W Durham
University

AR

Durham E-Theses

Meson phenomenology

Bennett, Geoffrey William

How to cite:

Bennett, Geoffrey William (1973) Meson phenomenology, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8794/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8794/
 http://etheses.dur.ac.uk/8794/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

MESON PHENOMENOLOGY

by

Geoffrey William Bennett

A thesis presented for the degree of
Doctor of Philosophy

in the University of Durham

August 1973

Department of Mathematics

University of Durham

< “An ,!’..'.':':" Rsiyy
9 OCT 1973

sEgTION
LIBRARL "




CONTENTS

PREFACE
ABSTRACT

CHAPTER 1 : Introduction
1.1 Lovelace's Conjecture{
1.2 The Dual Resonance Model
1.3 Programme

Figure Captions

CHAPTTR 2 : Low Energy Theorems for Pions
2.1 Introduction
2.2 8U(3) X SU(3) Current Algebra
2.3 An Identity
2.4 Kaon Decay (1) X + 2%
(i1) K +3X
2.5 EIEta Decay
2.6 TTN=TT

CHAPTFR 3 : Structure in S-wave WW Scattering
3.1 Introduction
3.2 Dispersion Relations
3.3 Models (i) Left-Hand Cut Integrals
(ii) Inelasticity
3.4 Data
3.5 Constraints
3.6 PFits
3.7 Conclusion
Table

Figure Captions

® 3 H M

10

14
16
18

.19

21

25

. 2.7.

29
32
33
35
36
40

42

43



CONTENTS

CHAPTTR 4 : K + 31 and the Generalised Pole Model

4.1 Introduction 44
'4.£ Other Diagrams ' 48
4.3 The Weinberg and Veneziano Amplitudes 50
4.4 Quadratic Amplitude ' - - 53
4.5 Results 56
4.6 Conclusion 57
Table , 58
Figure Captioné | - 59

CHAPTER 5 : Other Kaon Decays

5:1 Introduction . 60
5.2 The Radiative Decay KoL-»27%¥ 61
5.3 Direct Radiation in K¥—» TN . 65
2.4 Conelusion _ 69
Figure Captions 70

CHAPTIR 6 : Zeros in M-I, and Generalised Pole Dominance
. 6.l Introduction : 71
6.2 Mass Dependence and Adler Zeros 72

6.3 Zeros in‘QJvat and Generalised Pole Dominance 75

6.4 TTN Scattering 7
6.5 Conclusion 78
Figure Captions ' 80

CHAPTER 7 : Conclusion 81




CONTENTS

Appendix A ¢
A.1l Amplitude Normalisation
A.2 Unitarity and Partial Wave Expansions

A.3 Isospin Crossing Matrices

Appendix B :

B.l Dalitz Plot for K + 3W Decays
B.2 Normalised Projections

References

83
84
85

87
88

90



PREFACE

The work presented in this thesis was carried
out in the Department of Mathematics in the University
of Durham during the period from October 1970 to

- August 1973, under the supervision of Dr. R. C. Johnson.

The material in this thesis has not been
submitted for any other degree in this or any other
university. No claim of originality is made for either
chapter one or chapter two. Chapter three is based
mainly on a paper written by the aﬁthor in collaboration
with Dr. R. C. Johnson, and published in Phys. Letters
36B(1971) 483. The material in Chapter four is based
on a paper by the author puﬁlished in Nucl. Phys.

B56 (1973) 136. Some of chapter five and most of
chapter six are also claimed to be original,-except
where referenced. '

. My sincere thanks go to my supervisor for his
guidance, patience and encouragement. I should also lik;
to thank my research student colleagues, especially
Messrs. J. B. Carrotte, J. W. Coleman and D. W. O'Hara,
for stimulating discussions.- A Science Research Council
Studentship is gratefully acknowledged. Finally, I
should like to extend my thanks to my sister, Barbaré,
for her skilful typing of the thesis.




ABSTRACT

A phenomenological jinvestigation of soft meson
zeros is performed. Our motivation comes from the
suggestion by Lovelace of a bﬁnnection between Chiral
Symmetry and the Dual Resonance Model. The low energy
theorems relating to the particular processes with which
we are concerned are discussed in detaill in chapter two.
Ve find, in chapter three, for the Pi-Pi interaction,
.that the experimental phase'shift data, when taken in
conjunction with rigorous crossing sum rules, demand the
soft meson.zeros. In chapter four the soft meson zeros
inT-decay are discussed in the framework of the generalised
pole model. The rate problem is re-examined and a-
satisfactory description of both the rate and the spectruﬁ
for the decay is obtained. Using the value of the weak
vertex, g(Mz), obtained in chapter four, we discuss, in
chapter five models for- other kaon decays, namely k?_—'>2.1
and the magnetic dipole radiation in decay k*—-»n*"ll,"}f,
and obtain results in agreement with experiment. In
chapter six we return to the notorious problem of the
zeros in Ql->3'[[,. A solution is proposed based on the
variation of the coefficients of the Veneziano sum
as the external pseudoscalar mesons are taken off mass

shell.




CHAPTER ONE: INTRODUCTION

1.1 Lovelace's Conjecture
Some of the most interesting and far reaching
-consequences of Current Algebra and PCAC have been the
"low energy theorems for pions. These theorems relate
processes in which (N+1)-pions are emitted, in the limit
of one pion at zero momentum, to similar processes in which
N-pions are emitted. If for some reason the N-pion process
is forbidden the low energy theorems predict zeros in the
(N+1)-pion amplitude in this soft pion limit. In chapter
two we discuss some of the soft pion theorems which we
shall be particularly concerned with, namely K=> 3T
M->3T and LT~ AT,
Lovelace in a remarkable paper (1) hinted at a
deep connection between the Dual theory of strong interactions
and Current Algebra. He summarised his dream in terms of
the following equation:
Chiral symmetry for soft mesons + Absence of exotic resonances
= Veneziano formula with no secondary terms.
~ But there are some serious problems associdted with this
conjecture, to which we shall return later, and for the
time being we shall give a brief review of the work which
inspired the above belief.
1.2 The Dual Resonance Model (DRM) |
The DRM is an analytic expression for the scattering
amplitude which is characterised by the following three

properties:
a) all its singularities are due to resonance exchange,
G Iy
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b) Regge asymptotic behaviour,

c) exact crossing symmetry.
From the above points it is clear thaf such a model embodies
the idea of Duality (2) since its absorptive part is given
entirely by resonance contributions and yet the amplitude
is Regge behaved. It is also évident that a DEM as defined
above is inconsistent with the Interference model (3) in
which the high energy behaviour of the amplitude is not given
by the resonances,

If A(s,t) is a DRM for a binary scattering procesé

with s- and t- but no u-channel singularities, (see appendix

A for kinematics) then:

AGH = Y G = Ze'n(s\
N S-Sh n b-tn -(1.1)
If, furthermore, A(s,t) = A(t,s) then C, =‘E;. In other words,
the amplitude can be written either as sum of its s-channel
resonances or as a sum of its t-channel resonances but not as
a sum of both. Another ingredient whieh is usually addea is
that of planar duality, namely that the full amplitude,
A(s,t,u), can be writfen as a linear combination of the
three terms A(s,t), A(s,u) and A(t,u), where A(s,t) possesses
only s-= and t-channel singularities (no u=channel ones)
Lovelace (1) and Shapiro (4) used the above principle
of duality, together with the idea of the absence of exotic
resonances to build their model of Pi-Pi scattering. They
started by considering TC+T[-' elastic scattering.




-3=
In this process thereare no u-channel resonances, since the
u-channel, being I=2, is exotic, while the s~ and t-channels
are identical. Veneziano's formula (5) then requires exchange-
~ degeneracy between the f- and g-trajectories, and gives for

the TUTU™ elastic scattering amplitude the following finite

' s¢) = - [(1-as)P(1-alt))
AlsE) B IF(1-&cs)-a(t))
+ Y PU-aMO-ae)) ...
X F(z-a()-ale)) + -2

This is sufficient to completely descride Pi-Pi scattering,

giving the following s-channel isospin amplitudes:

A° = %(3A(s,t) + 3A(s,u) - A(t,u)) (1.3a)
Al = A(s,t) - A(s,u) (1.3v)
A% = A(t,u). | (1.3¢)

[
In eq. 1.2 . Q{S)=Ho+ S, and is the g...Fo
trajectory function. The separate terms in eq. 1.2 may be
expanded either as a sum of poles in s or in t thus

satisfying duality. To show the s—channel poles at

G(S) = j-) ]-}1 explicitly for the first term, expand:

AGsit) = Ba@+aite)- Hx
Xz(d(t)“\ 1) 1

N+4-a&(s) (1.4)
The residue is a polynomal in t© and therefore also in Cos®

Since it is not a Legendre polynomial, each resonances will
be accompanied by daughters of all lower J. The factor

(o((S)+o((-t)-1) gives rise to the Adler zero (6)
provided that all the secondary terms are zero ( x y etce
= 0 in eq. 1.2) and that

d(mg) = 7

(1.5)
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Taking the g meson to be mass 765 MeV gives for the
trajectory function
ol(s) = 0.483 + 0.885s, (1.6)
in good agreement with the phenomenological g trajectory.
Substituting eqe 1.6 into eq.1.3 gives for the Pi-Pi
scattering lengths: '
) 2
a,= 0'395P and a,= -0.103&, (1.7)
the ratio of which being within 10% of Weinberg's value (7).
In discussing the asymptotic behaviour one uses

the identity

M2 (1-2) sintz

and the limit

T (1.8)

;9@ M(Z+b) - (1.9)

Por fixed s, and large t, one has using eqs. 1.8 and 1.9:

_o(3) |
At~ [A-acs)) [al)] SinTeares) L cotTwats)+ Cotaety]

(1.10).
Apart from possible poies in COt]tol(t). this has Regge-like
behaviour. We expect, for large t, that the narrow-resonance
approximation will be very poor, and that in fact JIm o ()
should become large as {5 0. 1In which case cotTX@) >

and

-1 : o(s)
ACsH)~ Pa-ae T [aw ] (111)

By similar arguments

AGw~ (- Law]™




giving for linear trajectories

et o
['(d(s))  SinTeals) (1.13)

which we see is proper Regge behaviour. Comparing with the

usual Regge formula

~LTCACS); «(s)
) [t

R~ ﬂﬂ(tﬁm«cs\ (—’c;)

(1.14)

shows that the g—residue vanishes at @f(s) = 0~1,-2,etc.,
i.e. the g chooses nonsense. ' |

A successful Veneziano amplitude has also been
written for K and KK scattering (8), but the troubles begin-
when one considers TC’Q scattering: The simplest Veneziano
formula for TEQ—’}TLT[ scattering has the form

A(s,t,u) o A(s,t) + A(s,u) + A(t,u), (1.15)
which ensures the correct signature for the A2-f (exchange-
degenerate with the g-'-oo ) trajectory. If Adler's condition
is to be satisfied one needs perfect octet masses for the
pseudoscalar mesons, i.e. MT: = M n = 140 MeV. This is not
the only problem. The form eq.1.15 1s inconsistent with
phenomenology in that a large 8 coupling is predicted in
disagreement with the observed small @ width. So one feels
forced to modify eq.1.15 by adding satellites - this is the

first problem with the Lovelac_e conjecture.

st e mmmys s e, wam e Ao



As well as considering Pi-Pi scattering Lovelace ' '

also considered reacticns of the type

X—> 31

where X has the quantum numbers of the pion. In applying

the Veneziano form to this type of reaction he argued that only

the coefficients ﬂ,x, etc. in eq.1.2 .could vary as one

of the external pions is taken off mass-shell, since thé Regge

trajectories cannot depend kinematically on the external masses.

The decays considered were ')2..)'511', and K—=>3T .

in the pole mode} illustreted in Fig. 1, and ’pn-—»’ﬂt

.at rest, where the initigl state is known experimentall& to be
- pure lS‘,amd so0 has the quantum numbers of the pion.

When considering [ -decay the assumption of no
secondary terms gives all the required current algebra _zerbs
(9,10), but the fit to the spectrum using the 'proper' value
of 0.483 for Ol(0) suggests that something may be wrong (see
Fig.3). While for the decay '71—-)3'[(, the same assumption

- gives a good fit to the spectrum, but the most obvious current
_algebra zero, that when %-n-'o = 0 (11), is not reproduced
(see Fig.4). To be able to deséribe the process 'pn—§'5T[,
it is necessary for x>—‘3 the most favoured value being

E 7‘%-2,3 (12,13) (see Figs. 5 and 6). Rate calculations

: have also been performed for K~>3TL ana ’rl-}'_’ﬂ'[,

using the pole model ,with some rather surprising results (14).

We shall return to this problem in chapter four.

From the above points we see that if Lovelace's con-
jecture is rigidly obeyed with regard to the absence of
secondary terms several seriéhs brob’iems arise, and yet it was
this assumption which gave the rather nice prediction of the

g trajectory intercept.
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1«3 Programme

Our programme of work involves a phenomenological .
investigation of Adler zeros, particularly in those processes
where the correspondence between the dual resonance model and
current algebra has been suggegted. We see to what extent
Adler zeros are in fzct demanded by experimentel data, when
rather general constraints are taken into consideration.
In those reactions where, at first sight, some of the zeros
seem to be absent we suggest modifications to the Lovelace
conjecture to provide a consistent picture with all zeros

present.




FIGURE

Fig-‘l:

Fig.2:

Fig.3:

CAPTIONS:

Pion pole dominance model in which a kaon (eta)
decays weakly (eleetromaghetically) into a heavy

pion, which in turn decays strongly into three pions.

Pi-Pi phase shifts given by the single channel

K-matrix Veneziano model (15).

. . o
Single term Veneziano fits to K -—)TL""IT."T[
0.483.

0.528.

A: fit with O(0)
B: fit with 0(0)

The dotted line is the best linesr fit. The data

are from ref. (16).

