W Durham
University

AR

Durham E-Theses

Cohomology theory of the kenematical groups

Whiston, G. S.

How to cite:

Whiston, G. S. (1969) Cohomology theory of the kenematical groups, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8755/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8755/
 http://etheses.dur.ac.uk/8755/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

COHOMOLOGY THEORY OF THE KINEMATTCAL GROUPS




COHOMOLOGY THEORY OF THE KINEMATICAL GROUPS

Thesis submitted to the

UNIVERSITY -OF DURHAM

by

G.S. WHISION, B.Sc.(Exon)

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Department of Physics, University of Durham, June 1969.




Simplico: "Concerming natural things we need not always seek the
necessity of mathematical demonstration".
Sagredo: "Of course, when you cannot reach it. But if you can,

why not?"

Galileo Galilei. Dialogue on the

Two Major Systems of the World.

DEDICATED TO MY MOTHER AND FATHER




(1)

ABSTRACT

A number of applications of S. Eilenberg and S. Maclane's
cohomology theory of groups to the kinematical groups of physics are
presented. Within this field, we apply the theory of group exten-
sions by Abelian and non-Abelian kernels to the study of the alge-
braic structures of the Galilei, Static and Carroll groups, and
introduce to physics the mathematical concepts of group enlarge-
ments and prolongations.

The global algebraic structures of the kinematical groups are
analysed in depth using these tools and a generalisation of kine-
matical groups is attempted. The use of the methods of homological
algebra in classica; mechanics is discussed from the new view point
of Lagrangian mechanics introduced by Iévy-Leblond. In this direction
two advances are made. Homological algebra is introduced to the
study of Hamilton's principle and then a reformulation of Levy-
Leblond's free Lagrangian mechanics is obtained. Whilst the above
author concentrates on a certain second cohomology group, we see that
it is a first cohomology group which is more relevant to this approach.

The group theoretic discussion of non-inertial motions is initi-
ated using the theory of the loop prolongations of a group Q by a
group K, where a loop is a 'mon-associative group'. Our preliminary

results enable us to give a cohomological description of constant

Newtonian acceleration.




(ii)

Preface and Acknowledgements.

This thesis presents an algebraic analysis of classical relativity
schemes using the powerful tools developed by the algebéasts
S. Eilenberg and S. Maclane. The results may be regarded as physically
trivial by some as no new physical results emerge. Any originality
claimed for this thesis by the author is in his choice of weapons to
attack some rather simple physics. Thus all he claims is that his
applied mathematics is new, offering a new start on some supposedly
well understood results. By adopting and developing Lévy-Leblond's
group theoretic view of free classical mechanics,a rather deep math-
ematical insight into the mechanics is obtained. The physical justi-
fication of his work, submitted as physics rather than applied math-
ematics, is summarised by three quotations. The first is due to J.M.
I&vy-Leblond and is taken from his paperl) on classical mechanics
which inspired the work of chapter (4) of this thesis.

'Invariance principles nowadays have become one of the most
useful concepts of theoretical physics, mainly due to their impoirtance
in quantum theories. Indeed, when the dynamical laws obeyed by
physical systems are not known, or poorly understood, invariance
principles act as super-laws to restrict the possible forms of these
laws as guides to find them. Conversely, it may be argued that the use
of invariance principles becomes obviated once these laws are known
as is the case at the classical level. However, it seems even then,

invariance principles keep a prominent role in that they enable us to
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reach a deeper understanding of these laws, reduce some of their
apparant arbitariness and relatqd’previously unrelated concepts.
The tighter structure and greater unity thus obtained have both an
epistemological and a pedagogical significance...... ",

The second quotation is due to H. Eckstien:- "Considerable
uncertainty concerning the dynamical laws of particle interactions
exists and is likely to last. In the mean-time, symmetry principles
provide a:powerful but incomplete set of predictive statements. It
is important that we exploit the reliable symmetry principles to the
greatest possible extent. In particular, the space-time symmetry.....".

" The last quotation is by L. Michel who is the leading exponent _
of group-theoretical tecQ%ﬁiques in theoretical physics after E.P. Wigner.
"We physicists have to consider several kinds of invariance: relativistic
invariance, guage invariance ..... How are the invariance groups
related? This is a fundamental question to answer. Too often
physicists consider them sepgrately because they do not know of other
solutions".

The above three quotations provide the motivation for the work
of this thesis. In writing a thesis in which the physical applications
of an abstract algebraic scheme are s%ught, the author finds himself
between two stools. Perhaps he should apologise to the physicists
for the lack of new physical results and the partial eclipse of
physics by mathematics he presents as physics; and to the mathematicians

for the cruel way he abuses their beautiful apparatus.
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In this thesis, many original applicatiaons of Eilenberg-Maclane's
cohomology theory of groups are made. L. Michel was the first
physicist to use these tools and it is from his viewpoint that we
shall discuss the classical relativity groups. Michel, of course,
studied the Poincaré group of Special Relativity , whilst our
discussions are of the Galilei and similar groups.

Chapter (1) is an elementary introduction to the algebraic
methods used in the thesis. Its inclusion in the first chapter
should be taken to imply that its material is basic to the rest of
the thesis and hence cannot be relegated to an appendix. It serves
also as a list of definitions. Chapter (1) is preceded by a list
of the symbols employed in the tﬁesis.

In chapter (2) a semi-axiomatic discussion of relétivity models
is to be found. Its discussion acts as an introduction to the
approach to Newtonian relativity which we shall use in our analysis
of the Galilei and related groups. In this chapter, we also discuss
Einst@gn's theory of Special Relativity and the Poincare and
Causality groups, and the Carroll and Static relativity groups intro-
duced by J.M. I€vy-Leblond.

Chapter (3) is an introduction to the cohomology theory of
abstract groups developed by Eilenberg and Maclane. In it, the theory
of group extensions and group enlargements ié discussed, the latter
prior to its first applications to theoretical physics in chapter (4).

Chapter (4) applies the theory of group extensions to elicit the
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globai algebraic structures of the Galilei, Carroll and Static groups.
Two approaches to the theory of the Galilei group are presented.

The first approach, capable of greater generalisation,discusses.the
Galilei group as the subgroup of inertial world automorphisms of

the group of world automorphisms of the Newtonian world, in the
axiomatic approach-outlined in chapter (2).. The second approach is more
straight~forward and direct and serves to list the various global
algebraic structures of the aforementioned'groups. Next, the algebraic
generalisation: of the Galilei and Carroll groups is attempted.using

the theory of group enlargements. A theorem derived by G.W. Mackey.

in the discussion of the unitary ray representations of group €xten-
sions is generalised to a more general algebraic context and enables
us to compute, in principle, all the central extensions by an Abelian
group of a trivial group extension. Finally in this chapter,
Eilenberg-Maclane's 'cup-products' of cochains are introducgd and
applied to the above theory. It is shown to have wide applicability
in this field.

In chapter (5), J.M. LéVj—Leblond's group theoretical scheme of
classical mechanics is discussed. A more mathematically precise
reformulation of his results is obtained. Whilst L&vy-Leblond
concentrated on a certain second cohomology group we show that the
appropriate group to discuss is a certain first cohomology group. An

algebraic formulation of Hamilton's principle is developed and applied.

In our scheme, 'Lagrange functions' are cocycles and 'trivial-
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Lagrangians' coboundaries. Similarly, Hamilton's Action functionals
are cycles and 'trivial Action functionals' %;1& boundaries. That is
Lagrangians are cochains in a certain cohomology complex and Action
functionals chains in a homology camplex. In this algebraic scheme
of classical mechanics, one is able to see in a lucid manner how
such concepts as 'inertial mass' and 'kinetic energy' are essentially
group theoretical. Motions in Newtonian relativity under the Galilei
and Static groups in Special Relativity under the Poincaré and Causal
groups and under the Carroll group are discussed in the new context.

Finally, in chapter (6) the group theoretical treatment of non-
inertial motions is initiated. The theory of loops of motions is
initiated. The theory of loops or not necessarily associative -groups
is introduced into theoretical physics. Eilenberg and Maclane's coho-
mology theory of the loop prolongations of a group Q by a group X is
discussed and applied to the analysis of uniform accelerative motion
in Newtonian relativity. A loop of 'semi-inertial' world automorphisms
of Newtonian relativity is obtained as a natural generalisation of the
Galilei group to non-inertial motions.

The work presented in chapters (4), (5) and (6) is original
except thaf due to L&vy-Leblond in the latter part of -chapter (5).
Here we rederive some of his r'eéults in a completely new fashion,'and
of course, reinterprete his original approach. Some of the work in

9
chapter (}5) is also original, particularly our approach to Newtonian

relativity, an approach extending that of Noll.
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CHAPTER (1)

INTRODUCTION



1.1
ATGEBRATC INTRODUCTION

Section (1) Sets and Relations.

The intuitive definitions of a set will be used. Firstly we
can define a set by tabulating all its members e.g.:- S ={x, y, ...
..,$ . If x is an element or member of a set S we write x &€ S. We
define subsets of S by making some propositions about its members.
Let $(x) be such a proposition about x € S, we define a subset @
of Sby®@ ={x€ S I+ $(x) is true . If X is a subset of S we write
X C8S. Two sets are said to be equal if they are subsets of each
12 X2C S then Xl 5
x€X,. If XCSandX#Swewrite X& S and call X a proper sub-

other. I.e.:- if X =X, iffVxe X, X€EX; =
set of S. Call P(s) the class on set of subsets of S, and-© the
empty set, thener, S€ P(S) at least.
Given two elements Xl, X2G P(S) we can obtain two others. More
about this type of process will be said later. Define then ‘-
0 .- = - ’2
Xlﬂ X,€ P(8) via: X0 X, = { x€3FxeX); x€X,3, also

XU X, € P(S) via:- XU X, 2 { x€SF x€X; or x €X, or

1
x€ XN Xz'} . Evidently X;N x2C X VUK. If XNX, =27, X; and X,
are said to be disjoint. If X,NX, =0 we write xlo X, for XU X,.

We define the Cartesian product of two elements X, X2€ P(S) via
X x X% = 1 (%, %) F €%, ,€X,5.5

One calls P(X1 X X2) the set of relations from X, into X5. Let
RE P(Xl x X5), if (xl, x2)€R we say Xy R x5, If Xy =X, = Xwe

call REP(X x X) a relation on X. Given a relation REP(Xl X X2) we
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. . . . -1 _ . :
define a relation from X, into X; via R = = 3 (x5, %7)5 _xlEXl XpEX,, T
(xl, x2) € R§ . We define a composition of relations as follows.
Let X;, X5, X3€ P(S) and consider the relations R€ P(Xl X X2),
R,E P(X2 X X3), one defines the relation R10R2€ P(Xl X XB) via
RloR2
<€ R2§ . Let X € P(S) we call the identity relation on X the element

£.

i (xl, x3) X1 €X;, x3€ X3}3 %€ X5 (xl, X,)E Rys (x2, x3)
AXxX)EPE xX), AXxX) =1 (x5 %,)€ XX X% = X,
A relation is said to be symmetric iff R = R '. It is said to be
reflexive of A (X x X) CR €P(X x X) and transitive if RoRCR. We
define certain special types of relation as follows. Let SCP(X x X)
be the set of symmetric relations on X, R the subset of reflexitive
relations on X and T the set of transitive relations. Then, if

RESMRNT one calls R an equivalence relation. Consider a relation
1

RE T M R such that RO R~ = A (X x X)jone calls such a relation a
partial order on X. One calls the pair (X, R) a partially ordered
set. An ordered set is a pair (X, R) X€P(S), R€ P (X x X) where
R is a partial order and X x X = RU R L. Let R be a relation on X.
Define a subset R(x)€ P(X) V x€ X by R(x) =iy€ X F (x, y)ERY.
If R is an equivalence relation, one can partionXinto a set of
equivalence classés which are mutually disjoint. We call the set
of equivalence classes of X under the equivalence relation R, X/R.
(The mapmr: R—> X /R 7 : x+—> R(x) is called the canonical
map from X to X/R. (It is a surjective function)} We have

R(x) N R(x,) =0 if (xp, x2)€ R, R(x )NR(X,) = R(xq) iff (x),%,)ER.
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(e

Since R = K T, R(x;)N R(x,) = R(x;) = R(x,) iff (x], %,)€ R.

Let REP(X x X) if (x, y)ER we write x Ry or y = R(x). The
latter concept introduces the concept of a mapping, we say that R
gives rise to a mapping R: ¥—> X. Under the mapping R an element
x € X is transformed to an element y = R(x). We write this as R: x+—
—> y. Our interest will mainly be in a class of mappings called
single-valued or functions. A function is a mapping or a relation
'f' such that if (%, y), (x, z)e f then y = z. It is clear that if
fl and f, are two functions on X then fy o f, is also a function. Let
R be a relation from Xl into X2, it gives rise to a mapping R: _Xl —>
X5, similarly let R be a relation from X; into X, such that (Xl’ x2),
(xl, xé)€ R&x, = x2'; R is then a function from Xy into X,. Let

c(X X2) be the set of functions from X, into X,. Define In(Xl, X5)

1° 1 2

as the set of injective functions from X; into X2, an injective function
being one such £ is also a function. DefineS(Xl, X2) as the class

of functions from X; into X, suchV y € X3 x€ X,y = f(x). The,
elements of Sur(X,, X2) are called surjective functions. We have also

a set B(Xl, X2). = In(Xl, X5) N Sur(Xl, X,) of functions which we call
bijective. When B(X;, X,) # 2, the sets X; and X, are sald to be
isomorphié sets. The relation or being isomorphic sets is an equivalence
€In(X , X ) then

relation written X, 3 X,. We note that if £, f

1 2
o f2€ In(X, X) and that if f

2

f f,€ Sur(X, X) then f; o f,€ Sur(X, X),

1l 1° 2
More generally if (fl’ f2)€ In(Xl, X2) X In(Xz, X3) then f, o fy

€ In(X;, X;) and if £, £, € Sur(Xy, X,) x Sur(X,, X3), f,0 ) €

2
Sur(Xy, X3). Similarly if (f1, f,)EB(X], Xp) x B(Xy, X3) then
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fo0f, € B(Xl’ XS)' Moreover, if fEB(Xl, X,) 3 f'EB(Xz, X3)}

f' o £ =1, wherefi, is the identity function on X, and £ o f' =1,
where 112 is the identity function on X,. ThusV f€ B(X, X)3 '€ B(X, X)
Jf'of =fo f' =dl. We shall soon give another interpretation of
B(X, X) for X€P(S).

Consider the two functions f,: Xy —_— X, and £, X, —> X

1 2 72 5
which defines f2 o fy: -Xl —->X3 . We can draw the diagram:-
X > %
f3\ / £, Such a diagram is said to be commutative iff f3 = f‘zof'l.
X
3

Larger diagrams including more than 3 sets are said to be commutative
iff all sub diagrams included in it are commutative. The diagram

x, s x
1 ‘_/5_ 2 is said to imply the function £, 0 £, implied functions

X3

f50f
are denoted by a curly arrow e.g.:- Xl ,-\/2\/\,}45)(3.

Given a set S, a family of elements of S is a function F: T—> S
where I is some index set. We will call a family 'F' the object
<F()> i€I. If I € Z, we call a family a sequence. Censider a
family<X(i)> i € I of subsets of S i.e.:- X : I —> P(S). One can
form the subsets J{X(i) | i€ Ijwhen IC Zand ((WX@E) I i€ I}
the definitions of these subsets follow by induction for the definitions
of X;U X, and xlﬂ X,. Similarly, when IS Z the definition of the
Cartesian product set Xirzll{ Ai} , where # (I) = n, also follows. When
A; is equivalent to ZV‘i € I, the notation Xil:__l]_{ As3 = A" will be used.

The class of functions f: An —>. B will be written as (A, B), with
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c°(a, B) interpreted as B and C'(A, B) as C(A, B). We generalise

the definition also for cases when I is an arbitrary set. Given

f € C(X), X,) we define the set £(X;) CX, by £(X}) = ly€ X, ¥+ 3
X€X,, y=f(x)§ , and the set f_l(XZ) C X; via f-l(X2) = {x€ X,

fx) € X25 . Consider a set X< P(S) we call a function f& C(X x X, X)
a binary operation. One writes f(xl, xi)_ = Xy X5, A binary operation
on a set is associative iff ¥ X1s Xo) x3€' X, (xl- x2) "X3 = xl‘(xz'XB).
Binary operations may be required to satisfy certain conditions including
the above. The algebraic objects we now consider consist of underlying
sets with one or more binary operations, which may or may not be
associative. Firstly, we consider sets with 1 binary operation and
gradually impose more conditions on the operation obtaining algebraic
objects of increasing complexity. We will consider later objects

with two binary operations.

Section (2). Semigroups.

Consider a pair (S, f) where S is a set and f is a binary operation
on S. Iff f is assosiative, we call the pair a semi-group. We have
already met an example, this is the pair (C(X, X), 0)., XEP(S) where
O is map composition which is associative. Let us define a sub semi-
group as a pair (X, f') where XCS and f' is the restriction of f to
the subset X x XCS x S. Iff f'(xl, x2)€X Vv (xl, XZ)EX X X we say
that (X, f') is a sub semi-group of (S, f) and write (X, £')<(S, f).
Consider two semi-groups (Xl’ f1) and (X2, f2). Define as Hom(Xl, X2)

the subset of functions {¢€C(Xl, X,) <o £1(xq5 %5) = f2(¢(xl),(b(x2));
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or{ o€ C(Xys X,) - ¢(x1'X2)- = ¢(xl)-®(x2) ] (x5 X,)€ X} We
call Hom(Xl, X2) the set of semi-group homomorphisms from Xy into
X5. A semi-group (X, f) is said to be Abelian or commtative iff
X)Xy T Xp'Xy Y X5 Xo € X, We call Hom(X;, X,)N In(X,, X,) =
Mon(Xl, X2) the set of semi-group monomorphisms from Xy into X5,
on the set of injective semi-groups homomorphisms. Similarly the
subset Ep(X;, X5) = Hom(Xl, X2)ﬂ Sur(X,, X,J is called the set of
semi-group epimorphisms. Finally Mon(Xl, X2)ﬁ Ep(Xq, X2). = Hom(X, , X2)
N B(Xl’ X2) is called the set of semi-group isomorphisms. We recall
that C(X , X ) is a semi-group when X is a set, Sur(X, X) and In(X, X)
are sub-semi-groups. So is Hom(X, X) = End(X),the set of semi-groupo
endomorphisms of a semi-group X. B(X, X) is also a sub-semi-group.
Given a semi-group S and sub-semi-groups Xl’ X, < S, we readily
observe that Xlﬂ X, < S, which implies that B(X;, X,) is a sub-semi~
group of C(X;, X,) and M on (X, X2)ﬁ Ep(X,, X,) of Hom(X;, X,).

Let Xl’ X2C S a semi-group. One defines the subset Xl-X2C S as
X%, I(xg, X,)€ X X X8 -

Section (3) Monoids.

We call a monoid a semi-group with an identity element. An element
e € X a semi-group is an identity element iff Vx € X e*X = x'e = e.
By its definition iff e € X is an identity then it is unique. Let M;
be monoids 1 =1, 2. Let f &€ Hom(lVIl, M2) be a semi-group homomor-
phism, we must have f(el)_ = e, where e; are the identities of My
respectively. Define Ker(f) = {x€ M, - f£(x) = e2} and Im(f) =

f(Ml). We then see that Ker‘(f)(lV[l and Im(f) < M, i.e.:- are submonoids

|
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of M; and M2. As above, if My and M2 are submonides or M then M; N M2
is a submonida of M. If X is a semi-group we call End(X) N B(X,X) =
Aut(X) the semi-group of semi-group automorphisms of X. Similarly

if M is a monoid, Aut(M) is the semi-group of monoid automorphisms |

of M. Recall that 1l € C(X,X) the identity function is also trivially
a semi-group endomorphism. This means that V Xl’ Xl, semi-group, that
C(Xl, Xl) is monoid, and also that In(X, X), Sur(X, X), Ep(X, X),
Mon(X,X), Hom(X, X), Ep(X, X)N Mon(X, X), Sur(X, X) Im(X,X) are
also monoids. A monoid which is an Abelian semi-group is said to

be an Abelian monoid.

Section (4). Groups.

Let M be a monoid, define the submonoid G<M by G.
IxX€ M3 x'€E M, xx' = x'x =ef, one says that G is a g;r'oup..
Conversely we call a semi-group S a group iff (i) I e&€&SIFxE€ S =
e'x =x-e=x (1i)Vx€sS 3 x*€5F xx!' =x'x =e. In our defini-
tions so far we have already met two groups. These are B(X,X)for a
set X and Aut(S) where S is a semi-group. Groups will, of course, be
of central interest in this thesis. Given the set X we will call
Sym(X) the group (B(X,X),0), O being map composition. We now present
a few definitions specialised to groups.

Consider x,, X, € G a group; V¥ s;, X, the mapping X, l-—x xlx2xl_1
is a bijective function. Also x2x'2|__> xlxzxz'xl'l under the function
-1

] -1 - -1 . .
However XXX, "% 7 = (x1>c2xl )(xlx2'xl . Thus the mapping is an

automorphism. One calls such a mapping an inner automorphism of G.
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More precisely, define a map In: G —» Aut(G), In(x): yh—>xyx T\
X, y € G. We call Im(Id) = Int(G)<Aut(G). Ker(Id) = T x€G ! In(g)=
1}3={xE€GF sys-_1=yVy€_ G ={xECGI xy=yxV¥y=G? . Ker(In) is
called the centre of G written ©(G). More generally consider a
subset S C G. Define a subgroup N(G)(S)< G by N(G)(S) ={x€ G I
In(x)C ST = S§. One calls N(G)(S) the normaliser of S in G. Similarly,

define €.(@)(S) ={xcGF xyx_l_

=y ¥ yE ST. ©(G)(S) is called
the centraliser of S in G. When G = S we call ¥.(G)(G) the centre of
G:- ¥(G). Subgroups of G such that N(G)(X) = G are called normal. We
write X < G. We have € (G)<1 G andV¥SC G, C (G)(S)IN(G)(S).

Operator Groups on a set

Let G be a group and S a set. G i s an operator group on S
iff .;Eff‘unctione :GxS —=>S such that if®(g,s) = g*s then (i) gl-(gz-s)_ =
g18y's (ii) e's = s¥seEs, (g, g)EG. Given an s € S, one calls
5; g " s gGG§ the orbit of s under G, we denote the orbit of s under
G by Ob(s). The relation sl':: s, 1ffS,E€00(9p) is an equivalence
relation on S splitting it into disjoint orbits. If Ob(s) = S for
s € S, one says that G acts transitively on S or that the 'action'
of G on S is transitive. If g's =sV (sy )€ SXG shall say that
G acts trivially on S. When S is also a group and 6:G x S —> S also
satisfied g° (3152)_ = g£°5,8°S, Wwe say that the group G is a group of
left operators for the group S. In this case I p € Hom(G, Aut(S))
with p(g):sb——> g's.

Consider a set S. If there exists amap f: S x G—> G such

that (1) £(x,g) zec'g, o< (818,) = 0x"8) <8, we say that G is an S
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group. An S subgroup of G is a subgroup X<<G such that t<.X T X V€S,

An S homomorphism from an S group Gy into an S group G2 is a homo-
morphism f € Hom(Gl, G2) such that f(e<'g) =e<'f(g)V (x, 8)E S x G .
Define the subset Homg (Gl, G2)C Hom(Gl, G2) of S homomorphisms. We
can easily see that Homs(Gl, G,) is a sub-semi-group of End(G) for a
group G. If X< G is a:normal subgroup and an S subgroup we call it
a normal S subgroup. ILet us consider some examples. If S =0, any
group is a & group. Again let G be .any group and S = Int(G). Each
normal subgroup of G is an S subgroup. Lastly let S = Aut(G).

An S subgroup of G is called a characteristic subgroup of G, we write
X <@ G iff X is an Aut(G) subgroup of G. Consider a group G with

H <G, then there exists an equivalence relation in G, viz gl/,:s 1 &

iff 3 h € H such that gl-lgz = h. The equivalence classes of the

quotient set G/(7~) are of the formTl,(g) = g'H where T;: G
—> G/ (= 1). Similarly there exists an equivalence relation (=, )

l=h. The canonical

in G such that gy &, g, iff3 h€E H I gg,.
mapTT2: G —> G/(f;:g) isTT,: gH—> H'g. The setTTl(g) is called
a right H coset andTT2(g) a léft H coset. When H<J G, then H'g =
g'HVg€ G and G/H = G/ (=) where () = (=,) = () has the
structure of a group via the composition TT (gl)‘Tr (g2)= 'I'T(glgz).

Thus the canonical map H: G ——> G/H is an epimorphism of G onto
G/H. Consider Ker(f) where f & Hom(G, Gl) where Gy is any group. We
have Ker(f)<l G, whence the natural mapping of G onto G/Ker(f) is an
epimorphism whose kemel is Ker(f). Clearly Im(f) is isomorphic to

G/Ker(f). Consider the map Im: G —> Aut(G). Im(In) = Int(G) and
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Ker(In) =&€(G) so that Int(G)2G/E(G). Note thatT(G)<g G .
We say that Int(G)<] Aut(G) defines Aut(G)/Int(G) = Out(G). One calls
Out(G) the group of outer automorphisms of G.

Let G be an Abelian group. Now be definition of In, G/€(G)
is isomorphic to Int(G). If G is Abelian &(G) = G whence Int(G) =
{e? . Thus Out(G) is isomorphic to Aut(G) that is, all automorphisms
of Abelian groups are -outer. If E(G) =Je¥ and Out(G) = {e}
we call G a complete group. Thus a group is complete iff Aut(G)
is isomorphic to Int(G) which is isomorphic to G If a grouwG has no
Abelian invariant subgroups we say it is semi-simple. If it has no
invariant subgroups at all we say it is simple.

Consider a sequence {Gi» i€ I of groupsand a sequence(fi) icel
of homomorphisms fi€Hom(Gi, Gi+1)such that Im(fi-7) = Ker(fi).
The sequence((Gi, fi)) i € I is called exact. We have already
obtained the exact sequences S 1€ —> Int(G) -L> Aut(G) —

T out(Q) —>e

S, e— e(0) —> ¢ T (@) — e
3 T . .
SB:_e—é Ker(f) — G —> Im(f) —= e where i, 15

and i3 are identity momomorphisms. (It is trivial that if:i- e ——> A
Fa Band AZ2>B—>¢ are exact, thenf; is a monomorphism and
f2 an epimorphism). Exact sequences such as the above are called short
exact. In commutative diagrams all exact sequences will be in straight

lines.

Given two groups K and Q which satisfy the short exact sequence:-
i $

e > K > f—> Q—=> ¢
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for a group E, then E is said to be a group extension of K by Q. A

short exact sequence is said to be split iff (i) K< e (ii) Q=2e or
(iii) 3 a monomorphism } : Q<E I $oj =dlq. Here, we shall
only be interested in split extensions. When 3- Q<Jd Eand E/Q= K
the group E is said to be the direct product of Q by K (or vice-versa).
When Q< E, E is said to be the semi-direct product of Q by K iff

it is also an extension of K by Q. If E is the direct product of

Q by K, the below diagram must be true:-

In this case, E is written K x Q and is isomorphic to the group con-
sisting of K x Q with underlying set and composition (kl, ql)(]zc2 s qz)v =
(klk2’ qlqz). One can prove the lemma th4t E is isomorphic to K x Q
when K, Q<JE, KN Q = e ad E = K°'Q = QK. For, in our diagram
consider the homomorphism S, X 5, from E into K x Q defined by

S

X8, !X |——» (s2(x), s,(x)). Now x€Ker(slxs2)=>s2(x)‘ =

1 2’
e = sl(x) so that Ker(slxs2)CKer(sl)ﬂ Ker(sz), we readily see that
Ker(slxsz). = Ker(s, )N Ker(s,) so that by exactness Ker(s; x 55) =

Im(i))M) Im(i,) i.e.:-V x€ Ker(s; x 5,03 (k;, k))E K| x K,

x = i,(k;) = i,(k,) whence s;(x) =5, 0 i,(k) = D (k) = ky, = e so that
ky = e similarly k, = e whence Ker(sl X 32), = e and KNQ = e. With
the result that 81 X 8y is a monomorphism. It is also an epimorphism;

given k € K, 9 € Q then for x = il(k) i2(q) satisfies 81 X Syt X b—>
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—> (k, q) since sloi.L =0, 52962 =0 . So that E = K*Q and
S1 X Sp is an isomorphism.
Similarly, a group E is called a semi-direct product if the

below diagram is commutative

Or, given a g€&€Hom(Q, Aut(K)) we call the group K@ g Q whose under-

lying set is K x Q and whose composition is (kj, ql) ko, o)
(klg(q'l)(k2)’ q1q2) the semi-direct product of Q by K. ]-30th definitions
are equivalent and imply K< KmgQ, Q <KmgQ and KN Q = e, with

K® gd = K-Q. We must have Im(i) M} Im(j) = e for if x = i(k) = j(a)

then so i =o implies k = e and q = e since i is injective. SoV x€&

K m gQ there exists (k, Q)€ X x Q such that x = i(k)j(q) is a

unique member of K x gQ when k and q are fixed. This K® gQ has
underlying set K x Q ® K-Q. Since K<t K ® gQ, (Ker(s) = Im(i)),

K must be stable under Int(X m gQ), thus 3 g& Hom(Q, Aut(K)) with
In(}(a)) oi=1o0g(@ VagE Q Wemust then have i(k;)j(a;)iky)Jj(ap)=
10y )3 (ap )iey)3 () i (@i ay) = 1), In(ilay) 0k )iaa,) =
i(kl)i(g(ql)(kg)j(qlqz), = i(k;8(q;) (k5)j(q9,), which is the semi-

direct product group law. When K is an Abelian group and Q a subgroup

of the set of units of a ring with K a natural module, we immediately
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see that there exists a group K @ nQ, n€ Hom(Q, Aut(K)), is called
the natural homomorphism.

Choose a new monomorphism j: Q<K @ gQ such that soj' = 0.
We must then have j(q) j'(q)_1€ Ker(S) = Im(i), so write j(q)' =
i($(@)j(qQ) where € C(Q, K). Now Im(j) @ Im(j') which means
that3 k € K with In(i(k))(In(§)) = In(3")) viz L ()3 (@i ™
i(p@)jlq) or d(q) = i(k)j (q)i(k)_lj (q)_l_ = i(k)i(g(q)(k_l))_

i(kg(q) (k_l)). When K is Abelian, we can write P(q) = k-g(q)(k),

this result will be elaborated on in chapter (2). When H < G the
class <In(g)(H)> g € G are called conjugate subgroups of H in G
and are all isomorphic to H.

Section (5) Rings, Sfields and Fields.

We will discuss Rings, Sfields and Fields only very briefly.
A ring R is a triple (S,G)l,oz) where (S,ol) is an Abelian group
and (S, @2) is an arbitary semi-group. The binary operations (Ol,©2)
have to satisfy the distributative axioms (X1®1 x2) @, X =
%105 X301 X0, X3 and  (X@,(x5)@; X3) = X 0, X0 X,0, X3¢
We call the set of units of R the maximal subgroup of the semi-group
(s,@,). If (8,0,) is a group, we call (5,9 ,,0,) a sfield. If
(S,G2) is an Abelian group also, one calls (S,® l,og) a field.

Section (6) Modules and Vector Spaces.

Consider a ring /A and an Abelian group M. If there exists a
map k : A x M—>M such that, defining:- ky(A, x) =A: xV (A Lx)E

Ax M; we have A .(x7 + X3) = HWxp + ArXp; (qtA ) x =
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A XA X, 7\1')2'); = (NA,)'x, ee = x; we call the group
M a leftA module. In a similar way we can define the notion
of right Amodules. IfA.is a commutative ring, that is (A, O 5)
is an Abelian monoid jthen every leftAmodule is also a rightA module.
Give two left A_modules, one define§ a/A. homomorphisms as a homo-
morphism f GHom(Ml, M2) such that £(A°'x) = A T(x)V x€ M, -
Ir Ml’ M2 R .M3 are modules and fl and f2 are A\, homomorphisms fle Hom A
(Ml’M2) )f‘zéHom A(MZ’ MB) then £, ofl GHom(Ml, MB)' Thus the
subset of A endomorphisms of End(M).where M is a.A moduleyis a
semi-group. Since the identity function is also a_ A homomorphism
End A(M) is a submonoid of End(M). Because End(M) is a ring when
M is Abelian, we see that End p (M) is a subring of End(M). IrA is
commutative, one can also endow Hom A(Ml, M2) as a A module.
Hom(Ml,Ms) being an Abelian group. Every Abelian group is a Z2 module
withnZ zZ+2Z+ ... ton factors V(n, 2)€ Z x M.
IfA is a field, we call a /\.module M a vector space over
NA. If M is a vector space overf\ we call the set Hompa (M,/\) the
vector dual space, denoted by M'. M* is a/\L linear space via the
definitions (Af; + A fp)(x) =AFy (X)+ A, £o(x) = £, (Ax) +5 (%)
An inner product space is a linear space over A and a function f:
M x M—N with £ linear in both variables seperated.
f(?\lxl + %zxz,x3)_ =7\lf(x1,x3) +?&zf(x2,x3)
f(xl,')\ax2+'>\3x3) = ’)\2f(xl,x2)+7\3f(xl,x3)
In this case, there exists a A.isomorphism from M onto M* defined by

X +—> x* when x*(y) =f(x,y) V (x,y)E€ M, called the canonical isomor-
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-phism: of M onto M*. A normed linear space is a linear space with a
function Il [ : M —>~A_which obeys (i) Il x II= O,l x| =0 iff x = O
ALY Ax It = LA VI (did)l '7\1 X1+ leiél?\ll i\ xl[\ +r7\2m X,
Clearly an inner product space is also normed via W x| 2 = x*(x).
The elements of M* are called A linear functionals, elements of

¢ (M,A )-and functionals. Functionals like f above are called bi-
linear. If M; and M, are linear spaces over A., the tensor product
space of M1 and M2 over/\ denoted by:- M1 QA M has underlying set
isomorphic to My &M, with addition of elements x®y in My DpM,
defined by the rule (xl+x2) © Y =XV +XO) X0 (yl+y2), =
X®y; + X ®Yp, and module operation A(x®@y) = (Ax @ y) =(x @Ay).
¥ A€EN . Given a linear space M over.A. , M®_A M is isomorphic
to the dual of the space of bilinear functionals on M via x @ y: fl—
flx, y )V f © B2 (M,A\.) the space of bilinear functionals on M.

We will only consider the case A = IR,

Section (7). Categories and Functors.

In this section, we shall briefly discuss the notions of
categories and functors from a very elementary standpoint. The concept
of categories and functors is due mainly to Eilenberg and Maclane and
has a large unifying effect on algebra. We shall use different
algebraic constructions due to these authors in the main text of

the thesis.
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A category € consists of a pair (0b (@) ,Ar(€)). 0b(e) is
a collection of albegraic objects such as sets or group etc. Ar(€)
is the set of all morphisms or relations between pairs of elements
of Ob(€). We have Ar(€) = (O {Mor(a, B) I A, BE ()3 .
For theee elements A, B, C € Ob(C) there is defined a binary relation
from Mor(B, C) x Mor(A, B) into Mor(A, €). The relation must satisfy
the requirement that ¥ A € Ob(&)3 4 ,E Mor(4, A) such that
«_rLAo f =f V &€ Mor(a, B), flofl , = 'V f'€ Mor(A, B), BEO(E)
The composition must also be associative when defined. A morphism
f& Mor(A, B) is an isomorphism iff 3 '€ Mor(B, A)} f o f!' =41B,
f' of = ﬂA' When A = B an isomorphism of Mor(A, A) is called an
automorphism. The set Mor(A, A) is called the set of endomorphism of
A; End(A). End(A) is a monoid. ILet€& be a category:we may endow
Ar(€) with the structure of a category as follows. lLet (f,, f2)e
Mor(A, B) x Mor(A', B'). We define a morphism fl —> f2 to be a
pair (% l,<[32)€Mor'(.l\, A") x Mor(B, B') such that the below diagram is
commutative.

A —‘F’—L-——&?

4, 5g
Al —

P

One can, in fact endow the category of commutative diagrams between
objects of a category & with the structure of a category by defining
translations or morphisms between diagrams. The above operation is a

morphism between Mor(A, B) and Mor(A', B') where we define a morphism:-
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'Mor'(cbl,d)Z) : Mor(A, B) — Mor(A, B'); Mor(dnl,q\g): £ f2 =
@2 o f, 0d,. We will supply an interpretation of the relation 'Mor'
later.

Let €4 and €, be two categories, we call any relation F.
S —C€, such thatV A € 0E€;), F(A)E ®(E,); ¥ fEMor(a, B)

F(f) EMor(F(A),F(B) and F(g o £) = Flg) o F(f) € Mor(F(4), F(CHV g€
Mor(B, C), f& Mor(A, B); a covariant functor. Similarly a relation
fromel into€, such that F(A)E () ¥ A€ B(C,), F(f)€
Mor(F(B), F(A))V £ € Mor(A,B)+ F(g o £) = F(f) o F(g) € Mor(C, A)

VY f€Mor(A, B), g ©Mor(B, C); is called a contravariant functor.

