f’mass and width. Our final constraint equations come
from using the second order current algebra results of Griffith

(11) (Appendix D).

The conventional way to express the assumption that the isospin
3 channel conteins no resonances is to assert that the dependence
3f Ag!is,t,u) on s as an independent variable may be neglected in
comparison with its dependence on t and ue Then if we introduce
a function H(t,u) (87) where
H(t,u) = e+bteurdtiren’ +ftu,

then A?-/z(s,t,u) = H(t,u). (5.14)

fhe charge symmetry of A' and A~ (A39) requires

A" (sytyu) = H(t,s) - H(t,u), (5.15)
with A‘} (sytyu) = -g-l-l(t,s) - 4 H(t,u). (6.16)

If we now invoke fo dominance of A~ we can write (5.15) as
A= (s,tyu) = g(s-u) (5.17)

¥ -t




where M = m o and g is the product of its + vt and KK coupling
constants.
By expanding (5.17) and equating its coefficients at t = 0

with those of (5.15) we have

¢ +e5 =g/t (5.18)
£-e = g/ut (5.19)

The coupling constant g is evaluated as followss

We revrite (5.17) ass
A~ = 6\ 2 pgg_1 8=u,
{a T -t-} 1m

= 2(24+41) | 2 pag _1_| P (conp), d=1 (5.20)
3 w2t

and comparing with the amplitude for nin > F —> ;77 Damely

2 d® % _L |
é{s : fh ua-t."& 4q°

= 2(2£+1)K3 q® §L _2_1_ l_’k(coset)s 2= 1
3 8w M=t

(5.21)
where '619 is the frm coupling constant. Assuming universality of
the /9 coupling (88) we see that at t=0 we obtain

g€ = &£ | b:/:_ (5.22)

2m 4

3 Q

The decay rate formula f‘ = 2% % (5.23)
3M2 47

P
where 4z2 = (M2 - 4/,%) leads to the numerical result D,)p J4r= 2.3
and thus

g = 0.32 (5.24)



We obtain further constraints on our parameters by considering
the results of Griffith (11) which have been discussed in Appendix D.

Pion - PCAC implies that if s = u = m>, t = a then 22 (5,t,u) = 0

a+b/.2 + en” + d/f + em® + 1}4\22 = 0 (5.256)
Kaon-PCAC implies that if s—u-.Z, ¢ =n® then 4%/2 (s,t,u) = 0
a.+bm2+c/f+dm4+e/f+;“2 w = 0 (5.26)

If we take two pions off-shell such that s ->;m2 + 2p.qy t = 0,
u-am'o' - 2p.q then (D39 - D41) gives
e + cn> + em? = -,E/f“fk 64, (5.27)
2¢ + dem” = YePwae . (5.28)
If we take two kaons off-shell such that S-?/Ag + 2p.q, t =0,
n-> /.f = 2p.q then (D42 - D44) gives

a + c/*z + e/f‘ = - 2/f fk 64w (5.29)

2¢ + 48,2 - -1/ sen, (5.30)

and thus from (5.27) and (5.29) we have

a + on + en’ = 2 (5.31)
2 4 2
&+ can 4 e m

If we project out the S-wave from 2%2 . (aytyu) and define the
scattering length a.3/2 as the velue of the amplitude at threshold

(s = (m +/.~)2) then we have

By/p =8 +¢ (m -/K)a +e( m -/«.)4, (5.32)
and from (5.18) (5.31) (5.32) we have

e = (a3/2 + gumg/lla) / 5m2/..~2, (5.33)

£ = e+g/t (5.19)

e = ghtf ~eF (5.18)

8 = 8y - c(m -,~)2 - e(m -/w)4, (5.32)
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d = (e (,.f - 4) + e(/»\6 —mc) + (a.-o-fm2,w2) (/02\ - ma))/(/fma_
n’ %), (5.34)

b = -a.—cm2—(.l/f-em —fm/(a_. (5.35)

The model for the nn->nrramplitude in the region 4,2_ Stélﬁl.f

is given as followss

Both amplitudes are made to obey elastic unitarity as

I -1
In J:Aj_(s)] - -2k/ J5.

a) The I = 0 L =0 amplitude is paremeterised as an effective-
range expansion for the o~ resonance as

A () = 1/(1fa, + bk®, ok? +ak® - 2ik / /%), (5.36)

where a  is the scattering length ( = 0.16) and the other three parameters
are evaluated by fixing where the phase-shift is 45°, 90° and 135° to
give a 0 resonance at 700 MeV with a width of 250 MeV.

b) The I =3 = 1 amplitude is assumed to be given by (2.39)

with a; = 0.085. 5 M = 765 MeV and I' = 120 MeV.

5.4 Analyticity constraints and sum rules

Whilst the inverse amplidue method is a convenient way of
implementing unitarity it does suffer from the two theoretical
drawbacks that it may in fect lead to important violations of
both crossing symmetry and unitarity. The discussion of these

violations has been given in section (2.3).

We can minimize these violations by imposing constraints on
our ;;;liiudes. These crossing sum rules and analyticity
constraints are generalisations of those given earlier by Roskies
et al. (7) and by Martin et al. (§). We use the anmalyticity

constraints as checks on our starting models for the iteration scheme

to make sure they correspond to physical amplitudes (theepogsing sum
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rules are automatically satisfied); and then we use both sets
of constraints to test the amplitudes we have generanted and

check that they correspond to a physical set of amplitudes.

In the rest of this section we firstly give the crossing sum
rules and then the anmalyticity constraints, and finally discuss some

phenomenological constraints.

Crossing sum rules

These have been derived by Basdevant (§9) and are a general'isation
of the nm crossing sum rules derived by Roskies (Z), although
Basdevant also derives the nn sum rules using a simpler technique

that the polynomial expressions of Roskies.

