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ABSTRACT 

We study the implications of the algebra of currents to 

elementary p a r t i c l e processes. I n Chapter 1 we introduce the 

concepts of current algebra and discuss how the information 

contained i n the current commutators can be used to set up sum 

rules and i n p a r t i c u l a r to evaluate strong interaction 

renormalization e f f e c t s . 

I n Chapter I I we apply some of the techniques developed i n 

Chapter 1 and obtain consistency conditions for the K-meson 

scattering amplitude. 

I n the t h i r d chapter we i l l u s t r a t e the methods further by 

calculating the F/D r a t i o and find good agreement with experiment. 

F i n a l l y , i n Chapter IV we are concerned with calculating the 

coupling constant of the so far hypothetical a-meson to nucleon 

states. We f i n d that the techniques of current algebras enable 

us to do so and we find a value for i t s coupling constant which 

should ultimately be testable experimentally should the a-meson 

ex i s t as a physical p a r t i c l e . 



CHAPTER 1 

The theory of current algebras has received a great deal of 

attention i n the l a s t two years and i s very successful i n 

explaining several features of elementary p a r t i c l e physics. I t i s 

somewhat surprising that although the current algebraic approach 

was invented and used by Gell-Mann^ i n h i s discussion of SU(3) 

symmetry i n 1961, yet the f u l l power of the current commutation 

relations was not recognized u n t i l much l a t e r . 

The point of view advocated by Gell-Mann i s that a broken 

symmetry i s thought to be a manifestation of an exact algebraic 

structure of operators which do not a l l commute with the 

Hamiltonian. We begin with a b r i e f discussion of exact 

symmetries: 

Consider a set of Hermitian operators {F} i n the Hilbert space of 

physical states such that 

a) The set {F} i s a l i n e a r space i . e . i f F 1, F G € {F.} then 

( a ^ + a 2 F 2 ) € {F} with a.lt a p r e a l 

b) {F} i s closed under commutation i . e . i f F ^ F 2 e {F} 

then i[Flf F 2 ] = i ( F X F 2 - i s Hermitian and belongs to {F} . 

We s h a l l concern ourselves with finite-dimensional spaces 

so that {F} i s then a L i e algebra. We choose a basis F 1 ( i = l,...,N 

N i s the dimension of the algebra) i n {F} and form the following 

( 2 1 SEP W« i 
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basic commutators 

[ F \ P d ] o i c i J k F K (1.1) 

i i k 
Repeated indices are summed over as usual. The numbers c 

thus generated are r e a l because the F 1 1 s are Hermitian and are 

ca l l e d the structure constants of the algebra. 

The operators F 1 generate a group of transformations G which 

also acts on the space of physical states. The i n f i n i t e s i m a l 

elements of G are given by 

N 
U ( e ) » 1 + i ^ e j F J (1.2) 

3=1 
where € =» (e',...,€ ) i s a set of N r e a l i n f i n i t e s i m a l parameters. 

The elements of the group further from the i d e n t i t y are generated 

by exponentiation. Since the F 1 are Hermitian, U(e) and hence a l l 

elements of G are unitary 
l A j = 1 , U e G (1.3) 

Let H be the Hamiltonian of a given physical system. I f 

V F 1 e {F} 

[F3-, H] - 0 (1.10 

Which implies 

[U, H] - 0 , U e G (1.5) 

then G i s said to be an exact i n t e r n a l symmetry group for the 
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considered physical system. I t then follows that i f |A > i s an 

ar b i t r a r y eigenstate of H then u|A > i s also an eigenstate of H, 

V U e G. 

Thus the basic ingredients of a symmetry group are a set of 

operators {F.} which form a L i e algebra and commute with the 

Hamiltonian. A broken symmetry i s then described by a set of 

operators which also close under commutation i . e . s t i l l form a 

Lie algebra but do not a l l commute with the Hamiltonian. I t i s 

important to r e a l i z e that i r r e s p e c t i v e of how badly the symmetry 

i s broken the algebra i s exact. 

I n order to demonstrate the fa c t that a set of operators could 

e x i s t and have a simple and exact algebraic structure even i f they 

do not a l l commute with the Hamiltonian ( i . e . are not a l l 

conserved) we consider the simplest and oldest algebra known to 

elementary p a r t i c l e p h y s i c i s t s , namely that of the isotopic spin. 

We consider an elementary f i e l d theoretic model with two 

basic p a r t i c l e s having the same quantum numbers as the proton and 

neutron and in interaction with an electromagnetic f i e l d A^. The 

f i e l d describing such a doublet i s written t*(x) where a = 1, 2 i s 

an index describing the in t e r n a l degree of freedom and |i i s the 

usual spinor index u = 0, ..., 5. We write a Lagrangian for 

t h i s system as 

;£ = ~L + ̂  f (1 + O 7 t A (1.6) 
O 2 v 3' ' | i T u 



Here T 3 i s the usual Pauli matrix. i s given by the sum of 

free Lagrangians for the spinor and electromagnetic f i e l d s 

X Q = *(7 + m)* + i F ^ (1.7) 

a 

The f i e l d s \|r̂  are Fermi f i e l d s and obey the following a n t i -

commutation rules at equal times 

{ * a + ( x ) , t b ( y ) } - 8 „5 8 3 ( x - y) 

(1.8) 

We now define a set of currents by 

j j = ^ ( x j r ^ t f x ) , i = 1,2,3 (1.9) 

and three operators I 1 as the s p a t i a l integrals of the time 

components of the above currents i . e . 

[ 1 " /dJW* 3* ( 1 ' 1 0 ) 

We then evaluate the commutator [ I " 1 , I J ] using the anticommutation 

properties of the Fermi f i e l d s (1.8) and the commutation properties 

of the Pauli matrices. I f we evaluate the commutator formally, 

disregarding any complications a r i s i n g from the f a c t that the product 

of several f i e l d operators a t a single space-time point i s an i l l -

defined quantity, we a r r i v e at the r e s u l t that 
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[ I 1 , I d ] - i € i d k I k (1.11) 

This i s immediately recognized as the SU(2) algebra. This r e s u l t 

enables us to i d e n t i f y the set I 1 with the generators of the 

isospin group. I t i s easy to see from the Lagrangian that I„ i s 

conserved while I x and I g are not. We have thus demonstrated our 

i n i t i a l assertion. As w i l l be discussed further l a t e r on, the 

basic philosophy of t h i s approach to the problem of broken 

symmetries i s to set up a model which i s at l e a s t consistent with 

the basic p r i n c i p l e s of f i e l d theory, r e l a t i v i t y and causality. 

This model i s us u a l l y taken to be a "Lagrangian quark model". 

We then construct the currents given by such a model and work out 

the commutation r e l a t i o n s . We f i n a l l y abstract these properties 

and assume t h e i r v a l i d i t y i n general and discard the model. 

Generalization to SU(5) and C h l r a l S U ( 5 ) ® SU(5) : 

The o r i g i n a l motivation for current algebra came from the 

success of the universal V - A theory of weak interactions by Feynmann 

and Gell-Mann^ and o t h e r s A c c o r d i n g to t h i s theory the basic 

Hamiltonian density for weak interactions i s of the current-current 

type 

n,m 
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where n,m run over basic lepton and hadron f i e l d s . This i s 

analogous to the electromagnetic int e r a c t i o n between charged 

p a r t i c l e s a f t e r the electromagnetic f i e l d has been eliminated. The 

current j involves only left-handed components of the f i e l d s . By 

basic f i e l d s here we mean (e, 13 ) and (n, x> ) for the leptons and 
e u 

some fundamental hadronic f i e l d for the baryons and mesons. The 

simplest such f i e l d we can assume i s the quark t r i p l e t q • Cq 1,q 2,q 3). 

We s h a l l take the quarks to be spin \ p a r t i c l e s obeying Fermi 

s t a t i s t i c s . I n terms of quark f i e l d s we construct the vector and 

a x i a l vector currents of the weak interactions by 
j ^ ( x ) - q(x)7 X Xq(x) 

j ^ M - q(x)7 k l7 5X 1q(x) 

(1.13) 

where the X 1 are the Gell-Mann matrices obeying the SU(3) algebra 

[ x \ r»] - i f x k 

and { x \ v M - d i J k X k 

( i . i M 

where i runs from one to eight. Using the basic commutation 

properties (1-8) of Dirac f i e l d s together with the relati o n s ( l . l 1 * - ) 

we find with the help of the ident i t y 

[ A(g)B, A 1 ® B ' ] - \ I [ A,A* ] <g> { B,B' } + { A,A* } [ B,B* ] | 

(1.15) 
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that the following commutation relations hold 

B(x Q - y o ) [ J * ( x ) , j j } ( y ) ] - i f . j k jJ(x)B*(x - y) (1.16) 

5 ( x o ~ y o ) [ Ao W > hi(y)] " 1 f i j k j 5 n ( x ) 6 l , ( x " y ) ( 1 ' 1 7 ) 

8 ( x o - y Q ) [ j ^ ( x ) , ^ ( y ) ] = i f 1 J k j k ( x ) 8 " ( x - y) (l.l 8 ) 

These relations follow by formal application of the canonical 

commutation properties ( l . l 8 ) . S c h w i n g e r ^ pointed out that extra 

terms proportional to the s p a t i a l derivatives of delta-functions 

could also be present on the R.H.S. of equations ( l . l 6 ) - (1.18) . 
We s h a l l return to a discussion of such terms l a t e r . Generalizing 

the d e f i n i t i o n of the isospin operators (1.10) we define vector 

and a x i a l vector charges i n the following way: 

Q ^ t ) - | d 3 x d j ( x ) (1.19) 
x " t 
o 

o i ( t ) - ^ d 3x J * Q ( x ) (1.20) 
x »t 
o 

With these definitions the following relations are derived 

[ ^ ( t ) , d j ( x ) ] x - t - i ^ ( x ) (1.21) 



8. 

[ Q ^ t ) , dU)] _ + - i t4Alr (1.22) 

plus 

[ ^ ( t ) , 3J(x) ] x - t - i f . j k ^ ( x ) (1.2?) 

[ ^ ( t ) , Q d(t) ] - i f i j k < a k ( t ) (1.25) 

[ Q ^ t ) , Q^(t) ] - i f. . k Q*(t) (1.26) 

[ Q* ( t ) , Q^(t) ] - i f . j k Q k ( t ) (1.27) 

From (1.25) we see that the charges ©^(t) at equal times s a t i s f y the 

algebra of SU(3). The L i e algebra formed by the 16 charges Q 1 ( t ) 

and Q^(t) can be decomposed into two d i s j o i n t algebras. By 

defining the new operators Q7(t) by : 

QT(t) - ± [ Q ^ t ) ±oi(t)] (1.28) 
i NT2 ? 

we find 

[ QT(t), Q+(t)] - i f i J k Q j ( t ) (1.29) 

[ QT(t), Q-(t)] - i f . J k o^(t) (1.30) 
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[ Qt(t), QT(t)] - 0 (1.31) 

+ 

The algebra generated by QT(t) i s that of c h i r a l S U ( 3 ) ® SU(3). 

We now turn to a discussion of the Schwinger terms. 

As mentioned before the existence of such terms was f i r s t 
(k) 

pointed out by Schwinger x ' who remarked that the commutator of 

the time component of the electromagnetic current with a space 

component must be non-vanishing otherwise an inconsistency a r i s e s 

i n the theory. The presence of such terms i s due to the necessity 

of defining the singular product of two f i e l d operators at the same 

point as the l i m i t of the product of two operators at different 

points as the points approach each other. Johnson and L o w ^ 

have looked for Schwinger terms i n a simple theory of quarks 

interacting with a s c a l a r neutral boson using perturbation theory 

to compute the commutators. While they find these extra terms i n 

general they do not appear i n the algebra of time components of 

vector and a x i a l vector currents. 

Here we give an elementary discussion which demonstrates 

the existence of such terms i n the quark model. We want to 

evaluate the commutator 

[ f(x,0)M 1f(x,0), y+(x',0)W t(x',0) ] 

where M, M' are matrices acting on both Dirac and unitary spin 
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indices. To define the commutator as a product of distributions 

we take the l i m i t e, e 1 -» 0 of 

[ (2 - v2, o)MaP t p 0 E + y2> 0), 

•i'fe' "V2' o)MO'P- v(- *~4'0) ] • 
Using the canonical commutation relations ( l . l 8 ) we simplify t h i s 

to 

Lim 
e -»0 
e' -»0 

< ( S - V 2, O ^ . H i . p , * p,(x' + % 0) 

8 3(x + V 2 " x- + % ) - t; (x - V 2, 0)M( 

•J.fe' - ̂  , 0) 1rp(x + V 2, 0)M^ I p I* p i(x' + l'/2, 0) 

83(x- + ^ - x - ̂ 2 ) + (x- - £'/2, O)M;,P, M 

< (x - V 2, 0 ) t p l ( * ' + ̂  0)Mrp(x + ~/2, 0) 

(1.32) 



11. 

The 2nd and Uth terms cancel and we can take the l i m i t € -+ 0 

and write 

Lim 
€'-•0 

t ; (x,0)(MM') a p, tp,(x» + ^/ 2, 0 ) 6 3 ( x - x' + £/ 2) 

- £> 2, 0)(M'M) a t p i|rp(x,0)53(x» + £/ 2 " 2) 

(1.33) 

By virtue of the 8-function we can write t h i s as 

Lim < ( x ' " £/ 2» °)( M M ,)a P' V(*' + "4* 0 ) 8 3 ( x " x ' + i ^ 2 ) 

- (x' - £4» °>(M,MW Vx' * £/2»0) 

6 3 ( x - x' " £ / J (1.3>0 

By adding and subtracting terms we f i n a l l y rewrite t h i s i n a 

form which involves commutators and anticommutators of M and M* 
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Lim 
e* -»0 - % 0)[M,M'] t(x' + V* 0) 

8 3(x - x' + i'/g) + 5 3(x - x« - £/y 

+ i t + ( x ' - ̂  , 0){M,M' } t ( x ' + £ / 2 , 0) 

6 3 ( x - x ' - 8 3 ( x - x « - £ / 2) 

(1.35) 

The 1st term i s the ordinary term and the 2nd one i s the Schwinger 

term 

(Ordinary term) - t + ( x ' , 0)[M,M»] t(x,0)o 3(x - x») (1-36) 

(Schwinger term) • Lim -=- . [ V 6 3 ( x - x 1 ) ] 
e1 -»0 

(1.37) 

Taking, for example, M,M* to be of the form 7 0 7 ^ ® ^ X W E H A V E 

by (1.15) 
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[M,M«] - * [ 7 o 7 | i , 7 0 7 j { x \ x } + ^ 7 ^ , 7 0 7 0 } [ x S x J ] (I.38) 

which i s completely antisymmetric under the simultaneous exchange 

of the Lorentz and u n i t a r y spin i n d i c e s . I n a s i m i l a r manner 

{ M,M«} - ±bQ7^* 7 0 7 0 H x S x J ] + i ( 7 0 7 ^ , 7 Q 7„ } {X*, Xd } (1.39) 

which i s completely symmetric. I n order t o e l i m i n a t e such 

c o n t r i b u t i o n s some a u t h o r s ^ s t a r t from p r o p e r l y symmetrised 

commutators before d e r i v i n g sum r u l e s . We wish t o p o i n t out 

t h a t i n the quark model these Schwinger terms being p r o p o r t i o n a l 

t o d e r i v a t i v e s o f 5-functions disappear when the s p a t i a l 

i n t e g r a t i o n i s performed and. hence do not c o n t r i b u t e t o the 

commutation r e l a t i o n s between charges. 

