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ABSTRACT

| Ultrasonic Velocities and.attenuation in GaAs.

-and HgTe have been measured between 2 K and room tem-
= perature in the frequency range. 40 to 750 MHz. An
'experimental evaluation has been made of ‘the pulse-

'superposition technique used for measuring.the ultra-
sonic velocities, and particular attention has been
paid to determination of the uncertainties involved.

A correlation has been found between the ultra-
soni¢c pure modepelastic constant combinations of GaAs,
-HgTe and other III-V and II-VI zincfblende“structure
.compounds and the group'IV elements The elastic
:4 constant temperature dependences are well represented
'by a phenomenological model based on the Debye phonon
frequency spectrum; differences between the model and
experimental temperature dependences for the two com~-
pounds are compared. "

The ultrasonic attenuation in GaAs is dominated

: ’by damping due to ultrasonic phonon-thermal phonon

interactions. The results are interpreted on the basis
of the Woodruff and Ehrenreich model and the detailed
nature of the phonon—coupling Griineisen parameter is
examined.

Two main mechanisms'contributeto the lcw-
‘ temperatureﬁattenuation in HgTe: phonon-phonon damping
and dislocation-resonance damping. A large attenuation.
peak below liquid nitrogen temperature is'explained.in

terms of thermal unpinning of dislocations.
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"1, A _PREFACE

This experimental investigation is submitted as
the thesis requirement for the degree of Doctor of
Philosophy in the Faculty of Scilerice of the University
of Durham, England.

ln the model analyses of physical phencmena
observable in solids one concept occurs repeatedly: thai.
of material elasticity or anelasticity. Many phenomend=
logical theories have been evaluated through their correct
prediction of elastic and anelastic behaviour, and the
range of properties and phencmena which are observable
and measurable in solids through mechanical investigations
'is enormous, covering interactions in all of the five
classical divisions of physics (thermodynamits, electro—
; magnetics, optics, acoustics and mechanics). Unfortunately
there is no unified theory linking the macroscopic elastic
and anelastic properties of solids with- microscopic models:
| the problem is very complicated and derivation from funda—
mental principles is not possible . using present techniques
of computation. One major difficultv is that of comparing
the predictions of approximation models with experimentally
determined values. Very often the macroscopic/microscopic
correlation‘requires extreme accuracy of,determination of
the elastic conStants, and sufficiently precise measurements
. are only available for a very small number of materials.
The mechanical damping due to anelasticity is similarly
vdifficult'to measure accurately,.and<often it exhibits'
very.complicated behaviour as a function of controlling

factors such as temperature.

AM UNIY,
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In this thesis I wish to present the results of a
,comprehensive study of the elastic constants and high
frequency (ultrasonic) mechanical wave attenuation of two
materials which while having the same.crystal structure
‘are unlike in many other respects. The.prime objective
has- been to make measurements with a high enough accuracy
for quantitative comparison with present elastic constant
and attenuation models. "~ 'Gallium arsenide (GaBs) is a
diatomicvsemiconducting compound of menbers of groups III
and V of the periodic table. Great interest has been shown
~over a number of years in'its electrical properties and a
range of gallium arsenide electronic and optical devices
s available (Gunn oscillators, golid state lasers, solid
‘state~lamps, etc.) However, comparatively little informa-
tion is available on the mechanical behaviour of . GaAs.
.Mercury Telluride (HgTe) is a less well known semimetallic
IIAVI compound whose only practical importance has been '
in alloys'with other II-VI materials: extensive work has
been done on the application of.cadmiumfmercury telluride
to infrared detection and lasers.

o The experimental study falls into three sections.
first a critique of the experimental techniques involved
(Chapter 5); second the measurement of the elastic con--

stants of the two compounds as a function of temperature

from liquid helium to room temperatures (Chapters 6 and 7); :

third the measurement of the ultrasonic wave attenuation
in the ‘materials as a function of temperature and wave

frequency (Chapters 8 and 9). The main theme of the work:
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is the ‘correlation between the elastic and anelastic
properties of GaAs and HgTe (Chapter 10) and the use of
this correlation to understand not only the mechanical
behaviour of these two compounds but also more general
features appertaining to a wider range of solids.

tlydThe stated aim of a thesis presented in this.
uniwerSity is that the author should make a valuable
original'COntribution to the field of study. It has been
.said that in many theses there is work which is both
valuable and original, but unfortunately. the valuable is
not original and‘the original not valuable (L.P. Bouckaert):
I trust that this is not found to be the case in the
present instance. On reflection it seems that little of
the credit for‘this work falls on my shoulders. Primarily
my thanks go to Dr.-George Saunders, without whose energetic
: encouragement this thesis'would not. exist. "I can express
my gratitude to him in no better way thanzto say simply,
Thank you | | . | '

The experiments have been carried out.using

facilities which are provided in the Department of Applied
Physics and Electronics’ in the University of Durham by
Professor D.A. Wright, to whom I am indebted. I am grate-
ful for work carried out by the technical staff headed by
Frank Spence,: particularly Ron Waite whose cheerful
assistance has now helped yet another research pro;ect
| towards its completion. I must express my appreciation
of discussions with the members of George Saunders' research
group, especially Mike Farley and Colin Maynell who built

‘ up the ultrasonic pulse-superposition equipment used here.



Finally I should Iike to thank John Wilson for
extehsive advice and assistance in the'évaporation of
cds films and Carol Pennington for ektensive assistance
.with;the artwork in this thesis. The work has been

.supported by a grant from the Science Research Council.




CHAPTER 2

."CRYSTALLINE'AND BAND STRUCTUREE OF GALLIUM

ARSENIDE AND MERCURY TELLURIDE"

2.1(a) THE ZINC BLENDE STRUCTURE

The III-V and II-VI compoundé form a link between

the archetypal elemental semiconductors of Group IV in

the periodic table and the extreme i—VII binary compounds.

Group , I IT  III w 'V VI VII

Elemental
Semi~
conductors
Ge, St

I1I-V
Compounds
. .

I

II-VI .
Compounds

L

I-VIiI
Alkali
Halides

Table 2.A lists the group IV elements and the III-V,

VIII

Inert'
Gases

TII-VI and I-VII compounds. The_gr@up'IV semiconductors




-6 -

| TABLE 2.A
The group IV elements, the III-V, II-VI and I-VII

compoﬁhds and their crystal forms.

IV III-V 1I-vI | I-VII
| -ctatamond)p | BN 2 .gn§ =z | LiF H
si p | BB z .2nSe z - Licl H
Ge D | .Bas | z -ZnTe'IZ~ - LiI H
é-Sn~ D. AlP z .cds z . LiBr H
Pb N Alas z | +CdSe. z | NaF H
B-sn Alsb z | -Cale z - | NaCl H
.é(graphité) GaP z | -HgS 'z NaI H
o Gaad z HgSe '5 | waBr H
GaSb z HoTd =z KF H
mp 2z | -zas | EKcl H
InAs z .znSe KI H
Insb 'z | -2nTe . KBr H
AN cas | moF H
GaN .case . - | mpci H
.BN .cdTe RbI H
.BAs o » HgS | RbBr H
AlBig_ 3 | csF H

GaBi o CsCl -

| InBi | cst
InN . | csBr.
D - diamondﬁstfucﬁuré"
.z - éinc4blende structure
H - halite-strucfure'

‘. polymorphié forms.




take the diamond form, many of the III—V and II-VI compounds
Occur with the zinc-blende structure and the majority of the
I-VII compounds take the halite form. «All three crystal
types have the face-centred Bravais lattice with a basis of
two atoms. Figure 2.1 shows the atomic arrangements.

. Gallium arsenide (CaAs) and mercury telluride (HgTe)
both.have the zinc-blende cubic structure: that most
characteristic of their respective compound groups. Unlike.
many of the group members, neither gallium arsenide norx |
mercury telluride is polymorphlc under normal conditions.

 The zinc-blende crystal structure itself (space

. ldroup F43m) consists of two interpenetrating face centred
cubic sub-lattices, one of'type A atoms‘and one of type B.
- Bach sub—lattice is deflned by basic translational vectors;
a

[110], 5 [Ollli % [101] and displaced by a vector

[lll] with respect to . the other (Figure 2.2); Type A

oblni ol

atomic sites in the conventional unlt cell are 000, Okk,
’sO’s *1’50, and type B sites are %k, *%%. 3%k, 33%.
Consequently there are four A atoms and four B atoms in

this" unit cell: the rhombohedral unit cell contains two

_atoms._ Both atom types have 51milar environments,'each

Vhav1ng as nearest nelghbours four atoms of the opposite

type at the<corners of a regular tetrahedron and at distances
of %’/_ a. The next nearest are twelve atoms of the same |
type % /2 a . away. : o ; _ _

‘A consequence of the % [1ll]shift between the two

" sub-lattlces is the lack of a centre of symmetry, along

the [111] dlrection planes of A and B atoms alternate




diamond
zinc blende
zinc blende

halite

- Atomic Arr’angem'ents. i‘n the
sequence IV, II=V, N=VI, I=Vi.

FIGURE 2.1

" The ‘Zinc Blende Unit Cell
| " FIGURE 2.2




‘(figure 2.1). A more extensive.vieW‘of_the'atomic

| arrangement appears in Figure 2.3. In the diamond
structure there is only one kind of atom and in the halite
the shift is %[1111: both have a centre of symmetry.
Opoosed (hkl) and (hkI) faces and opoosed (hk1] and (hk1}
directions can. have different physicalfand chemical
proberties in non-centrosymmetric crystals. For example(
"diffracted:x-ray intensities are not the same from (hkl)
andl(hii) faces: the difference has‘been observed in
'gallium arsenide by White and Roth k1959) and in mercury
_telluride by Warekois et al (1962). -Differences in the
etching characteristics‘of the (111) and (111) surfaces
of_gaiiium arsenide (Abrahams and Buiocchi, 1965) and
‘mercury telluride (Warekois et'al, 1952)' have also been
'obserued.' |

. | As the.zinc-blende_structurenhas,a face-centred
cubic Brawsis lattice, the Brillouin zone is the
‘tetrakaidekahedron illustrated in Figure 2.4, w1th eight
rregular hexagonal faces and six square faces. The

. standard notation is used (Bouckaert et al, ,1936);

- TX, TL and 'K are the 4- fold, 3- -fold and blnary directions

respectively.

, 21 (b')‘ ‘BINDING AND IONICITY S

| Part1a1 ionic bonding in semiconducting compounds
has been ‘inferred from bonding theory, carrier mobility,
piezoelectric and 1nfrared measurements. We can define

an effective interatomic charge transfer e* whose magnitude
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O A-atom

® B-atom

" An Extended Model of

the Zinc Blende Structure o ' ‘

FIGURE 2.3 ‘

The First Zinc Biende Brillouin Zone

FIGURE 2.4°




andvslgn characterise the bond; positive, zero and nega-
tive values indicating 'ionic', 'neutral’ and 'covalent'
bonding respectively. Transfer of'electrons from the
,Group V atom to the Group III in the III-V compounds, for
example, implies a negative value for e* If we consider
the. transfer of whole electrons only, the range of permlfted

values of e* through the sequence IV —e»I-VII is

IV 'I_I-v II-VvI  I-VII

o.. . =1 -2 -3 g
1 "o 1 -2 ‘:‘5"?5’
S s~ o - . Hr\,".’
, ~ o 4 § Iy
: 1 ~0. fr :
' 2 3 2 1 N
_ ~ ne .
5 Uag
N
.‘,,
.g'?f)g’
"‘sty
‘ 55@
7§
g 9
R,

A comparison of bonding ionicities may be made through the
crystalline ionicity

| A =/\o v | @)
whereilé'is'rhe atomic ionicity and c is the coordination
-number- e*/C‘islthe displaced‘charée per bond (Suchet;»_
1965). Values of A from zero- to unlty cover the range
from purely covalent to: entirely ionlc bondlng. Flgure 2. 5
shows the" crystalllne ionicities 1n the IV — I-VII
Sequence.' A general'trend towards nigher ionicity can

be seen throughout the sequence




o v W=V | H=Vvi| 1=Vl
1-0 ™ - ionic
: - o el
' : o S r——
'm
A& d o e
o —— AT
. ——cm—— m—c— ] )
> ~ —_— s
i - ———— . b:"‘c‘
9 s | e [TIITTSE
‘e ' e =} o9
e - 1 £
o o————
Ty 05 — | 2=y
e - e x HgTe
5 . :
“ - ] l
o - )
o - oz s ]
- . )
0 T 1 ,
i ' ; o GaAs
]
. 1 .
00 4- Enama- -] — | o covalent

Crystalline lonicity inthe 1V S I=VIl Series

FIGURE 2.5

" I,. non-centro-

B symmetric
' shift

heavy hole

. A bajnd '
~ light hole\
‘ band ~

[0

Spin-Orbit Splitting of the Zinc Blende

;» __l"15 Electro? Band

FIGURE 2.6




- 13 -

| Table 2.B lists charge transfer values reported
for-gallium arsenide; Agreement between the values from
different measurement techniques is very good, indicating
a correct value for the effective charge transfer of
close t0‘-0.5e : the bonding in_gallium arsenide is inter-
mediate between-the covalent and neutral tyoes. The
direction of transfer does appear to violate the electro-
: 'negativity principle, but it is quite in accordance with
covalency theory (Pauling( 1960). No estimates of the
ionicity of.gallium_arSenidejfrom elastic constant data

appear in the literature.

. Few experimental'evaluations of e* in mercury
telluride have been made (Table 2. C) No indication
of the sign of the charge transfer can be found from the
techniques used: this accounts for the ambiguity in the
‘».l values quoted. Even so, mercury telluride is more

‘neafly neutral’ than either covalent or ionic.

Both gallium arsenide and mercury telluride fit
into the trend of 1ncrea31ng ion1c1ty through the

IV — .I-VII sequence.

2.2  ELECTRON BAND STRUCTURE

| In many respects the electronic band structures .
'"of the Group 1V semiconductors and the III-V, II-VI and -
‘I-VII compounds are 51m11ar In general, the energy-
~gaps between the valence and conduction bands widen on
moving horizontally across the‘periodic table from

"Gr0up IV to I—VlI._
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TABLE 2B.

. Effective Charge Transfer in Gallium Arsenide

, L Measﬁrement'- o * :
Reference ‘Technique .| . e*/e A

'Atiard v ' ‘ )

: ' X-ray 1 - '
et al . 1 -0.52+0.05 | 0.1l2
1969 . Diffraction
Attard. - X-ray . o ) | - ' .

1968 Diffraction | - 0-46 .| 013

Zerbst and : ‘

| Boroffka Piezoelectric . =0.51 0.12

1963 1 _

' nE .
:| Hilsum . o t
| 1966 Optical 1 0.48 N 0.13
Hambleton : IR ¥

et al , Optical . -.0.46: 0.13
1961 ' I
Hass and. R S T
Henvis g Optical .| . 0.31 0.12
1962 B R SR -

T optical experiments give the magnitude
of e* only; it has been assumed
‘negative in the calculation of ' X.




Effective Charge Transfer in Mercury Telluride

TABLE 2C

' Meésurement .
Reference Technique g /e A
Dickey ‘and : 0.65
"~} Mavroides. Optical 0.6 l9{45
1964 :
Aiper and . : - -
- : Elastic , 0.66
V'Saunders Constants _9.6510.05; [5.44
1967 :
".Suchet : _ :
1965 Optical -0 0.5
Wolff and e - :
~ Broder - Cleavage -0 0.5
© 1959 ' ‘

_ Table 2C :
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The zinc blende structure may,be envisaged as a per-
' turbed homopolar crystal; and its band structure calculated
to a reasonable approximation by perturbation theory from
the known E(k) of the Group v crystals (Herman, 1955).
There is a tendency towards a direct minimum in the band
“ '.gap at k=0 (Cardona and Pollack, 1966), the band gap
decrea51ng with increaSing atomic number. With the excep-
tion of indium bismuth, all the known III-V compounds are
| ;semiconductors: so too are ‘the II-VI compounds, save for
‘the two members of highest molecular weight, namely mercury
selenide and telluride, which are semimetals with over-

lapping valence and conduction bands.

Spin-orbit interaction causes splitting of particular
degeneracies in'the bands. Especially.important is that
. of_the13ffold E;O state-r15 into a~2j£old rg state and a
blower Tqe Figure 2.6 provides'a general'scheme for the
bandeedges in zinc—blende materials} ‘there is one con-
duction bandgand three-valence bands, the lowest of which
(r.)'is usually ‘called the split-off'band. The splitfoff
band energy 'is so far below the Fermi level that carriers
in it play no significant part in most phy31cal properties.
NHowever, heavy and light hole effects are usually apparentr
both the PB bands are important. The absence of a centre
1of symmetry causes a shift of the r15 band maxima from
5—0.: This is rarely important in the III-V and II-VI
’lcomp0unds as  the shift is small (Hopfield, 1961- Mahan
and Hopfield, 1964), but in materials in which the con- .

| duction band and valence band edges are close, such as
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indium antimonde,a-tin, mercury selenide and mercury

telluride, it is a significant feature.

A

2.2(a) GALLIUM ARSENIDE

‘ The band structure of gallium arsenide fits well
into this general scheme. "The two-fold degeneracy of the
“valence band occurs in the close vicinity of the (000]
position, the heavy-hole band has slight maxima sited
Just away from the Brillouin zone centre r in the <111>
directions (Braunstein and Kane, 1962), the energy
surfaces in the light-hole band are nearly,spherical.

The prinCipal conduction.band minimum’is at k=0, about
l.5'eV above the top valence band edge. The transport

_ properties of electrones'in gallium.arsenide (Wolfe et al,.
“_1970) are in agreement w1th the assumption that the

'principal [000] conduction band edge is parabolic.

There is a surrounding set of. secondary minima

‘ some o. 36-eV above the principal conduction band minimum.‘
This particular feature allows the development of a hot
electron population in gallium arsenide, of great
"technological importance as the scurce of the Gunn effect.
»These minima have long been thought to lie. in the <100> o
directions, (Figure 2.7). third set of minima has been
reported higher up in the <lll> directions (Ehrenreich, .‘
1960).. The results of recent investigations (for example s
Balslev, 1968, and Collins et al 1970) suggest a | .
.reversal of this picture, with the <lll> conduction band

minima about 0.4 eV above the principal minimum and the S
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- E(;k)

'k(111) 0 k(1oo) X
AS|mpI|f|ed Band Structure for

Gallium Arsenide FIGURE 2.7 |

L 73-k(111) o k(100)
o . o 0-82TX

L

The Band Structure of Gallium Arsenlde

| Includln Spin-Orbit S littin A o
'- —=o=F ——=F= ing_ FIGURE 2.8
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. <lOO> ones 0.8 eV above.i Figure 2.8 shows the band scheme
calculated from the self-consistent orthogonalised-plane~
ane model of Collins et al (1970).- The conduction band

minima are indicated.

2.2(b). MERCURY TELLURIDE

Despite extensive published measurements of the

| .galvanomagnetic, thermoelectric, thermomagnetic and

' optical properties of mercury telluride, some doubt still
| exists as to a correct model for the ‘band structure.
However, there is now unanimity of opinion on the semi~
metallic nature of_the,compound. Groves and Paul (1963) -
havevsuggested an ihverted'band scheme for'grey tin:
"Harman et al (1964) extended this approach to mercury
telluride, on the basis of Kane's model for the band
structure of indium antimonide (1957) * The main features
5appear'in Figure 2.9. The conduction band is separated
from a nearly mirror image valence band by about 0. 14 ev..
| Relatively high carrier concentrations at low temperatures
evidence the presence of. another valence band, that
marked r8 in Figure 2. é. Current carriers are present
only in the conduction ‘band and this ‘second valence band.
,_The model is consistent with the general systematics of
III-V and II-VI compounds of the zinc-blende structure:
the heavy hole band of the III—V compounds (Figure 2.6)

“1s now degenerate with the conduction band at k =

Rodot and Rodot (1959) have found that the con-

_ duction band is isotropic, with its lowest edge at the
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'o .' r|8 | \‘
0-14IeV o
L k(1) 0 . L

A Proposed Band Structure for ’ ' .
FIGURE 2.9

Mercury Tellurlde

L"'f' k() oo | k(1o,o} X

The Band Structure of Mercury Telluride

Including_Spin-Orbit Splitting_

" FIGURE 2.10




- 21 -

[000] position. vVariation of the electronic effective
mass with doping level (Szymanska et al, 1965) demonstrates

that the conduction band is non-parbolic.

| | If the Fermi level is adjusted through doping to

be close to the bottom'of the conduction band, two sets of
electrons and one set of holes should be involved in
transport processes. Many unsuccessful attempts have been
‘ made to fit experimental data for mercury telluride using
only two carrier sets as a 31mplification (see, for
h.example, Ivanov-Omskii et al, 1965). Yamamoto and Fukuroi
| (1966) conclude from Shubnikov-de Haas measurements that
.'.mercury telluride is characterised by two distinct con-
:duction bands involving electrons of different masses, in
agreement with the Harman .-model. Kolosov and Sharavskii-
(1966), however, find that to flt the thermomagnetic

effects two hole sets and one electron set are required.

The majority of the available evidence favours
the inverted band model: this will‘be adopted. Figure
2.10 shows a more complete model derived from band
"structure calculations; Electrons occupy two.concentric.
spheres in the Brillouin zone, centred at r. Eight hole
pockets, aligned in the .<11ll> directions, closely surrounds :

the electron spheres (Figure 211).

2.3 PHONON DISPERSION CURVES "
| Phonon dispersion curves of energy E against

wave-vector g bear a strong resemblance to electron E -k







o in terms of effective ionic charge, and from the analysis
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diagrams. they lie within the'same Brillouin zone and
exhibit gaps between successive bands. Each band con-
stitutes three branches, analagously to spin-orbit
splitting in electron bands. In particular directions
_two of the branches can be degenerate;vfor example in the
f<ill$‘directions of the‘zinc4b1ende,structure where there
is a single longitudinal acoustic mode and two degenerate
_ transverse”modes of equal velocity; At any temperature
there is a'finite,probabilityyof all levels being occupied, .
| unlihejthe_electron levels.p | |
The lowest phonon band contains acoustic
,frequenCiesfup to about lO]:'2 Hz.. UltraSOnic frequencies
fallswithin the bottom_l% of this range, so their phase
:velocities may be taken to define the'slope of the E = g

f.diagram at the origin.

_ For gallium arsenide the phonon dispersion curves
have been constructed by Dolling and Waugh (1964) from
'b_neutron spectrometry (Figure 2. 12) Calculated phonon
dispersions (Banerjee and Varshni, 1968) based on the
'rigid ion" ‘model are in satisfactory agreement. Contri-
butions to the crystal forces are taken in two parts;
short-range forces, up .to the second nearest neighbours;

and. long—range Coulombic forces. The latter are written

a value of 0 567 is derived for e* which compares well
with the ionicities quoted in Table 2.B (the corresponding

_x is 0.11, assuming e* negative) o
Figure 2. 13 shows the phonon frequency distribution
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function obtained by Banerjee and Varshni for gallium
arsehide. The shape is similar to that of the function
presented by Dolling and Cowley (1966) in a more com-

pliéated analysis.

No theoretical oOr experiméntal evaluations of
phonon dispersion curves for mercury telluride appear

in the literature.
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CHAPTER 3

"PREPARATION AND EXAMINATION OF .

SINGLE CRYSTAL SAMPLE"

3.1 ULTRASONIC SAMPLE REQUIREMENTS

| ’Ultrasonic responses of crystals'may be evaluated
by injecting ultrasonic waves and observing thelr subsequent
behaviour._ For simplicity the waves are:usually confined
to a single axis of propagation between two opposite plane
parallel reflecting boundaries (Figure 3.1). Sidewalls
must be remote from the region of propagation to prevent
the interference of stray reflections, to avoid requirement
-of samples of infinite cross section a parallel beam of
, ultrasonic waves is desirable. Beam divergence may be
caused by lack of face parallelism, flatness or 'finish'
‘(Figure,3.2).- The lower'the attenuation of ultrasonic waves
in a crystal and the higher the wave-frequency, the more-
critical the flatness and parallelicity of the crystal faces
‘becomes | Typically, the faces may be lapped flat and
| parallel to between 10 4 and lO -6 radians. A comprehensive
:'treatment of non—parallel effects is given by Truell et al

(1969), and a discussion appropriate to the present case'

appearS'in Chapter 5 of this thesis.
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In the pulse-echo technique adopted in this work,
pulses of ultrasonic waves of 0.5 us length are injected
into the crystals from a transducer on one parallel face
(Figure 3.3). The echoes returning to the transducer are
monitored, and the veloc1ty and decay rate of the ultrasonic
waves are deduced.1 Velocities are characteristically about

lOS»Cm_Secfly and therefore the pulses_are of the orcer =f

lO-ldcm:inllength. Resolution of successive echoes demands
thaththe crystal be much’longer than this: in practice a
length of 1 cm is ideal.

Two further beam—spreading mechanisms are
diffraction and energy—flux deviation. ‘Diffraction may be
reduced by making the ultrasonic beam width very much greater
than the wavelength; widths of a substantial fraction of a
centimetre are required in the frequency range of 10 MHz to
750 MHz covered in this work, demanding crystals of about

l cm across (Figure 3.4). In a general crystallographic

' direction the ultrasonic energy flux vector does not lie

LY

along the propagation direction (see Figure 3.5). This
‘pnenomenon is described more fully in Chapter 4. Deviatibns
from the chosen propagation directions in gallium arsenide
'and mercury telluride have been shown to be small; 1 cm

wide crystals are - adequate.

| _ Analysis of the ultrasonic data is facilitated by
careful choice of the propagation directions. the parallel
‘faces must be orientated so ‘that they are perpendicular to

the chosen directions. In crystals of anisotropies associated
'with the 21nc-blende structure, orientation to within 1° of

a chosen direction reduces errors in the measurement of
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velocities, for example, below about 0.03%

(Truell et al, 1969).

3.2:(&) CRYSTAL SOURCE AND CHARACTERlSATION.

