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ABSTRACT 

A phenomenological i n v e s t i g a t i o n of s o f t meson 
zeros i s performed. Our m o t i v a t i o n comes from the 
suggestion by Lovelace of a connection between C h i r a l 
Symmetry and the Dual Resonance Model. The low energy 
theorems r e l a t i n g t o the p a r t i c u l a r processes w i t h which 
we are concerned are discussed i n d e t a i l i n chapter two* 
We f i n d , i n chapter t h r e e , f o r the P i - P i i n t e r a c t i o n , 
t h a t the experimental phase s h i f t data, when taken i n 
conjunction w i t h rigorous crossing sum r u l e s , demand the 
s o f t meson zeros. I n chapter f o u r the s o f t meson zeros 
inT-decay are discussed i n the framework of the generalised 
pole model. The r a t e problem i s re-examined and a 
s a t i s f a c t o r y d e s c r i p t i o n of both the r a t e and the spectrum 
f o r the decay i s obtained. Using the value of the weak 
vertex, g(M ) , obtained i n chapter f o u r , we discuss, i n 
chapter f i v e models f o r other kaon decays, namely 
and the magnetic dipole r a d i a t i o n i n decay K - V H TL ^ 
and obtain r e s u l t s i n agreement w i t h experiment. I n 
chapter s i x we r e t u r n t o the notorious problem of the 

v a r i a t i o n of the c o e f f i c i e n t s of the Veneziano sum 
as the e x t e r n a l pseudoscalar mesons are taken o f f mass 

zeros i n A s o l u t i o n i s proposed based on the 

s h e l l . 
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CHAPTER ONE: INTRODUCTION 

1.1 Lovelace 1a Conjecture 
Some of the most i n t e r e s t i n g and f a r reaching 

consequences of Current Algebra and PCAC have been the 
low energy theorems f o r pions. These theorems r e l a t e 
processes i n which (N+1)-pions are emitted, i n the l i m i t 
of one pion at zero momentum, to s i m i l a r processes i n which 
N-pions are emitted. I f f o r some reason the N-pion process 
i s forbidden the low energy theorems p r e d i c t zeros i n the 
(N+l)-pion amplitude i n t h i s s o f t p ion l i m i t . I n chapter 
two we discuss some of the s o f t pion theorems which we 
s h a l l be p a r t i c u l a r l y concerned w i t h , namely |<-> "310 

Lovelace i n a remarkable paper (1) hinted at a 
deep connection between the Dual theory of strong i n t e r a c t i o n s 
and Current Algebra. He summarised h i s dream i n terms of 
the f o l l o w i n g equation: 

C h i r a l symmetry f o r s o f t mesons + Absence of exo t i c resonances 
= Veneziano formula w i t h no secondary terms. 

But there are some serious problems associated w i t h t h i s 
conjecture, t o which we s h a l l r e t u r n l a t e r , and f o r the 
time being we s h a l l give a b r i e f review of the work which 
i n s p i r e d the above b e l i e f . 
1.2 The Dual Resonance Model (DRM) 

The DRM i s an a n a l y t i c expression f o r the s c a t t e r i n g 
amplitude which i s characterised by the f o l l o w i n g three 
p r o p e r t i e s : 

a) a l l i t s s i n g u l a r i t i e s are due t o resonance exchange, 

1|-*3TC and TUC-^UTC. 

gOltliOE 
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b) Regge asymptotic behaviour^ 
c) exact crossing symmetry. 

From the above p o i n t s i t i s c l e a r t h a t such a model embodies 
the idea of D u a l i t y (2) since i t s absorptive part i s given 
e n t i r e l y by resonance c o n t r i b u t i o n s and yet the amplitude 
i s Regge behaved. I t i s also evident t h a t a DEM as defined 
above i s i n c o n s i s t e n t w i t h the I n t e r f e r e n c e model (3) i n 
which the high energy behaviour of the amplitude i s not given 
by the resonances. 

I f A ( s , t ) i s a DEM f o r a binary s c a t t e r i n g process 
w i t h s- and t - but no u-channel s i n g u l a r i t i e s , (see appendix 
A f o r kinematics) then: 

A(s,t) = XinM. = I C h i 

I f , furthermore, A(s,t) = A ( t , s ) then C R = CQ. I n other words 
the amplitude can be w r i t t e n e i t h e r as sum of i t s a-channel 
resonances or as a sum of i t s t-channel resonances but not as 
a sum of both. Another i n g r e d i e n t which i s u s u a l l y added i s 
t h a t of planar d u a l i t y , namely t h a t the f u l l amplitude, 
A ( s , t , u ) , can be w r i t t e n as a l i n e a r combination of the 

three terms A ( s , t ) , A(s,u) and A ( t , u ) f where A(s,t) possesses 
only 8- and t-channel s i n g u l a r i t i e s (no u-channel ones). 

Lovelace (1) and Shapiro (4) used the above p r i n c i p l 
of d u a l i t y , together w i t h the idea of the absence of e x o t i c 
resonances t o b u i l d t h e i r model of P i - P i s c a t t e r i n g . They 
s t a r t e d by considering TU^TU"" e l a s t i c s c a t t e r i n g . 
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I n t h i s process there are no u-channel resonances, since the 
u-channel, being 1=2, i s e x o t i c , w hile the s- and t-channels 
are i d e n t i c a l . Veneziano's formula (5) then requires exchange-
degeneracy between the f - and J - t r a j e c t o r i e s , and gives f o r 
the T l TIT e l a s t i c s c a t t e r i n g amplitude the f o l l o w i n g f i n i t e 
sum: 

A(s,t) = -fj rfi;«ffl)Ki-«M) 
r ( i -« f s ) -* ( t>) 

H- * ro-«ft))r(i-rf(t)) 
r(z-«(sv«M) 1 1 ' 

This i s s u f f i c i e n t t o completely describe P i - P i s c a t t e r i n g , 
g i v i n g the f o l l o w i n g s-channel i s o s p i n amplitudes: 

A 0 = i ( 3 A ( s , t ) + 3A(s,u) - A ( t , u ) ) (1.3a) 
A1 = A(s , t ) - A(s,u) (1.3b) 
A 2 = A ( t , u ) . (1.3c) 

I n eq. 1.2 0((S} = CLo + 0('S . and i s the §--f° 
t r a j e c t o r y f u n c t i o n . The separate terms i n eq. .1.2 may be 
expanded e i t h e r as a sum of poles i n s or i n t thus 
s a t i s f y i n g d u a l i t y . To show the s-channel poles at 

(X(S) = J j 3 * ^ 1 e x p l i c i t l y f o r the f i r s t term, expand! 

A(Sib)«j5(fl(ffl40(fti)-1)X 
A Z - l h / n+i-*(si (1-4) 

The residue i s a polynomial i n t and t h e r e f o r e also i n COSB 
Since i t i s not a Legendre polynomial, each resonances w i l l 
be accompanied by daughters of a l l lower J . The f a c t o r 

( Ol(S) + 0 ( ( " t ) - 1) gives r i s e t o the Adler zero (6) 
provided t h a t a l l the secondary terms are zero ( , e t c . 
= 0 i n eq. 1.2) and t h a t 

°Ny = i '(1.„ 
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Taking the ^ meson t o be mass 765 MeV gives f o r the 
t r a j e c t o r y f u n c t i o n 

0((s) = 0.483 + 0.885s, (1.6) 

i n good agreement w i t h the phenomenological ^ t r a j e c t o r y . 
S u b s t i t u t i n g eq. 1.6 i n t o eq . 1 .3 gives f o r the P i - P i 
s c a t t e r i n g lengths: 

a°= 0.395p and a^= -0.103|}, (1.7) 

the r a t i o of which being w i t h i n 10# of Weinberg's value (7 ) . 

I n discussing the asymptotic behaviour one uses 
the i d e n t i t y 

rte) ro-*) SHITG* = ic ( 1 o 8 ) 

and the l i m i t 

Por f i x e d s, and l a r g e t , one has using eqs. 1.8 and 1.9s 

ores) 
A(S,i)~ rfl-tfs)) [ o f f t f l SinTCorfs) C CotTWGM- CofciWftX] 

(1.10). 

Apart from possible poles i n CoilLtftf), t h i s has Regge-like 
behaviour. We expect, f o r l a r g e t , t h a t the narrow-resonance 
approximation w i l l be very poor, and t h a t i n f a c t Gf(Q 
should become l a r g e as t-> 00. I n which case CotH#6t}->-"i 
and • , \ 

By s i m i l a r arguments 

ACs,u)~ f Y H K S ) ) E<xCt)] i (1.12) 
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g i v i n g f o r l i n e a r t r a j e c t o r i e s 

A1 E _ 0 - e - f a M W ) [ < A 1 « « 
rfafS)) SinTUCs) (1.13) 

which we see i s proper Regge behaviour. Comparing w i t h the 
usual Regge formula 

Sin Ttotfs} l t 0 / 
(1.14) 

shows t h a t the ^ - r e s i d u e vanishes at Qf(s) = 0,-1 ,-2,etc., 
i . e . the ^ chooses nonsense. 

A successful Veneziano amplitude has also been 
w r i t t e n f o r TtK and KK s c a t t e r i n g ( 8 ) , but the troubles' begin 
when one considers TC7£ s c a t t e r i n g . The simplest Veneziano 
formula f o r TCl^—^TC1^ s c a t t e r i n g has the form 

A(s,t,u) * A( s , t ) + A(s,u) + A ( t , u ) , (1.15) 
which ensures the co r r e c t signature f o r the Ag-f (exchange-
degenerate w i t h the J-CA> ) t r a j e c t o r y . I f Adler's c o n d i t i o n 
i s t o be s a t i s f i e d one needs p e r f e c t octet masses f o r the 
pseudoscalar mesons, i . e . M-j£ = M ^ = 140 MeV. This i s not 
the only problem. The form eq.1.15 i s i n c o n s i s t e n t w i t h 
phenomenology i n t h a t a larg e 5 coupling i s predicte d i n 
disagreement w i t h the observed small 8 w i d t h . So one f e e l s 
forced t o modify eq.1.15 by adding s a t e l l i t e s - t h i s i s the 
f i r s t problem w i t h the Lovelace conjecture. 



As w e l l as considering P i - P i s c a t t e r i n g Lovelace 
also considered r e a c t i o n s of the type 

X-»3TC 
where X has the quantum numbers of the pion. I n applying 
the Veneziano form to t h i s type of r e a c t i o n he argued t h a t only 
the c o e f f i c i e n t s j3^7() e t c . i n eq. 1.2 could vary as one 
of the e x t e r n a l pions i s taken o f f mass-shell, since the Regge 
t r a j e c t o r i e s cannot depend k i n e m a t i c a l l y on the e x t e r n a l masses. 
The decays considered were 0^ — ^ 3 1 ^ a n d K — ^ 3 " ! ^ 
i n the pole model i l l u s t r a t e d i n Pig. 1, and pH— 
at r e s t , where the i n i t i a l s t a t e i s known experimentally t o be 

U 
pure o 0and so has the quantum numbers of the p i o n . 

When considering X-decay the assumption of no 
secondary terms gives a l l the re q u i r e d current algebra zeros 
(9>10)i but the f i t t o the spectrum using the 'proper' value 
of 0.483 f o r 0((0) suggests t h a t something may be wrong (see 
Fig.3)» While f o r the decay >3TC the same assumption 
gives a good f i t t o the spectrum, but the most obvious current 
algebra zero, t h a t when ,̂T£° = 0 i s n o' t reproduced 
(see F i g . 4 ) . To be able t o describe the process "ph—>3TP 
i t i s necessary f o r ^ ^ — j S "the most favoured value being 
" t f # ~ 2 | S (12,13) (see Figs. 5 and 6 ) . Rate c a l c u l a t i o n s 
have also been performed f o r k " * 3 U and 0|-*3"fC , 
using the pole model^with some r a t h e r s u r p r i s i n g r e s u l t s ( 1 4 ) . 
We s h a l l r e t u r n t o t h i s problem i n chapter f o u r . 

From the above p o i n t s we see t h a t i f Lovelace's con
j e c t u r e i s r i g i d l y obeyed w i t h regard t o the absence of 

i • 

secondary terms several serious problems a r i s e , and yet i t was 
t h i s assumption which gave the r a t h e r nice p r e d i c t i o n of the 
^ t r a j e c t o r y i n t e r c e p t . 
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1.3 Programme 
Our programme of work involves a phenomenological . 

i n v e s t i g a t i o n , of Adler zeros, p a r t i c u l a r l y i n those processes 
where the correspondence between the dual resonance model and 
current algebra has been suggested. We see t o what extent 
Adler zeros are i n f e e t demanded by experimental data, when 
r a t h e r general c o n s t r a i n t s are taken i n t o c o n s i d e r a t i o n . 
I n those r e a c t i o n s where, at f i r s t s i g h t , some of the zeros 
seem t o be absent we suggest m o d i f i c a t i o n s t o the Lovelace 
conjecture t o provide a consistent p i c t u r e w i t h a l l zeros 
present. 
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FIGURE CAPTIONS: 

Fig . 1 - : Pion pole dominance model i n which a lea on (eta) 
decays weakly ( e l e c t r o m a g n e t i c a l l y ) i n t o a heavy 
pion, which i n t u r n decays s t r o n g l y i n t o three pions. 

Pig.2: P i - P i phase s h i f t s given by the s i n g l e channel 
K-matrix Veneziano model (15)« 

Pig.3: Single term Veneziano f i t s t o K"*̂ "̂ TĈ TÛ TD 
• A: f i t w i t h C((0) = 0.483. 

B: f i t w i t h 0((0) = 0.528. 
The dotted l i n e i s the best l i n e a r f i t . The data 

are from r e f . ( 1 6 ) . 

Fig.4: Single term Veneziano f i t s t o 
A: f i t w i t h Of(0) = O.483. 
B: f i t w i t h «(0) = 0.491. 
The data are r e f . (17) 

Figs.5 Comparison of the Lovelace and Berger f i t s 

and 6: t o pn-̂ X"Tl"lU"t 
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CHAPTEH TWO : LOW ENERGY THEOREMS FOR PIONS 

2.1 I n t r o d u c t i o n : 
Nambu and L u r i e (18) were the f i r s t t o use the 

PCAC hypothesis t o study processes i n v o l v i n g " s o f t " pions, 
t h a t i s , pions w i t h zero or small four-momentum. By 
combining PCAC and the algebra of c u r r e n t s , Callan and Treiman 
(9) were able t o r e l a t e the processes K->31C and K-V&Tl 
i n the l i m i t of one s o f t pion. They found t h a t the r e s u l t 
depended on which pion was taken t o zero momentum. Hara 
and Nambu, and E l i a s and Taylor (10) continued t h i s work, 
and by assuming a l i n e a r dependence on the energy of the 
odd pion f o r t h e . m a t r i x element of the decay K-V3TC were 
able to obtain a very good d e s c r i p t i o n of the r a t e s and 
slopeparameters f o r the decay by r e l a t i n g i t t o the decay 
K-frfclt. B e l l (19) then showed t h a t the r e s u l t s of Callan 
and Treiman were s t i l l t r u e i n the intermediate vector 
boson theory. This tempted Sutherland (11) t o apply the 
same analysis to the phenomenologically s i m i l a r decay 
' I j - ^ I U . The r e s u l t was r a t h e r s u r p r i s i n g ; he found t h a t 
i f one assumed a l i n e a r matrix element, which worked so 
w e l l f o r X decay, then the decay 1|-V"5"|t should be forb i d d e n ! 
This l e d t o many questions: (a) was current algebra wrong? 
(b) were the l i n e a r i t y assumptions wrong? (c) was the 
s i m i l a r i t y of K and 4j decay w i t h i n t h e i r D a l i t z p l o t s 
purely accidental? I t seems th a t one i s fo r c e d , w i t h 
great reluctance, t o take the point of view t h a t the 
l i n e a r i t y assumption i s wrong, which i n t u r n means t h a t 
the r e s u l t s obtained f o r T> decay, b e a u t i f u l though 
they are, must be accidentalo 
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Weinberg (7) applied these ideas of PCAC and current algebra 
t o the problem of P i - P i s c a t t e r i n g and obtained some very 
• i n t e r e s t i n g and r a t h e r s u r p r i s i n g r e s u l t s . 

