

Durham E-Theses

The mineralogy of amphiboles in amphibolites

Layton, W.

How to cite:

Layton, W. (1959) *The mineralogy of amphiboles in amphibolites*, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8781/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

THE MINTRALOGY OF AMPHIBOLES IN AMPHIBOLITES

ĺ.

Being a Thesis for the Degree of Doctor of Philosophy

submitted in October 1959

by

(1111am Layton B.Sc FC S.

of St Cuthbort s ocicty in the University of Durham.

VOLUME. II

Figures, Maps and Plates.

CONTENTS.

PART 1.

Number.	· · · · · · · · · · · · · · · · · · ·	Page
Fig. 1.	General Classification of the Amphiboles. After Winchell and Rabbitt.	1.
Fig. la.	Suggested Classification of the Amphibole Group.	2.
Fig. 2.	The Structure of Tremolite (Warren 1929).	3.
TABLE 1.	Observed (hOl) Reflexions from Tremolite and Diopside. (Warren 1929).	4.
Fig. 3.	Projections of the Tremolite and Diopside Structures on OlO (Warren 1929).	5.
Fig. 4.	Projection of the Tremolite and Diopside Structures on (001). (Warren 1929).	6.
Fig. 5.	Graph Showing the Relationship Between Al Replacing Si and the Amount of Alkali in the Vacant Spaces.	7.
Fig. 6.	The Relation Between the Silicon-Oxygen Chains and the Cleavage in Pyroxenes and Amphiboles.	8.
TABLE 2.	Selected Modern Analyses of Anthophyllite 1890-1946. (Rabbitt 1948).	9.
TABLE 3.	Analyses of some Anthophyllite Asbestos. (Merrill 1895).	10.
Fig. 7.	Graph to show the Relationship Between SiO_2 and Al_2O_3 in Anthophyllites.	11.
Fig. 8.	Graph to show the Relationship Between Al ₂ O ₃ and TiO ₂ in Anthophyllites.	11.

Page.

TABLE 4.	Spectrographic Analysis of Ten Anthophyllites and one Cummingtonite (Rabbitt 1948).	12.
TABLE 5.	Optical Properties of Some Anthophyllites from Table 2.	13.
TABLE 6.	Physical Properties of 7 Montana Anthophyllites (Rabbitt 1948).	14-16.
Fig. 9.	General Classification of the Monoclinic Amphiboles.	17.
TABLE 7.	Dana/Schaller Prefixes.	18.
Fig. 10.	Plot of Edenites from the Literature on the Hallimond Diagram (Francis 1958).	19.
TABLE 8.	Writer's List of Tremolite Series from the	20.
	Literature. Tremolite Series Analyses recalculated. Physical Properties of Tremolite Series. a)Writer's List of Common Hornblendes from the	24. 28. 33.
	Literature. Common Hornblende Analyses Recalculated. Physical Properties of Common Hornblendes.	41. 47.
Fig. 11.	Classification of the Pargasite Series.	49.
Fig. 12.	Distribution of Amphibole Analyses in Respect (a) Si atoms (b) Atoms in the Vacant Space (Hallimond 1943).	50 .
Fig. 13.	Composition of Calciferous Hornblendes. (Winchell 1945).	51.
Fig. 14.	Incidence of Amphibole Analyses with more than 1.5 Ca Atoms (Hallimond 1943).	52.
TABLE 9.	Hallimond (1943) List of Amphiboles.	53.
TABLE 10.	Winchell (1945) List of Amphiboles.	57.

Fig.	15.	Relationship Between the Amounts of Si and Al in the Formula Unit of Hornblende.	59.
Fig.	15a.	Frequency Diagram for Silicon Atom Content in Calciferous Amphiboles.	60.
Fig.	16.	Relationship of Fe"' to Fe" in Calciferous Amphiboles.	61.
Fig.	17.	Plot Showing the Relationship Between the Ng and Nm Indices in Aluminous Hornblendes.	62.
Fig.	18.	Plot Showing the Relationship Between Ng and Nm Indices in the Tremolite Series.	63.
Fig.	19.	Relationship Between Birefringence Ng-Np and the Ng Index in Hornblendes.	64.
Fig.	20.	Plot Showing the Relationship Between Ng and Np Indices in Common Hornblendes.	65.
Fig.	21.	Plot Showing the Relationship Between Ng and Np Indices in the Tremolite Series.	66.
Fig.	22.	Plot Showing the Relationship Between Ng and Np Indices in Hornblendes.	67.
Fig.	23.	Plot Showing the Relationship Between Ng and Nm in the Pyroxene Series.	68.
Fig.	23a.	Nomogram for the Determination of 2V from Refractive Indices (Hartshorne and Stuart 1950).	69.
Fig.	24.	Plot Showing the Relationship Between Density and the Heavy Elements in the Hornblende Series.	70.
Fig.	25.	Plot Showing the Relationship Between the Ng Refractive Index and Density in the Hornblende Series.	71.

•

TABLE 11.	Table of Selected Analyses of the Cummingtonite Series.	72-75
Fig. 26.	Revised Classification of the Cummingtonite Series.	76.
Fig. 27.	Diagram Showing the Development of the Cummingtonites and the Types of Anthophyllite.	77.
Fig. 27 a b c	Tremolite Structure. (Warren 1929) Anthophyllite Structure. Warren & Modell (1930). Enstatite Structure. """"	78
TABLE 12.	Physical Properties of the Cummingtonite Series from Table 11.	79.
TABLE 13.	Miyashiro (1957) List of Alkali Amphiboles.	80-81.
TABLE 14.	Optical Data for Table 13.	82.
Fig. 28.	The Ca and R"' Relationship in Alkali Amphiboles (Miyashiro 1957).	83.
TABLE 15.	Crystallographic Data for Amphiboles. (Sundius 1946)	83.
Fig. 29.	Diagrams Illustrating Solid Solution in the Anthophyllite and Cummingtonite Series A = Anthophyllite Field, B = Cummingtonite Field (Sundius 1933), C = Extension of B to Include Collins (1942) Data. Paired Minerals are Connected by Lines. (Rabbitt 1948)	84.
Fig. 30.	Triangular Diagram to Show Solid Solution Relations in the Hornblende Series.	85.
TABLE 16.	Analyses of Amphiboles from the Literature covering the Immiscibility gap of Fig. 12.	86-87
Fig. 31.	Diagram to show Suggested Compositional Limits of the Hornblende Series with Respect to Si and Na+K.	88.

	Numbe	er.		Page
	Fig.	32.	Diagram to show Immiscibility with Respect to the Iron Component in the Hornblende Series.	89.
	Fig.	33.	The Relationship Between Si and R"' in Alkali Amphiboles (Miyashiro 1957).	90.
	Fig.	34.	The Relationship Between Fe"/R" and Fe"'/R"' in the Riebeckite-Glaucophane Series. (Miyashiro 1957)	91.
	Fig.	35.	Fe"'/R"' and Fe"/R" Ratios in Amphiboles of the Arfvedsonite, Katophorite and Soda Tremolite Groups (Miyashiro 1957) Showing Occurrence of Types.	92.
	Fig.	36.	Sundius (1946) Triangular Diagram for Solid Solution Relations Between the Hornblende Series and the Alkali Amphiboles.	93.
	Fig.	37.	Suggested Classification of the Amphibole Group.	94.
	Fig.	38.	Relation Between Na+K and Ca in Hornblendes and Alkali Amphiboles.	95.
	Fig.	39.	The Relationships Between Ng and Nm Refractive Indices in the Monoclinic Amphiboles.	96.
	Fig.	40.	The Relation Between Ng Index and the Bire- fringence Ng-Np for Tremolites and Alkali Amphiboles.	97.
	Fig.	41.	Plot of Various Chemical Parameters in Weight	98.
	Fig.	42.	per cent. Against Mean Refractive Index (Ford 1914)	99.
	Fig.	43.	The Effects of Increasing Content of $\text{Fe}_2^{O_3}$ and TiO_2 on the Ng Refractive Index in Hornblendes.	100.
•	Fig.	44.	Plot Showing the Relationship Between Weight % FeO + Fe ₂ O ₃ and the Ng Refractive Index for Calciferous Amphiboles.	101.

÷

Fig.	45.	Plot Showing the Relationship Between the Ng Refractive Index and Fe" + Fe"' + Mn + Ti in Calciferous Amphiboles.	102.
Fig.	46.	Plot Showing the Relationship Between the Nm Refractive Index and Fe" + Fe"' + Mn + Ti in Common Hornblendes.	103.
Fig.	47.	The Relationship Between SiO_2 and the Ng Refractive Index in Hornblendes.	104.
Fig.	48.	The Relationship Between Extinction Angle and FeO + Fe ₂ O ₃ and also with Mean Refractive Index (Ford 1914).	105.
Fig.	49.	The Relationship Between Ng Refractive Index and Weight % FeO + Fe_2O_3 + TiO ₂ + MnO in the Anthophyllite Series (Rabbitt 1948).	106.
Fig.	50.	The Relationship Between Density and Weight % FeO + Fe ₂ θ_3 + TiO ₂ + MnO in the Anthophyllite Series (Rabbitt 1948).	108.
Fig.	51.	Relationship Between Mg + Al (6) /Y and Various Physical Properties in the Hornblende Series. (Rosenzweig & Watson 1954).	107.
Fig.	52.	Winchell (1951) Diagrams for the Determination of the Composition of Anthophyllite.	108.
Fig.	53.	Winchell (1951) Diagrams for the Determination of the Composition of Anthophyllite.	10 9.
Fig.	54,55.	Properties of Fluor-Cummingtonite Compared With Hydroxy-Cummingtonite (Bowen, Schairer 1935).	109 .
Fig.	56.	Properties of the Grunerite-Kupfferite-Mn7 Sig O_{22} (OH) ₂ System (Winchell 1951).	109.
Fig.	57.	Variation in Composition and Properties in the Tremolite-Actinolite Series (Winchell 1931).	110.

Number.		Page.
Fig. 58.	Variation in Composition and Properties in the Tremolite-Pargasite Series. Note Formula is Edenite not Pargasite (Winchell 1934).	110.
F ig. 59.	The Properties of the Tremolite-Ferrotremolite Series (Winchell 1951).	111.
Fig. 60.	The Physical Properties of the Calciferous Amphiboles (Winchell 1945) The Partial Prism.	112.
Fig. 61.	The Physical Properties on the Faces of the Partial Prism.	113.
Fig. 62.	The Relationship Between Ng Refractive Index and $A_1(4)$.	114.
Fig. 63.	The Relationship Between the Ng Refractive Index and Al(6).	115.
Fig. 64.	Two Axial Diagrams for Study of Sesqui-Oxides in the Hornblende Series (Sundius 1946).	116.
Fig. 65.	Refractive Index Values of Various Sesqui-Oxide Levels (Sundius 1946).	117.
Fig. 66.	Showing the Relationship of Ti + Fe"' to Various Contents of Al(ii) and Fe" (Sundius 1946).	118.
Fig. 67.	The Calcium Trend with Increasing Ng Index in Common Hornblendes.	119.
Fig. 68.	The Relationship Between Axial Angle, Al(ii) and Heavy Ion Content (Sundius 1946).	120.
Fig. 69.	Illustrating the Break in Optical Properties Between the Tremolite Series and the Common Hornblendes (Sundius 1946).	121.
Fig. &O.	The Approximate Relation Between the Compositions and Optical Properties of Amphiboles of the Riebeckite-Arfvedsonite-Katophorite Series excluding Glaucophane. (Miyashiro 1957).	121.

·		·	
	Number.		Page.
	Fig. 71.	See Fig. 34.	122.
	Fig. 72.	Writer's Suggested Method for Identification of Alkali Amphiboles.	123.
	Fig. 73.	Graph Showing the Relationship Between d-space and $\%$ Al ₂ O ₃ Content in the Hornblende Series.	124.
	Fig. 74.	Graphs Showing the Relationship Between d-space and $\%$ SiO ₂ and MgO Content.	125.
	Fig. 75.	Graphs Showing the Relationship Between d-space and % FeO and % (Na ₂ O + K_2O) Content.	126.
	Fig. 76.	Graph Showing the Relationship Between d-space and Si (in atomic proportions).	127.
	APPENDIX 1.	Additional Statistical Data.	
	APPENDIX 2.	Example of Methods of Calculation of Regression Equations and other Statistical Data.	
	APPENDIX 3.	X-Ray Powder Data.	
	TABLE 17.	Analyses and Optical Properties of Ghana Amphiboles and Analyses of Amphiboles from Dr. B. Leake.	
		ጉልጽጥ 2.	
	· · ·		
	Fig. 77.	Map Showing the Location of the Winneba District in Ghana.	128.
	Fig. 78.	Map Showing the Distribution of the Facies of the Upper Birrimian Series.	129.
	Fig. 79.	Approximate Limits of Composition of Amphiboles Derived from Various Rocks. (Hallimond 1948)	130.

TABLE 18a.	Analyses of Birrimian Rocks, Parents for Analysed Amphiboles.	131.
TABLE 18b.	Analyses of Birrimian Rock, Parents for Analysed Amphiboles.	132.
TABLE 18c.	Analyses of Selected Winneba Rocks.	133.
TABLE 19.	Analyses of Basalts for Comparison with Birrimian Greenstones and Actinolite Schists.	134.
Fig. 79a.	Semi-Diagrammatic Sections Across the Birrimian Series.	135.
Fig. 80.	Sketch Map Showing General Geology and Important Mineral Occurrences in the Mankwadzi Coastal Section.	136.
Fig. 81.	Plan of Trenches in Sandy Bay Between Mankwadzi and Abrekum.	137.
	PART 3.	

TABLE 20.The Accuracy of the Rapid Methods Determined138.by Single Analyses of Wl and Gl. (Mercy 1955).

TABLE 21.Comparison of Precision of Rapid Methods and138.Conventional Methods (Mercy 1955).

- Fig. 82. The Univariant Equilibrium Curve for the 139. Reaction Tremolite 3 Enstatite + 2 Diope side + Quartz + Vapour. (Ann. Rep. Geophys. Lab. 1954-55)
- Fig. 84. The Stability Field of the Magnesian Hornblende 140. Pargasite. (Ann. Rep. Geophys. Lab. 1955-56).
- Fig. 85. Preliminary Prepour T diagram for the 141. Composition Na₂O. 3MgO. Al₂O₃. 8SiO₂ with excess water. (Ann. Rep. Geophys. Lab. 1957-58).

Nu	mbe	r.

Fig. 86.	The Relation Between the Compositions and Modes of Occurrence of Amphiboles of the Riebeckite-Arfvedsonite-Katophorite Series. (Miyashiro 1957).	141.
TABLE 22.	Chemical Analyses of Hornblendes from the Nakoso and Gosaisyo-Takanuki Districts (Shido 1958).	142.
TABLE 23.	Recalculation of Analyses in Table 22 into Atomic Proportions.	142.
Fig. 87.	Suggested (Layton) Relationship of Composition to Colour in the Shido (1958) Amphiboles.	143.
Fig. 88.	Relationship Between Iron Content, Refractive Index and Occurrence of the Common Hornblende Series.	144.
Fig. 89.	Relationship Between Amphibole Composition and Occurrence in the Hornblende Series.	145.
Fig. 90.	Diagram to show Increasing Alkali Content with Increasing Metamorphic Grade (Shido 1958).	146.
TABLE 24.	Table of 'End Members' Resulting from Various Types of Substitution Derived by Shido (1958).	147.
TABLE 25.	Typical Recalculation of a Shido Amphibole on the Basis of Table 24 (Shido 1958).	147.
TABLE 26.	Complete Recalculation of Analyses from Table 22.	147.
Fig. 91.	Occurrence afid 'Z' Axial Colours of the Winneba (Ghana) Amphiboles.	148.

LIST OF PLATES.

Page.

Plate	1	A .	Recumbent Folding in the Togo Series, West of Senya Beraku near a wedge of Dahomeyan Gneiss.	149.
		Β.	Strong Folding in Togo Series, West of Senya Beraku.	
Plate	2	A.	Large Pegmatite Exposure in the Coarse Amphibo- lite Zone near Winneba.	150.
		В.	Quartz Crystal in Quartz Reef near Onyadzi Winneba.	
Plate	3	A.	Composite Quartz-Aplite Dyke in the Sandy Cove Between Mankwadzi and Abrekum.	151.
		B	Typical Shattering in the Aplites West of Mankwadzi Village.	
Plate	4	A.	Cassiterite Bearing Pegmatite in Hornblende Biotite Schists West of Mankwadzi Village.	152.
		B.	Typical Banding in the Ilmenite-Monazite Bearing Beach Sands West of Mankwadzi Village.	
Plate	5	A.	Typical Exposure of Graphic Pegmatites in Eastern Migmatite Gneiss along the Winneba-Accra Road.	153.,
		Β.	Texture of the Graphic Pegmatites.	
Plate	6	A.	Typical Banding in the Eastern Migmatites.	154.
		B.	Typical Ptygmatic Folding in the Eastern Migmatite Gneiss near Mile 9 Accra Road.	
Plate	7	A.	Pillow Structure on the Beach West of Mankwadzi Village.	155.
		B.	Typical Contact Between Feldspar Amphibolites and Garnet Schists Winneba Saltpond Road.	
Plate	8	Α.	Typical Winneba Granite Topography.	156.
		B.	Porphyroblastic Texture of the Winneba Granite.	•

- Plate 9 A. Typical Flow Banding in the Winneba Granite 157. near Ateiti Village.
 - B. Ghosts in the Winneba Granite near Ateiti Village.
- Plate 10 A. Thrust faulting in Togo Quartzites, West of 158. Senya Beraku.
 - B. Multiple faulting resulting in the Exposure of the Probable Base of the Togo Quartzite.

PHOTOMICROGRAPHS.

- Plate 11 A. Typical Porphyritic Metamorphosed Lava x70 Crossed 159. Nicols.
 - B. Typical Actinolite Schist. x70 Crossed Nicols.
- Plate 12 A. Hornblendite from zone of coarse Amphibolites 160. Note large Hornblende Plates x70 Crossed Nicols.
 - B. Actinolite Amphibolite. Note Mass of Actinolite Hornblende x70 Crossed Nicols.
- Plate 13.A. Typical Rimmed Amphibole in zone of coarse 161. Amphibolite. Note Granitic Contamination. x70 Crossed Nicols.
 - B. Rimmed Amphibole in the coarse Amphibolite Zone x70 Ordinary Light.

MAPS IN POCKET.

- MAP 1. Geological Map of the Winneba District.
- MAP 2. Distribution of the Minor Acid Intrusives.
- MAP 3. Structural Map of the Winneba District.

DURHAM UNIVERSIT 1 9 DEC 1959 L/BRARY

·. ·

PAGE 2

FIG. 2.

PAGE 3.

Observed (h01)	reflexions from Tremo	<u>lite and Diopside</u> .
(h01)	Int. in Tremolite	Int. in Diopside
200	WM.	W.
4 00	V. –W.	3,0
6 00	S.	31,0
800	S.	21,0
002	VS.	60,0
004	S.	34,0
202	S.	19,1
402	VS.	28,6
602	S.	26, 0
802	WM.	· 5 , 7
202	S.	31,0
4 02	S.	35,5
602	W.	W.
204	W.	W.
404	S.	21,9
604	S.	14,7
204	W.	2,1
4 04	S.	22,3
101	M.	All (hOl) with h and 🛃
301	w.	both odd are absent.
501	W.	
701	w.	
1 01	M.	
<u>3</u> 04	W.	
501	W.	
701	W.	
D O3	W.	
303	W.	
503	W.	
<u>7</u> 03	W.	
103	W.	
<u>3</u> 03	W.	
503	. W.	

TABLE 1.

• . .

From Warren 1929.

PAGE 7

		1													- -	
	N. Al	=	22252	33382	2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04		28181	28.0	12.1	2.20 2.42 2.42	4253c	10.7				
		•	<u> 1878</u> 2	19325	1:1938	597 - C	155555	82 1 <u>56</u>	12298	. 333	82812	:		_	5 	
-	Col. 7	: 0	82922	*****	2233 9 33222	222222	82.422	12222	85535 85535	58288	87878	21.34		Analys		
			<u> 1</u> 111	1111	11111	TELEF	28111	siiii	11111	11111	ដនៃ!!	:				
		HO	82332	23232	8885 777	=2288	28.182	28972	2.15	347.67	72778 72778	1.41	i			
		Total 1	88888	88888	88888	88788	58883 58883	28388	18888	83228	58888	1,03	1			
	formult content Therdur		83238	36833	87722	38353	នុងនុងដ	94529	26333	12228	=88,=	1	i			
		N. IS	88863	45283	23828	35387	85325	38533	\$3328	85575	88483	1.05			us. U.S. Monthaline (C. 1995) (C. 19	
	the four	otal	98855		28828	85883	28328	52328	55887	38238	88232	61 1		2	The second secon	
	the second		73955	589=3	8835 8	<u>se</u> !s=	8851	15185	18128	11117	1=1=5	ŝ	·		Kerth Control of Contr	
		Ē	38 3 i I	81388	11=31	នុន្យនុ		11111	ш	ш	11111	I			the second secon	
	8 11	Ŗ	33122	<u>á</u> sill	ន់នំនំ	ล่เม่อ่เ	12188	89199	33133	5	<u> </u>	:			Ad. No. 1 and South and S	
	t in the second s	Ŀ	23855	29759	19555	14285	29413	ន់នាយ	18281	\$1881	3538 8	30,			A state of the second s	
		2	2.21	22.2.2	88828	2=8=8	23258	£3588	\$ <u>\$</u> 2,8 <u>5</u>	<u>885533</u>	15235	.67			Driveoresser a castors	
		Ż	133849 133849	22232	4-848	202220	14944 18858	4.2.2.2.2 29.8.2.2	<u></u>	22.52.5 8.82.53.6	28.929 28.939 28.939	5.83	c.		achine v	
		- 14	18111	នៅព	HSH	11131	<u>ា ន</u> ៅ	11115	•	81111	11311	1		uthor		
ŝ		ž	22213	84625	~ = = = = = = = = = = = = = = = = = = =	(18) (18) (18)	1915i	21158 31158	19151	81118	88513	ŝ		<	rundite rundite	
1-068	NO HO	0 .0			20212	25228	20202	82828	20120	10111	20323 40519	3	1		7%73733399935%732735353535	
- Lin	401	z										-	L.	Date	86666666666666666666666666666666666666	
1210	;															
en v				*****	0.0040		***	40.040	400		~~~000			Ž	ੑੑੑੑੑਸ਼ਸ਼ੑਸ਼ਸ਼ੑਖ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼੶੶੶੶੶੶੶ ੑ	
	8	0	20222		0.82.84 0.82.84	000400 23422			initiai wanaw	0-044			(HO)			
AKAL	LO.	. *	*****	82333 82333	*****	873378 873578	22222	*****	****	*****	ಕಕ್ಷ ಕನ್ನಡ ನಿರಿ <i>ಕ್</i> ರಿಗಾ	1 17.	5	•		
ODER O		< +8		22228	33823	***3	31282	*****	23222	25222	82822	81.	licitat		c	
	(+O	0410	88756	28.18 19.78 19.78 19.78	8.899.69	28.88 8.88 8.88 8.88 8.88 8.88 8.88 8.8	52222 82883	118987 1998 1998 1998 1997 1997 1997 199	878822 27822 27822	01.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.15 3.15 4.00	6.43	ff p	-		
111	4+Q	27 1	84228	87838	87583	38823	£9.222	22215	83228	22833	3 2388	z	2 100	Analyr	nyer rivinen dernoen bes nyer nyer bola kola kola kola to bola to to to to to to	
	cent F	Tot	88888	88883	55858	88888	88888	88888	88888	88888	88888	8	88.8.5	-	A HAR CONTRACTOR CONTR	
F	a a	HO+	12875	2.72 1.84 1.51	23933	1.5.1.1.1	2.288	23388	2.58 2.58 2.58 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59	82282	26.9	2.72			<u>ずしていくないなるときでもないたちときになくさ</u>	
	is weig	<u>8</u> -9	11817	88111	- <u>1-ğ-1-1-</u>				. 3881 2 -	-19871-	-1-1-1-5-1-	- Ę	~ **** 1			
	КЮ. В	E Lang	5	11331	្រ ពេរទីត	្ត្រីក្រ	85111	¥11₿₿	1111		R R	I	• [•		tana tana tana tana	
	+0		3251	22 25 5 25	2 18781	2 88181	<u>اقاتا</u>	81188	duu	e	5 ² ا	1	1		a. More and the second se	
	6		8	zźźź	ž	žž	Ž	ž	1.1.1. 1			.	15 <u>5</u> 5	ality	tion C Canada Canada C Canada Final C Canada Final C C Canada Final C C C C C C C C C C C C C C C C C C C	
	1 O	d N	<u> 533 </u>	78855	ssiii	25 31	^{2]} ^{2]}	= 85	1 151	<u>-</u>	1951	ļ		ž	A Madulia Manualia Ma	
	Crat N	ີ ອີ	10 F	8318E	5088 <u>8</u>	82.28	12832	95839	25:28	15221	28 <u>5</u> 12	Nune			Note:	
	in the second se		1.12	122823 122823	201283 288823	80.98 80.98 80.98	25282 82382	28.822 22.222	87288 87888	52882 52882	20563 88863	10.01	3332		The second secon	
	lis erci	1	28228	R553 g	8228	1 80 a l	121126	≇8i 8 =	<u>88</u> 135		3 3555	3				
	cent; A	ປີ ³ ວູ	22322	z 81975	~ Z 87=88	22222	88=88	35975	8=388	85358	18897	3			Ĩ	
	i A	2 6	20000 20000	82726 82275	.2=53	8272 82272	- A-= 833.A	\$8.82	1533.	8,28.	85822	3	ё - С Г.	uthor		
	al web	Į			28282	28822	22212	- ' 22 86293	85233	.2222 J	28838	£		×	Aller Al	
		No.	28239	44949	0.44.50		+			···· <u>·</u>		• •	3-8-1-		eepessaageaageaaaaa	
	Į) F	\$3511	÷ \$38	1 <u>384</u> 1	5311 <u>5</u>	8.8.8 I w		1=111	i I 28 I	11911	3		Dete		.М. 114
		1018	82873	13333 53238	72898 55998	8.88.87 8.88.88 8.88.88	83855 83855 83858	22225 22225	29825 55555	35332 35322	352233 28882	60. To		6		Ğ
		Ŷ				2252R		8558B		****	=====	\$		Ź		₽

PAGE 9

TABLE 3

ANALYSES OF SOME ANTHOPHYLLITE ASBESTOS FROM G. P. MERRILL (1895)

<u>55 56</u> 9 55.92 56.21 	<u>57 58</u> 56.52 56.72	<u>59</u> 57.00	<u>60</u> 57.31	<u>61</u> 57,73	<u>62</u>
'9 55.92 56.21 	56.52 56.72	57.00	57.31	57.73	50 00
			•		55.00
		-		-	-
3.69 2.78	3.57 1.54	-	1.57	.72	. 91
5		10.32		-	-
11.00 8.58	10.08 10.76		7.06	8.61	6.09
-	-	-	-	-	-
52 26 . 32 28 . 95	5 27.13 27.46	29, 98	30.24	28, 77	29. 90
.60 .82	.10			.08	• 45
		-	 ,	. 57	. 68
		-	-	.14	.43
	- -		-	-	
		-	-	-	-
5 2.40 2.23	3 2.96 2.88	2. 29	2.73	2. 52	2. 35
	.60 .82 55 2.40 2.23	.60 .82 .10 	.60 .82 .10 	.60 .82 .10 - 	.60 $.82$ $.10$ $.08 .57 .14 .14 -$

Locality

<u>Analyst</u> 53. Carbon County, Wyoming. G. P. Merrill. 54. Franklin County, N. Carolina. 55. Tallapoosa County (?) Alabama. 56. Lenoir, Caldwell County, N. Carolina.