We will give examples of functors which relate the categories of sets,
semi-groups, monoids and groups shortly. Consider first the relations
M&G —.3, My: X —> Mor(A, XIWX€0o(A). If$EMor(X,X'),define
MA:q) |—>~Mor(412,q>): Mor(A, X) — Mor(A, X'), Mor(d',¢): fF—~
fopV e Mor(A, X). M, is a covariant functor from ‘€into Ar(€).
Similarly VA€ OB(€ ) we can define a covariant functor MA: e —
ar(e), M X—> Mor(¥, A). IfOE Mor(X' X) M +>Mor(d 1)
Mor($p,4): f—> fodV FE Mor(X, A). We have already defined

a functor Mor: ©2 —> Ar(€ ),Mor: (A, B) I—> Mor(A, B)V®A, Be €x €
and Mor: _(¢l,¢s 2) —>Mor (P l,(b 2)\7‘ (q;_L,¢) 2)6 Mor(A', A*) x Mor(B,B');
Mor(cpl,djz) : f ——}-dslof‘ohz; Mor (P 1,<t)2): Mor(A, B) —» Mor(A',B¥),
¥ £ & Mor(A, B). Mor is both contra and covariant. The category

S consists of sets and functions Mon(Sl, 82)_ = Cl(Sl, 82). The

categoryg consists of groups and homomorphisms Mom(G;, G,) = Hom(Gq, Go).

|
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An important functor is from a category onto the category of
sets and mappings. This functor is called the stripping functor.
Consider the groups (S;,® ;) = GiGOb(g) ad f€Hom(Gy, G,) then
F: G;>5; and F: f—%» feCls), 5,),is the covariant stripping
functor. Similarly let (S, 0., 2) be a ring;then there exist
functors from R into the category of Abelian groups F: R +—> (S,Q)l)
and to the category of semi-groups F: Rt—> (S,m2). If R is a ring
with identity then F: R (S, @2) to the category of monoids.
This ends our summary of the algebraic notions to be used in this

thesis. TFrom now on, concepts will be defined as they arise.




CHAPTER (2)

SPACE-TIME, RELATIVITY

AND GROUP THEORY



2.1

This thesis presents a discussion of various relativity models
of physics from an algebraic point of view. In this chapter we
shall attempt to introduce the work to follow in later chapters.No

apologies are made for the semi-axiomatic approachl)

to relativity
models which we shall use. Whilst some may feel that such an appro-‘
ach obscures the physical content of a theory, it is necessary to
present a theory in such a way to make it amenable to the use of the
extremely powerful arsenel of modern algebra. The task we attempt
to fulfill in this chapter is the translation of physical experience
into algebraic language, so that using the logic embedded in that
language, as many physical conclusions can be extracted as possible,
in the spirit of the quotations in the preface. The algebraic tools
used in the analysis of this chapter were presented, in summary, in
chapter one. The ideas we obtain from this preliminary analysis are
followed up in the next three chapters using the fairly modern alge-
braic‘:’f,oolé developed in the chapter following this.

Theories of relativity are broadly concerned with the structure
of a set "W', the 'event-world' or 'space-time'. Elements x&EW are
called 'events' and represent physical phenomena. A theory of rela-
tivity assigns a mathematical structure to W via sets of relations which
enable one to fornulate relationships between any two events X5 X5 =
W , such as "x, is 'before x2" or "x, is 'near' x, " etc. The
structures assigned to W are drawn from experimental observation of

the natural world. The assignment of a structure toW is, loosely,
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a physical theory. A physical theory is judged in relation to others
via its ability to mirror as closely as possible the structure of
the natural world as determined by experiment, in its ability to
prompt the experimental search for hithertoo unobserved phenomina
and in its ability to explain the phenomina hithertoo un-understood.
Apart from the philosophical speculations of the ancients, the first
theory of relativity (in the modern sense) was proposed by Issac
Newton. Newton drew up on the work of immumerable past workers,
prominent amongst whom were Copernicus, Kepler and Galileo Galilei.
Such was the quality of Newton's relativity, that within its frame-
work physics continued quite happily along to the beginning of the
century when the first tremors of the downfall of the relativity
were making themselves felt, through the well-known paradoxes, such
as the null result of the MichelsomMorley experiment. In order to
explain these paradoxes, Albert Einstein, in 1905 proposed a new
system of relativity called after him, or the 'Special Theory of
Relativity'. In the formulation of his Special Theory, Einste€in, like
Newton, drew upon the work of his predecessors and contempories such
as Lorentz, Poincar€ and MinkowskiZ). After ten years or so,
Einstien proposed his General Theory of Relativity as a more perfect
theory than his first. The General theory dealt with the 'global'
structure of the event-world, reducing, in the 'locality' of an event
to the Special Theory, under certain eircumstances. Since Einstein's
beautiful General Theory was propounded, many new ones, similar in

spirit to it have been suggested, in all of them the cosmological
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structure of space-time is discussed, whilst, in the local case, the
Special Theory of relativity remains.

In the 1920's, Einstein's theory of Special Relativity seemed
to breakdown when one attempted to explain microscopic phenomena.
The explanation of these atomic and sub-atomic phenomena lead to the
invention of quantum mechanics by a group of mainly German physicists.
Most prominent amongst the inventors of quantum mechanics, were Bohr,
Planck, Heisenberg, Born and especially E. Schrodinger. The first
attempts at the formulation of a quantum mechanics only used the
relativity ideas of Newton. Almost immediately, attempts were made
to improve the mechanics by incorporating in'in it the Special Theory
of Relativity. The first attacks by Schrodinger and Dirac were not
particularly successful. It was not until 1939 that Wig;ner3 ) was
able to imbed Special Relativity into quantum theory in a highly
successful way. The extreme beauty of Wigner's theory was not, how-
ever,matched to its limited practicability. Fairly r'ecently5’6’7’8),
it was shown that if Newton's relativity was incorporated into
Wigner's quantum mechanics, the result was the Schrodinger quantum
mechanics, a highly practical theory. The great stumbling block of
Wigner's quantum mechanics incorporating the Special Theory of Rela-
tivity is its present weakness in describing the interaction between
material bodies. Schrodinger's theory was able to do this in a
highly successful way, employing the classical description of

interactions developed by Newton, Lagrange and Hamilton. This weakness,
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until comparatively recently, lead to the neglect of Wigner's
quantum mechanics in preference to the highly 'slippery' relativistic
quantum field theory. The latter was very successful when descri-
bing the weaker forms of interaction between sub-atomic particles,
but was completely unsuccessful when dealing with the strong inter-
actions between certain of them. The newest of interaction theories,
which can deal with these strong interactions is the so called 'S
matrix'8) theory of strong interactions developed in the last decade.
The S ﬁatrix theory attempts to side step the descriptions of fields
and interactions, dealing instead with the experimentally observable
consequences of the interactions. Wigner's theory of guantum mechanics
is the natural frame-work for this modern theory.

We cannot discuss the quantummechanical theories mentioned here
any further. due to lack of expertise and to same slight degree, space.
They were mentioned however, because most of the material presented

9’10311). It

in this thesis have quantum mechanical applications
would take another volume to do them justice. The mechanics we
discuss will be classical; the extensions of the results we obtain
to quantum mechanics is very easy but will not be performed here.
Mso, although we discuss Hamilton's scheme for the description of
interactions, the only results we shall obtain are for free bodies
undergoing no interaction with the external world. Neither will the

cosmological theories of relativity be discussed, we will concentrate

on the Special Theory of relativity, Newtonian relativity and some
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relativity models derivable from each of them.

In parts (1) and (2) of this chapter, we shall discuss Newton's
and Einstien's Special Theories of relativity. In part (3) some
degenerate cousins of the first two will be discussed as valid, if
unphysical relativity models. The discussion will largely through

the use of group theory which is introduced in the first part.

Part (1). Newtonian Relativity.

One can mathematically formulate Newton's notion of the world
in modern terms as follows. Our treatment is an extension of a
briefer one due to W.Noll in Ref.(1). The Newtonian world W(N) is
a triple (W/,T,2). Here W is the event-world or space-time. The
object 'T' is a function TE cz(w, IR ) which assigns to every
pair of events x

1
lapse function. According to physical experience, one must assign

s K, € X/ a real nunber T (xl, x2) called the time-

the following properties to T . These are (i) T(xl, x2)_ = - r(xz, xl)
(ii)f(xl, x2) + '((xz, x3)_ = ‘c(xl, x3)\-/ Xy5 o) x3€w; and (iii)
V(x, t)E WxRIyEWI T, y) = t. The time=lapse function
enables us to assign a relation F in W/ via:- F =z {(x, y)G\)(;}
T(x, y) > 0.%. Condition (ii) then implies that F is a transitive
relation,F o FCF. However, F is not a partial order since if P =

FLl, PO F

S then A< S. However, the relation S is an equivalence
relation and the relations F, P and S define subsets of W via:-
F(x) = {yewx (y,X)€ F}, P(x) = F (x) and S(x) = F(x) N P(x)

V x €W . (learly from condition (iii) F(x) U P(x) =W and from
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condition (1) y € F(x) <> xE€Py) V¥ x, y&W . The equivalence
relation S is called simultenaity. If y € S(x), we say that the ‘
events x and y are simultaneous. Given x & W we call F(x), P(x)
and S(x) the future, past and instant of x. In our definition the
map S can be chosen as the canonical map S:W ——W/S, which induces
a portion ~J° of W into a disjoint family of subsets, i.e.:-

W= UfclseFi , sx)NSK,) =@ if (x, x,)& S and
S(xl)ﬂ S(x2)l = S(x) where X{5 X, € S(x). The time lapse function
gives rise to a set function T € C*(F, IRD  where Tloy,o,) =
T (xl, x2) when (xl, x2)e <, XO,. For each pair of instants
1S5 >, the numberT( o~1,<5‘2) is called the time-lapse
between them. Clearly, we have (i) T (0‘1,6'2)' = - Nop,Tq) -
(11) T (03,8,) = 0 iff &y =0, (ii1) T(sysop) + Topoo ) =
T‘(Gl,c‘}) and (iv)V ¢ ,€4%, tERIGES T T(o,5,) = t. In

this light, define a relation A ind*via A = ¥ (o,0,)e I x8F

T(cy, 9,)> 0%, then we must have ANB =A where B = A" 50 that A

1
is a partial order. IfGZGA(O‘l) or (O‘l,sz)eA we say that the

instant S, is after &; or if (0‘1,6‘2)6‘. BSOS , is beforeST. We

2 1 2 1

must have A(G )N B(S). =6 Vo€ and A(or) U B(s) =4V oc
that is A is a total order ind*. It is induced {in~§~ via the natural
equivalence between~{ and R (to be defined) and the natural total
order (>) inlR. The natural equivalence betweend™ and ™R is obtained
as follows. Choose an instant Oy €d™. Then a function H':{>—=1R
is defined by D': G —>T(s,0,) v €4 By condition (iv),d' is

onto, and since Tj(o‘l,é‘o)_ = T(T,,0,) <= T(07,5, ) = 0 with
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f(crl,o-z). = 0= o =, we see thatD'(5]) =.0' (5‘2)““61 =0,
whence D' is one to one and hence bijective. If O=.'"1 then/ is

an equivalence between R and 0 and moreover (B(E) A(5))E A <=
(t1, )€ (>). Alsoo(o ) =G,. Now let us choose as in place
of s . A function Q' *:§>—>R I A'™*: S > T(5,5,) is obtained
which is bijective and whoose inverse naturally preserves the partial
order relations; (8*(t)), A*(t,))€ A< (8, t,)E€ (>) with

/*(0) = .. We thus see that there exists a familyd = <&(T)>o &S~
of equivalences between R and €% which preserve the partial orders

and satisf‘yS(o*): Ol—=>>0 VY o€ <> defined by&(o‘)_l:o" —

R(s,'s )V G"G.{“. In terms of the axioms for T we must have

D) € (o7Ho,) = -CEyilo) (DEEN™HS) = 0<pey = o
D@ ) + £y (5,) = Elay) o T7,65,05 €™
Let us again fix an instanttS“OE-S“withS(G‘o)-]f = /4. We must then
have the consequence that@(/c)(tl))-l(/a (t,)) =& (O))—l(/c)(tl)) -
E (RO AW, or (e ) A, = B oAt -

2 _lo /3(1:2)_ = t-t which is the time-lapse between the instants

23
/2 (t;) and/d(t,). In particular, if we choose@(tl)‘ =@ ', then the
time-lapse betweenS;' and S, is tl whilst betweens ' and an
arbitrary O €™ the time lapse is KT ')(T) = ¢, - /él(c‘), the
relative time between ‘5(‘)' andow .r'-t.G'o- If the relative time
between S, and ¥,/ is T, the 'time' of s is to + T relative toG‘o.

The J'_ns’cant0‘0 chosen to fix the scale of time is called the 'present',

if another 'present' is chosen, the total time-lapse is the sum of the
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time-lapse between the original present a nd the new one and the
relative time lapse between the instant and the new present.

As subsets of W , each instant is isomorphic to any other and
whence tor a given present. Physical experience shows that the
present is isomorphic to the set R 5 corresponding to the independent
notions of 'lengths', 'breadth' and 'height'. Also,T , must be
a real linear space corresponding to the relative nature of these
notions. That is, choosing an event yE S, o> We can affix the basis
of a real linear space V(y) to y, where V(y) is isomorphic to the
real linear space TRS, y1I—> 0 and x—»>x ¥ x €S- X is a triple
(xl, Xps x3) defining the position of x relative to y in V(y); the
vector x being called the location of x in V(y) when x, ye < .

Given two real 1r11,1mber'so<1,cx2 and a pair of eventsx., and Xy, We

1
define the event o< x; +o<, X, in V(y) as the event whose location in
IR-I’ is R Xty X Let us choose an event y'& O whose location
in M3 is y' relative to y, and define a vector space V(y') ins‘o

by y' —> 0 and x—> X' — ¥ x € o, then there exists a
sy e tse— isomorphism V(y') —>>V(y) defined by x'—> x + y' when
in V(y) xI=>~x' and in V(y) xi—> x V x So,. We write V(y') =

V(y) + y and say that V(y') is a translate of V(y). Clearly V =
<Viy)»D vy &, is a family of vector spaces isomorphic to R0 and
whence mutually isomorphic as sets. The family V is called a frame,

the members of the family are frames attached to x¢& S if WEV and

W = V(x). Since n%’ isa linear space it is also an Abelian group,
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each element V(y) € V can be regarded as a point in the orbit of
I'RB, the underlying Abelian group of an arbitrary fixed U& V via
V(y) = uwe - WeB(Y) whenpis the R.R. of 7R3 and O is taken
as the linear space U. = V(0) =S_. That is all frames in V are
translates of each other. The underlying Abelian group ofI‘R3 is
called the spatial translation group written as TRB, the three fold
direct product of the Abelian group TR odd.

Experience also insists that ¢, is a Fuclidian metric space
inheriting the usual topology a nd Euclidian geometry of rRB. The
object @ inW (N) is a family 2 = <2(¢ )Do €™ of Euclidian metric
functions 9 (o ): 0 x 6—>R . The topology endowed to Gyenables
a precise formulation of neighbourhood or nearness and defines rela-
tions in G, in the obvious way.

It is fairly clear that the underlying set of W can be taken as
R> x R on G, X [R-. The subset (v, of W is sometimes called the
absolute space of Newton's world. When an event x €W is written as
x = (z, t) one means that x € /A(t) and that its location in g (or(L )
is X, We can also write/Q(t) = { (x, .t)l p = [RB? . /9(t) is a linear
space with vector addition and module action defined by the rule .-
:xl'(zl, t) +<><2'(§2, t) = (9‘151 + OX s £V 01,0«26 TE;(glt),(g_cE,t)
€ /o(t). As in the discussion of frames, all instants in <™ can be
regarded as translates of G, ,points in the orbit of G,under TR?, the
~t

underlying Abelian group of the time axis IR via /o(t) = g, - The
partition ¥ is endowed with the usual topology on IR which enables

one to define the proximity of instants; the distance between two



2.10

instants 6‘1,0‘26-6"‘ being d (0‘1,0‘2)_ = l%(q,oz)l . The topology
onW is thus the product topology of the usual topologies on'TR
and R .
Let us begin to discuss kinematics. In order to do so, we utilise
some rather formal definitions given by Noll. A 'material universe!
is a set fU , whose elements are called 'bodies'.{(is partially
ordered set with order (S ), one says that if A, BE Q{ with ASB,
A is a '"part of' B. A body B is separate from a body C if BN C = &
where BNC &< Band BMNC &< C. The material universe
appropriate to a system of 'particles' is the power set of a finite
set S (# ()L N, ), elements p € S are particles. A motion of
a material universe U is a function M:U{—> P(W) (the power set of
W ) such that M(B)CCM(C) if B&EC and M(B)YN G ¢+ & V o &Y™
(Call M the set of motions atU , MEM). The s& M(B)TWis called
the set of events experienced by the body B and more commonly the
'world tube' of B. If &L is a system of discrete particles and

p € S, then M(p) is called a 'world line'. Now given p& S

M(p)D S is a discrete element of W for let X1 X5 E M(PNGT, then‘

X)» x2€ M(p) ard X5 xZEG' whence x, and X, are simultaneous events.

1

If we make the assumption that a 'particle' cannot be in two places
at the same time then Xy
function £ (1) : R %W £ (M): tH— M(p)N P) ¥V LtER,

or f(M): t+—> (x (M)(t), t) where gp(M)‘IRl —bﬂé is called the

= X5 and Xy = Xp- We can thus define a

trajectory of t he particle p under the motion M. Sometimes we will
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call f (M) the world line since we have U {fp(M)(t)| tETRE =
Ulne)N L )l t€RE =mEeN(U{AE®)T tERY) = M(p)
Having laid our formal basis we turn now to the introduction of
group theory into the discussion of relativity models, a technique
which we'll use throughout this thesis. Recall that the set B(\/)
of bijective mappings of W onto itself forms a group. Consider a
subset QU (W) < BW) of bijective functions which preserve the
structure of the world modelW(N)_ = (W, T, ), called 'world auto-
morphisms'. We place X € BCW ) inCUW) iff (i) Tul(Xxex) =T
or TN (%), (x5)) =T(xp, X,)V %7, X,E W and (i) S (O%)(ex(x,),
£T, o €, where O% is the set
XE€T > x(X)E TH* . It is immediate thatQ({W )~< B(W) for if
04 5%y ca W) thenod otxéECl. (W) ,alsol€q(W) and ifx<&(\W)

then x'& (W) since (1)To(XxX) = T & To (XxXVo(exxX)" =To (XxX

= (x,)) =S () (x, %)V x5 X

or T o(xXxe00lX'XxX=) = To (xoxX " xxox™) = T= Toloxtxx)"}
and (ii) we have S (0 e (xxX) = S (0TI 0 € ¥, yhence

(S (TX) o (xxex)) o (D<x(><)-l. ==3(0) o (o\xm)—l_ = (G™ whence
(> 'Yo (O&xtx)_l_ = S(O“""“_j)_ =3 (T). The important

thing to remember about the groupQUW) is that it is uniquely deter-

mined byW and hence determinesW . A discussion of CL(W) can

replace one of W in many respects.

The first condition defining (W) means that eache« (YY) must
preserve the relation F and, in the form T (P o8 ) =
'“_C(O‘l,o‘z)v S %e-d\' is must preserve the total order on<¥.

Thus the world automorphism must preserve the causal order on Newton's
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world which means that an event'y'of P(x) always satisfie¢x(y)&
P(ox(x)):- effects cannot precede causes. We saw above how each world
automor’phiém also preserves the Euclid%an distance between simul-
taneou;:‘? Also, via the definition of the function f(eX):C t—»
we see that OC (VW) is also a group of automorphisms of the pqrt;\ition 5>
In order to study O(W ) in more detail, it will be ncessary to
write:- o (x, t)b+—% ((6’1(00(1) +é’2(t><)(t), ﬁj(ﬂ)(ﬁ) +
By(0)(£)) where p € CHAUW)Y CHR’, ®));0,e CHa W),
CHRL RS B5€ A, CHR?,®Y) anag € Claw),
Cl([kl,ﬂ?,l)). When we have discussed cohomology theory more fully,
we shall be able to analyse the mappings <fi> 1= i= 4 in greater
detail than we can here. At the moment, we will discuss a few more
obvious points about this analysis ofe{ , which are more amenable to
discussion. From the first condition one< we can determine some
facts about(® ; and ;. Recall that:-
‘C((zl,t'}), Xy £,)) & by -ty V (%,6))s Xy, £,)ENW 4 s that
we must have B, («Yx;) +@B, (o)(t)) - @, (xYx,) + £,(x¥t,) =

b -t A E Q. (W ). Thus when ¢, = ¢

1 2
693(04)(52) = Osince @ ,(ex)(t)) = ﬁ;(m)(%) when t, = t,(since

we must have ge(tx)(zl) -

‘6’ (<) is one to one V x EANN)) as can easily be shown) - We surmise
that ©5(¢) (%)) =@ g(x ) (x,) or that @ 5(ex): X +—> T(oV where
™S Cd(CL(W),_[Ei). Thus, when t, # t, we infer that £ ), (<) (t) -
B () (5,) = t1-t, W x €AW, we have {2, (X)(b1) -t =

B0 (t,) = 6, = T"(x ) where '€ C* (@QU(W),TRY). Writing

TEr) = T' (<) + T"(=4), we must have < :(x, t) t——-%»(ﬁ(oog) +
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+ @2(00(10_) » ©+ Tx) ) VxeALW). One can readily show

(cf. chapter 3), that T(b<l oos2)_ = 'I'(«xl) + T(v><2), so that

TS Hom(Q,(W),rRl), where l'E]' is the group of translations of the
time axis which is isomorphic to[R add. Clearly, the automorphism
F(o¢) ofd™ induced by€ A (W ) can be written as £(o< ) :

L) 3 R (t+T(ex)) withQ (W) acting transitively ond™:-
f(x)o/@ = A oé’ (). The functions (21 and @2 will be discussed
after a few more definitions concerning motions have been intro-
duced.

Consider a finite set S ={ Pi | €17 with #)< X, of
particles. A motion M of S defines the individual motions {Mi |\ i€ If
of the individual particles where M(i) = Mlpi Vi <€ I, and world
lines fi: t —>M(1)N O (t). The world lines give rise to traj-
ectories via fi(t) = (g_i(t), t). The trajectory X, is continuous
if X5 is a continuous map from the usual topology on (Rto that onTE-ﬁ.
Given x; is continuous we can define the functions éi called the
instantaneous velocity and ii y  called the instantaneous acceleration.
The motion M; is said to be uniform iff '—}El- = 0, and in]/ertial iff E_Ei =0
¥V i&€ I whenS =9UU(S) . Select particle 1 say,as the origin of
aFrameV (£) = V() tER . Wen¥ =Oand x; = 0Vi€ I
we can lable the frame VI(f) by il = V say, theframe V(f) is then
written L (¥ ) and called an inertial frame. Corresponding to the

set of all inertial motions of S is the family <I(V)> ¥V ETRBT

I

of all inertial frames, where IRBT is the set of constant tangent
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vectors in R°. We also callR7Nthe underlying Abelian growp of
RT and note that I can be regarded as the orbit under IR 2T I(0)
viz. IOX¥ =TI oR (v),/ being the R.R. of RT.

Let us go back to @ ; and @,. Now the second congi;&ion of
QLW ) is that XEAW) 1 S (LB (6 + T(x)))(xy), % (x,)) =
5 RENGxL YV X, e ), tERL Writed (B(t)) -
d(t) then d(t + T(e<))(ex(x;),o<(x5)) = d(t)(x;, X,). We have
A(t) (%5 %5)) = | % (8) = %,(t)Il , (the norm on the inner product
space [R?). Whence, since (x) (£)) =dx,(t)) =@ 090, (8) ) +
£,(c) (1) =B (=) (%,(8)) - B ,69 (%), we must have

1@ (00 (")) ~RB(e ("N & = iix (8) - &, (6)] 2
which means that the distance apart of two (particles in motion say)
must be the same at all times and for stat'ionary particles that:-
1@y (s Xzg) — B4 (X2 IME 1 Zg- 2,0 or that@; (<) isa linear

isometry ofR.? with the immer product XX, = xll x21. These trans-

formations will be discussed further in chapter (3). Note that no
restrictions are yet placed on€2€ Cl (xw )s Cl(ﬂal,ﬂé))!

Under a world automorphism with @3,(sx) =1 we have (x,t) —>

(x +ﬁ)_(o< Y(£), t) or if x lRl AIRB is a trajectory then under
=X x > x™ where x(t) = x(¢t) + 2, (x)(t). We must have X =
5 xNE) = x(6) + (B, (OB, XrE> foy x> (6) = K(6) +
Lﬁz(u)"(t), «e.. Thus sn automorphismx€E (W ) can map a uniform
motion into a non-uniform one. Let I(N YAYO.(W )k be the subgroup

of world automorphisms of W which map uniform motions into uniform

* TN QW) = TN
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motions. ‘We call IéW ) the group of inertial world automorphisms of
W . Thus, by definition, VEiX& I (W ), we must have @2(o<)(t)"
=20 orf,(x)(6) =U&) t where UECH(T W) ,]R7). We shall
show later that in the circumstances tha’c@léxl), =l and T(D<2)_ =0
we must have W &4 00t,) = KWby)+ g(><'2). Such motions induced by
I(W) must always be inertial. In chapter (5) we shall discuss the
group theory of non-inertial group motions inCQL (W ) and the above
ideas in greater detail. Recall that we may choose‘:subgr*oup:

‘:IA(W )P I:§W)} if W =Woi then W'E Hom(I(W),\‘EBT). In this way
I(W) acts transitively on the set I =4 I(v)> v EF\;T of inertial
frames viae: I(v) +— I(v + ufc<)). Note that we can choose «
such that U : ¢ |—>0 ¥ x & I(W), we will discuss this point later.

The subgroup I:SW ) is called the Galilei group. TIn chapter (3),
we shall discuss it in great detail. However we note that each
Galilei transformation can be expressed as a quadruplet (a , b, v, R)E

R yml x HE}T x 0(3,T) which operates on an event (x, t)€ W
like (2, b, v, R): (x, t) —> (Rx+Vvt+a, t+b).

In his celebrated laws of motion, Newton laid the basis for the
laws of motion in his world. He postulated that two particles would
influence each other in some way such that this influence changed
the state of each others motion in a reciprocal fashion. This influ-
ence he called a force, which coﬁd be propagated instantaneously
between two events. His laws of motion were

(i) 'Every particle remains in a state of uniform motion unless
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acted upon by external forces'.

(11)'The instantaneous acceleration produced by a force is directly
proportional to the force'.

(iii) 'Given two particles intéracting with each other, the force
exerted on one particle by the other is equal and opposite to the force
exerted by the second particle on the first'.

A1l these laws were experimental, the second law provided a
means of defining a force via the acceleration it produced on test
bodies. The constant of proportionality Newton called the 'intertial
mass'. Of course, knowing the force, one can compute the trajectory
of the particle in principle by using Newton's law to provide a second
order differential equation for the trajectory. Then the tréjecﬁbny
and its associated world line provides a complete description of
the past and future events encountered by the particle. One is lqdb
to seek a more general preécription‘than Newton's law of Motion to
describe dynamical situations. Such a prescription was provided by
Hamilton via his renunciation of his Principle of Least Action, a
prescription which can be applied in any world model to yield the
relevant dynamics. The principle will be discussed algebraically in
chapter (4). Here we shall see how the relativity group of inertial
world automorphisms of a world model completely describes the 'free'
motions via Hamilton's principle. These calculations are made by
combining Galileo's Principle of Relativity with Hamilton's Principle.

The former principle is the one which is the backbone of all group-
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~theoretical analyses in physics, perhaps the most important principle

of physics. Its statement is very brief:- 'The laws of physics must

- be of the same form in all inertial frames'. Einstflin's Principle

of Relativity includes Galileo's and is the basis of the Special
Theory of Relativity which we shall soom discuss.

Combining Galileo's Principle with Hamilton's wilﬁlead us to
see that such notions as kinetic energy, inertial mass ete. are group
theoretical in origin.

Part (1). Einstffn's Special Theory of Relativity.

Recall how in Newton's relativity, signals cones be propagated
between simultaneous events. This implies that there is no finite upper ~

limit to signal velocities. To see this more clearlyll)

, combine
Galileo's relativity principle with the velocity addition law of
Newtonian relativity. Consider two particles in an inertial frame
moving with velocity V relative to the present. If a signal is
propagated between the two particles with velocity U, then relative
to the present'it propagates between them ﬁith velocity V + U. Thus
there can be no finite maximum signal velocity.

Einstein combined Galileo's Principle of Relativity with the
additional postulate that thefe is a finite upper limit to signal
velocities, the velocity of light 'C', a finite quantity. This com-

bined principle is called 'Einstein's Principle of Relativity'. If the
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speed of light is to be maximal, it should be invariant under all
inertial transformations. Consider the form Q defined on W/ xW/

"= Qlaps %) = (€ - .02 - gy - 2 DY xy, x,EW. If
Q(X‘l, X2)> O for the pailr of events Xy and X5) then signals may
propagate between them with constant speeds less or equal to tha{:
of light. This follows from:- llx; - x| 2 /(xlo - xzo)zé C? when
Q(xl, x2)b 0. Thus, fixing an event XOG\X/ » the event can only
comunicate with events in W such that x € {x€WI Q(xo, x)> 0%.
Also, the quantity Q must be invariant under all iner%.al automorphisms
to accord with Einstfn's principle of relativity.

These two new facts suggest the f‘oll_owing fomlalisatio_ns of

Einstein's world model, which we shall denote by W (E)'. We must
have W (E)! = W,T,2, Q), where (W ;T ,&) is Newton's world and
Qe CZ(V/ ,JR ) was defined above. Given the group B(W) of bijective
functions from W onto its self, we define the subgroup A(W(E))

B(W) of functions in B(W) such that the pair (W, Q) is invariant

via Qo @¢xx)'= Q¥ x €O(W(E)). Note that we do not require
the time lapse or the instantaneous distance to be invariant. Let
us discuss Q a little more.

Recall Q(x;, X,) = (5%~ ,9%? - Nx; - xll HY x, €W .
If the events x; and X, are similtaneous, the Poincaré invariant
Q(x), %) = -lx;-%,(12< O is obviously related to their Newtonian
distance apart. When two events are coincident, then the Poincare

invariant Q(xl', x2') is related to their Newtonian time-lapse by
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Q(xl, x2) = 021:(xl, x2)2,2> 0. Note that simultaneous events are
not necessarily simultaneous in all inertial frames connected by
Poincaré'transfbrmations, although they are always the same distance
apart and that the time-lapse between coincident events is always
the same. For two coincident events the quantity szQ(xl, x2)/c2)
is called their proper time lapse 'E'O(xl, x2). Given two events
which can communicate then their proper time-lapse between them is
Wfﬂé(xl, x2)/02) = \[Z“C(xl, x2)2 - \lgl - % 2/02), a Poincaré
invariant. If the event Xy is regarded as the origin of the present,
then'C(xl, X) = t(xl)(x) and n_§11§||? = cL(xl)(xz), then the
proper time lapse between X, and X, is (to(xl))(x) =-Vr(t(xl)(x)2 -
d (xl)(x)2/C2) or £ =‘Wt2 - 52/02) for two events which can
communicate. We must have Ato/dt = Y(1 - £°/c%) =¥, Thus
if the two events lie on a world llne with: tragectory X, the time
lapse between them is Ix(l—x2/02)dt. The quantlty Qx5 x,) is
called the interval between the events Xq and X5
We will replace W (E)' with W (E) = Q,W ), A (W(E)) =
(OWKEY)'). Let us examine W (E) a little more closely. In Newton's
relativity, we were able to define the relations F, P and S and the
corresponding subsets F(x), P(x) and S(x) for an event x €W 5
called the future, past and instant of x. The function Q enables us
to define new relations on W . Call T = { (x, y)E W Qx, y)> 0F
€= {x, y)eW’-x, y) < 03and L = T &, y)EWTF— Qlx, y)=0¢.
The relations T, & and L are all symetric, L is also reflexive
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A CL. It is sometimes useful to define the relations & 'z
€0A , T =TUAand L' =L -A . We must have

TNg=#& , TNL = & and &NL =& 'which means that£'N T' =A,
E'NL=A,TNL=A. The relations €' and T

are called augmented and L' subtracted. Via the relations we have
defined, the subsets T'(x), £'(x) and L(x) naturaljarise. The set
T'(x) is called the interior of the time-tube of x, it is the subset
of W with which the event x can commnicate via signals with speed
less than light. Also, the set €'(x) is the subset of W forever
seperated from x, consisting of the events inW with which x cannot
communicate. The set £ (x) is called the 'elsewhere' or the interior
of the space tube of x. The set L(x) is called the light cone
through x and is the boundary between the time tube and the space
tube of x. We call the subsets T(x) U L(x) T T(x) and &€ (x)U L(x) T
E(x) the time and space tubes through x. T(x) N £ (x) = L(x)

is their boundary. "f(x) is the set of all events in W with which

X can communicate.

The relation F in VW allows the definition of two extremely
important relations inW/. CallT' () Fand T' N P,’V‘+ andV/_
respectively. The subsetsV+(x) andV_(x) are called the interiors
of the past and future cones at x, where the future cone is L(x)N)F(x)
and the past cone L(x) ) P(x) = L,(x) and L_(x) respectively. We
must have Ly(x) U Lo(x) = L(x) and Ly(x) N L_(x) ={ x§ since

Lx) 0 Fx) N P& =L N Sx) = £xT (N x-%11= 0
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<> X, = X,). One readilly sees that V _ =V+_l and that

V;_ NV _ =A. Te latter follows from the fact that'V (x)NVV(x) =
™)N FEINPE)) =T ) NSKE). But SEISCE(x)V x€W since
let %, € S(x) then Q(x}, x,) = -llx; - x| 5= 0. Thus

T'(x) D S(x) C T'ENS'(x) = £ xT, clearly x T (x)N S(x)
SO thatv;_(x)ﬁ Vo(x) = £x3 or V. MV_=A. TV, is
antisymmetric'. But V. + 1s also transitive, since let xlf'-‘"\r+(x2),
XZG'\T +(x3). Then xl°> x2°> x3° which implies xl°> x3°; and since
Qlx;, xz)é 0, Q(x,, xB)E Oqand = 0 &= X; = X, OF X, = X;3 by

Schwartz's imequal:-ity Q(xl, x3)& 0,= O iff x Thus

1 = X3
xlev . (XB’)' So we see thatV, is an assymetric transitive
relation which is a partial order onW/ . The order is called the

ZeemanlB)

causal order and we will discuss it in more detail later.
It is interesting to see its comnection with the total order A on
the par'titionwp‘ of W into instants.

Let <A ((t)> tE®  Dbe the partition<f* of W into
disjoint instants relative to the present /O (0). Consider an event
x€ /(0), we can define its future tube T'(x) and hence a par't:jﬁon
'_J:'of it into disjoint regions /2 (x) (¢) = T (x)NPE)VLtETR. The
natural order (>) onR induces a partial order omy” given by
/2 (x) (%) >/e)(x)(t2) iff t; > t, , which is the partial order on
~J* inherited from V" , in W. Given that W is equivalent to R*we
define it as a . real linear space in the natural way. It is inter-

esting to note that the module structure of R*is an additional structure
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to that which we have so far used. Define the natural isomorphism

X > x* on tathelinear space MM which arises, by

:;;zo Xg. X5, - Now ML is & left M(4,/R) module and

its dual ..[\/L* a right M(4,TR) module via:- (xl*. ML) (x

xi (x2) _

2).
xl*(M -x2) v MEM(U,R), where M —>~ ML is the involute anti-
endomorphism 'transpose! of M(4,TR ). Consider the matrix GEM(4,[R)
where (Gij) = -J;;Vij € ¥ 1,2, 33 and Gyq = Gjo = O with

Goo = 1. Then G = GF = G L.

Let us consider next the bilinear

i . — . = * - \
functional g: _(xl, x2) —> (xi G)(xz). Xy (G x2)‘v’ X s X,EW.
One can define an 'inner produce space'M (W) viaM (W) = MW, g)
where g is regarded as an inner product. The map xI—A—)- x*:G is
regarded as the canonical isomorphism of'.M.(\X/ ) onto its dual
*

MW )A where then x{\ (x5) . = xl*(G-xz) CEXp o G(xy) = g(xl,x2)_ =

(xlo x2° - Zl 21 xja'_ x2i. Then the functional Q(x;, X,) |
g(xl-xz, x_1-x2) is the derived pseudo norm ofM(W/ ) which will enable
us to write Q(x;, xp) = Nx; - x, 2.V X, ,EMW); Qisa
pseudo-metric on M (W ). However M(W ) is not to be regarded as

a linear topological space with the 'ps@gjlo-metric' topology. Zeemanlu)

has introduced a topology in W which reduces as it must, to the
topology on TR or R 3when restricted to time or space axes. The
neighbourhoods are defined in terms of the E(4) open balls by removing
the deleted light con‘e:—. I.e.:- if BE" ) is an E(4) open ball then
the set (B (&) - L'(x)) = B'(d” ) is defined as an open ball centered

on x when BE" )is centered on x. This topology on M(d™ ) which is
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finer than that implicit in E(3) is called by Zeeman the 'fine
topology'. We shall not elaborate these topological notions further,
except to note that Zeeman's fine topology is the finest which reduces
to the usual topologies on time or space axes, i.e.:- preserves the
Newtonian notions of 'distance' on these axes.

Clearly, if we r'egardM( W ) which is called Minkowski spaee

as a metric spaceqthe subgroup of linear 'isometries' ot ML(W) is

a subgroup of CL(\W). We shall call this group the Poincaré group.

It is immediate that it must have the structure ﬂlu 01, 3.

Here fRu is the underlying Abelian group of M.( W) which operates
onNI( W/ ) via the regular representation. 0(1, 3_;!72_) is the sub-
group of pseudo-orthogonal matrices in M(4,[R) such thatA € 0(1, 3,TR)
irf AT = g. A - 6L, It is well known as the Lorentz group. The
semi-direct product of two groups was discussed in chapter ene, we

shall use the notation P(R) = I\éw (1, 3;fR). Its action onW is

p: PIRXQAMW) y p(xJA) =

(poiy(x7)0 (poiy)(A)=p(¥)0p 35 (A)ixi—oAx +

V (x; A)E P(IE); with the monomorphisms il: [ELl<1P( ), i2 :

defined via the monomorphism:

L(R)< P(®); (where we introduce the notation L(WR) for the Lorentz
group). P(TR ) is then. the group of world automorphisms of W (E) with

its linear space structure.

Now the Poincar€ transformation (a,A ) transforms the event
Oy o c .. .
(x, x) into the event (x;', x' )= (Ai1jxj +/\io x,+ 8¢,

ANgiX! + NooXo +Aa,) 50 that we clearly see that if two events
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X and y are simultaneous, the events x' and y' have a time lapse

A Oi(xi - yi)‘ and are no longer simultaneous. So whilst this

concept was invariant in Newtonian relativity, it is no-longer true

in Einstein's world. The inertial nature of the Poincaré transformations
is also immediate. If dzg_c/dt? = O for an event (x, t) then we must

have d°x'/dt® = O for the event (x', t'), since dx'/dt' =
(ax'/dt)(dt/at') = (dx'/dt)/(at'/dt). Now (db'/dt) = d/av(A x; +

/\octo)_ = (Agg %5 +A ) also (ax'/dt) = (/\ij )'cj tA;) .

