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MEMORANDUM 

The work described :!.n t h i s t h e s i s was performed i n 

the Londonderry Laboratory f o r Radiochemistry, U n i v e r s i t y 

of Durham and i n the U n i v e r s i t y Chemical Laboratory, 

U n i v e r s i t y of Kent at Canterbury d u r i n g the p e r i o d from 

1964 t o 1967 under the s u p e r v i s i o n o f Dr. S.J. L y l e , 

L e c t u r e r i n Radiochemistry. 

This t h e s i s contains the r e s u l t s of some o r i g i n a l 

research by the author a,nd no p a r t o f the m a t e r i a l 

o f f e r e d has p r e v i o u s l y been submitted by the candidate 

f o r a degree i n t h i s or any other u n i v e r s i t y . Where 

use has been made of the r e s u l t s and conclusions of 

other authors^ i n r e l e v a n t s t u d i e s , care has been taken 

to ensure t h a t the source of i n f o r m a t i o n i s always 

c l e a r l y i n d i c a t e d , unles i t i s o f such general nature 

t h a t i n d i c a t i o n i s i m p r a c t i c a b l e . 

ROGER WELLUM. 



SUMMARY 

The cumulative y i e l d s f o r e i g h t s e l e c t e d mass chains 

from the f i s s i o n of U 2 5 8 induced by e s s e n t i a l l y 3 MeV 

and also 14.8 MeV neutrons have been measured r a d i o -

c h e m i c a l l y . The isotopes counted were S r ^ 1 , , Ru 1 0^, 

H h 1 0 7 , Sb 1 29, 0,1*5' and P r 1 ^ . A n e w r a p l a 

chemical s e p a r a t i o n was devised t o enable r e l i a b l e 

measurements of y i e l d s based on 21.7 minutes Rh^°^i 
otherwise e x i s t i n g methods of separation modified were 

r e q u i r e d , where employed i n o b t a i n i n g samples.for 

counting purposes. Radioactive decay of samples was 

measured using c a l i b r a t e d end-window p r o p o r t i o n a l 

counters having a n t i c o i n c i d e n c e s h i e l d i n g to reduce the 

background. Y i e l d s were determined r e l a t i v e t o t h a t a t 

mass 99 f o r which values, of 6.32$ and 5.68$ were 

assumed when employing 3 and 14.8 MeV neutrons 

r e s p e c t i v e l y . 

Masses were chosen so t h a t they provided y i e l d s 

on the wings of the l i g h t and heavy peaks i n asymmetric 

f i s s i o n . I t was thereby p o s s i b l e (1) to compare changes 



i n these regions on changing the bombarding energy of 

the neutrons and (2) to c a l c u l a t e numbers of prompt 

neutrons associated w i t h f i s s i o n - f r a g m e n t p a i r s . I n 

t h i s l a t t e r connection, decidedly low"values were, 

obtained f o r two fragment p a i r s from 14.8 MeV f i s s i o n . 

The r e s u l t s are diB.cussed i n r e l a t i o n t o c u r r e n t ideas 

on the f i s s i o n process and published experimental 

r e s u l t s . The y i e l d s measured i n the course o f t h i s 

work are on the whole complementary t o those published 

f o r the 3 MeV neutrons induced f i s s i o n of U 2^ 8. Th e i r 

i n c o r p o r a t i o n i n t o the e x i s t i n g y i e l d curve i s 

discussed. 
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Chapter I 

I n t r o d u c t i o n 

a) H i s t o r i c a l 

The phenomenon of f i s s i o n was discovered f o l l o w i n g 
the work of Fermi, and h i s c o l l e a g u e s 1 * 1 , who having had 
considerable success i n preparing r a d i o a c t i v e isotopes 

by the i r r a d i a t i o n o f s t a b l e elements w i t h thermal 

neutrons t r i e d i n the same way t o produce transuranium 

elements from uranium. Very soon however, too many r a d i o ­

a c t i v e components were i d e n t i f i e d t o be comfortably accounted 

f o r by the isomerism of a few elements and furthermore, 
the chemical behaviour of the elements associated w i t h 

the a c t i v i t i e s were d i f f e r e n t t o those expected. A ^ - a c t i v e 
i s o t o p e , thought t o be t h a t of radium was i n v e s t i g a t e d by 

1 2 
Hahn & Strassman * who showed t h a t i t f r a c t i o n a t e d w i t h 
barium r a t h e r than radium dur i n g c r y s t a l l i s a t i o n . A second 

1 1 
conclusive experiment by Hahn & Strassman ' J showed t h a t 
the daughter a c t i v i t y o f the 'radium' isotope c r y s t a l l i s e d 
p r e f e r a b l y w i t h lanthanum, not aotinium as expectedo 

i 



The i n t e r p r e t a t i o n of these r e s u l t s by Meitner & 

F r i s c h ^ ' ' ^ as f i s s i o n i n t o n u c l i d e s of medium mass followed 

immediately. A review of f i s s i o n work up to 19̂ +0 was 

1 1 

c a r r i e d out by. Turner ' J , The e a r l y d iscovery of neutrons 

emitted during f i s s i o n and t h e r e f o r e the p o s s i b i l i t y of 

c h a i n - r e a c t i o n s occuring l e d to a great d e a l of work i n 
215 

the f i e l d of f i s s i o n , mainly on U J J , during the Second 

World War i n the so c a l l e d 'Manhattan P r o j e c t ' . The data 

of radiochemical i n t e r e s t coming from t h i s p r o j e c t have 

s i n c e been published i n the N a t i o n a l Nuclear Energy s e r i e s 1 * ^ . 

Bohr and Wheeler ' and independently, P r e n k e l proposed 

a l i q u i d - d r o p model i n 1939 and most f i s s i o n t h e o r i e s s i n c e 

then have been based on t h i s model. 

A great d e a l of p r a c t i c a l and t h e o r e t i c a l work has 

been done s i n c e 19̂ +6: reviews which summarise much of t h i s 

m a t e r i a l i n c l u d e those of Walton 1"^, H a l p e r n 1 * 1 0 and H y d e 1 , 1 1 « 

U s e f u l m a t e r i a l i s a l s o to be found i n the papers presented 

a t the United Nations Conference f o r the P e a c e f u l Uses of 

Atomic Energy, h e l d i n 1 9 5 8 1 , 1 2 . 



b) F i s s i o n as a phenomenon 

The o r i g i n a l discovery came from the neutron-induced 
235 / f i s s i o n of U • J J i n n a t u r a l uranium (as p r e d i c t e d by Bohr, 

1 13 
1939i * ) but f i s s i o n has been observed f o r n u c l e i ranging 

1 14 
from the heaviest down t o copper * 

Mass defect c a l c u l a t i o n s would p r e d i c t t h a t f i s s i o n 

of heavy elememts i n t o two equal fragments i s a h i g h l y 

exoergic process. However spontaneous f i s s i o n i s rare f o r 

elements of mass l i g h t e r than U2-^ (1.8 x l O ^ y r ) and 
232 21 

Th * (XlQ-i y r ) . Spontaneous f i s s i o n i s thought t o be an 

example of quantum-mechanical t u n n e l i n g , s i m i l a r t o the 

well-known pc-emission t u n n e l i n g . The spontaneous-fission 

h a l f - l i f e i s then a s e n s i t i v e measure of the p o t e n t i a l 

b a r r i e r t o f i s s i o n which has values l y i n g i n the r e g i o n 

5 t o 8 MeV f o r n u c l e i heavier than radium. 
A r e l a t i o n between b a r r i e r height and the ' f i s s i o n -

'2 i i c a b i l i t y parameter', Z /A was given by Seaborg " , r e s t r i c t e d 

i n t h i s equation to even-even n u c l e i of a l i m i t e d range of 

Z2/A: 

Eb = 19.0 - O.36 Z2/A, .....(1) 

where Eb i s the f i s s i o n b a r r i e r i n MeV. 
7 



The r e a c t i o n of a neutron having n e g l i g i b l e k i n e t i c 

energy with U2-^^ produces s u f f i c i e n t e x c i t a t i o n to take the 

U 2-^ nucleus past the f i s s i o n b a r r i e r , whereas with U2-^®, 

the main isotope i n n a t u r a l uranium, neutrons with 

a d d i t i o n a l k i n e t i c energy of approximately 1 to 2 MeV are 

needed to cause the U2-^ nucleus to f i s s i o n to a measurably 

u s e f u l extent. 

N u c l e i with g r e a t e r Z /A, having lower f i s s i o n b a r r i e r s 

by equation ( l ) have correspondingly s h o r t e r spontaneous-

f i s s i o n h a l f - l i v e s . Examples, l i s t e d here i n order of 

i n c r e a s i n g Z 2/A are, T h 2 3 2 > 1 0 2 1 y r j - 3 " 6 , U 2 3 5 ( l . 8 x 10 1 7 5 t | 9 ^ 7
f 

Cf 25 2(85.5 y x l ^ and fc^Ohr)1*9. 

N u c l e i may be e x c i t e d past the f i s s i o n - b a r r i e r by 

other means than by neutron bombardment, and f i s s i o n has 

been induced by p a r t i c l e s ranging from &-ray p h o t o n s 1 , 2 0 to 

1 21 
e n e r g e t i c carbon n u c l e i . 

As a means of d e - e x c i t a t i o n f o r a nucleus, f i s s i o n 

s u f f e r s competition from ou, n- and X - e m i s s i o n . Of these, 

Jf-emission i s a comparatively slower n u c l e a r process; 

- p a r t i c l e emission too i s a slow process due to the coulomb 

6. 



b a r r i e r ahd i s only present as an e f f e c t i v e competitor, 

f o r f i s s i o n a b l e n u c l e i having very long spontaneous h a l f -

l i v e s . Neutron-emission however can and does occur 

w i t h i n the period of d e - e x c i t a t i o n by f i s s i o n . This i s 

of especial importance i n the case of moderately h i g h l y 

e x c i t e d n u c l e i when the emission of a neutron before f i s s i o n 

may s t i l l leave the nucleus w i t h s u f f i c i e n t energy t o 

undergo f i s s i o n . 

The equivalent i n energy of approximately 200 MeV 

i s released at f i s s i o n ; i t manifests i t s e l f mainly i n 

the k i n e t i c energy of the fragments. Between 2 t o 5 prompt 

neutrons are also emitted: i n t h i s f a c t l i e s the p o s s i b i l i t y 

of having a s e l f - s u s t a i n i n g system through chain r e a c t i o n s , 

u s i n g n e u t r o n - f i s s i l e m a t e r i a l . 

The h i g h l y excited f i s s i o n - f r a g m e n t s have a neutron 

t o proton r a t i o f a r removed from s t a b i l i t y , which they 

achieve through, i f necessary, successive -emissions. 

Nuclear d e - e x c i t a t i o n of fragments may also occur by 

if-emission. T h i s ^ - e m i s s i o n c o n s t i t u t e s the main source 

of r a d i o a c t i v i t y from f i s s i o n . 



6 

The immediately formed fragments g e n e r a l l y have h a l f -
l i v e s short compared t o a second and an i s o b a r i c chain i s 
formed w i t h the h a l f l i v e s of successive members, as a 
r u l e , i n c r e a s i n g as the nucleus approaches s t a b i l i t y by 
£-decay. 

I n a small f r a c t i o n of events, energetic *x - p a r t i c l e s 

are observed. These have an energy spectrum centred at 

15 MeV, w i t h a maximum at about 29 MeV. Such events are 

more c o r r e c t l y classed as te r n a r y f i s s i o n and they c o n s t i t u t e 

the most common type of te r n a r y f i s s i o n observed. emission, 

simultaneous w i t h the main f i s s i o n event has a frequency 

of occurrence of 0.2 t o O.55&. Angular c o r r e l a t i o n s of the 

d i r e c t i o n o f oi-particle emission w i t h respect t o t h a t of 

the main fragments show t h a t the oi - p a r t i c l e i s emitted at 

s l i g h t l y l e ss than 90 degrees t o the d i r e c t i o n of the 
1 22 

l i g h t e r fragment * • The l i q u i d - d r o p model as proposed 
1 7 

by Bohr & Wheeler * envisages the e x c i t e d heavy nucleus 
s t r e t c h i n g and f i n a l l y s c i s s i o n i n g a t a narrow neck d u r i n g 

f i s s i o n . This model gives an a t t r a c t i v e e xplanation of the 
1.23 

& -emission " . The <* - p a r t i c l e s are assumed t o be 

emitted from the neck a t s c i s s i o n , a t which time the 



coulomb-barrier t o ^-emission i s expected to be low. The 

d i r e c t i o n of emission of the ^ - p a r t i c l e s would then be 

determined by the competing coulomb repulsions of the main 

fragments• 

A l e s s common form of t e r n a r y f i s s i o n i s t h a t of 

simultaneous t r i t o n emission. This has been shown t o 

occur w i t h a frequency of one p a r t i n several thousand 
1 24 1 2S 

f i s s i o n events * ' * • Ternary f i s s i o n i n t o three 
sizeable fragments appears t o be very uncommon; f o r example 

1 26 6 Rosen & Hudson * obtained a value of 6.7 per 10 bina r y 

f i s s i o n s f o r U 2 ^ . 

c) Mass-Yields 
i ) Measurement of mass-yields 

The e a r l i e s t measurements of mass-yields were made 

radioc h e m i c a l l y . Since then, mass-spectrographic methods 

have added considerably t o the amount and the accuracy of 

the data. 

Since -decay chains are formed, two so r t s of 

f i s s i o n y i e l d must be defined. The i n d i v i d u a l amounts 

of each isotope on the mass-chain formed d i r e c t l y by the 
1 
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f i s s i o n process c o n s t i t u t e the independent y i e l d s , as 

against the t o t a l y i e l d i n the mass-chain, which i s 

measured at the sta b l e end of the chain. A measurement 

of the f i n a l s table product or of one of the immediately 

preceding, l o n g - l i v e d , chain members gives the chain 

mass-yield. 

The radiochemical problem i s , b r i e f l y , to measure 

the number of f i s s i o n events and the number of atoms of a 

given f i s s i o n - p r o d u c t i s o t o p e . I n p r a c t i s e , the measurement 

of the number of atoms of one given isotope involves (a) 

the separation of the element radiochemically and i n known 

chemical y i e l d , (b) f o l l o w i n g the decay, separating the 

a c t i v i t y from t h a t of i n t e r f e r i n g radio-isotopes„and e s t i m a t i n g 

the a c t i v i t y of the r e q u i r e d isotope at the end of the 

i r r a d i a t i o n p e r i o d , (c) c o r r e c t i n g t h i s a c t i v i t y f o r 

counter e f f i c i e n c y and. s e l f - a b s o r b t i o n f a c t o r s and. (d) 

r e l a t i n g the a c t i v i t y t o an i n t e g r a t e d f i s s i o n r a t e over 

the whole f i s s i o n i n g p e r i o d . This l a s t requires a know­

ledge of the f i s s i o n r a t e throughout the i r r a d i a t i o n . 

The s t r i c t l y radiochemical problem i n (a) above, 

may be solved by separating the a c t i v e isotopes at the 



9 

t r a c e r l e v e l and i n 100$ y i e l d and by oounting them by 

means of an absolute counting method, I t i s much more 

convenient however to use macro amounts of i n a o t i v e 

i s o t o p i c c a r r i e r m a t e r i a l . The problem then r e s o l v e s 

i t s e l f i n t o the f o l l o w i n g stages: ( l ) the a d d i t i o n of a 

known amount of c a r r i e r to the i r r a d i a t e d sample, (2) 

ensuring i s o t o p i c exchange, i f necessary by t a k i n g the 

element through one or more valency changes;* (3) the 

sep a r a t i o n of the c a r r i e r from a l l radiochemical i m p u r i t i e s 

and ( k ) f o l l o w i n g the decay u s i n g a s u i t a b l e counter* 

Chemical y i e l d s are then determined d i r e c t l y from the 

weight of the s o l i d source or by measuring the amount 

of the s t a b l e i s o t o p i c c a r r i e r i n the source a f t e r a l l 

a c t i v i t y has died away, by whatever a n a l y t i c a l methods 

are most appropriate f o r the sample. 

The determination of the absolute number of f i s s i o n s 

i s a d i f f i c u l t one ex p e r i m e n t a l l y . However i t i s i n p a r t 

circumvented by measuring the y i e l d s of the i s o t o p e s 

r e q u i r e d a g a i n s t one f i s s i o n - p r o d u c t as a r e f e r e n c e . These 

r e l a t i v e f i s s i o n y i e l d s must then be converted to absolute 

y i e l d s . One method, and the sim p l e s t i f a p p l i c a b l e , i s to 
1 
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m u l t i p l y the r e l a t i v e y i e l d s fey the absolute y i e l d of the 

reference i s o t o p e . T h i s r e q u i r e s of course, the knowledge 

of the r e f e r e n c e isotope i n t h i s f i s s i o n i n g system. 

Obviously the accuracy of the absolute y i e l d s of t a l l mass-

y i e l d p o i n t s are only as accurate as the e s t i m a t i o n of 

t h i s absolute y i e l d . 

An a l t e r n a t i v e method i s to make use of the f a c t 

t h a t n e a r l y a l l f i s s i o n events are binary events. A f t e r 

a l l o w i n g f o r the prompt neutron emission a p l o t of r e l a t i v e 

f r a c t i o n a l mass-yield a g a i n s t the mass number of the f i s s i o n 

fragment may be adjusted u n t i l the i n t e g r a t e d y i e l d measured 

undei the curve adds up to 2. Provided s u f f i c i e n t r e l a t i v e 

mass-yield p o i n t s are known to o u t l i n e the shape of the curve, 

the adjustment only i n v o l v e s a l t e r i n g the y i e l d s by a constant 

f a c t o r . T h i s method i s made p o s s i b l e i n p r a c t i s e by the sharp 

t a i l i n g o f f at high and low masses: then provided the peaks 

are w e l l - d e f i n e d , l i t t l e e r r o r ensues from ignorance of low-

y i e l d p o i n t s at the e x t r e m i t i e s of the curves. 

I f the measurement of c h a i n - y i e l d i s made with an 



11 

isotope p a r t way along the chain - and the c o n s i d e r a t i o n 
of which isotope to use i n the chain i s u s u a l l y determined 
by experimental comditions such as h a l f - l i f e or decay 
c h a r a c t e r i s t i c s - then the independent y i e l d s of isotopes 
l a t e r i n the chain must be allowed f o r . T h i s r e q u i r e s a 
knowledge of the charge d i s t r i b u t i o n along the mass-chains. 

A theory r e l a t i n g to c h a r g e - s p l i t t i n g between the 

primary fragments i n n u c l e a r f i s s i o n i s not at present 

a v a i l a b l e . E a r l y c o n j e c t u r e s , t h a t the f i s s i o n - f r a g m e n t s 

have charge to mass r a t i o i d e n t i c a l to the f i s s i o n i n g 

nucleus or t h a t the charge d i v i s i o n occurs so as to give 

maximum k i n e t i c energy to the fragments and minimum to 

r a d i o a c t i v e decay do not agree w i t h the observation that 

the decay chains f o r the heavy and the l i g h t fragments 

have approximately equal l e n g t h s . 

Glendenin, C o r y e l l & E d w a r d s 1 , 2 ^ put forward the 

e m p i r i c a l hypothesis t h a t the most probable charges f o r 

the l i g h t and the heavy fragments l i e an equal d i s t a n c e 

from beta s t a b i l i t y . The charge d i s t r i b u t i o n i s f u r t h e r 

p o s t u l a t e d to be Gaussian about the most probable charge 

p o s i t i o n along the /2 -decay c h a i n . 
• v\ 
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Prom the equal charge displacement hypothesis I t 
f o l l o w s t h a t i f Z A, Z A* are the s t a b l e charges of each 
fragment and Zp, Zp x are the most probable charges, then 

Z A - Zp = Z A* - Zp* 

and s i n c e A + A* = A^ » u> 

25 

where A and A are the fragment masses, A^ that of the 

f i s s i o n i n g nucleus and v the number of prompt neutrons 

emitted, then 
Zp = z A - i (zA + z A

M - z f ) . 

The d i s t r i b u t i o n curve has the form 

P(Z) = 1 exp (-{Z - Zx>)Z ) 
J 0 TT " v C / 

where P(Z) i s the p r o b a b i l i t y of obtaining a charge Z 

r e l a t i v e to that of the most probable charge Zp. c i s 

an e m p i r i c a l constant. 

Formulations f o r Z A are r e q u i r e d to make these 

equations u s e f u l i n - p r a c t i s e * I n the treatment of 

Glendenin, C o r y e l l & Edwards, the Bohr-Wheeler mass 

equation was used g i v i n g a smooth ZA f u n c t i o n with 

n 
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f i s s i o n - p r o d u c t mass. Pappas ' a l t e r e d the ZA f u n c t i o n 

to take i n t o account d i s c o n t i n u i t i e s at s h e l l edges and 

1 29 

Kennett & Thode " 7 made f u r t h e r adjustments to account 

f o r t h e i r measurements on X e ^ ® , Xe 1-^, Xe^"1" by accurate 

mass-spectrometric techniques. 

These v a r i o u s formulations were i n e f f e c t superceded 

1 30 
when Wahl "•' published h i s work on independent y i e l d s from 
U225 together with a l l other a v a i l a b l e data; by f i t t i n g a 

Gaussian curve s i m i l a r to that used by Glendenin, C o r y e l l 

1 27 

& Edwards , about the independent y i e l d p o i n t s , he 

determined the value of Zp f o r each mass-chain f o r which 

there was s u f f i c i e n t information. 
( i i ) Mass-yield curves 

The mass p n a i n - y i e l d d i s t r i b u t i o n f o r U 235 h a s fceeri 

e x t e n s i v e l y studied f o r thermal neutron induced f i s s i o n . 

The data has been c o l l e c t e d by K a t c o f f J . The obvious 

s t r i k i n g f e a t u r e of t h i s curve i s the marked asymmetry 

of the c h a i n - y i e l d s with r e s p e c t to mass of the f i s s i o n -

product n u c l e i ; i t i s centred about masses 95 and 138, 

approximately. T h i s asymmetry i n f i s s i o n had f i r s t been. 
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1 12 

demonstrated by Jentschke & F r a n k l who measured the 

k i n e t i c energies of f i s s i o n fragments and found they l a y 

around two bands centre a t 60 MeV and 100 MeV. Confirm 

mation of the a s s o c i a t e d mass-asymmetry c l o s e l y followed 

and t h i s phenomenon i s now g e n e r a l l y accepted as a 

c h a r a c t e r i s t i c of low-energy f i s s i o n . 

The asymmetry of the mass-yield curve may conveniently 

be defined by the r a t i o of f i s s i o n y i e l d s on the peaks 

of the mass-yield curve to t h a t i n the trough (the so 

c a l l e d 'peak to trough r a t i o ' ) • 

An obvious experimental r e s u l t of i n c r e a s i n g the 

e x c i t a t i o n energy i s to lower the peak to trough r a t i o : 

between thermal f i s s i o n . a n d f i s s i o n with 1^ MeV neutrons, 

the peak ito trough r a t i o v a r i e s from about 600 to about 60 

21*5 1 11 with TJ y j - a v a r i a t i o n by a f a c t o r of ten J • 

As might thus be expected, spontaneous f i s s i o n y i e l d s 

have the g r e a t e s t peak to trough r a t i o n ^ n accordance with 

t h e i r very low e x c i t a t i o n energy. Work has mainly been 

done on the h e a v i e s t a v a i l a b l e n u c l e i as these have workable 

spontaneous f i s s i o n rates,and very low symmetric y i e l d s f o r 
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Cm2i+2 1.33 a n d C f252 1.3^ h a v e b e e n o b s e r V e d . 

F i s s i o n y i e l d s produced from h i g h l y e x c i t e d n u c l e i 

have a s i n g l e peak, hut with broad wings suggesting a 

s t i l l e x t e nsive c o n t r i b u t i o n from asymmetric f i s s i o n . 

A study of high energy proton f i s s i o n by Stevenson a t 

a l 1 " ^ on U 2^® shows the double peak, s t i l l evident a t a 

bombarding energy of 10 to 30 MeV, merge with the f i l l e d -

i n centre p o r t i o n to present a s i n g l e broad curve a t 200 

to 300 MeV. I t i s s i g n i f i c a n t that a t these energies the 

best f i t h ypothesis of charge d i s t r i b u t i o n i s t h a t which 

allows the fissions-fragments the same charge/mass r a t i o 

as the parent nucleus. 

A v a r i a t i o n i n the form of the mass-yield curve i s 

observed w i t h change i n the mass of the f i s s i o n i n g n u c l e u s . 

I n p a r t i c u l a r elements of mass lower than that of 'thorium 

have f r e q u e n t l y given d i f f e r e n t l y shaped curves compared 

1 16 

to those of h e a v i e r masses. Thus F a i r h a l l 0 .observed a 

s i n g l e , narrow peak f o r bismuth bombarded with 16 MeV 

deuterons. With i n c r e a s i n g e x c i t a t i o n energy t h i s peak 

broadens: a s i n g l e much broader peak was observed by 

Groeckermann.& Berlma^*-^'''using 190 MeV deuterons. 
i f 
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Intermediate behaviour between single-humped, 
symmetric f i s s i o n and double-peaked asymmetric f i s s i o n 
was found by Jensen & F a i r h a l l 1 , 3 8 . They found that 
radium with 11 MeV protons gave a three-humped maBS-yield 
curve. They concluded t h a t two d i s t i n c t types of f i s s i o n 
were being simultaneously observed. 