(m t,)g

If we demote S— £(s) de by <f > then

(m _/“)2

the three sum rules which do not involve D-waves ares

< -A®y> . o (5.37)
< 1:“(1\’{r - A::/g) > <k4(A? - A3|/ &> (5.38)
<@ (s -0 - u® =B d 4 2?5

-t (ad s af’{ 2)> (5.39)

Anglyticity constraints
These have been derived by Ader et al. (Qg) using the earlier
techniques developed by Martin {5)e The ones which we use: to

test our model are the followings

83y = (o) + 3 Flo), (5.40)
o > F0O)ME - 3 ¥ (0), (5.41)
s Pw| o & .. (8.42)

dt t= o 2
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2 2 2
if n° - =X, (4. - t)/(an” = t) = P and gF(t)dt - (F(t)>
then the other constraints ares o

22+ aat(x) < 3 L EPNE 2R E (D)8, (5.90)

2¥22) & BGx) + 203 ) - ) <3 LE W+ 22 Bl

t> /s/f, (5.44)
(3.~ 2m) &E(x) + (Burtm) 2¥/2(x) < 3 LED(H) E- 3mfPF, (4)) > /),
(5.48)

(3-20) (2 (x) - E(x) + (502m) (/2(x) - £¥2(0)
<8 <(E;°(t) ]'g‘ - 3%m;:;(t.)) t.>/s 8, (5.46)

In addition to the above constraints we also impose several
phenomenological constraints (19 - 81, §§) on our amplitudes.

(1) both the P-wvaves have no zeros below threshold as the
Adler zeros only manifest themselves in the S-waves. For the simple
linear current algebra model of Griffith (11) this constraint is
trivially satisfied but in our model it is non-trivial that the
P-waves have no zeros below threshold, both on input and output from

the iteration scheme.

(11)

the I = % P-wave scattering length is forced to be positive as
we know the I = 4 | = 1 phase-shift is positive above threshold

as this partial wave contains the K¥(892) resonance}

3

(iii) the I = 5 S-wave phase-shift is experimentally small and

negative in the region we are interested ing
(iv) the I = %- P-wave is experimentally consistent with zero

and a unitarized Veneziano model (18) predicts its value to be less

than 5° up to 1.4 GeV.



5.8 Results

The subtraction-point s, is fixed at the value l§,§ in all

but the I = § P-wave whero the K¥(802) meson is inserted through

| 3
o subtraction at 8y = mkf = (802 "iv)a -with By (mak*) = 0.

The choice of subthreshold subtraction point is made well away
from the physical branch point at » = (24)® = 20.8.%. This is
because in the nn syatem a large I = 0 S-wave phaaé-sh1t£ near
threshold can affect the adequacy of the polynomial model and
lead to significant errors in an extrapolation to the S-wave
thresholds. Choosing the subtraction well away from threﬁhold
then allows consistent solutions containing a large isoscalar -
iﬂtaraction as well n; the possibility of others. Ve believe a

similar argument holds for n K scéattering.

. The range of values chosen for the ome puorameter in the model
is a 3/2 = = 0,08 +# 0,03 and for each value of this scattering -
length wa requirey, both an input and cutput from the iteration .

(i) the crossing sum rules (89) are satisfiedj

- (44) the analyticity oonsirntnts are nafisfied;

(11%) the iteration oénvergas i.0: the amplitudes do not '

“oscillate from one iteradion to another but are stable hnd are

in egreement within 20% at the end of the fifth iteration, and
within 2% at the end of the.tenth and final itorationg -

(iv) the phenomenological constraints are satisfied.

Ve f£ind the constraints and sum rules are not as difficult
to satisfy as they were in the nn - nm model discussed earlior,

This is because we have no construints relating amplitudes abgve
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threshold to those below threshold, and hence no positivity
constraints on higher partial waves ( in our case A 2 2) which were

obtained in the nm1 case via crossing.

We find we are able to satiafy all the constraints and sum

rules for = 0.05}3.3/22— 0.66.

Current algebra predictions for the S-wave scattering lengths
have been made by Cronin (85) (ai =013 % 0.02, aa/é = - 0.07 £ 0,01)
and by Griffith (11) (a.i = 0.22, 83/2 = ~0.11). Lovelace (18)
predicts “& = 0,21 and 53/2 = =0,007 from his unitarised Veneziano
wodel, while Moffat et al. (29) using a Regge pole model have oy
= 0,15 and By/p = ~0.06 (note that we do not use his more recent
results of 0.13 and =0.078 as this model gives wrong predictions for
a, when applied to nT scattering). These earlier predictions give
and so we present our results as s

2
band of predicted phase=shifts with the extremums given by a3/2 =

no consistent predictions for a3/

0.055 (when we predict 8y = 0.16) and B3/p = = 0.066 (ai = 0.17).

The phase-ghifts are shown in figure (5.1).

The main features of the results are as followss

(i) A large I = % S-wave passing through 90° near 1100 MeV
of the "down-up" type with a width between 180 and 220 MeV
and in reasonable agreement with the experimental data discussed in
chapter 4. This is in contrast. with the results of Moffatt (29)
and Lovelace (18) who assume the mass spectrum and are thus forced
to have a resonance near the K*#(892) and thus the only predictive
power of such models in this energy regiomn is for the width of the
Even here there is a wide difference in their predictions with
Moffat's solution being of the "down-up" type with a predicted width

of 60HMeV, while Lovelace's is more of the "up-down" typb with a
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width of 210 MeV, It should be noted that experiment predicts
a narrov resonance (width X2 50 MeV) if the resonance position is
near the K*(892) whilst predicting a broad resonance (width >

150 MeV) if the amplitude resonates near 1100MeV,

(ii) The I = %- S-wave is amall, negative and falls to about

~3° to =5° at 1.2 GeV.

