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Abstract

The main work described in this thesis, is the original
calculation of the excitation of helium by proton and of
electron - capture process from helium by proton where the
2nd order potential introduced by Bransden & Coleman (1972)
has been applied. - = - —--

It begins with a2 discussion of the existing methods relevent
to the present work and followed by the construction of a
second - order potentiale. A critical survey of the previous
work has also been presented and its relastion to the present
work and result is d iscussed.

The aross-sections for the following processes is calculated

in the energy - range indicated
(i) p + He(1SR) —» H*(15,25,2p) + He(15°) 25 Kev - 500 Kev
(1i) p + He(15%) — > H (1S) + He* (1S) 30 Kev - 10 Mev

The calculated cross - section along with existing results
has also been presented and it is seen that the present

method provides better results for the excitation process,
but for the charge - exchange process, our results do not

agree with the results of the experiment at high energies.
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CHAPTER 1

Introduction

This thesis is mainly concerned with the excitation
and the charge exchange of helium by protons. Examples

of these reactions are:-

p + He (182) —o p + He (15%) (a)
p + He (18°) .—» p + He (15,25) (b)
p + He (1S%) —- H(1S) + He* (1S) (c) .

The reaction (a) is known as the elastic collision where
there is no change of the internal energies of the particles
in atoms and where the incident particle can be deflected
through a certain sngle. The reaction (b) is an excitation
process where the particles in the atom may be excited to
different energy levels and the reaction (c) is known as the
electron capture or charge - exchange process where electron
from one atom is exchanged to another ion during the collision.
In electron capture either or both of the hydrogen atom and
helium positive ion can be excited in the finsl state.

The present calculations are based on the paper written
by Bransden & Coleman (1972) which we have applied to both
the excitation and charge - exchange reactions given above
and a8lso to excitation of the 21P level of helium.

Before giving a description of that method, it is
necessary to discuss some other methods which have been
applied to the evaluation of the cross - sections for the

reactions noted above.: The methods we describe here both
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for Direct and Rearrangement collision.
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1.1 Derivation of the scattering amplitude

For the sake of simplicity, let us consider a three
particle system in which the particle 1 is incident on an
atom composed of an electron 2 and a nucleus 3. Then the
reactions for the system for both Direct and Rearrangement
cases will be given by
1+ (2+ 3) 1+ (2+3) (a)
1+ (2+ 3) 3+ (1 + 2) (b)
respectively. Our intention here, is to find an expression
for scattering asmplitude in both cases.
For Direct scattering, we know that the initial and
final states consist of the free particle 1 moving relative
to the bound particle (2 + 3). In the rearrasngement system
the initial state will be the same but the final state now
consists of the free particle 3 and the bound particle (1 + 2).
Let ri, ki be the position and momentum vectors of the
incident particle 1 joining the centre of mass of (2 + 3) and
R}, p; be the position and the momentum vectors of the particle
2 and 3 in the initial state. Similarly we can define
rsy Kg, Ry, pp which are the necessary vectors represented

by the final state. Also, we know, that the initisl and




final momentum are relsted to Ki= iV and K = A4
where gy and v, 2are the initial and final velocities
and M and u¢ are the initial and final reduced masses

respectively:

M, (Mg M‘A) - . s 2
<= _——L—————- -
Mi My g+ My M (for Direct collision)
_ M (M Mg) ng = S (my M2) (for Resrrangement
M= g e oy 5% W mgr g collision

Ml’ Mé, M3 being the masses of the particles 1, 2 and 3

respectively.
Now the Schrodinger equatioh in the centre of mass system
is

(h- )Y (Rx)= 0 (1-1)

where the Hamiltonian H can be expressed as

H=K+vV+wu+v,

2 a2
- eV - ';‘,V:"g—*"' +Va + V3
Mi
1 z L vz+v+\/ vV,
Moo g - VYt ViV + Vg
2/14‘? Ry >4 ! (1-2)

K is the kinetic energy operator and the potential vy
- acts between particles 2 and 3, V2 between particles 1
and 3, and V3 between particles 2 and 1, and M 1s the

reduced mass. The boundary condition for the Direct collision



to be placed on \y are that for, large Bl’ rys

. ) . Ikn“ﬂ
ke M £n ( Q)C

\\/NZ[M& + <

¢, &)
) (1-3)
The first term in (1-3) represents the incident wave
function and the 2nd term is the outgoing spherical wave
describing the scattered particles and (8D 1is the
scattering amplitude.

Since there is no incident wave function in the

rearranged channel we require, when Ry & r5 are both large

b kf\"f

Yor Ll eyt ¢ ) (1-4)

The differential cross - section for both direct énd exchange
scattering is determined by 1§n<a>f‘ or |9m (on)”
respectively.

To obtain exact expressions for f (&) and 9 (&) we

need the three - particles Green's function defined ss

Gio (Ej+ 1€) = (E/+ 1€ - Ho)

-1
G; (Ec+1€) = (E/+1€& - H)

- |
(515_ (E£+ lé) = CE_;-f—}e —H;)

b (E+ 1¢€) (E/ +1& - H)

where Go, &, G, & are known as the free particle,
the initisl, the final and the full Green's furction

respectively, and Hi = K+ Vi > M4 = K+ V.



The solution of (1-1) is given by

+ * x
\_‘/I- = ¢' + 61, Vi vy, (1-5)

where (+) and (-) signs represents the outgoing and the
incoming wave function respectively.

+
Using the exact defimetion of Gy , the equation (1-5)

gives

\/. .
\yi - 4’ E; *ie - W P (1-6)
Similarly, we get
+ 1 Vi *
\~|{; = ¢s+ E; T ie - H ’L\Pf’ (1-7)

Now, the scattering matrix is

gﬁ' = LYy \ 4’;7

= (“{/}4-’\’/(-*7 + L%- - k}/l:’.’

A

= S5+ <& | (Fmem, T E Frvan MY Y

where
CWENWTY = i
Since (B¢ — H)Y =o and Vi = Vg we get
g{—l = S.f.l -2 S(E"— E{-)Lﬁ_,\/;_’\f/'.-‘-7 (1_8)
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where we hoave used the relation

Gim ___6__-’— = nS(E.’—E})

evo € (Ei-&)

The equetion (1-8) is valid for the Direct collision

reaction where H = Hj + V4 = Hp + Vg and Vj = Vg
For the resrrangement collision, the conditions are that
H=Hi+Vi=Hf+VfandVi# Ve

Therefore, by applying the formula

Lo e o (po) -
where P=FEi+ i€ -H
and 6 = Ei+ie-He @nd Ei= Ef

we get

-+

G = =

o
Elt;e"H"

= 61: IERCE H;)c,fj

- @f [:+ (v - Vg)@f] (1-10)

Substituting (1-10) into (1-5), we get

+ + +

\4/'7 = ¢|' + 61; [l + (v - \/5_) Gri ]\/,.\{/I_i




+

N

vy -V +
=4’.[1+ e ren) T oW
E; +i€e- Hy+Vi- Vs t +
= MLRLRSRSL Y 6y %\
! E|'+;e "Hf
t
(E; +i€ - Eg) CE +ie - E) (1-11)

where we have used (Ef - Hf)CPf =0 and also (E - H)$; =0

The scattering matrix can now be obtained in the same way

as above and we find again that

Sei = Sgi — 2mib(Ei- E§)4¢i|‘4"ylf> (1-12)
These relations were first proved by Lippmsn (1966) in
the time independent theory. It is elso applicable .in the
time dependent theorye.

Equation (1-8) can be written as

Sei = S¢i - ami S(Ei- BT (1-13)

where -E-i is known as the transition matrix from the

initial state i to the final state f and is defined as
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L¢§ Vs H/:7

=

LY\ @iy (1-14)

Equation (1-13) can be used to calculate the transition

probability defined as

Wg i * l“”&l‘*’.‘+7’

2
%gl @iI{CEI-E}) (1-15)-

1

The required scattering amplitude is given by

fe) = - QLIRVE (1-16)

21

and the total cross - section from the initial state i
to the final state f is

N 2
Qig = 5=

(lf(e)lidn

»
s
. , (1-17)
- 2 .
= = ;:f’ Slri..'l ds




1,2 The Born Series

From the previous chapter we know that the transition
probability from the initial state i for the final state
f is

2
Wi = 2= [T

where ) R

L

- *
i = Ldg|vp | 7 (1-18)

As it is very difficult to calculate the transition matrix
keeping the exact expressions \K& ov ¥

verious approximations have been introduced. One of them
is the Born approximation which can be described as below.
The Born approximation is expected to be valid for higher

energies.

Also from equation (1-5), we find
+

o

W

4’( + qu—-\/,'\f’l—'-

11

<P|' t GI—;-VI' (Pf
g (1 GV, (1-19)
Therefore

Ti = 4@ 1%j0r o viod> (1-20)

TN N
We also know from the previous section that

* |
T

E;*ie - H

|
TE tie - Wi - VI
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(Eitie ~w) 0 = gy
+ *
= & (1=Vi&;)
=6 O+ Vi A Vie Vi + -0 ) (1-21)
x *

Similarly we can express & in terms of G, which can

be expressed as the series

* + +

+ 4 t +
b = G (1+Vobo +VobuaVy gt - - - - =) (1-22)
. +
The equation (1-20) can be expressed either in terms of G

+
or (G and we find

Tio= e lvlb7 + b I%lGiy <ul%lviaigy - (1-23)

:L‘P;I\/{_,CP;7 + “P&l‘QIQ:@+44’&IV&’V-'G»§4{7* Ce e e (1—2[0)

The series (1-23) and (1-24) are both known as Born Series.
The first term of this series is known as the first Born
approximation to the scattering amplitude. Similarly when
we add the second term with the first term we obtain the
second Born approximstion. In the same way, we can define
the third Born approximstion, but for high energies it . is
believed that the third and the other terms of the Born Series

can be neglected.
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The convergence of the Born Series for potential scattering
has been discussed by Kohn (1952), Jost and Pais (1951),
Manning (1965), but the problems ermecounteredin the three
particle system are rather different. Recently Dettmann

& Leibfried (1968), Rubin et 2l (1966, 1967) have concluded
that the Born expansion for the three psrticle system with
short range forces converges for all energies for both the
Rearrengement and the Direct collisions. No proof of the
Born series for particles interacting via the long range
coulomb potentisl is available. The previous work based

on this method for the Direct and the Rearrasngement collision

will be discussed in Chapter 3 and Chaptér 5 respectivelye.
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1.3 The Distorted wave aspproximation

The amplitude in the Born approximation is the matrix

element of the intersction between the colliding systems
taken between unperturbed wave - functions. It is possible
to introduce a similar matrix element but taken with respect
to wave - functions that are perturbed or'distorted' in

some predetermined fashion, this-{aé;_is the basis of the
distortion method. In general the Born approximstion cross-
sections are too large at low energies and the distorted
wave approximation is often quite effective in reducing the
cross - sections for about the right order of magnitude.

From equation (1-19), we find

v o= b o+ ATt (1-25)

! E+ e - H

and

|

=4+ LR M) g (1-26)

E+ie - H
where H=Hit+Vi= Ht

Similarly, for some other Hamiltonian Hﬁ, we get

+

i o=+ LT HD g (1-27)

E+ie -4

Ay = & + iﬂ;;ﬂﬂL—— (1-28)

7 E+ 1e - H

Substituting (1-27) into (1-25), we find

Vi - TR - Wb

E+ie -4 E+ie - H (1-29)
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From (1-9), we see that

E+ie - H' E+ie - H E+i1¢e - H

I _ I (H'- H)
i [' * } (1-30)

Therefore, (1-29) gives

+

R R St S

E+ie - E+ie -t E+ie —H

_ it ot [(_H'+ Hi + H-Hi) -
- E+ie —H

(HE WY (H=HD) J

£+ie - H'

+ _ B ; I—H.'
= % + _(__H___.H_)——————["f‘ CH ) CP
E+ie — H E+ié—H' !

S e o
E+1e —H l
(1-31)
Similarly,
- B — H,.HI -_—
RS B STETRL (1-32)
Let
Tei = cquu-pryf7 = LT H - Hi | P
IERA AR S AR N E R o



14—

Then
/
Tei — T
+ 4
e LRI AR AL AT b
¢ |t N (- W)XE N\ O H
= LF [ H- He](x; + _ i - W= e |
e R Ll
= (P H - nC CH-H) CH-Hg) | F
CHlH-n'1% 7 + L% | ' /xfl7
E+i€e - H
= LY | H-W|xTy
Similarly,
/ _ -+
1;{ _ 'Q; - [q? /H-'H’b([>
Similarly
/ _ , -+
LT AR o R A2
Therefore
- 7 + - ’ -
LY H- Wy 7 = Lz u-w N
Therefore
, ' +
Tei = Tgi + 2% [ H-H' X 7 (1-33)
_ 1;? —+ LJF;’ H - H,lq4#37
Suppose

H = Hi + Ui + Wi = Hf + Uf + Wf
where H;, and He are the initisl and finsl unperturbed
Hamiltonians respectively. U; and Ugp are erbitrary
potentials respectively.