The PCAC P r i n c i p l e : 

This important p r i n c i p l e provides a l i n k between the weak and 

strong i n t e r a c t i o n s . O r i g i n a l l y the PCAC hypothesis was put 

forward by Gell-Mann and L e v y ^ ' and independently by Nambu^ " t o 
(8) 

f i n d a simple j u s t i f i c a t i o n f o r the Goldberger-Treiman r e l a t i o n . 

The f o r m u l a t i o n due t o Gell-Mann and L&vy i s as f o l l o w s . Consider 

the i s o t o p i c a x i a l v e c t o r c u r r e n t • q 7 7^T*q. I t s 

divergence has the same quantum numbers as the p i o n f i e l d "fr 1. 

This i s t r u e a t l e a s t i f there are no hidden quantum numbers t h a t 
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can d i s t i n g u i s h them. Then we can use d 3* as the d e f i n i t i o n 

o f the pion f i e l d a f t e r proper n o r m a l i z a t i o n 

j ^ ( x ) - c / ( x ) 
it 

(1A0) 

where i s a constant. I t i s known t h a t there i s no unique way 

o f d e f i n i n g a phenomenological f i e l d f o r a p a r t i c l e . D i f f e r e n t 

d e f i n i t i o n s o f the f i e l d agree by necessity on the mass-shell but 

may d i f f e r i f we go o f f the mass-shell. Now the pion-nucleon 

co u p l i n g constant g i s defined by 

(m 2 - q 2 ) < P 2|* i|p 1 > - g K M N i i ( q 2 ) i u ( p 2 ) 7 s T i u ( p 1 ) 

where the fo r m - f a c t o r KJJJ^ i s normalized t o u n i t y a t the p o l e , 

K j ^ ^ (m 2) • 1 and |p x >, |p 2 > are s i n g l e nucleon s t a t e s , 

q 2 being the square o f momentum t r a n s f e r . But from (l.^O) the 

L.H.S. o f ( l . ^ l ) can be w r i t t e n as 

— i q <pJde..|p, > - - ici.Sfp,) 7 7* G, ( q 2 ) + q 7.G„(q 2) 

+ V V 5
G 3 ( q 2 ) t * u ( P l ) . (1.1*2) 

The expansion o f the a x i a l - v e c t o r m a t r i x element i n t o t h r e e form-

f a c t o r s i s d i c t a t e d by Lorentz i n v a r i a n c e . Equation ( l . ^ 2 ) 
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s i m p l i f i e s t o 

It 7t 

(1.^3) 

Comparing t h i s w i t h ( l . ^ l ) and t a k i n g the l i m i t q 2 -» 0 we f i n d 

1 
g ( 0 ) I W 0 ) • ~ a v S ° i ( 0 ) 

c 

On the R.H.S. we have e x t r a p o l a t e d values f o r the pion-nucleon 

coupling constant and the p i o n i c f o r m - f a c t o r o f the nucleon. 

Now the p i o n weak decay amplitude i s defined by 

< 0 | j J ( i | W
1 ( q ) > - i F j q 2 ^ (l.U 5) 

Therefore 

< Old l^id) > - m 2 F (1.U6) 

By PGAC t h i s i s equal t o 

C < OU 1!* 1 > - C (1.^7) 
it ' ' it 

Therefore 

C - m 2 F 
it it i 

(1.W) 
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S u b s t i t u t i n g i n t o (l.MO we f i n a l l y get 

F (1.^9) TZ 8 ( 0 ) 1 ^ ( 0 ) 

This i s the celebrated Goldberger-Treiman formula. The o r i g i n a l 

d e r i v a t i o n was based on d i s p e r s i o n theory and some simple 

dynamical assumptions. Thus the PCAC p r i n c i p l e gives t h i s 

remarkable formula w i t h the minimum of labour and fus s . We 

f u r t h e r assume t h a t the coupling constants and for m - f a c t o r s are 

smooth f u n c t i o n s o f q 2 and vary g e n t l y i n the r e g i o n 0 < q 2 < m 2 . 

Then we can set K j ^ f a ) s: 1 and g(0) t o be equal t o g, the 

experimentally measured pion-nucleon coupling constant. We then 

f i n d t h a t the r e l a t i o n i s s a t i s f i e d e x p e r i m e n t a l l y t o w i t h i n 10$ 

accuracy. This success supports our assumption o f smooth 

behaviour o f fo r m - f a c t o r s and we can use i t w i t h confidence i n 

other s i t u a t i o n s . 

The PCAC p r i n c i p l e can be generalized i n an obvious fa s h i o n 

t o the whole o c t e t of a x i a l - v e e t o r currents and the 

corresponding o c t e t of pseudoscalar mesons. I n p a r t i c u l a r we 

could assume t h a t the divergence o f the strangeness-changing 

a x i a l - v e c t o r c u r r e n t i s p r o p o r t i o n a l t o the K-meson f i e l d 

H 5u 
i ( A s * l ) C„ <• K K (1.50) 
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We s h a l l make use o f t h i s equation i n chapter 2 where we show 

how the PCAC p r i n c i p l e leads t o consistency c o n d i t i o n s on the 

K-N i n t e r a c t i o n . 

An a l t e r n a t i v e approach t o PCAC i s through d i s p e r s i o n 
(9) 

t h e o r y v . One assumes t h a t the m a t r i x element o f the 

divergence of a x i a l - v e c t o r c u r r e n t i s a highly-convergent 

q u a n t i t y obeying an unsubtracted d i s p e r s i o n r e l a t i o n . C a l l i n g 

the q u a n t i t y i n s i d e the bracket o f the R.H.S. o f equation (l.kj), 

G(q 2) we w r i t e 
1 " Im F ( q * 2 ) 

G(q 2) - - / — dq' 2 (1.51) 
* J z q' 2 - q 2 - i e 

q o 

We separate the p i o n - c o n t r i b u t i o n on the R.H.S. The next 

states having the same quantum numbers are 3TI c o n f i g u r a t i o n s 

w i t h mass ^ 5 ^ . Hence the t h r e s h o l d on the i n t e g r a l s t a r t s 

a t (5m ) 2 and we w r i t e 

F gm2 1 «°° Im F ( q t 2 ) 
G(q 2) - * * + - / dq' 2 (1.52) 

p ...a _ / _»2 _a 
Tt 9™ 

n 

Now since the mass r a t i o ( V ) 2 m 1, .g s m l l ± t b g 

' Tt 9 

reasonable t o expect t h a t near the pi o n mass-shell 0 < q 2 ^ m2 

the p i o n pole dominates and we have 
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0(0) F_ g (1.53) 

I . e . 

F 
0 X(0) 

(1.5*0 
g 

I n t h i s language t h e PCAC p r i n c i p l e i . e . the p a r t i c a l l y 

conserved a x i a l - v e c t o r c u r r e n t p r i n c i p l e i s o f t e n c a l l e d PDDAC 

i . e . p i o n dominance of the divergence o f a x i a l - v e c t o r c u r r e n t . 

According t o t h i s i n t e r p r e t a t i o n , however, the same idea should 

ranges 0 <g q 2 < m2. w i t h • 500 MeV and the next s t a t e K-rc-ji 

having mass not so f a r away, ^ 780 MeV. 

We now proceed t o show how these two sets o f i n f o r m a t i o n , 

the c u r r e n t commutation r u l e s and the PCAC p r i n c i p l e combine t o 

give a u s e f u l d e s c r i p t i o n o f several elementary p a r t i c l e 

phenomena. I n p a r t i c u l a r we w i l l see how the non-linear 

r e l a t i o n s imposed by c u r r e n t commutators when combined w i t h 

l i n e a r d i s p e r s i o n r e l a t i o n s l e a d t o u s e f u l r e s u l t s concerning 

r e a c t i o n amplitudes and e s p e c i a l l y concerning strong i n t e r a c t i o n 

r e n o r m a l i z a t i o n e f f e c t s . There are several approaches t o the 

question o f sum r u l e s and we s h a l l begin by d e s c r i b i n g the 

d i s p e r s i o n approach. 

not work so w e l l f o r the K-mesons where the q 2 e x t r a p o l a t i o n 
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The Dispersion Theory o f Current Algebras; 

I n a series o f papers Pubini and c o l l a b o r a t o r s ^ 1 0 ^ ' 

showed how the i n f o r m a t i o n contained i n c u r r e n t commutators could 

be e x p l o i t e d . Here we f o l l o w the approach discussed by F u b i r i i n 

reference (12). We define an amplitude T j ^ by 

T j J - | d - x e 1 < 1 , x < p M R ( j j ( x ) 4 ( 0 ) ) | p > (1.55) 

The cu r r e n t s appearing i n the retarded product are taken t o be 

vec t o r or a x i a l - v e c t o r . The absorptive p a r t of t h i s amplitude 

i s given by 

* i i • * / d h x e i q ' x < p , i ^ W ' 4 ( o ) ] i p > ( i * 5 6 ) 

The retarded product i s defined by 

R(A(x)B(y)) - i ( u ) ( x Q - y Q ) [ A ( x ) , B ( y ) ] (1.57) 

For (1.55) t o be mathematically w e l l - d e f i n e d we consider the 

m a t r i x element o f t h e retarded product as a tempered d i s t r i b u t i o n . 

Contraction w i t h the vect o r q , J A then gives 

Tj£ - - i yVxfcP e i q t x ) < p«|H(jJ(x)jJ(0j|p > (I.58) 

The t h e o r y of tempered d i s t r i b u t i o n s then t e l l s us t h a t i t i s 
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permissible t o i n t e g r a t e by p a r t s w i t h o u t any 'surface term* 

appearing 

\1V> i f d*x e i q ' - X ^ < p«|H(dJ(x)3j(0))|p > 

(1.59) 

Performing the d i f f e r e n t i a t i o n y i e l d s 

where 

and 

R*j - i f d*x e l q ' - x < pMR(^ j j ( * ) j j ( 0 ) ) | p > (1.61) 

F « - j T d ^ e i ( 1 , - X < p ' | 8 ( x o ) [ j o ( x ) , j j ( 0 ) ] | p > (1.62) 

We take the e x t e r n a l s t a t e s |p >, |p T > t o be o f the same mass. 

We r e - w r i t e equation (1.60) as 

R i J _ qtM T i J a F M (L63) 

: e „^ D i d 

P> <1> P*> 1* s a t i s f y i n g 

The amplitudes T J and R J are f u n c t i o n s o f h f o u r - v e c t o r s 

p + q m p* + q 1 (1.6k) 
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We choose as v a r i a b l e s the three Mandelstam v a r i a b l e s 

s - (p + q ) 2 

t - (p» - p ) 2 (1.65) 

u - ( p 1 - q ) 2 

and the f o u r square masses: p 2 • p l 2 • m2, q 2 and q t 2 . These 

seven v a r i a b l e s are connected by 

s + t + u - p 2 + p« 2 + q 2 + q« 2 (1.66) 

F i x i n g p 2 , p t 2 equal t o m2 leaves o n l y h v a r i a b l e s which, f o r 

instance, can be taken t o s, t , q 2 and q* 2. The amplitudes 

T ^ and R*̂  (or more p r e c i s e l y the i n v a r i a n t amplitudes obtained 

i n the decomposition o f T1"' and R*^) are thus f u n c t i o n s o f 

these f o u r v a r i a b l e s . On the other hand because o f l o c a l i t y o f 

currents the commutator i n F**' has i t s support a t the p o i n t 

x • 0. As a r e s u l t the q f dependence o f F ^ can come o n l y from 

the p o s s i b l e Schwinger terms. These terms are polynomials i n 

the space-components o f q 1 as demonstrated before and they tend 

t o zero w i t h . q * . Now i n most a p p l i c a t i o n s o f c u r r e n t algebra 

the l i m i t q 1 -» 0 i s taken and we can f o r g e t about the Schwinger 

terms. F ^ i s a f u n c t i o n o f a s i n g l e v a r i a b l e t . Thus 
V) 

R ^ ( s , t ; q 2 , q ' 2 ) - q ^ T ^ ( s , t ; q 2 , q ' 2 ) - F ^ ( t ) 

(1.67) 
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The r e l a t i o n (I.67) imposes very s t r i n g e n t c o n d i t i o n s on 

the amplitudes R and T. Indeed, the L.H.S. i s a f u n c t i o n o f 

h v a r i a b l e s w h i l e the R.H.S. depends only on t . This s i g n i f i e s 

i n p a r t i c u l a r t h a t a l l the s i n g u l a r i t i e s i n s, q 2 , q' 2 appearing 

i n R^ should be found i n q | l i T ^ w i t h t h e same weight. 
•0 \1X) 

An i d e n t i c a l c a l c u l a t i o n w i t h t 1 ' ' gives 
no 

q.H t i d . r i J ( 1 # 6 8 ) 
^ UO o x ' 

where t"^ i s the absorptive p a r t o f : o O 

r 1 J 

13 
| | V x e i q ' x < p ' | [ ^ j j ( x ) , 4 ( 0 ) ] | P > (I.69) 

E q u i v a l e n t l y we could compute the q u a n t i t y T ^ q ^ and o b t a i n 

an analogous r e s u l t 

T 1 J q U - R'1J - F' 1 J (1.70) 
(iO U |1 

where 

- - i j T d " x e - i , 1 - x < p ' | R ( j j ( 0 ) o ^ ( x ) ) | p > 
(1.71) 

- jT d * x e - i q - X 6(x o) < p' I [ j j ( 0 ) , j j ( x ) ] | p > 

(1.72) 
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For absorptive p a r t s we have: 

t l j q° = r'1* (1.73) 
U13 \1 

where 

j V x e - i q - x < p ' | [ j j ( 0 ) , ^ ( x ) ] | p > r ' ^ = - i 
u 

(l.7>0 

We can ob v i o u s l y extend the method t o evaluate q'^ q° : 

where 

M i d - | d*x e 1**'* < p' | R ( o ^ ( x ) ^ 4 ( 0 ) ) | p > 

F 1 J - i ( q V ^ + q'^ R'1J ) (1.77) 

(1.76) 

and 
i 

- - f d ^ x e ^ ^ p ' K J o ( x ) , d ^ ( 0 ) ] 

+ [ J o ( 0 ) , ^ ( x ) ] | p > 8 ( x o ) 

(1.78) 
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We now consider a second method suggested by A d l e r , s work 
(13) (1*0 

on n e u t r i n o induced r e a c t i o n s . ' Define 

P - £(p + P 1) 5 Q - i ( q + q') 

(1.79 ) 

v - Q.P 

_ i j 

We compute v> T u s i n g the technique o f p a r t i a l i n t e g r a t i o n as 

before. We then w r i t e 

x> T 1 J • U 1 J + G13 (1.80) 

where 

V H " * ' f f i / d * x e i q , - x < p ' | H ( a f f j J ( x ) j J ( 0 ) ) 

- R ( ^ ( x ) d a 4 ( 0 ) ) | P > (1.81) 

