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ABSTRACT

We study the implications of the algebra of currents to
elementary particle processes., In Chapter 1 we introduce the
concepts of current algebra and discuss how the information
contained in the current commutators can be used to set up sum
rules and in particular to evaluate strong interaction

renormplization effects.

In Chapter II we apply some of the techniques developed in
Chapter 1 and obtain consistency conditions for the K-meson

scattering amplitude.

In the third chapter we illustrate the methods further by

calculating the F/D ratio and find good agreement with experiment.

Finally, in Chapter IV we are concerned with calculating the
coupling constant of the so far hypothetical o-meson to nucleon
states. We find that the techniques of current algebras enable
us to do so and we find & value for its coupling constant which
should ulitimately be testable experimentally should the o-meson

exist as a physical particle.



CHAPTER 1

The theory of current algebras has received a great deal of
attention in the last two years and is very successful in
explaining several features of elementary particle physics. It is
somewhat surprising that although the current algebraic approach

(1)

was invented and used by Gell-Mann in his discussion of SU(})
symmetry in 1961, yet the full power of the current commutation
relations was not recognized until much later.

The point of view advocated by Gell-Mann is that a broken
symmetry is thought to be a manifestation of an exact algebraic
structure of operators which do not all commute with the
Hamiltonian. We begin with a brief discussion of exact
symmetries:

Consider a set of Hermitlan operators {F} in the Hilbert space of
physical states such that

a) The set {F} is a linear space i.e. if F, F, e {F} then
(a,F, + a,F,) ¢ {F} with a,, a, real

b) {F} is closed under commtation i.e. if F , F, ¢ {F}

then i[F , F,] = i(F,F, - F_F,) is Hermitian and belongs to {F} .

We shall concern ourselves with finite-dimensional spaces
so that [F)} is then a Lie algebra. We choose a basis F* (i=1,...,N;

N is the dimension of the algebra) in {F} and form the following

”7rx
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basie commutators
[Fl, P = 5 LIk gk (1.1)
Repeated indices are summed over as usual. The numbers cljk
thus generated are real because the F- 's are Hermitian and are
called the structure constants of the algebra.
The operators F generate a group of transformations G which

also acts on the space of physical states. The infinitesimal

elements of G are given by
N
Ule) = 1+1i Z e ¥ (1.2)
J=1

where € = (e',...,eN) is a set of N real infinitesimal parameters.
The elements of the group further from the identity are generated
by exponentiation. Since the F are Hermitian, U(e) and hence all

elements of G are unitary

UV = 1, UegG (1.3)

Let H be the Hamiltonian of a given physical system. If
¥F e {F)
, H] 0 (1.k4)
Which implies
(U, H] = 0, UeG (1.5)

then G is said to be an exact internal symmetry group for the



considered physical system. It then follows that if IA > is an
arbitrary eigenstate of H then U|A > is also an eigenstate of H,
¥V UeG.

Thus the basic ingredients of a symmetry group are a set of
operators {F} which form a Lie algebra and commute with the
Hamiltonian. A broken symmetry is then described by a set of
operators which also close under commutation i.e. still form a
Lie algebra but do not all commute with the Hamiltonian. It is
important to realize that irrespective of how badly the symmetry
is broken the algebra is exact.

In order to demonstrate the fact that a set of operators could
exist and have a simple and exact algebraic structure even if they
do not all commute with the Hamiltonian (i.e. are not all
conserved) we consider the simplest and oldest algebra known to
elementary particle physicists, namely that of the isotopic spin.

We consider an elementary field theoretic model with two
basic particles having the same quantum numbers as the proton and
neutron and in interaction with an electromagnetic field Au. The
field describing such a doublet is written wﬁ(x) where a = 1, 2 is
an index describing the internal degree of freedom and p is the
usual spinor index p =0, ..., 3. We write a Lagrangian for

this system as

L= L +3850+7)rva (1.6)

o}



Here T4 is the usual Pauli matrix. i;)is given by the sum of

free Lagrangians for the spinor and electromagnetic fields

V)

= U 1 )
L, = ¥ +my+iF F (1.7)
The fields wﬁ are Fermi fields and obey the following anti-
commutation rules at equal times
a+t b 3
Do s v ) oy = 8gy8,,8%(x - 1)
(1.8)
a b +a +b
RO 2D S B M O PR A ) B
We now define a set of currents by
i = i, .

JIJ- = ‘V(X)T 7“\|f(x) ) i=1,2,53 (109)
and three operators I as the spatial integrals of the time
components of the above currents i.e.

1t = fji(x)dax (1.10)

We then evaluate the commutator [Ii, Ij] using the anticommutation
properties of the Fermi fields (1.8) and the commutation properties
of the Pauli matrices. If we evaluate the commutator formally,

disregarding any complications arising from the fact that the product
of several field operators at a single space-time point is an ill-

defined quantity, we arrive at the result that



5.

i €iJk k

[1d, 9] = 1 I (1.11)

This is immediately recognized as the SU(2) algebra. This result
enables us to identify the set Ii with the generators of the
isospin group. It is easy to see from the Lagrangian that I, is
conserved while I, and I, are not. We have thus demonstrated our
initial assertion. As will be discussed further later on, the
basic philosophy of this approach to the problem of broken
symmetries is to set up a model which is at least consistent with
the basic principles of.field theory, relativity and causality.
This model is wusually taken to be a "Lagrangian quark model".

We then construct the currents given by such a model and work out
the commutation relations. We finelly abstract these properties

and assume their validity in general and discard the model.

Generalization to SU(3) and Chiral SU(3) ® SU(3) :

The original motivation for current algebra came from the

success of the universal V - A ‘theory of weak interactions by Feynmann
I\ 4

and Gell-Mann‘“/ and others‘”/, According to this theory the basic

e

Hamiltonian density for weak interactions is of the current-current

type

H = j—_: 2;( 35“) ;j:(m)-l- h.c ) (1.12)



where n,m run over basic lepton and hadron fields. This is
analogous to the electromagnetic interaction between charged
particles after the electromagnetic field has been eliminated. The
current j involves only left-handed components of the fields. By
basic fields here we mean (e, 0e) and (u, uu) for the leptons and
some fundamental hadronic field for the baryons and mesons. The
simplest such field we can assume is the quark triplet q = (q',q%,q%).
We shall take the quarks to be spin % particles obeying Fermi
statistics. In terms of quark fields we construct the vector and

axial vector currents of the weak interactions by
i - i
j (% x)y A a(x
§u(x) = alx)y Nalx)
(1.13)

35,() = Ax)y zsrlalx)

where the xl are the Gell-Mann matrices obeying the SU(3) algebra

i J k
[, 2] = i £oc N
(l.lh)
and { 11; 1;} - 4, 2\F

where i runs from one to eight. Using the basic commutation
properties (1-8) of Dirac fields together with the relations (1.1k)

we find with the help of the identity

[ A®B, A' ®@B'] = %{u,mm{n,s-h {AA') I B,B']}

(1.15)



that the following commutation relations hold

8(x -y ) it(x), 39r) 1 = 15, F@)s*(x-y) (1.16)
o] o] o] 1] ijk Yu

8lx, - Y0 34 (%), 30 ()] = 1200 ()B4 (x - y)  (1.7)

8(x, = Y J5o(x), 3S()1 = 12, 3B (x - y)  (1.18)
These relations follow by formal application of the canonical
commtation properties (1.18). Schwinger(h) pointed out that extra
terms proportional to the spatial derivatives of delta-functions
could also be present on the R.H.S. of equations (1.16) - (1.18) .
We shall return to a discussion of such terms later. Generalizing
the definition of the isospin operators (1.10) we define vector

and axial vector charges in the following way:

i i

Q(t) = % 3 (x) (1.19)
I

Q‘;‘(t) - f a3k jgo(x) (1.20)
xodt

With these definitions the following relations are derived

[al(e), ()], Lo = 1%505) (1.21)
o]



i .J k
[ (t), By o = 1 35,00 (1.22)
i .J K
[ Q5(t), 3 (x) et = T Js,, () (1.23)
La5(8), 33, (0, o = 2y 50 (2.24)
plus
. . .
[Q°(t), ()] = i £y @ () (1.25)
[QM(t), QJ(6) 1 = 1,y QC(t) (1.26)
[ag(t), al(e) 1 = 12 d) (1.27)

From (1.25) we see that the charges Q (t) at equal times satisfy the
algebra of SU(3). The Lie algebra formed by the 16 charges Q" (t)
and Q;(t) can be decomposed into two disjoint algebras. By
+ .

defining the new operators Q;(t) by :

: 1 i i

Q7(t) = — [a7(t) L ag(t)] (1.28)
i J2

we find

[Qi(t), Q5(E)] = 1 £, Q(t) (1.29)

[Q7(t), Q5(t)]

Lf g Q. (t) (1.30)



[Qi(t), Q(t)] = o (1.31)

The algebra generated by Qi(t) is that of chiral SU(3) ® su(3).
We now turn to a discussion of the Schwinger terms.

As mentioned before the existence of such terms was first
pointed out by Schwinger(u) who remarked that the commutator of
the time component of the electromagnetic current with a space
component must be non-vanishing otherwise an inconsistency arises
in the theory. The presence of such terms is due to thé necessity
of defining the singular product of two field operators at the same
point as the limit of the product of two operators at different
points as the points approach each other. Johnson and Low(s)
have looked for Schwinger terms in a simple theory of quarks
interacting with a scalar neutral boson using perturbation theory
to compute the commutators. While they find these extra terms in
general they do not appear in the algebra of time components of
vector and axial vector currents.

Here we give an elementary discussion which demonstrates

the existence of such terms in the quark model. We want to

evaluate the commutator
[ ‘l’+(3_¢J°)M W(’_‘;o): ‘l’+(3_(' )O)M' ‘I’(Z')o) ]

where M, M' are matrices acting on both Dirac and unitary spin
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indices. To define the commutator as & produet of distributions

we take the limit €, €' - 0O of

[ ¥ (x - %/ OMg ws(x + £/, 0),
Voo (x' - 5_'/2, OMyrgr Vo (&' + €, 0) 1.

= [y

Using the canonical commutation relations (1.18) we simplify this

to
in [ @ 9 Mg (e 1
' -0

t
83(5 + £ 2 - 3_(' + S/2) - ‘V; (]_C = E/2} O)MGB

] 1 ]
W (x' -4, 0) walx + £/, OMyy gt (x' + =/, 0)
- ¢+l (x' = E/2.! O)M;l B' SB'GMGBWB(J_C + E/2" o)

Ss(lc' + 'E_é -Xx - %/2) + ‘l’;' (J_C' - s/2 ) O)MG'B'M(IB

(§ - §/2’ o)‘lfﬁv (z' + E_/Q: O)WB(E + E/2} 0)

(1.32)



11.

The 2nd and 4th terms cancel and we can take the limit € — O

and write

2’3‘10 \lf; (E,O)(MM.' )aB.l ‘Vﬁv (J_(" + g_/, O)SS(J_C - x' + E/2) .

= Yo (X' - 5_'2, 0) (M'M) 1 ¥5(x,0)8%(x" + £/, - x)

(1.33)

By virtue of the ®-function we can write this as

. + sl E' 3 E.'
Lim Vo' = Z/pr OJOM') o5y Vg, (&' + 2/, 0)8%(x - x* + =/)

- Wt (&' - €7, O)MM) g V(' + £7,, 0)

8%(x - x' - g_'/a) (1.34)

By adding and subtracting terms we finally rewrite this in a

form which involves commutators and anticommutators of M and M!



Lin | (' - £/, 0N ¥(x' + £/, 0)
e'-0 . ' » '

< 82(x - x' + £/) + 8%(x - x' - £7)

+ 3y T (x

€1, o) } y(x' + £7,, 0)

< 8%(x - =_t" + s'/2) - 8%(x - !_t" - 5'/2)

12.

(1.35)

The 1lst term is the ordinary term and the 2nd one is the Schwinger

term

(Ordinary term) = ¥*(x', O)[M,M'] ¥(x,0)8%(x - x')

(Schwinger term) = Lim % o [ Y, 5%(x - x')]

m-
l

o
I

(1.36)

(1.37)

Teking, for example, M,M' to be of the form 7°7u®11 we have

vy (1.15)
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[M,M.'] = %lroru, % 7u]{>~1,k‘7} + %{70711’ 7070}[li,k'j] (1.38)

which is completely antisymmetric under the simultaneous exchange

of the Lorentz and unitary spin indices. In a similar manner
(MM} = 3y, 77 I+ 30 7, 77 HaLT ) (2.39)
> 2 OH’ 0’ 2 2 ou’ o’v 3 °

which is completely symmetric. In order to eliminate such
contributions some authoré(6) start from properly symmetrised
commutators before deriving sum rules. We wish to point out
that in the quark model these Schwinger terms being proportional
to derivatives of d-functions disappear when the spatial
integration is performed and. hence do not contribute to the

commtation relations between charges.

The PCAC Principle :

This important principle provides a link between the weak and

strong interactions. Originally the PCAC hypothesis was put

2\ T2 Y
t and independently by Nambu‘7) to

(8)

find a simple justification for the Goldberger-Treiman relation N

forward by Gell-Mann and Lévy

The formulation due to Gell-Mann and Lévy is as follows. Consider
the isotopic axial vector current j;u = q 7u7511q. Its
divergence has the same quantum numbers as the pion field ¢l.