(iii) The I = % P-wave resonates near the K*(892) mass and
the predicted width is 30 — 40 MeV in reasonable agreement with
the experimental value of 50 MeV. The scattering length is

2

predicted to lie in the range 0.013,.°> - 0,015,

(iv) The I "% P-wave is negative (a.a'/ 2 lies in the range

-o.oog,:2 — 0.005,7%) and is compatible with zero up to 1.2 GeV.

Our solutions are stable as can be seen from figure (5.1)
and if we decrease the magnitude of a3/2by 15% the S;} decreases
%
by 20% at 1.2 Ge¥ and ’So decreases by 30% whilst the P-waves

stay the same.

If we alter 85 or a.éla so that gi decreases and becomes non-
resonant then we find, in‘ analogy with our na calculations, that ‘St’ ’
increases e.g. these exist solutions (which are non-physical begause
either they do not satisfy the sum rules or the P~waves develop sub-

threshold zeros) where s;!_r = 65° and Silg - - 62° at 1.2 GeV.

All the solutions we investigated have zeros in At and Aao/ 2
for (m—p)zé B & (m +/¢.g)2 (s% and 83 respectively). These may be
identified as on-shell ma.nifestationi of the Adler zeros demanded
by PCAC -~ not because they are at the positions given in the

Griffith model (11) (siit.ll.QQ,?, 83 *L13.4§ﬂf ) bat because they
2
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satisfy the sum rules

3a + 5 2 - 100.2. (5.47)
This is a generalisation of the sum rule derived by Pennington and
Pond (27) for nm scattering. Note that this sum rule is not
exact (even though the current algebra results satisfy it to 0.1%)
as the ratio m//w is irrational and the zeros even in the Griffith
model are at irrational points. The sum rule is based on the
quadratic extrapolation off-shell of our model, and thus contains the

results of Griffith using linear extrapolation as a subset.

The actual zeros we predict lie close to the current algebra
results and ares

o = 11.09.%, &3 = 13.34.2 (5.48)

2
One of the main reasons for using a quadratic model is so that
we are able to get a prediction for the ratio fK/f"_ which in all
linear models is forced to be unity whereas experiment says the ratio

is 1.18 + 0,08. From equations (5.28) and (5.30) we have

e + 2em2 o fzﬁ
2 2
¢ + 2e. £,
and for a.#‘a = =0.066 this gives
£, = 1.225 £_. (5.49)
Also from (5.30) we have
2 2
c+2,.0 = 1/64n
which gives £ - 119 MeV, (5.50)

K
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and from (5.49) or (5.28) this gives

- = 97 MeV, (5.51)

The value for f_. is an agreement with experiment (fn X 95 MeV)
and the ratio fk/iw is in excellent agreement with that predicted
recently by Wambach and Schulke (88) (f./f, = 1.23) from PCAC

corrections to Kl3 decay.

Qur predictions for fK are very sensitive to the particular

value of a§/2 chosen, and the above is the best solution. For a5/2

= = 0.055 we predict f,/f_ 2,0 with f

'« = 98 MeV and £ _ = 198

MeV.

The amplitudes below threshold are shown in figure (5.2). Ve
find the input and output amplitudes lie within 1% of each other and
80 only the input amplitudes are shown with q&/2= -0.0686. It is
perhaps not too surprising that the amplitude; agree." with each other
as the S-wave amplitudes are constrained to be equal at four pointss
the two thresholds s = (m = )%, s = (m44)2, the Adler point, and
the subtraction point. The P-wave amplitudes are small below

threshold and of course vanish at the two thresholds.

The left~hand cut contributions to the amplitude are small and
atable. If we alter the beheaviour on the distant left-hand cut by
putting o =-1 then this only alters the phase-—shifts by less than
10%. If we also alter the n n >nnemplitudes used in the calculation
of the t—channel amplitudes by, say, making the o~ resonate at 500 MeV
or putting &, = 0.04.°° then agsin the phase-shifts are altered

by less than 10%.



We have assumed that elastic unitarity holds up to 1.2 GeV.
Previous analyses indicate that they are small up to 1100 MeV
(g;) but in the K#* (1420) region the inelasticity is lmown to be
approximately 50% (92). Ve have also ignored the inelasticity in
the nn—>KK amplitudes at the KK threshold when the I = 0
l_u 0 nn phase-shift rises from near 80° to near 180° in the region
950 - 990 MeV. This sharp behaviour is very difficult to impose on
a smooth function (see chapter 2), but from our previous discussion
we believe the effect in the n K = 17K amplitudes would not

be significant.

5.6 Conclusion

VWe have presented a sub-threshold model for i K scattering
which is a generalisation of earlier current algebra models. We
find the ratio ﬂ(/f,rr is in good agreement with experiment, and a
sum rule for the on—shell manifestationsof the Adler zeros is
predicted. This sum rule, while it cannot be exact, should be
obeyed to within 1% by all future linear and quadratic sub-threshold

models for —r K scatteriung,.

We have extended these amplitudes above the physical n K
threshold while at the same time makinzg:%he left~hand cut
and circle cut contributions are treated carefully. The
amplitudes are also constrained to obey the analyticity and crossing
constraints, both on input and output from the iteration procedure,
and thus we may reasonably expect them to correspond to physical

partial~wave amplitudes.

Inelastic effects have been ignored in both the s~ and t-channels
but we may reasonably expect them to be small up to 1200 MeV and
the effects on the amplitudes to be correspondingly small and of the

order of 10%.



:S)

GREE

-
o

(i

SHAET

3\

\S E

LI
1t

P

o~ et

.50 r

1AD -

70

60 F

30

)

NG ( G:-QV.)

Fig, 5. I Range of solutions for S~ and P- waves setisfying the constreints and

sum rules .



