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INTRODUCTION.

(1) The purpose of this thesis is to 1nvestig;te the éffécts of introducing

distortion into the single channel répresentation of the electrsn -
Hydrogen scattering précess. Allowance is made for ﬁhé_indistiﬁguishability

qf-the projectile and atomic electron by means of a s&ﬁmetry opefator.

| A brief outline of the contents is as follows;—

Chapter one describes the préyious work.on elastié c#qss_sections. We
Qtart.from the early variational approximations in which no distbrtion 1s
explicitly included. Distortion is introduced by aﬁpealing:tp a form in
Wwhich interactions satisfy the correct assymptotic behaviour. A fuller
. fofmulation is then set aown to incorporate all second order interaction
terms whose. nature 1is sﬁch as to'reta;n the correct assyﬁptotic behaviour.
Finally the close coupling approximation provides a form in which all
effects ma& be included implicitl& by a complete set expansibn of the wave
function. | .

Excitation cfosé sections are discussgd in Chapter 2. Taking-the Born
approximatioﬁ'as:a.zero order model, other effects are incorporated e.g.
exchgnge (Born Oppgnheimer approximation) and e*plicit inclusion of the
interelectron interaction (Impu;se and Vainshtein approximatibns). Finally
" the close coupling aﬁproximation demonstrates that sven in the truncated
form presented here very reliable results follow within its range of validit
i.ahc shall be taken as a standard of comparison 1nlthe-follcwiﬁg work.

Chaptef three gives a brief description of the experimental'situation
to date in both 18 ~ 28 and 15-2§ scattering. ‘The ls-2p resuiﬁs are given'
as perpendicular cross sections. The meanélby which'totai.crqss sections

.are recalculated is described.
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A semi—empirical approximation is described in’ chapter fiv;e. The -.
model, original'l.y due to Drachman is the adiabatic exchange approximation -

; with the monopole term of the adiabatic polarisation potential partially
suppressed, so that the model yields scattering parameters (e.g. the et - H
.‘scattering 1ength) in agreement with experiment. The success - of ‘this approic-
~ imation prompts an investigation of the sa.rne technique applied. to electron
| hydrogen scattering. This i1s considered from the standpoint of the known
H"..bound states. A monopole suppression factor Is chosen tlo provide the

best value of the bound state energy. o o |

Chapter four considers in detall the theory used in deriving sevcral.
polarized single particle projectile wave functions. The eua;l.uation of the
polarisation and distortion potentie.ls required is given in detail with a
description of the characteristics of the potentials. 'Details are glven of
the numerical solutions _of.the polarized single pa.rtic.i.l.e. function equations.
Phase shifts are by a method due to Burgess. | _

Chapter six uses the single particle wave functions of- the previous two

chaptersto evaluate 1ls-2s and 1s-2p cross sections. This end is approached
in-three stages within the transition matrix, full account heing taken of |
exchange. . | _ | . . | ‘

1) The polarized Born approximation in wh.ich distortion is introduced
by way of the atqnic wave function (the proJectile function being a plane
wave) . . '

2) The single particle polarization e.pprond.fnationSvin which the single
particle function representing the. projectile 1s deterinined in such a we.y as
to include p'olarization. This ftf:ction replaces. the plane wa,ve. in the symm--.

etrised Born format whilst. retaining no explicit polarization ,in_-the atomic
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wave function. _

3) _Fina.lly the two effects of polarization are brought.' together in
the full polarization approximation, replacing the symetrised Born format
of the second approximation with the polarized Born format of the firs,;c,,
whilst retaining the distorted single particle functions of tﬁe second
' e.pprond.mation in place of the plane wave of the first.

2. OUTLINE OF THE SCATTERING THEORY REQUIRED.

Whenever the electron hydrogen system is_" coﬁsidered in _tﬁé_following
work we shall consider an electron (1) ‘iricident on a hydrog'enj atom, comp—
rising a proton as a fixed centre, ih the field of which tﬁe o;rbital electre
(2) moves. Relative to the fixed centre the electron coordinates are 1y anc
T and the interelectronic dista.nce ri2 (where ry = (1".,9:,%) etc.) . An
alternative set of coordinates describes the position of t_,he_ centre of ma's__s'
of the electrons relative to the proton centre R, and 'the half electronic

,
separation

R=(r+rp) /2 5 @= (- /2 . Ol

The coordinates will be identified in figure O.l. It mlay.l'ae _objected that
'thiq/system regards a.'fihite mass proton as a fixed s‘caﬁtering centre. This
criticism may be avoided by tra.nsfonning to a centre of mass system, the
resulting. approach being basicail_'l.y equivalent. For electron i.mpa.ct differ-
ences will not be significant, except perhaps 11_'1 threshold px_‘oblems.

When the projectile-atom seperation is J.erge 'th.e corresponding inter-
" action potential falls off at least as fast as l/r,‘.. In these circumstance'
' the projectile is represented at 1e.rge distances as an incoming plane wave.
F(1) = exp (ikr) . o2
| k being the prejectile momentum. (Units will nor'ma.'l.13,r be given in atomic

form e=fieme=l. An except.ic’m will Ibe the enex_‘gy' given_ in P_Qrdbergs) o

The.ta.rget atomic system is a two body problem wivse s_olution' is known
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exactly. The Hamiltoneon is the sum of the kinetic -opera.tor of.‘ electron
(2) and the coulomb interaction potential U(2), between the orbital electror
and the proton. ' | o ' |
Ho = -4 7? -f--u.(z) J u(z) - '%‘,_ ' o b.’O? -
The corresponding eigen energy B 3 and the wave 'ﬁmction' }6 3 (2);eatisfy the

. _ . ,
" Scroedinger equation, whose solutien is a product of a radial function and

a spherical harmonic function of the a.ngtilar coordinate - /4 (ref..-Schiff -
Qua.ntum Mechanics - 1949). .

Hoz B (2) = J—j‘,@‘(Z)‘; ,Dj"(z)-.- /?j(a)'X,"(r'.‘_) c. o4

-}63 is nonnalized|to unity.

The total energy, the sum of the initial’ energies of the projectile and

the atom, is a constant of time.

E = k,'1+ Eeo . (wd‘) 0'05

- As the projectile approaches the atom account must be taken of their mutual

interaction potential,
. V = %-'l - yf, . - - ' . 0006
The reeillting three body problem has not been solved e_xa.ctly. It 1s the

purpose of this thesis to present some approximate solutions to the 1ow

energy electron - hydrogen probléem. The exact solution' can be given -

formally by the wave fuction Y , subject to appropriate boundary cond-

itionms, satisfying the Schroedinger equation.

H® = £ " 0.67
where the total Hamiltoneon H is the sum of the kinetic operators of the:

projectile and the atomic Hamiltoneon, and the’ interaction potentia.l V.

S AT 4 Hoy e U " cos

"In the absence of the perturbing potential V/ and neglecting rea.rrangement

of the elsctrons, the system will be in a state ‘6 (1 ,2 ) such that

/

(wvi’+ Haz'—Ej)‘/yeG - 0.0q



and hence . , .
¢ (1, 2) = py () FG) | o c.10
The theory of scattering has been treated in many books (e.g.. Goldberger

and Watson - 196L). It wi]_‘L guffice here to sketch the theory and . quote

the results essential to this thesis. .

Consider eq. 7 at an energy W = E +(&. That 1s" N
(H-w)E,® -0 ;m (o — i) F,° - fm e
Since (H - W) is never null on the space of H, o) & particular integral is
EQ e ) VB - (e mesie) v ET

. The formal solution may then be written as - S

T 2 4 v (E- Hodie)' v E® a3

Detailed study shows that (£ - Ho+c € ) ' 15 a reprcsenﬁat_ion of

~ the Greens function of the unperturoed pr_obiem, say. Go+.,'o so tl;la't: we can
write in the limit € -» +0, . |

Rearranging this expression we conclude that the outgoing spherical wave

: solution of e.g. 7 provides R _ .

_(.E,'=¢+GV¢ - CIS

where G* 1s the Greens function opora.tor of the total Hamiltoneon formally

written as

G* = (B - Haace) ' . o C.16
Defining the T-matrix corresponding to the process (->f to be

T = <pvE*> | 1017
and assuning the assymptotic form = I _

B~ (et .« mEGI ) L o

where the differential cross section 1‘;(9,), is

Tceys I£Co)/% e.q
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the properties of the Greens function operetor give .
f£(0) = Von Tt | - ¢. 20
The total cross section in which elllperticles are distitgnisheble follqws.
Glint) = ki [ 1Tt 12 (omits of ait) (C.21
. Integration is over the angular space Er of the final mohentum'of the
projectile. An alternative approach t6 cross eeetione, can be found in
terms of the momentum transfer F | _ . )
Q (. >f) = /e. [‘ | T / ol (Pz) (uru'f.r ot TTCc‘) (G 22 .
The momentum transfer and limits of integration are relatéd:. to the initial
“and final momentum, ® and k+ , and the energy change. AE by .
D or kol i Doy = TR+ (el P [l — el AE =~ (c_~.9.3’_
For problems in which particles are indistinguishable the Pduii prin-
ciple requires.that the totai wave function shdul& be entisymmetrie in the’
iﬁterchange of these particles._ Fer electron scattering on h&ﬂregen atoms,
cross sections depend on the relative spin. orientations of the electrons.
These haye different probability welghting factors for singlet (+ ve, spin
an@iiparallel) and triplet (- ve, spin parallel) orientations."The corres—
ponding cross sections are related to the spin averaged Ccross. section by |
G=/¢fQ*+3GJ . '-0.24
. In some cases a’ . partial wave expansion of HE is useful. The assym-
ptotic fonn of the partial wave function may be expressed in a number of
- ways. The reactance matrix notation is concerned with real wave functions.
The matrix R is defined by its elements Rij comnecting the 1th and the -jth

channel. In particular if only channels i and J are open

QJ.’. - n‘J I Sin ('?J n - [4 77/2)4' RIJ cos (k‘Jr - ‘,l "/2)] 25

r, oo

i being associated with the initial state of the system. In_the single

channel (elastic scattering) process R relates simply to the pﬁase.shift 74
’ R = tan . ' L R Py
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An alternative formulation defines cross sections through the scattering
‘matrix S, by the assymptotic form
I.-#- ~.,, /"‘J [e_a(lz_,r—Jn/z .,I.Je'(kl"‘""/‘)] _ -0_27
The R and S matrices are related to the T- matrix by
T = —2;/?/(/_519) ;S = /e)/(/+/e) . 0.28
The choice of assymptotic form relat.es to their diffe,rent. properties.
The R = matrix is analytically continuable at threshholds to highér channels.
The S~ matrix deals directly with bound states (pales in the S- matrix) and
resonances (zeros of the S- matrix). ‘ '

VARIATIONAL PRINCIPLES.

Subject to certain restrictions variational principles provi,de‘-b‘punds
~on physical qua.nt.it.ies, such as scattering 1eng£hs. Tli_lus mamr methods of -
low energy scattering can be related within the varia-tional fqr'_m of the
Schroedinger equation. ‘ |
"8I = 0 - ' o | c.30
where f_tZ/ (H-g) e dr o o3
subject t.o arbit.ary variations of 2 ’ satisfying the .same boundary

conditions as the exact solution. This has the advantage that 1f % 1s ,
a trial function satisfying the above conditions then it meets wi.th the
e:_ca;ct function in giving . I (= 0) exactly, up to second order in the error
in the wave function. | | |

Since the Hamiltoneon is diagonal in the total or'bitai and spin a.nguia.r
momenta, L and S, and their associated projections, Mj, and Ms', wé can |
consider variations of individual terms of I in which these quantities are
conserved. . Introducing the diagonalised .fom of‘t,-he wave funétion corrés-
ponding to the jth exit cha.nne']_.

Mrismme = i (5w g
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v;re note that ,
Lism s = /_'71' ("’—E) -(z—o'f..fﬂuﬂu-'df-; o c.33
This follows since 'Iéxact.) satisfies the Schroedinger equation.

Consider small variations of the type

S\E I we)cccf = 7J J“-U (r

~ v, Aiy cos (kyr. - vr/a)ff/?.J /(k! o34
Then first. varlations of I gives

f.‘]i— CHei)STor + [§T (- c)JIot/ ' 0_-35

Applying Greens' theorum to the one dimensional case of the first. Integral,
' provides .. - _ |

ST ~ -4 fds[u(r.)agh Su.(r.)-Ju(r.)%tau(n)}+_/J_<F(H'-E)J_‘Z-' 0.36
where n is normal to the furface J§-rdf . Ignoring temms of order (§€ )1
we find that small variations of the quantity (I - AZR/Zk) are %éro.
This provides the basis of thg variational principle which aJlows any
elastic or reaction cross section to be calculated. It foll_ows that a
correction to R can be obtained with the Kohn variational principle (191..8)

Rk = R - 2kIo/a% + o (§2%) o .31

The alternative Hulthen form (1948) demands. that It be zero.

The problem remains to give some consideration to the residual error

term . . _ .
= /JI (H-c) §&oir ' 0. 38
Rosenberg, Spruch and O'Mﬁey (1960) have extended efror estiniationé
originally proposed by Kato (1951) to include compound systems.l‘.‘.or.k =0
g.nd no bound states of the system..they have shown that the 'Ko_hnl variational
" principle provides an ‘'upper bound. For bound state inciusive cases the -
err"or term will not be guaranteed less .thén ze'rd,. t;he requirement providing.
an upper bound, unless §9 1s orthogonal to the exact - bound state

.. wave functions. Since the latter is orthogonol to the exact acattering _
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wave function, the Hulthen - Kohn _variatidnallprinciples give an upper
bound on the scattering length if the trial wave function is chosen to be

orthogonal to the bound state wave function.
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CHAPTER 1.

(1) Methods of Elastic Scattering

Different variational and quasi-variational methods ca.n'be classified
according to assumptions made regarding the structure of I (r z) e¢.0. 31,
The simplest such method assumes that )

$:;70,2) = FO) 2 (E) - 1
wherefly (2) is the known ground state atomic wave function. Note that
this form is unsymmetrised and therefore makes no distinction ‘between
singlet a.nd triplet scattering. Variation with respect to F (1) yields as
its FEiyler - Lagrange equation the Schroedinger equation for the .pro;]ec':tile
in an averaged central field of the unperturbed atom. It is referred to

as the central field approximation. .Usi'ng an’ e:cps;nsiOn in tenns of sphericall
harmonic functions and corresponding reduced radial functions.

FO) = [ wiedf . YR 12
the variational expression yields a set of second orﬂer differential

equations.

DaUz = [9%nt — 20t /et + R 220 6)] ua (rn)=6 = 1-3

where Vc =Vjp’(z)V/(2)otn o
A solution is found sa.tisfying a condition of finiteness at the origin,
usually that Ug(0) = O and Uz ' (0) = 0. . o !
Phase: shifts are evaluated (table ltl) by comparing the assymptotic form
of the solution with eq. 0.25. Morse and Allis introduced the'_-exchange
form with the wave function. | -

Pl,2) = FOIRGIEFEAG) L4

It is exactly equiva.lent to an analytic continuation in k2 .°f- the.usual"
restricted Hartree - Fock equations for the two _ele.ctronl pi'oblem, Note

that it does not give binding for H. The.Elrler-l Lagrange -'oQua_tio_n j_s



TABLE 1.1

~ S-wave phase shifts.,

Singlet

(1)

¥(a.m)

" 0.00
0.0D
0.05
0.10
0.20
0.30
0.40
0.50

0.75 |

1.0

Triplet.

E
0.00
0.01
0.05
0.10

0.20

0.30

0.40

0.50 |

0,75
" 1.00

RSO0=6.23 -

0.72
0.97
1.05
1.06

1,04

RSO=1.91

-10°A-

(2)

8.10
3.06
2.75
2.0
1.87
1.51
1.24
1.03
0.69

- 054

2.35 -
3.12
3.02
2.91
2.68
2.46
2.26
2.07
1.68

1.39

(3) .

" 6.50

3.08
2.82

2-52 '

" 2.03

1.65
1.37

1.16

0.8
0.67

1.90
3.12

3.05
2.95
2.
2.53 -
2.33

2.15

1.76

1.48

()

: 5.80
3,08

2.86
2.58
2.1
1.75

'1_.1;7_
1.25°
0.91 -

0.76

1.90

3.12

3.05
2.95

2.73
2.52

2.32

213
170
1ok

- (5)

742
L 3.07

2.77..

' C2a4h4

1.5

1.26

1.'oh_

: o'.53

--1.68
© 3.2
3.05
2.95
2.73

2.52

2.3
- 2;15

1

1.49

Continﬁed........

. ®

674
2.49
1.87

.50
“1.20

- 1.01
o. 8

0.81

1.89
293
2.6
-"_2.1;6;

2.19
2.0l

1.87
1.76

(7)

2.55
2.07
1.70
1.1
1.20 -

2.94
2.7%
2.50
2.29

©2.10



TABLE 1.1 (Conttd.)

- 108~

RSO = Rosenburg et al (1960) - upper bound on scattering length

F_‘or k = 0, results are scattering lengths. The choice of positive sign

. )

follows the convention of Temkin and Lamikin (1960) . -

Central Field approximation (unsymmetrised) - (preseﬁt caiqﬁlation) .

2) Central Field approximation .(symﬂétri-se:d) - one. étate_ approximation
. : (i)resent calculation) .
3) Exchange Adiabatic approximation - Temkin and Lam.kin_ (1960) .
L) Polorized Orbital ;:;pproxim.ation ~ Temkin and Lamkin i(1960) .
5)  Extended Polarization approximation - Callaway et al‘:(:'196'8)"._
6) Close Coupling approximation - (1s-2s-2p state) - Bﬁrl;e a.n.d- Schey (1962)
7) Schwartz variational approximation (1961). |
TABLE 1l.2.
States included.. -1s lIs-2s 1ls-2p 1ls-2s-2p lS—28—2p-; S;:Martz
. _ . N _ 3s-3p

Energy = - 0.55 700 75 35 785 798 908

Energy = 0.60_ .670 712 .0L L. L7820 -

]
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integro differantial in nature and has been solved numerically (table 1.1)
An improvement on the exchange approximation follows with the hise of
a trial wave function of non-separable form, for example ,-
F*0,2) = BG)FE) * Do) FG) + B ('z) S
The assymptotic form of the correlation function 1s required to vanish at
least as fast as ~ & ﬁ,z)r.'—_: o Castillejo et al (1960) have shown that
the correct assymi)totic form of the interaction potential has an inverse
fourth power behaviour, oc¢ /., ¢ » the constant being the polarizmability,
To account for the adiabatic distortion of the atom by the projectile, a
potential term representing the -interaction between the projéctij.Le and the
induced dipole has been added to the Baler-Lagrange equation's of the centi‘al
field exchange approximation by Bates and Massey (947) . The_,inter.a-.ction
term is chosen as o//r*.d’), Where oc is the known atomic pola.r'izability
and d is a sultably chosen cut off paremeter preventing divergence at the
origin. This is the exchange adiabatic approximation. in its simplest form.
Whilst t,his giv_es explicit allowance for long-range polarization effects, it
is essentially empirical and cannot be Obtairied.by a .cOnsi.st,en.t variational
argument. The assymptotic form of the equetions satisfied by the { th
partial wave give . | |
(9.0 — £ (L .)/rz vorsp 6 o k2 Ju(n) s
This is shown by Bransden (1958), to give phase shifts which vary as K2 _
for snia]l k,and 1 greater than zero, which is in agreement-with the require-
ment of general potential theory (Neﬁton 1961) .

(2) Method of Polarised Orbitals _ SN

Rather than make ad-hoc additions to the one particle Ealer Lagrangs
equations Temkin (1959),and Temkin and Lamkin (1960), introduced the

adiabatic distortion by modifying the Ansatz for the wave function. A
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function P pol (1,2) of coordinates of both electrons is_-. chosen,' so that when
added to }5(2) in eq. L it provides the correct assymptotic form (eq. 6),
for large separations. '

First order pei:urba.tion theory glves the wave i‘unction for an atom in-
teracting via a potential vV (1,2) as

Y (,2) = BLG)+ B0 (2) S e

where o) 4,2) = [(“’V’C'),al(Z)/(e..-r,) _'- 1.1

the sum being over all state & = (n 1 m), except o« =<0 . This may be

rewritten in a form consistent with our interest in th_e assymptotic refilon

(ry> rp) : o _
. <ndirtl > = .
'@/() (, 2) j%l#l Pl (t‘o: 9“ //z:,“zl'm) . f?nl (rl) ] - 12 -

Though this cannot be written in closed analytic form the formal

expansion above can be evaluated using the first order pertu_rbation equation

(-7 - 2, -1 2900 =2/, e‘/r

o e (3) Py Ccosn) s 113

This suggests the expansion S

DO (,2) = Do tani () Pr Ceos o) fat /et 4
The radial functions are found to obey equatlons of; the Sternheimer type
(195h) and for bound states are of the form _ -

Ais >4 ‘("-) = 2 exp (-’fa) [’_‘z.""ﬂ/(—l-u) -+ lﬁ‘“_’-/l ,.7_- o .15

Use of eq.l2 implies that this form of the solution is only meaningful
outside the atom, The inner region is avoided by means-of .a step function
6(1’2)0 . .

€ (ry>ro) =0 c—:(r1>r2).=1-'_-' N
Keeping only the dipole term of the expansion, eq. 14 'reduces to

.I ol (’/2) = Poz) - C(' 2)/,28 r'(r. 42!‘,) R {roJe?..)/ﬂn')" .18
By choosing a trial function

e
g

/_fE = (lfﬂz)_@,:ol (l,z)F_(')-. ' K 1.19
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and projecting the Schroedinger equation onto the un;ie'rtur‘bed atomic wave

function Temkin obt.ained an equation for the 1th partial wave of F(l)

De le () 26Ru (i) (2 () = oo (R /o e () * Uiss (r.)y.(r)“"/f-'?u(n) .o

"4
| where : . .~ (1.20a)
() - Ui — @ (r5e900s « Qs 2760 fs + 2347+ 2V4) (1. 2¢ b
Gelr) = -%(l+lz2)&j Ris (r)lu(r)olr 42 )f R'J()llc(r)d’ 4(l+|)r’“f Ru(r)m(r)dr (l'zo
(Z,l-l-l)(Zl—'
Fo () = -(I+k’_)cf¢.,‘r‘:-l?u (")uc (olr + 2/(2“.,)] Ry (")b/l(' 2)Ue (r)olr _ f20d

D@ is defined as the central field operator (eq. 1.3) and ¥; (1,2) is the
lth partial term in an expansion of W . Polarization terms are .a'rra.nged on
the right haﬁd side of the equation. . Droppiné the last two terms on the
right hand side of (1.20a) gives the exchange adiabatic approximation.