Writing H = H + Wy = H + Wy

/
where H' = Hi + Ui = Hf + Uf
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from (1-33), we get

-+
Toi = LBV - Wil > + LW 7 (1-34)

T T =LV - w7+ 45;!%/‘%5 (1-35)

7
where to avoid confusion, the eigen functions of H has

4 - = .- —_
been denoted by g; . The Distorted Born approximstion for

+ +
T¢i is obtained by replacing W, by X, in (1-35) i.e.

Ti = LIV W | Ty G55 v [ 7 (1-36)

Equations (1-34 and (1-36) are both known as the Distorted

wave Born approximation, which is the first term in a

Distorted wave Born Series.
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l.s4 The Impulse approximation

From the previous section, we know that the transition
probsbilities for the initiasl state i for the finsl state f

can be defined as

Ti = L& |ve|¥ > (1-37)
Since the exact wavefunction \Vr is very difficult to
calculste in a true three body approximstion, the impulse
approximation, has been introduced by Chew (1950) in which
the three body wave function \H+ is replaced by a super-
position of wave - functions relating to two particle scattering.
This idea of Chew (1950), has been elaborated by Askin and
Wick (1952) and Chew and Wick (1952). Also, at the same
time, Chew and Goldberger (1952) extended the idea which is
applicable to the Direct collision 6n1y. Prodhan (1957)
first extended the method to the calculation of the charge -
exchange process using a slightly different version of the
impulse approximation. We present the formulation given by ..
McDowell (1961) which is applicable for both Direct and
Reafrangement processes.
We consider the system given in section (l.1).
From equation (1-19), we know that

AR

where =t Qv

So the equation (1-37) can be written as

Ti = el uIB> (1-38)
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To obtain the impulse spproximation we need to express the
three-body Mg¢ller operators J’l+ in terms of the two-body
+

operators Wij , which satisfies the equation.

+ ]
Vi)
. - e
WijmXm = (1 + Em _u.,_v.:,'+vé>xm (1-39)
where Vij is the interaction potentisl between the particle

i and the particle j.° The wave function )lmsatisfies the"

differentisl equation _
(Ho - Em)'X.m = O

and \.,/:'(ij) describes the motion under the potential
Vij alone,
i T
( He + V.'J')\Vm ("j) = Em\m (i)
+ . +
which implies that Ym (1)Y= WijAm (1-40)
Now + I ,
G = F-wWai€e

So with the help of the formula (1-9) above we can express
G\+ in the following form
+ . .
61- = | ; 'i'l‘———-,——(Em—Ho-\/.‘J'He —E+H—/€>
(Em - Ho - Vij+i€) = (Em-H+i€)

| i
X (Ewm-Ho -Vij+ i€)

Ii’i‘eit:c&ﬂ)ing both sides by Vij , we get

Gﬁw' ] 4 v Em -Ho -Viy - E+H
Y ~ CEm- Ho - Vij+i€) (Em -H+i¢€) (Em -Ho - Vi -

| Ve
X - -
(Em - Ho ’V"J'+'€> 1) (1-41)
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From equation (1-39), we get

V(_,‘
CEm - Ho - Viy+ie)

+
= \'JI'J. (m) -

Therefore from equation (1-41) we find

+ + 4 : —-
G Vij =(Wiytm) -0+ 6 [(Em-E) + Viz+Va+Vasg - V-'J'j (Wi (m) - )
(1-42)
Let
+ +
(W:')' (m) - I) = bij (m)
Then from (1-42), we get |
+ + + +
6 Viy = bijtay+ G [(Em—E)"‘VlZ"'VIS + Vag - V,'J']l:ij (m

(1-43)

Substituting (1-43) in (1-38), we now obtain

Tig = L& lvg| (Wi +wis -7
+ L] 6 (s, (Bist b))} >

+ LB VGG (Vishe +Vigbyg) ey (1-kk)

The equation (l-44) is known as the impulse approximastion
which can be applied for both Direct and Rearrangement
collision. This expression is much too complicated to be-
used in practical calculations and further spproximstion are
made.

If the collision is rapid, the influence of the binding

potential V44 , during the collision is smsll and can be
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neglected. In addition at high energies it is reasonable
to neglect the influence of multiple scattering in the 3rd
term. The impulse approximation is then

mp

T = L] (W3 + Wiy - D7

- LhI [

where ™Mp

4%- = (Vﬁg +-Mh:--')<$f

For the excitation process, the impulse approximation can

(1-45)

be given as
T?MP= s | Vi + Vi | (WI7_++ Wl; -9 7
! " (1-46)

where 1Ki
e

b = .—567(50

and ' ke )

b = e (R
where ]ﬁ- and—¢ is the centre of mass from the particle 2.
In the case of heavy particle impact V35 cannot contribute
for reasons to be explained. Therefore impulse approximation
can be written in the simple form
IMP

Tgi = 44’HVISIWIZL\’.'7 (1-47)

+
where Wi = |

The equation (1-46) is known as the post form of.the impulse

approximstion, because that contains the interaction potential

a0 ’*

Ve We can also define the prior form of
approximation, which is given by

-TMP _
T =L T vildey
(1-48)

Qw4 Wil ) g Vel dy Y
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For excitation process, we get Vj = Vg but for the
rearrsngement process V; will be different from Vg. The
application of the above method will be described in Chapters
3 and 5.

This method is defective in several respects. The potentials
have only in part been eliminated by replacing them with two -~
body scattering amplitude, the initial and final interactions
appear asyﬁﬁetrically which may prodﬁée 2 post - prior
discrepency. Both these difficulties can be overcome by
using Fadeev's method (196la, 1961b). A slightly different
formulation of Fadeev's approach has been given by Lovelace
(19642), which is more approximate for three particle collision.
In this case the initial and final states consists of a bound
system and a free perticle. These methods are discussed in

the books by Bransden (1970) and McDowell and Coleman (1970).
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1.5 The impsct parameter method and the truncated
eigen function method

A very grest simplification can be made in the theory of the
scattering of atoms by atoms or ions, because the wave-length
associated with the relative motion of the colliding particles
is usually very small compared with atomic dimension. ' The

wave-length A of a proton of mass M and velocity V is given

by
n +
7{_ = —-—'2_"_ = ——V

The reduced wave-length A is equal to the Bohr radius of the

hydrogen stom ag, when V & lO5 cm sec-"l ’ which corresponds

to a kinetic energy by less than (T%ﬁ) ev . For kinetic
energies with which we are concerned, which extend from lev
to several Mev, 7L is always much smaller than the range of
interaction, which is certainly greate; than a5, Since the
proton is the lightestpnz@édﬂg, for all other atom the
inequality 7 <¢ 4. will be satisfied. Under these short
wave-length conditions, it is generally possible to define
classical trajectories which are followed by the colliding
atoms. For the trajectory to be well defined, it is also
necessary for the uncertainty, Ae in the angle of scattering
to be small compared with e . We have be = %?— y where
ap is the uncertainty in the transverse momentum transferred
to an incident particle of momentum p. As the range of the
interaction is of order a., APC’%t and it follows that
classical condition will apply if 6’7-;; - The critical

angle is less than 1° for protons with energies of

%
Pao

a few tens of electron volts, and is smaller still for other

nuclei with the same energy. As experimental arrangements

TP
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exclude very small angles, this is not a practical limitation
end the motion of colliding atoms can be described classically,
except in certain circumstances, in which interference effects,
arising from a difference in phase of the wave - function
associated with different classical psths, are of importance.
In contrast to the motion of the heavy particles, which can
accuragtely taken to be classical, the electronic motion which
is associated with discrete states must be described by
quantum mechanics. (Bransden, 1972).

This spproximation is a good approximation unless the impact
energy is very low (Bates and Boyd, 1962a,b). Also in the
impact parameter treatment the nuclear assumed to behave like
classical particles and quantum perturbstion theory is applied
to determine the change of a transition from one electronic
state to another.

Let us consider the impact parameter method for both direct
and rearrangement collision. Let R be the position vector of
the particle 1 relstive to 3 and let ry, r,, r be the

position vectors of the electron relstive to 1, 3 and the
centre of mass of R respectively. Let v be the relative
velocity of the proton which remains constant and which is
moving parallel to the z - axis. Let P be the perpendicular
distance of the proton and the z axis which is known as the

15

impact parsmeter and before collision the condition relsted

Q

to is R= P+vut, 2 =ut and V.f = O
The complete electronic wave - function 4/(12€) satisfies
the time - dependent Schrodinger equation (in stomic units)

DY (L)
St (1-49)

HY (e, t) =
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1l 2
where H is the hamiltonian as H = -2 V, + V12 + V13 + v23
and V32, V33 and V23 can be expressed by the help of
coulomb potentialse.
Now, we can expand Wy (x>t) either in the form of

(-ivzfy, - 19t/g - idpt)

@ ?ﬁ_ an (£)P, (P ) € (1-50)
or in_ﬁhe form of )
(I'UZ/z e /9 - 'lbq‘f)
me ({)4);"(!'; 'L') € (1-51)
m

where the coefficients a,(t) and bpy(t) are time -
dependent function. &, and Qs sre the wave functions
of the bound states before collision and after collision
respectively.
From (1-50) and (1-51) we csn calculate the coefficients an(t)
or by® in the following way.

dn(t) = f\l/(:f', t)an*(r,Jc) exp (ivz/o + 19t/8 + ipt)
Similsrly,

b, ) = f\//(f,t)qaz (rnt) exp Liozfs + idt[g + 1h,t)
So the probability amplitude for finding the system either
in the n'th level or in the m'th level can be obtained by

| an +o)]” or [bm (+e0)] " respectively.

Total cross - section can be obtained by using the following

formulea 00 .
a = {rpip 274 (1-52)
2 2
where I is [@n (+09)]  or [ by (0] for the excitation

or charge exchange process respectively.

The Varigtional Principle.

But to get the exact solution of (1-49) we can apply the

variational principle, defined as
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T =y (H- i)y dl

*
where V¥ and ¥ are the total wave functions which

satisfies the boundary condition
. .* P
V=Vtby L T T LT e e
which requires S\P(I’,t) =0

and SV )= o as + > + o0

The trisl function can be expressed as below
W (7, f) = %—Qn )R, (¥, t) exp (- 192/ - iuzt/g—,‘o/,,{;)

2 b, () B (6D exp(iv2/s - 0% /8 - ifye)

+ V(X t) (1-53)
where Y(X3t) is a function which can be represented by the
set of eigen functions with the nucleus 2 or 3, but neither
the initial nor the final state is included in either set.
Consequently VY(¥»*t) is orthogonal ito ¢,(t) and @ (X t)

so that it has the expressions
V(I;Jc)=P%4,,(t)¢P (t)exp (- ivzfz - 1FE/8 - iotpt)

=1§=fb$(t)4%(r,t) exp(ivz/s - 10t/g —ip,t) (1-54)

The equation {1-53) is very difficult to solve. So some
other approximstions must be used. We now, describe the

two-state approximstion following the method due to Bates

(1958).

The Two-state approximation.

In this case only the initial and finsl states are included
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in the trial wave-function. So the equation (1-53)

reduces to
(s £)= @ @)1 (k) exp(-ivz/a - ivte/g ~ielt)

+ by() fn ) exp (junsa -1 0'e/8 ~ibst) (1-55)
where (;(t) and bg(t) are the time-dependent coefficients
in the initial and final states respectively. If we now

set the initisl condition d;(-e)=1 and bg(-2) =0

then the scattering amplitude from the initial state i to
the final state f for the excitation or charge exchange process
can be given either by | 4. (+“°)l'2 or by | by (teo))*
which can easily be calculated by (1-55). Cross-section
can be obtained after applying the formula (1-52). To get
the coefficients aj and by the following melkad has been
dsed.r. 2.

Substituting (1-55) into (1-49) and multiply both sides
firstly by 47?‘(3-,&) exp ( ;uzjz o+ 6Pt [g + el t)

and secondly by 4;(13t) exp (- 102/2 +19t18 +ipst)

_ and.integrating overall the space, we get the following two

sets of equation.