Thus dx'/db’ = (Agsks +A30) / (A %5 + N ). So d%x/dt? =
' ' cx = L X ) xi YA )" -
d/d’c;(jx(/dt }){ /+(,\A°§2))C2= 2 oo) . = /\lel (N 5% Noo
oi¥i/ WNoj¥y TN’ = O

The replacement by invariant proper time of time leads to
simpler calculation. Given the world line xp(lVI) of a particle p
under a motion M, one calls d(xﬁ(M)(t))/dto the 4 velocity, d2(xp(M)(t))
/d’cé‘ the U4 acceleration etc. The relationship between these
Minkowskian notions and the Newtonian ones is immediate from dx(t)/dt, =
(ax(t)/dt)(dt/dty) = ¥ (x) dx(t)/dt.

Let us consider now some of the subgroup structure of the Poincaré

0(1, 3,fR)
G.AG Tt

and Lorentz groups. Recall that the Lorentz group L(IR)

was the subgroup of matrices of GL(4,MR) such that N\ 1'17
= In(@)(A ). The function det:GL(4,R) —»>R  is an e pimorphism
of GL(4, R ) onto the multiplicative group fR - Its kernel is
written SL(4,/R)<]GL(4,TR ). Let us write L(Ei) O SL(4,R) =

Ly(®R) or SO(1, 3;TR ). If det' = det ol where i: L(fR)<<GL(4,IR),
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then we must have Ker(det!')

N2 GA G, det(A)TE

Define an injective function in Cl(Z(z), L(WR)) via det'o d = 1L

L_éﬂ%)f anid Im(det') = Z(=2) since from

det(A ) or (det(A))° = +1¥ A€ L(W).

and d: (-1)+—> G and d:(+1) +>e. Then d is a monomorphism since
G2_ = e. Whence, via the definitions of chapter (1), L{(R) must have
the semi-direct product structure L, (R) @ K Z(2 )p’ where Im(d) =
Z(:L)p, where p = G is called the parity operator or space reflection.
The homomorphism K € Hom(Z(2.)p, Aut(L+(1R)) is defined by K(p) : A

H_‘ = Im(G) (A )AL L (/R). Note the set structure L(TR)

A
=L, (R)O I_(R) where L_(R) z P-L, ().
Let us now define a function =< € CA(L(WR),MR ) via sx: A

—> A oo¥ AS L(R). The identity AT.G.A= G or /'\Topkgmp/\po -

800 = 1, enable;:th‘;‘?ollowing constructd®®. Define a map 7\€C‘(L(1R),

rRL_‘) via A (Ae=Apmo ¥ AC  LUR),then we must have AL A ¢ =
IVA or A 2= @ +I2 AN 21 . Ve surmise that o<
is surjective from L( R ) onto the subse’c' A+l )YU(« -1) offe. If
we define a section ARE A(R ,L(R)), xofB=1, by F(+1) T
e andR(-1) T -eand BIr=24+4] = LMN(R) and B L -11=LUR)
then via i: 2(2) < (2 +4) U (£ -4}, ‘Sa'u is a mono-
morphism from Z(2-) into L(fIR) such that as a functioncx'0(Bo i) =

4l , the function X’ beingxfAz A_/IA | = X(AIL X)L,

00
One can show thatoc'(AA ;) = &'(A;)ox'(A) which means that since
X' is trivially surjective in C,l(L(TE ), Z(2.)), it is also an

epimorphism, and Ker(cx') = LN(MR). That cx'o(@o i) =1l implies that
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L(TR ) is a direct product '™(R) ® Z(2)p where In(® o i) =
Z(2.)n , 0 =-e. The central character of the extension arises
from the faét that ZED\,)D is isomorphic to the central Z(22 ) of L(MR).
The operator [ is called the space-time reflection operator. As ..sets
L(TR) = LT R)U L4 (R).

We have thus obtained the two isomorphic structures L (%) ®&
k 2(2)p and LMN(R) @ Z(2. )pof L(IR) . The two distinect invariant
subgroups L™N(R) and L, (k) <d L(fR) are usually called the ortho-
chronous or the 'proper' Lorentz groups. (iven the four subsets
L,(R), L(R), IM(R), L+ (R)< L(TR), there arise the subsets
- obtained by intersection:- L, (R) = L (R} LAR), Ly (R) =
L+(Tk)ﬁ LY¥(®) ete. LM (IR) and L+ (MR). All these subsets -

are mutually disjoint and define a partition of L( IR ) into the four

subsets. Recall that Ly(WR), LMW )<d L(R )= L_l'j‘( w®)

L (R W LM ()<t L(W). One can draw the commtative diagram:-
~NJ o L]

e—At_gﬂm LR

q——iu\mlltue
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Here the groups X, Y and Z are defined by X = L4 (fR)/L, 4 (R);

Y = L,(R)/LXWR) and Z = L(R)/LA (R). Clearly LA (R)/Ls (R) =
Z(2)p, L (R)/L,™(R) = Z2(2-)m . Then, we must have Z(2 )p/X = e.
Now Z is an extension of Z(o. ]:,by Z(2 ) from our diagram, as

well as an extension of Z(2)p by Z(= )y and hence must be Z(22)p @
Z(2)p . The diagram reduces to:-

N

€ —Ly1

c |
\
20
/"
ef/ N
e

which conveniently summarises the relations between the groups L(R),
LA(TR)\ L, (1R), L, (®), Z(2)p and Z(2)p . Let us consider the
subgroup Z(2 )p®@ Z(2 )p < L(R). Its underlying set is{e, , P
and P'? . It is more convenient to consider instead the group

z(2)p ® Z(R)p< L(R) whose underlying set is Le, P, T,PL ¥

The operator T = P" = -G is called the time reversal operator,
PT =[' . Using T instead of I introduces the complication that T
doesn't operate trivially on L4 (/R) as does ' . We still have Z(2 )p

< L(R) with L(R /LRI Z(2 )y , that is L(TR) = LNR) @ ¢/
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Z(2 )qu , where K'€Hom(Z(2 )p ,Aut(LA (W ))) is defined by
K'(T):A —> NTvaeLp (R). Thus we have L4 (R) @ Z(2) g2
LA™ (W) @ Z(2 )y, we shall explain how this is possible in
chapter (3).

Conbining our definitions of P(fR) with the above decompositions
for L(R) . leads to a diagram similar to the one we obtained from

the Lorentz group for the Poincaré group.
e e e

y
e SP r POr(R

ir/¢

C_2-) [

//?L e

e

The groups P _M(R), P4 (TR) and Py( R ) are defined by the diagram.
The action of the operators in Z(2.) p® Z2(2)hq on Minkowski

space are defined as follows:- P: (x, ) —> (-x, ), 1 (x, x°)

> (X - x°) and PT=[ :(3’ ) > -(x, )V (x, xo)€lRu.

From these definitions, it is clear that:- T(V (x)) =V_(x)

VxEW . Thus, if T is regarded as a valid inertial transformation,

thé Principle of Causality will be violated by each Lorentz transform-

ation in L¥ (RR) & L(IR). Clearlyysach element of the orthochronous
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Poincaré group P4 (fR) = ',R’-l m n IP(R) will preserve causality.

It is of great interest to compute the group of automorphisms of
W(E) which preserve the causal order V 4 let CT (R) <L BMW) be
the subgroup of causal automorphisms of W , hote that causal auto-
morphisms are not necessarily linear. Evidently PA (R)}< CHMIR)
Consider also the fact by M in an R module, 'R _ acting onM_ as a
group of automorphisms, via o< € Hom(R_, Aut(®%)) x(A):
X —> %X x V€ fi?m, x €R'. We see that the subgroup Tl\+m< R
of positive reals preserves the causal order also, so that R+m—<C'l‘ (R)
Moreover as Subgroups of GL(4,R ), Rm = E(GL(4)TR)), so that

- N\ = Ao ¥ (“;A\GRX ~(R), We can easily show that

R*, <N (CP (M) (PN (R)) the normaliser of PA(TR) in C4 (R)
with In(A)(,A) > (AXA )% AE R, (x,A )€ PA (R), viz

3 g € Hom(R'm, Aut(PA(R)) D e(A):(y A == (Ax,A ). Now
PMNMR) N MR *m=5e? so that we can define a subgroup D4 (R) =
IR"m. P (R) = P"_b_(-k\? RL<CM(R). An auto.morphism

X +—>"Ax is called a 'dilatation'. E.C. Zeeman has :hvg;a?rd‘ehﬁ the
result:~ DA (R) = CAH(R), all causal automorphisms of M are thus
linear! L. Michel has shown that D% (IR )= Aut(PA™ (R)). It

would be extremely interesting to prove directly that CAN(TR) =

Aut(PPM (R) Michel has also shown that Aut(P4 (IR)) = Aut(P(IR))

and thus that all algebraic automorphisms of P(®R) are continuous in

- . e
the topology of P(fR) which is the product of the Euclid¥an one on TR“

and the locally honﬁ)'mor'phic to E(6) topology on the Lie-group L(TR).
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It does not follow that all automorphisms of PP (IR ) are continuous
when IRL‘ is endowed with Zeeman's fine topology and hence P(TR)
with the appropriate product topology.
By our definition of C4(MR), as the group of world automor-

phisms which preserves the causal order V ! similarity between
the Galilei group which preserves the temporal order on the partition

5 of W , emerges. But physics is only required to be Poincaré
invariant, the dilations introduced above also act on velocities and
hence the dilatations will violate Einstm'n's priﬁciple of relativity:-
that C is maximal if included as valid inertial transformations. In
chapter (4), we shall see that if the group C4(WR ) is regarded
as a valid relativity group no motions at all can occur. To conclude
our discussion of Special Relativity for the moment let us write
down the velocity addition rule for pure inertial boosts along an
axis. If a Lorentz transformation along a direction parallel to a
space axis is parametrised by a velocity V then we have

A o AT, = AL + T,/ + 22)) | clearly A(Q) 0A (D

c2
=M() = AY) o A(C). Each Lorentz transformation in L A*(R.) can

be parameterised by a rotation R in SO(3,f< ) and a velocity V. The
action of A (R, V) on an event (x, x°) is given by:~ AR, V):
(x, 8) > (Rx + W/ (Y +10 Rx)_ + ¥Ax, Y +£ R x))
where X = Y(V) andf = ¥/c.

In part (3) we shall discuss two relativity models derivable

from the Newtonian and Einstein's Special Relativity World.
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Part (3). Other Related Relativity Models.

Both relativity models discussed here are due to J.M. Lévy—
Leblond, the fjrstls) we shall discuss was introduced by him indi-

vidually and the second in a joint paper with H. Bacr'y.16).

L&vy-
Leblond was lead to the first relativity model through his investi-
gations of the so called 'non-relativistic' limits of the Poincaré
growp. The criterion for the deformation of the Einstein Special
Relativity World into the Newtonian World is that 'the first deforms
into the latter as one allows the speed of light to approach infinity'
is quoted by most authors (including H. Minkowski). However, as
LéVy-Leblond observed, this criterion is not quite correct. He
illustrates this writh an example. Consider a two-dimensional
Minkowski space and two events separated by the vector (A x, A t).
Then under a pure Lorentz boost along the space axis, the separation
becomes:- (Y(u)(Ax + udt), ¥WI(ALt + u A x)), where u is the
boost to a frame moving with velocity u with respect to the first,
and C x 1. The Galilean approximation is then taken as u<¥ 1l and
writing:- (Ax,A t) i—u—>~ (Ax +uA t, Ot). However, one can
easily see that the validity of the latter approximation is ensured
iIff u<< land AX/A t <& 1lwhenu Ax << At without
uaAdAt << A x. Thus iff Ax /At << 1, u << 1 then

Ax'/A t' << 1 when (Ax, At) I-L$ (A&x', At'). Thus the
Galilean approximation is valid when considering large time-like

intervals with small velocities:- I\ (Ax, & t)W 2 = (Ai:2 -A X2)>>O
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This situation immediately raises the interesting question of the
limit u<< 1 and Ax/At D> 1 with small velocities and large
space-like intervals. In the fashion of the above approximation we
obtain u At <<Ax, but u A x <& A't, corresponding to

(A x, At) I—E—’r (Ax, At + u A x)! Diagrammatically the situ-

ations are summarised as follows:-

e
/ (1)
T }
Vi +
£
Yo« )
V. €.
AN
x (3)
>

The Galilean approximation is summarised by (1) F=~ (2) when the

light cone falls back on the space axis corresponding toV, (x) —>

F(x) and V_(x) —> P(x), The new approximation corresponds to (1)t—

—3>(3) when the light cone is deformed onto the time axis corresponding
to &, (x) —> F(x) and & (x) — P(x), where &, (x) = &Ex) N Fx),
E-x) = EX) N PH).
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Recall the action of the Lorentz transformation given at the
end of part (2). Under writing t = x /C;V =& C and making a similar
definition t' =Q¢/C for a translation a, the former approximation
defined by Lévy-Leblond leads to:- (x, t0) —3 (R X + v t+a} t+t')
a Galilei transformation:- (x', t', v, R). If we write t = C x o,
VzCABandt' =Ca, and choose C => 0 , we obtain the transform-
ation (x, t) —=> (Rx+a', t+v - Rx + t'). Such transformations
form a group (which we shall discuss futher in chapter (3)), which
Iévy—Leblond called the Carroll group after Charles Dodgeson the
author and mathematician whose pen-name Lewis Carroll labels him as
ﬁhe author ;)f AMlice in W;)nderland. The name was chosen for the_ )
correspondence between the lact of causality in a world where the
Carroll group is the relativity group and the lack of causality in
the adventures of Alice in Wonderland! The name is thus very apt!
The world model corresponding to the Carroll group must be of the
form (W,T ,2 ) where @ is the family of Euclid;gan metrics and one
does not require Tulxxe< ) =T for X to be a world automorphism.

In another direction, recall how in our preliminary discussions
of the Galilei group we introduced the function @ -€ c? (a(wW),CiaR R
required {92(<><)(t)| = Uleo)t ¥ x € A(W), tEST®. This gave rise
to the notion of velocity boosts, where UE Hom(a.(W),(RBT). We
stated that we are pR@fectly free to choose U = 0. In this case, each

automorphism of W (N) takes the form:- (x, t) +—> (1 (e)(x),
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t + t(o<)) where {91(o< ) is a linear isometry of thrée dimensional
Fuclidian space and t (e¢) is a time translation. Under such inertial
world automorphisms, which form a group, (called by Leﬁy-Leblond

the Static group via a different unrelated context), world auto-
morphisms cannot permute inertial frames, hence the name of the
group. The Static group is thus the world group of Newtonian world
where the velocity of a moving particle appears the same from all
iqﬂgrtial frames moving relative to it. Thus, if a body is static
in one frame, it must appear static in all frames!

We shall not pursue the physical interpretations of the Carroll
and Static groups as they obviously describe worlds very widely
sedgrated from reality. The groups will be discussed in Chapter (4)
however for their large algebraic and slight physical interest. let
us close this chapter by noting some characteristics of the Galilei
and Carroll groups. Firstly we note that under pure boosts v:(x, t)
—> (X4Vt, t) and v:(x, t) +——> (x, t + v'X) respectively.
Under these conditions one says that space is 'absolute', or in the
second case time is absolute in that no 'mixing' of space with time
or time with space occurs in the respective cases. We shall pursue
this point later when the event (x, t) is replaced by a spatio-

temporal translation.



CHAPTER (3)

COHOMOLOGY THEORY OF GROUPS AND

GROUP EXTENSIONS.
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In this chapter, we provide a survey of the cohomology theory of
abstract groups as formulated by S. Eilenberg and S. Maclane. The
theory makes use of the algebraic methods developed in algebraic
topology when dealing with homology and cohomology properties of
topological spaces. The. subject matter falls under the general
heading of homological algebra. The algebraic method is exceptionally
powerful when discussing group extensions in particular, and has
numerous other group theoretical applications.

We may formulate the problem of group extensions as follews.
Given two groups K and Q, find all groups E such that:-(i) K<tE and
(ii) E/K= Q. This problem occurs time and again when one applies
group theory to theoretical physics. For instance, when we computed
the -gr'oup of world automorphisms of Minkowski space:~ X (W) = P(IR),
we were able to compute the structure of P(/R) knowing that
L(R) < P(R), Mg P((R) and P(IR)/ R & L(1R). Ve wrote P(WR)

ré B, L(fR) which embodies the latter properties. Again.when computing
C4 ('R) we used the property that R' < CAH(T®), PT (R)<d C (TR)
and OF (IR)/PA (IR)2 R¥ s whence we wrote CP (R) = PA(R) ® gl'R"'m
where the homomorphism ge& Hom(IR"'m, Aut(PA)) specified Ry, as a
group of automorphisms of P (R). Extensions of the above type,
semi-direct products,are called trivial since Q< E specifies Q as
a group of automorphisms of K in an unambiguous manner. The situation
is not,in general, so easy.

Let us return to the general problem, given K, Q find all E such
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that K<§ E, E/K ® Q. We can re-write this as meaning that 3 i€
Mor(K,E)BEEp(E, Q) = & oi=01i.e.:- Im(i) = Ker(d ), the
equality sign arises from the isomorphism of E/i(K) with Q. This
means we can draw the exact sequence

e > K > E > Q > e

Conversely given a pair (E,$ )spSEp(E, Q) we say that E is an
extension of Q by K iff KX Ker(¢). Let us take i as the identity
monomorphism i: K<IE. Now since K<t E, 3 ant f&Mon (E, Aut(K))
defined in the natural way:- f(g)(k) = In(g)(k) V¥V (g, K)EE x K.

We summarize the situation by the following commutative diagram:-

* s e—%  .g e
o
e — T A — AUk (R T =0lk(k) s

Here ™ is the canonical map of Aut(K) onto Out(K). Consider now
two elements 81> g2€ E > g-.i g4€K, g = gzkr,. k € K, then,

£(gy) = f(gz) o In(k). That is iff gy= g, mod(k) then f(gl)_/,: £(gp)
mod Int(K), so there arises a canonical map p: B/K —> Aut(K) /
Int(K) i.e.:- p: @ —> Out(K). Thus Ker($p ), d€ Ep(E, Q) involves
two items i.e.:- K<« E , K= Ker(e), and the way in which Q
operates on K as a group of outer automorphisms, specified by p&€

Hom(Q, Out(K)). We say that the pair (E,$) is a group extension of Q




by the'kernel' (K, p). Conversely, given a pair (K, p) where
p€Hom(Q, Out(K)) we call the pair (K, p) a 'Q kernel'. Let G be
the centre €(K) of K. Since€(K) <a X, there is a canonical mapping
§ of Aut(X) into Aut(G) where if j: G=<a K, ©(f) =f o j ¥ f< Aut(X).
Also, by definition In(k)(g) = g ¥ (k, g)€K x G thus Ker(® ) =
Int(K). Whence we can naturally define a homomorphism from Out(K)
onto Aut(G) and whence from Q into Aut(G) via p'€ Mon(Q, Aut(G))
p'q—> (Bop)ld) Vg Q. Thus Q operates on G as a group of
autorr_lorphisms, and on K only as a group of oubter automorphisms. An
extension (E,d ) of Q by the Q kernel (K, p) is called central iff
p = Owm Hom(Q, Out(K). Recall the situation for a.semi-direct
product when Q operates on K as a group of aufomrphisms and s_impli—
fied matters rather. We see a similar situation occurs when K is
Mbelian, Out(K) = Aut(K) 3 Int(K) = 0. By definition Aut(K) is an
extension of Out(XK) by Int(X), Out(K) being not necessarily homomorphic
to Aut(K), we cannot always specify Q as a group of automorbhisms of
K in an unambiguous manner.

In this chapter, we will proceed in three stages. The first
stage will consist of a general discussion of cohomology theory, and
group extensions when the kernel K is Abelian. The second stage will
then involve us in a discussion of the general case when K is not
necess_arily Abelian, whilst the third stage will be concerned with the
discussion of the theory of G enlargements invented by Eilenberg.

Having introduced cohomology theory in this chapter, we will be free
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to introduce cohomological theorems and definitions as the need
arises.

Before embarking on a study of the special case when K is
Abelian, we introduce a few concepts which are basic to the rest of
the chapter.

(i) Multiplication of Kernels.

We define here the notion of the 'G product of two Q kernels
relative to a notion of equivalence. Two Q kernels (Kl,pl), (K2,p2)
are G equivalent)'Written ((Kl, plj,(K2,p2))€ (= )iff 3 o:
Ky, = K,F6(g) =gV g€0and Vex(a)e p1(Q)C Aut(K;)

oo o<(q) o&?t

€ p2(q)C Aut(Kz) V g € Q. With this notion of
equivalence the classes &L of Q kernels with center (G, py) is a
monoid under the G product where& = G /(£ ), Q being the set of
Q kernels with centre G.

Recall that by definiti_on,Int(Kca K) % Int(Kl) @Int(Kz)
which means‘€,(Kl ® K2) = G®G. The set V (GT_ x-@ﬁ) z
{(e, g)€Gx Glg, = g £ is asubgrowp V(G®G) of G®E
moreover, it is the kernel of the epimorphism h: G@G —» Gj ks
(gl, g2) —> g & ) (gl, g2)€ G. Define a group K3 as a homo-
morp!.” . of K; @K, via H: K; ® K, —> Ky; H: (ky,ky) >k K,
V (k) ,k, )€K @K,. Then Ker(H) = V(E® 6) and K; @K,/ V(G @ C)

< K;. Moreover HIG®G = h is onto ©(K,), thus CKy) =-C@G/

Ve®s) == 6, wher'e‘e(K3) = G. The group K, with center G

can be endowed with the structure of a Q kernel by defining p3€ Hom(

(Q, Out(KB)) as follows. Ilet (X l’°<2) € p;(a) x pplq)CAut(K;) x
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Aut(Kz). Then o< X 0% (kl, k2) — (Pi (k2),9<2(k2)) is an auto-
morphism of Kl® K2V QE€EQ moreoverx, X o4, only depends on g€ Q.
Msox, x,: V(G ®@G) =V(G®E) ¥ q & Q,since &, x 25:(g, g 1)
> () (2), %@ 1) = (b (@) & p (@ (@)Y g€G6. So that B
defined by @oH=Ho (cxl x'xz) is an automorphism of KB\I aE Q,
only depending on ¢ € Q up to an inner automerphism of KB' Thus there
is a homomorphism p3€. Hom(Q, @u’c(KB)), the pair (KB’ p3) is a Q
kernel with centre G and is called the‘G product’of the Q kernels
(Kl’ pl) and (K2, p2), written (K3, P3). = (Kl, pl)/\ (K2, p2). The
centre (G, po) satisfies

(K, p) A (G, po) & (K, p) VY (K, p) €@, and acts as the
identity for the monoid &, = R /(& ).

(ii) Multiplication of Extensions.

Let (El,cbl) and (E2,¢ 2) be extensions of Q by Q kernels (Kl, pl)
and (X,, p2). Consider the group El® E2, there is a ntural epi-
mor’phismd)l x$,: B @B, —> QxQdy x ¢, (e, e2) —>
(¢>l(el),¢ 2(e)) ¥ (e, e,)€ E;@E,. The diagonal subset A(Q® Q)
of Q@® Q is a subgroup of Q@ Q isomorphic to Q under (q, q) +—>q.
Let F<<E, ® E, be the group @ 1 x¢2)—1(A(Q® Q)). Then F is a
natural . epbmorph: - of Q under ¢ '¢ Ep(F, Q), drile), e)) >
$,(e) =dyle,) ¥V (e, e,) € F. Evidently, Ker(d ') = K} @K since
if (eq, ey)SKer(ch'), ¢y ey) = Pole,) = (eq, ep) =€ which means
(e1, )& Ker(cbl) X Ker(cbz), whence K @ K>, > Ker(¢$p'). Moreover

if (e, e,)€ K @Ky, (e, e2)€Ker(d)') whence Ker(d ') = K, @K,
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Thus F is an extension of Q by K; ® K,. Define a fomomorph E, of

3

Funder H': F —> E H':(el, e2) = e Evidently Ker(H) =

3 1 o
V(G ® G). One now defines a homomorphism < 3¢ _E3 —% Q by

d)so H=d&'. By a classical lemma Ker(q)g) = EKer(d ')/Ker(H),
that is Ker(¢') D K @K/V(G®G) = K3. Thus we see that Es
is an extension of Q by Ks. We write (E3,<b 3)_ = (El,¢ N (E2,¢o 5)
and call (E3,¢ 3) the extension product of the extensions (El,Cb l)

and (E2,¢ 2). The constructions used above may be summarised by the

diagram e
V(q@ar——y (Gwq)
K Kz'___Mx 2 g @ —c
H H/
Q RN Y E
- -3 ta,

We now proceed with the study of Abeliam extensions, embedding the
theory in the cohomology theory of groups.

Cohomology Theory of Groups (1) Abelian Kernels

Consider a sequence of pairs C = L (c” ,5™S n& Z where
Vn € 7, C" is an additive Abelian growp and § & Hom(cn,le),
- + n +
Using 7 = 2*U 7- we write ¢ = ¢ty © where €7 = 4, 8 ))nezl
and C = <(C", ™ ne Z7. wWith z'N Z7 = £0%,we write (C°,8°)

= (0, 0). Now G~ =<L(c™, &™M>neE 7*, so we relabel the sequence
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c™,&™MY ne z'.
Here dn € Hom(Cy, C 1)¥n€ z*. One calls the sequence <(C",& ™)>

- .ot )
as C = <(cn,an)> n& 7 where (cn,an)_

n € 7' an upper sequence and <(Cn,$n)> nezt a lower sequence.
Now if £ 01 =0 ¥V nez' one calls < &M> ne 7t
a semi-exact sequence similarly, for((Cn,b n)>‘ n€ z* such a lower
sequence is semi-exact ifféon_l oan =0 \dnez"'. The conditions are
just that in the former case Tm($™' 1)< Ker(6™) and in the latter
() < Ker(an_l). Let<(Cn,dn)>n< 7z, be a lower semi-exact
sequence, one calls C, the group of n-dimensional chains of the complex
C; ©n is an n-dimensional boundary operator; Im(> 1) = Bn<Cp is
called the group of n - dimensional boundaries of C and Ker(®n) =
Z<Cp is the gf’oup of n-dimensional cycles of the complex C. That
Sp0 44 OVne€Z means that B<d Z<AC,Nn € Z,. The group
H = Z,/B, is. célled the 'n-dimensional homology group of the complex
cr. If fl, f2€ Zy, and fl'fze Bn one says that the two n-cycles
fl and f2 are 'homologous’'.
Consider now the case of an upper semi-exact sequence C =
<(Cn ,S‘n)> n€ z*. Here, we call C" the group of n-dimensional cochains
of the complex, Im(& n—l) = Bk (" is the group of n-dimensional co-
boundaries of the complex;é“n_l is an n-dimensional coboundary operator
and 70 = Ker(§® n)<cn is the group of n-dimensional co-cycles of the
complex. Finally Zn/Br? z H? is the n-dimensional cohomology group

of the complex C. Two n-cdcycles £, HH,e z" are 'cohomologous' iff
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- £,€ B,

This completes our preliminary definitions, note that every

£

exact-sequence is semi-exact but not necessarily vice-versa.
Consider now two groups Q and K where K is an Abelian group and
Q is an operator group on K via p € Hom(Q, Aut(X)). Let Xin=1 f Q¥
denote the n-fold Cartesian product set of isomorphic iJnagés of Q
Call Cn(Q, K) the set of all functions: f: X =1 Q —> K
C;(Q, K) is an Abelian groupVne& zt. We 1dent1fy C (Q, K) as K
itself, the set of constant functions from Q into K. Define now a
homomorphism £ & Hom(C;l (Q, K), Cn;1 (Q, X))¥ n€ Z_ by

J‘n(f) (ql-,...,v n+l)' = (p(ql) o f)'(’g.2"",qn+l)

’ 2;21('1)1 SCIERRER iapee e Vg g

(1)

One can show'™’, by rather tedious algebra, that the complex:-
Cp(Q,K);—-(Crpl(Q,K),J‘n) ‘nezt ,is a semi-exact sequence,d’ Ny an-; =0
¥ ne z'. Also, one can always choose normalised cobhains, where a
normalised cochain satisfied f(q, .,q,;,qn)_ =0 if q;=¢ for some 1= i= ngl )
Recall that cg(Q, K) = Kands" "L 2 0. The important point to note

is that Cp(Q, K) depends on p€Hom(Q, Aut(XK)). This latter set

is never empty, it always contains at least the trivial homomorphism

T3 Ker(T) = Q. .Let us adopt the convention that we drop indti'c.es?‘-,{'the
coboundary operators V & n\ n< zt and attempt to interpret the groups

of cochains.

(0). We consider here the group of zero dimensional cochains . CB(Q,K)
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These are the constant functions of Q into K, identified with K.

Let kECS(Q, K) then§'(k) € BI];(Q, K) is a 1 co-boundary, d(k)(q) =
p(q)(k)-k. Thus k € ZS(Q, K) iff p(a,k) = kYQEQ Whence zg(Q, K)
is the set of k&K on which Q operates simply. By definition

51 = 0 whence ZS(Q, K) = Hg(Q, K), and then Bg(Q, X) = 0.

(1). A one cochain fE€ C;(Q, K) is a function f: @ —> K.
fGB;(Q, K) iff 3 k € K3£(q) = pla)(k) -k, and fEZé(Q, K) if
d*(f) = 0 or:- dXf)(a;, qy) = plag)(fla,)) + £(q)) = O, where
£ BS(Q, K). The 1 cocycles of the complex Cp(Q, K) are called
crossed homomorphisms, the 1 co-boundaries principal homomorphisms,
thus the group H%(Q, K) is the group of crossed homomorphisms modulus
the principal homomz)rphisfns. Ir p = T one sees that a prihciple
homomorphism vanishes automatically whilst Z.%(Q, K) = H,%(Q,K)_ =
Hom(Q, K). We will need the properties of 1 cocycles in the sequel
at least twice.

(2). Next, we consider the two cochains of CE(Q, K). These are
functions f: Q x Q —> K. A two cochain is a two coboundary and
“a-priori a two cocycle iff 3 f'€ C;(Q, K) I flqy, ap) =
J(f’)(ql, q2)_ = P(ql)(f"(qz)) +£'(qy). £ is a two cocycle iff
d'(£)(ay, ap, a3) = 0 i.e.i- play) (£ (a5 a3)) - f (43095503) +
f(ql,q2,q3) - f(ql,q2)_ = 0. The second cohomology group is interpreted
via the theory of group extensions of Q by K when the natural

action of Q on K as a group of automofphisms induced by the exten-
sion coincides with p.

That is,in the Q kernel of the extension (E,¢ ):- (K, p') ,where
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p' € Hom(Q, Out(K)) = Hom(Q, Aut K)(since Int(K) = O},p'(q) = p(q)
Vq €Q. Convefsely we can construct group extensions (E,d ) of Q
by any _Q kernel (K, p)  p&€ Hom(Q, Aut(K)) when K is Abelian. Recall
(E,®$ ) is a group extension of Q by the Abelian Q kernel (K, p)

when the following diagram is commutative:-

e e 0 1 - ¢

Here I is the identity monomorphism I:K <} E . Define a section

j: @ — E such thatdbo j =1 . Now since ¢ is a homomorphism

j(ql) -J (‘q2) and j(ql,q2)are in the same E/K coset, sinced (j (ql)
jla,)) = Y6 (N (G(ay)) = $ila; ap)) = 97 &,V (q;,,3,)EQ x Q.
Thus f: QxQ —> K defined by f: (ql, q2) > jlqg) jlay)

(j (ql,qz))_1 enables us to use the two cochain f to write j(q;)

j(qz)_ = f(ql’q2) j(ql’q2) Y (qi’q2) € Q. Sinced is a homomorphism,
45 (je)) =e & j(e) =e . OnE, composition must be associative
which means that j(q;) * (§(ay)ilaz)) = (Gla)ilay))ilaz)V 9p,9,,43€ Q.
This is just that:-

3(a))(ap,05)3(Ape05) - = £(Q)505)5(9)095)3 (a5)

or
3 (ay£lay,az) (ql)_]L (a))ilaeas) = flaps ap) f(qloqz,q33j7(ql.q2.q3)-
By definition In(j (ql)) (f(q2,q3))_ = p(ql)'(f(qZ,qB)) so we have:-
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p(a) ) (£(ay,05))£(Q)1900e03) §(a760005) =

f(qloqz,q3)f(ql,q2)j (ql,q2,q3). Which, passing to the additive
notation, just means that p(q;)(f(ay,a3))-1(a10p,a35)4£(q),05095) -
£(a,qy) = 0 i.e.:-£)(ay,ap.05) = 0. Thus £ € 25(Q5 K). Let

us choose another section j 1 Q —> E such thatd o j 1 =fi . One can

then define a 1 cochain £ via (2 (q)

{@)i(arvac o, @€ @K
since we haved (@ (@)= $ (G (@b Gla N = qgt =e. Write
j1(a) =£(a)j(q) then we must have j,(q))ji(q,) =g(ap)i(apR(qy)
jla,) or jy(ag)iq(ay) =R (qy)] (ql)/B (a,)3 (ql)_l)j (q;)j(q,) which is
J1€agdiaay) - = Rlagplay) (R (qy))f(a;,a,5)  J(ay,ap) or jq(a)is(ay)
= Ala)play) (& (a,))£(a;,a,) A (a,a,) 31 (a;,0,).  This means that
31ap)d(ay) | = £ay5a,)8 (B )(ag,a.(d1 (a150,) . = £7(a;585)31(a;,5)-
Where, passing_ to the additive notation we write f' (ql,qz)_ = f(ql’q2) +
£(B)(a;,a,), or £' = £ +F(A).
Choose a section j: Q —> E and, WK€K, q € Q write k.j (q) =
(k, q). The composition of these pairs is then (kl,ql)(k2,q2). =
(k1+ p(ql)(kz) + f(ql,q2), Q4 q2). The cocycle fEZS(Q, K) specifies
(E,$ ) up to an isomorphism since if f' - £ € BS(Q, K) then this
cocycle f' determines an isomorphic group. That is if k-] l(q)_ =
[k, g thenCky, q, T ky, ay1. = Lky+p(ay) (k)4 (a505)581095)
the isomorphism is [k, @1 +—> (k, q) where Tk, g1 = (k +2(q),q)
BI%(Q, ‘K). Given f € ZE(Q, K) we define the extension correspond-
ing to £ as Km . QIf ' 1s cohomologous to f,then K@ ¢+ Q =

K®m p Q. We call two extensions of Q by the Q kernel (K, p)




equivalent iff the following diagram is commutative:-

I, \454\'

& Q

RNy

E) ‘. 2-

If the diagram is commutative we write (El, E2) € (ev), which is_
an equivalence relation. One can show (using the five-lemma) that
(~ )& (2). Given two cohomologous cocycles f., £, € Zzp(Q,K)
then (K ® le » K 1, Q)€ (~ ), clearly this is true iff fr=f, €
sz(Q, K). Let Bxt(Q, K)p be the set of all extensions of Q by K
characterised by P € Hom(Q, Aut(X)). Then the sets €xt(Q, K) p

and Zzp(Q, K) are isomérphic. Recall that 8xt p(Q, K) was a semi-
group under the multiplication of extensions defined in (ii). From
our earlier definitions we surmise that (jl, Jo)are sections from Q
to (El’ E2) such that¢l 0 jq =¢, 0 j, =14, then the product of
the extensiens (E,,d 1) and (E2,¢ 2) viz (E3,¢3)_ = (El, ¢ 1IN

(E2 ,¢2) is isomorphic to the group whose underlying set is { (kl +
Ky, (31(@)sdn(@) 1 kK€K, a€QF , where & 5((ky+ky, (5 (a),
o)) l————?-cbl(jl(q))= $ 2(j2(q))_ = q. The composition in By is
defined by (0, (J;(a),do(@)))*(0,(;(a"),in(@")) > (0, (§;(q)
J1(a")sds@is@) )= (f(a.a') 4 frla, a'), (Gla a'l.dyla ah)d).
Thus we have (E,d ) A (E,, & 5) = KmfHi®&)A (K@ Q) =
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K@ pigrp Q@ I E(Ei, ¢ i):ﬂ = [Kmfj Q] is the equivalence
class of (Ei,‘b ;) we have (K m f Q7 depends only on the cohomology
class of f in Z° 5(Q,K) and that [(E;,¢ 1) A (5, ,)1 depends only
on the equivalence class of £, + 1, which is the product of equivalance
classes. This the group Ext(Q, K)p = &xt(Q, K)p/(~v) is isomorphic.
to Hzp(Q, X). '

The identity of H° (@, K) :- B2p(Q, K) corresponds to the set
of extensions of Q b& K in which Q is a subgroup, each extension of
this class being equivalent, and hence isomorphic to the trivial
extension K @ o @=K®pQ, pe Hom(Q, Aut(K)). Let jq and 3'2
be monomorphisms from Q into K @ pQ such that ¢ej; = $0j, =4. .
Then j1(a) jp(@) ™ €K or § (a) = ¥ (a)jy(a) where ¥ € C5(Q, K).
Since jl and j2 are monomorphisms we must have jl(q)jl(q')_ =

RACOAPACIRE SCIDAPICLD I X(Q)(J'z(Q)X(Q')jg(Q)-l)j2(Q)32(Q') =
¥ (@) p(@(¥(@") jolaa") = jylaa’) =¥(aa'djy(aq'). Thus we
must have ¥ (q q') = ¥(q) + p(@)(¥(q')) or &3(¥)(q,q') =0,
¥ e Zi(Q, K). The group H;(Q, K) corresponds then to the different
ways of placing Q onto K ® pQ. B*p(Q, K) T K is just the waysin which
Q is injected into E in conjugate mamners. Z3/B! different; ways up
to a conjugation:-

Consider j : Q — E. Then j'(q) = (In(k-l) o j")(a)

Vaeq ke &@ 0Kk = Kt ak j@) =80 @j -
Thus J = j +d (k).