Comparison of s-wave singlet phasé s_hifté '(table-l._l) indicates that
tﬁe polarized orbital ﬁsﬂts are in-much better agreement with the essen-
tially correct Schwartz (1961) results tﬁan were those of the exchange
approximation. For triplet phase shifts the exchange aﬁpfomtion results
afe of comparable merit with those of the two polarization approximations;
the discrepancy is small. |

| The resultg can be understood as fo]_lcms.. The method .of'polari.zed
orbitals takes account of long range distortion, but not short fa.nge

| correlati@ -effects. For triplet scattering the Pauli princiﬁle acts to kee:
the two electrons apart. Correlation is less important and better rgsults
might be expedted than for singlet scattering.

_ That this is not the ca-se suggests that tiu_a method overestimates,
polarization at smali. separations whilst in the singlet case too much polar-
ization is compensated for by too little correlation. |

The low energy behaviour may be investigated by compa.rison of scatterin

lengths with the upper bound set by Rosenburg et al (1960 (3) ). The fact
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that the singlet s-wave exchange adiabatic resuits eiéeed-thé bound,while™
the full polarizzd results lie below indicates that tﬁé'gxchangé polarization:
terms are meaningful. . |

Sloan (1964) has rederived Temkins formulation showing that for p-wave
scattering eq. 20 should be modified on the right hand side by
Htee & S e 2 [ (a2 + % n-3)ue)- (Bn'sn) ¥, wen]. L
These terms arise from the action of the Laplacian operator V?ipn the
step function € (1,2). Their significance may be questioned on ﬁhe grounds
that the step function produces an unphysical discontinuity-in.thé QaVe
function. However, if the step function is replaced by a smoothly varying
cut off function the extra temms which arise tend to zero as tﬁeb; func%ion
approaches the step function. Furthermore the:property of the Qafiational
principle is lost if the extra terms are 1gnored. .

The modified eq. 20 has been employed by Sloan to‘pecalcuiate p-wave
polarized orbital.phase'shifts (see fig. 1;1). For the éinglet case these

are smaller than the unmodified results and closer to the exchange approx-

imation values than were the Temkin and Lamkin: values. Triplet results arei
sdmewhat increased with the modified equation leading to 1arger total elastié
cross sections. The singlet p-wave contribution to cross sections is small.
The experience of Sloan's Het triélet phase shift calculation indicates a
value lying betwéen the modified and unmodified polarized orbital values.
Such being the case the corresponding p-wave exchange ddiabat;c reéults.are
too large..

Ine - H tota} elastic crosqﬁections the s-wave is very much dominant.
anetheless.the modified version doés move the cross sect;ons slightly to-
wards those of the extended polarizaﬁion.approximation of Callaway et a;
(1968), for the higher energy range (see fig. 1.L).
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I?Qn attempt to retain the better features of Temkin's polarized
orbital method whilst avoiding some of the drawbacks Labahn and Callaway
suggested a more complete fonnnlation. The gcneral philosophylbehlnd their
_ approach lies both in the .cholce of a variational principlc-and in the
| preference of a full perturbation treatment of the adiabatic potential of
the electron Helium atom scattering problcm{ The strong similarity of the
approach to that used in the electron-hydrogen problem.is aoparent from
the choice of a truncated perturbation equation and-theﬂchoice of hydrogen
type wave functions as the basis of second order interaction tcnns.

The hydrogen atom is basically simpic and is thc-only.eystem for which
exact solutions are known for both unperturoed and first ordercpcrturbed
equations. Nonetheless there are certain adVantages-to,working with the
helium atom. As the ground state wave function must satiafy'the Pauli
principle tne helium ground state is a singlet epin-state. Consequently,
the total wave function is a doublet, whereas both singlet and triplet
states determine cross sections in electron-hydrogen scattering. Further.
the presence of the second electron in the helium atom tends to shield the.
-interaction effects of the.scattering electron. -The.reaulting polarization
ie not as great as in the hydrogen atom problem..' However since the corr-
elation is now between an. external electron and a closed shell rather
than between an external electron and an open shell as in the e - H problem
correlation is expected to be relatively less.important than is polarizatio
Finally the chemical inertness of the helium atom makes for an easier
experimental medium providiné-more reliable results. |

The wave function of the electron-helium sYstem'is choecn to incorp _
porate both symmetry and distortion effects. | .

E(1,2,3) = V{400, z)ﬁfshW')(z,awﬁ)W"’a'wfzJ} e

- where @(3) describes ‘the proJectile motion and ¢'(LL') are. bound state
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wave functions determined to fi.rst order in perturbation. Thus
YD (i) = () GG)+ b(DXG )+ BGIXCLR) AT
- where ¢, 1is the unperturbed Hartree Fock Wa.v.e fuhct;iéri and X . its first
order correction due to interaction witﬁ the projectile. |

The variational prin01p1e is restrlcted to variation of the unknown
projectile wave function @ (n). Pro,]ecting the Schroedinger equation onto
the distorted atomic wave function gives | _ _ ‘

jw(x){, 2)[/_/ E} “La)(, 2)g(z) - I3, ‘)B((Z)l ot =0 _ 1.32
where H is the Ha.mlltoneon of the threey’electron system and E is the total
~energy. The resulting equations are compl‘l.cated and -can be approa.ched
through a series of approximations.

The adiabatic exchange approximation of Labahn and Cal.'l.away (1964)
is obtained by neglecting the .first order perturbed Q'rbit;._]: in all terms
but one direct interaction contribution, giving - . I
JW &G M- £ {400, 2) ) - $%0) Ws)%{z)jdr. ol =0 . 1-3?

In line with the exchange adlaba.tic approximation of Temkin only the dipole
part of the resulting polarization potential is kept. -

The more inclusive dynamic exchange apprp;d.mation' (I;#bahn and Callaway,
1966) retains .all direct terms of eq.30 whilst neglecting exchange terms
depending on the first order perturbed orbital, giving _

J g, 2) [H =€ } $00,2)alr ol pL0)- [0 8) H-E’f(é,(a),@?z)djﬂi_’a_"/c: 6)=G 4
_ Neglect of exchange polarization terms ignores some first -order 'tern_xs whils!
the second order direct polarization potential is rétain‘éd. R:ather'than
solve the Hartree Fock perturbation equati.ons to determine ﬁhes_e_ highe’r
order potentials use is made of the Bethe (19_h3)__polari¥attdn potential

based on an exponential variational function. Callaway (195'_7') and Chang
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“and McDouell (1968) have shown that for a (15)2 pair ﬁhe Bethé: dipole -
polarization poten_tial is a.n extremely accurat_e-represenr.a.tidn.6f Ithe full
H.F. polé.ri-zatiori potentiai, provided tﬁe HF value 61‘ the polarizability
is used. It follows that at small r the potential has the r2 ‘behaviour of
Bethe!s potential rather than the r behaviour of Temkin's model.

It remains to extend the dynamic exchange approximation to include the
neglected higher order exchange terms of eq. 30.. To thi_s .end Callaway at
al (1968) reformulated the problem in a more rigorous projection .o.pera.tor
approach whilst keeping in mind the .considerations. of their previous work.
However, difficulties arising from the choice .of a préjection operator fér
systems with identical particles, formally restricted considéra.t_ions to
disti_nguishable particles. Neglecting higher order 'exchangé interactions
the extension to identical particl'e'. scat.tering is straight for:va.rd. The
resulting extended polarization approximation and the dynam:l.c exchange
appro:ci.ma.tion are related within the form of the second order integro-

differential equation
l Pl e 2V (3) + 2501 (3) _ 2D (3) - k’]ﬂ{:f)-

[ (e k)IBE) P dry + 2[5 CY oy B Th(s) .38
where Vc is the H.F. interaction potential and Vpol the polariz.ation

potential formally identical with the previous defini_tions.

Essentially the outcome of the projection operator formalism is mnot .
different -than that of the dynamic exchange approximation. Such differ-
ences as do applyfarise from the different definitions of the first order
perturbed orbital X ,.a.nd its effect on the kinetic ope.rator', V' to
produce the potential operator D. In line witf\l the usual practice in
perturbation theory the cholce of the dynamic exchang’é a;pproad.rhai;ion was to
orthogonalise the first orrlor perturbed orbital with respect. to; the unper-

turbed % . This property provides

| D(s)ma) fx(z,z){[V, 202,3)] + 2 [ 202, 3)1 V:}olf- ﬂ/:) I. 36
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The second term may be interpreted physically as a correction to the
adiabatic theory to account for the delay in the redistribution of_ the
atomic wave function following the motion ':of the pmjeotiie. 'Tne projecpion
~ operator formal:ism demands ‘the full distorted a.tomic.IIWa.ve i‘unci';ion be |
normalised to unity. Keeping terms up to first order this reqﬁires
[{$r@Dx*(2,3) + X* 0% ()]s = - J1202,2) 1ol | 1.3%
This gives rise to the}alternative distortion potentia'.';_l. |
DY FE) = - [IPea(ss)| cn | /. 3%

Through its neglect of the correct normalisation condition the dynamic
exchange approximation will be inadequate in the formal sense-. . Nevertheless
theoretical considerations indicate that phase shift difi‘erenoes against '
the correct oxtended polarization_phaé'e shifts will be small for electron
helium scattering. This may be seen as -follonr-s. Define a new projectile
wave function }6 / such that _ .- _

BE) - 2 exp [~ [1x(23)1%dn ] e
- Since for large separations R, the intergrand |X. 12 is proportional to R
the same pha.se_shifts will be obtained from § and }6 to within the error
due to other neglected terms. Substituting @' into eq.32 gives ﬁ), satis--
fying a form not disimilar to the projectién operator'form of eq.35. The-
difference is a fourth order term, [ f X (2,3)P% X (3,3)dn lz-' and mod.ified
exchange terms. Explicit calculations for electron helium scattering
suggests that these . are small. Distortion potentials have been con-
structed by Drachman (1965) in numerical form. CaliaWa.Sr et al have produce:
an analytic expansion of the potential, corresponding to an ex'pansion of
in terms of Legendre poly'nomials.

Eq.32 and 35 have been solved for electron~helium scati‘,ering to provid
phase shifts, from which total cross gections were qa;Loiilated . In fig 1.4
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comparison is made between the experimental resﬁlts Qf Golden and Bandel
(]-.965)- and several theoretical approximations: 1) Adiabatic Excﬁa.nge
Dipole- (retaining only the dipoie comi)onent of the polariza_.tioﬂ 'potential).
' .2) Adiabatic Exchange Total (retaining all' the significa.nt pqlarizatipn“
potential conﬁribut.ions) . 3) Extended Polarization. The dynamic Exchange
values of Labahn and Callaway (1966) coincide alfnosf exactly with the
ebcperimental values above 5 eV. . Corresponding scattéring 1enéths are
Q6B = 1.15, @EP = 1.151, GAED = 1.132, QAET = 1.097, (IDE = 1.186

Theoretical momentum transfer cross sections are giv;an_ in fig 1.3 in
comparison with the eﬁéperimental values of Crompton et/al (ref. Callaway ot
al (1968)). The Dynamic Exchange values lie between the E.P.' and the
theoretical values differing by up to 6%. |

For electron-hydrogen scattering Calla;way et al (1968) have calcula'ted
twd sets of results. One useé the three component (1 = 0,1,2) expansion
for the poiarization poﬁential while the other usese an -exact form due to
Dalgarm and Lynn (1957). The distortion potentials are not known in closed
form. Instead they use. the monc;pole and dipole components only. The
resulting phase shift.s were assentially identical excepf “at very low energfg
and only those values from the three component polarizati.on lpotéh'tial will
be cpnsidered here.’ |

The extended polariza.tioﬁ s-wave phase shifts can be compa.red with the
two polarization approximations of Temkin and Lamkin and 'tﬁe variational

values of Schwartz (1961). (see table 1.1) " i ..+ i . . . U
. - \

f
ol e L - [ Lo LA I ]

Triplet s-wave phase shifts show good .agreement between all the

approximations. . This being the dominant contribution to elastic cross
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sections, especially at high energies, accou,nts_for- the 'closeness. in this
process of the EP values with those of Sloan's modified. polarized orbital .

approximation above k2=. 0.09 au. ('fi..g 1.5)

The singlet E.P. values show best a_greenient with the exohahge aﬁprox—

‘imation, which making no allowarice for polarization would 'seem to confirm

the assertion of an excessive allowance for pola.ril.zation effects by the
polarized orbital approximation of Temkin and Lamk-n".n. |
Scattering'lengfhs 'for the E.P. approximation (table 1'.1) are seen to

exceed the bound of Rosenberg et al (1960) . Corresponding singlet and
triplet values provided by the E.P. appro:dmation w:Lth the full Dwlgarno and
‘Ly'rm polar;::::c;:,((a +=7.26,a~- = 1.68) differ 1nsufficienﬂ.y from the
partial polarization potential a.ppro:d.ma_tion to signif.‘-__ioantly'redress this
axceso. | | | | |

p = wave calculations indicate that triplet phase shifts continue to
give good o.gree_ment between the E.P. and polarized orbital approximations
(fig. 1.1) though at lower en?er;gies the -um.lod.ifi..ed form of Temkin and
Lamkin shows closer coincidence. Singlet phase shift'agreemeoo_is only
found at very low energles. The negative higher ene'rgr'bohav.iour of. ﬁhe_
~ E.P. approximation is merely suggested by the modified polarized orbital

approximation. -
3. CLOSE COUPLING.

‘The theory u.nderlying close coupling methods relies on the assumption
that we can find a tractable truncation to a 'complote state set! repres-
entation of the state of the scattering system. An obvious basic set with’
physical appeal is one based on hydrogen atom wave f\_mctions.. '.As the
nature of the interactions considered aro soch as to conserve -or‘oital and
opin angular momenta,L and S,and th_e_ir ;iroJections,Mli':é.nd ﬁS, a diagonal

)
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'wave function is constructed o
‘lbr (:,2) = [Cals (r) ,_V‘_I,}, (ﬁ ,h ) Jss.s, _ o .40
Then the incoming wave functlon is completely represeﬁt,ed by
Foito2) = S5 2 e R C2) urm )} 1
where " = (n , Kn» 11, 12,L,S.1V[L,MS_).and the radial functions Urr' are to be
determined. Its assymptotic form providing the scattering matrix S(i;'r.')
may be written as -
Wrr! (r.)'v,émf S(rr’ )exp (i [knt: - l"/z}) S(Ff)ex/'—\(c.[knt' (7'/2)} 1.4
The truncated form of eq. l»l met with in practice does not satlsfy the

Schroedinger equation. Instead we use the projected i_‘orm-

J¢. o) (H-6} & C,2)da dff = o /.43
This gives rise to a set of coupled 1ntegro-d1.fferential radial equations
(0%t = () fpr 4 k2 e Zr {v(r,r )t wlredfure 44
The direct term on the right hand side is given by '

v(rre) - - /": j fald, £ 4 ”-Iz”L)HA (Ral, l?n"l") © O 1.4S

and the excha.nge term by

w (ree)upier = j QLB L L){JAO(:;H::.-.:)A(M urr )+Hx(f<»’"'ur'?"'J';§:."

The coefficients ¢ and £, are t.a.bulated.and ‘the functions Y and A

presented,in Percdal and Seaton (1957)

3, .CLOSE COUPLING WITH CORRELATION

While closeé coupling correctly determines resonance effects and
threshold beshaviour introduced by the 1§ng range interactions -coup]_tng
different channels (Burke, Ormonde, Whitaker - 1967) it fails to allow for
modifications to resonances,and the magnitude ;f cross sections,due to short

range effects.

A model may be constructed including all significant cﬁa:mels plﬁs
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orthogonal short range correlation terms of the Hylleraas type, with en-
asey’mptotic cut off chosen to satisfy the correct boundary conditi'ons-.
Hwhn et al (1964) indicate that such a choice leads to a minimum bound on
certain quantities associated with the R-matrix provided that the energy
remains insufficient to excite the system dmto channels not.'exp]_icitly
included in the expansion. ' I _
Burke and Taylor (1966, 1967) applied this method to the tl_iree state
approximation by writing the wave function.

FE0,2) = B geap (L)« (12 P2) E02) .48
where @ (1,2) =2; Vin e )[a; E’x[)(-k.f'. Y LS Tl Y XY & l’-)} 149
" The failiure of.the two terms of eq.48 to satisfy the orthogona.lity conditior
. required by Hehn's minimum principle could be corrected ty _; .sianle trans-
formation of the latter term. However, substitution of- either ¥ “Dor its
transformation into eq.43 gives an identical form.

By varying the correlation parameters,contour lines for.constant sum
of eigenphases were comnuted by Burke and Taylor for 'S waves at E- = 0.8L
‘ryd. The minimum principle is 11lustrated by the non-intersection of the
converging contours as more correlation is added. The: bound pr:.nc:.ple is
valid up to the n = 3 threshold. Thoqgh the' correlation terms attempt to -
simulate the resonance region below this. threshol<i a more satisfactory
form results by coupling in the lowest closed c¢hannels (Burke, Omponde,
Whitaker, 1967). | | - |
CLOSE COUPLING RESULTS _

For energies below the resonance region corresponding to the n=2
threshold (r:s:{t:PE’or 5% and PX phase shifts are given in ta.ble 1.1 and fig
1l.1. For singlet s-waves there is no centrifugal barrier and the symmetric

wave function allows the projectile to infiltrate the atom. -The .importance

of the inter-electron interaction makes. the correla.tion effects of higher
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. chanmnels critical. Phase shifts, with inclusion of differenﬁ_coupled ;
channels, are compgred with the essentially correct Schwartz Qelues (1961)
‘see table 1.2.) Observing the behaviour of ehe ls; 1s-2s and 1ls-2p
couplings we see that inclusion of either 2s or.zﬁ coupling takes the 1s
result a quarter way to the cofrect value. To'understand the nature of the
effects it is noted that while 66% of polarisation is due to the 2p-state
(Castillejo (1960).), this coupling provﬁdes for a minor part of the 1ls
error, some of which will be due to correlation. - The emél} polarization
effect 1s further indicated by the small ehange eSSociated with coupling:
to the 3p-state. The fact that the 2s-state owes nothing to polarization
Indicates the ;mpoftance of correlation. Couﬁling betweenlstates within
an energy level is indicated by the difference between the 1s—25—2p
- correction and the sum of those of the individual 2s and 2p étatee. Slow
convergence resulting from theiinclusion of the n = 3 level channels
suggests that this approach is fuily exploited for energies Belau the n = 2
threshold. In the.n = 2 threshold region comparison between the.3-state,
6-state and 3-state plus correlation approximations is good-bbth above,
below and within the region (see fig 1.2) Taking the iatter-epproximation
as correct we find'that awa# from the resonance region, 6—sﬁate and 3-state
results are elose. In the fesonance region the é-sﬁate results move
~ closer to those of the correlation approximation.’ S;nce results Beiow
threshold are anaiytically e#tendible above,the 6-spate approximation will
be preferred to the 3-state for excltation cross sections bolthe n = 2 leve
(ses chapter 2, section (5). ) \ |

Triplet.sanave results shoW good agreement bétween‘onefatate, 3-s£ate

and the Schwartz vgbiational values (table 1.1). The reliability of the
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one-state results indicates that correlation 1slwe11 represented whilst
polarization is unimportant.

Cl<.>mparison ‘af the one-state and 3-state P-wave phase shif,ts. (fig. 1.1)
with polarized orbital results indicates the small role pla,yed by polar-
1zation below the n = 2 threshold. Above E'= 0.02 ryd singlet and tr-iplet
3-state values diverge, whereas had polarization be.en' dominan_t t‘;h'eir

behaviour would have been the same.
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CHAPTER 2.

THEORSTICAL METHODS FOR INELASTIC SCATTERING.

(1) Born Approximation

The Born approximation provides a simple method for calculatinge - H
inelast.ic' cross sections. It is believed to be a reliable ppproximation
at sufficiently high energies for non-rearrangement.inela,stié processes.
(ref. Bransden (1968). ). | _

The exact T-matrix element (see McDowell and Coleman (1968) for a

discussion of what is meant by a matrix element in a rearrangenient channel)

is . _

T = (¢4’Wlfc+'> o ' | 2.4
Now glven the convergance of the expansion .

G = (1+6G'v + G ve v+ « )B.* : 2.2

the Born app;‘o:d.ma.t.ion follows by retaining only the leading term, where

@:‘ is a properly anti-symmetrised. unperturbed initial wave function
with incoming wave boundary conditipns_for e - H scaﬁteﬂng '

B = v [ pa0) FG) 2 B ()RR S22 23
where F(1) is an incoming plane wave function. The' s-pin wa.v.e functions
are carried in st (1,2) . Bence Tum=(tlf,l|/;]p§(z),:(.)>_:I('tl,ll/;)Bf (i)F(l)> (2-4'
and we define the direct term as the Born and the rearrangehent term as th
Born Oppenheimer (B.0) amplitudes. |
An;, alternative view of the scattering amp}itude may be considered in

terms of momentum space by defining the momentum wave function.
b gs(t) = fexp(- tf‘)B’x(_)olr . - 2.5
Using the inverted form of this in the Born -amplitude we have '

@, () [ [dk g (51 G () § (ol = )T 26



where
(8) . , ' .

Tkk" ' (1,2) = - %7 [d_f- /dﬂ exp(-ilke +!:':-J). Vexp (Lt ‘_rg]) 23
This can be understood as.an average-on the energy shell df the initial and
final momentum distributions of a termm which is the Born approx1mat10n to T
for two free particles. In the Born approximation the atomic potential U
does not directly influence the scattering process, but merely serves to
determihe the momentum distribution of the atomic electron. |

The validity of the anti-symmetrised Born approximation is respr%pted
to high enefgies whgre the contribution from the B.0O. amplitude is small.
At low energles, especially near threshold, it frequently exceeds_conser-
vation limits. A comparison of excitation cross sections for the 1ls-2s and
1s-2p electron induced transitions in hydrogen atoms in.the Born and Born
Oppenheimer (singlet and triplet) approximations is given in fig. 2.1 and
fig. 2.2. In the ls-2s process the B.0. cross sections vastly exceed the
Bornlvaiues largely due to the excessive triplet contributions. Convergance
of the two approximations is indicated in TaBlelz.l for enérgies in excess
of L4 ryd. _In 1s-2p transitions the B.O. cross sections again exceed the
Born values throughout the energy range. For energies greater than 1 ryd.
the singlet B.O. value exceeds the triplet. slowing ﬁhg-convergénce of the
B.0. cross sections to the Born, though convergance is fasper thén:was the
case in the 1s-2s transition..