Q
2
e

O

S

£
1

Fig » 5.2 Polynomial and celculated amplitudes in.the sub-threshold region

|
i
!
i
i
|
" ‘
5 G _ LO
) , S*C‘-V\'Lu,)l
R '
< U ™My



CHAPTER 6

THE PROBLEM OF THE n AND CONCLUDING REMARKS

&

We have seen thalt the idens of current algebra plus /9
dominance of the I =1 | =1 partial-wave amplitude and the
satisfaction of rigorous sum rules and anolyticity constraints have
led us to resonant I =0 or I =% S-waves for both wmand +rK
scattering with particles o ( or &) and It resulting. Both of these
nevw particles have J® = 0% and it is interesting to consider them as
members of the SU(3) ot octet which is directly related to the SU(3)
nonet of pseudoscelar mesons with JP = 0 . The obvious member of
the 0% octet corresponding to the q would be the 5(962) as the
strong decay

E; —> T q
hos been ohserved, with the WTN(IOIG) then being interpreted as the

KK decay mode of the $(962).

The non-leptonic decay 1—931r could not be fitted quite as well
as the K-»3+r decay and we noted Sutherland's paradox (§§) that if
we assume a linear matrix element for the decay them current algebra
predicts the decay is forbidden. Further evidence for the unusual
behaviour of the 7 in the interaction of pseudoscalar mesons comes
from considering the simplest Veneziano formula for rrq —y rrq
scattering which has the form

A(s,tyu) o&.VAgf(s,t) + %M A (syu) + Van(t,u), (8.1)

272

and which ensures correct signatures for the A2 and f (degenerate with

the f’andcd). Imposing the Adler zero an each term in the usual way, .

whether in the soft—pion limit (s = m% = u, t =42), or in the

2
1

1 - «,,(,«3) -oc,,(m%, ) = o, (6.2)

soft-q limit (s =,u? =u t =m, ) gives



- 83 -

and thus from equation (1.8) m, = AL

Much discussion has been devoted to this prediction and many

cures have been proposed but nothing very satisfactory, has emerged.

In addition Osborn (25) has noticed thaot already at the soft -
meson level amplitudes involving q's have a quolitetively different
off-shell extrapolation from the ones for mnand -rK. The qu-éal1q
amplitude is
Asytyuy a5, By ags Bp) = _ L (sytru-d® - (mh - 48) (F + £2)), (6.9)

1
where the q's oand p's are pion and 9| momenta. Thus explicit
dependence on the p's is indicated and if this is replaced by the
on-shell value the Adler zero is not present (i.e. this new off-shell
form is irrelevant for current algebra). Maybe therefore the off-shell
extrapolation of equation (6.1) is quatitatively different from that
of equations (D21) and (D45, D46). This would also be a solution to

Sutherland's paradox.

In conclusion we have found that pions and kaons have a very
similar structure above and below threshold with a similar extrapolation
off-shell to the Adler zeroj whilst theq y although being a member
of the same SU(3) nonet and thus a priod we would expect it to have
a similar structure, has a very different current algebra amplitude
and hence any extrapolation off-shell may be dubious. It is thus
very tentatively that we associate the 5(962) with the 1 in the same

wvay as we have associated the o~ and It with the Tmand K respectively.



APPENDIX A

Kinematics.

Ve define the usual Mandelstam variables s,t,u bys

s = (p, +p)% = (pg+0p,)° (a1)
t = (p+pg)® = (p,+p,)° (a2)
u = (p + 1»4)2 = (py + py)° (a3)

where P}s» Pgs and P> ~P, denote the four-momenta of the initial
and final particles respectively. Comservation of four-momenta

requires that

B+ tbt+u = 25; mf (a4)

iml

vhere m, is the mass of the ith particle.

i

For nn->nn in terms of the three-momentum k and the

centre of mass scattering angle 05 we have in the s channel

cos @ = 1 + 2t = =1= 2u (as5)
s e
2 2
- 4‘A 8 =— 4[&

4k’ 5-4/,.2. (a8)

where 4+ is the pion mass and the s channel physical region is

s>,4'..2, \oos 8| <1.

Similarly in the t channel we haves

cos & = 1+ _28 = s =-u (a7)
2 ~ 2
t-4/t~ t-4/~

and in the u channel

cos 6 = -1-_ 2 (A8)
2
u =4,
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For n ¥ - nK we define m to be the kaon mass and we haves

s = m2+/f+2k2+2/(k2+m2) * + 42 (a9)

t = =2k° (1 - cose ) (A10)
u e 2m+22-s+a® Q- cos6,) (a11)
vhere mov Lk = (s ~ (m +/~)2) (s = (m —/4)2)/48 (a12)

The finel set of kinematics we will require is for the

KK system where we haves

8 = —p -q2 + 2pq cosy/ (a13)
t = 2(p° +q% +n® 40 (a14)
u = P2 4% - spgcos (A15)
where 4p2 - t - an” (a1e)
49> - t -4 (a17),

and /} is the centre of mass scattering angle and is given by

cOB = §=-=1
4pq (a18)
) — 2 2
and we define 2_ = 2m + 2. (a19)

mnoyr crossig matrix

Since isospin is conserved and the three values I = 0, 1) 2
can occur we expect three independent invariant functions of s,t, and

u., These can be conveniently written ass

A(s,t,u) Sa.b gcd + B(s,t,u) Sa.c gbd + C(8s,tym)
x Sad $ be (420)

where a, by ¢, d are the isospin labels of the four external particles.