When the extension is central with K Abelian, we must have p = O
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in the Q kernel (K, P) since Out(XK) = Aut(K). The group of inequiva-
lent central extensions is just Ho(Q, K), the extension of Q by K
labelled by the two cocycle f € Zg(Q, K) is denoted by K@ f Q. The
elements of Bg(Q, K) correspond to extensions equivalent to the direct
product K@Q s K® o Q. In this case, as in a similar way above,

the group Zi(Q, K) = -H(];(Q, K) = Hom(Q, K) corresponding to the possible
ways of embedding Q as a subgroup of K® Q.

We now return to the general discussion of group extensions
having introduced the cohomological apparatus in the preceding
discussion, and briefly discuss the group theoretic interpretation
of the group Hg(Q, K). The group theoretic interpretations of the
cohomology groups for n > 3. Eilenbepg has conjectured that their
application might come in the theory of 'loops' or not ret vkw ss.-«'.lj
associative groups, the higher cocycles providing the measure of the
degree of associativity of the loop. Recall how the 2 cocycles in
the above construction arose from the requirement of associativity.

We shall use Eilenberg's theory of loops and prolongations of groups
in Chapter (5).

Extensions with non-~Abelian Kernmels.

Recall that when we defined the nature of an extension (E,¢ )
of Q by K a homomorphism € Hom(Q, Out(K)) arose in a natural
way. When K is non-Abelian this fact causes a major complication
in Aone's efforts to acertain the natures of such extensions,. since,

Out (K) only operates on XK modules an inner automorphism, in order
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to specify (E,$ ) as a group we have to specify the action of Q on
K unambiguously. |
Consider a Q kernel (K, p). In each automorphism class p(q),
g € Q, select an automorphismedq) of Q. If 7T is the canonical
mapping of Aut(K) onto Out(K) then p € Hom(Q, Out(K)) determines
a mape< from Q into Aut(K) via = (q)= (£o p)(q) where, 4 is a section
of Out(K) in Aut(K). Given q, q, € Q, we haveo(q,)o«(g,) o
(o(a; a,) 1) € Int(K) since T (ox(q))o ax(ay) (o<(ay @) ™) =
T (ox(a)) TT (0x(a,)) (7 (< (ay, @) ) = plag) play). playsay) " =
4 . Thus we can define a function¥: Q x Q —% K via o<(gy) o
w(q,) = In(¥X (g, 9,))x(qy,9,)¥a;,a,€ Q. Using the associativity
requirement on Aut(XK) we find that b(_b(ql)o'(bi'('clz')o ('>-(q3))_ = (x(gy) o -
=(gp)) oex (a5) e=po<(ay) o (Y (ay, a3)) 0 &gy Q) = M(¥(qy,
a,)) 0 0% (a740,) 05x(az). OF ox(a)) © I(¥(aya5)) © &day) ™ o
(e<(ay) 0 X (a603)) = In( ¥(ay,q,)) o In( ¥lay00,,a3)) © X(q)6Gpe03)-
Wnich is Tnx.(a)) (B (Gysdy)) 0 I(¥(a;93pea5)) 0<(dye0r603) =
In(¥ (9;,95)) 0 In(¥ (q109p,93)) © Q) oUpedz). Finally
In(e<(ay) (¥ (a9,95)) ¥ (a1,00e93)) = In(¥ (a1,0,) B (9y995503) ). This

means that we must have &< (q;) (¥ (q2,q3))"({(ql,ngq3)“6(qloq2,q3)'1

3 cochain of

P} (ql,q2)_lE G, the centre of K. Thus we can define a
Q in G i.e.:- and fE€ CSO(Q, G) where (G, p,) is the centre of (K, p)
via:-

-1
f(ql, Qo> q3) = ‘X(q:]_)(x (q2 2 QB))X(Q1,Q2QQB)X (qloClngB)
‘6(ql,q2)-1. One can show by tedious algebra that in fact f & Z3po

(Q, 6) or that & (£)(a,a250359y) = P () (£(ap,a3,qy)) = £(q)0925a350)
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f(ql,qz,qjéqu) - f(ql,q2,q3,q4) + f(ql,q2,q3). = 0. The expressio
=(q;) oK(gy)= In(¥(ay,a5)) 0 o¢ (q;,a,) is to a degree arbitary
since we see that if X/(ql,qz) = 'K(ql,qz)(b(ql,q2) where(ta-E'CSO
(Q, G) then it is unchanged. Under this mapping ¥ +——> ', we
find £ +—> f' = £ +*($ ). Let us now choose a new sectionf4':
Out(K) —> Aut(K) then we must have <'(q) = (R' o p)(Q) = In(s(q))
oX(q) where §: Q —> K. Then ' (ql) oo (a,) = In(w(gy)) o
>(q;) 0 In(97(qy)) 0xx(q,) . = In(o(qy)) o I(x(qy)(I(g,))) o
(x(q;) 00%(q,)) = In(C‘(ql)w(ql)(G'(qz))b’(ql,q2)) 006<(qy,0,) -
Or &X' (qy) 09¢'(q,) = In(¥'(q),q,)) 0 x'(a;0q,) where ¥'(qy,q5) =
Slay) (a)) (T (a,)) T (a,a5) & (ay,8,) 7+ Now 0" (ap) (¥ (aps a3))
¥ (a150p005) ¥ (A150p505) " ¥ 1(a550,) 7 = £(ay,0,,05) after some
manipulation. Thus the cocycle f € ij (Q, G) is unchanged by the map
<X +—> ' and, changing ¥ by a two cochain of C2p(Q, &) changes
f by:a 3 coboundary, the latter mapping corresponding to mapping
the kernel (K, p.) onto a G equivalent kernel. Each cohomology class
in HBPO(Q’ G) corfésponds one to one with an equivalence class of G
equivalent kernels.

We now show how of a kernel (K, p) is extendible when the three
cocycle associated with it vanishes. Let (E,4 ) be an extension of
Q by the Q kernel (K, p). Then, as before we can define a section j:
Q —> E such that$o j =4, which means that we must have j(q;)
ilg,) = f(qhqzlj (q9,) where £ : QxQ —> K. The automorphism
f’(j (@) of K defined by i o £(; (@)) = In(j(@)) o i is in the class

p(q) ¥ @ € Q, we may thus choose the map ' defined above via
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=(q) = £(j(@) ¥ § € Q. Then we have £(j(q;) O £(jla,)) =
In( 9(qlan)) 0 f(J (ql:QQ)
In(k)VkE€ K<d1E. Thus the

£(§(ay)ilay)) = £(Pay,a5)3(q),a,))

since f is a homomorphism and f(k )

corresponding 3 cocycle 'F' is given by:-
F(a1505505) = T 0 jap)(P(ay,a3)) P (a35a06a3)
P(q1°q2,q3)—lp (a7,a,) "+ Th is just
P(ay50p,05) = £(ay) 3(ap) 3(as) J(apeaz) ila) ™
5(a7)3(A0505) § (9300pets) ™ (2300000503 (a5)5(a,70p) ™ 3(ay50,)
jlay N = e
Thus F = 0 if (K, p) is extendible. Conversely let F = O.
Define the group E as the set of pairs (k, q)€ K x Q with the compo-
sition (kl,ql)(k2,q2) = (klm'(ql)'(k2) = (ql,'q'z) > O ‘q2) where ©< is the
map from Q into Aut(K) defined above and (g, )oe<(a,) = In(f(q;,q,))
o x(qleqz) v q;,9,€ Q. E is easily seen to be a group. The map
$: (k, @) —> q is a homomorphism of E onto Q. The kernel of
is the subgroup { (k, e)l k€ K¢ ,isomorphic to K. Choosing the
section j: Q —> E; j: q ——> (e, q) then In(e, q) is the auto-
morphisin class of p(q). Whence F = O for a kernel (K, p) implies
that (X, p) is extendible. An incidental result of the above constru-
ction is that we have explicitly constructed one extension of an
extendible kernel (K, p) where Q operates on K via the section ,
A: out(K) —> Aut(K), =(q) = po p(q)V q € Q. The construction
of this extension will enable us to generate all extensions of Q by
the extendible Q kernel (K, p) with centre (G, po). In certain favour-

able circumstances, we shall be able to choose ™ as a homomorphism,
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depending of course on X being a homomorphism.

Recall our earlier definition of extension products and the
notions of equivalence of extensions and G equivalence of Q kermels.
Now if & 5: (Ei,cbi) —> (E 9 i) i=1,2 areQ - K; equiv-
alences then one can easily see that S X5 _(El,d)l) A (E2,¢ 2) —>
(B,'sd {DAES, $'5) is 2 @ - (K}, PIA(K,, p) equivalance, where
T xS, (e, ey) > (07(ep),05(e;))V (e),6,)€ By X E,

Now let (K, p) be an extendible Q kernel with centre (G, p o). We
exnibited above extensions of Q by (K, p), let this be (E,¢ ).
Consider next an extension (F,Y ) of @ by the central Q kernel (G, py),
then the product (E,» )N (F, w;:) is an extension of Q by_ the Q kernel
(X, p) A (G, p,) which is G equivalent to (K, p), i.e.:~ (E,d ) A (F, )
is an extension of Q by (K, p):. The map (F,d ) +——> F,Y)IA E, &)

is a map from the classes of extensions of Q by (G, po) to the classes

of extensions of Q by (K, p). One can show that the map is onto and

that (Q, G) equivalent extensions of Q by (G, py) map onto (Q, K)

equivalent extensions. Because of the importance of the construction,

we indicate the proofs of the above assertions.

Firstly, ¥ g € Q, select an ex(q)E€p(q) and a j(g) € E with

d$o ja) = g and (=< (q)) = p(q), subject to the reguirement that:

(j(Q)) oi=1o02(g) ¥V q€Q where i: K<1E. We must have

jlap) § (ay) = flays Q) J (Qpe Q) where £: @ x @ —» K. The

requirements j(q) k j (q)_l, = < (q)(k)Vk € Kwith jlqy) j (qy) =
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= f(ql,qz) j (ql,.q2) fix the composition on E whose underlying set
may be faken as the set K x Q in a unique mamner, kej (g) +——=

(k, q) where (e, @) (k, e) (e, @)™ = (=x(q)(k),e) and (e, q;)

(e, q,) = (f(ql,qz),ql.qz). Associativity requires f(ql,qz) f
(9)005,03) = =(q))(£(q;,d5)) £ (q;,0005) and o<(q;)0 &(q,) =

In (f(ql,q2)) OD<(ql,q2). Similarly,the extensions (F, W ) are
constructed in the manner outlined in our preliminary discussions on
Abelian kernels. We may write each (F,W) as Gw g Q with g€ H2po
(Q, G). In the group G ® g Q we use the notation where the under-
lying set is G X Q. Thus in (E,$& ) A (F,¥P )ywhich we take as

{ (&) 5k, (7 (a)5d; (@) Ik, q)EK x Q};ne must have the composition

(&1, (Gp(a)sdala) (€, (51(an)sinap)) =

(ha;,95) £ (a1,a5)5 (3;(q;e95)555(q109,))) and also that

In(e, (jl(Q)’j2(q))((kl(e’ e))) = (x(q)(k),(e,e))

Thus the factor set associated with (E,$) A (F,¥ ) is then the 'product'
of the factor sets(h 4&f). Now let (E',¢') be any extension of Q by

K with kernel (K, p) Define a section j': @ —> E')$ 'oj' =41 and
In(j(q)) oi =i o «(q). This determines a factor set f' with
£1(ay50)1' (9)09p505) = 2% (qy)(£7(ay505)) £7(d;,05003) and

> (q;)0%(q,) = In(f'(g;,a,)) 0(qyeq,). This means that we must
have In(f' (ql,qz)f(ql,q2)'_l)_ =4y or that f'(ql,qg)_ = d(ql,qz)f(ql,q2)

2

where d' € C D (Q, @). Using the factor set properties of f and f'
o)

then we must have d' & ZzpO (Q, K). We must also have that
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(B, ) A (F, ¥ ) is QK equivalent to (E', ') since they have the
same composition and isomorphic underlying sets. Thus the map
(F,¥) &=~ (F, ¥) A (E,9 ) is onto the set of extensions of Q
by (K, p), modulus the Q-K equivalence.

_Nexb let (Fl,qll) and (F2,q12)be two extensions of Q by G

labelled by cocycles h h2 c Zon(Q, G) respectively. Then form

1,
the extensions (E‘.J_ A (Fl,qjl)_ = (El,q‘.\l) and (E,,dl ) A (F2,\y2)

s (E2,4>2) of Q by (K, p)« Assume that (El’q’l) and (E2,d> 2)

are @-K equivalent, then since q>2o 0 = ¢, where O : E~E,,
o-(jl(q)) must be of the from 'SII(q)j2(q) where jl and j2 are sections

from Q to El and E2 respectively and WS C;(Q, K). Since we have
Ji(@) k J'l(Q)_l_ = o< (q) (k) and j,(q)k JZ(Q)--]' = oq) (k) V(k,q)
KxQ and0 =4 on K theno(j{(q) k jl(Q)_l) = 6((@) k

oG @™ = @®) = @@ d,y(a) ki@ TR @7 = jyla) k d,
@y &, Q€ Kx Q. Thence In(w (q)) =1 = J E.Clpo(Q,G)-
We also have & (j,(q;)) o(§;(ay)) = f5(q;,9,)d (W) (q),a,)
o"(jl(ql,qz)). Thus dy = d, + J°@& ) which means that (Fl,qu)
~~ (F2,\V2) under Q-G equivalence.

This completes the pwoof of our assertion that the mapoe:

P,(Q,0) —» BXt(Q, (,p))/(~), 08— (@ m QA (B, B ) 0
where (E1 $) 0 is a fixed extension of Q by K is a set isomorphism.

We were able to prove the existence of a fixed extension of Q by

(K, p), by constructing a multiplicatien table defined by a factor
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set. In some cases however we can choose the fixed extension in a
particularly simple way. We discuss these in the next few para-
graphs .

(a) Central Extensions.

Let us consider the case of the central extensions of Q by
the @ kernel (K, O0). The extension K @ Q is a central extension of
Q by K and we choose it as the fixed one in our discussion above.
A1l other extensions of Q by (X,0) are then of the form (K @ Q)

NG ® £ Q), feH-(Q, K) since p = 05 py = O.
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(b) Semi-direct products.

The example above K @ Q is the trivial example of a semi-direct
product. We discuss now more general examples. The necessary and
sufficient condition that a semi-direct product is one solution of
the problem of finding extensions of Q by the Q kernel (K, p) pE€Hom
(Q, Out(K)) is that there exists a g€ Hom(Q, Aut(K)) such that

o g = p vhere™ is the canonical epimorph 1T :Aut(K) —> Out(K). Several
situations when this is so are immediate. One is when K is Abelian
and then Aut(K) = Out(K); another when Aut(K) is a semi-direct product,
when there exists a monomorphism j: Out(K) << Aut(K). In the cases when
such a g€ Hom(Q, Aut (X)) exists,we can obtain a solution to the prc_)b_lem o
of finding all solutions to the problem of extending Q by (K, p) =
(K, m 0 g). These extensions are just:- (E,d ) = (Kmg QA (G @gL Q)
PEH, (, G).
&o
.Let us just note in conclusion' of our discussion of extensions

that a semi-direct product may be equivalent to a central extension -

the direct product. Consider the case of the central extension Kw r 9

when r&Hom(Q, Int(K)). Then we have™ o r = O sinceT o r (q) =

OV g€ Q. The necessary and sufficient condition for K m rQ =

K®Q is thatat €« Hom(Q, K) with r = I n o t. The necessity is
obvious in the light of chapter 'd''s ' diagram language. The sufficiency
follows by noting that if j: Q< K, Q then p(q) (k) = j(@)k j(g)™
where p = % o r; I: Int(K) <t Aut(K). Let tCHom(Q, K) withr =Ino t.

Then T o In(t(q)) In(j(q)) o i =i o p(q). Then we have:-
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i(t(q)) i(k)i(t(Q))_-l_ = j(@) 1 (k) J'(Q)—lV (k, )€ E x Q which is
i(t(q))j (q)-]e e g(i(K)) the centraliser in E of i(K). Define a
map:- j': @ — E via j'(q) = i(t(@))j(@™ then j'(@)j'(a’) =
1(6(a)i @) M@ i@ ™ = §'(aa") our above defini-
tions. Moreover$ o j' = O sincedo j = 0, and Im(j)<d E, so

K r @ is equivalent to K® Q. Recall how we write L(TR ) @
Z(_'z)pT:; MR ay '(Z(z))T. Here, the action of T on LA (TR)

is defined by ' (T) = In(G) = In(-G) = In(PT.G). Thus A t€ Hom(Z(z)y,
LAN(R)) defined by TI-> In(G)(T) = T 1T = =T = G. The injection

' 2@y = @< L(®) is @) = 6D = 6(-6) = e =

PT.

Inthe final section of this chapter which follows, we will
discuss a concept related to extensions and which involves cohomology
theory. This is the theory of 'G enlargements' of a group Q by an
Abelian group K.

Theory of G Enlargements

Let G and Q by arbitary groups and K an Abelian group. Moreover
let G operate on Q and on K via the homomorphisms (pl,p2)€
Hom(G, Aut(X)) x Hom(G, Aut(Q)). A group (E,¢) is said to be a G
enlargement of Q by K iff (i) (E,¢ ) is a trivial group extension of
Q by K. (ii) the epimorphism¢ :E —> Q is an operator epimorphism
¢ € OpHom(E, Q).(iii) The injection i: K <1 E with¢ o i = O is an.
operator monomorphism i€O0p Hom(K,E). (iv) G is a group of auto-
morphisms for the group E via P€Hom(G, Aut(E)).

Two G enlargements of Q by K are called equivalent if the corres-
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-ponding group extensions are Q - K equivalent; with the isomorphism
establishing the equivalence an operator homomorphism. A G enlargement
of Q by K is said to be 'inessential' if j: Q< E is an operator
monomorphism. Let (E,$¢) be a G enlargement whose underlying group

is K FQ where FE€Hom(Q, Aut(K)). Then (E,$ ) inessential implies
that P(g)(k, q) = (Py(g)(k), py(8)(@)) V (g, k, Q)EG x K x Q. Since
p(g)(k, q) = p(g)(k,elp(g)(e, @) = (p(g) o i) (k) (p(g)oj)(e,q) where
(i,§): (K, Q)<< E. Since (i, j)€ Op Hom(K, E) x Op Hom(Q, E),

p(g) oi=1o0p(e), plg) oj =Jop,y(g) ¥ g € G; so that

p(g)(k, @) = (py(g)(k), py(e) (k) or p(g) = py(g) X p,(8)V gE G.

The inessential G -enlargements thus .f-‘or-'m an equivalence class. Let
Enl(G,(Q, K)) be the set of all G enlargements of Q by K. We can
endow the set Enl(G, (Q,K)) defined by Enl = &n1/(2 ), (where (&)

is the equivalence of G enlargements), with the structure of a group.
Let (El,cb 1) A (E2;b '2) be the G object whose underlying group is
(El,cb L (B, 5) and where the action of G on (El,d) LA (E2,<b 5)
is just p(g) = p'(g) x p"(g) V g€ G where (p',p") are the actions of
G on (E, E') respectively. Then (El,d)l)\l (E2,¢ 2) is again a G

enlargements of Q by K.

We proove here that Enl‘(G (Q, K)) is isomorphic to the group
H'1 (G HJ'(Q, K)) where the action P3 of G on Hl(Q, K) is defined by
p3(g) £+ p() o fopy(e) ¥V fE HyQ, K). Iet (E,4 ) bea
G enlargement of Q by Kwith E = Km . Then there is a monomorphism

j:Q<EXdo j =4 . j is an operator monomorphism iff (E,$) is
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inessential. Define P(’é)(‘?(pz(g)_l(q»(l—’(q_l) as J(g)(q) where
Je C;B (G, C%,.(Q, K)) since we must have P (J(g)(q)) = ¢ (p(g) (P (b,

() H@NP (P (@) = p,y(8) 0 (Wip, (@ @a ™t =qq™t =e.

Moreover J(g)(ajed,) = p(8) (W(D, (&) (gyea,)) Wiagea,)' =
p() (Y (p,(8) (a7 )))p(@) (Yoo M a) ¥ (a7 W (gy) =
p() ¥ (0,y(8) " (a))) J(@)(ay) W (a) = p&PD,) (&) (g)) ¥ (g

W (a))3(g)(a,)¥ (@)™ = J(g)(a;)F(a)) (T(@)(ay)). Thus we have

)-1

J(8)(a;,a,) = J(g)(ay)F(a;)(I(g)(a,)), or J(g)(g;,a,) . = J(g)(q)) +
F(q;)(J(g)(q,)) using the additive notation. So J(g)€& Zy(Q,K)
VgEGor - Je 01;1)3 @, Z]:FL‘(Q,K)). Similarly J € Z;B (G, Zp(Q,K))
since J(g8,)(q) = D(g18,)( ¥ (05(8),8,) @) Wia) , or
T(g108,)(@) = plg;) () (¥ (pley) ™ (ol @), Wig )™
plg) ™" Wk, (@) Y @7 or e e @) = pyle)(E,)) (@)
J(g;)(q), which is :- J(ql,qg)' = p3(gl)(J(g2))+J(gl). Choose a new
monomorphism$p': Q<E T & oW =4 ; we must then have ¢'(q) = _
TV (@QV & Q&€ Z5(Q,K), as we saw before. Interms of
the deyivation of W ' from being an operator monomorphism define:-
I (e)(a) = P (W' (by(2)T @) Y@L Then 3'(g)(@) = ple)
(I (9 )@ @) pE W 0y @) V@B @, -

p, (@) (T () () H@) T (@ W (@7 = p5(e) (W) T (@™
J(g)(qQ ), since J(g)(q) € K and i: K <E is an operator mono-
morphism. Thus:-J(g)'=7(g) +& (X ), 4 (T)E B%}(G, Zp(Q,K)),

T e:c%}(e, Z(Q, K)) = Z;B(Q, K). The G enlargements corresponding

to Wand W’ are equivalent, implying that the appropriate cocycles
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are cohomologous. The elements of B%.(Q, K) corresponding to the

k -
conjugate images of Q in E;(e, q) — (k, e) e, @k, e) =

!

H%S (G, H%‘,(Q, K)), as sets. The isomorphism also extending to a

a'k,) = ((%)(q),q). Thus we must have Enl (G, (Q,K))/(a)2

group isomorphism in a way which does not concern us.
The above discussion of G enlargements will be quite frequently
referred to in the next chapter, and it ends our summary of the

cohomology theory of groups.




CHAPTER (4)

COHOMOLOGY THEORY OF

THE KINEMATICAL GROUPS
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In this chapter we will discuss the algebraic structures of
relativity groups using the tools developed in Chapter (3). The
study was initiated in Chapter (2) where we were able to derive the
structure of the Poincard group of world automorphisms of Minkowski-
spacé, the Einstﬁ@ﬁan world. The structure of the Galilei group of
inertial automorphisms of Newtonian relativity was only really
hinted at. We shall see that the structure of the Galilei group is
considerably more complex than that of the Poincaré group. Moreover
we shall see that it has several isomorphic algebraic structures as
a group extension, corresponding to permutations of its underlying
set, a four-fold Cartesian product.

The last part of Chapter (2) saw the introduction of the Carroll
and Static groups and their interpretations as kinematical groups.
Although the Carroll gfoup has no connection with physical reality
at all, the Static group is somewaht more plausiblef;‘(i&t is of
interest to discuss its algebraic structure along with the static
group, as generalisations of the Galilei group. After this discussion
we attempt to solve the&. problem of listing all possible classical
kinematical groups where either space, time or both are 'absolute' in
a mathematical sense to be elaborated in that calculation. This
excergise, apart from being of mathematical interest, lends a rather
deep insight into the various algebraic structures of the Galilei,
Carroll and Static -groups, enabling one to relate them as members

E .
of more exotic families of groups. No physical :interpre;\atlons of
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the groups, apart from the obvious three, will be attempted.

The chapter is dévided into three parts. Athe first section
we will discuss the structure 6f‘ the Galilei group in some detail.
In the second, much shorter, section we will discuss the structures
of the Carroll and Static groups and in the third, the generalised
relativity groups will be calculated (in principle only, since these
turn out to be ]\(‘1 1

Part (1). The Galilei Group

Recall that the Galilei group could be eécbprsssed as

AL (W )N I(W ), where W = W (N) andW(W) was the group of
. world automorphisms of W/ (N) i.e.:- FEQUNK )<<B(W/) iff (i)

To (£ x £) =Tor TE(),E(xy)) = TlHy,%,) V %,%, & W and

(1) 20X 15 %) = HE) (E(x)),Ex)) V x,%, € 5(x), xEW/ .
I(W) was the subgroup of inertial functions of B(\{/ ) or I(W ) =
{rEBOW)I X¥= 0w £(x)'"=0f. Given anx€O(W) N ICK), let us
write =X:(x, t)+—> Pl(rx)(z) +HE 5 x ) (B)y f?B(tx)(z) +p4(o<)(t)),
where 2 € cHAUW) N TW), Sym(m))3@,€ CHOUNINIW),C(R?
R)); @5€ CAN N I, CHRS, D)) and £ € C O NIW),
Sym(Rl)). Let us now consider the restrictions placed on o¢ Dby
=< € AL(WINTI(W ). Firstly we must have ;" Tlex (X, x(x,)) =

T(xps %) V X,X,EW . Write (% 5%5) =((31,.tl), (52, t2)).

Then the condition is that (=) (x)) +@yex)(t) - AR (x,) +

Py x)(t,) = £ - t,. Let ty = &,
,6)4(% )(t,) since ox is injective, which means that ﬁ’B(‘X)(zl) -

then we must have:- &) (e)(t;) =
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Ase<)(x,) = 0. ¥ X, X CT or 45(x) is a constant function
from B> into TRY, an element of c°(R3,b). We write R(o<) (x) =
(), T'E CHAMINTIW), D). Thus we mist haveB) (<) (5, ) -
Ay (8y) = ) = b, vhen £y £ by, on® (o) (b)) -ty = (x)(t,) -
ty = Tloe) iee.im /@) ()(b) = & + T(x), where E € CHA(WIN
I0W), RY). e write:- T (<) 2 T(x) + T(x) or T = T' +7T .
Thus we have to have,& (<) =1 modul:ﬁéﬁn element of R™ and
/%(M)(x)_ = T(ex) ¥ oX&E Q(W). The second condition onix is that
S (< (x)) (24(x1),24x5)) = 2(X) (x5 %) ¥ x5, X, € S(x), xEW ,
or d(t +T 9)(oxlxy), onlx,)) = o (8)(x),%,5). Let us take x;

and X, as fixed events, 'x; # zi(t)', then we must have W x; - x5\ 2

= B KE)) 48,(e)(8) =2 () () —2Z, s ) (B)]] 2 or
Hﬁl(!x)(zl) A1 () () 2 =) X - Xl 2, Thus £ ,6<) is a linear

e
isometry of three dimensional Euclidfan space i.e.':—fé‘.1 (¢ )EE(3,IR)

the three dimensional Euclid%an group, whose structure is

IRS X n0(3, R ). Here R is the group of translations in the

vector space IR3 R and 0(3,R) is the three-dimensional ortho-
gonal group or rotation groupg and n & Hom(0(3,1R ), Aut(nts)) is
the natural action of M(3,R) on its module r&s', restriq?ed to
0(3,/R)S M(3, TR ). We thus have @4 € CH(aU(W) A I(W ), E(3, R )),
we shall write A& (<) = XX ) o R(e\) where X€ clea (NI,
I'RB) and RE Cl(Ov(\Y/)(\I(\Y/), 0(3,®)). No restrictions have yet
appeared onﬁ2 € Cl(O\(W)n I0\W), Cl(Rl, rRB)), since we have

not yet imposed the condition that <& I(W/). Before doing so, let
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us examine the structure of QA(\W ), the not-necessarily inertial
world automorphisms. We writeoq = ((x(o<), R(x)),ﬁz(tx), T(s<))
where ((x(o<), R(2x)),£,(ex), T (x)) :(x, t) >~ (R(x<)(x) +
x(x¢) +,52(o<)(t), t +T(»)). Thus we must have X, 0yt

(x, £) > (R(x)(R(R)(x) + x(6¢5) + B (ex,5)(8))4x(x ) +
Aol I+ T(x5)), £+ T l<q) +T(og)) =

(x(S90 =2 ) , R(X400¢,)), A ,5(Xy 05<,), &+ T (x50, )X%54)
We thus surmise that x(9X; 0 0%,) = x(<) + R(x) (x(%,)),

R(")\l O‘>(2). = R(D&) o) R(D\2), T@\lo o?) = T(xx 1). *T(gx2) and

Baleq 05t 5) = R (o) (£)) 48 5(04) ) (& + T(1x,)). Ve
thus see that (i) x € 2k o((W), RT); RE Hom(A(W),0(3,1R))

which means that ‘@lé Hom( AL W), E(3,1= )), since E(P‘i)o R(x_‘_) o}

E(!?(g_) 0 R(Dﬁg). = 5(0\1) o R(Rl)(z (9(2) o R(D\i:(x2)_ = X(O&l op§2)

o R(o\l 01)&2). Also T & Hom(CA\ (W) 4 lRi) the additive group of
the real line. The most interesting feature of the Galilei-group

has been left till the end. This is /‘92' Firstly, if we neglect

the T( & ), we have &2,(o4 0 2x,)(t) = R(egy ) (&2, (o) (8)) +
(). So that@, € Zp (AW, CLOR', ™) where (NoR)(X)
(f) = R)of ¥ re cH(md, ).

Also, if we neglect the R, we have:-
By 005)(t) =£,(,)(t) +£,(x)(T(x,) + t) or _,_g_(ul o) =
Zo(ox,) + plexg) (£5(ex,)) where p(ex,)(F) zf0 T (x,) & £ €
ct(rY, ®; so that iff,(x) = ¥ (o)) W X EQ(W), we must have
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Y(oq 00%) = W(oq) + Pr(oq)(Y (). Where P'(ox) = P(a 1)
= - P(x). So that we see ¥ € 'ZIl).(Ct(\)(/),C(Rl, 159 3)). We cannot
elicit much information yet about:,é’2 apart from its cocycle proper-
ties, so let us impose the property thatxX € I(\/ ). Consider a
trajectory x: R 1 — 5 w2 such that 5 (t) = 0, thenx € T(\W/)
iff X~ (t) = 0, this is just (x(t) +,92(==<)(t))"_ = 0 or
(B(x)(£)) "= 0. We must then haves,(s<)(t) = U(>=)t + Clo<)
where U(on) = (2,(e<)(£))" and C(a) =,&,(2< )(0) = 0, so that
Bo(0)(t) = Ue=)t, where UE C1 (@QW)NIW), R, =2

being the Abelian group of tangent vectors in \19]' ® . We derived
20010 25) (1) = Rlee, ) (&, () (1)) +,&2 () (b + T(er )

The above shows that &, € CLAMN) N I(K), Z2(®S ) where
L
R(o6 ) (25 (2%, (£)) +,8,(64g) () 4450 ) (T(ex,)), or that:-
Ulex; 005,) £ = R (o) (U(ex,)) £+ Ulegy )(E) + U< ) (T(egy))
00(2:(3, t) —> (Rlx,) o R(O(Q)(_x) +

of course 2 = Hom, thus we have:- &,(=4 Oex,) () =

Recall that we wrote X

R(oél)(z(okz)) + R(x,) (L) (£)) + Ao (T(xX) + 1), t + Tlog) +
T(X,)). If we group H(D\")(T(K,_)) with the TRS translations i.e.:-
K(64,0 0¢) = R(54)X(s)) + X(oq) + U(e4)) T (o) we can write

U C 2l o (REDNT (W), RY) f.e.i= Uloxg 0o%y) = Uox) +
R(D<1)(Q(l><2)). Thus, we can take the underlying set of A (W )
NI(W) as R3 x T= xﬁT x 0(3,R) where the group law is

(5 Tp> Uys B, Tos Ups Bo) = (R By + Xgr Uy Ty, Ty + T,

y’l + Rly_z s Rl R2), and where (_2_(, T, U, R):(z, t) —> (RX_ +
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+x+Ut, t+T).

Having established this group law, we will return to it later
after discussing some cohomological complications. If we neglect
rotations, we showed above that we must have _)g(bi O<><2)_ = X(bi) + .
_)_((o<2) + g(o&l)T ((><2), which we write as Xy 0(><2)_ = K(txl) +
X(o<,) + Z (¢, 0%) whereZ (exp,0¢,5) = Ulogy) T (ox,) with UEHom
(W), R2) and TEHomEA (W), R 1). Then we have ZECHA(N),
IRS) and moreover that % (v.xl, ax'3) - ;(%l 00(2,,9(3) + ?(o(l,ixe o
K 3) = 2(0450%) | 282 (045 0090¢3) = U(0G)T(2g)-(Ulexy) +
U( > 5)) T(2X5) + U(og)(T(od ¥T(0%)) = Uloxg JTex 5) = 0. Trus Z €

2 . 1 -
Z O(CL(\)(I), I‘RB). Choosing a cohomologous cocycle? (D&,D(z)_ z
Z (0<,04) # () (), 00) = Ulsxp) (o) + <b(ox)) +cbloc ) -

Cb (o& 09(2). Corresponds to choosing an X' = X + qje A .
no

(aw),
FE’3), so up to an arbitrary translation:-

X', T, U, R:(x, t)r—> (Rx+X+P+Ut,t+T)
- the problem. is unchanged, and hence depends only on the cohomology
class of Z€ Zg(Ck(\)U),RB)

Also, in the case where rotations are not heglected we have

X(°<1 00<2) = X(Oj) + R(D%_)(X(pé)) +;n(0\1,°<2)
Where 2" =U(2q) T(ex,) and 2" € 02 g (W), R7). Tt is

fairly easy to show that we must have " & ZioR( a (W), R 3)
since we now have:-

U (9% 0%%,) = U(o)) + Rlex)) e Ules ) i.e.:- U ezt e (w)

> ). Whence:—d’(%")(b(l,%:o%)_: D(j.;"("é,D%) —%u(a}oxz,
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9\3) + %"(«1,«2 o~><3) - %"("‘1""2). = R(04) Ulx,) T(ex 3) -
g(oi o\xz) T( «x3) + g(‘xl)T( X, o\xB) - _I_J(&:\l)T(o(2). Which is
& (ZM) (04,35, 5) = RN (06)T0G) - Ul )Te)-RbgyU ()
T(2=3) + U(ox ) (T(ex,) + T(o%)) - U(o)T(2) = 0. So that,
explicitly %" e ZioR(CL(\)U)", [RB). The cocycle % c Zg(@(w)',
R7) determines a cen’cfal extension TR QQ%Z((\X/)' where A(W) ' <<
AL (\W) omits the rotational subgroup of E(3,MR), whilst the cocycle
%" defined a non-central non-trivial Abelian extension R X »"
A(Y)" when &' (W) = A (\/ )/ iR More will be said about these and
their related cochains when we discuss the use of Eilenberg
Maclane's 'cup products' of cocycles. Thus, bearing in mind that
a non-trivial factor systemwill be involved, we shall analyse the
structure of L (W )N I(W ), which we will write as G(3,IR), using
the simple method of knowing the group law. The method will
closely follow that used by the author in a preprint (Ref. ),the
first to analyse fully, the global structure of the Galilei group.
We shall see that due to the peculiar nature of the 2 cocycles ? .
permutations of the underlying sets of G(3,/R) enable one to see a
semi-direct product group as well as non-trivial-non-central Abelian
extensions. The author feels that the analysis of the structure
of the Galilei group repays the small effort due to the number of
examples of different kinds of group extensions one finds, apart
from the physical interest! Precisely why one can 'swap' semi-direct

product for non-trivial extensions will emergy in the third section
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of this paper when we will use some powerful cohomological theorems
due to Eilenberg-Maclane and one generalised from a theorem due

to Mackey by the author.

Now given the group law on G(3,R):- (Ei’tl’-‘—’l’ Rl),(g_{g, s,

Vps Bp)'C (Rpp Xy + %5 + g b5 Ry ¥y + Vyaty + By Ry Ry, it is
easy to see that the injectlonso& : xt—> (x, 0, O, e);-9<2

: t—— (0, &, O, e);
<=-<3: v+—> (0, 0, v, €); o<t R——> (0, 0, O, R) of'RB, \‘Rl,
I'Rj'T and 0(3,1R) into G(3,1R) are,in fact,monomorphisms. To express
G(3,/R as an extension must involve a pair of groups and moreover

the set theoretic images of these groups must satisfy G(3,IR)/K2 Q

and K< G(3,R) for a pair (K, Q) which extend to G(3,IR). Given

the four injections {oX,) 1< i<y We can, of course define combinations
€.8.1= oA X HKy! rRZ' X ré — G(3, J; o xo<2:(§, t) ———

(x, t, O, €)5 o

1 Xo( Xo\ I'R3 TE.L ﬂ“-ﬁ —_ G(B,TR); p‘j_ Xoé XPg*
x, ¢, W) > (x, t, v, €) etec. Consider those combinations where
Ln(%i)'lm(oclz) 2 G(3;[R)(has sets) and Im(x']) N Im(exy) = e. We

LI
3 Cg =

can form ”C = 6 injections of the required form:- oy Xexs 3

2 J
I injections of the form og xoj X04, - That is,we can attempt to
extend Im(w'\l Xcs Xog ). That is we can attemp~t to extent ImEx 1 x-><2)
by Im(tx3 xoﬁ),' Im((xl xa3) by Im(o<2 xrxu); Im(pxl XD'\ll) by
Im(t>’\2 X ¢><5) or vice versa; and in a similar manner attempt to extend
Irn(o<,l) by Im(og2 X exg x:><“), Im(cxz) by Irn(mlxos Xogu); Im(:><5)
by Im( = Xty x:xu) and Im(oﬁ) by Im(o'\_L X%, Xo%) or vice-versa.
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There are seven possibilities, where we take the injections and
isomorphisms of the sets onto their images equipped with the
composition on G(3,R) which the original sets inherit. (e.g. =g
are monomorphisms). Let us call the pairs which we defined above
<Pid> 1=i=7 in their order of definition. We discuss the pairs,
testing elements for normality or as subgroups of G(3, R )
and whether or not G(3,IR) can be written as an extension 6f elements
of the pair.