I(Ci.. + b.,j. glf gxP(__qéi;(:)): ":f k‘.f exp(f éf‘,-f)"/‘ a,’ h a (1_56)
and '

i (l:; + ci,- Serexp(-i€igt) =i kg i exp(-1Est) +bshss (1-57)

The other terms will be zero as they are orthogonal to. each

other, and where &gi =(fs - ") « The matrix elements
Sits Sgrs Ki$s kel s AU, “ff— can be defined as

sif = (Fangm e 4
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-ivz

Gsi = 54:;(3-,) ¢.(m) e dr

vz

* -
K¢ 1 =S¢1’-(ﬁ)v"b p.(n)e d

% 9z
Kig = (¢ x) Vig(n) e dr

l’\;l'

[ c8) Via P (1)

1

hss §<}>:cm Vig &g (1) 47

From (1-56) and (1-57), after rearranging, we get

‘ , et
(= ISig*)a; = a5 Chiv - Sigkg )+ be (kig -Sishgg)e T (1-58)

. i€st
" (‘ - Isn-s-l") b:f = ad Ckfl' - §5.| l‘\l'l') e + Lj" (’15.5 - %‘_['(.'5.) (1-59)

Ageain substituting

X,' - A('I' - gl-j-k-fl
{ - ,glj—‘z
and '
’ _ Llfj- - S:fl.kj—l'
§5 ————— 7
_I - ’S:j-l
and also putting
-+
o‘L,‘ = oa,; exyp [_— r _LX,‘CL‘(:J

and
ok
Ob& = ob:f_ ex};[-‘l _L yj—d{: J

removes the secular terms of (1-58) and (1-59) giving

U= % [ Sfmfje[’ (b -, )¢ + 180 ]

I - IS.':flz (1—60)
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(1-61)

where

Sig = § Ok - %) d

a5 (hii-hgg)dt _
Taking the relevant solution of (1-60) to be %, ()= |

which implies the neglecting of back-coupling from the final
state f to the initial state i and inserting this condition
in (1-61), we get
o od
|be (+20)] = | %bg (+>] = | [, Mis dt |

where

M{-S- = kf"'_ —-_ Slz":';; exp [—f Ch -—}35‘> - Jl'fj

2~ (ke - §§.’L;,')exp[—f CoE ,bf) —I-S:'_{-]

In the case of symmetrical resonance (Bates, 1958),

we get

I %a; = Mig %

', OL_‘F = ,\1‘1:& oq"-
where

Mig = Kig - Sighss _ kei = Spihir

I - ]Sig)? I — I1Sigl*

where

oy =b5 > S'f = S:f"

which is a simple formula to be solved exactly and so allows
completely for back - coupling from the final states to the
initisl stetes (McCarroll, 1961). The term Sic  is the
difference between the effects of the interaction when in

the initiai state sand when in the finasl state.
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1.6 Msny - state approximation.

To improve the accuracy of the results, caelculations have
also been done by taking more than two states for both
Direct and Rearrangement collision - process. From

equation (1-53) we have the trial function

(-70z/a ~ 10 t)8 — (efpt)

Y(ht)=2a, trp b e

(1v2)2 —iv*t]s - B, &)

1 2 by (£) 4, (15t) €

+ V(L)
This can be represented by the two-state approximation,
where the initial and final state should be included and
which we have shown in the previous section. But to get
better accuracy we can add as many state we like if we are
able to do computing. We shall talk about these methods

in the section given below.

The Sturmian _expansion.

Gallaher and Wilets (1968), have first introduced this
approximation and applied this in the proton- hydrogen
scattering problem. In the c#lculations they have expanded
the electronic wave function in terms of travelling sturmian
waves about each protonwith the Sturmian functions gquantized
sbowt the interproton axis.

Thene basis states ofc thezpairticle A is given by

Ug (A) = (0B exp (2 ivafa)exp (=i G+ §)t)

where

() = [ a3/ T (o41)

Simiiavlj we can define anolher wave - function with respeet to the pavhicle B.
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and the Sturmian functions Sk ()= Sne () satisfy
the equation,

2
£+ of
(—.‘i %" + L(z_spll - '%)sk(r): ELSK(T)

The Sturmisn function ¢, (r) has been first introduced by
Rotenberg (1962), who choosed E;, = -% y the ground state
energy of the hydrééen atom. Gallsher and Wilets (1§68)
used E = —ET%TSE . The Sturmian function is similar
to Schrodinger equation, but the energy E, - appears as a
fixed parameter. It is the effective change of o& which
acts as san eigen value. The required boundary conditions of
Sk(¥) is zero at the origin and decay st infinity. 4%(10
form an infinite, discrete and complete set of states.
Unlike the hydrogenic function, there is no continuum.
Their Sturmisn functions are explicitly given by scaled

hydrogen function, sas "
’ Sk(x) = ok Rx (X))

where Rk (¢k¥) . is the usual radial hydrogen function.
The normalization is chosen such that <KIik7=1 In
Rotenberg's sturmiaﬁ set, only the 1S sturmian function
coincides with the 1S hydrogenic function., ,But in the
above case the Sturmian 1S5, 2p 3d.....etc. coincides

with the corresponding hydrogen wave - function 4% .
The Sturmian states are more compact than the hydrogenic
states. This can be seen by noting that Lk H.«- ,/'; 7=
7nﬁir77 as compsred with <K |%\k” = -5,

The results obteined by using the method has been agreed

with experimental result by Helbig and Everhart (1963) for

o
3 scattering angle.
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\
The Pseudo - state spproximation.

The Sturmian expansion has certain difficulties. Firstly it
does not represent the states when internuclear separation
is very large. Secondly, it does not satisfy the bound -

state except for the lowest value of I . By Pseudo - state

approximation, introduced by Cheshire et 3l (1975), the
above difficulties have been removed. Cheshire et al (1970),
have used the same Sturmian expasnsion for the hydrogenic

1S, 2S and 2p states but added some extra terms by

de () = exp (- Aef>[;°<n"] Yom (85 4)

which is known as the orbital pseudo - state wave functions,

where Jeim (e>¢) are spherical harmonies, k and j

are subscripts indicating the orbitals concerned, i = L +! NELP
K=%;+ Ltwm+a and where the radiakl functions

is given by T4 g +i-2

Sip (r)=exp(-Air)y_ SCGL1>9)Y
V=1

the parasmeters have been chosen in this way that these
functions are orthogonal to the 1S, 25 and 2p hydrogenic
states and to esach other. In this way, they have managed
to geﬁ the correct boundary conditions for 1S, 25 and 2p
states and added some omitted terms for the charge - exchange

and excitation process as well.
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CHAPTER 2

Second-order potential

In chapter 1, we discussed the most important approximations
which have been applied to heavy particle scattering. In

this chapter, we give a brief description of the second -

order potential, in the impact parameter formalism, first
introduced by Bransden and Coleman (1972) which we have used
for our calculations. In the many state approximstion only

a limited number of states can be included in the wave function
To overcome this, a second-order potential mastrix haes been
constructed where we try to account approximztely for the
infinite number of states and which can be evaluated in a
closure approximation. The second-order poteﬁtials depend

on a parameter which can be set so that the correct.long -
range effective potential is obtained in the entrance channel
and the method combines the characteristics of close - coupling

and polarized orbital methods.

2.1 Genersl formslism

Let the nucleus A be located at the fixed origin of the
co-ordinate system and let the incident particle: B move

with s constant velocity V along a line of distance f and
perallel to z - axis which satisfies the condition R = f + Vt,
before collision, where f is known as the- impact parameter.

Let the electronic wave -~ function ¥ (¥ , t+ ) can be defined

as

~ient
W (r:t) = Lan)Pa(r)e (2-1)
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where ap(t) is the coefficient dependent on t.
The initial unperturbed eigenfunction d{(n¥) satisfies
Hod, = €nd, (2-2)

for the target nucleus, where Hg is the Hamiltonian for the
unperturbed atom and €, is the unperturbed energy.
Now, substituting (2-1) into the time - dependent Schrodinger
equation (1-49) and using (2-2) and multiplying both sides. by

cgf(f>.£é“t , we get a set of coupled equations

given by

s — iUz )/ e
137 () = 5 D dm(2) Vam() € (2-3)
where we have

Z = (_9-[; (2-14-)

and (Em- En) = dymn

and Vyn can be expressed as

Vam = (4,00 Vs £) 4, () A (2-5)
which is known as the matrix interaction potential between
the projectile and the target. Summation sign in (2-3)
inédludegs the integrstion over the continuum states. The
equation (2-3), thus obtained, is an exact form of the
Schrodinger equation and forms the cases of the truncsted
eigenfunction expansion.
The scattering amplitude can now be obtasined by setting the

Boundary conditions as below,
dn (‘”) = Sno
where o denotes the incident channel. The probability

amplitude da.(+e) 1is then evaluated by using the equation
(2-3) and integrating that from -wto +o . The scattering
smplitude is obtained by integrating [d%(+«0|1 over

all values of the impact parameters, given by

? 2
6 =2( flan(+ed] df md, (2-6)
|
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2.2 Second-order potential

In many problems it is expected that one or more states will
be of particulsr importance in the expansion (2-1).

For these states, labelled n = o, 1,...N, the corresponding

equation (2-3) are retained without approximation, while for
8ll states nyN_ , the equations (2-3) _are modified so that

only the potentisl terms coupling with states n £N are

retsined
- N ©wmnZ) /0
2 dan ()= 2_4m(2) Vom (2) € (2-7)

Solution of (2-7) is

Zfs y d
N , , ‘(©mnZ) /9
dn :-T‘G Z_ S Am((Z)Vam (2) 2 "

m=0 -o@

| nyN  (2-8)
By substituting (2-8) into (2-3), we obtain the final set
of coupled integro-differential equations which is in the

impact parameter formalism and which is given by

. N : ThmnZ[0
i2q, - T‘,—Eamcz)vm(z)e_
. N /o oo
— 42 | @ ) Vi) Vim )
=0 ~%® j::N-H

for n4£nN (2-9)

The equation (2-9) can slso be written as

Y'|=N+I, N4z, - -+ -0



N 1dpn 2/
- 0 | mn
| >Z a, = > z;j,m (z) Vooam (2) e
(2-10)
. %y
$ /
a \L’: g;gm(z’)l(nm (z.2') dz
N=o0,1, 2, . e o~
where ) o _
1[Cen- € zfv + ces-€myz'iv]
Knm (2,‘1'): Z_\/".I <1)\/J'm (7_'>e (2-11)

j: N+
The potential Kppm can be evaluated by using the closure
approximatidn in which €p, the energy ©of the excitation of
the target in the state n , is replaced by an effective

average excitation energy €. The closure relation

Zy'fh‘ (4 ()= 5(r-1) (2-12)

can now be used to write Kpym in the form

[ [Cén -€)z/v + e - ém)Z'/\)J N
knm (2)1’): e ) [\/l’\m(ZuZ'D—.Z_\/y\J(Z> \/Jm(z’ﬂ
. j=o .
(2-13)
where |z N+

where the potential V,,(7Z, 2’ ) can be defined as

Vam (/25 = Sﬁb: (L)) Vnz) CPm (r)dy  (2-14)
and can be expressed in a suitable form for the numerical
celculation by using the technique given by Coleman (1970),
described below in chapter 4.
The equation (2-13) can also be solved by substituting Z/
for j:>Pl where M = N + 1 and the exact energies of all

lower levels are usedy wheve & is 4n new effective enerqy.
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The amplitude for excitation to the state n, for n7N,
is obtained by solving a modified version of the equation

(2-3) which allows for 'distortion' in the finsl state, ie.
N 1 mn 2/
l 'gi 4, = '1; Zd-m (Z)VHM(Z)& + q—r\\/nn (2>

(2-15)
The solution of (2-10) and (2-15) is dependent on the
boundary conditions given above.

2.3 The effective energy 2

In psper I (Bransden snd Coleman, 1972) the effective. energy- ---
¢ has been introduced to obtain the correct long range
potential due to dipole polarizability. Also we know that
should be fixed so that in adiabatic limit of the incident
channel asymptotic behaviour can be obtained.

Using the adiabatic limit V- o y the term containing the
kernel on the right hand side of equation (2-10) then reduces

to
2 ! ‘
T = _SGD 4z Knm (z,2') 4dn (z) (2_16)
’ ) 40V 42 o
= Ko, 2,2 ) 4,(2 )4z Azm =
i jw a (2-17)
N4
= [wyzi)a(zi] 4zhﬂzzyi
(2-18)
I
where W (2, 2') = Sk,,o(z,z')dz )
o0 -;Kn(2'2'>/u
and K22 = E%V, (2) Vjo (2) & (2-19)
):
where K, = {fiéjg) ]
Velocity independent term is [‘4‘7-2 >1

_oo

’

|K,‘

. 1k, 2 , '
Wi(z,2) = Z: e \45”)5e Veld) 4 (2-20)

JN+|
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o —J<—,.Z | TKa2 .
- Z“_ VDS (7_) .. ZTE: [ \/J.o(l)
LA A ’ _I FZ,‘Z, (2_21)
- '—}r e __D___ \/'0(2'>
1 K’n oz ?
Thevefore
2 S Vey(z) Ve ()
) oy %) Tae Tl
[w(z,v_‘)/] . K. (2-22)
o0 j= 4l
9
o | Vo (2]
- —_—T
~ JZA:I;- " (o - €)) (2-23)
Therefore I can be written as
= . N a, (z)
T - (keolz2)ac) = Voo S0 (2-24)
-~ o0
2
where , od {vb5(27|
Voo T Ze Tle, - €)) (2-25)
1= +1

The adisbatic second-order potential is given by ypol,

Therefore, in the incident channel, the charged potential

VR is . vor N e ol
Voo =V (-2 Ty (2-26)
for N = O, by castillejo et al (1960),
I
Voo = - 55 (2-27)
where A is the dipole polarizsbility. But in the
closure approximation, we get 2
P b |Voj (23_|
Z) = Z__ =\
voo (2 j= N+t (é"—ef) (2-28)
for N = 0,
P _ .4
Vo (2) = - Pbjle-%)z (2-29)
where P is easily evalusted. Thus € can be given by
E = (Eot Bl) (2-30)

which gives the correct asymptotic form in the adiabic limit
in the entrance channel when N £ 0, a similar procedure can
be followed if the contribution to the dipole polarizsbility
srising from those p states occurring explicitly in the

coupled equations is taken into account.
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CHAPTER 3

3. Earlier work on excitation

3.1 The Born approximation

From chapter 1, we know that the cross-section from the

initial state i to the final state f is given by

2 2
M .55_'_ T." dn
O = 5w % 1T (3-1)

where m 1is the reduced mass, Kj and Ky are the initial

and finsl momenta and Tfi has been defined as

+
= Lyl P77 1K3;,
Since for the Direct collision Vi = Vg, and ¢. = e ~ x;(f)

Tk

The equation (3-2) is known as the Born approximstion, which
is very difficult to solve if we use the exact expressions

+ —
of 4{ or V. . To make the calculation a bit easier

Bethe (1930) has expressed (3-2) in a simple form which is

known as Bethe approximation, which is given by

Py

4 "
)= — \ & A (R)X (K, ARI
I(—-J ) Fﬂ. g ) by > (3-3)

The formula (3-3) has first been used by Bates and Griffling
(1953) to calculete the cross-section of the following process

H* + H(1S) — H* or H(1S) + H(2S, 2p, 35S, 3p, 3d, c)
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where ¢ means the continuum states. The same suthors (1954)
also calculated the cross-section for the following process
as well.

