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ABSTRACT 

The major part of the thesis i s concerned wi t h the methods used to 
obtain approximate values of cross sections f o r rearrangement processes 
i n which protons and alpha p a r t i c l e s are scattered from hydrogen atoms. 

Some of the relevant experiments are b r i e f l y described i n Chapter 1 

and time dependent scattering theory used i n Chapter 2 to derive an 

exact depression f o r the cross section. Born expansions of the t r a n s i t i o n 

amplitude are introduced and i n Chapter 3 some OBK and Born approximation 

calculations are discussed. Distorted wave, impact parameter and second 

order methods are considered i n Chapters 4, 5 and 6, numerical results 

being given where possible. A new i n t e g r a l equation f o r the t r a n s i t i o n 

operator i s obtained which has a connected kernel. The inhomogeneous 

term gives a modified f i r s t Born approximation to the t r a n s i t i o n 

amplitude. 

The impulse approximation forms the subject of Chapters 7 and 8. 

A new derivation, due to Coleman, i s given and calculations f o r the 

processes 

H + + H ( 1 s ) — > H(2p, 3s or 3p) + H + , 

H + + H ( 2B ) -9 H (2p) + H + , 

and He + + + H(1S ) —y He* (2p or 3s) + H + , 

are described. The results are compared wi t h those obtained by other 

workers. They are used to calculate the p o l a r i z a t i o n o f Lyman-alpha 

radi a t i o n emitted by 2p hydrogen atoms formed by capture and to investigate 



the n rule by which estimates of t o t a l cross sections are often obtained. 

The asymptotic form of the electron capture cross section as the 

v e l o c i t y of the incident p a r t i c l e tends to i n f i n i t y i s discussed i n 

Chapter 9* A b r i e f survey i s given o f the forms predicted by the various 

theories described i n previous chapters. The high energy form of the 

modified f i r s t Born approximation derived i n Chapter 4 i s then considered. 

I t i s found th a t , with the approximations made, i t i s the same as that of 

Drisko's Second Born approximation. 
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EXPERIMENTAL DETERMI NATIO N OF 

ELECTRON CAPTURE 0R0S3 SECTIONS 
i 

1) Introduction. 

The cross section f o r a certain type of event i n a given c o l l i s i o n 

i s equal to the number of events of t h i s type per u n i t time per target * 

divided by the f l u x of incident p a r t i c l e s r e l a t i v e to the target. 

Collisions i n which one or more electrons are transferred from an 

ion A to an ion B are called charge exchange reactions. This thesis i s 

concerned w i t h the simplest charge exchange reaction, i n which a 

structureless p a r t i c l e c o l l i d e s with a hydrogen atom and captures the 

electron. F i r s t , a b r i e f account w i l l be given of some of the experiments 

on such a system which have been performed i n recent years. 

Electron capture by protons i n atomic hydrogen has been investigated 

by Fi.te, Brackmann and Snow (1958), F i t e , Stebbings, Hummer and Brackmann 

(1960), F i t e , Smith and Stebbings (1962), and Gilbody and Ryding (1966). 

More recently a d i f f e r e n t technique has been used by McClure (1966), 

Wittkower, Ryding and Gilbody (1966) and Bayfield (1968). 

F i t e , Smith and Stebbings (1962) have also measured oross sections 

f o r charge transfer between alpha-particles and atomic hydrogen. 

2) Experiments involving crossed beam3. 

I n the f i r s t group of experiments, an a r b i t r a r i l y highly dissociated 

beam of hydrogen produced by thermal dissociation i n a tungsten furnace 

was crossed i n a vacuum region w i t h a beam of f a s t protons, great care 
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being taken to ensure that the whole proton beam passed through the beam 

of hydrogen. Measurements were made of the current of eit h e r the slow 

protons or the f a s t hydrogen atoms which were produced as a resul t of 

co l l i s i o n s involving charge transfer* They led to the determination of 
QA, 

the r a t i o /Q̂ , where Q̂ , are the cross sections f o r charge exchange 

i n atomic and molecular hydrogen respectively. Absolute values of 

were obtained using values of QM given by Stier and Barnett (1956). 

A d i f f i c u l t y w i t h crossed beam experiments i s that a large part of 

any signal i s due to interactions between the proton beam and the 

background gas i n the apparatus, since the density of t h i s i s greater than 

that of the hydrogen beam. For t h i s reason i t i s customary to use a 

mechanical chopping wheel to modulate the hydrogen beam at a frequency 

of about 100 cps. Then, any signal due to such interactions i s a d.c. 

signal whereas interactions between the proton and hydrogen beams give 

r i s e to a signal which occurs at the modulation frequency and i n a 

specified phase. 

I n the experiments of F i t e e t a l (1953, 1960), the two beams 

intersected midway between two plates mounted p a r a l l e l to the plane of 

the beams. Slow protons, produced i n the i n t e r a c t i o n region by the two 

processes of capture and io n i z a t i o n , were collected by applying an 

e l e c t r i c f i e l d across the plates. The contribution from io n i z a t i o n was 
determined by reversing the f i e l d and measuring the current of electrons. 

QA, 

The r a t i o /QM was obtained by comparing the slow ion signals when the 

beam from the furnace was mainly atomic and when i t was e n t i r e l y molecular. 
t 
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The method was used to measure cross sections f o r incident proton energies 

i n the range A00 ev - AO kev. 

At lower energies, the c o l l e c t i n g f i e l d i s s u f f i c i e n t to deflect the 

proton beam so the method must be modified. F i t e et a l (1962) arranged 

that the two; beams should intersect at the centre of a c y l i n d r i c a l c o l l e c t o r 

whose axis coincided w i t h the d i r e c t i o n of the proton beam. The slow ions 

produced were collected on the surface of the cylinder. The system was 

unable to dis t i n g u i s h between slow protons a r i s i n g from charge transfer and 

those produced by io n i z a t i o n but, since the c o l l e c t i n g cylinder almost 

t o t a l l y enclosed the i n t e r a c t i o n region, i t was assumed that the majority 

of electrons produced by i o n i z i n g c o l l i s i o n s were also collected, so that 

the measured signal was due to capture alone. I n t h i s way cross sections 

were obtained f o r incident energies down to 20 ev. 

The apparatus was also used to measure cross sections f o r charge 

transfer between He + + ions and hydrogen atoms i n the energy range 100 ev 

to 36 kev. These are the only available experimental results f o r t h i s 

process. 

For incident proton energies above 4-0 kev, the charge transfer cross 

section rapidly becomes too small f o r measurements of the slow ion current 

to y i e l d accurate r e s u l t s . For t h i s reason Gilbody and Ryding (1966) 

studied the f a s t beam instead. They used e l e c t r o s t a t i c deflection to 

separate the f a s t neutral atoms produced by charge transfer from the f a s t 

protons and measured the i n t e n s i t y of each beam separately. They obtained 

cross sections f o r incident proton energies i n the range 38 - 130 kev. 
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At 40 kev where the data obtained by the two sets of workers overlaps, the 

res u l t of F i t e e t a l i s approximately twice that of Gilbody and.Ryding. 

The difference i s not greatly i n excess of the combined experimental error 

but has not been aocounted f o r . 

3) Single beam experiments. 

As mentioned previously, one of the d i f f i c u l t i e s inherent i n crossed 

beam experiments i s the low density of the target gas and the consequent 

low signal/noise r a t i o . Two experiments have been performed recently which 

attempt to overcome t h i s problem. I n these, the proton beam i s passed 

d i r e c t l y through a tungsten furnace, which provides an atomic hydrogen 

target of much greater thickness. However, accurate determination of the 

degree of dissociation of the hydrogen gas and the absolute density of the 

hydrogen atoms or molecules at any p a r t i c u l a r furnace temperature i s then 

a very d i f f i c u l t problem. I n both experiments, measurements were based 

on past c o l l i s i o n charge analysis of the f a s t beam, as i n the work of 

Gilbody and Ryding, and the quantity determined was the r a t i o • 

Absolute values of were then obtained using known values of C ^ . 

MoGlure (1966) was the f i r s t to use t h i s method, and obtained cross 

sections f o r incident energies between 2 and 117 kev* He obtained 

absolute values f o r the molecular cross section which are i n good 

agreement wi t h the results of Stie r and Barnett, and used them to determine 

absolute values of Q̂ . His re s u l t s are i n agreement wi t h those of Ryding 

and Gilbody i n the ranges 38 - 4.2 kev and 80 - 120 kev but show a marked 

discrepancy around 50 kev. I n the energy range 2 to 20 kev the res u l t s 

of F i t e et a l are greater than those of McClure by a factor of between 
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2 0 $ and 4 C # . 

Using methods similar to those of. McClure, Wittkower and others (1966) 

have attempted to resolve the discrepancy i n previous experimental results 

at energies around 5 0 kev. They measured r e l a t i v e values of the r a t i o 
QA, 

/QM f o r various values of the incident proton energy. Absolute values 

of t h i s r a t i o could not be obtained i n t h e i r experiment* Instead, the 

re l a t i v e values were normalised to the value obtained by McClure and by 

Gilbody and Ryding f o r an incident proton energy of 1 1 0 kev, an energy 

at which the two sets of data are i n f a i r l y good agreement. Absolute 

values f o r were then obtained using Sti e r and Barnett's results f o r 

QM and are i n good agreement w i t h the results of McClure. The re s u l t 

at 40 kev l i e s s l i g h t l y above his but i s s t i l l much too low to be consistent 

w i t h that of F i t e e t a l * For a comparison of the various experimental r e s u l t 

see f i g . 4 of Wittkower et a l ( 1 9 6 8 ) . 

4) Measurements of cross sections f o r capture in t o a specific state. 

A l l the experiments so f a r discussed are concerned w i t h the measurement 

of t o t a l capture cross sections, no attempt being made to calculate the 

cross section f o r capture in t o a p a r t i c u l a r l e v e l o f the p r o j e c t i l e * 

Bayfield ( 1 9 6 8 ) measured cross sections f o r the process 

H + + H ( 1 S ) - * H ( 2 S ) + H + 

f o r incident proton energies i n the range 3 - 2 3 kev. A collimated proton 

beam was passed through a heated scattering c e l l containing hot argon or 

thermally dissociated hydrogen, and the f a s t c o l l i s i o n products leaving the 

target were observed. Fast metastable atoms were.detected by Stark-effect 

quenching i n a d.c. e l e c t r i c f i e l d and subsequent observation of the 
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r e s u l t i n g Liyman-alpha radiation* Measurements yielded values of the r a t i o 

Q H(2s) / Q ^ ^ S ) , where Q H , Q ^ , are the cross sections f o r proton -

hydrogen, proton-argon c o l l i s i o n s respectively* Bayfield also measured 

the energy dependence of the cross section Q^(2s). His results were 

normalised so that they agreed at one energy w i t h absolute measurements 

of Jaecks et a l (1965) and Andreev e t a l (1966). Absolute values of 

Qg(2s) could then be obtained. 

Relative values of Q^(2s) i n the energy range AO - 200 kev were 

obtained by Ryding et a l (1966) using a similar apparatus. Their 

measurements gave r e l a t i v e cross sections Qg ( 2 s ) , Qfl e(2s) and values of 

the r a t i o s Q H(2s) /Q^Us) and Qfl ,(2s) / Q^Us). They used the value 
B « 2 

of Q (2s) at 100 kev given by Mapleton (1962) to normalise t h e i r r e s u l t s . 

Gaily (1968b) suggested a better normalisation based on the absolute 

values of Q H q ( 2 S ) given by Andreev et a l (1966), He used these to normalise 

the values of Qg e(2s) given by Ryding e t a l and used the re s u l t i n g cross 

section values to calculate absolute values of Q^(2s)* 

Stebbings et a l (1965) used a crossed beam technique to investigate 

Lyman-alpha production i n proton-hydrogen c o l l i s i o n s f o r incident proton 

energies i n the range 600 ev to 30 kev* The processes which give r i s e 

to such radiation are 

H+ + H ( 1 S ) — * H + + H(2p), (1 .4 .1 ) 

H+ + H ( l s ) — > H ( 2 p ) + H+ , (1.4.2) 

They are distinguishable because, i n most c o l l i s i o n s , momentum transfer 

between the c o l l i d i n g systems i s very small* Thus, process (1) gives 



r i s e to excited atoms with thermal energies whereas those produced by-

process (2) have the same k i n e t i c energy as the incident protons. The 

region of in t e r a c t i o n of the two beams was viewed by an u l t r a - v i o l e t 

detection counter which could be rotated about the neutral beam axis i n 

a plane containing the ion beam. On t r a n s i t to the counter, the 

radiation passed through a molecular oxygen f i l t e r . This only transmits 

radiation whose wavelength l i e s i n one of seven very narrow wavelength 

bands, one of which contains the Lyman-ralpha wavelength (1215.7SI). For 

each value of the incident proton energy, the i n t e n s i t y , 1(9) , of t h i s 

r a d iation was measured at angles of 90° and 54-»5° w i t h respect to the 

proton beam. At the 90° p o s i t i o n , the counter axis was perpendicular 

to the plane containing the two beams and both e x c i t a t i o n and capture 

contributed to the counter signal. However, at 54o5°, because of the 

ve l o c i t y component of the p r o j e c t i l e s along the viewing d i r e c t i o n , the 

wavelength of the radiation r e s u l t i n g from capture was Doppler s h i f t e d 

by an amount s u f f i c i e n t to cause almost t o t a l attenuation i n the oxygen 

c e l l , except at energies below 3 kev. Therefore, the signal obtained i n 

t h i s p o s i t i o n was due almost e n t i r e l y to d i r e c t e x c i t a t i o n . 

The cross section f o r e i t h e r process i s d i r e c t l y proportional to 

the t o t a l i n t e n s i t y of the emitted r a d i a t i o n and t h i s can be obtained 

from the measurements made. Allowance was made f o r the p o l a r i z a t i o n of 

the radiation a r i s i n g from d i r e c t e x c i t a t i o n but the capture r a d i a t i o n 

was assumed to be emitted i s o t r o p i c a l l y . Absolute cross sections were 

obtained by using the same apparatus to measure Lyman-alpha production 

i n electron-hydrogen c o l l i s i o n s and normalizing to the e - H cross 
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sections of F i t e et a l (1958, 1959). 

They must be regarded w i t h some caution f o r two reasons. Gaily 

(1968a) discovered that photoabsorption data f o r 0 2 used by Stebbings et 

a l were incorrect. At 5 kev, use of Gaily's measurements increases the 

cross section by about one s i x t h and the e f f e c t at higher energies i s not 

yet known. Secondly, Gaily and Geballe have recently carried out an 

independent measurement of the cross section and preliminary r e s u l t s i n 

the energy range 2 - 6 kev agree neither i n shape nor i n magnitude with 

those of Stebbings et a l , disagreeing by a fa c t o r of ten at 6 kev. (Gaily 

and Geballe, 1968). 



Chapter 2. 

1 

SCATTERING THEORY APPT-T̂ n TO ELECTRON CAPTURE 

1) Introduction. 

The remainder of t h i s thesis i s concerned w i t h the t h e o r e t i c a l 

determination of electron capture cross sections. Most of the work refers 

to c o l l i s i o n s at high energies; that i s , at energies such that the 

r e l a t i v e v e l o c i t y of the c o l l i d i n g systems i s greater than the o r b i t a l 

v e l o c i t y of the active electron i n i t s i n i t i a l bound state. Atomic u n i t s 

are used except where the contrary i s stated. 

2) Basic notation. 

Consider a rearrangement c o l l i s i o n : - of the form 

1 + (2+3)-*0+3) + 2 , 
i n which a structureless p a r t i c l e 1 of mass ftj and charge i s incident 

on a bound system (2+3) and captures the electron 3* Pa r t i c l e 2 has mass 

M̂  and charge Z2» 

The p o s i t i o n vectors of p a r t i c l e s 1, 2, 3 wi t h respect to some f i x e d 

o r i g i n 0 are jr, > j r a , and the r e l a t i v e p o s i t i o n vectors of the three 

p a r t i c l e s are denoted by r x where 

r = r. - r, v x = r. - r. . "R> = r. - . 

Let a,b be the reduced masses of the bound systems 1 + 3, 2 + 3 

respectively. 
a * M, , b - H a . 
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The complete Harailtonian f o r the system may be w r i t t e n 

H'=H 0' + V 1 2 + V 1 3 + V 2 3 

where denotes the in t e r a c t i o n between p a r t i c l e s i and j , and H B' 

i s the k i n e t i c energy operator 
_ a i a 

JM, j n a a M j
 5 

I t i s convenient to consider the form taken by H 0' i n the centre of 

mass coordinate system. Let be the po s i t i o n vector of the.centre of 

mass of the three p a r t i c l e s w i t h respect to 0. 

Then 

where M = Kj + li^ + 1. 

I f £* i s the p o s i t i o n vector of p a r t i c l e 1 wit h respect to the centre 

of mass of system (2 + 3 ) , and ̂  denotes the p o s i t i o n vector of the 

centre of mass of (1 + 3) wit h respect to p a r t i c l e 2, then 

o; = bf~ - x. . /o = r - ax- . 

I n the coordinate systems ^ a n d (,J,p,1&<j^ the k i n e t i c energy 

operator takes the forms 
/ a a a 

ab " a A a n S 
a 1 a 



whereyu^yXf are the reduced masses of the i n i t i a l and f i n a l systems^ 

^ * n . ( f i t • , /4c • M J J V L O . . 

The potentials V^.. are independent of RQ and consequently the motion of 

the centre of mass of the system may be separated out. I n the rest of 

t h i s thesis, the centre of mass frame of reference i s used, i n which the 

motion of the system i s governed by the Hamiltonian 

H = Ho + V12 + V13 + V23 = Ho + V ; 

where H may be w r i t t e n i n either of the forms o 

H can be s p l i t i n several ways, two of which are 

H = H i * V i = H f + V f > 

where H. = HQ + V^, H f = HQ + 7^ 

V i = V V13' V f = V12 * V23 ' 

3) Derivation of the expression f o r the cross section.. 

I n the c o l l i s i o n process there are three time i n t e r v a l s of i n t e r e s t . 

Two wave packets are prepared at some time i n the remote past, one 



representing the i n i t i a l state of the target system (2 + 3), and. the 

other that of the p r o j e c t i l e , p a r t i c l e 1. Because they are described by 

wave packets, the target and p r o j e c t i l e can be localised i n space, so i t 

can be assumed that they are f a r apart and that there i s no i n t e r a c t i o n 

between them. The i n t e r a c t i o n i t s e l f takes place during the second 

i n t e r v a l , and the observation of the c o l l i s i o n products during the t h i r d . 

I n the following work, the wave packet description w i l l not be adopted. 

Instead, a special l i m i t i n g process due to Goldberger and Watson (19&4) 

w i l l be applied to pure states. 

The Schrddinger equation that describes the time development of the 

system i n the absence of external influences i s 

; * v j . ( 0 = H V ^ l O . ( J . M ) 
i t 

I f the wave function at time^is known, then (1) may be integrated to 

give 

=£ ^cM. Us.*} 

I f at time t Q the target and p r o j e c t i l e have not started to i n t e r a c t , then 

Vl (O - c~ k E' f c° CfL y 
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where i s the centre of mass energy of the i n i t i a l system and s a t i s f i e s 

the time independent equation 

( H ± - E ±) = 0. 

I f k. i s the i n i t i a l r e l a t i v e momentum of the c o l l i d i n g systems, then —x - • 

where \C^(r)'is the i n i t i a l state of the bound system (2 + 3)» I f i s 

the corresponding eigenenergy, V ^ ( r ) s a t i s f i e s the equation 

and 2 
E . = k;_ + £. . (a.3.0 

I t i s convenient to suppose that the system i s prepared i n the 

i n i t i a l state CP. at time t = -co. Then, from (2) i o * 

i f the l i m i t can be defined* The following d e f i n i t i o n , due to Goldberger 

and Watson (1964), i s adoptedi 
o % k' 

h^v j(tV * iim e f t j(tO J t \ (a. 3.5) 
fc -=*- eo (-90t J 

I f the function f ( t ) possesses a l i m i t i n the ordinary sense as t —> - eo, 

then t h i s l i m i t coinoides w i t h that given by (5)« However, i f f ( t ) i s 



an o s c i l l a t o r y function, the above procedure provides the required damping 

of the o s c i l l a t i o n s * 

Thus 

<^(d) = J l i m 6 \ e «. c CP- Jib 

I t i s usual to wr i t e 

4- 4. 

where 

Since ( M ; - E ; ) ^ = 0 , t h i s can be w r i t t e n 

Thus i t can be seen that 

i . e . i s an eigenfunction of H corresponding to energy Ê , 



I f A, B are any two operators f o r which the reciprocal operators 
-1 -1 

A , B are defined, then 

R"' * B"1 + B"''( B - frt ft"*. (a. 3 . 8 ) 

I f 

% 

Therefore 

_ J _ • ( , . v , _ ! _ \ 

From (2) and (6) i t can be seen th a t the Schrttdinger picture wave 

function which describes, a t time fc ̂  O , the system which has evolved 

from the state i n the remote past i s 

where , - i H t „ * 
vi (ti = e. 4; (0. 

The quantity of i n t e r e s t i s the p r o b a b i l i t y of f i n d i n g such a system i n the 

eigenstate (Q. of the f i n a l unperturbed Hamiltonian H f, I f the corresponding 

eigenenergy i s E^, so that 



t h i s p r o b a b i l i t y i s 

I f js^ i s the f i n a l r e l a t i v e momenta of the c o l l i d i n g systems, then 

where v/-j.(z') i s the f i n a l state of the bound system (1 + 3 ) , and 

s a t i s f i e s the equation 

where 

Ej_ = + £ j _ . ( 2 . 3 

Let 
Y* 

Then the t r a n s i t i o n rate from state to state i s 

W-LM = l i n v W - t ( 0 . 

The l i m i t fc-> 0+ w i l l not be taken u n t i l a l l the calculations have 

been performed, because, i n f a c t i s 

independent of time. Now 

i t 

I t can be shown (Goldberger and Watson, 1964), that 

W., ( f t = A;~ W;F M. 
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Now, 

Jit I 

i < tyl ̂ *<a> ( T * <cV) + c.c. (a.s.ia) 
t--o 

where (0 - < VV fl*.*<0>, (a. 3.13) 
and c.c. denotes the complex conjugate of the f i r s t term. 

From (9) and (13) i t can be seen th a t 

< * l i > > - _i£ + _ J 
* E i " E i * v € E i - Ej.*»t 

T ; i. ^ . 

(a. 3.14-

Therefore (12) can be w r i t t e n 

+ _ l i I T.I col* , 

where A ; > p CO-^ 

the t r a n s i t i o n rate a t time t = 0 f o r a t r a n s i t i o n from 

state i to state f . For the processes tinder consideration, the state f 

i s a continuum state i n the sense th a t p a r t i c l e 2 i s free and Ej. > 0 } 

and therefore a quantity with more physical meaning i s the t r a n s i t i o n rate 

to a group of states with energies centred about the energy E^. Let the 

density of these states be f>(^ per u n i t s o l i d angle. Then the 

t r a n s i t i o n rate from state to one of the group of states with momentum 

vectors l y i n g i n the s o l i d angle and energies i n the range Ej. - AE 



IS 

to E f + AE i s 

W;> *o) ^ ( E ) «J[E JJl. (a.3. is) 
• 

Using (15) and the r e s u l t 

one obtains f i n a l l y 

0 , £.- * Ef , 

where T-j. = ( <Pj. I Vj. I ^. * provided that <fy, 4 ; 

represent states of the same energy. I t can be shown that f» ( f j . ) = /*t ^f- > 

k^ being the f i n a l r e l a t i v e momentum* 

The number of incident p a r t i c l e s per u n i t time which cause the 

required t r a n s i t i o n and are scattered i n t o the s o l i d angle 

where i s the d i f f e r e n t i a l scattering cross section and N i s the 

incident f l u x . <JO;JM i s the t r a n s i t i o n rate when the incident f l u x 

i s k;A* ;. 

Therefore, 
I ( J O - k j I T ; J l \ 



The t o t a l cross-section f o r a t r a n s i t i o n from an i n i t i a l state to 

a f i n a l state <J£ i s 

* '* i J l (a.3.16) Q U ) = M > Wj, ( i T . ; i 

By considering the time reversed system, and following a procedure 

similar t o that outlined above, one obtains 

i u v - | T ;; j * , 
411*1.; 

where 

T ; ; . <-«i; l v : i ce.y 
and , . 

I t has been shown that t r a n s i t i o n s occur only between states of 

equal energy. I n t h i s case, T;$ 5 T-.j. . Therefore, f o r 

scattering problems, the superscripts *+' and can be omitted and "T";j. 

can be w r i t t e n i n two ways. 

I f spherical polar coordinates (\, 6, (/>) are chosen with polar 

axis i n the d i r e c t i o n of the incident beam,and IT;$ \ i s 

independent of (Q, then (16) may be w r i t t e n 

a' \ 
' " a i * k ; 

4» t / \ 

(Q(;A being i n u n i t s of IT a * \ 
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I t i s sometimes convenient to express Q(.if)in terms of an i n t e g r a l with 

respect to momentum tra n s f e r . I f ^ * «-kj-"Jfe; a n d 3 WW- — J^j., 

then, using the r e l a t i o n c o s © a ^ - .W, (19) may be w r i t t e n 
X 

4.TT av* V*; / J V 4 ; ' J.. 

where v = |^ i and 
3 a a *\* 
^ = ( a ^ - O , ? t H „ = U ^ A ; ) , ( 3 . 3 . 3 2 ) 

a 

Since energy i s conserved i n the c o l l i s i o n , (4-) and (11) give 

Ĵ . - k j - - t j . - €; * , (3.3. AS) 

and AE i s the energy defect f o r the process under consideration. I f a l l 

energies are measured i n Rydbergs, instead of atomic u n i t s , (23) becomes 



I f t h i s equation I s used to eliminate from (22), and terms of order 'At 

are neglected, then 
1 fx \* 

4 v 

Sim i l a r l y , i t can be shown that 

For a resonant process^ AE = 0, and 

2 
I n general, the value of p ma» i s very large and no appreciable error 

i s obtained by replacing the upper l i m i t of integ r a t i o n i n (20) by i n f i n i t y . 

An exception occurs when Mj = Mj and i t w i l l be shown tha t i n t h i s case 
i 

the exact expression f o r pm(k^•.: must be used. 

The in t e g r a t i o n l i m i t s i n (21) may easily be obtained using the 

r e l a t i o n 

a l l energies being measured i n Rydbergs. 



4) The Born Series. 

The t o t a l Green's function operators G* are given by 

r =• Ji'lKVl ' . 