Crossing symmetry leads at once to the relations
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A(s,t,u) = B(t,a,u) = C(u,t,s) (a21)

B(s,t,u) = C(s,u,t)

The three isospin amplitudes are now given ass

A = B8A+B+C (a22)
A! - B-c (a23)
A2 o Bac (A24)

If we take AI(s,t,u) as the 8 chamnel isospin amplitudes

then the t chanmel isospin amplitudes A (t,s,u) are given by

al(t,8,u) = >-/§ ‘A (s,t.,u) (A25)

where the crossing matrix iss

B. =[¥ 13 (a26)
11 3 3 _g
3y 4 3

and the u channel isospin amplltudes are given by

aX(u,t,8) 2 (1)‘*‘ B, AL(a, 4,0) (a27)

I=0

Partial vave amplitudes

The s channel partial wave amplitude for isospin I and angular

momentum L A4ﬂs) is defined by
4

Ai(s) -i_ ( AI(,t) L, (cos6,) d(coBs) (a28)

and hence Al(s, cos Os) - 2 2(2 1+1) PL(cosO.,) Ai(s) (A29)

We include the extra factor of "2" asg from Bose statistics we must

have I + J.even and hence we only have half the usual number of

partial waves.
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Unitarity for the partial wave amplitude can be expressed ass

ImAi() > 2k Ai(s) 2

s

where the equality holds in the region of elastic scattering

(a30)

4/3 £8 < 16/5. Alternatively we cen express the amplitude as
I .5,
A(s) = (f < -1) (a31)
L =
2ik
where Si is the phase shift and z)i_ the inelasticity paremeter.

We note that for elastic scattering ’)T:L = 1.

From the above expression (A31) we can now calculate the
total, elastic, and inelastic cross—sections for each partial wave

amplitude and we finds

'ro'ri = o (28+1) (1= g5 cos 253)/6%  (a32)
o—msrrlci = “(2‘(4’ 1) \ r)i EM’(_RS}_) -] 2}‘]:2 (A33)
e = meas1) (- DAL (a34)

TT K crossing matrices

The scattering amplitude is defimed by

Sab = Sa.b + i(2")4 8n S4(pb-i’a) Aa.b/'é

3
>((Pol Poz Pos l’04) (a35)
where in the isospin space of the kaon Aa.b is given by
= + -
Ay %b AY o+ if'ta’*(_b j A (436)

where ’ta Y , ere Pauli spinor matrices.
?

Crossing requires that the same scettering amplitude A+ (s,tpn)
vhen continued to appropiate values of the va.ria.ble 8,tyu describes

all the three chennels.
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nKk > nk (s8), nm -5 KK (t)y nK 50k (u)

The eigenstates of tatal isotopic spin I = %, -% in the

s~channel ares

d .t s o (A37)
‘g = Af - A (AﬁS)

when two pions are exchanged from (A36) we have

A7 (syyu) = & K5 (ay8yt) (a39)

and so the s—u crossing matrix is defined by

¥a ’
Al(s,t,n) - 0411, AI(u,t,s) (a40)
Tl
4 ;
where °<1'f = -3 3 (Aq1)
% 3

In the t+ channel the eigenstates of isospin are I = 0 or

I = 1 where

Fp = JE‘: (142)
F - 21 (243)

and the t-s crossing maetrix is defined by

A 3/2 4
P (t,8,u) = z B4 aX(s,tyn) (a44)
I<k
wi q@i Jr—
th /3”, — [ '3 2_32 (a45)
) -3

and we also introduce the s~t crossing matrix defined as

Vs{ = (ﬁﬁ) -l (a48)
- 1

1

i
2

o
_1_ -
i3
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Partial wave amplitudes

The t channel partial wave amplitudes are defined by
|

i) = 1 ( F(t, cosg) 2 (cong?) ol cos @)
4(pq)* (a47)
-\

and hence

o0
F'(t, cong) = 2 Z (24+ 1) P (cos @) (pq)'l Fo (t)
L=0 (a48)

and as we have Bose statistics I + A is even for each partial

wave amplitide.




APPENDIX B

Experiment

The spinless nature of pions and kaons makes them relatively
easy to find experimentally but extracting rnmn and 77 K amplitudes
and phase shifts is very difficult as we do not have any pion
targets, although with the mew intersecting storage rings it is
hoped we may soon observe Nnn and 17 K interactions on their own.
The experimental technique used at the moment is to make use of the
pions that exist in the virtual meson cloud which surrounds the
target proton. One assumes that the processes shown in figure (1.1)
actually occur and these may be used to study Xt scattering where the

beam particle X scatters on the virtual pion yielding

Xp > Xnn (81)
Ip> X7 AT (B2)
and it is a crucial assumption of all X v data that ome pion
exchange dominatea the class of charge exchange reactions depicted in

figure (1.1)

Goebel, dhew and Low (3) suggested that cross—sections for a
beam particle scattering on a real pion may be extracted from observed
differential cross—sections for pion production processes. In the
suggeated procedure the differential cross—section in t for the
exchanged pion is analytically continued into the unphysical region to
the value of t which corresponds to the mass of a real pion (with the
usual metric t =/u?). Although this procedure has been refined over
the years by putting in complicated form fectors and absorptive terms
the extrapolation is still subject to errors even with very accurate

data near t=0.
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The ambiguity in the phase shift for n n —)nn comes from this
experimental technique as values for the isospin zero S-wave
phase shiftsz come from studying the S - P interference term in

the reaction

wp > " n (B3)
a8 in this reaction we measure (neglecting $ i )

sin Si sin S: cos(S} -S:) (B4)
80 that the ambiguity

So >nfz +$1 =50 (85)

o

results vhich is the famous "up-down" ambiguity. In principle

this ambiguity may be resolved by measuring all the interactions between

the different charge states of the dipion system but as yet the data

is not sufficiently good. The present experimentel data for
i -> v is shown in figure (1.2) where the ambiguities can be

clearly seen.




APPENDIX C

Analyticity constraints

The constraints are based on the following consequences of
axiomatic field theory:

(i) Crossing symmetry.

(1) Analyticity domain and the existence of fixed t dispersion
relations for -2§*g <t s-@,f.

(iii) Convergence of partial wave expansions for the amplitude
or its absorptive part in the Lehmann - Martin ellipse.

