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ARBSTRACT

The Statistical properties of earthquake data from I4 different
areas have been studied by considering the earthquake occurrence as a
one~-dimensional stationary point process,

A review of the main properties of the Point proéesseg is given
and some counting gnd interval properties of the mutually exciting pro-
cesscs are derived. &£s a result of an exploratory analysis the Poisson
and renewal models ere not found adequate to describe the earthquake
occurrence and any kind of periodicity is not well established. The
Neymann-Scott model with mixed exponential decay is found more suitable
than the.one with single exponential for describing the earthquake oc-
currence. The fit of the mutually exciting process is as satisfactory
as the fit of the Neymann~Scott with mixed exponential from the spectral
analysis viewpoint but not from the viewpoint of the interval analysis.

As a result of the interval analysis a four-variate mutually ex-—
citing process is proposed for describing the earthquake occurrence,
which also takes into account the differences according to depth,

Finally an attem»t {to classify the arcas uuder investigation is
made and some ideas about the study of the earﬁhquake phenomenon as a

multidimensional point process are put forward,
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CHAPTER 1

INTRODUCTION

1.1, The stochastic approach to the study of earthquakes

During the past few years there has been strong interest in the sta-
tistical nature of eartlquake occurrences. The mair reasons for this have
been the introduction of new methods in detecting earthquakes and therefore
the possibility of collecting more reliable earthquake records; the need
for discriminating earthquakes from nuclear explosions and the economic in-
terest in earthquake risk analysis, Veré-Jones (1970) and Schlien and Toksdz
(1870) give in detail references of relevant work. The main general results
of the above studies are, the inadequacy of the simple Poisson model to ex-
plain the time distribution of low-magnitude shocks and the failure for
establishing any kind of periodicity in the earthquake activity,

The most important characteristic of the earthquake time series, which
the simple Poisson model has not taken into account, is the tendency of
earthquakes to occur in clusters or, the triggering characteristic of the
earthqueke occurrence. These clusters or aftershocks, usually start imme-
diately after a main shock, which can be considered as an earthquake itself
or as a kind of triggering mechanism., The duration of the aftershocks ranges
from several days to a year and their frequency distribution appears to
follow the inverse power or the exponential decay law and depends on the
magnitude, depth and location of the main event; In other words the after-
shock phenomenon seems to be the natural result of the fracturing chara-
cteristics of materials. (Mogi, 1962 and Solo'sv and Solov'eva 1962), A
special kind of clustering, which has mainly observed in Japan,.is the one
where the cluster centres too have a tendency of clustering in a different
manner from ordinary aftershock sequences. (Discussion in Vere~Jones,1970

paper).
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In view of the above characteristics of earthquake activity it would
be reasonable to describe the earthquake occurrence by using a clustering
model or a self-exciting one in which the rate of occurrence in some parti-
cular instance is influenced by the activity in the past. Thus, Vere-Jones
(1970) considering the sequence of occurrence of earthquakes as one-dimensio-
nal stationary point process examines the adequacy of the Neymann-Scott
cluster model with data from the main earthquake area of New~Zealand., He
considers the main process as stationary Poisson and the members of the
subsidiary processes located in distances from the cluster centre, yhich
are distributed according to the inverse[law or the exponential one, Accord-
ing to his findings the Neymann~Scott model with the inverse power.decay
law is more suitaeble in describing the New=-Zealand earthquake data. Shlien
and ToksSZ (1970) examine the adequacy of a cluster model, which is a gene-
ralization of the triggering one considered by Vere-Jones and Davies (1966),
with data from different areas of the Earth., In this model the cluster
centres follow a simple Poisson one aﬁd the frequency of subdidiary events
around the cluster centre follows an inverse power law,

The work done up to now has been a great contribution to the study of
earthquekes from the stochastic viewpoint. However much more work has to be
done in improving the methods of statistical analysis of earthqueke data and
in developing more suitable stochastic models in describing earthquake occurr-
ence and energy. Since undoubtedly the stochastic element is an essential
part of the earthquske nature the application of statistical ideas in this
field holds considerable interest for the geophysicist., A detailed statisti-
cal analysis might show up new aspects of the pattern of earthquake occurrence
while the search for a suitable stochastic model might suggest important ideas
about the mechanism of earthquakes, The joint study of activity and occurrence

of earthquakes by using recent theoretical results on marked point processes,
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(Hawkes, 1971 and Bartlett, 1967 b) and the application of the prediction
theory 6f point processes in the case of earthquakes, (Jowett and VerenJonés,
1972), will open up new ways o studying the earthquake phenomenon and of
determining more effective safety procedures to face its disastrous con-
sequences.,

In the following two other preliminary sections the main characteri-
stics of earthquakes are described, a brief outline of the comtinental drift
theory, which quite satisfactorily explains the earthquake phemomenon, is

given, and the main objectives of the present thesis are defined,

1.2. Earthquakes and the continental drift theory

The usual earthquake lists give the main characteristics of a shock
which are: The geographical coordinates of the epicentre (its latitude and
longitude) focal depth (depth of the focus beneath the Earth's surface),
origin time (the time of occurrence of the shock at its source) and in-
strumental magnitude which is an estimate of the released energy. The di-
mensions of the source are very small compared with the dimensions of the
area undrr investigation. The duration of the shocl- is of the order of a
few seconds while the period of the survey is usually of the order of se-
veral years. (in the present survey the period is 20 years). Therefore each
earthquake can be considered as a point event and this view will be adopted
throughouf the present investigation.

The shocks are classified by Gutenberg and Richter (1954) as shallow
when the depth does not exceed 70 Km, intermediate when the depth is from
70 Km - 300 Km and deep when it exceeds 300 Km, Symbols for classification
by mognitude are:

Class: a b c o a e

Magnitude: 73/4-81/2 7.0=7,7 6.0~6,9 5.3-5.9 below 5,3
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Classes a and b are recorded by all the stations and the relation of magni-
tude end released energy is,
gB = a+bM (1.2.1)
where a and b are constants, E is the energy and M is the instrumental
magnitude,

One of the most succesful theories in explaining the earthquake pheno-
menon from the geophysical viewpoint is the continental drift theory, which
was originally derived in 1912 by the German Scientist Wegener (1924). The
main points of the above theory have as follows:

The outer shell of the Earth is divided into a small number of "plates"
and major changes in the Earth's surface occur only at the boundaries bet-
ween plates., The plates fit closely together but they can move around by in-
ternal forces which extend the plates in some regions and destroy them in
others., The outlines of the plates are deduced from the Zones at which the
esarthquakes most frequently occur. Two plates can move backwards or forwards
relative to each other or they can slip alongside one another without either
parting or approaching to any great extent. In the backwards motion, Fig.
1l.1.(b), as no gap can exist between the plates, one plate can ease itself
away from another but instantly hot material rises from below to fill the
gap creating volcanoes accompanied by earthquakes. For example this is the
situation in the Mid-Atlantic ridge.

If plates are moving towards each other, Fig. 1l.1(c), since they can
not overlap to any great extent, one of them dips and the material of that
plate passes under the edge of the other re-entering the interior of the
earth, The bend of the down moving one creates an ocean trench, The sinking
plate again causes earthquakes and the friction which it generates as it
drives down into the Earth causes volcanoes. In this kind of situation two

special cases can be distinguished:
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(i) One oceanic plate is driving under sanother resultéhg in an Island:_u
arc; like the Aleoutian arc, Tonga Salient, Sunda arc e.t.c.

(ii) The oceanic plate which is going down urider a continent or Island

arc carries another dontinent, In this case the two continents collide and
create a mountain fange. For example the Indian subcontinent was a part of
Africa many millionhs of years ago. The Indian ocean plate carrying India
moved towards what is now Asim and from the collision of the two continents
the Himalayas were created. The Indian plate unable to push Indian further
must now dive out of its way probably creating the present earthquakes in
the area, The same phenomenon occured in the Mediterranean, Italy had been
carried by the Mediterranean plate; whicﬁ; being a part of the African one,
collided with that of Europe, and thus the Alps have been created. Because
of the continuing movement of the Africa plate towards Europe the Mediterra-
nean sea is beeing squeezed out of existence, and that causes the earthquakes
in the area. Similarly Southern Greece, Crete and the Aegean Islands are
riding on a small plate which is travelling South-Eastwards towards Africa,
The plate on ite way overrides the Mediterranean floor which bends down—-
wards creating a pronounced trench of deeper water off the coast of Crete,
That is probably again an explanation for the volcanoes and the earthquakes
in the area,

In the third kind of plate motion, Fig. 1.1(d), in which the two plates
slip alongside one another, the plate edges are called transform faults, This
type of fault occurs in the west comst of North America where the famus San
Andreas fault of California, which quite often causes disastrous earthquakes,
is found (Calder, 1972).

Summarising, each plate of the Earth's shell is marked out by a ring
of earthquakes around ridges, faults and trenches. Figure 1.2 shows a map

of the main earthquake activity of the present century. It is easy to notice
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that most earthquakes originate within two well defined zones, Gutenberg
and Richter (1954) describe them as the circum - Pacific zone and the Al-
pine one, Most of the remaining shocks occur in the rift valley regions of
Eastern and Central Africa and along the Mid-Atlantic rift. The circum-Pa-
cific zone includes the Island arcs from Alaska to New-Zealand, together
with the Sunde arc which is clearly of the Pacific type. On the American
side the Caribbean loop invades the Atlantic while a similar loop in the
extrems South links South America to Graham land in Antarctica. The circum-
Pacific zone with its extensions into the neighbouring oceans in credited
with about 80 percent of the world's most important shallow shocks, 90 per
cent of the intermediate and nearly all the deep shocks, The Alpine zone
extends from the Azores and the Alpine mountain arcs of Europe and North
Africa, through Asia Minor and the Caucasus, Persia and Baluchistan to the
Pamirs, Himaleyas, Tibet and China., In this zone, occurs most of the re-
maining largeg shocks of shallow origin and nearly all the remaining inter-
mediate shocks.

In the present investigation the list of earthquekes edited by the
Institute of Geological Sciences in Edinburgh is used, which covers the
period from 180C to 1971. The scries of intervals of successive shallow
earthquakes in the period 1950-1971, which have occurred in the following
areas, are analysed,

1. North Atlantic, Latitude (+30,+#60), Longitude (-43,-27)

2. South Atlantic, Latitude (-60,-25), Longitude (-15,+15)

3. Central Atlantic, Lat. (-2,+10), Long. (-40,+19)

4. Aleoutian Islands, Latitude (50,56), Longitude (-180,-172)
5. Fox Islands, Latitude (50,54), Longitude (-.172,-165)

6. BSunda-arc,Latitude (-10,0), Longitude (10Y,112)
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7. Bandasea, Latitude (-8,-5), Longitude (122,132)

8. Fiji Islands, Latitude (~27,22), Longitude (~180,-176)

9. Tonga Islands, Latitude (+22,-16), Longitude (-180,-176)

10, Himalayas, Latitude (26,40), Longitude (70,90)

11, Greece, Latitude (34,41), Longitude (21,31)

12, Spain, Latitude (32,40), Longitude (=~7,-1)

13, Yugoslavia, Latitude (39,46), Longitude (15,22)

14, TItaly, Latitude (39,44), Longitude (9,17).

The above areas have been chosen, after consulting the department of
Geophysics of the University of Durham, with careful consideration of the
homogeneity of instrumental coverage and the best representation of the dif-
ferent types of earthquakes according to the continental drift theory.

1,3. Plan of the Thesis

The objective of this study is the fit of the most suitable stocha-
stic model for the occurrence of earthquakes and, if it is possible, hy
looking at the main characteristics of the model, the investigation of
similarities and differences among the world's most active earthquake areas
predicted by the continental drift theory. This objective is approached by
considering the earthquake occurrence as a realization of a stationary one=-
dimensional point process and analysing the series of intervals between
successive shocks in the specially chosen areas given in B 1,2,

An outline of the main theoretical results of the point processes and
their estimation procedures are given in chapters 2 and 3, Some counting aqd
interval properties of the mutually exciting processes are derived in § 2.8,

In chapter 4, by using standard tests based on the statisticel proper-
ties of the second order moménts the Poisson and renewal hypotheses are exa-

mined. Further the fit of Neymann-Scott model with single and mixed expo-
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nential decay; and the fit of séme special oases of the mutually exciting
'procéSSes are at%eMptedi A classification of the areas under investigation
is given in B 4.6,

In chapter 5 some other approaches to the statistical study of the
earthquake problem are suggested and in view of the results of the inter-
val analysis some extensions to the two variate mutually exciting processes
are proposed.

Finally in chapter 6 the general conclusions of the overall analysis
are stated,

The motivation of this study arose from the work of Vere-Jones (1970)
dealing with the statistical analysis of earthquakes occurring in the main
active earthquake area of New-Zealand and the interest of the Department
of Geophysics of the University of Durham, in the origin of é%thquakes in

East Africa and the Mediterranean,




plate continent ocean floor
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Figoe I.I.= A plate of the Barth's shell, a, carrying a continent,
and the three kinds of boundaries between plates b; c
and d. (Calder, I972, p.u48)
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CHAPTER 2

STOCHASTIC POINT PROCESSES

2,1, Definition and general properties

A stochastic point process is the mathematical abstraction which arises
from considering such phenomena as a randomly located population or a random
sequence of events. Since a realization of any of these phenomena is just a
set of points in time or space, a family of such realization has come to be
called a point processes.

Formally, there is a state space, T, and & set of points {tng from T
which represents the locations of the different members of the population or
the times at which the events occur. For example if T is the time axis, ztng
might be the times of occurrence of earthquakes in some area (One-dimensional
point process) or if T is the surface of a sphere, {tn} might be the position
of a certain kind of stars expressed by their spa*ial coordinates (Multi-di-
mensional point process). In the case of multi-dimensional point process the
dimensions cean either correspond to the spadial coordianates or one to the time
and the others to the spafial coordinates, One such exemple is the occurrence
of cosmic ray showers which can be considered as a multi-dimensional point
process in time and space.

Another kind of point process is the one called by Bartlett (1967) a
point process with ancillary variable and also by Hawkes (1971) Marked process..
In this process with each point t; in the basic point process there is asso-
ciated an auxiliary variable y; lying in a mark space Y. In generai_these {yii
need not to be independent either amongst themselves or of the {ﬁi}- As examples,
yi may represent the speed of vehicles passing a certain point at time t4, of

the energy of earthquakes occurring at time t; in some well defined area, or
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more gerierally the history of the point process up to time t4{. Thus the Marked
process is a point process defined on the product space TXY.

In the following the one-dimensional point processes are considered and
for convenience as state space the time axis is taken., The properties of these
point processes can be classified in two categories. In the first one belong
the properties which are related with the numbers of points falling within
specified time intervals and which are expressed in terms of the counting pro-
cess, N(t) = Numbér of events in the interval (O,ﬁ],.whére t>0 or the different-
ial point process,

dN(t) = Number of events in (%, t+dt).