• r ± 

The i n i t i a l and f i n a l state Green's functions l j . , Vj. and the free 
p a r t i c l e Green's functions ( j 0 are defined by similar expressions, i.e 

• 

9 . - »' 

I n terms of these operators, the wave function defined by 

(2.3.6), (2.3.7) can be w r i t t e n 

ct* • (i • 9*v, ") cft- . (a. 

S i m i l a r l y , (2.3.1^ may be w r i t t e n 

Since , . 

.JL»._-* V i X w Q vO * I , 
vJ-: s a t i s f i e s the i n t e g r a l equation 

* * i * %i v ; * * • 

The corresponding equation f o r vj.^ i B 

4 ; ' . - <pt • %; v } % . 
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I t was shown i n 53 that the t r a n s i t i o n amplitude f o r a rearrangement 

c o l l i s i o n i s 

T.f » < cft\^ \ + > (a. u.i) 

Use of (1) gives 

I f a t r a n s i t i o n operator T i s introduced, defined by the equation 

T - V } * Vj V. , (a. k. s i 

then (4.) can be w r i t t e n 

although, since and are not eigenfunotions of the same Hamiltonian, 

i s not a true matrix element of T. 

Since 

(s) i s equivalent to the i n t e g r a l equation 

I n the calculation of the cross section f o r any actual process, an 



7<t 

approximate expression f o r must be used since, i n general, tractable 

expressions f o r int e g r a l s involving the three body Green's function G+ 

are not available* However, using the operator i d e n t i t y (2*3.8), several 

i n t e g r a l equations f o r G+ can be obtained. For example^ 

<i* + <T Vi C (a. iv.O 

I t e r a t i o n of these equations gives series expansions of G+ i n terms of 

the simpler operators ( j 0 t (jj. 0r ( j ; . Various Born series f o r T ^ 

can be obtained by subs t i t u t i n g these expansions i n (4) • For example, 

use of (7).and (8) gives 
oo 

T * = < % 1 V + Z < W J - (t* v ^ s 5-* V I 1 ̂  ( A- W-*°* 
SrO 

The series derived from (9) i s the same as t h a t which would be obtained 

by i t e r a t i o n of ( 6 ) • The s u b s t i t u t i o n i n (3) of any Born series f o r the 

Green's function G~ gives f u r t h e r Born expansions of T^ 8 An approximate 

expression f o r the amplitude i s obtained by r e t a i n i n g only a f i n i t e 

number of terms of any of these series. I n practice, the number kept i s 

generally one, or a t most two, because of the d i f f i c u l t y of evaluating 
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the Individual terms* The f i r s t i s either or 

These expressions are called the post and p r i o r forms 

of the f i r s t Born approximation respectively, and are c l e a r l y obtained by 

replacing the exact wave functions , i n ( 2 ) , (3) by the 

unperturbed functions ( j ^ , QJ>. I f these functions are exact, then 

and the so-called "post-prior" discrepancy arises only when the exact 

unperturbed wave functions are not known* 

In t h i s thesis, the nth term on the r i g h t hand side of an equation 
- j _ 6 M. 

such as (10) w i l l be denoted by I ̂  and w i l l be called the nth Born 

term* The nth Born approximation to i s obtained by taking the sum of 

the f i r s t n Born terms* Clearly Born terms, and hence Bom approximations, 

of order higher than the f i r s t , are not uniquely defined. 

I n p r a c t i c a l calculations, because of the d i f f i c u l t y of evaluating 

the higher order terms, the f i r s t Born approximation i s widely used. 

Physical arguments suggest that when the v e l o c i t y of the c o l l i d i n g systems 

i s large, the i n t e r a c t i o n between them does not cause much d i s t o r t i o n , so 
one might expect t h a t 

/ B 

i i ^ ( T;j. - T;J ) = O. U.k. \2) 
V—> Ob 

However, although i t i s known that the Born series f o r two-body p o t e n t i a l 

scattering always converges f o r energies greater than some f i n i t e value E 



and that (12) holds, no similar statement can be made f o r collisions 

involving more than two particles* In f a c t , Aaron, Amado and Lee (1961) 

suggested that f o r a certain class of potentials, the Born series f o r 

diverges at a l l energies* Their argument was as fol lows. 

They considered a model problem i n which ~ 0* Then (4-) can 

be wri t ten 

where an integration over the intermediate momenta i s implied* They used 

the expansion 

< k K f t j M k V > - 2 < f c K l { C ( v i s « Y ^ V <3O U ' IS' > •<*• 

and considered the subseries 

which corresponds to part icle 2 propagating f reely while particles 1 and 

3 interact v ia the potential V ^ * They argued convincingly that divergence 

of the subseries S would imply divergence of the complete series defined 

by (13), since the potentials and a r e independent, and then showed 

• that i f V.^ can support a bound state and i s such that i t s Fourier transform 

i s negative def in i te , the subseries does diverge f o r some range of the 

intermediate momenta, no matter how high the to ta l energy. 

However, the significant question i s whether the integrated series 
to 
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converges. Aaron, Amado and Lee suggested that divergence of S implied 
divergence of this series also* However, Dettman and Leibfr ied (1966) 
considered a problem i n which were one-dimensional delta-function 

potentials and showed that although the subseries S does diverge, 

nevertheless the integrated series converges at su f f i c ien t ly high incident 

energy. Since the delta function potential belongs to the class of 

potentials considered by Aaron, Amado and Lee, their suggestion must be 

regarded as untenable. 

Although their work does not prove anything conclusive about the 

convergence of the Born series, i t does emphasise an important point. I f 

two particles interact v i a a potential which can support bound states, 

then f o r some values of the energy of the two-body system, the series 

expansion of the two-body scattering operator w i l l not converge, however 

weak be V . • . The kernel of the integral equation (6) f o r the three-body 

scattering operator always contains terms which correspond to one part icle 

propagating f reely while the other two interact v ia a two-body potent ia l . 

I te ra t ion of this equation w i l l therefore lead to a subseries of the above 

form. However, i t should be possible to calculate the two-body amplitudes 

exactly without resorting to expansions. One of the ideas behind the 

impulse approximation discussed i n Chapter 7 i s the use of the sum of 

two-body scattering amplitudes to approximate to the three-body amplitude, 

rather than a series expansion of the form (10). 



28 

Chapter 3» 

BORN APPROXIMATIONS 

1) The OBK approximation 

The f i r s t quantum mechanical calculations of electron capture cross 

sections were those of Oppenhelmer (1928) and Brinkman-Kramers (1930) using 

a simplified version of the f i r s t Born approximation which w i l l be referred 

to as the OBK approximation. They argued that the interaction V^ 2 between 

the heavy particles should not have much effect on the process and therefore 

took f o r the transit ion amplitude 

( 3 . 1 . 0 

I t can be shown (see Ch. 5 J 2) that , i n an exact calculation, the 

contribution to T^. from V^g i s of order Vm and can be neglected, but 

th i s does not j u s t i f y i t s omission i n an approximate calculations 

I f i n i t i a l l y particles 2 and 3 are bound i n state V^/U. and 

f i n a l l y particles 1 and 3 are bound i n state n i m . then 

where 

r 



at 

and 1^ are the charges of particles 1 and 2» The hydrogenie wave 

function ^ v ^ a satisfies the Schrfldinger equation 

Multiplying through by e and integrating with respect to £ gives 

I f terms of order V M are neglected compared with unity, i t can be seen 

from (2.3.25) that 
1 a 1 * " a* 

Therefore, 
0K 

and rfm«» 

The cross section fo r capture from an i n i t i a l state to a f i n a l 

state i s obtained by averaging over values of JUL and summing over v*t. 

With the change of variable 

w 

the result can be wri t ten oo 

4 
V 
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w n e r e r * a i r 1 *a 1 

Values of and f ( v > - * 0 have been given f o r a 

large number of i n i t i a l and f i n a l states by Bates and Dalgarno (1953) and, 

f o r the case Z , s \f by Hiskes (l964)e His expressions are written i n 

terms of *j and the function ^ , defined by 

^ - - l ( i j - n l ) , 
i l 

where = . The corresponding results f o r arbitrary £ , are 

obtained simply by taking b s i n the def in i t ion of 

Examination of the functions D and F shows that, at high energies, only 

capture into s states i s s ignif icant , as suggested by Oppenheimer (1928). 

A much simpler expression than (5) can be obtained i f only the 

principal quantum numbers, V, , of the i n i t i a l and f i n a l states are 

specified. Then, . , , 

\zO fk'-'X (.30 i H S * l 

j 
May (1964) gave the following sum rule f o r Fourier transforms:-

7 7 I w ^ f = l ™ > ••• ^ 

where y i s given by (4 ) . 

Combination of (2), (3), (6) and (7) gives 

a U v > - < « > ; • J " - ^ v , , . (» .» .») 
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Thus i f 2,* can be neglected i n comparison with %x 

( Z , Q V 

2 * Z * 
For symmetric resonance processes ( &E * 0 ) , —fc • and the above 

w v 
approximation cannot be made. In general however, (9) w i l l be val id 

f o r t\ >> \ f i n which case 

& U v > - U > ) oC p (3. i . , 0 ) 

I n the majority of calculations, the target i s i n i t s ground state , V » I , 

and Q. l"W w i l l be wri t ten i n place of Gt l U ' W ) when no 

ambiguity can arise* 

Using (9), an approximate value f o r the t o t a l cross section Q ( I ) 

f o r capture from the ground state of the target into any state of the 

project i le may be obtained. 

4 7 K : N 

(3 . \. \ \ ) 

Since ~ . v 

The t o t a l cross section may be calculated to any required degree of 

accuracy from this equation. 
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Equation (8) shows that 

Q ( w ) ^ 3 U . O . -L , ( 3 . U J ) 

The assumption that « (w / i s proportioned to n w i l l be referred 

to as use of the «• rule , and (10), (12) show that i t i s va l id at a l l 

energies f o r n > > \ f and at high energies f o r a l l *t • I f i t i s assumed 

to hold at a l l energies f o r a l l values of n , (11) may be writ ten 

Total OBK cross sections computed from (13) are compared with the 

results of various experiments i n f i g s (8.2.4) , (8.2.5) and are clearly 

much too large over the entire range of the measurements. 

2) The work of Tuan and Ger.iouv. 

Before 1960 there were no experimentally determined capture cross 

sections, , f o r the process 

H+ + H —7 H + H+ 

f o r incident proton energies greater than about 10 kev. At higher energies 

i t was usual to compare the theoretical predictions with the experimental 

cross section Q M f o r charge transfer from hydrogen molecules* 

H* + Hg H + h^* , 

The comparison was based on the assumption that i f the incident proton 
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velocity i s large compared with the velocit ies of the bound electrons, 

then, f o r the purposes of charge transfer, one hydrogen molecule i s 

equivalent to two hydrogen atoms so that 

I n 1960, Tuan and Gerjouy investigated the e f fec t of the molecule 

on electron capture* They presented a simple treatment of the problem 

based on the OBK approximation and their results suggested that although 

the assumption 

may be va l id f o r incident energies below 400 kev, th is i s because of 

the cancellation of a number of molecular effects , not because such effects 

are themselves unimportant* I n particular they found that 

i ) considerable interference occurs between the capture 

amplitudes from the two atomic centres i n the molecule. 

This interference i s constructive f o r capture into the 

ground state of at energies below 400 kev. 

i i ) high velocity electrons are more l i k e l y i n the t i g h t l y 

bound Pip molecule than i n the H atom and there i s more 

l ikelihood of the electron being captured i f i t has the 

same velocity as the incident proton. 

i i i ) charge transfer i n atomic hydrogen can equally wel l 

leave the electron i n the gerade or ungerade state, 
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whereas I n molecular hydrogen transitions to ungerade 

states are extremely unl ikely . This fac t alone would 

tend to make 
BK BK 

A M 

but ^ i s increased relat ive to by effects 

( i ) and ( i i ) . 

Tuan and Gerjouy found that when E </>00 kev, QA a iQ M ; 

f o r £ > 400 kev, the interference becomes destructive and can 

be s ignif icant ly less than j f i n a l l y , as v 00 , interference effects 

become negligible and 

1.2 £ -&M / QA ±. 1 .4 , 

the value depending on the moleoular wave function U3ed. 

Experimentally i t has been found that, at energies below 40 kev, 

as measured by Fite et a l (1958, 1960) and QM , measured by Stier and 

Barnett (1956) are of comparable magnitude; at higher energies (50 - 130 kev), 

& f t measured by Gilbody and lading i s consistently less than i~QM of 

Stier and Barnett. 

3) The F i r s t Born Approximation. 

Bates and Dalgarno (1952) and Jackson and Schiff (1953) argued that 

although the potential should not a f fec t the capture cross section 

i n an exact calculation, i t should be included when any approximation 

i s used. Since V 1 2 and V ? _ are of opposite sign, i t s inclusion w i l l 
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decrease the cross section. 

The cross section i n the f i r s t Born approximation i s 

r. mini 

where I ;> i s defined by (3.1*1) and I , the contribution arising 

from the potential i s 

" • < tf, I V„ | 4 > ; > . 

I t can be wri t ten (Jackson and Schif f , 1953) 

When the electron i s captured from the ground state of the target into 

the ground state of the pro jec t i le , (2) takes the form 

I . 3a (JO 
TT 

This integral may be evaluated using a method due to Feynman. 

For the symmetric resonance process 

H+ + H ( 1 s ) - » H (1b) + H* ( 3 . i . 3 < ) 

et « k , p = <J , A £ * ^> and the result i s 

whore ur s * 0 .' T :• a, * f • 
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Using the def ini t ions of _p and , i t can be shown that 

i * * 
to = - — ; x p + 

a ( M 4 l ) 

where k% = ̂ xV • I f terms of order 1 A l are neglected, 
l i t a 

1 0 e V » P~.« - 1 ) P — • 

Using (4) , together with (3»1.2), i n ( 1 ) , the cross section f o r the 

resonant process (3) can be written 
ft ft ^ i f % 

• ( 31 > 32 4 . i £ \ "I # (3.3.5> 

I t follows that 

QB ^ 0.661 QB K (3 3- O 

Mapelton (19&4) was the f i r s t to point out that th is result i s not 

i n fac t correct. The mistake arises from replacing the exact value of 

Pm«*j • i"•e• v °y t h e approximate value of i n f i n i t y . When p = ̂ » » = Mv, 

w = 0, so i t i s the las t term of (4) which provides the major 

contribution to the cross section at very high energies. The contribution 

from this term may be wri t ten 

a " . ( u < } , & . » . » ) 

where T = w + 4a 2 , 



3? 

The Integral may be evaluated to give 

I 

' ( u * M a ) ' 
- - T \ 4 R * U T ' 

f a I t 
• 6ft T + 4 * T t U 

where H s 

At high energies, the dominant term i n th is expression i s the las t 

one, and 

a 

V -> <w 3M 1 

where v i s the energy of the incident proton measured i n Units of 

B 
25 kev. A l l other contributions to Q tend to zero at least as f as t as 

-u 
V , so 

6 

This result has been derived here f o r the resonant capture process (3) 

but i t can be shown that the important point i s that Hj = , not 

that the energy defect i s zero. 

The previous discussion has ignored the fac t that the incident proton 

and the target nucleus are indistinguishable. I f hydrogen atoms are 

formed by capture i n the backward direct ion, the ejected protons move 
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i n the direction of the incident beam, and cannot be separated from those . 

particles which have been elast ical ly scattered. Thus, f o r practical 

purposes, the cross section ceases to be defined at energies where the 

backward contribution i s important. 

For transitions other than capture into the ground state, the 

evaluation of ] i n closed form i s extremely d i f f i c u l t . Jackson and 

Schiff used some numerical integration to obtain cross sections f o r capture 

into 2s and 2p . They showed that the rat io ® ^"^/Gl*(\s) f o r 
8K, . \ 

n l = 2s, 2p was very similar to the corresponding rat io /Q9K(£ 

They therefore postulated that the rat io ftm^ (*Q w a g almost independent 

of the f i n a l state and that Born cross sections could be obtained from the 

relationship 

Using this expression, Bates and Dalgarno (1953) calculated cross sections 

for. capture into f i n a l states 

n l = 1s, 2s, 3s, 4s, 2p, 3p, 4p» 3d, 4d and 4f. 

Mapleton (1962) calculated the rat io R f o r n l = 1s, 2s, 2p, 3s, 3p, 4-s^e 

His results, which are given i n Table (1) show that i t i s i n fac t almost 

independent of the f i n a l state. Therefore the results of Bates and 

Dalgarno provide a good estimate of the true Born cross sections except 

at very low energies* Indeed, at energies above 150 kev their results 

are i n good agreement with the exact values given by Mapleton. 
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The only experiments f o r capture into a single state of the project i le 

which are available f o r comparison purposes are those of Stebbings et a l 

(1965) f o r the process 

H+ + H (1s) - ^ H (2p) + H + , 

and of Bayfield (1968) and Ryding et a l (1966) f o r the process 

H+ + H (1s) -* H (2s) + H + , 

In order to compare theoretical predictions with the results of other 

experiments, some method of estimating the to ta l cross section f o r capture 

into a l l excited states of the project i le must be found. 

For the Bom approximation, Jackson and Schiff used (9) f o r th is 
BK «"3 purpose. They argued that since Q (n) i s proportional to at 

high energies, then so i s Q (n) . They therefore took 

B B 
However, f i g (8.2.3) shows that the ratios Q (n) / Q (1s) f o r n ss 2, 3 

.5 
approach their l i m i t i n g value n. very slowly as the energy increases 

and (10) considerably underestimates the true cross section at low and 

intermediate energies. A better estimate i s obtained by using (9) to write 
Q (.0 ^\ 
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Schiff (1954.) used the f i r s t Born approximation to calculate cross 

sections fo r the processes 

He+ + + H (1s) -»> He+ (1s, 2s or 2p) + H+. 

In f i g (1) , value3 of the ratio 

taken from f i g (3) of his paper are compared with the corresponding rat io 

given by the OBK approximation. At low energies the values given by the 

two approximations d i f f e r considerably. This i s not surprising because 

f o r capture from the ground state of hydrogen into a state of He+ with 

n = 2 , the energy defect i s zero, and the cross sections are very large 

at low energies. For proton impact on hydrogen i n i t s ground state, the 

resonant transit ion i s capture into the 1s state, and i t i s found that 

(9) provides a good estimate of the Born cross sections fo r a l l values 

of n l . Schiff therefore suggested that, f o r alpha part icle impact, the 

following relation should be used i n place of (9) ; 

d M * Q (a) a («) , «. > 2. 
a" (A) 

Then the to ta l capture cross section i s 
00 

Q ( 3 ) « » 

Schiff was working before the sum rule of May was known, so used the t\ -5 
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rule to evaluate 2 »K 
Q. C*«; , prom (3.1.8) i t can be seen that 

varies considerably with energy before attaining 

i t s asymptotic value ( — ) » so Schiff wrote 

A A 6 '** 

^ Q 0s> • a (a) O . I Q fo^ O i l ) . (3.3.1O 
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Table 3.3.1 

The ratio QB/<4BK for H+ + H ( i s ) - rH(n l ) + H+ obtained from 
the results of Mapleton (1962). & i s the energy- of the incident 

proton i n kev. 

K _ 63.24 112.46 200 355.6 632.4 1124.6 2000 

1s 0.162 0.190 0.228 0.274 0.327 0.382 0.431 

2s 0.U5 0.170 0.210 0,261 0.317 0.375 0.430 

3s 0.144 0.167 0.207 0.259 0.315 0.375 0.427 

4s 0.144 0.166 0.207 0.258 0.316 0.373 0.425 

5s 0.144 0.165 0.206 0.258 0.316 0.375 0.426 

2p 0.146 0.181 0.227 0.278 0.333 0.385 0.433 

3p 0*139 0.173 0.221 0.274 0.330 0.384 0.424 

2s+2p 0.U6 0.174 0.215 0.264 0.319 0.376 0.430 

3s+3p 0.U1 0.170 0.212 0.262 0.324 0.375 0,427 



Table 3.3.2. 

OBK cross sections, in units of TTa*, calculated by Mapleton (1962) 

Energy (Icev) Q(1S) Q(2s) Q(2p) Q(3o) n( -a-

63.24 1.75 3.04,-1 3.45,- 1 9.50,-2 1.20,- 1 

112.5, 2.63,-1 4.68,-2 3.28,- 2 1.48,-2 1.19,- 2 

200 2.64,-2 4.42,-3 1.80,- 3 1.38,-3 6.57,- 4 

355.6 1.84,-3 2.83,-4 6.58,- 5 8.72,-5 2.38,- • 5 

632.4 9.62,-5 1.38,-5 1.81,- 6 4.19,-6 6.48,- 7 

1125 4.14,-6 5.62,-7 4.16,- 8 1.69,-7 1.48,- 8 

2000 . 1.57,-7 2.06,-8 8.59,- 10 6.16,-9 3.0?,- 10 



Table 3.3.3. 

Born cross sections, in units of a* , calculated by Mapleton (1962) 

Energy (kev) Q(1S) Q(2s) Q(?p) Q(3s) Q(3p) 

63.24 2.84,-1 4.42,-2 5.03,-2 1.37,-2 1.67, -2 

112.5 5.00,-2 7.94,-3 5.93,-3 2.47,-3 2.07,- 3 

200 6.01,-3 9.27,-4 4.08,-4 2.86,-4 1.45,- 4 

355.6 5.04,-4 7.38,-5 1.83,-5 2.26,-5 6.52,- 6 

632.4 3.15,-5 4.38,-6 6.02,-7 1.32,-6 2.14,- 7 

1125 1.58,-6 2.11,-7 1.60,-8 6.33,-8 5.68,- 9 

2000 6.77,-8 8.86,-9 3.72,-10 2.63,-9 1.31,-10 
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4) Higher Born approximations. 

No numerical calculations of capture cross sections have been 

carried out keeping more than one term of the Born series , but some work 

has been done on the high energy behaviour of the cross section. Orisko 

(1955) considered the process 

H+ + H (1s) H (1s) + H+. 

He used the form of the Born series obtained by expanding the total 

Green's function 15 in terms of the free part ic le operator t j c 

(see (2.4*10))e The second Born term can then be written 

"C • l(v,1,vJ.i(vu,y)).Uv11,v„)- i ( v „ , 0 , 

where I U V ) 5 < tft I U $ * V I CP; > f li.U.\) 

and the third Born term i s 

An excellent account of Drisko's work i s available in the book by 

Coleman and McDowell (1969)» and here only the results w i l l be given. 

Drisko neglected terms of order V M , and found that, at high energies, 

i" • i l v v J * K V . . . V . J s . o, 

so the Jackson-Schiff matrix element, which i s so important in the f i r s t 

Born approximation i s cancelled. He showed further that I ( V 1 ? , V 1 2 ) 
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could be neglected compared with the other remaining terms so, i n the 

second Born approximation, the internudear potential plays no part 

( in the l imit V M tends to zero). Thus, 

~.i * T » ~ T* • 1 ( ^ . 0 , 
* v--? to 

where v i s the velocity of the incident part ic le , giving 

I t can be shown that the V dependence comes entirely from the term 

I ' v „ , V„Y" 
I t i s interesting to compare a c l a s s i c a l calculation. The matrix 

element I ^ i ' ^ ' O corresponds to two separate two-body col l i s ions , 

the f i r s t between part ic les 1 and 3, and the second between 2 and 3. I f 

1 , 2 and 3 are considered to be c la s s i ca l part ic les , the col l is ions can 

be treated using c l a s s i c a l mechanics. The c la s s i ca l scattering angle 

i s determined by the principles of conservation of energy and momentum 

and the additional requirements that, before either co l l i s ion has taken 

place, part ic les 2 and 3 have zero relat ive velocity, and that f i n a l l y 

1 and 3 move together. These ideas were used by Thomas (1927) in his 

c la s s i ca l treatment of electron capture. He found that his cross section 
.it 

was of order V as v tended to i n f i n i t y . 
0) 

Drisko also examined the third Born term T ; j . . He ignored a l l terms 
.it 

involving V u and found that no new terms i n V arise but the coefficient 
•a 

of v i s altered. He estimated that 

6 5 / - ~ x BK 
a 
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Drisko did not obtain the v dependence of Mapleton because when terms 

of order are neglected, back scattering does not contribute to the 

cross section. 

Mapleton (1967) considered the second Born term obtained by using 

the expansion of (j i n terms of ^ (see (2 .4 .10)) . This gives 

" C ' < % I V j ^ V j \ f l f ; > . ' 

His work indicates that the two forms of the second Born approximation 

predict the same high energy behaviour for the cross section, but, because 

of the approximations he was forced to make, the work cannot be regarded 

as conclusive. The d i f f i c u l t i e s he encountered are similar to those 

occurring i n the analysis of Chapter 9. 
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Chapter 4. 

DISTORTED WAVE APPROXIMATIO N3. ~ 

1) Derivation of the transition amplitude* 

The idea behind the distorted wave approach i s to take exact account 

of the major part of the interaction potential so that the remainder may 

be regarded as a small perturbation. For example, suppose that the total 

Hamilton!an H Can be written 

H - H + V, 

where H has the same kinetic energy terms as H > and that the transition 
A 

amplitude for col l is ions governed by H can be obtained exactly. An 

expression for the difference between this and the required amplitude 

can be derived as follows. 

I t was shown i n Chapter 2 that the-exact amplitude for transitions 

governed-by—H can be written 

where s / , + _ j ( M - * O W ; . U . ,. a ) 

(See (2.3.18), ( 2 .4 .1 ) ) . 

Let 

where . , „ . 

