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ABSTRACT

A presentation of the formation and properties of the
positronium atom are given in the early part of the thesis
from a more or less histepical viewpoint.

This is followed by the major part of the thesis dealing
with the scattering of orthopositronium by helium atoms in two
approximations.

The first is the static approximation including exchange
and the elastic scattering cross sections and the corresponding
phase shifts are calculated. The second calculation allows for
the long range van der Waal's forces acting between the neutral
atoms. The evaluation of the long range potential in the
adiabatic approximation using a Rayleigh-Ritz method is pres-
ented and the elastic cross sections and phase shifts are re-
computed with the potential included in the analysis. Little
difference is- found in-the values- from the-two-approximations
except at very low energies.

A survey is presented of the quenching phenomena exhibited
by positronium in gases and the quenching of orthopositronium
in helium is studied in detail.

Measurements of the quenching rate of orthopositronium in

helium determine the parameter ?.‘“_ , the effective number

of electrons per atom in a singlet state relative to the



positron. This number may be calculated from the wave function
for the orthopositronium-helium atom system. Since we have
computed this wave-function in two approximations for the
scattering problem we have utilised the results to calculate
E_._«, . At thermal energies we find 24‘._ = 0.037 and Zag

= 0.048 in the static exchange case and long range polarisation
case respectively. These results are considerably smaller than
the most recent,measured values of hﬂ. ~ 0.1 - 0.25,
and the possible reasons for the discrepancy are discussed.

The presence of gyesonance in positron-atom scattering can
be viewed as the attachment of a positron to the atom or as
the binding of a positronium atom to the positive ion. The
process is likely to be important in various scattering problems
and the simplest case, that of positron attachment to a hydso-
gen atom, is considered here.

The method used is that of the projection operator in
conjunction with a Rayleigh-Ritz variational technique.

The evidence for a positron-hydrogen atom bound state is
presented as a result of the calculation and comparison made

with the results of other workers.
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CHAPTER 1

POSITRONIUM




Introduction

The Schrodinger wave equation is applicable to studies of
systems of particles in cases where the velocities involved are
negligible compared with the velocity of light. Using the
special theory of Relativity and a modification of the wave

_ equation, (Dirac, 193%0) predicted both positive and negative
energy solutions for the case of a free electron. The negative
energy case corresponds to a positive energy solution in which
the electron has a positive charge instead of a negative one.
The positively charged electron was called a positron. It was
postulated that all the negative energy states were normally
occupied by electrons, and a positron appeared as a 'hole' in
the negative region when an electron made a transition to a
positive energy level. Two years later (Anderson, 1932) detect-
ed the positron in a cloud chamber experiment. The charge

to mass ratio was measured and found to have the same absolute
value as that of the electron, (Thibaud, 1933). Later more
qecirate estifetions confirmed this fact. —The possible exist=
ence of a bound state of the electron and positron was postul-
ated by (Mohorovicie, 1934), and (Ruark, 1945) gave the name
Positronium to this system. The atom of positronium was
calculated to have an ionization potential of 6.77 ev. Certain
other polyelectron structures were also found to be stable, the

system of two positrons and an electron, two electrons and a




positron, and the positronium molecule (Hylleraas, 1947),
(Hylleraas and Ore, 1947) and (Wheeler, 1946). The lifetimes
of these latter, however, were negligibly small compared to
that of positronium itself.

Annihilation

Since electromagnetic radiation can excite an electron from
a negative energy state to one of positive energy in the phen-
omenon of pair creation, we must also consider the reverse
effect,i.e. the electron colliding with a positron and making
a radiative transition to the unoccupied negative energy level.
If E_ +and E . are the total energies of each particle and
their masses, then the energy of the emitted radiation will be,

Ey = E- + E, + %X c*
In the absence of external fields at least two quanta of
radiation must be emitted to conserve momentum. If the magnitude
of E_and E, are smll the two quanta emitted in opposite
directions in the centre of mass system will each have an energy
of about mc'=0.51 Mev. This characteristic radiation was
observed soon after the discovery of the positron by (Thibaud,
1933) and (Curie and Joliot, 1933). The two quanta emission in
predominantly opposite directions was demonstrated by (Klemperer,
1934).

The two quantum annihilation is allowed only for a pair

state of complete spherical symmetry. This means that the two

-




3.
particles meet with zero orbital angular momentum, i.e. head on -
and with their spins antiparallel. Quantum mechanically the
pair can be iriclose proximity only in two states; with their
spins antiparallel in a singlet state, or parallel in a triplet
state. In the case of a head on collision in the triplet state
the selectien rules, (Deutsch, 1953), show that three quanta are
produced, coplaner in the centre of mass coordinates with an
energy sum of 1.022 Mev and a statistically distributed indiv-
idual energy shown in figure 1, (Ore and Powell, 1949). The line
spectrum at 0.51 Mev for the singlet, two quantum annihilation

is shown also for comparison.

NNV
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The two cases of annihilation described are the only ones of
importance. The probability of a triplet event is only l/llzo
that of a singlet event. The smallness of the triplet annihil-
ation probability and the corresponding longer lifetime of the
triplet state, is an important feature in the study of posit-

ronium as we will show. Suppose now that a positron in a gas

positronium atom is held in dynamic equilibrium by a balance of
electrostatic attraction of the two particles and the opposing
force due to their rotary motion. The atom is formed in either
the triplet or singlet state, statistical arguments showing

that the triplet is three times as likely as the singlet state.

The two particles eventually suffer mutual amnihilation

and exhibit a predictable mean life. The mode of decay depends
on the state they are in as discussed already. The lifetime of

the singlet state is 1.25 x 10 1°

seconds and the triplet life-
time is 1.4 x 10 ! seconds. Because of the long lifetime of
triplet or orthopositronium, most of the work to date has been
directed to its particular study.

The evaluation of the various lifetimes is discussed by

(De Benedetti, 1956), .and (De Benedetti and Corben, 1954).

Positrons in Gases

At the present time it is still impossible to obtain a clear
pilcture in theory or experiment as to the history of a positron

in passing through a gas, and only a broad outline can be given.
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The usual source is an. , emitting positrons of maximum
energy 0.5U4 MeV which enter the gas and eventually fall to
thermal energies of about 0.025 ev.

As the “Na emits a positron it decays to ' ~Ne in an
excited state which then decays to the ground state in 10 1lsec,
emitting a photon of 1.28 MeV. This gives the indication to
the experimentalist of the birth of the positron; the resulting
annihilation radiation gives the subsequent death.

The important process of thermalization has been considered
by (Massey and Mchr, 1954) and (Tao et al., 1963). As an
indication of the processes involved we will consider the fate
of positrons in argon gas.

The positrons undergo many reactions and the result is a
composite lifetime for the annihilation depending on various
components each indicating a particular process. The times have
been estimated and we give a table in figure >2 , indicating
the processes for positrons in argon at a pressure of one
atmosphere.

We can see that the positron first loses energy very quickly
by inelasticcollisions that cause ionization and excitation of
argon atoms. On reaching the first ionization energy of argon,

Eim , the positron can form positronium by extracting
an electron from the atom. An estimated 30% of all the pssitrons

will form positronium. Alternatively thel « :




Energy (ev) Slowing Mechanism Time(risec.) Process

Inelastic collision 7 1. Slowing down
. 2. Other loss
500 dominates negligible
>~

. Slowing down
Small. annihil= -
15.8 | ation loss

7

N

Inelastic and elastic

Ecm

. Ps formation
. Free arnnihilation
. Slowing down

Gollisions comparable 90

W

Baxe = 11.6 .

7

1. Ps formation

2. Small freeamnihi-
lation

3.0 3. Slewing down

Elastic collisions only 12
Eur

Y

1. Slowing down
2. Compound form-
Elastic collisions only 276 ation
3. Eventual free
0.9 annihilation

A%

1. Slowing down
‘ 2. Compound form-
Elastic collisions only Long ation
3. BEventual free
. annihilation = _

FIGURE 2
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positron can slow down by excitation of the argon or by elastic
collisions. E.m. is the threshold below witich positronium
cannot be formed and is equal to the Ew\, minus the posit-
tronium binding energy, 6.8 ev.

Above E,.m inelastic collisions predominate since they
put less restriction on the subsequent electron veléocity than
does positronium formation. Even if positronium is formed from
a fast moving positron it will soon break up in subsequent
collisions due to its excess energy. Excitation levels such as

Eae = lI'b or , the first excitation level of argon, will
compete in the region between EBage and Eu<m . Most of
the positronium formation then, occurs with positrons that have
been reduced by a final inelastic collision to the energy region
between Esa, and Eaxe the so-called, 'Ore gap'.

For some gases reasonable confirmation of the above theory
has been found, (Deutsch 1953), (Pond, 1952), (Gittelman and
Deutsch, 1956). Detailed calculations have been attempted on
atomic and molecular hydrogen, (Massey and Mohr, 1954) and (Mohr, ~~
1955), and helium (Lee Chang, 1957, 1958).

In figure 3, we show the position of the Ore gap for
various rare gases. If the formation probability of positronium
is g— then we can define it as lying between the limits, (Green,

1966),

Eim = (Eim — ¢-8 e = (Eo —Lg
AR



7.

Experimental estimates of 6— for some gases are within or

near the limits predicted, (Pond, 1952). The formation fraction
ﬁ is influenced by magnetic and electric fields. A static
electric field produces an increase in positronium formation,
(Deutsch, 1953), and (Deutsch and Brown, 1952). The theory is
that positrons which fall below the formation thresho-ld for )

positronium are accelerated by the field back into the Ore gap

and are then capable of forming positronium again.

FIGURE 3
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The electric field effect has been studied in detail, (Teutsch




8.
and Hughes, 1956), (Marder et al, 1956), for many gases and the
acceleration effect is supported except in those gases where
competition from low lying excitation levels of the gaseous
atams occur.

Recent work of a theoretical nature on positronium form-
ation in gases has concentrated on hydrogen and hydrogenlike
atoms. An advance on earlier calculations was made by (Cheshire,
1964) using a version of the impulse approximation, the results
being within a factor of 2 of the Born approximation results.
(Bransden and Jundi, 1967) using the two-state approximation
took into account the long range interactioﬁs between the
hydrogen and positronium atoms in each channel and found that
polarization forces dominate the cross section near the form-
ation threshold for positronium. Using a coupled equations
technique (Fels and Mittleman, 1967) calculated the formation
cross section and found it 40 times smaller than the Born
approximation. Finally, (Roy and Das, 1968), used a method
-employing field theory for bound states in quantum-electrody-- -
namics and obtained results similar to (Massey and Mohr, 1954)
but with the cross section maximum moved to a higher positron
energy.

The phenomenon of positronium formation during the passage
of positrons through gases has caused interesting modifications

theoretically, in calculations of positron scattering cross



sections and phase shifts in collisions with gaseous atoms.

Even when the positron energy is too small to ionize the atom
one can still allow for the virtual positronium formation where
the positron in the scattering region moves as a bound system
with an atomic electron without completely freeing that electron,
and on leaving the scattering region it is energetically unable

to detach the said electron and so leaves it behind

MThia wonld
getach 2 al inlis would

indicate virtual positronium formation as a short range corre-
lation mainly in the form of a polarization arising from
Coulonbian forces. The importance of the process has been
shown in the hydrogen case by (Spruch and Rosenberg, 1960),
(Cody et al, 1964) and (Bransden, 1962). The case of positrons
in helium is dealt with by (Kraidy, 1967) where virtual posit-

ronium is again shown to be an important effect.

Detection of positronium

Experimental evidence of positronium was first found by
(Shearer and Deutsch, 1949). It was calculated that the ratio
of two—photon_éo three phétég énnihilations_}or free positrons o
in a gas should be in the ratio of 372 to 1, (Ore and Powell,
1949). Now positronium formation will enharce the three-photon
effect since the triplet state is three times as well populated

as the singlet state.

Indication of positronium formation then, will be given by



lo L]

three factors.
(i) a decrease in the ratio mentioned above
(ii) a pressure independent orthopositronium lifetime of order
1077 secs.
(iii) a change in the annihilation spectrum due to a decrease
in the intensity of the singlet annihilation 0.5 MeV line.
(Shearer and Deutsch, 1949) confirmed positronium formation in
nitrogen and argon by method (ii) and verified the fact by
measurement of the triplet decay rate-, (Deutsch, 1951). Method
(i) and (iii) were used by (Rich, 1951), (Pond 1952), (Siegal,
1952), (Benedetti and Siegal, 1954) and (Dulit, 1956) for various
gases. The direct observation of positron lifetime in gases also
indicated formation of positronium, (Gittleman, 1958), (Celitans
and Green, 1964), (Green and Tao, 1963), (Tao et al,1963). The
annihilation spectrum of figure 1 was found to be in agreement
with the experimental observation by (Lewis and Ferguson, 1953).
Two other possibilities- are open for positronium detection
but as they are dependent on the fine structure ofiﬁositronium
atomgwe will deal with them in the next section.

The Structure of Positronium

The gross structure of positronium states is exactly like
that of hydrogen except for the effect of the different reduced

mass of the electron. This leads to a reduction in energies

by a factor of 2 as compared with a hydrogen atom with an

"
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infinitely massive nucleus. Consequently the ionization potential
is 6.8 ev, the energy of the first excited state 5.1 ev,
and the Lyman e;—line of positronium lies at 2400 8 . To this
degree of approximation the wave functions for positronium are
the same as those for hydrogen but the relevant coordinate,
i.e. the electron-positron seperation is twice as large as the
electron-proton seperation in hydrogen. Since the two particles
in the positronium atom are distinguishable there are no
difficulties connected with the Pauli exclusion principle. The
transition probability for optical dipole transitions is half
that for corresponding hydrogen lines, the transition dipole moment
is twice as large and the emitted frequency half that of hydro-
gen.

The possibility of observing positronium by detection of its
Lyman & -line has been investigated. (Deutsch, 1953) showed
that if formed in any excited state the positronium would
radiate optically to the ground state rather than annihilate.
Attempts to detect this radiation have not succeeded, (Brock
and Streib, 1958), (Hughes, 1957) and (Duff and Heymann, 1963).
However the concentrations of positronium obtained in practice,
and especially in excited states, are extremely small in
comparison with gas-concentrations typicallly used in spectro-
scopic work, thus no completely unambiguous result has yet

been obtained.
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The fine structure of positronium has been theoretically
investigated by (Pirenne, 1947), (Berestetzki, 1949) and (Ferrell,
1951). Radiative corrections to the fine structure are discussed
by (Karplus and Klein, 1952). A suitable review of the invest-
igations is given in (DeBenedetti and Corben, 1954).

The main differences between the positronium and hydrogen
fine structures are as follows.

(i) There is a relativistic orbit-orbit interaction between
the particles which is negligible in the case of the slow moving
proton of hydrogen.

(i1) The magnetic spin-spin interaction between the particledis
of the same order as the fine structure, while in hydrogen this
hyperfine structure is smaller in the ratio of the magnetic moment;
of proton and electron.

(iii) There is an additional spin dependent interaction arising
from the possibility of virtual arnihilation and recreation of
the pair. This is a short range force importarit only in s-states.
This annihilation force has also been considered by (Bhabha, 1936)
in connection with positron-electron scattering. Of particular
interest in the fine structure of positronium is the splitting
between the triplet and singlet components of the ls ground

state. Basically this is due to two terms.

(i) The magnetic spin-spin interaction

(ii) The annihilation force.
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If the splitting is AW then calculation gives,

AW = 2.044x 10° Me/sec.

correct to order i with respect to the gross strueture where
ol = e_"/T\c. as usual.

. . s
(Karplus and Klein, 1952), corrected this value to order ot

)

. .
by using advanced gquantum electrodynamics and a number

Q

refined theoretical arguments. Their corrected value was,

AW = 2.0337 x 10° Me/sec.

Let us now consider the ground state 1s in a magnetic field.
Positronium does not show a first order Zeeman effect in any
of its states. Since the masses of its two particles are equal
and their charges opposite there is no magnetic moment due
to the orbital motion. Similarly there is no net spin magnetic
moment in triplet states. In singlet states there is no
preferred spin direction so the expectation value of the moment
is again zero+ - - - -7

There is however a second order Zeeman effect i.e. there can
be an induced magnetic moment.

In figure 4, we show the ground state splitting of singlet

and triplet positronium and the influence of the magnetic

field on them.
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FIGURE 4
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J is the total spin quantum number and m. the magnetic quantum
number. The important polint is that the magnetic field intro-
duces an admixture of singlet state in the triplet term with
wn= 0. As a result of this the number of triplet annihilations
due to positronium decreases when a magnetic field is appiied.
This is because /3 of what was a pure triplet stafe in absence
of the field has now a finite probability of decaying as a
singlet. This effect can be observed on applying a magnetic
field and consequently related to AW. (Deutsch and Dulit,
1951) estimated AWby noting this so-called magnetic 'quenching'
and found,

AW = 2.26 x 10° Mc/sec ¥ 15%

¢
Although the experiment could not measure to the ¢ accuracy
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of the refined calculations if did indicate the presence of the
annihilation force which is a correction to ot

If a radiofrequency field is applied to the positronium
already in a static magnetic field in a cavity then we expect
resonance quenching to occur, i.e. the signal induces transitions
from them= ¥ 1 levels of the triplet state to them = O
singlet state produced by the magnetic field. These decays
are indicated in figure U4 by a dotted arrow. The resonance
is sharp and the frequency and mognetic field values can be
related to the value AW . In their brilliant experiments
(Deutsch and Brown,1952) and (Weinstein, Deutsch and Brown,
1954), the resonance was found and AW estimated. The value
was,

Aw = 203380 I L0 Mc/sec.

