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Abstract 

The main work described i n t h i s t h e s i s , i s the o r i g i n a l 

c a l c u l a t i o n of the e x c i t a t i o n of helium by proton and of 

e l e c t r o n - capture process from helium by proton where the 

2nd order p o t e n t i a l introduced by Bransden & Coleman (1972) 

has been appl-ied. - - -

I t begins with a d i s c u s s i o n of the e x i s t i n g methods r e l e v a n t 

to t he present work and followed by the c o n s t r u c t i o n of a 

second - order p o t e n t i a l . A c r i t i c a l survey of the previous 

work has a l s o been presented and i t s r e l a t i o n t o t h e present 

work and r e s u l t i s d i s c u s s e d . 

The cro s s - s e c t i o n s fo r the f o l l o w i n g processes i s c a l c u l a t e d 

i n the energy - range i n d i c a t e d 

( i ) p + H e ( 1 3 2 ) — 0 H +(lS,2S,2p) + H e ( l S 2 ) 25 Kev - 500 Kev 

( i i ) p + H e ( l S 2 ) * H ( I S ) + H e
+ ( 1 S ) 30 Kev - 10 Mev 

The c a l c u l a t e d cross - s e c t i o n along with e x i s t i n g r e s u l t s 

has a l s o been presented and i t i s seen t h a t the present 

method provides b e t t e r r e s u l t s for the e x c i t a t i o n process, 

but f o r the charge - exchange process, our r e s u l t s do not 

agree with the r e s u l t s of the experiment at high e n e r g i e s . 
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CHAPTER 1 

I n t r o d u c t i o n 

T h i s t h e s i s i s mainly concerned with the e x c i t a t i o n 

and the charge exchange of helium by protons. Examples 

of these r e a c t i o n s a r e : -

p + He ( I S 2 ) _t> p + He ( I S 2 ) (a) 
p + He ( I S 2 ) * p + He (IS,23) (b) 
p + He ( I S 2 ) — > H(1S) + He* ( I S ) ( c ) 

The r e a c t i o n (a) i s known as the e l a s t i c c o l l i s i o n where 

there i s no change of the i n t e r n a l energies of the p a r t i c l e s 

i n atoms and where the i n c i d e n t p a r t i c l e can be d e f l e c t e d 

through a. c e r t a i n angle." The r e a c t i o n (b) i s an e x c i t a t i o n 

process where the p a r t i c l e s i n the atom may be e x c i t e d to 

d i f f e r e n t energy l e v e l s and the r e a c t i o n (c) i s known as the 

e l e c t r o n capture or charge - exchange process where e l e c t r o n 

from one atom i s exchanged t o another ion during the c o l l i s i o n . 

I n e l e c t r o n capture e i t h e r or both of the hydrogen atom and 

helium p o s i t i v e ion can be e x c i t e d i n the f i n a l s t a t e . 

The present c a l c u l a t i o n s are based on the paper w r i t t e n 

by Bransden & Coleman (1972) which we have applied to both 

the e x c i t a t i o n and charge - exchange r e a c t i o n s given above 

and a l s o to e x c i t a t i o n of the 2̂ "P l e v e l of helium. 

Before g i v i n g a d e s c r i p t i o n of t h a t method, i t i s 

necessary to d i s c u s s some other methods which have been 

applied to the e v a l u a t i o n of the c r o s s - s e c t i o n s f o r the 

r e a c t i o n s noted above. The methods we d e s c r i b e here both 

f o r D i r e c t and Rearrangement c o l l i s i o n . / v «BIE"B£ '"' 
f .15 FEB 1973 J 
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3 
F / ^ i i vt i • i 

1.1 D e r i v a t i o n of the s c a t t e r i n g amplitude 

For the sake of s i m p l i c i t y , l e t us consider a three 

p a r t i c l e system i n which the p a r t i c l e 1 i s i n c i d e n t on an 

atom composed of an e l e c t r o n 2 and a nucleus 3« Then the 

r e a c t i o n s f o r the system f o r both D i r e c t and Rearrangement 

cases w i l l be given by 

1 + (2 + 3) 1 + (2 + 3) (a) 

1 + (2 + 3) 3 + (1 + 2) (b) 

r e s p e c t i v e l y . Our i n t e n t i o n here, i s t o f i n d an expression 

f o r s c a t t e r i n g amplitude i n both c a s e s . 

For D i r e c t s c a t t e r i n g , we know t h a t the i n i t i a l and 

f i n a l s t a t e s c o n s i s t of the f r e e p a r t i c l e 1 moving r e l a t i v e 

to the bound p a r t i c l e (2 + 3 ) . I n the rearrangement system 

the i n i t i a l s t a t e w i l l be the same but the f i n a l s t a t e now 

c o n s i s t s of the f r e e p a r t i c l e 3 and the bound p a r t i c l e (1 + 2 ) . 

Let r i , k i be the p o s i t i o n and momentum v e c t o r s of the 

i n c i d e n t p a r t i c l e 1 j o i n i n g the centre of mass of (2 + 3) and 

R]_ f p i be the p o s i t i o n and the momentum v e c t o r s of the p a r t i c l e 

2 and 3 i n the i n i t i a l s t a t e . S i m i l a r l y we can define 

r f , Kf, R2 , P2 which are the necessary v e c t o r s represented 

by the f i n a l s t a t e . Also, we know, t h a t the i n i t i a l and 
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f i n a l momentum are r e l a t e d to j<f s=-/tt» Of and & - /°t £j 

where and y, are the i n i t i a l and f i n a l v e l o c i t i e s 

and û- and ju^ are the i n i t i a l and f i n a l reduced masses 

r e s p e c t i v e l y : 

» ' ( ? M ! ? - / " f ( f o r D i r e c t c o l l i s i o n ) 

Mi Ci+M̂ ") fitf M») (f o r Rearrangement 
/ ' [ " ^ M3

 5 * v ^3 c o l l i s i o n ) 

M , Mp, M being the masses of the p a r t i c l e s 1, 2 and 3 
1 3 

r e s p e c t i v e l y . 

Now the Schrodinger equation i n the centre of mass system 

i s 
(h- E)v|//(5.»r.-)" ° (1-D 

where the Hamiltonian H can be expressed as 

H = K + vj + v t + y, 

1 4 
J - V K - i - Vrv + V. + + V 3 

W ? l ^ ( I - 2 ) 
z • 1 

K i s the k i n e t i c energy operator and the p o t e n t i a l V-̂  

a c t s between p a r t i c l e s 2 and 3 , between p a r t i c l e s 1 

and 3 , and V3 between p a r t i c l e s 2 and 1, and i s the 

reduced mass. The boundary co n d i t i o n f o r the D i r e c t c o l l i s i o n 



to be placed on \|/ are t h a t f o r , la r g e R^, r-^, 

OY\O £ + 

(1-3) 
The f i r s t term i n (1-3) represents the i n c i d e n t wave 

functio n and the 2nd term i s the outgoing s p h e r i c a l wave 

d e s c r i b i n g the s c a t t e r e d p a r t i c l e s and f*(©0 i s the 

s c a t t e r i n g amplitude. 

Since there i s no i n c i d e n t wave fu n c t i o n i n the 

rearranged channel we r e q u i r e , when Rg & J 2 are both large 

The d i f f e r e n t i a l c r o s s - s e c t i o n f o r both d i r e c t and exchange 

s c a t t e r i n g i s determined by | $ n or 

r e s p e c t i v e l y . 

To obtain exact expressions f o r and 6 ( ^ 0 we 

need the three - p a r t i c l e s Green's function defined a:s 

_ i 

(*o U ; + i t ) = ( E|' +• i £ - Ho) 
_ I 

fr; + i &) = (.E,- + \ a - H ; ) 

- I 
^ ct6 + i t ) = H 0 

- I 
6i CE.+ i t ) ^ C E- + 1 ̂  - WP 

where (*o, ̂  , ^ 5 ^ ^ are known as the f r e e p a r t i c l e , 

the i n i t i a l , the f i n a l and the f u l l Green's f u n c t i o n 

r e s p e c t i v e l y , and H; = k+ * Hi = <+v-i-
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The s o l u t i o n of (1-1) i s given by 

4 / = 4,- + 6,") v.-y* (1-5) 

where (+) and (-) sig n s r e p r e s e n t s the outgoing and the 

incoming wave f u n c t i o n r e s p e c t i v e l y . 

Using the exact de-fiwation of , the equation (1-5) 

gives 

^'^ + if^r^rv^ ( i - 6 ) 
S i m i l a r l y , we get 

4 - + g ' t i . - n (1-7) 

Now, the s c a t t e r i n g matrix i s 

% v = WW; 7 

= W+\^7 + W - I 

where 

Since C^s - =o and v,-=Vj W e get 

Sj-i = £f r - 2 n,' ^ ce/ - eo ^ £ / ^ ( f ;."*> (1-8) 
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where we have used the r e l a t i o n 

e 

The equation (1-8) i s v a l i d .for the D i r e c t c o l l i s i o n 

r e a c t i o n where H = Hi + V-̂  = Hf + Vf and = Vf 

For the rearrangement c o l l i s i o n , the conditions are t h a t 

H = Hi + V i = H f + V f and V ± V f 

Therefore, by applying the formula. 

i = T ? ~ ^ V (l-< 

where p = e; + ie - H; 

and G- = E'' + ' H* ^ E' = £ f' 

we get 
+ 

1 

L v I + (V, 
(1-10) 

S u b s t i t u t i n g (1-10) i n t o ( 1 - 5 ) , we get 

. - * * n ± 
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± + * n 

+ + 

. I" E,- + ife - ̂  + ^J-

+ 

' (77+77^) tei + ie-Ei) (1-11) 

where we have used ( E f _ H f ) ^ s ° and a l s o (E - H)4V = 0 

The s c a t t e r i n g matrix can now be obtained i n the same way 

as above and we f i n d again t h a t 

= h'< - ItrU t E , - - £0^t\^t> (1-12) 

These r e l a t i o n s were f i r s t proved by Lippman (1966) i n 

the time independent theory. I t i s a l s o a p p l i c a b l e . 'rn- the 

time dependent theory. 

Equation (1-8) can be w r i t t e n as 

Sfi = S*; - a. n-1 i CE,- - ef)Tf,- (1-13) 

where %i i s known as the t r a n s i t i o n matrix from the 

i n i t i a l s t a t e i to the f i n a l s t a t e f and i s defined as 
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= ^ ~ K I 4 \ > ( l - H ) 

Equation (1-13) can be used to c a l c u l a t e the t r a n s i t i o n 

p r o b a b i l i t y defined as 

I ̂ |VCE,--EO (1-15)-

The r e q u i r e d s c a t t e r i n g amplitude i s given by 

and the t o t a l c r o s s - s e c t i o n from the i n i t i a l s t a t e i 

to the f i n a l s t a t e f i s 

GL i f = *LTL £ i . ( | f c e ) l JOT 

*2L f l ^ - p n . 
(1-17) 

• f t 
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1.2 The Born S e r i e s 

From the previous chapter we know th a t the t r a n s i t i o n 

p r o b a b i l i t y from the i n i t i a l s t a t e i f o r the f i n a l s t a t e 

f i s 

where 

As i t i s very d i f f i c u l t to c a l c u l a t e the t r a n s i t i o n matrix 
keeping the exact expressions ^ 0 Y" 4V > 

v a r i o u s approximations have been introduced. One of them 

i s the Born approximation which can be described as below. 

The Born approximation i s expected to be v a l i d f o r higher 

e n e r g i e s . 

Also from equation ( 1 - 5 ) , we f i n d 
+ ± + 
= ft + Cn.v/.'4V 

= 4>,- •+ c , v , - f t . 

: - 4,- c+ &ot- ( l - l 9 ) 

Therefore 

71,' = / & I %Jf i + ^ > (1-20) 

We a l s o know from the previous s e c t i o n t h a t 
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(E,± i6 - HOC- - ^ — ^ 

± ± 

+ 
= 611 O + 6-, + V; Cii V« fir,,• + - • - - • • ) (1-21) 

+ + 
S i m i l a r l y we can express i n terms of &e which can 

be expressed as the s e r i e s 

± ± ± ± + 
GT- Gi„ 0 + v° + V0 6.J + - ) (1-22) 

+ 
The equation (1-20) can be expressed e i t h e r i n terms of 61 

+ 
or 61 o and we f i n d 

If' = /^l^|4>,->+ K l ^ V " ^K|vfG,?jf> " • (1-23) 

= ̂ k*|4>;7 + ̂ I ^ K ^ + ^ K K * : ^ (1-24) 

The s e r i e s (1-23) and (1-24) are both known as Born S e r i e s . 

The f i r s t term of t h i s s e r i e s i s known as the f i r s t Born 

approximation to the s c a t t e r i n g amplitude. S i m i l a r l y when 

we add the second term with the f i r s t term we obtain the 

second Born approximation. I n the same way, we can d e f i n e 

the t h i r d Born approximation, but f o r high energies i t i s 

b e l i e v e d t h a t the t h i r d and the other terms of the Born S e r i e s 

can be neglected. 
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Th e convergence of the Born S e r i e s f o r p o t e n t i a l s c a t t e r i n g 

has been discussed by Kohn ( 1 9 5 2 ) , J o s t and Pais ( 1 9 5 1 ) » 

Manning ( 1 9 6 5 ) , but the problems errccountetsdin the three 

p a r t i c l e system are r a t h e r d i f f e r e n t . Recently Dettmann 

& L e i b f r i e d ( 1 9 6 8 ) , Rubin e t a l ( 1 9 6 6 , 1967) have concluded 

t h a t the Born expansion f o r the three p a r t i c l e system with 

short range f o r c e s converges f o r a l l energies f o r both the 

Rearrangement and the D i r e c t c o l l i s i o n s . No proof of the 

Born s e r i e s f o r p a r t i c l e s i n t e r a c t i n g v i a the long range 

coulomb p o t e n t i a l i s a v a i l a b l e . The previous work based 

on t h i s method f o r the D i r e c t and the Rearrangement c o l l i s i o n 

w i l l be d i s c u s s e d i n Chapter 3 and Chapter 5 r e s p e c t i v e l y . 
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1.3 The Distorted wave approximation 

The amplitude in the Born approximation i s the matrix 

element of the in terac t ion between the c o l l i d i n g systems 

taken between unperturbed wave - funct ions. I t i s possible 

to introduce a. s i m i l a r matrix element but taken with respect 

to wave - functions that are perturbed or 'd i s tor ted ' in 

some predetermined fash ion , t h i s idea i s the bas i s of the 

d i s tor t ion method. In general the Born approximation cross-

sections are too large at low energies and the d i s torted 

wave approximation i s often quite e f f e c t i v e in reducing the 

cross - sections for about the r ight order of magnitude. 