GH " ~ f d * X e i q ' " X < p , | d ° ® ( x o ) [ j i ( x ) ' 4 ( 0 ) 1 | p > P a 

(1.82) 

Between the absorptive p a r t s o f T and U we simply have 

u t i J - u i J (1.83) 
\1X> [XV 
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where 

i P a e i q , - x < p'|R( S adj(x ) 4(0)) 

- R(jJ(x) a ajj(0))|p > (l.8t) 

We now discuss the d e r i v a t i o n of sum r u l e s from the 

r e l a t i o n s we obtained so f a r . We consider the simple s i t u a t i o n 

when a l l the p a r t i c l e s i n v o l v e d are s p i n l e s s . I n a d d i t i o n t o 

the v a r i a b l e s introduced before we define 

A - q' - q - p - p ' (1.85) 

I t i s convenient t o use the s c a l a r v a r i a b l e ID i n s t e a d o f the 

Mandelstam v a r i a b l e , s. We choose 

u - Q.P » q.P - q'.P (1.86) 

We introduce the complete basis o f 10 tensors constructed from 

P, q, q 1 and the m e t r i c tensor 
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The t e n s c a l a r f u n c t i o n s A, B , C . C ( k • 1; ••• *0 depend on 
K K y 

the f o u r s c a l a r v a r i a b l e s I D , t . q 2 , q * 2
 T T , . (lk) 

i > n i # Under crossing* 

P - P, q i = = ^ q x , q g 15 - v> 

the s c a l a r amplitudes possess the f o l l o w i n g p r o p e r t y 

H^C-u) = ^ H ^ f r ) (1.88) 

where 

6JJ - + 1 f o r k,ClfQz>Cs,Cit,C5 

» - 1 f o r B ^ B g ^ j B ^ 

The amplitude t ^ can be expanded on the same basis and 

we s h a l l use the corresponding small l e t t e r s f o r the scalar 

f u n c t i o n s . T h e i r crossing p r o p e r t i e s are simple obtained from 

€ ^ + €JJ • 0. For the amplitude R ^ J we w r i t e 

<3 • *\ 
S i m i l a r expansions h o l d f o r R^ 1 J» and r ^ 1 J . The symmetry 

p r o p e r t i e s are given by 
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We now apply F u b i n i T s method. We w r i t e three e q u a l i t i e s 

associated w i t h equation (I.67) and three e q u a l i t i e s associated 

w i t h equation (1.70). 

And 

- q' - q' 2 - - L i j 

- 0 - q' • q # 
1 

- q' • q C « - C 1 J - • 
5 2 

- „ A i J - q 2 B i j -
1 q'.q B*J = - L , i d + 2f. .. 

l j k 

- „ B i j 

3 - q 2 <£- q'.q C*J = - N ^ 

- 0 B 1 J 

u 
- q 2 o 1 3 -

it 
q'.q C1^ - -N' i ; j 

2 

G k ( t A 

(1.90) 

J 

(1.91) 

We have w r i t t e n the equal-time commutator c o n t r i b u t i o n as 

-1J 
•0 f d 3 x e^a'-S < p»| [ j j ( x , 0 ) , j j ( 0 ) ] | p > 

" i f i J k < P , ! J > ) | p > 

2if. ., G ( t ) P 
l j k v> 

(1.92) 
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where we have assumed a conserved vector c u r r e n t and hence only 

one f o r m - f a c t o r i s inv o l v e d . The s i x e q u a l i t i e s i n v o l v i n g the 

absor p t i v e p a r t s are immediately deduced from (1.90) and ( l . 9 l ) 

by p u t t i n g f o r m a l l y f . = 0. 
l J K 

Let us discuss the general equations 

- » h l J - q i d 

(1.93) 

where F1"', D1^ are equal-time commutator c o n t r i b u t i o n s 

antisymmetric and symmetric i n the i n t e r n a l i n d i c e s r e s p e c t i v e l y . 

I t i s e a s i l y seen t h a t any member o f the sets (I.90) and (I.91) 

can be w r i t t e n i n t h i s form. The f u n c t i o n H 1^ has the crossing 

p r o p e r t y 

r e l a t i o n f o r the scalar f u n c t i o n s H1^ i n x> 

« i 3 M . - r 
7£ - i , 

h 1 J(T3') h d i ( u ' ) 
+ Si do' (1.9*0 
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The i n t e g r a l extends over the R.H. cut, including possible poles. 

We now make an assumption about high-energy behaviour. We assume 

the quantity uH1'' (x>) has a l i m i t as u - t » that i s given by 

the i n t e g r a l of the spectral function: 

Lim u H1*5 (x>) 
•Q—» oo 

- - | [ H 1 j(T>»> - ^ V ) ]du' (1.95) 

We are now in a position to write down the sum rules. We notice 

two types of sum rules : those involving the antisymmetric 

combination H 1 j(-D) - H^Oo) - the A-type, and those involving the 

symmetric combination H3'*' (x>) + H J 1 ( o ) - the S-type. Taking the 

crossing properties of the s c a l a r amplitudes into account the 

only n o n - t r i v i a l sum rules of the A-type have €^ • +1 and those 

of the S-type have £^ » -1. We thus have: 

A-type CJJ • + 1 

1 \w j TP 13 

(1.96) 

S-type CJJ - 1 

h i j (u ) + h d i (u) *(Q 1 J(«) + Q J I ( - ) ) + D 

(1.97) 
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A discussion of a sum-rule of the S-type arrived at by using 

Adler's method w i l l be given i n Chapter h. Here we confine 

ourselves to sum rules of the A-type. 

Going back to the two sets (1.90) and ( l . 9 l ) we write down 

one sum-rule of the A-type. The physical assumption made by 

Fubini i s that one usually deals with conserved or p a r t i a l l y 

conserved currents and we expect the functions L 1 J to obey 

umsubtracted dispersion relations i n x> . We can then set for 

X> -» 00 

1.̂ (00) - L j i («,) - L , i J (co) - L , j i (co) - 0 

We then obtain 

1 
-f ,t,q 2,q' 2) - a J 1(»,t,q 2,q' 2) 

(1.98) 

(12) 

This i s the sura rule derived by Fubini and by Dashen and 

Gell-Mann^"^. Notice that the r e l a t i o n (1.75) would again lead 

to p r e c i s e l y t h i s sum rule and would not give anything new. 

Notice also that the equations (1.80) and ( l . 8 j ) could be used to 

write down a number of sum rules one of which w i l l again be (1.98). 

However now we are dealing with commutators involving a r b i t r a r y 

components of currents which appear multiplied by a derivative of 
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(Ik) 

the step-function. Care must be taken i n evaluating such terms x . 

We s h a l l discuss a p a r t i c u l a r situation i n Chapter k. 

Nearby S i n g u l a r i t i e s 

We rewrite our basic equation (1.67) as follows 

t J J ( s , t ; q 2 , q ' 2 ) - q'^ T ^ ( s , t ; q 2 , q ' 2 ) = F«(t) (1.99) 

where the currents appearing i n (1.55) are taken to be axial-vector 

and where we have changed the notation s l i g h t l y c a l l i n g t ^ what 

we c a l l e d before. As emphasized before a l l the s i n g u l a r i t i e s 

i n s, q 2, and q' 2 appearing in t ^ must occur i n q 1^ T ^ with 

the same weight. The minimum s i n g u l a r i t i e s are, i n the plane of 

q 2 and q' 2, a pole at m2 and a cut commencing at 9ni2 , and i n the 

s-plane a pole at the square mass of the nucleon, m̂  and a cut 

commencing at (m^ + m
v . ) S * (We are taking the external states to 

be proton states i n (l . 5 5 ) » ) 

I n the amplitudes t and T we distinguish different terms 

having, for example, the 3 poles at q 2 = q' 2 = m2 and s • m2^ or 

two of these poles or only one of them or none. Thus T ^ i s 

decomposed i n the manner exhibited in F i g . 1, where, for instance, 

the f i r s t graph (a) has simultaneously 3 poles and the hth graph (d) 

has only one pole at q l 2 = m2 . I n the same manner t 1 ^ i s 

decomposed as shown i n Fig. 2. In figures ( l ) and (2) the symbol 
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x1*-1 represents the part of the a x i a l current which i s 

coupled to the pion f i e l d , while x represents the r e s t of . 

The symbols •» and o have the same significance for the 

divergence 

FDMC consists i n neglecting the l a s t h graphs - e,f,g,h -

i n F i g . 2, i n which the divergence d*1 J 1 i s not coupled through 

the mediation of the pion f i e l d . We f i r s t separate the poles i n 

q 2 and q t 2 . We know from equation (l . ^ 5 ) that 

<0|jj | |(0)f> 1(q) > - il%q# 

This permits us to write the a x i a l current as a sum of two terms 

(x) - - F d ^ ( x J + JL 1 (x) (1.100) 

where (y.) i s the part of the axial-vector current which i s not 

coupled to the pion f i e l d . From this we e a s i l y deduce that i n the 

expression (1.55) of T ^ we can make the substitutions 

(1.101) 

The amplitude T ^ i s thus decomposed into h terms where the 
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poles i n q 2 and q 1 appear e x p l i c i t l y 

T i J « F 2 — i i M i d ( ^ t . q 2 < 1 , 2 ) 
^ 7 1 m2 - q' 2 m2 - q 2 

Tt TC 

TC 2 12 u 
m - q 

Tt 

+ F — ^ ~ ( s , t ; q 2 , q ' 2 ) 
Tt P _2 U m — q 

TC 

+ R j j ( s , t ; q 2 , q ' 2 ) (1.102) 

We have put by de f i n i t i o n 

Mid ( s , t ; q 2 , q ' 2 ) - (m2 - q 2)(rrt 2 - q' 2) 

y d x e ^ p jx\^*^\A/ TC 'y iv ' 

^ ( s , t ; q 2 , q ' 2 ) - i(m 2 - q' 2) 

jTd*x e 1*'* < p' i R ^ t x ) J^JO)) |p > (1XU) 



A j J ( s , t ; q 2 , q ' 2 ) = - i ( m 2 - q 2) 

| V x e i < 1 , X < p' | R ( ^ ( X ) •£«>)) |p > (1.105) 

HjJ ( s , t ; q 2 , q ' 2 ) - jTd«x e i q , X < p« | R ( ^ ( X ) j £ ( 0))|p > 

(1.106) 

I n M1J we recognize the Tt-N scattering amplitude defined 

for off-mass-shell pions; more p r e c i s e l y the physical 

amplitude i s the l i m i t of M 1^(s,t;q 2,q* 2) when q 2 , q l 2 -» . 
i1 
A represents the pion production amplitude by the scattering 
of a nucleon i n an external a x i a l f i e l d coupled with the current 
~ —i1 i i 
jc . A " i s related to A " by crossing 5 |i x> 

A*J ( s , t ; q 2 , q ' s ) = A*1 (u,t;q' 2,q 2) (1.107) 

The fiinc+-inn P reTvresent-R riroihlfi scat+.^rin/or nf a rmr»lpnn in 

the same a x i a l f i e l d coupled with a current j , . . I n the U 

successive terms of (1.102) we recognize contributions from 

graphs (a and b), (c and d), (e and f ) and (g and h) respectively, 

of F i g . 1. 
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The separation of poles i n q 2 and q' 2 i s simpler i n the 

amplitude t 1"' because of PDJJAC 

& J 1 (x) - F m2 ^ ( x ) 
? U Tt Tt Tt 

I t i s simply 

m2 

t*2 ( s , t ; q 2 q ' 2 ) = F 2 * - 2 _ M
i J ( s , t ; q 2 , q ' 2 ) 

m - 0. in - q 
Tt Tt 

m2 

+ F 5 A i J ( s,t;q 2,q' 2) (1.108) 
Tt P .2 15 

m - q 
Tt 

The f i r s t term corresponds to graphs (a and b) of F i g . 2 while 

the second term corresponds to (c and d). 

Substituting the expressions (1.102) and (1.108) into 

equation (1.99) we get 

F — ^ _ I" F M
i J - q ^ A1* 

7 1 m2 - q 2 L 7 1 » 
+ F A l J 

Tt X) 

- q f t i R i d - F l J = 0 (1.109) 
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The pole i n q' 2 • m2 has automatically disappeared. On the 
71 

other hand the pole at q 2 • m2 remains. So we must put the 

residue of t h i s pole equal to zero and t h i s gives the following 

r e l a t i o n 

F (s,t;m 2 , q' 2) - q'^ A^(s,t;m 2 q' 2) 

(1.110) 

This r e l a t i o n i s written at the point q • nr . We make the 

additional assumption as before that i t i s s t i l l v a l i d i n some 

neighbourhood of q 2 • m2 extending at l e a s t as far as q 2 • 0: 

F ^ M ^ t j q S q ' 2 ) - ^ ( s , t ; q 2 , q ' 2 ) ( l . l l l ) 

This hypothesis enables us to s p l i t equation (1.109) into two 

terms, one being ( l . l l l ) and the other 

J% A*J (s,t;q 2,q« 2) - F j J ( t ) + q ^ ( s , t ; q 2 , q ' 2 ) 

(1.112) 

Now current algebra gives F"^ but leaves R**' unknown. To 

eliminate i t i t i s necessary to put q 1 » 0. However we must do 

t h i s with caution, for i n t h i s l i m i t , M, A, A and R become 

i n f i n i t e . This i s due to the graphs (a, c, e and g) of Fi g . 1, 
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the intermediate nucleon being on i t s mass s h e l l when q 1 -» 0. 

So we must i s o l a t e the contribution of the one-nucleon i n t e r ­

mediate state i n M, A, A and R. F i r s t we make the charge states 

of the i n and out pions precise by putting: i • ^ ( l + i2) 

and j • (1 - i2) . With t h i s choice, M3"'' i s the e l a s t i c 

scattering amplitude ty^- of -ve pions on protons. So: 

M s - p ( s , t ; q 2 , q ' 2 ) - - (g « /2) 2K(q 2) K(q» 2) u(p') 

i 7 5 1 7 5 u(p) 
s - 4 

+ H _ p (s,t;q2,q«2) (1.113) 

where g«/2 iys i s the charged pion-nucleon coupling and K(q 2) 

i s the pion-nucleon form factor previously defined. The 

(p* + f[ + m) 
factor g i s the propagator of the intermediate 

s — m 
nucleon and H - i s the contribution (regular a t s • m2.) of Tt p « 
intermediate states other than single nucleon st a t e s . I n an 

analogous way we get 
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G. ( q 1 2 ) 
A*" ( s , t ; q 2 , q ' 2 ) = i gV2K(q 2) ufp'K.r, 
u j 2 u = 

— i 7 5 u ( p ) 
S ^ 

+ A*" ( s , t ; q 2 , q ' 2 ) (l.llk) 

G. ( q 2 ) 
A +-(s,t;q 2,q» 2) - - i g/ 2 K(q' 2) -A—u(j>>)i7s 

° >T 2 

: — V , U ( P ) 
s - 4 

+ A*" (s,t;q2,q»2) ( l . H 5 ) 
05 

where we have retained only the a x i a l term 7^7 5G^(q 2)/\T 2 i n 

the coupling of the a x i a l current and neglected the induced term 

q^7 s > which disappears from the f i n a l r e s u l t anyway when we 

l e t q -» 0. The amplitudes A and A are regular at s • m̂  

and crossing gives 

AJ- (s,tjq2,q«2) o XJ- (u,t;q' 2,q 2) ( l . l l 6 ) 
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F i n a l l y 

H*- ( s , t ; q 2 , q ' 2 ) - - ^ A ( q 2 ) G A ( q ' 2 ) u ( p ' ) > y 5 

— 7Js u(p) 

+ r~ (s,t;q2,q«2) (1.117) 

With the four equations (1.113), O - l l M , (1.115) and (1.117) 

we have performed the decomposition of into 8 terms 

corresponding to the eight graphs of F i g . 1 and s i m i l a r l y the 

decomposition of t " into h terms corresponding to the f i r s t •D 
h graphs of F i g . 2. 