This remarkable agreement with the theoretical value was a
triumph of modern day physics. It not only proved beyond all
doubt the presence of positronium but confirmed the validity
of the quantum electrodynamics used in the theoretical cal-
culations.

It is ironical that the fine structure of positronium tells
so much but the gross structure cannot yet be observed at all.

That so much can be gained by a study of this, the most
fundamental of atoms, is an incentive to proceed with further

elaboration to the problems presented by its interactions with




the simpler gaseous atoms.

16.



CHAPTER 2

POSTITRONIUM COLLISIONS

IN GASES
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Introduction

In considering the collisions of positronium with gaseous
atoms we concentrate on the ortho-positronium state because of
greater probability of colliding.

In atomic hydrogen the ortho-positronium can be converted
to the para state by exchange of its own electron with a suit-
ably orientated atomic electron.

The other possibility is for direct annihilation of the
positron with the atomic electron.

In helium gas the latter process is the only source of
quenching for the ortho-positronium because of the spin align-
ment restrictions on the ground state helium electrons. Now
the rate of these collisions depends on the overlap of the wave
functions describing the system so experimental observations
of the quenching crosé section can lead to correlation with
theoretical calculation and an indication of the accuracy of
the postulated form of the wave functions involved.

(Fraser, 1961) has calculated the total elastic and
conversion cross sections for ortho-positronium with atomic
hydrogen and the elastic cross section for ortho-positronium in
helium. As a consequence of our work Fraser has recalculated

his helium results and our results now agree for the static
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approximation.

(Kraidy, 1967) has considered the collision of positronium
with helium ions, ut*,as part of his work on positron collisions
in helium, considering only the case that is symmetric with
respect to the space coordinates of the two electrons.

Of course, only the results for collisions in helium offer
any hope of experimental verification.

We will give a brief outline of the results of Fraser and
Kraidy for the hydrogen and helium ion case and the proceed
to a detailed study of the atomic helium prdblem;

Ortho-positronium collisions with hydrogen

The total elastic and conversion cross sections were
calculated for positronium.kinetic energies O to 9.8 ev for the
£ = 0 partial wave only. A variational argument led to integro-
differential equations which were solved numerically.

The cross sections were very strongly energy dependent. The
ratio of conversion/total cross sections ranged from 0.176
to 0.070 over the range O to 6.8 ev. This is to be compared with_
the value 1/4 given by (Massey and Mohr, 1954). However Massey
and Mohr used the Born approximation which can only be expected
to give an indication of the higher energy results. The results

of (Fraser, 1961) are outlined on next page.
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Wave no. of O-Ps (atomic units) Elastic (a02) Conversion (a02)
0o 603 106
0.2 109.3 16.1
0.4 43.4 4.48
0.6 25.4 2.00
0.8 15.5 1.08
1.0 9.2 0.64

The cross sections are seen to be very large at low energies.

Positronium collisions with helium ions

This collision is of no practical interest but is useful
in that is was used to investigate the effect of allowing for
positronium polarisation. The elastic cross section was calcul-

ated corresponding to,
+ . +
Ps + Hot — Ps + He
and also the effect on this cross section of the reaction
+
Ps + Heo' - - + He

due to coupling with the elastic case.

The cross sections were taken from the-e.= O - 4 cases. It
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was found that the second channel decreased the crossssections
considerably at the lower energies. The atomic polarizability
was found to have almost no effect. The positronium polarization
however considerably increased the elastic cross section, mainly
in the e = 0 and { = 1 contributions, by a factor of ten at
low positronium energies. This was thought to be due to the
large polarizability of the positronium.

With all the corrections the range of cross section was Yo al
at zero energy to > 80 q* at 0.8 a.u. positronium kinetic
energy, somewhat larger than the hydrogen atom cross sections.

Ortho-positronium collision with Helium atoms

We are calculating here the eiastic cross sections in the
static field approximation first and then extending the work to
include the long range van der Waals interaction between the
positronium and helium atoms.

We will consider the cases of -e, = 0, 1 and 2 although the

extension to higher 4 values will be quite apparent.

Wé negle;_t any_ excifé_i’&ion E)f the bosifronium and hellum
Because of the coincidence of mass and electrical centres in
normal positronium the direct interaction with the helium
vanishes. The long range interaction was expected to have
greatest effect at the lower energies, the effect at thermal
energies being the pertinant one in view of the subsequent work

on the quenching calculation in helium and the available
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experimental results.

(i) Statement of the Problem

As the helium nucleus has a much greater mass than the
electrons and positron we assume it at rest and at the coord-
inate origin.

For a Hamiltonian H ,botal energy of the system E and
wave function I} describing the system, Schrodinger's equation
gives us,

(u-e)P = o

choosing units,

h o= |
m, = ‘e
Lt = 2

results in the unit of length as a, and the unit of energy as
the Rydberg, 13.6 ev.

In these units,

Hoe =V =90 -9 -9 -2 -2 -%2 +4

= AR SR S N R N
'rl I -l", Tia _r.! .r,:‘

Here 43 3 is the distance between the .’y and A 'tk particles,
either electrons or positrorn:

N denotes the positronium electron and 4, and &, the
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atomic electron coordinates.
< is the positron coordinate.

It is convenient to define two new coordinates,

\
o -3lavm) , ep-a-g
Here €6, is the distance of the positronium centre of massifrom

the helium nucleus and P is the internal coordinate of the

positronium atom. Coordinates are shown in figure 5.

e,
Ta
T ~
L4 e
------- +p W
'n'.!

FIGURE 5

We can decompose the Hamiltonian as follows.

Transfq;'_ql,
L 2 X
into

2 Vd‘. = 1. V,,, )
Now the normalized positronium ground state wave function can
be written

dlp): ()" o™ &

because of the similarity of the atom to hydrogen. Its ground
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state energy will be,E,:s : -%_ and the wave function will

satisfy,

(-29; - 7) ¢(r) = EL g (n)
The helium ground:.state wave function is symmetric in the
coordinates of its electrons and satisfies,

A A S Bl DL AC Y IR Pl W)
with $(f.0)the wave function and Es* the ground state. Now the
eigenfunction of the above equation is nosknown in closed form.

As a ‘first approximation we assume,

O, (n.6) - ('“;3) PR

where . = 1._:- and gives an energy value of =2 which is 2%
from the experimental value. It is open to question whether
this is a good or bad approximation in the present case, prob-
ably the only definite indication will be by trying a better
one, a problem to be attempted in the near future. However at
low energies, it has given some success in electron-helium
collisions, (Moisewitch, 1953)(Massey and Moisewitch, 1954) so
we assume its applicafﬁity here.

If we take E as the total energy of the systemand R as
the magnitude of the positronium momentum then,

E = -;l_'_‘hl— FOP’— Eok

The exact solution of the Schrodinger equation in the limit of

6, 9 o will be a product function of the positronium and
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helium ground states with a function describing the centre of
mass motion of the positronium.
Since the system of the two atoms form triplet states we

require an asymptotic form, for a particular value of £ ,
U, 22 () 6 (p) ¥ n.g) X pa) X5 (2,3)

where 4;’..(6, is the function describing the positronium centre

- -

i
of mass motion and the ')( , 18 a triplet spin function and X,
a singlet spin function.

We write

ATy LU) S '@‘l(,) \/‘; (‘Qc)

» 3
where Y ‘: is the spherical harmonic and ), the angular

coordinate of ¢ and we require the following boundary
conditions on 6— (o‘) ,
$o (o) = 0
and
- - A - Ltr)

$.00) T3, T (ko T) + ay o (he .
The parameter @, is the tangent of the phase shift M, i.e.
The partial cross section for elastic scattering is given by,

b S

q = _j{i— ('2.0. + I) L '\1 2

and the total elastic cross section o% is,
LT

RS go QL) sy,

We also define the diffusion or momentum transfer cross-section
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as, - (
Lt Z C Lot o - )
— + i PN ’V‘
S—D = h" 420 ) ¢ n‘ll‘“
The asymptotic form consequently suggests the trial wave function,

*
k]) g , Which must be antisymmetric for interchange of any two

electrons,
Pl (g ,00.0) = valed 6 (a) U ln.n) X, () X (23)
+ U‘LLG’J ¢ (PL) LD* ‘L-r_! ,Xl) -\I-: ( P\t\) \\{*:I\\sa i)
+ e, ) € (p) Welm.g) W (p D) WL )

The basic problem then is to find the ‘—l(o')with the correct boundary
conditions and with asymptotic form giving the necessary phase shifts,
’\19: '

(ii) 'The Variational Proceedure

We will follow the Kohn variational method, (Kohn, 1948),

and so form

.= 2 Siff'hl Asy dry CP: (- e 90 v

SPuws

Note that we use [ ¢ as the approximation to the true energy

where,

Ees thR -1 - 24

(od |

i.e. we have assumed the helium binding energy to be given by

the simple variational result. The use of Et preserves the
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consistency of the proceedure but it is difficult to see how

to justify the neglect of the difference between E and E,_ in

a rigorous manner.

We express the spin functions in the usual notation,

Y GLy) = o) p G
. C*,;) S\*( )[S(.s) - R(. )&(3)%

and we know,
Z oL (4)
2. pr(s)
T LGRS =

(s 1]
— ———

Considering the spin summation in (1) we see there are three

products of the type,

Z X X ) X le ) Loty =

N3
and six cross products of the ¢type,

20 (e )Y ) X Lp) Xola) = -

L
N
SPINS

Allowing for the symmetry of the positional coordinate parts of Tt

we find, changing ,L;j, ,1{,_ to ,Lq! '1?' that,

L - 3{dg dp 45 dn o) 6 (A ¥ (4.5)

[H Et-] [ U,g_\.d‘,\ ¢ fl) LP* ('fz ,fa) J_L(O‘,_\) ¢(A ,(., r)]
T
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we now compute S It for variations SJ‘L(G) i.e. for

variations 9 J’e (5) where,

S{u(d’) 732 S‘L: o (ke - L,‘;_C)

, The calculation of §T + is given in Appendix A as it is somewhat

lengthy and complicated. We arrive at,
ST - bk Sa, ]« ( doy SJLCG.)_L {-Var -k}

N ‘K\ L gti__b:s l (_{_3'!_ _1) A, (_Q‘

T ]
and

Lo s) s %2 5*5 SR et 2l (e s), (2g-2)

-] 2, -£)

tlela 0 Qo) (G| k=) - e

e, - .
'tr_!"f) I).d'_;—.:_l - .Cl ll‘-" £'
-1 L l2e -1
B SR Y I N E SRS ok I bl
|6:£—(T‘E‘ \15—.‘. -£)
-ul26y =< “tml2g-2) -Lalles -
*'lt-a.z'* ¢ b w + b wl2ay i,z
ey -

)

(
. i e T (€ -£) -e:..-_l_ 0_7_3_-_&'_'_ .I_—_J"\_l 200- 1| __Q_‘_—_l_-k _‘AJ'_I_ -l

and we have changed 4p to « .

Requiring that,

I, - bw h 84, O

we find,

(ch.‘. + k' )»‘,_(cd c [o\c_‘,' L (e, 6) Ay () (3)

-
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If the U}_(.o’) satisfy the equation then 1, = O as is shown in
appendix B.
If ‘Pg was the exact wave function and E the exact

energy then we could form,

I= > S‘**:r dodndn $,(e-e) ¥ = © @)

SPIvY

Then varying ?&. as $ ?2 with asymptotic form,

$0, ~ Sar,(a) (p) Pn . a) %! (p ) X (23
we would get,

ST - br kR 8Sa =0

. . . L,
Suppose A \D‘ 1s the error in -\54. i.e.,

q’: < '*Pt + A\PQ

Substitution in (1) and using (2) would give,
Te = T+l
It = b 'h Ao

where,

¢*=a.+Acg

A better approximation to the real e.would be then,

T,

a = A, —
bk
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Since T—t is zero for the satisfaction of the equation (3)
we see that &, is a good approximation to @.to second order
in the difference between q? : and ‘1’ L - This assumes that
we may neglect the difference between E £ and E of course.

(iii) The Integro-differential equation

The equation to be solved is,

(Ve + b)) = (A& L, g) wals)

LN e ) fle) VS () s [y L. ) ule)y2( )

o, G,

-]
Multiply by \{Q (.ﬂd-b and integrate over _D_ S, whence,

 WEUAE Q(M‘t)k fle) = & |40 Ve(4) }4& Us &) gule) Vo0

G, o,

NS
-

Consider first the term resulting on the R.H.S. from the energy
dependent part of L (Oj_ ‘ 6;3 o _ o

This is,

o (.L.Qc, \I,f(n,,\fi@ e §4£ R o teetl e g

Q,%lzg-il&-nlzﬁ—ﬂ f,_“’») Y: (-Qq)

Sy

= R {o te) doy LY (a0
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where,

(L) °
L‘L (Gl a‘t\) : %_.__)*36' g 5&-00\ \(g (-ch,> .q_—‘d_"a--g’
mw

Q.,g.l?.ﬁ’f.' gd--ao', Ygu(nv‘) .Q‘“'..t":l_e"l*\lt&'i, S CL£

we now expand,

Sl | LS Q) (e, An)

4
where
My = @ XL

and in fact

C"J.(O'nf\ * 6-5(“&1\. P’*(—'\'\ ‘Q_(q-il'o’

o |l 2o

This is seen to be true by“back substitution in the expansion (5).

Substituting (5) in the expression for 'U (0'1 , 0-1) and using,
b - m
Py (“\.3 = e m--x hL CQ") Y& (A )

we find, using the orthogonality properties of the \/ ~ that

e ) e A Gylane) Crlan ey

We now consider the energy independent part of the kernal. This

is taken as L‘;" Lc. ,d’;) such that,

{ v L(LH)%& (o) = ( [h‘ L2 0) + LY (o0 ]

dol

‘1(0‘.,) heo,
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i.e.,

Tulteoc
L (g,0) = Em

L Tne (L0, WAl [das Yo ()

(t’k{ §_' ol 'SR N (Q-i\.(lq-s) + Luloy-g).(2e,-1)
toi-g) 12eay- g

v — -3 -2 k[l-i
lees-¢| |'I.c_!-(| - ley- ) * < (-r*/“‘)

] . AQ-ZAIIGA-IJ . ll»-A-l"' {2y -2 *4 ‘.hlz.ﬂ_d
e -4

103~ 21 ey - £
- (b [ 23 ' ]

|26y - |

+ L‘_M Q-lﬂlzc} 'i\ \i _Q-(G_L' £‘4-ld’; —f) -’—'M "“ﬂ"i‘
.ﬂ._M \26’_‘_&-{\

L)
We will split L(,_ (o ) u',,) into components for ease of mani-
pulation.

The terms in curly brackets,

|+ € - §_ +ls.[$ -(_-};.*-»)-e_"z‘”]

W)

give by comparison with the evaluation of L|L'u (_5-‘ . cr-._)
L 2o

(o) = g’ goekr L+ LS _-¢(§__+A_)__Q_—La;_]
C‘!‘J_(cl.f) CT_L(O‘\,r)

By a similar expansion proceedure as before we define,

CT-L“) (o‘,r) = 0:{- SJ\ rL';‘ P‘—(“\\ ‘a’—l'{-i‘ #—3}& llg-{l

—lg-gf —m\rg-gf
Tolee) = F ‘_., dy Puls) o s

B

lrg - g}
r (! -lg- - \ -
3',_(“ (0',4-) z c; (_. c.L-.\ P_Q_(_“) " g £||1::_ ::T <- |
or ('
K’_(U,r) < ‘

S P_L(\) o TRl o
tae-<i

SVRRE £¥ 4

itg - 11
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Substituting the various corresponding expansions back in the

expression for I_(:) (c,,o;)the terms in curly brackets,

- (‘w-‘l) v b -Q-—ZM e -1 + 4 -a._‘lA\ 2o -l
l).q!.‘;, IUI £|

v e loy-g) (2ay-1)
Vo -5 [2eg- g

give,
o
(U (6,,00) = Repm L dr g._ (o) 3, Loy o)

+ l‘.}* G (1)(0_" r» + L 3— (6‘.,4‘) + 2_/& (16 + £ ) K—L(Un*")

-— 6# c, L "2 KL-( (U.,r) + (‘t""S K‘Q“ (Unf)‘]z G'.ﬂ, Ld‘la‘)
Cil+))

The KL-« (d‘. .4-') and KL“ (c'. ,-r) terms arise from the 1. € terms
which contain P, ('v\, ) = ~, explicitly and result in products
of three spherical harmonics.