Fig.4:
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Single term Veneziano fits to 'q—’PTL TT
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B: fit with «(0) = 0.491.

The data are ref. (17)
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CHAPTFR TWO : LOW ENERGY THEORFMS FOR PIONS

2.1 Introduction:

Nambu and Lurié (18) were the first to use the
PCAC hypothesis to study processes involving “"soft" pions,
that is, pions with zero or small four-momentum. By
combining PCAC and the algebra of currents, Callan and Treiman
(9) were able to relate the processes K=3W and K->AT
in the 1limit of one soft pion. They found that the result
depended on which pion was taken to zero momentum. Hara
and Nambu, and Elias and Taylor (10) continued this work,
and by assuming a linear dependence on the energy-of the
odd pion for the matrix element of the decay K-=»3IT were
able to obtain a very good description of the rates and
slopepérameters for the decay by relating it to the decay
K2, Bell (19) then showed that the results of Callan
and Treiman were still true in the intermediate vector
boson theory. This tempted Sutherland (11) to apply the
same analysis to the phenomenologically similar decay
’?’-?31’5. The result was rather surprising; he found that
if one assumed a linea{r matrix element, which worked so
well for T decay, then the decay M-»3T should be forbidden!
This led to many gquestions: (a) was current algebra wrong?
(b) were the linearity assumptions wrong? (c) was the
similarity of K and ')l decay within their Dalitz plots
purely accidental? It seems that one is forced, with
great reluctance, to take the point of view that the
linearity assumption is wrong, which in turn means that

the results obtained for T decay, beautiful though

they are, must be accidental.
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Weinberg (7) applied these ideas of PCAC and current algebra
to the problem of Pi-Pi scattering and obtained sc;me very
interesting and rather surprising results.

In this chapter we rederive tﬁe low energy theorems
. for the particular processes which we will be considering
later. At each stage in the derivation we will mention
the approximations which have been made. The plan of the
chapter is as follows: in section two we briefly review |
the current algebra ingredients of the low energy theorems,
in section three we derive an identity relating the
process d=>@+W , in the soft pion limit, to the "easier"
process of d-"ﬁ. The remaining sections consist of special
cases of « and g . _
2.2 8U(3) X SU(3) Current Algebra

In the SU(3) scheme of things, the weak and
électromagnetic interactions of hadrons are described
by a set of Vector and Axial-vector currents denoted by
V{p ) ana A';';(X) respectively, whe-rg the unitary spin
index, i, runs from 1 to 8.(20). The Vector and Axial-

vector charges, defined by
- " 5 - -
F, (t) = .1IVJ4(J_:_) dx and Fj iJ.A:M(x) ax (2.1)
respectively, satisfy the commutation relations
5 5 , ;
[Fk(t)-, Fe(t)]= 12, F (1), [-Fk('“-)' Fe(t)]= 1), oF mlt)
and '
5 ] _ 5 :
[Fk(“)' Folt) | = ify,, Fp (%) (2.2)

where the f are the structure constantsof SU(3). The

k&m
isotoplc spin and hypercharge operators are given by:




-1]=

-

Iy=Fy (j=1,2,3) and ¥ =J§‘ Feo (2.3)
For the electromagnetic current, :]'#_ s One has the
following form:

L=V
Ju = + Vs
o S T_Z-&' ) (2.4)
giving the well-known Gell-Mann Nishijima relation
Q=1+ % (2.5)

Since it was natural to expect the currents Vq‘_ and Aq,,
themselves to be octets,the following equal time

commutation relations were postulated:
[cha, Veu ]= it Ve, [ F.‘(t),Ag,‘cx)] = fiem Anpu)

L7, Voo =tfiem Amp0, L it Agi] = i Vot

The interaction Hamiltonianh density which describes the
coupling of the electromagnetic (e.m.) field, AF.,(X)
to hadrons is:

¥ '_
g'(em xX)= -]-H' (x) Ath(x) ) | (2.7)

which describes the e.m. pr0pertie§ of hadrons to all
orders in the e.m. coupling.

For weak 1nteractions_tﬁe best that can be done
is to use an effective Hamiltonian, the matrix elements
of which directly desqribe the lowest order weak effects.
All experimentél evidence, apart from the "very weak"

; decay kf_—)Z_TC, is consistent with a current x current

effective Hamiltonian:
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3(‘ + Wy +30= -6 [T, R
Iz

where

Jp= L + T coso+ Jusing. - (29)
Here Lp. is the leptonic current,@- the Cabibbo angle

("'15 ) and IP’ are the strangeness-conserving and
strangeness changing hadronic currents regpectively,

given by

T;“ qu- A|p+£(Vzp+ A’-P) (2.10)

and

3;:. = Vq.p-i- Agpti (VS[L"' ASH-) . (2;11)

h
If one writes the hadronic weak Hamiltonian, '3(_w y
as a sum of parity conserving and parity violating parts,

that is

h rC. Py, '
3’(w'"' '3'( +3’( (2.12)

then .J(BC will contain terms of the type V‘-P’VJP or A;‘.Ajg
whlleé(.w will have terms like VLF.AJ(A or Aq.g\/‘“,;,

Using the commutat:.on relations eq. 2.6 one obtains:

[FE,EK ] [Fw}( '] [F Pv]=[FL3‘(|:¢cv"] (2.13)

In particular one is interested in the case when

= (1 + i2) /J-, or 3, that is when the F's are just
J the usual isospin operators I+ or 13.
The usual assumption withregard to the strong

: interaction Hamiltonlan is that 1t is of the form:

H': HO +3H8= H°+ 3]3(8 dl _ | (.2.14)

M,
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here Hp is SU(3) invariant and Hg is the eighth member of
an octet.. This form gives for the divergence of the

vector currents the following

al“ka‘(x) =] ":Km}(‘"‘ (). (2.15)

That is, with this type of SU(3) breaking, only the
isotopic spin and hypercharge currents are conserved, and

the time dependence of vector charges is given by

FK(ﬂ 5""k8m Hem (2.16)

The hypothesis for the divergence of the axial-vector
currents had its origin in the work of Goldbergerand Treiman on
the decay of the chargedpion (21), and is the hypothesis of
Partially-Conserved Axial-vector Current (PCAC) given by

’b};Aq‘ = Ci.(bi (2.17)

In particular for i = 1,2,3 one has

’ap(AlpttAm) iz F'ltm TC;(X) a,;A:gL- Fu‘mnTL"(x) (2.18)
where TL°(X) are the pion fields, m'K. the pion mass and
F'[c is the plon deecay constant defined by

Cr): 2P, (0| Aetik[TUE)=WZ e (2.19)
- By looking at the decay T A+ 'V“_ y One can obtain
an "experimental" value for F'K- = 93 MeV.

This empirical value differs by only 12% from

- the Goldberger-Treiman value given by

F1L= gA MN c_y_ {5 Mev

M
where 8y is the nucleon axial-vector coupling constant

(2.20)

(gA = 8, (0) 2 .1.2), My is the nucleon mas: and gKNN
is the pion-nucleon coupling constant. (gENN /lfTL::.’ Ili-ﬁ)
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2.3 An identity (22)

Let J- (X) be any of the currents \/K}k(x) or
kﬂﬁx) and 1et O(X) be any Heisenberg operator; now

consider the amplitude

= i fdx & ¥ o)1 [T, 0001 [

(2.21)

where d and ﬁ are physical hadron states. Then

1M (3 P) B0 BILT, 00, 007] )

= i[dx P 3 (BONBI[Tp0,00] 1))
- [ (€ PRI PI T, 00TTIY). ¢,

By Gauss's Theorem the second integral on the r.h.s. of

eq. 2.22 can be converted into a surface integral which is
set equal to zero. This is because the spacial surface

" terms give no contribution if wave packets are used; fér
positive time the integral vanishes if a small positive
imaginary part is given to ‘10 and for negative time

becauge of the Q(Xo) . Using 309(X°)= S(Xo)one obtains:

guMige= ¢ [dx &0 (B IL YT, 0] [
+- i_fdxe-iq'x 5(x,)(pl[]k°(x),0(o>]|a) (2.23)

"~ gettin - and using the PCAC othesis:
setting jL“. Akk g hyp

b= M 00, k=1,2,3

(2.18)




and taking the limit q—)o one has

q&: -y, f dx €T 80c)(p) LT, 09, 06011l
¥ =1L <F’|[Fk(°) O(o)]\d> {im °1FM"P(2 24)

One now considers the matrix element Cht.:,o

5,
._._(11(,)/2,/2_‘1: (p'l'[k(q” 0(0)‘“) (2.25)

By the L.S5.Z. reduction technique the matrix element -

can be written as

A=t J dxe i'c""('m}t- EI)GCX«)((SI [Klgx),O(o)] |“> (2.26)

with an integration by parts one obtains

R= e e Pe(pI IO 0@la):. (oo

By comparing eq. 2.24 and 2.27 one notices that

 Lim (2_1[')3/2@ Etr,(p '[[k(q) l O) |o(>
920
" --L((SIEF (0) OCO)] o) + &M%MK}‘ (2.28)

Here the second term on the r.h.s. vamshes unless MKF
has a singularity at ‘1’& O. This can happen only if a single
particle state, degenerate in mass with either o or P
contributes to Mkp— In the cases were are interested in
no such singularities occur. The first term on the r.h.s.
of eq. 2.28 is an equal-time commutator that is known

from current algebra considerations.
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Hence, by the relation eq.2.28a process involving matrix
elements of O(o) between two states (g-\-.ﬂ:‘dand o4
is connected, in the soft pion limit, to a process that
involves the matrix element of a related operator between
ﬁ and O( In other words, one is able to connect a
| process in which N pions are involved to others in which
N-1, N-2, ——, O pions are involved. It should be noted
that if the matrix element for a process in which R soff
pions are emitted is, for kinematic reasons, of order

q q ..... q,‘ , straight forward application of current
algebra gives no information about it, because one is

neglecting the second term on the r.h.s. of eq. 2.28.

2.4 Kaon Decays
_ (i) K > 2T
To first order in 5‘(w the reduced T-matrix

element for the decay

kd({’)—’ Ia(k‘)-ﬂt‘; (ka) (2.29)

where & is the charge state of the kaon and i and j

are the isospin indices of the pions, is:

- (L, (k,m,(ml H'o) [k

-T}g is related to the Feynman amplitude 47141 via
' 4

(73[)3/1 ,llk,o (2.31)

(_2.30)




" Applying the identity of §2.4, .eq. 2.28, one obltains
IAIW\ Rd (th‘l.)
Ki—=>0
T =k (na)|[F0), ' @] ) -

which becomes, after using the commutation relations

in eq. 2.13
Liam R (N
k|->0

The road is now clear since the Fi's are just the isospin
operators.l+ a'nd.I3. Wiriting the matrix element far k—).ﬂ,

as:

<“(k1)|3(s:(0) ‘k(P))=(m)3 o Miew, 230

one arrives at the following relation:

m (k> o) |
=T RY (1)1, F o Tk (i,
= (‘I-Z_F{[_)-“ {\rz 'YnK"][_-i- '|"mkow } ' (2.‘35)

. taking this together with the other charge states we

have the following:

'Yn(k"—>7£*T£°) ZF {Z’Yﬂm++’lﬂk,_uo}

T
M ( K*-»Tl'*'lt")" Myt
ZF

M (k=TT = _:L Mg = M(K—->TT)
15
(K?—+E° )= Mgxe = 'm(K,—‘rT["TC’)

= :Fs_. (T () |[F; (0, 3100 ] Ky 239
* .

T (2.36)
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1
.If one now puts in the AI"’ Q rule "by hand", that is
sefting

(mK+u:+ = - K°TL° (2.37)

eqs. 2.36 simply to the following

1 m = Mik—T*1°)

KTt
2F =M (K*— T T°)
= ’m(K.—-»TL"'IC')
= m(kK—=ew) &P
| (ii) X + 3¢

The procedure for K>JT is now clear. Applying

eg. 2.28 as before one has

. 3, b
fﬁo(lm)/ ( 2K=o) T, Tl 3{‘55'(0) Ky
d

- - FL L, (CLIIEPH @]k e

T
. where][ is the isospin wave function of TE One now

replaces the commutator [F5 g{PC] [_E 3(

as before and obtains:

2B, MK T ) = - MG~ T T)

2R ‘Yﬂ(k‘f_—»]t'rt'ﬁ°)= ’M(.k"—ﬂcﬂ[‘)

20 MiK=>Teren) = M- r°)

2F, M(K=TTT) =-M(k =T T)- 4711(}(—»1['7?)
zF,,, Mk>ETT)= MU>TT)

(_2.40)'




=1Q=

Again using the A1=yzrule and neglecting the pion mass

differences, one finally arrives at
A Mmks>TT) = 4 Mki—>THT)
2F 2k _

- | = -m{Kt-> )
= -M(K—=TCTCT)
= M(K — T+1C-TE°)
= M(ki—>TeT°T°)

(2.41)

2.5 Eta Decay (11)
The G-parity violating decay 42-—) 7[¢'!CBT[.¢

proceeds via a second order e.m. interaction.