57. Rabun County, Georgia. 58. Alberton, Mafyland. 59. Warre nton, Warrenton County, N. Carolina. 60. San Diego, California. R-L. Packard. 61. Nacoochee, Georgia.

62. Mitchell County, N. Carolina.

Fig. 7

Graph to show the Relationship between SiO_2 and Al_2O_3 in Anthophyllites.

Fig. 8

Graph to show the Relationship between Al_2O_3 and TiO_2 in Anthophyllites.

PAGE II

	SPH	CTROG	RAPHIC	ANALY	SIS OF	F TEN A	NTHOPH	YLLITH	es and	ONE CU	IMMINGI	CONITE		
- i	<u>Aft</u>	er Joh	n C.	Rabbit	;t .	Weight	per c	ent.	(Da	shes =	= X , 0.	001%)		
AN PH	THO- YLLITE	Ag	Ba	Со	Cr	Cu	Li	Mo	Ni	РЪ	Sn	Sr	V	Zr
1	•	.004	. –	.003	-	.004	• 03		.002	-	-		• 001	-
8	i f	.002	-	.007	.03	.005	. 03		.01	-			• 04	.001
9		.002	-	.006	. 02	. 005	.03		.008	-	-		.03	. 002
10		.003	-	.004	• 01	• 006	. 04		.01	-	-	•	.01	. 003
14		. 002		.005	.003	.005	. 03		.004	-	-	•	. 03	.001
17		.003	<u></u>	.008	. 002	. 02	• 04		.006	-	-		.05	.001
29		.002	-	.007	. 2	.008	.005		.1	-	.002		.01	. 002
30	:	. 002	.006	. 006	.03	.003	. 02		.06	-	-		.001	. 002
53	-	.002	-	.007	.006	.03	.001		.07	-	-		-	.003
59		.008	-	. 008	.008	. 02	.002	١	.06	-	-	. 008	-	.001
	MMING- NITE						·			-				
Cc.	352 A.	.003	-	.003	.005	.01	.002	.001	.01	.001	.002	.001	.002	.005

TABLE 4.

4

,

>

PAGE 12

TABLE 5

OPTICAL PROPERTIES OF SOME ANTHOPHYLLITES.

				Fro	<u>m Table 2</u>			
8 .g.		nX	nY	nZ	nZ-nX	Sign	and 2V	Remarks
3.37 3.259 3.178 3.24 3.16	2. 3. 3. 4. 6. 7. 10. 12.	1.674 1.651 1.642 1.652 1.643 1.643	- 1.655 1.656 1.653 1.648	1.697 1.672 1.661 1.666 1.659 1.658	.023 .021 .019 .014 .016 .016	(+) (+) (+) (+) (+) (-) $r_{2}\circ 0$	- large 85 ⁰ 78 ⁰	Indices <u>+</u> 0.003 Positive elongation Positive elongation
3. 23	15. 15. 16.	1.644	1. 653	1.660 1.667	.016	70 ⁰ -	-80 ⁰	
3.22	20. 21.	1.656 - 1.6454	1.667 -	1.672	.015 - .015	{- - +	570 - 59-3 ⁰	ZV <u>+;</u> red violet Birefringence
	22. 24. 25. 26.	1. 629 1. 626 1. 6329	1. 638 1. 638	1.652 1.651 1.6517	.021 .025 .0188	$ \begin{pmatrix} - \\ + \\ + \\ + \end{pmatrix} $	87 ⁰ 66 ⁰ 02'	measured Red violet 2V measured with optic angle apparatus
	33. 34. 35.	1.605 1.608 1.6195	_ 1.6301	1.625 1.631 1.6404	.020 .023 .0209	(-)	- 88 ⁰ 46 '	As corrected by Bowen; 2V measured with optic angle apparatus
	38. 39. 40. 41. 43.	1.605 1.60 1.598	1.64	1.626 1.623 1.623 1.623 1.62	- - 025	(-)	- 67 ⁰ -	nX is nX'; F-C=0.014 nX is nX'; F-C=0.014 nZ minus nY=0.0065
	44. 45.	1.610	1.627	1.634 1.630	. 020	(-)	69 ⁰	2V measured on the Fedorov stage
. <u></u> .			Pleo	chroism	and orien	tation	1	
· · · ·	X				Y			Z
3. 5. 6. 13. 15. 16. 20.	greeni pale y yellow pale c colorl colorl pale y color	sh yello ellow dove bro ess ess ellow to less	own own	greeni browni browni clove colorl colorl same t brown	sh yellow sh yellow sh brown ess ess o pale tish		grayia dove a smoke dark t colori colori lilac	sh green gray gray prown less less
25.	COTOL	ess		<u> </u>				

In all of these Z=c, Y=b, the optic plane is parallel to (010), and absorption is X=Y Z.

.

۰.

TABLE 6a

PHYSICAL PROPERTIES OF SEVEN MONTANA ANTHOPHYLLITES

(RABBITT 1948)

								-		
		<u>]</u>			<u>8</u>			<u>9</u>		
F=4861. 3A ⁰	F	Z 1.6910	Y 1.6839	X 1.6751	Z 1.6821	Y 1.6768	X 1.6710	Z 1.6850	Y 1.6792	X 1.6728
D=5892. 9A0	D	1.6781	1.6670	1.6506	1.6718	1.6630	1.6553	1.6695	1.6603	1.6520
C=6562, 8AO	C	1.6726	1.6600	1.6477	1.6673	1.6570	1.6485	1.6630	1.6520	1.6431
Dispersion	F-C	.0184	.0239	.0274	.0148	.0198	0225	.0220	.0272	.0297
: · ·	F	.0159			.0111			.0122		
Birefringence	D	.0215			.0165			.0175		
	C	.0249			.0188	•		.1099		
Optic	F	(-)86 ^z			(-)88°	7		(-)840		
Sign	D	(+)87 ⁰			(+)86 ⁰			(+)87 ⁰		
and										
2 v	С	(<u>+</u>)900			(+)85 ⁰			(+)84 ⁰		
	x	Pale ta	n		Pale ta	an		Pale ta	an	
Pleochroism	Y	3 7			et			ų		
	Z	Tan			Tan			Smoke a	grey	

i

PAGE 14

TABLE 6b

PHYSICAL PROPERTIES OF SEVEN MONTANA ANTHOPHYLLITES

(<u>RABBITT 1948</u>)

*

...

.

,

÷							
i		<u>14</u>			<u>17</u>		
F=4861.3A ⁰	F	Z 1.6725	ү 1.6681	X 1.6631	Z 1.6777	Y 1.6736	X 1.6680
D=5892.9A ⁰	D	1.6619	1.6545	1.6476	1.6671	1.6595	1.6540
C=6562. 8AO	С	1.6574	1.6488	1.6410	1.6630	1.6540	1.6480
Dispersion	F-C	.0151	. 0207	.0221	.0147	.0196	.0200
	F	.0094			.0097		
Birefringence	D	.0143			.0131		
•	С	.0164			.0150		
Optic	F	(-)88 ⁰			(-)84 ⁰		
Sign	D	(+)87 ⁰			(+)81°		
and							
2 V	С	(+)86°			(+)78 ⁰		
• .	x	Pale tan			Pale ta	n	
Pleochroism	Y	P			73		
	Z	Tan			Tan		

TABLE 6c

PHYSICAL PROPERTIES OF SEVEN MONTANA ANTHOPHYLLITES

(RABBITT 1948)

		20			30		
				77	. 7	V.	¥
F=4861. 3A ⁰	F	Z 1.6451	¥ 1.6365	x 1.6305	1.6505	1.6430	1.6340
D=5892. 9A0	D	1.6354	1.6370	1.6180	1.6410	1.6280	1.6162
C=6562. 8A°	C	1.6315	1.6230	1.6127	1.6372	1,6205	1.6092
Dispersion	F2C	.0136	.0135	.0178	.0133	.0725	.0248
	F	.0146			.0165		
Birefringence	Ď	.0174			.0248		
•	С	.0188			. 0280		
Optic	F	+80 ⁰			(-)85 ⁰		
Sign	D	()88 ⁰			+ 88 ⁰		
and							
ev	С	(-)84 ⁰			(+)79 ⁰		
•	x	Colourl	ess		Colourl	ess	
Pleochroism	Y	Q			· •		
	\mathbf{z}	Colourl	ess		Colourl	ess	
	Ple	ochroism	in 1, 8, $- \sqrt{57}$	14 and 17 Orientat	is weak, ion all v	9 it is arieti <u>es</u>	moderate <u>Z = c Y</u>

.

FG. O.

PAGE 17.

TABLE 7.

Aluminium - aluminian Antimony - antimonian Argon - argonian Arsenic - arsenoan, arsenian Barium - barian Beryllium - beryllian Bismuth - bismuthian Boron - borian Bromine - bromian Cadmium - cadmian Calcium - calcian Carbon - carbonian Cerium - cerian Cesium - sesian Chlorine - chlorian Hydrogen - hydrogenian Indium - indian Iodine - iodian Iridium - iridian Iron - ferroan, ferrian Krypton - kryptonian Lanthanum - lanthanian Lead - plumbian Lithium - lithian Lutecium - lutecian Magnesium - magnesian Manganese - manganoan, manganian Mercury - mercuroan, mercurian Molybdenum - molybdenian Neodymium - neodymian Neon - neonian Nickel - nickelian Nitrogen - nitrogenian Osmium - osmian Oxygen - oxygenian Palladium - palladian Phosphorus - phosphorian Platinum - platinian Potassium - potassian Praseodymium - praseodymian Radium - radian Radon - radonian

Chromium - chromian Cobalt - cobaltian Columbium - columbian Copper - cuproan, cuprian Dysprosium - dysprosian Erbium - erbian Europium - europian Fluorine - fluorian Gadolinium - gadolinian Gallium - gallian Germanium - germanian Gold - aurian Hafnium - hafnian Helium - helian Holmium - holmian Rhedium - rhenian Rhodium - rhodian Rubidium - rubidian Ruthenium - ruthenian Samarium - samarian Scandium - scandian Selenium - selenian Silicon - silician Silver - argentian Sodium - sodian Strontium - strontian Sulfur - sulfurian Tantalum - tantalian Tellurium - tellurian Terbium - terbian Thallium - thallian Thorium - thorian Thulium - thulian Tin - stannian Titanium - titanian Tungsten - tungstenian Uranium - uranoan, uranian Vanadium - vanadian Xenon - xenonian Ytterbium - ytterbian Yttrium - yttrian Zinc - Zincian Zirconium - zirconian

PAGE 18.

Fig. 10

Plot of Edenites from the Literature on the Hallimond Diagram (Francis 1958).

!

Ca 2Mg5 SigO22 OH2

Ca 2 Mg3 A 14 Si6 022 OH2

- E EDENITES FROM EDENVILLE, NEW YORK
- G EDENITE TYPES FROM GLEN URQUHART
- I EDENITE FROM MADRAS, INDIA

FIG IO
WRITER'S LIST OF TREMOLITE SERIES FROM THE LITERATURE.

No.	A	B	<u>C</u>	D	E	F	<u>G</u>
Si02	53.96	54.73	54.80	51.86	52.78	54.78	54.33
A1203	3. 79	1.46	2. 58	3.81	5.77	3.67	2.68
Fe ₂ 03	1.15	-	2, 50	2.19	2.45	0.15	1.09
FeO	3.48	9, 60	4.75	5.97	6.61	7.38	11.68
MnO	0. 20	0.16	tr	0.04	0.17	0.18	0.00
MgO	25.01	17.94	20. 30	19.40	17.43	19.10	15.31
C a0	9. 53	12.76	12.08	10.73	11.90	12.65	12.46
Na ₂ 0	0.54	1.44	0, 82	2.16	0.68	nil	0.54
K ₂ 0	0.13	tr	0.24	0.28	0.07	nil	0.12
н ₂ 0+	1.07	2. 27	1.60	0, 98	2.10	2.39	2.04
H ₂ 0 ⁻	-	-	0.11	-		0,09	0.20
F	·	-	0.77	0,46	0.01	-	
Cl		· 		-	0.02		-
Total	. –	-	100.65	99 . 58	100.58	100.91	100.74
O for F+	Cl -		. 32	- .	.01		
TiO ₂	0.12		0.10	1.92	0.43	0.22	0.29
Total	<u>99.81</u>		<u>100.33</u>	<u>99. 58</u>	<u>100.51</u>	<u>100.91</u>	<u>100.74</u>

..**#**

	WRITER'S	LIST OF TH	REMOLITE	SERIES F	ROM THE	LITERATU	<u>RE</u> .
			(cont	.)			
No.	H	<u> </u>	<u>1</u>	K	Ŀ	M	<u>0</u>
$\mathtt{Si0}_2$	54.	73 54.33	56.15	51.85	56, 60	56 . 04	56.10
A1203	1.	46 2.68	3 1.24	4.36	1.41	1.23	1 . 30
Fe ₂ 03	-	1.09	0.78	2. 58	1.04	1.40	0.48
FeO	9.	60 11. 68	3 5 <u>.</u> 50	5.46	4.28	4.10	1.01
MnO	0.	16 0.00	0.48	0.35	0, 20	0.18	0,14
MgO	17.	94 15.31	21.19	19.48	22. 26	22. 20	24.94
C a0	12.	76 12.46	12.08	10.60	12.50	11.56	13.06
Na ₂ 0	1.	44 0.54	0.19	2.15	0. 58	0.79	0.84
к ₂ 0	tr	0.12	0.28	0,35	0, 27	0.48	0, 90
н ₂ 0+	2.	27 2.04	1.81	1.21	0, 82	0.67	n. d.
н ₂ 0 ⁻	_	· <u></u>		0.13	-	-	
F	· -	-	0,04	0.46	-	0.16	0.83
Cl	-	-	-		-	—	
Total	100.	57. 100.74	99, 84	100.24	100.00	99, 97	100.35
0 for 2	F+Cl			. 22	-	0,08	0.42
Ti0 ₂	0. :	21 0.29	_	1.26	0.07	0.15	0.10
Total	100.	<u>57</u> <u>100.74</u>	<u>99.84</u>	100.02	100.00	<u>99.89</u>	99 . 9 3

	WRIT	ER'S LIS	T OF TRE	MOLITE S	SERIES FR	OM THE D	LITERATURE.
		•		(cont.)		
No.		P	<u>Q</u>	R	<u>s</u>	<u>T</u>	U
Si0 ₂	•	57.30	56.00	54.84	57.69	58 . 38	57.45
Al ₂ 03		1.42	2.01	3.02	1 . 80	0,44	1.30
Fe_2O_3		0.96	1.34	2. 22	0,00	0, 37	0.18
FeO		0.28	4. 27	11.22	0.55	-	0. 22
MnO		0.05	0,15	0, 30	tr	1.54	0.07
MgO		25, 20	22.12	15.28	24.12	25.01	24.85
CaO		12.84	11.84	11.52	13.19	10,95	12.89
Na ₂ 0		0.18	1.44	0. 32	0.48	0,76	0.67
к ₂ 0		0.66	0.36	0.19	0. 22	0, 07	0.54
н ₂ 0+		0.68	0.63	1.02	1.56	2.17	1.16
н ₂ 0-	•	-	_	-	0,10		0, 09
F		0. 28	_	-	0.37	0, 27	0.77
Cl		-	-	-	. —	-	-
Total		100.56	100.16	99. 93	100.22	100.01	100.19
0 for F+Cl		0.14	-	-	0.15	0.11	0. 32
TiO ₂	· .	0, 09	tr	tr	0.14	0.05	-
<u>Total</u>		<u>100.42</u>	100.16	<u>99. 93</u>	100.07	<u>99. 90</u>	99.87

WRITER'S	LIST	OF	TREMOLITE	SERIES	FROM	THE	LITERATURE,	
				the statement of the stat				

(cont.)

A.	Actinolite.	Pirani.	(Min. Abs.	12 p.30).
B.	Actinolite.	Tilley.	(1938).	
С.	Actinolite.	Ford.	(1914).	
D.	Actinolite.	Merwin & Was	shington.	(1923).
E.	Actinolite.	Mathias.	(1952).	
F.	Actinolite.	Tilley.	(1938).	
G.	Actinolite.	Tilley.	(1938).	
H.	Actinolite.	Tilley.	(1938).	
I.	Actinolite.	Tilley.	(1938).	
J.	Actinolite.	Ford.	(1914).	
K.	Actinolite.	Ford.	(1914).	
L.	Tremolite.	Parsons.	(1930).	
М.	Tremolite.	Parsons.	(1930).	
0.	Tremolite.	Parsons.	(1930).	
P.	Tremolite.	Parsons.	(1930).	
ବ୍ଦ	Tremolite.	Parsons.	(1930).	
R.	Tremolite.	Parsons.	(1930).	
S.	Tremolite.	Ford.	(1914).	
T.	Tremolite.	Bygden.	(1933).	
Ŭ.	Tremolite.	Ford.	(1914).	

TABLE	8

TREMOLITE SE	RIES ANAL	YSES REC	ALCULATED	ON THE B	ASIS 24 (C	<u>, OH, F)</u> .
		(c	ont.)			
	<u>A</u>	• <u>B</u>	<u>C</u>	D	E	F
Si	7.21	7.73	7.65	7.79	7.39	7,59
Al (4)	0.6	0.24	0.35	0.21	0, 609	0.409
Al (6)		-	0.07	0.58	0.348	0.189
Fe"	0.112	-	0.26	0.22	0. 252	0.046
Fe"	0.35	1.14	0.55	0.65	0.774	0, 855
Mn	0.22	0.02	tr	-	0.017	0.021
Mg	4.97	3. 78	4.22	3, 80	3.66	3. 94
Ca	1.36	1.93	1.81	1.5	1.78	1.878
Na	0.14	0.39	0.22	0, 54	0.185	-
K	0,26	tr	0.04	0.04	0.017	-
OH	1.3	2.14	1.49	. 84	1.948	2. 21
F	-	-	0.34	0.18	0.008	-
Ti	0.26	—	0.01	0.19	0.04	0,024
Cl		. –	-		. 02	-
Al	0.6	0.24	0.42	0.58	0. 957	0, 598
(Fe)+Al	1.59	1.40	1.24	1.67	2.01	1.55
Ca+Na+K+Mg	6.73	6.10	6 . 29	5.88	5. 54	5, 82
Na+K	0.40	0, 39	0.26	0, 58	0.20	0,00
Fe"+Fe"' +MnO+Ti	0, 97	1.16	0,82	1.09	1.05	• 95

•7

TREMOLITE SERIES	ANALYSES	RECALCULATED	ON	THE	BASIS	24	(O, OH,	<u>F)</u> .
------------------	----------	--------------	----	-----	-------	----	---------	-------------

· · · ·	· ·	(co	ont.)			
	G	H	ī	J	<u>K</u>	L
Si	7.43	7.73	$7_{\bullet}74$	7.83	7. 38	7.95
Al ⁽⁴⁾	0.257	0.244	0. 26	0.17	0.62	0,05
Al (6)	0.193	-	0.19	0.04	0.11	0.18
Fe ¹¹	0.116	-	0.12	0.02	0, 22	0.11
Fe"	1.393	1.135	1. 39	0.61	0.65	0, 50
Mn	. –	0.019	-	0.03	0.04	0.02
Mg	3.25	3. 78	3, 25	4.49	4.13	4. 66
Ca	1.901	1.932	1.90	1.85	1.62	1.88
Na	0.145	0.394	0.15	0.13	0.59	0.16
K	0,022	-	0. 02	0.03	0.06	0, 05
OH	1.94	8. 14	1.94	1.82	1.15	.77
F	-	· •	-	0.05	0.21	-
Ti	0.032	0,022	0.03	nil	0.14	0.01
СІ	-	-	-	-	-	-
Al	0,450	0.244	0.45	0.21	0, 73	0, 23
(Fe)+Al	1.99	1.42	1.80	. 87	1.84	0, 89
Ca+Na+K+Mg	5, 30	6.10	5. 32	6. 50	6.40	6,75
Na+K	0,17	0.39	0.17	0.16	0 . 65	0.21
Fe"+Fe"' +MnO+Ti	1.54	1.18	1.54	0.66	1.11	0.64

TREMOLITE S	ERIES ANA	LYSES REC	ALCULATED	ON THE B	ASIS 24	(0,0H,F).
•		(c	ont.)			
•	M	<u>0</u>	P	<u>କ</u>	R	<u>s</u>
Si	7, 92	7.91	7.91	7.90	7.92	7.88
Al ⁽⁴⁾	0, 08	0, 09	0,09	0.16	0, 08	0.12
Al ⁽⁶⁾	0.13	0.13	0.14	0. 23	0.43	0.17
Fe"	0.15	0.05	0.10	0.14	0.24	-
Fe"	0.48	0.12	0.03	0. 50	1. 35	0,06
Mn	0.02	0.02	0.01	0.02	0,04	tr
Mg	4.67	5.24	5.18	4.65	3.29	4. 90
Ca .	1.90	1.97	1.90	1.79	1.78	1.93
Na	0.22	0. 23	0.21	0.39	0.09	0.13
K	0.09	0.16	0.12	0.06	0.04	0,04
OH	. 63	n.d.	0.63	0.59	0, 98	0.42
F	0.07	0.87	0,12	-	-	0.16
Ti	0.02	0.01	0.01	-	tr	0.02
Cl	• .	· • •	_	-	-	-
Al	0, 21	0. 22	0. 23	0.33	0.51	0,29
(Fe)+Al	0.88	0.42	. 38	• 99	2.14	. 37
Ca+Na+K+Mg	6.88	7.60	7.41	6.89	5. 26	7.00
Na+K	0.31	0. 39	0.33	0.45	0.51	0. 70
Fe"+Fe"' +MnO+Ti	0, 67	0, 20	0.15	0.66	1.63	0.08

TABLE 8

TREMOLITE S	ERIES ANAL	LYSES REC	ALCULATED ON	THE BASIS 24 (0, OH, F).
		(c	ont.)	
	<u>T</u>	<u>U</u>		0
Si	7.97	7, 87	E154.70	E1197. 5562
(4)	0,07	0.13	,	
Al (6)	, –	0,08		
Fe"	0.03	0.02		
Fe ¹¹	-	0.02		
Mn	0,18	0.02	1	0
Mg	5.08	5.10	E58.04	E378 . 874 8
Ca	1.59	1.90		
Na	0.19	0.17		
К	0.02	0.08		
OH	1.97	1.09		
F	0.11	0.37	·	
Ti	0.01	-		
Cl	-			
Al	0.07	0.21		9
(Fe)+Al	. 29	0. 27	E23 . 99	E36. 32 19
Ca+Na+K+Mg	7.05	7.25	E128.01	E829. 3599
Na+K	0, 38	0.25	E7.35	E 3. 519
Fe"+Fe"' +MnO+Ti	0. 22	0.06	E16.38	2 E 18.0272

TABLE 8

	PHYS	ICAL PROPERTIE	S OF TREMOLITE	SERIES.	
No.	<u>A</u>	B	<u>C</u>	D	E
Ng	1.634	1.641	1.641	1 <u>,</u> 660	1.638
Nm	1.628	1.630	1.6304	1.650	1.642
Np	1.619	1.617	1.616	1.636	1.627
Z _A c	19	18	14 ⁰ 47 ⁰	15°-22 ⁰	17 ⁰
2 V	79 <u>1</u>	calc. 105 ⁰ 6' Np incorrect	2Vm 81 ⁰ 30 calc. 83 ⁰ 16	75 ⁰	83 ⁰
S. G	3.190	3.090	3.029	3.079	3.105
$SinZ_{A}c$	3256	3090	2551	3090	2924
Sin2V	9833	9999	9890	9659	9925
Y-x	.015	• 02 <u>4</u>	.025	.024	.026

ŧ

	PHYSICAL PROPERTIES OF TREMOLITE SERIES.								
,	(cont.)								
No.	F	<u>G</u>	Ħ	Ī	<u>7</u>				
Ng	1.638	1.650	1.641	1.650	1.641				
Nm	1.623	1.641	1 . 630	1.641	1.6330				
Np	1.618	1.627	1.617	1.627	1.617				
$Z_{\wedge}c$	17	20	18 ⁰	20	14 ⁰ 57 ⁰				
2V	84 28	77 26	85-12	77 26	81 ⁰ 38'				
S. G	3.060	3.110	3.090	3.110	3.047				
$SinZ_{\wedge}c$	2924	2420	3090	3420	2585				
Sin2V	9953	9761	9965	9760	9895				
Y-x	. 020	. 023	.024	.023	.024				

PAGE 30

TABLE 8

PHYSICAL PROPERTIES OF TREMOLITE SERIES.

(cont.)

No.	<u>K</u>	Ŀ	M	<u>0</u>	<u>P</u>
Ng	1.655	1.634	1.639	1.636	1.636
Nm	1.6442	1.626	1.626	1.622	1.623
Np	1.628	1.616	1.611	1.609	1.609
$Z_{\Lambda}c$	130 35'	18	17 ⁰	17 ⁰ -18 ⁰	16
2 V	76 ⁰ 58'	83 ⁰ 34 '	85 ⁰ 54 ' C a Np	lc. 92 ⁰ 6' incorrect	87-54
S. G	3.137	3 . 044	3.051	3.024	2, 998
SinZ ₄ c	2348	3090	2924	3007	2756
Sin2V	9743	9937	9974	9999	9993
Y-x	.027	.018	• 028	.027	.027

	PHYSICAL PROP	PERTIES OF TREMOLI	<u>TE SERIES</u> .
		(cont.)	
No.	ବୁ	<u>R</u>	<u>S</u>
Ng	1.636	1.653	1.635
Nm	1.626	1.642	1.6192
Np	1.613	1.628	1.602
Z _A c	16 ⁰	15 ⁰	16 ⁰ 38'
27	82 ⁰ 6'	83 ⁰ -16'	86 ⁰ -29'
S. G	3.042	3.131	2, 980
$SinZ_{\Lambda}c$	2756	2588	2863
Sin2V	9905	9931	9981
Y-x	. 023	• 025	.033

PHYSICAL PROPERTIES OF TREMOLITE SERIES.

(cont.)

No.	<u>T</u>	<u>U</u>		
Ng	1.629	1.625	E 32 . 827	2 E 53.8822
Nm	- -	1.6132		
Np	1.604	1.599	E32. 340	2 E 52.295588
Z _A c	15 ⁰	20 ⁰ 1'		
2 V	79 ⁰ 20'	830 231		
S.G	2.980	2. 997	E61.294	2 E 187.908036
SinZ _i c	2588	3423	E5. 8693	2 E 1.74081301
Sin2V	9827	9934	E19. 7864	2 E 19.57690252
Y-x	.025	.026		

WRITER'S LIST OF COMMON HORNBLENDES FROM THE LITERATURE.