Substituting (1.113) and ( l . l l U ) into ( l . l l l ) we get af t e r 

some algebra 

2gK(q 2) 
F gK(q»2) - m.T G . ( q ' 2 ) l u(p« )rf u(p) 
H 11 A J 

+ gK(q 2)G A(q' 2)u(p')u(p) + q«^ T~ (u,t;q' 2,q 2) 

- F M - ( s , t ; q 2 , q * 2 ) = 0 
7 1 7 1 P (1.118) 
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To a r r i v e at t h i s r e l a t i o n we have used 

u f p * ) ^ u(p) - u(p»)(- 2r^i + B - irg)u(p) 

Now the residue a t the pole s « must vanish and this gives 

the following r e l a t i o n (written at q' 2 • 0): 

""N G A ( 0 ) 

- (1.119) 
g K(0) 

We recognize here the Goldberger-Treiman r e l a t i o n appearing as 

one of the constraints imposed by (l . 99)» Furthermore (1.118) 

y i e l d s 

F^ H n- p(s,t;q 2,q» 2) - g K(q 2)G A(q' 2)u(p« )u(p) 

+ ^ T~ (u,t;q»2,q2) (1.120) 

I n the forward di r e c t i o n (p • p', q • q', t • 0) t h i s can be 

written 

H _ p (s , 0;q 2,q 2) - g K(q 2)G^(q 2) 

+ r ~ (u , 0;q 2,q 2) (1.121) 

The amplitudes M and X are regular at q • 0. When q -» 0 

s -» m2^ and (1.121) becomes 



F M -
Tt Tt P 

,0;0,0) - g K(0) GA(0) (1.122) 

Taking the Goldberger-Treiman formula into consideration t h i s 

becomes 
g 2 

V p H , G ; 0 ' 0 ) • ~ [ K ( 0 ) ] 2 (1.123) 

(17) This consistency condition was f i r s t demonstrated by Adler 

I t r e f e r s purely to strong interaction quantities. Furthermore 

i t i s independent of current algebra l i k e the Goldberger-Treiman 

formula. Indeed so f a r we have not used the e x p l i c i t form of 

F**5 . We used only the fact that F^ J i s regular at s,q 2 and q , a 

(which r e s u l t s from the l o c a l i t y of currents) as we l l as PDDAC 

and the supplementary assumption of gentle variation. The 

rel a t i o n (1.123) i s important for i t f i x e s the subtraction 

constant i n the dispersion relations for TI-N forward scattering 

amplitude M^_ p(s ,0;0,0). According to Adler i t i s v e r i f i e d to 

within 10$ of experimental r e s u l t . I n chapter 2 we s h a l l 

demonstrate how 'consistency conditions* for the K-N interaction 

can be established. 

From (1.121) we write for A*~ (u , 0;q 2,q 2) a t the point 

q - 0 u - m2. 

A+~(m2

T,0;0,0) - F H (s ,0;0,0) 
u x 7 r ' Tt T T p x ' ' 

3 ^ N 

- 2p F — M _ (s ,0;0,0) *Vi Tt > Tt p x ' ' ' 7 

2 OS 

(1.12^) 



k2. 

I f we now substitute the expressions (1.115) and (1.117) for 
A and R into equation (1.112) we get the following r e l a t i o n 

S -"5 
[ g K(q' 2) - mg <»A(q,a)] u ( p ' ) ^ 7 B u(p) 

+ F wilJ-(8,t;q 2
>q« 8) + £G A(q 2)G A(q' 2) u(p«)7t)u(p) 

- F j - ( t ) - q»^ ff£ (s,t;q2,q«2) - 0 (1.125) 

To a r r i v e at t h i s equation we made use of the r e l a t i o n 

ufe'JjfW* + A* - "TJ)7 bU(P) - u(p»)(- + s - 4 ) 7 0 u ( p ) 

(1.126) 

The vanishing of the residue of the pole at s = m2^ again y i e l d s 

the Goldberger-Treiman formula. This leaves us with the following 

equation 

F^ r - ( s , t ; q 2 , q ' 2 ) - i * " ( t ) - iG A(q 2)G A(q' 2)S(p» )^u(p) 

+ CL'*1 R*~ (s,t;q2,q«2) (1.127). 

For forward scattering and for q • q* • 0 we have 
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F^ A;~ («g f 0;0,0) - F;-(0) - i G A ( 0 ) 2 3> (1.128) 

The algebra of currents gives 

F;-(O) - < p | j £ ( o ) | P > 

i u ( p ) 7 u u(p) - -2- (1.129) 

Hence 

F^ r-(m 2 , 0 ;0 ,0 ) - ( l - G . (0) 2 ) i (1.130) 

We use t h i s equation to eliminate A from (1.12*0. We then 

get with the aid of the Goldberger-Treiman formula: 

1 -( — ) = -f-^*-\ „, — M (s ,0;0,0) 
\ A ' \ ° 4 ' / , o m N 

(1.131) 

This r e l a t i o n i s no more than the Adler-Weisberger ' 

formula. To cast i n the usual form we must use forward dispersion 

r e l a t i o n s for the amplitude M^_^(s,0;0,0) where the pions are 

off the mass-shell. I t may be shown in a general way that the 



kk. 

amplitude M - (s,0;q 2,q* 2) i s an ana l y t i c function of s in the 
Tt p 

plane cut from s • (m^ + m^) 2 to + oo and from u • (m^ + n ^ ) 2 to 

+ °° . (s and u are related by s+u • an^ + 2q 2). The 

discontinuity across the R.H. cut i s given by the o p t i c a l 

theorem i n the s-channel 

Im 8K. (s ,0;q. a,q 2) 
s>(m N+m i t) 2 

W 
\%\- at'ot ( s ' q 2 ) 

(1.132) 

|gj i s the centre-of-raass momentum of the incident pion and 

s tl 

energy s • W2. 

o ^ o t ( s , q 2 ) i s the n p t o t a l cross-section at the C-M t o t a l 

In an analogous way the discontinuity across the L.H.cut 

i s given by the op t i c a l theorem i n the crossed channel u : 

Im M- p(s,0;q 2,q 2) 
W 

u>(m N + m 7 t) 2 

- h i u - ° ; 0 t ^ 2 > 

(1.133) 

With u = W2 . When q 2 • 0 u 

|gJW and N u W u 
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Suppose now that a^Q^ ( s , q 2 ) and G^ot ( s , q 2 ) tend to 

f i n i t e l i m i t s as s -»« even for off-mass-shell pions. The 

Pomeranchuk theorem t e l l s us then that these l i m i t s are the same 

for a + and a~ and t h i s enables us to write down a 

dispersion r e l a t i o n with one subtraction for M - . When q 2 • 0 
n p 

i t becomes, making the subtraction at s • u • 

M - (s , 0 ; 0 , 0 ) Constant + 
s - » 5 

2n 

s' - s s* - u 
ds' 

+ m ) 2 

Tl 

D i f f e r e n t i a t i o n w.r.t. s gives at s • m̂  • u 

(1.15^) 

m — M - (s,0;0,0) 
" as 7 1 p 

•-•5 

i 

2it 

ds' 
- < o t ^ ' ° ) ] 

(1.135) 
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Substituting t h i s into (1.131) we f i n a l l y get 

ds" 

gK(O) / 2n J s» - n£ 

[ a " o t ( s ' , 0 ) - a ; Q t ( s ' , 0 ) ] (1.136) 

This i s the celebrated Adler-Weisberger formula for the 

renormalization of the axial-vector coupling constant. A numerical 
(l8) 

evaluation by Adler gives 

= 1.2^ t 0.03 (1.137) 

(19) 
while Weisberger finds 

1.16 (1.138) 

Experimentally 

a 1.18 t 0.02 (1.139) 

The s t r i k i n g agreement of t h i s formula with experiment i s one 

of the major successes of current algebra. 



The I n f i n i t e Momentum Frame: 

This i s the or i g i n a l Fubini-Furlan m e t h o d i t was 

used by Adler to derive the sum rule (I . I 3 6 ) and by Dashen 

and Gell-Mann^^ to derive the more general type of sum-rules 

( I . 9 8 ) . We follow here an approach due to B o l l i n i and 

G i a m b i a g i ^ ^ and Amati, Jengo and Remiddi^"^. We s h a l l show 

that the sum rules of the type (1.98) emerge even when a 

Schwinger term proportional to a f i r s t order derivative of a 

5-function i s included. We s t a r t from the equal-time commutator 

of two currents (vector or a x i a l ) of the form 

o(x ) - ( i f . . . j k (0) + i Z. . (0)6 d ) 8* o' ^ l j k °|i I J |in \x J 

(1.1^0) 

where E..(x) i s the operator occuring i n the Schwinger term ( i f 

present). We take matrix elements of t h i s commutator between 

states of momenta p and p*. We define t ^ (Q>QQ) by the Fourier 

trans format ion 

^ (S' Qo> " / d * x e i ( l - x < p ' | [ j j ( f ( - f ) 1 | P > 

(1.1U1) 

We introduce the following kinematical variables some of which 
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we used before 

P = i ( p + p ' ) , A ^ i f p - p * ) , q - Q - A "\ 

q* - Q + A , S - ( P + Q ) 2 , t « kA' 

(1.142) 
2P.Q, v - 2 A .Q = £(q» 2 - q 2) 

w - Q2 + A 2 = i ( q 2 + q' 2) 
7 

We take the Fourier transform (F.T.) of "both sides of 

equation (l.lUo). Now the F.T. of a product of two 

distributions i s the convolution of the two F.T.s for each factor 

separately i . e . 

J r t f ' . f 2 ] 
(2*)' 

(1.143) 

This r e l a t i o n i s written for the 4-dimensional Lorentz space; 

the symbol J" denotes the F.T. while the * stands for the 

convolution product. We then obtain 

— f t i d (Q,Q )dQ - i f . .. < p ' l ^ f o J I p > 

- < P , | 2 i J ( 0 ) | p 6^ n (1.1UU) 

I n t h i s equation the integration runs over Q q for a l l values of 
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Q and the r e s u l t i s independent of Q, except for the l i n e a r 
dependence on Q a r i s i n g from the presence of the Schwinger term 
i n ( l . l ^ O ) . (Higher order Schwinger terms would lead to higher 
powers of Q). 

Equation ( l . l ^ l ) i s not Lorentz-invariant as both Q and 
o 

t depend on the frame of reference. Since i t must however on 
hold i n any frame and different choices lead to different types 

of information about the matrix elements of the current. Let 

us take the currents to be both vector and the states | p >, 

|p' > to be spinless and of equal mass* Then we define 

< P T | ^ ( 0 ) | p > = I * ( t ) P + l£(t)A (1.1U5) 

(The second form-factor F g ( t ) vanishes for a conserved current). 

We also write 

<p»|Z . J ( 0)|p = S...(t) (1.1U6) 

We expand on a tensor basis as before. We write \xx> 

t1^ » a ^ P P + a ^ P A + a1.'' P 0 

+ b ^ A P + b ^ A A + b* JA Q 

+ d i j B (1.1V7) 
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This decomposition i s s l i g h t l y different from the one used 

before (I . 8 7 ) but the two sets are related by simple l i n e a r 

relationships. As before a., b., c. and d are invariant 
1 1 1 

amplitudes that are functions of s , t , q 2 and q' 2 or s,t,v, and w. 

We begin by taking P to be time-like so that as P.A • 0, A i s 

space-like. We define the Br e i t system by P = 0 and .'. A Q " 0 

and P = Any other system can be reached from the B r e i t 

system by a Lorentz transformation characterized by a r e l a t i v e 

v e l o c i t y P and a direction which we take to be the z-axis. I n 

the B r e i t system 
P . (JW, 0, 0, 0) 

A - (0, A , A ,A ) 
x ' x' y z' 

In any other frame 

( 7 J W , 0, 0, -P TN/P^) \ 

> 

(-P7 A , A , A , 7 A ) v K / z' x y* ' z' y 

(1.1U8) 

where 7 • ( l - P 2 ) 4 . From equation (1.1̂ 2) we have 

13 
Q » + 

27VF 
- PQ. (I .1U9) 
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Q i s a fixed quantity i n equation (1.144) and so we can use is z 
as an integration variable. With the aid of (1.148) and (1.149) 

we find 

PQ o Q„2 

—I *L _ Q 2 

(1.150) 

Q. A 
PA \j 

2 
2NT? 

Q A z z - Q A - Q A x x y y 

The integration i n (1.144) i s performed over \> for fixed 

values of Q; i t i s /. cl e a r from equations (1.142) and (1.150) 

that q 2 and q' 2 as well as s vary along the path of integration. 

I n the B r e i t system, for instance, P • 0 and .'. 

T52 t 
q s a - Q2 + 2Q. A + + -

~ 4 P 2 4 

t 
,»2 „ _ o 2 - 20. A + + - 1̂ = 151) 

4 P 2 4 

x> + + P 2 - Q2 

4 P 2 

Using equation ( l . l 4 9 ) equation (1.144) then gives 
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- f d» ( a ^ + — ( a ^ + ) + — c\* + — } = i f . F k ( t ) 
lm I L 1 2P 2 3 1 Up* 3 p 2 J ^ k 1 

o o o 

(1.152) 

i f i j k F k ( t ) (1.153) 

O 

The s c a l a r functions depend on s,q 2,q , s which vary with o as 

indicated i n (1.151) with Q and Q.A being a r b i t r a r y constants. 

The P -» oo system i s defined by o 

A = 0, 0 -» 1 (1.155) 

I f the integrals over u converge, the contribution from high 

values of x> i s negligible so that we can regard TJ as bounded 

by a f i n i t e quantity. For f i n i t e u we have as P -» 1 

P - » o o , p _ » - p Q -» - Q , A = A » 0 o ' z o' o z' z o 

(1.156) 
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and equations (1.150) become 

Q.A = - Q xA x - Q y A y (1.157) 

\3 + P 2 + Q 2 + Q 2 

x y 

I n t h i s system q 2, q* 2 are independent of u . The a r b i t r a r y 

f i n i t e quantity Q no longer enters i n the determination of z 
s,q 2 and q* 2. Using now 's* as an integration variable we write 

— T d s a J J (s,t,q2,q»2) m i f F * ( t ) 

kit J ^ k 1 

^ j T d S a j j ( s , t , q 2 , q ' 2 ) - i f . J k F ^ ( t ) (I.I58) 

1 r 

— / ds a^ J (s,t,q2,q«2) = - S ( t ) 
These equations have been obtained from (l.lUU) by equating, for 

every value of the index u , the leading terms i n an expansion i n 

P q. The leading term for u • 0 (or 3) gives the 1st equation and 

i s a factor P Q larger than the leading terms for u =» 1 or 2 which 

give the other two equations. We recognize i n (I.I58) the Fubini 

and Dashen-Gell-Mann sum rules derived before. 
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By taking P now to be space-like and A time-like and 

sta r t i n g from a "Breit system" A_ • 0, Amati, Jengo and 
(21) 

Remiddi > ' were able to derive 3 new sum-rules i n the A -
o 

system. These are 

i / b ^ (s,t,v,w)dv - i f . . k F * ( t ) 

± |* b* J (s,t,v,w)dv - i f i 3 f c l j ( t ) (1.159) 

^ f by(s,t,v,w)dv - - S i d ( t ) 

The manner of derivation i s exactly the same as before. 