Use of the operator identify (2.3*8) gives 

e - A • *. * e - W 4 ". 6 \ £ - £ » • ' . * / 

From ( 2 ) , ( 3 ) , (4 ) , i t can be shown that 

a* = x-4 ••' — 1 < h - A^ x*.. 



so 

Then 

where (2.3.17) has been used i n the l a s t step. Similarly, by starting 

from the alternative form of T.j. , one obtains 

Now suppose that 

M s H; • V; r W - • Ui 4 W ; 

where H i , Hj. are the i n i t i a l and f i n a l unperturbed Hamiltonians of 

the system and the distorting potentials ^ i , ^ j . are such that W; t W, 

f a l l off more rapidly than r as i * - ? * , but are otherwise 

arbitrary. F irs t , take H : H ; ^ ; • Then (5) becomes 

T i $. * < ty lV f -W.»X;*> + <^r f" »Wil * ; + > , <4. l . * ) 

and from (3) i t can be seen that 

Secondly, l e t H t Uj. , and denote the distorted wave functions by 

5j. to avoid confusion. Then (6) gives 

where 

$»"•(»• — «A<f> ' 
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I t i s possible, by a suitable choice of the distorting potentials 

to simplify the exact expressions (7 ) , (9) somewhat. For example, 

consider the term <, I - W- I X * )" . Use of (3 ) , with 
A 

H * W; • 0 i ; and the relation 

s i v e s < ^ i V > . V V i | X t * > -< <*,I( VW<Vl * - J Mi\l 

But ^ CP> I i s f in i t e i f CP; * , and therefore 

j U < CPc \ Vf - W; I > = 0 
provided that 

i>U U < O V l A i * > = O - (4.1, to) 

I f Uj i s chosen to depend only on the relative coordinate £ r , then i t 

cannot lead to rearrangement and condition (10) i s sa t i s f i ed . Similarly, 

i f iJj. i s chosen such that 

U i i .< 5f" I C?;> = 0 U'.uO 

then the f i r s t term of (9) vanishes. Thus, i f conditions (10) and (11) 

are s a t i s f i e d , 

"tf » < J VV;» X * > (4. U l ) 
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I t can be shown that the expressions obtained by replacing the 

exact wave functions ^ f 4-; by the distorted waves , X; are 

equal. They give the distorted wave Born approximation to . 

Thus 

I 
6we> 

= < 5," I w. I \ i > ( V . I . I O 

I t was shown i n Chapter 2 that (1) can be written 

T { f • < C(t \ T 10>;>, 

where the transition operator T i s defined by the equation 

T . vy * v f 9* V-
and sa t i s f i e s the integral equation 

T . ^ 4 T V;. 
Similarly | a distorted wave operator I can be defined such that 

T ; j = < 5 f ' l W , l O * < V l T ' W | X ; * > . 

Since + 

i t follows that 

Furthermore, since 

( u 5 4 W i ) f i - ! = I , 

T sa t i s f i e s the integral equation 
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Various distorted wave Born series may be obtained by expanding 

the operator <j + i n (16) i n terms of simpler operators. In each case, the 

f i r s t term w i l l be 
»wft 

Greider and Dodd (1966) were the f i r s t to consider the convergence of 

such series . They pointed out that the same d i f f i c u l t i e s arise as in 

the case of undistorted waves because of the presence in the kernel of 

the integral equation (17) of terms corresponding to states where one 

particle propagates freely while the other two interact v i a a two-body 

potential. 

In a la ter paper, Dodd and Greider (1966) proposed a method of 

removing the disconnected part of the kernel, thereby obtaining a new 

integral equation for T • They introduced a completely arbitrary 

potential V K , with the corresponding Green's function operator 

5* ' • • 

Use of the operator identity (2.3.8), gives 

Using this relation, (16) may be written 

-f l , w = w r w,w t . w,9*vK,; wt. 
But 

W,<j+ - T 

Therefore 

6- W ;-Ui4;e 
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This equation has kernel £ • H; - * * j i n which V,{ 

i s completely arbitrary. I f i t i s chosen so that i t acts on any particle 

not affected by , then the kernel i s connected and i teration of (18) 

should provide & meaningful series of approximations to the scattering 

amplitude. The f i r s t approximation i s 

T-] •- <Sf" jWj .4 W n „ * W t | X ; * > . U . i . iO 

As an example, suppose that the distorting potential i s zero. 

Then (18) becomes 

Since V;1 s V t l • V , 5 ^ the kernel of this equation can be sp l i t into 

two parts 

" i • <9* V* 5« V « • * 3 • % * V* 9«* V „ , 
and both parts are made connected by the choice V x

:

 a Then (19) 

becomes 

The high energy behaviour of this matrix element i s discussed in Chapter 9. 

2) Applications of the distorted wave method to rearrangement col l i s ions . 

Bassel and Gerjouy (1960) were the f i r s t to use the distorted wave 

method for rearrangement col l i s ions . They considered the reaction 

H + + H (1s) H ( 1b ) + H + / U . i . O 
and chose for the distorting potential the average s tat ic interaction 
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in the i n i t i a l s tate f 

This choice ensures that U; depends only on £; , and also means that 

the internuolear potential V ( 4 almost disappears from the potential 

s V; - Ui . The exact transition amplitude T;$. i s given by 

(4*1*12) and the f i r s t order approximation by (4*1*14)* The distorting 

potential occurring i n the definition of the function Jj. i s completely 

arbitrary and was chosen to be 

However, with these choices, (4*1*8), (4*1*10) cannot be solved exactly 

and Bassel'and Gerjouy replaced the distorted waves X;*, ^£ in 

(4*1*14) by the undistorted ones tyj. , although they retained the 

potential • However, U; appears i n the equation jus t 

because distorted waves have been used and there i s no jus t i f i ca t ion for 

retaining i t when they are replaced by plane wave30 Thus, from a 

theoretical point of view, the Bassel-Gerjouy approximation i s no more 

satisfactory than the OBk or Born ones. Cross sections for process (1 ) , 

calculated from the matrix element 

T . J * • < I . V; - U ; | <p;> 

are given i n table ( 1 ) , labelled Q . 

Grant and Shapiro (1965) attempted to improve the method by using 
^ _, — 

more exact expressions for X; , j t • I f the Green's function 
_ \ 

(E - K; - Oi *«0 appearing in (4*1*8) i s expanded i n terms of U; } 

then the f i r s t term i n an iterative solution of the equation i s 
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Similarly, one obtains 

These are the distorted wave functions used by Grant and Shapiro. Their 

transition amplitude i s obtained by substituting in and keeping 

only terms of f i r s t and second order i n the potentials. Thus, 

Results for process (^obtained using this expression are given in table 
G3 GS BG (1) denoted by Q • I t can be seen that Q > Q at a l l energies. 

In the work of both Bassel and Gerjouy, and Grant and Shapiro, some 

terms of order were neglected, and i t was found that 
8<j gk <j& »K 

a ^ a GL ^ a m 

Mapleton (19&0 considered the high energy form of the cross section 

obtained by using T ;j. f with the exact value of the potential V ; - f 

not the value obtained by lett ing V M tend to 0, and found that i t was 
g 

the same as that of Q • 

A different form of distorted wave has been used by McCarroll and 

Sal in (1967a) to discuss process ( l ) . I f the exact wave function i s 

written 

i t can be shown that (3 (&,̂ 0 sa t i s f i e s 

• i - V* - 1. V/ - 1 + i_ - E + ( x V ) 
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The distorted wave i n the i n i t i a l state was chosen to be 

where i s the solution of (2) with the right hand side 

negleoted, and boundary conditions 

The distorting potential ^ ; i s defined by the equation 

(H; i u - - O X : * = o j 

and i s easi ly seen to be 

U; - - ± * i • ± V. (U ) . ? r (in Si ) . 

The exact transition amplitude i s given by (4.1.7) 

T f j = Cty l V f - W . - | X i 4 > + < ^ " | W ; | X + > . 

Since ^ and X;* both contain bound state functions, the surface terms 

arising i n the application of Green's theorem to the f i r s t term vanish 

and this term i s 

« < 4 > > I' e - M j I X ; 4 > 

= 0. 

The f i r s t order distorted wave approximation i s obtained by replacing 

the exact wave function by the distorted wave Jj; * ( Z j ^ l 

which i s a solution of the equation 

( M f • U j - E ) V " a O , 

where 
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Finally, i f terms of order VM are neglected . 

r 

T j f • - < ^ I | - ? , l - s ; | x 4 * > . ( f c . a . s> 

No calculations have been reported using this equation. As pointed out 

by McCarroll and Salin, the approximation is the quantal equivalent of the 

continuum distorted wave approximation of Cheshire (19&4) (see Chapter 

6 § 2)9 and therefore has the same high energy behaviour as Drisko's 

second Born approximation* 



SI 

Chapter g. 

IMPACT PARAMETER METHODS 

1) Introduction.. 

Because the masses Hj , are much larger than the mass of the 

electron, the de Braglie wavelength associated with the relative motion 

of particles 1 and 2 is much smaller than the atomic unit of length. This 

motion may therefore be treated classically. Furthermore, Bates and 

Boyd (1962) showed that the motion is approximately rectilinear with 

constant relative velici ty V o These simplifications are used in the 

impact parameter methods. 

The notation used i n the present section is slightly different 

from that used previously. Let £, , £ a , £ denote the coordinates of 

the electron with respect to particles 1,2 and 0, the centre of the 

internuclear l ine. Bates and McCarroll (1958) showed that the results 

obtained do not depend on the position of 0 on this l ine, but the present 

choice i s made to simplify the analysis* Particle 1 moves along a 

straight line with constant velocity V a , past the nucleus 2 

which i s regarded as fixed. Thus the distance of olosest approach of the 

two heavy particles is equal to the impact parameter Q • I f the origin 

of time is chosen to be the instant of closest approach, then R s ^ + v ^ 

where,as before, \ i s the position vector of particle 1 with respect 

to particle 2. 

The exact electronic wave function \£r(r,^ which describes the 

motion of the electron i n the f i e l d of the two nuclei satisfies the time 
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dependent Schrddinger equation 

where 

I f V«„ { ^n!(t^ denote the eigenfunctions of the electron in the 

f i e l d of particle 1 or 2 repsectively, and 6^' the corresponding 

eigenenergie3 then 

and 

-1 < * V„( t / ) - . . ." ^ < <£,"> . o 

The exact wave function may be expanded in either of the 

following ways J-

W h S r e »» « u Y 
$*( f t , f c ) 1 ^ » < f t > « * p ( l i v . r - ' ' g i v t - 1 6 » ^ (5.1.5) 

The extra exponential term3 allow for the translational motion of the 

electron and ensure that each term of the expansion (3) or (4.) is a 

solution of ( l ) in the l imi t of inf in i te nuclear separation ( i f terms of 

order VM are neglected.) In this connection, i t should be noted that 



the time differentiation In (1) i s to be carried out keeping £ constant) 

not r, or . Since 

* - C - J * - C - i / i -
and 

I t follows that V-m. (Ci) are themselves funotions of t . 

I t may be shown that 

™ 4 ( H , - i ^ ) $ r ( n , t ) = V„ (?,) rt,k\ ( s . i . s) 

Substitution of (3) i n (1) and use of (7) gives 

• l i t ' < I : v „ » * > , . ^ - ' - i ) 

and, similarly, (1), U ) and (8) give 

it) 
<• $ ~ W . J (•••.»•>. 

W h e r e < » ; IV, ,14> « J J e #" (r.,0 V M ( a ) 4 < r . a . 

Since i n i t i a l l y the electron is bound to nucleus 2, (9), (10) must be 

solved subject to the boundary conditions 

(but see later note, p. 

The probability of capture into state f occurring at impact parameter 

i f l p | ^ u M * (s.mO 
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and the cross section for capture from state i to state f i s obtained 

by integrating over a l l impact parameters, 

Q . j . s J ? " ( ^ atoraio units). 

This can usually be written 
._ <o .. • .. 

* 3 j T f d f * ( in units of ^ ) • ( s . l . U 

Use of U ) in (9), (10) yields the equations 

I f O m ( t ) i s known, (13) gives 

*»*• - &> 

The impact parameter equivalent of the OBK approximation is obtained 

by setting a ^ ^ : ^ . i n (15) and using the resulting expression for b^f**) 

i n (12). A more refined approximation is obtained by solving (14) for 

0LK(k^ keeping only diagonal terms. This gives 

Use of this expression in (15) yields a cross section Q. f which is 

the equivalent for capture of the distortion approximation for excitation . 
M 

(Bates, 1959)* Cheshire (19&4) has calculated values of Q. for the 

process 

H+ + H (1s) H (1s) + H*, 

and results are given in table (6.2.1). 
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I t should not be supposed that the Impact parameter method favours 

the OBK approximation. One of the unsatisfactory aspects of this work 

i s that any potential W ( 0 which depends only on the internuclear 

coordinate may be added to X e • The only difference this makes is 

to add a term W(lO to the potentials occurring in (9), (10), (13), ( K ) , 

(15), (16). The choice W ( O s V,a l O , together with the substitution 
a m* 1° (I5),leads to the impact parameter equivalent of the Jackson-

Schiff approximation. 

Bates (1958b) showed that the uncertainty about the correct choice 

of interaction potential arises because no allowance has been made for 

the fact that the unperturbed functions $^ , are not orthogonal 

except in the l imi t of inf in i te internuclear separation. The d i f f i cu l ty 

may be resolved by taking proper account of this lack of orthogonality. 

Instead of using either of the expansions (3), (4-), Q ( t , 0 i s written 

Substitution in (1) now leads to the following exact equations: 
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2) The two state approximation. 

This is obtained by neglecting a l l terms which involve a state other 

than the i n i t i a l or f i n a l one. Then (18), (19) give 

where 
, <*> * ,„ * 

. J v H < o < < o « , , w e J u , 

« . . . • J *?'<c/>" V„(R) *t£.'(e.YAft, 

I f a - , be. are written i n the forms 1 ' x _ 
*• = A • ax 

where 

then ( l ) , (2) reduce to 
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and 

L I-s* J ' 

The term Sj, arises because of the difference between the effects of 

the interaction of the colliding systems when in the i n i t i a l or f ina l 

state. Because of the exponential factor occurring in the integrands of 

( 3 )» ("U>)t ^ f i "^y 0 8 expected to be small when the relative 

motion of the colliding particles is large. Then I - S — I , and 

Since the imaginary parts of are antisymmetric with respect to b , 

Id^oo')! r I and | bj C*o> * I Bj ( « 0 l . 

In order to obtain Bj/w) and hence the cross section, (6), (7) 

must be solved subject to the boundary conditions 

U i \ = I , I bj.(-«Ol = 0. 

McGarroll (1961) showed that, for the symmetric resonance process 

H+ + H (1s) H (1s) + H+, ( 5 . 2 . c O 

the equations simplify considerably and can be solved without further 

approximation. For in this case H-sH^, S^»S f, f K;f ' Kp; and 
a Oy so (6), (7) become 

I ft: - B, _ ^ 
L \ - y 

and 

h | K f . - S , c v U 
L »- s 1 1 

i * A; ^ K K - S,. U u j , 



These can be uncoupled and solved, giving 

Si l (1960) used a linear combination of the i n i t i a l and f i n a l state 

wave functions as a t r i a l function in a variational treatment and obtained 

a result equivalent to (10)» 

For any process other than (9), a further approximation must be made. 

The usual method is to ignore back-coupling from the f i n a l to the i n i t i a l 

state i . e . i t is assumed that t j ( 0 ^ < cr.(t') throughout the 

encounter and the second term on the right hand side of (1) i s neglected. 

The relevant solution of (6) i s now 

A ± ( t ) = 1 , 

and using this in (7) gives 

where 

and §^ is defined by (8). 

For symmetric resonance, the exact expression (10) may be written 

so that, for this process, neglect of back-coupling involves the 

approximation 
CO 

I I K ( f dt^ ^ C H ; f db. 
-«o ' -00 



I t is easy to see from (11), (12) that the unphysical dependence of 

of the cross section on the potential has °ov been removed. For i f 

any function W(R) of the internuclear distance is added to M e , then 

and the inclusion of W(R) does not affect the value of . This result 

depends on the inclusion of the term 3 f l which allows for the nonorthogon-

al i ty of the unperturbed functions. 

However, Cheshire (19&4) drew attention to the fact that the omission 

of the potential ^^(H) alters the boundary condition on the exact wave 

function. Consider, for example, the collision of a charged ion with a 

neutral atom. I f the whole interaction ^ 2 + ^13 •*'s i 1 1 0 ! ^ 8 1 * i * 1 ^fc > 

then in the l imi t of inf in i te nuclear separation the electron moves i n 

the f i e l d of the isolated nucleus (2), and 

I f V ^ i s omitted, the electron is influenced by the Coulomb f i e l d of 

the projectile even in this l imi t , and the correct boundary condition is 

fc - 7 - *» 1 v 7 

This result was f i r s t obtainsd by Wick (see footnote to paper by Jackson 
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and Schiff, 1953)• He pointed out that i f the projectile and nucleus 

were considered to be classical particles moving in straight line paths, 

and 4 r ( c , 0 is the exact electronic wave function satisfying the 

equation 

(Ho • V„ • Vf3 • v„ ) 4 " * ; v i . 
then ^ ( » r , b ) = e * p | - i (*t ( v R - V . j O j 4 ( t , 0 satisfies 

Therefore the potential should not affect the probability of electron 

capture i f the impact parameter method is used. In an exact quantum 

mechanical calculation, may be expected to give a contribution of order 

which can be neglected in comparison with contributions from other 

interactions. However, i t does not follow that ^ can be neglected 

when approximate methods are used. Returning, to the point made by Cheshire 

i t i s clear that the correct boundary conditions have been used in the 

work of Bates provided the choice W(R) = V ^ ( R ) is made* However, the 

OBK approximation obtained from (5.1.15) employs a wave function with 

incorrect boundary conditions. Cheshire (1965) obtained a modified OBK 
M&K, 

cross section Q by writing 

a J O S m i « p ( - i A * l vR - v . R ^ 
NftK 

in (15). Values of Q for the symmetric process (9) are given in 

Table (6.2.1). Examination of (16) shows that 

<xjO — " > S H i txp I - i JU ( V R - y . R ) 
fc ~ T - » N V 



so the wave function used to obtain U satisfies the correct boundary 

conditions*._ 

The results obtained by McGarroll (1961) for reaction (9 ) are 

presented in Table (1), which is taken mainly from Bates and McCarroll 

(1962)* Cross sections obtained using the two-state approximation are 

denoted by and the superscript b is added when back-coupling has 

been included0 Comparison of Qx and Q 4 shows that this i s unimportant 

at energies greater than 100 kev. 

Allowance for the non-orthogonality of the i n i t i a l and f i n a l 

unperturbed wave functions can also be made in a wave treatment (Bates 

1958b), although most calculations have used the impact parameter 

formulation. The distorted wave method of Bassel and Gerjouy (1960) 

discussed in Chapter U \ 2, is equivalent to the two-state approximation 
z 

with both back-coupling and the term S neglected. At energies above 

200 kev this term becomes very small, and i t can be seen from table (1) 

that Gt̂  and Q. are in close agreement,whereas at lower energies 
Q. < Q 4 • Also included in table (1), for comparison, are values of 
_ 8 _ B K 

« , U calculated by McCarroll from (3.3.5), (3.1.9). 

Since Q U as v tends to i n f in i t y , the same is true of Q 

McElroy (1963) used the two-state approximation to calculate cross 

sections for the reactions 

H+ + H (1s) - » H (2s or 2p) + H+. (S.3.1 

Two additional approximations were made to simplify the numerical work:-

( i ) ' Back coupling was neglected. 
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( i i ) The exact distortion term S;j. was replaced by one of the 

following expressions 

a) - H * f ) ' l b i ' ( S . M 5 ) 
b) • 0. 

S o 

Results are given in table (2). Q 4 , « a denote cross sections 

obtained by using (15), (16) respectively in (12). I t i s clear that 

inclusion of the distortion term has a considerable effect on the values 

of the cross sections, and except at the lowest energy considered, (25 kev), 
q ; > a , , 

Lovell and McElroy (1965) investigated the error incurred by making 

the additional approximations ( i ) , ( i i ) by considering the process 

H + + H(1S) - 9 H (2s) + H + 

and solving the coupled equations (6), (7) numerically without further 

approximation. Their results are given in table (2), denoted by & A v^S/, 

the superscripts indicating that both back coupling and distortion have 

been allowed for . Comparison with <aa (2%) of McElroy, indicates that 

at energies above 50 kev back coupling is unimportant, and that (15) is 

a good approximation to S;j. at these energies. 

Table (2) also contains total cross sections, calculated 

by assuming that 

a. U V = Q, (iV Q (O , (5-2.1* 
Q (*/ 



and using the K rule. Then 

Q / ( 0 « ( I s ) 4 1.42 Q, ( a ) . 
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Table g t2,1 

Cross sections in units of "fl"a* for H + + H ( 1 S ) - * > H(1S) + H + . 

Energy (kev) QBK 
Q2 QBG Q 0 3 

0.1 1.27, 4 _ _ 2.91, 1 
1 1.22, 3 - - 1.86, 1 - — 

5 2.01, 2 - 4.61, 1 1.13, 1 - -
10 - - - - 1.18, 1 1.71, 1 
• • 4.24, 1 = 9.25 6.37 - — 

20 - - - - 4.23 6.14 
25 1.68, 1 2.30 3.68 3.14 mm -
30 - - - • - 2.06 3.01 
AO - - - _ . 1.16 1.69 
50 3.37 , 5.20,-1 8.04,-1 7.70,-1 - -
60 - - - 4.54,-1 6.68,-1 
70 mm - mm - - _ 

75 1.04 1.77,-1 2.74,-1 2,69,-1 - -
80 - - - - 2.12,-1 3.12,-1 

100 4.00,-1 7.35,-2 1.16,-1 1.15,-1 1.10,-1 1.63,-1 
120 - - - - 6.21,-2 9.13,-2 
150 8.74,-2 1.81,-2 2.98,-2 2.98,-2 - — 

200 2.63,-2 6.00,-3 1.02,-2 1.02,-2 1.01,-2 1.47,-2 
300 4.17,-3 1.08,-3 1,95,-3 1,95,-3 - mm 

400 1.02,-3 2.92,-4 5.39,-4 5.39,-4 ma m 

500 3.29,-4 1.01,-4 1.97,-4 1.97,-4 1.91,-4 2.65,-3 
600 1.27,-4. 4.09,-5 - - -
700 5.58,-5 1.38,-5 - - mm 

800 2.71,-5 9.46,-6 mm -
900 1.42,-5 5.12,-6 - - mm — 

1000 r 7.95,-6 2.94,-6 5.82,-6 5.82,-6 mm -
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Table 5.2.2. 

Gross sections (n l ) , in units of "11**, calculated by McElroy (1963), 

and by Lovell and McElroy (1965), for the process 

H+ + H (1s) - » H (nl) + H+. 

Energy (kev) QJ(2B)- Q* (2s) Q b | (2s) Q2*(2p) Q2 (2p) <4 (Si) 

1 - — 1.34,-5 - - -
5 - - 3.06,-2 - - -

12.5 - - 2.32,-1 - - -
25 3.87,-1 3.58,-1 2.61,-1 2.97,-1 2.95,-1 4.20 

50 . 1.06,-1 1.56,-1 1.55,-1 9.39,-2 1.11,-1 1.21 

100 1.71,-2 2.81,-2 2.80,-2 1.11,-2 1.40,-2 1.83,-1 

200 1.54,-3 2.33,-3 2.33,-3. 5.68,-4 7.13,-4 1.51,-2 

400 7.84,-5 1.04,-4 9.60,-5 1.53,-5 1.80,-5 7.37,-4 

800 2.54,-6 2.99,-6 - 1.28,-7 1.42,-7 2.33,-5 



3) Other coU|Pled state calculations. 

The approximations discussed so far f a i l to take account of states 

other than those direct ly involved in the transition* Bates and McCarroll 

(1962) pointed out that one could take account of the v ir tua l sequences 

i - m - f , i - n - f by keeping terms corresponding to the intermediate 

states m and n i n expansion (2.1.17) for This approach was 

applied by Lovell and McElroy (1965) to the processes 

H + •*• H (1s) ~ * H (1s or 2s) + H +

> 

the four states included being the 1s and 2s states of the target and 

project i le . Only three of the four states were kept i n each calculation, 

and the resulting coupled equations were solved numerically, so that the 

effects of both back-coupling and distortion were allowed for . The 

results showed that the inclusion of an intermediate state had l i t t l e 

effect on the cross section for the 1s - . 1 s transit ion, but that for the 

1s - 2s transition the effect was considerable, especially at low energies 

I f coupling to intermediate 2s states i s important,.one would expect 

coupling to 2p states to be also. Wilets and Gallaher (1966) have 

investigated the effect of keeping more states i n expansion (5.1.17). 

Because they considered the scattering of protons by ground state hydrogen 

atoms they were able to use the symmetries of the system to halve the 

number of coupled equations which have to be solved. For this system, the 

Hamiltonian, Ht } given by (5.1*2) i s invariant under inversion through 

the centre of mass of the two protons ( —7 - £x f j * A —v - ). 
IT 

The Schrfldinger equation (5.1.1) therefore possesses solutions ¥ , which 



have definite parity, 

i i s expanded i n a set of parity*-conserving states 

where 
i k ( f , t ) = 1 ( $ k ( £ 4 ) + i k ( t t - ) )J ( 5 . 3 . 0 

and the functions ^ ( *;^) j = 1 , 2 , defined by 

(5*1*5), (5.1.6) can be written 

with 

the plus sign being taken for j = 1 and the minus sign for j = 2. 

The following expansion i s made i n place of (5*1*17)* 

I f the electron i s i n i t i a l l y bound to proton (2) in the ground state, 

the boundary conditions are 

IT 

Coupled equations for the coefficients are obtained in the 

usual way by substituting (1) into (5*1*1)• The equations are then 

solved twice, once for each parity* The probability of capture into 
J 
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into state f occurring at some impact parameter p i s 

? -

Wilets and Gallaher evaluated cross sections for the reactions 

H+ + H(ls) H(ls , 2S or 2p) + H + . 

.t. 

Most of their calculations included the 1s, 2s, 2p0and 2 p - ( ; states of 

both target and projecti le (the eight state approximation) but a few 

results were obtained including also 3 s , 3p Q and3pj i states (the fourteen, 

state approximation). Their results are given in tables ( 6 . 3 . 1 ) , (6 .3 . 2 ) 

( 6 . 3 . 3 ) denoted by ( « * 0 , Q-^ ( M O . For the symmetric process, the 

eight state results are i n very close agreement with (N* of McCarroll 

(1961) , and the fourteen state results do not d i f fer s ignif icantly . For 

capture into the 2s state, the addition of extra states does make an 

appreciable difference, especially at 9 kev. At energies above 30 kev, 

where comparison i s possible, reasonable agreement with Q A of McElroy 

i s obtained. For capture into 2p , i t can be seen that adding i n extra 

states has l i t t l e effect at 9 kev but increases the cross section 

considerably at 25 kev, smoothing out the rather peculiar dip i n the 

eight state calculations. This work indicates that the rate of convergence 

of the close-coupling method i s rather slow. 



4) Collisions involving alpha part ic les . 

Gross sections have been calculated i n the two-state approximation 

for 

He + + + H ( 1 B ) - * He+ (1s) + H + (s.t+.O 

by McGarroll and McElroy (1962), and for 

He" + H (1s) - * He* (2s or 2p) + H* ( S U ^ O 

by McElroy (1963) . The same additional assumptions were made as for 
/ \ ^ o 

proton impact. Results are given i n table ( 1 ) , where » n a v e t n e 

same meanings as before. For process ( 1 ) , i t can be seen that i s 

much greater than Q 2° at a l l energies. 

