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ABSTRACT

The propagation of ultrasonic waves in single crystals of
mercury telluride has been studied on a broad front between 1-2°K
and 380°K. Measurements have been made by the pulse-scho technique
for ultrasonic waves (frequency 10 MHz to 300 MHz) directed along the
[100], [110] and [111] crystallographic directions.

The large mercury telluride single crystals, required for the
ultrasonic measurements, have been grown by the Bridgmen technique
from either stoichiometric melts or from off-stoichiometric, tellurium-
rich, melts.

The elastic constants C11, 012 and chh of mercury telluride have
been measured as a function of temperature between i-ZOK and 300°K,
attention being paid to possible effects of non-stoichiometry in the
crystals, and the results correlated with ultrasound attenuation data.
Results are discussed in terms of the crystalline interatomic forces
and are compared with those of other II-VI and III-V compounds with the
zinc blende structure, together with group IV, elemental semiconductors
and I-VII compounds: elastic properties of mercury telluride correspond
closely to those of cubic zinc sulphide and fall into the general scheme
presented by the related compounds. From the Szigeti relationship, the
ionicity e" is estimated as 065 * 0:05e and the fundamental lattice

1
absorption (restrahlen) frequency as (41 * 0°1) x 10 2 Hz. The Debye

temperature, calculated from the elastic constant data, is 141 * LOK.




Anelastic properties of mercury telluride have been deduced from
the temperature (1:2°K to 300°K), frequency (10 MHz to 300 MHz) and
applied stress dependences of ultrasound attenuation measurements. The
important ultrasound dissipation mechanisms include the viscous drag of
lattice phonons and forced dislocation motion.

Theoretical assessments of piezoelectric coupling on sound attenuation
and thermoelastic loss, show that the effect of both are negligible.

One of the main sound energy dissipation mechanisms is due to the
lattice phonon-ultrasonic phonon interaction. Attenuation due to this
effect exhibits characteristic features at low temperatures. These have
been found in mercury telluride. The effect is larger than observed in
other materials because the Debye velocity is lower and can therefore be
observed at relatively low frequencies.

Another loss mechanism arises from forced vibration of dislocation
segments. At A'ZQK a maximum has been observed in the frequency
dependence of attenuation. The results have been accounted for by the
vibrating string model. The resonance frequency is 220 MHz. The

5

dislocation drag coefficient is 2¢3 x 10 dyn.sec.cm-2 at 4-2°K and loop

length is about 3 x 10-4 cme Data for the ultrasonic wave velocity and
attenuation before and after annealing and under stress are in agreement
with the dislocation mechanism.

In the region 170°K to 260°%k peaks are found in the attenuation which

show characteristics of those of Bordoni. The activation energy is about

0¢15 eV and the attempt frequency about 4 x 10° Hz.
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CHAPTER 1

INTRODUCTION

Ultrasonic velocity and attenuation measurements provide valuable
information about the nature of materials. Yet few details are available
for compound semiconductors or semimetals. While II-VI compounds exhibit
many useful and interesting ultrasonic phenomena, no studias have been
previously reported for the mercury chalcogenides, a group whose properties
span from semimetals to wide gap semiconductérs. The present concern has
been a study on a broad front of ultrasonic wave propagation in the
semimetal mercury telluride. The principal objectives were to asses both
intringsic properties and the effects of material imperfections.

Before discussion of ultrasonic wave propagation in mercury telluride,

let us discuss sound wave motion in elastic and anelastic solids in general.

1.1 PROPAGATION OF ELASTIC WAVES IN ELASTIC AND ANELASTIC SOLIDS
An "elastic" solid may be defined as one in which the stress o is
proportional to the straine¢. Thus the stress-strain relation can be

written for an elastic, linear, one dimensional solid in the following form.

o= Me¢ (1.1)
This is Hooke's law. Here the proportionality constant M is a real number

and is defined as an elastic modulus. In an anisotropic solid o and € are

second rank tensors and M is fourth rank tensor. This is the case for all
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single crystals and will be discussed leter, in particulaer for cubic
crystels. In most real solids, Hooke's law of elasticity is not obeyed,
even for the smallest stress. Deviations from Hooke's law give rise to
the elastic after-effects shown by anelastic or viscoelastic solids.

A modification of Hooke's law to contain the anelastic behaviour
was proposed by Zener (1948), who gave an expansion in terms of the time
derivatives of the stress and strein and retained only the first

L] .
derivatives o and €

o+ T = MeE + -rMoé (1.2)

Here Mo is the true or unrelaxed modulus, M, is the time dependent or

1

relaxed modulus and 7 is the stress relaxation time.

In a one-dimensional solid the strain in terms of displacement

gradient is

<=8 (1.3)
and the equation of motion is

P83 (1.4)

Here S is the displacement vector, X is the position vector, S is the
second derivative with time of the position vector, that is the
acceleration, and p is the density of the solide Then on combining

Equations (1.4) and (1.3) with (1.2), one obteins the following equation:

o Pg M fr % P

: : (1.5)
8t 8t TP 68X p 6X 6t
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This equation admits solutions of the form

o = Ao ¥ cos (kKX - wt) (1.6)
or
-a'X
o = Ae cos (kX) cos (wt) (1.7)
where
av = a'

which define an attenuated travelling wave and an attenuated standing
wave. Here a is the attenuation, w is the angular frequency and k is the
propagation vector for the X direction. Introducing Equations (1.6) and
(1.7) into (1.5) leads to following expressions for attenuation (Lficke
1956 ).

B R s (1.8)
2r M 1+w2.,.2
and for velocity
V=E‘L' . S 1-2L2'.r3 (1.9)
p 2N 2.2 -2 2
14T 140 T

The frequency dependences of a' and V given by Equations (1.8) and (1.9)
are shown in Figure (1.1). In the figure V is the group velocity, v is
the phase velocity, a is the attenuation coefficient and A is the
logarithmic decrement (A« a/f). From this it may be concluded that in
an enelastic solid, sound waves are attenuated, and velocities are
frequency dependent, that is the solid is dispersive. For w 71
Equations (1.8 and 1.9) lead to a'~0 and M V2; therefore, for

wr<{ 1 a solid does not absorb elastic waves and velocities are independent
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FIGURE (1.1) Logarithmic decrement (A), phase velocity (v),
group velocity (V) and attenustion (o) of a sound wave in a

standard linear body as a function of frequency (Lticke,1956).
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of frequency. This case, also shown Figure (1.1), is the Hooke's law
approximation.

Before discussing the ultrasonic wave propegation in mercury
telluride, it is necessary to describe the crystal structure and relevant

details of thermal and elastic properties of mercury telluride.

1.2 FPROPERTIES OF MERCURY TELLURIDE

Mercury telluride is formed from the group I element mercury and
the group VI element tellurium. ILike the semiconducting group IV
elements, the IITI~V compounds and several of the wider band gap IT-VI
compounds, mercury telluride possesses the zinc-blende structure. The
point group is anu The zinc-blende structure, like the diamond structure,
is composed of two face centred cubic lattices displaced from each other
by one-quarter of a body diagonal (see Figure 1.2). The zinc-blende
structure is derived from the diamond structure simply by placing A atoms
on one face-centred sublattice and B atoms on the other interpenetrating
face-centred sublattice. There are four each of mercury and tellurium
atoms in a unit cell; all atoms occupy spatial positions with the
coordinates:

Four mercury atoms at (0,0,0); (0,1/2,1/2); (1/2,0,1/2); (1/2,1/250)
and

Four tellurium atoms at (1/ks1/hs1/4); (1/ %3/ b3/ b);  (3/lsV/bs3/k);
(3/4s3/4s1/ 1)

Each mercury atoms has four nearest neighbours, which are tellurium atoms,
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at a distance of i{ -} ao, at the corners of regular tetrahedron, where ao

is the cubic lattice parameter. There are twelve next-neearest neighbour
of atoms of the same kind at the distance %1/2 8.

An important aspect of the zinc-blende structure is the absence of a
centre of symmetry or inversion. As illustrated in Figure (1.3a) and
(1.3b), the mercury-tellurium layers have unique orientations along the
[111] airection. As a result, mercury telluride like other zinc-blende
crystals is polar and is piesgoelectric. The opposed (bkl) and (hkl)
faces and opposed [hkl] and [hX1] directions have different physical and
chemicael properties. The intensity of diffracted X-rays from an ideal
lattice will be different for the(hkl) and (hkl) crystal faces. The
effect is small but Warekois et al., (1962) have been able to establish
that the intensities for the (111) and (117) faces are not the same. The
higher intensities are characteristic of the surface plane consisting of
mercury atoms. These workers have also reported the etching character-
istics of mercury telluride. The behaviour for pit producing etchants
was correlated with the X-ray data. It was found that etch pits were
formed on the mercury surface of mercury telluride.

Mercury telluride, like other II-IV compounds, forms a link between
semiconducting elements of the fourth column of the periodic teble and the
I-VII compounds. The situation is illustrated schematicelly in Figures
(1.3b) (1.3¢) and (1.3d). Consequently, it is useful to compare the
properties of mercury telluride with those of the neighbouring substances.

The nature of the bond in mercury telluride is a mixture of ionic
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and covalent bonds. Wolff and Broder (1959), from cleavage experiments
have oconcluded that the ionic character of mercury telluride is slightly
greater than 50%.

Unlike the other II-VI compounds, mercury telluride is a semimetal
with overlapping valence and conduction bands (Harman 1967, p«790).

The lattice and thermal properties of mercury telluride have not been
studled extensively. Measurements of those lattice and thermal properties
relevant to an understanding of ultragemic wave propagation are collected

in Appendix A.

1.3 THE PLAN OF THE WORK

The primery objeect of the measurements reported here was to develop
an understanding of the elastic and anelastic properties of mercury
telluride. Like other compounds, preparation of stoichiometric mercury
telluride presents a problem and attention has been paid to effects of
non-stoichiometry: a wide variety of crystals have been studied. Effects,
which could play a role in the absorption of ultrasonic waves, include
dislocation damping, the viscous drag of lattice phonons, the thermoelastic
loss, electronic interactions and pieszoelectric coupling, have been studied.
Contributions from different absorption mechanisms are often difficult to
distinguish because predicted attenuations are of the same order of
magnitudes. To facilitate separation of possible interactions, measurements
have been made over a wide range of temperature (12°k to 400°Kk) and

frequencies (10 MHz to 300 MHz).
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After details of the orystal growth and the specifications of the
specimens used have been given, ultrasonic wave propagation in single
ocrystal of mercury telluride will be discussed in detail. First the
velocity and elastic constants will be considered, followed by the

absorption of ultrasonic waves.




CHAPTER 2

FREPARATION AND EXAMINATION OF SPECIMENS

2.1 INTRODUCTION

Stoichiometry plays an important role in the electronic properties
of compounds, particularly those containing wolatile components. Excess
atoms act like foreign impurities in the materials. Knowledge of the
phase diagram is useful for preparing orystals with controlled
stoichiometry. An incomplete phase diagram of the mercury=tellurium
system is.given by Hansen (1958, p.840). The complete liquidus curve has
been obtained by Delves and Lewis (1963) and Strauss and Brebrick (1965).
The phase diagram eof the mercury-tellurium system, like other III-V,
II-VI systems exhibits & maximum melting point (See Fig. 2.1a) higher
than that of either components. The melting points of mercury and
tellurium are -38-_:900 and 453°C respectively (Hansen 1958, p.840), while
the melting point of mercury telluride is 670%£1°¢ (Delves and Lewis,1963).
Delves and Lewis (1963) have stated that the maximum in the liquidus lies
on the tellurium rich-side, between 2:5 and 4 at.%. However, Brebrick
and Strauss (1965) have concluded from the results of their electrical
measurements on annealed mercury telluride that the deviation is at most
0:01 at.%, mich smaller than their upper limit of 0°60 at.% obtained by
paertial pressure measurements.

Crystal growth of mercury telluride from the melt can be approached
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in two different ways: first, crystal formation from stoichiometric
or near-stoichiometric melts, and second from off-stoichiometric melts.
Although most workers have grown mercury telluride from near-stoichiometrio
melts, the relatively high mercury vapour pressure does create some
technical difficulties in achieving stoichiometric and well-formed
monocrystals and the results are erratic. Brebrick and Strauss (1965)
have found that the pressure of mercury over mercury saturated mercury
telluride at the melting point is 12+5 atm. and is 19 atm. between 6!|.3°
and 656°C. Thus a considerable quantity of mercury is lost from the
liquid phase to the vapour phase under the orystal growing conditions a
further complication is that the system often has to be heated considerably
above the melting point to assure a completely liquified system. Giriat
(196%) and others have demonstrated that the properties of as grown
marcury telluride vary from sample to sample. For example, the Hall
coefficient at 77°K ranged from +1 omj/c to =9 cmj/c in samples grown
under apparently identical conditions. Harman (1967, p.778), using
excess mercury, observed even larger variations of the Hall coefficient
between +1 om3/c to =100 cmj/c. These variations were attributed to
slight differences in the cooling process, growth oconditions and melt
composition.

Some of these problems may be overcome by growth from off-
stoichiometric melts. Delves (1965) has predicted that the mercury-
tellurium phase diagram near the stoichiometric composition there could

be a region of two immiscible liquids, between about Hg1 0 Te1. 12 and
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end Hgq:p- Teqing. » (see Figure 2.1b). He has shown that in a

binary system it is possible to grow single crystals from the monotectic
point Y, where solid is in equilibrium with the two immiscible liquids.

At this point the oompoaition of the solid is fixed. On cooling the

first liquid solidifies and the second liquid, carrying the excess tellurium
| is rejected from the freezing interface.

Growth of single crystals from the monotectic by this method of
Delves (1965), has certain advantages, namely

1. There is no segregation.

2. Constitutional supercooling will not occur provided that
certain conditions are obeyed. These will be discussed later.

3. The solidification temperature is lower than that of the
stoichiometric composition, whioh is at the maximum melting point in the
phase diagram.

The large single crystals required for the ultrasonic measurements
were grown by the Bridgman technique from either stoichiometric or

off=gtoichiometric melt, in sealed quartz crucibles.

2.2 DESCRIPTION OF THE CRYSTAL GROWTH FURNACE

The furnace, shown in Figure (2.2) used to grow Hgle single crystals
consisting of a vertically mounted, 79 cm long, 4 cm bore, mullite tube
inside a rectangular (78 x 40 x 40 om’ ) sindanyo box. To inocrease the
temperature gradient, the furnace was constructed in two sections, only

the top half being well-insulated by vermiculate. Three windings of
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kanthal wire, independently controlled to facilitate minimization of
the temperature humps in the high temperature region, were wound onto
the upper part of the mullite tube. To prevent the coils from slipping
together, the heater wires were held in position with alumina cement.

A potentiometric, proportional, Eurotherm controller was employed
to control the furnace temperature. The voltage difference between a
measuring thermocouple sited in the furnace and the reference setting
on the controller is amplified and fed back into the heater windings.
The external resistances used to control the heater currents were wound
non-induotively to avoid any disturbance of the controller. The true
temperature of the charge was measured by another thermocouple whose
potential could be recorded during the growth process. Platinum versus
13% rhodium-platinum thermocouples were used throughout. The junctions
were made by twisting cleaned ends of the appropriate wires together and
fusing them with oxygen-gas flame.

The growth furnace temperature profile; shown in Figure (2.3), has
two major features, a sharp gradient and a slightly humped plateau. The
temperature gradient was found to be 5500 pear cm at the growing interface.

The furnace was designed to allow crystal growth from the melt
either by pulling the ocharge through the temperature gradient or keeping
the charge still in the furnace while lowering the whole temperature
profile. In the latter case mechanical vibrations were eliminated.
Smooth lowering of the charge at a rate of 3 mm per hr. was obtained

(see Pigure 2.2), through a stainless steel rod driven by motor rotated,
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sorew legs. For the other method the whole temperature gradient was
lowered at 2°c per hr. using a geared down, slow motor driving an

appropriate potentiometer in the controller. (Figure 2.2).

2.3 FPREPARATION OF THE CHARGE AND CRYSTAL GROWTH

Crystals were grown in quartz crucibles whose shape differed for the
pulling technique and the temperature profile lowering method. Crucibles
used in the pulling technique were made from 13 mm bore 1°5 mm wall=-
thiockness quarte tubing. In the temperature profile lowering method, not
only the freezing interface but also the charge ought to lie completely in
the temperature gradient. Therefore to avoid heating the charge too much,
shorter length cruclibles were used in this method. These were made from
24 mm bore 1°5 mm wall thickness: no preferred orientation of mercury
telluride during the growth was observed and to prepare samples of desired
orientation and sizes large crystals were required.

Both types of crucibles have similar features. To facilitate seed
crystals formation, the bottom ends were conical in shape (~70°) (see
Figure 2.4).

The tubes were cleaned with hot chromic acid, followed by distilled
water and heating under vacuum. To prevent the sample sticking to the
tube surface, the crucibles were then carbon coated, by burning a few drops
of acetone in them using an oxygen-ges flame.

Single orystals were grown from either stoichiometric Hg1 «00 T

€1.00

or non-stoichiometric H, ., Te, ,, melts (Delves' methed). The crucible
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was oharged with the prerequisite amounts of (99°9999% purity) mercury
and (99°999%% purity) tellurium obtained from Koch-Light Co.Ltd. The
charged crucibles were evacuated for several hours under the 10-h torr
pressure, and occasionally the ohafge was warmed slightly to remove any
trapped air. Tubes were sealed off under vecuum at the construction using
an oxygen-gas flame. To ensure that the materials were not heated during
the quartz fusion,the lower part of the tube was wetted to cool it down.
For safety from possible explosion at high temperatures, which could rise
from the high vapour'pressure of merocury (the vapour pressure of mercufy
at 700%C is approximately 70 atm.) crucible was placed in a stainless
steel bomb, sealed by a copper gasket.

The charged crucible ingide its stainless ateel bomb was located on
the top of the pulling bar in the furnace. (see Figure 2.2). The position
of the charge in the temperature profile was such that, the conical tip
of the crucible was approximately 1500 above the melting point of mercury
telluride.

The furnace temperature was increased.gradnally over three days to
the working conditions. Crystals were then usually grown by the method
of lowering the temperature gradient slowly. In the samples which were
solidified with hHigh growth rates (10°C per hour), or with a small
temperature gradient (5°C per om) constitutional supercooling was observed.
An interesting example of polycrystalline growth arising from fast growth
rate, illustrated in Figure (2.5). Here the core was supercooled due to

poor heat conductance of the solid, especially important in that wide



T

samples and froze out rapidly to give small grains.
Large and well-formed single crystals of mercury telluride grew

when the temperature gradient decrease did .not exceed 2% per hour.

2.4 EXAMINATION OF THE SINGLE CRYSTALS

To take out the sample the top end of the quartz crucible was cut
with a water cooled, grinding wheel. The sample then slid out easily.
To reveal of the grain boundaries, specimens were etched with freshly
prepared concentrated one part nitric, one part hydrochloric acids and
two parts water, followed by re-etching with concentrated hydrochloric
acid and washed with distilled water. Monocrystallinity of the solid
was further inspected using the X-ray back reflection Laue technique.
Laue photographs were taken at translationsl intervals along a face of
the sample and after 180° rotetion. The sample to film distance (3 cm)
and the angular orientation were held constent during this process; if
the sample was a single crystal, all of the photographs were identical.

Usually one complete single crystel grew. In Delves' method (1965)
an abrupt line, marking growth from melts with a large excess of tellurium,
was extant towards the top of the boule, as shown in Figure (2.4). The
tellurium-rich upper portion was removed by spark erosion and not
examined fully; in X-ray powder photographs a few extra lines, in
addition to mercury telluride lines, were observed, and X~ray back
reflection photographs showed this portion te be single crystal. The
specimen from the main bulk of the boule showed no cellular structure,

and as evidenced on back-reflection Laue photographs by a complete lack
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of spot splitting or spreading, no mosaic structure or strain. Examples
of back-reflection Laue photographs are shown in Figures (2.6a,b and c)
which were taken along [001] (four fold symmetry), [110] (2n symmetry)

and [111] (three fold symmetry).

Etoh pits in mercury telluride

Etch pits formation was examined on (111) surfaces prepared first
by spark cutting, followed by mechanical polishing. Warekois et al.,
(1962) have described upon the etching characteristics of the mercury
telluride. Their polishing etchant (see Table 2.1) has been used in the
present work for chemical polishing. To reveal the pits, an etchant
suggested by Delves seen in the same table (private communication) was
used.

The mercury and tellurium surfaces along the (111) direction have
been oxplained in more detail in Chapter (1, page 5 ). The triangﬁlar
pits, which appear on the mercury surface, were examined under a
varticelly illuminated, metallurgical microscope. BExamples of photographs
are shown in Figure (2.7). The magnification was calculated from
photographs of a graduated scale enlarged under the same conditions.

The number of dislocation etch pits was found to be about 107 pits per
cm2 both for semples grown by Delves' method and for samples grown from
stoichiometric melts. No figures are available in the literature for

comparison.
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TABLE (2.1). Polishing and structure etchant for mercury telluride

by water

Composition of Etching Results on (111)
6:1:1 2500, 10=15 min. Pitless polish on
HNO3 = HC1 = both surface .

1120

1:1:2 Use freshly, after Pits on mercury
HI\IO3 = HC1 = e few min. rinse- surface.

HZO with HCl, followed
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2.5 MEASUREMENTS OF LATTICE SPACING AND DENSITY OF HgTe

The lettice spacing of Hgle was measured by the powder method.
Sufficiently fine powder was fixed by collodion to the glass filre,
which was then located along the axis of a Philips Debye-Scherrer
camera of circumference 360 mm. MNickel filtered X-rays from a copper
target were employed. A twenty hour exposure was found setisfactory
to resolve the singlets at the low 6 end. The accurate lattice spacing
was measured through the douﬁletg at the high 6 ende To meke them clear,
the exposure time was increased to two days, in this case the singlets
were almost lost in the background. The angles 6 between the reflected
X-rey beam and the atomic planes were deduced from the ring diameter
on the films, which were measured with accuracy of an £ 0°05 mm by a
Hilger and Watt 1lluminated scele. The 6 values were used to calculate
d-specing and the lattice spacing &, from Bragg law by the standerd
procedure.

An accurate lattice spacing a, can be obtained if measurements are
mede on the spectre that are reflected almost back into the incident
beam, since large Bragg angles are very sensitive to small change in
cell dimensions. This can be seen by differentiating the Bragg equation
to obtain

8d = -d cot 68 6 (2.1)
because cot 6 tends to gero as 6 tends to 90°, therefore, a small
error in 6 should produce a vanishingly small error in 4 as ¢

approaches 900, and all the systematic errors such as non-coincidence
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of the axis of the camera and the rotation axis of the specimen, should

be gero. Although this is impossible to achieve, since a Bragg angle of

90° corresponds with reflection directed back into the X-ray beam, it can

be done in effect by determining @ from several reflections having different
¢ 's and extrapolating the result to 6 = 900. This oan be done in

several ways. The method used in the present instance was that developed

by Nelson and Riley ( 1945). In Figure (2.8) the plot of the lattice
spacing of both as grown and annealed HgTe (100 hours at 300°C in mercury
vapour) against 1/2(_cos2e/sin9 + 005_26 /6 ) is shown. From this figure

the lattice spacing, extrapolated to 6 = 90° was deduced to be
a, = 6463 + 04001 2 for amnealed HgTe, and
8, = 6+461 ¥ 0001 2 for as grown materiel;

Annealing does not alter the lattice spacing within experimental error.
These results agree with the quoted (6°462 X) by Woolley and Ray (1960)
and others.
The theoretical X-ray density was calculated in the following way.

The density of the cell is (Mass of cell)/(Volume of cell). Cell volume
is a.o3, if it is oconsidered that there are four mercury and four tellurium
atoms per cell. The mass of the cell is (4 ATe + 4 AHg)/N where the
A's are the atomic weights of mercury and tellurium. and N is Avogadrd‘s
number. Therefore, the density is

Mgy + &)

3

p (2.2)

Na
o
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and using 6°462 X for ao turns out to be 8:079 gn;/omB. Densities
measured by Archimedes' principle, of both as grown and annealed
crystals, were found to be 808 ¥ 0:01 gm/ on’. These results support
the conclusion of Brebrick and Strauss (1965) that the deviation of the
maximum in the liquidus on the phase diagram from 50-50 at % point is

very small.

2.6 COMPARISON BETWEEN THE CRYSTALS GROWN FOR THE PRESENT EXPERIMENTS

AND THOSE OF OTHER WORKERS

A good way to compare materials grown by different methods is to
exemine the electrical properties, which are very sensitive to excess of
either elements in compounds. In Table (2.2) measurements of thermo-
electric power, conductivity, Hall coefficient, mobility and the number
of carriers are tabulated for two selected temperatures (770-30001{).
In Figure (2.9) the temperature variation of these properties are
presented. The units of each property can be obtained from Table (2.2).
We are grateful to Dr. Dahake for permission to present these data.
Sample (1) was grown by Dahake from the stoichiometric melt which was
unannealed. Sample (2) was the same but annealed for 70 bours at 300°c
in mercury vapour. Sample (3) was reannealed for 180 hours at 300°C in
mercury vapour. Sample (4) was cut out of the same Delves' type boule
from which some samples for ultrasonic measurements were prepared. This
sample was annealed for 100 hours at 30000 in mercury vapour. Sample (5)
was the same as (4) but it was reannesled for 150 hours at 300°C in

Mercury vapour.
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Harman et ale(1958), Rodot and Triboulet (1962), Giriat (1964)
and the others have shown that anneeling of as grown mercury telluride
in mercury veapour at different temperatures from 630°C to as low as
250°C profoundly alters the electrical properties. Giriat (1964) from
the variation in electrical properties with annealing time and temperature,
concluded that in the annealing process two, possibly three reactions take
place. In the first reaction microheterogeneous precipitates are dissolved.
In the second; mercury atoms diffuse in to the mercury telluride from the
vapour. This process ultimately makes the mercury telluride stoichiometric.
In the third process further diffusion of mercury atoms occurs. This
reaction leads to the observed increase in electron concentration. Further
annealing beyond the stoichiometric composition creates excess mercury
samples.

The Hall coefficient of sample (4) is negative and shows a broad
maximum of 80 cm?/c at 91°K (see Figure 2.9). The electronmcbility
reaches a maximum of 21000 cm%/V.sec. at 240°K. The results for sample
(5) are identical with those for sample (3) and confirm that HgTe becomes
more p-type as a result of amnealing and that the Delves' material closely
resembles the other grown from the stoichiometric melts: again evidence

for the phase diagram of Brebrick and Strauss (1965).

2.7 FPREPARATION OF THE SPECIMENS FOR ULTRASONIC MEASUREMENTS
The samples were oriented by use of Laue back reflection photographs.