_ Large single cryStals of undoped boat—-grown
n—type gallium arsenide were kindly supplied by Dr. G.D. Pitt
- of Standard Telecommunication Laboratories (STL), in the o
form of 1 cm cubes, with faces.aligned perpendicular to
: chosen:crystallographic axes to within»%o. |

R .lt is convenient to characterise different crystals
of a semiconductor by their electrical properties For |
Agallium arsenide Wolfe et al (1970) have shown that at 77 K
the: electron mobility may be related to the total: ionised
impurity density, (Nd + Na), where Nd is the density of
donor ions and Na that of:acceptor ions- (Figure 3.6):' at
this temperature the mobility is dominated by ionised
impurity scattering; Figure 3. 7-shows7the Hall mobilities
measured over a wide temperature range by Stillman et al
b(l970) for three gallium arsenide samples of differing
3electron concentrations. At 300 K the controlllng factor isf'
4polar mode scattering, but variation in mobility with carrier _
concentration is still that given by the change in ionised
impurity scattering: the relation of Wolfe et al should
;still hold at 300 K. Comparison of the total ionic impurity
’hconcentrations (Nd + Na) -and the excess electron concentra-
_ tions n, equivalent to (Nd - Na) assuming donation or
acceptance of a 51ngle carrier by each ion, gives an

indication of the relative purity of the crystals (Harman,

1967). -
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_‘ Figure 3.8 showe the mobilities of a large number
of samples of galliumlarsenide grown hy a variety of methods
(Bridgman, Czochralski, zone-melting, epitaxial techniques,‘

vetc.). -Values are representative of‘those appearing in the

literature up to 1973. The higher the mobility for a given
excese}electron.ooncentration, the higher is the proportion

Nd of lNd_+ Na). The electrical parameters of the crystals

-supplied by STL to this laboratory were as follows.

" At 300 K: .

Excess electron concentration n = -1;30x1016 om_3
mobility y = 4700 cm? v7! sec”!
resistivity p' = 0.0l ohm cm |

Thesevcrystals'appear to be of a quality comparable with
-those from other sources,A they fit into the centre of the
trend towards 1ower mobility with increasing carrier

,concentration.

3.2 (b) | HEAT TREATMENT

o One necessary step in the fabrication of'cadmium
sulphide transduce”s on gallium arsenide is heat treatment
at 500°c for 5 minutes (Section 5.l(f))4. It is well known
thatin—type galliﬁm arsenide becomes p-type or less n-type
as a result of heat treatment. Copper from the heat-
treatment container (Edmond 1960) or the cleaning reagents.
used is considered to- be responsible.' While annealing out -
of growth defects (Blanc et al 1964) would lead to an
' improvement of the crystals, the: in-diffusion of . contaminating.

impurities should be avoided if possible
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..The effects of'heat;treatment:on'gallium arsenide,
'andiespeCially undoped boatfgrown gallium arsenide, have
beendextensively studied optically hy:ﬁwang (1968). Photo=
luminescence'is strongly dependent on-defect concentration:
changes in intensity after heat-treatment may he related
directly to defects caused by the Jn-dlffu51on of 1mpurlt1es,
and thus_to changes in carrier denslty. Figure 3.9 shows
changes in the electron concentration of n—type gallium
arsenide of initial concentration 3xlO18 cm"-'3 electrons as
a function of annealing time (after Hwang, 1969.a). For the
temperature (500 C)~and annealing tlme..(S minutes) used in
j._this.-yvork we should expect the changelin electron concentra-
tion to be less than 1x10'® cm™3.  The initial electron
fconcentration in the crystals used in- thlS work was |
1. 3OxlO16 cm 3, tWo orders of magnitude below that described
.in Figure 3. 9 The variatiOn in electron concentration -
,decrease with 1nitial electron concentration is shown in
: Figure 3.10 (after Hwang, 1969.b). The decrease for crystals

' of-l 3OxlO16 cm-3 is at least one order of magnitude below

ithat for crystals of 3xlOl8 Cm—3: changes in concentration

during the heat treatment employed in. this work’ shquld be tless

than -1x10 5,cm—3, or 8% of the initial electron concentration.

‘ 3.2(;) X- RAY EXAMINATION AND ETCHING BEHAVIOUR
| The three high symmetrj axes ([lOO], [lll] and [llO])_t
'.'of the zinc-blende structure were chosen for ultrasonic \
studies (see Chapter 4). Figure 3.11 shows Laue back-

reflection X—ray photographs of gallium arsenide taken along
these dlrections. To establish the degree of surface damage

caused by mechanical pollshing of the crystal faces,
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‘photographs were taken along the [110] ‘direction after
'mechanical polishing with 6 micron diamond paste and also
after a subsequent chemical polishing with an etch of bromine
in methanol The rate of removal of material by 'this etch is
_ dependent on the bromine concentration, 0.35% by volume of
bromine giving a removal rate of 1 micron per minute (Hill
‘andrHolt, l968)« Etching~was carried out to a depth first
of 5 microns, then 10 microns, without unmounting the crystal
.to ensure that the same part of the surface was examined in-
each case‘ -In all three photographs (see Figure 3.11) x-ray
exposure time, development and printing were kept the same.-
The Laue photograph obtained from the mechanically polished
hsurface exhibits extensive spot spreading, characteristic of
| highly strained material, and a stronq backgroundof random
‘.‘scattering, dueiprincipally to direct reflections from the
6 micron surface scratches. Much of.the’background disappears
dafter etching away a 5 micron layer, but spot-spreading is
fstill evident, although smaller A further 5 micron etch
exposes relatively unstrained material, as evidenced by the
small spot size. excess1ve strain caused by mechanical |

polishing apparently extends little further into the crystal '

" than the surface damage itself. Figure’ 3.12a shows a

photograph of a ‘chemically polished (lll) face.

The Ga {111} faces of gallium arsenide may be
~distinguished from the As {lll} by use of the A-B etch of
Abrahams and Buiocchi (1965), of composition 2m1‘H20,

8 mg AgN03r ig CrOg . and.l'ml ﬁF Figures ‘3.12b andl12c .
show etch pits formed on the Ga {111} and As {111} faces '

_respectively. The pits on the Ga {lll} faces are much more
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‘ triangular than those ofiAbrahams and Buiocchi (1965). The
'circular pits on the As {lll} faces have slight tails which
point in the same direction as one of the points of the
triangular pits on the opposite face. Figure 124 shows pits
.in‘a region of high strain, near the edge of a crystal, where
_ groups of pits of widely differing sizes appear.

From comparison with similarly magnified photographs
lof'a»stage micrometer, the etch pit density is estimated to

be ahout l()“lcm_z in the bulk of the crystals.

3. 3(a) 'CRYSTAL GROWTH

. Large single crystals of mercury telluride have been

grown in this laboratoryvby T. Alper, using a vertical

. Bridgman technique,.from.either stoichiometric or from off-
~stoichiometric, telluriqurich melts. Full details of the
.technique appear in his Ph D. ' Thesis’ (Durham 1968): a brief
:summary follows.. . |

| Stoichiometry play an important part in determining

I-the properties of compounds, particularly those containing
volatile components: excess atoms of ome component act like

‘foreign impurity'atoms.' It is most useful to»prepare

“:‘stoichiometric crystals for physical studies The complete

liquidus curve for mercury telluride has been obtained by

‘Delves and Lewis (1963) and by Strauss and Brebrick (1965).

- The compound melting point is 670° C E l deg C (Delves and

: Lewis, 1963), higher than that of either component, as

"is usual for the II-VI binary systems Figure 3. l3 shows

‘a schematic of the mercury telluride phase diagram, around

-‘thevstoichiometric composition (Delves, 1965). The growth
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rv.of single crystals from stoichiometric or near- stoichiometric
melts yields ‘erratic results (Giriat 1964 Harman, 1967).
: Delves (1965) suggests that growth of fixed composition
: fcrystals may be achieved from the monotectic point labelled:
‘iY in Figure 3 13 where the solid is in equilibrium with the
A”two immiscible liquids L. and M, the latter containing excess
| tellurium : Crystals have been grown by Alper (1968) from
| both stoichiometric and off stoichiometric melts, -using the
ffurnace detailed in Figure 3. 14 (Furnace (1)). The furnace
'is in two sections as shown, to enable a high temperature
.gradient to be attained Adjustment of the variable
' resistance at the centre of the windings enabled the temperature
' distribution of Figure 3 15a to be achieved .The component
‘elements were sealed into an evacuated quartz growth tube of
~24 mm bore (Figure 3. 15b), pointed at’ the lower end to aid
‘ crystal nucleation (tlp angle of 70° ), and placed in a
_ :stainless steel bomb to guard against the ‘effects of any |
'1explosion- the vapour pressure of mercury at 700°C is
‘?approximately 70 atmospheres (Brebrick and Strauss, 1965)
'The component ‘mixture was heated up to 700 C over three days, .

then the Eurotherm .power was wound slowly down "to lower the

o overall temperature profice and sweep the freezing temperature.

:through the liquid mixture ~Alper found that to grow large
single crystals a temperature gradient at the melting point of.i
greater than 5° deg C per cm and a rate of tenpperature profile .
fall of less than 2 deg C per hour were necessary. NOi 4:' |
preferred orientation was found. | | '
v Dislocation densities in both stoichiometrically
and off—stoichiometrically grown crystals were found to be

about'lo7 per sz. In this work further mercury telluride
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crystals were grown in an unsuccessful attempt to reduce

this figuret The furnace used was that employed in the growth
~of single crystals of arsenic in the laboratory (Jeavons and

2

- Saunders, 1968). A sChematic,diagram_appears in Figure 2.16

(Furnace'(Z)) The heater-winding is four-sectional, to

enable precise control of the temperature profile (Figure 3.17a)

. The mullite furnace tube is provided with a stainless steel

-liner to smooth out temperature undulations between heater
turns.:"Gouy modulation is applied to a switching galvano-
: meter controller: the galvanometer~pointer is pulsed from
‘a multi—vibrator square—wave generator by about 5 deg C about
_ the mean temperature. Switching of the power to the furnace
occurs each time the pointer passes the set temperature, and
proportional control ensues (Jewell 1967). Inclusion of
xthe stainless steel liner necessitates a reduction in the
growth-tube diameter: 16 mm bore quartz tubing was used
_(Figure:3u17b); The 70° tip angle of Alper's tubes was
retained.

o Cleanliness of the growth tube is of prime
_importance‘if crystal contamination is_to be avoided. The
‘stages of tube cleaning were as follows:- ' “
l.. A general’overnight soaking in chromic acid.

‘. 2. Surface etchinglin concentrated‘(48%) hydrofluoric‘acid
for 1 hour; | | |
3,g»Baking at 10 -4 mm of mercury to dry and outgas.
Mercury (99 9999% purity) and. tellurium (99 999%
purity) were supplied by Koch- Light & Co Ltd. Calculated
.amounts, totalling about 70 gm. and - corresponding to either

Te or Hgl OoTel 127 were tipped into the growth

H9) . 0oT®1.00
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tube, Which was then evacuated to 10-4.torr for several hours
and sealed at the constriction using an oxygen-gas flame.
The charged tube inside its stainless steel bomh was located
at the position shown in Figure 3.17a and the temperaturce
gradually increased over three days. Balance of the variable-
parameters of this furnace proved difficult, but once completéd'
a temperature stability of 0.1 deg c mas achieved. The growth
ltube was wound down through the temperature gradient at
0.6 mm per hour. A crystal 16 mm in diameter and more than
'3Acm long can be grown in about seven days. In spite of all
theSe{detailed experimental improvements‘the crystals grown

‘stillhcontained'aboutp107.dislocations-per cn?.

3.3(b) HEAT TREATMENT AND CHARACTERISATION

bl‘The'compOSition of mercury telluride samples grown
'by,the'Bridgman‘technique is not stoichiometric, owing to
thelioss of mercury vapour from the melt. Such samples are

p-type; with an acceptor'concentration of between 1017 cm-3'

and 101% cm? (Yamamoto, 1968). Brebrick and Strauss (1965)
have’ suggested a homogeneity range of 0 6't 0.2 atomic % for
as-grown mercury telluride:  the electrical properties have
been-found to exhibit,large variations with the technique of
preparation (Giriat 1964; Harman, 1967), eVidencing an
appreciable solidus field., We should expect crystals grown
from stoichiometric and off—stoichiometric melts to have
different electrical characteristics. ' Dahake (1967) has
shown this ‘to be the case. It is suggested by Quilliet et

al (1962) that non-annealed samples contain micro-

-_heterogeneities, perhaps mercury precipitates. Surface.
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precipitates of mercury were found on crystals grown in
lthis work, even on those grown from a tellurium-rich melt.
Internal and_surface precipitates rather than evaporation
.from-the:melt could be the”prime cause of mercury loss from
the bulk.crystal: even crystals grown from mercury-rich
meltlean,show mercury defficiency.

| Annealed crystals of mercury‘telluride'exhibit
much more uniform electrical properties (Giriat 1964;
Brebrick-and Strauss, 1965). The table below shows the
properties of two annealed crystals of mercury telluride,

one from a stoichiometric and one from an off-st01chiometric

' Amelt.(after Alper, 1968).

- [Electrical ~
Pnnealed - Con- Hall Hall- Carrier Seebeck
- ductivity |Coefficient| Mobility Density [Coefficient

Hgler Q-lcm"‘l Rh.cm3c-l uh.cn?V—l‘_ cm-3xld17 uV.deg iq

Crystal | | B :
from. . . - _ ' .

: ' - . -1
stoichio-| 4%° -25 10600 2.9 36
metric :
melt

Crystal | - - R ¢ : (
“Ifrom . : ‘ . T
of £ 440 - - =25 oo 10800 - 2.9 -136

Istoich. . _ ‘
melt

Brebrick and Strauss (1965) concluded from electrical measure-:

"is O Ol ‘atom %, much smaller than that of as-grown material:
annealing of the samples grown in thlS work was undertaken.
' The three controlling parameters are temperature, mercury

'rments ‘that the homogeneity range of annealed mercury telluride3
pressure and annealing time. At a fixed sample temperature
\
\
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n-type samples are obtained for the higher pressures, p-type
samples for the lower pressures, and intrinsic samples at an
intermediate pressure (Quilliet et al, 1962). In the
suggested annealing process two reactions take place. Firstly
' micro-heterogeneous precipitates dissolve (Quilliet et al,
;1962), and secondly mercury atoms go into the mercury
telluride from the surrounding vapour, ultimately making the
compound stoichiometric (Giriat, 1964) If the annealing
is carried beyond this point excess mercury appears in the-
compound, 1ncreasing the electron population and changing
the crystal charactér from p-type to n-type . The optimum
conditions for conversion to intrinsic material were found
by Giriat (1964) to be a temperature of 300 C, a mercury

, pressure corresponding to its saturated vapour pressure at

4300 C, and an annealing time of 100 hours. these were
,'adopted by ‘Alper and in this work Annealing was carried

out in a sealed, necked*pyrex tube, with mercury on one side
~ of the fneck‘and the samples on the other.
| Mercury telluride has not been subjected to the
. same commerical exploitation as gallium -arsenide: far less
effort has been put into its growth, and the same high level
of crystalline perfection has not beenachieved. Figure 3.18
‘ shows valuesﬁof electron mobility currently available in the
| literature for. annealed samples. of mercury telluride.
Quilliet et al (1962) postulate that the highest mobilities
| may be associated with the purest samples on thlS basis .
- great variation in sample purity is apparent in the figure.

| The electron mobilities of crystals grown in furnace (l)

. -by Alper are indicated they appear to be of 'average purity;

-
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It is difficult t04attainlexceptionally high growth
stancards in crystals'of'this size. . fheAconductivities of
crystals grown inAfurance (2) have been measured, using
indium-amalgam contacts. ‘They lie near. to lSOQ_lcm-l,

,sﬁggesting a purity comparable with that of the furnace (1)

crystals. -

3}3%¢) X-RAY EXAMINATION AND ETCHING . BEHAVIOUR

| :'MerCury telluride exnibits axial X-ray reflection
characteristics similar to those of galliumwarsenide;
.differences arise solely_fromithe lattice parameters_and
'atomic‘scattering factors;~' | ' |
‘ | {111} surfaces of mercury tellurlde were chemically
polished with an etch of 6 HNO3.1 HCl l HZO (Warek01s et al,
1962) (see Figure 3.19a), then etched with 1 HNO:l HC1:2 HO
Hftobreveal pits on the Hg {lll} faces but-not on the Te {111} '
_facesr(Aiper, 1968). Figure 3.19b shows a view of an etched
Hé{lll}.face; pits cover the whole surface with a density of
. about 107 cmfz. In some regions groups of larger pits
delineate low angle grain boundaries (see Figure 3.19¢c).
Regularly shaped pits do not form on the Te {lll} faces
(see-Flgure 3.19d). o - -

Lok

3.4 , SAMPLE PREPATATION

‘ ' Orientatlon of the galllum arsenlde and cutting
“to within % of the chosen directions was done by STL. Tne
mercury telluride crystals were allgned by Laue back- |
reflectlon X-ray technlques to w1th1n % of the chosen axes,

and‘the faces were cut by spark erosion (by T. Alper) or by
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'diamond wheel (in this work) Any’difference in results
between the two cutting techniques was- eliminated during the
subsequent polishing |
.‘: ~ Crystals were lapped and polished with a Logitech

PM2~precision'polishing machine._ A crystal face is swept
from side to.side”across a rotating lap,Awhile rotating itself
in the'planehof the lap . The lap must be softer than the
crystal in order to polish away the crystal rather than the
‘lap, and an abrasive/lubricant mixture is spread between the
two. The crystal face experiences a combination of all
possible rotational and translational motions in the plane
~of the lap, and a flat polished face results. The crystal
is held onto the perforated surface of a vacuum chuck by
suction ‘This was found to provide insufficient grip for
':crystals of greater than 5 mm length.A a surrounding layer

of Durofix glue helped to maintain adhesion. The.perforated
face of the vacuum chuck is set parallel to the lap surface
with the help of an optical flat, and a crystal is attached
and glued in position. The opposite crystal face is lapped -
fand polished, and its flatness checked with the optical flat.
_the flat is. laid .on the polished surface and the fringes from .
overhead light observed. Straight fringes imply a flat
'surface, curved ones a correspondingly curved one. This test
" depends on the presence of dust: particles between the two
'llsurfaces-' if ‘both are flat, parallel and clean a single
colour will be observed without fringes. This occurred with
one of the mercury telluride crystals "Mating was SO good
that in trying to remove the optical flat the crystal was

Abroken. Surfaces flat to within one wavelength of sodium
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light.jsooo R) were‘repeatedly_attained.- The crystal is

‘A.removed and'mountedﬂwithpits newly polished face on the

| reference face of the vacuum chuck. Care must be exercised

- to eliminate all dirt and glue from between the crystal and

'_ the. chuck, as it is at this stage that the final parallelism
| is defined The opposite crystal face is then polished and
checked for flatness. In theory the crystal now has a paer

of flat, parallel faces. .Flatness has. already been checked;
parallelism may be checked'u>about].part in 10% (written 1074

v*by measurements of the inter-facial distance over the

’ surfaces;l After some problems, parallelisms better than

" these were achieved.

Details of the polishing method were the same

: for both gallium arsenide and mercury telluride

Lap.material o Alead/tin solder
'Lap rotation speed 36 r.p.m.
Crystal sweep lengthr 1 1 cm |

Abrasive materialA diamond

,Abrasive size sequence _'Gu,“lp,'tu
Flatness~achieved e f.<5000 ]
_ : Parallelicity achieved '<1044'
| For gallium arsenide it was particularly important to
 chamfer the edges of the surface. to be’ polished to avoid
edge chipping and subsequent scratching of the polished
surface Dby loosé chips.’ | '
It is always possible for the crystal face normal -

‘toldeViate from the pre-aligned crystallographic axis during
"_polishing. Alignment was checked after polishing by the

laser technique- detailed in Figure '3.20. The crystal is
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mounted on a goniometer_and the laser set up so that its
beam is collimated by X-ray camera A and shines on one of the
polished crystal surfaces. The goniometer is adjusted so
that the laser beam shines straight back down its own path:
 the crystal face is now perpendicular not only to the laser

beam, but also to the X-ray beam axis, to within k A

- Laue back-reflection photograph. taken using X-ray camera B

lmay be compared with a Greninger chart to ascertain the axial
deviation from the face normal This was found to be less

than %° for all the polished crystals
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CHAPTER 4

"THE PROPAGATION OF

- ULTRASONIC WAVES 1IN CRYSTALS"

4.1  THE ELASTIC MODULI

ALL bodies are deformed uider the action of
external'forces; If the stress and the resulting deforma-
tion_are uniquely related and the-correspondence is not a
'function of time, then the body is said to be elastic |
However, most solids exhibit such a time dependence, and -
the resulting anelasticity gives rise to energy losses |
» from a mechanical wave propagating through the solid.

: Phenomena which affect the elastic properties of a body
.will similarly affect the anelastic 'properties, and vice

versa, but effects of anelasticity on the elastic proper—

 ties are usually small. -

The subject of elastic wave. propagation in aniso-
tropic media has been covered in detail by many workers,
'_particularly Musgrave (1954 a,bﬁ 1957); Waterman (1959),

Brugger (1965),~anvaeighbours and Schacher (1967), and
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an excellent review is given by Truell Elbaum and
, .

Chick (1969). ;

(a) STRESS, STRAIN AND HOOKE'S LAW .

‘An elastic solid is one in which the‘stress g is
proportional to the strain
| s = Ce o . .l.a)
‘This_is;Hooke's’law: C is,the elastic stiffness constant.
Thexinyerse relation is
e = S0 o " (4.1.b)
where S is the elastic compliance. ln‘a three dimensional

_solid the stress and strain are second rank tensors and

the proportionality constant C is a fourth rank tensor

o35 = Cijke ke - (4.2)

_The stress °ij represents theﬂforce'periunit area'in the i
'direction on the plane normal to the j direction. Deforma—

| tion of a body resulting in a point displacement from (xl,

| x2, x ) to (X + Ul’ X2 + Uz, X3 + U ) is defined as a strain
}of-(Nye, 1957) A .
e - -5 [ 98U, aUL\ : o
P i, 3) 13)°
13 T oz \ax, TR (4.3)

The strain eij represents the fractional'change in<length‘l
"of a line parallel to the xiAdiréction.for i = j, or twice
theTChange in andle between lines initially along the xi
3iand XJ directions for i # ] | -l - L
In ‘the ‘most general form of Hooke 's Law (equation (4 2))
»the elastic tensor Ci]kl has 81 components. Because both
the stress and strain are symmetric (oiJ = 0440 .eijA= Eji)f

‘ it'follows ‘that
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=C =C =C N N (4.4)

¢ kije = Cikej T Ckizj

ijke
which reduces the number of independent elastic components
to 36. A further condition that the elastic potential is

a function of thermodynamic state alone'gives
Cijki = Cyik (4.5
leaving a total of 21 independent coeff1c1ents.

Following these reductions in the number of
Aindependent components of .the tensor‘Cijkl, a condensed
matrix.notationAmay be used unambiguously for the elastic:
coefficients (or constants):
lemsor motation 11 - 22 33 23,32 13,31 12,21

c

'Matrix notation 1 2 3 4 g 6

For example, the elastic constant Clllz is written as C16’

and C2332 as Cyy- o o |
" Under the conditions of an-ultrasonic measurement -
the{entrOpy is”effectiﬁely conStant,'and the adiabatic
elastic constantspare obtained. The difference between the
adiabatic constants C:jkz'and the isOtnermal constants |
i]kz is given by (Nye, 1957) | |

Tc. f 7 (4.6)

'Ac?. -c®
v .

"1k 13k =~ Yij ke

- where wi wiz-are the temperature coefficients of stress
at constant strain, T is the temperature and Cy the specific
'heat at constant volume. . The difference between the

_adiabatic and isothermal elastic constants is usually no

greater than 1%.

(b) THE EFFECT‘OF CRYSTAL SYMMETRY

The elastic properties of crystals are always
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centrosymmetric: the velocity of propagation of an
'elastic Wave mode dependsion the direction of propagation
but not on the sense of this direction - Consequently all
‘the. crystalline point groups belonging to the same Laue
'group have common arrays of elastic constants

| The least symmetrical crystals, those in the
'htriclinic system, have 21 independent elastic constants.
”.Increase in crystal symmetry brings a reduction in the
number of independent constants: all'the five cubic point'
rgroups have'the'same Cij matrix in which‘the numberﬂof |

independent coefficients is reduced'from 21 to 3, namely

cll' C12 and C44r
€11 = €227 Caav
€. =C.. =C..=C., =Coy=Con (4.7)

12 = %21 = €13 7 €31 7 €23 T C32
C4q = C55 = Cg6

The cubic elastic constant_matrix is

Cll clz' Ci, o o) o)
Cp 10 -C12 ’»'o o) o)
€y C1p Cqa "0 0 0
o) o) 0 Cyy o) o)

o) o) o) AAo . Cyy o)

o) o) o 0...0 Cy4

(c) THE. gUATION OF MOTION. OF AN ELASTIC BODY

The equation of motion (Newton s second law) may
vbe derived by equating the summation of components of

forces on opposite'sides_of an elemental parallelopiped of
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the body to the acceleration components for the medium of

density :
90 2
-1 = 03, w=1.2.3)
j 3t
ox oij,j =p Ui o (4.8).

ewhere U (Ul, Uz,bU ) is the displacement vector, X (xl,
2, X ) the positlon vector and the comma notation

,j' ~ -indicates differentiation with respect to XJ. 1f

‘this is substituted in equation (4.2),

Cijke ke,d TP U1 o (4.9)

NI

w. . +u. L) (4.10).

..wheteiskk . = 2,k2 k,%3

v ]
' Solutions are required in the form of a plane wave of the
type:

o ;: 'i(wt-£.§)“ = 4 : .
Up = Ugp & T (=23 (4.11)

Here'g'(ki,nké, k3) is the propagation vector, normal to

' planes of constant phase as is the,unit‘vector n:

k =(’%>E = (%)2 o 4.12)

'where w, V- and A are the angular frequency, phase Velocity'
and wavelength, respectively. The displacement vector U
in general need not be parallel to k.