One would expect distortion to have a considerable effect on these 

processes because of the Coulomb repulsion i n the f i n a l state. For this 

reason, Macomber and Webb (1967) performed calculations for process (1) 

using (5 .2 .11) with the exact expression for S ; j . . They found that Q2 

of McElroy considerably overestimates the true two-state cross section 

at a l l energies up to 800 kev, whereas Qg0 overestimates at energies 

below 100 kev and underestimates at higher energies. Although distortion 

i s expected to be less important for proton impact than for alpha particle 

impact, nevertheless i t i s clear that McElroy's results for process 

(5 .2 .14) must be regarded as unreliable unt i l calculations using the 

exact distortion term have been made. 

Macomber .and Webb also investigated the effect of backcoupling 

by solving (5 . 2 . 6 ) , (5 . 2 . 7 ) numerically with no further approximation, 

and found "that i t i s unimportant at energies above 100 kev. 
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Another calculation which takes exact account of distortion has been 

carried out by Basu, Bhattacharya and Chatterjee (1967). They used a 

i n the energy range 1.6 to 32.4. kev, the coupled equations which arise 

being solved numerically. Their results are given i n table (3)> labelled 

( n l ) , and i t can be seen that the cross sections for the accidentally 

resonant processes decrease with decreasing energy as does the cross section 

Q (1s) for the non-resonant process. This i s in accord with general 

predictions made by Bates and Lynn (1959) on the differences between the 

effects of symmetrical and accidental resonance. Estimates made by Basu 

et a l of total cross sections agree well with the experimental results of 

F i t e et a l (1962) which are clearly non-resonant i n form. 

I f the results found by Macomber and Webb for process (1) hold for 

(2) also, then McELroy's results overestimate the true two-3tate 

approximation result at a l l energies up to 800 kev. His results are given 

because they are the only ones for this reaction available for comparison 

with the impulse approximation. 

Estimates by McKLroy of total cross sectionf for the process 

He + + + H (1s) —7 He* + H* 

are given i n table ( 2 ) . They are based on the assumption that (5.2.17) 
_3 

and the n rule hold for alpha-particle impact also. 

four-state approximation to obtain cross sections for reactions (1 ) , (2) 

Then 

(see (3.3.11)) . 

IK, 

o ( O 



McElroy states that at 25 kev, the third term contributes as much as 

53 per cent of the f i r s t and second. This i s not surprising since one 

might expect Q(3) to be greater than Q(1) at low energies for alpha-

particle impaot* 
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Table 5.4.1. 

Gross sections Q 2 (nl) in units of TTa* for He + + + H ( 1 S ) -»> He +(nl) + H+ 

calculated by McGarroll and McElroy (1962) and McElroy (1963). 

Energy (kev) Q 2 ( 1 S ) Q 2 <1s) Q 2 ( 2 s ) 
s 

Q2 (2s) Q 2 (2p) Q 2 (2p) 

25 1.21 ,-1 3.20,-1 2.05,+1 3.98 1.60,+1 1.41, 1 

50 1.46,-1 6.43,-1 5.07 2.95 7.11 1.11, 1 

75 1.49,-1 7.11,-1 - - - -
100 1.43,-1 6.78,-1 8.76,-1 1.22 2.44 - 5.53 

150 1.29,-1 5.36,-1 - - - -
200 1.15,-1 4.11,-1 9.26,-2 3.23,-1 5.72,-1 1.66 

250 9.83,-2 3.16,-1 - - - -
400 6.19,-2 1.49,-1 6.36,-3 3.78,-2 9.29,-2 2.73,-1 

800 1.67,-2 2.66,-2 2.30,-3 1.29,-2 1.03,-2 2.30,-2 

1600 2.73,-3 3.36,-3 - - - -



Table 5 . 4 * 2 . 

x 
Total electron capture cross sections in, units of TTgft for 

Het:* + H ( 1 S ) — » He* + H * calculated by McElroy ( 1 9 6 3 ) 

E(kev) Q2( total ) Q* (total) 

2 5 
r* At* * 

3.op,1 2 . 8 0 , 1 

50 2 . 5 8 , 1 3 . 0 1 , 1 

1 0 0 . 8 . 4 1 1 . 7 5 , 1 

2 0 0 1 . 7 6 5 . 3 2 

400 2 . 8 4 , - 1 8 . 4 7 , - 1 

8 0 0 4 . 1 3 , - 3 9 . 6 6 , - 2 



Table 5.4*3. 

Gross sections Q^(nl) ;in units of TT«# , for 
He + + + H(1S) — ? He +(nl) + H+ 

calculated by Basu et a l (1967) 

Energy (kev) Q 4 ( 1 S ) Q^(2s) Q 4(2p) 

1.6 2.6,-7 3.63,-8 1.01,-7 

3.6 6.4,-6 1.44,-7 3.35,-7 

6.4 1.8,-4 2.56,-7 7.08,-7 

10 4.8,-4 3.43,-7 1.05,-6 

12 9.0,-4 4.05,-7 1.22,-6 

14*4 1.43,-3 4.49,-7 1.38,-6 

16 1.93,-3 4.58,-7 1.45,-6 

19.6 4.26,-3 4.50,-7 1.58,-6 

25.6 1.43,-2 4.11,-7 1.73,-6 

32.4 3.22,-2 3.73,-7 1.82,-6 
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Chapter 6 

SECOND ORDER METHODS 

1) Introduction 

The lack of convergence of close-coupling expansions suggested by 

the work of Lovell and McElroy and Wilets and Gallaher i s probably due to 

the fact that approximations based on expansion (5 .1»17) and the resulting 

coupled equations (5.1.18) , (5*1.19) take account only of transitions 

between a limited number of bound states. For rearrangement col l i s ions , 

transitions to other states, part icularly those i n the continuum, may have 

an important effect* The term "second order" i s applied to methods which 

attempt to allow for such transitions » ~ , 

Cheshire (1965) showed that second order d i f ferent ia l equations for 

the coefficients i n (5*1*3) and (5*1*4) can be obtained whose solutions 

do take account of coupling to a l l states not expl ic i t ly included in the 

calculation. The second order analogue of (5*1*10) i s 

I f only terms involving the i n i t i a l state are kept, the following equation 

i s obtained : 

where t 
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(2)' Denote by a^v ( t ) the solution of this equation with boundary condition 

D2 
The second order distortion approximation to the cross section, Q , i s 

obtained by putting 

a . 
D2 

in (5.1.15) . Cheshire calculated values of Q for the process 

H* + H (1s) - » H (1s) + H+ 

and his results are given in table (#,2.j) At energies above 40 kev, they l i e 
ns 

close to Q of Grant and Shapiro. 

2) The continuum distorted wave method. 

Another second order approximation which has been developed within 

the framework of the impact parameter method and applied to the process 

H+ • H ( 1 s ) H ( 1 s ) + H+ U . a . D 

i s the continuum distorted wave method of Cheshire (1964) . 

I t was shown i n Chapter 4 that, in a wave treatment, the transition 

amplitude for capture into state f can be written 

where the distorted wave Bf. sa t i s f ies the equation 

( in the notation of Chapter 4 * ) 

The equivalent result i n an impact parameter formulation i s that the 

probability for capture into state f occurring at an impact parameter p 

i s I bj. (x>) \ f where 

^ - - ; j b < V I V r U ^ l i t ' , U . 2 . 2 ) 



a ? 

provided that b^(-«>) = 0, and now 5̂ , f ^ ; are electronic 

wave functions. The distorted wave function 5f sa t i s f i e s 

Within the l imits of the impact parameter method, (2) i s exact. 

The distorted waves used by Cheshire were chosen i n the following way« 

Suppose *ir; , ^ i j . are exact solutions of the equation 

(• | v,' - v., + v„ * v,, - ; | e l 4 ( t , 0 . o. 
Write 4 t • % • * ? L t , 

where are defined by^C5.1.5), ( 5 . 1 . 6 ) . 

Then, for reaction ( 1 ) , £.i,i-j. sat i s fy the equations 

\ « i at a J 

with boundary conditions 

The distorted waves are taken to be 

where <^k', / ^ , are solutions of the equations obtained by neglecting 

the terms on the right hand sides of (3) and (4.). I t can be shown that 

the distorting potentials are 

U i = v i - V u f = v f - \ 

where A v ;k ^ 
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Table 6.2.1. 

Cross sections in units of TV a* f o r H + + H d 3 ) h ( 1 S ) + H + 

Energy (kev) QBK QMBK 
Q° D D2 

Q 

0.1 1.27, 4 - 2.91, 1 6.85, 5 _ — 

1 1.22, 3 - 1.86, 1 6.70, 3 - -
5 2.01, 2 5.02 1.13, 1 2.43, 2 4.38 4.08 

15 4.24, 1 - 6.37 2.03, 1 - -
25 1.68, 1 3.81 3.14 5.83 4.87 3.08 

50 3.37 1.19 7.70,-1 7.89,-1 1.52 1.00 

100 . 4.00,-1 1.83,-1 1.15,-1 7.33,-2 3.31,-1 1.55,-1 

200 2.63,-2 1.02,-2 4.31,-3 - -
400 1.02,-3 6.15,-4 5.39,-4 1.69,-4 7.86,-4 5.29,-4 

500 3.29,-4 '' - 1.97,-4 5.55,-5 .- -
1000 7.95,-6 6.87,-6 5.82,-6 1.49,-6 8.77,-6 5.5,-6 

! 



Equation (2) now becomes 

and the continuum distorted wave approximation i s obtained by replacing 

by X i . 
CD 

Cross sections calculated using (5) and (6) are labelled Q i n 

table (1)* I t can be seen that the cross section f a l l s off more rapidly 

with increasing energy than do those calculated using f i r s t order methods* 

Cheshire showed that 
V-yao \ 3 a / 

which agrees exactly with the result obtained by Drisko using the second 

Born approximation, 

3) Sturmian function expansions. 

A variant of the close-coupling method, i n which the total wave 

function i s expanded i n terms of Sturmian functions instead of hydrogenie 

functions, has recently been used by Gallaher and Wilets (1968) to describe 

proton-hydrogen scattering. The importance of the Sturmian functions 

i s that they form a complete, discrete set which i s not orthogonal to the 

hydrogen continuum. Therefore the method makes some allowance for v i r tua l 

transitions to th i s . 

I t i s essentially the same as that used previously by these authors 

(see Chapter 5 §3) but the hydrogen wave function 

i s replaced by the function 
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The functions S ^ r ) = S ^ r ) are Sturmian functions, similar to those 

f i r s t introduced into atomic scattering problems by Rotenburg (1962). 

Those used by Gallaher and Wilets are scaled hydrogenie functions 

where <*w * J ! _ . 
- • • i\ 

With this definit ion, the functions ^ K I with 1 = n - 1, coincide with 

the corresponding hydrogenie functions. In this section, the function 

obtained by the replacement, in a function g defined i n Chapter 5 § 3, 
A 

of by V ^ ( ? ) and 

of £ L b y € h . • <£i»ii> 8 jfuo - TaTo 1 "' 
A 

w i l l be denoted by g. 

The function may be written in either the hydrogenie or 

Sturmian representations* T /% T 

where i s defined by (5 .3 .2 ) , Equation ( 1 ) gives 

from which i t can be shown that 

k' 
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The probability of capture into state f at impact parameter n i s given by 
/ it 

(5.3.j^J_..and (2) shows that the problem i s solved i f the coefficients b^' 

can be found. .Coupled di f ferent ia l equations for them are obtained i n 

the usual way and must be solved for each parity subject to the boundary 

conditions 

l>h' i-t^) = la^' (-co) • S,^' , 

since ^ f ^ ) can be written 

and *P ) t coincides with S8(> , 

I f only a f i n i t e number of terms i s retained in ( l ) , numerical 

solution i s possible. However, a d i f f i cu l ty then arises when (2) i s used 

to calculate a t , This i s because, although i t i s obvious from (1) 

that the complete expansion Z ^ i|» contains the whole of any 

hydro genie state, the same i s not true of any truncated expansion. For 

example, the table of overlap matrix elements given by Gallaher and Wilets 

shows that although V-^* , nevertheless 

b. • ^ N- a 4 

• 0.5 fc;K,t • l»A ( 0.555 4 „ + O, + 0. M - ^ * ) 

Thus, although parts of higher s hydrogenie states, including those i n 

the continuum, are added by coupling i n the 2s Sturmian state, some of 

i s actually removed. Thus, the actual amount of any hydrogenie 

state present in the Sturmian expansion of the wave function, depends on 

the overlap matrix elements as well as on the number of Sturmian states 
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used. One p o s s i b l e method o f a v o i d i n g t h i s d i f f i c u l t y would be to use 

f u n c t i o n s ^ f e - ) i n p l ace o f ^ ( r ^ i n expansion ( 1 ) , d e f i n e d by 

w i t h o o e f f i o i e n t s ohosen so t h a t ^ f c f t ) i s o r t h o g o n a l t o VAgfc)* 1 <, k . 

However, t h i s was n o t done by Gal laher and W i l e t s and t h i s i s a major 

d e f e c t o f t h e i r method. 

They c a l c u l a t e d cross s ec t ions f o r the processes 

H + + H ( 1 s ) —> H ( 1 s , 2s o r 2p) + H*, 

f o r i n c i d e n t energ ies i n the range 1 to 1000 kev . The m a j o r i t y o f r e s u l t s 

were ob t a ined u s ing Sturmian s t a t e s 1s , 2s , 2 p Q , 2 p ^ ' 'i cen t red on bo th 

t a r g e t and p r o j e c t i l e ; a few c a l c u l a t i o n s were c a r r i e d o u t i n c l u d i n g s t a t e s 

3s , 3 p Q i 3p 4 y i and a lso 4 s . Resu l t s are g i v e n i n t a b l e s ( 1 ) , ( 2 ) , ( 3 ) 

S H and i n f i g ( 1 ) . Qg ( 1 s ) agrees w e l l w i t h Qg ( 1 s ) a t energ ies below 

100 kev , but f a l l s o f f s l i g h t l y more q u i c k l y w i t h i n c r e a s i n g energy. Comp-

S S a r i s o n w i t h Q ^ ( 1 s ) shows s a t i s f a c t o r y convergence. Qg ( 2 s ) l i e s w e l l 

H BK above Qg ( 2 s ) and, i n f a c t , a t energ ies above 70 kev exceeds Q ( 2 s ) 

ob t a ined by Mapleton ( 1 9 6 2 ) . I t must t h e r e f o r e be regarded as t o t a l l y 

s s s 

u n r e a l i s t i c . Comparison o f Qg ( 2 p ) , ( 2 p ) and Q^£ ( 2 p ) shows t h a t 

convergence i s v e r y slow and the cross s ec t ions are app rec i ab ly reduced 

when more s t a t e s are coupled i n . Even the a d d i t i o n o f the two 4s s t a t e s 

to the f o u r t e e n s t a t e expansion has t h i s e f f e c t , and va lues o f ( 2 p ) 
H 

l i e c lose t o those o f Qg ( 2 p ) . The l a t t e r are i n reasonable agreement w i t h 

the exper imenta l r e s u l t s o f Stebbings e t a l (1965) b u t the v a l i d i t y o f 

these i s i n some doub t . 



I n view o f the l a c k o f convergence shown by the r e s u l t s and also the 

d i f f i c u l t y about o b t a i n i n g the t r u e cross s e c t i o n f r o m the f o r m u l a t i o n 

used, cross s ec t ions based on the Sturmian expansion must be regarded w i t h 

some c a u t i o n . 



Table 6 . 3 . 1 . 

Gross sec t ions i n u n i t s o f TTa e f o r H + + H(1S) —9 I - I ( l s ) + H + 

Energy (kev ) • ' Q H 
y 1 4 < 

1 1.86, 1 1.558,1 _ 1.97, 1 

2 - 1.715,1 - 1.666,1 -
4 - 1.091,1 - .1.232,1 -

- 5 1.13, 1 - ~ 1.133,1 -
6.25 - - 1.038,1 -
7.5 - - - 9.75 -
9 - 9.40 9.40 8.94 -

15 6.37 - - — -
16 - 6.09 - 5.57 -
25 . 3.14 3.33 3.33 3.214 3.235 
30 - - - 2.382 -
40 - 1.37 - 1.363 1.270 

50 7 . 7 0 , - 1 •• - - - -
70 - 3 . 2 , - 1 - 3 .10 , - 1 2.90, -1 

75 2 .69 , -1 - - - . -
100 1.15,-1 1 .1 , -1 . - ' 9 . 6 , - 2 9 . 4 6 , - 2 
150 2 . 9 8 , - 2 - - - -
200 1.02,-2 - - 8.0, -3 
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Table 6 . 3 . 2 . 

Cross s ec t i ons i n u n i t s o f IT a " f o r H + + ti(ls) - ? H ( 2 s ) + H + 

Energy ( k e v ) Q B K 4 < 
1 - 3 . 5 , - 2 -
2 • - - 8 . 8 , - 2 

- 4*4 , -2 - 2 . 4 , -3 

5 - - - 8 . 2 , - 3 

6.25 - - - 1.38,-2 

7 .5 - - - 4 . 1 5 , - 2 

9 
- - 1.93,-1 1 .28,-1 8 .26 , -2 

16 - 3 .33 , -1 - 2 . 5 6 , - 1 

25 . 3 .58 ,^1 4 . 1 0 , - 1 4 . 1 7 , - 1 5 .70 , -1 

30 - - - 6.60 ,-1 

40 - 2 . 9 4 , - 1 - 6 .21 , -1 

50 1 .56,-1 - -
70 - 9 . 1 , - 2 - 2 . 2 7 , - 1 

100 2 . 8 1 , - 2 3 . 1 , - 2 - 8 .21 , -2 

200 2 .33 , -3 - - 8 .0 , -3 



Table 6 . 3 , 3 . 

Gross sec t ions i n u n i t s o f "ITa* f o r H + + H ( l s ) - * H ( 2 p ) + H + 

Energy ( k e v ) w 8 < < • h i Q 8

3 ( 5 . ) 

1 9 . 0 , - 2 1.334, - 1 mm 1.981 , 1 

2 6 . 0 , - 2 - 2 .38 , - 1 - - 1.723, 1 

4 1 .77,-1 - 3.994, - 1 - - 1.275, 1 

5 - - 4 . 4 9 , - 1 2 . 3 1 , - 1 1.188, 1 

6.25 - - 5 .14 , - 1 - - 1.085, 1 

7 .5 - - 5.50 , - 1 • - - 1.040, 1 

9 ; 2 .63 , -1 2 . 7 3 , - 1 4 .914 , - 1 2 .79 , - 1 9.61 

16 1 .86 , -1 - 4 . 0 8 , - 1 - - 6.56 

25 8 . 6 , - 2 1 .01,-1 3.004, - 1 1.968 ,-1 2.065,-1 4 .84 

30 - - 2 .44 , - 1 - - 4.17 

40 5 . 6 , - 2 - 1.585, - 1 1.120,-1 - 3.01 

70 1 .7 , -2 - 3 .85 , - 2 2 . 5 8 , - 2 - 8 .96, - 1 

100 6 , -3 - 9.8, - 3 5 . 2 , - 3 - 2 . 9 2 , - 1 

200 - - 3 , - 4 - - 2 . 7 3 , - 2 

400 - - 4 , - 4 - - 1.80, -3 

1000 - — . — mm - 3 . 0 , - 4 
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Chapter 7 . 

... THE IMPULSE APPROXIMATION 

1) I n t r o d u c t i o n . 

The name "impulse approx imat ion" a r i s e s f r o m the assumption made 

t h a t a t h i g h energies the b i n d i n g f o r c e s i n the t a r g e t atom are un impor tan t 

d u r i n g the a c t u a l c o l l i s i o n . T h e i r f u n c t i o n i s t o determine the i n i t i a l 

momentum d i s t r i b u t i o n o f the c o l l e c t i o n o f f r e e p a r t i c l e s w i t h wh ich the 

p r o j e c t i l e r e a c t s . The name masks the f a c t t h a t i t i s a l so assumed t h a t 

the r e a c t i o n w i t h each t a r g e t p a r t i c l e can be considered s epa ra t e ly , so 

t h a t the t o t a l s c a t t e r i n g ampl i tude can be expressed as the sum o f two-

body ampl i tudes . 

The approx imat ion was f i r s t proposed by Chew (1950) and the assumptions 

i n v o l v e d were i n v e s t i g a t e d by Chew and Wick (1952) and Ashkin and Wick 

( 1 9 5 2 ) . A f o r m a l d e r i v a t i o n was g iven by Chew and Goldberger (1952) and 

the same approx imat ion was o b t a i n e d f r o m a d i f f e r e n t v i e w p o i n t by Eps t e in . 

( 1 9 5 2 ) . The d e r i v a t i o n g i v e n here i s due t o Coleman (1969) and b r i n g s o u t 

c l e a r l y the bas ic assumptions i n v o l v e d i n the method. 

2 ) Fo rmu la t i on o f the app rox ima t ion . 

The wave f u n c t i o n f o r the th ree p a r t i c l e system, corresponding t o an 

i n i t i a l s t a t e < f t , i s g iven by ( 2 . 3 . 7 ) i n the f o r m 

• • a - 4 * ; 

where j l 4 a I * £ * V-
; ^ *•> 

and G + i s the three-body Green's f u n c t i o n _ t 

<j * l ' ^ (E - W 4 : O 



The exact ampl i tude f o r a t r a n s i t i o n t o s t a t e Cfy i s 

Th i s equa t ion w i l l now be r e w r i t t e n i n a f o r m s u i t a b l e f o r the a p p l i c a t i o n 

o f the "impulse hypothes is"* 

L e t X M be a member o f the complete set o f f r e e p a r t i c l e wave 

f u n c t i o n s s a t i s f y i n g the Schrddinger equa t ion 

( H . - £ ~ ^ * ~ * ° -

An ope ra to r co L i s i n t r o d u c e d , d e f i n e d by the e q u a t i o n 

L e t 

The ope ra to r s u>; [•**"!, b * t * * » ^ are o n l y d e f i n e d w i t h 

r e f e r e n c e t o the plane wave bas i s and t h i s i s t o be understood i n 

what f o l l o w s . W i t h 

A * E - M, + ; fc, B E ^ - n # - V ; * ; e, 
t h e ope ra to r i d e n t i t y (2.3*8) g ives 

- — = i + _I__-(E„-£-V)— i 
Thus 
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and 

5*V.tf; » I <j+ V ; * m ltf;> 

Now 

and 

T h e r e f o r e , 

^ * - \ V a i i C P ; > , 

so t h a t ( 3 ) becomes 

where f a , b] denotes the commutator o f the ope ra to r s a and b , 

"J; = + I 

and ( 1 ) can be w r i t t e n 

which i s the d e s i r e d r e l a t i o n . 

I f the p o t e n t i a l were cons tant th roughout the c o l l i s i o n then 

a) the commutator would v a n i s h i d e n t i c a l l y , and 

b ) would n o t a f f e c t the t r a n s i t i o n p r o b a b i l i t y . 

then 



T h e r e f o r e , i f i t i s assumed t h a t the e f f e c t o f the p o t e n t i a l i s 

n e g l i g i b l e d u r i n g the c o l l i s i o n , i t seems reasonable t o n e g l e c t the 

commutator t e rm i n ( 5 ) . The r e s u l t i n g m a t r i x element w i l l be denoted by 

• i f i . e . 

Th i s m a t r i x element can a lso be ob t a ined as an approx imat ion t o 

( 4 . 1 . 2 1 ) which was d e r i v e d us ing the d i s t o r t e d wave f o r m a l i s m o f Dodd and 

Gre ide r ( 1 9 6 6 ) . I f V f i s chosen t o be ze ro , ( 4 . 1 . 2 1 ) and ( 6 ) d i f f e r o n l y 

i n the energies E , r e s p e c t i v e l y o c c u r r i n g i n the denominators , and i t 

can be shown t h a t 

M c C a r r o l l and S a l i n (1967) used T;j , as an approx imat ion t o 

i n a d i s c u s s i o n o f the h i g h energy behaviour o f the e l e c t r o n capture cross 

s e c t i o n , though the j u s t i f i c a t i o n f o r do ing so i s no t o b v i o u s . 

I t i s c l e a r t h a t the use o f ( 6 ) as an approximat ion to the exact 

t r a n s i t i o n ampl i tude ( l ) i n v o l v e s the replacement o f the exac t wave f u n c t i o n 

V * 

Thi s equa t ion i s o n l y u s e f u l i f i t i s p o s s i b l e t o o b t a i n an a n a l y t i c 

express ion f o r the f u n c t i o n V*i M by s o l v i n g ( 2 ) , wh ich i s e q u i v a l e n t 

t o t h e equa t ion 
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p r o v i d e d t h a t 

Since p a r t i c l e s 1 and 2 are much heav ie r than the e l e c t r o n 3 , t o a good 

approximat ion H Q separates e x a c t l y i n t o two p a r t s , one depending o n l y on 

the argument o f V " 1 2 and the o t h e r on t h a t o f V ^ . Equa t ion ( 8 ) i s t hen 

e x a c t l y s o l u b l e and Cm] i s the p roduc t o f two s i n g l e p a r t i c l e 

wave f u n c t i o n s . T h i s i d e a i s a lso used i n Chapter 9 . 

No numer ica l c a l c u l a t i o n s have so f a r been c a r r i e d o u t us ing 

Equa t ion ( 6 ) , which was ob ta ined u s i n g o n l y the "impulse hypothes is" 

t h a t the e f f e c t o f the b i n d i n g f o r c e s cou ld be neg l ec t ed , does no t g ive the 

t r a n s i t i o n ampl i tude as the sum o f two-body s c a t t e r i n g approx ima t ion . 

The usua l f o r m o f the impulse approx imat ion w i l l now be d e r i v e d . The 

f u r t h e r assumption must be made t h a t m u l t i p l e s c a t t e r i n g terms can be 

n e g l e c t e d . 
• 

F i r s t the ope ra to r i s exapnded i n terras o f t r u e two-body 

o p e r a t o r s t u . l * * \ , d e f i n e d by the equa t ion 

J \ t ^ ' . t - H . - V y *J J 

UJJJ C"*l d i f f e r s f r o m i n t h a t now o n l y one p o t e n t i a l o c c u r s . 

I t i s again convenient t o i n t roduce ope ra to r s 

[ » * \ = co.* \ . ~ \ - \ . 

