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ABSTRAGT

The major part of the thesis is concerned with the methods used to
obtain approximate values of cross sections for rearrangement processes
in which protons and alpha pa.rticies are scattered from hydrogen atoms,

Some of the relevant experiments are briefly described in Chapter 1
end time dependent scattering theory used in Chapter 2 to derive an
exact depression for the cross section. Born expansions of the transition
amplitude are introduced and in Chapter 3 some OBK and Born approximation
calculations are discussed. Distorted wave, impact parameter and second
order methods are consldered in Chapters 4, 5 and 6, numerical results
being given where possible. A new integral equation for the transition
operator is obtained which has a connected kermdl. The inhomogeneous
term gives a modified first Bc;m approximation to the transition
amplitude, | |

The impulse approximation forms the subject of Chapters 7 and 8.

A new derivation, due to Coleman, is given and calculations for the

processes .
H + H (18) —=> H(2p, 38 or 3p) + H',

H + H (28) —» H (2p) + H',

and He'' + H(1s) —p He' (2p or 3s) + H',

are described. The results are compared with those obtained by other
workers. They are used to calculate the polarization of Lyman-alpha
radiation emitted by 2p hydrogen atoms formed by capture and to investigate



the n-3 rule by which estimates of total croass sections are oftén obtained.

The agymptotic form of the electron capture cross section as the
velocity of the incident particle tends to infinity is discussed in
Chapter 9. A brief survey is given of the forms predicted by the various
theories described in previous chapters. The high energy form of the
modified first Born approximation derived in Chapter 4 is then considared,
It is found that, with fhe approximations made, it is the same as that of
Drisko's Second Born approximation. |
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EXPERIMENTAL DETERMINATION OF

ELECTRON CAPTURE CROSS SECTIONS

1) Introduction.

The cross section for a certain type of event in a given collision
is equal to the number of events of this type per unit time per target%
divided by the flux of incident particles relative to the targete '

Collisions in.which one or more electrons are transferred from an
ion A to an ion B are called charge exchange reactions. This thesis is
concerned with the simplest charge exchange reaction, in which a
structureless particle collides with a hydrogen atom and captureé the
electron, 'First, a brief account will be given 6f some of the experimentg
on such a system which have besen perfofmed in recent years. v

Electron capture by protons in atomic hydrogen has been investigated
by Fite, Brackmann and Snow (1958), Fite, Stebbings, Hummer and Brackmann
(1960), Fite, Smith and Stebbings (1962), and Gilbody and Ryding (1966).
More recently a different technique has been used by McClure (1966), |
Wittkower, Ryding and Gilbody (1966) and Bayfield (1968).

Fite, Smith and Stebbinéa (1962) have also measursd oress sections -

for charge transfer between alpha~particles and atpmic hydrogen.’

2) Experiments involving crossed beamg.
In the first group of experiments, an arbitrarily highly dissociated
beam of hydrogen produced by thermal dissociatiqg in a tungsten furnace

was crossed in a vacuum region with a beam of f;dtﬂprotons, great care

ot
N

¥




being taken to ensure that the whole proton beam passed through the beam
of hydrogen. Measurements were made of the current of either the slow
protons or the fast hydrogen atoms which were produced as a result of
collisions involving charge transfer. They led to the determination of
" the ratioQA/QM, where Q,, Qy are the cross sections for charge exchange
in atomic a.nd molecular. hydrogen respectively. Absolute values of Q A
were obtained using values of Qy given by Stier and Barnett (1956).

A difficulty with crossed beam experiments is that a large part of
any signal is due to interactions between the proton beam and the
background gas in the apparatus, since the density of this is greater than
that of the hydrogen beam. For this reason it is customary to use a
mechanical chopping wheel to modulate the hydrogen beam at a frequency
of about 100 cps. Then, any signal due to such interactions is a d.c.
signg.l whereas interactions between the proton and u_vdmgen beams give
rise to a signal which occurs at the modulation frequ_ency and in a
specified phase.

In the experi-menﬁs of Fite et al (1958, 1960) , the two beams
intersected midway between two plates mouﬁted parallel. to the plane of
the beams. Slow protons, produced in the interaction region by the two
processes of capture and ionization, were collected by epplying an
electric field across the plates. The contribution from ionization was
determined by reversing the field and measuring the currént of electrons.
The rad;ioQA/t;),M was obtained by comparing the slow ion signals when the

beam from the furnace was mainly atomic and when it was entirely molecular.



The method was used to measure cross sections for incident proton energies
in the range 400 ev = 40 kev.
At lower energies, the collecting field is sufficient to deflect the

proton beam s0 the method must be modified. Fite et al (1962) arranged

that the two beams should intersect at the centre of a cylindrical collector .

whose axis coincided with the direction of the proton beam. The slow ions
produced were collected on the surface of the cylinder. The system was
unable to distinguish between slow protons arising from charge transfer and
those produced by ionization but, since the collecting cylinder almost
totally enclosed the interaction region, it was assumed that the majority
of electrons produced by lonizing collisions were also collected, so that
the measured signal was due to capture alone. In this way cross sections
were obtained for incident energies down to 20 év.

The apparatus was also used to measure cross sections for charge
transfer between He'® ions and hydrogen atoms in the energy range 100 ev
to 36 kev. These are the only available experimental results for this
process.

For incident proton energies above 40 kev, the charge transfer cross
section rapidly becomes too small for measurements of the slow ion current

to yield accurate results. For this reason Gilbody and Ryding (1966)

" studied the fast beam instead. They used electrostatic deflection to

separate the fast neutral atoms produced by charge transfer from the fast
protons and measured the intensity of each beam separately. They obtained

cross sections for incident proton energies in the range 38 -~ 130 kev.



At 40 kev where the data obtalned by the two sets of workers overlaps, the
result of Fite et al is approximately twice that of Gilbody and Ryding.
The difference is not greatly in excess of the combined experimental error

but has not been accounted for.

3) Single beam experiments.

As mentioned previéusly, one of the difficulties inherent in crossed
beam experiments is the low density of the target gas and the consequent
low signal/noise ratio. Two experiments have been performed recently which
attempt to overcome this problem. In these, the proton beam is passed
directly through a tungsten furnace, which provides an atomic hydrogen
target of much greater thickness. However, accurate determination of the
degree'of dissociation of the hydrogen gas and the absolute density of the
 hydrogen atoms or molecules at any particular furnace temperature isithen
a very difficult problem. In both experiments, measurements were based
on post collision charge analysis of the fast beam, as in the work of
Gilbody and Ryding, and the quantity determined was the ratio °A/ Ry -
Absolute values of QA were then obtained using known values of QM'

MoClure (1966) was the first to use this method, and obtained cross
sectioné for incident energies between 2 and 117 kev, He obtained
absolute values for the molecular cross section QM which are in good
agreement with the results of Stiler and Barnett, and used them to determine
absolute values qf Q,+ His results are in agreement with those of Ryding

-and Gilbody in the ranges 38 - 42 kev and 80 - 120 kev but show a marked
discrepancy around 50 kev, In the energy range 2 to 20 kev the results

of Fite et al are greater'than those of McClure by a factor of between



20% and 40%.

Using methods similar to those of McClure, Wittkower and others (1966)
have attempted to resolve the discrepancy in previous experimental results
at energies around 50 kev. They measured relative values of the ratio
QA/QM for various values of the ilncident proton energy. Absolute values
of this ratio could not be obtalned in their experiment. Instead, the
relative values were normalised to the value obtained by McClure and by
Gilbody and Ryding for an incident proton energy of 110 kev, an:energy
at which the two :sets. of data are in fairly good aéreement. Absolute
values for QA were then obtained using Stier and Barnett!s results for
Qy and are in good agreement With the results of McClure. The result
at 40 kev lies slightly above his but is still much too low to be consistent
with that of Fite et al. For a comparison of the various experimental result

see Tige 4 of Wittkower et al (1968). .

L) Measurements of cross sections for capture into a specific state.

All the experiments so far discussed are conce;ned with the measurement
of total capture cross sections, no attempt being made to calculate the
cross section for capture into a particular level of the projectile.

Bayfield (1968) measured cross sections for the process

H + H(1s)—H(28) + H
for incident proton ;nargies in the range 3 = 23 keve A collimated proton
beam was passed through a heated scattering cell containing hot argon or
thermally dissociated hydrogen, and the fast collision products leaving the
target were observed. Fast metastable atoms were_detected by Stark-effect

quenchiﬁg in a d.c. electric field and subsequent observatipn of the



resulting Lyman-alpha rediations Measurements yielded values of the ratio
QH(2s) /QAr(zs), where Qy, Q. are the crosé seqtiqns for proton -
bhydrogen, proton-argon collisions respectively. Bayfield also measured
the energy dependence of the cross section QAr(zs)' His results were
normalised so that they agreed at one energy with gbsolute measurements
of Jaecks et al (1965) and Andreev et al (1966). Absolute values of
Qy(2s) could then be obtained.

Relative values of QH(2s) in the energy range 40 - 200 kev wefe
obt&ined by Ryding et al (1966) using a similar apparatus. Their
measurements gave relative cross sections QHZ(ZS), Qe (28) and values of
the ratios QH(ZB) /QHZ(ZE) and QH (28) / QHe(Zs). They used the value
of ¢ (23) at 100 kev given by Mapleton (1962) to normalise their results
Gaily (1968b) suggested a better normalisation based on the absolute
values of QHS(2s) given by Andreev et al (1966). He used these to normalise
the values of QHe(2s) given~hy Ryding et al and used the resulting cross
" section values to calculate absolute values of QH(ZS).

Stebbings et al (1965) used a crossed beam‘technique to investigate
Lyman-alpha production in proton—hydrogen‘collisions for inecident proton
energies in the range 600 ev to 30 kev, The processes Which give rise
to such radiation are

H + H(1s) — H' + H(2p), (1ede1)
H + H(1s) —> H(2p) + B, (Tebe?)
They are distinguishable because, in most cdllisions, momentum transfer

" between the colliding systems is very-small. Thus, process (1) gives



rise to excited atoms with thermal energies whereas those produced by
process (2) have the same kinet:_'Lc energy as the incident protons. The
region of interaction of the tWwo beams Was viewed by an ultra-violet
detection counter which could be rotated about the neutral beam axis in
a plane containing the ion beam. On transit to the counter, the
radiation passed through a molecular oxygen filter. This only transmité
radiation whose wavelength lies in one of seven very narrow wavelangth
bands, one of which contains the Lyman-alpha wavelength (1215.78). For
each value of the incident proton energy, the intensity, I(®), of this
radiation was megsured at angles of 90° and 54.5° with respect to the
proton beam. At the 90° position, the counter axis was perpendicular
to the plane containing the two beams and both excitation and capture
contribu{;ed to the counter signal, However, at 54.50 ’ because of the
velocity component of the projectiles along the viewing direction, the
wavelength of the radiation resulting from capture was Doppler shifted

by an amount sufficient to cause almost total attenuation in the oxygen

~call, except at energies below 3 keve. Therefore, the signal obtained in

this position was due almost entirely to direct excitation.

The cross section for either process is directly proportional to
the total intensity of the emitted radiation and this can be obtained
from the mgasurements made, Allowance was made for the polarization of

the radiation arising from direct excitation but the capture radiation

- was assumed to be emitted isotropically. A4bsolute cross sections were

obtained by using the same apparatus to measure Lyman-alpha production

in electron-hydrogen collisions and normalizing to the e = H cross



sections of Fite et al (1958, 1959).

They must be regarded with some caution for two reasons. Gaily
(1968a) discovered that photoabsorption data for 0, used by Stebbings et
al were incorrect. At 5 kev, use of Gaily's measurements increases the
croas section by about one sixfh and the effect at higher energiés is not
yet known. Secondiy, Gally and Geballe have recently carried out an
+ independent measurement of the cross section and preliminary results in
the energy range 2 - 6 kev agree neither in shape nor in magnitlide with
those of Stebbings et al,' disagreeiné by a factor of ten at 6 kev. (Gail&
and Geballe, 1968),



Chapter 2.

SCATTERT L T0 ELECTRON GAPTU.

1) Introduction.

The remainder of this thesis is concerned with the theoretical
determination of slectron capture croas sections. Most of the work refers
to collisions at high énergies; that is,. at energies such that the
relative velocity of the colliding systems is greater.than the orbital
velocity of the active electron in its initial bpund state, Atomic units

are used except where the contrary is stated.

2) Basic notation.
Consider a rearrangement collision:: of the form
| 1+ (203) —>(143) + 2,
in which a structureless particle 1 of mass M1 and charge Z1 is incident
on a bound system.(2+3) and captures the electron 3. Particle 2 has mass
Mé and charge Z2. | |
The position vectors of particles 1, 2, 3 with respect to some fixed

origin 0 are . r., ¥ and the relative position vectors of the three

particles are demoted by r, x, R  where

~ 9

r =~3'!15 xX=Yly-t, B:V" ¥ .

Let a,b be the reduced masses of the bound systems 1 + 3, 2 + 3

respectively.




The complete Hamiltonian for the system may be written

HY = H/ + Vo, ¢ Vg + V

2% T3t Y23

where Vij denotes the interaction between particles i and j, and H,’
is the kinetic energy operator

! ) 2
H‘=—_‘_V‘-J_V,-IV.
It is convenient to consider the form taken by H,’ in the centre of
mass coordinate system, Let _le be the position vector of the,_centre of
- mass of the three particles with respect to O,

Then : _
B = L (nE v M v ),

where M = M1+M2+ 1.
If € is the position vector of particle 1 with respect to the centre
of mass of system (2 + 3), and £ denotes the position vector of the

centre of mass of (1 + 3) with respect to particle 2, then

'. .
£ =br-x, R =L -ax.

- In the coordinate systems (,!:'. S‘,Bg) and (E,P,E ) the kinetic energy

operator takes the forms

H' ,‘Vi ‘va ‘va
o - T —VYp " — Y% - — WY
ab du, am s

e . .

= AV -1 Y - LY



“here/‘iﬂ/‘f are the reduced masses‘of-the initial gnd fingl systems,

Iu'i = M,(Ma"‘n ) /“j. ® M!(Mu'.") .
M M
The potentials vij are independent of BG and consequently the motion of

_the centre of mass of the system may be separated out. In the rest of
this thesis,-the centre of mass frame of reference is used, in which the

motion of the system is governed by the Hamiltonian

H = Hb + V + V + V = ao + V)

12 13 23

where HB may be written in either of the forms
i l 'Y a a
= L VP - J—— V* .
o - . :

H can be split in several ways, two of which are

m
i
W
+
<t
It

H,.+V

i f £
Where Hi = H + V23, Hf = Ho + V13
Vi = V12'+ V13, Vf = V12 + véB .

3) Derivation of the expression for the cross section..

In the collision process there are three time intervals of interest.

~ Two wave packets are prepared at some time in the remote past, one

"



representing the initial state of the target system (2 + 3), and the

other that of the projectile, particle 1. Because they are described by
wave packets, the target and projectile can be locélised in space, so it
can be assumed that they are far apart and that there is no interaction
between them. The interaction itself takes place during the second
interval, and the observation of the collision products during the third.
In the following work, the wave packet description will not be adopted.

Instead, a Special 1im1t1ng process due to Goldberger and Watson (1964)

will be applled to pure states.

The Schrdidinger equation that describes the time development of the

‘system in the absence of external influences is

3d® = H . (2.3
14

If the wave function at timekis known, then (1) may be integrated to

give
- ;H‘k ko’

¢ (€) \I- (€, | (2.3.2)

If at time to the target and projectile have not started to interact, then

-iE b,
< CP; >

g (e)



where Ei is the centre of mass energy of the initial system and ¢Pi satisfies

the time independent equation

(Hi- Ei) @ '= 0..

If lc,l is the initial relative momentum of the colliding systems, then

p; = explik;.e) \i(e), (2.3.3)

where'\/.i(;)"is the initial state of the bound system (2 + 3). Ii‘.ei is
the corresponding eigenenergy, \41(5) satisfies the equation

a
(-5'; V. + V,Jﬂ,- e;) i) = _O»

"~ and 2

E. = k + €. (3.3.4)
Y
It is convenient to suppose that the system is prepared in the
initial state @, at time t = =co, Then, from (2)
He,  -iEL,

\I:(O) = tli;“;” e Q‘ :

if the limit cen be defined. The following definition, due to Goldberger
and Watson (1964), is adopteds

lim §0 = Lim e R db C(2.35)
tv-0 € >0+ J. ' |

If the function f£(t) possesses a limit in the ordinary sense as t — - eo,

then this limit coincides with that given by (5). However, if £(t) is



W

an oscillatory function, the above procédure.provides the required damping
of the oscillations, |

Thus
o et iHt -iEk

L = Lim éj e e 3 @, lo“:

€0+ .
- 0

= fim € Cp_‘ .

€ -y 0+ E:-He+i€

- It is usual to write

. J(o) = q._f o=l $ @@ (2.3.6)

€7 0%

where

\.I.-t (&) = LE Cﬂ‘

E.-H+i6€
since (H;-E;)¢; =0, " this can be written
+ - -
. (&) = @, + V; | (2.3.%)
F\o-

Thus it can be seen that

(1 -E) tL:

"
O

+ .
i.e, QL; is an eigenfunction of H corresponding to energy Ei'
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If A, B are any two operators for which the reciprocal operators

Il , B~ are defined, then

- - .Y . -1
H‘ s B‘ + B (s-AYA |, : (2.3.8)
If
F\ = E;‘\-\"-I-'\e ) -B = E;—H5_+'.e,
_. = —" ' (\"’ Vj- __._‘ _\
E.-H+i€ E;-H}*'-G : B;-Haie
Therefore ' _
+ . : : :
g (e = _ie &, Vo & (), (2.3.9)
E. - Hs_a'-& E.‘-\.\‘_-ﬁ(— '

From (2) and (6) it can be seen that the Schrdinger picture wave
function which describes, at time £ = O , the system which has evolved

from the state @ in the remote past is

() = hm T (O,
€04
where : -1Ht +*
‘:}_E(Q = € q" (E).

The quantity of interest is the probablility of finding such a system in the
eigenstate q_z_. of the final unperturbed Hamiltonian Hf. If the corresponding

eigenenergy is Ef, so that
( Hj_'— Ej-) CP,. = O,



"o

this probability is
b ' 2
-4 j '
l<q e L ad],
It _Ig} is the final relative momenta of the collid:.ng systems, then

(Pj_ = exf( h p) \- 10 . (2.3.10)

where Y (x) is the final state of the bound system (1 + 3), and

. satisfies the equatioh

A | | |
(-3 9 ¢ V- e})\L,(z\é o,

da
where
Eg = El + Eg . o (2.3.11)
3/‘}
Let

gt
Wi 0 = ¢ \ (oo | ¢ ("»\
 Then the tra.nsn.t.ion rate from state @1 to state Qf is

W; (0 = lim -W.‘: (e .

€0
The limit €—> 0+ will not be taken until all the calculations have

"E’*\\Lm)\“ | is

been performed, because, in fact \( CP‘_

independent of time, Now

W;(a =W(o)+\: L Wit s - -
- Jt

It can be shown (Goldberger and Watson, 1964), that

€ ) €
Lim W, (B = Lim W (o),

cv04 _ €204



Now,

¢ (g -WE 2
Wi = d)¢ale ™ L (D
at k=0
- v <l g, (e)) (T} (eﬂ +-6.C (2.3.12)
" where +* € = < c‘,&\V}‘ \}; (€)>’_ ' (2.3.13)

g\
and c.c. denotes the complex conjugate of the first term.

From (9) and (13) it can be seen that
. . +
CARNCIA e Lqi@y+ v T ().

E‘-Eji-'xé Ei-Ej_-;'o(-.

Therefore (12) can be written

V\/.a(o)'= = € - ) (g E)(n +R. )—.e(ﬂ _a. )}
§ . Eﬂwi IR+ g & T ik
+ l T (e\\ (2.3.14
(€, - EJJQG
- > ¥
where A.* = {T.s (E)\ ( q)".‘ cp.) .

W,;()is the transition rate at time t = O for a trensition from
state i to state f, For the processes under consideration, the state f
. is a continuum state in the sense that particle 2 is free and E § 2 0,
and therefore a quantity with more physical meaning is the transition rate )
to a group of states with energies centred about the energy Ef. Let the
density of these states be {’(E,) per unit solid angle. Then the
transition rate from state Qi to one of the group of states with momentum

vectors lying in the solid angle dJU and energies in the range E‘_ - AE



i8

- to E’_+AE is
£, + A€

wy (0) = Lim J b W; (0 p(€) dELL. (2.3.15)

€20+
E‘_—AE

‘Using (14), (15) and the result

Lim € | - W s (E-E),
€0+ (e,-g ) ¢€?

one obtains finally .

- L R S . |

0 . » EA' # E\f ’

‘ + 4 | +
were Ty = S @ IVpIg, Y provided that @,
represent states of the same energy. It can be shown that p (E,.) = /“_J-_ES' )

o 1 L
kf being the final relative momentum.

The number of incident particles per unit time which cause the
required transition and are scattered into the solid angle dNl 1s NI(R)dA,
" where I(N) is the differential scattering oross section and N is the
incident flux, wi;g(0) 1s the transition rate when the incident flux
is  k: //u; . |
_ Therefore,

. 2
L) =y by | Ty
. 4N



The total cross-section for a transition from an initial state q to

& final state @ 1s

LW k;

Q(§) = up, k}' s L T4 | 4R (a.3.16)

By considering the time reversed system, and following a procedure

similar to that outlined above, one obtains

LY = ke | 70|,
RS i ¥

" where . N ' o o
and i o C B _
.7 gPne ( @+ Fouoe Vs (pj)' (2.3.1%)

It has been shown that transitions occur only between states of
: - g
equal. energy. In this. case, T‘.} 2 T-.j. « Therefore, ‘for
scattering problems, the superscripts '+! and '=' can be omitted and T;I_?

can be written in two ways. _ _
Ty = .< G WV @) = vl gl ).  (2.3.18)

If spherical polar coordinates (R, 6, ()) are chosen with polar

. 2
"~ axis in the direction of the incident beam,and |T'.} \ . 18

independent of (f, then (16) may be written
al

Q(tn = /ui_}:j-kj-.& "Tag.\i,ol((oso\ , (1.3.”)
o awt Rk ) | |

.
. -\

(Q‘q“ being inlun.i.ts, of W a: ).-



20

It is sometimes convenient to express q.min- terms of an integral with
respect to momentun transfer. If - p = aki-k; ‘and g = bk - ke,

~
then, using the relation cos O = g k} , (19) may be written

Qb - (/u}) g""'.\n,\’ d (%) o (2.3.20)':

L“ av

1 T) 4 (cl’) , (a: 3. 21)

i

|

|

"
&
d -
o
<~ :
A
S
-~
| S ]

"

where vV = k;//“ , " and
p_a-m = (ak}fk:)a’ ?“:n ' (ak}+k;), | (2,3.22)

-0
3
$

"

.(Lk;' L})‘ ) | 1...2.; = ( L‘\;i-‘lj.)a_

. Since energy is conserved in the eolliéion, (4) and (11) give

3-: - h;_ o= e'_} -€ = AE, (2.3.23)

Au -
Al Y&
and AE is the energy defect for the process under consideration. If all
energies are measured in Rydbergs, instead of atomic units, (23) becomes

k. - k; - €p -€ AE, . (a.3.24)
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If this equation 1s used to eliminate kf from (22), and terms of order ‘/m

are neglected, then

2
e, = (vt e aE),
bev® .

Similarly, it can be shown that

] . a2 : .
Pnan = Lva( “‘Mx) - (angnl.)he - (AE\ o
a
".'0"1 ﬂ.*ﬂl l.-V
For a resonant process 5 AE-= O, and
: L [ mM ’
= v v '
Pmas “MJ

In general, the value‘ of- Pz,‘;“t is very large and no -appreciable error

is obtained by replacing the upper limit of integration in (20) by infinity.
An exception occurs when M, = M, and it will be shown tha.t' in this case

the exact expression for P:-i-is""' must be used. ‘

The integration limits in (21) may easily be obtained using the

relation | :
r - ;1.2 - E_z -k - AE, (2.3.25)
a b o Mg

all energies being measured in Rydbergs."



4) The Born Series.

The total Green's function operators ¢* are given by
+ .

6" =t

€70+ E-H L€

b4 t

22

The initial and final state Green'a functions -J‘ s g ¥ and the free

particle Green's functions g are defined by gimilar expressions, i.e.

g} = Lim

€ =0+ E_H"}_zue

'
w!

s

R&M \ -
S e

€ =0+ E-H, 2

»>
In terms of these operat-rs, the wave function \1;

© (R.3.6), (2.3.7) can be written
+

\;; & ( ‘ +* (5 V ) cpc. v .
Similarly, (2.3.1) may be written

q, s (rgV) e
Since : _ .+ o
NI AR [ETEARA NN
\I- . satisfies the 1ntegra1 equation

g, = @ cJV\}

The corresponding equatibn for \Li is

&, Q&f’g;y&q}'

defined by

(2.4.1)
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* It was shown in §3 that the transition amplitude for a rearrangement
collision is

T

T AME RS (2. 4. 2)

CHIVA @Y., (s

Use of (1) gives

T

4

Cap\V (146" VLG, (a.--u. W)
If a transition operator T 1s__1ntroducgd, defined by the equation

T .V, s VGV, s
then (4) can be written | .

.T.‘} AR A

although, since qg and Q% are not eigenfunctions of the same Hamiltonian,
.Tif is not a true matrix element of T.

. Since

]
-

(e 6"V Y- 67 V)
" (5) is equivalent to the integral equation
T =V o+ TG V.. | (a.u.e\.

In the calculation of the cross sectidn for any actual proéess, an
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approximate expression for Tif. must be used since, in general, tractable
expressions for integrals involving the thzjeé body Green's function G
are not available. However, using the operator identity (2.3.8), several

integral equations for ¢t can be o.bta:lned. For example,

4

G = c3: * c,"'v g: (269

G * G VG (2. 4. 8)

+ ) + T e
G, + G V.G, (2.4.9)

Iteration of these equations gives series expansions of Gt in terms of

+ . r * :
- the simpler operators G’o , q} or CJ; . Various Born series for Tif

can be obtained by substituting these expansions in (4). For example,

use of (7) and (8) gives

(@ Vel @) +Z <ap\ Vg (g, vy g: V.lay (2.4.10)

$=o

T

o ' s <5 ‘
O 1Y10) »g‘ Ca Ve (g, V) L @Y (2.6.10)

The series derived from (9) is the same as that which would be obtained
by iteration of (6)« The substitution in (3) of any Born series for the
Green's function G gives further Born expansions of Tife An approximate
expression for the amplitude is obtained. by retaining only a finite |
number of terms of any of these series. In practice, the number kept is

generally one, or at most two, because of the difficulty of evaluating
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the individuel terms, The first is either £ CPp\V( 1) or

4 CP,_ IV W;). These expressions aré called the post and prior forms
of the first Born approximation mspectivel&, and are clearly obtained by
replacing the exact wave functions \I'T . q:; in (2), (3) by the
unperturbed; functions 4, %. If these functions are exact, theﬁ

Tig CRWl @ 2 = LG VMV -M N @Y
C@p WM+ V=M@Y = LAVl @7,

and the so-called "post~priort discreparicy arises only when the exact
unperturbed wave functions are not known,
In this thesis, the nth term on the right hand side of an equation
such as (10) will be demoted by 'ﬂ?“ and will be called the nth Born
terms The nth Born approximation to T;} is obtained by taling the sum of
the first n Born terms. Clearly Born terms, and hence Born approximations, -
of order higher than the first, are not uniquely defined. |
In practical calculations, because of the difficulty of evaluating
the higher order terms, the first Born approximation is widely used.
Physical arguments suggest that when the velocity of the colliding systems
is large, the interaction between them does not cause much disto.rtién, 80
6ne might expect that | |
Line ( Ty —-_T; ) = o. - (2.4.12)
V-7 00 |
However, although it is known that the Born series for two-body potential

scattering always converges for energies greater than gome finite value Eo R



and that (12) holds, no gsimilar statement can be made for collisions
involving more than two particles. In fact, Aaron, Amado and Lee (1961)
suggested that for a certain class of potentials, the Born serieg for Tif
diverges at all energies. Their argument was as follows.

They considered a model problem'in which V., = 0. Then (4) can
be written

' ) » + LR | ? :
PR MR CAVATY Y L N SO SN TS

where an integration over the intermediate momenta is implied. They used

the expansion - -

CCRRIGTINKY = D k{6 O KDY Goand)

and considefed the subseries

S :2 CRklG) VY G 1K',

which corresponds to particle 2 propagating freely while particles 1 and

3 interact via the potential V13. They argued convincingly that divergence
of the subseries S would imply divergence of the complete series defined

by (13), since the potentials V,3 and Vyqy are independent, and then showed
‘that if V13 can support a bound state and is such that its Fourier transform
is negative definite, the subseries does diverge for some range of the
intermediate momenta, no matter how high the total energj.