To write. L%: (0’. A ) more concisely we define M, (e, ,r)
such that T | e

(k) -

(0". )5'1.) = D—f/»t‘ g o dr H.O, '(—0'0 .4') CTL (6'\ ,-r)

The corresponding terms in o, 1lead to,

(6‘. ,6,_) < ll@‘,ﬁg &.,r HL LO'\,"') CJ' (6’,‘4')

’Ihe remaining term in curly brackets in L(‘-‘ (a', , 6.‘) is,

(.l.)

2

ley - 62
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= Z Z 7..9.4-\ X <6' J‘) \(-L“*(-o"’\) Y (‘Q"\-)

\{,o_(‘r' ~"\\ = G<-°.

We also make use of the expansion,

(dn Y (@)Y ()Yt a)
[ GRS Cledty; ma)

b QUL+ 1)

C (L. L. Ay, 00)

where the (C are Clebsch-Gordon coefficients.

Substituting the various expansions back we arrive at,

L'LL (cnﬂ'\.\ = “'%}* (: dr (-") §° _Dg_' (Uu O, -l) Crl. (O‘.)()
C“fl' ( o, > (\ |

and

TRy (it 01'6)" ST
o (0

-D (0’ . 1N L\ “ . (7.-1‘.!) C— ( > Kg_ ( ud"_)

We have calculated for l =0, 1 and 2. For these low values

of L the expressibn for 'D’.. (6.6t . l) can be shown to reduce to

simple expressions by the rules of Clebsch-Gordon coefficients.
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4 Dy (0, 2)
0] X“
4 (' +1 .
1 (244_ |) YU-\ + (7.2.'-"3) Xl + |
2 3 ( L- |') '3 X.L'.-; + L"'(-'."«I-I! 810 + '3(1'3 l")("n’.n_! \‘;‘"1
1 ('-1)2%3) Qa'=-)Qaa3) 202843)at)

Finally then the complete term for LU;) (s &) is,

Ltt) L5| ;6,_3 = n.%’),._; S::Lr g' [(#g»—g-r "‘-l-(—_(‘_*'/&)‘n_’z)*’f]
Cn.(.o'. .—r) Gr,_(cr,, r) + H‘L (c.,r) Cq—_,_(g-“,) + N;;(n.«—)

Golone) =2 3 Dy Lo, 1) Gy Lone) Gryo Lonne) §
t"=o

We define,

\_L-U Lﬂ'a,b',,\ = ‘kt LIQJ LUO,G'-..\ + LSL) (als5\>

L N © @
i_._:‘t + k- %9161 (0,) = sodc‘ L (d'u‘rt) ‘g'p. (U,_)

(iv) Inclusion of the long range potential

The Van der Waals potential V,, ow 18 derived from V by

considering \/ at large constant ¢, . In appendix A then we
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must include this as the direct interaction between the posit-

ronium and helium atoms, i.e., we replace,

(dpan dn 800 %l V $(r) ¥ l5.0)

by,

VV bw

Following the analysis through we arrive at the modified integro-

differential equation,

(£ o0t -2 o e e gio

o}

The equation has to be solved for the &1 (d'} which can then be

used to compute the various phase shifts and cross sections.




CHAPTER 3

THE VAN DER WAAL'S TITNTERACTION
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Introduction

The existence of the van der Waal's forces was known as long
ago as the middle of the eighteenth century and speculation as to
their nature and effect continued throughout the nineteenth
century in connection with work on capillary action and surface
tension. Eventually it was realised that the forces were due to
electrical interactions and various theoretical postulates of the
form taken by the forces had success in explaining physical
effects dependent on the forces. The present century started with
the work of (Reinganum, 1903, 1912) who pointed out that neutral
molecules carrying localized charges repel or attract each other
with forces varying more rapidly with distance then ' / R , where
R is the distance between the molecules. On the average the
force is attractive due to torques tending to rotate the molecules
into attractive positions. (Keesom, 1921) considered m*li.écules
bearing dipoles. He showed that if the molecules could feel
each others presence, rather than rotate randomly, then a net
attraction t;et;r;ér: t_he molecules would r'esult-. For dipoles of
moment P, and P, a mean interaction energy is generated proport-
ional to Pl et / R‘. He postulated also an effect of alignment

which enabled molecules caught in attractive positions to be rest-
ricted to oscillation rather than rotation.

Objections to the theory were that many molecules exhibiting

attractive forces were known to have no dipole moments and also,
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due to higher kinetic energies of the molecules at higher temp-
eratures, the alignment effect should disappear at high temper-
atures; but in fact the van der Waals foreces persisted. Even
the extension to quadrupole interaction could not explain this
temperature dependent problem.

(Debye, 1920) shéwed_that molecules should not be regarded
as rigid structures but as deformable distributions of charge.
If placed in an external field they would become polarized and
for a non-uniform field attractive forces would be called into play,
This explained the high temperature persistence of the forces since
their magnitude is independent of the state of mgtion of the mole-
cules. Again quadrupole effects were assumed to produce the
polarizing field.

Now molecules with closed shells, in particular the rare gas
atoms, posses a high degree of spherical symmetry in their charge
distribution and so should not display much van der Waal's

attrgggion.

The fact that they do possesssirong van der Waal's
.attraction was a major difficulty in the existing theory.

It was left to (Wang, 1927) using quantum mechanics to_first
lead the way to the true explanation of the major van der Waals
effect. He calculated the interactions between two hydrogen atoms
for large separation and showed them to be attractive. Then
(London, 1930) recognized the fuller meaning of these forces and

derived formulae for their calculation, calling the phenomenon the
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dispersion effect. The explanation of the effect is that due to
the movement of the electrons in the atom, say hydrogen, each
atom is momentarily a dipole capable of inducing in a neighbouring
atom a dipole moment parallel to itself. This causes rotation in
phase, alignment, and corresponding attraction. The method of
(Lendon, 19%0) and alse (Eisenschitz and Lendon, 1930) wés a
perturbation calculation dependent on an expansion of the wave
function of the system in terms of a selected set of the unpert-
urbed wave functions of the two molecules or atoms.

A variational theory of the forces was launched,due chieéfly
to (Hasse-, 1930) and extended by (Slater and Kirkwood, 1931)
(Hasse, 1930) calculated the interatomic force at large distances
for hydrogen and helium while (Slater and Kirkwood, 1931) made
the  wethod applicable' to most non-polar molecules in the normal
state. (Buckingham, 1936) calculated the value of the mutual van
der Waal's interaction energy between the two atoms and related
the dipole-dipoie constant to the atomic polarizabilities of the
atoms. He evaluated dipole-dipole constants for the rare-gases
and also showed the importance of the dipole-quadrupole terms.

A fine review of the early work is given in (Margenau, 1939)
and of further progress by (Dalgarno and Kingston, 1959).

It might be mentioned that since our calculation presented
in this chapter, a new formula has been derived for the dipole-

dipole term in the van der Waal's interaction between two



39.

spherically symmetrical atoms by (Opik, 1967). The approximation
takes the distortion of each atom in the instantaneous dipole
field of the other atom to be proportional to the corresponding
adiabatic distortion. A variational technique gives good agree-
ment for atomic hydrogen and the rare gases.

The long-range Orthopositroniumhelium Interaction

The calculation presented here is a variational one based
on the methods of (Slater and Kirkwood, 1931), (Hasse, 1931),
and (Pauling and Beach, 1935). The trial function used was also
mentioned in (Schiff, 1949) together with a brief indication of
the calculation of the van der Waal's energy for two atoms. The
principle of minimum energy which is used is seen in a similar
calculation on the polarisation of hydrogen by positron impact
(Stone, 1966).

(i) Statement of the Problem

In our problem we are dealing with two dissimilar atoms,
one of which, the positroniuim atom, has a Very high polarisability,
in fact eight times that of a hydrogen atom. This led us to
expect a considerable change in the cross sections and phase shifts
of the collision problem and an improvement in the final values
of the L o mentioned in the next chapter, expecially at the
very low energies. Even if the changes were found not to be

large, the trend of the interaction is important since, because of
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the coincidence of the mass and electrical centres in the
positronium,the mean interaction energy with the helium nucleus
vanishes. and the only effects arise from polarization of the
positronium.

It is known (Bransden and Jundi, 1967) that the polarisation
potential for distortion of a positronium atom moving in the
field of a proton only contains contributions from odd multi-
poles, the even multipoles vanishing identically because of t he
coincidence of the centres of mass and charge in the positronium
atom. It is clear, therefore, that the dipole component alone
will be an accurate approximation to the complete adiabatic
potential in this case. Similarly in this problem we take the
dipole component only as a sufficiently accurate approximation.

Since we are chiefly concerned with scattering at very low
velocities it 13 appropriate to introduce the adiabatic approx-
imation in which the kinetic energy of the positronium atom is
at first neglected, i.e.- in the-coordinates of the.previous
chapter we regard the atoms initially as being fixed in space
at a distance 0y apart.

The total Hamiltonian, for the system is,

H

A A A A T SN
i "ﬁp ‘rlp ,\'P
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We regard the potential V as a perturbation on an unperturbed

Hamiltonian H° so that,

H= H, + Vv
where
. . N N L L 2
[ 8 LS 1 & L e = T = == o e
H° = —vf -v‘ —v& —v! r\f Ty 1 N2
and,
(X L S [ PN 2
- = am— .= e—— — - — + —
V = 4’,? r;f ‘rr <, T Ty

We now approximate \/ by considering ¢, as large and fixed
and expanding V in terms of '/o', , retaining the term in ‘/6.3

only. In the modified coordinates,

L - 4 * L
Ve Tg il loripl  Toeipog
L - 2 - 2
e 43 p Dl 2 -dp-n| la-ip-n)

Expanding the denominators and keeping the term in '/5',‘ we have

the approximation to the above pertuming potential,
L
Vr Y gf-‘,_-.(r_ﬁ-t}\ -3 (ﬂ.pﬂ[«n Ao 4.:_,\) })

where " is a unit vector in the direction of q_! . If the

% axis is taken along the line of centres of the two atoms,

\/P z a_% if,; (‘rtx* 4'“\) + /0..5(&_.5 +‘r;5§~ zloaa ("rl.! “"rsa\l
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This interaction is treated in second order perturbation theory,
the effective interaction between the atoms, being quadratic in
\/P , varies like ' 6,* and is the van der Waals interaction.

In the adiabatic approximation we define the wave function of

the system as ‘Pm which satisfies the Schroedinger equation,

poi

i H - (E’+E.‘)§ J : O

where E = E (0'.) is the van der Waal's energy and E,
the sum of the ground state energies of the helium and positronium
atoms. We define the total energy in the adiabatic approximation
as,
E, = E(es) + E,
For each fixed value of ¢, the eigenvalue  of the Hamiltonian is
E; then. We now wish to determine E (d‘.\ . This was done by
the Raeleigh-Ritz variational method. The trial form of Wpee - —

was taken as,

B < #(P) U (a.p) § 1+ ALY VRS

PoL

Adiabatically for a fixed ¢, | A (o'.) is effectively a
constant. Y « {7y, £3) was the same as that used in

the collision calculation giving a helium ground state energy of
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E':“‘ = - 5. 445 and hence,

E-o = - 6 IQE
The trial wave function was not antisymmetrised because exchange

effects are of short range and not important in determining the
long range part of E (O‘.) .

We now define the total energy of the system:as,

{ Q-p:.. \H \ \P:,L>
<‘I)o;. \ \Pp:..> (1)

Er

With the condition that,
d Ey
dA

These last two equations lead to a determination of A (e .\

»

wirich is the variational parameter in the van der Waal's potential,

TV = LT VIO

(ii) Evaluation of the Inkegrals

The integrals in (1) are taken in three sets .
@ TA = LI |TEY
® T8 = L Qm lua| $u?
@ To= <P lvigey

foL
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The term \/ arises in q e, and it is convenient to express

\/P in terms of spherical harmonic functions in polar coor-

dinates.
We note,
\
° —
Y. (-Q\ = J Gu
£ 3 s ¢
V@) s 3 e wea

where [) 1is the solid angle and 8 ang ¢ the angular polar

coordinates. If in Vp we express the coordinates as spherical

polars, inspection shows that,

-~ ®r /" uk %\{ <'Qf’ "(_Q;\) N, (.Q:,)\l ('QP)

\IP: ?
+zw.un)ﬂtn0§ TOER LY@ N (A4

P AN (2, + 2N () 3

@ Ta: P 1T
= <¢‘P* (e A V) I 6 U (14 AVP>>

TA: Loy [d P +2A L Ptig ¢t ve)
TR ARV - R VARVA
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Because of the normalisation of ‘f (P.) and \P* (-l'_-_;_, f_;) the first
term is unity. From the form of \/p we see that the second
term vanishes. The third term is evaluated by substituting (2)
and integrating over the angular variables. The remaining non-

zero terms are then integrated over the radial coordinates. This

leads to,
Ta- | + !4
A A
® 18 = (3 |Hl 9
e s L Wa Ll B0y ¢ ALS0H) B BN

VTR TR AN e YURVA TR RRUAVY

The first term is the expression for the unperturbed ground
“state enel_ﬂ—gy E, : énd the _sdec;nd and -thirci -i:erms are aga.m
evidently zero. The fourth term is non-zero and rather compli-

cated, though straight forward, to evaluate.

First we express ||, in terms of &, and P, as in the

previous chapter, i.e. we put,

v v o.qt - M R
“\o = ";'_ Ve, -}'V/" 7:', Vi =T, 4 4 iy
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Since v,: is here a null operator we ignore it. We have to
consider now the result of operating on l ¢ \v« Vp » with
Ve, aa V' ana W |
Substitution of VP and the expresions for the wave functions
leads to,
Voo | @0V - ;-—]MS\»V'» -
If we write \J, as the'sum of two terms Vg (2) and WV, (3) as
those containing terms in 4, and {3 then we find,

() 140 vy = Ty, - T V) - )| 184,

l
The term in /ﬂ“ is evaluated by expanding,

T S T S Pl O ARV O P

1;.! (I. ,r_"-(" &" MI-

In all integrations over angular variables we use of course

the orthorémmality property of the spherical harmonics, namely,
fcl;(-)_ Y‘:“L—-n-) Sl—-e-—(-n-\ - _Sll' S-\As-\m! - —

and also the equality,

Ve () = GO N ()
In the radial integrations over 43 and {3 in the integral cont-
aining '/.rn we remember to allow for the two ranges, i.e. for
£, a4y and 4 .

The evaluation is straight-forward but lengthy and we will simply



tabulate the results.

We let, <P]=’ <4 ¢tvpl

then,
B= Cpl-29r | p) =

I8, = <P|"V,"—V,\lf’> -
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a6

m3= <P"‘z4°._4/.r="'/ﬁlP> :'“fl

'f'b
= 196
1B, Lpl Y | B = i&T‘

whence,

IB= E, + %("6‘ :_H)

e

© Te= L GE (v |Pud

1L b

MY

L Ics LAY,V l¢ 45() +2A <¢‘U*|V|¢.\D¢V¢n>

PRGN IV | B9V,

The symmetric nature of the first and third terms, and the fact

that the centres of charge of the _éiectror_l_z_an_(_i positroh in the _

unperturbed positronium atom are coincident, makes them zero.

The second term is non-zero and leads to rather complicated

integrals which are dealt with by (Roothaan, 1951) in his papers

on molecular integrals.
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We have,
IQ: A <¢¢t\ - -
los-g=dp)  la-4 +dp)
-2 S S " T VAV
b=y 4] tu-Gedpl taeip) le-ipl M v/

From symmetry considerations, this reduces to,

L + L S
IC= LA(‘#‘P*\ lgy -43 +4p) 6 -fa el pr) \¢¢*VP>

> ™~

By splitting Vp as before we finally get,

= LA LoV, | ﬁ;%;,;\ ETURATY

©

Of course ‘0',{ -0 {-_M is q, and we can imagine the posit-
ronium atom with a centre of coordinates such that the electron
is situated at { A and the positron at =3 fi . This enables a:
comparison to be made with the above mentioned paper and in

the notation of that paper,

Ic= I2%A i[nm \ﬁrr.,] R [7._? i;\ﬂ’ Z.,.]z

L

where we define,
- - z 4|
Cetlae) L ke oared

- |
v = /ﬁ::'- ) P& = M d

P %(}*"‘) , Ph = &
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and, a. refers to the helium and b to the positronium atoms.

The molecular integrals are,
L 1P, |2 PTTJ - C$ /(H"d(l-"r)/:’-l[l - G-y
$ Y (4 ‘IK+3|(")((+2/:A g S pt v Y p:;e'lf‘

“Ce § Y -amane) 102 + Y 3OP Y P}

EZPEKlLPZJ 5 [7.§ /(I-&‘t\(l—'\t\f”][l‘ U-K?