Now 1et.us coqsider the evaluation of the Born cross sections in more

detail. Due to the orthoganility of the initial and final state unperturbed

wave function, the direct termm of the scattering amplitude-arising from
the projectile nucleon interaction term is identicaliy zero. The Born

transition amplitude, including exchange may be written

Tt = Vam [ In 2 (IJ'I')}... S 2.8
ST T e, Gyl % W(ay o 29
4 I, =h<$ ¥ (y2) 1 Yaal $iC1,2)0 .. 2u0

T, =2he 4 CoN] 1 (20 R : s 2.0



TABLE 2.1

Cross Sections for (15—25) inelastic scattering

- 28A—

K2 (ryd)
0.77
 0.80
0,85
0.90
1.00
1.10
1.4k
2.00
2.25
4,.00
5.00
9.00
10.00
16.00
20.00
100.00

Born and Born-Oppenheimer (present calculation)

Born

0.110
0.162
0.207
0.230
0.248
0.251
0.228
0.183
0.167
0.102
0.083
0.048
0.043
0.027
0.022

0.00L4kL

B.0

1.34
1.83
2.0L
1.98
1.65
1.30
0.60

0.204

0.096

0.045

0.026

Rudge = Ochkur approximation (1965)

Qp = Impulee approximation with a peaking approximation (

( units - Mo

Rudge

0.019

0.0L7
0.052

. 0.031

-0.021

)

0.99

0.59

019
0.078

0.033

' 0.0053

Colemaﬁ and
McDowell 1966)
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TABLE 2.2. |
.,Ctoss Sections for -is_2p Scatlering " Cunits-mal)

Bfij}yd) | Born | 3.0 - l o ae
0.77 0.34 1.42 .
0.80 : 0.53 - l.e8
0.85 | 0.73 201
0.90 - - 0.86 . 1;92' |
1.00 - 1.04 L6 . ko
1.50 . 1.28 | '
2.00 ©1.31 . _ o L
2.50 1.25
LOO - . 0.7
200 0.93 2.6
9.00 0.66 N 0.65
10.00 | 10.61 o | 1L
16.00 L 0u5 05 ' )
20.00 0.37 | - : -

100.00 0,094 - 043
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Rather than determine the tran'sition-amplitudes directly' as a function of
momentum transfer, wittf:ross sections following frorn eq. 0.22,it 1s often
more convenient to employ a partial wave expansion of tne transition _
amplitude. Tl’ie integratien over t}_le angular coordinate ais ‘simply effected
to provide G (i-f ) (see eq.0.21). The resulting cross se_etions are
expressed as a series of partial cross sections. This is i],lustrated
below for the Born approximation. o

Before proceeding with the reduction of the transution amplitude it
will be convenient to introduce some notation. The atonu.c wave function is

a product of a spherical harmonic function and a radial .function, normalised

to unity . .
,d,(l)E %!m (2) = Rat () Vim (r‘.‘) . o 2.2
rhere ylm (':a‘) = le (COSBz)PXP(c'mﬂ’;)JZZI-H); T 2.3

Plm i5 a Legendre polynomial. The it electron has the position vector

F = (r,6:,2.) in a frame fixed in space. F(1), the projectile wave

function,can be expanded in Legendre polynamials and corresponding radial

functions defined by ‘ .

F.() 2(c) u:(r,)/ (r‘.‘).. (25+ 1) 2.14
normalised such that in the absence of any interactions Us reduces to a
spherical bessel function Js with the assymptotic behavieur g

J (ke) r~; sin (ke = sw/2) / (er) ‘ 2
The projectile :rave function then reduces to a plane wave o

FG) = exp(ikn) \ 2.16 |
The interaction potential V may be expanded in terms of Legendre polynomia.ls
of: the interelectronic coordinate. . R

v 26’(:2) P (i) - Y T

where

,a/s_(..)z)_ = r<S/'_);+a o .. | o :._ 2.8



- 30 -
r and " being the lesser and greater of ry and r, -

The Born approximation is equivalent to taking only'the direct tenn ..
of eq.2.8 and replacing the projectile wave function by a plane wave. It
will be convenient to use it to illustrate tne partial cross section
approach. More complicated approximations will be developed in-a parallel
manner. Substiuting eq.2.12 to 2.15_into'the Born format andfnoting that |
the radial functions are real, gives ”

IO = [dn expl-ifia). exP(tkn )]drz. Y, - E(?Z)B'(Z) _
2# )Y (ﬁl%ylSO)(lmI&p12m>(ﬁﬂé(}u4)yeﬁﬂ :
.jdr s (Rg6) . -5 (le.,r.)jdr, 6l Rs (n),?,(r,)a:(. 2)} 219

where " : - ~

P (2) = Re(a) Yim(3)  and B () = Ri(n) Ye'a ()

The preferred frame of reference is taken to be a cartesian frame Oxyz with
2 axis along the direction of the incident particle momentum (-5@ = ©O)
The coefficients

Lo VMt [ Um D = [ [EJGr) o Yirne (F) Yiwt () em () z.20.
t"2'd
can be expressed in terms of Clebsch-Gordon coefficients 5. C: " m

by .
, , V5 F4 I'4 ﬂ
e | Lo 110y = [ ey [B el Y L C,f " 2.2l
The C.G coefficients have been tabulated (e.g. Conden and Shortley (1935).

The total cross section is

Qlisf) = ki /(dn ki) [1I®]" dke (o) 222
1ls-28 Scattering ' | | |

This involves scattering bebﬂeedEtates of the same angular momementad

(=1 ; m=m’'=0 ). The Born amplitude becomes

T® - Z mr)’/z(zw)ﬁj de.t.’ fs (ke ) s (i) f R re.,(r.na.(r)a’ (.,z»éooa)z .

The total cross section follows, integrating over the final momentum co-

~ ordinate (] - .
e Q™ (is -v.?:)- « 16k Z (2s+ D) IR @ (15 25) I,z (TTGoz) 2.24

w0
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where

% (a) .(lj -> 2:) = _[:Ddf. . ,.Jr (ks f'-)-_/-‘ (rir, ) _/‘?dr. N ()f('; 2) I0s _("n) Rss (r) 2.29

The inner integral gives . :

]"’dﬁ W 05 C02) R (r) s (2) = ﬂ/z;_ exp (-3n /2) (z+.3r..) 2.26
The outer integral is evaluated nwnerlca]_'Ly Fast conve'rgance- of- the
intergrand is assured by the exponential nature of the {nmer integral.

_Extending the system to incorporate exchange 1n the manner of eq. 2.8,
summing over spin states provides the Born Oppenheimer 'crosé ‘'sectlions |
Clisazs) = dke /i [“p ls22)12+ 3 PG ,,..2:)I | (n-a_o‘) o 2.2%,
where the scatterlng -amplitudes correspondlng to singlet and triplet. states:

- are

(l.l->2:) aj dr.n’ :,, (k‘,.)e—r/z (/2)3/1 . ) 728
[ (2- r)[ZS.m J-(:)(,.)J %? e‘nj‘(‘?ff.)(zh?r.)}'
Ve .
and :rk?)_ (’-) = _[e”d-f‘, rt j: (k,r;)af(:lz) Ris (f;)o - 229 ;

1ls-2p Scattering

This 1nvolves scattering bebween sta.tes whose 1n1t1.a.1 and fina.l
" angular momenta differ by one (L:I . =¢1,0; 4=0; m'=0 ). Full exchange
total cross sections follow, summlng over -all final states. |
Q@ (s=2p) = 4"'/(319.)2{!1"} (1s=2)1"+ 3| P (n-azf,)l 3} (me?) 2.3
Each partial cross section corresponds to a term in the partial wave expan-
sion of the initial state.
[P (is=2p) |* = [s. H*(s-, 2. (s+ ) .H*? (JH, s)!/[z.nl) 2.31

‘where \

HE (A s) = [dn.rt gs Goin) (%) 2 32
4{64/(g| l)[g" eJr./2(8+I2r,+q,.+2;,-,%;)]P(k,r,)_

.+ o0 e'r'/’ [3,7-“) - Z&rs &lo J/(ZA-H)}

U*M’)
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The two terms of eq.31 refer to the situations in which the fmal angulér
momentumof the projectile is increased (A-s+1 . ) or deéreaséd (A=35-1 )
by one unit. Cross sections for sca.\btering to sta;tes of different magnethn:'l
quantun number are m dependent, and involve products of mixed terms of |
Ht (s +1, s) and Ht (s -1, s). Summation over the final étatés causes
complete cancelation of these mixed terms.

The Born approximation 1is prov1dcd by dropping the exchange terms’ of
eq.32. Note that this makes | AT/ and | A1 _ identical.-

The integral over ;1 in eq.32 can be evaluated mnnérically. A1l terms
of the intergrand but one direct term ate modified by an exponential decay
function. Convergance is satisfied in general by té.king an upper limit
r = 40 a.u. The leftmost direct{bem of the intergrand zoes as
J Crar ) s (i), and.mﬁst be integrated out until some convergance condition
is satisfied (see Chapter 6) As a check on the new cross sectional cal-
culations.discussed later, total Born and B.0. cross sections have been .|‘.‘01.1‘1j
using partial cross sections evaluated numerically in both 1s-2s and 1s-2p
transitions. 1In the energy range considered, ¢ - 3 ryd, comparison was
made with total cross sections evaluated by numerical integration over
moméntum transfer after the fashion of eq. 0.22. -'.I‘his .éompariS'oh indicated
that,provided sufficient parﬂal waves wers inclgded,an acclzuracy to a least
the. fifth figure -could be e:épected. For 1la—2s cross .sections ‘this required
seven partial wave contributions at 2 ryd i.n both Born. a.nd -B.O. summations,
~ whilst fqr 1s-2p cross sections nine partial wave contributions were
required even as low as 1 ryd. 5

(2) Ochkur Aﬁproximation .

The deficiency of the B.O. appro:dn_hation at low energies _is.'well known
Ochkur (1964) argues that if the exchange amplitude is 'expa.nded in inverse

~

-
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powers of the incident particle momentum 1k; , then only tha;first term
of the series is consistent with first order perturbation theory. At low
energies the higher order terms céasé to be. small and £h§ outéome is mean-
ingless. In the Ochkur approximation these terms are dropﬁed; 1éaving only
the electron-clectron interé}ion to make an explicit conﬁribution-to the |
scattering mgtrix. |
The failure of the B.O. approximatiﬁn is to some extent dué to the
non-orthogonality of the initial and final states leadiné.to sbﬁrioudly
large terms in the transition amplitﬁde. Though the Ochlur approximation
" glves smaller results,its derivation is unsatisfactqr&. Rﬁdge'(l?ésj chose
a trial function in the Kohn variational principle,eq. 6.37.sa£isfying thq
correct boundary conditions such that substitution .iﬁto'the.Baogifonnat
yields the Ochkur approximation. In choosing the scattered particle wave
function £ (1) to have the form
Polr) $0r) = -9t [ pr) exp (iknr) ) /(ka-0)" 240
thé -ensuiing wave function satisfies the'orthogénality'coqditionﬂ
Cross sections for 1s-2s transitions are shown iﬁ fig 2.3 (Rudge 1965)
comparing well in shape and magnitude with the results'of SteBbingé {1960).
However recent work of Fite(1968) suggeﬁts'that the Sﬁgﬁbings results
should be renormaliged to a ﬁaximum of 0.18(ma.) . The Rudge results are
then too 19w by a factof'of two at all eﬁergies. Compafison with the Born
approximation, table 2.1, indicates thé convergance at higher enérgies.

(3) Impulse Approximation

The basic assumption of the impulse approximation is that the binding
forces in the target play no other role in the collision than to determine

" the momentum, distribution of the bound particle before the collision.”



This assumption seems reasonable if the dﬁration of tﬁé collision is short
compared with thé characteristic periéd of the targep. Since biﬁding forces%
play no direct role the struck particle ﬁay be regarded"as‘fréé, reducing
the problem to a two body one. Unlike the Born aﬁproxi@ation,the inter-
action between the projectile and target is ﬁot assumed small here, but is
treated exactly to all orders. | |

If the lmpulse approximation to the T-matrix replaces. the Born T—matrlx

in eq.6,then (7) differs in the replacement of the plane wave, represenping |
the initiay%tate, by a wave function_ﬁ; satisfying- ' L o
(-.yZVII‘VZVZZ“"/rm—E)%Z (I:.‘J "Y) . . 2.50

& being the energy corresponding to_f; and ;E~ s the relative .mpmenta'of '

. electrons (1) and (2). This equation.provides an exact solution, a product
" of a plane wave represting the motion of the cefitre of mass of the electrons

and a hypergeometric function representing their relative motioh. 'Using

properties of Fourrier transfoims the new- amﬁiitude reduces-tb

—-'- ('MP) = - (/") jdl‘ [C{f exp(-.k:ﬂ),U(Z) dekgl(l‘)¢ (kc k) z-s'
Comparlson of this expression with the exact amplitude shows that the

impulse approximation is equivalent to replac1ng g&exact)by the wave
function . i

o) o (%a)® fdﬁg.'(t)‘éz(l_c_:,k) ) 252

To give a more exact'treatmenp the ;pproximation'should also incluﬂe

the interaction between the projectilé and the centre of fd;cq. qu heavy
particle impact a canonical transformation avoids tﬁis rgquiremeht giving
rise to a phase factor leaving transitions unaffégted. "At high energies
.where the Born approximation holds gqod; the eitrd’tenns may be ignored

even for electroh scattefing. At low energies and with électron-scattering
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‘such a neglect is a very dubious step. _ I -

Akerib and Borrowitz (1561) attempted to zipply the impulse ‘approxim-
.ation to electron hydrogen écattering} Tl1eir éalculated 1ls-2s excitation
cross sections were far too small but 1s-2p and ionisa._tion _céros-s sections
gave reasonable agreement with experiment. Apa;‘t from ot?jections arising
from the applica'bion of .the impulse .;;ipprqu.mation‘ to electron scattering
(neglect of exchange and the electron-nucleon ifteraction)_ Ithey. rﬁéde
mﬁhematical errors which suggest that any agreement with ex;iérimént is
fortuitous. (Coleman and McDowell 1966,and _Colemane. and Econorhides 1969) .

Consider a problem in which a particle of charge Z. is -sca_ttered by |
a hydrogen atom. This leads to a solution of eq.50. - ..
b (i k) ='()5n)"exr6£ls.jg +kiR])enp Gra/). F(1 =% i2 /A, (5%x, '3"[_’9""—‘73]) @53
The normalisation chosen by Akerib and Borrowitz differs by a :factor /e,
a non-trivial difference since céross sections result from integration over
k. That eq.53 is correct'; shows in the limit z- 0, ¥% rleducing to the
equivalen£ Bo;‘n function.

(im p)

Substituting ¥, into the transition amplitude gives

-i2

. S,z
im ' ’ ; + K- k) -
T P o 2/ (w0 pr) [l N (K) ge (K« £:1/2) gllhi k-2 V)tV -k
P f 9 | % I
where P = R¢ - k¢ and N(k) 1s a normalization factor. The factor
ki (t) is sharply peaked about t = 0. A peaking approximation

results on 'replacing the remainder of the inte‘.;grand (assumed slowly

, \.rarying) by its value at t = O.

| Coleman and McDowell (1966) have evaluated 1ls-2s a.pd 15."'-212 cross
sections for electron impact correcting the errors of Akerib and Borrowitz
(see table 2.1 and 2.2) The approximation shows corl'reé:t-‘lagreéme'ri{; with the

Borm approximation at high energies though the approach to the limit is

.
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slow. Furthemmore the results are considerably hlgher than- t}ie Born values
at moderate and low energies and bear no resemblance to the resulLs
published by Averib and Borrowitz. GColeman.(1967) has shown that the poor.
results ars obtained as a result of a drastic peaking appro':ciJha'bion.
Apart frorr}lz_ more accurate determinai;ion of the triple }: integroi, extension
of the approximation to include exohan'ge and projectile nucleon forces. seems
in order. | | .

- (L) Vainshtein Approximation for e"- H Scattering

The total wave function is chosen as a product of an unperturbed .~
-hydrogen atom-wave function and a function ¢ of coordina_ﬁes /2 and R

gV (,2) = 2’(2)3(/9, R) a0

so that the Schroedinger equation provides the exact equation

[0+ Vo' + 2/ - 2/p+ ke’ Jg(/:,_ = Qg(p,-‘@) 2. 41

h
e [7/1? 'Z/IR /JI -2V In B (2) W"ﬂ(PJE)*( 7)/ﬁ:’ 2. 62
For the present we take =1

The Vaikshtnin appro:d.mation supposes that Qg is zero. The resi:lting
solution of g satisfying the correct boundary conditions is a product of
attr:_active and repulsive coulomb functions of R and Ve respectively.
.Expressing 25 (2) .0 (2) in terms of its Fourrier 't.ra'noform 2

g( v)
replacement of the exact wa.ve function .in eq.l by (v2) glves

'T.";(") Mfdsﬂ(g—-‘)fd@eap(df)F(w,.l,c[l\’.l? "’"?]) 2. 43
*fdp/p explilzp-51p2) Flivd, clknf-'- -/’D L
where P is the projectile momentum transfer and p= 7/ [ 73N The .

contribution from the electron nucleon interact;ion'potential has been
ignored.

As the intogral with respect to R is unbounded as s-=0© ’ 8 peaking
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approximation is applied. That is, it is noted that thé exponential
factors have stationary phases about s = 2p, replacing the slowly varying
’ ﬁ’(g -5) by #(p) . 1In Vainshteins p.::a.per (1964) the integration is
facilitatad on replacing exp (i[2p -s1.p2) by exp («.‘[2,9-#_-?]]_-’) . As
' ﬁ (o) = 0O , the error in the pealting approximation in_ the region s ~ p,
is suggested as a compensating effect. Crothers and MpCarrol-(i965) were
critical of this step aﬁd therein lies ﬁhé motivation of theif alternative
approach. The integration was completed by means of a method éuggested by
Nordseick (1954). Instead of using the_prior transition_amplitude used by
Valnshtein eygl, Crothers and McCarrol consider the post form

-r'.f(cm) - (§¢-(V)IV/¢;> ' S i 264'
and carry out a parallel analysis avoiding the unsatisfactory step of
changing the sign of the exponential term. x

To investigate further the neg;l.ected. terms Qg we seek its form for

.largeup and R and arbitary ». The post-fonn brovides _

Q=92R-2/IR+pI| + (:-»2)/,3+;u/?.(}1e4%)+o(7p=)+0(%e‘) 2.6°
_where € 1s the ionisation potential of the level f.. Amongst these terms is
one deperiding onv,which diverges in the_rggioﬁ of.the ex&itatiéﬁ threshold"
By choosing the effective charge of the complex form 7=kr'/(k';-iﬂ=') , not
only 1s this divergance reméved but also all discarded terms are then of
odder greater than /o . | :

Keeping both exchange and effective charge the“Crothers ;nd McCarrol
approach shows excellent agreément with the unrenonmélized experimental
results of Stebbings (1960) (ls—2s) and Fite (1959) (ls—2p) (see fig. 2.h).
AppaﬁﬁntLy though exchange effects are negligiblq,-effective_6harée Qari-

ations producelsignificant changes in both magnitude'and shape. High
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energy behaviour is in line with the good behaviour of the Born cross
sections. |

Omnidvar attempted to correct errors in the Vaiﬁshtein -etkl analysis
avoiding the change in sign of (2:s. 2 ); Crothers (1967) and Peach (1967)
showed that Omnidvar chose a faulty analytic continuation_of a term in the
transition amplitude. Results for the corrected eveluation of the peaking
approximation in the Vainshtein et al apbroxi.mation are shown 'i.n fig.z.h.-
The prior results exceed the Born 1ls-2p cross sections at the .ma)dmwn though
they tend to the Born at high energies. |

The philosophy behind the Vainshtein a_pproximation appealing direcﬁiy
to the inter-electronic potential whilst keeping the correct boundary’
conditions;coupled with the good agreement shown in comparison of the
Crothers and McCarrol and experimental results,provides an attractive
proepect. At the sa:ﬁe time certain features throw dou_bt on'_its reliability
Only detailed investigations-of the peaking approximatien:will Justify its
usage. Such an investigation-applied by Kyle and McDoWeli (1969'). to the
Goulomb Born approximation iﬁdicated an error factor-of'two. Further
neglect of the electron nucleon interaction cannot be Justified for electron

scattering without more detailed investigation including thls tdrm.

_(5) Close Coupling
.The cross sections for ls-2s and 1s-2p scattering processes have been
compared by Burke, Ormonde y and Whitaker (1967) in the '_3-fsta-te-. and six-state
approximation (s_ee fig. 2.5 and 2.6.)' At low energies .the dominén-t con-
tributions are found to be from the singlet S, P and D and triplet P partial
cross sections. (for 1.3-23 values see fig 6.6. to 6. 10) The good agreement
“1n elastic Scatterin

between the two appro:x:l.mations » observed, below the n = 2 threshold continues

up to energies of about 0.83 ryd. As the energy is m_rtl_ner increased .the
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expected resonsances occur in the six sﬁate appx.'oxi.ma.ti.on Just below the
n = 3 threshold. Their behaviour can be understood with the aid of the
Fano expression (1961), for resonant cross sections.
= (Qt‘-).‘j (6+qi1')2/('/+é2) +(G?b‘)ij:' - - 2.10

€ = 2(e-€-)/r _ .
Er and r are the resonance position and width, and gq;; the line profile

where

which gives the resonance its shape.

All the resonances qbserved have two features in common. Firstly
< 1, implying that the resonance interferes destructively with the back-
ground cross section, whilst the small values of Qb means that the resonance
decays into a linear combination of states at the m = 2 threshold exci,ted
from the ground state. Because all the q's are small the individﬁal
_resonance effectu tend to enhance rather tha.n interfere giving w1ndo~s in
the cro'ss section below the n = 3 threshold and depressing the cross section.
-above it. This brings the Q (1s-2s) peak down from the threes state value
of 1¥ = 1 ryd to 0.8 in the six state approximation. This is in line with
.the_ experimental data of Lichten and Schultz (3959) and Hils (19_66) .
Furthermore the peak value is somewhat lower at 0.22 (el against 0.36 (mas)

almost in line with the peak value recommend by Fite et al (1968) of 0.18
( rra.’)
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THE PCLARIZED ORBITAL METHOD FOR CONTINUUM EXCITATION CROSS SECTIONS

When exact wave functions are used for fhe initisl snd-final states
- of ths system, the dipole length and dipole velocity formula give equivalent
ways of defining the dipole photoionisation cross section. Itsnight,
therefore, be expected that the accuracy sf approximate wave fupctions will
be indicated by the difference between the appfsximate length;apd selocity
formula. They can be written in tenns'of the oscillatof-strengfh per unit

energy intervsl in the continuum, .. having the fom

(H4e), = (T+e) ] JE (vr 6) ¥y dnds | 2.3
for the dipole length formula and

(%), = (22| Yeer | mevdpctpanI” - 2m1
for the dipole velocity formula. _ '
. I is the ionisation pOtPntial of the initial state ‘of the atom and €
is the ejected electron energy.