By cifferentiation of equation (4. 11),

. 2 ' : o
: - Lo [ wl ﬁ(wt -k.X) - ' .
Ug ki = "Bk 25 Uos| 2 o @
e 2 i(et-k.x) - o
and U, = Uju e =" : ‘ . (4.14)

Substituting for ¢ and U in equation (4 9) we find

—~ 2 =
‘cijkz Uoz n, nj-_ = ip A qoi .}i. l, 2 3) (é.iS)i
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ion (4.15) to héve.solutiohs the determinant of

coefficients of the'displacement qompgnents 901i 002' U03

must be zero:

13

22

12

23

33

, N
(Lyp7eV) . Iyp L3
. 2 N BN . _
Ly (LppeV)  Lpg 0 = O
N | .
Lyy Dpy (By3meV)

L2 2 .
nj €;; + nj Cge * M3 Css + 2003 Cse
" +2n-3._nl C15 +.2n1n2 C16'
2 2 2
ny €16 * P2 C26 T ™3 Cus + myny (g + Cp5)

. +n3nl (Cl4+C56) + nyn, (C12+C66)’

'l

n; C + h2

1 G5 * 2 a6 * M3 O35 T 2" (C45%C36!

+n,n, (C 4+C ) + n,n, (C14+C55)'

' 2 S
C + n2 C22 + n3 C44 + 2n.2n3 c24

_+2n3nl C46 + 2nln2,C26,

2 2 2 e
n? Cgq + my Cpy + 3 Cq + yNy (C44*Ca3)

i

03ty (C3%Cy5) + MRy (Cog *-Cyg)

2 . ., 2 2
‘n] Cgg + m5 Cyq * 03 C33 * 20203 €34
f2n3n1 C35 + 2nln2 C45’

and‘nl,Anz, n, are the direction cosines.

(4.16)

(4.17) -
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Eqnation:(A.lG) is cubic in pV2: solutions
'will'be in the forn of three independent waves of different
velocities. In aigeneral'direction the wave will be neither
purely longitudinal (for which UAn .OY“nor purely transverse
(forvwhich_g._ = 0). The’ analysis of ultrasonic data is
‘easiestifor?propagation along pure mode directions: these

are chosen whenever possible.

(d) SOLUTIONS FOR CRYSTALS-OF,CUBIC SYMMETRY

- For a cubic crystal the elastic constant equalities
(4. 7) hold, and for a general propagation direction with
idirection cosines (nl, Ny n ) the determinental equation

(4,16).becomes

. g . o
(C117Cqq)1*Cag ™Y n1Rp (€12%C4) nyny(Cyp*C,y)
n.n (c }cf.‘) Lo 2( )+C v (c +c ) =0
1212744 n, 11 44 447" - Doy 44’ .
(c ,*#Cyq) ! no (C.4C. ) n2(C.=C 4 )4C, gmp V2
"44 { 3'-127744 3(C117C447 T 4070

(4.18)

Pure mode solutions for all three wave conditions are
obtained for propagation in the crystallographic directions

[100], (110] and [11l1]. Table 4.A lists the relations

" between the mode velocities and elastic constants for

these three directions. It should be noticed that it is

'Vpos51ble to obtain all three elastic constants Cll' C12 .

band C

44 from measurement of the'velocities of the three

independent wave modes in the (1101 direction (this is -not

7necessar11y true for a crystal without a centre of symmetry'

- discuss1on lS given in Section 4. 3(a)
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TABLE 4.A

.Propagation and polarisation vectors‘fornpure mode

propagation in cubic crystais.

The relations between

-the measured propagation velocities V ahd the elastic

© 'méduli C

Cij is g;ven.<
' o Particle
Propagation , : 2 _
Direction Displacement 'QV =
g Vector - -
, ‘[lQQJ: [100]. C11
(1001 in (100) plane C44
[110] [110] g(cll+c12+2c44)
[110] [0O01] Cyq
[110] [110] %(Cll-clz)
17 111 1
(111 [111] 3(Cq,+2C; ,+4C, )
_ | | 1l -
(;};] . in (111) plane { 3(C; 11 =C15%Cy4)

TABLE 4.A
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(e) THE ULTRASONlC ENERGY_FLU&‘VECTOR

‘Brugger (1965) has shown that*for a pure longi-
tudinal wave mode the energy flux vector is always parallel
to the propagation direction. The same result holds for
a pure transverse wave propagated along a direction
, exhibiting twofold, fourfold or 51xfold ro*ational symmetry
or normal to a reflection plane. However, in general the
energy flux can deviate from the propagatlon direction (see
Figure 3. 5), and in particular this 1s true for propagation
h_along a threefold axis, the only case relevant to measure-
ments made in this study. In the threefold direction
‘degenerate pure shear waves of arbitrary polarisation may
ypropagate As the plane of the particle vibration is
:rotated about the axis through an angle 7, the energy flux
: Vector rotates about the axis in the opp051te sense through
an angle 2«, generating a cone for possible directions for
the energy flow (Waterman, 1959).

Iove (1944) has given the L-th energy flux com-
‘ ponent in terms of stress and particle displacement velocity
for each wave mode (g) as- |
ﬁ‘g S - (4.19)

g - -
LT T

Differentiating equation  (4.11); which may be written as

1

- 49 i(wt-k.x)
gL = p Y ©

and substituting, we find

S | -
pY = - lpel & oI oI (4.20):

cijkz oj Yok "3
where p? is the elastic displacement amplitude and Vg’ ny
are'the mode velocity and cosine of the angle between the -
propagation direction and the Xl-coordinatefaxis, respectively

uoi]are direction cosines of the diSplacement.vector;
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4.2 ANELASTICITY AND ATTENUATION

One of the earliest models for a SOlld to include
anelastic effects was that suggested by Voigt (1892)
_(see Figure 4.1(a)). This suffered from the omission of
inStantaneOus strain on applicationzof a stress, a
phenomenon exhibited byAmost_solids. -Zener (1947) has
‘modified'Voigt's model to include'this effect (Figure 4.1 (b))
in ‘the Standard Linear solid Model.' Here Hooke's law is

~written’ in terms of time derivatives of the stress and
strain up to first,orderA

¢ = 16 = Cje + 1C € (4.21)
'where C is the true or unrelaxed modulus, Cl'is the. time
dependent or relaxed modulus and T is the stress relation
time. A similar: analysis to that represented in
Section 4 1(c) for a purely elastic SOlld now yields
solutiOnS<of the form

¢ = o.e'_ax'ei(:“’t'kx). ' ‘ (4.22)

which defines an attenuated travelling wave, with o the

' attenuation coefficient. Substltutlng back this gives

'Adexpressions for the attenuation as a function of distance

" and for the velocity of

sC 2_2

S 1 ofw't I : o
a = : L ' (4.23)
- tc sc. [ 2.2 S
Cana v o= 2|12 (5[ 20 N @200
o e o\ ltuw"r T IteT

where GC is the relative difference between the unrelated.
‘and relaxed moduli The frequency dependence of a and V

are shown in Figure 4.2.
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A comparison of the Voigt and Standard Linear

  3011d models and their mechanical behaviour.

FIGURE 4.!
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' The units of o derived aboye are neper cm-l.

Conversion to thé more usual decibel cmfl units is by

B o | ~ neper = 8.686 dB

_Measurement of the attenuation coefficient is in units
'of dB sec l, so measured values must be civided by the

. ultrasonic ‘velocity to obtain the results in dB cm l.'
The most ‘useful expreSSion for attenuation as a function
»Z of frequency F is in terms of the logarithmic ‘decrement 4,
"OWhiCh}lS

. - l : . :
a (dB sec ) o g
8.686 F(Hz) (4.25)

The fregquency dependence of A for the standard linear

'vmodeluof a sdlid(is_illustrated in Figure 4.2.

4.3 CONSEQUENCES OF THE LACK OF A CENTRE OF SYMMETRY

... The propagation-of'ultrasonic waves can be markedly
'affected by piezoelectric effects in materials which lack
-_:a centre of symmetry. In ordinary solids a stress g¢
merely causes a proportional strain € related by an elastic
»'modulus, o = Ce, Whereas in a piezoelectric material
there is also creation of electric charge by applied stress
due to the direct piezoelectric effect. The dielectric |
displacement D is

. D. = %. ﬁizdf?fv:i{; o - .26)
3where (Q/A) .is the charge per.unit area and d a constant
The converse piezoelectric effect of strain produced by

an applied electric field E is also possible.

e o= aE - o wan
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‘The freéuency dependence of th_é elastic wave

velocity (V), attenuation (a) and logarithmic

‘decrement (A) in the Standard Linear solid model.
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3

FIGURE 4.2
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In hoth cases the constant of prdportionality is the
apieZOelectric constant d. A total of four related
piezoelectric constants may be defined as partial
derivativesAevaluated at constant stress (subscript o),
constant field (subscript;E)h-constant‘diSplacement

(subscript D) .or constant strain (subscript e): these

are o {
= [23) = 2D
d = <3E)0 ( ao)E
- = (“8EY)}. _ | 2&
, &7 ( a")D . ( BD),o' (4.28)
_f-a0) _ [ a2}
© ‘,( 8E>€ = ( ae)‘:
= [~3¢ = [ ~3E
h = ( aD)E' ' ( ae>D

For strain e and electric field E~as‘variables, the
equation of state for a piezoelectric crystal is a set .

of 9 relations (Slx elastic, three electrical) represented

- by the ‘tensor equations
¢ = C_.e - eE , (4.29)
D = e e + gE. . ~ (4.30)

.wherevCE represents the "constant fieid" elastic constants,
te the "constant strain" dielectric permittivity and
subscript t a transpOSition. The tensor multiplication of

.. the two equations may be represented in terms of the
4e1asto-piezo—d1electric (EPD) matrix, which is Simply an
extension of the condensed elastic constant matrix discussed'

in Section 4.1(a). (I R.E. standards, 1958)
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‘u ‘n €13 S G5 G |11 f21 3l

Ca1 G2 23 C24 C25  C26 | %12 f22 ®32

€3 C3 C33 C3y S35 C36 | °13 23 33
Cai C42 Ca3 Caa Cas Cue | C14 %24 ©34
2 |

52 s6 | €15 S25 €35

51 53 54 Css5

C61  C62 Ces Cs4 C65 66 | 16 ©26 ©36

e.. e ‘ ol ;
11 %12 13 ®14 %15 16 | P11 f12 fi3

e. e _ e, | o L
21 %22 %23 %24 ®25 %26 | f21. "22 f23

€ € € | z, z z
31 32 33 34 35 36 31 °32 "33

“:Crystal symﬁetry not only reduces'the nuhber of
independent non-zero elastic constants (Section 4.1(b))
 but ‘also the number of non-zero piezoelectric and dielectric
constants in the EPD matrix above. For crystals with a
‘centre of symmetry all thelpiezoelectric constants eij
_dieappeer: piezoelectric effects are absent. 20 of the
.21 crystal classes lacking a centre of symmetry can show _
piezoelectricity (the exception being ‘the cubic class 432).

For the.43m class‘(i.e. for GaAs, HgTe).the EPD matrix

becomes
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C;; €y € O 0 ) 0 0 0
S
€1 C; Cyy o .0 o) 0 0 o)
'“Clz: C5 S 0 0 0 o) 0 o)
) 0 o ¢, O 0 e;y O 0
0 0 o) 0 Cy O 0. e, O
0 0 0 0 0 c44. 0 o ey,
o) 0 0 ey, O 0 £y, © 0
o) 0 0 o) e, O o 1z, O
o 0 0 - O A“' e, 'o_ o ';ll

‘nith:g‘independent elastic‘constants Cll’ C12 and C44y.
.-,one dielectric constant';ll and one piezoelectric constant
- Sae |
| For a material exhibiting piezoelectricity the~
' wave yeloc1ty - elastic constant relations derlved from
the elastic constant tensor alone do not necessarily hold
| for all crystallographic directions.- If the conductivity
1s too low to enable rapid complete local cancellation of -
the induced piezoelectric fields accompanying an elastic
' wave’ by carrier "bunching," then; there is an apparent
| "stiffening" of the material caused by the elastic wave/
‘h carrier interaction. The. wave: attenuation will also be

affected, being related to the elasticity through the

' propagation constant (see equation 4. 22)
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(a) PIEZOELECTRIC STIFFENING

| Hutson and White (1962) “have anlysed the effect of
piezoelectricity on elastic wave propagation in solids.
Differentiation of the piezoelectric equation of state

(4.29).result5'in a wave equation of

pﬁ%.=c1+§-z-'ﬁ§'w: : {4.31)
ot X

for D constant a condition equivalent to that of zZero
electrical conductivity,' for high conductiVity the con-
dition of E constant holds. AIntermediate values require
that - the electric field be eliminated from the wave equation
by u51ng an expression for the current density in terms of
carrier_drift and diffusion. To obtain the propagation
.properties of acoustic waves, the electric field is expressed
in terms of the strain, then substituted into equation (4. 29)
- to give.an effective elastic constant. Neglecting carrier

diffusion, the resulting expression for the wave velocity V

V. = V 1+ez 1 . (4.32)
ST o 20z l+(wc/w_)4 ' e

where'mC is the "conductivity frequency mc = 8/¢t, S is
the conductivitx V is the unstiffened velocity and o the
angular frequency of - the wave. At very low frequencies

V approaches the limit of V ' while at very high frequencies
V.= Vm..:_= Vo |1 i I L '(4_'3.3) h

as shown in Figure 4.3(a).
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‘Taking account of carrier diffusion effects the

expression for the wave velocity is

e - - 2
v = v |1+ ( ez) L tegsup) * (w/up) (4.34)

\2€Ct 1+2(mé/mD) +'(w/wD)2 + (wc/m)z
:wherevthezidiffnsion frequency" wp is that frequency above
"whiCh~the»Wavelength'is sufficiently short for diffusion

to smooth out carrier density fluctuations having the

periodicity of the acoustic wave:
a2 o |
Yp * (fukT ) a - (4.35)

where q is the electronic charge, v the carrier mobility,

k Boltzmann's constant, T the. temperature and f the
fraction of the- space charge which is in the conduction

band _ For “D'>>wc equation (4.32) accurately describes

"the velocity behaviour; for wp- << wc~the velocity goes

'from V to V_ as before, but the halfway point 1s now at

c s ‘in Figure 4.3.(a).

" Hutson and White (1962) have shown that the propa-

w = (w mc)%, not at w

i:gation of plane waves in the 1 direction of an orthogonal
lcoordinate system 1,2,3 is described by the solution of

‘ the_determinant

. : - 2

Crai1 = ¢ . Cna2 Ci113
p k2 CH B

Coney! Congs' = w2 Coonat =0 (4.36)

Cra11 C1212 =% 1213 - |- 4.36)
P : P w: p

, ] , ; [] . . LI 2

C1311 €1312 . - Sz T
p P p 1;2

where - . . e ' e R ' :
L  ©111 %11k - S

iiik_ | 4i1ikA, (gllA+ iSll/w)
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These elastic and piezoelectric constants are ckbtained

by a coordinate rotation such that the 1 coordinate

'direction lies along the required crystallographic wave

‘propagation direction. If such a rotation is performed
for all the wave modes listed in Table 4.A, it turns out

.that the only nmodes for which piezoelectric stiffening

occurs are the

(110] propagation [Odl]'pOIarisation shear and the

_[lll] propagation longitudinal modes. o

Away from these exact mode orientations the stiffening

“rapidly falls away: for ‘evaluation of the "constant field"
(or “Zero field") elastic constants, any combination of

‘the modes listed in ‘Table 4.A not including the [1101S [0QOl]

or the [111]L may be used, and piezoelectric stiffening

may then be ignored.

(b)  ACOUSTOELECTRIC ATTENUATION

"AiHutson and Whites' (1962) analysis of the effects
of piezoelectricity on’elastic wave propagation includes a
consideration of the consequential wave attenuation. In

‘the absence of carrier diffusion the attenuation a is ‘given

by , _
_ m'e‘2 (“’c/“’)
o = svoer (4.38)
; o & 1+ (w /w)
'At‘Very low frequencies ‘a - tends to zero, while at. high
frequencies |
o W .é,z

. B |
@ = a, = __—ZVOCC _ . .(4.39)
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Inclusion of diffusion effects gives

, 20 (wa/w)
a = Z?IeCr, [ c 2] (4.40)
: o 1l + Z(wc/wD) + (w/w +A(mc/w)

For wbr>> e the behaViour.is well described by Figure 4.3(a),

: but for w becoming much smaller'than'ocithe peak in atten-

D
‘uation moves to lower frequencies as (3 B C)!5 and falls

markedly (see Figure 4.3(b)). Here again the parameters

.‘C and e in equations (4.38-40) must be correctly chosen

- by coordinate rotation, as for the stiffened velocity.
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CHAPTER 5

"EXPERIMENTAL TECHNIQUES"

5.1 SOLID STATE ULTRASONICS

(a) INTRODUCTION‘

E To investigate the propagation of ultrasonic
stress waves in a solid through electronic instrumentation,

we require firstly a system for transduction of electrical

to mechanical energy and vice versa, and secondly a driving

'source for the transduction. In this work the transducers

used were of the piezoelectric kind, both resonant and non-
resonant. One of the prime variables in an investigation

of this type is the stress wave frequency some degree of

'monochromacity in the source energy output is desirable. "

Piezoelectric transducers may be’ excited by a

' variety of techniques, including the application of contin-

uous Sinusoidal electrical waves,Astep-voltages and pulses

| of sine waves._ The most monochromatic source is that of a
-continuous sinusoidal wave (see Figure 5 l), but continuous-
‘ wave systems are notoriously difficult to handle, particularlyi
.in the aspect of signal’ leakage. of the two other common '

- techniques listed that uSing a pulsed-sine wave has the

[
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_adyantage of high concentration of wave energy in the
region of a chosen operating frequency, and the average
power input can be made low enough to avoid any possible
sample}heating. Increase in pulse length gives greater
l\mdnochromacity; this is applied in thlS work in a sampled—
continuous-wave (-CW) investigation of - the validity of

' measurements made using the pulsed-sine wave technique.

(b) QUARTZ ULTRASONIC TRANSDUCERS

Transduétion between electrical and mechanical
1energy at ultrasonic frequencies‘is most conveniently
_effected by use of the piezoelectric properties of quartz.
The choice of quartz is governed not only by electromechanical
coupling considerations, but also by availability of
accurately cut crystals and their mechanical handling

characteristics. Ultrasonic waves - propagating in the

.lx-direction may be generated in quartz by the application

- of an alternating electric field parallel to’ this direction;
polarised transverse waves propagating in the Y—direction

-_ by the application of a parallel alternating field. Plates
are cut to have their thickness, parallel to these directions,
equal to a half-wavelength (A/2) of these modes of the
lowest ultrasonic frequency required. A gold film on both
sides makes electrical contact,. and: the plates then act as
resonant mechanical filters to alternating electrical
',voltages applied across them. resonance occurs at the
frequency defined. by the A/2 condition given above and at
its odd harmonics. Intimate coupling to a flat sample face

results 1n loss of mechanical energy from the resonator,




- 82 -

that is, injection of a wave of equivalent mode into the
sample;~" _
o x—cut and Y-cut transducers of 10 MHz and 50 MHz
fundamental frequency were used in this work. The low
acoustic 1osses and exact cutting and finishing of the quartz
'transducers available commercially cause them to have a

"~ very high Q—factor: they are only usable very close to their
fundamental and odd- harmonic frequenCies and not in between,
'where conversion efficiency is negligible. The power insertion
loss is usually of the order of 30 dB at the fundamental,

and increases rapidly with harmonic number.

(c) TRANSDUCER TO SAMPLE BQNI-)INAG'

- Coupling between the transducer and sample is
normally effected by'bonding the two together with a thin
‘film'of glue, oil or a glassy.material;b

| Al " Over the complete temperature . range of 1.5 K to
‘320 K covered in this work, Nonaq stopcock grease (manufactured
by the. Fisher Scientific Co ) was found to be an excellent
.bonding material for mercury telluride. Bonds were made by
;applyipg a small drop of gonaq to the flat sample face,:
placing,the'transducer on top and moving it with a circular
motion until it appeared to "stick," evidencing a thin bond
-between the sample and transducer. o |

Nonaq was found to give excellent bonding to.

- gallium arsenide crystals at room temperature, but exhaustive
attempts failed to maintain bonding below about 100 K.
Similar results followed the testing of a wide range of
.bonding materials (silicone oils, —methyl 1- pentene,

Dow-Corning resins, etc.). . EventuallyAthe use of bonded
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. transducers on gallium arsenide below 200 ‘'K was abandoned,

‘and thin-film cadmium sulphide transducers were used instead.

(d) ULTRASONIC REFLECTIONS AT A BONDED TRANSDUCER

- In making measurements of ultrasonic velocity by
pulse.techniques reliance is placed on. the absence of, or
, a knowledge of, phase changes on reflection at the two ends
- of the sample At the free end of the sample the reflection
phase Shlft is zero, as the acoustic impedance mismatch from
sample to air is effectively infinite.‘ However, the trans-
'ducer end of the sample’ presents a real problem McSkimin
-and Andreatch.(1962) have presented an analy51s of the phase
shift on reflection at a bonded transducer (see Figure 5.2)
| in terms of acoustic 1mpedances, which results in an expreSSion

for the impedance Zd looking from the sample into the bond

'of-

(Z /Z )tanB + tan B 2
7..=1 2 1 1 l 272

| - (5.1)
a -~ "1|1Z,/2,) - tang,i).tanByi, :

where 2. is the acoustic impedance, Bj is the propagation
phase constant, lj is the length and j = 1,2 refers to the
_ bond ahd transducer, respectively. In the case of a trans-
ducer at resonance, its impedance‘looking in from the bond
is infinite (for Q large), and the impedance Zd may be

written Simply as a mass loading on the end of the sample,

o Zd=i.w My - 5.2y
Cwriting My = py L and tan B, &. =w&./V,, where p. is the
ritng Sy T PN By by muky/Vy Py TBEEE
density and VJ the sound veloc1ty The phase shift on

. reflection (y) is found by insertion of the calculated value

for Zd into'
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. ) : _ Z : .
Y ='-|-'2 tan 1 Hi\ . A, (5. 3)
s

/

where Zslis the acoustic impedance of'thelsample.‘ The phiase
shift due to the bond alone kfor transducer impedance
infinite,_as at resonance) is a slowly decreasxng function

of frequency, but comparatively large. phase shifts are imposed.
by slight off-tuning of thevtransducer from resonance. In
practice it is veryvdifficult to calculate a phase-shift
correctionAfrom measurements of the_shift-as a function of
frequency, as'exact harmonic,tuning is not easy to achieve,
and.theAsituation is further‘complicated'by external

, . & :
electrical loadings on the transducer.

(e) THIN-FILM ULTRASONIC TRANSDUCERS

_In this work the use of thin-film cadmium sulphide

transducers was primarily made necessary by the failure of
. transducer bondlng to gallium arsenide at low temperatures,
however, there are several consequent advantages. The most
usual cause of transducer bond failure is the dissimilar
thermal contractlon between the sample, transducer and
<b0nding'material on cooling.‘ Thin-film_transducers are more
Aresilienthto temperature clianges thanubonded transducersas
they'consist of many small crystallites, each firmly attached
to the sample, face, and the transducer can more easily follow
microscopic shape changes of the. sample

‘_ - The electromechanical coupling factor k (0. 154)
of cadmium sulphide is much greater than that (0.071 of
'quartz, and transduction is more effic1ent. Consequently

the use of non—resonant transducers is more practicable.

_'For a thin—film transducer in operation far below its
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resonant frequency (that is, with a thickness much less
than A/Z), the change in reflection phase shift for a change
in operating frequency is correspondingly smaller than in
thelresonant condition. An analysis of the phase shift has
.been carried out along the same lines as those of McSkimin
and Andreatch s (1962) work on bonded transducers (see
'Section 5. l(d», but here the bond and transducer were

replaced by the cadmium sulphide film and an evaporated

silver.backing film, respectlvely. Writing

' . wl.
;tan Big. =__.l
j71 v,
3
and . ‘ M. = p.4.
o : J J ]

again, we find a similar mass-loading relation for the

impedance Zd of

: M (M +. M )
= l l : o -

where'j' 1, 2 refers to the transducer and backing film,
respectively. The variation in reflection phase angle Y 1s
yis now dominated by a shift whlch changes slowly with '
frequency, as the resonance condition is relaxed In the
simplest case, with no 51lver backing layer, the situation
is equivalent to that of a bonded exactly-resonant trans-
ducer, but now operation 1s possible over a wide frequency

;‘range and not just at spot frequenc1es ‘as w1th quartz '

'transducers.‘ the phase shift correction may be ea51ly

’evaluated experimentally.

+
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(f) THE FABRICATION OF THIN-FILM CdS TRANSDUCERS
o ON GaAs .

Cadmium sulphide'thin~filmstransducers'have.been
'fabricated on gallium arsenide single. crystal substrates
hlby vapour . deposition. Figure 5 3(a) shows the general
h scheme of the apparatus. Cadmium sulphide-is evaporated
from a heated boat in an evacuated enclosure and deposited
on to- the flat surface of a crystal via a mask which limits
.the‘area of deposition.. The substrate is heated to prevent
a too-rapid condensation of the vapour.~ The resulting film
conSists of an array of .small crystallites of cadmium
sulphide of varying orientations, plus "impurities. |
‘ The crystallites exhibit a strong tendency to align them-
k;selves with their hexagonal c-axis parallel to the substrate

.normal, and in this orientation they Wlll act as longitudinal-
wave transducers for the substrate on application of an |
electrical wave across: the film thickness. The film is
'characterised by the angle of spread of the crystallite

c-axes relative to the substrate. normal “Impurities" in

the film are most commonly in the form of free cadmium,

which results from dissociation of cadmium sulphide during
evaporation and the rapid boil-off of excess sulphur from

the heated substrate (King, 1969)

There is disagreement between many workers on

. the optimum conditions for production of the- ‘well- aligned
high-reSistiVity, cadmium-free films required for efficient
'_transduction. A detailed study (Wilson, 1971) of the’
'_'deposition of Cds films carried out uSing the same evapora-'

tion .equipment showed the following trends:
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(a)
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(1) - j5A Increase in film thickness decreased the c-axis
'spread (see Figure 5.3(b)).