No.	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
Si02	39, 78	41.25	41.15	37.40	34.185	38, 44	38, 74
A1203	11.39	10.46	16.14	12.34	11.527	11.03	11.42
Fe ₂ 03	5.93	3.85	2. 38	4.16	12.621	5, 80	4.34
FeO	14. 21	16.28	12.38	25. 84	21.979	24.67	23.28
MinO	0, 68	0, 76	0.09	1.24	0.629	0.48	0.44
MgO	9. 62	8.02	11.45	2. 20	1.353	1.97	3. 25
C a0	9 . 6 8	10.26	11.15	9.72	9. 867	9. 56	10.16
Na ₂ 0	1.57	1.58	1.68	1.80	3.290	1.81	1.98
к ₂ 0	1 . 60	1.46	1.93	1.36	2.286	1.72	1.97
н ₂ 0+	2. 59	1.69	1.36	-	0.348	1.09	0.83
н ₂ 0 ⁻	0, 25	0.10	0.05	0, 60	-	9. 19	1.09
F.	1.29	1.17	0.8	-	-	• 96	-
Tio ₂	1.47	2. 90	0, 50	3. 20	-	2. 37	2, 83
Cl	0. 58	0.60	-	-	. –	. 60	0, 77
Total	100.64	100.32	101.06	99.86	98.084	100.69	101.05
0 for F+Cl	0.67	0.62	0. 34	_	-	0, 54	0, 57
Total	<u>99, 97</u>	<u>99. 70</u>	100.72	. –	-	<u>100.15</u>	<u>100.48</u>

W	RITER'S	LIST OF	COMMON	HORNBLEND	ES FROM	THE LITER.	ATURE.	
			·	(cont.)				
No.		<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	<u>14</u>
Si0	2	38, 24	41.67	36.66	43.30	52.19	42.32	48, 38
Al_2	03	10.17	11.52	14.81	10.69	6.24	15.62	10,83
Fe ₂	Og	5,00	4.71	8.10	3.94	0.64	4.22	0, 76
F e0)	26. 64	14.91	21.67	7.00	4.61	6. 78	1. 56
MnO) · · · ·	0, 28	0.13	0.61	0.35	0.19	0.15	0.04
MgO	I	1.07	9.46	2. 20	16.02	20.00	13.68	20, 78
C a0)	10.64	11.04	9. 38	9.73	13.15	11.78	12.24
Na ₂	0	1.50	1.54	2.87	4. 58	0.45	2.41	2, 69
к ₂ 0		1.57	2.13	2.61	0.66	0.24	0. 34	1.38
H ₂ 0	, +	1.88	1.01	0.33	1.80	0.44	2.13	0.91
н ₂ 0	-	-	0.03	-		-	-	-
F		1.06	1.40	-	-	-	0. 02	1.82
Ti0	2	2 . 00 [°]	1.72	1.04	1. 55	0.48	0. 27	0.05
Cl		0.51	- :	-	. –	-	-	-
Tot	al]	LOO. 07 J	.01.28	100.28	99 . 62	99 . 84	99, 90	101.44
Of F+C	or l		0.59	-	-	-	-	0.76
Tot	al]	00.69	-	-	-	-	100.68

WRITER'S LIST OF COMMON HORNBLENDES FROM THE LITERATURE.

(cont.)

No.	15	16	<u>17</u>	<u>18</u>	<u>19</u>	20	21	<u>22</u>
SiO2	42.05	48.10	43.90	44. 96	43. 33	41.90	44. 56	53. 56
A1203	12.60	11.05	12.52	14.90	15.28	14.90	9, 57	6.45
Fe ₂ 03	1.60	0.67	0.38	1.51	1.11	1.90	0, 54	0.49
Fe0	11.51	1.65	5.95	4. 05	8, 89	3.50	7, 99	4.53
MnO		-	-	0.09	0.13	0,06	0, 22	0.19
MgO	13.48	20.60	18.91	16 <u>.</u> 05	13.77	18.54	22. 37	19.49
C a0	11.85	12.50	12.69	11.92	12.15	13.11	7.94	13.49
Na ₂ 0	1.97	2.54	1.34	1.51	2.41	2.33	0. 27	0,46
к ₂ 0	1.90	1.24	1.30	0.12	0, 87	1.46	0,07	0.24
H_20^+	0.41	0.71	0.51	2.26	0, 85	0, 35	5.51	0.45
н ₂ 0 ⁻	0,07	0.11	0.10	-		-	-	-
F	1.82	1.90	2.29	0, 02	0.73	3.06	0.00	-
Ti0 ₂	0.91	0.10	.009	0. 23	1.23	0.46	0. 56	0.49
Cl	-			0,05	0.06	-	-	-
Total	100.17	101.17	100.59	99.72	100.81	100.30	100.14	100.00
0 for F+C 1	0.17	. 80	- C	hromiun 1.92	n 0.32			-
<u>Total</u>	<u>99.41</u>	100.37	<u>99.63</u>		100.45	-		-

WRITER'	S LIST	OF COMM	ION HORNE	LENDES F	ROM THE	LITERATURE.
			(con	ut.)		
No.	23	24	<u>25</u>	26	27	28
sio ₂	51.88	44.15	42.11	47 .14	43.01	45. 50
Al ₂ 03	7.36	10.59	10.05	9, 44	12.01	9, 66
Fe ₂ 03	2.13	5.02	2. 82	3.66	3. 35	6.06
FeO	5.68	8, 89	15.14	8, 38	9.07	6. 90
MnO	0, 25	D. 17	0.24	0.11	0.19	0.18
MgO	16.36	12.30	11.48	14.44	14.00	14.61
C a0	13.70	11.80	11.34	10.53	11.79	11.24
Na ₂ 0	0.44	1.26	1.01	1. 15	1.08	1 . 20
K ₂ 0	0, 60	1.10	1.43	1.30	1.01	0.92
н ₂ 0+	0, 96	0, 95	2.02	2.00	1.40	1.73
H ₂ 0	-	0.11	0,06	0.53	0,06	0.19
F	-	0, 84	-	-	0.84	trace
TiO2	0.41	3. 73	2. 76	1.74	2.87	1.73
Cl	0.10	-	° 	-	, -	-
Total	99, 87	100.91	100.46	100.42	100.68	99. 92
O for F+Cl		0.36	-	-	0, 36	-
Total		<u>100.55</u>	-	-	100.32	-

WRI'	TER'S	LIST O	F COMMON	HORNBLE	NDES FROM	THE LI	TERATURE.
				(cont.)		
No.		<u>29</u>	<u>30</u>	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>
Si0 ₂	. ••	48. 32	48.96	48, 92	44.23	48.71	45.09
Al ₂ 03		6.43	7.85	5, 88	14.62	9,48	10.43
Fe ₂ 03		5.45	3. 62	6, 50	5.11	2, 33	3, 90
FeO		7.90	8, 25	7.79	8. 94	9.12	10.14
MnO		0.13	0.12	0.17	0.21	0.23	0, 24
MgO		14.82	15.69	14.32	10.78	14.43	12.52
C a0	:	11.99	11.90	11.37	10.81	11.93	12.29
Na ₂ 0		0, 99	1.04	1.20	1.51	1.16	1.60
K ₂ 0		0.67	0 . 53	0.71	0.61	0 .16	0.78
H_20^+	•	1.61	0, 63	1.37	1.42	1.83	1.76
H ₂ 0 ⁻		0.06	0.08	0.18	0.08		-
F		trace	1.41	0. 27	0.22	0. 23	0. 28
TiO ₂	• .	1.43	1.07	1.21	1.81	0. 32	0.84
Cl	•	-	-	-	—	-	-
Total		99, 80	101.15	99.89	100.35	99, 92	99 . 87
0 for F+Cl	•	-	0.61	0.11	0.09	0.10	0.12
Total		-	<u>100.54</u>	<u>99. 78</u>	100.26	<u>99.82</u>	<u>99. 75</u>

PAGE 37

٠÷

	WRITER'S	LIST OF	COMMON	HORNBLEN	IDES FROM	THE LIT	ERATURE.
		•		(cont.))		
No	•	<u>35</u>	<u>36</u>	<u>37</u>	<u>38</u>	<u>39</u>	<u>40</u>
Si	02	45.28	44.94	42.90	42.65	44.73	41.72
Al	2 ⁰ 3	11.00	11.24	11.92	15. 89	11.54	15.80
Fe	2 ⁰ 3.	4.42	2.87	5.04	5, 33	2.87	3. 36
Fe	0	10.50	12.61	12.58	14.65	11.07	6.03
Mn	0	0, 28	0. 22	0, 30	0.43	0,40	0.12
Mg	0	12.02	11.98	10,30	6 . 64	11.89	14.14
Ca	0	12.48	11.61	11.49	10.13	11.83	12.92
Na	2 ⁰	1. 59	1.86	2.40	2.08	1.45	1.42
K2(C	0, 97	0.47	1.19	0, 28	0, 60	2.60
H20	o +	1.02	1.26	1 . 32	1.64	1. 79	0.85
H2(5	-	-	- .	-	-	0, 04
F	•	0.31	0.24	0.20	0. 27	0.16	0.16
Ti(D ₂	1.01	1.79	1.44	0, 65	1.32	0.81
Cl		-		-	 .	-	-
Tot	al	100.68	101.09	101.08	100,68	99 . 65	-
0 f F+C	Cor Cl	0.11	0.10	0.08	0.11	0.07	-
Tot	al	100.57	<u>100.99</u>	101.00	100.57	<u>99, 58</u>	<u>100.33</u>

WRITER'S LIST OF COMMON HORNBLENDES FROM THE LITERATURE.

(cont.)

REFERENCE.

1.	Femaghastingsite.	Buddington & Leonard.	(1953).
2.	Femaghastingsite.	Buddington & Leonard.	(1953).
3.	Pargasite.	Howie, R. A.	(1955).
4.	Ferrohastingsite.	Billings.	(1928).
5.	Ferrohastingsite.	Billings.	(1928 }.
6.	Ferrohastingsite.	Billings.	(1928).
7.	Ferrohastingsite.	Buddington & Leonard.	(1953).
8.	Ferrohastingsite.	Sahama.	(1947).
9.	Hornblende.	Howie.	(1955).
10.	Hastingsite.	Walker.	(1924).
11.	Magnesio-hastingsite.	Billings.	(1928).
12.	Called Edenite.	Mikkola & Sahama.	(1936).
13.	Edenite.	Subramanian.	(1956).
14.	Pargasite.	Laitajari.	(1918-23).
15.	Pargasite.	Laitakari.	(1918-23),
16.	Pargasite.	Laitakari.	(1918-23).
17.	Pargasite.	Laitakari.	(1918-23).
18.	Pargasite.	Subramanian.	(1956).
19.	Pargasite.	Rosenzweig & Watson.	(1954).
20.	Pargasite.	Parsons.	(1930).
21.	Hornblende.	Kennedy & Dixon.	(1936).
22.	Hornblende.	Mikkola & Sahama.	(1936).

WRITER'S LIST OF COMMON HORNBLENDES FROM THE LITERATURE.

(cont.)

REFERENCE.

23.	Hornblende.	Jones.	(1930).
24.	Hornblende.	Deer.	(1938).
25.	Hornblende.	Deer.	(1938).
26.	Hornblende.	Deer.	(1938).
27.	Hornblende.	Deer.	(1938).
28.	Hornblende.	Deer.	(1938).
29.	Hornblende.	Deer.	(1938).
30.	Hornblende.	Deer.	(1938).
31.	Hornblende.	Deer.	(1938).
32.	Hornblende.	Deer.	(1938).
33.	Hornblende.	Rosenzweig & Watson.	(1954).
34.	Hornblende.	Rosenzweig & Watson.	(1954).
35.	Hornblende.	Rosenzweig & Watson.	(1954).
36.	Hornblende.	Rosenzweig & Watson.	(1954).
37.	Hornblende.	Rosenzweig & Watson.	(1954).
38.	Tschermakite.	Rosenzweig & Watson.	(1954).
39.	Hornblende.	Rosenzweig & Watson.	(1954).
40.	Hornblende.	Hallimond.	(1947).

TABLE 8a

COMMON 1	HORNBLENDE	ANALYS	ES RECAL	CULATED	ON THE	BASIS	24 (0,0	H,F).
	•							
No.	<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	<u>8</u>
Si	5, 98	6. 30	6.039	6.10	5.75	6. 20	6.18	6.16
Al ⁽⁴⁾	2.02	1.70	1.961	l.47	2.25	1.80	1.82	1.84
Al ⁽⁶⁾	0.01	0.17	0.821	0, 90	0.04	0.29	0.33	0.09
Fe ^{nt}	0.67	0.44	0.264	0.51	1.60	0.070	0, 52	0, 60
Fe ¹¹	1.77	2.07	1.515	3.53	3.09	3.31	3.12	3.60
Mn	0.09	0.09	0.011	0.17	0.09	0.07	0.06	0.04
Mg	2.17	1.84	2.519	0.53	0.34	0.47	0, 78	0,26
Ca	1.56	1.68	1.752	1.70	1.78	1.65	1.74	1.84
Na	0.46	0,48	0.475	0.57	1.07	0, 56	0.61	0,47
К	0.31	0, 28	0.352	0.28	0.49	0.35	0.40	0. 32
OH	2.60	1.72	1.340	0, 65	0.39	1.17	0.88	2.04
F	0.61	0.56	0. 370	0.00	-	0.48	0.48	0.54
Ti	0.17	0.33	0.053	0.39		0.29	0.34	0.30
Cl	0.16	0.15	-	•	-	0.15	0.21	0.14
Al	2.03	1.87	2.78	2.37	2.29	2,09	2.15	1.93
Fe"+Mn +Fe"'+Ti	2.70	2, 93	1.84	4.60	4.78	4.37	4.04	4.38
(Fe)+Al	4.73	4. 80	4.62	6. 97	7.07	6.46	6.19	6.31
Ca+K+Na+	Mg 4.5	4.28	5.10	3.08	3.68	3.03	3. 53	2.89
Na+K	0.77	0, 76	0.83	0, 85	1.56	0.91	1.01	0.79

COMMON 1	HORNBLENDE	ANALYSES	RECAL	CULATED	ON THE E	ASIS 24	- (0,OH,	<u>F)</u> .
			(cont	t.)				
No.	9	10	<u>11</u>	12	<u>13</u>	14	15	<u>16</u>
Si	6.229	5. 97	6.44	7.151	6.33	6.33	6.46	6.76
Al ⁽⁴⁾	1.771	2.03	1 . 56 [°]	1.00	1.67	1.58	1.54	1.24
Al ⁽⁶⁾	0.257	0.81	0.30	0.11	0, 99	-	0, 56	0, 58
Fe"	0. 520	0, 99	0.42	0.07	0.452	0, 06	0, 09	0.07
Fe"	1.857	2. 95	0.87	0.56	0,818	0.17	1.48	0.18
Mn	0.016	0, 08	0.04	0 . 02	0.017	-	-	
Mg	2.120	0.53	3. 56	4.29	2. 95	4.11	3.05	4.35
Ca	1.766	1.64	1.54	2.03	1 . 83	1.70	1.85	1.88
Na	0.448	0.91	1.24	0.13	0, 678	0, 68	0, 60	0, 69
K	0,394	0.54	0.14	0.04	0.052	0.24	0,40	0,24
OH	1.004	0.36	1.60	0.42	2.053	0. 82	0.40	0, 67
F	0. 665	. 🗕		-	0, 008	0,38	0.44	0, 84
Ti .	0.188	0.14	0.17	0,05	0,035	-	-	0.001
Cl	-	-	-	-	0.008	-	· - ·	-
Al	2.03	2, 84	2. 28	1.06	2.66	1.58	2.10	1.82
Fe"+Mn +Fe"'+T	2,58	4.16	1.50	0.70	1.32	0, 23	1.57	0.26
(Fe)+Al	4.61	7.00	3.78	1.76	3, 98	1.81	3, 67	2.08
Ca+K+Na-	Mg 4.73	3. 62	6.48	6. 49	5.51	6.73	5, 90	7.16
Na+K	0.84	1. 45	1.38	0.17	0.73	0. 92	1.00	0, 93

COMMON	HORNBLENDE	ANALYSES	S RECA	LCULATED	ON THE	BASIS	24 (0,	OH,F).
	•		(co	ont.)	٩			
No.	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u> 21</u>	22	<u>23</u>	<u>24</u>
Si	6. 35	6.38	6.32	6.04	6.25	7.58	7.42	6.451
Al (4)	1.65	1.62	1.68	1.96	1.59	0.48	0, 58	1.509
_{Al} (6)	0.49	0, 87	0, 95	0. 58	-	0.60	0.68	0, 320
Fe"'	0.04	0.16	0.12	0.21	0, 05	0.07	0. 23	0.555
Fe"	0.72	0.48	1.09	0.42	0. 93	0, 54	0, 68	1.091
Mn	-	0.01	0, 02	0.01	0.03	0, 02	0.03	1.021
Mg	4.10	3.39	3.00	3.99	4.68	4.11	3.49	2.694
Ca	1.97	1.80	1.90	2.03	1.20	2.04	2.10	1.858
Na	0, 38	0.41	0, 68	0.65	0.06	0.13	0,12	0.359
K	0.24	0, 02	0.16	0.27	0.02	0.04	0.11	0.207
OH	0.50	2.15	0.83	0.16	3, 98	0.42	0.92	0, 930
F	1.04	0.01	0. 33	1.40		-	- .	0.406
Ti	0.08	0.03	0.13	0, 50	0.06	0.05	0.04	0.411
Cl	~	0,02	0. 02	-	. 	-	-	-
Al	2.14	2, 49	2.63	2.54	1.64	1.02	1.26	1.83
Fe"+Mn +Fe"'+T	i 0.84	0. 70	1.36	0.69	1.07	0.68	0. 98	2.08
(Fe)+Al	2. 98	3.19	3. 99	3. 23	2.71	1 . 70	2. 24	3.91
Ca+K+Na	+Mg 6.69	5. 62	5.74	6.94	5.96	6.49	5, 82	5.12
Na+K	0, 62	0.43	0.84	0. 92	0.08	0.17	0, 23	0. 57

COMMON	HORNBLENDE	ANALYSES	RECALCU	JLATED ON	THE BAS	SIS 24 (C), OH, F).	
			(cont.)			¢	
No.	25	26	27	28	29	<u>30</u>	<u>31</u>	<u>32</u>
Si	6.314	6.813	6. 288	6.630	7.044	7.068	7.155	6.436
Al ⁽⁴⁾	1.680	1.187	1.712	1.370	0, 956	0, 932	0.845	1.564
Al (6)	0.090	0.410	0. 350	0, 280	0.145	0.400	0.165	0.934
Fe"'	0.319	0.397	0.368	0,663	0, 597	0.394	0.715	0.559
Fe"	1.896	1.013	1.109	0, 840	0.964	0.995	0, 952	1.087
Mn	0.031	0.013	0, 023	0.022	0.016	0.015	0.021	0.026
Mg	2. 565	3 <mark>,</mark> 109	3.049	3.171	3.218	3. 373	3.120	2. 337
Ca	1.822	1.629	1.845	1.754	1.871	1.840	1.780	1.685
Na	0.294	0.321	0.306	0.338	0.280	0.291	0.339	0.424
K	0.274	0, 240	0.188	0.172	0.124	0.097	0.132	0.114
€H	2.018	1.927	1.364	1.681	1. 565	0.607	1.335	1.377
F	-	-	0. 386	- .	-	0.642	0.123	0.105
Ti	0.311	0.188	0.314	0.189	0.156	0.117	0.135	0.198
Cl	-	-	-	- • •	•			
Al	1.78	1 . 60	2.06	l.65	1.10	1.33	1.01	2, 50
Fe"+Mn +Fe"'+Ti	2. 56	1.61	1.72	1.71	1.73	1.52	1.81	1.87
(Fe)+Al	4.34	3.21	4.78	3. 36	2.83	2.85	2. 92	4.37
Ca+K+Na+	Mg 4.95	5. 28	5.40	5.43	5.45	5.60	5. 37	4. 50
Na+K	0, 56	0, 56	0, 50	0.51	0,40	0.39	0.47	0, 53

COMMON	HORNBLENDE	ANALYSES	RECALCULAT	ED ON THI	E BASIS 24	4 (0,0H,F)
	1		(cont.)			
No.	<u>33</u>	34	<u>35</u>	<u>36</u>	<u>37</u>	<u>38</u>
Si	6.99	6, 65	6, 67	6. 62	6.38	6. 34
Al ⁽⁴⁾	1.01	1.35	1. 33	1.38	1.62	1.66
Al (6)	0. 59	0.46	0, 58	0, 57	0.47	1.13
Fe"'	0, 25	0.43	0.49	0. 32	0.56	0.60
Fe"	1.09	1.25	1.29	1 . 55	1.56	1.82
Min	0.03	0,03	0.04	0.03	0.04	0.05
Mg	3.09	2.74	2.62	2.63	2. 28	1.46
Ca	1.84	1.94	1.97	l.83	1.83	1.62
Na	0.32	0,46	0.46	0. 53	0.69	0.60
K	0.03	0.15	D. 18	0.09	0. 22	0,05
OH	1.76	1.73	1.01	1.24	1.30	1.63
F	0.10	0.13	0.14	0,12	0.10	0.13
Ti	0,03	0.09	0.11	0.19	0.16	0.07
Cl	· · ·	· ·		· . . · · ·		
Al	1 . 70	1.81	1.91	1.95	2.09	2.79
Fe" _† Mn +Fe"'+T:	i 1.40	1.80	1 . 93	2.09	2, 32	2.54
(Fe)+A1	3.10	3.61	3.84	4.04	4.41	5, 33
Ca+K+Na-	+Mg 5.28	5.29	5. 23	5.08	5. 02	4.73
Na+K	0.35	0.61	0.64	0. 62	0.91	0.65

COMMON	HORNE	BLENDE	ANALYSES	RECALCULATED	ON	THE	BASIS	24	(0,	OH,	<u>F)</u> .
	Ι,	·		(cont.)							
No.		<u>39</u>	<u>40</u>	•							
Si		6. 59	6.14	E259.34		2 E 16	87 . 968	32			
(4)		1.41	1.86	• • •							
Al(6)	• •	0, 60	0, 89								
Fe		0. 32	0. 37								
Fe"	•	1.36	0.74	· .							
Mn	· · ·	0.05	0.01			0					
Mg	•	2.61	3.10	E107.80		2 E343.	9966				
Ca		1.87	2.04								
Na	• •	0, 42	0.40								
K		0.12	0.49								
OH	• .*	1.76	0.83		•						
F		0.07	0.19								
Ti		0,15	0, 09								
C1						0					
Al		2.01	2, 75	E79.47	Ε	2 167.8	3553				
Fe"+Mn +Fe"'+T	'i	1.88	1.21	E 80.06	E	2 216.{	5470				
(Fe)+Al	•	3.89	3. 96	E160.63	Ε	725.0	985				
Ca+K+Na	+Mg	5.02	6.03	E208, 85	E	2 1134. 2	4105				
Na+K		0, 54	0.89	E27.89	Ε	ິ 23 . (049				

PHYSICAL PROPERTIES OF COMMON HORNBLENDES.

No.	Ng	Nm	Np	$Z_{\Lambda}c$	27	S. g	SinZ _A c Sin2V	Ng-Np
l.	1.693	1.689	1.666	41°±5°	51°±1°	3, 211	.35837 .77715	.027
2.	1.696	1.692	1.680	15 ^{0±50}	58 ± 4 ⁰	3.258	.25882 .84805	.016
3.	1.680	1.671	1.663	20	82	3, 20	.34202 .98481	.017
4.	1.722	1.719	1.698	20	47	3.375	.34202 .73135	.024
5.	1.732	1.731	1.705	13	25	3.433	.22495 .42262	.027
6.	1.724	1.717	1.694	12-13	52 ± 2	3.445	.21644 .78801	.030
7.	1.716	1.712	1.692	9 ¹ / ₂ +3	52 ± 3	3.432	.16505 .78801	.024
8.	1.730	. –	1.702	12	0	3.447	.20791 .0000	.028
9.	1.685	1.680	1.665	20	68	3. 260	.34202 .86603	.020
10.	1.711	1.711	1.697	17	0	3.426	.29237 .0000	.014
11.	1.670	1.663	1.653	40	64	3.160	.64279 .89879	.017
12.	1.642	1.634	1.625	12	86 ⁰	3.054	.20791 .99820	.017
13.	1.669	1.6611	1.651	16 ± 1	83±20	3.167	.27564 .99357	.018
14.	1.635	1.6205	1.616	26 ⁰	58 ⁰ 51'	3.095	.45321 .85582	.019
15.	1.659	1 .6 456	1.640	25 ⁰ -30'	65 ⁰ 09'	3.189	.43051 .90740	.019
16.	1.635	1.6180	1.613	26 ⁰	60 ⁰ 29'	3.069	.43837 .87021	.022
17.	1.651	1.6380	1.633	26 ⁰ 15'	63	3.186	.44229 .89114	.018
18.	1. 656	1.6473	1.640	19°±1°	85 1 +2	3.117	.32557 .99692	.016
19.	1.664	1.651	1.441	22	98	3.175	.37461 .99027	.023
20.	1.441	1.632	1.122	18-19	88	3.163	.31730 .99940	.019
21.	1.637		1.615	17	77	2. 950	.29237 .97437	.022
22.	1.642	1.634	1.625	12	86 ⁰ -6'	3.05	.20791 .99820	.017

PHYSICAL PROPERTIES OF COMMON HORNBLENDES.

No.	Ng	Nm	\mathtt{Np}	ZC	2 V	S. G	SinZ c	Sin2V	Ng-Np
23.	1.642	1.631	1.618	16	90	3.147	.27564	. 99990	.024
24.	1.673	1.665	1.654	17	71	3.176	. 29237	.94552	.019
25.	1.680	1.673	1.662	15	66	3. 205	. 25882	.91355	.018
26.	1.669	1.661	1.651	18	74	3.162	. 30902	.96126	.018
27.	1.672	1.664	1.650	15	7 0	3.170	.25882	.93969	.022
28.	1.669	1.660	1.651	18	77	3.164	. 30902	. 97457	.018
29.	1.671	1. 663	1.653	20	76	3.159	.34202	. 97030	.018
3 0.	1.670	1.662	1.651	19	75	3.160	. 32557	.96593	.019
31.	1.664	1.655	1.643	19	78	3.159	. 32557	.97815	.02 1
32.	1.677	1.670	1.659	18	70	3.174	. 30902	.93969	.018
33.	1.661	1.652	1.638	18	78	3.115	. 30902	.97815	.023
34.	1.669	1.662	1.650	17	72	3.153	. 29237	.96126	.019
35.	1.673	1.664	1.650	17	75	3.181	. 29237	.97437	.023
36.	1.677	1.668	1.653	16	72	3. 204	.27564	.96126	.024
37.	1.683	1.677	1.644	15	65	3. 203	.25882	.92718	.037
38.	1.684	1.678	1.665	19	67	3.234	. 32557	.92718	.019
39.	1.674	1.666	1.654	19	78	3.192	. 32557	.97815	.020
40.	1.677	1.668	1.659	22	86	3.175	.37461	.99756	.0.18
	E66.97	5	E66.14	1		E127.995	E12.61829	E34. 87373	
	E 112.	167109	E 109.	38899	93	E 410.0566	77 E4.2589972	E32 . 440604 295	229

<u>Fig. 11</u>

Classification of the Pargasite Series.

FIG. 11.

Composition of calciferous hornblendes.

FIG. 13.

FIG. 14.