H(1S) + H(1S) —» H(2S or 2p) + H(2S5,2p,3S,3p,3d,c)
Pomills and Milford (1966) have also done the calculations
keeping the projectile and the target initially in the excited
states for hydrogén atom. The experimental resﬁl;s for
hydrogen sre €£oo low to be valid, because Born approximation
cean give good results only for higher energies.

The theoretical work on proton-helium scattering on excitation
has previously been done by Moiseiwitsch and Stewart (1954),
Bell (1961), Bell and Skinner (1962). Similarly the experi-
mental works are available by Thomss and Bent (1967),

Galliard (1966), Gabriel and Heddle (1960). Most recent and
valuable work on First Born approximation on proton - helium
collision has been done by Bell et al (1968c) who have obtained
the generalized oscillator strengths for excitation of the
ground state of helium using many parameter wave - functions.
These are employed to obtain proper impact excitation cross-
sections in the o First Born approximstion for the excitation
from the ground state of atomic helium to nls = 2 to 7),

(nlp = 2 to 4) and 31D excited states and for the elastic
scattering of protons. Their results have been compared with
the experimental results available by Van Den Bos (1968b),
Denis et al (1967). The results of Van Den Bos (1968b) are
smaller than their results. The results of Bell et al (1968c)
for 21s and 2lp excitations of proton from helium has been

predicted in table 2 2nd 3 respectively.
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3.2 The Second Born aspproximstion,

From chapter 1, we know that the Second Born approximation

can be given by
B2 8!

+
T 7 Tsi o+ LEIG e vile (3-4)
__BI
where I, is the First Born approximation and the second

term of the above series is given by

5 -*lkj—_. lk I-(' Y’ , ' '.'k_l'.j‘:'___
5i —2§;§g o Mh(_ ) ‘—”‘—'_—_—I e A-rd,{,
where + }knlg-ajﬂl WY - X
e .
S e—_— a’\4 %% = xn v [|x
I oy m = L | [ 27

Where the sum over n is over 2ll the states of the target
atom including continuum states.

As it is very difficult to calculate 3ll the terms in the
equation (3-5), Massey and Mohr (1934) have ignored the
variation of K, in the calculations on proton - hydrogen
scattering. Instead of K, they used K; and evaluated the
equations (3-5) with the help of closure approximation.

But Kingston et al (1960) have solved it in a different way.
In their csse, they have tsken all the 1S, 2S5, 2p states and
neglected the other terms. They also carried out the
calculations on the proton - hydrogen collision problem.
Their results sre larger than the results obtained by First
Born approximation. But when only 2S and 2p were retained,
results are quite near to the distortion approximation.
Similar cslculations have also been done by Moisewtsch and
Perrin (1965). Holt and Moisewitsch (1968) have done this
calculation by taking both spproaches éiven by Massey and Mohr
(1934) and Kingston et al (1960). Holt et al (1971) also

have applied the same method when they have calculated the
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excitation of helium to the 21s and 21p states by electron
and proton impact and results are availsble in table 2 and
3 respectively. Recently Wooling and McDowell (1972)
have done some calculations on the excitstion of electron
from helium by applying various forms of the Second Born

approximation.
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3.3 Eigenfunction expansion method.

From chapter 2, we have
00 Tolmn 2/
.o |
14n(2) = 5 L am(2) Vom () €
m=0 (3—6)

where V,, is the interaction potential and is defined as

Vo = (&) v(T2)4, () dr

The equation (3-6) is ecuivalent to First Born approximation
and is known as the Impact parameter First Born approximation
or in short I.P.B. spproximstion. The cross - sections
obtained by the application of this model are available in
the papers written by Bates (1959), Bell (1961) andBell and
Skinner (1962), McDowell and Plutta (1966). Results of
this approximation are very poor below 100 Kev.
Modificastion of I.P.B. method has been suggested by Bates
(1959) and Mittlemsn (1961) which has been initially applied
by Bates (1959).
Skinner (1962) and Bell and Skinner. (1962) examined the
transition

H' + H(1S) —> H' + H(2p)
where they have obtained the coupling between the degenerate
final sub-states 230, 2@;1’ and of-direct coupling of these
to the initial stste, but not allowing the coupling for
back - coupling or coupling to 28S. The resulting coupled
first < order linear differential equation must be solved

numerically. Their equatioh was of the form given below
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i \74:0 = 4.—0\/00

o bz
Iva, = do Vo & + a4, Vii+ 4 Via

bz

Ua, = 4o Vo &t ayVar + asvi,

where the coefficients ay refers to the ground - state

if K = 0, the 2p, state if K = 1, and the 2p+l state if

K =2, P is Woy /@ _wOl = Wo2

Also to solve the equation (3-6), a special class of
perturtation method has first been introduced by Callaway

and Basuer (1965) which has been applied on proton - hydrogen
scattering process by Callaway and Dugan (1966). By this
method they have calculated the 2S and 2p levels of hydrogen
atom by slow protons (E Z 50 Kev) where they have neglected
exchange and included 13,25,2pgy,2p,; states explicitly.

Their results are three or more times larger than thé exper-
imental results given by Stebbingé_et al (1965),Gailly (1968).
But their results for the 2p states has been agreed with Bell
and Skinner (L962).

Most recent work on I.P.B. approximation has been given by
Flannery (1970). The cross-sections 2re obtained for both
the 21s and 21p excitation of helium by proton and electron

impact and are shown in table 3 and 4 respectively.
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CHAPTER 4

Present calculation on excitation

Introduction: In this chapter we calculate the cross -

section for the elastic scattering and the 21s and le
excitations of helium atom by proton impact keeping the

helium stom initislly in their ground state. The calcul-
ations hweerebopavifownedy using the truncated eigenfunction -
expsnsion method, in the impact parameter formalism, introduced
by Bransden and Coleman, 1972, which has successfully been used
by Bransden et al (1972) and Sullivan et al (1972) to the
scattering of electrons and protons from hydrogen atom.

Recently, a paper hes also been published on the electron -

helium scattering by Berrington et al (1972).

Z axis
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Let p be the proton incident on the nucleus O which is fixed
and has been taken as an origin. Let R, ri1y ¥oy 12y Ryy Rp
be the position vectors between the proton p and the nucleus
0, the nucleus O and the electron 1, the nucleus O and the
electron 2, the electron 1 and the electron 2, the proton p
and the electron 1, the proton p and the electron-2 respectively,
Let V be the velocity slong the direction of z - axis so that
before collision, we have R = b + v, where w.b = 0 and
b is the perpendicular distance between p and the z axis
which is known as the impact parameger.
Total Hamiltonian is given by

H= _-.,'_—v,"_ -,_'—VZ""VOH-VM-'."\{:* \/PI—"\/N*VOP
where we can define Voi, Voz, Viz, Vpi, Vpz, Vop by
the help of coulomb potentials.

So H can be written as

V'L—z _ 1 2

| 2 L L 2z
H:"!l.’vl'?z"ﬁ‘ ¥ "R, Rt RYT 7 (4-1)

The electronic wave - function \P(gl,yz,p) can be given by

-1ént
Y(x, B,e) =) due)d, (nom) e (4-2)

4>n (¥3,3) is known as the unperturbed helium wave function

which satisfies the condition

leh (%) = €nd(B1) (4=3)
where €n and He represents the unperturbed eigen energy and
the unperturbed hamiltonian for the helium atom in their
ground state respectively.
Now, substituting (4-3) into the time - dependent Schrodiger

equation (1-49) and following the procedure given in chapter
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2, we get a set of coupled equations given below

N ING é.m)z/\’
- 04 /
! BZn Ty ';\/nm (Z)am (2) €

Z/u

- -\—;—; gia_{‘l_l Knm (212') An (ZI>

m=0
—_— 00 == = -

(4=t )

where V. and K, have been expressed in the same way as

in chapter 2.

If we use N = 0 in equation (4-4), we get the one - channel

equation only, which is given bf

194 _

| =2 =

> Voo do(2)

. T
- L‘i‘f C{Z' koO(Z,Z')d.,,('Z’)
Ve (4=5)

L
C

For our present calculation we have included the back -
couplings from 2ls and 21p inelastic channel to the ground

state for the elastic amplitude which is given by

i_-?—z- q, = —'@ Z\/Dm (2) exp§ 1 (& - €m)2/v}d, (Z)

m=-oN

/v (4-6)

i ' : .
o )( dz Koo (2,7 ) a.(2")

— 00
where N = 3.

where Koo (2,2") can be expressed by following the

equation (2-12) given in chapter 2, where now, we are using

n=ms=20

Therefore
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1 (€- €0) -2 0

Koo (2-7-')': e [VOo(Z,Z') - Vbo(2) Voo (7_')]

(4=7)

Voo (z) and Voo(z’)" can be defined as in chapter 2, and we

can express Voo (Z,2') as below

Vbo (2,2 = § v (dg Vonm(E - & - )% &R )WL)

(L-8)

where R = b + 2z, Rz=b+z!‘

Y 4 2.

end z = U t, z = vt

The equation {(4-8) can now be expressed as

Voo (Z,"L’)= a’bI}z,Rll + Z,TR‘@: + —4R—§,I',11

where

Ik:ﬁ

= (dn Lu /-

Tere, = [dn luon| ey (4 u )

LI, =(dn )um)lzfmlum)/

= (Ao lwen) gy [dn wem)]

M & -/ fdrs Jucs]”

- %’fkl— ﬁR__I;/

(4-9)

(4-10)

(4-11)

(4=12)

y

(4-13)
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In the above equation we have used \*/(El’ ry) = Ulry) Ulrp)

Also we know that
2 47 )L !
e —_—= WD —=—7n o

ngl' m(ff)] fci LL(T')’

N }u(ﬁﬂb
d |u(‘(f)\ 8 7
o dv [ -R] - gd * e -R]

From the above equations, the equastion (4-10) is very
difficult to evaluate. But that has been done by employing
the rnumeriecsl technique given by Colemsn (1970) which will
be presented in Appendix C.
The inelastic amplitude has similarly been considered by
taking all the direct couplings between the four channels
(llS, 215 and the two independent magnetic sub - states of
21p), which is now
i§Cen- EmIZI
| -'a“ An(2) = 5 Z Vam (2) € dm(2) (4=14)
m=o,N n+o

and N = 3.
Total cross-section has been calculated by empldying the

formula
oD

2 2
O,(IS.Y\) :Zg-k’—(n— ‘q.n('f"”),bdb Trq—o
’ (4-15)

Flannery (1970) has solved the equation (4-1) for both elastic

and inelastic cases for proton - helium collisions.

Lel Calculstions

1 1

For the 178, 21s and 2 p states the following Hartree - Fock

function have been used and defined as in Flannery (1970)
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W (1,8) = ____._"ir‘f“ fexp(-1-47) + o0.799xexp (-2.41 )3

X §exp(-1.472) + 0799 exp(-2:618 (, .q6)

W (1,5) = <.:I o [exp (29) fexp (-An) ~terxexp (-3

+ ex/a(—zvj)iexP(—)in’) - cGXexp A *93]
(4-17)

Yp(17,75) = ﬂ—ﬁlﬂ;*i[v exp §- (01857 +275) Yi,m ()3

+v expi-(e485G +2%) Yum (fi)jj
(4-18)

respectively. The equations (4-16), (4-1%7) and (4-18)

was first introduced by Byron and Joschain (1966), Goldberg
and Clogston (1939) and Cohen and McEachran (1967) respect-
ively. The unknown values in the equation (4-17) is given
by A= l-l9h6,/ﬁ& = 0.4733, N = 0.7064,0, A = 0.007322 and

C = 0.26832.