This is true at least if there are no hidden quantum numbers that



1k,

can distinguish them. Then we can use Bu j;u as the definition

of the pion field after proper normalization
.1 i
3, J5,(x) = C o7(x) (1.k0)

where cn is a constant. It is known that there is no unique way
of defining a phenomenological field for a particle. Different
definitions of the field agree by necessity on the mass-shell but
may differ if we go off the mass-shell. Now the pion-nucleon

coupling constant g is defined by

(m? - q®) < p[o'|p, > = & KNN“(qz)iii(pa)rsfiu(pl)
(1.41)

where the form-factor KNNn is normalized to unity at the pole,
- (mi) = 1 and |p, >, |p, > are single nucleon states,
q® being the square of momentum transfer. But from (1.40) the

L.H.S. of (1.41) can be written as

1 . 1 u
— iq <p,lic |p, >= — iq T(p,) [;“75 G, (a®) + g 7.G.(q®)
c mo erisult: ¢ w et ws'e
T T
2 i
+ ouuqusGs(q ) | Tulp,) . (1.k2)

The expansion of the axial-vector matrix element into three form-

factors 1s dictated by Lorentz invariance. Equation (1.42)
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simplifies to

1 : 1 .
—_— .1 - _._ 2 2 2 1
—ig, < P, |35, e, > p :Lu(pz)[ 2MG, (%) + o%6,(q )] Ty, u(p,)

T T

(1.43)

Comparing this with (1.41) and taking the limit q® - 0 we find

1
8(0)kyy, (0) = p M G, (0) (1.44)

On the R.H.S. we have extrapolated values for the pion-nucleon
coupling constant and the pionic form-factor of the nucleon.

Now the pion weak decay amplitude is defined by
.1 i 2
<0 > = iF o
|35, [ (@) (e, (1.45)
Therefore
(i i 2
< Olbu Jsu'ﬂ (Q) > = w> F_ (1.46)
By PCAC this is equal to

1.1
c_<ole’|n" > = C_ (1.47)

Therefore

C o m®F (1.48)
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Substituting into (1.44) we finally get

2y @, (0)
g(0)k, (0)

F =
T

(1.49)

This is the celebrated Goldberger-Treiman formula. The original
derivation was based on dispersion theory and some simple
dynamical assumptions. Thus the PCAC principle gives this
remarkable formula with the minimum of labour and fuss. We
further assume that the coupling constants and form-factors are
smooth functions of ¢ and vary gently in the region 0 < ¢® < mi .
Then we can set KNN“(O) ~ 1 and g(0) to be equal to g, the
experimentally measured pion-nucleon coupling constant. We then
find that the relation is satisfied experimentally to within 10%
accuracy. This success supports our assumption of smooth
behaviour of form-factors and we can use it with confidence.in
other situations,

The PCAC principle can be generalized in an obvious fashion

'S
(%}

O
£
b=
(]
b
O
[}
(1]
4]
Q
ck
[11]
ck
C
[
o]
U
ol
m
4
d
[11]
[¢]
[
[«]
H
Q
=
&
H
[(1]
=
o
]
[+d]
o
Cu
<
[~
4

corresponding octet of pseudoscalar mesons. In particular we
could assume that the divergence of the strangeness-changing

axial-vector current is proportional to the K-meson field

d Jgﬁﬁs‘l) - Cp ¢i (1.50)
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We shall make use of this equation in chapter 2 where we show
how the PCAC principle leads to consistency conditions on the
K-N interaction.

An alternative approach to PCAC is through dispersion
theory(9). One assumes thet the matrix element of the
divergence of axial-vector current is a highly-convergent
quantity obeying an unsubtracted dispersion relation. Calling

the quantity inside the bracket of the R.H.S. of equation (1.k3),

G(q®) we write

G(Q?) = -

dq'2 (1.51)

We separate the pion-contribution on the R.H.S. The next
states having the same quantum numbers are 3n configurations
with mass > Emn . Hence the threshold on the integral starts

at (an)2 and we write

Fgn© 1 A0  ImF(q"3)

w - 2L w2
2 2 ~2 _ 2 >
U i ., q® - ie

m
Now since the mass ratio (= 2 1 . .
/3m1t )2 = /9 is small it may be

reasonable to expect that near the pion mass-shell 0O < a® < mi

~

the pion pole dominates and we have



18.

G(0) = F g (1.53)
i.e.
28 G, (O
Foo= _HH__ES_E (1.54)
g

In this language the PCAC principle i.e. the partically
conserved axial-vector current principle is often called PDDAC
i.e. pion dominance of the divergence of axial-vector current.
According to this interpretation, however, the same idea should
not work so well for the K-mesons where the q® extrapolation
ranges 0 < g < m§ with m = 500 MeV and the next state K-n-m
having mass not so far away, = 780 MeV.

We now proceed to show how these two sets of information,
the current conmutation rules and the PCAC principle combine to
give a useful description of several elementary particle
phenomena.. In particular we will see how the non-linear
relations imposed by current commutators when combined with
linear dispersion relations lead to useful results concerning
reaction amplitudes and especially concerning strong interaction
renormalization effects. There are several approaches to the
gquestion of sum rules and we shall begin by describing the

dispersion approach.
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The Dispersion Theory of Current Algebras:

In a series of papers Fubini and collaborators(lo)’(11)’(12)

showed how the information contained in current commutators could
be exploited. Here we follow the approach discussed by Fubini in

reference (12). We define an amplitude TS% by

1) o [ax N gDl > (155)

The currents appearing in the retarded product are taken to be
vector or axial-vector. The absorptive part of this amplitude

is given by

s . _ .
t:% = % fd"x Jarx . p-,|[j;(x),jg(o)]|p > (1.56)

The retarded product is defined by

R(A(x)B(y)) = i @ (x, - v )[A(x),B(y)] (1.57)

For (1.55) to be mathematically well-defined we consider the
matrix element of the retarded product as a tempered distribution .

Contraction with the vector q'u then gives

™ Tig - -1 /\d“x(B“ eiq'X) < P'IR(ji(x)jg(o»lP >  (1.58)

The theory of tempered distributions then tells us that it 1is
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permissible to integrate by parts without any !'surface term'

appearing

. . ' . I
gHrid oy fd“x ' T < ptIR(31(x)32(0)) |p >

no
(1.59)
Performing the differentiation yields
opdd | pid _ pld
q Tuu R, F, (1 .60)
where
. 3 . 0]
RY a1 /\d“x el * < p1IR@ )35 (0))]p >  (1.61)
v : VT v
and

F - [ avx &'V F < ptalx )L (x),33(0)1lp > (1.62)

We take the external states Ip >, lp' > to be of the same mass.

We re-write equation (1.60) as

i _ M ij - 13
R, -at T F, (1.63)

The amplitudes Ti% and Réa are functions of 4 four-vectors

P, 4, p*, q' satisfying

p+aq = p'+qt (1.64)
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We choose as variables the three Mandelstem variables
s = (p+q)
t = (p* -p)? (1.65)
u = (p* -q)®

and the four square masses: p° = p'2 m m®, g and q'2. These

seven variables are connected by

s+t+u = p° +pt2 + ¢ + g2 (1.66)

Fixing p®, p' equal to m® leaves only 4 variables which, for
instance, can be taken to s, t, q® and q'2. The amplitudes
Tig and Rij (or more precisely the invariant amplitudes obtained
in the decomposition of Tig and Rij) are thus functions of

these four variables. On the other hand because of locality of
currents the commutator in Fij has its support at the point

x =0, As a result the q' dependence of th can come only from
the possible Schwinger terﬁs. These terms are polynomials in

the space-components of q' as demonstrated before and they tend

to zero with q'. Now in most applications of current algebra

the limit q' —» O is taken and we can forget about the Schwinger

terms. Fia is a function of a single variable t. Thus
R (s,t30%,0%2) - g™ 113(s,8;4%,0'2) = FLI(t)
.D Vs } u.o } By ] > M)

(1.67)
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The relation (1.67) imposes very stringent conditions on
the amplitudes R and T. Indeed, the L.H.S. is a function of
4 variables while the R.H.S. depends only on t. This signifies
in particular that all the singularities in s, qz, q'2 appearing

i3

in R:;‘j should be found in q'M T with the same weight.

An identical calculation with t;g gives

¢ e (1.68)
ij . . ij
where ru is the absorptive part of RD :

réj - %jrdﬁx X ¢ P"[auji(x),Jg(o)]IP > (1.69)

Equivalently we could compute the quantity T;gqu and obtain

an analogous result

ij v y1J viJ
T = R - F 1.70
o @ " " (1.70)

where

R,lij . -1 [d“x e 12X ¢ IR(ji(O)Bng(X))lp >

(1.71)

'ij - 4 _iq-x 1 -i -j
il e e et a(x) < 0] 1350),5]0010 >

(1.72)
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For absorptive parts we have:

ij o _ 1i]j
tub 1 = 1 (1.73)
where
lij = - 4 _iq_-x ] -i j
! i /hd X e <p'[15,00),3,3,(x)1{p >
(1.74)
i3
We can obviously extend the method to evaluate q”'l Tu;]) q'D
q'* Tig Q® = M+ ptd 4 pltd (1.75)
where
s » - ' > »
MY a [d“x et ¥ < pr |R(B“;jl(x) auj%(o))lp >
H (1.76)
FO = HaRS + M R (1.77)
and
ij 1 iq'.x ip.y 30,3
il . —[Mxe < p' |13t x),3%3(0)]
o o) v

+[33(0),3% % () 1p > 8(x,)

(1.78)
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We now consider a second method suggested by Adler's work

(13), (14)

on neutrino induced reactions. Define

P = 3(p+p'); Q=3(qg+q")
(1.79)

v = Q.P

13
We compute v Tui using the technique of partial integration as

before. We then write

ij | yid 4 @id
vTo US ey (1.80)

where

ij py . N iq_'ox < 1 U.i j
vy ZPOZL/‘d xe™ p' |[R(d Ju(x)db(o))

- R(j;(x)a"jg(o))lp > (1.81)
ij _ “ igq'.x N i .J
Gy = /\d x e <p'[3°® (x )3, (x),35(0)1[p >
(1.82)
Between the absorptive parts of T and U we simply have
ij ij

utuu = us (1.83)
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where

1j 1 uy o1 eX o g y.4d
uy = uPo./Nd X e p' [R( 375, (x)3,,(0))

- R(3;(x) 3%33(0))p > (1.84)

We now discuss the derivation of sum rules from the
relations we obtained so far. We consider the simple situation
when all the particles involved are spinless. In addition to

the variables introduced before we define
A = q'-q = p-p' (1.85)

It is convenient to use the scalar variable v instead of the

Mandelstam veriable, s. We choose
v = QP = q.P = q'.P (1.86)

We introduce the complete basis of 10 tensors constructed from

P, q, 9' and the metric tensor
ij ij + pid + pidp v + Bidg P
Tuu = A PuPD B Pqu B, Puqb B, qu »

ijl t

i i ij [ . |
Jap, + Glaey + o, + oo

+ B

+ cqup q, * C;Jguu (1.87)
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The ten scalar functions A, Bk’ C,C (x =1, ¢oo 4) depend on

k' 5
the four scalar variables v, t, 9, q'? (1)

Under crossing
P=-P, a,=q,, o,=>4q, V=)~V
the scalar amplitudes possess the following property

H(-v) = € B (o) (1.88)
where

El{ = + l for A,Cl,cz,cs,c“,cs

= -1 for B,,B,,Bs,B,

The amplitude tig can be expanded on the same basis and
we shall use the corresponding small letters for the scalar
functions. Their crossing properties are simple obtained from
€h + €H = 0, For the amplitude Rij we write

% LVp, + N + N;jq{) (1.89)

Similar expansions hold for Réla, r;J and rélJ. The symmetry

properties are given by
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We now apply Fubini's method. We write three equalities
associated with equation (1.67) and three equalities associated

with equation (1.70).

- ij ij _ 2 oij ij k
v A ~-q'.q B Q'® B,Y = -LY+ 2fijk G (t)
_ ij _ 13 _gr2 old _ _ §id
vB; q'.q C a'® C, N (1.90)
-v Bi-j _ ql q ci;j - ql2 cij - cij 2 e Nij
2 M | 3 5 2
And
i) L 2ol 1§ _ _ prid k
v A q° B q'.q B, L'+ gfijk G (t)
i _ 2 o413 _ ij | o dd _
-v B -q°C, q'.q C N, (1.91)
- i _ 2 &3 _ iy | _ il
v Bu q Ch q'.q Cs N2

We have written the equal-time commutator contribution as

y _iqt. 3 y
F,) = /\dax e”d % < p'|[3,(x,0),32(0)]p >

&
= 1f 5 <p']5,(0)]p >

. k
= 21fijk G (t)PD (1.92)
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where we have assumed a conserved vector current and hence only
one form~-factor is involved. The six equalities involving the
absorptive parts are immediately deduced from (1.90) and (1.91)

by putting formally fi K = o.

