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Our torments also may in length of time

Become our elements

Paradise Lost, Book 2, J. Milton

there is a dark
Inscrutable workmanship that reconciles
Discordant elements, and makes them cling together

in one society

The Prelude, Book 1, V., Wordsworth




Summary

The finite element method was used to analyse a number of domed
structures. Two new sandwich plate bending elements (rectangular and
triangular) were devised. They were used to produce results for com-
parison with other solution methods. The agreement was excellent. They
were also used to produce results for comparison with experimental work
on sandwich plates. The agreement varied. To the triangular element was
added a plane stress component, together with suitable apparatus for making
transformations at plate boundaries., This element was used to solve three
tetrahedral domes, a square pyramid, a hexagonal dome, and a l6-faced dome.
All these were investigated experimentally. The agreements varied between
very good and moderate.. A comparison was also made with the only other
published results on a sandwich folded plate structure, due to Benjamin.

In conclusion some improvements were suggested.
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1 Introduction

Plantema's definition of sandwich construction (2), will be
used: '"..... a three layer type of construction, consisting of two thin
sheets of high strength material between which a thick layer of low
average strength and density is sandwiched. The two thin sheets are

called the faces, and the intermediate layer is the core of the sandwich."

A polyhedral dome is defined as a dome in the form of a poly-

hedron (30).

The origin of sandwich construction is unknown, but, as
described by Elliott in a useful and detailed survey of its development
(34), dates back at least to 1846, and Robert Stephenson's Brittania
bridge over the Menai Straits (40). The recent interest in this extremely
efficient type of construction started about 1940. Symptomatic of its
resurgence was the Mosquito bomber, in which balsa and plywood were used
as sandwich materials. Since then sandwich construction has been used

extensively (2, 3, 34, 42, 49, 59, 60).

Domes are of course much older than sandwich structures. They
are structurally efficient, and this is largely because under load they
usually develop direct stress resultants, as well as bending stress re-

sultants.

The chief drawback of domes and shells is that they are difficult
to fabricate. The polyhedral dome has been conceived as a merging of
these two structural forms, so as to solve, or at any rate ease, the
problems of fabrication. The idea was that polygons of flat sandwich
plate could be assembled to form a polyhedral dome., It was hoped that
the flexural properties of sandwich plates, and the efficiency of domes

would together produce a new economical structural form. This thesis is
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concerned with the analysis of such structures.

There have been few attempts at the analysis of polyhedral domes,
or indeed any folded plate structures, composed of sandwich elements,
although folded plate structures with ordinary plate elements have been
widely discussed. (see, for example, 8, 37, 41, 63, 66). Such attempts
as have been made are largely approximate. Benjamin ( 3, 18, 20 )
postulated separation of the bending behaviour of an individual face, from
the action of the structure as a whole, 80 as to simplify his analysis.
His treatment of the behaviour of the component parts, and the whole of

the structure is fairly crude, but gives good agreement with experiment.

In some respects the structural action of a polyhedral dome can
be considered as a super-position of sandwich plate bending and membrane
actions. On both of these problems much work has been done. It was
decided to attempt to analyse the domes on this basis. If only small
displacements (up to about half the plate thickness), are developed,
then it is reasonable to suppose that the interaction between plate
bending, and membrane action wilffﬂgcur on the folds at plate boundaries.
The analysis which follows proceeds on the basis of this assumption. It
is also restricted entirely to linear elastic material behaviour. At

the risk of tediousness, some of the numerous effects which are thereby

neglected are catalogued below.

1 Large deflection bending behaviour.
1.1 Invalidity of bending equations for large
slopes.
1.2 Development of membrane actions.
2 Membrane forces bending action, instability

and stiffening.



3 Stability.
3.1 Wrinkling of faces.
3.2 Core buckling.
3.3 Plate buckling.
3.4 Overall buckling.

4 All time-dependent behaviour, reaction to live
loading, and all creep phenomena.

5 Non-linear material properties.

The feature thought to be most desirable in any scheme of
analysis was generality. To this end it was rgsolved to use a n;merical
method, as any analytical solution must be constrained in respect of
geometry, material properties and boundary conditions. Again in con-
sidering the generality of numerical methods, the most suited one was
that of finite elements. The use of a Variational Principle makes the
application of boundary conditions at once general and straightforward.
The finite element method also admits of great variation in the problem
geometry and material properties. These advantageous facets of the
method have been expounded at length by several authors (10, 25). The
penalty usually paid for these useful features, is a larger computer
program than that used for more direct methods (for example, finite
differences, dynamic relaxation, fourier series, numerical integration).
However, after consideration of the other possibilities, the finite
element method was chosen as being the most promising scheme. Given
the assumption of membrane and flexure independence within each plate,
the problem resolved into developing an element of suitably general
geometry which could represent separately membrane and bending actiomns.