T h i s intermediate case, where the symmetric mass-

y i e l d i s comparable to the asymmetric y i e l d i s r a r e and 

has only been observed f o r l i g h t elements a t moderate 

e x c i t a t i o n e n e r g i e s . Other systems that have shown a 

three-humped y i e l d curve are U 2 3 3 bombarded with helium 

ions between 25 and 40 MeV 1 , 3 9, T h 2 3 2 w i t h 3 MeV n e u t r o n s 1 

and P a 2 3 1 with 14 MeV n e u t r o n s 1 ' ^ 1 ; 

The two mode hypothesis of f i s s i o n has r e c e i v e d e 

experimental backing from k i n e t i c energy s t u d i e s on 

fragments and from prompt-neutron emission s t u d i e s . 

Measurements on the k i n e t i c energy of fragments 

produced by the thermal-neutron induced f i s s i o n of U 2 3-* f 

1 42 
by A p a l i n e t a l qonfirmed e a r l i e r energy measurements 
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l I I " ) 1.44 

"by Milton & F r a s e r J i who observed that asymmetrical 

fragments have k i n e t i c energy i n excess of symmetrical 

fragments of about 20 MeV. The argument that f o l l o w s from 

these observations i s that i f symmetrio and unsymmetric 

f i s s i o n r e q u i r e s i m i l a r e x c i t a t i o n energies to occur then 

the missing k i n e t i c - e n e r g y of the symmetric fragments appears 

i n the form of deformation energy or n u c l e a r e x c i t a t i o n 

energy• The fragment k i n e t i c energy measurements have 

been p a r a l l e l e d by s t u d i e s of the number of prompt-neutrons 

emitted i n a s s o c i a t i o n w ith i n d i v i d u a l fragments. The now 

f a m i l i a r saw-tooth d i s t r i b u t i o n f o r the number of prompt-

neutrons p l o t t e d a g a i n s t fragment mass ^(m), was shown by 

T e r r e n f " * ^ by c o l l a t i n g radiochemical and fragment y i e l d 

data f o r U 2-^ U 2-^ P u 2 - ^ a n d observed d i r e c t l y by 

A p a l i n e t a l 1 0 ^ 6 * l o ^ ' 9 E a r l i e r work by S t e i n and Whetstone 1 , 

had shown the same c h a r a c t e r i s t i c neutron emission curve as 

a funotion of fragment mass f o r C^ 2^ 2,, Recent measurements 

of ^(m) by Milton and P r a s e r 1 f o r U 2-^ confirming the 

shape of the curve have a l s o shown f i n e s t r u c t u r e —= minor 

peaks i n the y i e l d of V(m) at masses 90, 96, 101. 
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Measurements made by Mil t o n & F r a s e r 1 * ^ and 
A p a l i n 1 * ^ ' 1*^7 a r e v e l o c i t y or energy measurements of 
the primary f i s s i o n fragments a t about the time of prompt-
neutron emission. Maes-yield curves are constructed from 
t h e i r data simply by applying the laws of conservation of 
momentum and energy. These curves then d i f f e r from r a d i o ­
chemical mass-yield curves by the prompt-neutron emission 
of the fragments and the $ -decay of the c h a i n s . 

One major d i f f e r e n c e between mass-yield curves 

constructed from fragment energy data and radiochemical data 

i s the presence of abnormal y i e l d s w i t h r e s p e c t to a smooth 

curve i n the radiochemical case* Mass-spectrometic measure­

ments by Thode & c o - w o r k e r s 1 * ^ * 1 * on the abundances of 

krypton and xenon i s o t o p e s i n the thermal neutron induced 

f i s s i o n of U 2 3 5 showed i n p a r t i c u l a r a high y i e l d of X e 1 3 i * 

over that expected from a smooth curve. Pine s t r u c t u r e i n 

mass-yield curves has s i n c e been obtained f o r s e v e r a l f i s s i o n 

systems. I t i s of most s i g n i f i c a n c e f o r low energy f i s s i o n 

and becomes l e s s pronounced as the e x c i t a t i o n energy i s 

i n c r e a s e d 1 , 5 1 ' 1 * 5 3 . 
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The f i r s t explanation f o r f i n e s t r u c t u r e was suggested 

"by the p o s i t i o n of the most s i g n i f i c a n t f i n e s t r u c t u r e 

around mass 13^° The closeness of t h i s peak to the closed 

neutron s h e l l of 82 neutrons l e d Glenden lii* to propose 

th a t f i s s i o n fragments having a s l i g h t excess of 82 neutrons 

would p r e f e r e n t i a l l y b o i l o f f neutrons to y i e l d t h i s s h e l l o 

1 5 S 

Wiles 0 J J on the other hand suggested that a f i s s i o n fragment 

with 82 neutrons would be p r e f e r e n t i a l l y formed during the 

f i s s i o n a c t o 
1 *>6 

A second explanation, put forward by F a r r a r m J and 

independently by T e r r e l l J l i n k e d the v a r i a t i o n i n prompt-

neutron emission as a f u n c t i o n of fragment mass with the 

f i n e s t r u c t u r e o Changes i n ^(m) could w e l l account f o r 

i n c r e a s e d y i e l d s a t p a r t i c u l a r masses and the e f f e c t would 

be d i s p l a c e d i n the two cases by the length of the $ -decay 

chains <> 

T h i s explanation i s a t t r a c t i v e i n as much as 

s u f f i c i e n t s t r u c t u r e has been observed to account f o r 

the required mass-structure« Fragment mass-yield curves 

as measured by the t i m e - o f - f l i g h t technique of Milton & 
F r a s e r 1 " ^ 3 ' l o i | 4 , have d i s t i n c t l y d i f f e r e n t d e t a i l e d 

IS 
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shapes as compared to the product y i e l d curves. S t r u c t u r e 

i s present but i t i s l e s s pronounced than t h a t observed i n 

the product y i e l d curves. These fragment mass-yield curves 

are symmetrical about the lowest p o i n t i n the trough. This 
1 

c o n t r a d i c t s Wiles p o s t u l a t e * J J t h a t s h e l l e f f e c t s p r e f e r ­

e n t i a l l y p r e-select c e r t a i n fragment masses. 

A c h a r a c t e r i s t i c of f i s s i o n mass-yield curves 

whenever the presence of asymmetric f i s s i o n i s observed 

i s the constancy of the p o s i t i o n of the l i g h t wing of the 

heavy peak. This applies t o cases as f a r - a p a r t as 

of Ra and Ik MeV neutron induced f i s s i o n of U* J 0. (See 

f o r example r e f ."̂ 0 ̂ ) • Such an e f f e c t suggests a common 

cause i n each of these cases determining the p o s i t i o n of 

the peak i t s e l f or the i n s i d e edge of the peak. The 

occurence of the doubly magic nucleus of mass 132 

(N = 82, Z = 50) must then be more than mere coincidence. 

With changes i n the f i s s i o n i n g nucleus, the l i g h t peak 

moves to keep the sum of the masses of the fragment p a i r s 

equal t o t h a t of the parent nucleus a f t e r prompt neutron 

emission. 

spontaneous f i s s i o n f CJ2 52 o 11 MeV proton induced f i s s i o n 
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d) T h e o r e t i c a l models of the f i s s i o n process 

Any theory of f i s s i o n has several outstanding 

experimental observations t o e x p l a i n : These have been 
1 57 

l i s t e d by Ramanna ' J' as f o l l o w s : 

a) The strong asymmetry of the mass d i s t r i b u t i o n i n low 

and medium energy f i s s i o n and the v a r i a t i o n of the 

asymmetry/symmetry r a t i o w i t h e x c i t a t i o n energy. 

b) The approximate constancy of the f i s s i o n b a r r i e r 

f o r many heavy n u c l e i a t about 5 to 7 MeV. 

c) The prompt-neutron saw t o o t h curve w i t h mass number 

and the c o r r e l a t i o n of neutron-emission w i t h fragment 

k i n e t i c energy. 

d) The odd-even behaviour of the spontaneous f i s s i o n 

h a l f - l i v e s . 
Swiatecki has pointed out the basic existence of 

the l i q u i d drop model i n a l l f i s s i o n t h e o r i e s whether 
1 58 

they are based e x p l i c i t l y or not on the model % J • 

Depending on the assumption as t o whether the c o l l e c t i v e 

modes of motion of the nucleus as a whole are s t r o n g l y 

or weakly l i n k e d to those of the i n d i v i d u a l hucleons the 

s t a t i s t i c a l or the a d i a b a t i c model are derived. 



The a d i a b a t i c approaoh has been l i n k e d very c l o s e l y 

with the l i q u i d - d r o p model as developed by S w i a t e c k i and 

co-workers. A great d e a l of e f f o r t has been put i n t o 

determining the s t a t i c p o t e n t i a l of energy s u r f a c e s of 

deformed n u c l e i . The biggest problem i n the case of the 

simple l i q u i d - d r o p model has been the l a c k of explanation 

f o r the asymmetry y i e l d s i n f i s s i o n . Work i n c a l c u l a t i n g 

p o s s i b l e modes of deformation i n heavy n u c l e i has the r e f o r e 

always been d i r e c t e d towards the p o s s i b i l i t y that c e r t a i n 

deformations and th e r e f o r e the forms of f i s s i o n would be 

asymmetric i n c h a r a c t e r . 

The s t a t i s t i c a l approach a s s o c i a t e d with Pong 1*-' 9, 

concentrates on the nucleus at the moment of breaking up. 

By c o n s i d e r i n g that a l l modes of f i s s i o n are p o s s i b l e due 

to the p r o l i f e r a t i o n of f i s s i o n channels at the h i g h l y 

e x c i t e d s c i s s i o n point the products a c t u a l l y formed w i l l 

depend on t h e i r r e l a t i v e s t a b i l i t i e s . Pong obtained r e s u l t s 

i n good agreement with observed mass-yield values i n the 

case of U23-> but h i s approach has had d i f f i c u l t i e s i n other 

cases i n reproducing observed r e s u l t s . 
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Both the a d i a b a t i c and the s t a t i s t i c a l approach are 
obviously only p a r t i a l i n t h e i r attempts t o cover the f i s s i o n 
processQ We may consider f i s s i o n as t a k i n g place through 
the e x c i t a t i o n of a nucleus t o a saddle-point - t h a t 
e n e r g e t i c a l l y r e q u i r e d t o cause f i s s i o n - then a r e ­
arrangement of the nucleus by c o l l e c t i v e or i n d i v i d u a l 
movements to the s c i s s i o n p o i n t followed by the a c t u a l 
occurence of s c i s s i o n . I t i s apparent t h a t the a d i a b a t i c 
model concentrates on the period up t o the saddle-point 
and the s t a t i s t i c a l model on the per i o d at the s c i s s i o n 
p o i n t • 

Other work has been done, which although not along 

the same d i r e c t l i n e s as the two previous models has thrown 

l i g h t on the f i s s i o n process. A. Bohr i n h i s p a p e r 1 , ^ on 

the l i q u i d - d r o p model as applied to f i s s i o n showed t h a t 

n u c l e i e x c i t e d j u s t t o the f i s s i o n b a r r i e r would be i n a 

'cold' s t a t e a t the saddle-point. I n p a r t i c u l a r there 

f o l l o w s the chance of l i n k i n g the e x c i t e d states of t h i s 

nucleus, by analogy, t o ground s t a t e s . 

Concentrating on the period between the saddle-point 
1 *57 

and s c i s s i o n , Ramanna ' , t r e a t i n g the process 
-A 
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s t o c h a s t i c a l l y obtained the b a s i c y i e l d curves f o r s e v e r a l 
c a s e s . He assumed t h a t the fragments slowly separate and 
a f r e e interchange of neutron*occurs up to s c i s s i o n ; the 
protons were considered to be f i x e d r e l a t i v e l y e a r l y i n 
the process by the coulomb f o r c e s which b u i l d up. S h e l l 
e f f e c t s which tend to hold or s t a b i l i s e c e r t a i n numbers of 
neutrons were included i n the treatmento 

Along s i m i l a r l i n e s , F a i s s n e r and Wildermuth , 

considered s t a b i l i s a t i o n e f f e c t s by applying c l u s t e r theory 

c o n s i d e r a t i o n s to the neutron and proton s h e l l s of the f i s s i o n 

fragments before s c i s s i o n . The p r e - e x i s t e n c e of c l u s t e r s 

c o n t a i n i n g N = 50, N = 82 and Z = 50 nucleons emphasizes i n 

p a r t i c u l a r the r o l e of the A = 132 double s h e l l , (N = 82, 

Z = 5O), i n determining the p o s i t i o n s of the heavy peaks. 

For the l i g h t e r peak, as there are s e v e r a l choices of 

combinations of proton and neutron s h e l l s , the a c t u a l 

c o n t r i b u t i o n of each s h e l l , which i s unknown, may be v a r i e d 

to obtain the best f i t to experimented r e s u l t s . T h i s 

a v a i l a b i l i t y of a d j u s t a b l e parameters d e t r a c t s from the use­
's 

f u l n e s s of the procedure. However i t i s pointed out by 

F a i s s n e r that closed s h e l l s ' w i l l be a s s o c i a t e d with low 
7 C! 



2.5 

e x c i t a t i o n energies and are t h e r e f o r e s u s c e p t i b l e to e x p e r i ­

mental v e r i f i c a t i o n of t h e i r e x i s t e n c e during the f i s s i o n 

p r o c e s s . 

1 62 

Vandenbosch a l s o d e a l t with the e f f e c t of c l o s e d 

s h e l l s being present during f i s s i o n . He emphasized that 

c l o s e d s h e l l s have s p h e r i c a l , undeformed s t r u c t u r e s . At 

the moment of s c i s s i o n then, i f we consider a near-

symmetric s p l i t t i n g of the fragments, the h e a v i e r one, 

l y i n g near the N = 82, Z = 50 closed s h e l l s w i l l have a 

comparatively r i g i d s p h e r i c a l s t r u c t u r e . The e x c i t a t i o n 

energy of t h i s fragment w i l l t h e r e f o r e be mainly as 

k i n e t i o energy. The l i g h t e r fragment, having no closed 

s h e l l s w i l l be h i g h l y deformed and have correspondingly 

l e s s k i n e t i c energy. Reversing the case,»and t a k i n g an 

example of h i g h l y asymmetric s p l i t t i n g , the heavy fragment 

i s expected to be the f a r t h e s t away from a c l o s e d - s h e l l 

s t r u c t u r e and w i l l t h e r e f o r e be the more deformed of the 

two fragments. 

These arguments give a convincing explanation f o r 

prompt neutron emission and fragment k i n e t i c energy 

c h a r a c t e r i s t i c s w ith r e s p e c t to fragment mass. Prompt 



26 

neutrons would be expected to be p r e f e r e n t i a l l y emitted 
from deformed nucleio 

The work cited above shows the importance attached 
to s h e l l effects i n determining the gross shapes of the 

mass-yield curves, i n p a r t i c u l a r the N = 82, Z = 50 s h e l l s 

i n f i x i n g the position of the heavy peako M e i t n e r 1 * ^ has 

pointed out that for f i s s i o n i n g nuclei having fewer than 132 

neutrons, asymmetry i s not observed. These nuclei cannot 

provide the 82 and 50 neutron s h e l l s to s t a b i l i s e the heavy 

and the l i g h t peaks and so the modes which have the greater 

t r a n s i t i o n p r o b a b i l i t i e s of occuring i n the excited nuclei 

at the saddle-point, namely the symmetric modes, are found. 

e) The purpose of the present work 

The a v a i l a b i l i t y of 3 MeV neutrons i n reasonable 

i n t e n s i t i e s from the Cookroft-Walton l i n e a r accelerator 

at the University of Kent at Canterbury raised the 

p o s s i b i l i t y of the investigation of mass-yields for U 2-^ 

bombarded by neutrons of an energy more closely defined 

than that of 'fission-spectrum' neutrons. 
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Mass yields for U22® excited with fission-spectrum neutrons 
have been collected and renormalised by Walker^ 
Measurements published up to 1961 are included i n t h i s 
review. Since then, values for several mass-yields for t h i s 
system have been published by Bonyuehkin et a l 1 ' ^ and 
P e t r z h a k l o 6 6

e 

Results of mass-yield determinations for U 2-^ f i s s i o n 

at three i n i t i a l neutron excitation energies were summarised 
1 53 

by Hemmendinger * J J • His smoothed mass-yield curves suggest 

that with increasing excitation energy the heavy peak moves 

to a lower mass position, whereas the l i g h t peak position 

remains r e l a t i v e l y f i x e d . I t has also been observed that 

the position of the heavy peak maximum obtained i n the f i s s i o n 

of Th2-^2 with 1^ MeV neutrons was at lower mass than that 

reported for thorium f i s s i o n i n g at lower excitation energies. 
1 (\*7 

This trend was confimed by the observations of Rahman ' 

who carried out careful y i e l d measurements for Th2-'2 bomb­

arded with 3 and also 1^ MeV neutrons. 

The present work was directed at measuring mass y i e l d s 

from U2-*8 exoited with 3 MeV neutrons. 
i 
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This was i n order to give more i n f o r m a t i o n at masses whose 

y i e l d s had not p r e v i o u s l y been measured experimentally o I t 

was also thought u s e f u l to repeat the measurements f o r the 

same masses f o r f i s s i o n of U2-^ "bombarded w i t h 14 MeV neutrons 

t o a s s i s t i n comparing the movements of the peaks at the two 

e x c i t a t i o n energies. By choosing masses on the steep slopes 

of the peaks, t h e i r a c t u a l p o s i t i o n s might be more c l o s e l y 

defined through t h e i r c e n t r o i d masses than by measurements 

made near the top, where f i n e - s t r u c t u r e e f f e c t s are apparent. 

Mass y i e l d s measured on the steep p a r t s of the curves also 

lead t o a value of , the number of prompt neutrons emitted 

by complementary fragments. The work c a r r i e d out i n p u r s u i t 

of the o b j e c t i v e i s set out i n the subsequent chapters of 

t h i s t h e s i s . 
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Chapter 2 

Experimental Techniques and Instruments 

a) Experimental Procedure. 

The isotopes employed and t h e i r nuclear c h a r a c t e r i s t i c s 

are discussed i n the next chapter. The same i r r a d i a t i o n 

procedure waB used i n a l l cases although the lengths of the 

i r r a d i a t i o n s were v a r i e d from ten t o n i n e t y minutes depend­

i n g on the isotopes t o be separated and the "bombarding 

neutron energy employed. 

The sample of u r a n y l n i t r a t e was sealed i n polythene, 

p o s i t i o n e d behind the t a r g e t of the S.A.M.E.S. ac c e l e r a t o r 

a t the U n i v e r s i t y of Kent a t Canterbury and i r r a d i a t e d . 

The neutron f l u x was monitored throughout the i r r a d i a t i o n . 

The time a t the end of the i r r a d i a t i o n was noted and the 

sample was l e f t sealed f o r a s p e c i f i e d p e r i o d to allow 

precursor isotopes t o decay. The sample was then t r a n s -

f e r e d from the polythene container and d i s s o l v e d i n water 

or d i l u t e a c i d . Accurately measured amounts of i n a c t i v e 

c a r r i e r s were added f o r each element i t was proposed to 

separate. The s o l u t i o n was heated and an o x i d a t i o n - r e d u c t i o n 

cycle or other appropriate chemical r e a c t i o n performed t o 

ensure i s o t o p i c exchange had occurred. 
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Chemical separations were then c a r r i e d o u t , each element 
f i n i s h i n g r a diochemically pure as a p r e c i p i t a t e . The 
p r e c i p i t a t e s were mounted on g l a s s - f i b r e d i s c s , d r i e d and 
weighed. Each source was then counted i n the same, prev­
i o u s l y c a l i b r a t e d end-window, b e t a - p r o p o r t i o n a l counter 
u n t i l s u f f i c i e n t data had been c o l l e c t e d t o enable i t s 
a c t i v i t y a t t h e end of the i r r a d i a t i o n to be estimated 
w i t h i n the r e q u i r e d accuracy l i m i t s . 

The chemical e f f i c i e n c y was determined f o r each source, 
from i t s weight soon a f t e r p r e p a r a t i o n or from the r e s u l t s 
of analyses c a r r i e d out on completion of the counting. 

Measurements which were necessary f o r the c a l c u l a t i o n 
of r e l a t i v e y i e l d s are the a c t i v i t i e s a t the end of the 
i r r a d i a t i o n , the e f f i c i e n c i e s of chemical separations, the 
s e l f - a b s o r p t i o n or counter e f f i c i e n c i e s and the v a r i a t i o n 
of the f i s s i o n - r a t e throughout the i r r a d i a t i o n as i n d i c a t e d 
by the monitor readings. These measurements were made f o r 
the reference element as w e l l as f o r the isotopes under 
i n v e s t i g a t i o n . 

A f u l l d e s c r i p t i o n of these measurements as performed 
experimentally i n t h i s work i s found i n t h i s and the 
f o l l o w i n g chapter. 
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b.) The neutron sources and i r r a d i a t i o n techniques 

i ) ") MeV neutrons 

A S.A.M.E.S. (Societe Anonyme de Machines E l e c t r o -

s t a t i q u e s , Grenoble, Prance) 400 kV 'T' type a c c e l e r a t o r 

was employed t o produce e s s e n t i a l l y 3 M©V neutrons by the 

r e a c t i o n 

H 2(d,n)He 3 + 3.266 MeV 

This machine has been w e l l described by previou.. 
2 1 2 2 

workers * * and needs only a b r i e f d e s c r i p t i o n here. 

A r o t a r y Van der G-raaf e l e c t r o s t a t i c voltage a m p l i f i e r 

e x c i t e d deuterium ions up t o 400 kV by a se r i e s of electrodes 

along the a c c e l e r a t o r tube. The deuterium ions were produced 

by radio-frequency e x c i t a t i o n a t an i o n source and a f t e r 

a c c e l e r a t i o n were focussed e l e c t r o s t a t i c a l l y through a d r i f t -

tube extension on to the t a r g e t mounted i n a separate room 

from the main a c c e l e r a t o r . 

The t a r g e t was a segment cut from a t i t a n i u m deuteride 

disc obtained from the Radiochemical Centre, Amer'eham. 

The t i t a n i u m was supplied mounted on a copper d i s c . This 



was soldered c a r e f u l l y on t o a water-cooled metal block. 

As energy of about 400 watts were deposited i n the t a r g e t 

during i r r a d i a t i o n s , a supply of c o o l i n g water was passed 

behind the t a r g e t t o ensure t h a t i t s temperature remained 

low. thereby minimising l o s s of deuterium from the t a r g e t . 

The arrangement of sample, t a r g e t and coolant i s shown i n 

f i g u r e 2.1. 

The sample, g e n e r a l l y about 10 grams of u r a n y l n i t r a t e , 

was compressed i n t o a d i s c , 2cms i n diameter by approx­

im a t e l y 1 cm thiokness. This was placed i n a t h i n polythene 

envelope which was sealed w i t h a rubber band. The sample 

package was held i n p o s i t i o n on the t a r g e t block of the 

a c c e l e r a t o r w i t h large rubber bands. 

Typi c a l beam currents obtained were about 700 JAA at 

an a c c e l e r a t i n g voltage of kOO kV. The neutron f l u x e s f o r 
Q p 

such runs were approximately 5 x 10 n/cm /sec. The 

neutron f l u x e s kept reasonably steady during i r r a d i a t i o n s 
although breakdowns through e l e c t r o s t a t i c discharges t o 

the w a l l s of the b u i l d i n g from the hi g h p o t e n t i a l electrodes 

were f a i r l y common. The f l u x was monitored by a s o l i d -

s t a t e counter, ORTEC model no. SBJ007-60, which counted 
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the protons produced by the H2('d,p)H^ r e a c t i o n . 

The energy of the neutrons produced by the a c c e l e r a t o r 

w i t h the o p e r a t i n g conditions described has been estimated 

t o be 2.9- 0.4 MeV 2 , 3. 

i i ) 14 MeV neutrons 

The S.A.M.E.S. a c c e l e r a t o r v/as again u t i l i s e d f o r the 

p r o d u c t i o n of 14 MeV neutrons. A t r i t i u m t a r g e t as des-

c r i b e d by V/ilson and Evans * produced neutrons by the 
? 4 

r e a c t i o n H*(t,n)He + 17.58 MeV. This r e a c t i o n has a 

l a r g e r cross-section than t h a t of the H (d,n)He J r e a c t i o n 

and deuterons of energy only about 110 kV were r e q u i r e d . 

The c o o l i n g requirements were correspondingly l e s s severe 

and the c o o l i n g water was passed around the t a r g e t , not 

between the t a r g e t and the sample. 
The energy of the neutrons produced on the S.A.M.E.S 

2/ \ 4 

machine by the H (t,n)He r e a c t i o n has been estimated to 

be 14.8± 0.2 MeV2*2. 