- Cross sections follow using

Kmmax ' -
= Jo I G) dk . 282
where , ' - ' )
"’%5 = % (T+ée)€k.I (k) - 283,

The above dipole formula are using

{im 5fkk) Tt

k-o

lim Yy <& 1 { bty | %) _2-8?
R.CT 1L 01%)

As such this provides the same T-matrlx expression for the cross sections
as applies to this thesis, though the above potential is that of an electro—

.magnetic field.

P4

-/‘
,



- 40 A~

Only the (1s) (€ p) !P state contributes to these int‘egré.l.'for
photoionisation of Helium. Thus Bell and Kingston (1967(i)) approximated

the continuum wave function by

-Y} = (2/6-)1'é [exfa (—Zn)f- (é;/fi)/k,- + exp [-Zr.)f,@lr,)ﬁ,-] - 2-6’5. ‘.

representing ttie ionised system with zero angular momentum about ‘the polar
axis. Tho radial wave functions f, ( € |. r) are determined by the method

of polarized orbitals (Sloan 1964) and are solutions of-elq.l.Z'O:a' and 1.21.
.‘:E; was talfen to be a bound state wave function normalised to unity and
represented by both a 6-parameter function of Stewart and Webb (1963),

(PO (1)), and a 20-parameter function of Hart and.Herzenberg (1967) (po(2)) .

Oscillator otrongths werg‘:ompared.w_ith ﬁhoso- of Stewart and Webb (1963)

(SW), using I-Ia.r't.;ee Fock continuum wave functions and the 6-parameter wave
function for Y:, and those of Burke and McVicar (1965) (BM), using tho
close coupling approximation free state wave functions and tho 20;para.me'ter
wave function for ¥;. (See table 2.3). | -

It is noted that by choosing the final state wave function as
Yoo GepdbmEdy o oz
- Wwhere

FO) = Zua (r)/(k“r) P:(r. _ | 2.6

with Us taken to be polarized orbitals, and 1nc1uding the- dipole (s &= 1)
term as the only.non_—vanishing contribution, the model_ is oosentia]_'l.y the

same as the single particle pola.riza.tion' form of chapter 6.
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 TABLE 2.3 " OSCILLATOR . STRENGTH.
. : |
Snergy DIPOLE LENGTH DIPOLE VELOCITY ;
0.1 SW PO(1) PO(2) BM SW PO(1) PO(2) BM

0.2 | 7.92,-1 8.15,-1 .8.02,-1 7.78,-1 7.58,-1 8.30,-1 8.89,-1 7.63,-1
1.0 | Lobd, =1 h.51,-1 Kh.48,-1 4h.35,-1 | 4.18,-1 4.58,-1 -1;._59,;1' k.25,-1
g.o. “2.36,-2 2.51,-2 2.53,-2 - 2.19,-2 'z.h;,;é 2.39"2
6k, ' 6.27,-5 L.72,-5 5.18,-5 6.19,-5: 6.38,-5 6.18,-5

It can be seen that there is little difference bebncen the 6;-15ara:|neter
aﬁd 20-para.mete'r polarized orbital values and iittle to be gé.irllegi_ by further
improvemerits of the bound state wave function without considerable improvem-
ents in the continuum wave function. |

The superi;i'by of the polarized orbital method wave function'ovcr the
Hartee Fock wave function is suggested by the fact that che cﬁfferént:e between
the former 1ength and velocity calculations are about 50/a 'of the dlfference
“for ‘the la.tter ca.lculablons. (The dlfference 1s of course zZero 1£ the
wave.funghons.ate‘._md.). Comparison of the. polarized orjbital- differences wif,h
those of thes close coupling approximation valu_cs do not demonstrate the
superiofity of either model . |

To obtain an independenc check on the .accuracy of the calculations ,I
oscillator strength sum - rules havc been evbluated by Bell and Kingston,l wit_h-

“exact~ calculations of Pekeris (1959) .and Pekeris and Schiff(1964) to provide
[ (%he) /(T+€)d e ~ c.ase. L e

Ta = [ (“Fhe) de ~. 1573

=j:'(°’f4€)(r+ €lde  ~ 7.48
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The corresponding values using oscillator strengths calculated using polarized

orbitals and 20-parameter bound state wave functions are

I, - I, ‘Is :
length 0.50k 1.63 7.66
velocity 0.5k _ 1.64 7.72

This suggests that the length and velocity forms are.respectively 3%
and S.ﬁ% too high at lo~ energies and slightly more accurate:at higher
energies. .

Similar sum rules applied.to the photoionisation of:singly'ionised
lithium (Bell and Kingston, 1967 (2)) indicate that thelcorresponding length
formulation using Hartree Fock continuum wave functions provides-slightky
more accurate oscillator strengths than the polarized orbltal calculation.
This may be explained as follows: The polarlzed orbltal method takes 1nto
'account long range polarization effects but neglects the effect of short
range correlation. This is 1ndicated by the superlorlty of thc length cal-
culation, which empha51zes largﬂr separations, over the ve10c1ty calculatlon
which emphasizes smaller separations. The short range failure of the polar-
ized orbital method for photoionisation of Hellum is sufflclently compensated

'for by consideration of long range polarization to .give better reuults than
the Hartree Fock wave functlon calculation.

Low encrgy hcllwn photoionisation length and velocity calculatlons are
shown in fig. 2.7 in comparison with the experlmental data of_Samson (1964)
and Lowry et al (1965). At low photon energies.the results.of_Samson are
'probably more accurate than those of Lowry et el and although.the theoretical
calculations tend to be somewhat larger than the.former,the twc sets of

" results agree within the limits of experimental and theoretical error.
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CHAPTER 3.

THE EXPERIMENTAL SITUATION

(1) 1s—2s Excitation

Measurements of the cross section for excitation of the Zs state of
atomic hydrogen are shomm in fig3.l. The three available experimental'
results have been renomlalised to facilitate direct compariscn_ '.of shapes.
These are seen to be falrly good consicering experime'ntal e.rrors. Three
aspects of the experimental resnlts deser'\_,re particular notice. .

(i) - The structure tm very low energy range - best 'dernonstrated by
.. Lichten and Schultz (1959) -
.(ii) The gross structure through the medium and high-energy range
found by Hils et al (1966) and which seems to be reflected in -
the work by Stebbings et al (1960, 1961) .
(111) The over-all energy depence of Stebbings et al, an'cl Hils et al
| departs to a remarkable extent from that nredicted by the Born
apnroﬁ:nati on. | .

The departure of the measured 2s excitation cross sections “from the ‘
Born approadnlation is so striking that normalisation of experi_rnental res_uits
~to the theory at high energies is questionable. The usuai- procedure. has
been to normalise to the Born approximation plus a cascading correction at
the highest energies for which measurements are available. Hils_et al
.find a good fit over the energy range 200 to 500 e .V, but there is an abrupt
departure from the Born results below 200 e_V (which does not occur for 2p
excitation). ' \ _

.Stebbings et al found a good fit over the range from LOO to 700 eV.
~From consideration .of their error bars it may be conclilded'that a reasonable

fit is possible from 150 to 700 eV, whi-ch results in'a'lhigher_norm,alisation,



But this normalisation is inconsistent with Hils et al at lower energies.
Stebbings et al chose to normalise via 2p measurements to the Born Approx-_
imation for 2p excitation. The measured 2p excitation crbss ;eqtion fits
the Born approximation tga much lower eﬁ%gy than is the éase-for-ZS excit—
ation and there is less uncertainty about the cascading correction for the
2p cross section. On this basis Stepbings'et al find their results for 2s
excitation in the 200 to 700 eV range lies about 505 higher than, the Born
‘cross section plus cascading. Their error bars fail to 6verlap the Born
result at the three points in this range. o
Either of the above methods of normalisation leads to a value fdr the
peak near threshold between 0.l and 0.15 (7g.?) - In fig 2 thé experi-
mental results in the threshold region, due to Lichton and Schultz, are
shown in comparison with close coupling calculations Sy Burke, Téylor,
Cnmonde and Whitaker (1967). It is the suggéstion of Burke et al that
nonnalisatioﬁ to the peak at about 11.7 eV méy be valid. This is based on
| the observation that inclusion of the higher states has a small effect on
the magnitude of the cross section at the peak, where the value is ?<122(#a3)
This normalisation of the measurements leads to values at 500 to 700 eV
" which are about twice as large as predicted by the Born apprgximﬁtion. This
measured peak to high energy ¥atio is inconsistent with thap'pfediéted by .
the close coupling calculations, which presumably'converges to the Born
approximaﬁion at high energies. (In the case of 2p excitation tﬁe measure-
ments of -the magnitude at threshold relative-to the higher energy measure-
ments by QMith (1965) are consistent: with the results of th§ close coupling
calculation of Burke et al). | g |

Lichten (1961) pointed out an error that had been made in data
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reduction in the experiment of Stebbings et al (1961), “The point in
question concerned the polarization and dngular distribution of Iymen.-
alpha radiation produced when meta-stghle atoms were ﬁuenched in a weak
electric field. While Stebbings et al had used a polarization fraction of
unity in reduciﬁg their data, Lichten argued that a polafization fracﬁion. |
_ of zero should be used. ' - | |
In preparation for extending the ekperiment of gtebbingé,_Lichten
carried out an experimental check on the Queﬂcﬁ-radiation_polarization.
" Surprisingly it was found that the polarization Waé not zeréfrihat the
intensity Iw of the component with ﬁhe electrié field vector p;rallel to
" the direction of the quench field was weaker than the intensiti ;t§- of
the opposite polarization. The source of the.error has been feporﬁed by
Fite et al (1968) as due to neglect ofhézﬁba state contributions assumed to
be small compared with the ZzPyz state contribution. |
Fite et al suggest that the newer value of the poiariiation affects

cross sections for excitation to the 2s state, by increasiﬁg the values
approximately 105 above those of Stebbings et al (19615. Based on those

data, the maximum in the cross section at approximateiy l2 eV would'be.
about 0.18 (mas) only about 20% beiow thé calculgtioh of Burke et al.

(2) 1s-2p Excitation.

In fig3.} excitation functions for the Zb < 1s transition in atomic
hydrogen are shdwn. The experimental results displayed include the results
of the origional measurements by Fite and Bracﬂmann(l958>, but exclude
points near threshold now believed to be in error becéuse they-did not )
reproduce in careful measurements by F;te; Stebbiﬁgs and Bracﬁmapﬁ(l959).

The results of the latter authors haveé also been included but have beén



renormalised by a small factor to fit 'rec,eni; results of 'Lpng Cex and Smith

(1967). The latter authors attempted to improve on Fite et al through a

strenuous effort to reduce systematic and statistical errors to the order of :

a few per cent but as shown in fig3.} the results are in complete agreement
within experimental errors except for the renormalisation already mentioned.
Included in the figure are perpenicular cross sections (@]} ca'lcula'.l',led uéing
the Born approximation and l.s-ZS-_-erzlosé coupling approkixﬁa.tioh _-(Burke

Schey and Smith (1963).) together with the formula

Q= 0.918@2p + 0.206QRpo - .- 30
‘derived by Burke and Seaton (1960) _
where QZp =2.GR2p,1 +@2p,0 | : - 3.2
@1 and Q2p (which will be used in this.work) are related ' _
.throughQZP = " (3-P)Qi /3 '3:3.
The poiarisation P satisfies (Percival and Seaton 1958) - o |

P = 3@up,0 -G2p,))  / (7.Q2ps0 + 11Q2p;1) 3.4

‘The energy dependent values of P are given in fig 3.5.

- The experimentally measured polarisation is defined in terms of the intensity:

of dipole radiation emitted by an atom after excitation. Denoting the
intensity of radiation per unit solid angle, in a direction perpend_tcula.r
to the electron beam direction 0z, due to electrlc/:lipoles parallel and
perpendicular to OZ,_ by I} and I; respectively, the polarisation is defined
LA '. |
plex) o (T, -I,) /(T +T2) 85

The experimental results are normalised to the Born approxim.lation,

inclwiing: a smnli allowance for cascading at 200 eV. The meaé_;urements

and the values calculated by the Born approximation seem to fit very wej_.l
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above about 120 eV, and it appears that the close coupling results may fit
the measured values down to about 60 V. However,_below 50 eV_thé depart-
ure of the close coupling results is striking.

Some intensive calculations have been carried oﬁt in the immediate
vicinity of threshold by Burke, Ormonde, Taylor and Whitakef:(l967).. These
authors show that inclusion of close coupling to the n =;3 i?el,does not
produce much of a change in the cross section at energieg belon the
resonance region of the n = 3. threshold. However it may be that at higher
energies the difference between the ls=2s;2p dlose.couplinqﬁpproximation
results and observed behaviour of the cross section would be accounted for
by the cumuiative effect of coupling to all the discreté }evgls with n23
and the continuum states. Chamberlain,Smith and Heddle (196h)lstudied
the behaviour of the 2p excitation crosé éection.in the neigﬁhourhood of
the threshold. They obtained experimental points for (i shown.in'fig.343
Also shown is a curve based on recent calculations for Gh.by-Burke et al.
The dashed curve shows the result of folding the .experimental energy
distribution from Chamberlain et al into the theéretical cgrve._(The experi-
meﬁtél points have been scaled on the absciésa and shifted on the ordinate,
this being allowable within reasonable 1limits since no accurate determin-
ation was made of the contact potentials involved). The . resulting fitlis :
quite éood. Also shown in the figure are some points obtained by Fite |
| Stebbings and Brackman (1959) from their measurement of the threshold
behaviour. While their results do not reveal the threshold.stfucture, they
are consistendﬂith the results of Chamberlain‘et ﬁl when ﬁccoﬁnﬁ.is taken

of a larger energy disttibution énd larger error bars.
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CHAPTER 4.

AN- TNVESTIGATION OF THE POLARIZED ORBITAL

APPROXIMATION FOR e  — H SLASTIC SCATTERING.

1) Theory of Scattering Equations. (H{#er Callawa_l/ et al - Iqb?)

Consider an expansion of the total wave function E-f(l,Z)- in terms’

of the complete set of unperturbed target eigenfunctions Pn ©) = ot

¥'¢n n) = //‘(I'*R;)Z,Bi’”(n) (r) | 4

Such an expansion is exact but 1ntractab1e. A ‘truncated version of it leads

to close coupling approximations. Alternatively we may expand in terms of

the c..c' . set of perturbeid target wave functions ?., (s, f‘)

- £%(n,n) =//_(I+P1)27,.(r r,)ﬁ(r . 4.2
where Va (E, h) = P,C(r) + 2. (6, hK) it h=o . 43
and - Vo l(n, b )' = 2, (5) o«lher—wl.'r-e. | " 4.4

Truncatiﬁg this expansion.at the first term, and assmning"the zero state
.non-degenerate, |
28BS = Y (1+p) [ﬁ‘)(r.)+,%”(r n)] f ) 43

where &5 "( f: ) is the hydrogen ground state wave function and ,Qf ()( n,h)
is the corresponding first order perturbed orbital satisfying; perturbation
equation. . . . '
(Ho - E)BP(r,n) = [T —v]B(n) 4.6
This has certain advantages - | '

1) The p-character of P{) gives the polarization, exactly if the e

are known exactly. |

ii) 1In eaéh { componeﬁt of .%') _some con'binm;in is ihcluded.

The variational treatment is equivalent to réplacing the exact wave

function by the trial form of eq.5 and projecting back onto the (first

9‘,-)
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_order) perturbed atomic orbital. (eq.3) .
J[nt,s){H=E} (12 P2) 9 (5,5) ) }.,('r,, co 48
This has been shown by Hahn et al (1964) to 1ead to a ‘bound on certain
physical measurables of the low energy scattering process. -
There exists a certain ambiguity in the definition of | ;2'(01")(1,2) .
The unperturbed abom.1c wave function, can be added arbltarily w1 thout con-
tradicting eq.6. By choosing P. and ,B’ ) o be orthogonal the ambiguity
is removed (cf Reeh (1961).). Hawever_Callaway et al (1968) ha.ve shown that
dot only does this lead to neglect of temrms whicht;x%t strictly higher than
second order but also leads to difficult dynamic terms. The préferable
altérnativ_e insists on the nomaiisation to unity of the first orider pert—
urbed atomic wa;re function, which requires that
2[R (s, ) dn + [100(s,6)1%dn =G -4
We have used the fact that the wave functions are real.
This stép is essential to the Opt.ic_:al potential model of Callaway. However
it has been demonstrated that by rewriting the free particle function (sc_ae
eq.1.39) essentially identical phase shifts result from either choice o_f
2 O(1,2). Considering only direct terms the variational expres_éi_on (eq.7)
gives |
7, z)JEo-/V e c}yo(f,z)drm) +f7.,"(. 2)[P- V} (z)atrn‘(') 0 @-1
where the. second ‘term results from applying eq.6. Using the ndmalisation
condition (eq.9) the projectile kinetic energy operator term gives
_p{wn B’ dn -y (10010 dn + [BOPE ey | 4.0
Ignoring terms of higher than second order (er.:a.f Wy FIdn )-eq.lo
simplifies to |

"KZ{V; + oot —Zl'pol()-ZV(')-o-Vd(l}'{(L")=C ' . 4.2
where ke? = E~ &, ("_yde). .



The polarization potential is well kriown from previous work on adiab-

atic theory

Vaot (5) = [ v .00 (0, 2) ol 4.13
The dynamic term is

va(r) = [IZo 0,21 dn 4.4
Callaway et al (1968) derive their approximation on lines sﬁggeSted by
Feshbach's projection operator formalism. It has not proved possible.to
find a.projection operator consistent with a full second Order.tfeatmenél'
including exchange. Feshbach has derived a lower order approxihaﬁion using
the projection operator for the N electron a+6n1
P’ (N+/)/2F),@’(n),@"(n)ﬂ(n/+')/"
" where A? . .
| resulting in the central fleld exchange a?proximation. The full second
order treatment is approximated by anlessentially ad hoe re;uit ﬁsing the
fﬁll ;econd order direct terms of eq.l2 whilst keeping only lower order
-exchange terms. .
Theé additional terms arisiné from the inciusion of éxéhahge aré, to
. lowest order in £he atomic wave function _
XOss g (2) [H-E} o (VFCIedn 405
Let us considef the form of tﬁe'single particle wave function £(1) as an
expansion of spherical harmonic functions and correspohding reduced rédial
functions | .

g 2u,(r.>/r.- Yie (7) VY
Substitubing thls into the direct variational expr3331on (eq 12) and
projecting out onto the {th spherical harmonic functiqn gives rise to a set |
of uncoupled éeéond order differential equations

LJ.ML(")— \ -

I

[d/dr‘z + kol -J(l-o-:)/r-,’- -ZV/r.) ZV:oI (r)+ Vd(r.)Jm(r) (o]
£.11
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Here we have used the non—angular dependent character of the potentlal terms

(see next se_ction) . This frees the equations from coupling terms.
Substitution of eq.l6 into the exchange temm and using the Hermitian

nature of Hoz gives a z_eroth order term with only the zero partial_Wave,

(2Eq =) [P (2) 4o (2)/ra . olrs %5 (h) Y AT ¢
and a first order term . ;
2-.},9/(7—)6/(' 2) Ue (2) /v Pe(¥2) Yo (R) dlna B '.f..'l‘l

where 82 (,2) is the 4*h ferm of the Legend're POJHGMIC/ C’XPG"IIG" of ¥
Projecting the exchange terms onto the 4th spherical harmonic function the
full variational equation gives |

Lual). =% Xe G,2)n RG) . 420
where X¢ (1,2) - { ( z- k) JRE W IR +[2/(zl+ ,)/;e(r.) Hn(ﬁ)i)f_(’zz)"' dr,}
R(2) is the normalised radial part of g(2). The energie_é Eg» .kZIa.re in

Rydbergs. It is.noted that the second exchange integré.l is kept as a first

e v aen = pr———

order termm whilst other exchané;e distortion terms of the 'sa;.me order are
neglected. | :

Though a full second order exchange approximation- will not be attempted
here it is interesting to compare the higher:-order exchange terms W1t1'_1 the
Temkin — Sloan: equivalents, the two terms being deri\-red in a.'parlallel
manner. l‘he full exchange cxpression 1slgiven in appendlx (L). Itis note-
worthy that amongst the extra terms of the present work there are no terms
" corresponding to oloans veloclty dependent term nor do any exchange velocity
'dependent terms arise. The extra terms leads to no coupllng of the 1ntegro
differential radial equations.

2) Evaluation of Polarization and Distortion Potentials

The polarization potential of an electron in the field of an electron

is to be determined. It will be assumed that the motion of the electron can

be :Lgnored and terms in the wave function of order of perturbation higher '
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than the first will be neglecﬁéci. The first order wave function is then
used to calculate second order pO'bentials.

The distorted wave function is written as a linear combi_natioe of the
unpert,urbed hydrogen ground state wave function ,ﬂoand a term:- )0’ ”(1 2)
introduced to account for the distortion of the valence electron '

Y(,2) = Balz) + /O (,2) L 430
where pf,(z) = }?.; (h) Mo (F) | _ 4.31
o has been determlned according to statlonar'y perl:urbatlon theory by
Reeh (1960). There is a certain amblgulty in the choice of & resolved by
: choosing it to be orthogonal to the unperturbed weve function.. ..