The goniometer, with the crystal fixed on it, was located on an aligned
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track in the spark cutting machine. The track axis was normal to the
crystallographic plane down which the cut was made by a brass plate
electrode. After cutting, the orientation of the spark eroded face was
reinspected by X-ray diffraction. The same procedure was repeated to
prepare the other sample face. The maximum error was estimated to be

less than 1°. The faces were spark planed to achieve accurate parallelism.
The planing disk of the spark machine was first used to plane a brass
reference surface onto which one flat face of the specimen was then fixed.
Both faces of the specimen were planed in the same conditions. The
parallelism of the faces were checked with dial gauge capable of measuring
0:005" after accurate planing no response could be seen on this gauge.
Although the (100) and (111) faces were easily planed easy oleavage of
the (110) face made this face somewhat more difficult. Cylindrical
specimens (one of them can be seen in Figure 2.4) were obtained by spark
cutting with a cylindrical electrode. The planed faces were polished with

3u followed by 1u diamond powder.
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CHAPTER 3
VELOCITY AND ATITENUATION MEASUREMENTS

3«1 THE UNITS OF ATTENUATION.
The attenuation of elastic waves having an infinite plane wave-

front, may be written in the following form:

o(x) = o, (3-1)

here o(X) and o(0) are the amplitudes of sound waves at two different
positions and a in the attenuation coefficient. For two different

points, from the solution of Equation (3.1), a turns out to be

= - a_i [1n o(x)] (3.2)
or
R CYR
= f;-l: Eﬁ-z-)— (nepers/cm) (3.3)

here 1n is the natural logarithms The units of o is "neper/cm"
(sometimes just written as mom ! "), Power attenuation is conventionally
expressed in 'decibel' ('dB'). The definition of "dB" is:

(1'-‘ower)1 . L)
10.10510 m (aB) (3.

Therefore a , the attenuation coefficient, in terms of "dB/cm" can be

written; since power is proportional to the square of the amplitude, as:

1
12-11

aQ =

o(X,)
20 log, m—b (dB/cm) (3.5)
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interconversion, between Equations (3.3) and (3.5) using the relation

of (1nX = 2-3026 log1oX)
1 neper = 8-686 dB (3.6)
Another commonly used unit in the attenuation measurements is:

"dB/usec”, which is given from:

a(dB/usec) = 10'-6 v(cny/ sec)a(dB/cm) (3.7)

Yet another expression for energy loss is that of "logarithmic decrement"

("a"), which is defined for a harmonically oscillating system as
A= i (3'8)

here W is the energy loss per cycle in the specimen, and E is the total

vibrational energy stored in the specimen. It turns out that
A(nepers) = a(nepers/cm) A (cm) (3.9)

here A is the wavelength of the sound waves. The expression for

conversion to "A" is:

[+ 1 sSec
8 = M—-LH-686.1‘(M{2 (3.10)

-1
There is, the equivalent measure of dissipation called the "Q " of a
system, which is defined as

-1

Q" = (3.11)

=i

-1
where E and W are as defined above. From the definition of Q and 4

it is seen that from Equations (3.8) and (3.11),

A=w (3.12)
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3.2 THE BASIC PRINCIPLES OF THE PULSE-ECHO TECHNIQUE.

The sound attenuation can be measured by a variety of techniques,
whose value depends upon the physical situation (a comprehensive review
may be found in McSkimin 1964 ). In the present experiments the “pu%se-
echo technique®™ was used for measuring both the velocity (v) and the
attenuation (a) of ultrasonic waves in mercury telluride.

A plot of o against distance X using Equation (3.1) is shown in
Figure (3.1a). It can be seen that a knowledge of only the amplitude
of the sound waves at two different positions is sufficient to give the
attenuation coefficient. For gases and liquids the amplitude of the
sound waves, can be easily measured, at any desired position, but for
solids, the measuring technique is rather more difficult. Here the
pulse-echo technique is particularly valuable.

The practice almost invariably to produce the high frequency in an
electrical circuit and then to convert the electrical oscillations to
mechanical vibrations. A device producing this conversion is termed a
transducer. In the pulse-echo technique, the transducer, bonded to the
specimen, is excited by a wave packet of electrical oscillations of the
desired frequency, and the wave packet of sound, generated by the
transducer, travels through the material. The reflected beam is detected
and reconverted to electrical oscillations by the same transducer in the
single-ended method. The wave packet of sound travels through the material
by successive reflections, while the amplitude dies off according to

Equation (3.1). Figure (3.1b) gives a schematic of the situation. Here
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FIGURE (3.1). Physical basis of attenuation measurements.
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Vo is the amplitude of the electrical oscillation exciting the transducer,
o-(x1) and 0'(X2) are the amplitudes of the sound waves at the transducer-
specimen boundary, and V1 and V2, the amplitudes of the electrical
oscillations, are proportional to the 0(1[1) and O(X2 ) (the proportionality
factor includes terms such as the transducer efficiency and losses at the

interfaces). As may be seen from the same figure, the distance between

X2 and X1 is twice the specimen length, and, therefore, Equation (3.5)

can ba rewritten aa:
v
1 1
[« oL, ln v2 (3013)

Thus, measurement of V, and V, and the specimen length give the sound

attenuation. Further the time delay measurement between V, and V., gives

1 2
the velocity of sound, which is 2L/t because within the time interval
t,waves travel twice the sample length. The measurement of amplitudes and

the transit time will now be described.

3«3 DESCRIPTION OF THE MEASURING EQUIFPMENT

The velocity and attenuation of ultrasonic waves in mercury telluride
were measured by the single-ended pulse-echo technique shown in Figure
(3.2). A Matec, inc., Attenuation comparator, Model 9000 employing
Model 96 R.F. Plug-in unit, was used. Pulsed electrical oscillations
of frequencies between 10 MHz and 310 MHz continuously tunable, generated
in the R.F. plug-in, are applied to the appropriate transducer and the

resulting ultrasonic energy coupled in to the specimen. The pulse width
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can be varied between 0+5 and 5 usec. The pulse amplitude is continuously
variable and has a maximum of 3KV peak-to-peak at 10 MHz which decreases
a little at higher frequencies. The pulse repetition rate can be varied
between 10 and 1,000 pulses sec-1. The R.F. pulse is tuned to the
fundamental or an odd harmonic of the transducer. At each echo a small
electriqal signal reaches the originating transducer. These electrical
signals are coupled to a high gain receiver for amplification. The
bandwidth of the receiver is i Mz and the maximum gain 80 dB. The
frequency range covered is again 10 MHz to 310 MHz with continuous tuning.
These are then detected and filtered and the resulting video envelope
displayed on an oscilloscope. A photographs the echoes and the exponential
wave form is presented in Figure (3.2). The first peak (a) results from
leakage of the R.F. power through the sample holder; the second peak (b)
and subsequent peaks (c;d etc.) are the echoes propagated through the
specimen twice, four times and six times respectively. Since the
absorption rate of ultrasound is characteristically exponential, a
calibrated, continuously variable exponential waveform generator is
employed for measurements. By matching the exponential waveform to the
peaks of the echoes and using this exponential decay generator, it is
possible to obtain directly the value of attenuation in "dB/usec." from
calibration curves. The time delay between successive echoes on the
oscilloscope is the time taken for the pulse to pass twice through the

specimen. Velocity measurements may be readily obtained to within 1% by
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measuring the round trip time between echoes and measuring sample length.
The transit time measurement is obtained by using calibrated delay

generator.

3«4 GENERATION AND DETECTION OF ULTRASOUND: THE QUARTZ CRYSTAL TRANSDUCER.

Quartz transducers were used to convert to electrical oscillations
into mechanical vibrations and vice versa. These transducers are based on
the piesoelactric sffsct. Quartz (3102) crystallizes in the trigonal
system, forming e hexagonal prism with two rhombohedric ends (see Figure
3+3a)s The "X" aces connecting opposite corners of a cross~section of
the prism are called piezoelectric axes. The axes normal to the prism
faces are the mechanical or "Y' axes. In Figure (3.3b) only one each of
the "X" and "Y" axes are shown. Each of these axes has two identical
axes obtainable by rotations of % 120°,

The long axes of the prism is an axes of optical symmetry and is
called the optical or "7 axes, this is also shown in Figure (3.3a) and
(3.3b). The "X", "Y' and "Z" axes form an orthogonal set.

In Figure (3.3c) a simple diagram of the quartz crystal lattice is
shown. In the undeformed lattice, the negative ionic charge of oxygen
and the positive charge of silicon neutralize each other. When & tensional
stress is applied to a flat plate along the “X" direotion, then, due to
the resulting strain, the positive silicon ions are shifted towards the
one surface and the negative oxygen ions towards the other surface. The

disturbance of the electrical equilibrium leads a potential difference
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"V" between the electrodes. If the direction of stress is inverted, the
sign of the strain is also inverted and the charge on the electrodes
changes sign, and the potential difference becomes "=V for the same stress.
A quartz slab under the tensional stress is shown in Figure (3.3c). A
charge distribution also results if tension or compression is applied at
right angles to "X" (i.e. in direction "Y"); this is the transverse
Piezoelectric effect. Conversely, if the quartz slab is subjected to an
slectric field inm ths "X" direction by applying a potential difference
between the electrodes, ionic charges are caused to move in the direction
of the field, giving rise to a strain. This effect is called the reciprocal
pliezoelectric effect.

To generate longitudinal and transverse waves, the transducer plate
is cut from the crystal at a right angles to one of the piezoelectric
axes "X-cut”, and the one of the mechanical axes "Y-cut" respectively.
A schematic diagram of the two methods of cutting out transducers is shown
in Figure (3.3d), Opposite faces are coated with a thin gold layer to
form electrodes. In Figﬁres (2.4) and (3.9) a picture of a transducer,
and its electrode is shown.

In operation the transducer is excited to one of its mechanical
normal modes. Because an X-cut plate is vibrating in the direction of
thickness, the natural frequency of the transducer is that when there is
maximum elongation of the faces in the two opposite directions, a situation
described by a standing elastic wave with displacement antinodes on both

faces. In the case of the fifgt normal mode of vibration there is only a
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single nodal plane, and the transducer thickness is equal to half a
wavelength. When a quartz slab is excited at its nth harmonic, its
thickness is dévided into n equal parts with compressions and expansions
taking place in adjoining sections. When n is even, compression occurs
in n/2 of the sections and expansions occur in the remaining sections;
thus there is no net strain in the crystal: the even harmonics cannot

be used. When n is odd, however, (n-1)2 compressions neutralize the same
number of expansions, leaving either a compression or an expansion is left
in the remaining section. During the measurements, frequencies out to

290 MHz have been generated from transducers of fundementel frequency 10 MHz.

3.5 TRANSDUCER-SPECIMEN COUPLING.

Successful use of the pulse-echo ultrasonic method depends critically
on the nature of the seal between the transducer and the specimen. The
character of the seal becomes increasingly important at higher frequencies
(shorter wave-length). At room temperature there are many choices for a
bonding material, but at liquid helium temperatures the choice is limited.
Any material used will become & solid before liquid helium temperature is
reached and differential thermal expansions cause a considerable change in
the nature of the seal during cooling.

Requirements in choosing the correct material and in preparation of
a good bond are:

1 The seal should be uniform and a thin fraction of the ultrasound

wave~length.




“3{w

2. All particles and air bubbles should be excluded.

3. In temperéture dependent measurements seal should stay on the
sample, and keep a good match between specimen and transducer.

During the present work from experiment, a few bonding materials have
been found to give satisfactory performance at low temperatures. 1he most
successful bonding has been achieved by 250,000 centistoke silicone fluid
obtained from "Hopkin and Williams Ltd., Chadwell Heath, Essex," for X-cut
transducer; in the temperature range between 1:2 to 590°K. Also useful is
1,000,000 centistoke silicone fluid. However Y-cut transducers tended to
break away above about 250°K for the propagetion directions [100] and
[110). Near room temperature paraffin wax or phenyl salicylate (salol) was
found to be satisfactory.

The following steps were followed to bond the transducer to the
specimen with silicone fluids:

1. The transducer and specimen faces were clsesaned with acetone and
dried.

2. A small drop of fluid was put on the cleaned face of transducer
and specimen.

3. To remove any trapped air bubbles in the fluid, the transducer
and the specimen were kept in a vacuum for a few hours.

4. The transducer was pressed onto the sample and rung onto give
a homogeneous, thin seal.

5. Uniformity and thinness of the seal was ensured by leaving a

weight of approximately 30 gm on the transducer for about a day.
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Paraffin wax and phenyl salicylate bonds were prepared by heating the
specimen on a hot plate and following the above procedure. Phenyl salicylate
gave the better bonds. On mechanically polished specimen faces with a
mirror finish the bond tended to break away. The good adhesion was
achieved on such faces by slightly etching them.

The quality of the bond was checked by the echo pattern on the

oscilloscope.

3.6 SOURCES OF ERRORS.

3.6.1. Errors in the attenuation measurements.

In single crystals, the measured attenuation includes, in
addition to the intrinsic absorption in the meterial, a) the loss due to
diffraction of the sound beam, b) the loss due to phase sensitivity of the
transducer, c¢) the loss due to slight misorientation of the specimen,

d) the loss due to dissipation of the sound energy in the bond. These
will be considered in turn.

a) diffraction effect: The sound wave is not a true plane

wave as it leaves the quartz transducer but rather a diverging wave, and
this contributes an apparent attenuation, which at low frequencies can be
a dominating effect. Applying the results found for a liquid, an estimate
of the diffraction contribution to the attenuation is given'by (Granato
and Truell. 1956).

1 dB per a%/A
here a is the radius of the transducer and A is the wavelength of the

sound wave. Thus, the diffraction loss varies inversely with frequency.
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b) phase sensitivity of the transducer; A plane wave

reflected back and forth within & specimen with nonparallel face will have

its wave fronts distorted, so that the part of' the wave falling on one side
of a transducer will be out of phase with that striking enother part. The
situation is shown schematically in Figure (3.4). The transducer integrates
the pressure signal over its surface and interference and apparent attenuation

results. This value of this attenuation is given by (Granato and Truell

1956).

_ _8-68 w2f2a262n

& =
error Lv

(dB/psec) (3.14)

here f is the sound wave frequency, & is the transducer radius ¢ is the
angular deviation from parallel, n is the echo number, L is the specimen
length, and v is the velocity of sound in the material.

For example, in order to insure that the loss due to this effect is
less than 10% of the measured value of mercury telluride at 100 MHz, the
reguired parallelness can be estimated from e numerical example. Typical
numbers are:

a~17 dB/usec (at 77?K, along the [110] direction for

100 MHz, i.e.

% rror = 0+17 dB/usec)
L=1cm
a =0°6cn
n = 4 echoes
v = *295 (cy/usec)




FIGURE (3.4). A plane sound wave reflected back and forth

within a specimen with nonparallel face will
have its wave fronts distorted, so that the
part of the wave falling on one side of the

transducer will be out of phase with that
striking another part.
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substituting these numbers into the Equation (3.14), on finds that the
=4

deviation angle 6§ must be less than 2 x 10 7 radians.

The best way of checking parallelism, other than direct measurement,
is from exponential character of the echo train. In Figure (3.5) an
echo display of one of the spark-planed mercury telluride specimens, is
shown. From this evidence, it has been found that tolerances of better

than 10-h

radians are readily obtained by the spark-planing technique,
provided ‘that, the conditions which were explained in Section (2.7) are
all obeyed.

As seen from Equation (3.14) the effect becomes more important at
high frequencies; this can be reduced by using a small diameter transducer
and a long specimen. The limitation in choosing the transducer diameter is
the diffraction loss, which is larger for smaller trensducers. The
specimen length is limited both by the difficulties of growing larger

single crystals and the measurement of the attenuation.

¢) the effect &1e to specimen misorientation: Misorient-

ation results in mode conversion of the sound waves, which leads an

ultrasonic attenuation.

g) the loss in the bond: There is little available data

in the literature about the attenustion in the bonding materisl. Bobylev
and Kravchenko (1967) found experimentally that the loss in the coupling
£ilm is about 8 x 107 (dB/usec) per reflection at 150 MHz. The loss of

sound energy in very thin seals of bonding materials is negligible.
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In the present experiments the maximum relative error of the
attenuation measurements did not exceed 10% except at low frequencies
(~10 MHz) for small transducer when diffraction losses were appreciable.

346420 Errors in the velocity measurements.

The main error in thé present velocity measurements
comes from the measurements of the transit time (~ 1%). The error in
the measurement of sample length by & micrometer is about 0¢2%. Other
sources of error are negligible when compared with that in transit time
measurement. For example, Waterman (1959) finds that the error introduced..
in velocity measurements on cubic crystals depends on the square of the
misorientation angle. For silicon, for a one degree misorientation, he

concluded that for sheer wave propagation in & [100] direction

?— = =28 x 10-4

In Figure (3.6), chh of mercury telluride calculated from shear wave
propagation in a [100] airection for three temperatures, is presented.
The velocities, in this figure were measured on the same speéimen, using
different bonding material. The maximum error, obtained from the
scatfering of the experimental points, is 2% on elastic constant, and 1%

on velocity measurements (C t=v2) which is, exactly, equal to quoted

ij

errors in transit time. Therefore, it may be concluded that the errors
in elastic constants measurements are (remembering that elastic constants

are proportional to density and the square of the velocity

2
2 L
Cijwpv or cijxp t2 ):




FIGURE (3.6)s Errors in elastic constant measirements.
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Error in the X-ray density: 0075%
Error in the length measurements: 2 x 0%
Error in the transit time: 2 x 1%
i.e. total error in elastic constants: 2¢5%

To estimate the error due to thermel expansion, the thermal
expansivity of mercury telluride was measured (see Figure 3.7) with a
simple quartz dilatometer, employing a dial gauge capable of reading
1/10000". The measured thermal expansivity of mercury telluride,
together with the calculated thermal expansivity from the thermal
expansion data, measured by Novikova and Abrikosov (1964) is shown in
the Figure (3.8). The maximum error in velocity, at 77°K, calculated
using room temperatufe length is 0+06%, (AI,/L)77 ~6x 10-h) which
is also negligible among the other sources of error and can readily

be corrected for.

3.?- THE SAMPLE HOLDER AND CRYOSTAT USED FOR ULTRASONIC MEASUREMENTS
The sample holder was designed to operate over a wide temperature
range between 17K to 450°K without altering the sample's position.
To allow for different thermal expansions between the sample and the
materials used in the sample holder construction spring adjustments and
contacts were used.
As shown in Figure (3.9), the platform, upon which the sample is
placed, can be driven upwards by compressing three springs by altering

the position of a lower platform by a screw. The springs and the two
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platforms were guided by three vertical brass bars, which were screwed
to the sample holder head. For simplicity, in Figure (3.9), only two

of these bars are shown. A spring loaded, guided, copper plunger was
used to obtain contact with the inner electrode of the quartz transducer.
The outer electrode was earthed by a brass ring with same internal
diameter, connected to the sample holder heade The spring contacts used
were successful in preventing contact breaking due to thermal expansion.

P,T.F.E. was used as the electrical insulation within the sample
holder head the coaxial line, carrying R.F. power. Thin walled (01 mm),
cupro-nickel tubing was used to make this coaxial line; sizes were
outer diameter 6°0 mm and inner diameter 1¢0 mm. The space between the
lines was filled with P.T.F.E. sleeving. The inner line was soldered
to the top of a copper case, which contained a spring-loaded copper
plunger as the inner electrode.

The actual sample holder was isolated from the refrigerant liquid
by two thin walled vacuum cans. As shown in Figure (3.9), these cans
were connected separately to & vacuum system by two thin walled, cupro-
nickel tubes.

All the joints, except for those of the two concentric vacuum cans,
were hard soldered. To avoid damage of the inner components of the
sample holder the two vacuum cans were soldered, Jjust before starting
each experiment, with "Wood's metal", which melts at about 65-7000,
using "killed spirit" as flux. The methods of soldering vacuum can

joints are illustrated in Figure (3.10a); these gave completely

-
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satisfactory vacuum-tight joints unaffected by repeated cooling to
liquid helium temperature. A vacuum tight coaxial, also illustrated in
Figure (3.10b) was fitted on the cryostad head to prevent air leakage
down the coaxial line. Heater and thermocouple leads were taken out
through the vaocuum lines to the cans and the method of insuring vacuum
tightness is illustrated in Figure (3.10c). The inner cen pumping line
had a T=-junction outside the cryostat to allow attachment of a helium
gas filling system. Cryostatic equipment is shown in Figures (3.11)
and (3.12).

The top of the glass liquid helium dewar was located to a rubber
gasket and vacuum tightness achieved by a rubber sleeve. The inner space
of the dewar was Jjoined, through the cryostat head, to a manometer system
and to a large mechanical pump. To release any built-up pressure in the
dewar, as shown in the Figure (3.12), the inner space connected to a mercury
protection valve. The other arms of the manometers, and the interspace
of the helium dewar were pumped by a further mechanical pump. The vacuﬁm
spaces were monitered by Pirani gmuges.

A superconducting gauge (Figgins et al. 196)4) was used to measure
the liquid helium level in the dewar. This was made from a coil of
constanten wire tinned with 60% Sn - 40% Pb solder, using phosphoric acid
as flux. The location position at the top of the sample holder is shown
in Figure (3.11). A constant electric current is passed through the coil.
In the liquid helium, the wire is superconducting with a transition
temperature of Tc :'7°K. By observing the voltage drop across the wire,

the level of the liquid helium could be monitered.




.FIGURE (3.11).
CRYOSTAT HEAD AND SAMPLE HOLDER

HELIUM GAS OQAXIAL PLUG (VACUUM '_l'_llGH"l')
INLET _ —LIQUID HELIUM |
; FILLING LINE
il
5 H =
; T %//,// O RING
PUMPING A [ . .
LINE 1 \ /-« -=TO MANOMETERS
RUBBER GASKET
1L ‘Wz .
— - AN
] 35¢cm
7 _RUBBER SEAL
™
/of‘nﬂ; . HELIUM DEWAR
lq N'\ a rj
-~ I y
| - [
—vacu
— UM LINE
yul _ _ 42 cm
N DN ELECTRICAL LEAD LINE
SUPERCONDUCTING AND HELIUM GAS INLET
LEVEL GAUGE - COAXIAL LEAD y
I - —t—=SAMPLE HOLDER

O 2c¢cm

u




dAnd

. d b -—
mwwwmwawwhwﬂmmommpw T IVDINYHOIN 398V OL
a0y pasn juemdinbe 3w3sofx) -(zi°¢) mNsTd  WH3IATIOH [
FIAVS ﬂ
_ ~ 3ATVA NOIL310ud LVISONYW
| AdNOY3N s NVISILYVD
" Y313INONVW J \)J
AdNOYIN N \/ B |
| : | WNIM3H
dinnd aindn
TIVIINVHIIN QL Y3L13IN
-ONVW
_ 110 ]
1 o YO0
A / -5
FONVLLINGY YHIV | N39OULIN
ainon B r |
ﬁ
| |
. av3H
I9NVD INVHId
| Y3GTIOH TIAVS YOS
sava1 — | n__l WANDVA HOIH OL




-39=

To measure and control the sample temperature, two copper-constantan,
and one 0°03 at.% golq/iron-chromel thermocoupler were used. 40 gauge
(0°01219 cm diameter) copper and constantan, 0008 cm diameter gold/iron
and 0+009 cm diameter chromel wiring were used to make these thermocouples.
For insulation, the pairs were inserted into thin sleeve, carried all the
way through the cupro-nickel tubing.

The joints of the copper constantan thermocouple were prepared in
the standard way. The gold/iron and chromel wire were fused together by
silver soldering.

The reproducibility of the thermocouples depends upon very much
the quality of the alloy wire and the junction, even mechanically straining
effects the reading. Because of these reasons each thermocouple was
calibrated. For calibration of the copper-constantan thermocouples the
reference temperatures were: ice and water (Ooc), dry ice and acetone
(196°K) end liquid nitrogen (77°K). The gold/iron-chromel thermocouple
was calibrateé against the manometer thermometer,

Above ADOK the copper-constantan thermocouples were used while
between 492°K and 40°K the gold/iron-chromel thermocouple was employed.

To read the thermocouple potentials a "Tinsley" decade potentiometer,
capable of reading 1 uV, and a spot light galvanometer was employed. The
reference junotion of the copper constantan thermocouple, immersed
according to the temperature range in, ice and water or liquid nitrogen.
As the reference junction of the gold/iron-chromel thermocouple's, a
specially prepared, long junction arm of 1+0 mm diameter thin walled

cupro-nickel tube was directly immersed to the liquid helium dewar.
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Temperatures below 4_'2°K were measured with manometers. The vapour
pressure of a liquified gas is a rapidly varying function of the temperature,
and therefore the pressure over the liquid is a measure of temperature. In
the range between 760-40 torr a mercury manometer was used and for the
lower pressures an oll manometer was employeds The density of the o0il
(silicone fluid MS705) in the manometer 14+0 times less than that of the
mercury. Both manometers were calibrated for the vapour pressure of liquid
helium and liquid nitrogen. Tables can be found in White (1959, p.104=5.)

The cryostat was designed to give a temperature control accuracy to
better than ¥ 0°5 degree, Preliminary experiments had shown that this
adequate. Different temperature ranges required different techniques:

a - Control by electrical heating

b - Charcoal desorption control

¢ = Vapour-pressure control

In all these methods the required accuracy was achieved readily.

a - Control by electrical heating:

The usual method is by controlling the supply of electrical energy
to preserve a temperature (T) in the space which is to be above that of the
surroundings (at To). As the loss of heat, to the surroundings by
radiation, conduction, etc., is a monotonicdl 1y inocreasing function of
(T-To), so the electrical input, must increase similarly with (T-To). In
the present experiment, temperature was controlled, over a wide temperature
range between 14.'201( and room temperature. Electrical control was used
solely between 77°K and 300°K successfully by this method. The arrangement

used is shown in Figure (3.13)s The inner vacuum jacket of around the
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sample was filled with a controlled pressure of helium gas as heat
exchanger, and this assembly was isolated from the refrigerant liquid by
evacuating the outer can. A temperature gradient, measured by the two
copper-constantan thermocouples, developed along the sample due to heat
flow in the support rods and electrical leads. This gradient was
compensated for by adjustment of current to two independently controlled,
heater coils of constantan wire wound around the sample holder bars,
concentrically with the sample. Control was carried out by a solid state
control unit, similar to that used for control of temperature in the crystal
growth furnace (see pége 11 )¢ The hééters were fed by the output of the
controller, which is proportional to the difference between thermocouple and
a reference voitage, which can be set on the unit. The setting which had
been calibrated for rhodium/platinum-platinum thermocouples. With this
arrangement the sample temperature could be held at room temperature, when
liquid nitrogen was used as a refrigerent liquid, to better than that
t 05 degree accuracy for a long time.