During i r r a d i a t i o n s the neutron f l u x e s f a l l o f f due 

to loss of t r i t i u m from the t a r g e t . A competitor t o the 
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2 i|> 2 3 H (t,n)He process i s the H (d,n)He J r e a c t i o n a r i s i n g from 

deuterium from the beam accumulating at the t a r g e t . This 

has been shown t o introduce an e r r o r of not more than 2$ 

f o r mass-yield measurements made on f i s s i o n 2 ' ^ . To 

minimise t h i s e f f e c t however, only the f i r s t h a l f of the 

t o t a l u s e f u l l i f e of the t i t a n i u m t r i t i d e t a r g e t s was used 

i n these experiments. 

I t was found t h a t due to the higher f l u x e s and improved 

geometry of the sample p o s i t i o n r e l a t i v e t o the t a r g e t , 

q u i t e s u f f i c i e n t a c t i v i t i e s were obtained from two or three 

grams of u r a n y l n i t r a t e , l o o s e l y packed i n a polythene 

f i n g e r and closed i n w i t h a rubber band, a f t e r i r r a d i a t i o n s 

of t en minutes. 

c) Counting equipment 

The s o l i d beta-sources, prepared as described i n s e c t i o n 

d) , were counted using end window p r o p o r t i o n a l counters 

constructed of brass i n t h i s l a b o r a t o r y ( f i g u r e 2.2). The 

design was such as to minimise t h e i r h e ight so t h a t an a n t i ­

coincidence G-eiger s h i e l d could be constructed w i t h reason-

able dimensions about the counters. The lmg cm . • 
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aluminised 'mylar' windows had s u f f i c i e n t mechanical s t r e n g t h 

to a l l o w two or more counters t o be l i n k e d i n s e r i e s t o the 

same gas supply. 

The counters were supplied w i t h a standard 90$ argon -

10$ methane gas mixture from a c y l i n d e r ( B r i t i s h Oxygen Co. 

l t d ) . The gas was d r i e d by passing i t through tubes of 

magnesium per c h l o r a t e and s i l i c a g e l , f i l t e r e d through glass 

wool and f i n a l l y passed through a reducing valve and flow*-

meter. S l i g h t a l t e r a t i o n s i n the gas f l o w above a c e r t a i n 

minimum value had no discernible, effectcon.theccounter 

c h a r a c t e r i s t i c s . 

The counting arrangement i s shown i n f i g u r e 23 • An 
i 

anticoincidence low-background system was used t o enable' 

accurate counting s t a t i s t i c s t o be obtained a t the low 

count rates encountered w i t h l o n g - l i v e d isotopes produced 

i n th.e 3 MeV i r r a d i a t i o n s . I t consisted of a r i n g of 

twenty one 20th Century Geiger tubes, type G24, surrounding 

the p r o p o r t i o n a l counters but a l l o w i n g d i r e c t access f o r the 

source t r a y s to be s l i p p e d i n t o the holders. The pulses 

from the p r o p o r t i o n a l and Geiger counters were fed a f t e r 
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a m p l i f i c a t i o n to an anticoincidence u n i t . Pulses from the 

p r o p o r t i o n a l counter i n coincidence w i t h those from the 

Geiger counters were r e j e c t e d . The e f f e c t was t o reduce 

the background due t o cosmic rays, normally between 9 t o 

11 counts per minute when the p r o p o r t i o n a l counter without 

coincidence was mounted i n a lead c a s t l e t o between 2.5 

and 3»5 counts per minute. A block diagram of the a n t i ­

coincidence e l e c t r o n i c s i s shown i n f i g u r e 2.4. 

The a m p l i f i e r s f o r the p r o p o r t i o n a l counters were 
2 6> 

based on the design of Chase and Higginbotham , modified 
2 7 

t o take Kandiah output d i s c r i m i n a t o r c i r c u i t s '. The 

p r e a m p l i f i e r stages were separated from the main a m p l i f i e r s 

and were mounted d i r e c t l y on the counters. This arrangei-

ment reduced the noise of the system toy minimising the 

noise o r i g i n a t i n g before the p r e a m p l i f i e r - which may o f t e n 

be the main source of noise i n high gain a m p l i f i c a t i o n 

systems as used v/ith p r o p o r t i o n a l counters. 

The p r e a m p l i f i e r s were designed small enough t o f i t 

i n s i d e the Geiger s h i e l d . 

Plateaus of three t o f o u r hundred v o l t s i n l e n g t h 
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were obtained using the arrangements described. Counting 

was c a r r i e d out at about 1700 v o l t s . A standard source was 

used t o check the long-term counter s t a b i l i t y and a weekly 

check was made on the plateaux p o s i t i o n s . 

An automatic r e c o r d i n g device was used t o extend 

counting periods o v e r n i g h t . The dead-times of the ampli­

f i c a t i o n systems were f i x e d at 200yus. This value was 

chosen as a convenient mean between t h a t determined by the 

sca l e r dead-time (which was the l a r g e s t i n d i v i d u a l dead-r 

time o f any p a r t of the system) and t h a t required t o prevent 

needlessly l a r g e dead-time c o r r e c t i o n s a t high count r a t e s . 

Two n e a r l y i d e n t i c a l p r o p o r t i o n a l counters were used 

i n t h i s work. Each isotope was counted i n only one of them 

however and both counters were c a l i b r a t e d as described i n 

p a r t e ) . 

The counter e f f i c i e n c y measurements made use of a 

4VT- - counter t o measure absolute d i s i n t e g r a t i o n r a t e s . 

This was a ?̂ - p r o p o r t i o n a l , gas-flow counter having a 

double anode c o n f i g u r a t i o n ( f i g u r e 2-5). The a c t i v e mat-

e r i a l was deposited on very t h i n (l5j*g. cm thickness) 
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V.Y.N. .S. f i l m which had p r e v i o u s l y been coated w i t h about 
-2 

5j>g cm of gold on one side by vacuum s p l u t t e r i n g t o render 

i t e l e c t r i c a l l y conducting. A drop of i n s u l i n s o l u t i o n 

(about O.ljog per»J) was placed on the f i l m beforehand and 

d r i e d . This method, described by Pate and Y a f f e 2 , 8 , 

ensured t h a t the a c t i v e m a t e r i a l was evenly spread over 

the centre of the f i l m * A m p l i f i e r and p r e a m p l i f i e r types 

1^30-A were used f o r the 4TTcounting. 
d) Preparation of s o l i d sources 

As explained i n chapter 3» not a l l the elements whose 

r e l a t i v e y i e l d s were measured could be p r e c i p i t a t e d i n a 

form s u i t a b l e f o r weighing i n order t o determine t h e i r 

chemical y i e l d e g r a v i m e t r i c a l l y . P r e c i p i t a t e s which were 

considered s u i t a b l e f o r mounting were those which gave 

w e l l - d e f i n e d sources and which d i d not co n t r a c t and f i s s u r e 

badly on d r y i n g . P r e c i p i t a t e s such as molybdenum 8-hyd-

roxyqui n o l a t e became more s u i t a b l y granular when b o i l e d 

w i t h a very l i t t l e detergent present as a surface a c t i ­

v a t o r . Others, such as palladium ( I I ) i o d i d e , r e q u i r e d 

r a p i d f i l t r a t i o n from cold s o l u t i o n t o prevent 'clumping 1• 
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The sources were mounted on Whatman GF/A g l a s s - f i b r e 
d i s c s , 2cm i n diameter, which had p r e v i o u s l y been washed 
w i t h water and acetone. The sources were e i t h e r d r i e d to 
constant weight i n an oven at 120C or were vacuum d r i e d 
a f t e r washing w i t h a l c o h o l and ether. The treatment 
depended on the p a r t i c u l a r p r e c i p i t a t e . 

Few of the sources showed any changes i n weight over 

a pe r i o d of weeks. As an example, the molybdenum 

8-hydroxyquinolate sources when reweighed up to a month 

a f t e r p r e c i p i t a t i o n showed t y p i c a l l y no more than a 0.01 

or 0.02 mg change. Weighings were made w i t h a Stanton 

semi-micro balance (model M.C.I.A.) t o the nearest O.Oln^g. 

The sources were prepared using a Hahn type f i l t e r -

s t i c k , made e n t i r e l y from polythene. A s i n t e r e d polythene 

disc , s l i g h t l y l a r g e r than the g l a s s - f i b r e f i l t e r disc i t 

supported, f i t t e d i n t o a recession i n the top of the lower 

h a l f of the s t i c k . The upper h a l f f i t t e d i n t o t h i s recess 

and held the f i l t e r disc f i r m l y i n place around i t s edge. 

The p r e c i p i t a t e was poured as a s l u r r y i n t o the upper h a l f 

of the f i l t e r - s t i c k and the l i q u i d drawn through by s u c t i o n . 

A f t e r washing the p r e c i p i t a t e , t y p i c a l l y w i t h d i s t i l l e d 
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water and acetone or water, al c o h o l and ether, the s u c t i o n 
was stopped, the f i l t e r - s t i c k dismantled and the glass-
f i b r e disc c a r e f u l l y t r a n s f e r e d to a p l a n c h e t t e . The 
planchettes were of aluminium, 2.2 cm i n diameter, which 
accurat e l y f i t t e d the c e n t r a l hole of the source t r a y . 
The source t r a y s f i t t e d smoothly i n t o the s h e l v i n g 
arrangement shown i n f i g u r e 2.2. This arrangement ensured 
t h a t the source-counter geometry remained constant. An 
aluminium backing p l a t e , approximately 0.5 cm t h i c k , was 
fastened t o the back of the sample t r a y . The s a t u r a t i o n 
b e t a - p a r t i c l e b a c k s c a t t e r i n g from t h i s p l a t e gave s l i g h t l y 
higher counter e f f i c i e n c e s than would otherwise have been 
obtained. 

e) Measurement of Counter E f f i c i e n c y 

The e f f i c i e n c y of a counter i s defined f o r any isotope, 

as the r a t i o of the number of events recorded by the counter 

to the number of d i s i n t e g r a t i o n s which occured i n the sample 

during t h a t p e r i o d . The geometrical p o s i t i o n of the sources 

w i t h respect to the windows of the p r o p o r t i o n a l counters 

together w i t h beta absorbtion i n the sources and the counter 
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windows were the main f a c t o r s which l i m i t e d the e f f i c i e n c e s 
of the counters to about 35$° 

S e l f - a b s o r b t i o n of the fi-r&ys i n the sources themselves 

meant t h a t the counter e f f i c i e n c e s were determined to some 

extent by the source weights. P l o t s of counter e f f i c i e n c e s 

versus source weights were the r e f o r e needed f o r each isotope 

counted. 

The determination of the s e l f - a b s o r b t i o n p l o t s was 

c a r r i e d out w i t h the cooperation of several members of t h i s 

l a b o r a t o r y : the method used was t h a t of Bayhurst and 

P r e s t w o o d 2 , 9 . 

Their p r e s c r i p t i o n c a l l s f o r a se r i e s of s e l f -

a bsorbtion p l o t s t o be made f o r several isotopes whose 

^ - s p e c t r a are known. A mean beta energy i s cal c u l a t e d f o r 

each component i n the /2-emission spectrum of the iso t o p e . 

(Corrections are applied f o r forbidden t r a n s i t i o n s i n t h i s 

c a l c u l a t i o n . ) The components are weighted according t o 

abundance and averaged f o r the iso t o p e . The f i n a l average 

mean energies are p l o t t e d against counter e f f i c i e n c y f o r 

each of the source weights: 5, 10, 20, 3° and kO /vig were 



used i n the work conducted i n t h i s l a b o r a t o r y . Sample curves 

obtained using t h i s method on one of the counters are given 

i n f i g u r e 2.6. 

For isotopes having an unknown counter e f f i c i e n c y , the 

reverse procedure . was adopted: the mean energy f o r each 

maximum /3-energy was computed and the corresponding counter 

e f f i c l e n c e s determined from the Bayhurst-Prestwood c a l i ­

b r a t i o n curves p r e v i o u s l y constructed. The. counter e f f i c i e n c y 

f o r the whole beta-spectrum of the isotope was then calcu­

l a t e d at each standard source weight by averaging the 

e f f i c i e n c e s weighted according to t h e i r respective beta 

abundances and the s e l f - a b s o r b t i o n curves p l o t t e d . 

The isotopes used t o c a l i b r a t e the counters were 

0a*5. W«l, Ha 2 2, Au 1' 8, N a 2 \ Y? 1, Y? 0 and k" 2, 

l i s t e d here i n order of i n c r e a s i n g mean /S-energy. Of 

these, Na and Au y were determined a b s o l u t e l y by 

ij-TT-yS -^coincidence methods and the remainder by absolute 

i+ rr — — counting. 

Each s t a n d a r d i s a t i o n r e q u i r e d an a c t i v e s o l u t i o n as 

fr e e from i n a c t i v e i s o t o p i c m a t e r i a l as possible t o be 
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c a l i b r a t e d by an absolute counting method, A known weight 
of the standardised s o l u t i o n was then mixed w i t h a measured 
q u a n t i t y of i n a c t i v e i s o t o p i c c a r r i e r m a t e r i a l and a series 
of sources from 2 t o 5O g. were prepared. The r a t i o of the 
a c t i v i t y of ea«h source measured w i t h the endwindow p r o p o r t ­
i o n a l counter to t h a t c a l c u l a t e d from the a c t i v i t y known to 
be associated w i t h the source gave the counter e f f i c i e n c y 
f o r each source weight. 

Checks on the accuracy of the above method f o r isotopes 

f o r which the counter e f f i c i e n c e s had been independently 

determined by klT-fi absolute counting have been made i n 
2 XO 

t h i s l a b o r a t o r y * . The r e s u l t s agreed w i t h i n 2 to 3$. 

Several of the isotopes whose r e l a t i v e y i e l d s were 

measured had a daughter a c t i v i t y i n e q u i l i b r i u m . The 

daughter made a c o n t r i b u t i o n t o the e f f e c t i v e counter 

e f f i c i e n c y and.a c o r r e c t i o n had t o be a p p l i e d . 

Two separate cases.occured i n t h i s work. I n the f i r s t 

the beta energies of parent and daughter isotopes were 

known: a r e l a t i o n between the absolute a c t i v i t y of the 

parent, the observed e q u i l i b r i u m a c t i v i t y and the counter 
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e f f i c i e n c e s of the counters f o r the two isotopes was required 
I n the second case an e f f i c i e n c y f o r the mixture was known 
and a r e l a t i o n between t h i s , the absolute parent a c t i v i t y 
and the observed a c t i v i t y was needed. 

I f A, I and /) are the absolute, the observed a c t i v i t i e s 

and the counting e f f i c i e n c y f o r any isotope or mixture of 

isotopes, and i f we designate the parents by the subscript 

the daughter by '2' and the observed cases by 'o' then 

Ao = A± + A 2 (1) 

I o = I 1 + I 2 (2) 

I = A.9 (3) 

Prom equations (2) and ( 3 ) , 

Ao^o = A 1^) 1 + A 2^ 2 . ( k ) 

Consider one d i s i n t e g r a t i o n of the parent g i v i n g 

d i s i n t e g r a t i o n s of the daughter, where C i s a branching 

r a t i o constant. Then by equation (4) 

Oo ( 1 + C.XO = Qx + C h n z (5) 
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and 

I o = Ao/̂ o = + A l C' ^ 

i e A x = I o (6) 
+ C ^ 1-i + C n 7 1 ir>y 2 

This i s the s o l u t i o n required f o r the f i r s t case. 

S u b s t i t u t i n g I + C • V j f o r + C • . ^ 

(by equation ( 5 ) ) i n t o equation (6) gives, 

A ! = I o (7) 
9 o ( l + C Ai ^ 

This i s the s o l u t i o n r e q uired f o r the second case. 

Equation (7) was used only i n the case of antimony-129, 

f o r which i t was necessary t o measure the counter e f f i c i e n c y 

of the Sb^^/Te^"2^ mixture d i r e c t l y , as the beta-spectrum 
129 

of Sb 7 was not s u f f i c i e n t l y w e l l known t o a l l o w the 

es t i m a t i o n of ^1. 
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Mass-yield Measurements 

a) I n t r o d u c t i o n 

The method of mounting the sources, the e l e c t r o n i c 

equipment employed and the counter c a l i b r a t i o n s were 

discussed i n chapter 2= The isotopes on which the 

measurements were "based are now considered and the chemical 

separations o u t l i n e d . A l i s t of these isotopes i s given 

i n t a b l e 3»1« 

Fission-product a c t i v i t i e s from i r r a d i a t i o n s were 

not s u f f i c i e n t to permit a l i q u o t s of the a c t i v e m a t e r i a l 

t o be taken and one. isotope separated from each. Instead, 

the c a r r i e r s f o r the reference isotope, i n nearly a l l 

cases about 10mg. each, were added t o the t o t a l a c t i v e 

m a t e r i a l - u r a n y l n i t r a t e plus f i s s i o n - p r o d u c t s - i n 

s o l u t i o n . 

A rough chemical separation of each isotope was made 

and the crude f r a c t i o n s then p u r i f i e d by published r a d i o ­

chemical methods which however sometimes r e q u i r e d 



Table 3.1 A l i s t of the isotopes separated 

M„„„ n u c l i d e 
M a s s n o - h a l f - l i f e i s o l a t e d 

9 1 9.67 hr S r 9 1 

93 10.15 hr Y 9 3 

Ref. 99 66.70 hr Mo 9 9 

105 4.44 hr R u 1 0 5 

107 21 m R h
1 0 7 

129 4.41 hr S b 1 2 9 

131 8 d ;[131 

143 33.40 hr C e 1 4 3 

145 5.96 hr P r 1 4 5 



47 

m o d i f i c a t i o n . Most of the elements gave r i s e t o p r e c i p i ­
t a t e s of known composition;; these could "be weighed and 
the chemical y i e l d of the separation thus obtained g r a v i -
m e t r i c a l l y . The r a r e - e a r t h s , praesdymium, cerium and also 
y t t r i u m , had no such convenient weighing form. They were 
determined by t i t r a t i o n against standard ethylendiamine 
t e t r a a o e t i c acid (KDTA) s o l u t i o n s a f t e r completion of the 
counting. Ruthenium also had no p r e c i p i t a t e s u i t a b l e f o r 
g r a v i m e t r i c use: the dioxide used i n making the sources 
was determined s p e c t r o p h o t o m e t r i c a l l y . These supplementary 
chemical methods are described l a t e r where appropriate f o r 
each element. 

The chemical methods of separation f o r each element 

are given i n d e t a i l i n the appendix. 

The decay chains quoted f o r each mass were a l l taken 

from the review by Herrmann-' , The h a l f - l i v e s used i n 

the least-squareB decay curve c a l c u l a t i o n s i n chapter 3 

were also those from t h i s review. 

S e l f - a b s o r b t i o n curves f o r each isotope separated i n 

t h i s work are given i n f i g u r e s 3.2,'3.3, 3,1*. The 
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curves were constructed as described, i n chapter 2; a l l 
c o r r e c t i o n s f o r daughter a c t i v i t i e s have been a p p l i e d . 

b) The Reference Element 

The choice of reference element r e q u i r e d t h a t i t 

have an isotope produced i n high y i e l d w i t h an e a s i l y 

r e s o l v a b l e decay and t h a t the separation chemistry should 

be capable of r o u t i n e , f a i r l y simple a p p l i c a t i o n to give 

products of good p u r i t y . A f u r t h e r requirement i s t h a t i t 

has a separation chemistry i n t e r f e r i n g l i t t l e w i t h other 

elements to be separated. 

The f i r s t choice of reference element was zirconium 
^ 2 

-97. I t s standard separation chemistry was found 

capable of g i v i n g a pure radiochemical product and the f i r s t 

s t e p , a p r e c i p i t a t i o n w i t h mandelic a c i d from 1 molar a c i d 

s o l u t i o n s d i d not i n t e r f e r e w i t h the chemistry of the other 

elements. The isotope has a convenient h a l f - l i f e of 17 

hours and the daughter, Ik minute Nb , i s i n t r a n s i e n t 

e q u i l i b r i u m a f t e r about s i x hours thus adding to the 

a c t i v i t y of the sources. 
A s e r i e s o f determinations made e a r l y i n the course of 
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91 91 99 
y i e l d measurements on Sr , and Mo 7 7 gave scattered 

97 

r e s u l t s using Zr as the reference and i t was concluded 

t h a t complete i s o t o p i c exchange had not taken place between 

zirconium produced i n f i s s i o n and i t s i s o t o p i c c a r r i e r . 

I t i s w e l l known t h a t zirconium r e a d i l y forms oxygen-bridged 

polymeric species i n s o l u t i o n s of less than .1 molar a c i d . 

P i l k i n g t o n & Wilson" 3" ' have shown t h a t once polymerised, 

zirconium does not s p l i t i n t o mono-nuclear species unless 

r e f l u x e d w i t h s u l p h u r i c acid greater than 5 normal» 

Because of the doubts r a i s e d concerning the behaviour 

of zirconium during the redox steps designed t o ensure 

i s o t o p i c exchange of a l l elements whose c a r r i e r s had been 
99 

added, i t was decided to use Mo 7 7 as a reference i n s t e a d . 

Mo 9 9 has a longer h a l f - l i f e (66.7 hrs) than Z r 9 7 . 
99m 

The Tc daughter i s i n t r a n s i e n t e q u i l i b r i u m and al l o w ­

ance must be made f o r i t s c o n t r i b u t i o n t o the measured 

a c t i v i t y . 
Molybdenum-99 has the f u r t h e r advantage of being the 

reference isotope i n the c o l l e c t i o n of f i s s i o n - y i e l d s f o r 
238 

U e x c i t e d by fission-spectrum and 14 MeV neutrons by 



50 

Walker, Bonyushkin and FetrzhalP,if» 3?5i This makes 

the comparison of the r e s u l t s of t h i s work w i t h those of 

previous workers more d i r e c t . 

With the development of the computer programs as 

o u t l i n e d i n chapter 4, the counting o f molybdenum became 

s i m p l i f i e d . About e i g h t counts taken over three or f o u r 

h a l f - l i v e s were u s u a l l y s u f f i c i e n t t o define the molybdenum 

Ao a c t i v i t y w i t h a standard d e v i a t i o n of 1%. 

c) The Determinations of the I n d i v i d u a l Isotopes 

Strontium-91 

The decay chain of mass 91 i s 
595^*, 59m 

8.4s Kr — > 71s. Rb —s» 9.6?hr Sr I _ s t . Zr 
^ » 58.9d 

S r 9 2 has a 2.68hr h a l f - l i f e and'Y 9 2 one o f 3-52hrs. 

The s t r o n t i u m separation and p u r i f i c a t i o n was t h e r e f o r e 

c a r r i e d out and the s t r o n t i u m l e f t f o r 26 hours t o allow 
92 

Sr' t o deoay completely. A convenient and r a p i d separation 
92 

of Y' which remained w i t h the s t r o n t i u m c a r r i e r was obtained 

by f i r s t e x t r a c t i n g the s t r o n t i u m and y t t r i u m from a hydro­

c h l o r i c acid s o l u t i o n a t pH 4-5 i n t o a 0.1 MA-v s o l u t i o n 
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of d i (2 - e t h y l hexyl) phosphoric aoid (HDEHP) i n petroleum 
ether then b a c k - e x t r a c t i n g the s t r o n t i u m i n t o 0.1 Mi:.;;.,•„_•.' 
h y d r o c h l o r i c a c i d , l e a v i n g the y t t r i u m i n the organic phase. 

The best separation of s t r o n t i u m from the bulk u r a n y l 

n i t r a t e and f i s s i o n - p r o d u c t s was found t o be by p r e c i p i ­

t a t i o n as the n i t r a t e from fuming n i t r i c a c i d . Carbonate 

p r e c i p i t a t i o n s from s o l u t i o n s c o n t a i n i n g gram amounts of 

uranium were found t o be u n c e r t a i n and t o give low chemical 

r e c o v e r i e s . Further p u r i f i c a t i o n steps included r e p r e c i p i -

t a t i o n as the n i t r a t e and two scavenging steps w i t h barium 

chromate. Strontium was f i n a l l y p r e c i p i t a t e d as the car­

bonate, mounted and weighed t o determine the chemical y i e l d . 

The use of n i t r i c a c i d i n the f i r s t s eparation step 

meant t h a t the s t r o n t i u m separations were incompatible w i t h 

c e r t a i n other elements, notably ruthenium and rhodium. I n 

p r a c t i s e , s t r o n t i u m was u s u a l l y combined w i t h the r a r e - e a r t h C 

or cerium separations. Molybdenum was recovered from the 

n i t r i c acid s o l u t i o n by g e n t l y evaporating o f f the bulk of 

the a c i d and d i l u t i n g before proceding f u r t h e r w i t h the 

molybdenum method. 
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The s t r o n t i u m decay i n n e a r l y a l l cases could be 
analysed u s i n g a s i n g l e component least-squares program; 
the main contaminant observed was S r ^ (jjO.kd) which t o ­
gether w i t h Y^1 (59<3) c o n s t i t u t e d an e s s e n t i a l l y constant 
background throughout the decay p e r i o d of s t r o n t i u m - 9 1 . 

91 91m 
S e l f - a b s o r b t i o n curves f o r S r 7 and the Y " daughter-

were constructed using the Bayhurst and Prestwood type 
curves discussed i n chapter 2 and are shown i n f i g u r e 3»2« 

Yttrium-93 

The decay chain of mass 93 i s 

l o 2 s K r — * 5.6s R b — 7 . 5 4 m Sr l O . l ^ h r Y*«—*• 

9.5 x 10 5y Z r — * s t . Nb 

The f i s s i o n s o l u t i o n was l e f t f o r 1-g- hours before 

c a r r y i n g out any chemistry upon i t . Counting was not begun 
92 

u n t i l some 35 hours had passed t o allow the 3«51ir Y 7 t o 

decay away. 