I n t h i s chapter we r e d e r i v e the low energy theorems 
f o r the p a r t i c u l a r processes which we w i l l be considering 
l a t e r . At each stage i n the d e r i v a t i o n we w i l l mention 
the approximations which have been made. The plan of the 
chapter i s as f o l l o w s : i n s e c t i o n two we b r i e f l y review 
the current algebra i n g r e d i e n t s of the low energy theorems, 
i n s e c t i o n three we derive an i d e n t i t y r e l a t i n g the 
process flf-V{J + T& , i n the s o f t pion l i m i t , t o the "easier" 
process of d-^fJ. The remaining sections consist of s p e c i a l 
cases of 0( and |J . 
2.2 SU(3) X SU(3) Current Algebra 

I n the SU(3) scheme of t h i n g s , the weak and 
electromagnetic i n t e r a c t i o n s of hadrons are described 
by a set of Vector and Axial-vector currents denoted by 
Vijyi OCi and A i ^ M r e s p e c t i v e l y , where the u n i t a r y s p i n 

index, i , runs from 1 t o 8.(20). The Vector and A x i a l -
vector charges, defined by 

( t ) = - i j V ^ U ) dx and = - i j V . 4 ( x ) dx (2.1) 

r e s p e c t i v e l y , s a t i s f y the commutation r e l a t i o n s 

[ P k ( t ) , P e ( t ) J = ituJm ( t ) , [ p 5 ( t ) , l | ( t > ] - if k t mP..CO 

and 
[ l k ( t > . lg(t>] = i f W a P5 ( t ) ' ( 2 . 2 ) 

where the fjj.£m are the s t r u c t u r e constants of SU(3)«» The 
i s o t o p i c spin and hypercharge operators are given by: 



- 1 1 -

I = F ( j = 1,2,3) and Y = 

For the electromagnetic c u r r e n t , 3"p. , one has the 
f o l l o w i n g form: 

g i v i n g the welL-known Gell-lfiann N i s h i j i m a r e l a t i o n 

(2.4) 

Q a I 3 + | (2.5) 

Since i t was n a t u r a l t o expect the currents V ^ a n d 
themselves t o be octets,the f o l l o w i n g equal time 
commutation r e l a t i o n s were postulated: 

I F|&>, VtaOd] » i f M m AouiOO, [ F j f o A f l ^ ] - Lfktn, V „ u M . ; 
1 (2.6) 

The i n t e r a c t i o n Hamiitoniah density which describes the 
coupling of the electromagnetic (e.m.) f i e l d , AfiOO 
t o hadrons i s : 

n (2*7) 
which describes the e.m. p r o p e r t i e s of hadrons t o a l l 
orders i n the e.m. coupling. 

For weak i n t e r a c t i o n s the best t h a t can be done 
i s t o use an e f f e c t i v e Hamiltonian, the m a t r i x elements 
of which d i r e c t l y describe the lowest order weak e f f e c t s . 
A l l experimental evidence, apart from the "very weak" 
decay » i s consistent w i t h a current x current 
e f f e c t i v e Hamiltonian: 
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^ v f * StL+^w^+^C - L 3 j vJJ (2.8) 
where 

3p.= L^t-t jp.cosG+J^siae ( 2 , 9 ) 

Here Lj*. i s the l e p t o n i c c u r r e n t , 0 - the Cabibbo angle 
(—15°) and J £ are the strangeness-conserving and 
strangeness changing hadronic currents r e s p e c t i v e l y , 
given by 

T £ » V, k+ A i j t + ^ V i j t - t Aip.) ( 2 . i o ) 

and 

T j t = V ^ + A ^ + i ( V 5 K + Asm)- (2.11) 

I f one w r i t e s the hadronic weak Hamiltonian, dLw » 

as a sum of p a r i t y conserving and p a r i t y v i o l a t i n g p a r t s , 
t h a t i s 

JV>W = J V W + O l w (2.12) 
then w i l l c ontain terms of the type VtfvVjp or Ai^Aj^A. 
while W w i l l have terms l i k e Vlp-Ajp. or Aif*Vjtl. 
Using the commutation r e l a t i o n s eq. 2.6 one obtains: 

(2.13) 

I n p a r t i c u l a r one i s i n t e r e s t e d i n the case when 
i = (1 + i2) //2, or 3, t h a t i s when the P's are j u s t 
the usual i s o s p i n operators 1+ or I^e 

The usual assumption withregard t o the strong 
i n t e r a c t i o n Hamiltonian i s t h a t i t i s of the form: 

H * H 0 + 3 H 6 = H 0 + 3 / 3 C 8 d x < * .h> 
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here Ho i s SU(3) i n v a r i a n t and Hg i s the eig h t h member of 
an octet.. This form gives f o r the divergence of the 
Vector currents the f o l l o w i n g 

(2.15) 
That i s , w i t h t h i 3 type of SU(3) breaking, only the 

i s o t o p i c spin and hypercharge currents are conserved, and 
the time dependence of vector charges i s given by 

F x C f ) = 3 k m Hm ( 2 - 1 6 ) 

The hypothesis f o r the divergence of the a x i a l - v e c t o r 
currents had i t s o r i g i n i n the work of Goldbergerand Treiman on 
the decay of the chargedpion (21), and i s the hypothesis of 
Partially-Conserved Axial-vector Current (PCAC) given by 

fyAifi = c i < H ( 2 - 1 7 ) 

I n p a r t i c u l a r f o r i = 1*2,3 one has 

V A i | i * i M " & F T i K l P M , \k&= F ^ f W , (2.18) 

where 1L°(X) are the pion f i e l d s , the pion mass and 
F"|t i s the pion decay constant defined by 

(wfillk < o | A l ( £ l - i A ^ | r ( p ) ) = t ^ l F u P F t (2.19) 

3y l o o k i n g at the decay }A?f Vj*. , one can obt a i n 
an "experimental" value f o r = 93 Mev. 

This e m p i r i c a l value d i f f e r s by only 12^ from 
the Goldberger-Treimah value given by 

RL= 9A MN ^ S 5 M e V • , y •r^s (2.20) 
J U N N 

where g A i s the nucleon a x i a l - v e c t o r coupling constant 

( g A = g A (0) i 1.2), Mjj i s the nucleon mass and 

i s the pion-nucleon coupling constant. (9i£NN ^* 
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2.3 An i d e n t i t y (22) 

Let X^X) t e a n y o f t n e c u r r e n t s ^(jiM or 
Aj^ l X ) and l e t O(X) be any Heisenberg operator; now 

consider the amplitude 

*r J n (2.21) 

where 0( a n d |$ a r e physical hadron s t a t e s . Then 

' - £ j a x ^ i e ^ e f x ^ i t ^ w o a w y ( 2. 2 2 ) 

By Gauss's Theorem the second i n t e g r a l on the r.h.s. of 
eq. 2.22 can be converted i n t o a surface i n t e g r a l which i s 
set equal t o zero. This i s because the s p a c i a l surface 
terms give no c o n t r i b u t i o n i f wave packets are used; f o r 
p o s i t i v e time the i n t e g r a l vanishes i f a small p o s i t i v e 
imaginary part i s given t o % and f o r negative time 
because of the 0(Xo) • Using Do0(Xo)= S(Xo) o n e obtains: 

+ tJ^e^'xS{x.XplUJkeW,0(o)3|<»f> ( 2 . 2 3 ) 

s e t t i n g "T s A, , and using the PCAC hypothesis: 

^ ^ " M * ) , k-1,2,3 (2.18) 
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and t a k i n g the l i m i t £)->0 o n e has 
1, 

A« -LFxf^ fax c^ xax o^p|tTl kW,0(o)]|*> 

One now considers the matrix element 

k -Cue) ̂ (piC^IOfo)!*) (2.25) 

By the L.S.Z. re d a c t i o n technique the matrix element 
can be w r i t t e n as 

w i t h an i n t e g r a t i o n by parts one obtains 

By comparing eq. 2.24 and 2.27 one notices t h a t 

Here the second term on the r.h.s. vanishes unless J 

has a s i n g u l a r i t y at ^ j^js O. This can happen only i f a s i n g l e 
p a r t i c l e s t a t e , degenerate i n mass w i t h e i t h e r C( or |S 

c o n t r i b u t e s t o ^ i ^ j j u ^ n the cases were are i n t e r e s t e d i n 
no such s i n g u l a r i t i e s occur. The f i r s t term on the r.h.s. 
of eq. 2.28 i s an equal-time commutator t h a t i s known 
from current algebra considerations. 

(2.27) 
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Hence, by the r e l a t i o n eq.2 c28a process i n v o l v i n g m a t r i x 
elements of 0(o) between two states Qi-V"ILfc^and o( 
i s connected, i n the s o f t pion l i m i t , t o a process t h a t 
involves the m a t r i x element of a r e l a t e d operator between 

and 0( . I n other words, one i s able t o connect a 
process i n which N pions are involved t o others i n which 
N - l , N-2, , 0 pions are i n v o l v e d . I t should be noted 
.that i f the m a t r i x element f o r a process i n which n s o f t 
pions are emitted i s , f o r kinematic reasons, of order 

*|r| » s t r a i g h t forward a p p l i c a t i o n of current 
algebra gives no i n f o r m a t i o n about i t , because one i s 
neglecting the second term on the r.h.s. of eq. 2.28. 

2.4 Kaon Decays 
( i ) K -> 2TC 

To f i r s t order i n 5Ku> the reduced T-matrix 

element f o r the decay 

k " ( f ) - * 1tt(k,) + Xj (2.29) 
where o( i s the charge s t a t e of the kaon and i and j 
are the i s o s p i n i n d i c e s of the pions, i s : 

PV 
(2.30) 

v i a I i s r e l a t e d t o the Peynman amplitude 

^ fo^JlfcT (2.31) 
w i t h „ 
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Applying the i d e n t i t y of §2.4, eq. 2.28, one obtains 

- i <Tlj(kz)|EF^) j 5('^o)]|k^> t 2- 3 2 ) 

which becomes, a f t e r using the commutation r e l a t i o n s 
i n eq. 2.13 

The road i s now c l e a r since the Pi's are j u s t the i s o s p i r i 
operators.1+ and. I , . W r i t i n g the m a t r i x element f o r fc-^7L 

33) 

as: 

<U(kO|KP

w

C'(o) \W)-frffij^mKt <»•»>' 
one a r r i v e s at the f o l l o w i n g r e l a t i o n : . 

= CJIQ M{J2 j (2.35) 

- t a k i n g t h i s together w i t h the other charge states we 
have the f o l l o w i n g : 

1ft ( k + ^ r t ) = = i - / n i i r t * 

HI (It?-* f *Tri = S. HIJ^TC* - <m (kl-»ic*ir) 

*^TC C2.36)-
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I f one now puts i n the A I ~ 6. r u l e "by hand", t h a t i s 
s e t t i n g 

eqs. 2.36 simply t o the f o l l o w i n g 

Z F %

 1 1 c r-fnCk^Trf 0) 

( i i ) K > 31C 
The procedure f o r K"+3K i s now c l e a r . Applying 

eq. 2.28 as before one has 

nrt 
where TCjis the i s o s p i n wave f u n c t i o n of "Jtj • O n e now 

replaces the commutator [ F ^ 3 " C ^ ] b v £ f clt^f^l 

2FTC w ^ r r i t f - *i( M r ) 

2FTC fo(lc^irrfb--Wk^Tri^ 

(2.40)-



Again using the / l X = f e . r u l e and negl e c t i n g the pion mass 
di f f e r e n c e s , one f i n a l l y a r r i v e s at 

2F U lh 
=-W(k+-vtC+X+TC") 
= -an(KM-1C,1t0fc<") 
«'mCKZ-j-ic+Tc-x0) ( 2 < 4 1 ) 

» 4n(k£-*X,TOTC») 
2.9 Eta Decay (11) 

the O-parity v i o l a t i n g decay /J?—>-T[aX 1̂Cc 
proceeds v i a a second order e.m. i n t e r a c t i o n . 

where "3p. i s " t n e e * m ' current and Q^LV i s "the photon 
propagator. Prom eq. 2.4 one w r i t e s as the sum of 

r 
i s o v e c t o r and i s o s c a l a r pieces 

here 3 j j i i s the n e u t r a l component of an i s o v e c t o r and XJUL 
i s an i s o s c a l a r . Rewriting eq. 2.42 bearing i n mind t h a t 
J | t J y and J^L J y terms do not c o n t r i b u t e because 
of G-parity, one gets 

^ { M t l t c 1/4, J ) ( r t C | ( ) T r T ^ ( o ) ) l n > < a - u > 

together w i t h a s i m i l a r term but w i t h '3* and '8' 
interchanged, which can be t r e a t e d i n the same way. 



The next step involves t a k i n g the matrix element 
of the expansion: 

between^JF^I JdijD^yttjiJoIxe aru< The term a r i s i n g 
from the l . h . s . of eq. 2.45 i s i n t e g r a t e d by p a r t s over X, 
g i v i n g , w i t h the usual neglect of surface terms, a term 
p r o p o r t i o n a l t o ^ j c ^ i which vanishes i n the l i m i t / j ^ ^ - ^ O. 
I n t h i s l i m i t the term coming from the f i r s t piece on the 
r.h.s. of the equation i s , using PCAC and L.S.Z. 
re d u c t i o n , p r o p o r t i o n a l to 
we have: 

The two commutators i n the above are given d i r e c t l y by 
eqs. 2.6, and i n p a r t i c u l a r when C = 3, corresponding 
t o the n e u t r a l pion, the two commutators vanish; so one 
has Sutherland's r e s u l t 

I f one now makes the usual assumption t h a t the three pion 
f i n a l s t a t e has i s o s p i n 1, then using Bose symmetry, one 
i s forced t o conclude t h a t the amplitude must vanish when 
any of the three pions i s taken t o zero f o u r momentum. 