V 279 278 277 279 279 279 274 275 275 275 290 278 271 273 277 279 278 275 278 277 289 271 275 275 275 275 276 280 273 280 275 275 272 281 . £ 28 5 5 3 3 1 ⁶ x 2 33 - 29 6 26 8 3 3 8 2 63 6 £ 5 2-31 46 56 99 2 45 33 37 23 53 53 54 4 18 23 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 18 23 Ś 8 ÷ 6 4 3 4 2 2 3 2 - 19 24 212 34 15 -15 -15 -15 -14 -14 -17 ...я У п **≓** ≣ 3 2 2 2 2 2 21 12 20 8 28 13 20 37 **e** 97 97 97 97 97 17 77 97 17 97 97 97 54 33 33 **‡** 8 8 | • • 14 . A. . 37 •• **••• Ŧ Ξ • ਲੋ• . ٠ 4. ٠ 115 190 131 33 229 129 <u>5</u> 2 0 7 7 ŝ liu 6 O 3 2 : ≡.. Ξ £ 5 1 + 1 3 3 5 1 2 8 **9** 3 5 5 **7 8** 9 3 J 🕺 🚆 8 Ň 485 33 8 2 5 7 <u>5</u> **18** 158 8 ŝ ŧ 8 462 470 378 325 378 405 321 444 376 422 422 461 427 461 411 333 333 333 502 502 404 312 345 349 349 349 349 284 ŧ 525 **18**3 258 254 142 325 251 477 257 ۰. ۰, ۳ n • u • 5 ° 5 . :5 - I i= ۰. - 7 Ŀ Ľ, 24 ÷. 3 87 20 Ē lia Ξ i z ≌ 30 E. 51=-15 ÷, ۲. Ξ 4 Ē 240232222222222222

Kolderup Kunitz Kunitz Jones Parsons Kunitz Penfield & Stanley, p. 34 Palust Kunitz Belyankin, 1910, n Parsons Kunitz Clarke, 1910, p. 266 Barthoux Penfield & Stanley, p. 34 Hutton, 1940, p. 13 Zambonini Deer, 1937 Parsons Kreutz, p. 915 Winchell Penfield & Stanley, p. 31 Penfield & Stanley, p. 31 Johansson Blasdale Kreutz, p. 929 Kunitz Filley, 1938, p. 506 Kunitz Kreutz, p. 926 Hutton, 1940, p. 14 Harada, p. 281 ANALYSES OF CALCIFEROUS AMPHIBOLES CALCULATED TO ATOMIC RATIOS Johnson & Warren Parsons Kunitz Heron Penfield & Stanley, p. 32 Blasdale Allen & Clement Tilley, 1938, p. 504 Weyberg Duparc & Pearce, 1908 Penfield & Stanley, p. 33 Wiseman, p. 368 Mikkola & Sahama Parsons Allen & Clement Parsons Parsons Allen & Clement Allen & Clement Parsons Allen & Clement Hillebrand Filley, 1938, p. 505 Parsons Authors. For abbreviations, etc. see key on preceding page. Nenolithic crystal in granodiorite From pegmatite in ho. hybrids Pseudomorphous after diopside With blende and chalcopyrite Margin of xenolith in gabbro Ho.-or.-pyr.-spinel-carb.-rock Ab.-epidote-ac.-calcite-schist FOR (0, OH, F) = 2400. Ho.-clinozoisite-albite-schist Chlorite-epidote-ab.-amp'te. Ab.-stilpnomelane-ac.-schist Chlorite-ac.-hortonolite vein Limestone contact? See 14 Amphibole-biotite granite Ho.-epidote-albite-schist Altered from pyroxene? Occurrence With nepheline-syenite Ho.-talc-chlorite-schist Crystalline limestone **Crystalline limestone** Limestone contact? Limestone contact? Limestone contact? Dolomite marble Limestone contact? Limestone contact? Limestone contact? Cipolin limestone Limestone contact? Limestone contact? Limestone contact? Limestone contact? Limestone contact? Druse in syenite Augite-pegmatite With kupfferite Crystals in talc With diopside With calcite Amphibolite Limestone ('rystals Crystals Eclogite Crystals Crystals Crystal Diorite Crystals Crystal **Crystal** Gabbro Schist Schist Ho.2 Name Н0. Am. Ho.. J. Ап. Но. Ho. Ac. Ho. Ho. Å¢. Am. Ho. Ho, Ho. Ac. Ac. Но. Ac. Pa. Ac. Ho. Ac. Ac. Billy Goat Creek, N. Z. Cheremshanka R., Ural St. Lawrence Co., N. Y. Djagdalik, Afghanistan Piercepont, N. Y.† Coronet Peak, N. Z. Ravenberget, Norway Esasi, Japan Signal Peak, Colo. Nordmarken, Sweden Kussuolinkivaara, Finl. Haut du Falte, Vosges Saualpe, Carinthia† Sarahsburg, N. Y. Gouverneur, N. Y. Zillerthal, Tyrol Switzerland Kupferberg, Silesia Edenville, N. Y. Loch Gair, Argyll Russell, N. Y. Arendal, Norway Snarum, Norway Washington, D. C. Carsphairn, Scotld. Lee, Mass. Richville, N. Y. Edwards, N. Y. Kishengarh, India Kragerő, Norway‡ Cumberland, Rh. I. Kaveltorp, Sweden Russell, N. Y. Kragerö, Norway Start, Devon Gouverneur, N. Y. Russell, N. Y. Biella, Piedmont Coll 1., Hebrides Monteagle, Ont. Pierrepont, N. Y. Edwards, N. Y. Ossining, N. Y. Berkeley, Cal. New Hampshire Packenham, Ont. Greiner, Tyrolf San Pablo, Cal. Ham I., Alaska Russell, N. Y. Start, Devon Sudbury, Ont. Locality Sulzer, Alaska Start, Devon Rhode Island 'Piz Valesa'
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
No.

TABLE

ດ

V 281 278 276 277 277 275 275 275 281 281 275 275 271 271 276 276 273 277 290 276 277 275 283 273 283 278 279 279 273 273 273 274 274 (b) V. sp.
 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1115
 22

 1116
 22

 1118
 23

 1111
 22

 1111
 22

 1111
 23

 1111
 23

 1111
 23

 1111
 23

 1111
 23

 1111
 23

 1111
 23

 1111
 24

 1111
 23

 1111
 23

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111
 24

 1111 R" 159 w.Na 24 23 23 23 23 1 11 w.Na 0 0 0 27 23 23 20 20 10 1 2 1 2 180 176 164 <u>ч т ю ч т.</u>• ÷۲ • - • 20 20 21 4 --÷ g - 1 1. ° ° 1 n.d. • ~ ÷ 4050 ۶Q. I 5 0 5 2 5 8 8 1 4 1 1 2 0 3 I 5 **4** 0 19 **4** 16 0 Ξ 23 • 15 • E. \$ Q 13 18 20 209 183 213 213 250 189 234 183 (a) 222 (b) 222 (c) 22

Deer, 1938, no. 4 Tsuboi, 1936 Du Rietz Erdmannsdörffer Weidman, 1907 Hezner, 1903 Larsen & others Kunitz Deer, 1938, no. 9. Osann Turner Hawes Rhein Marchet Larsen & Irving Penfield & Stanley, p. 49 Barnes Penfield & Stanley, p. 40 Gossner & Spielberger, p. 118 Deer, 1938, no. 5 Nockolds, 1940 Kunitz Turneř Kreutz, p. 933 Kolderup Rice Klemm Nockolds, 1935 Penfield & Stanley, p. 39 Deer, 1938, no. 8 Kunitz Clarke, 1910, p. 266 Deer, 1938, no. 3 Wiseman, p. 383 Kunitz Daly Kulling Rice Larsen & others Vinchell Winchell Grove Winchell Clarke, 1910, p. 21 Kunita Sederholm Wiseman, p. 332 Winchell Deer, 1938, no. 6 Clarke, 1900 Laitakari Duparc & Pearce, 1906 Coomaraswamy **Sskol**a Parsons Parson Kuňit Belyankin, 1910, l Deer, 1938, no. A withors Diorite with chalcopyrite and pyrrhotine Limestone contact? with pyroxene Diorite ('granite' Kunitz p. 207) Amphibolite dike Quartz-or.-pla.-ho.-rock Hornblende-gabbro (modified) Inclusion in metam. limestone Coarse appinite Garnet-bi.-epidote-ab.-amp'te. Quartz-hypersthene-diorite Biotite-epidote-ab.-amp'te. Hornblende-schist xenolith Injected hornblende-schist Altered from pyroxene? Occurrence Hornblendite xenolith Effusive amphibolite Limestone contact? Limestone contact? Limestone contact? Hornblende-gabbro Limestone contact? Limestone contact? Limestone contact? Limestone contact? Zoisite-amphibolite Limestone contact? Limestone contact Limestone contact Luciite-porphyrite Pyroxene-appinite Hornblende-gneiss Hornblende-schist Uralite-porphyrite Quartz-monzonite Altered eclogite Quartz-am.-diorite Granodiorite Junction hybrids Quartz-monzonite Altered eclogite Gabbro, uralitic Andesite dike Zoned crystal Quartz-latite Quartz-latite Amphibolite . Amphibolite Amphibolite Garnet-rock Umptekite Crystal Crystals Sycnite Diorite Diorite Crystal Diorite Diorite Dacite Ho. Ho. Am. Vame Ur. Ho. Ho. Ho. Ho. Но. Но. Ho. Ulisna Muduna, Ceylon Ilmen Mts., Ural Carlingford, Ireland Butte-Plumas Cos., Cal. Glen Tilt, Scotland Kleinhöhe, Alsace-Lor. Renfrew, Ont. Kantalahti, Finland Edenville, N. Y. Franklin, N. J. Warwick, N. Y. Amity, N. Y. Schlossberg, Austria S. Cristobal, Colo. Edenville, N. Y. Grenville, Quebec† Mt. Wati, Uganda Palmer Center, Mass. Garabal Hill, Scotland Skudeskunksjär, Nor. Glen Tilt, Scotland Eulengebirge, Silesia Glen Tilt, Scotland Loch-na-Craige, Scot. Pargas, Finland Cabo de Gata, Spain Loch-na-Craige, Scot. Sommervik, Norway Purcell sills, B.C. Beaver Creek, Cal. Ernsthofen, Hesse Glen Tilt, Scotland Hohen Waid, Baden S. Felix, Cortegana Tioga Road, Cal. Glen Tilt, Scotland Glen Tilt, Scotland Walkerville, Mont. Umhausen, Tyrol Glen Tilt, Scotland Nicripcivi, Sweden Ipponmatu, Japan Edenville, N. Y.† Radauthal, Harz Lanark Co. Ont. Bornthal, Saxony 'ilipstad, Sweden Purcell sills, B.C. Dry Gulch, Colo. Sadbolm, Sweden Sheep Cr., Colo. Gabbi, Lapland Pargas, Finland Plauen, Saxony Brocken, Harz Amity, N. Y.† Chester, Mass. Eganville, Ont. Locality Wausau, Wis.

TABLE 9a.
F.
 (011)

 (151)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (152)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152)
 (103)

 (152) K": 1.126 1.126 1.127 1.128 1.12
 11
 14

 1145
 210

 114
 210

 115
 210

 116
 210

 117
 210

 118
 210

 119
 20

 111
 115

 112
 20

 113
 20

 114
 110

 115
 20

 20
 20

 21
 20

 20
 20

 21
 20

 22
 21

 23
 20

 24
 20

 25
 21

 26
 21

 27
 21

 28
 88

 28
 20

 29
 20

 20
 20

 212
 21

 23
 21

 24
 20

 25
 20

 26
 20

 20
 20

 20
 20

 C.a. 1174 C.a. 1174 C.a. 1175 C.a. 1
 F.c."

 1122

 1132

 1134

 1135

 1136

 1137

 1130

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1131

 1132

 1133

 1141

 1153

 1154

 1155

 1155

 1155

 1155

 1111

 1111

 1111

 1111

 1111

 1111

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115

 1115
 AI 11/89 12/12 12/12 12/12 12/12 12/14 12/ (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)

5.10/1001	Morozewicz	Hezner, 1909	Marchet	Barnes	Kunitz	Koritnig	Kunitz	Laitakari	Cienth	Laitakari	Nunitz Vulla-	Billinge	Loewinson-Lessing	Kunitz	Deer, 1938, no. 1	Kunitz	kuntz	Direr 1938 no 2	Tsuboi. 1935	Shannon	Washington & Merwin	Hrögger	Kunitz	Kunitz	Geijer	Duparc & Pearce, 1903	Eakins	Nockolds, 1940	Virpublished Nockolds 1940	Lindgren & Melville	Tilley, 1937	Washington, 1908, p. 192	Eckermann Billinge	. Ouensel	Kunitz	Penfield & Stanley, p. 41	Hurada, p. 283	Farsons Galkin	Vendl, 1932 •	Tomita	Ichimura	Nridman 1903	Eggleston	Rammelsherg	Kunitz	Fictt	Malker Coller	Verter Kunitz	Ichimura	Harrington
OCCURTENCE	Anorthosite-amphibolite	Biotite-hornblendite	Amphibolite	Limestone contact?	Gabbro	Eclogite	Crystal from sychite	Limestone contact	Corundum-serpentine contact	Limestone contact	Liacoute-syenite Hornhande schief	Metam. limestone with nepheline rocks	Amphibole-trap-granulite	Amphibolite	Glen Tilt diorite	Diorite	Flaenite-syenite	fister antinity	Amphibolite	Contact (2)-metam. limestone	Sordic layas	Hofeldspar vein with nepheline	Crystals Creek muchter (alternal adminat	Garnet-amputoutte (alterett congre) ('rystals	Pegmatite	Anorthite-diorite veins	Serpentine	Davainite 'early' Deducion in matem limeatone	Appinitic diorite	Sodalite-syenite	Kyanite-garnet-amphibolite	Volcanic lapilli	Centre of pyroxene dike Nordmarkite	Úmptekite	Essexitic phonolite	Crystals	XxIalite-nepheline-syenite	Limestone contact Hornblende-basalt	Plagarnet-quartz-biotite-amp'te.	Basultic dike	Horablende-andesite Videosite Londo	Votenne romu Cuartz-felsivir avarezate	Ho. syenite with nepheline rocks	Andesite	Foyaite	Northlende-monchiguite North-Parameter	Prematite	Trachvoolerite	Hornblende-andesite	Coarse-grained essevite
JER	Но.	Но.	Ho.	Но.	Ho.	Ċ.	Ч°.	Pa.	Ë,	re :	15K.	Weine Weine	Pa.	Ho.	Ho.	Ho.	ž.	на.	Ho.	Am.	Ho.	Ë.	ца.	По. На	Ho.	Ĵ.	Αc.	Ë 4	Ë	Hk.	Ť:	E H		Ha.	Hа.	Но:	Ha	Ho,	Ho.	Ч.	É á	Hu.	Ho.	Ηo.	ž:		Ē	Ha.	ka.	Am.
1 ok at It &	Senftenberg, Austria	Clemgia, Switzerland	Kammegg, Austria	Renfrew Co., Ont.	Lindenfels, Odenwahl	Gertrusk, Carinthia†	Arendal, Norway	Pargas, Finiand	Cullakence, N. Car.†	Pargas, Finland	Stavarnsjö, Norway Distrikter Tanland	Ristjakku, Kapianu Iron Nill Colo	Salaia. Ural	'Barnaschka-Kudnik'	Glen Tilt, Scotland	Beerberg, Thuringia	Skuttersundskjär, Nor.	S. Vincent' Glan Tilt Scotland	Vokodake, Ianan	Custer Co., Idaho	Kilimanjaro, E. Africa	Heum, Norway	Shoal Creek, N. Car.	White Mrs. N. H	Österskär, Sweden	Koswinsky, N. Ural	Montville, N. J.	Garabal Hill, Scotland Time, Websilest	Garabal Hill	Square Butte, Mont.	Gienelg, Scotland	Linota, Mediterranean Mania end	Mensjo, Sweden Iackson N. H.	Almunge, Sweden	'Tejedatal'	Mte. Somma, Italy	Hukusinzan, Japan Parent Mahard	Terkas, rinand Tedtenköpichen, Rhön	Titianul, Hungary	DAgo, Oki Is., Japan	Statio-zan, Formosa Helata-Kantari	Cornwall, N. Y.	Cuttingsville, Vt.	Stenzelberg, Siebeng,	S. Vincente, C. Verde	Coputation (Incore)	Stockholm, Sweden	Madeira	Shub-A. can, Formesa	Montreal, Canada
	2		×	2	20	2	122	123	121	125	2	78	2	130	131	132		5 2	997	137	1.38	5	₽:	19	: 3	=	145	9	8	÷	2	5	221	5	155	5	2	159	160	10	2 2	3 2	165	8	ie i	60.09	21	Ξ	721	2

TABLE 9b.

Arthors			Penfield & Stanlar a	the of Common or Second	narros, p. 262	vendi, 1924	Trenzen	Mauritz	Kreuts, p. 958	Kawano	Adams & Harrington	Kawabo	wasnington, 1904, p. 198	Runtz Barredt & Homsel		Belvankin & Donehova	Kultine	Hutten, 1940 n. 15	Week and		Menueca Manufacture	Sound	Achilety & Lixon Van Horn			•			
Оспетенся	Tephrite	Biotute-bornblende-tonalite-gneine	Crystals	Volcanic electamenta	Tuff-brencia	Larer phenoments in tracti	Finedite succession and the	Constal		Notesting and the second se	("restal	Platinciase and alls (false	Faterite	Dioritic phase in essente		•	Uralite-porphyrite	Actinolite-achist	Diorite	In cleits in eclorite	Amphiholite	Amobily destates the section	Hornblende-gabbro			1.0			
New	æ	ŝ	ä	Ka.	đ	Ho	Į	4	į "	į	1		Bk	æ		÷.	Ho.	ž	ЧЧ,	Ho.	Ho,	Hy.	₩,	Aworin		1 22 1 1		1.5	
Lecality	Grosspriessen, Bohemia	Mt. Wati, Uganda	Rilin, Bohemia	Uturyhtő, Korea	L. Balaton, Hungary	Seigertshausen, Hense	Ditro. Transvivania	Lukow, Buhemia	Lukow Bubemiat	Dunzannon. Ont +	Yodddh, Korea	Kacrsut, Greenland	Fuerte Ventura, Canary	Mt. Royal, Canada	llydrous am phibales	Kashinskaya, Ural	habbi, Impland	Hracken Creek, N. X.	Learyezkowi Pokredni	Lieserschlucht, Carin.	Mettojakko, Lepjand	Start, Devon	Pavone, Piedmont	Effect of error in under and	ds no. 17.3 above	calculated with addition o		rakulated with addition (we	
	5	•			2	8	=	-	3	3	-	2	-	2		8	2 :			2	7		ç		f		5	ŝŚ	

TABLE 9C.

IJ	3.044	3.131	3.051	2.98	2.007	2.980		3.120		140.0	2 0.05	070.0	186.2	3.110 8 056	3.11	3.031	3.09	2.096	3.211	3.064		3.092	101 101	3.03-3.04 2.06	DU · · · ·	3.054		3.111		3.147	3.188	3.171	9 II 8		3.159	3.12	3.12	3.160	3.110	3.159		0.10 11 :	180	191.5	3.188	3.069		
ZΛc	18°	15°	17°	15°25′	20°1′	16°38′	010 11	1105011	112071	10,01	10101	c 01 01	1 1 9 2 1/	1.	20°	16°54'	18°	16°	15°	19°	17°30′	14°27'	10°21'	10.61	•	12°	20° /		18°	° .	2	281	16°	15°.30′	10°	17°	16°	°61		202	207		170	10°	14°30'	26°	14°30'	27°.
$N_{\rm k} - N_{\rm p}$	0.018	0.025	0.028	0.0272	0.0254	0.0325	0.00 G	0,0277	120.0	0 0302	0.0263	0.020.0	0.0767	0.021	0.023	0.0254	0.024	0.0241	0.021	0.019	0.025	0.0250	520.0	0.020	0.022	0.017	0.027	0.0266	0.022	0.024	170.0	0.016	0.026	0.0262	0.021	0.027	0.025	0.019	0.021	0.018	670.0	0.020	0.018	0.025	0.028	0.0220	0.020	0.023
N _p	1.616	1.628	1.611	1.6000	1.5902	1.60022	1 621	1 6173	1 6130	1 6024	1.6036	1 608	1 6267	1.613	1.627	1,6065	1.617		1.642	1.618	1.607	1.0162	1 6017	1.618	1.628	1.625	1.637	1.6237	1.612	1.618	900-T	1.040	1.626	1.6416	1.643	1.627	1.636	1.651	510.1	007	. 719 1	3	979	1.650	1.652	1.6131	1.638	1.622
~	1.626	1.642	1.626	1.6155	1.6132	1.0192	01.640	1.6330	1.6297	1 6183	1210-1	0.01		1.621	1.641	1.6210	1.630			1.628	1.620	1.0.514	1 61 24	1.629		1.634	1.652	1.6.382	1.624	1.631	2121	CH0.1	1.642	1.6551	1.635	1.646		1.662		200- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	1 657			1.665	1.675	1.6180		1.630
	1.634	1.653	1.639	1.6272	0470.1	1 637	1 650	1.6450	1.6410	1.6307	1.6299	1.631	1.6529	1.634	1.650	1.6319			1.663	1.057	1.052	7140.1	1 6244	1.638	1.650	1.642	1.664	1.6503	1.0.4	1.642	213 1	1.672	1.652	1.6678	1.664	1.654	1.661	1.670	10.1	1.0.1	· 700-1	1997	1.658	1.675	1.680	1.6351	1.658	1.645
5		-		.0.001	101.020	67 00		. 81°38′	20°49′	82°	87°56'	80°				,S. F8	-			10000	02-20	00 10	86°14′	L.g.	:			8.1°S	×1,20	l.g.			76°	83°57'	78°	20°	88°30'	2.51	0.71	0,	011	:		70°	 :	60°29	78-82°	°0°
	1	I	1	- 	1		1	i	I	. I	1	1		+	I	1	I			1	1	1	ł	1	I	1	1	1	1	11		1 +	I	I	1	I	I	1	1			 	1	I		+		+
	-	~1	·~. •	÷ "	r. 2		x	0	2	Ξ	12	13	1	15	10	1	×	2 8	2	7 5	77	57	25	26	27	-28	8	ş;;	5 8	7 2		ţ %	36	37	82	<u>,</u>	₽ :	; :	7 7	7 7	¢ 4	; \$	17	\$	07	95	15	52

																																						·	•			-			
Reference	-								- ~		-	~				-	ŝ	-		c -	•	-				-			-	× 0			10	= '	- •			12	-	- ;			-	1	_
s'bromiliaH No.	2	+ 1	n (,	-	2 9	2 #	<u> </u>	2	81	20		2;	77	3	26		29	30	67	3 2	34	2	÷	8 E	44	9	\$ 9	ę.		5	20		1	; 5	5 3	3 2	3	67	\$		2 2	:		80
H+1N+3M	26	8	0.5		8 5		8 2	3 2		86	88	63	8 F	2 2	98 98	52	88	8	12	8 9 9	5	89	5	71	3 =	153	190	701	130	128	140	129	137	150	142	51	141	126	142	143	128	180	138	179	8
1A-4M)002	<u> -</u>											-				_																							<u> </u>						
-500 $C^3 + N^3 + R$	°	î	07	;;	2 9	2 2	2 =	± °i	-	61	ŝ	13	26	ç r	26	32	Ŧ	•0	57	o r	1	53	- - -	÷ ?	2 -	12	<u>م :</u> د	ş 5	37	5	ñ 1	25	38	1	5.3	5 5	5 2	82	32	2	s :	38	72	20	18
 `~		ļ	~ 1	- ;	2	<u>e</u>	:	± °	4	ŝ	ŧ			8	27		Ξ		Ξ	11		37				41		,			6	12			3						17	5		E	81
Ξ		8	3	2	901	147	14	168	182	202	161	136	<u>5</u> :	8	183	214	80	194	36	123	200	200	221	717	254	136	148	217	86	11	243	134	119	66	19	<u>8</u>	161	861	180	203	671	5 5	176	<u>8</u>	63
 ند،	~	4	- ·	- (e .	0 1	- 14		, m	4	~	:	± •	, 5		12		Ξ	v	c	61	:	4 -	* 2	0	~ ?	2	12	38		, 11		ŝ	2	~ ;	<u> </u>	•		~	. 10	22	2	15	52
e N	15	•	71	0 9	<u>e</u> :	2 3	2 :	5 "	• =	: =	15	10	89	9 3	2 22	39	35	16	2	7 6	: 2	. 65	;	2	5 P	21	× ;	1 01	33	13	32	34	31	4	ខ្ល	52	9 5	3 38	28	27	52	5 8	20	2	2
	189	178	061	99	190	561	3	0/1	- ¥	205	186	200	158	8	8 8	193	194	192	181	192	<u>8</u>	169	188	2	171	182	187	195	192	203	181	178	206	198	1	200	2 2	661	204	101	208	8	183	189	183
Mĸ	406	329	168	482	209	<u>6</u>	428	248	110	485	477	483	398	103	474	378	450	257	446	131	426	466	394	i i	280	410	486	284	325	279	165	312	380	358	337	429	325	289	338	352	202	133	280	457	433
Ť.	-		7			71	x 0			-				,	°.	2	m		5		•		3	u	n	٣,		Ŧ	+	Ξ	× 00	с 13		~	2	80 <u>1</u>	2 2	2	s		5 9	- :	=	+	-
чW	~	+	2	-	-				n .	°	9			_		2			7	7		2	2	n Z	N	0	,	~	2	4	2	2	~,	Ż	7	•	- -	•			-	•		7	
 ;e,	50	135	8	-	7	÷	22	212	3 3	5 ~	20	17	88	\$	27	Ξ	22	211	3	17 5	*	17	86	5	185	98	21	921	147	1 07	i 1 1 1 1	5	103	0	8 :	5 8	9. F	152	10	173	ŝĨ	20	121	Ŧ	81
	=	24	15		2			31	× •	10	• •			± :	1 %	0	S	32 .	23		; 9	6	ŝ	2 "	28	33	2 ;	3 7	33	<u>،</u> ا	2 1	2	99	=	s, ;	5 5	3 5	2	9	52	2		22	=	30
2	23	51	20	22	21	29	1	40	2,2	2 2	21.	7	51	5	÷	24-	7.5	34	#	52	1 64	36	99	20	<u></u>	45	۴.	5 89	83	1 <u>8</u>	17	ē	67	155	8	<u>s</u> 5	124	115	118	125	717	18.3	176	110	178
Si - 600	195	192	192	190	8	187	186	186	180	÷ 5	621	178	177	-129	1/4	173	169	168	167	167	191	159	159	5	121	147	146	2 3	97	6 <u>7</u>	2 2	: °	Ŧ	601	2	3 3	6 8	102	101	5 8	2	2	<u>ج</u>	:: -	<u>و</u>
. <u></u>	1	2	. 	-7	ir,	Ŷ	1~	x 0	2	2 2	12	13	1	2	2 12	2	19	20	21	22	5 5	25	26	1 2	3 6	30		2 6	Ħ,	8	ę ::	38	39	ç :	7 5	77	; ‡	÷	\$!	+	; ;	50	5	5	2

TABLE IO.

PAGE 57.