(ii)jh ' Increase in substrate.temperature‘increased the
c-aXis.SPread, but this influence waS*not so great as that
of film thickness. | |

(1ii) Lower deposition rates decreased the c-axis
spread. The most satisfactory deposition rate was found
to_be_about.lOOOR/min;

(iv) i' In the substrate temperature:range of 200°C to
300°C the film resistivity increased with temperature: a
somewhat.higher temperature than that commonly used (about
ZOOOC) seems to give a'more‘useful filn for transduction.
ThlS finding is at variance with that of King (1969), but
~his experimental conditions were quite different.

| Deposition was carried out on (lll), (100) and

(110)7£aces of the gallium arsenidejsingle crystals by
.evaporation of B.D.H. optran 12a grade polycrystalline
vcadmium sulphide from a distance of 9 cm "along the normal
to the crystal faces. The substrateptemperature was 300°C,
the deposition rate averaged about lOdOR/min (see Figure
5.4(a)), the pressure remained below lQ;§<torr throughgut_:
the eVaporation and the final film thickness was 4 pm;’
Glancing angle X-ray photographs showed a_fair degree of
crystallite ordering (see Figure 5.4lb)l. A é um layer

of 51lver was evaporated on to the film, as shown in
Figure 5. 5(a), to give the required electrical contact. -
The resulting transducers gave, at thlS stage, poor 51gnal-
‘to—noise ratios and substantial shear as well as longitud- .

| inal mode generation, owing to the spread in c-axis
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orientations. A recrystallisation technique‘was used to ,
.increase'the cadmium sulphide grain size'and resistivity
and to‘improve the overall crystallite‘orientation; 'the'
substrate and film were heated to 500 c. for 5 minutes |
under dry hydrogen in the furnace shown in Figure 5. 5(b)
The presence of silver has been found to accelerate the
recrystallisation process (Vecht, 1966). After heat treatd'
ment ‘the silver layer was.more resistant to scratching. |
The signal -to-noise ratio - the best measure of performance-
i in this context - was much improved after recrystallisationt
(Figure 5.6), as was the crystallite orientation, as |
levidenced by the lack of shear-wave generation. A shear-
wave transducer wasvfabricated on a (100) GaAs face by
the scheme of Foster et al (1968) of evaporating from a
'source at an angle of 50° to the substrate normal.,i
The resonant frequencies of these films were

about 500 MHz: for operation in the region ‘of 50 MHz, the

phase-shift condition is that. described in Section 5.1(e).

5.2 - ULTRASONIC SYSTEMS

(a) THE SIMPLE PULSE-ECHO TECHNIQU

The simple pulse-echo system shown in Figure 5.7
is that used in this work for the measurement of ultrasonic
attenuation It is also the basis of the more complicated
pulse-superposition system used here for ultrasonic velocity
measurements. R.F. pulses ‘with a chosen carrier frequency
'between 10 and 750 MHz, of 0.5 to 51xsec. length and 1 kV
amplitude, are available at repetition rates of up to’

1000 sec 1; in this’/ case. from a Matec 9000 ultrasonic
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comparator, The‘bandwidth of the-tunedhamplifier is 4 MHz
and theggain is high {maximum 80 dB).to compensate fér the
high insertion loss associated with theluse of quartz trans-
| ducers.(typically 30 to 60 dB). The_oscilloscope displays
alternately the ultrasonicvecho train‘kFigure 3.3):and a
calibrated exponential curve. Round trip echo.times?are
measuredibypmatching the leading edge of the exponential to
successive echoes with the variable delav; and attenuation .
by fitting the exponential curve to the echo trainﬁdecay.

In the single-ended technique shown in Figure 5.7
-the initial R.F. pulse saturates the tuned amplifier,.which
must then recover before the ultrasonic echoes return. ln |
‘prinCiple all the echoes may be used in making measurements,
- but by comparing echo shapes it can be 'shown that the first
few are substantially affected, particularly in loss of
amplitude,_by lingering effects_of the receiving recovery
(see‘Figure 5.8). Also,hinternal delays:in'the equipment
cause. the-time interval between the initial pulse and.the
first echo of the display to be different from the succeeding _
' inter-echo times (Figure 5.9). Echo shapes are not exactly
equivalent to the shape of the initial R F. pulse; this is
due to the restricted bandwidth (4 MHz) of the tuned amplifieru

'

(b) THE PULSE SUPERPOSITION TECHNIQUE

The pulse superposition technique of velocity
‘measurements devised by McSkimin (1961) is fundamentally
;the same as the simple pulse echo technique, in that a
"‘succession of pulses of ultrasound is inJected into the -
crystal and observation made of echoes returning to the .

,transducer. In the simple case the pulse repetition rate










is set low enough to avoid interference betueen successiveh,
echo trains, but for pulse;superposition~it is raised so
that the time between R.F. pulses is a small integral
multiple (p) of the pulse round-trip time in the crystal.
" If this time interval is set at twice (p—2) the round-trip‘
time T the situation is as shown in Figure 5.10: the
OSCilloscope displays a- summation of. all the pulses and
echoes,.thus all the even-numbered echoes are obscured by
'following R.F. pulses but ‘the odd numbered echoes7appear
superimposed in the gaps between the pulses.> Fine'adjust-
‘ment of the pulse repetition rate gives maximum amplitude
of the echo sum for exact superposition. The transit ‘time
can now. be derived from the repetition rate.fi _ |

_ The closer together that the superimposed echoes
are in- amplitude, the higher is the sensitivity of the ampli- y
 tude summation to slight changes in pulse repetition rates
the method is most sensitive in the condition p-l However,'f
for p=1,. all the echoes~will be obscured; so to observe'the

superposition of the echoes a gap must ‘be- left after the

'v injection of a number of pulses. Figure 5.11 shows the

equipment used to perform this function.- The display
oscilloscope is a Tektronix 585A, which provides a second
timebase (A) to intensify parts of the ‘display: the gate
‘ Signal from this timebase is used to blank off some of ; the
~pulses from a- continuously-running General Radio 1217c
pulse generator. Figure 5.12 is a schematic of waveforms
in'the:system. A Codasyn Cs201s frequency sythesiser,
adjustable to 0.1 Hz, is used to drive the pulse generator,».'

which modulates an Arenberg ‘PG650C pulsed oscillator. AT
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diode T-R switch is used to protect the~Arenberg PA620
tuned amplifier from the high-voltage initial R.F. pulses.
Echoes(pass from the tuned amplifier to ‘the Arenberg |
WAGOOEiwide-band amplifier and detector,iand thence to the
display.oscilloscope. The pulse generator,is triggered-at
'zerobvoltage_by a negatiVe going waveform; addition of the
-oscilloscope A gate to the input causes one extra pulse to
_be'generated at a somewhat‘random time (see Figure 5 12),
the-time,period between regions gapped out for observation
of theAcorrectly superimposed echoes must be great enough
to avoid interference by echoes resulting from this extra
pulse Maximisation of the superimposed echo amplitudes

is performed by adjustment of the frequency synthesiser
output, using the 'A-delayed by-B' oscilloscope mode to !

expand the relevant display ‘section.

(c) AN ANALYSIS”OF PULSE-SUPERPOSITION

- In the pulse-superposition technique selection of.
the correct value for p may be made by examination of the.
summed echo trains around exact superposition. Figure '5.13
shows recordings of displayed echo trains in the simple
pulse echo mode and in the pulse superposition mode for
pulse repetition rate f equal to O. 82 fCO' 0.88 fCO’

1.06 £

f

94 £ 1. 12 f . and 1.18 fCO' vhere f co

co’ co’ co’
is the repetition rate giying exact superposition for p-l.
However,'summation (ox superposition) of the echoes takes
place before rectification and smoothing of the echo

envelopes, so it is a function of phase as well as amplitude;?)

a number of maxima may be observed in measurements of the

summed amplitude over a range of repetition rates (see
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Figure 5 14(a)), p remaining the same.' The modes of
'superposition causing these maxima are those giving phase
coincidence ‘between consecutive echoes, as shown in
Figure_5.14(b). Measurenents of the positions of these
maxima-result in a set of repetition rates an corresponding

_to a set of apparently different round-trip times;:

’ a v o .
fon T ITEmn - - (5.5)

_where V is the sound velocity, %2 the -crystal length, A the
ultrasonic wavelength and n a small integer. The correct
rate f ' o May be chosen by careful direct transit-time
Ameasurements using a calibrated-delay oscilloscope at low
ultrasonic frequencies.  As the ultrasonic frequency F is
increased, the separation .between adjacent superposition
repetition rates f falls, making correct selection of f
by means of the simple pulse- echo technique very difficult,
as F‘tends to infinity the separation vanishes ' as ni» 0 ¢n
' equation_S.S."Figure 5.15(a) shows the general form of -
'this:phenomenon for V independent of F;' fe0 158 the "n=0"
repetitionfrate and an are related to it by

X - . 22 ) H '
an‘* fco 221N\ ‘ S (5.6)

"Consequently, as - 22/(2£inl) is simply an arithmetic factor,

all of the set f . ' show the dispersive properties, if any,

Cn
.of fCO’ including ‘the transducer reflection phase-shift
- dependence described in sections 5.1(4) and 5.1(e). Figure
5. 15(b) shows measurements of part of the set f as a’
function of frequency for a gallium arsenide crystal, using

a cadmium sulphide thin-film transducer.’ The frequency:
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dependence of the p=1, nso;repetition rate (fco) due to
‘the transducer-reflection‘phaselshift'is'Shown expanded in
| Figure 5'16; The anomaly around 48 MHz is due to an )
equipment electrical resonance,. the sampled-CW plots (see'
Section 5.2(d)) of the frequency response of the sample
show a broad maximum centred on 48 5MHz which partially
obscures the sample resonances in this region but which
disappears below 46 MHz; the resonances over the rest of
the range are clear from any external interference. The
complete equation for the repetition rate in the pulse
superpo81tion case derived by McSkimin (1961) includes the
transducer reflection phase-shift in terms of a phase

angle Yi

= pT - K= + (5.7)

360F

|3

L
£

The frequency dependence of the repetition rate fco.has been'
fittedhby equation 5.7 in the range 35 to 45 MHz (Figure 5.16),
giving a‘"freeespace" repetition rate of 282,581 Hz. A. |
.consequence of equation 5.6 is that equation 5.7 applies
Uequally well to,all of ‘the set £ cn’ Fitting of equation 5. 7
to the dependences of the fC+2’ fC+l’ fc 17 fC -2 in Figure

5. 15(b) gives values for the “free-space" repetition rate

of 282 720 Hz, 282 649 Hz,; 282, 538 Hz and 282, 475 Hz
respectively,; a spread of only O 1% of f to a high

degree of accuracy it is irrelevant whether correct selection Fe
of the n-O condition is made if measurements are possible'
as a function of frequency. With quartz transducers this
is difficult to achieve, as .measurements must be made.

exactlytat.the transducer harmonic frequencies and a wide
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frequency range must be covered. The results quoted above
are derived from measurements over a frequency range of

nly about 25% at ‘40 MHz.

" Figure 5.14(a) is a diagram'of a vertical section
of Figure 5.15(b): the measured points,in the latter are
reoetition-rate values at the peaks of the "pseudo;resonance"
curves drawn in the former. Figure 5.17 -shows measurements
'of'the shape of one of these pseudo-resonance curves. The |
slower fall on the low repetitlon-rate ‘'side of the. curve is
con51stent with calculations for a slightly non-parallel
sample made by Miller and Bolef (1970) The width of the
curve at half height is about 0.1% of-fcr The dashed '

curve is calculated from a summation of sine waves-

A =

a, sin (we +i¢) T (5.8

i=0

for‘aiqdeCreasing exponentially with 1. o

(a) THE’SAMPLED‘-'CONTINUOUS>WAVE TECHNIQUE

If the length of:the R.F.—pulse used in the simple
pulseeecho case is made greater than twice the length of
the samole (see‘Figure.313), interference resultsﬁbetWeeni
the beginning and end of the pulse. If the condition
28 ‘ -nX is met where n is an integer and A the ultrasonic
wavelength then the 1nterference is constructive and the
| ;amplitudes add. Monochromacity of the response_increases
w1th increase in pulse-length, to the limit of perfect
monochromacity at infinite length. However, such coritinuous-
wave ultrasonic investigatlons require the use of twe

transducers for input and output, and at MHz frequencies the -

51gnal leakage between the two transducers is a serious
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probiem. The advantages of both pulsed and continuous-
wave (CW) operation are combined in the sampled-cw technique
devised by Miller and Bolef (1969) The . -pulse is made
long enough to remove the influence of the leading edge
on observations of the response decay made after the pulse
has ended (see Figure 5. 18). | |

I A block diagram of the equipment used is shown
‘in Figure 5.19. The frequency synthesiser (operating at
150 Hz)ﬁcontrols the generation of long (150 usl “RF. pulses
which are applied to the thin-film transducer on the sample.
The'resulting time response of the sample is amplified and
.'displayed ‘on an osc1lloscope. Figure 5.20 is a schematic
A°f waveforms in the system. Using the scan-delay generator
'the time response (see Figure 5.18) or the frequency response~
. may. be recorded at a chosen delay after ‘the end of the ' RF
pulse. The same equipment may be operated in the~simple
pulse-echo configuration, by reducing the pulse length to.
about 1 pS. With the equipment used in this work, the "RF
frequency could not be measured simply by switching the
oscillator to a true “CW. mode as this changed the oscillator
loading and frequency, therefore a gated frequency counter
was constructed to measure frequencies inside.the longiRF
pulses; An ‘attenuator was inserted'in'the RF line to allow
measurements as a function of RF amplitude without changes
-'in the transducer or pulsed oscillator loading _ The frequency'
range available was restricted to between 35 MHz and 51 MHz

for pulse-superposition by pulsed osc1llator/transducer

’matching limitations.

The time response in the sampled - CW mode is a’

stepwise decay (Miller and Bolef 1970) of‘time period equal
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to the~round-trip ultrasonic transitftime (Figure 5.21(a)).
By adjusting the pulse-ength it is possible to compare the.
.decays in the sampled - CW and simple pulse echo cases.

The pulse-echo train (Figure 5.21(c)) shows a slightly “
faster decay than the sampled - CW response (Figure 5.21 (b)),
but this difference is due to the longer receiver recovery
time,after saturation in'the sampled,f CW mode. The
sampled = CW frequency response around. 40 MHz of a [111)
GaAs. sample ground to a non—parallelic1ty of 10 -3 rad is
1llustrated in Figure 5 22. The non—parallelicity and

| 51dewall effects detailed by Miller and Bolef (1970) are -
present as subsidiary "1nhomogeneous"'resonances around the
'true resonance which fulfils the condition 28 = ni.
Successive resonances (for n increasing) show similar main .

features,: the small differences in shape are due to . n

" being finite.

(e) COMPARISON BETWEEN THE SAMPLED - CW_AND

PULSE-SUPERPOSITION TECHNIQUES

In view of the disturblngly large 1nf1uences on
ultrasonic velocity measurements of “inhomogeneous" effects;
investigated by Miller and Bolef (1970), u51ng their
sample - CW technique, the question ‘arises of the yalidity

: of pulse—superposition measurements o

‘ The continuous-wave resonance of the sampled -

h‘CW technique and the pseudo- resonance of pulse-superposition‘
may be compared as in Figure 5.23. - In both cases the."round-f
..trlp" phase difference is zero. '?or the sampled - CW S

reasonance this conditlon is met by 2% =.nx at the sample

harmonic-frequencies, whereas for pulsefsuperposition it~
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is synthesised by Slotting in an adjustable delay: the
pulse;superposition pseudo-resonant1condition can be

achieved at. any ultrasonic frequency. | If F is the resonant ﬂ{f
frequency 'giving 2% = na (n large), then the round trip’ E
phase shift in the sampled - CW case caused by a change

from F to (F + AF) is |

: 21_nAF T . -
brr ~ “F'n"" . . S0 (5.9)

o o ‘ R
If the pulse-superposition "resonance" .condition is

satisfied at F by a pulse repetition rate fCO' where

fCO V/21 v being the ultrasonic velocity), then changing

from fC to (f -+ Af ) gives a "round trip" phase shift

of .

‘ A 27 Fo Afc . o S
fRr T fCo(fco + Afc) T (5.10)

: Equating ¢RT to find the relation between Af and- AF for
.similar round-trip phase shifts, and writing (fco + Af ) ‘as

Af
(for AE —< <<1l) we find

. 7
'CO o Fo fCO .
n fC02 : :
Af,, = —_— AF o o (5.11
. o o

‘Consequently, to a first approximation, plots of response
amplitude as a function of ultrasonic frequency (F) for the
sampled - CW case and repetition-rate (f ) for the pulse— »
superposition case. should be equivalent at about the same
ultrasonic frequency (when n is large) Differences in
‘the " shapes of the two curves will be linked with the“

' resolution along the frequency axis in each case Measure-
ment Of a true CW response would involve perfect resolution,
i but if there are any frequency-gating components present

hese.w1ll affect the response, and true monochromacity will
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- not result Most of the gating components will decay with
time (by scattering and interference) much faster than the
sample resonances, and the longer after any frequency-gating
"operation that an observation of reSponse is made, the lower
willfbe the gating components and the higher the frequency
_'resolution (see Figure 5,18). "In the pulsefsuperpOSition
caseuthefpulse is.very short, and_low resolution cannot
be aVoided. | . |

Tovcompare the sample - CW and pulse-superposition
responses, we first need to know the position and shape of
a nearly "true" CW resonance without interference. The
technique of ‘Miller and Bolef (1970) has been adopted: the
samplehfaces have been progressively damped (in'thisicase
using Apiezon Q-compound) to cut out unwanted”reflections
(Figure 5.24). The receiver amplification in Figure 5 24(d)
is much higher than that in 5. 24(a b c), the damping not
'.only reduces the amplitude of the unwanted reflections, but
also to some extent that of the required ones, particularly
for end-damping (see Figure 5.25). The pseudo—resonant '
and resonant frequencies have been shown experimentally to '
;be independent of ultrasonic amplitude in the range availableri,
As found by Miller and Bolef (1970}, the highest response in

the undamped condition is not necessarily at the position

. ' -

of the true resonance. Some slight trace of the subsidiaryuhi'
"inhomogeneous" resonances can still be seen in the most
heavily damped case (Figure 5 24(d)) |

The influence of gating effects.on the mono-:
chromac ty of responses can be reduced by using increased

delays between the final gating ("gate-off“ in Figure 5. 18)
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and'the‘sampling point ‘Conversely;'the high4interference'
pulse-superposition case can be simulated by progressively
-reducing the delay. Figure 5. 26(a-e) shows the frequency
response plots for the same rescnance as shown in Figure

‘5. 24(a) for delays corresponding to tran51t -time steps 1,

.21 3- 4 and 16 in Figure 5.21(b). The monochromacity
decreases with the step number . Figure 5., 26(f) is a plot :

of the frequency response of the fCO pulse superposition

. pseudo-resonance of the sample at 40 MHz A scaling factor

of (n.fco /F ) has been applied to the repetition rate (f )
values'(see'equation 5.11). It is eyident from Figure 5.26
that.the pulse superposition pseudo—resonance curve is
equivalent to the short delay llmlt of the sequence of
sampled - CW resonance curves. Traces of all the sampled

CwW partial-resonances A toF labelled~in Figure 5.26 (a) can

be seen in the pseudo—resonance curve. The pulse-superposition
plot is also similar in shape to that. of the high resolution |
(67 uS delay) sampled - CW resonance from which the
.“inhomogeneous" partial resonances have been removed by
'damping (Figure 5.24(d)). The implication is that decrease
:of the frequency resblution (the limit being the pulse- f
superpOSition case) gives better cancelling of the "inhomo-
geneous" partial resonances and results in a resonance

curve much closer to the: "true“-one than would be observed

in a high resolution case. The large gating effects

present in the pulse-superposition mode make the "inhomogeneous
,effects almost negligible in comparison with the more

obvious velocity-measurement uncertainties, such as transducer

| phase shift effects.:'

C
-
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5.3  ANCILLARY EQUIPMENT

(a) THE SAMPLE HOLDER .

. A photograph of the ultrasonic sample-holder
appears in Figure 5. 27 The cubic sample of GaAs is
supported on a spring—loaded insulated platform Contacts

to the transducer are made by the brass collar above the
sample (via two small aluminium spacers) and by a spring-
loaded.centre contact. To ensure total insulation of the
sample.apart from the transducer connections, the brass
: sample -holder frame is covered with polythene tubing, and

~the - assembly is held together with nylon line. Electrical
contacts are available via the circuit board visible at A
the top of Figure 5.27, and ‘there is a screw fitting to .
allow ‘the sample holder to be held in place in the cryostat.
The design provides for simplicity of insertion of samples
.Ausing either bonded or thin-film transducers and proved '

: mechanically stable down to helium temperatures.

-t

(b) THE CRYOSTAT AND VACUUM SYSTEM

{Measurements down: to helium temperatures were

"'made in a standard cryostat (Figure ‘5. 28(a)) surrounded by

a nitrogen Jacket. A dual vacuum system (Figure 5.29)
enabled both evacuation of the inner dewar and measurement
of the pressures in the system; the’ ultimate pumped pressure-f
was O 05 torr, down to 40 torr a mercury manometer was »
‘,used in measuring, and below 40 torr a manometer containing
‘silicone fluid of density 1/14 that of mercury The:sample
holder_frame was constructed of thin-wall stainless steel

| tubing to reduce heat leaks Electrical-leads into the

system were passed through neOprene compreSSion vacuum

g r"("
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seals of the type described by Batchelder and Sidey ~(1969)

(see. Figure 5.28(b)).

(c) TEMPERATURE CONTROL -

A technique of controlled temperature drift was
usedfin making measurements over the temperature range of
4.2 K 0 320 K. The feasibility of this method depends on
a balance between the time needed to perform a single measure-
ment and the required accuracy of temperature definition.
The drift rate was controlled by regulation of the heat
leak through the space surrounding the sample holder,-
Figure 5.30 shows examples of the temperature drift profiles
.obtained using helium gas as the heat- transfer medium. The
transfer of small volumes of liquid nitrogen to maintain a
slow drift rate and control the nitrogen level in the cryostat
_ jacket was made by an automatic pumping system using carbon
;liquid 1evel Sensors (see Figure 5 3l) Temperatures down
to . l 5 K were achieved by pumping on the liquid helium
: surface; the liquid level was monitored by the circuit
'shoWnlin-Figure 5.32. The most critical,region proyed to
1be at’ around 40 K (see Figure 5.30). lhe drift rate in this :
‘.region can be reduced using charcoal desorption techniques,
but‘in'this work speed of operation was}found to be a

suitable substitute!

Q) EMPERATURE MEASUREMENT

l Copper/constantan thermocouples were used to
”measure temperatures down to liquid nitrogen, gold -iron/

' chromel'thermocouples for temperatures'between liquid
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nitrogen-and liquid helium, and mercuryhand oil manometers
'for those below 4.2 K. .
- The copper, constantan and chromel thermocouple

wires used were of 0.12 mm diameter and the gold 0.03% iron
of O. 08 mm diameter. All ‘junctions were made by spark-
welding under nitrogen gas. and insulated. by a very thin
layer of GE 7031 low-temperature varnish The reference
junctions were situated at the ends of 1.5 mm diameter
stainless steel tubes and thermally grounded to copper end .
caps’ With cigarette paper soaked in GE 7031 varnish and
toluene (Anderson, 1969). Measurement Junctions were .
51milarly attached to the crystal faces and covered with a .‘
layer of Apiezon Q- compound to ensure ‘a more intimate con-
tact w1th ‘the crystal than with the surroundings. Connections'
. were made via a low—thermal switch box to a Pye 7600
s potentiometer, with a Pye 11330 galvanometer preamplifier
and a 7903/S galvanometer as the .null ‘detector; the system
was operated with a galvanometer sen51t1v1ty of 3 cm per uV.

" The most satisfactory reference for - the copper/
constanton thermocouples was found to be a large dewar of
| liquid nitrogen. The nitrogen suppliers ‘confirmed that x
oxygen content was not suff1c1ent to change the boiling
point from 77.36 K at atmospheric pressure. Each thermo-
couple was calibrated against substandards of boiling liquid_
helium (4. 2 K), boiling liquid nitrogen (77 4 K), stirred
dry CO2 and acetone (194 7 K) and an NPL thermometer at
‘room temperature. Charts of temperature,versus voltage
werebcomputed from the cubic expressiOn (White,.l959) .

v = AT3 .‘f BTr? + CT + D' : o (5.12)
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where v.is the thermocouple voltage at a temperature T.
Reproducibility on cycling between room temperature and
helium temperature was better than 1 uV.

. Temperatures below 4.2 K were measured with oil
and mercury manometers, using the gold-iron/chromel thermo-
couple for interpolation between pressure measurements: |
between 1.5 K and 4.2 K the ‘thermocouple voltage was found
to be linear to within O.l K. A dewar.of;liquid helium was

used as the gold-iron/chromel reference. "

5.4  COMPUTATION AND CORRECTIONS

(a) ULTRASONIC VELOCITIES AND ELASTIC CONSTANTS

N For measurements made of the pulse-superposition
repetition rate f.o Hz in the condition p=l, n=0 (see
Section 5.2(c)), the apparent ultrasonic transit time is
~equal:to l/ch seconds. A correctiontourfCQ of'fx Hz is
requiredjto allow for the phase shift ondreflection at the
'Ltransducer (see Section 5.1(e)), and forvthe phase 'shift
Ldue to_integration of the waves arriving at a point on the
tranSducer from a range of angles. Theffirst of these has
: been calculated from measurements made . of f asﬁa.function
of frequency (see Figure 5.15(b)), and the second from tables
of - phase Shlft due to integration presented by Bradfield and
Goodwin (1961) In the case of a thin—film transducer: Fi'
i_operated far away from resonance this correction will be
independent of temperature and the corrected repetition rate
can be written as [(fco)T + £.1, where (fCOY' is the measured

repetitlon rate at the temperature T. The expressions for‘ .

' the‘corrected veloc1ty.V at this temperature and the-
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relevant elastic constant combination,CT are

A

Vp = 2p m ‘}fCO)T + fx] o | . (5.13) .

| 4°R'LR2 - | 2 .
Cp = —— ‘fco)T + e S (514

T
here m is 1—_T (14a!), a'is the thermal expansion
' 293K

coefficient and LR and pk_are the sample;length and density
at room temperature (298 K). |

Computation of thetuncertainties in parameters
has been approached from two viewpoints;'both in accord with
the recommendations of Ku (1966) on the propagation of . |
errors. Firstly the extreme]nnuts of uncertainty (that is
the estimated 100% certainty limits,_assuming accurate
quotation of uncertainties in data taken from other workers)
have been determined. Secondly, to allow assessment of the
elastic constant change with temperature, the relative
uncertainty limits have been calculated ‘assuming absolute

accuracy in the-data at 298 K; systematic errors appearing

» 1n the temperature variation are small 1n comparison with

the relative uncertainties and will be referred to laterp.