I f + . . 
fiA*. e U l * 0, (7 .3 .10) 

u). 
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i t i s c l e a r t h a t s a t i s f i e s the d i f f e r e n t i a l equa t ion 

( M. - V ; j - O U l » o. ( T J . I O 

I f i s a Goulorab p o t e n t i a l , c o n d i t i o n (10 ) i s n o t s a t i s f i e d and i t i s 

f o u n d t h a t the n o r m a l i z a t i o n o f the f u n c t i o n s o b t a i n e d by s o l v i n g ( 9 ) and 

(11 ) d i f f e r s . However, Mapleton (19&1) p o i n t e d o u t t h a t the c o r r e c t 

f u n c t i o n i s the s o l u t i o n o f ( 1 1 ) . 

U3e o f the o p e r a t o r i d e n t i t y ( 2 . 3 . 8 ) g ives 

_ » = ( » • ! ( V 4 - V ^ i . 

Thus, 

LO,. [ml * UJ„ 1ml - I ^ X 
( V, a b * U l * V„ fc* U l ) . U 2 . \ i 

The second and t h i r d terms correspond t o m u l t i p l e s c a t t e r i n g i n which the 

i n c i d e n t p a r t i c l e i s s ca t t e r ed by the p o t e n t i a l s and succes s ive ly . 

I f V.J2 2 0 , the terms are bo th z e r o . For e l e c t r o n capture c o l l i s i o n s i t 

has been shown (Chapter 5 § 2) t h a t i n an exac t c a l c u l a t i o n the e f f e c t o f 

the p o t e n t i a l i s n e g l i g i b l e . I t t h e r e f o r e seems reasonable to neg l ec t 

the m u l t i p l e s c a t t e r i n g terms when c o n s i d e r i n g such c o l l i s i o n s , and a lso 

to make the f u r t h e r approx imat ion u J a s: I . 

Then ( 7 ) , (12) g ive 

and ( 6 ) becomes 
IMP 

T ; f . • <.<P f I V j l a,,* qp:>. (*.a..O 
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A l l the impulse approx imat ion c a l c u l a t i o n s considered i n t h i s t h e s i s are . 

based on t h i s exp re s s ion . 

Expressions ( 6 ) and (13) may be regarded as the "post" forms o f the 

two impulse approx imat ion m a t r i x elements . The " p r i o r " fo rms are o b t a i n e d 

by s t a r t i n g w i t h the a l t e r n a t i v e express ion f o r the exac t m a t r i x element 

where 

Si" i s expanded i n terms o f the ope ra to r 

and 

Proceeding as b e f o r e , the f o l l o w i n g equa t ion i s o b t a i n e d 

which i s the " p r i o r " f o r m o f ( 5 ) . The two express ions are equal on the 

energy s h e l l . I f the t e rm i n v o l v i n g the commutator i s dropped, one o b t a i n s 

Expressions ( 6 ) and ( 1 5 ) are o n l y a u t o m a t i c a l l y equal i f the i n i t i a l and 

f i n a l systems are i d e n t i c a l . 

The " p r i o r " f o r m o f (13) i s ob t a ined by expanding t o j , L m l i n 

terms o f the two-body ope ra to r s <v> • . where 

= ( l * — i — — ViA . / ^ v ^ U). 
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The equa t ion cor responding to (12 ) i s 

LOj . a ( <*>,t C**»l * U J ^ tw»l - 0 X** 

S u b s t i t u t i n g i n (15 ) g ives 

when m u l t i p l e s c a t t e r i n g terms are dropped and u?, 4 i s r ep laced by 1 , 

Pradhan (1957) f i r s t a p p l i e d the impulse approx imat ion to e l e c t r o n 

capture and considered the process 

H + + H (1 s ) - > H ( 1 s ) + H + . 

However, r a t h e r than eva lua te ( 1 3 ) , he used the s imp le r express ion 

^ <fy W,J!WJ(J G O , w h i c h , as p o i n t e d o u t by Bassel and Gerjouy ( 1 9 6 0 ) , 

corresponds t o a q u i t e d i f f e r e n t p h y s i c a l p rocess . The c o r r e c t m a t r i x 

element was used by McDowell (1961) and Cheshire (1963) a l though the forma: 

made an approx imat ion to s i m p l i f y the a n a l y s i s . Cross sec t ions f o r v a r i o u s 

processes have been c a l c u l a t e d by Coleman and McDowell ( 1965 ) , and by 

Coleman and the p re sen t au tho r . The a n a l y s i s i s g iven i n the next s e c t i o n . 

3 ) Reduct ion o f the m a t r i x element. 

Consider a c o l l i s i o n i n which a s t r u c t u r e l e s s p a r t i c l e A + o f charge 

2,̂  mass M j , c o l l i d e s w i t h a hydrogen atom i n e i t h e r the 1s o r 2s s t a t e , 

and captures the bound e l e c t r o n , i . e . a process o f the f o r m 

A + + H ( n ' l ' ) —9 A ( n l ) + H + . 



Equat ion (7*2 .13) can then be w r i t t e n 

IMP 

where 

V S Hi V * - 1 . 

The cross s e c t i o n i s g i v e n by the equa t ion 

? • 

The impulse approx imat ion wave f u n c t i o n i s 

+ *** 
where s a t i s f i e s the equa t ion 

The f r e e p a r t i c l e wave f u n c t i o n X»« i s taken t o be 

the energy E m i s then g iven by 



I OS 

and the summation over m i n ( 3 ) stands f o r i n t e g r a t i o n s over k and K. 

Equa t ion (4) may be w r i t t e n 

which i s s a t i s f i e d by 

w i t h OC » 4x2 , and N ( 0 = « H p ( r ( I - . 

From ( 5 ) and ( 2 . 3 . 2 ) , i t f o l l o w s t h a t 

W h e r e <v*<0 - J *•, . .<<:> <x p(.fe.r) Jc. 
Using ( 6 ) and ( 7 ) i n ( 3 ) , i t can be seen t h a t 

I V 5 . 8 ) 

where the r e l a t i o n 
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has been used to obtain the f i n a l result. 
I f (2,3.10) and (8) are used i n (1), and the order of integration i s 

changed, then 

• ^ 

Now, SkfW-'O - ̂  K = ^ - fc, 
where fc s 

Since f <^t «xp(-it.C>) - *lH , 

(9) becomes 

where 

Similarly, using the result 

1̂ 2 can be written as 

where p'~="~p + t . (7.V l i ) 
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I f the quantity of interest i s the to t a l cross section for capture 
into a state with given values of n and 1, then the wave functions can be 
referred to a reference frame OXYZ in which the Z-axis i s taken to be i n 
the direction of p, and the X - Z plane i s the plane of jd and k^. The 
evaluation of the cross section involves an integration over a l l values of 
the momentum transfer p. With this choice of axes, the t o t a l cross section 
for capture into a state with a given value of 1 i3 the sum of the results 
obtained using the wave functions of the various magnetic substates i n 
turn i n (11), but the separate results do not have a direct physical meaning. 
Of course, for capture into s states there i s no d i f f i c u l t y because the 
wave functions are spherically symmetric. 

I f cross sections for capture into the separate magnetic substates 
are required, then the f i n a l state wave functions must be referred to a 
fixed system of axos, usually chosen with the polar axis i n the direction 
of the incident beam. The method of evaluation of these cross sections f ora 
the results obtained using the other system of axes i s described i n ojie 
next section. 

In order to carry out the K - integration i n the frame OXYZ, spherical 
polar coordinates are introduced. 

The function ^ f & i * * ! , ^ must be evaluated separately for each 
f i n a l state considered since i t depends on the f i n a l state wave function. 
The analysis i s given i n Appendix 1 and the results are summarised here. 
For capture into an s state, ^ ) i s a function of K and y 
but i s independent of the azimuthal angle X. 
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For capture into p states 

^ f c , ^ , ^ = COST ^ *p,.> p \ 
(r. 5. \u) 

where 

and cos ̂  = | - Kc«v). 

The functions depend on K and V but are independent of Y, 

The exact form depends on the values of n and 1, but may always be written 

\ T / \ T TA T» T' 

where 

» 2 ^ * p. 
The constants N.̂  and the functions ( i = 0, 1, 2, 3) are given i n the 
appendix* 

For convenience, define 
• X u 
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The Fourier transform of the i n i t i a l state i s easily evaluated. The 
wave funotions are 

and 

b e 
"a, 

so that 

b ' U-brJe 
' • i n " ' 

I t can be shown that 

t4 * ( ^ O 4 A 4- "B cos y C*. 3.l>) 

where 

A = b • V • £ l i c o a V j v ' + b A E * *b) p* J 

and ( 4 i 

P OL 

+ 3b( - i f l + a O v * 
1 



HO 

Let 

where A i s obtained from A by replacing the f i r s t term by ( /2) • 
Now consider expression (10) for I^y The azimuthal integration 

v 
with respect to ' can be done analytically i n a l l cases although i t i s 
rather lengthy. 

For capture into an s or p state, the integral i s 

for capture into a p or p state i t i s 
x y 

respectively. In each case, the result may be written i n the form 

N n ' l ' 3^n'1' i m> J 
I i 

where n 1, n l refer to the i n i t i a l and f i n a l states respectively, 

N,r - ,.' N „ - < a « V \*\ 
T ( Is ̂  ni otr *»pĵ  r A ( A*- 6* ) j 

T (3s; *>P^ -Ml*"-?)'** 4 ̂ ( 3A'6^( 
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Thus, (10) may be written 
r4' 
i U v U 3 U ' ; h O p), 

where the funotions U U . J , ^ are defined by (15), (16). 
A similar-expression may be obtained for 1̂ g« 

I t can easily be shown that I ^ vanishes i n the l i m i t /M > Oj 
the proof given here i s due to Pradhan (1957), From (13).and the 
definition of fc i t i s clear that 

The f i r s t term vanishes as ( /M) —> 0, so (12) gives 

W all* J " 

However, since ^ , 1 and NdOiftpUfc.*) ,F,[ \, iU,..\i.x)} 

are eigenfunctions of the same Hamiltonian corresponding to different 
eigenenergies, they are orthogonal, so that 

Consequently, i t seems reasonable to neglect the contribution from 
when calculating electron capture cross sections. Coleman (19&5) found 

1 
by numerical calculations that t h i s assumption i s j u s t i f i e d . The cross 
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sections quoted i n Chapter 8 were a l l obtained from the expression 

P mm 

4.) Evaluation of cross sections for capture into definite magnetic 
substates. 

In the usual notation, the exact transition matrix element i s 

Since, i n this thesis, only capture from states 1s, 2s of the target 
hydrogen atom i s considered, the wave function ^ci i s independent of 
the system of axes chosen. In order to calculate cross sections for 
capture into definite magnetic sublevels of the f i n a l atom, the f i n a l 
state wave function must be referred to a fixed system of axes. Usually 

1 1 1 1 a reference frame OX 1 Z i s chosen with axis OZ i n the direction k^, 
and the X' - Z ' plane as the collision plane* In the previous section, 
matrix elements I ^ have been calculated using f i n a l bound state wave 
functions referred to a frame OXYZ, with Z-axis along p and the X - Z plane 
the plane of p and 

Now 



where V"„Ui ̂ S), ̂ h L » J * } d e n o t e W a v e functions i n the frames 
OX'YV, OXYZ respectively. \ ' m

 r ^ are the elements of the 
rotation matrix and T are the Euler angles of the rotation which 

til „ v _ i A * 

takes OXYZ into OX Y Z . In the present case, t.«0*l, ft» Cos p c k ±. 
Only capture into s and p states has been considered. For 1 = 1 , the 
elements of the rotation matrix are 

' i 

where the asterisk denotes complex conjugation. Using these i n (2), 
substituting i n ( l ) and writing T̂. i n place of T^j, to simplify the 
notation one obtains 

T, s ±(l-<<>4/VT, + i- ••hA L * i . I !•«>«/*) I 

Now 

3h ito 
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Therefore 

T - «»/» \. - ~r- * 

_ in - f 
' ; a P j 

The following relations are also needed; 

• 

From this last result i t can be seen that 

Q (2p ( ) = Q (2p H ) . 

Using the equations p = ak£ -k., and s k* _ cos 3 c a n 0 6 

written 

p + k; - k; + ^ . 

I f = M̂ , this reduces to 

Cross sections for capture into definite magnetic substates 2p , 2p 
x y 

can be calculated from (7.3*2) using matrix elements T.̂  given by (4) and 
(5). 



5) Numerical methods* 

Coleman (1965) calculated cross sections for the following processes: 

H+ + H (1s) — * H (1s, 2s or 2p) + H* ( 7.5.0 

He++ • H (1s) —>He + (1a, 2s or 2p) + H+ , <&.S>l) 

His cross sections for capture into the 2p level of the projectile are i n 
error due to an incorrect choice of the axis of quantization for the 
target atom. The present author has extended his work and has considered 

the processes 

H+ + H (1s) —y H (2p) + H+ . (T5.$) 
H+ + H (1s) —*>H(3s) + H+ (VS.O 
H+ + H ( 1 S ) — , H(3p) *• H+ U.5.5) 
H+ + H (2s) —» H (2p) + H+ (7.5.6) 
He++ + H (1s) —9 He* (2p) + H+ (̂ .5 ? ) 

He++ + H (1s) He+ (3B) + H+ . (>.?.8) 

The numerical methods used to calculate cross sections for processes 
(3) - (8) are very similar to those used by Coleman for processes (1) and 
(2). Three numerical integrations are involved, those with respect to V 
K and p. 

A Simpson integration procedure was used for the f i n a l p integration. 
Because the probability of a large transfer of momentum from the heavy 
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1 2 
incident p a r t i c l e to the target nucleus i s very s l i g h t , U??| f a l l s 
o f f very rapidly with increasing p, and i t was found to be unnecessary to 
consider values of p greater than 12. For some processes, an even smaller 
range was sufficient. 

The energies to be used were carefully chosen to simplify the 
numerical work. For each process considered, the value of p . depends 

where A£ i s the appropriate energy defect. For processes (3) - (8) 
i 

i t takes the values 

respectively. 
For (3), the p values and steplengths used were as follows:-

p = 0.87 (0.015) 0.9 (0.05) 1.1 (0.1) 1.5 (0.25) 3.0 (0.5) 6.0 (1.0) 8.0. 

2 
The above equation was solved for v using these values of p, and the 
cross section was calculated for a selection of the energies thus 
obtained. This ensured that p m | i t f o r each energy coincided with one of 
the pivot points. 

on the incident energy according to the equation 

4-V 

a x (0.75, 8/9, 8/9, 0, 0, 5/9), 
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A similar procedure was followed for the other processes. The 
steplengths used were as follows.-

Por (4) and (5 ) , 
p = 0.95 (0.025) 1.0 (0.05) 1.1 (0.1) 1.5 (0.25) 3.0 (0.5) 6.0 (1.0) 

8.n [ i M 11 n 

For (6), 
p = 0.2 (0.1) 1.2 (0.2) 2.0 (0.25) 3.0 (0.5) 6.0. 

For (7), 
p = 0.1 (0.1) 1.2 (0.2) 2.0(0.25) 3.0 (0.5) 6.0. 

For (8), 
p = 0.75 ( 0.025 ) 0.8 ( 0.05) 1.1 (0.1).1.5 ( 0.25 ) 3.0 ( 0.5 ) 6.0. 

Direct tests on the p integration were not i n general possible because 
of the enormous amount of computer time involved. However, for (3), an 
indirect test showed that the cross sections were accurate to at least 
three figures at low energies and that the accuracy was much greater at 
high energies. I t can probably be assumed that for a l l processes the 
results given are accurate to three figures. 

The integration with respect to \> was performed using a 96 point 
Gaussian quadrature formula. Detailed tests showed that this procedure 
gave at least five figure accuracy i n the integration i n most cases. 

N(K) includes the complex gamma function 
This was evaluated i n the following way. 
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The real part of was calculated exactly. The imaginary 
part of Jk T( 10- IFLT/0 was calculated from the f i r s t three 
terms of Stirling's asymptotic series (see Erdelyi vol 1. p 47) and 
the imaginary part of was then obtained by repeated 
use of the identity T d * } ^ 8

 Jf^(y). The routine gives f ( » 
correct to seven significant figures. 

Simpson'b method was used for the K integration. I t was found that 
contributions from the ranges 0 4 K * 0*05 and K S 100 were negligible. 
The range 0.05 * K 6 100 was s p l i t into several parts and the steplengths 
were chosen to give four or five figure accuracy i n each part. Near 
K = 0.05 a very small steplength was necessary because of the very rapid 
oscillations of the complex gamma function. 

For processes (3), (4), (6), (7), (8), the basic steplengths used 
were as follows 

K = 0.05 (0.001) 0.08 (0.0025) 0.14 ( 0.005) 0.20 (0.01) 0.4 
(0.025) 1.5 (0.0625) 3.0 (0.125) 7.0 (0.25) 9.0 
(0.5) 18.0 (1.0) 30.0 (2.5) 60.0 (5.0) 100.0. 

For (5), slightly different values were used. 
A detailed investigation showed that for each process i t was 

necessary to decrease the steplength near K = p for each value of p. 
Tests were made for each case, but i n general i t was found that i f h 
were the normal steplength, the required accuracy was obtained by using 
a steplength h/2 for a small range of K below K = p and h/4 for a small 
range above K = p. 
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The layout of the calculation was as follows, A value of p was 
chosen, then a value of K, The Integration with respect to V was 
carried out for a number of values of the incident energy and the results 
were stored i n the computer as the f i r s t row of a matrix. A second value 
cf K was then chosen, the V Integration carried out, and the results 
stored as the second row of the matrix. This procedure was continued 
u n t i l the inner integral had been evaluated for a l l the required values 
of K. Each row of the matrix then corresponded to a given value of K 
and each column to a given value of the energy E. By reading the 
appropriate column from the store, i t was then possible to evaluate the 
K - integral and thus obtain a value for T;j, • When T.j. had been evaluated 
for a l l the required energies, a new value of p was chosen and the entire 
procedure repeated. A separate programme was used for the p integration, 
the calculated values of T.j. being fed i n as data. 
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Chapter 8. 

RKoULTS 

< 

1) Electron capture fay protons i n hydrogen. 
Cross sections for processes (7.5.1), calculated by Coleman (19&5), 

and (7.5.3), (7.5.4), (7.5*5), calculated by the present author, are 
presented i n tables (1), (2) and (3), and graphically i n f i g s ( l ) to (8), 
where they are compared with the results of other theories, and with 
experimental results where possible. 

The derivation of the impulse approximation involves the assumption 
that for the duration of the collision the binding forces of the target 
are unimportant. One would expect this to be so when the speed of the 
projectile i s greater than the o r b i t a l speed of the bound electron. For 
protons incident on hydrogen atoms i n their ground state, this implies an 
incident energy greater than 25 kev. In general, i t i s found that at 
energies above 25 kev, (nl ) l i e s below the results of a l l other 

IMP H theories. The exception i s Q (2p) which i s greater than Qg (2p) 
of Viilets and Gallaher (Chapter 5 § 3) f o r some energies below 50 kev. 

For the resonant process, the calculation of Coleman differed from 
that of Cheshire (1963) only i n the numerical methods used, and confirmed 
Cheshire's results. At 25 kev, the Born and impulse approximation results 
are i n dose agreement, but Q"""̂  (1s) f a l l s o f f more rapidly as the 
energy inoreases. 

Fig (3) shows that neither' Q I M P (2s) nor QB (2s) i s i n good agreement 
ti 

with the experimental results. Although Qg (2s) does agree well, i t should 
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be remembered that adding i n more states altered the cross section somewhat 
at 9 kev. " 

I t i s clear from f i g . (5) that Q*1^ (2p) and Qĝ  (2p) are i n close 
agreement with the experimental results of otebbings et al (1962) but the 
v a l i d i t y of these results is questionable (see Chapter 1 5 4)« Again, the 
close coupling results show a definite lack of convergence. Figs. (6)^ 
(7) compare various theoretical results. The behaviour of Q̂^ (2p) of 
McElroy. (1963) at high energies i s rather surprising. One would expect 

BK B i t to tend to Q but i t i s almost equal to Q at 800 kev. 
Values of Q I M P (3s) and Q I M P (3p) are li s t e d i n table (3) and are 

compared with the corresponding Born approximation results i n f i g . (8). 
The relative behaviour of the s and p cross sections i n the two approxim-

IMP v IMP 
ations is quite different. Q (3p) i s le3s than Q (3s) at a l l energies 

B B whereas whereas Q (3p) i s greater than Q (3s) i n the energy range 5 kev 
to 80 kev. A similar result i s observed for the 2s and 2p cross sections. 

Cross sections for the process 

H+ + H (2s) -» H (2p) + H+, 

calculated using the impulse approximation, are given i n table (4). No 
other theoretical values for the process are known to the present author. 
The cross section behaves at low energies i n a manner typical of symmetric 
resonance, increasing rapidly as the energy decreases. 

The reaction i s of interest particularly i n the f i e l d of astrophysics. 
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The rate at which metastable hydrogen atoms i n the 2s state decay 

spontaneously to the ground state i s very slow, since the t r a n s i t i o n i s 

o p t i c a l l y forb idden. The double process i n which hydrogen atoms i n the 

2p state are formed by the above process and then decay spontaneously to 

the ground state w i t h the emission o f Iytnan-alpha r ad ia t ion provides 

another mechanism by which the 2s l e v e l may be depopulated. 



Table 8.1.1 

Impulse approximation cross sections, i n un i t s of IT a 
f or the process H+ + H (1s) - » H (1s) + H + . 

Energy (kev) Q (1s) 

25.0 2.19 

36.0 . 9.48,-1 

49.0 4.22,-1 

64i0 1.93,-1 

81.0 9.07,-2 

100 4.39,-2 

156 8.01,-3 

225 1.71,-3 

306 4.24,-4 

400 1.19,-4 

506 3.79,-5 

624 1.31,-5 

899 2.08,-6 

: 1224 4.04,-7 

1598 9.52,-8 



Table 8.1.2. 

Impulse approximation cross sections Q ( n l ) > i n un i t s of TV a , , 
f o r capture in to the n = 2 l e v e l of hydrogen. 

Energy (kev) Q(2s) Q(2p) Q(2)=Q(2s)+Q(2p) 

0.41 _ 2.16,-3 _ 

0.97 7.24,-2 1.29,-2 8.53,-2 

1.89 1.87,-1 3.51,-2 2.22,-1 

2.72 - 7.32,-2 -
4.44 4.26,-1 1.88,-1 6.14,-1 

6.23 5.01,-1 2.95,-1 7.96,-1 . 

10.7 4.95,-1 3.84,-1 8.79,-1 

15.4 4.08,-1 3.30,-1 7.38,-1 
22.8 2.77,-1 2.11,-1 4.88,-1 

32.8 . - 1.07,-1 -
56.2 4.75,-2 2.39,-2 7.14,-2 
79.0 1.71,-2 7.01,-3 2.41,-2 

103 - 2.39,-3 -
129 2.95,-3 8.89,-4 3.84,-3 
156 - 3.55,-4 -
185 6.58,-4 1.59,-4 8.17,-4 
216 - 6.87,-5 -
267 • - 2.41,-5 -
284 - 1.62,-5 -
361 2.93,-5 4.50,-6 3.38,-5 
468 . . 8.07,-6 1.06,-6 9.13,-6 
586 2.55,-6 2.81,-7 2.83,-6 
861 3.75,-7 2.92,-8 4.04,-7 

1186 7.72,-8 - -
2459 1.07,-9 -



Table 8.1.3. 

Impulse approximation cross sections Q ( n l ) , i n un i t s of TTaB } 

f o r capture in to the n = 3 l e v e l o f hydrogen 

Energy (kev) Q(3s) Q(3p) Q(3s) + Q(3p) 

0.58 3.05,-3 _ 

0.85 6.80,-3 

1.39 1.59,-2 3.25,-3 
2.77 4.29,-2 9.24,-3 

4.09 6.59,-2 -
7.09 9.84,-2 -

11.1 1.09,-1 7.47,-2 

17.3 9.40,-2 7.28,-2 

28.5 5.61,-2 4.16,-2 9.77,-2 

44.5 2.50,-2 1.58,-2 4.08,-2 

69.4 7.84,-3 3.88,-3 1.17,-2 
120 1.20,-3 4.25,-4 1.63,-3 
178 2.50,-4 7.00,-5 3.20,-4 
260 4.45,-5 9.74,-6 5.42,-5 
354 9.94,-6 1.79,-6 1.17,-5 
460 2.68,-6 4.03,-7 3.09,-6 
518 1.43,-6 - -
579 8.09,-7 1.05,-7 9.14,-7 

644 4.70,-7 - -
854 1.09,-7 1.07,-8 1.19,-7 

1179 1.93,-8 - -
2453 3.36,-10 — — 



Table 8.1 .A 

Impulse approximation cross sections, i n un i t s of "ITa0 } f o r the process 
process H + + H (2s) H (2p) + H + . 

Energy (kev) Q (2s - 2p) 

4.0 00 2.13, 1 

8.99 2.56 

16.0 7.90,-1 

25.0 2.93,-1 

36.0 9.46,-2 

48.9 2.88,-2 

63.9 8.90,-3 

80.9 2.87,-3 

99.9 9.82,-4 

144 1.40,-4 

256 5.53,-6 

400 4.14,-7 

624 2.87,-8 

899 3.22,-9 
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2) Ratios and t o t a l cross sections. 

I t was shown i n Chapter 3 S 3 t h a t , f o r the Born approximation, 

an estimate o f the cross section f o r capture in to an exci ted state w i t h 

quantum numbers n and 1 could be obtained from (3.3*9); 

QB ( n l ) = Q B (1a) Q B K ( n l ) . 

. Q B K ( 1 S ) 

One o f the reasons f o r performing the present calculat ions was to see 

whether i t could be assumed that 

Q ̂ . ( n l ) = Q I M P ( l s ) Q B K ( n l ) . ( 8 . 3 . 0 

Q B K (13) 

I f (1 ) holds, then so does the r e l a t i o n 

Q I M P (n) = Q I M P ( i s ) Q B K ( n ) ,• ( 8 . 3 . 2 ) 
Q B K ( 1 S ) 

where Q (n) denotes the t o t a l cross section f o r capture in to a state w i t h 

p r i n c i p a l quantum number n . (2) impl ies tha t the r a t i o 

R I M P (n ) = 0 I M P (n) 

« I M P (1.) 

-3 

tends to n ' as the energy of the p r o j e c t i l e increases. 

The r a t i o s R(2s), R(2p), R(3s), R(3p) given by the OBK, Born and 

impulse approximations are compared i n f i g s ( 1 ) , ( 2 ) . For capture i n to 
IMP BK 

s states,; the agreement between R and R i s exce l len t , even down to 



energies of 200 kev 0 For t h i s reason, R (2p) and R (3p) are not shown 
IMP 

i n f i g s (1) and ( 2 ) . R i s i n reasonable agreement w i t h the other two at 

energies above 700 kev 0 I t i s clear tha t use o f ( l ) , (2) s l i g h t l y over­

estimates the t rue value of Q I M P ( n l ) i n each case. 