÷¦		;	7	8	•		ر ۲	ت
	+	58°51'	1.635.1	1.6205	1.6158	0 0105	36951	2007
	+	+ ź	1.654	1.64	1.6.8	0.016		
	1	75°44′	1.6798	1.6729	1.6598	0.020	11°40'	10.2
	1	ŝ,	1.701	1.692	1.673	0.928	15°+	
	.1	-11-	1.669	1.660	1.651	0.018	100	191.7
	I	77°	1.700	1.687	1.666	0.034	22°	
• -	+	76°	1.654	1.643	1.636	0.018	22°	07.1
	1	75°		1.675		0.016	18°	3.27
	+	ŝ	1.6429	1.6284	1.6218	0.0211	24°	
	1	°0,	1.684	1.676	1.660	0.024	17°	3.254
	I,	83°	1.638	1.631	1.622	1.016	20-22°	3,000
	+	20°	1.6430	1.6291	1.6221	1.0209	21°	
	I	Ľ,	1.683	1.673	1.658	0.025	1.3° 40'	_
	I	.88 888	1.6665	1.6589	1.6511	0 0154	2.80	
-	I	81°	1.666	1.652	1.633	0 033	2	~
<u> </u>	.+	°.	1.6416	1.6265	1 6206	0.010		
<u> </u>	ļ	-12	1 673	1 665	1 664	0170-0	77	
	·	17061	5.73 T			410.0	-	9.1%
	. (ASD.1	100.1	0.022	202	3.15
	-	E 1917			CC0.1	120.0		
	F	6 70	7640.1	0810.1	1.0142	0610.0	27°30'	3.11
	I		8/0.1		1.658	0.020	24°	3.268
	1		1.676		1.657	0.019	18°	3.26
	1		189.1		1.661	0.020		3.292
	1	ŝ	1.674	1.663	1.651	0.023	16°15′	3.171
	ł	81°42'	1.6789	1.6701	1.6583	0.0206	23°48′	3 285
	1	66°30′	1.679	1.674	1.661	0.018	13°30′	3.278
	1	80°4'	1.6843	1.6753	1.6648	0.0195	16°	
	I	38°	1.7000	1.6980	1.6804	0.0198	20°	
	I	8 5 °	1.659	1.647	1.636	0.023	21°22'	3 1 2
	ŀ	°%	1.673	1.662	1.647	0 0.06		
	+	63°1'	1.6519	1.6380	1.6329	0.0100	26.15	1 1 4 4
_	1		1.677		1 658	0.010		101.0
	I	65°38′	1.681	1.673	999	0.00	140200	107.0
	I		1.671		1 667	010 0	00 01	17.0
-	I		1 678	•	1 550	00000	140	417.0
	I	70°	1 672	1 664		070.0		907.0
		72-74°	ŝ		36.4	770.0		0.1.0
	i	, in the second s	1 712	1 710		00000		3.238
	1	•22	607	102	2007 I	170.0		
		2			1.000	/10.0		2.207
	+	64°5'	1.6530	1.6384	1 6327	0 0003	26,207	0.10 91 5
	1	75°	1.677	699	1 652	0.025	20.04	01.0
	ı	78°	1.683	1.674	1.658	0.075	3 20	
	1	84°	1.672	1.661	1.648	0.024	0	1 20
	1	47°	1.722	1.719	809	0.024	ŝ	2 275
_	1	16°	1.714	1.713	1 607	10.0	27 I Ee	
				1.68			2	1 791
	1	79°38′	1.6823	1.6743	1.6576	0.0207	20°	3.224
	1	%	1.641	1.632	1.622	0.019	18-19°	3.163
	1	8	1.685.	1.674	. 665 -	0.020	26°30	3.189
-	1	ŝ	1.718	1.700	1.676	0.042	13°.	3.221
	1	ŝ	1 685	1 671	1 450	1000	17011	

Reference	=	_	16	_	_	11	_	-		-	-	-	- :	<u> </u>		- :			-	. –	21	_	_		1.		23.						24	-	- 55	- ·				-	-	_	26	-	2 6	9 8	4
e'bnomillaH No.	. .	5	• •	88	6		6	- 86	101	-66	103	102	106		<u>à</u>	5	5	2	Ξ	115		116	109	118		2 2	1	125	122	120	3 2	135		137		Ē	146.	1	150	153	154	156		158			
Mg+Al'+Fe	143	ż	61	134	8	140	104	182	102	185	194	131	₹ :	£	2	2	ž	3	122	117	104	137	Ē	102	77	: 3	121	169	115	8	120	131	161	27	127	5	1	3 3	142	36	61	112	121	174	2 <u>7</u> 1	<u>.</u>	551
-200 -200 C#+Nª+K	18	92	27	26	35	85	47	86	84	78	78	22	5 5	;	2 2	7	14	2	66	35	59	53	5	8	5 6	2	62	20	46	.	8 5	32	69	70	95	2 2		8	56	Z	72	5	23	95.	102	2 3	3
<u>ند</u>	57					66		Ξ	•	138	12	į	57	:	1:	;		125	2				e.		•	<u></u> .		105				ŝ				5	2					۴		137	35		
н	25		176	168	229	32	88	5	52	Ŧ	127	<u>ج</u>	51	2	91 7	2 2	201	3	163	200	122	145	70	20	70	192.	1	\$	210	505	2	136	224	138	1	22	6	230	198	65	217	78	224	33	3:	÷ ;	203
ч	35	Ξ	13	11	16	40	23:	15	21	20	2 :	2 :	5	2 9	, :	; ;	2	2	53	13	20	12	2.3	53	ž	5.7		24	23	≘:	- 2	6	22	÷	27	2 ;	: :	: =	: 2	27	9£	Ŷ	7	27	5	ę ·	•
Na	35	68	30	34	47	39	31	14	33	67	ŝ	8	2	; ;	2 2	2	2	3 2	57	41	6†	9	2	4;	10	8 8	22	38	4	₽:	3 5	5 15	58	9£	5	2 :	5 8	3	; 4	57	3	50	29	\$	33	5 5	67
c	211	213	184	175	172	206	661	197	230	19.3	61		201	10.0	74	22	10	202	186	181	<u>8</u>	181	189	210	110	175	188	107	176	8	201	185	189	261	201	C 21	2 18	181	172	170	169	198	192	203	203	2	196
Mĸ	379	271	128	317	166	378	195	430	202	463	430	5	324	426	096	213	205	1	277	272	221	259	102	200	141	328	289	409	251	254	276	305	295	÷	259	15	202	252	259	53	33	263	296	399	330	4. 1 2	304
ij	-	13	22	19	23	16	15	ŝ	21	6	ŝ	8	2 :	:	• =		, 1	2	01	18	¢	- ,	1	55	5	: :	28	*	ŝ	2	<u>، ۲</u>	E	2		≍ :	= "	° 4	3 8	, x	6¥	=	+	2	ŝ	8:	2.5	24
Mn	-	-	11	2	-	ñ	2		7				+ -	• •		• ~	•	-	•	-	S	4	, ,	7								2	-		~ ~	7	-	•	-	12	13	2	-	-	-, -		~
Fe"	101	150	294	84	228	6	221	27	187	50	2 ;	13	2 8	ç -	, 0		153		14.3	160	158	132	187	185	216	2	Ì03	72	162	187	3 2	Ξ	14	372	128	3 :	8° 10	2 67	112	353	341	1.38		42	72	2 2	8
Fe'	50	1+1	28	66	5	9₽	21	13	43	<u>o</u> .	+	2 2	7.5	ţ^	, y	45	22	. ~	54	36	78	25	5:	۳ ¥		61	20	ŝ	51	; ;	3 5	37	18	82	33	3 :	2 2	: 4	50	5	92	8	187	21	3 :	٩.	ŝ
F	138	8	163	165	154.	1+1	227	203	203	162	177	861	101	211	181	3 7	181	204	201	189	207	258	5	217	170	238	186	214	208	10	2/14	206	267	209	252	235	507	211	294	237	207	235	191	253	251	5	239
500 100	73	89	68	63	60	65	59	58	57	3	3	2:	7 5	5 5	2	ŝ	40	\$: ‡	\$	42	: ;	Ţŝ	<u>ç</u>	2	37	36	36	36	ę :	5 8	3	28	27	≗ :	2:	: :	: 1	: 2	2	×	~		4	7'	ì	2
	54	55	56	57	58	20	99	61	62	53	5	3 3	8 5		5 9	5 2	: :		: 22	74	75	2	: :	80 G	2 5	25	82	83	5	2 3	0 22	80	89	8	5 5	5 3	2 3	5	: 8	67	86	66	<u>9</u>	<u>10</u>	2 3	3 3	3

.

TABLE IOa.

Fig. 15

Relationship between the Amounts of Si and Al in the Formula Unit of Hornblende.

FIG. 15.

PAGE GI

<u>Fig. 19</u>

Relationship between Birefringence Ng-Np and the Ng Index in Hornblendes.

Fig. 23

Plot showing the Relationship between Ng and Nm in the Pyroxene Series.

.

	TABLI	E OF SELEC	TED ANALYSE	S OF TH	IE CUMMI	INGTONIT	E SERIE	<u>s</u> .
	. .							
	1	<u>2</u>	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	<u>8</u>
Si02	4 3, 9	46.42	49.11	48. 5 3	47.17	50,10	50, 32	54.28
A1203	1.9	0. 25	1.81	1.02	1.00	1.72	0.86	1.26
TiO ₂	. –	0.15	0,12	-	-	0.31	-	0.02
Fe ₂ 03	-	0.09	2.03	1.14	1.12	3.11	1.75	0, 80
FeO	52. 2	42.60	38 . 98	39, 20	43.40	26.63	35 . 3 6	21.79
MnO	-	2. 23	0.79	0, 66	0, 08	.19	. 02	0.26
MgO	1.1	3.12	2, 97	4. 06	2.61	14.36	8.61	18.64
Ca 0		1.51	0. 75	1.31	1.90	. 87	. 88	0.15
Na20	-	0, 70	0, 94	1.06	0.47	• 60	.13	0.14
к ₂ 0	-	0.43	0.64	0.19	0.07	.15	-	tr
н ₂ 0	0.5	+ - 1.78 0.4	+ - 1.39 0.10	+ 1.71	2. 22	+ 1.46	1.82	2.16
Ce	÷	0, 65	0.31	-	- .	-	-	-
F	-	-	- .	-	0.07	- -	-	0. 57
TOTAL	99 . 6	100.07	99, 94	99, 88	100.11	100.10	99. 93	100.07

TABLE 11a

	TABLE	OF SELEC	TED ANALYSES	S OF THE	CUMMINGTON	NITE SERIES.	
	•						
	<u>9</u>	10	11	12	<u>13</u>	<u>14</u>	<u>15</u>
SiO2	50 . 99	53.12	51.53	49. 60	50 , 78	52.9	54.97
Al ₂ 03	3.78	2.78	5.02	8,65	1.77	2. 37	2. 38
Ti02	0, 02	0.21	0.31	0.26	0.40	0.06	0.14
Fe ₂ 03	0. 85	0.25	0.82	0.48	1.88	nil	0.06
FeO	21.70	22.46	16.91	18.54	29.64	28.00	17.25
MnO	0.18	0.27	0. 22	1.08	0.14	0. 97	0.02
MgO	18.61	15.46	20.84	16.78	11. 83	13.71	22.11
Ca 0	-	2.26	1.34	0.97	1.33	0, 55	1.84
Na ₂ 0	0.24	-	0,65	0.79	nil	0.1	0. 30
K ₂ 0	0.31	-	nil	nil	nil	-	0,10
н ₂ 0	2.77	3. 33	+ - 2.15 .64	+ 2.52 .2	- + 9 2.01	+ 1.04	+ 0, 80
Ct	-	-	-	-	-		-
F	-	-	-	-	-		-
TOTAL	99,45	100.14	100.43	100,30	99. 78	99.60	100.00

						•	
TABLE	OF	SELECTED	ANALYSES	OF THE	CUMMING1	ONITE SERI	<u>ES</u> .
<u>16</u>		<u>17</u>	<u>18</u>	<u>19</u>	20	<u>21</u>	
56.74		50.37	50 . 74	53.26	53.26	52.29	
0.91		0.54	0.88	2.26	1.25	0, 59	

SiO2

TABLE 11c

A1203 2.31 0.91 0.78 Ti02 0.06 0.97 0.56 1.80 0.60 2.63 0.29 Fe_20_3 3.41 1.81 Fe0 24.41 40.08 24.03 1.12 1.06 0.06 1.62 1.58 1.07 7.39 6.24 8.25 2.77 4.66 Mn09.72 10.57 29.16 31.26 30.98 28.42 4.47 MgO 0.83 2.00 1.10 1.11 1.26 3.42 Ca0 0.42 0.22 1.39 1.56 0.37 Na_2O 1.25 0.08 0.09 0.07 0.19 0.06 K_20 + 1.94 + 1.87 + 2.24 6.20 2=04 3.81 0.05 **3.** 80 H_2O 2-04 Ce 0.07 0.20 \mathbf{F} 99.83 100.50 99, 87 99.87 99.63 100.73 100.38 TOTAL

<u>22</u>

53.25

TABLE 11d

TABLE OF SELECTED ANALYSES OF THE CUMMINGTONITE SERIES.

Locality and Reference.

1.	Collobrieres, Original Grunerite, Gruner (1848).
2.	Pierrefitte, Warren (1931).
3.	Pierrefitte, Warren (1927).
4.	Mt. Humbolt, Michigan, U.S.A., S. Richarz (1927).
5.	La Malliere near Collobrieres, Kreutz 1908.
6.	Kalvola, Finland, Eskola (1936). (see Rabbitt 1948 (No.2)).
7.	Cherry Creek, Montana, Rabbitt (1948).
8.	Trondheim, Norway, Sundius (1933).
9.	Odal faltet, Persberg, Sweden, Johannson (1914).
10.	Kenidjack, Cornwall, Tilley and Flett (1930).
11.	Strathy, Sutherland, Collins (1942).
12.	Toll Egain, Strathy, Collins (1942).
13.	Lake Paarlahti, Teisko, Finland, Seitsaari (1952).
14.	Mikonni River, New Zealand, Mason (1953).
15.	Muuruvesi, Finland, Eskola (1950).
16.	Warr eda, S.W. Div. Simpson (E.S.) (1928).
17.	Mt. Palmer, W. Australia, Miles (1943).
18.	Sodermanland, Johannson (1930).
19.	Chikla, India, Bilgrami (1955).
20.	Tirodi, India, Bilgrami (1955).
21.	Edwards, N.Y. Allen and Clement (1908).
22.	Tirodi, India, Bilgrami (1955).

REVISED CLASSIFICATION OF THE CUMMINGTONITE SERIES

THE

DIAGRAM SHOWING THE DEVELOPMENT OF THE CLIMMINGTONITES & TWO TYPES OF ANTHOPHYLLITES FROM THE HORNBLENDE SERIES.

TREMOLITE SERIES

Ca₂ (Mg Fe)₅ Si₈O₂₂ (OH)₂

(Mg Fe Mn) FOR Ca

Ca Mn (Fe Mg Mn) Si8022 (OH)2 6-7 SUMMINGTONITE SERIES

FIG. 27. a. b. c.

TABLE 12

PHYSICAL PROPERTIES OF THE CUMMINGTONITE SERIES.

	Densit:	y <u>Np</u>	<u>Nm</u>	Ng	<u>57</u>	ZAC	<u>Ng-Np</u>	Sign
1	3.713	••• .	1.73	-	500	11 ⁰ -15 ⁰	0.056	-ve
2)) 3)		1.676	1.693	1.707	84°-15'	13 ⁰ -22'	0.031	-ve
4 5	3.44	· 1. 666	1.684	1.700	85 ⁰	14 ⁰ -15 ⁰	0.034	-ve
6	3. 307	1.661	-	1.681	- .	-	0. 020	-
8	3.241	1.639	1.647	1.664	68 ⁰	20 ⁰	0.025	+ v e
9	-	1.640	1.647	1.665	65 ⁰	20	0.025	+ v e
10		1.643	-	1.670	-	19	0.027	-
11	3.10	1.643	1.650	1.663	75 ⁰	20	0.020	+ v e
12	3.18	1.645	1.652	1.664	75 ⁰	19	0.019	+ v e
13	3.359	1.658	-	1.687	68–66	16-21	. 029	+ v e
14	3. 27	1.651	1.664	1 . 678	86 ⁰	16 ⁰		+ v e
15.	3.175	-	-	-	90 *	20 ⁰ -22 ⁰	-	
16	3 . 04	1.620	T• 099	1.660	-	17018	-	Winchell figs -+vegiven above
17	-	1.673	1.694	1.711	85 ⁰	$13\frac{1}{2}-14$	-	-ve
18	3. 337	1.655	1.674	1.685	85 ⁰ 15'	15 ⁰		-ve
19	3.312	1.629	1.639	1.650	88	21	.021	Straw yellow
20	3.248	1.629		1.650	41	18,	.021 -	. GOTORI.

TABLE 13

à,

Miyashiro (1957) List of Alkali Amphiboles.

F''/R'' 0.72 0.54 0.89 0.76 0.15 0.33 0.36 0.89 69.0 0.93 0 8 0.94 0. 70 0. 58 0.25 0. 74 0.47 0.41 0.37 0.47 0.38 0. 33 0.45 0.51 0.32 0.32 0.35 0.31 0.41 0. 22 0. 19 0.31 0.34 0.35 R''' Fe'''/R''' 1.0 0.87 0.85 1.00 0 8 1.00 1. 8 0.89 0.92 0.93 0.89 0.73 0.85 0.82 0.89 0.95 0.53 0 8 0.37 0. 38 0.60 0.17 0.16 0. 10 0.61 0.53 0 0 0.12 0. 11 0.27 0.07 0.24 0.28 0. 16 222 233 218 217 217 197 187 193 182 176 175 225 197 181 <u>[</u>61 153 8 235 195 194 185 178 197 207 5 2 193 191 191 170 184 <u>1</u>65 132 0 щ 1 3 2 1 1 1 14 3 1 1 T 6 +67 116 1 1 1 1 ł 1 I 1 1 Т Н,О 8 + +100 % + +44 +132+102 +135 5 +105+173 +105 +111 8 2 +120+ 78 +84 + 57 + 93 , 8 + 21 +57 2 +125 + 16 \$ + 103 8 102 +83 111 +121 8 ٦ 9 v ¥ 22 n 17 Ξ 52 2 19 41 13 14 13 80 5 13 80 2 ~ 20 = 2 5 9 2 ~ Ξ 0 0 12 ŝ 9 Å 181 230 181 144 130 177 <u>8</u> 197 197 176 181 145 8 239 142 121 130 188 175 198 198 182 141 162 137 162 182 179 173 167 183 89 202 149 ڻ œ 9 13 m 9 38 to Atomic Ratios for O=2300 (Excluding H₅O) 13 13 21 22 21 ~ 33 61 80 11 38 12 19 54 54 34 ৩ 31 5 18 14 2 18 8 2 80 6 \$ Fe'' Mn Mg 79 74 23 31 \$ 2 115 3 8 48 234 198 256 130 118 70 191 183 154 193 61 <u>8</u> 153 193 190 <u>8</u> 215 184 254 262 239 215 231 Ó 0 63 19 0 જ ~ 5 5 Ţ 17 . ト 3 ŝ 4 ~ I 0 ı 2 0 s. I 189 165. 218 249 274 279 222 191 268 188 240 41 8 87 110 136 109 208 110 141 119 8 131 160 93 92 110 8 126 123 7 61 8 115 Si. Aliv Alvı Ti Fe''' 233 192 186 215 217 196 193 167 164 156 168 148 143 146 167 164 125 150 74 3 119 111 8 17 20 n 53 33 8 21 12 4 4 23 0 0 0 11 15 \$ 5 ė Ē 0 15 16 1 -4 ଛ ŝ 2 18 ł. 1 4 ŝ 1 2 c 33 0 0 2 26 33 ŝ П 5 . 81 8 122 120 72 \$ 180 2 182 139 170 161 163 171 172 128 114 127 \$ 17 0 4 4 3 ž 32 27 20 0 20 19 24 œ r 29 34 23 8 \$ 20 o 16 13 13 3 20 8 38 6 783 755 792 754 798 793 775 771 789 971 796 764 768 773 757 780 773 780 802 781 111 750 731 776 780 808 784 787 787 775 780 740 762 781 ŝ \$ ខ្ព п 12 13 14 16 17 18 19 28 29 31 32 20 23 23 24 26 ŝ 27 33 34 . MIYASHIRO, 1956 MIYASHIRO, 1956 GRUBENMANN WASHINGTON POLOVINKINA MOROZEWICZ PALACHE & WARREN HLAWATSCH MCLACHLAN ZAMBONINI NIKITIN & ZAMBONINI KLEMEN BLASDALE Author BLASDALE AHLFELD ROUTHIER HOLGATE PEACOCK AINBERG SIMPSON SWITZER Hamersley Range, Australia SIMPSON SWITZER KUNITZ KUNINZ KUNITZ KUNITZ KUNITZ KUNITZ SUZUKI Ψογνο VENDL GRILL JACK Hamersley Range, Australia Horokanai Pass, Hokkaido Saint-Véran, Hautes-Alpes Champ de Praz, Piemont Alter Pedroso, Portugal Mt. Saleve, Switzerland Vallone delle Miniere, Alpe de Sevreu, Swirz. Rocca Bianca, Piemont Lavintzie, Switzerland Cochabamba, Bolivia Zermatt, Switzerland Fukushin-zan, Korea Krivoi Rog, Ukraine Fukushin-zan, Korea Glaucophane proper (gastaldite) assoc with schist St. Marcel, Piemont Cevadaes, Portugal Kliphuis, S. Africa Glen Lui, Scotland Mariupol, Ukraine Mariupol, Ukraine Vodno, Jugoslavia Locality Mill Creek, Calif. Cykladen, Greece Anglesey, Wales San Pablo, Calif. San Pablo, Calif. Smyrna, Turkey Berkeley, Calif. Berkeley, Calif. Quincy, Mass. Syta, Greece S. Australia Piemont Riebeckite (osannite) from metamot. neph. greiss Magnesioriebeckite (ternoviskite) from schist (?) Magnesioriebeckite (crocid.) from metasediment Magnesioriebeckite (fluotaram.) from syenite-Subglaucophane (riebeck.) assoc. with schist Magnesioriebeckite (crocid.) from limestone Ferroglaucophane (glaucoph.) from schist Riebeckite from quartz-sycnite-pegmatite Subglaucophane (glaucoph.) from gneiss Subglaucophane (glaucoph.) from schist Subglaucophane (crossite) from schist Subglaucophane (crossite) from schist Subglaucophane (crossite) from schist Subglaucophane (crossite) from schist Riebeckite (crocid.) from ironstone Glaucophane proper from prasinite Riebeckite (crocid.) from ironstone Riebeckite (crocid.) from ironstone Magnesioriebeckite (riebeck.-cross.) from metamor. rock Name and occurrence Riebeckite from granite-pegmatite Riebeckite from syenite-pegmatite Riebeckite from neph-syenite (?) Glaucophane proper from schist Riebeckite from quartz-syenite Riebeckite from schist Riebeckite from schist pegmatite 24 ŝ -80 e 5 2 3 4 5 ৩ 1 = 12 13 13 16 17 19 53 57 59 · 8 3 2

TABLE 13

	5 1														•							_									
	' Fe''/R'	0.63	0.67	0.98	0 8	50 0		89.0	0.61	0.61	0.26	0.45	0.34		0.14	0.41	91.0	0,60	0.0		0. 26 0. 26	8	38	9 0 1 0	5 , 0 5 , 0	0.14	0.11	0.02	0.06	0.00	80
	Fc'''/R''	0.91	0.86	0.84	0.91	0, 77	0.88	0.89	0.67	0.79	1	0.85	1.00	80 0	6 1	0.77	8	06.0	010		5 09 09 0	01 0	0.0	0.79	80	0.78	96.0	1.00	1.00	ndef.	ndef.
	¥	155	152	142	141	135	135	130	129	119	140	137	131	PC1	E 7 1	. 11	071	101	501	è é	2 2	110	80	16	. 8	8	2	40	4	20	÷
	-	1	1	l	I	I	I	1	ł	1	5	83	08	ž		<u>م</u>	Ť,					Ť		19	8		41	57	•	10	16
		100	+ 148	+66	110	3	88	98	• 35	104	6	+82	+104	5 +	- + +	7+7	1	64	47	5	× 12 +	æ	9	+76	+ 29	+	40	+40	4113	. 6	110
15	4	17	28	\$	31	34	24	21	35	17	1	41	35	6	۰ a	ĥ	1	19	7		4	-	32	14	38	39	32	32	54	32	11
ž		207	143	203	219	163	191	211	240	232	145	179	156	192	ž	Ŗ	185	187	225	126	<u>1</u>	144	218	203	214	151	202	138	148	157	2 8
C	3 1	ĥ. !	\$	\$	17	33	58	52	46	30	8	57	41	3	14	ŗ	82	80	8	121	87	1	40	\$	8	101	41	16	11	2	133
Me		91	g '	ٶ	~	10	100	103	126	134	273	185	242	317	207	i	57	135	253	288	319	366	361	331	374	380	430	451	429	396	486
Ň	17	2 :	9 '	Ś,	0	10	18	10	6	=	I	ŝ	٢	7	8		ġ	19	4	5	7	1	I	4	9	÷	ł	1	1	ŝ	28
Fe	1	717		£ 5	555	353	234	241	210	232	97	157	131	. 20	147		311	233	112	105	115	0	31	F	35	62	\$	10	29	0	•
Fe'''	141		2		871	10 4	119	115	87	94	140	117	131	105	88		110	94	83	61	45	87	88	72	62	46	20	49	42	20	ŝ
Ħ	15	1 1	2	2	1	3	. 26	24	23	24	ŗ.	٢	10	14	13		1	19	\$	11	14	12	e	'n	•	vo.	4	ŝ	ŝ	-	•
A IVI	0	0	. 1		, ,	17	•	•	19		o .	13	0	n	5		0	0	0	23	16	i.	٢	14	ŝ	~	•	0	•	0	7
VIIV	2	\$	8	, K	2	5	ຂ	8	70	\$	17	48	25	20	16		76	67	34	114	97	22.	13	54.	31	ŝ	5	12	'n	23	4
S:	737	745	742	575	738		4¢/	/41	80/	751	773	752	765	750	784		715	724	729	989	703	748	787	746	691	735	753	783	161	511	796
No.	35	36	37	38	39		₽ ;	4 6	77	43	44	45	46	47	48	Ì	49	š	51	52	53	54	ŝ	26	57	38	59	8	61	62	69

°Z		Locality	Author	
35	Arfvedsonite	Hackmannschlucht	KUNITZ	
ŝ	Arfvedsonite (leikolite) from granite pegmatite	Fukushin zan, Korea	MIYASHIRO, 1956	_
37	Arfvedsonite from nepla-syenite	Kangerdluarsuk, Greenland	SAHAMA	_
38	Arfvedsonite from nephsyenite	Kangerdluarsuk, Greenland	KUNITZ	
39	Arfvedsonite from pegmatite	Urma-varaka, Kola Penin.	KUPLETSKIJ	
40	Arfvedsonite from pegmatite	Kakasnjujakok, Kola Penin.	KUNITZ	
41	Arfvedsonite from nephsyenite	Loparsky Pass, Kola Penin.	KUNITZ	
42	Arfvedsonite (riebeck.arfved.) from neph-syenite	Kiihtelysvaara, Finland	Eskola & Sahlstein	
43	Arfvedsonite from neph-sycnite	Los-Archipel, W. Africa	Kunitz	
4	Magnesioarfyedsonite (torendrikite) from syenite	Ambatofinandrahana,` Madagascar	LACROIX, 1920	
45	Magnesioarfvedsonie (fluotaramite) from syenite pegm.	Mariupol, Ukraine	Morozewicz	
46	Magnesioarfvedsonite (fluotaramite) from syenite pegm.	Mariupol, Uktaine	AINBERG	
47.	Magnesioarfvedsonite from hydrothermal rock	Iron Hill, Colorado	Larsen	
48	Magnesioarfvedsonite (fluotaramite) from syenite pegm.	Mariupol, Ukraine	Morozewicz	
49	Katophorite from sanidinite inclusion in trachyte	Sao Miguel, Azores	OSANN, 1888	
20	Katophorite from trachyte	Fuente Vaca	KUNITZ	
7	Magnesiokatophorite (anophorite) from shonkinite	Katzenbuckel, Odenwald	FREUDENBERG	
52	Magnesiokatophorite (Katophorite)	Chibinpachk, Kola Penin.	KUNITZ	
53	Magnesiokatophorite from theralite	Crazy Mts., Montana	WOLFF	
7	Soda-tremolite from metamorphic rock (?)	Krivoi Rog, Ukraine	POLOVINKINA	
\$	Soda-tremolite (asbestos) from lead deposit	Camp Albion, Colorado	WAHLSTROM	
36	Soda-tremolite from hydrothermal rock	Iron Hill, Colorado	LARSEN	
57	Soda-tremolite from hydrothermal rock	Iron Hill, Colorado	LARSEN	
58	Soda-tremolite from lydrothermal rock	Iron Hill, Colorado	LARSEN	
\$ \$	Soda-tremolite (imerinite) from limestone	Ambatoharina, Madagascar	LACROIX, 1921	
8 3	Soda-tremolite from hydrothermal fock	Iron Hill, Colorado	LARSEN	
62	Soda-tremolite (richterite) from limestone	Lånehan. Sweden	Summing 1945	
63	Soda-ttemolite (richterite) from limestone	Långban, Sweden	SUNDIUS, 1945	
	Note. In the original descriptions, amphibole No. and amphiboles Nos. 47 and 54 were unfortunately c "tremolite.glaucophane" respectively. The optica	53 was erroneously called "h alled "soda-tremolite-glauco I properties cf amphikole N	astingsite", phane" and o. 44 were	
	re-examined by WINCHELL (1925).			