’M(ﬁ—} T[a.T[bT[vc) | .
| d(TaTlT, ‘IAH Drw(‘j)-r( (“j\_j:(O)) hz> (2.42)

where jl“’ is the e.m. current and DP_'V is the photon
propagator. From eq. 2.4 one writes I:i as the sum of

isovector and isoscalar pieces

i 1243

3
here -'Tl‘is the neutral component of an isovector and If‘

(2.43)

is an isoscalar. Rewrlting eq. 2.42 bearing in mind that
8

jf‘j- and 3' T terms do not contribute because

of G-parity, one gets

m (’YI-% TCJCb‘lCc) _
°(<][¢:LT[LT[¢ IJ‘A:’ DFV(H)T(]- (g)]-;(o)) I,n>(2.44)

together with a similar term but with *3i and '8!

interchanged, which can ﬁe treated in tlhie same waye.
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The next step involves taking the matrix element

of the expansion:

3 T(Aa®Tp T,0) =T ( Yo (3 T 9T))+
~A

X)L |
T{86 YA 00 T3] T2 0)+ 86T 2 [Ac 0 TE @]}
SYIATHPIT )+ 56T [Ac 0 TE @5,
F. v ' P O 4 (2.45)
: - =4.X :
between (][“‘I[bl jdﬂ D“v(g)jdxe, and |1I> The term arising
from the l.h.s. 0of eq. 2.45 is integrated by parts over X,
giving, with the usual neglect of surface terms, a term
proportional to 16}4- , which vanishes in the limit qq‘-_—-) 0.
In this limit the term coming from the first piece on the
r.h.s. of the equation is, using PCAC and L.S.Z.
" reduction, proportional to ’m(’rl—»TC“'l'[b"ltc(o\) S0

we have:
qTMht*?‘[aT[;ﬁi) «
(ﬁfo.'lld f dx Q-L‘i":x f dy Dw(y) T(T[C(X) J, Ii(‘j) I:(°) ) l’[) -

(2.46)
of () [dy D) T(CFE 4, T T 00 +39) [F%p, Tl 1
The two commutators in the above are given directly by -
eqs. 2.6, and in particular when C = 3, corresponding
to the neutrel pion, the two commutators vanish; so one

has Sutherland's result

’m(’q-ﬂ[ﬂfﬁ°) = MEA>TTT) = 0

(2.47)

If one now makes the usual assumpticn that the three pion
final state has isospin 1, then using Bose symmetry, one
is forced to conclude that the amplitude must vanish when

any of the three pions is taken to zero four momentum.




-21-
) 2.6 TETC_> TL-E

A very interesting application of the above
ideas was made by Weinberg (7) for the case of Pi-Pi

scattering. Let the reaction ‘be denoted by

ko) + peey—> q(b) + ¢(d), 2.08)

Where k,p,q,l represent the momenta of the pions

and a,b,c,d are their isespin labels. Bose statistics,
crossing symmetry, and isospin invariance dictate the
following structure for the Pi-Pi amplitude, to second

order in the pion momenta,
TcoL = Sab Scd[d+P(s*u)+xt]+ SQA Sbc[¢(+p($+h)+‘du']

+ sacsw [N-e-p(mt)-i- ¥s], (2.49 )

where d,ﬁ and X are constants, independent of the

pion momenta, and

s= (p+k)* , t= (k—q)” and u=(p-q)* (2.50)

To check the Bose requirement observe that the amplitude
is indeed even, e.g., under a<>c and k&>p (hence s s,
t4»u). Siﬁiiarly, crossing symmetry requires that the
amplitude be even under c<>b, p<¢>—-q (hence s <>t,
u<4>u); and we see that this is satisfied too. Vihat is
remarkable about eq.248 is that the amplitude does not
depend explicitly on the mass variables k2,p,q° and 12,
except for their appearance in the relation s+t+u =
k2+p2+q2+12. Expressed in terms of the parameters

of ) ﬁ and X the S-wave scattering lengths

Q: (I is the total isospin) are given by (lm.’l.'c=-.1)




—22-

= (20 ' [Sa+88+028] 2w

and

A, = (32m) " [2a+88] . (2.51%)

To determine to coefficients. (X,P and ¥ one again

considers the amplitude

ba. " .
M,,=ifdxe T oIl Ant Al [P} (.20

performlng this tlme a double contraction gives

Gy My K= 0 L [dx &P oan|lAy,) Aat.(o)]\p(o)
+ k. j dx e WS(XJ(E(A)I[A KA, ©]|pr) |
+i [Ax & “TX 50| [A_(0), avav(x)]lp(o) (2.52)

Using PCAC, the first term on the right in the above
equation is, up to factors, the Pi-Pi amplitude Tbg‘
The third. term on the right, the "U-tgrm", U‘é’d

is symmetric in the. indices b and a, when k = q 0.

Let q = k 0, but keep p = 1 on mass shell. To first

- order in q and k the left hand side of eq. 2.52 can be
neglected —~ there -are no pole terms in the Pi-Pi problen.
The second term on the right is a familiar commutator

given by current élgebra. Thus, for k = q >0, to

first order in k = q, one has

d = -—- [5b¢ Sda 5.,‘,,3«:‘:] L pk

'K
+ o’c:d. (2.53)
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But to this order 4 p.k s>u-s. From eq. 2.53 form the
quantity (ng - Tg‘g), noting that 0’23 is symmetric
under the interchangezaé%b and comparing with the sane

quantity obtained from eq. 2.49 gives

~5_'ﬁ=___

4
- ﬁ:‘ (2.54)

From eqs. 2.51 it then follows that

20,-5a,= 6L, L=(SUF) % 040 (o5

Next, consider the implications of the Adler PCAC consistency
condition {6). It asserts that the amplitude must vanish |
when the momentum of any one pion goes to zero, all the

~ other pions being.held on mass shell. Kinematieally this
corresponds to the point s =t = u = 1; and the PCAC
condition yields the result

°(+‘2ﬁ+ ¥=0 (2.56)

To complete the analysis one more condition is needed,

and here Weinberg introduces an extra physical assumption

concerning the O=-term in eq. 2.52. With p = 1 on mass
shell, and to lowest order in k = q, -the O=terms is
symmetric in the indices a and b. Weinberg now made .the
assumption that it is,in fact, proportional to 8¢58¢¢|
This property is at any rate true in the: O= model (23.)

- " To lowest order in k = q one then has

ba |
Ted o Sab Scd , s=w=1,t=0 (2.57)
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Prom eq. 2.49 it then follows that

d+f+3=0

Altogether one finds

| .1
F,:.-O, d"‘x, X- _F"-")_v (2.58)
j | 4
and for the scattering lengths
Ao = '-;'5_1_. R _\5—_._, (2.59)

giving in terms of the conventional amplitudes for

Pi-Pi scattering (24) the following
Alstu) = L (s-12)

P .

| B(Spt) u):' A(t,S,u) ) C(S,t,u) = A(u,‘t',S),'
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CHAPTER 3 : STRUCTURE IN S-WAVE TUTU SCATTERING

3.1 Introduction

Weinberg's current algebra amplitude, described
in the previous chapter, embodies one of the most interest-
ing predictions for the Pi-Pi interaction, namely the
presence of sub-threshold S-wave zeros, and consequently
rather small S-wave scattering iengths. This property
came as rather a surprise at first, since it was completely
at variance with the well-known S-wave dominsnce theory
of Chew and Mandelstam (24).

In this chapter we analyse a representative
-set of S-wave Pi-Pi phase shifts; taking these in conjunction
with rigorous crossing sum rules (25), we show how it is
possible to investigate the occurrence, or otherwise;
of S-wave zeros.

To take into account the threshold branch point
we use a dispersion relation, written not for the S-wave
amplitude itself, but for its inverse (26). This is
because, firstly, in inverse partial wave amplitude
satisfies a very simple elastic unitarity equation, which
can be solved in closed form; and secondly, beéause.for'
the inverse amplitudg the effects of possible zeros are
potentially large - they appear as poles. |

In section two we derive from the inverse
emplitude partial wave dispersion relation, a generalised
effective range representation for both S-wave inverse
amplitudes (I = 0,2). In section three we describe in
detail the mcdel dependent parts of the input used in

the analysis. The quantities which are model dependent

are (i) the real part of the S-wave amplitude, ReAI(s),
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for s £ 0, i.e. on the left-hand cut, and (ii) the

ratio of the inelastic to the elastic S-wave partial

cross sections. In section four we describe how

. experimental information is obtained on the Pi-Pi

interaction, and in particular discuss the Pi-Pi phase
| éhifts which are used in this analysis. The rigorous
constraints, which follow from crossing, are set out in
section five,where we also define quantities by which
we measure the violation of the constraints. In section
six we describe various plausible models for the S-wave
Pi-Pi interaction. For instance, the data suggest a
simple scattering length model, which gives a reasonable’
description of the phase shifts, However, since both
I =0and I =2 amplitudes are available we can construct
the S-wave amplitude for the symmetric process (g | | % | A
and can then immediately rule out the model because of
its violation of an eleméntary crossing test. In a
similar way other models giving good fits to the phase
shifts can be eliminated, and we conclude that the simplest
account of the data consistent with the rigorous constrainis
is given by a model containing a sub-threshold zero in
both S-waves. The favoured parameter values (scattering
lengths, etc.) are similar to those predicted by current

algebra, and the amplitude zeros can be identified with -

the PCAC Adler zeros.
In this chapter we use units in which the
pion mass is one and emplitude normalisation such that

-Ne '-'-1 (see appendix 4).
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3.2 Dispersion Relations

Let A° ana A2 be respectively the S-wave Is= 0

and I _= 2 partial wave amplitudes. Unitarity for s ) 4

reads:
I'mAI(S) = g(s)(’i-,wI(S))lAI(s)\?; (3.1)
where .
() = S—4 (3.2)
S

and where rI(s) is the ratio of the inelastic to the

elastic S-wave cross—section. Let BI denote the inverse

of AI, then eq. 3.1 becomes in terms of BI:

Im BI(S) = - €(s) (1+ v )

In the scattering region below the first inelastic

(3.3)

threshold, 84,0 One has in terms of a real phase shift,
SI(S), that:

Re B ) = §(s) cot SICS).

For s £ 0, on the left-hand cut, the discontinuity

of BI is given by:

I’n) BI(S) - - ImAI(S)/l AI |1 (3-55

To calculate this quantity one needs a knowledge of

voth Re AT and Im A' for 0.

(3.4)

One now writes for both S-wave inverse amplitudes

a dispersion relation subtracted once at threshold (26).

roed /.
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For 4L s8¢ s;,» One obtains the following generalised

effective range formula:

Seot b= a'fz"' %L\(?_—g-)'i'(s"*)(f-r R%+P*), (3.6)
Here CE[is the scattering length, (=ReAI(4)), and the
| logarithmic function comes from the integral over the
elastie region of the right-hand cut. The terms LI,
RI and PI arise respectively from the left-hand cut
integration, the inelastic part of the right-hand cut

integration, and any possible poles, that is zeros of

AI(s), so onhe has:

1T __A(ImA'GH _ds

T_cao |ATcsol* (s-s)(s™ ) (3.7
00
RE= -4 [ 86Hricsh ds'
Ttsh (SLS)CSL'4) | (3.8)

PI = Z .Ci (3.9.)
= (5= 53 )(55-4)

where in eq.3.9 if AI(sp) = 0 then

L -

Cp = dA
ds

s=s'-;.i_ (3.10)




It should be noted in passing that since rI(s) >/ 0

then with 4 € s <s; ip? one has

T & o (3.11)
Ve shall assume that a representation of the form of
eq. 3.6 is valid, with all the integrals existing,
‘ for both S-waves up to JST A Y 466\/ . Experimentally
this marks the onset of inelasticity (27-29)

(e.ge 41'(. and kk production), so we take s, to

in
be about 50. In particular eq. 3:6 should be valid

in the region of the rho meson, J-S- ~, 760 MeV.

3.3 Mpdels
(i) Left-hand cut Integrals

One of the consequences of axiomatic field
theory is that there are two subtractions réquired_ in
fixed-s dispersion relations for -28€ s€£4. If one.
assumes Mandelstam analyticity this region is extended
to -32¢s€£4. With this result one has that the Froissart-
Gribov projection converges in the é.bove region for

£>2. That is for €2 2 one has:

A?(s)= {[ D; (56 Q1+ 2t:) dt,

JD (s,u,) Q((-1 7-“")Au,.} (3.12)

by noting that ImQ((Z) = -T_[_P (2) for -1€ %<1 one can
2

write:

I'mA (s)= 5- A—{f Dt(Stl)P(1 1‘:‘) dt,

- -+ Du(suq) Pe("1 Zu")dth} (3.13)
L




eq. 3.13 exists for all{ o and we will use this
representation to calculate Ion(s) on the 1eft—hand
cut. In principle this can only be used for S -32,
since it is at this point that one meets the (t,u)-

- -double spectral function; nevertheless, we follow
the usual practice of ignoring the divergence, and
will calculate the left-hand cut for S 2 =50 as if
the third double spectral function were absent.