P1 This is the pair (Im(eq) xo%,), Im(sx, xex)) = (R x1d),
(ﬂél’ x0(3,/k)). Now consider the group law on Im(-xl X 5¢y):

(51, t15 0, e)(§2, s O, e) = (x; + Xy By * b5, Oy e). Thus we
have R’ @™ <G(3,/R). Similarly (0, 0, v R;)(0, O, ¥, Ry) =

(0, 0, R, gfy_;l,@%z). So that nQT ® 003,R) = E(3, RIKG(3,R).
Also 1R @ <1 G(3,IR) and G(3,R)/ R @ R* = E(3,MR) since

(0, 0, ¥, R)(x, ty, 0, €)(0,0,v, )" = In(0,0,, R) (x, t, 0,0)) =
(@, R) : (%, ©),0,0) = (Rx. +. ¥, t, 0, 0). Thus I BIR <AC(3,R)
and E(3, R)p < G(3,IR), G(3,/R )/R @ & 2 E(3,)R)p  which means
that G(3,R) can be written as a semi-direct product:-

6(3,/R) & (R ®®) W g E(3,R)y, where g € Hom(E(3,R), Aut

(R’ @) is defined via g: (v, R): (x, t)¥—>= (RxX + ¥ t, t).
This structure is the one with the structure which bears the easiest
physical interpreations. E(B,I?)T plays the role of the Lorentz
group in the Poincaré group as an operator group on =R @ ﬂ%‘ , whose

trivial homogeneous space @ R/ $(0,0)2 is isomorphic toW on
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which R> ® R acts via the regular representation.

(P2). We next consider the pair (Im( > XD(B), Im(9<2 x-p«q)) or
(( x Rp), (I’ x0(3,®). Now (x;, ¥, 0, E) (X, v, O, e)
G(3,iR). Similarly (0, ty, 0, B))(0, ty, O, Ry) = (0, £y + &y, O,
Re R2) so that also lP]\'Q: 003, R < G(3,1R). Also ﬂémﬂ‘:’T <l
6(3,1R), ’! @ 0(3,R) < &(3,1R) and G(3,R)/ R @R, 2 Ik @ 0(3,1R),
where In(0, O, t, R)((x, ¥, 0, e)) = (g,(t, R)(;l, V, V), 0, e) =
(R(x -~ ¥ £), RY, 0, ), g,&Hon(1 ®O(3,1R), Aut(R ® ).

So again G(3,R ) may be regarded as a semi-direct product:-

(IRBQHRBT) & (TR]'@O(B,TR))

(P3) This is the pair (Im(c><:L x=><4), Im(x2 xmB)). Now (51’ o, O,
R))(x,, 0, 0, Ry) = (x; + R} x5, 0, O, R, R;) so that E(3,R)<
G(3,1=2). Also (O, tl, v, e) (0O, 6 Vs e) = (Xl, st +tss

V) + ¥, €) so that = oang’T<LG(-3, R), moreover E(3,ik) <41G(3,R)

1
since In(0, t, v, e):(x,0,0,R) —> (x + Rv t-v t, O, v - R¥v) R)
so that G(3, ®) cannot be expressed as an extension involving P

(P4) Ph is the pair (P, W x Ry x 0(3,1R)). We have R<G(3,R)
and 'néqG(B,IR) since In(O, t ¥, R): _(52_, 0, 0, e) —> (Rx, 0, O,
e). Now (O, t ¥p Rl)(O, ts Yoo R2) = (32, ’c2, tyttss vy 4 Ry

Vo By Rz) so that G(B,R)/TRB: E(G,R ) @-rRl, associated with
the injection is- a cochain ;((tl, ¥is Rl),(t2,32, Ry)) = vy by
where;GCI%(E(B,IR)TtX:IRl,TRB) where N€Hom(E(3,R) & R" Aut (TR2))

is defined by N( (vj R),t) : x—> R x¥((v, R),t)€E(3, ) x®,
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xe [KB- Moreover £ & Z2N(E(3, R)p @ \'Rl, %) since we have:-

FZIWys Ry, (W RV R, t5))

N((¥;5R;),892)( Z (((¥y, k2),t2),((13,R3),t3))-
;((w_rl + RV, Ry R, )5t +E, )’((XB’RB)’tB)) +

;(((Xl, Ry)sty)s ((¥, + Ry ¥gs R
?(((-Yl’ R1)5t1)5 ((55R5),85)) =

Ry),ty + £5)) -

t, =0.

R¥, t3 - (\_rl + Ry 12) 1:3 + Xl(t2+t3) - 5

A%

Thus we can write G(3,R)® R m-; (E(3,R )y le’ﬁl),% S
22 (B3, R) @ R, , R’

For the same reason that G(3,#%®) can have several isomorphic
algebraic structures so can E(3,R )Tcx; w!. In fact, there are
isomorphisms (/9 )€ Hom(E( 3, IR) DR '

(R xRopm q 0(3,R)) x Hom(E(s,mzrwn?l, R W 6y(003,1R) @R))
where ,91 (¥, R),t) —> ((t, ¥),R) and & :((v, R), t) +——>
(v, (k, t)) ¥ (¢, Vo R)Gn% X 1R3T X 0(3,({R). The homomorphisms:
q, €Hom(0(3, R, Aut(I @ ®p)); q; (R):(t, x)—~ (£, Rv) and

9, R,b): (¥) —= Rv , q,€ Hom((R @ 0(3, R ), Aut(Wp)).

Recall the existence of thefymctor 'Hom' from G x G, where G is
the category of groups, into the category Ar(G) i.e.:- V (A,B)
<€ g x§ 3 Hom(A, B)E€ Ar(G) and when(g, f)€ Hom(A5,A,) x Hom(B,,B5),

Hom(g, f): Hom(A;, B,), Hom(g, f)'ORI—% f oxo g, i.e.:-
= Hom(AB)  am

A

H"'f"\ CF)‘jI“)
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Given N Hom(E(3, R ) @ =L, Aut(R)) then one can define N, =
Hom( A7 AAN)N, T Hom(& ,1N)in Hon(R @®)m q, 0(3,iR), Aut
(%)) and Hom( R, m a( @ O(3)), Aut(1R’)), respectively. Similarly
given';€02N(E(3,R)T®ﬁé,fR3) then there are cochains¥ ;| and £, in
the group C2Nl((R1QNE-5T) mq,0(3,R), &) and c§2(na3T maq,
n‘l’d& 0(3,/R), 1123) respectively wheJ:'e‘;l E?O(ﬁl xﬁl);%z =

'%0(152 X&5), since & | and &, are isomrphisms,;gZ_,%fEﬁ,ﬂé Q'gn:-l,
") inplies that € 7y (R @RI g 0(3,5), ) and 2 ,€
zﬁz(ﬂa}T @ q,( n% ®0(3,R)), R’). So that given the extension

IRBD!; (E(3,R)p ®M) is isomorphic to G(3,MR), the E(3,/R) x

R} - R equivalent extensions @ g, (IR @ ®) @ q,0(3,R))

%,€ 75 (R oD ®a06,R) , ™) and R mg ( Byma,

(Ra 03,R), Z, € zﬁz(néqul(ré@ou,na)),ré) are also

isomorphic to G(3,/R). Thus G(3,TR) cal also be expressed in three

equivalent ways as an extension by 1133:—_
R Bz (BG.R)y RY), T € EEG,R) o, R)
R @z (R @) may 003,™),%, 22 (ko we)ma0(3), )
1
R’ mg (R m gy (' ® 003, 1)):2,¢ z§2<cé @ q, (Rip 0(3),1R7)

(P5). We now consider the pair (Rl, 'ﬂé xnéT x 0(3,/R)). Now that:-

(b5 0, 0, e)(t,, O, 0, €) = (b + by, 0,0,e) = T<< G(3R).

l’
Howeverfl21<h G(3,t%%) since In(x, 0, v, R): (t, 0, 0, &) —
(vt, t, 0, e) & R, Also, we have:-

X5 0, ¥3» R (X, 0, ¥ps Ry) = (%) + Ry %y, 05 Xy + By ¥Ry Ry) 50
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(R @R m, 0(3,ik); (where k) EHom(O(3,R), Aut(IR @ 1)) and
kl(R): (W, x)—> (R %, Rv)))<G(3,R). Moreover (TR}' Q!RBT)
@ k0(3,R )<AG(3,R), since In(0, t, 0, e):(x,Y, 0, R)—> (x + Vv t,
0, ¥, R). With R? ‘éie(s;‘m)/(ré @ﬂQT) ® y, 0,R), and PEHom( R,
Aut((ﬂ?s@ I’RBT) & ky 0(3,R)) defined by p(t):((x, V),R)

((x + v t, v), k); we can obviously write:-

6(3,R) = (R @®’y) @R, O (3,R) @ K

Now the group (IR3 ®R3T) vid} klO(B,IR) has the isomorphic structures

)R3 b k, E(B,IR)T and ﬂi’-sTﬁRB E(3,;®). Here, k2 and k3 respectively
elements of Hom(E(3,R )y, Aut(RB)) and Hom(E(3,1R), Au’c(RBT))

are defined by k, (v, R): XxI—» Rx and kB(g, R): v +—> Ry,

Y (x, v, R)IE 1~ anT x 0(3,/R). Let¥ , and ¥, be the isomorphisms
Y, (%), A (%, (¥, R)) and ¥ ,:((x, ¥),R)—> (¥,

(x, B)) of (R°@®p) @k, 0 (3,R) onto ® m k, E(3, R)y and

IRBT lek3 E(3,/R), respectively. Then, given the homomorphism.

P& Hom( ﬁg‘, Aut((TEBQ:YéT) ® k) 0(3,%)) there exist homomorphisms
(P> Py) in the sets Hom (TR, Aut( e m k,E(3, R)q)) and Hom( w=t,
Aut(rléT :(} k2E(3,fk )) respectively, where pl(t). = Hom( Xl—l, Xl)

(p- (£)) and py(t) = Hom( , 1, ) (p(t)) ¥ tEMR. The isomorphisms

2 1 1 X 4 and ‘6’2' xT set up equivalences between the extensions defined
by p, and p, of R by R m k(3R )y and "o mks E(,R) and
whence we can assign to G(3, /R) the structure of the three equivalent

extensions
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(R @R @k 0G3,R) ®p K
(R mk, E(3,R )p) @ p, R

5 1

(P6). Here we consider the pair (IRBT, !123 X R x 0(3,/R)). Now,
(0,0, v;, €)(0,0, ¥, e) = (0,0, ¥;, +V,, €) means that n:;’T< G(3,R).
However R3T<h G(3,R) since In(x, t, 0, R):(0, 0, v, e) —>
(-Rvt,0,Rv, e)é RBT. Mso (x;, t

0, R) (X5, £y O, Ry) =

1 2°
(51 + R, X, 0, Rys R2) =R, ® E(3,R) <G(3,/R). Now In(0,0,v,e) :
(x, ts O, R) /> (x +v&t, t, v-Ryv, R)& R @ E(3,®) so that
lRl ®@ EG,R)41G(3,R). Thus G(3,R) cannot be expressed as an
extension involving this pair. Since ﬂ% R E(G,R)<< G(3,R), the
groups (R’ @) @ o ;0(3,R) and R m ox, (R ©0(3,1R)), where
>, (R): (x, t)—>(R x, t) and 4><2(t, R): x +—> Rx, are isomorphic

to Rl & E(3,f=) and are also subgroups.

(P7). The final pair which we have to consider is the pair

(M x ® x M 0(3,®)). Now (0,0,0, R)(0,0,0,R,) . = (0,0,0,
R, R2) means that 0(3,R) < G(3,iR). Let K be the subgroup of
elements in Y X Ié‘ xTRBT- K< G(3, ) since (_}51, tl, ¥is e)
(Xps Tps ¥ps ©) = (X + x5 + ¥ bp) £ + 5y §tYp ©), and

K<J G(3,R) since In(0,0,0,R):(x, t, v, e) —> (R x, €,Rv, e).
Let 8 € Hom(043,®), Aut(K)) be defined by A(R): (x, t, v)+—>

(R x, t, Rv). With G(3,R)/K £0(3,iR), G(3, =) is then an

extension of 0(3,1R) by K.
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Let us consider, in some detail, the structure of the kernel
K which is rather interesting. Firstly, we note that 4 <K with
m(, v, t):(x, 0, 0) —— (x, O, 0) also K/ R 2 ‘IRBT Qle
with section j:n_eB,I.d\'R’l —> K defined by j_(v, t) —>(0,(v, t)).
with (0, (v;, %))(0,(¥,, t,)) —> (v, tos ((vg + ’s_rz),tl +t5))
we can define a two cocycle ;E Zzo(l‘RBT ®|‘|%, né); ? ((11, t),
(\_f2, t2))‘ = ¥, t;. Thus K can be written as a central extension:-

RB@% (IRBTG) ry). Next, we see that RO@® R < X since

In(0, 0, ¥): (%, t, 0) > (x + ¥ t), also K/ R @M 2T, and
since (0, O, \_rl)(0,0, 22) = (0,0, vy + 22),R3T << K. Thus K can
be expressed as a semi-direct product K = ('TRBQ Iﬂ‘) m 3’3 'R‘BT,
whereY:IGHom( ﬂéT,Aut( R X ) is defined bei(z):(g, t) F—>~
x+vt)V (v, x, t)ETlgT x = x TR Lastly, we have @@TESTQ
K since (51, Vs 0)(Xys Yoy 0) = (Xy4-X5, ¥y + V,, 0) and In(0,0,t):
(x, v, O)—> (x + v t, v, 0). Also K/ T @f,x R and

(0, 0, t7) (0, 0, £,) = (0, O, & + t,) implies rle K SoKis
once again a semi-direct product:- ( o @ IRBT) my, R, wi‘ch\’zeﬂom
(R}, Aut( R @R;)) defined by ¥,(6): (x, ¥) —+ (x + ¥ &, ¥)
V(t, v, x)& R x IEBT XIR. Let ©,97, be the isomorphisms
o nécx:g( (R, @ R) —> (RaB) oy, R,
(x, (v, £)) — ((x, t),¥) and 05: (x, (v, £))—2 ((x, ¥), t).
Then with p € Hom(0, (3, ), Aut( TR-I’Q; (R—ST Q@ Rq)) defined by
p(R): (x, (v, t))+—> (Rx, (Ryv, t)), we can define the homomorphisms

P, €Hom(0(3,1R), Aut( T er) Y 1R3T))3P1(R). = Hom(of—ulo'l)
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(P(R)) ¥ REO0(3,MR) ; p, € Hom(0(3,R), Aut( R ®Rp) my,R ).

p,(R) = HOm(G‘z-l,G'Z)(p(R))V RE0(3,R); we can express G(3,R) as the

three equivalent extonsions:-

(Re z (R ar)) mpoG,R)

(R ®®) mY, Ry mp; 0(3,F)

( fk}@ﬂél’.r) =Y, R m p, 0(3,R)
This completes our analysis of the algebraic structure of the Gailiei
group for the present. We list the structures we have obtained:-
Q (R czoRl) ® py E(3,/R)p. Semi-direct product with p;(v, R):

(X, 8)—> @Rx+Vvt, t)

(2) (I'R3 ® T) IZ\DZ(R]'@ 0(3,R)). Semi-direct product with

p2(t, R):(x, v) —> (R(x-vt), Rv)

(3) Threeequivalent extensions of a non-trivial type with Abelian
kernel. Representative is

1% Qi( Rl ® E(3,R)7) where ; is a 2 cocycle of ZEN( = ® E(
(3,R), IRB) where the automorphism N is defined by N(i),(v,R)): x+—>

(4) A semi-direct product structure, with three equivalent extensions.

The representative of the equivalence class is:-
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(R7W EGRID @ ps R
where k(v, R): x+—> R x, Pg(t): (%, (¥, R))E—=(x + v t,(v, R))
(5) A semi-direct product structure again. The kernel can be

expressed as a central extension or a semi-direct product:-

(IR3®? (FR3T®|?1 )) m py 0(3,R)

(R ®R) myRy ) mp} 0G,R).

where 2 € zs(lR3Tq9|Rl, R); 2 (W, £),@,t,)) =9, ¢

py(R): (x, (v, £)) —> (Rx, Ry, t));)li(z):(z, t) —— (x+v t, t);

P} (R)((x, t),v) > ((k X, t),R ¥).

The structure (1) was introduced in chapter (). The group-theoretic
interest lies in the two representations of the equivalence class in
(5). Here a generalisation is suggested, emphasised even more in the
next section where we discuss the Carroll group. The interesting
point is how a premutation the cocycle '? ' into an auto-
morphism.

Part (ii) The Carroll and Static Groups.

The underlying sets of the Carroll and Static group, which we

denote by C(3,/R ) and S(3,IR ) respectively, are the same as that of

1 el : 3
the Gq‘llx!gl, group, viz:- R

on C(3,k&) is:-

X Rl X I'?_ST x 0(3,R ). The composition

(15895 ¥p5 Ry By ¥y, Ry) = (X7 + Ry X000 +0,491 Ry X5, vy +

R ¥, By R,) whilst the composition on S(3,R) is:-
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(%75 b5 ¥ys B)(ps 5 ¥ Ry) = (X + Ry X5, By + 85, ¥y +R, ¥y,
Ry R2).

The structure of the latter is somewhat more simple than that
of the former. In fact, we may write down the structure of the group
S(3, R) immediately, following the system of the first section. We
write the isomorphic structures as extensions as:-

1) (R’ ®RY) @b EG,R)yg

@) (R ®Ryp) mh, (R ®0(3,K))
(3) (R ®hy (™ SEG,R)

M) (R’ ®R’p) @hy, 0(3R)) @R
(5)  ((R?@rY) @iy) mhy O(3,R).

The decoupling of the Galilean boosts R 3,1, from space-time considerably
simplifies the algebraic structure. The homomorphisms hl - h5 are
defined by

hl(_\_r, R):(x, t)—> (Rx, t)

hy(¢,R): (x, v)—> (Rx, Rv)

h3(t,(1, R)): ¥—> Rx

hy(R): (x, ¥) +——> (R, Rv)

hg(R): ((x,¥),8)— (hy(R)(x, v), t)
V (x, t, v, R)gl’R3 lel leBT x 0(3,/R).
Let us now turn to an analysis of the structure of the Garroll group,
using the techniques of section(l), i.e.:-considering the pairs <pi>

14 £7 and attempting to express C(3,fR) as an extension involving
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these pairs.

(PL). The pair Py is (R’ xR, Ry x 0(3,R)). Now (x;, t., O, e)

1>
(%55 tos 05 €) = (¥; + X, &) + t,, O, @) inplies that R @R<C(3,R).
Moreover In(0, O, v, R): (x, t, 0, e) — (R x, t+v* Rx, O, e) €

R @R implies R ® R<IC(3,IR). Mat C(3,R)/RORIEER),
means that C(3,R) is an extension of E(3,R)y by (R ®R') and that
(0, 0, ¥y Rl)(O, oR Voo R2)v = (0, O, vyt Rl Vs Rl R2) implies that
C(3,R) is a semi-direct product of E(3,R)p by R ¥ , with
a pie'Hom(E(B,fR)T, Aut( IE'BCXHRJ')) defined by pi(!, R):(x, t) +—
(R X, t + ¥'Rx). Thus we have C(3,R) = (Ro ™) ® py' E(3,®).
(P2). This is the pair (\'R-j X“?BT, R x 0(3,R)). Now (x,,0,v,¢)
(52, 0, ¥, e) = (3(_1 Xy s ¥yt Koy ¥y + Y, e), thus P'<l X 0g is
an injection of ﬂéoaﬂg’T into C(3,R) which involves a factor system
ZECC(R @Ry, R @ 0(3,R)) defined by E((x;, ¥;), (%5,¥,)) =

(21 (x5 ¥7)5(Xps ¥5))5€)) where%'ecg( R, ). & <
E( = ®0(3,®)). The three cocycle associated with ; is a rule.
which inplies that §’(Z') =0 or g'€ Z2(R @ Ry, 1)), We can
thus see the existence of the central extension W @ ;( 1 v IléT) of
I'RB.@ R—ST by the centre R of I'Ié' ® 0(3,r=). However, although

R ® 0(3, o)< C(3,MR) > L@ 0(3, ) 4T C(3,iR) since In(x, 0, v, e):
(0, t, 0, R) +— (K-Rgc_,t+5'x-z"-'35,y_-R_g-, R} q-

ﬂi ©0(3). Thus C(3,l) carmot be expressed as an extension

involving the pair P,
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(P3). We now come to the pair ([R3 x 03,k ), rRl x[RBT). The fact
that:= (x;, 0, 0, R)(X,, 0, O, Ry) = (x; + By X,, O, O, Ry R,)
implies that E(3,R )<< C(3,lR). Also (O, tl, vy e) (0, ’c2, Voo e) =
(0, t) + ty, ¥) + ¥,, €) means that R @®p < C(3,/). Now
11'1(5, 0, 0, R):(_O, t, v, e) —> (O: t-Ry "X, RX ] e) implies
that IR @op<d C(3,R). Write glx, R): (6, ¥v) —> (t.- Rv'x, R ¥),
then g € Hom(E(3,R), Aut(R" @R>p)). Since C(3,IR)/ IR @ 2
E(3,R}<< C(3,[R), the-latter-has—the-strueture—E{3;—)—C(3— ),

the latter has the structure of a semi~direct product, (Rl @lRBT) ®
g E(}"R)o
(P4). Py is the pair of sets:- (W, & x Wy x 0(3,IR)). Here

"é, #QE(B,R) < C(3,I) since we have
(E,O,O,e) (5 0, O, e)—(x +x2,0 0, e) and (O, ’cl,v R)

(o_ t2,v R) (oR tl+t2,_\£l+Rl_\£2, 1 2).

Moreover, rfa (0:0} E(B,l?)T.{]C(B,ﬂe) since If(x, O, O, €):(0, t, x,

R) I——» (E -Rx,t-v- -RXx, ¥, R)¢|€-®E(3:‘R)T- AlSOlR} <%
C(3,R) since (0, t, v, R):(x, 0, 0, €) +——>~ (kx , v " Rx, O,e)

& IR3 . Whence C(3,R) cannot be expressed as an extension involving

the pair Pl-l'
(P5). Next, we deal with the pair (rRl,né X‘RBT x 0(3,R)). Now

IR1<C(3,IR), but oy XXz XX, is an injection only of (ﬂéczyn‘é,r) =

q 0(3,iR) into C(3,R) where:- (x4, 0, v, R 1) &5 0, Y55 By ) =

(_l + Rl X5y ¥y Rl X555 vl + R1 Yoo R1 R2 associated with the injection

is the factor system?EC (( TQQ(RT) ®q 0(3,M), fRI) where
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2G5 205 B, (G )0R)) = vy ° Ry X0 Now REC(3,R)
since In(x, O, vy R): (0, t, 0, e) > (0, t, O, e), Se that

= < C(C(3,R)). We see that C(3,IR) is accentral extension of

( ﬂé@né,l,) ® q O(3,/R) byl and that we must have %EZZO(({FQ@
Rop) @ q O(3, ), i) uhere q € Hom((0(3)R)), Aut( R m>p)) is
defined by q(R): (x, v) — (R x, R¥)V (R} v, x)C O0(3§R) x
2y xR, That & (§) = 0, we show explicitly. d(B)(((x;, ¥;),
R, ((xy, 22),(R2)),((_}£3, 23),R3)) = F(((}gz, V5)5R,5), ((x3, v3),
Ry)) - ?((51 * Ry X5, ¥y + Ry V5)eR Ry}, ((Xgh ¥3),R5))+ g(((zl, vi)s
R),((x, + R, X35 ¥y + Ry g, R, RB))) - ?((zl, v1)Ry), (x5, ¥,),
By)) = ¥y " Ry X3 - (V) + Ry ¥)" Ry By x5 + %) * Ry (% + Ry x5)
TY Ry Xy TV, "Ry Xg - ViTRy Ry Xz - Vp'Ry X3 4 U tRy X 1
R, R, Xz =¥y C R, X, = 0. So we have explicitly, ?G Zeo((ﬂa3®\'lér)
qu(B,ﬂa),ﬁel). The structure of C(3, /@ can thus be expressed as

a central extension R Q? (1< @ HQT) LG.®)).

In the same way as in section (1), the structure of ( 23 tmlE}T)
® O(3,% ) can be expressed in the isomorphic wzslys.llé6 ®@ q; EG.R)p
and "éT ® 5, E(3,R ), which are isomorphic to the group (iR3 waér) =
q 0(3,/R) under #,,#, onto the former. The cochaines g, =£O
({91—1 X/e2—l) and %\0(182_1 xﬁz_l) are 2 cocycles of Z2O(ném q E
(3, R)mqs Tﬁl) and of Z(Z)(]RBT R’ d, E(3,k), n%) . respectively. Thus
the isorﬁorphisms I x/el and I x/=>2 set up equivalences between
the extensions:- n%@ ?l (ﬂé B q) E(B,TE)T), \'Rl ®§'2(TI33TE a4
E(3,/R)) and the extension 1 @; (R @) B q 0(B.R)) of
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(R e®y) @ q0(3,R) by RY to C(3,R).

(P6). The penultimate pair is (Rg, B x R x 0(3,R)). C(3,R)
cannot be expressed as an extension involving this pair since neither
IRBT or I'qu: E(3,R ) which are subgroups, is invariant. We have:-
In(x, t, 0, R):(¥, 0, ¥, &) >~ (0, Ry " x, Ry, e and
In(0, O, v, €) : (X, t; O, R) —> (x, t +v " x4 v-Rv, A&

rR1® e(3,®). All we can say is thatnaa s 1121 QEG,R) < C(3,R).

(P7). The final pair is (.0 (3,IR), llé xﬂzl leBT). Now O(3,R )<<

C(3,IR) since (0,0,0,R,)(0,0,0,R,) = (0,0,0, R, R2), also 0(3, =)<

C(3,IR). Let K be the group whose underlying set is ™ x 1 xﬂE‘I’T and

where the composition ié (51, ty> ¥ps e)(}gz, sy ¥, e) = --(_}51 + X5

by + 6y + VX5, V) 4 12). Clearly K< C(3,™):- In(0,0,0,R):(x, ¢, v,e)

+——> (RX, t, Ry, e) is an automorphism of K and defines q & Hom(O(
(3, & ), Aut(K));q(R): (x, t, v,)—> (RXx, t, Rv,)VRE€ 0(3,Ir),

(x, t, V)€ R xR xnz3T. Let us note that:- C(3,iR)/K = 0(3,7=)
and 0(3, =) << C(3, M=) implies C(3,IR) is a semi-direct product of
0(3,=) by K, and study the alg;ebfa.ic structure of K. First we note that
R < K and moreover =t being Abelian,is also in t he centre of XK:-
In(x , 0, v):(0, t, v) +—> (0, t, ¥v). Now (x, v)F—> (x, O,v) is

a section from ﬂé cxméT into K with a factor set % (2 Cg’(E né iné >
ﬁ%) defined by ;((51, V1) (%5, 12)). V) "X, Moreover;ezg
(ﬂéobﬂéT, Rl). So that K can be written as a central extension of

"é‘x‘“é'r by KT, K%rﬁlm-;cnému%). Again, R © W<t K with
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K/m3®|?1¢ R3T< K, i.e.:- K is a semi-direct product of TEZ’T by
RB@[& defined by g; € Hom( > » Aut(K)) where with IO, O, v):
(x, t, O)H—> (x, t + ¥ * x0); ql(z):(g, t)e—> (x, t +.v'X)
Vv GTRBT, (x, t)E " @R. Thus we write K 2 (I'R3®l'é) mqlrE}T‘
Finally 12 @ IR7,<d K and K/TR' QTR R < K, that ri(x, 0, 0):
(O, t, v) &% (0, t - v-x, v) means that 3 q2€ Hom(Rs, Aut(TR]' @

rE3T) where q,(x): (¢, ¥) — (t - ¥'X, V)V EQIRB, (t, X)Gé@ﬂér-

So we have found that K%il%@% (R @HEBT) -Z*.l( ® e®)m
qlTR3 > ﬂ%@; (R @ ) 2(9’2)5(R3T® m) txtﬂé where ¥, :(t,
x, v)) > ((x, £), ¥)3¥ 5t (&, (x, W) +V—> ((t, ¥), x) ¥
(6, X, YI€ R xR xR, Given g € Hom(0(3,M), Aut(K))3(g, 8,)\E
Hom(0(3,1R), Aut((R° @®) mq, ), Hom(0(3,)R), Aut((k' @1, W
a,7))) where ¥ REO(3,TR ),q, (k) = Hom(% 1, %) (a(k))ja,(k) =
Hom(§ 2'1,x (). So we have the three equivalent extensions of
03, ) by K to C(3,R) viz:

(R'@g (R 3R) ma 05, )

(R @R) m g Rp) m g 0G34R)

(( lRl cx:lRBT) & q2Tl23) ® g, 0(3,R).
Let us list the various structures that we've obtained for the Carroll
group. These are:-
(1) A semi-direct product (TB3 @1\21) g' E(B,R)T where g'(v, R):

(x, t)—>~ (BRXx, t +¥ R x)
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(2) A semi-direct product (Rl <X\|'R3.I.) @ g" E(3,R) where g"(x, R):
Vv, t)—> (Ryv, t-Rv ° x).
(3)  An Abelian central extension ﬂ?lcx:% ((rRBQMR-jT) g 0(3,R))
where Z€ 25((R° @R)pmg 03,R), ®) and Z(((xy, ¥)):R)),
((x55 ¥5)5 Ry)) = vy ° Ry X, , and ¥ REO (3,R), g(R):(x, v) +—>
(Rx, Rv)
) A semi~-direct product of O(3,R) by a kernel which can be expressed
either as a central extension by an Abelian kernel or as a semi-direct
product :- C(3,R) D (! ®% (némR}T)) ® g 0(3,iR) where £ <
22, (R Rp), ) and ¥ REOG,R), (6,0 VERBZ (R @®y),
g(R): (&, (x, ¥)) > (t, (R x, R¥)).

We have now completed this section. In the final sectioh of this
chapter, we will discuss, in general terms extension of the type we

have found for G(3,/&), C(3,R) and S(3,IR).

PART (iii). Algebrfibe Theory of 'Kinematical Groups'.

Consider the first members of each list of structures we obtain
for the groups G(3,Ik ), S(3,fR) and C(3,R). These -were of
the form (IRZ’@)“EI)-W g E(G34R )T’ where for the group G(3,[R) the form
of the homomorphism g€ Hom(E, (3JR )Tl Aui:(IR3 CXJﬂ%)) was
g, (v, R):(x, t)—> (Rx + v &, t))for S(3,R), gB(X’ R):(x, t) >~
(R x, t) and for C(3,R); g3(%., R):(x, t) —> (RX, t +¥ * Rx).
The three groups differ in which the group E(B,IR)T, sometimes called
the 'homogeneous' Galilei Group', acts on the group \'R3 @ ll':l of spatio-

temporal translations. The underlying set Il'\>3 Q le of the spatio-
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- temporal translation group, is just that of the event-world N .
The group E(B,IR)T can be 1ooked upon as an operator group on the set
W of W , which also acts, in the case of the ANLR groups, as
a group of inertial world automorphisms, the static group also filling
this role in a trivial sense. In other way we can regard \X/ as the
trivial homogeneous space R Somd/g 0,0% of the spatio-temporal
group on which the latter acts via the regular representation. There
is again the clear analogy between the Poincaré group P(T=R) and these
groups G(3,R), S(3,R) and C(3,M&) where the role of the homogeneous
Galilfei group is taken by the Lorentz group or vice-versa. If we
consider the causality group:- CH(R) = PN (IR) m qTR+m, or
(R@a, LAR) mate*n = K ma, @4 (R) @®n) wnere

(A, )ETA(R) @Rm} q,(Asox): X1=>Acxx fhen the subgrowp
( ﬂé ® q' "R+m);Q' (=) = qle,x ) M€ W states explicitly that ' is

a vector space over IR which is a highly non-trivial statement, endowing

the spatio-temporal translation group as a vector space, isomorphic

to Minkowski space. O (R)/LAN(WR ) can be looked at as a vector, in
this case. It seems that CA{T) builds in a lot more physics than does
P(®R)!

In the cases of G(3 ,;®),3(3,/ and C(3,/®) the rotation sub-
group 0(3,/R)~<< E(3,®)p acts in the natural way as a group of auto-
morphisms of the spatio-temporal group, we factor out this action, and
by studying the kernels of the extensions in the sevet'Ql cases we considered,

discovered exactly how the kinematical boosts to a moving frame act on
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the spatio-temporal group and hence on a space-time. For the
Galilei group, the kernel K could be expressed in three ways:-
(Re®mwn R, ©oz®ior) ze (R or, ),
or (R3®R3T) = p2|121, where we showed that p& Hom( e, , Aut(“gcgﬂ%):
was just p,(v):(x, t)i—2 (x + v tyby GTRBT; (x, £)E R @I
Here Py specifies W?BT as a group of automorphisms of the spatio-
temporal group and hence as an operator group on the world-set W
For the static group, S(3,WR), the corresponding kernels were:-
(IR @R) wng’T, R @ (IRBT(WTE_) and (R&ﬁéT)QlEl. Thus we see
explicitly that R ?T acts trivially in this case, greatly simplirfing
the algebra, but not allowing inertial motion to occur. In the case
of the Carroll group, we wrote =@ ;l(ﬁ\;’ @leT),?IG Zzo(('E}QNE-5 s
R);(TR-‘I'@DQ') i qlﬂ?BT and (TRBTQQ\'I%) q5 f=> where we defined
ql(z)-:-(zz t)—>(x, t+ v " X)V x_re\RBT and (x, tE R @R.
In the Carroll, Static and Galilei groups then, the essential differ-
ences arise in the way in which the group of pure boosts operates on
the spatio-temporal group and hence on space-time. The actions of
the former group allows us to form a semi-direct product group in a
natural way, and then we find that the semi-direct product group is
expressible as a central.extension of a pernutation of the three
underlying sets, or again as a semi-direct product.

Recall how in Newtonian relativity one could picture time as
an absolute independent parameter labelling instants. We note that
in the Galilei %roup, the pure boosts act 'as if"EEB, the subgroup of

spatial translations of the spatio-temporal group was characteristic:-
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IR3 ~<q l&@ rRl, the rotations naturally preserving this characteristic
nature:- x(IR) =MV x € Aut(f® @m). In the Carroll
group, the roles of space and time are swapped, each automorphism of
R ® T induced by Ry leaving MR intact i.e.i- M <are @W,

the rotations also preserve this intactness as they act trivially on
Rl. In the static group where \'K}T acts trivially we have (RB,
Il>\l<ﬂll'é Q ﬂg‘ In all cases, the pure boosts operate trivially on
the sepgrate subgroups. In this section we attempt to explain and
generalise the results of the first two sections using the notion
of fRBT 'characteristic! subg;r'oups{ After discussing the algebra
in a simple-minded way, we will corrobarate our results using the

notions of G enlargement theory.

Pure Galilei boosts as an operator group on Space-Time.

In this part of section (3) we will compute all 'physically
acceptible' automorphisms of the spatio-temporal group induced by
the Abelian group of pure Galilei boosts. We will call such an auto-
morphism 'acceptible' iff the automorphisms of 'space'and the auto-
morphisms of 'time' it induces are trivial. That is we will require
the Galilian group to operate simply on space axes and time axes.

One can formally picture three-types of classical space-time;
- a world with absolute time, a world with absolute ospace qfi a world where
both are absolute. We shall take the meaning of 'absoluteness' as
follows. That time is absolute we take to mean that ® <EllTé @fR.L ’

space is absolute IR1<1 ﬂé ® TR]‘ and that 'both are absolute' that
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ﬂ% <a né ) ﬂ% and rR3<lﬂé® TRl The sym'b"olz '«l' can be called
! IEBT absoluteness'. Assume then, that‘lRBT is a group of automorphisms
of /2 @ B, and that space, time, or both, are absolute.

(a) 'Absolute Time':- R3<aR’ @ =

Select an F € Hom(tR3 , Aut(rlz3 @‘ﬂ?l)). We want to
compute the F(v)(x, t)¥ YERp &, t)E® @ B when Ra R @,
That RO @M inplies VI € Aut (B @), 3 $E€ Aut(®)
where, if i:fé%ﬂécp'ﬂ% §i:xe= (x,0)V EGTRB,mo iz
io¢. Wence, given F€Hom(1y, Aut(R’® R1))3 & Hom( R o,
Mt(1R))IF-F(¥) 0 i =io0f @¥YE MRy § fet- F¥)(x, 0) =
(F(W)(x) , O)Y X €K >. Define F(¥)(0, t) = (O(v)(£),m(v)(t))
where Q€ CH(R7y, ¢' (Y, ) and © € cH(R,, sym(®H)),

Sym(kl) being the set of permutations of . Since F(v) is an auto-

morphism, we must have F(v)(x, t) = F(v)(x, O)F(v)(0, t), whence
F(v)(x, t) = (F@)(x), 0) (D) (£), W) (£)) = (FW)(x) + O(v) (%),
in(g)(t)).' Also F(v)(0, t) F (¥)(0,t5) = F(v)(0,t+tp) means that
(D) (B, #E,), TE) (51+6,)) = () (61D, T(w) () (G@) (&),

W) (£,)) = O@)(t1) + O(I(6,), W) (E)) + W) (t,)). Thus we
surmise that (i) Q()(t; + t,) = W) (t))+(¥)(t,) and (ii)

D (v)(6,+6,) =T (v)(6)) +T¥)(t,), so that § € C(Ry,z! (R, M) =
cH( R, Hom(R,R%)) andwec (1R, End(R1)). Now we also have:-
F(v; +¥,) = F(y;) O F(¥y). Thus F(y; + v,)(0, t) = (P (v; + ¥5)(t),
T (v + ) (6)) = P ( ¢ () (8), T (v,) (1)) = ((£(z;) O (w,)

(6) + § (v) (I (¥,)(8)), T (v;) oTMWy,)(t)). So we have:- ¢ (v;+v,)(t)
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f(xl)((b (w,) (%)) + ¢(zl) (v, (£)) and Wy, + v,)(t) = Ew(y;) O

Wv,) I (t). The latter shows that WE 2z (B, Bd (1)) =
Hom( rr<7’ , End( =) and since W (1)_1, =1 (-v) exists and is injective,

W € Hom( ., Aut(IR')). We now inject the first of our physics

by requiring that W = O, which implies for § that ¢ (v + ¥p)(t) =

b @) + £ @) (1)) or Py + v,) = dy) + £;) O Pl
Defining the action ofTRBT on Hom(Rl, R-s) by £ (v)(&)(t) = (f(v) O
#)(®)N v & Ry, we must have ¢ € z'y, (RS, Hom(TRL, ®)).
Whence if we make the physical assumption that f = O, we have
¢€Hom(TR7’ , Hom(‘iRl, ®)). Thus, with 'RBT operating simply on

R and on ¥ with T2 <q @R we must have F(v)(x, t) —>

(x + P)(t),t) where € Zlo(lR3 , Hom( Rl,TRB)). This correspondance
sets up a map from the set T of all such acceptible homomorphisms of
Hom( 1Rop, Aut (TR @T))onto Hom (IR°y, Hom (R, ). Call this

b ¢ Hom( M=, aut (FR2@RY)) —~ Hom( =y, Hom(iR', ) then ¢
Fi— O(F) where ¥ v & TR0y F): (x,) — (x + O W) (&),

t) ¥ FET.