However, the significant question is whether the integrated series

PRCATAOIRIARTA S
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converges. Aaron, Amado and Lee suggested that divergence of S implied
divergence of this series also., However, Dettman and Leibfried (1966)
oonsidered a problem in which V1 3 , V23 were one-dimensional delta~function
potentials and showed that although the subseries S does diverge,
nevertheless the integrated series converges at sufficiently high incident;
energy. Since the delta function potential belongs to the class of
potentials considered by Aaron, ‘Ama.do and Lee, their suggestion must be
regarded as untenable. - |
Although thelr work does mot prove anything conclusive about the
convergence of the Born series; it does emphasise an important point. If
two particles interact via a potenﬁia; vij which can support bound states,
then for some values of the energy of the fwo-bddy system, the series
expansion qf the two=body scattering operatér will qot converge, however

weak be V... The kernal of the integral equation (6) for the three-body

j
scattering operator a.lWays- contains terms which correspond to one particle
propagating freely while the other two interact via a two=body potential.
Iteration of this equation will therefore lead to a subseries of the above
‘form. However, it -should be possible to calculate the two;body amplitudes
exactly without resorting to emansiohs. One of the ideas behind the |
~ impulse approximation discussed in Chapter 7 is the use of the sum of

| two-body scattering amplitudes to approximate to thé three~body amplitude,

rather than a series exba.nsion of the form (10).
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Chapter 3.
BORN _APPROXIMATIONS

1) The OBK gpproximation

The first quantum mechanical calculations of electron capture cross
sections were those of Oppenheimer (1928) and Brinkman-Kramers (1930) using
& simplified version of the first Born approximation which will be referred

to as the OBK approximation. They argued that the interaction V., between

12
the heavy particles should not have much effect on the process and therefore

took for the transition amplitude

T = (I, 1@ = (AN, I & (1)

It can be shown (see Ch. 582) that, in an exact calculation, the
contribution to Tﬁ. from V12 is of order 1/ M and can be neglected, but
this does not justify its omission in an approximate calculation.

If initially particles 2 and 3 are bound in state v)/u. and

f:.nal]y particles 1 and 3 are bound in state nﬁm ; ‘then
13

"." = - cj*‘m (-$) jvh/u{{))

where

Gutwm () =),

jolzc_ o *¥ Vo $2)

et () = [z 200t ),
Lo

i
|
i
'
|
1
!
i
i
}
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and Z,,'Z’a are the charges of particles 1 and 2. The hydrogenic wave
function V—v)/“ (:) satisfies the Schr!!di'.nger equation
2 2
(-LV “E o+ % q',,;/“(:) = 0.
Jb o 1v2

ig-C
.Multiplying through by e ! and integrating with respect to r gives

. 2 2
(g) = .‘_( v E (4).

Foae (8) = (10 2 ) Gaan (g

 If terms of order 1/ M are neglected compared with unity, it can be seen

from (2.3¢25) that
2

] a . _a
1 + z‘ = P 4 Z ' P
-3 —a .
Y
Therefore,
8K

Ts * (', ' 2, )g‘ (-?,)C_;A - (3.1.2)

i ‘ -
Pian

Q™ (sl mj,- | T \4(,, (3.1.3)

Prusnn

and

The cross sectlon for capture from an 1nit1al stat.e vA to a final
. state nQ is obtained by averaging over values of /u. and summing over m.

With the change of variable

S = P +I'Z‘ , : _ (3.\.&)

the résult can be written L) : _
@™ (vA-ud) = L »m-.,oj Fvd-nl) dy (s.8)
} v .
. f _ ,



where Ao -'_5[ v;" ( 2, . 5')2}1\’3 ) (i_‘-; \ 2 z] .

by vV o n v "
Values of D(vk-"ﬁ) and F (v)-hi) have bean given for a.-
large number of initial and final states by Bates and Dalgarno (1953) and,
.for the case Z,= ‘, by Hiskes (1964). His expressions are written in
terms of | and the function 3, defined by |

: o (g-2bY),
3 + (y

where b = . The corresponding results for arbitrary Z, are
obtained simply by taking b= 24, in the definition of 3.

Bxamination of the functions D and F shows that, at high energies, only
capture into s states is significant, as suggested by Oppenheimer (1928).
A much simpler expression than (IS) can be obtained if only the
principal quantum numbers, », .,  of the initial and final states are

specified. Then,

Q% (¢ - ) - _-;Z

8K

( .
- Z Q (vk/u-nlm). (3.\,6)

May (1964) ga.ve the follow:.ng sum rule for Fourier transformss-

Z Z G| = LEz (.1.%)

£=0 ws.t 5

where y is given by (4).

Combination of (2), (3), (6) and (7) gives
8

' 5
Q“(<V>-<n)) = le(ZZ) Y, (3.1.8)

s 3 )

sV RV (3]
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. 2
Thus if _Z_..a can be neglected in comparison with 2, ,

”l ) ' vl

' 5 '
& (eri) = 2" (22) v o (3.1.9)
Sy’-n’ [ _va . z:/v&] 10 )

2

[
»

2z
For symmetric resonance processes ( AE: O ), -;L s —vi‘_ and the above

approximation cannot be made. In general however, (9) will be valid
for n>> 1, in which case

8x
e (<v>=<.\>\, oC “wW (3.1.10)

In the majority of calculations, the target is in its ground state , v » ‘,
8K ) 8K )
and & (n)  will be written in place of Q (15-4w) when no
ambiguity can arise. ‘
BK
Using (9), an approximate value for the total cross section @ (2)
for capture from the ground state of the target into any state of the

projectile may be obtained, -~

8K N-b ek I8 5§ 8 2 o
Q (%) =Z QW) + 2 (2B)v A, S (3.0.m)
o ' \_A) 5 ( vﬂ . za)lo “3
4 nz N
Since © '
naN ? = 2-:" + 0(;‘) ’

8% ~ p T N~ BK
a (3) 2 Y Q (W) + IQ (N)

nat

The total cross section may be calculated to any required degree of

acouracy from this equation.



32

Equation (8) shows that

QQK(V\) ~ :?w(zcza)s, 3, (3.\.\1)
Vo 0 —_5—;75__ n

8K -3 :
The assumption that Q n) is proportioned to n will be referred

-3
to as use of the n rule, and (10), (12) show that it is valid at all
energies for n >> ‘,’ and at high energies for alln . If it is assumed

to hold at all energies for all values of n , (11) may be written
sk BK 8K had
Q (3) = Q (1s) + Q (Q)Z 8_‘
: ned N

= G.“(\s) Y a® (1) . (s‘.s.@

Total OBK cross sections computed from (13) are compared with the
results of various experiments in figs (8.2.4), (8.2.5) and are clearly

much too large over the entire range of the measurements.

2) The work of Tuan and Gerjouy.

Before 1960 there were no experimentalldr determined capture cross

. v !
seotions, &, , for the process
H + HoH+ H

for incident proton energies greater than about 10 keve At higher energies
it was usual to compare the theoretical predictions with the experimental

" cross section QM for charge transfer from hydrogen moleculea,
K+ B, 2H+ K,

The comparison was based on the assumption that if the incident proton
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velocity is large compared with the velocities of the bound electrons,
then, for the purposes of charge transfer, one hydrogen molecule is
equivalent to two hydrogen atoms so that

- 1
QA— -QQM ’
In 1960, Tuan and Gerjouy investigated the effect of the molscule
on electron capture. They presented a simple treatment of the problem

based on the OBK approximation and their results suggested that elthough
the assumption

Q= 3Qy
mey be valid for incident energies below 400 kev,' this is because of
the canc-ellation of a number of molecular effects, not because such effects
are themselves unimportante In particular they found that
"\i) considerable interference occurs between the capture
amplitudes from the two atomic centres in the molecule.

This interference is construetive for capture into the

ground state of H; at energies below 400 kev,

11) high velocity electrons are more likely in the tightly
bound H2 molecule than in the H atom and there is more
likelihood of the electron being captured if it has the

same velocity as the incident proton,

iii) charge transfer in atomic hydrogen can equally well

leave the electron in the gerade or ungerade state,
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whereas in molecular hydrogen transitions to ungerade
states are extremely unlikely. This fact alone would

tend to make

but Q is increased relatlve to QA by effects
(1) and (ii )

Tuan and Gerjouy found that when E < 400 kev, Q —Q,I,
for E > 400 kev, the interference becomes destructive and —zQM can
be significantly less than QA 5 finally, as Vv—> o , interference effects

‘become negligible and

1.2 £ 3/ Q & 1.4,
the .'valu‘e depending on the molecular wave function used.
Experimentally it has been found tha..t,. at-energies below 40 kev, Q,
as measured by Fite et al (1958, 1960) and Qy , mcasured by. Stier and
Barnett (1956) are of comparable magnitude; at higher enargies (50 - 130 kev),

Q, measured by Gilbody and Ryding is consiatently less than 2*QM of

Stier and Barnett.

3) The First Born Approximation. _
‘Bates and Dalgarno (1952) and Jackson and Schiff (1953) argued that
although the potential V,l 5 8hould not affect the capture cross section |
in an exact calculation, it should be included when any approx:.mat:.on

is used. Since V1 2° and V23 are of opposite. sign, its inclusion will
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-decrease the cross section,

The cross section in the first Born approximation is
2

. Puan 2 ' '
@) i [T e 1A, D
Pacin -

8K’
where |l  is defined by (361, 1) and I , the contribution arising

from the potentlal V12 is

AR AT A

It can be written (Jackson and Schiff, 1953)
{3

I -(‘1: C;,,;(i-h)g (-p-b). o 6.3.2)

an’

When the electron is captured from the ground state of the target into

the ground state of the pro;)ecfile, (2) takes the form
Js

T = 32 (“L)%J le
w \'.[a.o‘g-oﬂ][\;#(q_.k"

This integral may be evaluated using a method due to Feynman,

For the symmetric resonance process

H + H (18)—> H (18) + Hf. (3.3.3)
a d -
asb, P =g, ANE =2 O, and the result is

35 - "

1 s 32:“ L[ﬁ+(w-k:)hn‘£‘\
T’ wr w”l ' da

Ph| g e Y 2 'k (3.5.8)
T WM da w(u-""*:) Ta ( ur-olq-d')

whore wr = (g -b.q) . T - a ‘P
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Using the definitions of P and q it can be shown that

2 2
!-P -&a\l)

w = -
a (M)

where h; = uv o If terms of order 1/ are neglected,

1 2
w sV ’ Pm‘n = v ) Pmal = o .

Using (4), together with (3.1.2), in (1), the cross section for the

" resonant process (3) can be written

Qs s QBK{ .L_(‘J? +56, 5_2,) - Lnu"("a)(ss + 60 i_%)

192 vioove 48y vioove
-t 2
v (Fan (%)) (3| + 32, _n_t;) . (3.3.5)
e ! ‘ vt v ;
It follows that
B BK |
Q° ~ 0.661 q (3.3.6)

V =% 00

Mapelton {1964) was the first to point out that this result is not

'in fact correct. The mistake arises from replacing the exact value of
1

P-uul,
w= 0, 80 it is the last term of (4) which provides the major

Lee. MY by the approximate value of infinity. When P= Paan = My,

contribution to the cross section at very high energies. The contribution

from this term may be written . s
Mv

/ 2 .
Q Jlo _a' : A (r ) , (5.5.;) ]
v"l "aV"' T* (T‘)"

, y
where T = W + aZ,
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' The integral may be evaluated to give , 2 2

: Mv
/Y | . b_a 8 3
‘ ,['I+@R"‘-I’+6RT+4RT + RT »
5 1 3
lhasb ) LT 4 T T 2T 300
. l"‘
.
where 2 T
) At high energies, the dominant term in this expression is the last
one, and
/
QRo~ LT
where v° s the energy of the.incident proton measured in units of
25 keve All other contributions to QB tend to zero at least as_fast as
-12 '
VvV, so
Qa ~ L., (3.3.8)

v-o>e  3Mt Ve

This result has been derived here for the resonant .capture process (3)
but it can be shown that the important point is that M, = M, , not
that the energy defect is zero.

The previous discussion has ignored the fact that the incident proton
and the target nucleus are indistinguishable. If hydrogen atoms are

formed by capture in the backward direction, the ejected protons move
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in the direction of the incident beam, and cannot be separaﬁed from those
particles which have been elastically scattered. Thus, for practical

. purposes, the cross section ceases to be defined at energies where the
backward contribution is important.

For transitions other th

C L L lE L L0311 11e3 R Cop LS 14

evaluation of ] . in closed form is extremely difficult. Jackson and

Schiff used some numerical integration to obtain cross sections for capture

8
. . 8, -
into 28 and 2p . They showed that the ratio Q (“‘)/ Q (ls) for

-1
~nl = 28 2 was very similar to the corresponding ratio Q (“1)/@“ Is

They . therefore postulated that the ratio Ra 2"(‘?‘2) was almost independent
’ "

"of the final state and that Born cross sections could be obtained from the

. relationship

‘Q"(.‘U : a%0s) @), . (3.3.9)
Q“(\s)

Using this expression, Bates and Dalgarno_(1953) calculated crbss sections
for capture into final states
nl = 18, 28, 38, 48, 2p, 3p, 4P, 3d, 44 and 4f,

Mapleton (1962) calculated the ratio R for nl = 1s, 2s, 2p, 3s, 3p, 48,5
His results, which are given in Table (1) show that it is in fact almost |
independent of the final state. Therefore the results of Bates and
Dalgarno provide a good estimate of the true Born cross sections except‘
at very low energies. Indeed, at énargies above 150 ke§ their fesults

are in good agreement with the exact values given by Mapleton.
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The only experiments for capture into a single state of the projectile
Which are available for comparison purposes are those of Stebbings et al
(1965) for the process

H + H (1s) =7 H (2p) + K",
and of Bayfield (1968) and Ryding et el (1966) for the process
H + H (18) = H (28) + H,

In order to compare theoretical predictions with the results of other
experiments, some method of estimating the total cross section for capture
into all excited states of the projectile must be found.

For the Born approximation, Jackson and Schiff used (9) for this

purpose. They argued that since QBK(n) is proportional to n":5 at
high energies, then so is Sn) They therefore took
] | 8 s ©
& (5) =Q(\s)(l+0(z) _8_)
Q® () & |
= @'(ib( b+ nL6l6 @%(2) ) (3.3.10)
Q% (1) '
However, fig (8.2.3) shows that the ratios Q°(n) / @%(1s) for n= 2, 3
-3 ’
approach their limiting value = very slowly as the energy increases

and (10) considerably underestimates the true cross section at low and

intermediate energies. A4 better estimate is obtained by using (9) to write

a®(5) = &°(1s) + @ (1) N @ (), "
Q‘“(h) = S
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Schiff (1954) used the first Born approximation to calculate cross

sections for the processes

He'* + H (18) —» He' (18, 28 or 2p) + H"

. In fig (1), values of the ratio
8 8 :
R = & /a (1s)

taken from fig (3) of his paper are compared with the corresponding ratio
"given by the OBK approximation. At low energles the values giyen by the
two approximations differ considerably. This is not surprising because
for capture from the ground state 6f hydrogen into a state of He' with

n = 2 , the energy defect is zero, and the cross sections are very large
at low energies. For proton impact on hydrogen in its grou.nd-state s the
resonant transition is capture into the 18 state, and it is found that
(9) provides a good estimate of the Borﬁ cross sections for all values
.of nl, Schiff. therefore suggested that, for alpha particle impact, the
following relation should be used in place of (9);

QW = @@ a®w a2
a® (a) |

" Then the total capture cross section is o |
2% (5) = Q%) » @YY+ &%) S a¥).

O

~3
Schiff was working before the sum rule of May was known, so used the n
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rule to evaluate Z Q (") » From (3.1.8) it can be seen that
8K 8K
a () /a®(2) varies considerably with energy before attaining

3
its asymptotic value (é) » 80 Schiff wrote

Q1) = @%1) + Q%) + &%) Q™ Z 23
a“(n) n?

-=a(|s)+a(a)+a|ama O ~(3.3.m)
) 3“(2)
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Table 3,3,1

The ratio Q/Q"® for H' + H (18)pH(nl) + H  obtained from

the results of Mapleton (1962). E is the energy of the incident
proton in kev, )

{ 6302 | 11246 200 355¢6 | 632.4 [1124.6 |2000
nl : '

18 | 0,162 | 0.190 | 0.228 | 0,274 | 0.327 | 0.382 |0.431
28 | 0s145 | 04170 | 0,210 | 0,261 | 04317 | 0.375 0,430
38 | 0,144 | 04167 | 0.207 | 0.259 | 0.315 | 0.375 |0.427
48 | 0u144 | 0,166 | 0,207 | 0,258 | 0.316 | 0,373 |0.425
58 | 0,144 | 0.165 | 0,206 | 0,258 | 0,316 | 0.375 |0.426
2p | 0,146 | 0.181 | 0.227 | 0,278 | 0,333 | 0.385 [0.433
3p | 06139 | 04173 | 0,221 | 0,274 | 0,330 | 04384 |0.424
20+2p| 0,146 | . 04174 | 04215 | 0,264 | 0.319 | 0,376 |0.430
3s+3p| 0u141 | 0,170 | 0.212 | 0,262 | 0.324 | 0,375 |0.427




Table 3.3.2.

2
OBK cross sections, in units of Wa,, calculated by Hapleton (1962)

Bnergy (kev) | a(1s) | (28) | «2) | @(3a) | a(3p)
6342 1,75 3.04y=1 | 3e45,= 1 [9450,=2 | 1.20,= 1
11245 2:63,=1 | 4.68,=2 | 3.28,= 2 |1.48,=2 | 1.19,~ 2
200 | 2.64,=2 | 4442,=3 | 1.80,~ 3 |1.38,-3 | 6.57,- 4
35546 1084y=3 | 2.83,=4 | 6.58,= 5 |8.72,=5 | 2.38,~.5
632.4 9462,=5 | 1.38,=5 | 1.81,= 6 |4.19,-6 | 6.48,~ 7
1125 bolhy=b | 5.62,=7 |4e16,= 8 [1.69,~7 | 1.48,~ 8
. 2000 . 1.57,=7 | 2406,-8 | 8459,=10 [6416,=9 | 3.09,-10




Table 303030 |

9

. X |
Born cross sections, in units of Ta,, calculated by Mapleton (1962)

Bnergy (kev) | Q(1s) @(2s) (2p) Q(3s) (3p)

63.24 - 2.84,'-1 Le2y=2 |5.03,=2 |1.37,=2 [ 1.67, =2
112.5 5,00,=2 | 7.94y=3 |5:93,=3 |2.47,-3 | 2.07,~ 3
200 6001,=3 | 9427y=4 | 4e08,=4 |2.86,~4 | 1.45,~ 4
355.6 5¢04,=4 | 7038,=5 | 1.83,=5 |2.26,-5 | 6.52,= 6
63244 3.15,=5 | 4e38,=6 | 6402,=7 |1.32,=6 | 2.14,= 7
1125 1458,=6 | 2411,=7 | 1.60,-8 | 6.33,~8 | 5.68,- 9

- 2000 6.,77,-8 | 8.86,=9 | 3.72,-10 | 2.63,=9 | 1.31,-10
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4) Higher Born approximations.

No numerical calculations of capture cross sections have been
carried out keeping more than one term of the Born seriés, but some work
has been done on the high energy behaviour of the cross section. Drisko

(1955) considered the process

g + H (18) = H (18) + K,

’ ~ He used the form of the Born series obtained by expanding the total
4 ’ . +
Green's function g in terms of the free particle operator g,

(see (2.4.10)). The second Born term can then be written
8d

'T'.S- * I(V‘.,,Vu)" I(V-z'vu) OII(V",V.,)?' I(VJ;'V")’

. where I'(U,V) 2 (CPHUQ:V\C(?;?, | (3.4.1)

and the third Born term is
B

4 +
TU’ = (Cl’j.l\/j_(,, VCJ, V;\CO'.>.
An excellent account of Drisko's work is available in the book by'

Coleman and McDowell (1969), and here only the results will be given.

Drisko neglected terms of oxrder 1_/ M, and found that, at high energies,
IS
1 + I(Yii’\/"-)‘l( Vusv.;) = O)

so the Jackson-Schiff matrix element, which is so important in the first

Born approximation is cancelled, He showed further that I(V12, Vio)



4?

could be neglected compared with the other remaining terms so, in the
" second Born approximation, the internuclear potential plays no part

(in the limit /M tends to zero). Thus,

8 82 R
Ty Ty~ Ty o I(V,;,V,,X

where V isg the veloeity of the incident particle, giving

82 i : 8K
@ -~ (02946 + 5“

vV ~->0

-"
It can be shown that the v dependence comes entlrely from the term

35’ V'S)

It is interesting to compare a classical calculation. The matrix

~ element “, V,,) corresponds to two separate two-body collisions,
the first between particles 1 a.nd 3, and the second between 2 and 3. If
1, 2 and 3 are considered to be classical particles, the collisions can
be treated using classical mechanics, The classical scattering angle

is determined by the principles of conservation of energy and momentum
and the additional requirements that, before either collision has taken .
place, particles 2 and 3 have zero relative velocity, and that finally

1 and 3 move together., These ideas were used by Thomas (1927) J.n his
classical treatment of electron capture, He found that his cross section

was of order v.“ as v tended to infinity. 83

Drisko also examined the third Born term 1;; . He ignored all terms
involving V and found that no new tems in v.“‘ arise but the coefficient
‘of v 1is altered. He estimated that

83
QA - ~ '(o.sm_+ 5“") QSK'

V- "

2
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Drisko did not obtain the v dependence of Mapleton because when terms

of order /M are neglected, back scattering. does not contribute to the
cross section. _
Maplet;on (1967) considered the second Born term obtained by using
the expansion of g in terms of - CJ.-, (see (2.4.10)). This gives
Ty = GV 6Vl Y,

His work indicates that the two forms of the second Born approximation

predict the same high energy behaviour for the cross section, but, because

of the approximations he was forced to make, the work can‘not be regarded
as conclusive. The difficulties he enoountered are similar to those

occurring in the a.na.'lyais of chapter 9
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DISTORTED WAVE APPROXIMATIONS. ~

1) Derivation of the transition gmplitude.

The ldea behind the distorted wave approach is to take exact account
of the major part of the interaction potential so that the remainder may
be regarded as a small perturbaﬁion. For example, suppose that the total
. Hamiltonian H can be written |

A N
H = H + Y,
where ﬁ has the same kinetic energy terms as H, and that the .transition
amplitude for collisions governed by ﬁ can be obtained exact.ly." An
expression for the difference between this and the required amplitude
can be derived as follows, - | '

It was shown in Chapter 2 that the.exact amplitude for transitions

governed -by—H can be wr:.tten

were gt (10e (u-uo)ce;. (12
E~-HW4:i€
(See (2:3418), (2:441))e ' -
A . A
et Ty = (@1 WX D, |
where
X.“ = @ + E_-_HT(H W@, C(6.1.3)
Use of the operator identify (2.3.8) gives _ : N _
—_— ( (I (ﬂ-a)___'_;__), (oot 4)
E-~ Haeté - Hat€ _ “E-Hfoé

From (2), (3), (4), it can be éhown that
+ 3 4 _l ) _ 4 ¢
4; . = X: + Eoneie (“ H) X‘.,
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Then
T;j. : (%‘“-Hj_'X;'*> + (‘pj_\{l +(“.“"JE-;‘636](“. H)‘X; >
=<CP;.H:!-H,lX;’)+(\};\u-f”x;‘). (4.1.5)

where (2¢3.17) has been used in the last step. Similarly, by starting
from the alternative form of TJ, , one obtains
- A - A 4 )
Tij- =z (&\H-H;ld;)*;(x‘, ‘H-N‘\l"- >, (u,.‘,‘)
" Now suppose that |
H = H; +V, = H;+U;+ W,
s Hj" V} 2 Hf‘ U}" W},

where Hi, My are the initial and final unperturbod Hamiltonians of

the system and the distorting potentials VU, U, are such that W;, Wj
: . «l
fall off more rapidly than = as r =0 , but are otherwise
A .

arbitrary. First,take H = H;+4U; . Then (5) becomes :
Ty = GV -WIXSD + G W I XD, (4. 1.%)

and from (3) it can be seen that

4 .
X =(| * E-ﬂ".-U.w:é U‘) @ o lers)

A
Secondly, let H = H [ Uj- » and denote the distorted wave functions by
L4

)y to avold confusion, Then (6) gives
Too = {S V=W @)« {37 1w i 4D (4.1.9)

where
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It is possible, by a suitable choice of the distorting potentials
U;,Uj. to simplify the_exac£ expressions (7), (9) somewhat. For example,
consider the tem a’, | V;. - W, | X? > Use of (3), with
M H;+VU;,  and the relation

COIVel @ = @IVl @Y
S A VW XY =4 AW 1+ e v e
)\&\(p;)

ve [ Caplnty - <cp,|c0.-7).

(W}'( \ +(Vj_ W\

EHU

But <@gl @:Y is finite if @;+ Q}, , and therefore
fiw BV Ve - W IXPY =0

EDO¢
provided that .
i te LIRS

€eDos -
If U; is chosen to depend only on the relative coordinate ¢, then it

0. " (4.1.10)

cannot lead to rearrangement and condition (10) is satisfied. Similarly,

if UJ. is chosen such that

liw e < Sf- l ;> =0 ‘ (4.1 )

€ -0 .
then the first term of (9) vanishes. Thus, if conditions (10) and (11)

are satlsfied J

T;j.

4 q-; ) X'y (4. 1.12)

3 IwW gy, e
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It can be shown that the expressions obtained by replacing the
oxact wave functions &, , % by the distorted waves 3 , Xi are
equal. They give the distorted wave Born approximation to T; § .

Thus
pWR

TU’ ( Sf'- | W-‘ ‘.X: > | - | (/v.l.lh-)

I W RS, O (e15)

It was shown in Chapter 2 that (1) can be written
T = Sl TVAY,
where the transition operator T is defined by the equation
T = Vj, + Vi g* V;
and satisfies the integral equation
T . v}»,Tc,;’v.“
Similarly, a distorted wave operator wa can be defined such that
T, = C5TWIESY = (37T,
Since +
3 s (e gt w) x;
it follovs that '

bw

T e W w}c,.fw., | (4.1 16)

¢

Furthermore, since

-(.‘*ﬁf'wa)(‘ - ' | WL) : ,

£ H;' - U; +1 €
W
T  satisfies the integral equation ..
T W e T w, . (e 1.17)

E .“-‘~U;0;é



Various distorted wave Born series may be obtained by expanding
+ - : ‘
the operator Cj .in (16) in terms of simpler operators. In each case, the

firast term will be
owe

Tis = (3 I Wi XY,
C-reider. and Dodd (1966) were the firé.t to consider the convergence of
. such series. They pointed out that the same. difficulties arise as in
the case of undistorted waves because of the presence in the kernel of
the integral equation (17) of terms correSponding to states where one
particle propagates freely while the other two interact via a two-body
potential,

In a later. paper, Dodd and Greider (1966) proposed a method of
removing tﬁe disconnected part of the kernel, thereby obtainihg a new -
integral équa.tion fof wa_. They introduced a &mpletely arﬁitraxy
potential V,‘ , with t-he corresponding Green'!s function operator

+ i :

9 : e
: E-H+V, +ié

Use of the operator identity (2.3_.8)_. givés
: . . .
q_ - < I+ 6 Vx ) Ix .

Using this relation, (16) may be written

-r'bw H W} + WS' 3: Wi ¢ W’S‘V“S,: W‘.'

But .
- + 1 '
Wg = T .
T € - “; -U‘- 4 &
" Therefore W '
pw - . .
T = W Wi g0 W, £ 1 ETLT* x9x Wi, (.1.18



54

. . v + W,
This equation has kernel €« Hg-Ui+ € 9% % inunien V,

is completely arbitrary. If it is chosen so that it acts on any particle
not affected by W; , then the kernal is connected and iteration of (18)
should provide a meaningful series of approximations to the scattering

amplitude. The first approximation is
1 -, + ‘ ]
Tip = 3 IW o Weg, W x:" . . (4.1.19)

As an example, suppose that the distorting potential U; is zero.

Then (18) becomes

T W Wog Ve TGV, VL

. (l.1.20)
since Viiz V4V, , the kernal of this equation can be split into
two parts '
L] é L 4 %
K; = C]& Vx‘]u Vn. ’ K3 = CJL Vnﬂu V.;)
and both parts are made connected by the choice V,: Vn o Then (19)

becomes

I - "
- Iw, + W, ! Vi@ (.0.20).
T <_5f Weo Wy —— | |

The high energy behaviour of this matrix element is discussed in Chapter 9.

2) Applications of the distorted wave method to rearrangement collisions,.

Bassel and Gerjouy (1960) were the first to use the distorted wave
method for rearrangement collisions. They considered the reacgtion
H + H(1s) = H (18) + H, | (k.2.0)

‘and chose for the distorting potentidl U; the average static interaction
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in the initial state,
[}
U‘- = jtﬂt \\‘—‘(!:)\ V;(t,ﬁ').