In the event a number of elements were devised.
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2 Sandwich Plate Bending

2.1 History

A detailed and useful account of the various theories available
for plate bending problems, both accounting for, and neglecting, the
shear problem, is given by Sander (73). The various assumptions that
can be made are summarized in a table. Classical plate theory [see,
for example, (75)], neglects the shear deformation of the plate. It was
shown by Kirchhoff (55) that this causes redundancy of one of the three
boundary conditions originally specified by Poisson (64). The position
regarding this neglect of one boundary condition is fully explained by
Thomson and Tait (74). Usually the two boundary conditions, dealing with
the tWisting moment and the shear force of an edge, are merged into one,

as suggested by Kirchhoff (55).

Reissner, in a series of papers which, together with the comments
upon them, have become classical (67, 68, 69, 44, 32), showed that the
lack of a third boundary condition was due to the neglect of the shear
strain energy of the plate, and put forward a new theory, which included
the shear strain energy, and used all three boundary conditions. Reissner's
plate bending theory takes into account the shear deformation and shear
stress in the plate. His starting point is an assumption about the
variation of the shear stress across the plate thickness. For ordinary
plates Reissner assumes a quadratic distribution of shear stress. However,
in (69) as a special case he deals with the deformation of a sandwich
plate, and as is commonly justified [see, for example (2)], he assumes
that the shear stress is constant across the core of the plate. An

alternative to the assumption of a stress distribution, is a kinematical



assumption (15, 73). This alternative approach seems to have been pursued
independently for plates in which the shear is taken into account, by
Hencky (47) and Libove and Batdorf (15). The original classical plate

theory was based on the kinematic assumption of Kirchhoff (55).

The Libove and Batdorf theory considered the small deflection
of sandwich plates. Alwan (7) and Reissner (72) considered large de-
flections of sandwich plates. Stein and Mayer (61) produced a small
deflection theory for curved sandwich plates, and Reissner (70) dealt
more generally with shells. More recent extensions of sandwich shell
theory have come from Wempner and Baylor (16) and Wempner (76) who

extended the theory to large deflections, using tensor notation.

The first finite element which dealt with the shearing defor-
mation of plates in flexure was due to Herrmann (48). He used an unusual
variational principle due, not surprisingly perhaps, to Reissner (71).

This principle uses a simultaneous variation on the stress and displacement
fields. The element was not applied to sandwich plates. More recently
Clough and Felippe (29) described a quadrilateral plate flexure element
vhich incorporated a simple description of the shear deformation, identical
in effect with that used in the elements shown in this thesis. Clough

and Felippe were only concerned with the approximate representation of
shearing deformation, in ordinary plates. They advocated the use of

static condensation in order to eliminate the shear deformation parameter
after completion of the element stiffness métrix. This process is less
valid in sandwich plate problems, where the shearing deformations are
large. Sander (73) described 2 families of flexural finite elements

which account for shearing deformations. In his displacement model the



rotation of the plate and the normal displacements were represented
by entirely separate shape functions. The procedure was successful,
and Sander gave a number of solutions to sandwich plate problems, &ll
with a relatively high shear stiffness. He also developed equilibrium
elements and was able to bound the exact solutions to several problems
with his finite element results. Sander reported a loss of accuracy at
very high shear stiffnesses, as the model of the sandwich plaﬁe approached
close to classical plate behaviour. The isoparametric thick shell finite
element described by Ahmad, Irons and Zienkiewicz (6) used a kinematic
hypothesis almost identical to those used later in this thesis. With
small modifications this element would be suitable for the solution of
sandwich plate and shell problems, and would be very powerful.

Avel and Popov (5) described the application of finite elements
to sandwich beams and axdisymmetrical shells. They used a linear kinematic
assumption, but also took account of the shearing of the faces of the
sandwich. Monforton and Schmit (62) presented a rectangular element
for sandwich plate and singly curved shell analysis. This element can deal
with unequal face thicknesses. They solved a case of a simply supported
rectangular plate under a uniform load. Beisinger and Key (17) des-
cribed an element for the analysis of thin shells in which the transverse
.shear strains are accommodated. However, their motive was not to solve
problems in which these shéar strains are likely to be large, for example
in sandwich shells, but to avold some of the continuity requirements
demanded by the Kirchhoff theory.