The evaluation o f Q" 0^ (3d) would require an enormous amount o f 

computer time and has not been undertaken. Using the OBK approximation, 
BK 

i t i s found tha t the con t r ibu t ion of Q (3d) to the cross section f o r 

capture in to the n = 3 l e v e l i s approximately 7% a t 60 kev, % at 120 kev, 

1.5$ at 200 kev, and considerably less a t higher energies^ These f i g u r e s 

indicate that capture in to the 3d state i s unimportant except at low 

energies. For t h i s reason the r a t i o R (3 ) has been taken to be 

R (3) = a (3s) + R (3p) 

i n the present discussion. 

F i g (3) compares the r a t i o s R ( 2 ) , R (3 ) given by the OBK, Born 

and impulse approximations. I n both cases they are i n good agreement 

at energies above 500 kev but the approach to the l i m i t n i s very slow, 

-3 

and i t i s clear tha t the n ru le applied to the 1s cross section 

considerably underestimates the cross sections f o r capture i n to the 

n = 2, 3 states. Therefore, i t i s probably more accurate to base estimates 

of t o t a l capture cross sections on the assumption that (2) holds f o r a l l 

n , rather than use t h i s r u l e . 
0 

Then Q I M P ( I ) = QIMP ( 1 b ) + QIMP ( 2 ) + QIMP ( 3 ) 

• 9 I M P d P } S Q B K . ( n ) , 

Q B K (1s) L . 
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The sum of the OBK cross sections can be evaluated to any required degree 

o f accuracy using the sum rule o f May (1964) (see 3 .1 .11) . Total cross 

sections, ( 5 . ) , calculated from ( 3 ) , axe given i n table ( 1 ) . 

Sinoe (2) s l i g h t l y overestimates the t rue impulse approximation cross 

sect ion, p a r t i c u l a r l y at low energies, a bet ter estimate of Q 1 1 ^ ( n ) , 

f o r n ? 4 , might be 

Q 3 ^ (n) = Q I M P (3 ) Q B K ( n ) . ( i . a . O 

Q B K ( 3 ) . 

2 
Tota l cross sections obtained using (4) are denoted by Q ( 2 ) i n table ( 1 ) . 

2 I 
As expected, Q ( 2 ) i s s l i g h t l y less than Q ( 2 ) . 

I n f i g s ( 4 ) , (5 ) several theore t i ca l estimates o f t o t a l cross sections 

are compared w i t h experimental r e su l t s . Values of Q ( 2 ) were obtained 
-3 S 

by applying the n * ru l e to the resul t s of Mapleton. Values o f ( 2 ) 

were calculated by McElroy using ( 5 . 2 . 1 8 ) . The experimental values of 

S t i e r and Barnett (1956) and Barnett and Reynolds (1958) are ha l f the 

cross sections obtained from measurements on molecular hydrogen and l i e 

above the resu l t s of Wittkower e t a l (1966) at energies above 50 kev. 

The well-known f a c t tha t predict ions o f the f i r s t Born approximation agree 

best w i t h the experimental resul t s i s obvious from the f i g u r e s . Values 
IMP C 

of Q (z) l i e below the experimental r e su l t s and the d i f fe rence increases 

w i t h increasing energy. 



Table 8.2.1 

Gross sections in units of TT* 0 for H* + H (1s) —•> H + H 

Energy (kev) Q*(2 ) Q 2 ( 2 ) 

56 4.23,-1 4.03,-1 

79 1.44,-1 1.39,-1 

128.8 2.43,-2 2.37,-2 

185.5 5.38,-3 5.31,-3 

361.5 2.51,-4 2.50,-4 

468 7.08,-5 7.05,-5 

587 2.27,-5 2.26,-5 
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3) Electron capture by alpha particles in hydrogen. 

Coleman (19&5) considered the reactions 

He*+ + H (1s) —•> He* (1s) + H* 
He+ + + H (1s) — v He* (2s) + H* (8.3.3") 

and the present author has extended his calculations to the processes 

Results are given in tables (1), (2) and the cross sections are compared 

in figs (1) and (2). 

Processes (2) and (3) are examples of accidental resonance. A 

defect of the present work i s that the impulse approximation, in the form 

used, fa i l s to take account of the effects of the Coulomb repulsion in 

the f inal state. For this reason, Q (2s) and Q (2p) behave at low energies 

in a manner typical of symmetric resonance, whereas, i f proper allowance 

for distortion were made, the cross sections would tend to zero as the 

energy decreased. Below 50 kev, Q (3a) i s larger than Q (1s). This i s 

not surprising since at these low energies resonant effects are important 

and the energy defect for (4) i s smaller than that for (1). 
S 

The two state approximation results of McElroy (1963), Q 2 ( 2 P ) 

are compared with Q I M P (2p) in f ig (3). However, the exact distortion 

term (5.2.8) was not used by McElroy, and the effect of this on the values 

of the cross sections i s not yet known. At high energies, where the 

He+ + + H (1s) —^ He* (2p) + H* 

He+ + •»• H (1s) -*He* (3s) + H+. 

(*. 5. 3") 



effects of continuum intermediate states become important, the impulse 

approximation should be the more accurate. 

Fig. (4) shows the relative behaviour of R (2) = Q (2) / Q (1s) 

given by the ODK, Born and impulse approximations. The OBK and Born 

ratios have already been discussed (Chapter 3 $ 3) . As expected, the 
BK XMP 

difference between R (2) and R (2) i s considerable at low energies. 
_3 

At high energies there i s a marked departure from the n rule which 

predicts the value 0.125 for R (2). 

Assuming that 

Q ^ U ) = Q I M F (2) Q B K ( n ) n > 3 , 
<4M (2) 

an estimate of total cross sections for capture into a l l excited states 

of He can be obtained! 

t l B K ( 2 ) 

us 3 

Values calculated from this relation are given in table (3). Experimental 

results are at present available only for energies below 36 kev (Fite 

et al 1962) and the impulse approximation cannot be expected to be 

reliable at such low energies where distortion due to the f inal state 

Coulomb repulsion i s important. 



Table 8.3.1 

Impulse approximation cross sections Q(nl), in units of 
TTa* for the process He+ + + H (1s) —* He+ (nl) + H+. 

Energy (kev) Q (Is ) Energy (kev) <J (3a) 

' 1.29 5.10,-2 
3.93 1.31,-1 

6.00 1.27,-3 5.52 2.07,-1 
• 8.46 2.08,-1 

11.1 1.92,-1 
15.6 1.67,-1 

29.3 3.73,-2 25.9 1.32,-1 
41.6 6.90,-2 44.0 1.02,-1 
62.5 1.27,-1 69.4 8.13,-2 

100 2.07,-1 • 

123 2.30,-1 119 6.52,-2 
152 2.38,-1 
190 2.24,-1 197 4.72,-2 
212 2.10,-1 . • 

267 1.70,-1 277 3.07,-2 
337 1.25,-1 
377 1.03,-1 364 . 1.85,-2 
423 8.33,-2 
474 6.58,-2 
530 5.09,-2 559 6.07,-3 
591 3.86,-2 
732 2.10,-2 784 1.96,-3 
899 1.09,-2 1110 5.00,-4 

1436 1.95,-3 1486 1.39,-4 
2156 3.53,-4 2386. 1.46,-5 



Table 8.3.2 

Impulse approximation cross sections Q(nl), in units of TT 

for the IT + + 

process He 
+ H (1s) - He* (nl) + H+. 

Energy (kev) Q (2s) Q (2p) Q(2s) + Q(2p) 

4.0 .:. 1.51, 1 5*95, 1 
16.0 : . 2.6? 1.78, 1 .' • 2.05, 1 
36.0 " 6.76,-1 9.22 9.90 
64.0 ; 2.33,-1 5.42 5.65 
99.9 . . 1.59,-1 3.12 ':' 3.28 

144 1.43,-1 1.68 1.82 
196 1.20,-1 8.60,-1 9.80,-1 
256 8.91,-2 4.24,-1 5.13,-1 
324 6.09,-2 2.06,-1 2.67,-1 
400 3.93,-2 9.92,-2 1.39,-1 
576 - 2.37,-2 
624 1.16,-2 - -
784 - 6.07,-3 -
899 3.25,-3 - . -

1023 - 1.67,-3 -
1224 9.46,-4 - -
1599 2.94,-4 1.64,-4 4.58,-4 
2023 9.80,-5 - -
2498 3.57,-5 1.36,-5 • 1.13,-4 
3597 — • 1.65,-6 -• 



Table 8.3.3. 

Gross sections for He++ + H (1s) —» He* + H+. 

E(kev) 99.9 144 196 256 400 576 784 1023 

Q 8.9 . 5.4 3.1 1.6 4.4,-1 1.3,-1 4.2,-2 1.4,-2 
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4) Polarisation. 

I t i s observed experimentally that when a gas i s excited by a 

unidirectional beam of particles, the radiation subsequently emitted i s 

polarized and has a non-uniform angular distribution. The degree of 

polarization is usually determined by viewing the radiating gas atoms 

in a direction at right angles to the incident beam. For example, suppose 

the incident beam i s in the direction Of. Consider light propagating in 
H i 

the Ox direction* Let I and I be the intensities of light with 

eleotric vector parallel and perpendicular to be respectively. The 

polarization i s defined to be ' ' 

P = I - I (8.1+. 0 

I I J . 
I + I 

For convenience, the discussion i s now restricted to Lyman-alpha 

radiation emitted by hydrogen atoms excited by collisions with a charged 

beam of particles. The phenomena of polarization can be explained as 

follows. 

I f the hydrogen atoms are init ia l ly in their ground state, they are 

spherically symmetric. The anisotropy of the problem i s introduced 

entirely through the motion of the incident particles. One therefore 

considers excitation of the states 2pQ, 2j> ^ ^ of the hydrogen atom, 

where 0, • 1 refer to the values of the magnetic quantum number m defined 

with respect to axis of quantization in the direction of the incident 
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beam. The e x c i t e d s t a t e s have c y l i n d r i c a l symmetry so i t i s no t necessary 

to d i s t i n g u i s h between the s t a tes 2 p + ( and 2 p . t , and the angular 

d i s t r i b u t i o n o f the r e s u l t i n g r a d i a t i o n w i l l a lso possess such symmetry. 

From the conse rva t ion laws o f angular momentum i t f o l l o w s t h a t the 

t r a n s i t i o n s 2 p t | —*7 1s and 2pt -v 1s are accompanied by the emiss ion 

o f a photon i n a d i r e c t i o n p a r a l l e l to and pe rpend i cu l a r t o Oz, r e s p e c t i v e l y 

One would t h e r e f o r e expect 

l 

. I _ = Q ( 2 p „ ) = x ( S . l v . l ) 

i " QC2P. ) 

and consequent ly , f r o m ( 1 ) , 

P = 1 - x . (8. Ur. I ) 
1 + x 

I n f a c t , the above e x p l a n a t i o n i s v e r y crude and no al lowance has been 

made f o r the e f f e c t s o f the sp ins o f 

a ) the atomic e l e c t r o n ( f i n e s t r u c t u r e ) 

b ) the nucleus o f the hydrogen atom ( h y p e r f i n e s t r u c t u r e ) 

c ) the i n c i d e n t p a r t i c l e . 

Penney (1932) showed t h a t suoh e f f e c t s are i m p o r t a n t . P e r o i v a l and Seaton 

(1958) c a r r i e d o u t a d e t a i l e d c a l c u l a t i o n and ob t a ined the f o r m u l a 

P = 1 - x ( S . t . O 
a + bx 

where x i s d e f i n e d by ( 2 ) and a and b are cons tants which express the 

e f f e c t s o f the s p i n s . 
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For the 2p - 1s t r a n s i t i o n i n hydrogen 

a = 2 .375 , b = 3.749, 

so i t can be seen t h a t al lowance f o r these e f f e c t s reduces the p o l a r i z a t i o n 

t o about one t h i r d o f i t s uncor rec ted v a l u e . 

P depends on the t a r g e t gas and on the mass and v e l o c i t y o f the 

i n c i d e n t p a r t i c l e s , and i n general numer ica l va lues can o n l y be ob ta ined 

by d e t a i l e d c a l c u l a t i o n s o f the cross sec t ions Q ( 2 p „ ) , Q ( 2 P 4 J ) • F e n n e m a 

(1963) considered the problem o f d e t e r m i n i n g the p o l a r i z a t i o n o f Lyman-

r a d i a t i o n f r o m hydrogen atoms e x c i t e d by a beam o f e l e c t r o n s o r o t h e r 

p a r t i c l e s . He used the Born approx imat ion to o b t a i n a n a l y t i c express ions 

f o r Q ( 2 p t f ) , Q ( 2 p t , ) and then a t tempted to represen t the r e s u l t i n g 

express ion f o r F a n a l y t i c a l l y as a f u n c t i o n o f the mass and energy o f 

the incoming p a r t i c l e s by expanding these cross sec t ions i n terms o f two 

parameters r e l a t e d to these q u a n t i t i e s , and s u b s t i t u t i n g i n (4-) . The 

va lues o f P( so o b t a i n e d decrease f r o m + 0.28 a t 1 ev to - 0 .24 a t 850 k e v . 

These va lues were used by Stebbings e t a l (1965) (See Chapter 1 J 4.) 

The p o l a r i z a t i o n o f the Lyman - «. r a d i a t i o n e m i t t e d by hydrogen 

atoms i n the 2p s t a t e formed by the capture process 

H* + H ( 1 s ) - * H ( 2 p ) + H + 

i s a lso o f i n t e r e s t i n the a n a l y s i s o f exper iments . The presen t author 

has used ( 3 ) and (4) to c a l c u l a t e va lues o f the p o l a r i z a t i o n P e , P f r o m 

the OBK cross s ec t i ons g i v e n by van den Bos and de Heer ( 1 9 6 7 ) , and cross 

s ec t i ons c a l c u l a t e d by McELroy (1963) u s ing the two s t a t e approx imat ion 
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I t should be no ted t h a t s ince Q ( 2 p y ) = 0 , Q ( 2 p x ) = 2 Q ( 2 p 4 4 ) . 

BK ( 2 ) 

Resu l t s are g iven i n t a b l e ( 1 ) , denoted by P , P r e s p e c t i v e l y . 

I t was shown i n Chapter 7 & 4 t h a t cross sec t ions f o r capture i n t o 

d e f i n i t e magnatio substa tes can be ob t a ined us ing the impulse approx imat ion 
IMP IMP and the r e s u l t s have been used to eva lua te P . P , va lues o f which o * 

are g i v e n i n t a b l e ( 2 ) . 

Values o f P g iven by the t h r e e t h e o r i e s are compared i n f i g ( 1 ) . I t 

( 2 ) BK 
can be seen t h a t P tends t o P a t h i g h ene rg ie s , and b o t h take the 

IMP 

va lue 0.339 a t 800 kev . P decreases much more r a p i d l y w i t h i n c r e a s i n g 

energy . 
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Table 8 . 4 . 1 . 

P o l a r i z a t i o n f o r process H + + H ( 1 s ) H ( 2 p ) + H + 

Energy 
( k e y ) 

OBK approx imat ion 
van den Bos and de Heer (1967! 

p f P B K 

Two-state ap 
McELroy 

p ( 2 ) 

p r o x i m a t i o n 
(1963) 

p ( 2 ) 

0.5 0.707 0.339 • - -
1 0.698 0.336 . -
5 0.661 • 0 .326 - -

10 0.644 0.321 - -
25 0.638 0.319 0.669 0.257 

50 0.652 0.323 0.737 0.288 

• 100 0.671 0.328 0.786 0.312 

150 0.682 0.332 -
200 - - 0.816 0.326 

250 0.693 0.335 • . - -
400 - - 0.832 0.334 

500 0.703 . 0 . 338 . - -
800 - - 0.841 0.339 

1000 0.709 0.339 - -
2500 0.711 0.340 



Table 8 . A . 2 . 

Energy 
( k e v j 

Impulse approximat ion 
-IMP _IMP 
-o * 

0.97 0.726 • 0.283 

1.89 0.794 0.316 

2.68 0.858 0.347 

4 .44 0.889 0.363 ^ 

6.23 " 0.886 0.361 

1 0 « 7 0.871 0.353 

15.4- 0.860 0.348 

22.8 0.850 0.343 

; 32.8 0.840 0.338 

56.3 0.817 0.327 

79 . 0 .796 0.317 

103 0.771 0.305 

156 0.733 0.282 

217 0.683 0.264 

285 0.656 0.251 
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5) Angular d i s t r i b u t i o n s and t r a n s i t i o n p r o b a b i l i t i e s . 

I t has f r e q u e n t l y been s t a t e d t h a t , f o r rearrangement c o l l i s i o n s 

i n v o l v i n g heavy p a r t i c l e s , the m a j o r i t y o f p a r t i c l e s are s ca t t e r ed th rough 

v e r y s m a l l ang les , so t h a t the d i f f e r e n t i a l cross s e c t i o n i s ve ry s t r o n g l y 

peaked i n the f o r w a r d d i r e c t i o n . I t i s o f i n t e r e s t t o cons ider the f o r m 

o f the angular d i s t r i b u t i o n g iven by v a r i o u s approx ima t ions . 

Bassel and Ger jouy (1960) p l o t t e d ( t J 2 as a f u n c t i o n o f p 2 f o r 

the process 

H + + H ( 1 s ) H ( 1 s ) + H + , ( f . 5 . 0 

u s i n g bo th and T ^ . They f o u n d t h a t I T ^ I i s s h a r p l y peaked about 

2 2 

p = p m ; A ( 6 = 0 ) and decreases s t e e p l y to a deep minimum as the va lue 

o f p i s inc reased . Th i s minimum i s caused by c a n c e l l a t i o n o f terms a r i s i n g 

f r o m the two p o t e n t i a l s ^23' ^ e ^ ^ ° H ° w e d a " t a i l , which 

corresponds to s c a t t e r i n g by the p o t e n t i a l t h rough l a r g e r angles 

( though s t i l l l e s s than one degree ) , and which c o n t r i b u t e s s i g n i f i c a n t l y 

t o the cross s e c t i o n . The angular d i s t r i b u t i o n o b t a i n e d us ing .T?^ i s 

much more s t r o n g l y peaked i n the f o r w a r d d i r e c t i o n and the t a i l i s 

e f f e c t i v e l y c a n c e l l e d . 

The angular d i s t r i b u t i o n f o r process ( 1 ) ob t a ined by Coleman (1965) 

u s i n g T^F = I 2 . j (see ( 7 . 3 . 1 ) ) i s shown i n f i g . ( 1 ) . For each energy 

i L y t ^ takes i t s maximum va lue a t p = p m i l ( k and decreases as p i nc reases . 

Thus, as p o i n t e d o u t by Bransden and Cheshire ( 1 9 6 3 ) , a l though the a c t u a l 

c ross sec t ions f o r process ( 1 ) g iven by the Born and impulse approximat ions 

do no t d i f f e r v e r y much, t he re i s a cons iderab le d i f f e r e n c e i n the angular 

d i s t r i b u t i o n s . 



Curves s i m i l a r t o those shown i n f i g . ( 1 ) were ob t a ined f o r a l l the 

processes i n v e s t i g a t e d by the presen t a u t h o r . T y p i c a l r e s u l t s are shown 

i n f i g s . ( 2 ) and ( 3 ) . 

I f the impact parameter method i s used, the p r o b a b i l i t y o f e l e o t r o n 

capture i n t o s t a t e f o c c u r r i n g a t an impact parameter n i s g iven by 

When a s t r u c t u r e l e s s p r o j e c t i l e 1 c o l l i d e s w i t h a bound system 

( 2 + 3 ) there are t h r e e p o s s i b i l i t i e s t -

a ) A d i r e c t c o l l i s i o n may take p lace i n wh ich p a r t i c l e 1 i s 

s ca t t e r ed l e a v i n g the bound system i n e i t h e r the ground o r 

an e x c i t e d s t a t e . 

. b ) The t a r g e t may be i o n i s e d , 

c ) A rearrangement c o l l i s i o n may o c c u r . 

For a p a r t i c l e i n c i d e n t a t impact parameter p , the sum o f the p r o b a b i l i t i e 

o f these th ree events o c c u r r i n g must be u n i t y and t h e r e f o r e any p h y s i c a l l y 

mean ing fu l approx imat ion w i l l g ive a p r o b a b i l i t y l e s s than one f o r event 

( c ) . S c h i f f (1954) showed how r e s u l t s ob ta ined using a wave f o r m a l i s m 

cou ld be used to determine the capture p r o b a b i l i t y a t an impact parameter 

p , t hus p r o v i d i n g a t e s t on the approximate wave method used. 

The method depends on the f a c t t h a t f o r rearrangement c o l l i s i o n s the 

angu la r d i s t r i b u t i o n o f the s ca t t e r ed heavy p a r t i c l e s i s ve ry s t r o n g l y 

peaked i n the f o r w a r d d i r e c t i o n , and consequently p a r t i a l waves o f v e r y 

h i g h angular momentum must c o n t r i b u t e t o the cross s e c t i o n . 

( 5 . 1 . 1 1 ) as 

P = \ b f ( co ) \ 2 . 



I n the f o l l o w i n g a n a l y s i s , c^ o r c ( p ) i s w r i t t e n i n p lace o f b f ( » ) • 

The f i r s t step i s t o expand T ^ i n terras o f .Legendre p o l y n o m i a l s , 

oo 

Tif • — I >̂ ( U n l ^ ^ U ) . U.S. a) 

Ifee o f t h i s i n ( 2 . 3 . 1 9 ) g ives 

Since a l a r g e number o f 1 va lues c o n t r i b u t e to the cross s e c t i o n , the 

c l a s s i c a l r e l a t i o n 1 -pk^ can be used to t r a n s f o r m the summation w i t h 

r espec t t o 1 i n t o an i n t e g r a t i o n w i t h respec t t o p , g i v i n g 

Comparison w i t h ( 5 . 1 . 1 2 ) shows t h a t | c ( ^ j ) | ^ i s the p r o b a b i l i t y o f 

capture a t impact parameter^) • 

Using the o r t h o g o n a l i t y o f the Legendre p o l y n o m i a l s , i t f o l l o w s 

f r o m ( 2 ) t h a t 4 ( 

d p } J f . f t Mfr f T.j. \ (ccse^Hcose). ( 8 .5 .3 ) 

air i 
T y . i s apprec iab le o n l y f o r smal l va lues o f 6 , and f o r such d 
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But i I 

3* W; k j . 

so f o r smal l 0, 9 - / P*" T-.m - r» 

. * 

Also a sr 1 , ~ k f and y u ; - • 

I f these approximat ions are made, and p i s r ep laced by i n f i n i t y , ( 3 ) 

becomes ^ 

. ( / . " ) . ' _ !_ { T ; > T. Lf^JZ^JU,*). u . 5 . o 

I MM 

For the t r a n s i t i o n 

H + + H ( 1 s ) - 9 H ( 1 s ) + H + , 

express ion ( 4 ) can be eva lua ted i n c losed f o r m f o r the OBK and Born . 

approx ima t ions # Brinkman and Kramers (1930) ob t a ined 

where 

x = p ( I • v V 4 ) , 
and S o h i f f (1954) showed t h a t 



K ^ ( x ) i s the m o d i f i e d Bessel f u n c t i o n o f the second k i n d o f o rde r n . 

Values o f the t r a n s i t i o n p r o b a b i l i t i e s c a l c u l a t e d f r o m (5), ( 6 ) 

BK 

l e d Bates and M c G a r r o l l (1962) to conclude t h a t Q ( 1 s ) i s too l a r g e a t 

25 kev and u n r e l i a b l e a t energies w e l l above 100 kev and t h a t the v a l i d i t y 

o f the Born approx imat ion may be d o u b t f u l up to 100 kev* 

T r a n s i t i o n p r o b a b i l i t i e s f o r processes (7.5*1) to (7.5.8) have been 

c a l c u l a t e d by Coleman (1965) and by the presen t au tho r , u s ing (4) and 
IMP 

c a l c u l a t e d va lues o f . For the non-resonant r e a c t i o n s the t r a n s i t i o n 

p r o b a b i l i t y i s f o u n d t o be l e s s than u n i t y f o r a l l energies and impact 

parameters , bu t i n the case o f a c c i d e n t a l resonance i t exceeds u n i t y f o r 

energies l e s s than 100 kev . For example, f o r (7.5.7) and an i n c i d e n t 

energy o f 64 kev , i t takes va lues 1.5, 1.1 a t p - 0, 1.0 r e s p e c t i v e l y . 

For the symmetric process u n i t a r i t y i s v i o l a t e d a t energy 25 kev, | c ( (* ) \ 2 

t a k i n g values 1.03, 1.02 a t /? = 0, 0.1, bu t a t h ighe r energies i t i s 

always l e s s than u n i t y . 

I f a graph o f p ( c [p )l 2 aga ins t p i s drawn, the area underneath 

i s p r o p o r t i o n a l to the cross s e c t i o n , so i t can be seen which range o f 

va lues o f impact parameter i s the most i m p o r t a n t . I n f i g s (4), ( 5 ) 

va lues o f /> Ic( ;> ) l 2 f o r process (1) g iven by the OBK, Born , McGar ro l l and 

impulse approximat ions are compared. C l e a r l y the OBK and impulse 

approximat ions f a v o u r s l i g h t l y c l o s e r encounters than do the o t h e r two. 

Values o f ^ | c ( p ) | 2 g iven by the impulse approx imat ion f o r processes 

(7.5.4), (7.5.7) are p l o t t e d i n f i g s (6) and (7). 
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6) Conclusion,. 

For pro ton-hydrogen c o l l i s i o n s the impulse hypothesis ( t ha t f o r 

the duration o f the c o l l i s i o n the e f f e c t s o f the binding forces are 

unimportant) cannot be expected to be v a l i d at energies below 25 kev. 

Furthermore, the work of McCarroll and McElroy, discussed i n Chapter 5& 2, 

indicates t h a t , f o r the processes 

H+ + H (1s) H ( l s : 0 r 2s) + H + , 

back coupling i s important at energies below 30 kev. The impulse 

approximation makes no allowance f o r back coupling, and consequently the 

computed t r a n s i t i o n p r o b a b i l i t i e s exceed u n i t y at low energies and small 

impact parameters. Values o f ( n l ) may therefore be too large a t 

energies below 30 kev. For these reasons the disagreement of Q I M P (2s) 

w i t h the experimental resu l t s of Bayf ie ld i s not unexpected. The lack 

of agreement between Q I M P (2s) and the r e su l t s of Byding e t a l (as 

renormalised by Gai ly) i s more d i s tu rb ing . Q 1 ^ (2p) appears to agree 

w e l l w i t h the values obtained by Stebbings e t a l but recent measurements 

have shown tha t these are not r e l i a b l e . 