In the second one belong the properties relating to the intervals between
events expressed in terms of the process of intervals,

{Xng = i:tn'th-qg! n€Z, , where Z, is the set of positive integers. The re-
lation between the two sequences,%lXﬁ, n€ Z+g and ZN(t), t:>03 is expressed

by the formula,

r .. o

Prob(N(t)<r) = Prob(k‘f_ 5>t), o= 1,2,3,... (2.1.1)

=1

The meaning of (2.1.1) is that the two processes are equivalent only through
their complete distributions, However if a statistical analysis of a point pro-
cess is based .only on first and second order moments, then the first and se-
cond order properties of both the counting and interval processes are informa-
tive, ise they are not equivalent,

A point process is stationary if the probabilistic structure of the pro-
cess remains unchanged by a transiétion of the time axis or more formally.
Definition 2,1. A point process defined in the state space T is stationary if the

joint distributions,

Prob {N(&i"" y) @ ki’ kie Z+, is= 1,.-..,1'3

are independent of y€W where R—bthe——sob—of—real-nunbers. ﬁ.—f x>’ Buref sebs

N
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Immediate consenquence of the mbove definition is that the distribution
of the number of events in an intervel depends only on the length of the in-
terval,

Definition 2.2. A point process has stationary intervals if the joint dis-

tributions,

P{X, vy, ¥i€R, 1=0,%1, ceee, trt
are independent of n€ Z, For example a renewal process on T has stationary in-
tervaels. One common question is to ask whether a stationary point process has
also stationary intervels. Daley end Vere-Jones (1971) give an answer to this
question which is "almost no". They prove that the only stationary point pro-
cess in T which also has stationary intervals is the deterministic one which
is a delayed renewal process where the interval between successive events are
equal, More generally they show that any stationary point process which starts
from an arbitrary event has also stationary intervals. Finally the definition
of orderliness of point processes is given,

Definition 2,3. A point process is called orderly'if,

Pr(dN(t)>=>2) = 6(dt)

In what follows the first and second moments of the counting and interval

processes are given and some specific examples of point processes are examined,

2.2, Moments of the counting and interval processes

Providing that the point process is orderly the first two factorial mea-
sures, M (+), k = 1,2 and the first two cumulant measures Cy(+), k = 1,2 are
defined as follows:

(1) M, (dt) = E(dN(t))

Prob(one event in (t, t+dt))

m,(t)dt (2'.2..1)

The quantity m,(t) is called the intensity function or the mean rate of occurrence
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(i1) Mg(dt1th2)

E(dN(t1)dN(t2))

Prob(one event in (t,, t,+dt,) and one in.(tz, t2+dt2))

m(t,, t;)dt,dt, (2.2.2)
(1i1) C,(at) = M (dt) ' (2.2.3)

(iv) Oz(dt1th2) M (dt,Xdt,)=M, (dt, )M, (dat;)

(my(t,, t,)=m (t,)n,(t,))dt,dt,

p(ty, t,)dt, dt, (2.244)
The quantity p(t,,tz) is called the covariance density of the process. In the
case of stationary point processes if t, = t and t, = t+t, then plty, t,)= p(t),

m,(t) = m,(t+t) = A and therefore the covariance density becomes,

E(aN(t)dN(t+ <)) ) s
w(z) = 7 - A (2.245)
(at)”

It is clear from (2.2.5) that for real processes p(=t) = p(tr). In order to ex-
tend the covarience density at T = 0 and in the same time be consistent with
the fact that the process is orderly, AS8(x) is added to the p(t), where 8(<x)
is the Dirac delta function, and thus the complete covariance density is ob-
tained, which is,
w0 () = As()+ n(r)
For the mean aend the variance of the number of events in any interval

(0,t), providing again that the process is stationary and orderly, the follow=

ing results are obtained:

% .
(1) BN(0,8)) = § B(an(x)) =xs (2.2.6)
0 - N .
(i1) Var(¥(0,t)) = V(t) = Aat+2 S (t=u)p(u)du (2.2.7)
0
The quantity, R = lim v(t) = 1+%€;G)p(u)du (2.2,8)
t=® At 270

is some measure of the deviation of the process from the Poisson model, If R>1
the process may be said to be over~-dispersed relative to the Poisson and exhi-

bits some degree of clustering; If R<<1, the process may be said to be under-
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dispersed relative tp the Poisson, and shows somo tendency towards regular
occurrence of events,
Bartlett (1963 b) defines the complete spectral density of the stationa-

ry point process as

glw) = —\ e

!
-
/
1
s
[
A
-:’\
[}
~—r
—
~
[«
«

- +o©

! .
__1_ A+\ e.—llll‘tp’( T)d't.‘ i
2n -

- O

X k+u*(i.W)+u*(-iw)§ (2.2.9)
2n '

.
where p*(s) =SO e % n(t)dr is the Laplace transform of the covariance densi-
ty p(t). Since g(-uw) = g(u) we need consider only positive y and therefore the

spectral demsity, g (w), for positive w is defined as:
1 ( .
g+(w) = Zg(m) s — )\+p,*(im)|-p.*(-1w)i, w~>0
T

The function p(t) is continuous in the time domain which makes the spectral
density, g+(m), not a periodic function. Therefore it has to be decided over
what range of w to estimate g+(m). .

~ Providing that the function g,(w) has no jump st w = 0, by (2.2.8) and
(2.2,9) the following immediate results are obt s.2d:
g, (0)

g, ()

(242,10)

ng+(0)/K =R or R=

where g, (o) = 1lim g, (v) and g+(0) & 1lim g+(w)
u—co u—0,

The correlation properties of the interval process {Xt% s that is the
second order joint moments, are given by standard functions in the theory of
time series. The first of them is the autocovariance_:unction,_ .

v(k) = Cov(Xy, X;,.,), k=0,%1,22,.., (2.2.11)

or the autocorrelation function,
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v(k) | OoviXs, Xy
v(0) Var(X)

p(x) = x=0,%1, %2, .... (2.2.12)

The second one is the power spectrum, f(u), -aw <=, which is the Fou-

rier transform of the autocovariance function,

+{D .
—_— 2— Y(S)e-ms , - ﬂéwgﬂ
2% e

iee fw)

The Fourier transform of the autocorrelation function p(s) is called the spect-
£(uw)
2

2

YGS) = Y(S) end p (-8) = p(s), the power spectrum and the spectrum density be-

rum density and it is equal %o

+ In the case of real processes, for which

come,
1= flw) 1 2
£uw) --E-Z_ y(s)cos(sw) and —~ z— > p(s)cos(su) (2.2.13)
1‘..(:0 c" 21! -
and by inverting them,
-~ 1 rﬁ '
y(s) = b f(u)cos(sw)dw end p(s) = ) f(w)cos(sw)dw (2.2,14)
-1 G =7

It is well known that the sequence.of autocovariances y(x) for a sta=-

- rionary process can be always represented in the form,
4

vx) = § oimar(u),
=n
F(w) o ; ; £33
where 5 is a distribution function, i.e it is monotonically 1ncre§§?d

et e

o .
(or, at least non-decreasing) and bounded with F(-n) = 0, and F(z)=zy(0)=c",
If F(w) is differentiable then dF(u) = f(w)du.

b4
The first of (2.2.14) gives, o = v(0) = C f(w)dw and therefore the

=
power spectrum shows how the variance of the process is distributed over the
angular frequency. Specifically the variance of the process which is due to
the angular frequency in the range (w, w+dw) is approximately f(w)dw, Thus
the introduction of the power spectrum accomplishes a mepping of the proper-

ties of the stochastic process from the time domain to the corresponding pro-

perties in the frequency domain. For example: If the stochastic process is
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considered as an electrical signal then it can be said that the spectral dis-
F m)

i
process at or below the frequency w, Hence a pesk in tine spectral density func-

tribution funetion, gives the '"proportion" of energy in the stochastic
tion suggests o possible periodicéity in the stochastic process being studied.
Moreover since the spectrum characterizes the autocovariance function of the
process it also characterizes the method by which the process has been gene-
rated. For example if the process is periodic, the spectrum has jumps at the
periods, if it is autoregressive the spectrum is of rational type and if the
process is white noise the spectrum is constent., Hence it seems rational that
the use of the spectrum should play a natural roie in statistical inference
for stochastic process.

Finally enother function which is useful in the studying of the sequence

of times between events is the hazard function, which is defined as,

£
7 (x) = x() () (2.2.15)

1-Fy(x) Rx(x)

where fy(x), Fy(x) and Ry(x) are respectively the density function, the dis-
tribution function and the survival function of the time between successive

events,
x

X ,
By (2.2.,15), Ry(x) ='exp[- \ Zx(u)du] or 1lgRy(x) = - ( Zx(u)du
' . L -0 o]
with first and second order derivatives:
dlogRy (x d%logRy (x dZy(x)
-—————g X ) = -Zx(x) and d {c ) s - X
dx dx” dx

Therefore a monotone non-increasing :.ln.aot'zafd. is equivalent to the logarithm
of the survival function being concave and a monotone non-decreasing hazard
is equivalent to the logarithm of the survival being convex,

If now P(z,t) is the probability generating function of the N(t, t+t),
which is the number of events in the intervel (t, t+t), then P(0,t) is the

survival function for the forward recurrence time t and consequently,
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P(O,'I:) = P(O, w+At)+ra<(d -FX(T)) or

1 4 P(0,T)

1-Fy(x) = - (2.2.16)

dart
where A is the intensity function of the process and Fx(x) the distribution
function of the time between successive events. By using (2.2.16), Zx(<),

the hazard of the time between successive events becomes:
fx(x)

dv
_ [ﬁi(t)-hﬁ(;il?(o,t)
hp(+, P(0;t)

(2.2.517)

where hR(T) is the hazard of the forward recurrence time.

2.3, Poisson processes

The natural starting point for a discussion of models of point processes
is the stationary Poisson process. Assuming that N(t, t+h) is the number of
events in the interval (t, t+h) and h—s O, the conditions for o stationary
Poisson process are:

(1)  Prob(N(t, t+h) 1 =-Ah+0(h)

0)
1)

(iii) The random variables N(t, t+h) for different h, are statistically in=-

(ii) Prob(N(t, t+h) Ah+8(h)
dependent of the number and position of the events in (O,t).

The immediate consequences of the above statements are the following:
(i) The chance of two or more events occuring simultaneously is negligible.
(1i) The distribution of the number of events occurring in the interval (0,%t)

is Poisson with parameter At,
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Hence:
E(N(0,t)) = Var(N(0,t)) = At and _
g(w) = A/2n (2.3.1)
(11i) The time between successive events or the time starting from an arbitrgry

point to the next event is exponentially distributed with parameter A.

P4

c 2 ]

Thus according to (2.2.13) the power spectrum is: f(w) ='E;: where o is
‘the variance of the intervals.

A generalization of the above process is the non-stationary Poisson pro-
cess, whose mean rate of occurrence is a function of the time, In that case the
distribution of the events in the interval (0,t) is again Poisson but with pa-

t -
rameter _) a(t)dt.
0

Many processes approximate quite well to the Poisson Process in spite of
its restrictive definition. One reason for this, is that a process built up of
a number of small independent components will resemble a Poisson Process more
and more closely as the number of components increases and the contribution
from each decreases (Vere-Jones and Davies, 1966).

2.4, Renewal Processes

Renewal process is a series of events in which the times betwcen success-

(x

ive events are idependently and identically distributed. If Fy(x) = ) .ﬁx(x)dx
®

the 1life time distribution, F (t) = Pr(X+X, ... X,<7t), dr,(t) = fn(t)dt and

~ 30
K*(s) = B K(t)e™™ dt then the following results are obtained:
)

o .

(1)  Mp(t) = E(N(0,t)) = n; Fy(t) (2.4.1)
d Ma(t) & £5(s)

(ii)  mp(t) =.___£__Z_= E: fn(t), m;(s) =~3%51—— (2.4.2)
a¢ B 1-£5(s)

The quantity m.(t) is called renewal density and has the following probabili-

stic meaning:

me(t)dt = Prob(renewal in (t, t+dt) / renewal in the origin).
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1

(iii) If m = then the Laplace transform of the variance of the number

E(X)
of events in the interval (0,t) is:
2r¥(s) om? C
V*(g) = X (2.4.3)

s? 32(1—f§(s)) 53
(iv) The spectrum of the counts is

[_ g; (1iw) \ f;(-iw) 1 (5.4.4)

g+(w) = 1+
Tl tegf (dw)  1-fy(-tw)
and the power specfrum: o
£(w) -2 (244.5)

2x

where uz is the variance of the distribution of the intervals (Cox and Lewis,

1966, p. 79).

2.5, Doubly Stochastic Poisson Processes

A Doubly Stochastic Poisson process is a non-stationary Poisson Process
in which the rate of occurrence of events is itself a realization of a sta-
1 -
tionary, continyous time stochastic process {ﬁ(t)s. If A end YA(T) are re- .
spectively the mean and the autocovariance function of the stochastic process
{n£)] thens
q t t
(1) E{N(o,t)/x(u), O{uslt § = % B(an(t)) = So A (u)du,
E{N(O,t)g = E,\E{N(o,t)/x (u), ogugt’_{
=S (Stk(u)du) £ (A)da
A 0 A ‘
t - -
= S Adu = At (2.5.1)

0
(i1) E(aN(t)anN(t+1))

EAE(dN(t)dN(i_ﬂr))

B, [Pr(an(t) = an(t+r) = 1))

EA(Pr(dN(t+'r) = 1/dN(t) = 1) Pr(dN(t) = 1))

E, (A{t+D)A(t)) (dt)z

(v, () +%) (a)’
E(dN(%)aN(t+x)) By

at’

consequently, yA(T) =
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and by (2.2.5), -

v, (%) = ()  (2.5.2)
where p.('l:) is the covariance density of the process.

(i11) By (2.2.7), (2.5.1) and (2.5.2);
% t % o
v(t) = ( Tatez S (t-u)y, () =Rz (bmn)y,(wau  (2.5.3)

v(t)
and R = lim
t=x At

1+-——- S y(u)du (Cox and Lewis, 1966, p. 180-181).

2.6. The mutually and self-exciting point processes

The mutually exciting point processes, which have been introduced by
Hawkes (1971 a,b) are k-variate one-dimensional point processes with counting
process N (t) = (N.(t), r =1,2,....k) such that:

Pr(aN,(t) = 1/§(s), s<t) = A (t)Atr0(2t)

Prd N.(t)>1/8(s), s<(t) = 0(At), independently for each r, where

k t
AR(t) By 4 52; S Brs(t-u)st(u) or in matrix notationm,
. .
A) =y +( Blt-u)aN (u) | (2.6.1)
o0

It is nssumad that Bij(u), i,j = 1,2,...k are positive for u:0 and zero
otherwise,

anils
In the case of a stationary process if I is the diegenal matrix,

/)\1 l.. O S .
e O and B(uw) = SO B(v)e ™™™ du the following general results
vee have been derived by Hawkes (1971 b),

The stationary mean rates of occurrence are,
= (I - E(O))- v (2.642)
(i1) Necessary ocondition for the existence of the precess is that the elements
of the matrix (,I,-B(Q,))-1 must be positive.
(1ii) The Fourier transform of the covariance density B( t) is

_ M(w) = Ll-g(m )] —i-[g(m )Q+Q§T(-m)-§(w)Q§T(-m)1 [{'ET(-N):I-‘ (2.6.3)
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(iv) The spectral density matrix is,
1 - T - L
G(w) = —|I-B(w)| D|I-B (-uw) (2.6.4)
o+ ) o] .

In the univariate case, the so-called self=-exciting process/(2.6.4) and

(2.643) con be written as,

A [Blu ) B(-u)-B(w)B(=w)]

M(w) (2.6.5)
[1-B(w)] [1=B(-w)]
A
glw) = : ' or for real u
2n(1=B(w))( =B(~uw))
\ o
glw) = (2.6.6)

21:!1-B(m)|2
The self-exciting point process can be considered as a self-exciting shot
process in which the current intensity of events is determined by events
occurring in the past. We apply the above general results in the following
special cases:

a) Self-exciting w ith,

;\ape-pu if v>0

0 otherwise with p>0 and 0o «§1

B(u) =
(N

By virtue of (2.2.7), (2.2.9), (2.6.5) and (2.6.6) the following results for

the covariance density, variance time curve and the spectrum of counts are

obtained respectively:

k(<) =ﬂ;(f—2_;l (2.647)
- -
1 A 2- o1 o
V(<) = A(—) 1-La)3(1-e plt-o) 7, (2.6.8)
i-a p(‘l-u,)
oA ap?(2-a) o
g+(m) -T[‘l * p2(1-ot)2 +m2] (2.6.9)

Since from (2.6,8), R = lim

= (j23) >1, the process is overdispersed.
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b) Self-exciting with,
%, p, o P “+a2pze'p2u if v>0
Blv) =
0 otherwise

where p, p,>0 and 0Jo,+a,<1

By virtue of (2,6.8) the spectrum of counts is,

g, (u) = — (pf+u®) (pp+u?) (2.6.10)
w) =/ — - =3 #Voe

+ n [mpz(1-a,_a2)-m2_lz+u,2[p2(1_a2)+p,(1-a,)J

c) Two=variate mutually exciting with

Ve

70 B,(v) '
B(v) = ( i 1 and vy <O> .
~ \0 BZZ( v) ~ v

If more specially B,,(v) =a12;3‘e'P4” and  B,,(u) = qapze'pﬁu then

{’O Blz(”)
B(w) = | where
- \\O Bzg(m)
Qs P4 C
1z 1
By, (w) = — , i=1,2 (2.6.11)
pi+‘im

By virtue of (2.6.2) and (2.6.11) the rate of occurrence,\, is

1 Y]
\ = Cx )
~ 1=t 2 Y

. v _ v (1+a,,) S
Thus &, = —& Xy = and A % Aj+h, T —— (2.6.12)
1—0.22 1-0.?_2 1-(1—)9

By using (2.6.4) the spectral matrix is obtained, which is,

Glw) = [(1-,1;T(-m))1>"(L-E(w))]'1

",
S

1 /2By, (B (mudy, [ 1-Bop(w)|* 2,3, ()
N
|1'B22(”)| & A,Bio (~w) A2

Therefore by virtue of (2.6.11) the spectral density of the overall process,
which is the sum of the elements of the spectral matrix, is,
g(w) = Gy (whGy, (wHG, (WG, (w)
(p2+u?) | p? (14« 2+m‘°'_]
= A +A; P2 [p" 12)+u

2 — (2.6413)
(pj+m2) [pg(1—a22)24-m%]




r~

- 22 -

2.7, Cluster processes

Here the process is defined in terms of two components:
(i) A process of cluster centres,
(ii) A subsidiary process which is developed in each cluster in such a way that
the occurrence of events in one cluster does not effect the probability of occurr-
ence of events from another cluster.