TABLE 130.

TABLE 14

Optical Data for TABLE 13.

.

No.	α	β	γ	γ-α	2V over X	Disp.	Optic	Orient.
2	1.680	1. 683	1.685	0.005	. 50°		b=Z,	c∧Y=5°
3		1.692						c∧X=4° .
4	1.698	1.699	1.706	0.008		-	b=Z,	c∧X=0°
6		1. 693						
7	1. 701	1.711						
· 8		1.695					b=Z,	c∧X=4-5°
9	1.688		1. 691	0.003	11 2°	$\rho < v$	b=Z,	c∧Y=1°
10		1. 686						·
11		1.6934					b=Z,	c∧X=2°
13	1 655	1.664	1.668	0.013	42°		b=Y,	c∧Z=27-35°
16	1 668		1. 680	0.012	50°		b=Z,	c∧X=14•
				0.011	12.650		h-7	c∧Y=8°
19		1.645	. /	0.011	12-0)		b=2,	c∧Z=3°
20	1.640		1.052	0.012	500	0>"	b=7	c∧Y=2°
21	1.659	1.663	1.000	0.007	17°	47 V	b=Y.	c∧Z=11°
23	1.649	1.030	1.05/					
24	1.622		1.640	0.018			b=Y,	c/\Z=)-0*
26		1.660			, 10–15°	$\rho > v$	b=Y,	c∧Z=8-14°
28	1.615		1.634	0. 019	41°		b=Y,	c∧Z=6-8°
29	1.618		1.637	0. 019			b=Y,	c∧Z=4°
31	1.606		1.627	0. 021			b=Y,	c∧Z=8°
34	1.619		1.640	0. 021				c∧Z=6°
35	1 690	1.695					b=Z,	c∧X=27°
36	1, 680	1.687	1.691	0.011			b=Z	
37	1.696	1.700	1.705	0.009			b=Z,	c∕\X=0°
- 38	1.695	1.698			large		b=Z	, c∧X=8°
39	1.695		1. 700	0.005			b=Z	, c∧X=7°
40	1.688	1. 693					b=Z	, c∧X=30°
41	1.687	1.693					b=Z	, c∧X=28°
42	1.670	1.680	1.682	0.012	small		b=Z	, $c \land X = 20 - 25^{\circ}$
43	1. 683	1.687					b=Z	, $c \land X = 15^{\circ}$
<u>,</u> 44		1.665					b=Z	, c∧Y=ca. 40°
46	1.655		1.664	0.009	41°	` p>v	b=Z	, c∧X=18-30°
47	1.651	1.661	1.670	0. 019	(72°)	(<i>p</i> >v)		c∧Z=57°.
50	1.681	1.688					b=7	Z, c∧X=36°
51				······································	ca. 25°	. p>v	b=7	Z, c∧X=63-70°
51	1.655		1.662	0.007	(small)		b=3	ζ, c∧X=56°
53	1.639	1.658	1.660	0. 021	38°	ρ<"	b=1	ζ, c∕\X=52°
51 52 53	1.655 1.639	1. 658	1. 662 1. 660	0.007	(small) 38°	ρ<υ	b=) b=)	<pre>%, c∧X=56° %, c∧X=52°</pre>

No.	α.	β	γ	γ-α	2V over X	Disp.	Optic	Orient.
54	1 621		1.640	0.019	76-80°			c∧Z=15°
55	1.633	1.639	1.642	0.009				c∧Z=44°
56	1.650	1.657	1.659	0.009	(64°)		1	c∧Z=35°
57	1.623	1.633	1.641	0. 018	(87°.) (ρ>v)		c∧Z=40°
58	1.628	1.638	1.644	0. 016	(82°) (ρ>v)		$c \land Z = 24^{\circ}$
59							b=Y,	c∧Z=43
-60	1.612	1.623	1.627	0. 015				c/\Z=20
61	1.606	1. 616	1.623	0.017				C/\Z=24
62	1.622	1. 635	1.641	0. 019	66°	•	b=Y,	c/\Z=19
63	1. 605		1.627	0. 022			b=Y,	C/\L=1/

TABLE 14

Fig. 28

The Ca and R"' Relationship in Alkali Amphiboles (Miyashiro 1957)

TABLE 15

Crystallographic Data for Amphiboles (Sundius 1946)

FIG. 28

	· <i>β</i>	$\mathbf{a}_0:\mathbf{b}_0:\mathbf{c}_0$	a _o	b ₀	c _o	110 : Ti
Anthophyllite		1.027:1:0.292	18.52	18.04	5.27	54°23
Cummingtonite Grünerite	109°34′	0.545 : I : 0.293 0.525 : I : 0.294	9.93 9.4 ?	18.22 17.9	5.33 5.27	54°20'
Tremolite Karinthine (Actin.)	106°02' 106°02'	0.550 : I : 0.295 0.5511 : I : 0.2938	9.78	17.8	5.26	55°36′
Kaersutite Basalt. hornblende	105°45′ 105°45′ 105°45′	0.541 : I : 0.292 0.542 : I : 0.297 0.541 : I : 0.292	9.94(?) 9.85(?) 9.94(?)	18.38 18.17 18.28	5.36 5.39	55°25'—
Barkevikite Richterite Arfvedsonite	105°45' 104°14'?	0.542 : I : 0.291 0.5499 : I : 0.2854	9.92(?)	18.30	5.33	-55 50
Glaucophane	104°10′	0.543 : 1 : 0.300	9.07(?) 9.72(?)	18.31	5.33 5.37	56°2' 54°55' -55°30'
Osannite (Riebeckite)	103°30' 107°34'	0.546 : I : 0.293 0.554 : I : 0.296	9.88(?) 9.98	18.10 18.02	5.31 5.33	56°

TABLE 15

Fig. 29

Diagrams Illustrating Solid Solution in the Anthophyllite and Cummingtonite Series. A = Anthophyllite Field, B = Cummingtonite Field (Sundius 1933), C = Extension of B to include Collins (1942) Data. Paired Minerals are connected by Lines. (Rabbitt 1948)

FIG. 29

Triangular Diagram to show Solid Solution Relations in the Hornblende Series.

TABLE 16

Analyses of Amphiboles from the Literature covering the Immiscibility gap of Fig.12

TABLE 16.

.

. •

.

· · · .

.

,

· .

No.	1.	Hornblende.	Mg rich Edenite, Glen Urquhart.	G.H.Franic (1958)
No.	2.	Actinolite.	Prieska District Cape Prov. S.Africa.	Mathias (1 952)
No.	3.	Hornblende.	Outer Granite. Ben Nevis.	Nockolds & Mitchell. Abh.Akad. d.Wiss.
No.	4.	Hornblende.	Tonalite, Komander Ss.	Malkovski Kr a kau 53.(A) 1913 pl17.
No.	5	Hornblende	Plagioclase, Skaru.	Francis (1958)
No.	6.	Hornblende.	Uralitized Gabbro, Aberdeenshire.	N.F.M. Henry. Mem. du Com.Geol.
No.	7	Hornblende.	Hornblende Diorite, Altai.	K. Tisnofeur. N.S.Uvr.157 1923.
			iv	

No. 1. Falls within Sundius class but has Al^{1V}. 757.

.

1

TA	BI	E	1	6	8
			_	_	_

NT -	7	0	R	Л	5	6	77
<u>NO</u> .	느	2	<u>.</u>	Ξ.	2	. <u>0</u>	. 1
SiO2	52.4	51.88	50 . 42	49. 36	52, 87	50 . 75	47.87
Al ₂ 03	7.1	8,08	4.75	6.96	6 . 40	5.12	3, 95
TiO2	0• 2	0.18	1.11	0.82	0, 28	0.65	2.02
Fe ₂ 03	-	l. 84	3.05	5.26	1.12	1.31	5.01
FeO	3. 4	5, 89	8,49	7.25	2. 37	13.06	19.48
MgO	19.7	18,48	16.17	15.46	20, 52	14. 12	7.78
Ca 0	13.4	11.04	12.38	12.07	13.50	11.33	10,35
Na ₂ 0	0, 9	0, 78	-	0, 36	0, 56	1.10	1.87
к ₂ 0	0.4	0, 08	-	0.11	0.12	0.83	-
MnO	0.1	0.13	0, 39	0.60	0.06	0.29	-
P205	n.d.	0, 03		-	-		-
H20	2. 2	1.94	-	1.16	1.60	1.94	1.29
F	0. 58	0.01	-		0.30	-	-
TOTAL	LOO. 3]	100, 36		99, 35	99, 79	100, 56	99, 62

.

1 -

PAGE 86

•

TABLE 16b

PAGE 87

ATOMIC PROPORTIONS

	1.	2	<u> </u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	
SiO2	7.245	7.240	7.23	7.178	7.367	7.36	7.35	
A1203	.757/.	40 .760/54	45 .77/.	02 .822/3	81 .633/.4	418.64/.	23 .648/	052
Ti0 ₂	.021	• 033	.12	.087	.029	. 07	.23	
Fe ₂ 03	-	.184	• 33	. 575	.117	.14	. 57	
Fe0	. 393	. 686	1.01	. 881	. 276	1. 58·	2. 397	
MgO	4.055	3. 867	3.48	3, 358	4. 929	3.07	1.787	
Ca 0	1.983	1.649	1.90	1,875	2.018	1.77	1.704	
Na ₂ 0	.241	. 217	•'041	.105	0.076	0.31	. 553	
к ₂ 0	.070	0.017	(0.03)	.017	.010	0.16		
Mn0	.012	.008	.05	.070	.001	.035		
P ₂ 0 ₅	2.027	-	•		1.486	•		
H20	. 253	1.825	1.19	1.116	.132	1.88	1.326	
F		.005				-		

F

Diagram to show suggested Compositional Limits of the Hornblende Series with respect to Si and Na+K.

ŕ

FIG. 31.

Diagram to show Immiscibility with respect to the Iron Component in the Hornblende Series.

Composition of calciferous hornblendes.

FIG: 32.

The Relationship between Si and R"' in Alkali Amphiboles (Miyashiro 1957)

FIG. 33.

The Fe''/R'' and Fe''/R'' ratios in amphiboles of the riebeckite-glaucophane group. (A) compositions, (B) nomenclature, (C) refractive indices, (D) optic orientation.

FIG. 34.

PAGE 92

The Fe'''/R''' and Fe''/R'' ratios in amphiboles of the arfvedsonite, katophorite, and soda-tremolite groups.

FIG. 35

<u>Fig. 36</u>

Sundius (1946) Triangular Diagram for Solid Solution Relations between the Hornblende Series and the Alkali Amphiboles.

FIG. 36.

.

page 93

FIG. 37

Relation between Na+K and Ca in Hornblendes and Alkali Amphiboles.

ATOMS Na + K

The Relationships between Ng and Nm Refractive Indices in the Monoclinic Amphiboles.

PAGE 96

FIG. 39.

The Relation between Ng Andex and the Birefringence Ng-Np for Tremolites and Alkali Amphiboles.

FIG. 40.

Plot of Various Chemical Parameters in Weight per cent Against Mean Refractive Index (Ford 1914).

. . . .

The Effects of Increasing Content of ${\rm Fe}_2{\rm O}_3$ and ${\rm TiO}_2$ on the Ng Refractive Index in Hornblendes.

FIG. 44

PAGE IOI

PLOT SHOWING THE RELATIONSHIP BETWEEN THE Ng REFRACTIVE

FIG. 45

FIG. 46

The Relationship between SiO₂ and the Ng Refractive Index in Hornblendes.

FIG. 48.

 \mathbf{p}

FIG. 49

Density plotted against chemical weights per cent of $FeO+Fe_2O_4+TiO_2+MnO$ for some anthophyllite varieties from the literature and the Montana varieties. The numbers of the Montana varieties are underlined. The measured and calculated figures for the Montana varieties are connected as shown; those for numbers 29 and 30 are nearly identical.
Relationship between Mg+A1(6)/Y and Various Physical Properties in the Hornblende Series (Rosenzweig & Watson 1954)

1

FIG. 52

FIG. 53.

Properties of the grunerite-kupfferite- $Mn_7(OH)_2Si_8O_{22}$ system.

Variation in Composition and Properties in the Tremolite-Actinolite Series (Winchell 1931).

Fig. 58

Variation in Composition and Properties in the Tremolite-Pargasite Series. Note Formula is Edenite not Pargasite (Winchell 1934).

FIG. 57

The Properties of the Tremolite-Ferrotremolite Series. (Winchell 1951).

The Physical Properties of the Calciferous Amphiboles (Winchell 1945) The Partial Prism.

PAGE 112

. Physical properties of calciferous hornblendes.

FIG. 60.

FIG 61

<u>Fig. 62</u>

The Relationship between the Ng Refractive Index and Al(4).

Two Axial Diagrams for Study of Sesqui-oxides in the Hornblende Series (Sundius 1946)

Refractive Index Values at Various Sesqui-oxide Levels. (Sundius 1946)

FIG. 65

Showing the Relationship of Ti+Fe"' to Various Contents of Al(ii) and Fe" (Sundius 1946)

FIG. 66.

The Relationship between Axial Angle, Al(ii) and Heavy Ion Content (Sundius 1946)

<u>Fig. 69</u>

Illustrating the break in Optical Properties between the Tremolite Series and the Common Hornblendes (Sundius 1946)

FIG. 70.

The Fe'''/R''' and Fe''/R'' ratios in amphiboles of the riebeckite-glaucophane group. (A) compositions, (B) nomenclature, (C) refractive indices, (D) optic orientation.

FIG. 34/71

Writer's Suggested Method for Identification of Alkali Amphiboles.

Graph showing the Relationship between d-space and % ${\rm Al}_2{}^0{}_3$ Content in the Hornblende Series.

Graphs showing the Relationship between d-space and % SiO₂ and Mgo Content.

FIG. 74.

Graphs showing the Relationship between d-space and % FeO and % (Na₂O+K₂O) Content.

Graph showing the Relationship between d-space and Si (in atomic proportions)

FIG. 76.
APPENDIX 1

.

.

.

·

·

.

-

ADDITIONAL STATISTICAL DATA.

ADDITIONAL DATA FOR MULTIPLE REGRESSION EQUATIONS.

	Common Hornblende.	Tremolite Series.
E(Ng x S.G)	214.404446	100.610853
E(Ng x (Fe))	135.21891	26,95112
E(Ng x Np)	110, 768936	53,082842
E(Ng x (2V))	58.24105383	32, 47543720
$E(Ng x (Z_Ac))$	21.09740079	9.63298600
E(Ng x Si)	434.00380	253.90211
E(Ng x ((Fe) Al))	270, 30724	39.46639
E(Ng x Mg)	179.36136	141.12768
	•	
E(Np x S.G)	211,74056	99 . 120428
E(Np x (Fe))	133,46348	204.19532
E(Ng x Np)	-	-
E(Np x (2V))	57.52138501	31.9934597
$E(Np x (Z_{1}c))$	20.83871185	9.4908147
E(Np x Si)	428.60906	205.12907
E(Np x ((Fe) Al))	266. 87239	38.89814
E(Np x Mg)	177.19263	139.2578
E(S.G x (Fe))	261.01316	50 . 63583
E(S.G x (Fe) Al)	519.67214	74.1081
$E(S.G \times (2V))$	110.87424942	60.6350273
$E(S.G x (Z_{1}c))$	40.26153122	17.9937191
E(S.G x Mg)	3 40 . 13228	263. 24982
$E(S_G x (Mg))$	-	-
E(S.G xSi)	828.87811	473.93413

ADDITIONAL DATA FOR MULTIPLE REGRESSION EQUATIONS.

	Common Hornblende.	Tremolite Series
E((Fe) x (Fe) + Al)	384.0436	25. 2538
E((Fe) x Mg)	162.9743	64.5958
E((Fe) x (Mg))	-	98.5944
E((Fe) x Si)	509.15650	125.67990
$E((Fe) \times (Z_{\lambda}c))$	23 . 6331772	4.853548
E((Fe) x (2V))	62.3824063	16 . 164033
E((Fe) x (Na+K))	-	5. 5582
E((2V) x Z c)	11.1473384906	5.80609515
E(2V x Si)	222, 8507074	153.064162
E2V x (Fe) + Al	131.6454101	23.678456
E(2V x Mg)	101.0244209	85.169084
$E(2V \times (Na+K))$	-	7.263718
E(2V x (Mg))	-	126.699157
$E(Z_{A}c x Si)$	81.7233097	45.37892
$E(Z_A c \times Mg)$	35.5483011	25.185643
E(ZAC x (Na+K))	· _	2.106163
$E(Z_{\Lambda}c \times (Mg))$	-	37.499198
$E(Z_A c x (Fe) + Al)$	48.2882334	7.072733
	-	

:

APPENDIX 2.

EXAMPLE OF METHODS OF CALCULATION OF REGRESSION EQUATIONS

AND

OTHER STATISTICAL DATA

- $X_{l} = Ng$ $X_{2} = Np$ $X_{3} = D$ $X_{4} = Sin Z_{A}c$ $X_{5} = Sin 2V$ Y = (Fe'' + Fe'' + Mn + Ti)
- 1. EX_1^2 = Sum of squares of Ng values. (Table 8 and Appendix 1) Similarly for EX_2^2 EX_3^2 etc.
- 2. <u>Correction term</u> in this case is the square of the sum of the Ng values. (Similarly for $X_2 X_3$ etc.) divided by the number of Ng values.
- 3. The products e.g. $EX_1 X_2$ are similarly derived and the correction terms are products of sums divided by number of values.
- 4. Ex₁ x_2 etc. are differences and represent sums of squares and products of deviations from the means.
- (Ex₁)²(Ey)² etc. are the denominators of the correlation coefficients 'r' the numerators being the values from Step 4.
 The simultaneous equations are then built with the 'r' values in the manner indicated by t he example.

KEY.

HORNBLENDE SER	RIES. REDUCTION	ON OF DAT	A FOR SI	MULTANEOUS	EQUATIONS.

.

		xl	2	_
	EX1S	Correction	Exls	Ex12
X	1 112.167109	112.141260	.025849	.1608
		X ₂		
	Ex2 ²	Correction	$\mathrm{Ex}_{\mathcal{C}}^{\mathcal{C}}$	Ex_2^2
X	2 109.388993	109.36579	.023203	.15232
	-			
	• • • • •	X ₃		
	Ex ₃ ²	Correction	${\tt Ex_3}^2$	Ex3 ²
X	₃ 410.056677	409. 568000	.488677	. 69907
		X _A		
	EX42	Correction	\mathbb{Ex}_4^2	Ex4 ²
X	4. 258997	3.980531	. 278466	. 52774
	. .	· · · ·		
,		X ₅		
	EX5	Correction	Ex_5^2	Ex_5^2
X	5 32.44060	30.40437	2.03523	1.4266
· •		У	• • •	
	EXS	Correction	Ey ²	Ey^2
Y	216.5470	106.2401	56. 3069	7. 5040
-	•			

.

HORNBLENDE SERIES, REDUCTION OF DATA FOR SIMULTANEOUS EQUATIONS.

		•	x ₂		
	EX1X2	Correction	ExlxS	$(\mathrm{Ex}_1^2)(\mathrm{Ex}_2^2)$ ^r l	
x ₁	110.768936	110.744830	.024106	.02449 .9843	
		• •	77		
			A 3	0	
	EX1X3	Correction	$\mathbf{Ex_{1}x_{3}}$	(Ex ₁) ² (Ex ₃) ² r ₂	;
x ₁	214.404446	214.311620	.092826	.1124 .8259	
			x ₄		
	Ex_1x_4	Correction	Ex_1x_4	$(\mathrm{Ex}_1)^{\circ}(\mathrm{Ex}_4)^{\circ}$ r ₃	
X ₁	21.097400	21.127749	030348	.084863576	
	· · · · · · · · · · · · · · · · · · ·		-		
			x ₅		
	EX1X2	Correction	Ex1 ^x 5	$(Ex_1)^{2}(Ex_5)^{2}$ r_4	
xl	58,24105	58, 39098	14993	. 2294 6536	
	•		Y		
	EXlA	Correction	Exlà	$(Ex_1)^2 (Ey)^2 r_5$	
x ₁	135.21891	134.05046	1.16845	1.2066 .9683	

HORNBLENDE SERIES.	REDUCTION	OF	DATA	FOR	SIMULTANEOUS	EQUATIONS

			X ₃		
	ex ₂ x ₃	Correction	Ex2x3	$(\mathrm{Ex}_2)^2 (\mathrm{Ex}_3)^2$	\mathbf{r}_{6}
X ₂	211.74056	211.64293	.097637	.1065	.9168

X ₄	Ļ	

	EX ₂ X ₄	Correction	Ex ₂ x4	$(\mathrm{Ex}_2)^2(\mathrm{Ex}_4)^2$	r7
X ₂	20.838711	20.864657	025945	.08039	3227

		•	x_5		
•	EX2X5	Correction	Ex ₂ x ₅	$(\text{Ex}_2)^2$ $(\text{Ex}_5)^2$	r_8
x ₂	57.52138	57.66458	14319	. 2173	-, 6590

Y

	Ex ₂ Y	Correction	Ex ₂ Y	$(\mathrm{Ex}_2)^2(\mathrm{Ey})^2$	rg
X ₂	133.46348	132.38121	1.08227	1.1430	. 9469

HORNBLENDE SERIES, REDUCTION OF DATA FOR SIMULTANEOUS EQUATIONS.

. •					
			x ₄	; ,2, ,2	
	EX_3X_4	Correction	$E_{x_3}x_4$	(Ex_3) (Ex_4)	r 10
x ₃	40.261530	40.37695	11542	. 3689	3129
			x ₅		
	EX ₃ X ₅	Correction	Ex3x5	$(\text{Ex}_3)^2(\text{Ex}_5)^2$	r^{ll}
X ₃	110.87424	111.59157	71732	. 9973	7193
	•		Y		
	EX ₃ Y	Correction	Ex ₃ Y	(Ex ₃) ² (EY) ²	r 12
X ₃	261.0131	256.1819	4.8312	5.2458	. 9210
		- 			
			x ₅		
	EX4X2	Correction	$\mathbf{Ex}_4\mathbf{x}_5$	$(Ex_4)^2 (Ex_5)^2$	r^{13}
x ₄	11.147338	11.1001170	.0472214	.7529	.6272
			Y		
	EX41	Correction	Ex ₄ y	$(Ex4)^{2}(Ey)^{2}$	r^{14}
x_4	23.6331	25, 2555	-1.6223	3.9602	4097
			• •		
•	•		Y		
	EX ₅ Y	Correction	Ex ₅ y	$(\mathrm{Ex}_5)^2(\mathrm{Ey})^2$	r^{15}
X5	62.38240	69.79971	-7.4173	10.7052	6929
U .					

COMMON HORNBLENDES:

Simultaneous Equations (derived from Reduction of Data)

Np D Z_c 2V Fe Ng Ng + 1 + 09843 + 08259 - 03576 - 06536 = + 09683Np +.09843 +.1 +.09168 -.03227 -.06590 **= +.** 09469 +.08259 +.09168 +.1 -.03129 -.07193 D = +.09210 Z.c-.-3576 -.03227 -.03129 +.1 +.06272 = -.04970 2V -.06536 -.06590 -.07193 +.06272 +.1 = -. 06929

(Reduced by a factor of 10 for computer.)

Solutions given by computer.

-4.4703808336 = a partial regression coefficients. 6.9495669087 = b -2.1274607100 = c -0.2705730651 = d -0.3955553821 = e

Regression Equations:

(Fe''+Fe'''+Mn+Ti) = (Fe) = 411.21 - 208.75Ng + 340.55Np-22.79D - 3.83Sin Z.c - 2.05 Sin 2V

Correlation Coefficient:

R
Fe = 0.915

Standard Error of the Estimate:

Correlation Coefficient: "R"

 $R^{2} = ry_{1} a + ry_{2} b + ry_{3} c + ry_{4} d + ry_{5} e$ R is calculatedfirstly to enable consideration to by substitution R = $\sqrt{.838} = .915$ (Maximum correlation is 1.0) R is calculated firstly to enable consideration to be given to the usefulness of the regression equation.

$$\frac{\text{Regression Equation}:}{(\text{Fe}) = \overline{\text{Fe}} + a \sqrt{\frac{\text{Ey}^2}{\text{Ex}_1^2}} (\text{Ng}-\overline{\text{Ng}}) + b \sqrt{\frac{\text{Ey}^2}{\text{Ex}_2^2}} (\text{Np}-\overline{\text{Np}}) + c \sqrt{\frac{\text{Ey}^2}{\text{Ex}_3^2}} + d \sqrt{\frac{\text{Ey}^2}{\text{Ex}_4^2}} + e \sqrt{\frac{\text{Ey}^2}{\text{Ex}_5^2}}$$

by substitution from simultaneous equation and reduction of data.

Fe = 411.21 - 208.75Ng + 340.55Np - 22.790 - 3.83 Sin Z.c - 2.05 Sin2V

Standard Error of Estimate:

$$\int \frac{(1 - R^2) Ey^2}{n - m}$$
 by substitution = .515

n = number of sample m = number of parameters

COMMON HORNBLENDES.

Simultaneous and Regression Equations for (Fe)+Al, Mg and Si in Atomic Proportions on Physical Properties.

Simultaneous Equations.

	Ng	Np	D	$Z_{\bullet}c$	2 V	Fe	(Fe)+Al	Mg	Si
Ng	+.1	+.09843	+• 08259	03576	06536	+.09683	= +. 09400	 09663	05559
Np	ь +•0	9843 +.1	+.09168	03227	06590	+.09469	= +.09295	09492	05546
D	ь +.0	8259 +.09	9168 +.1	03129	07193	+.09210	= +.09076	09417	05466
Z	ц ;0	357603	522705	3129 +.1	+.06272	 04970	= 05048	+. 03996	106366
2V	т •0 Т	653606	590 0'	7193 +.06	6272 +.1	06929	= 0658	+.06767	08918
Fe	+• 0	9683 +. 09	9469 +.09	921004	1970 06	6929 +.1	= +.09315	09597	05166

Reduced by a factor of 10 for computer.