190 ped(y2)dn =6 4w
Perturbation theory requires that zZ9 satlsfles the first order equation

(Hoa = Eo) & (1,2) = NN AN va} - vleoe) . 433

The interaction potential can be expressed in terms of a complefe set of

Legendre polynomialsﬁnd corresponding angular independent functions
V= V., - % =[261(n,n)Ps(co:9..)} . 4.34
) S=0

where ' . .
yiln,n) - OV LTI B = cos™' (rf,‘_,,i,‘) 4£.35
v and ©» being the lesser a.nd great.er of nand » . This prompts the

asswnpt.ion of a similar form for p’lJ

o [c,z'( R) P (cesBa) - 4.36
where C'_ 2//._ '

Substitutlion of thesé expansions into the perturbatlon equa.tion prov—
ides, by projection bnto i3 (cos 9::),:1 set. of equations associated with the.

relative orbital angular momentum of elect,ron.; one and two, haVLng a ‘v"clue

Sh.
If S fo. (I}/r,%hl'h _.s(s+:)/r.’+2/rz-')/%‘('ﬂ)= afﬁlz)e‘ﬁ . 4.317

if s=o0. (Vn J?/dr.,.',—. + 2 - )2.\/.0 (,2)=- {/_{')—(K (92)}?‘“
where () = [ ()45 (v2) B (2)elr = b - @=2n (1045,



It will suffice here to male some comments on 'bhe' solutibn_s of eq.37.' A

fuller account is contained in appendix (2'). The general solution takes a

form depending on the relative magnitudes of r; and n
Rlrsn) = yo voct) [h(2) —hi ()] 4.38
X(ren) =y, + BG).h, (2)

The solutions are chosen .to satisfy .the physical conditioﬁé of finiteness
both -assymptotically and at the origin. The two- soltlxtio.ns are matched at -
their common bounddary + =11 , so that both the functlion and’ i.tls derivative
are continuous. If s # o , y has the general fomi -
Y =glle " rs /e 434
where g (2) is a'linear function of Moy h,. is an exponentially decaying
function of § whose leading term goes -l'ike_ I/p**' at the origin.- h;- ;s an
exponentially incre;;xsing function of r; 450 chosen 't.ha._jb the .lea‘dihg term of
(h: = h:) goes as h' at the origin.. If s =0 , h; is zero-and -h e~
For s = c;, ¥¢< has a leading term which goéé as W, for- small i and has an
exponential decay assymptotically. ¥, has a leading ten.n' which ‘goes as ¥n,
and decays exponentially fof large &. -
| Generally o¢ is a function of r , decaying assymptotically fast enough
to %ill the assymptotic beha\.riour of h; . It.;s leading tenﬁs éoeg as Yrs+
.at the origin. 13 is the sum of & and a function of f chosen to mak%e B 8o as
r’ at the origin. For s = o, /?—>'}4£+ c(r), for ""‘”f n
Let us consider th.e form .of the po"l;e_:n'.bia.l tem.s. -7-(1)' , Vpol (1) and
Vd (1) defined in eq. 7,13,1hk and used in reference to :e(.l'.21.
v (1) 1is the first order inberactioﬁ pobentia.;l‘.' | |
Oz B v pL()dr = men (e¥n) T o 4SO
For small h, f.Lt'goe:-;'» as (- + 1+ 0.["-').)- |
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Vpol and Vd are toth second order interactions depehding on the first order
perturbed orbital. It w111 be convenlunt to express them in terms of the
Reeh expansion by substituting from eq.35 and 36.

In Reeh'!s expansion Xo was ehosen to be orthogonal to D/(Z) . This is
not consistent with projection operator treatment which lcads to the def-
inition of Vd. The conflict can be resolved by a redefinition

o (1,2) + T, (P55 (1)2) -zf/i, (v2)I*hidn Jizser) . 4.1

SxoO .
a form consistent with the normalisation condition of eq.9. This. correction

leads .to third and higher order teims,which are ignored. In any case from
the nature of the terms it is expected that their contribution would ‘be
. sma]_'l_ .

Vpol is the interaction arising from the distorted part of the atomic
wave function and the interelectronic interaction potentials. Subs tituting

the expansions of =q.35 and 36 for these quantities Vpol is expres_sed as an

infinite sum of radial functions

Voot (n) = [Be(2). Yoy B0 (1,2)dns = ) Voot @)(r) . 4.s2 |
S=0 .
where Viol @) (r) = 4/ (2601). [ R0 (r;)é’:(r.,n)z": (r.,n)rleln C - 4.53

A -qu_antitative cemparison of the components of the sur_rma.tion_is given in
fj.g. L.1. Assymptotically, the monopole term of the first order pe'rturbed
orbitalldeceys exponentially giving a similar behaviour to the monopole
polarization potential whilst dipele and higher order obbitals fall off as
Yrse . 'i‘his gives rise to a '/.—,I(uﬂ) dependance, for large K , in
the c'orresponding polarization potential with s > 0. ’I;he monopole term is -
dominant in the intermcdiate regions and is non-zero at the origin. For
small r, , Vpol®'s -/2'..2,—, whereas Vpol” -2l po‘ -'5"/3
and higher order terms go at 1ea.st as a fourth power of F‘. .

A study of the polariza.tion potentials afising from third order

T o = —————— i 2




interactions, by Dalgamo and Lyhn (1957), has indi_ca'bed that the a_s‘symp'l;otic
behaviour is dominated by terms which go as the inverse sevehthl po&er of .
This being the case it is not very meanlngf.‘ul to retam terms of second
order which fall off more rapidly. For this reason pola.rlzabion terms up"
to the quadrupole (s = 2) potential will be kept. This latter term is not
significant in comparison with the dipole term iﬁ any '.'r;égibn.l Though
decaying exponentially in the assymptotic region, where pl.'la.se.. shifts‘:\rrﬁost
sensitive, the dominant behaviour of the monspole terr_ﬁ in sﬁe'- _innér reglon
justifies its investigation.

The dynamic potential Vd arises from the actlon of the Laplacian
operator V.'on terms quadratic in the first 'order perturbed orbital. Sub-
stitution of the expansion (eq.36) of the latter glves an infinite sum

va(ry 2 L1790 (1 )mm (r) T 4ss

where Lu®) (r) = - 16/(25+1)" f{["ls/ar] RPYeIn e [m] s 456
The assyrnptstic bshaviour of the monopole term is exponenbial whllst that of
_ higher terms has an inverse (2s + L) th power behav1our. For reasons
explained above, terms higher than 1nvers'= sixth power are 1gnorcd. This.
restriction rejects all terms with s > 1. Near the orig,ln ‘the monOpole -
term goes as n'. The dipole term tends to a finite 15-.mit Vel (:1_;;—}44". .
-.It is interesting to note. how this berm cancels the monopole polarization |
potential. At the origin this ca.ﬁcellation is exact, giving an r? depend-
ance to the combination of .polarization_and dynamic potentials.

3. Numerical Mefhods

The uncoupled integro- -differential equation.. (eq 20) can be solved by
a non-iterative method devised by Percival and reported by Marriott (19 58),

The equations can be written such that the indefinite intégral terms depenc

7
7

on a knowledge of the solution, only for -the range fr_qm: ths origin to the -
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point of consideration. There are also definite int;gr-'al's 'requiring the
full range of the solution. A transformation gives two in'tegro'-di.fferential
equations independent of the definite inteéra‘.ls. These equa.ﬁidns are solved

outward from the origin and used to calculate the transfonnatlon facbor

In/r.#mg the direct +erm olifferential .cperctor as

s [V +k‘__.(/1+4)/r2 *'ZVPcI(P) ZV/")+Val(")] 4o
eq. 20 can be expressed as . _
Dedde(F)= Oy [‘Pt-h (r) + F, (")] S o .61
where [ (u:) = FL(r) - 7 [_c,,,, (r) h, (v) +5 4 tn hp. (r)] 442
d ~.'( A
an  Ga(r) _/ R(t)t s (t) ot . 4.3
ha(r) = F4 R () ' ' 4.64
PezE plucr)) = 8. (5. — 1? )_g, (oo)+23 f o) . 4.b5

Ce == ‘/(Ze-bl)
The substitution welr) = @} (r) + /u, Q. Q) ﬁwe.r rise +o two t.=7uq+:ohr'

2 Q) F (G!)+ €ihy(r) . where. €21 ana €ieo - (466

such that u = _/J(o, )/(/,(Gu)_,) L 4.7
Eq.66 can bs solved without a knowledge of Q. beybnd' the consideréd point

in the range of r. The integration techniqué adopted is due to Fox and
Goodwin (1949). They consider the second order differential equation
y'" = fy +g | ’ 468

~ and show that a combined predictor and corrector for forward integration is
(t —hFies /12 ) yiso = (2 + 10K%4; S12)yi = (1 — Rt fio, /:z)J y
+h'/y- (3“'*’0.76 *5~-~)+C,y. . 4. 69

with a sixth order error term
= - 8%/240 + 13 /15120'- §¢

where the variables i and f: are functions c;f r; and h (.= Fi - ke, ) is the
interval. g will contain"the f'I.n'begral terms of 'eq.66. The definite
integrals (eq.63) are evaluated_lby a power series expansion for F < 6h,
The integrals can then be detcﬁnincd in terms of Uj(for J>f+')by' a Newton-
Cotes formula of the open type (Abramowitch and Stegun (1965.)

j:“,.‘] (r) olr = C.3nh [ 1 gias = 14G040 + 253-"4:— ‘4,5'{.“ * I"L‘l‘f‘:“]

i
i
i




The equation is solved subject to the _boﬁhdafy conditions :
At the origin M. rjo ] Plet '(alo + Qur ++ ) | : 4.71
The other solution:. at the origin is divergent and hence unsatisfactory.
Assymptotically Wi (r)r’_‘;u A. R sin (Rr—dw/fe +%,) | 4,72
where -74 s the Phare shift.

Starting values of the solution near the origin are required by the
Fox~-Goodwin method. They are determined by assuming a series fdrm for the

solution consistent with the boundary conditions at the origin.

Uy (F) = ris! ja,r‘

. S=0
Substituting into the indefinite integrals gives :
4 .
gin (F) = 20143 [0, /(2443) + Gi-Co)r /(2444 ) « 4+ . .1 4.74
Y0 . )
and g-n(*)dfrziao/z + (a-aG.)r/3 + + ] , §.7s

rog

Thus Fi v grl+3 [~ (2040 R0/t /(21+3) (20+:)(-G,+ (Sh‘v‘)ao)P/(hz)/(zlo.?)/[,)]
The potential behaves as V-» -+ ks o(rz) for small r . K41;6
~a constant which. depends on the form of the approximation considered. The
pover series((74) - (76)) are substituted into (66). The first fouf terms of
the series éive an accuracy in linewith the error inherant in the Eox-
Goodwin procedure. ( A check built into the programme insists that a comp-

arison between the series and FG solutions should agree to within some

previously chosen factor at the point' r = 6h.). The series coefficients are

Go = 1 chosen arbit:;rily 4 _77
a,' = a0/ (24+) |
6, =-[2C€ -20 - (K -K)col/(41+6)

" . Qs =_'[2C¢€£+Za.4(’fl"")a']/(l’l""z)

\x.
Higher power coefficients require a !mowled'ga of the r! terms of the
potentials. Contributions to K come from _
2Vl @ 5 1w G (F2) L 4.8
oova™ L 4 6 () R
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The first order potential 2V - -2/ + 2

Hence k =2

since (-2 Vool + Vdl) > O

F>o0

L) Determination of Phase Shifts

The determination of amplitudes and phase shifts -_f."ollowsl the method
of Burgess (1963) and Seaton and Peach (1962) . - The.method' considers
solutions calculated to some convenlent 1arge, though rot asuymptotic, value
of r. (here: fe = l.,o a.u.). At suff1c1ent],v large r the-_:l.ntegro-different_iaill

equation (eq.66) becomes ' : =

[0%rs = A (4w1) o2 — iz (F) « R® Jmm o L 4¥0

where the potential Ui satisfies us (V) r 3'_-:: o . The' intelgral terms do-

not contribute as they are modified by an exponenﬁidlly’ decaying factor.
(Burgess aeals with the more general case includiﬁg a nétt charge) .
We define the phase shifts and amplitude by' imposing the.'as'symptotic
condition ) | |
welr) ~ Ak sin (ke - du/e + &0 ) . 4.8l
'subject to k being greater thqn zero. This form may, in.princible, be used
to deteﬁnine both A and 8; In practice the value of r fdr which sufficient
accuracy is obtainable using eq.8l is prohlbitively 1arge. .. :
Writing L = R L) /e = uy (F) 482
we define £ by requiring “that _ _
i (r) ~ 7% sin (P + ) | - 4.83
where P (r) = .[:f("')"“” |
the lower limlt of integration belng chosen to. satisfy the assymp,toti‘lc
condition of eq.él. Substitu_ting into eq.80 Wé establ_.ish .the"relationship
£ = w4 T ECIP /IS S | A
Assuming that we are considefing a region in which the fi-.r_x!al tg__x’m on the
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rigl:lt hand side is very much smaller than w, w-e ‘can solve e@.8l iteratively
by choosing {= w#as a first solution. Adequate acctira_cy is found wi.th
one iteration. Comparison of the solution of eq.66 wiﬁh eq83 e-a.t nearby_.,
points gives the amplitude. Two such pointsriand r; gwe |

o<,

f.yz.ugfh) «,=¥;4ﬂ¢{r.) U 485
then A= Y2 [ (o¢,+ o) sec? g, + (o —ocy) co.rc.ac‘z’,‘,] 4-8’6.
where &2 =% f: 1 (F) 15 obtained 1n hurner:'c'a;/ form. - -
A is determined at a succession of points until somé c_:'lonverga.l;xée c-ondit_ion
is satisfied. |

The calculation of phase shifts is not quite so simi:i-é.' As it is
determined modulo T , a far greater accuracy is. xequiré'd. o

Firs_tly consider the simple case of wu3z(r) = 0. Then

Blr) = Ia §ulrar ' o g1

where £, (r) We = ki-c/r with e - 1(l.+___tl) o 4.&5".

The full solution can be reached with' the acidition of a hmn_eric-a_'l_llyldét,ef—
mined integral so that o - . _. _
Py = Balr) + 1% -8 ]dr | " 4.89
Ir_l practice a higher order analytic solution is required.- .The _fir"s_t iter- |
.'a'tio’n ofe:éh gives - . |
$ = (D + WM V2.0, % )4 450

T (.)o'/’- -+ VZ wo-V‘Jz/dr'z-l u).,'V‘-

-8

The terms neglected make a contribution of order r-?. ‘Such terms- are not

significant compared with termms so far neglected from higher orderslof

iteration, of order ré Using 4,, as the intergrand we can determine the
corresponding £/ . Integrating by parts '_- ,
- : : [} r - i
M(") = j.: wot* dr + % wo % J/dr we Ir - }é./c {%ru" z)d"=I: +TI:+1x

we can determine each part analytically subject to the conditions that

2, ~ RF - 4w /2 ' - : ‘ .- 492
r‘-a'ca - E _ . )
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" The solutions are

—— aQ

L, = -Jc. cos™! [/E./kr_] + X (r) Ir' ' 4.93
where x(r) = (k¥ _ )%

T. = -c/g- 273 12 ' X

I3 =-Yg [-C/'("g-cu 32!":} lf - '/(&'fé)' CO-‘"["E/(Ier)} ’g
By imposing eq.92 we have _

B, = lesik] /e sin™ [Ve/ARn] & X -5cx ot -2 f4 - Anl2: hed
If l-o  +hen Jdw./dr =G ‘ : 4.95
and @ = kr | 496

For the case where Wi# o we have with 2 defined above
Z =0 «J (% -%)dr | £.97
where §,, is given by eq.90 and { by eq.84. Usually the intergrand con-

verges rapidly and the integral is easily evaluated numerically. ‘_Being of

hilgh order in inverse powers of r, it normally suffices to approximate the

integral by
oo : -] . . ' ) .
J705 -8 )dr s % #a () Jogn obr 48
In general & is correct up to order r~®. Therefore it is important to

include u3(r) 1in cases where

Us(r) = o¢ fre + a4 (r) "and  wme(Frfs o 4.99
r-»o00 .
Then the approximation to eq.98 leads to an-analytic solution
D(_‘-'ﬁ’. +5H B + 5 f:am(r)/wo'/z.dr 4.1c0

where & = -oc X /(2¢ r) +oc l&? /(2¢ /?)'S'."_.'[’rc/(’"ﬂ J ”t 140
and & = « /(3kr}),; 4 L=o0

Having conéisten-bly neglected terms of order r ¥ and icept terms of
lower order, we have up to order r ¢ from eq.94 and 100
if Ao ; B = a1 —oc/(Zcr)- WNgx®)~Sc/(24xD)]-4nte 5 - £.163
if d=6; B = kr+e/(3 ) " | .. _l {164



CHAPTER 5.

MONOPOLE SUPPH&ESSICN

1. The Semi-empirical Approach to Positton - Hydrogen Scattering

The philosophy behind the Drachman approach (1965) to low energy
positton hydrogén scattering is to seek the exact second'order boﬁential and
then to'invcstigate the effect of modifications. The'e+ - H-system provideé
a simple model. Not only does it provide knqwn ihter;éﬁions but-aiso avoids
symmetry complications. Furthermore béluﬂ £he poéifronium threshold |
(_E"< % ryd) the soiupion concerns only a single chéﬁmél.

The ppocedure'ié to take a trial wave function based on the hydrogen
bound state ané function & whilst introducing.distortion with‘tﬁe operator

G (1,2). . N - | o
$ - (1+C,2))REFG) : ;S
Application of the variatienal principle to the éingle particié;projéctile
function whilst neglecting 'velbcity'terms' dﬁe té the éétion.df.the kinetic
operator on G gives

[-72+ k' s W+ V2 JF () =0 | .Sz

where V, = _/,52(2)-%%(2)0!5 ahd.Vz=]%(2).V_§(',2),Pfg(2)otﬁ;5- 5.3
V.. is equal and opposite the first order interacttbﬁ“pdtentiaiﬂprovided by .
electron-hydrogen scattering.. Vi_has baén given exactly by Dalgafnoand Lynn
(1957). The excessive attraction of this potentia1,_indicated.by comparison
of scattering lengths from the solution of eq.2 (@ =-2.5L) with the varia;
tional value of Schwartz (1961) (Qs = - 2.1), points’to the importance of
non-adiabatic effects even at low encrgies. .~_“

An alternative evaluation of Vt is prbvided.u51ng a Legendre polynomia

expansion of -G ) | |
G(’Jz) ij[n,n)P ("oz) ’ . S.4

The monopole benn bhough decaying exponentially is responsible for most of -
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tﬁe short range correlation. The corresponding second order pdtenﬁial ié
= [Bu(2) V0 Gol1,2) 7.(2) el . ss

The failure of the full adiabatic potential lies in its neglect of the
motion of the projectile in the atom. Vo2 can modify this region by

replacing V2 by k V2 + (x -1 )Vez ), Drachman repeated phase shift.
| calculations for several values of o . Close agreement with the fesults of
Schlwartz is obtained with«= 0.1, almost full mon0pole:suppreséion (see fig.
5.1). | -

" 2. Determination of the Monopole Suppression Factor by Appeai to e - H

Bound States.

In the positfon hydrogen scattering process the failuré'of tﬁé adiab-
atic theory to make allowance for velocity dependent termé is:shown to be
corrected by partial suppression of the monopole term pf'the,pblgrization
potentigl sum; This leads to excellent values of s-wave phase shifts.

If the method of polarized orbitals is to be extended to more comp-
licated systems difficulties will arise in determining phe second order inter
action potentials. This applies particularly to the distortion potential
introduced by Callaway et al (1966), and depending quadraticaily'on the first
order perturbed orbital. It is the purpose of -this secLion to investigate
in electron-hydrogen scattering the possibility of avoiding exp11C1t inclusio
of these velocity dependent terms by recourse to a simpler approximation.
Bearing in mind the success of monopole uuppression applied to pOSifron
scattering a satisfactory result might be expected here also. Unlike the
positron hydrogen system here we have the advantége.of;known.bouﬁd states.
This ¥nowledge can be used to ppovide a monopolé suppression factor. To this

end we shall consider the negative hydrogén ion ‘as the limiting case pr the:
Llow energy scattering process. This 1s Justified by the small. value of the.



| binding energy of the bound systém. In the creation of the H~ ion model a
linear parameter A is introduced to suppress the.contribution of the monopole

term of the first order perturbed orbital. The value of the suppression
factor might be determined by either a variational tfeatment or by -choosing
a value of A which fits the bound state energy to a previoosly chosen value,

' say the variationally derived value of.Pekeris (1958) . -

We shall consider the model of the H™ system to be composed.of an
electron, the origional atomic electron, described by an adiabaﬁicaily dis-~
torted ground statbe wave function whilst the other eleceron) initiaily
incidene, is represented by an unpertufbed ground state wave foﬁetion.

In a simpler model .consider the incident electron introdueed_into the
hydrogen atom such that both electrons occupy ground state -(1s) orbitals
without requiring allowance for mutual distortion effects in the wave fun-
ctions. The Pauli principle insists that only the sihglet oese be valid.
The trial wave function is | : .

T (1) - Kz (14 P HOBGY . s

so that the total energy of the bound state system becomes

J& (Ha « Ho + V) Eondr = 2647 s
whefe U L <pLG p () | Ve 1B G LG . s
This gives a value of 8 = - # ryd, or a negative electron.affinity

for the atom of 0.25 ryd. The elecbron affinity is the dlfference between

the bound state energy and that of the sysbcms comprising the hydrogon atom

-plus free electron of zero incident energy. The variatlonally derivcd value

of Pekeris gives the electron affinity as posifive and equal ‘to 0.0555 ryd.:
The distortion in the wave function of the hydrogen atom is chosen

in first order perburbatioh theory. Using the Reeh expansion (cq L.36) the

first order perturbed orbital i#ﬂritten in terms of the complete set of



Legendre polynomials. A linear suppression factor is ié.pplied to the monopole

term. The second electron function remains undistorted. The trial function

is P (1,2) = Y53 (1+Py) [%(z), + Xa (',Z)J,BZ o '. | : -. o3
where Xa (L2) = AXe(L,2) + ) X (n,rn) R (M) 5. 14
© $»o .

(see eq.4s36). It can be shown, using the no‘ga-'tion of eq.h.3Lkand L.50, that

(Hoa = E) Xa(,2) = [A(VE) =va) = (v-w)]pel)  S.is.
where Vis the averaged central field interaction potential and .Vo the
monopole term.of a Legendre polynomial expansion of V.

We require the value of E up to second order in J‘.-ri_'be_-rat:t,‘ion .’c.erms ’
where - . -
HII'I.':.POIHCI":]/[IZ‘F/Zdrdra] L S5.16
A1l terms arising from the action of the Laplacion Opcra.tor on the first
order perturbed orbital are neglected along with third and hlgher order
interactions. ' The former terms are equivalent to the FllS'bOI"leﬂ potentials
. which a.re' super%.eded by monopole suppressions. Similar terms were negle'ct,ed.
_in the previous work of Drachman-. | |

Substituting from eq.1l3 and 14, eq.l6 gives ( in a.ﬁ.)

E=[-3%+2 (4—/\-) ko -ré/zZ/\’: +A%L, +ZL;]/[I+A?M¢+Z”M] o 5.7

o © s - 0
where

j/ﬂo(')l‘,B’(z)/,- Z’*)('Z)dr.dn' : .
Ls 8/{250—')[ %00 =Y (11 dr.dr,} Hm(u)(/,-,-:),n(u z),r, (2, ;)u’(z)dr.dr.}]'

Ms = §
/(2“')[]1%(-)1 12 (1,2)1 dnolr.} [j,a{,(,)z,(, z)x.(z,/);a;, (z)dr.dr.”
A table of K, L and M is: given below. _

Keeping all terms up to second order provi.c}es a minimum- value, for
variation with respect toAat A= 1/3. The associated bound state energy of
the system is E = - 0.97 ryd, a negative electron afi‘inity ‘of O'.(_)B ryd. No

bound is formed. However, retaining only Linear A dependent terms a fit to
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‘the Pekeris value -can be found

ECA) = [-0.375 « 24 ko + %/ ks 4ZL;]/[‘+S{MS] - 0528 au.
S0 S>o r.v

giving - G.3s

If all terms abovz first order of'interactiph'are'igndred the fit

() = [-c.37s + 24k 43/2'2 k:] = -C.528 qa.u.

provides A = 6.28 | e
S Ks (ryd) "~ Ls (ryd) SR Ms (ryd)
0 - 0.178k . . 0.8, 0.2006
1 - 0.1202 . _o0.0272 . 0.1600
2 ~0.0170 . -'0.002k 0.0100
SZ;" - 0.1372 - 0.0296 © 0.1700

The table gives the values of the components of eq.l7. The positive value
of Lo is consistent with the fact - that the monopole term concentrates its
effect on the small r values of (1 - r).