The uncertainty due to misorlentation (i%-) of-thefspecimens

with respect to the crystal axes has been calculated by

the technique described by Truell, Elbaum and Chick (1969) .

t
i

(b) ULTRASONIC ATTENUATION =

.Values of the attenuation coefficient measured -
. [ ]
as described in Section 5.2(a) are subject to various
“apparent-loss" contributions resulting from diffraction ;

losses,,"nonparallelism“ losses,Atransducer‘coupling losses .
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.'and phase effects in the transducer. ;A discussion-of all
these: effects has been presented by Truell et al (1969),
‘only the main results will be reproduced here.

_ Since the transducer-source of ultrasonic energy
in a sample is finite in size, the beam produced diverges,
and the wave front is neither planar nor: spherical Phase‘
interference ‘occurs on the return of the wave to the.
transducer, and the observed decay of the echo-train will
not be exponential, but will exhibit a maximum at a distance L
'from the source of a /A (see Figure 5. 33(a)). The apparent p%f
- 'loss in echo-height due to the diffraction loss alone is e
approximately 1dB times the distance from the source in
units of (a /A) The measured attenuation can be: corrected
'more exactly using the curve of .loss against distance shown N

in Figure 5 33(b).

P

In the case of a non-parallel sample, the observed
echo-decay is not an exponential but a ‘Bessel function, |
as pictured in Figure 5. 34(a) From the positions and
'Zamplitudes of the maxima in the echo- train envelope the

intrinsic attenuation may be calculated . When non:parallel

R f

effects are small, as with the sample parallelisms achieved
in this work the apparent attenuation - caused by the
effect is given by 3 ; o L

2 2 2 2 ‘2

e - 43.686 ".vE‘ a” 8" 0 gp/s o :(5;15)81‘

at the ch echo, where 0 is the non—parallel angle (see ,35-
Figure 3.2(a)). If the sample cross section is not.
| appreciably greater than the transducer, and the. ultrasonic ..ff

frequency is low, then diffraction and Sidewall reflections }jf
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.together can cause an echo—train modulation similar to
that of ‘a non-parallel sample, ‘as shown in Figure 5 34 (b).
However , the two effects may be distinguished by their .
frequency dependences: with increase in frequency the'
bumps due to non-perallelic1tyvmove towards the source,
while the sidewall -reflection bumps move away. | |

The “apparent“ losses described above are to a
first"epproximation independent of temperature:. they f'
affect the absolute values of attenuetion measured but not
the calculated relative uncertaintiesoin.the temperature '

dependence.

All the corrections listed above have been made

- to theAmeasurements of ultrasonic velocity and attenuation’

wherever'applicable.
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CHAPTER 6

THE ELASTIC CONSTANTS OF GALLIUM ARSENIDE

}Velocities of ultrasonic waves-propagated in
51ngle crystals of GaAs have been measured by the pulse
superp051tion technique. Results obtained extend the'
elastic constant data for this material down to liquid .
helium temperatures. Previously, the room temperature
' elastic constants have been measured by techniques of
_varying degrees of accuracy by Bateman, McSkimin and
_Whelan (1959), Garland and Park (1962), Charlson and Mott
](1963),7Drabble and Brammer (1966), Bobylev and Kravchenko

(1967), McSkimin, Jayaraman and Andreatch (1967) and
Beilin,fVekilov and Kra31lﬁn1k9v (1959) N Measurements at
17 K have been reported by Garland anlearkt(1962)Aand at
number of temoeratureS'between 78 K and'520 K by Beilin,
Vekilov.and Krasil'nikov (l969).A The published data for
the elastic stiffness constants Cll' C12 and C44 exhibit
a somewhat random variation covering a much w1der range |
."than ‘the quoted experimental errors, Wthh in some ‘cases
seem to have been underestlmated Nor-are the magnitudes
of the temperature dependences given by Garland and Park

(1962) and by Beilin, Vekilov and Krasil nikov (1969) in
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agreement - there is a factor of three difference for
that °f~C12‘ To resolve these disagreements, particular
atténtion has been paid to assessmentpof-the total ,f
uncertainties ‘involved in'the presentrexperiments.' |

" With its zinc blende cubic structure GaAs is a
peizoelectric material and stiffening of- some modes of
ultrasonic wave propagation is expected’ To obtain the
elastIC'constant set in the.absence of piezoelectric con-' .'
tributions, appropriate modes were chosen: longitudinal |
‘and shear waves: propagated along the [lOO] direction, the )
longitudinal wave along the [llO]. .To evaluate the v
piezoelectric stiffening, measurements of velocity have |
also been made along the [111] dlrection, these are
discussed in Section 6.8, but first the~piezoelectric-

free, or.“zero—field“ elastic constants will be considered,

6.1 'RESULTS AND UNCERTA INTIES
_ 1: fhe‘elastic stiffness constants;cll, c,, and C44
calculated as a function of temperature:from the measured .
repetition rates fCO and eguation 5.14 are shown i?:
Figures 6.1, 6.2 and 6. 3. . Each set‘of measurements
corresponding to a given temperature has been treated
independently throughout with no recourse to data smoothingg
-techniques.? The data for C12 possess.the combined scatter
from three velocity measurements. Numerical values at O K,‘:
-found by extrapolation, 78 K and 298 K, together w1th |
derived elastic parameters, are’ collected in Table 6 A.
Wave veloc1ties quoted, other than measured ones, have

been: calculated assuming the absence of non—centrosymmetric _f‘

effects such as plezoelectric contributions
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TABLE _6.A

The elastic properties of GaAs at O K, 78 K and 298

Units : Elastic moduli 101?

dynes cm-z, ultrasound

wave velocities lO5 cm secf . -
oK. :73 % TR
o, 210779029 | 12085t 9933 | 1101710037
o i | oseest G1E3 | oosenat O
Cu 03678088 | o.s02s?:3817 | o.ssnal 1R
V[lOO]éf: » '7700::8832 .7557f:gggg 4j7193::gg§§'
V[lOOJSl_ « | 3.36827°900 ,36§bf:ggig 3.;345f:88§g
v[llo]p J * | 5.27907 3279 .}2749f:8828' 5!;255f:88§: 
v[ilbjs[001] + .368 i.obs .366‘1.005 '3.334 £.005
v[lio]s{iio] ¢ | 2.500 +.034 | 2.497 £.034 : 2.467A¢{o3é
v[llle.‘ t | 5.446 £.026 ;4@2f;;026- 3 5.38@ +.025
thiljé: + | 2.821 r.024 :;8;9 ..024 | 2.786 :,o;él
¢11/§12: .210 +.064 Lé;b ..060 | 2.204 tf662 
B ¢11/¢;4 :. .006 17542 \;9@% +.012° 2.003 #.drés
ci2/¢4;”_ .907 £.033 '.967-1.033 ¢.9bgl£.9327-
B¥%(cil+éclé) 769 £.012 | 25367 +.012 o.75$ :.oizl
N Gv=%(¢ll+2clé+3c44)" 495 +.005 }49é'¢foos Q;4a§-¢.oosgﬂ
G —(3C11—3C12+3C44) 454 +.018 ;Aéé +.018 6.444‘:.01é}x
R [5C44(%17C10)] . T i
Bor“.Sta?ility~4clﬂpllfc44)' 951 +.034 | 0.950 £.034 | 0.948 £.032 "
Criterion ;1@11+C12)4 U PO T : A .
An;zgtggpy | 2¢44/(c;1—c12) .BZi‘i;OéZv‘ .823 £:062 17828 :;osifi
_* Measured;vgiocity  t Calculétéd veloci;y

" TABLE 6.A
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TABLE 6.B

UnCeftainty limits required in the determination

of those for Cll’ C12’ C44 : in percentages.

0K, 78 K | '2981_<
o .‘ - ",;Q,os
m 0.0l £Q.oo .
ﬁR [100] L, S - ~ x0.04.
| LR [110] L - +0.03
fco {lod] L © £0.003 40.003
| fco[iOO]s | :0.004 | *0.004
. féo o ¢ | »_ro.i)'o‘é N :';o..ooé-~
£ % +0.07 }6.07
x | . -o0.05 o -9.05
YQRiENT.; .tpfgg' '”iéd,oé

* Uncertainty in f_ is quoted_as-a
percentage OfffCO'

TABLE 6.B
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4
R

The sources of uncertainty and their magnitudes

-3

are collected in Table 6. B. The X-ray dens1ty (5. 3169 gcm
found by ‘Straumanis and Kim (1965) for stOichiometric GaAs
:has been used. These workers observed a change in lattice
' parameter, and therefore in x—ray denSity, across the
narrow “homogeneous phase extent of thlS compound, however,
the appropriate limits fall inside those ( 10.0026 gcm 3)
of the displacement measured den51ty, which have been taken
here.v Available 1nformation on the thermal expansion of
'GaAslis’sparse and to some extent contradictory _Here an
estimate has been made (Figure 6.4) of the temperature
dependence of the thermal expan51on coefficient based on
'the work of Novikova (1961), Pierron, Parker and McNeely

'(1967), sparks and Swenson (1967) and Feder and Light (1968).

However,an arbitrary adoption of a lO% error leads to an

o almost negligible uncertainty in the parameter m (see

Table 6. B) and thus in the elastic constants, even though
the coefficient o becomes negative below 50 K, 1ts effect

'is;so,small as to be'completely insignificant at low

' -temperatures._ ‘The correction factor f for the transducer
reflection phase shift was evaluated from measurements of -

repetition rate as a function of frequency between 35 and
45 MHz for each of five different n-values. Finally,,an

error (V ) occurs in the measurvd veloc1ty due to;

orient
_misorientation (+% ) of the spec1men with respect to the

crystal axes, and the uncertainty arising has been calculated v
by the technique described by Truell, Elbaum and Chick (1969)"f
The total uncertainties in the measured velocities

“and subsequently in the elastic stiffness constants Cll’ C12V .

\
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The thermal expansion coefficient (a) of GaAs estimated
from the _data of Novikova.'(l961) , Pierron, Parker and
McNeely "_('1967)', ‘Sparks and Swenson (19‘67)_ and Feder and
Light (Al-9'6'8). Bars represent an error qf +10%.

TEMPERATURE %)

(out) »- J.NBI:)I.-.HBOD NOISNVdXB 1kuau.|. avam‘l

FIGURE 6 4



- 180 - -

C44 presented in Table 6. A have been calculated using the
, data in Table 6.B in conjunction w1th equations 5.13 and
5.14.4 Comparisons made in the follow1ng sections of this
work’Suggest an error much smaller than'the extreme limits
of uncertainty, but the quoted 11mits .cannot be reduced on
thatpbasis. The relative uncertainties calculated for the

temperature dependences of Cll’ Clz»and C44 are 0.02%,1

0.1% and 0.02% respe&tively.

6.2i_" COMPARISON WITH PREVIOUS WORK

A comparison between the room temperature elastic
constants,measured here and those of‘other workers is,given
in Figure 6.5. For the purpose of this'pictorial represen-
tation, and on the basis of information gleaned from- the
respective papers, a carrier density of about 1017 cm-3
‘has been assigned to the‘crystals used«by.Bateman,.McSkimin.
.and,Whelan (1959), Garland and.Park (l962), Drabble and
'Brammer‘(l966) and McSkimin and Andreatch;(1967)} the
‘presentﬂresults are in excellentAagreement with those of
these particular workers. However, even assuming.extreme
‘uncertainties in all the prev10us measurements as large as

those quoted in the present work, there are discrepancies

between ‘the elastic stiffness constants found for samples

of different ‘or even the same carrier density - the important~ '

.Vfinding of Bobylev and Kravchenko (1967) that the elastic
'constants of GaAs show little dependence on carrier denSity
| between 7.7 x lO15 cmf-3 and 2.5 x lO18 o} -3, taken to

evidence parabolicity of the conduction band edge, cannot

be considered guite proven: thelr values of Cll and C44
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1ie well away from those of other workers (as do the Cll
and C12 quoted by Beilln Vekilov and Kra51l nikov, 1969).
One possible source of this spread in the measured values
-af the elastic stiffness constants is the defect nature of.
the crystals studied. In the II-VI, zinc-blende structured
compound HgTe the dominant ultrasound dissipation mechanism
‘is forced dislocation motion which leads to an associated
modulus~change (Alper and saunders, 1969); annealing
remoVeslsome dislocation:pinning‘points and has pronounced
effects on the elastic behaviour (Alper and Saunders, 1967,
1969).‘ As a result of the phase extent of gallium arsenide
(Straumanis and Kim, 1965), crystals can grow with high
dislocation or point defect concentrations and these would
-exhiblt elastic constants different from those of more
perfect crystals. |
One of the two previous measurements of cll' C12 and

. C at other than room temperature is restricted to 77.3 K;

44
therefore, the temperature dependenc1es can be compared

best by u81ng the parameter (C77 3 K. 298 K)/C298 K
o (Figure 6.6). The values quoted from- Garland and Park (1962)
contain a minor co:rection from 300 K to 298 K; if other
ultrasound velocities reported by these workers are used
to e,stimate(CT].3 K" Coos K)/C298 K’ quite different
"~ values result' as Garland and Park (1962) pointed out
themselves, there are 1nternal 1ncons1stencies in their

measured temperature dependenc1es. The present results

- for (C77 3K C298 K)/C298 X agree w1th those of Beilin,

Vekilov and Krasil' nlkov (1969) to within the quoted

relative uncertainties. In accord with the suggestion of

‘Bobylev‘and Kravchenko (1967) of atparabolic conduction
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]

band,”(lC77.3 k" C298 K)/f:298 K is independent of carrier
concentration.
6.3 L THE DEBYE TEMPERATURE

- The most successful single- parameter model of the
lattice properties of solids is that‘formulated bv Debye
bin terms:of a characteristic temperatureieD. Thedcomparison
of values of o5 derived from different physical observations
may be used to evaluate the model validity.
| - The Debye temperature (6 elaStiCj has been calculated

from the elastic constant data extiapolated to O K by the

relatron 1 1
. 3 3 : .
elastic _ h 39N ,
4% ' o o a
= _1 0 4ae o
£ = f E :v.3 “Z7. (6.2)
o} it T '

-whereVN:is the number of atoms per unit‘volume,'v. the
velocity of propagatlon of a low frequency vibration as‘a
'function of direction and @ is a solid angle. To evaluate
the 1ntegral f the graphical procedure of de Launay (1956,
l959)'has been applied. ‘The value of 346.8 K obtained for
eglastic is in excellent agreement with that (346.7 K) cal-
culated from the low temperature (1 K to,30 K) spec1f1c

heat data of Cetas, Telford and Swenson (1968). In the
‘long wavelength llmlt achieved at low temperatures (<# /50)
such agreement is eXpected (Alers, 1965). The small
difference of 0.03% between these two. values is more con-

sistent ‘with those quoted by Alers (1965) for a whide range

of cublc materials than are those found for other III V
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compounds (see Truell et al, 1969).

There is a difference between the polycrystalline
shear moduli GV derived for uniform local strain (Voigt
l928)mand Gp derived for uniform local;stress (Reuss, 1929)
(see Table 6.4). Hill (1952) suggested'two empirical

formulae for the true polycrystalline shear modulus G,

namely'_-
| G =% (GB + GV) o : v(6.3)
and G = +¥G_.G (6.4)
. R v -

Zucker (1969) has compared Debye tempcrature calculations
based on these two formulae and suggested that /5__5_ is a
better approx1mation to the polycrystalline rigidity modulus
than‘%(Gn-+ Gv). The Debye temperature (349.2 K) calcur
‘lated in this work using'equation (6;4) is closer to that
(346 8 K) derived from the de Launay’ apprOXimation than ‘is
hat (349.4 K) calcalated using equation (6.3), but only

'iby‘a small margin.

6.4 S TEMPERATURE DEPENDENCL OF THE ELASTIC CONSTANTS

The elastic constant temperature dependences shown
in Figures 6.1, 6.2 and 6.3 are of the form expected for
- a crystal exhibiting no phase changes or instabilities in
this temperature range; each dependence approaches OK
Wlth zero slope and is almost linear at high temperatures.
‘ Recently Lakkad (l97l) has provided a Simple description |

of the temperature dependence on the baSlS of a phenomenol-<

ogical model of an anharmonic oscillator together with ‘the

Debye,lattice vibration spectrum. To a first approximation .
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the elastic constant (C)'ls given by e
€ =¢_ [1- KF(T/6,)] _."iV (6.5)
wherel_C° is the elastic constant at O K'and,K is a .constant,
and . o eb/T | I |
o 4 3 L -1 , :
- E(T/eD) = 3(T/eD)V .[- {x [exp(x)~- 1] }-dx (6.6)
Jo.

‘wnerefxtequal.hv/kT. To test this exbresslon for GaAs, thev‘
elastic constant data at 0.96, and O;ZSQb.have first been.
used to estimate the constant K (= 9868 ﬁlc /c) in Lakkad's
”notation) and then the elastlc constant computed as a
function of temperature (see Figures 6.1, 6.2,6. 3) "Each
measured elastic constant curve can be fltted well using
the same value (0.039) for K. This, 1n-Lakkad s expression
for K, implles that the ratio of the anharmanlc to harmonic
components of the atomic restoring force, (C /C), is independ-
ent of dlrectlon For con51stency, the ratlo of the second |
order +to higher order elastic constants should show.the ‘
- same: 1ndependence For the (1001, [llO] and [111] longitud-
inal modes the ratio R of 3t rd to 2 d'order constants has
been calculated using the relevant elastlc constant

combinations:

: T
R,o nis = 5 : L (6.7)

o _ ©111%36110"1 %66 o T esy
1101L © TC 1761, 2Cyy) - | -8
N C;11+6C 151201 44%24C166%2 123" Case 6.9y
(11138 310,720, ,%4C4y) : -2) -

The ratiosR 15011’ R[llOlL and R[llilp‘calculated from the

third order constant measurements of Drabble and Brammer
el . At A

(1966) turn~out'to be 5;72, 9.86 and;QQlB respectively, and
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-those7calculated from the measurements of McSkimin and
Andreatch (1967) are 5.11,A9.44 and 7;143 complete con-
sistency'W1th the independence of.K 1n~¢11"c12 and C44.

is not evident up to third order.

6.5 '1 ANHARMONICITY AND THE GRUNEISEN PARAMETER

o Lakkad s model predicts that - the ratio of the
spec1fic heat to the thermal expan510n is constant, that

- is that-the Grineisen law is obeyed.i This is certainly
not the case for GaAs; the temperature dependence of the
Gruneisen parameter Y (— VBKTh/C ) - calculated using the
thermal expansion estimate in Figure 6 4 and the specific
heat data of Piesbergen (1963) down to 40 K together with.
that of Cetas et al (1968) below 40 K - is illustrated in
Figure 6 7. Bobylev and Kravchenko (1970) calculated

y /YBOO K u51ng the thermal expan51on data of Novikova (1961);
~and elastic constant data;: they also estimated y /7300 K

,from measurements of ultrasonic attenuation between 20 K
.and 300 K; . both results - normallsed to 7306 of this work -
are also given for comparison.in Figure 6 7. The Gruneisen
| parameter obtained from the attenuation does not exhibit
the. negative excursion. " Room temperature Griineisen parameter i
values obtained previously from thlru order elastic con-
stants are 0.455 (Kra51l nikov et al 1969) and O. 97 (Lewis
L,»l968),~ Ivanov et al (1971) fitted results of [lll] longi—A
| tudinal attenuation with a value of 0. 9 Lewis(1968) also'z"'
‘,calculated y from VBTTh/C ’ finding a value at 300 K of
VO 84 ‘which is larger than the y,,4 K(- Q .71) of this work
Aby Slmply the difference in the thermal expansion data used

The sharp rise in y at low temperatures is consistent with
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longitudlnal waves.
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Ruppln's (1972) discussion of the lithium halides in terms
of the1r anlsotropy (1. 9) o
t Lakkad's model suffers from: exactly the same

llmltatlons as the Debye model for speciflc heat: 1its
ba51s is similar and variation in the anharmonlc component
of the atomlc restorlng force with temperature is not con-
sidered..-we can approach the model dlscrepanc1es in a.
similar way. . As presented in Figures 6. l and 6.3 the
temperature dependences of»'Cll and C44 appear to be fitted
'extremely well (that for C12 in Figure . 6.2 being limited by
“the scatter); in fact there is a deviation on approaching
'~lower temperatures. If, instead of calculatlng the elastic
constants from 6 We calculate first K,_then the Debye . “
temperature as a function of temperature from the elastic
constants, we find a curve similar to that of the Debye
temperature derived from an exact fit of the Debye model
to the specific heat data of Plesbergen (1963) and Cetas
- et all(l968) (see Figure 6.8). This'would be expected ln

. view of the similarity of the models.

1

6.6 | CRYSTAL BINDING AND IQNICITY o - o

: Banerjee and. Varshni (1969) have calculated
excellent fits to the phonon dispersion curves (see
~ Figure 2.12) and spec1f1c heat Debye temperature variation
(see FLgure 6.8) using a second nelghbour ionic model i
Vetellno and Mltra (1969) have extended the calculatlons,
g1v1ng an 1nvar1ance relation for rlnc-blende crystals |
in terms of the elastic constants and zone—centre
frequen01es which galllum arsenide obeys well We haye '

calculated the force constants for gallium arsenide on
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constant data (O, C,; this work) , the specific

heat ¢ Piesbergen, 1963; Cetas et al, 1968) L
and a Rigid jon model (----. Baneriee and Varshni, 1969).
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the basis of Vetelino and Mitra's (1969) model: the
first neighbour radial (a) and non- central (8) force con-

stants and the second neighbour radial constant (pn) are

3. 926xlO4 3. O74xlO4 and O. 34OxlO4 dyne cm = respectively.

Baner]ee and Varshnl (1969) obtained a = 3 95x10?

4

8= 3. 40x10 = 0.45x10% and u, =O. 37x104 dyne cm T,

M1 T
The force constants found using the Born (1914) model are
o = 6 lxlO4 and B = 4. 4xlO4 dyne cm l;' the Born stability
criteria (Table 6A) show no 51gn1f1cant changes with |
temperature | |

' Polar character 1s associated ‘with the bonding in

lII-V_compounds. The "szigeti" effective charge e; is

felated to the restrahlen frequency wp by (Szigetl 1950)

3(¢ =z ) m, w_ V : )
se* = o "= 1 § a . (6.10)
s an (z_ + 2) o
and wp to the bulk modulus B by ":‘
3v, r + 2 - ' -
wi = 2 [=—— 8 - © (6.11)
4m, P r + 2

Here V is the unit cell. volume, P the nearest neighbour .
distance and s a dlstortlon parameter. Publlshed data for
the static (C ) and infinite frequency (T o) dlelectric con-
stants are conflictlng, the recent careful work of Johnson,
Sherman and Weil (1969) gives t, as 12'8 + 0. 5 and'c as

| lO 9 + 0.4 at 300 K. U51ng these values and the bulk modulus

at 298 K, and assumlng the Lyddane Sachs-Teller rule

22 _ 12 |
wp = wLO(Cm/CO)f we find vR (= wR/Zn) = 7. 9 x 10 Hz,
vig (= @LO/ZH) = 8.6 x 107" Hz, ik, = 34.9u and ej —.rO.SGe

- when 's. is unity. ;g compares well with the measured
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transverse optical mode wavelength of-37.é p (Johnson,
Shermanfand Weil 1969) and v , with that of 8.55 x 1012 nz
at [0, O 'O] by neutron spectroscopy (Waugh and Dolling
1963) - (see ‘Figure 2.12). :.The w4 and wR.values above have:
lbeen used to find the effective charge from Vetelino and
Mitra s (1969) model The calculated value of 0. 63 e is
in reasonable agreement w1th the Szigeti effective charge.
» The ionicity of GaAs has been- calculated by a
Variety_of methods (see Table 2.B). _In view of the
approkimations inherent in -each approach, particularly'ln
with regard-to electronic polarizability effects; these
esults are in excellent agreement. The negative sign of
e*/e indivates charge transfer from the- group III (Ga)
atom to the group V (As) atom, equivalent to a more convalent

than. neutral bond character (Suchet 1965), no sign (# or -} 18

available from either ultrasonic or Optlcal measurements.

6.7 c{fYOUNG'S MODULUS AND VELOCITY SURFACES

Knowledge of the complete set.of elastic constant

- tensor coefficients allows determination of the material |
:response to any applled stress system .An 1mportant case -
is. the response to a simple tension Wthh provides the
technlcal constant Young s modulus Y. . The surface showing
"the variation of this modulus w1th orientation is a useful.
ald 1n v1sualizlng the crystal s elastlc anlsotropy. For
a cubic material Y in terms of the elastic compliances SiJ isn;
+ 2

: 2 2 2 2 2 , E
- 8;, - %S 4)(2122 +.4505 3 %) (6.12) .

- N

¥ =8 726y
where £ is a unit vector in the dlrection of the applied

'stress. (OOl) and (llO) plane Ccross- sections of the Young s
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moduihs'are shown in Figure 6.9. To'compile further

the elastlc behaviour, cross- sections. of the phase velocity
surfaces.have been calculated. For a spec1f1ed crystal-
1ographic direction denoted by directioh cosines n,, nz,

Ny, three orthogonal elastic-waves can-be propagated with

E velocities given by the_eigenvalﬁes of the Christoffel
equatiohs.

o 5 ST |
ILik Ve 8,40 ug =05 (i,k =1, 2,3) (6.13)

| Here u are the direction cosines of the particle

o1, ‘o2’ Y03
displacement vectors and

2 L2 2
Ljp = mp S0 F Py Cup M3 Gy
- _ .2 2 -2
Ly, = m] Cyy ¥ my Cpp * B3 Cyy
2 2 2
L33 = n] Gy * oMy Gy oMy Oy
C | | (6.14)
Ly = Py (Cp *+ Cyp)
Ly = omng (G * Cyy)
o Lyp = omny (Cpp * Cyy) -

;The three wave veiocities have'been obtaihed for propa-
gatioh directions taken at l°~interva1e around the (00l1)
and (lib) planes (see Figﬁre 6.10). The polarisation
vectors of each mode, obtained by substltutlng the;velocity
back .into- equation (6.13) and SOlVlng for uOk’ have been
calculated for propagatlon dlrectlons in ‘the (OOl) plane,
Jthe result for the qua51 longltudlnal mode is shown as an

‘Vangular deviation from the propagatlon direction in

Figﬁre 6.11; - that for the pure Shear:mode is always .
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perpendicular to the (601) plane while that for the
quas1 shear mode always differs by n/2 from that for the
guasi-longitudinal mode. Finally, the angular dependence
of‘the-energy flux vector of each mode (g) of velocity

Vg propagated in the (00l) plane has;been calculated from

the equation for components

o g )2 c o g
S N § <) B 9 99 g L
R 2V, Ci3k1 Yoj Yok " : (6"15’v

where pg is the elastic displacement amplitude Results

for the qua51 1ong1tudinal and quasi- shear modes are plotted
in Figure 6.11. The deviation of the energy flux vector
from the propagation direction for the quasi- longitudinal
‘mode is small but that of the quasi- shear mode is ‘large,
espeCially for a propagation direction midway between the
fourfold axis and the twofold axis and attention must be
'paid in ultrasonic experiments made w1th the latter mode to

.prevention of wall reflections.