Solutions:

(Fe)+Al	Mg	Si
-0.8482347716 1.3386004537 -0.2707048741 -0.1453277567 0.0483780172	0.4602100234 -0.5589338585 0.1821008245 -0.1455006438 0.1116705605	4.4842276253 -5.0688003215 0.6462166752 0.8041386006 -2.9182168545
0.6959373818	-0.0387190430	-2.2765717169

Regression Equations:

 $(Fe) + A1 = -45.43Ng + 78.74Np - 3.61D - 2.54(SinZ_c) + .30Sin2V$ +.83(Fe) - 39.74

Mg = 21.85Ng - 27.38Np + 1.89D - 2.07SinZ.c - .56Sin2V - 1.00Fe + 9.63

Si = 67.20Ng - 86Np + 2.3D + 3.8SinZ_Ac - 5.19Sin2V - .76Fe + 21.61

Correlat:	ion Coefficients:	Standard	Error of the Estimate:
R(Fe)+Al	= .939	R(Fe)+Al	= .538 atoms.
R _{Mg}	= . 99	R_{Mg}	= .18 atoms.
R _{Si}	= . 92	R _{SiO} 2	= .172 atoms.

TREMOLITE SERIES: Simultaneous and Regression Equations for (Fe) in Atomic Proportions on Physical Properties.

Simultaneous Equations:

2V Fe Z.c D Nρ Ng Ng +.1 +.09141 +.05984 -.09073 -.05549 = +.07578 Np +.09141 +.1 +.07701 +.02300 -.06195 = +. 08651 Тı +.05985 +.07701 +.1 +.01543 +.04063 = +.08271 D Z.c-.09073 +.023 +.01543 +.1 -.007349 = +.013542V -.05549 -.06195 +.04063 -.007349 +.1 = +.04383

Reduced by a factor of 10 for computer.

Solutions

-0.1168195896 -0.4505201085 1.4731118539 -0.1320347089 -0.5138489746

Regression Equation:

(Fe''+Fe'''+Mn+Ti) = (Fe) = 33.860 - 6.202Ng - 22.746Np+ 12.876D - 1.767(SinZ_•c) - 25.301(Sin2V).

<u>Correlation Coefficient</u> = .97334 (1.00 = absolute correlation).

TREMOLITE SERIES: Simultaneous and Regression Equations for Mg, Si and (Fe)+Al in Atomic Proportions on Physical Properties.

Simultaneous Equations.

(Fe)+AlMgO Si Z_c 2V Fe D Np Ng +.1 +.09141 +.05985 -.09073 -.05549 +.07578 = -.07860 -.03728 +.08122 Ng +.09141 +.1 +.07701 +.0230 -.06195 +.0865 = -.08033 -.05022 +.09102 Np т. +.05985 +.07701 +.1 +.01543 +.04063 +.08271 = -.06022 -.07302 +.08684 D L Z_c -. 09073 +. 02300 +. 01543 +. 1 -. 007349 +. 01353 = -. 01353 -. 01286 +. 007383 -.05549 -.06195 +.04063 -007349 +.1 -.04383 = +.04255 +.03847 -.04619 2V+.07578 +.08651 +.0827 +.01353 -.04383 +.1 = -.09255 -.04867 +.09505 Fe

Reduced by a factor of 10 for computer.

Solutions.

Mg	Si	(re)+al
0.11926625895 0.12744572033 -0.19301711123 0.11015178921 0.28097609595	-0.13642164730 -0.80460230625 0.55268364124 -0.14412427155 -0.59328453038	0.10615192772 0.33127991369 -0.02647826180 0.01783329007 0.09725838073
-0.85825982695	-0.38486418755	0.64558084246

Regression Equations:

Mg = 8.70Ng + 8.86Np - 2.32D + 2.03(SinZ_c) + 19.05(Sin2V) -1.18(Fe)-35.12 Si = 48.93 - 3.36Ng - 18.32Np + 2.18D - 0.8SinZ_c - 13.51Sin2V - .17Fe (Fe)+Al = 7.19Ng + 21.40Np -.29D + .31(SinZ_c) + 61.11(Sin2V) + .83(Fe) -105.54

Correlation Coefficients.	Standard Error of the Estimate.
$R_{Mg} = .905$	S.E. $Mg = .339$ atoms.
^R Si = not significant	S.E. (Fe)+Al = .187 atoms.
R(Fe) + A1 = .967	

TREMOLITE SERIES:

Simultaneous and Regression Equations for (Mg) and Na+K in Atomic Proportions on Physical Properties.

Simultaneous Equations.

	Sin2V SinZ ₄ c	Fe	(Mg)	Na+K
Sin 2V	+.1007349	+.01358	=01323	03504
SinZAC	007349 +.1	04383	= +. 04074	01974
Fe	+.01353043	383 + .1	=09176	02376

Reduced by a factor of 10 for computer.

Solutions given by computer.

(Mg)
-0.00782231126
0.00664434058
-0,91302942682

Na+K -0.32948234355 -0.37902882815 -0.35914937426

Regression Equations:

(Mg+Ca+Na+K) = (Mg) = .48(Sin2V) - .15(SinZ_Ac) - 1.34Fe * 7.54 (Na+K) = not significant

Correlation Coefficients:-

R(Mg) = .91619 (correlation is almost wholly with (Fe) see above equation)

R(Na+K) = not significant

Standard Error of the Estimate.

S.E. Mg = .316 atoms

HORNBLENDE SERIES: Simultaneous and Regression Equations for (Fe) in Atomic Proportions on Physical Properties.

Simultaneous Equations:

2V (Fe) Z_c Np. D Ng Ng +.1 +.09844 +.08674 -.01893 -.06652 = +.09598 Np +.09844 +.1 +.09310 -.01330 -.06534 = +. 96554 +.08674 +.09310 +.1 -.01429 -.07031 = +.09316 D L $Z_{a}c_{-}01893 - 01330 - 01429 + 1 + 03808 = - 02515$ 2V -.06652 -.06534 -.07031 +.03808 +.1 = -. 06777

Reduced by a factor of 10 for computer.

Solutions:

9.132493992 11.675324974 4.413976915 0.247174916 0.844567427

Regression Equation:

(Fe"'+Fe"+Mn+Ti) = (Fe) = 397.25Ng - 498.90Np + 44.19D+ 4.07 (Sin Z_Ac) + 5.03 (Sin 2V) + 14.48.

Correlation Coefficient:

R
(Fe) = .894

Standard Error of the Estimate:

S.E.
$$Fe = .538$$
 atoms.

HORNBLENDE SERIES: Simultaneous and Regression Equations for (Fe)+Al in Atomic Proportions on Physical Properties.

Simultaneous Equations.

Ng Np D Sin Z_Ac 2V Fe (Fe)+A1 Ng +.1 +.09844 +.08674 -.01893 -.06625 +.09598 = +.09430 L Np +.09844 +.1 +.09310 -.01330 -.06534 +.09414 = +.09542 L D +.08674 +.09310 +.1 -.01429 -.07031 +.09316 = +.09160 L Z_Ac-.01893 -.01330 -.01429 +.1 +.03808 -.02515 = -.02002 L 2V -.06652 -.06534 -.07031 +.03808 +.1 -.06777 = -.06208 Fe $\stackrel{L}{+}$.09598 +.09414 +.09316 -.02515 -.06777 +.1 = +.09157 LL

Reduced by a factor of 10 for computer.

Solutions:

-0.6491581247 1.4280526135 -0.1650874380 -0.0810818564 0.0322167856

0.3496299236

Regression Equations:

 $(Fe)+Al = -44.08Ng + 96.10Np - 25.79D - 2.06 (Sin Z_c)$ + .30 (Sin 2V) + .55Fe - .50

Correlation Coefficient:

 $^{R}(Fe) + A1 = .96$

Standard Error of the Estimate.

S. E. Fe = .538 atoms.

APPENDIX 3

X-RAY POWDER DATA.

The three strongest lines of each pattern are indicated by 1. the superscripts 1, 2, 3 against the abbreviations for intensity.

- 'd' spacings in Angstrom units were obtained using the tables of Parrish and Irwin (1953) in which the Bragg values for the wavelengths are used.
- All the patterns were obtained with Fe filtered Co. radiation 3. by the method of Straumanis in an 11.4 cm. diameter camera. The exception is the Dilma pit chrome tremolite (Dunham and others 1958) which was obtained with Ni filtered Cu radiation in a 9cm. camera by the Van Arkel method.
- 'd' spacing at 3.12Å approximately is very similar in intensity NOTE. to Line at 2.54Å. By visual methods it is often difficult to estimate which is the stronger.

		•		•		
•						
-	B.L.13	96	B . L.	931	B. L.	733
	đ.	I	đ.	I	đ.	I
	9.08	M	9.05	W	9.06	W
	8,48	s ^l	8.45	s ¹	8.47	s ¹
	5.11	W	4.93	W	5.12	VVW
	5.10	M			5.05	MW
	4. 53	M	4.53	W	4. 53	MW
	4.23	VW	4. 25	VVW	4.22	WVV
	3, 98	WVV	4.06	VVW	4.03	VVW
	3, 88	M-W	3.90	W	3. 90	W
	3.39	MS	3.40	MS	3.40	M
	3. 28	M	3. 29	M	3. 28	М
	3.12	M-S	3.13	S	3.12	S
	2, 95	M	2. 95	M	2. 95	S
	2, 80	W	2.82	W	2.81	W
	2.71	S 2	2.71	s ²	2, 73	s ²
	2, 59	М	2.60	MS	2.60	MS
	2.543	s ³ .	2.560	s ³	2, 556	s ³
	2. 382	VVW	2. 392	VW		
	2.340	M	2. 347	M	2.344	М
	2, 280	W	2, 300	MW	2. 295	M-W
	2.214	VVW	2.231	WV	2. 225	VVW
	2.161	M	2.170	M	2.164	М
	2.045	MW	2.055	W	2,052	W

•

	2.017	MW	2.030	MW	2.026	М
	1.968	VVW				
	1.936	VVW				
• .	1.888	VVW			1.888	VVW
	1.867	MW	1.875	VW	1.873	W
·	1.846	VVW	1.858	VVW	1.852	VVW
	1.811	VVW	1.816	W	1.814	W
	1.748	VVW	1.764	W	1.748	VW
	1.718	VVW	1.702	VW		
	1.689	MW	1.688	W	1.692	MW
	1.651	M	1.656	M	1.654	M
	1.635	VW			1.640	VW
	1.621	W	1.623	W	1.620	W
	1.582	M	1.585	M	1.590	SM
	1.559	VW	1.564	WV	1.560	VW
	1.535	VW	1.546	W	1.542	VW
	1.519	M	1.529	MW	1.525	M
	1.506	W	1.510	W	1.507	W
·	1.474	vvw	1.479	W	1.476	W
	1.448	WVV	1.462	VW	1.460	W
	1.439	M	1.445	S	1.441	S
	1.366	MW	1.373	M	1.370	М
	1.342	VW	1.344	M	1.352	M
. •	1.197	W	1.204	W	1.200	W
	1.164	VVW	1.168	W	1.163	WV
	1.148	WVV	1.154	W	1.151	VW
	1.123	VVW	1.140	Ŵ	1,121	WVV

1.113	VVW	1.118	VVW	1.099	VVW
1.078	W	1.083	W	1.080	W
1.051	W	1.054	W	1.052	W
1.046	W	1.049	W	1.047	W
1.029	W	1.031	W	1.029	W
1.024	W	1.016	WVV	1.020	WVV
. 984	VW	1.004	WVV	1.004	WVV
. 977.	VW	. 99	W	. 99	W
. 976	VW	• 983	W	. 981	W
.969	VVW	. 953	WVV	. 973	WVV
. 950	. vw	. 937	. vv	.951	WV
. 922	VW	.919	WV	• 934	WVV
. 921	VW	. 913	W	. 924	WVV
. 911	W	. 911	WVV	. 915	W
. 909	VW			.913	W
. 901	VVW			.911	WVV
				• 909	VVW
				904	งางพ

.

.

.904 VVW

	B. L.	1798	B. L.	1951	B. L.	830
	đ.	I	đ.	I.	đ.	I.
	9.06	M	9.05	М	9.01	W
	8.42	s l	8.42	s ^l	8.43	s l
	5.10	VW	5.07	VW	4.91	WV
	4.91	MW	4.90	MW	4.14	VW
	4.51	MW	4.52	MW	4. 52	MW
	4.21	VW	4.20	WV	4.22	WVV
	3, 98	VVW				
	3.88	MW	3, 90	v	3. 90	WV
	3. 33	MS	3. 37	MS	3. 38	MS
	3, 27	M	3. 27	M	3. 27	М
	3.10	MS	3,12	s ²	3.13	S
	2.94	M	2.95	M	2.95	Μ
	2.80	W	2.80	VW	2, 82	W
	2.71	S 2	2.70	s ³	2, 68	s ²
	2, 60	M	2, 60	М	2, 60	M. S
•	2.546	ms ³	2, 553	M. S	2.555	s ³
	2.384	VVW	2. 378	VVW		
	2.341	М	2. 342	M	2. 342	М
	2, 290	W	2.291	W	2, 295	M. W
	2.217	WVV	2. 232	WV	2. 223	VW
· .	2.162	M	2.166	М	2.166	М
	2.045	W	2.050	W	2.053	W
	1.199	VW	1.198	W	1.199	W
	1.161	VVW	1.163	VW	1.166	VW

VW	1.148	VW	1.149	WVV	1.148
				VVW	1.124
VVW	1.111			WVV	1.107
VW	1.080	VW	1.065	W	1.079
VVW	1.050	W	1.051		
WVV	1.046	WVV	1.046	W	1.048
W	1.028	W	1.027	W	1.030
VVW	1.019			VW	1.026
VVW	1.001	W	. 987	vvw	1.006
VW	. 990	VW	. 980	W	. 986
VW	. 986			VW	. 980
VW	.981			VW	. 979
VW	. 978	VVW	. 950		. 973
WV	. 951	•		. vvv	.951
WV	. 922	WVV	• 933	WVV	. 933
WVV	. 921	WVV	. 921	WVV	. 921
VVW	. 914	WVV	. 914	WVV	.913
VW	.913	WVV	. 912	MW	.911
VW	. 910	WVV	. 910	vvw	. 909

. 902

VVW

LY	313	LY	109	LY	486
đ.	. I	đ.	I	d.	I
9,00	MW	9.16	M	8. 95	MW
8.45	s ¹	8,45	s ¹	8,40	s ¹
5, 70	W	5.12	W	5.09	W
4.91	W	4.84	MW	4. 87	MW
4.53	MW	4.63	MW	4.51	MW
4.27	WVV	4. 37	W	4.21	W
4. 03	AM	4.06	MW	4.01	W
3, 90	W	3.53	VW	3, 88	MW
3, 39	MS	3.40	MS	3, 38	MS
3 . 28	M	3. 28	M	3. 28	MW
3.11	MS	3.12	MS	3.12	s ²
2, 95	MW	2, 95	M	2.94	MW
2, 80	VW	2.81	VW	2, 80	VW
2.71	ms 2	2.71	s ²	2.71	s ³
2,60	MS	2.60	Μ	2.60	M
2, 55	o s ³	2.540	s ³	2. 538	S
2, 38	33 VVW	2. 382	VVW	-	-
2. 33	3 M	2. 340	MW	2.364	М
2. 28	8 MW	2. 281	W	2, 278	W
		2.213	WV	2.212	WV
2.16	4 M	2.162	Μ	2.162	MW
2.04	.9 MW	2.045	MW	2.043	W
2.01	9 M	2.016	MW	2.015	MW
1.97	vvv L	1.952	VVW	1.967	Ϋ́νΨ
1.93	58 VVW	1.933	WVV	1.936	WVV

1.890	WVV	1.889	VVW	1.894	VVW
1.869	W	1. 865	; W	1.868	VW
1.847	VVW	1.845	VW	1.845	VW
1.811	W	1.810	VVW	1.815	VW
1.750	W	1.749	WVV	1.751	VW
1.69 5	W	1.685	W	1.689	W
1.680	W			1.677	VVW
1.652	MW	1.650	MW	1.652	MW
1.621	W	1.617	W	1.621	W
1.587	MW	1.581	М	1.584	MW
1.560	VW	1.562	WVV	1.500	WVV
1.538	VW	1.538	WV	1.538	WVW
1.523	MW	1.516	W	1.518	MW
1.508	VW	1.504	W	1.507	W
1.477	VW	1.472	VVW	1.472	WV
1.459	W	1.454	WVV	1.456	VW
1.441	М	1.438	М	1.443	М
l.369	MW	1.363	MW	1.368	MW
1.342	W			l.345	W
1.199	W	1.195	MW	1.199	MW
1.163	VW	1. 159	W	1.161	VW
1.149	WVV	1.133	WVV	1.147	VVW
· .	•			1.124	VVW
1.115	WVW	1.110	W	1. 110	VVW
1.079	W	1.074	WV		

1.050	W	1.049	WV		
1.046	W	1.045	WV		
1.030	W	1.030	VVW		
1.014	W	1.022	VW		
1.009	WW	1.005	VVW		
• 986	M	. 983	₩V		
• 980	W	. 980	VW	. 979	WVV
. 977	W	. 974	VW	. 975	VVW
. 969	VVW				
. 951	W			. 950	VVW
. 933	VVW	. 936	VVW	. 934	VVW
. 930	VVW	.931	VVW	. 932	VVW
. 912	VVW	.919	VVW	• 930	VVW
	•	. 909	M	. 910	М
		. 907	WV		
. 904	VVW	·		. 900	VW
. 901	VVW	. 901	WV		
	·				

	LY	484	LY	485	LY	20
	d.	I.	d.	I.	d.	I.
	9.10	MW	9.07	M	9.03	М
	8. 34	s ¹	8,40	s ¹	8, 44	s ¹
	5.08	W	5.08	W	5.08	VW
•	4.88	W	4.89	MW	4.89	W
	4.50	W .	4.44	MW	4. 53	MW
	4. 22	WVV	4.22	W	4.23	WVV
			4.00	VVW	4.01	WVV
	3.87	W	3, 87	MW	3.89	MW
	3, 38	M	3. 38	MS	3, 39	М
	3. 27	M	3.28	M	3. 28	MW
	3.12	MS	3.12	s ²	3.13	MS
	2.94	M	2.94	MS	2.94	MW
	2, 80	WV	2.81	VW	2.88	WVV
	2.71	s ²	2.70	s ³	2.71	s ²
	2.59	M	2.62	М	2, 60	М
	2. 535	s ³	2.540	MS	2.541	s ³
	2. 377	VVW	2.374	WVV	2. 383	VVW
	2. 333	MW	2.367	М	2.343	MW
	2. 276	VW	2. 282	W	2, 285	VW
	2.210	WV	2.213	VVW	2.261	VVW
	2.161	Μ	2.162	Μ	2.163	MW
	2.042	WW	2.041	MW	2.098	W
	2.014	MW	2.015	MW	2.016	W
	1.970	WVV	1.969	WVV	1.955	VVW
· .	1.932	WVV	1.927	VVW	1.916	VVW
•	· · ·					

•				•		
			1.890	VVW	1.890	VVW
	1.865	W	1. 865	VW	1.867	W
	1.841	VVW	1.840	VVW	1.843	VVW
	1.813	VVW	1.811	WVV	1,815	VVW
	1.748	WW	1.748	VVW	1.779	VVW
	1 . 688	W	1.687	W	1.690	W
	1.648	MW	1.650	MW	1.654	MW
	1.636	WVV	1. 633	VVW		
	1.617	W	1.618	W	1.621	W
	1.580	MW	1.581	MW	1.584	М
	1.558	VW	1.559	WVV	1.562	VVW
	1.534	WV	1.534	W	1.540	WV
	1.514	MW	1.518	W	1.521	MW
	1.504	MW	1.505	W	1.508	WVV
	1.469	VVW	1.472	WVV	1.481	WVV
	1.455	WVV	1.455	WVW	1.464	VVW
	1.438	М	1.441	MS	1.441	М
	1.364	MW	1.365	Μ	1.367	MW
			1.343	W	1.343	W
	1.195	MW	1.197	MW	1.200	MW
	1.159	W	1.159	WV	1.161	MW
	1.146	WVV	1.149	WVV		
· · ·	1.124	VVW	1.123	WV		
	1.110	VVW	1.111	WVV		
	1.088	VVW	1.078	WV	1.079	VW

VW	1.051	W	1.050	VVW	1.05
WV	1.047	WM	1.047	WM	1.046
VW	1.031	WV	1.031	vv w	1.031
WV	1.028	WVV	1.028	VVW	1.021
VVW	• 985	νw	• 986		
VVW	.981	MAA	• 980	W	• 983
WVV	. 979	WVV	. 978	W	• 98
AAA	. 976	WVV	. 976	WVV	. 974
WVV	• 950	VVW	. 954	WVV	• 968
		VVW	• 952	VVW	• 950
VVW	• 933	WVV	• 934	W	. 934
		WVV	• 930	VVW	. 9 29
VVW	. 920	VVW	• 920	VVW	. 920
М	. 911	VVW	. 910	М	. 910
WVV	. 909	WVV	. 909		
		VVW	• 902		
		VVW	. 90	VVW	• 90

.

•

•

		· · · · ·				
	LY	550	LY	534	Dilma	Pit B.
	d.	I.	d.	I.	đ.	I.
	9.16	MW	9.11	W		
	8.39	s ¹	8, 34	s l	8.44	s ¹
	5.04	W				
	4.87	W	4. 86	W	4. 90	S
	4.51	W	4.46	W	4. 54	S
	4.21	W.	4.25	VW	4.16	W
	4.00	vw				
	3. 87	·W	3.89	W	3.88	S
	3, 38	MS	3, 38	М	3, 36	М
	3, 26	Μ	3.24	W	3.26	W
	3.12	MS	3.10	M-S	3.09	М
	2. 93	M	2, 94	М	2. 92	М
	2.80	VVW	2.78	VVW		
	2.70	s ²	2.70	s ²	2.70	s ²
	2. 59	MS	2. 58	М	2.60	W
	2.534	s ³	. 2. 538	s ³	2, 53	s ³
•	2. 383	W				
	2. 333	M	2.331	Μ	2.31	М
	2. 292	MW	2, 283	MW		
	2. 254	MW	2. 257	WVV		
	2.187	W	2.158	М	2.16	W
	2.071	W	2.042	MW		
	2.024	MW	2.012	MW	2.01	W
	1.992	WVV	1.966	VVW		
•	1,951	VVW	1.928	VVW		

•

	1.911	VVW	•	1.883	VVW		
	1.862	MW		1.861	W	1 . 86	W
	1.844	VVW		1.844	VVW		
	1.810	VVW		1.809	MW	1.805	W
	1.746	VVW		1.741	MAA		
	1.707	VVW		1.718	VVW		
	1.686	W				1.681	W
	1.647	MW		1.746	MW	1.642	W
	1.633	VW					
	1.615	MW		1.612	Ŵ	1.612	W
	1.580	M		1.585	M		
	1.556	VW		1.557	WVW		
•	1.534	VW		1.535	W		
	1.518	MW		1.516	М		
	1.503	WV		1.500	VW	1.507	М
	1.470	VVW		1.473	VVW		
	1.452	VVW		1.454	VVW		
	1.438	М		1.436	М	1.432	W
	1.364	MW	·	1.364	Μ	1.360	VW
· · · ·	• •			1.345	M		
		•		1.198	MW	1.197	vw
	1.155	W		1.163	VVW		
	1.141	VVW		1.148	VVW		
	1. 119	VW		1.115	VVW		
	1.108	VW		1.101	VVW		
	1.074	W	х Т	1.079	W		

•

•

•

1.059	W	1.061	VVW		
1.048	MW	1.044	W	1.046	WV
1.029	W	1.028	, MW	1.027	VW
1.024	VW	1.017	VVW		
. 985	W	• 988	W		
. 978	W	. 985	VW	. 979	W
• 974	VVW	. 977	VVW		
• 949	VVW .	.948	VW		
. 920	VVW	. 928	WVV		
	•	. 920	VVW		
. 910	MS	. 913	VVW		
. 909	VVW	.912	Μ	. 908	W
. 904	VVW	.910	VVW		
	•	. 901	VVW		

. •

ANALYSES OF GHANA AMPHIBOLES

AND

ANALYSES OF AMPHIBOLES FROM DR. B. LEAKE.

No.	LY542	LY109	LY484	LY313	LY308	LY20	LY485	LY534
\mathtt{SiO}_2	47. 60	51.10	53. 2	47.50	& 5, 90	51.00	52, 20	51.40
Al_2O_3	17.78	4.7	2.7	9.00	13.39	5.02	4.51	4.10
Ti0 ₂	. 68	0. 30	0.10	0.43	0, 82	0, 29	0, 23	3, 21
Fe ₂ 03	. 87	1.80	0.86	2.00	1.50	2.66	2.42	1.18
Fe0	8, 65	6, 80	5.26	10.50	11.50	8.74	6. 80	7.10
MnO	.18	0.11	0.10	0.19	0, 29	0.20	0.11	0, 25
MgO	7.70	18.70	22,00	14.00	8 . 60	17.20	17.50	18.30
Ca 0	12.18	12.49	12.76	12.54	14.59	13.06	13.25	12.70
Na ₂ 0	2.06	1.20	0,65	1. 36	1.45	0, 94	0.91	0, 90
К ₂ 0	. 93	0.12	0. 34	1.07	0.36	0.40	0. 37	0.40
н ₂ 0+	. 45	2.03	1.53	0.91	1.71	0,65	1.28	0.54
н ₂ 0 ⁻	. 26	-	-	-	 `	-	-	
P ₂ 0 ₅	-	. .	-	-	-	-	-	
Total	99, 34	99.35	99, 50	99. 50	100.11	100.16	99. 58	100.08

Analyst W. Layton

ANALYSES OF GHANA AMPHIBOLES

AND

ANALYSES OF AMPHIBOLES FROM DR. B. LEAKE.

(cont.)

No.	LY486	LY550	931	1798	1396	1951	830	733
$si0_2$	52.10	53.2	42. 85	48.80	50.31	44. 05	43.53	43.61
A1203	4. 35	2.4	12.59	7.30	5.89	10.05	12.23	12.03
Ti0 ₂	0, 29	0.57	1.57	0, 50	0.43	1.48	1.27	1.49
Fe ₂ 03	1.51	1.29	1.14	3, 39	2.48	4. 83	4.56 as Fe	o.0. 15.95
F eO	6.10	6.70	13.36	7.88	9. 25	9.43	10,28	203 -0.00
MnO	0.13	0.12	0.44	0• 23	0, 25	0.23	0,36	0.46
MgO	19.50	20. 20	10.42	16.20	16.70	13.75	12.35	12.71
Ca 0	12.51	12, 21	11.66	11.75	11.04	11.45	11.26	10.91
Na ₂ 0	0.82	0, 90	1.88	1.14	0.91	1. 85	1.21	1.26
K ₂ 0	0.61	0.48	1 . 33	0, 75	0. 23	0, 90	0.75	0, 90
н ₂ 0+	1.24	1.51	2.31	2.12	2.16	2,08	2, 27	2.04
H ₂ 0-			-	-	-			
P205			0,03	0. 02	0.01	0, 22	0,05	0,10
Total		99. 58	99. 52	100.08	99, 93	100.32	100.12	101.46
. •			Analys Leak	t				

ANALYSES OF GHANA AMPHIBOLES AND AMPHIBOLES FROM LEAKE.