(2.46) 
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2.6 TC1t->TLX 
A very interesting application of the above 

ideas was made by Weinberg (7) f o r the case of Pi-Pi 
scattering. Let the reaction'be denoted by 

\C(a.) + p c c ) - > q ' ( b ) + tti), 
* (2.48) 

Where k,p,q,l represent the momenta of the pions 
and a,b,c,d are t h e i r isospin labels. Bose s t a t i s t i c s , 
crossing symmetry, and isospin invariance dictate the 
following structure f o r the Pi-Pi amplitude, to second 
order i n the pion momenta, 

"+ SacSfaJ fc+jJfruO-ftfs], (2.49) 

where 0̂ ,|S and are constants, independent of the 
pion momenta, and 

S = ( p + k ) x , t - f i c - ^ 1 and tt=Cp-l)z (2.50) 

To check the Bose requirement observe that the amplitude 
i s indeed even, e.g., under a-Oc and k-Op (hence s ^ s , 
t 4 u ) . Similarly, crossing symmetry requires that the 
amplitude be even under o ^ b , p-**-q (hence s o t , 
u*>u); and we see that t h i s i s s a t i s f i e d too. What i s 
remarkable about eq.248 i s that the amplitude does not 

2 2 2 2 
depend e x p l i c i t l y on the mass variables k ,p ,q and 1 , 
except for t h e i r appearance i n the r e l a t i o n s+t+u = 
2 2 2 2 

k +p +q +1 . Expressed i n terms of the parameters 
U j |5 and % the S-wave scattering lengths 

( I i s the t o t a l isospin) are given by 
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(3211)" [ 5 o r + S ^ + a f l (2.51a) 
and 

A* = ( 3 2 U ) " 1 CZar+8j$] , (2.51b) 

To determine to coefficients- <X)j$ and ^( one again 
considers the amplitude 

performing t h i s time a double contraction gives 

Using PCAC, the f i r s t term on the r i g h t i n the above 
ba 

equation i s , up to factors, the Pi-Pi amplitude ^ Q^» 
bci 

The t h i r d , term on the r i g h t , the "0"-term", (Ted 
i s symmetric i n the indices b and a, when k = q * o . 
Let q = k ->o, but, keep p = 1 .on mass s h e l l . To f i r s t 
order i n q and k the l e f t hand side of eq. 2.52 can be 
neglected - there are no pole terms i n the Pi-Pi problem. 
The second term on the r i g h t i s a f a m i l i a r commutator 
given by current algebra- Thus, f o r k = q ->o, t o 
f i r s t order i n k = q, one has 

T C < A - -\ t Sbc Sdo.- 8j,a Sjcl 2 f.k 

+ bo. 
U (2.53) 
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But to t h i s order 4 p.k ->u-s. From eq. 2.53 form the 
quantity ( t J J * - T*]j), noting that O T ^ J i s symmetric 
Under the interchange a4->b and comparing with the same 
quantity obtained from eq. 2.49 gives 

From eqs. 2.51 i t then follows that 

Z<x0- 5a2= 6L t L* (8nf^)"~^ O.1o ( 2 . 5 5 ) 

Next, consider the implications of the Adler PCAC consistency 
condition ( 6 ) . I t asserts that the amplitude must vanish 
when the momentum of any one pion goes t o zero, a l l the 
other pions being.held on mass s h e l l . Kinematically t h i s 
corresponds to the point s = t = u = 1; and the PCAC 
condition yields the result 

(2.56) 

To complete the analysis one more condition is needed, 
and here Weinberg introduces an extra physical assumption 
concerning the 0"-term i n eq. 2.52. With p = 1 on mass 
sh e l l , and to lowest order i n k = q, the CP*terms i s 
symmetric i n the indices a and b. Weinberg now made .the 
assumption that i t i s , i n f a c t , proportional to S ab&cd 
This property i s at any rate true i n the- (F- model (23.) 
To lowest order i n k = q one then has 

T e a * S a b S c d , S=LL=1 , t = 0 (2.57) 

v 
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From eq. 2.4-9 i t then follows that 

Altogether one finds 

' HI 
and f o r the scattering lengths 

giving i n terms of the conventional amplitudes f o r 
Pi-Pi scattering (24) the following 

ACs,t,u) = fs-|e) 
BCs,-t,aV= ACt.s.u); Cfs,-t,u)= A^,t,s). 

(2.58) 

(2.59) 
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CHAPTER 3 : STRUCTURE IN S-WAVE TCTC SCATTERING 

3.1 Introduction 
Weinberg's current algebra amplitude, described 

i n the previous chapter, embodies one of the most i n t e r e s t 
ing predictions f o r the Pi-Pi i n t e r a c t i o n , namely the 
presence of sub-threshold S-wave zeros, and consequently 
rather small S-wave scattering lengths. This property 
came as rather a surprise at f i r s t , since i t was completely 
at variance with the well-known S-wave dominance theory 
of Chew and Mandelstam (24). 

i 
I n t h i s chapter we analyse a representative 

set of S-wave Pi-Pi phase s h i f t s ; taking these i n conjunction 
with rigorous crossing sum rules (25), we show how i t i s 
possible to investigate the occurrence, or otherwise, 
of S-wave zeros. 

To take i n t o account the threshold branch point 
we use a dispersion r e l a t i o n , w r i t t e n not f o r the S-wave 
amplitude i t s e l f , but for i t s Inverse (26). This i s 
because, f i r s t l y , i n inverse p a r t i a l wave amplitude 
s a t i s f i e s a very simple ela s t i c u n i t a r i t y equation, which 
can be solved i n closed form; and secondly, because for ' 
the inverse amplitude the effects of possible zeros are 
po t e n t i a l l y large - they appear as poles. 

I n section two we derive from the inverse 
amplitude p a r t i a l wave dispersion r e l a t i o n , a generalised 
effective range representation f o r both S-wave inverse 
amplitudes ( I = 0,2). I n section three we describe i n 
d e t a i l the model dependent parts of the input used i n 
the analysis. The quantities which are model dependent 
are ( i ) the r e a l part of the S-wave amplitude, Re A ( s ) , 
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fo r s < 0, i . e . on the left-hand cut, and ( i i ) the 
r a t i o of the i n e l a s t i c to the elastic S-wave p a r t i a l 
cross sections. I n section four we describe how 
experimental information i s obtained on the Pi-Pi 
i n t e r a c t i o n , and i n pa r t i c u l a r discuss the Pi-Pi phase 
s h i f t s which are used i n t h i s analysis. The rigorous 
constraints, which follow from crossing, are set out i n 
section five,where we also define quantities by which 
we measure the v i o l a t i o n of the constraints. I n section 
six we describe various plausible models f o r the S-wave 
Pi-Pi i n t e r a c t i o n . For instance, the data suggest a 
simple scattering length model, which gives a reasonable 
description of the phase s h i f t s . However, since both 
1 = 0 and 1 = 2 amplitudes are available we can construct 
the S-wave amplitude f o r the symmetric process 
and can then immediately rule out the model because of 
i t s v i o l a t i o n of an elementary crossing t e s t . I n a 
similar way other models giving good f i t s to the phase 
s h i f t s can be eliminated, and we conclude that the simplest 
account of the data consistent with the rigorous constraints 
i s given by a model containing a sub-threshold zero i n 
both S-waves. The favoured parameter values (scattering 
lengths, etc.) are similar t o those predicted by current 
algebra, and the amplitude zeros can be i d e n t i f i e d with ' 
the PCAC Adler zeros. 

I n t h i s chapter we use units i n which the 
pion mass i s one and amplitude normalisation such that 
We » i (see appendix A). 
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3.2 Dispersion Relations 
o 2 

Let A and A be respectively the S-wave I g = 0 
and I g = 2 p a r t i a l wave amplitudes. U n i t a r i t y for s ̂  4r 

reads: 

I'wA^s) = fWO+r'cs^lA'fc)!1, (3.0 
where 

i = i (3.2) 

and where r (s) i s the r a t i o of the i n e l a s t i c to the 
elast i c S-wave cross-section. Let denote the inverse 
of A*, then eq. 3.1 becomes i n terms of B*: 

I n the scattering region below the f i r s t i n e l a s t i c 
threshold, s i n , one has i n terms of a r e a l phase s h i f t , 
S I(s), that: 

(3.4) R c l f t f l = . J C « c o t S \ s \ 

For s < 0, on the left-hand cut, the discontinuity 
of B* i s given by: 

ImB'fs) «-ImAWlA ll! 
To calculate t h i s quantity one needs a knowledge of 
both Re A1 and Im A1 f o r s<0. 

One now writes f o r both S-wave inverse amplitudes 
a dispersion r e l a t i o n subtracted once at threshold (26). 

(3.5) 
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For 4 ^ s ̂  s i n , one obtains the following generalised 
effective range formula: 

S c * S = £ + i 4 . ( j t { > M ( L * + l l S P n (3.6) 
Here Q^is the scattering length, (=ReA I(4)), and the 
logarithmic function comes from the i n t e g r a l over the 
elastic region of the right-hand cut. The terms L*, 
R* and P* arise respectively from the left-hand cut 
integ r a t i o n , the i n e l a s t i c part of the right-hand cut 
integration, and any possible poles, that i s zeros of 
A ( s ) , so one has: 

L* -if-
- oo 

(3.7) 

and 

00 
D1 = - J . f SCsOT^s') els' 

TCJ Cs*-sXs'-<o 
Si in 

p * - 1 
where i n eq.3-9 i f A I( sp) = 0 then 

-i 

1 
ds s»sx -

(3.8) 

(3.9) 

(3.10) 



I t should be noted i n passing that since r (s)^> 0, 
then with 4 ^ s < S j _ n i one has 

R1 ^ 0 (3.11) 
We shall assume that a representation of the form of 
eq. 3*6 i s v a l i d , with a l l the integrals existing, 
for both S-waves up to Experimentally 
t h i s marks the onset of i n e l a s t i c i t y (27-29) 
(e.g. and kk production), so we take s^ n to 
be about 50. I n p a r t i c u l a r eq» 3.6 should be v a l i d 
i n the region of the rho meson, «f$ 22,760 MeV. 

3.3 Models 
( i ) Left-hand cut Integrals 

One of the consequences of axiomatic f i e l d 
theory i s that there are two subtractions required i n 
fixed-s dispersion relations for -28£s^4. I f one-
assumes Mandelstam a n a l y t i c i t y t h i s region i s extended 
to -32£s^4. With t h i s result one has that the Froissart-
Gribov projection converges i n the above region f o r 
l%2. That i s f o r 2 one has: 

oo 

- /D*(sX>Q<H-f^)du,J .(3.i« 

by noting that ImQj(Z) = -TT^U) f o r -1 £ Z£1 one can 
write: 

I«A>- ± f / Dtftt.) ?((u£) dt, 
4 J f c" SOuCsA)PeH-|^)^} <3-"> 
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eq. 3-13 exists f o r a l l £^o and we w i l l use t h i s 
representation to calculate ImA^(s) on the left-hand 
cut. I n p r i n c i p l e t h i s can only be used for -32, 
since i t i s at t h i s point that one meets the ( t , u ) -
double spectral function; nevertheless, we follow 
the usual practice of ignoring the divergence, and 
w i l l calculate the left-hand cut f o r S ̂  -50 as i f 
the t h i r d double spectral function were absent. 
Using crossing one can write: 

I t ' I' 

and 

I I-rt' XI' I' 
,.1 u 

(3.14) 

I 
nd 

i n p a r t i a l wave series 

(3.15) 
I I Also one can expand the absorptive parts D+ and D u u 

(x+C')-even c ' (3.16) 
T' 

together with the same expression f o r (S,U^), but with 
t and u interchanged. Combining the above three equations 
and substituting i n eq. 3*13 one obtains: 

,-1 

(3.1*) 



-31-

One can now combine the two terms on the r.h.s. of the 
I 

equation by noting that P̂  (-Z) = (-1) P^-(Z), and so the 
second expression i s equal to the f i r s t apart from the 

I + I '+£+0 1 

factor (-1) * c , but t h i s i s equal to 1 because 
of Bose s t a t i s t i c s and hence one has: 

x l c ? Z ^ I ^ A j M ^ ^ U t , , (3.18) 

t (xV-fl-aten c,"~* 
For ImAgf ( t ^ ) we take the narrow resonance approximation, 
namely: 

JmAftd- XMT S(tf-k,) 
SCM) (3.19) 

Where M and P are respectively the mass and width of the 
pa r t i c u l a r resonance involved. Taking a Breit-Wigner form 
rather than the §-function form i n eq. 3.19• makes very 
l i t t l e overall difference. We f i n d that D- and higher 
spin exchanges (f ( l 2 6 0 ) and g(l650)) have a negligible 
effect. 

For s ^o the real part of A* cannot be 
calculated d i r e c t l y from crossing because of divergence 
d i f f i c u l t i e s with the functions. For instance, 
taking a P-wave exchange of mass M, then, i n the narrow 
resonance approximation, the ReQo(Z) gives r i s e to a 
term of the form 

M 1 (3.20) 
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t h i s of course diverges at S = 4-M , which i s i n the 
range of i n t e r e s t . One has, therefore, to resort to 
model values f o r Re A*(s<o). Prom a recent semi-
phenomenological calculation of low energy Pi-Pi 
phase s h i f t s using p a r t i a l wave dispersion r e l a t i o n s , 
crossing symmetry, and rigorous sum rules (30), one 
finds that t o a good approximation the required 
quantities are slowing varying, with t y p i c a l values: 

ReA° = -1.2 and ReA2 = 0.5 (3.21) 

i n the region of i n t e r e s t . The results we quote use 
these values, to which we may attach nominal errors 
of + 25$ to take account of the neglected S-dopondence. 
( i i ) I n e l a s t i c i t y 

To evaluate the absorption terms R*(S), one 
needs some knowledge of the r a t i o of the S-wave p a r t i a l 
cross-sections. A l l that can be said at present i s 
that r a t i o must be non-negative and. s i g n i f i c a n t l y 
d i f f e r e n t from zero i n the region of the kk threshold. 
Experiments with various p o s s i b i l i t i e s f o r r ^ S ) lead 
to the conclusion that for present purposes i t i s quite 
adequate to use a simple model, where f o r S> S1 we have 

r ^ S ) B r 1 (constant) . (3.22a) 

and f o r S i n ̂  S ^ S1 

r I ( S ) = ^ ( S - S ^ / ^ - S ^ ) . (3.22b) 
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That i s , r^S) rises l i n e a r l y from threshold at S=S i Q 

to a constant value r^(S) at and beyond S = S1. We 
take S i n = 50, and choose = 51. So f o r each p a r t i a l 
wave the i n e l a s t i c effects are characterised by the 
single strength parameter, r * . Since, r * ^ , o, a l l models 
give, after i n t e g r a t i o n , very similar s-dependence 
between S = 0 and Js"s 1 GeV, and the data are not . 
good enough t o resolve them. I n f a c t , simply because 
r̂ Cs) appears inside an i n t e g r a l , any detailed structure 
w i l l be "washed-out". With t h i s model f o r r ( s ) , the 
in t e g r a l over the i n e l a s t i c part of the r.h.c. i s 
easily evaluated, giving the following: 

TC J Cs'-sKs'-*) X A-f-t 

Wh£r« Si S J C S I ) ( 3 o8 a) 

3.4. Data 
We look forward to the day when we have pions 

i n the ISR, but f o r the time being we have to be content, 
with experimental information obtained by i n d i r e c t 
means. .Most of our knowledge of Pi-Pi scattering comes 
from the investigation of peripheral pion production; 
the reactions i n question being 

TC~p-> TL"TL°p «L) 

IT p->1L"TL+n (b) 

tt~p-^X0lt°n CO 

Tt*n-VIC0 TC°p U) 

Tt4n-»TC+Tt~p Ce) 

Tt*p--*iG+Tt+n c-f) 

(3.23) 



which a l l allow one pion exchange (OPE, see f i g , 1) 
Apart from ( a ) , where a clear W-like contribution 
i s seen (31), the above reactions are a l l charge 
exchange, so forbidding any 1 = 0 exchange. 
Goebel (32) and Chew and Low (33) suggested that 
cross-sections f o r on-shell Pi-Pi scattering, could 
be extracted from the observed d i f f e r e n t i a l cross-
sections of the above reactions by an extrapolation 
to the pion pole at A = ~p?)the physical region 
being A 1 p o s i t i v e . 
Pig. 2 shows the phase s h i f t data we consider. 
They are taken from the paper of Baton, Laurens and 
Reignier (28), who using the reaction (3.23a) 
f i r s t obtained Si and So } the advantage i n 
that being the absence of any Pi-Pi isospin zero 
contribution. The Chew-Low extrapolation using 
conformal mapping techniques was applied, which i s 
supposed to deal automatically with the CO . The 

i s clearly negative, slowly decreasing i n the 
region 600 MeV Js £ 850 MeV. At the rho mass 
a value of 8o= -15°+.5° seems l i k e l y . Information 

So 
o i n the rho region comes from the study of 

S-P interference i r . the reaction (3.23b). Pig. 2 
exhibits the well-known "up-down" ambiguity, which 
i s inherent to the study of S-P interference only, 
i n which, neglecting S 0 * one measures S inS iS i too 

XCosCS.'-Si) so the ambiguity S o " " * ^ + ( S o ) 

r e s u l t s . The two solutions d i f f e r above \ fS <U 700 MeV 
a resonant one going up smoothly through 90° at yfs 2t 
740 MeV, and a non-resonant one hanging below t h i s 
value e 
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3.5 Constraints 
As we have said, the advantage of the inverse 

amplitude dispersion r e l a t i o n i s t h a t a n a l y t i c i t y and 
u n i t a r i t y are r e a d i l y incorporated. Unfortunately i t 
seems impossible t o b u i l d crossing symmetry i n t o t h i s 
framework; but a necessary and s u f f i c i e n t c o n d i t i o n f o r 
a candidate set of p a r t i a l wave amplitudes t o belong t o 
a crossing symmetric amplitude, i s t h a t they s a t i s f y 
the "Roskies c o n s t r a i n t s " ( 2 5 ) . 