This choice ensures that U; depends only on & , and also means that
 the internuclear potential V.; almost disappears from the potential

W; : V. - U, « The exact transition amplitude T-,g. is given by
(401.12) and the first order approximation by (4.1.14). The distorting
potential U_;, occurring in the definition of the function ;;.- is completely

arbitrary and was chosen to be o
Uj- s j J:_( \4}(53‘1 V'_(a_c,[:),

However, with these choices, (4e1.8), (4.1.10) cannot be solved exactly
and Bassel'and Gerjouy replaced the distorted waves X;*, S;- in
(441414) by the undistorted ones (i, @¢ , although they retained the
. potential  W; = Vi -VU. | However, U, appears in the equation just
- because distorted waves have been used and there is no justification for
retaining it when they are replaced by plane waves. Thus, from a
theoretical point of view, the Bassel-Gerjouy approximation is no more
satisfactory than the OBk or Born ones. OCross sections for process (1),
calculated from the matrix element : ’
Ty 2 ) ViUl @Y

are given in table (1), labelled Q°%, - -

Grant and Shapirs-(1965) attempted.to improve the method by using
more exact expressions for X ;‘ ’ Sf,- o If the Green's function
(E -He- U “e)-‘ appearing in (4.1.8) is expanded in terms of U; )

then the first term in an iterative solution of the equation is

x:" s s ‘}:-‘J;‘) @.. -
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Similarly, one obtains

'S‘_- = ( I + q; U‘.v ) C?s,.

These are the distorted wave functions used by Grant and Shapiro. Their.

transition amplitude is obtained by substituting in (4.1.14) and keeping

only terms of first and second order in the potentials. Thus,

] 84

T, Ty o+ 2LV Ul G V@Y.

Results for process(1)obtained .using this expression are given in table
(1) denoted by QGD It can be seen that Q > Q at all energies.
In the work of both Bassel and Gerjouy, a.nd Gra.nt and bhap:.ro s Some

terms of order 1/M were neglected and it was found that -
8G (18 g8

'G.va.', Q.:-/Q
Vb 00 - 00

Mapleton (1964) consudered the high energy form of the cross section

- obtained by using T‘. , with the exact value of the potentlal V U. »

not the value obtained by letting 1/ M tend to O, and found that it was

the same as that of QB. | |
4 different form.of distorted wave has bee_;x- -used by McCarroll and .

Salin (1967a) to discuss process (1) If the exact wave function is

written
e
¢
it can be shown that g(s,{z) satisfies

2 3 .
(-a_/':.‘.vc~ -’zl_bv', -i. +_;;. -E+e;)cj-(:_‘,/ﬂ

—— _|+ __'_v u\t' ,v .lu .(’_‘,--» . ‘A
- ( ' 5 \>':’_n BT g)g ) “Qé;

\L.. (t) %(’.‘.- ,(’.),
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| The distorted wave in the initial state was chosen to be
d

X; < \F.,(r)s.(x,(a)
where g; (x, /’-) " i the solution of (2) with the right hand side
negleoted, and bounda.ry conditions . '
g {x,p) =2 wep (v ki «).
‘The distorting potential U; is defined by the equation
'(H;-l»U; -.E) X;_f = 0, |

and is easily seen to be
v. = -

4+

P RN IS A (N
R R | |
The exact transition amplitude is given by (4.1.7)

T.'j, = (cpf|V}-W.‘x“>+<\};\W.lX:>.

+ .
Since CP;, and X; both contain bound state functions, the surface terms

-
X

ariging in the application of Green'!s theorem to the first term vanish

and this term is

) -4
COIV -V s VI XD

L@ TE-W XS
= O.

The first order aist.orted wave approximé.tion is obtained by replacing

the exact wave function \}; by the distorted wave 3{: i f:_r) 9g ( r, &:\

which is a solution of the equation ‘ '
(Hj_ + U} -»E‘ )'S‘__ .= (9]

J

where

-~
”»
L

-

4 L - .
o~ f

LY ey Vg
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Finally, if terms of order V/ M are neglected ,

Wes Vi-Ups 9o dutg o Tolug: = 2.9 duyg;,
v
and pw8 . - +
T = (% 1 2.V, 0y | x. > (W.2.3) .

. No calculations have been reported using this equation. 4s pointed out

- by McCarroll and Salin, the approximation is the. quantal equiiialent of the
continuum distorted wave approximation of Cheshire (1964) (see Chapter

6 § 2)y and therefore.has the same -high énergy ‘behaviour as Drisko's

second Born approximation,
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C!l_ag ggr 5 °

IMPACT PARAMEIER METHODS

1)  Introduction..

Because the nasses M1 ’ M2 are much larger than tﬁe mass of the
electron, the de Broglis wavelength associated with the relative motion
of particles 1 and 2 is much smaller than the atomic unit of length., This
motion may therefore be treated classically. Furthermore, Bates and
Boyd (1962) showed that the motion is approximately rectilinear with
constant relative velicity V o These simplifications are used in the
impact parameter methods.

The notation used in the present section is slightly different
from that used previously. Let ,,r,,*  denote the coordinates of
the electron with respect %o particles 1, 2 and 0, the centre of the
internuclear line, Bates and McCarroll (1958) showed that the results
obtained do not depend o.n the position of O on this line, but the present
choice ip made to simplify the analysis, Particle 1 moves along a

straight line with constant velocity v = ?ﬁ » past the nucleus 2
b1+ '

" which is regarded as fixed. Thus the distance of closest approach of the

two heavy particles is equal to the impact pa.ramef.er (’ o If the origin
of time is chosen to be the instant of closest approach, then R = Ry k,
where, as before, R 1is the position vector of particle 1 with respect
to particle 2. |

The exact electronic wave function ‘:L"_", l:) which describes the

motion of the electron in the field of the two nuclei satisfies the time
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dependent Schrédinger equation

M d(e8) « 02 $(s,6) (5.1.1)
d
where 2
R, = =2% « V(o) + Vpyle), . (5.1.2)

(s l' 8)
If ¥, ‘-."‘;),- V'.:‘ (!_'D denote the eigenfuncticns of the electron in the

: ' )
field of particle 1 or 2 repsectively, and G: , é:’ the corresponding

eigenenergies then

<.5_v“ oV () - e )\L—:’(v;.) - 0
wi (2% 0 Ve - ) Hm) -0

The exact wave function \l(r, t) may be expanded in either of the

followirig waysi-
- {1

J(re) = 7 b @, (e,t) (5.1.3)
- tY
= 3 an® §. (g0 (5.1.0)
where 2 w ) .
é“ (L”u,t) : ‘/':,(v_s‘) exp ( five -'givk -ig, t), (5.1.5
_(}:,( A,E) = \I-:’(\:,) exp (-5 tue - g ivie - lez.,t). BN CRWA

The extra exponential terms allow for the translational motion of the
electron and ensure that each term of the expansion (3) or (4) is a
golution of (1) in the limit of infinite nuclear separation (if terms of

order 1/M are neglected.) In this connection, it should be noted that
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the time differentiation in (1) is t.o ‘be carried out keeping ¥ constant,
not ¥, or v, . Since

W‘n E-L&
- a

"
Ly 3
|

Pk

»)-

| 93 B

w1=t:4.ék = s (3_4':"-_\_/__'_;).

' ) @) N ’ )
it follows that . (t.), \".., ( *:) are themselves functions of E.

It may be shown that

(}{'e -t l\ é:)(ﬁ,b) = Vag(r;) @:,(fnt) | (5.‘.1)
-1 4 ' |
and @) ) : (1) .
(Hc - ;:_E\ ém (!'“b = Vﬂ(‘:') i)m (fz ,l:), | _ (5,\8) |

Substitution of (3) in (1) and use of (7) gives

,“;’_ ] (&:}LV”\L]:> , --i(S'.\-‘l)‘

and, similerly, (1), (4) and (8) give

1 % . < 4):,'\'\/“ 13, | (5.1.10)

R I IEY = [de &) V() B,

Since initially the electron is bound to nucleus 2, (9), (10) must be

solved subject to the boundary conditions
la,“(-oo)‘ = S , ‘5..,(-«:)‘ = 0.

(but see later note, p. 67 ).

The probability of capture into state f occurring at impact parameter P

s P . Il,“(m\lz | | (s1.0)



and the cross sectlion for capture from state i to state £ is obtained

by integrating over all impact parametezfs y

5 P a'(v .+ -(in atomic units).
This can usually be wrltten |

Use of (4) 1in (9),- (10) yields the equations

;u} RSORE MR g
o 3 el RV, O,

It a,(t) is known, (13) gives

v () '(:)
by () Z_‘ Ch, 1NV D anlo) de,

: Q;} dj ?[’ ap (in units-‘oi; ‘4“;“: ).
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(5.1.12
(5.1.13)
(5.1.04)
(5.1.15)

The impact parameter equivalent of the OBK approximation is obtained

by setting aM(ﬂ:éM in (15) and using the resulting expression for bj, ()

in (12)s A more refined approximation is obtained by solving (14) for ,

a.“(ﬂ) keeping only diagonal terms. This gives

al) = 5. u.,[ RENMAALN Jt’}

Use of this expression in (15) yields a cross section (&

(5.1.16)

which is

the equivalent for capture of the distortion approximation for excitation.

(Bates, 1959)s Cheshire (1964) has calculated values of Q

process

H + H(1s) —» H (18) + u“,-'

and results are given in table (6.2.1).

. for the
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It should not be supposed that the lmpact param_eter method favours

the OBK approximation. One of the unsatisf.actory q.Spe'cts of this work
is that any potential W(R) which depends only on the internuclear
.coordinate may be added to }{‘L o The only difference this makes is
to add a term WIR) to the potentials occurring in (9), (10), (13), (14),
" (15), (16)e The choice W(R)= V., ‘R), together with the substitution
0,2 9,: in (15),1eads to the impact parameter equivalent of the Jackson-
Schiff approximation. |

| Bates (1958b) showed that the uncertainty about the correct choice
of interaction potential arises because no allowance has been made for
the fact that the unperturbed functions @:‘, Q:\ are not orthogonal
except in the limit of infinite internuclear separation. The difficulty
mey be resolved by taking proper account of this lack of orthogonality.

Instead of using either of the expansions (3), (4), \J (e, t) is written
' @ ' .
\l— (u:-,h) = z a“(&) @: (_v"“l:) + Z L (¢) @”(r.,t) (5.v.179)

Substitution in (1) now leads to the following exact equationss

‘a“ . Z \, < Qu)‘ @Ul
=.Z . (éu)‘ |3\¢“,) Z b‘“(&:)‘ V‘;\ @::)) : (5_|_|3"

and

+3 an O, \d»"’>
C3 R BT - z;@«&@’_mg@i’r (s

mm
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2) The two gtate approximation.

bk

This is obtained by neglecting all terms which involve a state other

then the initial or final one. Then (18), (19) give

:(1-5*) a; o w
= ;M - Sig Ky ) \a_,(K,;-S;H,Qu?i-- ¢ - €. )l

"
‘(ts)b}
e by (M- S5 Ky) + g Ky, - Sy W, )u,,!-.(e -ef)d
where
S“'." = J \‘—“’(Pa) \‘-;:7(9‘ )Q“’ i J.t - Sj".', ,
Kig = § W) Yy (e %) ()" dy

=
“w
[1]

, . S q'u.)( ) V.g(!’)\‘-;:,(w)’e-w"ﬂt)
im Jq- (m V() ) (n\_ﬂ.:)

e = w0’ v,,(ﬂ w,‘.”(qu._.)

X
w

ad § = ) Sl

If a, "j- are written in the forms
t
a, = A" QKP'[-'.‘.j K ‘lb])
- 00
t

by =+ Bpexp| - i) g ‘“\

.BL; = H;l = S.} KS‘- N pj_s ““, - 5}';‘(;} ,
- . -3
then (1), (2) reduce to

W) (ﬂ
TV | Kt-s.}u,}}u‘,{..( L€l )e ,.s.;k
1-s* o

where

(5.2.1)

(s.2.2)

(5.2.3
(s.;.b]

(5.2.5)_

(5.2.6)
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alm .
;éf . R;[ K“-s,.‘u.,‘] exp {.;(e';”- ¢ e - Si}‘ , (5.2.3)
18>
where ' t
¥ = j.“, («: - f'-‘f) de. . (5.2.8)

The term S;j. arises _becéuse of the difference between the effects of
" the interaction of the colliding systems when in the initial or final
state. DBecause of the exponential factor occurring in the inteérands of
(3)y (%), S5, K may be expected to be small when the relative
mtion of the collidiag particles s large. Then 1-8"~1 , and
Sij- = '[n ( Hi ~ HH_) olh.
~ Since the imaginary parts of 0(';,/3‘5 are antisymmetric with respect to E .
‘q.;(oo)‘ = |A.(oo\\ and Hbs(ao) =z ‘B}(ao)‘
In order to obtain B}(n) and hence the cross section, (6), (7)

must be solved subject to the boundary conditions
la; Cad) = 1, 1 by (-w)) =0

McCarroll (1961) showed that, for the symmetric resonance piocess

H + H(1s) = H(1s) + H, (5.2.9)

the equations simplify considerably and can be solved without further

approximation. For in this case F\uQH“, Q018 , Kip o K, and
5.’5 30, so (6), (7) become
'Q.A‘ - 8 B}[ K’_‘ —S}‘“;‘l)
b=t )

and . . :
't BS’ 2 A"_ X Kf; - S!; Hi&l.

1~ 9%
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These can be uncoupled and solved, giving

sin Y ("h - 5}?”;;).]&.], | (5.2.10)

| L}(n)\ = ‘ B}‘w)\ -
1-s*

| 9i1 (1960) used a linear combination of the initial and final state
. wave functions as a trial function in a variational treatment and obtained
a result equivalent to (10).

For any process other than (9), a further spproximation must be made,
The usual method is to ignore back-coupling from the final to the initial
state i.e. it is assuned that b, (€) << ai(¢)  throughout the
encounter and the sscond term on the righﬁ hand side of (1) is neglected.

The relevant solution of (6) is now

Ai(t)- =1,
and using this in (7) gives ] o
byl = 1B} = | |7 My de] (5.2.1)
~ where o - ' '
1-95*

and 5;}-13 defined by (8). | _
For symmetric resonance, the exact expression (10) may be written
(D) = | osin ([ myg de) |
| b)) = | sin f... Mg )
so that, for this process, neglect of back—coupling'involves the

approximation

| gw My Jt) ~ S" My de. - (5.2.13)
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It is easy to see from (11), (12) that the unphysical dependence of
of the cross section on the potential V., has now been removed. For if

any function W(R) of the internuclear distance i_e-a.dded to )€¢ s then

' * . (1) YV -
Ko = f g led (Vg o WY (e e e o Ky v WS

H,i! z j w‘f’(v_»,‘)_*(v,,.w‘) W(:’(hjgt. = K s W)

80 that

/ /

Kg, = Sp M = Ky = S My
and the inclusion of W(R) does mot affect the value of M, .. This result
depends on the inclusion of the term S, which allows for the mmﬁMgoné'
ality of the unperturbed functions. |

However, Cheshire (1964) drew attention to the fact that the omission
of the potential V..(R) alters the boundary condition on the exact wave
function. Consider, for example, the collision oi" a charged ion with a
neutral atom, If the whole interaction V12 +‘V1 3 is included J.n ){g )
then in the limit o;t‘ infinite nuclear separation the elec-tron moves in_
the field of the isolated _nucleus-(2) » and

(2) : A
g (e,¢) =, . (e, ¢).

If V.,is omitted, the electron is influenced by the Coulomb field of

the projectile even in this limit, and the correct boundary condition is

\l(t,ﬂ t_7 éia)(f,t) e.xft_-é 1w(v9~-g.?_\)3.

=P -0

This result was first obtained by Wick (see footnote to paper by Jackson
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and 3chiff, 1953)s He pointed out that if the projectile and nucleus
were considered to be classical particles mbving in gtraight line paths,
and \]: (C',.Q is the exact electronic wave function satisfying the

equation

‘(H°+.14V.34V25)&l= .‘?ﬂ\_‘]:.-)

~ d¢E
then ¢ (r,l:’ z é."F{'—‘- fn (VR- \_f&)] Qg(g,b) satisfies
~ .
(H,...V,,4V"\\l— = ia%q:.'
Therefore the potential V1 5 should not affect’ the probability of electron
capture if the impgct parameter method 1s used., - In an exact quantum
mechanical calculation, _V1' o May be expected to give a contribution of order
1/ M which can be neglected in comparison with contributions from other
inﬁeractibns. However, it does not follow that V12 can be neglected
when approximate methods are used. Returning to the point made by Cheshire, |
it is clear that the correct boundary conditions have been used in the
vork of Bates provided the choice W(R) = V12(R) is made. However, the
OBK approximation obtained from (5.1.15) employs a wave functioﬁ with
incorrect boundary conditions. Cheshire (1965)'obta.ined a modified OBK

MBK :
cross section @ by writing

aule) = 8 axp( -idulVR- g.s))

\Y%
MK
in (15)e Values of @ for the symmetric process (9) are given in -

Table (6.2.1)s Examination of (16) shows that
a“(k)‘t_v s“.. ¢xP( °\£/ iw(Vk°'!_,§)) , )

'Y= 0
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go the wave funetion used to 'obt.a.in. QM satisfies the correct boundary
conditions... | | .

"I‘he' results obtained by McCarroll (1961) for reaction (9) are” |
presented in Table (1), which is taken mainly from Bates and McCarroll
(1962). Cross sections obtained using the two-state approximation are
denoted by Q and the superscript b 1s added when back-coupling has
been included. Gompa.rison of Q and Q shows that this is unimportant
at energies greater than 100 kev, |

Allowance for the non-orthogonality of the initial and final
unperturbed wave functions can also be made in a wave treatment (Bates
1958b), although most calculations have used the impact .pa.rameter
formulation, The distorted vwave method of Bassel and Gerjouy (1960)
discussed in Ghapter 4L 8 2, is equivalent to the two-state approximation
with both back-coupling and the term 5 neglected. At energies above
200 kev this term becomes very small, and it can be seen from table (1)
that Q‘t arid QGG are in close agreement,whereas at lower energies
ng < Q, . Also included in table (1), for comparison, are values of
Qs, Q* calculated by McCarroll from (3¢3+5), (3.1+9).

Since ngv QBK as v tends to infinity, the same is true of Q,.

McElroy (1963) used the two-state approximation to calculate cross
sections for the reactions

H' +_H(1s‘)-»ﬂ(2s or 2p) + H. (5.2. 4l
Two additional approximations Were.made to simplify the numerical works-
(1) ' Back coupling was neglected. |
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‘(ii) The exact distortion term S.‘. was replaced by one of the
_following e:q:ressions .
a) . S = Jo (Hy-w el (5.2.15)
b) S = O. | (5.2.16)

o '
2 s Qz denote cross sections

Results are given in table (2)., Q
obtained by using (15), (16) respectively in (12). It is clear that
inclusion of the distortion term has a considerable effect on the values

of the cmss sections, and except at the lowest energy considered, (25 kev),
ey > Q]

Lovell and McElroy (1965) investigated the error incurred by ma.k:.ng

_the additional approximations (i), (ii) by considering the process

i + H(1s) = H(28) + H'

and solving the coupled equations (6), (7) numerically without further

approximation. Their results are given in table (2), denoted by Q (25)

‘the superscripts indicating that both back coupling and distortion have -

been allowed for. Gomparisox; with Qs ( 2s) of McElroy, indicates that
at energies above 50 kev back coupling is unimportant, and that (15) is
a good approximation to S.j. at these energies.

-Table (2) also contains total cross sections, Q, (2) , calculated
by assuming that

Cl, (w) % 2’) Cl , | (5.2.1%
. ) SK (“) . .
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and using the n  rule. Then

eS(5) = @i s 162 @t(a).

¥l

| (5.2.18



Table 5,2.1

Cross sections in units of Was for H + H(1s) —» H(1s) + H"

92

Energy (kev) | Q% R RN g, | & %

0.1 127, 4 - - 291, 1 - -

1 1.22, 3 - - 1486, 1 - -

5 2,01, 2 - Loy, 1| 1413, 1 - -
10 - - - - 11418, 1 | 1.71, 1
15 be2dy 1 - 9.25 6437 - -
20 - - - - 4e23 6.14
25 1,68, 1 |2.30 3.68 3.14 - -
30 - - - - 2,06 3.01
40 - - - = 1,16 - [ 1.6
50 3.37 5¢20,=1 | 8404,=1 | 7,70,=1 - -
60 - - - - beShy=1" | 6,68,=1
70 - - - - - - -
75 1004 1077 9=1 | 2eThy=1 | 2.69,~1 - -
80 - - - - 2.12,=1 | 3.12,-1

100 4e00,=1" | 7435,=2 | 1616,~1 | 1415,=1 [1410,=1 | 1,63,~1
120 - - - - 6e21,~2 | 9.13,-2
150 8eThy=2 | 1.81,=2 | 2.98,=2 | 2,98,~2 - -
200 2:63,=2 [ 6000,=3 | 1,02,=2 | 1,02,=2 [1.01,=2 | 1.47,=2
300 be17y=3 | 1608y=3 | 1495,~3 | 1.95,~3 - -
400 1.02,"3 2092,"4 : 50399"4 5039.9"4 aa -
500 3629,=4 | 1a01y=4 | 197,74 | 1:97,~4 |191,~4 | 2.65,=3
600 T {1.427,74 |4e09,=5 - - - -
700 5058,=5 [188,=5 | = - - -
800 2.71,=5 |9446,~6 - - - -
900 1642,=5 |5.12,=6 - - - -
10000 [7495,~6 | 2:94,=6 | 5.82,-6 | 5.82,=6 | = -




Table 5.2.20.
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Cross sections Q, (nl), in units of Tas, calculated by lcElroy (1963),

and by Lovell and McElroy (1965), for the process

H + H (1) = H (nl) + H,

Bnorgy (kev) | 4p(28) | af (28) - [<®5 (20) [a; (2p) |[qj (2p) |4} (%)
1 - - 1e34,=5 - - -
5 - - 3.06,=2 - - -
12,5 - - 2.32,-1 - - -
25 3087,1 |3.58,m1 261,21 [2.97,=1 [2.95,~1 |4.20
50 1606,=1  [1.56,=1 [1455,=1 [9639,=2 [1.11,=1 |1.21
100 1471,=2 | 2.81,-2 [2.80,=2 [1.11,~2 [1.40,=2 |1.83,=1
200 1e54y=3 [2433,=3 |2.33,=3 |5.68,~4 |7:13,=4 |1.51,=2
400 Te84y=5 |1.04ymh [9460,=5 |1.53,=5 [1.80,=5 |7.37,~4
800 2054,=6 | 2.99,-6 - 1428,7 |[1.42,=7 |2.33,=5
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3) Other coupled state calculations. |
The approximations discussed so far fail to take account of states
other than those directly involved in the transition. Bates and McCarroll
(1962) pointed out that one could take account of the virtual sequences
i-m=- f,i - n=-f by keeping terms corresponding to the intermediate
states m and n in expansion (541.17) for \}(._s', h) « This approach was
applied by Lovell and McElroy (1965) to the processes
B + H(1s) = H(1sor28) + K,
the four states included beiné_ the 18 and 28 states of the target and
projectile. Only three of the four states were kept in each calculation,
and the resulting coupled equations were solved numerically, so that the
effects of both back~coupling and distortion were allowed for. The
reéults showed that the inclusion of an intermediate state ha.ci little
effect on the cross section for the 18 = 18 +transition, but that for the
18 = 28 transition the effect was consideratl)le, especially at low energies.
If coupling to intermediate 28 states is important,.one would expect
coupling to 2p states to be also. Wilets and Gellaher (1966) have
investigated the effect of keeping more states in expansion (5.1.17).
Because they considered the scattering of protons by ground state rvdﬁgen
atoms they were able to use the symmetries of the system to halve the
number of coupled equations which have to be solved. For this system, the
Hamiltoﬁian, Me , glven by (5.1.2) is invariant under inversion through

the centre of mass of the two protons ( », —-fy, », —7 -1, )e

w
The Schrddinger equation (5.1.1) therefore possesses solutions ¢ » Which



T

have definite parity,

q:":-',t" = N q.'("t,b)} Whe're ™ =0,

L .
\]7 is expanded in a set of parity-~conserving states

¢" > ay () Cb: (e,8), o (5.3.)
k .

Where T hy (2) ¢ . _
(e, = 2 ( G () + WO D (), | (5.3.2)
R ) o
and the functions @ (V_") : J =1, 2, defined by
(50145), (5.1 6) can be wrlt.ten
¢ "’) 2 k (O:J) ex‘,(-:éht),
with G T
] J 2
Pu (r'_',)= (F)exp( :‘i!t-%ivt),
the plus sign being taken for j = 1 and the minus sign for j = 2.
The following expansion is made in place of (5.1.17).

Gl = 2 47 (e,6) + $(£,0))
: Z{(“:*“;)d’?‘fﬂ v lag-a)en 3] (503

2
"
If the electron is initially bound to proton (2) in the ground state,

the boundary conditions are

4 - . .

dk (' 63 s an ( - ) s S e

- . L
Coupled equations for the coefficients a, are obtained in the
usual way by substituting (1) into (5.1.1). The equations are then

solved twice, once for each ﬁarity. ' The probability of capture into

7

ry
e
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into state £ occurririg at some impact parameter /s is

.+ -
? : ag (=) - ag ()] . (5.3.4)
1 . . -
Wilets and Gallaher evaluated cross sections for the reactions

H + H(18) — H(1s, 2s or 2p) + H',

Most of their calculations included the 1s, 28, 2p,and 2p, % states of
both target and projectile (the eight state approximation) but a few
results were obtained including also 3s, 3]’0 ande; j states (the fourteen
state approximation), Their results are given in tables (6.3.1), (6.3.2)
(643.3) denoted by @; (nn, Q:‘ (wt). For the symmetric process, the
eight state results are in very close agreement with Q: of McCarroll
(1961), and the fourteen state results do not differ significantly. For
cap_t.ure into the 28 state, the addition of extra states does make an
-appreciable difference, especially at 9 kev. At energies e_ﬂaove 30 kev,
where comparison is poseible s reasonable agreement with Q : of McElroy
is obtained. For capture into 2p » it can be seen that adding in extra
states has little effect at 9 kev but increases the cross section
considerably at 25 kev, smoothing out the rather peculiar dip in the
~eight state calculations. Thls work indicates that the rate of convergence
of the cloee-eoupling method is rather slow.
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4) Colligions involving alpha particles.
Cross sections have been calculated in the two-state approximation
for _
He'* + H (18) — He' (18) + W | (5.4.1) -
by McCarroll and McElroy (1962), and for ' |

He't + H (18) = He' (28 or 2p) + 4 (5.6.2) .

| by McElroy (1963)e The same -additional assumptions were made as for

)
proton impact. Results are given in table (1), where Q Q% have the

' : $
- pame meanings as before. For process (1), it can be seen that & is

much greater than Q2° at all energies.

One would expect distortion to have a cons_:l.c_l_erable effect on these _
processes because of the Coulomb repulsion in the final state. For this
reason, Macomber and Webb (1967) performed calculations for process (1)
using (5 2.11) with the exact expression for 9. e They found that ‘42
of McElroy considerably overegt:.mates the true two-state cross section
at all .energies. up to 800 kev, whereas Q2° overestimates at energies
below 100 kev and underestimates at higher energies. Although distortion

is expected to be less important for proton impact than for alpha particle

" impact, nevertheless it is clear that McElroy's results for process

(5.2.14) must be regarded as unreliable until calculations using the
exact diétortion_ term have been max_le.

Macomber and Webb also investigated ﬁhe ef_f;)ct of bé.ckooupling
by solving.(5.2.6), (5.2.7) numerically with mo further approximation,

and found that-it is unimportant at energies-above 100 kev,
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Another calculation which takes exact account of distortion has been
carried out by Basu, Bhattacharya and Chatterjee (1967).l They used a
four-state approximation to obtain cross sections for reactions (1), (2)
in the energy range 1.6 to 32.4 kev, the coupled equations which arise
being solved numerically. Their i'esults are given in table (_3), 1ahbelled
Q. (nl), and it can bs seen that the cross sections for the accidentally
resonant processes decrease with decreasing energy as does the cross section
Q (18) for the non-resonant process. This is in alccord with general
predictions made by Bates and Lynn (1959) on the differencés between the
effects of symmetrical and accidental resonance. Estimates made by Basu
et al of total cross sections agree well with the experimental results of
Fite et al (1962) which are clearly non-resonant in form.

If the results found by Macomber and Webb for process (1) hold for
(2) also, then McElroy's results overestimate the true two-state
_approximation result at all energies up to 800 kev, His results are given
because they are the only ones.for this reaction available for comparison
with the impulse approximation.

Estimates by McElroy of total cross sectionf for the process

Ho'* + H (1) — He' + H
are given in table (2)s They are based on the assumption that -(5.2.17)
and the n~> rule hold for alpha~particle impact also.

Then 5 _ §
@, (5) - Q(|)¢@(2) +z|@,(.ﬂ a (s)

(ses (303:77)). | s e



McElroy states that at 25 kev, the third term contributes as much as

53 per cent of the first and second, This is not surprising since one

might expect Q(3) to be greater than Q(1) at low energies for alpha~-
particle impact.

L



Table 5.4.1 .
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: 2
Cross sections Qz(nl) in units of Wa, for He'* &+ H(1s) = He'(nl) + K
calculated by McCarroll and McElroy (1962) and McElroy (1963).