With the exception of the Sander equilibrium element, and the
Herrmann element, all these finite elements are displacement models,

which minimise strain energy.



Evans and Rockey (37) used rectangular classical plate bending,

and plane stress elements, to solve folded plate structures.



2.2 Fundamental Plate Theory

The notation used is, in the main, that of Green and Zerna (43).

Theory is restricted to infinitesimal elastic behaviour.

Essentially the metric tensors of the strained body are assumed
identical with those of the unstrained body. For a plate we can express

the position vector, R of any point in the unstrained body as

=7(8,8)+ %4, | (2.2.1)
where 53 is a constant unit vector perpendicular to the plane surface
'9 = O. The rectangular axes x are chosen such that the origin of the
vectors R and {* and the coordinates .‘X‘. are identical. Hence the ‘90‘
curves lie in the ( &, )X, ) plane. The plate is bounded by two plane

surfaces

= = th
93 Xy (2.2.2)
Consider now the surface ‘91' = constant.

The force acting on an element of this surface is

T, do"d & (2.2.3)
= _ H\ — _ ’h’.—
Ti=v(93")% = /(9)T" G (2.2

and the length of the corresponding line element of the middle plane

where

xs = 0is
V(a,)d® = vaa,)dd* (2.2.5)

The stress across the surface 9i = constant may therefore be

replaced by a physical stress resultant f-l { and a physical stress couple

m1
which is in the surface Gi = constant, where
1 h
] = T (2.2.6)
A, = T, dx,

' aa’) S

, measured per unit length of the middle line of the plane x5 = 0,
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and

m, = 4/(aa“) J(a x T, ) da,

General formulae for stress resultants and stress couples over

(2.2.7)

the surface Uy = constant, for unit length of the line 9“= constant

and xS = 0 are

n = ——-—-——N ﬁ-‘ = M_“mt
N M(aZ"“") o J(aa ) (2.2.8)

where
N, dex M, J(q xT)x,dx, . @29

The stress resultant n and stress couplefn per unit length of

a line of the middle plane, whose unit normal in the plane is

- -
u =Uga (2.2.10)
are
2
&
o, nefu i
&= =/ (2.2.11)
For changes of the surface coordinates 9&, Ng ¥V Q& and

.fﬂa 4/ a““ follow the contravariant transformation.
= /(a) T'kak (2.2.12)
Substituting this in equations (2.2.9) gives
o = xXP & - 2.2,
— L K = - (2.2.14)
MW= m* 3, xap

Rj“ = N“f af + Q"‘ as © (2.2.15)

M= M""ac’l3 Xa

where f

NF= /e MT=metfa Q= qa

(2.2.16)
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h
and n*f = T“fdxa (2.2.17)
=h
h
m*f = T«fo dOC5 (2.2.18)
h

«3
f T dacs (2.2.19)

“f and m“f are symmetrlcal in O{ and f

-— -— - — AP -
h= Uy (n“faf-fq_ as), m=u.m fasxqr (2.2.20)

These can be changed into
m, = (m"a*-m*“a'),/(a/a") , f\—4'= (M"a*-M"a Vya (2.2

m = (m"g2- mzza’)/\/(a/a”) M =(M"a% ,2..2'61)4/(1 (2.2.22)

n“f ,mdf and q_ are all surface tensors. The components of the
symmetrical contravariant tenspr n“f are called stress resultants,
those of the symmetrical contravariant tensorm“f are called stress
couples, and those of the contravariant tensor q:* are called shearing

forces.
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2.3 Stress resultant-displacement relations

Using the known stress-strain relations of the materials of the
plate, and making some assumptions, we may derive the relationships
between stress-resultants and displacements for a sandwich plate in
flexuré. Thege, together with the boundary conditions, will be all
that is required for the variational formulation of the finite element
problem. The earlier equations applied to any plate, but the intro-
duction of a special geometry and some assumptions make them much
more specific.

¥e consider a sandwich piate having faces of equal thickness

:f , and a core of thickness ¢ (in the Xz direction). The middle

surface of the plate is still defined by JCS = ‘23 = O. A displacement
M/ is introduced, which is the displacement of the middle surface of
the plate, in the f%s direction. [Green and Zerna (43), and Reissner (67),
take W as a "weighted displacement" i.e. the integral of the displace-

ment VS over the thickness of the plate, divided by the plate thickness].