Now if Mk(-/t) is the k'P factorial moment measure of the process of the
cluster members given that the cluster centre is at t, Ek(-) the kth factorial
cumulant measure for the process of the cluster centres, and
£, (x)dx £ Prob(one oluster in (x, x+dx)),
fz(x',xz)dx,dx2 = Prob(one cluster in (x,, x,+dx,) and one in (xE,Xé+dx2)
then the two first factorial cumulant measures of the overall process are:
C,(dt) = E(aN(t))

=Sx M,(dt/x)f, (x)dx (2;7_1)

:i M, (dt/x)C, (ax)
C,(dt, xdt,) = E(dN(t, )aN(t,))-E(ai(t,))E(dN(t.))
=S Mz(dt,xdtg/x)f,(x)dx+g S M, (at,/x, )M, (at,/x,)f, (x, ,x,)dx, dx, +
X X; X,

Id

_>K M‘(dt|/x‘)f‘(x‘)dx"gx M, (db,/x, )£, (x,)dx,

1

=S Mz(dt,xdtz/x)ﬁ,(dx)d-gx Sx M,(at, /x, )M, (dt,/x,)C, (dx, xdx, )
p.d 1 A2

(2.7.2)

The above results are derived by Vere-Jones (1970) by using methods based on

properties of the @Eﬁg;zzzgg_probability,functional.

If now A(t) and u(t ,t,) are respectively the intensity and wcovariance
density of the overall process end similarly X(t) and fi(t,,t,) the intensity

and the covariance density of the main process by virtue of (2.7.1) and (2.7.2),
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A(t) = Q m, (t/x)%(x)ax and
Y
e ~ ¢ - -
p(t,,5,) = \ m,(t, ,t./x)X(x)ax+ S 5 m (t,/x,)m, (t,/x,)i(s, ,x,)dx, dx, J (2.7.3)
x X X, -
The following two types of cluster models are further examined in detail,

A,~ The Neymann-Scott cluster model

This modeglﬂnposed by Neymenn and Scott (1958) for the distribution of
the galaxies and Vere-Jones (1970) in describing the seriss of the time origir
of earthquakes in New Zealand. In this model the process of the cluster center:z
is stationary and Poisson with parameter v, while conditional on a given membe-
size with probability generating function T(z) = ﬁi;)“nzn’ the cluster members
are independently and identically distributed about the cluster centre with
common distribution function L(x), where x is the distance of the member from
the oluster centre,

Since the process of the cluster centres is stationary and the probabi-
lity structure of the process of thes cluster members depends only in the dis-
tances from the cluster centre, and not on the location of the cluster centre.
the sum process will be stationary., Therefore, if A the mean rate of occurrence
of the sum process, p(u) its covariance density and the cluster centre is taken
as & cluster member then by using direct probabilistic argumenﬁs;

—
A vo1+vLm:n = v (1+a) (2.7.4)

-

plu) =v1(u) Zjnnn+v5x 1(x)1(x+u)§: n(n-1)x,, -
=va1(u)+vB5 1(x)1(x+u)dx (24745)
X

dL(x)

where o= E(N), B = B(N(N=1)), 1(x) = and N represents the numbers of
subsidiary events in a cluster,

If the cluster centre is not considered (2.7.4) and (2,7.5) become,

A= v.l.nn B yo
n
.

w(w) = 9B ) 16e)1(eru)ax.
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Thus by (2.2.7), (2.2.9), (2;7.4) and (2.7.5) the variance time curve
and the spectrum of counts for a general Neymann-Scott model are:
(1) The Variance time curve,
V(t) = a2 gt (t=u)p(u)du
0

('t -t -
= At+2va 1(u)(t-u)du+2va% S (t=u)1(x)1(x+u)dxdu (2.7.6)

Hence the ratio,
V{t 2 :
R= 1lim ( )-_-1 + b + i > , {1 « o the process 1ls over-
t—®. At v{1+a) v(1+a)
dispersed.

(ii) The spectrum of counts,
' +0 +0

ng+(u) = 7‘+"“S)$(u)e-iwudu+ vB_(g;\,c l(x)l(ga»u)e'imudxdu

(o - =iwu @ -3t
= Mva )y 1(-u)e d“*’S 1(u)e™Mau| +
Salfe o) (0]

et =i (x+u)w ® i
+ vB % 1(x+u)e AE d{x+u) Eb l(x)elmxdx
)
=k+va[i(m)+m)]+vﬂli(m)lz (2.7.7)

r
s
\

where 1(uw) = 5 pluX 1(x)dx, and i(m) = o™X 3 (x)dx
x

“*
If the cluster centre is not considered as & cluster member then the spect-
run of counts, o
ng, (w) = amvp|i(w)|’ (2.7.8)

"~ In the following the above obtained general results are applied in some
special cases of the Neymann-Scott model.
A{) The exponential decay model with 1(x) = pePX , p>>0 for which;
(i) Covariance density,

plu) = %— v (20+B)pe PY = —;—B'pe-pu (2.7.9)

where P’ = E(N(N+1))..
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(ii) Varisnce time curve,

V(t) =v (1+a)t+vp’t - AL (1 -e"Pt) (247.10)
P
(iii) Spectrum of counts,
P P p , P
ng (w) = v(1+a)+val— + y+ve S = v (1rajtvp” —
+ ptiw  p-iw pZ+uw’ Cpl4uw?

If the spectrum centre is not considered then by (2.7.8),

0?

g, (w) = varvp —rgry Mhere B = E(N(N-1)) (247.11)

A2)  The mixed exponential decay model with 1(x) = yp,e”P:¥+(1~y)p,e™P*,
Ogy\gh p,>0 and p, >0 for which the spectrum of counts is,

vB* 'Lpf(p’;ﬂnz)y-}-pi( p2,+m2)( 1-Y)] -vBy(1-y)(p, -pz)z (2.7.12)

ng (w) =~v(1+a) + '
: (p‘z+w2)(p:f_+m3)

If again the cluster centre is not considered the above formula becomes,

4 2 2
py Fot [vp, +( 1"Y)Pz:l w

(2.7.18)
(p$+w2)(pi+m2)

n g+(m) = va+yf

A3) The inverse power decay model with 1(x) = pcp/(c+x)p+‘, ¢>0, p>0 for
which:

(i) Covariance density,

pc 22p ~® dx

+ vBple’ P , (2.7.14)
)P+1 JO (c+x1+p (c+x+u)'+

(i1) Variance time curve,

t t o (t=u)dxdu
¢ t-u)d
V(t) = v (1+a)t+2vap cP ‘> .(_._)_lf‘_+2\'l392°2p <\ P
0 (c+u)® 00 [(c+x)(o+x+u)]
and by changing the order of integration and integrating by parts,
1-(1+1:/(c+x))!-p
V(t) = o(t)+k §m dx (2.7.15)
0 (c+x)2P
where, _
2 2vacPt 2vact
p(t) = v(1+a)t-2vat" - +
p-t !
. (1=p)(c+t) 1-p
2vppc’’ (2,7.186)
and K & ————

1-p
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Providing that p# '/, the evaluation of the integral in (2,7.15) can be
done as followst

Firstly by substituting 1y = Y/x+c the integral becomes,

t -
1a(14 —)'
® x+c
Fg (%) =S dx
0 (x+c P
=2p c t/c zp-: t-p ]
=t (\ yp E-_-(1+y) p_ldy
0
2P |-
=C pu| ZpG(u)
u o
where V=t/c and G(v) = g yzp—z [11(1+y)‘-p]dy (2.7,17)
0 o )

Integrating by parts repeatedly (2.6.17) gives,

2p= 2p :

u - 1~ U

6(u) = E-(1+u)‘ "1+ P B(v) where,
2p-1 - 2(2p-1)p (14u)®

p( p+1)(P+2) .--(P+r-1)
(2p+1)(2p+2),,.(2p+ D)

o8]
B(u) = r;;—O Br(%;)r which B, =1 and B, =

1+p

= (1-

)P y r2l. Far v not too large, say y<y, the series B(v)
2p4r T . . |

converge quite rapidly. For large u>u, > (z._7.17) can be written as,

G(v) = G(u,)+ [1 (1+y) p‘l dy
= Gluy )+ 1- \_uzp- - 2Pt J +A(uy,v) (2.7.18)
where,
A( - ('U 2p~2 1—p .
u,u) ==Yy (1+y) " dy and since y>u,>1,
Yy .
A(v,,v) = -y \__0 apy ©)dy with a_ =0
Ju, r= o
and a & (1-p)(-p)(-p—-1)...(2-p-r) = —a (1 _2;8)
r r] r-1 r

Therefore A(u,,u) = r-O rS

O

I [( 7P - ()]

end (2.7.18) for u>u,> 1 becomes,
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G(v) = G(v,)+ P {PZP'!-ufp'@ + A(u)-A(v,) where
a(v) 3 uP f °r (HT (2. 7- 19)
- r_—_O r:-r’ , ala
If v, = /3 then —;L-: 0¢6 and ii%;_ = 5/8=0.625; hence G(U1) and A(v,) can
1 . '

1
both converge simultaneously quite rapidly for 1J:>5/3 « Finally the truncation

error for the series B(v) since Br<fBr_‘ ist

Re S B (~-)"<B (<297 = vp (¥
nt Tty N ¥ 1+u N 140

Ba= The Bartlett-Lewis cluster model

Bartlett (1963 b) derived the above model to describe a clustering effect
in observed series of times at which vehicles pasé a poiﬁt on a road and Lewis
(1964) used the same model to describe series of computer failures. In this
model the cluster centres have a Poissdn process with parameter v, the times
between events in the subsidiary process Yi’ is= i’Z,.._ are independent and

identically distributed and the cluster size N has a distribution p(n), n =

= 0,1,... . Therefore if f(y) is the denmsity function of Y;, i = 1,2,.., with

rd

oharacteristic function M(8) = | OGO %% e (x)dx, the distribution of Y, +¥,+...
+ Y, will oe the n-fold convolution of the distribut.on of Y with densiiy

function f(n)(y) and characteristic function M?(8). Considering the cluster
centres as members of the subsidiary process and following a similar method
as the one in the case of the Neymann-Scott model the following results for

the intensity and covariance densities of the whole process are obtained:

A =v{1'p(0)+2-p(1)+...+(p+1)p(n)+...:] = vE(n+1) _ (2.7.20)
w(e) =vie(:)(p(1 Jrap(213p(3)+... o2 x) (p(2)r 2(3)+3p( &)+ wu e b £ () (p(3) +
+2p(4)+*uaa Hous | _
= v [E() B+ P DB@=1)+ £ ) BN-2)+.. ] (2.7.21)

consequently the Fourier transform of the i (t) is,
+Co0 ] T
p¥(w) =S p(<)e ™ dx = v[(M(m)+M(-w))E(N)+(rf(m)+M2(-m))E(N—1)+...]

-0
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and therefore the speé‘trwn of counts;
() = §oo T (e (-} Enes)] (2.7.22)

where E(k) = 0 for k<O. Since 1lim M(w) = 1 and 1lim M(®) = 0,.see Feller
: w—> 0 w3 oo :
(1966) Vol, II, the limiting values of g _(w) are:

B(N(N+1 ))}

— and lim =g (w) =} (247.23) )

w— 00

linm ug+(m) = ?\[1 +

w— 0O

In the special case where the cluster size has a geometric distribution. with

parameter p and r is the probability that the subsidiary process starts,

p(n) = Prob(n events in the subsidiary process)
= 1=r neo0
n-1 ; :
rp (1-p) N'= 1524000
rp® .
and E(N-S) = —— , 8 =0,1,... Consequently if the times between successive
1-p
events in the subsidiary process have Gamma with index 2 distribution, with
-2 .
M(u) = (1 -2297° (2,7.22) becomes,
2k '
1 e 1 1 8=1
g+(w) B—— qA+vV 21 - - + P
T 8= iw 28 i
(1 -—) (14 =—)28 | 1-p
2k 2k

1 'P%.;(H w? i) =2p (1 ~u?/2k? J+p?

g )

1 B (w) -
= "1_"'“ - (257.25) ({)
® Pp(w)

where P; (w) and P,(uw) are two fourth degree polynomials,
Lewis (1964) gives the spectrum of the intervals of the whole process

when the size N of the subsidiary process is geometrically distributed with

E(X
parameter p and B =~*§——;— —>, where X is the time between successive events
E(Y

in the main process and Y the time interval between successive events in the

subsidiary process. The exact formule is,
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2(1+ E(N)) e

w) = A
n(1+2E(N)) e“+d

r{cos(Zm)e($+p)cosm+p}
where e » 1=cosu+

1+ p® - 2pcos w

r{sin(Zm)-(Hp)sinw} '
d = sinu+ (2,70.24)
1+p%~2pcosu

2.8, Cluster representation of the mutually exciting process

Hawkes and Oakes (1972) by considering the self-exciting process as an
immigration-birth process derive some counting and interval properties of the
process. The mutually excitiﬁg processes, Ni(t), i=1,2,.4s,k, which have
been defined in 8 2.6., can be also interpreted as e k immigration birth pro-
cess of Poisson type forming cluster centres at rate v;. Each individual of
type j and age x then has probability Bij(x)dt+0(dt) of giving birth to a type
i individual in the next interval dt, There will be k different types of
clusters each containing all the descendants of various-types of an immigrant
of type i. In what follows by using the concept of the probability Generating
functional (p.g. fl) of a k-variate point process we derive some counting and
interval propérties of the mutually exciting processes which can be considered
as a generalization of the ones obtained by Haowkes and Oakes (1972) in the case
of self-exciting processes, which is a mutually exciting processes with k = 1.

Definition 1: The p.g. fl1 of a k-variate point process, Ni(t), i= 1,2,.00;k-

is defined sas,
k
G L -
(g(«)) =B iexp S-i; lgsi(t)dNi(t)} N
If s;(x) = 2y for 0€x St for 1 = 1,2,s0ek
4 otherwise
then the p.g. fl reduces to the ordinary p.g. f,

Ty T r
M(z) = E(ze 22° aee zklc ) where r, is the number of objects of the 1st kind,
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r, 1s the number of objects of the second kind ..., ry is the number of objects
of k" kind in the interval (0,t).
Theorem 1: The p.g. fl of a k~variate point processes where the individual
processes are independent nbn-stationary Poisson with indensities ki(t),

' k Ef'r -
G(g(+)) =exp3 L J (sy(6)=1r (t)at (2.8.1)
~ i=1 e 1 1
In the case of stationary poisson processes the above formula becomes,
5o, 2 "
G(s(+)) = ex 5 A, ) (s:(%)=1)dt (2.8.2)
~ pLi=1 1_5,,, 1 5 ’

Proof: The theorem can be proved either directly from the definition of the

P.g. fl by replacing the integrals with the corresponding sums or by considegg?
the k-variate point process as the superposition of k independept univariate
Poisson processes and applying well known results about the p.ge. fl of the non-
stationary Poisson processes and the superposition of independent point pro-
cesses (Vere-dJones, 1970).

Returning now in the case of mutually exciting point processes, in
each cluster of type i, which is originated at t = 0 by an individual of the
same type, the offspring in the first generation can be considered as gene-
rated by a non-stationary Poisson process which is the superposition of k in-
dependent.non-stationary Poisson précesses each with intensity Bji(t),

J= 1,2,...k. Hence by virtue of Theorem 1 the p.g. fl1 for the offspring in

the first generation is,
(1) (5()y = s c1 s s
£ = emf T S oyl 121,20k (289)

where 5(.) = (S1(°), 82(')’ ed e sk(a)).
Now the representation of the mutually exciting processes as a multitype

cluster processes and the use of the previously derived general results about
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the pig. fl of a multivariate point process enables us to derive the p.g.fl of

the overall process which is given by the following theorem.

Theorem 3: The p,g.fl of the mutually-exciting processes has the form,
G(s(+)) =exp§ L 5 v.(F(l)(st(-))‘-J)dt% " (2.8.3)
~ . 1=1_m i ~

where F(i)(s(')) is the peg.fl of the 1%8 G 1uster generated by an immigrant of
type i arriving at time zero end inclueding that immigrant, while By (+) =
= g(t++) is simply the translation of s(+). The functiomls F(l)(g(;)j, is=s

152,ss.k satisfy the equations,
(. : ) k w0 ) . . .
P)(g(0)) = si(O)expng‘ jo [P (s, (+1)-1] pji(t)dtg Jie 12,k (2.8.4)

Proof: Vere-Jones (1970) gives the p.g.fl of the overall process in the univa-

riate cluster process which by a direct generalization becomes in the case of

multivariate cluster processes,

6(s(+)) = 6,(F" (s(-)/%), FO(s(-)/8), ..o FBs(-)/8)) (2.8.5)

where G(s(<)) 1s the p.g.fl of the process of the cluster centres and
F(i)(E(-)/t) is the p.g.fl of the ith cluster given that the cluster centre is
at time t, If the process is time homogeneous then F(i)(i(f)/t) = F(i)(gt“(‘)),
where F(i)(i(-)) corresponds to a cluster centre at time O.