" Using crossing one can write:
' '

D, (s, 4= 2. C, D, (5,t)
.Il

" (3.14)
and
D Z 1+I 11’ 1’
S,u - C u _
( l') ( st D-t(S. l). (3.15)
Also one can expand the absorptive parts Dil and Dil
in partial wave series
Dt (s,6) = 2 (28%4) ImA ltDP (2,).
1+£) even (3.16)

[
together with the same expression for D:l[l (S,Ul) , but with

-t and u interchanged. Combining the above three equations

and substituting in eq. 3.13 one obtains:

I'nrn‘\I (s) = (s &) 7'x

-3
{fdt P(1+ 7'{:' XCSt Z(le-ﬂ) ImA (t) P¢(1+..§. )+
A I' (1+¢')-even
- b-s
[duger w')ZH Tt ¥ ) I u) o (-+ 22 )}
4 (1% )-even

(3.19




One can now combine the two terms on the r.h.s. of the
equation by noting that Pl (=2) = (—1)2 Pe.(z), and so the
second expression is equal to the first apart from the

)I+I '+£+€ y

.factor (-1 , but this is equal to 1 because

of Bose statistics and hence one has:
4-5
I'mAe(s) f (14 ’-"")x

S—&

xS c’;f' Y o) ImAp s 22)de,, (.0

T (x%C)-even
)

For ImA:éc (1:1) we take the narrow resonance approximation,

namely:

I'm A (t)= M S(ME' tc) :
- 8(M) (3.19)

Where M and r' are respectively the mgss and width of the.
particular resonance involved. Taking a Breit—Wigner' form
rather than the S-function form in'eq. 3.19. makes very
little overall difference. We find that D- and higher
spin exchanges (f(12-_60) and g'(1650)) have a negligible
_effect, '
Por s.<o the real part of Al cannot ve

éalculated- directly from crossing because of divergepcg
. difficulties with the_ QZ functions. For 'instance,
- taking a P-wave exchange of mass M, then, in the narrow
resonance approximation, the ReQo(2Z) gives rise to a

term of the form

Re A%(s) « ReQ@,(1+ 22 ’-M‘)—.L{)M S+ML




this of course diverges at S = 4-M2, which is in the
range of interest. One has, therefore, to resort to
model values for Re AI(s<<o). From a recent semi-
ﬁhenomenological calculation of low energy Pi-Pi |
phase shifts using partial wave dispersion relations,
crossing symmetry, and rigordus sum rules (30), one
finds that to a'good approximation the required

quantities are slowing varying, with typical values:

ReA® = -1.2 and ReA’ = 0.5 (3.21)
in the region of interest. The results we quote use
these values, to which we may attach nominal errors
of + 25% to take nceount of the neglected S-dependence.
- (11) Iﬂelasticity
To evaluate the absorption terms RI(S), one
needs some knowledge of the ratio of the S-wave partial

cross-=sections. All that can be sald at present is

that ratio must be ndn-negativ-e and significantly
different from zere in the region of the kk threshold.
Experiments with various possibilities for rI(S) lead
to the conclusion that for present purposes it is quite

adequate to use a simple model, where for S 3 S1 we have

.rI(_S) TF  (constant) . (3.22a)

-] < <
and for sin‘ S £ S1

r1(5)

EI(s-sin)/(s1-sin). (3.22b)




That is, r1(S) rises linearly from threshold at S=S,
to a constant value T (S) at and beyond S = S1.. We

take Sin = 50, apd choose S1 = 51, So fof each partial
wave the inelastic effects are characterised by the
single strength parameter, ??. Since"?lzp 0, all models
give, after integration, very similar s-dependence
between S = O and 'J§-= 1 GeV, and the data are not
good enough to resolve them. In fact, simply because
rI(s) appears inside an integral, any detailed structure
" will be "washed-out". With this model for r(s), the

integral over the inelastic part of the r.h.c. is

easily evaluated, giving the following:

w . .
- (s-) ([ 96IreHds' . ¥ 8 ,g,‘( 1+ §._-__g)

TC s (s-s)(s'-4) -8 8+
. .
where S¢ = 8(s)) (3.8a)
3040 Data

We look forward to the day when we have pions
in the ISR, but for_the time being we have to be content.
with experimental informstion obtained by indirect
means. .Most of our knowledge of Pi-Pi scattering comes
from the investigation of peripheral pion production;

the reactions in question being

TPp—=> TP @ Thh— T p | (é)
TPp=>TTN (b)) Tp—>T*Tn
Tp=>TTn (©) TH—>TT A @)

Th-aTTp ) T p->T AT () .

=




which all allow one pion exchange (OPE, see fig. 1)
Apart from (a), where a clear W-like contribution
is seen (31), the above reactions are all charge
exchange, so forbidding any I = O exehange.‘
Goebel (32) and Chew and Low (33) suggested that
cross-sections for on-shell Pi-Pi scattering. could
be extracted from the oﬁserved differential cross-
sections of the above reactions by an extrapolation
to the pion pole at A‘L:-p.’;the physical region
being Az positive.
Fig. 2 shows the phase shift data we consider.
| They are taken from the paper of Baton, Laurené and
‘Reignier (28), who using the reaction (3.23a)
firsta obtalned 5'1 and 826 y ‘the advantage in
that being the absence of any Pi-Pi isospin zero
contribution. The Chew-Low extrapolation using
conformal mapping techniques was applied, which is
supposed to deal sutomatically with the W . The
8:; is clearly negative, slowly dec_reasing in the
" region 600 MeV < Eé 850 MeV. At the rho mass
a value of S’é: -l5°;i-_5° seems likely. Information
on 8: in the rho region comes from the study of

S-P interference ir the reaction (3.23b). Fig. 2

exhibits the well-known “up-down" ambiguity, which -

is inherent to the study of S5-P interference only,

2 . .
in which, neglecting 89 s, One measures Sln8'| SmS:

xCos(S:-S:) so the ambiguity 8:—-? Ici-+($:' S:)

results. The two solutions differ above VS 2 700 MeV,

a resonant one going up smoothly through 90° at \!‘5;3

740 MeV, and a non-resonant o'ne hanging below this

values




3.5 'Constraints
As we have said, the advantage of the in&erse
amplitude dispersion relztion is that ahalyticity and
unitarity are readily incorporated. Unfortunately it
| seems impossible to build crossing symmetry into this
framework; but a necessary and sufficient dondition for
a candidate set of partial wave amplitudes to belong to
- .a crossing symmetric amplitude, is that they satisfy
the "Roskies constraints" (25).

; Introducing
! ' >

g (s) = 24° - 54

and

2

£ (s) =A%+ 24 (3.24)

the sum rules involving S-waves only are:

-1, = r(s—.tf)(ss—tr){cs)d.s =0 ] '<3.'_25.a__>_

and

4

I, =J (s-4)gcs)ds =o. (3.25b)
: The :bove two sum rules are used to test the
various possibilities for the S-wave amplitudes after the
data have been Pitted.

The inverses of the amplitudes required are
calculated for 0<s<4 directly from eq. 3.6 by continuing
counter-clockwise around the threshold branchpoint:

(TT[2

8 — |l e (3.26)

gcs>£m(§f.css>)*_':)->2_|gcs)|mm('-és—),) oo

. g@@n (g:fg) %».2\ g(s)lmm(l_sg'_l) .(3.-28)

S
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We.note that there are some simple implicaticns of the
sum rules, eq. 3.25, which may be easily tested wi“thout
_having to resort to detailed numericai integration:.
(i) From eq. 3.25b, g(s) must have at ieast one
sign-change in the range o<s<4.

(11) From eq. 3.25a, integrating by parts one has (34)

b 2
LS(S"‘P} f(s)ds =0 (3.29)
implying that f£(s) must have at least one turning point
for 0<s<4. In fact, it can be shown, by also taking
into account analyticity and unitarity, that f£(s), which
is the S-wave amplitude for the process TC‘TC°—->5-TC°TE° '
must have a unique minimum in the range 1.127< s< 1.697 (35)

introducing
@ (s)

24° 4 542

2

£ (s) = A® - 24 (3.24a_5

" we check the "Roskies Constraints" in terms of the quantitieé

= _l' and X2 = 12
A I ~
I 12

where /I\ is the same as I, but with g(f) replaced by 2(?).

3.6 Fits | _
With the experimental data for SI s plus the

relevant crossed-channel exchanges, we can calculate the -

quantities:

Je = g{ ot 57 1"‘(4? }_(S_L,) Fesy, G-




subject to the conditions of§3.3 (i). From eq. 3.6

we also have that

Q) = T+ © (RF+Ps)). (3.31)

That is, the phenomenological quantities Q (s) can be

described by a model containing, as free parameters,

a scattering length, ar, an absorption "strength" parameter,

rI, and contributions, PI, from amplitude zeros, determined

by their position, Sp, and residue, Ci/(si-4);

In Fig. 3a we have plotted Q(s) for the two I=0"
phase-shift solutions of Barton et al, the upper one being
the non-resonant branch, the lower the resonant one.

Fig. 3b shows the plot of Q'1(s) for the I=2 phase shifts -

the inverse function being more convenient here because 8

is small. Inspection of these figures suggests the following

simple model for the S-wavess

Model I
(1) I = o resonant _
Q°(s) = = + (5-4) R%(S) (3.32)
(ii) I =0 non-resonant | .
Q°(s) = 1 (3.33)
8o

That is, for the resonant solution, the downward curvature
of Q° from the constant value of - 1s caused entirely

by absorption effects, (R°<( 0). %o The non-resonant
brénch is feasonably described by the simple scattering
length without any inelasticity, but.this seems hzrdly
consistent with the strong kk threshold in this channel.




(i3ii) I = 2, the approximaticn

Q2(s)-= %
2 (3.34)

agrees reasonably well with the data. Zero or small
inelasticity may be expected since several prominent
channels (e.g. kk, LW NN) do not couple to. I=2,

When Model I is subjected to the tests outlined
in§3.5 one finds, in terms_of the quantities X1,2’that the
"Roskies Contraints" are badly violated (A~60%). In fact,
f(s) has no turning points at all for o< s< 4 (much less
a minimum in the required place), and g(s) has no sign change
belovi threshold either. .

To take account of possible inaccuracies in
the l.h.c. contributions, we note that, even allowing_loo%
changes in L° and L2, makes only very slight difference
in the S-wave structurg below threshold and has negiigible
effect on the sum rule values. Therefore, we can conclude
- that the S-wave crossing sum rules alone are sufficient
to eliminate this model for the Pi-Pi S-waves, characterised
by large scattering lengths and no amplitude zeros, i.e.
the Chew Mandelstam S-wave dominant solution.

Several other plausible models which give
reasonable fits to the data can be ruled out on similar
grounds, i.e. that they violate one or both crossing cohstraiﬁts
by large amounts. We find, in fact, that the only simple
models which describe the data adequately and .approach
satisfaction of eqs. 3.25,all involve a pole below
threshold in each channel. In fact, looking closely at
Fig. 3, we see, especially for I=2, a noticeable trend,

which suggests a zero in Q-1 in the threshold region.
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So we have the following model:

Model II

(1) I = o resonant

Q°(s) = L + (5-4)cp + (5-4)R)(5) k3.35)

(ii) I = o non-resonant

Q°(s) = 1 + (S-4)C? + (5-4)R(S)

%o (5=507(57-4) (3.36)

(i1i) I = 2
Q®(s) = 1 + (S-4)c2 + (5-4)R%(S)
a a d .'
2 158 (55-4) . o (3.37)

Here we have added absorption terms to Q° (non-resonant)
and Q2 to see what "strength" of inelasticity the data

suggest. One now performs a least squares fit to each

i, c;;, and T¢. This,

of course, gives an excellent description of the phase

QI taking as free parameters: a1y S

‘shifts. One interesting point emerges at this stage,
which is that the best fit to Q°(non—fesonan¢) requires
?g to be negative. This is clearly unphysical, but what
we can say in this case, is that the best physical fif
is obtained with the least absorption (i.e. ?g = 0).

As we have said before, this is inconsistent with the
strong kk threshold in this channel. In table 1 we
summarize the values of the parameters for the three
cases, together with the corresponding curreny algebra

values, taken from Weinberg's amplitude with F'l't. = 93 MeV.
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The solid lines in figs. 2 and 3 are the results of this
kind of model. TFor comparison (36) fig. 3 also shows
(as dashed lines) the predictions, with RX = o, of the
simple current algebra model. With regard to the
constraints we find, with the ?eeonant solution, that
eqs. 3.25 are satisfied to within 3%, while with the
non-resonant gsolution they are satisfied to within
) 5%«
3.7 Conclusion
Our conclusions may be summarized as follows:
a) phenomenological phase shift data and rigorous crossing
sum rules clearly indicate the existence of a zero
" below threshold in both the S-wave Pi-Pi amplitﬁdes;
b) " the position of the zeros, and the slopes of the
amplitudes as they change sign; are in good agreement
with simple current algebra predictions (see table 1);

_ c¢) partly on the basis of crossing sum rules and partly -

in the knowledge that the kk threshold is likely to Dbe
a gtrong influence in the I = o S-wave channel, this
approach tends to .discriminate between the altgrnative'
phase shift solutions of Baton et al. in favour of
the one containing the resonance.
As a postscript we should mention something about
the rho meson and how the sub-threshold zeros are related
to the physical requirement of a resonanting P-wave (37).
One knows that the P- and higher partial waves have kinematic
zeros at threshold, whereas the S-waves are.in principle

only bounded by unitarity, which gives

p S | . (3.38)
Kol |2




So if the S-waves do not have zeros near threshold, one
might expect them to dominate the whole Pi-Pi scattering
amplitude in the low energy region. However, the work
P "~ of Chew, Mandelstam and Noyes (38) has shown that if
the S-waves do dominate there can be no rho meson.
A careful and detailed analysis along the lines of that
discussed in the present chapter, but including the P-wave,
has recently been performed (39), and the conclusions

are substantially similar to the above.




Table 1

Parameter values for, the fits to Q(s) shown

in the figures and described in the text.

-4 2=

The bracketed

numbers are those expected on the basis of current

algebra, ref. (7).

a sp C T
I 4 0 0019 0059 1802 8-2
(resonant) . (0.16) (0.5) (22)
I — 0 0020 0050 2105 0.0
(non-resonant)
-0.05 1.85 -39.2 0.16
(-0.05) (2.0)  (-44)




Figure Capticns

Fig. 1:

Fig. 2:

Fig. 3:

Pion production by exchange pion.

Phase shift solutions of Barton et al.
(28), showing the best fits as in Fig.
3 and Table 1.

(a) Plots of Q(s) for the two I = o
phase shift solutions of Barton et al.,
the upper one being the non-resonant
branch, the lower the resonant one.

(b) Plot of Q '(s) for the I = 2 phase
shifts of Barton et al. |

In both graphs the cﬁntinuous curves

are the best fits described in the text
and summzrized in Table 1, and the dashed
lines azre the current algebra curves,

(with F':IC = 93 MeV)..
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; CHAPTER FOUR : K~>37( AND THE GENERALISED POLE MODEL

4.1 Introduction

From the previous chapter we have seen that the
prediction of amplitude zeros, as embodied in Weinberg's
amplitude, is in fact, borne qut in nature. These zeros,
as we have said, are also a feature of the single term
Veneziano.model provided one takes

o(my)= .