I t was found t h a t y t t r i u m could be p u r i f i e d by process­

i n g i t along w i t h praesodymium on a c a t i o n exchange column. 

The d e t a i l s are given more f u l l y i n the s e c t i o n on praesodymium. 
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B r i e f l y , the rare-earths were separated and p u r i f i e d as a 
group by repeated f l u o r i d e p r e c i p i t a t i o n s or by e x t r a c t i o n 
i n t o a 1 M. s o l u t i o n of HDEHP i n petroleum ether from 
0 . 1 M' h y d r o c h l o r i c acid and then b a c k - e x t r a c t i o n i n t o 
a l i t t l e concentrated h y d r o c h l o r i c a c i d . A c t i n i d e s were 
removed by passing t h i s a c i d phase through a small, s t r o n g l y 
basic anion-exchange column and cerium was removed by 
e x t r a c t i n g Ce IV w i t h HDEHP i n petroleum ether from 8 M 
n i t r i c a c i d . F i n a l l y the lanthanides were adsorbed on the 
top of a cation-exchange column i n the ammonium form and 
they were s e l e c t i v e l y e l u t e d by gradient e l u t i o n w i t h 1 
molar ammonium l a c t a t e s o l u t i o n . 

Y t t r i u m came o f f the column w i t h the f i r s t of the r a r e -

earths o c c u r r i n g i n f i s s i o n and i t was p r e c i p i t a t e d and 

mounted as the oxalate before praesodymium was e l u t e d . 

The decay curves recorded f o r separated on the 

cation-exchange column showed a marked improvement over the 

decay curves of y t t r i u m separated i n e a r l y runs by e x t r a c t i o n 

i n t o t r i n - b u t y l phosphate s o l u t i o n s i n petroleum ether from 

Ik W<. n i t r i c a c i d ^ * ^ . A s i n g l e component least-squares 
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program was found q u i t e adequate t o separate the a c t i v i t y 
of X'J from l o n g - l i v e d y t t r i u m a c t i v i t y * 

Rare-earth oxalates are non-stochiometric and the 

r a d i o a c t i v e sources were dissolved i n d i l u t e h y d r o c h l o r i c 

a c i d and determined by t i t r a t i o n against a standard EDTA 

s o l u t i o n . 

D i r e c t t i t r a t i o n s of lanthanides by EDTA was not possible 

i n the presence of oxalate ions and t o overcome t h i s , f o r 

example, b a c k - t i t r a t i o n s employing Eriochrome Black T 

i n d i c a t o r have been used^*^. Walczynska^*^ determined 

cerium oxalate by d i r e c t t i t r a t i o n w i t h EDTA a f t e r decom­

posing the p r e c i p i t a t e w i t h ammonium persulphate s o l u t i o n . 

The r e a c t i o n i s shown t o be complete by the appearance of 

the Ce IV colour. This ;.aid was not possible f o r y t t r i u m 

or praesodymium but by usin g the same amounts of ammonium 

persulphate the t i t r a t i o n was found t o give clean end-

p o i n t s showing t h a t a l l oxalate had been decomposed by the 

procedure. 

Use of a d i r e c t t i t r a t i o n method meant t h a t Xylenol 

Orange could be u t i l i s e d as i n d i c a t o r at pH 5•8-6.0. 
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This i n d i c a t o r gave very sharp end-points w i t h lanthanides 

and the same t i t r a t i o n was used f o r the c a r r i e r s o l u t i o n s 

enabling a d i r e c t comparison t o be made of t i t r a t i o n values 

f o r the chemical y i e l d s . 

The s e l f - a b s o r b t i o n curve ( f i g . 3 . 2 ) f o r was 

constructed from the standard Bayhurst-Prestwood type p l o t s . 

Molybdenum-99 

The decay chain f o r mass 99 i s 

¥ioyy had been chosen as the reference element f o r 

reasons discussed e a r l i e r . The c l a s s i c a l radiochemical 
3 10 

procedure of B a l l o u - " i s q u i t e lengthy and has the 

experimental disadvantage of r e q u i r i n g a wet o x i d a t i o n step. 

Maeck, Kussy and Rein-' gave a method f o r molybdenum 

which was found t o be s u i t a b l e , g i v i n g h i g h p u r i t y moly­

bdenum q u i c k l y and e a s i l y . The oc-benzoin oxime p r e c i p i t a t e 

of molybdenum, formed p r e f e r a b l y from 1 h y d r o c h l o r i c 

a c i d was e x t r a c t e d i n t o e t h y l acetate, washed several times 

w i t h 1 M. h y d r o c h l o r i c acid and back-extracted i n t o 4 M 

2fo 88%, 6.00hr 10 s 3 < 1.6s Zr 66.7hr Mo 
2.4-m Wb 2.13 x 10^y To s t . Ru 
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• ammonia s o l u t i o n . The e x t r a c t i o n steps were repeated, 
an i o n scavenge performed and a f t e r a d j u s t i n g the pB, 
molybdenum was p r e c i p i t a t e d as the 8-hydroyquinolate. 

Observations showed t h a t the of-benzoin oxime p r e c i ­

p i t a t e i t s e l f was extracte d and i t could i n f a c t be ex t r a c t e d 

whenever the experimental conditions allowed the p r e c i p i t a t e 

t o be formed. Prom n i t r i c acid s o l u t i o n s , uranium p a r t i a l l y 

e x t r a c t e d i n t o the e t h y l acetate phase but t h i s i n t e r f e r e n c e 

was e l i m i n a t e d by washing the e x t r a c t w i t h d i l u t e hydro­

c h l o r i c a c i d . 

The e x t r a c t i o n of molybdenum was conveniently c a r r i e d 

out f i r s t as i t caused no interference w i t h other c a r r i e r s 

i n "the s o l u t i o n ^ -excess ̂ -benzoin oxine was removed w i t h the 

e t h y l acetate phase. Strontium was p r e c i p i t a t e d f i r s t 

however before the molybdenum e x t r a c t i o n as explained e a r l ­

i e r ; rhodium was also p r e c i p i t a t e d f i r s t from s o l u t i o n 
107 

because of the short h a l f - l i f e of Rh ' when i t was made 

the basis of a y i e l d measurement. 
S e l f - a b s o r b t i o n p l o t s ( f i g . 3.3) f o r Mo^ and the 

99m 
daughter i n t r a n s i e n t e q u i l i b r i u m , Tc , were constructed 
from Bayhurst and Prestwood type curves. 
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Ruthenium-105 

The mass-chain i s 
25# 45s 

36hr Rh ^Os Mo 7.7m Tc — > k.Whr Ru *• s t 

The i r r a d i a t e d sample was l e f t f o r 1.5 hours before 

any chemistry was attempted. Ruthenium has several valency 

st a t e s and t h e r e f o r e t o ensure i s o t o p i c exchange between 

f i s s i o n - p r o d u c t and c a r r i e r ruthenium, the s o l u t i o n was 

b o i l e d f o r 10 minutes w i t h 2 drops of bromine and reduced 

w i t h hydroxylanine a f t e r c o o l i n g . Ruthenium was p r e c i p i ­

t a t e d as RUgS^ by passing HgS through the s o l u t i o n ; the 

s o l i d was s l u r r i e d i n t o a d i s t i l l a t i o n apparatus w i t h d i l u t e 

s u l p h u r i c a c i d . 'Sodium bismuthate' was added and ruthenium 

( V I I I ) oxide was d i s t i l l e d i n t o i c e - c o l d 12 molar sodium 

hydroxide s o l u t i o n . A f t e r a f e r r i c hydroxide scavenge 

step, ruthenium dioxide was p r e c i p i t a t e d from a c i d s o l u t i o n 

by the a d d i t i o n of ethanol. 

Very poor y i e l d s were obtained from i r r a d i a t i o n s w i t h 

3 MeV neutrons. I t was thought t h a t the n i t r a t e from the 

ten grams of u r a n y l n i t r a t e i r r a d i a t e d i n t h i s work might 

have caused some ruthenium t o e x t r a c t w i t h molybdenum 

i n t o e t h y l acetate and t h e r e f o r e i r r a d i a t i o n s were c a r r i e d 
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out using about s i x grams of uranium t r i o x i d e i n s t e a d . 

Appreciably b e t t e r y i e l d s were recorded t h e r e a f t e r . 

S e l f - a b s o r b t i o n curves f o r R u 1 0 5 and R h 1 Q 5 m ( f i g . 

3»2) were constructed from curves of the Bayhurst and 

Prestwood type. 

10 *5 

The daughter product Eh J undergoes appreciable decay 

durin g several h a l f - l i v e s of ruthenium. I t i s shown i n 

more d e t a i l i n chapter k t h a t a parent daughter r e l a t i o n 

of the type i n c l u d i n g ruthenium and rhodium-105 can be 

represented by a two component decay equation, 

where c represents an a c t i v i t y very long l i v e d r e l a t i v e t o 

the ruthenium. The equation was solved f o r the parameters 

A° s Ag and c by the method of least-squares using the two-

component computer program of chapter 4. 

Rhodium-107 
The mas8-chain 107 i s 

10 s 

/ 1 6 
4.2m Ru—*> 21.7m R h — * 7 x 10°y Pd » s t . Ag. 

The 21.7 minute rhodium isotope i s a very u s e f u l one 
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for-mass-yield measurements, l y i n g on the heavy side of the 

l i g h t peak where isotopes convenient f o r experimental y i e l d 

measurement are r a r e . The chemistry of rhodium however i s 

n o t o r i o u s l y d i f f i c u l t as most of the complexes formed i n 

aqueous s o l u t i o n are k i n e t i c a l l y i n e r t . The only complex 

s u i t a b l e f o r solvent e x t r a c t i o n on the m i l l i g r a m scale which 

has been used i n radiochemical separations i s t h a t formed 
3 .12 

w i t h p y r i d i n e 0 . Other e x t r a c t a b l e complexes such as 

that formed w i t h mercaptobenzoxazole are exceedingly d i f f i c u l t 

t o break down t o a l l o w b a c k - e x t r a c t i o n of rhodium. 

The method favoured by Ghenley, Osmond and P e r r y ^ " 1 ^ 

i s t h a t of p r e c i p i t a t i o n as K^Rh(No 2)g. N i t r i t e complexes 

of rhodium are r e a d i l y formed i n aqueous s o l u t i o n and they 

are s t a b l e i n n e u t r a l or a l k a l i n e s o l u t i o n s but decompose 

when warmed w i t h d i l u t e a c i d • 

I t was found p o s s i b l e t o use t h i s method f o r the Ik 

MeV i r r a d i a t i o n s but f o r the 3 MeV i r r a d i a t i o n s , the increase 

i n the amount of uranium i r r a d i a t e d , meant t h a t very poor 

chemical y i e l d s were recorded. Even f o r the 14 MeV runs 

only about h a l f of them were successful. The main t r o u b l e 

was t h a t the potassium h e x a n i t r i t o r h o d a t e ( I I I ) d i d not 
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p r e c i p i t a t e u n t i l the pH of the s o l u t i o n was f a i r l y h i g h . 
Uranium(Vl) oxide contamination was o f t e n heavy and on 
occasions a p r e c i p i t a t e i n s o l u b l e i n acids on b o i l i n g and 
presumed t o be a hydrated rhodium oxide was formed. 

A g r a v i m e t r i c method f o r the determination of rhodium 

as the hexammino-cobalt(IIl) h e x a n i t r i t o - r h o d i u m ( l l l ) s a l t , 

quoted by Beamish J ° was found to be very u s e f u l i n 

producing a weighing form f o r rhodium s u i t a b l e f o r making 

sources. Since the h e x a n i t r i t o - r h o d a t e anion appears to 

give i n s o l u b l e s a l t s w i t h l a r g e cations (K , (NH-j)^ Co" ' ) , 

i t was thought possible t h a t a s u b s t i t u t e f o r potassium 

might be found f o r use i n radiochemical separations. 

Caesium and t h a l l i u m ( l ) ions were both found t o p r e c i p i t a t e 

rhodium from n i t r i t e s o l u t i o n s . Thallium was selected 
i 

because i t could e a s i l y be removed from s o l u t i o n a:. 

t h a l l i u m ( I I l ) oxide a f t e r o x i d a t i o n . This p r e c i p i t a t i o n a l 

acted as a scavenging step i n the method devised. 

The s o l u t i o n of f i s s i o n - p r o d u c t s and u r a n y l n i t r a t e 

w i t h 10 mg. of rhodium as h e x a c h l o r o r h o d a t e ( l l l ) i n one 

molar h y d r o c h l o r i c acid was b o i l e d and bromine added t o 

help promote i s o t o p i c exchange: t h i s p a r t of the procedure 



was s t a r t e d 35 minutes a f t e r the end of the irradiation» 

A saturated s o l u t i o n of sodium n i t r i t e was added to neut­

r a l i s e the s o l u t i o n which was kept warm f o r 5 minutes to 

ensure t h a t a l l the rhodium was present as the n i t r i t e 

complex, RhCNC^)^". The t h a l l i u m complex was p r e c i p i ­

t a t e d "by the a d d i t i o n of t h a l l i u m ( I ) n i t r a t e . The 

p r e c i p i t a t e was dissolved i n aqua r e g i a , rhodium complexed 

v/ith sodium n i t r i t e and t h a l l i u m p r e c i p i t a t e d "by making the 

s o l u t i o n a l k a l i n e w i t h sodium hydroxide. The f i n a l p r e c i p ­

i t a t e of Co(NH 3)^ Rh(N0 2)g was brought down by adding a 

saturated s o l u t i o n of hexammino-cobalt(III) c h l o r i d e t o 

the warm s l i g h t l y a c i d n i t r i t e s o l u t i o n . 

The rhodium c a r r i e r s o l u t i o n s were standardised as 

s p e c i f i e d by Beamish-' by p r e c i p i t a t i o n as 

Co(NH 3)^ Rh(N0 2)^ and as a check, by i g n i t i n g t o the metal 

from a sulphide p r e c i p i t a t i o n . 

S e l f - a b s o r b t i o n p l o t s f o r R h 1 0 7 ( f i g . 3«3) were 

prepared from curves of the Bayhurst-Prestwood type. 

The above procedure gave a c t i v i t y t h a t resolved very 

c l e a n l y i n t o 21.7m R h 1 0 7 and 36hr Rh 1 0- 5. No other r a d i o ­

a c t i v e isotope was observed during decay down t o background 
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l e v e l , The r a t i o of the rhodium h a l f o l i v e s •= a f a c t o r of 

approximately 100 - meant t h a t a s i n g l e component l e a s t -

squares treatment was q u i t e s u f f i c i e n t t o give accurate 

A 0 values f o r R h 1 ^ . The separation procedure took "between 

30 and 40 minutes each time. Together w i t h the 35 minute 
107 

w a i t i n g period f o r Ru ' to decay, f o u r complete rhodium 

h a l f - l i v e s were u s u a l l y l o s t before counting could be 

s t a r t e d • 
Antimony-129 

The 129 mass-chain i s 

7m Sn * 4.44hr Sb<^" 1.6 x l 0 7 y l 
^68.8m Te — * 

— • s t . Xe 

Antimony was separated by p r e c i p i t a t i o n as sulphide 

from the f i s s i o n - p r o d u c t s o l u t i o n a f t e r a redox step w i t h 

bromine and hydroxylamine. The sulphide was dissolved i n 

concentrated h y d r o c h l o r i c a c i d and a t e l l u r i u m metal scavenge 

performed on the s o l u t i o n . The l a s t two steps were repeated 

and antimony was f i n a l l y p u r i f i e d by e x t r a c t i o n as antimony(V) 

i n t o d i - i s o p r o p y l ether followed by a b a c k - e x t r a c t i o n as 

a n t i m o n y ( I I I ) i n t o d i l u t e h y d r o c h l o r i c a c i d . 
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The f i n a l p r e c i p i t a t i o n of antimony has proved d i f f i c u l t 
i n the past: sulphide p r e c i p i t a t i o n , by passing hydrogen 
sulphide gas r e s u l t s i n a non-stochiometric p r e c i p i t a t e 
which has t o be analysed l a t e r f o r antimony and p r e c i p i ­
t a t i o n as the n-propyl g a l l a t e r e q u i r e s time f o r appreciable 
p r e c i p i t a t i o n to take place. 

Morandat and Duval-^ have recommended the precipir-

t a t i o n of antimony as sulphide by d i g e s t i n g an acid s o l u t i o n 

of antimony ( I I I ) i n the presence of excess euimonium tfaiocyanate 

and the method was adopted f o r t h i s work. I t i s a homo­

geneous p r e c i p i t a t i o n method and gave f i n e g r a n u l a r p r e c i p i ­

t a t e s of SbgSfj of a d i s t i n c t l y darker red colour than t h a t 

obtained from HgS p r e c i p i t a t i o n , i n d i c a t i n g the comparative 

absence of f r e e sulphur i n the sources. 

The c a r r i e r antimony s o l u t i o n was standardised using 

t h i s method and the r e s u l t so obtained agreed w i t h i n 0.59& 

w i t h determinations made using : n-propy.l g a l l a t e . 

Counter e f f i c i e n c e s could not be determined using the 

Bayhurst-Frestwood type curves as there were not s u f f i c i e n t 
129 

data a v a i l a b l e on the beta-»spectrum of Sb . Moreover, 
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previous counter e f f i c i e n c y determinations made "by other 
workers from t h i s l a b o r a t o r y gave unusually high values f o r 
s i m i l a r types of counters a f t e r a l l o w i n g f o r the t e l l u r i u m - 1 2 9 
daughter which i s i n t r a n s i e n t equilibrium-^ . 

The counter e f f i c i e n c y f o r antimony-129 was th e r e f o r e 

determined by preparing a h i g h l y a c t i v e sample of antimory-129 

separated from t e n grams of u r a n y l n i t r a t e i r r a d i a t e d f o r 

an hour w i t h 14 MeV neutrons. Less than 1 mg of c a r r i e r 

was used and the r e s u l t a n t antimony sulphide p r e c i p i t a t e 

was dissolved i n h y d r o c h l o r i c a c i d . The a c t i v i t y of t h i s 
s o l u t i o n was determined by 4 T T - ^ - p r o p o r t i o n a l counting as 

described i n chapter 2. A known amount of antimony c a r r i e r 

was mixed w i t h the a c t i v e s o l u t i o n and sources made. The 

s e l f - a b s o r b t i o n p l o t ( f i g . 3.3) was made i n a s i m i l a r way 

t o the standard Bayhurst-Prestwood p l o t s . 

The counter e f f i c i e n c y found f o r the antimony 

t e l l u r i u m - 1 2 9 p a i r was 40$ f o r a 10 mg source. The 

e f f i c i e n c y f o r t e l l u r i u m - 1 2 9 from the Bayhurst-Prestwood 

p l o t s was measured a t 34$ at t h i s source weight. Prom 

equation 5 i n chapter 2 the e f f i c i e n c y of antimony-129 was 
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found t o be 46.6$ by c a l c u l a t i o n . 

The reason f o r t h i s high e f f i c i e n c y , which does not 

l i e on the Bayhurst-Prestwood type curves i s not known. 

Independent c o r r o b o r a t i o n of the value obtained i s given 

by values of counter e f f i c i e n c e s measured f o r s i m i l a r 

counters on t h i s i s o t o p e - ^ 0 

9^hr antimony-127 was always present and observed i n 

the antimony decay curves» A two-component least-squares 

program was employed t o s o r t out the data. Standard 

d e v i a t i o n s of 2$ were obtained f o r the A 0 value f o r 

antimony-129 using t h i s program. 

Iodine-131 

The decay-chain f o r mass 131 i s 

The i r r a d i a t e d sample was l e f t f o r ten days before 
any chemistry was s t a r t e d to allow the l o n g - l i v e d precursors 
of iodine-131 to decay. 

Iodine was separated from samples of u r a n y l n i t r a t e 

2* _ 12d 
65s s n 8.06dl 23m Sb 

24.8m Te S t . Xe 
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i r r a d i a t e d by 1*+ MeV neutrons using the method given by 
Meinke J . The sample was dissolved i n d i l u t e h y d r o c h l o r i c 
a c i d arid lOmg of i o d i n e and molybdenum c a r r i e r s were added. 
The s o l u t i o n was made a l k a l i n e and the uranium was held i n 
i t w i t h sodium carbonate. Warming w i t h sodium h y p o c h l o r i t e s 
oxidised the iodi d e t o periodate and a f t e r a c i d i f i c a t i o n 
and r e d u c t i o n w i t h hydroxylamine hydrochloride s o l u t i o n , 
elemental i o d i n e was e x t r a c t e d i n t o carbpn t e t r a c h l o r i d e . 

Iodine was reduced t o iodi d e w i t h sulphur dioxide 

and a f i n a l p u r i f i c a t i o n cycle c o n s i s t i n g of an o x i d a t i o n 

t o i o d i n e w i t h n i t r i t e , and a carbon t e t r a c h l o r i d e e x t r a c t i o n 

step as before was c a r r i e d out. P a l l a d i u m ( I I ) i o d i d e was 

f i n a l l y p r e c i p i t a t e d and mounted f o r counting. 

The weight of the source gave the y i e l d of i o d i n e 

when compared t o the g r a v i m e t r i c determination of i o d i d e 

i n the c a r r i e r as palladium(II) iodide-?" 1^. 

With lOgm of u r a n y l n i t r i t e t o analyse i n the i r r a d ­

i a t i o n s w i t h 3 MeV neutrons, the a c i d i f i c a t i o n of an a l k a l i n e 

s o l u t i o n was found t o be d i f f i c u l t t o c o n t r o l as excessive 

amounts of carbon dioxide were produced. I n i t i a l i o d i n e 



chemical y i e l d s were low f o r the 3 MeV determinations, 

p o s s i b l y due t o i o d i n e being v o l a t i l i s e d or otherwise 

c a r r i e d out of the system a t t h i s stage. 

A method given by Marsh i n a s e r i e s of radiochemical 

separation procedures published by the U n i v e r s i t y of 
1 20 

California-^ * was t h e r e f o r e employed. Foll o w i n g t h i s 

method, a l l i o d i n e was oxidised by sodium chl o r a t e t o 

iodine monochloride from 6 M h y d r o c h l o r i c a c i d s o l u t i o n . 

The i o d i n e monochloride was e x t r a c t e d i n t o b u t y l acetate, 

iodine was back e x t r a c t e d i n t o water a f t e r r e d u c t i o n w i t h 

sulphurous aci d and as i n the p r e v i o u s l y mentioned procedure 

of Meinke an o x i d a t i o n - r e d u c t i o n e x t r a c t i o n cycle was 

c a r r i e d out. Good y i e l d s of p a l l a d i u m ( l l ) i o d i d e were 

obtained using t h i s method and the decay curves d i d not 

show signs of contamination. The curves were analysed 

s a t i s f a c t o r i l y using a s i n g l e component least-squares 

program. 
131 

As I was one of the isotopes employed to construct 

the Bayhurst-Prestwood type curves, the counter e f f i c i e n c y 

f o r t h i s isotope was determined using the o r i g i n a l r 1 ^ ! 

measurements. These are shown i n f i g u r e 3.4. 
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Cerium-143 

Cerium was chosen t o determine the y i e l d of the mass 

143 chain 

2s Cs * 12s Ba-—• 14m La »• 33.4hr Ce •> 13»59d Pr 

* s t . Nd. 

C e r i u m ( I I I ) has a chemistry t y p i c a l of the lanthanidee 

but the w e l l - d e f i n e d cerium(IV) o x i d a t i o n s t a t e provides 

a means f o r the separa t i o n of cerium from other r a r e - e a r t h s . 

Such separations have been made by f o r example, s e l e c t i v e 

p r e c i p i t a t i o n s of cerium(IV) iodate from a c i d s o l u t i o n 

or e x t r a c t i o n of cerium(IV) from 10 M n i t r i c a c i d s o l u t i o n 
3 21 

i n t o methyl i s o b u t y l ketone-' . 

Di ( 2 - e t h y l h e x y l ) orthophosphoric a c i d (HDEHP), has 

been shown t o have a h i g h e x t r a c t i o n c o e f f i c i e n t f o r 

cerium(IV) w i t h respect t o t r i v a l e n t lanthanides from 
t 22 

n i t r i c acid so l u t i o n s < . The method used i n t h i s work 
was based on such a separation given i n the U n i v e r s i t y 

3 20 
of C a l i f o r n i a procedures 

A w a i t i n g period of three hours was necessary f o l l o w i n g 
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i h, -a 

the i r r a d i a t i o n t o l e t the 14m i a precursor decay; 

I s o t o p i c exchange was ensured by redoxing f i s s i o n - p r o d u c t s 

and c a r r i e r i n a c i d s o l u t i o n w i t h bromine and hydroxylamine. 