I n t r o d u c i n g 

and 
g (s) = 2A° - 5A* 

f (s) = A 0 + 2A 2 

the sum r u l e s i n v o l v i n g S-waves only are: 

and 
I z =jVs-4.)gcs)<te =o. 

(3.24) 

(3.-25a.) 

(3.25b) 

The above two sum r u l e s are used t o t e s t the 
various p o s s i b i l i t i e s f o r the S-wave amplitudes a f t e r the 
data have been f i t t e d . 

The inverses of the amplitudes required are 
ca l c u l a t e d f o r o < s < 4 d i r e c t l y from eq, 3.6 by continuing 
counter-clockwise around the thr e s h o l d branchpoint: 

L i t / * 
(3.26) 

curc\m( -7-^—.) (3.27) 

cuTckuA (111) (3.28) 
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We note that there are some simple implications of the 
sum rules, eq. 3.25, which may be easily tested without 
having to resort to detailed numerical integration: 

( i ) From eq. 3.25b, g(s) must have at least one 
sign-change i n the range o < s < 4 . 

( i i ) From eq. 3.25a, integrating by parts one has (34) 

i 
implying that f ( s ) must have at least one turning point 
f o r o < s < 4 . I n f a c t , i t can be shown, by also taking 
i n t o account a n a l y t i c i t y and u n i t a r i t y , that f ( s ) , which 
i s the S-wave amplitude f o r the process 
must have a unique minimum i n the range 1.127 < s < 1.697 (35) 

Introducing 
£(a) = 2A° + 5A2 

(3.24a) 
we check the "Hoskies Constraints" i n terms of the quantities 

? ( . ) = A° - 2A2 

1 
A 
I . 

and X 2 = 

1 
A . . A. A. 

where I i s the same as I , but with g ( f ) replaced by g ( f ) . 
3.6 F i t s 

With the experimental data for 5 * plus the 
relevant crossed-channel exchanges, we can calculate the 
quantities: 

Cf® = % f tot S1- ̂ ( ^ | ) ] " , (3.30) 



subject to the conditions of§3.3 ( i ) o Prom eq<> 3.6 
we also have that 

Q XC3 - 4- + fs-« (fCcs-)* P zcs)). (3.3D 

That i s , the phenomenological quantities Q*(s) can be 
described by a model containing, as free parameters, 
a scattering length, a^, an absorption "strength" parameter, 
r 1 , and contributions, P1, from amplitude zeros, determined 
by t h e i r position, Sp, and residue, cwA s~-4) • 

I n Fig. 3a we have plotted Q(s) f o r the two I=o* 
phase-shift solutions of Barton et a l , the upper one being 
the non-resonant branch, the lower the resonant one. 
Fig. 3b shows the plot of Q~ 1(s) for the 1=2 phase s h i f t s -
the inverse function being more convenient here because & 
i s small. Inspection of these figures suggests the following 
simple model f o r the S-waves: 
Model I 

( i ) I = o resonant 
Q°(B) = i + (S-4) R°(S) (3.32) 

. . . 0 
( i i ) I s o non-resonant 

Q°(s) = i (3.33) 
ao 

That i s , for the resonant solution, the downward curvature 
of QG from the constant value of ̂  i s caused e n t i r e l y 
by absorption eff e c t s , (R < o). The non-resonant 
branch i s reasonably described by the simple scattering 
length without any i n e l a s t i c i t y , but t h i s seems hardly 
consistent with the strong kk threshold i n t h i s channel. 



( i i i ) 1 = 2 , the approximation 

Q 2(s) - 1 
2 (3.34) 

agrees reasonably well with the data. Zero or small 
i n e l a s t i c i t y may be expected since several prominent 
channels (e.g. kk t "JCCO NN) do not couple to 1=2. 

When Model 1 i s subjected to the tests outlined 
in$3.5 one fi n d s , i n terms of the quantities X 1,2, that the 
"Roskies Contraints" are badly violated (A/60$). I n f a c t , 
f ( s ) has no turning points at a l l f o r o < s < 4 (much less 
a minimum i n the required place), and g(s) has no sign change 
below threshold either. 

To take account of possible inaccuracies i n 
the l.h.c. contributions, we note t h a t , even allowing 100$ 

o 2 
changes i n L and L , makes only very s l i g h t difference 
i n the S-wave structure below threshold and has negligible 
effect on the sum rule values. Therefore) we can conclude 
that the S-wave crossing sum rules alone are s u f f i c i e n t 
to eliminate t h i s model for the Pi-Pi S-waves, characterised 
by large scattering lengths and no amplitude zeros, i . e . 
the Chew Mandelstam S-wave dominant solution. 

reasonable f i t s to the data can be ruled out on similar 
grounds, i.e. that they v i o l a t e one or both crossing constraints 
by iarge amounts. We f i n d , i n f a c t , that the only simple 
models which describe the data adequately and .approach 
sa t i s f a c t i o n of eqs. 3.25,all involve a pole below 
threshold i n each channel. I n f a c t , looking closely at 
Fig. 3, we see, especially f o r 1*2, a noticeable trend, 
which suggests a zero i n Q~1 i n the threshold region. 

Several other plausible models which give 
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So we have the following model: 
Model I I 

( i ) I = o resonant 
Q°(s) = 1 + (S-4)C° + (S-4)R°(S) 

ao (s-s^)(stj-4) 
(3.35) 

'P/VMP 
( i i ) I = o non-resonant 

Q°(s) = 1 + (S-4)cg + (S-4)R°(S) 
ao I S ^ ) ( S ^ 4 ) ( 3 o 3 6 ) 

( i i i ) .1 = 2 
Q 2(s) = 1 + (S-4)C 2 + (S-4)R 2(S) 

S2 ( 3 . 3 7 ) 

Here we have added absorption terms to Q° (non-resonant) 
2 

and Q to see what "strength" of i n e l a s t i c i t y the data 
suggests One now performs a least squares f i t to each 
Q1 talcing as free parameters: a-p S*, and r*. This, 
of course, gives an excellent description of the phase 
s h i f t s . One in t e r e s t i n g point emerges at this stage, 
which i s that the best f i t to Q°(non-resonant) requires 
rg to be negative. This i s cle a r l y unphysical, but what 
we can say i n t h i s case, i s that the best physical f i t 
i s obtained with the least absorption ( i . e . rg = o). 
As we have said before, t h i s i s inconsistent with the 
strong kk threshold i n t h i s channel. I n table 1 we 
summarize the values of the parameters f o r the three 
cases, together with the corresponding current algebra 
values, taken from Weinberg's amplitude with = 93 MeV. 
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The so l i d lines i n f i g s . 2 and 3 are the results of t h i s 
kind of model. For comparison (36) f i g . 3 also shows 
(as dashed lines) the predictions, with R1 = o, of the 
simple current algebra model. With regard to the 
constraints we f i n d , with the resonant solution, that 
eqs. 3.25 are s a t i s f i e d to w i t h i n 3#i while with the 
non-resonant solution they are s a t i s f i e d to w i t h i n 

3.7 Conclusion 
Our conclusions may be summarized as follows: 

a) phenomenological phase s h i f t data and rigorous crossing 
sum rules clearly indicate the existence of a zero 
below threshold i n both the S-wave Pi-Pi amplitudes; 

b) ' the position of the zeros, and the slopes of the 
amplitudes as they change sign, are i n good agreement 
with simple current algebra .predictions (see table 1); 

c) part l y on the basis of crossing sum rules and p a r t l y 
i n the knowledge that the kk threshold i s l i k e l y to be 
a strong influence i n the I = o S-wave channel, t h i s 
approach tends to discriminate between the alternative 
phase s h i f t solutions of Baton et a l . i n favour of 
the one containing the resonance. 

As a postscript we should mention something about 
the rho meson and how the sub-threshold zeros are related 
to the physical requirement of a resonanting P-wave (37)» 
Onti knows that the P- and higher p a r t i a l waves have- kinematic 
zeros at threshold, whereas the Ŝ -waves are i n p r i n c i p l e 
only bounded by u n i t a r i t y , which gives 

(3.38) 
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So i f the S-waves do not have zeros near threshold, one 
might expect them to dominate the whole Pi-Pi scattering 
amplitude i n the low energy region. However, the work 
of Chew, Mandelstam and Noyes (38) has shown that i f 
the S-waves do dominate there can be no rho meson. 
A careful and detailed analysis along the l i n e s of that 
discussed i n the present chapter, but including the P-wave, 
has recently been performed (39)» and the conclusions 
are substantially similar to the above. 
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Table 1 

Parameter values for. the f i t s to Q(s) shown 
i n the figures and described i n the t e x t . The bracketed 
numbers are those expected on the basis of current 
algebra, r e f . ( 7 ) . 

a s p C r 

1 = 0 0.19 0.59 18.2 8.2 
(resonant) (0.16) (0.5) (22) 

1 = 0 0.20 0.50 21.5 0.0 
(non-resonant) 

1 = 2 -0.05 1.85 -39.2 0.16 
(-0.05) (2.0) (-44) 
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Figure Captions 

Fig. 1: Pion production by exchange pion. 

Fig. 2: Phase s h i f t solutions of Barton et a l . 
(28), showing the best f i t s as i n Fig. 
3 and Table 1. 

Fig. 3: (a) Plots of Q(s) f o r the two I = o 
phase s h i f t solutions of Barton et a l . , 
the upper one being the non-resonant 
branch, the lower the resonant one. 
(b) Plot of Q" 1(s) f o r the I = 2 phase 
s h i f t s of Barton et a l . 

I n both graphs the continuous curves 
are the best f i t s described i n the "text 
and summarized i n Table 1, and the dashed 
li n e s are the current algebra curves, 
(wi t h = 93 MeV).. 
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CHAPTER POUR : k-*3Tt AND THE GENERALISED POLE MODEL 

4.1 Introduction 
From the previous chapter we have seen that the 

prediction of amplitude zeros, as embodied i n Weinberg's 
amplitude, i s i n f a c t , borne out i n nature. These zeros, 
as we have said, are also a feature of the single term 
Veneziano model provided one takes 

The next l i n e of investigation, with the hope of 
gaining more insight i n t o Lovelace's conjecture, i s to 
consider the decays k->3lC and TJ-V3TC i n "the framework of 
the generalised pole model. The idea that the decays 
k-*3TL and Ij-^TC a r e dominated by the pole diagram i n 
Fig. 1a i s not a new one, and has been the cause of much 
discussion (40, 41). This assumption immediately explains 
the s i m i l a r i t y of the spectra observed i n these decays. 
When using any model f o r Pi-Pi scattering which incorporates 
the zeros required by Adler's self-consistency condition, 
the amplitude corresponding to Fig. 1a gives a l l the zeros 
required by current algebra i n the decay k-^STE . Unfortunately 
the same cannot be said f o r ^-*3TL , and t h i s problem w i l l 
be considered separately i n a l a t e r chapter. 

I f one makes some assumption with regard to the 
behaviour of the amplitude f o r k->2.TC as one of the pions i s 
taken to zero momentum, then i t i s possible using the above 
pole model, together with the current algebra results 
r e l a t i n g k"* (N+OTt to k-» N7C , to calculate the rate f o r 
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The assumption that MOC-̂ Zn) remains constant during t h i s 
extrapolation leads to an estimate of the rate which i s 
far too large, and i t i s t h i s result which has caused the 
pole dominance model to be seriously c r i t i c i z e d . (14) 

Using the current algebra relations derived i n 
chapter two, together with the extrapolation properties 
of the pion four-point function,we show how to set up 
a se l f consistency condition f o r the pole dominance model, 
which leads to a r e l a t i o n between the on-shell amplitude 
f o r K-V&TC and the same amplitude but with one of the pions 
at zero momentum. This i n t e r n a l consistency i s explained 
schematically i n Pig. 2. With t h i s information» i t i s 
possible to make a more r e a l i s t i c estimate.of the rate , 
and one finds that i t i s indeed possible to get a 
satisfactory description of both the rate and the spectrum 
for the decay 

The experimental data on the three-pion decay of 
the kaon show that the probability density f o r the process 
has the simple structure of a constant term, plus a small 
line a r dependence on the energy of the "odd" pion. This 
deviation from l i n e a r i t y i s conventionally parameterized as 

|MMMcf{l+^). <••'> 
Here |Mc| i s the magnitude of the amplitude at the centre 
of the Dalitz p l o t , s = t = u = So. We neglect the pion and 
kaon mass differences, g i s the slope of the decay spectrum 
and s i s the odd pion variable i n charged kaon decay arid 
the neutral pion variable i n neutral kaon decay. (See Pig. 1. 