In the present case Gy(s(e)) is given by (2.8.2) and so,
kK +oo -
Gols(e)) = expé & :fwvi[;i(t)-ﬂ dtg (2.8.6)

Let now Fn(i)(g(’)) be the p.g.fl of the process which consists of all births
of different types of individuals in all generations up to and inclumding the
nth generation, and descended from an individual of type 1 which originates the
cluster at t = O and belongs in the cluster. Then by treating the first gene-
ration as the process of the cluster centres each of which generates further

sub-clusters and by using (2.8.1) the following backward equations far the
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multitype branching process are obtained,
(i i
P (g(0)) = sy (0@ (p_ (s, (=) )
= 54(0)ex ¢ lz'i ; F( )\s (+))- 'l Py (t)dt (2- 8.7)
i p? j=1 " L t 5 e Ve
for 1= 1,2,...k,
In the limit as n—> x, the cluster consists of all generations of

the family tree of type i and therefore the theorem follows by using (2.8.5)

and (2.8.6)., If s(x) = g for all x (2.8.7) becomes,

n=1 ~

“fli)(f) = 5y exp% Z (H(J)(s) 1)9. % 1 =1,2,.4en

and in the limit as n — »

. k . '
N(l)(g) = 84 exp§j21 (n(J)(E)q)aji)} 1 2 1,2,.0.k (2.8.8)

-

where n(l)(i) is the p.g.f of the total size of cluster of type i, and

€O

p
i = JO Bji(u)du is the mean number of offspring of type j in the first
generation generated in a cluster of type i.
In the special case considered in B 2.6. where k = 2, B,(u) = B, (u) = 0

and v = (g), the complete intensities of the two processes are respectevely,
) = §pGsmadam, ()
f
Aa(e) =+ § m(t-uan, (w)

and so the Np(t) is a self-exditing point process not influenced by the N, (t)

which is simply excited by the Np(t). Therefore the overall process can be

consldered as a cluster process of the Neymann-Scott type where the process
pm [T

of the cluster centres is a self-exciting one (instead of a renewal type) with

complete intensity Ap(t) and with the cluster members identically and indepen-

dently distributed with common distribution function,

x Bo(x
B(x) =S _Ei_l_dx ’ where x is the distance of the cluster member from the
0 813 t©

cluster centre and a,, = 5 Bia(x)dx is the mean cluster size (Vere-Jones 1970).
o
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The above specisl case of the mutually exciting processes applied in the case
of earthquake occurrence takes into account the fact that the cluster centres
(main shocks) too have the tendency of clustering in . different manner Irom
the cluster members (aftershock sequence). This very important feature of the
earthquake occurrence has been observed by Utsu in Japan and other seismic re-
gions. See discussion in Vere-Jones (1970).

By a direct application of the Theorem 3 in the case of the above consi-
dering special case the following results can be obtained for the p.g.fl's of
the process of cluster members and overall process,

P (s (), 8,(+))
P (5, (+), s2(+))

Sy (O)

Sz(O)GXP?‘J(Sq (4)-1) Byg (£)at +

§ e - []azz(t)dt ¢ (2.8.9)
G(sy (), s2(*)) = exp 7_5- @'P)(st( 0))=1 J dtz (2.8.10)

Zco
No explicit solutions of (z 8.9) and (z 8,10) are known but useful equations
may be obtained by choosing particular functions s(-). For example if s(x) = s
for all x then Fm(g(o)) = H(z)(g) is the p.g.function of the number of events
in a cluster originated with an individual of type II and (2.8.9) becomes,

t (s,,sz) = s, exp,‘ (s,-1)a1.+ (—n‘ (sy ,82)- 1_1 820 % (2.8,11)
From (2.8.11) the mean sizes of offspring of first and second kind in one

cluster can be obtained which are respectively,

Q _(2)
n - ()“ (h1,82) S1=1 a1z
12z = =
881 32=1 1-a92
Q _(2
am 81 ,85) 8=t o 1
mzp = 3 -
85 82=1  1aaj

Therefore the intensity of the overall process is

- ( 1 . a12? v(1+ 843 )

A=y d > = which is the sams with the one obtained in § 26.
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Returning now in the general case let

§(x) @ 5§ for yg<xg<y+l

1 elsewhere

Then F(i)(gt (+)) = 18 gy, 1, 8) is the p.g.f of the mumber of offspring
of all kinds in the intervel [ y~t, y-t+1] in a cluster originated at t = O

with an individual of i*M type, Then (2.8.7) becomes,

| e ) (2.8.12)
1)y, = exp§j21 So‘ T (y-t,148)-1] ﬂji(t)dtz y>0

r k +1 (
83 exp§j§1 5}; [n_(j)(y-_‘b’zl’g)a‘]] ﬁji(t)dtz -1% y\‘(o

1 . y <=1

The last result. arises since if y <=1 the considering interval p?gceea-?\.the

N ——

cluster centre and hence there are notany events in it.

Now let us put s(x) =( s 0<£x <1
4 elsewhere

~

in the equation (2.8.3). Then G(s(:)) = Ql(s) is the p.g.f for the number of

events in (0,1:‘ of the equilibrium mutually exciting process and (2.8.3) becomes

gl v r"(i)(-tzl.-s)-ﬂ dt% (2.8.13)

12

- 00

"k
Ql(i) = exp%,_lz

Equations (2.8.12) and (2.8,.13) determine the distribution of counts. However
they can be used to establish some interval properties of the process,

Theorem 4: (a) The forward recurrence time survivor function is,

- - (1)
R (1) = P(L>1) = exp {-1 i§1 v; - 12'1 v, So h-oy (1;,1)]c1t2 (2.8.14)

D)

where ¢§i)(t,1) satisfies the equation
Ck gyl .
. \ .
¢§1)(y,1) = \ exp 2%1 ) [‘*’f{:’)(y-t,l)- 1 Bji(t)dtg y>0
0 (2.8,15)
0 -1£yX0

1 y<-1
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(b) The equilibrium distribution of the interval between successive
events has survivor function,

_y 4R (%)
(6) = P(T>t) ==h L~
T g Aoat

Proof: a) (2.8.13) can be written as,

k
Q(s) = expj(_z; 51 1 y,1,0)- ﬂdY'

0 M

X .0 . X . ,
= exp %\]'}___1 \)_1 vy [n(l)(y,l,ﬁ)-ﬂ ay+ 1§1 ,g'vi {n(l)(y,lyﬁ)-fldyg

Hence by virtue of (2.8.12),

RL(l) = Ql(Q) = Pr (No even'bs of any kind in (0 1))

= exp -1 Z v, - f_ 5 v, [1 <b (1-, l)]dt}

where ¢Y(i)(y,1) = H(i)(y,l,g) is the probability of no events of any kind
in the interval (y: y+1) for a cluster of type 1th originated at t=0. The
equations (2.8.15) follow simply by taking s = Q in (2.8,12),

(b) This is immediate consequence of the relationship (2.2.16)._:-
the previously considering special case v, 0, v,=v, k = 2 and by (2.8.9)
¢ (y,l) = ﬂ()\y 1,0) = 0, Hence che forward recurrence time sdrvivor funct-

ion beoomes, R (1) = P(L>1) = exp4 1v=v jv- y (t,l)%dtg‘ where

s _ 2
¢Y (y,l) = 5 exp z- SY+ B,_a(t)dt+8 Eb;(y-t.l)-l] ﬁgz(t)dtf, y>0
v 0
i 0 -1 y<o0
’\ 1 y<=1l
"‘ (2.8,16)

Equation (2.8,16) may be solved in principle by repeated numerical in-
tegration using the recurrence relation (2.8.7) which in this case takes the

form,
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@ s, y+l y+1 @ :‘
by n(¥,1) = ( exp %’-S B12(t)dy+g EDY =t,1)- 1] p(t)at v ¥y>0
Y 0 u

( 1 y-<-1
7/

and with the initial condition
¢-$:O(y,1) =0 -lsy <0
=1 elsewhere,
Continuing now with further studying of the structure of the cluster
of the mutually exciting processes,
let E(x) = 8 0<x Su

otherwise

z_&

Then F(i)(s(°)) = “ii)(s) is the p.g.f of events in (0,u) of a cluster o-

riginated at time zero with an individual of 3bh type, and (2.8.4) becomes,

(1) ) ."’ u (J) ,z P
() = 8y exp(J 130 IO O, (2.8.17)

Let mow Mji(u) be the number of jth'type subsidiary events in the in-

th

terval (0,u) for a cluster starting with an i"" immigrant, and H (u)

E(M ;(u)), 1,3 = 1,2,...ke Then,

21{8(q) Kk u
5.+, (u) = Oy "t8) = 8,,+ ) 5. +H. (u-t)|p . (t)dt
AR 383’ s%= i Ji r=1 50[ Jr Jr ] ri
where = J=1i
2. 0 j#£1i

and by taking Laplace transforms

k
H;.‘i(s) =1 5

1 (8)+ Z_ H (S)ﬂ (s) or in matrix notation
8 T= .

'S_JrB ri

~

H*(s) ='l—'p*(s)+H*(s)B (s) and therefore
g & ~ |

-1

H (s) =%E*(s) [E'E*(s)] (2.8.18)

In the previously examined special case,




. 0 BR(s) i 1 ~prz2(s)
p(s) = ( ] I-8 (s8) = *
- / 0 1-B22(S)

and g*(s) =~l E*(S)EE-ET(Si}-
8

} 1 (0 B2(s)
s(1-p1(8)) \ o  pi(s)

* BTE(S)
Hence, Hia(s) = —5———
5(1 '322(5))
E 3
BZ?(S)
x - ]
Hpy(s) = ——
s(1~-p22(s))
. * *12
lim My (u) = lim s Hqpo(s) =
u-oo s—>0 1-&22
a
* 2 _ 1
lim Mz'z(u) = lim s HZQ(S) = - -1
u—-» s—0 1=822 1=-az2

which are consistent with the results in 8 2.6.
Finally some results for the length Y of a cluster of ith type, i*e the
time between the first and last events of the cluster, are derived.

Theorem 5: The distribution Dy(y) = P(Y<y) of the length of a cluster satis~

fies the equation,

(3)

k . )
(y) Ayt 2 SZ D,({J)(y-t)ﬁji.(t)dt § y 20

(2.8.19)
= 0 y<O0

Proof: Thi. follows once again from (2.8.4) by taking
s(x) =5 1 for x<y
(‘ 0 x>y
Then F( )(s( *)) is the probablllty of no events in the 1" cluster after time
y, i-e Y<y) because F (s( }) = E(exp 1g S (t)dN (t)) and the
random variable exp g L 1g s, (t)dN (t) takes the value 1 if there are no

“i=1
any events after y and the value O otherwise, The probability of no subsidiary
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(1
events is Dy )(0) = e o
The above Theorem applied in the case of the 2-variate mutually ex=-

citing processes with B, (u) = p,(u) = 0 gives,

)
Dy () = ( 1 y>0

ZJ 0 y <0
(@)

~ Y 2) Yy
Do (y) = exp{-an cagr (DY (r-8) Baa(tdas+ §” pfeae £ y>0
0 0
(2.8.20)
0 y<0

and therefore ﬂi)(o) = Pr (No subsidiary events) = o 22,

Equation (2.8.20) may also be solved by repeated numerical integration

since (2.8,7) takes the form,

(2) - Y @ rY
Dy (y) = ) exp3-arz-ager ) Dy pe (8D Bap(t)at+ Jo po{t)at gy y>0
0

0 y<0
1 y20

with initial conditions D%‘() oly) =
! 0 otherwise
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CHAPTER 3

ESTIMATION OF THE SECOND ORDER PROPERTIES OF THE STATIONARY

POINT PROCESSES

3,1s Introduction

Data which come from a point process can be analysed by using. the
estimates of the first and second order moments and their distributional
broperties. There are two general ways of statistical analysis,

(1) Exploratory analysis, in which no particular model is considered and
the gross characteristics of the data being examined,

(ii) Analysis in which specific models are to be tested against the data
and their parameters are to be estimated.

In the first case the exploratory analysis may be used to suggest a
relevant model or to discover the physical mechanism which generates the
data. In this kind of analysis the investigation usually starts with an
examination of the existence of trends in the data,

A plot, for instance, of the cumulative number of events against the
time can give evidence of trends. The slope of the line which joins two
points A and B in the cumulative plot, is the mean rate of occurrence for
the period tB—tA.

If there is no evidence of trends it can be assumed that the process
is stationary and the next step is to examine if a Poisson or a renewal model
is consistent with the data. The Poisson hypothesis is tested by using the
Anderson-Darling statistic, which is,

1

.. .
= -n -— i [(2i-1)1g = 4 (2(n-i )} 1)1g(1-ti/'|:o)] (3.1.1)
n i=1 t,

2
W
n

where t; is the time to the ith event and to the whole interval of the ob-

servation, The above test is not consistent against a certain alternative
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and is most sensitive to trend alternmatives.
Another test for the Poisson hypothesis against renewal alternative

in which the intervals X,, i = 1,2,...n between successive events have

Gamma distribution with index >>2, is the Moran one whose statistic is,

= 1
2n(lg X - _§i1 1gX, ) .
1l=
L = . (3.1.2)

n+1
6n

1+

and which is diétributed as a chi-square variate with n-1 d.f. (Cox and
Lewis, 1966, p.150-161),

The existence of serial correlation can be also examined by using tests
based on the statistical properties of the estimates of the autocovariance or
autocorrelation function and of the spectrum of which a brief outline is gi-
ven later, If again there is no evidence of serial correlation, as a next
step the empirical distribution function of intervals and its main chara-
cteristics can be estimated.

In the second case of statistical analysis a special model, which comes
as a result of an exploratory analysis or from previous knowledge is consi-
dered. The adequacy of this particular model can be examined again by tests
based on the second order properties of the interval and the counting pro-
cesses,

In what follows the stationary discrete time series Xi’ i=1,2,400yn,
which consists of the times betweem n+1 successive events, and the counting
process {N(ti%, which is continuous and consists of the number of events up
to time t, are always considered,

For the computing the SASEIV program developed by Lewis, Katcher and
Weiss (1969) is used, The progrem is written entirely in Fortrem IV, it is
designed to run in an I,B.M. 360 system under 0,5 360 provided the system

has 512K bytes, and has been run for the present investigation under M,T.S.
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system at the computer unit of University of Durham, Firstly the estimation
of the autocovariance function is examined.

3.2, Estimation of the autocovarience and autocorrelation functions

Given the process Xt’ t ® 1,2,.0.yn the usual estimates of the auto-

covariance function are,

N A 1 n.;s > ¥ L.
SIOER T2 a<n
noio (3.2.1)
(, 0 s>n
4 n-s - -
(ii) &(s) = E:(xfxﬂxhgx) s<n :
n-s i=1 (3.2.2)
0] s>n
e n '
where X = E: X;/n. If the process Xyy t=1,2,..a has zero mean then the
i=1

expectations of the above estimates are, ‘
B(8(s)) = v(s) and  E(5(s)) = (1 -—)y(s) (3.2.3)
Therefore in this case, the estimate &(s) is umbiased while the ¥(s) is
asymptotically umbiased,

Bstimates of the sutocorrelation function are obtained by dividing the
estimates of the autocovariance function by the estimate of the common va-

riance ef the process, thus,

5(s) = &(s)

é(o)

(3;2.4)

The Lot of the function ;5(s), s = 0,1,..., is called correlogram,
which specifies the process to the same extent as the periodogram does.
TWhether it is preferable to think in terms of the periodogram or the correlo-
gram depends upon a number of considerations among which the physical context
is of prime importance (Hannen, 1960)._

The variance of the estimate (3.2.5) is given by Cox and Lewis (1966)

p~ 92, and is,
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1 x o
v(p(s)) = (1+2 ;. ¢%(8)) (3.2.5)
n-s i=1

As f£-r as the distribution properties of p(s) ~re concerned no general
theorems about the asymptotic normality of §(s) appear to be available. The
problem according to Hannan (1960), can be reduced to that of the joint asym-
ptotic normality of &(s) and &(0), since if the distribution of the
Yn-t(8(t)-y(t)) tends to the normal distribution that of \n=t(f(t)-p(t)) will
also tend to normality. In testing the 1lack of serial dependence the stati-
stic qﬁ:i p{1) can be used which for p(1) = 0 and large n hasnormal distri-
bution with mean zero and variance one. Moran (1970) showed that ' (1) con-
verges in distribution to a unit normal variate if the first four moments of
X,1 = 1,2,... exist, :

The program SASE IV gives in separate columns the s, p(s) and yn-s 5(s).
It also plots the normalized serimsl correlation coefficient Vn=s ﬁ(s) versus
the lag s,

3.3. Periodogram of the intervals and the estimation of the Power spectrum

One approach to the estimation of the power spectrum is by using the

periodogram of intervals which is defined as the quantity

e R () C
Ty(w) = — %Ax( yrBx(w) § (3.3.1)

n
where Ay(w) = ixtcos(mt), Bx(m) = ;thin(mt) and -g<wln

If the process under consideration, {Kbg , has zero mean, then the
following immediate results are obtained:
(i) The periodogram is the Fourier transform of the sample autocovariance

function ¥(s).