J

Let us discuss the general equations

v Ed s QM 4 4 pld

(1.93)
- hij = qij
where Fij, Dij are equal-time commutator contributions
antisymmetric and symmetrie in the internal indices respectively.
It is easily seen that any member of the sets (1.90) and (1.91)

can be written in this form. The function H13 has the crossing

property

relation for the scalar functions Hl'J in v

Bp) = - +€ — | dao'  (1.9%)
) o -0 o' + v

1 /\ -hij(u') hji(u')

R
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The integral extends over the R.H. cut, inecluding possible poles.
We now make an assumption about high-energy behaviour. We assume
the quantity oH °(v) has a limit as © » ®» that is given by

the integral of the spectral function:

Lim v H(v) = -E [[ nidr) - Eﬂhji(b') ]db' (1.95)

V- I R

We are now in a position to write down the sum rules. We notice
two types of sum rules: those involving the antisymmetric
combination H9 (v) - Hji(x)) - the A-type, and those involving the
symmetric combination HiY(v) + H91(v) - the S-type. Taking the
crossing properties of the scalar amplitudes into account the
only non-trivial sum rules of the A-type have GH = +]1 and those

of the S-type have €H = -1, We thus have:

A-type EH = +]

S-type GH = -1

. f [hij (0) + nd?(v) ] @& = % <Qij () + jS(w)> + pd

T

(1.97)



A discussion of a sum-rule of the S-type arrived at by using
Adler's method will be given in Chapter 4. Here we confine
ourselves to sum rules of the A-type.

Going back to the two sets (1.90) and (1.91) we write down
one sum-rule of the A-type. The physical assumption made by
Fubini is that one usually deals with conserved or partially
conserved currents and we expect the functions Lij to obey
unsubﬁracted dispersion relations in v . We can then set for

VO o«

) - 198) = L'@) -1 w) - o

We then obtain

1
13 i

- /\[ a?(v,t,9%,0'2) - 8*7(v,t,9%,q'®) } do = 2f,

n /g

1k 65 (t)

(1.98)
(12)

This is the sum rule derived by Fubini and by Dashen and
Gell—Mann(ls). Notice that the relation (1.75) would again lead
to precisely this sum rule and would not give anything new.

Notice also that the equations (1.80) and (1.83) could be used to
write down a number of sum rules one of which will again be (1.98).

However now we are dealing with commutators involving arbitrary

components of currents which appear multiplied by a derivative of
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the step-function. Care must be taken in evaluating such terms(lh).
We shall discuss a particular situation in Chapter L.

(16)

Nearby Singularities

We rewrite our basic equation (1.67) as follows

iy X iy
£ (s,30%,0'2) - ¥ T(s,8502,0'3) = PI(5)  (L.99)

where the currents appearing in (1.55) are taken to be axial-vector
and where we have changed the notation slightly celling tij what
we called Rij before. As emphasized before all the singularities
in s, q2, and q'2 appearing in tij must ocecur in q'u Tig with

the same weight. The minimum singularities are, in the plane of
q® and q'2, a pole at mi and a cut commencing at gmi ; and in the
s~plane a pole at the square mass of the nucleon, m§ and a cut
commencing at (mN + mn)2. (We are taking the external states to
be proton states in (1.55).)

In the amplitudes t and T we distinguish different terms
heving, for example, the 3 poles at @ = q'2 = mi and s = m§ or
two of these poles or only one of them or none. Thus Tig is
decomposed in the manner exhibited in Fig. 1, where, for instance,
the first graph (a) has simultanecusly 3 poles and the 4tth graph (d)

has only one pole at q'2 = mi . In the same manner t;g is

decomposed as shown in Fig. 2. In figures (1) and (2) the symbol
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xlp ————— represents the part of the axial current j;u which is

coupled to the pion field, while x represents the rest of j;u .

The symbols ®--—- and o have the same significance for the

divergence oV 35,

PDDAC consists in neglecting the last 4 graphs - e,f,g,h -
in Fig. 2, in which the divergence " J;“ is not coupled through
the mediation of the pion field. We first separate the poles in

q® and q'®. We know from equation (1.45) that
<olst ©)'(q) > = 1F
5u n qu
This permits us to write the axial current as a sum of two terms
P ) = -F 3 oix) +31 (v (1.100)
54 T U % S5u

where E;L(x) is the part of the axial-vector current which is not
coupled to the pion field. From this we easily deduce that in the

expression (1.55) of T;g we can make the substitutions

35, (x) > F_1a? er(x) + 3 (x)
(1.101)

53,(0) »-F_1q ¢3(0) + T2 (0)

The amplitude T;g is thus decomposed into 4 terms where the



poles in q2 and q'2 appear explicitly

. q' :
vl - £ (s, 130%02)
mne - q|2 me - q2
n T
ql
54
+ F1t — A.DJ (s)t‘3q2,q'2)
m2 _ q|2
n

% 1
R Wuj (s,t30%,9'2)
- q
T
+ Rig (s,t;9%,9'2) (1.102)

We have put by definition

Mij (s,t;qz,qu) = (mft - 2)(m$t N q“2)

13 .
a7 (s,630%,0'%) = i(m? - q'®)

[d“x eiq'x < p' IR(¢1it(x) 351)(0)) lp> (1204)
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A7 (s,430%,0'3) = - i(n® - ¢®)

fd“x eiq'x <p' lR(gsiu(x) ¢i(0)) lp > (1.105)

ij - 2 = iq'x i ".‘j )
Ry (8:t30%,0'%) /\d“x e” T < p'IR(QSH(x) o) )|p >
(1.106)

In Mi'j we recognize the n -N scattering amplitude defined
for off-mass-shell pions; more precisely the physical
amplitude is the limit of M9 (s,t;q2,q'2) when ¢2,q'2 — .
Aij represents the pion production amflitude by the scattering
of a nucleon in an external axial field coupled with the current

35 - K;J is related to A;j by crossing
-1 1
Auj (s,t;0%,9'2) = A& (u,t39'2,q9%) (1.107)

The function ng renresents double secattering of a meleo
u

the same axial field coupled with a current 35 . In the L

successive terms of (1.102) we recognize contributions from

graphs (a and b), (c and d), (e and f) and (g and h) respectively,

of Fig. 1.
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The separation of poles in q2 and q'2 is simpler in the

amplitude t:g because of PDDAC

2 1
# L) = F 2 el(x)
It is simply
2
t39 (s,t;02¢'2) = F2 " b M (s, t542,q'2)
Lo 203 q T mz-q'a m2-q2 »L3q 7,49
T T
m® s
n i) 2 12
+ —r : .
Fn 2 12 A’O (S,t;q »a ) (1 108)
- qa

The first term corresponds to graphs (a and b) of Fig. 2 while

the second term corresponds to (¢ and d).

Substituting the expressions (1.102) and (1.108) into

equation (1.99) we get

g™ Rig -F9J - o0 (1.109)
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The pole in q'Z = mi has automatically disappeared. On the
other hand the pole at Q% = mi remains. So we must put the
residue of this pole equal to zero and this gives the following

relation

i s
F oMY (5,650 ,0'%) = o™ R0 (s,t5m2 ,q'2)
(1.110)

This relation is written at the point q% = mi . We make the

additional assumption as before that it is still valid in some

neighbourhood of q2 = mi extending at least as far as q% = O:

F M (s,t:92,q'2) = o' Kﬁj(s,t;qz,q"") (1.111)

This hypothesis enables us to split equation (1.109) into two

terms, one being (1.111) and the other

i i1 i
F_ AuJ (s,t39%,0'2) = FDJ(t) + gt Rui (s,t;9%,q9'2)

(1.112)

Now current algebra gives F;J but leaves Rig unknown. To
eliminate it it is necessary to put q' = O. However we must do
this with caution, for in this limit, M, A, A and R become

infinite. This is due to the graphs (a, ¢, e and g) of Fig. 1,
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the intermediate nucleon being on its mass shell when q' - O,
So we must isolate the contribution of the one-nucleon inter-
mediate state in M, A, A and R. First we make the charge states

1
of the in and out pions precise by putting: i = .TE 1 + i2)
1 ij
and J = T (1 - i2). With this choice, M"Y is the elastic

scattering amplitude Mn'p of -ve pions on protons. So:

M- (s,t50%,0'2) = - (gV2)2K(a®)K(a'2) u(p*)

p+4+
i7s ——z—mN 17, u(p)

s -y
+ ﬁ‘lt-p (s,t;q2,qt2) (1-113)

where g2 iy, is the charged pion-nucleon coupling and K(q®)

is the pion-nucleon form factor previously defined. The

_(bed+n)
s 2

- m

factor is the propagator of the intermediate

nucleon and ﬂﬂ-p is the contribution (regular at s = m§) of
intermediate states other than single nucleon states. In an

analogous way we get
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_ G ( l2)
AT (s,%50%,0'%) = 1gV2 K(q?) -% u(p')7,7,
b+d+
—-—:1—4 iy u(p)
S - Ty
+ i;‘ (s,t30%,9"2) (1.114)
G, (¢®)
K (s,t30%,0%3) = -ie2K(@'®) -2 — ()17,
B+ 4"+ my (5)
% 75 u(p
+ K7 (s,30%,0"®) (1.115)

where we have retained only the axial term 7u756A(q2)/Jé in
the coupling of the axial current and neglected the induced term
quys s, which disappears from the final result anyway when we

let ¢ » O. The amplitudes A and A are regular at s = m§

and crossing gives

~

K;- (s,t;9%,9'2) = xﬂ' (v,t3;q9'3,q3) (1.116)
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Finally
RiS (s,t30%,0'3) = - 26, (a®)G, (a'2)al(e' )y 7,

B+ +my

2

=™

775 u(p)
+ Ry (s,t30%,0'%) (1.117)

With the four equations (1.113), (L.11k4), (1.115) and (1.117)
we have performed the decomposition of Tﬁg into 8 terms
corresponding to the eight graphs of Fig. 1 and similarly the
decomposition of tij into I terms corresponding to the first

L graphs of Fig. 2.

Substituting (1.113) and (1.11%) into (1.111) we get after

some algebra

2¢K(a®) [

F @K(a'®) - m, GA(q'z)] u(p')d ulp)
s-n2l ™ J

+ aK(a®)G, (a'2)u(p' Ju(p) + o™ K™ (u,t50'%,0%)

-F_ ¥ - (S:t;qzyq'z) = 0
TmP (1.118)
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To arrive at this relation we have used
u(p*)'d ulp) = le')(- 2md + 5 - nf)u(p)

Now the residue at the pole s = mlz\! must vanish and this gives

the following relation (written at q'? = 0):

my G, (0)
g kK(0)

F

i (1.119)

We recognize here the Goldberger-Treiman relation appearing as
one of the constraints imposed by (1.99). Furthermore (1.118)

yields
F_ ﬂn—p(s,t;qa,qu) - g K(qa)GA(Qfa)ﬁ(p')u(p)
+ @' AT (w,t50'%,0%) (1.120)

In the forward direction (p = p', g = q', t = 0) this can be

written

v nl 2 2 2
roM- (s,050%,¢2) = g K(q )6, (a®)

+ g" K;‘ (u,0;9%,q%) (1.121)

The amplitudes M and X are regular at q = O. Whenq - O

s = m§ and (1.121) becomes
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F_ ﬁn.p (ml%‘,o;o,o) = g K(0) GA(O) (1.122)

Taking the Goldberger-Treiman formula into consideration this

becomes

W - (5,050,0) = % [k(0) 12 (1.123)
This consistency condition was first demonstrated by Adler(l7).
It refers purely to strong interaction quantities. Furthermore
it is independent of current algebra like the Goldberger-Treimen
formula. Indeed so far we have not used the explicit form of
pid
v
(which results from the locality of currents) as well as PDDAC

. We used only the fact that F;J is regular at s,q° and q'2

and the supplementary assumption of gentle variation. The
relation (1.123) is important for it fixes the subtraction
constant in the dispersion relations for n-N forward scattering
amplitude Mn‘p(s’0;0’0)° According to Adler it is verified to
within 10% of experimental result. In chapter 2 we shall
demonstrate how "consistency conditions' for the K-N interaction
can be established.

From (1.121) we write for X;' (u,0;9%,9%) at the point
q=0 um= mﬁ

d )
'K;‘(mﬁ,o;o,o) =F_ a—; ﬁw_p(s,o;o,o) = 2qun — Mn_p(s,O;0,0)

q - Os smn2

(1.124)
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If we now substitute the expressions (1.115) and (1.117) for

A and R into equation (1.112) we get the following relation

G, (a%)

[ F_gk(?) - my GA(q'a)] u(p*)d*y,, ulp)

=Fho

o a2 2 2 12 =71
+F A" (s,830%,0'%) + 46, (a%)6, (a'®) U(p')y ulp)
- By (6) - o™ R (s,456%,0'%) = 0 (1.125)

To arrive at this equation we made use of the relation

W' M@ + 4" - my)y ule) = u(p')(- 2mgd' + s - n)y u(p)

(1.126)

The vanishing of the residue of the pole at s = m§ again yields
the Goldberger-Treiman formula. This leaves us with the following

equation

F‘ll: K;’(s,t;q2,q:_2) = F:;-(t) -%GA(qa)GA(q'a)ﬁ(P')7.0‘1(1’)

i 'ﬁ+

+ o' R (s5t50%,0"%) (1.127).

For forward scattering and for q = q' = O we have
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F_ 1" (m32,0;0,0) = F'~(0) -4a, (0)2 % (1.128)
x M mN’ Yy v EAY .