The following assumptions are introduced

'—l

All V% across plate thickness = W

2 The following kinematic relationship holds (Fig. 1)

V¢=-(WI“-—¢X¢)D¢3 -% £ Xz¢ 5 (2.3.1)

Vu = ~WL,LOCJ— JY.c/a $ & X5 +f (2.3.2)

>~ N
I N6

Vx = -Wl‘,L Xyt e X,LC/Z - % (2.3.3)
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CILL is another weighted displacement.

The general elastic stress-strain relationships may be written,
for cartesian coordinates, as
i
= C

For symmetry with respect to a plane (Green and Zerna, p.158)

the 21 elastic coefficients can be reduced to 13

i il ] ]
Cu sz Czs o o CIZ

¢t B o o %
Cix O0 0 ¢ (2.3.5)
Cis Cis O
symmetrical Cys Oﬂ
o

This applies separately to both core and faces. If we transform
to general coordinates in the ( ac, y C; ) plane, while still retaining

the third axis x3= ‘93 » the equations become

& olAUA
T = ot 6!‘7‘ (2.3.6)
( : %ppA :
A prefix C on F denotes core, and a prefix f denotes face.)
where

AN F"t"s/s= F3_ F33 = 0 (2.3.7)
and alSOF“ﬁvAz F{M‘ttﬁz__ FP“AP‘;-' FO(PAF (2.3.8)
So we can write, for the faces,

TP j_;:“(’t‘aep_f :f‘:"‘?“e‘s (2.3.9)
(Now we have that a,(&’v’ﬂ 99 3 )
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But since é;ss = 0, from the first assumption, then

« A
'( /3=j._[: /Bt4 6&" (2.3.10)
In the core the elastic constants are further constrained

F"‘PM-,—-_ P PR _ P

Fupss _ Fpuzs = Fsso(p — F53p0< =0

(2.3.11)

We already have an expression for the covariant strain temsor, in

terms of displacements,

eap = 7’- (\{xl(ﬂ' \%L‘) (2.3.12)

and we can now reclate the contravariant stress tensor to displacements,
using equations (2.3.10) and (2.3.12). The expressions for the stress
resultants (2.2.17), (2.2.18) and (2.2.19) can each be split into three

X ;
n“lg =—_:’,_I-:0‘/4t‘A ev?\dxs +CFO‘{3”’\ ev% dx3

(&1

=<
-€ 2
7

oABUA
+4F A ée\,‘

4

(2.3.13)
cloc3
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P2 C
7 "2
2
o
+cF prJ(Vvla+VA|r) dxs ""deP J(VrlA+VA‘r)dx5}
"% -£-§ (2.3.15)
ap _
nNtr=0
This result is q f the k t umption. The st
pl n\m‘5 may b tt

" [dePr?_\[((WJm*W,x Hhrely lt‘ 50 ds,

t5F pr((wlrm*'wlar)x +( 4 l" >dx5}
5

(2.3.16)

On integrating we obtain

mo(,é_____ Pt‘"[(ﬁ"f.p +:£ )(wl "Wl"t‘
(FF) e H]
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We introduce a new variable, XOL s where

X"‘ = "'X"( (Cz ) (2.3.18)

Substitution in (2.3.17) yields

P = - F«Pt"\[ g‘;jL+§i+ )(W|M+w}w)

(C_f+c.f :f)(x R +Mt‘]

(2.3.19)

3
The difference of f/’z , in the coefficients of (W‘t‘k"'w‘ar)

faces. If we assume that the faces act as membranes, and there is no

t‘) y is due to the effect of bending of the individual

bending effect, we can write equation (2.3.19) as

m“(&=§ F“ﬂ' t”‘@(W'rxfWh\v-Xr’A ‘Xg\v)

where = Qif gfz Y
b~ Fegg

(2.3.20)

This assumption is justified if C }}f .

From equation (2.2.19) we have

£+f <
“3d 2 o3
X 'T a’xs T da:s (2.3.21)
-5-f

The contrlbut:.ons from the faces are zero, because of the kinematic

Nn

assumption. Consider the core contribution

(<

o

7 2 335
fﬂr’dx, FPe dx,

(2.3.22)

<
2
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«®3

Now T = cFoL5/53 (Vp‘; +V5|P>

(2.3.23)

On substituting in equation (2.3.21) we find

« | . *3p33 (2.3,
Q=3 F (c+f) X,B (2.3.24)

This completes the set of stress-resultant displacement relations.

Another approach is to define these stress-resultant displacement

relations as the fundamental properties of the plate. These are then

m“”" = quag (Wlmt«* leﬁ -Xr'% - Xﬂlt‘) (2.3.26)

(2.3.27)
(n =

aPBA «
The properties D P r and S ¢ can be determined experimentally

directlye.