. 1 '
8ince, Ix(m) =m§A§((m)+B;(m)}
! & Swu -imu-)
('1_ X,© Z Xue S

1
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1 = 2 -
o Z \L %Xue-m (v=v)
2rn 1 1
1 r%-_-1 - ~iws
= — - XX e
ont. s=::n+1 t Tuts
1 nv-_1 R :
=z L fls)e s (3.3.2) @
T ot

(ii) The periodogram is asymptotically umbiased estimate of the power

spectrum,
. - 1 n;1 ~ ~iws . )
Since, E(Ix(w)) =— E(7(s))e by (3.3.2

T -n+1

L N -

= — Z (1 -—)y(s)e L8 by (3.243)
2T -nt1 n
g I .
and therefore, lim E(Iy(w)) =—— i Y(s)e-ms = f(w)
n —a . 21 o

(1ii) If the data contains a periodic term of period w, the periodogram will

have a peak at W, and subsidiary peaks at u = wy+ 2ug , (Granger and Hatanaka,
n

1964). This property mekes the periodogram a very efficient tool in discover-

ing hidden periodicities in the data under analysis. However the main disadvan-

tage of tue periodogram is its inconsistence as an estimate of the power spect-

rum. This can be demonstrated in a special case where the X;'s are independent

and normally distributed with variance 5? and zero mean., In this case and for
2xk '

Wy = L, k=0,1,2,...n/2 the following results are obtained:
n

B(ag(w,)) = B(Bx(wy)) =

o

. n
Var(Ay(wy)) = E(A;{(mk)) 2o ¥ cos® (wyt) s n/2 for ks 0, n/2
1

=g =
o’n kX =0, n/2

Var(Bx(w,)) = E(B;dc(wk)) =a f sin (w,t) = ( o°n/2 k= 0, n/2
1 0 k = 0, n/2

Cov(Ay(uy), Ay(up)) = Cov(Aglu,), Bylwy)) = Cov(Byluy), Bylw,)) = 0
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and therefore:

z o, 2

Ax(“‘k) . By (wy) . 4nly(w)
Var(8y(w,))  Var(By(uy)) N
is distributed as a chi-square variate with 2 d.f. €onsequently

41l (w 2
X k)) = 2 and E(Iyx(w,)) =-:——= f(mk)

(1) For k # 0, n/2 the r.v Y(tuk) =

E(

2
)

which meens that Ix(mk) provides an umbiased estimate of the spectrum of the
2nk

process under consideration at the points w, = T k = 0,1,.44,0/2.

4
4.-111'){( mk)
Further, Var( -

5]

a
) =4 and Var(Ix(w,)) =
4 .,
&
that the I(w,) is an inconsistent estimate of f(w), since E|Ix(u,)=f(u,)| +>0

-—u,‘,— which simply means

as n—— 02 ,

Zqu(uk)
(i) For k = 0, n/2 Bf,) = 0, and therefore the rev Y(wy) = ———— is
. a
distributed as a chi-square with 1 d.f.
' 4nly(w, )

2 . H
s}

alien ;"

(iii) The rev's Y(uy) = k 2 0,1,...,n/2 are mutually independent

HINTEE

which explains the erratic behaviour of the plot of the periodogram.
2nk

The above results were derived for the angular frequencies w, =

n T

under the assumption that the process ?_X.t% is normal white noise, We can gene-~

ralize them for all the frequencies and for non-Norm:l process;es.

IR T

Thus the following results are obtained by Jenkins and Watts (1969),

Pe 239:

(1) If the X,'s are independent end have normal distribution the reyv
4Ty (w)

2
a

(ii) If the X;'s are independent but not normally distributed the rev
41:Ix(m)

2
a

as n — W,

is exactiy distributed as a chi~-square with 2 d.f for all u.

is approximately distributed as a chi-square with 2 d.f, for all w

(iii) The variance of Iy(w) is always dominated by a constant term which re-
mains finite as n — o0 . Therefore the periodogram Iyx(w) is always en incon-

sistent estimate of the power spectrum f(w). However the variance of the e-
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stimate can be reduced by using smoothing procedures as follows:

If w(u) is a symmetrical function, which is zero for {u|>M where
+O0

1 & -
M<n, and w*(s) = — 2 wlu)e 1us

its Fourier transform, the smoothed
2n -

estimate of the spectrum is defined as:

1 A -ikuw
P(w) =~ 2 wik)y(k)e
T M .

+C0 ' s :
= 5 w*(s)IX(m-s)ds (34342) (L)
Lop |

where the function y(k) is defined in (3.2.1) and (3.342) ().

The function w(u) is called the lag window and its Fourier transform
w*(s) the spectral window,

Examples of lag windows which are widely used in spectral analysis are
given in Table 3.1 and their plots in Figure 3,1,

The main distributional properties of the smoothed estimate of the
power spectrum are given by Jenkins and Watts (1969) Pe 246=254, which

briefly are:

(i) The mean value of the estimate for n large is:
(J_foo +00
B(E(w)) = § w*(s)B(Iglu~s))as = § w¥(s)e(ums)ds (3.5.5)

<oc Zoc

The bias B(w) = E(f(w))-f(u) decreases as the truncation point M increases,

(ii) The variance of the estimate is:

2 400 .
Var(z‘(m)) = ——(‘—)—g w2 (u)du = fz(m) z (3.3.4)
n Zeo n
+20
where I = wz(u)du.

Zm
From the Table 3.2 can be seen that for the most of the main windows
the ratio L is linear function of the truncation point M. Hence the va-

n
riance decreases as the M decreases.
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(iii) The quentity 1>=-%- is called the bandwidth of the lag window and
from (3.3.3),
Var(#(y)xb) = constant.
Hence small variance is associated with large bandwidth and large variance
with snall bandwidths. The values of b for different windows are given in

Table 3i2.
o - vf(w) , .
(iv) The random variable ———z—y— is distributed approximately as chi-square
flw

with v = 2nb degrees of freedom, Therefore the 100(1-a)% confidence intervai
(_vf(m) v f(w) )

2 LA ¢
x3(1-/2) X2 (a/2)

logarithmic scale then the confidence interval for the spectrum is simply

will be If the spectral estimates are plotted on

represented by a constant interval about the spectral estimate.

Now according to the second of the above properties the yariance of
the estimate can be reduced by reducing the truncation point M,

However according to the first one by reducing M the bias of the esti.-
mate is increased while the resolvability of the spectrum is decreased, i.e
ability to discriminate between the values of f(w) for different frequencies
for a givon sample size nj; which is the main objective in the estimation of
the spectrum,

Much work has been done by Parzen (1961a), Priestley (1962), Daniels
(1962) and others aimed at choosing the best lag-window which will effect &
suiteble compromise between the variance and the bias of the estimate of the
spectrum,

The above theoretical results assisted by empirical ones show that the
irportant question in spectral analysis is not the choise of the window lag,
but the choice of the truncation point M. A compromise can be achieved by
trying different values of M usually in the range §a~<€g <:—%—. If it is

required to detect detail of widthsl-ormore in the spectrum the bandwidth of
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the lag window has to be chosen such that b £ as In the case, for exemple,

. 1.86
1.8 and therefore must take M7>>

of the Parzen window, Table 3.2, b=
o

Ancther point which has to be stressed is the fact that it ig_;uffin
cient to eostimate the spectrum at the points w =-€§L, J = 0,1,2,44e,M,
since there are only M+1 methematically independent values of F(w) in (0,n)
and any other values of f£(u) serving only to connect these M+1 values. (Cox
end Lewis, 1966, p. 107).

2n

Hence if someone is interested in some particular frequency, say <

then he has to look at the frequency point'and its neighborhood for which

mj=lMJ_.=th_n_ or j-%&—.

Ix( )
£(3)

P
Finally the quantity s, = jg: 1%(3), x(3) =

, or equivalently

—

the quantity,

8

T, = IX(J)/ )_ Ix(j) =

ation : ) ﬂ-

s Where Sn/Z is given equal to its expect-

Hﬂ ) may be tested against its expectation E(T ) = —— by check-
n

ing that the deviation of T_ does not exceed the A(a)/{ 5 boundary ob~-

P

tained by the two-sided Kolmogorov~-Smirnov test. The probablllty of remain-
ing within the boundary is, ti(-n e"" 5" with A (0.05) = 1.36 and
1(0.01) = 1,63. These results can be used for testing the adequacy of the
proposed models (Bartlett, 1966, p. 329).

The SASE IV program by using the Parzen lag window gives in separate
columns:

The smoothed estimates of the density spectrum for three different
values of the truncation point M, the unsmoothed periodogram divided by é;
and the normalized cumulative periodogram. It also gives a simultaneocus plot
of the estimated spectral density, smoothed over three different values of
M versus the index J and the plot of the normalized cumulative periodogram

again versus J,
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Table 3.1 Lag and spectral windows
Description Lag window Spectral window
Rectangular P uj - jul < ¥ sin(wM)
R ) VU]: ) = y ™ nS wgw
<, .ul >M
‘U sinﬂ
Wy (u) = g <M . 2
, | - S ugn
Bartlett WB(m) S ), 1S wg
z, 0 [ul >u 2
. tul 3 in (@M
WP(u) = —G(M) + 8(—~— ) W*(m) 3 (sm( Z ))
hal < l& P 4 wM
2 4
haf 3
Parzen 2(1- TS -t
M .
—<juygM
2
0 lul > M
Table 3.2 Propertien of spectral windows
Description | Variauce ratio I/n Degrees of freedom Bandwidth
Rectangular 2 M/n n/M 0.5/M
Bartlett 0.667 M/n 3 n/M 1.5/M
Parzen 0.539 W/n 3,71 n/M 1.86/M
3.4. Estimation of the mean rate of occurrence of events and of the

Variarce-%ime curve

If n is ths mumbe:r of events
umbiased estimats of the msan rate

11

Ko —
to
Ths variance of the estimate
L V(g
Var(}) =
to
V7 fon
which tends o ___{03) oo
-

T
to— 0 . Since!for long

observed in a period of length t,, an
of occurrence of events is

(3.4.1)
is

(3.4.2)

T

series the precision
A\
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of X can be estimated from the limiting slope of the Variance-time curve,
The Variance of the number of events in the interval (0,t) or the
Variance-time curve, 7(%), can bc ectimated in two different ways:
(1) By using the estimates of the covariance between the numbers of events
in two intervals of equal length,

(11) By using a moving average over a number of possible intervals of length t.
. Let the whole interval (0, t,) be divided in s equal intervals of length T,
such that stgt,, and let n; be the number of events in the i'h jntervel. Then

in the first case, (i), if C;(t) is the covariance between the numbers of o-

vents in two intervals of length t, seperated by i=- 1 other similar intervals,

an estimate of C;(t) is,

S (e 2t k=i ;o k=i kel o ( ‘ )
C.(t) = — /. n.n - ( ; n.)( n ) i 51,2,0009k=1 3.4.3
. s 8 2 L P 142 ?
i k-i 324 J i (k-1) 3o J o1 J+i

and therefore, according to the result,

-1
V(t) = V(rt) = rC (x)+2 f}: (r-j)Cj(t)

J=1
an estimate of V(%) is
X h r=1 " o
T(t) = rCyflx)p (r-j)Cj(r) (3.42.4)
J=1 ~

(Cox and Lewic, 1966, p. 115),
In the second procedure, which has been suggested by Cox and Smith
(1953), in order to estimate the variance-time curve, V(t), at the point

t = rv whore r<s, the following random veriables are firstly defined:

Vﬁr) T MytNgteaotl,

r
Vé ) ® Nyt eeadNy,

‘a o e & & a e ® e ao @
e & a @ e © e ¢

(») .
v - n - +eeet
rk-r 4 rk-T41 rk
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tO | ( ) . H
where k = — and each of the V\T¥/) r.v's is the number of events occurring

in an interval of length t ® rt. Hence the estimate of V(t) can be formed by

the corrected sum of squares of the r.v's Vgr), 1= 1,2,000y7k-T+1, 1iee
. M .
a < 2 2
T(t) = A[r‘_ (vf")) -1y 3 v{r)y 1 (3.4.5)
i=1 T L

where A is a constent end M = rk-f+1. In the oase of a Poisson process, if

3M a
A=—r ; the estimate V(t) is umbiased. If r =1 then t =T and
BM ~3Mrtr2 -1 .
the coefficient A takes the usual form A &8 —,

k-1

The interval t has to be chosen in such a way that #he average number
of events in an interval of length t is less or equal to 2. The moments of
the two estimates V(t) and %(t) and also a generel comparison between them
are given by Cox and Lewis (1966), p. 117-118.

The SASEIV program gives the estimates of the Variance~time curve
V(t) and of the ratio V(t)/At for t = rt, r=1,2,...,k<8000, and also plots
the V(t) versus the time %.

3.5. The periodogram of the counts and the estimation of the Bartlett's

spectrum

One of the ways in which the periodogram of the counts arises is as
the modulus squared of the Foufier-Stieltjes transform'of the sample function
N(t) of an observed series of events.

Assumming that the series of events has observed for a period of length
t, during which n events occur at times t1, t3, «.., ty; the Fourier-Stieltjes

transform of the function N(t), is,

1 /to s
J w) s ——=- eltmdN t
1 n s s
Z eltJ w

=*T
(ﬂto)b J=1
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1 n n 7
= KA E: GOS(tjUQ+i z: sin(t ,w)
(xt0)% (_ 41 j=1 !
§ p) .
-1 B w) ¢ (5.5.1)

(1:1,0) LA‘G (wiri Bg( ))

28 n
where Ay (w) = L_ cos(t m), Bt (m) = 2 s1n(tJu0 and n is the observed

=1 j=1

value of the random variable N(to). The divisor (uto)2 in (5 5,1) is ar=-

bitrary, as far as the Fourier theory is concerned, but is essential to

give the periodogram the right properties as an estimator of g+(m).
Consequently according to the definition in the begining of this

section the periodogram of series of events is,

Ito(“’) = Jto(m) J'bo(“’)

1

[ 4, (w)+B5 (w)]

nto
| o=i(ta-ty)u
1

Tl
Trvﬂs

T[to

(a2 5 cos w(t_, s=t. )] (3l 5‘ 2)
- | (A L e
n Lty to s=1 j=1 s+J 7]

The periodogram of counts It (w) is an asymptotically umbiased estimate

of the spectrum of counts g+(w), since from (3.5.1)

t
1 (7o (0 Alto=tq )W
= y e -

ocm) o >O >O aN(t1)dN(t2) and by (2.2.5)
to %o u
E(Ito(m)) = -;[11; .. So SO e-l('bz't1) (p (%4 -t2)+?~5(.131):;t2))dt1dt2
1 ° ~iuy 2 uto ’ 9Eﬁ.ium 2
= :t_t: I: S-toe Y p(u+as(u)+x Ydu So dte Soogeu (p(upas (u)+x )dudﬁ]
1 to . .
= Tt (to-1u]) (p(u)+r8(u)+X Yo ™ ¥ du

o
Therefore,

— O
1 /¢ - 2
lim E(Iy (w)) = —*L) p(w)e 1My 4 aen
to— T L 200

(vo)

=iuw

e Y du:l =
(o

P
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+o

~ 1 [5 p(u)e"iu“’duH\] = g+(m)
n %o

The Poisson process plays the role in the spectral analysis.of Point
processes which a normal white noise plays in ordinary time series. For the
Poisson process with rate A the following results are obtained:

(i) If w is a multiple of 2n/t,, then Ato(m) and Bto(m) are uncorrelated
random variables with a distribution which tends to a normal distribution
with mean zero and variance A/2n as ty—>w®,

(ii) As a consequence Ito(w) hes asymptotically an exponential distribution
with mean A/n and standard deviation A/m (i.e Ito(w) is proportional to a
chi-squared variable with two degrees of freedom).

This property can be extended for processes which are derived from
Poisson processes. Thus Bartlett (1963b) has shown for the doubly stochastic
Poisson process and branching Poisson process, that Ito(”) has asymptotically
an expone?tial distribution with meean 'g+(m). Therefore the guantity
T%o(w =-—E2£EE- is a random variable asymptotically proportional to a chi-

g, ()
square one with two degrees of freedom, Hence under the assumption,
E(Ito(m)) = g+(m), The eV L%o(w) becomes,

B .
'Lt.o\m) -~ A’2 (305.5)

For general velues of w, the expectation of the periodogram of counts

is i
! sin(Eiﬁl) .
. A2
B(Ig (w)) =—+N t5 ( ) (3.5.4)
) T wty/2
Thus the bias of the estimate is zero for non-zero multiples of EZL—
o

and has its meximum value at w = O, That is why the estimation of g+(m) is

difficult near w:= 0

(iii) The exact variance of It,(w) for a Poisson process and for w multiple
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of 2% g,
to

-

£

A

2

A
Ao

Vaé(lto(m)) - (14 (3.5.5)

which simply says that ito(m) is an inconsistent estimete of the spectrum
of counts,

(iv) The exact dorrelation between periodogram values in two different va-

lues of w, which are multiples of -%E— is,
: )

AR '
Corr(Ito(u-H), Ito(mg)) =/W (3.5;6)

(Cox and Lewis, 1966, p. 127).
Thus the situation for the Poisson process is not quite the same as
for the normal white noise in the case of time series. The Ito(m,) and

Ito(”2) behave like the variables X3+Z and Xo+Z where the X's are mutually

uncorrelated with mean A/2% and variance A?/nz and are uncorrelated with

the variable Z, which has mean zero and variance —; .
T to

In the applications, the normalized périodogram of counts is usually
computed, which is,

i Ito(w)
Ito(m) =———— and by (3.5.2)

t 1 .
17 (m) =____<_)_ . "E %1 e"l(t)\_“tk)m
to L T = I e
1 n n 2=
T .
= - Z exp {-1(t)‘-t ) . %
nr k=1 A=t kT
1 n n 2n n
s — Z Z exp 2-5. — o —— (ty =ty) ’g
BT k=1 2A=1 n o
1 Tn_ .r_l 2n . . C
s - L L oXp {‘-i """"(f'h -tk)‘% (3.5-6)
nn k=1 A=} n

where tj =
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2nj

points wy - —;r~,-j = 1,2,40.41/2,

According to the property (iiij, the I;o(w) is an inconsistent estimate
of g{w). Therefore the estimate has to be smoothed. The object of smoothing
ie, as in the case of the periodogram of time series, to produce an estimate
of the spectrum whose variance and bias at any point w decrease as t; in-
creases, and whose values at separate frequencies w, and w, are correlated,
The last requirement is the reason for the use of the name "smoothing".