3. e~ H Scattering with Monopole Suppression

A phase shift cﬁmparison between the monopole suppressi;n (ms),
Exchange adiabatic total (KET))éxchange adiabatic dipobe_(AED)(ﬁo monopble,of
quadrupole), and the extended polarization (EP) approximations are shown in
£ig 4.3 to b5, | | o

Whilst all the M.S. phase shifts tend to- the EP at low energies, where
they ére insensitive to variations of the monopole sﬁppraésion factor A,
- only the triplet édWave values remain:in agreement as the energy increases.
These latter values are seen to be leaét sensitive to'the inclnéion of
polarization. In all cases the MS values lie ébove the E.P Valueé, There
is general agreement in shape, the'e¥Ceptions being the sipgleﬁ p-wave phase.
Shifts which remains positive in the .S approximation.' The closest agreemer
with the E.P épproximation is always. provided by complete moﬂopole supﬁressio

The difference between M.5 and. AED results indicatés that the quadrupol
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polariz§£ion potential moves the phase shifts'away'from-thé'E,P}'appr6Xa
‘imation. This is particularly apparent as higher paptia1.Wav§s.are consid- -
ered. '. -

The linear bshavioyr of the plot of s-wave: siﬁglet; and tripltet phase
shift against the monopole.suppression factor demonstrates thaﬁ ahy choice
of the suppression factor would lead to- a value lying between tﬁe'M.S and
AED curves (fig. 5.3).
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CHAPTER 6.

INELASTIC CROS3_SECTIONS

To indicate the origin of the effects of distoftion'the full second
order effects on cross sections will be included in several étaggs.

Consider the transition matrix:

T = _(%ll//.‘?.'*) 671
where _@,7_7:- is the trial wave function of the system for the particular
approximation under consiﬁeration and % 1is the exit channei w-a\_re' function.
We shall consider the following 'approximations'. o
1) _LE is taken to include distortion in the 'ato'mic viave function
only. The incident particle is.described by a plane wave _fu'ng_tion as in the
symmetrized Born approximation. This is described as .the polarized Born
approximation but includes the usual exchange- terns. "If no ai_:tcmpt is made
to guarantee f,he orthogonality of the initial and final stafes t;,he resulting
cross sections vastly exceed 'I:.hc_)se of the Born é.pproxi.mation. |
2) Rather than include the distc-)rt.ion in -the a.tomic wave function
 its effects can be ba1ren into account through the- Variatlonal sing. le pa.rtlcl
' functn.on descrlblnrr the pro,]ecbile. 'Thel atomic wave functlon coni_rlbutes
in an ecquivalent way to 1'ts_' role in the symmetised Born apprémpla'r;ibn. By
neglecting the distortion in the projectile ..\;va've function’ b\;b'kee'ping exchang

the approximation provides the fully symmetrised '....: excha.rrgé z—i.p'pro:d.rpation.

3) The distortive effect of (1) and (2) can be brought toge'bher.
Though only direct distortion berm will contribute to' the proaect:.'l.e
function disborblon, we include either direct only ofr direct plus Lxchange

terms in the atomic wave funcb;.on.

© The initial wave function will be consi'deréd in thé,most'générai form’
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@ 0,2) = (122,) [2000) B’"’(ﬂ)}"(‘ ' ' Y-
‘where F includes all effects of the extended ._polariiation approxihﬁtion,

The transition matrix is given by

T = 'V(.er)' < o42). exp (t'ﬁf n) | %%, "l/n/ (Z'f IZJ:_)> | _ 6.3
where
le = 12(0) + :z(.) ' 4.4
and
2.7 = p () .F )

2" = 00,2 F0)

1) POLARIZED BORN APPROXIMATION.
As a first approximation eq. 3 and L are replaced by s&mﬁetrised

polarized Born approximatlion

Zl1

n

[ﬂo(-?) + ) (1,2)]. exp ("'; &-5)_ o . s
. and . | _ : B
Tu = bin: (B Coxp (ity.r) V- BilZiy * 2D b6

For the moment consider only the dlrect teims constitut:mg the polarJ zed -

Born approximation. Thus eq. 6 reduces to
T o= T . T o I

where T( ) .

is the Born matrix. The right hand.term.carries the distor-
tion introduced by the incident elec_troﬁ. At low energles a perturbation

theory approach should be valid. - " N

T = ((ﬁ;_'l v ,2) . o | 6.8

where W;"’ 1s the product of the plane wave projectile function-and the first

order perturbed orbital,defined in eq. L4.36. in _temis of .a_. compiete séﬁ of



Legendre polynomials and corresponding fu.nctions ' JG (1,2).depending on
the radial coordinates i and n . |/ is the Coulomb potential

defined in eq.4.3Lk in terms of Legendre polynomials a.nd correspondlng

functions <Ys ( b, r.)

-We can write

OH1)

T = V'(er)'_/d_h. expl(ipk) f(&) : | _ 6.9
where | . |
fr) = [p(2) 1 (,2).80(,2) dn ‘o
-and ' .
£ - fe — &y

Using the expansions described above for Vand &¢") , f(h ) can be shown to

reduce to an infinite sum of radial integrals for ground state s'_catte'ring to

the n = 2 level. -

1s - 2s Scattering

The Born element is written as

T ™ 2/ fo:t'n(]:r.) h Hwﬁ’u(n)()i (H,‘h)_ﬁu(ﬂ)""_’d.njdﬁ” i b.11

The first order element is given by eq.9 with

4(5)-=-Vr,//zz?{z)_la’m(_r.,f.)d_r,+fz,',’(z)';%,,,.,a'm/.,z).,¢r - gz

= A{ -4 [Ras () 2o () 1l .J]}u (k)0 (r,0) Xs (r, Ry dn /(2ss1) J

f=0
This expression is seen to consist of funct,ions depending on r.ancda  but

not & or A . Such being the case it fo].'l.ows that )
Tu® = 24 [Hr)sinCpr).rndn | 6.13

g | _
However with this choice of _‘I’ (\/ﬁ /J;) Fo .. In order to -

N

ensure orthogonality we require that _ .

JRis ()2 (i, n) midn = o ' Y Y L <
resulting in the disappearance of the first term of eq.l2. .
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" 1ls - 2p Scattering -

The final state has a differant orbital angular momentum state than the

initial state

Bt (2) = Rop (r) Vim () S 6.i5

The Born T-matrix element in terms -of the spherical bessel function J,(pr)

is -

-Ei(d) = 2i 4’1'/4[_/::‘;3.5 ZJ' (P":.)jdf;.’j'. I?)P(';a.)x(ruﬁ) Ie"‘ (ﬂ?})'/m'{ﬁ) : . Ib'

The first order term gives o
70 [T, -1/ () o L '. 17
where |
TI.= & m/_g[j}.(ph)n'o(r;. Vi /jrfj.,, (r) X, (i) 'otr-})’m. (ﬁ).'zﬁ
" ) : :

T = & g Dfftr i pr [ 0 6205 e, ) B, ) (0 2) | oi )20

(; 'z i are Wigner 3 - égeffic:‘fents (see Messiah IT, 1057, eq.

Cl5b and C16). -Summing over ‘the final m! states, the differential cross

section is

'Tl:s,zfslz =.2-"77:,2pm’lz = 3 I/:(P)Il o ' o b, 18
where " o ‘ '
F(P) = _LT[..(Pr,)h’-f(r,)O"'-
and ~ _ _ : _ :
‘F(".) = of[% /?zp (”-)b/. (".,":)fl’u (P’.) - 8’/3 . I?alo ('_.)"\%1 '/‘?,(h/ ) b1

[(S-ﬁl)é(/l,.f-fl)-f‘sg(/' -1)]
g ,5=1
+ SZA- (le-l'l) (2.r+_l) .

’;‘he orthogonality condition

/?al/:(ﬂ)dj.('?,kz);a- (,—,’r‘)j fazdr,_
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j:ol?ar, (n)'/'l":fn,r,)h’oln =c - ' . 4,20
requires that the second term of £ (r ) vanishes.
Cross sections result by substituting the Tﬂnatnix (eq.7 with eq.11,13,
16,18) into eq.0.22 and integrating over momentun transfer. | |
en heimer

The 5':;Po.'la,rised Born, glrect and direct plus exchange approximatlon

trans_ition amplitudes are respectively written as

@ o (.B”fﬁ)C-’XP//a;r)//r, rr./zz+zz.”’> ) b.21

Tt

and . . : _
"G{(f‘-e) = Yn- < PG (x.)e,\:P(i/g_f_'_") | 4, - W, I-z.'lz_'f'l22l>“ - .6'22
" where .
2{::) = B () exp (i ko) 6.'23

T‘“) will not be evaluated by the above treatment (integrating numer:.cally
over momentum transfer) bub from a 51mp11fication of the full polarization
tréatment of section 3.

| | For the‘- 1s-2s and 1ls-2p scattering processes total and dj:-ff'e_rential
cross sections have been calculated in a eeries of approximations to the
polarized Born approximation (fig.6.1 to 6.4). Due to the series nature
of the first order polarieed erbi_tal it is possible te,melete ‘the. contrib-
ution of each of these terms to the scattering amplitnde.

As the transition amplitude 15 Ian intermediate celeu]:ation .in the

evaluation of total cross sections it 1s possible to in\{estignte the effect
of the alternative Moiseiwitch definition of th‘e differential'cross sections

This suggests replacing
VT4 1% = | Ta o T * - | o bk

the definition used elsewhere in this. thesis, by R
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1T 1 = | Ta@ ] |70, 27:0) I b2

on the grounds that eq.2h includes additional fourth order' terms. | '_ In view
of the approximations that are necess;ary' clsewhere‘, it is not clear how a
consistent form should be constructed. |

For the 1ls-2s process the total cross sectlon contribution: from terms
associated with s > 2 (eq.12) is negligibie in the energy range c_o’nside'red.
The full polarized Born calculation will be taken to be that wi’ch -'bl;le firs.t
three terms. Neglect of the monopole contrlbutlon (Total Monopole suppres—
sion) causes the approximation to/g,lve results in excess of the Born above
1.1 ryd. Neglect of the quadrupole contribution is much less drastic, agree-
ment being very close beloﬂ 0.9 5;Ii-emeen the full approximation a.nd that
ret.a.lm.ng s=o0and s =1 terms. At the greatest the difference between

full paJdnrzed

this approximation and the Born is less than 15% though the approach to theFF
Born is very slow'at higher energlcs. The choice of the I\I_o:.se1w1bch_ con-
vention gives rise to only small changes in the' total cross scc'bion. - The
greatest difference at 1.2 ryd.is 1esc than 5%. The two forms jc‘onverge'
. rapidly above thls energy. |
The 1ls-2p total cross sectlon calculatlons indicate the nece531ty of
. including the flrot four (s = 0,1,2,3) partial amplitudes in eq.19
Neglect of the s = 3 contribution causes an increase in the cross sccblon of
“up to o, sligh'bly 1oss than the difference due to using the alternative
Moiseiwitch convention. Complete monopoio supprescion apﬁears "'t',o counter-
act neglect of contributions higher than quadr\ipole.. Though 'agrecment _
between the full approximation and that retaining only the s =1 and 2 pﬁrtia
amplitudes is to within a few per cent, this cancelation between neg,lected-

" terms would seem fortuitous.
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The form of the total cross sections is indicateél by the structure of
the differential cross sections shown at 1.0 ryd. (fig. 6.3 and 6.l.|;) .' The |
curves - . corresponding to the inclusion of different partial nmpli_tudes
show genera%ﬁgreement in shaps and pealt positions for 1s-2p transitions,
variations being restricted to the magnitudes; In 1s-2s transitions the
different approximations demonstrate:. shapes which are someh_rhat out of phase
with. one another, causing the crbssing of the total cross 5ebtion_ curves.

The large contribution of the Moiseiwitch differential cross sections at

small angles seems to be largely compensated for by the dip at intemediate
angles (due to the changing sign of ( TP L 2. Tiel) ) in eq.25).

2) Single Particle Polarization Approximdtion ' L |

Y .

Restricting distortion to the projectile wave f.‘u.nction is equivalent

to replac:.ng the symmetrised Born transition a.mplltude by

T = Y (Df&)@wﬁkm)l/m-/r,lllh’* Z,"") o .30

where Zi” 4s - . defined in eg.L. F(1) can be expanded in teims of
" reduced radial functions wi associated with the { th partial wave '(eq. _ '

- 4.16), mormalised to the assymptotic form

Mf(h) ~ I,\,-V;. Sl-i’\( irn - -()Tr/:z +-7¢1) . _ - o L. 31

Notmg ‘the dlfference between this normalisation and thab for the
. spherical bessel funcblon (eq.21.15) the evaluation of cross sect.lons follows
exactly as for Born cross sections in Chapter 2. Replacing J ( R( r) by
the reduced radial functions of appropriate symmetry then,from u.q 2.27 to |
2.32., for the ls-2s scattering process the cross sections we obtain are.
Q n,-z.>=4’m/,,,.,.2”{/:,>:(~-zx>l‘+3 IP:'(;J-::)/Z] (red) b2

S=o

o
’



where

fﬂ; (r)h @ "/ (/)/1 o 6.33
[ (2- r) (250 fl1+13) ~ JA-,(:)/(Z‘*’)] %7 e-""'J‘/""r')-(z-’}n)} ot

For the 1s-2p process the cross section may be expressed as

Ps: (l.l —2:

- - - — e — o

@lis-2p) = 4he/(3h:2) [{lp,*ﬁ,-j,,)/iJ/P; Gs-2p)I*}  (meo?) 634
J=o0 ‘
where |
| P C1e-2p) 12 = [ HEGomry )% (so ) B2 (501, 5)7] /(2001) d3s
and
H* (6, 4) = [dn.n st (n) (B)%)[T » 636

[ Mgy [8 -5 (54 125+ Gr2e 2763/4) ] fa (ket)
£ 1 f12000) [30 - 2800800 (10 1)1 | | |

dk: CA)

is defined in eq.2.29. A m6r¢ detailed account of the
1s-2p calculaulon is given in Appendix k. | a
Several approximations follow depending on the choice of proaectlle
wave function. Here we shall consider: - . _ |
-(15 Exchange approximation - in which F is the symmetrised central
field solution. No polarization is included.,
(2) Adiabatic approximation - in which second order direct polariz-
ation terms are refained (Labahn and Callaway, 1964). ’ 1
(3) Extended polarization - in which the full direcﬁ sécoﬁd order

interaction terms are kept (Callaway et al, 1968).

In fig. 6.20, 1s-2s cross sections in which the single particle wave funct-

ion, is described by the central field exchange and the extcnded polarlzatlon

approximations are shown in comparison with 3 - state and six-state close

ooupling values (Burke, Ormonde and Whitaker,:1967);the Born app?oximation
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and experiment (Fite renormalised results- of Lichten and-Schultz :-.Chapter
3). At low energies (below 0.8 ryd) the agreement bc—:’wé’en the two single’
particle approximation values is almost exact. At this same en";,rg‘,r the *
-approximations move very close ta the close coupling approx_lmatlons. This
is Just the region where the three state and six statﬂvariggi closely agree,
and it might be expected that the neglected hlgher coupled st_at_es have least

sigl’ﬁ.ficanée. Above this ehefg;y the single particle a.pﬁro:dmations slowly
diverge, the exchange appoximation falling below é.lmost to touc"h ‘the experi-
mental curve at its-peak whilst tﬁe EP curve moves towards the Six state
values. The single particle approximations are bounded'b:.y' the six state and
'exper:i.méntal curves, above and below respectively, th-rc;'ug-hout the. range of
availablé results. Agreement_ between the former apprqﬁhhation' curveé is
falrly close throughout the enérgy' range ;De_i'ng al: most -of the order of &b,
Table 6.1 indicates that above L ryd.the approximations are slowly converging
The a.ppfoach to the Born approximation is 510w. A diffefénce ‘of the order of
10% shows even at 9 ryd. The peak valués of the exchange and EP a;.ppr_'oximé.t—
ions are 0.19 and 0.195 ( 7@e® ) respectively. Peak -pos'ition's'. at 0.825 ryd
agree closely with the six-state value , . lying just below that ..of"the
experimental cur'vé. L A VP |

N [ A P R . . . -
Lo

The adiabatic cross sections (fig. 5.1;.)_ demonstrp.te a considerable
change in 'ma.gni'bude compar.edl to the E.P. ._'appro:.dmat'ion,. 'Ehough there is
general agreement in shape. The peak positions coincide wi'bll the B.P. peak
whilst the peak value. of the AE‘.T approximation is about 50$$,aﬁd' those of the
. AED and MS approadjnations about 75% of the B.P. peak value. This demonstr-

ates the relative equivalence of the effects of the monopole polarization,

a.m_i-the dynamic distortion potentialswhich holds up to about 1 ryd.



Above this energy the adiabatic approximations converge rapidly. 'Qonveré-
ance to the E.P. approximation is somewhat highef_(about 1.5 ryd). The.

. comparison of the AED and MS curves shows thaﬁ the effect of neglecting the
quadrupole potential is never more than é_few-per cent. |

A second peak is appafent in the.single particle approkimaﬁions at
~ about 1.5 ryd _(fig.s.l;.) The existance of a second peak is indicated by the.
experimental results of Hils ethl (1966) (see fig. B.ib,.with a peak maximum
at 4.5.ryd. The experimental pealsr maximum to first minimum differeﬁce:'of
0.007 ( 'naoz ) compares wit-,h a difference of 0.02 ( Tat ) for 'the'éxtendec-i
polarization approximation.(fig.6.2h).. éompared wiﬁhﬁéﬁher the;fetical '
approximations (fig.5.4) the extended polarization approximation,.which
would be expected to yield the bést results, moves sliéhtly-tawards agree-
ment with experiment.

The origin of the second peak in the extended boiariZation approx-
imation 1s-2s total cross.sections.can be understood from the rdative |
contributions of the singlet and triplet partlal cross sectlons (see table
6.5). The total singlet cross section and sultably welghted brlplet D wave
partial cross section are shown in fig. 6.25. _For singlet cross sections,
the S-wale contfibution is doﬁinant at low cnergies (k* < 1 ryd) giving
way to a dominant P-wave partiﬁl cross section abové_k' % 2 ryd.’ The tota;
effect produées a éinglet cross section which falls off from Q.é? (ﬁaf)‘f
at k? =1.lryd to 0.12 (mad)  at ® ='3.rydf In this energy.rghge:the
triplet cross sections are dominated by the D wave pértial.cross section,
with a maximum value of 0.03 (as”) at k* = 1:8 ryd. This-can be explainéd
by the large triplet D-wave phase shifts above k*'= 1 ryd (see fig.h.5).

Though the singlet cross section dominates over the triplet value in the
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51ngle particle and close coupling approx1matlons the 51m11ar dlsparlty
displayed by the partial cross sections might be expected. Howevcr the
great disagreement in the relative magnitudes is sufprising. For singlet
scattering the extended polarisation s-wave value exceeds tﬁe closo coupliog
approximation by .a factor of more than two at their respective pe aks, bhoﬁgh-
the peak positions of the E.P and 6- state approximations agree well. For
—~— _
higher partial waves than { - 3,the contribution to the total cross section
in the E.P approximation is negllglble in the region of energies covered by
the close coupling: calculatlons. This is contrary to the 51tuat10n which
holds in the close coupling approx1matlon, though it should be noted that the
E.P results have not achieved their peak values, in this enzrgy range.
Triplet E.P results give no better agreement with close coupling values
* though their effect on the total cross section is small, contfary'to the-caso
of the triplet pqﬂave close coupling Values; It is interesting to assess
the role played by polar1Zat10n and distortion pobentlals in the: chwr;cter
of the partial cross sections. Comparison between the exchange. approxlm—
ation, which owes notﬁing to these potentials and the E.P approximation
indicates why total cross sections are little 1nfluenced by these more
1nclu51ve effects. Whllst the triplet partial cross sccblons, 37and P-wave
values differ con51derably in magnlbudc, and for the S-wave: also in shape,
the dominant role of the singlet partial cross secblonu render these
differences negligible. The P-wave cross section is also different in that
the exchange values exce=d those of the E.P. approximation. The singlet |
values agres well in both magnitudo and shape,fartioularly so for the domin-

ant g-wave cross sections.

. Fig. 6.21;compares 1ls-2p cross seclions for two single particle
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approximations (e :change, and extended pOla.I‘lZ’! tion) w1th the 3—af;’l.bv and
6-state close coupling values (Burlke,Ormonde and Vhitalker -1967) }-vhich agree
so well with the experimental pointé of Chamberlain et al (1964), also shown.
The close coupling and experimental results are givenfor perpendicular cross
sections. They have been converted to total cross sections using eq.3.3 and
the valuea of the polarization.given by Burke, Taylor and' Oﬁnonde (1967) |
(tig.3.5) o |

Unlike the 1s-2s cross sections- the exchange and extended polarlzatlon
cross sections differ greatly at 1ow ensrgiss, the E.P Values_ being as much -
as 30% lower at 0.85 ryd. The disagreenent extends ub _to:abou-t.l ryd, above
which the two curves slowly converge. For erier.'gi"es between 0.77 ryd and the
n = 2 threshold resonance region (8 = 0.87 ryd), the &.P ap'pr-o:dmation |
results show good agréement with the close coupling results. Above 0.825
ryd. the 6-s£ate and 3-state curves divérgé. The EP curve lies between
them remaining closer to the more 1nc1u31v=. b-state valuns. At ver;y‘.lon
energies the single particle approxmatlons go to zero,bemg modln_ed by k4
the final momentum, while experimental vr_alueo display a flm.te threshold
effect. '

The maximum cross section in the E.P appro:dmation is at = 2.5 ryd,
just above that of the Born approximation ‘(tab: 6.2). The -pealc_ value .is
1.1 (T@e’) compared with the Born pea.\lc of 1.3 (ma.?) . - Convergance to
the Born approximation is much faster than in. the 1s-2s .t-rar-ls'i_;.ti.on,. agreemer
being to witk_lin 5‘,’-3 above L4 ryd.