The next-line of investigation, with the hope of
gaining more insight into Lovelace's conjecture, is to
consider the decays K-»3K and 17-)'51( in the framework of
the genefaliseé pole model. The idea that the décays
K*>31C and N+3K are dominated by the pole diagram in
Fig. 1a is not a new one, and has been the cause of much
discussion (40, 41). This assumption immediately explains
the similarity of the spectra observed in these decays.

Vhen using any model for Pi-Pi scattering which incorporates

the zeros required by Adler's self-consistency condition,
the amplitude corresponding to Fig. ia gives all the zeros
required by current algebra in the decay |(4>31[. Unfortinately
the same cannot be said for "2'*31'[ , and this problem will

E "be considered separately in a later chapter.

If one makes some assumption with regard to the

vehaviour of the amplitude for K¥2T as one of the pions is
taken to zero momentum, then it is possible using the above

pole model, together with the current algebra results

relating K= (N¢)TU to' K-> NTC, to calculate the rate for
K=<>31 .
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The assumption that M(K®2K) remains constant during this
extrapolation'leads to an estimate of the rate which is
far too large, and it is this result which has caused the
pole dominance model to be seriously criticized. (14)

Using the cuirent algebra relations derived in
chapter two, together with the extrapolation properties
of the pion four-point function,we show how to set up
a gself consistency condition for the pole dominance model,
which leads to a relation between the on-shell amplitude
for K-=>2W and the same amplitude butwith one of the pions
at zero momentum. This internal consistency is explained
i ' schematically in Fig. 2. With this information; it is
possible to make a more realistic estimate of the rate,
and one finds that it is indeed possible to get a
satisfactory description of both the rate and the spectrum
for the decay

The experimental data on the three-pion decay of

the kaon show that the probability density for the process
‘has the simple structure of-a constant term, plus a small
linear dependence on the energy of the "odd" pion. This

deviation from linearity is conventionally parameterized as

M= v {1+ 5_%2-1 ) .

Here |Mcl is the magnitude of the amplitude at the cenfre

of the Dalitz plot, s.= t = u= So. We neglect the pion and
kaon magss differences, g is the slopeof the aecay spectrum
and s is the odd pion variable in charged kaon decay and

the néutral pion variable in neutral kaon decay. (See Fig. 1.)
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The linear form for the amplitude itself was
first suggested by Weinberg (42). This idea, which is an
esséntial ingredient in the work of Hara and Nambu and
Elias and Taylor (10), could be in serious trouble (43).
The non-linearity problem for the matrix element itself
comes with the experiments of Albrow et al. (44) and
Buchanan et al.(45) on the decay K{-> THTU NS In their

experiments they fit Ju|? as:

| “"”z= |Mc|"{‘| + A, (QY/M“) +°‘,,(QY/MK)1+"'} (4.2)

where Q is the total kinetic energy available in the decay

and
Y=(3T,-Q/a (4.3)
with T, the kinetic energy of the neutral pion. (See ‘

Appendix B for details). The experiment of Albrow et al.

gives for the best quadratic fit

dy==3.1£000 oamd - K =-OF* 12 (4.4a)

while for the experiment of Buchanah et al. one has

o = ~436*008 - omd 2= -J6% |0 (4.4b)
First of all we note that there is no stroné evidence that
a second order term is needed in eq. 4.1, since a linear
fit to the spectrum of Albrow et al gives ;= -5.14+ 0.09
with the same 'X-zper D.F. as the quadratic fit. But with

a linear expression for the matrix element itself,

IMI= M. {14 «YQ/M] (4.5)

one obtains:

M= M {1+ 2(Ya/m) + 2CYaM)

(4.6) -



showing that in this case

Az "'.(“‘/2 > (4.7)

So if M were linear, and cﬂ: -5011+ 0.09 as in eq. 4.4a.,

d, would be 6.53 + 0.24. S6 taking the data of Albrow

et al. at its face value implies a Y% term in | M| of magnitude

-(3.6 + 0.6) (QY/Mk)z. At the soft pion point, E4 = 0,

this terms will contribute -3.5 + 0.6 compared with a value

1 from the constant part of |M|. But it must be emphasised
that the effect of the quadratic term over the Dalitz plot

region is less tQaﬁ 15%, and that systematic errors in the

experiments will probably be more important at the ends of

the épectrum , where the higher order effects seem to

reveal themselves, so perhaps the implied non-linearity
could be entirely spurious, In Fig. 6 we show the data of
Albrow et al. with the best linear and cubic fits to the
spectrum. The linear fit gives a Wfber D.F. of 1.1 and the
cubic fit a ’)cz'per D.F. of 0.96, whereas the best fit with
a linear matrix element as in eq. 4.5 gives a qczper D.F:
of 6.5. Some recent experimental results on the rates are
summarized in table 1 (46). We see from these resulté that
thé relations obtained by assuming the Al = % rule are
violated by about 10%. The pole doginance model is, of
course, a Al = 4 model, and so we will be aiming ft;r 'a
description of fhe decays which is good to 90%.

It has been suggested that the diagram shown in
Fig. 1lb should also be included (41). But we are of the
opinion that this diagram is relatively small, and our
reasons for this belief are given in section two. In
section three, using the Weinberg (7) and Veneziano (5)

amplitudes, we show how the cdnsistency condition leads
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to an estimate of the weak vertex g(M?). These estimates
- of g(Mz) are much smaller than those obtained from the

simplest soft pion calculation, which gives

9= 25 || Hwl kY = F x 107 MeV? (4.8)

For the Weinberg amplitude one gets within 17% of the
experimental amplitude at the.centre of the balitz plot,
while for the Veneziano model the agreement is to within
28%. In Section four we use a less restrictive model for
the pion four-point function,which contains a term depending'
explicitly on the external masses and whichlhopefully
gives a more reliable off shell extrapolation. Using this
we obtain a description of the decay which is within our
prescribed limit of +10%. The results are presented in
section fivé and our conclusions in section six. The
details of the kinematics and normalised projeetions
for T~-decay are given separately in Appendix B.
4.2 Other diagrams

In order to estimate the relative contributions
of the two diagrams shown in Fig. la and 1b it is necesséry
to have some idea of the q2 dependence of g(q2). To this

end we start by following Hara and Nambu (10). We have

from current algebga, eqs. 2.38, that
4 Mapr = MOSTT)

2Fy |
- =-M(K>T )

= MCTOTT)

" (2.38)

= M(K{~>TTT),




If one now assumes that the K-=>2TW decay vertex is a
quadratic function of the meson four-momenta, the most
general form of CP-invariant vertex that satisfies

eqs. 2.38 is:

M(k->Tre) = A(95 - 9454) (4.9a)
and - .
MUC>T)=A(292- 42 -2 H B (G54 429 ) (anow)
From eqs. 2.38, implementing energy momentum conservation,

one has

9§ = m (K-> Taq))
= 20 ’m(k*(q)-»TL*(O)‘lP(q)) (4.10)

which, taken together with eqs. 4.9, gives

2y - 2 . (4.11)

9(‘1 ) =2 Fr Aq s |
o

Consider now the particular reaction k-—)‘[o'[ 'l(,+ '

diagrams which are supposed to'contribute are shown in

Fig. 1¢. summing these diagrams gives us

M) ="m " (ST (TR (6012)

where

m (k%n"lf‘ﬂ*) 3(M‘) L (5-p) (4.13a)

H” F

and

M (K TCTET)= 9~ ——Hilf,(S-lpl), " (4.13b)
Here for illustration and convenience, we have taken the
current algebra amplitudes for the Pi-Pi and- Pi-K interactions
(47), and E“?= Fk2=F2. Comparing eqs. 4.13a &and 4.13b, gives

the relative contributions for Figs. la and 1b, and one

has

mX (00+) _ 4 9(K) (s-24)
m¥oo+) 2 9(M) (s-p+) ’ (4.14)




of this ratio in this range is

Koo o o
Mmoot | = 0.033. -
Moo+ (4.14a)
max )
' So, with this point of view, we are justified in reglecting

the contributions from the diagram in Fig. 1b.
The opposite point of view is to suppose that

g(qz) is independent of q2, hut this leads to two rather
unpleasant results. Firstly, the K-»3T spectra one obtains
using the Weinberg or Veneziano amplitudes bear very little
resemblance to what is actually the case, in particular-
including both diagrams in the Veneziano framework leads

- to a slight positive slope for the decay K+-¥1L+TC_"TC‘
in-contrast with a.substantial negative observed experimentally;
and, secondly, the rather nice zero structure obtzined for

T ~decay from Fig. 1a alone is.spoilt when Fig. 1b is

ineluded (14).
i 4.3 The Weinberg and Veneziano Amplitudes
By assuming the Al = 4 rule, in other words
assuming that H, is a tensor operator of rank %, ‘allows
us to use the "Wigner-Eckart theorem" which gives us the

relation:

9= K@) Ll K | = [T, K@ 1

Using this result, we write the amplitudes corresponding

to Fig. 1a for the different charge states of K=Y3TL as

M(++-) = g(M%) 1 ( B(s,t,u) + C(s,%,u))  (4.16a)
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M(+-0) = g(d?) 1 Als,t,u) (4.16¢)
M- '

Here we have set the pion masses to be equal to Wk, and the
kaon masses to be equal to M. A(s,t,u) = B(s,u,t) = ¢ (u,t,s)
are the conventional amplitu@és for Pi~Pi scattering as
introduced by Chew and Mandelstam (24). For Weinberg's
amplitude one has:

A(S, uw) = L (S— ) :

. o E (4.17)
where F_ (= 93MeV) is defined by eq, 2.19. Using the

T
Veneziano model one has:

Astu)= (Mz-12) { Vst +VSK'V{-A} - (4.18)

g
with X
Ve = — TQ-a) Mi-ac8)) (4.19)
. P =a(s)-a(+))
A(s) = + (S-}L")('lM 7y | (4.20)

For definiteness we will confine our attention to
o .
the process l(taifﬁ[IIT. Substituting Weinberg's amplitude

into eq. 4.16b gives:

M(K>TOTT) = S(M‘j L L) een
= -

Taking the1t to0 zero momentum one obtains:

4
M(K= T )= g(M*) L.
F&t
From the.current aslgebra results of chapter two one has

(4.22)

M(KJ'—?-WT["TE*(O) L | M(ke~>T1)| , (4.23)
TI




and from eq. 4.15 that

g(MY) = 2Fx IM(K~> o)l h (4.24)

On substituting the above two equations into eq. 4.22 and

using the AI=% rule, one obtzins the following:

MU= IMOC> T = 4 IMKS o). 8225

If instead one uses the Veneziano model one obtains:

|N(k§->lt*lt')‘= \M(i<;’+TCTt°)\-58 IM(K>TeTo) |, (4260

One is now in a poesition to calculate g(Mz) since it is given

in terms of the physical amplitude for K»2W together with the

appropriate factor from whatever Pi-Pi amplitude one believes.
Why should one believe such a large variation in

M(k+ZK) as one pion is tzken to zero momentum? Firstly,

the Al=% rule implies that:

M(¢> TCTC) _
M(kf_), TTTC©)) ) (4.27)

whereas in nature, with both pions on shell, the ratio is

about 22. This indicates that there must be a large variation
in either or both ampiitudes as the pion's momentum is taken

to zero. Secondly, since

Iiv)= | (Tt 0| oo [ KD} | = 2 IMUCMBS TOOTR) |, (4 sy

We see that as the pion is taken to zero momentum the other
pion acquires the kaon mass (i.e. energy-momentum conservation
is imposed to give g(q2 = M2)), so that the extrapolation is

not as innocent as it seems.




In fect, it is not difficult to write down an
amplitude for K»2W exhibiting the above behaviour. Taking

the amplitudes in eqs. 4.9 and setting

B=-2a( M4

1"2}‘? (4.29)

gives on shell
IM>TT) | = 4AME , IM(KS T = 0,
while off shell one obtains: .
IMOG>TETE)|= AM* M) = AM?
4.4 Quadratic Amplitude¥®

On éhell one kﬁpws that the Weinberg amplitude
does not satisfy the rigorous constraints of Martin (48); SO
one might expect a somevhat unrealistic off shell extrapolsgstion.
In the case of the Veneziano model one has to suppress the rho
to be able to describe the process Pn->3MI (1,12,13) this also
suggests a questionable off shell behaviour. We shall be
returning to this particular point later when discussing the
problem of the zeros in ’II-A» 31T, .

We how cons;der a less restrictive model for the
Pi-Pi interaction, to see whether it is possible to obtaiﬁ
the correct rates and spectra fo:'t' k—>3TL while still preserving
the meny features of the Pi-Pi interaction. To this end
. we consider the most general quadratic amplitude for the

pion four-point function: (49)

A(s,t,u) = a+bs + ¢ (t+u) + d (t2+u2) + es (t+u) + £5° + gtu +

+ h (?[. qi q? + 6 = 3 (s+t+u))
e | L (4.30)

* For convenience, in this section we use amplitude

normalization with N€= 1, see Appendix A.



Here we have resorted to units of = 1. The Q ?efer
to the pion momenta, and the last term in the expansion
is non-zero only when more than one pion is off shell.
To determinethe coefficients we proceed as follows:
(i) The soft pion conditions, _
(a) Adler consistency condition A(s=t=u=1) = O

(b) Nonwexoticity of the O-term A(s=t=1,u=0) = O

(e) K'*BTL zero A( S=t=1,u=M2) =0
(d) Adler-Veisberger condition _@._A_(IA-X,O,\-X) =_L
' X 3IREy

We combine conditicns (a), (b) and (c¢) into the slightly
stronger condition of A(s=t=1, u=M2) = 0 for zll M2, with
one pion at zero momentum and another at mass M. This

gives us the following:

a+b+c+trd+e+f+h =0 (i)
I c+e+g=-h =0 (i1)
d =0 (iii)

condition (d) gives us that |
b-c-24+2f= (321(.!‘-"1{')" (iv)
(11) The on shell conditions

In terms of the S-wave spattering lengths, ag and

ai, one has that

52 + 12b + 8c + 32d + 48f = ag (v)

2a + 8¢ + 324 = ai (vi)

while for the P—Wave one has

. b-0+4e—4g=%ai (vii)

If one now supposes that the P-wave effective range is given

by a Breit-Wigner resonance of mass 765 MeV and width 125 MeV

one obtains the relation '
- f - g = 1

d + e f-g-= %3 al.