To attain temperatures below 77°K liquid helium was used as coolant.
To reach thermal equilibrium, using the electricel heater control system,
was about 30 minutes. Thus to take a reasonable number of measurements
between 4+2°K and 77°K took many hours. To keep the liquid helium level
high for this time was uneconoﬁical.

¢ - Charcoal desorption control:

(Rose-Innes and Broom 1956). A simple desorption system was

o
therefore used for obtaining temperatures between A;ZOK and 77 K. The
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space in the inner dewar surrounding the sample holder was filled with
activated charcoal. After measurements at h°2°K were completed, the liquid
helium in the inner dewar was boiled off at atmospheric pressure by an
electrical heater, leaving the charcoal saturated with absorbed helium.

When all the liquid helium had gone the temperature of the sample rose:

this rise could be accelerated by the heater or the temperature held constant,
when required, by pumping on the inner dewar. An additional advantage of
this system is that the saturated charcoal has a large heat capacity and so
the temperature rises very slowly even when the charcoal is not being pumped.
In the Figure (3.14) temperature variation of the sample is shown. In the
region between k°2°K and 50°K average temperature rise is 12 minutes per
degree, in this range, readings were taken, while temperature rises. The
temperatures between 30°K and 60°K were held steady by pumping on the inner
dewar.

¢ = Vapour pressure control:

The temperatures below h;ZOK and between 60°K and.77°K were
obtained by reducing the vapour pressure over the liquid helium and nitrogen
by pumping with a fast pump. The inner space of the dewar was pumped
through a cartesian manostat to control the vapour pressure over the liquid

and this gave a steady temperature during measurements.



FIGURE (3.14). Temperature change with time of the
sample when charcoal is used.
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CHAPTER 4
ELASTIC CONSTANTS OF MERCURY TELLURIDE

4.1 INTRODUCTION

The elastic constants of single crystals furnish basic mechanical
and thermodynamic information in solids. During the study of ultrasonic
11° 012 and chh of

mercury telluride have been obtained. Preparation of stoichiometric

wave propagation the adiabatic elastic constants C

mercury telluride presents a problem (see Section 2.1) and serious
discrepancies exist between published data, especially‘on electron
transport properties: carrier densities and mobilities are particularly
gensitive to excess of either component in such a semimetal with a very
small band overlap. Stoichiometry is also relevant to ultrasound wave
propagation and crystals prepared in different ways have been examined
for any effects of non-stoichiometry and possible relationship to
mechanical properties.

In IT-VI compounds the ionicity, the proportion of ionic component
in mixed covalent-ionic bond, plays an important role. One aim of the
present work was to estimate the ionieity in mercury telluride through
the elastic constents. In gzinc blende materials, due to their piezo~
electric nature, sound velocities in some directions can be modulated.
However, in the present work no effect of piezoelectricity on sound
velocities in mercury telluride was detected. The applicability of

Born's relation and the three-force constant model are tested in mercury



by

telluride. Although Born's relation is found to be a reasonable
approximation, the three=force constant model should not be rigidly
applied to compounds. From the comparison of results with those of
neighbouring substances, it is concluded that the elastic constants,
like other intrinsic lattice properties of materials belonging the

same crystallographic classes, exhibit remarkable similarities; mercury
telluride shows no anomalous behaviour. Relevant parameters such as the

Debye temperature has been calculated from the elastic constants data.

4.2 THE VELOCITY OF ELASTIC WAVES IN CRYSTALLINE SOLIDS.

Since the strains encountered in ultrasonic measurements are of the
order of 10-6 to 10-8, calculations based upon the classical theory of
linear elasticity are valid. Hooke's law, which has been defined for a
linear, one dimensional solid in Section (1.1) and given as Equation

(1.1), is applicable. This equation for three dimensional, crystelline,

real solids takes the following form:

5= Ciga 1 (41
Here stress (o) and strain (¢) are second rank tensors and the proportion-
ality constant (C), defined as an elastic modulus, is a fourth rank tensor.
Elastic constants can be determined not only from the stress-strain
relation (Equation 4.1) but also from sound velocities. The procedure

for obtaining the elastlic constants from sound velocities in a dynamic

experiment will now be outlined.
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The stress tensor (oij) represents the components of force per unit

area. The first subscript denotes the plane on which the stress component

acts. The second subscript denotes the direction of the stress component.

The strain tensor (eij) defines the deformation in the neighbourhood
of a point in the undeformed medium by the position vector X. The strain
for small deformations may be written in terms of displacement gradient
in the form.

€, . = 1/2 + 3. 402

1] / (Sjsi 1:3) ( )

i
Here the commas show the differential with respect to position vector.
The Eij defined by this equation have a simple geometricel meaning such
that eid for .i=j (eii = SSi/SXi) is the change in length per unit length
of a straight line segment. For i#j, €ij ig twice the change in an
angle whose sides were originally parallel to the Xj and Xi axis.

The equation of motion for an elastic body can be derived from
Newton's second law. Equating the force components to the accelepation
components for a medium of density p, one obtains

Y

i = Gij,i (i=1 ’2’3) (’-l—-3)

Here gg is the second derivative of the displacement vector with respect
to time; that is the acceleration. Then on combining Equations (4.3),

(4e2) and (4.1) one obtains the following equation.

c (s 8, .15) = 2P5; (bels)

i3kl “1,k5 ¥ Pk.1j

) = t > L] 3 - -
and, since cijkl 11K’ his equation simplifies to

Cisa S1,k5 = P55 (4.5)
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This equation admits solution of the form
8, = 8, exp i(wt-kr) (1 = 1,2,3) (4.6)

which is an elastic plane wave. Here S is the particle displacement

and k is the wave vector defined as k = % N.

Therefore
. ~ (XY s (4l _
Sl,kj - nk nj sOl (v) €Xp l(wt h‘) (h"?)
and
S zwe 2 8., o i(ut-kr) (1.8)

The equation of motion, given in Equation (4.5) becomes

= pv2 S (i = 1’2s3) (4'9)

Ciga o1 " 7y oi
In this form the equations constitute the basis for the "long wavelength"
(no dispersion) method that Born and his coworkers used to develop the
elastic constants from lattice theory. (see Born and Huang 1954k). Hence,
a nontrival solution of the form of Equation (4.6) requires that the

~determinant of the coefficient in the system of Equation (4+9) must vanish.

o le..on n, -ov? | =0 (410)

ijkl k

For applications to actual situations in which elastic constants are

determined from plane wave propagation, it is usually preferable to

transform to a co-ordinate system in which the direction of propagation

is one of the axes. Elastic constants may be transformed from one axial

system to another by means of the tensor transformation equations

' Sxi ty 4 ij'c Sxi
cijkl='6'f;' 'ﬁ;'ﬁpcmnop (4.11)
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The partial derivatives appearing in this equation are direction
cosines and, if one goes from a crystallographic set of axes to a
rotated set designated by primes, or vise versa, the direction cosines

are related to the partial derivatives as

X X X

1 2 3

1 A ]

1 X, ) [

le le 6\xl

' 2 2 2
X = _— (4.12)

2 5% 5X, 5

, iy Ly 6%,

%3 5 o T

Hence, there are only 21 independent constants C, of the possible 81.

ijkl
The usual matrix notation giving the elastic constants as cij is

obtained by replacing

1by11 ; 2by22 ;3by33; Lly23; 5byl3 ; 6 by 12.
~ In cubic materials, due to the high crystal symmetry, there are

only three independent elastic constants. These are:

I
Q

Cqq = Cpp = Csq

Cjp = Cpy =Cy5 =Cyy = Cp5 =Cyp

Cha = G55 = g6

There are three orientations ([100], {110] ana [114] directions) for
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which a pure longitudinal and two pure shear waves can be transmitted

in a cubic materiale Following the transformation of Equation (4.10)

for these particular crystallographic directions by the transformation
law of fourth rank tensors, given in Equation (4.11), and choosing the
direction cosines of these directions (Equation 4+12), sound velocities
propagating along these major crystallographic directions can be obtained.
These are:

For the [100] direction

- (6, /o )" (4 13)

vlong.

4
(chh/b)z polarised along either [001] or (4e14)
[010] direction

Vshear

For the [110] direction

i

= pJ? .
Viong. L(cy, + 0y + 2 044)/2 ] (4+15)

z . .
L (Chu/p) polarised along [001] direction
: ' 1

_ _ z . - s .

YV shear™ [(C11 C12l/2p] polarised along [110] direction

For the [111] direction

5

= [(cyy + 2, + Ach41/3015

+ 044)/391 polarised any direction (4.19)

(4.18)

vlong.

[V

= [(c11 -C

Vsheer 12

in the (111) plane

It is interesting to note that in cubic materials all three elastic

constants can be obtained from the longitudinal and two shear velocities
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of waves propagated in the [110] direction. In the present work sound
velocities have been measured along [100], [110], and [111] (major)
crystallographic directions and linear combinations of the elastic
constants have been obtained from these velocities using Equations
(4e13-19).

The preceding treatment is based upon Hooke's law of elasticity,
but most real solids, even for strains of 10-8, do not obey Hooke's law
exactly. Thus, as previously discussed in Sedtion (1.1) in an anelastic
solid, sound waves are attenuated and velocities are frequency dependent.
On the other hand the velocity changes, due to most of the relaxation
phenomena encountered in solids, are less than 1%. This is about the
error in velocity measurements in the present work. Thus, the approxim-
ations made to obtain Equations (4.13-19) are reasonable. Because of the
sm&ll change of velocity, the anelastic properties of mercury telluride
are much more important in sound attenuation rather than the velocity

change. This is left to subsequent chapters.

L.3 RESULIS

The temperature dependences: of ultrasound velocities were measured
between 1°hPK and 300°K for wave propagation along {100], [110]) ana [111]
crystallographic directions in several crystals. The appropriate
relationships between the velocities and linear combinations of the

elastic constants C,,» C,_ and C, . for those directions of either pure

117 712 L),

longitudinal or pure sheer waves propagation has been given in the

preceding section. In Figure (4.1) and (4.2) are presented linear
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combinations of the elastic constants derived, using Equations

(4.13-14) and (4.18-19), from the ultrasonic wave velocities measured

in (100) and (111) samples. Linear combinations of the elastic constants,
obteined from the ultrasonic wave velocities measured in (110) samples,
before and after annealing in mercury vapour, are illustrated in Figure
(4e3). Calculated (Equations 3.15-17) values of the three elastic
constants C11, C12 and Chh obtained from ultrasonic wave velocities
measured in (110) sample; bet'ore and after annesling are shown in Figure
(4ek) and tabulated for selected temperatures in Table (4.1), together
with the bulk modulus and the mean results of (100)and (111) samples.
Changes in the elastic constents (Acij) before and after annealing are
small (see Table 42, ~1+5% at 4°2°K and ~ 2% at 300°K) and are of
similar magnitude for géch constant, althodgh A044 is negative in contrast
to AC11 and AC12. Crystel preparation and history modify the elastic
constants of mercury telluride: +this would explain the discrepancy
between the present result and those of Mavroides and Kolesar (196%4)

(see Appendix A) measured at room temperature only; these workers give
no details of crystzal preparation so that further comparison cannot be
made. The thermal variation of elastic constants is characterized by two
general features; a) an approach with zero slope to the T = 0°K and

b) a negative slope at high temperatures. ‘The results on mercury

telluride show this normal behaviour.
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FIGURE (43). The temperature dependence of the measured
lincar combinations of the elastic constants of a crystal
oricnted along the [110] direction both as grown and
after annealing at 300° for 100 hr in mercury vapour.

The units are 10** dyn/cm?®.
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FIGURE (4.4). The elastic constants Cyq» Gy, and C), calculated
- from the data in Figure (4.3). The units are
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10M dynes/cmz.
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TABLE (4.2) The change in elastic constants of mercury telluride

after annealing.

Temper-{} .
ature aC % change aC % change | AC % change
(°k) 11 12 L
Le2 |(+) 0-07 1.2 (+) 006 1e4 (-) 0-03 1ol
77 |(+) 0-07 1.2 (+) 0+06 1+5 (~) 0-0k 1-8
196 (+) 008 1l (+) 0-07 1.8 (-) 005 23
290 {(+) 009 146 (+) 0-07 18 (=) 0-05 24




L.k. DISCUSSION

Before the significence of the elastic constants is discussed, it
is useful to look at the changes produced by ennealing. Then the
magnitude of the difference between the results on the crystals and those
which would be measured on perfect crystals can be assessed.

The smll changes in the elastic constants produced by anneeling in
mercury vapour probably do not stem from variations in carrier densities
and energies. Keyes (1961) has shown from the deformation model that in

n-type germanium only C,, is effected by electronic energy changes and

L
consequent fluctuations in carrier density. In general the shape of the
arrangement in k-space of the energy surface extremsa determine which of
the elastic constants will be modified by doping. Annealing of mercury
telluride effects all three elastic constants proportionately, although

AC, , is different in sign from AC,, and AC This is consistent with

L 11 12°
the single, almost spherical, electron Fermi surface centred on k = 0:
in the deformation potential approximation the elastic constants are
independent of carrier density, when the carriers are contained within
only one Fermi surface extremum. The slight effects of annealing must
find their source elsewhere, plausibly in lessening of the crystal
internal strain. Similer velocity strain behaviour is consonant with
dislocation damping theory. Annealing mercury telluride removes
microheterogeneous regions containing excess tellurium (see Section 2.6)

and furthermore, the dislocation density is reduced. The effects of the

dislocations on the elastic constants are small. This will be discussed

'
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later, in Chapter 8. The measured values are probably very close to
those in the perfect crystals We turn now to discuss their physical

meaning.

L.k, The force constants in mercury telluride

Born's two-force constant model has been applied to
mercury telluride. In this model Born assumes that atoms in crystalline
solids are rigid and are connected together by Hookian springs. The two

Hooke's radial (a) and angular (B) forces are obtainable from

c

14 a./2r°

Cy2

Gy, = /2x, (1 - 8°/%)

a./2r° (2B/a = 1) (&.20)

Here T is the nearest neighbour distance. For mercury telluride the
force constants a and B are calculeted as 3°8 x 10#' dyn/cm and 3°2 x 104
dyn/om respectively. In these equations three elastic constants are
related by tw force constants and by eliminating o and P, Born's relation
between the elastic congtants may be obtained.

[44;11(c11 - cM)]/(c11 + c12)2 = 1 _ (4e21)

The left hand side of this equation is 0¢86 for mercury telluride. This
result is compared in Table (4.3) with other neighbouring group substances.
From this table it may be seen that, although deviation from unity for
purely covalent meterials is small (1% for germanium and 7% for silicon),

the deviation for mercury telluride is rather high (14%). Nevertheless,
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TABLE (4+3) Comparison between the two force constant model of Born
and ionicity. Results, other than those for mercury telluride, are

from Potter (1957)

si Ge 1nSb ZnS HeTe
4, . (c,, -¢C,,)
(;1 yr)“ 107 1-01 0:90 | 0-89 0486
11 % Y12
Effective charge 0 0 0-2 0+65 0+66
¥
e

Born's two-force constant model appears to be reasonably applicable
to mercury telluride. The three force constant model which brings
into consideration a central force between next nearest neighbours

is also tested for mercury telluride. This model was originally
developed by Nagendra Nath (1934) and later by Smith (1948) and gives

8a(a + 8C,, - 166M)/(3A - 8, + 16012) = 1 (k.22)

Here A = wzm/ao, M is the average atomic mass and @ is the angular
freguency of the principle optical absarption. Although this equation
holds for germanium to 63 and for silicon to 12% but for mercury
telluride it gives an imaginary answer. Herman (1959) has extended the
argument, to fit the results, out to fifteen independent force constants.

Even for the simple covalent semiconductors, the above procedures do not
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load to satisfactory agreement between theory and experiment. In all

the theories, the atomic polarisation is neglected and, therefore results
hold better for covalent materials than for the mixed, covalent-ionic
compounds. For the two-force constant model, deviation from unity may
be used to indicate the extent of the covalent character of a compound.
However, this is better considered from the viewpoint of ionicity, to

which we now turn.

LG 2. Ionicity of mercury telluride

The fundamental lattice absorption (restrahlen) frequency
represents the frequency at which the rigid Bravais lattices vibrate
relatively each other. For zinc-blende lattices the two Bravais lattices
are face-centred cubic. Interatomic repulsive forces largely determine
the optical absorption frequency and the compressibility, which are then
related by the Szigeti (1950) relation, based on a dipolar term in the
Lorentz force approximation. This equation forms a useful link between

elastic and optical properties and is

z‘02 p+2 =~ 2
B= 355 3 moa (4 23)

P +2
Here U is the volume occupied by an ion pair. For zinc-blende lattices
U is aZ/h. T, is the nearest neighbour distance. p and p_ are the static
and high frequency (optical)dielectric constants respectively. m is the

reduced mass which for compounds is

e (e 24)

Bl 1=

1 1 1
—-+= =+
mm n
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For mercury telluride m, and m, are the masses of the mercury and
tellurium atoms respectively. In terms of atomic weights, m can be

expressed in the following form

o= mTe.mHg/[(mTe+qu)N] (4.25)

Here N is the Avogadro's number. The reduced mass of mercury telluride
turns out to be 1+2945 x 10722 gme From the measurements of the
restrahlen reflection of mercury telluride by Dickey and Mavroides (1964)
(see Appéndix A), the static (p) and optical (p,) dielectric constants

are 20 and 14 respectively. Taking the bulk modulus as L4*67 x 1011 dyn/cm2
(see Table 4.1), ;iwrz turns out to be 8¢8 x 10* cgs units and Vr(=wf/2w)
is (41 £ 01) x 1012 Hz. This is in reasonable agreement with the result

1
obtained from optical reflectivity by Dickey and Mavroides (3+45 x 10 2

Hz ).
The effective charge eiE is related to the change of dielectric
constants on passing through the restrahlen band by the Szigeti (1949)

relation

2
167 (Poo +2

o 3 %) (se®)? (4.26)
9m W, a

PPe =

Introducing the necessary data, the ionicity of mercury telluride is
obtained as (seﬁ) = 0+65e. s is a short-range factor and in the Lorentsz
approximation is equal to unity. Should the charge distribution arocund
the ions not be spherical, or non-electrostatic, short range-forces
distort the ions, or there be displacement, then s is not unity.

However, for a variety of cubic materials s seems to be 0:9 % Q-2



-58-~

[Szigeti, Table 1, p.163, 1949). Thus, recognizing both these effects
of distortion and experimental error, e is assessed as (065 % 0405)e.
In heteropolar, tetrahedrally-~bonded compounds the molecular wave-

3

functions ¥ are formed by overlap of sp” tetrahedral, hybrid orbitals ¢

on nearest neighbour atoms (Coulson et al. 1962).

¥ =¢, + A¢, (Bonding orbital) (4.27)
=M, = by (Antibonding orbital) (4-28)

where A is a parameter, describing the polarity of the bond. The bonding
orbital ¥ corresponds to fractions of electrons 1/(1 +A2) on the hexavalent
atom (A) and AZ/(T + A2) on the bivalent atom (B). The net charge, measured

in electrons, associated with the atom A is for a compound AN BB-N

® W - (g-N)
1 422

(429)

or (67t2 -2)/(1 +A2) for a II-VI compound where N is 6. When e = 0+65e,
A  becomes 0¢7: any valence electron remains on a mercury atom about

30 per cent of the time. This result compares with those of other
zinc=blende structure materials. Other direct comparison between the
elastic constants of these materials with mercury telluride will now be

discussed.

helho3. Comparison of the elastic constants of compounds.

Keyes (1962) showed that the reduced elastic constants

I —
ci‘i = ci“’/c0 (4.30)
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oé the 3m compounds and diamond structure elements fall within a few
percent of the same value for each group of materials. To reduce the

elastic constants, he defined a constant
2, &
= 1
C,6=¢ /ro (4e31)

” 2 4 2 . » =
which is 0°376 x 1012 dyn/em for mercury telluride. The reduced adiabatic

elastic constants and the bulk and shear moduli of mercury telluride are:

Cyy = G, /C_ = 1443

%, = 01/6, = 0195

Gy, = ©),/C, = 07555

B =.(C,y *+ 26,,)/3C, = 1139
and

c’: = (044, /20, = 0-219

Keyes' method has been extended over a whole range of IV group elements,
TII-V, II-VI and I-VII compounds. Results are shown in Table (4.4). ad/z
has been used as the nearest neighbour distance (ro) for I-VII compounds
(sodium chloride crystal structure). It may be concluded that the reduced
parameters of I-VII compounds as well as the %3m compounds and the diamond
structure elements fall within a few percent of the same wvalue for each
material group. Mercury telluride shows no anomalous elastic behaviour.
Thus this table may be used to provide an approximate estimate of the
elastic constants for unmeasured substances if their lattice spacing is

known. Averaged values of the reduced quantities was also tabulated in
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TABLE (4.4) Reduced elastic constants and the

sheer and bulk moduli of IV group elements,

III-V, II-VI and I-VII compounds

C
Material ?:f‘ & x1o?1 , cl, cTz cz+ cz B
2 dyn/ cm
Diamond | a | 357 | 40+52 |2:65 |o-308 | 142 | 1:17 l1.09
Ge b 5+66 6+39 | 2402 10°756 105 063 11418
Si b | 543 7°55 | 2-19 | 0+877 | 105 | 067 |1+30
GaAs c | 565 641 | 185 |0+840 | 0°925 | 0503 [1°17
lnAs c 6+06 486 |1+71 | 0°930 04814 | 0391 |1+19
GaSb c | 6:09 Le7% 11-87 | 04853 | 04910 | 0°506 |1+19
A1Sb c | 614 463 | 1°93 | 0+952 | 04895 | 0488 |1-28
1nSb c 6+48 372 | 179 |0-981 0812 | 0376 |1-:27
Zn8 d 541 7e64k | 141 ] 0°945 0+539 | 0°234 {110
ZnSe e | 567 635 | 1+27 ] 0°768 | 0694 | 0253 {0+937
ZnTe e 6+10 Le7h | 150 | 0-858 0:658 | 0°323 |1:074
CdTe f | 648 373 | 143 [ 0987 | 0535 | 0+224 |1-137
HgTe g 6+46 3476 | 143 | 0°993 0¢555 | 0219 {1-139
LiF 1 | 403 14400 | 0+80 | 0°34 045 | 023 [0-47
LiCl 1 | 514 5:27 | 093 | o042 0:47 | 025 |0+56
LiBr 1 | 5450 4202 | 098 | 0:46 047 | 0-25 |o-59
LiJ 1 | 6+00 2:84 [ 100 | 0+49 0+47 | 025 [0+60
NaF 1 | 463 7:99 | 121 | 0-30 0:35 | 0-45 ]0-58
NaCl 1 | 564 364 | 134 | 0°33 0-35 | 0+50 (0-66
NaBr 1 | 5-98 2484 | 141 | 040 034 | 0:50 |0+70
NaJ 1 | 647 2+95 | 1403 | 0+30 0°24 | 036 |0<51
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Table (4.5) which indicates that averaged values of the reduced quantities
decrease in the sequence

Iv—> 1II - V— II -VI— I -VII
This gradual decrease of the reduced quantities suggests that the amount

of ionic bond is responsible for this behaviour.

1* References for elastic constants in Table (4e4)
a. McSkimin and Bond (1957)

b. McSkimin (1953)

c. Drabble (1966, p.112)

d. Zarembovitch (1963)

e. Berlincourt, Jaffe and Shiozawa (1963)

f. McSkimin and Thomas (1962)

g« Present work

1. Anderson (1965, Appendix 1)

TABLE (4.5) Averaged values of reduced parameters of
IV group elements and III-V, III-VI and I-VII compounds

Reduced parameters Iv 1# III-V II-VvI I-VII

cf1 2:10 183 1440 0:92

cfz 0+80 0+91 0+91 0-38

czZb 1+05 0+87 0-60 0+30

[(c11-c12)/2]JE 065 0445 0+25 0+34

[(c11+2c12)/33li 1024 122 108 058
1" in average diaménd is omitted.
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mercury telluri

de.

The averaged polycrystalline bulk and sheer modulus are

useful parameters to describe solids.

In terms of single crystalline

elastic modulus, in Voigt's and Reuss' approximation, for cubic material,

they are given by
C,. + 2C1

_om 2
KV 3
K =%
and
_ Ciq -y 5044
G, = +
\J 5 5
¢ = 5(011 'c12)chl+
R~ 3(c,, -C, )+iC
11 12 L)

(4.32)

By comparing these relations with experimentelly meesired polycrystalline

bulk and sheer moduli, it appears that the true values of X and G lie

between two theoretical extrem

KR <K< Kv

G
QR< < GV

Hence Hill (1952) suggests using the following values

X = 500 *+ )
G,

1
y = 36 + &)

es

(433)

(4 34)
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In this type of approximation the accuracy very much depends upon
the degree of anisotropy. Following Hill the degree of anisotropy
8 is (Anderson 1963)

G -G G -G

1 v R v R
8 = = - (4.35)
2 GH ('V + GR

or in terms of elastic constants for cubic materials

2
3[29A5;(°11‘°12)]

& (per cent) = 100 3 (4 36)
/

an .70 e - V.2l
.4CMI_ +;ocu'_\u11 C12/"'J\U11+c12
The usual anisotropy factor A defined by the ratio of two shear constants
= zZ
A=20,/(C,,<,.,) (4=37)

is still a useful parameter. However, it is ambiguous in that any
departure from unity is said to correspond to the degree of elastic
anisotropy. & is more convenient and practical than A. Chungand
Buessem (1967) obtained the following relation between § and A

2
‘ _ 3(A=1)
& (per cent) = 100 3(a-1)%258 (4.38)

6 is gero for isotropic crystals; for an anisotropic material § is a
single~valued measure of the elastic anisotropy regardless of whether
AclorA>1. § allpws comparison of materials.

The averaged polycrystalline elastic parameters and anisotropy

factor of amnealed mercury telluride at Za;-.2°K are:



6l

1

467 x 10 ayn/on’

Be
o

G, = 167 x 1011 dyn/cm2
G-R = 138 x 101‘I dyn/q:;m2
K, =467 x 10" qyn/on’
1
Gy = 1053 x 10" ayn/on’
A =251
and
§ = 98%

In Figure (4.5) the degree of anisotropy of some of the diamond and zinec
blende materials are shown. The anisotropy factor (§) inoreases through
the sequence of group IV elements, III-V and II-VI compounds. In the
IT-VI compounds gzinc selenide and telluride show slightly anomalous
behaviour. But the anisotropy of mercury telluride resembles that of

other II-VI compounds.