From equation (1-19)> we f ind 

(1-25) 

and 

H = H, + V; = Hj+ V* where 

S i m i l a r l y , for some other Hamiltonian H'- f we get 

+ I (H ' - Hi) I 

t -r I fc - n 

%l - 4>, + i i l i W - , (1-28) 
* h -r \e - H 

Substituting (1-27) into (1-25) . we f ind 

' E + i t - E + i£ - H (1-29) 
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From (1 -9 ) , we see that 

E + i e - H 
/ + 

( H - ri) 
e + ie - H |_ E -+ i - H' J (1-30) 

Therefore, (1-29) gives 

+ + 
= ^ _ C H - H , )4> . 

f + i fc - H E -f- I L - H" 

(H - H,)<f>, 
E -t- i £. - H 

_ -y . . _ J (- H + H; + H - Hi) - . 
( H - H-) ( _ H ' - H . ) 

f + i £ - H 

= x * + — r , + — I * 
E + ife - H L £ + j £ _ W ' / ' 

E t ' i f c - H 

(1-31) 

S i m i l a r l y . 

H - H 
F + i t - H (1-32) 

Let 



-14-

Th en 

I f i - T+i" 

E + / £ ~ H ' 

E + 16 - H ' 

S i m i l a r l y , 

S imi lar ly 

Therefore 

Therefore 

Tfi = 17,' + ^f\H-H'\xXy (1_33) 

Suppose 

H = + U 1 + Wi = H f + U f + Wf 

where and Hf are the i n i t i a l and f i n a l unperturbed 

Hamiltonians re spec t ive ly . and Uf are arb i t rary 

potent ia ls r e spec t ive ly . 

Writing H = H"' + Wj_ = H'' + Wf 

where H"' = Hj_ + Uj a Hf + Uf 
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from (1-33)i we get 

o r t?; = - ^ d -35) 

7 
where to avoid confusion, the eigen functions of H has 
been denoted by ^~ . The Distorted Born approximation for 

+ + 
i s obtained by replac ing vj/. by %• i n (1-35) i » e . 

= v,- - m 4* > + < v i ^ k 4 ? ( i - 3 6 ) 

Equations (1-34 and (1-36) are both known as the Distorted 

wave Bom approximation, which i s the f i r s t term i n a 

Distorted wave Born S e r i e s . 
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1*4 The Impulse approximation 

From the previous sec t ion , we know that the t r a n s i t i o n 

probabi l i t i e s for the i n i t i a l s tate i for the f i n a l s tate f 

can be defined as 

Tfi = | v f | ^ , + > (1-37) 
- - + . _ . _ . 

Since the exact wavefunction i s very d i f f i c u l t to 

ca lcu la te i n a. true three body approximation, the impulse 

approximation, has been introduced by Chew (1950) in which 
+ 

the three body wave funct ion 4̂ , i s replaced by a. super­

posi t ion of wave - functions r e l a t i n g to two p a r t i c l e scat ter ing . 

This idea of Chew (1950)» has been elaborated by Askin and 

Wick (1952) and Chew and Wick (1952). Also, at the same 

time, Chew and Goldberger (1952) extended the idea which i s 

applicable to the Direct c o l l i s i o n only. Prodhan (1957) 

f i r s t extended the method to the c a l c u l a t i o n of the charge -

exchange process using a s l i g h t l y d i f f e r e n t vers ion of the 

impulse approximation. We present the formulation given by • 

McDowell (1961) which i s appl icable for both Direct and 

Rearrangement processes . 

We consider the system given i n sect ion (1.1) . 

From equation (1-19), we know that 

= fl^.-

where J l + = I + C+\/f 

So the equation (1-37) can be wri t ten as 
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To obtain the impulse approximation we need to express the 

three-body M i l l e r operators A + i n terms of the two-body 
+ 

operators ^ i j , which s a t i s f i e s the equation. 

+ 
(m^-y ^ = (i 4- r r ^ X ™ 

(1-39) 

where V j j i s the in teract ion potent ia l between the p a r t i c l e 

i and the p a r t i c l e j v The wave function Xm s a t i s f ies"_the" 

d i f f e r e n t i a l equation 

(.Ho - Em)XK»| = O 
-f-

and 4m ('j) describes the motion under the potent ia l 

V-; alone, 

+• + 

which implies that W . j T C ^ (1-40) 

Now + i 
5 = F- H + i £ 

So with the help of the formula. (1-9) above we can express 

Gi+ i n the following form 

£ - ! - + - J -Cfm-Ho- v<y + i£ - F + «• 
( E m - Ho - W j + i f i ) ( F m - H - H £ ) 

* ( E ™ - Ho -Vij + 

lQp.6.jrcCT|)ing both s ides by VI'j , we get 

i— II F 
6, \ / M - — - — + (Em -Ho - V ; ; - E + H ) 

(Em - Ho -V,j + 'J (1-41) 
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From equation (1-39)» we get 

. ,t. 
C Ervi - H 0 - Vr/+i6> 

Therefore from equation (1-41) we "find 

+ + 4 _ + . 

G, V.y = (w,y £nO - i) + 6j [(fm- E ~) + vl2 + Vo.̂  - v.-j J ("<) - y 

(1-42) 

Let 
+ + 

Then from (1-42), we get 

&i+ V,'; = + Gi* f CEm - E) + v; 2 + viz + w2 3 - Vry]L;j ,cn> 

(1-43) 

Subst i tut ing (1-43) i n (1-38), we now obtain 

"+ L^\\/^{yl%Cx+V^n)^-y d-44) 

The equation (1-44) i s known as the impulse approximation 

which can be applied for both Direct and Rearrangement 

c o l l i s i o n . This expression i s much too complicated to be 

used i n p r a c t i c a l ca l cu la t ions and further approximation are 

made. 

I f the c o l l i s i o n i s r a p i d , the inf luence of the binding 

potent ia l V2.3 » during the c o l l i s i o n i s small and can be 
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neglected. In addition at high energies i t i s reasonable 

to neglect the influence of multiple scat ter ing in the 3rd 

term. The impulse approximation i s then 

r™? = c^\Vf\ (w,t + ^n. ' 0 4 \ > 

where r M P + 

For the exc i ta t ion process, the impulse approximation can 

be given as 

f ' f (1-46) 

where 4v = £ ^ (fi) 
and . ',kf-]f7'1/ „ N 

where —6" i s the centre of mass from the p a r t i c l e 4 . 

In the case of heavy p a r t i c l e impact V^g cannot contribute 

for reasons to be explained. Therefore impulse approximation 

can be wr i t t en i n the simple form 

+ 
where Wn = J 

The equation (1-46) i s known as the post form of . the impulse 

approximation, because that contains the in terac t ion potent ia l 

V(£. We can also define the pr ior form of the impulse 

approximation, which i s given by 

* (1-48) 
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For exc i ta t ion process, we get = Vf but for the 

rearrangement process w i l l be d i f f e r e n t from Vf . The 

appl icat ion of the above method w i l l be described in Chapters 

3 and 5» 

This method i s defect ive in several respects . The potent ials 

have only i n part been eliminated by replac ing them with two -

body sca t t er ing amplitude, the i n i t i a l and f i n a l interact ions 

appear asymmetrically which may produce a. post - prior 

discrepency. Both these d i f f i c u l t i e s can be overcome by 

using Fadeev's method (1961a, 1961b). A s l i g h t l y d i f f eren t 

formulation of Fadeev's approach has been given by Lovelace 

(1964a), which i s more approximate for three p a r t i c l e c o l l i s i o n . 

In t h i s case the i n i t i a l and f i n a l s tates cons is ts of a. bound 

system and a. free p a r t i c l e . These methods are discussed i n 

the books by Bransden (1970) and McDowell and Coleman (1979). 
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1.5 The impact parameter method and the truncated 
eigen function method 

A very great s i m p l i f i c a t i o n can be made i n the theory of the 

s ca t t er ing of atoms by atoms or ions, because the wave-length 

associated with the r e l a t i v e motion of the c o l l i d i n g p a r t i c l e s 

i s usual ly very small compared with atomic dimension. The 

wave-length X of a proton of mass M and veiocity~~V i s given 

by 

The reduced wave-length % i s equal to the Bohr radius of the 
5 - l 

hydrogen atom a©, when V & l ( r cm sec , r. which corresponds 
1 

to a. k ine t i c energy by l e s s than (T015) ev . For k ine t i c 

energies with which we are concerned, which extend from lev 

to severa l Mev, 71 i s always much smaller than the range of 

in terac t ion , which i s c e r t a i n l y greater than a. 0 # Since the 

proton i s the lightestpra^e^His, for a l l other atom the 

inequali ty 7 W ^ 3© w i l l be s a t i s f i e d . Under these short 

wave-length condit ions, i t i s generally possible to define 

c l a s s i c a l t r a j e c t o r i e s which are followed by the c o l l i d i n g 

atoms. For the t r a j e c t o r y to be w e l l def ined, i t i s a lso 

necessary for the uncertainty , i e i n the angle of s ca t t er ing 

to be small compared with e . We have v -f , where 

A P i s the uncertainty i n the transverse momentum transferred 

to an incident p a r t i c l e of momentum p. As the range of the 

in terac t ion i s of order aG •> ~ and i t follows that 

c l a s s i c a l condition w i l l apply i f e J • The c r i t i c a l 

angle ~ i s l e s s than 1 ° for protons with energies of 

a. few tens of e lectron v o l t s , and i s smaller s t i l l f or other 

nuc le i with the same energy. As experimental arrangements 
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exclude very small angles, t h i s i s not a p r a c t i c a l l imi ta t ion 

and the motion of c o l l i d i n g atoms can be described c l a s s i c a l l y , 

except i n cer ta in circumstances, i n which interference e f f e c t s , 

a r i s i n g from a d i f ference in phase of the wave - function 

associated with d i f f e r e n t c l a s s i c a l paths, are of importance. 

In contrast to the motion of the heavy p a r t i c l e s , which can 

accurately taken to be c l a s s i c a l , the e lectronic motion which 

i s associated with d i scre te s tates must be described by 

quantum mechanics. (Bransden, 1972). 

This approximation i s a good approximation unless the impact 

energy i s very low (Bates and Boyd,. 1962a,b). Also i n the 

impact parameter treatment the nuclear assumed to behave l i k e 

c l a s s i c a l p a r t i c l e s and quantum perturbation theory i s applied 

to determine the change of a t r a n s i t i o n from one e lec tronic 

s tate to another. 

Let us consider the impact parameter method for both d i r e c t 

and rearrangement c o l l i s i o n . Let R be the posit ion vector of 

the p a r t i c l e 1 r e l a t i v e to 3 and l e t r ^ , r 2 , r be the 

posi t ion vectors of the e lectron r e l a t i v e to 1, 3 and the 

centre of mass of R respec t ive ly . Let \s be the r e l a t i v e 

ve loc i ty of the proton which remains constant and which i s 

moving p a r a l l e l to the z - a x i s . Let P be the perpendicular 

distance of the proton and the z axis which i s known as the 

impact parameter and before c o l l i s i o n the condition re lated 

to i s B r f + , -2 = v*-t and v-f = o 

The complete e lec tronic wave - function v p ^ t ) s a t i s f i e s 

the time - dependent Schrodinger equation ( in atomic uni t s ) 

i r , t ) 
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1 2 
where H i s the hamiltonian as H = _ 2 I2 * v i 2 + V13 + V23 

and V"i2» ^13 and V23 c a n D e e x P r e s s e d by the help of 

coulomb potent ia l s . 

Now, we can expand vpO£Sf) e i ther i n the form of 
(-iwz/ 2 - W-fc/s - l^fO 

or i n the form of 

H M - ^ C ^ O * ( 1 - 5 1 ) 

where the coe f f i c i en t s a. n (t) and b m ( t ) are time -

dependent funct ion. 4>n and cffo are the wave functions 

of the bound states before c o l l i s i o n and a f t e r c o l l i s i o n 

respec t ive ly . 

From (1-50) and (1-51) we can ca lcu la te the c o e f f i c i e n t s ô c-tr) 

or bm(-t~) i n the fol lowing way. 

S i m i l a r l y , 

So the probabi l i ty amplitude for f inding the system e i ther 

i n the n T th l e v e l or in the m'th l e v e l can be obtained by 

|&*(+afl)J or [fciw(+<*>)/ re spec t ive ly . 

Total cross - sect ion can be obtained by using the fol lowing 

formula 
A. = ( I P dp 2Tra.b / t co^ 

o 1 

where I i s / <Ln (+*0| or lbm(+°o)l for the exc i ta t ion 

or charge exchange process r e s p e c t i v e l y . 

The V a r i a t i o n a l P r i n c i p l e . 

But to get the exact solut ion of (1-49) we can apply the 

v a r i a t i o n a l p r i n c i p l e , defined as 
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where ^ s n < * a r e t n e t o t a - l wave functions which 

s a t i s f i e s the boundary condition 

which requires ^ v f , C T J - f c ^ = O 

and £ f^C t ) - 0 as ± ± oo 

The t r i a l function can be expressed as below 

\ -Kr, O = Z.4„(t)<k fat) **f>(-iwz/z - i f o / g - ; ^ ) 

m *" 

+ V C r , t ) (I-53) 

where ^(^-t^ i s a function which can be represented by the 

set of eigen functions with the nucleus 2 or 3, but neither 

the i n i t i a l nor the f i n a l s tate i s included i n e i ther s e t . 

Consequently V ( Y , t ) i s orthogonal .i.'to' &0r>t) and 4>m 

so that i t has the expressions 

Y C ^ - t ) = Ir^ftXj) (r ,*) C J f p (- - V^-t/g - W f t ; 

- £ V ^ ^ W f ' W a (1-54) 

The equation (1-53) i s very d i f f i c u l t to so lve . So some 

other approximations must be used. We now, describe the 

two-state approximation following the method due to Bates 

(1958). 

The Two-state approximation. 