Cerium was separated w i t h the rare-earths by repeated 

p r e c i p i t a t i o n s , w i t h f l u o r i d e . Three e x t r a c t i o n s w i t h 0.1 M 

HDEHE i n carbon t e t r a c h l o r i d e were made upon the r a r e -

earths i n 4 M n i t r i c a c i d t o e l i m i n a t e t e t r a v a l e n t i o n s , 

zirconium and thorium. The rare-earths were again pre c i p i r -

t a t e d w i t h ammonium-hydroxide, cerium o x i d i s e d t o Ge(IV) 

w i t h potassium brornate and ex t r a c t e d i n t o 0.3 M HDEHP 

i n petroleum p t h e r from 4 M n i t r i c a c i d . C e r i u m ( I I I ) was 

back-textracted by shaking the organic phase w i t h 0.5 M 

n i t r i c a c i d plus two drops of hydrogen peroxide s o l u t i o n . 

An a d d i t i o n a l scrub w i t h 6 M h y d r o c h l o r i c a c i d and a l i t t l e 

hydroxylamine was u s u a l l y incorporated t o completely back-

e x t r a c t the cerium, C e r i u m ( I I I ) was f i n a l l y p r e c i p i t a t e d 

as the o x a l a t e ; the source was washed w i t h ethanol and 

ether and d r i e d under a vacuum. 

The U n i v e r s i t y o f C a l i f o r n i a procedure c a l l s f o r an 

adsorbtion of cerium on a small cation-exchange column 

(Zeocarb 225, 8$ D.V.B., 100-200 mesh, Sodium form was used) 
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and subsequent e l u t i o n w i t h ammonium l a c t a t e s o l u t i o n 

( l molar, pH 7«0) at the stage immediately preceding the 

f i n a l p r e c i p i t a t i o n as o x a l a t e . Sources of very high weight 

were obtained when t h i s step was included and the i n t e r ­

ference was f i n a l l y found t o be due t o calcium and magnesium 

elute d from the r e s i n . U n s a t i s f a c t o r y end-points were 

found i n the EDTA determinations of these sources and they 

were t h e r e f o r e determined c o l o r i m e t r i c a l l y , measuring the 

absorbtion due to cerium(IV) a f t e r o x i d a t i o n w i t h potassium 
3 23 

persulphate^* Cerium sources obtained w i t h o u t i n c l u d i n g 

the small c a t i o n column stage were determined by des t r o y i n g 

the oxalate w i t h ammonium persulphate end t i t r a t i n g the 

cerium w i t h 0.01 M EDTA s o l u t i o n a t pH 5.8 u s i n g X y l e n o l 

Orange as an i n d i c a t o r 3 

Counter e f f i c i e n c y curves f o r C e 1 ^ ( f i g . were 

constructed using the curves of the Bayhurst-Prestwood 

typ e . 

Both Ce 1^ 1 (32.5d) and the Ce 1^ 3 daughter, 13»59d 

were unavoidably present i n the samples counted. The 

decay curves could be resolved using a two-component 
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least-squares program by t r e a t i n g the l o n g - l i v e d a c t i v i t y 

as a s i n g l e component w i t h a h a l f - l i f e of 26 days. This 

was poss i b l e without i n t r o d u c i n g appreciable e r r o r s i n t o 
143 

the Ce J a c t i v i t y determined because the Ao value of the 

short h a l f - l i f e component was found to be i n s e n s i t i v e t o 

the exact value chosen f o r the decay constant of the second 

component• 
Pr ae B o dymium-14 5 

The decay chain f o r mass 145 i s 

3.0m Ce *» 5.96hr P r < — * s t . Hd. 

iM- At l e a s t 30 minutes were allowed f o r C e 1 ^ t o decay 

before the separation procedure was s t a r t e d . Praesodymium 

was i s o l a t e d i n a group separation as o u t l i n e d above f o r 

cerium and y t t r i u m . A quicker a l t e r n a t i v e f o r the group 

p u r i f i c a t i o n was found t o be to e x t r a c t the rare-earths 

i n t o 0,3 M HDEHP i n petroleum ether from 0.1 M hydro­

c h l o r i c acid s o l u t i o n . When lOgmof u r a n y l n i t r a t e were 

i r r a d i a t e d , a f i r s t s eparation by f l u o r i d e p r e c i p i t a t i o n 

was necessary but when only two or three grams were 

i r r a d i a t e d an i n i t i a l s eparation of the rare-earths by 
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p r e c i p i t a t i o n as hydroxides from a carbonate s o l u t i o n was 
more convenient. 

A f t e r e x t r a c t i o n i n t o 0.3 M HDEHP and thorough washing 

w i t h 0.1 M hy d r o c h l o r i c acid the lanthanides were back-

ex t r a c t e d i n t o three m i l l i l i t r e s of 10 M hy d r o c h l o r i c a c i d . 

The acid phase was passed through a small s t r o n g l y basic 

anion column (Deacidite FF i n the c h l o r i d e form) to adsorb 

traces of a c t i n i d e s . 

The i n d i v i d u a l separations of the rare-earths were 

performed by a gradient e l u t i o n from a c a t i o n exchange 
1 2̂ -

column using ammonium l a c t a t e - l a c t i c a c i d . " . 

The column, 60 x 0.7cm, was surrounded by a water-

jacket t o permit operation a t 90°C ( f i g . 3 d ) . The r e s i n 

was Bio Had AG Dowex 50, MX) mesh, h°f> D.V.B. i n the 

ammonium form. The r e s i n had pr e v i o u s l y been washed w i t h 

ammonium thiocyanate, d i l u t e h y d r o c h l o r i c acid and d i s t i l l e d 

water and converted t o the ammonium form by washing w i t h 

1 M ammonium l a c t a t e s o l u t i o n a t pH 7» 

Up t o 20 mg of the r a r e - e a r t h c a r r i e r s i n t o t a l were 

adsorbed on the column by d i g e s t i n g a very weakly aci d 
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s o l u t i o n w i t h 1 ml of the r e s i n which was then placed on 
the column w i t h a p i p e t t e and allowed t o s e t t l e . 

A l a c t i c acid s o l u t i o n was made by r e f l u x i n g A.R. 

l a c t i c a c i d w i t h 0.1 M h y d r o c h l o r i c acid t o destroy any 

anhydrides present and then d i l u t i n g the mixture t o give 

a 1 M s o l u t i o n . S o l u t i o n s ;<having a pH of 3-2 and 7.0 

were prepared by a d j u s t i n g the pH of the l a c t i c a c i d 

s o l u t i o n w i t h concentrated aqueous ammonia. 

To e l u t e the ra r e - e a r t h s , ammonium l a c t a t e s o l u t i o n 

at pH 3-2 was passed through the column f o r an hour at 

the r a t e of 4 drops per minute. Ammonium l a c t a t e of 

pH 7.0 was then allowed t o mix w i t h t h i s s o l u t i o n a t a 

ra t e of 8 drops per minute, the mixed f l o w r a t e through 

the column meanwhile being held constant. S t a r t i n g w i t h 

100 ml of l a c t a t e a t pH 3.2 and 60 ml of pH 7.0, 

praesodymium was elut e d from the column i n about 8 hours 

under the above c o n d i t i o n s . 

An automatic f r a c t i o n c o l l e c t i n g apparatus was c o n t r o l l e d 

by a p h o t o - e l e c t r i c device which counted every drop e l u t e d 

from the column and changed the f r a c t i o n every 30 drops* 
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Ghauteg Four 

The Analysis of Decay Data by Computer Methods 

Of the measurements r e q u i r e d f o r the c a l c u l a t i o n of 
r e l a t i v e y i e l d s , those which c o n t r i b u t e the most e r r o r may 

be considered to be the a c t i v i t y a t the end of the i r r a d i ­

a t i o n (Ao) and the counter e f f i c i e n c y ( ^ ) . I n t h i s work 

the counter e f f i c i e n c i e s were determined by u t i l i s i n g the 

method of Bayhurst and Prestwood f o r counter c a l i b r a t i o n 

as discussed i n chapter 2. A d e s c r i p t i o n i s given i n t h i s 

chapter of a method f o r the a n a l y s i s of decay data used t o 

minimise e r r o r s i n Ao values, 

Ao determinations are r e g u l a r l y made i n radiochemical 

work *>y p l o t t i n g on semi-logarithmic graph paper the 

measured a c t i v i t y against the time which has elapsed since 

the end of the i r r a d i a t i o n . This well-known method can be 

f a u l t e d i n several aspects. The la c k of s e n s i t i v i t y to the 

h a l f r - l i f e value used i n drawing a s t r a i g h t l i n e through the 

p o i n t s i s q u i t e marked and t h i s d i f f i c u l t y i n c o n s t r u c t i n g 

the s t r a i g h t l i n e can be aggravated by the abnormal e f f e c t ­

i v e w e i g h t i n g attached t o the low a c t i v i t y p o i n t s by the 

semi- l o g a r i t h m i c p l o t . The question of the Weighting o f 
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p o i n t s i s diagussed below. 

With two-component samples, the same p l o t gives a 

curve which w i t h i n c r e a s i n g time s t r a i g h t e n s i n t o a l i n e 

of slope determined by the h a l f - l i f e of the l o n g e r - l i v e d 

a c t i v i t y . The Ao values are then determined by e x t r a ­

p o l a t i n g the l o n g e r - l i v e d a c t i v i t y back to zero time and 

s u b t r a c t i n g i t from the t o t a l a c t i v i t y curve t o leave a 

s t r a i g h t l i n e having the h a l f - l i f e of the s h o r t e r - l i v e d 

component. This c u r v e - s t r i p p i n g process i s tes t e d i n 

p r a c t i c e by observing the f i t of the p o i n t s l e f t a f t e r 

s t r i p p i n g t o a s t r a i g h t l i n e w i t h the slope expected from 

the h a l f - l i f e of the s h o r t - l i v e d component. However i t 

can be observed, i n p r a c t i c e , t h a t q u i t e wide v a r i a t i o n s 

i n the p o s i t i o n of the l i n e drawn through the l o n g - l i v e d 

p o i n t s can give passable s t r a i g h t l i n e s f o r the short 

l i v e d component. 

Estimates f o r the Ao value of the s h o r t - l i v e d a c t i v i t y 

found by curve s t r i p p i n g when compared w i t h least-squares 

r e s u l t s at the beginning of t h i s work were i n v a r i a b l y found 

t o be low by a few percent, showing t h a t the tendency i n 

s t r i p p i n g semi-logarithmic p l o t s had been t o su b t r a c t too 
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much a c t i v i t y . 

One apparent s o l u t i o n would be t o measure only those 

isotopes which on separation from f i s s i o n - p r o d u c t s give 

s t r a i g h t - l i n e decay curves on semi-logarithmic paper. 

However such cases impose severe r e s t r a i n t s on the h a l f -

l i v e s of other isotopes of the separated elements and on 

associated daughter a c t i v i t i e s v/hich are i n e v i t a b l y counted 

as w e l l . 

This r e s t r i c t i n g p o l i c y i n any case, does not a l l o w 

values of the e r r o r s of the parameters t o be determined. 

There i s t h e r e f o r e no o b j e c t i v e c r i t e r i o n of goodness of 

f i t which can be a p p l i e d t o the g r a p h i c a l method of a n a l y s i s . 

A leasts-squares determination of the decay-curve parameters 

i s a t t r a c t i v e i n t h a t i t can meet the three main o b j e c t i o n s 

t o the g r a p h i c a l method: f i r s t l y an o b j e c t i v e e v a l u a t i o n 

o f the parameters, secondly a r e l i a b l e weighting procedure 

and t h i r d l y c a l c u l a t i o n s of the e r r o r s of the parameters 

are a l l f e a s i b l e . 

The general problem i n the a n a l y s i s of decay data i s 

the determination of the parameters Aio and Xi i n the 
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equation 

A, . t - £ Aio e" (1) 

where A^ i s the observed a c t i v i t y a t time t . Aio and ^ i 

are the z e r o - a c t i v i t y and decay constant of each of the 

component a c t i v i t i e s . 

The problem i n t h i s work had a simpler form. The 

decay constant were assumed t o be best l i t e r a t u r e values 

and the number of component a c t i v i t i e s was l i m i t e d t o two. 

The case having the greatest number of components was t h a t 

of 

A t = A:io e" + A ao e" + C (2) 

where C js hare 1te contributions due t o r e l a t i v e l y very lo n g -

l i v e d a c t i v i t i e s which could be considered not t o change 

durin g the period of counting and which may include the 

background. Three parameters were determined i n t h i s 

case: Ajo, A30 and C. 

Two more cases were also found to be u s e f u l f o r 

a p p l i c a t i o n t o d i f f e r e n t types of decay systems. F i r s t l y 

the single-component decay having a l o n g - l i v e d background: 
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and an adaptat i o n of the example given i n equation (2) f o r 
use w i t h l o n g - l i v e d contaminations having mixed or more 
indeterminate h a l f - l i v e s : 

At = Alo e" ^ + Ago e" ^ * (4).. 

The parameters t o "be determined i n equation (3) are Aj.o and 

C and those i n equation ( 4 ) , A]Lo, Ago and A i . 

Ruthenium-105 and antimony-129, both of which have 

daughters w i t h h a l f - l i v e s s u f f i c i e n t t o prevent the 

a p p l i c a t i o n of equation (3) could be t r e a t e d using equations 

(2) or (4) as can be seen by the f o l l o w i n g argument: 

A mixture of parent-daughter a c t i v i t i e s can be described 

by the equation 

A t = Apo e " V +Ado e " ^ A p o ( ^ ( ^ ) (e" V - e " ^ ) 

where the sub s c r i p t s 'p' and 'd' represent the parent and 

daughter a c t i v i t i e s . 

Rearranging terms and p u t t i n g Ado = o , 

At . Apo e - ^ ( 1 + ( | ) ( ^ K - e - V ^ ) ( ^ . ) 

i f t h i s equation i s f i t t e d by least-squares a n a l y s i s t o 

At = Alo e'V6
 + A 2 o e"^* + C 
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then 

A l o = A p o ( l + ( 2 | ) ( ) ^ g ) 

and t h e r e f o r e Apo = AjLo + Ago* 

Least-squares programs f o r the a n a l y s i s of counting 

data have "been w r i t t e n ^ ^ " ^ but because of the l a c k of 

a v a i l a b i l i t y of these programs together with the f a c t that 

they appear to have been w r i t t e n i n FORTRAN - a language 

which the computer a v a i l a b l e could not accept - and a l s o 

because from t h e i r d e s c r i p t i o n , the programs looked too 

s o p h i s t i c a t e d f o r the problems i n hand, i t was decided to 

w r i t e programs f o r the cases defined by equations (2), (3) 

and ( 4 ) . 

Counting s t a t i s t i c s are well-known to f o l l o w a Poisson 

d i s t r i b u t i o n . Leas t - s q u a r e s r e g r e s s i o n techniques which 

are commonly employed i n the s t a t i s t i c a l a n a l y s i s of data 

are r i g o r o u s l y a p p l i c a b l e to normally d i s t r i b u t e d obser­

v a t i o n s . However normal d i s t r i b u t i o n s can be shown to 
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approximate Poisson d i s t r i b u t i o n s and t h e r e f o r e apply to 
counting s t a t i s t i c s except when the count r a t e i s low. 
An a d d i t i o n a l advantage i s gained from being able to apply 
Poisson s t a t i s t i c s i n t h a t the standard d e v i a t i o n of each 
observed count may be c a l c u l a t e d from the t o t a l number of 
observed events i n that count alone and not j u s t the r e l a t i o n 
of that point to the whole d i s t r i b u t i o n . 

T h i s property of decay data immediately allows a 

value to be assigned to the weight of each p o i n t . Since 

the weighting i n l e a s t - s q u a r e s a n a l y s i s i s defined as being 

i n v e r s e l y p r o p o r t i o n a l to the v a r i a n c e i t i s t h e r e f o r e i n 

the case at point, p r o p o r t i o n a l to the r e c i p r o c a l of the 

t o t a l number of counts recorded. 

L L 

Wentworth ' has w r i t t e n a paper showing the a p p l i ­

c a t i o n of rigorous l e a s t - s q u a r e s methods to data a n a l y s i s . 

His treatment i s taken from a book by Deming^*^ and t h i s 

i n t u r n has been used as a primary r e f e r e n c e i n t h i s work. 

To show the a p p l i c a t i o n of Wentworth 1s treatment, the 

si m p l e s t decay s t r u c t u r e scheme as given by equation (3) 

w i l l be used as an example. The treatment was general 
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enough to allow ready extension to f i t the other two c a s e s . 

S e v e r a l d i s t i n c t steps s e t out below were needed. 

a) E s t i m a t e s of the parameters had to be provided. They 

were g e n e r a l l y obtained from a g r a p h i c a l a n a l y s i s although 

the l e a s t - s q u a r e s s o l u t i o n s v/ere found to be quite i n s e n ­

s i t i v e to the estimated parameter v a l u e s , 

b) W r i t i n g equation (3) i n the form 

Alo e" + C - A t = F (5) 

the p a r t i a l d e r i v a t i o n s with r e s p e c t to the parameters, 

A£.o, and C and the v a r i a b l e s t and At were c a l c u l a t e d . 

PAlo = e x t (6) 

FC = 1 (7) 

FAt = -1 (8) 

F t = - Xi Alo e~ / ^ l t .(9). 

I n this-terminology, FA^o r e p r e s e n t s the p a r t i a l d e r i v a t i v e 

( i f - ) / 

c) the p a r t i a l d e r i v a t i v e s i n equations (6) to (9) were 

evaluated f o r each data point ( A i , t i ) together with F°i 

where F°i = A°io e" + C° - A i " . ss(10)s 

A°QJ.O and C° are the estimated parameters. 
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QJhe f u n c t i o n L I was evaluated* T h i s include a the 

p a r t i a l d e r i v a t i o n s of the v a r i a b l e s and the weights: 

L = FAt.FAt + F t , F t ( l l ) 
WAt Wt 

The a c t i v i t y , At, i s not a d i r e c t l y observed v a r i a b l e , 

I f Mi i s the t o t a l number of counts recorded and ^ t i the 

duration of that p a r t i c u l a r count then 

A t i = Mi 
A t i 

T h i s g i v e s L the form 

L = Fyr.. Ffrj + F t . F t + FAt. FAt. 
Vfe Wt W A t 

t and At are assumed to be measured without e r r o r , i t e . they 

have i n f i n i t e weight. Yfy. has the value of l/variance(M) = 

1/M and F^ = V-6t. 

L i = ^ 2 (12). 

d) The normal equations were constructed. I n t h i s example 

they were 

C=i L i L i L i 

^ F C i . FAj,oi .A Aio + 5 ^ F C i . F G i ^ C = ^ F O i . Fi° 
L i L i l L i 

Fi° 
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These equations v/ere to "be solved f o r A/MO and A c . 

I f A to and G are the l e a s t - s q u a r e s corrected estimates of 

the parameters 

then 

A|0 = A 0 io 

= C 

— A/Uo 

- Ac 
(13) 
.(HO 

A m a t r i x - i n v e r s i o n s o l u t i o n was applied to the normal 

equations. I f they are w r i t t e n as 

b l l . A A i o + b l 2 . A c = CI (15) 

b21.AA»o + b22.Ac = C2 ... (16) 

then the s o l u t i o n i s given by 

AAIO = d l l CI + dl2 CI 
A c = d21.C2 + d22.C2 

(17) 

(16) 

where the d terms are the c o e f f i c i e n t s of the i n v e r s e of 

the matrix 

b l l bl2 

b21 b22 

e) Using the c a l c u l a t e d values of the parameters, the 

process i n v o l v i n g steps a) to d) was repeated, g i v i n g a new 

i n v e r s e matrix and rea d j u s t e d parameters. The i t e r a t i o n 

v/as repeated u n t i l the change i n the parameters was l e s s 

than .01$ of the parameter v a l u e s . 
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Prom the f i n a l i n v e r s e matrix, the e r r o r s of the 
parameters v/ere c a l c u l a t e d : 

<fo i s o a l l e d the 'unit v a r i a n c e 1 and was c a l c u l a t e d from 

<fo = S/ (Number of degrees of freedom) ....(21) 

S i s the sum of the squares of the weighted r e s i d u a l s at 

each point and the number of degrees of freedom are the 

to.tal number of data p o i n t s minus the number of parameters 

being determined. 

The steps o u t l i n e d above were w r i t t e n i n E l l i o t A l g o l 

and the program was run on the E l l i o t 803 computer at the 

U n i v e r s i t y of Kent a t Canterbury. Data required were the 

t o t a l number of data p o i n t s , the i n i t i a l parameter estimates 

together with the h a l f - l i v e s of the known components i n the 

decay. The time, a c t i v i t y and t o t a l number of counts 

observed were then read i n f o r each point. 

The output was arranged so as to give the parameter 

v a l u e s together with t h e i r c a l c u l a t e d e r r o r s . V/arnings 

£ 2(Aio) = d l l . <To2 

o / 2 ( C ) = d22 . <To2 (20) 

(19) 
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were a l s o incorporated to show which points l a y more than 

5$ of t h e i r a c t i v i t y value from the smooth curve. The 

c a l c u l a t e d and observed a c t i v i t y readings f o r each point 

were a l s o p r i n t e d out f o r d e t a i l e d comparison. 

The decay system which found the g r e a t e s t a p p l i c a t i o n 

was the s i m p l e s t : 

At = Aio e % + C. 

T h i s equation was applied whenever there was a s i n g l e 

main decay apparent and the other components had h a l f - l i v e s 

such that they could be considered constant during the decay 

of the short a c t i v i t y . I t was found unnecessary to put 

s t r i c t l i m i t s upon these requirements: the e f f e c t of f o r c i n g 

a complex decay to follow a too simple equation was that 

u n r e a l i s t i c v a l u e s f o r one or more of the parameters 

r e s u l t e d . For example, negative a c t i v i t i e s or negative 

h a l f - l i v e s might be found. 

As i t was d e s i r e d to analyse the data on a routine 

b a s i s , l o g i c a l steps were incorporated i n t o the program to 

e l i m i n a t e bad data p o i n t s . 'Bad' i n t h i s sense meant w i l d l y 
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i n a c c u r a t e p o ints due to ( f o r example) counting-equipment 
malfunction or computer reading e r r o r s . The c r i t e r i a 
employed to judge data p o i n t s were quite a r b i t r a r y . The 
a c t i v i t y of the observed point was required to d i f f e r from 
the c a l c u l a t e d value by a t l e a s t 10$ of i t s value or by 10 
standard d e v i a t i o n s before a point was r e j e c t e d . I t was 
a l s o found a d v i s a b l e to c a r r y out a primary s e l e c t i o n 
g i v i n g a l l p o i n t s u n i t weighting to eliminate the. other­
wise common occurrence of an i n c o r r e c t point with an 
i n c i d e n t a l l y l a r g e weighting causing b e t t e r p o i n t s w i t h 
lower weights to be r e j e c t e d i n s t e a d . 

T h i s d a t a - r e j e c t i o n process was found u s e f u l only f o r 

the s i n g l e component case: f r e q u e n t l y an imbalance s e t i n 

when i t was applied to the double component cases causing 

the r e j e c t i o n of too many data p o i n t s . I n these cases, 

g r a p h i c a l i n s p e c t i o n of the decay data before and a f t e r 

a n a l y s i s was employed. 

The standard d e v i a t i o n s f o r t y p i c a l a n a l y s e s of s i n g l e 

component data were 1 to 2$. Those f o r the two-component 

a n a l y s e s were a l i t t l e l a r g e r : 2 to Wfo, The explanation 
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f o r t h i s i s probably t h a t i n the f i r s t p l a c e , more inform­
a t i o n was being e x t r a c t e d from the two-component data and 
i n the second, counting was continued over a longer time 
span thus a l l o w i n g long-term equipment d r i f t to have a 
g r e a t e r e f f e c t on the data. 

A s i m p l i f i e d flow-diagram of the programs i s shown i n 

f i g u r e ( 4 . l ) o The box l a b e l l e d 'CYCLE' i s shown i n g r e a t e r 

d e t a i l i n f i g u r e (4.2) as t h i s contains the main working of 

the l e a s t - s q u a r e s s o l u t i o n . The program used f o r the s i n g l e 

component decay a n a l y s i s i s given i n f u l l i n Appendix B, 



Computer- Program f o r the A n a l y s i s of S i n g l e 
Component Decays "by the Method of Lease-Squares 

( BEGIN) 

READ ESTIMATED PARAMETERS 
TIME, ACTIVITY AND TOTAL 
COUNT INFORMATION FOR EACH 

POINT 

FINISH 

I S 
lESIDUAL^ 

3F ANY POINTN 

sGREATER THAN. 
VQ% OR 1( 

CYCLE 

YES-S­
PRINT DETAILS 
OF REJECTED 

POINTS 

ELIMINATE 
REJECTED 
POINTS 

CALCULATE 
STANDARD DEVIATIONS 

OF PARAMETERS 

PRINT PARAMETER 
VALUES AND STANDARD 

DEVIATIONS 

PRINT OBSERVED AND 
CALCULATED VALUES 
FOR EACH POINT 

END 

Fi g u r e 



D e t a i l s of the least-Squares C a l c u l a t i o n s 

I CYCLE V 

CALCULATE PARTIAL 
DIFFERENTIAL EQUATIONS 
VALUES FOR ALL POINTS 

CALCULATE THE VALUES 
OF THE COEFFICIENTS 
OF THE NORMAL 
EQUATIONS 

INVERT THE MATRIX 

CALCULATE ^Ao, A c 

AO := Ac - £ <Lo 
C ;= C - 3 C 

PRINT K, Ao, C 

I S K 
GREATER THAN 

15 THAN 

FINISH 

Figure 4.2 
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Chapter 5 

R e s u l t s and D i s c u s s i o n 

a) I n t r o d u c t i o n . 