It is from these equations that the finite element treatment will be

developed.
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2.4 The Rectangular Finite Element for Sandwich Plates in Flexure

This element has been developed from the rectangular plate
bending element described by Cheung and Zienkiewicz (25). We restrict
our attention to the rectangular cartesian coordinates (801 ,xz Jx.'i)'
The plate considered is orthotropic in these coordinates, so that the

following relationships hold in D,

22 I 12 22 o) (
= 2.4.1)
Dﬂ zz 7 D D D D 12 ,
{ 22 2 Iz
The non zero components of D are D ' D 22 D“ and Dm_ .

The finite element has the same thickness as the plate, and
dimensions 2Z& in the "‘1 direction and 2D in the X, direction. Over
this rectangular domain the normal displacement |\f is represented by the

polynomial

_ 2 2 3
W=of +0l X, +0l X, + 0L X"+ 0 2%, + A X, + X,

2 2 3 3 3
F0kg X, %, + Ko, X, + X X, + X 00, + O

(2.4.1)
In additioﬁ two polynomials are used to represent Xt‘ .
- (2.4.2)
X‘ C, +CX +C,X, +C XX,
(2.4.3)
2& =d +d,x, +dx, +d,xx

The degrees of freedom at any node, i, are chosen to be

Wi, ,,)1 ) Wn)i? X’)l , Xz)i (2.4.4)
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The relationship between nodal displacements and polynomial coefficients

can be represented in matrix form as follows:

{S}e = [H]{d} (2.4.5)

where ( OL} is the set of all 20 polynomial coefficients, and {8}6
is the set of all 20 nodal degrees of freedom. The matrix [H] is
obtained by substituting the coordinates of element nodes into ex-

pressions (2.4.1), (2.4.2) and (2.4.3). The curvatures or strains

can be expressed in terms of the polynomial coefficients by means of

a matrix, [Q]

{Ej = [Q] [OL} 9 (2.4.6)

where

| { ] [WI" X'iywlzz zlz;wliz {_‘z__“ Xi’ Xz }T

The stiffness matrix K of the element may be expressed as

2a .2b

[k]= W] (f {([Q] [D][Q])dxtdx, [H" (2.4.7)

(Cheung and Z:.enk:.ew:.cz, page 94), where [D] is the "elasticity" matrix

for the plate, expanded as

NN ]

b, D, O 0O O

bl — Dy Dl Om. ° 9
= o O D, O O (2.4.8)

O 0 0 § O

o 0 0 o §

L Sz _
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The stress resultant can be obtained in terms of nodal

displacements from

{e} = [PILQI[H]{ &},
(2.4.9)

where " 2 2 ' . T
{(S;;== {:rrl :'112 , M ’clu ’C1. } .

The element stiffness matrix, [k] y and the matrix relating
stresses to nodal displacements can be evaluated explicitly, in terms
of the stiffnesses, and dimensions of the element. They are given in
Appendix I. The stresses may be determined at any point in the element.
Here they are calculated at the four corners, which values suffice to
determine all stresses uniquely. The symmetries of the element are

exploited, and the matrices partitioned for conciseness of presentation.
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2.5 The Triangular Finite Element for Sandwich Plates in Flexure

This element has its ancestry in the quadrilateral element of
de Veubeke (31, 73). Some of de Veubeke's procedures are retained, but
the geometry is different, and the element is directed at sandwich plate

theory and not the ''classical' plate theory of the original,

The triangular element is divided into three smaller triangles
by lines joining its centroid to its verticles. The 3 triangles are
numbered I, II and IIT. The cholce of the centroid as a generator is
arbitrary, although this function must always be performed by a point
within the triangle. The 3 angles at the centroid are designated d,(s
and.x, li are the distances from the centroid to the 3 vertices in
triangles I, II and III. These are clearly shown in Fig ( 2 ).

Obviously, a+{3 +X = 27 .

In triangle I the displacement, W , is represented by the

polynomial (in local oblique coordinates Jc‘ , and JCZ )

— ol 1 1 1 2 i { 2
W= S’+ S, X, t+S.x, +s4 x, +255x13c9_ + S X,

| a3 { A2 i Z 1 .3
r4 (8 x?+ syxix, + 5,%,%; +8,%;)

(2.5.1)
and the displacements Z{o( , by the polynomials
X _ Sz szx + szx (2.5.2)
§ = ST ST S5t
} =88+ Sx + 8x,



=21~

In triangles II and III, polynomials U} and \/;: are used, As depjcted
in Figi! s the & nodes are numbered. In each sub~element triangle the
displacement W s and the slopes\A/“ and WL’L are used as nodal displace-
ments at each of the 3 nodes. The slope VU" at the midpoint of the
external edge completes the set of 10 nodal displacements required to
determine uniquely all the polynomial coefficients S},j = 1 to 10,

In addition Xi and X 4 are used at each node; these suffice to determine

the remaining polynomial coefficients.