In th i s case only the i n i t i a l and f i n a l s ta tes are included 



-25-

in the t r i a l wave-function. So the equation (1-53) 

reduces to 

+ ^(t)«j» f cy.-bjexf. (iwi/2 -'.i»Vs -'ifyt) (1-55) 

where 0.,'Ct) and t$(t) are the time-dependent c o e f f i c i e n t s 

i n the i n i t i a l and f i n a l s tates respec t ive ly . I f we now 

set the i n i t i a l condition C-*0 = I and kf(-°°) r ° > 

then the sca t ter ing amplitude from the i n i t i a l s tate i to 

the f i n a l s tate f for the exc i ta t ion or charge exchange proce 

can be given e i ther by /a .; or by I % (-f00^/ 

which can e a s i l y be calculated by (1-55). Cross -sect ion 

can be obtained a f t e r applying the formula (1-52). To get 

the c o e f f i c i e n t s and b f the following pgefcfacRi has been 

Subst i tut ing (1-55) into (1-49) and multiply both s ides 

f i r s t l y by c£. gxp ( i i« / a + / n>**(8 + i«7 t ) 

and secondly by ^ f r . t ) exp ( - « ' + /iS**/» + 

and integrat ing overa l l the space, we get the fol lowing two 

sets of equation. 

'. (*.; + fcj s,j fcffr.j exF(ieft) + a«mh"' (1-56) 

and 

/' ( ^ + i ; / P (-1' 6 - % / exp(-i£ift) -f- £ f ^ (1-57) 

The other terms w i l l be zero as they are orthogonal to . each 

other, and where £fi =(fe - °(,') . The matrix elements 

can be defined as 
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* —\\3~Z. 

A H = fa^ro tf* f i t ) ^ 

From (1-56) and (1-57), a f t e r rearranging, we get 

I ( I - IS,>r)q.,- = a; (Ar,-- S ; f k j . - ) + l « ( K . > ( 1 - 5 8 ) 

'iC«- i s , - 4 r ) t f = a ; (*,-,•-?f,-A,-,-)* + ^ c % - % « ' ^ ' f ) ( 1 - 5 9 ) 

Again subst i tut ing 

and 

" ' 77~^ 
and also putting 

o -t 
<L; - % ex? [~\ SjtiA*J 

and 
o 

removes the secu lar terms of (1-58) and (1-59) g iv ing 

1 - L / - ( i -6o) 

file://�//3~Z
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' h - L , - , S | . f | . J € ( 1 . 6 l ) 

where ^ 
f ; j = J (X,- -

J - co 

-OO - - -

Taking the re levant so lut ion of (1-60) to be (-t~) ~ I 

which implies the neglecting of back-coupling from the f i n a l 

s tate f to the i n i t i a l s tate i and i n s e r t i n g t h i s condition 

i n (1-61) , we get 

where 

- k * ; \ % u

s \ i - [-' & - M - < 1 

~ (\<f{ - k;i)exF[-! (Ui- £ f) -r<Ti ' f J 

In the case of symmetrical resonance (Bates, 1956), 

we get 

r V = ^f<V 
• o. o 

where 

where 

which i s a. simple formula to be solved exactly and so allows 

completely for back - coupling from the f i n a l s ta tes to the 

i n i t i a l s tates (McCarroll , 1961). The term £5. i s the 

d i f ference between the e f f e c t s of the in teract ion when i n 

the i n i t i a l s tate and when i n the f i n a l s t a t e . 
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1.6 Many - s t a t e approximation. 

To improve the accuracy of the r e s u l t s , c a l c u l a t i o n s have 
also been done by t a k i n g more than two states f o r both 
D i r e c t and Rearrangement c o l l i s i o n - process. From 
equation (1-53) we have the t r i a l f u n c t i o n 

This can be represented by the two-state approximation, 
where the i n i t i a l and f i n a l s t a t e should be included and 
which we have shown i n the previous s e c t i o n . But t o get 
b e t t e r accuracy we can add as many s t a t e we l i k e i f we are 
able t o do computing. We s h a l l t a l k about these methods 
i n the s e c t i o n given below. 

The Sturmian expansion. 

Gallaher and Wi l e t s (1968), have f i r s t introduced t h i s 
approximation and app l i e d t h i s i n the proton- hydrogen 
s c a t t e r i n g problem. I n the c a l c u l a t i o n s they have expanded 
the e l e c t r o n i c wave f u n c t i o n i n terms o f t r a v e l l i n g sturmian 
waves about each protonwith the Sturmian f u n c t i o n s quantized 
aborat the i n t e r p r o t o n a x i s . 
The.'ie basis s t a t e s ofo kherpcV-l-kle- fl 3'ven 

where 

define Qnolher w a v e u n c i ion wMh resfe.c\- +o tte^a*f;fl« B S / mi l a r l y we C4.n 
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snd the Sturmian f u n c t i o n s ^kC^O- SnL s a t i s f y 
the equation, 

The Sturmian f u n c t i o n has been f i r s t introduced by 
Rotenberg (1962), who choosed Ej = , the ground s t a t e 
energy of the hydrogen atom. Gallaher and W i l e t s (1968) 

used = - £ f[ 4 ̂ ai . The Sturmian f u n c t i o n i s s i m i l a r 
t o Schrodinger equation, but the energy appears as a. 
f i x e d parameter. I t i s the e f f e c t i v e change of o/̂  which 
acts as an eigen value. The r e q u i r e d boundary c o n d i t i o n s of 
Sk(r) i s zero a t the o r i g i n and decay at i n f i n i t y . ^(Y) 

form an i n f i n i t e , d i s c r e t e and complete set of s t a t e s . 
Unlike the hydrogenic f u n c t i o n , there i s no continuum. 
Their Sturmian f u n c t i o n s are e x p l i c i t l y given by scaled 
hydrogen f u n c t i o n , as x 

where Rk fit?} • i s the usual r a d i a l hydrogen f u n c t i o n . 
The n o r m a l i z a t i o n i s chosen such t h a t £k|K7 = ' • I n 
Rotenberg's sturmian s e t , only the IS sturmian f u n c t i o n 
coincides w i t h the IS hydrogenic f u n c t i o n . ,But i n the 
above case the Sturmian I S , 2p 3d e t c . coincides 
w i t h the corresponding hydrogen wave - f u n c t i o n 4k • 

The Sturmian s t a t e s are more compact than the hydrogenic 
s t a t e s . This can be seen by n o t i n g t h a t C k I "4 ) * ~7 ~ 

as compared w i t h <k l-^rlk / = . 
The r e s u l t s obtained by using the method has been agreed 
w i t h experimental r e s u l t by Helbig and Everhart (1963) f o r 
o 

3 s c a t t e r i n g angle. 
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The Pseudo - s t a t e approximation* 

The Sturmian expansion has c e r t a i n d i f f i c u l t i e s . F i r s t l y i t 
does not represent the states when i n t e r n u c l e a r separation 
i s very l a r g e . Secondly, i t does not s a t i s f y the bound -
st a t e except f o r the lowest value of I . By Pseudo - s t a t e 
approximation, introduced by Cheshire e t a l (1970), the 
above d i f f i c u l t i e s have been removed. Cheshire e t a l (1970), 

have used the same Sturmian expansion f o r the hydrogenic 
IS, 2S and 2p s t a t e s but added some e x t r a terms by 

which i s known as the o r b i t a l pseudo - s t a t e wave f u n c t i o n s , 
where ^z\n* C e» 4>) are s p h e r i c a l harmonics, k and j 
are s u b s c r i p t s i n d i c a t i n g the o r b i t a l s concerned, 1 = ^ +"1 ' J -
X = ̂- +- I -f-'m + 2_ and where the r a d i a l l f u n c t i o n s 
i s given by } + ^ . _ 2 

the parameters have been chosen i n t h i s way t h a t these 
f u n c t i o n s are orthogonal t o the IS, 2S and 2p hydrogenic 
states and t o each other. I n t h i s way, they have managed 
t o get the c o r r e c t boundary c o n d i t i o n s f o r IS, 2S and 2p 

states and added some omitted terms f o r t h e charge - exchange 
and e x c i t a t i o n process as w e l l . 
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CHAPTER 2 

Second-order p o t e n t i a l 

I n chapter 1, we discussed the most important approximations 
which have been applied t o heavy p a r t i c l e s c a t t e r i n g . I n 
t h i s chapter, we give a b r i e f d e s c r i p t i o n of the second -
order p o t e n t i a l , i n the impact parameter formalism, f i r s t 
introduced by Bransden and Coleman (1972) which we have used 
f o r our c a l c u l a t i o n s . I n the many s t a t e approximation only 
a l i m i t e d number of states can be included i n t h e wave f u n c t i o n 
To overcome t h i s , a second-order p o t e n t i a l m a t r i x has been 
constructed where we t r y t o account approximately f o r the 
i n f i n i t e number of s t a t e s and which can be evaluated i n a 
closure approximation. The second-order p o t e n t i a l s depend 
on a parameter which can be set so t h a t the c o r r e c t . l o n g -
range e f f e c t i v e p o t e n t i a l i s obtained i n the entrance channel 
and the method combines the c h a r a c t e r i s t i c s of close - coupling 
and p o l a r i z e d o r b i t a l methods. 

2.1 General formalism 

Let the nucleus A be located at the f i x e d o r i g i n of the 
co-ordinate system and l e t the i n c i d e n t particle;.-. B move 
w i t h a constant v e l o c i t y V along a. l i n e of distance f and 
p a r a l l e l to z - axis which s a t i s f i e s the c o n d i t i o n R = f + Vt, 
before c o l l i s i o n , where f i s known as the impact parameter. 
Let the e l e c t r o n i c wave - f u n c t i o n ^ (Y •> -fr ) can be defined 
as 

v ^ ( r > t > - L 0 . h ( O < b n ( r ) e ( 2 _ 1 } 
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where a n ( t ) i s the c o e f f i c i e n t dependent on t . 
The i n i t i a l unperturbed eigenf un c t i o n <&nC?>$ s a t i s f i e s 

Ho* = (2-2) 

f o r the t a r g e t nucleus, where H 0 i s the Hamiltonian f o r the 
unperturbed atom and i s the unperturbed energy. 
Nov/, s u b s t i t u t i n g (2-1) i n t o the time - dependent Schrbdinger 
equation (1-49) and using (2-2) and m u l t i p l y i n g _ b o t h sides, by 

4t\ (-) ^ n » w e & e t a s e t °f coupled equations 
given by 

where we have 

Z = tft (2-4) 

and (6m- = ctfynn 

and can be expressed as 

= j > * ( y ) v c r , t ) ^ ( r . ) 4<r (2-5) 

which i s known as the matrix i n t e r a c t i o n p o t e n t i a l between 
the p r o j e c t i l e and the t a r g e t . Summation s i g n i n (2-3) 

incli?d-i2$F the i n t e g r a t i o n over the continuum s t a t e s . The 
equation ( 2 -3 ) , thus obtained, i s an exact form of the 
Schrodinger equation and forms the cases of the truncated 
ei g e n f u n c t i o n expansion. 

The s c a t t e r i n g amplitude can now be obtained by s e t t i n g the 
Boundary c o n d i t i o n s as below, 

where o denotes the i n c i d e n t channel. The p r o b a b i l i t y 
amplitude cUC+oo) i s then evaluated by using the equation 
(2-3) and i n t e g r a t i n g t h a t from -ooto +oo . The s c a t t e r i n g 
amplitude i s obtained by i n t e g r a t i n g jcU(+<»)| over 
a l l values of the impact parameters, given by 

& =^ [' f ( - f a o f ^ f rr<f0 (2_6) 
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2.2 Second-order p o t e n t i a l 

I n many problems i t i s expected t h a t one or more states w i l l 
be of p a r t i c u l a r importance i n the expansion ( 2 - 1 ) . 

For these s t a t e s , l a b e l l e d n = o, 1,...N, the corresponding 
equation (2-3) are r e t a i n e d w i t h o u t approximation, w h i l e f o r 
a l l s t a t e s n >N . , the equations (2-3)-ar_e .modified so t h a t 
only the p o t e n t i a l terms coupling w i t h states m £ ̂  are 
re t a i n e d 

i-^T *U (*) = V 2 _ ^ ^ ) v ; m ( z ) e. (2-7) 

S o l u t i o n of (2-7) i s 

(2 -8 ) 

By s u b s t i t u t i n g (2 - 8 ) i n t o (2-3), we o b t a i n the f i n a l set 
of coupled i n t e g r o - d i f f e r e n t i a l equations which i s i n the 
impact parameter formalism and which i s given by 

2 , A- ' 'oU*x/i? 
5 7 - I T L^mC^Vnm(^)€. 

f o r H £ r4" (2-9) 

The equation (2-9) can also be w r i t t e n as 
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in-o 
(2-10) 

— CO 

n = o, i , i , . . . j>r 

where 

i 
Oo krun 1' )= 7 Vn\ C* ) V/*, ( z ) € ( 2 _ U ) 
j =!>»+! 

The p o t e n t i a l K n m can be evaluated by using the closure 
approximation i n which £ n, the energy b.;f the e x c i t a t i o n of 
the t a r g e t i n the s t a t e n , i s replaced by an e f f e c t i v e 
average e x c i t a t i o n energy 6 . The closure r e l a t i o n 

T±l?H*(t> S(x-*> (2.12) 

can now be used t o w r i t e K n m i n the form 

(2-13) 
where J > rJ+l 
where the p o t e n t i a l V n m ( z , ll ) can be defined as 

and can be expressed i n a. s u i t a b l e form f o r the numerical 
c a l c u l a t i o n by using the technique given by Coleman (1970), 
described below i n chapter 4» 

_/ 
The equation (2-13) can also be solved by s u b s t i t u t i n g £ 
f o r J J where M = N + 1 and the exact energies of a l l 
lower l e v e l s are used^ where, l' is &n ne.w etfe-ckie. ent-^-j. 
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Th e amplitude f o r e x c i t a t i o n t o the s t a t e ^, f o r r>7 ^ 
i s obtained by s o l v i n g a modified v e r s i o n of the equation 
(2-3) which allows f o r ' d i s t o r t i o n ' i n the f i n a l s t a t e , i e . 

The s o l u t i o n of (2-10) and (2-15) i s dependent on the 
boundary c o n d i t i o n s given above. 
2.3 The e f f e c t i v e energy £ 
I n paper I (Bransden and Coleman, 1972) the e f f e c t i v e , energy-
e has been introduced t o obt a i n the c o r r e c t long range 
p o t e n t i a l due t o dipo l e p o l a r i z a b i l i t y . Also we know t h a t 
should be f i x e d so t h a t i n ad i a b a t i c l i m i t of the i n c i d e n t 
channel asymptotic behaviour can be obtained. 
Using the ad i a b a t i c l i m i t V o , the term c o n t a i n i n g the 
kernel on the r i g h t hand side of equation (2-10) then reduces 
t o 

H4-m(2)V n i y l^) 
m- a 

+ l^nn (z) (2-15) 

I (2-16) 

( k 0 lo ( 

do 

z = o 
(2-17) 

z_ 
W {1,1') 4.0 { W (2,7 

(2-18) 

where ') 4 W ( 7., ~L 

and K J ^ O = Z L V°J ^ ^ f 2 ' ) e 

(2-19) 

where k n -
z 0 r w -z. 