;2‘ (viii)

B8




=55

where 4 =5 - 4.

In terms of the D-wave scattering lengths, one has that

d~-e+ f =15 .2

Ig 85 (ix)
44 £ -3 15 o (x)
~-e+f -3 =15 a X
] % 2

Since we are dealing with an amplitude quadratic in s,t,

and u, the scattering lengths satisfy exactly the sum rule:

0

0 _ .2
2ag - 5a3 = 18a] - 30 (2a, - 58p) . (4.31)

To obtain the correct rates, in the spirit of section 4.3,
we see, taking'the TL"T[-oTC" decay, that

gy = (M=) IM(ke>w)|
2Fg. Als=M:t=u=1) (4.32)

So one needs that

|Mc(k+§mom+)| _ A A(S=t=u=M‘/3+l)
IME~>TT* )l 2R, Als=M} E=u=1)

(4.33)

_For the 1l.h.s. of the above equation we take an averaged
value from experimemt. We see from the data (50) that
M (2 »TTC) = 0.389 x 1070 Gev
and '
M (kg >TCH®) = 0.363 x 1070 Gev
Taking these results together with those in Table.1, we

obtain

Me (k > 37U)

2.51 (4.34)

M(kg-> 21 )




So we have that

A-(S t = u= S0 ) = S.OQXFTL A(S = Mz, t=u= 1) (Xi)

which gives another relation between the eight coefficients
in A. Taking egs. (i) - (v), (vii), (viii) and (xi), one
can determine the eight unknowhs in terms of the scattering

. 0 .
lengths ag and ai, and F'IT.

4,5 Results
Taking a8 = 0.19, a:]l" ='0,0365 and the experimental
value of 93 MeV for Fy we obtain a quadratic amplitude for

Pi-Pi scattering, whose scattering lengths are the following:

0

a0 = 0.19 ag = -0.035 al = 0.0365

a g = 0.0022 and ag = 0.0002,

In Figs. 3 and 4 we have plotted the normalised projections
obtained from the above amplitude. From Fig. 5 we see that
the amplitude also satisfies all the S-wave -l-co“-_o constraints

of Martin (48) namely:

£ (4) > £(0)
£'(s) < O 0< 8 < 1.12
£'(s) > 0 l.7<s < 4

Unique minimum in 1.12 £ s € 1.7

£(0) > £(3.19)
£(3.205) > £(0.213) > £(2.986)
4£'(0) < -(2£(4) - £(2) - £(0)), |
Where f(s) is the S-wave 1T.°1t" partial wave amplitude, The

values of the coefficients are as follows:

'
o

a = -32.11, b = 25035, CcC = 3.65, d =
e = 0017, £ =-O¢36’ g =-l-25’ h = 2'57,



The rigorous sum rules which follow from crossing (25)
will, of course, be satisfied exactly since our form is
explicitly crossing symmetric.
4.6 Conclusion

We see that it is possible to set up a realistic
model for Pi-Pi scattering, having a mass dependent term
‘when more than one pion is off shell ( h#:o) and which
when taken together with the entirely plausible variation
of the amplitude for K¥2T[ can give a satisfactory
description of the decay K-»3TW.

Since the Veneziano model gives a value for the
amplitude at the centre of the Dalitz plot which.is about 30%
too small and from the fact that a non-negligible mass-
dependent term is required to obtain the correct rates we
can conclude that even by the time ore has reached the
physical region.fur'c—decay significant departures from the
Lovelace conjecture have occurred, and that satellite terms
are probably present. This should also explain the slight
discrepancy obtained by Lerlace in his fit to the

K*—s T - spectrum.
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Figure captions:

Fig. 1a: Pion pole dominance diagram in which a kaon (eta)
decays weakly (electromagnetically) into a heavy

! pion, which in fufn decays strongly into three pions.

Fig. 1b: The pole diagram in which the kaon (eta) decays
strongly into two pions and a light kaon (eta)
which in turn decays weakly (electromagnetically)

into a pion.

l Pig. 1¢: The diagrams of the above types which contribute to

K'=> T°TeTTY, | |

Fig. 2: Schematic representation of the self-consistency of
' the pole model.
Fig. 3: Plots of the normalized projections for .k*-—’t'lc‘k“ﬂ[f
The data are from Mast et al. (16)
Fig. 4: (a) Plot of the normalised Y projection for

KE>TCTCTC®  The data are from Davison et 'al.!(51).

- (v) Plots of A(s = t=u= M°
L

‘4 ’L.z) as a function of M°.
(i) Weinberg
(i1) Veneziano
(iii) Quadratie _ |
(iv) Variation reéuired to obtain the corfeet
rates assuming no variation of M(K-YZTT)
Fig. 5: Plot of the S-wave'K'Kopartial wave amp}itude, f£(s),
for 0< s < 4.
Fig. 6: The normalised Y projection for k?_"' WT[‘E",
showing the best linear &nd éubic fits to the

spectrum. The data are from Albrow et al. (44).
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CHAPTER FIVE : OTHER KAON DECAYS
5.1 Introduction
In the previous chapter we were able to obtain a
satisfactor,y description of T-decay. The analysis indicated
a value for the coupling, 8w ? rather smaller than was
previously supposed. Taking, for example, the quadratic

amplitude one obtains

few = Kno(MIz{)l lexg (M12c)>' = 1.73x10"2MeV?,
(5.1)

while for the Weinberg amplitude one has

2 2

8w = 1.8l x 107° MeV (5.2)

Here we have taken F.It = 93 MeV. The question now arises of
how this value of 8yy Tits in with the analysis of other
kaon decays where a knowledge of gxqp is required. To try
and answer this question we look at the radiative decay
?_—) 2% and the magnetic radiation term in the decay
K*E— 2T,

In section two we consider two models for kt—)Z“,
one proposed by Wong (52), the other by Matsuda and Oppo (53 ).
Both models involve rather st.rong assumptions, and while it
is possible to obtain the correot raté for Kt—\zx using
either model, it is rather difficult to reconcile them.

To obtain the correct rate from Wong's model, the %) and x°
poles have to be neglected, whereas they form a significant
contribution in the model of Matsuda arnd Oppo. To avoid
the ambiguities caused by thef)z and X° poles, we consider,
in section three, the charged decay kt—ﬂ[t'][oﬁ in the
framework of the generalised pole model as discussed by

Dass and Kamal (54). .. b :




-61-
5.2 The radiative decay k ._>2_*6

To start we consider what is possibly the
simplest model for this decay. The amplitude for the process
"~ is supposed to -be given by the sum of the two similar terms

shown in Fig. 1 (52). That is

A(KE>23)= 2902 _L_ g, (ma)® Expss kel kg €,
| e M"‘}»L S fs (5.3)

where 6 is the fine-structure constant, and kl and k2 are the
f:our-momenta and €A| and €M_th-e polarization four-vectors: of
the photons 3, and 13_ , respectively. The coupling 991“
is assumed to be the same as with all particles o'n their

mass shell, and defined via the vertex function.

RSP TerB(0)= 9 Euvh PHEY ey,

which is in turn related to the partial width via:

M(g>my) = |9m| ( (')’

The coupling (‘I—m()h/-rg of the rho to the photon is

(5.4)

(5.5)

~calculated by assuming the one-photon exchange model for

the decay g-> ete”. Taking the Orsay result (55) of

[(s»>ete) = F.4x0F keY, - (5.6)

gives for fg the following:

f; — 1.85+0.F | (5.7)
41T




-62-

¥rom eq. 5.3 we see that the coupling 9]("8’6 is given by
9 :

%
oy = % 49 (4ma)
s -~ Jkm s ST R -

But ﬂ‘ﬂ.'“ may also be calculated from the experimental
width [(K>»23) via

| = / G4TL [(16>28)
M

'3&‘1’0 (5.9)

Taking the averaged branching ratio (50) to be 4.9 x 1074

gives from eq. 5.9 that

|9m,| = 382X 107 MeV

Taking the quadratic amplitude value for gwi.e. eq. 5.1,

we see that eq. 5.8 gives the correct value for ,g ;
K 3%

provided that one takes

|95, = 3345x 107 MV

This corresponds to the following parfial width:

[(¢~+Ts) = 0.15 MeV, (5.11)

that is, a branching ratio of approximately 0.12%. This is

(5.10)

in good agreement with the most recent experiment (56)
which has set an upper boﬁnd on the branching ratio of 0_,2%.
This result is very good, but there is no reason why one
should not also inleude the ’rl and X° poles, the'rl going
via W¥ and the Xo‘.\_r:ia ¢¥ . Both of these contributions

are expected to bJe large since :F_l:? is large (= 14) and

0
the decay X-PS'D' has a branching ratio of approximately
29%.,
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Another model which has been used to describe the
transition k‘:_-" 2¥ is shown in Fig. 2 (53). Helre the 'rl
and X° poles are included and, in fact, turn out to be
significant. From Fig. 2 one sees that there are a lot of
coupling constants to be determined, and a certain amount
of ambiguity is unavoidable. The eoﬁplings gPIX’ where

P= T£°,1_].X° , are assumed to be the same as with all

particles on thelr mass shell, and defined via

A(P>273) = 9Pﬂ €apys Kf‘ei, K:? e)i_ (5.12)
Taking the following partial widths:
MM>>23) = F.8+0.9eV | (5.13a)
F(n>2%) = 1.00£0.08 keV (5.13b) .
' (x°223) < 38.0%6.0keV ~ (5.13¢)
gives for the respective coupling constants the following
ﬂno.“‘ = 2.53x%107 Mev™ (5.14a)
9*1“' = 348X 1073 MgV-' (5.14b)
Iyors] € 932% 107° MeV? (5.140)

It is interesting to compare these values for the coupling

constants, with the following broken SU(3) 'sum rule

gy - 5 cose Ippy + V3 Sindt Gyoy =0 (5.15)

 where & is the A)X° 5U(3) mixing angle, (=t 10.24°).
Rearranging eq. 5.15 gives

Bsin“ (5-15&)

Oxogy = NB.Cond Gnat = Iy




~64-

Suppose now that 3“.“a'nd_ gn.“ are of the same sign; then,
using eqs. 5.14a and 5.14b in eq. 5.15a, gives the following

Gyoyy = E L105X107¢ MeV™) (5.16a)
or
[(x°>23) = 53 keV. (5.160)
- Alternatively taking 3'51 and gnit to be of oppogite sign,
gives E )
Iyopy = £235X107* MeV™ (5.17a)
or

Fx=23) = 33 keV ™ ' (5.170)

So, taking g.n..“ a‘nd g'r“to be of the same sign, one
obtains from SU(3) a value for 3)("31‘ in reasonable agreement

with experiment-, eq. 5.14c. One is, therefore, tempted

to use broken SU(3) to relate the couplings g 0
KoP

3‘(?-“ ) .J_jcosxjk:q'fﬁsmu 5k.‘,_xo=0 (5.18)

Summing the diagrams in Fig. 2 gives for 9“?:“, the expression

gy = 2 —_ -
- 0 2 2 . (5.19)
3‘(;’63 P SK;P M2-M3 9?’“ _

Taking the l.h.s. of the above equation from experiment
allows one to calculate the only unknown quantity g“.“
Because of the -sign ambiguities in g 0a , two sets of

, KcP .
solutions are obtained.

. Set (i) up to an overall sign: .
- 1T O-z = d 2 - . -_l
oy = FFOX107, 3“1"1 OMESXIO™ , G o= “3.0KXIO

Set (ii) up to an overall sign:

Gyeqo = 1 H3x107, G = -OOAKIT, Gy O.543xI07*
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In terms of the contributions from the separate diagrams
in Fig. 2 we have:

Set (i) up to an overall sign:

A (Pion-pole) = 1.92 x 10712
A (eta-pole) = =-2.97 x 10712
A (X°-pole) = 4.24 x 10712
A (total) = 3.19 x 10712

Set (ii) up to an overall sign:

A (Pion-pole) = 1.92 x 10712
i A (eta-pole) = ~5.86 x 10712
5 (X° - pole) = 0.75 x 107%2
A (total) = -3.19 x 10712

It is rather difficult to see what can be concluded
from these results. If one believes that Fig. 2 indeed

represents the mechanism for the decay K=»>27% and that

_the use of broken SU(3) sum-rules is valid, bearing in
mind that K92W is forbidden under SU(3) (57) and also if
one believes the rather optimistie-assumptions regarding
| 99-2“ , then one is forced to conclude that the 4] and X°
pole diagrams are indeed important. It is then difficult
#o believe the rather nice result, eq. 5.11l, based on
pion pion-pole dominance alone.
5.3 Direct radiation in Kt TTTOY.

| In order to avoid the‘gncertainties of the
previous section because of the possible presence of eta and
x° pole terms, we consider now the charged decay K"-ﬂmt%,
where neutral poles cannot contribute. This transition
can proceed by two distinct mechanisms. One arises from
the emission of the photon from the 1ingoing or outgoing

charged particle and is known as inner bremsstrahlung, Fig. 3a.
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The émplitude for this process is directly relate@ to the
amplitude for K+—>'|\',+Tl'.° , and so must proceed viaa ALY
transition. The second contribution arises from the direct
radiative decay, Fig. 3b; here the presence of the photon
-at the decay vertex allows the, two pions to be in a relative
P-wave state with I = 1, which means that the decay may
proceed via ZKI’%Q.