Leli.5, The Debye temperature of mercury telluride

The Debye theory of specific heat has proved very useful
because it is a single-parameter theory which describes the experimental
observations remarkably welle The Debye temperature 6 can be calculated
from the sound velocities as well as from the specific heat. However, the
theoretical modsel of Debye assumes the solid to be an elastic continuunm
in which all the sound waves travel at the same velocity independent of

their wavelength; <there is no dispersion. Such a model is satisfactory




FIGURE (4.5). Graphical representation of the elastic
anisotropy in cubic crystals.
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only in the limit of long wavelength or low temperatures.
In the Debye model the number of identical frequencies does not

exceed the 3N degrees of freedom available to N discrete mass points.

Thus,
v
m
- _k 3 A A, ) ae .
0

Here 40 is the element of so0lid angle, vm is a parameter specifying the
highest frequency possible in a system with a finite number of particles

(the cut off frequency). The Debye temperature ¢ in terms of frequency is

defined as %V n’ inserting v from Equation (4.39)
1/3 -1/3
h(2 X e A L I W ¢
9D = k < hﬂr v > { / < v 3 + v 3 + v 3 > M} (h"h‘o)
) 1 2 3

here h and k are the Planck's and Baltzmann's constants respectively, -g is
the volume occupied per atom, which is E3/a.o5 for zincblende and diamond
lattices. The calculation of 6 from sound velocities or elastic constants

involves the solution of the last term on the right hand side which leads to

a single velocity called the average velocity of solid (vm):

o -1/3
P[(55eS) £ - )

v, v, v3
For diamond and zincblende lattices the aw'reraga Debye velocity may be

obtained from Equations (4.40) and (4e41) as

10
v =1:6795x10 0+ a (4ak2)
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The evaluation of the surface integral of Emation (4.40) involves

solution of the secular equation (Equation 4.10)

2
Cisa Pk 5= PV =0 (4eks3)

by subdividing the surface into triangles defined by direction cosines.
In cubic materials, because of the high symmetry, it is sufficient to
consider only direction cosines confined: to 1/48 of the sphere, i.e.,
those directions bounded by the triangle formed by the [100], [110), and
[111] crystallographic directions. Subdividing this sphere into equal
areas and from the determined direction cosines for this subdivision,
secular equations can be solved for these points. After each integrand
has been multiplied by its associated area element 4 and summed, the
integration is complete and the value of (¢ determined. The accuracy of
this method can be made as high as reaiired by subdividing the aréas more
finely. Even for very highly anisotropic cubic materials € can be obtained
to better that 0¢1% by subdividing just 1/16 of the sphere into only
twenty areas.

Other than numerical integration, there are indirect methods in which,
tables or graphs of the value of the integral as a function of certain ratios
of the elastic moduli have been prepared using computers. Also, several
series of expansions of the integral have been worked out; these methods
are detailed in a review by Alers (1965).

In the present work the Debye temperature of mercury telluride has been

calculated by several methods from the low temperature elastic constants
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extrapolated to 0°K. The values for different methods are listed below.

1. de Launay's method 11+1_'07°K
2. Marcuss' and Kennedy's method 114-1__020°K
3. Leibfried's method 141 +48%k
4. Anderson's method 11..2__-14.001{

Now we can compare this Debye temperature for mercury telluride with
that of related materials. Steigmeier (1963), using Keyes' observations,
found a method to estimate the unknown Debye temperature ¢ of III-V compounds
from just the parameters mass and lattice spacing. To establish this method,
he rewrote a relationship derived by Marcuss and Kennedy (1959) in the

follewing form

-8
o1 10
¢,(0) = v 93" T— Y (4 i)
(a M> z
o
Here M is the mean atomic weight and the quantity Y is defined by the
relation
i
c11
Y= (q) f (r1 ’r2) (4eli5)

We now extend this procedure to other II-VI and I-VII compounds and the
IV group elements. In Table (4.6) the calculated Y values from Equation
(4elh) are tabulated. For this calculation the quantities of f‘(r1 ,r2)
have been deduced from Marcuss' graphs. Figure (4.6) gives a plot of Y
against the lattice spacinges The variation of Y is very small within a
given group. The solid lines in this figure can be used to estimate the
Debye temperatures through Equation (4e4k). |

Mercury telluride fits well into the scheme.
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TABLE (4.6) Mean atomic weight (M), Y values for Steigmeier's method

and Debye temperatures of IV group elements and III-V, II-VI and I-VII

compounds.

Materials M G 6 (°k)
Ge 7260 101 i 370
Si 28+09 103 648
Gads 72¢31 09k 34
lnAs 9o 91 0-87 250
GaSb 9575 9+93 266
A18Db 7he45 0+92 295
1nSb 11840 0+87 206
Zns 4872 073 346
ZnSe 72417 075 273
ZnTe 9649 0477 220
CdTe 120+00 0+69 158
HeTe 164210 0+74 144
LiF 1297 0+51 735
NeI 759 056 165
LiCl 21419 0+50 390
LiBr L3042 050 24,7
Lil 66+92 0+50 175
NaCl 29+22 052 303
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The elastic constants agree with result found from theories of the
erystalline interatomic forces. When compared with those of other II-VI,
IIJ-V and I-VII compounds and IV group elements, the elastic properties
of mercury telluride correspond closely to those of cubic zinc sulphide
and exhibit no anomalous behaviour. It has been shown that, mercury
telluride like other of those IXI-VI compounds form a link between the
semiconducting elements of fourth column of the periodic table and the
I-VII compounds. From the Szigeti relationship, the ionicity ex_is
estimated as 0+65e * 0+05e and the restrahlen frequency as (41 * 0¢1) x
1012 Hz. The Debye temperature, calculated from the elastic constant data,
is 141°K + APK, which is the lowest among the related materials, thus
mercury telluride might be expected to show some interesting ultrasonic
properties.

Now the anelastic properties of mercury telluride will be investigated

through the sound attenuation measurements.
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CHAPTER 5

ULTRASOUND ATTENUATION IN MERCURY TELLURIDE: RESULIS.

5.1. INTRODUCTION TO THE RESULTS

Different ultrasonic energy dissipation mechanisms in solids can
contribute, simultaneously to the measured attenuation. In general,
each energy loss mechanism is due to a relaxation phenomenon, which has
a characteristic relaxation time (see Section 1.1). Relaxation times
encountered in solids are mainly temperature dependent. Thus, the
ultrasonic wave attenuation measurements as a function of temperature
can facilitate separation of the different contributions. In addition
to temperature dependence of attenuation measurements, frequency and
stress dependent measurements help to complete the knowledge of energy
loss mechanisms. During the present work, the attenuation of léngitudinal
and shear ultrasonic waves has been measured in the wide temperature
range 1+4°K to 400°K and in the frequency range between 10 MHz to 300 MHz
along the three major crystallographic directions, namely (1001, [111]
and [110]. Now examples of_xhe temperature, frequency and applied stress
dependent ultrasonic wave attenuation in mercury telluride will be given,
firstly the general features of the temperature dependence.

The temperature dependence of ultrasonic wave attenuation in single
crystals of mercury telluride exhibits some characteristic features in
certain temperature regions and mey best be considered in three ranges:

the low temperature region (134°K to about 70°K), an intermediate
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temperature region (about 70°K to 180°K) and the high temperature region

(above 180°K). Now to give some examples of these characteristic features.

5.2 THE TEMPERATURE DEPENDENCE OF ATTENUATION

Firstly the general temperature spectrum of ultrasonic wave atténuation
is illustrated in Figure (5.1) the general features of longitudinal wave
attenuation along the [100] crystallographic direction over the whole
temperature region (4'2°K to 388°K) are shewn. The specimen used in
these measurements is not annealed and is grown from stoichiometric melts
in a smaller bore crucible (see p. 12). The measurements have been made
with a 10 mm diameter, X-cut quartz transducer whose fundamental frequency
is 10 MHz. ©Starting from the low temperature side, the features of the
attenuation are as follows: the measurements at 10 MHz and 50 MHz have
been made down to 4°2°K and the 70 MHz measurements to 22°K. The behaviour
of the attenuation in low temperature region can be seen on the 50 MHz and
partially on the 70 MHz measurements; it decreases sharply below about
hOOK. As seen on the 50 Mz measurements this sharp decrease ends at about
20°K and below this the attenuation is almost temperature independent.
These features are barely discernible in the 10 MHz measurements. The
ultrasound attenuation for temperatures higher than 50°K deéreases slightly
with increasing temperature until about 80°K.

As seen from these four sets of measurements in this figure, in the
intermediate temperature region (BOOK to about 170°K) the attenuation of

ultrasonic waves is almost temperature independent.
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In the high temperature region (above 180°K) the temperature
dependence of attenuation exhibits peaks superimposed on the background
attenuation which increases with increasing temperature. In the 30 MHz
and 10 MHz measurements, two peaks are observed. These two peaks are
very distinct at 30 MHz while at 10 MHz they are close to each other.
The background attenuation reaches 4 dB/usec at about 250°K at 50 MHz
and 70 MHz. This is the maximum attenuation measurable in the equipment
useds Thus at 50 MHz and 70 MHz peaks cannot be looked for. To check
whether the background attenuation increases monotonically with temperature
or is the low temperature side of a very broad peak, attenuation
measurements at 10 MHz in this specimen have been extended above room
temperatures. For these measurements an oil bath with thermostatically
controlled temperature (* 0°5°C) has been used. The attenuation does
increese monotonically with temperature up to 388°K, the limit of the
0il bath. The temperature dependence of the background attenuation can

be formulated as
o = 16°7 exp (0:063/xT)

where KI' is the thermal energy.

Another example of the temperature dependence of ultrasonic wave
attenuation from 1+8°K to about 250°K is illustrated in Figure (5.2).
Two sets of measurements are shown for longitudinal waves along the [110]
direction and shear waves along the [111] adirection. The longitudinal
wave frequency is 70 MHz. This measurement has been made on the annealed

specimen with a 6 mm diameter, fundamental frequency 10 MHz, X-cut quartz
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transducer. The general features of the temperature dependence of
ultrasonic wave attenuation are as follow. Attenuation is temperature
independent till about 20°K; then it inecreases sharply between 20°K and
about 50°K. A decrease inversely proportional to temperature is then
observed until the attenuation becomes almost temperature independent at
about 90°K. For temperatures higher than 200°K the attenuation reaches
the region of the peaks. Thus the general low and intermediate temperature
characteristics of temperature dependent ultrasound attenuation in this
specimen are very similar to those illustrated in Figure (5.1).

The features of shear wave attenuation along the [111] direction in
the low and the intermediate temperature region (1'8°K to ZOOOK) are also
illustrated in Figure (5.2). This specimen is unanneeled. The experiment
has been performed with a2 10 mm diameter, 15 MHz fundamental frequency,
Y-cut quartz transducer. The low temperature characteristics of shear
ultrasonic wave attenuation in this specimen are also given, latep in
Figure (5.5). The low temperature characteristics are very similar to
those illustrated in previous figures. The behaviour of shear wave
attenuation in the intermediate temperature region in this specimen and
propagation direction is not quite similar to those of longitudinal
ultrasonic wave attenuation along [110] and [100] directions given in this
and the previous figure (Figures 5.1 and 5.2). The characteristic
feature of shear wave attenustion in the intermediate temperature region
is that it decreases smoothly with increasing temperature.

The observations given in these two figures can be summarised as
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follows. The temperature dependence of ultrasound attenuation in single
crystal mercury telluride exhibits three characteristic features in different
temperature regions: a sharp rise between about 20°K and LOOK followed
by a decrease continuing until about 80°K, then a temperature independent
reglon (except for shear waves along the [111] direction) followed by
peaks at temperatures higher than 200°%. These features have been
observed in all the samples studied. Now other specific examples will_be
givens TFirst the low temperature region will be discussed.

The temperature dependence of longitudinal wave attenuation along the
[100] ana [111] crystallographic axis below 77°K on unannealed specimens
is shown in Figure (5.3). In all these measurements, 10 mm diameter,
fundamental frequency 10 MHz, X-cut quartz transducers have been employed.
The measurements belonging to the [100] direction have been transferred
from Figure (5.1). All of these measirements have the same characteristic
features. The attemuation below about 20°K is almost temperature independent
and is assumed to be not intrinsic and is celled the residual attemuation.
In many cases a small, barely measurable rise has been observed below about
10°K. This could be due to an electronic interaction as found in Metals

(Morse 1959). But this effectiss small that it has not yet been followed up.

The attenuation increases sharply above 20%k as about the third or fourth
power of temperature. This sharp rise ends at about 35°K and is followed
by a smooth decrease. The effect of frequency on this effect can also be
ssen from the measurements made along the [111] direction at 30 MHz and

50 MHz. The effect is enhanced at higher frequencies.
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The temperature dependence of longitudinal wave attenuation along the
[110] direction on an amnealed specimen is shown in Figure (5.4)s Here a
6 mm diameter, 10 MHz fundamental frequency, X-cut quartz transducer
has been used. The general features are closely similaer to those given in
the previous figures. Again attenuation is almost temperature independent
below 20°K (the residual attenuation) and then increases very sharply up
to about 45°K followed by a smooth decrease with a slope of almost T-1.
Here again the enhanced effect at higher frequencies is shown.

Shear wave attenuation shows the same efféct. Figure (5.5) gives the
temperature dependence of shear wave attenuation along the [111]
crystallographic direction on an unannealed specimen. Here a 10 mm dismeter,
15 ¥Hz fundamental frequency, Y—cut quartz transducer has been used. igain
three distinct attenuation characteristics in the low temperature region
are observed: the almost temperature independent attenuation below 25°K
and then a sharp increase to a "peak type" maximum in this case at about
60°K, followed by a smooth decrease. The extension to the intermediate
temperature region has been presented already in Figure (5.2). Except
for the peak-type maximum, the general features for shear wave attenuation
along the [111]) @irection in the low temperature region are very similar
to those for the longitudinal waves given in previous figures. Now we
turn to detail the temperature dependence of attenuation in the high
temperature region.

The temperature dependence of longitudinal ultrasonic wave attenuation

. along the [111] direction in the temperature range 180°K to 300°K is shown




(dB/ p sec)
6.

ULTRASONIC  ATTENUATION

@

N

[i19] direction

longitudinal waves

Y e

RESIDUAL ATTENUATION

FIGURE (5.4).

40 60 80
TEMPERATURE °K

The temperature dependence of ultrasonic
attenuation 'in annealed HgTe.

¥ N

m)

ULTRASONIC ATTENUATION (dB/c



!

7 ..

5)e The temperature dependence of shear wave attenuation

(shear waves)

1 1

1 L 1 1

1 1

FIGURE (5.
in as-grown Hgle at low temperatures.
] ) 1 T | 5 I 1 ] 1
. [it]] direction

—6—

o

0. 20

30 40 50 60
TEMPERATURE K

70- 80

ULTRASONIC ATTENUATION (dB/cm)



~76=

in Figure (5.6). In these measurements 10 mm. diameter X-cut quartz
transducers have been used. The fundamental frequencies of the
transducers for the 12 MHz and 36 MHz measurements is 12 MHz and for the
L0 MHz and 56 MHz measurements is 8 MHz. Here each measurement exhibits
peaks, whose magnitude increases with increasing frequency. Another
interesting feature is that the temperature at which the maximum takes

place increases with increasing frequency. These peaks are quite similar

are not split and are not superimposed on en exponential background
attenuation.

In Figuwre (5.7) the temperature dependent attenuation of shear waves
along the [110] @irection between 150°K to ZAOOK is shown. The polarisation
of the shear waves is along the [170] @irection. The ultrasonic wave
frequency used in both measurements is 10 MHz. The general behaviour of
the two sets of measurements 'A' and 'B' is quite similar, except that
the measurements marked 'B' have a much higher attenuations The amount
of shift is about 150%. Both sets exnibit a peak at 200°K. The
measurements marked 'A' were taken with a 10 mm diameter Y-cut quartz
transducer on a freshly prepared, as grown mercury telluride crystal.

The measurements merked 'B' are the repetition of the first after annealing
the specimen and subjecting it to repeated cooling down to 4°2°K. For
these measurements a 6 mm. diameter, Y-cut transducer has been used.

Twc years passed between the two sets of measurements. Thus several
sources might contribute this change in attenuation: namely, the effect

of annealing, the size of the transducer and the handling of the specimern.
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The size of the transducer is important: it effects the diffraction
losses (see p. 32) given approximately by one decibel per a2yk. Here
a is the transducer radius and A is the wavelength of the sound wave
( = V/f where V is the velocity and £ is the frequency). Diffraction

losses can also be expressed as

a'meas v
= ——2De o1
%4iPP.loss: 2. .2 (5.1)

Since here the same frequency is used in both measurements, diffraction

losses dvue to the different size of transducer are:

2(a12-a22)
100
s 2 2
a,"+a,

®

(5.2)

Inserting the values of a1(10 mm) and a2(6 mm), difference in attenuation
due to diffraction losses turn out to be 95% which does not account for
2ll the attenuation difference (140%) between the two sets. Handling and
ennealing the specimen are probably responsible for the remainder of the
difference. Now, a further example of the effect of annealing on the
temperature dependence of ultrasonic attenuation will be given.

The effect of annealing on the temperature dependence of ultrasonic
attenuation is shown in Figure (5.8). The bold lines in this figure have
been transferred from Figure (5.1) and belong to the unannealed specimen.
The measurements repeated after annealing under the same experimental
conditions with the same transducer show about 50% increase in attenuation.

The peak heights change on annealing but their position does not.
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5.3 THE FREQUENCY DEPENDENCE OF ATTENUATION

The frequency dependence of ultrasocund attenuation provides a great
deal of information about the energy loss mechanism in solids. This has
been studied extensively in mercury telluride. Here examples of the
frequency dependence of attenuation in mercury telluride are given.
Figure (5.9) shows the frequency dependence of longitudinel ultrasonic
wave attenuation along the (110] crystallographic direction. In these

ArTT

mcasurements &6 mm dlameter, 10 Mz fundamental frequency, X-cut quartiz
transducers have been employed. In all sets of measurements the frequency
dependence exhibits the same characteristic features. Starting from the
low frequency side, the attenuation versus frequency curve for low
frequencies is inversely proportional to frequency, then it passes through
& minimum at about 25 MHz. Beyond the minimum the slope for the A;ZOK
measurements approaches a frequency squared region higher than about 100
MHze The attenuation above 200 MHz is constant. The measurements at
A'ZOK have been repeated under the same experimental conditions after
annealing the specimen. Once again annealing preduces an increese of
about 50% in ultrasound attenuation.

The exponent of the frequency of dependence can be estimated from
the general relaxation equation (Equation 1.8, ps3). For wiK<1, the
exponent is two, while in the region where wr is close to unity, the
exponent is less than two; but it can never take the negative values
shown in the low frequency region in present case. Thus from this

consideration it might be concluded that the bebaviour of the inverse
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frequency dependence is not intrinsic. It is due to diffraction losses.
Although the relation for diffraction losses given in Equation (5.1) is

not strictly quantitative, it does predict the inverse frequency dependence
found. Thus in mercury telluride when smaller diameter transducers are used
for the lower frequencies, the diffraction losses are mainly responsible for
the apparent ultrasound attenuation. Diffraction losses decrease with
increasing frequency. The effect has been shown to be negligible for the
frequencies higher than 30 MHz.

The frequency dependence of shear wave attenuation along the [110]
direction will be illustrated in Figures (8.6 ) and (8.7 5 in Chapter 8.
These exhibit similar features.

The frequency dependence of shear wave attenuation along the [111]
crystallographic direction is illustrated in Figure (5.10). In these
measurements 10 mm diameter, Y-cut quartz trandducers have been used. The
exponent of frequency is about unity in the 77°K measurements while at
h;2°K it decreases with increasing frequency. Here the diffraction losses
are negligible due to the bigger diameter of transducer.

In Figure (5.11) the frequency dependence of longitudinal ultrasonic
wave attenuation along the [100] crystallographic direction before and after
annealing is illustrated. Again it can be seen that annealing produces an
increase of about 505% in the attenuation. Due to the large sound attenuation
(2¢5 dB/usec at 70 MHz) in this propagation direction, the frequency
dependence of attenuation for higher frequencies could not be followed
further. The general feature of the freguency dependence of attenuation

in this direction is an increese with inoreasing frequency in the slope of
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the attenuation versus frequency curve. Although in these measurements a
larger diameter transducer is used, the effect of diffraction losses still
exist at lower frequencies.

The frequency dependence of shear wave attenuation along the [100]
direction of the same crystal used in the measurements discussed in the
last peragraph is presented in Figure (5.12). The polarisstion of the
shear waves is in the [010] direction. In these measirements an unannealed
specimen is used. The frequency dspendence of shear wave attenuatioﬁ is
quite different from that of longitudinel waves. The slope of the atten-
uation versus freguency curve decreases with increasing frequency. There
is no indication of diffraction losses even at lower frequencies. In these
measurements the same size transducer (10 mn diemeter) is used; the
absence of diffraction losses can be explained by making use of Equation

(5.1) from which diffraction losses can be expressed as

[« 8 oc v
diff.loss = F2

The shear and longitudinal ultrasonic wave velocity along [100]
crystallogrephic direction at 77°K are 1654 x 105 cm.seo.-1 and
2679 x 105 cm.sec-1 respectively. Thus, for each fixed frequency,
about 24% more diffraction losses could be expected for the longitudinal
ultrasonic waves.

Diffraction losses contribute to the background attenuation measurements
and they do not effect the genearal shape of any relaxation losses.
Diffraction losses only shift the overall features of the characteristic

attenuation to higher attenuatione.
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5.4. THE STRESS~DEPENDENCE OF ATTENUATION

The effect of annealing and handling of specimens on the measured
attenuation implies that dislocations might play an important role.
Dislocations are very sensitive to applied stresses. Thus as part of the
work, the applied stress dependence of attenuation has also been assessed.
The characteristics of this kind of measurement will now be given.

In Figure (5.13) the effect of applied stress on the measured
attenuation is illustrated for longitudinai, 10MHz ultrasonic waves
propagated along the [110] crystallographic direction. The specimen is
squeeged along the [170] direction with a "Hounsfield 'W' type tensometer”.
For these measurements a rectangular parallelopiped specimen with surfaces
normal to the [110] and [170] crystallographic directions has been
prepared by spark erosion. Ultrasonic waves are generated and detected with
a 10 mm diameter, 10 MHz fundamental frequency X-cut quartz transducer.

The sample holder for the stress dependence of attenuation measurements and
the experimental arrangement is sketched in Figure (5.14). The specimen
has been squeezed up to pressuresof‘.zx?lo8 dyq/cmz. The strain on the
specimen is much smaller than the strain on the tensometer. Therefors,
accurate strain measurements could not be made. However the strain can

be estimated from the stress-strain relation given by Hooke's law.

€ = o/(C,4+C,,+2C,, ) (5+3)

The stress dependence of longitudinal wave attenuation in single

crystals of mercury telluride exhibits the following characteristic
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FIGURE (5.14).

The sample holder used to measure the stress
dependence of attenuation.
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features. Attenuation is almost stress independent for stresses below

, 8 -
about 1°5 x 10" dyn.cm 2, but after this value attenuation increases very
sharply. On the way to releasing the applied stress the attenuation is stress

2

independent for the short stress interval (108 dynecm . - Tol x 108 dyn.cmrz),

then it sharply decreases with decreasing stress and it reaches at about

7 dy:n.cm-2 the initial state and again is stress independent. Thus,

5*5 x 10
the stress dependence of léngitudinal wave attenuation exhibits hysteresis.
The effect of the amplitude of the driving sound waves on the mechanical
loss at low frequencies (few Hz to low kHz regions) has been well known for
years. However, due to the experimental uncertainties of determining the
strain or stress of the driving ultrasonic waves, there have been only few
studies of the effect of the amplitude on the attenuation of megahertsz
ultrasonic waves. In Figure (5.15) the amplitude depbndence of the atten-

uation of longitudinal ultrasonic waves along [110] airection in mercuxry

telluride is illustrateds No attempt has been made to estimate the magnitude

of the stress or strain induced by the transducer. The relative heights of
the sound waves given along the abscissa are calculated from
. I
Amplitude (dB) = 20 log I (5.4)
o

Here Io is the amplitude of the first pulse for the lowest power. Io and the
other I's are measured by comparing the first pulse height on the oscillascope.

Both sets of measurements in this figure exhibit similar behaviour; the
attemation increases with decreasing ultrasonic wave amplitude. The

difference in the attenuation for the lowest and highest amplitude of sound
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waves are about 26% for the measurements made with 30 MHz at 77°K and
about 30% for those made with 10 MHz at room temperature.

The ultrascnic waves amplitude effects are very important. In the
measurements of the temperature dependence of attenuation this is minimised
by keeping the amplitude constente On the other hand the bonding material
between the transducer and the specimen changes its character somewhat, the
transducer to specimen coupling alters and thus the amplitude of sound waves
in the material will chenge s little over the temperature rénge. This
effect is unavoidable but it should be very small and well w&ﬁhin the

bxperimentel error of 10% in the relative attenuation measurements.

5.5. SUMMARY OF THE RESULTS

The examples of temperature, frequency, stress and amplitude dependence
of shear and longitudinal ultrasonic wave attenuation in different
propagation direction in mercury telluride single crystal have been
illustrateds The general features of attenuation exhibits similarities
throughout and give easily recognisable set. These features will now be

sumnariged.

(i) Temperature dependence of ultrasound attenuation in mercury

telluride: In different temperature ranges some characteristic features
are exhibited. Starting from the low temperature side, the attenuation
of both shear and longitudinal waves is almost temperature independent for
temperatures lower than 20°K. Then it sharply increases as the third or

fourth power of temperature until about LOOK, followed by a smoothly decrease



inversely proportional to temperature to about 70 or SOOK. Attenuation

in temperature range BOOK to 170°K is almost temperature independent.

In the temperature range between 170°K to 300°K attenuation of both

shear and longitudinal waves exhibits some peaks. In some crystallographic
directions the peaks are superimposed on background attenuation which
increases exponentially with increasing temperature. In some directions

the peaks are split.

(ii) Frequency dependence of ultrasound attenuation in mercury

telluride: The slope of the attenuation versus frequency curve is
usually less than two but for the measurements of thoK along the [110]
direction the slope at higher frequencies reaches two and for freguencies
higher than 170 MH2z the attenuation reeches a maximum value. The
diffraction losses are appreciable at low frequencies, especially when

snaller diameter transducers are used.

(iii) Applied stress dependence of attenuation in mercury

telluride: The attenuation of ultrasonic waves in mercury telluride
is dependent upon both the applied stress and the wave amplitude.
Annealing increases the attenuation. Effects of handling the specimen

are also observed.