CO 
V e l o c i t y independent term i s 

I 

I - (V+ I (2-20) 
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'I ke.Y'-i-fov-*. 

'-co 

— / 

[ I I K. Z 

3z 

(2-21) 

o<9 
V 

«3 
• j - ^ i - l 

'i K„ 

i C 6* - fcj) 
Therefore I can be w r i t t e n as 

where 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

The adiabatic second-order p o t e n t i a l i s given by VP0^. 
Therefore, i n the i n c i d e n t channel, the charged p o t e n t i a l 

I V0 j (rtf Vo Po i s
 T ? 0u * 

f o r N = 0, by c a s t i l l e j o et a l (1960), 

where i s the d i p o l e p o l a r i z a b i l i t y . 
closure approximation, we get 

'bo 

(2-26) 

(2-27) 
But i n the 

V&0 = >— 
f o r N = 0, 

where j3 

(2-28) 

(2-29) 

i s e a s i l y evaluated. Thus 6 can be given by 

I = O + W*0 (2-30) 

which gives the c o r r e c t asymptotic form i n the adiabic l i m i t 
i n the entrance channel when N ^ 0, a s i m i l a r procedure can 
be followed i f the c o n t r i b u t i o n t o the di p o l e p o l a r i z a b i l i t y 
a r i s i n g from those p states o c c u r r i n g e x p l i c i t l y i n the 
coupled equations i s taken i n t o account. 
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CHAPTER 3 

3. E a r l i e r work on e x c i t a t i o n 

3.1 The' Born approximation 

From chapter 1, we know t h a t the cross-section from the 
i n i t i a l s t a t e i t o the f i n a l state, f i s given by 

(3-D 
where i s the reduced mass, K± and Kf are the i n i t i a l 
and f i n a l momenta, and T|.̂  has been defined as 

= Z 1 v.- 1+.-7 

Since f o r the D i r e c t c o l l i s i o n V"i = Vf, and <f>. - e X; ̂ 0 

and cf? = & ((?.) 
The equation (3-2) i s known as the Born approximation, which 
i s very d i f f i c u l t t o solve i f we use the exact expressions 

+ 

of 4̂  o r ^ • ^° m a ^ e the c a l c u l a t i o n a b i t easier 
Bethe (1930) has expressed (3-2) i n a simple form which i s 
known as Bethe approximation, which i s given by 

The formula (3-3) has f i r s t been used by Bates and G r i f f l i n g 
(1953) "to c a l c u l a t e the cross-section of the f o l l o w i n g process 
H + + H(1S) — * H + or H(1S) + H(2S, 2p, 3S, 3p, 3d, c) 
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where c means the continuum s t a t e s . The same authors (1954) 
also c a l c u l a t e d the cross-section f o r the f o l l o w i n g process 
as w e l l . 

H(1S) + H(1S) - * H(2S or 2p) + H(2S,2p,3S,3p,3d,c) 
Pomilla and M i l f o r d (1966) have also done the c a l c u l a t i o n s 
keeping the p r o j e c t i l e and the t a r g e t i n i t i a l l y i n the e x c i t e d 
s t a t e s f o r hydrogen atom. The experimental r e s u l t s f o r 
hydrogen are too low t o be v a l i d , because Born approximation 
can give good r e s u l t s only f o r higher energies. 
The t h e o r e t i c a l work on proton-helium s c a t t e r i n g on e x c i t a t i o n 
has p r e v i o u s l y been done by Moiseiwitsch and Stewart (1954)» 
B e l l (1961), B e l l and Skinner (1962). S i m i l a r l y the e x p e r i ­
mental works are a v a i l a b l e by Thomas and Bent (1967)» 
G a l l i a r d (1966), Gabriel and Heddle (1960). Most recent and 
valuable work on F i r s t Born approximation on proton - helium 
c o l l i s i o n has been done by B e l l et a l (1968c) who have obtained 
the generalized o s c i l l a t o r strengths f o r e x c i t a t i o n of the 
ground s t a t e of helium using many parameter wave - f u n c t i o n s . 
These are employed t o ob t a i n proper impact e x c i t a t i o n cross-
sections i n the F i r s t Born approximation f o r the e x c i t a t i o n 
from the ground s t a t e of atomic helium t o n^s = 2 t o 7)» 
(n^p = 2 t o 4) and 3̂ "D e x c i t e d s t a t e s and f o r the e l a s t i c 
s c a t t e r i n g of protons. Their r e s u l t s have been compared w i t h 
the experimental r e s u l t s a v a i l a b l e by Van Den Bos (1968b), 

Denis et a l (1967). The r e s u l t s of Van Den Bos (1968b) are 
smaller than t h e i r r e s u l t s . The r e s u l t s of B e l l e t a l (1968c) 

f o r 2^s and 2^p e x c i t a t i o n s o f proton from helium has been 
p r e d i c t e d i n t a b l e 2 and 3 r e s p e c t i v e l y . 
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3.2 The Second Born approximation. 

From chapter 1, we know t h a t the Second Born approximation 
can be given by 

(3-4) 

where 1̂,- i s the F i r s t Born approximation and the second 
term of the above series i s given by 

% - »f U *r - % »)« :— r v„v e 4*«br' 
where 'ik„ |w --yj.'l 

Where the sum over n i s over a l l the s t a t e s of the t a r g e t 
atom i n c l u d i n g continuum s t a t e s . 
As i t i s very d i f f i c u l t t o c a l c u l a t e a l l the terms i n the 
equation (3-5)» Massey and Mohr (1934) have ignored the 
v a r i a t i o n of K n i n the c a l c u l a t i o n s on proton - hydrogen 
s c a t t e r i n g . Instead of K n they used K.^ and evaluated the 
equations (3-5) w i t h the help of closure approximation. 
But Kingston et a l (1960) have solved i t i n a d i f f e r e n t way. 
In t h e i r case, they have taken a l l the IS, 2S, 2p states and 
neglected the other terms. They also c a r r i e d out the 
c a l c u l a t i o n s on the proton - hydrogen c o l l i s i o n problem. 
Their r e s u l t s are l a r g e r than the r e s u l t s obtained by F i r s t 
Born approximation. But when only 2S and 2p were r e t a i n e d , 
r e s u l t s are q u i t e near t o the d i s t o r t i o n approximation. 
S i m i l a r c a l c u l a t i o n s have also been done by Moisewtsch and 
P e r r i n (1965). H o l t and Moisewitsch (1968) have done t h i s 
c a l c u l a t i o n by t a k i n g both approaches given by Massey and Mohr 
(1934) and Kingston e t a l (1960). H o l t e t a l (197D also 
have applied the same method when they have c a l c u l a t e d the 
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e x c i t a t i o n of helium t o the 2 S and 2 p states by e l e c t r o n 
and proton impact and r e s u l t s are a v a i l a b l e i n t a b l e 2 and 
3 r e s p e c t i v e l y . Recently Wooling and McDowell (1972) 
have done some c a l c u l a t i o n s on the e x c i t a t i o n of e l e c t r o n 
from helium by applying various forms of the Second Born 
appr ox imat i on. 
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3•3 Eigenfunction expansion method* 

From chapter 2, we have 

(3-6) 

where V n m i s the i n t e r a c t i o n p o t e n t i a l and i s defined as 

The equation (3-6) i s eouivalent t o F i r s t Born approximation 
and i s known as the Impact parameter F i r s t Born approximation 
or i n short I.P.B. approximation. The cross - sections 
obtained by the a p p l i c a t i o n of t h i s model are a v a i l a b l e i n 
the papers w r i t t e n by Bates (1959), B e l l (1961) and B e l l and 
Skinner (1962), McDowell and P l u t t a (1966). Results of 
t h i s approximation are very poor below 100 Kev. 
M o d i f i c a t i o n of I.P.B. method has been suggested by Bates 
(1959) and Mittleman (1961) which has been i n i t i a l l y a p p l ied 
by Bates (1959). 

Skinner (1962) and B e l l and Skinner (1962) examined the 
t r a n s i t i o n 

H + + H(1S) — + H+ + H(2p) 
where they have obtained the co u p l i n g between the degenerate 
f i n a l sub-states 2 f i 0 , 2p +^ and of d i r e c t c o upling of these 
t o the i n i t i a l s t a t e , but not a l l o w i n g the coupling f o r 
beck - coupling or coupling t o 2S. The r e s u l t i n g coupled 
f i r s t - order l i n e a r d i f f e r e n t i a l equation must be solved 
numerically. Their equation was of the form given below 
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where the c o e f f i c i e n t s a^ r e f e r s t o the ground - s t a t e 
i f K = 0 , the 2 p 0 s t a t e i f K • 1 , and the 2 p + 1 s t a t e i f 
K = 2 , £ i s W01 /vy , WQ1 = W02 

Also t o solve the equation (3 - 6 )» a s p e c i a l class of 
p e r t u r b a t i o n method has f i r s t been introduced by Callaway 
and Bauer (1965) which has been ap p l i e d on proton - hydrogen 
s c a t t e r i n g process by Callaway and Dugan ( 1 9 6 6 ) . By t h i s 
method they have c a l c u l a t e d the 2S and 2p l e v e l s of hydrogen 
atom by slow protons (E L 50 Kev) where they have neglected 
exchange and included 1 S , 2 S , 2 p O J 2 p + ^ states e x p l i c i t l y . 
T heir r e s u l t s are three or more times l a r g e r than the exper­
imental r e s u l t s given by Stebbings et a l (1965) ,Gail.ly ( 1 9 6 8 ) . 

But t h e i r r e s u l t s f o r the 2p states has been agreed w i t h B e l l 
and Skinner ( 1 9 6 2 ) . 

Most recent work on I.P.B. approximation has been given by 
Flannery ( I 9 7 O ) . The cross-sections are obtained f o r both 
the 2̂ "S and 2-*-p e x c i t a t i o n of helium by proton and e l e c t r o n 
impact and are shown i n t a b l e 3 and 4 r e s p e c t i v e l y . 
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CHAPTFR 4 

Present c a l c u l a t i o n on e x c i t a t i o n 

I n t r o d u c t i o n ; I n t h i s chapter we c a l c u l a t e the cross -
s e c t i o n f o r the e l a s t i c s c a t t e r i n g and the 2^S and 2^p 
e x c i t a t i o n s of helium atom by proton impact keeping the 
helium atom i n i t i a l l y i n t h e i r ground s t a t e . The c a l c u l ­
a t i o n s h,w^ebO'pKYtfotp'me% using the t r u n c a t e d e i g e n f u n c t i o n -
expansion method, i n the impact parameter formalism, introduced 
by Bransden and Coleman, 1972, which has su c c e s s f u l l y been used 
by Bransden et a l (1972) .and S u l l i v a n e t a l (1972) t o the 
s c a t t e r i n g of electrons and protons from hydrogen atom. 
Recently, a paper has also been published on the e l e c t r o n -
helium s c a t t e r i n g by Be r r i n g t o n et a l (1972). 

2 

R 2 12 

1 
1 

1 R 
b I 

Z axis 
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Le t p be the proton i n c i d e n t on the nucleus 0 which i s f i x e d 

and has been taken as an o r i g i n . Let R, r ^ , r?2> ri2» % 

be the p o s i t i o n v e c t o r s between the proton p and the nucleus 

0, the nucleus 0 and the e l e c t r o n 1, the nucleus 0 and the 

e l e c t r o n 2, the e l e c t r o n 1 and the e l e c t r o n 2, the proton p 

and the e l e c t r o n 1, the proton p and the e l e c t r o n - 2 r e s p e c t i v e l y . 

Let V be the v e l o c i t y along the d i r e c t i o n of z - a x i s so th3t 

before c o l l i s i o n , we have R = b + where v*-fr = 0 and 

b i s the perpendicular d i s t a n c e between p and the z a x i s 

which i s known as the impact parameter. 

T o t a l Hamiltonian i s given by 

H = - -t 7*- j- v* + Vox +• Vox 4 vf2 + V?l -i-Vr* + V0p 

where we can define Vo\, Vot, V,% , Vf>i, Vps, V0p by 

the help of coulomb p o t e n t i a l s . 

So H can be w r i t t e n as 

» - ^ v f v - % - \ - k - i + % + 4 (4-D 

The e l e c t r o n i c wave - f u n c t i o n (rpF{g>»t) can be given by 

4 V i C y i j ^ 7 i s known as the unperturbed helium wave fu n c t i o n 

which s a t i s f i e s the c o n d i t i o n 

where £n and H g r e p r e s e n t s the unperturbed eigen energy and 

the unperturbed hamiltonian f o r the helium atom i n t h e i r 

ground s t a t e r e s p e c t i v e l y . 

Now, s u b s t i t u t i n g (4-3) i n t o the time - dependent Schrodiger 

equation (1-49) and f o l l o w i n g the procedure given i n chapter 
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2, we get a. s e t of coupled equations given below 

^ 'i ( 6 1 - e * ) * / * 

Jm-o 

( 4 - 4 ) 

where V n m and have been expressed i n the same way as 

i n chapter 2. 

I f we use N s 0 i n equation (4-4)» we get the one - channel 

equation only, which i s given by 

1 5 -J«> (4 -5 ) 

For our present c a l c u l a t i o n we have included the back -

couplings from 2̂ -S and 2^p i n e l a s t i c channel to the ground 

s t a t e f o r the e l a s t i c amplitude which i s given by 

. (4-6) 

0̂. j Ct^- NOO ( t /"-*-»1 ̂  / 

where N = 3• 
where koo(z,z') c a n be expressed by f o l l o w i n g the 

equation (2-12) given i n chapter 2, where now, we are using 

n = m = o 

Therefore 
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'/ (.6- €:o) (T.-T!)/\9 

(4-7) 

Voo (z*) and Voofz.') can be defined as i n chapter 2, and we 

can express Voo(Z/"z.') as below 

(4-8) 

where R = b + z, R/_ = b + z' 

and z = v? t , z " = i "' 

The equation (4-8') can now be expressed as 

where 

" " (4-9) 

/rv- */ 
(4-10) 

(4-11) 

(4-12) 

2- I /• 2-
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I n the above equation we have used v | ^ ( r ^ , r 2 ) = U(r^) U ( r 2 ) 

Also we know t h a t 

and 

2-
?-

From the above equations, the equation (4-10) i s very 

d i f f i c u l t to eva l u a t e . But t h a t has been done by employing 

the mamerical technique given by Coleman (1970) which w i l l 

be presented i n Appendix C. 