Intuitively emmmone feels thot the true spectrum does not vary without
constraint from one frequency to an;ther and it is reasonable'for the esti-
mate to behave similarly. All the sﬁéctral windows of Table 3.2 may be used,
The uniform lag window is usually used, because of its simplicity in compu-
tation, or a quadratic weighting scheme which has put forward by Bartlett
(1963).

In the case of a uniform lag window the smoothed estimate of g, (w) is
given by the formula
c+k/2 +72 If,(w p)

I (w ) =
Yo' o pgc “k/2+%  k

(3-. 5-.7)

2np

where mp = s kK the number of points or frequencies mP over which the

n
smoothing is performed and ¢ is an integer if k is odd, and integer plus a
half if k is even. (Cox and Lewis, 1966, p. 130),

The main properties of the smoothed spectrum are for n large and con-

stant k,
(1) B(1E(ug) = g, (u)
2
. .. gy lug)
(i1) Var(Ig,(wg)) = —r_°.
k
(ii1) The I%B(Uc) approximatel@y is proportional to a chi-square variate

with 2k degrees of freedom.
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There are certain difficult points which arise with the estimation of
the spectrum of counts. The main ones are:
(1) It 32 not nossible %o use the fést Fourier transform algorithm, intro-
duced by J.W.Cooley and J,W.Tukey (1965), to compute the periodogram of counts,
since the random variable tj occurs in the exponent in (5.5.2)? while in the |
case of periodogram of intervals it appears as a multiplier of a power of the

oth

root of unity. Therefore the computation time is proportional to n’ where
n is the number of events in the interval (0, ty,). This can be a severe li-
mitation on the use of this type of spectral analysis.

(ii) A problem arises in using the spectrum of the point process, particular-
ly in tests of fit of models to data, because while the spectrum of counts is
unlimited in extent, compared with the spectrum of intervals which is a pe=-
riodic function, there are only n computationally independent values in the
estimated spectrum. Statistically speaking there are, in a rough sense, no
more than n degrees of freedom available for tests. Consequently if more than
n/2 of the estimated points are used in a test then the distribution theory
of the tests, if it is based on the points being approximately chi-square
with two degirees of' freedom variates, is no longer valid (Lewis, 1970).

It is easy to seec that the spectrum of counts, the variénce-ﬁime curve
end the covariance density are mathematically equivalent functions. The main
advantage of the spectrum is that its sampling theory is easier than that of
the others. Unfortunately its physical meaning is not so obvious as in the
case of the spectrum of intervals, The only point process in which the spect-
run of counts has the analogue interpretation of the power spectrum is possibly
the doubly‘?oisson process.

Finally the Program SASEIV computes and prints out in adjacent columns

the quentities: J, Ato(J)7 By, (9), Iéo(J) and the average of successive sets
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of two, three, four, five, ten and twenty I%O(J)'s. It also gives a simul-

taneous plot of the estimated spectrum smoothed over k = 5, 10 and 20,

versus the index J.
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CHAPTER 4

ANALYSIS OF THE DATA

4.1, Origin of the data

The data under investigation are sets of time intervals beuween
‘successive earthquakeé in units of 1000 minutes, which occured during
the period from January I950 until February I97I in I4 different areas,
Appendix gives the I4 sets of data with the geographical coordinates
of each area. These data have been extracted from a list of earthquakes
which has been provided by the Institute of Geological Sciences of E-
dinburgh. This list which contains earthqueke records from the whole
of the Barth and for the period I800~-I97I was mounted on a magnetic
tape with Data control block: FB, IRECI = 80, BLCSIZE = 4,000,

The first problem which one is faced with in attempting a general
statistical survey of earthquakes from different areas is to decide on
the boundaries of the areas. In order to obtain a complete homogeneous
set of data, questions of instrumental coverage have to be considered
very_carefully. Vere-Jones (I97§) has taken only earthquakes with
M>24.5 in order to ensure uniform coverage. In the present study, since
the local magnitude of the carthquakes was not available, the decision
about the boundaries of the areas under investigation was made in con-
sultation with the department of Geophysics of the University of Dur-
ham for the best representation of the main active earthquake areas and
by studying scatter diagrams of shocks with their longitude and latitude
as coordinates.

Another problem was the fact that the list under consideration
contained more than one record of the same shock from different record--
ing stations without any discriminating character. The problem was re-
solved by deciding that records in which th9 origin times differed by

less than 1 minute came from the same shock. A random sample indicates
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that the rccords under question are originated from the same position.

The last main problem was the possibility of non-stationarity. Fi--
fure 4.1 shows a plot of the numbers of shocks in a time period of 3
months for the area of Nopth Atlantic; the situation is almost the same
for the rest of the areas. The extremely complex struciure of the re-
cords which is revealed in the above plot is not unrelated with the
problem of aftershocks, since periods of increased activity are often_
marked by the occurrence of very large aftershock sequences or swarms.
Therefore in the present study the apparent short term non-stationary
character of the earthquake rccords is attributed to the clustering
effect!which is considered as an essential feature of the earthquake
getivity. There is also some indication of a slight long term trend,
probably due in part to increased instrumental coverage and therefore
better detection. However, the magnitude of this is small compared to
the local fluctuations which will dominate the analysis so that no at-
tempt will be made to eliminate trend.

4,2, LExploratory analysis

As has been mentioned carlier the first objective of the present
study is the fitting of the most suitable stockastic model describing
the earthquake occurrences for each of the arecas under consideration.

By regarding the sequence of occurrences of earthquakes as a realization
of a one~dimensional stationary pfocess and by using the results in
chapter 3, as a starting point, an exploratory analysis has been donec.

Table 4.1 shows for cach of the areas the results obtained for the
moments of the distribution of the intervals, the results of the MORAN
and ANDERSON—DARL;NG tests and the estimate of the normalized autocor-
relation function. The high value of the estimate of the coefficient of
variation, C, indicates divergence frpm the Poisson hypothesis, for which
C =1, and shows up clustering effect. The results of thc MORAN and AN-
DERSON--DARLING tcsts support the above conclusion since they are highly

significant for all the areas under consideration at a very low signifi--
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cance level. Another argument in favour of rcjection of the_Poisson hy-
ppthesis is the shape of the smoothed periodogram of counts. Figures
4.11-4.14 give the smocthed periodograms of counts for all the areas
whigh have been obtained by using weighting lag window with k = 10, see
8 3,5, By comparing these graphs with the theoretical spectrum of the
Poisson process, which is g}(ub - again the rTcjection of the Poisson
hypothesis is supported. "

Next the adequacy of a renewal model is examined., Nonc of the
first ten estimatcs of the autocorrelation function, for all the arcas,
'is consistent with the renewal hypothesis. For cxample Table 4.1 gives
the values of the statistic ﬁ(1)(n~1;m which under certain assumptions
has normal distribution with gero mean and variance one (§ 3.2). The va-
lue of the normalized autocorrelafion coefficient with lag 1 is for all
the arcecas higher than 1.96, which is the upper two~sidgd five per-cent
significance point of the standard normal distribution. Another indicat-
ion against the rcnewal hypothesis is the shape of the smoothed perio-
dogram of inteyvals which has been obtained by using the Parzen window.

Figure 4.2 shows the smoothed pecriodogram of intervals for the
area of Spain with truncation point M = 60 and the 95% confidence limits.
Again the shape of the smoothed periodogram for the above area, favours
the rejcction of the renewal hypothesis for which the normalized spect-
rum of intervals is . The situation appears to be thc same for the
other areas. The maigrcharacteristic of the periodogram of intervals is
a high pcak near the origin, which indicates either a trend in the se-
ries or long term persistence duc to low frequepcies variations at pe-
riods above the length of the series (20 years). The periodogram of the
counts has also a high peak at the origin which is consistent with the
shape of the periodogram of intervals. The shape of the periodogram of
intervals docs not peveal any kind of periodicity for any of the arcas

under investigation,
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4.3, Fitting of the Neymann-Scott model

The rcjection of the Poisson and renewal models and the way in
which most of the car wiquakes occur, & main shock followod by a se-
quence of aftcrshocks, suggests a clustering model. .In this model the
origin times of earthquakes are considercd as a realization of a one-
dimcnsional stationary point process in which the main earthquakes
correspond to the cluster centres and‘the aftcrshocks or swarms to
the mcmbers of the subsidiary process. The fitting of thc Neymann—
Scott model with exponential decay function, which has been used by
Vere-Jones (I970) to describe the occurrence of earthquakes in New-
Zealand, is firstly cxamined. A major problem with fitt;ng any kind
of clustering model is the estimation of its parameters. Vere--Jones
and Davies (I966) use the Least-squares mcthod to fit the spectrum
to the periodogram ordinates, The main disadvantage of this method
is the fact that thc¢ lecast—-squares method has optimal properties for
normal Variates while thc periodogram ordinates, although approximauA
tely independent, are cxponentially rather than normally distributcd.
Lewis (I96%) and others cstimate the paramcters of their mo@ols by
equating the thcoretical and estimated second crder moments. A more
satisfactory mcthod of cecstimating the parametcrs of the model, when
the fitting of thec spcctrum is considered, is the maximum likclihood‘
one, which unfortunately has two main disadvantagcs. Firstly the ox-
preééion of the likclihood function is too complicated in the case of
the cluster models and secondly, since only the approximate likelihood
can be cvaluated, a sufficicnt ammount of information from the data
cannot be utilised. Whittle (I1952) has devecloped & general theory of
maximum-likelihood cstimatign of the spcctrum but phe obtained for-
mulae arc not easy to apply. Gencrally if 5T==(51,.¢.,ak) is the pa-
ramctric vector, y the observed sample and L(i}’z) the likelihood
function, the estimation of the parameters by the maximum likelihood

method is converted to the solution of the simultaneous likelihood
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equations,

%L . . . .
, 1l = 1,2’e-o’k (4‘3I1)
Qs
which are usually non-lincar. The solution of the (4.3.1) can be done
either by applying iteration processcs, (e.g. Kale, 1.962) or by mini-

mizing the function,

kK ¢ 9L 92 '
e (4.3.2)
" 151 gg""i g

Howcver the main problem in the solution of simultancous non-
lincar equations by iteration procedure is the difficulty in succced-

ing convergence. According to Vere-Jones and Davies (I966), with as

'many as 100 ordinatcs of the spectrum it seems likely that any two

reasonable mcthods of estimation of the parameters of the model will
lead to similar cstimates although the least-squares method will tend
to give more weight to points for which thc spectrum is large, than
would thc maximum likelihood mcthod.

In thc present study the estimates of the paramcters arc obtaincd
by maximization of thc approximate likclihood function of the periodogram
of counts. The normalizcd theorctical spectrum of counts in the_case of
the Noymann~Scott model with exponcntial decay function is, (82.7(41))

P(3) < g </>/X= L 4P (4.3.3)

P +W(J)

E(N(N+1
wherc pP= 12_; N))) s N is the cluster size, p is the parameter of the

e

W

cxponential decay function, W(J)_-——_7; y J= 1 ,2,.0.,—5— and M is the
number of thc observations. Now given that, the unsmoothed estimatc of
normalize
theklspectrum of counts, Ito(j)v is asymptotically exponentially distri-
buted with mean $;(j), and independent for frequencies of the above form
(E 3.5), the likclihood for M/2 ordinates of thc periodogram is,
M/2 . .
BRI WEVE)

T

M(Z'Q 1 ' 1 Co
1= -1g.L = _{' {—1g ﬁ+ Ito(:j) ° F(3) E (4.3.4)

L(Byey I4.(d)y 3= 142,...,4/2) or
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If O G(j) the first and second degrce derivatives of 1 are given

by the formulac,

M/2
%}1{—1 = ‘1— (I45(3)-F(3J)) ’3{5;:, , i=1,2

2 ; -

D1 _ M2 Qe Dels)
‘_—g' ? F(3)

gxi X T ,c)xi dxg

(4;3;5.)

. L D
- (F(J)—Ito(a))m g
o ik=1,2
where x, =B and X,= p. From (4.3.5) thc obscrved information matrix can
be obtained and consequently the errors of the cstimates. The maximum. li-
kelihood cstimates of f and p arc obtained by minimizing numcrically_tho
quantity 1 = -log,L using Roscnbrock's (I960) optimization technique.
Initial sct of est?mates for the paremecters is obtained by using the
Monte-Carlo mcthod. By applying the normal thqory results of the maximum
likelihood c¢stimates the errors arce cstimated. The mean rate of occurrcnw
of thc sum process, )., is cstimatcd by 3 =—%; where M is the total
number of cvents occurring in thn fixed time interval tg. Table 4.2
gives the estimates of B, p and h. The éiﬁbtl;ze paramcter 1/p has bcen
rescaled by A to convert to rcal time (8 3.5 p. 50).

Firure 4.3 givos a contour graph of the function 1 = -log.L for
the arca of South Atlantic, which is consistent with the results obtained
by Roscnbrock'!s optimization'method. As a check of the adequacy of the

fit the valucs of Iy (j) for cach area werc rescaled by dividing with

I
F(J) According to 8 3.5 the ratio Ij,(j) = -—%?%%% is distributed as

& half chi-squarcd variate with two dcgrees of frecdom. Table 4.7 gives
to(j)

- EG)Y

0.05 and larger than 3.0 and which arc respcctively the one half of the

for cach area thc percentage of the ratios which arc less than
lower and of the upper 5% point of the Chi-squared variatc with two de-
grees of frccdom. The results do not indicate diversions from the hypo-
thesis E(Ito(j)) o f:(j). By plotting the cumulative periodograms,

q
S(a) = Y Itto(j)v Q= 1 92p000,M/2

=1
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and the P = 0,01 and 0.05 boundaries it may be checked wheéher the spectrum
has been made uniform, (§ 3.5). It can be seen from the cumulative period-
ograms that the fit of the Neymaﬁn—Scott model with exponential decay
functioﬁ is satisfactory for all the areas except those of Aleoutian Islands,_.
Fox Islands, Sundarc, Bandasea, Tonga Islands, Greeceand Himala&as.

In searching for a more adequate model for the data, since both long
and short term effects were suspected from the shape of the periodograms of
intervals and counts, the fit of Neymann—Scott model with the mixed exponential
de;ay function is examined mext. In order_to make easier thg optimization
problem the cluster centre is not considered in the evaiuation of the

normalized theoretical spectrum of counts which in this case is, .

L5Y | g (i’? 0202 + [yp, + (1=y)p, ] 2w(i)
’:& | F(3) = + =1+8 1 72 1 2

A (p2+w(i))Cp2 +w(j))

where B = Eigégi%llW N is agaln the cluster size, v, N and p2 are the

2.
parameters of the exponential decay funct1on and w(j) = 4“'; for
M
j= 1,2,...,5 (§ 2.7 A2). Therefore,
1= 'IOSEF(BsYsplypz; Ito(j)’ i= 1’2‘a--"M/2)" =

M/2 | I ()

= ) |1sF(j) + —2— (4.3.6)
1 . F(3) o :

and the maximum likelihood estimates of the parameters of the model are
obtained by using the same procedure as in the previous case. The.elements

of the observed infbrmation matrix are given by,

3%g M/2 ). 3G (i) 3G(j) - e
won T L (PO s ) - L G| Lk = L2,

(4.3.7)
. i o . -
where §1 =Y, X, = B, Xy = Ps X, =P, and G(j) ¥ The errors of the
estimates are obtained from the observed information matrix.

In order to get more reliable confidence intervals for the parameters

under consideration, we firstly calculate confidence intervals for the
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transformed ones for which the likelihood is more symmetrical. A sensible

transformation which makes the likelihood more symmetrical is,

y > (y) = log [-1—1'7] L B> (B) = B, b, > d(p)) = p1/3 and p, > 4(p,) =0 3

(Edwards, 1972, p.80).

Now by using the well known result,

s.e $(x) = (s.e i)%%- ' (Jenkins and. Watts, 1969),
we get the 95? confidence intervals, ¢l(-), ¢2(°) ='-‘<'f>(-)i 1.96 s.e-$(-) for
the transformed variables, and by inverting the .so obtained confidence |
intervals, the 95Z ones for the original variables are'ob;ained. Table 4.3

gives the estimates of the original variables with the 957 confidence

intervals.