6.8 f'::PIEZOELECTRIC;CONTRIBUTION TO THE STIFFNESS OF GaAa
| The velocity of the‘[llll 40 MHz longitudinal ultra-
sonic mode in the GaaAs used in these measurements is shown
as a function of temperature in Figure 6 12.4 To show up
the anomalous temperature dependence the curve has been
normalised at 0 K to that calculated from the elastic con-
vstants given in Figures 6.1, 6.2 and 6. 3 ~ The difference
between the two curves at higher'temperatures is greater
' than the calculated relative uncertainty (see Section 6.1)
-and‘systematic errors will be of the?same magnitude in each

case:_,there~is a real discrepancy.
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o - Boyle and Sladek (1973) have observed a similar
effect_below 200 K in GaAs for the [110]' shear wave
polarised along the [ooi] directionA? tne only other
‘piezoelectrically coupled pure mode. - In‘this work an
extension of the anomaly has been found above 250 K
(see Figure 6.12). . The comparative rise of the measured
-'velocity at low temperatures and high temperatures implies
corresponding regions of low electrical conductivity.

This is. consistent with the results of Ikoma (1968 1970)
who f0und a high temperature rise in resistivity for GaAs

samples of carrier concentrations between.3.89x101,4 and

l OGXlOl7 cm 3. The presence of the'high temperature
anomaly in the [lll]L velocity in this material

{n = l 3OxlO16 cm ) has been confirmed by measurements’
made uSing both thin—film and quartz transducers (Figure
6.13). |

. No- large piezoelectric—coupling attenuations were

observed in this work (see Figures 8. 1 -:8.8).

It is possible that the piezoelectric stiffening
of‘GaAs.reported here may be the cause_of some»of the
';d discrepancies in previous elastic constant determinations

(see Section 6.2).
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CHAPTER 7

"PHE ELASTIC CONSTANTS OF MERCURY TELLURIDE"

The elastic constante of mercury telluride have
prev1ously been calculated at room temperature by Mavroides
and Kolesar (1964), at temperatures down to 4.2 K by Alper
and Saunders-(1967) and at temperatures down -ta 77 K by
nRusahov (1971). | B

“ Accurate knowledge of the elastic_constant
temperature dependence is'necessary for the testing of
Lakkad s (1971) elastlc constant model and for the evalua-

' tlon of the plezoelectrlc stiffening. of - mercury tellurlde,

L observed and measured in this work. In view of the diagree-

'ment between the data of Alper and Saunders (1967) and Rusakov

(1971), and the lack of measurements below 77 K in the case
Vof the latter, remeasurement and comparlson has been made
‘1n the temperature range 2K to 320 K. ‘The "zero-field"

| elaStic‘constants were calculated from pulse-superposition
measurcments of the veloc1t1es of the non- plezoelectrlc
[100] longltudlnal ‘and shear,_ and [llO] shear [llO] polar-

Alsatlon ultrasonic’ (50 MHz) wave modes. A piezoelectric
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stiffening has been observed in the propagation of the

{lllJIIOngitudinal wave mode.

7.1 RESULTS AND UNCERTAINTIES

S The elastic stiffness constants,Cll, Clz-and C44
of annealed mercury telluride,’caloulated‘as for gallium
arsenide (Section 6.1) are presented asAa'funotion,of |
temperature in Figures 7.1, 7.2 and 7;3;‘ data'smoothing
has been'auoided. Numerical values at O K, found by
'extrapolation from 2K, at 78 K and 298 K are cOmpared in
Table 7 A with the values found by Alper and Saunders (1967)
and Rusakov (1971). (The latter two sets of values have
been corrected slightly from 77 K and 290 K to the temperatures
quoted for thlS work) ‘ Rusakov (1971) found differences
between the elastic constants of annealed and unannealed
HgTe (O 7% for C44), but his quotation of a single set of

esults ‘does not state whether they are for annealed or
'unannealed material.

The derived elastic parameters'listed in Table 7.B’
have been calculated assuming the absence of piezoelectric
effects. The X-ray density of 8 079 g.cm r'found.by Alper
(1968) - has been employed, together w1th the guoted uncer-
tainty 1n displacement—measured density (:0.0l g cm 3).,'

The thermal expansion data of Novikova, -and Abrikosov (1963)

lS more con51stent w1th that of other 21nc—blende crystals

| than are other available data-‘ this has been utilised
. below 30 K a linear approx1mation‘has.been made, the
resultant uncertainty being negligible- (Figure 7. 4) The

relative uncertainty in ‘the elastic constant temperature
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7.A

TABLE

The elastic constants of HgTe at 0 K, 78 K and 298 K;
comparlson with the work of Saunders and Alper (1967),
Rusakov (1971) and Mavroides and Kolesar (1964) .

Cij ape_ln units of (xlO12 dyn.cm 2).
This Alper and Rusakov Mavroides and
d Saunders (1971) Kolesar
Para work
T (1967) _ (1964)
meter| - :
% age $age- tage
diff. diff. diff.
Ci' Ci' from 54 from Ci' from
J J |this ] this 1) lthis
5 work ‘work work
o 0.5971 . _ _ _ -
0 +.0026 0.592 } 0.9 :
. 0.5863 ‘ P B _ _
Cll» 78 +.0025 0.587 ] 0.11]0.5864 ] 0.02 .
- | o0.5361 o
.298 +.0023 0.563 | 1.810.5366 | 0.09 0.505 5.8
0.4154 . A
| o £.0033 0.414 ] 0.3 - -
- 0.4059 '
C12_178‘ +.0032 0.410| 1.0 |0.4054 | O0.12
- | 0.3660 S |
298_ +.0030 0.3791} 3.7 .3661_}0.03 0.358 2.2
: 0.2259 ' _ _
Q- +.0010 0.219 | 3.1}
{1 o0.2241 - _ _
C44.-78. +.0010 Q.217 3.2- .2230 1| 0.49
| 0.2123 '
298 +.0009 0.2031] 4.1}0.2111 »Or56 Q.?OS 3.4

TABLE 7.A°
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TABLE 7.B

(extrapolated), ‘78 K and 298 K:

12

Viijkl-

' A compilation of the elastic parameters of HgTe at O K

Cij én units of (x10 dyn.cm 2), ‘in units of
(x10° em.sec™h), (=237 1) (1/¢5) in units of x10™4 k71,
Parameter 0 K 78 K 298 K
C,1/C1; 1.437:.018 | 1.444:.018 | 1.465:.018
C15/C4q 1.839:.023 | 1.811:.023 | 1.724:.022
C,1/C4y x 2.643+.024 2.6;65;023 2.525+.022 |
V{100]L * 2.716+.004 | 2.691:.004 | 2.576:.004
V[100]8 * 1.670+.003 | 1.663x.003 | 1.621+.003
VI110]L + 3.007:.010 | 2.982£.010 | 2.866+.009
V[11078{001]  t 1.670£.005 | 1.663:+.005 | 1.621:.004
‘villois(ilo]  * 1.059:.002 | 1.055:.002 | 1.026%.002
V(111]L + 3.089+.011 | 3.073:+.011 | 2.956£.010
vil11ls n 1.295:.012 | 1.290£.011 | 1.256%.011
1, +2c12) 0.476£.003 | 0.466:.003 | 0.423:.003
1o = ' 1. :
_5(cll C)p*3Cy,) | ©0-172:.002 0.171:.002 | 0.161;.002
— 5(C11-C12)€C : T .
Gn4é 1is(é2);é4 - | 0.142:.007 | 0.141:.007 | 0.133:.006
' .44:,", l],' 12 . '
e 1872.094 | 2.484:.093 | 2.496:.091
A = Cil_c12) 2.48 1.9 .484+.09 . ii
aC "
- -2t = - 3.52 £.17 4.66 +.14
BC' _ _ . .
R - 4.28 i.21 5.19 +.16
12 » o e
3C,, - 1 . .
. L - 2.26 +.11 | 2.41 £.07 .|
5T ° C . 41 £,
T " Cy4
B°i2e¢féﬁefl°n; . 0.182 .006 | 0.180:.006 | 0.170:.005
11752 -
||Born criterlon 0.715 .005 | 0.700:.004 | 0.635%.004
5(Cp1%2C))) T i

* MeaSured'velocity

't Calculated Veloc1ty, assumlng
~the absence- of plezoelectrlc effects.

TABLE 7.B B
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dependences is 0.02% for C,; and C,, and 0.04% for C,,.
Error sources are listed in Table 7. C.

Agreement of the present results with those of
Rusakov (1971) above 77 K is excellent. -:The results of
’Alper-and Saunders (1967) agree to w1th1n the experimentalv
uncertainty of the less accurate simple'pulse-echo
technique. The widest spread in values is for‘C44_(Figure
7.3),'Where Rusakov (1971) found the greatest change with
annealing; it is possible that the annealing,technique
used by all the workers here duoted does-not give such
con51stent results as prev1ously assumed (Dahake, 1967)
(see Section 3. 3(b))" The temperature dependences found
by Rusakov (1971) and in this work agree to within the
.relative experimental uncertainties; they may be used with

'confidence in evaluation of the piezoelectric stiffening

of HgTe.

7.2 A" THE DEBYE TEMPERATURE AND ELASTIC CONSTANT

TEMPERATURE DEPENDENCE

The Debye temperature (eelastic) has been calcu-
lated from the elastic constant data extrapolated to O K
(Table 7.A), using de Launay s (1956, 1959) graphical .
procedure (see Section 6.3). ‘The resultant value of
| 141.4 K is only slightly different from that (141 K)
calculated by Alper and Saunders (1967), at present no
low temperature spec1f1c ‘heat data are, available.for
comparison. | |
. Lakkad's (l97l) model for the  elastic constant

temperature dependence (see{Section 6,4) has been fitted
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TABLE 7.C

Uncertainty limits required in the determination of

thosg for cll' C12’ C44 : 1in percentages.

0 K, 78 K 298 W
O _ - 1 ;;7%2 -
m . .01 i'O.QAO
L [1001L,S ‘ - “ ‘lxo;m
L (11018 | : £0.03
£,o[1001L | £0.005 -io.oo’s B
£.,o[10018 +0.008 +0.008
: fco[llbls +0.007 ' ‘io;bc;;——_
£* +0.10 +0.10
| Vorient ——hi 102 o #;'02.

*,Uncertainty in fx'is guoted as a percentage
of fCO and includes the uncertaihty due to

_ phase_integrati0n at the transducer.

" TABLE 7.C
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to the elastic data shown in Figures 7.1, 7.2, 7.3; the
.constant K has first been found for each of Cll’ C12' C44
from the elastic constants at 0.5 eelastic and 29e1astic
In contrast to the fit obtained for the similarly zinc-
blende gallium arsenide, different valuesﬁof K are required
to.matoh each of the temperature depenQences: K is found
to be'0.056, 0.064 and 0.035 for Cyp0 C,, and C,, respectively.
Deviation of the model from the experimental data has been ‘
calculated in terms of the Debye temperature. en (Figure 7. 5)
in the same way ‘as for gallium arsenide (see Section 6.5).
It is'not possible to compare the fitxdireotly with that of
the Debye model to the specific heat of‘HgTe owing to the |
lack of relevant data in the literature.

The values of the elastic constant slopes ‘at room
temperature (acg/aT)x(l/c - ; - (see Table 7.B) u
are similar to those found for mercury. selenide (Lehoczky
ot al, 1969) of 5.38 x 10-%, 6.20 x 10™* ana 3.03 x 10
for_éll, C12 and C44 respectively. The ratios of the slopes"
of ClliClZ:C44ﬁare even nore closely related, l.93.2.15.l
for HgTe and 1.77:2.11:1 for HgSe. The directional
'dependence of the anharmonic to harmonio force constant

ratio:(Cl/C in Lakkad's expression for K) should be similar

in the two compounds. Figure 7.6 shows the Griineisen

’ parameter .

7.3 »AA CRYSTAL BINDING AND IONICITY
Vetelino and Mitra (1969) have presented an '
'invariancevrelation for the application of ‘a rigid ion

model to zinc-blende crystals:
ocdel to :

-4 'LT:”
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2 _ | vy, 2 2
L e To c44+(c11/2)+(oroioaz/p.rb)(mLO‘+4,77865wTo.) oy
0% TF_ " |Tic. /2-C..4(0.02775/5' 2. ) (wr n2=7.7566Tur2)12
on 197127 B Iol oo T1e “ro
(7.1)

where w; ., wpy are the zone centre frequencies, r  is half
the zinc-blende lattice constant, and u' is the reciprocal

of the'reduced mass

’ 11 - .
u = == + = ' (7.2)
my, My ‘

where mi) m, are the masses of the two'atom types in the.
crystal. Using the optical data of Dickey and Mavroides
(l964)”for the zone centre frequencies, and the Lyddane-Sachs-

2 ) o _ | ] ) _
Teller rule‘mTO = wrq" (£./3) we find that I, = 0.934 for
HgTe at 298 K. The Born invariance relation

1c;, (€1-C4g) |

I = 11 11 "44 = 1 (7.2)

(C11+C

12)?
yields a value of IB = 0.85: the rigid ion model is a
substantially better approximation for. HgTe. |

'~ The effective ionic charge calculated from the
equations of Vetelino and Mitra (1969) is +0.78 e, compared
with 10 63 e derived from the SZigeti relation (Rusakov,
- 1971). The nearest neighbour radial (a) and non-central (B)

force constants and the next-nearest neighbour radial force

constant (u)afor the rigid ion model of HgTe are 1.738xlo4,
1.908x10% and 0.209x10% ayn. cm respectively; the cor-

responding constants for’ the Born model are a = 3 44xlo

' land‘e = 2. 89xlO4 dyi‘cm l.

gl
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7.4 YQUNG'S MODULUS aND VELOCITY~SURFACES

(001) and (110)4cross-sectionsfof'the Young's

modulus surface of mercury. telluride calculated in the same
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The deviations from propagation directions in the (00l)
plane7of‘the particle displacement'vector ( ) of the
quasi-longitudinal wave and the energy flux vectors of
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mannerias for gallium arsenide (see Section76.7) are shown
in Figure 7.7. Cross-sections of the velocity surfaces
have been calculated (Figure 7. 8), and Figure (7.9) shows
“the polarisation vector for the quasi- longitudinal mode in
the (001) plane and the angular dependences of the energy
flux vector for the quasi-longitudinal and quasi—shear
modes, the energy flux vector of the pure shear mode in the
(lOO) plane is always parallel to the propagation direction. ,”
The Young s modulus and velocity surface sections for HgTe
(Figures 7.7, 7.8) exhibit a greater anisotropy_than do
those for GaAs (Figures 6.9, 6.10).' This'reflects the
greater elastic anisotropy of mercuryftelluride -

A e .o .

A = = o (7.3)

( 11 ClZ)

- of 2 50 at room temperature, compared with a value for

gallium arsenide of 1.83.

7.5 .  PIEZOELECTRIC CONTRIBUTION TO THE STIFFNESS OF HgTe
: | Figure 7.10 shows the calculated and measured

temperature dependences of the 50 MHz [lll] longitudinal
mode'velocity in HgTe. An anomaly similar to that found

for GaAs is apparent (see Section 6.8). " The Hutson and
White'(l962) theory predicts that the stiffening should be
1nversely proportional to the electrical conductivity. |
-Measurements of the conductivity temperature dependence,
'(Figure 7. 11) confirm this dependence ~the maximum i
'stiffening occurs where the conductivity/is lowesti(ati

about 160 K).
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 CHAPTER 8

" ULTRASONIC ATTENUATION IN GALLIUM ARSENIDE

| | Ultrasonic waves in sclids mav‘suffer losses

through a variety of mechanisms which can- be. divided into

'intrinsic' interactions with various excitations (thermal
phonons, free electrons, etc.) and extrinsic' interactions

(with point defects, dislocations, etc )

. i The attenuation of ultrasound in ‘GaAs has been
studied by a number of workers (Bobylev and Kravchenko,_
l967a, Kovar and Hrivnak, 1969, Krasil‘nikov et al, 1969;
Bobylev and Kravchenko, 1970, King and Rosenberg, 1970, ‘
Ivanov et al, 1971) and the major loss mechanism has been
found to be thermal phonon - ultrasonic phonon coupling. |
Qualitative agreement is good, but there is no uniformity‘
in derived values of the parameters which characterise an’
exact quantitative fit to the experimental data. o

" At very low temperatures the thermal phonon life-h

~ times are large, satisfyingathe condition wr>?l, where T. |

' is the thermal phonon mean lifetime and w the ultrasonic
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modulation of the solid elastic constants by the ultrasonic
wave{:lThe consequent local phonon frequency distribution
'modulation relaxes towards the thermal equilibrium distri-
bution by phonon-phonon interactions made possible by the
anharmonic properties of the solid. The relaxation causes
an entropypincrease, and'thus energy’ is}removed from the_"
sound wave. Woodruff and Ehrenreich (lédl) extended this
approachltoinclude all field and time;dependent.terms in
the ﬁoltzmann equation and'included bothdnormal (N=-) and.
Umklapp (U=) collision processes. .
" The phonon system is perturbed locally by a small

ount,.characterised by a Hamiltonian H, and the distri-
 bution written simply for first order in sound amplitude.
In the steady state two energy transfers must be considered:
gthat.from the driving wave to the thermal phonon assembly,
and that.from the thermal phonons to-an.external heat sink.
The former transfer is: covered by the Boltzmann transport

,equation, which is in this case

_ 3N 1 (N3 _ N 2H
(at collision - at + h ( q, aqz 32) _ (8.1?

where,the,distribution function N is~the number<of.phonons
of modefg at position z and time t, and h is Planck's
constant. For :the N-processes there is’conservation of 9

but not for the U-processes, and consequently there will be

. two independent phonon distribution collision-relaxation

. times-rN and Ty* An explicit expression for the collision dA"
9N

term 3% collision

is obtained by substitution of the,'

ldistribution functions (for thermal equilibrium at temperauref'ﬁ

T, local perturbation at T, and relaxed thermal equilibrium
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at temperature T' locally) and the relaxation‘times in

equatiOn"(S.l), using as.boundary conditions

(1) :‘: conservation of g for N-processes,

(11) . p conservation of energy for N-processes (to first
order)@_ The total Boltzmann equation may now be solved
for the perturbed phonon distribution function, which when
inserted into the collision term gives two simultaneous
equations for AT (= T'-T) and the amplitude of the phonon
distribution modulation function in terms of a combined

relaxation time t:

: + = o (8.2)
T N Ty e . ‘ .

-1||-n

The energy transfer Q from the thermal phonon

assembly to an external” heat sink may be written as o
Z <H '_ ’ > ' ._ : | ('8,-3)
% corn/ R

wnere.'(.)indicates a time average. Substitution in
equation 8.3 of the collision term and'ﬁ'deriued from:the.
phonon distribution modulation function gives a general
expression for Q,: 'and then the acoustic attenuation a is

given.by_
@« = Q . A (58.4‘)'

' wheretthe(sound—wave energy density Wfis
_ _ , 2-.

wo= &AL (e E

V is the‘sound velocity, A the wave amplitude'and'b the

‘density..
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In order to apply the results of this evaluation -
to practical situations, certain approximations must first
be made. The angular integrations necessary for the '
determination of Q may be performed ahalytically if thé
phonon equilibrium frequency disﬁribution; the collision
time constants ™ and TU,‘and the Hamiltdnién ampiitude
coefficient a are assumed independent of:ditecfidn. TwO
further approximations are required: firstly an analytiégl
expression for the phonon frequency diStr;butioh function -
for which the Debye model is the most applicable - and
secondly the independence of ' Ty aﬁd a of q. This
independence is the most significant appfoximation_in ﬁhe
analysis. In most solids there is considerable uncertainty
;egarding the exact values of ™ and rﬁ,'but we may write
(ty/7y)>>1 and associate 1 remaining with the thermal con- “:ﬁ 
ductivity relaxation time rt. Finally; if the result is
particularised to a description of compressional wavé-
attenuation, the Hamiltonian amplitude coefficient may be
written in terms of the Gruneisen parameter y'. The

expression for acoustic attenuation now becomes at higher .
. £ N 2 { . :

temperatures. B
Cv T'y'z w2 1 S

a = 30 (wt<<l), ) (?’6)'ﬁ}

37 Vstn o ’ ‘

which in terms of the thermal conductiﬁity

1y’ o e
T3 ¢v Veth ° : - 1(8°7)§'i

may be written o

42 2 o
a = u—_"-[‘—si' (w1<<1)' ) ’ . (8-8) oL
P VSth . . i



-.198 -

and at low temperatures

L ] 7;2 w Cv T : oo ,
e L= 3" (wT>>l)' . . . . (8.9)
- 4 p.Vsth , . S

where C_ is the specific heat at conetant volume and V.. |
is an‘average velocity of'eound as a function of direction
(the Debye velocity). The expressionh(B 9)'has the eame-

. dependence on w and T and independence of T as that derived.
quantum - mechanically for wt®l: the temperature shift

term arising from AT 1s negligible in’ this limit.

_: In view of the approximations adopted in this
approacn, particularly in letting a single parameter y
represent the sound wave coupling with the crystal, Woodruff
and Ehrenreich (1961) obtained an excellent agreement
between;their theory and the measuredgattenuation.in Quart;
crystale, In'particular they'calculated”the,temperature
dependence of attenuation using a single}&alue for the
‘Gruneisenfparameter, whereas in most solide there is a
temperature variation in y'. Much attention has centred

on the correct choice of Y for use in the Woodruff and

'*‘Ehrenreich (W;E) theory (see, for example, Lewis, 1968)

In many materials the value of y? required to give
quantitative agreement with experimental data is found to;-
be larger by a factor of about 2 than that derived from the
_ Gruneisen relation itself, although there is usually eomej
correlation between the temperature dependences Of.f"from;f"
the W-E theory (y'y.) and the Grﬁneieen relation (y'g). In B
GaAe, for example, Bobylev and Kravchenko (1970) found |

thatfy'wE'followed the temperature variation of"y"G at;
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higherltemperatures, but failed to become;negative.as does
7'g below 40 K (see Fiqgure 6.7). It is'ewident that if.
the W-E theory is taken to hold true, then the Grﬁneisen
.-parameter average Y'WE required is not'the saine average.

as that appearing in expressions for thethermalconductivity.

8.2 . EXPERIMENTAL RESULTS
‘The ultrasonic attenuation in gallium arsenide has
been measured by the pulse echo technique over the tempera-

ture range 4 K to 294 K for longitudinal waves propagating

in the [111)1 and [110] directions at frequencies of 40, BO,Z.Efo

160 and 320 MHz: the results are shown‘in figures 8.l-8.8.
Three:main features appear in all of the attenuation
temperature dependences: o

(i) " A residual attenuation at temperatures below about
15 K;,_ | _ . ‘

: (ii)v:g'A rapid rise in attenuation aboue‘zo K;7of a form.
characteristic of attenuation due to thermal phonons.

(iii) _ A strong disturbance in the range 50 K to 80 K in ~
gthe form of a sharp attenuation peak at 40 MHz and ‘a somewhat
_arbitrary shape at higher frequencies, f’ ‘ .

.Thesevthree features will be considered in order.

8.3  THE RESIDUAL ATTENUATION ~~ -

Figure 8.9 shows the residual attenuation at 4 K
and frequencies of 40, 80, 160 and 320 MHz for both the -
[lll]LAand [1101L modes: the frequency dependence approxi-
mately follows w2 for both modes. Interactions with free
carriers and with dislocations are expected to dominate the

residual.attenuation.
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| The free carrier attenuation frequency dependence
should vary strongly in.the temperaturefrangeAZ K to lO K
(Elbaum, 1969) . Measurements of the'attenuation as a..
function of temperature have been made over this range
(Figure 8.10): no great changes are apparent, indicating
that the residual attenuation is not dominated by free |
carrier interactions. Granato and Lucke 0956)have derived
expressions for the damping of ultrasonic waves by dislocationf
. loops vibrating under the influence of the high frequency
stress.i An extensive description of this effect will be
given ‘in .Chapter 9: the attenuation dependence on intrinsic
.and extrinsic parameters may be summarised as follows:
a depends on B
(1) = the square of the loop length L between pinning
.tc points;
(ii).p"the elastic shear modulus;
' (111);: the burgers vector squared;
(iv) ~ the total length of dislocation lines in a unit'
 cube which is available for damping; A
(v) p .‘orientation of the propagation direction with
"1respect to the crystal slip systems,
- (vi) " the dislocation damping coefficient;

(vii) " the dislocation loop resonant‘frequenCy.