The general features of temperature dependence of ultrasonic

wave attenuation in the low temperature region below 80°K indicate a
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relaxation effect. This curve is characteristic of a mechanism involving
‘a temperature dependent relaxation time. The features are those shown by
direct conversion of acoustical waves into heat energy; +this is the
ultrasonic phonon-=lattice phonon interaction or Akhieser effect. This
portion will be discussed in Chapter 7.

The effect of annealing and the handling of the specimens on the
attenuation of the ultrasonic waves indicate that dislocations contribute
strongly to the sound energy loss mechanism in mercury telluride. The
applied stress and amplitude of driving sound wave dependence measurements
also provide further confirmation and information of the dislocation effects.
The attemuation of shear ultras&nic waves along the [111] crystallographic
direction always exhibits slight differences compared with that in the other
directions. This provides further indications of dislocation interactioms:
the (111) plane is the most probable slip plane in zincblende lattices.

The losses caused by dislocations will be analysed in Chapter 8.

The peaks in the temperature dependence of attenuation in the high
temperature region are considered to be Bordoni-type relaxation peaks
due to a different form of dislocation motion. The discussion of the peaks
will take place in Chapter 9.

Some of the relaxation-type losses have their own characteristic
features and they can be distinguisheds But this becomes difficult if
wr{{ 1. In the next chapter the effect of possible sound energy loss
mechanism on the attenuation of ultrasonic waves in mercury telluride and
their magnitude will be analysed to sort out the important contributions.

These major effects will be discussed in subsequent chapters.
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CHAPTER 6

MECHANISM CONTRIBUTING TO ULTRASONIC ATTENUATION IN MERCURY TELLURIDE

Before discussion of the ultrasound attenuation mechanism in
single crystal of mercury telluride it is necessary to estimate the
magnitudes of the possible contributions. In different frequency and-
temperature regions the effects on the measured attenuation would bhe
different. Due to complex frequency dependence it is often difficult
to identify and separate experimentally the possible mechanism.

Mercury telluride is piezoelectric and this could be an important
contribution. So too could the thermoelastic loss. Both these
mechanism have been considered in some detail to ascertain their

magnitudes., It turns out that neither is of importance.

6.1. PIEZOELECTRIC CCUPLING

In piezoelectric solids stress waves accompany electromagnetic
waves and vice versa. Depending on the piezoelectric temnsor and the
mode of propagation, each acoustic wave causes bunching of the mobile
carriers. This creates an internal electric field whose relaxation
is determined by the conductivity and the dielectric properties of the
medium in which the sound waves are proﬁagated. Like other relaxation
phenomena, the piezoelectric effect also causes sound attenuation and a

velocity change.
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The contribution of the internal electric field to the sound
velocities was originally pointed out by Voigt (1910)s This effect
has been analysed in more detail by Kyame (1949) and (1954k) and Hutson
and White (1962) and the others. In the first treatment Kyame showed
that analysis of wave propagation in piezoelectric materials involves
the combined use of the mechanical~piezoelectric equations of state and
Maxwell's equations. The stress-strain relation contains an additional
stress term caused by the internal electric field (E) arising from the
applied stress. Thus Equation (4.1, pe4l) given for the elastic solid

takes the following form:

%3 7 k1T gty (6.1)

where eijr is the piezoelectric tensor and Er is the component of the
electric field vector. The other parameters have already been defined in
Section (4+2, p.4k.) The expression for the electric displacement (Dj)

caused by the strain and the electric field is

D (6.2)

b = eiklekl * perr
Here Pir is the component of the dielectric tensor. Following a similar
procedure to that in Section (4+2) and making use of Maxwell's equations
for the plane wave propagating in the X1 direction, the equation of

motion in piezoelectric materials is obtained:

2 2 . '
wpSy =k 0} 4y B -dke 4B

ik = 1,253 and 1 = 2,3 (6.3)
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Here Si and S. are the elastic plane wave (Equation 4.6, p.46), E_ is

k 1
the plane electric field equation [El = Eol el(wt-kx1)] and k is the

wave vector (k = %n) Equation (6.3) specifies the elastic behaviour of

piezoelectric materials and the modified elastic constents can be deduced

from the secular determinant:

1 2 2 .
ik = 1,2,3
where
] e- 4 e
idl 11k
Ci 11 k=% 11 x? L 1 2L (6.5)
11 W

Here b is the electrical conductivity. Equation (6.4) has been written
for the propagation of plane waves in X1 direction of an orthogonal
coordinate system. For the case that wave propagation is not along the
crystallographic X1 direction, elastic and piezoelectric coefficients
can be obtained from the usuvel ones by a coordinate rotation.

As shown from Equation (6.5) the elastic constants of piezoelectric
materials have real and imaginary parts and are frequency dependent.
In the limit where the piegoelectric coefficients vanish or the medium
is a nearly perfect conductor, the effective elastic constants are equal
to the conventional constants that is

c

Ci11 k™% 11

for either e's —> Q0 or b's —~==p o
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It is interesting that piezoelectric coupling does not effect all
the sound velocities measured in different directions and polarisations.
The magnitude of this effect may be seen from comparison of the shear
wave velocities along the [100] direction (polarised in either the [o10]
or the [001] directions) with that along the [110] airection (polarised
[oo01] direction). For Hookeian solids both velocities give the same
elastic constant. But in piezoelectric materials the piezoelectric
tensor component is absent in the [100] direction, while the gecond

velocity is effected by piezoelectric coupling:

1
Y[100] = (Chh/#)z polarised along either (010] (6.6)

or [001] direction

and
1
V[110] = (CLL/P)Z polarised along [001] direction (6.7)
Here 2
O | e
cu'- = CM + ——1%— (6.8)
p+i 5

and p is the dielectric permittivity and b is the conductivity.

Thus, for zincblende structure compounds, it is required to measure
the sound velocities in at least two directions. In the present work the
effect of piezoelectric coupling on sound velocities in mercury telluride
has been estimated by comparing these two velocities.

In Table (6.1) two particular velocities are tabulated for selected

temperatures.



=90~

TABLE (6.1) Comparison of two sound velocities from
which the same elastic constant is derived, thus showing
piezoelectric coupling is negligible.

v along [110] airect-| v along [100] direction l
Temgerature ion polarised along polarised along the [010]
X the [001] direction | or the [001] direction
Ye2 1466 x 10° on/sec 1466 x 10° on/sec
77 165 " 1+65 )
196 1:63 n 163 v
290 161 " 1-62 "

From this table it may be concluded that the effect of piezoelectric
coupling on sound velocities is undetectable within the limits of the
experimental error. Due to high coﬁductivity of mercury telluride, the
second term in Equation (6.8) is negligible; the usual sets of
equations can be used to compute the elastic constants from velocities.

On the basis of the preceding treatment, Hutson and White (1962)
derived a theory of ultrasonic attenuation in piezoelectric semi-
conductors. Their result for low megahertz froquencies takes the
following form (Lord and Truell 1966).

2 w
__9&._5 | (6.9)
T+ (o)

<le
[ V) [ o]

1

-z
where a is in Nepers/cm, v is the velocity of sound, L =<?2-> is the

P

electromechanical coupling coefficient, with e, the piezoelectric
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coefficient, C, the particular elastic constant, and p the dielectric
permittivity, w, ='2$ is the conductivity frequency, with b, the
conductivity. This is a relaxation-type of attenuation and reaches its
maximum value when b/p = w. In the limit where the piezoelectric
coefficient vanishes (e = 0 .. L = 0) or the medium is a nearly perfect
conductor (b = 0), Equation (6.9) shows that the medium does not absorb
sound energy.

Equation (6.9) has been used to estimate the effect of piezoelectric
coupling on ultrasonic attenuation in mercury telluride. At hf29K the
lowest conductivity (b) is 3000 (fi.m)-1 (Dziuba et al.1964) and the
dielectric permittivity (p) is 18 x 10710 Farads.mf1 (Dickey and
ﬁavroides 1964); for this case, the frequency (wd/2v) for maximum
_attenuation is estimated to be of the order of 3 x 1012 Hz, well beyond that
of the present experiment. The magnitude of piezoelectric coupling
effect in the frequency range used can be estimated. The electro
mechanical coupling coefficient (L) seems to be of the order of 10™2
for most of the IIT-V and II-VI compounds (Arlt et.al. 1968), taking
5 x 10-2 for mercury telluride even using the highest frequency available
and lowest conductivity known, the attenuation due to the piezoelectric

40 107 dB/usec.

coupling effect is of the order of 10
It may be concluded that piezoelectric nature of mercury telluride,
due to high conductivity, does not contribute to any of its anelastic

properties.
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6.2. THE THERMQELASTIC LOSS.

Direct conversion of acoustic energy to thermal energy is called
the thermoelastic effect. When a solid is subjected to a stress, the
resulting strain is in general accompanied by a change in temperature.
If the strain is homogeneous, the temperature change will be the same
everywhere in the specimen. If the strain is not homogeneous, as, for
example, when a longitudinal ultrasonic wave is propagated through a
solid; a temperature gradient will be set up between regions of expansion
and of compressions This will lead to a flow of heat from the hotter
(compressed) part to the cooler.(expanded) part, accompanied by a
production of éntropy and a dissipation of energy, which will result in
an attenuation. Llcke (1956) has discussed this effect in a standard
linear viscoelastic solid, taking into account the anisotropy of the
elagtic properties. At high frequencies the time per cycle is insufficient
for appreciable heat to flow between the adjacent regions and the
thermoelastic damping should be smalle At very low frequencies thermal
equilibrium between regions is eapproached and again no attenuation occurs.
When the period of the applied stress becomes comparable with the
relaxation time (7) of the heat transfer process, attenuation is observed
and reaches a maximum when w7= 1.

As the thermoelastic loss is relaxation type, the general form of

the relaxation equation (Equation 1.8, p.3) can be used.

2
Y
@« =5 ¥ T 22 (6.10)

o 1+w' T
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An adiabatic elastic deformetion, with a longitudinal component,
leads to a change in temperature (thermoelastic effect). Because of the
thermal expansion due to this temperature change, the adiabatic elastic
modulus (Ma d.)’ appears to be different from that for isothermal
deformation (M‘I‘)' Some time is required for a flow of heat to occur;
.hence, when the deformation is sufficiently fast, it can be considered
adiabatic, even when the so0lid is not isolated from its surroundings.

In Equation (6.10) A...,/ is the fracticnal changs of the adiabatic
Mad-MT

iy

and isothermal elastic modulus (= ) and 7 is the relaxation time

of this effect and is given by

(6.11)
Pcpv

Here K is the thermel conductivity, p is the density cp is the specific
heat at constant pressure and v is the velocity of sound in this particuler
direction.

In cubic symmetry it may be shown that (Bhatia 1967, p.40).

For propagation in the [100] direction
(°11*2°1g)2 o?r

011 pcp

AN
M

o
For propagation in the [110] airection

oM _ 2(c11+2c )2 o2p

M Zc11+c12+2044$op

For propagation in the [111] airection
3(c, ,+2C, )2

AM 1177712

¥ = T 420 55 )re
M 11+2c12 M_Pcp
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Heare o is the thermal expansion coefficient.
Even for the best conductors of heat, T is of the order of 10-11 sec
and, therefore, for the Megahertz frequencies wT«<1. Equation (6.10)

thus can be simplified to (with the units of dB/om):

t  B+68 AM 2
a =7 Zﬂzﬁ T (6.12)

Therefore, the thermoelastic loss for w7T<<1.is frequency square
dependent. The room temperaturs values of elastic constants 011, c

and C,, of mercury telluride are given in Table (6.2) together with

L
other necessary parameters. Calculated values of the relaxation time
() and Am/mo are presented; these results were used to estimate from
Equation (6+12) the thermoelastic attenuation in single crystal meroury
telluride; details are shown in Table (6.2) together with data obtained
by Licke (1956) for germanium and silver for comparison. The latter
results have been transformed to the form (attenuation)/(frequency)z.

The frequency (f) at which the thermoelastic loss has maximum
(wr=1) is

f=12wrT (6.13)
or inserting the value of relaxation time

£=pc, v2/2ni{ (6e14)
For mercury telluride at room temperature this frequency is of the order
of 1011 Hertz which is far beyond the limit of present day ultrasonic
equipment. However, if we look at the terms inRjuation (6.14), as the

temperature decreases, c may decrease by a ratio of 1000 to 1 while
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K may increase by a2 hundred times. Then this frequency reduces to a
measureable values Here an attempt has been made to estimate the
thermoelastic loss in low temperatures. In Table (6.3) the temperature
variation of AM/MO: T anﬁ-@/fz for longitudinal waves in the [110]
direction with the necessary parameters used in this calculation are
tabulated and in Figure (6.1) temperature dependence of AM/MO, T and

o./f'2 are shown. Although the relaxation time (7 ) of this effect rises
shérply at low temperatures, dus to a decrease of thermal expansion faster
than the ;pecific heat, AM/MO decreases very sharply. Thus the product,
which gives the attenuation (Equation 6.12), has the features shown in
this figure. This argument could not be extended for lower femperatures
(lower than 77OK) due to lack of experimental data on thermal conductivity
in this temperature region.

The thermoelastic loss is large for metals because both the thermal
conductivity and the thermal expansion are large. For instance Llcke
finds that the attenuation of longitudinal sound waves in zinc single
crystals between 10 and 150 MHz largely comes from thermoelastic losses.
But in mercury telluride over the frequency range 10 to 300 MHz this loss
component is negligible. Calculation of the contribution of the thermo-
elastic loss over the temperature range 77°K to 290°K confirms that this
effect is negligible in mercury telluride.

These preliminary arguments show that in mercury telluride the damping
of ultrasonic waves does not come from either piezoelectric coupling or from

thermoelastic losses. The experiments demonstrate thaet the dominant
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2
TABLE (6.3). The temperature variation of AM/MO, 7T and o/f

for mercury telluride

T (°K) M/ 7 (sec) a/£°
° (dB/cm Hz?)
290 1052 x 1072 0062 x 1013 102 x 1019
196 860 x 107 307 x 1077 1.9 x 1077
150|467 x 107 52 x 10717 | 1en x 10719
77 |2x107 27 x 1072 | 302 x 107

Temperature variation of elastic constants, thermal expansion
coefficient and thermal conductivity data used in this

calculation
' Elastic conétants a c K
T("K) dyn cm _ x 10 ther. expans{ erg/em °K |erg/cm °K
011 012 013 ion cogff.
-6 6 5
290 5l 376 2:05 p x 10 149 x 10 |16 x 10
196 | 56 | 390 | 2415 he5 x 107 | 1.48 x 10°[37 x 107
150 5+7 L0 2¢15 B+7 x 10-6 1»‘46 x 10 }5+2 x 105
77 5¢85 | 4eOh | 2420 H x 107 1428 x 10%[2-5 x 10°
Present work (Table Appendix A

be1s po51




FIGURE (6.1). Temperature dependence of thermoelastic
attenuation and related parameters.
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interactions giving rise to ultrasonic attenuation sre those with lattice
phonons and with dislocations. These effects will now be detziled in the

next three chapters.
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CHAPTER 7

ULTRASONIC WAVE INTERACTION WITH THERMAL ELASTIC WAVES: THE ULTRASONIC

PHONON~THERMAL PHONON INTERACTION

7.1. INTRODUCTION

Ultresonic waves in solids have, in principle, the same nature as
the lattice waves which describe thermal vibrations. The former are
available as coherent beams and are induced artificially; the latter
congtitute background noise. Thus an interaction cen be expected hetween
the two kinds of waves. The attenuation of the ultrasonic wayes can be
studied directly; the attemuation or scattering of thermal waves must be
induced from conduction properties. Information obtained from the
interaction between the waves adds greatly to knowledge, deduced from
conduction experiments, of thermal waves. Unfortunately it has not yet
been possible to establish good contact between these two methods of
getting information. Reasons for this failure :include a two orders
of magnitude difference between the highest ultrasonic frequency and the
thermal wave frequency at liquid helium temperature and the difficulty of
separation of other contributions to ultrasonic wave attenuation.

A given ultrasonic wave interacts with thermal lattice waves by
virtue of the anharmonic nature of interatomic forces in a solid. The
bulk of this interaction is with thermal waves of approximete frequency

kT/h. The lattice waves are also subject to interaction processes and
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have a mean free path (1). If the wavelength (A) of the driving ultra-
sonic waves is less than that mean free path (1) of the thermal waves
(A<<1), one can assume the wave to interact with individual lattice
modes. This condition is met when one is considering the attemuation
of ultrasonic waves in ver.y low temperatures. However, for ultrasonic
waves, this condition is not fulfilled, except at the lowest temperatures
and at the highest frequencies. In the other extreme, when the wavelength
(A) of the driving ultrasonic wave is greater than the mem free path
(1) of the thermal waves (A >>1), one can treat the interaction as taking
place not with individual thermal modes but w-.;i.th the entire assembly
of lattice waves or the phonon ges.

The effects of absorption by the lattice itself will always be present.
It ocan be best studied in dislocation-free, insulating crystals, in which
the other contributions are negligible, and at low temperatures where the
mean free path of the lattice waves (1) is comparable with the wavelength
of ultrasonic waves (A)e In other types of material, such as mercury
telluride, the difficulty is to separate the contributing effects.

The works of Bbmmel and Dransfeld (1960) on ultrasonic attenuation
in quartz opened the field of sound absorption in insulating crystals.
They measured the temperature dependence of uitrasonic attenuation at the
frequency of 1000 MHz for temperatures below about 140°%k. Similar
measurements have followed in quartz and other insulating crystals, alkali
halides, elemental semiconductors and some III-V compounds. Experiments

in quarts include those of Nava, Azrt, Ciccarello and Dransfeld (1964) in
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the frequency range 500 MHz to 10,000 MHz at temperatures below hOoK,

and those of Lewis and Patterson (1967) at 9,000 MHz and temperatures below
about 30°K. Hanson (1967) looked at lithium fluoride between 500 MHz and
2,500 MHz at temperatures below 50°K. Germanium has been studied by Dobbs,
Chick and Truell (1959) in the frequency range 333 MHz to 508 MHz below
room temperatures, silicon by Meson (1965, p.250) at 495 MHz below room
temperature, galium arsenide by Pomerantz (1965) at %00 MHz. All these
measur ements éxhibit similar éharacferistic tfeatures in crystals with low
dislocation content. Let us note some of these features of the experimental
results on the temperature dependence of ultrasonic attenuation. In the
range below about BOOK, the attenuation is low and almost temperature
independent. At some higher temperature the attenuation increases steeply
ﬁith temperature and then, in some of the measurements, the attenuation
decreases glightly with increasing temperature followed by a region of
temperature independence. These features are quite similar to those found
for mercury telluride in the present experiment.. Now the mechanism of
ultrasonic attenuation due to-the acoustic phonon-lattice phonon interaction

will be summarised.

7.2. THEORY OF THE PHONON VISCOUS DRAG.

7.2.1. Anharmonicity and Phonon-phonon scattering.

For ultrasonic waves to be attenuated by thermal phonons, there
must be coupling. The origin of this coupling is the change in the elastic

properties of a medium by the strein imposed by the sound wave. This may be

o
§ - I MAY 1965 |
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seen explicitly by expanding the potential energy (U) of a solid in

powers of strain components

6 6
U-_-U +-1- c € € +1 N C €,€ € 4+ oo (7.1)
o 2 ijij 6L ijki jk
isj=1 is3sk=1

Here U0 is the potential energy of the solid, when all strains are zero.

If the first two terms only in the expansion are retained, we have an
approximetion corresponding to the perfectly elastic or harmonic s lid,

and the small amplitude sound waves propagate without interacting each
other. In Chapter 4 this situation has been discussed. The third and
higher order terms, known as the anharmonic terms, give rise to interactions

between these waves.
If the first anharmonic term is considered to be much larger than the

others, then the constants Ci. determine the strength of the anharmonic

Jk

interactions. These cij are known as the third-order elastic constants.

k
Because of the anharmonic terms in Equation (7.1), the velocity of an

elastic wave changes, if the solid is strained. Hence by measuring the
sound velocity in a solid under different static stresses, one can
determine eixperimentally the third-order elastic constants (cijk)'

The thermal phonon velocity is altered by scattering by amounts
which differ for phonons of different polarization () and different

propagation vector (k). The relation between the fractional velocity

change (Av/v) for a branch (j,k) and the relative density change

Jsk
(8p/p) is given by
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<%v->j,k= Y30k <é”_p> (7.2)

The constant Yj,k is also a measure of the strength of the anharmonic
interaction and is linearly related to third-order elastic constants.
A useful assumption often made in the theory of solids, gives a
rougzh measure of the strength of the anharmonic interactions. If the
Yi j are assumed to be the same for all the branches and are set equal

L

to ¥ (the Gr@nersen constant), then

y « 228 (7.3)

c

Here a is the thermal expansion coefficient, P is the bulk modulus and ¢
is the specific heat per unit volume.

In the absence of cou.pling, the sound wave can be described by its
angular frequency w and its wave vector k, which is in the direction
of propagation of equal phases, and k = 2m/A. These are related by
W = yv, where v is the velocity of sound in the direction of the wave
vector. Thermal phonons are similarly described, but their velocity is a
function of k for the large values of k; that is the lattice is dispersive,
when the wavelength of sound approaches interatomic distancess A phonon
has energy E(=§-ﬁw) and momentum. p(:%”k).

In the theory of ultrasonic attenuation due to phonon=phonon
interactions, the scattering of a sound wave with a single phonon to
produce another phonon is calculateds Then a summation over all the phonons

is made. The energies and momenta of the waves are well defined and their
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totals are conserved. In a typical event

B oysd =8y
2 2r 1 T 2w 2
(7.4)
h h h
st 2w ¥ T 2
Here w,k describe the impressed ultrasonic phonon, W s k1 andJ%, k2

describe the initial and the resulting thermal phonon. Equation (7.4)
describes a three-phonon process. Interactions involving four or more
phonons are also possible in higher order theory:

7.2.2., Attenuation of Ultrasonic Waves.

There are two types of ultrasnic phonon~lattice phonon
interactions leading to attenuation. One is the thermoelastic loss, which
has been discussed in Section (6.2, p.92 ), negligible in insuleting and
semiconducting crystals. The other mechanism is the lattice phonon
viscous drag effect which is largely responsible for the ultrasonic
attenuation; a number of attempts have been made to calculate the atten-
uation due to this effects Two approaches are particularly useful, one
is due to BBmmel and Dransfeld (1960) and the other to Woodruff and
Ehrenreich (1961); both are based on the original suggestions of
Axhieser (1939).. The interpretation given in the theories is not entirely
quantitative because only rough values of some of the parameters entering
the theory are available at present; s the theories do not fully account
for the observed behaviour.

Akhieser first introduced the concept of a new process different

from the thermoelastic loss. To explain this process he pointed out that
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a sound wave passiné through a crystal would cause a disturbance of the
distribution of thermal phonons, so that the phonons corresponding to the
thermal latfice vibrations have no longer an equilibrium Planck distrib-
ution. The re-establishment of equilibrium in the phonon gas requires an
increase of entropy and, therefore, leads to the absorption of sound at
finite temperatures.

In the region of present interest, the wavelength of a thermal phonon
is always shorter than the ultresonic wavelength {1<<A ). . In this case it
may be considered that the thermal phonon travels through a uniform medium
which is being slowly modulated by the sound wave.

Both Bimmel and Dransfield and Woodruff and Ehrenreich use similar
approximations to apply their theoretical results to experimental data.
Nemely; (i) they consider that the medium in which the sound waves are
propagated is a simple isotropic Debye solids As 2 consequence of this,
dispersion is ignored and phonons of all frequencies in a single branch
have the same velocity change for a given strain. (ii) due to lack of
sufficient data on the anharmonicity parameter (yj,k)’ both theories
consider only the general features of absorption processes, while taking
simply an average anharmonicity parameter (¥). (iii) Woodruff and

Ehrenreich considered the total or combined relaxation (T ) defined by )

1 _ 1 1

T ST (7.5)
U N .

for their theoretical derivation. Due to the difficulties in separating

out the relaxation times for normal phonon scattering processes (TN)
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and for umklapp processes (TU), both theories consider only phonon-phonon
umklapp processes. Then the relaxation time can be deduced from thermal

conductivity data.
cvl (7.6)

Here v is the average phonon velocity and 1 is the phonon mean free
path between collisions equal to v7.

To calculate the attenuation coefficient BBmmel and Dransfeld
consider that if a longitudinal sound wave propagates through the crystal,
a periodic temperature difference will be set up. A relaxation time (7)
is assumed for the heat exchange which takes place; this exchange in
time leads to an increase in entropy corresponding to absorption of the
ultrasonic waves. Since this effect is a relaxation process, the

absorption coefficient can be calculated as

2 2
c T Y weT N
a = Ave. e (7.7)
ij < '1+“)27'2 /)

At high enough temperatures the relaxation time (T) is much shorter
than the sound period, w7<{<1, and the absorption coefficient given in

Bquation (7.7) reduces to:

a=c¢ T

oo (7.8)

2
yAve
The effect of the temperature dependent factors cancel and it turns out

that ultrasonic attenuation is practically temperature independent at

these high temperatures. In this region the attenuation is frequency
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square dependent.
For wm>»1, the Woodruff and Ehrenreich result, following the
approximations mentioned above reduces to

2
_ 868 ¥ive ! T tan™

a =
0 v5 2w

(297)  (an/on) (7.9)

Their result, for wr¢<1 is exactly the same as that givern by Bmmel and
Dransfeld (Equation 7.8).

Te2e3, The applicability of the theories to the measurements.

Both theories for wiKX{1 give the same result: temperature
independent attenuation. This behaviour has been observed by many workers
(see B8mmel and Dransfeld measurements above 60°K, Figures 4, 5 and 6-_).
Verma and Joshi (1961) used Equation (7.7) to calculate the ultrasonic
attenuation as a function of temperature for germanium and compared the
result with measured values (Dobbs, Chick and Truell 1959). For this
theoretical assessment, they deduced the relaxation time for phonon~phonon
umklapp processes from thermal conductivity. The average anharmonicity
constant was obtained by choosing it such that the theoretical value of
ultrasonic attenuation was equal to the experimental value at a certain
temperature. The agreement between the experimental values and the
theoretically calculated values is good.

Miller (1963) bas used Equation (7.9) given by Woodruff and Ehrenreich
for the case where w7>>1, to calculate the uldtrasonic attenuation as a
function of temperature so as to compare the theoretical estimation with

experiments on germanium. For this analysis, he estimated the anharmonicity
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perameter in several ways. Firstly, he assumed that ¥ is temperature
independent. This procedure was also previously used by Verma and Joshi
(1961) and explained in last paragraph. The temperature independent

Y yieided a strong peak, in disagreement with the experimental results.
Next by taking the temperature dependence of the thermal expansion
Grinersen constant (Equation 7.3), he obtained slightly better agreement
- (see Figure 7 in Miller 1963).