The i n e l a s t i c amplitude has s i m i l a r l y been considered by 

ta k i n g a l l the d i r e c t couplings between the four channels 

( l ^ S , 2^S and the two independent magnetic sub - s t a t e s of 

2^"p), which i s now 

I ^ ^ ( l ) s V l Vnm (Z) t < U (z) ( 4 - H ) 

and N = 3. 

T o t a l c r o s s - s e c t i o n has been c a l c u l a t e d by employing the 

formula 

) (Co 
it i <-\ V4-JO; 

Flannery (1970) has solved the equation U-OW f o r both e l a s t i c 

and i n e l a s t i c cases f o r proton - helium c o l l i s i o n s . 

4*1 C a l c u l a t i o n s 

For the 1 1S, 2 1S and 2̂ -p s t a t e s the f o l l o w i n g Hartree - Fock 

f u n c t i o n have been used and defined as i n Flannery (1979) 



-48-

v [*xf>(-h4n) +o.iii*zxF(-2'£irfy ( 4 ^ 1 6 ) 

+ exp(-2r,)lexp(-ATZ) - c - n * J 

(4-17) 

(4-18) 

r e s p e c t i v e l y . The equations (4-16), (4 - 1 7 ) and (4-18) 

was f i r s t introduced by Byron and J o s c h a i n (1966) , Goldberg 

and Clogston (1939) and Cohen and McEachran (1967) r e s p e c t ­

i v e l y . The unknown values i n the equation (4 - 1 7 ) i s given 

by 7l= 1.1946, = 0.4733, N = O.7O64O, A = 0.007322 and 

C o 0.26832. 

To solve equation (4-6) and (4-14) we appli e d the inte g r o -

d i f f e r e n t i a l equation f o r numerical c a l c u l a t i o n s by ; Hamming1 

method. Then, we have used Simpson fs r u l e to i n t e g r a t e over 

the impact parameter b, to get the t o t a l c r o s s - s e c t i o n s 

from equation ( 4 - 1 5 ) . The measurement of Martin (1960) 

being used f o r the 2̂ "S and 2 ^ e x c i t a t i o n energies (0.7577 
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and O .7799 a.u.). The va l u e s of the e f f e c t i v e energy has 

been considered as below. 

It..2 The average e x c i t e d energy. 

From chapter 2, we know t h a t the average e x c i t a t i o n energy 

i s - -^pj and i s very important for the long - range 

p o t e n t i a l due to dipole p o l a r i z a b i l i t y — o f - a - n e u t r a l atom 

i n the s c a t t e r i n g process. From paper I I and IV, we know 

t h a t the e f f e c t i v e energy can be replaced e i t h e r by a l l the 

l e v e l s above the ground s t a t e which i s equal to 1.14 or we 

can use the exact and 2-̂-p energies and average the remain 

ing energies which i s equal t o 1.34* In t h i s c a l c u l a t i o n we 

have used the value of energy as 1.34* 

Also from paper I I and IV we n o t i c e t h a t the v a r i a t i o n of 

the e f f e c t i v e energy has very l i t t l e e f f e c t s on the e l a s t i c 

c r o s s - s e c t i o n i n the one - channel approximation of equation 

(4-6) given above. 

4« 3 E l a s t i c s c a t t e r i n g of protons 

Equations (4-6) and (4-14) have been solved with the f u l l 

s t a t i c coupling between l ^ S , 2^S and 2^p; s t a t e s where we 

have used the second - order term i n the e l a s t i c channel. 

T o t a l c r o s s - s e c t i o n for the e l a s t i c channel has been 

c a l c u l a t e d by using the formula. (4-15)• I n t a b l e 1 our 

p r e d i c t i o n s f o r e l a s t i c s c a t t e r i n g are shown, no experimental 

data or other c a l c u l a t e d r e s u l t s are a v a i l a b l e f o r comparison 
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4*4 The 2 l S e x c i t a t i o n of helium by protons. 

The t o t a l c r o s s - s e c t i o n , evaluated with the f u l l s t a t i c 

coupling between the l ^ S , 2^S and 2*p s t a t e s and the 2nd order 

term i n the e l a s t i c channel, are shown i n t a b l e 2 for the 

2̂ -S e x c i t a t i o n s . These are compared with the F i r s t Born 

c r o s s - s e c t i o n s ( B l ) of B e l l et a l (1968). The Second 

Born approximation (SB2) of Holt et a l (1971), the r e s u l t s 

of a four - channel approximation of Flannery (1970). As 

t h e r e are no ocperimental data a v a i l a b l e we could not compare 

our r e s u l t s with any experimental r e s u l t . Though we have 

included the 2nd order term y e t our r e s u l t s are below 

Flannery (1970). But the present r e s u l t s are a l i t t l e l a r g e r 

than the values of F i r s t Born and 2nd Born a p p r o x i m a t i o n ^ high 

Figure (1) shows the e f f e c t s of v a r i o u s approximation.on the 

t o t a l c r o s s - s e c t i o n s . 

4 .5 The 2̂ -p e x c i t a t i o n of helium by protons. 

Table 3 shows the r e s u l t s w i t h f u l l s t a t i c coupling between 

the l ^ S , 2^-S, 2̂ -p s t a t e s and the second - order term i n the 

e l a s t i c channel. T h i s i s compared with the r e s u l t s u sing 

the four - channel approximation of Flannery (1970), the F i r s t 

Born approximation ( B l ) of B e l l e t a l (1968), the second 

Born approximation (SB2) of Holt et a l (1971). Here, a l s o 

no experimental r e s u l t s are a v a i l a b l e . Figure (2) shows 

the e f f e c t s of v a r i o u s approximation on the t o t a l c r o s s -

s e c t i o n s . 
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CHAPTER 5 

E a r l i e r work on charge - exchange. 
5-1 C l a s s i c a l approximation 

The f i r s t c a l c u l a t i o n on the capture process H + + H(1S) •—* 

H(1S)..+ H + was made by Thomas (192-7-). I n h i s c a l c u l a t i o n s 

he considered the above process as a two - body c o l l i s i o n 

where the c o l l i s i o n can occur f i r s t l y between the e l e c t r o n 

and the i n c i d e n t ion and secondly between the e l e c t r o n and 

the nucleus of the t a r g e t . He found t h a t the cr o s s - s e c t i o n 

behaves l i k e when the v e l o c i t y V i s very high. Drisko 

(1955) snd Bransden and Cheshire (1963) have a l s o obtained 

the same r e s u l t s f o r t h e i r c a l c u l a t i o n s on the 2nd Born 

approximation and the Impulse approximation r e s p e c t i v e l y . 

But Cook (1963) has shown by the u n c e r t a i n t y P r i n c i p l e t h a t 

the Thomas model can not be i n a. high - energy l i m i t . Using 

Monte C a r l o ' s method Abrines and P e r c i v a l (1964) have solved 

the Newtonians equations of three - body motion fo r two protons 

and an e l e c t r o n and have hence obtained the c r o s s - s e c t i o n 

for capture H + - H(1S) c o l l i s i o n s a t a few impact e n e r g i e s . 

The m o d i f i c a t i o n of Thomas model was made by Bates and Mapleton 

(1965) where they found t h a t p r e d i c t i o n s of the modified theory 

are i n good accord with the experimental data. They a l s o 

developed a. simple c l a s s i c a l theory f o r the symmetrical 

resonance capture i n slow encounters. 
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5*2 The F i r s t Born approximation 

From chapter 1, we know that the F i r s t Born approximation 
i s given by 

If'" = <<k\ Vf I 4 v > (5-D 

where cj}. and are the i n i t i a l and f i n a l wave fu n c t i o n s , 

and Vf i s the i n t e r a c t i o n , which we can express by the help 

of Coulomb p o t e n t i a l . 

Brinkman and Kramers (1930) and Oppenheiraer (1928) have 

attempted to solve the equation (5-1) to get the cross -

s e c t i o n s f o r the process H + + H(1S) H ( 1 S ) + H +. But 

i n t h e i r c a l c u l a t i o n s they have considered only the e l e c t r o n -

i n c i d e n t i n t e r a c t i o n and ignored the nuclear - nuclear i n t e r ­

a c t i o n , as they have concluded t h a t i n t e r n u c l e a r p o t e n t i a l has 

very l i t t l e c o n t r i b u t i o n to charge - exchange c r o s s - s e c t i o n s , 

which i s a r i s i n g f o r the non-orthogonality of 4v(tf) and 

4^("*1) • T l l e c a l c u l a t e d c r o s s r s e c t i o n i n the ground 
s t a t e capture has been given i n u n i t s of JT£ and i s 

where V i s the v e l o c i t y of the i n c i d e n t proton i n atomic 
2 

u n i t s t h a t the i n c i d e n t energy E = 24*97* Kev. But i n the 

high energy l i m i t the ground - s t a t e c r o s s - s e c t i o n s behaves 
l i k e n , 8 / r 

and the capture int o the n'th l e v e l has been found as 

From t h i s , Oppenheimer (1928) suggested t h a t the capture 

c r o s s - s e c t i o n i n t o the n'th l e v e l i s p r o p o r t i o n a l t o l/n^« 

T h e i r c a l c u l a t i o n approximately i s four times higher than the 



- 5 3 -

e x i s t i n g experimental r e s u l t s and s t i l l higher at lower 

energie s . They c a l c u l a t e d only the ground - s t a t e 

e l e c t r o n - capture c r o s s - s e c t i o n and t h e i r procedure has 

s i n c e been followed by Saha and Basu (1945) and Takayyangi 

(1952) . The c r o s s - s e c t i o n f o r the e x c i t e d s t a t e s and many 

e l e c t r o n - systems has been c a l c u l a t e d by Bates and McCarroll 

(1962) , Omidvar (19.67), Maple ton ( I 9 6 3 , 1965, 1966, 1968 ) , 

Nikolaev ( 1 9 6 7 ) . 

But Bates and Dalgarno (1952) concluded t h a t the i n t e r n u c l e a r 

p o t e n t i a l should not be so s m a l l and n e g l i g i b l e and so i n 

t h e i r c a l c u l a t i o n s they f i r s t included t h i s term and c a r r i e d 

out t h e i r c a l c u l a t i o n s f o r the same process which we have 

mentioned above. Corinaldesiand T r a i n e r (1952) and Jackson 

and S e h i f f (1954) a l s o did the same c a l c u l a t i o n s by using the 

F o u r i e r s transform of Feynmanr. ( 1949) . 

The f i r s t c a l c u l a t i o n s for the process 

H"*~+ tteOs1) -> H e + ( i O + H ( ' 0 (5 -2) 

have been done by Bransden, Dalgarno and King (1954) where 

they have obtained the simple ground - s t a t e helium wave 

f u n c t i o n 

S^CTi > r 0 = ~ ~ e * p[-MTT+^] ( 5 _ 3 ) 

where A = 1.6875 

They c a l c u l a t e d both & ( I S 2 / I S , I S ) and Q.(1S2/ I S , I S ) 

and they have found that the c r o s s - s e c t i o n G-OBK i s 

l a r g e r than Q.g which agrees b e t t e r with the experimental 
(<J i in f 4J« 5"a) 

r e s u l t s . Here Q-OBK means the Brinkman Kramer's c r o s s -
A 

s e c t i o n and Q-B i s the Born cr o s s - s e c t i o n . 

D e t a i l e d c a l c u l a t i o n s f o r t h e above process (5-2) has been 

c a r r i e d out by Mapleton (1961) who a l s o obtained the same 

helium wave f u n c t i o n ( 5 - 3 ) » where he c a l c u l a t e d both the post 
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and p r i o r c r o s s - s e c t i o n s f o r the cases ( I S , I S ) , ( I S , 2 p ) , 

(23, I S ) , (2S , 2 p ) , (2p, 2 S ) , ( 3 S , I S ) . 

His r e s u l t s are 2 .5 times g r e a t e r than Bransden, Dalgarno 

and King (1954)* But the mean value of h i s post and p r i o r 

c r o s s - s e c t i o n s have been compared with the e x i s t i n g e x p e r i ­

mental r e s u l t s done by S t e i r and Barnett (1956) , Barnett and 

Reynolds ( 1958 )i A l l i s i e n (1958) and the agreement between -" 

them i s quite c l o s e . Mapleton ( 1 9 6 3 ) » again, has done some 

c a l c u l a t i o n s f o r the above - mentioned process ( 5 -2 ) using 

the s i x - parameter helium wave fu n c t i o n by H y l l e r a s s and has 

a l s o c a l c u l a t e d the c r o s s - s e c t i o n f o r the post and p r i o r 

form wave function of helium. The c a l c u l a t e d c r o s s - s e c t i o n s 

have been improved by using more accurate wave - functi o n from 

which we can conclude t h a t f o r the l a r g e impact parameters we 

should use accurate wave fu n c t i o n which can give the c o r r e c t 

r e s u l t f o r the high e n e r g i e s . 
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5*3 The Second - Born approximation 

On the Second Born approximation, only Drisko (1955) ,s 
work i s a v a i l a b l e where he appli e d t h i s method t o c a l c u l a t e 
the c r o s s - s e c t i o n f o r the proton - hydrogen c a s e s . 
We know, from chapter 1, the Second Born approximation, 
i s given by 

V = ^ |V i l4v> + *blV4&Vl<|>r> 

I n equation (5-4) Drisko used f r e e Green's function 6i 0 

which i s now 

r f - = rfl- + L^W^O *Aty7 (5_5) 

The equation (5-5) can be w r i t t e n as 

^ if,- + T(V3v) (5_6) 
and 6j 0 can be defined with the h e l p of c o n f i g u r a t i o n space, 

Eg i s the k i n e t i c energy of hydrogen i n the ground s t a t e I S 

and p^ and q^ are the momenta, yU^ and are the reduced 

masses d e f i n e d as 
m, (voi2+- vn^y) 
KM j + m-L-t nvi 

and 
M • 
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From Drisko, the oocond part of the equation (5 -6 ) can be 

given by 

-2 

4.alO4 ̂  % fa [- | 4 t M ( H '-^ -)•* - <\ *(w> 

where I ( ? k ) has been represented by the 2nd part by 

( 5 - 6 ) . 