Alper (1968) found dislocation-damping attenuation at 4K of
about 7 dB/cm for [110] longitudinal 300 MHz waves. ;The'

dislocation density of the gallium-arsenide crystals used,

here was. about lO4 cm -2 (see Section 3.2.(c)) compared with

about’ 107 cm 2 .for mercury telluride (Alper, 1968): on

this basis alone the.dislocation attenuation for (1l10lL
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320 MHr waves in GaAs should be less than”o 0l dB/cm
compared with the residual at 4 K of 0. 3 dB/cm.- -The two
other’. main variables which must be considered are ‘the

dislocation loop length (which controls the resonant

frequency) and the damping coefficient.  Variation in either o

of these parameters which would raise‘the level of atten-
uationfmould also move the,resonant frequency to a value
substantially below that of'm220 MHz found by Alper?.i1968)
for HgTe. No peak is observable in the'frequency depend— 3
ence of the residual attenuation at 4 K~. the dislocation
attenuation at 320 MHz is unlikely to be more,than about
o. OladB/cm, and correspondingly lower’for‘lower ultrasonic
frequencies. | | | |

_'» Neither free carrier interaction nor- dislocation
damping appear to be capable of causing the large frequency
dependent residual attenuation at 3 K. It is possible that
- the effect is due to phase interference at the transducer
| rather than a true loss phenomenon- in'this case the
apparent residual attenuation will to first order be
independent of temperature (as shown in Figure 8.10) and
may be subtracted from the values of attenuation measured
over the. complete range from 4 K to 300 K. There is no
evidence of mechanisms other than phase;interference which
couldfcause'the observed residual attenuation: 1t has |

- been treated as. being independent of temperature.

8.4  THE PHONON-PHONON ATTENUATION
| Transition between the two regimes of phonon-

phonon interaction in crystals (Section 8 1) is given by
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the condition wt = 1. The temperature and frequency depend— _‘7
ence of this equivalence may be calculated from the thermal |
conductivity and specific heat (equation 8 7): Figure 8.11
.shows ‘results calculated from the thermal conductivity data
presented by Holland (1966) (Figure 8. 12), ‘the specific ’
heat data of Piesbergen (1963) and Cetas et al (1968) and
,velocity measurements of this work. vThe Debye velocity

v (3. 293x105 at 0 K) ‘has been calculated as in the ‘com=

STH

putation of the Debye temperature (Section 6. 3). In the

frequency range of 40 to 320 MHz ut is unity in the region

- of 30 K. above this temperature we can expect the.

.attenuation to be described by an equation of the form (8. 8).

At low temperatures wT>l, and equation-(8 9) should apply.
~In the W~E theory there is a change in the frequency

dependence of attenuation from a square law at high

'temperatures to a linear 1aw at low temperatures. The

frequenCy dependence of the measured atenuation at SO,

100, 200 and 290 K is.shown in Figures- 8 13 and 8 14 for

.the [111]L and [110]1L modes, respectively Both show a

_dependence of the frequency exponent on temperature. “The

exponent (n) has been calculated at one degree intervals

<from 30 K to 294 K (excluding the disturbed region from

50 K to 80 K) assuming the invariance of all other parameters.

Figures 8 15 and 8. 16 show the temperature dependences of n.

'Bobylev -and Kravchenko (19674,1970) have calculated the :

'dependence at 20 K and 300 K- (and by implication at 100 K

~as they show a temperature—independent attenuation between '

100 K. and 300 K), -and Krasilnikov et al (1969) and Ivanov

et al (1971) have given values for the 300 K attenuationx,
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for comparison these are shown in Figureshe.ls and 8.16.
The frequency exponent n approaches 2 at. the highest tem-
peratures, and falls towards 1 in the region of wi=l ——
the dependence predicted by Woodruff and Ehrenreich (1961).

i "1t was shown in Chapter 6 that the Gruneisen para-
meter‘of'GaAs is strongly dependent onntemperature. ~An
exact fit of the W-E model to the attenuation temperature
dependence has been computed to evaluate the Gruneisen
- parameter operative in the phonon-phonon interaction. When
the frequency'exponent obtained above is included, the
Gruneisen parameters is'found to be insensitive to-temperature
change ahove 100 K, but falls off rapidlv at low temperatures
(see. Figure 8.17, curves A). Y'WE has'aiso been calculated
as a function of temperature for a temperature-independent
frequency exponent of 2 (Figure 8.17, curves B); it is then
closer to y' L calculated from the Gruneisen law (Figures
8. 17, curve C), and coincides with the temperature variation
derived by Bobylev and Kravchenko (1970), where .an exponent
~ of 2¢was assumed.

LIt seems likely that some of_theﬁtemperature4
dependence ascribed to the frequency exponent is due to
variation in the frequency dependence of the Gruneisen para-
meter: - WOOdruff and Ehrenreich (1961) did not include this
feature in their model. The mode-Gruneisen parameters '

ontributing to v G itself are certainly frequency
dependent (Vetelino, Namjoshi and Mitra; 1970) and the
-average of mode~Griineisen parameters giving y! WE will be
- frequency dependent also. The change in_wn over the

| temperature range 100 K to 290 K is 1arge (a factor of
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The normalised Gruneisen parameter of GaRs: curves A are
calculated from the ultrasonic attenuation assuming the
frequency exponents given in figures 8.15 and 8.169

_curves. B are calculated from the ultrasonic attenuation
assuming the exponent is 2, independently of temperature)
curve C is calculated from the Grineisen Law.
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1.7 at 40 MHz and 2.4 at 320 MHz), however, both the
frequency dependence and temperature dependence of-atteni
uaticn:BVer this range can be accounted for by the inclusion
of aefrequency dependent term in the Grﬁneisen parameters;

Vg T P4

where:P is a small constant, m is smalljand y'# is the
frequency independent part of y! WE® This is consistent
with the value of wt between 100 K and 290 K (Figure 8.11):
over the:whole range wt<<l and a strongly temperature
dependent frequency exponent 1is not expected. .Assuming, o
then;7that o® follows a square law from 100 K to 290 K in
the range 40 to 320 MHz, the grﬁneisen"parameter temperature -
dependences at 40 MHz and frequency dependences to first
order in the range 40 to 320 MHz are as shown in Figures
8.18 and 8.19, respectively. | T

_' The temperature dependences of y! wg are similar in
form‘to that of y' G derived from the Gruneisen law (see
Figure 8.17) but the absolute values are larger. . Inter-
actions between thermal phonons and the ultrasonic phonons
.fwill be a function of the mode-Gruneisen parameters of
both, and although the thermal phonon parameters have a
range of values corresponding to different modes, the |
ultrasonic phonons will be characterised by a single mode-
parameter, which will therefore have a dominating influence
"in the mode-parameter average relevant to ultrasonic atten-
uation. Vetelino, Mitra and Namjoshi (1970) have ‘calculated
. the mode-Gruneisen parameter dispersion curves for the

[lll] and 1110) directions of zinc telluride (which has the
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same zinc-blende structure as GaAs) and also the average
Y'G, which is not susceptible to single-mode domination.
They found room temperature values for longitudinal acoustic
modes in the (111} and (1101 directions of l 33 and 1.45,
respectively, while the room temperature'average came out
to be 0.97: we might expect the [lll]L.and,[lIOJL values
- of the'average Y'WE to be larger,than.the value of x'G in
this case, as 1s found for gallium arsenide. Unfortunately
no information on phonon-phonon attenuationpin ZnTe is
reported in the Titerature. The frequency dependences of
! WE in GaAs (Figure 8. 19) are consistent with the
dispersion curves calculated by Vetelino, Mitra and
Namjoshi (1970) for the [lll] and (1101 longitudinal
acoustic mode - Grineisen parameters, both of wnich'are an
inverse function of frequency. | |

It is not possible to carry out a complete analysis
of thegattenuation data below »100 K because of theA
impossibility of separating the temperature dependences of
the frequency and Grineisen parameter exponents in the .
xeglon for which wt=1l, and also the data is complicated
by the small ratio of phonon-phonon attenuation to. residual

attenuation below 30 K and the anomalous peak between 50 K

and 80 K.

8.5 | __ THE NITROGEN PEAK _ |
_. | Measurements of attenuation in GaAs made by Bobylev.
and Kravchenko (1969) in the region 50 K to 80 K exhibit a
:similar anomaly to that found in thisawork, In a later

publication (Bobylev and Kravchenko;.l9joi they attrinuted
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the peak“to the condensation‘of air on the surface of the
sample or evaporation of the coolant into the atmosphere.
A similar phenomenon has also been observed for other
III-V compounds (InSb, InAs, GaSb; Bobylev and Kravchenko,
'1970) 4 for glass (Maynell, 1973) .and for indium (Gunton,
1973)J »Bobylev and Kravchenko's finding has been checked
in thisvﬁork‘by investigation of theranomaly‘in a'number
of different sample environments. the'presence‘of |
nitrogen has been found to be the controlling factor.

' Figure_8.20 shows the attenuation temperature dependences
5(temperature rising) for GaaAs in atmospheres of varving
nitrogen content and in a vacuum Thefeffect was not
observable on cooling the samples past 80 - 50 K, but
}'only when the temperature was rising. The peak height is
approximately proportional to the amount of nitrogen in .
the atmosphere' the inclusion of oxygen appears to be
unimportant;, The apparently small temperature dependence
‘and'lacklof'scatter outside the peak_region in Figure 8.20
-isddue to3the‘reduced scale required to display this
'enormous‘phenomenon: curve (a) is a replot of that given
‘in Figure 8.1: all the measurements.present in Figures
V8 1 - 8.8 were made after carefully flushing the cryostat

'with pure helium gas at room temperature. ‘ L

\

The majority of the observed peaks show a maximum.
in the region of 63-K - the melting temperature of solid
nitrogen. The sharp rise in attenuation up to this point
»could be explained in terms of the melting of solid
nitrogen which was frozen on to the sample or transducer

during'cooling from 77 K to 4.2 K. Agvery rapid rise in
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acoustic'attenuation has been observed in.many materials
on approaching their melting temperatures from below

(see, for example, Saunders et al, 1967). If the acoustic
coupling between condensed nitrogen and.GaAs/CdS were high
enough to allow a substantial penetration of acoustic
energy into the nitrogen on pulse-reflection at a coated
surface, ‘then absorption in the nitrogen could cause high
apparent reflection losses "from the ultrasonic pulses.
This explanation'is in qualitative agreement with the 1
attenuation rise below 63 K:. o

(1) " ¥he peak rises to a maximum at 63 K, where the
latent heat increases the ‘total nitrogen energy- E
requirement greatly. | '

(ii).ﬁ_ there are no anomalous acousticﬁlosses on cooling . -
past 63 K. | |

(iii) ‘ the peak height is. roughly - proportional to the
*étmospheric nitrogen content before cooling, and therefore
to-the'thickness“of'a condensed nitrogen:filmpformed on
cooling past 63 K. | |

It is very difficult to make an accurate quantitative check
of the agreement with experiments. A rough estimate has

" been made assuming:

() a nitrogen film thickness of 1 um over an area §
of 1 cm2 ’ | | '
(11) : the 1atent heat of fusion of. nitrogen : 6. l cal cm l.v.

(1i1) - total loss of the acoustic: pulse energy to the
nitrogen, as its latent heat, the apparent attenuation

'amplitude is much higher than that of the background‘

attenuation.
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(iv)I: ‘the time over which melting takee piace
(calculated from Figure 5.30 and 8. 20)
(v) - an ultrasonic pulse duty cycle of 10 -3 (meaeured),
The ealeulated pulse power required turns out to be of'the
orderioffzo mW, which itself is of the erder'of nagnitude
of the‘ultrasonic pulse powers used in.thesetmeasurements,
It is more difficult to ascribe a mechanism to
the remainder of the peak above 63 K;'-The measured atten-
uation regains the background value at around 79 K: the
complete peak width is approximately the range over which
liquid'nitrogen is stable at atmospheric pressure (under
which these experiments were conducted) . " There is
apparently no great abstraction of acoustic energy at the
boiling temperature of nitrogen (77 K) it is possible .
that the nitrogen present after liquifaction is vapourised
by a: mechanism similar to that of the 1iquifaction. the
time ‘period between 63 K.and 75 K is considerably longer
than that between 58 K and 63 K and the iatent heat of

vabburisation is considerably larger than that. of fusion.
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CHAPTER 9

ULTRASONIC ATTENUATION IN MER_CURY, TELLURIDE .

!
‘:tAlper (1968) investigated theitemperature,depend-
ence-ef?the attenuation of ultrasonic maues in HgTe between
4 K and room temperature'at'frequencies between 10 MHz and
75,MHs_for some.erystallographic direetiens; and the attenf
uatieu frequency dependence up to 300”MHz'at 4.2 K and 77 K.
iHis results for the temperature dependences of the [100] and
[lll] longitudinal attenuations in annealed and | unannealed
crystals are summarised in Figure 9.1 and 9.2, respectively.

The main‘features are:

!

(1) ‘7:’a residual attenuation at temperatures below :
about ‘10 K. | o <

(ii) - a sharp rise between 20 K and 30 K to a peak at
about 50 K, followed by a slow falling away ‘
(iii) | an apparently rising background attenuation,»

. particularly for the [100lL mode at lOQMHz above 200 K. v

'
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(iv)'; a peak or set of peaks in attenuation between
|

ZOO-Kﬂand 300 K whose position depends‘on‘frequency,-
l E .

Alper (1968) attributed the residual attenuation at low - -
temperatures to dislocation damping of the ultrasound,

the sharp rise and peak at about 50 K to thermal phonon
damping, and the high temperature peaks to forced
dislocation-motion damping (Bordoni peaks) He observed
that the background attenuation for;the<lO.MHz PlOOll.

mode followed the:relation'-
a = 16.7 exp (-0.063/KT) . | 9.1)

' between 230 K and 388 K. - |

In this work, preliminary attenuation measurements
made at above 300 MHz showed frequency dependences for the
_[lOO]L and (111]L nodes in the region of the low temperature
peak_to‘be entirely uncharacteristic-of'thermal.phonon
damping, the attenuation falling away ahove 300 MH2 rather
than following a lineer or square law dependence on |
frequency (see Section 8.1), suggesting that the controlling
interaction in this temperature region.is the same as that
at 4QQ:K, where Alper (1968) found a similar levelling-off
above 200 MHz. To investigate this dislocation damping
moreffully, measurements of attenuationﬂhave been made over
wide frequency;and temperature ranges for longitudinal-uaves
: propagating in the two major crystallographic directions An-
 HgTe: 11001 and [1111. | N "
It has long been recognised that the effect of dis-
‘-locations is important in mechanical dampigg in solids

(Read, 1941), Koehler (1952) proposed a model for the
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damping of sound waves by dislocations_vibrating as strings,
pinned at the ends by defects. This approach was developed
by Granato and Liicke (1956), whose model forms the basis of

' present-understanding of the interaction;

9.1 V:I THE GRANATO-LUCKE THEORY
-A - In the Granato—nucke (1956) model for dislocation -
- damping of mechanical waves the dislocations are treated
as "strings" through the crystal, pinned in position at
variouS‘points along their length at dislocation nodes or .
by vacancies, impurities or other point’ defects. The
distance between any two adjacent- pinning points (L) will
lbe a function of dislocation density, point defect density,
and the spacial distribution of the pinning points. For: a
random distribution of pins. there will. be a distribution
of loop lengths which is an inverse exponential of length
(Granato and Lucke, 1966) in the following derivation it
iS‘assumed that‘the distribution can be‘approximated by a
single loop length, Lc. If the stresses imposed on a
pinned'dislocation are sufficiently large, breakaway from -
_somedof;the weaker pins can take place, causing energy
absorption on}imposition of the stress and hysteresis on
relief,'as the subsequent collapse to'the'initial pinningfi
condition will be elastic. The stresses involved in |
ultrasonic experiments of the kind performed in this workr
are too small to cause breakaway without the imposition of
- an. external static stress (Alper and Saunders 1969), and it
will be assumed that all the pins are equally infinitely
| resistant to unpinning by stress alone, However, it 1is

possible for some of the pins to be thermally deactivated,



and this would give a temperature—dependeht loop length

distribution,

' Under the above conditions, the dislocations may

be represented by a set of extensible strings, all of

lexigth'I;.c and each with an effective mass per unit length

A, actimg under the influence of a line'tension on displace-

ment which imposes a force C per unit dislocationllength.

The equation of motion for a single dislocation may be

written

L.t
c

- ¢ = po S 0.2)

>
® I
e

+

o
&
-t
<

where U = U (x, y, t) is the displacement in the x direction

from its'equilibrium position: U (x,ly,tt) = 0 at the

bo

nodaL

(9.2)
A vis’
by
p is
b i
B is

points (y = 0, y = 1). Other parameters in equation
are defined as follows: | A .

the effective mass per unit length, given approximately

A = pb° L (9.3)

‘the density

the Burger's vector

the damping coefficient, which is equai to the

frictional force on unit length of a disloeation moving

at

is

unit velocity E
the force per unit 1ength imposed by the line tension, :
and is given by ‘
A o, R .
: . 2Gb , e »
C= TavT - (944) -

is

“is

is

is

the shear modulus of the material in the slip plane.

‘Poisson's ratio

the applied stress .

' the driving force per unit length.of the dislocation’

exerted by the applied stress.
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In order to:evaluate,thevmechehical damping an
expréSsion for the total strain is necessary: ‘

(9.5)

e = o1 * faig

The elastic straiﬁ'(eel) equals 'Xo/G). ‘The dislocation
straint(edis) for a single loop may be,yritten
f(edis) one loop = U L.b . - (9.6)

where the average dislocation displacement U is given by
- L : -
c

U = fL .j~ “u(y) dy - , : (9.7)
T e ‘ ;
o y :

for a dislocation-line density of A ,- the dislocation

strain becomes
4 c.

€ = £ | uly) dy . (9.8)
The total strain expression (9. 5) may now be inserted 1nto
Newton' 's equation of motion of the form

2 a2

i - o 1% R 1 9.9)
X’ at ‘ ' '
tO'gi?e}
T : L
L a2 2 T c - :
"3 ¢ p 9@ - Apb ] _ ‘
a2 G a? Lo at? L- ; | S

!

Granato and Lucke (1956) showed that equations (9.2) and
(9.10).form.a'system-of simultaneous equations. The dis-‘
olecement U'may:be'derived-from a triai'solution of the
form."'. | | B |

{.o = o exo (=ax) exp [i(mt _ﬁ%?)] "__r o (9rli)-‘j

where.m is the mechanical wave‘angular'frequency, and-gt
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expressions for the modulus change (AM/M) and the decrement

(a/w) may be deduced:

R 2 : 2 - 5
e MM 1T WA gaa)
L " [1- (w/w ) 2]? +‘(w/goo)? | | L

2 (w/m D) o e
QB AL (9.13)

[~
l

[l-(w/w )2]2 + (w/m D)2

where:

Q isfanlorientation factor, which takes aCCOUnt of the
propagation orientation with respect}to the_diélocation
slip system. | ' '
depends solely on material parameters.

' 2 o o .
s, = BB e BN
' °© n=C o ‘ g T .
_woyis;the‘dislocation resonant frequencyqin'the absenoe

. of damping: | | .
o o » 2 - _ o Co
w°2>= U Cz L (9.18) ¢

D is the normalised inverse damping coefficient,

indicating the freedom of dislocation movement.‘

0 . - - 6.)

The frequency dependence of the normalised decrement
(A/QA AL ) calculated in this way is shown in. Figure 9. 3

as a function of the normalised frequency (w/w ) (after

Granato and Lucke, 1956).' The form of the decrement depends

greatly on the value of D. For D>>1 (low damping) the';- -

attenuation (a) and’ 'decrement pass through maxima at the

resonant frequency v i for. D<<l the.loss follows a very -

: broad‘peak, centred at w_ but flat-topped, and the decrement
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peaks at a frequency far below’ mofand'then falls away;as<
(l/w) over the frequency range covered by the top of the
peak in attenuation. 1In this latter condition (D<<1) the
maximum in decrement is at frequencies far below Wy (for
example,_at wo/loo for D = ) and the region over which
A is?proportional to.m-l extends up to‘frequenciee.above

(for- example, up to 10 w, for D = lb’z).~ considerable
simplification of expressions 9.12 and 9. 13 may be effected
in this region by putting (w/w ) <<1.‘ This approach was
taken by Alper (1968) in analysing the dislocation damping
of ultrasound in HgTe, and by Mason and Rosenberg (1966,.
1967l in calculating the damping coefficients of aluminium
and lead as a function of temperature. Unfortunately the
approx1mation is not valid for mercury telluride over the
frequency range of measurements made in this work, and the
complete-Granato-Lucke (1956) expression8»9.12<and 9.13
must be’ used. | o o

h Granato and Lucke "(1966) have presented expressions
for the decrement maximum Ay at frequency by in the
approximation condition given above when an exponential

distribution offloop lengths is included

_ 2 - N . _'_'
Ky = 2.2 28,0 Lg R (9.17)
eg 2 o ot SR .
Uy S 9.082 o : i (9.18)
: L.“ B - : ; ‘
: E A : - o X :
where L. is again a representative loop length. The!nain

, B
-effect is to shift the attenuation maximum to a lower

frequency, and thus to shift the’ decrement maximum to a
lower frequency and a higher amplitude. Analysis of the

effect of an exponential loop-length distribution on the
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decrem ent for D1l yields very complicated results (see
Truell et al, 1969) and in this region it is very difficult
to calculate the experimental damping coefficient on such

a basis.-

9.2 - EXPERIMENTAL RESULTS |

" The'temperature dependences-of longitudinal ultra-
sonic wave attenuation in HgTe from 2 K to 115 K in the
[lOO] and (111) directions are presented in figure 9.4 to
9.11 and 9.12 to 9.19 respectiVely for frequencies at
100 MHz intervals between 50 MHz and 750 MHz. The-~results
are summarised in Figures 9.20 and 9. 21 along with the
extension of the measurements up to 290 K: in regions
where no~curve is shown for a particular frequency the
'attenuation was found to be too high forfmeasurements to
be made using the equipment available.y Three main features
. are discernable. a residual attenuation at the lowest
temperature achieved (2 K); a sharp rise in attenuation
up to a frequency-dependent peak between 40 K and 70 K;
a slow frequency-dependent rise in background attenuation,
_ all the way up to 290 K for the 50 MHz measurements.

These will~be discussed in turn.

(a) The residual attenuation

Figure 9 22 shows the residual attenuation at 4.2 K
as-a function of frequency for longitudinal wave propagationA
in the (100] and (111} directions of HgTe. The form of .
the frequency dependences in this region where only |

electronic and .defect interactions are expected (Lewis, .

1970) are consistent with Alper's (1968),discussion in
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‘terms of dislocation damping of the ultrasound. The full
‘lines shown in Figure 9.22 are the computed best fits of
the Granato-Lucke expression 9.13 to the experimental data:

the fitting itself will be described later.

(b) " The low temperature peak

The measurements of attenuation made by Alper (1968)
in the temperature range 20 K to 70 K at frequencies up
to 300 MHz are consistent with the form of the phonon-
thermal phonon interaction described by Woodruff and
Ehrenréich (1961) (see Section 8.1l). The shafp rise is
in the region where wt = 1. The tempe;ature and frequency

1 conditibﬁ has been computed here

i

dependeﬁce of the &1
from the relation 8.7 for thé thermal conductivity in terms
4 of the‘phonon relaxation time using thé data of Whitsett and
Nelson (1972) (see Figure 9.23). Howe?ef, the values of

- 'the Gruheiéen parameter YﬁE required to gi&e a quantitative
fit to the attenuation in this region‘ére too high:

between 2.7 and 4.8 for the [1111L, [100] L, [110]L and

L [1111s modes-(calculated-in‘this work);» The frequency
dependenées of attenuation in the peak temperatufe range

are in direct contradiction to the depéndencgs associated
with phonbn;phonon interactions: the aﬁtenuétion'rises
with frequency up tc about 200 to 300 MHz, then falls away
.again (see Figure 9.24). It is possiblé that some of the
Aattenﬁation above about 400 MHz can be accounted for by
phonOn—phonon interactions, but not thé'enormous peak 
below.this frequency! which resembles'a-resoﬁaﬁce —ibqth

in its frequency and temperature depeﬁdences; In view of

the piezoélectric velocity coupling obéerved in propagation
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- of the [1111L mode in HgTe (see.Section 7.5) it must be
considered whekher this low temperature»éeak.could be a
related-phenomenon. Examination of both Alper's (1968)
work and these measurements indicate tﬁat this is not so:
in this work entirely similar attenuation_characteristics
‘were found for both the [11l]L piezoeiectrically-coupled
and the [100] piezcelectrically-inactive-modes: in
Alper's (l968),measurements below 100 K the largest peak
was observed for the piezoelectrical;yfinactiveV[ill]S
mode, while the coupled [lll]L‘mode-showed only ‘a small
peak:(Figure 5.25). It is concluded that the enormous
effects'in the region of 30 to 70 K ih;HgTe'are due mainly
to dislocation interactions with the_pltrasodic waves:

the rrequency and directional dependences cf the attenua-

tion’are inconsistent with any other mechanism.

(c) - The back-ground attenuation:

.Above about 150 K Alper (1968) observed ‘a back-
ground rise in attenuation at 10 MHz which he described
by an Arhenius equation of activation energy O.b62 eV
(Figure 9.1). It is tempting to attribate this to an
interaction of the ultrasonic wave with point defects
of formation or migration energy equal to the activation
energy given by the Arhenius equation,;but the consequenti
formation or ﬁigration eﬁergy (0.063 ey) is about an ordé}
.of-magnitude below that commonly foundlfor the simplest ’
p01nt defects. Superimposed on this background atten-
‘uation Alper (1968) found high temperature peaks, which

he attributed to forced dislocation motion. These are

alsc observable in Figure 9.20 and 9.21 at similar
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temperatures for 50 MHz ultrasonic waues,'but have not been
investigated further here. The attenuation measurements
above 115 K are entirely consistent withAthe measurements
and discu551on presented by Alper and Saunders (1969)

The sharp rises observed in the attenuation between 60 K
and 90 K at frequencies -above 150 MHZ-are attributed

here to phonon—phonon coupling: this is discussed in

Section 9.3.