The treatment of the experimental r e s u l t s to give, f i r 

r e l a t i v e and then a b s o l u t e y i e l d s which are compared w i t h 

previously published v a l u e s i s s e t out i n t h i s c h a p t e r . 

Prompt neutron y i e l d s are estimated from complementary 

mass y i e l d s and changes o c c u r i n g on the 'wings 1 of the 

asymmetric y i e l d peaks w i t h change i n the i n i t i a l e x c i t ­

a t i o n energy are noted. The r e s u l t s are d i s c u s s e d . 

b) C a l c u l a t i o n of R e l a t i v e Y i e l d s 

Consider an i r r a d i a t i o n i n which the isotope 'A' 

i s o l a t e d i s p a r t of the p -decay c h a i n : 

s h o r t * A s t a b l e 

i f the r a t e of production of A a t any time t during the 

i r r a d i a t i o n i s R^ = dNj^, 
dt 

then a t time t a f t e r the end of the i r r a d i a t i o n 

where T i s the l e n g t h of the i r r a d i a t i o n . . I n t e g r a t i n g 

t h i s e x p r e s s i o n over the whole i r r a d i a t i o n g i v e s 

R..dt. e x p ( - ^ A f t ' + T - t ) ) dN 

N A t ' exp(- \ ( t ' + T - t ) ) dt 

exp( R +. exp( T t ) ) dt 



The r a t e of production of A, R^, i s p r o p o r t i o n a l to the 

f i s s i o n cross-section,<T, the f i s s i o n - y i e l d of A, Y A, 

and the instantaneous f l u x r eading, 1^. 

Thus R t = C. <T. Yfi. 1^ 

The constant of p r o p o r t i o n a l i t y , C, i n c l u d e s the 

e f f i c i e n c y of the counter monitoring the neutron f l u x . 

S u b s t i t u t i n g f o r R^: j-

N A ( t # ) = C. f. Y A . e x p ( - \ . t ' ) I I t . e x p ( - A A ( T - t ) ) d t . 

The observed neutron f l u x , 1^, i s i r r e g u l a r i n nature 

and the i n t e g r a l cannot be evaluated d i r e c t l y but may be 

approximated by the summation 

T 
S A = 2 1 I t - e x p ( - A A ( T - t ) ) . g t 

t=o 

provided t h a t the p e r i o d s S t are much s h o r t e r than the 

h a l f - l i f e of A and the d u r a t i o n of the i r r a d i a t i o n . 

R e p l a c i n g the i n t e g r a l by S A g i v e s 

N A ( t ' ) = C.<T. Y A . e x p ( - X A . t / ) . S A 

and the y i e l d of A a t % f = o i s 
A 0 

Y A = NA =
 AA , 

o. <f. s A c. <r. *pA. X A. s A 

where A ° A i s the observed a c t i v i t y a t t ' = o and ^ A "the 

counter e f f i c i e n c y . 

The r e l a t i v e y i e l d of A may t h e r e f o r e be expressed 

a s YA = A A ° - 9R° ^R- SR 5.1 
Y R AR * 9 A* ^A # SA 
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The s u b s c r i p t 'R1 r e f e r s to the r e f e r e n c e isotope i n t h i s 
equation. 

The more u s u a l case i s where the isotope B i n the f o l l o w ­

ing mass-chain i s i s o l a t e d and measured: 
sh o r t > A — B A > > s t a b l e . 

I t i s assumed t h a t B has a longer h a l f - l i f e than A and 

t h a t a l l B i s formed by decay of A. 

A s i m i l a r argument to t h a t i n the p r e v i o u s example 

g i v e s 

k L- W fl N B ( t ) = A j e j V e x p ( - X A ( T - t ) ) d t 

i(-X B-t') J R t. exp(--X B(T-t))dt j - exp( 

i e N,,(t') = C. <T. Y». X* \ / 
j — ^ - ( e x p ( - A A . t ) . S1 

kB- f A 
_ ^ < _ \ 

B 
- exp(- A-p.t ) .S Q) 

I f the decay o b s e r v a t i o n s are made when a l l A has decayed 

away so t h a t ex^i-X^t')—» 0 , then 

N B ( t ' ) = C. <f. Y.. V.. _ , \ . \ B v A A S 0 . exp(-A_,.t ) and r- v 2 ^ B 
A A - A B 

N ° = C. (T. Y. . ^ A .S 0 

A A- X B 

The e q u i v a l e n t to equation 5.1 i s then 

IS = 1 ^ * Xfi • OR ' fS-' AA~ ^B 5.2 
Y R AR *B ^B S B ^A 
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While the i s o t o p e s measured had been chosen so as 

to l i e towards the s t a b l e ends of the @> -decay c h a i n s , 

i n c e r t a i n c a s e s , c o r r e c t i o n s f o r the independent y i e l d s 

of the i s o b a r s o c c u r i n g l a t e r i n the c h a i n s than those 

separated had to be a p p l i e d . 

The problems e n t a i l e d in making these c o r r e c t i o n s 

have been d i s c u s s e d i n chapter 1. An o u t l i n e of the 

c o r r e c t i o n process f o l l o w s . 

The complementary mass of the measured isotope was 

c a l c u l a t e d from 

A* = A£ - \? - A 5.3 

Values f o r the most s t a b l e charges a s s o c i a t e d w i t h these 
5 1 

fragments have been t a b u l a t e d by C o r y e l l . 

The most probable charge was c a l c u l a t e d from the 

equation 

Zp = z A - *(z A + zA* - 3 f ) 

which was given i n chapter 1 and t h i s was then a p p l i e d 
5 2 

to the e m p i r i c a l p r o b a b i l i t y curve given by Wahl . 

The v a l u e s of P , the prompt neutron y i e l d , f o r each 
5 3 

energy were taken from a t a b l e prepared by Leachman ; 

they were 2.75 f o r 3 MeV and 4.75 f o r 14.8 MeV neutron 

i r r a d i a t i o n s . 
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The r e s u l t s ef the c a l c u l a t i o n s of the independent 

y i e l d s of l a t e r members of the decay chains are not s e t 

out i n d e t a i l here because f o r a l l of the i s o t o p e s 

separated except Sh^^, more than 99.99$ of the y i e l d 

f o r each c h a i n was i n c l u d e d a t the isotope a t which the 
i 2Q 

measurement was based. For Sb the percentage of the 

t o t a l c hain y i e l d separated was c a l c u l a t e d to be 99.93$ 
and 99.52$ f o r i r r a d i a t i o n s employing 3 MeV and 14.8 MeV 

neutrons r e s p e c t i v e l y . 

The c o r r e c t e d r e l a t i v e y i e l d r v a l u e s were transformed 

to a b s o l u t e y i e l d s by t a k i n g published values f o r the 
QQ 5 A 

a b s o l u t e y i e l d of Mo . Walker has reviewed y i e l d 

v a l u e s f o r U f i s s i o n w i t h f i s s i o n - s p e c t r u m and 14 MeV 

neutrons and has s e l e c t e d best v a l u e s f o r the a b s o l u t e 

y i e l d a t mass 99. H i s v a l u e s (6.32% and 5.68$ f o r 

f i s s i o n - s p e c t r u m and 14 MeV neutrons r e s p e c t i v e l y ) were 

then used to r e l a t e r e l a t i v e f i s s i o n y i e l d data from 

s e v e r a l s o u r c e s . 

S i n c e the p u b l i c a t i o n of t h i s review, y i e l d s f o r 

s e v e r a l mass-chains based on absolute measurements of. 

the y i e l d a t mass 99 have been published by Bonyushkin e t . 

a l J m J and Petrzhak e t . a l ^ . The value of the y i e l d of 

a t mass 99 from i r r a d i a t i o n s w i t h f i s s i o n - s p e c t r u m 

neutrons given by Bonyushkin, 7.0 - .7$ i s a p p r e c i a b l y 

higher than the value adopted by Walker but i n view of 
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the l a r g e e r r o r associated w i t h t h e i r measurement there 
seems t o he no good reason f o r the adoption of a value 
higher than 6.32$. 

For i r r a d i a t i o n s w i t h 14 MeV neutrons, the y i e l d s 
5 5 

f o r mass 99 given by Bonyushkin et a l and Petrzhak 
e t a l namely 6.5 - «5$ and 6.4 - .7$ are again higher 
than the value of 5.68$ adopted by Walker. However, the 
mass-yield curve constructed by Walker using t h i s y i e l d 

value and a p p l y i n g i t t o r e l a t i v e y i e l d values of 
Bloom-'"8, Protopopov et a l ^ " ^ , Cuninghame^* 1 0 and Ford 

5 11 
et a l was s a t i s f a c t o r y - judging by the t o t a l percent­
age y i e l d under the curve. 

The values taken by Walker f o r the y i e l d s a t mass 99 
have t h e r e f o r e been used i n t h i s work i n the conversion 
from r e l a t i v e to absolute y i e l d s . 
d) Results and Discussion 

The r e s u l t s of the r e l a t i v e y i e l d measurements are 
set out i n t a b l e s 5.1 t o 5.8. The e r r o r s quoted are the 
standard d e v i a t i o n s of the observations-. The absolute 
y i e l d s , obtained as discussed above, are given i n t a b l e 
5.9-

The mass-yields from the i r r a d i a t i o n s using 3 MeV 
neutrons have been p l o t t e d i n f i g u r e 9.1. A smooth curve, 

5 4 
drawn through the y i e l d s c o l l e c t e d by W a l k e r ^ a n d the 



Table 5.1 Relative y i e l d s fox Sr 

isotope A o chemical ^ ( S r ) S Rel. E 
/Run e f f i c i e n c y Y i e l d 

Sr 1 733 18.15/° 3 3 . 7 $ 34.056 3 4 . 6 9 8.3OO5 .563 3 

Mo 1 420 39.90 3 4 . 1 0 8.5675 

Sr 2 5 8 . 9 4 32 . 6 3 3 . 8 33-58 1.1938 .558 3 

Mo 2 1251 81 .80 32 . 8 1.2320 

Sr 3 1122 25 . 34 3 3 . 5 3 4 . 0 34 .49 8.2296 • 539 3 

Mo 3 622 51.90 3 3 . 7 8.4946 

Sr if 3920 40.50 3 3 . 0 3 3 . 9 33 .99 1.0001 .585 14 

Mo 1553 65 .94 3 3 . 3 1.0005 

Sr 5 14317 18 .17 3 3 . 7 34 .0 3 4 . 6 9 3.7049 .632 14 

Mo 5 13386 7 7 . 8 4 32 . 9 3.7240 

Sr 6 34896 6 8 . 2 1 3 3 . 5 3 4 . 0 3 4 . 4 9 7 .1813 .685 14 

Mo 6 4493 4 1 . 6 4 3 4 . 1 7.2539 

X 9 1 ^ ( S r ) + 0.0297 ? ( Y m ) 

Average S r 9 1 r e l a t i v e y i e l d (3 MeV) = 0.5533^ 0.0126 
(14 MeV) = 0.6340± 0.0501 



Table 5.2 R e l a t i v e Y i e l d s f o r Y 9 3 

sotope 
'Run 

chemical 
y i e l d 

counter 
e f f i c i e n c y S Rel. 

Y i e l d 
E ( i 

Y ' 31 .40 3 8 . 1 0 1.9595 .743 3 

Mo ' 1786 69 . 6 1 35 .00 2 .0186 

Y i 2447 42 .28 38 .00 1.3803 .768 3 

Mo 2 687 63-51 35 .40 1.4296 

Y -3 2064 3 4 . 6 1 3 8 . 1 0 5.6767 .752 3 

Mo 3 782 69 .98 3 5 . 0 0 5.8569 

Y 4- 12667 21 .02 38 .20 3 .6788 .770 14 

Mo * 6925 63.90 35.30 3.7039 

Y S 8800 11 .34 38.30 2.7980 .7835 14 

Mo ^ 7408 54.13 3 5 . 4 0 2.8120 

Y 1739 14 .54 34.10 1.7984 . 7 4 1 14 

Mo b 1553 65 .94 33.30 1.8074 

Mean r e l a t i v e y i e l d of Y 9 3 (3 MeV) = 0.754-i .0128 

( 1 4 MeV) = 0.765 - .0215 



Table 5.3 R e l a t i v e Y i e l d s f o r Ru' 

Isotope 
/Run A 0 chemical 

e f f i c i e n c y r S Re.l. 
Y i e l d 

Ru 1 
Mo 1 

4110 

279 

51 .60 

29 . 24 

37.5 
3^.5 

7.4307 
7.9936 

0:534 

Ru 2 

Mo 2 
4858 

97 

70.00 
12 .80 

37.3 
35.0 

8.7680 

9 . 4 2 2 1 
O.596 

Ru 3 

Mo 3 

5283 
105 

57.00 
11.88 

37.8 
35.0 

8.9592 
9.6420 

0.675 

Ru 4 
Mo 4 

2563 
776 

30.00 

82 .06 

3 8 . 7 

32.8 
8.4523 
9.0316 

O.528 

Ru 5 

Mo 5 
3296 

765.5 

24.37 

65.57 

39.30 

33.30 
8.6020 

9.13^7 
0.677 

Ru 6 

Mo 6 

3350 
1062 

15.70 

5^.63 

39 . 64 

33.70 
9.3807 
9.4886 

0 . 610 

Ru 7 
Mo 7 

6794 

697 
37.25 
46.36 

36.32 
33.90 

5.1776 
5 .2140 

0.737 

Ru 8 
Mo 8 

17^33 

1793 

27 .38 

2 8 . 7 9 

37 .77 

34.50 
2 .4923 

2.5O63 
0.607 

E(n) 

corrected f o r R h 1 0 5 m . 
Average R u 1 0 5 r e l a t i v e y i e l d (3 MeV) = 0 .602 ± .O72 

( 1 4 MeV) = O.65I - .074 



Table 5.4 Relative Yields for Rh 

Isotope ^o 
/Run 

Rh 1 6659 
Mo 1 131 

Rh 2 12671 
Mo 2 568 

Rh 3 10786 
Mo 3 694 

Rh 4 3676 
Mo 4 577 

Rh 3 196252 
Mp 5 1897 

Rh 6 100610 
Mo 6 2379 

Rh 7 131570 
Mo 7 1557 

Average Rh 

Chemical 
Yie l d 

27.95 33.8 
20.98 34.8 

32.56 33.7 
43.50 34.0 

29.40 33.9 
59.38 33.5 

13.35 34.0 

55.63 33.7 

40.10 33.7 
27.70 34.6 

15.62 34.0 
29.00 34.5 

38.86 33.70 
36.03 34.20 

r e l a t i v e y i e l d (3 MeV) 
(14 MeV) 

S Rel . E(n) 
Yield 

4.3583 
0.267 3 

6.7685 

• 1.3000 
O.2O5 3 

2.0246 

1.1550 
O.215 3 

1.8285 

1.1552 
O.174 3 

1.7414 

2.0098 
0.344 14 

2.1520 

2.8638 
0.380 14 

3.1215 

2.1121 
0.377 14 

2.286? 

= 0.215 - O.O39 
= 0.367 - 0.020 



Table 5.5 R e l a t i v e Y i e l d s f o r S t ) 1 2 9 

Isotope A o Chemical o b a2 r v e d /Run A \icld QDservea 

Sb 1 956 46 .82 40.8 
Mo 1 628 66 . 64 33.3 

Sb 2 160.8 5.12 41.3 
Mo 2 1251 80.34 32.8 

Sb '3 1208 51 .49 40.3 

Mo 3 622 51.90 32 . 9 

Sb 4 596 28.34 41.0 

Mo 4 280 22.57 34.7 

Sb 5 56886 46.15 40.6 
Mo 5 4825 36.55 34.30 

Sb 6 12838 30.63 4 1 . 0 

Mo 6 1305 23.57 . 34.6 

Sb 7 17241 45.71 4 0 . 9 

Mo 7 2134 49.77 33.8 

Sb 8 35080 52.07 40.8 
Mo 8 5514 75 . 14 33.0 

Average Sb y r e l a t i v e y i e l d (3 

(14 

^ S ? & d 

8 7 . 4 6 .5891 
0 . 0 5 7 1 3 

7 .0832 

88.25 1.1431 
0.0519 3 

1.2320 

86.12 7o8777 
O.O519 3 

8.4946 

87.60 1.5496 
0.0465 3 

1.6676 

86 .76 3.8173 
0.243 14 

3.9028 

87.61 2.4300 
O.195 14 

2.4604 

88.4 1.9016 
0.237 14 

2.0610 

87.2 8.4815 
0.229 14 

8.6896 

MeV) = O.O519 i 0.0043 
MeV) = 0.226 t 0.0215 

file:///icld


Table 5.6 Relative Yields for I 1 ? * 

Isotope 
A i e l d 

A 0 

? 
Chemical 
Yi e l d 

S 

I 1 9 2 . 0 31 .70 41 .67 1.5107 

Mo 1 853 .0 33 .50 62 .90 1.5028 

I 2 67 .7 3 1 . 3 0 67 .17 1.3219 

Mo 2 539.0 3 2 . 8 82 .43 1.3152 

I 3 50 .8 3 0 . 3 0 53.13 I.OO37 

Mo 3 189 .0 34 .50 30 .13 1.0004 

I 4 5 1 . 4 3 0 . 7 0 37 .97 1.0974 

Mo 4 582.0 3 3 . 2 0 69.41 I.O917 

I 5 1976 3 1 . 1 0 6 9 . 4 4 8.1255 

Mo 5 6046 33 .3 67 .30 - 8 .1116 

I. 6. 2584 31 .3 59 .34 1.1770 

Mo 6 8827 3 3 . 7 53 .79 1.1749 

I 7 2130 31 .60 36.60 6.1232 

Mo ? 18250 32.80 84.24 6.1178 

I 8 2120 31.80 4 5 . 7 0 5.8504 

Mo 8 13731 76 .15 76 .15 5.8450 

Average 131 
I J r e l a t i v e y i e l d (3 MeV) 

(14 MeV) 
= 0 . 4 9 1 

0.846 

Rel. E(n) 
Yield 

.495 3 

.465 3 

. 5 0 1 3 

.503 

.980 

.825 

.806 

.772 

14 

14 

14 

14 



Table 5 . 7 R e l a t i v e Y i e l d s f o r Ce 

Isotope 
/Run 

A 0 0 

Ce 1 1974 3 0 . 8 

Mo 1 1733 3 3 . ^ 

Ce 2 599 3 0 . 7 

Mo 2 677 33 .5 

Ce 3 321 33 .00 

Mo 3 1316 33 .3 

Ce 4 262 3 1 . 6 0 

Mo 4 285 3^ .7 

Ce 5 4786 28 .40 

Mo 5 4814 3 3 . 6 

Ce 6 24935 2 8 . 5 

Mo 6 17410 33 .3 

Ce 7 465 3 2 . 7 

Mo 7 1166 3 2 . 9 

Ce 8 5558 3 1 . 7 

Mo 8 5506 33 .3 

Average Ce J r e l a t i v e y i e l d 

Chemical g Rel. E(n) 
Y i e l d Y i e l d 

52 .88 2.0079 
.839 3 

6 9 . 6 1 2 .0816 

37 .66 1.3893 
.834 3 

6 3 . 5 1 1.4296 

1.1.10 2.8739 
.725 3 

65 .32 2.8903 

13 .35 1.6589 
.854 3 

22 .57 I . 6 6 7 6 

45 .05 3 .0772 
.758 14 

5 8 . 3 1 3 .0798 

62 .50 1.7450 
. 8 8 1 14 

6 6 . 0 1 1,7480 
1 7 . 7 8 1.3428 

. 8 6 1 14 
76 .27 1.3^97 

4 5 . 5 0 3 .4420 
.766 14 

6 5 . 5 5 3 .4686 

(3 MeV) = 0 .813 - .059 
(14 MeV) = 0 .817 i .063 



Table 5.8 R e l a t i v e Y i e l d s f o r Pr 

Isotope ^o 
/Run 

Pr 1 3825 

Mo 1 677 

Pr 2 2129 

Mo 2 420 

Pr 3 5294 

Mo 3 1733 

Pr 4 23138 

Mo 4 5289 

Pr 5 20712 

Mo 5 4814 

Pr 6 34130 

Mo 6 6566 

14 
Average Pr 

9 Chemical 
Y i e l d 

3 4 . 0 54 .5 

33 .5 6 3 . 5 1 

3 4 . 0 28 .30 

3 4 . 1 40 .12 

3 4 . 0 3 0 . 1 5 

3 3 . 4 6 9 . 6 1 

3 4 . 0 44 .02 

3 3 . 6 58 .99 

3 4 . 0 38 .49 

3 3 . 6 5 8 . 3 1 

3 4 . 0 53 .64 

3 3 . 5 6 3 . 9 

r e l a t i v e y i e l d ( 3 MeV) 

(14 Mev) 

Rel. E(n) 
Y i e l d 

1.3410 
0 .6125 3 

1.4296 

8 . 1 1 3 1 
0 . 6 7 4 3 

8.567O 

1.9122 
0 .648 3 

2 .0186 

2 .0189 
O.517 14 

2 .0367 

3 .0530 
O.575 14 

3 .0798 

3 .6582 
0 .547 14 

3 .7039 

= 0 .645 - .030 

= 0 .547 i .029 



Table 5.9 

Absolute Y i e l d s o f Isotopes from U 2 3 a bombarded 
w i t h 3 MeV and 1U.8 MeV Neutrons 

Mass Chain 3 Me-V* 14.8 MeV** 
91 3 . 5 0 + 0.08 3 .60 + 0.28 
93 U.77 + 0.08 4 . 3 3 + 0 . 1 2 

105 3.81 + 0 . 4 6 3 . 7 0 + 0 . 4 2 

107 1.36 + 0 . 2 5 2.08 + 0 .11 

129 0 .329 + 0 .02? 1 . 29 + 0.12 
131 3 . 1 0 + 0 . 11 4.81 + 0 . 5 2 

143 5 . 1 4 + 0 . 3 7 4.64 + O.36 

145 4.08 + 0.19 3 .11 + 0 . 1 6 

Taking the absolute y i e l d a t mass 99 t o be 
6.32%. 

Taking the absolute y i e l d a t mass 99 t o be 
5.68%. 
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y i e l d s by Bonyushkin et a l ^ and Petrzhak et a l ^ * ^ ( a l l 
p o i n t s were renorraalised r e l a t i v e t o a mass 99 value of 
6.32%) have been i n c l u d e d . 

The mass-yields from the i r r a d i a t i o n s u s i n g 14.8 
MeV neutrons have been p l o t t e d i n f i g u r e 5.2. The smooth 
curve was drawn through the data c o l l e c t e d by Walker, 
t a k i n g i n t o account also the mass-yields measured by 
Bonyushkin et a l Petrzhak et a l and James, M a r t i n and 

5 7 
S i l v e s t e r ^ . The y i e l d s obtained by Bonyushkin et a l . 
and Petrzhak et a l . were renormalised r e l a t i v e t o a 
mass 99 value of 5.68$„ , but the r e s u l t s due t o James, 
Ma r t i n & S i l v e s t e r had been measured r e l a t i v e to mass 
139 and as t h e i r absolute y i e l d (4.92$) at t h i s mass 
agrees c l o s e l y w i t h the value given by Walker f o r mass 
139 (4.90$) t h e i r values were used d i r e c t l y and w i t h o u t 
f u r t h e r r e n o r m a l i s a t i o n . 

The f i t of the p o i n t s t o the curves appears s a t i s ­
f a c t o r y f o r the mass y i e l d s obtained using both 3 MeV 
and 14.8 MeV neutrons, although i t should be point e d out 
t h a t the spread of the published y i e l d s may be l a r g e f o r 
any given mass and t h a t the d e t a i l e d shapes of the mass-
y i e l d curves obtained u s i n g neutrons o f both energies are 
as y e t f a i r l y uncertain. 

The y i e l d s observed i n t h i s work a t both neutron 
energies have been p l o t t e d i n f i g u r e 5.3. 'Centroid' 



Absolute Mass-Yield from the F i s s i o n of I T 3 H i r r a d i a t e d 

with F i s s i o n Spectrum and 3 MeV neutrons, 
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Absolute Mass-Yields for the F i s s i o n of U 8 3 8 i r r a d i a t e d 
with 14.8 MeV neutrons. 

A - Ref. 5.8 Eef. 5.7 E 10 B - Ref. 5.9 Ref. 5.5 
Ref. 5.10 G - Ref. 5.22 
Ref. 5.11 © - Observed poi'nts 
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Figure 5.2 
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peak p o s i t i o n s c a l c u l a t e d u sing the y i e l d s measured i n 
t h i s work are at masses 98.2 and 138.6 f o r the i r r a d i ­
a t i o n s w i t h 3 MeV neutrons and at 98.3 and 137.1 f o r the 
i r r a d i a t i o n s using 14.8 MeV neutrons. 

I t i s apparent from these values and from f i g u r e 
5.3 t h a t the l i g h t and the heavy peak have responded 
d i f f e r e n t l y t o the change i n the e x c i t a t i o n energy. 
The l i g h t peak shows l i t t l e change i n p o s i t i o n between 
the two energies although the increase i n the symmetri­
c a l and h i g h l y asymmetrical mass y i e l d s at the g r e a t e r 
e x c i t a t i o n energy i s r e f l e c t e d by the decrease i n the 
slopes of t h i s peak f o r the 14.8 MeV compared t o the 
3 MeV i r r a d i a t i o n s . 