(iv) Asymptotic bounds e.g. Froissart bound.

(v) From (iv) there are at most two subtrections in fixed

t dispersion relations for -2§,E <t < Q/E_ and the Froissart -

Gribov integral converges in that region for L =22,

We will derive below some of the earliest constraints found by
Jin end Martin (5) as these illustrate some of the techniques used
in deriving the more powerful constraints that have been discovered

recently. From nov on we will assume the usual metric and put

}E = 1.
. o o o o
We consider the completely symmetric mn o 5 + A
amplitude
Feo (sy,t,u) =3 4%°(s,tyu) + %-Aa (s,t,u)
- A(-,t,u) + B(,t,u) + C(l,t,u) (01)

The S-wave is given by o ‘

£2°(s) = 1 5 F°° (sytyu) dt (c2)

8-4

4=

By crossing we have

F*° (4, 0, 0) = F°° (0,4,0) (c3)
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and hence

£2° (4) = z (2 A+ 1) £° (0) (c4)
L EVEN

for 0 ¢ 8< 4 and A2 the Froissart - Gribov projection is

f1° = _ﬁ_‘ y 0, (3 - 1) Im F°%(s,t,u) dt (c5)

where 0 € is a Legendre function of the second kind.

Now InF°®(s,t,u) > 0 in this region because of unitarity and thus

we have

£°(s) 20 e (ce)

and this gives the inequality

£29°(4) = £°(0) (c7)
At 8 = 0 (C2) gives 4
£2°00) = L f F°° (0,t, 4-t) dt (ce)
4
if we use t+>u crossing wve can rewrite this as
£2°00) = % f °(0,t, 4-t) dt (co)
= % f (foo(s) + Z (24+1) foo(a))ds
(c1o)
but from (C5) £°) 3 0 for 122 and |s| £ 4, and hence
£ °(o) > % “g f‘:°(s) ds (c11)

Now we change variables and consider the function F°° (s,' cos 0).
This function is analytic in a cut plane with a positive discontinuity

across the right hand cut. The Froissart-Gribov projection gives
o0

F°°(s) Cosd) = f:°(s) +1 Z (2 4+ 1) P'L(coo)

n

L EVENZ o
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o0

7{1:- F*° (s,2) Q,(z) d= (c12)

2

with zZ, = 8/(-4) -1. Using the Darboux — Christoffel formula

J L0 nE ) = b sy, @) - R (g

Leven 2| z2 - x2
(c13)
we get F°°( 0) foo( ) o
008 =1, 8) + &
© i .
§ (22 () P,(c080) - 080 By (c080) 0,(z))I1nF"°(s, z)dz
3 2 -  cosZ@ (c14)
for |cos@|« 1 we have P, (cos8) < 0 and hence because of the
J8
positivity of Im Foo(s) z) we have
F°° (s,c08 & -J'_;f) < f?(s) (c15)
00 2 00
and at s=0 F (0, t =2 +{5 ) & £ (o) (c1e)

and hence the chein of inequalities
00 2 oo
£, (00 > F(s=0,t =2+ j3) >f°(2+f§) (c17)

gives £2°(0) > %2+ I_:__ ) (c18)

(C12) can be ' réwritten as

F%(e,t,u) = f:°(s) +1 fxmre'“(s,x,u)[ 1 + 1 =2 1log ( x;‘kdx
X+8

n x=t x-u (4-8) -4

“ (c19)
This is crossing symmetric in t<>u but not necessarily in s<—> u.
To do this we impose

d_ F°%(syt, 4-8~t) = 0 for s=u i.e. t=4-2s8  (C20)
ds
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4
this gives d_ £2°(s) + 1 fg InF°° (s,x,u)] 1 +1 -

ds n | ds x-4+28 X-8
lf
2 log X dx
4~-8 <x+s-4>

= -1 InF°°(s,x,u)] -1 - 2 log x \+2 1
n (x-=)®  (4-9)® xes—4) (4-8) (x+e-4)
L

(c21)

This is interesting in itself as it shows that knowkdge of the
absorptive part fixea the S-wave up to a constant.

The bracket in the first integral of (C21) is> 0 for 0<s<0,.62
(c.22)

The bracket in the second integral of (C21) is >0 for 0<s <1l.6
(c23)

from (Cl4) the bracket in the firat integral of (C21) is{ 0 for 0.69 <
8<1.76 (c24)
and it can be shown that the bracket in the second integral is £ 0

for 1.74{ 8< 4 (c25)

From (C22 - C25) we conclude  d£%°°(s) >0 for 1.74s<1.76 (C26)
ds

As can be seen the derivation of these constraints soon becomes
rather complicated and for the rest of this thesis any constraint will

will be stated without proof.

Crossing sum rules

Necessary and sufficient conditions for a set of partial wave
amplitudes to belong to & crossing symmetric amplitude have been
obtained by Balachandrén and Nuyts (6) and further exploited by

Roskies et al. (7) and by Basdevant et al.(8). We will derive here

elx
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the five crossing sum rules relating just the S and P waves in
scattering using the method of Basdevant et al. as with their
technique it is easy to see how to generalize the results to 77 K

scattering.