E:/6 (2 ¢ax+3u0) (1+2put 2,0._‘)4» % Gra)pd 4 ID‘:}
o P —Ll+x§3 g{—(, ( -9« +3“)(|+7~/’. 4.7./0:)

-2
+ 3 (3-2) Py + DR Pb]

Define,

Flo): [rpmal2pPm] «[2Ps.)2P35,)
then,
1= ung A F (e) 3)
M T h
(iii) The form of the potential

Equation (1) can now be expressed in terms of the integrals
3 - I8 +1IC
llel, FT - —_I-K_-_—

4 A? 119 1ts A F (o))
. Eqxz Eo + ';.?(%"T.C *"—,u_c_,‘__‘

| + '92 A%

LN A
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Let
A S (N TR z;q)
A = 0-'6 ( —;
A= \2% F (a,)
M c3
192
¥ = LR
Then,
£ - E. + o« A* + fBA
F

[+ YA

Differentiating ET with respect to A and putting the result
equal to zero we find, on taking the negative square root in the

quadratic solution for f , that,

A - zl—g é(d-KE.\)— [(K-KE.Y' +/3" X]'/l %

The negative square root is taken in order that the long range

interaéti&h variishes a’i: =0 . This is substituted back in

the expression (3), for I ¢C = Vvew giving,

Viow = '—X (1(&—‘(&)— [(a~¥s,\‘+/s‘x]"=2) )

We use a computer to evaluate this expression for various values
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of &, . The results are in Table I and the potential is
displayed graphically in figure 6.
We note that as o, = o the expression for F ( c,)becomes
zero since LY P\T“\lPW;jz-ElPE.\\Zsz] in
the limit. Hence, from (4) with p=0,
Vy bw-] = O
iG0

Consider now the expansion of A for large &, .

— AR*Y
A ;‘\sw ¥ E(O‘.'KEQ)_(“'KFQB(I + :-Ld KE)‘) %
A ~ - L—— (5)
Sl 2( ot- ¥ E,)

Now for large @, also,

(6. + A +pn)(1- ‘(H‘)

Ly
ET L )
which becomes on keeping terms in ‘/o'.‘ only,

ET P E_°_._.+, ﬁﬂ —__ . S

C, & <~
Using (5), .
Er ~Eo Toa  4( ¥E, -%)
—_— 19.33
ET - E° ’51\'7/00 G"

But F T - E, is equivalent to the van der Waal's energy

corresponding to V. ow » SO,



52.

TABLE I

The van der Waal's potential variation. V\mu in atomic units

and ¢, in units of @, .

o \Alow
0 0

0.25 -0.0001
0.5 -0.0013%
0.75 -0.0050
1.0 -0.0113
1.5 -0.0245
2.0 -0.0288
2.5 -0.02444
3.0 -0.0170
3.5 -0.0107
1.0 -0.006!
4.5 =0.0037
5.0 ~0.0022
5.5 -0.0013
6.0 -0.0008
6.5 -0.0005
7.0 -0.0003
7.5 - — —=0.0002
8.0 -0.0002
8.5 -0.0001
9.0 -0.0001
9.5 ~0.0001

A method giving a rough estimate of the van der Waal’s forces
from molecular- polarizabilities was given by (London, 1930).

The interaction energy is given as,

- 3 Pa Ps Ta Tg
E(O"l) = E ' q‘b ' Ta. Ia
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where P, and P are the molecular or atomic polarizabilities,

and T, and T the first ionization energies approximately.

For helium, T, = | -g09 , Pua = 1:37¢6 . T, —'{,

Po, = 38 . We take Pp, = 3 & 1.e. eight times the

calculated value of 4/ 2 for hydrogen, because the Pp, value is
a volume dependent number and the diameter of positronium is
twice that of hydrogen. The Pug is the experimental value.

Substituting these values gives,

E(O’.) - - r9-U

If we use the value of Py = . |} calculated by (Kraidy,
1967) we get,

E(.O'.B - - 234 ¢

These equations show the rough approximation to our more accurate

form of the asymptotic van der Waal's potential. The comparison

is favourable and the above method gives the expected overestimation

of the constant term shown by results in (Pauling and Wilson, 1935).
Figure 6 shows the usual form ofza long range interatomic

potential with a minimum energy value of about -0.029 atomic units

at an atomic separation of about A&, . The half width of

the well in the potential is also about 2a,



FIGURE 6

THE VAN DER WAALS POTENTIAL
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CHAPTER 4

THE QUENCHING OF ORTHOPOSITRONIUM

BY GASES
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Introduction

We can define the quenching of positronium as the conversion
in collision of triplet orthopositronium to singlet parapositron-
ium, which experimentally means a reduction in the observed
nunber of three'ﬁ—ray amnihilation events.

Quenching can also take place in the presence of an external
magnetic field and under application of a further radio frequency
electromagnetic field but we are concerned here with quenching
due to collisions with other gaseous atoms. We can list the
various effects causing quenching in these cases.

(a) Electron exchange quenching. Here the orthopositronium atom
exchanges its electron in triplet spin orientation with the
positron, for an electron in a gas atom or molecule in a singlet
spin orientation with the positron. The ground states of most
stable gas molecules are singlet states so the proposed exchange
would require an excitation of the molecule to a higher, triplet
state which generally is too high to be reached at thermal energies.

Now a small number of gases such as the oxides of nitrogen
NO and N 0, contain an odd number of electrons. The exchange
occurs with the odd electron and the accompanying spin reversal .
involves only spin-orbit coupling energies which are of the order
of thermal kinetic energies. So the presence of an unpaired

electron in the molecule and consequent low energy transfer
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during exchange allows the quenching to proceed.
The other common oxide of nitrogen N, O has an even number
of electrons and does not produce triplet to singlet conversion.
The probability of direct electron exchange will depend on
the amount of overlap of the electrons during collision and there-
- fore will be energy dependent. We expect the quenching cross
section to be about 'f4 of that for elastic collisions, since after
collision there are three ortho states to go to, and one para
with a negligible energy difference between them. If there is
more than one free electron spin the quenching probability is
increased and so the quenching cross section should be dependent
on the magnetic moment of the colliding molecule.

The direct exchange, or 'spin-flip' process obeys the spin
selection rule in that total spin momentum is conserved. The
quenching can also occur without energy exchange or change in
multiplicity of the colliding molecule, all that is required is
an unpaired electron on the molecule and the presence of a third
body to remove the excess energy generated. This case is _
discussed by (Ferrell, 1958) and (Porter and Wright, 1959) and
is thought %o explain the quenching in oxygen in particular.

(b) Pickoff annihilation. Here the positron in the positronium
annihilates directly with an electron in the target atom or
molecule. The process is similar to the annihilation of a free

positron with a gas atom electron but the presence of the positron-

-
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-ium electron modifies the motion of the positron and its chance
of annihilation on collision. The process will depend on the
time spent by the positronium in sufficient overlap with the
molecular electronic orbital for annihilation to be probable.
This is dependent on the positronium energy and other factors
such as the polarizability of the molecule. In practice,

4

in most gase £ atmospheric pressure measurement shows that

(O]
]

pick-off is not a very probable process although it iz probably
the most frequently occuring quenching mechanism. The gquenching
rate is found experimentally to be about a factor to ten down
on that for free positron amnihilations, due to the screening
of the positronium positron by its electron.
(c) Chemical Reactions. Suppose we have a gaseous molecule A@
On collision the positronium atom @'e causes the reaction,

ARG +e'2” — Aa'a" + B8
The positronium is now bound to an atom of the molecule and is
so bringing the positron in constant close_ p_roxir{lity to the
elect_r*o;x_s of that atom. This will give an enhancement of the
positron-electron annihilation effect observed as orthoposit-
ronium quenching. The halogens are strong quenching agents
and are thought to form halides with the positronium atom,
the strong attraction being due to van der Waal's forces or
exchange forces. The system Positronium chloride has been
studied theoretically and has a binding energy indicative of

dynamic stability, (Simons 1948, 1949). Other work on positronium
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compounds in the gaseous state has been discussed by (Gittelman
and Deutsch, 1956, 1958), (Gittelman, 1957, 1958) and (Heymann,
1961).

(d) Radiative or three body capture. If the energy of the complex
is less than that of the ground state of A then A may capture a
positronium atom with emission of radiation. The capture cross
sectiaon will be greater than or comparable with pickoff arnihil-
ation cross sections. The process will become more important

at higher pressure.

(e) Other quenching mechanisms. Quenching by direct spin reversal
was - considered by (Massey and Mohr, 1954) and found to be
negligible under experimental conditions even for exchange
between the colliding systems of two electrons having initally

the same spin. The magnetic interaction of positronium in
collision with a paramagnetic molecule may be strong enough to
cause transitions. The most paramagnetic gas is oxygen but cal-
culation indicates a conversion rate, much less than the ortho-
positronium self-annihilation rate. The paramagnetic

quénch:ing cannot alone e);plain the rate observed in oxygen, the
exchange effect without spin-flip is the more likely cause.

(Ore, 1949) showed that spontaneous change in direction of the
positronium parallel spins was a negligible effect and this is
also the case for colliéions with non-paramagnetic molecules on

considering the conversion possible by the electromagnetic field.
The Quenching of Orthopositronium in Helium

The nature of the helium atom groupdstate makes exchange
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quenching impossible and the only important quenching process is
due to the pickoff quenching, for the low energies we are
interested in. The quenching rate is given by (Ore, 1949),
(Ferrell, 1956), as

N = lu-w.r,tc.NE.“_’P we.!

Here £, = 2.8 lo_lscm. the classical electron radius
C 1is the velocity of light
N is Loschmidt's number (N = 2.69)(1019 atoms/cmS)
P is the pressure in atmospheres

1 % is the effective nunber of electrons/atom in a single

state relative to the positron i.e. the number contributing to
the annihilation.

This nunber 2,.«, can be inferred from experiment and we
are also about to show its calculation using the results on
the elastic scattering of orﬂgpositronium by helium atoms. The
experimental values will corréspond to thermalised positronium
i.e }J} ~ 0.0036, but we expectL“-,-to be energy-dependent.. The-
comparison between theory and experiment can then be made in
terms of the Z.«, values.

We will now illustrate the theoretical calculation of 3 4t
following (Fraser and Kraidy, 1966).

The trial wave function used is the same as that used in

the elastic collision problem but is normalised to give one
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orthopositronium atom per unit volume asymptotically. We will

now write the trial wave function as,

\Px (fg.&.‘.t.f.ﬂ « wle) ¢ () U (5 sfﬂl:(ﬂl)¥:(’-a3)
v wle) ¢ (A0 (0.0) X () X103,
+ « o) ¢ (P U (‘Jnfﬂ Y (P»B) X L 'a"-)

Again ar (_o') describes the motion of the orthopositronium centre
of mass but here aJ (o’\ takes account of all the -Q values

in that its value in terms of partial waves @, Ld’) is,

ob

wle) = \;—'? i_‘ L2 J'.‘Q'(].O.H) .q_'“"‘ PLL‘Oeo') 31L0'3

L=o

and asymptotically,

A ko, i h
ol o5, © 2-@. e tle,) = "%

&

where 6-(965 is the amplitude of the scattering wave and the '/J;
term arises from the new normalisation, (Ore, 1949), (Ferrell,

1956). The asymptotic form of 9 L Lo') is,

9,0 3n o Che - phwoen,)

and by comparison with the asymptotic form of the .6; 2 (o—>

in the collision problem we see,

g, Le) = w Y falo)
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For high A values we expect small M, and for the 9, (c)
to reduce to the partial plane waves AL L (¢) where,

wyle) o, Y Che- {&n)

and only the plane wave part of U(O'\ is involved$ i.e. for
very small “ N values, the term in a° e which
can be expanded in the usual wgy as,

SR LS it () Leds) g (o)

hO' {z0

is the term containing the 1A g (-0') .

The pick off quenching process requires the positron of the
ortho positronium atom to annihilate with an electron in the
helium atom. This occurs when the two particles are in a
relative singlet state and consequently we project the trial
wave function 024- onto a spin singlet state X: ( P, ')
of the positron and, say, electron 1 of the helium atom. This

leads to a function § (‘} Y S R R 3) where,

@ = ( Y*: (. Ps ‘) ) q)*) (1)

Now Ze« is the effective number of elec’crons/atom in a singlet
state relative to the positron. For electron 1 say this effect-

ive nunber is

Z Srkr;&r}ch} \ 5('&\{:»‘}»&'1\33\1

2,3
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where we note that the 4p in §_ has gone to <, which
indicates the fact that the positron and electron 1 nust be at
the same position in space for annihilation to occur. A similar
expression to the one above is discussed for positron free
annihilation by (Ferrell, 1956), (Wallace 1960), (Drachman,
1966) and (Lee, 1958).

Noting the symmetry in the three electrons present we define

Ty *© 3%&‘*&“:&&[@,‘ )

and the sum is over spins.

Definingasbef‘ore,
YCa,3) = YR
X ) s = 8 ) AGY - RG) ()Y

and using,
3 (i) : |
T Ar) = |
ZxlyYp)y = 0 -l

we can find an expression for § without involving spin’ terms.

Evidently, on substitution and summation of ‘}'x in (1),

§ et wal) Lota) 60 g0 -
o6 6(n) Vo (o, 5)}
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This can be substituted in (2) and due to the coordinate

symmetry,

1 * h (dadg dn § et () 610 90 (00)
- arle) arley) B[P ¢ (ps) Y. (‘r.! a) v, ( --r\))i

It is interesting to note that if instead of u(r) we just use

the simple plane wave part then 2‘0,“. is equal to Vz . Our

helium atom and the orthopositronium atom. This leads us to
expect a value of %4«, less than '/-L which is in fact the
case as our results will show. We now define,

I: = }i { °b:! °k4--5 d.f‘_; 41'1(0'\.\ ¢1(F‘-) ¢¥1 ('rl-‘:'.)
and

I,_ = -2 S‘h—‘ cLﬁ ‘kf_] ‘V'(d'..)...r(a';) #P;) ¢(f\)¢({!( flfn

changing coordinates and dropping subscripts,

- 3 fdedpdny o) $2() tlag)

substituting the expressions for the various functions

I,- 3£3 ('19:_ °t/l Q'-/’JL—M‘II-/-’.\ 4_’_'z.(.",)
bn*

we now expand,

.p_-F-t-,alw.-l-’-I . LZ“ (2L+l) Q, (o, ) P,,_(w])

where

8 s, p) = | hm Puly)ah ot

2
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Then substitute back in the expression for I, together
with the expansion of .u'(c’) . The P. L‘\) are expanded in
products of spherical harmonics of fls and L, . Integr-

ating over fLe leads to,
I, = in 2 G (Jde NG 8t (o)

4ro
where,
;N o -p -ml2g-pl|
Nig): /= Jdp a™'a

(3)

The integration of N e ) is now performed analytically.

Let, N\ = M T

and,
I A = - B I ]
where, a’“

_‘_—P-Q—A“’-I -2
g -2 )

Ig'—';_.,_rg“(ﬁ

then,

1 31
'\,(.0' = - M 22
_ 3 Y - ¥
We can employ a standard expansion here,

-l ., 2 [ =
2 = 3 () /— Loy (}*r))
1&-e | T oo [V

[/-:'E Kanary (Mf)] Pn (o B)

where,

<. L

n

5

IN
i)

w O
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Here,

. - 5 (s D!
Ko, Gip) = Jomp 2™ 5 e R
and

\ ML l) (ﬂum\
Laei (ne) = e Le Z— . Caen) | Gy

+ (__')m#\ VY o z (m-d-m\'_ } -

wro b (mcand! (1,4.4-)”

by a simple reduction,

Sf—ﬂ--f‘kf S dlwe) =

—ml2¢- 2l

g - 2|

We remember that the integration over /0 must be split into

two regions corresponding to P 2o and P 5, ¢ Substitution leads

to,
f’-v L -p -0 M P -M p * 2 -p
[y = lo patde < — CaE s I "
—ﬂ'f -2
I)Ld‘f i-a - & Aci
whence, 5
- lueo | S —to Lo {
-y —n - &
IQ = lM‘__[__(,.\ I\" . (MQIY‘ ] + 2446 [ Frd| (_#.‘)T"_. -

. -Q.— 1" [ \ + Ld’ ‘l
2us L (ued? sl
We now differentiate with respect to M mltiply by "/-LJ and

arrive at,
st - Lo o[ 28 ~ U
W : 2™ on oy R e G

S Lo I -1 1 - A s -
* Gt " Z‘u]}s I i*’— - [ R e Lo ﬁl

N v Sl S o= B
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2
To check this equation we note in (3) that as & = © so Nlg)= oo 5
o\

3
If we expand the exponentials in (4) and approximate for small o

we find N (o’) tending to the same value.