The algebra of currents gives

- - .3
F;,~(0) < pIJ,D(O)Ip >

1l — P\)
= 3 (ply, ulp) = — (1.129)
2my
Hence
F K;'(ma,o;o,o) = (1- GA(O)Z) Do (1.130)

2mN

We use this equation to eliminate A from (1.124). We then

get with the aid of the Goldberger-Treiman formula:

G, \2 ' \2 93
v 2my ~ .
1 -( ) = -( ; ‘> my - Mﬂ_p(s,0,0,0)

G 0 =
\ A \ &8 Ko}, | 's =i

(1.131)

(18),(19)

This relation is no more than the Adler-Weisberger
formula. To cast in the usual form we must use forward dispersion
relations for the amplitude Mn_p(s,O;0,0) where the pions are

off the mass-shell. It may be shown in a general way that the
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amplitude MR_P(S,O;qz,q'Z) is an analytic function of s in the
+ 2 + 2
plane cut from s = (mN mn) to +» and from u = (mN + mn) to
+oo (s and u are related by stu = 2n§ + 2q2). The
discontinuity across the R.H. cut is given by the optical

theorem in the s-channel

W
Im M - (s,050%,q%) = |q| — o, (5,0°)

s> (mN +mn)2
(1.132)

Iq,_l is the centre-of-mass momentum of the incident pion and

otot(s,qa) is the np total cross-section at the C-M total

energy s = W°.

In an analogous way the discontinuity across the L.H.cut

is given by the optical theorem in the crossed channel u :

W
~ u
Im M - (s,0350%,9%) T - lgl, ;; o} ot (w,9%)
u>(nﬁv+mn)
(1.133)
Withu=W121. When q© = O
s - me u-mn
|q|W = N ona ] W = i
% ; haty = —



hs.

Suppose now that c (s,q ) and o (s,q ) tend to
finite limits as s >« even for off-mass-shell pions. The
Pomeranchuk theorem tells us then that these limits are the same
for ¢° and o~ and this enables us to write down a
dispersion relation with one subtraction for Mn_p' When q2 = 0

it becomes, making the subtraction at s = u = mﬁ :

s_

o

mNMn_P(s,O;O,O) = Constant +

2n
® +
- ] ]
ot (8'90) 0o (s7,0) set
- s
s' - s s' - u
2
(my +m_)
(1.134)
Differentiation w.r.t. s gives at s = m§ =\
3
— M - 0;0,0
mN 3 T D (S, Yy ) .
§ = my
1 ds?
JE— —— 1 ?
/ - -m§[ 07 (s1,0) - &% (s7,0)

(g + m)®

(1.135)
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Substituting this into (1.131) we finally get
1_<G_V)2 - (EN_T S
GA gk (0) on (mN4_mn)2 st - m§
[ LA (sf,o) - o} . (sf,o) ] (1.136)

This is the celebrated Adler-Weisberger formula for the

renormalization of the axial-vector coupling constant. A numerical

evaluation by Adler(lB) gives
Gy
GV
while Weisberger(lg) finds
Gy
= = 1.16 (1.138)
GV
Experimentally
qA
<! = 1.18%o0.02 (1.139)

Gy

The striking agreement of this formula with experiment is one

of the major successes of current algebra.
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The Infinite Momentum Frame:

This is the original Fubini-Furlan method(lo). It was
used by Adler(18) to derive the sum rule (1.136) and by Dashen
and Gell-Mann(lS) to derive the more general type of sum-rules
(1.98). We follow here an approach due to Bollini and
Giambiagi(2o) and Amati, Jengo and Remiddi(Ql). We shall show
that the sum rules of the type (1.98) emerge even when a
Schwinger term proportional to a first order derivative of a
d~function is included. We start from the equal-time commutator
of two currents (vector or axial) of the form

[505030 5 ]at) = (ary 85 )+ 135, 008,3, )840

(1.140)

where Zij(x) is the operator occuring in the Schwinger term (if
present ). We take matrix elements of this commutator between
states of momenta p and p'. We define t;g (Q,Qo) by the Fourier

transformation

0l @e) = [ax < |lg) (50,00 (3>

(1.141)

We introduce the following kinematical variables some of which
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we used before

P = %(P"'P'), A=%(p—p')’ q-Q,-A
qQ' =Q +A, s-(p+Q)2, t = hA2

(1.142)
v = 2P.Q, v =2A.Q=32(q'2 - q?)

w= Q% +A% =3 + q'?)

We take the Fourier transform (F.T.) of both sides of
equation (1.140). Now the F.T. of a product of two
distributions is the convolution of the two F.T.s for each factor

separately i.e.

1l

Fler.£2] = Fler] *» FleP) (1.143)

on)®

This relation is written for the l-dimensional Lorentz space;
the symbol T denotes the F.T. while the * stands for the

convolution product. We then obtain

s R
— [ £ (Q,Q)8Q, = if

K
<p'[i5(0)]p >
o p'[5,(0)]p

ijk

-< p'IZiJ(O)Ip > Qu 8, n (1.1bk)

In this equation the integration runs over Q‘o for all values of
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Q and the result is independent of Q, except for the linear
dependence on Q arising from the presence of the Schwinger term
in (1.140). (Higher order Schwinger terms would lead to higher

powers of Q).

Equation (1.1%1) is not Lorentz-invariant as both Qo and
tou depend on the frame of reference. Since it must however
hold in eny freme and different choices lead to different types
of information about the matrix elements of the current. Let
us take the currents to be both vector and the states | p >,

[p' > to be spinless and of equal ﬁass. Then we define
k
<p'|i50)|p> = F(t) P + Fi(t)a 1.1k
'[5,(0)]p 1(8) B o+ F(8)A (1.145)

(The second form-factor F:(t) vanishes for a conserved current).

We also write
< p'lzij(o)lp = Sij(t) (1.1L6)
We expend tig on a tensor basis as before. We write
t;% - aijpupl;r ard PA, * ol PQ,
+ pid 8P+ bijAu A, + o3 a9,
+ cli_jQuPu + caijQuAu + ci’j Q’uQ"o

ij
+d aw (1.147)
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This decomposition is slightly different from the one used
before (1.87) but the two sets are related by simple linear
relationships. As before 8y bi’ ¢, and d are invariant
amplitudes that are functions of s,t,q® and gq'2 or s,t,v, and w.
We begin by taking P to be time-like so that as P.A = O, A is
space-like. We define the Breit system by P = O and .. Ao- 0
and Po = \ffE: Any other system can be reached from the Breit
system by a Lorentz transformation characterized by a relative
velocity B and & direction which we take to be the z-axis. In

the Breit system

P = (‘\F:O:O:O)

A = (O,Ax,Ay,Az)

In any other frame

P = (7*/52-; o, 0, 'BN—PE)

(1.148)
and
a = (Brd, 8, 0,748) J
1
where y = (1 - B2)™2, From equation (1.142) we have
v
Q = + BQ (1.1k9)

o 27*ﬁ;§ z
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Q, is a fixed quantity in equation (1.14k4) and so we can use v
as an integration variable. With the aid of (1.148) and (1.1L49)

we find

v? BQ,v QF
Q2 = - - Z _Q?_ _Qy2
yr2P P 52 x
(1.150)
BA v QA
QA = -—2- . EZ_gA -QA

2~f§§ 4 xx yy

The integration in (1.14%) is performed over v for fixed
values of Q; it is .. clear from equations (1.142) and (1.150)
that q© and Q'2 as well as s vary along the path of integration.

In the Breit system, for instance, B = O and ..

02 t
@ = -Q%+2Q.8 +— +-
Lp2 L
v2 t
Q' = -0 -20.A + — + - (1.151)
B T upP 4
.02
s -u+——+P2—Q2
Lp2

Using equation (1.149) equation (1.1kk) then gives
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11
1 . . v . 02 qd
b P2 Lp* p2 ijk
[e) [o]
(1.152)
1 . v L.
_ ij __ ij - i k
- [{ ayv + c, } dv 11,0 P2 (t) (1.153)

op2
[o]

1 s v -
— Jo+— e - - 154
i [{as + 2 c, }du sij(t) (1.154)

The scalar functions depend on s,q_2,q'2 which vary with v as

indicated in (1.151) with Q and Q.A being arbitrary constants.

The Po — o system is defined by
A = 0, B~ 1 (1.155)

If the integrals over v converge, the contribution from high
values of v is negligible so that we can regard v as bounded
by a finite quantity. For finite v we have as 8 — 1

Po—boo, Pz—>-P°, Qo—>-Qz, AZ=A0=O
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and equations (1.150) become
Q2 = - Q 2 _ an
QLA = -QpA -QA (1.157)

s = v+ PP+ Qxa + Qy?

In this system g%, q'2

are independent of v . The arbitrary
finite quantity Qz no longer enters in the determination of

s,q% and q'®. Using now 's' as an integration variable we write

ij . k
— | ds ay? (s,t,0%,0'®) = if  F (t)
hn : ik
— ij 2 412} o 4
h.’t ds 3.2 (S,t,q )q. ) 1fijk F:(t) (1‘158)
* 13 2 12
h_'n: ds ag (s,t,a%,q" ) = - sij (t)

These equations have been obtained from (1.144) by equating, for
every value of the index p , the leading terms in an expansion in
P . The leading term for y = 0 (or 3) gives the 1lst equation and
is a factor Po larger than the leading terms for u = 1 or 2 which
give the other two equations. We recognize in (1.158) the Fubini

and Dashen-Gell-Mann sum rules deriyed before.
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By taking P now to be space-like and A time-like and
starting from a "Breit system" A = 0, Amati, Jengo and
Remiddi(al) were able to derive 3 new sum-rules in the Ab - ©

system. These are

1

1 [.i] k
M[bl (s,t,v,w)dvy = ifijk F, (t)

13 .
:l,;[baa (s,t,v,w)dv. = 1f, . Fo(t) (1.159)

1 ij
i /\baa(s,t,v,w)dv - - Sij(t)

The manner of derivation is exactly the same as before.

It is important to note that in the sum rules (1.158) ¢ and
q'? do not vary along the integration path. Equation (1.156)
imposes restrictions on the values of q2, q'2 and t for which
(1.158) have been obtained. Indeed they require q, q' and A
to space-like and thatNFZEE, NF:ETE and NF:&E_ satisfy triangular
inequalities, i.e. any one of them is smaller than (or equal to)
the sum of the other two and larger than (or equal to) the
modulus of the difference. We can now argue that since the
equations (1.158) hold in such a kinematical region they will also
hold in all regions that are accessible through the procedure of
analytic continuetion. Amati, Jengo and Remiddi(zl) make the
interesting observation that this is analogous to the situation

which arises in the derivetion of dispersion relations(ga).
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CHAPTER 1II

In the previous chapter we derived a 'consistency condition!
for the pion-nucleon amplitude, equation (1.123), the pions
involved being off-mass-shell. In this chapter we investigate
such conditions for the K-meson nucleon scattering amplitude. We
follow the approach described in reference (23) which parallels

(17

Adler's original derivation of the =n-N condition.

We assume PCAC for the strangeness-changing axial vector

current in the form

(a8=1)
y Is, Cp O (2.1)

vhere ¢K is the renormalized field operator of the K-meson.

To determine C, we take matrix elements of Bu jSu between a

¥ state and a nucleon state. We expand the matrix element of

j5u in terms of three form-factors as usual
st (BASEL) v IPETN o, LW NE, oy
< wp*)lic iZ{p) > = ulp*)| g (9%)
K t
Ps Po

(2.2)
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where g = p' - p. We have labelled the form-factors by the
external states X and N since we shall be concerned with several

matrix elements of jSu between different states. Now

< N(p' )IB JS(AS 1)Iz(p) > = -igq < N(p' )I;l(AS 1)lz(p) >

g =0

= -iq, m—‘?‘-m—" ﬁ(p')sfz(0)7u75u(p)
POPO
(2.3)

With the help of the Dirac equations

a(p)($ - im) = ©
(2.4)

( - im)u(p) = ©

We obtain

<N(p")|3, J(As Viz() > = (mg, + my )&y (0) u(p )75 u(p)

(2.5)

However by (2.1) the L.H.S. of (2.5) is equal to
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CK [ 2
——— <N¥@')|(-O+nf)e |Z(p) >

Cy < N(p')|¢K|2(p) > =
mpe + g

C

K
= mi + g2 < N(P')IJKIZ(P) >

°c . s N
ST
x u(p') 7,u(p) (2.6)

8wk is the coupling constant and KZNK(qz) is the IZNK-vertex
form-factor normalized so that K (-m§ ) =1. At g = 0 we

compare (2.5) and (2.6) and get

- i(mg + mN)ggz(O)mi

c, = (2.7)
K ngKmx(o)

Alternatively we could have started with the vertex < NIjSulA >

L3
[V}

m

AmAd Assederad
ana arrivea

- i(m, + mp)gy (O)nd
A

(2.8)

ek (0)

These two determinantions of CK must agree and hence
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(my + m)gy (0)  (m, + m)ey (0)

(2.9)
ANK
gk K (0) gk K (0)
It could be that au js(ﬁs-l) is not coupled entirely to the

K-meson field. There could be another operator R such that

. NZ 2
(as=1) _ - ilmg * myg Oy
u J5, - KENK(O) ¢K R (2.10)

Then our subsequent analysis is valid provided the residual

operator R satisfies the following condition: for states A, B

such that < Al# |B >4 O and for momentum transfers near the

K-pole (e.g. - 2!( <q® < m2K ) then

|< B|R|A >]

| [ (mg, + mN)sll,\:z(O)mgK /‘sm KZNK(O)] < B|o |a >

< 1

(2.11)

To derive the desired consistency conditions consider the

matrix element < mlgéﬁs .l)IN > .

L
8 invariant amplitudes Aj given by(2 )

This may be decomposed into

: 8

P, B - .