A summary of the formulation of the element stiffness matrix
follows. Element stiffness matrices are generated for the 3 sub-elements,
using the procedures described by de Veubeke., Those of triangles II and
III are transformed to the oblique coordinates of triangle I, and the
element stiffness matrix assembled. A set of constraints which ensure
internal continuity of displacements and slopes is used to condense this
stiffness matrix, causing several of the degrees of freedom at the central
node to disappear. The stiffness matrix is finally transformed into the
global cartesian coordinates in which the geometry of the element was

defined.

The choice of all displacement polynomials satisfy the criteria of
Dunne (33). They are complete, and hence have no preferred directions,

and it is shown that inter-element continuity is ensured.
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The set of 16 nodal displacements, th , in triangle I is

9= Wy%agwxm 247”‘4’%79[;2{41:&17%7%7927 xma;u?fz
where (2.5.5)
ﬁp = VV1‘ ==\AG‘ >

9 = wlz - 22 (2.5.6)

and % . is the slope WI‘ at the middle of side 1-2.
As before the matrix relating the set of nodal displacements to

polynomial coefficients can be written

(4] = [H]{a}. @50

The matrix [}1] can be inverted to give

{Oq = [H"J{‘l} . (2.5.8)

The plate is supposed to be elastically orthotropic in some cartesian

coordinate system, randomly oriented with respect to the triangular

element. For each sub-element the elasticity matrix must be obtained,
. . ijrs

in local oblique coordinates. The contravariant tensar[) y rep-

resenting the properties of the plate in flexure (equation 2.3.26) is

readily transformed

e pirs 6™ 38° 282 ¥t
Vi 3 dx" x* (2.5.9)

Similarly, the shear properties may be transformed

s — si o e

dxi aacj (2.5.10)
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The strain matrix {e} may be written
T
{W‘u-xi\‘ W -X ’ ,WL‘—KL ‘ ,W‘n-x’_ HXH Kz} (2.5.11)

2 ™1
The relationship between the strains and the polynomial coefficients,

{€} = [@]{]

is obtained from (2.5.1), (2.5.2) and (2.5.3).

(2.5.12)

On substituting (2.5.8) in (2.5.12) we further obtain

{5} = [K]{‘l} (2.5.13)

were [R] = [@][H] (2.5.14)
The matrix [K,] can be split into 3 other matrices, [W] ’ [WX] .

and [W ] which are independent of m4 and &£z where

R]- ( [w]+ 2, [W,) + 22 [Wy])

z
13 11 1 (2.5.15)

de Veubeke shows that the sub~element stiffness matrix [k] can be

written

K] = g [T+ (T el TP [€]]
where [A] [w]+[w,] B]=[wl~+wy]
[C] = [wW]+ [W,c]-" [Wy] (2.5.17)

These matrices, [A] ’ [B] and [C] , are shown in Fig 3 « Since

the de Veubeke element deals solely with ''classical" plate theory, no

(2.5.16)

terms relating to shearing deformations,x s appear in the original

matrices.
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The stiffness matrices from triangles II and III must be
transformed to the oblique coordinates of triangle I. The displacement,
w s 15 the same in all triangles. The slopes and shears follow a

covariant transformation

<)
WI“ = 3 W,{.3 (2.5.18)

The overall stiffness matrix is formed by simple addition. The complete

set of nodal displacements, {f’] is now
{W47(P479‘;5xi47 XM’WH?HQ;)X{H XZH WZJT“%?X{Z’XZZ’

T
Ws: 3:931 Xmgzz? 9)127 %37 9)31 }

On the internal sub-element interfaces, the displacements do
not necessarily conform. On any internal edge, the displacement VV can
be written as a cubic polynomial, and the two slopes VV‘O( s as
quadratics. Since complete continuity of normal displacements and slopes
is wanted, we equate these polynomials on the 3 interfaces, term by term.
This gives a total of 30 equations. Not all of these are independent,
Moreover some of the equations are pre-empted by the identity of nodal
displacements at the ends of interfaces. There remain only 3 independent

equations, which may be written as

I { i { " (2.5.19)
8, = sin (%+3) W, — SinX u_

sin (3 | sin 3
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1
8 =sin® V!4 sin v (2.5.20)
d sin (X+3) +s‘m ( *8)