We now have to evaluate,

I, = ~2fdodn dgy wlo) o (a,) B(r) 6 (7))

"P¢ (f Ve ) \y*(-ﬁ ,{a

- -~

We again change coordinates to & and ¢ ! each corresponding

to s, and ¢y

3
The Jacobian of the transformation is A S0,

! -lg - -lg!.
s 2k f g dgdg § o =T LTI

- - - I -1
)J‘_‘ 2 Mg -1l 2 »lre 'I’zs Pkl are) «r(zr’)
ﬂ'"

We expand,

clesosliet . L F () @l ALy

2=
where,
Gr,,_(c,r) - Ezf (_‘| ‘iq\ P, (w‘) Q~‘([-£|_Q‘Mh(-c'
and, - q. 4
i Tor
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A similar expansion holds for the terms in ¢

We substitute back using the spherical harmonic expansion for Fﬁ(«o
and also substitute for the arlc) , ~ (¢')

The subsequent reduction leads to

Le-3 2 ) [[de e 9,00 M) 9,00)
where,

MO (6, ) = 256 u¢ Jodr Gplor) G lo'e) ™™

This is evaluated numerically when required.

Finally, then we have,

Ty © 2_—“;-. 2 Qa+) fo do Vo) 90 (e) - 'b. ?;

L=o S
o0

(20.+|)S de {, d s’ 9, () M (q,s) ‘3,,(«‘) (5)

We have shown that the 9 ‘.o-) are directly related to the &1(4-)
of the elastic scattering problem and we consequently use these
values in the numerical solution of the last equation.

We use the last equation in three approximations A, B.and
C, cutting the summations off atiz = 0, 1 and 2 respectively.
For the static case the net of points is over = 0.1 to 5.4
in intervals of 0.1 and the range is extended to 10.8 for the
long range potential case.

To allow for higher values of IL we adopt the following

proceedure.
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We assume a value | such that for .Q§ L the phase shifts

are negligible and,
3 o) =y (o)

We assume also that for L _L the contributions to the second
term in the final equation for %‘H- are negligible so we
preserve the sum to infinity without introducing any error

of importance.

We rewrite the first term of (5) as,

- |Z‘ () S 'L:NLc)e) (s) + 2 (W)

2R g, z. R Lets

(o de Nlo) o, (o)
= =+ Z (ZQ.-H) S:cLu' N(.o’) %_ 3_,_1(5-) - Ag}(d’)z

2Rk &s,
Z (e 1) S:Ar N Le) A.L,.L(.a)

L
A L0

The second term here is the aforementioned plane wave value of E"“H‘ -

i.e. l/.,_ . Hence the above expression is simply,

Plie e £ o) 7 de M) £ 9006wt 0)})]

and so,
a0 E 2 G 70 N §a,t00) -]
- Z‘i Zo QL) So Lg go S_LLG) M (U' ) Ule )

-
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This equation was used for the approximation D where L was
taken as ) and for L7 2we took 9, (¢) = i, Le)
and also ignored terms of A 72 in the second term of the
equation.

We note here an important point with regard to the long
range potential case. The distortion due to this is not
allowed for explicitely in the wave function used here as trial
function. The distortion is inherent in the values & 2 (a-) from
the elastic scattering problem and consequently in the N Lc')
here. We argue that to keep consistency in the two calcula-
tions it is necessary to preserve the form of the trial function

\P :" through the elastic scattering calculation and the
calculation for ?:A“_ . A further improvement to the calcul-
ations as a whole would be to include correlation terms in Q:
to allow for distortion, carfying these terms through into the

\P* used to calculate % .y

In a similar calculation of positron collisions in helium,

) (Kr;idy s 1§67) a discussion is pr'_e_sengd_ of the inclusion of
polarisation effects in the trial ‘Px . The %o value in
that case however is nearer the experimental value when such
effects are not included in the form of \Dt .

Finally suppose we define a cross section per:atom for the

annihilation process by,

A

a

Lpa
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where ,r 1is the relative velocity of the positronium and
target atom.

Then,

G = br 4% < Loyt
g

We also have the competing process of elastic collisions

. 2
Sy ~ I(OT cg:' say in cm-.
i.e.
5 - l ( (_°>1 < ZA“

At thermal energies we have A ~ 7 X 106 cm/sec. Substituting
for the other values shows that, d-"‘/tl"... is always very small
indeed so the probability of annihilation interfering with the
elastic collision calculation is negligible which is a good
argument for using the form of collision trial wave function in
the annihilation problem.
Further work is however required on the influence of

correlation terms in the trial functions in either calculation —

before one can be definite about any particular approximation.




CHAPTER 5

NUMERICAL AND

COMPUTATIONAL TECHNIQUES
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Introduction

In this chapter we present the numerical analysis and comput-
ational techniques used in evaluating the various phase shifts
and cross sections and the use of the scattering results in
evaluating & %

The Scattering analysis

(1) The Kernals

The full kernal in the integro-differential equation is,
' 1_ 2 (L)
LC ) (C. ,61.) = ‘h L% (6| )6\) + L 2 (fl ;‘\)

We require L(f)(.;no—\%nd L(? (q. \0'\,) over a suitable range of &,

and &, . We have shown,
oD
LLP(B,‘G\) = ‘1«})} Ko ‘kr c'-‘r_q_(6|.() Q’L( 6;,()

and

L%) (6’, ,6',) : '7-?/.&3 g:pckr % [l.(-%ﬂ_- i‘f— +h(+_+/x)

_Q-lﬂ—l ch_LO'.’.r\ (q').—(‘\.,r) + HL(O:‘_:;B C_H-L("‘;’_r)

+ Hg(fz,r) C?,,Ld’a M’) -2 ;o D-'-l (c‘d" 'i) Cr&' (6‘"() C";'(ﬂ.r)}

4=

L
To evaluate LQ;J (6. ,o'\_) and LL,.) (e, . 0'\,) then we require the values
of the C-(n_ Lg, 4-\ and the HL(.O', r\ over a suitablenet of

c ad
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We have given expressions for the c"t( C)() & ,En(o‘,-r)
S,_Q:,r} , SP)(U,() and ¥ &(.o‘, r) upon which the W, (g, r)
depend. In these various expressions we have terms in the denomin-
ators of the integrands of the form lg:.f_l and I'lq-_-f‘. In a
numerical integration these may vanish and to avoid this
difficulty we utilise a change in variable. It would of course
be possible to expand the integrands in terms of sums of products
of Bessel functions but these would be slowly convergent and
the coordinate transformation method is easier and quicker.

Following (Fraser, 1961) we have P ad g defined by,

P= *%
A

o<e | : '~\='°/z-‘s-‘°-§-z
_ 4P LA SR B R
o <4 &I BT R = )
. | >
| ¢q <@ RN SR

As an example of the transformation consider the region © <P <)

We have,

J&.'y‘: —i%('i- Pg)
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\ z [Gl+(1" 25‘4 (’g -% - E'tjz)\] '/"

1a
'
™

ls -2 = o (pS+ 1)

and similarly,

l2g-¢) = o [2pie)+ (2-p)]"

Substituting these values in the expansion for the terms of

form GrL Lo—, 4—) we have,
Golove) = 5§48 Gapt) Ply) amp - § CpS o) +»~[1C9su)‘+(z-f")]"})

Su‘.c,r) = :;—: S:.‘lg (Hfg) P&.L"\) *2p [-6% (PQ-H) N [l(fi-u)"f (.2_?‘)] 9‘%]
Calpsad® +Q2-p)]" f

Clo,) s 53 1148 Puly) wmp [- 0 § Cotar) wm Datptads o))
Cafps e D + (2-p)]"

The expressions for c:rf’) (c, -r) and TQ'G)( ¢, r) are as
the above but with 3} A substituted instead of pn

An exactly similar process is earried out for the other
three regions of the variable change and corresponding express-—
ions arrived at for the Grg (.5,4—\ and T (e, ) Kyle, r\ in
these regions.

The problem then is to evaluate the terms above numerically

over the variable g for a suitable net of © and 4 and
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then to integrate numerically over <« using these values, in
the expressions for L‘f"(q._@ and LL,") (o:,cr;) giving a net of kernals
over &, and @, . Simpson's rule was used to evaluate
terms like Grg (&,#) and the trapezoidal rule for the final
kernals. The sum in Ls_“ le, ,0'\\) from £’ = 0 to oo
was cut off after .0.' = 10 which gave a realistic computational

4)
for the evaluation of L-& (a,00) .

time limit
. . . !
The Simpson's rule interval was varied from '/? to 1 to x),
and was accurate to four figures for all these intervals. The

range of o and 4~ was taken as

o : 0.1 to 5.4 in intervals of 0.1

£  : 0.1 to 9.6 in intervals of 0.1
The range was then extended to 10.8 for & andu 14.4 for « .
This gave no difference in five figures so the .first range was
considered sufficiently accurate.

Simpson's rule was then used instead of the trapezoidal
rule for the 4 integration-and-agreement to -four figures - -
resulted.

Consequently values of L(,“ (6‘, )6\\ and L(:\ (6”6’\_) were
obtained for Q =0, 1, 2 over a net of

S, : 0.1 to 5.4 in intervals of 0.1
¢, : 0.1 to 5.4 in intervals of 0.1

accurate to four significant figures. They were found to be
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symmetrical in ¢, and &, , 2 good indication of accuracy in
computation. The computing was done on the Newcastle University
I.B.M. 360/67 machine and, for each value of £ , the time taken
was 2 mins. for the L“.’") la, ,o',,)and 25 mins. for the LS‘)(G.\J\).
The kernals were then stored. for later use.

(ii) The Integro-differential FEquation

3 I, R -2l - ,\/vwl f,_ Ce.)

el

- (Do W) g, )

and it is solved for the g& (g ) .
The static approximation has Vysw® © and with this in mind

we will present the long range approximation only here.

Define,
U('G'\ : 2L Vyow
then,
od @-)
1 -] 1) = Ve, [T6, 1M 0 40

With the known boundary conditions on the “'L (.6‘\ we can

transform this equation into an integral equation for {-’. (_c,)
¢ .

We write now 0~ for &, and & for &, since we have

the dumy variable ¢ " to distinguish and,
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{;Lh\'\ : wy Lhe) + S:‘LU‘ My Lae') U(U'){L(c')
+ S:CLJ' My Ls,q') S: de" Lq')(c',c") &L(G")

Here My (e ,c') is the Green's function for the transformation

and,

Molee') - 'T‘E wy (he) i (he) for o (o

M L 6,6') 7 - "5 wy (he') S (& 6\ for e o'

Here,
T ho
LLL(‘LG'\: - 3-;_..91(’1-4')

wo Che) = /20 ()Y 3, (ko)

(Re'ls)

and the J functions here are the half integer spherical Bessel

functions. The asymptotic behaviour is,

ML(‘LQ\ N TM (‘Ld" LK)

=¥ o S

UL(&r)' —— s (e _L_E_r>

S =? od

From the tables of Bessel functions we can determine the values of
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w, ( ’w) and ASy Ux.o'\ for the various £ values,

Ka L’ld’) J,,lha!

L=0 : “n ho <o ko
=1 : “";t" -whe “”‘::_’ r ke

i 3 \
L:2 (7_\/hhd—g‘:j‘r (\\ )%M‘.%M‘kﬂ

Using these we can determine the Green's function My (&, 6')
over anet of ¢ and &' equivalent to that for the kernal
L‘M (o', , 5-\_) We now use subscripts 4, h for particular
values of @ | ¢' and " and write the integral
equation as,

é; T U o+ ?‘fsi N;QUS&_; + 5 Bioy Mij Lin "'k
where_the w;and A, are numerical weighting coefficients.

Rewrite as,

o - 2 g S-"f‘i - R Sk My Vi - By MLy, 1&4,

oA

and Y is the number of values of 3 taken and &; the delta

function,

on
>
v
LI}
Fe
n
(5
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The set of simultaneous equations was solved for the ﬁ- N
by a standard matrix.inversion technique for various energy
values. In the static case i, j and k ranged over 1 to 54
corresponding to ¢ varying from Os1 to 5.4 in intervals of O.1.

In the long range potential approximation the range of &
was extended to 10.8 since the potential was expected to have
an effect at the larger distance. For this range of ¢ , L Sk

] Tom  +1e

J or k gireater than 54. In the st

- Was vaken as zero

L 2 -~
1 d

T
case extending the range over 5.4. had no effect on the resulting
phase shifts and crvoss sections to five figures. In the long
range potential approximation an extension of the range.over
10.8 had no effect to four figures. The usual integral equation

was used to calculate the phase shifts i.e.,
‘o o 1 L) (1) L
G - _t g do' w, Lhs') r Lo LS ('yo )ﬁ(‘)
°

0
We rewrite this as,
ap r — % E Bt Wi Lint

and using the f a Ve obtain values for a L for various energies.

The values of hq_\tﬁ‘ _tand 0, are derived directly from the
values &, .

The trapezoidal rule was used in the various integrations
which reduced the numerical integration weights to unity. The
computing time was 10 mins. for all phase shifts calculated in

the static exchange approximation and 45 mins. for those in the
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long range potential approximation.

The matrix inversion technique was tested for accuracy
by using the seperable kernal, (Fraser, 1961),

Le (o,6') = 364866 27 e

for which the cross sections and phase shifts can be computed
analytically. The exact results for the cross section were
reproduced within 10% at the very lowest energies. The phase
shif't errors were correspondingly less. As energy increases
the errors lessen and cross sections are expected accurate to

two figures and phase shifts to three.

The analysis for 1%

We have ey expressed in terms of the «-L (s) of the
scattering problem, i.e.,

ty L ? wrm, Q) [T NG §,0)

- 4 i et ~ Cuer ) S s —-g—;—vt—of,—&zﬁr—)———-—

h\. Leo A (3

3 P = \2g- |
where, Nis) . & Sriﬂ-a P a A

and

M('")(c,a') z 7.5'6)&‘ 3: dr C"L(""*’) Cﬁ.("*") ‘Jﬂ
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We have shown the analytic evaluation of N (6) .The values
of M® (¢, 6") are found over a net of o and ¢
in precisely the same way as the kernal L‘{') (6., \.) in the
scattering problem.

The values of ?:a.ﬂ. for various energies were then
found by using the trapezoidal rule for the integrations involved.
£ 4 values were found from the formula above for -Q = 0,
approximation A; £ = O and 1, approximation B, and . = O,

1 and 2, approximation C.

We also showed the approximation for %Qﬂ- using the

free-particle radial partial waves W g (.u-).

We assume for &L ) L that the phase shifts are negligible

and that,
9, s) = U ()

then,

L JEE < éob""ﬂ (o ke Nlo) { a}e) -

w5 £ e [0 5,0) M)

The contributions to the second part of terms with 5’8 7 2

are negligible for the energies we are considering. Consequently
if C'ZQ_H_ is the value of %gﬁ, in approximation C and if D'Zaﬂ,
is the approximation used here,

(S oD
D’Ziﬂ» _ ‘—2* { -?-t\ EO (A+) Sodc Ml.c) T (c)



80.

The values of W, (.u') hare been given and the trapezoidal rule
was used to give ®2 LYTA

In obtaining the values °% 44 the partial waves for LN
were replaced by free particle waves whose use is judged to
overestimate the contribution of & 72  in the light of the
solutions for L €7

In the nunerical integration for the static exchange case
the range of 6 was 0.1 to 5.4 and an interval of 0.1. In
the long range potential case the range was 0.1 to 10.8 with
an interval of 0.1.

The computation took 5 mins.for all values of z'nﬁ- in

all the various approximations.




CHAPTER 6

THE NUMERICAL RESULTS
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Introduction

The results are presented for the static approximation and
the long range potential approximation of the various cross
sections, phase shifts and 244“, value. Comparisons of the
two cases are drawn and a comparison with the results of other
workers is given. Finally the conclusions and suggestions for
further investigation are presented.

The Scattering Results

(i) The Static Approximation

In Table II we show the phase shifts "o M » My , the partial

cross sections ¢, , ¢, , &, , the total cross section &

[
and the diffusion cross section ¢  for different values of J\,
the positronium momentum.

Figure 7 is the graph of the various cross sections with -k‘-,
Figure 8 is the graph of the various phase shifts with R and
Figure 9 is the graph of theRut with K" and Figure 10 the

low energy limit for h-&t'\\o__with_ R". We define the s-wave

scattering length , a. , by,

!
- blﬂw - S—
> h 20 ( h$~\o

The zero energy cross section is then,

2
C: = Ln «
Also as h O we have the effective range 47, given by,

Roedlny

k8
_.L--Q-‘k-'r.a,
a_ —

i
K=o ™
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Both a. and 47 are calculated using the graph of figure 10.

We find
o = 1.806
Lo = 1.002
both in units of ea., , o being.positive is indication of the

repulsive nature of the interaction.

From the graph of figure 8 we see that the phase shifts
decrease reasonably rapidly with increasing L especially at
the lower energy values. Since the phase shifts are negative,
then the potential involved is wholly repulsive. We note that
at thermal energies, i.e.h ~ 0:0bthe only important phase
shift is for&= 0.

Thef = O importance is emphasised even more in figure 7,
for low energies contributing virtually all of the total elastic
scattering cross section.

The results can be compared with those of (Fraser, 1961).
The results in Fraser's paper are now known to be in error and
his recalculated results are known to us through a private
communication.