To solve equation (4-6) and (4-14) we applied the integro -
differential equation for numerical calculations by - Hamming's
methode  Then, we have used Simpson's rule to integrste over
the impact psrameter b, to get the total cross - sections
from equation (4-15). The measurement of Martin (1960)

being used for the 215 and 21p excitation energies (0.7577
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and 0.7799 s.u.). The values of the effective energy has

been considered as below.

Le2 The average excited energv.

From chapter 2, we know that the average excitation energy

is - i%q and is very important for the long - range
potential due to dipole polarizability—of-a-neutral atom

in the scattering process. From paper II and IV, we know
that the effective energy cen be replaced either by sll the
levels above the ground state which is equal to l.l4 or we
can use the exact 21S and 21p energies and average the remain-
ing energies which is equal to 1.34. In this calculation we
have used the value of energy as l.34.

Also from paper II and IV we notice that the variation of

the effective energy has very little effects on the elastic
cross-section in the one - channel spproximztion of equation

(4,-6) given sbove.

L.3 . Elastic scattering of protons

Equations (4-6) and (4-1L) have been solved with the full
static coupling between llS, 215 and 21p:states where we

have used the second - order term in the elastic channel.
Total cross - section for the elastic channel has been
calculated by using the formula (4-15). In tsble 1 our
predictions for elastic scattering are shown, no experimental

data or other calculated results are availasble for comparison.
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Leh  The 21S excitation of helium by protons.

The total cross-section, evalusted with the full static

coupling between the 113, 2}3 and 21p states and the 2nd order
term in the elastic channel, are shown in table 2 for the

21s excitations. These are compared with the firsp Born

cross - sections (Bl) of Bell et al (1968). The Becond

Born approximation (SB2) of Holt et sl (1971), the results

of a four - channel approximation of Flannery (1970). As

there are no perimental data available we could not compsre

our results with any experimental result. Though we have
included the 2nd order term yet our results are below

Flannery (1970). But the present results are a little larger .
than the values of First Born and 2nd Born approximation:&%iu;rW“'

Figure (1) shows the effects of various approximation.on the

total cross - sections,

Le5 The 2127excitation of helium by protons.

Table 3 shows the results with full static coupling between
the 115, 213, 2lp states and the second - order term in the
elastic channel. This is compared with the results using

the four - channel approximation of Flannery (1970), the First
Born approximstion (Bl) of Bell et a1 (1968), the second

Born approximation (SB2) of Holt et a1 (1971). Here, also

no experimental results are available. Figure (2) shows
the effects of various spproximation on the total cross -

sections.
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CHAPTER 5

Earlier work on charge - exchange.

5.1 Classical approximation

The first calculation on the capture process HY + H(1S) —
H(1S). + H* was made by Thomas (1927).. In his calculations

he considered the asbove process as a two - body collision
where the collision can occur firstly between the electron

and the incident ion and secondly between the electron and

the nucleus of the target. He found that the cross - section

behaves like v'll

when the velocity V is very high. Drisko
(1955) end Bransden and Cheshire (1963) have also obtained

the same results for their cslculations on the 2nd Born
approximation and the Impulse approximation respectively.

But Cook (1963) has shown by the uncertainty Principle that

the Thomas model can not be ii: a high - energy limit. Using
Monte Carlo's method Abrines and Percival (196L4) have solved
the Newtonians equations of three - body motion for two protons
and an electron and have hence obtained the cross - section
for capture H* - H(1S) collisions at a few impact energies.

The modification of Thomas model was made by Bates and Mapleton
(1965) where they found that predictions of the modified theory
are in good accord with the experimental data. They also
developed a simple classical theory for the symmetrical

resonance capture in slow encounters.
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. 5.2 The First Born approximation

From chapter 1, we know that the First Born aspproximstion
is given by

Tor = (Bl vs|dr> (5-1)
where CP- and 4%. are the initial and final wave functions,
_and Vy is the interaction, which we can express by the help
of Coulomb potential.
Brinkman and Kramers (1930) and Oppenheimer (1928) have
attempted to solve the equation (5-1) to get the cross -
sections for the process H* + H(1S) —* H(1S) + H*. But
in their calculations they have considered only the electron -
- incident interaction and ignored the nuclear - nuclear inter-
action, as they have concluded that internuclear potential has
very little contribution to charge - exchange cross - sections,

which is arising for the non-orthogonality of 4%(ﬁ) and

¢k<f0 « The calculated cross - section in the ground
state capture has been given in units of an and is

2
Cog = 28/5(1+V"/4)V
where V is the velocity of the incident proton in atomic
units that the incident energy E = 24.97¥° Kev. But in the
high energy limit the ground - state cross - sections behaves
like
18 12

and the capture into the n'th level has been found as

G’OBK = Gog (‘S)/Y\g'
From this, Oppenheimer (1928) suggested that the capture
cross - section into the n'th level is proportional to l/n3.

Their calculation approximately is four times higher than the
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existing experimental results and still higher at lower
energies. They celculated only the ground - state
electron - capture cross - section and their procedure has
since been followed by Sahsa and Basu (1945) and Takayyangi
(1952). The cross - section for the excited states and many
electron - systems has been calculated by Bates and McCarroll
(1962), Omidvar (1967), Mspleton (1963, 1965, 1966, 1968),
Nikolsev (1967). |
But Bates and Delgerno (1952) concluded that the internuclear
potentisl should not be so small end negligible and so in
their calculstions they first included this term and carried
out their calculations for the same process which we have
mentioned above. Corinaldesiand Trainer (1952) and Jackson
and Sehiff (1954) 2lso did the same calculations by using the
Fourie%g transform of Feynmanr (1949).
The first calculations for the process

W+ e i) » $:119)4—H('5) (5=2)
have been done by Bransden, Dalgarno and King (1954) where
they have obtained the simple ground - state helium wave

function 3

Y1) = & exp[-AGh4n)] (5-3)

where A = 1.6875 _
They cslculated both C%B’(}s?/ 1S, 1S) and Qs(lsz/ 1S, 1S)
and they have found that the cross - .section GoBk is
larger than Qg which agrees better with the experimental

' (given in page 52)
results. Here GioSQAHwans the Brinkman Kramer's cross -
section and (Qg is the Born cross - section.
Detailed calculations for the sbove process (5-2) has been

carried out by Mapleton (1961) who also obtained the same

helium wave function (5-3), where he calculated both the post
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and prior cross - sections for the cases (13, 13),(1S, 2p),
(28, 18), (2s, 2p), (2p, RS),(3S, 1S).

His results sre 2.5 times greater than Bransden, Dalgarno

and King (1954). But the mean value of his post 2znd prior
cross - sections have been compared with the existing experi-
mental results done by Steir and Barnett (1956), Barnett and
Reynolds (1958), Allisien (1958) and the agreement between -
them is quite close. Mapleton (1963), sgain, has done some
calculations for the above - mentioned process (5-2) using

the six - parameter helium wave function by Hyllerass and has
also celculsted the cross - section for the post and prior
form wave function of helium. The calculated cross - sections
have been improved by using more accurate wave - function from
which we can conclude that for the large impact parameters we
should use accurate wave function which can give the correct

result: for the high energies.
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5¢3 The Second - Born approximation

On the Second Born approximastion, only Drisko {1955)'s
work is available where he applied this method to calculate
the cross - section for the proton - hydrogen cases.

We know, from chapter 1, the Second Born spproximation,

is given by

—g2

Te,

W

(a1l + b6

B
= 1;.‘ + L4>§-‘Vf‘6l+ vl‘¢l> (5-1")

In equation (5-4) Drisko used free Green's function 6o

which is now

B2 B +
Ter = Too + Ldg|Veao VelPi7 (5-5)

The equation (5-5) can be written as

+ I Virva)+ T+ I(Va,Ye) + I (MsV3)

B
Tsv

B2
T;f

B
El' + ICV’V> (5-6)

and Go can be defined with the help of configuration space,

it

exp[i{¥s. (v3-13) +P.(Rs- R3]

K P _
[_5/534_’64— Eg +1€ Eq,z EFSJ

, -6
Gio (X3, Ra, X3 » Re) = (21) 9% f"f"b

Ep is the kinetic energy of hydrogen in the ground state 1S
and p;y and q4 are the moments, Mj and My are the reduced

masses defined as

my (Mg + mqg)
/“I - m,+m1+l’ﬂ3
and
MaMa
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From Drisko, the—seecend-—psrt—ef the equation (5-6) can be
given by

4.(2"54541545[ 4 T Ee v+ )k - '+M‘L]I(‘l/)l_<)

where I( f&;.k ) has been represented by the 2nd part by
(5-6).
The calculations of I(Vy, V,) etc. are availsble in the book
written by McDowell & Coleman (1970) and also in the paper
written by Bransden (1965).
Drisko neglected the term containing 1/m and found that
'Ff-i'B + I(V2, V,) + I(Vo, V3) =
for the high energy cases. He also neglected the internuclear
potential. So he was left only with the two equation , which
was g2 BK _

T = rj’l' +I(Vi, V) (5-7)

The required cross - section of (5-7) now has been given by

o ~ (0.2996+ 5TV/d?*) Qgk

which is having the same, y-11

dependence as Thomas (1927) had
in his result. . Drisko (1955) also added the 3rd term of the
Born spproximation given in chapter 1 and obtained the result
as B3 12

Q ~ (0319 + srv[2) Gek

which has also contained the same independence as before.
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5.1 The Distorted wave approximation.

Bassel and Gerjuoy (1960) first asttempted to calculate the
cross - section for proton - hydrogen charge - exchange
process where he adopted the distorted wave method. We
know, that the exact transition for the above process from

the initisl state i to the final state f can be given by

T;Si = L‘IU';|V' - Wy | (5-8)
The equation (5-8) can be altered for the distorted wave

~ method which is given by

’)ND
e

LN AL S (5-9)
eand which is known as the first - order distorted wave
approximation.

In their calculations Bassel and Gerjuoy (1960) defined Uj

and Uf as |
w,

g‘lf l‘Pl.(-f)lq—V.' (7, 'F)

1
e = Cdv | 4,00 V5 (X5 F)
which they have integrated for constant separation f .
But instead of taking the distorted initisl and final wave
function they have obtained the undistorted initial and final
wave function in their calculations. The equation was of
the form given below
DD B Bly

- T . T, .
T&-’ = g s (5-10)

Their calculated cross - section is very close to the First
Born approximation.

Their method, since then has been followed by Grant and
Shapiro (1965) where they have used the exact expressions for
%i and ,xf . Here, they found that their result was quite

near to Brinkman and Kramer's result. The details discussion
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of this method are availsble in Bransden (1970) and

McDowell and Coleman (1970).
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5.5 The Impulse approximation

From chapter 1, we know that the impulse approximstion for

the prior and post can be given by

Imp + +
/'/H :447&’\/5’ (w’3+w"'_')ch'7 (5-11)

~IMPp

Top = L(Fa+wa-DE[V[E7 ey

Also we have shown in chapter 1, that (5-11) or (5-12) can

be reduced into
MP

T;f =L 4@] Vﬁ3/‘#/7

~ImP

T =L Vis |7

This approximation has been applied by Pradhan (1957)-to the

capture process

A(ts)+p = p+ H(S) (5-13)

where in the case of V13 he took V23. This simplifies the
snalysis, but the resulting matrix no longer describes the
collision under consideration (Bassel and Gerjuoy, 1960).

The calculation on the sbove process (5-13) has also been
carried out by Cheshire (1965) and McDowell (1961).

McDowell (1961) has used the correct form of 1,ﬁﬁp given
in chapter 1, where he did his calculation simultaneously by
including and excluding the V;, interaction.

This approximation has also been applied to proton - helium

collision by Bransden and Cheshire (1963) where they have

described the impulse approximation as
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IMP
+ + +
1}{:44@,Vm+\6$+W4+%H(Mz+Wm44%4‘1Y#7

(5-14)
In this case, the particle 1, incident on a helium atom

in the ground state with nucleus 2 and e€lectrons 2 and 3
captures (3) into the ground state by hydrogen leaving residual
ion in the ground state.

The post form

—_—

P
Ter 47} (Wiz +—W2'5+N|4+"‘/34 - B)[Viz+ {3+ Vie| 4y (5-15)

has also been considered.

. +
Due to distortion they neglected V12 as well as Wioe
Similarly they have neglected Wl:'in the same way and the

equation (S-lh) gives

ITmp
Tf, _447f|v,1+ g+V,4+'/s4/W"s4’7 (5-16)

In the post case the V3E: term is known as the electron -
electron interaction , which is very difficult to evaluate.