=2 2q* <KN|:I§AS Vix> = ap') iz 0“A ; (0,05,0%)u(p)
gy u Lo

(2.12)



where p(p') is the four-momentum of the initial (final) nucleon;
q' that of the outgoing K-meson and q is the momentum transfer.

The variables V,0p are defined by

v = -(p+p').q/2m

(2.13)
= 1
UB q .q/2mN
The operators Oﬂ are given by
01 = l [ - ) 05 - . + 1
" 27, 7ud) n o= i+ '),
0> = (p+p) 0° = idq'
M B M !
(2.14)

S = r =

OIJ- qu OIJ- qlJ-
6 8 _

0 = imy, 0 ida

H K

We write for the isotopie-spin structure of the amplitude

Aj the following
2 * * 2 +
AJ(D!DBJq ) = 'X.f Tla AJ(D,UB:Q. )aB "IB Xi (2-15)

where Xi’ Xf are the isotopic spinors of the initial and final
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nucleons respectively and Ny is the isotopic spin wave function
for the final K-meson. The object n; must be there to

,aB * It is a consezuence
transforms like the component A *+15

saturate the isotopic indices B on Aj

(AS =1)
Su

of the unitary-spin current. We can think of it as the unitary-

of the fact that ]

spin wave function of a spurion which carries off I = % .

We split each Aj into

AJ(D’DB’qz)aB = AE(U:UB:QZ)‘!B + KJ-(U;DB:qa)aB
(2.16)

where AP is the sum of Born term contributions (i.e. the single

J

A, T states) and A, is simply the residual amplitude.

J

Evaluating the Born terms with the aid of figures 3 and 4

glives
8
E(p')ig1 03 Xz n: A?«B Xi'n; u(p)
{=
* 1 o NA
= T(p)Xg [{irs BNK 5 4 - Pop [gA (@) 7,

A

+ ff\"\(q"’)auuquys + ihﬂA(qz)quy,] + P ag [QXA(qz)run
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1

p-d' - im, 1758““(}

+ fﬂA(qz) %o * ihf:A(qa)qu?s ]

1

1
* { 175 8o T Pop [sﬂz(qghug +fﬁz(q2)ouuqu75

_'mz

¥ 1hfz(q2)qu7,] ¥ P;s[gﬂz(qz)m’s ¥ ffz(qz)"uu%’s

1 +
+ inf\m(f)qur,] T— iy, sm} ] X, ng u(p)

(2.17)

where (Po, (Pl are the projection operators for isotopic singlet

and triplet states. Specifically

(2.18)

where IN’ IK are the isotopic-spin operators for the nucleon
and K-meson respectively. We treat the amplitude as a matrix
in the nucleon sub-space. We are interested in the divergence

Bu ju5 for zero momentum transfer, q° = O. This simplifies
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(2.17) enormously as contributions from the factors involving

fA and hA drop out. We write

= u(p') Xz ny {irsgm Poa8y (a%)7 W7

p'2 + q12 + 2q'.p' + me

p-d'+in
A

+ PO s(q"’)77 iy, 8
af FA
P "+ a'? -2qpruE

B+ d' + img

+ i 1
7s Exnk p'2 + q'2 + 2q '+ m% of SA

E(q2 )7M75

B -+

&2 (q2)y RA ir 8 }X- 1. u(p)
Cﬁ A p2 + q,g _ 2q'.p + ﬂ% s SLNK i B

(2.19)

Further simplification is made possible through the Dirac

equations (2.4). Eg. a term like

u(p')y, (¢ + d' + im))7 7,ulp)

becomes
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u(p') [i(mN -m,) + d’] 7,7, ulp)
and so on. Now (2.19) becomes

i(my - m,) + 4
- GDEBng(q2)7u

2

L.H.S. = u(p') x* n* 41 .
(p*) X3 “a‘{ €ANK C 2+ a2+ 2at.ot
S q-Pp

NA , o
g (a°)

i(mg - my) + 4 1 NZ

+ 1 gopre? : Pop & (qz)}x 15 u(p)
ENK af A i
“'m;_mﬁ.'_qla_eqi.p B B
(2.20)
From the kinematical relations (2.13) we have
2mg(o + vg) = q'% -2q'.p
(2.21)

2my(op = v) = q'2 + 2q'.p’



6k,

We define

A s —— A a ——e (2022)

From the anticommutation property of Dirac matrices

" 1. b aMs  _ LM
q 7[-171) = 35q 7u71> q Bm) 54 71)7;1

we now rewrite (2.20) as

[i(mw-m,\)ru
2m1\I 'DB-D"'A

- NA
L.H.S. = u(p' )x:, ny {:lgANK tPgB g, (a°)

Ab) LV] 1.0
+ -1
%qrurb Q8 -3 77

+ = ] +1ggn Pog g (a®)

1 + 1+ A
oy *+ 0
1 rifm -m)y 3d°r7y +d6. -4°r 7
« [ i S LTI v’y o )
2mN uB-'o+A' 'oB-u+A'
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1.0 Lb] 1 0
+ -3
2q %7 q Sw 39 1.7

+i(mz—m1v)7u + Uu]}xi néu(p)

+ 0+ A v, + v+ A

Cp B

(2.23)

Comparing the coefficients of the operators 0;1 on both
sides of equation (2.23) we finally extract the following

expressions for the pole terms

1 1 1l
P NA, 2y ~0
Aln = — |8 a8y (€)P -
laB I:ANKA aB o -+ A oL+ v+ A
B B
1 1
NZ 2 1

'oB-u+A' DB+D+A

(2.24)

1 1 1
P NA, 2y o
Arg = — |8 8 (@°)P +
3B - [ANKA oB

2"’1\1 \‘DB-'D"‘A °B+°+A/

1 1
NZ, o 1 ]
+gmgA(Q)@aB DB-1)+A'+DB+1)+A'

(2.25)
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P L NA ( 1 1 )
A = — (®)(m, - m )P° -
hap 2m§[gANK 1 AT ap VptO+rA v -vHA
1 1
NZ, o _ @1 _
+gENKgA (a )(mz mN) af <DB+-0+AI DB+D+A'>]
(2.26)

Let us now evaluate < KNIBu j5ulN > at g% = O,

We write

popo (AS =1)

' a Tlp! YX* n* +
S>> 290 <KN[]Q gg T TN >| @(p')XG ny Mg V2 ng ulp)
my q® =0
(2.27)
where MaB is defined by
MaB = A(‘D,UB)GB - id B(D’DB)GB (2.28)

To determine A and B we consider the expression

8
ﬁ(p')q“ZAjaBu(p) - ﬁ(p')[%(d'vi -dd' Ay + (P +p')ea Ay
J=1 ' ' '

*a'eq Ay + dmyd Ay o+ id(p + p')ea Agyg
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* A By + @iy * 10y | (2

(2.29)

The last two terms drop out at q2 = 0. Consider the non-pole

terms first. Then

Map = G(p')[%(d'é - dd A g - 2omy Ayg + 205 Ay

_ _ _ 1
+ imNdAhaB - 19{2111“1) Asw + 1’12"3’"1\1 Agan ]J_E u(p)

(2.30)
Further reduction is afforded by the use of
d'd + 44 = 2mpop, andq' = p+gq-p
We can therefore write equation (2.30) as
My = ﬁ(p)[-szu Kygg = 2mgo Ko + 2mpvp A,
_ _ _ 1
- 14 (- my By o+ 2mo A o - 2mpoy Ko o) ] 5 u(p)

(2.31)
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Hence

—— 1 - — —
Aup 5 <' 2mg0 Ay gg = 2my® Apgg *+ 2myvg Agg >
(2.32)

1l
V2 (’ My Aygg * 2o Agpg - 2y Agig )
We now write down the pole terms

u(p* )Z o) A ?aﬁ (p)qu = u(p' )[ amy AiaB + 2myop AI;GB

J=1

1l
- 14 (omy AT, - mNAEaB)] 7 e

(2.33)
We can now identify the pole parts of the A and B
amplitudes appearing in (2.28) as
P ! P P
Aaﬁ = JTa— (— ZDN\) AldB + QmN‘l)B A}aﬁ >
(2.34)

1
P P P
Bep = 2 (anNAlaB—mNAhaﬁ>
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CAS

However according to PCAC < KNIB j -l)IN > 1is equal to

c
K
Ce < KN|o, [N > = - < KN| 3, [N > (2.35)

By the ILSZ formalism we recognize in (2.35) the K-N scattering

amplitude. This gives for MaB

c
oy = 5 [0l - 1 8%y 0 |
JZuZ

(2.36)

Adding equa%ions (2.32) and (2.34) for the A-amplitude and comparing

with (2.3%6) we find

- P P
(-EmND Alaa 2mv A, A 3¢B - 2mo AlaB + 2m.N1>B A}aB )
(my + my)
- o) Aus K (o0 vg,q°=0) (2.37)
Finally since the amplitudes Kj have no kinematical sihgularities(QS)
Lim oA, + ) = Lim v_A = 0 (2.38)
v—- 0 A2 UB—90 B 30B

We simplify the pole term contribution by making the customary



70.

decomposition

KN = AKN(+) ) + Am(-)

Aaﬁ op -N

Tyo T

KaB (2.39)

We then find that the coefficient of 8ANK ggA(O) saB for example,

is proportional to

2 _.2
UB ) -+2ADB

(DB - v+ A)(oB + v+ 4)

Similar expressions hold for the coefficient of gANKgﬁA(O) IN' IKaB

and for the I-terms. If we neglect the mass difference term A

and set v, = v = O then the above terms are equal to unity and

B
equation (2.37) leads to the following two relations

gm'K g.ANK gz‘A(o) + jfm gﬂz(o) AKN(+) (UIO,DBBO,QZ =O)

2(my, + my) gﬂz(o) K% (0)
(2.40)
S & (0) - By &y & (O) ) AN g =0,05=0,% =0)
2(my + my)gy(0) K (0)

However if we maintain the mass differences then we get instead

the null relations
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AKN(+)(D-O,0B-0,qz-0) = 0

(2.41)

AKN(') (u-O,uB-O,qz-O) = 0

because
Lim vAY , = Lim o AL = 0 whena,a'4o0
lap B "3aB 4
v—- 0 UB—;O

Thus in the symmetry limit we obtain equations which link weak
and strong interaction quantities while for the broken symmetry
we get a condition on the K-N scattering amplitude alone. These
results are to be compared with Adler's equations

o A () (0 =0,v, =0,q% = 0)

my g (0)

(2.42)
o = a®W() (0 =0,0,=0,0% =0)

Adler obtained his results by neglecting the neutron-proton mass
difference, i.e. a symmetry result and corresponds to our results
(2.40).

We have a rather puzzling situation in that switching the

mass differences on or off gives such widely different conclusions.
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The resolution of this difficulty was made by Fuchs(26) and was
drawn to the author's attention by Adler(27). The argument is

a simple one and waé suggested by the polology approach to current
algebras described in some detail in Chapter I. We consider

the amplitude

Mp' - [d“x et X ¢ ml;jéas‘l)ln > (2.43)

Integration by parts gives

qp'Mu - i fd“x e ¥ < KNIBM ,j'sAsgl)(x)lN >

(2.4k)
Mu is related to the amplitude for K-meson production by the
scattering of a nucleon in an external strangeness-bearing axial-
vector field. For v = 0, q© = 0 we assume that unu is
dominated by the nearby singularities which are the A, L Born
terms and the K-pole at q2 L] -mﬁ . If we keep the masses
different then the A, £ poles offer no prolem and q”M.u - 0 as
qu - 0, The residue of the pole in g at -mﬁ is just the on-
mass-shell K-N forward scattering amplitude. This residue must
vanish and hence we obtain the null condition (2.41). 1If
however the masses are degenerate then a different situation
arises. We must remember that when we want to test either of

the conditions (2.40) or (2.41) we must write a dispersion relation



for AKN. In the equal mass limit Mh is no longer regular as

qP — 0 and we must separate the Born terms from it before taking
the limit and this procedure would then give rise to the non-
null relations (2.40). In the dispersion relation we

eventually write for AKN the Born terms contribute when the masses
are distinet and do not contribute when the masses are equal.

Thus in (2.41) A hcludes Born terms while in (2.40) these are
absent. In the limit of SU(3) all relations are non-null while

for the broken symmetry all relations are null.
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CHAPTER III

In reference (11), Fubini et al. have discussed a number
of interesting applications of the theory of current algebra.
One particularly interesting example is the derivation of the
Gell-Mann - Okubo mass formula. The starting point is the

commutator

[ 5w, 05w | -0 (3.1)

X mt
o

where both the charge Q and the divergence D refer to the 4 + i5
component of the octet of vector currents. The interesting
point is that this commutator, when sandwiched between
appropriate states, leads to a linear mass formula for fermions
and to a quadratic mass formula for bosons, This result was
known for some time from group theory but no reason is given by
the group~thooretical methed as to why this distiaction should
occur between bosons and fermions, In current algebra this
arises quite naturally. The usual assumption made in group
theory about the symmetry-breaking Hamiltonian, namely that it
transforms like the 8! member of an octet certainly implies (3.1).

On the other hand we could start from (3.1), which is implied by



the quark model, as the basic object. (3.1) can be generalized

to other values of the unitary spin indices,

[ &t(t), pP(x) ] = 0 (3.2)

X =t
o

where A, B are V-spin, U-spin or I-spin translation operators
teken in suitable combinations. This was indeed done by

(28)

Faustov who was able to obtain various relations among the

(29)

electromagnetic mass differences including the Coleman-Glashow

formula as well as two new formulae for the baryon decuplet.