The results in Table 4.7, as in the case of the Neymann-Scott model with
exponential decay do not indicate serious diversions from the hypotheéis
E(Ito(j)) = F(j). Figures 4.4 -~ 4.10 ghow the cumulative periodograms of
counts with the p = 0.01 and 0.05 ﬁoundaries for the areas for which the fit
of-fhe Neymann-écott model with exponential decay is not satisfactory; the
periodogram ordinates have been rescaled by the theoretical spectra., These
graphs demonstrate that the Neymanﬁ—Scott model with mixed exponential decay
_is-gdequate for the areas under question while the one with single e;pbnential
decay is not. The éumulative periodograms for the rést-of>the areas also
give evidgnce of a satisfactory fit of the Neymann-Scott model with mixed
expohential as well as in the case of Neymann-Scott with single exponential.

Another element in favour of the Neymann-Scott model with mixed
exponential is the shape of the spectrum of counts. The smooéhed periodo-
grams of counts with the theoretical spectra of the models under
consideration for all the areas are sh&wn in figures 4.11 - 4.14, It can
be seen from these graphszthat while the spectrum of the Neymann—-Scott model

with single exponential is flat near the origin the spectrum of Neymann-
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Scott with mixed exponential has a peak similar to the onc of thc po-
riodogram of counts. That again proves that the Nocymann-Scott model
with mixcd cxponential is consistent with the main characteristic of
the data which is the presence of a long torm clustering ceffcct for
all thc arcas under investigation. This is relatcd to thc high values
of the c¢stimates of R = 1+4B obtained by fitting the Neymann-Scott mo--
decl with the mixed exponcntial comparcd with the low oncs obtaincd'by
fitting the Neymann-Scott onc with the singlc exponcntial. Table 4.6
gives the predicted valucs of R by the two modcls and also thé cgti-
mated asymptotic slope of thc Variance-~timc ourve and cstimates of tho
normalized pcriodogram of counts at the origin.

The Variance—-time curve is cstimatcd.by using thce method of Cox
and'Smith (1953) which is doscribed in § 3.4. According to Cox and Lowis =
(1966, p.II8) thc cstimated Varianco-time curve for > 1t4/4, where to
is thc length of'thc obscrvation intcrval, will start to decrcasc or
incrcasc rapidly.-For this reason the Varianco-time curve is estimated
on the interval (0, to/4) and thecrefore thc cstimates of its asymptotic
slope for the different arcas, which arc given in Tablc 4.6, must be
Viz) =g (0)/x,

(8 2.2..:), thc results of Tablc 4.6 givc a rcasonablc justification

'considgrod with caution. Howecver, ginco RI:t%EE»
for the high valucs of p obtained by fitting thc Neymann-Scott model
with.mixod cxponcential rather than for thq low oncs obtaincq by fitting
the Neymann-Scott with single cxponential. Finally, Tablc 4.8 gives the
valucs of thc quantity 1= -logol for all the arcas and for tho_m@dels
under investigation. It can bc seen from thc results of Table 4.8 that
the values of -log,L for all thc arcas, which arc obtained by-fitting
the Noymann~-Scott model with mixecd cxponential arc lower (consequcntly
the values of L higher) than thc oncs obtained by fitting thc Neymann-
Scott with singlc cxponcntial. Thesc diffcerences arc larger in the casc
of thc arcas for which the Neymann-Scott with single cxponcntial was

not adeguatc. Since there arc two extra paramctcrs a differcncc of
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3.00 (5%) and 4.6 (1%) in -1g,L would be rcgarded as significant limit
on X:. Theso arc excceded in all arcas, in most arcas very substantially.

To summarizc. by considering the above results, it appears that
the fit of Neymann-Scott modcl with mixcd exponcntial is more sqtisfa—
ctory than the fit of Ncymann-Scott one with singlc cxponential.

The fit of the Neymann-Scott modcl with mixed cxponcntial and Gamma
gave similar rcsults as the one with mixed cxponcntiol. So that the
exact form of thc decay function docs not scem important for thc spcot-
rum as long as it has short and long tcrm componcnts. It has not becen
attompted to usc power law, advocated by mero-Joncs? becausc there is
not a satisfactory way of cstimating thc paramcters. Howcver, notc that
this distribution has_roughly similar characteristics of a high initial
vélge and a long tail.,

4.4. PFitting of somc spcecial mutually cxciting processcs

The first model which is cxamined after the NcymannuScott is the
3clf-cxciting point process which is defincd in 8 2.6. If a simplc cx~
poncntial dceay function is used in this modcl, thc Bartlett spectrum
has thg samc form as thc Ncymann-Scott process with cxponcntial distri-
bution. Such a sclf-cxciting process will therefore also bc an unsatis-
factory model. Henecce in order to takc into account the prescnce of both

short and long tcrm cffcets the function

™ -p,u —p.,U
a,p,e ! + 0,p,C P2 ' v >0
B -
(J' 0 othorwisc

has bcen chosen. The normalizcd speetrum of counts is by (2.6.10),

p(3) = ~8:(3) (@rw(3)) (3rw(3))
- —.2 B 3 2
r [?192(1'“1"“2)'W(3{J +w(%)[ﬁ2(1-a2)+p‘(1—u,ﬂ 4232
arc thc paramcters of the model and w(j) - o d '

whero,pt?pzﬁa‘ Qnd a,

J= 1,2,...,M/2. The parameters of the model arc costimated by
maximizing the likelihood function for a samplc of M/2 ordinates of the

pceriodogram of counts as in § 4.3.
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Table 4.4 gives the obtained estimates. The values of the guantity
le -1ogeLik at the maximum likelihood estimates of the parameters
are given in Table 4.8. The values of 1 for most of the areas lie
between the ones obtained for the_Neymann—Scott model with single and
mixed exponcntial decay functions. The results regarding the cumula—
tive periodogram of counts are almost the same as in the case of the
Neymann-Scott model with single exponential decay function. We there-
fore conclude that such a self-exciting process is not a good model.
Finally the fit of 2 spec@al case of the mutually exciting pro-
cesses, which is defined in B 2,6 and some of its counting and inter-
val properties have been derived in B 2.8, is examined. This model
can be also considered as a clustering one of the Neymann-Scott type,
with Poisson distribution of cluster size where the process of the
cluster centres is .self-exciting instead of Poisson, therefore agein
clustering. Thus we consider main cvents of second kind, II,and each
of the main cvents gencrates a subsidiary process consisting of events

of the first kind, I, with

1(x) = Fm(") , (8 2.8).

\
-

v

o
B;o(x)dx
Thus the latter model is consistent with the observation made by Utsu
and reported by him during the discussion of Vere-Jones paper (I970),
according to which therec are many instences in Japan and probably in
other scismic regions to indicate that the cluster centres also have
a tendency of clustering perhaps in a different manner than the
aftershocks.

Returning now in the estimation of the parameters of this medel,

the normalized spectrum is, (B 2.6)

p(3) - 280 ey 1 @) [6 Gra ) e w(d)]

2
N tay ey (P2Rw(3)) |02 (1) w(3) ]
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129 %,y Py and p, are the parameters of the model and

W(j) = _‘f"‘zj_ y J=1 ,2,.,.,%.|T1.1e likelihood function and the in-
formatigi matrix are given by (4.3.6) and (4.3.7) respectively. The
estimates of a,,, ®551 P, and p, are obtained in the same way as in
the previous cases while v is cstimated by solving (2.6.I2) with re- _
spect tp v and substituting the other parametcrs with their estimates.
Table 4.5 gives the obtained estimates. From the values of p, ond P,
in Table 4.5 is clear that the cluster centres (large ecarthquakes) are
resulted by the long term effectlwhile the subsidiary events (after—
shocks) by the short term effect.

The_resglts in Tables 4.7 and 4.8 and the cumulative periodograms
in Fig. 4.4~4.10 show that the behaviour of the mutually exciting pro-
cess is similar to the one of the Neymann-Scott with mixed exponcntial.
There is not any well established evidence of existence of any signi-
ficant difference between the two models, as far as the rosults of the
above analysis are concerned. However the mutually e=citing process
gives more plausible description of the mechanism which generates the
earthquakes and this is its main advantage comparing with the Neymann-
Scott with mixed exponcential. Both the mpdels talie into account thc

existence of short and long term cffects.

4.5, Analysis of the intervals

In this scction we apply the theory of B 2.8 in order to obtain
some rosults for the distribution of the intervals in the case of the
mutually exciting processes. The interval properties of the Neymann-
Scott model arc not easily derivable and therefore are not used in
detailed analysis. The correclation properties of the intervals for
both the Neymann-Scott and mutually exciting processes are not avai--
lable either.

We now obscrve that,
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Ry(t5x) = Prob(L(x)>t) = Pr(No events in (x, x+t))
= Prob(No primary events in (x, x+t)) Prob(No subsidiary pro-
cesscs gencrated in (0,x) survive past x),
and in the case of equilibrium distribution,
R(t) = lim Ry(t;x) = S (4.501)

X— oo

where A is a constant less than onc and v is the rate of occurrence of
the primary events. Hence by using (4.5.1) and the results of 8 2.8 the

survivor function of the timc interval betwcen successive events is,

Pp(t) = Pr(T>t)
1 Ry (t)
Aoat
1 -
= — Ave Ve or
A .
1lg PT(f) = constant-vt (4.5.2)
Thus the slope of the tail of thc logsurvivor of the intervals
is =V

By using the last result it is possible to check the fit of the
model by comparing the valucs of v obtained by using the theoretical
survivor with the ones obtained by using the cmpirical survivor. Table
4.9 gives for ail the areas under investigation the valucs of v obtaincd
by.uging_the theo?ctical survivor, thc empirical once, and thec formula
(2.6.12). Table 4.I0 gives the.values of thc survivor of the intervals
for the aica of Greece and Fig. 4.15 the corresponding curves, The si--
tuation is almost the samc for the rcst of. thec areas.

The above results of the interval analysis do not favour the mu-
tually cxciting processes since the predicted value of v by the modcl,A
is substantially lower than the one obtained by the cmpirical survivor,

If v is now ostimated by using the tail of the cmpirical survivor
then, by virtue of (2.6.12), the number of paramcters of thc model is

reduccd from four to throe.
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If thc samc cstimation proccdure, as in 8§ 4.4, is carried out,
then thq cstimates of thg paramctors of thc model, which are shown in
Table 4.11. are obtained. By using thesc cstimates the cumulative.pef
riodograms for thc arcas under investigation can be obtained. Fig. 4.I16
shows tho cumulatiye periodograms for the areas Alcoutian Islands, Fox
Islands and Greece. The cumulative periodograms for the above areas
give rcasonablc evidence which also does not support the fit of the
two variate mutually cxciting proccsses from the spectrum: point of_
viow, when the results of interval analysis arc taken into account.

Thereforc, it can be deduced that although the mutually exciting
processces it theo data quite satisfactorily from thc viewpoint of the
spectrum analysis, the situation is not the same from the viewpoint
of the interval analysis.

In the next scction, by using the values of the paramecters of the
Noymann-Scott model with mixcd exponentialldecay, & classification of

the arcas under investigation is attempted.

4,6 Classification of the arcas

The areas under investigation, according 1o thc continental drift
theory (8 1.2), can be considercd as represcnting the following gcolo-~
gical typcs:

A: Atlantie ridge, B: North islan@ arcs, C: South island arcs,
D: Himalayas and I: Mediterrancan.

One scnsible way of cxamining the existcnce of similaritics or
differences within carthquake regions of similar gcological type and
hetween different types of earthquake regions is by fitting thc same
stochastic model in all_arcas under investigation and comparing the
paramcters of the model.

Since the cvidence so far in the prcscent analysis is in favour
of the NeymannPScott‘modcl with mixed cxponcntial dccay, this modcl

is cmploycd. Tablc 4.3 gives for all the areas thc cstimates of the
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parametoers of thc above model and : ° their 35243J}.It also gives for

cach paramctcr X; ., i=1jee¢5y, j= 1,000,414 its mean

14 .
J'; " N 2
m; =~ and its standard crror o4 =-——-_z: (xij-mi)‘,

i=1,2,3,4,5. It can bec scen from the results shown in Table 4.3 that
the errors of the cstimates in some arcas are too large rcletive to the
corrosponding estimates to allow a safe discriﬁaation. However by logking
a? the cstimates thomselves and inspccting some relevant graphs, Fig.
4.17, we note the following points:
(1) Atlantic ridge, type A, has a very consistcnt long—term cffect of
about 31/2 years and below average valucs of thc other paramcters (cx-
cept for 1/p1)? the variability coefficient, B, being particularly low
and consistent,
(2) Nothern Islend arcs, type B, arc vory consistent for all paramcters,
The long-term effoct (1/p2) is very short, about 11/2 months whilc B
and y arc also low,
(3) Southorn island arcs, typc C, are morc complex and show no dissimi--
larity from the Himalayas. There is high consisteoncy in 1/p‘, (excent
for 9) being about 2 days, some comsistency in 1/p2 (cmcept for 7) beoing
between 1 and 2 yoars. They have high variability B (cxfept for 6) whilc
y 1is average or above in each arce. In all these respects they differ
from B. _
(4) Mediterrancan, group E, is very veriablc. E(N) is consistently
small. Therc may be somc consistency in p which divides them into the
castern pair (arcas 11 and 13) and the western onc (arcas 12 and 14),
Otherwisce therce is no clecar pattern. There is not marked similapity with
D which would be in agrcement with the continental drift thcory.

We conclude that therc is somc cvidencce of consistency of scismic
activity, as rcflccted in the parameters of the model, within regions

of similar gcological type whilc differcnccs between types are gbserved.
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Table 4.1: Results of the analysis of thc series of intervals.

Areca N E(x) YW(x) C(x) v, (%) y_(x) 1, Wo(x) {(m-t)p(1)
1« North . - . . - .
. Atlantic 506 20,33 33,99 1,67 3.09 16,81 2030.50 39,94 4,30
2. South : : :
. Atlantic 142 71,56 102,58 1.43 3,41 19,81 392,44 21,24 3,01
3. Central -
Atlantic 253 40,76 65,31 1,62 3.28 17.04 842,39 47,50 3.37

4. Alcoutian .
- Islands 1260 8.28 17,38 2.09 4,90 37.88B 4287,.19 91,95 10,74
5. FoxIslands 1035 9,99 20,13 2.01 4.5% 30,14 3442,70 53,75 10,79

6, Sunda--arc 602 17,43 29,66 1,70 5,24 40,93 1390.,52 64,65 5,29
7. Banda-sca 745 14,56 26,38 1.81 4,60 230,14 1415,90 124,52 10,91
8. Fiji

- Islands 996 10,48 18,69 1,78 4,60 32,25 2551.46 102,59 9.06

9. Tonga : :

- Islands 1877 5,57 10.07 1.81 6,81 T7T4.68 3254,57 251,07 10,82
10. Himalzyas 1737 6,08 9,94 1,63 4,58 35,05 3541.,73 62,95 7.86
11. Grecce 1820 4,18 6,686 1,60 3,55 22,66 5312.,43 208,01 9,44
12, Spain 291 34.86 79,57 2.28 5,11 36,80 1119,97 32,76 4,69
13. Yugoslavia 860 12,12 19,61 1,60 3,50 22,24 2474,67 27.71 6.11
14, Italy 584 17,81 30,88 1,73 3,61 21,22 2024,86 232,75 3,08

Notes on Tablc 4.1

Ns Obscorved number of cvents.

E(x): Estimatc of the mean of thec intorvals.
VV(E;: Estimatc of the standard dcviation.
C(x)s Estimatc of thc cocfficicnt of Variation.
v, (x) s Estimate of thc coefficient of skewncss.
yz(x)s Estimatc of the cocfficient of kurtosis.
1,(x): Moran Statistic (8 3.1) _

W;(x): Anderson-Darling Statistic (8 3.1)

J(n—1§p(1)z Normalizcd cstimate of the first autocorrclation function.
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Table 4.2: Bgtimates of thc parameters of the Neymann-Scott modcl

4.
2.
6.
7
8.
9
10,
1,
12,
13,
14.

with single cxponcntial decay.

0,049
0.014
0,024
0.121
0.100
0,057
0,069
0.095
0.179
0.164
0.239
0.029
0.082
0.056

p

10,196
3,385
7.162

29,383

22,523
4.119
5,237

13,435
6.978
5.090
9.974

20,083

15,506

16.351

4,194
5.725
2,988
1.217

1,580 °

1,533
2,100
3,070
0,680
1,355
1.487
1,163
2,070

3.829

1/p
In days

3,36
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Tables 4.4: fistimoates of the paramcters of the Sclfw=exciting process.

Arca i %2 In1 {D?ys In%l'::xrs
1. 0.3N 0,369 0.087 0,216
2, 0,499 0,461 5,730 0,708
3. 0,422 0,232 D.121 0.051
4. 0,338 0.499 0,304 0,027
5. 0,288 0,499 0.256 0.216
6. 0,499 0,382 5,821 1.109
Te 0,499 0,464 13,643 0,042
8. 0,247 0,496 0,146 0.379
9. 0,500 0,360 14,115 1,642

10. 0,500 0,396 8,199 0,306

1. 0.299 o, 500 1.256 0,174

12, - 0,383 0. 500 1,015 0.011 .

13. 0,462 0.293 D.127 0.052

14. 0,269 0,492 0.102 2,100
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Tablec 4.5: listimates of the paramcters of the mutually cxciting process.

Arca

.
2,
3.
4.
7.
8.
9.

1o.

11;

2.

3.