So they have expressed
-IMp _
T§ ; = LWis | iz + Vis+ Vig| $-> (5-17)

The cross - sections have been cslculated for both prior (5-16)
and post (5-17) form, where they hsve obtained simple ground -
state helium wave function. Their results are below the -

- experimental results and has been shown in figure 17..




-61~

5.6 Atomic eigenfunction expansion method

Bates two - state method has first been used by McCarroll
(1961) for the symmetrical resonance process

H' + H(1S) — H(1S) + H*
Later on, McCarroll and McElroy (1962) has extended the

calculations for the non-resonance process.

HZ++ Hs) —» HOsY + b (5;18)
McElroy (1963) has done calculations for the accidental
resonant reaction
Hez'. + H(13) — He+ (2S or2p) + H*
and non-resonant reaction
H* + H(1S) —» H(2S or 2p) + H*
Lovell & McElroy (1963) have followed the earlier work of
McElroy (1963) and investigated the following process
H* + H(1S) — H(1S) + H*
H* + H(1S)—> H(2S) + H*
H* + H(15) —> H* + H(2S)
The asbove process (5-18) has later been extended by Wilets
and Galleher (1966) where they included 15, 25 and 2p states
for their calculations.. In some of their calculations they
also included 35 and 3p states as well.
On proton - helium scattering, Green et al (1968%) have also
applied Bates two - state method, where they have used the
open - shell function of Eckart (1930)

CP(I'UI;.): N[QX'F(——O(-(:)exP(,/;Y,'>

| (5-19)
4+ exp(-oAy)exp ()]

for the ground - state helium wave - function. In equsgtion
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(5-19) N is the normslization factor and o and b
are given by _ ' _ .

of = 2.1832, b = 1.1885, E = 2.8757.
The sensitivity of the helium wave - function has been
investigated by Bransden and Sin Fai lam (1966) where they
have done their calculatlons by employing equatlon (5 19)

as well as two other wave - functions . l)__nd q) given

below. >N e—d(‘ﬂ"i'n)

P (5-20).
where o = 1.6875 and N is the normslization constant
and

(2>
X[exp(-em )+ (dexp (3]
where

ol = 1e455799, /5= 2o{ , C = 0.6

' and E = - 2.86.
In each case parameters are determined variationally.
It has been shown by Shull and Lowdin (1966) and Green et al
(1954) that both (5-19) and (5-21) are good approximation.
But the calculated cross - sections of Bransden and Sin Fai
lam (1966) for three different employed wave - functions
shown above, do not vary from each other. So they have

het the simple helium wave - function is good

ct

conc luded
enough for any further calculations.

Sin Fai lam (}96%), hes extended this work by the inclusion
of the excited states_(zls, 2lp states) of hydrogen. But
that did not agree very well with the experimental data. To
compare with the experiment, the calculated cross - sections

have to be increased by a factor of up to 30% to allow capture
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into excited states (Mapleton, 1961).
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CHAPTER 6

Present calculation on i - charge - exchange

Introduction The two - state impact parameter method,

first investigated by Bates (1958), has been used for the
non - resonant charge - exchange reaction

o+ He (18°) —b H(1S) + He' (1S)
which we have described in chapter 1. Our method, though
based on the method of Bates (1958), has been modified by
applying the 2nd ordef potential and using the closure
approximation derived by Bransden and Coleman (1972). A
short description of their method h&s also been given in
chapter 2, which has successfully been used for the excitation
process between proton or electron impact from hydrogen atom
(Sullivan et al, 1972a, 1972b) as well 2s for electron impact
from helium atom (Berrington et al, 1972).
We are considering the same co-ordinates in the X -~ Z plane

as we did in chapter L4, where the total Hamiltonian is

lgr. Ly L 2 L1 1 L2

H = -2V, T 2 VQ_ ¥, % R R?_.-'— Y’|a_+ E (6-1)
and where rj, rp, El’ Ry, and R have been defined.
Since, in this chapter, we are dealing with the reactions
between proton and helium and especially the charge - exchange
or electron - capture cases, we get

. +
P+ He (1s*) = H(S) + He (15D (6-2)

for which, before collision, we get

| ~i€nt
Y0, )= Yn(Yish) e (6-3)
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and after collision,
—\(/ﬁ-+45+9)t +1U- 0
LJU(R.1Z,£) K (R, k) e C/(é-a)“
where \}, and 7:5 are the initial and finasl Heldum wave -
function respectively, €1 is the binding energy of the
helium wave - function before collision and (/u;4-qj ) be
the binding energy of the wave ; function Xij(Ry, rp) which _

can be split into

Aij (Riy0) = Py (RYP 0%)

The wave - functions 43(31) and CE(EZ) are given

explicitly as

~Ri
CP{ (R) = J—l‘{ 2 (6-5)
and
- 27
= X
Pm)= = | (6-6)

and which satisfies the equations
2 | . _ . .
(-1 V- = )P (R) = pidpy (R
and Yy
L 2 - n. )
(-2 V2t ':@)CFJ (1) = 1 CPJ(I'ﬂ)
The helium wave - function satisfies the equation

g2 = 1 (1,7 -€
g\Pn(Y'tyYﬂ(zt Vl Y TLf )%1')_1) (2_7)

Now, we can employ the two - state approximation given by
Bates (1958) where the initisl and final state will be

considered. Therefore
\'\l/ (Y( Ya‘). 7‘{’,) Zq ({") U (ﬁ)rﬂ.’t)'*_z b,.) "5) U.J (R‘ )Tl)
1 (6-8)
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where 2. implies a sum over the discrete states and an
integration over the continuum states.
Substituting (6-8) in the time - depéndent Schrodinger

equation (in atomic units)

. Y, Bt
HY (1, 02,6) s 1 == (6-9)

and using all the conditions given above, we get a set of
coupled equations, given by

i 4:n + I ZN")“-‘. b:J'
'J

1]

gH'n,hla«h’ + ‘.}—J__kn}f biy (6-10)

! EJ 41 Y Nindy= 2 Hymbe + Ykepn | (6-11)
n ) n

where Nn,j > Hn,nfy Knij, Nipms Hin, Kiy,n can be

defined in the following way

I'Ef\‘?{j‘b V2 11
Nnyij = € (dw (dg Y (m)xij(RB) e (6-12)
b
L Enat .
2 1 1 .
H”)Y‘l = & g":ﬁ j‘sz \'k\(y" 7?‘)(72_— -E, - K2_>\I/n'(f"m(6_13)
. (N
IEn\i_{'b 2 N \ N L____
Kn,iy = e {4“_{7 §419\H1 (77,73) (f’:ﬁ' "Ry ¥
[AVAR {f
x (Liy (R, %) 2 ) (6-14)
. .
-—IEIEI,l')"t‘ -l\j"Y—'l

- %
Niy,n = e (dn (45 %oy (RLX) % (535) €
(6-15)
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‘——-'T iEI‘_\"}"jt X 2 1 } 2
Hepsiy =2 (g (de Aip@.ed (% -/ T TR)% R
(6-16)
T
-1 n,.')' ¥
K\'J')r\ iy gdfl fdﬁ x")‘(EH\f‘L)\%(Tl >3 )
L 9 Y.
X (—' R, Ry T F) & (6-17)
where
D)
Enyiy = C(én—€ry) (6-18)
2y
Enyn' = (&n-€n) (6-19)
end
Edyyiye = (1M 00 (6-20)
where the values of €. 1., M can be given by
E = - 2.8[&
YL = - 005
/14= - 002
respectively.

If we, now, consider, these equations for the case of n # 0,

i+ 0, j# 0, we can approximete (1) by retaining coupling

to state n = 0, i = 0, j = O only and (2) by neglecting the
diggonal terms.

Therefore, we get

a4, + 1 S Nn iy bij =Haed, ¥ Knyobo (6-21)
¥
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I l),']' -+ | Z Nij,n q, = Ht_')',o Lo-}— Kl"]')o Ao
b e

(6-22)
for n# 0, i j F O.
For further approximstion, we have used bij~o , if ij# 0
Then
l'q;ﬂ = HY\)O &o + Kh)O LO (6_23)
,JC'
i dn = C dt $Hno () Go(t) + Knyolt) bo ()3
- o0

(6-24)

and equations for n =i%j = O become

v . M —!——
o+ Now bo = How 4o+ Kowobo + 572 Hom

‘.t,
X [ dt'§ Hnolt)du(e) +kniolt) bo )3 (6-25)

and also from (6-22), we get

',LO -+ IND,oa,a = HOlDAo + kmo d—o (6-26)
/
As in chapter 2 the potentisls Ho, n (t) Hn,el(t ) and
, nd
Ho, n (t) ang(t ) sre too complicated to evaluate exactly.
Hence we have applied a2 further approximstion called closure
approximation as in chspter 2, and by the help of which we can

write

N
Hopn () fno (8= [ B (£567) = 3 Hinj (&) Hpm (£ ]

X exp (€o- €D (b-¥)
The other potential HoﬂdaKnﬁS (t’) has been dropped ffrom

our calculations,.

Now substituting n = O, equation(6t25) can be given by
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/

t N
[Ho,o(t1t)- 2 Hoj (03 Hyot) |afe
j=o

.| a_.o + "NOrOLo: Ho-ad,o + ko,obo + :—- f

- o9

X exp (€o-&) (t-t)dt’ (6-27)
If we now take N = O, the equation(427) gives
tf .
i dy+1Noobo = Howdo + koo bo + ([Hooltt)- Horo(t)Ho 040 4, (t)
iad (6-28)

X exp (€o- ) (t-t') dt’ —

‘where

The term Ho,o (%, {) can be expressed like equation (4-9)
defined in chapter 4 where z = Ut and Z' = vt and can be
solved in the same way as noted in chapter 4. In this case
we have tsken the values of the effective energy as l.14,
where we have applied the same condition given in chapter 4.
The equation (6-26) a2nd (6-28) has been solved by Hamming's
method to get the time -dependent coefficients ag(t) and
bo(t) with the initisl boundary conditions Ao (-~ = |
snd bo (- @)=o0

Total cross - section for charge - exchange from the initisl
state i to the final state f is now obtained by using the

formula
oo

O*"f = 2W¢3§FH>§ (+oo3}2<{f (6~29)

]
where ? is impact pasrasmeter.

Calculsations

Calculations have been investigated for three different
cases where we have used the one - parsmeter simple helium
wave function given by

-« () |
N
Yn,m)=—¢ (6-30)
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‘ %
‘Nher‘e N = o( ’ d = 1068’ é°= - 2.8’4,72.
Case A Distorted wave approximation (1)
In this case we have considered the coupling for initisal
state only and so the equation (6-26) and (6-28), mentioned
above, can be given by
A . ! .
| _4:0 = HD,D d_o -+ _T:_'__gdt [HOIO(t’{:,) - Ho.o(t) HD'OH: )J(6-31)
X () exp (&= €o) (E-t)
. f 6-32
lLo:ko.oa—o (,3)
The cross - section of the charge - exchange can be calculated

by using the formuls (6-29) given above.

Case B. Distorted wave approximstion (2)
The equations (6-26) and (6-28) can also be written in

the following forms

2 q = Hoo-NowKsioy , koo~ NowHouwo
° - I — |Now|? ° | — [Nool?

']

) r’, [Nool’ f[”o'v(f’f') - Ho.o(t)Ho,,,(e/)]

- o

_ N 1,
X Qo (¢) exp(€o- €)(-¥)dt |

and

[ bo — }_I_o.o - Novo '{aua/) " Koo = Nojo Ho:o

T | - [Nowol*  °
1 € )]
co (Bt "HO.o (t) Horo(t
+ I_,NDIOI,L[HO (£:¢) ) Horo(t
: o EY(£-t)dt’
X do(t')exp(€o-E)(t-t) 6-3)

In case B for elastic scattering we have used the formuls

(6-31), but for the charge - exchange case we have used




S HO'O—I\T.okolo k—t;o — NaooHoeo
! l?o - | — 2 9 EO + : _ |Na . 2 QO
- ,I\Io,ol ‘ Olol

(6-35)

cross - sections have been calculated using the same formula

(6-29).

Case C In this case we have used the formulas (6-33) and
(6-34) as given above where the expressions for full couplings
has been used and applied the same formuls (6-29) to get

the cross - sections.

The methods for evalusting the integrals (6-12), (6-13), (6-14),
(6-15), (6-16), (6-17) will be shown in the appendices.

The results of the present calculations are shown for various
proton energies in the table 4, together with the results of
Bransden and Sin fai lam (1966), Green et al (1965), Mapleton
(1961) and the results of the experiments which measure the
total cross - sections for capture summed over sll final
states. To compare with the experiment the calculated cross -
sections have to be incressed by a factor of up to 30% to

allow for capture into excited states (Mapleton, 1961).

Figures (3, 4, 5, 6), (7, 8, 9, 10), (11, 12, 13), show the

-~ - - 2 e R,

A the = P P
or the probability of captur

S oy ~N-Tal

[
[}

[

2 - 1
into tne

[44]

state for various energies for Case A, Case B and Case C
respectivelye.