The c a l c u l a t i o n s of I(V]_, V2) e t c . are a v a i l a b l e i n the book 

w r i t t e n by McDowell & Coleman (1979) and a l s o i n the paper 

w r i t t e n by Bransden (1965) . 

Drisko neglected the term c o n t a i n i n g l A i and found t h a t 
B 

Tf.£ + K V 2 , V 2 ) + I ( V 2 > V3) = 0 

f o r the high energy c a s e s . He a l s o neglected the i n t e r n u c l e a r 

p o t e n t i a l . So he was l e f t only with the two equation , which 

was 
Tfi = V H-iYvf?\/5) ( 5 -7 ) 

The required c r o s s - s e c t i o n of (5 -7 ) now has been given by 

which i s having the same. V""^ dependence as Thomas (1927) n a d 

i n h i s r e s u l t . . Drisko (1955) a l s o added the 3rd term of the 

Born approximation given i n chapter 1 and obtained the r e s u l t 

a /v ( 0 - 6 1 9 -I- ETT7-V/2. )Q.SK 

which has a l s o contained the same independence as before. 
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5*4 The D i s t o r t e d wave approximation* 

B a s s e l and Gerjuoy (1960) f i r s t attempted t o c a l c u l a t e the 
cr o s s - s e c t i o n f o r proton - hydrogen charge - exchange 
process where he adopted the d i s t o r t e d wave method. We 
know, t h a t the exact t r a n s i t i o n f o r the above process from 
the i n i t i a l s t a t e i to the f i n a l s t a t e f can be given by 

- T , - = i*;\v.- - w , i * : > - - ( 5 _ g . 

The equation (5 -8 ) can be a l t e r e d for the d i s t o r t e d wave 

method which i s given by 

TjT - ^ ' M - » * \ * t 7 ( 5 . 9 ) 

and which i s known as the f i r s t - order d i s t o r t e d wave 

approximation. 

In t h e i r c a l c u l a t i o n s B a s s e l and Gerjuoy (1960) defined 

and Ux. as o-

which they have i n t e g r a t e d f o r constant s e p a r a t i o n f . 

But i n s t e a d of t a k i n g the d i s t o r t e d i n i t i a l and f i n a l wave 

fu n c t i o n they have obtained the und i s t o r t e d i n i t i a l and f i n a l 

wave f u n c t i o n i n t h e i r c a l c u l a t i o n s . The equation was of 

the form given below 

T ^ = 7 *' + r * ! (5 -10) 

T h e i r c a l c u l a t e d c r o s s - s e c t i o n i s very c l o s e to the F i r s t 

Born approximation. 

Their method, s i n c e then has been followed by Grant and 

Shapiro (1965) where they have used the exact expressions f o r 

<L~ • Here, they found t h a t t h e i r r e s u l t was qu i t e 
li­
near to Brinkman and Kramer's r e s u l t . The d e t a i l s d i s c u s s i o n 
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of t h i s method are a v a i l a b l e i n Bransden (1970) and 

McDowell and Coleman (1970). 
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5.5 The Impulse approximation 

From chapter 1, we know that the impulse approximation f o r 
the p r i o r and post can be given by 

IMP + + . 

Also we have shown i n chapter 1, t h a t ( 5-H) or (5-12) can 

be reduced into 
I M P 

This approximation has been applied by Pradhan ( 1 9 5 7) :to the 

capture process 

fH'0 + P P + H Os) (5_13) 

where i n the case of he took V^-j. T h i s s i m p l i f i e s the 

a n a l y s i s , but the r e s u l t i n g matrix no longer d e s c r i b e s the 

c o l l i s i o n under c o n s i d e r a t i o n (Basse! and Gerjuoy, 1960). 

The c a l c u l a t i o n on the above process (5-13) has a l s o been 

c a r r i e d out by Cheshire (1965) and McDowell (1961) . 
.IMP 

McDowell (1961) has used the c o r r e c t form of 1-J-f given 

i n chapter 1, where he did h i s c a l c u l a t i o n simultaneously by 

in c l u d i n g and excluding the i n t e r a c t i o n . 

This approximation has a l s o been applied t o proton - helium 

c o l l i s i o n by Bransden and Cheshire (1963) where they have 

described the impulse approximation as 
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. -V" + + 

(5-14) 

I n t h i s case, the p a r t i c l e 1, i n c i d e n t on a helium atom 

i n the ground s t a t e w i t h nucleus 2 and e l e c t r o n s 2 and 3 

captures (3) i n t o the ground s t a t e by hydrogen l e a v i n g r e s i d u a l 

ion i n the ground s t a t e . 

The post form 
Jjv| p 

% = £^_|(^,i+-WiS+W l 4-+l^ -*)|^z-tX-3+VM/4?7 

has a l s o been considered. 
+ 

Due t o d i s t o r t i o n they neglected V-j^ as w e l l as 

S i m i l a r l y they have neglected WQJJ" i n the same way and the 

equation (5-14) gives 
= I ^2-+ +vi^^\w^>,<> (5_l6) 

I n the post case the Vj^. term i s known as the e l e c t r o n -

e l e c t r o n i n t e r a c t i o n , which i s very d i f f i c u l t to e v a l u a t e . 

So they have expressed 
- TM p 

f f T = Vfa-h + ( 5 _ 1 7 ) 

The c r o s s - s e c t i o n s have been c a l c u l a t e d f o r both p r i o r (5-16) 

and post (5-17) form, where they have obtained simple ground -

s t a t e helium wave fun c t i o n . T h e i r r e s u l t s are below the -

experimental r e s u l t s and has been shown i n f i g u r e 17». 
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5.6 Atomic eigenfunction expansion method 

Bates two - s t a t e method has f i r s t been used by McCarroll 

(1961) for the symmetrical resonance process 

H+ + H(1S) -* H(1S) + H + 

L a t e r on, McCarroll and McElroy (1962) has extended the 

c a l c u l a t i o n s f o r the non-resonance process 

U + H C O — * H < l s > - » - H + (5-18) 

McElroy (1963) has done c a l c u l a t i o n s f o r the a c c i d e n t a l 

resonant r e a c t i o n 
a- + 

He + H(1S) -H> He (2S ov2p) + H+ 
and non-resonant r e a c t i o n 

H* + H(1S) — t H(2S of 2p) + H+ 
L o v e l l & McElroy (I963) have followed the e a r l i e r work of 

McElroy (1963) and i n v e s t i g a t e d the f o l l o w i n g process 

H+ + H(1S) -* H(13) + H + 

H + + H(1S) -> H(2S) + H+ 

H+ + H(1S) H + + H(2S) 
The above process (5-18) has l a t e r been extended by Wil e t s 

and G a l l e h e r (1966) where they included I S , 2S and 2p s t a t e s 

f o r t h e i r c a l c u l a t i o n s . In some of t h e i r c a l c u l a t i o n s they 

a l s o included 3S and 3p s t a t e s as w e l l . 

On proton - helium s c a t t e r i n g , Green e t a l (196$) have a l s o 

a p p l i e d Bates two - s t a t e method, where they have used the 

open - s h e l l f u n c t i o n of E c k a r t (1930) 

( 5 _ 1 9 ) 

f o r the ground - s t a t e helium wave - f u n c t i o n . I n equation 
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(5-19) N i s the n o r m a l i z a t i o n f a c t o r and cl and jb 

are given by 

d = 2.1832, £ = 1.1885, E = 2.8757-

The s e n s i t i v i t y of the helium wave - fun c t i o n has been 

i n v e s t i g a t e d by Bransden and S i n F a i lam (1966) where they 

have done t h e i r c a l c u l a t i o n s by employing equation (5-19) 
( I V — ,(2) -as w e l l as two other wave - functions V̂> and cp given 

below. , . _ N 

,<«> « - * ( T + r O 
T * (5-20). 

where o( = 1.6875 and N i s the n o r m a l i z a t i o n constant 

and 

where 

T i - ' ' ^ (5.21) 

oj = 1.455799, jfe = 2<X , C = 0.6 

and E = - 2.86. 

In each case parameters are determined v a r i a t i o n a l l y . 

I t has been shown by S h u l l and Lowdin (1966) and Green e t a l 

(1954) t h a t both (5-19) and (5-21) are good approximation. 

But the c a l c u l a t e d c r o s s - s e c t i o n s of Bransden and S i n F a i 

lam (1966) f o r three d i f f e r e n t employed wave - f u n c t i o n s 

shown above, do not vary from each other. So they have 

concluded that the simple helium wave - f u n c t i o n i s good 

enough f o r any f u r t h e r c a l c u l a t i o n s . 

S i n F a i lam (1967), has extended t h i s work by the i n c l u s i o n 

of the e x c i t e d s t a t e s (2^S, 2^p s t a t e s ) of hydrogen. But 

t h a t did not agree very w e l l with the experimental data. To 

compare with the experiment,, the c a l c u l a t e d c r o s s - s e c t i o n s 

have to be i n c r e a s e d by a f a c t o r of up to 30% t o allow capture 
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i n t o e x c i t e d s t a t e s (Mapleton, 1961). 
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CH AFTER 6 

Present c a l c u l a t i o n on L - charge - exchange 

In t r o d u c t i o n The two - s t a t e impact parameter method, 

f i r s t i n v e s t i g a t e d by Bates (1958), has been used f o r the 

non - resonant charge - exchange r e a c t i o n 

which we have described i n chapter 1. Our method, though 

based on the method of Bates (1958), has been modified by-

applying the 2nd order p o t e n t i a l and using the c l o s u r e 

approximation d e r i v e d by Bransden and Coleman (1972.). A 

short d e s c r i p t i o n of t h e i r method has a l s o been given i n 

chapter 2, which has s u c c e s s f u l l y been used f o r the e x c i t a t i o n 

process between proton or e l e c t r o n impact from hydrogen atom 

( S u l l i v a n e t a l , 1972a, 1972b) as w e l l as f o r e l e c t r o n impact 

from helium atom (Berrington e t a l , 1972). 

We are c o n s i d e r i n g the same co-ordinates i n the X - Z plane 

as we did i n chapter 4, where the t o t a l Hamiltonian i s 

S i n c e , i n t h i s chapter, we are d e a l i n g with the r e a c t i o n s 

between proton and helium and e s p e c i a l l y the charge - exchange 

p + H e ( I S 2 ) —t> H(1S) + H e
+ ( 1 S ) 

H K 2. v l i a-
(6-1) 

and where r ] _ , £2, R^, R2 and R have been defined. 

UJ. lyJ. \J\\ — v ^ a p u u i \* a o \ i 5 j vvC g C \j 

? + He ( i s 1 ) -o.H O O + (lS^> (6-2) 

f o r which, before c o l l i s i o n , we get 
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and a f t e r c o l l i s i o n , 

where and TC'ij are the i n i t i a l and f i n a l Helium wave 

fu n c t i o n r e s p e c t i v e l y , 6i i s the binding energy of the 

helium wave - function before c o l l i s i o n and ( / ^ l + l j ) be 

the binding energy of the wave - function ̂ ( R ^ , £2) which 

can be s p l i t into 

The wave - functions 4 ^ ^ l ^ a n d ^ -̂2 ̂  a r e g i v e n 

e x p l i c i t l y as 

4>,-^') = £ ( 6 - 5 ) 

and 
- 2T1 

and which s a t i s f i e s the equations 

(-* V><fc'<-,)=A'<|V(S'> 
and 

The helium wave - f u n c t i o n s a t i s f i e s the equation 

Now, we can employ the two - s t a t e approximation given by 
Bates (1958) where the i n i t i a l and f i n a l s t a t e w i l l be 

considered. Therefore 

^ Off, > 0 = ^(TT,r a,t) +•£ £>n ft) ffi; ( & >A) 
'j 

(6-3) 
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where £ implies a sum over the d i s c r e t e s t a t e s and an 

i n t e g r a t i o n over the continuum s t a t e s . 

S u b s t i t u t i n g (6-8) i n the time - dependent Schrodinger 

equation ( i n atomic u n i t s ) 

H v K f l , * , * ) * 1 - ^ F — " ( 6 _ 9 ) 

and using a l l the conditions given above, we get a s e t of 

coupled equations, given by 

i j » i j 
10) 

• _ , _ ^ 

/ t'T t ' Z. N'V-"^n = I " ' / ^ ^ + Xk,-j> . (6-11) 
y, V> 

where ^ n ^ ' j > Wn,n'7 kn, i j 3 n i'3',n , H lyj n, k"i'j'j n can be 

defined i n the f o l l o w i n g way 
;> 

tfn, l J = e. [te[4^%(?n^7C\i(&&)z (6-12) 

i tn,n' t/ 

• ^ 

kn,;y = e fai? H s * ( r „ r o ( £ - 3 ? - " k * ^ ) 

• r ( 0 , 

(6-15) 
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(6-16) 

- I Fn,,-j t 

(6-17) 

where 

Fn,-,j = C^n - (6-18) 

end 

f '7 > «V - ( i ; + A - v -/« i) (6-20) 

where the values of f> |> can be given by 

€ = - 2.84 

t - - 0.5 
yM = —0.2 

r e s p e c t i v e l y . 

I f we, now, consider, these equations f o r the case of n ^ 0, 

i ^ 0, j ^ 0, we can approximate (1) by r e t a i n i n g coupling 

t o s t a t e n = 0 , i = 0 , j = 0 only and (2) by n e g l e c t i n g the 

diagonal terms. 

Therefore, we get 

f 4^ + i ^Nn,;/ ~ H n , 6 d o + l C h j o t o (6-21) 
i j 
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v " (6-22) 

for n ̂  0, i j =f= 0. 

For f u r t h e r approximation, we have used t f j ^ o , i f i j ̂  0 

Then 

I <\.n - Hn,o <io -V tCh,o ko (6-23) 

i d , = ( j - t 'p M ) o(v)^u(t ' )+ k h , o ( f ; ^ ( t 9 } 
(6-24) 

and equations f o r n ='i s j = 0 become 

-00 

and a l s o from (6-22), we get 

( 6 - 2 6 ) 

As i n chapter 2 the p o t e n t i a l s H 0, n ( t ) Hn.,.q(t ) and 
-. > 

Ho.n ( t ) Kn,p(t ) are to:o complicated to evaluate e x a c t l y . 

Hence we have appl i e d a f u r t h e r approximation c a l l e d c l o s u r e 

approximation as i n chapter 2, and by the help of which .we can 

w r i t e 

The other p o t e n t i a l H ^Kn,. o ( t ' ) has been dropped ffrom 

our c a l c u l a t i o n s . 