I t i s important to note that i n the sum rules (1.158) q 2 and 

q' 2 do not vary along the integration path. Equation (I . I 5 6 ) 

imposes r e s t r i c t i o n s on the values of q 2, q' 2 and t for which 

(I.I58) have been obtained. Indeed they require q, q' and A 

to space-like and that "s/ -q 2, V - q t 2 and -J -A 2 s a t i s f y triangular 

i n e q u a l i t i e s , i . e . any one of them i s smaller than (or equal to) 

the sum of the other two and larger than (or equal to) the 

modulus of the difference. We can now argue that since the 

equations (I .158) hold in such a kinematical region they w i l l also 

hold i n a l l regions that are accessible through the procedure of 
(21) 

a n a l y t i c continuation. Amati, Jengo and Remiddi make the 

i n t e r e s t i n g observation that t h i s i s analogous to the situation 

which a r i s e s i n the derivation of dispersion r e l a t i o n s 
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CHAPTER I I 

In the previous chapter we derived a 'consistency condition' 

for the pion-nucleon amplitude, equation (1.123), the pions 

involved being off-mass-shell. I n t h i s chapter we investigate 

such conditions for the K-meson nucleon scattering amplitude. We 

follow the approach described in reference (23) which p a r a l l e l s 
(17) 

Adler's o r i g i n a l derivation ' of the u-N condition. 

We assume PCAC for the strangeness-changing a x i a l vector 

current i n the form 

where <t>̂  i s the renormalized f i e l d operator of the K-meson. 

To determine C„ we take matrix elements of d j . . between a K u u5u 
Z state and a nucleon state. We expand the matrix element of 

j , . i n terms of three form-factors as usual 
5u 

. \ 1 . ( A S - l ) , _ , , , / m Z m N -, 5 x 

P P *o o 

NE, 0 v g A \<T) 

(2,2) 
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where q • p' - p. We have l a b e l l e d the form-factors by the 

external states L and N since we s h a l l be concerned with several 

matrix elements of J_ between different states. Now 
5\x 

<N(P»)|^ O^-^IECP) > 
1 2 = 0 

- iq, — u ( p ' ) g f (0)7.7 u(p) •VP 
o o 

With the help of the Dirac equations 

'A ' " u ' s 

(2.3) 

u ( p ) ( ^ - im) - 0 

(p7 - im)u(p) «= 0 

(2.4) 

We obtain 

<N(p')|o- j ^ - l ) | E ( p ) > - ( m ^ m j g f ( 0 ) f ^ 5 ( p ' ) 7 . » ( p ) 7 KvQ 

(2.5) 

However by (2.l) the L.H.S. of (2.5) i s equal to 
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C R < N(p')|<t.K|E(p) > - — <N(p» )|( - D + n | ) * K | S ( p ) > 

m2 + q 2<N(pM|J K|2(p)> 

C„ _ / nj.mN' 

X u(p') 7 _ u ( p ) (2.6) 

g—-- i s the coupling constant and K ^ q 2 ) i s the ENK-vertex 

form-factor normalized so that K^f-m 2. ) » 1. At q • 0 we 

compare (2.5) and (2.6) and get 

- i(m^ + m j g f (0)m2 

CR - ^ l v A , ~ (2.7) 

A l t e r n a t i v e l y we could have started with the vertex < N|j^|A > 

- i ( m A + rnJg]J A(0)m 2 

•W1 ( 0 ) 

These two determinantions of C must agree and hence 
K 
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I t could be that J ^ * * ™ ^ i s not coupled e n t i r e l y to the 

K-meson f i e l d . There could be another operator R such that 

Then our subsequent analysis i s v a l i d provided the residual 

operator R s a t i s f i e s the following condition: for states A, B 

such that < A|*JJB > ^ 0 and for momentum transfers near the 

K-pole (e.g. -m2 < q 2 < BFV ) then 

< B|R|A >| 
« 1 

< B|«DK|A > 

(2.11) 

To derive the desired consistency conditions consider the 

matrix element < KN|j^^ ™ ^ | N > . This may be decomposed into 

8 invariant amplitudes A. given by 
0 

P' P 
*o *o 

8 
2q' Q < K N | j 5

( A S , a l ) | N > - u ( p ' ) i ^ O^A. (», Vq 2)u(p) 
N N j = l 

(2.12) 
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where p(p') i s the four-momentum of the i n i t i a l ( f i n a l ) nucleon; 

q' that of the outgoing K-meson and q i s the momentum transfer. 

The variables are defined by 

u - ~(p + p'J.q/aiijj 

The operators 0^ are given by 

o2 - (p + p') 0 6 - ifa* 

0 3 - q/ 0 7 = q 

0* = im. Tr 0 s - i j { q 

(2.13) 

(2.1^) 

We write for the isotopic-spin structure of the amplitude 

A. the following 
J 

A j ( o , V q 2 ) - X* ^ A d ( ^ 0 B , q 2 ) a 3 ^ X. (2.15) 

where X., X„ are the isotopic spinors of the i n i t i a l and f i n a l 
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nucleons respectively and T)̂  i s the isotopic spin wave function 

for the f i n a l K-meson. The object TJ* must be there to 

saturate the isotopic indices 0 on A,. ̂  . I t i s a consequence 
(AS a l ) U+i5 of the f a c t that J£ transforms l i k e the component X 

of the unitary-spin current. We can think of i t as the unitary-

spin wave function of a spurion which c a r r i e s off I a ^ . 

We s p l i t each A into 
J 

(2.16) 

where A^ i s the sum of Born term contributions ( i . e . the single 

A, L states) and A i s simply the residual amplitude. 

J 

Evaluating the Born terms with the aid of figures 3 and h 

gives 

[{* 1 7 s gANK P + lx - im. 
NA, 2v 
g A tfhj, 

o NA, 2 \ g A ( q ) 7 M 7 9 
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+ w v . ] + p ^ f ^ v . + * f ««•> w. 

(2.17) 

where (P°, (P 1 are the projection operators for isotopic singlet 

and t r i p l e t states. S p e c i f i c a l l y 

^ (2.18) 

( P 1 - t (3 + J N . I K ) J 

where T̂, are the isotopic-spin operators for the nucleon 

and K-meson respectively. We tr e a t the amplitude as a matrix 

i n the nucleon sub-space. We are interested i n the divergence 

d j for zero momentum transfer, q 2 = 0. This s i m p l i f i e s 
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(2.17) enormously as contributions from the factors involving 

f ^ and h^ drop out. We write 

8 

5 ( P ' ) I £ c j x * n J A^ A 3 xA U(p) 
j - 1 

-/ i \ „* * I . A n NA, 2» 

NA i> - i* + i m

A 

p* + q'* - 2q.p + m* 

(2.19) 

Further s i m p l i f i c a t i o n i s made possible through the Dirac 

equations ( 2 . ^ ) ' Eg. a term l i k e 

u ( p ,)7 3(p' t + I1 + 1*^)7,/ 5u(p) 

becomes 
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u(p') [idnjj - m A) + 7 ( i 7 5 u(p) 

and so on. Now (2.19) becomes 

L.K.s. . „ « , , x j ^ m ^ ; ^ C , p . 

• P 0 7 *K - V * <' NA ( 

° x " °>J + l ' + 2 q ' • p ' 

(2.20) 

From the kinematical relations (2.13.) we have 

20^(13 + Wg) - q' 2 - 2q'.p 

WB - o) - q' 2 + 2q,.p' 

(2.21) 
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We define 

_2 _2 P 

2 mN ^ 

From the anticommutation property of Dirac matrices 

y a i q ^ y y + q^5 - i q ^ r y 

we now rewrite (2.20) as 

(2.22) 

L.H.S. = u(p.)x; / l g ^ gNA ( q 2 ) ± [ " 1 f - m A) 7^ 

B 

i<?7 7 + q°5 - i q ^ 7 7 
o B - o + * \>B + O + A 

i q ^ r + q°6 - ? q ° 7 7 

« + ii + A "B " _ 

1 + i g (P 1 ^ ( q 2 ) l gZa»K i rap gA v q ' 

1 r i ^ - m z)y u + i q j ^ 

^ L o B - o + A' 
2SL - * * P V t ) 

°B - 15 + A' 
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T3_ + "D + A* U + D + A* J J 1 P 

B "B 

(2.23) 

Comparing the coe f f i c i e n t s of the operators 0 J on both 

sides of equation (2.23) we f i n a l l y extract the following 

expressions for the pole terms 

Alap ^ [«ANK^V)^ ( —^— - —rri\ 2^1 P ^ B - U + A o B + o + A y 

— — ] 1 
P V u B - U + A« + o + A / J 

+ g ^ g A (q ) 

(2.2U) 

^ ^ 201^ L K \ ^ u B - i D + A \>g + \) + A 

+ *f h*)*!, ( — ^ - r • ' A, ) ] 
y w B - m + A* o B + x> + A' y j 

(2.25) 
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A U o P " 7r[ gANK «£V)(»A - V P a P f ~ ~T — 
2mgL K \Bu + o + A t>„ - o + A B B 

g u • A* + u + A* 

(2.26) 

Let us now evaluate < KNld j _ |N > at q 2 = 0. 

We write 

p.p" 

g q - 0 

(2.27) 

where M i s defined by <xp 

Ma(3 " A ^ V a p " i ^ ' V a P (*'28) 

To determine A and B we consider the expression 

u f p ' J q ^ A . ^ u f p ) - S ( p ' ) [ i W ^ - ^ * ) A l o p
 + (P + P')-1 A

2 a p 
3 = 1 
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+ A 6ap + < l 2 A 7 a p + i ^ 2 A 8 a P ] u W 

(2.29) 

The l a s t two terms drop out at q 2 • 0. Consider the non-pole 

terms f i r s t . Then 

M o f 5- u(p') ~ U* ) A l a p - 2^mN A 2 o p + 2»B 

+ 1 W p ~ A
5ap + 1 A 6ap ] J= u ^ 

(2.30) 

Further reduction i s afforded by the use of 

i'l + H% - a y ^ and q' - p + q - p* 

We can therefore write equation (2.30) as 

Mffp - u(p) - 2 V
 Alap " A 2ap

 + ̂ VB A
5«P 

- 1 ^ (" "V V p + 2 V A5«P " ̂  A6ap> ] J = u ^ > 

(2.3D 
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Hence 

- ( - 2 m N o A l a p - 2 m N l ) A 2 o 3 + ^VB A
5OP ) 

(2.32) 

B ap -J* (" + *V % 0 " ̂ VB A6ap ) 

We now write down the pole terms 

8 

5(p*)£ 

P P 1 1 

- ^ ( 2 r a f r A l a P - m N A U a p ) J (p) 

We can now identify the pole parts of the A and B 

amplitudes appearing i n (2.28) as 

(2.33) 

ap ; r ( - ^ A L p + 2 v - A * 
^2 lap nfrB 3*0 

B ap J 2 ( ̂  A L p " "N A L p ) 

> (2.3^) 

J 
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However according to PCAC < KN|d |N > i s equal to 

C_ < K N | » _ | N > = — < KN|j |N > (2.35) 
K K m* + q 2 K 

By the LSZ formalism we recognize i n (2.35) the K-N scattering 

amplitude. This gives for 

(2.36) 

Adding equations (2.32) and (2.3*0 f° r the A-amplitude and comparing 

with (2.36) we find 

( -SV 5 l a P - V *2ap + ^ B Np " 'V A l « 3 + VB A3<xP } 

K + "E>_ AKN ̂  • Q ) ( 2 > 5 ? ) 
gENK JOBL(Q) a P -'"B 

( 2 5 ) 
F i n a l l y since the amplitudes A. have no kinematical s i n g u l a r i t i e s x 

Lim u(£ x + A g ) a = Lim t>B A - 0 (2.38) 
0-» 0 0 ^ 

We simplify the pole term contribution by making the customary 
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decomposition 

KN = KH(+) + AKN(-) , } 

We then find that the coeff i c i e n t of g y ^ 8^A(°) &ap f o r example, 

i s proportional to 

o | -15 2 + 2A-DB 

(l5B - M + A ) (\5g + \> + A ) 

NAi Similar expressions hold for the co e f f i c i e n t of gy^S^ (0) • Jjc ap 

and for the Z-terms. I f we neglect the mass difference term A 

and set u_ = v • 0 then the above terms are equal to unity and 

equation (2.37) leads to the following two rel a t i o n s 

2(mz + V g f ( 0 ) k S N K ( 0 ) 

(2.U0) 

4NK ff<°> - *SNK « M K . A°t-) ( o . 0 , ^ 0 , q 2 . 0 ) 

2 ( » E + mjJflQ) ^ ( O ) 

However i f we maintain the mass differences then we get instead 

the n u l l relations 
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( 2 . M ) 

A K N ( + ) ( 1 3 - 0 , o B - 0 , q 2 - 0 ) = 0 

^KN(-) ( u . o , u B - 0 , q 2 - 0 ) - 0 

because 

p p , 
Lim \) &1clq " L i m A T a o™ 0 when A, A' f 0 o-> 0 P UB~*° 

Thus i n the symmetry l i m i t we obtain equations which l i n k weak 

and strong interaction quantities while for the broken symmetry 

we get a condition on the K-N scattering amplitude alone. These 

r e s u l t s are to be compared with Adler's equations 

< D A T t N ( + ) C » - ° , » B « 0 , q 2 - 0 ) 

K ™ * (0) 

(2.k2) 

Adler obtained h i s re s u l t s by neglecting the neutron-proton mass 

difference, i . e . a symmetry r e s u l t and corresponds to our r e s u l t s 

(2 .ue ) . 

We have a rather puzzling situation i n that switching the 

mass differences on or off gives such widely different conclusions. 



72. 

The resolution of t h i s d i f f i c u l t y was made by F u c h s ^ 2 ^ and was 
(21) 

drawn to the author's attention by Adler v . The argument i s 

a simple one and was suggested by the polology approach to current 

algebras described i n some d e t a i l i n Chapter I . We consider 

the amplitude 

M - f d*x e i q * X < K H | j ( A S B , l ) | N > ( 2 ^ 3 ) U J H 

Integration by parts gives 

q^M - i / V x e i ( 1 - X < KNl* tff*ml)(*)\* > 

i s related to the amplitude for K-meson production by the 

scattering of a nucleon i n an external strangeness-bearing a x i a l -

vector f i e l d . For o • 0, q 2 • 0 we assume that q̂ M i s 
|i 

dominated by the nearby s i n g u l a r i t i e s which are the A, L Born 

terms and the K-pole at q 2 • -m2. . I f we keep the masses 

different then the A, E poles offer no problem and q̂ M̂  -» 0 as 

-* 0. The residue of the pole i n q 2 at -m2. i s j u s t the on-

mass-shell K-N forward scattering amplitude. This residue must 

vanish and hence we obtain the n u l l condition (2 .^1) . I f 

however the masses are degenerate then a different situation 

a r i s e s . We must remember that when we want to t e s t either of 

the conditions (2.U0) or (2.hl) we must write a dispersion r e l a t i o n 
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for A . I n the equal mass l i m i t i s no longer regular as 

q*1 -» 0 and we must separate the Born terms from i t before taking 

the l i m i t and t h i s procedure would then give r i s e to the non-

n u l l relations (2.h0). I n the dispersion r e l a t i o n we 
KN 

eventually write for A the Born terms contribute when the masses 
are d i s t i n c t and do not contribute when the masses are equal. 