Figure 14 shows the present results for Case A, Case B and
Case C discussed above. Among these calculations we get

better @ccuracy for Case C only which give quite good results
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between 30 to 100 Kev when we compare them with the existing
experimental results. For higher energies the Case C and

Case B give larger results than Case A;

In figure 15} we are comparing the results for the present
calculation for Case C with the experimental results. It
is seen from figure 15 or table 4 that the results of the
present cslculstions is nearly 30% larger than the experimental
results at 500 Kev, nearly 50% larger at 1000 Kev, nearly 4
times larger at 10 Mev.

In figure 16 we have shown our calculated results for Case C
as well as the existing theoretical results given by Green et
al (1965) and Bransden and Sin fai lam (1966). The present
resﬁlts are very close to Green et al (1965). There &ve small
differences between the results of the present calculation

and Bransden and Sin fai lam (1966) at lower energies.

But it is seen 2t once that the maximum differences between
the results of the present and Bransden and Sin fai lam dire
30% at higher energies.

Figure 17 shows the results of the present calculations for
Case A and the results obtzined by Mapleton (1961) snd
Bransden and Cheshire (1963). The present results do not
agree with the results by Impulse approximation, but quite
nesr to Mapleton's results st higher energies.

From the above interpretation of the present results it is
seen that the considerable disagreement between theory and

the experiment at higher energies is not substantially
improved by gmploying the 2nd order potential in Bates two -

state method.
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CHAPTER 7

Numerical methods

In this chapter, we give a short description of our

calculations involved in chapter 6, as the calculations

in chapter 4 have also been done in the same way.

From chapter 6, we get that the most difficult terms are
Nojo, Novo » Koo » Koro The expression f“or the

matrix elements are of the forms

—VU&bé- ! ™ 'J@)t
—Ra 1
I = g x (1-%) (—5—1- + -’{‘—3— e e dx
o
(7-1)
.U'x.t/ ! a2 R4 ;U'th
-1 2 3 -
L = ¢ S%“("ﬂ(%*?z%*?)e e &
(o] .
(7-2)
h 2 2
where A = )\x+(|—x)(/<47'+ \;'x) n,m2zo (7=3)

The above functions depend:: on the proton velocity V and
oscillate: rapidly as V increases. To perform the integration,
the integrals have been divided into three sections

0,0 £tx£o0.15, 0154 £ 0-85, 0.854% 2 1.0 gand then the
calculations have been done by using the Gaussian interpolation
method. At 30 Kev, the number of Gsussizn points are 6 and
for higher energies more points have been considered to get

the same accuracy.
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The matrix elements for the Case A, Case B and Case C have
been solved by using Hanming's method described by Wilf and

Ralston (1967) as given below.

Hamming's method

Hammings method is & modification of Milne's predictor -
corrector method which has been used to solve the first
order differentisl equstion

L=rooy (7-4)
with the given initial point Y (x.)= Jo . This method
has two advantages, firstly it is a2 suitsble fourth - order
integration procedure that requires the evaluation of the
right - hand side of the system only two times per step.
Secondly at each step the calculation procedure gives an
estimate for the local truncation error, thus procedure is
gble without a significant amount of caelculation time, to
choose and change the step - length'h .
Let Xpn - 3, Xpn- 2, X, - 1, X, be the known values. Now
results at points

Xnye 5o = X, + h

are computed by the formulas below

Predicten:.:

Pn+; = \Jh_g + f’-:bb—[ltf;: - \}n/—l +2jnl—zj (7-5)

Modifier:

Mh+l = Pn-f-] - *lr‘;,—(ﬁl‘cr\D (7-6)

Mn:n = F (tners, ‘jn-—i—t) (7-7)
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Corrector:

R G R N )

Final value:

Jner = C“*'*‘é%T (Pt = Cnr) (7-9)

- p P o
where ¥ Y , P, M, M , and C are column vectors,

and the truncatien error can be given by

1;_ = —’12—'- (Cn+l - Pw-H) (7-10)

As this method is not self - starting, it is very important
that the starting values should be as accurate as possible,
because errors in these starting values may increase during
computation. So to do this we have used Newtonks inter-
polation formuls using forward differences to get the
required valuesixl, Y2 ang ¥3. For example, we have

L\ / ! / / -
Yy = Yot g [Wer it sy ]

o= Yo+ B[N+ Y]

(7-12)
Yo = Yo + 'iél (¥, + 3y, '+ 3y, + T/«f)

(7-13)

To use these formulas we estimate the Y1, Y2 and Y3

and calculate i(» 1J> 34 by using the differential
equation and then calculate Y, Yp, Y3 using@éﬂ),@é&),b#ﬂ)
respectively. Then we iterate until convergence. Also
to start with we can set

- Cy, = O
Fn = Cn (7-14)
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Step - ' length can be doubled or halved in the following
WaYy . In our case we have set. .. two errors o = .0001
and oy = .00001 and adjustment can be done by the test
value

g-‘— '£QI'<P"+I - Ci+1)

(7-15)
when _§ 7, , the step-length has been halved and following

inter polation formulas have been used

In.

.;._- = —E\_S'Z(gojh—l— 155 \.’n-—l+40jh—1 'f’\Jn—’b)

+ (15 %, + Fo Yl + 15 Fn-z)
(7-16)
\jn._;__ = zlfsg (lz Yo + 135 Y, + ’ogjh—;l'-"\-'fh—’&)

+2—L‘E—Z— (—'57,; - 54 \fh:l + 27 jhi?—)

(7-17)

Similarly, when 84£d2 , the step - length has been doubled.

The integrals in {6-31) etc. were evaluated by repested
application of Simpson's rule.
Total cross-sections have been calculated by applying

the Simpson's rule as well.
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CHAPTER 8

Conclusion

The main contribution, in this thesis, is the gpplication

of the 2nd - order potential for both excitation and charge -
exchange processes.

In the case of excitetion, as there is noexpefiﬁggf; we have
compared our results with the existing theoretical results.
It is found thst the present results are in close agreement
with other results zbove 100 Kev. At low energies, less than
100 Kev, our results 2re nearly 40% smaller than the results
of Flannery where he did his calculations by taking 1S, 23
and 2p states of the target. It means that the coupling

for the resarrangement channel is likely to have significent
effect on the Direct excitation cross - sections st low
energies and needs further investigation as indicasted in
peper II (Bransden et al, 1972).

But on the charge - exchange, experimental results are
available and it is seen that the results obtained by includ-
ing the 2nd order potential with the Bates two state method
is not very satisfactory and gives a larger result than the
experiment at high energies. It is now known that the
formulation of the method (which we 2lready presented in
Chapter 6) is not consistent with the charge - exchange
process. On the other hand, it provides better results for
the Distorted wave method 2t high energies which is very
close for the experimental results as well as the cazlculation

of the first Born approximstion. Among the theoretical
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calculations on charge - exchange, only the results of
first Born approximation give:: quite reliable resulis at
high energies as compared to: the experimental results.
Like Born approximation, the results of the Distorted wave
approximation do not agree with the experimental results at
low energies. - -

For excitetion process, we believe that our method should
provide better results, as it did in the case of electron -
helium cases shown in paper IV (Berrington et al, 1972)
where some experimental results are available. But for charge
exchange procéss that conclusion is not spplicable as it is
a complicated process where instead of one orbit we have
taken two orbits. More refined work should be needed on

this particular topice.
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APPENDIX A

Evalustion of the integrals:

- A - MR v
T = ge e e dr (A-1)
) ~AT; - JUR, 'Y i
L= ¢ e dn
2 f v : (A-2)
~AY, AR i -
Iy = (e e e 7 dy
' (A-3)

where K, =3-R

To integrate Il » we have to use the Fourier's trasnsforms

which is given by

By

)\ }7,,1’"
e = f ' AN (A-y)
! n'J. (AL_rcl/q,)l f_t/
~AY . ig.Y
e - L g ! " dg
Y 21 ) (A7) L (A-5)
Therefore
2 I | /
| — —‘D—)\;/_«_ 471 JJY’, fdi,l (J?_’I- (/\1-#?,;) (Mz-f-‘l,;) (A-6)

X exp[ (31 + 44 -R)+ uri]
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2 I I I
T eARu AT (43“ (+97) §4@z (F+9)

X gcif; exp [ 40+ % (1i-R) + 0.7 ]
integrating over Y,

2

_ 20 R l /
fie Ao {45,y [, oy

X (2n)35(‘_2,,+@1+ ) exp (-igs-R)

2.
- 0 2 ! o
= w98 @) fd% (%)

X 8§(4 +9,+tv)exp(-iq .R)

put LLZ = q'| + v

T RVE I 3
I VRl ()
2 19. K
T 2A9M

(A-7)

(A-8)

(A-9)

(A~10)

(A-11)

(A-12)
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where .
g | 19, R
I = Jq, 1 2 € 7
)99, (A+q,,) (/4+(q,l+u)) (A-13)
To integrate I, we have used Feyman's formula,
Feyman, 1949
| - —
[ _ g d )
ab o [Ax+ b(l—xﬂ (A-14)

Therefore I gives

I_PE -1 Y. R(1-%)

[
_ e e
T = Ea dx §Af [Fra] (A-15)
where
P=9,+ v(-% (A-16)
1 9 “
A - Ax + (!—X)(l'}‘l??() (A—l?)

Since, we know

(A-18)

we get

j . ;! -ig.R(1-x)-R4 |
I = fodx e N (A-19)
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Therefore
uR —IUR(I 1) RA
I =2 ?3\ . fc{x—— (A-20)
94 _ 20
2 - 248 (A-22)
UE:.I 9 7—, - RA
I, = 2WA/«(Ax x(1-%) ¢ 4 32/ 2 €
_RA 1U.Rx
X @ 3 ZI (A-23)
! @ K2 | a) | e"ﬁA
I = -2mp0(xe (% %)=
lw,g)c
X € d | (A-24)
] 1@ Kx
= I 21 -~RA
1/3 = —27T/\f(l—7ﬁ) e ('A— -—5‘5)—4“ e
o
;8. R
X e d=

(A-25)

Therefore

IL?E R 9 ﬁii
I, = 2mhp e fdxx(' D+ )
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Similarly,
. 19K ! Ra 1UO:R
= 2Tl ¥ l- R S 1R
2 2 (o( ) (Gt A’)"‘ e o
|
[U.R /
U Kx
I, = 2T fx R o, )M
3 A e o (2'5_ + A’&)e e CIX

(A-27)

(A-28)
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APPENDIX B

Evaluation of the integrals:

n -AY é‘/“"f"@l
I={re TR dr (B-1)
“AY - pufy-R| (B-2
L-(e e dv )
AT
n
Ia: v &£ — dv (B-3)

To solve I3, Iy, I3 the expsnsion series by Watson (1958)

has been used

We know
éfﬂf—5| - N (20+0Kges (R Tery (pFe(Ge)  (B=k)
Y- R = 7 g
where
Y £¢R Cos e :Z'Y_',E_
- MR E (£+n)!
[T .
Kﬁ*g'w— /:/:R ¢ n_zo nt(L-m1 (zurR)" (B-5)
l v £ (_)h (Eﬁ—H)!
I;H—.L(/‘Y'): [6 Z i L-n)! (2 Y')-"
z Vzmpr h=o - - (2
+ ( )€+I e"/(‘“(' i (e—}—\n)l J (B—6)
£ (e O



-8l =

(e“cb)j (e.,4) (B-7)
o ¢
—-—-—————' = —I—— -B— P Cos TZR
r-gl T (,_ZO(Y') t(Core) (B-8)
J S X Y £R
R Z (R) P(Coca)
t=o (B-9)

where

Cos © = Cos 8, Cos @y + Sin®, SinB2 Cos (d,- )  (B-10)

ean) and (ez,¢z are the polar angles of r & R.
[

The integrals I3 and I, I3 can easily be evaluated for

definite values of n, m and € . The integrsl I, is

calculated in the same way after expressing it as

I, = - 2. I, (B-11)
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APPENDIX C

Elliptical integral for evaluation of the integral:

T(R,R) = S 2 'l 4r (C-1)

By following the method given by Coleman (1970),

we can express I as

T(RK P AT vy
- Z@“') fe(Cos9) goe Ve (PRVL (M R) Y T’(C-Z)

:4ﬂTA+N5+c]

where Lt}

Ye (O R = /R if  YIR
g, 0+1
=R/ if YR (C-3)
and
/

< R—o(T’ 20+ 2
A= z (7_2+|) PZ(COS e) )L‘f‘l g [ Y J.Y-. . (C-}+)

f=o o
B = Z_ (2 Q-f‘l) Fe (COS e) ('f:’-.) R (C-S)

L=o0

o ' éWVT

fr—o D fo (¢os 8) (RK) SK " E dr (C=6)

K - o R+ 1 —4KI oAR+! =-dR
LY'Z df:(dz e - e (C-7)
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Putting

/ / ’

Y,:K\j > Y =R ’_bj:l

Al | '