Comparison of the adiabatic' appro;d.matibps with_ the E.P approximation
is shown in fig. 5.5. The effect of the monopole sﬁpﬁreésion- is negligible
on the scale shown and both MS and AET cross sectioné; are. re[f)résgntcd by

one curve. This curve falls well below the E.P éurv_e; at low energies
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(8 € 0.9 ryd), where the cross sections of the latter‘approximaticn.agree 50
well with close coupling. With increzasing energy the exchnnge-adiabatic
curve approaches the 3.P curve crossing at 1.1 ryd and convenging to it
slowly - -: at higher energies.

| As a result of the differant way of npproaching partial cross sections
for transitions on which the angular mementwh of the atomicelectron does
not remain zero,comparison of close coupling and E.P partlh_ wnve Cross
sections have provcd impossible.

In fig. 6.11 to 6.15 ls—2p partlal Cross sectlons are glvcn in the
central field exchange and extended polarlzatlon approx1matlons. The agrec-
ment in shape seen between these two approxlmations in 1s—25 tranolt10n51s
also observed here but there exists much greater dlsagreement 1n,m@gn1tude,
which is reflected in the total cross sections. The exchange Values exceed
those of the . E.P approx1matlon in all partlal cross sectlono but the triplet
s-wave. However as this contribution is down by a factor of a hundred
compared with the other contributions its effect is ncgllglble. ' Difference
in the magnltude of both 51nglet and triplet pANave partial cross sectlons '
is somewhat over-shadowed by the similarity of the charactnristlcs dlsplayed

by the singlet s and d-wave ccntributlons.
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TABIE 6.1 - 1s - 2s TOTAL CROSS SECTIONS ( 7rad’)

K2 = 0.77 (ryd)
. 0.80
0.825
0.85
0.90
1..00
1.10
1.4k
2.00
2.25
3.00
4.00

9.00

BORN

0.1095

0.1621

0.2066

.0.2483

0.2509
0.2280

0.1€31

0.1670

0.131L4

0.1020

.0.0477 "

EXCH. APP,

0.1420°

0.1822

" 0.185L

0.1677
0.1294

0.1048

" 0.0880

0.0990

0.0743

EXT. POL.

0.1415

_0.1935'
| '0;1927
0.1789
19.1Lh3

0.1194 -

0.1237

0.1198

0.0982

; 9.0792

0.0437
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TABIE 6.2 - 1ls - 2p TOTAL CROSS SECTIONS. (7"002)

BORN EXCH,  APP. EXT. POL.
= 0.77(ryd) 0.342 0.386 0,237
0.£0 0.528 0.507 0,328
0.82 0.617 0.542 0.36k
1 0.85 0.725 0.569 0.406
0.90 0.859 0.597 0.467
1.00 1.038 0.664 1 0.589
1.10. 1.150 0. 747 0.703
1.50 1.21 0.975
2.00 1.310 1.068
. 2.50 .1.25 1.105 .
3.00 1.174 1.076
.00 1.041 0.988
9.00 0.662 0.63L
TABIE 6.3 - 1s — 2s TOTAL CROSS SECTIONS.(Ta.*)
B.O. POL. B.O. " FULL POLARIZATION
- . DIR. -  DIR + EX. DIR. DIR + BX
= 0.77 (r,ch) 1.34 1.145 . 0.853 10.2261 0.0387
0.80 1.63 1.553 1.070 0.2986 0.260
0.85 2.05 1.710 | 3.108 0.3178 - 0.720
0.90 1.98  ° 1.646 k120 0299 1.083
1..00 1.65 135 3.879 0.2131  1.086
1.10 1.30 1.053 2.806 01951 0.766
0.60 | L

1.4k

T Con'bd- es o



- TABLE 6.3 (Cont'd)

2.25
L.00

9.00

B.O.
0.20
0.096

0.045

- (O -

DIR.

0.0878
0.0417

POL. B.O.

DIR + EX.

_ FULL POLARIZATION

© DIR.- DIR + EX.

. 0.08€0

0.0420 .

TABLE 6., - ls-2p TOTAL CROSS SECTIONS. (Tad)

B.O.

0 077 (Y‘yd) l -le

0.80
0.85
0.90
1.00
1.10
1.h4
2.25
L.OQ

9.00

1.88
2.01
1.92
1.66
1.6
1.45
1.13
0.973
0.648

POL. B.O.
DIR.

0.990
1.292
1.392
1.367
1.018

0.87L

 0.907

0.638

. FULL POLARIZATION

DIR.
0.156
0.223
0.290
0.346
0.441

0.518

0.90k
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FULL POLARISATION APPI OAIMATION

A more inclusive approach to polarization than those mst with above is
provided by dq. 6.3'whereby all fifsﬁ and second ordef terﬁm of the scattering

amplitﬁde arc retainod..

In fact it haé not proved possible to provide the full sécond order
projectile wave function. ‘Instead we use the extended polariiétioh approx- |
imation in which higher order exchange interactions are ignored} It may be
better to keep only direct higher order contributions from the distqﬁ%ﬁ
atomic wave-function, As such the direct and exchange contributions are
introduced separately.

The full direct second order contribution to the transition amplitude

gives

Tl = Y <8 () exp iker) 13 = Y61 20 (1,205 = Vo Anre] e
where _ . |

200y2) = FODRD (1)2) - o b4l

The 1mportance of having the initial and final states orbhOﬂonal was stressed

above. This requlrement gives :f4 = 0. _ : 6. 42

1s-2s Scattering

I3 =lkn (—c)‘ Ja (ke ri). .l.u(r)"dﬁ_/-ﬁ’uﬁ‘i) ");q(";")"' ‘dn . /a ('") .43
5 ’ ) (2’4— I) ' a
iy = 4
et - 16,. .)[/,(mr) u,f(r)r.dr.jp,,(r.))c (r p)nidn . d1e. Y (k').zo 6.4

s,
Direct cross sections follow using eq.32 with eq. 33 redeflned as.

P.I'~(LI-2.I) = Py (s-20) —4jdr.j(klr)a'(”)/dﬁ f’:r("-)[[’z:’i"/*"“))a”{r /) A u_)}.
"4 .48
1s<2p Scattering

1s-2p cross sections follow using eq.3k with eq.36 replaced by
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H(s,4) = H(s /I)+4_/ab, J:(Im)m(l )_/clht. /2,,,('.)-'

.3 [u‘-.('.,r. (12 1)d0i O r,>;(,[,,, N
5] (2t~ T Tarer any —./'L.(n,f-,)}

A check on the computational techniq_ueé is p;'évided byl repla.cing” Us (h)
by Js(l?-'h ) in eq.45 and L6 and ignoring all e:gch:-_;.hge .térms.. The a.pproic_—
imation then reduces to the Polarized Born apprommtidp.' ' o

The fully symmetrised second order polarizatibn abproﬁ.mb,tién follows

defining the higher order scattering amplitude lto be

T ™* = T a z Tyflex L. 41
Such that o :
T e = Yy <RI expliker)] Sy "'Vh/2(')(2,-l)>=),2/_7r[1-:*-_1.-‘!} e
-where '
Z(2,1) = f(')(z,l) F(z)
Cross sections are given replaclng eq.L5 by
P (15-25) = P (s- 2:)+4jdrrj (k,".)f"l"'"-“l(”’o“(")‘ - 6.4

[3’9. (’i,ﬂ) k- (Lt oal.rc) 97’ (n,n))flf":,r)}
(2.\'4!) 42’ (2.!4-!.) .

and eq. L6 by
H(-‘ A) = /./(;,,l)+4/dr. j(’fl"l)jdh I..J?ap(n)lla(b)/(.?m) o bso

[/_[(u oo 56y T tr, 1 )0elr,13) r - 3 s (":' )}

The non-zero values of the s_quared Clebsch-Gordon coefficients:

: 5 .
(U'o_ol.s o? are given below for {=0,1,2."

- 4d=0 s I 2
Y o=8+2 = 3(l+2)(¢4f)/(214l)/(21‘7)/1
S+ N V/(2t1) o .
s g S P /() f2de3)
$-1 (ua)/(zcu) "

s-2 ' o 31(1'-.)/[21-:)/(214.) /1
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In practice evaluation of the sums for the ls-2s cross sections sho*#e
that it was necessary to retain these first three terms. 'Caici:lations with
1s-2p tra.nsitions converged very sl@h as additionai terms were introduced
No calculations. were made using the ful_'l. térm of eq.50 for the' 1s-2p ca..se, b
instead (L46) was used. |

Evaluation of eq.L5, L6, 69 and 50 depended on the relationship

T {463) P (53) P (2)) Ko Cr) Y (7) it st
= I:r/(z.su)-(l”l’oo/Ja)z_(soh/lm'/AO)c/ﬁm |

where '/ ) .
(smidm Do) = [(Z'I“)/(Z.S-fl)] z(-)‘('do/;io> Csdmnm /:{* °>_
3. FULL POLARIZATION APPROXIMATION '

The full polai'izai‘,ioﬁ approximation total cross seét‘iohs_-in the ls—23.
transition have been evaluated in both. the full form, with dil;ect and
exchange distortion from the atomic wave function, and in the form neglectin
the higher order exchange terms, which is consistent Q;lth .thela definition of
F(1) . ( These results are given in table 6.3 as Full Polarization (air)).
Aléo available are the polarizsd Born Oppenheimer Valt-:les which follow from
the full polarization treatment upon. replacing the single particle projectil
function by a plane wave. Ii: exchange term;s are neglected -in all orders thi
form would reduce to the polarized Born approximation described above. Full
polarization (direct) cross sections are shown in fig. '6.2. . ‘At low energie
below its pea.'k,. it 1s seen to exceed the cross sectiohé of'the close couplin
approximation and experiment by a factor of two. The peak position is
slightly abolve the other 'bheoretical.appro:d.ma.}oion peaks agreeiﬁg closely
. with the experimental peak positioh. _A.t-high energies (E = 9Wd.)l (tab. 6.3)

the cross sections approach the B.0. values from below. .
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The full polarization (direct and exchange)_approximatioﬁ is observed
to considerably exceed the full polarization (direct) values at all but very
low energies (E< 0.8 ryd) (fig. 6.22) The reason for this can be .seen by
observing the behaviour of the symmetrised Bern and polarized Born Oppenhgi—
mer approximations. The introduction of-direct polarizatioﬁ into the B.0.
approximation brings about a 20% reduction in these vefy large cross sections
whereas exchange polarization producesa far greater movemént.of the B.O.
éurve in the opposite direction. Replacing the plane wave by the-extended
polarization single particle projectile wave function céﬁses a considerable
reduction in the cross sections particularlf at low energies.

The complexity of the exchanée polarization terms renders the full
polafization (direct and exéhange) approximation in the 1s—2§ transition
impractical. - Furthermore the experience of the 1ls-2s transition has
indicated that this approximation produces excessively 1érge values and it -
has not been attempped here. 'The full polarization (direct) cross sections
are shown in fig. 6.23 alongside the polarized B.O. (direct) approximation
and iﬁ fig. 6.21 in comparison with close coupling and experimental values.
 The latter suggests that the direct polarization has an excessive effécéhin
reducing the symmetriéed Born approximation at low energies. At higher
energies these temrms become 1esé significant as the approximation tends to
the B.0. approximation (taﬁ. 6.4.)

A breakdown of total croggigiigspartial contributions shows that the’
reduced magnitude in comparison with the single particle polarization Cross
section is a general feature (fig. 6.11 to 6.15)." Due to the smaller role

of the triplet contribution,the greater differences in cross sections of

this symmetry in the total cross section,are not apparent particularly infthe
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s-Wwave. Shape and peak positions arc common to all the approximdations in

significant partial cross sections..

NUMERICAL T~" WIQUES

The integral expressions of the type (eq. 6.33 -and 6.36)
T = Jarn® wte) o) [dn &t w(n) & (n, ) (5, n)

are evaluated nwnericé_'l.ly. Rewriting the integral as a sum of terms corres-
ponding to the regions where f is less than and greater than r and 'using the

conversion

[artcn>], dngln) - S en g faic Gy

provided that g and f are zero at the limits and integration, we have
[ ' K ‘ P :
T = L dr. 2 fpaen i“["')”'[")jo dn ' ' X (ryr)wn)
+ ;.,(r,)jor'u(r.) () X (r<h) ’a’d"a}

Numerical integration is effected by Simpson'!s method

t[:” .I:(r-) dr =‘ h /3 [ f(r:) + ‘f-f("u.) “ 1[(".'4:)] )

The same intervals are used as for the solution of the integro-dif'feréntial

cquation of us(r).

In 1s-2s transitions all in.'t.egrals‘.- are mociified by an e)q301ien'bialiy
decaying term. This necessitates integration out to an upper limit R. =
10 a.u. for satisfactory convergance (6th figure). In 1s-2p transitions
one direct term decays as the inverse fourth power of r for iargé r. ( All
pther terms decay exponenbially). The integrand, has not decayed sufficiently
ln the region beyond which sensible values are given for the:nwneric;.al _
solution of the integro-differential equatipn. Instead the assymptotic single

,l/ . : . ' - L



particle wave function suggested by Burgess (eq. 4.103 and 4.104) is
substituted and the assymptotic part of the integration continued to a -
point at which some convergence condition is satisfied (An error message is

printed in the program if the error exceeds this condition).

-
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CHAPTER 7.
CONCLUSION.

i) THE PRESEZNT WORK

It has been demonstrated (in Chapfer 6.2) that good agreement is ) .
found between the extended polarization approximation calcﬁlationé.of cross:
sections, for both 1ls-2s and 1s-2p transitions, and both the six-state close |
coupling approximation and experiment. The improved agreement over the 2
adiabatic approximation'appears to. be due to the much smaller second order ;
potential in the E.P. approximation. Those approximations which include

only polarization and no distortion give e%citation cross sections which ars
much too small, as has been demonstrated for the monopole éuppression approx-:
imation (fig.5.4, 5.5.). Clearly monopole suppression is not a satisfactory L
alternative to the inclusion of distortion terms in the simple polafized

- orbital description of the e”~ H excitation processes.

At intermediate energies the 1s—2s cross sections of the Z.P. approx-

imation and the experimental results of Hils et al (1966) do not compars so
well, agrgeing-only in ﬁheir indication of a second peal-. DMore investigation’
of this pealr might be rewarding. Thoggh a more satisfactory approximation
would be provided including higher order exchange terms in the'projectile
wave function it secems doubtful.that this correction would significantly
effect the disagreement. However, changes of the order of magnitﬁde

required to bring ﬁhe B.P. appraximation and experiment into line might be
provided by intfoducing polarization into the transition matrix through the
perturbed atomic wave function in the manner attempted in the full_pdlﬁ}-
ization approximation (c.f. ch. 6.3.) The investigation of the polarized

Born approximation (c.f: ch. 6.1) has shown that large variations in the
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magnitude of the cross sections results from neglect of various polarization
terms in turn without significantly alteriﬂg the shape of the cross section
plot as a function of energy.

Unfortunately it is not possible to consistently;inclﬁde-all polar-
ization and distortion (direct and exchaﬁge) effects up to second order.
Attempts to do so in the full poloriiation approximatiop prodﬁoes Cross
sections that exceed the Born values, though this is shown b& phe polarized
Born Oppenheimer approximation (whose results are even lafger) po be the
effect of the inadequate treatment of exchange rather than the .
effect of polarization. Since it has not proved possible to include all
second order exchange effects in the proJectlle wave function a con51stent
zero order exchange approach is attempted in the full’ polarlzatlon (direct)
approximation. Not only does this provido a reduction in the magnitude 6f
the cross sections but it is also much less expensive in coﬁputef timo.
However, the result does not produce the required improvoments to the E.P.
approximation, though judicious neglect of some of tﬁe additional higher
order terms might provide betper values. | |

2) THE EXTENSION OF THE THEOHY

Recently attempts have been made to correct for neglected'tenns of the
truncated set of close coupled equations).based on hydrogen bound' states,
by incluéion of additional terms. The Burke, and Taylor (l967)'method added
a. series of correlation terms dependlng on the electron—electron coordlnat
which is not explicitly included in the close coupling approximatlon based
on hydrogen bound states. The drawback of this approach is its failure to
make full allowanco for polarlzablon, thouah results prove to be vcry good
for ground state excitation to the n = 2 level in the energy range up to the

n = 3 threshold resonance region.
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It appears that an antisymmetrised expanéion in polarizgd'target eigen-
functions, following the lines of the.close coupling approximation and

polarized orbital methods would be promising. Consider .the  expansion

Vo= ) (12P) K GL2)RG)

where

Yo(,2) = 2. @ () ~ for ;.néo

and .
Y (0,-2) = ,2{'9(2)_ +,6(,m (’/2)

;ﬁ?’are the hydrogen atom bound state wave fﬁnctions and gL is the
first order perturbed orbital of the perturbed hydrbgen grognd sﬁgte system.
By truncating the sum to the first term ( n = 0) only, substitution into a
variational form provides the extended polarisation approximation whilst
replacing I#Q(bz) by &o(2) provides the close- coupling apprqximaﬁion
The Hahn (1964) condition for a bound on phases requires that &(1,2)
is orthogonal to the included bound state functions. |

In the adiabatic approximation it was apparent that full inclusion of
the monopole term producsd an excessivé'short range atbraétioh. _This might
be remedied by considering an approximation which makes eﬁplicit allowance
for the s-channels whilst including higher angular momentum channels within
a polarized orbital frameworlk.

3) AN _EXTENSION TO MORE COMPLEX SYSTEMS

In the extension of the extended polarization approach for excitation
cross sections to more complex systems than ¢lectron hydrogen scattering the
. following points are noteworthy:

‘The success of the E.P. approximation was shown by_Callaway.et al
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(1968) in its application to electron hglium“(ground state) elastic
scattering. ‘Though the polarization pqtentiél is smaller (i,h.aé ) than.i
e - H scattering (4.5 ao ), the external electron now sees a closed
shell and polarization is expected to be more important than correlation.

In contrast with the electron helium (ground statg) éaSe; ¢lastic
scattering of an electron off Helium in the metastabie 2.3 S Etate, wiﬁh‘a _
much larger polarization potential (316 ad ), proauces inferior results
for cross sections in the E.P. approximation to those of the édiébatic
dipole approximation (Sklarew and Callaway - 1968) . This may be seen as
follows. The major omissi&n of the E.P. approximation c0mpafed Qith the
full polarized orbital method are in the perturbed éxchange.tenns. For
. ground state scattering these afe small and:have 1it£1e effect on cross
_sections. In the metastable state the perturbed Wavg funbtion is large as
the projectile electron néars the atom and such effec£é becoﬁe significaht
leading to an excessively repulsive potential.

In the photoionisation of Helium'the use of polarized orbital wae
functions in the dipole length formulation provides’mére accurate oscillatx
wave functions,whilst the opposite is the case for electron scattering)
strengths thap.thc Hartree Fock continuuTAon singly ionised Lithium. (Bell
and Kingston, 1967). This may be explained as due to the short raﬁgc
failure of the polarized orbital approximation being sufficiently compensa
for by its successful representation of long rﬁngé pblafizétion'xor photé—

-
ionisation of Helium but not for k¢ .



-89 - _
APPENDIX 1. THE FULL (SLOAN) FOLARIZED QIBITAL SCATTERING EQUATICK

‘The radial equation for elastic scattering of .o~ by H(#s) in
full second order polarization treatment (direct and exchangz), when
determined in a manner consistent with the Tem%in-Sloan e{pproach,provides i

" the scattering equation

[ + I - U010/t = 250D 2Vget () Ved () J teli) =
o+ {(Eo _knz)fb/k(n)uc(h)ﬁdr, + 2/(2£+,)/R(5)tlr (BN, 0 cll:} fR(n)
f[' 4(E -ko’)[ké)//l’e[n, n)tln)rdn +fe(ta)f£/n)u¢kn)ndﬁ]n/gq¢+ D

D Ceeo?) L Sy R, r)iti o) idis ) S (o 04) |

+ 20 R o { V0 RODUG) s + JRG3IP ey (Yt}

=40 ROn) [ JR () 3 Gy sy i Ctiddn } Jzter)

2 IR [P, é,r,)ta Briels + P ﬁ/n);ﬁﬁ:,f:}ttz(f,}fr.da]/(z/,,)]

All terms are deafined in chapter 4, section one. Neglecting the
term in square brackets on the right hand side gives the extended

polarization cqﬁation (eq.4.20).
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APPENDIX 2.  THZ EVALUATION OF THE FIRST o*ma PERTURBED ORBITAL

We wish to find the most general solution to equation '(6)(011.qubjéct to

the physical restriction of a finite soluti'on,assymptotic;a.lly and at the

origin. | )
I‘or‘ s;f : |
(’443 /{?f}‘ ra -3 {b + ')/41‘ + 2;4L - '1)12(}(r ’;Jﬁl- (?"’; ’;f l

A solution to the homogen-ou., equation can be fourid in the form of a

series expansion
h = exp €L )chfw*”

Substituting this into the equs A, J and equating the cocfflcu.nus of the

. different powers to exponentially decaying and 1ncrc,a.smg forms.

SHt

hi = e ar» h (v-e-0) where Ar's « 2.Cv- (2-—""") ) ﬂz
Y Y- . .)(V—,ZJ-I)
and 5 : —.
h. = ér'j bu,"z(“-x* & phere be < = 2. br-i (v -s)
4, v (r-25-1)

In particular Qs+2 =0 and by="0. Qo and be are arbi bary and chosen -

as unity. For the 1n_,homocenous equation there are two oolutlon., qepmdlng
whether n is greater or less than n . The equation may be solved by

assuming the form

y = exp(- n). g (k). v /s iy

It can be shown by substitution into the equ..- A4 that g is a li_ﬁear

function -
e = =% [N « /5, 0] oA s> B ¢
g = -4 [ Ysei) + /s ] o k<t

Combinations of the homogenous and inhomogenous solutions are talen to

provide a function which is well behaved at the boundaries.. Conéequently

we choose the general form
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Xs(r>n) = oe(r) b - ) o+ e n r'. ge /R A

and

Xs(reh) = /3(1-..). h, + e " hS gs /st

Of the homogenous solutions only h, can guarantee a finite assym.ptotic
solﬁtion in the region #rx > K . The combination (h.-h:)has a 1eadiné
term of order #i¥ for small h , and provides a finite solution at the
origin in the region n>tr. Assympﬁotically ha increasés exponentially. It °
is essential that o(F;) should be chosen to dacay fast enough to counter |
this behaviour. f3 (’:)' should be chosen to cancel the singularity of M atl
the origin. Satisfactory solutions can be found while requiring tﬁat the
two solutions for r greater and less than ¥ should be = . % continuous botﬁ

in themselves and withprespect to their derivativas at their bourdary poi—ht

r,==n.

o () = —Z‘,“ v (ves-1) R (1o n)e " Slzn). (ZJH)/S/_(S*')- |

S+ $—-1
» A (v=pu=2r) Crba p (s 25 - 3ym) S A.6
e O /‘.o ) .

and

/S(r.) = (k)+ Z,:I by (v-§-1+2r) (l+"')'/[_2"')- [2‘*’)/‘__/(”' 1)
| 2“'28-'4,/_)‘. (v --/«-2"._') g Gpov =21
beo Luzo
The coefficients a, and by have been defined f)reviousl.y.‘
Note thato¢(h) decays assymptotically as exp (-2 r,). The 1eadingl'term of
B(6) goes as K for small #; .