14.

L P

8.932
1,801
3,802
14,220
8,246
1.057
1,847
9,770
0.750
1.214
5,039
6,088
13.798

13,118

0.992
0.9?0
0,986
0.527
0.624
D.860
0,963
0.897
0.999
0.507
0.666
0.816
0,651

0.966

Po

0.027
0.131
0.076
0.329
0.434
0.126
0.055
0.037
0.051
0.086
0,145
0.234
0.021

0.032

P

5.764
10,785
4T.617

2.068°

4,887
12,824

20,17

4,687
4,208
9,273
2,517
3.197
2,181

5.224

1/p,

In Months In days

17.17
12,66
12,44
0.58
0,53
3.20
6.08
6.53
2,54
1.64
0,67
3,44
13,48

12,83

1/p1

yodbusiutog

BNEN B!

~
Vi

"
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Table 4.6: Prcdicted valucs of R by the Neymann-Scoth modcl, the estimate
of thc asymptotic slopc of the Variance--timc curve, the first
normalizcd ordinatc, and the average of thc first two oncs of
thc periodogram of counts.

R=1+B ()

V(t
Arca im ——— I I 2 2

Exponential Ixponcntial

. 11,196 T4.136 34,141 104,375 58,001
2, 3,389 37,974 15,430 41,822 24,557
33 8.162 62,271 34,434 96.847 58, 598
4. 30,383 76.440 58.006 49,584 131,751
5? 23,523 84,279 54,003 84,008 160,193
67 5.119 54,990 37,004 142,177 73,088
To 6.237 280,560 101,701 318,386 159,651
8, 14,435 164,098 100,001 347,260 182,650
93 7.978 365,110 203,806 754,345 397,307
10, 6.090 134,180 131,002 275.248 197,452

1. 10,974 92,922 72,004 132,787 114,533
12, 21,083 141,710 55,587 139,676 106,630
13? 16,506 84,534 32,769 134,607 71,757

14. 17.351 145,710 62,644 130,175 130,175
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Tablc 4.7: Percentages of the rescaled estimates of the speetrum of

Arca

2.
3.
4.

1.

8.
9
10.
1",
12,
13,
14.

counis outsidc thc 95% confidence interval,

Singlc Mixced

_Expo—
nential
.5.20
5.63
6.15
3.65
4,23
4,00
6.39
3,00
6.91
6.78
4,39
6.00
3.95

3,10

< 0,05

tial
5.20
5,00
6.92
3,97
3,65
3.00
6.66
2,80
5,53
4,71
4,50
3,33

3.72

Mutuclly

3. 60
6.43
4.61
3.65
4.81
6.00
4.17
2. 60
4.89
5,17
5. 38
4.00

3.49

. > 3,00
Sclf Mutually Single Mixed  Sclf
Exponcn- Excit- Exciting Exponcn- Exponcn- Excit- Ixciting

ing tial tial ing
5.20 5,20  3.60 4,00 3,60
5.00 5,00 6.34 6,43 4,28
6,15 6.15 4,61 4,61 4,61
3,65 3.65 4,13 3,65 4,13
4,23 3.65 5.77 4,61 5.77
3,00 2,67 4,66 6,00 5.66
6.11 6.11 3.89 3. 61 4,72
3,00 2,80 2,00 1.60 2.20
5,74 5,21 6.28 4,57 3.40
4,60 4,60 4,48 4.94 5.40
4,28 4,39 4,50 4,94 5.82
4,00 4,00 6,00 5,33 7.33
3.72 3,72 3.48 3,95 4,19
3.10 3.10 3.45 3.10 3,79

3.10

3.45

Yovuauuub vl

ERRESEONT]
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Tablc 4.8: Valucs of tho quantity 1 = -log Lik at thc maximum likcli~

hood cstimatecs of thc paramcters.

Arca Singlc Mixed Sclf-~ Mutually
Exponcntial Ixponential Lxciting Exciting

13 818,44 813.40 816,44 812,93
2, 320,24 313.38 313,07 313,05
3. 369,72 360,65 369,20 360,21
4. 2216.54 2197.26 2207,35 . 2197.33
5e 1819,.82 1790,06 1793.29 1789, 71
6, 640,05 605,59 605, 57 605,54
Te 882,57 822,03 821,63 821,52
8. 1707, 68 1682,26 1706, 68 1681,72
9? 1897,06 1710.23 1720, 48 1708,13
10? 1923, 41 1767,99 1789.06 1787.77
1. 2507,22 2463, 67 2480,39 2463,01
12, 466,62 448,90 457,97 448,75
13. . 1440,36 1435, 67 1440,35 1435.73

14. 1064,16 1055,.45 1064, 14 1054,93
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Table 4.9: Estimates of the rate of occurrcnce of the primary cvents
by using thc empirical and thcorctical survivor in the

case of the mutually cxciting processes.

SEVEI Slope of thc tail Slope of thc taib
Arca Vo 227 of the of the

ey, Theoretical survivor Empirical survivor
1. 0.00005 .-0,0002 ~0.0153
2. 0.00004 -0,00004 -0.,0034
3. 0,00006 .-0,00008 -0,0113
4. 0.00373 ~0,00372 -0.0320
5. 0.00407 -0.00407 -0.0260
6. 0,00408 ~0,00408 -0.0097
e 0.00092 -0,00092 -0.0237
8. 0,00086 -0,00094 -0,0226
9. 0,00003 -0,0016 -0.0513
10. 0,00670 -0,00670 -0,0370
1. 0.0132 -0,01046 ~0,0804
12, 0,00078 -0.00077 -~0,0108
13, 0,00188 -0,00227 -0,0327
14. 0,00014 -0,00028 -0,0288
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Table 4,10: Results of the survivor of intcrvals for the area of Grecee.

1 Empirical Theorotioal
PL(l) LogePL(l) Pr(1) LogoPL(l)

0,02 0,935 -0,068 0.988 -D.010
0.04 0.909 -0,096 0.846 -0,165
0.06 0,889 -0.118 | 0.735 ~0,305
0,08 0.874 -0.135 0,648 -0.432
0.10 0.855 -0.156 0,578 -0, 547
0.30 0,764 -0.269 0,315 -1.153
0,50 0,712 -0.340 0.208 -1.567
0,70 0,659 -0,416 0,166 -1.792
0.90 0,626 -0.469 0,145 -1.930
1,00 0,609 -0.496 0.138 -1,980
3,00 0.366 -1.005 0,099 -2.31
5.00 0.243 -1.415 0.079 -2,532
7.00 0.184 -1.692 0,068 -2,692
9,00 0,140 -1.969 0.060 -2.814
10,00 0,122 -2,105 0.057 -2,865
15,00 0,065 ~2,744 0,051 -2,980
20,00 0,035 -3.379 0.044 -3.117
25,00 0,022 -3,793 0,040 -3.210
30.00 0.012 -4,416 0,037 -3.282
35.00 0.008 4,799 0,035 -3,343
40,00 0.004 -5,428 0,033 -3.400
45,00 0,003 -5.898 0.032 -3.454
50,00 0,002 _6.Zoa 0.029 -3,508
55,00 0,001 -6,814 0.028 -3,561

60,00 0,0005 -7.207 0.027 -3.613
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Table 4.11: Estimates of thce parameters of thce mutually oxeiting pro-
cesscs when the rate of occurrcnce of primary cvents is

cstimated by the cmpirical survivor function.

Arca Likclihood 045 x,5 Py P,
1, 824,003 0,286 0. 60D 131,923 99.933
2. 318,164 0.102 0,449 22,999 16,332
3. 387.761 . 0,192 0.450 192,229 99.102
4. 2298,178 0.132 0.700 5,101 10,317
De 1851, 557 0,154 0,700 89,138 10,335
6. 608,790 1,057 0,652 6.088 0,170
Te 880,520 0,400 0,516 34,283 3,350
8. 1707.580 0,247 0.704 21,534 9.920
9. 801,512 0,589 0.546 98,944 0.128
10. 1830,420 0.558 0,964 97,418 0.200
1. 2620,442 0,500 0,173 168,975 10,743
12, 503,124 0.063 0. 600 99,974 11.746
13. 1586,231 0,126 0.550 174,361 99,999

14. 1546,194 0,071 0.450 132,885 98,720
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(HAPTER 5

GENERALIZATIONS

51, Modifications of the Two-variate mutually cxciting processcs

The main weakness of the two~variatc mutually cxciting processcs,
in deséribing the earthquakc data, is thc small ratc of occurrcncce of
the clustor ccntrgs comparcd with thc onc obtaincd by the empirical
survivor function. That rcsults in a high clustbring cffect as can be
casily scen from the thecorctical spoctrum of counts.

In order to cut down the clustering cffcct predicted by the two-
variate mutually cxciting modecl and makc it more consistent with the
data, we assume that therc arc three kinds of cluster centres:

(i) The first onc, II type of cvents, follows a self--cxciting pro-
ccss and each of thc clusteor centres generates cluster members of type
I in the rate B,, (x) = GIEPZC‘PzX.

(ii) The scoond onc, III typc of cvents, follows a stationary Poisson
of ratc, a, and‘is indcpendent of the othcors without creating any sub-
sidiary process,

(iii) Thc third one, IV type of cvents, follows also a stationary
Poisson, of ratc b, is independent of thc others, and crcatcs cluster
mombers of the I type in the rate P, (x) = a!4p4e—p4x.

It is rcasonable to takc «,,=x,, and p,=p, which at thc samc

timc reduces the number of parametcrs of the model.

Hence the covariance matrix is

0 Bya(u) 0 B, (1)
0 B,,(u) 0 0

B (u)= 0 0 0 0
0 0 0 0

and the ratc of the primary cvonts,
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0
v
Y = a
~ b
ing rcsults arc obtaincd.

. Conscguently by applying thc rcsults of B 2.7 the follow~

(i) The stationary ratc of occurrencc for the sum proccss,

A‘ . .
A

A= li whero X, = 12 +ba,, s My = v y A;=a and A;=b(5.1.1)
Ay / 1_(122 1"'122

(ii) fThe spectral matrix,

2 . l\
/)‘1 M+ MlBM-(m)‘ M 0 7\4334(“,)

[1-B,, (w)|2 [1-B,, ()]
2nf(w) = :‘2_3_(;‘1‘_’_ l_,_>‘.§.___5 0 0
!1"322("’”‘ 31‘522(“’”

0 0 A, 0
AgB,y (~w) o 0 0 Aa

e ~iwu o43P;
where Blj(m) =S‘31j(u)c du = ——2——2—-

‘o Wo+ps
J
(11i) Thc Bartlett's spectrum

2ng(u) = Z f (w
i,3
> i 2 23 2
(p:+m2) !_( o ) pf+mJ ;‘ (1+a,,) p32+ul2
— +
- 2 4 2
(p‘:+m2) [(1—(122) p§+m2] o p3+w?
If a=b=0 thon A,=\,=0 and thc formulac (5.1.1) and (5.1.2) reduce to

= A +A3HR, (5.1.2)

(2.6.12) and (2.6.13) respectively.
The general rcesults for the distribution of intervals obtained in

8 2.8 give for the forward rccurrence timc survivor function,

Ry (1) = Pr(L>1) = cxp[—l(v+a+b)-—v S:'[ —¢(Y2)(t,1):| dt]

where
- 4 ¥+l o
'\ [ [::b\((a)(y-t,l)_ﬂ Bji(t)dt} y>0
(yv
i=1,2

0 -1y <0

-1

i= 3,4 1 otherwise.
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in thc casc of the cquilibrium distribution the asymptotic survivor
function beeowow, of (formmrsl feinrees g Teeomin
RL(y)%--t(WMb) 0 < A< | ,
and the Log survivor function of thc time interval bctﬁcen succcasive
cvents,

LogPp(t) = constant—(v+a+tbd)t.

The above model could describe the carthquakc phcenomenon by consi.-
dering the dcep carthquakes as cvents of the III typc and the shallow
and intermediate oncs as II and IV types respectively. Thus the deep
carthquakcs follow a stationary Poisson without triggering any subsi-
diary process, wh;le the shallow and intermcdiate ones trigger cluster
members of type I. This view contrasts with thc suggestion somctimes
put forward that decp shocks show no clustering cffects sapart from
the occurrcnce of "doublects" or "triplets" (that is two or threc shocks
very glose in timc and spacc and often of similar energies) (Verc-Joncs,
1970).

Thc model is also morc suitablce for the present investigation
since we arc considering all the kinds of carthquakes togethcr, with-
out scparating thc shallow oncs from thc dcep and intermediate. However,
the main disadvantagc of the model is again the large number of para~-

mcters which creates a lot of difficultics in thc estimation procedurc.

5¢2+ Models for thc scquence of origin times and cnergics

A problem of greoat significancc from thc goophysical point of
view is the invostigation of the rclation betwecn the occurrence timo
'énd the cmitted encrgy.‘In spitc of thc importance of the problem ado-
quate date wore not available for the statisfical analysis. A mathcma~
tical model which can bc employcd in this casc is the Marked proccsses
devclopcd by Hawkcs( I97I),whcrc cach cvent (origin timc of.earthquakos)

is associated with its mark (ammount of thc emittcd cnergy). The stati-
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stical analysis can bc donc by using rclevant thcory of thc multiva-—
riate timc scries analysis properly modified to the situation of Point
proccsscé. (Jenkins, 1969 and Bartlett, 1955).

Another approach to the problem of carthquakes, which considers
all thc main charactcristics of a shock, is by using thc concept of the
multidimensional point proccss wherc the one dimension is the time
axcs and thc rgst of the dimensions is the spatial coordinatos and the
emitted encrgy. Vere-Joncs (I970) gives the general lines along which
the study of thc mathematical modecls and the mcthods of the statisti-
cal analysis of ﬁho precceding scctions may bc cxtonded in thc multi-
dimensional case, Thc—gelcnanx_xhaoay—UT’Tﬁﬁ'ﬁﬁrfiatmﬁﬁﬁiunui—puint

. ).

.
CL L - - 0 oL - - e - o Bl -t
PROCOHSHOS gew a—by 16 ~ g

5:3. The estimation problem

The main problom in the statistical analysis of Point Processcs,
as it has previously been stressed is the cstimation problem. The si-
tuation is particularly difficult whcen the speciral analysis is uscd
because of the very complicate@ character of the spcctrum itsclf and
the large number of paramcters. Onc way by which thc cstimation te-
chnigues can be impr©O:ved is by using simulation mcthods to study the
distributional propertics of thc paramcters and to get some kind of

confirmation of thc rcsults obtained by another method.
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CHAPTER §

CONCLUSIONS

The statistical propertics of carthquake data from I4 diffcrent
arcag have becn studicd by considering tbo carthquake occurrence as a
onc—dimensional stationary poiny process. The following conclusions
may be drawn from this analysis,
(i) The thecory of stochastic point processes provides a satisfaotory
way of dcscribing the carthguake occurrcnce. An cxploratory analysis
of the given data, by using tests based on thc properties of the first
and sccond order moments can often give an epproximate idea about tho
most suitable model for describing the data.
(ii) The existence of any kind of_periodicity regarding the carthquakce
occurrcnce is not well cstablished. There is strong cvidence of clu-
stering and thc speetrum of counts rcvecals a slow ratc of degay of the
covariance density for largc valucs of t (small frcquencics). Thercfore
thc simple Poisson process can be rcjccted since it docs not allow for
the tenaency of carthquakes to occur in groups. Thesc groups of carth-
quakcs (aftershocks) arc oftcn triggercd by a large main shock. The
renewal process is also rejoctioed,.
(iii) Thec class of clustering models is a suitablc onc for describing
the carthquakc occurrcncc, Their main disadvantage is the difficulty in
thc cstimation of the paramctcrs. Thc improvement of the estimation me-
thods by using simulation tcchniques will ccrtainly incrcage the valuc
of the obtaincd information, by fitting thc rclovant model. Tho fit
of the Neymann-Scott model with mixed oxponcntial dccay is more sa-
tisfactory than the fit of N.S. with single cxponential decay. The
most plausible justification for this is thc apparcnt prescnce of bath
short and long term cffccts and thorcfore thc inability of the coxponcn-—

tial modcl to describe satisfactorily the data ospcocially near the ori--
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gin. Thercfore the N.S. modecl with singlc oxponcntial oan bo recjected
in spite of thec fact that tho Kolmogorov-Smirno® test is not signifi-
cant for somc of thc arcas. The compliocated character of thc data of
this study and thc rcsults of the interval analysis are in favour of
a four-variate mutually oxciting proccsses wheroe the differcent beha-
viour of tho oarthquakes according to their depth is also takon into
account.

(iv) The statistical analysis docs not appcar to be quitc sufficicnt
to predict similaritics or difforcnces among tho aroas undoer investi-
gation. The crrors of the ostimatos in some arocas arc too large re}a~
tive to the ocorrcsponding cstimates to allow a safe discrimination.
Howover, there is some cvidence of consistency of seismie activity,
aa reflected in the parametors of thce stochastic model, within re~
gions of.similar gcological type while differcncos between types arc
observed.

(v) Pinally the problem of studying the relation betwoen oocurrcnce
timc and the cmitted energy is statod and some suggestions of the way

{0 approach it arc madec.
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