There are no important differences except in an assumption
of Fraser that the £ = 0 phase shift has an attractive inter-
action operating during the collision. His phase shifts, Mo
are equal to ours with a value of T added. However his results

are up to energy, R = |-0 only, so he will not have observed
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the minimum obtained by our calculation, exhibited in all the
phase shifts, which indicates a repulsive interaction even for
the £ = 0 case. The turning over of the 4 et ~, curves is
also mentioned as this is also an effect above the & =l-0 1imit.
The values given by Fraser for o. and 4% are

oo 1.882

I'd

Y O.QilO

both in units of &, . This is in gpod agreement with our
results.

(ii) The long range potential approximation

Table III shows the corresponding values to Table II for this
new approximation. Figures 11, 12, 13 are the equivalent of
figures 7, 8 and 9 in this case. Figure 14 contains the low-
energy limit of Rwt4 with 4% for the long range potential
case as did figure 10 for the static case.

From figure 14 we find,

o = 2.05

inunits of a, . 45 is al¢o defined in the case of our long
range potentialy (O'Malley et al 1961).
No comparison of the results can be made with those of other
workers as this is the first of its kind in this particular

approximation.
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(iii) Comparison of the two approximations

It is evident from the two sets of graphs that the
inclusions of the long range potential has very little differ-
ence on the shape of the curves or the absolute magnitudes
except at low energies. At themnal energies for instance the
cross section is increased considerably due to a lérg;e increase
in the !?.= O partial cross section and a slight increase in that
for ‘Q. = 1. At higher energies the various cross sections are
slightly less than the static case.

At thermal energies the long range potential is seen to
increase the absolute value of the phase shift M  and to decrease
it at higher energies. This is seen in the minimum of M.
particdarly. The phase shifts M, and , are affected very
little by the new approximation.

A similar influence is observed in the graphs of Rt N
with 4" and a particularly interesting modification arises in
the low energy limit of hu&'\‘.with kY . The modification is
enough to change the scattering length from 1.806 to 2.055, an
increase of ~14%.

These important differences at low thermal energies are
expected from the form of the potential which is long range and
likely to be more effective at large separations of the collid-

ing centres, i.e. at low energies.of impact. We note from the
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phase shift curves that the effective potential acting between
the colliding centres is still repulsive for all £ values.
The inclusion of the long range potential does not
apparently increase the importance of the higher £ value
contributions to the various values displayed on the graphs.

The Results for &ag

The Table TV gives the n
tion and the long range potential approximation in the approxi-
mations A, B, C and D mentioned in the previous chapter. The
graphs of Bay with A" are in figures 15 and 16 for the static
and long range cases respectively.

In both approximations Rag 1is seen to be energy
dependent and increases with energy except in the&= O case
for the long range potential approximation where a minimum
occurs in the low energy region.

(Fraser and Kraidy, 1966) have comparable results but an
error in their paper has resulted in a recalculation and their
new results are very close to ours. _ -

The experimental results for L.“, in this collision have

. . ‘
evaluated at thermal energies i.e. for h* ~ 0:0036 The

results for orthopositronium in heliumare listed below.

(Heymann et al, 1961 Zay = 0.135%0.068
(Duff and Heyman, 1962) toe = 0.118%0.11
(Roellig and Kelly, 1967) Toyp = 0.25%25%
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At thermal energies our values give, in the D curves,

0.037

Static Approximation Ty

0.048

Long Range Potential Approximation {..,“_

These values are much lower than the experimental values but

it should be noted that inclusion of the long range potential
- has had a very important effect in increasing -ZQ“, . (Duff
and Heymann, 1962) used helium gas at low densities but their
results are questionable since the helium was deliberately
contaminated by freon in order to remove the free positron annih-
ilation component. The experiments of (Roellig and Kelly,
1967) relate to the formation of 'bubbles' in helium at high
densities which are due to the repulsive exchange forces
between the orthopositronium and helium atoms and their deri-
vation of Ty is quite indirect.

It is of interest to know whether the value of Tay can
be brought in agreement with the experimental estimates by
varying the strength of the long range potential.

We have recalcuilated, for 4 ¢ © 06 the values of @,
and A’Eq(.. (4= O), corresponding to a value of the long range
potential multiplied by a constant factor /% . Table V shows
the results of this.

It is evident that the values of ¢, and Azqf (&= 0), are
very sensitive indeed to variations in the potential strength

and it is obvious that the experimental value is obtainable
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for certain ranges of R .
Conclusions

The serious discrepency between the calculated values of 2..",
and those inferred from experiment prompt further investigations
of the problem.

The static exchange wave function could be improved in
several ways. The simple variational wave—ﬁmcti;)n here for
the helium has proved to be quite effective in detle‘r'mjning
phase shifts and cross sections for scattering processes in
helium, but in the calculation of 2* it is possible that a
better form of helium wave function would lead to an improve-
ment 1in result. More accurate helium wave functions have been

proposed by (Green et al, 1954) and (Eckart, 1930). Thefe are

respectively,

W, (.ﬁ,,fﬂ _ 3 Q—x-ﬁ s e.'ﬁr'}s% .Q-&J':. . _n—ﬁ-n}

where o~= | - LksSE 99
N = 2«
and, C = ©0:-6
U 6) = = <F PR CNEP S M
where ol =

21832
R 1 ¥8s
The parameters are determined variationally.

. o
These lead respectively to ground state energies, E ,": =£ 73
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and -5.571. These are comparable to the experimental value of
e
E

o = —5.808.

Inclusion of either of these functions into the analysis
would be straightforward but extremely lengthy. The second
open shell function would be more tractable than the first
but even so the labour involved would be considerable.

We must consider the fact that in the annihilation of the
orthopositronium a positron and an electron of the correct spin
are at the same position in space. This would suggest that
correlation terms in the trial wave-function that depend explici-
tely on the coordinate joining the positron to a target electron
are important.

Because of the great sensitivity of the %"ﬂ' value to
the strength of the long range potential it is possible that a
more accurate evaluation ofthe potential would lead to an improv-
ement in the result. This is possible by using a better form of
helium wave function in the variational treatment or by including
more variational parameters. We suggest however that this will
only have a small effect and that the major improvement lies in
the kernal evaluation of the main problem.

Finally, the work of (Khare et al, 1964) indicates the
possibility of a bound state of a positron with a helium atom
with a binding energy of ~ 0.55 ev. If this is in fact

physically possible then an improvement in the calculation would
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be to allow for virtual formation of the bound state in the
trial wave function. Inclusion of this effect would allow
for more penetration of the atom by the positron and since Q.a*
depends on the square of the wave function in the atomic
region we would expect an improvement in the result.

The importance of the effect of a virtual bound state
was shown in the scattering of positrons by helium atoms,
(Bransden, 1962). The various cross sections and phase
shifts were considerably changed by inclusion of virtual posi-

tronium formation in the trial wave function.
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Ortho-positronium helium atom elastic scattering in the static exchange approximation

TABLE IT

The phase shifts are in radiens, the cross sections in mm

defined in amearlier chapter.

\J

-0.0176
-0.0906
-0.1088
-0.1264
-0.1801
-0.2690
-0.3585
-0.5321
-0.7007
-C.8605
-1.011
-1.149
-1.274
-1.385
-1.482
-1.566
-1.637
-1.695

°.uO

40.98
40.98
40.82
40.76
40.68
40.39
39.67
38.69
36.03
32.67
28.91
25.05
21.34
17.95
14.98
12.47
10.39
8.688

7.321

M1

-0.0003
~-0.0005
-0.0007
-0.0021
-0.0068
-0.0155
-0.0468
-0.0967
-0.1615
-0.2359
-0.3141
-0.3912
-0.4630
-0.5268
-0.5812
-0.6255
-0.6599

0.0011
0.0022
0.00k0
0.0164

'0.0778

0.2263
0.9176
2.194
3.898
5.718
7.344
8.562
9.283
9.530
9.390
8.976
8.384

-0.2001
-0.0003
-0.0020
-0.0073
-0.0191
-0.0343
-0.0684
-0.1050
-0.1466
-0.1900
-0.2321
-0.2708
-0.3047

and k is in atomic units as

o 07=0,+07+05
- 40.98
- 40.98
- 40.82
- 40.76
- 40.68
- ho.u1
- 39.75
0.0001 38.92
0.0027  36.95
0.0210  34.89
0.0914 32.90
0.2691 31.04
0.5985 29.28
H.mﬂw 27.59
1.656 25.92
2.241 24 .24
2.749 22.52
3.122 20.79
3.345 19.05

40.98
40.98
40.58
40.42
40.23
39.48
37.79
35.69
31.03
26.62
22.91
19.91
17.47

15.63
13.84

12.46
11.29
10.25

9.305




1.4
1.5
1.6
1.7
1.8
1.9
2.0

TABLE II (cont.)

Mo

-1.739
-1.766
-1.773
=-1.753
-1.697
-1.591
-1.418

Ce

6.2%2
5.375
4,712
4,207
3.818
3.480
3.069

My

-0.6842
-0.6980
-0.7008
-0.6921
-0.6725
~-0.6430
-0.5991

g,

7.684
6.921
6.122
5.312
4.515
3.755
5.097

Ma

-0.3332
-0.3564
-0.3742
-0.3864
-0.3925
-0.3926
-0.3870

S,

3.430
3.400
3.280
3.087
2.837
2.548
2.238

Cr

17.35
15.70
14.11
12.A1
11.17
9.78

8.40

8.424
7.582
6.762
5.950
5.124
4.251
3.296
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FIGURE 8
THE STATIC EXCHANGE PHASE SHIFTS
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TABLE III

Orthopositronium-helium atom elastic scattering allowing for the long range interaction.
Units are as in Table II

LY " % il S M S Tr 5
0 - 53.04 - - - - 53.04 53.04
0.01 ~0.0205 53.04 - - - - 53.04 53.00
0.05 ~0.1020 52.47 -0.0003  0.0012 - - 52.47 52.19
0.06 ~0.1226 52.23 ~0.0005  0.0025 - - 52.23 51.82
0.07 -0.1429 51.95 -0.0008  0.0046 - - 51.95 51.40
0.1 ~0.2027 50.88 -0.0022  0.0186 - - 50.89 49.79
0.15 -0.2983 48.49 -0.0073 0.0891 -0.0001 - 48.58 46.28
0.2 ~0.3900  U45.64 -0.0166  0.2606  -0.0003 0.0001  45.90 42.19
0.3 ~0.5607 39.54 -0.0503  1.060 -0.0020  0.0029  40.60 30402
0.4 ~0.7152 33.78 -0.1034  2.508 -0.0076  0.0227
0.5 -0.8567 28.69 -0.1709 4,360 -0.0199  0.0992
0.6 ~0.9867 24.30 ~0.2462  6.220 -0.0489  0.2917
0.7 ~1.108 20.52 -0.3231  T7.T55 -0.0710  0.6451
0.8 -1.218 17.29 ~0.3967  8.792 -0.1085  1.152
0.9 ~1.319 14,55, ~0.4635  9.304 -0.1506  1.746
1.0 -1.409 12.24 -0.5217  9.362 ~0.1938  2.33L
1.1 ~1.489 10.32 ~0.5704  9.083 -0.2%1  2.818

1.2 -1.558 8.725 -0.6096 8.582 -0.2724 3.159




Table

1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

IIT Cont.

M-
-1.615
-1.659
-1.686
-1.692
-1.670
-1.612
1.505
-1.334

7421
6.362
5.512
4.838
4.306
3.872
3.466
2.968

~0.6397
-0.6607
-0.6721
-0.6736
-0.6647
-0.647

-0.6178
-0.5824

ol

7.949
7.243
6.496
5.73%0
4.963
4,214
3.504
2.851

M.
~0.3046
-0.3314
-0.3529
-0.3691
-0.3799
-0.3850
-0.3889
-0.3837

18.72
17.00
15.34
13.76
12.26
10.82
9.472
8.018

Co
8.710
7.905
7.125
6.355
5.580
4,782
3.942
3.021
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FIGURE 1|

LONG RANGE POTENTIAL APPROX. CROSS SECTIONS,




"FIGURE |2
LONG RANGE POTENTIAL APPROX. PHASE SHIFTS .
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TABLE IV

Calculated values of Zges with k in the defined atomic units

A_ b < o A B < L
0.0347 0.0347 0.0347 0.0347 0.0455 0.0455 0.0455 0.0455
0.0347 0.0348 0.0348 0.0348 0.0455 0.0456 0.0U56 0.0456
0.0347 0.0357 0.0360 0.0373 0.0452 0.0463 0.0469 0.0481
0.0347 0.0361 0.0361 0.0374 0.0451 0.0467 0.0U67 0.0480
0.0%48 0.0366 0.0366 0.0379 0.0449 0.0471 0.0471 0.0484
0.0348 0.0384 0.0387 0.0400 0.0443 0.0486 0.0487 0.0499
0.0348 0.0U426 0.0428 0.0441 0.0430 0.0523 0.0525 0.0538
0.0349 0.0480 0.0480 0.0497 0.0415 0.0572 0.0577 0.0590
0.0350 0.0605 0.0624 0.0638 0.0387 0.0690 0.0714 0.0727
0.0353 0.0732 0.0786 0.0803 0.0366 0.0811 0.0874 0.0891
0.0358 0.0851 0.0960 0.0987 0.0355 0.0919 0.1044 0.1070
0.0364 0.0959 0.1139 0.1187 0.0352 0.1012 0.1214 0.1262
0.0373 0.1057 0.1319 0.1405 0.1357 0.1094 0.1383 0.1469
0.0383 0.1152 0.1498 0.1644 0.0367 0.1172 0.1549 0.1694
0.0394 0.1245 0.1677 0.1905 0.0381 0.1251 0.1713 0.1941
0.0408 0.1338 0.1852 0.2186 0.0398 0.1333 0.1876 0.2210
0.0422 0.1432 0.2027 0.2491 0.0416 0.1416 0.2037 0.2501
0.0438 0.1527 0.2200 0.2803 0.0437 0.1503 0.2198 0.2800
0.0456 0.1623 0.2373 0.3129 0.0458 0.1519 0.2356 0.3112
0.0478 0.1722 0.2545 0.3464 0.0482 0.1683 0.2515 0.3433
0.0506 0.1856 0.2718 0.3804 0.0514 0.1783 0.2676 0.3762
0.0541 0.1935 0.2892 0.4146 0.0551 0.1887 0.2839 0.4093
0.0587 0.2049 0. 3066 0.4401 0.0597 0.1996 0.3001 0.4427
0.0645 0.2163 0.3235 0.4827 0.0650 0.2102 0.3158 0.4750
0.0714 0.2271 0.3392 0.5146 0.0710 0.2199 0.3311 0.5066
0.0773 0.2363 0.3524 0.5435 0.0750 0.2258 0.3407 0.5318
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Variation in partial cross section and“Ze

TABLE V

fr

with strength of the long range potential.

0.35
0.5
0.8
0.9
0.95
1.0
1.05
1.25
1.3
1.4
2.3
3.0
4.0
6.0

G

. s 2
is a
in aj

units

40.08

47.30

49.01
13.79
2.99
15.02
63.35
52.23
6.02
9.65
0.07
0.22
0.003
0.17
0.10

15.77

for £ = 0, k = 0.06,

Az U.=o)

.035
075
077
.107
.218
111
.021
.0l45
.084
017
.168

o O O O O o O O o O o

0.2u42
0.381
0.375
0.366
0.610



CHAPTER 7T

THE ATTACHMENT OF POSITRONS

TO GASEOUS ATOMS
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Introduction

Since the early work of (Deutsch, 1953) the possibility
of positronium compounds has been postulated to explain anom-
alous rates in the study of quenching effects in gases. Also
(Paul and St. Pierre, 1963) and (Green and Tao, 1963) inter-
preted their experimental results to show that compounds were
formed between positrons which had failed to form positronium,
and various gas atoms. In argon gas, to which small amounts
of methane, ethane, propane, n-butane, isobutane or carbon
tetrachloride had been added, the annihilation rates of positrons
were found to be 3 to 700 times as fast as those predicted
for free positrons. It was supposed that this was due to the
positrons being in a region of higher electron density, i.e.
bound to the gaseous atoms in forms like &t C Cﬂ.u for example.
As gas pressure was increased the lifetime of the free posi-
trons decreased,as would be expected if compound formation was

— taking place. Discussions -of positronium compound-formation in
the gaseous state are given by (Gittelman and Deutsch, 1956,
1958), (Gittleman, 1957, 1958) and Heymann, 1961).

The theoretical aspects of the problem were inaugerated

by the work of (Hylleraas, 1947) and (Hylleraas and Ore, 1947),

who investigated the stability of the system positronium plus

electron or positronium plus positron and also the positronium
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molecule. These systems were found to be stable with binding
energies in the 0.1 - 0.2 ev range.

(Ore, 1948) then investigated the possibility of the
positron-hydregen atom binding frem a rough variational
approach. The idea was to calculate the lower limit for the
mass of a light positive particle which could replace a hydro-
gen nucleus in a molecule. Obviously this replacement in the
hydrogen molecule itself would leave us with the positron-
hydrogen atom system if the mass were the positron mass.
Because of the general inaccuracy of the method the conclusion
reached was indesisive for the positron-hydrogen case, but
indications were present that other negative atomic ions could
have a positive positron affinity.