Comparison w i t h experimental values o f t o t a l capture cross sections 

cannot be made u n t i l estimates of the cross sections f o r capture in to 

a l l exci ted states o f the p r o j e c t i l e are ava i lab le . I t was shown i n $ 2 

tha t the values of Q I M P (3s) and Q I M P (3p) calculated by the present 

author enable r e l i a b l e estimates to be obtained. However, i t i s clear 

from f i g s (8.2.4>), (8 .2 .5 ) that t o t a l cross sections predicted by the 
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impulse approximation l i e below the experimental values. The reason 

f o r the discrepancy i s not known but Coleman has suggested that i t may 

be due to an inconsistent treatment of the e f f e c t s of the po ten t i a l V^, 

Since i t s e l f has been neglected completely i n a l l the ca lcula t ions , 

there i s an unscreened Coulomb potent ia l ,and the boundary conditions 

on the wave func t ions should be a l t e red . Thus the plane wave i n (pj, 

should be replaced by a Coulomb wave* 

For c o l l i s i o n s of alpha p a r t i c l e s wi th hydrogen atoms, the impulse 

hypothesis should be v a l i d atenergies above 100 kev. At lower energies 

i t was found tha t the t r a n s i t i o n p r o b a b i l i t i e s exceed un i ty f o r the 

accidental ly resonant processes. Values o f the cross sections at low 

energies are i n any case meaningless because the e f f e c t o f the Coulomb 

repuls ion between the c o l l i s i o n products i s neglected. No conclusions 

can be drawn about the accuracy o f the resu l t s at high energies because 

experimental r e su l t s are available only at energies below 36 kev. 



chapter. 9i 

THE HIGH ENERGY BEHAVIOUR OF ELECTRON CAPTURE 

CROSS SECTIONS 

1* Review of previous work. < 

Several attempts have been made i n recent years to determine the 

high energy form o f the exact cross section f o r electron capture processes. 

However, even f o r the simplest react ion 

H + + H (1s) — H (1s) + H + , 

no rigorous der iva t ion o f the high energy l i m i t has ye t been given. The 

res t o f t h i s chapter i s concerned w i t h t h i s react ion. I f the asymptotic 

forms o f the various approximations considered i n t h i s thesis are compared, 

a d i f fe rence i s immediately apparent between f i r s t and second order 

methods. This i s not surpr i s ing i n view of the f a c t tha t v i r t u a l 

t r ans i t i ons to exci ted o r continuum states play an important par t i n the 

capture process at high energies since the capture cross section becomes 

small i n comparison w i t h that f o r e i t he r exc i t a t i on or ion iza t ion* Second 

order methods attempt to take some account of these t r ans i t i ons whereas 

f i r s t order methods ignore them completely* The present s i t u a t i o n i s 

b r i e f l y as f o l l o w s . 

Suppose f i r s t that terms o f order VM are neglected. Then the f i r s t 

Born approximation gives 

QB ~~> 0.661 Q B K ; 
V -no* ' 



the d i s to r t ed wave methods of Bassel and Gerjouy, and Grant and Shapiro, 

and the two state approximation o f McCarroll , give 

3 » <i » ^2 ~ J 4 f 

the continuum d i s to r t ed wave method of Cheshire, the d i s to r t ed wave method 

of McCarroll and Sa l in , and the second Born approximation of Drisko give 

[o.2<\k>b 4 Sjv^j Q , (1 .1 .0 

and the t h i r d Born approximation o f Drisko gives 

a ^ 0 , 3 1 1 ^ SJW A a 

where the Brinkman-Kramers cross section 

Q = a 

I f terms of order 1/M are included, and the protons are regarded as 

d is t inguishable , back scat ter ing eventually becomes the dominant process, 

and . 

a , a — ' 1^- V . ( < u . 2 ) 

Bransden and Cheshire (863) considered the high energy form of the 

impulse approximation cross section and showed tha t , i f the e f f e c t of the 

internuclear p o t e n t i a l i s neglected, 
ii 

a 
I M P / \ / \ 



lib 

B2 

This d i f f e r s f rom the high energy form o f Q only by a f a c t o r of 2 i n 

the second term. I t i s i n t e re s t ing to note that a simpler version of 

the continuum d i s to r t ed wave method, obtained by replacing i n 

(6 .2 .6 ) by J ^ e ^ p f - i ^ ^ R - v O j instead of by X ; , y i e ld s a 

cross section whose asymptotic form i s given by ( 3 ) , instead of by ( l ) . 

The missing f a c t o r o f 2 may arise because the wave func t i on 

$ ; « x p j - i J u ( v R - v*fc^j and the impulse approximation wave f u n c t i o n 

used by Bransden and Cheshire do not s a t i s f y the correct boundary 

condi t ions . 

Coleman (1965) showed that, although the matr ix element I 1 2 , 

i nvo lv ing the in ternuclear p o t e n t i a l , vanishes i n the l i m i t /M tends to 

zero, nevertheless, as i n the Born approximation, i t determines the 
asymptotic form o f the cross sect ion. Thus 

~ I M P , -b 
Q. w 14 V 

3M* 

which i s the same as ( 2 ) , I f i s re ta ined, i t i s inconsistent to 

replace co„ by u n i t y . However, Coleman was. able to show tha t such 

a replacement does not a f f e c t the r e s u l t . He also carr ied out de ta i led 

calculat ions which indicate that the v~^ behaviour occurs only when 

Mj = Mg, and the v ~ ^ behaviour i s correct f o r a l l other cases. 

2) The high energy behaviour of a modif ied f i r s t Born approximation. 

Although second order methods appear to favour the second Born 

approximation r e s u l t , the convergence o f the Born series (and of the 

usual d i s to r t ed wave Born series) i s i n some doubt, and i n any case the 



work o f Drisko suggests that t h i r d and higher order Born terras are 

important . . I n Chapter 4 I 1 , the d i s to r t ed wave formalism o f Dodd and 

Greider was used to obta in a new i n t e g r a l equation (4*1.18) f o r the 

exact d i s to r t ed wave t r a n s i t i o n operator. I t was shown tha t the kernel 

o f t h i s equation could be made completely continuous. Thus the d i f f i c u l t i e s 

associated w i t h the usual Born and d i s to r t ed wave Born series do not occur 

w i t h the series obtained by i t e r a t i o n of t h i s equation, and i t may be that 

the inhomogeneous term y ie lds the correct high energy l i m i t of the exact 

t r a n s i t i o n amplitude. This w i l l c e r t a in ly be true i f the i t e r a t ed series 

converges to i t s f i r s t term, but the convergence has not ye t been considered, 

With the choice = 0, = Vg^, the inhomogeneous term i s given 

by (4 .1 .21) ; 

I f Up = 0 also, T j J reduces to a modif ied f i r s t Born approximation matr ix 

element 
MB 

The high energy behaviour o f T ^ has been invest igated by McGarroll 

and Sa l in (1967b), but they made an approximation which had the e f f e c t 

o f replacing 

- ^ qf."'."V 5 — * J > < x J v : l < ? : > , 
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(Coleman, 1968) where the wave func t ions ^ ^ a r e solut ions o f the 

equation 

They made three d i f f e r e n t choices f o r U f , one being = 0 i n which 

IMP 2 MB case t h e i r matr ix element reduces to T ^ instead o f to T^. • I n 

order to evaluate the in tegra l s they obtained, they were forced to. make 

rather crude peaking approximations s imi la r to those described l a t e r i n 

t h i s chapter. The choices = 0, = l e d to cross sections w i t h 

the same asymptotic form as (see 9*1*3), while a d i f f e r e n t choice 
CD 

gave the same r e s u l t as Q (see 9 .1 .1)* 

The work described i n the res t of t h i s chapter was undertaken i n 

MB 

an attempt, to determine the high energy behaviour o f T^j. • The 

approximation introduced by McCarroll and Sal in has not been made. 

T^jP may be w r i t t e n 

m MB _ m B _ M 
i f ~ A i f A i f ' 

where T ; J . < « r > i v J — i ( W j \ q > : > 
e - H - - v I 1 . V 1 | * : * 

> I ( V 1 S , V J 4 K V ^ V . O * T(V ( X ,V , ,V I ( V U F O , (H.2A) 

where 



To s i m p l i f y the matr ix element I ( U , V ) , complete sets of solutions of the 

equation 

are introduced, so tha t (2) becomes 

provided that the func t ions ^ M are orthonormal. 

Equation (3) may be w r i t t e n 

M M( M + 1) where a = >M-= — 1 » and. M i s the mass of a pro ton 0 I f 
M + 1 / 2M + 1 

terms o f order l/l>l are neglected, the r i g h t hand side o f t h i s equation 

vanishes, and X K may be w r i t t e n as the product o f two Coulomb func t ions . 

I t takes e i ther the form 1 

where ^ K I M I ^s ) i s a hydrogen bound state wave f u n c t i o n , and 

Fg ^|2^ are continuum hydrogen wave func t ions , 

-''4 / \ r / l 

o r 

where _ „ A 
V 2 0./,. . / \ 
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The summation sign i n (4) denotes a summation over a l l bound states 

and integrat ions over k and K. I t i s convenient to consider contr ibut ions 

from intermediate bound states X n ^ and from intermediate continuum 
c 

states X * separately, so (4) i s w r i t t e n 

where 

I (U , V) . = r (U , V) + I c (U , V) 

and 

w i t h 

and 

i l 

i ' ( u , v ) 

1 

I n the f o l l o w i n g work,terms of order / M compared w i t h un i ty are 

neglected. Thus f o r example, V i s w r i t t e n Vk» Some o f the nota t ion 
used i s now introduced 

In teg ra l s o f t h i s k ind have been evaluated by Podolsky and Pauling 

(1929) and by Massey and Mohr (1931)• The analysis i s given i n appendix (2] 



181 

I n the notat ion of chapter 3 § 1, 

•Write 

f E ( a , * , f l ; s I e e ,F,L i<* , I , i ( - K . ^ ) ] , (1 .3 .8) 

These in tegra l s may be evaluated using a technique due to Nordsieck. The 

method i s described i n appendix (3) and the resu l t s are given here f o r 

reference. 

where 

and 

where 

— i J > 

» a 4 Q* 

8TT F ; 

( i . a . u ) 

( i . a . u 
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3) The con t r ibu t ion from intermediate bound states. 

Evaluation of the matr ix elements. 

Write N , » * r ( I • i M . 

0 <^fl Vnl A ' > 
I f the p o t e n t i a l ( r ) i s w r i t t e n i n terms o f i t s Fourier 

transform, then 

Because the bound state wave f u n c t i o n T-(J ( O contains a decaying 

exponential f a c t o r , the i n t e g r a l w i t h respect o f x i s uniformly convergent 

f o r a l l values o f t . However, the same i s not t rue o f the p i n t e g r a l , 

and to enable the order o f the x and ^ and t in tegra t ions to be 

interchanged, a convergence f a c t o r e. 1 i s introduced. The 

l i m i t X - » 0 i s taken a f t e r a l l in tegra t ions have been performed. 

Then 

<<ftlvnlxK

k>= A _ j j} W . - ^ > < - » < 

where t^ = K - k f , and 

are defined by ( 9 . 2 . 7 ) , (9 .2 .9 ) respect ively . . 
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a) The intermediate ground s ta te . 

The ground state hydrogen wave f u n c t i o n i s 

Now / . v « 

and <dg ( A / t f j fl*) i s given by (9.2.12) 

Subs t i tu t ing these values i n ( 1 ) , the t - i n t e g r a l i s 

J * ( ife F, ^ , (1 .3 .2 

where F 1 i s defined by (9.2.13) w i t h Q = t., - t , ot*-A . The t - integrand 

has two peaks, a very sharp one at t = t^ and a less wel l -def ined one at 

t = 0. The Coulomb f a c t o r i s a slowly varying f u n c t i o n o f t a t both 

peaks and, provided K f- kft the f a c t o r (4 + t ) = i s slowly varying f o r 

values of t near t ^ • The cont r ibu t ion to . J from t h i s peak can be w r i t t e n 

F. H ' O ' A ] , (1 .3 .5) 

where 

Thus, i f the con t r ibu t ion from the other peak i s neglected, and K $ k f , 

I n order to t e s t the v a l i d i t y o f the peaking approximation, the 

Coulomb f a c t o r F i n (2 ) was replaced by i t s value at t m t ^ , and the 



remaining i n t e g r a l was evaluated exac t ly . The analysis i s very lengthy, 

and w i l l not be given here, but the leading term, i n the l i m i t X-^0} 

which agrees exact ly w i t h r e su l t ( 3 ) . This f a c t provides some j u s t i f i c a t i o n 

f o r the neglect of the peak at t = 0. I t also indicates tha t although 
2 —2 

(4 + t )™ i s not a s lowly-varying f u n c t i o n of t near £ = t-j where 
2 ~2 

K = k j , , nevertheless the procedure o f replacing i t by (4 + t^ )~ and 

carrying out the remaining in teg ra t ion leads to the correct answer i n the 

l i m i t ^ —> 0 . This i s not surpr is ing since i n t h i s l i m i t the peak 

i n the other f a c t o r i s very much sharper. I t w i l l therefore be assumed 

that { Cfy \ VJJ I ^ „ } i s co r rec t ly given by (4) f o r a l l values 

of K. 

An expression very s imi la r to (4) may be obtained by a d i f f e r e n t 

method. Once the peaking approximation has been made, (1) may be 

w r i t t e n 
a"*Tf J fc* ' 

I f the order o f the £ and \ in tegra t ions i s reversed, which i s l eg i t imate 

provided A 4 0 t then 
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and 

where ^ Q ) i s defined by (9 .2 .3 ) 
and , 4 \ - i N 

= ) ' 
Equation (5 ) d i f f e r s from (4) only i n the appearance o f the f a c t o r f^ 

instead o f ( ^ " ^ ) > I n the present work i t i s immaterial which r e su l t 

i s used since the % - in t eg ra t ion involved i n the evaluation o f the 

expressions I (U , V) i s performed by the use of a peaking approximation, 

and the values at the peak of both the f ac to r s and f^ tend to 

un i ty i n the high energy l i m i t . I n the evaluation of the other matr ix 

elements, the method which led to (5) w i l l be adopted. 

b) Other intermediate bound states. 

The major con t r ibu t ion to the t - . i n t e g r a l comes from the region 

t = t ^ , due to the strong s i n g u l a r i t y i n the term 

which appears i n I f the s lowly-varying f ac to r s 

are removed from the i n t e g r a l , 

: • IT b* 

where G ^ ^ b , A) i s given by (A2.25). 



2 ) < ( f j . I V U u ! ) , 

I n d e r i v i n g the f o r m o f the i n t e r m e d i a t e bound s t a t e wave f u n c t i o n , 

the p o t e n t i a l V 1 9 = 1 was rep laced by , The same replacement i s 
™- R r 

made he re . 

Then ^ 

s N . %n% i i m f K * \ O 

i s w r i t t e n i n terms o f i t s F o u r i e r t r a n s f o r m and a convergence 

f a c t o r e i s i n t r o d u c e d . 

Then 

( a n ) " J 

where = K - ak^o 

At h i g h energ ies i t seems reasonable t o neg l ec t s i n comparison w i t h 

v i n the argument o f fain, } e s p e c i a l l y s ince G t f i ( s ) i s peaked about 

the va lue s = 0 . The remain ing s - i n t e g r a t i o n may then be c a r r i e d o u t 

t o g ive 

I T * 



i s * 

Then 

where 

and g H ^ ( y ) i s g i v e n by ( A 2 . 2 2 ) . 

F o r the i n t e r m e d i a t e ground s t a t e , 

I + V 

* * so t h a t . , „ , , , „ v *i ~ r " i 

4) . a ! iv,ja?:> 
I f V 1 Q i s r ep laced by M* i» i s w r i t t e n i n terras o f i t s F o u r i e r 

t r a n s f o r m , and a convergence f a c t o r e i s i n t r o d u c e d , then 

As i n the e v a l u a t i o n o f the argument s + v o f the 

F o u r i e r t r a n s f o r m i s rep laced by v . The remain ing g - i n t e g r a t i o n can 

then be c a r r i e d o u t e x a c t l y , w i t h the r e s u l t 

Tt (ui,M 
(1.3.1") 



I8S 

where 
.IS 

^ 5 ( y ) i s g iven by (A2 .28 ) , 

Since 8T\ 

( • « V ) a 

T ' M u / H u f c , ' ) 

The c o n t r i b u t i o n to the t r a n s i t i o n ampl i tude f r o m the i n t e rmed ia t e 

ground s t a t e . 

D e f i n e b " • f • L 

I > J U ( U , V ) = 3M[is < ^ m i x ^ X ^ i v i q > ; > 

where % - 2/* ^ f f " • 

a ) From ( 5 ) , ( 7 ) and ( 1 1 ) , i t can be seen t h a t 

i b IV V V I k (V V ) 

where 



The major c o n t r i b u t i o n to the i n t e g r a l i n (12) comes f r o m the range o f 

K near k~ i . e . t . . = 0, t 0 = - q * When K = k „ . S'AL * A and tends 
- f -1 2 T - " f k f . V f 

t o zero as V^. tends to i n f i n i t y . Since | N ^ | ^ —f 1 as \ -*? 0, 

the va lue o f C ^ g ) a t the peak tends t o 1 i n the h i g h energy l i m i t . I f 

the s l o w l y v a r y i n g f a c t o r ( 1 + t 2 ) i s a l so rep laced by i t s va lue a t 

the peak, one o b t a i n s 

T b ( V V ) v l b l v V ^ 

where 

The e v a l u a t i o n o f I 1 and I 2 i s . d iscussed i n appendix ( 4 ) . There i t i s 

shown t h a t 

There fore 

vMurt 

where <>M i m . and 9 i s the angle o f s c a t t e r i n g . 
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b) E v a l u a t i o n o f I „ b ( V ? 3 , V ^ ) • I* ( V 1 ? , V^) , 

From ( 5 ) , ( 7 ) and (9) i t f o l l o w s t h a t 

where C a ( t f • I N . ! * / t * V / _ H j L _ V 

\ ufc/- afc.fc,* J;K j 

The i n t e g r a n d has s t r ong peaks a t K = ak^ and a t K = k ^ . At the 

f i r s t o f these a s imple peaking approx imat ion may-be used, and the 

c o n t r i b u t i o n f r o m the second peak i s eva lua ted i n the way desc r ibed i n 

the p rev ious s e c t i o n . At each peak, ( & ) tends to u n i t y i n the h i g h 

energy l i m i t , and i t i s r ep laced by t h i s v a l u e . 

. Thus . 

= - i^n i _ j (s - j t _ V — I- u*\- * M\**t) - Mi*»OM 

* -iljL/i- !i- V a 1 " /-•» «• * - ifciliUlf)V 
v'UM Un 1)*/ v ^ ) 1 ! 5 . J . j ( i * k f * ) / 

1 
At h i g h ene rg ie s , the l e a d i n g t e rm i s the f i r s t . Thus 



I l l 

The c o n t r i b u t i o n f r o m o the r bound s t a t e a . 

From ( 6 ) , ( 7 ) , ( 8 ) and ( 1 0 ) , i t can be seen t h a t , i f n ^ 1 , then 

I f 1 

For each i n t e r m e d i a t e s t a t e a peaking approx imat ion i s used to 

eva lua te the i n t e g r a l s . The values taken a t the peaks by the Coulomb 

f a c t o r s ( N J 2 f., f . ,* and 1^1 2 f 1 F 2 * bo th tend t o u n i t y i n the h i g h 

energy l i m i t . These f a c t o r s are t h e r e f o r e o m i t t e d i n the f o l l o w i n g 

2 c 2 a n a l y s i s . Also k^ + 8 i s rep laced by k f . 

Then 

hi < v O • - 4 . 1 <*) f ** ( i . -O , 
W 1 J ( k , , - K , * » t ) k l * ( U l , ' ) 
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I t i s shown i n the appendix (A2 .25 ) t h a t ^ 1 ^ ^ ' / can be 

w r i t t e n ^ 

( y *>>.') 

where ft* *+\ , cos <3> s - fci. and < | i s the angle 
K M i 

between the plane o f - t ^ and and t h a t o f k^ and k ^ . The f u n c t i o n s 

H^ , T^ are d e f i n e d i n the appendix ( A 2 . 2 6 ) , ( A 2 . 2 7 ) . 

The c o n t r i b u t i o n f r o m 3 - s t a t e s w i t h n > 1 . 

Al though i t can be shown t h a t 

M - A - * . ) ] « A J L J I 1 i l l f u l l 

, K > I 

r ( 0 (" 

T h e r e f o r e , the r e g i o n K = k f , ( t ^ = 0 ) , p rov ides the major c o n t r i b u t i o n 

to the i n t e g r a l , A peaking approx imat ion i s used, g i v i n g 

where I 0 ( A , t ) i s g i v e n b y ( A 4 o l ) , 

and T 0 ( 0 } s / K . » ^ 

Thus b N to . NK - S 

I - ( V l t , 0 ~ a T T I H . f H I A - i x 

7) 



W i 1 J ( k f ' . l c M 0 i » * l i 4 t f ) 1 

The K - i n t e g r a n d has peaks a t K = k f , ( t ^ = 0)^and a t K = ak^, ( t 2 = 0 ) . 

Use o f a peaking approx imat ion g ives 

i i a L C « v t * ) a ^ ' — J 

I n the high energy l i m i t , the l e a d i n g term comes f r o m the f i r s t peak. 

. The c o n t r i b u t i o n f r o m p s t a t e s . 

n l J ( k , ' - K V , 0 t , ' ( . ^ , " ) ( / > M . O 5 

The major c o n t r i b u t i o n t o the i n t e g r a l comes f r o m the r e g i o n near K = k ^ , 

so a peaking approx imat ion i s used. I f the s l o w l y - v a r y i n g f a c t o r s are 

taken o u t s i d e the i n t e g r a l s i g n , and the v a r i a b l e o f i n t e g r a t i o n i s 

changed to then 

where 
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I t proves convenient t o c a r r y o u t the fcj - i n t e g r a t i o n i n a frame Oxyz 

w i t h z - a x i s i n the d i r e c t i o n and the plane o f and k^ as the 

x - z plane* L e t OXYZ denote the f rame w i t h Z - a x i s i n the d i r e c t i o n 

the xz and XZ p lanes be ing the same* S p h e r i c a l p o l a r coord ina tes 

i n the two frames are denoted by r e s p e c t i v e l y . 

Then, i n terms o f the angles @> $ d e f i n e d on page 1 ^ , 

and • ,p -. 

Xj®, i) - - x > ; v) « - 1 yJ*> <«>(>> r \ 

where the f u n c t i o n s are the elements o f the r o t a t i o n 

m a t r i x and T are the E u l e r angles o f the r o t a t i o n which takes 

Oxyz i n t o OXYZ. (see f o r example, Messiah (1962) p . 1 0 6 8 . ) 

I n the present case, 

<l*y = O j and ^ i s the s c a t t e r i n g ang le , Q» • 
Now 

• ni r /air 

where y = cos 0 , 
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The CP i n t e g r a t i o n g ives A"^Smiff)ao 

1 * ( I * , * ) 

where ' 

I • . _ f t 

and s u f f i c e s on t ^ and have been dropped. Since the lower l i m i t o f 

the t - i n t e g r a t i o n i s k , no t 0 , i t seems l e g i t i m a t e t o d i v i d e th rough 

by t and rep lace * ' f c by € . T h e n , c a r r y i n g o u t the y - i n t e g r a t i o n , 

one o b t a i n s 

= J t J * + 

where 

1 * I k ' 

and 



I t can be shown t h a t —*> 0 as € —?» 0 , 

and 

Thus, the l e a d i n g te rm i n the h i g h energy l i m i t comes f r o m and 

l l ( W „ ) • 0 ( „ • » ) „ , v - ~ - . 

*' J( i l f

, : i i*. : t )k 1 ' ( iO*( l i '*k ,0 ' 

The K - i n t e g r a n d has two peaks, a t t ^ = 0 and a t t ^ = 0 . The 

l e a d i n g term i n the h i g h energy l i m i t comes f r o m the f i r s t peak, and 

= 0 ( v ~ 8 ) a s v - > ~ . 

The c o n t r i b u t i o n f r o m d - s t a t e s . 

a) 1 . ( V 

The K - i n t e g r a n d i s s t r o n g l y peaked a t K = k f , and the i n t e g r a l i s 

eva lua t ed i n the usua l way* The r e s u l t i s 



H V 

H-4> 

and a 

Thua, 

b ) 0 ~ ( V O • M - ^ f So. 0 , - 0 • 

The In t eg rand has two peaks, one a t K = and the o t h e r a t K = ak.^« 

I n the h i g h energy l i m i t , the l e a d i n g te rm comes f r o m the f i r s t and i s 

0 ( v " 9 ) . 

The c o n t r i b u t i o n f r o m s t a t e s w i t h 1 > 2 . 
. 1 

For such s t a t e s , t i ^ u ^ ^ f e ^ 5 0 when t ^ = 0 , The major 

c o n t r i b u t i o n t o the K - i n t e g r a l s now comes f r o m the range o f K near 

ak^ ( t 2 = 0 )» Making the usua l peaking approx imat ion 

" V 
and 
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Then 

4 ) The c o n t r i b u t i o n f r o m i n t e r m e d i a t e continuum s t a t e s 

E v a l u a t i o n o f the m a t r i x elements 

D e f i n e N 4 « c H ( I -1 v > T ( 1 * i M . 

1) < ^ f i v „ u : > 

i s w r i t t e n i n terms o f i t s F o u r i e r t r a n s f o r m and a convergence 

f a c t o r €. i s i n t roduced* 

Then 

(lA.2, 

Using (9*2*12) t h i s may be w r i t t e n 

< « u v a . i x , : > * - U * . * J S » rife M » T 

where F ^ , F^ are g iven by ( 9 . 2 . 1 3 ) w i t h S = ^ - t , x = - A , and 

Q = k - a t , * « v , r e s p e c t i v e l y . 