In this chapter we investigate the consequences of the

hypothesis that(3o)

[ Qg”is(t), Dg"ﬁ(x)] = 0 (3.3)

x = t
o

where both the charge QS and the divergence D5 refer to the
component 4 + i5 of the axial-vector octet, i.e. the
strangeness—-changing axial-vector weak current. Clearl& this is
a stronger assumption than the one made for the vector currents,
(3.1)s The commutator (3.3) is satisfied in the quark model
and so in accoZrdance with the basic philosophy of the current

algebra theory it is possible to abstract it from the model and
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assume its validity in general. We shall discuss this further
at the end of the chapter. Meanwhile we can give other
arguments to support our hypothesis. The commutator (3.3)
corresponds to a double strangeness exchange and we can imagine
the trajectory of a particle in the exchange channel to be very

(31) -

depressed and therefore hope that the sum rule which results

from it converges. Notice also that it is a commutator between

(32)

a good and a bad operator and hence it is very interesting
to examine its consequences., The theorem of Ademollo and
Gatto(BB) which says that the octet of vector currents is
unrenormalized up to first order in the symmetry breaking
interactions, holds for (3.1) and énables us to set all the
renormalization ratios equal to one and end up with a function
involving the masses only, i.e. a mass formula. However there
is no such theorem for the axial octet and there is no hope of
getting an SU(6)-type mass formula out of (3.3). We are led to
view the sum rule arising from (3.3) as a relation between the

F/D and F +D quantities of weak semi-leptoni

LIl R 2] L = i LG

0

decays or as a
determination of the F/D ratio if one regards F+ D as known from

(18), (19)

experiment (equation 1.139) or from current algebra

We now turn to a discussion of the sum rule arising from

(3.3). The axial-vector current.j;u is an octet operator and we
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can write the following expansion for its matrix element between

any two baryon octet states Bi, B]

<Bildg,Ips > = T {[ 6 (@ay + 6 @)if,, ] Tu%

- [ G (), + 6 (@®)if,, ]iquars} uy

(3.4)

We have not included the term proportional to Gub qb 75 - the
2nd class covariant; i.e. only terms with C =+1 have been
written down. This is not really an assumption about the
charge conjugation properties of the axial-vector octet because
this term is not going to contribute to the divergence anyway.
We may transcribe the above equation from the Cartesian to the
'spherical' non-Hermitian basis with the aid of the spherical
fa) (34)

vectors e where @ denotes the 'magnetic' quantum

numbers (I, I,, Y). Using

ei(k) eJ{u) elgb)* £ ™ W3
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5 8 8 8s
2 ) (o) 2
i J k ijk 3
A M v
_ 8§ 8 1
M) ) = -yB
A u O
(3.5)
N Nt N'é
where is the SU(3) Clebsch-Gordan coefficient
[TOR VR |

(35)

as defined by de Swart Remembering that a physical baryon

state B(a) is related to the Cartesian state Bi by

B(“) ei“) B (3.6)

we readily obtain

—/8 8 8

\
<@l > o g, { ] o (qa)/;( )
af 4

8 8,
+ 63(®) V3 )]7'17,
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: 8 8 8
- [ /:
3 " af o
8 8 8
+ Ga(e®) V3 i ]iqu75 }“(a")

af a
(3.7)

We shall need the formula for the divergence which we write as

<3 (Pl)lnfa')lB(“")(Pz) >
- (mB(a) + mB(a") >ﬁ(a)(P1)Gz? (a®) 75 u(an)(Pa)

(3.8)

aa"
vhere G, (¢®) is defined by

8 8 8 2
Gz?"(qz) - E[ s\ I—Gi(oz) - 2 G:(cf)—l
| {3 o

@ o/ 5 @) T ()
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We see that in the limit of zero momentum transfer only two
constants Gi(o) and Gi(o) remain. Following reference (11) we
write the charge as a lb-dimensionel integral of a divergence by
introducing an exponential in some four vector, k, and a

(@ -function. Specifically (3.3) becomes

Lin [ @x@ (~x )e X < £ [pf * 3 (x), 0t *15(0) 11 > = O
kK =0 ° > >
M
(3.10)

where |i>, | f> are suitable initial and final baryon states.

We define an amplitude Ti £ by

T = d4x @(_xo)e_ikox < fI[D,;"‘iS(x), D,; +iS(0)]Ii >

if
(3.11)
Defining the usual scalar invariants by
§ = -(k + Pf)a
- - 2, 2 - 2 - .

u = -(Pi + k)2

We make use of the arbitrariness in the vector k and choose

it to satisfy
¥ = 0; s-m?,-u-maiau i.e. k.pi--k.pf

(3.13)
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We now assume for Tif a dispersion relation in v at

constant t

1 0. (v',t
T, (v,t) = —f —1—1;2—) do* (3.14)

The absorptive part is given by

N .
0,0( t) = H(2n)" { ) et(op + k- 3) <tly "B O)n >
n

b+4
< n|D5+15(0)|i > - Z t‘>“(pi -k - Pna)
n
< f|Dg+15(o)|n' > < n'|D;+15(o)|i >} (3.15)

We shall refer to the coefficient of the lst & -function as the
direct term and the coefficient of the 2nd &-function as the
crossed term. The contribution to T, of a single particle (s.P)
intermediate state is given by

00

d\)' l

S.P 1 [ ul 4
T, - = é(en)"{ f = da% [ 8% (p,+k-p)
if " Lo v'- (2n)® E f
L +i5 4 +1i5 4
<pg [D; " *2(0)]p > < p|D; " 2 (0)|p; > - 8*(p; -k -p)

4+ b+ 3
< p,Ing "2 (0)[p > < p|n. T P (0)Ip, > ]} (3.16)
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Make the replacement
[ - d*p 8(p® + m) = fd“p 8(m® - mi. - v)

where p, m are the momentum and mass of the S.P. intermediate

state. If we write

S P
1f - Cl M (3.17)

where C1 comes from the direct term and 02 from the crossed term
then we immediately find
+1 + i
< leg Bio)p > < png ()1 >

C, = . 2m (3.18)

2 2
m- - m
f

-

We now make specific choices for the states |£>, |i> as proton

and =~ states respectively

<f|] = <p|; }i> = |2~ > (3.19)

The possible single-particle intermediate states are then £° and

A . The numerator of (3.18) then reads for I°, for example
5 -
< P|0dy, (0)|2° > < 2°|Djy; (0)]=" > = (m + mso)(myo + m_-)
X G%%I(O) G%%l (t)alp)7 ulp, + k)u(p, + k)7,u(p,)

(3.20)
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The label 1 on the form-factor stands for the 'magnetic' quantum
numbers of the divergence. We are interested in the limit k- 0

and the R.H.S. of (3.20) then simplifies to

(o] o_-
RES. = (% - 52)(mo *+ m-) Gy (0) 6T ()ileplulr,)

(3.21)

We thus see that in the limit k -0 (i.e.v — O0) the lst factor in
(3.21) cancels the denominator term in (3.18). The _factor 2m
in the numerator of (3.18) is also cancelled by the term 2m
arising from the propagator for the intermediate state. The term
C, is reduced in a similar manner. We then find that Z°

contribution to T._ is
if

Tzi::‘ [(mz° *m_-)G 5-5-1(0) Gn_ (t) + (my0 +m )Gp (t)G = (O)J

X ﬁp (pf)uE-(pi) (3.22)

If we now evaluate the sum-rule for zerc momentum transfer,

t = 0, this simplifies to

(2mg0 + m +m_-) G (0) G11 (0 1 8, (pplu_-(p;) (3.23)

where



8 8 85 8 8 83. -
sgfl(o) - /2 63(0) + 43 63(0)
100 #1 i 100 31 44
(3.24)
8 8 8

g - 3

eS(0) +v3

2441 i1 100

.

(3.25)

Similarly, the A-contribution to the sum rule is

= (em, +m +m_-) cBl (0) Gnl(O) U (0) u~(p;)  (3.26)

8 8 8 8 8 8,
/ : /
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c3(0) + V3 @ (0)

(3.28)

So our sum-rule (3.10) now becomes

o)
[ Cngo + my + 1) I 0) 70 + (ony +my +m)

Gz_gl(o) G:: (0)] u(pplu_-(p,)

1 Al (v*) Al (~v*)
[du' — + -
v -V o+ v
Threshold

(3.29)

Al) = den) ) eh(oprk-p,) < i)y [n><aln} | >)
n b &, z° . e =2

AII(U) = %(21!)“ 5“(_’9 -k - -P, ) < pIDn |n><n|D |E‘ >
n&A,z°

331 331 j




86.

We can now use PCAC in the operator form
w(as=1) _

to convert the absorptive parts AI and AII into products of

scattering amplitudes. e.ge.

2
me Fx .
<p[Djy, In> = = <pligln>
22 g + (p, - p,)
n% F
K
= T PK- (3.32)

mg + (pp - p,)?

where FK is the decay constant of the K-mesons into a lepton pair.

We can therefore rewrite the absorptive parts as

AI = % (21!)1.1.-»12( 5% (pf +k - pn)T(n - PK7)T (E_K+ - n)
n $4,z°

AT -k (en)'R Z 8*(p, -k -2 )T (n— FK) T (=X* ~ n)
n $4,£°

(3.33)

Unlike the situation arising in the Adler-Weisberger sum

rule here we are dealing with the non-diagonal elements of the
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T-matrix and we cannot convert this into cross-sections. We
shall assume that the contribution of the integral on the R.H.S.
of (3.29) comes mostly from the YIO resonance. There is no
real justification for this resonance approximation which is
frequently used in current algebras except perhaps the
phenomenological one, namely that the high mass states should not
make significant contributions to the sum-rules. Even this is
not enough, for to evaluate the contribution of the Y:° we need
to know the form factors occuring in the matrix element of the
axial-vector current between baryon and decuplet states, for
zero momentum transfer. The expansion involves 4 form~factors
and one way of writing it is the following

< B(a)(pl)ljgﬁ_')l A(“")(pa) > = il (p,) [-H:_' CL

ia', 2 1 e, o
- 4 By (¥, 7,2 Ha (@®)py,, (o, *+ ),

+ m—t H(:' (qa)plu(Pl - pg)u ] Ulza")(Pa)

(3.34)

No 7y, appears on the R.H.S. of (3.34) since the Ravita-

Schwinger spinor Uu(p) have -ve intrinsic parity and we are using
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it to describe a +ve parity state. Knowledge of the form factors
H,, H,, Hy, H, allows one to calculate the amplitude for decuplet

production by neutrinos on the baryon octet

v+B - A+

B! + meson
For the matrix element of the divergence we have

< B(a) (pl) IDga' ) |A(a")(p2) >

® 8 8 10
= gy (o, Mgy (P)py, U‘Za")(Pa)
' a al a
(3.35)
where
H:?" (q2) - [—H:.' (q2) + %‘ H:-' (qg)(mna - mA“" )

1; xe i a’ 2 1
+ m2 HG. (qa) (mzall - m::a) + m2 HA. (qz)q J (5.56)

In the above equations m is the mass of the appropriate pseudoscalar
t

meson which has the same quantum numbers as Das. Ideally one

would like to be able to use the numerical values of H,, H,, H, H“

for zero momentum transfer in evaluating the contribution of the



A
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Y"l"o to the sum-rule. This presumably can be done by current
algebra methods. However for our purposes we use the pole
dominance model for the divergence of the axial current and
approximate the function H:‘:" (qa) as follows: e.g. for the

PY';’OK vertex we write

Soxtox  my Fy
meo mrd

5 ¥* -
< P'D%_%llYlo > u(p)eyy, Uv(pz)

(3.37)

This sort of approximation leaves us with only 1 parameter to
evaluate instead of four (H,, H,, Hy, H,) namely the coupling
constant for the P’Y;'OK vertex. Similarly we need to know the
coupling constant for the ET:OK vertex. Due to the lack of
reliable experimental data on these numbers we turn to SU (3)

symmetry for their determination. In the SU(3) symmetry scheme

the Y':° is written as

1
|Y¥0 > a :{ |="x* > -~ |NKo > + |=7K >+ J3]2°N >
- J12

- J3)An° > + |PK” > + |=9K° > - |=*x” >}

(3.38)
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The states |PK~ > and |= XK' > enter with equal weights ;fi= .
12

The decays of the decuplet resonances are determined by one

coupling constant g, apart from Clebsch-Gordon coefficients.