Although the Bmmel and Dransfeld approach is based upon very simple
arguments, it seems to give a better fit to the temperature dependence of
ultrasound attenuation due to phonon-phonon interaction for wr>>1. But,
as indicated by Woodruff and Ehrenreich, neither theory is really valid
for wr>>1,

The main difficulty in applying these theories to the experimental
measurements comes from the assessment of the anharmonicity parameter Y.

As acoustical waves in solids are involved with particular phonon branches,

the thermal expansion Griineisen parameter cannot be a true measure of
lattice anharmonicity for the ultrasonic attenuation. The thermal
expansion Grineisen constant, given in Equation (7.3) is the total measure
of tulk anharmonicity of the lattice. Furthermore, it does not give any
explanation of shear wave losses.

Mason and Bateman (1964) have been able to account for the ultrasoniec
attenuation for all values of temperature using a relaxation model
derived from Equation (7.7). They attempted to deduce the anharmonicity
parameter (¥) using third order elastic constants. Mason and Bateman

obtained agreement within about 30% for longitudinal wave attenuation and
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within ebout 50% for shear waves in both germanium and silicon. It was
noted, however, that the relaxation time that gave good agreement with
the experiments was twice the thermal conductivity relaxation time T for
longitudinal wave attenuation. Here the limitation at present is that the
third order elastic constants have been measured for only a few materials.
The theory of absorption of ultrasonic waves due to their interaction
with the thermal phonons is extremely complex and only qualitative at present.
Now the ultrasenic wave attenuation in mercury teliuride single crystals

due to ultrasonic phonon-lettice phonon interaction will be discussed.

7.3 RESULTS AND DISCUSSION

The low temperature characteristics of ultrasound attenuation shown
in Pigures (5.1)s (5.2)y (5¢3)5 (5.4) and (5.5) in mercéury telluride
single crystals imply that one of the dominating sound energy dissipation
mechanism is the ultrasonic phonon~lattice phonon interaction. This effect,
previously observed in insulators and semiconductors in high ultrasonic
frequencies {above 500 MHz) is large in the semimetal mercury telluride and
it is observable at relatively low frequencies (30 MHz).

When the thermal phonon mean free path is small compared with the
sound wavelength (1<<A or wi<< 1), both theories give the same result
(Equation 7.8). Deducing the relaxation time (7) from thermal conductivity
data (Equation 7.6) an expression giving ultrasonic attenuation due to this

effect takes the following form
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8+68 Yi o w 2T
@ = N (aB/cm) (7.10)

PVm

Here v is the averaged Debye velocity which can be deduced from the
elastic constants. In terms of Debye temperature (QD) and lattice

spacing (ao), v bas been given in Equation (b2, p.65):

4. 10
v, = 16795 x 10 BD e | (7.11)

Inserting the value of 141°K for Debye temperature (GD) (see p.67) and
64628 for lettice spacing (ao) (see p.18), average sound velocity in
the Debye sense for mercury telluride turns out to be 153 x 105 cn/sec,

considerably less than that of germanium (355 x 10°

cm/sec), silicon

(5867 x 10° cry sec) and quartz (4°39 x 105)(Mason 1965, p. 269 and 272).
Since ultrasonic attenuation due to phonon-phonon interaction is
proportional to the inverse fif'th power of the average sound velocity,

a stronger ultrasonic attenuation at a given frequency would therefore be
expected in mercury telluride. The effect can be observed at comparatively
low frequencies.

In the vicinity of the Debye temperature the temperature dependence
of thermal conductivity of mercury telluride is.inversely proportional to
temperature (Carlson 1958 and see Appendix A). Thus Equation (7.12) gives
a temperature independent attenuation. This behaviour is found in most of
the measurements in the temperature region of about 70°K to about 150°K
(see Figures 51 and 5°2). Although there is no experimental data on the

temperature dependence of thermal conductivity of mercury telluride below
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77°K, it is not difficult to deduce the low temperature behaviour of
thermal conductivity by analogy with similar materials. In general the
slope of thermal conductivity versus temperature curve is greater than
(T-1) thus, from Equation (7.10), attenuation of ultrasonic waves is
temperature dependent and it decreases with increasing temperature. This
behaviour is observed in all the cases and shown in Figures (5.1), (5.2),
(5¢3)s (5.4) and (5.5)s The temperature dependencé of thermal conductivity,
in genersl; increases sharply with decreasing temperature until about

GD/2O. So the mean free path of thermal phonons begins to be comparable
with the sound wavelength. This is the region where relaxation starts and
Equation (7.10) is no longer applicable. At low temperatures where the

mean free path of thermal phonons begin to be comparable with the sound
wavelength (LXA or wTX1) or even greater (1> or wr>>1) both the B8mmel
and Dransfeld (Equetion 7.7) and Woodruff and Ehrenreich (Equation 7.9)
theories predict a sharp decrease in attenuation with decreasing temperature.
This feature is also observed and shown in Figuresz (5.1), (5¢2), (5.3),
(5.4) and (5.5). This sharp decrease ends at low temperatures and the
attenuation is temperature independent. As this behaviour is not intrinsic,
none of the theories can take this range intc account. Thus, the general
features of ultrasonic attenuation at low temperature in single erystals

of mercury telluride are understandable qualitatively. But, due to lack

of experimental data on thermal conductivity at low temperatures, no attempt
can be made to calculate the temperature dependence of ultrasonic

attenuation due to the phonon-phonon process.
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The Grineisen parameter (¥) which describes the anharmonicity of
the lattice, is not available from third-order elastic constants which
are not known. However, here ¥ is treated as an adjustable parameter
and assuming the theories are correct for the temperature region where
wr{< 1, are deduced from the experimental measurements. For this
assessment ¥ (the acoustical Grlneisen parameter) is expressed from

Equation (7.10) in the following form.

[~
- m__ o (7.12)
B+68 4 w2 KT g2

The values of the ;coustical Grﬁneisén constant have been obtained by
choosing it such that the theoretical value of the ultrasonic attenuation
is equal to experimental value at 40°K. The thermal conductivity of
mercury telluride at 40°K has been obtained as 34 x 107 (ergq/sec.cmPK)
by extrapolating the Carlson (1958) data using the relation (Rosenberg

1963, P058):

K = y(0 /eT) (7-13)

Here y and g are constants, which are deduced to be 1176 x 'IO_2 and

0¢617 respectively and 6. is the'Debye temperature. Inserting the values

D
of the related parameters into Equation (7.12), the acoustical Griineisen

parameter in terms of sound attenuation and the frequency turns out to be

\
2
¥ = 3.8 x 107 % (7.14)
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Here o. is the intrinsic ultrasonic attenuation with units of dB/cm
which is defined as the attenuation at 1+0°K minus the residual attenuation
(a.o). In Table (7.1) the intrinsic ultrasonic attenuation at 40°K and the
acoustical Griineisen parameter are tabulated. In most of solids y
calculated in a similar manner falls within the limits for ¥ = 0+6 and
Y = 12 {0Oliver and Slack 1966). Mercury telluride, except for the shear
wave propageting along [111] crystallographic direction, shows similar
bebaviour. For comparison, the thermal expansion Grfineisen parameter is
estimated as 0465 X 0+10 from the Equation (7.3).

Here for both shear and longitudinal waves the same relaxation time
is used. However, in reality, longitudinal waves can interact with both
longitudinal and shear phonons of the same frequency range. Thus, they
have longer relaxation times. Experiments indicate that the relaxation
time for longitudinal waves is about twice that for the thermal relaxation
time (Mason 1965, p.268)s Thus the acoustical Grineisen parameters (¥) for
mercury telluride, presented in Table (7.1), even considering the errors
involved in the extrapolation of the thermal conductivity are probably high.
This fact is also clearly shown in the value of the acoustical Grineisen
parameter calculated from shear wave attenuation along [111] crystallographic
direction (Figure 5.5). Therefore, it is considered that another energy
dissipation mechanism, other than of due to ultrasonic phonon-lattice
phonon interaction, contributes to the sound attenuation in mercury telluride
at low temperatures. Further, both theories predict that a frequency

square dependence of attenuation for wr<< 1. This is not (see Figures
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8.5, 8.6 and 8.7 in Chapter 8). The phonon~phonon mechanism
suggests a temperature independent attenuation around the Debye temperature
where thermal conductivity is inversely proportional to temperature.
Figures (5.1)s (5.2), (5.6), (5.7) and (5.8) show that this is not so.

Thus not only the phonen~phonon interaction is responsible for the ultra-
sonic attenuation in mercury telluride at low temperatures. This further

contribution will be discussed in subsequent chapters.
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CHAPTER 8
DISLOCATION CONTRIBUTION TO THE MEASURED ATTENUATION IN MERCURY TELLURIDE

8.1. INTRODUCTION

The pronounced lattice phonon-ultrasonic wave interaction (Akhieser
effect) occurs in the intermediate temperature range 20°K to hOOK. For
higher temperatures ( w7<<1) this effect should result in a temperature
independent attemuation. This is found only over a limited temperature
range (see Figures 5.1, 5.6, 5.7 and 5.8). Another energy dissipation
mechanism must be extant. Evidence that this is dislocation damping is
strongs In the crystals under study the dislocation density of 107 pits
per square centimetre is as high that in cold worked metals; dislocation
offects can be expected. The frequency dependence of the attenuation
exhibits the characteristics expected of dislocation damping. Further
confirmation comes from measurements of the strain dependence of
attemation.
8.2. THE VIBRATING STRING MODEL OF DISLOCATION DAMPING

To explain the plastic or anelastic behaviour of solids, line
lattice imperfections known as dislocations which extend over many
thousands of atoms, were introduced into the theory of solids as early
as fifty years ago. The interaction of sound waves with dislocations

causes energy dissipation (Read 1941). Although Read's work and similar
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investigations had early established the importance of disloecations in
mechanical damping, it was not until recently that a detailed picture of
at least some aspects began to emerge. Two main reasons are responsible
for the slow progress. Firstly, mechanical damping in single crystals
is most sensitive to static stresses. Therefore, as reported by Mason
and Rosenberg (1967) and other investigators, internal friction
measurements are extremely dependent on handling damage. In the present
work, increases in attenuation due to handling have been cbserved.
Secondly, mechanical damping depends on the amplitude of the alternating
stress employed in the measurement. Nevertheless damping experiments do
provide an excellent method of studying dislocations.

Sound absorption due to dislocation movement may be classified as
follows:

1¢ Resonance losses

2. Hysteresis losses

3. Relaxation losses

Considerable success has been achieved in explaining dislocation
damping, resonance losses by a model, which considers the dislocation as
vibrating strings, pr;posed by Koéhler (1952) and ext;nded by Granato and
Licke (1956). Although the qualitative features of the interaction have
been well demonstrated in many experiments, due both to experimental
difficulties and to the problems of resolving and estimating theoretical
parameters, quantitative agreement with experiment is rather poor.

This model considers the dislocation lines in a crystal to be pinned
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by impurities or vacancies or dislocation nodes at various points along
their length (see Figure 8.1a). The distance between two pinning points
is called the loop length Lc. In addition it is assumed that the
interaction of the dislocation with the lattice and also dislocation
interactions can be neglected.

If an external stress is now applied, there will be, in addition to
the elastic strain, an additional dislocation strain. The stress-
dislocation strain relationship corresponding to this model is shown in
Figure (8.2). For a very small stress (A-B), the loops (Lc) bow out and
continue to bow out until the breakaway stress is reached (C). Now, for

further increases in the stress, the network length L_ bows out (D-E).

N
It is assumed that the network pinning is so strong that no breakaway
of network length occurs. However, further increases in the applied
stress may lead to an activation of Frank-Read sources and, therefore,
to irreversible dislocation strain, which is the plastic strain. This
stress region will not be considered.

A hysteresis arises because during the unloading part of the stress
cycle (D-A in Figure 8.2), the long loops collapse elastically. When
the loops have completely collapsed, they again become pinned and the same
type of path (A—> B—> (¢ —> D) is followed in the other half cycle.
For small enough stresses, hysteresis does not occur because the

breakaway from the pinning points cannot take pilace.

In this model dislocation lines are treated as extensible strings
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with a line tension and a mass. They can undergo resonance, if the
frequency f of an applied alternating stress coincides with the
characteristic frequency fo of the dislocation string. As will be
fully discussed later, such a resonance may or may not be observed,
depending upon the damping forces of dislocationse.

For stresses below that required for breakaway, the equation of

motion for a loop of length 1, perpendicular to the applied stress, is

given by
2 2
Aé‘._g. +B%1S; -C-S—'% = bo (8'1)
8t Sy

here 8 = 8(x,y,t) is the displacement of the dislocation from its
equilibrium position, which is zero at y=o and y=1 (nodal points), and
the parameters in the equation have the following meanings:

A is the effective mass of dislocation per unit length, which is

given approximately by
2
A=pb (8.2)

Here p is the density of the material and b is the Burger's vector.
B is the damping or friction force coefficient on unit length of
dislocation travelling with unit velocity.
C is the force per unit length due to the effective tension in a
bowed-out dislocation and is given by

2
C = 2—%% (8.3)

m(1=v
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Here G is the shear modulus, and v is Poisson's ratio.

bo is the driving force per unit length of the dislocation exerted
by the applied stress.

The mechanical damping caused by dislocations may be calculated by

starting from Newton's equation of motion

2 2

S o 8¢ .
5g ., 5 (8.4)
8x° §t°

Here € is the total strain and contains the dislocation part, as well

as the elastic part.

el dis (8.5)

The elastic strain (€e1) is 0/G, while the dislocation strain (¢ dis)

produced by a loop of length 1 may be represented by

€dis=31b (806)

where S is the average displacement of a dislocation and is given by

1
- 1
s=3[8(y)dy - (&)
; )
If A is the total length of movable dislocation line in the unit cube,

the dislocation strain can be obtained using Equations (8.6) and (8.7)

1
€ aig = All fs(y)dy (8.8)

o)

This equation together with the Equation (8.4) leads to following

equation:
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2 2 1
80 p 8o _ MLod § /
éx 8t 5t °

As shown by Granato and Llcke, Equation (8.9) and (8.1) form a system
of two simultaneous partial differential integral equations. A trial

solution of the form
o =0 exp(-ax)expliw(t-x/v)] (8.10)

leads to an equation for the vibrational amplitude S and then using the
expression S and o, the attemuation and velocity can be deduced. Following
Granato and Ificke, the mechanical demping and modulus change due to the

dislocation mechanism are:

p=0a AL® w%n > (8.11)
™" Tisops_YPu(e/u D)
2
w08, [1-@/a_)?] (6.12)
. " [1-(u/w_)? 124 (a/w D)

where the parameters in these equations have the following meanings:

 is an orientation factor, which takes into account the fact that
the mechanical damping should be sensitive to the crystal orientation and
the distribution of the dislocations over the various slip systems.

Ao is a constant for a given material and is given by

A = 8Gb2/rr7’c (8.13)

Here the significance of G, b and C have already been indicated.
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A has been defined as the total length of dislocation lines per
unit volume. The number of dislocations in a solid is specified by the
density N: the number of dislocation lines that cross a unit area
perpendicular to theme Thus N represents the total length of the
dislocation line per unit volume of the solid.

L is the dislocation loop length.

D is the normalized damping constant and is given by

D =UOA/B (8514)

@ is the angular frequency of the driving sound waves.

The frequency dependence of mechanical damping, obtained in this
way, has some interesting features. In Figure (8.3) the normalised
decrement (A/YIAOI\Lz) is plotted (after Granato and LUcke) as a function
of normalised frequency (w/bo). As shown from this figure, the decrement
very much.depends on the constants D or B (D = woA/B), which determine
whether a resonance or a relaxation type loss should occur. For very
small damping (B), the dependence is linear nearly up to the resonant
frequencyy: next it passes through a maximum attu/bo = 1 and then sharply
decreases. The resonant frequency of dislocations is given by

woz = 1r20/AL2 (8°15)

For larger damping, the initial response is linear up to a maximum value
which occurs at a lower frequency than W e Beyond the maximum, the
decrement decreases as the inverse of frequency. After the true resonant

frequency, it decreases very sharply.
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For sufficiently low frequencies i.e. (w/wo)2<<1, Equation (8.11)

may be written in the form

2

wr
A= Q4 ALY ——mmm (8.16)
o 1+w2,2

Here T, the relaxation time of a vibrating dislocation is

I (8.17)
When @T = 1, Equation (8.16) has a maximum given by

A = Qb AL%/2 (8.18)

n ]

This maximum occurs at the frequency

w = r1 vrzc/BL2 = wi A/B (8.19)

For frequencies much greater than v (wT >>1), Equation (8.16) may

be written as
a= 0o APfur (8.20)

or inserting the values of Ao and 7

80 ¢ bA 1

A= — - . (8.21)

e

This equation implies that, for sufficiently high frequencies the
decrement varies with the inverse first power of the frequency, sc

that the attenuation a (=w 4/2w) approaches a limiting value a.; » which
is

a = 4LOGVPA/u’B (8.22)
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This equation shows that the limiting value of attenuation is frequency
independent and simply depends upon material properties only.

It must be expected that loop lengths are not equal in any real
solid, but rather are distributed at random. The effect of a random
(exponential) distribution is to shift the maximm tc lower frequencies

and higher values (Granato and Ificke, 1966).

i}

2
m= 2208 AL (8.23)

w_ = 0084 n2c/L%B (8.2L)

m

In this case, the high frequency asymptotes of the curves remain
unchangede.

Now this model will be applied to the results of mercury telluride.

8.3+ APFPLICATION OF THE VIBRATING STRING MODEL TO MERCURY TELLURIDE

The results for mercury telluride best considered first are those
taken at 4f2°K, where the Akhieser effect is negligible. The frequeﬂcy
dependence of longitudinal waves propagated along the (110] direction is
shown in Figure (5.9). At about 200 MHz the attenuation reaches a.
maximum. This is shown more clearly with expanded scales in Figure (8.4).
The position of the maximum frequency W is sherply defined by the plot
of the decrement A(= %35) in the same figure. This direct observation
of the resonance peak provides strong evidence for Granato-Liicke
dislocation damping in mercury telluride. Previously such a maximum

has been reported for copper (Alers and Thomson 1961; Stern and Granato
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1962) and for sodium chloride (Merkulov and Yakovlev 1560 ).

Before the finding of a maximum in the attenuation can be used
to assess dislocation parameters for mercury telluride, the proximity
of the maximum to the resonance frequency must be ascertained. It can
be seen from Figure (8.3) that as the normalized damping constant D
decreases, so the maximum goes to lower frequencies below that of
resonance (wo). The effective mass A of a dislocation is a constant
and, therefore, D(EQOA/B) becomes lerger and rescnance is more closely
approached as the drag coefficient B decreases. Leibfried (1950) has
predicted that B shoulé be very small at low temperatures. Experimental
evidence for this has been provided for copper by Alers and Thomson (1961).
This then is assumed. The frequency of the measured maximum in mercury
telluride at 4:20K mist be very close to & . The parameters D and @ _
are then assessed by teking them as variable parameters in the Granato
and Llcke theory (Equation 8.11) and finding the best fit (see Figure
8.4). The general shape of the curve is not affected by the constant
(QAOAL‘:: )o The frequency at which the maximum is observed is 2w.190 MHz.
If this is the resonance frequency'wo, then since"w.m is equal to wop,
when the damping is low, D must be unity. However the best match between
the measured points and the theoretical curves from equation (8.11) is
obtained for D equal to unity and f°(=wq/2ﬂ) equal to 220 MHz. This
suggests that, even at 4320K, the frequency at which maximum attenuwation
is found is slightly lower than the true resonance freguency.

Once a value for the resonance frequency has been obtained, the
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temperature variation of the normelised damping constant D, and hence
B, can be estimated by using the same matching procedure at other
temperatures. It is not possible to carry this out with any accuracy
over the whole temperature range because separation of the other
contributing mechanisms is difficult. ILiquid nitrogen temperature is
the most convenient: the most pronounced effect of the phonon viscous
drag occurs below this temperature (wr = 1 around h-OoK) and Bordoni-
type peaks are found above ZOOOK. The method of separation is now
described.

The exponent of the freguency dependence of attenuation in mercury
telluride is much less than two: Dbehaviour consonant with damping due
to dislocation motions In those temperaturs ranges where peaks are
absent, the measured attenuation can be formulated as
w®) +a (")

o1 =a . . .
measured Akhieser dislocation

The loss can be separated into a frequency square loss, associated with
direct conversion of acoustic energy into heat, and the dislocation
contributions This procedure has been verified by Greanato and Truell
(1956)_and by Mason and Rosenﬂ;fg (1966, 1967). Dur;;g the present
work this procedure has been adopted. Typical examges of the separation
method are illustrated in Figures (8.5), (8.6) and (8.7). For the large
damping case at higher frequencies the dislocation contribution to the
attenuation approaches a frequency independent region: the asymptote at

high frequencies to the measured points at higher temperatures gives a
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frequency square law. As the dislocation contribution to the attenuation
approaches the frequency independent region, as predicted by the Granato

and Lficke theory, so the logarithmic decrement 4( =w/2mu) begins to vary

inversely with frequency, as shown.

Once the dislocetion contribution to the damping has been separated
off, it can be compared with the predictions of the Granato and ILtcke
theory in the condition that D is small. In Figure (8.8) the predicted
normalised decrement (A/f)AOIXL } is plotted as a function of frequency
for a range of values of D. The resonance frequency fo is taken between
200 MHz and 220 MHz, as found from the results at AjZOK. The measured
dislocation contributions for the longitudinal and the two transverse
ultrasonic waves propagated along the [110] direction are also presented.
The best match occurs in each case for D equal to 0<11 and fo equal to
220 MHz.

Interactions with thermal phonons damp the dislocation motion in a

crystal. The drag coefficient B can be determined from (Equation 8.14)
B:woA/D

using the experimental data for wo and D-at 4+2°K and 77°K and taking

the effective mass A per unit length of dislocation as 1+69 x 10_19 g.cm-1
(see Appendix B). Results are shown in Table (8.1)s There is an order
of magnitude discrepancy between the measured values of B and those

predicted by Leibfried by a consideration of phonon scattering of the

moving dislocations, assuming a linear dependence of B on temperature.
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TABLE (8.1) Dislocation parameters for the mercury
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telluride single crystals.

Dreg Coefficient B

Resonance | Normalised -2
Temperature|frequency | Damping (dyn. sec.on ) -
o P (MHz) Constant Measured ‘Theoretical
K o D
a b
42 220 1.00 |2-3x10° |o.8x107®
77 220 011 |2:1x10™%  freasz10™® [ 1e5x107

a. Theoretical prediction of Ieibfried (1950)

b. Theoretical prediction of Mason and Rosenberg (1967)
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The values of B determined for copper by Alers and Thomson (1961) are
also much higher than the theoretical calculations. But the predicted
linear dependence of B comes from a high temperature approximation not
applicable below room temperature. Recently Mason and Rosenberg (1967)
have shown that the experimental values for lead support a combination
of two effects, namely phonon viscosity as well as phonon scattering, as
being the likely source of the drag on dislocations. From the magnitude
of the drag coefficient B obtained for mercury telluride, which is the
same as that in copper, it seems likely that this situation applies here
too.

In a real solid the loop lengths are not all the same, but the use
of a single effective loop length affords a useful basis for comparison.
The relationship between the loop length Lc and the resonance frequency

w is given by Granato and ILticke as {Equation 8.19)

2

2 2
L-=n c/.two
-
From the finding of fo as 220 MHz, Lc turns out to be 28 x 10 ~ em. for
annealed mercury telluride. Granato and Liicke (1966, p.263) estimate
- -l =l .
values for copper of 0°49 x 10 "< L<2*9 x 10 ~ cm. from the data of
Thompson and Holmes (1956). Other workers find loop lengths of this
~ly
magnitude in copper. Truell and Elbaum (1962, p.194) give 1°3 x 10 = cm.
for a sodium chloride crystal. The value obtained for mercury telluride
is reasonable.
The effective dislocation loop length is reduced by the addition of

impurities and defects; studies of the effects of radiation-induced defects
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on ultrasonic attenuafion have proved of great value in assessing the
validity of the Granato and Lficke theory. During the present work, a
considerable number of experiments have been performed to determine the
effect of annealing in mercury vapour on the attenuation of both
longitudinal and shear waves propageted along the (1001, [110] ana [111]
directions. In all cases the attenuation increased markedly after
annealing. Typical results can be seen in Figures (5.7), (5.8), (5.9)
and (5¢11). The effect of annealing as-grown mercury itelluride is to
reduce excess tellurium content. The ultrasonic experiments point to an
"inicrease. in the dislocation loop length due to removal of some pinning
points during annealing. The results in these figures show about a 50%
increase in attenuatian after annealing. A change in loop length from

-l

2*°3 x 10 " to 28 x 10-4 cme is required to produce this increase. This

corresponds to a decrease in the total number of pinning points

10,c=m-'3 by 8 x 109 cm.-3

17

-3

A/L = 107/1.) from 43 x 10 to 35 x 1010 cm .

The total number of electrons (~ 10 cm-j ) introduced during annealing
is much greater. Clearly most of the mercury atoms diffusing in do not
go into dislocation pinning sites and;qply a few of the defgcts present
interact with the dislocations.