Energy (kev) | Qy(1s) Q; (18) | Qy(2s) Q: (28) | Qy(2p) st (2p)
25 1421,=1 |[3420,=1 |2.05,+41 |3.98 160,41 | 1441, 1
50 1.46,=1 | 6.43,=1 |5.07. 2.95 7.1 - | 1.1, 1
75 1649,=1 | 7211,=1 - - - -

100 143,-1 | 6478,=1 [8.76,=1 |1.22.  [2.44 5,53

150 1029,=1 [5.36,=1 | = - - -
200 1015,=1 | 4al1,=1 [9426,2 [3.23,-1 |5.72,~1 | 1.66

250 |9.83,-2 |3.16,-1 | - - - -

400 - |6.19,-2 [1.49,=1. |6.36,-3 |3.78,-2 |9.29,-2 | 2.73,-1
800 | 1.67,2 |2.66,-2 |2,30,-3 | 1.29,=2 | 1.03,-2 | 2.30,-2 |
1600 2.73,-3 [3.36,-3 | - | - - -




Table 5.4.2.

2
Total electron capture cross sections in units of Ta, for

He'' + H(1s) —¥He' + H' calculated by McElroy (1963)

E(kev) o Qy(total) Q; (total)
25 5.65,1 2,80, i
50 S8, | 3,01, 1

100 . S Bu4 1075, 1
200 - | 176 . 5.32

400 O 2484y=1 | 8.47,~1
goo | 4e13,-3 . 9.66,-2




Table 54443

. N .

Cross sections QA(nl),in units of Ta,, for
He't + H(18) =» Ho'(nl) + H'
calculated by Basu et al (1967)

Energy (kev) Q4(1s) Q4(25) Q4(2p)
1.6 2.6,~7 3.63,-8 1601,=7
3.6 6diy=6 | 1ebd,=T7 3435,=7
6ud 1e8y=l 2456,=7 - 7.08,=7
10 | 484 3e43,=7 1605,=6
2 90,4 | 4605,=7 1022,-6
ek 1043,~3 beod9 4T 1.38,-6
16 193,=3 | 4e58,=7 | 1e45,-6
19.6 4026,=3 © 450,=7 1.58,-6
25,6 1043y=2 | 4e11,=7 1.73,=6
32.4, | 3.22,-2 3473,=7 1.82,-6

82
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SECOND ORDER METHODS

1) troducti

The lack of convergence of c]nse—colupling expansions suggestéd by
the work of Lovell and McElroy and Wilets and Gallaher is probably due to
the fact that approximations based on expansion (5.1.17) and the resulting
coupled equations (5.1+18), (5¢1.19) take account only of transitions
between a limited number of bound states. For rearrangement collisions,
transitions to other states, particularly those in the continuum, may have
an lnportant effect. The term "second order" is applied to methods which
attempt to allow for such transitions , -,

Cheshire (1965) showed that second order differential equations for
the coefficients in (5.1.3) and (5.1.4)' can be obtained whose solutions
do take account of coupling to all states not explicitly included in the
calculation. The second order analogue of (5.1.10) is

i3y

o 8] 2 ' (2) : .
an i) anld VTV, 10 v 2 aulRa | V,V,1d.> =0,

' )
where T, s 4N + \/,3 PO I
a 2t

If only terms invol\fing the initial state are kept, the following equation
is obtained :

ac - i CBT IV TV A v ikl 1N, Y, 180> s 0.
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Denote by ai(z) (t) the solution of this equation with boundary condition

F->=-00

__'_d‘:’(t) ad enp { -\_8,, fu (VR - !B)\ .
The second order distortion approximation to the cross section, QDz, is
obtained by putting |
an (E) = S ai ()
in (5.1.15). Cheshire calculated values of Q°< for the process
H + H(18) = H(1s) + H
and his results are given in table (§42.)At energies above 40 kev, they lie

close to Q™ of Grant and Shapiro.

2) The continuum distorted wave method.
Another aeqond order approximation which has been developed within
" the framework of the impact parameter method and applied to the process .
| | H + H(1s) = H(18) + H (¢.2.1)
is the continuum distorted wave method of Cheshire (1964). |
It was shown in Ghapter 4 that, in a wave treatment, the transition
amplitude for capture. into state f can be written
T = <500 Ve- Ut &Y,
where the distorted wave 5‘,- satisfies the equation
(-;FVP,.-:;V,: hV.}+U} --E) 5‘_ = 0
(in the notation of Chapter 4.) '
The equivalent result in an impact parameter formulation is that the
probability for capture into .state f occurring at an impact parameter [';

is | \’} (N“z, Wwhere

b () - -'.V('S{ | V- Uyl SRR (¢.2.2)



85

) o ‘ - +
provided that bf(—co) = 0, and now S‘, , \}; are electronic

wave functions. The distorted wave function 5 satisfies
1 -
-2 VA ] = 0,
Within the limits of the impact parameter method, (2) is exact.
The distorted waves used by Cheshire were chosen in the following way;

Suppose ., q:‘_ are exact solutions of the equation
. _ .
(290 * Vs Vpy sV - 1 ) e, ) =0,
) .
Hrite L}a &L iL, q_} - é';l)i},

where Q}“ ” @:" are defined by,-.(45 9_1 5) P (56146)0

Then, for reaction (1), L. ’ 1 § satiéfy:' the equations
(_évra‘v,,*v,,-:)): *}y,v_,)f,;. : -0 YL, (ea3)

2

| (-i W VeV id .g‘y__() L= -2s (6.2.4)

o
»
3
[
=
re—
*

with boundary conditions
{. — | , L g = AN

Vb o

The distorted waves are taken to be

X; = @:”L;', 5 = 43;" L,, (6.2.5)

/ /
where Z; ) i f  are solutions of the equations obtained by neglecting

the terms on the right hand sides of (3) and (4)s It caﬁ be shown that
the distorting potentials are '

1= Ay .Ufévf"Af
.m_(
b (

U1=V

where A;x; e Q

A 5

Az |z
-
L1
o
-
S’
e



Table 642¢1.

1 .
Cross sections in units of Ta, for K + H(1s) => H(1s) + H

86

Energy (kev) | Q& JBE QP ® e %
0.1 1227, 4 | - . |291,1] 685 5| - -
1 1.22, 3 - 1.86, 1 | 6,70, 3 - -
5 2,01, 2 |5.02 1613, 1 | 243, 2 | 4438 4408
15 bhodyy 1 - 6.37 2,08, 1 - -
25 1,68, 1 |3.81 3.14 5.83 487 3,08
50 3.37  {1.19 7.70,-1 | 7.89,~1 | 1.52 1,00
100 . 4e00,=1 |1483,=1 | 1415,=1 | 7.33,=2 | 3.31,=1| 1.55,=1
. 200 2.63,~2 1 1.02,-2 | 4.31,-3 - -
400 10023 | 6415,=4 | 5439574 | 1669,~4 | 7486,=4 | 5.29,~4
500 39,k | = 1974 | 5u55,m5 | - -
1000 7e95,=6 | 6.87,=6 | 5.82,=6 | 1.49,~6 | 8.77,=6| 5.5,~6
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Equation (2) now becomes

NERE S AR 20 PR O D

and the continuum distorted wave approx:unation is obtained by replacing .
¢ X ' |

‘ Cross sections calculated using (5) and (6) are labelled QCD in
table (1)s It can be seen that the cross section falls off more rapidly
with increasing energ& than do those c;alculated using first order methé:dss o

Cheshire showed that

Q®  ~ (O.l‘l‘vb-b sTV)e ,

V=%
which agrees exactly with the result obtained by Drisko using the second
Born approximatione

3) Sturmian function expansions.

A variant of the close-ooupiing mothod, in which the total wave
function is expanded in terms of Sturmian functions instead of hydrogenic
functions, has recently been used by Qalla.her and Wilets (1968) to describe
proton-hydrogen scattering. The importance_ of.the- Sturmian functions
is that they form a complete, discrete.set which is not orthogonal to the
hydrogen continuum., Therefore the method makes some allowance for virtual
transitions to this,. |

It is essentially the same as that used pre.-;risusly by these authors
(see Chapter 5§ 3) but the hydrogen wave function '

IRy = M le) = R () Yy (8,9)

is replaced by the function

'

Fole) = Suld) Yo (8,9).

.F-
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The functions Sk(r) = Snl(r) are Stu.rmian functions, similar to those
first introduced into-atomic scattering problems by Rotenburg (1962).
Those used by Gallaher and Wilets are scaled hydrogenic functions

S (k) = et Ry (&r)

where Xy = ,.!‘_ ,
Lol

With this definition, the functions- V-.‘;, with 1 = n - 1, coincide with
the corresponding hydrogenic functions. In this section, the function
obtained by the replacement, in a ;unetlon g defined in Chapter 5 § 3,
of \Fb V") by \Ph ") and |
ot G & + MR Zm - T
 will be denoted by g -

The function - \}“(':,ﬂ may be written in either the hydrogenic or
Sturm:.an representatlons. v AR )

& (p,e) ¢ 3 % NOENIOE Z by (&) &, (£,0) (6.3.1)
where | Qk _,\:) is defined by (5 3.2). .Equa"bio‘n (1) gives '

ANERRTE SEPANGE SEL I )

from which it can be shown that

)
o oS b 014

k

b2 B: Clll'> exp it €y -€0e]. (6.3.2)
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The probability of capture into state f at impact parameter /; is given by
a 1r

(5-3-1"7__{9_-!1@1 (2) shows that the problem is 'solgec?. if the coefficients bh' N
can be found. .Coupled differential equations for them are obtained in

the usual way and must be solved for each parity subject to the boundary '
conditions ' ' | o

L.:’ (-oo)- s b;’ (-w) - s.k’ ’

gince \}‘r’,h) can.be written
o o=y M)

W )
and @,, coincides with Q.s .

If only a finite number of terms is retained in (1), numerical

et 9,71,

solution is possible. However, a difficulty then arise's when (2) is used
to calculate a: ., This is becea.use'< ;\lthough it is obvious from (1)
that the. complete expansion g L: Qh contains the whole of any
hydrogenic state, the same is not true of any truncated expansion, For
example, the table of overlap matrix elementsgiven by Gallaher and Wilets
shows that although ‘2,,-" “f,s , nevertheless |

"c \ru + Lz \::s )

e (b= 0.5 Ny + by (0,558 Vg + 0,324t Mgy + 0. 1% Sggu = - ),

Thus, although parts of higher s hydrogenic states, including those in
the continuum, are added by coupling in the 28 Sturmian state, some of
M, is actually removed, Thus, the actual emount of any hydrogenic

| state present in the Sturmilan expansion of the wave function, depends on

the overlap matrix elements as well as on the nunber of Sturmian states



a0

useds One possible method of avoiding this diffieculty would be to use
functions G—; (”.') in place of \23(!3 in expansion (1), defined by

Al A . o

\h.l (b_’) s \/"k (t‘) + L;‘h CW q‘k’(!)
with ooefficien’gs chosen so that ¢:,(:) is orthogonal to V'g,(f),. 1<k
~ However, this was not done by Ga.liaher and Wilets and this is a major
defect of their method. N '

They calculated cross séctiona for the processes '

K + H(1s) — H (1s, 28 or 2p) + H+,__
for incident energies in the range 1 to 1000 kev, The maj'ority of results
were obtained using Sturmian states 18, 28, 2p_, 2p ,‘-‘-, "1 centred on both
target and projectile; a few calculations were carried out including states
38, 3p,, 3p,; 1 and also 48. Results are given in tables (1), (2), (3)
and in fig (1). Q88(1s) agrees well with Q8H(1s) at energies below
100 kev, but falls off slightly more quicldy with increasing energy. Comp-
arison with Q, 48(15) shows satisfactory convergence. st( 2s) lies well
above QSH(Zs) and, in fact, at energies above 70 kev exceeds QBK(ZB)
obtained by Mapleton (1962). It must therefore be regarded as totally
unrealistic. Comparison of Q83(2p) s Q 4S(Zp) and Q 6S (2p) shows that
convergence is very slow and the cross sections are appreciably reduced
when more states are coupled in. Even the addition of the two 4s ‘states
to the fourteen ;tate expansion has this effect, and values of Q1 63( 2p)
lie close to those of QSH( 2p). The la{;ter are in reasonable agreement with -
the experimental results of Stebbings ot al (1965) but the validity of |

these is in some doubt,



q

In view of the lack of convergence shown by the results and also the
difficulty about obtaining the true cross section from the formulation
used, cross sections based on the Sturmian expansion must be regarded with

some caution.
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Cross sections in units of Wa, for H + H(1s)

Table 6e3.1.

—> H(1s) + H

Energy (_kev) sz Qg Q&l ng‘ | Q“b:
1 1486, 1 | 10558,1 - 1.97, 1 -
2 - 13715,1 - 1.666,1 -
4 - 1¢091,1 - 14232,1 -
S5 1403, 1 - - | 11381 -
6425 - - - 1.038,1 ~-
7.5 - - - 9475 -
9 - 9440 940 8494 -
15 6437 - - - ~
16 - 6,09 - 5,57 ~
25 314 3.33 3.33 | 3.214 | 3.235
30 - - - 2.382 -
40 - 1.37 - 14363 1.270
50 7.70,=1 - - - -
70 - 342,~1 - 3.10, =1 | 2,90, =1
75 2,69,-1 | = - SR
100 1e15,=1 | 1a1,=1 - 19,6, =2|9.46, =2
150 2.98,-2 - - - -
200 | 1.02,=2 - - -

8.0, -3




Cross sections in units of Tl'u:'for H + H(1s8) =» H(2s) + H

Table 6. 3.2.

&

93

Energy (kev) BK : Q: Q8H Qulj- QBS

1 - 34542 -

2 - 8.8,=2 -

4 - boly=2 - Reby =3

5 - - - 8.2, =3
6425 - - - 1.38,=2
7.5 - - - 4e15,=2

9 - 1493,=1 1428,=1 | 8426,=2
16 - | - 3433,=1 - 2.56,-1
25 3:58,=1 | 410,41 4e17,-1 | 5.70,-1
30 - - - 6.60,~1"
40 - 2494,~1 - 6421,=1
50 1056,=1 - - -
70 - 941, =2 - 2,27 ,=1
100 2.81,=2 3.1, =2 - 8427 ,=2
200 2.33,~3 - - 8.0, =3




Table 6. 3. 3.

2 ' '
Cross sections in units of Wa, for H + H(1s) >H(2p) + i

94

Energy (kev) QSH Q12{ QBS ' Q12 Q12 Qgs(i )

1 940, =2 | = | 1.334,-1 - - 1.981, 1

2 6.0, =2 | = |[2.38, =1 - - (1,723, 1

4 1.77,-1 = | 3499%,-1 - - |1.275, 1

5 - = 49, -1 | = 31, =1[1.188, 1

6.25 - ~ | 5414y =1 - - 1,085, 1

75 - - 5450, =1 - - 1,040, 1
9. 2,68,=1 [2.73,=1 | 49%,=1 | - B9, ~1|9:61
16 1.86,=1 - | 408, =1 - - 6,56
25 8.6, =2 | 1401,=1 | 3e004,=1 [1.968,-1/2,065,~14.84
30 - - Rubdiy =1 - - |47
40 546,=2 - [ 1.585,-1 }1.120,=1] - |3.01

70 1.7,=2 - | 3.85, =2 [R.58,~2| -  |8.96, =1

100 6 ,=3 - 9.8, =3 (5.2, =3| =~ 2,92, =1

200 - - |3, -4| - - {273, -2

400 - - |4, 4| - - [1.80, -3

1000 - - - - - 3.0, =4
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S IHE IMPULSE APPROXIMATION

1)  Introduction.

The name "impulse approximation" arises from the assumption made
that at high energiés the.binding fofces in the target atom are unimportant i
during the actual collision. Their function is to determine the initial '
momentum distribution of the collection of free particles with which the
projectile reacts. The naﬁxe masks the fact that it is also assumed that
the reaction with each target particle can be eonsidered- separately, so
that the total scattering amplitude can be expressed as-the sum of two-
body amplitudes.

The approximation was first proposed by Chew (1950) and the assumptions.
involved were investigated by Chew and Wick (1952) and Ashkin and Wick
(1952). A formal derivation was given by Chew and Goldberger (1952) and
the same approximation was obtained from a different viewpoint by Epstein
(1952). The derivation given here is due to Coleman (1969) and brings out

clearly the basic assumptions involved in the method.

2) Formulgtion of the spproximation.

The wave function for the three particle system, corresponding to an

initial state @;, is given by (2.3.7) in the form
\}“ s .114 ¢‘I’
4 - ..g.
where A" = 14§ Vi,

and G’ is the three~body Green'!s function .

G' = lim (E-waie)
€ Do+ :
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The exact amplitude for a transition to state (f is

Tis &) V}|ﬂ+ @.> (v.2.0)

This equation will now be rewritten in a form suitable for the application
of the Mimpulse hypothesis", |
Let X,, be a member of the complete set of free particle wave

functions satisfying the Schmdinger equation
(Ho - E'“) Xm « O,

An operator w-: [m] is introduced, defined by the equation

w; [w) XV = (. . v v‘)x,ﬁ

EM. H. -V;°:e

: 3L [w), | | (1.2.2)
Let N . - |
b, [M\ = Wy [m-‘ - | .
The operators i lw], bl _ are only defined with

reference to the plane wave basis x,..> and this is to be understood in
what follows. With |
A: E-H,+1€, Bz E, -H,-V. 416

J

 the operator identity (2.3.8) gives

! H ] & ) (EM-E_'OV,;) ! .
E-Hei€ - B -H,~Viei€ goMaiE .- Wo-V; 4i€

Thus . e . _ .
CS V‘ s \3; [M] b4 q (EM-E #V,;) L; [Ml



and
GV =S G ViXu DX 1>

s Z (b:[m] + g‘( E“-‘-E 0-\{") L:[m]) x.”»( Xo | ¢;7,

Now _ - o _

(B = &) C Xl @Y = S B X V@7 = X VE &7

L | .

Em XM s H,'Xm J) Em"_ = (H.*-V__.,;) Cg:.

'fherefore, - . - | _
(B -E) Xl @Y = XM @Y = (Xl Mo Vg V 02

| Ce— XL V@Y,

80 that (3) becomes |
G‘ V: ¢: = (b: + C]* [;Vn; \:;‘])Q’:,

where [a, b] denotes the commutator of the operators a and b,

and | L: .= % B: [M] XM>< X °
If : '

. “’.'+ = ‘r:* +\

theﬁ

Jl* 3 w;‘. + '(5* [ VH) w:‘

)
and (1) can be written '

Vi : ¢ v | (w:_'« §+[V,5,w{']) Q:Y,

which is the desired relation.

98

(%.2.3)

(%.2.6)

(%.2.5)

If the potential V23 were constant throughout the collision then

a) the commutator would vanish identically, and

- b) V,3 would not affect thé transition probability,



qq

Therefore, if it is assumed that the effect of the potential V23 is
negligible during the collision, it seams reasonable to neglect the

commutator term in (5). The resulting matrix element will be denoted by
MP2

-rzf iee.
™MP 2
-, +» .
iy = ( a)_g. ' V} | we @;7. (%.2.6)
This matrix element can also be obtained as an approximation to
(41+21) which was derived using the distorted wave formalism of Dodd and

Greider (1966). If Vf is chosen to be zero, (4.1.21) and (6).differ only

in the energies E, E, respectively occurring in the denominators, and it

can be shown that
1

iMP2 : |
Te 2 Ty ¢ 2 (G = (LRI NN, 140D,

(L TH] I
McCarroll and Salin (1967) used -E} as an approximation to T}

in a discussion of the high energy béhaviou: of the electron capture cross
‘section, though the justification for doing so is not obvious.

'It is clear that the use of (6) as an approximation to the exact
transition amplitude (i) involves the replacement of the exact wave function

+
q.'; by

This equation is only useful if it is possible to obtain an analytic
. ¢
expression for the function Wi [w] by solving (2), which is equivalent
to the'equation _ _ _ : , ‘
. + . . _ |
(Hy eV, sV, - B ) ¥ Lwd =0 = (7.2.8)
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provided that

Liwma € ‘4—: ‘-M-‘ = 0,

E—>o+

Since particles .1 and 2 are much heavier than the electron 3, to a good
approximation Ho separates exactly into two parts, one depending only on
the argument of V,, and the other on that of V,,. Equation (8) is then
exactly soluble and V'.'.’[‘“l is the product of two single particle
wave functions. This idea 1s also used' in Chapter 9. ra

No numerical calculations have so far been carried out using Iig

Equation (6), which was ;Jbtained using only the "impulse hypothesis"
that the effect of the binding forces could be neglected, does not give the
transition amplitude as the sum of .two-body scattering approximation. ‘
The usual form of the impulse approximation will now be derived. The
further assumption must be made that multiple scattering terms can be
neglected.

*

First the operator w; is exapnded in terms of true two-body

+
operators w‘j{m\, defined by the equation

.T wA : ) . XM 2 T m], P g :
%[ ]xms(n . E,,,.:e-H.-V;Jv") N, (.2.4) _

. .
wij [w] differs from w:[o«] in that now only one potential occurs.

It isegain convenient to introduce operators

e € \l-: ['m]'=0,' (?.2;‘0).

E=D0 ¢+



o1

+* .
it is clear that \FidtnX\ satisfies the differential equation

(H.-V;j cEu ) \I—: Lwl =20, (+ 2.1
I Vij is a Coulomb _potenti&l , condition (10) is not satisfied and it is
found that the normalization of the functions obtained by solving (9) and
(11) differs. However, Mapleton (1961) pointed out that the correct
function is the solution of (11).

Use of the Operator identity (2.3.8) gives

) D ' (v;-v, \\
E -HeoVei€ . E.-H, -V, 46 E -H, V 4 €
Thus, . .
w:[-«.l X.“ = ( w,,[m]* w-:[“‘]"‘) K
SRR (VA P m) (na)
€ -Ho-V:4i€

The second and third terms correspond to multiple scattering in which the
incident particle is scattered by the potentials V12 and V1 3- successively.
If V12 ‘2 0, the terms are both zero. For electron capture collisions it
has been shown (Chapter 5 8 2) that in an exact calculation the effect of
the potential V1 2 is negligible. It therefore seems_reasonaﬁle to neglect
the multiple scattering terms when con_side_ring such collisions, and also
to make the further approximation w.: =\,

Then (7), (12) give | ’

Y4 4
\1’. W,y CA'.

and (6) becomes
IMP

Tt

13

COpIVelwy @7 C(32.3)
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_ 411 the impulse approximation calculat.idns considered in this thesis are .
based on this expression,

. Expressions (6) and (13) may be regarded as the "post" forms of the
two impulse aspproximation matrix elements. The "prior"l forms are obtained
by starting with the alternative expression for the exact matrix element

Ty = < \}} Wil @7,

where . .

d, = U (\ « G V) cpj_
N i expanded in terms of the operator
ws_. z 2 wp [m] X ¥ < X
. - E ) |
Wy b} X = (‘ Y M, Np-i€ V") Ao
Proceeding as before,.the following equation is obtained

T = Cwyp Gy, bl gVl @y, EEERCH TR

and

which is the "prior" form of (5)s The two expressions are equal on the

energy shell., If the term imtolv:i.ng the commutator is dropped, one obtains
MP2 '

T;s_ = < wj_- ij_ ‘ V; ' q’;?, . (7.2.‘5)

Expressions (6) and (15) are only automatically equal if the initial and
final sys{;ems are'identical.

. The "pr:l.or" form of (13) is obtained by eXpandJ.ng w; lamd  in
: terms of the two-body operators w,; [-«1 where |

[M“x K‘ + .I 3 v_;,) Xw\ . v"‘ﬂ.""“’}

Enam o=V -i6 29 sy >




3

The equation corresponding to (12) is
w; (I X = (s, Cd & wyy ‘.ml 1) X

* E..:'H.-V'-‘.é (Vu l’;s[‘"] “ V23 "u [m.‘) Ry *

Substituting in (15) gives
P

T.-i, = (w” Cﬂ,l VJQ’.?
when multiple scattering terms are dropped and w.; is replaced by 1.

Pradhan (1957) first applied the impulse approximation to electron

capture and considered the process

H + H(1s) = H(1s) + H,

| However, rather than evaluate (13), he used the simpler expression
< Wf\V,;‘w,: Cﬂ;), - which, as pointed out by Bassel and Gerjouy (1960),
corresponds to & quite different physical process. The correct matrix

~ element was used by McDowell (1961) and Cheshire (1963) although the forme |
made an approximation to éimplifj the analysis. GCross sections for various
processes have been calculated by Coleman and McDowell (1965), and by

Coleman and the present author. The analysis is given in the next section.

3) Reduction of the mgtrix element. -

Consider a collision in which a structureless particle & of charge

2' ) mass M1, collides with a hydrogen atom in either the 13 or 2s state,

and captures the bound electron. i.e. & process of the form:

s 0+ H(n1) = a(n) + #.




Equation (7.2.13) can then be written

— ™M
Vi = 1,4 1,,
where .
I.-’- = £ ij, | VU‘ w.: C‘J;>’
Ch |-_-z..§l o Vot ot

The cross section is given by the equati?n
¥ man 114

2

.
Wegeh

2" () m—(ﬁ})sp T, VA

The impulse approximation wave function is
14 +

3" o @ s T X VA Ny L]

L g
where f,, [m]  satisfies the equation
+
(Ho + Viy - E) Y,y L] =0,
The free particle wave function Xu« is taken to be

-3
X e = (am) . uPta(s.sﬂ.‘-{’.ﬂ}

the energy Em is then given by

Em "i"(i,.*k_z)’

104 .

(1.3.\5

\7.3.3)

+.3.3)

(3.3.1s)
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and the summation over m in (3) stands for integrations over k and K.

Equation (4) may be written
] . +
L vr' + L V: + 2, . ko, K Vs =0,
i 2 x

which is satisfied by

LP.: z (atr).; ufh(.is.g 4\_111)‘ N(K) F [ :f, \, L(Ku-g.,_‘\] ) (%.3.6)

with X = a2, and N(K) = Q’SP(‘,}E) P(l'%‘ .

From (5) and (2,3.2), it follows that

Xt Y = (koo & ~ak) Guy (bhe- ¥, (7.3.7)

where q”.‘.(t) R J’ g (e) ¢*f“'§'°-')‘l':'

Using (6) and (7) in (3), it can be seen that

w,: @, =(2ﬂy$j AESJ& N (K) uspil(i_i-,s_c 4&./1)} (i“,‘, (\,\5;., ‘5)
5k k-ak) FLix, 1, (K -Kx)]

’(ﬂ' “YSS JE N(K)(j“.y( l_u H,.".) "’a ‘S) o.xf (-la_s.ig,-. ,.
exp 1“5“'-0": oFu[ %)')"(K"'E'EY_‘\)
' (“ ) (3.3.8)

where the relation

S‘k:+'.<-«ﬂ= x S(i(hcﬂé)-‘s)

a
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has been used to obtain the final result.
If (2.3.10) and (8) are used in (1), and the order of integration is

changed, then

= '(JT’QY‘J“S N(K‘g,rll (‘1. (""’a) A ‘5) ( 7. 3‘!)

I.‘l‘!

'5 'Azh-: \‘:L‘s\%, exp{i(px + nor Fl,0, K. ‘é"s)l .

Now, b;‘b'.'a) -%K s _‘l".")
where t = i(‘ﬁ'g)o
Since J <L"'._. cxv(-tﬁ'f) = i‘a.l 5
~ (9) vecomes
I, « - aﬁ'lj‘“ 5 N(K) G (5-8) F(K, ul, Q, (%.3.10
where _ | . : |
?‘l_‘,nl,g) s S &; Y-,,l(x) exF(ig..ig) F [ :R'-‘w‘, i(Kx-E.’é)l, (‘#.5.\0

3imilarly, using the result '

j J".‘. .cnr(:\zs';)_' z i-\_; axr(t’g&\

be-xl

I12 can be written ag

(3.3.12)

(7.3.13)
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If the quantity of interest is the total cross section for capture
into a s’qaj';e with given values of n and 1, then the wave functions can be
referred to a reference frame 0XYZ in which the Z-axis is taken to be in
the direction of B and the X - Z plane is the plane of 2 and x.. The
evaluation of the cross section involves an integration over all values of
the momentum transier pe With this choice of axes, the total crouss section
for capture into a sté.te with a given value of 1 is the sum of the results
obtained using the wave functions of the various magnetic substates in
turn in (11), but the separate results do not have a direct physical meaning,
0f course, for capture into s states there is no difficulty because the
wave functions are spherically symmetric.

If cross sections for capture into the separate magnetic substates
are required, -then the final state wave functions must be referred to a
fixed sysi:em of aexes, _usually chosen with the polar axis in the direction
of the incident beam. The method of evaluation of these cross sections £ om
the results obtained using the other system of axes is described in wie
next section,

In order to carry out the K - integratioﬁ in the frame 0XYZ, spherical
polar coordinates ( K, 7) are introduced.