The heavy peak shows d i f f e r e n t behaviour. The slope 
of the,wings of t h i s peak change l i t t l e between the two 
e x c i t a t i o n energies but the peak appears t o have moved 
to a lower mass value at the higher e x c i t a t i o n energy. 
This t r e n d has p r e v i o u s l y been noted and commented upon 
by Rahman^ f o r thorium-232 bombarded by 3 and 14.8 
MeV neutrons. 

Such a movement i s c o n t r a r y t o observations made 
on va r i o u s f i s s i o n i n g n u c l e i a t the same e x c i t a t i o n 

5 17 
energy which shows t h a t the inner wing of the heavy 
peak remains f i x e d i n p o s i t i o n and t h a t the l i g h t peak 
moves t o higher or lower mass p o s i t i o n s depending on the 
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mass of the f i s s i o n i n g nucleus. 
Comparison of the slopes of the edges of the peaks 

has been made i n table 5.10. Values of A(yield)/A(mass) 
are tabulated for each pair of measured y i e l d values pn 
the sides of the peaks. Table 5.10 shows c l e a r l y that at 
both bombarding energies, the inner edge of the heavy peak 
has the greatest slope. 

The numbers of prompt neutrona associated with pairs 
of f i s s i o n products are given i n table 5.11. I n each case 
a mass chain whose complementary fragment l i e s between two 
measured mass y i e l d s has been taken. The mass of the 
complementary fragment was calculated from the masses and 
y i e l d s of the chosen mass chain and the masses and y i e l d s 
on either side of the complementary fragment. 

The prompt neutron y i e l d s from the 3 MeV neutron 
i r r a d i a t i o n s are f a i r l y consistent with each other. Those 
from the i r r a d i a t i o n s employing 11+.8 MeV neutrons are of 
in t e r e s t however because of the variation of prompt neutron 
y i e l d s , depending on the p a i r s of f i s s i o n products taken. 

The errors i n these values are given i n parentheses i n 
table 5.11. They were calculated from the standard errors 
of the observed mass y i e l d s , where the standard error was 
taken to be the standard deviation of the y i e l d s (as given 
in table 5 . 9 ) divided by the square root of the number of 
repeated observations contributing to each mean y i e l d 



Tattle 5.10 

The Slopes of the Edges of the L i g h t and the 
Heavy Mass-Yield Peaks 

Energy of 
bombarding ^ 
neutrons Inner Slope Outer Slope 

L i g h t Peak 3 MeV 1 . 2 2 5(0 . 2 4 1 ) 0.635(0.066) 

14.8 MeV 0.810(0 . 251 ) 0.365(0 . 1 7 6 ) 

Heavy Peak 3 MeV 1.39 (0.06) 0.530(0.216) 

14.8 MeV 1.76 (0 . 2 7 ) 0.765(0.204) 

E r r o r s i n p a r e n t h e s i s were c a l c u l a t e d from the 

standard e r r o r s of the mass y i e l d s . 



Table 5,11 

The number of secondary neutrons, v, a s s o c i a t e d 

with f i s s i o n - p r o d u c t p a i r s 

Energy of 
bombarding 
neutrons 

3 MeV 

Fi s s i o n - p r o d u c t 
mass 

93 

107 

131 

145 

Mass of 
complementary ^ 

f i s s i o n - p r o d u c t v 

143.83 

129.71 

105.57 

91 .97 

2.17(0.2Z+) 

2 . 2 9 ( 0 . 0 9 ) 

2 . 4 3 ( 0 . 1 3 ) 

2 . 0 3 ( 0 . 1 9 ) 

14 . 8 MeV 91 

93 

105 

107 

11+4.36 

11+3 . M 

130.37 

129.45 

3 . 6 4 ( 0 . 2 4 ) 

2 . 5 9 ( 0 . 2 1 ) 

3 .63 (0.17) 

2 . 5 5 ( 0 . 0 6 ) 

E r r o r s i n parentheses were c a l c u l a t e d from the standard 

e r r o r s of the mass y i e l d s . 
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v a l u e . I t i s apparent that the v a r i a t i o n i n v f o r the 

i r r a d i a t i o n s u s i n g 1U.8 MeV neutrons i s much greater than 

can be accounted f o r "by these e r r o r s . 

The s h i f t i n the p o s i t i o n of the heavy mass-ryield 

peak can "be p l a u s i b l y explained on a q u a l i t a t i v e b a s i s 

from a c o n s i d e r a t i o n of the number of prompt neutrons 

emitted by the f i s s i o n fragments as a f u n c t i o n of the 

e x c i t a t i o n energy of the compound nucleus. 

Measurements of the number of prompt neutrons 

emitted during f i s s i o n as a f u n c t i o n of fragment mass 

( V ( M ) ) have been made f o r thermal neutron induced f i s s i o n 

of U 2 3 5 and U 2 3 3 by A p a l i n e t a l 5 , 1 3 and Milton and 

F r a s e r 5 , 1 i + . Measurements of V(M) f o r the spontaneous 

f i s s i o n of C f 2 ? 2 and a s e r i e s of c a l c u l a t i o n s by T e r r e l l 

u s i n g pre-neutron-emission and post-neutron-emission data 

have shown that the r e s u l t i n g f u n c t i o n of V(M) i s 

remarkably s i m i l a r f o r s e v e r a l d i f f e r e n t f i s s i o n i n g 

s y s t e m s 5 ' 1 5 ' 5 , 1 6 . 

These curves of v(M) show a steady i n c r e a s e i n v as 

the f i s s i o n - f r a g m e n t mass i n c r e a s e s a c r o s s the l i g h t mass-

y i e l d peak r e a c h i n g a maximum value a t about mass 115; 

v then decreases to a pronounced minimum at about mass 130 

before f i n a l l y r i s i n g again a c r o s s the heavy peak. 

Pew measurements of V(M) have been made f o r f i s s i o n ­

i n g systems which have acquired g r e a t e r e x c i t a t i o n energies 

than those obtained u s i n g thermal neutrons. However, 
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r e c e n t l y , two s t u d i e s of V(M) f o r the f i s s i o n of heavy 

n u c l e i having e x c i t a t i o n energies comparable to those 

obtained i n the present work have been pu b l i s h e d . 

C h e i f e t z and F r a e n k e l measured v as a f u n c t i o n o f 

f i s s i o n fragment mass f o r U 2 3 8 bombarded by 12 MeV 
5 18 

protons^* . They compared t h e i r r e s u l t s with p r e v i o u s l y 

published measurements of v(M) f o r the thermal neutron 

induced f i s s i o n of P u 2 3 9 . 

T h e i r work shows that the dip i n the V(M) curve a t 

about mass 130 becomes l e s s pronounced f o r f i s s i o n a t the 

higher e x c i t a t i o n energy and that p r o p o r t i o n a t e l y more 

prompt neutrons are emitted by the heavy fragments than 

by the l i g h t fragments as the compound nucleus e x c i t a t i o n 

energy i s i n c r e a s e d . 

Burnett e t a l . measured v(ll) a t two bombarding 

ener g i e s ^ * . Comparison was made of the prompt neutron 

emission from f i s s i o n of u 2 3 3 bombarded by 8.5 and 13.0 MeV 

protons. They came to concl u s i o n s s i m i l a r to those a r r i v e d 

a t by C h e i f e t z and Praenkel concerning the number of 

neutrons emitted by fragments of v a r y i n g mass w i t h a change 

i n the bombarding energy. For fragments of the l i g h t mass 

peak, l i t t l e or no change i n v(ll) was observed with change 

i n bombarding energy. A change, Av, i n v(M) was observed 

however, f o r masses i n the heavy peak r e g i o n and the 

maximum Av - V(13 MeV) - v(8.5 MeV) was found a t around 

mass 130. 
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The r e s u l t s of Burnett e t a l . and C h e i f e t z and 

Fr a e n k e l can be used to e x p l a i n the observations of t h i s 

work regarding the changes i n the p o s i t i o n s of the l i g h t 

and heavy masB-yield peaks with a change i n the neutron 

bombarding energy. I f a t high bombarding e n e r g i e s , more 

prompt neutrons are emitted by the heavy than by the . 

l i g h t fragments, then one e f f e c t of t h i s would be a 

movement of the p o s i t i o n of the heavy f i s s i o n - p r o d u c t mass-? 

y i e l d peak to l i g h t e r mass v a l u e s . S i m i l a r l y , i f the 

g r e a t e s t i n c r e a s e i n v occurs a t about mass 130 then the 

g r e a t e s t s h i f t i n mass, v a l u e s would be expected f o r f i s s i o n 

products l y i n g on the inner edge of the heavy peak. 

Vandenbosch has described the f i s s i o n process u s i n g 

a s h e l l model which e x p l a i n s q u a l i t a t i v e l y the shape of the 

V(M) curve . I n t h i s e x p l a n a t i o n the presence of the 

nucl e a r s h e l l s , 50 protons and 82 neutrons a t mass 132 

causes fragments c l o s e to t h i s mass value to be s p h e r i c a l 

and r e l a t i v e l y u n d i s t o r t e d . One r e s u l t of t h i s i s that 

the energy of fragments of t h i s mass appears mainly as 

k i n e t i c energy, whereas f o r fragments f a r from c l o s e d s h e l l 

c o n f i g u r a t i o n s the t o t a l fragment energy appears to a 

r e l a t i v e l y g r e a t e r extent as e x c i t a t i o n energy. The dip i n 

the sawtooth response of v(M) a t low compound-nucleus 

e x c i t a t i o n e n e r g i e s i s t h e r e f o r e , from the viewpoint of 

t h i s model due to the doubly magic s h e l l (Z=50, N=82) 

present i n fragments of mass great e r than 132. 
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I t i s noteworthy from t a b l e 5o10 t h a t the slope of 

the inner edge of the heavy mass-yield peak i s g r e a t e r 

for f i s s i o n induced with 1 i+ .8 than f o r those induced with 

3 MeV neutrons. T h i s i s contrary to the change i n the 

slope of the i n n e r edge of the l i g h t peak. I t i s 

p o s s i b l e , i n the l i g h t of the proceeding c o n s i d e r a t i o n s , 

that the number of neutrons emitted by fragments of j u s t 

above mass 132 i s s u f f i c i e n t l y great to counteract the 

e f f e c t of the 'peak to v a l l e y ' r a t i o d e c r e a s i n g a t the 

higher bombarding energy and cause the slope of the inner 

edge of the heavy-mass-ryield peak to i n c r e a s e l o c a l l y 

about mass 130. 

For the i r r a d i a t i o n s employing 14.8 MeV neutrons, 

the numbers of prompt neutrons a s s o c i a t e d with f i s s i o n 

products of masses 93 and 107 together w i t h t h e i r 

complementary f i s s i o n products a t masses 1J+3.3 and 129.5 

are lower than the number a s s o c i a t e d with the remaining 

two p a i r s by approximately one neutron. They are i n f a c t 

only s l i g h t l y g r e a t e r than the number of prompt neutrons 

a s s o c i a t e d w i t h f i s s i o n product p a i r s of s i m i l a r masses 

emitted during the i r r a d i a t i o n s with 3 MeV neutrons. 

These low v v a l u e s obtained from the i r r a d i a t i o n s 

w i t h 1U.8 MeV neutrons imply the p o s s i b i l i t y of systematic 

e r r o r s i n one or more of the mass y i e l d s used i n the 

c a l c u l a t i o n of v. From the design of the experiments, i t 

would appear u n l i k e l y t h a t systematic e r r o r s of measurement 



could e f f e c t mass y i e l d s obtained from i r r a d i a t i o n s 

u s i n g neutrons of one energy and not the other. 

Measurements a t both ener g i e s were c a r r i e d out c l o s e i n 

time to minimise e f f e c t s a r i s i n g from the malfunctioning 

of equipment. Chemical s e p a r a t i o n s were the same f o r the 

two s e t s of i r r a d i a t i o n s except f o r I 1 3 1 f o r reasons given 

i n Chapter 2. I t should a l s o be noted t h a t the data l e a d i n g 

to v are independent of the value assigned to the absolute 

y i e l d f o r mass c h a i n 99. 

Examining the p a i r s of f i s s i o n products g i v i n g r i s e 

tp the two low v values i n t u r n , i t i s apparent that the 

p a i r c o n s i s t i n g of mass-chain 93 and i t s complement has an 

a s s o c i a t e d r e l a t i v e l y l a r g e e r r o r . Comparison with the 

immediately preceding p a i r of mass y i e l d s i n t a b l e 5.11 

shows t h a t the v v a l u e s for these two p a i r s are separated 

by only about 0.6 neutrons from the l i m i t s of t h e i r 

a s s o c i a t e d e r r o r s . 

The y i e l d s of the three masses, 93, 11+3 and 11+5 used 

i n the c a l c u l a t i o n of v f o r the f i s s i o n product a t mass 93 

and i t s complementary fragment are given i n t a b l e 5.9. 

The y i e l d a t mass 11+3 has the g r e a t e s t p r o p o r t i o n a l standard 

d e v i a t i o n of these three and comparison of t h i s y i e l d w i t h 

p r e v i o u s l y published values by Cuninghame (3.2%) , 

James, Martin and S y l v e s t e r (3.51$)^*^ and Gorman and 

Tomlinson (k.26%)^'22 i n d i c a t e d t h a t the value obtained 

i n the present work may be too high. A value of, say, 
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k.0% f o r the y i e l d a t t h i s mass leads to a value of v of 

3.714-. The value of v f o r the f i s s i o n product at mass 91 

and i t s complementary fragment i s e f f e c t e d by t h i s 

a l t e r a t i o n ; v becomes U.10 i n s t e a d of 3 .6U. The number 

of prompt neutrons f o r these p a i r s of f i s s i o n products 

now agree w i t h i n the e r r o r l i m i t s i n d i c a t i n g perhaps 

that a s y s t e m a t i c e r r o r does e x i s t i n the y i e l d a t mass 

II4 .3 f o r the i r r a d i a t i o n s employing MeV neutrons. 

Values f o r the y i e l d a t mass 11+3 have not been 

published p r e v i o u s l y f o r i r r a d i a t i o n s of U 2 3 8 w i t h 3 MeV 

neutrons; a check on the mass-yield value obtained i n t h i s 

work f o r bombardments with such neutrons i s t h e r e f o r e not 

p o s s i b l e . However, the value of v f o r the f i s s i o n product 

of mass 93 and i t s complementary fragment c l o s e to mass 114.3 

(as shown i n t a b l e 3.11) does not d i f f e r s i g n i f i c a n t l y from 

the other v a l u e s f o r v obtained from 3 MeV neutron induced 

f i s s i o n . 

I t i s p o s s i b l e to be more c o n c l u s i v e regarding the 

low v value f o r 107 and i t s complementary mass obtained 

from the r e s u l t s of i r r a d i a t i o n s with II4..8 MeV neutrons. 

The low a s s o c i a t e d e r r o r i s i n d i c a t i v e of the s m a l l e f f e c t 

e r r o r s i n y i e l d s a t masses 107, 129 and 131 have on the 

value of v. A doubling of the value of the y i e l d a t mass 

129 i s needed to give a value of v of 3 .5 and an i n c r e a s e 

i n the y i e l d of mass 131 by 30% to the h i g h l y u n l i k e l y 

value of 6,21$ g i v e s r i s e to a prompt neutron value of 
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only 2 . 6 8 , S i m i l a r l y , a 100% decrease i n the y i e l d a t 

mass 107 r e s u l t s only i n a v value of 3 0 1U• 

Contrary therefore to the p o s s i b l e c o n c l u s i o n 

a r r i v e d a t w i t h r e s p e c t to the f i s s i o n products of mass 

93 and i t s complementary fragment, i t does not appear a t 

a l l l i k e l y that the low value of v obtained f o r mass 107 

and i t s complementary fragment has i t s o r i g i n i n e r r o r s 

of y i e l d measurement, s i n c e quite e x c e p t i o n a l changes i n 

these mass y i e l d s are r e q u i r e d to i n c r e a s e the value of 

v to a s i g n i f i c a n t e xtent. 

R e s u l t s published by L y l e , Martin and Rahman^' 

which include v a l u e s f o r the prompt neutron y i e l d s 

a s s o c i a t e d with p a i r s of f i s s i o n products a r i s i n g from the 

3 and 14 .8 MeV neutron bombardment of T h 2 3 z a l s o show a 

low value of v f o r a p a i r of f i s s i o n products, one of which 

l i e s between masses 129 and 131, f o r bombardments with 

14.8 MeV neutrons. T h i s low value i s not so pronounced as 

t h a t obtained i n the present work and i t does not approach 

the v a l u e s of v obtained from t h e i r i r r a d i a t i o n s u s i n g 

3 MeV neutrons. The d i f f e r e n c e may p o s s i b l y be due to 

comparison of a neutron l i g h t ( T h 2 3 2 ) with a more neutron 

r i c h ( U 2 3 6 ) i n i t i a l nucleus. 

The value of 2 .55 f o r v f o r mass 107 and i t s 

complementary fragment obtained i n the present work i n 

i r r a d i a t i o n s employing 14 .8 MeV neutrons i s only s l i g h t l y 

g r e a t e r than the value obtained ( 2 . 2 9 ) when 3 MeV neutrons 
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were employed. I t may be concluded t h a t a r e l a t i v e l y 

small i n c r e a s e i n the number of prompt neutrons has 

occurred j u s t below mass 131 when the neutron bombarding 

energy i s i n c r e a s e d from 3 to 14.8 MeV. 

I t was concluded i n the d i s c u s s i o n above on the 

comparison of the sl o p e s and p o s i t i o n s of the mas s - y i e l d 

peaks that a r e l a t i v e i n c r e a s e i n the number of neutrons 

emitted by f i s s i o n fragments of mass j u s t greater than 

132 was needed to e x p l a i n the i n c r e a s e of the slope of 

the inner edge of the heavy mass y i e l d peak. T h i s 

statement i s i n accordance with the co n c l u s i o n s e t out i n 

the previous paragraph. 

The observations made i n t h i s work regarding the 

inner edge of the heavy mass y i e l d peak are s a t i s f i e d by 

a p a t t e r n of prompt neutron emission which has the g r e a t e s t 

i n c r e a s e i n v f o r fragment masses g i v i n g r i s e to f i s s i o n 

products of mass 131 and above, combined with a small 

i n c r e a s e i n v f o r fragments g i v i n g r i s e to f i s s i o n products 

of mass 130 and lower when the neutron bombarding energy 

i s i n c r e a s e d . 

The curve of Av as a f u n c t i o n of f i s s i o n - f r a g m e n t 

mass published by Burnett e t a l . f o r the curve of U 2 3 3 

bombarded by 8.5 and 13 MeV protons shows a maximum f o r 

Av a t about mass 130^" . However, the mass r e s o l u t i o n i n 

such measurements i s poor r e l a t i v e to that obtained i n the 

radiochemical work, thus preventing a d e t a i l e d comparison 
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with the r e s u l t s from the pr e s e n t work. I n a d d i t i o n , 

d i f f e r e n c e s i n the f i s s i o n i n g systems examined may mean 

that a s t r i c t comparison between them i s somewhat suspect. 
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Appendix A 
D e t a i l s of Radiochemical Separations 

A l l c a r r i e r s o l u t i o n s contained approximately 5 mg.« ml.""'" 

of the element concerned. 

Strontium 

C a r r i e r s o l u t i o n 

Strontium carbonate was d i s s o l v e d i n 2 H h y d r o c h l o r i c 

a c i d and standardised by the p r e c i p i t a t i o n of strontium 
i 

s u l p h a t e . " •' 

Separa t i o n Procedure 

(1) The i r r a d i a t e d u r a n y l n i t r a t e was d i s s o l v e d i n 6 H 

n i t r i c a c i d and 10 mg. q u a n t i t i e s of the c a r r i e r s of the 

elements to be i s o l a t e d were added. 3^ ml. of fuming 

n i t r i c a c i d were then added and the s o l u t i o n was cooled 

to p r e c i p i t a t e strontium n i t r a t e . 

(2) The p r e c i p i t a t e from step ( l ) was d i s s o l v e d i n 1 ml. 

of water and strontium n i t r a t e r e p r e c i p i t a t e d by the a d d i t i o n 

of 15 ml. of fuming n i t r i c a c i d . 

(3) The strontium n i t r a t e was d i s s o l v e d i n 10 ml. of water 

and the s o l u t i o n was buffered by the a d d i t i o n of 1 ml. of 
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6 M a c e t i c a c i d and 2 ml. of 6 M ammonium a c e t a t e . About 
2 mg. of barium were added followed by 2 ml. of a 10$ 
s o l u t i o n of potassium chroinate and the s o l u t i o n was digested 
i n a water bath f o r 10 minutes. The p r e c i p i t a t e of barium 
chromate was centrifuged and d i s c a r d e d . 

(4) A few drops of a s a t u r a t e d s o l u t i o n of sodium carbon­

ate were added and the strontium carbonate p r e c i p i t a t e 

c e n t r i f u g e d down. 

(5) The strontium carbonate was d i s s o l v e d i n a few drops 

of d i l u t e h y d r o c h l o r i c a c i d , a few drops of y t t r i u m c a r r i e r 

were added and the pH of the s o l u t i o n was t r a n s f e r r e d to a 

s e p a r a t i n g funnel and shaken with 10 ml. of a 0.1 M s o l u t i o n 

of di(2-ethylhexyl)phoBphoric a c i d (HDEHP) i n petroleum 

e t h e r . The aqueous phase was discarded and the organic 

phase washed twice with water. The strontium was back-

e x t r a c t e d i n t o 2 x 5 ml. of 0.1 M h y d r o c h l o r i c a c i d and 

f i n a l l y p r e c i p i t a t e d as carbonate by the a d d i t i o n of sodium 

carbonate s o l u t i o n ; strontium carbonate was mounted on a 

f i l t e r d i s c , washed with water and acetone and d r i e d a t 100°C. 
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Y t t r i u m 

C a r r i e r S o l u t i o n 

Y t t r i u m oxide was d i s s o l v e d i n a l i t t l e concentrated 

h y d r o c h l o r i c a c i d and d i l u t e d with water. The s o l u t i o n 

was standardised by t i t r a t i o n with EDTA us i n g Xylenol 
•.>• 

Orange as i n d i c a t o r . 

Separation Frccedure 

(1) The u r a n y l n i t r a t e was d i s s o l v e d i n 2 M h y d r o c h l o r i c 

a c i d and 10 mg. of each of the c a r r i e r s f o r the isotopes 

to be separated were added. The f i s s i o n - p r o d u c t s o l u t i o n 

v/as f i r s t o x i d i s e d with 2 drops of bromine and then reduced 

with 2 ml. of a 5$ hydroxylamine hydrochloride s o l u t i o n . 

(2) The rare-dearth f l u o r i d e s were p r e c i p i t a t e d i n a poly­

thene c e n t r i f u g e tube by the a d d i t i o n of 2 ml. of concen­

t r a t e d h y d r o f l u o r i c a c i d . The p r e c i p i t a t e was d i s s o l v e d 

u s i n g 2 ml. of water, 2 ml. of b o r i c a c i d and 2 ml. of 6 M 

hy d r o c h l o r i c a c i d . (Step (2) was omitted i f l e s s than 
0 

about 2 gra. of u r a n y l n i t r a t e were present i n s o l u t i o n . ) 

(3) Y t t r i u m hydroxide, together with c o - p r e c i p i t a t e d 

lanthanide hydroxides, v/as p r e c i p i t a t e d by the a d d i t i o n 

of 6 M ammonia s o l u t i o n ; i f uranium was present, sodium 
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carbonate was added to keep i t i n s o l u t i o n . 
(*0 The y t t r i u m hydroxide was d i s s o l v e d i n 2 drops of 
6 M h y d r o c h l o r i c a c i d . The s o l u t i o n was d i l u t e d to 10 ml. 
vdth water, t r a n s f e r e d to a s e p a r a t i n g funnel and shaken 
with 10 ml. of 0.3 M HDEHP i n petroleum et h e r . The organic 
phase was washed tv/ice with 0.lMhydrochloric a c i d . The 
y t t r i u m and r a r e - e a r t h s were then back-extracted by shaking 
the organic phase with 2 x 2ml. portions of concentrated 
h y d r o c h l o r i c a c i d . 

(5) The aqueous phase from step {k) was passed through 
2 

a 5 x 0.8 cm ion-exchange column containing D e a c i d i t e PP, 

a s t r o n g l y b a s i c anion exchanger which had p r e v i o u s l y been 

e q u i l i b r a t e d with concentrated h y d r o c h l o r i c a c i d . The column 

was washed w i t h 2ml. of concentrated h y d r o c h l o r i c a c i d and 

a l l the washes were reserved* 

(6) The e f f l u e n t from step (5) was d i l u t e d with water and 

made a l k a l i n e by the a d d i t i o n of concentrated ammonia 

s o l u t i o n . Y t t r i u m hydroxide was cent r i f u g e d down. 