Now s u b s t i t u t i n g n = 0, equation(&T25) can be given by 
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-t' 
I do •+ ''^0,0^= \io,o<L0 + ko.obo + -|- [ ffU.oft.t')- £j 0j ( 0 H'joft'")]^) 

-co j = 0 

*evp (€o-e) ( t - t ' ) ^ ' (6-27) 

I f we now take N = 0, the equation^-27) gives 

( 6 - 2 8 ) 

X e * p ( £ o - ( t - t ' ) J t ' — 
where 

The term H 0, o ( t ^ t ) can be expressed l i k e equation ( 4 - 9 ) 

defined i n chapter 4 where z = V? t and X = v9 -t and can be 

solved i n the same way as noted i n chapter 4 » I n t h i s case 

we have taken the v a l u e s of the e f f e c t i v e energy as 1 . 1 4 , 

where we have applied the same c o n d i t i o n given i n chapter 4 » 

The equation ( 6 - 2 6 ) and ( 6 - 2 8 ) has been solved by Hamming's 

method to get the time -dependent c o e f f i c i e n t s a0{t) and 

bo ( t ) w i th the i n i t i a l boundary conditions 4 _ c ( - o e O = I 

and t o f- oo) = o 

T o t a l c r o s s - s e c t i o n f o r charge - exchange from the i n i t i a l 

s t a t e i to the f i n a l s t a t e f i s now obtained by u s i n g the 

formula P 
CO 

Qu;f = 2 7T<£ \j\ t,s C + o o ^ c / f ( 6 - 2 9 ) 

where p i s impact parameter. 

C a l c u l a t i o n s 

C a l c u l a t i o n s have been i n v e s t i g a t e d f o r three d i f f e r e n t 

cases where we have used the one - parameter simple helium 

wave f u n c t i o n given by 

^ ( r , , r * ) ^ e (6-30) 
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% 

where N = d , °< = 1.68, £ c = - 2.8472. 

Case A D i s t o r t e d wave approximation (1) 

I n t h i s case we have considered the coupling f o r i n i t i a l 

s t a t e only and so the equation (6-26) and (6-28), mentioned 

above, can be given by 

ifU = H..o<U+ 37-J <* tT W o"( t'*' ) " Ho.o(0 ^-(- t')3 ( 6_ 3 1 ) 

i i B = ko.o * o ( 6 - 3 2 ) 

The c r o s s - s e c t i o n of the charge - exchange can be c a l c u l a t e d 

by u s i n g the formula (6-29) given above. 

Case B. D i s t o r t e d wave approximation (2) 

The equations (6-26) and (6-28) can a l s o be w r i t t e n i n 
the f o l l o wing forms 

• Hoio - ^0,0^.0x0/1 . ko,o - No,0Ho,o I 
4-° - 77T~^ a-° * ~ b 

I • 

I - (N O,O\ J L -* 
- 00 

X do ft') t*f(€o- £)(*-+0 4 i ( 6_ 3 3 ) 

and 

'l J ' __ Hq,0 - No,-o koiQ I _j_ koto - No ,0 HoiQ ~ 

• f c 

-f x { [Heat*'*')- H°iott)H:o[i>'')] 
- oo 

I n case B f o r e l a s t i c s c a t t e r i n g we have used the formula 

(6-31), but f o r the charge - exchange case we have used 
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• T __ H o i 0 _ | \ J ( , | ( , k o / O / I k d 0 - N / o i o / / o / 0 /7 
' b 0 - — : : b * ^" ~ ~ — M -I - o i o N Ol o 

(6-35) 

c r o s s - s e c t i o n s have been c a l c u l a t e d u s i n g the same formula 

(6-29) . 

Case C I n t h i s case we have used the formulas (6-33) and 

(6-34) as given above where the expressions f o r f u l l couplings 

has been used and applied the same formula (6-29) to get 

the c r o s s - s e c t i o n s . 

The methods f o r e v a l u a t i n g the i n t e g r a l s (6-12), (6-13) , (6-14)i 

(6-15) , (6-16) , (6-17) w i l l be shown i n the appendices. 

The r e s u l t s of the present c a l c u l a t i o n s are shown fo r v a r i o u s 

proton energies i n the t a b l e 4» together with the r e s u l t s of 

Bransden and S i n f a i lam (1966), Green e t a l (1965) t Mapleton 

(1961) and the r e s u l t s of the experiments which measure the 

t o t a l c r o s s - s e c t i o n s f o r capture summed over a l l f i n a l 

s t a t e s . To compare with the experiment the c a l c u l a t e d c r o s s -

se c t i o n s have to be increa s e d by a f a c t o r of up to 30% t o 

allow f o r capture i n t o e x c i t e d s t a t e s (Mapleton, 1961). 

Figures (3, 4, 5, 6 ) , (7, 8, 9, 10) , (11, 12, 13), show the 

pi c o c u ^ i c S u - L o j. ui buc yi u D d u i i i oy Ox vjapoui't; l u o u 01I6 Xij 

s t a t e f o r v a r i o u s energies f o r Case A, Case B and Case C 

r e s p e c t i v e l y . 

Figure 14 shows the present r e s u l t s for Case A, Case B and 

Case C d i s c u s s e d above. Among these c a l c u l a t i o n s we get 

be t t e r accuracy f o r Case C only which give quite good r e s u l t s 
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between 30 to 100 Kev when we compare them w i t h the e x i s t i n g 

experimental r e s u l t s . For higher energies the Case C and 

Case B give l a r g e r r e s u l t s than Case A. 

I n f i g u r e (15/ we are comparing the r e s u l t s f o r the present 

c a l c u l a t i o n f o r Case C with the experimental r e s u l t s . I t 

i s seen from f i g u r e 15 or t a b l e 4 t h a t the r e s u l t s of the 

present c a l c u l a t i o n s i s n e a r l y 30$ l a r g e r than the experimental 

r e s u l t s a t 500 Kev, n e a r l y 50% l a r g e r at 1000 Kev, n e a r l y 4 

times l a r g e r at 1Q Mev. 

In f i g u r e 16 we have shown our c a l c u l a t e d r e s u l t s for Case C 

as w e l l as the e x i s t i n g t h e o r e t i c a l r e s u l t s given by Green e t 

a l (1965) and Bransden and S i n f a i lam (1966). The present 

r e s u l t s are very c l o s e to Green et a l (1965). There- £re s m a l l 

d i f f e r e n c e s between the r e s u l t s of the present c a l c u l a t i o n 

and Bransden and Si n f a i lam (I966) at lower e n e r g i e s . 

But i t i s seen a t once that the maximum d i f f e r e n c e s between 

the r e s u l t s of the present and Bransden and S i n f a i lam anre 

30% at higher e n e r g i e s . 

Figure 17 shows the r e s u l t s of the present c a l c u l a t i o n s for 

Case A and the r e s u l t s obtained by Mapleton (1961) and 

Bransden and Cheshire ( I963) . The present r e s u l t s do not 

agree with the r e s u l t s by Impulse approximation, but quite 

near to Mapleton's r e s u l t s a t higher e n e r g i e s . 

From the above i n t e r p r e t a t i o n of the present r e s u l t s i t i s 

seen t h a t the c o n s i d e r a b l e disagreement between theory and 

the experiment at higher energies i s not s u b s t a n t i a l l y 

improved by employing the 2nd order p o t e n t i a l i n Bates two -

s t a t e method. 
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CHAPTER 7 

Numerical methods 

In t h i s chapter, we give a. short d e s c r i p t i o n of our 

c a l c u l a t i o n s involved i n chapter 6, as t h e c a l c u l a t i o n s 

i n chapter k have a l s o been done i n the same way. 

From chapter 6, we get t h a t the most d i f f i c u l t terms are 

No,„ , NJ"0,O , KO,Q 7 Ko,*, ,, The expression f o r the 

matrix elements are of the forms 

I ry\ 

O 
(7-1 

4-+• 

(7-2) 

where 

The above f u n c t i o n s depends on the proton v e l o c i t y V and 

o s c i l l a t e . " r a p i d l y as V i n c r e a s e s . To perform the i n t e g r a t i o n , 

the i n t e g r a l s have been divided i n t o three s e c t i o n s 

a o t o.\^ , o.\Z£ -x f o-o-g^x 6 i- o and then the 

c a l c u l a t i o n s have been done by using the Gaussian i n t e r p o l a t i o n 

method. At 30 Kev, the number of Gaussian points are 6 and 

f o r higher energies more points have been considered to get 

the same accuracy. 
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Th e matrix elements f o r the Case A, Case B and Case C have 

been solved by using Hamming's method d e s c r i b e d by W i l f and 

Ralston (1967) as given below. 

Hamming's method 

Hammings method i s a m o d i f i c a t i o n of Milne's p r e d i c t o r -

c o r r e c t o r method which has been used to solve the f i r s t 

order d i f f e r e n t i a l equation 

with the given i n i t i a l point ^ ( x o - ^° • T h i s method 

has two advantages, f i r s t l y i t i s a s u i t a b l e fourth - order 

i n t e g r a t i o n procedure t h a t r e q u i r e s the e v a l u a t i o n of the 

r i g h t - hand s i d e of the system only two times per s t e p . 

Secondly a t each step the c a l c u l a t i o n procedure gives an 

estimate f o r the l o c a l t r u n c a t i o n e r r o r , thus procedure i s 

able without a s i g n i f i c a n t amount of c a l c u l a t i o n time, t o 

choose and change the step - length :h . 

Let X n - 3» XJ-J- 2, X N - 1, X N be the known v a l u e s . Now 

r e s u l t s at points 

Ax * 17-4) 

Xn-f-i 1 = X N + h 

are computed by the formulas below 

Predictox:,: 

? n + , = ^ - 3 + ^ / r f ; - +2%,'-* J (7-5) 

Modifier: 

r\ + 1 
112 ffn-C (7-6) 

n M+- I (7-7) 
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C o r r e c t o r : 

8 L (7-8) 

F i n a l v a l u e : 

, = + -^7 (Pn-t-i - CMH-I) ( ? _ 9 ) 

where Y Y , P, M, M , and C are column v e c t o r s , 

and the t r u n c a t i o n e r r o r can be given by 

= 7T7 C ^ - ' ' ? ^ ' ) (7-10) 

As t h i s method i s not s e l f - s t a r t i n g , i t i s very important 

t h a t the s t a r t i n g values should be as accurate as p o s s i b l e , 

because e r r o r s i n these s t a r t i n g values may i n c r e a s e during 

computation. So t o do t h i s we have used NewtonVs i n t e r ­

p o l a t i o n formula using forward d i f f e r e n c e s to get the 

required v a l u e s ^1, %2 and? 3. For example, we have 

(7-12) 

(7-13) 

To use these formulas we estimate the Y l , Y2 and Y3 
• / .1 v l / 

and c a l c u l a t e )i > H > Jo, by us i n g the d i f f e r e n t i a l 

equation and then c a l c u l a t e Y^, Y2, Y3 using(7H') ,(7-/3) 

r e s p e c t i v e l y . Then we i t e r a t e u n t i l convergence. Also 

to s t a r t with we can s e t 
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Step - length can be doubled or halved i n the f o l l o w i n g 

way. In our case we have set..- •'. two errors = .0001 

and c<2_ = .00001 and adjustment can be done by the tes t 

value n 

f = £ a ; ( P , + , - c , > 0 
(7-15) 

when____S~7oi{ , the step-length has_ been halved and f o l l o w i n g 

i n t e r po la t ion formulas have been used 

(7-16) 

(7-17) 

S i m i l a r l y , when S ^ ^ j . , the step - length has been doubled. 

The in tegra ls i n (6-31) e tc . were evaluated by repeated 

appl ica t ion of Simpson's r u l e . 

Total cross-sections have been calculated by applying 

the Simpson's ru le as w e l l . 
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CHAPTER 8 

Conelusion 

The main con t r ibu t ion , i n t h i s thes is , i s the appl ica t ion 

of the 2nd - order po ten t i a l f o r both exc i t a t ion and charge -

exchange processes. 

In the case of exc i t a t i on , as there i s no experiment, we have 

compared our resu l t s wi th the ex i s t ing theo re t i ca l r e su l t s . 

I t i s found that the present r e s u l t s are i n close agreement 

with other resul ts above 100 Kev. At low energies, less than 

100 Kev, our resul ts are nearly 40% smaller than the resu l t s 

of Flannery where he did his calculat ions by tak ing IS, 2S 

and 2p states of the t a rge t . I t means that the coupling 

f o r the rearrangement channel i s l i k e l y to have s i g n i f i c a n t 

e f f e c t on the Direct e x c i t a t i o n cross - sections at low 

energies and needs f u r t h e r inves t iga t ion as indicated i n 

paper I I (Bransden et a l , 1972) . 

But on the charge - exchange, experimental r e s u l t s are 

available and i t i s seen that the resul ts obtained by inc lud ­

ing the 2nd order po ten t i a l wi th the Bates two state method 

is not very sa t i s fac to ry and gives a larger r e s u l t than the 

experiment at high energies. I t is now known tha t the 

formulat ion of the method (which we already presented i n 

.Chapter 6) i s not consistent w i t h the charge - exchange 

process. On the other hand, i t provides bet ter resu l t s f o r 

the Distorted wave method at high energies which i s very 

close f o r the experimental resul ts as we l l as the ca lcu la t ion 

of the f i r s t Born approximation. Among the theore t i ca l 
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calculat ions on charge - exchange, only the resu l t s of 

f i r s t Born approximation give., quite r e l i a b l e resul ts at 

high energies as compared to-- the experimental r e su l t s . 

Like Born approximation, the resul ts of the Distorted wave 

approximation do not agree wi th the experimental resul ts at 

low energies. 