9.3 . PHONON-PHONON COUPLING IN HgTe

Mercury telluride has the same crystal structure

as gallium arsenide, and very similar uncomplicated elastic
behaviour as a function of temperature (see Chapters 6 and
7). In the absence of direct observations of the thermal
'phonon-ultrasonic phonon coupling in HgTe we may. reasonably
use the results of calculations of the coupling in GaAs
(Chapter 8) to calculate the temperature and frequency
dependences of the attenuation due to thermal-phonon damping
in HgTe. On examination of Figure 8. ll and 9.23 it is
apparent that for frequencies below l GHz the condition

wt =1 is fulfilled at higher temperatures in HgTe than in
GaAs. Consequentlyvthe sharp rise in.attenuation due to
’thermal-phonon coupling, which for_GaAs~is at temperatures
slightly above those satisfying wt=1 add which shifts |
slightly to higher teu@eratures with frequency as does the
wt=1 condition, should be at higher temperatures (50 K to
‘60 K)- for HgTe than for GaAs. This isAconsiStent with the
Steep rise in attenuation above 50 K observed in HgTe for

propagation of the [100] and [111] longitudinal high
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frequenéy waves (see Figﬁres 9,20 and_9.2l){

The attenuation due to thermal phonon damping
expected in HgTe has been calculated usihg the W-E theory
(see Seétion 8.1):  the results are presented in Figure
9.26 fo:‘the (111] longitudinal mode."The fhermal con-
ductiviﬁy meqsured by Whitsett and Ne;ssn (1972) has been
- used (figure §.27),along with the Debyéuvelbcity“céléulated
ffom the elastic constant data presented. in Chapter 7

1 2t 0 K). The Griineisen parameter YWE

(1.533x10° cm sec”
for HgTe has been bbtained from theAcaichiated temperature
dependence of ya (Figure f.6), the frequency exponent
temperature dependence found for GaAs (Figure 8.39) and the
tempefature dependence differential betweén curves B and

C prgsented for GaAs in Figure 8.17, related fo the
difference in absolute magnitudes beﬁweén ?*ﬁ (Figure 8.18)
and,yé'(figure 6.7) for Gahs. TheAcﬁfvés'presepted in
Figure'§;26 gonfirm that the sharp rise'in attenuation
between 50 K and 80 K at high frequenciés in HgTe ié due
to tﬁermal phonon-ultrasonic phonon éoﬁpling. Exact ‘
quantitative agreement is not to be expected'owing to the
large dislocation-phonon interactions in this region, and

the approximations made in the derivation of YﬁE"

9.4 - DISLOCATION ULTRASOUND DAMPING "IN HgTe

- A computer program has been de&iéea to give the
besﬁu(léast'mean squares)'fit of the.Graﬁéto?Lucke dés—
locatioh.damping equation 9.13 to the measured.values of
_ attenuation as a function of frequency atAeach temperature.

The calculated phonon4phonon‘attenuation (see Figure 9.26)
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is first subtracted, then the best fit computed from

equation 9.13 formulated as

w_ o . ' (9.19)

‘where F is the ultrasonic frequency and‘F ’the'damping-e
“ree dislocation loop resonant frequency. ‘After substitution

of equations 9.3, 9. 4, 9.14 and 9.15 in 9.13 we find that

wo= 28814 o (9.20)
: o0 : 4

The three parameters W, Fg and D haye-heen treated as
independent variables in the computation; W is only a
slight function of temperature (Equationsé.ZO) and its
computedfapparent temperature dependence“serves as a guide
to the‘Validityrof application of thethanatOwLﬁcke model
in this context. | o |

The computed temperature dependences of W, Foiand D
for the {100] and [lll] longitudinal mode attenuations are
shown in Figures?9. 28 and 9.29, respectively The para-
meter'W is reascnably constant below about 80 K for both
modes, a finding which indicates that the Granato-Lucke model
is a gocd description of the ultrasonic attenuation in this
region. Above 80 K the attenuation is complicated by other
mechanisms, as found by Alper and Saundefs (1969); the
, smooth changes in Fo and D in the- region approaching lOO K
support Alper and Saunders (1969) conclusions that the atten-"

.uation;above the low temperature peak is dominated by dis-

location interactions.
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well below room temperature. Fo'varies”by a factor of about

pins at equal spacings 2Lc is likely to apply ~ The equa-

tions resulting from their analysis are too complicated

curves of observed activation energy U as a function of.

‘applied stress (see Figure 9.30). Quantitative comparison

is a strong function of applied stress, and it 1is not

- 272 -

The behaviour of the resonant'frequency Fo and

the damping coefficient D at temperatures below 80 K is

characteristic of thermal deactivation of some of the

dislocation pins (thermalbunpinning):. the resonant‘frequency
falls with increasing temperature,‘indicating an increasing
dislocation loop length, and the‘damping~coefficient
ekhibitsya large peak (equivalent to a sharp drop in the
damping) in the temperature range whereythe.resonant
frequency is changing most rapidly. ‘Thermal unpinning of
dislocations absorbs energy from the thermal phonon popula=
tion and the phonon damping of the dislocations is con-
sequently less in magnitude. Teuticono et al (1964) have
treated‘the thermal unpinning of dislocations in detail,

and they found that thermal breakawayfwould'norm ally occur

2facross the unpinning temperature'(Figures‘9.28,-9.29):
about half the total number of pins in'the crystal are de-
activated in the breakaway. Consequently, the model of

Teutonico et al (1964) in terms of breakaway of alternate

for application to a practical situation, but a qualitative

comparison may. be made by examination of their calculated

with these curves cannot be made as the activation energy :

possible to assign accurate values to the stresses

involved in the ultrasonic wave propagation in this work
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The dislocation ﬁarameters‘efféctive at 5K can

be calculated from equations 9.3, 9.4, 9.14, 9.15 and

9.16 using the data preseﬁted in Figures 9.28 and 9.29,

and in Chapter 7. If the Burger's vector is taken as

%<110> (Holt, 1962) these parameters have values

_Burger?é vector b = 4,
Shear modulus G = 0.
Poisson's ratio v = 0.

Line tension C = 2.
Line mass A =1,
‘Constant A, = O.

569 x 10°° cm

1359 x 1012

3767
4

d'yn'cm-2

898 x 10~ 4 G. ¢em sec™>

14

687 x.10 ~'G. cm~
1 -1

2525 dyn G. = cm

For the [100] longitudinal mode:

Loop length Lc

Drag coefficient B =

1.70 x 10 cm

2.21 x 107% ayn

For the [111] longitudinal mode:

Loop length L, =

Drag coefficient B

- The loop lengths as def

as a multiple of the Bu

<% = 7.4 x 10” for the [100]L.
B ; -
- 5 = 5.9 x 10” for the [111l])L.

1.35 x 1074 em
1.39 x-10"4 dyn

sec cnm

2

~2
sec cm

ined in Teutonico et als'

rger's vector are

(1964) work

The loop léngth Lc which appears in theAGranato—Lﬁcke

theory is not corrected for the relativenorientation of the

ultraSohic wave in that the dislocation resonant frequency
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is assumed 1ndependent of applied stress orientation.
Consequently we may expect to find differences between
values of L derived from modes where the average resonant
frequency F is different: F itself depends on the
orientational distribution of the dislocations in the
glide plane relative to the propagation direction. This
may also be seen in the differences in- shape of the'atten-_
uation temperature dependences (Figures9.28 and 9.29). If
the derived values of 2Lc/b were the same for the [100]

and [111] modes, we should expect to observe unpinning at
the same temperature for both modes,'according to the
TeutOnico-Granato-Lucke model (1964): for a single value
of stress o and a single value of-2Lc/n'the value of the
activation energy is uniquely defined in-Fignre 9.30. The
stress'distributions in conditions of nltrasonic wave
orooagation are too complicated for a direct comparison
between the model and experiment to be made, but it is
interesting to note that for the change in 2Lc/b found
_'between the [{100]L and [11l1l]L modes, the observed unpinning
temperature Tu (simply Tu = Ul/k’ where k.is Boltzmann's
constant) should be greater for the [ili]L mode: than for
the [lOO]L. If the unpinning temperature Tu is taken to

be at the maximum in D, then the experinental situation -

is found to bé‘the.inverse of this:

Mode:.} . Tw - EJ_l_
[1001L 38 K . 0.0033 eV
[11171L 28 K 0.0024 eV

The barrier height Uo restricting the unpinning is a

multipie of U, depending on the value of o: for an order
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of magnitude change in ¢ the ratio (Ul/U ) can change by
an order of magnitude (see Figure 9. 30) ’

Bailly (1968) has calculated the energy for forma=
tion of~metal vacancies in mercury telluride on the assump-
tion that covalent bonding occurs betWeen Te neighbours.

He found that this type'of vacancy (cailed by him a "covalent"
vacancv)'has}a negative formation energyi(-0.13 eV), and
consequently large concentrations can be expected to occur
naturally. The bonds between Te neighbours may be broken

at high temperatures, transforming. these complex vacancies

_ into normal ones: the calculated energy of transformation

is in fair agreement with experiment.(Rodot, 1964). Evidently
" Bailly®s (1968) formation energy calcuiation is only valid
for'an isolated vacancy, and does not;mean that HgTe cannot
exist, asiinteractions between vacancies have not been
considered but it does indicate that a substantial number

of these "covalent" vacancies of very ‘low migration energy
must be present in mercury telluride. 5This is confirmed by
the studies of Rodot (1964). |

For the dislocation density- ('»107 ch) and the
denSity of the low—energy pinning points found in this
ultrasonic work (between 2.9 X lO3 and'3.7 X 103 per centi-
metre length of a dislocation) the. volume density of low—
energy pinning points below 20 K - 30 K is of the order of
3 x lOl cm~3:{ this would be consistent with identification
of the pinning points with the low—energy covalent"
vacancies in HgTe discussed by Bailly (1968). It is
evident that a great deal of further work on this point 1is

required before a definite identification of the pinning

mechanism can be made.




- 277 -

CHAPTER 10

SUMMARY AND CORRELATION : THE ELASTIC AND ANELASTIC

PROPERTIES OF GaAs AND HgTe

The elastic and anelastic properties of gallium
arsenide and mercury telluride have heenxstudied through
sound velocity and attenuation measurements in the temperature
range 2AK to 320 K. Attention has been paid particularly
to deternination of the uncertainties involved in the
velocity measurements in order to obtain the most accurate
elasticity data possible,‘and the attenuation has been
studied over a wide range of ultrasonic frequencies to
~enahle;accurate‘determination and senaration of the various
contributing damping mechanisms. On the basis of close
‘similarities in the elastic behaviour of the two compounds
;it has. been found posSible to extract information from the
'ultrasonic attenuation in gallium arsenide which is vital
to separation of the more complicated.effects observed in

" the case of mercury telluride.
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- The absolute values of the measured elastic constants
of GaAs and HgTe fit well into a general scheme of correla-
tion between the elastic properties or the group IV, III-V
and II-VI materials which has been'deVised in this work as
a reformulation of the lOng established keyes (1962) cor-
relation. This will be described in the following section.
The care taken in avoiding the use of piezoelectrically-~
coupling modes in the determination of the elastic constants
has been justified by the finding of a temperature-
dependent plezoelectric stiffeningsof the Illl] longitudinal
.wave mode in both HgTe and GaAs. The-quality'of the experi-
mental data is adequately demonstrated by the low temperature
(2 K) agreement between the Debye temperature of GaAs .
derived from the’specific-heat (346.7 K).and the value
' calculated in this work from the measured elastic constants
(346.8 K). | |

The temperature dependences of the elastic constants
between 2 K and 320 K are well described by a phenomeno-
logical'model devised by Lakkad (1971)-:‘On the basis of
close examination of the small dev1ations of the model from
the experimental data, a possible correlation in the tem-
perature dependences of the mechanical properties of zinc-
blende crystals is suggested in Section 10.2. .
- Whereas the ultrasonic attenuation observed in
.mercury telluride is very complicated in its frequency and
temperature dependences, the. attenuation in gallium arsenide
is_ea51ly separable into individual components: it has
.'proved'possible to make a detailed comparison between the
experimental results for GaAs and a theory of damping dueA

to thermal phonon-ultrasonic phonon interaction The
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chéracteristics of the Grﬁheieen parameter appearing in
the theory have been considered (see Section 10.3). A
summary 1is presented in Section 10.4 of the separation of
theﬁdislocation damping of ultrasound from the HgTe atten-
uation data and the conclusions relevant to thermal

dislocation unpinning in this material.

10.1 AN EXAMINATION OF THE KEYES-MARTIN CORRELATION

Keyes (1962) suggested a correlation between the
elastic properties of the diamond structure group IV
elements and the zinc-blende structure III-V and II-VI
groups of compounds. Using dimensional analysis he pro-

duced a'hormalising constant Cd defined as

c = L ' (10.1)

where qdis the electronic charge: and r the nearest-neighbour
distahce; the values of the normalised bulk modulus B*

. . %* *
and shear moduli 044 and CS

C + 2C

o .
- :
# - 44 S
C4a = C ' : (10.3)
(o) .
C -C
N T SR Y A , (10.4)
S 2€C ¥ : .

were found to be aéproXimately constaht-within

each of the IV, ITI-V and II-VI groupe..~Martin (1970)
extended the correlation by describlng the deviations from
constancy in B¥, C44 and CS throughout the IV > III- V —»1I-VI
series in terms of the bound character. He plotted the

values of B" ' C44 and CS against the bond ionicity fi
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defined by Phillips (1970), and found tpét_the reduced
moduli were approximate functions of (1 - fi)'

For B, Cz4 and Cg to be constanﬁ inside a group
including compounds P and Q, the ratibs‘of the individual

reduted moduli of P and Q must be equal:

*p *p
*0 *Q *Q - *
B a4 Cs™

This is algebraically equivalent to the;set of equalities

P .
11 CQ 11
O
P . -
cF o\ S _
p _ % 0 L .
Ciy = = 012 A . . (10.6).
O/
|
CP _ EQ CQ"
44 cQ 44
o)
which reduces to
C .
P _ ) Q L
Cij CQ Cij o _ (10.7)
o)

‘Thié‘rélétion has been tested here,thrbuéhout the‘

IV —$iIi¥V —II-VI series by defining first a standard
materiél Q (GaAs) and calculating the'§pread ofvalues of
thé constant (Cg/cg) required to satiéfy equation (10.7);
for ajgiven matériath. Keyes' (l962)-éorrelation implies
that fbrfany material in the IV —>111%vj;>11—v17series the
spréadfshould be zero. The»principal prob1em is the choice
of eléstic constant values from the Séverél:sets of data
avaiiable for many of the materials. 'A‘iiét 6f soufces of

data used in these calculations appears'in Appendix I{;5
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directional dependences of the elastic constant combina-

tions.. _

- Spread parameters similar to RC have been calculated
for.ratios of all the longitudinal pure mode elastic constant
combinations (see Table 1Q.B) in the IV —§II-VI series
using GaAs as the standard material.A'Both the minimum and
maximum'spreads in the ratios arevquoted:to give an idea
of the wide range of measured elastic constant values found
in the literature for some materialsf Carefully measured
values of elastic constants are commonly accurate to about
1%: the minimum spread in 1ongitudinal:pure mode ratios
is less than, or of the order of, this value for all the
.IV' III-V and II-VI materials except C(diamond)' Si and
ZnSe. It would be useful if further measurements could be
made for ZnSe to ascertain the reason for the comparatively
large spread (3:77%) in the elastic constant ratios for
thisdone compound in the III-V and IIEVI groups; With
thisfexception there is an extremely d0od correlation
betweendthe elastic moduli defined in this'way: it seems
that in the'III-V and II-VI zinc-blende‘materials this
longitudinal pure-mode elastic constant combination ratio
is independent of crystallographic direction. The value,
of the ratio itself is a measure of the magnitude of the.
directionally independent elastic constant comblnation,A
vand it is directly proportional to Cll (the [100] longi-‘
tudinal ‘mode elastic constant equals Cll)‘ o
| .There is a general trend towards higher values of
the‘longitudinal pure mode ratio throuoh»the series

IV —*III-V - II-VI, but no obvious correlation has been

found between the ratio and any other parameter, except.
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TABLE 10.B The longitudinal pure mode elastic constant .

combination ratios in the IV —III-V —II-VI

series.
Group Crystal 2:§i§3é% g;giggm% A::i:ge
' . ; of ratio
C 41 anond) - ‘13.49 0.1225
v s, 5.34 5.29 0.7547
Ge 2.36 0.75 0.9808
AlSb 1.28 1.25 1.3919
GaP - | 0.44 0.8597
Gahs - - 1.0000
111V | , GaSb 0.85 0.80 1.3384
InP - ' 0.73 1.1795
InAs 2.24 . 0.58 1.3408
InSb 10.70  0.18 1.8199
ZnS 5.03 0.85 1.1671
ZnSe 11.04 3.77 1.3325
. ZnTe 0.23 -0.15 1.6450
II-VI o
cdTe 5.79 .40 2.1676
HgSe 2.10 . 0.19 1.8010
HgTe 0.1 ;o;os 2.0259

TABLE 10.B
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that the plot of C¥. against fi has a'slightly better

11
'agreement with a function of (1 - f ) than does a plot
of B* 'against fi (see Figure 10. 1)

' Exact agreement with Keyes' relation demands that
the'pure shear mode elastic constant‘combination ratios
should also be equal, and also that_the'shear mode ratio
for a pair of compounds should equal‘the longitudinal mode
ratio. Table 10.C shows that this is- not the case in
gene:al; The elastic constant combinatlons presented are
normalised to those of three different compounds: .GaAs,
HgTe and ZnS. 1In general the ratio spreads are large
and the ratio is not the same as the-lohgitduinal one
(column 2 of Table 10.C may be compated with column 3 of
Table 10.B). A number of related groups of materials may

be‘defined by examination of Tables 10.B and 10.C:

(a) . Groups for which both,the pure-longitudinal and
pure-shear ratios are nearly directionally independent.
(b) Groups for which both ratios are nearly directionally

independent and also are almost egual.

Grohps falling into claesificatien (a) are

(1) .GaP,~GaAs; GaSb, Alsb, and possibly InSb.
(ii)‘ InSb, InAs, InP, ZnTe. -

(1ii) HgTe, CdTe.

(iv) ZnS, ZnSe.

Groués-of4class'(b) are
(l) GaP GaAs, GaSh.
(i1) HgTe, CdTe.
The spread in the pure shear mode ‘ratios (Table 10. C)

is not ‘random. The [111] shear value falls almost exactly'
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between: the [lOO] and [lld] shear values;-irrespective of
the normalising material chosen (see Table 10.C, columns
3,6,9). It is interesting to note tnatfin general for
materials above the normalising‘compounds in Table 10.C
the'ratios'themselves decrease in the_order [l00]S —»
Illllé —» [110]s, whereas for materials:below the
normalising compounds the order is reversed (indicated

by * in Table 10.C).

10.2 THE ELASTIC CONSTANT TEMPERATURE DEPENDENCES

The measured elastic constant'temperature dependences
-of GaAs and HgTe are described reasonably well by the
Lakkad: (1971) phenomenological model. . The degree of misfit
of the model has been computed as a function of temperature
in terms of a variable Debye temperature'(Figure 6.8land
“7.5) in a similar manner to that normally adopted in the

. case of specific heat data (see, for example, de Launay,
1956) The bases of the Lakkad elastic constant model

and the Debye specific heat model are similar, the Lakkad
model includes an anharmonic to harmonic force constant
ratio,.but its change with temperature is ignored: the
temperature dependences of the Debye temperatures derived
from the Lakkad fit to elastic constant data and the Debye
fit‘to-specific_heat data should-be'similar: this is con-
pfirmed for GaAs (see Tigure 6.8). |

| The temperature dependences of both the Debye
temperature and the Gruneisen parameter are determined‘by
the temperature dependence of the anharmonic to narmonic
force constant ratio. The temperature variations~of the

Grineisen parameters are'very similar for GaAs (Figure 6.7)
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and HgTe (Figure 7.6):  the elastic constant Debye temper-
ature Variatlon should be as well. Figure 10.2 shows the
Debye- temperatures given in Figures 6.8 and 7.5 normalised

to their respective 0 K calculated Debye temperatures: the
two sets~of values follow each other very closely. The impli-
cation is that although the anharmonic to harmonic force
constant_ratio may‘be determined at O K by the -atom types
present, the temperature dependence of this ratio is con-

trolled more by the crystal structure.

10.3  PHONON-PHONON ATTENUATION AND THE GRUNEISEN

PARAMETER OF GaAs

The main features of the frequency and temperature
dependences.of ultrasonic attenuation in GaAs are well
described by the theory developed by Woodruff and Ehrenreich
(1961). A number of features of the‘model have been clarified
in this work. It is possible to describe the temperature
and frequency dependences of the phonon-phonon attenuation
for or<<l with a frequency exponent of exactly 2, if the
Grﬁneisen parameter is assumed to be ofdthe form

, -m A

' =
Y WE ?w +

YR

where P is a small constant, « the ultrasonic frequency, m
is smail‘and Yﬁ'is frequency independent. The Griineisen
parameter frequency exponent m is then’temperature dependent
in a manner consistent with theoretical calculations for
III \' compounds (see Vetelino, Mitra and Namjoshi, 1970)

. The value of yﬁ is about 1.9 times larger than that of the
Gruneisen parameter derived from the- thermal conductivity.

The ultrasonic—attenuation parameter should be substantially

dependent on a single mode—Gruneisen parameter (that of the
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particular ultrasonic mode) whereas the thermal conduc-
tivity'is mode-independent. In the similarly—structured
ZnTe the Grﬁneisen parameter ratio basedvon}this assumption
is about 1.5 (Vetelino, Mitra and Namjoshi, 1970) .

The frequency exponents predicted in the Woodruff-
Ehrenreich (1961) model are 2 for wT<<l and 1 for wt>>1:
there is a sharp fall in the value of the exponent calcu-
lated from the measured attenuation (see Figures 8. 15 and

8.16) in'the region where wrtvl (Figure 8.11).

10.4 THE DISLOCATION DAMPING OF ULTRASOUND IN HgTe

_The temperature and frequencyfdependences of.
ultrasonic attenuation in-HgTe are'extremely.complicated
(see'Figures 9.20 and's.él). In thedregion below about
80 K there are two major mechanisms contributing to the
: damping; dislocation loop resOnance.andlphonon-phonon
interactions. In order to eyaluatethe»dislocationfdamping‘
-the»Veryplarge phonon—phonon attenuation‘must first be
_subtracted from the measured attenuation. This has been
done using the Woodruff-Ehrenreich (l9615 equations and
a Gruneisen parameter derived from known data for HgTe
and the Grineisen parameter‘characteristics found for GaAs;

the. use of similar characteristics for the HgTe calculations
4is substantiated by the elastiCity and’ Gruneisen parameter
. correlation described in Section 10. 2.g The remaining
attenuation below 80 K has been found to'be characteristic
- of dislocation damping, complicated by a dislocation unpinning
mechanism at temperatures of about 28- 38 K 'It has not

.proved possible to identify positively the dislocation‘
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pinning agent involved, but the results are consistent
with unpinning through migration bf A.Qery low energy
metal-ion vacancy. Rodot (1964) and B&illy (1968) have
discussed the presence of enormous nuﬁbérs of such
vacanéies in HgTe: the calculated nﬁmber of dislocation
pinﬁiné points deactivéted between 28]and 38 K in HgTe

is about 3xlOlo cm-3.
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APPENDIX - 1

The following is a list of‘sourcéslof ekperimental
data on the elastic constants of the group IV elements and
the IIFV and II~VI compounds. Wherever possible in |
Section 10.1 of this work the O K.éxtrapolated values of

the elastic constants have been used.

€ (aiamond) * | - |
McSkimin H.J., Andreatch (Jr.) P, Glynn P. JAP 43

3 985-7 1972

" (includes a summary of previous wo:k):

Si:

Beilin V.M, . Vekildv Yu Kh, Krasil;nikov OM Sov.,ths.
Solid State 12 3 531-5 1970
‘McSkimin H J JAP gg 8 988-97 1953

McSkimin H J, Andreatch (Jr.) P. JAP 35 7 2161-5 1964
_ gg:A' : o : |
Beilin V M, Vekilov Yu Kh, Krasil'nikov O M Sov. Phys.
“Solid State 12 3 531-5 1970 . |

Burenkov Yu A, ‘Nikanorov § P, Stepanov A V Sov. Phys.
Solid State 12 8 1940-2 1971

McSkimin HJ JAP 24 9 988-97 1933

Ale;» : ,
Bolef D I, Menes M JAP 31 8 1426-7 1960 f ;

Weil R JAP. 43 10 4271 1972

GaP: - - _ : o .
 Weil R, Groves WO JAP 39 9 4049-51 1968

GaAg:
See €hapter 6 for a summary.
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GaSb :
- Lin J T, Wong C J. Phys. Chem. Solids 33 2 241-4

McSkimin H J, Bond 1) L, Pearson G L, Hrostowski H J

Bull. Amer. Phys. Soc. SII l lll 1956

Ine: -
Hickernell F S, Gayton W R JAP 37 1462 1966

Inhs: | -

Gerlich D JAP 34 9 2915 1963

Réifenberger R, Keck M J, Trivisonno J JAP 40, 13

5403-4 1969 |

InSb: o
McSkimin H J, Bond W L, Pearson G L, Hrostowski H J

Bull. Amer. Phys. Soc. SII 1 111 1956

Potter R F Phys. Rev. 103 1 47-50. 1956

1972

de Vaux L H, Pizzarello F A Phys. Rev. 102 1 85 1956

. ZnS: : : .
. Berlincourt D, Jaffe H, Shiozawa L R Phys. Rev. 129

'3 1009-17 1963

Bhagavantam S, Suryanarayana J Proc. Ind. Acad. -Science

A20  304-9 1944
ekilov Yu Kh, Rusakov A P Sov. Phys Solid State 13
4 956 60 l97l o
\ E Zarembovitch A J. Physique 24 1097-1102 1963
__Z_Q_Sé:' A
Berlincourt D, Jaffe H, Shiozawa L;R “Phys. Rev. 129
3 1008-17 71963 - B
Lee B H JAP 41 7 2984~7 1970 |

inTe:

' Berlincourt D, Jaffe H, Shiozawa L R. -Phys. Rev. .- 129

3 - 1009-17 - 1963
 Lee B-H JAP 41 7 2984-7 1970
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cdTe: _
Berlincourt D, Jaffe H, Shiozawa L R Phys. Rev. 12

3 1009-17 1963
Greenough R D, Palmer S B J. Phys. (D) 6 587-92 1973
McSkimin H J, Thomas D G JAP §§.”i 56-9 1962
Vékiiov Yu Kh, Rusakov A P Sov. Phys. Solid State 13
4 956-60 1971 : |
gggg:. ' _ . A -
Krasil!'nikov O M, Vekilov Yu Kh, Bezborodova V M,
Yushin A V Sov. Phys.'Semiconductofs 4 11 1821-25 1971
Lehoczky A, Nelson D A, Whitsett C R Phys. Rev. 188
3 1069-73 1969 | -

HgTe: =
See Chapter 7 for a summary.
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