It is of great interest to know the relafive
contributions of these two mecheanisms, since it is this
knowledge which determines whether or not it is feasible
to study CP violation in this decay (58). On.the one hand
one might expect the direct radiative processes to be i
small relative to the inner bremsstrahlung since the former
depenids on the finiteness of the spaciai region over.which
the virtual processes leading to the decay extend, whereas
contributions to inner bremsstrahlung for a photon of
momentum k come from regions with linear dimensions 1/k.

On the other hand the operation of the AI=}Q_ rule, which
makes kf—»TC"Tl'-' approximately 500 times faster than
1(1;*1If][°, leads one to expect a relatively prominent
direct process (59).

The inner bremsstrahlupg matrix element for

kﬂiy]tfufx is:

Mg = (41 M( K TOHE) ( Bk)

where P, p and k represent the K+,TE* and photon four-

(5.20)

momenta, respectively and € is the photon polarization.
For the direct transitions the elzctric and magnetic dipole

‘ 0
matrix elements, leading to P-wave.u-*.IL states, are

given by (58)
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i | ¢ %0
ME= (4'7(0‘)%' M(Kt’tT[+1[°)Xe I‘v_k quﬁ (K“EF VFE,()C 5 8(5) 21)

MM'-' (‘ﬂ(“)h M( Kt‘r]C'T)Xm P—'l’édpg, quﬁ ke e;(S. so)(s.zz)
respectively. Here q = P - p - k, the factor }L‘"’ is to

make the strength parameters Xe and Xm dimensionless én_d 8,
and §,are the P- and S- wave 'I(:'T[,o phase shifts, at the

" energy (p+q)2. It is the magnetic (parity conserving)

part of the direct transition which is relevant to the

pion pole dominance idea (54). The diagrams which

contribute to this part of the decay are shown in PFigs.

4a and 4b. The diagrams of the type in Fig. 4b, are expected
to be relatively small for the same rcasons as in. T-decay,

and are neglected. For the diagram in Fig. 4a one obtains

for the magnetic part of the direct amplitude the following

M_M (K>T'1°%) = 9 ﬁ,_'_—‘L‘A(S»l‘—#)epvgo'F':]vkgea:- (5.23)

A (s,t,u) generates the dynamical structure of the amplitude:

A(S,t.,u,) = ﬁ‘&(Asb'l.'Asu +Atu\) (5,?4)
with
_ [O-as)ri-a®) -
A - M(2-a(s)-a(e)) (5.25)

o{(S) is the g traaectory and s,t,and u are the Mandelstam
invariants for T(,TC-"TLX . Normalising the amplitude

at the § pole gives

i .
1thﬂ defined by eq. 5.4, and 3 1s assumed to be

I that is with all the partlcles on shell. With
[ = 120 MeV, one hes

9..=5.5. . (5.275_

ST
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Comparing eqs. 5.22 and 5.23, one can write the strength

of the magnetic term Xy as

2. ' |
Xu= O(M) _#* «sm9smr (Ag+AwrAy)
(hma)s Mg-pt IM(K’-»TUTP)‘
which becomes, on using eg. 5.1 for g(Mi) and taking a
S 2 T3 branching ratio of < 0.2%(56), the following

(5.28)

.2 . .
| IXnl<1.2x10 (Ast“'Asu'l’Atu), (5.29)
. which gives, for instance, with a charged pion kinetic

| energy between 55 and 90 MeV

IXul € O | (5.30)

‘corresponding to a magnetic part of the direct transition

of €4% of the inner bremsstrahlung contribution. The

restriction m the charge pion kinetic energy comes from
experiment. The {N¥events are selected only in the above
region, corresponding t.o a centre of mass momentum of the
charged pion of between 135 and 183 MeV, because on the one
hand the lower limit prevents overwhelming contamination
from the decay K+—-)]'[°TC°1[+ , while, on the other hand,
the upper limit excludes the decay k+—) 1T.+T[.°.

The most recent experiment on this process (.60) gives
an inner bremsstrahlung branching ratio of (2.55+ 0.18) x 10'4,
which compares favourably with the theoretical value of
2.50 x 1074 for a charged pion K.E. in the region considered
(55 +90 MeV).- The various projections obtained in this
experiment were well described assuming no electric d;pole

component. (Xe = 0), and, normalizing to the theoretical
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.inner bremsstrahlung rate, gave a branching ratio for the
magnetic dipole radiation of (1.56 + 0.35) x 10-5', with
a systematic uncertainty of + 0.5 x 1072, 1In other words
assuming Xe = 0 one has a magnetic contribution of
(6.24 + 3.40)% of the inner bremsstrahlung component; our
value of 4% is certainly consistent with this figure.
5.4 Conclusion |

Ve have seen that taking eq. 5.1 as an estimate

for KR gives for the magnetic dipole transition in
Kt~> T*T°Y¥ a value consistent with experiment. Also
‘r;y taking this value for g ve have removed the ambiguity
in the model of Dass and Kamal (54), in the case where
they identified the system "A" v_:ith the pion and proceeded
to0 use current algebra to calculate & The samg value for

gxyw used in the model of Wong (52) gives a value for

F(Kt—’ﬂ.'ﬂ also in agreement with experiment, but this result
must be viewed in the light of the results obtained from

the model of Matsuda and Oppo (53).
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Figure Captions:

Fig. 1: Diagrams contributing to the pion

pole—domina,ﬁce model of Wong (52).

Fig. 2: Diagrams contributing to the pole-

dominance model of Matsuda and Oppo (53).

Fig. 3: a) Internal bre}nsstrahlung contribution
to K*-\T(.*T["K,
b) Direct transition contribution to

K¥> T,

Fig. 4a) Pion- and kaon-pole contributions to
and b) the generalised pole model of Dass and

2 )
Kamal (54) for the decay K~ he’s.
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CHAPTFR SIX : ZEROS IN q-ﬁzﬂ[, AND GENERALISFD POLE DOMINANCE
6.1 Introduction |

We now return to the long standing problem .of the
three pion decay of the eta. There are two points of view
which can be adopted; one either believes Sutherland's result
(11) of the zero, when qtt°=° , or one does not. If one
takes the former point of view, that is, if one believes
that current algebra is correct in'q4>1ﬂt and that the
decay is an electromagnetic one, then one is immediately
confronted with the problem of explaining the beautiful
results of Hara and Nambu and Elias and Taylor (10), based
on the linearity assumption. As we have said in-chapter'four,
the lineafify assumption may be in serious trouble, in which
case the results of Hara and Nambu and Elias and Taylor for
T -decay would no longer stand. With the other point of view,
that Sutherland's result is wrong, which seems, at first
sight, to be supported by experiment, one has either to explain
why current algebra is wrong in this case, or abanden
electromagnetism as the main origin of the decay qf the eta,
or seriously modify it (61).

We shall suppose that the third zero in.’thTeifﬁla
is in fact present. We shall also suppose that the similarity
of ’?]-)311 and K=>3T within their Dalitz plots is more than
a coincidence. If this is the case, one has to look for ways
of reconciling the generalised pole model description of
K=>3TC and 4"-—)31! with the requirements of current algebra.
There are several clues, which are just the problems arising

from the Lovelace conjecture. They are as follows:
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(i) The suppression of fhe rho in the description
of Pn— 3T (1, 12, 13). |
We regard this as significant, since the ability of the model
to describe this process as well as it does is remarkable
and no plausible alternative description exists.
(ii) The problem of Adler zeros in TLq scattering
coupled with the resulting unrealistic § width.
(iii) The failuré of the single Veneziano term, in
chapter four, to give a good description of the
T -decay rate, and also the problem of theWﬁtdecay
spectrum fit with K(0) = 0.483,
In this chapter we return to the Veneziano amplitude .

+-
for TU TU elastic scattering,.

MGH)=p I 1A= |~ I(1-d6) [(1-a) (12
M(-a(s)-a() M(2-a(s)-a(t))

and work on the assumption that the variation ofP and ¥ ,

as the external pions are taken off mass shell, is non-
negligible. In section two, we find, by making an SU(3)
type assumption,relating the Pi and the Ra, just that form
of variation required to produce all the current algebra
zeros in '7]-)3]'[. In section three we discuss the TI-):’,‘“’_
" spectrum produced by this model, In section four we

investigate other manifestations of this type of yariation.
6.2. Mass dependence and Adler zeros

To start we rewrite eg. (1.2), considering only

the two leading terms, in the following form:

MD=p (1-a-a@ts023m) Vse, (o)
were Vg = M(1-a(N (1-a(0) /[(2-a6)-a(0), (6.2
12,38 = SRE,ER) ©3
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| Here § depends explicitly on the external masses, and describes
the relative variation of the two leading terms in eq. (1.2)
as the external masses are chznged. s 4 %t crossing implies
a certain symmetry for § which we shall assume remains as

the pions are taken off mass shell. That is, one has:

8(12,34) = §(4231) = 8(13,24) (6.4)

. _ ‘22 _ _ 2 ~ 2

with 58 = (Pl + P2) y t = (Pl + P3) , U ..CP1+ P4)
(6.5)

Consider now T elastic scattering, where the

amplitude has the form
A('S,t,u,) of M(S,t) + M(s,u) + M(tvu)p (6-6)

" which ensures positive signature for the A2-f trajectory,
exchange degenerate with the ¢-w trajectory. We now make

- an assumptior_x which is of central importance to the discussion.
We suppose that the §'swhich appear in eq. 6.6 for LU | scattering
are the same as those which appear in eq. 6.1 for I scattering,
but with the relevant masses inserted. This is not an |

unreasonable idea since the same trajectories are exchanged,

and in the SU(3) scheme the TC and the i are the "same" apart
from their masses.

The next step is t0 impose the Adler zeros in the

processes TCI>rWT' , WR-»TH and hn->hi . Vith. -

g, t and u defined as in eq. 6.5 one has the following:

M(st) o ( 1-d(s)-ac)+ 5012,34)) Vse (6.7a)
MG, & (| -d(®)=a(uwy+ 8(12,63)) Vsu  (6.7b)
M(t,uya (| —a©-alw) + 5(11y32)) V, (6.7¢)
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(1) Adler zeros in TCTC. s=t=u=p& P, = O,P22=P32=P42=P?:

M 1) o (1 =202 +80 12N V(eR) (6.8

Therefore M(Pﬁ[ﬁ): 0 providing one takes

S(OMI )= 2a(p) -1 | (6.9)
~.or taking d(s) = do + d'S B .
| o
P 6(oye, }L}L)-l' O‘Zf' = 2% (6.10)
(ii) Adler zeros in T[q
a) softTC. S =u= M2, t =}L2 P2_0, P12=P32=M2, P42=,.L2o

 Imposing the zeros term by term in eq. 6.6 gives the following:
o= (I1- ol(M")-o((}ﬁ)‘-i-S(MiO,M"p?')) (6.11a)
0 = (1 -2x(M®)+8§(M*o, it M?)) © (6.111)
0= (1-a(p®)—a(M)+ §(MH2,M0))  (6.110)

giving

..L_ S(M', M'o) + l_-Zaro =M1+|!~"

S(M"p 0M1)+ |- 24«» = 2M3 (6.12)
d'
b) softr,, s=u=’,¢,t_M2 P, =0, P2—P —p.z, P3_.M

Again imposing the zeros term by term in eq. 6.6 gives

0 = (| - ol(p)-of (M) + S (Op, M¥pe)) (6.13a)
O = (| = 20(pt) + SO, MY)) | (6.13b)
0 = (| = dM¥)-ar( )+ 8 (op, M? p‘ﬂ (6.13¢)
giving -
_'_ S(M"}E',OM")-F |-2do - M2
o o'

L 5 (M5, p}o)+ I-2do = 24
o (6.14)
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- (1i1) Adler zeros inam, s =t = u = M°, P.=0, P 2_P32_P 2.2,
0= (1-2u«(M*) +5(oM> M2 M?)) (6.15)

or
S(MM ,M20) + 1-2ds = 2M% (6.16)

d
Cons_lder now eqs. 6.14 and looking at fig. 1 we see that the

value of § depends on which pions are taken off mass shell.
If the two pions which are left on mass shell are the same,
i.e. both TC’s or both TCs, then § takes one particular
value; if on the other hand the two pions which are left on
mass shell are of different charge then 8 takes some other
value. This is a rather strange and complex behaviours
6.3 Zeros in "|+-5ll and generalised pole dominance
' One observes that eqs. 6.14 give just those values
of 8§ which are required when checking the current algebra
 zeros in the generalised pole dominance description of ’fl-”r?ﬂl.
Consider, in particular 114¥1fhKT1Ci thé_amplitude for this
process is, in the pole model, given by the sum of the two

diagrams shown in fig. 2. That is:

A= =Ly A 1t°-»1c*rc')+5(|1,)_r|_ H(qqﬂ'lt')(s A7)

where
AT T )= (Mst+ Mg M) (6.182)
and _ . _ o
H("\?‘i —FWTC-): Cts ‘_F.z(MSE"MSu*Mtu\. (6.18b)
Here '
Mse = (I-ds)-« G‘—HS(M" @) Vse, . (69)
and C, = - r is the\ (t,s) - crossing matrix for 'III] scattering.