The main c o n t r i b u t i o n to the t - i n t e g r a l comes f r o m the r e g i o n near 

£ = £-]> due t o the ve ry sharp peak i n the f a c t o r ( A • * ( £ • - O ^ 

a t t h i s p o i n t i n the l i m i t ^ - > 0 . Assuming t h a t the o t h e r f a c t o r s i n ( 2 ) 



are s l o w l y v a r y i n g near t h i s va lue o f t , the i n t e g r a t i o n may be c a r r i e d 

o u t t o give 

where F ^ , are t h e va lues taken by 7^, F^ when t = t ^ A d i f f i c u l t y 

a r i s e s i n the passage to the l i m i t ) - T O • From ( 9 . 2 . 1 3 ) , i t can be 

seen t h a t 

and t»*t V m / A / does n o t e x i s t . I n t h i s work , the d e f i n i t i o n adopted 

by Mapleton (19#7) has been used. He t o o k 

so t h a t , N 

The reason f o r adop t ing the d e f i n i t i o n ( 4 ) i s as f o l l o w s , 

-V 
The convergence f a c t o r , £. was i n t r o d u c e d i n t o ( 1 ) so t h a t the o rde r 

o f the t and p i n t e g r a t i o n s cou ld be in t e rchanged . However, suppose f \ 

i s equated t o zero be fo re the s t a r t o f the c a l c u l a t i o n (^1^231 ^ 

Then the i n t e r m e d i a t e s t a t e wave f u n c t i o n i s r ep laced by 
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The m a t r i x elements can be eva lua ted e x a c t l y , 

w i t h the r e s u l t 

Since j^£0 ^ = N ^ , comparison o f ( 3 ) and ( 6 ) shows t h a t 

i f l . * C p " / \ ^ a I , 

Th i s c o n d i t i o n i s s a t i s f i e d i f 

and t h i s i s the reason f o r the d e f i n i t i o n used. However i t must be 

s t ressed t h a t , s ince the i n t e g r a l i s no t u n i f o r m l y 

convergent w i t h respec t t o / \ , the re i s no reason f o r ( 7 ) t o be 

s a t i s f i e d , and the choice o f l i m i t made must be regarded as comple te ly 

a r b i t r a r y . 

The £ - i n t e g r a n d i n ( 2 ) has a second, l e s s w e l l - d e f i n e d peak a t 

t = +^ k. T h i s has been i g n o r e d i n d e r i v i n g ( 3 ) f o r reasons s i m i l a r 

t o those which l e d to the n e g l e c t o f the peak a t t = 0 d u r i n g the eva lua t io . 

o f the 1s bound s t a t e term (. CPj I V J 9 \ F t \ When the 

peaks c o i n c i d e , i . e . when k - at^ = 0 , ( 2 ) can be w r i t t e n approx imate ly 

as 

< % I V M l X ^ > » - ! . ' » 4N JF„F,.f Ik . 
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The i n t e g r a l can be eva lua t ed e x a c t l y , and the r e s u l t , i n the l i m i t A-7 0 , 

i s 
a t 

]L j r . 

Thus, when k - at^ = 0 , 

T h i s i s the same as the r e s u l t g i v e n by (3) when k = a t ^ . L a t e r i t w i l l 

be shown t h a t i t i s p r e c i s e l y those va lues o f k , K s a t i s f y i n g t h i s 

e q u a t i o n which are the most i m p o r t a n t , so the va lue o f 

g iven by (3) and (5) has been used i n the f o l l o w i n g a n a l y s i s . 

i . e . < ^ I V n l < > = - t N ^ F t . (l.fc.s) 

Arguments s i m i l a r t o the one g iven above.determined the choice o f 

peaks used i n the e v a l u a t i o n o f the o t h e r m a t r i x e lements . 

2) <<y f iv,, i * : > 

T h i s m a t r i x element i s zero because the f u n c t i o n s ( x ^ ^ ^ 5 ^ 

are o r thogona l . 

3) <xJZ\\n\(t-?> 

The i n i t i a l bound s t a t e wave f u n c t i o n i s w r i t t e n i n terms o f i t s 

F o u r i e r t r a n s f o r m 

4 
n " l J . . ( 1 4 , * ) ' . 



and convergence factors C , «. are introduced. Then 

Using (9.2.10), (9.2.12), this can be written 

where f ^ , F^ are given by (9.2.11), (9.2.13) with Q = k + (1 - &2)k± 4 as 
*>* \>, and Q = t ? 4 respectively. The major contribution 

to the integral comes from the region near s = -tg and the usual peaking 
approximation and use of (A) give 

where *-3 t h e value of f ^ when g = - t ^ . 

4) <x|| I V„l <gl> 

W-,5(c)is written i n terms of i t s Fourier transform, i s replaced by 
fp and convergence factors C , « are introduced. Then 

IV (1l(Pi> 

The §-integral i s strongly peaked about the value 
I B - 1 ( l - a * H i - i- ± . 

The integral i s evaluated in the usual way, with the result 

• 7 * Cki*«i-^y(i*(fc» 



and 

where i s given by (9.2,11) with 

3 = aK - k - k ±, <* » - \, * * O, 

= I - (using ( 4 ) ) . 

The contribution to the transition amplitude from the oontinuum 

intermediate states. 

1° (U,V) was defined by (9.2.5). I t proves convenient to introduce 
new coordinates P, (J defined by 

P = K - k f = t 1 , S = k - a K + k j L . 

Write € - £ f e ^ «. i € » ^/^^ . 

In terms of the new variables, 

A ( kf - (£*kfV^ - (a + 3* + 

This may be written 

"& - (t*§V - 3(1-*) P.Q - + -9 *p'- l a ^ -

Let C, * l M a \ F s , S-4J IF 61 j, 

C 4 . IN 4I* F w f f * " F 4 F * . 



From (8), (10) and (11), i t can be seen that 

and 

In terms of the new variables 

Consider (12). The main contribution to the integrations i n the k 
and K spaces comes from values of k, K satisfying 

k = at^, t 2 = 0 . 

The expressions (8) , (10) give the exact values of the matrix elements 
i n the l i m i t > 0 for 

these values of k and K. Similarly i n (13) the expressions used for 
the matrix elements < <$}\V„ I X* > , < X* I V r t I CP;> ore exact ( i n 
l i m i t >-»0 ) f o r the values of k and K which provide the major 
contribution to 1° ̂ 3 ' ^12^' therefore seems reasonable to suppose 
that (12), (13) provide a good approximation to the true matrix elements 
1° (U f V). I t can be shown that the values taken by the Coulomb factors 
C1 * C2 at the peaks of the integrand both tend to 1 as V — v 00. 
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Apart from the factor 0^, I C ( V 2 ^ , V^) i s identical with the second Born 
term I(V23» Y-j^) given by Drisko. He showed that 

The evaluation of I ^ V ^ j * V12^* 
The integrand i n (15) has peaks at 

5 = "P'P = r U « 

At the peaks ^ 

2 2 
where the relation p = q has been used. Thus 
- A at 1 Y t - 2* cosS) V* - ifc . 

a 1 . 

and th i s can be zero. A contour integral method similar to that used by 
Drisko for the evaluation of I0^^* ^13) i 0 therefore used. 
Let 

P = Q + aP - a j , Q = Q + p . 
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and 

There are strong peaks at j / = 0, = 0. A i s therefore replaced 
by A a } where 

with 

and 

and (P - Q • p + aq) , (Q - p) are replaced by (p + aq) , p 
respectively. Then 

Oylindrical coordinate systems are introduced for both integrations, with 
axes i n directions u, w . 
Then c i P ' - 7 i T T P / A P / J i P / , i Q'->3TT Q/ J Q/ i Q,'. 
The integrals with respect to P r and Qr are easily evaluated, giving 

where primes have been omitted. 



aoi 

The Q - integral may be evaluated using contour integration, taking as 
5 

contour the real axis and an i n f i n i t e semicircle i n the lower half plane. 
The integrand has a pole at Qz = -i, with residue * I 

The same contour may then be used to evaluate the P̂  integral. The 
residue at the pole P = -i i s L 

Z — — — — — — — (a; Y ( - 3 ^ * 

Finally, 
l'(v v ) * a* TT 

a»' 1 1 7 — — 

* J * IT 
•v*'( UJO ( V

I ( \ - 2 c o t e ) - J ; ( u ^ ) ) 

The imaginary part of the denominator i s only important when cos 6 = 
and then 

Thus 

However, i t was found that 

T W ( v v V ] k I v V ) ̂  - a*rc 
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and further analysis reveals that to obtain this result terms i n ̂ M* 
have been dropped. Therefore, for consistency, the term ^M 1 i s 
dropped i n (17) also. The imaginary term i s then insignificant, and 

5) Conclusion. 
I t was shown i n § 2 of this chapter that the modified f i r s t Born 

approximation transition amplitude can be written 

MB B M 
i f i f i i f 

where 

and 

T l f = T i f K + 

T i f = 1 <V23' V12> + I ( V23' V13 ) + I ( V12' V13 } * I ( V12' V12 }-
Bach separate term I(U, V) can be s p l i t into two parts 

I(U, V) = I b ( U , V) + I°(U, V) 

where I b , c (U, V) are defined by (9.2.5). 
I f terms of order /M are neglected 



The asymptotic forms which have been derived for the various terms 
M 

occurring i n T^, are given here for convenience. 

1) The bound state terms I b (U f V) The intermediate ground state terms 
- 2'H 

V-7rt> V 

(HA) 
_7 

The contributions from s states with n > 1 are of order v , while those 
—8 —9 

from p and d states are of order v , v respectively. For states with 
l > a. i £ < V ' „ > = OC T - 8 4 - ? 1 ) - ! , * , ^ , » „ ) - « , - * • " ) . 

2) The continuum state terms I C (U. V) 
I * ( V N O ~ - 3*T 

Xc ( v v ) ~ - J" 

Thus, i f terms whose asymptotic form .decreases with energy more 
rapidly than v~^ are ignored, the only contributions to the high energy 
form of T,~ come from the bound state terms I-,„(V0-, V.~) + I - (V-„, V._) i f \or 23 13 1s 12' 13 
and the continuum state terras I C ( V 2 ^ , V 1 2 ) , I C ( V 2 ^ , V ^ ) . Clearly 

t 
r 1 3 • i , * (v 2 3, v 1 3) • i , * (v 1 2,v 1 3) • i " n vn) = o, 

so, f i n a l l y , 
MB " »* " 
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The asymptotic form of Drisko !s second Born approximation i s given by 
the same expression. 

The work described i n this chapter i s unsatisfactory for several 
reasons. In particular, i t was found necessary to use rather crude 
peaking approximations to evaluate the formidable integrals which arise, 
and although the v a l i d i t y of the methods used was carefully tested 
wherever possible, the results cannot be regarded as rigorous. Further 
d i f f i c u l t i e s arise over the contribution from the bound state terms. 
I t has been assumed that the sum of an i n f i n i t e number of terms, a l l 
with the same energy dependence, i s f i n i t e , so that, for example, the 
contribution from a l l s states with n greater that 1 gives a term of order 
_7 

v • This assumption may not be correct. The present author intends to 
look at this point i n more detail but so far no alternative method f o r 
dealing with the terrh3 has been found. Finally, to simplify the analysis, 
terms of order VM have been dropped. 

For these reasons, no definite conclusions can be drawn. However, 
MB 

the work indicates that the asymptotic form of T^ may well be the 
same a3 that of the second Born approximation. 
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Appendix 1. 

Evaluation of the functions ̂  (K. n l f n). 

1) Introduction. 
Let the wave function i of the f i n a l bound state be 

referred to a frame of reference OXYZ with Z~axis along p and such that 
the XZ plane i s the plane of p and k^. I t proves convenient to carry 
out the x-integration involved i n the definition of "3 (K, n l , p) 
(see (7.3.11)) i n a frame Ox'y'z' with z-axis i n the direction of 

p - K, and with the plane of £ and p as the x'z' plane. (Then K 
li e s i n the x'z'plane.) Spherical polar coordinates i n OXYZ and Ox'y'z' 
are denoted by (x,G> , $ ) , (x, 6 f(f ) respectively. In order to perform 
the integration, expressions f o r the wave functions referred 

i i t 

to axes Ox y z must be found. In the present work i t i s only necessary 
to consider the cases 1 = 0, 1 = 1. Since the s state wave functions 
are spherically symmetric, they have the same form i n both frames. 

In the frame OXYZ, 
^ . u » Kt (»} Y u <®,4?\ 

where ^ ^ ( x ) i s the radial part of the wave function and t . 

The spherical harmonics Yi,*^®/^ transform, under rotation of 
the frame of reference, according to the equation 



a i2 

l 
where the functions *fc (tfjfi/'jO are the elements of the rotation 
matrix, and 7 are the Euler angles of the rotation which takes 
Ox'yV into OXYZ. (See, for example, Messiah (1962) p. 1068). In the 
present case, tisOt t*) and Y i s the angle Which the 

plane of p and X makes with that of p and k^. ( i . e . f i s Just the 
azimuthal angle for the K integration.) The elements of the rotation 
matrix for 1 = 1 are given by (7.4-.2). 
Since 

and N 

i t can be seen from (A1.1.1) and (7.4.3) that 

where the primes are used to distinguish wave functions referred to the 
reference frame Ox'y* z', the unprimed ones being referred to frame OXrz. 
Substitution of these expressions i n (7.3.11) gives 



313 

where, for conciseness, have been 
written as and U'(£,Mt, i s the result obtained by-
using i n (7.3.11) the wave function ^ ^ a ^ instead of 
That i s , ^ -

In the present work, the functions ^ (**0 are required for the 
following values of n l j 

2px> ZPy* ZPz' 3px» 3 py> 3 p z ' 
The value of ^'(3%) i s obtained by parametric differentiation of 
and the values for the 3p states are obtained from the corresponding 
expressions for the 2p states by the same technique. The basic integrals 
are given by Coleman (1965). I t proves convenient to define 

where the functions af^ (* f o r m = 1, 3, 4> 5 are defined i n 
the following pages. 

2) The evaluation of J( f t . 3sr p). 
I f f i n a l l y , the bound system i s i n the 3s state, the wave function 

i s . „v 
V 



then can be written 

The value i s found by evaluating the integral 

and using the fact that 

The analysis given here follows that of Massey and Mohr (1933) and 
McDowell (1961). 

Let n =-t* , cos $ » , v = , h. = p. . 
K " • • 

I f Rummer's transformation, 

(F, (a, bj x) = e x
 (Ft (c - a, c; - x) 

(see Erdelyi, 1953, Vol I p.253), i s used 



a\5 

(see Watson (1958) p.393). 
With V = 0, fk= 2(n + 1), a = 2J iKv, p - 1, this gives 

P(M«0 ), J 

2 
where the change of variable y = t has been made. Therefore, 

Now, i s the angle which the plane of ̂  and x makes with the 
plane of <} and K, and <?.x » cos». Therefore, i f K.<& » cosX, 
then 
v = cvb%) = x(l-f.sX«s0-*»KXswacosQ') e (A I . a.**) 

Parabolic coordinates C/0 are now introduced, where 

In this coordinate system, the volume element dx i s given by 

Since (4) becomes 

V * I »in*X/a ^ co$* X'a - i J j ^ CO»X/A S \ I * \ COS</. 

Therefore _„ 
' M 0* • *" » 
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where 
a , « p - i K - ; > , a, «|? - IK +; A, (ft 1,2.?) 
a i 3 -

* s 3« • 3 a " a 3 i * a cos 

l% = j 4 l K i j J * m ^ 2 and 5 x = A l K i ^ c o * X 4 • 

From Graf's addition theorem (Watson (1958), p.359), i t follows that 

Since 

L e icy = air. % 

(6) reduces to 

•H0 J 

I f one puts J s 3 ^ the J - integral becomes 

1 (Ai.a.O 
a, V a, / 

(see Watson (1958) p.393). 
The integration with respect to 1£ may be carried out i n a similar way. 
Thus 



From (7) i t i s clear that 
BL^&2 = c - i d 

where ' 

Also, 

c-il \ I c-\k 

where T = j * 2 + p 2. 
I f results (11) and (13) are used i n (10) i t becomes 

i,u^ " 3r\" 

Using (15) i n (2), one obtains 

Then, from (A1.1.2) i t follows that 

V T / \ C t . : j " 

lU+fl/ifo-t *) - (ail) + a j j ^ O ^ a } \ 
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and s c - ; i V V ft.• «, + * B A , (M . a . i ? ) 
I r / I T f T 5 T* J 

where %e - U(K-Q(/>-VK) + kuk-tXn-aXft •*O* , 

c -U 

I f (16) and (17) are substituted in ( l ) , the result is 

where 

si JS7 3 

C - l J l 

A4 = i3UQ(»v»a)<ftU4 3/fl + a u U * 0 U + a ) « V (ft- i t) y 

i 3 
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3) i ) The evaluation of "3 (ft. 2D^. y). 

The 2p wave function is z 

Therefore, 

The parabolic coordinates introduced in the previous section are again 

used. Since 

*co*<9 * 1 ( $ - ^ ) , 

(3) becomes « » — 

where a^ a.,, z 2 , Z are defined by (A1.2.7). Using (A1.2.8), and 

carrying out the integration with respect to C f ^ i t can be seen that 
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where 

* i a* / 

From (A1.2.7), (A1.2.11), (A1.2.12), i t follows that 

where yu. s cos X . 

Substituting this result in (5), and using (A1.2.11), (A1.2.12) one 

obtains 00 

I f (6) is substituted i n (-4), the result is 

where 

( c - ; J l r 
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Finalty, 

where K , Sit r 

i i ) Evaluation of 3 fK. 2D . D / 
Since V/.,, I a) a x SIK 0 cos (/> «. 

From i t follows that 

and therefore, using (A1.2.3), (Al.2.8), (9) can be written 

where 

* W I O j »«. * ±1 However, • 1 Co»CP - ^ J 

and J . t ( 0 - - J . fO-

(11) therefore reduces to 



Consider the integral • * 

Using the Bessel function recurrence relation 

with V = 0 y and the result (A1.2.9), yields 

^1 

Thus 

^ 1 * a, / 

and therefore 

Finally, substitution in (10) yields 

(8) may therefore be written 

(AI.J.M*) 
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where 

A, = - i f o - l O , 

i i i ) The evaluation of ?^(&» 2p . g) . 

The 2p wave function is 

W-,„ a at 3C S»H © &•* CP «. 

so that 

-i'lt.tt,,,) • - 1 C ' f - ^ O , 

where 

The integrals in this case take the form 

iir, 
- i l l , ** • • I -

Therefore 
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This expression vanishes since J_.,(z) = J-j(z) and consequently 

(5» 2py» £) = 0 

3) i ) The evaluation of V ( g f 3p_, a). 

V 3 ( ? ) = 3**'* X ( 6 * ofx^ oxf> ("* j ^ t * * ^ _> 
P* si JH" 

where ly_U,fk), U,^) are defined by A1.3.2), (A1.1.2) 

respectivelye 

3 i s given by (A1o3.7), and 

* * T ' \ T T* T / 

where 8 9 * - > ( H . f l . aMH»i)(H-a)(ft-lO > 

6, * U 4 i X ^ 4 / u K 0 * un(nSflU-aVft O a( * * * * ft) 

B4 s Ku.U*tiU*i) - S U f l ^ O U V l A K f t f o - i O f V * •**''/*) 

o r < l 

Therefore 
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where N . = IfciU. loL . , /J « i > 

-̂ 41 K»\ ( «*4 

i(c-vA) V J 

ft, = - i«p ^(^O^aV^s) 4 V^UaV^s) ty1 v k4.;ft V 



i i ) Evaluation of ^ (jC, 3 P j c > B ) . 

giving 

where <*v f *'^» % are defined by (A1.3.9), (A1.1.2) 

and the value of is given by (A1.3.12). 

1 . 
Therefore 

where . 
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i i i ) Evaluation of 3 ?P • £ ^ 

The 3p wave function is 

so that to» \ 

and is zero for the same reason as 
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Appendix 2. 

1) Evaluation of the functions j w l m ( b , A), ^ ^ ( b , A,). 

First consider the evaluation of the following integral 

where + j ( x ) is the ordinary Bessel function of order 1 + and 

Lp k (z) i s the Laguerre polynomial of degree p defined by the relation 
CO 

Therefore 

09 

Write * M 

Now (see e.g. Gopson p.341, Ex 7) 

i f R e ( / u + v ) > 0 J R e ( « . i l O > 0 . 

Put ^ s jh*'a + k, v = i+ ' ' z , \>=K, a . s«4 + ~ - . 

CA2.0 



a a i 

Then 

I -
i Pile's) ( (*+ ,Ts) ( ' " ^ 

F 
val4l ' • 1 («* , r j I 

i ) k = 0. . F(a,bib;.a) = (1 - z)~ a. 

i i ) k = 1, F(a,b}a;z) = (1 - z)"1? 

Therefore 

(C 
1 U ( . - U > 4 U > 

lerefore , . a U l 

aUfc 

d) SupDoge k = 0 

I = K U V ( a u a ) » , 

Where € » (> - x ) 4- K •) 

- 1 
( u ) C k U V 

(A 2.5") 

(Aa.O 

(A a. 

Ua.3) 

( A a . ^ 

(A a. i<0 

0\ a. u) 
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From eq. (2), (8), (11), we have 

where the identity | 4 ( 

has been used. 

n-1-1 
Equating coefficients of u 

where fe, x are defined by (9), (10). 

b) Suppose k = 1 
^ r* -at%S t+''i i \ — > N » 

Then, i t follows from (5), (6) that • 

-Tin UwO! 

Equating coefficients of u 1 1 " 1 - 1 

« v t4*'i v V J 4 ' ' * 

y / H.M • H.l-J 4vl a l l I U \ 

where y 
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Evaluation of g ^ C b , A), 

where 

I t is convenient to carry out the x-integration i n spherical polar 

coordinates such that k^ points in the direction £ * 0 

and the plane of k^ and k f is the plane <t - 0. Let A = (A,®,$) 

i n this coordinate system. Now, (Messiah I p»497), 

I f expressions (15), (16) are substituted in (14-), the angular 

integrations give $MMM' • 

Let ij s hi . Then' j^A*) a (jL_) J^,, ( 'jAwA 

where 1 ^ (<*, K) is defined by (7). Use of (12) then gives 
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where i , , \«. .* i / « „ „*\ 
£ = * ft K , (A A. aw 

UWvtl 1 • A V 

and x e 

When b = 0, and A = v, a 

then fi> » J? * 0 , e » I , ? t - w» v.*» ' 

Therefore, i i i * x * I . 

S i n c e O . * r ( * a ^ , 
r u - O r ( a u a ) 

i t follows that v4 

9HU - V J ) ( W ^ f ( H . 0 j r ( j u a ) H u , y u a (A a. 2i) 

Evaluation of G ^ C b , A) 

The angular integration may be carried out as before, with the result 

G I ^ A A ) « TTI 1[ KH ru-0 i V . f o j ) T^t'iUU.), *A»), Ua.aO 

where 1 ^ (X , K) is given by (13). 

Thus 
A I M * * )* > A1 y * 

(A a.as) 

where 8 2 
al** I f , A ' * 

A, 

T.(A)>U«i)t C 2*U C . (xKuV-i)t C <*> CAa.a?) 
I M-l»l >»•»-> ) 

and t , H are given by (20), (21) 



Particular caaea* 

1) b = 0 
2 .2 1 

Then £ = 1, x = ° * " ' 2 2 n A + 1 

Since 
, 1+2 
'n-1 

1+1 
1+1 

2) b = 0, A = v 

From (28), i t follows that 

in 



3 H 

Appendix 3. 

Evaluation o f the funct ions 

These funct ions are evaluated by a technique due to Nordsieck. 

^7 d e f i n i t i o n (9 .2 .8 ) 

The confluent hypergeometric f u n c t i o n may be represented by the f o l l o w i n g 

i n t e g r a l ; ^ t 

where 0̂  i s any simple closed contour which encircles the points t = (3, 

t = 1 once i n the pos i t i ve d i r e c t i o n , and the f u n c t i o n i s m a c * e 

single-valued by a cut i n the t - plane along f o , l ] . I f (2) i s used 

i n (1 ) , then 

*<rt = ( e_ e e i t . (A3.0 

The change i n the order o f in tegra t ion , i s v a l i d provided tha t the space 

i n t e g r a l R ( t ) converges uniformly f o r a l l values of t on the contour 

I f ^ i s r ea l and p o s i t i v e , then ^ 

|1(01 ^ A-TT f r e e <**V 
Jo 



US 

Hence, by the Weierstrass M - t e s t , expression (3) i s v a l i d provided 

tha t 

f o r a l l values o f t on C j . I t w i l l now be assumed tha t Cj has been 

chosen so tha t (5) i s s a t i s f i e d . The i n t e g r a l i n (4) may eas i ly be 

evaluated, g iv ing 

WO = a . 
a*4<a*-afe (a.**.-iA*0 

Subs t i tu t ing t h i s value i n (3) gives 

The t - i n t e g r a l i s single-valued and behaves l i k e t as t tends to 

i n f i n i t y . Therefore the i n t e g r a l round a c i r c l e o f radius R, centre 

o r i g i n , tends to zero as R tends to i n f i n i t y and the i n t e g r a l round 

i s equal to the sum o f the residues at the poles l y i n g outside £ j 

m u l t i p l i e d by JTTi, The integrand has a pole at 

Since 

where K = QK cos ©, 

i t f o l l o w s that t„ l i e s outside . , 



Thus 

/ g f a j r f / Q ) may eas i ly be evaluated using t h i s r e s u l t . 

Thus 



as? 

Appendix 4. 

J 2 
Evaluation of the in tegra l s I ( r t , i ) . 

«ow ! . . f " _ 1 ? . 

^ lowilvH 6 I ? | f o r m 

-08 (^A A 

Since \ . -ry converges provided u * 0, i t f o l l ows 
. f " <*A 

f rom the comparison t e s t tha t ^ A + t f c ' O 1 } 1 converges uniformly 
f o r a l l K. Therefore 

f _ A i _ _ [*A*[ AS 

l#e« 

Evaluation o f I (A . t ) . 

W ^ ' ^ O J , ( A + ^ - ^ 4 ) 

t ) (ic*-ii fStO(A+U-tV) 
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The i n t e g r a l may be evaluated by contour i n t eg ra t i on . The integrand 

has poles at 

K = ky , K = t + i j A , 

w i t h residues 

I fc 4 i Jft 

Taking as contour an i n f i n i t e semicircle i n upper ha l f plane 

I ( A , t ) . - W _ S + ^ 

2 
Evaluation o f 1^ ( oc , t ) 

where 

T 4 • r ft^Vft 



Put fc + i J S • JJ, 

to 

Special casea. 

1) t = k f 

a) T , U ^ ) -

o) I , ( V, s 

2) £ 

a) I > , * ^ > - - I * 

a" 1 ( A • ( ^ . a i ) 4 ) * 1 
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