To find g we look at the best experimentally measured width,

namely that of the N***, This state is written

1
[N$** > m — |Pnt > (3.39)

Je

The transition rate is given by

r

3
82 anv EP * mP

. (3.40)
M 4 Dy

N*++—+Pn+

where an is the centre of mass momentum of the =' and P. The

Ep + m
factor 7™ varies very little among the various decays

Morx

and is usually dropped. The experimental width of the N¥* then

leads to @& = 49,7 . In terms of g we have

g
f= 1.a\
o~ %0 - o o - —— (Dettd)
5PYl K B Y; K 2~F5

We now substitute th-e expansions (3.37) into the sum rule. The
reduction of the Dirac algebre is performed with the help of the

subsidiary conditions satisfied by the Rarita-Schwinger spinor
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(@ - in*) U(p) = O
7,00 (®) = 0 (3.42)
P U(p) = O

We also need the propagator for spin 3/2 s

) i 2 ~ig +m*
P_ = -3 +— Py -7P)+—PP —
- { Bao = 3N T (B 7y = 7,Py) g u} -

(3.43)

Here of course we treat the resonance as a stable state and compute
its contribution in precisely the same way we did for the £ and A

states. We can now write the Y:° contribution as

g *0 #O_-~ ‘ |
P ° 0= 10 8 8 8 8 10
N x . X
T : 100 441 i 113 i1 100
(3.44)

where N is a numerical factor containing the masses and arising

o o_-
from the Dirac algebra. The functions H "1 and HY: = are

given for zero momentum transfer by

%0 Y*OE—
1 = gy Fp = H1 (3.45)
. 1
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We now go back to equation (3.29) and read off the numerical values
for the Clebsch-Gordon coefficients from the tables of(hrSwart(BS),

We find simply

Gg:(o) - 363(0) - 36%(0) (3.46)
5 (0) = -46°(0) - 36%(0) (3.47)
5351
PA 1 s “r3 8
G;—.}l(o) - -Z—;GI(O) -—2—G1(0) (3.48)
- V3
A= - ¢5(0) - — 6*(0 "
e = s ao) - o (3.49)
Define
G = G5(0) +G3(0) end a= G?(O;//G (3.50)
Hence
G:(O) = G(lL-a) and Gi(0) = Ga (3.51)

The F/D ratio is by definition We now substitute the

a
l-a"’
values (3.46) - (3.49) into the sum-rule (3.29) and use the

relations given by (3.51). It now reads
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a2
::'{'(amzo + mP + mé-)(aa - 1) + %{2mA + mP + mE-)(Baz + Dg - lx}
- (Y:° contribution) (3.52)

where the R.H.S. is given by (3.44). In (3.44) N has the numerical

value

N = L4,06 x 108

The value 1.09 x 102 for Fﬁ ¢6) as well as the value 49.7/243
for *#0 and g_- %o give for (3. )
€pY Ok =Y,°K

1 1l
4.06 X 10% X 1.8 X 107! x —— X - —— (3.53)

243 Ji5

where the last two numbers are the Clebsch-Gordon coefficients.
Putting all this as well as the known masses into equation (3.52)

we get a quadratic equation for the parameter a;

217.6

We now regard G either as an experimental input or as a result
from the Adler-Weisberger formula. It has the numerical value

|G| = 1,18. This now gives two solutions for (3.54)

a = -1,39 or 0.37 (3.55)
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Remembering that the F/D ratio is a/l-a we finally obtain

F/IJ = -0.58 or 0.59 (3.56)

It is amusing to note that these two solutions closely
resemble the solution one obtains for the homogeneous equation
(F/D)2 = constant(57); This similarity might not be purely

accidental.

The value 0.59 we obtain for the F/D ratio is in good
agreement with experiment. Two determinations of this number

(38)

by two different groups are:

0.45  (Brene et al)

(3.57)

and
0.59 (Willis et al)

Returning now to our basic commutator (3.3) we examine it

within the framework of a free quark model. We have

3, = A 7, alx) (5.58)

i ~ i
3, :);u = 2m q(x) 7,1 alx) (3.59)



Hence at equal times

[aterdtn] = [ | 20 77,0t ab),2m 360 7,00 a0

= m q*(x,t) {[7, 7075 ] phady e g s Yo7s Hatad) }

X Q(]_C:t)

- k
= -my 3t 2alxt) (3.60)

Thus the R.H.S. is non-venishing in general, unlike the case of
vector currents, and is proportional to a scalar density.
However for the particular choice i = j = 4 + i5 the number
Ayt = O, where K* signifies b + i5. Hence the commutator
(3.3) is satisfied in a quark model. Alternatively the
commutation (3.5) should vanish since it is a AS = 2 operator
which cannot be constructed as a bilinear quantity in quark

fields '/,
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CHAPTER IV

Recently there has been some interest in the algebra of

(x0), (1), (u2)

scalar and pseudoscalar densities In reference
(42), for example, the coupling constant of the so-called g-meson
to two pions is calculated under the assumption that 2n is the
dominant decay mode. A value for its width is also obtained

which is quite narrow. At the moment there is no conclusive
evidence experimentally for such a narrow s-wave I = 0; n-7
resonance, However people have attempted to fit nucleon-nucleon
scattering data with such a scalar particle with a certain coupling
(hj). (b4) we attempt to

to nucleon states In this chapter

calculate this coupling constant from the algebra of scalar and

(1)

pseudoscalar densities proposed by Gell-Mann .

Our starting point is the retarded amplitude involving the
commutator of the axial-vector current with a pseudoscalar

density between two spin % states. Specifically we define

vl e [ax Sl <p R0, (O, > (1)

In terms of quark fields the pseudoscalar and scalar densities are

(1)

given by



pi(x) = -13(x) 7,2 alx)

stx) = q(x) 2t q(x)

The absorptive part of Tia is given by

M

i-o, l, LN 8

g -iqsx - -
¢ . %[m e <plli, (), P O]lp, >

We evaluate q: T;J by partial integration and write

B onid ij ij
9, Tu = VVY+F

where

.. -i
VlJ - [d“xe %2

and

-iqéx
e

The absorptive part satisfi

%

" ® (xg) < nyl i), 2301, >

4 Ir.i s N jl A% |
8{(x5) < b, | ldgo(xJs 2°(0)]jp,>

es

gt
Tl

VlJ

97.

(4.2)

(b.3)

(b,1)

(b.5)

(4.6)

(%.7)
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where

‘s ~iqex .
vy = é% d*x e % < pal[D;(x), pd(O)]Ip1 > (+.8)

The following commutation relations hold at equal times(l)

[ele), ol(xt) 1 = 1, sf(xt)
(4.9)

[al(e), s(x,t) 1 = -ia,, P'(x,t)

We shall deal only with pions, i,j,k = 1,2,3, We therefore

simplify (h.9) by first defining the scalar density o(x) by

o(x) = /g sO + \/—% 58 (4+.10)

where o(x) is the field for a so far hypothetical scalar meson
which may have something to do with a real 0" a-n resonance.

We therefore have

[Q%(t), pP(x,t) 1 = i85 . o(x,t)
s af
a, B = 1,2, 3

[Q(s), olx,t) 1 = -igy, p°(x,t)

(4.11)
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We use p“(g,t) as an interpolating field for the pion and define
its normalization constant by

(+.12)

0y B
<0lp(0)]x(a) > = & 5,4

Later on we are going to identify pa(x) with the divergence of
axial-vector current and this determines ap uniquely in terms
of the pion decay constant. Equation (4.11) implies the following

commutator for the densities
[ J;o(z,o), pB(o) ] = 18,0 83(x) o(x,0) + S.T (4.13)

where S.T. denotes the possible Schwinger terms. If assumed
proportional to a finite number of derivatives of d-functions,
the S.T. will integrate to zero in (4.11). With the help of (4.13)

we now write for FoP (equation 4.6)

af . . :
F = ]'saﬁ < p2|0(0)|pl > + Polynomial in g, (k.1k)
As mentioned in Chapter one, the hypothesis is frequently made

that the S.T. contribute only to amplitudes symmetric under the
simultaneous exchange of Lorentz and unitary spin indices(s).
Here, however, we are dealing only with one vector index and we

therefore keep track of the S.T. which will contribute to FGB
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with a finite polynomial in q2 .

We expand T:B on a convenient basis as follows

T:B = 1(p,) [iru Al + [7,s 41EP + Pu(!’l:‘3 + 14AP)

0%+ 14E®) ¢ 8 0% + 145 |utr,)

(4.15)

We define the usual kinematical quantities
P = %(Pl"'Pz); Q = %—(ql+q2); A = P, P, = q2-q_l

vV = —ql.P = -q, P = -QP; t = a2
(4.16)

The scalar amplitudes A are in general functions of

g

v, t, qﬁ, q:. Having an explicit representation of Ta we now

calculate q: TaB

®, 5P
i i
. We are going to be interested in the limit
V 2 o of this quantity. Decomposing the scalar amplitudes
Ai’ Ki into isotopic-spin symmetric and antisymmetric parts we

arrive at the following relations

—2ok ) o) 2(a2 + @ - %.-t)AS’) + (a2 - Q% + %t)AS+)

_A(+) . GNNa KNNa(t)

me + t
o

(4.17)
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and
2O o 2O S onl) i@ v @ - 10r ()

s @@+ )R 20 (b.19)

where we have introduced the following notation

G (t)
<p,|e(0)]p, > = ulp,) e KNN: u(p, ) (4.20)
mo +
v o ﬁ(pz) |:-Ac¢B + iQKaB Ju(pl) (4.21)

Equation (4.20) defines the coupling Gyyo Of the unitary-spin o

to nucleons. For the absorptive parts we have the relations

-21);1(t) - 'Daz(:) + %(q: + Q2 - %-t) agi)

+ (a2 - Q% + 4t) aft) o) (4.22)

o BT,
. 24 SEP 19e!

sEQTDR

LIpRARY
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8.(:

® o 2 or® 4 3@ v @ - 10z

+ (S -+ s =30 e
where
v a Gp) -2 + 143 u(p)) (.2)

B

on the same basis
(12)

The small letters denote the components of tz
(+.15). This technique of writing sum rules is due to Fubini
and is described in detail in Chapter 1. We recall that the physical
assumption made by Fubini is that one usually deals with conserved

or partially-conserved currents and we can therefore assume that

GB, jfﬁ p

the scalar amplitudes A which define the components of Va

in the tensor basis (4.15) tend to zero as v —» « i.e.

Lin A® = Lim A% = 0 (4.25)

V= V>

Ir AaB, KGB obey unsubtracted dispersion relations then this
clear in our case since v is proportional to an off-mass-shell

pion nucleon scattering amplitude when we identify both the
pseudoscalar density pB(x) and the divergence D:(x) with interpolating

pion fields.
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The absorptive parts 8., ai are determined from the
coefficients of i.yu,

[y , 4] ... Au , in the expansion of t:‘ﬁ
i.e. from
af . 1 4 4
) (02,958, 4,) = 3(2n) { Z 8" (v, - », - q,)
n

g @
< 5,135, (0)]n> < n|p?(0)|p, > - .ZS“(pn, -p, +q,)
n
< |2P(0)|n > < n|3% (0) h.26
P, |27 (0)|n > < n|yg, (O)]p, > (4.26)
We are taking the external states to be nucleon states.

We now make the assumption of unsubtracted dispersion relations
+ +
for the scalar amplitudes Ai_), Ai‘-) i.e.

o (:) ) 2 2
N S L \
g (0,t,03,00) “[m S dv (&.27)

and

—(i) 2 .2
Ai (U)t,qlxqz) =

Al

/hw E_.f:) (D' .vt_’q?_.’q:)

dvo' (+.28)
le vt -V

The dispersion representation has been assumed for amplitudes
symmetric and antisymmetric in isospin indices

(lh). We are aware
of the fact that the symmetric amplitudes might pick up
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contributions from the Schwinger terms. However we are going
to be interested in a particular kinematical configuration in
which the S.T. are harmless. Teking the crossing properties

of the functions Ai’ Ai into account we arrive at the

following non-trivial sum rule:

% /ﬁdu [2E£+)(u,t,qi,q§) + a£+) (u,t,qf,q:)]

. GNNU KNNo(t)

e+t
o

(4.29)

There is another sum-rule involving Eé_) but it is not
interesting because, as we shall see later, it does not have a
single-nucleon contribution. We now calculate the contribution

of the single-nucleon state to the sum rule. For this purpose

we need the following vertices

< pla';u(o)lp' > = 1ia(p)r” [7,7 6 (@%) +1(e' - p),7,

x G, (q®)] u(p*) (k. 30)

where g = (p' - p)? and we have neglected the 2nd class covariant

proportional to auu qQ, - We also write

<pl3l(0)|p* > = igulp)ty, ulp® )iy, (®) (4.31)
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where KNNn(-mi) =1, We now substitute these two expressions

into equation (4.26). We then find the following single-nucleon

terms
2 2
aaB - l(& + 1[Ta TB]) T gmNapKNNn(ql)Gl(qz)
1L,N " %0 " 2T 2 o + 2
T 1
{ 8(v - vg) + B(v + uo) } (+.32)
2 2
2% a L(s . + (%P I, gapKNN“(ql)Gl(qa)
2,N i%p © 210 2 2+ 2
n 1
{—8(1) - uo) - 8(v + vg) } (k.33)
af
a3’N = 0
A g8, (c®)e (a®)
op by « Bz °PKN_NTI:“'1' 1'%’
a')_'_,N - M(SGB"'E[T )T]E' >, 2
By 7

{ 8(v = vy) - 8(v + vg) } (k.34)
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We also have a term

o K ()6, ()
(5 * 3%, ) 5 g pKNN: 4 21 -
e T 9
{-6(1) - vg) 7, d+ 5o+ uo)¢7'll } (4.35)

Since in the sum rules the integration over v is carried out it

is easy to see that this term will contribute to the coefficient

of [y , #] i.e. E:B and to the coefficient of @ , i.e.
K sN U

)

. For the remaining terms we have

—af
2y = ° (4.36)
- ga. (a®)e, (a®)
B - gy v AP 3, Teme R
’ m2 + q2
b 1
{- (v - uo) - 5(v + uo) } (4.37)
ga. ()6, (®)
o i(s + 3% B, Seme e
4N of 1 n? + g2
T

{ ~8(v - v,) - &(v + vy) } (4.38)
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In the above formlae v, = 5(P® + Q2 + m.ﬁ).