For exc i t a t i on process, we believe that our method should 

provide bet ter r e su l t s , as i t did i n the case of e lec t ron -

helium cases shown i n paper IV (Berrington et a.l, 1972) 

where some experimental results are ava i lab le . But f o r charge 

exchange process that conclusion is not applicable as i t is 

a complicated process where instead of one o r b i t we have 

taken two o r b i t s . More r e f ined work should be needed on 

t h i s pa r t i cu l a r t o p i c . 
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APPENDIX A 

Evaluation of the in teg ra l s : 

_ r-X?, - /HR, 'iV-T, , 
j-i - ) « - t t clr, ( A - l ) 

(A-2) 

(A-3) 

where - Xi ~ S 

To in tegrate I ( , we have t o use the Four ier ' s transforms 

which i s given by 

Therefore 

(A-5) 

r / - ^ p r , f4%, [H^ ( A \ ^ (J-+fy (A-6> 
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in tegra t ing over 

r, = 

r - 1— i - ( j j e 

(A-7) 

(A-g) 

x Scfy +li.+ v') e*?(-i1i-R') ( A - 9 ) 

p u t = <*, + * 

In tegra t ing overd<^ 

r — 

^ > "rr )<H. T a V ^ ) +-*T) ( A " 1 0 ) 

( A - l l ) 

e I 

(A-12) 



-SO-

wh ere 

I = e 

( X + ^ ^ n ( A _ 1 3 ) 

To integrate I , we have used Fey-man's formula, 

Feyman, 1949 

(Lb [ 4 . x + b C i - x Y ] (A-14) 

Therefore I gives 

(A-15) 

where 
P = ^ , + I? ( I - x ) (A-16) 

2- *j-
A = /(x 4- 0 - x") Ci + i>^0 (A-17) 

Since, we know 

1 
(A-18) 

we get 

2. / - / l * . K ' 0 - * V ^ 
I = 7 1 J d x e ( A _ i 9 ) 
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Therefore 

* i = ^h4^ a t (A-20) 

^ - i A * ( A _ 2 1 ) 

(A-22) 

J a 
e A HA/ A 

'o 
- IZA '/ I? - R->c 

X e e (A-23) 

X £ " (A-2/,) 

A T>*/ A 

x e. J*. , 
(A-25) 

Therefore 

* • 

il?-E*-\ (A-26) 
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S i m i l a r l y , 
i 

0 (A-27) 

W W ) ' 
I 

(A-28) 
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APPENDIX B 

Evaluation of the i n t eg ra l s : 

V - R (B- l ) 

(B-2) 

-Ar 
r (B-3) 

To solve I i , I 2 , I3 the expansion series by Watson (1958) 

has been used 

We know 

i r - 61 i - o 

ftl+flkn-j- ( / g ) ft*./ (B-4) 

where 

V ^ R , Cos 0 = 

1- / t L 
* l + W = A / * 

M - O 
(B-5) 

h - o 
H I ( I - h) ! ( 2 / . Y ) " 

n = o 

(B-6) 
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i * 

(B-7) 
YY\=- I 

CP 
IT - E l (B-8) 

co 

(B-9) 

where 

Co? e = Cos e, Cos e a + s ;«ei Cos (4>i- 4>») ( B-io) 

(^n^i) and ( e * > ^0 are the polar angles of r & R. 

The in tegra l s 1^ and I3 can easi ly be evaluated f o r 

d e f i n i t e values of n, m and 2. . The in t eg ra l I 2 i s 

calculated i n the same way a f t e r expressing i t as 

( B - l l ) 
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APPENDIX C 

E l l i p t i c a l i n t e g r a l f o r evaluation of the i n t e g r a l ; 

- <><r 
r ( g ' B , H ; V , | ) r . s H y 

By f o l l o w i n g the method given by Coleman (1970) , 

we can express I as 

l ^ o { l + ) }° (C-2) 

where I, l-h 

Vt Ĉ > R^) = r/K i f 

= R (v i f v>R (c - 3 ) 

and 

A = Z_ 7 U T T ) ^ ( C o s G> W ) ^ C V d r (C-4) 

b = H T ^ T T ^ 5 - ( c - 5 ) 

n = i r e 4 r g - ^ g _ -—i— £ y ( c - 7 ) 
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Putting 

a = z ^ o r '
 (*)t+' r > R v t + , 6 ( * . . > J i ( c - 8 ) 

Now M -1 
2__-t F t ( c 0 c e ) = ( i - 2-fcCos© + 0 ft | £ I 

(C-9) 

Also 

Jit 
l + T 'o J t f i - z - b cos e + t 

(C-10) 

' 2 
Put 7 - •|r ^ 

£, 0 • * 7 ' ^ fro t + » 
( C - l l ) 

Let 

I -V Cos^ (C-12) 

C o s * = I ^ H -
1 I -4-t 

(C-13) 

then 

-t —c> o , v|> -t> o 

and t - "Z —& ^ = <j? = c o s ~' ( y ^ ) 
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Also putting the values of t , we get 

(1 + (cm 

where 
k a - -jr ( J + C o * 

2. 

Therefore 

2 

' o 

, i + r 

(C-15) 

i t - - 2 s , ' n * 

[ + c 0 7 y (C-17) 

(C-20) 

(C-21) 
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where 
& = Co. I - Z | 

1+ Z | 

and R 

_ J J -

e=0 

2 E.+ i R 
I 

(C-22) 

f j (Cos © ) 

>" ^ P ( C s e) -^x 
t=0 

r°° - d K Z 

(C-23) 

where , / 

Therefore 

M. S° -o(RZ 
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APPENDIX D 

L i s t of integrals for 

H •+ He ( i s ) — > H -+- He(/s, zs .ap) 

V i o ( ^ ) = ( / * ) / I / / * f ( * S ) > 

(D-2) 

•f 



- 9 0 -

r 6 ^ , ^ r r r i,,o(R)B [l-(c<+ (D-4) 

Also 

(D-5) 

J m - o 

where 

(D-7) 

- 7 f f 
(D-8) 

^[(4 + ^ * Z > ~ 2 " ] (D-9) 
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(D -10 ) 

-~iR 

( D - l l ) 

A = (D -12 ) 

B -+-
2/ 

(D - 1 3 ) 

(D - 1 4 ) 

J8TT 
e (D - 1 5 ) 

+ — 
(n)1 (zrf 

-t - f -
72L ° 

1 t^? (*-+)4 (2tfKJ 

(D-16) 
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+ loK__ i££___ + li£ + Zif 

\ t ^ _ U"2^ _ 7 i ! _ ] ( D „ 1 7 ) 

W h e r e 1(7,0 (^) = YTrr (D-18) 

JZ>°[rsJ A fFT \ J (D - 1 9 ) 
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APPENDIX E 

+ •+ L i s t of i n t e g r a l s f o r H + H e ( i ^ ) —1> H Us) •+• We (' 

- id R 

-X 
No.o = No, o 

(E - l ) 

(E - 2 ) 

(E - 3 ) 

(E - 4 ) 

where 

+ (- Z^K) (/? fv''- ^ ( E " 5 ) 

(E-6) 



where -, 

' (E-7) 

Co = [[(<+*•)(<'*) -
(2-hJ.r L J 

where 

(E-8) 

(E - 9 ) 

x. 

(E-10) 
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Figure Captions 

Figure 1 . T o t a l cross-sections f o r the e x c i t a t i o n s 
of helium by proton impact. 

Curve F l . Four channel coupling of Flannery ( 1 9 7 0 ) 

Curve P 2 . Our r e s u l t s f o r the f o u r channel coupling w i t h 
the second order p o t e n t i a l . 

Curve S B 2 . Second Born approximation (Holt et a l , 1 9 7 1 a ) 

, F i r s t Born approximation ( B e l l e t a l , 1 9 6 8 ) 

O Our r e s u l t s f o r the f o u r channel coupling 
w i t h o u t the second - order p o t e n t i a l . 

Figure 2 . T o t a l cross-sections f o r the 2-̂ p e x c i t a t i o n s of 
helium by proton impact. 

Curve F l , P 2 , S B 2 , • , 0 , are as i n Figure 1 . 

Figure 3 . Figure U, Figure 5 . Figure 6 . 

are the capture p r o b a b i l i t i e s versus Impact parameter. 
The dots i n d i c a t e the computed values. The Normalization 
f a c t o r N has the values I . 9 6 at 3 0 . 2 Kev, 8 . 3 6 2 at 1 0 0 Kev, 

7 3 . 1 0 at 2 5 0 Kev, 1 1 9 0 . 5 at 500 Kev r e s p e c t i v e l y . 

Figure 7 . Figure 8 . Figure 9 . Figure 1 0 . 

are the capture p r o b a b i l i t i e s versus Impact parameter. 
The dots i n d i c a t e the computed values. The Normalization 
f a c t o r N has the values 1 . 7 3 at 3 0 . 2 Kev, 11.38 at 1 0 0 Kev, 
1 1 9 .08 at 2 5 0 Kev, r e s p e c t i v e l y . 

Figure 1 1 . Figure 1 2 . Figure 13. 
are the capture p r o b a b i l i t i e s versus Impact parameter. 
The dots i n d i c a t e the computed values. The n o r m a l i z a t i o n 
f a c t o r N has the values 2 . 5 9 at 3 0 Kev, 1 2 . 8 at 100 Kev, 
1 2 1 . 3 at 2 5 0 Kev, r e s p e c t i v e l y . 
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Figure 14* T o t a l capture cross-sections f o r helium atom 
by proton impact. 

. Present c a l c u l a t i o n s (TC from Table 4) 
• Present c a l c u l a t i o n s (DW2 from Table 4) 
^ Present c a l c u l a t i o n s (DW1 from Table 4) 

Figure 15< 

Figure 16. 

T o t a l capture cross-sections f o r helium atom 
by proton -impact. 
Present c a l c u l a t i o n s (TC from Table 4) 
Experimental r e s u l t s ( S t e i r and B a r r e t t , 1 9 6 6 , 

Barnett. and Raynolds, 1 9 5 8 ; Berkner et a l , 1 9 6 5 ) « 

T o t a l capture cross-sections f o r helium atom 
by proton impact. 
Present c a l c u l a t i o n s (TC from Table 4) 
Bransden et a l ( 1 9 6 6 ) 

Green e t a l ( 1 9 6 5 ) . 

T o t a l capture cross-sections f o r helium atom 
by proton impact. 
Present c a l c u l a t i o n s (DW1 from Table 4) 

• F i r s t Born approximation (Mapleton, 1 9 6 1 ) 
A Impulse approximation (Bransden & Cheshire, 1 9 6 3 ) 

Figure 18. Capture p r o b a b i l i t i e s versus impact parameter 
f o r 3 0 . 2 Kev. 
P — > Present c a l c u l a t i o n 
G —1> Green et a l ( 1 9 6 5 ) 

BS — » Bransden & Sin Fai lam ( 1 9 6 6 ) 

Figure 17. 
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Table 1 

T o t a l c r o s s - s e c t i o n s ( i n cm ) f o r the e l a s t i c 
s c a t t e r i n g of protons from helium. 

Energy i n 
Kev. PI P2 

25 1.026 0.9861 

30 0.9231 0.8292 

40 0.8062 0.7555 

100 0.5079 O.48O3 

150 0.3945 0.3138 

225 0.2942 0.2509 

400 0.1836 O.155O 

500 0.1510 0.1424 

y\ ? r e s e n f calculations wi+lioa+ He 2nJ or<iev poWffdl 
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Table 2 

T o t a l c r o s s - s e c t i o n s ( i n u n i t s of jr<& ) 
f o r the 2^s e x c i t a t i o n s of helium by protons. 

Energy i n 
Kev. PI P2 F l B l SB2 

25 0.066 0.035 0.067 O.O95 0.090 

39 0.068 0.056 0.087 0.075 0.081 

50 0.087 0.057 

100 0.058 O.O46 O.O58 0.038 0.041 

150 0.040 0.031 0.038 0.027 0.026 

225 0.026 0.021 0.025 0.020 

400 0.014 0.011 0.014 0.010 0.010 

500 0.011 0.009 0.010 0.008 

PI Present c a l c u l a t i o n s without the 2nd order p o t e n t i a l . 

P2 Present c a l c u l a t i o n s with the 2nd order p o t e n t i a l . 

F l F o ur-state approximation (Flannery, 1970) 

B l F i r s t Born approximation ( B e l l e t a l , 1968) 

SB2 2nd. Born approximation (Holt et a l , 1971)• 
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Table 3 

T o t a l c r o s s - s e c t i o n s ( i n u n i t s of ~rr<i0 ) 
f o r the 2^p e x c i t a t i o n s of helium by protons. 

Energy i n 
Kev PI P2 F l B l SB2 

25 0.030 0.025 O.O37 0.204 

39 0.072 0.062 0.082 0.227 
50 0.090 0.090 0.228 

100 0.147 0.139 0.153 0.207 0.130 

150 0.145 0.135 0.148 0.172 0.128 

225 0.131 0.124 0.132 0.118 

400 0.100 0.099 0.100 0.102 0.095 

500 0.087 0.087 0.087 0.092 

Present c a l c u l a t i o n s without the 2nd order p o t e n t i a l . 

Present c a l c u l a t i o n with the 2nd order p o t e n t i a l -

F o u r - s t a t e approximation (Flannery 1970). 

F i r s t Born approximation ( B e l l e t a l , 1968). 

2nd Born approximation (Holt et a l . 1971)* 

PI 

P2 

F l 

B l 

SB 2 
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Table 4 

To t a l c r o s s - s e c t i o n s f o r e l e c t r o n capture 
by protons i n helium 

Cross - se c t i o n s ( 1 0 ~ ^ cm 2) 

Proton 
energy 
i n Kev. 

DW1 DW2 TC BS G B l Expt. 

30 2 . 0 7 2 . 44 1.86 2 . 19 1 .92 2.80 1 . 9 2(a) 

100 
-1+ 

2.68 3 . 2 9 " 1 3.06"1 
-1 

2 . 9 0 
-1 

2.76 
-1 

3.0 2.76,- 1(a) 

250 
-2 

1 .73 
-2 

2 . 4 0 
-2 

2 . 35 
-2 

2.0 
-2 

2.0 (b) 

500 
-3 

1.06 
-3 

i . s a 1.88" 3 
- 3 

1.0 
-4 

8.0 (h) 

1000 
-5 

3.99 9 - 3 8 5 
-5 

9.38 
-5 

7 . 4 
-5 

5.0 
- 5 

5.0 (b) 

.0,000 
-D 

1 .57 
-10 

4-55 
-30 

3-1 
0 . 4 J " 1 0 

( c ) 

+ The superscript i n d i c a t e s the power 10 by which the 
number i s to be m u l t i p l i e d . 

DW1, DW2, TC are the present c a l c u l a t i o n s f o l l o w i n g the case A, 
Case B, Case C i n chapter 6. 

BS r e s u l t s of Bransden et a l (1966) 

G r e s u l t s of Green e t a l (1965) 

B l F i r s t Born approximation (Mapleton, 1961) 

Expt. Experimental r e s u l t s , (a) S t e i r & Ba r n e t t , 1966, 

(b) B a r n e t t & Reynolds, 1958. 

(c) Barkner e t a l , 1965* 
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