KN 

Thus i n (2.Ul) A includes Born terms while i n (2.h0) these are 

absent. I n the l i m i t of SU(3) a l l relat i o n s are non-null while 

for the broken symmetry a l l relat i o n s are n u l l . 
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CHAPTER I I I 

I n reference ( l l ) , Fubini et a l . have discussed a number 

of i n t e r e s t i n g applications of the theory of current algebra. 

One p a r t i c u l a r l y i n t e r e s t i n g example i s the derivation of the 

Gell-Mann - Okubo mass formula. The s t a r t i n g point i s the 

commutator 

where both the charge Q and the divergence D refer to the U + i5 

component of the octet of vector currents. The i n t e r e s t i n g 

point i s that t h i s commutator, when sandwiched between 

appropriate states, leads to a l i n e a r mass formula f o r fermions 

and to a quadratic mass formula f o r bosons. This r e s u l t was 

known f o r some time from group theory but no reason i s given by 

occur between bosons and fermions. I n current algebra t h i s 

arises quite n a t u r a l l y . The usual assumption made i n group 

theory about the symmetry-breaking Hamiltonian, namely that i t 

transforms l i k e the 8 member of an octet c e r t a i n l y implies (3»l)» 

On the other hand we could s t a r t from (3»l)> which i s implied by 

(x) 1 4 + iS ( t ) , D Q (3.1) 
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the quark model, as the basic object. (3«l) can be generalized 

to other values of the unitary spin indices, 

[ Q A ( t ) , D B(x) ] o 0 (3.2) 
x • t 
o 

where A, B are V-spin, U-spin or I-spin t r a n s l a t i o n operators 

taken i n suitable combinations. This was indeed done by 

; the 
,(29) 

F a u s t o v ^ ^ who was able to obtain various relations among the 

electromagnetic mass differences including the Coleman-Glashowv 

formula as w e l l as two new formulae f o r the baryon decuplet. 

I n t h i s chapter we investigate the consequences of the 
(30) 

hypothesis that ' 

[ < l * + 1 5 ( t ) , 1$ •*<»)] - 0 (3.3) 
X - t 
o 

where both the charge and the divergence ref e r t o the 

component k + i5 of the axial-vector octet, i . e . the 

strangeness-changing axial-vector weak current. Clearly t h i s i s 

a stronger assumption than the one made f o r the vector currents, 

(3.1). The commutator (3«3) i s s a t i s f i e d i n the quark model 

and so i n accocrdance with the basic philosophy of the current 

algebra theory i t i s possible to abstract i t from the model and 
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assume i t s v a l i d i t y i n general. We s h a l l discuss t h i s further 

at the end of the chapter. Meanwhile we can give other 

arguments t o support our hypothesis. The commutator (3«3) 

corresponds to a double strangeness exchange and we can imagine 

the t r a j e c t o r y of a p a r t i c l e i n the exchange channel t o be very 

d e p r e s s e d a n d therefore hope that the sum rule which results 

from i t converges. Notice also that i t i s a commutator between 
(32) 

a good and a bad operator and hence i t i s very i n t e r e s t i n g 

to examine i t s consequences. The theorem of Ademollo and 

G a t t o ^ ^ which says that the octet of vector currents i s 

unrenormalized up to f i r s t order i n the symmetry breaking 

interactions, holds f o r (3»l) and enables us to set a l l the 

renormalization r a t i o s equal to one and end up w i t h a function 

involving the masses only, i . e . a mass formula. However there 

i s no such theorem f o r the a x i a l octet and there i s no hope of 

getting an SU(6)-type mass formula out of (3»3)« We are led t o 

view the sum rule a r i s i n g from (3*3) as a r e l a t i o n between the 

F/D and F + P quantities of weak semi—leptonic decays or as a 

determination of the F/D r a t i o i f one regards F + D as known from 

experiment (equation 1.139) °r from current a l g e b r a f a - 9 ) ^ 

We now turn to a discussion of the sum rule a r i s i n g from 

(3»3)» The axial-vector current i s an octet operator and we 
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can w r i t e the following expansion f o r i t s matrix element between 

any two baryon octet states B i , Bj 

(3A) 

We have not included the term proportional to a ̂  q^ 7 - the 
rid 

2 class covariant; i . e . only terms with C « + l have been 

w r i t t e n down. This i s not r e a l l y an assumption about the 

charge conjugation properties of the axial-vector octet because 

t h i s term i s not going to contribute to the divergence anyway. 

We may transcribe the above equation from the Cartesian to the 
•spherical* non-Hermitian basis with the aid of the spherical 

(a) (-xL) 

vectors e* ' ' where a denotes the 1 magnetic* quantum 

numbers ( I , I 3 , Y). Using 
'8 8 8a 

(x) M »* f . U 3 e: ' e:^' e. .... 1 j k l j k 
u 13 
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/

_ ,'8 8 8s^ 
-
y x X u o 

e M m e(n) - -J* 

'8 8 1 

x n o 

(3.5) 

where f ) i s the SU(3) Clebsch-Gordan co e f f i c i e n t 
u v X 

as defined by de S w a r t R e m e m b e r i n g that a physical baryon 
(a) 

state B ' i s related to the Cartesian state B. by 
I 

B< a ) - e f a ) B. (3.6) 
l i 

we readily obtain 

/ 8 8 8.\ 
<B(«'|j(« ,»|B ( d" )> 

a T a 

8 8 8, 
+ G?(q 2)V3 f ) I 7 

:• a / a " a r 
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• [ * > f - C 1 1 
4 3 \a" a» a / 

+ G a ( q 2 K 5 

8 8 80 

a" ctT a 
] V ' } U(«") 

(3.7) 

We sh a l l need the formula f o r the divergence which we wri t e as 

< B « ( p l ) | » < « , ) | B « - " > W 

" ( V t t ) + V " ^ ) U ( « ) ( P l ) G « ? f , ( q 2 ) 7 = U(o")(P2) 

(3.8) 

where Ga, (q 2 ) i s defined by 

G a? M(a 2) 
/5 / 8 8 8 s 

G s(a 2) -
J 5 V<x" a« a / L %(«) + m

B ( a " ) 
3"(q 2)l 

^3 
8 8 8. 

a" a* a 
G a(q 2) - G &(q 2) 

(3.9) 
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We see that i n the l i m i t of zero momentum transfer only two 

constants Gx(0) and Gx(0) remain. Following reference ( l l ) we 

write the charge as a k-dimensional i n t e g r a l of a divergence by 

introducing an exponential i n some four vector, k, and a 

®-function. Sp e c i f i c a l l y (3*3) becomes 

Lim / V x ® ( - x j e - i k - x < f|[D* + i 5 ( x ) , D * + i 5 ( 0 ) ] | i > - 0 
k -»0 J 5 5 

(3.10) 

where | i >, | f > are suitable i n i t i a l and f i n a l baryon states. 

We define an amplitude by 

T.f - j f d ' x ®(-x o)e- i k- X<f|[D^ + i 5 ( x ) , D ^ + i 5 ( 0 ) ] | i > 

(3.11) 

Defining the usual scalar invariants by 

s - -(k + p f ) 2 

t - - ( p f - p . ) 2 ; pf » -m2, , V\ - -B? (3.12) 

u - -(p. + k ) 2 

We make use of the arbitrariness i n the vector k and choose 

i t to s a t i s f y 

k 2 • 0 ; s-ra 2, • u - m 2 = x> i . e . k.p. • k.p_ 
f I i f 

(3.13) 
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We now assume f o r T ^ a dispersion r e l a t i o n i n x> at 

constant t 

1 r°° * l f (o',t) 
T.f ( u , t ) o - / - i i do' ( M M 

The absorptive part i s given by 

• i f ( , t ) - i ( 2 * ) * | £ 6*(p f + k - p n ) < f | D ^ + i 5 ( 0 ) | n > 
n 

<n|D^ + i 5 ( 0 ) | i > - £ 6 M P i ~ k - P n , ) 
n 

< f|D^ + i 5 ( 0 ) | n ' > < n ' | D ^ + 1 5 ( 0 ) | i > } (3.15) 

We s h a l l refer to the co e f f i c i e n t of the 1st & -function as the 

di r e c t term and the co e f f i c i e n t of the 2nd 5-function as the 

crossed term. The contribution to T i f of a single p a r t i c l e (S.P) 

intermediate state i s given by 

d\j' - 1 

P) T i f P - I f * < 2 * > * ( — ; f i d 3 p & i , ( p f
+ k -

l f J x>* - x> I ( 2 n ) 3 J L f 

"•00 

< P f |l>5 + i 5CO)|p > < P | D ^ + i 5 ( 0 ) | p . > - 6 ' f e i - k - p ) 

< P f | D ^ + i 5 ( 0 ) | p > < p | D ^ + i 5 ( 0 ) | p ± > ] } (3.I6) 
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Make the replacement 

J* — -» | V p &(p2 + m2) - J* d*p 6(m 2 - m| - 15) 

where p, m are the momentum and mass of the S.P. intermediate 

state. I f we wr i t e 

T i f P " C l + °2 (5'17) 

where Cx comes from the d i r e c t term and C2 from the crossed term 

then we immediately f i n d 

< f |D^ + i 5 ( 0 ) | p > < p | D ^ + i 5 ( 0 ) | i > 
Cx - 2 2 . 2m (3.18) 2 2 wr - nq. - -o 

We now make specific choices f o r the states | f >, | i > as proton 

and s~ states respectively 

< f | - < p| ; | i > - |s " > (3.19) 

The possible single- p a r t i c l e intermediate states are then Z° and 

A . The numerator of (3«l8) then reads f o r iP, f o r example 

< P l ^ C O J I f i 0 > < Z ^ D ^ f O J I s - > - (m + m£o)(mj:o + n^-) 

x G||°(0) ( t ) u ( p f ) 7 5 u ( p f + k ) u ( p f + k)7 gu(p.) 

(3-20) 
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The labe l ^?1 on the form-factor stands f o r the 'magnetic* quantum 

numbers of the divergence. We are interested i n the l i m i t k -» 0 

and the R.H.S. of (3.20) then simplifies t o 

R.H.S. - (m* - m?)(m o + m_.) G^°(0) G?°= ( t ) u ( p J u ( p , ) 
E P L - 22I 2~?-l-

(3.21) 

We thus see that i n the l i m i t k -*0 (i.e.-o -* 0) the 1st factor i n 

(3.21) cancels the denominator term i n (3.18). The_ factor 2m 

i n the numerator of (3.18) i s also cancelled by the term 2m 

a r i s i n g from the propagator f o r the intermediate state. The term 

C2 i s reduced i n a similar manner. We then f i n d that £° 

contribution to T ^ i s 

i f (m_o + m _-) Gg°(0) G?°="(t) + (nuo+m )(jP^(t)G?°= (0) 
- ft- 1- 22L * 2?1 22-1 

x u p ( p f ) u s - ( p . ) (3.22) 

I f we now evaluate the sum-rule f o r zero momentum transfer, 

t • 0, t h i s s i m p l i f i e s to 

(2m_o + m + m__) G??°(0) G?°= (0) u (p )u =-(p ) (3.23) 
i p - 22.I. 22J- V 1 - 1 

where 
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I 8 8 8£ 

100 H i j£l 
G"(O) + V~3 

8 8 88 

100 H i H l 
GA(0) 

2 2-L 

8 8 8 

22-L 100 

(3.2U) 

G*(0) + ^3 

8 8 8, 

Similarly, the A-contribution to the sum rule i s 

(3.25) 

T i ? - fe-A+ m
P
 + v > gSI<°> GHI(°> w u

E - ^ ) ^.26) 

where 

22 J 
(0) 

8 8 8 8 \ / 8 

Gi(O) +W,3 
ooo H i H i ooo 

8 8, 

111 11 
22-L 22 

t?:(o) 

(3.27) 
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8 8 8E 

GHi ( 0 ) - i f 
' Mi ooo 

/ 8 8 8 a\ 
G > ) + / 5 G* (0) 

\ i-4-1 Ml 0 0 0 / 

(3.28) 

So our sum-rule (3»10) now becomes 

(2^0 + mp + ms_) G^fO) Gj^" (0) + (2mA + mp + ms_) 

< < ° > G?^"(0)1 u (p f ) u = _ ( p . ) 
2 2 x -I * ~ 

. R AV) A 1 1 ^ ) 

m - - I d-O1 — + — 
7 1 J v>* - x> u» + x> 
Threshold 

(3.29) 

A1 )̂ - i ( 2 n ) * £ 8 * ( p f + k - p n ) < p | D ^ i | n X n | D ^ i | S - > \ n̂A,£° ' 22 

nfA,E° 2 2 1 J 

(3.30) 
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We can now use PCAC i n the operator form 

,(43=1) 

to convert the absorptive parts A 1 and A 1 1 i n t o products of 

scattering amplitudes, e.g. 

„2 
.5 

si *K <p|D |n> - » * < p | j K | n > 
2 2 1 4 + frf " *n> 

4 + (P f - P n) 
F K T w - (3.32) 

2 n-*PK~ 

where F^ i s the decay constant of the K-mesons in t o a lepton pair . 