The function F( E,ul,p.) must be evaluated separately for each
final state considered since it depends on the finai state wave function,
The analysis is given in Appendix 1 and the results are summarised here.
For capture into an s state, '}(!E y NS, P.) is a function of K_a.nd y
but is independent of the azimuthal Iangle 7

-
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For capture into p states

":Hs_g,uh,?) z 'sn'n(” ‘3/(\_4,“9,,7_) + cosﬁ '3/(5.,“9,, p),

L ¢
-
7=
b
3
L )
-}
-7
"

cosY X (V_«,v\?ﬂ,F\)
' (F. 3. \W)

ul
<
3
3
z
W
-
n

~sin Y b (5) Wi, F\I,

P——
]
o
3
-
b 3
T
~’
]

c-osf& .5/(&; "P"’F\ - S (5/\5 I( K; Py, P)’ (13,\5)

and ccs(; '/A(?- K(OS")-

, |
The functions J(K,l, p) depend on K and ¥ but are independent of ¥,

The exact form depends on the values of n and 1, but may always be written

¥k, ahp) = N.L(c.-_aé)" ‘ (L b e.,)
| = ,

where .
2 2 . : |
c = plad -K d= 3K,
A = ul:, d = %/,
- 2 2
| = (’; + 0.,
The constants N, and the functions & (i =0, 1, 2, 3) are given in the
appendix. |

For convenience,define

-M(E,ns or "f&'f-) 2 A3‘<‘$,v\sw Q\PS,FX. (7.3.16)
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The Fourier transform of the initiai state 1s easily evaluated. The

wave funotions are o '
’Ia_ -LF
Vo le) = b e
o . L7}
and
R ;/3 N b"la
Ve (r) = b _ . (2-br)e
4, 2N

so that

) hg 53

Gulg-¢) : _ 8W b ]
S
[ b + (q_-t) ]
P 52 b/
Gu(ﬁl"‘-') = SWTh { St T T }
U’%"‘&-l_') ) (b“*({ ) )
It can be .shown that
]
b e (g-6) A+ Bos? 3. 3.1%)

where
Y -1 )
A=b s+v ek K
u." P
and

B = K*((os'y- 0(

( vz‘o- bAE -« ‘—a(l-“L}P‘t)
a : .

1 2
(vz-o \:.AE) + (1 -u:}a\ Pz

P @

+ QL("“L)AE - Q(l-&q\a)v

y

. a 2
a a
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Let

(5’2)1 4 (%-t)z = AI4 B cos 7/)

where A is obtained from A by replacing the first term by (b/2)2.
Now consider expression (10) for 123. The azimuthal integration

with respect to Y can be done analytically in all cases although it is
rather lengthy. '

For capture into an s or P, state, the integral is

5 G ( %-k) Ay)

for capiure into a p, or Py state it is
§ Gunlyt) cos YA, [ Guug-)sin¥ dY
respectively. In each case, the result may be written in the form
Ny J(n'1l; m) ,

{1 1
where n 1, nl refer to the initial and final states respectively,

N, = 16 Wt N, = (aw e

T ‘5",. ns ov n‘,!) = A (A*-8 )-311 ’

T (s ; npa) : - (A B'YM ,
3(25', ns or nh) = 2 A'(A". 3‘)';" - 5;2 (2R, Bn)‘ﬂ;;_ B"" -%i2
T (281 wp,) - 26(9\".3:)"" V(38 ( A B‘)-fu,
I(\S',uh) = J (as, “?5) = 0,
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Thus, (10) may be written
4

l I, - -_.n'l’j dK K N(K)J cesv) J(n'ﬂ u‘.) M(K’u‘, g),

| 3 al\a
al

where the functions H(E,uﬂ, P) are defined by (15), (16).
- A similar-expression may be obtained for I,,.

It can easily be shown that I, vanishes in the limit '/M — 0;

12
' the proof given here is due to Pradhan (1957). From (13).and the

definition of £ it is clear that
/
= ‘ - 4 + '— E v
Pt oafry) e Lk
The first term vanishes as (/M) —> 0, so (12) gives

wa I : “ dk N(K) g " ({-E) LI 1! ‘I-:l (x) ur(i 5.5)‘17,["‘?",!,;(&.-5.%
%0 1w e*

However, since V',‘((’.‘.) and N(K)exr( s) [ , ,ilKu-&.:ﬁ]

are eigenfunctions of the same Hamiltonian corresponding to different

eigenenergies, they are orthogonal, so that

liwt Iua s 0,
./"-’0

Consequently, it seems reasonable to neglect the contribution from 112

when calculating electron capture croés sections, Coleman (1965) found

by numerical calculations that this assumption is justified. The cross
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sections quoted in Ghapter 8 were all obtalned from the expression

Q" (wt) - ,f)f"‘“‘" ‘U Y.

rml“

U‘ av

L) Evaluation of cross sections for capture into definite masmetic

substates,

In the usual notation, the exact transition matrix element is

Tis,'= 4 Cps‘vg\ q’: 7. | (.*'""')

Since, in this thesis, only capture from states 18, 2s of the target
hydrogen atom is considered, the wave function QL;+ is independent of
the system of axes chosen. In ordér to calculate cross sections for
capture into definite ﬁagnetic sublevels of the final atom, the final

state wave function must be referred to a fixed system of axes. Usually

a reference frame OX’Y/ZIis cﬁosen with axis OZ/ in the direction ki’

and the X' = 2’ plane as the collision plane; In the previous section,
matrix elements 123 have been calculated using final bound state wave
functions referred to a frame OXYZ, with Z-axis along P and the X =~ Z plane
the plane of P and.ki.

Now
k:

Yt (1) = S Ry (20,7 Fopls) o Gwea)
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18 $
where ¥, i (3), V—"lm( ¥) denote wave functions in the frames

OXI'Y‘ZI, 0XYZ respectively. le'm (sp3) YY" are the elements of the
rotation matrix and e,p, ¥ are the Euler angles of the ro.tation which
takes OXYZ into 0X'Y 2 . In the present cage, %707, 3= cog | g. gi.
Only capture into s and p states has been considered. For 1 =1, the

elements of the rotation matrix are
) ) ]

R" 1. cosp , R, 4 = % J.-z: s(u(! ur('o' i'Y) R
| ' ' . _ ' (7. 4.3
| R, *-R, = f"i smf3, L )
| L : '

P‘:n z 5‘. ( l. : cos[’,) exp (-E'Y) : Y?\; w ] )

where the asterisk denotes complex conjugation. Using these in (2),
substituting in (1) and writing Ty in place of Typ to simplify the

notation one obtains

i H . 8 / PR - .
ap, °* J-'f sm[& T"i’u + cosfd _T"PO - 3 SIV\P Taf' 5
5 | - F _ . R . _*%
T’h z 5'- (H (09(3) lij - f;.‘ Stup T:’fo ‘5 (_l- co.s/;)‘ I:"“ )
b '3 e ¢
'_[,‘,“. z i.(l-:osﬁ) T, v i Ty, 5““”/;) |"r.. ,
fow T | . L T. - T | : .
: . ] 2?“ . Ji :r" 3?" )

o
iy
<X
"
I -
P——
. D:T‘ .
‘
.
2
P
~




Wi -

Therefore _
T R 4 |
29, = cosﬁ 25, - \smﬁ T‘Py , (9.6.4)
LA ' g
T; B T = O
Ps . . 2?:,
- & _F _ SN S . \
“P‘V s Slw{% Vs S <es{3 ‘_‘ 2, : {¥.4.5)
The following relat.ions are also needed; "
T s - T
P4, * 42 2P s
From this last result it can be seen that
Q(2p, ) = Q(2,).
Using the ‘equations p = a.l_g} y and AE - k- - hf y oos(% can be
= M g

written _
' Y | PR 2 -
(os{% = - '_'_(P*'L".- "‘/‘if-ki 4.;/(,_5\:).
| apk: i
If Ml = MZ’ this reduces to

cos(d = -(«w-oa.AE-o-p
JPV

Cross sections for capture into definite magnetic substates 2px, 2p

can be caloulated from (7.3.2) using matrix elements T, ¢ given by (4) and
(5) o
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5) Numerical methods.
 Coleman (1965) calculated cross sections for the following processes:

i + H(1s) — H (18, 28 or 2p) + H' (7.5.1)
He'* + H(18) —>He' (18, 28 0r 2p) + H , 2.5.2)

His cross sections for capture into the 2p level of the projectile are in
error due to an incorrect choice of the axis of quantization for the
target atom. The present author has extended his work and has considered

the processes

CH o+ H(18) = H(2p) + H | (+.5.3)
H + H(18) —H (3s) + H . . (3.5.4)
"+ H(18) —>H (3p) PO (¥.5.5)
H o+ H(28) — H(2p) + H (9.5.6)
He'' + H(18) —» He' (2p) + H (%.5. %)
He'® + H (18) —» He' (3s) + H', (#.5.8)

The numerical methods used to.calculate cross sections for processes
(3) - (8) are very similar to those used by Goleman for processes (1) and
(2)e Three numerical integrations are involved, those with respect to- Vv,
K and p.

A Simpson integration procedure was used for the final p integration.

Because the probability of a large transfer of momentum from the heavy
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ineident particle to the target nucleus is__ very ﬁlight, l123‘2 falls
off very rapidly with increasing p, and it was found to be unnecessary to
congider values of p greater than 12, For some processes, an even smaller
range ﬁas sufficient. - | .

The energies to be used were carefully chosen to simplify the
numerical work. For .each procesé considel;ed, the value of p . : depends

on the incident energy according to the equation’

2 .
Pz, s - _'— ( V" AE) ’ .
S vt o

where AE is the appropriate energy defect. For processes (3) - (8)

it takes the values

a x (0.75, 8/9, 809, 0, 0, 5/9),

respectively.

For (3), the p values and steplengths used were as follows:-
p = 0.87 (0.015) 0.9 (0.05) 141 (0,1) 1.5 (0.25) 3.0 (0.5) 6.0 (1.0) 8.0,

The above equation was solved for v2 usihg these values of p, and the
cross section was calculated for a selection of the energies thus
obtained, This ensured that Pain fOT €8CH energy coincided with one of

the pivot poihts, _
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A similer procedure was followed for the other processes. The
steplengths used were as followss-
For (4) and (5),
P = 0495 (0,025) 1.0 (0,05) 141 (0s1) 145 (0.25) 3.0 (0.5) 6.0 (1.0)

For (6),

p = 0.2 (0.1) 1.2 (0.2) 2.0 (0.25) 3.0 (0.5) 6.0.

For (7),.

p = 0.1 (0.1) 1.2 (0.2) 2.0(0.25) 3.0 (0.5) 6.0,

For (8),

p = 0,75 (04025) 0.8 (0.05) 141 (0.1).1.5 (0,25 ) 3.0 (0.5) 6,0.

Direct tests on the p integration were no£ in general possible because
of the enormous amount of computer time involved. However, for (3), an
indirect test showed that the cross sections were accurate to at least
three figures at low energies and that the accuracy was much greater at
high energies. It can probably be assumed that for all processes the
results given are accurate to three figures.

The integration with respect to ¥ was performed using a-96 point
Gaussian quadrature formula, Detailed tests showed that this procedure
gave at least five figure accuracy in the integration in most cases.

N(K) includes t.he. complex gamma function [ (1-i%/K),

This was evaluated in the following way.
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The real part of (n ,q(l-‘“/K) was calculated exactly. The imaginary
part of I M(o- i/, ) vas calculated from the first three
terms of Stirlings asymptotic series (see Erdélyi vol 1. p 47) and
the imaginary part of kn I'(1 - i%/Kk)  was then obtained by repeated
use of the identityl f‘_(l43‘= 3"'(3;).' The routine gives (- ;“’K)
correct to seven significant figures,
Simpson's method was used for the K integration. It was found that

céntributions from the ranges 0 £ K £ 0,05 and K 2 100 were negligible.
- The range 0,05 £ K £ 100 was split into s.everal parts and the steplengths
were chosen to give four or five figure accuracy in each part. Near

K = 0,05 a very small steplength was necessary because of the very rapid
oscillations of the complex gamma function.

. For processes (3), (4), (6), (7), (8), the basic steplengths used.

were as follows:=

K = 0,05 (0.001) 0,08 (0,0025) 0. 14 ( 0.005) 0,20 (0.01) 0.4

(0.025) 1.5 (0.,0625) 3.0 (0.125) 7.0 (0.25) 9.0

(0.5) 1840 (1.0) 30,0 (2.5) 60.0 (5.0) 100.0.

For (5), slightly different values were used.

A detailed investigation showed that for each process it was
necessary to decrease the steplength near K = p for each value of Pe
Tests were made for each case, but in general it was found that if h
were the normal steplength, the required accuracy was obtained by using
a steplength h/2 for a small range of K below K = p and h/4 for a small

range above K = p.
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The layout of the calculation was as f,ollows.. A value of p was
chosen, then a value of K. The integration with respectt® v was
carried out for a number of values of the incident energy and the results
were stored in the computer as the first row of a matrix. 4 second value

of K was

stored as the second row of the matrix. _This procedure was continued

until tﬁe inner integral- had been evaluated for all the required values

of K‘. Each row of the matrix then corresponded to a given value of K

and each column to a given value of the energy E. By reading the
appropriate column from the store, it was then possible to evéluate the

K - integral and thus obtain a value for T, s When T, had been evaluated
for all the required energies, a new value of p vas chosen‘ and the entire E
procedure repeated.i A separate programme was used for the p integration,

the calculated values of T, being fed in as datas '
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| RESULTS
{
1) Rlect ng in hvdrogen.

Cross sections for proceases (7.5.1), calculated by Coleman (1965),
and (7¢5.3), (7e5:4), (7:543), célculated by the present author, are
presented in tables (i), (2) and (3), and graphically in figs (1) to (8),
wherq they are compared with the results of other theories, and with
experimental results where possible,

The derivation of the impulse approximation involves the assumption
that for the duration of the collisioq the binding forces of the target
are unimportant. One would expect this to be so when the speed of the
projectile is greater than the orbital speed of the bound electron. For B
protons iﬁcident on hydrogen atoms in their ground state, this implies an
incident energy gréater than 25 kev. In general, it is found that at

energies above 25 kev, QIMP (nl) lies below the results of all other

theories. The exception is QIMP (2p) which is greater than Q8H (2p)

 of Wilets and Gallaher (Chgpter 5 § 3) for some energies below 50 kev.
‘For the resonant process, the calculgtion of Coleman differed from
that of Cheshire (1963) only in tﬁe nunerical methods used, and confirmed
Cheshire's results. At 25 kev, the Born and‘impulse approximation results
are in close agreement, but QIMP (18) falls off more rapidly as the
energy increases. _
Fig (3) shows that neither'QIMP (28) nor QB (28) is in good agreement,

with the experimental results. . Although Q8H (28) does agree well, it should
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be remembered that adding in more states altered the cross section somewhat
-at 9 keve -

It is clear from fig. (5) that QIMP (2p) and QSS (2p) are in close
agreement with the experimental results of Stebbings et al (1962) but the
validity of these results is questionable (see Chaptér 18 4). Again, the
close coupling results show a definite lack of convergence. Figs. (6);
(7) compare various theoretical results., The behaviour of Qés (2p) of
McElroy_(1963)_at high energies is rather surprising. One would expect
it to tend to QBK but it is almost equal to QB at 800 kev,

Values of QUT (3s) and Q*'F (3p) are listed in table (3) and are -
compared with the corresponding Born approximation results in fig. (8).

The relative behaviour of the s and p cross sections in the two approxim-
ations is quite different. QIMP (3p) is less than QIMP (38) at all energie
whereas ,wﬁereas QB (3p) is greater than QB (38) in the energy range 5 kev
to 80 kev. A similar result is observed for‘the 28 and 2p cross sections.
Cross sections for the p;écess

L

i +

+ H_(23)~—9 H (Zp) + H,

‘calculated using the impulse approximation, are given in table (4). No
other theoretical values for the process are known to the present author,
The cgoss'section behaves at low_energies.in a manner typical of symmetric
resonance, increasing rapidly as the enérgy decreases.

The reaction is of interest particularly in the field of astrophysics.
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The rate at which metastable hydrogen atomé in the 28 state decay
Spontanedusly to the ground state is very slow, since the transition is
optically forbidden. The double process in which hydrogen atoms in the
2p state are formed by the above process and then decay spontaneously to
the ground state with the emission of Lyman-alpha radiation provides

~ another mechanism by which the 28 level may be depopulated.




Impulse approximation cross sections, in units of TTa:,

for the process H + H(1s) => H(1s) + H.

Table 8.1.1

Energy (kev) Q (18)
25.0 2.19
36,0 9048,~1

49.0_-" 4e22,=1
64:0 1493,~1
81,0 19.07,-2

100 be39,~2
156 . 8.01,-3

225 1.71,=3

306 he2hymh
400 - 1619,=4
506 3.79,=5
624, 1431,~5
899 2,08,=6
1224 4oOly=T7
1598 ' 9.52,-8
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Table 8.1.2.

' 2
Impulse approximation cross sections Q(nl),in units of Wa,,

for capture into the n = 2 level of hydrogen.

Energy (kev) Q(2s) «(2p) Q(2)=q(2s)+q(2p)
041 C - 2416,=3 - -
0.97 702 y=2 1029,=2 8453,=2
1.89 1487,~1 3051,=2 2.22,-1
2,72 .- 7.32,-2 -
beld, be26,~1 1688,=1 6u14,~1
6.23 5¢01,=1 2495 ,=1 7696,=1 .
1047 4e95,=1 348441 8479 =1
15 ¢4, 4408,=1 3.30,~1 7.38,~1
22.8 2.77,-1 2411,=1 ' 4488,=1
32.8 - 1407,=1 -
5642 boT5 =2 2.39,-2 7014 y=2
7940 1071,=2 7.01,=3 241,-2
103 - 2.39,~3 -
129 2:95,~3 8489 =4 " 3.84,~3
156 - 34554 -
185 6058 ;=4 1e59,=4 8e17,=4
216 - 6487,=5 -
267 - 2.41,=5 -
284, - 1462,=5 -
361 - 2493,=5 4e50,=6. . 3.38,=5
468 8.07,-6 1406,=6 - 9413,=6
586 2.55,=6 2.81,~7 2.83,=6
861 3475,~17 2.92,-8 4e04 =7
1186 7:72,-8 - -
2459 - -

1.07,~9
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' - 3
Impulse approximation cross sections Q(nl), in units of Ta,,

Table 8.1.3.

for capture into the n = 3 level of hydrogen

Energy (kev) Q(3s) a(3p) Q(3s) + Q(3p)
0.58 3.05,=3 -
0.85 6080,-3
139 1059,=2 3025,=3
2,77 4e29,=2 902y=3
4e09 6459,=2 -
7.09 9484,=2 -
1.1 1e0,=1 74T ,=2
17.3 9.40,=2 7428 =2
2845 5.61,=2 Le16,=2 9477 ,=2
a5 2.50,~2 1058 ,=2 4,008,=2
6944 7 e844=3 3.88,=3 1e17,=2
120 1420,=3 4e25 4=ty 1463,=3
178 2450,/ 7.00,=5 3420,/
260 boh5 y=5 9474 y=6 5442,=5
354 9494,-6 1679,=6 1017,=5
460 2.68,-6 4e03,~7 3.09,-6
518 1e43,=6 T - -
579 8.00,=7 1005,~7 91y~
644, 4410,=7 - -
854, 1.09,=7 1.07,-8 1019,=7
1179 1.93,~8 - -
24,53 - -

3036,-1 O
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Iablo 8,14

i H '
i Impulse approximation cross sections, in units of Ta,, for the process

process H + H(28) = H (2p) + H.

.Energr (kev) Q (28 = 2p)
. 4,00 ' 2.13, 1
| 899 - 2.56
16,0 " 7.90,~1
250 2.93,~1
36,0 C 9446,=2
189 2,882
639  8.90,~3
80.9 o 2.87,-3
99.9 | 982,/
144 L 1440,
- 256 | | 5453,-6
400 boVyy=TT
624 | 2.87,-8
899 | ' 3.22,=9
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2) Ratiog and total cross gsections.
It was shown in Chapter 3 § 3 that, for the Born approximation,

an estimate of the cross section for capture into an excited state with

quantum numbers n and 1 could be obtained from (3.3.9);

S () = s .
BK
Q" (1s)

One of the reasons for performing the'present calculations was to see

whether it could be assumed that'

QP (n1) = of'F (15) B¢ (m). ¥ (8.2.\)
Sas) -

If (1) holds, then so does the relation

"F (n) = o (15) Fm), (8.2.2)
: Q% (1a) ‘ '

where Q (n) denotes the total cross section for capture into a state with

principal quantum number n, (2) implies that the ratio

B () = P (o)
Q"% (1s)

3

tends to n ” as the energy of the projectile increases.

The ratios R(2s), R(2p), R(3s), R(3p) given by the OBK, Born and

impulse approximations are compared in figs (1), (2). For capture into

IMP

8 states, the agreement between R and RPK is excellent, even down to
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energies of 200 kev, For this reason, RP(Zp) and RP(Bp) are not shown

in figs (1) and (2). o

is in reasonable égreement with the other two at
energies above 700 kev. It is clear that use of (1), (2) slightly over-
estimates the true value of QUT (nl) in each case.

The evgluation of-QIMP (3d) would require an enormous amount of
computer time and has not been undertaken. Using the OBK approximation,
it is found that the cbntribution of QBK (3d) to the cross section for
capture into the n = 3 level is approximately 7% at 60 kev, 3% at 120 kev,
1.5% at 200 kev, and considerably less at higher energies, These figures
indicate that capture into the 5d.state is unimportant except at low

energies.. For this reason the ratio R (3) has been taken to be
R(3) = R(3s) + R (3p)

in the present diécussioh.

Fig (3) compares the ratios R (2), R (3) given by the OBK, Born

and impulse approximations. In both cases they are in good agreement
at energies above 500 kev but the approach to the limit n -3 is very slow,
and it is clear that the n -3 rule applied to the 18 cross section
considerably underestimates the cross sections for capture into the
n = 2, 3 states. Therefore, it is probably more_accurate.to base estimates
of total capture cross sections on the assumption that (2) holds for all
n, rather than use this rule. |

Then  IF (5) = QU (12) + qm’ (2) + am’ (3)
QP (1) (),  (8.2.3)

PE (18)

ne b
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The sum of the OBK cross sections can be evaluated to any required degree
of accuracy using the sum rule of May (1964) (see 3.1.1.1). Total cross

~ sections, Q‘( 2 ), calculated from (3), are given in table (1).

Since (2) slightly overestimates the true impulse approximation cross
- section, particularly at low énergies, a Better estimate of QIMP (n),

for n ? 4, might be

QMF (n) = o"F (3) & (n), (s.2.6)
Q¢ (3)

~ Total cross. sections obtained using (4) are denoted by Q2 (S) in table (1).
As expected, Q° (2 ) is slightly less than q'(Z).

| In figs (4), (5) several théoret.iéal estimates of total cross sections
are compared with experimental results. Values of Q® (S ) were obtained -
by a.pplyiné the n"l3 ‘rule to the results of Mapleton. Values of Q: (2)

were qaiculat.ed by McElroy using (5.2.18). The éxperimental values of

Stier and Barnett (1956) and Barnett and Reynolds (1958) are helf the

cross sections obtained from measurements on molecular hydrogen and lie
above the results of .Nittkower et al (1966) at energies above 50 kev.

| The well-known fact that predictions of thé first Born approximation agree

| ‘blest. with the experimental rea;u;l.ts.is obvious from the figures. Values

of QIMP (3 ) 1ie below the expe:_‘iment;al results and the difference increases

with increasing energy.



Cross

. : 2 +
sections in units of Wa, for H + H (1s)-—=» H +

Iable 8,21

+

H.

Enez;gy (kev) - Q.(Z) Q2 (2)
56 4e23,~1 4403,=1

7 1eddy=1 1439,-1
128.8 Re43,=2 237,=2
185.5 5.,38,=3 5.31,-3
_____ 36145 2:51,=4 2450,~4
468 7408,=5 7405 ,=5

587 2.27,-5 2426,~5
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3) Electron capture by alphs particles in hydrogen.
Coleman (1965) considered the reactions

Ho'* + H (18) ~> He' (18) + &' : (3.3.))
He'* + H (18) —» He* (28) + H' (8.3.2)

and the present author has extended his calculations to the processes
He'* + H (18) — He' (2p) + K, - (8.3.3)

He'® + H(1s) —»He' (3s) + H, (3.3.4)

Results are given in tables (1), (2) and the cross sections are compared
in figs (1) and (2).

Processes (2) and (3) are examples of accidental resonance. A
~defect of the present work is that the impulse approximation, in the form
used, fails to take account of the effects of the Coulomb repulsion in
the final state. For this reason, Q (2s) and Q (2p) behave at low energies
in a manner typical of symmetric resonance, wﬁereas, if proper allowance
for distortion were made s the crbss sections would tend to zero as the
energy decreased., Below 50 kev, Q (38) is larger than Q (1s). This is
not surprising since at these low energies resonant effects are important
and the energy defect for (4) is smaller than that for (1).

The two state approximation results of McElroy (1963), Q: (2p)
are compared with QImD_(Zp) in fig (3), However, the exact distortion
term (5.2.8) was not used by McElroy, and the effect of tnis on the values

of the cross sections is not yet known. At high energies, where the
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effects of continuum intermediate states become important, the impulse
approximation should be the more accurate.

Fig., (4) shows the relative behaviour of R (2) = @ (2) / @ (1s)
given by the OBK, Born and impulse approximations. The OBK and Born
ratios-have already been discussed (Chapter 3 § 3). A4s expected, the
difference betweeﬁ RPF (2) and RIMP‘(Z) is considerable at low energies.
At high energies there is a marked departure from the d'3 rule which
predicts the value 0.125 for R (2).

Assuming that

PF (n) = P (2) ), n%3,
Q% (2) |

an estimate of total cross sections for capture into all excited states

of He' can be obtained:

JP(3) = " (18) + P (2) + T (2) & (n),
| ; &K L

Valuss calculated from this relation are given in table (3)., Experimental
results are at present available only for energies belo& 36 kev (Fite

ot al 1962) and the impulse approximation cannot be expected to be
reliable at such low energies where distortion due to ﬁhe final state
Goulomblfepulsion is important.



Tabla 8- 3.1

Impulse approximation cross sections. Q(nl), in units of

ﬂa:,for the process Ho't + H (18) —» He' (nl) + H',

Ehergy (key)

1
.
.

Q (1s) Energy (kev) Q (3s)
1.29 5,10,=2
3.93 1e81,=1
6,00 1427,=3 5¢52 2,07,=1
' 8446 2.08,~1
111 1.92,-1
15.6 1467 ,y=1
29.3 3.73,=2 25.9 . 1032,=1 - -
41.6 6490,=2 44e0 1.02,~1
625 1027,=1 9.4 8413,-2
100 2,07 =1
123 2,30,=1 - 19 6452,=2
152 2.38,=1
190 262 41 197 4eT2,=2
212 2410,~1 S
267 1470,=1 217 3.07,=2
337 1425,=1
371 1.03,-1 364 1.85,=2
423 8.33,=2
474 6458,-2 , .
530 5609,=2 559 6.07,-3
591 3486,~2
732 2:10,-2 784, 1.96,~3
899 1409,=2 1110 5400,=4
1436 1495,~3 11486 1639,~4
2156 3e53,~4 2386

1046,"5

b



1
Impulse approximation cross sections Q(nl), in units of Wa,,

Table 8.3.2

for the process He'™ + H (1s) ~» He' (m1) + H'
Erergy (kev)] Q(28) | Q(2p) | " Q(2s)+ Q(2p)
C4e0 | 11,1 | 5495, 1 7446, 1
16,0 .. | .. 2.6 1,78, 1 2,05, 1
36,0 © | T 6,76,-1 | 9.22° 9490
6440 | 2.33,-1 | 5.42 5465
9949 . 1:59,=1 | 3.12 3428
144, ©1e43,=1 | 1468 1.82
196 1.20,=1 8.60,=-1 9.80,~1
256 8491,-2 by 2py=1 5413,m1
32% C 6.09,=2 2006,=1 2.67,-1
400 3493,=2 9.92,=2 1039,=1
576 . - 2.37,=2 -
624 1416,=2 - -
784 - 6.07,-3 -
899 3425,-3 - -
1023 - 1467,=3 -
1224, 9446, - -
1599 209 y=4, 10644 4458 y~4,
2023 9,80,=5 - -
2498 3.57,~5 1436,=5 1e13,=4
3597 S 1065,=6 -

141



Table 8.303.