The system positron-hydrogen atom, etH is the simplest of
its kind and can be regarded as a positron coupled to a

hydrogen atom or a positronium atom coupled to a proton. Two

factors determine the stability of e'H

(1) It should be stable against dissociation into fragments
i.e. et — et + 1

or, et — efem +
The energy of the initial system must be lower than the frag-

mented system. The first mentioned above would be more favour-

able energetically and is the crucial reaction therefore.
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(2) Thermal collisions at room temperature and atmospheric
pressure occur with mean energy ~ 0.02 ev at a rate of -~

10 sc—:-c-1 so the compound must have energy of at least~0.05 ev

10
below that of the fragments for it to be found in a significant
amount under the conditions specified above.

If the wave function of the positron-atom system is il

and the energy B with total Hamitonian H, then a variational

solution for the system is given by,

E = (9" H P d«
f I d~

and where SE =0

Ir HA is the Hamiltonian of the system with the positron removed

and EA its energy in the ground state, we write,

H.:= HA + HB
and stability of the compound exists if,
E-€, <O

__ Evidently, .
{9 " Uy P ux ¢ 0
which means physically that when a trial function is used in
the variational calculation, stability will only be achieved
if the energy of attraction of the positron by the electron
exceeds the kinetic energy of the'posi’cr'on and the repulsiwe

energy of the nucleus.

If also for simplicity the trial function is taken as
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angular independent the stability conditions reduce to

e 2
where M is the number of electrons and E the nuclear charge.
The above arguments due to (Ore, 1952) demonstrate that for
systems with m. = B, in particular the positron-hydrogen,
positron helium systems, the simple variational treatment will
not be adequate.

Because of this earlier calculations were performed on
the binding of positron-hydride, et H™, by (Ore, 1952) which
was found to be stable under three approximations with binding
energy of ~ 0«1 ev,

The extension to positron-chloride was done by (Simons,
1948, 1949, 1953) and was found to be stable at ~ 1.6 ev.

More refined calculations have been performed concerned with
lifetimes and angular correlations in helium and molecular
hydrogen with moderate success, (Lee Chang, 1957), (Basima et al,
1958), (Toptykin, 1962).

The work-of ~(Khareetal, 196U4) predicts a bound state
of the positron-helium atom system with binding energy of 0.55 ev
and they point out that since the bound state is formed in
helium; with its characteristic and strong rigidity the least
likely atom for bording; then it is probable that bound states
are possible with any atom or molecule.

In the case of the e'H problem, variational methods due
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to (Inokuti, et al, 1960), (Baker ' and Handler, 1963) and
(Fraser et al, 1964) show no bound state to exist. By varying
the positron mass however it was found that a bound state would
become possible for a mass of 2.635 times the electron mass.
Very recently, (Bransden and Jundi, 1967) a calculation
was done of the cross section for positronium formation by
positron impact on hydrogen in the two-state approximation
taking into account the polarization of the hydrogen and
positronium atoms in each charmnel. It was found that the
polarization forces dominated the cross section near the
positronium formation threshold and evidence showed the prob-
able existence of a positronium proton, (e+e- )H+, virtual
bound state giving rise to a resonance in the elastic scattering
of positrons on hydrogen atoms just below the formation thres-
hold. This evidence together with a new projection operator
technique for the resonant .bound states, prompted a further
investigation of the positron-hydrogen atom binding problem.
_We shall f‘:';t discuss the method of projection operators and
then outline the variational solution for the positron-hydrogen

atom case.

The Projection Operator Method

If we have Hilbert space E and a subspace of this § with
c
conplementary subspace S then any kat vector lu-) possesses

(3
a projection in § , l l;) and a projection in g , | w ,> )
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which are uniquely defined and where,
|u;> = l"*p) + \“Pc»

The correspondence is thus linear and the linear operator, P,
defined by,

Pluy = | W)
is called the projection operator or projector cn ‘5 .

Evidently,

P lwy = P.PIw) = P luwp)

and obviously,

Plue) = [y = PIwY
Consequently,
!
P- = P )
Any Hermitian operator satisfying this equation is a projector.
P is linear, Hermitian and an observable with two eigenvalues

3
of O and 1. The eigenvalue O has subspace S and eigenvalue

1 has subspace g . Suppos_e P is an eigenvalue “of P i.e.

Because of equality (lr, luy = P w2

(Pr=?) [uH = Cp-p) 1D

Since |wY)does not vanish,
P*-P =0

Hence, the eigenvalues are O or 1 only.

o

|

P is seen to be an observable since any vector I‘*» can be put
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in the form of a sum of eigenvectors of P, i.e.

ey = PLuy + (=-1) 1w )

Now since,

»P\.\“>= P.Plwy = ?\u§

then P Iw) is an eigenvector of P belonging to eigenvalue | .

On the other hand,

PL-P) 1y = (P- P luy o

So (1=-?) lwY 1is an eigenvector of P belonging to eigen-
value O.

In equation (2) since,

-P|vu§= \ULP>

then evidently,
C=P) 1wy = Lugy
Let, Q@ =1- , TuFyeludy

then,

Q | u» = \ “ q§
and Q is the projector on the complementary subspace 2‘.

Finally then we have two projectors P and Q related by,

P+a=1




97.

where,
P oep
Qt = Q

which project any vector into its subspace and complementary
subspace respectively i.e. they project out orthogonal parts

of Hilbert space. It is obvious also that,

Now (Feshbach, 1958, 1962) applied these projectors to the
study of nuclear reactions. The idea was to apply a projection
operator to the wave function of the system which would project
out the open chamnel configurations. Thence it was possible
to partition the total wave function into closed and open
channel segments and to obtain a Shrodinger equation for the
open channel part by eliminating the closed channels. The
projection operator which selects the open channels was not
unique since it was possible to define open channels only in
terms of the asymptotic behaviour of the wave function when the

reaction products were far agpart. This gave great flexibility

to the method since one could choose that projector most
convenient for the problem under investigation.

The formation was extended to atomic scattering by
(Hahn et al, 1962) where they defined an operator P which
projects onto the ground state of the target and a complementary

projector Q projecting on all the excited states of the target

including the contintum states. In this case then P4 Q is
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again the unit operator since the sum projects on all possible
states.

If the Schrodinger equation for the system is,

HG = g

then we operate with P and Q =|:'P on this .equation to obtain

the coupled equations, {(Feshbach, 1962),

E-PHPYIPP = PHG. 0¥ )

E- au4e)ad = QH?.?Y

~

Considering the case of an isolated resonance, theh when the
compound state has a long lifetime, the probability of a part-
icle re-entering an open channel is very small. To a first
approximation the wave function describing the compq&id state is

a bound state solution of the homogeneous form of (3) i.e.,

B - T B S

@k is not the exact compound state wave function since
it has an infinite lifetime due to dropping the right hand side
of (3), which allows the decay from Q q) to PP butwe
assume the approximation to be close and that ER is here a reas-
onable quess at the resonant energy.

Justification for this approximation is given by the work
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of (0'Malley and Geltman, 1965) and (Bhatia et al, 1967) who
estimate the energy difference and find it very smgll in the
case of two-electron systems.

The Variational Calculation

The problem is to evaluate the eigenvalues of the equation,

Q H & 5—&- = Ea i& v -

for the positron=hydrogen atom system where in atomic units,

FIGURE 17

The metihod adopted is_to_assume_a_trial function for Q g —
and perform a Rayleigh-Ritz type of calculation. We multiply
the eigenvalue equation by él : Q : é : Q * and inte-
grate, giving,
Sé,:Q\-\Q ¢, dx = En SCF: Q* §, A~
Due to the Hermitian nature of @ and Q 1] then,

e, = [ (ad) u (ad,) dx

S (Q ‘51@.}“ L Q @J A«
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Whereas we had intially an eigenvalue equation with effective
Hamitonian QHQ and eigenfunctions ia we now have an equation
with the usual Hamiltonian M and trial functions @ $. The
two standard chdce of coordinates in the evaluation of the
integrals invloved is , rys T and Iy OPy Ty5 Ty
is the angle between ry and r,, where we assume that the trial

and ©,where @

function is a function of one set of the three coordinates
mentioned. We choose the set rys Ty and © since it is easier
to choose Q 6: ,the trial wave function, to be orthogonal to
the hydrogenic ground state as required by the form of the
projectors and also it makes it easier to generalize to. higher
partial waves. The Hamiltonian in the coordinates choosen
reduces to the form, (Hahn and Spruch, 1965),

H=-L 3% o 3" &+ EL<L +-L>—-L el
: \ At

o L éﬁ‘ Lt ol LY Tia

where,

. X m© 2

. ——
L™ = <o Ve o IR —

The functional, I, is now set up, namely,

T- | (e df)[n-5](a dl) d=

L
and the trial function for Q i.‘ substituted.
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On the basis of trial functions used in the corresponding two

electron problem by (0'Malley and Geltman, 1965) and inthe phase-

shift calculation of (Hahn, and Spruch, 1965), we assume the form,
. N o}

SN S RO IR AP

me |

- N M
pah st £33y gt

!
Lej Aaxi wmzo

T N OR

where the B_and Cy., . are constants and t&.,.(-ﬂ) is the %S
hydrogenic function and is included explicitely as it is one of
the lowest hydrogenic states containable in the trial function
and so is likely to contribute to the energy in a substantial

mamner. This function is normliged as,

g Qt}o (“'A _‘rll ‘L‘rl - \

so in fact,

U (£) = TR (r-e) 2"

and this satisfief,

{—l B-: + '_‘: %“ - “\F"-l ‘*L\N, (4’,5: -7\; “ho("c)

T Y A 'y

We substitute the trial function in the functional equation and
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using the equations for Wies (- .) and the properties of the
Legendre polynomials we evaluate all the integrals. This is
outlined in Appendix C.

Finally as seen in the Appendix C we arrive at,

I+ ZB.B0 £ (n,n) + 2 Cann Cunrat @ (lm i)

\

N an

- E-‘E Z B.\ B-.\' &i (_m_.") + z Cn . C.Q ol ! és(-p‘)ﬁ'“,%!)_“l)

the summations ranging over all the variables in the terms
following them.
If we now order the terms C Lunn With respect to one sub-

script 4, where,
L = LN « LN &

and here L, N, M are the maximum values used by each summation
over ,Q, Mn and m.
This means,

C'Lm\-v\

C.
We also see that,
C [-1-1 % - Bm

So that the B. are included in the total of the C;- Obviously

4 ranges from 1 to MIN + LN + N.
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The condition of the Rayleigh-Ritz method is that,

3 I . o
d3C;

Performing this differentiation we arrive at a set of simultan-

eous equations which are solved by the determinant of the

where the matrix elements of theH andYL are the coefficients
of the various C; C; in the expression for I. This determinant
is in this problem asymmetrical and its solution for the lowest
eigenvalue of ER is discussed in the next chapter where the

computational techniques used are explained.




CHAPTER 8

THE _NUMERTCAL SOLUTION OF THE

POSTTRON-HYDROGEN ATOM PROBLEM.
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Introduction

In this chapter we present the numerical and computat-
ional techniques for solving the secular equation,
DET (H = Ea.‘n»\ = 0
" for the lowest eigenvalue of Ep.
We then present the results and a discussion with regard
to the recent work of other workers.

Numerical and Computational Techniques

A programme was written to evaluate the matrix elements of n
and H for any value of a4 , N and L, M or N. 'This necessitated
subprogramming, for factorials and the required Clebsch-Gordan
coefficients. The accuracy of the programme was tested by
setting s and N equal to unity and evaluating for small L, M
and N analytically and checking with t he results of the prog-
ramme.

With m and N equal to unity again the determinant
could be solved analytically in the 3 x 3 form, with L, M and
N unity and the three values of Ep obtained. We expect the
lowest to be the most likely candidate for any physical bound
state. The 3 x 3 matrix elements indicate a value. of Eg ~ -2.0.
From the electron-hydrogen atom problem we expect a lowest
value of ER in the region -0X%.

Using the value Ep~-2.0as a starting value a zero-
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~-finding programme was written based on Newton's method for the
roots of a polynomial which is in this case the expanded determ~
inant.

This programme was tested with known determinants and with the
small values of L, M, N equal to unity and gave exact agreement
under about ten interations of the searching technique.

The proceedure was to set Ep = -2.0 and the zero-finding
programme would workk from this initial guess to the nearest zero.

It was found that the minimum value of Ep was most sensitive
to changes in L as would be expected, so for each L value tried

M and N were minimised independently.

First M\ was set equal to unity, L, M and N fixed at some low
value each and the minimum of Ep found for a range of /k . This
proceedure pinpointed pwinthe value of M giving the smallest
value of ER

)& Was taken then fixed at i, and N varied to give M.
Fixing jaand N at phuin ad N the values of M and N
were_increased-to -graduallylarger- values -and with-M- =-N-or-M—# N--
to indicate the variation of the lowest ER value with M and N.

Theshole proceedure could then be repep.fed with a different
value of L.

Even for quite large sizes of the determinant the zero could
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be pinpointed due to the sudden sign change in the value of the
determinant as ER was varied through the zero by the Newton's
searching progranmme.

Results and Discussion

The different values of L used were L =1, 2 and 3. ForL =1

-
>

M=l,N=lthevalueofmirﬁ.rmmERwas given by

Main | =1015
Nawe = 0.850
Consequently, Eq . = +1.6292 in this approximation. For L = 2,
Remin s

M=1,N-=1,

1.665
0.885

A i
N i
and Ep_.. = +1.2184,

The increase in L from 1 to 2 had:decreased By . and we could
safely assume a successive decrease with increasing L.
In fact for L= 3, M =1, N=1,

- e Moemin-

N e = 1.000

= .2.- 'ZO]. -—

and €, .. = +0.9517, a further decrease as assumed. Since

(O'Malley and Geltman, 1965) had choosen L = 2 i n their eval-
uation of the electron-hydrogen-atom problem we décided to try
this value first to see the comparison in the present positron-

hydrogen atom case.
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The various values tried for M and N are indicated below

and the size of the determinant (n x n) resulting.

L M N (n x n) EE-'--

2 1 1 (5 x 5) +1.2184
2 2 2 (14,14) 10.5857
2 1 3 (15,15) +0.6076
2 2 3 (21,21) +0.6023
2 3 3 (27,27) +0.5628
2 4 4 (44,44) +0.5820

Using values of M # N gives an unequal preference to various
powers of ry and r, in the trial fucntion so we expect the values
of M = N to give the best approximation to ER“ The convergence
for these values is quite reasonable and in this approximation
i.e. up to terms in ,_Q= 2 we can say ER-».. ~ +0.58.

This indicated a;¥otal systemof energy Es where,

This is to’ be compared:to the values ~“givémn - for the electron
-hydrogen atom case (0'Malley and Geltman, 1965)yas would be
expected from the sign of the charge on the different particles,
the positron s 7 less tightly bound than the electron. We now

continued the approximation to values with L = 3. With the same

[
'

values of A and N.uithe value of Bpus forL=3,M=1,N=1
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(m x«\\ = C","') wa§ obviously too large a variation, so i

and }\M were redetermined for the new value of L. The results

with L = 3 are given below,
L M N (o) ERmin
3 1 1 (1,71 . +0—-;5;7_
'_ 3 2 2 (20,20) +0.5205
3 3 3 (39,39) +0.5190

This indicates, ERpin~ +0.52 and the total energy of the system
is, taking account of the hydrogen 2s state energy of -0.25,

ES ~ 10.27 = 3.67 ev

Now the positronium formation threshold is at energy 0.25 and so the
positron-hydrogen atom system is unbound with energy +0.02 = 0.27 ev
above the positronium formation threshold. Very recently (Drachman,

| 1968) has considered the problem of a resonance in positron: —

hydrogen scattering in which he uses a trial wave function containing
the positronium atom wave function explicitly and a function allowing

for adiabatic distortion of the positronium atem. - - - - - T T

Using this in a non-variational adiabatic calculation he finds
a resonance at 0.1 ev below the positronium formation threshold.

He then extends his method to include non-adiabatic terms by
a variational calculation and this acts in such a way as to elimin-

ate the possibility of a resonance and bringing both our conclusions

into agreement.



- "APPENDIX A

THE VARTATIONAL CALCULATION AND THE KERNAL
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The variational proceedure is performed on the equation

'-E-_t = S°L°:l "'Lf’.! i{_; "L‘r). ‘\E_L"'\) ‘p(P‘) \‘Pt (“2,(_!)

3
Lu-e) Lanle) ¢ (p) Ve (g 0) - anlel) 6 (~)
ka L(.} afl)‘]

_1;_5 - Sflo;._ dp da Ao SS«J&L#,B ¢ (p) ‘pt(ﬁ.&)
(h-E0 [arte) $0) e (5.6) -wile) ¢ ) delnq)]

(o)) ) e (o) [A-BEY [ Sate) (p)
Pe (5.8) - 5w 0e) $ (P Yol )] )

Because of the symmetry of the various terms we can change the

coordinates in the last term such that,

8T (e dpode gy Socks) Gy e tey
[3&-55][«:4«.\ 6(P) Yol 0) - ila) 4 [p) bl c)]
e 4 le) 6 (p) Welar, 6) [u-Ee] Sale) ¢(p) Yelan)
-ale) ¢ (p) Velan) Th-£] Svlo) 6 (P 4s.p)
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We remenber that the coordinates in H in the last term must

be cyclically inter-changed too of course.