We can therefore rewrite the absorptive parts as 

A 1 = i ( 2 7 i ) * F ^ > 5 * ( P + i + k - p n)T(n -» PK~) T (=~K+ -» n) i ( 2 n ) * F j V &*(p f + 
nfA,£° 

i V 5* (P ± - k - p ) T (n -» PK") T ( S"K + - n) J 
n+A,Z° ' 

(3.33) 

Unlike the s i t u a t i o n a r i s i n g i n the Adler-Weisberger sum 

rule here we are dealing with the non-diagonal elements of the 
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T-matrix and we cannot convert t h i s i n t o cross-sections. We 

sha l l assume that the contribution of the i n t e g r a l on the R.H.S. 

of (3.29) comes mostly from the resonance. There is no 

real j u s t i f i c a t i o n f o r t h i s resonance approximation which i s 

frequently used i n current algebras except perhaps the 

phenomenological one, namely that the high mass states should not 

make s i g n i f i c a n t contributions to the sum-rules. Even t h i s i s 

not enough, for to evaluate the contribution of the Y*° we need 

to know the form factors occuring i n the matrix element of the 

axial-vector current between baryon and decuplet states, for 

zero momentum transfer. The expansion involves k form-factors 

and one way of w r i t i n g i t i s the following 

a a' a" 

(3.3M 

No 7 s appears on the R.H.S. of (3«3*0 since the Ravita-

Schwinger spinor U U(p) have -ve i n t r i n s i c p a r i t y and we are using 
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i t to describe a +ve p a r i t y state. Knowledge of the form factors 

Klt Yi^j H3, allows one to calculate the amplitude f o r decuplet 

production by neutrinos on the baryon octet 

X) + B -» A + u 

BF + meson 
l » B» + 

For the matrix element of the divergence we have 

<BW(PI)|D,<-V«">(P2)> 
8 8 10 

a a* a" 

(3.35) 

where 

• ^ £ ML. - ,£,) + ^ H°' (q*)q2 J (3.56) 

I n the above equations m i s the mass of the appropriate pseudoscalar 
a' 

meson which has the same quantum numbers as D . I d e a l l y one 

would l i k e t o be able to use the numerical values of H l t Hg, H3, 

for zero momentum transfer i n evaluating the contribution of the 
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to the sum-rule. This presumably can be done by current 

algebra methods. However f o r our purposes we use the pole 

dominance model f o r the divergence of the a x i a l current and 

approximate the function H t̂ ( q ) as follows: e.g. fo r the 

PYj°K vertex we write 

^ 2 x m| + q 2 y 

(3.37) 

This sort of approximation leaves us with only 1 parameter to 

evaluate instead of four ( f i ^ , R*2, Hg, H^) namely the coupling 

constant f o r the FY^° K vertex. Similarly we need to know the 

coupling constant f o r the sTj°K vertex. Due to the_lack of 

r e l i a b l e experimental data on these numbers we turn t o SU(3) 

symmetry f o r t h e i r determination. I n the SU(3) symmetry scheme 

the Y*° i s w r i t t e n as 
1 r 

|Y*° > - ^ |EV" > - |NKo > + Is-K*" > + J~3\Z°H > 
>/12 L 

- /3| A*° > + |PK" > + |=°K° > - } 
(3.38) 
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The states |PK~ > and |s~K+ > enter with equal weights _ i _ . 

The decays of the decuplet resonances are determined "by one 
coupling constant g, apart from Clebsch-Gordon coefficients. 
To find g we look at the best experimentally measured width, 
namely that of the N*++. This state is written 

1 
|N*++ > - — |Pir+ > (3.39) 

V2 

The transition rate is given by 

g* ^ Ep + mp 
N»++-»P*+

 2 ' (3.^0) 

where is the centre of mass momentum of the TI + and P. The 
„ , Ep + mp 
ractor _£ * varies very l i t t l e among the various decays 
and is usually dropped. The experimental width of the N* then 
leads to g 2 • h^.'j . In terms of g we have 

g 

We now substitute thee expansions (3«37) into the sum rule. The 
reduction of the Dirac algebra is performed with the help of the 
subsidiary conditions satisfied by the Rarita-Schwinger spinor 
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- im*) U°(p) - 0 

7 0U U(p) - 0 (3.te) 

P„U°(p) - 0 

We also need the propagator for spin '/g : 

r i 2 - \ - i j f + m* 

Here of course we treat the resonance as a stable state and compute 
i t s contribution in precisely the same way we did for the £ and A 
states. We can now write the Y*° contribution as 

N x 
JJPY*° HYJ°S" \ / 10 8 8 \ / 8 8 10 \ 

"K / 1 100 i i l 4 4 l / \ A-4-1 i i - l 100 

O.W0 

where N is a numerical factor containing the masses and arising 
from the Dirac algebra. The functions IT 1 and H 1 are 
given for zero momentum transfer by 

,*o v*o_-PV u Y e n 1 - g ^ o F R - H i ( 3 ^ 5 ) 
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We now go back to equation (3.29) and read off the numerical values 
for the Clebsch-Gordon coefficients from the tables of de-Swart^^. 
We find simply 

22 1 

(0) - - £ G > ) - i G a ( 0 ) (3.U7) 

(o) - - -T- Gi(°> " — G > > ^ 8 ) 
2?1 2*J3 2 

Define 

Hence 

F a The /_ ratio is by definition -z . We now substitute the 
1* -L "~ £L 

1 . . . ^ 3 
G i T ( ° ) • — r G i ( ° ) — G i < ° > (3.^9) 

M l 2 >f3 2 

G - G*(0) + G*(0) and a - (3.50) 

G®(0) - G(l - a) and G*(0) - Ga (3-51) 

values (j.hS) - ( 3 ^ 9 ) into the sum-rule (3*29) and use the 
relations given by ( 3 « 5 l ) » I t now reads 
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G2 r , 
— | ( 2^0 + mp + m s_)(2a - l ) + y(2mA + nip + m = - ) (8a 2 + 2a - l ) | 

(Yi° contribution) (3-52) 

where the R.H.S. is given by (3»Uk). In ( 3 « ^ ) N has the numerical 
value 

N - 1*.06 X 1 0 3 

66) 

for gpY*oK and g=-y*o K give for (3 . ) 

The value I . 0 9 x 1 0 3 for F2. ̂  ' as well as the value ^ 9 . 7 / 2 ^ 3 

1 1 
h.06 x 1 0 3 x 1.8 x 10" 1 x x (3.53) 

2>T3 >/l5 

where the last two numbers are the Clebsch-Gordon coefficients. 
Putting a l l this as well as the known masses into equation (3.52) 

we get a quadratic equation for the parameter a; 

217.6 

We now regard G either as an experimental input or as a result 
from the Adler-Weisberger formula. I t has the numerical value 
|G| • 1.18. This now gives two solutions for (3.5*0 

a - - 1.39 or 0.37 (3.55) 



Remembering that the /_ ratio is /. 1-a we f i n a l l y obtain 

% - -0 .58 or O.59 (3.56) 

I t is amusing to note that these two solutions closely 
resemble the solution one obtains for the homogeneous equation 
(F/D) 2 • constant V P' . This similarity might not be purely 
accidental. 

F 
The value 0.59 we obtain for the ratio is in good 

agreement with experiment. Two determinations of this number 
(•zQ) 

by two different groups are: 

O.59 (Willis et al) 

Returning now to our basic commutator (3«3) we examine i t 
within the framework of a free quark model. We have 

0.1+5 (Brene et al) 

and (3.57) 

- <l(x) r ^ X 1 q(x) (3.58) 

\ 4 * % 5 5 ( 3 0 q W (3.59) 
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Hence at equal times 

[ Q|(t),Djj(x)] - j V x [ q(x) 7 o 7 ; jX i q f x ) , ^ q(x) 7,XJ q(x)J 

m 
q 

q +(x,t) | [ y 3 ,7075 1 (xSx5 } + { 75 7 07 s 

X q(x,t) 

- -mq q ( x , t ) d . J k X kq(x,t) (3.60) 

Thus the R.H.S. is non-vanishing i n general, unlike the case of 
vector currents, and is proportional to a scalar density. 
However for the particular choice i • j • h + i5 the number 
^K+K+K ™ ®* w n e r e K+ signifies h + i 5 . Hence the commutator 
(3 .3) is satisfied i n a quark model. Alternatively the 
commutation (3«3) should vanish since i t i s a AS • 2 operator 
which cannot be constructed as a bilinear quantity i n quark 
fields 
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CHAPTER IV 

Recently there has been some interest i n the algebra of 
(kO) (kl) (k2) 

scalar and pseudoscalar densities v / , v / , v '. In reference 
(^2), for example, the coupling constant of the so-called a-meson 
to two pions is calculated under the assumption that 2TI is the 
dominant decay mode. A value for i t s width is also obtained 
which is quite narrow. At the moment there is no conclusive 
evidence experimentally for such a narrow s-wave I • 0, it—it 
resonance. However people have attempted to f i t nucleon-nucleon 
scattering data with such a scalar particle with a certain coupling 
to nucleon states* . In this chapter we attempt to 
calculate this coupling constant from the algebra of scalar and 
pseudoscalar densities proposed by Gell-Mann^. 

Our starting point is the retarded amplitude involving the 
commutator of the axial-vector current with a pseudoscalar 
density between two spin \ states. Specifically we define 

T j J - f d*x e ^ V < P 2 | R ( j ^ ( x ) p j ( 0 ) | P i > (k.l) 

In terms of quark fields the pseudoscalar and scalar densities are 
, (1) given by x 
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p X(x) - - i q ( x ) 7.X1 q(x) 

i • 0, 1, ...,8 

- q(x) X1 q(x) 
(^•2) 

The absorptive part of T^ is given by 

b1J i j V x e < P 2 l f j ^ ( x ) , P J ( 0 ) ] | P l >• ( M ) 

We evaluate by pa r t i a l integration and write 

2 U 
V 1 J + F 1 J 

where 

f -iqgX 
d Ax e 0 ( x Q ) < p 2 | [ D j ( x ) , p J ( 0 ) ] | P i > 

and 
n -iq*x 
I - . . T? _ / \ l r . l / \ .1 / _ \ i I . 

x- ~ m j a-x e 6^xQ) < P 2 | I J 5 0 W , p - i O ^ j i p ^ 
(^.6) 

The absorptive part satisfies 

LI . i j i j cf t d • V ^2 U ( M ) 
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where 

v i J - ^ / V * < p J [ D * ( x ) f p d ( 0 ) ] | P i > (U.8) 

The following commutation relations hold at equal times 

[ Q*(t), p j(x,t) ] - i d. J k s k(x,t) 

[ o/(t), s J(x,t) ] - - i d . . k p k ( x , t ) 

We shall deal only with pions, i , j , k • 1 , 2 ,3 . We therefore 

simplify (^.9) by f i r s t defining the scalar density a(x) by 

a(x) - J* s° + j± s 8 (k.10) 

where o(x) is the f i e l d for a so far hypothetical scalar meson 
which may have something to do with a real 0 + it-n resonance. 
We therefore have 

[ Q"(t), p P(x,t) ] - i 8 a p a(x,t) A 

a, p . 1, 2, 3 , 

[ < f ( t ) , a(x,t) ] - - i B a p p P ( x , t ) 

(^.11) 
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We use p°(x,t) as an interpolating f i e l d for the pion and define 
i t s normalization constant by 

<0|p°(0)|1rP(q) > - a p 6 a p (U.12) 

Later on we are going to identify p (x; with the divergence of 
axial-vector current and this determines a^ uniquely in terms 
of the pion decay constant. Equation (^.11) implies the following 
commutator for the densities 

[ ja

50(x>°)> PP(°) 1 " i 8 a p °3te) °(2>0) + S.T (k.13) 

where S.T. denotes the possible Schwinger terms. I f assumed 
proportional to a f i n i t e number of derivatives of 5-functions, 
the S.T. w i l l integrate to zero in With the help of (^.13) 

we now write for F (equation h.6) 

F° P - i < P 2|a(0)|p i > + Polynomial i n (^.l^) 

As mentioned i n Chapter one, the hypothesis is frequently made 
that the S.T. contribute only to amplitudes symmetric under the 
simultaneous exchange of Lorentz and unitary spin indices 
Here, however, we are dealing only with one vector index and we 
therefore keep track of the S.T. which w i l l contribute to F 
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with a f i n i t e polynomial i n q^ 

ft ft 
We expand T on a convenient basis as follows 

+ Q^Af + i^A3°P) + A ^ A f + i ^ A f ) ] u ( P l ) 

We define the usual kinematical quantities 

p - i ( p x + P 2) 5 Q - ^ ( q x + qg) 5 A - Px - P2 - ^ - q^ 

x> - -q .P - -q^.P - -Q.P ; t - A 2 

(^.16) 

The scalar amplitudes A° P, kj^ are i n general functions of 
o> t , q^, q^. Having an explicit representation of T̂  we now 
calculate qtj T™^. We are going to be interested in the l i m i t 
o -» oo of this quantity. Decomposing the scalar amplitudes 
Â , Â  into isotopic-spin symmetric and antisymmetric parts we 
arrive at the following relations 

-2oA, ( + ) - vlS+) + i ( q 2 + Q2 - W + ) + (q 2 - Q2 + £t) Af + ) 

. _A<+> + i W W ! ^ (ll.17) 

m2 + t 
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2oA 1
(" ) - T>A<_) + i ( q j + Q 2 - i t ) A ^ } + (q 2 - Q 2 + 

-A f _ ) (U.18) 

and 

A ^ - a i ^ A p - oA 2
( 1 ) + ̂ q 2 + Q2 - £t) A_(1) 

3 

+ (q 2 -Q2 - A ( t ) (U.19) 

where we have introduced the following notation 

< P 2 k ( 0 ) | P l > - u(p 2) ° m a u ( P i ) (U.20) 
m + t 

V a P - u(p 2) [-A a P f i ^ A a p ] u ( P l ) (U.21) 

Equation (U.20) defines the coupling G N N o of the unitary-spin a 

to nucleons. For the absorptive parts we have the relations 

-2x>lP - »&P + i f q 2 + Q2 - i t ) a ^ 

+ (q 2 - Q2 + ¥t) a P - - a ( 1 ) (U.22) 
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- 2 m N 5 1

( 1 ) - „ a f + i C d J + Q2 - fr)*P 

where 

v a P - u ( p j [ - a a p + i#I° P] u(p ) (k.2k) 

as 
The small letters denote the components of t on the same basis 

(12) 

(h.15). This technique of writing sum rules is due to Fubini 
and is described i n detail i n Chapter 1. We recall that the physical 
assumption made by Fubini is that one usually deals with conserved 
or partially-conserved currents and we can therefore assume that 
the scalar amplitudes A a P, A*P which define the components of V a P 

i n the tensor basis (^.15) tend to zero as x> -* a> i.e. 
Lim A a P - Lim A ° P - 0 (^.25) 
U—» 00 TJ—* 00 

I f A° P, A ° P obey unsubtracted dispersion relations then this 
newfai 'n lv hnl/^e rW\<& n^irBinal rnoanitKr p»-P e occninn+inn •? c m i l t o 

ivA 

clear in our case since V is proportional to an off-mass-shell 
pion nucleon scattering amplitude when we identify both the 
pseudoscalar density p (x) and the divergence D 5(x) with interpolating 
pion fields. 
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The absorptive parts a^ a\ are determined from the 
coefficients of i 7^ , [ 7^ , #] ... A^ , i n the expansion of t°^ 
i.e. from 

n 

< P a l 3 ^ ( 0 ) 1 ^ < n|p P ( 0 ) | P i > - Y » * ( p n , - P , ^ ) 
r r 

< P 2 | p P ( 0 ) | n > < n | j ^ ( 0 ) | P i > } (U.26) 

We are taking the external states to be nucleon states. 
We now make the assumption of unsubtracted dispersion relations 

(-) - ( - ) 
for the scalar amplitudes A* , Â x ' i.e. 