For s = 0 the homogenecous solution to h satisfies
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[dz/dr.‘ + Z/r, -.I] K.h(r)=0

An equivalent pair of first order differential equations can be written

2<=(D=-%-1)g and (Datn-1)2=0 AT

where D is the single derivative operator and g = r;#h. The solution to

the second of these equations is

Z = C exp(h) /n - e
It c#o
D(z.gj = 2. 03 +'_9(l-.Vr‘,.).Z = 2.z A.q

Substituting for Zand operating with D™' gives

h=C[—e"'/r, - 2e-h E:/Zn)} A0
where o
Ei(2r) = L ezﬁ/ﬁ.dﬁ
For small valves of r

Ei(2r) s ce + ln(Zr)+2k+ rie s
ce is Eulers constant. A detailed account of this function can be found in

Abramowitch and Stegun (1965).

If ¢c =0 then g = x

where
Dx = (Y -1).% - . N
which glves . j . o-% : - AN

For the inhomogenecous equation (D? +2/; - 1) w=f (K ), the equivalent

first order pair is

(D-Vr+1)we=p and’ (/3.*%—‘-:),3:.-,6.(5) _ A. 12
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From (ﬂ. i)

D(x.p) = x.-,C('r.). | A3

Likewise A9" gives

"D(z.w) = z.p '.j.-ﬂ.l4- -

Operating on both equations with D~' -and substituting for p g,iv_e'é.

4% et mtav.  ames e em = =

. . r" .‘ J, . - . . .
W= z"J e?’/f;a‘; d/,f e-f*fﬁ’.f(p') elp’ RS ;
For the region rs>hn , {(h)= e " n.[-rkF)+% J. In (15) this gives
. é?_,-_g\-,%;-.'_ ’ o ‘
Ye = R [H-rin)] e [2n « 200 (K) - 1- 345} A
There is some freedom in the choice of the constants of iilt;egrai;%.onl o
as fhese relate Lo the homogeneous solu___jculj;j.-ons of the equation. - .Thoﬁghw.

Yy« = Yn s h-»o0 , a combination of y¢ with the homogenzous

solution (% -rv)).h /¢ _ten_ds' to a non-zero finif',_e Llimit.

- The most general solution is

]
H
i
i
)

Xlrsn) = ye + 4 (% = (p)) himoc(r) b B NY

If nen, $h) = - [n rn) -']é°n. A solution of (15) is provided by,

Yy = Hh [ (" ~2tln)-1) ~Tlr) (st -24nln)-2n)e " A7
This solution is well behaved at the boundaries. .The most gensral solution

takes the form

2(,1{“) =g - /3(,;)'};, | : : A.19

Imposing the conbinuity condition tofhe solutions and their derivatives at

the boundary FK = r; y d-mands that ) -

-1+ ) e (co+ An (2)+ % Un (r)) A.26 |

o (1) = 1
+AC (Ve +2-2n) + % (1 -W)Ei(2r)
and _ |
Br) =otln)+ % [20-F (14 11) Ei(2r) 2 (1~%)dnlr) = (1+4%)] |
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where £ (2n) = j, T d_/’ . (3se previous re rance. 40 ‘Abrameeritch

and Stegun. )
For small r |

€, (2r) - -co - dn(2r) + 2r +v? 4 4
As the - _ . solutions 1‘159\1 in this wor' includz s =1 and s _=_'.2,+.'né +2rms
«, 3, h, and h, will bs given in simpler i‘orm._ With refarsncs to

equations (5), (2) and (6).

For s = 1
o, =-34. -2 (1+4)? |  poa
pr= e, ~3% (1 = Ve) '

he = @5 (ie2n +2nt) /R

h. = eh /h!

For s = 2 .
= sg e+ h)(3+3n +_f;z)_/h’ .h.-22
Pr = oa 454 (1+n)(3-3n+k)/HT |

he = e n (1+3n/; + hiy 64 ) /R3
h. et (| —h/2)/n?

In the course of the problems met with in this wor's it is necessary

to impose the condition that the final shate of the atomic system be
orthogonal to the iniﬁial state. For scattering to a final state wh\,ru.{ ,wave
function is given by P} = Rnt(r) Vem (h) ‘this condition can be.-
satisfied by redefining 2" uy

B (,2) = ) (1,z2) -c () i(2)
where

ety = [ w02 an

For scatbering to the 2s-state the non-s-wave terms of £ “are already



orthogonal. The s-wave term bacomes

/i;o (’-,"i)/ = /{’:[h; ) —-(,z.r (h) :‘?:.r/’i)' o g ‘ﬂ.-z-?
where :

Caus (r) = <25 (2+ 3r) e-3n/lz s,

Likewise for Zp “Scattering the p-weve term i F_eae?Fihed as

A?.{h,-’i)’ = 2?, (h,r,) -C’szr,) .ﬂ’f’(’“) - : ,”-'24
where .

. . / -h/a
C’I’(r')-/ezp("a) = ./ir‘_e_"_[é‘

- @3h/2 (5, - ,2',,"_,q,,z 4.2__7r,3'/4)]'
729 K2 ' - :
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APPENDIX 3. THE CCHMPUTER PHCGHAN

The Program 1is divided into subroutines. Control is directed from
the main routine.

1) DIRECT

Reads paramsters which determine the approximation:

R T

KISQ = incident energy (ryd); L = orbital angular momentum (um.ts of M = l) ;
XP = parity; %0,Kl,%2 = (s = 0,1,2) partial polanizapion’ potentials;
%3,k = (s ='0,1) partial distortion potentials; HX(1) = primary radial
interval. KX1, KX2, KED, KOR relate to terms ksp®t in excitation crosslsection
(see below). The main routine calls subroutines as .follows. |
2) RADIAL |

Assigns values to the.radial parameter ‘RX('k). for » = 1 to LkO such -
that RX (W) = RX (k - 1) + HX | |
where HX HX (1) initially, and HX d.onblesla[t the pnints k = 'AD 140,240
Calls subroutine EXFUN - Exfun evaluates the cxponentlal functions ET (eq.
4.0 ) and Ei (eq.A.20 ) at points corresponding tok =1 to hho

These are required by the partial polarization and disgtnl'tinn potential

called by subroutines VPOLO,VPOLl, VPOL2 (polarlzablon) and DO, DL

(&1stortlon) accordlng bo the values \rO, k1, ¥2, k3, k.
The total potential is assigned to POTENT (1;) at. succeséi\fé_poin'bs
k =1 to 44O in terms of the polarization and distort_ibn' noténtials and the
coulomb potential.
POTENT = ~2V(1) = 2.Vpol (1) + Vd @
3) STASOL - evaluates the first three points (+ = 1,2,3) of the two solution

(¢é= 1 and €= 0) of WU¥) of eq.h.66 using the series expansion cq.h.71.

_ L) FOXGOL/FOXGO2 - evaluates W,(%) from e = 3 to 4LO using the Fox Goodwin
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_ te_chnique (eq.4.69). The series valuss of I at ¥ =Il and & = é-(frOm
Stasol) determine w1 at k = 3 This is required to ag?‘ee with. 'bh.e serizs
i (3) (from Stasol) to the fifth figurc for the program to continue.
The integral functions g (k) (eq.h.69) depend on .ui(Jl) (J.< %) and are |
evaluated in .GEES. - |
6) GEES
The values of g (%) for ‘-:__<_ 6 are givén by a series expansion (eti.
L.7h and 4.75). Values of g(k) for %> 6 are given by the Newton Cotes
formula (eq. 4.70). The two forms are compared at 1, = 6; The .program
continues if agresment is found to the fifth figure. _ _
7) RHOS - the two -solu'bionsj-}UL(k) are combined linearly (eq.L.é-Sa) to give
a solution to the scattering squation (L.61). |

8) PHASE - the solution is normalised to the assymptotic form

Wi~ R sin (kr-dn/z + S )
Using eq.L.86. The phase shift is determined By comp;lring this form with
the analytic assymptotic form derived by Burgess (eq..l;.83)
9) XSEC - (kX1 = 1) evaluates partial la-2s cross sections nilmerically
(eq.6.32),using ‘the prév_iogslz__c}_cé-l;_e__rgﬁ._nc—;d riom_alis_e;ci' values of Ua(k),with -
-tt; Simpson‘in'begration techinique. The bessel in'begral. J e (4) (1;) (eq.2.29;
is eiv'a.luated numerically with the Simpson technique and checked .by comparing
the essentially assymptotic Ire (4) (hho) with the mji.'-zlytical'lf derived
‘value,( as the upper limit of integration tends to infinity). The additional
polarization terms required by the full polari?:at.ion ap]ﬂzroxi'nm'bion (eq.6.49)
are evaluated numerically in DEXDAM. |
10) XPSC - (¥X2 = 1) cvaluates partial ls-2p cross sections -(eq.6.36) by the
Simp'son in'begra'bion technique. The ﬁonQexponen'biaD;V decaying"as;symptotic

tetm (eq.4.109) is evaluated in the subroutine EXTRA. -Additional polariZabil

s
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terms required by the full polarisation approximation’ (eq.6.50) ‘are’
evaluated numerically in DEPDAK. | -- o
KED controls the .included polariza.tion terms in- XSEC and X;E;EC (k2D = 1 -
‘direct). (KED = 3 - direct + exchange) (s.ee'sectioh 3, cl;apter 6).

KOR = 1 requires that the initial and final wave functions ars orthogonal

o L . order . R '
_'I,D'; (). p®0,2)oln=0 . Qiherwise the first,perturbed orbital is as.-

- defined by eq.k.32.
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1.1 P-wave phase shifts (radians) - (¢ - H)
| a) .singlet - b) triplet
i) - =~- polarised orbital (unmodified - Temkin ana Lamin 1961)-
ii) —— 'p.o-polarised orbital (modifi;ad - Sloan 1964) |
iii) = e.a.-exchange adiabotic (Temkin and Lamlcin 1961)
iv) — e-central field exchange (John 1960) |
v) - . 1ls-2s-2p close coupling (Burke and Schey 1_962)
vi) -——---- extended polarisation (Callaway et al 1968)
1.2 Singlet S-wave phase shifts (& - H)

Close coupling Approximation - From Burlke, Ormonde, Whitaker (1967)

1) . ~ 6 - state (1s-2s-2p-3s5~3p-3d) -
11)— =3 - state (1s-2s-2p)
iii) 3 - state 4 correlation

'1.3 Momentum Transfer Cross Sections (e - He) (Callaway et al 1968)

| i) Il\ED - Exchange Adiabatic (dipole only) |
1i) AET - Exchange Adiabatic (total)
iiJ'_.) EP —‘ Extended Polarisation |
iv) Crompton, Elford, Jorj,r. (experimental)

. 1.4 Total Cross Sections (elastic) "'(éf- He) '(_Cé.j__lciivay_é_ﬁ.al - 1968)-
i) AED - Exchange Adiabatic (dipole) |

ii)_ AET - Exchange Adiabatic (total)

- iii) EP - Extended polarisation

iv) Golden and Bandel (experimental) (1965)
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1.5 Total Zlastic Cross Sections (¢ - H)
i) EP - Extended Polarisation (Present calculation)
ii) PO-Polarised orbital (Modified - Temlrin and Lamkin (1961) - Sloan
(1961) )
Adiabatic . o
i1i) AET - Exchange,(total) (present calculation)

iv) ™S - Monopole Suppressed (Present calculation)

2.1 Total Cross Sections (e&" - H) (1s-2s)
i) Born | |
‘ii__) Born Oppenheimer (BO™ singlet, .BO" tr;iple't, BO T total)
iii) Cengral Field Exchange (EA*- singlet, EA™ - tripiet)' :
2.2 Total Cross Sections (€ - H) (1s-2p) -

i) Born
. 1i) - Born Oppenheimer (BO¥ singlet,BO" triplet,BOT total}
2.3, "I‘oltal Cross Sections (e - H) (1ls-2s)
A) Rudge - Ochlur Approximation (1965)
B) Experimental values - Stebbings et al (1960)

C) Experimental values - renormalised to Fite (196€) 'rgc.ommend'ed pea'.

27k - Total Cross Sections (e - H) (15.2p)
From Crothers and McCarrol (1965)

Vainshtein Approximation

A) vi= - /R no exchange

B) v = ~t1/(ki-i/E) no exchange
C) v/ ==t/ (ke /é) with exchange
D) Born

X  Crothers (1967) |
0,4 [Experiment - Fite et al (1958,1959)

f]



- - ' Théoretical'éurvé;(Bﬁrkc.Taylor,Ormbnde,Whitaker - 1967)

= ) = '
2.5. Total Cross Scctions (e™- H) (1ls-2s)

Close Coupling - from Burk%And Taylor (1967)

i)~ —=-—  b- state (1s-2s5-2p-35-3p-34d) -
i1) - = — - _ 3= state (1s-2s-2p)
iii) - 3- state + correlation

2.6. Total Cross Sections (e - H) (ls-2p)’
Close Coupling - From Burke and Taylor (1967)
1) mim o o 6- state (ls-2s-2p-3s-3p-3d)

i)~ - - 3

state (ls-2s-2p)

iii) ————— 13- state + correlation
FIG. 31 Intercomparison of relative measurements for excitaﬁidn of
hydrogen atoms into the metastable 2s state, inqiuding'cascade
contributions.
0O Hils, kleinpoppen, and Koschmeider (1966)
©- Lichten and Schultz (1959) |
4 Stebbings, Fife, Hummér and Braclmann (1961)
EP.-.Extended Polarization (present ‘calculation)
FIG. 3.2 Total Cross Sections for 1ls-2s excitation of hydrogen.étoms by'
electron collision '
Same Folded with a Gaussian beam distribution
I Estimated spread of eﬁperimental values (Lichten and Schultz)
FIG. 3.3. Perpendicular Cross Sections for ls-2p excitation of hydrogen
atoms by electron collision. o
Theoretical curve (Burke, Taylor;'Onnondgi'Whitaker - 1967)
Same Folded with Gaussian beam distributién

I Experimental values (Chamberlain et al - 1964)
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FIG. 3.4 Relative measurements of the cross section for éxcitation of the
2p == 1ls transition in atomic ﬁydrqgen |
fite and Bradonanﬁ (1958)
+ Long, Cox and Smith (1967)
1) Born Approximation
2) Born Approximation with cascading
ﬁ) 1s-2s-2p close coupling (Bufke, Scﬁey aﬁd.Smith; 1963)
FIG. 3.5. Polarisation of Perpenicuiar Lyman &« radiation induced by

electron impact.

FIG. 4.l. Polarization and distortion potentials as a function of the -

radial distance.

1) Vpolﬁﬂ. = DMonopole ﬁolarizatidn botential.

.2) Vpol = Dipole polarization potential. ’

3) Vpol(ﬂ = Quadrupole polarization potenéial.'
L) vq @ = .Monopole distortion.potgntial

5) va ® * - Dipole distortion potential.

6) )

FIG. 4.2 Polarization and dié@o?tion;ppteqkials_g§_a funétion of radial — __

total polarization plus distortion potential.

distance.
1) Vd - total distortion potential.
2) Vpol - total polarization potential.
3) Ve - - ‘otal polarization plué distortion potential.

FIG. L:3. s-wave phase shifts (e”- H)
a) singlet b) Triplet
1) E.P - extended polarization (Callaway et al - 196€)
2) AED - exchange adiabatic dipole (Callaway et al - 1968)

3) 3 = 0 - Monopole suppressed adiabatic potential (presnet calculation)
) 3 @1 - Full adiabatic potential (present caleulation )
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FIG. L.4. p-wave phase shifts (&™- H)

1)
2)
3)

‘a) Singlet b) T“lplet, : o
E.P. - exbenaed polarlza.tlon approximation (Ca.llaway et al - 1968)
AED =~ exchange adiabatic dipole (CallaWay et al - 1968)

B =0 - Monopole suppressed adiabatic pOuentlal (Present calculatlon)

W) p =1 - Full adiabatic potential (Present ca.lculatlon)

FIG. 4.5 d-wave phase shifts (e - H)

a) Singlet b) Triplet

1) E.P. - extended polarization (Callaway et al - 1968)

2) AED ~ exchange adiabatic dipole (Callaway et al - 1968) _

3) ,3\ = 0 - Monopole suppressed adiabatic potential (Pr.es;an'b calculation)
L) g =1 - Full adiabatic potential (Present calculation) -

FIG. 5.1 s-wave phase shifts (radians) _ (¢t - H) |

1) & =1 Full Dalgamo and Lynn adiabatic potential

2) ¢« = 0 Monopole suppressed adiabatc potential

3) o = 0.1 Partial monopole suppression of adiabatic potential

Y

y- - Schwartz values.

FIG. 5.2. Total Cross Sections (in the model discussed in chapter 6 below )

(ls-2s) - (e™- H) plotted aga.lnst the monopole suppre.551on

factor 8§ at 1) 0.8‘ryd, 2) 1.0 ryd)

FIG. 5.3. S-wave phase shifts for (e~ H) plotted against the monopole. _

suppresssion factor /3 at 0.81 ryd 1) singlet, 2) triplet-

FIG 5.h4. Total Cross Sections - (1ls-2s) - (e”- H) Single particle polariz-

ation approximation

1) Extended polarizatiéon approximation

2) Exchange adiabatic approximation - dipole only (AED)

3) Monopole suppressed (M3)

L) 'Full adiabatic potential (AET) _

x Experimental - Lichten and Schultz (19 59)-renonnalised.1;,o Fite (1968)
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peak (0.18 T Go® )

FIG. 5.5. Total Cross Sections = (1s-2p) - (&"- H) Singie'particle

1)

2)

polarization approximation

Txtended polarization

Exchange Adiabatic (Monopole Suppressed) - AED not distinguishable on

this scale. .

FIG. 6.1. Polarised Born Approximation - Total Cross Sections (1s-2s)

1)
2)
3)
L)
5)

(e7- H)

Born Approximation

s =1,2 (dipole and quadrupole polarization)

$ = O’l
S = 0,1’2
s =0,1,2 (Moiseiwitch convention)

s =0,1,2,3 coincides closely with (5) on this scale

FIG. 6.2. Polarized Born Approximation - Total Cross Sections (1s-2p)

1)
2)
3)
L)
5)

(e~ H)
Born Approximation , 2 -
$ =0,1
-5 =0,1,2
5 =0,1,2,3

§ =0,1,2,3 (Moiseiwitch convention)

§ = 1,2 approximation coincides closcly with (4 ) at all ensrgies,

FIG. 6.3. Polarized Born Approximation - differential cross sections

(1s-2s) (e™=1) at k2 =1 ryd.

1) Born Approximation

2)

L

S =0,1

3§ =0,1,2,3



FIG. -6.3. (Cont!d)

5) .S =0,1,2,3 (Moiseiwitch Convention)

"FIG. 6.4. Polariz—a_d Born Approximation - bifferential c-:r'c_)ss secﬁions
(1s-2p) (e™- H) at k% _ 1lfyd |

1) Born Approximation

2) . §=0,L

3) s =0,1,23

L)) $ =0,1,2,3 (Moiseiwitch Convention)

PARTIAL CROSS SECTIONS - Single particle polarization appr_:oadmafion-
| (1s-2s) (=R B
6.6.  Triplet s-wave | |
6.7 Triplet p-wave
6.8 Singlet s-wave
6.9 Singlet p-wave
6.10 Singlet d-wave
2) 3-state close coupling (15—251—2p)
3) b6-state close coupling (15—25’-’-23—35—3p-3€1) '

1) Extended polarizati‘on a.pprox_i.ma.tibn

) 4-_) Centr.':a-[.l. field Exc_:h:angc approximation .

PARTIAL CROSS SECTIONS - Single Particle polarization approximation (1s-2p)
(e”= H) .

6.11 Triplet s-wave 2

6.12 Triplet p-wave

6.13 Singlet 5-wave

6.14 Singlet p-wave

6.15 Singlet d-wave
1)  extended polarisation approximationj
- 4). central field exchange approximationg -
%)  full polarisation (direct),




6. 20 TOTAL CRGSS SECTICHS - Single particle polarization approxihation

1)
2)
3)
L)
5)
6)

7

(ls=2s) (e™= H)
Born épproximation
Extend Poiarization appro¥imation
6-state close coupling (Lls-25-2p-3s5-3p-3d)
3-state close coupling (1ls-2s-2p)
Central field éxéhange approximation
Experimental - Lichten and Schultz (1959) renormalised to Fite (1968)

peak (0.18 mas )

Full polarization approximation (dirett)

6.21 TOTAL CROSS SEZCTIONS - Single particle polarization approximaﬁion

(1s-2p) (e™- H)

1) Born approximation

2) Central Field exchange approximation

3) Extended polarization approximation

L) 3- state close coupling (ls-2s-2p)

5) 6-state close coupling (ls—-2s-2p-3s-3p-3d) -

6) Full polarization approximation (direct)

X Experimental results of Chamberlain-et al (196L)

6,22 TOTAL CRO"" SECTIONS — (ls—2s) - (u - n)

2)

Pull polarization approximation (direct)

Full polzrlantlon approximation (dirsct and exchange )

3) Polarized Born Oppenheimer (direct)

L) Symmetrised Born approximation.
P

- 6.23 TOTAL CROSS 3ECTIONS - (ls—2p) - ( e = H)

1)

2)
3)

Full polarization approximation (dir ch)

Polarized Borii Oppenheimer (direct)

Symmetrised Born approximation.

I

P



6.24, TOTAL CR0SS SiZCTION (e~ - H) (1s-2s)

6.25

1) Extended polarization approximation.
2) Born Approximation
3) Experiment Hils et al (1966)

CROSS SECTIONS (& - H) (1ls-2s)

Extended Polarization Approximation (present calculation)

1) Total singlet cross sections.
2) Triplet d-wave partial cross section (multiplied by a.

weighting factor of 3.0).

spin
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Continuous oscillator strenqth o7/dc

o
~

[ =]

Enerqy of incident photon ¢ + .1 (ryd)

Figure 2.7 Continuous oscillator strength dffde, calculated with 20-parameter

ground-state function and polarized-orbitals free-state function. dipole length

formulation; — - — dipole velocity formulation. © Experimental measurement by
‘Samson (1966); + and x Lowry et al. 1965.
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