We denote by M+ (M~) an amplitude symmetric (antisymmetric)
under s-u exchange. If we denote by g* (g~) a polynomial in
8y t, and u symmetric (antisymmetric) under s-u exchange and define
these four functions in the Mandelstam triangle D 0 < s 44/3
0t 44)?, 0<£ n44/3 then we haves
ds dat MY(s,tyu) g~(s,tyu) =« O (c27)
’ (o a6 0oyt0) ot = 0 (cze)
J

D
In terms of the invariant amplitudes A',B;C and the s channel isospin

amplitudes we can define

M~ = A(sytyu) - C(s,t,u)

= (24° + 321 - 5a%)/6 (c20)
and M = A(s,tyu) + B(s,tyu) + C(s,t,u)
- (2° + 24%)/3 (c30)
If we let g = s-u then we obtain the sum rule
&5 ds at (s-u) (2° +22%) = o (c31)
nowv 8 —u = 8 = (4-8—= (1 ~ cos0)(4=8)/2)
- 352- 4 - Cos® (3!.5_) (c32)
e dt = (4-8) d ( cosl) = (4-8) dz (ca3s)
2 2

If we change the integration over t to am integration over ¢o0s6(z)

the limits of the integration become =1 and +1
4 )

(ds fdz (4~8)[(38—4) - z(%g)) (A°+2A2) = 0 (C34)
2

] =
projecting aut the partial waves from (C34) we get
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S%(a-.;) (4-8) (2%(s) +2a2%(s) ) a8 = 0 (c3s)

24

Using (C28) with g* = 1 we obtain

‘{ghs at (22° =522 +3al) - o (c36)
and this reduces to

T @t -l e = o (ca7)

If we put g+ a1t we nowget
% : 2 o .2 .1
S,ds —{Ldz (4-8)° (1-z) (2A" - 5A" +34°) = 0 (C38)

and this gives

fa. (4-8)2 (202(s) - BA (s)) -3 f(.;-.)z Al(s) ds
0 (c39)

If gt = (sdu)2 - 2 then this reduces to (25-4)2 + 2t(28=4) and we

have
jrds .gﬂdz(4-s) ((2s—4) +(2s-4)(4—s)(1-z)) *

542 + 3a ) = 0 (c40)

g’ds (4-8) ((2.—4) + (2:-4)(4—5))(2A2-5A§)
o 4

= (4-s)2 3Ai (28—4)ds (c4a1)
v ¢ ° 2 2 .1
jpds s(s~2) (4-s) (2A° - 5Ao) = | 3(s=2)(4~s) A ds
0 () (ca2)

From (C42) and (C39) we have i
e 2 o 2 2.1
{5(4-3) (2Ao(s) - 5A°(s)ds = -3 | s(4-s) Al(s) ds
° ° (043)
The fifth sum rule is obtained by making g+ a fourth order
symmetric combination of s and u, and then subtracting various

povers of t to eliminate P- and D-waves, and finally reduces to

gt = 252(4—5) - 28(38—4)t (Cc44)
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which gives the sum rule:

ln'—
};5(4-5)3 (2&:(3) - 5&5(5))ds = -3.§—u(4—s)2(3s-4) A}(s)ds (cas5)

These crossing constraints are obviously necessary for crossing
symmetry but it has been shown by obtaining the sum rules by expanding
the amplitudes in terms of a complete set of functions that they are
also sufficient conditions; and also a group theoretie¢ derivation

of their sufficiency has been given(9).

Note that as we go to higher partial waves the number of sum
rules increases repidly e.g. There are two sum rules for the S-wave

alone, three for the S—- and P-waves, but ten for S-—, P~ and D-waves.




APPENDIX D

Soft-meson theory

PCAC and the Adler condition

VWe consider an axial-vector Ki}x) with Lorentgz indices
(~=0, 1, 2, 3) and SU(3) indices i (i = 1, 8). The divergence

Di is given by

D, (x) - )/ﬁ () (m1)

We do not consider the divergence of vector currents V

GB’) Vrno

i 7~
i.e. charge is conserved. If we now consider the fourier transformed

quantities
D () = -ig £Ta) | (p2)
and go to the rest frame then only the time component remains
o
D.(q) = ~-iq A, (q) (p3)

But in the rest frame only spin zero particles can couple to the

time component and hence the matrix element of D between two states
|a> and \ht) will have poles in q2 whenever q2 is equal to the
.muss of the meson which can couple. i.e. for i = 1, 2, 3 the pion pole

will couple, and i = 4,5 will have the kaon pole.

The hypothesis that Dl’ D2, D3 are dominated by the pion pole

is called PCAC and explicitly is

4 ‘D-‘_(q)\ n.> ~ £ (amp. for a 5b +m) (D4)
2

2
M =q
where (:‘is the decay amplitude for ri — eV

Zo\3 00 |7y = g2 50 e/
(0s)

We goet a similar result for kaom PCAC

Z0 \3,» £ (0) \ xqb> - g S&b (2¢°)F (2r)~%/2

(ne)
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The Adler consistency conditions follow simply from this as from
D(2)we have
/A-
<o | pa)\eD x g L b | Kla)|a? (07),
and in the 1imit q -0, <o |A; (a) a>7égo as the dipion system
foea not have any poles below threshold and we obtain

lim, £ b|D(q)) a) =0 (p8)
then using (D4) weq"ﬁ-zvg

amp. for a-—>b + soft = 0 (D9)
Thus for any process where ome or more of the external particles is

& pion or kaon the whole amplitude must vanish when we take one of

the mesons off mass—shell and put its four-momentum to zero.

The current algebra nn and 1 K scattering amplitudes
necessitate- the introduction of a new scalar particle, the o ( org)
meson, The existence of this particle was firat proposed by Schwinger
(13) as a way of interpreting the high maess of the muon, and further
developed by Gell-Hann and Levy in their "o -model” (14) to explain

the Goldberger-Treiman relation for the rate of charged pion decay.

Vieinberg's m n_model

We define the off.mass-shell invariant nn amplitude

<2, qb M |iy ka by
§§d4xd4y<f \ T{ d. (=), Ai(y)} DX i
= 2i5%p; 4+ q - p: ~k) g,f &4 £, gb |M ]i, ka> (p10)

@ +2%) (2 +.0) (a8, Bp)?

where k/"‘“’ q, eare the initial and final pion four-~momenta, a and b
are the initial and final pion isospin indices, i and f are the initial
and final target particles, and the T bracket indicates a time

ordered product.