(b) 'Absolute Space' IR < R @R .

Again choose an F € Hom(TR-I’ s Aut(ﬂ?-ﬂ@ﬂ%)) and require
=RM® @R, We see that I £ € Hom( R, s Mut( =)+ F(v) oj =
jofW) V¥ YERD, where j: B —» R @R, jit > (0, t) V
t enal. Whence we write F(v)(0, t) = (O, f(z)(tj). The argument now
preceeds in an exactly similar way to before. If F(v):(x, 0) >

(A(v)(x), x(¥)(x)), then we must have A€ Hom(\'lt-5 s Auﬁ(TE})) and
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xed o (n<3T, Hom( R, IR")) . Thus each acceptible F&Hom( R,

Aut ( IR3 ® ﬂé)) which leaves space absolute,gives rise to a 1 cocycle
A (F) € Hom( n<3T, Hom( |'|23, n%)) i.e.:= o< is a map from Hom(ﬂi:5 s

Aut( R @ ™)) onto Hom(ﬂZBT, Hom(ﬂé,l'é')) which is a set isomorphism

of the subset S Hom( ﬂé , Aut( R QD!T%)) of acceptible homomorphisms

which leave gpace absolute. _

Fv):(x, t)—— (x, t + [ P ).

(¢) Absolute space and Absolute time.

Evidently SNT =¥ 0§ , whence the Gailiei group only acts simply
on the spatio-temporal group if it is required to leave both absolute.
Le.:- FESNT = F():(x, t)—> (x, t) ¥ v& 11
Now ¥ FCHom( R, Aut(TR @ R)) we can define the trivial group
extensions (112300[14‘) EFIRBT. That is there is a map < of Hom('ﬂt3 s
Aut(TR3® n%)) onto the set of all semi-direct products of RBT by
RPQR; &2 Fr— (RaR) m Ry The set &(T) of
semi-direct products are groups in which RBT acts on ﬂé @‘Rl
preserving the 'absoluteness' of time. Also the set &(S) of semi-
direct products is the set where the absoluteness of space is preserved.
Clearly £(SNT) = £(8) 0 & (1) =1(K° @K' ® &7 . In section
(C) we shall relate the groups in <(T) to a particular family of
central extensions ﬁ@ z (TRBT ® ﬂ%), the groups in €(3S) to a
family of central extensions of the form ™= Vel §' (TR3T® KB).
I.e.:- estalish maps f.’iand X, from T and S into Hg(TRBT@TRl, =)

and into Hg( n'g’T@ﬂ'é, =) respectively.
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(c) To establish the injections T, rote that YVF &€ T3 a one
cochain ¥ (F) € Co(R, @ &', ) where I(E)(w, t) = [ (F)(¥)]
(t). V (v, )€ R, @M. Thus there is a map ¥: T —> cé
(Rp @, ). Similarly note that 3 ¥ ' § —» C-(IR, @R, )
where %' (F)(v, x) slx(F)(¥) 1 (x) VF €3, (v, x)ETr @F.

Let us state Eilenberg and Maclane's 'lst Reduction Theorem'.

Eilenberg-Maclane's Theorem

"Given Abelian groups TT and G, TT acting simply on G, the

correspondence:-
“n: BT, (T, @) — {7 (mi0)

On (£) (15 seeen. Tne1) = £ o5 eey T 0) (M OV EEH (T,

(77 ,G)); is a group isomorphismVYn€ Z+ "

Recall how we obtained 1 cochains (¥ (F),¥" (F')) € CL(R, R,
I'Ié) X C(l) (I‘R}Tmﬂé, ﬂ%) where (F, F') € T x S. Define a 1 cochain
of G(R3® R ,AR @K', ) by the rule PP (¥;, 1)1 (¥p:,) =
WE (g, 6,) ¥ FET and (v, )5 (Vb)) € Ry OR - Then we must
have AF) € Zi( K3T® |TQ‘, Ci( [R%@\'Kl, R-s))>since we see that

CAEN ), 1) (¥5,%5)) 1 (y_3,t3)- FA (F) (v1,%,)3 (13,173)

“IAE) (W, 50T (Wyobs) = 0V (3,87), Wst)), (U5s b )E R @,
i.e.:-

AF) (@ 49,5 B14E5) = AF)(¥y,19) + A(F)(V55t,). This follows

from Y(F)((V +3,)05) = YO 5 t5) = YF)(Wpts) = Gy + 1)
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(t3) - ¢(Xl)(t3) - ¢(22)(t3)_ = 0. In a similar manner, we
define a 1 cocycle N(FIE Z; (B, @, CL(R, @, ) V FES,
via (A'(F)(¥, %7)) (¥p%5) = ¥'(F)(vy, x5) = (o< (F) (v ))(x,). Using
the theorem, we see that the 2 coghains Z(F )and g (F) defined by

2 (F)((v,))5 Wp,tp)) = (W () (6,)V FET and B '(ED) (%597

(X55¥5)) = (AT (F)(xy5 ¥9))(Xp5¥5) = Y (F)(x,,75) = (& (F)(vy))
2
o

(R 3'I' oble’, ﬂé‘) respectively. Thus we have established an injective
mapZ: T : Zg(RBT ®I'R-L, né) and a similar one %': S 1 —>

(52) V FE S are also two cocycles of Zg((RBT @ﬂ@),'ﬂé) and Z

Zg(TR3Tl @RS’ IE]‘). So, in effect a pair of maps from T and S into
the sets of central extensions of IRZ'T v: ] " by ® and of TR_ST @ \'Ié By g
Let € and €, be these maps. Then G (F) = R @ ?(F)(ﬁéT ®R)
and E(F') =R ® Z'(F") (R, ® M) ¥ (F,F')E T x S. Clearly
F'S TN S means that%(ﬁ"'), = 0 whence €,(0) = &,(0) = IRAR RBT ™)) =
R'e (r\27’,II D).

We shall discuss the central extensions of this particular type
in a little more detail in section (d). To do so, we develop:: a
theorem which is a generalisation, by the author, of one due to
Mackey. Thus we postpone our discussion to the end of section (d)
We proove our theorem in full generality, as it will be used exten-

sivly -in later chapters.
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(d). Generalised Mackey'**?) theorem.

"Given the trivial group extension K@ p Q of Q by a group K,
specified by p € Hom(Q, Aut(K)), eachveHg(K @pQ, A),(A being an
Abelian group), can be written down as:-

Wk 1), (ky,05)) = F1(K150) * k) + 250000+ (s, qp)
where:-
q; * k2 pl@)k) ¥ (g, k)€ Q x K and (%1,; 2)G-Z(H(Z)(K, A)
H2(Q, A)) and where also the pair (3,,%) with YEC (KB p Q, A)
' satisf‘y i-
(L)Y, e) =0V k€K
(2) ¥(kqe kys Q) - T(kl, Q) - YKy, @) =F1(a7ky,q'ky)- ?l(kl,kz)

(3)\01(1{3 ql Q2) = W(q2.ks ql) + X(k’ Q2) "'

Proof let V€ Zg(K X p Q, A). Then there exists a group extension
A®p (KapQ), where A<(A®@p(Kmp Q) and K@ p Q is embedded
in the extension via the section j:(k, q) +—% (0, (k, q)) and

0, (k5 a7))0, (k55 a5)) = (W(kys q)),(ky,0a5))5 (Kp50y)(k5505)) =
(k)5 a7, (kp50,)),5 (k) 9y°K55G; Q). We must then have k &>

(0, (k, e)) is a section with associated 2 cocycle ;l = 2| Kx K, and
akF—~ (0, (e, q)) a factor system with 2 cocycle ? 5 F ¥ Q x Q.
Also, we must have the result that (0, (k, e))(0, (e, @)) = M(k, e),
(e, @)k, @) = (§lk, q),(k,q)) where PECLK@p Q, A). Uhence, up
to & two coboundary & (§) € Bg(K ®p Q, A), we must have (0, (k;,e)
)(0, (B,q;))(0, (k5,e))(0, (e, ay)) = (WK ,q),(k5505)), (k504"

k5, G q2)). The last line can be written as:-
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@Gy qp), Ky, ap)) = &y (kg 5a; 'ky) - Z5(ap505), (e5e)) (0, (kpse)
)0, (a;°k,,€))(0, (e, a7)) (0, (e, qy)).
This is just the identity:-

(0, (k,,e))(0,(e, q7)) [Ca,(qiky,e)) ] -1 [(0,(e,q1)33-1_ =
(II}((kl’ ql),(k23q2)) -?l(kl,ql.kz) —F2(ql:Q2),(e, e)). Now the
first expression depends only on k, and q; and defines a one cocycle
¥ € Cy(Kmp Q,Q), via T lkya) 23 (k5ay)s (ky0,)) = By (59, °Ky)

We must have:-

0, (e, @) (0, (i, &) (0, (e;a) > = (¥ (k, @),(a’k, e)).

v (k, )€ K x Q. Which leads to (i) ¥(k, e) = 0¥ k € K (ii)
Y0 Ky, @) - ¥e,a) - Wy, @) = Fl@katky) - Fylky k)

and (iii) Y(k?qlqz) = ‘d(qa' ks q ) + Y(k 9 ({2). Condition (iii)

1

can be re-written as follows. Define a cochain ¢ & C;L),(Q, CO(K, A))

i(K, A) , we define p‘(q-l(f). = f o p(q) V¥V qE€ Q),

(where W f € C
by @d(q)(k) = ¥(k, Q). Condition (iii) is that <b(q:L Q,) = q;l
<b(ql) + cb(q2). Define B (q) ;<b(q_l), then we must have:-
. 1 1

@ (9 Q) = ql-m(qz) + D (q)) i.e.:-TWE Zp,(Q, (K, a)).
- In terms of {D condition (i) is that WM(e) = 0 i.e.: is a norm-
alised cocycle and (ii) reads:-

glﬁq-L ky» gl k,) —%(kl, k2)=¢ft(ll(q))(kl k,). So conversely,
we consider the two cochain '/,\GCCE)(K @p Q, A) defined by :-

/A(( kls ql):(k2:q2)) = ;l(klsql'kz) + ?2(q15q2) + m()ql-l)(kz)



Where Z. | € Zg(K, 8),%,€ 72(Q, A) and WE z;. (@ CL(K, 4)) with
two ‘coboundary J—'CQEGN) defined,¥ g€ Q by,é’(m(q))(kl,k2). =
-1 e |

%l(q'kl, q'k2) -%1(k1,k2,§ To prove our theorem we have to show
that A€ zg(Km pQ A) or S (M) =0, which is:-

I () (5075 (s 6 (K505)) = fAL85,05),5 (kg5k5))
- ALKy artkys Gy qg),(ky q3)) + ALKy 590),5 (K, Ay K354, q3))
- AL (K0)). 6 e must have:-

F(A (5D, fp505) 5 (Ks005)) = 2 (Kpuy7ks) +Z5(an,a5)
Blay i) = 210y a1 kys ) G'Kg) - Bplay Gp005) - Blay gy ™)
(k3) "%1(1‘1’ qy " (&, q2°k3))+?2(q1,q2,q3) + :m(ql_l)(k2 q2'k3) -

7, 0y,0 k) = Bplay50y) ~alay (k).

Gathering terms in?l,?2 and B ,we obtain:-

& () ((kps a1 (Ky505)5 (ks505)) =) (k5005 7ks)

m %1k 9k Gks) + 240k, a5k @) gyk) - 24 (kg5
ky) +L Z 5(a5,05) ~F(q) 95505) +£ 500150, a5) ~Z,(a;50,) 7]
+L (a, 1) (g) - D(a, Tay D g)~ Eilay ) )+ Dla; Tk, g, k)
The square bracketed term in ?2,2 is§’ (?,2)(q1,q2,q3)_ = O since
'%26 Zg(Q,A). Consider the term Cﬁ(ql—llkz Q ° kB) in the third
square bracket. We have .-

W (a, Mk, ay'ks) = By (9 sy 9p7ks) ~Z(Kpsdy k) + TGy D)
(k,) + m(ql_l)(q2'k3). Inserting this in our three doboundary we
have 47 (4x) ((Iy50), (K5,05) (5,5)) =

LZ1 1k 9k - Bl a7k0 dy7ks) + 2 (50 % 4 ay7ks)
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~F) Gy k)] ¢ Tlay D) + @y Moy ky)- Way ™)
(k) 1 =

P, 47K 6%k + [P @)@, a7 DT Gg) 2 0
Since £, € Z5(K, A) and@€Z,(Q, C3(K, A)). Thus §(e)((ey,a),

(k2,q2),(k3,q3))_ =0V k5 Ky k3€ K; ap5 9 q3€ Q. Thus our theorem

can be re-written as:-

Each V€ H(K m p Q, A) where A is Abelian, has the form
V(> 0, Uepeay)) =% (ka'k2) + Zp(a3,05) +@B(ay ) (k)
where Z | €HC(K, A),% LCH(Q, A) and@ € Z0.(Q, CL(K, A)) with

assoeiated 2 coboundary of BF(K, A) given by & (&Z (q))(ky,ky) =
Fala k0 Ky)s -F (k,ky). ¥ a€Qor £ @) Fop (@) x
p@h -ZVa€q.

Let us consider then, the case of a direct product K® Q. We
mist then have SN@.(q)) = O¥q € Q whence [q) € Zy(K, A). Thus
each 2 cocycles of Zg(KQ Q, A), when A is Abelian, may be expressed
as:-

W5 ) (6p005)) = B (ko) +Eo(ay,0,)+ Blay ) (k) where
%, €2k, A),%,€ zﬁ @, A) andmezi(Q, Ze(K, A)) = Hom(Q, Hom
(K, A)); up to a 2 coboundary of Bzo(K®Q, A). Let Z:(Ko& Q, A)
be the image of the map V#:Hom(Q, Hom(K, A)) —> Z2(K®Q, A);
V() (G a)s (kyp)) 2 Gy ) (ey) ¥ T Hom (Qy Hom(K1AY)

Returning to our discussion we see that each element FET gives
rise to an element %(F) € '2-(2)( IKBT@IIQ, ll'é) and each F'€S to an
element 3 (F) € #5( Ry @R, 1) where B! (7') = IM(x®) , Z(F) =



4.37

WK (F)). ¥ FET, F'IE€S. Thus there is seen to be a one to. one
correspondence -

(R @R mpRD FE T« Roz (R oR)>ze

M ( ‘RBT ®lRl, ) and

(R @R mpRYp> F'E S <R q;,—?l(néT SR IpE'E
Hg( IRBTCXMIQ, ﬂi'), wherehg = zg/Bg
The two coboundaries are interesting in that they in fact describe
the arbitraries of the origins of time and velocity. To pursue this
extremely interesting point we reserve the final comments of this
chapter. Next however, we go ni%o discuss on the correspondence between
the groups Hom( Ry, Hom(R, R)),and T and Hom( Ry, Hom(me?, %))
and S; in terms of G enlargements in section (e). In this section,
we shall also discuss the 0(3,IR) enlargements of the families of
semi-direct products: <( 'néanﬁl) F [RBT§ FES U T. We will only
discuss the inessential enlargements in this case.

(e) Connection of G enlargements with (a) and (b).

In sections (a) and (b), we computed the acceptible .actions of
R 3T on the spatio-temporal group, assuming that either space or time
or both were absolute in the sense that the adjoint pairs were RBT
 characteristic. Let us couch the problem in the language of G enlarg-
ment theory. We want to compute the R 3,1, enlargements of the spatio-
temporal . group. The latter is a group extension of TR 5 by(\% or
of R1 by RB, since it is a direct product. If we regard it as an

extension of JR° by JRY, then the set Ehl((R3T, ®’, #)) =
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Hg'( RBT, { H?,‘(ﬂ?i, IR'?))_ = Hom(1R3T, Hom(1k1, ﬂé)) as we deduced
earlier. This corresponds to choosing automorphisms FET. If we
regard the spatio-temporal group as an extension of le by IRY’

and compute its RBT enlargements when E3 q acts trivially on léﬂ
R3®ﬂ% and on IR %n‘g’@» rRl/lRl, then Enl(iRBT,(IR}, n?l)_ =

Hom(ﬂa3 s (rRB'-;'H'é‘)) as we also deduced earlier. Our c;arlier results
fall immediately out of G enlargement theory.

(f) 0 (3,R) enlargements of HEBT by ﬂé@ L.

We have constructed the family of groups <( R3 ®|‘Rl) FR3T>
FE SUT, corresponding to all possible IRBT enlargements of the
spatio-temporal group. An isomorphism between the above family of
group extensions and the family:-

<Raz (R oR)>Z € &% (Rror ,R)URez
(TR3T® IRB));’GZ(Z)(TKBT QD'R?’, né‘), was also shown to exist. The
subgroup 2 & (R @®, RA< 22 (R, @, ) consists of all .
cocycles whose restriction to the invariant subgroups vanish.

The calculations of the 0(3,R ) enlargements of the semi-
direct products (R aR) = FRBT will enable us to define semi-
direct products (( R cx)Rl) nF “éT) m N 0(3,R) for those FESUT
which allow inessential 0(3,IR) enlargements. We assume the existence
of homomorphisms N, and Ny:- N, € Hom(0(3,R), At (IR @ 1)),

N, € H om(0(3,R), Aut(\'R-ST))) given by Nl(R): (x, t)—>= (Rx, t)
N,(R): ¥+—> Rv. The inessential enlargements then must have

N(R) = N;(R) x Ny(R)VRE O(3,IR) where N;(R) x Ny(R) :
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((%8),3) = (R, ), BRI ¥ (1)) € (ROR) m g’y
FESUT. Let us divide our discussion into two stages case (i) with

FET and case (ii) with FeE S.

Case (i) Here, since N(R) is to be an automorphism of (IR ®T|El) ® o

nZ-"T, we must have:-

(CR %5 575 RY(R X55t5), RYy) = (R + 5 +a (F) ( \_71)(1',2)

61 + t5),R(¥4¥,)). O D(F)(Ryy ) (b,) = RD(P)(v;)(6,)-VREOGR ),
(v;» tok Ry xMRuhich is just G(FIR Y) = R o G (F)(w), FET

Case (ii) In a similar way to the above, we must havex(F)(Ry_l)

(Rx,) = X (F)(v;)(x5) or o«F)(RV)(Rx) = o<(F)(v)(x), F&€ S.

Evidently, conditions of a very restrictive nature are placed on the

type of automorphism F& SU T allowing of an inessential 0(3,1R)
enlargement. Before we exploit these restrictions, we shall congider
these automrophisms in SU T which have a physical interpretation

in that they can be regarded as peculiar 'inertial world automorphisms’'.
We shall in fact, only consider those automorphs on T. That F& T

gives rise to inertial automorphisms means that :}g(t ) =0 =~ ('_')gF (t)) =
0. We have X (t) = x(t) + ¢ (F)(W)(5)Y FET. Thus (£ (£))°* = 0

means that (¢ F)(¥)(t))++ = 0. Or d(E)W)(t) = TEFE)(W) t,

T (E) € End(F),since T(F)(y; + ¥,) = THF)(¥;) + TT(F)(v,)since

$ (F) € Hon( Ry, Hom(ML, 12))); TT(F) must be a matrix of GL(3,IR) if
we require it to be MR linear which a reasonable requirement of confinuity
would show. For such elements F which give rise to inertial world auto-
morphisms, we must then require that TT(F) o R = R oTI(F) if an 0(3,/R)

enlargement is to exist. That means that W(F) € € (GL(3,TR))(0(3,R))
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the centraliser in GL(3,R) of 0(3,TR). Now O(3,R) is irreducible
so that € (GL(3,/R ))(0(3,R))2Rpy. Whence, the only automorphisms
of T which are inertial and allow inessential O(3,R ) enlargements

are those where ¢ (F)(v)(t) = £(F) v t, R(F)CR. Also, if we require
Rlinearity then¥F € S, <X (F)€ B&RS,IR), the space of bilinear
functionals on the vector space IRB. The vector space 1, @'RIRB s
where RS @,P_R 3 denotes the tensor product of (field) modules, is the
dual o f Bv(leB, R ). Whence, via the conjugate isomorphism¥f& B&RB,P),
3 A, BE 7 such that (x@y)(f) = A@B)x®@y) = (& " X)BY).
This is the most general element, which is WR1linear, of the

group Hom(‘ﬂZ3 , Hom(TR3,IKl))-'-2 Hom(fRBT, (IR?’ *). TFor an 0(3,TT)
enlargement to exist ok (F) € %l(QTRB,TR) must satisfy e~(F) o(R x R)=
oxX(F) ¥R € 0(3,;/R). Thus one must have (P (v x) = R(F)(V-x)

V W, x) ¥ €ER, x I, where@ FER.

We have seen then, that the only acceptible, inertial auto-
morphisms of lﬁ@ﬂ?l induced by Ht3T which admit 0(3,/R) enlargement
are of the form:-

Fv): (x, t) ——> (x +@F) t, ©)¥ (v, x, tE Ry xR x
fl'i. Defining the corresponding semi-direct product (119 @M‘) m F“ZBT
where the composition is:-
(x5 tl),zl)((§2,t2),32), = ((x; + BE)Y; t5,0+t5),v; + V,) we found
that there exist 0(3,1R) enlargements with a natural definition of a

semi-direct product using the inessential enlargements:- ((YIE3 ®ﬂ€l)) =

F"gT) 3 N xNo 0(3,®, whose group law is:-
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(X, £7)5 ¥7)5Ry ) (((xp,85)5¥5)5Ry) = (((x) + By x5+ (Flyg t,)
vy + Ry \_:2), R, R2)). Similarly there are R 3T enlargements of RL
by TR7’ defining semi-direct products (R3 dR)a F [RBT when FE& S,
which admit inessential O(3,IR) enlargements. On the group ( 1= @TE-L)
® p R the composition is:-
(G5 81D 3D, 5 8)oXp) = (G + Xpaby + ¥)°X5), ¥y + V)
The group law on the semi-direct product (R @ ®)) By R o) @ N1 No
0(3,R) being:- (((x), t1)5 %), Ry)(((x,5 £5)5%,):R5) = (%) + Ry X,
bttt AF) ¥y Ry X5),vp4R) V), Ry Ry

We establish a lemma in order to proceed with our discussion.
This is the so called 'freshman theorem'. Let K, H<1 G with K<Z H and

" . The theorem states that G/H >
(G/H)/(H/K). Evidently G is an extension of G/H by H which is an
éxtension of K by H/K. The theorem thus insists that G is an extension
of K by G/K which is an extension of G/H by H/K.

Let us label our 0(3, IR) enlargements defined above by x IR,
Clearly, in the light of the freshman theorem, we must see that G(e<) =
((IR3 ® ) m (o )IRBT)W NS 0(3,1R) can be written as the extension
(( R @ |1Q=) il (Féx),'gﬂa‘-") E(3,R)q where (F(er), Nj)(V,R) = F(e<)(v) o
Nl(R) i.e. for the class 'T' automorphism (F(ex)(v) o Nl(R)):(z,t) f—>
(Rx +exv t,t)and for the class S automorphisms,

F()(¥) o Ny(R) : (x, t)—> (RX, t +e "R X)
(=) Let us now discuss the same problem as in section f, using
however, an Abelian-non-central extension point of view. We saw that,

how given an acceptible F T we could write,
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(Raom R, = ® e (r) (1 @ 1) where 2(F)E
£ (R, @, né) < 7 (Ry® v&, #2). Also with FE S, then
(R ar) mFtRTA 1!%@? (F)(nt3 @ ™) where Z' ez (nt
fé R ﬂ?l ). So we can transfer to an Abelian extension problem.
Now there exists a natural map N'€ Hom (0(3,R), Au’c()\z3 QD%(F)

(Rn @) i.e.i- NR): (x, (v, £)) > (Rx,(Ry, t)). Ve can
regard an extension of 0(3,/R) by an extension of 2 by “éT ® n% as
an extension by IRZ’ of an extension of 'O (3,R) by “éT Qn%. Also
Y R<€0(3,IR) \N'(R) restricted to IRBT @ﬂ% i.e.i- N2(R) is an auto~
morphism of né ® II% which shows that the latter extension is a semi-
direct product isomorphic to tRl ® E(B,R) Associated with the
injection R @ E(},IR)T is a factor system %GCN (Ié@ E(3,R ),
) vinere:= B((5, (1)) (6 (1psR,)) 3 (?cFX(zl, H g (Wpstip))
Where the action of F2 @ E(3,R)on M is the same as N; 5 the kernel
of our original semi-direct product being a central extension. Since
there is an associativity requirement on the original group extension,
the three cocycle of ZBNl(IKl @ E(3,IR), R3). ,"_-‘.Lfa;':—_cf’C% P :

associated with the two cochain % must vanish i.e.:- d'(¥F) = O.
We must then have:- N(tl, (Xl,k NC D)

7 (65 (VRy)5 (b5 (U55R)))- 2 (b #65, (v 4R vy, By Rp)),
(655 (5, Rg)) + Z ({61, (¥)5R))s (b5¥85(V, + Ry ¥gy Ry Ry))) -F((ty,
(v15R))5 (£, (V55R5))) = 0. Which is :-
Ry *(F)(Vp) (b5) - HEN (¥ + Ryvy) (t3) + () () (B3) t,) - P (wp)
(t,) =0 R) (P (F)(¥,) (63)) -$FIR) v,) (£5) = Oor Rjoh(F)
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.= ®@(F) O R. Which is the same requirement as before. The same
construction applied to the existence of a semi-direct product of
0(3, R) by R qo?' (F')(R3T®r|z'7’), F'€S. As before, the condition
that the canonical cochain% be a cocycle is that o< (F)(Rv) Rx) =
H<(F)(vY x) ¥ RE 0(3,IR),(v, x)€ R3T®ﬂ23. Thus, given the
groups R?’@% ( WZBTQ'RI) and ® QZ'URBT ®HE7’), we can try to
form the semi-direct products by 0(3,K). These would be non-central
extensions of ﬂé, -"rtl by r @ E(3,R )T,(IR3T an'é) mpO(B,tR) respec-
tively and exist only if the above conditions were true. The latter
extension would be central. So we can form the groups R3 ®#ﬂé®
E(3,R)p) and R @?F\((né@;néT) @ 0(3, 1)) vhen the implied 0(3,KR) .
enlargements of 'éT by RBQ“@‘ are inessential. They exist only for
these F where ¢ (F)(Rv) = R o P (F)(v) or <(F)(Rv)(Rx) =
= (F)(Wx) V [, ¥, x, t)€ 0(3,R) x P x i x®,

Using our Mackey theorem, we see that theZ e Zg(nal GE(3,
TR)T,TRB) are: * those whose restriction 0(3, W) vanishes, and whose
restriction to TRBT @R, is E (F) and whose associated ¥€ z' (0GR )

,Cé(K, A)) is a two coboundary. °

This almost concludes the discussion of chapter (4) from the
algebraic point of view. However, a few physical remarks would be

pertinent. We see from our disc_uss_ion that the Galilei :group is a

menber of the family € ﬂéQDIRl) @ R 3T) ®my O(3,/%))> FET'

where T' is the set of inertial actions of W’y which are physically
acceptible and allow inessential 0(3,(R) enlargements of RsT by

(ﬂé ®Wi), parameterizing this ifamily in terms of the real line:-
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F +—» F(x );F(x)(@):(x, t)+—~ (x +xV t, t), we see that the
Galilei group corresponds topt = 1. Again,parameterizing the family
of growps <R’ @R') m FrR3T) ®y 0(3,R)>FES by Rvia F +—>F
(e9); Flen) (W)X, 8)T+—> (x, t+ xV'X) Yyox&€ MR It seems that the
physical interpretation of these groups involves only a re-scaling of
the velocity parameter. I.e. if G'(o(l) and G(ex 2) are world groups
of Newtonian relativities ,where to transform from one system to
another involves vh—p 0%,/ vV y_enéT. This only involves a
re-definition of inertial veclocity, for in a world where (2% ) is
the world group F(v):(® , t)+—> (xv t, t) is a boost to a frame
where X = X¥v. Note however that we were able to define inertial
boosts parameterized by fR?_T where F(v):(x, t) +—r x +w(@F)(v)t, t)
Here such a boost transforms (O, t) into the inertial frame where
% = T (u) where T € GL(3,/R). One can conserve ’chen)(algebraic.ally at
least) of worlds where isotropy (0(3,fMR) invariance),is violated enabling
us to discharge the requirements of incorporating 0(3,1R) as a subgroup
of world automorphisms, where boosts like i.e.:=- v+—>Vv + uA A,
(A a constant vector) ané feasible Jfor examplejonu : vi %
Vi *Fije

Let us give two more 'phenomenological' plausible interpretations
of our algebra. Firstly recall that Hom(®,A ) can be regarded as
listing the no.of ways a group B can be i njected into A @ B. Replace
A by R and B by T and recall that FE&Hom( /AT, Aut(TR®TR)) is
uniquely specified by a & (F)& Hom( 'RBT Hom('lEl, \R_l’))5 each v€ IR7’T
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then corresponds to choosing a new injection <p(F)(v) of ﬂ?l into
né@nzl that is:- wv: t+—> (PFE)(W)(t),t) = (M (v)t, t). Or on
the world set \X/) of a new section of the time axis into "W/ of the
family <G (t)>> t€ M of instants into® . Compare this with the
notion of path x: [Rl éﬂ;q x()ETH)IV ’teﬂé; X ecl(TRl,'lE})"-"
called the path of x in W. x€ Hom( lel, ﬂé when 3(_(‘5l + t2) = x(l-ﬁ) +
x(t,) i.e. when X(t) =0 x(t) =u tju = ‘velocity. Let us now
attempt to glean some information from the fact that (TR @ R) an{’T
;__MR”@?( =@ ") pnere Z.€ 2° (R7) @, 7). LetRE c]
( ﬂéT®ﬂ%, ﬂé),then the two groups:- 7123@3 (IRBTGMQ‘) and ® @
?ﬂf‘ (:iz)(ﬂ23 @ ﬂg’) are equivalent extensions and kence isomorphic.
Thus the sections (v, t)+—=> (0, (v, t)) and (v, t)I—=> (@ (v,t),
(v, t)) induce.. the same physics!

The final section of this chapter is concerned with a discussion
of the notion of cup-product for cocycles, and their relevence to the
work of this and ensueing chapters. Let us first formulate the notion
of cup product, which like almost all the other algebraic techniques
of cohomology theory in groups, due to Eilenberg and Maclane.

(h). 'Cup Products' of .fochains.

Let 11 1,T|'2 and” JI°  be three additive Abelian groups each
with a group G as a group of left operators, defined as such via
D, Pps P, € Hom(G, Aut(TT;)) i = o, 1, 2.1, and 1T, and said to be
'paired tof]J' if V (%, , 1) S Ty xThL , T an element tt,um,e Tl
such that:-
1) UM +T) = MU + MU
(11) Tz *# Mg UM, = M UL + MU,
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(ii1) peXm LT = pi(E) (T IV p,(g)(T Vg€ G.
Let us now consider two cochains fI%Cgl(G,Tcl) f2"é CISQ(G,T 2). Define
a pairing via:-

n m _ N m
fl v f‘2 (gl""'g'mm)- z fl (gl,....gn)u p2(g;l,..gn)f2 (gl,..gm)
which is a map (f‘il, frgn ) —> fan f2m from Cg (G,Tr 1) X

1

X Cg 2(CT,TTZ) into C; m (G,IT ). Moreover, one can show that (cocycle)
U (cocycle )__ = cocycle,with other permutations yielding coboundaries

Thus we can define a map:-

HY (G,Tr1) x KL (G,T,) —> H™ (G, ). We ave interested
P1 bo P

in the map :-
A1 ' 2

Consider the case where p = Py =Py = 0. We then have a map:-

Hom(CG, T ) x Hom(G,T; ) —>~ H2(G,TT). Let G = RO, @R, then I
epimorphisms (pl, p2) GHom(Gl,TR—ﬂT) x Hom(G, ﬂ?l) given by:- pl:(g,t)
—— v and p,: (v, B)i—=t ¥ (v, t)ER, xM=. 5o takell = ®,
sz z ﬂ?l. Now “éT andﬂi can be paired to R3 via the cup product:-
vUt =vt V@, t)ewé X ﬂ?l Thus there exists a two:c?ycle of

Zg( 1123.1, @ﬂtl, ®) defined by pU py((vy, ), (¥, £5)) = p;(vy, U
Polps thviz PiUP (¥, 1), (W, t)) = 4y &

Thus in our theorems concerning G enlargements the cocycles
which vanish off TRBT and on ﬂtl are the cup Tppoducts of cocycles.
Similarly, let us consider the case :when G =7R3T @, There exists
a pairing R, @ né — TR]“._via (v, X) —> v * x, WHa the pro-

jections py : (v, X) —™ ¥; py: (¥, X) — X, we have a two
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cocycle plU p2€ Z2(TR3 @Tk-l’ s nal) defined by:-
P U Poi (Y5 X:)5 (¥5,%,)) 5= pi vy xl)up2(v > Xp) 2 ¥y Xy
Let us now take G = Ra E(3,TR)T,T'T1 = R m andTTa = TEl, paired
tol T= TR3 as before. However, the group G operates onTTl and TV

in this case via pl(t, v, R):z" +—> Rv', and p(t, v, R):xt—>
Rx ¥ xe€ Tr\3 Choose the following 1 cocycles of
ZR@ EGIR), R and 20 R B3, ),1) - 1) and 1,
respectively, where fy: (t, v, R)) b—> v and £5: (t,(vy, ))b—> ¢
¥ (t, (v, R))E& ﬂ%@E(B,TR)T. In the case of f;, the one cocycle
property follows immediately:-
£y (61 (v9,Ry)) (65, (W5, Ry)) = Py (615 (¥R )£ (65, (V55R5)) -
fl(tl, (Xl, Rl))'_ =¥y +R ¥, - R ¥, - ¥, =0. The cip product of
cocycles inthis case becomes:- flu f2 (( ’cl,(zl, Rl)l(t2,12,R2))_ z
(6, (¥ RV f2(t2,(!2, Ry)) = wUt, = vy t,. Then we have:-

XU L) (8, (v, R 1075 (655 (V55 (V55R5)), (t3,(V3, )) =
p((ty, @, Ry NEV £(t,, (¥,5R,)), (B4, (Y55 Rg)) = £10 £ ((6+6,, (v +Ryv,,
Ry Ry))s (b5, (WgsRg)) + £3U £ (65 ()R ), (b5485, (V4R ¥, R, Rg)) -
£U :_E‘ ((t » (v, R )),(t ,(_Yz,R )); which is just Rl-(zzutB) -
(v; + R v2)Ut + v1U(t +t ) lUt2 o= Rl"l_rzu t3 -y ts
R "VoUts + iUty + ¥y tvUt, = 0.
Again take G = (néopléT) m p O(3,fR) and TT, = ®,T, =rR3T and
= I& with the inner product as the cup product which pairsT) ,and
> tol. In this case G operates oanl andT_l2 and trivially onTT7:-
viz:- 3 p; & Hom(G, Aut(T"li)) i=1,2, yhere pl((z, X),R)) :
x' +—> Rx , p,(( ¥, x),R):v' > Rv', ¥ ((¥, z),R)@-(ﬂé@ﬂgT)
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wpo(3,R) and (¥, x')e TRBT @“{3. With xUv = x * v, we then have
R°'XUR'V = x'v = R-(x{y v). Define one cocycles f.e Z;i(G, i)
via £f5:((x, v), R) ——> x and 1((5, v) R) +———>~v. Whence
via the definition :- £;U f'2((§l, ¥), R, ((_&2,22),1?2)), = f
((l{l’ Xl),R))U Rl'fe((ggz,za), Rp)) = zl'Rl X. Thus we see that

e £5) = 0, from ONE U £5)(((K, ¥1),R1), ((55:95)5R,), (%3535,
Rg)) = ¥p'Rp x5 = () + Ry ¥p) "Ry By X3+ ¥ " Ry (%, + Ry X5)-vy " Ry
Xy = ¥y'Ry x4 - (y;+R; ¥5) " By Ry X3 + ¥y * Ry(x, + R, x3)-¥ 'Ry X,

=¥, ° R, Xz = vl°R1 RE X5 - XZ.RZ X4 + Xl'Rl Xt Xl'Rl R2 x.),-vz'
R, x, = 0.
This concludes thie diécussion for the moment, Cup products
of cochains will be discussed again in chapter (6) in our discussion

of non-inertial motions.



CHAPTER (5)

COHOMOLOGY THEORY IN

CLASSICAL MECHANICS.
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COHOMOLOGY THEORY AND CLASSICAL MECHANICS

The work presented in this chapter is an extension by the
author of recent work of J.M. Lé%y—Leblondl) on a group theoretical
approach to the Lagrangian theory of classical mechanics. It attempts
to relate the free motion of a classical particle in space-time to
the structure of the relativity model W , through the use of Hamilton's
principle, the principle of relativity and the group OMW) of
inertial automorphisms of W .