The l i n e a r form f o r the amplitude i t s e l f was 
f i r s t suggested by Weinberg (42). This idea, which i s an 
essential ingredient i n the work of Hara and Nambu and 
Elias and Taylor (10), could be i n serious trouble (43)o 
The non-linearity problem f o r the matrix element i t s e l f 
comes with the experiments of Albrow et a l . (44) and 
Buchanan et al.(45) on the decay KL"*" TtfTtTTl® I n "their 

2 
experiments they f i t |M| as: 

l M l z = l M j x [ l H - < ( Q y / M k ) + ^ ( Q Y / M K ) V - ] (4.2) 

where Q i s the t o t a l k i n e t i c energy available i n the decay 
and 

y=(3VQ)/a (*.3> 
with T^ the ki n e t i c energy of the neutral pion. (See 
Appendix B f o r d e t a i l s ) . The experiment of Albrow et a l . 
gives f o r the best quadratic f i t 

0(^-5.11*0.09 QtMk <tz=-O.T-± 1.2 (4.4a) 
while f o r the experiment of Buchanan et a l . one has 

Of, »-4.36*0.08 cwu* tfz= 1 0 (4.4b) 
F i r s t of a l l we note .that there i s no strong evidence that 
a second order term i s needed i n eq. 4.1, since a line a r 
f i t to the spectrum of Albrow et a l gives Of, = -5.14+ 0.09 
with the same % per D.F. as the quadratic f i t . But with 
a line a r expression f o r the matrix element i t s e l f , 

IMI = IMJ[1+ ̂ YQ/MK} (4.5) 
one obtains: 

IMI1* IMtP [1 + Z"(YQ / i O + c t \ Y ^ f ] 
(4.6) • 
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s ho wing that i n t h i s case 

So i f M were l i n e a r , and 0(= -5.11+ 0.09 as i n eq. 4.4a., 
C(i would be 6.53 + 0.24. S6 taking the data of Albrow 

et a l . at i t s face value implies a Y term i n |M| of magnitude 
-(3.6 + 0.6) (QY/fok)2. At the soft pion point, = 0, 
t h i s terms w i l l contribute -3.5 + 0.6 compared with a value 
1 from the constant part of |M|. But i t must be emphasised 
that the effect of the quadratic term over the D a l i t z plot 
region i s less than 15$ 9 and that systematic errors i n the 
experiments w i l l probably be more important at the ends of 
the spectrum , where the higher order effects seem to 
reveal themselves, so perhaps the implied non-linearity 
could be e n t i r e l y spurious. I n Fig. 6 we show the data of 
Albrow et a l . with the best l i n e a r and cubic f i t s to the 
spectrum. The l i n e a r f i t gives a % per D.F. of 1.1 and the 
cubic f i t a % per D.P. of 0.96, whereas the best f i t with 
a l i n e a r matrix element as i n eq. 4.5 gives a % l p e r D.P. 
of 6.5. Some recent experimental results on the rates are 
summarized i n table 1 (46). We see from these res u l t s that 
the relations obtained by assuming the A l = % rule are 
violated by about 10$. The pole dominance model i s , of 
course, a A l = £ model, and so we w i l l be aiming f o r a 
description of the decays which i s good to 90$. 

I t has been suggested that the diagram shown i n 
Fig. l b should also be included (41). But we are of the 
opinion that t h i s diagram i s r e l a t i v e l y small* and our 
reasons f o r t h i s b e l i e f are given i n section two. I n 
section three, using the Weinberg (7) and Veneziano (5) 
amplitudes, we show how the cqnsistency condition leads 
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to an estimate of the weak vertex g(M )„ These estimates 
of g(M ) are much smaller than those obtained from the 
simplest soft pion calculation, which gives 

SGi1)- 2 F j < i r r | Hwl k;>| = l x io~* NUV* u.8> 
For the Weinberg amplitude one gets w i t h i n 17$ of the 
experimental amplitude at the^centre of the Dalitz p l o t , 
while f o r the Veneziano model the agreement i s to w i t h i n 
28$. I n Section four we use a less r e s t r i c t i v e model f o r 
the pion four-point function,which contains a term depending 
e x p l i c i t l y on the external masses and which hopefully 
gives a more r e l i a b l e o f f shell extrapolation. Using t h i s 
we obtain a description of the decay which i s w i t h i n our 
prescribed l i m i t of ±10$. The results are presented i n 
section f i v e and our conclusions i n section s i x . The 
detai l s of the kinematics and normalised projections 
f o r X-decay are given separately i n Appendix B. 
4.2 Other diagrams 

to have some idea of the q dependence of g(q ) . To t h i s 
end we s t a r t by following Hara and Nambu (10). We have 
from current algebra, eqs. 2.38, that 

I n order to estimate the r e l a t i v e contributions 
of the two diagrams.shown i n Fig. l a and l b i t i s necessary 

2F 
= oncKWr-it0) 

(2.38) 
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I f one now assumes that the k-VZ"TL decay vertex i s a 
quadratic function of the meson four-momenta, the most 
general form of CP-invariant vertex that s a t i s f i e s 
eqs. 2.38 i s : 

and 

From eqs. 2.38, implementing energy momentum conservation, 
one has 

SCf) • m T£«\)) 

which,taken together with eqs. 4.9i gives 

Consider now the p a r t i c u l a r reaction k^TCVlT ; the 
diagrams which are supposed t o 1 contribute are shown i n 
Fig. 1c. summing these diagrams gives us 

K I ) ( K ^ T t W ) * ^ ( l ^ T C W j + ^ k ^ t W (4.12) 
where 

_ T C A ^ Lv 
(4.13a) 

and 

i n k ( k ^ T r i n c ^ ^ j ^ ^ f s - z p ? ) . (4.13b) 

Here for i l l u s t r a t i o n and convenience, we have taken the 
current algebra amplitudes f o r the Pi-Pi and-Pi-K interactions 

2 2 2 
(47), and Ej£ = F k =F . Comparing eqs. 4.13a and 4.13b, gives 
the r e l a t i v e contributions f o r Figs. .1a and 1b, and one 
has 
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where s i s i n the range S ^ ( ^ l - J ^ . T ^e maximum value 

of t h i s r a t i o i n t h i s range i s 

frW) = 0 .033 . 
/ m , L ( o o + , ) (4.14a) 

wax: 
So, w i t h t h i s p o i n t of v iew, we are j u s t i f i e d i n neglect ing 

the c o n t r i b u t i o n s f rom the diagram i n P i g . 1b, 

g(q ) i s independent of q , but t h i s leads to two r a t h e r 

unpleasant r e s u l t s . F i r s t l y , the K - V 5 H spectra one obtains 

using the Weinberg or Veneziano amplitudes bear very l i t t l e 

resemblance t o what i s a c t u a l l y the case, i n p a r t i c u l a r 

i n c l u d i n g both diagrams i n the Veneziano framework leads 

t o a s l i g h t p o s i t i v e slope f o r the decay k"^TL + lC + TC 

i n con t ras t w i t h a s u b s t a n t i a l negat ive observed expe r imen ta l l y ; 

and, secondly, the r a t h e r nice zero s t r u c t u r e obtained f o r 

"C <-decay f rom F i g . 1a alone i s^ s p o i l t when F i g . 1b i s 

inc luded ( 1 4 ) . 

4.3 The Weinberg and Veneziano Amplitudes 

By assuming the A I = £ r u l e , i n other words 

assuming t h a t H i s a tensor operator of rank a l lows w 

us t o use the "Wigner-Eckart theorem" which g ives us the 

r e l a t i o n : 

Using t h i s r e s u l t , we w r i t e the ampli tudes corresponding 

t o F i g . 1a f o r the d i f f e r e n t charge s ta tes of k ^ 3 T C as 

M(++-) = g (M 2 ) 1 ( B ( s , t , u ) + C ( s , t , u ) ) (4.16a) 

The opposite p o i n t of view i s t o suppose t h a t 

9C«f) -1 flflfl I Hwl kfyl) | « | (iffy) | H j k+ty> | (4 .15) 

M - LL 

M(00+) g (M 2 1 A ( s , t , u ) 
(4.16b) 

M - U 
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M(+-0) = g (M 2 ) 1 A ( s , t , u ) (4 .16c) 
M 

Here we have set the p ion masses t o be equal t o and the 

kaon masses t o be equal t o M. A ( s , t , u ) = B ( s , u , t ) = C ( u , t , s ) 

are the convent iona l amplitudes f o r P i - P i s c a t t e r i n g as 

in t roduced by Chew and Mandelstam ( 2 4 ) . Por Weinberg's 

ampli tude one has: 

( 4 . 1 7 ) 

where P^ (= 93MeV) i s de f ined by eq ? 2 .19 . Using the 

Veneziano model one has: 

A(SM) = ( M L ^ ) f V J T + V * - U . 1 8 ) 

JCft I J 

0 ( f S ) = J - + f S - ^ a M ^ T ' (4 .20) 

w i t h 

V s 4 r x „ r c M c s ^ r o - t f C t ) ) (4 .19) 

and 

Por d e f i n i t e n e s s v/e w i l l c o n f i n e our a t t e n t i o n t o 

the process Y l * " . S u b s t i t u t i n g Y/einberg's ampli tude 

i n t o eq. 4.16b g i v e s : 

Talcing t h e l L t o zero momentum one obta ins : 

Prom t h e - c u r r e n t algebra r e s u l t s of chapter two one has 
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and f rom eq. 4.15 t h a t 

3 C N l ) = 2 F u i M C k ^ U - u ' c o ^ l (4 .24) 

On s u b s t i t u t i n g the above two equations i n t o eq. 4.22 and 

using the AI=% r u l e , one obta ins the f o l l o w i n g : 

I f ins tead one uses the Veneziano model one ob ta ins : 

|M(k^uV)|= Imc^TT-H0)\-58lMCK:-»-Tni0M)(. (4 .26) 

One i s now i n a p o s i t i o n to c a l c u l a t e g(M ) s ince i t i s g iver i 

i n terms of the p h y s i c a l ampli tude f o r k^ZTC toge ther w i t h the 

appropr i a t e f a c t o r f rom whatever P i - P i ampli tude one b e l i e v e s . 

Why should one be l i eve such a l a r g e v a r i a t i o n i n 

as one p i o n i s taken t o zero momentum? F i r s t l y , 

the AI=£ r u l e i m p l i e s t h a t : 

M0£> Too)) 
(4 .27) 

whereas i n na ture , w i t h both pions on s h e l l , the r a t i o i s 

about 22 . This i n d i c a t e s t h a t there must be a l a r g e v a r i a t i o n 

i n e i t h e r or both ampli tudes as the p i o n ' s momentum i s taken 

t o ze ro . Secondly, since 

SCM1)-|(T^(Mi)|HvIK'(M,)>|«2Fx|M(hr(MViffMi)u^))l, ( 4 „ 2 8 ) 

We see t h a t as the p i o n i s taken t o zero momentum the other 

p ion acquires the kaon mass ( i . e . energy-momentum conserva t ion 

i s imposed t o g ive g(q = M 2 ) ) , so t h a t the e x t r a p o l a t i o n i s 

not as innocent as i t seems. 
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I n f a c t , i t i s not d i f f i c u l t t o w r i t e down an 

ampli tude f o r IC*ZTtexhibi t ing the above behaviour . Taking 

the ampli tudes i n eqs. 4.9 and s e t t i n g 

B = - 2 A 

2P-V ( 4 ' 2 9 ) 

gives on s h e l l 

lM(kS->TCtir) | = 4 A M z , I M ( k ^ T L + l l 0 ' ) ) - o . 

w h i l e o f f s h e l l one ob ta ins : 

iMf^-vrfittfl&l-AM1 , iMCK^lchi^l^AM^ 
4.4 Quadratic Amplitude* 

On s h e l l one knows t h a t the Weinberg ampli tude 

does not s a t i s f y the r i g o r o u s c o n s t r a i n t s of M a r t i n (48); so 

one might expect a somewhat u n r e a l i s t i c o f f s h e l l e x t r a p o l a t i o n . 

I n the case of the. Veneziano model one has t o suppress the rho 

t o be able t o describe the process p n - > 3 T C » ( 1 1 1 2 1 1 3 ) t h i s also 

suggests a quest ionable o f f s h e l l behaviour . We s h a l l be 

r e t u r n i n g t o t h i s p a r t i c u l a r p o i n t l a t e r when d iscuss ing the 

problem of the zeros i n 4j—V 3TC, 

We how consider a l e ss r e s t r i c t i v e model f o r the 

P i - P i i n t e r a c t i o n , t o see whether i t i s poss ib le t o o b t a i n 

the c o r r e c t r a t e s and spectra f o r K-*%>lC w h i l e s t i l l p rese rv ing 

the many fea tu res of the P i - P i i n t e r a c t i o n . To t h i s end 

we consider the most general quadra t ic ampli tude f o r the 

p i o n f o u r - p o i n t f u n c t i o n : (49) 

2 2 2 A ( s , t , u ) = a+bs + c ( t+u ) + d ( t +u ) + es ( t+u) + f s + g t u + 

+ h ( Z q - q j + 6 - 3 ( s+ t+u) ) 
i > d (4.30) 

* For convenience, i n t h i s s ec t i on we use ampli tude 

n o r m a l i z a t i o n w i t h N€ = 1, see Appendix A. 
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Here we have r e so r t ed t o u n i t s of JjL= 1 . The r e f e r 

t o the p i o n momenta, and the l a s t term i n the expansion 

i s non-zero only when more than one p ion i s o f f s h e l l . 

To determinethe c o e f f i c i e n t s we proceed as f o l l o w s ; 

( i ) The s o f t p ion cond i t i ons , 

(a) Adler consistency c o n d i t i o n A(s=t=u=l) = 0 

(b) N o h ^ e x o t i c i t y of the (T-term A(s=t=1,u=0) = 0 

(c ) K - V 3 X zero A(s=t=1 ,u=M 2) = 0 

(d) Adler-Weisberger c o n d i t i o n M6+X.O,W0 s — 

We combine cond i t ions ( a ) , (b) and (c ) i n t o the s l i g h t l y 
2 2 s t ronger c o n d i t i o n of A ( s = t = 1 , u=M ) = 0 f o r a l l M , w i t h 

one p i o n a t zero momentum and another a t mass M. This 

g ives us the f o l l o w i n g ; 

a + b + c + d + e + f + h = 0 ( i ) 

c + e + g - h = 0 ( i i ) 

d = 0 ( i i i ) 

c o n d i t i o n (d) g ives us t h a t 

b - c = 2d + 2 f = C S a X F ^ ) " 1 ( i v ) 

( i i ) The on s h e l l cond i t i ons 

I n terms of the S-wave s c a t t e r i n g l eng th s , a ° and 
2 

a_, one has t h a t 
o 

5a + 12b + 8c + 32d + 48f = a ° ( v ) 

2a + 8c + 32d = a* ( v i ) 

w h i l e f o r the P-wave one has 
( v i i ) b - c + 4e - 4g = t a-^ 

I f one now supposes t h a t the P-wave e f f e c t i v e range i s g i v e n 

by a Bre i t -V/ igner resonance of mass 765 MeV and w i d t h 125 MeV 
one obta ins the r e l a t i o n 
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where = M2. - 4. 

I n terms of the D-wave s c a t t e r i n g l eng th s , one has t h a t 

d - e + f = 15 
16 

4d - e + f - 3g = 1 5 a0 

2 15" 2 

( i x ) 

(x ) 

Since we are dea l ing w i t h an amplitude quadra t ic i n s , t , 

and u , the s c a t t e r i n g lengths s a t i s f y exac t l y the sum rules 

2a°) - 5&1 = 18a* - 30 ( 2 a 2 - 5 a 2 ) . (4.31) 

To ob ta in the co r r ec t r a t e s , i n the s p i r i t of s ec t ion 4 . 3 , 

we see, t a k i n g the TC 0lt°Tt + decay, t h a t 

(4.32) 

So one needs t h a t 

For the l . h . s . of the above equat ion we take an averaged 

value f rom experiment . We see f rom the data (50) t h a t 

M ( k ° f l t f T " ) = Oo389 x 10" 6 GeV 
s 

and 

M ( k ° = 0.363 x 10" 6 GeV 

Taking these r e s u l t s toge ther w i t h those i n Table 1, we 

ob ta in 
Mc (k -v 3TL ) . 0 K i (4.34) 

M (kg -> 2TI ) 
= 2.51 
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So we have t h a t 

A (s = t = u = SO ) = 5.02X F-|£ A(S = M 2 , t = u = 1) ( x i ) 

which g ives another r e l a t i o n between the e igh t c o e f f i c i e n t s 

i n A. Taking eqs. ( i ) - ( v ) , ( v i i ) , ( v i i i ) and ( x i ) , one 

can determine the e igh t unknowns i n terms of the s c a t t e r i n g 

lengths &Q and a^, and 

4.5 Resul ts 

Taking a°j = 0.19, a^ = 0.0365 and the exper imenta l 

value of 93 MeV f o r F-^ we ob ta in a quadra t ic ampli tude f o r 

Pi*-?i s c a t t e r i n g , whose s c a t t e r i n g lengths are the f o l l o w i n g : 

a°> = 0.19 a 2 = -0.035 a\ = 0.0365 

a ° = 0.0022 and a2, = 0.0002. 