(o,t,<%,£) - i / - i = do' (U.27) 

and 

/+\ n r.°° a) 'fa* ,t,q2,q?) 
A*"' (D,t,q; fqf) - Z I X ' X 5 do' (h.28) 

The dispersion representation has been assumed for amplitudes 
(1*0 

symmetric and antisymmetric in isospin indices . We are aware 
of the fact that the symmetric amplitudes might pick up 
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contributions from the Schwinger terms. However we are going 
to be interested i n a particular kinematical configuration i n 
which the S.T. are harmless. Taking the crossing properties 
of the functions A., A. into account we arrive at the 
following non-trivial sum rule: 

i jfdo [2S< + )(o,t f <£,<!§) + a<+> (T>,t,q«,qJ)] 

. GHNa KKNp ( t ) 

1 
m2 + t 

(*.29) 

There is another sum-rule involving a^ ̂  but i t is not 
interesting because, as we shall see later, i t does not have a 
single-nucleon contribution. We now calculate the contribution 
of the single-nucleon state to the sum rule. For this purpose 
we need the following vertices 

< p| J ^ C O ) ^ ' > - i u ( p ) x a [y^y3 G j q 2 ) + i ( p f - p ) ^ 

X G 2(q 2)] u(p') (U.30) 

where q 2 • (p* - p ) 2 and we have neglected the 2nd class covariant 
proportional to a q^ . We also write 

<p|d" ( 0)|p l> - ig5(p)A 5u(p«)K f f l l t(q 2) (I* . 3 l ) 
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where m̂f̂ "̂111^ " ^ e n o w substitute these two expressions 
into equation (U .26). We then find the following single-nucleon 
terms 

ai,N »(»«e + ^ . T » a 2 2 

7t 1 

l 5(i3 - u Q) + &(» + U Q) I (^.32) 

2 , N " ^ a P

 + ^ > T 3) 2 - m 2 2 
a 

|-5(U - T5Q) - b(x> + 150) I (^.33) 

m* + q* 

| &(u - x>Q) - b(x> + o0) | (MlO 
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We also have a term 

° P 2 m2 + q 2 

71 1 

Since i n the sum rules the integration over x> is carried out i t 
is easy to see that this term w i l l contribute to the coefficient 
of [7 > #] i»e» &t^n a n d t o t n e coefficient of Q , i.e. 

a i ^ . For the remaining terms we have 
9 

a3,N " * ( 6a3 + 2 [ T 2 ffl2 + q 2 

j - &(o - I50) - bh + V)D) j - (^.37) 

Tt 1 
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In the above formulae o Q • ^(P 2 + Q2 + m^). 
Separating the nucleon contribution the sum rule (1+.29) now reads 

F m2
g K™»(qf>°,(q?) n r (+\ 

m2 + t 

where we have identified p (x; with the divergence of the axial-
vector current and .*. 

F m2 

it n 
a • 
P o 

Before discussing equation (^.39) any further, we wish to 
turn to the other technique of writing sum-rules namely Adler's 
method, described i n Chapter 1. In this method we evaluate 
uT^ by f i r s t computing q^ . As argued i n references 
(ik) and (U5) because of Lorentz invariance we can replace 

( X Q ) i n by (y) (-n.x) where n is an arbitrary unit time-H 
like vector (n 2 • - l ) . Then 

q£ T|f - ^d*x e ^ ' © (-n.x) < p j [ bp J ^ ( x ) , p P ( 0 ) ] | P i > 

| V x e ^ ' < p 2 | [ j ^ ( x ) , p P ( 0 ) ] | P i >d p©(-n.x) 



108. 

We are going to be interested i n the isotopic spin symmetric part 

of (k,ko). We evaluate the commutator i n the 2nd term using the 

quark form of the current and the pseudoscalar density. The 

isotopic-spin symmetric piece of the commutator i s 

[ J ^ U ) , P P ( 0 ) ] d p © (~n.x) - i n p n ^ d ^ b7 (0) 6*(x) 

(k.kl) 

(1*0 
Following Gourdin we make the natural choice 

P 
n 

Multiplying both sides of equation (U.Uo) with P we get the 
P 

following r e l a t i o n 

where 

u j f - -P p j V x e 1 < 5 2 ' X ( 5 ) (-n.x) < p g j [ bp j ^ ( x ) , p p ( 0 ) ] j P i > 

and 
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oB 
We expand U on the same tensor basis as before and use 
capital manuscript letters to designate the scalar components in 
the expansion. We thus obtain a set of eight equations but onjy 
five of them lead to non-trivial sum rules after taking the 
crossing properties into account. Remembering that we are 
concerned only with amplitudes symmetric i n the internal indices 
a, 0 we thus write 

ap -13 A' 

- uA^ - J ? 

- O A •2 067 

- 13 A <XB ap 

7°B " 4 «3 

where Ry is defined by 

< P 2is r("0)jp 1 > - u(p 2)R 7 u ( P i ) 

We again make the hypothesis of unsubtracted dispersion 
representation for the scalar amplitudes Â , Â . However we 

ctB 

cannot in general demand that the scalar components of V i n 
Fubini*s method and the scalar functions , wn:*-cn arise in 
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(Ih) 

Adler*s method should vanish simultaneously as u -» » v To 
start with we must make sure that Adler*s technique reproduces 
the sum-rule (4.29) arrived at earlier. For this to happen we 
consider 
Lim (-2oA* - t > A f ) - Lim (- - ftf ) + i d Ry 

(4.48) 

This equation we reproduce (4.29) provided 

Lim (2j3f + J ? f ) - 0 (4.119) 
•D-»oo 

I t is clear that we only need to assume that such a linear 
combination vanishes as o -» oo . Equation (4.49) is of course 

—ccB ocB 

also satisfied i f both and J-<2 vanish separately in the 
l i m i t . This is encouraging and makes i t possible for us to extend 
the assumption for a l l values of i and in particular for J^^ with 
i • 3,4 since these lead to interesting sum rules. Specifically 
we are going to assume that 

Lim Jlf - Lim - 0 (4.50) 
\>—» 00 \J—too 

Then the last two equations in the set (4.46) lead to the following 
two sum rules with the nucleon contribution separated e x p l i c i t l y 
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(see equations 0+.57) and (U.38) ). 

B g K O T n ( q ! ) G 2 ^ ) + / a ^ W ^ ^ d u - 0 (U.52) 

The factor ^F m2(m2 + q 2) 1 which occurs also i n the integral 
i t i t 11 1 

has been cancelled through. Wejbhus have sum-rules involving the 
induced pseudoscalar form-factor i n the weak axial-vector vertex. 
We shall return to a further discussion of these relations later. 

We now return to our sum-rule (^.59). As is usual in current 
algebras useful information is obtained i n a certain kinematical 
configuration which invariably involves off-mass-shell quantities. 
We are going to evaluate (^.39) i n the l i m i t q 2 • q 2 - t • 0. 

1 2 

Furthermore we are going to assume that the integral is saturated 
by the contribution of the N* resonance. To do this we need the 

33 
vertex 

< I ( P ) | J ^ ( 0 ) | H ^ ( P ' ) > « iu(p) [-H«(q2) 6 ^ - - H«(q 2)p^ 
m 

i t 

+ \ < M X C p * p ' ) u + \ H > * ) P 0 ( P - P ' ) J u V m ^ m 
i t 7t 
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Unlike the situation in Chapter I I I we know the numerical values 
of the form-factors H , ... H at zero momentum-transfer. For 
the particular component sandwiched between N + and 

(I neutron states these form-factors were evaluated by Furlan et a l 
using the algebra of currents and the saturation assumption. At 
zero momentum transfer they obtain 

\(o) -

H2(0) -

Ha(°> " 

MO) -

We also need the following vertex 

0.41 

1.13 

0.088 
(MM 

0.86 

<P(p)|^|N* +(p') > -/| ^ ( p J o V l f c ' -P)„ (*.55) 
V TC 

where X • 2.2 is the coupling leading to an isobar width of 
125 MeV. We have taken this parameter from Fubini et a l ' who 
re-evaluated i t following the analysis of Gourdin and S a l i n ^ 4 ^ . 
The N* contribution to the sum-rule is evaluated with the help 

33 

of the subsidiary conditions and the spin '/g -propagator given in 
Chapter I I I . Calling, as before, the coefficient of the 1st 
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5-function in (^.26) the direct term and that of the 2nd 8-function 
the crossed term we find, e.g., that the vertex in the direct 
term reads 

r 1 1 

u ( p j -H.S H P0 7 + — H P_ (2p„ + q j 
^ 2 ' |_ 1 u p 2 2p ' | i m 2 3 2p *2 ^2 7U 

Tt 

T g - -37. 7 + [(p 2
 +%)n7n 

I p C T p 0 3m* L P 

" ? A + %K} + 7~2" ( p« ̂ V ^ S ^ o } 

X 

p 2 "2 a j 3m*2 

- i fa2 + I,,) + m* 
2m* " ' i f ^ "la » W <U-56> 

v Tt 

Simplification of this expression is made possible by the use of 
the algebra of 7-matrices and the Dirac equation on the f i n a l 
spinors. The algebra is lengthy and.tedious but quite straight­
forward. To i l l u s t r a t e our point we consider a typical term from 
the above expression: 

x u ( P l ) x H l ( q|)yf * 

(*.57) 



where we have used q^ = Q + and q i • Q - j A . This 
simplifies further to 

m* 
—y. 

m* 
3 1 7 ^ " 7 P ^ 

H (q*) I - L i 2 J 3 m 2m* 
» TC 

(^.58) 

The values (̂ .5*0 were quoted for the component between 
N*+ and neutron states. Here we are taking the external states 
to be proton states and we take a • 3 • 3. Then we need the 
following conversion factor 

< n | j ^ V + > 

< P | ^ |N*+> 

'10 8 
1-10 

8 > 

10 
Mi 

8 
100 Mi) 

(*.59> 

Also from the experimental value 1.18 for the 3-decay axial 
coupling constant we calculate the coupling constant occuring i n 

< p | j ^ | n > . -^2 
<p|d5kllp> 

(h.6o) 
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We are now in a position to write the contribution of the N* 
resonance as 

± J" dx> [ 25^(0,0,0,0) + a^ + )(u.0,0,0) ] 
N* 

8 ^ U 3 3 6m*/ m 

^ g y * a»g
 k ^ \ y o ) 

\ 3 3m* 3m*2 P ° l e
y 

f U . M 2
 H 3 ( 0 ) 

m2 

3m* 3m*2 

2 3 pole 3 * m ] 
where o p o l e is the position of the N*-pole and is given by 

V i e " " -SP ^ 
g, 

The right hand side of equation (4.39) reads —£!£L2 # N o w 

m2 

o 
K J J J J ^ ( -m2) « 1 but we are going to assume that ~ !• 
We know from our experience with the Goldberger-Treiman relation 
that such extrapolations could lead to variations of about 15$ for 
a not too massive a . For consistency we are going to use the 
parameters of the a-meson calculated within the current algebraic 
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framework. As mentioned at the beginning of this chapter such a 
calculation was performed i n reference (U2) and led to a value 
of 385 MeV for the mass and a width of approximately 73 MeV. Then 
such an approximation is not too dangerous. We also put 

W ° > = 
Feeding in the experimental masses into the equation together 

with the values of pion-nulceon coupling constant and B-decay 
coupling constant, we arrive at the following number: 

Q 
. !. l 8 x 1 0-> x m2 F (U..63) 

m2 * * a 

**NNa 
We would lik e to mention that i t is the quantity which m2 

a 

appears i n current-algebraic calculations. But we know that the 
divergence of axial-vector current couples with a strength 
m2 F to the interpolating f i e l d . We now propose that the 

I t Tt 

scalar density couples i n an analogous manner with a strength 
m2 F to the *true a-meson* f i e l d . We are therefore led to a a 
define a coupling constant of the a-meson to nucleons by 

^ m2F a a 

Therefore 
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1.18 x 10 x m2 F 
%NO ; — 

a 

To proceed further we can make one of two possible assumptions. 
We could, for example, assume that in fact the scalar densities 
S a(x) couple with the same strength to the corresponding particle 
fields as that by which the pseudoscalar densities p a(x) couple 
to the pseudoscalar particle fields, i.e. one could assume that the 
algebra holds for the phenomenological particle fields as 
well. This sort of assumption implies 

m2 F - m2 F (U.66) a a it 7t 

and leads to the following numerical value for O M N a 

%Na " 1 6 * 8 ( U- 6 T> 

This value is much higher than one would expect. Later on we 
shall give arguments that i n fact the saturation assumption is not 
very adequate for this type of Sum rules and i n fact inclusion 
of higher states should bring the value (^.67) to a lower value. 
However i t w i l l s t i l l be too high in our opinion. Before 
discussing the 2nd possibility we would lik e to mention that the 
authors in reference 0*3) attempt to f i t elastic nucleon-nucleon 
scattering due to the exchange of n, n, p, <u, <t> and an effective 
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I • 0 scalar a-meson by using unsubtracted p a r t i a l wave dispersion 
relations with a cutt-off. The value they use for g N j j f f depends 
on the cut-off energy and decreases with increasing energy. 
E.g. at 800 MeV cut-off they use g 2 ^ » ̂ .15. Although they use 
a more massive a-meson i t is clear that their results favour a 
low value for g a j j j j * Now we would like to point out the sort of 
assumption which w i l l do this. I t is simply that F is equal or 

a 
approximately equal to F^, i.e. the pion decay constant plays a 
rather fundamental r o l l i n the relationships between densities 
and particle fields in current algebra. With this assumption the 
value (^.67) for g^^ is brought dow~n by a factor ^ 5 ^ ^ a n d 

reads 

We now turn to a further discussion of the sum-rules 
and (^.52). They contain essentially the same information and we 
shall content ourselves by investigating 0*.5l) only. Again we 
keep only the resonance contribution to the integral and write 

J N* 0 J3 l\ ^ ra* 3m*2/ 

\ 3 3 3m* 3m* 3m*2 

m 
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3m*2 pole 
m 

Tt_ 
m*2 

13 pole (^.69) 

The factor (m2 + q 2) 1 which also occurs i n the nucleon term has 
been dropped. In this case we have calculated the resonance 
contribution at t • 0 i.e. we set PX«P2 • -m̂  and q^Qg • -nP . 
In the arguments of scalar form-factors we l e t q 2 -* -m2 . I t is 

2 TC 

well known that the dominant contributions to G 2(q 2) and H^q^) 
come from diagrams where the proper vertex of j , _ is attached to 
a terminating external pion line. In the l i m i t q 2 -> -m2 , 
G2(q^) and H^fq2,) dominate over the rest of the terms and we write 
specifically 

and 

m 
i t mr + q~ J 3 m 

11 2 " 71 

Substituting these into the sum-rule and passing to the l i m i t 
q2 -» -m2 we get 2 it 
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4 (^.72) 

where this time U p o l e is given by 

V i e - i f r * - "4 - «5> <"••") 
Substitution of the experimental masses into this equation together 
with g - 13-5 predicts the value 2.8 for X to be compared with 
the experimental value of 2.2. The agreement is f a i r and further­
more shows that higher states do make a small but definite contributic 
which would optimistically bring the numerical value for X down. 

(kq) 

In this connection we would lik e to mention that Gasiorowiczv ' 
starting from the retarded amplitude involving the commutator of 
the vector current and the pion f i e l d calculated a value for the 
nucleon isovector magnetic moment which turned out to be rather 
high compared with the experimental number. We are thus led to 
believe that our estimates of Gjjjj a or are probably also higher 
than the true values. I t seems that sum rules obtained from 
retarded amplitudes involving a current and a scalar or pseudo-
scalar density converge more slowly than sum rules involving 
currents only. 

Finally we would lik e to cite some of the experimental 
evidence for a 'a' meson. Recently Lovelace and coworkersv 
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from a careful analysis of backward n-N scattering were able to 
conclude that there is a clear evidence for a rather broad "new 
elementary particle I • 0, J** • 0 +." 
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