Weinberg now proves a theorem that as q e and k.. vanish
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together the connected part of M approaches

i 0
L b | M |1, k6 o, jo "R (Tr)pas (Te) gy
16, . n fn

+ poles + 0 ( qa, qk, kk) (p11)
o . . . .
where M is a constant proportional to < f \o;b(o) \17 with
P;= P; =P and the ", term" is defined to be
4
Loy 8% (x=y) = S - )[4 (0, 2ab(y)) (m2)
and is assumed to be purely isoscalar (I=0). T__ and T, are the

pion and target isospin matrices with (Tﬂc) ba * LGbe”

Crossing symmetry, isospin conservetion and Bose statistics
require that the expansion of the off mass—shell amplitude to second
order in momenta is of the form

&Ldy gb |ulpo, kD> = § . S, (4 + B(s +u) +68) +

Sa.d Scb (A + B(s+t) +Cu) + gac de (A + B(u+t) +Cs) (p13)
vith s = (p)d, ¢t = ()%, w= (p)® (D14)

The Adler condition shows that

a+.2(B+C) = 0 (015)
2 2
¥hen q,ﬁo and k/“.ao we have 8 5. + 2peq t-30 u-s,. - 2peq
with
0 .
£Q4, qb \M| pe "“’7"":11,, ca R . 7 Cabx 1 Soax
16/"" fr|
= Miny oa — RS (% ®pc = Spa Sac ) (P16)

/Alsnfn

thus equating the coefficient of (p.q) in (D18) and (D13) we have
2

11

~-B+C =  1/32n.f (p17)

and alses My o, = Sy Soy (42 “B) + (5,9 Sy * Spa Sad)

A+2c+ 28). (p18)

We want M:h.' ca to be an isoscalar and so only depend on ga.b Scd
and thus

L+,80,,28 o o0 (p19)
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from (D15, 17, 19) we have B =0, A = f/fé, ¢= 1/32q,~fi (p20)

with Mdb, ca = (sa.b Scd (¢ '/'\2) + Sa.d scb (u -./"*2) +gacsbd
2

n

(s=2)) / 32n uf (p21)

From (A20) the s—channel isospin amplitudes can now be defined
2

1%(sytpu) = (28 = 42) / 32numf_ (p23)

Al(s,t,u) - (8- 4/5) / 96 n/ufne (D24)

Ae(s,t,u) - (2,3 -8) /:32.1/“1;‘2 (p2s)
The scattering lengths are defined as the followings:

8, = &° (8 =42, t=0, u=0) (p2s)

al(s-4,f)/4 = 11(5-4,.3, t =0, us=0) (p27)

oy = A?‘( = g,f, t =0, u=0) (D28)
If we now define a quantity L by the Godlberger-Treiman relation

L = 4/8n fna (D29)

and put in the experimental value for frr = 95MeV. then we have
1

L = 0.087." (p30)

with o= 7L = .15} L 03,"3 a, = <L = =047} (031)
° = dL = 4 dpn 9 al = 2 m . /~ 2 = g} = Ve,
4 3 2
and the following sum ruless
2
2e - 59.2 = 184 a; (p32)
L = 3ue (033)

Griffith's K model

We consider the processs
mla) + Kp) >n@’) + K@) (034)
and we define the s—channel isospin amplitudes in terms of t—channel
amplitudes with definite charge parity + by crossing (A37, 38). Ve
write linear expansions for A: (a,t,u, q2, 62, p2, 52)3

+

A* = A + B(syu) +Ct + D(p> + B°) (p35)

/
A =4 (s-u) (D36)
. . . . 2 -2 2
and we now consider various low energy limitsfor mg (syt,u, q q s Py

i)z). q->0 or ¢ >0 (soft-pion Adler zeros)
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3
12 (2 02 0?0, 48 0%, 0%) = 0 =2+ 2P(Bed)e e (p37)

p—>0 or p>0 (soft-kaon Adler zeros)
3
12 (2,07, L2, L2, L2, 0, u®) = 0 = 422 Ban®(ceD) (p38)

Using a generélization of the technique of Weinberg for the " o term"
we have a " hr term" for r k scatterings

q~0 and q'—->0 s—=:n|2 + 2p.q, t30, u—)ma - 2p.q
5 (u® + 2p.q, 0, m>=2p.q, 0, 0, m>, m>) = A+2m> (B+D) +4p.§ A (D39)

where A+ 2’ (B4D) = -40/2 8 B4 "~ (pa0)
2

4]

A a1/128n.f (pa1)

Similarly when p>0 and p->0 -a/.% + 2p.q, 20, u-w,uz - 2p.q

3
s (2 2 2 2 2 ’
A2 (. + 2peqy 0y AC = 2peqy Uy 4Cy Oy 0) = A+2B.C + 4p.gh  (D42)

where L+28 - /2 2 84q. (D43)

4

A = 1/12&.,.‘1'1"z (D44)

From (D41, 44) £ =f =f and (D37 - 44) give
H n k

A =B =C/2 = 1/128,.£%, D=0, A= (<0 = 2)/64c.ut”

and this givess

At = (s+ut2t - 2m -,f)/azs mnf (p4s)
A" = (s=u)/128 n . £° (D48)
and hence we finally obtain using (A37, 38)
2¥(s,tpu) = (3843t ~4a® - 4.2)/128,.1 (D47)
i3 (8,t,u) = (2’422 - 26)/128.,.2° (D48)

The S-wave scattering lengths are defined to be the value of the
ampiit.udes at the threshold 8 = (m+,a)'°‘, t=0, us= (m-/«)2 and
henoe -2a3/5 = 8y = |ll)/16ry~f2 (D49)
and putting in the experimentel value for £ = f i = 95 MeV, we have
~203/p = a; = 0,164~} (p50)
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