I n F i g s . 3 and 4 we have p l o t t e d the normalised p r o j e c t i o n s 

obtained f r o m the above ampl i tude . From F i g . 5 we see t h a t 

the ampli tude a lso s a t i s f i e s a l l the S-wave c o n s t r a i n t s 

of M a r t i n (48) namely: 

f (4) > f ( 0 ) 

f ' ( s ) < 0 0 ^ s 1.12 

f ' ( s ) > . 0 1 . 7 < s ^ 4 

Unique minimum i n 1.12 ^ s ^ 1.7 

f ( 0 ) > f ( 3 . 1 9 ) 

f (3 .205) > f (0 .213) > f (2 .986) 

4 f ' ( 0 ) < - ( 2 f ( 4 ) - f ( 2 ) - f ( 0 ) ) , 

Where f ( s ) i s the S-wave l t° l t° p a r t i a l wave ampl i tude , The 

values of the c o e f f i c i e n t s are as f o l l o w s : 

a = -32 .11, b = 25.35, c = 3.65, d = 0, 

e = 0»17 , f = Oo36, g =-1.25, h = 2.57. 



The r i go rous sum r u l e s which f o l l o w f rom cross ing (25) 

w i l l , of course, be s a t i s f i e d exac t ly s ince our fo rm i s 

e x p l i c i t l y c ross ing symmetric. 

4.6 Conclusion 

We see t h a t i t i s poss ib le to set up a r e a l i s t i c 

model f o r P i - P i s c a t t e r i n g , having a mass dependent term 

when more than one p ion i s o f f s h e l l ( h ^ o) and which 

when taken together w i t h the e n t i r e l y p l a u s i b l e v a r i a t i o n 

of the amplitude f o r K^ZTC c a n g ive a s a t i s f a c t o r y 

d e s c r i p t i o n of the decay K-̂ TSTC. 

Since the Veneziano model g ives a value f o r the 

ampli tude a t the centre of the D a l i t z p l o t which i s about 30$ 

too smal l and f rom the f a c t t h a t a n o n - n e g l i g i b l e mass-

dependent term i s r e q u i r e d to ob ta in the c o r r e c t r a t e s we 

can conclude t h a t even by the t ime one has reached the 

p h y s i c a l r e g i o n f o r "C-decay s i g n i f i c a n t departures f rom the 

Lovelace con jec tu re have occurred, and t h a t s a t e l l i t e terms 

are probably presen t . This should a lso e x p l a i n the s l i g h t 

discrepancy obtained by Lovelace i n h i s f i t t o the 

spectrum. 
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Figure cap t ions ; 

F i g . 1a: Pion pole dominance diagram i n which a kaon (e ta ) 

decays weakly ( e l e c t r o m a g n e t i c a l l y ) i n t o a heavy 

p i o n , which i n t u r n decays s t r o n g l y i n t o th ree p i o n s . 

F i g . 1b: The pole diagram i n which the kaon (e ta ) decays 

s t r o n g l y i n t o two pions and a l i g h t kaon (e ta ) 

which i n t u r n decays weakly ( e l e c t r o m a g n e t i c a l l y ) 

i n t o a p i o n . 

F i g . 1c: The diagrams of the above types which c o n t r i b u t e t o 

F i g . 2: Schematic r e p r e s e n t a t i o n of the s e l f - c o n s i s t e n c y of 

the pole model. 

F i g . 3: P l o t s of the normalized p r o j e c t i o n s f o r . 

The data are f r o m Mast et a l . (16) 

F i g . 4: (a) P l o t of the normalised Y p r o j e c t i o n f o r 

K^-vKTUnC*. data are f rom Davison et a l . ( 5 l ) . 

~1 (b) P l o t s of A(s = t=u= NT + y}) as a f u n c t i o n o f M* 

( i ) Weinberg 

( i i ) Veneziano 

( i i i ) Quadratic 

( i v ) V a r i a t i o n r equ i r ed to ob t a in the co r r ec t 

r a t e s assuming no v a r i a t i o n of 

F i g . 5: P l o t of the S-wave TC*1C°partial wave ampl i tude , f ( s ) , 

f o r 0 < s < 4 . 

F i g . 6: The normalised Y p r o j e c t i o n f o r KiT* TC^TCTC* 

showing the best l i n e a r and cubic f i t s t o the 

spectrum. The data are f rom Albrow et a l . ( 4 4 ) . 
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CHAPTER FIVE : OTHER KAON DECAYS 
5.1 I n t r o d u c t i o n 

I n the previous chapter we were able t o obtain a 
s a t i s f a c t o r y d e s c r i p t i o n of T-decay. The analysis i n d i c a t e d 
a value f o r the coupling, g K W , r a t h e r smaller than was 
previ o u s l y supposed. Taking, f o r example, the quadratic 
amplitude one obtains 

gKlT = I H w | K° ( M 2 ) ) I = 1.73xlO_2MeV2, 
(5.1) 

while f o r the Weinberg amplitude one has 

%TC = 1 b 8 1 x 1 0 " 2 M e y 2 (5.2) 
Here we have taken = 93 MeV. The question now arises of 
how t h i s value of g ^ f i t s i n wi t h the analysis of other 
kaon decays where a knowledge of g K ^ i s r e q u i r e d . To t r y 
and answer t h i s question we look at the r a d i a t i v e decay 

Kl.-—>Z7r and the magnetic r a d i a t i o n term i n the decay 

I n s e c t i o n two we consider two models f o r Kjj->2."2f, 
one proposed by Wong (52), the other by Matsuxla and Oppo (53 ) • 
Both models inv o l v e r a t h e r strong assumptions, and while i t 
i s possible t o obtain the correct r a t e f o r |<tr*27f using 
e i t h e r model, i t i s r a t h e r d i f f i c u l t t o r e c o n c i l e them. 
To obtain the c o r r e c t r a t e from Wong's model, the ^ and X° 
poles have t o be neglected, whereas they form a s i g n i f i c a n t 
c o n t r i b u t i o n i n the model of Matsuda and Oppo. To avoid 
the ambiguities caused by the 0̂  and X° poles, we consider, 
i n s e ction t h r e e , the charged decay k̂ ""~̂ TC*7t°̂  i n "the 
framework of the generalised pole model as discussed by 
Dass and Kamal (54;)...'. !• : 
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5.2 The r a d i a t i v e decay 
To s t a r t we consider what i s possibly the 

simplest model f o r t h i s decay. The amplitude f o r the process 
i s supposed t o be given by the sum of the two s i m i l a r terms 
shown i n F i g . 1 ( 5 2 ) . That i s # 

* * M*"K f S ' (5.3) 
where (Xis the f i n e - s t r u c t u r e constant, and and kg a r e t n e 

four-momenta and and 6 ^ t h e p o l a r i z a t i o n f o u r - v e c t o r s of 
the photons and "t^ , r e s p e c t i v e l y . The coupling 9$TCtf 
i s assumed t o be the same as w i t h a l l p a r t i c l e s on t h e i r 
mass s h e l l , and defined v i a the vertex f u n c t i o n . 

which i s i n t u r n r e l a t e d t o the p a r t i a l w i d t h v i a : 

re***)- I ^ I ' J I (•- ayy 
The coupling (^Tft) of the rho t o the photon i s 
cal c u l a t e d by assuming the one-photon exchange model f o r 
the decay £ > e + e ~ . Taking the Orsay r e s u l t (55) of 

ITs^eV) = T.̂ to.T- keV, (5.6) 
gives f o r f y the f o l l o w i n g : 

j£ = |.85±O.IT: •(5.7) 
4TC 

% X *' ' (5.5) 
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From eq. 5.3 we see t h a t the coupling ^ i x i w v i s given "by 

(5.8) 
But ^p-gy m a y also be calculated from the experimental 
width r(i&*2*) v i a 

- 7 mI (5-9> 

Taking the averaged branching r a t i o (50) t o be 4.9 x 10~* 
gives from eq. 5-9 t h a t 

'W = 3.ISlXI0"ilMeV."< 

Taking the quadratic amplitude value f o r 3 k l f ^ ' e * e q * 
we see t h a t eq. 5.8 gives the corre c t value f o r /PL--.*! 
provided t h a t one takes 

I 5 J s 3.345X 10"*" MeVT1 

This corresponds t o the f o l l o w i n g p a r t i a l w i dth: 

r(?->Tt*)= 0.15 MeV, (5.11) 

t h a t i s , a branching r a t i o of approximately 0.12$. This i s 
i n good agreement w i t h the most recent experiment (56) 
which has set an upper bound on the branching r a t i o of 0,2$. 
This r e s u l t i s very good, but there i s no reason why one 
should not also include the ̂  and X° poles, the going 
v i a Gift and the X° v i a . Both of these c o n t r i b u t i o n s 

V p i 
are expected t o be larg e since xw i s la r g e (= 14) and 
the decay X"*S* h a s a. branching r a t i o of approximately 
29#. 
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Another model which has been used t o describe the 
t r a n s i t i o n k ZX i s shown i n F i g . 2 (53). Here the 0| 
and X° poles are included and, i n f a c t , t u r n out t o be 
s i g n i f i c a n t . From F i g . 2 one sees t h a t ' t h e r e are a l o t of 
coupling constants t o be determined, and a c e r t a i n amount 
of ambiguity i s unavoidable. The couplings ^pfltf» w n e r e 

, are assumed t o b.e the same as w i t h a l l 
p a r t i c l e s on t h e i r mass s h e l l , and defined v i a 

ACmi) = 9 p „ e^s kfe£ tfe^ < s.i2> 

Taking the f o l l o w i n g p a r t i a l widths: 

riTP+li) - ?.S±0.9cV (5.13a) 

r(l\+2X) = l.00±OO8kcV (5.13b) 

riX°-m) * 38.0±6.0keY (5.13c) 

gives f o r the respective coupling constants the f o l l o w i n g 

I V i J = 2.53XIO"5 McV"' (5.14a) 

I g ^ j | = 3-48x 10"5 McV"1 (5.i4b) 

I g x * J £ 9.3Zx |0"5 neVT' (5.i4c) 
I t i s i n t e r e s t i n g t o compare these values f o r the coupling 
constants, w i t h the f o l l o w i n g broken SU(3) sum r u l e 

%-i% - & °** V + J J S t a r t 9 x ° » = ° ( 5 - 1 5 ) 

where « i s the 1|-X° SU( 3) mixing angle, (=+ 10.24°). 
Rearranging eq. 5.15 gives 

0 « « t 5 - 1 5 a > 
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Suppose now t h a t CJ^and are of the same sign* then, 
using eqs. 5.14a and 5.14b i n eq. 5.15a, gives the f o l l o w i n g 

3x<"n = ± I - 1 0 5 X I O " * McV"1, (5.16a) 
or 

r(X°-v2«) = 53 keV. (5.i6b) 
A l t e r n a t i v e l y talcing and <J^^ t o °e of opposite s i g n , 
gives 

=. 2 3 5 X 1 0 " * ' MeV"1 (5.17a) 
or 

r(X°-+2T0= 3 3 1 keV".' ( 5 . 1 7 b ) 

So, t a k i n g 3 l T f t a n d 9l)*W t 0 1 ) 6 ° f t l l e S a m e s i g n ' o n e 

obtains from SU(3) a value f o r ^xojftf i n r e a s o n a D l e agreement 
w i t h experiment, eq. 5.14c. One i s , t h e r e f o r e , tempted 
t o use broken SU(3) t o r e l a t e the couplings CL,0d 

3k» - J 5 a * , 3 i (si , + J S s ' " 3 f c t x " * 0 <5-18> 
Summing the diagrams i n Pig. 2 gives f o r $yo-ff t n e expression 

Taking the l . h . s . of the above equation from experiment 
allows one t o c a l c u l a t e the only unknown q u a n t i t y CJiftftf 
Because of the sign ambiguities i n » two sets of 
so l u t i o n s are obtained. 

Set ( i ) up t o an o v e r a l l sign: 

Set ( i i ) up to an o v e r a l l sign: 
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I n terms of the c o n t r i b u t i o n s from the separate diagrams 
i n F i g . 2 we have: 

Set ( i ) up t o an o v e r a l l sign: 

A (Pion-pole) = 1.92 x 10" 1 2 

A (eta-pole) = -2.97 x 10~ 1 2 

A (X°-pole) = 4.24 x 10" 1 2 

A ( t o t a l ) = 3.19 x 10~ 1 2 

Set ( i i ) Up t o an o v e r a l l sign: 
A (Pion-pole) = 1.92 x 10""12 

A (eta-pole) = -5.86 x 10" 1 2 

A (X° - pole) = 0»75 x 10" 1 2 

A ( t o t a l ) = -3ol9 x 10" 1 2 

I t i s r a t h e r d i f f i c u l t to see what can be concluded 
from these r e s u l t s . I f one believes t h a t F i g . 2 indeed 
represents the mechanism f o r the decay Ktr^<2.7( and t h a t 
the use of broken SU(3) sum-rules i s v a l i d , bearing i n 
mind t h a t k-*Hl i s forbidden under SU(3) (57) and also i f 
one believes the r a t h e r o p t i m i s t i c assumptions regarding 
S p y f l , then one i s forced t o conclude t h a t the If and X° 

pole diagrams are indeed important. I t i s then d i f f i c u l t 
t o b e l ieve the r a t h e r nice r e s u l t , eq. 5.11* based on 
pion pion-pole dominance alone. 
5.3 D i r e c t r a d i a t i o n in K^-> TC?"Tl0"tf. 

I n order t o avoid the u n c e r t a i n t i e s of the 
previous s e c t i o n because of the possible presence of eta and 
X pole terms, we consider now the charged decay 
where n e u t r a l poles cannot c o n t r i b u t e . This t r a n s i t i o n 
can proceed by two d i s t i n c t mechanisms. One arises from 
the emission of the photon from the ingoing or outgoing 
charged p a r t i c l e and i s known as inner bremsstrahlung, F i g . 3a. 
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The amplitude f o r t h i s process i s d i r e c t l y r e l a t e d t o the 
amplitude f o r IĈ -VIC* TL° i and so must proceed v i a a A T ^ / l 
t r a n s i t i o n . The second c o n t r i b u t i o n arises from the d i r e c t 
r a d i a t i v e decay, Pig. 3b; here the presence of the photon 
at the decay vertex allows the. two pions to be i n a r e l a t i v e 
P-wave s t a t e w i t h 1 = 1 , which means t h a t the decay may 
proceed v i a 

I t i s of great i n t e r e s t t o know the r e l a t i v e 
c o n t r i b u t i o n s of these two mechanisms, since i t i s t h i s 
knowledge which determines whether or not i t i s f e a s i b l e 
to study CP v i o l a t i o n i n t h i s decay ( 5 8 ) . On.the one hand 
one might expect the d i r e c t r a d i a t i v e processes t o be 
small r e l a t i v e t o the inner bremsstrahlung since the former 
depends oh the f i n i t e n e s s of the spa c i a l r e g i o n oyer which 
the v i r t u a l processes leading t o the decay'extend, whereas 
c o n t r i b u t i o n s t o inner bremsstrahlung f o r a photon of 
momentum k come from regions w i t h l i n e a r dimensions 1/k. 
On the other hand the operation of the A X S ^ r u l e , which 
makes Kj approximately 5 00 times f a s t e r than 

, leads one to expect a r e l a t i v e l y prominent 
d i r e c t process ( 5 9 ) . 