The chapter is divided into three parts. In the first and
shortest part, we discuss the useeG%)}ﬁnnilton's principle in classical
mechanics at an elementary level, exposing the almost ad-hoc usage
of the method. In the second part,we attempt a more rigorous approach
leading to the introduction of the notions of homological algebra
into Lagrangian mechanics. Having set up the formalism, in the
latter part of the chapter, we discuss the intersection between
Hamilton's principle and the principle of relativity and how one can
almost completely define the free motions of a particle via the
relativity group of a world model. We also see how, in this approach,
the concept of inertial mass arises in a group-theoretical way, as
does the kinetic energy functional and momentum.

Part (1) 1Intuitive Classical Mechanics

We shall first discuss classical mechanics in the frame work of
Newtonian relativity. The underlying principle of classical Mechanics

is Hamilton's principle.
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Recall how in the Newtonian world model, we were able to paneltion
the world into instants </Q(t)y tE€ R, where each instant /O (t)
was a Euclid;%an three dimensional vector space. We called a 'world-
line' a map x: _I'Rl —>W,x(t)€ Xt) ¥V t € R which lead to
the definition of a trajectory as a map Xx: I‘Rl ———)-JR}, x(t) =
(x(t),t), x specifying the location, within an instant of an event.
Consider two events (xl,x2)€ /J(tl) x/{)(tz). Let P(xl,xz) be the
set of all world lines from x; to x,. ILet x€ P(xl,xz) then x(0) =
x, and x(1) = X,, We can write x(s) = (x(s) , sty + (1-s)t,) where x
is a path from X, to x, in I'RB. Roughly stated, Hamilton's principle
asserts that there exists a function 'S' on P(xl,xz) called the "Action
function' such that the actual trajectory x follg?e'd by a particle

from x,; to x, is the solution of d%(S(x)) = 0. The operation )

corresponding to the variation of S(x) as 'adjacent' paths in
P(x;, X,) are substituted, i.e.:- Jd'(S(x)) = O means that S(x) is
an extrenal value of S(x), either or maximum or a minimum. We
discuss this variation in more detail in part (2). One usually
writes:-
S(x) = J ds L(x(s), x(s)) =
[0, 1]
The functional L on TRB is called a Lagrangian function. That the
variation of S(x) is zero is the same as:-
(8(x)) = st € a +dx-a ) Lx6),E(6) =0
9K OX
[0, 1]

where §* x is the variation in path andd"% = (§"x). We must have
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d’x = d'x = 0 at the end points, whence, using an integration by -
parts:-
FEx) = [ds x - (F-4 0oV ) Lixls),x(s)) =0
fo, O ds
the vector operator Y is defined via ¥V j; £/2%i. We nust then

have:-

Fx- (V- d o ) L{x(s),k(s)) =0
ds

Choosing the variations d X to be linearly independent we must have
l=i<3 :-

[ 9 _d9 ] L(x(s), %(s)) =0
aXi ds D)'(i

This is a second order differential equation whose solution is x,

the system being called Lagrange's equations. They are equivalent
to Newton's equation of motion in the case under discussion. In most
books on classical mechanics, one usually writes the 'identity'

Lo(g(s), x(s)) = mg_'c(s)2 for a free particle, L, being called a

1
free-Lagrangian with L (x(s), %(s)) = T(X), T being called the 'kinetic
energy' functional and m the '"inertial mass' of the body.
The historic (and very inadequate) approach to interactions
between particles and the external world is as follows. One assumes
that a particle interacts with the external world via the coupling
of the particle to a field W(x). A Lagrangian function of the form:-
L(x(s), x(5)) = Ly(x(s),%(s)) - k @ (x) = T(X) - m(x) is postulated

to hold. The parameter 'k' is called the coupling constant of the
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particle with the field or its 'charge'. k@ (x) = V(x) is called
the 'potential energy' of the particle in the field M (x). For such
a function L, Lagrange's equations imply equations of motion of the
fommX =- kVQ@(x). The term -k (x) is called the force
exerted by the §veld on the particle, which is coupled to it with
strength K . Clearly, when k = O, L = Lo and the particle is free,
following the trajectory x(t) = ¥ ¢t + x(o) where v = x(t).

Let us attempt to apply similar ideas to the theory of special
relativity. Given two events X5 XZG\W , we consider all world-lines
connecting x; and x, such that if x2€_\7 +(X) then x(s) GV+(xl)

VWV s€ U0, 1]. (Note the interesting lack of a topology onW/ !)

Here we have no Newton's laws of motion to fall back upon, only
Einstﬁgn's principle of relativity allied with Hamilton's principle
guides the mechanics, Einstflén's principle guiding us in our selection
of a Lagrangian for free motion. Without going into details yet, the
choice of Lagrangian implied by Einstilgn's principle is L(x, %) = -,
when the proper time or 'arc—leﬁgth' is chosen as the evolution para-
meter. Making a transformation to a variable 's*€ [0, 1] , a free
Lagrangian L_(x, %) ¥ (&t/&s) = -aN(2(s))?, is obtained. Inserting
this formula into Lagrange's equation, we obtain the free motions

')i = 0, similar to Newton's equations. The relativistic qiscription
of particle interactions allows notions from Newtonian dynamics. A
particle interacts with the world via a vector field @ (x), the free

Lagrangian being modified by an a:r?{ount -k W(x) *° % with the field.
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Lagrange's equations imply equations of motion of the form
K ==K fpw %V
where the tensor (f nv) is just ( gow - mmg), 0O being
D'Aler%ber't's operator. Due to the similarity of thi% equation of
motion with Newton's second law, the Poincaré invariant o is called
inertial mass. The use of classical time instead of proper time enables
one to specify that the corresponding Newtonian mass is m = & (AT/ OU:)_l,
which is not Poincaré invariant.

Let us next discuss the use of the principle of relativity in
classical mechanics. Einstflgh's statement of the principle includes
Galileo's postulating that the laws of physics must be of the same
form in all inertial frames. In Newtoﬁian relativity, inertial frames
are connected by the inertial world automorphisms comprising the
Galilei group, whilst in Einst_:ﬁ(e)'l's relativity, they are connected by
the Poincard group. Incorporating this principle into Hamilton's
Action principle, the implication is that if &(S(x)) = O for some
path (either in Euclid%an or Minkowski space, then §(S(x9)) =0V g€
ALW)N I(W). Which roughly means that if x € P(xy, X,) is the
path of 'least action' in an inertial frame F, X)s xze F then x‘aA z
g o X is the path of lest action in the inertial frame, Fg, g Xy,

g X, < F.

In the case of special relativity, we were able to choose a
Poincaré invariant free Lagrangian i.e.:- Lo(xg, (xg)')_ = Ly(x, %)

Y g€ P(TR ). Consider however the case of the Newtonian free

Lagrangian Lo(x, X) = T(%). T(X) is obviously invariant under
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ﬂg ®fé<l G(3,IR) and, since T(X) = } micz, it is invariant under

0(3, k) << G(3,R). However, under a pure Galilei boost, we find

that T((x ¥) *) = T(% + ¥) = T@) + # m (¥*+2v'%)). So that L_(x,%)

is not Galilei invariant , it i§& called 'variant'! It will be useful

to note here that we have T'(gc_!) = T(x) +d (3m v t+ 2v'x)T(x2) =

T(x) +q'>(g) (x). Since the group of Galilegtboosts operates t].'*ansitive y

on the tangent space TRBT (its trivial homogeneous space), it can

be seen that all free Lagrangians can be generated by pure Galilei

boosts via its canonical action on T. The point of this chapter, is

in fact to investigate the group theoretical properties of functions

where if g is an inertial transformation

L(x g, x g) = L(x, %) + () (x)

Such functions '¢' are called guage functions for the group of

inertial world automorphisms in question. We are lead to discuss more

fully the solution to the question. 'Given two Lagrangian Ll and L2 :

what is the condition that they determine the same laws of motion?!

or 'what are the conditions that two action functionals Sl and S2

have co-incident minima'? Let us write S, =A(L;) and S, =0(L,),

where QL) (x, X) = . st L(x(s), %X(s)). Here.Jois a linear

[o;1] )
map from the set of Lagrange functions into the set of action functions.
Clearly, two action functionals have coincident minima iff cﬂﬁ‘l ) = 0=
d3 (§5) = 0. So L, and L, determine the same equation of motion if

SO = 0> SR L)) = 0. OGoviously & (B(L)) = FIAL,)) = O

means that 4 (AL)) - &UXL)) . = 0. Sinced” and' & are both
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linear functions, we must then have £ /L, - Ly)) = 0. When Q@ (L) =
O thep.in our problem, if & is the Lagrange operator (&(H L) = 0.
So that D (A(L)) =0 <=> A(A (L)) = 0=+ (ALy-Ly)) 20
Write L, (x(s),%(s)) - L,(x(s),%(s)) = (L;-L,)(x(s),%(s)) = F(x(s),
%(s)). We must then have A(F(x(s),%(s)) = 0. Thus we are lead to
seek the set of functionals F whichidentically satisfy the Euler-
Lagrange equations. One can show that the necessary and sufficient
condition that a function F(x, %) satisfies the Euler-Lagrange equa-
tions is that F(x, X) = %S(m (x(s)), ™ being an arbitrary differen-
tiable functional, F(x, X) = % * ym(x(s)). Thus two Lagrange functions
specify the same equations of motion iff 3 W such that Ll(x(s),
%(s)) = L,(x(s),%(s)) +Q°1(§(s)). The set of such Lagrangians is
obviously an equivalence class. Using this notion of equivalence, we
see that the two Newtonian Lagrangians L% and L, are equivalent:-
Lg(x, %) = Ly, %) = L(x, x) + %(zztw'z)'

It seemed n}tural to the author that homological algebra could
be applied to some purely algebraic aspects of Lagrangian theory.

L&vy-Leblond had, of course introduced (in a simple fashion) the

cohomology theory of groups into the Lagrangian theory of free classical
mechanics, via the group theory of the @%e variancez functionals for
a relativity group. The author has included the homological algebra
expounded in section (2) into a expanded re-treatment.of Iévy-Leblond's-
work .(in section (3)) to produc§ a more mathematically coherent approach

to the applications of the principle of relativity to Lagrangian theory
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for free particles. The homological algebra enters Lagrangian theory
through the observation that there are many almost blatant prods from
at least the notion of equivalence. First we note that the set of
real valued functions on a linear space" x its .tangent space’f.orm a
vector space in a natural way. Also, regarding Sp and Spp as distinct
then so .is Cl(S X ST X STI" IR ). Given an fC Cl(S x Sp,fR) and
applying the Lagrange operator,we find that & (f(x, x)) depends on
% vizi- A (fx, %) = (V- Yas oy ) £ (x, %), or, with 9/ds =
W +x'7 , AR, %) = VEG ) - & vV
f(x, X)) +x "YWy (f(x, X). So that since A is linear, we can define
a group homomorphism 6‘3: _ Cl(S X Sp, IR ) —> Cl(S X Sp X SIT,IR)
J‘B(f)(_)g, %, x) = A(f(x, X)). The vanishing of S9(£) provides a
second order differential equation for x. The kernel of &~ * is the
set of Lagrangians. The map d™2: C1(S,R) —>C(SxSp,R ), defined
by }2(-j1 )(x, ) =% "V £ (x) = %s § (x),is also a homomorphism of
Cl(S, R) into Cl(S X Sp, TR ). The fact we saw above that Im(<P2)<
Ker( J‘B) leads us to see that the sequence

2 J3
0 —>CH(s, B) L—> C1(S x Spk) — CH(S x Sy X Spp, ™)
is¢emi-exact. The group Ker(d 3)/Im( d”z) is the set o f inequivalent
Lagrange functions, it is isomorphic to the set of all inequivalent
dynamical situations. We shall discuss ‘the above notions in much

greater generality in the next section, extending it considerably.
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Part (2). Homological Algebra and Hamilton's Principle.

We shall first discuss the variation process used in part (1)
in greater detail than is to be found there, emphasizing the algebra
rather than analysis. Let S be a topological space. The patls between

the points x; and x, in S are the continuous maps x€ Cl( Lo, 11, 9)

1

such that x(0) = x

, - and x(1) = X,. Given two paths x; and x, in

P(xl, x2) the set of all such paths, then x; is said to be homotopic

to x, iff 3 a continuous H: 1o, 11x[0, 1] —> S , H(O, 55) |
xl(sz) and H(1, 32)_ = x2(s2) V Sy- We shall sometimes write
H(sl,s2)_ = (X(sl))(sz) where X is a continuous map from [0, 17 into
P(xl, x2) in t he derived topology on E(xl, x2). let fE Cl(S,lR), then
we can regard the pair (f, x) where x E P(xl, x2) as an element of
cl( £0, 17 ,k) via the definition of the map 1‘)1:- 451:0_1(3,1‘?) X
P(xx,) ——> cH(To, 11,7 ); (E, x)isf—— £(x(s)).

_ e o N _ Al B = ch(g? .
In a similar manner if C (S,R) = C (Xj-1S,TR ) = C (S, ); and
XJ._I:J_(P()(:1 ,"sx2)) is regarded as a set of maps from [0, 1] to st
. n
via (gl,... xn): s > (xl,(s),...., x2(s)) V (xl""'xn)ex_iﬂ(P(

Xy x2)); we can define a sequence <<l>n> n ¢ g4+ of mppings

{4)“: S, ) x XD (Pl ky— CH(D,1T ,K)

4>n: (f, (xl,...,xn)):s.t————>- f(xl(s),.... xn(s)). Recall that
(S, I®) is a real linear sp€ge under the definitiono(]_fl(xl, “‘)ﬂq) +
“ifZ(Xl""’xn) = (oifl + o<2f2)(xl,....xn) ¥ 5% £ R fl,f2€
Cn(S,R), (xl,...xn)e s, Thus Cn(S,IR) is a-priori an Abelian group
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V¥V nE A Using these properties we can then endow the sets c" (S,R) x

J(X 50 aees s xn)}g dNs,R) x XinF.’()kh')Q with the properties of real
linear spaces via:— |
°<l(fl, (Xl""xn)) +°(2(f2’(xl”’xn))- =

(txlfl +o<ofs (5,...,xn)) Y (ocl,o<2) crR.
Let us assume that some notion of differentiation is defined on S. Then,
given an x€P(xl, x2), x€P(xl,x2) N Coo (L0, 17, 8),..., we can
define paths: d™(x) in S where d™(x):s —— d/ds(x(s)) so that
the n-tuple (x, d(x),...,d"(x)) can be regarded as a map from CO, 11
into s® via:-
(X, A(x), +nny &%) 18— (x(s), ...d%(x)(s)). Then the family
of sets < AM(x)> n€ Z* where A+l(x) = Cm'l(S,IR) x £(x,.,d8%))2
is as above a r eal linear space. Consider the linear functional
Ic (Cl( Lo, 13 ,TR))* (the vector dual of Cl( £0,13,T)) .where:-
I f———> [ds £(s) &s ¥ £ € ¢ ([0, 17,R)
(o, 17

Using it, we can define a sequence of linear functionals

<9"n € z¥, "€ Ax)*¥ n € z, viai- 5%z 1o0¢™
or:-

IB((F, (%, ... & (x))) = fds £(x(8), «.. d T(x)(s))

lo, 1]
Let us now turn to the variational problem. Consider two paths

Xy X5 < P(x‘l, x2) which are homotopic with respect to {xl, xz?
with homotopy H( or'X). We assume Xys X, € P(xl, x2) NCeoa ([0,1] ,P

and that® H/S s, exists. We shall consider the family of real
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linear spaces < A" (X(s;))> s;€L0, 1]uhere of course X(s;)
(s,) = H(s;,5,). If we define a functionWEC (A (s, IR), c'( (o, 13,
/) by @(f):s, —>JXs, (‘X(sl),..élil(s_l)), we can consider the
derivatives & (£)/d s;. The vanishing of & W(£)/A s oceurs at
the extrema of the function ®(f). Writing

DUE, (X(5p)eees T TXIGE)) = W) (sy) | =
[ a8y £OK(s1)(sp)smmes (S K(s1))(s))) =
[o, 1]
[ s, PH(1a5,)seeees D 5 Hlsys,)

[o, 1]

Where & 5 = Q/d 5, we have

a]_(g(f))(sl) = ’ ds2 aj(f)(H(Slﬁs2)J"',ag-lH(Slﬁs2))

Lo, 17
J ds nz_l ©, > iH(S S,) -i(s ) f(H(s,,s,) én_lH(s S.)
2 192 1520 V(84 12505+ 95 TH5y58,
[0, 1]

V:z23/9 (3,%(s))).

We have @ 2iélH(s =99 EiH(s ») = 0at 5,20, 1) ¥

1°52) 1°°
sl€ '[ 0, 1] , corresponding to the fixed end points so that, using a
partial integration and intesrating it, we obtain:- al(m(f))(sl)_ =
| as,

[o, 1]

Iet us fix s

L (1 HGs),8,) 3, 0 @ ey) £ (H(sy58,), - 5 H(sy 15,))
1=0

1 momentarilly, then we have a real valued function depending

on f and an x € P(x,; X,) X.=X(s,).
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n-1

fas, 25, 2 HGps) ()30 Pirtx(sy), .. 3,7 x)(s,)))
Lo, 11

= n-1 . . s
[ a2 218Gy, 5)" T ()92 0T (Flx(sy), e 3T () (s)))
[0,1]

Now the bracketed term in the integrand is a function of & 2n(x) as

1

1} This fact is important to our discussion. Let us define an
endomorphism of el [0, 11 ,/R ) by

can be shown by expanding the derivative as 5;' _ =zr.1-1521+1(x)(32)
- l=0

ATHTE, (e, dTE))s, ——

nél (_)iézi o _vi(f(x(sz),...,égn-l(x)(s2))

i=o

A™ 7 is then used to define a linear function o<1
M(x) via:- AT 0™ = @ 0ol uhence we have ¢ (o (S,

-1 s 3 £ -
(yeeees dHON0E) 2= ()i22d o Wi, Gy, 60D Xe)
i=o .

: AL () —

In terms of the linear functimals<9"> n €z', we have:-

2 () (8) =™ HE, (%, +ery AT, Let us define a

mapd ¢ An(x)* ——> A (Fvia 3 (™) = 4" 0 o™ L. Then
we must have:-

2 OM:e, &, eeny dTH@) =ONSTHE, (.. dTHED)
Of course, o ,_; completely determines & n-1 and hence the latter is
linear. It is perhaps more trg'gsparent to write:-

e 1 (F, (%, «vn d"H®)) = (3_1(0),(x, ..n, d7(x)))  vnere
Sy s, ) —>= s, ) withi-
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n-1 , . .
af'r:_l(f)(x(s),...., 'x)(s)) = = (—)%H(sl,s ).alzwlf(x(s),

1=0

"L (x)(s)).
The extrema of the functions XB(f) define the kernels of the homo-
morphisms o< _; andS, ;. Thus Ker(ex ;) is the set of (f, (x, ...
done Ao (5, xend™ X)) 20 or

n-1

= DHG,, 8) * )Boirx(s), ... @ Hx(s))) = 0

i=o
The set of 'n th' degree ‘Euler-lagrange functions, which in the
familiar case n = 2 1is:-

o (£) (G5, %, H))(8)) = 0 =SH(s),8) +(V-3,00 )lx, %)

For n = 1, Ker(d"o) is the set of (f, x) such~ that O(O(f((x,x))(s))_
0 :>61H(sl’s).v f(x) = 0. The arbitariness of the 'variations of

path':-

Jd (x)(s) sél(H(sl,s)) in both cases means that (\7— azoV)(f(x,)E))
Jd 53

0,and in the second case Y f(x) = 0, the latter meaning that f(x)

is independent of x. Finally the third order case is also fairly

familiar 4><3(f)((x,..., X)(s)) = (V‘%OV+§2 ovl)f(x(s), .o X(8)) =

<

Let us now consider the maps £ .: A _; —7 A,

R OB C AN ORI R COMEE aas( P, (x, .. dHE))(s)
i . _ o
= = il (x)(s) F P Px(s),.. A H(x(s))

i=o

Or, writing/@ (£, (X,.. , ) = (Y (0),(xpeees @H)))

where ¥ ;¢ _Cn_l(SJE) — (s, W, then:-



5.14.

n-1

¥ DX, an() () = = A )es) Lrx(s),.. "))

i=o
= d/ds £(x(s),.. dV(x)(s)).
Now the identityeX, O/gn—l = 0 is always true¥ n € Z +3 the necessary
and sufficient condition for the identical vanishing of an element
of An-l(x) undere<  _,,s that it is the total derivative of an elem-
=) .

ent of A" *(x)". Raf(5-2)

That X o & _, = 0 or Im(&L _,)<<Kerf<,) also implies that
J‘n o /zh—l = 0. In a similar way to the definition- of the homo
morphism-dh define a o; via £ by 1t A (x)* —>A 1 (x)*
with®, 0@ ; =637 Q ). Then by our definition we have (@7, o
o) (8 n)_ =3, Ona S (9 4, O2¢, ) Oy, ,or 0’n+.° (o
oﬂn—l) = 0. So that o~ -° én. =0¥ N € Z,. Thus our consider-
ations lead us to surmise the existence of the families A and A* of

semi~exact sequences:—
Bn-1 o<

0 ——% A7 (x) —3= Ap(x) ——>Ay1 () (4)

°:n9%—l =0
" ) (rn-( an
M (x) e AX(x)<S—— A% (x) 0 (A*)

Sn-1 an =0

These two families of semi-exact sequences give rise via the cchomology
and homology functors on the category of diagraons to the two families
of "exact sequences:-

0 ——> Im(& ;) — Ker(x ) ——>H'(A) ——>0

and
0——> Mm@ ,; ) —— Ker(@) —— L E NG



5.15

+l)
T Hn(#). We will thus be reasonably justified to use the berms

By definition Ker(e< ,)/In(@, 1) = H'(A ) and Ker(9"n)/Im(S

cochains, coboundaries scocycles for elements of An(x),Im(ﬁn_l) and
Ker( °"n) and chains, boundaries and - cycles for elements of AP(x)*
Im(d n+l) and Ker(§ n) respectively. This is of course a rather large
sbuse of 1  The fa:nily»(‘?)n}n cz, of linear functionals on
A™(X) which we have defined, is fixed once and for all, and there is
a canonical correspondence, which is the functor from the category
of vector spaces into itself AF—>A*; the functor peing contra-
variant, introduces conceptual difficulties into the use of the
"homology' groups, so we will stick to the 'cohomology' groups, or
discard the cumbersomeaction functionals for the Lagrange formalism!

Let us note in passing the rather 'nice' commutative diagrams in the

families A and A*:- g
0 — al(x) —>~A‘L(x) — A|3(X)
0— > 42(x) ——> AP(x) >A](x>
0 > A(x) ——->Al(x)-—>A5(x)

00— At (—>2 (x)

The diagram is not commutative except down the steps e.g.:- AlA)AZA2~>
A3A3 MAH etc. the rows are exact whilst the columns, where defined
are identity maps. Some fairly abvious facts can be verified with the
aid of this diagram. For instance, note that Im@,0& ;) <Imf2,)<

Ker(KB) with Im(,én)d Ker'(t><3). Using the freshman theorem we can
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write
H'(R) = (Ker (.)/In(@_0@, 5))/In(@ _,)/In(8_°F, 5). This splits
Im(len_l) into I'“S'gn—l o,é?n_2) equivalence classes and Ker(o(n) into
Im(,dn_l o'én_z) cosets. It is obviously equivalent to dividing funetions
which are like 4.5 (x, ... @ 1(x)) into classes where J;(x, ven A l(x) ) =
B (Xyeeen, dn-B(x)) ete.

The above constructions are rather trivial in that nothing new
is obtained except systematics, enabling us to relate the theory of
homological algebra obtained in section (3) to the Lagrangian form-
alism in a more consistent way. Let us just note that for the

system A* a diagram like:-

=g

~

"

~

*T

e —————
W

—

i

~
o

>4

~

T*

(@]

|

Ay (0¥ < 4 G L 00— 0

The rows are semi-direct, commutativity holds on the steps.
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Part (3). Incorporation of the Principel of Relativity into Hamilton's
Principle.

In view of the discussion of part (1) and of part (2), we can
restate the principle of relativity in a world modelW as follows.
Define G = (W/)N I(Y/) then the statement is:-

'Let the .cocycle (L,(x, X)) or the cycle 32(L, (x,%)) describe

a law of physics. Then the cocyeles (LY, (x, x')) or the cycles
&2(L9 » (x,%)) are cohomologous/homologous to the cocycles/cycles

L, x, %)), Y2, (x, )V g € a'.

The transformed cocycle (L , (x, %)) is defined by LJ o(x, %)): si—
— Lig H(x(s)), (& 1 (6,x))"). )

Note that (L,(x, %)) |—9——§ (L9 ,(X,%)) always maps a 2
cochain into a two cochain iff g € I® ). Non-inertial transformations
of A_(W/ ) map a given order cochain into higher ohes. Let us try
to formulate the group theory of our problem, retaining 'n'th order
cochains for generality. We identify S withWon which@ (W)N IW) =
G has its natural action. Then S" is also a G space with action g:
(X, vees X)) > (gx, ..., gn) Y g € G. The definition of
c™(S,IR) as a G space then follows:- g: fi—> &, & =r o gt
Whence A™(x) for x éP(xl,x2) is a G space, g: (f, (x, .. d"(x)))
r——3—+ (f, gf(x,...-,d’(x))_ = (fg_l,(x, oo dx)) where g"(x, ....
FEND—>  (gxy.-.5 8 X)) = (g x,.. d g ) hgx: S—>
g(x(s)).¥Ys€ [0, 17. We now define the action g: (f, (x, ...

dx))) —> (£, g (x,.. d%)) = (#8571, (x,.. &x))) via
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q €Hom(G, Aut(A™(x))), and a space cg‘(G, A"(x)) of functions from

xiTl(G) into A™(x) weere, ¥ (n, m)CZ, we define + : (&y5--8,) —>

(D' (gysnne 85 (Xynees dn‘1<x)>,¢'ec’;.(e, c'(S,IR)), q'(g): £ H—>

B-rogl¥geq r AE,R).

Define a homomorphism J’mGHom( C;"(G, cHE, ), Cgltl @, cNS,e))

Vo, m €2 by F(P)eyseen Bryy) = Q' (&) (Plgyse-r g ))+(-1)™

b (g)5-.- g,) + fiT -ni 4A&) 5+ -8;85,15+-8n,) - Then we saw

as in chapter (2) fhe sequence

ACi (@, CE,R),E™MD m €7, is a complex. If we define

homomorphisms A" € Hom(Cgl(G, A" (x)), Clcrllﬂ(G, A(x)) via:_—_‘

AU Eys-+ 1) 2 () (B a8) G dT100) (ale) (F e

B)s (Greee P00 + (MNP (gene &), 6 oo @ ())) 4

é:':zl(-l)i (F (Bpoen B Biypoeer Bryp)s s - @1X))). Wnenm
2 (eees I7H0) with ], (@, OUSR)).

Let us consider now the case when we have a 'cocycle'f€ Kerés ;)
such that the cochain q(g)(f) is also a cocycle Vg € G which is
cohomoldgous to f“. We must then have:-

ag)(f) =+ & 5 (Pe)
Where € C1(G, A72(x)). Using alg;, &) = alg;) o algy) ve mist
have:-

g )(£) + alg)) (@ (P () = £ +@, (P ( g8,y)). One can
readily show that a(g;) Oy = fp © A(g)), so that we must have:-

alg)) (Plgy)) + Plgy) = Plg; &)

So that we must have ¢ € Z%l (G, A"2(x)). Let us consider the one
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. 1 n-2 i .
coboundaries of 7 q(G, A" 7)(x)) where (q(gl)(v) - )5‘).—. @(573-.’ V¥ is
an element of GS(G, An_z(x)') viz An_z(x). We must then have q(g)(f) =
£+ oalg)R) - ®) = +@ L(elg)(8) - @, _,(¥). So
that if ' = £, 8 _,(1#) then f' is invariant under G:- fog'= I
Y g €G and f' is cohomologous to f. Whence, given a 'cocycle'

~ . a9
f € Ker(e< _;) which transforms under G 1like :f ——»f L=
(&(g)) where p € chl(G’ AP'_2(X)), f can be chosen invariant under G
ifrf e Bé(G, A"2(x)). The first cohomology group Hé(G, A2 (%))
is then the class of gauge fqnctions modulus the trivial guage fun-
ctions for the group G for the 'n-1'th Euler-Lagrange problem.

Let us return to the case n=3, then the group of non-trivial

quage functions for the 2nd Euler Lagrange problem:~ o< 2(f', (x, %)) =
0.is just qu(G, al(x)), or identifying with the growp C;,(G,
Ci(s, R))y we see that the group of non-trivial guage functions is:-
H.(6, C(S,R)
where Hom(S,/R) is the underlying Abelian group of the dual space S*
of S. We have seen that the principle of relativity requires that -
if a Lagrangian fE&Ker( s ,) specifies a Law of Physics, then N g€a
we must have.:—_
flgix(s)),(g(x(s)))*) = f(x(S),fc(S))+,é’l(¢(g)(x(S)))
Where ¢ C Zlq'(G,C(lj(s,[E))'. Iet us consider the guage invariance of
f under subgroup T<]G of spatio-temporal translations. We can write:-
f(x+a,%) = £(x,%) +/<21(¢ (a)X))Y a€ T
Choosing a = -x, we can write:-

£(x, X) = £(0, %) - A ($(-x)(x)) = J(x) - g (W(x)) where the
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functional D) is fISp and W is define by¢(-x)(x). As ' ccycles'

') and f are thus cohomologous and it will be sufficient to consider
the guage variance wider G/T of the functional :—_.

U x)7) V>0 &) + 2, ($() )
withd € 2'q' (6/T), C2(T,R)), the elements of B'q (G/T, CL(T,i))
allowing D to be chosen invariant. Consider the case when G » Which
is a group extension of G/T by T, is a semi-direct product T w G/T.
Via the 'generalised Mackey theorem' introduced in chapter (4) we
can see that the class of guage functions Z%;;" (a/T, Cé(T,R)) is
isomorphic to those cocycles of Zg(G,IR) which vanish when restricted
to T or to G/T:- zZO(G,rR). Having made this observation, we
proceed to compute the groups _22 O(G, [R) when G is the Poincaré,
"Galilei, Carroll or Static groups. At the end of each calculation
relate the cohomology groups to the choice of kinetic energy funct-
ional 'J and the notion of 'inertial mass' appropriate to the relativity
model W which is sepcified by(A(W )N IO). Before performing these
calculations, we shall pause to sharpen some group-theoretical tools.
Recall the statement of the 'ggﬁeralised Mackey theorem' presented

in chapter (&):-

2

'Given a group Kmp Q and an Abelian growp A, eachV € Zo

(Kmp Q, A) is cohomologous to a cocycle 15! of the form:-
-1
’V((kl’ ql)s(k2:q2))_ = ?1(1{1,(11'1{2)"’?2((11:(12) +qul )(k2)
2 . -
wher'e?le Zo(K, A), F, € 72(Q, A) and 2B KxIGE, -

' | Q@ x Q and the pair (% 1’m ) are specified by T € le'
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(@, C3(K, A)) with & Wa))(ky, ky) = Zy(a ok ,q Sk
Z10k,k,) Vg €EQ A W) € B (K, A)'.

We shall discuss here the special case when K is Abelian and A

2)'

is the additive group of the reals. Firstly, that K is Abelian
implies that we can write
() (k5 k,) = ma)) (ky, ky), since

Wq) (kg k) - @a)(ky) - wa)lky) = d(wa)) (k) sky). Thus we
must have:-

210k, a ko) =2 (g 1) =2 (@, atky) '?1(1‘2'1‘1)
or (Z1(aky> a'ky) = By @y a k) = (0, k)= Zley, k).
Or if we define Y€ C(K, A ) via ¢ (kj, k) = _
210k, k) =B (s k) ¥ Ky, Ky € K Ve have D € 2% (K,A ) since:-
£2b) iy, Ky, k) = 2 (ky, Ky) = F (kg k) = 2 (kpkey kes) +

Z) g Kpeko) + Z(kpkonks) = 2 Uipelly) - 25 (k) +
Z,(p50;). Wnich is:-

71 (kpskg) = 2 (kly,kg) + 25 (g skoeks) = 2 (ko) -

Z1(kss ko) + Z (kgoky gy) = 24 (pkpoky) + 2 (Kpoky ).
The first line is just:- PZ('%l)(kl,k?kB), the second:-

?’l(k?kl) - .Zl(kB,kz,kl) + gl(kykz,kl) - .;l(kykz) since K is
Abelisn and thus K, ky = ky ky and ky ky = ky ki3
is 00-2(?1)(1&3,1(2,1{1). S0 we have FE(E) (i k) = IE(F)
(k) skyskg) + &“2(%)(1{3,1{2#1) = 0, and$ € 2% (K,A ) with

D@ k5a'ky) =k k)Y a€Q and Dk k) = - P lkyk).

thus the second line

A result of Bargmann sates that for an 'n parameter' Abelian Lie
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group, each cocycle of ZZO(A(n),(FnR ’)“can be expressed as the assymetic.

bilinear form?(al, a,) =Z/A\\’)‘:C|, l)ﬁ/mﬁ 140328 . For all our

cases K will be a Abelian 4 parameter Lie group-:- RE @'IE’l. The

only bilinear assymmetric functionals on: o ®ﬂg' which satisfy
Ha'kys a'k,) = dliLky) ¥V g € @ @ 6/ R’ @) must vanish

identically in the cases we will consider

So we must have ¢ = O or:- |

;l(kl-" k2) = %1(1{2’ ky), which from our latter assymmetry
requirement implies that ? 1= O. We have thus: . proved the
theorem that

"When K is Abelian and A & (R, all cocycles of 220(K mp Q,A)
of the form:-

W (ks ) (kps Q) = Ty (ko) + Fy(ap, ay) where £, =
V'IexQ V' | XxK=0andmlc 7t p'(qQ, Hom(K,A )) since
S(@(q)) =o¥ g€ Q'.

In the sequel we will use this corellary with some results of
Bargmann which will not be proved here. We shall consider first the
two relativity groups of special relativity,the Poincaré and Causality
groups .

Case (1) The Poincaré Group.

Here G 2 |R4 B nL(R). Applying the corellary to Machey's

theorem which we discussed above, % 1 = 0. Since /\N/A Ap \Pf/\\ﬁ:_ fw,?
implies f is diagonal where ;l(xl, x2)_ = f e XuXyy and hence

must vanish since it is also assymetric, according to Bargmann.
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Then, utilising a classical result of Bargmann)Z2 0(L(fR), R) =
B° (L(R),IR) which means that we can choose Z,=0. Tusall
cocycles of z20(P(rR),1R ) have the form ?(((xl,/\ 1) (05 A 2)) =
T (A, Yx)) where B € 21 (LIR), zlo(k”,rk)); which means
that:-
(1) TOA)(xp+x,) =THA) (x1) + WOAI(X,) VAELIR )
X)s x2€ TR” '
1) RALADE = BCANR) +TOYA, ™0 VxE RGN NE LOR)
We can easily show that zﬂ;,(L(m), ZlO(TRu,IK') ) = Bln'(L('lR"),
2 (R R)) or HLYL(R), Hom(IR, ) = 0. Now C(P(IR)) =
Z(z)pp where PT: x+——> -x V¥ x EIRM, and (N-FT) = (PT.A)V  _
A€ L(R), which means that:-
T (A)(x) + TETHA ) = TED 0+ E(A)(-x) or (A ) (x) -
D(A)(-x) = TP (x) - TET)(A T
V¥ ASL(R), @(A)(-%) = - TW(A)(x), so that -2 W(A)(x) =
W(PT) (A™%) - WPT)(x), or T(A ) = -} ¢° (KB(PT))(A ) where

x). Since U (A ) &Hom( \Ru, R)

L(PT) & Cgv(IRu,iR) is a constant fE, an element of the latter.
Thus Hln'(L(ITh), Hom(lk‘u,‘E“)) = 0.

From the above considerations, all guage functions for P(R)
may be chosen to be trivial, all Lagrangian strictly invariant:-
which implies that TJ(A%) = ")(x) V ACL(R). We thus write
D (x) = TGE) . That™d(X) d s be a first order infimitesimal
requires "‘E‘()'cz)_ = -0<\r§t2 where > is a reall parameter, thus in

: . o 2 .23
terms of space-time we have the free Lagrangian‘)(x) = - X(£°-%7)..
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The Lagrange equations involving the proper time as the evolution
parameter ©¢ 3'( = 0 imply the label of proper J'nértial mass or 'rest
mass' for o . If Newtonian time is used as the evolution para-
meter the corresponding Newtonian mass involved is given by

e<(1 - )'(2)—% » 'which varies with velocity'. The functionall](x) =
- O(\Fx2 is called kinetic energy.

Case (2) The Causality Group.

The causality group CA (%) has the structure PMIR) ®
kfR+m~ where IR'm is the multiplicative group of positive reals and

k() (x, A )b S (XX, ) chE'ﬂé'm;(x,A )€ PPN(R). We shall

: - write  S(R) = 1€ y(E(R) @Rn) where: NCHom( LA (R) @ M,

Aut ( TRU')) is defined by N(A ,x): x\——}/\ux Y (A,x) € Lt I,
xé n% Then we compute Z20(C A(TR),R) using our corollary. Each
e Zzo(CT(IE),ﬂ?) have 0| iP\@u X ‘R” = 0 and hence is written
Wy, (A 10% 1)), Gs (A sk ) = Zp((A 1k 1), (Agex ) +
WA, o, 1) (xp) whereZ , =10 | (R @ LM (R))? and
T & Zlo( lR+m® LM (IR), Hom( IRM,”\%)). In order to compute?z,
we use the theorem agaln in its direct product form. Here, we again
have H20(L1*( R),=) = 0, also Hzo(nz"'m, fiR) = 0 since R+m2cocycles
in IR must be assymetric and R is a one-parameter Lie group. Thus
each %ezzo( R @ INKR)),R) must be of the form |
ZUALYs (NpXp)) = XA (o) where X € 2 LAR)
Hom( lRi'm,IR)),: = Hom(LA (M), Hom(fR'"m,IR)). Since LA (MR) is simple
and Hom(/E*,IR) is Abelian, Hom(L/ (IR), Hom(fie¥m,IR) = 0. Thus




5.25

B (R'm ® LA (R),R) = 0. Whence, each PE€ 2°,(C4 (R), W) has the
form P((x), (A1), (x2,</\2,«>< )) = W(N 3,06, 1) (xy) with

T € 7ty (R, ® LT (), Hm(®R, 1)), which means that

1) Blax,A) (x5 %5) = Do, A) (x7) +BR, A ) ()

11) W(etyox,s AN L) (X) = BUt,A D) + Ty A) (0N )
Now P(X, A)(x) = TW(x, e)(0,A)) (x) which is just TW(e<,A )(x) =
Tilex,e) (1) + DO (A7 x) = o) (x) +@,(A) (x) where

W, =Wo iy,
Fne LN~ (RR) are the natural monomorphisms.