(7) The p r e c i p i t a t e was d i s s o l v e d i n 10 ml. of 10 M n i t r i c . 

a c i d andrlmL. of 1 M potassium bromate s o l u t i o n . A few drops 

of cerium ( I I I ) c a r r i e r s o l u t i o n were added and the s o l u t i o n 
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was transferee! to a s e p a r a t i n g funnel and shaken with 

10 ml. of 0.3 M HDEHP i n petroleum e t h e r to e x t r a c t c e r i u m ( I V ) . 

The aqueous phase was washed with petroleum ether and y t t r i u m 

hydroxide p r e c i p i t a t e d "by the a d d i t i o n of concentrated ammonia 

s o l u t i o n . 

(8) The y t t r i u m hydroxide was d i s s o l v e d i n a few drops of 

6 M h y d r o c h l o r i c a c i d , d i l u t e d to 10 ml. w i t h water and 

digested with 1 ml. of c a t i o n r e s i n . The r e s i n v/as placed 

on the column and y t t r i u m and the r a r e - e a r t h s were e l u t e d 

as described i n chapter 3» Y t t r i u m was p r e c i p i t a t e d as 

the pxalate by the a d d i t i o n of a few drops of a s a t u r a t e d 

s o l u t i o n of o x a l i c a c i d , c o l l e c t e d on a f i l t e r d i s c , washed 

with water, a l c o h o l and ether, and d r i e d under vacuum. 

A n a l y s i s of sources 

The y t t r i u m sources were determined by d i s s o l v i n g the 

sources i n an a c i d s o l u t i o n c o n t a i n i n g ammonium persulphate 

and t i t r a t i n g w ith 0.01 M E'DTA s o l u t i o n and X y l e n o l Orange 

i n d i c a t o r as described f o r cerium. (See page 122.) 



I l l 

Molybdenum 

C a r r i e r S o l u t i o n 

Molybdenum t r i o x i d e was dissolved i n concentrated 

ammonia s o l u t i o n , d i l u t e d and a c i d i f i e d to y i e l d a s o l u t i o n 

2 molar i n h y d r o c h l o r i c a c i d . The s o l u t i o n was standard­

ised by p r e c i p i t a t i n g the molybdenum (VI) w i t h 8-hydroxy-

3 
q u i n o l i n e . 
Separation Procedure 

(1) The u r a n y l n i t r a t e was dissolved i n 2 M h y d r o c h l o r i c 

acid and 10 rag. q u a n t i t i e s of c a r r i e r s f o r the isotopes 

t o be separated were added. Redox rea c t i o n s were c a r r i e d 

out using bromine and hydroxylamine hydrochloride t o promote 

i s o t o p i c exchange. 

(2) Three ml* of a 5$ s o l u t i o n of benzoin-oe"-oxime i n ethanol 

were added and the mixture was poured i n t o a separating 

funnel c o n t a i n i n g 50 ml. of e t h y l a c e tate. A f t e r shaking 

the phases f o r one minute, the aqueous phase was poured o f f 

and kept f o r the separation of other elements. 

(3) The organic phase was washed twice w i t h 50 nile of 1 M 

hy d r o c h l o r i c a c i d . The aqueous phases were each time 

discarded. 
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(k) 15 ml. of 5 M ammonia s o l u t i o n were added and the 
phases were shaken f o r 5 minutes to backextract molybdenum. 

(5) The aqueous phase i n a c e n t r i f u g e tube was made j u s t 

a c i d t o Methyl Red w i t h h y d r o c h l o r i c a c i d , a few drops o f a 
—1 3+ 20 mg. ml. s o l u t i o n of Fe^ v/ere added followed by 1 ml. 

of concentrated ammonia s o l u t i o n . The f e r r i c hydroxide 

p r e c i p i t a t e was c e n t r i f u g e d down and discarded. 

(6) The s o l u t i o n was made j u s t a c i d t o Methyl Red i n d i ­

c a t o r using 6 M h y d r o c h l o r i c a c i d and the s o l u t i o n was then 

digested on a water-bath t o remove traces of dissolved e t h y l 

a c e t a t e . A 3$ s o l u t i o n of 8-hydroxyquinoline i n a c e t i c 

a c i d was added slowly t o s l i g h t excess and the p r e c i p i t a t e d 

Mo0,,( C^H^0N)2.. was t r a n s f e r r e d t o a f i l t e r d i s c , washed 

usin g warm v/ater and ethanol and f i n a l l y d r i e d a t 100°Co 

Ruthenium 

C a r r i e r s o l u t i o n 

Ruthenium c h l o r i d e was dissolved i n water and the 

s o l u t i o n made 1 M i n h y d r o c h l o r i c a c i d . 

Separation Procedure 

( l ) The u r a n y l n i t r a t e or uranium oxide was dissolved i n 

2 M HC1 and the c a r r i e r s f o r the isotopes t o be i s o l a t e d 
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were added, Redox steps, d i g e s t i n g the s o l u t i o n i n the 
presence of bromine and then hydroxylamine h y d r o c h l o r i d e , 
were c a r r i e d out t o ensure i s o t o p i c exchange of ruthenium. 

(2) Hydrogen sulphide was passed through the cooled s o l u t i o n 

and ruthenium was c e n t r i f u g e d down. 

(3) The ruthenium sulphide was s l u r r i e d w i t h 6 M su l p h u r i c 

a c i d and t r a n s f e r r e d t o a d i s t i l l a t i o n apparatus, 1 gm, of 

'sodium bismuthate 1 was added and the f l a s k was g e n t l y 

heated. A i r bubbling through the f l a s k t r a n s f e r r e d the 

d i s t i l l a t e of r u t h e n i u m ( V I I I ) oxide t o the r e c e i v i n g f l a s k 

which held 10 ml. of 12 M sodium hydroxide s o l u t i o n and which 

waf. cooled i n an i c e - b a t h . 

(*0 A few drops of i r o n ( H I ) c a r r i e r s o l u t i o n were added 

and a f e r r i c hydroxide scavenge was c a r r i e d out. 

(5) The s o l u t i o n separated from the p r e c i p i t a t e d i r o n was 

d i l u t e d t o 3° ml., 5 ml. of ethanol were added and a f t e r 

d i g e s t i n g f o r a few minutes the ruthenium(IV) oxide p r e c i p ­

i t a t e was c e n t r i f u g e d down. 

(6) The p r e c i p i t a t e was s l u r r i e d w i t h water, t r a n s f e r r e d 

t o a f i l t e r - d i s c , washed w i t h water and ethanol and d r i e d 

at 100°C. 
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An a l y s i s of the samples remaining; a f t e r counting 

The ruthenium content of the samples remaining a f t e r 

counting were determined c o l o r i m e t r i c a l l y 1 : The sample 

was dis s o l v e d by warming i n 10 ml. of concentrated hydro* 

c h l o r i c a c i d . The volume of the s o l u t i o n was made up t o 

e x a c t l y 100 ml. usi n g concentrated h y d r o c h l o r i c a c i d and 

5 and 10 ml. p o r t i o n s were p i p e t t e d i n t o 25 ml. volumetr i p 

f l a s k s . An equal volume of absolute ethanol was added 

f o l l o w e d by 5 ml. of an aqueous t h i o u r e a s o l u t i o n . The 

s o l u t i o n s were heated on a v/aterbath f o r 10 minutes and made 
v / 

up t o the mark w i t h a 1:1 /v s o l u t i o n of ethanol-hydro-

c h l o r i c a c i d . The absorb t i o n was measured a t 620 m/A and 

compared w i t h those given by a se r i e s of standards s i m i l a r l y 

prepared• 
Rhodium 

C a r r i e r s o l u t i o n 

Rhodium c h l o r i d e was dissolved i n water and made 

approximately 2 M i n h y d r o c h l o r i c a c i d . The s o l u t i o n was 

standardised by p r e c i p i t a t i n g the hexammino-cobalt(III) 

h e x a n i t r a t o - r h o d i u m ( l l l ) s a l t " ' . 
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Separation procedure 

(1) The u r a n y l n i t r a t e was dissolved i n 1 M h y d r o c h l o r i c 

a c i d , the appropriate c a r r i e r s o l u t i o n s were added and the 

s o l u t i o n digested i n the presence of a few drops of bromine 

f o r 10 minutes, A saturated s o l u t i o n of sodium n i t r i t e was 

added u n t i l no f u r t h e r r e a c t i o n w i t h a c i d was observed. 

The s o l u t i o n was digested a f u r t h e r 5 minutes, 

(2) About 20 mg. of t h a l l i u m ( l ) n i t r a t e was added and the 

p r e c i p i t a t e c e n t r i f u g e d down and washed w i t h 10 ml. of 6 M 

hy d r o c h l o r i c a c i d . 

(3) A few drops of concentrated h y d r o c h l o r i c and n i t r i c 

acids were added t o the p r e c i p i t a t e which dissolved on 

warming. The s o l u t i o n was d i l u t e d t o 10 ml. w i t h water, 

b o i l e d and excess saturated sodium n i t r i t e s o l u t i o n was 

added. ThaMum n i t r a t e was s t i r r e r i n as i n step (2) and 

the p r e c i p i t a t e c o l l e c t e d by c e n t r i f u g a t i o n . 

(k) I t was next dissolved i n n i t r a t e and h y d r o c h l o r i c acids 

and rhodium complexed w i t h sodium n i t r i t e as i n step (3)» 

The s o l u t i o n v/as made s l i g h t l y a c i d t o Methyl Red using 

h y d r o c h l o r i c a c i d and 3 n i l . of a f r e s h l y prepared saturated 

s o l u t i o n of hexamino cobalt c h l o r i d e was added. The 
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p r e c i p i t a t e of hexammino-cobalt(III) h e x a n i t r a t o - r h o d i u m ( I I I ) 
was f i l t e r e d through a f i l t e r - d i s c ^ w a s h e d w i t h water and 
ethanol and d r i e d a t 120°C. 

Antimony 

C a r r i e r s o l u t i o n 

A n t i m o n y ( I I I ) c h l o r i d e was d i s s o l v e d i n 2 M hydro­

c h l o r i d e a c i d . The s o l u t i o n was standardised by p r e c i p i ­

t a t i o n as a n t i m o n y ( I I I ) from homogeneous s o l u t i o n using 

ammonium thiocyanate as the source of sulphide ion.^'* 5 

Separation Procedure 

( 1 ) The u r a n y l n i t r a t e was d i s s o l v e d i n 2 K h y d r o c h l o r i c 

a c i d and 10 mg. q u a n t i t i e s of the c a r r i e r s of elements to 

be separated were added. The s o l u t i o n was digested f o r 10 

minutes i n the presence of bromine and then hydroxylamine 

hyd r o c h l o r i d e . 

( 2 ) Two drops of ammonium.sulphide were added to the cooled 

s o l u t i o n and antimony sulphide c e n t r i f u g e d down. 

(3) The antimony sulphide p r e c i p i t a t e was d i s s o l v e d i n 

5 ml. of concentrated h y d r o c h l o r i c a c i d and the s o l u t i o n 

evaporated down to 2 ml. 8' ml 0 of water and 5 nig. of 

t e l l u r i u m c a r r i e r s o l u t i o n were added followed by 1 ml. of 
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hydrazine hydrate s o l u t i o n and sulphur dioxide was passed 
i n t o the warm s o l u t i o n . T e l l u r i u m metal was c e n t r i f u g e d down 
and discarded. 

Antimony sulphide was p r e c i p i t a t e d by the a d d i t i o n of 

a drop of ammonium sulphide s o l u t i o n and the p r e c i p i t a t e 

c o l l e c t e d by c e n t r i f u g a t i o n : and dissolved i n 10 ml. of 

concentrated h y d r o c h l o r i c a c i d . 

(5) 1 ml. of dir-isopropyl ether and 9 ml. of benzene were 

shaken w i t h 10 ml. of concentrated h y d r o c h l o r i c a c i d and one 

drop of bromine. The aqueous phase was discarded and the 

antimony s o l u t i o n from step (4) was shaken w i t h the d i -

i s o p r o p y l ether/benzene phase f o r 1 minute. 

06) The aqueous phase was discarded and the organic phase 

was washed by shaking twice w i t h 2 ml. of concentrated 

h y d r o o h l o r i c a c i d . The aqueous washings were discarded. 

(7) The organic phase was shaken w i t h 10 ml. of water 

c o n t a i n i n g s u f f i c i e n t s o l i d hydroxylamine hydrochloride 

present to decolourise the ether/benzene. 

(8) The aqueous phase c o n t a i n i n g a n t i m o n y ( I I I ) was digested 

on a water-bath w i t h an equal volume of a saturated ammonium 

thiocyanate s o l u t i o n . The red a n t i m o n y ( I I I ) sulphide 
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p r e c i p i t a t e was t r a n s f e r r e d t o a f i l t e r - d i s c , washed w i t h 
water and acetone and d r i e d at 120°C. 

Iodine 

C a r r i e r s o l u t i o n 

Potassium iodide was dissolved i n water and standardised 

by p r e c i p i t a t i o n s as p a l l a d i u m ( I I ) i o d i d e . 

Separation from 2 gm. of u r a n y l n i t r a t e 

(1) The u r a n y l n i t r a t e was dissolved i n 20 ml. of 2 M 

hy d r o c h l o r i c acid i n a 100 ml. beaker. 5 ml. of concentrated 

ammonia were added followed by c a r r i e r s o l u t i o n s c o n t a i n i n g 

the elements t o be'; separated. 

(2) The mixture was warmed w i t h s u f f i c i e n t saturated sodium 

carbonate s o l u t i o n t o d i s s o l v e p r e c i p i t a t e d uranium oxides, 

2 ml. of a 2°/o s o l u t i o n of sodium h y p o c h l o r i t e were added and 

the s o l u t i o n was set aside f o r ten minutes. 

(3) I t was then t r a n s f e r r e d t o a 250 ml. separating f u n n e l 

c o n t a i n i n g 20 ml. of carbon t e t r a c h l o r i d e . The aqueous 

s o l u t i o n was a c i d i f i e d by the dropwise a d d i t i o n of concen­

t r a t e d n i t r i c a c i d . 5 n i l . of a 10$ s o l u t i o n of hydroxylamine 

hydrochloride were added and the l i b e r a t e d i o d i n e t r a n s f e r r e d 

i n t o the carbon t e t r a c h l o r i d e by shaking. 
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(k) The i o d i n e was back-extracted as i o d i d e i n t o 5 ml, of 
water c o n t a i n i n g 3 drops of a saturated sulphur dioxide 
s o l u t i o n , 

(5) The aqueous phase c o n t a i n i n g a few drops of n i t r i c 

a c i d and three drops of sodium n i t r i t e s o l u t i o n was shaken 

w i t h 5 n i l . of carbon t e t r a c h l o r i d e , 

(6) The iodine was again ex t r a c t e d i n t o 5 ml. of water 

c o n t a i n i n g 2 drops of sulphur dioxide s o l u t i o n . A s l i g h t 

excess of palladium n i t r a t e s o l u t i o n was added and the 

p a l l a d i u m ( I I ) i o d i d e which p r e c i p i t a t e d was t r a n s f e r r e d t o 

a f i l t e r - d i s c , washed w i t h water and acetone and d r i e d at 

120°C. 

Separation Procedure f o r 10 gm. of Uranyl N i t r a t e 

(1) The mixture of u r a n y l n i t r a t e and the c a r r i e r s o l u t i o n s 

were d i l u t e d t o 20 ml. so t h a t the s o l u t i o n was 6 M i n 

h y d r o c h l o r i c a c i d . One ml. of 1 M sodium chl o r a t e s o l u t i o n 

was added and the iod i n e monochloride produced was extract e d 

i n t o 20 ml. of n-rbutyl acetate. 

(2) The b u t y l acetate phase was shaken w i t h 5 ml. of water 

c o n t a i n i n g 3 drops of a saturated sulphur dioxide s o l u t i o n 

and the organic phase was discarded. 
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(3) Steps (5) and (6) of the previous method were then 
c a r r i e d out. 

Cerium 

C a r r i e r s o l u t i o n 

C e r i u m ( I I I ) c h l o r i d e was dissolved i n 2 M h y d r o c h l o r i c 

a c i d and the s o l u t i o n was standardised t i t r i m e t r i c a l l y 

u s i n g EDTA and Xylenol Orange i n d i c a t o r at pH $.6 - 6.0. 

Separation Procedure 

(1) To the u r a n y l n i t r a t e dissolved i n 2 M h y d r o c h l o r i c 

a c i d were added c a r r i e r s f o r the elements to be separated. 

The s o l u t i o n was b o i l e d a f t e r the a d d i t i o n of 2 drops of 

bromine followed by 2 ml. of hydroxylamine hydrochloride 

s o l u t i o n . 

(2) C e r i u m ( l I I ) f l u o r i d e was p r e c i p i t a t e d by t r a n s f e r r i n g 

the s o l u t i o n to a polyethylene c e n t r i f u g e tube adding 2 ml. 

of concentrated h y d r o f l u o r i c acid and d i g e s t i n g f o r 10 

minutes. 

(3) The c e r i u m ( I I I ) f l u o r i d e p r e c i p i t a t e was dissolved i n 

2 ml. each of saturated b o r i c acid and concentrated n i t r i c 

a c i d by warming. A f t e r d i l u t i n g t o 10 ml. w i t h water, cerium 
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f l u o r i d e was p r e c i p i t a t e d as i n step ( 2 ) . 

(4) The c e r i u m ( I I I ) f l u o r i d e p r e c i p i t a t e was dissolved 

u sing "boric and n i t r i c a c i d as i n step (2) and the s o l u t i o n 

was made k M i n n i t r i c a c i d . 

(5) The c e r i u m ( l l l ) s o l u t i o n was t r a n s f e r r e d to a separ­

a t i n g f u n n e l and shaken t w i c e , each time f o r 2 minutes, 

w i t h 20 ml. of a 0.1 M s o l u t i o n of HDEHP i n carbon t e t r a ­

c h l o r i d e . The organic phases were discarded and the aqueous 

s o l u t i o n was shaken w i t h 20 ml. of carbon t e t r a c h l o r i d e 

which was i n t u r n discarded. 

(6) k ml. of 1 M potassium bromate s o l u t i o n and 2 ml. of 

concentrated n i t r i c aoid were added t o the aqueous phase 

which was then shaken w i t h 20 ml. of 0.1 M HDEHP i n p e t r o ­

leum ether. 

(?) The aqueous phase was teste d f o r cerium by the a d d i t i o n 

of a concentrated ammonia s o l u t i o n and i f f r e e from i t , i t 

was discarded. The organic phase was washed three times 

w i t h 10 ml. of 4 M n i t r i c a c i d , then w i t h 10 ml. of 0.5 

n i t r i c acid and the washes discarded. 

(7) Cerium was back-extracted by shaking the petroleum 

e t h e r phase twice w i t h 10 ml. of 0.5 M n i t r i c a c i d c o n t a i n i n g 
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a few drops of JQfi hydrogen peroxide. The aqueous e x t r a c t s 
were made a l k a l i n e using concentrated ammonia s o l u t i o n and 
heated i n a water-bath to destroy the hydrogen peroxide. 
(8) Cerium hydroxide was c o l l e c t e d by c e n t r i f u g a t i o n , taken 
up i n 6 drops of 6 M h y d r o c h l o r i c acid s o l u t i o n , d i l u t e d t o 
10 ml. w i t h water and digested f o r 5 minutes w i t h 5 ml. of 
saturated o x a l i c a c i d . The c e r i u m ( I I I ) oxalate was t r a n s ­
f e r r e d t o a f i l t e r d i s c , washed w i t h ethanol and ether and 
d r i e d under vacuum. 
Analysis of the Sources 

The f i l t e r - d i s c c o n t a i n i n g the c e r i u m ( I I I ) oxalate p r e c i p i ­

t a t e was t r a n s f e r r e d t o a 250 ml. f l a s k and warmed w i t h 5 ml. 

of k M n i t r i c acid t o d i s s o l v e the p r e c i p i t a t e . The s o l u t i o n 

was d i l u t e d t o $0 ml. and 3 ml. of a 20$ s o l u t i o n of ammonium 

persulphate was added. The s o l u t i o n was b o i l e d u n t i l the 

Ce IV colour appeared, a small c r y s t a l of hydroxylamine 

hydrochloride was added and the s o l u t i o n was cooled. The 

pH was adjusted t o 5#6 ~ 6.0 and the s o l u t i o n was t i t r a t e d 

u s ing 0.01 M EDTA and Xylenol Orange i n d i c a t o r . 
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Praesodymium 
C a r r i e r s o l u t i o n 

Praesodymium oxide was dissolved i n concentrated hydro­

c h l o r i c a c i d and d i l u t e d w i t h water. The s o l u t i o n was 

standardised by t i t r a t i o n w i t h EDTA using Xylenoi Orange 

i n d i c a t o r . 

Separation Procedure 

The i d e n t i c a l procedure o u t l i n e d f o r y t t r i u m was followed. 

f o r praesodymium recovery. Praesodymium was e l u t e d approx­

i m a t e l y 2 hours a f t e r y t t r i u m . The main f r a c t i o n s were 

c o l l e c t e d as oxalate and t r a n s f e r r e d to a f i l t e r - d i s c . 

A nalysis of sources 

The praesodymium sources were analysed by the method 

described f o r cerium. 



Appendix B 

Least-Squares program t o f i t s i n g l e component decays. 
Language: E l l i o t A l g o l 
BEGIN INTEGER I , K, RUN, N; 

READ N; 

BEGIN REAL LAMI, AIO, T I , C, VARO, STDEVA, STEVB, DA, 

DB, B l l , B12, B22, D l l , D12, D22, CI , C2, C3, S, VAREX, 

.DENOM; 

ARRAY A, T, FO, FT, FA10, FC, L, 

EXTRA, TOTA ( l : N); 

SWITCH SS:- CYCLE, FINISH; 

REAL PROCEDURE SUM ( F l , F2); 

ARRAY F l , F2; 

BEGIN REAL S; INTEGER J; 

S:= 0; 

FOR J:= 1 STEP 1 UNTIL N DO 

S: f S + F l ( J ) * F2 ( J ) / L ( J ) ; 

SUM: = S; 



READ RUN, T l , A10, C, VARO; 

PRINT £ 

RUN NUMBER?, SAMBLINE, DIGITS ( 3 ) , RUN,£ 

HALPLIPE = ?, FREEPOINT ( 4 ) , T l ; 

FOR I : = 1 STEP 1 UNTIL N DO 

READ T ( I ) , A ( I ) , TOTA(l); 

LAMI: = 0.9315 / T l ; 

CYCLE: FOR I : = 1 STEP 1 UNTIL N DO BEGIN 

EXTRA(I): = EXP(-LAMI * T ( l ) ) ; 

P O ( I ) : = A ( I ) - A10 * EXTRA(I) - C; 

P T ( I ) : = LAMI * A10 * EXTRA(I); 

FA10(I): = -EXTRA(l); 

P C ( I ) : = - 1 ; 

L ( I ) : = A ( I ) * A ( I ) / TOTA(I); END; 

K : = K + 1; 

B l l : = SUM(FA10, PA10); 

B12: = SUM(FA10, PC); 

B22: = SUM(PC, PC); 

DENOM: = B l l * B22 - B12 * B12; 

CI: = SUM(P0, PA10); 

C2: = SUM(P0, PC); 
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D l l : = B22 / DENOM; 
D12: =-B12 / DENOM; 
D22: = ELI / DENOM; 

DA: = D l l * CI - D12 * C2; 

DB: = D12 ;* CI - D22 * C2; 

A10: = A10 - DA; 

C: = C - DB; 

IF ABS(DA/A10) LESSEQ'.. 1@- 4 THEN GO TO FINISH; 

I F ABS(DB/C) LESSEQi . 1@- 4 THEN GO TO FINISH; 

IF K GREQ 15 THEN GO TO FINISH ELSE GO TO CYCLE; 

FINISH: 

S: = 0; 

FOR I : = 1 STEP 1 UNTIL N DO 

Si = S + FO(I) * F O ( I ) ; 

VAREX: = S / (N - 2 ) ; 

PRINT ££L2? S =£ S??, SAMELINE, S, ££S2?, VAREX = ?, 

VAREX; 

STDEVA: = SQRT ( D l l * VAREX); 

STDEVB: = SQRT (D22 * VAREX); 



1 2 7 . ' ^ 

FOR I : B 1 STEP 1 UNTIE N DO BEGUN 
IP ABS(FO(I) / A ( I ) ) GR .03 THEN PRINT £ 
REJECT POINT, T = ?, SAMELIN?, T ( I ) , £A = ?, A ( l ) , 
£RESIDUAL = ?, FO(I); END; 
PRINT £ 

TIME£S2? LS. ACTIVITY £ S4? OBS. ACTIVITY £S2? EXPONENTIAL 

£L2 ??; 

FOR I : = 1 STEP 1 UNTIL N DO BEGIN 

PRINT FREEPOINTU). T ( l ) , PREFIX( ££ S4??), ALIGNED(5, 1) , 

A10 * EXP(-LAMI * T ( I ) ) + C, A ( l ) , FREEPOINT ( 4 ) , 

EXP(-LAMI * T ( I ) ) ; END; 

PRINT £ 

A10 =£S2??, SAMELINE, A, ££S3? ST DEVN A10 = ?, 

STDEVA, ££L2? RESID. ACTIVITY, C = ?, SAMELINE, . C, 

££S3? STDEVN C = ?, STEVB, ££L2? TOTAL MATRIX B = ?, 

SCALED(4), DENOM; 

END; END; END; 
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