It is straight forward to check that the amplitude, given in
eq. 6.17, has all the required current algebra zeros, when

~ those values of 8 given in eq. 6.14 are used.
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To proceed to calculate the Ispee'trum for ’rl—} 33X one needs
to know two things; firstly the relative contribu'.tion of
.the two terms in eq. 6.i‘7, i.e. the q2 dependence of g(qz),
and secondly the value of S(M."[L", }L"}L"). With regard to
the former, nothing conclusive has emerged from the

literature. There are arguments (62), which have been

questioned (63), which suggest that

gM*)/9(pr) = MM px (6.20)

Vlhilé, at the same time,' there are cases in the literature
which consider a constant form-factor dependence for the
electromagnetic vertex, g(qz), (64), that is _

AMY) = g(1¥) = 9. (6.21)
We shall consider both cases. Taking eq. 6.21 for the form
factor dependence, and substituting into eq. 6.17, giv-e_s for
the 'T]-)TC*E-KO amplitude the following:

2 .
n(stb»u)"ﬁsi_‘%}{Msﬁ MsCMhﬁj—% (Mst‘* Msuthu)} . (6.22)

‘Also using a(p}% in eqs. 6.14 gives
S(M*opt) = 0.25
and 5(M1P‘P}°) = 0 (6.14a)
’
The above two equations suggest a value for S(Mly.‘,p"p.")

somewhere near the middle of the range O to 0.25. Taking,

for instance,

. Y PIL '=
S(Met ) = 0.12 | (6.23)
gives the fit to the spectrum shown in fig. 3; the agreement
is excellent..
Taking the other point of view, embodied in eq. 6.20,
+ -
gives for the 4]41'“(- ° amplitude: =
- 2 '
R(S’b:“-" 9(Mz);£ Ms{-,'i'Msu" Mt'u} .
_ M’:.F} .

(6.24) .
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This id, of course, the original Lovelace amplitude for
the decay (1), and from his work we know that a gbod description

of the spectrum is obtained provided one takes

() = 2

and
S(M* W)= o '  (6.23a)
6.4 Tf.q-’rT[q scattering
First of all we consider Osborn's current algebra
amplitude for ch-ﬁT[q (65). This amplitude has all the
correc-f Adler zeros and depends explicitly on the momenta
of the I’['s:
AGstu)y= _1 (s+t+u =3+ P_’I_E_-_LL‘(k?Wk,’:))
3Fz W‘2 - (6.25)
Comparing-this with our modified Veneziano form, with both

pions on mass-shell,

Als,t,u) o (V- dls) - dle) + S0k, k1)) Vse
+ (1= ats) -ty + Skt k2)) Vg,

+ (1= () - o)+ 8(K} K’;‘.}E)) Veu -
| : (6.27)
at the point ( kg'_z P}, S=t=WU= ( K|1+3p.1)/3) gives

S~ (3-606)/200' -3 §(IAp 1) 2 Steru-Bpi- Mot (),
or taking 0((',1?’):‘/2 gives M*
SUGEp) = 2t (M) (itepe)
3M* (6.28)

This is not going to give the wholestory, because we are

suppesing that the momentum dependence on the pion is the

same as on the Eta, whereas in eq. 6.25 one has dependence
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only on the momenta of the Etas, but eq. 6.28 should give
some idea of the varlatlon, especially for K )}}L
Setting Kl2 4MN gives the b required for the process

'ﬁn—):’ﬂc and in fact one finds

8(4M:, W) = 195, (6.29)

This is in remarkable agreement with the values obtained
by Altarelli and Rubinstein (12) and Berger (13).

Yle now investigate how the S'S effect the \;vidth of
the & -meson. The residue of eq. 6.27 at the &-pole,
0((5)‘51, is given by: |

Um (s-M,,)A(se,u)—_s (1.02-8( M, M) - (M, M)
SMy
of _F 5 © (6.30)

If we call [ the width of the §-meson obtained from the’
conventional Veneziano expression, eq. 1l.1l5, and assuming B

to be the same in both cases we obtain:

I o 102~ s(MysM}R) - 8( Myt MY)
e - Loz (6.31)
Using eqs. 6.12 gs estimates for 8( Mz 1) and S(M’F‘[A‘Mz)

with d(l,(ﬂ=-'/2 gives
PS/'—: ~ 025 :('6.31a)

That is the effect of the §'s is to change the § -meson width

by about a factor 4 in the right direction.

._6.5 Concluéion

By making the "pi = eta" agsumption for the S'S
and imposing the Adler zeres in Kq-’rTCq , produces the

correct zero structure in Yl-"?BTC . The Adler zeros



-79-

in T[l]-'rTU] have been imposed by effectively adding
satellites, which at the same time solves the pro.blem .
of the 8—.meson width. We consider it more than a coincidence-
that the S(sz?',p-"}l‘) based on Osborn's amplitude gives a
value of 1.95 for 8(4‘M;[L‘;P}(L") y when Altarelli and
Rubinstein obtained a value of 1.86, and when Berger
needed exactlly 1.95 for his fits to the ﬁn—>3TC spectra.
The problem remains, of course, to f£ind the exact
functional form of 8, looking at the values required to
impose the Adler zeros in TUIU, TUf] and RN elastic scattering,
we see that 8 must have quite a complex structure, which
seems to have its origin in the electromagnetic énd veak"
structure of the pseudoscalar mesons.
For TU-decay one cannot play the same game, since
the similarities which exist between TLIC and T[-rl ’

(symmetry and Regge exchanges), do not exist to the same

extent -between JLJU and TUK (bvecause of the strangeness).
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Figure Captions:

Fig. 1 : Four line connected part for ) (A (o
elastic scattering showing momentum
labelling.

Fig. 2 : Pole diagrams for the decay rrdv1f+1t-15?

Fig. 3 : 41-A>1[+T[f1t° spectrum from the
modified Veneziano model, as described

in the text. The data are from ref. (17).
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CHAPTER SEVEN : CONCLUSION
Our overall conclusions may be summarised as i:oll;aws:

a) The positions of the sub-threshold zeros in Pi-Pi
scattering and the slopes of the amplitudes as
they change sign are in good agreement with
Weinberg's simple current zlgebra amplitude.

In terms of the Veneziano model, this means that
the variation of the coefficients, P, ¥, etc.,

during the extrapolation }Lzé O is negligible;
and so the prediction 0((}13')'-"'/2 remains good.

b) The failure of the single term Veneziano amplltude
t0 describe adequately the U-decay rate, the amplltude
being 30% too small at the centre of the Dulitz
plot, coupled with the faét that a non-negligble
mass dependent term is required to produce a
satisfactory description of both the rates and
gpectra, leads one to conclude that, even by the
time one hus reached the “U'decay physical region,
significant changes in the coefficients, P X,
ete., have occurred that is Satellltes are present.
This should also explain the slight discrepancy
obtained by Lovelace in his fit to 'Efdecay with
o (W) ="2 |

c) By relating the Pi and Eta as in chapter six a.nd
imposing the Adler zeros in -Tftl-—’r.'ﬂ:q solves
the problem of the s-wid‘th and gives all the
current élgebx"a z.eros in the generalised pole model
description of the decay ’Tlé:’ﬂc By drawing a
comparison with Osborn's current algebra amplitxide
for M-’ITUQ and extrapolating to the physiéal
region of Fh-’,r?ﬂt gives an amplitude very similar



to that of Altarelli and Rubinstein and
Berger. The variation of the coefficients

is rather strange and complex.
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APPENDIX A

A.1 Amplitude normalisation
For the transition |{)-»}f)the S-matrix element

Sfi is related to the invariant Feynman amplitude Mfi by

Sgq = Bpy - 1(2re)* 8t (2, - P) My
T
We use units A = ¢ = 1, and Py (Pf) is the sum
of all four-momenta in the initial (final) state and E; is
the energy of the j-th particle, jJ running over both initial
and final state particles.
For the binary reaction 1 + 2 3 + 4 we definé

the usual Mandelstam invariants, s,t,u, by

s = (P, + Py? = (Py + P4)2 (A2a)
t = (P - P3)2 =@, - P4)2 (A2D)
] 2 2
u = (P1 - P4) = (P2 - P3). (A2¢)
with 4
s+'t+u=Z T{[i (A3)
1l =

For Pi-Pi elastic scattering we have in terms
of the s-channel centre of mass three-momentum, g,

and scattering angle ©s,

s = 4(q® +p?) (ad2)
4 = =-2q%(1~Cos@s) (44b)
u = —2q2(l+COSQS) .(A4c)

We define for each normalisation (N) the invariant

amplitude

A=-M (45)
16TC N




A.2 Unitarity and Psrtial wave expansions
| For |i} = |£) the unitarity condition SS' = 1
gives the optical theorem

In =) =gVs -
e (46)

We define partial wave amplitides NA%.(S) for spinless
bosons in a state of well-defined isospin, I, by
"Whe,2)) =2 (2141) 4] (a)21(20) (A7)
1+ I even
where Zs = Cos@s. The sum over (1 + I)-even is a
' consequence of Bose statistics. Unitarity expressed in

terms of partial wave amplitudes becomes
N,I I N,I 2
1"l (s) = Ne g(s) BL(a) |Nal(s)] (48)

where . € = | 1 ‘for two different particles in L)) (49)
% for two identical particles in Ji)

§(e) = 2q L (410)
Js
and . .
I I,1 ' -
oLiL (s) |
el
In terms of the inverse amplitude this becomes
NI ] -1 I
| Im Al(s) = -N€ §(s) Ry (s) | (A12)
The above equations may be solved to give
2(6
Yy =1+ mle ¢ 1, (413)
Né q(s) Y
i

Where Si(s) is the resl phase shift and'n{(s) is the real
inelasticity,

oM 1 (414)

and ‘7& = 1 below the first inelastic threshold. /
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A.3 Isospin crossing matrices

" The s;t.and u channels are defined by

s-channel ¢ 1 + 2 » 3+ 4 (Al5a)
t-channel : 2+ 2 -+ 3+ 1 (ALl5Db)
u-channel : 3+ 2 » T+ 4 (Al5¢)

The s-channel amplitude A£(12 + 34) is assumed to
be an analytic functioﬂ of (s,t,u) having only those
singularities demanded by unitarity. When continued to the
t- or u- channel physical regions it.describes a linear com=-
‘bination of t- and u- channel isospin amplitudes, the

coefficients of which are given by the crossing matrices. Thus:
I _ Is A
, Asl ..21: Coy(I1I5) Ay (A16)
2

together with similar expressions relating the other channels’

and where

-1 _
Cig = Ogy 2nd Cpp =0, .Coy

In zddition to isospin. amplitudes, covariant amplitudes are
often used (24). These are defined in terms of the
covariant states. Thus for pions, ‘Tl‘> y 8 = 1,2,3

afe defined by
1Ty = 2%(Imyti i) | ) = ITs).

> TR
2 6 10 * ' 2 -6 10

st = -2 3 5

ol
o |-
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{4, ¢ l..'r [a,b) = A §ab Scd + B Sac &bd + C 8_, Sbg

’ \ ¢ 5 .
20 301 1 n

s

l ] -

As = 0O 1 -1 B

A2 0o 1 1 c
- SJ ‘N Y, . J

A(S,t,u) = B(tps,u) = C(u't,S)

and

Al(s,t,u) = A(s,u,t)



APPENDIX B
B.1 Dalitz plot for K<¥3wdecays
The small deviation from uniformity of the
Dalitz plot for the3NWdecay of the K meson is usually described
by a "slope parameter" (66). The Dalitz plot distribution

is parametrized by the expression.
|M|2« 1+ g(s~ so)/mi,,_ + lfl[(s-ao)/r.n’?ﬂ_]2 ~~==, (Bl)

where mi_'_ is introduced to make the parameters g,h, etc.,

dimensionless,
o= (q - q)%=( -m)% - 2m N ~ (B2a)
t = (q - q2)2'= (M, - M,)? - 2M, Ty, (B2b)
2 2 -
u= (ql - q3) = (Ml - M3) - 2M1T3 (B2¢)
4
» .
=1 t =1
80 1 (s+t+u) jiZ_ Nii, : (B3)

and q; refers %o the four-momentum of the kaon, while
a3 (i =.2,3,4) refer to the four-momentum of the :i.t—h
pion. The index 4 refers to the odd pion. The possible

charged stated for K3W are cdlled 1:_,' %' and T8
AP AR (A a4

&5 T
K? > T X°

I
=

%o

_where in to-decay the odd pion is taken to be the

neutral one. | _
For the cﬂarged K decay the Dalitz plot variables

X and ¥ are defined by:

X = Jg (T, - T3) and Y = 32& -1 _ (B4)

Q
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~where Q is the total kinetic energy available

Q=M -My - My =M, (B5)
In our analysis we neglect the pion mass differences,

in which case the Dalitz plot variables reduce to

X

G_(u-t) ana¥=3 (s -s), ~ (B6)
2MQ 2MQ

where M = Mland M2 = M3 = M4 = . Instead of analysing
the spectra in terms of X and Y, we shall use the variable
g and z = (t - u). |
B.2 Normalised Projections

(i) S-projections:’

tz(S)
2
f [Mf© at
do tl(s)
ds 5,(s) ' (B7)
at
tl(s)
where t1,2 (s) are the roots of:
st(3C + ¥% =3 ~t) = pE? )2 (B8)

settingX M° + 38 and o = pP° - u*)? them

2t) o(8) = (L= s+ (s -X)% - 4 o/5) (Bg)
(ii) 2 - projection: 92(2)
|ul ? as
g_g" = 81(2)
dz
8,(2)
ds (B10)

s,(z)
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.Bou'ndary of the Dalitz plot is given by

stu = ¢ | (B11)

or, usings+t-i;u=z and z = t - u,
53—2282+ 8 (22-22)=4c (B12)

S o (z) are the two relevant roots of the above equation,
&*~9

Bl2, and are given by:

1(2) = 2 - Ne(cosB/3 4+ 3ein€/3)  (B13a)

s,(2) = 2§ - 3@ (cos®3 - 3 s1n6/3)  (BL3b)

v

3
with ¢ = r° 4 l(jB + r2') | (Bl4a)
and 0= tan | 'q3 + r2| (B14b)
where q= a and r = -a
: '31 —2"0 (B15)

with 3'

8= 2.1 - 2 Pl e ~ (B16a)
and 8, = -(Z_z_.. + 2°) (B16Db)

3
Fig. B1 shows the Dalitz plot region for K—>3T and

the limits of integration for the two normalized projections.
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