{
Ug =_sinol Vf sinf3__v! (2.5.21)
> én Sin (x78) 1 Tan &+8) °

By substituting from equations (2.5.8) the polynomial coefficients can
be eliminated, in favour of the nodal displacements, and equations,

(2.5.19), (2.5.20) and (2.5.21) can be written

{0} =[ E ]{r} (2.5.22)

or, more usefully

[F] ?’4 =[G]{P}

where {P} is the set of nodal displacements, [r} , with the first

three deleted. The matrix [F-] can be inverted, so that

Wy
= [FIleIp = mI{p]

(2.5.23)

We now form a condensation matrix, [N], by adding to [M]a unit

diagonal matrix, thus

(3 = (Y] () = i)

(2.5.24)
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The matrix [rJ] is used to '"condense'" the element stiffness matrix,

eliminating Wy, CP4 and 94 .

(k] = [NICRIIN] 5,25

Along each external edge of the triangle the displacement
varies cubically. ( It is fully determined by the end displacements and
slopes. This implies continuity of W between adjacent elements).
It is therefore possible to calculate the mid-side slope, along the
edge, purely in terms of these end displacements and slopes. At this
mid-point the slope W { is also known. These two slope components,
determine fully any and all slope components at this point, and in
particular the slope normal to the edge. The normal slope at the
vertices can also be calculated, so that on each edge of the element we
know 3 values of the slope normal to the edge. Since the normal slope
varies quadratically along the edge, it is fully determined by these
5 values, and therefore there is slope continuity between adjacent
elements. The element is fully conforming. In use.the slope in the
middle of each edge is conveniently transformed into a normal slope.
The slope qqi , in local oblique coordinates, is expressed in terms

of the outward normal slope, [} , and the other nodal displacements.

V2
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= 3cos@-&) (W -w
qZZ 5 EZ{ (“ 1)

+ s (o o) (4,hy+U,.h,,) (8 +8,)

+ oS~ ') (““h“ =+ U, hz;) (994 t ‘Pz) (2.5.26)
+ N, sin (X-?)

where u“ —t (xi_xj)/l’

‘4|¢_ = (SC:" J:t >//l¢
Uy = (xf -} )/lz
Uss =(x’7 -~ xt)/lz ) (2.5.27)
b o /!
b= oot b = L= 3
/ 2 /
b = - by = g
3 _ y/ 3 y/
b' - (Y x bﬂ' B X‘-ﬁ (2.5.28)
hj‘ = §in b:. /.Sin (b;__bja)
o = sinb} /sin (b~ b}) 25,29

(u, b and h are not tensors)

Similar formulae apply to and .
13 3
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9= 3 as (3-8 (w,-ws)
2d,

T @S (4.' - /)( Uy hn*uzzhzz) (92+93)
+ S0 (!5'./32 (“u iy +lhe h“) ([/)z +%)

4’ (2.5.30)

+ sin (ﬁ‘ﬁl) N3

\

(Fsl - 3 coszgg—ﬂ (W3-—W,)

+ Cos (X—b’/) (“m,hs;"’uzzhsg,) (95"“ 91)

+ ¢os (X‘X/) (“u h;; +U21h52) (sz'rq)f)
+ Sin (X—X/) n,,

(2.5.31)

These together with transformations of the form of equations
(2.5.18) enable the production of a matrix [P] , which transforms
vertex displacements into ''global'' cartesian coordinates, and mid-side
slopes into normal slopes. This gives the final "ready-to-use" stiffness

matrix

[Kl = [P]T[lé][l’] (2.3.32)
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3. Plane Stress

3.1 Fundamental Theory

We retain the geometrical concept of a sandwich plate, as
defined in 2.2., and again meke use of the equations (2.2.17),(2.2.18)
and (2.2.19). This time however the kinematical assumption is different.

We now choose that
Vi (8,8,)  -efgx 5T
Vsz-o

That is, all displacements in the (‘f;] y f%i ) plane are constant

(3.1.1)

across the thickness of the plate. It is now readily seen that

Cus= €z = % (Vuls'f‘ \/3],,() = O (3.1.2)
and so -'fj:
J T d:x3 =0 (3.1.3)
-

Also we see that

m"‘("’ =0 (3.1.4)
(from 2.2.18)
We may re-write here (2.3.6) and (2.3.12)

T = F“PE"‘GM

and

EEG(FS = j%i (’\‘NJIS + \/Fg‘a;)
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o
Consider the direct stress resultant [} P

=] Ty 4 | TV 4 | TP,
341,

The central term, which is the direct stress contribution of the core,
may be neglected, because the core is usually very flexible. ( This
assumption is implicit in the earlier kinematic assumptions for flexure).