RECALCULATED ON BASIS 24 (0, OH, F).

542	109	484	313	308	20	485	534
6.91	7.30	7.50	7.10	6.77	7.48	7.50	7.40
1.09	0, 70	. 44	0, 90	1.23	0.52	0.5	0.60
1.99	0• 08	-	0.68	1.09	0.33	0.26	0.13
0.07	0.06	0.08	0.04	0.01	0.03	0.02	0.35
0.08	0. 20	0.08	0.17	0.16	0.29	0.26	0.12
1.06	0, 80	0.65	1.25	1.41	0.77	0.82	0, 85
0.01	0.02	0.01	0.02	0.03	0.03	0.01	0, 02
1.69	3.96	4.65	3.12	l.89	3.80	3.80	3. 95
1.90	l. 90	1.90	1.97	2. 30	2.07	2.06	1.94
0, 68	0.32	0.23	0.34	0.48	0.26	0.26	0, 28
0.16	0, 08	0.05	0.02	0, 05	0.01	0.05	0.06
0,24	1.92	1.52	0.91	1.60	0.63	1.2	0. 52
	542 6.91 1.09 1.99 0.07 0.08 1.06 0.01 1.69 1.90 0.68 0.16 0.24	542 109 6.91 7.30 1.09 0.70 1.99 0.08 0.07 0.06 0.08 0.20 1.06 0.80 0.01 0.02 1.99 3.96 1.90 1.90 0.68 0.32 0.16 0.08 0.24 1.92	542 109 484 6.91 7.30 7.50 1.09 0.70 $.44$ 1.99 0.08 $ 0.07$ 0.06 0.08 0.08 0.20 0.08 1.06 0.80 0.65 0.01 0.02 0.01 1.69 3.96 4.65 1.90 1.90 1.90 0.68 0.32 0.23 0.16 0.08 0.05 0.24 1.92 1.52	542 109 484 313 6.91 7.30 7.50 7.10 1.09 0.70 $.44$ 0.90 1.99 0.08 $ 0.68$ 0.07 0.06 0.08 0.04 0.08 0.20 0.08 0.17 1.06 0.80 0.65 1.25 0.01 0.02 0.01 0.02 1.69 3.96 4.65 3.12 1.90 1.90 1.97 0.68 0.16 0.08 0.05 0.02 0.24 1.92 1.52 0.91	542 109 484 313 308 6.91 7.30 7.50 7.10 6.77 1.09 0.70 $.44$ 0.90 1.23 1.99 0.08 - 0.68 1.09 0.07 0.06 0.08 0.04 0.01 0.08 0.20 0.08 0.17 0.16 1.06 0.80 0.65 1.25 1.41 0.01 0.02 0.01 0.02 0.03 1.69 3.96 4.65 3.12 1.89 1.90 1.90 1.97 2.30 0.68 0.32 0.23 0.34 0.48 0.16 0.08 0.05 0.02 0.05 0.24 1.92 1.52 0.91 1.60	542 109 484 313 308 20 6.91 7.30 7.50 7.10 6.77 7.48 1.09 0.70 $.44$ 0.90 1.23 0.52 1.99 0.08 - 0.68 1.09 0.33 0.07 0.06 0.08 0.04 0.01 0.03 0.08 0.20 0.08 0.17 0.16 0.29 1.06 0.80 0.65 1.25 1.41 0.77 0.01 0.02 0.01 0.02 0.03 0.03 1.69 3.96 4.65 3.12 1.89 3.80 1.90 1.90 1.90 1.97 2.30 2.07 0.68 0.32 0.23 0.34 0.48 0.26 0.16 0.08 0.05 0.02 0.05 0.01 0.24 1.92 1.52 0.91 1.60 0.63	542 109 484 313 308 20 485 6.91 7.30 7.50 7.10 6.77 7.48 7.50 1.09 0.70 $.44$ 0.90 1.23 0.52 0.5 1.99 0.08 $ 0.68$ 1.09 0.33 0.26 0.07 0.06 0.08 0.04 0.01 0.03 0.02 0.08 0.20 0.08 0.17 0.16 0.29 0.26 1.06 0.80 0.65 1.25 1.41 0.77 0.82 0.01 0.02 0.01 0.02 0.03 0.01 1.69 3.96 4.65 3.12 1.89 3.80 3.80 1.90 1.90 1.90 1.97 2.30 2.07 2.06 0.68 0.32 0.23 0.34 0.48 0.26 0.26 0.16 0.08 0.05 0.02 0.05 0.01 0.05 0.24 1.92 1.52 0.91 1.60 0.63 1.2

ANALYSES OF GHANA AMPHIBOLES AND AMPHIBOLES FROM LEAKE.

RECALCULATED ON BASIS 24 (0, OH, F).

(cont.)

No.	486	550	931	1798	1396	1951	830
Si	7.50	7.55	6.39	7.00	7.22	6.35	6.32
Al ⁽⁴⁾	0.50	0, 39	1.61	1.00	0,78	1.65	1.68
A1 (6)	0. 22		0, 58	0.24	0.21	0, 05	0,40
Ti	0.04	0.06	0.17	0, 05	0.04	0.02	0.15
Fe"'	0.07	0.07	0.06	0.36	0.26	0.32	0, 50
Fe"	0,73	0, 80	1.65	0.94	1.12	1.13	1.24
Mn	0, 02	0.02	0.05	0,03	0.02	0.05	0.04
Mg	4.20	4.25	2.33	3.49	3.61	2, 96	2.72
Ca	1 . 93	1.84	1.86	1.81	1.72	1.78	1.75
Na	0.23	0,12	0.54	0, 33	0.24	0.50	0, 32
K	0.05	0.04	0.26	0.14	0.04	0.15	0.14
(OH)	1.19	1.48	2. 32	1.96	2.08	1.99	2.4
TABLE 17

PHYSICAL PROPERTIES OF GHANA AMPHIBOLES.

No.	542	109	484	313	308	20
Ng	1.670	1.633	1.640	1.670	1.665	1.652
Nm	1.660	1.620	1.628	1 . 661	1.654	1.642
Np	1.656	1 .61 5	1.623	1.656	1.649	1.6330
2V meas.	65	86	74	89	66	88
2V calc.	65.8	84.8	68	72	68. 8	86
Ng-Np	.014	.018	.017	.015	.016	.019
Zac	150	12 ⁰	15 ⁰	15 ⁰ -17 ⁰	15 ⁰	16 ⁰
S. G.	3.15	2.90	3.03	3.15	3.10	3.10
X	yellow	colourless	colour- less	yellowish	very pale yellow	yellow
Y	green	very pale ye green	pale ellowish green	green	green	pea green
Z	blue- green	pale v. bluish	,p.bluish green	dark bluish green	blue- green	brilliant sea green

TABLE 17

PHYSICAL PROPERTIES OF GHANA AMPHIBOLES.

(cont.)

No.	485	534	486	550
Ng	1.634	1.672	1.645	1.645
Nm	1.620	1.662	1.632	1 . 636
Np	1.622	1.6560	1.622	1.629
2V meas	78	69	79	72.5
2V calc.	. 88	73.8	81.5	70.4
Ng-Np	.012	.016	.023	.016
Zac	25 ⁰ -27 ⁰	15 ⁰	10 ⁰ -15 ⁰	21 ⁰ -26 ⁰
S.G.	3,11	3. 22	3.11	3.11
X	colourless	pale yellow	pale yellow	pale yellow
Y	v.pale	green	pale green	pale green
Z	pale bluish green	blue green	pale bluish	bluish green

FAGE 128

FIG. 77

.

TA	BL	E	1	8	a

ANALYSES OF BIRRIMIAN ROCKS, PARENTS FOR ANALYSED AMPHIBOLES.

Analyst W. Layton.

	LYR485	LYR313	LYR484	LYR550	LYR109	LYR308
Si02	52.30	49.01	54.0	50.0	47.80	48.10
Al ₂ 03	5.43	14.20	6.49	9.0	7.84	15.55
Ti02	. 52	. 82	. 65	. 80	• 54	1.01
Fe ₂ 03	1.67	• 09	1.29	2.41	1.37	. 62
Fe0	5.04	10,70	4.40	5.70	6.8	11.65
MnO	.17	.14	.13	.04	. 23	. 55
MgO	15.79	6.45	14.99	11.50	20.70	7.09
Ca0	15.45	13.70	13.99	16.40	12.25	11.19
Na ₂ 0	1.38	2,05	1.65	• 96	. 64	1.52
K ₂ 0	. 602	1.53	1.09	• 42	.12	. 48
H ₂ 0 ⁺	. 75	1.32	• 76	2, 87	· 2.17	2.18
H ₂ 0-	-	-	-		-	°
P ₂ 05	-	-		.15	-	-
TOTAL	<u>99.10</u>	<u>100.1</u>	99,44	100.25	100.46	<u>99, 94</u>

TABLE 18b

ANALYSES OF BIRRIMIAN ROCKS, PARENTS FOR ANALYSED AMPHIBOLES.

Analyst W. Layton.

	LYR534	LYR542	LYR20	LYR486	LYR734
Si02	50. 50	49.50	52 . 90	60.50	59.10
~ Al ₂ 03	12.15	16.05	9.05	11.57	16.55
TiO ₂	• 96	.71	. 72	.06	.11
~ Fe ₂ 0 ₃	. 95	1,95	1.96	. 31	.45
FeO	10.25	6, 80	5. 54	3, 84	4.40
MnO	. 23	.09	.14	.14	.08
MgO	5.06	4.86	9. 30	7.79	1.62
CaO	15.75	13.99	14.48	10.39	10.05
Na ₂ 0	1.82	2.54	2.19	1.93	2, 86
~ K ₂ 0	.72	. 84	2. 28	3. 25	4.1
~ Н _о 0 ⁺	2.1	1.66	1.28	. 51	• 94
г Н ₂ 0	 .	-		-	-
₽ ₂ 05	. –	-	-	-	-
TOTAL	100.49	98, 99	99.84	100.29	<u>100.26</u>

.

•

- ' e

TABLE 18c

	А	В	C	D
Si02	43 . 54	71 . 05	90° TA	20.89
A1203	8, 70	16.51	17.74	9.61
C a0	5,12	3, 36	2.84	4.72
MgO	21.80	0.91	0, 98	2.92
MnO	0, 39	0.05	0.03	11.05
BaO	0, 02	0,05	0.17	• 0,03
TiO2	0.44	0, 33	0. 57	0, 50
H ₂ O	5, 39	0.42	-	1.60
K ₂ 0	0,08	1.20	4.06	-
Na ₂ 0	1.48	4. 54	4.42	. 32
Fe ₂ 0 ₃	3, 36	0, 96	l.04	5,43
FeO	10.27	1 . 58	2.37	7.54
Totals	100.59	100.96	100.41	100,16

Analyst L. A. Cook.

A		Actinolite Amphibolite	LY	942
в	-	Eastern Migmatite gneiss	LY	943
C	-	Winneba Granite	LY	941
D	-	Gondite	LY	936

Total

PAGE 134

TABLE 19

Analyses of Basalts for Comparison with Birrimian Greenstones

and Actinolite Schists.

Type	Al ₂ 03	MgO	$\mathtt{Si0}_2$
Deccan trap basalt	13.58	5.46	50.61
Limestone	. 81	7.90	_
Kimberlite	4.6	28.6	35.4
Melilite basalt	10.2	20.0	30 . 5
Hawaiian	17.33	.16	61.69
Hawaiian Olivine basalts	13.18	9.72	48, 35

. .

FIG. 79a.

PAGE 135

PAGE 137

ļ	W1	1			2			3			4		ŀ	5		1	6		G1	
	a b c	и b.	1.	a	6	e	a	ь	c	a	Ь	c	a	ь	6	a	b . c	a`	ь	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1 3-2 1-4 8-3 0 12-5 3-5 2-1 13 7-1 7-7 0 0 0-4	58:0 0:83 14:5 1:2 0:14 4:8 8:1 2:5 2:1 0:13 0:50 8:4 100:1	$59.2 \\ 0.85 \\ 14.1 \\ 1.3 \\ 6.3 \\ 0.10 \\ 4.4 \\ 8.1 \\ 2.7 \\ 2.2 \\ 0.13 \\ 0.5 \\ 8.3 \\ 99.9 \\ 99.9 \\$	0.548336 2.2284 2880 880 840 840 102	61-9 0-70 14-3 1-1 5-3 0-11 3-9 6-6 2-7 2-8 0-12 0-47 7-0 100-0	02-5 0-7-2 13-8 1-2 5-1 0-12 4-0 6-8 3-1 2-9 0-12 0-12 0-4 6-9 100-8	$\begin{array}{c} 1.0\\ 2.8\\ 3.5\\ 9.1\\ 3.6\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 15\\ 3.0\\ 20\\ 1.4\\ 0.8\end{array}$	$\begin{array}{c} 64.9\\ 0.58\\ 14.2\\ 1.0\\ 4.1\\ 0.009\\ 2.9\\ 5.2\\ 2.8\\ 3.5\\ 0.12\\ 0.44\\ 5.6\\ 99.8 \end{array}$	64.4 0.60 14.3 1.1 4.0 0.07 2.9 5.1 3.2 3.7 0.10 0.6 5.5 100.1	$\begin{array}{c} 0.8\\ 3.4\\ 0.7\\ 10\\ 2.2\\ 0\\ 1.9\\ 14\\ 5.7\\ 17\\ 50\\ 1.8\\ 0.3\\ \end{array}$	65.0 0.46 14.0 0.91 2.9 0.07 2.0 3.8 3.0 4.2 0.11 0.42 4.2 99.0	65-0 0-49 14-4 0-95 2-9 0-06 2-0 3-6 3-2 4-1 0-10 0-5 4-2 100-3	0 6:5 2:8 7:7 0 14 0:3 6:7 2:4 9:1 25 0:4	71.0 0.33 13.9 0.54 1.5 0.04 1.1 2.3 3.2 5.0 0.10 0.39 0.10 0.39 2.5 100.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	73-0 0-25 13:8 0-79 1-0 0-03 0-45 1-4 3-4 5-4 0-10 0-37 1-9 100-0	72-5 0-26 14-0 0-76 0-02 0-46 1-5 3-5 5-4 0-08 0-4 1-8 100-1	041302391290040

TABLE 20

	M14 1 an 6 de	Granite 49–G1 t alyst termina	ype tions	Granite Gl American Standard 7 analysts 1 laboratory*			l an 6 de	Diorite T13 alyst termina	tions	Diabase W1 American Standare 6 analysts 1 laboratory*			
	$ar{x}$	C .	E	<i>x</i>	c	E†	ī	c	E	x	C	Eţ	
SiO ₂	73.4	0.46	0.19	72.64	0.31	0.12	55.9	0.38	0.16	52.66	0.64	0.26	
Γ_1O_2	0.21	6.0	2.5	0.25	11.2	4.2	1.0	7.8	3.2	1.03	4.15	1.7	
AI_2O_3	14.2	3.3	1.4	0.96	10.2	7.2	18.4	2.0	1.0	14.87	3.23	1.3	
	0.00	9.7	1.1	1.06	5.72	9.9	4.3	1.5	0.60	8.01	1.89	0.74	
MnO ·	0.04	11.2	4.6	0.03	30.5	11.5	0.08	3.5	1.4	0.17	15.6	6.4	
MgO	0.80	1.5	0.60	0.44	9.90	3.7	3.4	2.9	1.2	6.51	6.00	2.4	
CaO	0.94	0.95	0.39	1.34	6.53	2.5	5.5	0.81	0.33	10.95	0.83	0.34	
Na _a O	4·1	1.9	0.77	3.43	6.23	2.4	4 ·6	1.7	0.69	2.20	5.72	$2 \cdot 3$	
K,Ô	4 ∙2	2.8	$1 \cdot 2$	5.43	3.83	1.4	· 2·7	3.3	1.4	0.68	7.06	2.9	
P.O.	0.09	8.6	3.5	0.10	23.4	8.8	0.39	1.6	0.66	0.15	18.7	7.6	
H,O+	1.0	11.8	4 ∙8	0.31	26.7	10.1	1.1	16.3	6.6	0.45	10.5	4.3	
Fe°	1.6	2.8	1.1	2.04	9·3 0	3.5	6.3	1.4	0.58	11.30	3.92	1.6	

• U.S. Geological Survey Laboratory. Figures for \tilde{x} and C taken from Table 17. p. 38 U.S. Geol. Surv. Bull. 980.

Surv. But. 800. \uparrow Calculated from $E = C/\sqrt{n}$ on the basis n = 7 (granite) and n = 6 (diabase). $\hat{x} =$ arithmetic mean. C = relative deviation of a single observation. E = relative error of the mean. Fe° denotes total Fe expressed as Fe₂O₂.

TABLE 21.

FIG. 86

PAGE 142

•			Zor	ne C			·• ·	Zone B		۰.
*	1	2	.3	4 · ·	5	. 6 .	7	8	. 9	10
SiO,	42.94	45.62	. 42.44	43.20	44.36	40.96	44.03	42.62	44.07	44.60
Al ₂ O ₃	12.56	8.87	12.50	12.44	11:69	11.70	12.33	12.75 ·	12.37	12.12
TiO	1.89	1.13	3.09	1.65	. 1.26	. 0.99	0.46	0.53	1.70	0.87
Fe ₂ O ₃	1.83	2.85	2.07	3.21	1.29	5.32	3.33	6.01	0.18	2.72
FeO	13.42	16.09	12.38	10.10	16.63	13.30	13.27	14:00	10.23	16.21
MgO	10.84	10.13	11.43	13.27	9.71	11.06	12.17	8.52	14.20	8.89
MnO	0.29	0.32	0.30	0.21	0.43	0.69	0.41	0.33	0.18	0.37
CaO	11.31	11.42	10.90	11.36	11.82	12.72	10.82	11.65 ·	12.42	10.78
Na ₂ O	1.99.	1.27	2.21	2.72	0.79	1.06	1.59	1.28	1.00	0.98
K ₁ O	0.35	0.33	0.14	0.40	0.50	· 1.27	0.23	0.55	0.30	0.50
H ₁ O(+)	2.23	1.92	1.94	1.38	1.67	1.50	1.32	1.91	2.85	2.03
H-O(-)	0.22	0.16	0.15	0.07	0.12	0.06	0.07	0.12	. 0.03	0.11
 F	n.d.	n.d.	n.đ.	n.d.	n:d.	0.13	n.d.	n.d.	n.d.	n.d.
₽₂O₅	n.d.	n.d.	0.23	0.07	0.12	n.d.	0.07	n.đ.	n.d.	0.21
Total	99.87	100.11	99.78	100.08	100.39	100.76	100.10	100.27	99.53	100.39
<u>α</u>	1.659	1.662	1,653	1.654	1.650	1.663	.1.657	1.665	1.656	1.660
70	1.688	1.687	1.676	1.680	1.679	1.686	1.675	1.683	1.673	1.682
2V~	76°	68.5°	84°	83°	79°	44°	74°	65.5°	82°	63°
c∧Z	26°	23°	15°	19°	15°	25°	18°	20°	. 19° .	15°
x	p. brown	p. yellow	p. yellow	v. p. yellow	v. p. yellow	yellow	v. p. yellow	p. yellow	v. p. yellow	colorless
Y .	brown	greenish brown	sepia- brown	green-yellowish brown	yellow-greenish brown	d. yellowish green	l. green	green	p. yellow- brownish green	l. green
z ·	brown	greenish brown	sepia- brown	greenish brown	yellow brownish green	bluish green	l. bluish green	greenish blue	· bluish green	l. bluish green

TABLE 22.

			Zone C		·:		Zor	ne B	•
	· 1	2	3	4	5	6	7	8	9
i	6.377	6.800	6.277	6.291	6.573	6.128	6.443	6.361	6.453
μv	1.623	1.200	1.723	1.709	1.427	1.872	1.557	1.639	1.547
1v1	0.575	0.358	0.455	0.425	0.615	0.191	0.570	0.604	0.588
e+3	0.205	0.320	0.231	0.352	0.144	0.598	0.367	0.674	0.019
i	0.211	0.126	0.344	0.181	0.141	0.111	0.051	0.059	0.187
e+2	1.666	2.005	1.531	1.230	2.060	1.663	1.623	1.747	1.252
Íg .	2.398	2.249	2.519	2.878	2.143	2.465	2.653	1.894	3.097
ſn .	0.037	0.040	0.037	0.026	0.054	0.087	0.051	0.042	0.022
a	1.799	1.823	1.727	1.772	1.876	2.038	1.695	1.862	1.948
a	0.573	0.367	0.634	0.768	0.226	0.307	0.452	0.371	0.283
· .	0.066	0.063	0.027	0.070	0.094	0.243	0.042	0.104	0.056

TABLE 23.

Fig. 87

Suggested (Layton) Relationship of Composition to Colour in the Shido (1958) Amphiboles.

.

.

Fig. 88

Relationship between Iron Content, Refractive Index and Occurrence of the Common Hornblende Series.

FIG. 88.

PAGE . 144

Fig. 89

Relationship between Amphibole Composition and Occurrence in the Hornblende Series.

<u>Fig. 90</u>

Diagram to show Increasing Alkali Content with Increasing Metamorphic Grade (Shido 1958)

	ecules	End members									
	sitions Z	Structural post X + Y	w	<u>A</u>	Name		itions Z	tructural pos X + Y	w S	A	Denotation
O ₂₂ (OH) ₂	Al ₈	Mg₁Ti₄	Ca		Titanoamphibole	O13(OH)3	Als	Mg ₁ Ti ₄	Ca,		Tiam
O ₂₂ (OH) ₂	Sis	Mg₅	Mg ₃		Cummingtonite	O22(OH)2	Si8	Mg₅	Mg ₂		Cum
O ₂₂ (OH) ₃	Al ₂ Si ₅	Mgs	Ca	Ca	Calcium-edenite	'О 22 (ОН)	Als	Mg₅	Ca ₂	Ca	Ce'
O ₂₂ (OH) ₃	Si ₈	Mg₅	NaCa	Na	Sodatremolite	O ₂₂ (OH)2	Sia	Mg₅	Na ₂	Na ₂	St'
O ₁₂ (OH)3	Al ₁ Si ₇	Mg5	Ca ₃	Na	Edenite	O32(OH)2	Als	Mg₅	Ca,	Nas	Ed'
O33(OH)3	Sig	Mg ₃ Al ₂	Na ₂		Glaucophane	O32(OH)3	Si ₈	Mg ₃ Al ₃	Na,		Gl
O 23 (OH)2	Al₂Sia	Mg ₃ Al ₂	Ca ₃		Tschermakite	O ₁₁ (OH)1	Al ₆ Si ₃	Al₅	Ca,		Ts'
O 33 (OH)3	Si8	Mg₅	Ca ₁		Tremolite	O22(OH)2	Sis	Mg₅	Ca ₂	i.	Tr

TABLE 24

	Α	tomic ra	atio		Tiam	Cum	Ce'	St'	Ed'	Gl	Ts'	Tr	Remains
,	Si			6.377	' ——	0.368		0.436		·	0.468	5.104	0.001
2	Al	Al .		1.623	0.422				0.421		0.780		
v	(Al	, Fe+3)		0.780							0.780		
1	Ti			0.211	0.211								
x	(Fe	+2, Mg, 1	Mn)	4.009	0.053	0.230		0.273	0.263			3.190	
	(Fe	+3, Mg, I	Mn)	0.092		0.092	i —]]—		
w	Ca		•.	1.799	0.106			- <u>-</u> -	0.105	i	0.312	1.276	
	Na			0.109				0.109			1		
A	(N:	a, K)	Ì	0.530				0.109	0.421			1	
						(Metan	norphic	grade				
	-			Zone C							Zone B		
	ľ	· 1	2		3	4 [·]	5	· ·	6	7	8	9	10
Ti	am	0.422	0.252	2 0.	688	0.362	0.282	. 0.1	222	0.102	0.118	0.37	4 0.212
Cu	m	0.368	0.392	20.	468	0.368	0.628	3 0.	460	1.260	0.080	0.66	0 0.956
Ts	1	1.248	1.18	51.	098	1.243	1.214	1.	262	1.499	2.045	0.97	1 1.44 6 0.072
Ce	1			· -			0.066) 0.	306	0.020	0 472	0.22	
	'	0.436	0.31	60.	.624	0.544			550	0.494	0.239	0.33	9 0.291
St		0 421	-0.272	z 0.	.349	0.000	0.520	, 10.	550	v. 101	0.200		

ABLE 25

TABLE 26.

FIG. 91

Plate 1 A.

Recumbent Folding the the Togo Series West of Senya Beraku near a Wedge of Dahomeyan Gneiss.

.

Plate 1 B.

Strong Folding in Togo Series, West of Senya Beraku.

в

PLATE I.

Plate 2 A

Large Pegmatite Exposure in the Coarse Amphibolite Zone near Winneba.

<u>Plate 2 B</u>

Quartz Crystal in Quartz Reef near Onyadzi, Winneba.

A

Plate 3 A

Composite Quartz-Aplite Dyke in the Sandy Cove between Mankwadzi and Abrekum.

Plate 3 B

. .

Typical Shattering in the Aplites West of Mankwadzi Village.

Α.

Plate 4 A

.

2

.

Cassiterite Bearing Pegmatite in Hornblende Biotite Schists West of Mankwadzi Village.

Plate 4 B

Typical Banding in the Ilmenite-Monazite Bearing Beach Sands West of Mankwadzi Village.

, ,

<u>Plate 5 A</u>

Typical Exposure of Graphic Pegmatite in Wastern Migmatite Gneiss along the Winneba-Accra Road.

<u>Plate 5 B</u>

. •

Texture of the Graphic Pegmatites.

PLATE 5

Plate 6 A

Typical Banding in the Eastern Migmatites.

Plate 6 B

Typical Ptygmatic Folding in the Eastern Migmatite Gneiss near Mile 9 Accra Road.

<u>Plate 7 A</u>

,

Pillow Structure on the Beach West of Mankwadzi Village.

÷

<u>Plate 7 B</u>

Typical Contact between Feldspar Amphibolites and Garnet Schists Winneba-Saltpond Road.

Plate 8 A

Typical Winneba Granite Topography.

<u>Plate 8 B</u>

Porphyroblastic Texture of the Winneba Granite.

Α.

PLATE 8

Plate 9 A

Typical Flow Banding in the Winneba Branite Near Ateiti Village.

Plate 9 B

Ghosts in the Winneba Granite near Ateiti Village.

PLATE 9.

Plate 10 A

Thrust Faulting in Togo Quartzites. West of Senya Beraku.

Plate 10 B

Multiple Faulting Resulting in the Exposure of the Probable Base of the Togo Quartzite.

A

В.

PLATE 10

<u>Plate 11 A</u>

Typical Porphyritic Metamorphosed Lava. x70 Crossed Nicols.

<u>Plate 11 B</u>

Typical Actinolite Schist. x70 Crossed Nicols.

PLATE 11.

Plate 12 A

;

Hornblendite from zone of Coarse Amphibolites. Note Large Hornblende Plates. 270 Crossed Nicols.

<u>Plate 12 B</u>

Actinolite Amphibolite. Note Mass of Actinolitic Hornblende. x70 Crossed Nicols.

Plate 13 A

Typical Rimmed Amphibole in Zone of Coarse Amphibolite. Note Granitic Contamination. x70 Crossed Nicols.

<u>Plate 13 B</u>

Rimmed Amphibole in the Coarse Amphibolite Zone. x70 Ordinary Light.