/ R _
A= Z(;(lh) R (—R—) f e"‘R‘J \1221-2

=0

&(QSB)Jj (C-8)
' oRY | ‘ R”E*'
gc_- Z (2L +1) ® (”‘Rj') Pg(cos e) 4y

0_:0

0

n

Now L

oo 2 7
E;tiiuue>=(l—ztcue—+f) [£] 21
f=o0
(C-9)
Also '
0o L+ 7
Z P (Cos 8) = 5' dt
%{, L+ g t(Cor 0) b {t [T -2t coso+t*
(C-10)
12
_ R
Put Z = 3 b
® L+ 94 oo J
/ ‘2 / 2.
R - R 3
2 g f ('T}) i (Cos ©) T ZVR Z‘LLT— R f (Ces @)
f=0 L=o 2
(C-11)
Let
£ = I CoS\¥
T+ CosY (C-12)
Costt = l;jL
1+t (c-13)
then

(1(:»5-"l -z
1+
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Also putting the values of t, we get

2 .0
|~1+:C059+-\:2 = 4(1 - K'Sin \{/)
( + Cos¥)

where k"- = 7'_— (|+ Cos ©)
- Cost &
2
Cde _ 2sinY
dy (1+ Cosp)
\/2 - SinV¥
‘ tos | + CosY
dt 2 4v¥
k- | + CosY
Therefore
¢
2
(0 j—_E—J—Iﬁ-—Z{:Case-;—{;"- 0 IE 'K”an"uy
/ 3 ‘ —o/K’
R' (&
£ (%) L“ F($x) dy
d ,\£+ T
- | < | /.E,. N
i 2 (RR'Y - (uz_') (R / F (Cos ®)
l=o |
o 0+ i
- , ‘ 'E—I P Cos ©
2 (RR')% ZZ: (£+5) (R) e )

- ' d+
2 (RR)E (1-2tCoso+ )

(C=14)

(C-15)

(C-16)

(C-17)

(C-18)

(C-19)

(C-20)

(C-21)
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where
_ -V -z
f = G TF (C-22)
RI
and Zy = 3
<~ K[I P
- 2dn e | L R o4
=0 |
< l R'z ) édK%
:Z_ 21+ E(Cose) Rg-, 'zzl 6"2
; . : @ -dRZ
(C-23)
where ! K,
| - 2z !
b = 4 T R
Theredfore
Yy NF(471;K)
I(R.R )‘ zﬂ[ (RR")%
EX4 [ '—o(RI
L Ay Fd k) v
&), SRy

-odRZ

R
-Kzf- 00
+ L F & -
ff?j, % )c,’z] (C-24)



-89-

APPENDIX D

List of integrals for

H++ He (lsi> —D H++ He(is,25,2p)

Voo (R) = L (1s)) v] ¥ (15)) CE-n

= {6/\/,[]:(20(,/2)4- 2¢, T, (o(+,B,R)+C,lT,(2P,R)J

Vie (R) = (¥ (IS)I V[ (29>

:é‘]N,Nz[iTo(d+F,R)+ c, ];(,_P,-r,D)K)SA

(D=2)
.+5in;(a+A,R)+¢5 T (B+7R)

+ zc,To(dﬁﬁ,K)+-c;Q_TT(Et/hR)BJ

Var (R) = LW (2s) [V (29))

2 2
26, [ 2T ARt 2 e T ) T )

’2__ 12¢ 2_4_5:
ot G (2/«;‘3%(2’7 ) (D-3)

4 b6ey |2
i o b ()

2 / éz
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Via(R) = LY (VY (2p)>

= 640,y 77 J1,0 (R)B [ L(#+%,K) (D-4)

+ ¢ L(B+a>R) - ( + —Q——>%1]

“@+a)* (B+3)°
Also

Vis(R) = LV Us)| V[V (2P )Y

(D-5)
= 4N Ng I Y, w0 (R) B[L (d+9,K)
+ c, L(,5+‘1/)K) ( (0(,,,%)5 (F*?«) ) ]
Vap Vap,(R) = LY (2P VY (3707 (D-6)
24 To (2pP.R)
IéN’b[ (2_61’)(5. + fo], m= 0O
Vop, 2, (R) = LY 2R IV Y (2Fer)7 57)
= J&N, [;_ilélfﬁlil_ IEI']
where (ZﬂO
| -k
To(2Z5R) = (% + )€ (D-8)
T (z,R) = [(6+42+ rz* —ZK] (59)
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A 2% 2 24 - 2K
3. (Z.K) - (Kz + 6RZ +182+ ﬁ—)e
(D-10)
| 3 3 1 2 -ZR
L(z-R) = L(KZ+4ZR’!‘8ZR+8)Z
z R
(D-11)
A—("“2 , 4+ bfr L EEL o Lo
= \(@d+AN) (d+ ) (B+X)® .(/34'/“)4) (D-12)
B = ( _J___—- —+- ____Cl‘-——-
(d+P)? +p)
- 15
V1,0 (R) = —-4}?— s © (D-14)
j {3 .
I, ®1 (K = — glh e .
) = (D-15)
l
L= () w25, « 25, pe
10 —_— +
(mz (29)*  (29)f
560 720 720 -29R
360, 720 . - 120
(29)’°R (29)°* (M)?R") (2%)7/2’]

+ Voo (RY fim [ £ ;245
(&) fam [ 2 (w)g N (zw" ’L(zm]e

(D-16)
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2 -29K
_ | R ¢R /18 29
L = +oo 7 (555 + 55 + T * o)

+ 2
F P - () bl (G

30K 122 260 4 1209

i (22 (29) iR T (AR
: -29R
,7_20__>61 _72"73 (D-17)
(22)'R? (*2)°F
]
where jo.a(K> = T (D-18)

V5 1,
jz,o(K) T T (g Cos™ & ') (D-19)
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APPENDIX E
+ +
List of integrals for H + He (1s*) —> H Us) + He (15)
~2d R |
Hoo = 2o & (l+ W?—) (E-1)
Noo = Srg;)g T; (> R)
(2+ (E-2)
*
NOuO = No,o (E-—B)
_ - g2 mR . -2AR
Hoo = (M4 g)e 7 + (M g)e + 14
(E-4)
where
3 -2uR
A /“ 2 9 2 2
1’:-———;—— Al Rm (A - + (AT- 3 47)
4 ok {Rp (A" %) + ( 5
+exp (-2AR) { R (A~ ) (2~ A) (E-5)
S AN '5/«*3}]
4175 4°
Koo = ‘W[TW): I, (o()R)
(E-6)

+2 I, (:R) + (244)T (2+24,R)

+ 2 rz(zHa(,R)]




TR

where ) - (d+2)R
=|-=+ (d+2+ %)
T () [ R ( ) (E-7)
= of + 9(2‘0(+60)I(0(K)
Koo (2+‘o()3 [i( 2)( ) ( 3 :
-2 LK) + 2 Ty(<:K) |
where ~ et -AR 1U.RX
L(,()K): 24 £ > fx(n x)(ﬁﬁ+%+§g)e e
(E-8)
.2
—ut i -AR ju.Kx

1

T(«R)= 2 ¢ ° J,,("")(%*’ii%‘)@ e dx

(E-9)

T - AK JU.Rx
Z (K +
I3(4,R) = 24 & AL

(E-10)
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Figure Csptions

Figure 1l. Totsl cross-sections for the 215 excitations
of helium by proton impact.
Curve Fl. Four channel coupling of Flannery (1970)
Curve P2. Our results for the four channel coupling with
the second order potential.
Curve SB2. Second Born approximastion (Holt et al, 1971a)
. First Born approximation (Bell et al, 1968)
(0] Our results for the four channel coupling

without the second - order potential.

Figure 2. Total cross-sections for the 21p excitations of
helium by proton impact.

Curve Fl1, P2, SB2, ¢ , © , are as in Figure 1.

Figure 3, Figure 4, Figure 5, Figure 6.

are the capture probabilities versus Impact parasmeter.

The dots indicate the computed values. The Normaligzation
factor N has the values 1.96 at 30.2 Kev, 8.362 at 100 Kev,
73.10 at 250 Kev, 1190.5 at 500 Kev respectively.

Figure 7, Figure 8, Figure 9, Figure 10,

are the capture probsbilities versus Impact parameter.

The dots indicate the computed values. The Normalization
factor N has the values 1l.73 at 30.2 Kev, 11.38 at 100 Kev,
119.08 at 250 Kev, respectively.

Figure 11, Figure 12, Figure 13,
are the capture probabilities versus Impact parameter.
The dots indicate the computed values. The normalization

factor N has the values 2.59 st 30 Kev, 12.8 at 100 Kev,

121.3 at 250 Kev, respectively.
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Figure lL. Total capture cross-sections for helium atom

by proton impact.

—_ Present calculations (TC from Table 4)
. Present calculations (DW2 from Table 4)
A Present calculsations (DWl from Tsable 4)

Figure 15. Total capture cross-sections for helium atom
by proton -impact.
—_— Present calculations (TC from Table 4)
o Experimental results (Steir and Barrett, 1966,

Barnett. and Raynolds, 1958; Berkner et 2l,1965).

Figure 16. Total capture cross-sections for helium atom
by proton impact.

Present calculations (TC from Table L)

a Bransden et al (1966)
° Green et al (1965).

Figure 17. Total capture cross-sections for helium atom
by proton impact.
_— Present calculations (DWl from Table 4)
° First Born approximetion (Mspleton, 1961)

A Impulse approximstion (Bransden & Cheshire, 1963).

Figure 18. Capture probabilities versus impact parameter

for 30.2 Kev.

P — Present calculation

G —> Green et al (1965)

BS ~—> Bransden & Sin Fai lam (1966)
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Table 1

Total cross-sections (in cm2) for the elastic
scattering of protons from helium.

mgrey a0 | .

25 1.026 0.9861

30 0.9231 0.8292

LO 0.8062 0.7555

100 0.5079 0.4803

150 0.3945 0.3138

225 0.204,2 0.2509
L 00 0.1836 0.1550

500 0.1510 0. 1424

Py Present calculations without the Znd order fo’ren{—ial

P2 Present caleulations with the 2nd order Pojren-Hal
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Table 2

Total cross-sections (in units of mwa, )
for the 2lg excitations of helium by protons.

Energy in|  p P2 F1 Bl SB2
25 0.066 | 0.035 | 0.067 0.095 0.090
39 0,088 | 0.056 | 0.087 0.075 | 0.081

50 0.087 | 0.057
100 0.058 | 0.046 | 0,058 0.038 | o0.041
150 0.040 | 0.031 | 0.038 0.027 | 0,026
225 0,026 | 0.021 | 0.025 0.020
1,00 o.o, | o0.011 | 0.014 0.010 | 0.010

500 0,011 0.009 0.010 0.008

Present calculations without the 2nd order potential.
Present calculations with the 2nd order potential.
Four-state approximation (Flannery, 1970)

First Born approximation (Bell et al, 1968)

2nd. Born spproximetion (Holt et al, 1971).
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Table 3

2-
Total cross-sections (in units of 7d, )
for the 31, excitations of helium by protons.

Energy in P1 P2 F1 Bl SB2
25 0.030 0.025 0.037 0.204
39 0.072 0.062 0.082 0.227
50 0.090 0.090 ' 0.228
100 O.147 0.139 0.153 0.207 0.130
150 0.145 0.135 0,148 0.172 0.128
225 0.131 0.124 0.132 0.118
400 0,100 0.099 0.100 0.102 0.095
500 0.087 0.087 0.087 0.0G92
Pl Present calculations without the 2nd order potentisl.
P2 Present csalculation with the 2nd order potential.
Fl Four-state spproximetion (Flannery 1970).
Bl First Born spproximation (Bell et al, 1968).

SB2 2nd Born approximation (Holt et al. 1971).
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Table 4

Totsl cross-sections for electron capture
by protons in helium

Cross - sections (10‘16 cm2)
Proton
energy DWl DW2 TC BS G Bl Expt.
. — 1] in Keve. .

30 2,07 2elily 1.86 2,19 |1l.92 2.80 | 1.92(a)

-1+ -1 -1 -1 -1 -1 -1
100 2.68 3.29 3.06 [2.90 |2.76 |3.0 2.76: " (a)
-2 2 -2 2 -2
250 1.73 2.40 2.35 2.0 2.0 (b)
=3 -3 -3 -3 -4
500 1.06 1.88 1.88 1.0 8.0 (h)
=5 =5 -5 -5 =5 -5
1000 3.99 9.38 0.38 |74 5.0 5.0 (b)
-0 -10 -1 +
10,000 1.57 L.55 (3.1 (1.2 -
0.4 )-19
(c)
+ Theswvperscript indicates the power 10 by which the

number is to be multiplied.

DWl, DW2, TC are the present calculations following the case A,
Case B, Case C in chapter 6.

BS results of Bransden et al (1966)
G results of Green et al (1965)
Bl First Born approximation (Mapleton, 1961)

Expt. Experimental results, (a) Steir & Barnett, 1966,
(b) Barnett & Raynolds, 1958.
(c) Barkner et al, 1965.
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