The inner bremsstrahlung matrix element f o r 
k. +-*TcT* i s : 

M e - f t ^ M C l ^ T r t O ^ - ^ ) , (5,0) 

where P, p and k represent the K?" and photon f o u r -
momenta, r e s p e c t i v e l y and 6 i s the photon p o l a r i z a t i o n . 
For the d i r e c t t r a n s i t i o n s the e l e c t r i c and magnetic d i p o l e 
m a t r ix elements, leading t o P-wave s t a t e s , are 
given by (58) 
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ME= (to*)* M(k^iiV)X e | t -*fY(k l t e r kpe < )e^"0.21) 

r e s p e c t i v e l y . Here q = P - p - k, the f a c t o r |iT*" i s t o 
make the st r e n g t h parameters X g and Xffi dimensionless and S, 
and $ c a r e "the P- and S-. wave TC+ir.° phase s h i f t s , at the 
energy V(p+q) 2. I t i s the magnetic ( p a r i t y conserving) 

part of the d i r e c t t r a n s i t i o n which i s relevant t o the 
pion pole dominance idea ( 5 4 ) . The diagrams which 
c o n t r i b u t e t o t h i s part of the decay are shown i n Pigs. 
4a and 4b. The diagrams of the type i n Pig. 4b, are expected 
t o be r e l a t i v e l y small f o r the same reasons as i n T-decay, 
and are neglected. Por the diagram i n Pig. 4a one obtains 
f o r the magnetic p a r t of the d i r e c t amplitude the f o l l o w i n g 

MM (k+-»nV*)=5M1) _ L / f c A r t % v r t * t f 6 ' (5.23) 

A ( s , t , u ) generates the dynamical s t r u c t u r e of the amplitude: 

w i t h „ 

Qf(S) i s the ̂  t r a j e c t o r y and s,t,and u are the Mahdelstam 
i n v a r i a n t s f o r TCTC-^TCK . Normalising the amplitude 
at the £ pole gives 

fa - W < 5- 2 6> 
w i t h Q defined by eq. 5.4, and Q ^ i s assumed t o be 
3$TtTt 1 "tnat i s w i t h a l l the p a r t i c l e s on s h e l l . With 

= 120 MeV, one has 

*L = 5 . 5 . (5.27) 
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Comparing eqs. 5.22 and 5.23f one can w r i t e the strength 
of the magnetic term Xm as 

which becomes, on using eq. 5.1 f o r g(M k) and t a k i n g a 
S-> "K~6 branching r a t i o of ^ 0.2#( 56), the f o l l o w i n g 

I X n U l.2xio"2(A«+Asu-tAtJ), (5.29) 
which gives, f o r instance, w i t h a charged pion k i n e t i c 
energy between 55 and 90 MeV 

IX*I ^ 0.1^ (5-30) 

corresponding t o a magnetic p a r t of the d i r e c t t r a n s i t i o n 
of .^4$ of the inner .bremsstrahlung c o n t r i b u t i o n . The 
r e s t r i c t i o n m the charge pion k i n e t i c energy comes from 
experiment. The TITHfevents are selected only i n the above 
re g i o n , corresponding t o a centre of mass momentum of the 
charged pion of between 135 and 183 MeV, because on the one 
hand the lower l i m i t prevents overwhelming contamination 
from the decay k +->Tt°TC 0Tt + , w h i l e , on the other hand, 
the upper l i m i t excludes the decay k - * T t T l . 

The most recent experiment on t h i s process (60) gives 
an inner bremsstrahlung branching r a t i o of (2.55+ 0.18) x 10~^, 
which compares favourably w i t h the t h e o r e t i c a l value of 
2.50 x 10"^" f o r a charged pion K.E. i n the region considered 
(55 ->• 90 MeV). The various p r o j e c t i o n s obtained i n t h i s 

•) 
experiment were w e l l described assuming no e l e c t r i c d i p o l e 
component (X = 0), and, normalizing to the theoretical 
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.inner bremsstrahlung r a t e , gave a branching r a t i o f o r the 
magnetic dipole r a d i a t i o n of (1.56 + 0.35) x 1Q~^, w i t h 

-5 

a systematic u n c e r t a i n t y of + 0.5 x 10 I n other words 
assuming X = 0 one has a magnetic c o n t r i b u t i o n of 
(6.24 + 3«40)# of the i n n e r bremsstrahlung component; our 
value of ^4$ i s c e r t a i n l y consistent w i t h t h i s f i g u r e . 
5.4 Conclusion 

We have seen t h a t t a k i n g eg. 5ol as an estimate 
f o r gives f o r the magnetic dipole t r a n s i t i o n i n 

a value consistent w i t h experiment. Also 
by t a k i n g t h i s value f o r g ^ we have removed the ambiguity 
i n the model of Dass and Kamal (54) , i n the case where 
they i d e n t i f i e d the system "A" w i t h the pion and proceeded 
t o use current algebra t o c a l c u l a t e g j ^ . The same value f o r 
e K U u s e d * R *ke model of Wong (52) gives a value f o r 

r(KLr^2."i) also i n agreement w i t h experiment, but t h i s r e s u l t 
must be viewed i n the l i g h t of the r e s u l t s obtained from 
the model of Matsuda and Oppo (53)• 
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Pigure Captions: 

Pig. 1i 

Pig. 2: 

P i g . 3: 

Diagrams c o n t r i b u t i n g to the pion 
pole-dominance model of Wong (52). 

Diagrams c o n t r i b u t i n g t o the pole-
dominance model of Matsuda and Oppo (53). 

a) I n t e r n a l bremsstrahlung c o n t r i b u t i o n 

t o k + -*uV< 
b) D i r e c t t r a n s i t i o n c o n t r i b u t i o n t o 

Pig. 4a) Pion- and kaon-pole c o n t r i b u t i o n s to 
and b) the generalised pole model of Dass and 

Kamal (54) f o r the decay K^IC*"!^. 
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CHAPTFR SIX : ZEROS IN r|-V"3"IC, AND GENERALISED POLE DOMINANCE 
6.1 Introduction 

We now return to the long standing problem of the 
three pion decay of the eta. There are two points of view 
which can be adopted; one either believes Sutherland's result 
( l l ) of the zero, when<j^0sO i or one does not. I f one 
takes the former point of view, that i s , i f one believes 
that current algebra i s correct i n 4J-**5TC and that the 
decay i s an electromagnetic one, then one i s immediately 
confronted with the problem of explaining the b e a u t i f u l 
results of Hara and Nambu and Elias and Taylor (10), based 
on the l i n e a r i t y assumption. As we have said i n chapter four, 
the l i n e a r i t y assumption may be i n serious trouble, i n which 
case the results of Hara and Nambu and Elias and Taylor f o r 
T-decay would no longer stand. With the other point of view, 
that Sutherland's result i s wrong, which seems, at f i r s t 
sight, to be supported by experiment, one has either to explain 
why current algebra i s wrong i n t h i s case, or abandon 
electromagnetism as the main o r i g i n of the decay of the eta, 
or seriously modify i t (61). 

We sha l l suppose that the t h i r d zero i n Tj-Vrtllt 7L° 

i s i n fact present. We shall also suppose that the s i m i l a r i t y 
of /1^->3TI and K-*3TC w i t h i n t h e i r D a l i t z plots i s more than 
a coincidence. I f t h i s i s the case, one has to look f o r ways 
of reconciling the generalised pole model description of 
K-^^TC and 1J-V3TC with the requirements of current algebra. 
There are several clues, which are jus t the problems arising 
from the Lovelace conjecture. They .are as follows: 
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( i ) The suppression of the rho i n the description 
of p n - » 3TL ( i , 12, 13). 

V/e regard t h i s as s i g n i f i c a n t , since the a b i l i t y of the model 
to describe t h i s process as well as i t does i s remarkable 
and no plausible alternative description exists. 

( i i ) The problem of Adler zeros i n TLfJ scattering 
coupled with the resulti n g u n r e a l i s t i c S width. 

( i i i ) The f a i l u r e of the single Veneziano term, i n 
chapter four, to give a good description of the 
X-decay rate , and also the problem of theX-decay 
spectrum f i t with 0((0) = 0.483. 
I n t h i s chapter we return to the Veneziano amplitude 

f o r 7t TC e l a s t i c scattering,, 

MfeQ-p r(i-«fe))rci-«w) + - $ ro-*ea)m-«rw)+...(i.«) 
f \ l - r f (s)-«(f t t rfa-<rtS)-«rfttt 

and work on the assumption that the v a r i a t i o n of |5 and "6 , 

as the external pions are taken o f f mass s h e l l , i s non-
negligible. I n section two, we f i n d , by making an SU(3) 
type assumption, re l a t i n g the Pi and the Eba, just that form 
of v a r i a t i o n required to produce a l l the current algebra 
zeros i n TJ-V3IC* I n section three we discuss the t | -^3Tt 
spectrum produced by t h i s mpdele I n section four we 
investigate other manifestations of t h i s type of v a r i a t i o n . 
6.2. Mass dependence and Adler zeros 

To s t a r t we rewrite eg. (1.2), considering only 
the two leading terms, i n the following form: 

MCs,ti=pCl-ofCS)-o((-0+8Cl2,3̂ ) Vst, (6.D 
where Vst * P f I -Of CS>) Tf I - « f t ) ) flffe) -Of < 6-« 

8(11,3V) - s e t t ? i , £ t i ) . (6-3) 
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Here 6depends e x p l i c i t l y on the external masses, and describes 
the r e l a t i v e v a r i a t i o n of the two leading terms i n eq. (1.2) 
as the external masses are changed, s ** t crossing implies 
a certain symmetry f o r 6 which we sha l l assume remains as 
the pions are taken o f f mass s h e l l . That i s , one has: 

8 ( 1 2 , 3 0 = 5 ( 4 2 , 3 0 = S ( I 3 , 2 4 ) (6.4) 

with s = (P 1 + P 2 ) 2 , t = (P x + P 3 ) 2 , u = (P 1 + P 4 ) 2 

(6.5) 
Consider nowirij e l a s t i c scattering* where the 

amplitude has the form 

A('s,t,u,) of M(s,t) + M(s,u) + M(t,u), (6.6) 

which ensures positive signature f o r the Ag-f t r a j e c t o r y , 
exchange degenerate with the ^-6> t r a j e c t o r y . Y/e now make 
an assumption which is of central importance to the discussion. 
We suppose that the S'swhich appear i n eq. 6.6 for 1T|| scattering 
are the same as those which appear i n eq. 6.1 forllTL scattering, 
but with the relevant masses inserted. This i s not an 
unreasonable idea since the same t r a j e c t o r i e s are exchanged, 
and i n the SU(3) scheme the TC and the t | are the "same" apart 
from t h e i r masses. 

The next step i s to impose the Adler zeros i n the 
processes TClC-^UTt , 1C^->TLt| and t ) l]-Vt ) l | , With 
s, t and u defined as i n eq. 6.5 one has the following: 

M(S,tt * ( l~cU5W ( t ) + 8(12,3^)Vsfc (6.7a) 
MCS,u)* ( I-*CsW(n)+5(12,1*3)) \/su <6-?b) 
M(t,U>c( ( I -cCftJ-«(U.) + 8(H*>3Z)) V t M (6.7c) 
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( i ) Adler zeros i n TCTC. s=t=u= P 1 = 0}~P^=¥*=?*= 

Therefore Mf^f*- 1') = 0 providing one takes 

S(0 | i \ | i l | * ) » 2c*(ft l)-1 (6.9) 
or taking oKS") = d0 + <*'S 

•j7 S C o ^ f t y ) + \z2±° = 2pL* (6.io) 

( i i ) Adler zeros i n Tl|| 
a) softTC. s = u = M2, t = JJL2 P2=0, P 1?=P 3

2=M 2, P ^ j ^ . 2 . 

Imposing the zeros term by term i n eq. 6<>6 gives the following: 

0 = 0 - ^M^-^C^+SfM^O,!^ 2^ 2)) (6.11a) 

0= Cl-2^M 1HSCM 10 ,(i 2M 2)) (e.iib) 

0 = Cl - r f^ - f l fC^+SCl^pJ.M^) (6.11c) 
giving 

- L 8(MVV,Ml0) 4 1-2*, « M l + | * 

J - SCMy,oMV h ^ - - (6.12) 

b) soft [J, s = u =(X 2,t = M2, P x = 0, P 2
2=P 4

2=fjf f P 3
2
= M

2. 

Again imposing the zeros term by term i n eq. 6.6 gives 

0 = C l - ^ V ^ t M 1 ) + S f 0 p > ) M V ^ (6.13a) 

0*0-2flf(K t )46fojt 1 L ,p?M 1 )) (6.13b) 

0' 0 -OfCW-Offltf^Sfo^M 1^ (6.130 
g i v i ng 
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( i i i ) Adler zeros i n l p ] , s = t = u = M2. P 1 =0, P 2
2=P^ 2

=P^ 2=M 2 

0= C l - ^ ^ M ^ + S C o M ^ M 2 ) ) (6.15) 
or 

Consider now eqs. 6.14 and looking at f i g . 1 we see that the 
value of 5 depends on which pions are taken off mass shelle 
I f the two pions which are l e f t on mass shell are the same, 
i. e . both X '5 or both TC *s, then S takes one p a r t i c u l a r 
value; i f on the other hand the two pions which are l e f t on 
mass she l l are of d i f f e r e n t charge then 5 takes some other 
value. This i s a rather strange and complex behaviour 0 

6.3 Zeros i n /Y|-v3Hand generalised pole dominance 
One observes that eqs. 6.14 give jus t those values . 

of 5 which are required when checking the current algebra 
zeros i n the generalised pole dominance description of Orj-V3TL. 
Consider, i n p a r t i c u l a r T|-^TlTLTt, the. amplitude f o r t h i s 
process i s , i n the pole model, given by the sum of the two 
diagrams shown i n f i g . 2. That i s : 

Ws,t,u.)-3(Ml)_u ftffu^TchrJ+^ji-U,flM*i*>«-">. 
where 1 

( U f t ^ T C V ^ - p C M s f c * M S ( C- Mb.) (6.18a) 

and 

Mst* ( i - < f c w & H s ( M y > y f l V s t , (6.i9) 
and C t g = - i s the ( t f s ) - crossing matrix f o r Tfrj scattering, 
I t i s straight forward to check that the amplitude, given i n 
eq. 6.17, has a l l the required current algebra zeros, when 
those values of 8 given i n eq. 6.14 are used. 