The stress-induced dislocation motion also leads to a modulus change

(aM): the elastic constants are smaller for a sample containing mobile

dislocation segments than for a perfect crystal by an amount

gIE'

mw
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according to the Granato and LWcke theory. The effect of the annealing

process on the elastic constants of mercury telluride has been given in

12 12)

are too smll to be distinguished with certainty from the experimental

Chapter 4. The changes induced in (011 +C,, + 20&4) and (c11 -C

error. But (chh) decreases by 2¢5% after annealing. If the elastic

moduli before and after annealing are written as Mu and Ma respectively

then
(MM /M = -6—2 A I.-u2 (8.26)
u wT
60 2
(M-Ma)/M = =5 AL, (8.27)
1/
and
2, 2
(u-u )/ (u-M_) = L °/L_ (8.28)

Using the values of 2°3 x 10-4 cme for L and 2.8 x 107+ cme. for Lé,
then at 4'2°K the elastic constant 044 of dislocation-free mercury
telluride would be 2:28 x 10"’ dyne on~? in contrast to that of
2+22 x 1011 dyme cm-2 and 2+19 x 1011 dyne cm.-2 for as-grown and annealed
crystals respectively. Problems connected with the study of crystal

- internal forces require accurate elastic constant data. The deviations
due to dislocation strain may be responsible for the discrepancies
between quoted data for elastic constants of crystals. The orientation
factor QCAL for a transverse wave propagated along the [110] with the
particle velocity vector along [001]) is estimated from the amnealing

experiment to be 0+16. This is excellent agreement with that calculated

1
from < cM/(c11412+cM) (Alers and Thomson 1961) of 0+18. The
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orientation factor 0 for the other transverse wave with
(©41=4, Y/,

velocity vector along the [170] is (011-012)/(011-0124-0%) equal to

0+22. But the value of (011 12)/2 of 0+88 dyne cm ~2 58 pearly an order

of magnitude smaller than CM- and the change on ammealing cannot be

observed. The orientation factor for the longitudinal wave is only

0¢068. Thus the finding of that only CM_ is altered measurable on

annealing is consistent with the postulate of a strong dislocation

Further confirmation comes from experiments which demonstrate
breakaway of the dislocations from the weak pinning points. When a
stress large enough to induce breakaway is applied, the attenuation should

increase markedly. This is shown in Figure (5.13).
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CHAPTER 9
BORDONI-TYFE RELAXATION PEAKS IN MERCURY TELLURIDE

9.1. INTRODUCTION

Peaks are obsekrved in the temperature dependence of ultrasound
attenuation measurements in single crystals of mercury telluride, (see
Figures 5.1 and 5.6). These show characteristics of Bordoni peaks and
the results will be interpreted in terms of the theories of the Bordoni
peak, particularly that due to Seeger (1956). The great imporfance of
Bordoni peaks is that they give direct information about the motion of
dislocations; some parameters of dislocation movement, such as the
Peierls stress, can be deduced. Here first the qualitative and
quantitative features of the source of Bordoni peaks will be surveyed and
then the theories tested by application to the measurements in mercury
telluride. |

Bordoni (1949, 195k) first observed characteristic peaks in the
temperature dépendence of mechanical loss in certain face-centred cubic
metals. Extensive studies of these Bordoni peaks have subsequently been
carried out by numerous investigators; similar peaks have also been
observed in other types 6f solids; for example, in body-centred cubic
metals, covalent semi-conductors and in some alkali halides. The topic
has been reviewed by Bordoni (1960), Truell and Elbaum (1962, p.203) and

more recently by Niblett (1966, p.77).
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The main characteristics shown by these peaks can be summarized as
follows:

1. The peak occurs in both single crystals and polycrystalline
materials.

2. The peak height increases with increasing plastic deformation
until saturation at about two to three per cent plastic deformation.

3 The height of the peak decreases on amnealing.

' Impurities reduce the peak height; similar effects result from
neutron irradiation.

5e In addition to the main peak, a smaller subsidiary peak is
frequently observed on the low temperature side.

6. The temperature at which the maximum occurs increases as the
frequency of the driving wave is raised.

7+ The temperature at which the peak occurs is not very much
dependent on prestrain, ammealing and impurities.

Before turning to the mathematical theories, let us discuss these

qualitative features of the Bordoni peaks.

9.2. THEQORY OF BORDQNI fEAKS

From the main features of the Bordoni peaks outlined above in (1) to
(7)» the following facts have been concluded:

-1 The general behaviour of the peaks suggests that they arise from
dislocation motion.

be The changing peak temperature with frequency suggests that the
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peak originates from a thermally activated, relaxation effect, associated
with a characteristic time T which depends on temperature according to

an Arrhenius equation.

T = T exp (/1) (9.1)

Here W is the activation energy of the process, LR gives the limiting
value of the characteristic time for very high temperetures and k' is the
thermal energy.

¢. Since the peak temperature does not depend greatly on prestrain,
annesling and impurities, the activation energy is not generally related
to the pinning of the dislocation line by impurities and the density of
dislocations. From this it may also be concluded that the mechanism of
the Bordoni peaks is mainly related to intrinsic properties of dislocations.

The general conclusions made are that Bordoni peaks are due to
relaxation processes involving dislocations, which run parallel to one
of the close-packed directions. We now turn to discuss the dislocation
motion.

Consider a dislocation line lying in the position of minimum energy
along a close-packed direction denoted by x (éee Pigure 9.1). If the
dislocation line behaves as a rigid rod with no kinks, as is possible at
0°K, a stress equal to the Peierls stress (o;) is required to displace it
by an atomic distence, parallel to a close-packed direction. If a small
bulge is formed, as shown in Figure (9.1), as a result of thermal

fluctuation, a quite small stress will cause it to spread out by sideways
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motion; due to the periodic structure of crystals, the potential
barriers along the close-packed direction are very much lower than those
in directions parallel to the close-packed direction. The bulge can be
considered as a pair of kinks. In the absence of any stress, these two
kinks will attract and annihilate each other, but an applied stress will
tend to move them apart and increase the slipped area. Under the action
of stress, there exists a critical separation (ler) between the pairs,
which corresponds to unstable equilibrium. If 1<<]br’ the kinks
annihilate each other. But when 1 >>lcr’ the pairs will separate further
and become non-interacting. An internal friction component arises because
of the formation of these bulées.

The first attempt to give a theoretical model for this type of
dislocation motion was made by Mason (1955), who assumed that a bulged
dislocetion line is pinned by impurity atoms. In order to move the bulge
to the next equilibrium position, a dislocation must overcome a potential
barrier (H). To compute the height of this barrier, Mason assumed that
the complete dislocation segment between the pinning points moves.

The potential energy per unit length E(y), which opposes the mption

of the dislocation line, is a periodic function of its position and is

given by (see Figure 9.1).

P B2

E(y) = E, - -Izl”—— cos 2? (9.2)

here b is the Burgers vector, a is the lattice spacing in the y direction

(<b) and og is the Peierls stress. The dislocation line of length 1 has
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to overcome the energy (Hm)
1[E(y= %) - B(y=0)]

required for the jump to the next energy minimum position. This energy (HM)
is responsible for the activation energy (W) of the relaxation process,
which is

fy = o v? 1w (9+3)
This would lead a strong dependence of the peak temperature on the
parameters which control the lenéth of the dislocation line (1), such as
prestrain, annealing and impurity content. This is contradicted by the
experimental evidence because, according to this model, the formation of a
kink pair is not an intrinsic property. Thus, some modification to Mason's
model must be introduced, by considering types of dislocation motion not
controlled by the dislocation length.

Weertman (1956) considered that, it is not necessary for the whole
dislocetion bulge to move at once in going from one equilibrium position
to another. A small bulge of length 1l may move over the potential barrier
and by sideways motion go into the next equilibrium position. A lower
limit to 1 is given by the length of a kink pair (2v). Taking Mason's

estimate for
6 = b(e/c0)"2 (9:1)

where G is the shear modulus, and inserting w instead of 1 in Equation

(9.3), one obtains
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t =2 e ¥ (of/e)/? (5-5)

According to this equation, the formation of a kink pair has an intrinsic
character, its energy being independent of the particular length of
dislocation lines and of their interaction with impurity atoms. However,
as pointed out by Bordoni (1960), the derivation of Equetion (9.5) lacks
somewhat in mathematical rigour; so the meximum value of potential, used
in Equation (9.2), is applied, in this case, to a kinked line that is not
parallel to the direction of maximum energy. Moreover, the approximate
value in Equation (9.4) is taken as the length of a kink, and the changes
in dislocations length are neglected.

A more satisfactory computation of the energy associated with the
formation of kinks has been given by Seeger (1956). The starting point
is a differential equation for the shape of an unpinned dislocation line,

whose minioum energy position is parallel to the x-axis (see Figure 9.1)

2 2
8y _ 6E 8
E(y) 3;5 = —éﬁ - boy + A}fé (9.6)

Here o is the resolved shear stress in a glide system and A is the density
per unit length of the dislocation line. The periodic potential E(y) may
be represented by Equation (9.2). PFollowing Seeger, the energy of single

kink is
He = %‘ (22abE o‘ol/n')1/2 (947)

Here a is the separation of close-packed rows of atoms. Using the value
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of Gb%/S for E_ (Seeger 1956 and Bordoni 1960) and assuming that a is

very close to b, the equation can be formed as
1 1/2
H = 7_2r (2/5ur) /2 ¢ v (o-:/G) / (9.8)

As previously explained, the potential barrier in the x-direction is small
compared to that in the y-direction. Once again below some critical
distance, the pair of kinks will attract and amnihilate each other, but
aen applied stress will tend to move them aparte To obtain the total
energy barrier (HS) that opposes the formation of a kink pair, the energy
associated with the attraction must be added to the energy of a single

liink (HK). An approximate computation of lcr gives for the total energy

(Hg)-
Hg = 1:5{[1 + i- 1n (16 0';/110’)] (9.9)

As shown from this equation H_, tends to infinity, when the applied stress

S
tends to zero. This does not mean that kink pairs are not formed when

there is no applied stress, but that they annihilate very soon after their
formation. In the Seeger's model the energy barrier HS depends on‘applied
stress. Estimation of this applied stress from ultrasonic measurements is
difficult and inaccurate. However, a reasonable approximation can be made
(Bordoni 1960)e The value of strain usually encount ered in the ultrasonic
measurements lies between 10."8 or 10_6, while the ratio of oﬁ/G is generally
found to be 10-4. Therefore the ratio og/O'in the equation must lie

between 102 and 10h. Thus, the value of the last term in the Equation
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(9.9) ranges from 2°0 to 3+0 and a value of 2:5 may be taken as a
satisfactory average. Thus HS becomes 3+5 HK or inserting the approximate

estimte of H (Equation (9.8)

Hg = 3-5§ (2/5m) "2 ¢ v (0‘;/(})1/2

or

2
1

=125 26 v (c;/c;)vz (9.10)

Here it is interesting to note that the final form of the energy barrier
estimation only differs by a factor of 1°25 from the Weertman (1956)
estimation (Equation 9.5).

Seeger (1956), following many other workers, in his preliminary
study assumed for simplicity that the rate of formation of a kink pair v
. might be represented by an Arrhenius equation. He also assumed that the
theoretical prediction of the energy of the potential barrier opposing

the dislocation motion (H), can be used for activation energy of the process.

v = v exp (=H/xT) (9.11)
Where v, is the vibration frequency of a straight rigid dislocation line,

near its position of minimum energy. Seeger's theory also predicts Uo as

v
= t 0/:\1/2
)5 = 5va (%) (9.12)
. . 1/2
here v, is the velocity of shear waves. [ = (G/p) 7 “).

This treatment yielded the right order of magnitudes, for face-centred

cubic metals, but it was subsequently realized that the derivation was not
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correct, because the Arrhenius equation does not apply to formation of
kink pairs. This is due to the fect that kink pair formation is a
collective process involving thousands of atoms. A more complete treatment
has subsequently been given by Seeger, Donth and Pfaff (1957). According
to this theory, the peak frequency and temperature must satisfy the

following equation

In% = ¥ (rq) (9.13)

The function F1 is given graphically, and the dimensionless variables

r and q are defined by:

r = 20/kT (9¢14.)

q=1 ..’-g -‘10 (9415)
o
Y

Here H is the energy of a dislocetion kink (Equation 9.7) and o is the
shearing stress acting upon the dislocation. The parameter Z in this
equation has the physical dimension of frequency and after approximations
(Bordoni, Nuovo and Verdini 1959)

ﬂ2P 1/2

z2=—f - (1/oe)""r - (9.16)

6b

In this theory, the height of the potential barrier or the activation

energy (H) is given by

H= - E(dé}n—k;))— = kT Fz(r’Q) (9017)
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Here the function ofVFz(r,q) is presented graphically and the dimensionless
parameters r and q are given as in Equations (9.14) and (9.15) respectively.
Bordoni (1960) has demonstrated that the more rigid development by
Seeger, Donth and Pfaff (1957) provide little change to the original ideas
of Seeger (1956) and give no further important improvement. On the other

hand, this theory can be used to deduce the theoretical parameters from
experimental data obtained from only one peak at one frequency. This is

£Lh

very useful, I

or instance, for our measurements on a (100) sample for which
data could only be obtained accurately from 30MHz measurements.

In the next section, using these theories, the thermally activated
dislocation movement in mercury telluride will be discussed. The

applicibility of the theories to materials with different kinds of bonding

will also be discussed.

9.3 RESULTS AND DISCUSSION

In the present measurements, distinct peaks have been observed in
the attenuation in crystals. of mercury telluride in the temperature region
from 170°k to 260°K and at frequencies between 10 MHz and 60 MHz. As shown
in Figure (5.1), the peaks are superimposed on a background attenuation,
which in this case increases exponentially with increasing temperature.
The peaks show certain characteristic features. The measurements made
along [111] @irection with longitudinal waves (see Figure 5.6) clearly show
that the temperature at which the attenuation is a maximum (the peak

temperature) decreases with decreasing frequency. In the measurements made
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at 30 MHz, along [100] direction (see Figure 5.1), in addition to

the main peak another smaller peak appears on the low temperature side.
This appearance of a second peak is common in other materials. These

two peaks are almost superimposed at 10 MHz. Thus, identification of
their position is rather difficult and subject to error. For this
crystal at frequencies above 30 MHz the background attenuation has become
so high by about 200°K that the peaks can not be observed.

The effect of annealing on the pesks is demonstrated in Figure (5.8)
In this figure the bold lines have been taken from the experimental
points shown in Figure (5.1).

This behaviour of the peaks observed in the attenuation in mercury
telluride suggests that they are Bordoni~type peaks. For a simple
relaxation process, the relaxation time () depends on the temperature
(T) according to the Arrhenius equation. The relation was given in
Equation (9.1) as

T =T exp(W/KT)

When measured at a frequency (V) the mechanical loss or ultrasound
attenuation arising from this process is a function of the product of
wr (2nvT), and_has a maximum value when w7t i; unity; Thus the

temperature at which the maximum attenuation occurs can be related to the

frequency of vibration by the equation

<
]

v, exp ( -W/kT) (9.18)

Here v_ 1/2ﬂT° is called the attempt frequency.

The activation energy (W) and attempt frequency (vo) of the process
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leading to Bordoni peaks can be obtained from the experimental data by
making use of Equation (9.18). This equation implies that the plot of
the logarithm of frequency at which a maximum in attenuation takes place
(relaxation frequency), against the inverse of the peak temperature should
be linear. Thus the slope and the intercepts of this straight line give
both the activation energy (W) and the attempt frequency.

Peak temperatures and frequencies, obtained from the experimental
data in Figures (5.1) and (5.6) are tabulated in Table (9.1). Using
this experimental data, the plot of the logerithm of the relaxation
frequency against the inverse temperature is shovn in Figure (9.2). From
the slope and intercepts of this straight line belonging to this (111)
sample, the activation energy (W) and the attempt frequency'(lz) of mercury
telluride for the [111] crystallographic direction are found to be
(0-09%4 * 0-00L)eV, and (L*1) x 107 Hz. respectively. Due to uncertainties
of estimation of the peak temperature and absence of sufficient
experimental points no attempt has been made to deduce these parameters
from the experimental data obtained from (100) sample. The activation
energy gpd the attempt frequency of mercury telluride are compared with
those of other materials in Table (9.2). The activation energy for
mercury telluride falls in the same range as that for other materials.

For a relaxation process involving a single relaxation time, the

attenuation varies with temperature in the manner (Bhatia 1967, p.368):

(-;; - 1) (9.19)

™
n
i
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TABLE (9.1) The data for peaks in mercury telluride

Peak Peak Temperature Direction Data
Frequency (°K) of Sour
(MHz) Propagation ource
10 ~ 218 (1st peak) [100]10nz' Figure (5.1)
10 ~ 260 (2nd peak) " n
30 230 (1st peak) " "
30 270 (2nd peak) " "
12 196 [111]l°ng. Figure (5.6)
36 22'_0 " n
w 253 L] 1%
56 270 o "

18t pesk (Subsidiary peak

2nd peak (Main peak)
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TABLE (9.2) Dislocation relaxation parameters for some cubic materisls

Activation o;/G Attempt1$requency
Material| energy h | %o x 10 (Herzt) Reference
(ev) x 10 Measured|Calculated
Al 0107 31 0-13 O+45 [Bhatia (1967,
Cu 0122 | 2:6 | 3-8 0:33  [rable 13.2,
Ag =124 37 400 0+24 page 367)
Au 0-158 52 07 0-21 "
Pb 0043 33 0°+008 0+08 "
Pa 0+26 6°L 12<0 042 n
Pt 0-192 1+9 0+06 019 "
Hgle 0+054 2+32 | 0+032 0+09 Present work (a)
0+62 0+048 " " (b)
Si 0162 [n-type Si (100)] omer and
0+120 [p-type Si (111)] iznichenko
Ge 0-07 (1967)
LiF 0415 58 [Taylor (1962)
0+09 24 Tkushima et al.(1961)
KC1 0+08 046 Tkushima and
0+05 014 Zuzuki (1963)
Ngo 0+18 0-72 "
Pbs 043 2°2 "

(a) computed by the equations given in the text.

(b) computed by the equations given by Bhatia (1967)




147

Here Tm is the temperature at which the peak occurs and.mm is the value of
attenuation at T . Figure (9+3) shows a plot of 29%/(1+32x) and a/a_

as a function of w/k(1/TmT1/T) using a/dm values obtained from 36 MHz
measurements given in Figure (5.6). It appears to give a good fit for

the single relaxation curve. Furthermore half-widths of the peaks obey,
within the experimental error the expression

expected for a single relaxation process (see Niblett 1966, p.118).
However too much emphasis must not be placed on these procedures: the

difficulty of separating the peak from background mskes for considerable

erxror.

9.3%.1 Application of Seeger's theory to the results.

The measured activation energy (W) is that required to
surmount the potential barrier. The total energy barrier that opposes the
dislocation motion has been estimated by Mason (1955) and is given in
Equation (9.3), by Weertman (1956) (Equatioh 9.5) and by Seeger (1956)
(Bquation 9.10) among others. Seeger's theory seems to be the most
reasonable explanation of the mechanism resulting in Bordoni peaks: it
explained the peaks in face-centred cubic metels successfully. Thus, here,
this theory will be the first to be applied to the results. The potential
barrier (HS) is assumed to be that obtained as the activation energy W
(equal to 0°094 eV). TFrom the following equation, which is given as

Equation (9.10 p. 140)




FIGURE (9.3).

Comparison of the normalized attenuation for HgTe

(B, Figure 5.6, 36 MHz) with the theoretical

attenuation curve assuming a single relaxation time (A).
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C 1252 6w} (/a2
Hy =12526D (cp/cr)

the ratio (oﬁ/G) of the Peierls stress (0;) to shear modulus (G) then
turns out to be 23 x 10-h. Therefore, the Peierls stress is 3 x 107
dyn.cmfz. The attempt frequency (vo) has been estimated from the
prediction of Seeger's theory (Equation 9.12, p.140):

(UO).S . (c;:/@)“/?

bV o
as 9 x 109 Hz; +this is of the same order of magnitude as the experimental
value 0f322x109 Hz: effects are consistent with the Seeger's theory.
A comparison between the theoretical and experimental values of attempt
frequency (vo) for various materials is given in Table (9.2). The
values for face-centred cubic metals are taken from Bhatia (1967,
Table 13.2, pe367). His approximations are slightly different from
those made here (for example, he has taken 3 as the average value of
the last term in the Equation 9.9). Therefore, for easier comparison,
the parameters of mercury telluride computed, using the equations given
by Bhatia, are also given in Table (9.2).

As shoﬁn-here, the discrepancies betweeﬁ %he measured and calculated
attempt frequencies of face-centred cubic metals, especially platinum,
palladium and silver can be almost two orders of magnitude; the
agreement for mercury telluride is better. There are both experimental
and theoretical difficulties. The frequency depends exponentially on

temperature and the temperature of peak is often not well defined
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experimentally. A wide range of experimental values is quoted in
literature for given metals and plausibly comes from the experimental
difficulties rather than the use of varied material by different workers.
Bordoni peaks are essentially due to intrinsic properties of the
dislocationse For example, the smallest activation energy for copper

has been reported by Niblett and Wilks (1956) as 0+05 eV, while the
highest value has been reported by Niblett (1961) as 0°14 &V. The
difference between quoted ettempt frequencies for the same materials is
much worse because a few per cent change in the activation energy can
lead an order of magnitude change in the attempt frequency. The
disagreement for some materials reaches six orders of magnitude. Further,
the basis of the theory is rather weak. The processes in&olved are
certainly much more complicated than the theory suggests. The Arrhenius
equation is not strictly applicable to the production of dislocation kink
pairs, which is a collective process involving a large number of atoms.

The derivation of Equations (9.10) and (9.12) is not strictly accurate.

9.3.2 Application of the theory of Seeger, Donth and Pfaff to

the results:

A modified form of Seeger's theory aimed at resolving some
of the difficulties is that of Seeger, Donth and Pfaff (1956); this will
now be applied to the results for meréury telluride. Using this theory
the energy of a single kink (HK), the ratio (og/G) and the activation

energy have been estimated for mercury telluride in the following manner.
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In the theory, the relation of the temperature dependence of relaxation

frequency is
In(/2) = Fy (rsq)
(Equation 9.13, p.'“.|.1>. This can be rewritten more explicitly as
Inv= F (rq) + In (2/T) + InT (9.21)

where the ratio of 2/T from Equation (9.16, p.141) is

2
1
L. Tk (10)/2 (9.22)
T ¢
b
and only depends the physical properties of the material. It is

- -1
51 x 107 sec ! deg for mercury telluride. Thus knowing only the

peak temperature (T) and frequency (v) the value of the function

F, (r»q) can be deduced. Hence, using the graph the parameter r can be

found for different q values. Once r is known, the energy of a single
kT

kink H (= r5 Equation 9e1k, p.141) can be estimated. Knowing H

the ratio of U:/G can next be deduced from (Equation 9.8, pPe139).

1/2
_2 (2 ) 3, 0,11/2
HK-vr<51r,. GDb (o‘}_/G)
In this procedure the only unknown is qe As a reasonable approximation,
since the applied stress (o) in an ultrasonic experiment is very much
smaller than the Peierls' stress (0';), the ratio of 0'/0'; in Equation
(9415, peilil) (q = 1 = % 0‘/0‘;) can be neglected. Thus q is unity. The

effect of this approximation will be examined later.

In this theory the activation energy is given by (Equation 9.17,

p.141).
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d(lnV _
H _-5%77&17 = kT Fz(r:q)

which shows that, H can be deduced not only from the slope of the
straight line through the experimental points but also from the value
of function F, (ryq). Once the r value for each peak has been found,
the function F2 (rs1) is known. The parameters obtained are shown in
Table (9.3).

The following remarks can now be made. 1. The theory gives a
higher activation energy than that of the simple Arrhenius plot.
2. The perameters estimated by this theory are frequency dependent.
3. The magnitude of the Peierls stress for mercury telluride deduced
from this theory are of the same order as the value obtained from
Seeger's theory. Now let us discuss these remarks in more detail.

1+ To look more closely at the source of higher theoretical

activation energy, the relation (Equation 9.13)
v
lnz =F1 (r’Q)

has been replotted from the experimental points. At the same time
using two extremum values of g in this plot, the o/ogiro approg??ation
ié_;lso tested. PFirst an arbitrary point S has been chosen on the best
fit to experimental points in Figure (9.k). For this point the energy
of a single kink (HK) is deduced as before, for two extremum values of
q (1 and 0¢9). The temperature variation of r ( = ;;5 Equation 9.14)

and the value of the function F1 (ryq) at different temperatures can be

found. Now 1n % = F1 (r,q) can be plotteds This is also shown in the
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FIGURE (9.4). The modification of the simple Arrhenius theory
by the approach of Seeger, Donth and Pfaff.
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same figure (Figure 9.4 ). The plots of this function for the two
q values are almost identical. Therefore, the approximation made that
q is unity seems to be reasonable. In this figure it is clearly shown
that this theory gives a slightly higher activation energy: the
slopes are different. Either the simple Arrhenius equation does not
hold over a wide frequency range or the theoretical model is not
strictly valid.e The present measurements have been performed at rather
high frequencies. It is at high frequencies that such a discrepancy
might be expected. Bordoni, Nuovo and Verdini (1959) has measured the
internal friction of copper over a very wide frequency range (from
1 k¥Hz to 10 MHz) on the same specimen. His results are reproduced
here and shown in Figure (9.5) from which a slight deviation from
linearity above 1 MHz may be seen. The reason for this frequency
dependence might be, as implied by Seeger, Donth and Pfaff (1957), an
unsatisfactory representation of the energy barrier shape.

2. The frequency dependence of parameters: there appears to be
a gystematic deviation in the sense that the measurements at higher
frequencies give larger parameters. Similar behaviour has also been
observed by Seeger, Donth and Pfaff on collected experimental data for
some face-centred cubic metals. Here, as an example, the peak
frequency, temperature and the value of cz/G for lead, obtained from
Seeger, Donth and Pfaff is presented in Table (9.4)s This is a

consequence of the behaviour discussed above.

|
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FIGURE (9+5)

Frequency dependence of the peak temperature

in copper. A deviation from linearity is shown
for the frequencies higher than 1 MHz. (After
Bordoni, Nuovo and Verdini 1959). This gives rise
to higher calculated activation energies at
megahertz frequencies than would be expected from
the simple Arrhenius equation.
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TABLE (9.4) Evaluation of experimental data

on the Bordoni peak in lezd

) T cgzc
(HZ) (OK? x 10*

10334 36 35

10163 ' 36 35

10348 36 35

20500 43 Le6

29500 475 54

50000 50 546
otxa0® 20 | e
26+5 x 10° 140 16+5

(Table 1 in Seeger, Donth and Pfaff, 1957)
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3. Now we can turn to discuss the magnitude of the Peierls stress.
Neglecting the frequency dependence of the parameters in Table (9.3)
and from comparison with the paramefers deduced from the Seeger (1956)
theory. (Table 9.2) it can be said that, within the framework of the
approximations made, these two theories give almost similar results.
Here it is important to mention that for mercury telluride the ratio
Gg/G, and the Peierls stress (o;) obtained by both the Seeger (1956)

Pty B 3 Fape
aina viie

PR, - ==\ I S s e
g8ger, D ont 957 ) theories, is approximately

3
40 x 10-5 and 3 x 10 dyn.cm.-2 respectively and is almost the same as
that for face-centred cubic metals. This value appears to be very small
for a compound with the zinc-blende structure. No theoretical estimation
of the Peierls stress could be traced for mercury-telluride or similar
compounds. However, by considering related materials the results of the
theories may be criticised. First, the purely covalent elements silicon
and germanium may be looked at as being related. The theoretical value
of Peierls stress for these elements is approximately 50 x 109 dyne.cm_2
(Suzuki 1963). As demdnstrated by Suzuki, the germanium crystal should
have an internal friction peak at around 1500°K for 40 kHz:dﬁe to Seeger
mechanism. This is above the melting point. (The melting point of
germanium is 1231°K). Silicon has a higher Peierls stress and the
internal friction peak could be expected at temperatures higher than
1300°K for 40 kHz. However, internal friction peaks have been observed

in both germanium and silicon by Kromer and Khiznichenko (1967) at much

lower temperatures. The conclusion is that the Seeger model is not


http://eu.rj.es
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applicable to elemental semiconductors. Secondly, the purely ionic,
I-VII group compounds can be considered as being related to mercury
telluride. Ikushima and Suzuki (1963) have demonstrated for some
alkali halides a two order of magnitude discrepancy in the Peierls
stress obtained from theoretical values and those deduced by Seeger's
theory from experiment. From the comparison and taking into account
the bonding properties of mercury telluride, a partiaily ionic and
partially covalent compound, it may be concluded that Seeger's theory
gives a small value of the Peierls stress for mercury tell;ride.
Therefore, it is possible that dislocations in mercury telluride do not
behave as considered in Seeger's model.