Writing,
- 'rI.P ‘r) P “p € Tin s

The Hamiltonian becomes,

\ ! 2 LS Y ~ & N
: =LYy ~LY, - Q- - b 2 4V
2oy Be 2% -7 TSN 2R

We know also that,

(2% -3) é) = - 4 $(p)

(-92-9r- % -4+ 2 )P (0 .0) - €2 Plab)

. S L Y

and also,

We also know, (Massey and Mohr, 1954), that in first approx-

imation there is no direct interaction between the positronium

- ~ ard helimatom, i.e.,
S dp dn A 6 (n) Y (2.0) VO Y (n.g) = O

By expressing V in terms of ¢ and p 3, this is evident from
symmetry considerations.
We also need to know the effect of operating on \p: ("'_3.{\)

b 8
with Y, and V., , this is easily seen to be,
~ ' '3
(W + )0, (6.5) = Wln.g) §- f'% ”>*‘§
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Evidently then, using the above formulae, and the assumption
that Eot ==L’

3

(=) $(0) Ve (2.0) = el2.8) @ p) [-3 V-1
+er-‘3 . y«____:g cxos \/]

and similarly with the other terms in (1), 8o,

$Te - (do dp dndn § 8§ qb) $70) Y lag)
3
[-4va - 48] a0 = S le)) €1p) 4(p) Yulnat)

.Lp* ({2‘&.) ["‘;‘Vc: —lal.hl + 7:_)_‘;"_& * 7:%('_:.‘." r 2 +V ,u-"(g-‘_)

Lg%

PN PR N (DA Es 5) [-{_nc} - {4“1_ Swrlo) - alo) $ln)

¢(|\ ‘p ({hr\\‘b*(;‘ ‘-’ [ 4 v‘l 'L‘z" l;_:;:l_t + l%-_ﬁ- +%;!

+ V } & ar, (.a-,) (2)

With the appropriate coordinate changes in V in the last term.

Consider now,

-- D= J"L" wole) Ve § a5, o) Iflm ‘ﬂ' (c.)“"’__—_"'_

(G\ o0

where we use .2, = O to simplify the algebra. The generalisation

L) 640

to any i will be obvious.

e bn(ldo file) X 54.6)




By using Green's theorem,
D= br . de 4.l 2

= hle) wbrlfile) 2 34ulo)
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-S4y 2t
But, S
.6—0(0) = O
and, {%Q (c.) ;:;:b W Jllf. + CL:: Cd:‘id}
’ %‘-o(o‘. —

) Qf e ko |
G, ~o
Substitution in the equation for D gives,

D= 4rm | ds S$4,(e) i_"‘ t.lo) - br A Sa

o - -'_-D_=_S¢‘:lﬁls

-

S5.(6) o arle) -brkh-SaX - - -

Generally then,

SACl U,_(G.\Vcl, SU‘_(G.)-' g:kd;. SJL(O’.)Vgx&:’_(d,)
Using this in (2), we arr'lve at
SR Y AR S TR

{ da, S le) § - Ve _;‘_i_“—_—

(dey dp dadsy § 80l (e ¢(m)Ylnn)
Ylo.0) [ -ip

oy le) -

2. -4

: a + -=- *'V]«r‘(o',
(6\.) 4 pl.) ?{P;) \PQ (:l .(_,\ \pf(:‘ r! [ l VG' —lh
+ 'Lé_-_‘b + L=l

4'n + V] S«r(s\g
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We now change the coordinate space from ("l a2 ‘Q) to
Car \6a e\ f_:) the Jacobian for this transformation
being 42. Because of the asymptotic nature of "'_,_Lc.. and

consequently A.YLLGL) Green's theorem shows that,

[ Ao doy dgdn sle)d (W) Wola, ) $(p) 9(a.0)
L-4Ve | Swele) = (da doy &g dry a o)

B le) [-4Ver] €)Y ¢ (P) Y L s) Yola,53)

and similarly for the term containing the operator -4 V4—:

This gives, o .
$(STe-6rh 8] = | doy S L) (-3 -n Y la) +feday L. e) s ls)
and,

L (g.6)- I:SA& 46 (Um" vl (V«rf*—%‘) ; (u-e) _ (1»-3)

o R S LT
G (4, 5) W, l.0)

or,in the new coordinates,

Llgng) s & Fdman FRv L) g

lag -2)
= (bu-g) _ Qu-8) _ 2 .._2
v ola-gl e - ! -l % l@-o
_ Cum-8) b -k - &
T3 (4 - ¢l g -g-0 1o, -5p -4 |

‘ﬁ(llﬁi-le) ¢ (210-501) Ve (2, 20s - 2))
W, (26 -2, 4)
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We now require,

i N
q«r, ¢ (}'ld;‘.' {f“ \‘P-t ( Lo, ey - {fl)
This is easiest done by expressing the various coordinates

in their Cartesian components, on evaluation we find,

Voo 6 (21a- 1) e (0, hro-2)) = 6 (2lg-rl)

\PQ (:.5\ “-Q'J‘&\) i |+ q’)*\ "'4‘3 (‘..‘.'93-(7-":.'-‘.?)

Iy -\ | ey - 52
- 2 - I
-2l e g

) §
A similar formula results with the V"; operator on the

corresponding wave functions.

- S0, — .
Lis, &) = 4 gi{eig %Jlt+| Flhut

2l g). (g - G) . Lule, ). (25, —p) -4, -9)
lor- @1 g -te) loy - | 12ey o g 124,

- (6»-%3 - .%'_ __?_-__ -— (q»»—%) + 4

N I L.\ R WL - (| I ——
-4 -t % (2o -a)) ¢ (tley-g))
e . -0) | 26, -G -3)

\Pk (‘f_}. ) IL".'."‘CCD \P& (‘ZO}-fg) a'r).>

This expression is now integrated over -r3. We find straight-

forwardly that, dropping the subscript on -rp',:
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L-(‘a ) 6_5) s qﬁ; Scll: i-&x + | +q,u +2/u- (6_1-5).(24}-{)
i b (@1 g -z

+?.,k(a‘1—ﬂ_(u'_}-£\ ,(6»-&)1 ! y A .}

lea -£| | 2e, -1 l2gs-gf |26, -g|

“Lana
-3 - 2 FU 7 I Y EN .o_"*l
.8 \Qj-d’_ﬂ [4“ <4’ /&>

- | - -2 \)-5' "£l 'zINh" ':,
+ 4—-&.1»\16:" £l rlho vy hu e -

l2ee -\ l2a; - £

- - - - "( ..3’( - L -
+‘bux-9-l»(m ﬂé -~ o £‘~Q ‘ £-Q'MI =&l

~pl2e -
2

which is the required kernal for the integro-differential

equation.
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The functional I, is reduced in appendix A to,

I - (o dp dg do o la) 8(p) Y. (a.9)
3

[u-£) [alo) $(p) Ve (n.5) - 4, () €(P)
\Pt U': '{1\) ]

Proceeding through the derivation of SIt in appendix A we

see that a similar process will yield for I,

L o= fdgdpdnde {wule) $20) U (a00)
Lot LT vl - @ (de de dg do 22)
6) Ol 8) ¢ (n) $ela.g) [-19a L&

i + (1}1\—&-) + (1/: —‘l-) + l + V “-l L"s\
| ’ ‘r| i J‘;;

———————

_____ We-new-assume that the vailg—s_— ﬂl(c) satisfy the integro-

differential equation,

(Vor v h) w,lo) = I‘L".* Lig.q) Y l(s,)

Substituting back in the above we get, for the first term in

the expression for L,[3,

So‘Lq_. o le) (-4) jo\qa L e, o) wy (o)
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If we now substitute the expression for Lle , 6‘_.) the full

equation becomes,

££. = SM’,_(.G) U,_(.c',,) o\o"_f day ch_p fi‘r_a [('l;)

3.4
ihl*l(ﬂ" £Vt - Ll)h %) — (o) - (-8
Al -G
4 2 i—_d—_ﬁ_—l—.‘i—i i t
i +-F|P i fp Ny p i Al +"V°;L+-=L-k

R O A AR IO L (SEALEY
Ye (2. 5)

Substitution of V leads to, . - -

" Te - S-U]L(GBJ,_(U;) ckur, J.o-‘ eU'chB[ vel
3.4
chve - d v, - (- 2 e 24 () 4(a)

\P'?Lﬁ'&)q)g L‘rl-s&)
L = {w (u,)u‘,.(o-\)elm Aurm[-- Vol elVe

B 1Y S
- - .' + \ — ()#—‘i) — Z e * 2.-&-—-‘4
2l gy 2|6 - o g - | \20,-9) |20, -

¢ (PY 6 (p) Yo (g .5) Yo i)

The antisymmetry in &6 of the square bracketed expression leads
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to the disappearence of the integral so we can finally say,
if a5 (¢) satisfies the integro-differential equation

defined earlier, then

I, =o0

which is what we wished to demonstrate.

———
—

T
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EVALUATION OF THE INTEGRALS IN THE

POSTTRON-HYDROGEN ATOM PROBLEM
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The functional I in Chapter 7 is written as,

t 4 BL
T - Siﬁ. 4o dlwe) «n, @ O, [-%_ >
-\ .)_L +_L_.\ L 4—_‘)-_\_ L -1 _E,
Yo (AN O Y A

'(\ r\ G CB:

3
We have the expression for Q én and we write,

aCEN Q 415: = _S\_ * S_t

where S.I_ is the summation with coefficients Bn_ and 52 the
summation with coefficients Cg., ...

Substituting back,

‘ifcif\. 1(@6)(3 Q-S)g_:l- }_ i—L\

+J-rL-_'-‘-l_: - E. % (5. * .., + gc‘.-\',clﬂcl.(-‘ﬂe)
Pl
(S\*S)% L an ";74-.\. :\‘(-'2

[de dn dlew®) (s0e5) (-4 S,

L
__ LT ey i /R o
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The last term comes from the use of the equation satisfied by
Mqce (£1) presented in chapter 7.

In evaluating the integrals it is useful to observe that
since the function Py Lea 9) is proportional to the spherical

harmonic Yg®* ( ©, ¢) and that,

L* Yo (8, 8) = 2(8ed) Yo' (o, §)

then clearly,
L* Palwe) = 2(L+1) Polwe)

We now present a listing of the various integrals required.

Let,

T,: (dx (sres )[4 %;1 s+ 5.)
T, = §dx (5eSy) 5 C5iesy)
(de (sies) 5 ($0+5:)

S dx (&, & S-._> ("E',J (Si+Sa)

(W]
!

—
L)
(1]

To = Jde (ses) [-45n]s.

S J't L Sy +'St) '£%;: S,_

b
"

‘—
Y
sl

Jrl't le-o-s-.,) _%> Sa
S&“t LS.-;-S,_) (" 7‘;) 3,

'—‘
-2
1]
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These integrals are straightforward but tedious to evaluate
and result in summations over the various integers involved.
We use one sumation sign to indicate summation over the total

nurber of integers for brevity.

~ ) G GO RIS F) Y CNWOR)|
¢ Z 8. 8. g ynel e

T, -

'fﬂ\'(ﬂ\"l)(ﬂ\i'ﬂ\"l\‘- % — ZC*.MC.L..,J*'..\_..

@y bl
(w\...w\' .\.l.‘.l)(_ }} (”\QM‘+a1) ' - Z\(n'd-ﬁ.)(‘v\#m';hl-m
(ZA)M-"M\'&&J.H _(lg)"_'\ff\—'*_"* *_' B Q_\)’“_f:‘"' Ll

+ Lm'-fu.»(.ﬁ'-pu")("\* ! +ll-'l'}'> l %

(-Lk)‘\'\wn‘ +4 4 -

I-,_ S ZCL-..-\ C-J..\.J..J L(Ll-') ('w\-r-m’-pul\!
p) Y Q.»)Mhm';a.l-rl

R ‘“(—”"‘*"‘“L*'Ll;l"“-—)‘.\" - .
Q.‘h}“hﬁ' 4 -1

I} = Ji ZB\ Qm' (-"\“‘“"'\.. +-2_ ZC‘L-\&\C--'.-W.'-«'
Q_\)-M-m‘

R SNy YO L (e nlsbd-0))
20 4| (-L)A_)mvm' +a R+ (-lk) Nnral el
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Is = = E-R sL -7L_ Z ‘Sm gm' _("‘* "\l)“ + P X ZCL.‘*CL“I‘I

(L*)-nbm'-bl
R S Cam o anl ol ) (.\*,M:‘_u‘\)l.
2L ()™ el (L) F ke

I‘ = - Z_ (.L““ (-0.-....'...' _ _l_ ) («&m'q.hl) ',

W (YR e el
E .)Al (o "““9') : - ;A (! +u)(n~\+m‘-} Ql"\).l
(1’»)“«..0-&&.9.*! ~ (u\)“, el L
+ (~w!s },0_) (-w.’ +')_°.-I)('W\ +m\'+l.|.—['1§ ‘.
(1»3-“&#%'4-‘.\.1-\

I’ = Z C_,l“,,\ C-L....’ o i(k%-i) . (MA-Q-M'(—‘L'L'I)'_
Wl () emrsbl =)

Coneanlel)!
Li\h)mam'oahl

|
Te = - v 2 Clanm C-L...J G 4 (ame ol el 2-1)

L uwm Quyeeel

(ar e g 2)!
Lik et Eo L+

Io = - Lz 3“.3“, L-w--\-.a')‘.
) ¥ b_x)—v\q--\'ol
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Consider now,

Iq. Si‘c (S|+$;\ ';‘;)(S.‘.St)

CLescfdw (M5 as) 2 0 Pulng)

ERY
Y

where we have used the expansion of -_-r‘- in terms of
"

Legendre polynomials and 4 ¢ , 4y are the smaller and greater

of ry and r, respectively.

Let, ) - S
Y L
I“ =T - ﬂ rk‘t S. % :r.r—:ru P..Q_ Lm G)

Tun = -2 & 57 —
?

We must note now the important point that because of the form

b_f‘_—s_é;e;_ih particular the ‘sq&are“of"w\;(i?),;)-; we-must-have- — — - - - ___  _
r, ‘), r; to avoid a s:ipgularity in the integral. This is,

from the physical point of view, assuming that the positron

favours that region of space where it is further from the nucleus

than the electron, a reasonable assumption considering the

various charges invelved. With this in mind,

- Jd Cntm = l\' ( ') |
Toa = — 3 2R, By § 22200+l
LA 2 & B QR+ D
- Lot =1)! - (weanta)!
(l}‘*'\‘v\ﬁ" 1 (1"4‘ hi\f*l‘z
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Let,
= L
Toa = -2)dx S5, z %‘1,. Pe Lo 6)

Because of the relative complexity of the result we write,
ol = M\l +3 .Ll

p

]
L

U = /A + '/;
N\ = o) (LU -wn)
J ol+ 2
_. _whence, o

Iag = =n Z B Carmta . L . A <ﬁ-|)|
A+ () ?

+ (wapd! - A E Chep-nt g
ULIX*U).“'AH hro (1\0\))"“”‘ _hl.

The summation over & arises from the integration over ry from
O to some arbitrary value of ro, and then integrating r, over

the interval O to @, The incongruous JT. arises from the norm-
alisation coefficient of Wage (1-,)

let,

/

o K
Iug’ -~ gﬁk'f S:. 2 - < P‘-.. (w,a)

+\

PR o ‘r"_
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We are confronted here with a term of the form,

j_‘, dlwe) P, lwe) Pulwe) Py lwe)

This is evaluated in (Brink and Satchler, 1962) and it is

equivalent to,

2 £° <1",0,'.Q ; oo)

2041

where the 'g is the Clebsh-Gordan coefficient and in fact,

(Rose, 1957),

£t o)« O Gy F s
- - - C LM Qle L +1) Frla". .L_'_-'-Q) N

{
Pra"a'+8) FrL-2"2%1)

2 '
Non-vanishing values of 'g occur from L" ¥ ¢ L

| even only.
;___ _____.________.___._Al_s_o_; ———— _i_'_'___..S_._Q.{_t._l______.__‘______ -
and, F L) = ( L/l) |
vt
Define,

M am' s 2 Le2d = J

mea' s2ha 2l = K
(T+4")!

(1’*):* A"

and, V
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Then,
Tue = ~22Cu . Cuw 70005 00) . V.
5 WA
. 1"
(-2 _ Z' o) (R-27 o))
(@) K-2" Ao Rt § 20na) 3“""“‘-
and the summation over g" is from O to Q'+4 .
Evidently,
T = EIA_ (i=l‘l---q)

and is of the form,

T 2 Buba £, (n,e) v ZCuns Qs

'g“ (‘L,M,m"t',“l.*') = E-g i ZQ,\ B_“l &‘(“ ‘“a)
C B i oo Cimmmt)
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