Here 
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To proceed to calculate the spectrum f o r 1^-^311 o n e needs 
to know two things; f i r s t l y the r e l a t i v e contribution of 

2 2 

the two terms i n eq. 6.17, i . e . the q dependence of g(q ) f 

and secondly the value of With regard to 
the former, nothing conclusive has emerged from the 
l i t e r a t u r e . There are arguments (62), which have been 
questioned (63), which suggest that 

9(m 1 ) /9 (^ = i-iVf*. ( 6 - 2 0 ) 

V/hile, at the same time, there are cases i n the l i t e r a t u r e 
which consider a constant form-factor dependence for the 

2 
electromagnetic vertex, g(q ) , (64), that i s 

9(MX) = gfft1) = g. (6.2D 
We s h a l l consider both cases. Taking eq. 6.21 f o r the form 
factor dependence, and substituting i n t o eq. 6.17» gives f o r 

t - 0 
the IJ-^TCUTl amplitude the following: 

A^fe.")»j^[MsttM s* Mu+j^Ma* M ^ + M t j J . (6. 2?) 

Also using G((|£)*̂ l i n eqs. 6.14 gives 

S(MV,Oft l)= O.Z5 

The above two equations suggest a value for SCH^^yfO"^^) 
somewhere near the middle of the range 0 to 0.25. Taking, 
f o r instance, 

s ( M y > y v = o.iz (6.23) 
gives the f i t to the spectrum shown i n f i g . 3; the agreement 
i s excellent.. 

Taking the other point of view, embodied i n eq. 6.20, 
gives for the I J - V U l t T l amplitude: 

ft(s,t,u}= f Mst + Msu-MtJ 
(6.24). 
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This is", of course, the o r i g i n a l Lovelace amplitude fo r 
the decay ( l ) , and from his work we know that a good description 
of the spectrum i s obtained provided one takes 

dep.1) = Vz 
and 

6.4 Tttj —*»-TC r j scattering 
F i r s t of a l l we consider Osborn's current algebra 

amplitude for TCtJ-^Tirj (65). This amplitude has a l l the 
correct Adler zeros and depends•explicitly on the momenta 
of them's: 

3F* M* (6.25) 
Comparing t h i s with our modified Veneziano form, with both 
pions on mass-shell, 

+ ( I - otfs> - <*<u> + S( k,V, p k\)) Vsu 

(6.27) 

at the point ( |< * = (Jl>, S = t = O L » ( Kil+3(tl)/3 ) S i v e s 

or taking V2 gives ^ 

3Ml <6-28> 
This i s not going to give the whole story, because we are 
supposing that the momentum dependence on the pion i s the 
same as on the Eta, whereas i n eq. 6.25 one has dependence 
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only on the momenta of the Etas, but eq. 6.28 should give 
some idea of the v a r i a t i o n , especially f o r K^V^H?" • 

2 2 c 
Setting ^ = 4MJJ gives the O required for the process 
p n - ^ 3 " T t and i n fact one finds 

5 ( ^ M ^ l , ^ y i ) = 1.95. (6.29) 
This i s i n remarkable agreement with the values obtained 
by A l t a r e l l i and Rubinstein (12) and Berger (13). 

V/e now investigate how the Ss effect the width of 
the 5-meson. The residue of eq. 6.27 at the S-pole, 
<*(*>« 1, i s given by: 

of f \ (6.30) 

I f we c a l l the width of the $ -meson obtained from the 
conventional Veneziano expression, eq. 1.15, and assuming j$ 
to be the same i n both cases we obtain: 

J\ . i.02-S(MV ^ M V " ) - S f M W M 1 ) 
T c I . O Z (6.31) 

Using eqs. 6.12 as estimates f o r S f l i V ^ V ^ a n d S ^ V V * ^ ) 
with Q(((i*W / Z gives 

T S / C - (6.31a) 
That i s the effect of the $'$ i s "to change the 8-meson width 
by about a factor 4 i n the r i g h t d i r e c t i o n . 

6.5 Conclusion 
By making the " p i = eta" assumption f o r the S's 

and imposing the Adler zeros i n TCf^—^lT| , produces the 
correct zero structure i n V| "3^. . The Adler zeros 



i n 7lt]-*Tlr| have been imposed by e f f e c t i v e l y adding 
s a t e l l i t e s , which at the. same time solves the problem 
of the 6-meson width. We consider i t more than a coincidenc 
that the based on Osborn's amplitude gives a 
value of 1.95 for Sf^M^fl^ l ^ 1 ) , when A l t a r e l l i and 
Rubinstein obtained a value of 1.86, and when Berger 
needed exactly 1.95 for his f i t s to the pn->3"TC spectra. 

The problem remains, of course, to f i n d the exact 
functional form of £, looking at the values required to 
impose the Adler zeros i n TCTC , TCf| andf|f| el a s t i c scattering 
we see that S must have quite a complex structure, which 
seems to have i t s o r i g i n i n the electromagnetic and weak' 
structure of the pseudoscalar mesons. 

For T-decay one cannot play the same game, since 
the s i m i l a r i t i e s which exist between TLTC and TCI^ , 
(symmetry and Regge exchanges), do not exist to the same 
extent-between TCTC and TCk (because of the strangeness). 
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Figure Captions: 

Fig. 1 : Four l i n e connected part f o r "I t TL 
elastic scattering showing momentum 
l a b e l l i n g . 

Fig. 2 : Pole diagrams f o r the decay t|->7t TC I t . 

Fig. 3 : *-"IC+TL"Tt° spectrum from the 
modified Veneziano model, as described 
i n the t e x t . The data are from r e f . (17). 
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CHAPTER SEVEN : CONCLUSION 
Our overall conclusions may be summarised as follows: 

a) The positions of the subthreshold zeros i n Pi-Pi 
scattering and the slopes of the amplitudes as 
they change sign are i n good agreement with 
Weinberg's simple current algebra amplitude. 
I n terms of the Veneziano model, t h i s means that 
the v a r i a t i o n of the co e f f i c i e n t s , (i>Tfj etc., 
during the extrapolation p?->« O i s n e g l i g i b l e , 
and so the prediction remains good. 

b) The f a i l u r e of the single term Veneziano amplitude 
to describe adequately the T-decay rate , the amplitude 
being 30$ too small at the centre of the Da l i t z 
p l o t , coupled with the fact that a non-negligble 
mass dependent term i s required t o produce a 
satisfactory description of both the rates and 
spectra, leads one to conclude t h a t , even by the 
time one has reached the~C decay physical region, 
si g n i f i c a n t changes i n the c o e f f i c i e n t s , |$ >1$) 

etc., have occurred, that i s S a t e l l i t e s are present. 
This should also explain the s l i g h t discrepancy 
obtained by Lovelace i n his 1 f i t to Vrdecay with 
« ( | * ) - & . 

c) By r e l a t i n g the Pi and Eta as i n chapter six and 
imposing the Adler zeros i n TCI|—>TtlJ solves 
the problem of the 6 -width and gives a l l the 
current algebra zeros i n the generalised pole model 
description of the decay 1|-V3T£. By drawing a 
comparison with Osborn's current algebra amplitude 
for Ttl|~>>Ttr| and extrapolating to the physical 
region of pil-VSTC gives an amplitude very s i m i l a r 
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to that of A l t a r e l l i and Rubinstein and 
Berger. The v a r i a t i o n of the coefficients 
i s rather strange and complex. 
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APPENDIX A 

A.l Amplitude normalisation 
For the t r a n s i t i o n It)-* If) the S-matrix element 

i s related to the invariant Feynman amplitude by 

Sf. = 8 f. - i(2TC) 4 6 4 (P f - P.) Mf. 

d 3 

We use units E = c = 1, and Pj_ (P f) i s the sum 
of a l l four-momenta i n the i n i t i a l ( f i n a l ) state and E. i s 

J 
the energy of the j - t h p a r t i c l e , j running over both i n i t i a l 
and f i n a l state p a r t i c l e s . 

For the binary reaction 1 + 2 > 3 + 4 we define 
the usual Mandelstam invariants, s,t,u, by 

s = (P x + P 2 ) 2 = (P 3 + P 4 ) 2 (A2a) 

t = (P x - P 3 ) 2 =(P 2 - P 4 ) 2 (A2b) 

i 
u = ^ - P 4 ) 2 = (P 2 - P 3) 2. (A2c) 

with 4 
s + t + u =2" M2 (A3) 

i = l 1 

For Pi-Pi e l a s t i c scattering we have i n terms 
of the s-channel centre of mass three-momentum, £, 
and scattering angle 6s, 

s = 4 ( q 2 +{LL 2) (A4a) 

t = -2q2(l-CosOs) (A4b) 
u = -2q2(l+CosOs) (A4c) 

We define f o r each normalisation (N) the invariant 
amplitude 

NA = - M (A5) 
16TCN 
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A.2 U n i t a r i t y and P a r t i a l wave expansions 
F o r j i ) = | f ) the u n i t a r i t y condition SS • 1 

gives the opt i c a l theorem 

i A u = f ) - jjjj <rtot ( A 6 ) 

We define p a r t i a l wave amplitudes NA^. (s) for spinless 
bosons i n a state of well-defined isospin, I , by 

^ ( s . Z j =^(21 +1) n
A J(S)P I(ZS) (A7) 

1 + I even 

where Zs = CosOs. The sum over (1 + I)-even i s a 
consequence of Bose s t a t i s t i c s . U n i t a r i t y expressed i n 
terms of p a r t i a l wave amplitudes becomes 

Im NA*(s) = NC£(S) R*(s) | N A * ( s ) | 2 (A8) 

where . £ - f 1 f o r two d i f f e r e n t p a r t i c l e s i n | l ) j (A9) 
V. %. f o r two i d e n t i c a l p a r t i c l e s i n I t } J 

? ( s ) = 2q (A10) 

and 

( A l l ) 
• J ( s ) = <fy£ (s) 

(-) 
I n terms of the inverse amplitude t h i s becomes 

fN I I -1 T 
ImL A 1(s)J = -NC §(s) (S) (A12) 

The above equations may be solved to give 
NA*(s) = 1 ' 1, ( A 1 3 ) 

^ Ne Q( s) 
2 i 

Where 8^(s) i s the re a l phase s h i f t a n d ^ i s ) i s the r e a l 
i n e l a s t i c i t y , 

0 4 %\ < 1 (A14) 

and = 1 below the f i r s t i n e l a s t i c threshold* yJ 



A.3 Isospin crossing matrices 
' The s*t .arid u channels are defined by 
s-channel : 1 + 2 3 + 4 (A15a) 
t-channel : T + 2 3 + T (A15b) 
u-channel : 7 + 2 T + 4 (A15c) 
The s-channel amplitude A*(12 •-34) i s assumed to 

s 
"be an analytic function of (s,t,u) having only those 
s i n g u l a r i t i e s demanded by u n i t a r i t y . When continued to the 
t - or u- channel physical regions i t describes a l i n e a r com
bination of t - and u- channel isospin amplitudes, the 
coef f i c i e n t s of which are given by the crossing matrices. Thus: 

A s L = ? C - t ( 1 l 1 2 ) ^ 
(A16) 

together with similar expressions r e l a t i n g the other channels 
and where 

C t s = G S a n d C u t = C u s ' C s t 

I n addition to isospin. amplitudes, covariant amplitudes are 
often used (24). These are defined i n terms of the 
covariant states. Thus f o r pions, i a = 1»2,3 
are defined by 

6 10 2 -6 iO 
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<d, c | T | a,b> = A Sab Scd + B £ a c <£bd + C & . 

f A ° 1 3 1 . 1 
• r *\ 

A 
= 0 1 -1 B 

• 

0 1 1 
> 

C 
» -

A(a,t,u) = B(t fs,u) = C(u,t,s) 
and 

A(s,t,u) = A(s,u,t) 
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APPENDIX B 
B.1 Dalitz plot f o r k"^3lCdecays 

The small deviation from uniformity of the 
Dalitz plot f o r the3lldecay of the K meson i s usually described 
by a "slope parameter" (66)0 The Da l i t z plot d i s t r i b u t i o n 
i s parametrized by the expression. 

| M | 2 « 1 + g (s - ao)/n£+ + hQs-so)/m 2
+]] 2+ . (Bl) 

p 
where m^+ i s introduced to make the parameters g,h, etc., 
dimensionless, 

( q l " q 4 ^ = (M 1 - M 4 ) 2 - 2 M1 T4, (B2a) 

- q 2 ) 2 = (M^ - M 2 ) 2 - (B2b) 

( q x - q 3 ) 2 = 
4 
- M 3 ) 2 - 2MXT3 (B2c) 

1 (s+t+u) = 
3 4 ? 

' 2 
. M i ' (B3) so 

and q^ refers to the four-momentum of the lea on, while 
( i c.2,3»4) ref e r to the four-momentum of the i — 

pion. The index 4 refers to the odd pion. The possible 
charged stated f o r k-V3TC are called x, t ' and t : 

xo 

k- •> 1 L + X " TC* 
K± -> lt°TC°TC* 

where i n xQ-decay the odd pion is taken t o be the 
neutral one. 

For the charged K decay the D a l i t z plot variables 
X and Y are defined by: 

X = N/T (T, - T J and Y = 3TA - 1 < B4) 
W Q 



-88-

where Q i s the t o t a l k i n e t i c energy available 

Q = M1 -M2 - M3 - M4 (B5) 

I n our analysis we neglect the pion mass differences, 
i n which case the Da l i t z plot variables reduce t o 

X = J±__ (u - t ) and Y = 3 ( s Q - s ) , (B6) 
2MQ 2MQ 

where M = W^and M2 = = = p. . Instead of analysing 
the spectra i n terms of X and Y, we s h a l l use the variable 
s and z = ( t - u). 

B.2 Normalised Projections 

( i ) S-projections: 

t 2 ( s ) 
f |Mj 2 dt 

do- fc \ ( B ) 

j dt 
t ^ s ) 

where 2 ( s ) a r e "tafi roots of: 

st(3|L2 + M2 -s - t ) = p?(M 2 - n 2 ) 2 (B8) 

s e t t i n g E =M2 + 3p.2 and c = p.2(M2 - p , 2 ) 2 then* 

2 t l f 2 ( s ) = ( I - s + ̂  (s -Z)* ~ 4 c/s) (Bg) 

( i i ) Z - projection: s 2(z) 

r do" s s, (z) 
dz 1 

2 ds 

s 2(z) 
ds 

s-^z) 
(BIO) 
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Bouhdary of the Dal i t z plot i s given by 

stu = c ( B l l ) 
or, using s + t + u = £ and z = t - u, 

s 3 - 2 I s 2 + s ( I 2 - z 2 ) = 4c (B12) 

S 1 g ( z ) a r e ^he two relevant roots of the above equation, 
B12, and are given by: 

S l ( z ) = 2 ^ - 3y/^(cos0/3+ 3 sin 0/3) (B13a) 

s 2(z) = 2 £ - ^ ( c o s 0 / 3 - 3 sin 0/3) (Bl3b) 

with J = V ( r 2 + | q 3 + r 2 | ) (B14a) 

(Bl4b) and 0 = tan 

where q = a n a n a r = -a 
T V ( B l 5 ) 

with 
ao = | ? r ^ - £ Z

2Z. -4c (B16a) 

and a, = - ( Z 2 . + z 2 ) (B16b) 
3 

Pig. 31 shows the Dalit z plot region f o r K—>3TC and 
the l i m i t s of integration f o r the two normalized projections. 

• 
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