The origin of the double peaks observed on the (100) sample can
be interpreted qualitatively in the following menner. The most
probable slip planes in zinc-blende lattice matrices are the {111}
and {110} forms. The resolved shear stress component of the longitudinal
ultrasound waves will be different on different slip planes. The
longitudinal elastic waves propagating along the [100] direction have
a resolved shear stress component on both slip planes, while those

 propagating along the [111] direction have a shear stress component only
for the (110) plane. As shown in Table (9.3), the ratio of the- Peierls
stress to shear modulus of the subsidiary peak is quite similar to that
obtained from the (111) sample. The parameters belonging to the main
peak are rather higher than those of the subsidiary peak. This is

further confirmation of this argument.
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The conclusions may now be summarized. The peaks observed in
mercury telluride with an activation energy 009 eV and 32 x 109 Hz
attempt frequency are probably Bordoni-type of peaks involved with the

dislocation motion. Theories of the phenomenon are at present not

quantitative.



-158-

CHAPTER 10
SUMMARY AND CONCLUSIONS

Elastic properties of mercury telluride have been studied through
sound velocity measurements in a wide temperature range. Attention has
been paid to possible effects of non-stoichiometry in the crystals and the
results correlated with ultrasound attenuation data. Materials belonging
to the same crystallographic classes usually exhibit similarities in their
lattice properties. Therefore, the results have been compared with those
of other II-VI compounds and with III-V compounds, group IV elemental
semiconductors and I-VII compounds: the elastic properties of mercury
telluride correspond closely to those of cubic zinc sulphide and fall
into the general scheme. From the comparisons, it is concluded that the
elastic properties follow the sequence

IV — IIIvVv-— IIsVyI—> I-VII

Elastic constant data of mercury telluride have been discussed in terms
of the crystalline interatomic forces, founded by Born and co-workers:

as the polarisation of atoms, which is important in partially ionic and
partially covalent compounds like mercury telluride are neglected, in
these derivations, the agreement the lattice dynamic theory and experiment
is not completely satisfactory. ¥rom the Szigeti relationships, the
ionicity e" is estimated as 0+65 £ 0+05 e and the restrahlen frequency as

12
(4*1 £ 0+1) x 10 © Hg. From the elastic constant data, extrapolated to
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absolute zero, the limiting value of the Debye temperature for mercury
telluride has been calculated as (140 * L)OK and the averaged sound
velocity in Debye sense is 153 x 105 cm.sec-1; these are the lowest
reported values in the whole group of related materials. The elastic
properties of mercury telluride are found to be quite anisotropic

(~ 10%), like other II-VI compounds.

Anelastic properties of mercury telluride have been deduced from

attenuation measurements. The important ultrasound dissipation mechanisms
include the viscous drag of lattice phonons and forced dislocation motion.

The effect of piezoelectricity and thermoelasticity on sound
;bsorption is negligible in mercury telluride. The thermoelastic loss
is large for metals because both the thermal conductivity and the thermal
expansion are large. But in the semimetal mercury telluride, over the
frequency range 10 to 300 MHz, this loss component is negligible.
Calculations of the contribution over the temperature range 77°K to 300°K
confirm that this is so over the temperature range.

One of the main energy dissipation mechanisms in single crystal,
mercury telluride is tLe lattice phonon-ultrasonic phonon interaction.
Attenuation at low temperatures where the other mechanisms are less
dominant exhibits the characteristic features of this effect. The effect
is stronger in mercury telluride due to the low Debye temperature and has

been observed at relatively low frequencies.

Another loss mechanism is found to be due to the forced vibration of
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dislocation segments. At 4'2°K a2 maximum has been observed in the
frequency dependence of attenuation. The resonance frequency is
220 MHz, the dislocation loop length is about 3 x 10-h cm and the
dislocation drag coefficient is 2¢3 x 10-'5 dyn.sec.cm-z at h-2°K,
21 x 10-# dyn.sec.cm“2 at 77°K. The effect of annealing as-grown
mercury telluride is to reduce excess tellurium content.

The measurements point to an increase in the dislocation loop
length due to removal of some pinning points during annealing. A change
in loop length from 2°3 x 10-4 to 2-8 x 10.-JF cme is required to produce
about a 50% increase in attenuation after annealing. From this it is
also predicted that at 4'2°K the elastic constant 044 of dislocation-free
mercury telluride would be 228 x T dyn.cm-2 in contrast to that of
222 x 1011 dyn.cm-2 and 2°19 x 1011 dyn.cm-2 for as-grown and annealed
crystals respectively. Problems connected with the study of crystal
internal forces require accurate elastic constant data. The derivations
due to dislocation strain may be responsible for the discrepancies between
quoted data for elastic constant of crystals Data for the ultrasonic
wave velocity and attenuation before and after amealing and under stress
are in agreement with the dislocation mechanism. B

The peaks on temperature dependence of ultrasound attenuation have
been accounted for as Bordoni-type of relaxation peaks. The activation
energy is about 0°15 eV and the attempt frequency is about 4 x 109 Hz.

Ultrasound is useful tool for studying the solids. Most of the

intrinsic and extrinsic properties can be studied directly. Experimental
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difficulties, other than instrumentation, come from the quality of
specimen ; the sound energy loss mechanism especially is very sensitive to
the dislocation content. Even for silicon and germanium, which can be
grown almost perfectly due to advanced technology of the semi-conductor
industry, the differences between quoted attenuation measurements is
almost 150-200%. The situation is worse in compounds containing volatile
elements. However for mercury telluride, due to lack of any other
measurements on sound propagation, no comparison can be made. Progress

in crystal growing methods,. especially that of pulling from melt by the
liquid encapsulation technique (Hiscocks and Hurle 1968), should provide
better crystals. Measurements made on crystals with low crystal
imperfections will allow to study other intrinsic effects more precisely;
it should then be possible to observe the effect of electrons on the sound

attenuation.
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APPENDIX A
THE THERMAL AND LATTICE PROPERTIES OF MERCURY TELLURIDE

The thermal conductivity has been measured between 90°K and
2hO°C by several workers. This property is particularly relevant to
an understanding of ultrasonic wave propagation. Carlson (1958),
Kelemen, Cruceanu and Niculescu (1965) and Wagini and Reiss (1966)
have found that the thermal conductivity follows approximately the
usual inverse temperature dependence between 100°K to BOOOK. In
Figure (A.1) all the available experimental data up to 1966 on the
thermal conductivity is presented.

The room temperature thermal expansion coefficient for mercury
telluride has been reported by Blair and Newnham (1961) as & x 1O=6
(OK)-1. Novikova and Abrikosou (1965) have neasured temperature
dependence of the coefficient of thermal expansion between 20°K and
320°K. This is shown in Figure (A.2).

Dickey and Mavroides (1964) have. observed the restrahlen reflection
at 85 p. By fitting the experimental points with a classical Lorentsz
oscillator, they have found that the fundamental lattice absorption
frequency is 3°45 x 1012 Hz., the high frequency dielectric constant
Po 18 14 and the static dielectric constant p is 20.

Mavroides and Kolesar (1964 ) have reported the room temperature

11 2
elastic constants as, in units of 10 dyn/cm , Cqq = 505,
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C = 3+58 and C

12 = 2'050

L4

Kelemen et al.(1965) have measured the specific heat of mercury
telluride between 20°C to 240°C. They reported the room temperature
value as 0+039 (cal. g-1 °K-1). However in this thesis the temperature
dependence of specific heat of mercury telluride has been deduced from
Debye's expression for various values of §/T (Figure A.3). The table
giving o as a function of 6/T has been taken from White (1959, p.316,
Table XXVII).

The specific heat at constant volume c, is related to the quantity
which is usually measured, namely the specific heat at constant pressure

cp,_by the thermodynamic equation

_ 2
o, = o = 9a“° T B/p (A.1)

Here a is the coefficient of linear thermal expansion, T is the absolute
temperature, B is the bulk modulus and # is the density of material.

At 290°K, o, is 15 x 10° ergeg”! %k ama ¢, is 1407 x 10° erge g O
for mercury telluride. Therefore, cp can be accepted as being equal to

c, for temperatures lower than room temperature. At higher temperatures

the difference (cp—cv) increases.
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APPENDIX B

CONSTANI'S IN MERCURY TELLURIDE RELATED T0 DISLOCATION MOTION

The Burgers vector (b)

In zinc-~blende crystals the shortest lattice vector that is allowed _
as the Burgers vector is 2< 110 >or< 230> i.e. half the diagonal of a

cube face (Holt 1962)

Inserting the value of a (6462 x 10-8 cm see page 12) Burgers vector

for mercury telluride is found to be 4569 x 10-8 cm.

The Shear modulus (G)

Since the motion of the dislocation lines produces a strain in
addition to elastic strain, the apparent shear modulus (G) is lower
than the true modulus (Go). The shearing modulus in the glide plane is

(Alers and Thompson 1961)

- . .
G =3 (Cyq = Cyp * Cu'_)

Inserting the values of elastic constants from Table (4e1, p.51), the

shear modulus (G) for mercury telluride at 290°K is found to be

1425 x 10" dyn om 2.
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Poisson's ratio (v)

Poisson's ratio (v) is defined as

= c12/[2(c12 + 6)]

11 -
(Bhatia 1967, p.338). Inserting the values of 012 (38 x 10 dyn.cm 2,
11 -
Table 4.1), pe51) and G(1°25 x 10 dyn.cm 2). Poisson's ratio (v) for

mercury telluride at 290°K is found to be 0+375.

The effective tension (G)

The force per unit length due to the effective tension in a bowed-out

dislocation (C) is given by
2 .
C=260b/[n(1-v)]
(Granato and LWcke 1966, p.241)
. =% -2 .
C is 266 x 10 * gmecm.sec ~ for mercury telluride.

The effective mass of dislocation (A)

The effective mass per unit length of dislocation line is given

A=pb

(Granato and LW&cke 1966, p.141)

Here p is the density (808 gm.cmrj). Therefore, A is 1°69 x 10-14

-1
gm.cm  for mercury telluride.
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THE ELASTIC CONSTANTS OF MERCURY TELLURIDE

T. ALPER and G. A. SAUNDERS
Department of Applied Physics, the University of Durham, England
(Received 20 March 1967 ; in revised form 21 April 1967)

Abstract—The elastic constants C,;, C13 and C44 of mercury telluride have been measured by the
pulse echo technique as a function of temperature between 1:4°K and 300°K, attention being paid
to possible effects of non-stoichiometry in the crystals. Results are discussed in terms_of_the
crystalline-interatomic -forces and-are comparcd’ with those of other II-VI and 11I-V compounds
with the zinc blende structure: the elastic properties of mercury telluride correspond closely to
those of cubic zinc sulphide and exhibit no anomalous behaviour. From the Szigeti relationships, the
ionicity e* is estimated as 0-65¢ + 0-05¢ and the restrahlen frequency as (4-1 4 0-1) % 10'* cyules/sec.
The Debye temperature, calculated from the elastic constant data, is 141°K +4°K,

INTRODUCTION

TuE ELASTIC constants of single crystals furnish
basic mechanical and thermodynamic information
in solids. During a study of ultrasonic wave propa-
gation and the electronic properties of semimetals,
the adiabatic elastic constants Cy,, Cy; and C,,
of mercury telluride HgTe have been obtained
using the ultrasonic pulse echo technique, Prepara-
tion of stoichiometric HgTe presents a problem
and serious discrepancics exist between published
data, especially on clectron transport properties:
carrier densities and mobilities are particularly
sensitive to excess of either component in such a
semimetal with a very small band overlap. Stoichio-
metry is also relevant to ultrasound wave propaga-
tion and crystals prepared in different ways have
been examined for any effects of non-stoichiometry
and possible relationships to mechanical properties.

In IT-VI and 111-V compounds the ionicity, the
proportion of ionic component in mixed covalent—

ionic bonds, plays an important role: in materials

with mixed bofids the résonance energy influences
both bond strengths and band structure. One aim
of the present work was to estimate the ionicity
in HgTe through the elastic constants and to cor-
relate the results with those for other binary com-
pounds with the zinc blende (43m) structure. Two
equal, interpenetrating, face-centred cubic lat-
tices, each containing one atomic species only, and
relatively displaced one quarter of the distance
along a cube diagonal, compose this structure. The

unit cell contains two atoms, one on each lattice,
spaced by a4/ (3)/4, a, being the lattice constant.
That optical frequency associated with k2 =0
represents the frequency at which the rigid
Bravais lattices vibrate relatively to each other.
Interatomic repulsive forces largely determine the
optical absorption frequency and the compres-
sibility, which are then related by the Szigeti
relation,? based on a dipolar term in the Lorentz
force approximation. This equation forms a uscful
link between elastic and optical properties and is
applied to the present results on HgTe, although
its extension to the zinc blende lattice, in which
each atom is not a centre of symmetry, is not
strictly justifiable. If nearest-neighbour inter-
actions are sufficient to represent the lattice
dynamics, then the two force constant modcl'®
should be satisfied: thus the applicability of Born’s
relation is tested in HgTe and found to be a
reasonable approximation. Assuming that the
behayiour of thermal vibrations-approaches-that of -
acoustical waves with increasing wavelength, the
Debye temperature has been calculated from the
clastic constant data presented in the next section.

2. EXPERIMENTAL DETAILS AND RESULTS

Mercury telluride single crystals, as cylinders of
diameter up to 2:5cm and length about 2cm,
were grown from 99:999 .per.cent purity elements,
by a technique, developed by DEL\\'ES(‘” of direc-
tional freezing of melts of composition Hg; o9
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annealing are small (~1-5 per cent at 4-2°K and
~2-0 per cent at 3J00°K) and of similar magmtude
for each constant, although AC,, is negative in
contrast to AC,; and AC;,. Crystal preparation
and history modify the elastic constants of HgTe:
this would explain the discrepancy between the
present results and those of Mavrompes and
KoLesar® at room temperature only; these
workers give no details of crystal preparation so
that further comparisons cannot be made, The
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Fic. 1. The linear thermal expansion coefficient « of
mercury telluride as a function of temperature. Errors
are 110 per cent at 77°K and +4 per cent at 290°K.

elastic constants show characteristic dependence
on temperature, namely, an approach to 0°K with
zero-slope and™a fiegative, almost linear, slope at
higher temperatures: these features follow from
the theory of the crystalline equation of state (see
HunTINGTON® for references and a review of this
topic). Now to discuss the results in more detail.

DISCUSSION
Single crystal elastic constants can be expressed
as the second derivative of the binding energy with
respect to the appropriate strain. Contributing
energy terms accrue from long range electrostatic
forces between the ion cores and the valence
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Fic. 2. The temperature dependence of the measured

linear combinations of the elastic constants of a crystal

oriented along the [110] direction both as grown and

after annealing at 300° for 100 hr in mercury vapour.
The units are 10!! dyn/cm?2.

electrons, from short range, ion core, repulsive
interactions and from electronic effects. Satis-
factory comparison with electron theorics is not
possible at present for HgTe because the pertinent
band parameters and their strain dependences are
unknown. The small changes in the elastic con-
stants, produced by annealing in mercury vapour,
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Mw,? turns out to be 8-8x10%cgs units and
vpis (414 0:1)x 102 ¢fs. As HgTe by no means
obeys the Cauchy relation C,; = C44 and the
central force model is invalid, disagreement be-
tween this result and that measured from optical
reflectivity!®) (3-45 x 102 ¢/s) is not surprising.

Giving considerable insight into the properties
of solids are such chemical concepts as ionicity,
cognate with the nature of the bonding. SzigeT1¢5?
has shown for a lattice of deformable ions that the
effective charge e* is related to the change in
dielectric constants Ae on passing right through
the restrahlen band by

167(e, +2)%(e*)?
AE - - =

- 2 3
Iiw,2a,

(3)

Introduction of the elastic constant data into
equations (2) and (3) gives the ionicity of HgTe as
0:65 e. This value must be treated cautiously:
included in Szigeti’s work is a distortion parameter
s (unity in the Lorentz approximation). The
method really gives se*. Should the charge dis-
tribution around the ions not be spherical, or the
ions overlap, or non-electrostatic short-range
forces distort the ions on displacement, then s 1s
not unity. However, for a variety of cubic materials
s seems to be 09 + 0-2.%) Thus, recognizing both
these effects of distortion and experimental error,
e* is (0-65 £ 0-05)e.

In the heteropolar, tetrahedrally bonded com-
pounds the molecular wave-functions ¢ are formed
by overlap of sp? tetrahedral, hybrid orbitals ¢ on
nearest neighbour atoms!1®

'/J = ¢a+A¢b
X = Apg—dy

where A is a parameter, describing the polarity of
the bond, obtainable by the variation method.
The bonding orbital ¢ corresponds to fractions of
electrons 1/(1+A2%). on- the hexavalent atom (A)
and A%/(1+A?%) on the bivalent atom (B). The net
charge, measured in electrons, associated with the
atom A is'® for a compound AVNBE-N

NX2—(8—N)
P (5)
142
or (6A%2—2)/(1+ A2) for a II-VI compound where
N is 6. When ¢* = 0-65¢, A becomes 0-7: any

(Bonding orbital)
(Antibonding orbital)  (4)
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valence electron remains on a mercury atom about
30 per cent of the time,

Using Szigeti's work'?® as a foundation,
Porter” has demonstrated a close correspon-
dence between the elastic constant ratio C;,/Cq
and the ionicity in a number of compounds of the
43m structure. As the compounds become more
ionic, the ratio Cy,/C,, decreases from 2 for the
purely covalent Si and Ge towards the lower limit
of unity set by the critical conditions®® for lattice
stability
C11—C12>0, Cuu>0, Cy;;+2C;5>0 (6)
The results (Cy,/Cy5 = 1:41, e* = 0-65¢) for HgTe,
similar to those for cubic ZnS(C;,/Cyq = 149,
e* = (-65¢), lie on Potter’s theoretical curve
(Fig. 1 in his paper): the general trends towards
ionic character through the series of III-V and
II-VI are followed by HgTe.

By reducing the elastic constants to dimension-
less parameters,*® comparison between the com-
pounds can be extended; the normalizing elastic
constant C

e 256 €2

0= — =

Rt 9 at 0

is 0-376x 10'2 dyn/cm? for HgTe. The reduced
bulk and shear moduli are

B* = (C,;+2C,)[3C, = 1-23£0-03
Cy* = Cyy/Cy = 0-60 £0-01 (8)
C* = (C;—C1y)]Cy = 0-241+0-01
and the reduced average shear modulus
C  Cy,—Cip+3Cy,
G G

These reduced moduli have a close affinity with
those for cubic ZnS(B* = 1-11, C,* = 056,

c* = = 0-45+0-02

Cg* = 0-24; -C* =043). Keyes generalizations,

concerning the elastic moduli of the 43m com-
pounds and diamond structure elements, namely
that B* ~ 1-2 and that the shear moduli decrease
through the sequence group IV elements, III-V
compounds and II-VI compounds, find further
confirmation in HgTe, which shows no anomalous
elastic behaviour.

BorN,® considering nearest neighbour interac-
tions only, has developed a two constant model for
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The elastic constants of HgsIn,Tes
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Abstract. The elastic constants Ci1, Ciz and Cas of the ternary compound semi-
conductor HgsInoTes_are-presented- The-ionicity-of this compound is éstimated as
0:47+0:05. The Debye temperature is 142+ 6°k. The elastic properties are found
to bear a marked resemblance to those of the related I-VI compounds, in particular
HgTe.

1. Introduction

Details of the propagation of ultrasonic waves in ternary compound semiconductors are
sparse. The phase diagram of the pseudo-binary system comprising mercury telluride and
indium telluride indicates that a compound is extant at the composition 37-5 mol. % indium
telluride (Spencer 1964). Valency requirements suggest that the compound is HgsInz COTes,
where the symbol O designates a vacancy. The present concern is to complement recent
studies of the electrical properties (Spencer ef al. 1962, Wright 1965, Wright and Dahake
1968) with knowledge of the elastic constants and of the nature of the crystal binding in this
compound.

2. Experimental details and results

Single crystals of HgsInoTes have been grown by the Bridgman technique from elements
of 99-9999% purity. Back-reflection photographs show, within an experimental error of
+0-5°, that the compound is cubic with a point group belonging to either 432, 43m or
m3m. Debye-Scherrer powder photographs reveal the marked resemblance of this ordered
compound to mercury telluride. The measured lattice spacing of 6:33 +0-01 A agrees with
that found by Spencer ef al. (1962). Each tellurium atom may have as nearest neighbours
either four mercury atoms or two mercury atoms, an indium atom and a vacancy. The
zinc blende structure is often depicted as a cube containing eight atoms. Eight such
cubes_form. a large. cube-with-23-as many -sites; accommodating Hgzolng CaTeas, Which
exhibits the observed symmetries and gives a calculated Xx-ray density (7-30 £ 0-01 g cm3)
in reasonable agreement with that measured by Archimedes’ principle (7-23 +0-01 g cm-3).

The elastic constants Ci, Ci2 and Cyq were obtained from the velocities of longitudinal
and transverse waves propagated along the [110] axis with wave polarization parallel to the
[110], [001] and [1T0] directions respectively. Ultrasonic-wave transit times were measured
with an accuracy to better than 19 by the single-ended pulse-echo technique at a carrier
frequency of 10 MHz. Further experimental details are given by Alper and Saunders
(1967). Using back-reflection Laue photographs the crystals were aligned to within 1°
of the pre-requisite axis and cut on a diamond wheel. The faces were lapped flat and
parallel to within 10~4in. The use of 108 cs silicone fluid as a transducer bonding material
restricted the propagation and measurement of transverse waves to temperatures below
160°k. The elastic moduli, uncorrected for thermal expansion, are presented in the figure.
The elastic moduli and compressibility data at selected temperatures are shown in table 1.
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Direct comparison of the elastic moduli is best achieved by reduction to the
dimensionless parameters (Keyes 1962) shown in table 2. A close similarity
between the elastic constants of HgsInsTey and those of the I1I-VI compounds
HgTe and ZnS is apparent. Keating (1966) found that for covalent diamond-
structure materials 2Cy(Cu+ Ci2)/(Ci— Ci2), (Cuu+3Ci2) is unity. With increasing
ionicity this parameter deviates from unity due to the increased importance of long-range
Coulomb forces, being between 1-1 and 1-2 for III-V compounds, 1-38 for HgTe and
1:37 for HgsInaTes. The two Hooke’s-law constants « and B, resulting respectively from
radial and angular forces, have been estimated from Keating’s model, which predicts that

Cu=(a+3B)/4a, Cra=(a— B)/4a, Caa=affa(a— B).

For the ternary compound, « and B are 9-5x104and 1-1 x 104 dyn cmi~1 respectively,
values close to those obtained for HgTe (a=1-1x 105 dyn cm-1, 8=1-1 x 104 dyn cm™1),

Table.2.. Reduced-adiabatic-elastic-moduli-of-zinc blendc type ¢rystalst™

HgsIngzTes HgTe ZnS (cubic)
(Cu+2C12)/3Co 0-95+0-06 1:23+£0-03 1-11
CaafCo 0-514+0-02 0-60+0-01 0-56
(Ci1— C12)/2Co 0-21+0-02 0:241+0-01 0-24
(Ci1— Cr2+3Cue)/5Co 0-68+0-04 0:45+0-02 0-43

+ The normalizing constant Co (=256€2/9ag?)=4-08 x 1011 dyn cm=2 for HgsInsTes. Data
taken at 77°Kk are used for computation.

Finally, the Debye temperature of 142 1 6°k, estimated by the methods outlined by Alers
(1965) from the elastic constant data extrapolated to 0°k, is in accord with that for HgTe,
namely 141 +4°k (Alper and Saunders 1967).
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April 6, 1968)

Phonon Viscosity Attenuation
of Ultrasonic Waves in HgTe

ATTENUATION of ultrasonic waves arising from lattice
phonon viscous drag is known in insulators such as quartz?
and in semiconductors, notably germaniuin® and silicon?®.
Here we report: that this damping effect is large in the
semi-metal HgTe. When the thermal phonon mean free
path is small compared with the sound wavelength

(oTin<€l). as in the present. r‘\'pnnm_ent the lattice phmmn
dampmg for an 1sot,roplc solid is given by*
ay, = 8-68y%*KT/pv® dB/em (1)

where ¥ is an average Gruneisen parameter and K the
lattice thermal conductivity. For HgTe (8 = 141° K)

7 T T T T T T T T
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Fig. 1. The temperature dependence of ultrasounic nttenuation in HgTe,
The residual attenuation level is shown anly for the lowest curve.



: v N -

Table 1. ACOUSTICAL.GRUNEISEN PAl!{MBTHHS ESTIMATED FROM Tllh UL'I'IL\'
SONI¢ ATTENUATION OF LONGITUDINAL WAVES PROPAGATED 1IN Hgve SINGLE

CRYSTALS ) i
] . s Iut.rihsic Acoustical .

Direction Velocity of  Freqiicncy ultrasonic Grunéisen

of sound at ' (MHz) | attenuation parameter
propa}gutiou 4-2° K (em/fs) . {u-ag)dBfem ; .
) er - 50 2447 ;1419
[lll] 3-073 x 10* 30 1-02 1-28
[100] 2:061 x 10* 50 2:04 1-07

R 70, 2:48- 0-86 .

[110) 2:082 x 10% 0 T 081

ﬁuquumy depu\ ence of attenuation (Fig. 2) approaches

w?® above 100 - MEz but deviates at low frequencies, largely
because of diffraction losses. The attenuation above 200
\'IHz is constant;! a Slmllﬂ.l‘ eﬂecb in germ&mum has been

A complete quuntltat.we nssessment awaits menstire-
ments of the third -order elastic constants and thermal
conduetivity. Bub it is of interest to estimate the acoustic

Cfruneisen parameters Y (lable 1) using equa,tlon (1).
For comparison, the thermal expansion = Gruneisen
parameter is estimated as 0-65+0-10.
\ - T. AuPER
. ' (. A. BAUNDERS
Department of Applied Physics, :
University of Durham.
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