Cross sections for He'W + H (18) — He' + H'

B(kev)

99.9

144

196

256

400

576

784,

1023

Q

8.9

.5.4

3.1

1.6

404’-1

1.3’-1

402,-2

1edyy=2
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4) Polarization,

It is observed experimentally that when a gas is excited by a
unidirectional beam of particles, the radiatioﬁ subsequently emitted is
éolari;ed and has a noﬁ-uﬁiform angular distribution. The degree of
polarization is usually determined by -viewing the radiating gas atoms
in a direction at right angles to the incident beam. For example, suppose
the incident beam is in the direction 02, Consider light propagating in
the Ox directi..on.. Let I ! and I e the intensities of light with

. electric vector parallel and perpendicular to Oi respectively. The

 polarization is defined to be . . . '

p'="I = I ';". o (8.4.V)

. For convenience, the discussion is now restricted to Lyman-alpha
| radiation emitted by hydrogen atoms excited by collisions with a charged
' beam of particles., The phenomena of polarization can be explained as
follows, |
If the hydrogen atoms are initially in their ground state, they aré
spherically symmetric. The anisotropy of the problem is introduced
- entirely through the motion of the incident particles. One therefore
considers excitation of the states 2p°, ZP s 1 of the hydrogen atom,

where 0, + 1 refer to the values of the maghetic quantum number m defined -

with respect to axis of quantization in the direction of the incident
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beam. The excited states have cylindrical gymmetry so it is not necessary -

to distinguish between the states 2p and 2p., » and the angular

distribution of the resulting radiation will also possess such symmetry.
From the conservation laws of angular mﬁmentum it follows that the

transitions 2p,, — 18 and 2p, —» 18 are accompanied by the emission

-of a photon in a direction paralléi to and perpendicular to 0z, respectively

One would therefore expect

1 . -
Io=alpy) = x o (8.4.2)
I Q (2p, ) | '

and consequently, from (1),

‘P o= 1ox. - - (8.4.3)
1+ x : -

In fact, the above explanation is very crude and no allowance has been
made for the effects of the spins of '

a) the atomic electron (fine structure)

b) the nucleus of the hydrogén atom (hyperfine structure)

c) the incident particle.
Penney (1932) showed that éuoh effects are important. Percival and Seabon
(1958) carried out a detailed caléulation and obtained the formula

P = ]1=x - , (8. 4.4)
a+ bx - :

where x is defined by (2) and a and b are constante which express the

effects of the spins.
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For the 2p - 18 transition in hydrogen
a = 2,375, b= 3.749,

" g0 it cen be sean that allowance for these effects reduces the polarization
to about one third of its uncorrected value. '

P depends on the target gas and on the mass and velocity of the
incident particles, and in general numerical values can only be obtained
by detailed calculations of the cross sections Q (2p,), Q (2p“ ), Fennema
(1963) considered the problem of determining the polarization of Lyman-
radiation from hydrogen atoms excited by a beam of electrons or other
particles. He used the Born approxima-tion to obtain analytic expressions
for Q (2p, )» Q(2p,, ) and then attempted to represent the resulting
expression for P analytically as a function of the mass and énergy of
the incoming particles by expanding these cross sections in terms of two
parameters related to these quantities, and substituting in (4). The
values of P, so obtalned decrease from + 0.28 at 1 ov to - 0.2 at 850 keve
These values were used by Stebbings et al (1965) (See Chapter 1 § 4.) |

The polarization c;f the Lyman - & radiation emitted by hydrogen
atoms in the 2p state formed by t.he capture process

' + H(1s) = H(2p) + H

is also of interest in the analysis of experiments. The present author
has used (3) and (4) to calculate values of the polarization P,, P from
the 0BK cross sections given by van den Bos and de Heer (1967), and cross

8
sections Q, calculated by McElroy (1963) using the two state approximation.
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It should be noted that since Q (?py) =0, Q (2px) = 2Q (2p,,)e

BK

Results are given in table (1), denoted by P ’ P(Z) respectively.

It was shown in Chapter 7 § 4 that cross sections for capture intq
definite magnetic substates can be obtained using the impulse approximatibn
and the results have been used. to eya;uate P OIMP ’ PmP » values of which
are given in table (2). '

Values of P given by the three theories are compared in fig (1), It
can be seen that P'?) tends to PPK at high energies, and both take the

IMP

value 0.339 at 800 kev. P decreases much more rapidly with increasing

ensrgye.
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Table 8ebele

Polarization for process o+ H (18) = H (2p) + H

E?;:S vah dengq:Pm)%za E;gﬁ (1_967 ) Two-ﬁggio;pg) :gz:;;atlon
PEK_ pBK P_Sz) P(2)
0.5 0,707 0.339 1o - -
. 0.698 . | 0,336 - .-
5 0,661 . 0:326 - - -
10 0.644 0,321 - -
25 ©0.638 © | 0,319 - 0,669 0.257
50 | 0.652 | 0,323 . | 0.737 0.288
. 100 0,671 0,328 - | 0,786 - 0.312
150 | 0.682 | 0.332 - - -
200 - - | 0,816 04326
250 . 0,03 . | 0,33 . . | = -
400 - - 0.832 0,334
500 0,703 . 0,338 - -
800 - | - 0,841 04339
1000 - 0,709 0,339 - -
2500 0,711 0,340 | - -
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Table 80402.

Energy Impulse approximation
(kev) PI:MP -
097 | 0.726 | 0.283
1.89 0.794 0,316

2,68 0,858 | 0,347

Lebd | 0,889 0.363

6023 | 0.886 0,361
10,7 | 04871 | 0,353

154 | 0.860 0,348

22.8 0,850 | .0.343 -
L 32.8 0,840 0.338

5603 0,817 | - 0,327
79 S 0196 | 0 0.317

103 0,711 | 04305

156 0.733 | 0,282

217 0.683 04264

285 0,656 0,251
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5) Angular distributions and trangition probabilitieg.

It has frequently been stated that, for rearrangement collisions
involving heavy particles, the majo_rity of particlels are scattered through
very small angles, so that the differential cross section is very stfongly
peaked in the forward direction. 'It.is of interest to consider the form
ef the angular distribution given by varidﬁs approximations.

Bassel and Gerjouy (1960) plotfed l'l_‘iflz as a function of p2 for
the précéss |

H + H(18) = H(1s) + H, (8.5.1)

B BG Bi2

“using both T,7 end T{g. - They found that |T,2|* is sharply peaked about

p2 = pi;;‘ (0= 0) and decreases steeply to a deep minimum as the value

of p is increased. This minimum is caused by cancellation of terms arising
12? V23. ~ The dip is followed by a tail, which
corresponds to scattering by the potential V12 through larger angles

(though still less than one degree), and which contributes significantl&'

" to the cross section. The angular distribution obtained using_T?_g is

much more strongly peaked in the forward direction and the tail is
effectively cancelled. ‘

The angular distribution for process (1) obtained by Coleman (1965)
using T}_bfm = I, (;ee (7+3.1)) is shown in fig. (1)s For each energy

‘123l2 takes its meximum value at p = p ., and decreases as p increases,

' Thus, as pointed out by Bransden and Cheshire (1963), although the actual

" cross sections for procesa (1) given by the .Born and impulse approximations

do not differ very much, there is a considerable difference in the angular

distributions.
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Curves similar to those shown in fig. (1) were obtained for all the
processes investigated by the present author, Typical results are shown

in figs. (2) and (3).

If the impaot parameter method is used, the probability of electron

~ capture into state f occurring at an'impact parameter‘a is given by
- (541411) as

When'a structureless projectile 1 collides with a bound system
(2 + 3) there are three possibilitiess:-
a). A direct collision may take place in which particle 1 is
scattered leaving the bound system in either the ground or

an excited.state.
. b) The target may be ionised.
¢) A rearrangement collision mey occur.
For a particle incident at impact parameterfa s the sum of the probabilities

of these three events occurring must be unity and therefore any physically.'

meaningful approximation will give a probability less than one for event

(c)e Schiff (1954) showed how results obtainedusing a wave formalism
could be used to determine the capture probability at an impactlparameter
(),thus providing a test on the approximate wave method used.

The method depends on the fact that for rearrangement collisions the -
angulgr distribution of the scattered heavy particles is very strongly
peaked in the forward direction, ahd consequently partial waves of very

high angular momentum must contribute to the cross section.
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In the following analysis, ¢y or ¢ (P) is written in place of by(e )e

The first step is to expand Tj_f in terms of .Legendre polynomials,

Ty = —T 2 (11.-|\ ¢, ?L (c0s8). (8.5.2)
J/a./u‘,h‘k} is o .

Use of this in (2.3.19) gives

4

i (2041 ¢, Py (cos6) l.ﬂ (cos8)

8
H Ltso

.Q'(;D, - 2_‘-_ S

k2

= 5 S Gt Ve .
. l=° .
Since a large number of § values contribute to the cross sectibn, the
classical relation L= r ki can be used to transform the summation with

respect to L into an integration with respect to /9 , giving
® 2 |
Q(i}) . lj_ ‘c‘p)‘ pa’/v

Comparison with (5.1.12) shows that Ic( L )Iz is the probability of
capture at impaét parameter/_’ .
Usi_ng the orthogonality of the Legendre polynomials, it follows

from (2) that y

c({ﬂ s J/‘:E’ k;k’. j T;} ?‘(cosoytl(cose). - (8.5.3)
aw

| Ty¢ 18 appreciable only for small values of 8 , and for such 8

Pl (me’ ~ _l.]o (19) . J, (PL‘G) ,
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But 2 2
‘ = ‘o’e 2 P = Pmo'u )

so for small &, 0 X f?‘- r:'.“ ,

' If these approximations are made, and p _ 18 replaced by infinity, (3)

becomes

c((a) 3 u"v j‘,::m T‘s_ \To ((’JP&P&-‘-&* )‘i(l’.) (8.5.4)

| For the transition

B + H(1s) —» H (18) + H,

expression (4) can be evaluated in closed form for the OBK and Born .

appmximatmons. Brinkma.n and Kramers (1930) obtained

‘ c ({9)\ (K (z)) (8.5,5)
v ( | + V/u\
where
x = r ( i + va/,,) 5
 and Sohiff (1954)“sh§wed that 1
|cs(p“1 = [ bA, K, (x) $ L) QK (x) + (- \)C K (x)}
| v' ( *"’4) 0o Vo)
' where - . o | : (8.‘5.6)
An = x (155 dx o

L h-ov x(i x)‘
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Ka“-_(x) is the modified Bessel function of the second kind of order n.

Values of the transition probabilities calculated from (5), (6)
led Bates and McCarroll (1962) to conclude that QBK (18) is too large at
25 kev and unreliable at energies well above 100 kev and that the validity
of the Born approximation may be doubtful up to 100 kev.

Transition probabilities for processes (7.5.1) to (7.5.8) have been
calculated by Coleman (1965) and by the present author, using (4) and
calculated values of Tﬂ?; For the non-resonant reactions the transition
probability is found to be less than unity for all energies and impact
parameters, but in' the case of accidental resonance it exceeds unity for
energies less than 100 kev. For example, for (7.5.7) and an incident
energy of 64 kev, it takes values 1.5, 1.1 at p» = 0, 1.0 respectively.

* For the symmetric process unitarity is violated at energy 25 kev, ‘c( I )‘2 :
taking values 1.03, 1.02 atﬁ = 0, 0.1, but at higher energies it is
always less than unity. | o _

If a graph of(v "c ([v )|2 against I is drawp, the area underneath
is proportional to the cross ‘section, so it can be seen which range of
values of impact parameter is the most important. In figs (4), (5)
values of(? lc(,» )‘2 for process (1) given by the OBK, Born, iMcGCarroll and
impulse approximations are compared. GClearly the OBK and impulse
appro:d.maﬁions favour slightiy c'loser encounters than do the §ther two,
Values of (’l c( P )|2 given by the impulse approximation for processes
(7.544), (7.5.7) are plotted in figs (6) and (7).
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6) Conclusion, |

For proton-hydrogen collisions the impulse hypothesis (thaf. for
the duration of the collision the effegts-of the binding forces are
unimportant) cannot be eipected to be valid at energies below 25 kev.
Furthermore, the work of McCarroll and McElroy, discussed in Chapter 58 2,

indicates that, for the processes

H + H(18) — H (1slor2s) + K,

back coupling is important at energies below 30 kev. The impulse
approximation makes no allowance for back coupling, and consequently the
computed transition probabilities exceed unity at low energies and small
impact parameters. Values of Q"™® (nl) may therefore be too large at
enefgies below 30 keve For these reasons the disagreement of QIMP (2s)
" with the experimeﬁtal results of Bayfield is not unexpected. The lack
of agreement between QIMP (2s) and the results of Ryding et &l (as
renormalised by Gaily) is more disturbing. - QIMP (2p) appears to agree
well with the values obtained by Stebbingg_et al but recent measurements
have shown that these are not reliable.'

cbmparison with experimental values of total capture cross sections
. cannot be made until estimates of the cross sections for capture into
. all excited states of the projectile are available. It was shown in § 2
that the values of QIMP (3s) and QIMP (3p) calculated by the present
author enable reliabie éétimates to bg obtained. Hbﬁever, it is clear

from figs (8.2.4), (8.2.5) that total cross sections predicted by the
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impulse approximation lie below the experimental values. The reason
for the discrepancy is not known but Coleman has suggested that it may
be due to an inconsistent treatment of the effects of the potential V_l 2.‘

Since V,, itself has been neglected completely in all the calculations,

12
there is an unscreened Coulomb poténtiai_,and the boundary conditions
on the wave functions should be altered. Thus the plane wave in Wj_

- should be replaced by a Coulomb ﬁave.

For colﬁsions of alpha particles with hydrogen atoms, the lmpulse
hypothesis shouid be valid atenergies above 100 kev. At lover energies
it was found that the transition probabilities exceed unity for the
_ accidentaily Tesonant processes. Values of the cross sections at low
energies »a.relv in any case heaningless because the effect of the Coulomb
repuision between the collision products is neglected. No conclusions

can be drawn about the accuracy of the results at high energies because

experiment_ai results are available only at 'energi_es' below 36 kev.
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HIGH ENERGY BEHAVIOUR OF ELECTRON CAPTURE

1. Review of previous work.
Several attempte have been made in recent years tc determine the
high energy form of the exact cross section for electron capture processes.

However, even for the simplest reaction

H + H(18) — H (18) + H’,

no rigorous derivation‘of the high energy limit has yet been given. The
rest of this chapter is concerned with this reaction, If the asymptotic
forms of the various approximations considered in this thesis are compared,
a difference is immediately épparent between first and second order
methods, This is not surprising in view of the fact that virtual
transitions to excited or continuum states play an important part in the
. capture process at high energies sincé the capture cross section becomes
- amall in comparison with that for éither excitation or ionization. JSecond
order methods attempt to take some account of these transitions whereas
~ first order methods ignore them completely. The present situation is
briefly as follows. "
Suppose first that terms of order 1/M are neglected. Then the first
Born approximation gives |

& ~  0.661 QBK;"’

V- o0
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the distorted wave methods of Bassel and Gerjouy, and Grant and Shapiro,
and the two state approximation of McCarroll, give

B8 8 _BK
’ Q ’ QZ V-".Q ’

the continuum distorted wave method of Cheshire, the distorted wave method

of McCarroll and Salin, and the second Born approximation of Drisko give
¢S 82

Q.. R A Qo.awe s sz)Q , (9.1.1)

2 V500

and the third Born approximatlon of Drisko gives
3
Q“ ~ Ko 319 + 51W)Gl

Va0

where the Brinkman-Kramers cross section

K .
8 = 28

s
Sy ( h"/u)

If terms of order 1/M are included, and the protons are regarded as
distinguishable, back scattering eventually becomes the dominant process,
and 6 96 6 -6 _

Q, Q" ~ -gﬁ’v" _ (9.1.2)
Bransden and Cheshire (D63) considered the high energy fofm of the

impulse approximation cross section and showed that, if the effect of the

internuclear potential is neglected, ‘

Q™ ~ (o.z‘wb . s_Tt_y_)Q . (a.1.3)

Voo "

J
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This differs from the high energy form of Q°~ only by a factor of 2 in
the second terme It is interesting to note that a simpler version of
the continuum distorted wave method, obtained by replacing \]1:‘ in
(6.2,6) vy Q‘:’gu‘,{-i’_ﬂﬂ (VR-Y"T)} instead of by X; , yields a
cross section whose asympt.ot.id form is given by_ (3), instead of by (1).
The missing .facbor of 2 may arise because the wave function

(2) . : :
exp|- :_, tn (VR-'V'Q} and the impulse approximation wave function

.used by Bransden and Cheshire do not satisfy the correct boundary

conditions.

Coleman (1965) showed that,although the matrix element I,,,
involving the internuclear potential, vanishes in the limit /M tends to
zZero, hevertheless, as in the Born approximation, it determines the

asymptotic form of the cross section., Thus
E IMP -b
Q ~ b v
V7 00 e
which is the same as (2). If I,, is retained, it is inconsistent to
. 'S . .
replace w,, by unity. However, Coleman was able to show that such

a replacement does not affect the result. He also carried out detailed

_ caleulations which indicate that the v"6 behaviour occurs only when

M, = M,, and the v 11 behaviour is correct for all other cases.

2) The high energy behaviour of & modified first Born apgrc;ximation.
Although second order methods appear to favour the second Born
approximation result, -the.convergence of the Born series (and of the

usual distorted wave Born series) is in some doubt, and in any case the
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work of Drislko suggests that third and higher order Born terms are
important. . In Chapter 4 § 1, the distorted wave formalism of Dodd and
Greider was used to obtain a new integral equation (4.1.18) for the
oxact dictorted wave transition operator. It was shown that the kernel
of this equation could be made cqmpletely continuous, Thus the difficulties
associated with the-usual Born and distorted wavé Born series do not occur:
with the series obtainéd by iteration of this equation, and it may be that
the inhomogeneous term yields the correct high energy limit of the exact
transition amplitude, This will certainly be true if the iteraﬂed series
converges to its first term, but the convergence has not yet been coﬂsidered‘

With the choice Ui = 0, Vi = 23,'the inhomogeneous term is given
by (41, 21), _

( S; l VV 4 “@ _ VZ ‘C?;)'.
E-H,-V, it

If Uf = 0 also, Ti% redﬁces to a modified'first Born approximation matrix

element

we | -
Ti} 8 < ws | Vs, + Vj | - V-‘ \ q’; 7.
y E-H,-V; €

The-high energy behaviour of Ti% has been investigated by McCarroll
and Salin (1967b), but they made an approximation which had the effect
of replacing o .J::. | |
L V@ Ty | m><x WV l@: Y,

E-H, -V:aik €. -u.v u&

"
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(Coleman, 1968) where the wave functions X,are solutions of the

equation

(H, -En ) X. = O,

" They made three different choices for Uf, one being Uf = 0 in which
case their matrix element reduces to T&.MP 2 instead of to Tj_'f\m. In
~ order to evaluate the integrals they obtained, they were forced to.make
rather crude peaking appmximati.ons simila; to those describéd later in
‘this chapter. The choices Up =0, Up = V., led to cross sections with
the same asymptotic form as Q IMp (see 9.1.3), while a different choice
gave the same result as Q (see 9elel)e

The work described in the rest of this chapter was undertaken in
an attempt. to determine the high energy behaviour of T,p°. The
approximation introduced by McCarroll a.nd Salm has not been made.

MB
Tif may be written

T o= 1,0+ 1.,
Where 1. @)V (v,,+V.,)\CP;>
E-H,~V,, -V, +¢€
: V) 4 1 v”,vh TV, V) TV, V) (9.2.0)
where ' ' .
o,V =< lu 1 V@, (3.2.2)
E-H,-V.’-V“'P;e
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To simplify the matrix element I(U,V), complete sets of solutions of the

equation

(En - Hp - _Vu. - Vs ) X, =0 (4.2.3)

are introduced, so that (2) becomes

l(u,v)ez @IV XSRS @)
E-E, +:€ . }

provided that the functions X. are orthonormal,

Equation (3) may be written

?
-L9 -_'.V + L 8L EYX, = /r_ L
(’/“ S ) )x.,,

s and M is the mass of a proton. If

where a = M Y M(M+1)
M+ 1 24 + 1
terms of order 1/M are neglected, the right hand side of this equation

vanishes, and X,, may be written as the product of two Coulomb functions.
It takes either the form

I (x,r) = Mt () Fg (),
J( ("'P) z X! (5) F'.‘ (l"))
wher'e V—u‘m ‘;) is a hydrogen bound state wave function, and

X! ".‘), Fg (F) are continuum hydrogen wave functions,

iy Tl
XE (a_t) ] (A“) b e r‘( l-lv) ¢.Xr(lh.§) ‘E [ &v, “ i( kx -E_g)])
3,

Flp) = @M e'”_‘“ P (14:N) u,:(&_ls.,.,) AT (Kp -.g.,,_\],

where

V= a./h, As/'L/K.
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The summation sign in (4) denotes a summation over all bound states
and integrations over k and K. It is convenient to consider contributions
b .
from intermediate bound states X, P and from intermediate continuum

¢
states X, - separately, so (4) is written

I(U, V). = 1I°(u, v) + I°(U, V)

- Qhere' b o ' . \ :
ST u) > (K (VXX YL @Y
; . LT oty ' . n : £ - E.‘,E Vi€
-} : =, and - . . ] ‘ ‘
- | . A (A" =I(“3j15 CPIUIX, X, \WI@Y @.2.5)
:' with ] B | E’E!‘K_ +:§€ :
E,g = "3/1/“ ¢ €, €,<0,
and.'

R 'y )
R
Ebag = K /vl/u + /L’a .
In the 'following work) terms of order 1/M compared with unity are

neglected. Thus for example, ¥ is written 1/k. Some of the notation

used is now introduced.

~ Let -b vA.x
) sulm“r, A) - j dx " e Vet () (9.2.6)
x .
~bx h-x
Gutw (o, 8) = [ &7 @777 g (), (3.2.%)

Integrals of this kind have been evaluated by Podolsky and Pauling
(1929) and by Massey and Mohr (1931). The analysis is given in appendix (2|




" In the notation of chapter 3 § 1,

T (0, 5) £ Julm (ﬂ’l g“n... (O,g) 2 G.J... (‘3).

‘Write 'af’ “@‘f" .

fs(A,d,g) =jﬁz_ e e ,F,[a«,l,a(np-g.p)], (4.2.8)
@ <

L, (3«0) =IJ/2 TR a1, (Kp- k)] (.29

These integrals may be evaluated using a technique due to Nordsieck. The

method is described in appendix (3) and the results are given here for

reference, .
f‘(é,“,g)_ z _lv_Lz o, . (3.2.10
T . _ 4@
' ' ' . oK
where ' j _ :{ V. Q@ ] , (.2.w)
atea’. 2K,@ - 20K
.ﬂ.‘(f\,u,g\ z __S_IT___zF, (¢.2.12
" - S (R‘-&G")
wnere

: . s . | |
F=_aia* l (a(«-au) + w(Ke)(N'4@) ) (.2.¥
. K ' ’

l l‘+02-l$.g '21) h.'.; Q‘- J&.g.:;ag
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3) The contribution from intermediate bound states.

Evaluation of the matrix elements,.

Write N . e-."“[ f‘(lo‘.)\).

D LBV, IR D,
- If the potential V,, ( ) is vritten in terms of its Fourier
transform, then
KGN, X0 > - |

e e xplab) %0 %9 Fo(e)| {_t_ exp- it (reos)).

Because the bound state wave function \l-., ()  contains a deca;,ﬁ.ng
exponential factor, the 1ntegral with respect of x is unit‘orm]y convergent
'for_ all values of t. However, the same is not true of the @ integral,
and to enable the order of the x and 5 and t integrations to be
) interchanged, a convergence factor - e-a{, ) is introduced. The

limit A-=>0 ~ is taken after all integrations have been performed.

Then
“V}W 5. )- - Liw _'__S

Ao jinge

dt ('Mm(t .\:\f. (a,- b b 9 | (4.3.1)

el

where t, = K - k., and CM“(b y), L (3, N, Q)
are defined by (9.2.7), (9.2.9) respectively. .
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a) The intermediate ground state.

The ground state hydrogen wave function is
7Y -

\‘-“ (g) e “ "] .

Now g(l;-g) _ b “uz
‘ (6+t2)*
\'a.nd ‘{'E ( A, Q‘) | '_-. is given by (9.2.12)

Substituting these values in (1), the t - integral is
I - j d&  F ) (2.3.2
E( 6at)* ( AT 4 (6-6)")

where F, is defined by (9.2.13) with Q = t - & ®z-N . The t - integrand
has two peaks, a very sharp one at t = 1_;1' and a less well-defined one at
t = 0o The Coulomb factor F1 is a slowly varying function of { at both
2)=2

peaks and, provided K ¥ ky, the factor (4 + t°)™° is slowly varying for

~ values of { near §1. The contribution to.J from this peak can be written

Fu . I ﬂs X = T|a [ F"IA] ) (q,S, 3)
(lu- ed) tl( Ats (g,.g)‘) (4ot ? )t ( A‘&E.’)
where g, . (__A_ NN - Ak Y.
| A Aa-1K A- K

Thus, if the contribution from the other peak is neglected, and XK # l_gf,

(@‘, ‘vjy‘.q'.,’ !> 2 - 10‘.& aq'l N. (F“lh) ° (‘13. ‘0')
A0 1 (k) ((X%etl)

In order to test the validity of the peaking epproximation, the

Coulomb factor F in (2) was replaced by its value at t = t,, and the

19
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_ remaining integral was evaluated exactly-. The analysis is very lengthy,

and will not be given here, but the leading term, in the limit A -0,

is _“a. ( F‘l/.\) ,
(4+ ) ( A*4e))

which agrees exactly with result (3)e This fact provides some justification
for the neglect of the peak at t = 0. ']ft aloo indicates that although
(4 + 1;2)-2 is not a slowly-varying function of t near t = ¢, where

K = k., nevertheless the procedure of replacing it by (4 + *l'.12)"2 and

-f
carrying out the remaining integration leads to the correct answer in the
limit _) —>0 ., This is not surprising since in this limit the peak

in the other factor is very much sharper. It will therefore be assumed
that <cv,_\V,, | \ s FE> is correctly given by (4) for all values

of -5. |

An expression very similar to (4) may be obtained by a different

method. Once the peaking approximation has been made, (1) may be

written ' :
( wb-“’n‘ q’\b FK>= - n““ —Né- gu(')‘hc)J' é,g_ Z-g “‘; 'A; go't)-
= A0 ‘ﬁ. " & = _

' - If the order of the e} and t integrations is reversed, which is legitimate
provided A #0, then B
(L wp(-cbp) = o,

AR Y (A
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and
(ms.‘v,$‘\".bF >= - LM __i_ Cj.’(‘,'QO\ $K(A,.AI bg)
ADO pag? o
2 - 2""' N.C. o (‘l.3.5)

)

Wt (4at?)

where S“ { -A-;d-,- 9) is defined by (9.2.8)
- and 2 -N "

s. = ( _E—— ) U

tlz - gg' l:l

Equation (5) differs from (4) only in the appearance of the factor £
instead of (F"/ ,\) » In the present work it is immaterial which result
is used since the g— integration involved in the evaluation of the
expressions I (U, V) is performed by the use of a peaking approximation,
and the values at the peak of both the factors ("'"l,\) and £, tend to
unity in t;he high energy limit. In the evaluation of the other matrix

elements, the method which led to {5) will be adopted.

b) Other intermediate bound states.
The major contribution to the t - integral comes from the region

L 1"
due to the strong singularity in the term [32-6 (£.-©) ]

t =t
L=
which appears in Z’E (A , =N, & -k) If the slowly-varying factors
are removed from the integral ,
b ) '
(A% > e - z‘N&Q;,..(s.&) (9.3.6)
‘ : T b’ |

whare G (b, 2) 1s given by (A2.25)

P H P 5.
b ! coe s
i ";'"':‘-!'_ a ot A . N B R
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2) (AN I%S >

In deriving the form of the intermediate bound state wave function,

the potential V., = l was replaced by '?, , The same replacement is
- R

maede here.

Theii

. : .-a
f.-;:os dx \I-.,(!) V-.,l,,,‘;)] &(2 t;:__" ¢xf(- t%(’-\ F,_‘ (f)

N, 6, lim §, (2,08 8)

'(2“ )"l A0 - e .
= S, g_"f N . . (2.3.9)
.“iq ‘ k.g . . .

N e NG 1@

q'n(:)-is written in terms of its Fourier transform and a convergence
- .
factor ¢ P is introduced.

Then

K w,,lw) s Lia N, S ds G.,(z)g,:...(mm;(h,-"/-h*i);

1
Ao (au) )]

where t = K- akie

At high energies it seems reasonable to neglect s in comparison with
- . _ :
¥ in the argument of 9ulw ) especially since G ¢ (g) is peaked about
the value g = O. The remaining g - integration may then be carried out
to give ’
. - 3 _{,

j 6..(1) exp (-ii./z)coj = (3“)'2 .

. . . ' -“"‘J




183

Thenk .
_ (X,‘I IC?>"Q;M N 3“4“‘ (Y) LK (HA,-A,_&,)
'Y )
Ll A AP ) (3.3.8)
where w (146, )*
F, = [ N "N [rein o ARaIOE) &
| 146, - 2K, L, - 2iK ] ek, - 2K )

~and snlm(g) is given by (A2.22),

For the intermediate ground state,

ge () = 4T,
l+v

80 that C g Fy | V.;' @.) = N F .
Tt (1av?) (Ht, )

G.&ﬁ)

B CXe 1N 1@
If V,, is replaced by "y, i? a\:,ritten in terms of its Fourier
transform, and a convergence factor e is introduced, then
<X: IV 1 @) = i N, ]'o’.! G.,(:) Cj.,:,, (54y) f; (2,-N, _k“s).

- 3
A 20 u“)‘l

. b,
As in the evaluation of (Xn l_V,, ‘ CP,) ) the argument g + y of the
Fourier transform is replaced by v. The r_e;naining g = integration can

then be carried out exactly, w:.th the result

? (X:'Vw‘a"> E ;N_.f Guﬁm V) .-FK (‘ '\ .3)

| S a”n’

N OE Gan ), (1.3.10)
m . (H-k:) |
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2 -A | |
"a'( 148 _ ) ) _gz « K -ak,,
le6) - 2Kk, -2iK

and (%M (y) is given by (A2.28).

Since ey
_ (v) = _su™
Gls o ), s

1[3 .