Separating the nucleon contribution the sum rule (4.29) now reads

F nfg Koo (a2)6, () _
T 1

GNNU KNNa(t)

m +t
o

a{ (o,t,02,2)) = (k. 39)

where we have identified pa(x) with the divergence of the axial-

vector current and . .

F nf
a = - I % .
P 2

Before discussing equation (4.39) any further, we wish to
turn to the other technique of writing sum-rules namely Adler's
method, described in Chapter 1. In this method we evaluate |
:B by first computing qz TaB

(14) and (45) because of Lorentz invariance we can replace

oT « As argued in references

@ (xo) in sz by @ (-n.x) where n is an arbitrary unit time-

like vector (n® = =1). Then

=iq_.x
q: TzB = fd“x e " @ (-n.x) < p2|[ d° j;u(x), pB(O)]lp1 >

-iq_eX
+ fd“x e % < p2|[ ,j;“(x), pB(O)]Ip1 > 3@ (-n.x)

(4+.40)
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We are going to be interested in the isotopic spin symmetric part
of (4.40). We evaluate the commutator in the 2nd term using the
quark form of the current and the pseudoscalar density. The

isotopic=spin symmetric piece of the commutator is

[ jgu(x), pB(O)] 3° @ (-n.x) = inPn a s” (0) 5" (x)

u o aBy
(b k1)
. . (1k) .
Following Gourdin we make the natural choice
P
n =—— (b.42)
o -

Multiplying both sides of equation (4.40) with Pp we get the

following relation

—'DT::B - —U:B + Fzﬁ (h‘-h’§)

where
l__v'_R_ f‘“ -iq2°x . . . p_a.. s
U = -Pp/ d*x e @ (-n.x) <p,[[ 3 JSu(x), p (0)]p, >
(b kk)
and
ap . y
Fo o= idy < p,|B, 7 (0)[p, > (4.45)
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We expand UzB on the same tensor basis as before and use
capital manuscript letters to designate the scalar components in
the expansion. We thus obtain a set of eight equations but only
five of them lead to non-trivial sum rules after taking the
crossing properties into account. Remember{ng that we are

concerned only with amplitudes symmetric in the internal indices

a, B we thus write

-uA:B = —_ﬂas

1
-DK‘:B - -Q‘:B
-uA:B - -.q:ﬁ+ idaB7R7 (4.46)
~oa® . -Jl;‘s
0B . %
where R is defined by
<p, |’ (0)jp, > = U(p)¥ ulp) (b.47)

We again make the hypoth—esis of unsubtracted dispersion
representation for the scalar amplitudes Ai’ Ki' However we
cannot in general demand that the scalar components of VaB in

Fubini's method and the scalar functions_}Q:B,aﬁi:B which arise in
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(14).

Adlerts method should vanish simultaneously as vV — « To
start with we must make sure that Adler’s technique reproduces
the sum-rule (4.29) arrived at earlier.. For this to happen we
consider

—o0A®® _ LA®®Y & Lj P - N . y
i, (PR oA = CRRTAT) ¢ ey

(4.48)

This equation we reproduce (4.29) provided

Limn 2P+ A% ) - o (+.49)
Vo
It is clear that we only need to assume that such a linear
combination vanishes as v = o . Equation (4.49) is of course
also satisfied if both._,Q:B and \}QZB vanish separately in the
limite. This is encouraging and makes it possible for us to extend
the assumption for all values of i and in particular for~jii with
i = 3, since these lead to interesting sum rules. Specifically
we are going to assume that
o R = o
Lim stﬁ = Lim Q“B = 0 (4.50)
1 1) A o X
Then the last two equations in the set (4.46) lead to the following

two sum rules with the nucleon contribution separated explicitly
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(see equations (4.37) and (4.38) ).

baty()e, @) + [ 30,0000 « 0 s)

B ek, @), + [ 2002w - 0 (use)

The factor-~%F}pi(mi + qﬁ)'l which ocecurs also in the integral

has been cancelled through. We _thus have sum-rules involving the
induced pseudoscalar form-factor in the weak axial-vector vertex.

We shall return to a further discussion of these relations later.

We now return to our sum-rule (h.39). As is usual in current
algebras useful information is obtained in & certain kinematical

configuration which invariably involves off-mass-shell quantities.

We are going to evaluate (4.39) in the limit qf = ¢ = t = O.

2
Furthermore we are going to assume that the integral is saturated

by the contribution of the th resonance. To do this we need the

b=y

vertex

. * 1 .= « 1 «
<N, O 6 > = 156) |4 5, - g,

1 1
* =2 H. (a®)p, (o + 0’ )t = Hf(qz)pu(p-p')u] u°(p')

T T

(4.53)
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Unlike the situation in Chapter III we know the numerical values

of the form-factors H, ... H“ at zero momentum-transfer. For

(-)

the particular component js; sandwiched between N'“-+ and

(46)

neutron states these form-factors were evaluated by Furlan et al

using the algebra of currents and the saturation assumption. At

zero momentum transfer they obtain

Hl(o) - - 0.1

H2(O) = -~ 1.13
(4.54)
HS(O) = - 0,088
H“(O) = 0.86
We also need the following vertex
<PEE) > =[3 2N E)6 -r),  5)
n 3 m v

where A = 2.2 1is the coupling leading to an isobar width of

125 MeV. We have taken this parameter from Fubini et al(h7) who
re-evaluated it following the analysis of Gourdin and Salin(he).
The N._ contribution to the sum-rule is evaluated with the help

of the subsidiary conditions and the spin 3/2 —propagator given in

Chapter III. Calling, as before, the coefficient of the lst
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s-function in (4.26) the direct term and that of the 2nd S-function

the crossed term we find, e.g., that the vertex in the direct

term reads

i 1
U(p,) [-—Hlaup - ;— H, P2p 7y + ;; H, P2p (2P2 + q2)u
T T

-3 + *

l(ﬁE ¢Q)+m 2 A L 6

x =[5 a3 9, ulp) (4.56)
2m* T

Simplification of this expression is made possible by the use of
the algebra of y-matrices and the Dirac equation on the final
spinors. The algebra is léngthy and tedious but quite straight-
forward. To illustrate our point we consider a typical term from

the above expression:

u 1
T(py)8, 3775t (B + do) + w*) - qy ulp,) XH, (a7) % %, 2m¥

= ulp,) -1 (- - 34 -35 IR -3a,)

2y /2 1
x u(p,) x Hl(qz)/; s

(L.57)
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where we have used q2 = Q +-é-A and q = Q -%A « This

simplifies further to

i(p,) [%i7uQ2 - 51,407, i P -m—upzu*“%p Qiyy

1 m¥* Q % m* . ? A 1
=g Pepy, - —7, &+ iy =-—07p ]H(q)-——;
21 3 7] 3 T} 3 2u 12 3 m1t 2m
(4.58)
The values (4.54) were quoted for the component j;;) between

N** and neutron states. Here we are taking the external states
to be proton states and we take o = B = 3, Then we need the

following conversion factor

(=) eoer 10 8 8
< nf3g TIw > 8 110 -k 1
< pla'; IV > 10 8 8 J2
H #1 100 4

(4.59)

Also from the experimental value 1.18 for the B-decay axial
coupling constant we calculate the coupling constant occuring in
<pli2lp> b
plasulp y
<plif |n>

EE - _,J'a (’-I-.60)
< plj§u|p>
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We are now in a position to write the contribution of the N*

resonance &as

= [db [ 23{*)(v,0,0,0) + &{*)(6.0,0,0) ]

N*
F"F [2mN O mﬁ Hl(O)
= — =Y + -
g V> 3 3 6m* m
b
% 3
. 2mym ) 2my i L 2 HZ(O)
3 3111* 5111*2 pole m2
m
L b H (0)
+ —_— + mN 1)2 S ]
Ik e pole s
n
(4.61)
where Upole is the position of the N¥*-pole and is given by
G (0)
The right hand side of equation (4.39) reads NNo KZNU . Now
m
c

2 ; ~
KNNo( mo) = 1 but we are going to assume that KNNO(O) ~ 1,
We know from our experience with the Goldberger-Treiman relation
that such extrapolations could lead to variations of about 15% for
a not too massive o . For consistency we are going to use the

parameters of the o-meson calculated within the current algebraic
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framework. As mentioned at the beginning of this chapter such a
calculation was performed in reference (42) and led to a value
of 385 MeV for the mass and a width of approximately 73 MeV. Then

such an approximation is not too dangerous. We also put

KNNn(O) ~ 1.

Feeding in the experimental masses into the equation together
with the values of pion-nulceon coupling constant and B-~decay

coupling constant, we arrive at the following number:

Gy .
¢ 2 1,18 x 10~ x mi F_ (4.63)

g

G,
We would like to mention that it is the quantity —fgg which

o
appears in current-algebraic calculations. But we know that the

divergence of axial-vector current couples with a strength

. mi F_ to the interpolating field. We now propose that the
scalar density couples in an analogous manner with a strength
mi F_ to the 'true o-meson' field. We are therefore led to

define a coupling constant of the og-meson to nucleons by

G
ome _NNo (. 64)

m°F
g0c

Therefore
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1.18 x 10™* x m® F
T b L9

= h.6
- v (4.65)

To proceed further we can make one of two possible assumptions.

We could, for example, assume that in fact the scalar densities
8%(x) couple with the same strength to the corresponding particle
fields as that by which the pseudoscalar densities pa(x) couple

to the pseudoscalar particle fields, i.e. one could assume that the
algebra (4.9) holds for the phenomenological particle fields as

well. This sort of assumption implies

m®F = m®F (k.66)
o' ¢ TN
and leads to the following numerical value for &NNo °
gy, = 168 (k.67)

This value is much higher than one would expect. Later on we
shall give arguments that in fact the saturation assumption is not
v this type of sum rules and in fact inciusion
of higher states should bring the value (4.67) to a lower value.
However it will still be too high in our opinion. Before
discussing the 2nd possibility we would like to mention that the

authors in reference (43) attempt to fit elastic nucleon-nucleon

scattering due to the exchange of n, 1, p, w, ¢ and an effective
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I = 0 scalar o¢-meson by using unsubtracted partial wave dispersion
relations with a cutt-off, The value they use for ENNo depends
on the cut-off energy and decreases with increasing energy.

E.g. at 800 MeV cut-off theyuse 312mo = 4,15, Although they use
a more massive o-meson it is clear that their results favour a
low value for goNN' Now we would like to point out the sort of
assumption which will do this. It is simply that Fa is equal or
approximately equal to Fn’ i.e. the pion decay constant plays a
rather fundamental roll in the relationships between densities
and particle fields in current algebra. With this assumption the
value (4.67) for 8yy, 1S Prought dow:n by a factor (%:)2 and

reeds

BN = 23 (+.68)

We now turn to & further discussion of the sum~rules (4.51)
and (4.52). They contain essentially the same information and we

shall content ourselves by investigating (h.Sl) only. Again we

keep only the rescnance contribution to the integral and write
2 2 2
F ' H (q®)
[(a;))a - - LT /gx[(-2+_2’“1“+—ﬂ) 1%
* 2 3  Zme m_




2 2 2
L Holiz) oy /0 my e
w2 Pole ) e T3 -
T
H,(a2)
x Dpole n3 ] (h.69)
T

The factor (mft + qi)_l which also occurs in the nucleon term has
been dropped. In this case we have calculated the resonance
contribution at t = O i.e. we set p,.p, = -mﬁ and q_.q, = -mi .
In the arguments of scalar form-factors we let qz - —mi . It is
well known that the dominant contributions to G2 (qz) and H“ (q:)
come from diagrams where the proper vertex of 'jSu is attached to

a terminating external pion line. In the limit q: - -m®

'It

G, (q:) and H, (q:) dominate over the rest of the terms and we write

specifically
2 F"l: 2
&) = —T— ey (-m) (4.70)
b
and

1 2 Fn 2 A o )
—H(G) = ——— |- — .71
2 b 2 2
M mn+ 9 3 e .

Substituting these into the sum-rule and passing to the limit

2 2
@ - m'n we get
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& 2 1 o\ b
— = - — 1+—ri+—"- - v (4.72)
22 3 me m*e 3 pole
T
where this time Dpole is given by
= i(m* - -m?
Dpole 3(m m§ mn) (+.73)

Substitution of the experimental masses into this equation together
with g = 13.5 predicts the value 2.8 for A to be compared with

the experimental value of 2.2, The agreement is fair and further-
more shows that higher states do make a small but definite contribution
which would optimistically bring the numerical value for A down.
In this connection we would like to mention that Gasidrowicz(hg)
starting from the retarded amplitude involving the commutator of
the wvector qurrent and the pion field calculated a value for the
nucleon isovector magnetic moment which turned out to be rather
high compared with the experimental number. We are thus led to
believe that our estimetes of GNNU Or gy aTe probably also higher
than the true values. It seems that sum rules obtained from
retarded amplitudes involving a current and a scalar or pseudo-
scalar density converge more slowly than sum rules involving

currents only.

Finally we would like to cite some of the experimental

(50)

evidence for a '¢' meson. Recently Lovelace and coworkers
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from a careful analysis of backward n-N scattering were able to

conclude that there is a clear evidence for a rather broad "new

+ n

elementary particle I = O, JP =0,
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