© € 2l (R, Hon(R, )8, € 2l (1 (1), Hom(RY , ).

@, = Do ip, iy: '_IR"'m —~Hn o LA(R) is: LN —»

From-case -(i-) we- can choose Qz = 0, which-is ‘that Qr (& , A} (x) = - -
o ) (), = (e ) N 1x), VACLA (IR), This implies that (e )(x) =
S (x)(), but TA) EHom( IR, R) Vet 5t=) =gfex) = O,
Whence H2_(C4NMR),MR) = 0. Also since Hly' (T @LA (1), Hom
(ITiJ'I,IR))_ = 0, under C4 (IR) Lagrangians must be strictly invariant:-
D) =A% ¥ e AR wIAR). Witheoc= O we mist have
"J(X) =D(0) a constant. Recall how in case (i) the classical action
would be S(x, x) = —jdsv(‘&(x) where T is the proper time.

(o, 1]

The integral would be re-expressible as f(d T (x) along the world

line x. In the present case, we have S(x, x) = [ds /]9 where
0,1

A T J(%), changing variables to proper-time entails

= (ds/qt)aT
fLo 1} I Lo,11
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Under & ﬂgm, dTtr—=~>dT , and ds/dT |—‘;-oc~gs/d~c. Lagrange's
equations imply P = O for the Lagrangian/& . Thus the requirement
of covariance under the causality group leads to no motions at all
under the Lagrangian model of calssicam mechanics. In practise,

however, one only requires physics to be Poincaré covariant.

Case (3). The Galilei Group
The Galilei group will be the first to allow non-trivial guage

functions. We shall express the structure of the group in the form

(IR @®) mg E(3,R)q where E(3,R)pFpm n 0(3,R) and
gGHom(E(B,iR)T, Aut( I'RBQTQ’)) is defined via:- g(v, R):(x, t) +—>
(Rx+¥t, t) V({E, RCEG,K), (x, t)E R@E. As in the case
of the Poincaré group, each V€ Z2O(G(3, R),R) is zero when
restricted to R ®|'R’.L. Recall that in the case of the Poincaré
group, the assymetric bilinear form defining W& | 1 xTRu:— f
had to satisfy N o(/;,A @\ f p = fxp which implied
diagonality and hence nullity for(f ) In the present case we can
show that'V | (_rR3 @T&) X (‘.'R3 ®nt1) must vanish. To do so, we map
E(3,R)p into GL(4,IR)via the homomorphism M, such that:-
M(V, R)go 2 1, M(v, R) o 2 0, M(¥, R)jo = vi and M(yv, R)ij- = Ri;
V (v, R) € E(3,R)p, (1) € £1, 2, 33 . That is:-

1 00 0

M: (v, R) > ::; (Rij)
V3

-

Then M(v, R) acts on the GL(4,R) module R ® l‘é';—_\ l}é of colum-~
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-wise quadruples in the natural way:-

1 0o o ollt] [ ¢ 7
1 X

2 2 ' R2j X; +vo t

! Rz. x. t

V3 4L %) |35 Xy e b

Every cocycle of Z20(|R3 &lRl,TR) has the form%( (_}_cl,tl),(§2,t2))_ =
=3,5=0 fi; xiszj where x; = ty, X,° = t, and £3; = -fj;- Those
which are restrictions to = @R of cocycles of Zzo@R3 Cmﬂ?]m g
E(3,MR)p,R) must also satisfy i3 Mk (v, R) Mje(X: R) = fie also;
or M.f.M = £ V (v, R)€ E(3,/R)p. Thus £ = 0 and ) | (R or) x
(Ra ) =0,V € 722 (R @®mg EGM)p, &).

Using a result of Bargmann that 'Zzo(O(B,R),IE)_ = 0, we can
easily see that H20(E(3,TR)T,'IR) = 0, using Mackey's theorem and
a construction similar to that used for the Poincaré group to dhow
that HY, (0(3,1R) Hom(Te°p/R)) = 0. Thus there is a ome to one
and onto correspondence between HZO((H??’QD“%?, ® g EG,IR)p,R)
and the cohomology group ng'(E(B,R)T, Hﬁ(ﬂé@ ﬂ’;L,TR)) via:-

V(x5 59505 (s Ry))s (X t5)5(ys Ry))) = YL, Rl)_l)(52> £)
$: H2(G(3, TR), R) —p Hé.(E(B,nZ)T, Hom(R @R, TR)).
. O 3 >

We compute the latter cohomology group as follows.
YT ng(E(B,‘R)T, Hom(1R> CXJTR-L,TE) we must have:-
WO, e)(x, t) =0V (x, t)E T® @B

W, RY (x5 1) &5 £5)), =@V, R)(xy, t7) +T(, R)(xp, t2) and
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Oy + R1-12-’ Ry Ry) (%, 8) = @y, R, t) + m(¥,R,)
gy, R T(x, t)  Define the injectiansi- i : IR —RRWE,
2 R1— ReoR j:R,— E(B,R)T and jy: O(3,1R) —=
E(3,R)p; and then & (v, R) =W(v, R)o i15W, (v, R) =WV, R)o i,.
We haveSD(v, R)(x, t) = W(v, R) ((x, 03(0, £)) = W (¥, R)(x) +
@y(v, RI(t). ClearlyTW, € Cj (E(3R)yp, Hon(te, ),
Q, € C (EGR) Hom(T,1)). Ve have
D (v, R)(x, t) = AW, €)@, R)) (x, t) = W(v, e)(x, t) +
B0, R (g, &) (x, t) =Wy, e)(x, t) + W0, RI(x, - ¥ t.,t)
Now IBOjs, smz,mojl,_ z ml and we have mz(R)(z, t) =
T (R0 §;(x) + TR0 i,(6). Clearly W (R, Byloiy(t) =
oo, Rfl PQ-(O, t) = W, Rl)(O, t) + (O, R‘2')'('O,_"t) wWitich méans
g;?(Rl R,) o j1=§EZ(Rl)oL,_+ng(R2)oi2 implyinggps O on S 0(3,R)<
0(3,R) 2 S 0(3,R) ®Z(Z)p, since S 0(3,R) is simple. Its value
on Z(2)p is defined by its value at p, the non-trivial element
of Z(z)p. We also have:-
*;E(Rl)(z 0) + srf(RQ)tRil_)g 0) = ﬁ(ﬁf}é)(g, 0) which shows that
T € 71, (06,R), Bon(RS,M)). But Z41(0,(3,R),
Hom(#R, 7)) = BL,1(0(3,™R), Hom(IRS, M) since, ¥ £C Z' (0(3,1R),
Hom(12°,1) we can write £(R) = -3(f(pjo n (R)™L - £(p)), £(p) is
a constant element of Hom(TR>,TR). Thus TWA(R)o i =T (R)o i 5 = 0

¥ R€ 0(3,82) since if we note p2

= 1 then we must have 2 gﬁ(p) oiy
=0, or mz(p)(g, 0) = 0. The group I 44 has no finite cyclic
subgroups whence {T(p) = O. Since TP(R) (x, t) = Q,Z(R) oi; (x) +

E?(R) o 1i,(t) we must have ofi = o jy = O.
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We can then write:-

G, R, t) = Wy, e)(x, t) = W) (x, t) where:-

o = o j1, and we also note that since (v, R)(x, t) =

o (0, IE L v, e)) (x, £) =

@0, R)(x, t) + W(R v, e)(R! x, t) we must have

Q' W)x, t) = CTERYEBx ) R O3, ). Write

@), §) = W) 0 iy (x) +TP(W) o iy(t). Then, since we
have:-

Dy, + )& 8) T ) & 8+ T, &V, 6, t)

we must have

:Dl(zl +¥5) 01;(x) ='d‘(zl) o i;(x) + ml(XQ) o i, (x)

and - _
@ (y; + vplo 1,(6) =@ (¥ o ip(8) + @ wplo 1,(6)+ P (wIofy(=y k)
We first note tha’cml(z o i€ Hom(TRS,R)V Ve néT so that
ml(zz)(-zl t) = - ml(x_rz)(zl t). Thus we must have:-

ml(zl +¥5) 0 i,(t) = Qll(zl)o i,(t) +tr_31(12)o (%) 'ﬁ(ig)di.('é.\ﬁit}
with the additional identities:-

WERY) 01, Rx) =W oi;&), TR0 i(t) TP o iy(k)

¥ RE O0(3,M) and that if " 1 W) 01y = $(¥) then
<131€I+Iom(ni3 , Hom(1”°,R)). Define a functional on 1% @R by

¥ Goy) e ¥V (@, x)eﬁr X then we must have

¥ (R x®R v) =¥ (x®v) so that ¥ must be the immer product:-

¥ PY) = & vixuhere X€ R . If @Wo L)) ah,y@)(t)

we must have ¢2(X)(t)_ = ¢ (R v)(t) VREO(3, ™) so that it is nece-

ssary thatd>2(!) ('t), E f(_y_z)(t) where f(y_z)(tl+t2)_ = f(gzj(tl) +
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f(zz)(tz). This means that d2/dt2(f(g2)(t))_ =0 or f(gz)(t)_ =
bl (Xz)t + X(X2). Since W was a normalised cochain X(\_fz). = f(z2)(0)_ =
O whence our condition on f' is that:-

f'((L’l + 32)2)'1: = f! (v 2)(+ ' (v 2)t—.><x_72'_\£l t or

f"((xl + 12)2) f"(v 2y 4 f"(v 2) -xv l) where

Vo'
" = (ot/z)f' . Write v, = 1_/1+J&1 then:-
™ (g WFDD-1@A= - 2 vy ).
Thus Lim (v —>0) f£'((v +d’1r)2)— f"(f) =-a2dvy =dv 'Y
f(zz) where ¥ = d/dv. So that, on integration we have:-

(%) = f dv.V'(Q) = -j’lz-dz = -4,

We must then have,(v)(t) = - og( X2t and hence ﬁthﬁi(x)(z, t) =
¢, @) (&) + P (L) = ~ Vb + OXV.X =<_>2< (- v2t+2v.x) with
2

the result that:- W(v, R)(x, t) =ex (-v¥ 2t + 2v.x). The cocycles of
2

Z2O(G(3,IR),|R) have the form %((51, tl),(gl, Rl)),((ggz, t2),

(X2, Rz)) = m(- -l 1’ R;_l))(zzgt 2) ) =

-1

2 1Y X))

see that the elements of HZO(G, (3, R) iIR) are in one-to-one and onto

D—é(- ':\'_1_?12_t-2R « X)) = (vlt2+2v R1§2). We
correspondance with elements v(E(S,R)T, Hom(lR TR.L R )), the
equivalence classes in the latter group being in one to one corres-
pondence with the real line:- (W(ex ) (v, R) )(x, t)) =

'5(— \_rzt,+ 2v'x). The map%'lR'——?-H2 (G(3,® ), ) defined by

?(«x )((Zy,81), (015 By))s ((Xps 5)) (Vs Ry)) -!D((vl, Ry)” )(x2,

t2) is a group isomorphism from the group of additive reals to the
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Ext’(G(3,R ), R ) & H°_(G(3,R),R).

~ We have thus computed ng,(E(j,TR)T, Hom(ﬂécxﬂkl,\ﬁ))
which, under @: R ——% H'g' (E(3,R)g, Hom(RWR,R))
B ) (v, R))(x, t) = % (-_\_r_2 t + 2v.x), is isomorphic to TR 4;.
The group HZO((TRBQFR]‘)IXI q E(3,®)p), IR) was also a by-product.

Let us consider now the application of the above results to
classical mechanics. Under (v4R)E E(3,R )T the kinetic energy
functional U transforms like:-
(W, RN = DE(S)) +d (2 (-v2t(s)+2v.x(s)) where

we chose the world line x(s) =z (x(s), t(S) in\W Thus
DR %(s)+ v £(s), £(s)) = MD(k(s), () + 92\(-12’5(5)@.}2(5))
Choose (v, R) = (k(s)/E(s), e ), we then see

D, t(s)) = Dx(s),Es)) — % (x(5))° + 2x(s)?
t(s) %(S)

NV (&s),EE)= 90, t(s) - 3§<<ggsz)2
t(s)

or

~ If we recall the requirement that "J ds be a first order infinitessimal
then we must have ") (0, %(s))_ =4 t(s) where PE€ R. But. then
7, t(s)) € ImQQl) and can be dropped, whence we have:-
N G(s), B(s)) = ~Zx(E(s))? /E(s).
Make the choicezof time for the evolution parameter on the
world line x, then t = 1 and we thus obtain the free Lagrangian:-
() = -3_5\3_'{(1:?‘_-' = 3 fo(x(s), x(s)) a kinetic energy functional.
Note how vividly the world group here defines the kinetic

energy functional. The parameter -30¢ ¥ m' is called inertial
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mass.

Case (4) The Carroll Group.

The structure of C(3,1R) the Carroll group will be expressed as
C(3,R) = (R @F) @ g' E(3,K)y where g'G Hom(E3,R s
Au’c(ﬂémné)) is defined by g'(v, T):(x, t)t——> (Rx, t+v.

Rx). We imbed C(3,MR) into GL(4,TR) via the monomorphism M':-

M': (v, R) —> M'(v e).M' (0O, R) where M'°j2 is the natural inclusion
0(3,R)<GL(3,1R)< GL(4,7®) and M'ojy: v ——>

1 Vl v2 v3
)
0 (Aa.)
0 ]
Thus M'(v,R) = [1 vi \p) v31 1000]|[1 V.Rij
0 0 -lo J
0 (4.) 0 ([®R:.) 0 (Ry.)
0 > o N o

We shall need the above morphism later. Firstly however, we compute
the group H'g|(E(3,TR )'I" Hom(TRYQlEl) )) and 1later the group HZO(C(BJ?),

fR) using our result for the former. Now V@€ Zlg"-(EG’ﬁ )T’
Hom(1R3®ﬂQ,‘ﬂ§), we must have:-

D (v, R (x;5t7) (Xs5t,)). = TV,R) (x), 6 )+ TV, R) (1,t,) and

(v, +RL VR Ry) (x,6) = AWp Ry (X, 6) +TD(,,R,) (8" (v ,R) (K, )

where g'(V, R)_lt(z, t)'—+g(-R_lg, R_l)(z,t). =(R_lg—x'§). As in case
(3) we define the morphism i,i,,j; and j,. We have:-

(v, R)(x, t) =xd(v, e)(0, R) (%, t) =&y, e)(x, t) +T(0, R)(x, t -
vE) = T, t) @R ¢ -v.X). Where W = TWo j,

32_ = @ojo. Let us consider Illz. It must satisfy mz(R) (x, t) =
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GE(R) oi,(x) + G (R)o L,(t) ¥ REO(3,M). Now TS Hom(0(3,R),

Hom( I'Rl, TR)) implies GS.Z‘_ . = Oywhere m:_(R)_ = m_z(R)o i2. Also
(BB () = GRG0 + TR T x) s0 B2 24,1 (03,1,

Hom (TRB,iR)_ = Bln'(O(B,{R), Hom(TRZ’,fE))-, SO we choose

©% =15 = 0 and tus ¥ = 0. We must have:-

W (v, R)(x, t) = S8 (v)(x, t)) = QI (Rv)Rx, t) ¥ REO(3JR). Write
@1(v)(x, £) =¢}-(§)(x) + SE;_(XI_L-) where 2@1(1)_ 5 ;(Dl(y)o il',.m:é(x)_ =
g:l(w_/)o i,¥ve IRBT. We see that:-

W (v, 4v,) () =T (v ) () + Qg (v,) (%) #5(,) (-3, %)

and

(v, ) (w,) (6) =Tp(w, ) (8) +E(w,) (¢) with the additional requirements
that &7 (Re) (Rx) | =207 (@) (x), Ty(¥) (t) = Ty(RY) (£) VREO(3IR). Ve
must then haveGI]é(z)(t)_ =f§E:LL(1)(:s:)_ =0 ¥ ¥ € IRBT y (X5 t)e‘h\écg\'é,

for the following reason.

The first equation implies 'gz%(z, Xx) = f(v, x)4that £ is linear
only on x. The rotational invariance requires it to be bilinear and
hence we must have f = O. Then thatT ]2'(RX)_ =Q]2‘(x_r) Y R€ 0(3,R)
implies that TI.E]é(X)_ =X (_\12) say. However X must be linear and hence
vanishes.

Thus we have shown Zé,(E(B,TR)T, Hom(TRBQHR:l, ™)) = Bé'
(E(3,1r), Hom (hé@TE-L,TR)). The mechanics in the Carrollian world must
then be invariant:-

g(RJ_E‘(S), £(s)4v. Ré(s))' = M (x(s), t(s)). Choosingv =0 =

rotational invariance and with
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R = e J)(X(s), £(s) + v.x(s)) = 1 (k(s),t(s)).

Take V; = -3 :c(s)/;c(s)i then \_/.g'c'(s)_ = -£(s) and

Y (x(s), 0) ='J(X(s),E(s)) which means that O doesn't depend on t,

N ( X, (s),%(s))_ z 13'(x(s)).. The requirement of rotational invari-.
ance and the requirement that D'(x(s)) be the first order impose
D)) =~ W &I~ 2= -xl £\ where XER.

The similarity of this kinetic energy functional to the
kinetic energy functional of S.R.T. is striking. One can also show
that H°_(C(3,]R),IR) = 0. Since we mist have 12| (12 @iR)? = 0,
H_(E(3,lR)p»R) = 0 and Hg"(E(3,R ), Hom(R @R, TR)) = O.

Case (5). The Static Group

The 'Static' group S(3,TR) has the structure:-
(R @®) B ey EGR)y where g5(v, R): (X, &) —> (R, t)
¥ v, R)E E(B,TE)T. We wish to compute the_' group
H}g_‘n(E(B,TR )T’ Hom(TR'_5 QgTEl,lR‘)), each elementi M of the latter must
sa’;isfy:—_
L, R) & t)x,, t,) =T, R, &) +WQE, R)(EX,, t5)
and

@(Xl + Rl Xz; Rl RZ)(Ej t)_ =§2(X1, Rl)(z’ t) +‘m(!2:R2>(Rl—]Z,t)

‘Now we have
D (v, RI(x, t) =D(v, e)(x, t) +B(0, R)(x, ©)
As we showed before, we must have B ojo) = 0 so that

Dy, N, 8) Woj, W 1) = VW) = TE) Ex,b).
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irite @i D, ©) = (@W0 1)@ + (B 0 L,)E) 3
Q;i(g) (x) + g;‘_;(z) (t), we must then have
W (v,4v,) () =y vy (@) 48] (W) ()5 DR ¥) (Re) =m0y (v) ()
VRE0(3,R) and ti5(v; + ¥,)(6) =05 (v,) (£) +p(up) (6); T (Ry)
(t)= m‘}(y_) (t). These four conditions imply IE% = 0 and m_i(_!)(g)_ =
Ay-x with #C R.
The kinetic energy functional TJ must now satisfy:-

& B e g (@rsE) sIRE, B o

T(x, t) +/Q§S}_°c (s) = JRZX, )
The only consistent interpretation of this is that obtained as follows,
which is due in some pai't to J.M. Lévy—Leblond. The static group is
the 1limit of the Galilei group obtained in the so-called 'infinite
mass' limit, where motion is no-longer defined. The Galilean kinetic
energy functional J)(x(s)) is just gx_"_(s)2 if we write y(s) = m X(s)
(g(s)) = E‘TV\‘Y(S)2 when m —~ o)(y(s)) —> 0, corresponding group
theoreticaily to the map (U, R)z(mv, R) where with (v, R):(x,t)t—>
(x+vt,t) = (Rx + 1 u t, t), m—>~oo (u, R):(x,t) —>(Rx, t). Thus
no motion is possrjf.lble, we must aiways have fixed positions as we saw in

our déscription of the Static world. It is easy to show that

HA(S(3,R), IR) & Hé-}(E(B, R Hom( e, 1))
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6.1
COHOMOLOGY THEORY AND. NON-INERTTIAL MOTIONS.

In this chapter, we shall extend the analysis of chapter (3)
to non inertial motions, defining groups analogous to the Galilei
group in which constant accelerations act on space time. The
approach we adopt is not in the spirit of the latter part of the
chapter, but of the first. '

Recall that each world automorphism x € QL (W) was necess-
arilly of the form o<:(x, t) —=>= (R(X)(x) + X &) +(Q2(?<) (t),
t +T(x¢)). Neref, = (R, ¥) was a homomorphism from@ANX/) to
E(3,IR) and T was a homomorphism fromcA\ (W) to the time-translation
gr'ouplkl. In chapter (3), the map £. € C](Q(\)U), Cl(lRl,TRZ'))
was discussed when x€Q(\W) N I(W ) the inertial subgroup of QW) which
mapped uniform motions onto uniform motions. This condition enabled
us to write &, (x ).(t)_ = 0 which inegrated toﬁ2(c>§) (t) = Ubx)t,

1roR (O&(W)I",TEBT). Also, we were

where U was a one cocycle of Z
able to define the two cocycles ;'(x 128%q ) = U(ex)T(ex),
;‘ < Z2noR(Uk(W %',RS) where(Ay (M) '= AUUW) 1/ B°. This leads to
the explicit construction of the Galilei Group I(W)NCL(W) =Q1(\m¢
e3n ?' QI(W)_lz G(3,MR), a non-central non-trivial extension.

In this chapter, we shall relax the constraint IQE(PQ)"(t)_ =0
and impose instead, the constraint [02(')()' ++(t) = O corresponding to
a constant acceleration. That is, we construct the group of semi-
inertial automorphisms of Wy QLM )NS I(X/), where S I(W/ ), the
group of semi-inertial Finctions:h«B(W )‘E{ X (t):o_c._-:}xf' *t(t)

= 0f , which maps constant accelerations
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into constant accelerations. Now p?_(a)"'(t)_ = 0 integrates to

£,(c0)""(£) = Aex) where A€ CHAM),Rpy), where(for con-

3TI' the group of tangent-tangent vectors.

venience) we call R
Integrating twice again and using the normalised cochain condition
we must have:- £ ,(0¢)(t) = JA@E<)t> + B(x)(t) where
Be claw )s I'E}'T). As in chapter (3), the group law onQ(W)
imposes the condition on &, that:- _
Po(0006) (1) = @,(0g) (6 + Tlex,)) + R(s% 1) (B,(e<,)(£))
Imposing this condition means that we must have
A(oq00)t? + BOOOG)t = Hbe) (6VT(B3))2 + Bbg ) (+TGs,)) +
* IR(4 )AL + REx)-B(ox,)t.  Which isi-
4600067 = A6 )7 + REY)-AB%)E
Beq00%,)t = BOy) t+ R({)-BE%)t +Alog) Tl &
When we write X< 0og) = Xe4) + Xfs)) + -;/(oi,txz)v, where '?fe

2 2 . . e
C2 r A(W)",R*) is defined by:

Z (ogpmp) 2 4 A )T g + Beq)T 65).  Similarly we define
a two cochain 3€  C2Q (W 1} TRPp), Z (ot %) = Ay )TES,).

The groups L (W7 )" and QU(W * are defined as follows:-
Q(W)" sa (W) N SI(W) /R> and alsoX (W s O(W)"
/TROT. Ve shall see soon, more explicitly that ﬂéT <a(\)". It
2 W)

readilly follows that ;’¢ 22 o (@AW )", TR?) and 7S Znor

noR

since we must have:-
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@ €N o005 o05) 2247 Flog,00) = FlgOoey,00,)
+ 3lot),06000) = (o axp) 2 o)) T Aleg) T(ox)?

+ B(exy) T(og)) = (3 AG<1005)T(e%5)° +B(ex 0egy) Thc5)
+ (3 A< )(T(E,0 24))% + B ) (TEX,0 ©3))- (3 AB<)ITx )

+ Bb ) T (e<,)). Which is:-

! 1 2
& () (oq0¢550¢3) = R(o)) Alexy)T (o) *R(0q ) *B(e3)T(Py)
-(JA@Q) +R(24)"A(5))T(05)° +(B(og)+R(c)*B(0Q))T(x 5))
+(3A(2g) (Tey)” +2Moxg)T(Eng)+ Tlx)?) + Blon)) (T(og)#T(X)

- (3A( ) JEEY)*+B(SNT (%)) . Ori-

P (F)(on,0040) = AER).T(0). T (x # ©

(E)J)(?)(o(lsoxzso*B) = D(l' ; (9(2-9'(9) _F(,&looﬂ2ﬂ>(3)

+ ?("‘1’°‘2 00\3) - ?(;xl,o(2). Which is just the term

R(64)"A(%) T(0xg) ~A(oxg008) T(%%) +AEDTERO0C) -
ABT(0%) = Teg) "A(0g) (o) = (AEY) +R(X ;) -Alex,))
T(¢5) + A(OG)(TX,) + T(B)) = A(BT (05) = O.

So that ‘¢ Zog @UW ), R but BE L@ (W), B

These results have the following immediate consequences. An extension
RBT =" ?\(\)(7 )A exists which we shall see is similar in many ways

to the Galilei group. However, an extension = QA (W )" does not
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exists, since the associativity conditiond’ (;l ) = 0 is violated.
In fact & (W)" forms a loop. We shall discuss this concept after
dealing with the group fRST !XJ?C&(W ! . The growG(W )Acon-
sists of triples (t, (A, R)) where A is an acceleration, R € 0(3,TR)
and t is a time translation. They act on l‘R}T via n'GHom(Cl('w)'\
Aut ( FEST)) defined by n'(t, (A, R)):V+—> RV, ¥ VE R 3.1..
Clearly, via (t,(A, T))(t') (A',R")) = (t + t', (A + R A' RR")), we
must haveO«(W )2 IR 1 @ E(3,|T<),I,II where B(3,R )TT is the ortho-
gonal group in the inner product space TRBTT. The group \R-jT W%‘:
([R1 QDE(B,TR),IT) is thus isomorphic to fR_B‘_un% L (W )Awhen

g'e 7° (R®EG,R)rr ,RIp) is defined by " ((by 81 Ry)),
(ty, (Ays R)) = AL £,V (65, (A1, RiIDE R @ EG,R ). Let us
call this group G(3,MR)p the Galilei group in the world whose
locations are velocities. From chapter (3), we can obviously write
6(3,R)y & (R7p ®FY) m  E(3,R)r with g€Hom(E(G, R,
hut(R¥p 1)) defined by:- g4, R): (v, t) —% (Rv + At, t).
Alternatively we can express G(3,TR)p as ([\QTQV ('néIT @) mm 0(3)
where m € Hom(0(3), Aut(ﬁéT @V (“éIT @ ﬂi)) is defined by m(R):

(v, (&, £)) —> (Rv, (RA, t))¥ RE O(3,R) with the

VE 22, (IRopp @, R defined by:-

V(A t)), (B, t5))  ==A; t,. The group law on Tsz @u(TE?’TIQﬁ)
is just the familiar elementary law:-

(v, (Ays 6o, (s £3)) = (g + 75 * Ay, B (B + Aps ) + 85))
or 'Ut—=>U+A¢t"!

Let us consider now the object A (W)" = (W )NSIAN), which
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we called a 'loop'. The composition defined on O<( W )" consists
of multiplying quintruplets together in the following way:-

(El’ tls AR Al’ Rl)(zzs T R ) =

22 Yps 25>
(%, + Ry Xy + 3 A) 6,2 + ¥ to, by + by, Ay + R Ay, vy Ry v, +

A, t,, R, R)). As we saw above the 'cochain ?’ € c?(QL(W )" ,TRB)
defined by Z (11, ¥4, A4y Rp), (b, Vo,lp, Ry)) 2 4 A tg +
i t2 did not satisfy the associativity requirement thatcp (;)
The object Q_(W )" is thus non-associative whilst there exists an
identity:-(0, 0, O, O, e), and everywhere defined composision and each
elements of QL (W )" has an inverse e.g.:- (X, t, v, A, R)T =

24vt), (-t, R v +At), - R4, R1)). Note that

(R 1(x-at
as a subobject, G(B,ﬂ?)T . CL (W/)" is a group ande_5 is also a
subobject which is a group. In order to study such an object as
OU(W )", we shall have to study S. Eilenberg's theory of Prolong-

ations which will enable us to discuss non~inertial 'groups' with

greater ease.
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Part(2) GROUP PROLONGATIONS

A loop is an object which is a group in all respects ( (i) existence
of idempotent (ii) composition rule (iii) existence of inverse),
expect that the associativity condition is no longer necessarily true.
One could call a group an associative loop. Let L be a loop and let
X15 %55 x3€ L. Define the associator A(xl, X5 x3) via:-

- _ - -1
ACxys X5, X3) 3 (% (x, X)) Clxys X)%3 "] v X)5 X3 X; € L.
If L is a group, A = O. Assume that the associators associate:- viz
(A(xl, X5 x3)) A(xq, Xg s xo) A(x7, Xg» Xg). = (Alxy, X5, x3)
A(}-{LP X555 x6))A(x7, Xg> x9) Y ooX), ----Xge L
Then we have:-
xl(x2(x3 Xu)) = A(xl, Xos X3 xu)(xl, x2) (x3, xu) = A(xl, X55 Xze xu)
A(xl° X55 X5) x3)((xl, x2) x3) Xy and xl(xz(xj, XM)) = A(x25 X35 xu)
xl((x2, XB)XM)‘ = A(xz, X35 xu))A(xl, X0 Xz XM)['xl(X2’ XB)?] Xy =

A(x2, X35 X’-I)A(Xl’ Xpe Xz XLI) A (xl, X5 x3) ((xl x2) x3) Xy,

Thus we must here, (assuming additivity for associators) A(x2,x3,x3) -
'A(xle X2’X3’xl|)+A(xl’X2°x3’Xll)_A(Xl’xz’x3'xll) - A(xl,x2,x3) = 0.
Wnich is strongly remminiscent of the three cocycle property (in
chapter 2). With motiviation provided by the above, Eilenberg and

Maclane defined the following notions of group prolongations.

A prolongation of a group Q by an Abelian group G is a pair (L,$ )

satisfying the following five conditions:-
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(1) L is a loop and K < Ker( & ) with G = € (K).
(2) o€ Hom(L, Q with¢ oi=0 and Ker(d ) = Im(i)
(3) If A is the associator, A € ¢’ (E, K)(where Q operators on
| the Abelian group K via p € Hom(Q) Aut(K))), Tthen we require
Ak, q, q,) =0 F A, ks gy) ¥ 9,0,€ L, RE K.
(4) plx)(g) = In(a (5))(g)) VREL, g& G.

In(k)(A)

AV k€& K and associator A = A(xl,xz,x3)
Teo prolongations (Ll,cpl) and (L2,<’b 2) of Q by Grare called -equivalent

if the below diagram is true

The multiplication of two prolongations is an exactly analogous oper-
ation to the multiplication of extensions. We call the product
(Ll,cb 1)/\(L2, ¢ 5) as in the case of extensions and enlargements.
Given an associator A(xl,x2’ A(x3,xu,x5)) we define the cochain
A(xl,x2,x3,xu,x5) as this quantity. Similarly, we define cochains
of ¢, k) via A(Ky 5+ e sXoy 1 )ZACK oo o5 Xonps AQKo 15 Xpp

" Xon+1)) Vn € 2 4+ The non-associativity of L in the prolongation

(L,d ) is controlled by the following four classes of prolongations of

Q by G:-
L . 3
3] nim Ay eesXp,%) = 0 Prolongations for which
=0 this is true.

@ib-_ A(Xy,  + s Xon:K) =
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Gg - A(xl,...,x2 s a) € G ( Prolongations for which
Gﬁ - ,A.(xl,...leq’k ) € G tbis is true

¥n XN O, XpseeeesX, € L, k € K. In additiorn; the class R,
consists of these prolongations (L, &} ) of Q by X which contain a
prolongation os Q by K, (where L'<. L and < | L’a $ ') of class

@E. The class Glé of prolongations by the condition K = G. Next consi-

der the class @En GIE’, since Gﬁ_lC Gﬁ

K K L~ mK L, GX €m K ~ oL
4 -
¢ FO®, and @ C® wehave @n n1® N G and thus,

L .
and @iCGn with

we must have the set of prolongation products (H)g A G§—1 3 @ ﬁ/\

GE_IC' H Eﬂ Gﬁ .. We can thus define the quotient class:-

@ I}?ﬂ G{j‘l/ @ﬁ/\ Gﬁ_l and this is a group which is isomorphic to
Hgnﬂ(Q,G) YN n€ zZ ; @s is shown by Eilernberg-Maclane. Similarly
they prove the theorem that @ i—lﬁ Gﬁ / Rn/\ Gﬁ is a group isomorphic
to H™E(Q, 6V h € z,. | |

Let us discuss the first few 'n' for clarity. Whenn = O, L
is associative and we return to the group extension case when G is
the central subgroup of K. When n = 1, a prolongation (L,$ )&
H Il{n oy if AGK),Xo5k5) = Loand AKX ,%,,%5) € GV %)%, %€ L.
The class @Ii' consists of those prolongations for which (L,d ) is
associative and hence a group whilst Glg is the class of prolongations
where K = G. A prolongation in ® i’/\ GE is then specified as a

prolongation product of a group by a prolongation consisting of
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pairs (k, q) = (k, e)(0, q) with K associative, Q associative and

with an associator which satisfied (i) A(xl,x2,x3)e GV %,x,,%x; €L

3
(1) AC((K), x15%5) = AlxpksX,) = AXy,Xy,k) = 0 ) X%, € L
and is hence specified by the associator A(o ,ql) (Ol’qZ) (ol ,q3))

_ EJ‘(¢)(qlsq2:Q3) where - (O, ql)(o’ Q2). = (¢(Q1:Q2): ql’q2)

Thus if (L,b)e @i’/\ Gg , is is also a loop specified by
the 3 coboundaryd (P ) €& B3p (Q,G) since in (H)%_' , we nust have
'£(p') = 0,' . How each prolongation in @?ﬁ GIi' is specified by
a three cocycle of ZBP(Q, G) by -the following arguments. We saw
L) € @ Il{ﬁ G:IL' iff the conditions mentioned above. It trivially
follows that, if :—_;b_(ql,qz,qs)_ = A(;-(ql),j-(q2)., j— (q3)) where J.
is a section from Q to L with ¢ o‘;:ﬂ , then @ € ZS(Q,G). (By an
argument similar to our introductory one). Thus it is very plausible
that HS(Q, G) = @If(\ Gri' / H Ii'/\ Glé. C.f. our quite different
characterisation of HS(Q, G) when G is the centre of a Q kernel in
chapter (2).

Part(3).

With this theory in mind, let us return to the loop CL( N/ )"
which occured earlier. Here, we must replace Q by the Galilei-
like group G(3,TR )'Ir."' and K=G by TKB. Thus Q_(W/ )" is a prolongation
of G.(B,TR )T." by TR. Its associator specifies it as of the class
GE since it is a 3 coboundaryd’ (@ )(1)%.;™3) = Aeg) « T(xa) -

T(xy) or :- & (b") ((11',’01,_-’\1,31), (223t2s§2’R2)’(13’1_’3’53’%)\ y
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Al tl t2. When a loop L is a prolongation of Q by G we shall write
L= G ¢,Q. Thus in our case, we must have:-

AUW) NST(W) ? RE, (R, e B) @e EG, Rgp)

where p € Hom(G(3, IR)T’L" Aut ( IRB)) is defined by g((v, t),(A,R) :
X >~ Rx. ¥ RE€O0(3, R).

In this newnsktion L = G 849 is specified by the three cocycle
de Z3p (Q, G), our loop is specified by the three coboundary
& (P'). Of course it is only defined for the class (Hlf N GIl" of
prolongations of Q by G.

The generalisation of the results of this chapter are in progress
at the moment. In analogy with the above construction it would seem
that the 'group' replacing G(3, R)y would be a loop containing the
Group G(3, iR)'IT.._ and that hence the theory would break down and
one cannot, it seems, prolong loops by loops!

To conclude this chapter we will discuss the role of cup pro-
ducts in the present context in the manner of section (h) of chapter
(3). .

Recall the existence of the 2 cocycle ?e Zr21( {Rl @ E(3, [R).IT,

R°;) defining the group G(3, R)p2 Ry M. (R ® E(3, R)gp), given

7

by ? ((tl,(_.l}]_, Rl),(t2, (32,R2)) = Altz. Now let us note that if we
call G the group R' @ E(3, IR),I.I., TTl the group [RSTI' and'sz the group
Rt with 1= [RBT, thenﬂl and]T2 are paired to 1 via the cup product
AUt = At. Also G is a grow of automorphisms of T | JT , andTT via

pi€& Hom(G,A(m;) 1 = 1, 2, O definéd by P ((t,(A,R)):A" 1—>
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R " A", py((t, (4, R)):t' t—> t and p((t, (A, R)) : V —> RV
v (t, (4 RNE R'@EG,R)y and @', t'. VER, x R x
3

Ry

Define one cocycles of Z%)l (G,ITl) and lez(G,ﬂz) via fl:(_(t,

We also have (t, (A, B)):(A'U t') = (t, (A, R))-A'U (t,(A,R))"t.

(A, R)) F—> A and f,: (t, €A, R)) —> t. Then immediately,
£0 5,((6s (s Ryd)s - (85 (s Ry))) = AU 55 = Ayl Whence
¢ (f;Uf,) =0, by takingV F—> A in the calculation of section

(h) of part (3)of chapter (3). Whencei = flu £5e
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