NS O (ga)

- <\+.5F5IV,,'C0;> a
T A (T

The contribution to the transitlon emplitude from the intermediate

ground gtate.
Define

Ilm(uv)-.‘l/ufaucv,lulx YW IVIQ:Y
h -K ¢t€+s

where ' S = D/“(GJ,- éu’o
a) From (5), (7) and (11), it can be seen that

I (V V.)+ I,,, v, V,)

232 12 122
13
"'_34,&_1} AQC.(K)( |- (:.u.*)‘) | (3.3.12)
LU AT N P T I
where ' -iN | N

) c. (5) 'N.Izl ela } lr l + elz ] '_ <q'5“3)
' : - . hz-l&*.. “‘t:‘“_‘bt; 2K _
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The major contribution to the integral in (12) comes from the range of
K near k. i.es £, =0, t, = -g When K = ki, A'/i:’ s\-}‘ and tends
to zero as vy tends to infinity, Since [N |?—>1 as A= 0,

the value of C,(f) at the peak tends to 1 in the high energy limit. If
the slowly varying factor (1 + t.22)-1 is also replaced by its value at

the peak, one obtains

I oY ARSHURA

~ 32;;4. C.“!j) J J.E (84&.").
'“(\w')‘ (“1‘) (k;-K’HéXl&#k.’)"

3% G ( 1,0k, 1) + u,u.w),
w (1+v*) ( '.‘1.) ;

where - Tu(ds,!_:) = g d¥ "
(k- k*+i)( o+ (K )

. The evaluation of I1 and Iz'is.discussed in eppendix (4). There it is -

shown that
O M T A tn(uu;\),
Lk k) = - (ieiky)

Therefore 8(1skp)

Iu (Vﬂs 9Vu) + Ino (vu, vu.)
~ -32,.;“. C,(h;) ( h]‘.('ﬁck‘) + \-qu k} + _Qu‘“h’.))

(1evt)? (uf)h} 2 (1 k')
v’:’: : -.QaTl".'va’ : B o (9.3.14)

T VT e

2 . - :
where Az &M g.‘..' 9/;, - and © . ig the angle of scattering.
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b) Evaluation of I"b (V23,_!13) + I“b 912,__\[132,
From (5), (7) and (9) it follows that
b b
1% (%) + 15 (%Yo

— 14\5 G (1 = Tomay)
(i) Jat e ) (1) &

. . . -iN 2 \ ‘N
where C,‘E) N V2 (__.l_ ( I+ & )
k' 2K, laoks - 2k, + 2iK

| X ( beil = ALk
' eb) - 3K.6; 4 21K

The integrand has strong peaks at K = ak, and at K = k.. . At the
first of these a simple peaking approximation may-be used, and the
contribution from the second peak is evaluated in the way described in
the previous section. At each peak, G, (55 tends to unity in the high

energy limit, and it is replaced by this value.

b Thus
“vVDS) Iu (Vulvu)

= - 25.0 ban b ..ﬂ..(uh) lﬁ(u-hﬁ \
(ﬁ) q ‘t‘,- 'll‘)( (4&1 )> 601') kj-.( d " 2(takyg)

x -0 (:-u ) T+ L...._-Jn(u.h)- t(n. ).
"(I«\) (’H v(l-u\) ] . hi' . a(uh‘,)

At high energles, the leading term is the first. Thus

I( ,,) 1 (V) ~ede C(1308)
Wiy i/ ¥ A\ Vi 1.‘.v7¢o Vﬁ(‘."_a)_ . _ ' |
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'The contribution from other bound states.

From (6), (7). (8) and (10), it can be seen that, if n # 1, then

V) 20 = To (Vi V),

i w,,,v..) baf 46 I G 1,006 )
— \h; - +.e4a)l= (1+¢;)

(g,,v ) - jin N " Gt (18 Guatin ()
(k™K eies8) k& (1at)

For each intermediate state a peaking approximation is used to
evaluate the integrals. The values taken at the peaks by the Coulomb

factors || £, £,% and (1% £, F * both tend to unity in the nigh

energy limit. These factors are therefore omitted in the following

analysis. Also kf'2'+ $ is replaced by k 2.

Then
b -

“9 \/Il)

z#._g )J&KGM“-”
LA (

ke _kraie ) (1))

2

=

| -I.‘; ”,Vm)z'-. “‘“ V)S dR Gu (1,-8) .

(b.‘_ Ku&)k (Hk;)
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It is shovn in the appendix (42.25) that G,(, (1) k) can be

written

G (1, .ﬂ . u‘*/‘ (0,9 T, (L)

‘-——‘ )
(/34-(7 )ll

where b= usl, cos @ = -ki. bk and ¢ is the angle

n . by

between the plane of ~ 4, and k, and that of k, and k.. The functions

; . Hg, Ty are defined in the appendix (42.26),(A2.27).

The contribution from 8 = stateq with n>1.

a) 3 y ) noo (!) c’uoo (.‘°§'B °
i ﬂ (’ j(h; -K'ei€) i (1e )

Although C;m( 1,0)= 0, it can be shown that

T : hy Yy “-3 N
R R A o I

Therefore, the region K = ch, (1_',1 = 0), provides the major contribution

to the integral. A pealing appmnmatn.on is used, giving

1,, (V,,V,) - 3_¢ G, (v) T T, (5% k),

“‘ “1«)
where I, (A, t) is given by(A4.1),
2 4 n-3
and T, (0) = _bw ( el ,
' f'(lb’(ud)z nel
Thus ) 0 h-3 i
A~ ] Tin "\'\) s =
) u. 3
Vis v>o-' 3(““’4(”‘ (HA) v
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b) I VAR g%gm(!)j d¢ G, (1, -8

L “l',-K eie) et (Iol-,")"
The K - integrand has peaks at K = k,, (131 = 0),and at K = ak,, (&, = 0).

Use of a peaking approximation gives

I.,l',(\/“,v.,)
y_;_ (!)[ oT u"” I((s lz;) + Guool V) .1) T, (1, ..kﬁ}
Tl (loi‘)a

L4 1 ’
In the high energy limit, the leading term comes from the first peak.

b 11 . "3
1 V) ~ B B S S I H
T (Vﬂ ") oy 3 (uol)"(uol) (lbh)' vt

. The contribution from p states.

| b '. » .
B S LR A Py “’*‘”’I % H T, () Y,(0, ) E,
P nm S.S I- ﬁ g _ (h:’-K"-t-ié) hn (_Hh:)(ﬂ‘+ h.’)a

The major contribution to the integral comes from the region near K = l_cf,
so a pesking approximation is used. If the slowly-varying factors are
taken outside the integral sign, and the variable of integration is

changed to t1, then

1 (V,,.V.D _,«_«g (v)urmf I, Y.(0.9)
. (“1) (X% uu,..e)((; we0)

where s
. . [
T,(0) & 10w ((us2) ( n-t !
- P6) P (wet) \ nay '
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It proves convenient to carry out the {, - integration in a frame Oxyz’

with z - axis in the direction k. and the plane of k, and k. as the

X = z planes Let 0XYZ demote the frame with 2 - axis in the direction
Ei’ the xz and XZ planes beiné the éame. Spherical polar coordinates

in the two frames are denoted by (ﬂ'., 8, ¢), (d’n@’l d’l) respectively.

Then, in terms of the angles @, Q defined ¢n page HQ,

@' T- @, Q'z R+ 0,

: L ] | "_:.-l .
Y (08):-Y(®3) = > Y., @R, .., («,p,7),
. ) e
A
where the functions l...’.« “\’;ﬁo')') are the elements of the rotation

matrix and &,3,7  are the Euler angles of the rotation which takes
Oxyz into OXYZ, (see for example, Messiah (1962) p.1068.)

In the present case,

«:Y=0 I} and (5 is the scattering angle, 6,.

Now
[dE Y Co, b)
b (pra 62 Y (&} + 2nk, -i€)

o 4

' a ¥1
'-"“Z imlm(O,D,,O\j E.Mh ‘ A("J Ym'(ei m§ A"j 3
m/g et e (ﬁ’*hz)s ° -t (l'.t_ﬁ' thhj -i¢)

where y = cos 0,
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The (7 integration glves 2“5 s 3 5O

SOUMYA RIS G (1) WY@ R, (0,6,0) T
- _
_ " (‘+1‘) ‘

. " .
.where Rom (0,9‘”0) = { * JJ'; Sl.ﬂ 0, ; wm s 3 'I

cosBo m =20,
J =j” b.‘le,r. :.“L.‘. )
k (p%t?) kre akby-ie

and suffices on t1 and kf have been dropped. Since the lower limit of
the t - integration is k, not 0, it seems legitimate to divide through
by t and replace €/t by € . Then,carrying out the y - integration,

one obtains

J .= L i ‘u‘ q - _.".-\ ,Qu ke dk-i€ S
| ?"Sk (ﬁ‘w‘)’{ Ak é) E‘BT?
= J, = J,+ I,
where -. 0o
e o

bk ([5"4(:")3 )

J. ‘J‘; ® } Ak Qa [ Fadkewic \)

: |k fu (et ( e 2k e )
and ' . ( . .

3, _e__[ n 'nu(pﬂ.zu-ae).
S 1Y k.@z‘kkz)’- b-ak-it
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It can be shown that J, —> 0 as & —> 0,

3
LIW\ j; 2 O(k.‘) an k—’oo).

eEo
_and .J' = O( k...) an \g—soo,

. Thus, the leading term in the high energy limit comes from J 1 and

as:vu) = o‘v.s) &V =7 .

b) ' mM V3S’\/I§) 8# sulm ‘Y)-[ A& (é)y'm(® p E-
(h; K‘o.e)b (rae2) (prak? )?

The K - integrand has two peaks, at t, s

leading term in the high energy limit comes from the first peak, and

= 0 and at t, = O, The

Inlz (v23, V13) =0 (v’s) as v—=> oo,

The contribution from d = states.

: b
-8 Tam! V.J - ,& 6..,... (z)j dR Gugud (1, -8)
: (ke K%i€) k6,2 (1ae))
A "'.ﬁ‘ Qua...(v) sz 13 Y,...‘@ b)T (¢,)
| (ke k) (p7ott)’

The K - integrand is strongly peaked at K = k and the integral is
evaluated in the usual way. The resu.lt is _
n!m (v”ovu) % Hl uam (V) Y (0,0) (o) _I‘I' (PS’ L‘f)

.'*1“
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. nelo
Now Y (0,0)s(E S, T,(0) » (n=t) 28w M(na3) ,
[ am o L (,‘y_l) r‘s) ‘.““-2)
_ .
g'nzo ‘V) v::o - 1" F(ne3) * A . f, (cos e),
] p(n-2)] wtv '
and \ “z
I, (3% k) ~ B
| 3uvps
Thus, l
b _ n-b i
I V) ~ 8., o Nmﬁ( ) P, (w5 0)
*uam s’ w! voe 4 + 0 == =
| 3r(7) Pla-D\nell (088 V()

B Iy, (4V) = Be 9,000 J dK G (1,-E)

- nt - (ke -k*ie) &' (14 er)?

The integrgnd has two peaks, one at K = lgf and the other at K = algi.
In.the high energy ;imit, the leading term comes from the first and is
0 (v?). |

The @ntribution from stateg with 1 >

For such states, &, (jtm“'” O whent, = 0., The major

~1
_contribution to the K - integrals now comes from the range of K near

ak, (4, = o). Making the usual peaking approximation

IIM(,,. 4 _#Q”MQQ (\ _@I(lak.)
‘l

and

LL(_v,,;v.m. 1 g1 2) Gt ,@x ).

12

. .. T
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Then b

AT i TR S CARA IR SN B

;’ II

4) The contribution from intermedigte continuum states
¢ | .

| Evaluation of the matrix elements
Iy (y-AYT

Define Nl @ I"(I-'sv)f"l.-o'.l\)o

0 GV | XD

V23 i3 written in terms of its Fourier transform and a convergence

-RP
factor ‘1s introduced.
- Then
{ CP}W, |X:) 2 = bim Nz ‘lt .’Z, (‘ v, -a.Of— ‘A -AE, - k\ (q,‘v.ﬁ
¥ A=0 - 7% T“l" tg .

Using (9.2.12) this may be written

» (P Wy 1% Y = -Q.M.W J'&b FF, | (4.2
a Ao :.(u..w) (FeeY) .

.where F1, F3 are given by (9.2.13) with Q= §1 -'g, x==N, ang

9=k~ at, x=v, Nzl regpectively,
The main contribution to the g = integral comes from the region near
' ' 2 2
t = §,, due to the very sharp peak in the factor ( A (k- 8) )

~ at this point in the limit A->0. Assuming that the other factors in (2)
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are slowly varying near this value of t, the integration may be carried
out to give

<CF} \X > s ~ Q.M ‘PN F" F“ /A (‘l.h—%)
0
A mk ( | '_ -.“t'y)"

where F“, F31 are the values taken by F1, F3 when t = 1_:1. ‘A difficulty
arises in the passage to the lj.mit“_)-v O . From (9.2.13), it can be

seen that ' ‘A
F“/A = (l_. (l « N - I\(K-o-'o))
A-nK ae 2K
and !.:; (;"’ ,\) does not exist, In this work, the definition adopted
by Mapleton (1967) has been used. He took 4
- -iN '
Qm& A = ‘," ' (q‘*l&)
A0 A-HK
so that . B A c |
’\-\:«o (F“/A) = |4 t_l_ = Fyo . (‘l.‘v.S)

The reason for adopting the definition (4) is as follows. ‘

The convergence factor, ¢ was introduced into (1) so that the order
of the t and [r integrations oould be mtercha.nged. However, suppose AN
is equated to zero before the start of the calculation (c@lvum >

Then the intermediate state wave function X, is replaced by

X.: (3“) N uf( \nut'.‘/A [sv ), i (hx -k .:5\].
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The matrix elements 4 w;, | Vu' X: > " can be evaluated -exactly,
. with the result o '
CApIVIX Y = = &N Fy (4.6.6)
%3 , 2 L)"
TR ()4 (R-ak) |

stnce lim W, = N,, comparison of (3) and (6) shows that

Bisa & @AVl %Y s (@,\v,,\x:'.‘?_';.- - (4.._4..;)
|, |

if | SR P (F“—/Ay

A ADD
This condition is satisfied if
Liwa Fuy - = Ve M
A>0 ( ’\) 2 | .
and this is the reason for the definition used. Howsver it must be

stressed that, since the integral 4‘7}“’3; \)‘: ) is not uniformly
convergent with respect to N, there is no reason for (7) to be
satisfied, and the choice of limit made must be regarded as completely
e.rbitrall'};.

The t - integrahd in (2) has a second, less well-defined peak at
t= +& k. This has been ignored in deriving (3) for reasons smilar
to those which led to the neglect of the peak at t = O during the evaluatio
of the 1s bound state term @ |Vygl %y Fy ), When the

peaks coincide, i.e. when k - at, = 0, (2) can be written approximately

as -
COIV, IR0 = = e AN.F..F..( - '
o A T L e (et ) (A (e Y



aol

The integral can be evaluated exactly, and the result, in the limit A0,

is
7 :
Ak Akl
Thus, when k - at, = 0, -

A0 .“m _\?——

This is the same as the result given by (3) when k = at Later it will

1.
be shown that it is precisely those values of k, K satisfying this

. [
equation which are the most important, so the value of < Qj.“/“\xn >

given by (3) and (5) has been used in the following analysis.

1.0 <a’,lv | Xu >: - 4N , Fl, F‘, , (9.4.8)
| e (1 + (k)

Arguments similar to the one given above. determined the choice of

peaks used in the evaluation of the other matrix elements,

2) (‘RflVﬂan)

This matrix element is zero because the functions \Fis (’t) F (x)

a.reorbhogonal.
3) XV @D

The initial bound state wave function is written in terms of its

Fourier transform
\4.'“(&)': L j' dy ¢xf{-~§ ({v +ax)‘

T_‘u -,(H S )‘.
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i P -3p
and convergence factors ¢ , ¢ are introduced, Then
(X, 1Y, 1B £ - bie Ny j & 4, (s, v eags o) (g )
AP»O T (14 ,s) ‘i (%, - ;fa"”)

Using (9.2,10), (9.2.12), this can be written

(x..\\/,,\w): - ﬂcm k_! j J., ;bﬁ ‘a )
0 (108" (A% (& 4 Geat)by e “\;)(A““ Mk

1/;

-

where fA’ F4 are given by (9.2.11), (9.2.13) with Q=k+ (1 - a.z)lci +as
X2V, and Q= t, + & «=-A, respectively. The major contribution
to the integral comes from the region near g = ~t, and the usual peaking

appmximation and use of (4) give

» R
<x IV = -LN fur Fy ' (4.4,10)
u“ (isk-ak) (1ae2)

where f42 is the value of f4 when g = -§2.

4 CxSiv ey

\ﬁ,(v;)is written in terms of its Fourier transform, V., is replaced by

- -Ax
"(” .

'/p and convergence factors ¢.
EHIARLD,
2 Liw N: S J.l ;K(B A,_aﬁtyi ()v h+((.“)k ‘_a’)

h-”O ;-“-“I‘ (‘+s‘)a

The g~integral is strongly peaked .about the value

5 -1 --(\-a")h -

are introduced, Then

.L
o

The integral is evaluated in the usual way, with the result

SNIALAYE o , o)
—‘“ Qms ak)(u(uu- m.‘y) _
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where f52 is given by (9.2.11) with

9:3]{-]_:,-.]_{1, «==-N, A3=0,

- and P llm ) ('_‘y . y(k-‘--A}
. A -0 Aﬁh ' N- 2.k

.l - ‘_‘.’ (using (4)).‘
2

The contribution to the trensition ain_élitude from the continuum

intermediate states.

1% (U,V) was defined by (9.2.5)s . It proves convenient to introduce
new coordinates P, Q defined by . e '

Q=k~-al+ k

£=l_{"l( 1° = 2 21

e = &

Write E @ Eyy i€ = B/

In terms of the new variables, -

s (e (o) - (anatep) o gy
- _

This may be writ.t.en
(ha\ - a(1-a) P.@ - n g+2¢-@ 4p'-2ag -i€,

Let C, = IN, ‘ FM S‘az ‘F“

Cl.'-' ‘Nzl F%I §52 F‘F;-
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me'(s), (10) and (11), it can be seen that

wV) ;j. dk d & . (9. &.12)
. Ak, (h+,;-aK)(|0(k ab))(l-ﬂ:)

T(V,,V,) - -j[ ik 4K , | (3. 13)
' JAk (ak; ..\_Q‘(u (ke abs) ) (14 (ko (1)) )

In terms of the new variables

Vg, ¥y) = 2 j df 48 G (9. k. W)
AP A (1 alasp)) (1e (£ ’

I (\4;,\’):-2"{ 1”‘3 G . (A48
1
] Af Q ( I+(G+F) ) ( i+ (@ 4-4:’-5_{) )

* Consider (12)s The main contribution to the integrations in the k

and K spaces comes from values of k, K satisfying

k= 5&1) '.t.',z-

The expressions (8), (10) give the exact values of the matrix elements
<CV}lV,,|X.f >) OG..‘W,,\Q’;) in the limit A-=Y0 for
" these values of k and K, Similarly in (13) the expressions used for
the matrix elements £ (p‘;‘\ Vi | X: Y , (X: | V! @; are exact (in
limit N-»0 ) for the values of k and K which provide the major
contribution to I°® (V23, V12). It therefore seems reasonable to suppose
that (12), (13) provide a good approximation to the true matrix elements
" 1°(U, V). It can be shown that the values taken by the Goulomb factors

Gys O, at the peaks of the integrand both tend to 1 as v —7 oo,
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Apart from the factor 01, Ic(V23, V.| 3) is identical with the second Born
term I(V, 230 V4 3) given by Drisko., He showed that

" .
100, V)~ - 2T . (9. 4.16)
" v"(l-oﬂ’(:\-%"“"/v)

c
The evaluation of I17(V,,, Voo
The integrand in (15) has peaks at

Q=‘P:g=%+%g.
At the peaks
-N= 0(.!. ‘)F)*l(‘“)‘ﬂ.”F\F 2({411\4 P .2“&}_.6
=(/q1'5)P.- lqlg.% - 1“6} -sé_'}

where the relation p2 = q2 has been used. Thus

“-Dh = L ( | - 2acosO) Vz - i€,
at _ .

and this can be zero. A contour integral method similar to that used by
Drisko for the evaluation of I°(v2'3', V,3) is therefore used.

Let
! !
P =g+ a -a 9=4¢+p;
Then
~D s L
Y |
&

a
a

(-ad)@’ = 2(i-a2) P 0" P") + 2 (1) p
a.) :. Qag.% - Qaej, -'cé)

42(‘;{@ -} v_).g’- s (1-3
“g
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and

I(Vs,,,)--zf 4¢'4q’
alier Y (1aa"Y( 1- a‘,..%) (a-gY‘

There are strong peaks atg = 0, @ = 0. A is therefore replaced
by A, ) where

with
u = ‘/a;(l-ai)P » w =a{4'/“3(a“3‘.|)g)

and . '

A s Vlf(l'%a.’)? - QQF,{-QOLE‘F,

and (,1:/ - q' p + ag)z, (Q - }_))2 ave replaced by (p + ag)?, p°
reapectiveiy. Then

l(v VY. -2 J de’ 4a’

43’ i
A, (HP ¥ (v+a*)

n‘('gu%)‘,,’
Cylindrical coordinate systems are introduced .for both integratipns,' with
axes in directions u, v_y,

Then JLP - I'WP &P JP CQQI-'?Q“ Q,-’JQ,.IAQ;,

The integrals with reSpect to P and Q ! are easily evaluated, giving

I(V‘, V). _a " dr, s 49, ,
'IT(FM{V ) (l#f) (HG )(Juf +2wQ'4ﬁ

where primes have been omitted.
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The Q’- integral may be evaluated p.sing contour integration, taking as

contour the real axis and an infinite semicircle in the lower half plane.

The integrand has a pole at Q, = -1, with residue ' ol _ )
L 2 (1er) N 2uPy-2iwaR)

. The same contour may then be used to evaluate the P_ integral. The

residue at the pole P = =i i8 ‘ .
| | (2: Y ( - 2tu- 21w + A)

Finally, -,
1y, V) 1 v

(p ‘;Q%Y-Pz( Yt ("3&")Pa - 2;;,1 < dilusw) )

atw L,
'V."(“n(Vz(|-2co'se).-)i(u«u~?))

The imaginary part of the denominator is only important when cos 8 = 7,

and then . ' _
lul = '.':.“-“l)l’ s Vv, o lwl = v,
| Thus : ' s ' : o
1 (vau) e A . (3. 4.17)

v‘(|+ A)(l'."ﬂ’ "‘“’v)

However, it-was found that

IURATSNUAA ~ -2,
- SR V‘(HA)
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and further analysis reveals that to obtain this result terms in A/ M2

have been dropped. Therefore, for consistency, the term A/ M*  is

dropbed in (17) also. The imaginary term is then insignificant, and

I (Y, VigsVia ) - 36 LI (9. 4.18)
vo(1+d) '

5) GConglusion.
It was shown in § 2 of this chapter that the modified first Born

approximation transition amplitude. can be written

MB _ B M
where
B _ BK S
T,p = Typ + i
.- and

M

Tyg = I (v, 230 V 2) + I(V23, v 3) + I(V 12? v13) + I(v 129 v12)

. Bach separate term I(U, V) can be split into two parts

1(u, v) = I%u, v) + 1°U, V)

where I°?° (U, V) are defined by (9¢245)

If terms of order 1/M are neglected
v‘(uh\s L vB(14d)
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The asymptotic forms which have been derived for the various terms

ocecurring in Ti% are given here for convenience.

b

1) The bound state terms I" (U, V

The 1ntermediate grouni state terms

Iu 3’ us) ‘] (vzvvu) ~ - 1_2:_!_
v veli4d)
I (2;, )01 (Vu,,,) -J’Wiﬁuv.
v (14d)

The contributions from s states with n > 1 are of order v-7, while those

from p and d states are of order v-8, v-9 respectively, For states with
b - ~20~11 ~2{-10
L>2, 0 (Vo Vy5) = oW ) ana 10 (v, v,,) = 0(v )e

2) - The cog&inuwn state termg 1¢ (u, V)
I ( '; ) ll) st = 241‘-

v—oe ve(14d) -

< [}
I (Y, V) 5. - 20
£ 1Y 3 V= "(I#A”'(A 3'““

Thus,if terms whose asymptotic form decreases with energy more

rapidly than v0 are ignored, the only contributions to the high energy

form of Tilg come’ from the bound state terms I,° ) + I (V

1507230 ¥ 122 V13)
and the continuum state tems I (V23, V12), °(V 237 V13). Clearly

S b ' . b o A
794 1o (Vpy, Vy3) + Iig (Vypo¥q3) + 1% (V5 V) = 0,

% tinally, 8K "
T;j, TJ, T ,

Vb(ln\)a(h-S. - “’-;})
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The asymptotic form of Drisko's second Born approximation is given by
the same expression.

The work described in thislchqpter is unsatisfactory for several
reasons. In partiéular, it was found necessary to use rather crude
peaking approximations to evaluate the formidable integrals which arise,

. and although the validity of the methods used was carefully fested
wherever possible, the results cannot be regarded as rigorous. Further
difficulties arise over the contribution from the.ﬁound state terms.

It has been agsumed that the auﬁ of an infinite number of terms, all

. with the same energy dependence, is finite, so that, for example, the
contribution from all s states with n greater that 1 gives a term of order.
v-7. This assumption may not be correct. The present author intends to
look at this point in more detail but so far nb alternative method for
dealing with the terms has been found. Finally, to simplify the analysis,
terms of order |/M have been dropped.

For these reasons; no definite conclusions can be drawn., However,

the work indicates that the asymptotic form of T, D

ip ey well be the

same a3 that of the second Born. approximation.
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Ap@ndix l .

Evaluation of the functions g‘(&, nl, g). ‘

1) Introduction.

Let the wave function W.( (%)  of the final bound state b
referred to a frame of reference 0XYZ with Z-axis along p and such that
the XZ plane is the plane of P and ke It proves convenient to carry
out the g-integration-involved in the definition of *J (K, n1, p)

ii_ 1

(see (7+3.11)) in a frame Ox'y’z'with z-axis in the direction of

A= p - K, and with t'he.plane of a andg as the x'z’ pla.ne.‘('rhen K

" lies in the x‘ z’pla.ne.) Spherical polar coordinates in 0XYZ and Oxly‘z'

are denoted by (x,0,9), (x,0,% ) respectively. In order to perform
the integration, expressions for the wave functions \‘-“L".‘) referred
to -axes Ox'y'z‘ must be found. In the pre_senﬁ work it is only necessary
to considér the cases 1 = 0, 1 = 1. Since the s state wave functions
are 'spheri.;celly symmetric, they have the same form in both framés.

‘In the frame 0XYZ,

Gt (2) = Ry () Y, (0,0),

where R (x) is the radial part of the wave fu.nction and

v,mfe,ﬂ = (1) i(ﬂu) u-.“)‘] P (cos@)e
Qe M

The spherical harmonics \/‘m(® ll)) transform, under rotation of

the frame of referencs, according to the equation

Y. (@) » Z y ,(ecp)k léz_,,;,y)} ' (at,1.1)

mzl
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where the functions Rm'm (al,(i,'Y) are the elements of the rotation -
matrix, and %,3,7 are the Euler angles of the rotation which takes
Ox‘y'z' into 0XYZ. (See, for example, bIessia.h (1962) p. 1068), In the
present case, =0, b= ‘09."8"3’. end Y 1is the angle which the
plane of p and A makes with that of p and k. (L.ee Y 41is just the
" azimuthal angle for the K inte.gration.) The elements of the rotation

matrix for f = 1 are given by (7.4.2).

Since .

\4—“?3 (}) = q’nr, "_‘),

\"“" ‘1_&) s é ( M-“'. ".‘) * \‘-'I".' (u‘) )
and )

' q‘qu ‘}) s }i ( q'u'.. ".‘) = q'uf‘ (’i)))

1t can be seen from (A1.1.1) and (7.4.3) that

\‘-..h,(’.‘) -'-' ‘95(; q’:“,? (!) L 4 ‘..“ﬁ \‘-’“P“ (7}),

\‘-‘?‘J () = sin Y( $iufd \‘-:h(a_t)-cosﬁ \l-'.,',(ﬂ) s cos ¥ 4-:‘.,3 (x),
4‘“?& (!) N cos?’ ( sinfd q.'“h(g)- <$srs V-:,.,J,ﬂ); s Y u.-."':(,_‘),

where the primes are used to distinguish wave functions referred to the
reference frame Ox' y‘ z , the uhprimed ones being referred to frame 0XYZ.

~ Substitution of these expressions in (7.3.11) gives

‘5(&?) P cosﬁ 3,(;4?3) & u'up “J'(u‘;“)) '
g(hr,} s Sl.uy ( 50:4[5 A",(urt\ - cos/'s ql(u',.)) + cos Y Ai’(urj\,
‘Q(u',‘) . - cos'Y( safd ‘5’(..9.0- cosfd GI(uf,)) + s&y “3 ’(uh))
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where, for conciseness, ‘5(‘,1«(,3) 3 ( '“"F) have bsen
vritten as ‘JM), *J’M) and ‘5 (5,“(, 3) is the result obtained by
using in (7.3.11) the wave function \"“1 (3) instead of M, (x).
That is,

“:1'(5, l,g) g nl(")) ex?( F") F, [ £,1, 4 (Kx- K, "})

In the present work, ths functions k| \-A“ are required for the

following values of ril;

2P 2Py: 2st. 38, 3p,s 3Py’_3Pz

' /
The value of “3'(3s) 1is obtained by parametric differentiation of 9 (1s)

and the values for the 3p states are obtained from the corresponding
expressions for the 2p states by the same technique. The basic integrals

are given by Coleman (1965). It proves convenient to define

1:’(4,[53 E( ) 1 («x,[ﬂ | (A1.1.2)

where the functioxis jm (“ ;ﬁ) form= 1, 3, 4, 5 are defined in

the following pages.

‘ /
2) The_evaluation of gﬂg, 38, plo
If finally, the bound system is in the 3s state, the wave function
is -~&X/g
\" ‘u) e 13 (23 -18as 4 2“’&‘)& R

les_v ' ' ’

f 0 | i P ' .
L = [P BLR L ke ds,




1

! .
then ‘3 (Kk,3s,p)  can be written

ik 30,0) e - ( 22010, %5) 4 1808, 43) # 208 (:’(d,“"s)> (a2
sefan | ;
The value 1:”( A, ﬁ) is found by evaluating the integral
L. (N,(!v) - J‘:st ,F,[ ';_z_t, |! ;'(_'K-x-&.;)] Jg,
x AR
and using the fact that

1.‘”‘“,(’:7 = -5‘.3 i.(é,‘p). o (AV1.2.2)

The analysis given here follows that of Massey and Mohr (1933) and
McDowell (1961).

A
. Let n==~t& | cos_SSE.’; v=x(|-¢osS), Q= F'E’
K .

2

If Kummer's transformation,

JF, (a, b5 x) = ex JF (c=-a, ¢; = x)

(see Erdélyf, 1953, Vol I p.253), is used .
,L, (0‘,[") = j d ¢x')'(-‘{l-“‘)"*ib-g)ﬁ[H",l,- ;K:]Jg.
. = |

B

PCay o) () Bl uwetiusvel; :—ll
lrwf'('\lﬁn ¢

.= SQ Sv(gh) cx‘a(jrakt) e c“‘-. | |
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(see Watson (1958) p.393)s
With V=0, u= 2(n+ 1), a = 24 ikv, p = 1, this gives

o [net,),-iKv] = -_ [ I, (th.‘vs)f- Yy As) (A1, 2.3) .

nﬂ

where the change of variable y = t2 has been made. . Therefore,

Z, (ﬂ,(‘}) J -E cxﬂ -1kt a1, "/J T(Ja Kvy Yo' 3 Kcij.

F(uﬂ)

Now, Cf is the angle whlch the plane of ) and x makes with the

A A
plane of } and K, and R x=cos8, Therefore, if K,) = cos X,

"~ then

v =x(t: CobS) = x(l- cosX cos 0 - s X5 O cost)e (A \.2.(0-)

Parabolic ‘coordinates (S,oz ’ CP ) are now introduced, where
S = x(\-\vcose), N = x(\.-cose). _ (A1.2.5)

In this coordinate system, the volume element dx is given by

J,:_c = '/q('s -0-"() e‘} clilco.cp.

Since x = "I.(S-*?l) y (4) beco;nes.
val s Xig 4 1 cos 1/2 - 24[5_:{ cosx/g sinx/.z cos &,

Therefore
[ 4 [ ]

L« o [l

(10 wpfgeg g 1D, @ra
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vhere
a.g(’,-lK-'.R, a, -.rg-'d( +iA, ' (A1.2.9)
2 2 2
Z = 5 0+ ¥y - 231}3 Cos cp,.

5= JLIK:’s:(uzx'z and 2 = Jk—ll(:m cos ¥iy

From Graf's addition uhBOI‘ m (Watson {1958), pe359), it follows that

wm/
.(z) - z T (3) TG ™ (1. 2.8)
Since |
: LN/

AW S,

[, « da

(6) reduces to

,{ (at,{';) P J J;”JSf&’l ;J.(g.) J,(y.) vq(-éc-t.} -Lagy -J) .

If one puts 5 H 32 ) the S- integral becomes
d f: J ( 3J14'K:’s|'u‘x';_ ) exp ("’11 3«2) ¥ 1'8 '

= 2 exr(- di Kg swm XQ) (M.2.‘|)

Q, a,

(see Watson (1958) p.393).
The integration with respect to N may be carried out in a similer way.
Thus '

1.(0‘,(5)- j Y a.xf( A K-jsm x/g - A K'.‘“" X,z j)lj (A\ 2 |

"(“‘\)q‘az o




M3

From (7) it is clear that

a8, = ¢ - id : | (A1.2.00)
vhere - e =.P2' K'4d', d=apK. (At 2.12)
Also, .
- gs_K__tj{ a, i x-/g + a, ms2 J‘Q) -y
a.a4 \

2 - _Q-K.j([;-d(-oﬁcosx) j I_‘}_, (M.l.lS)

c- d c-'cA '
where T=p? + p3, | (AL 2. )

If results (11) and (13) are used in (10) it becomes
L, (a,p) = “e =T\ d
Ry f g or( )y |
" __
C s 40 ( c-'.cl)_, | (A1, 2.15)
T T - _

Using (15) in (2), one obtains

£t _'§_1".( c_-_~;1)“( alp-ik '“‘)"("————(“*‘)\
-

T T c-hl

Then, from (A1.1.2) it follows that

i?,(a,{s) = - sﬂ(c--. )“( “ ‘,.' 2l - iKY

G- d)T (c-idVT

-ku(w\p(ﬁnﬂ (wsV) & ap nstXne) ’ (AL, 2.16)
T(c-cn ‘-'-Tz '._T
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"

V) -SW(C_:LA_)( Boa B 4 Bs s 5>) (A1.2.1)

T LI el S b
= u___(" n-1) ;!-_‘,,K_Z + ‘ku(n-l)(u-l)(&-‘slog ,
(c-td)* (e-:d)?

< 6 (a)(2p-iK) = 12nln-Nusi)3 (p-iKY
c-id (e-1d)

G(MO(.MQ.)P, 4 |2u(uu)(mﬂ[3’((s.'.g,
c-id

B,s 2 = Lb(nﬂ)(vu!)(u&B)P,a,

vhere

"@
»

If (16) and (17) are substituted in (1), the result is

3’(5,3s,p\=N§s ( g-?u_l) (b... Ay o Re &s) .

where Y,
NS: = - 8N « y [ * x
81 3% 3
A, = "ln‘lu*?’!‘-kk) + \lun(wb‘ﬁ-"‘)hﬂ'nk"‘) + 8“(“")(“")‘1{1‘“")3»
C-id. (g-id‘l (c.“l)i
A, = ~‘|(nﬂ)(5{hh\ - \Qu(m»!)a‘.m.( «4373) -RK(OHGB))
c - h:l
+ 2 u(w-ua) <*n(p - i\d",
c-:d)
Ay = 120aa)(ned)up (wa3p) + 2 (e )us2) &3 (3 -1K) ,
- od

A‘b a - 8(6+!)(n-tﬂ)(wt3\ &2[53.
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/
3) 1) The evaluation of 3 2 .
The 2p_ wave function is
2 51 ~“-x[
(7_:) £ o« xtose e 2
ke Ja¥
Therefore, :
5 (o) )
9K, 2py,0) =2 ot L (a,%) (A1.3.1)
=) SPy # 3
' ¢ daw
where x igs

1:’(4,(5) Ix coselcﬁ 0.‘ ' ,i:, "5 \, (Kx- Kx)]&n (AL.3 1)
“L‘ x“”e"“f( 1K) i )[ &55¢j] J‘h_K;j) (r4.3.3

T‘(oul)

The parabolic coordinates introduced in the previous section are again

uged. Since

e 1 (5-1),

(3)'becomes

i:(d p) = by 4.‘0‘55 Jf[&yrc‘q’g (5- 1()(541)07( L3 j):lo(i);

a

© where a,, a2, 345 Z,, & are defined by (41.2.,7). Using (41.2.8), and

carrying out the integrat:l.on with respect to C[’ j» it can be seen that

iw («,[3) Y L (p) . (AL34)

2 ar’(wﬂ) 3(5
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where

2,(4) _g by " oxp (g 20Ky (1825 u.mz))
x(.;'-.-az-lkg(i_m_:_'_z- CM)": (M55j

.. From (A1.2.7), (41.2.11), (41.2,12), it follows that

cos& .xll_ _ : b‘“l X/z = M - QA ( h,“ + K-QJ)
1 2 J )’-
oy a, . C-QA (c R

where At = o8 X.

Substituting this result in (5), and using (A1.2.11), (A1.2.12) one
et

obtains
) D . . 2A(usk 4ip)
_£="‘°-c..4 ga,:, o :2g) 2 0 g - e

= bt Nu..)( __é)"[ D+ Kalooa) < 20KGna)DueK g[})]. (A1.3.¢
. ¥ T“"J) T . T"(c-\(‘)

if (6) is substituted in (4), the result is

= .‘:« l& Mo 'S A. A : ¢ Do
i (d,(s) (c ')( fo e s b)), (AL3.7)
where

Ao O }({5-;&)(%“)’
(C'IA)"

A, = (e (33 50K ke (BK0) - 20K (1w N(p- «O(?wﬁwrs)
C~ ‘d - (-54 )L

A& P K/up(uo-l)(sul) - Qhﬂk(nu)‘ncﬁ)‘&u-ﬂi-ﬂf)

,Cs



(K, 2p,,5) = N AW AT
K, ) L] c-id Ro .21 4 D2
1 2!( T)('T 52 T;)’
whers szj = p ots" aw ) P 2 “/a
/
. i) Rvaluation of ~ (K 2 )
. . 5!1 . “x’-‘!
Since -, (x) = & xsmBcosPe s
Pae T ’ ,
) o :
A.‘fl‘l_(,ﬂp,,’e) 2 & j (“zd’a)
u?ﬁf
o where
B) “z xsinBcos@e e X [“" \ i (Ksc-K.x))
From (A|-2.5) it follows that
xso;te = JSG{ >
 and theréfore, using (A1.2. 3) (41.2.8), (9) can be written
()]
1 ;(5) i (“»ﬁ)

f'(l&n) 3(5

where

L= [y 45( T, g Ty : @
- | Xﬂzr( ‘a.§+a‘1‘\ )Z J' (30] (3;)4:

' L LYY/ O m %
However, 'L e ;ost JCP = “-J M=z\,

| and J. (3) z - I.(g).

(11) - therefore reduces to

i (u,rs) ﬂf 1:.’ Jgf 411 .3“ 4( exf( 's(aSu‘aﬂ-g)I(})J (3.1)

22}

(A1.3.8)

(m.s.q)

(AL.3.10)

(A1 3. WD)
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Consider the integral

o 1 elig dls . l; .
fo El‘e. J.‘“S ‘)Lls-
.Using the Bessel function recurrence relation

Viy 3,(3) - a/a?]v"i) = Jpu (3)

with v =2 O, and the result (41.2.9), ylelds

o2 g o)) TEDIS + 2 p(£):

- . Thus ;e

*Cerpl308) ¥ T, (JeikgSei 72 )43
= me Mu g_ a.x.r(-ﬂ;__“a uuxz))

2
a, Qa,

and therefore

4£ (d;f&)c “n“KS\uX‘ Aﬂ .d " -'T_d :’) |
(c-d) C-t
TS T IS A P(ma).
e e (e =)

Finally, substitution in (10) yields

L | _12’(~,ﬁ) = i WRIE (u;l)(&)"(ﬁﬂ)-g(e-kk)). (A1.3.12)
1-3 ’ T .

T c-1d

(8) may therefore be written

Pj(K 2’,,F) N K(MH)W( ﬂ‘) ( A o A,) ,

Ti
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’Iz

p .
N e "G“ .= 2'; of "Jﬁ ) I% - dla )
am -

AL 2 =n (‘2"“0 )
c-id

A’_ s (5(“-&2).

/
111) The evaluation of 3 (K: 2p 2 R)

The 2p wave function is

5". . -GX/a
\L’I’ = % x smd sin (P e ,
9 ah—n_ :
so that
f; Sip (o) o
10k, 3, p) = 22 4 fa)
o edaw
where

-{Sx tg -3

0y ot . '
is"“'ﬁ) “" ’“‘“e““q’ ['I, \,'.(Kx-&-ﬂ\. (AL 3.13)

The (P integrals in this case take the form

(ﬂl tm‘ps.“¢1¢ a O, . ‘m#th
iw, m =~
"‘“; . " ll"‘-
Thgrefore“ L .
- ’1 TN/ Jm(y.)l.. QJJC/

. 2 iTi ( J:.‘;.) _3_.":) - ;.(5.) 3.0 (}a)).




. where 1

124

This express:l.on vanishes since J_ (z) = J1(z) and consequently

¥/ (§ 2p 2) 0

© '3) 1) The evaluationlof ?MZJ_B_)‘

\I-sr x)- Qc‘ x(6-dk)nxf(-idx)uss,

sidm . o N
' 80 S/ o \ 4 «
' (k = a7t [ 6 (x,%3) & d; (2, )
3'3) P) le.Tw‘ ( 3 ° 3 3
M{u,p) 1"’ (u,(;) are defined by A1.3.2), (A1.1.2)
. respectively,
()] :
The value of i («, ‘3) is given by (A1.3.7), and
| “, . = 'l& Ba . 8’ B
1’ (N:P) = “"“( ) ( + 4 3 + _:“’)

= - -4) . Qh(n )‘u 2)([5 QK‘
e B 2(?.1?* G-idys

c-1d)?

8t (naeNdeukn) & AMR(n*-Nu-2)(p- .x)(a,uku/s)

L c-&x
| s Nn-0(3-1K)f a(p 1K) Ku(,s-:K)quKfh,m!:(ﬂ-'.kﬁ).
+ (‘.l‘ : ((3 Al Van |

. K/u(»ul)(ml) - 8lwat)us2)u- t)(\K(&f{S-.K)()/u4K+-/§)
(C-ti)a

+ Q(MQ(MI) i M(P+iK) +2unpK(p-ik) - KMRuaka 2 ifi\} .

B 3[; Kf‘ (Ml)(mﬂ(wns) 4 lp(.‘.u)(u-ol)(u-o?)l([!o (M + Ke .p,)
" Cey :

'. Therefore
h

Ak 3,,,,;) N, ( A)(g\T_ %‘ L YA

T— 13 “'_“
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514

whore N, = bW 2u s &
3 2nfR o, P T
| s 8§17 3
A= - Al epra-bik) - 2aMn-Du-2)p-iK) ,
(c-1d ) T (e-1d)

R 8 (n-on(x(au"{!#‘d‘)-/u“n(«-o‘{& 6;“))
- (‘ cA)

o 2ld) ( }-&K(u-y‘ﬁ-‘&&)*ur\(&{!#@i\‘)(ﬂ-ﬂo+K‘613~/mu)((§-iky>
C ead)

¢ badK (w2 )(u-2)(p-ik) (A,”K“,D
(C-o&‘s .

h' = (x4 ‘ﬁ)K (uﬂ)(hﬂ!) 8!/5) K‘Mﬂx"“’)(ﬂ ~K)b“+ K*;B)(“ ‘)
a /“ (C -3 d )t

+ J(Ms)(rﬂ(p) («p+ 3-.K(q+-1{ﬂ) v Juxpuk(p-ik) - (,,(,;;)ak(an\)
(c-1d)

As T -lap K/u(ml)lmﬂ(wt%) 4 - 4'(&-0\)‘“#1)‘“43) Ax K(Z (‘}“ +Ks 6{33
: . N G-sl
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.~ 41) Evaluation of A:1’(5, 3p,s B)e
¥,

(S)n 2“ x(‘-“’ae"P( -ax)&nacos(f)
slﬁr

Pre

- glving

q (5,5|:.,F)= 2"‘ ( éi“’(u, /3)4»0(1“"“; g))
BIJ_

®) o) :

where 1,' (s,p), 1« (u,p) are defined by (A1.3.9), (41.1.2)
o)

and the value of J (w,8) 1s given by (41.3.12).

i:’(u,m = 163T52 Kina) ‘__A)“

X( 2w - Qn(n l)([S-;K) - kk(K#’)M sK) + nel -M’
AT T ) T T T4
T_herefore '
_ n
M(3p.) = N, J:;IK(vul)(g;i_‘L)( Ay Ay Ay
_ P T T2 b 7\_—“
where - - _
. 51 _
st“ = ME— ) ﬂ = 23‘-.,
$1daw ' _
A‘ = -nlx+ép -‘:iK) - Jau(w-n(ﬁ-‘s\(\" ;
e-id o Ce-id)?
Ay = (ea6p)ned)  + hulnsd«B(p-iK)
' c-iJ
A, = = a(ned)(ne2)ecpl




111) Ezalua.t;!.qn_.ei‘_?_’.(.&_ﬁpr_nl

The 3p wave function is

S .
V’a,,‘*’ = 2;‘.‘_: ¢ (b=ox) exp (-'gax) s‘ne sm @,
R Y7 |
l so that "
1‘5 3f’yF) = 6 1 (0‘, “ls) & “1 (“ “13))
s\r' :

and is zero for the same reason-as ’J (k 193 , P)

223
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Appendix 2,

1) Evaluation of the functions qulwm(bs A)y Gy (bs 4),

First consider the evaluation of the followmg integral

L [ N D T (g, el

' . where J, | %_(x) is the ordinary Bessel function of order 1 + 4 and .

ka (z) is the Laguerre polynomial of degree p defined by the relation

i W ) s e (TED) ) el @

4 )
pro (pek)! ' (1-u)t
Therefore : .
n-l-t e _ zu
i o k)= exp | ) e,
"-1.‘,0' (0\41)‘. S (‘_ “w ,"." .
Write . @ ° Wl (k) '
° I - « I“l (o() K) : | (Aa2.2)

nafsl (“‘." )‘

[, e )l @
() U’“)’ * '

Now (see e.g. Copson p.341, Ex 7)

[ e;. T(LE\E o“: lfﬂ‘%,ﬁ(ﬁf,/_?’i‘j\:ﬁ';-g) (Aﬁ.k).
[ i ' a

i Re (usv)>0, Re(atib)>oO,

Put /‘"ﬂ"’ﬂk Vs 1*"1, b=K, az e+ =
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Then

!,4":
I= l"(ah.’hh) Fh“”h Wk Qs, -K’ \

) ledsh ae2 4 re 2
e ) (e )0 2 (&)

i) k=0, F(a,bybjz) = (1-2)2 o (A2.5)
1i) k=1, Fle,bja;z) = (1 -2z)0 - (A2.6)
Therefore ksl
F 24, Ra3y 5 dadg, 'f;_’;] = ( (I-u)-tu) -
o ((ﬁ(' Wau)? & K3(4- u)‘)T‘.
. : alale
F[lo”;,h’j '.0"33 (:—;ﬁ;—_y] = (d‘l-u)‘ “) )

(I I T S

d) Suppose k= 0

o O _xy favg , 24
I::(U'K) 2 L e 55" Lu-l-|‘5) J'h'g(xﬂ) A‘j ’ (ﬂa. 7)
I = x*rau | ‘

2% P (Le3y) ((u(l-uhu.}' " K"(l-u)")h (A2.8)
(x(t-u)+u)2+ K (1-w) =2 ( 1- Axeus (eu)‘)(«% K?)

where e . (|-u3‘+ t:‘ ; . (A2.9)
€x s ua-o‘K“ =, (A2.10)
x*4 ¥

' - i (eu)k-Crl(n. (a.u)

(I-ﬁxé\i d(-u)")n.”-. &,



. Equating coeff:.clents of u

. where
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From eq. (2), (8), (11), we have

S e Lo Ly 2 LU
E.Ln_'_—— 1‘:"(“, K) - 1 v f‘( 500 K 1 z (eu) ch (X.)
nalel O . 'W"" (u"#&‘)“. S

" where the identity

' atal
rlad) a__ T
POaad) n'
has been used.
nel-1

Equating coeffic:.ents of u
(0) I, "nﬁ-' "‘

I (d K) = J f'(u&h!)f'“oﬂk € C . (;) .(ﬂg.\l)

' (wts k)

where €, are defined by (9), (10).

'b) Suppose k = 1
{s) : ©® X ‘31 a0
].‘L(O‘;K)= L e ‘Jg’l mele) :’) J“.‘J(KS)J‘S
Then, it follows from (5), (6) that

':.'. I s 21' alI"(L J)Kh (q.“.(l ) - 3 -‘))Z(é“)c
o . '3 ( LK')“J _ ]
o “"'l" T y
= e K
nalal (netM I"L (d

h:o

Nel=1 -

I (u K) = a r(mn.nm.:) 5

': +K")
net-2 hl

x(«e ‘C“:. (x) (-2 e 4(x) = G- e C ”(;)> (R2.12)

C (:.)-0 .‘- /u.<0 C:’-(x)=‘.
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Evaluation of q,(. (b, 4).

Jbx idx | .
‘J,am(":‘i)" j4_§ e e M (%) (Ra. 1
x .
: where " i, L oata mo | : '
Vot () 2 3(%); e (JT:_:) L., ”;") Y (6,0). (Aa.15

It is convenient to carry out the x-integration in spherical polar

coordinates (r, e, CP) such that k, points in the direction 8:=0

and the plane of k; and k; 1s the plane ¢z 0. Let A=(A,8,)
in this coordinate syitem. Now, (Messia.h I p.497), '
exp (i, x) s IJ!Z Z (Ax) A (e NY, “(o, 3) (A2.46
‘l.o Ml " .
and w & o i
[y‘_ (9,(?) 7;: ‘e,w)A(CDSG) &Cp s Smm' S“I .(M.l?,

If expressions (15), (16) are substituted in (14), the angula.r

integrations give 5,..... Sll’

Wy
Lgt y = % , Then: “(ﬂx) (“ ) J'“.,‘('.le-\nj).

Then

( A)e AW I ._.____P(“'l) . YM(@, * $(ubsr), 3 An) .‘87
1"‘“‘ L ) (An (P‘““")‘S) i b) I“I (1( b 0; 2 ) (AQ
where Iflg) (o, K) 18 defined by (7).. Use of (12) then gives
4 " w n-led L4l
dutm (o) 2 3 ’uz‘( F(a-l)\)‘f'(nu) Y6, € C ), (A
. - P‘u4h|

nlh‘l ((n_b:_')"; “grol
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where Y

(ub-1)" o AW
(nbat ) & A'n'

and x & :_{u‘\,‘-hn‘u‘), - (A2.21)

(wbat)? + A%t

&
n

y (A2.20)

When b= 0, and A = v,

o n'V." .
then @nbﬁo, Q"., x = m
Therefore, Llum x ¢ |,
Voo .
. tet
smee ™y L f(aaed)

Fln-tYP(2t+2) ’

it follows that

T "
Gubw (¥) 2 2 ™ l[”mm 0l Y (o) (A2.29)
r“ﬂ'l’ r(:k.z) “ttl V‘.Qa

Evaluation of G 1t A_

* .
Gulm (L, B) Sll e utm(x) (A 223) .

The angular integration may be carried out as before, with the result

Gutos (4, 8) = Wil’l ﬂL‘L‘l,} IIYM(@,@) T, (50be), 4A0),  (R2.24)
A { Flasten)]

where Iﬁll) (x, K) is given by (13).

Thus _ 1
Gt (0 8) = Hﬂ,ﬂ(&&)ﬂ(a\((ﬂ;ﬂl Ty : (A1.25)
. k!
where W = 7 é\\;‘[ f"n-nl r(te) (A2.26)
" Plualat) “_hs '
et fed w-t-2 {42
T (A) cGbade C (%) - 2bE C (n a(ub- De le_;(x), (A2.29)

and €, » are given by (20), (21).
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Particular cages.

1) b=0
2,2
Then ¢=1, x=2 4 =1
' n2 A2 + 1
Since
142 L 1+2
Opag () = G155 () == ¢l (x),
" . Fyey s N\
LJ..lu.(ﬂ) ) N 0] {041) YM(@ @)A C ) (R2.28
) "“

(/ s +“t)‘02

2) b=0, A=y

From (28), it follows that

qulm(v)'\/ 2 lh [thb} M(4eh) Yl (oo) 2,

— L+6
Pel) ] Pl22) WP VO
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Appendix 3.

Evaluation of the functions ft (A,d,Q), LE(A'M’ Q).

These functions are evaluated by a technique due to Nordsieck,

" By definition (9.2.8)

~an iQ.r '
£ (A, Q) = J e Ef i, 0, ilke-k,0Y) 40 . (A3.Y)
[ ad
The confluent hypergeometric function may be represented by the following

integral;

HIAPE __j;( }_; &t,_ - (A3.2)

where 01 is any simple ‘¢losed contour which encircles the points t = O,
t = 1 once in the poalt.ive direction, and the functlon(;1)b is made
single=-valued by a cut in the t = plane along [0, 1]. If (2) is used

in (1), then '
£ (3,,Q) = _._} AN R(e)&& - (A3.3)
| aWie - t
where e 10 Ke-Bin)E
R(E) = s e_: ¢ e de. L (A3, &)

The change in the order of integration is valid provided that the space

integral R(t) converges uniformly for all values of t on the contour G1.

If N is real and positive, then . ('1 £)
i = AKr min
l'l(t“ < AT j” ~e re ’ " J.w,
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Hence, by the Weierstmss M - test, expression (3) is valid provided

that .
A - Wwin (fmt) <0 (A3.5)

for all values of ¢ on G.‘. It will now be assumed that 01 has been

_chosen so that (5) is satisfied, The integral in (4) may easily be

evaluated, giving

R(E) = 4T ;
Ay @2 - ak (g.x +1AK)

Substituting this value in (3) gives

}!(A,u,g)'- &} L( k ).w‘ &l’ | . (As.é)

L B Ve (Weats 2e(@ keiaR))

2

The t-integrel is single-valued and behaves like + - as t tends to

infinity, Thex'éfore the integral round a circle of radius R, centre
origin, tends to zero as R tends to infinity and the integral round 01

is equal to the sum of the residues at the poles lying outside 01

multiplied by dWi, The integrand has a pole at
Q" = AN Gz ,
2(@8.k +idK)

Since X : :

-A - “‘1‘“&:0 s .A_Q_i‘.;‘_&gt > 0,
R*0st 04 A

where Q. K = QK cos§,

it follows that t, lies outside c1'. )



e

Thus

Thus

5o (3,0,8) = _ﬂ_( tsal )"
(A\'+@*)\ Nat-2a.k - 20K

Zg‘h,d,g) may easily be evaluated using this result,

L (34,Q) = - 24, (), «, @)

= 8f% ( P Q )‘“‘( als- 1) 4 o Kai Mats Q") .
K

(.\%a’)" At @%29.4- 202 24 0%-2K.@-2:3K
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Appendix 4,

' Evaluation of the integrals I“(uz, j_)_.

ot &, 4%
Let I ( b) j(h‘_K‘“e)(d +(K t")

Now _5____’ = [n £R 2
_,mus-n “1_ (A 4(5-'93')

— < L1 for a11 K.
(A (k. m‘l = | 'S -

© dA . 'l .
Since L o converges provided « # 0, it follows
dA
from the comparison test that f s (A TR Qz) converges uniformly

for all K. Therefore

j.(k; K’ué)(at *'kn H‘) . ’ “ Lﬁ; &*4.3:44 +(K-e))

e

i.eo I\(“a; E) L‘:]l(Aig)Aﬂ. -

BEvaluation of 12 (A, B)e -
I (A e) n[ k*dK r' dy
- (WYY

K's! é) .(A » Kt J_K"-j)a

="..'|'\' ‘ KJK :
(x' k,ue)(n ;(n-e\ )
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The integral may be evaluated by contour integration. The integrand

has poles at
K =k, K=t + i

with residues

f , ' E+idA
al A4 t-*) 27 ((LaidB)*- k)

Taking as contour an infinite semicircle in upper helf plane

T(A,8) - -wf__¢ . (ZXLL) | (Ak. V)
* E\ A R (G dR)- i)

Evaluation of I.(«>, t)

-I| (“’;’ g’ = ._.!‘_2 ( ]e + ]z) \“’ |
t - &

where '
J o= iS dA s ikl lgee)),
S PY AR ) .

:ra g I (Qbiﬁ)iﬂ
A (ke Par)




Put tﬁ'cﬁ 8 3.

Teoa( gk YRR TONY, 3 S

y*- k"' .

1(.‘,;) . {au{(e..r)‘ hf} R ) H

s ._f‘ ﬂo\‘d vk - ) ) - du ((l'uatl "f, }:“
3

Special cases.

1) b=k . i ,
RN E l./w (Aetelty) i'i;( A Avik; } '
R <
. ne | "au‘ VR : ¢
b) a((_“"')’ ‘!'f) 2 -(“L“_)_ ( i+ 2.‘1&..)((““) . G "h,,)
c) I. ( b, tf) 2 -.“;kf ( haw h’. v L (‘# h;))

a) I(ﬂ,ak) "— A*“La-h:+:h"r \ .
(A*h; *“"k ) - ka k ‘l‘,

IR AT ==-n_*[*- o il
' . ’ uk; A#h‘,-uk

o

Ny Q“{(ﬂikp-c‘k:)‘-& la Rk;
-(A + (\t;. -_q.h;)")"

I
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