After eliminating this term, and substituting from (2.3.6) we obtain

s+f %
A ~BA
c (3.1.6)
z --f

which on the introduction of (2.3.12) yields

n*f = 2f {-FdPAr(Valv‘f‘Vr'z) (3.1.7)

These are the stress resultant-displacement equations used in the
development of a plane stress element. It is sometimes more convenient
to cast them in the form

ﬂ“P —_ E"‘PAF Ol?“t‘ + vtﬂlﬁ) (3.1.8)

where

= oLpAN Q_.j:fF“ﬂAt‘
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3«2 The Triangular Plane Stress Finite Element

This simple, triangular, constant stress element was one of
the first finite elements ever developed (27, 28), and has been fre-
quently described (25), and used, effectively, to solve many problems,

(28, 35). It will only be briefly described here.

The '"in-plane'' displacements, Vi« s in some rectangular
cartesian coordinate system, are represented by linear polynomials,
in the domain of the triangle of plate, which the element comprises.
(The triangle can of course be of any configuration.) These polynomials
are

v, =5 +5,x + G X,
and (3.2.1)

e =0 o L% %

Now the 3 polynomial coefficients ‘;l :L=l to 3, are related

to the nodal displacements, V: ,i=1 to 3, by
rz; N - - ) 1
{ Pr P2 Ps Vi
< ; ) = ' vi \
2{ 2Z2A (11 q_z. 9_ N

3
3 (3.2.2)
LI;SJ LG e 'y \y
(the upper suffices on Yy denote the vertex or node number)
= 3y k _ xKad
where P‘l x{ xl - JC, xl
' k
[ Xy — X3 (3.2.3)

J 1
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and 1 ’ ] ’ k are anti-clockwise cylic nodal numbers for the

;
triangle. A is the area of the triangle. The relations between Vz

and ]zl.

and displacements can be explicitly stated in matrix form as

[i} = [R]{S]c

are identical to (3.2.2), so the relations between strains

(3.2.4)
where
T
(f}"{ﬁu,fiz,fzi,f«zz} (3.2.5)
= { ) 3 3 T (3.2.6)
[8}—{\/1;\41\/:’;‘/1’\/1 ’VZ} 32
and [R] is ~ -
ZCLi, o ’2‘1]" (¢ ,qu, O
% r; )‘]_',ﬁ,ﬂj,f‘k,q_k o
rlf‘l,i,rj 7‘1]1”‘;6“2 oCe
L O ’Zri’o ,er’ szrk-J

The "stress-strain' relations in the original cartesian

coordinate system (2.3.6) may be written in matrix form as

4 ~ 9
i | (7)) i M2 U
n e e MBS L |E
121 )2
1 nt{ — [g? ,52:: B2 g . Zu ,
il 2 2|
n? e ’E 12 ’EZH ,E 22 221 (3.2.8)
anz L.Ezuu ,Ezz E221I ,Ezz. | b4 3.2
This comprises the " [D] " matrix for the element.
The stiffness matrix is readily formed from
(3.2.9)

so that

[k] = f [R]T[D][K] d (area)

the integrations being especially easy since all terms are constants,

k] =4 [RIDPIR] .

(3.2.10)



4 Application of bending elements to bending problems

4,1 Boundary Conditions

It was mentioned earlier that there are 3 boundary conditions
on each edge of a sandwich plate in flexure (2.1). These take the form
of constraints upon stress resultants or displacements. Consider the
edge '9‘ = constant.

The boundary conditions are :-
1 either mﬁ or (WI‘-' Zﬂ ) is constrained
and 2 either m”’ or XZ, is constrained

and 3 either (lf or W is constrained .

The boundary conditions upon the stress resultants, will be supplied
automatically, in the absence of a constraint upon the corresponding
displacement. (This is a consequence of the Variational Formulation of

the finite element. 56).

TFor each boundary condition, the two extreme cases are that the
displacement or the force should be fixed. Alternatively, the displacement
can be limited by a spring of specific stiffness. There can also be cross
linking between the displacements as occurs for instance with an edge
beam. Three boundary conditions will always be applied on an edge. If
cross linked displacements and edge springs are ignored we have 2_3
possible boundary conditions, obtained by fixing or freeing each dis-
placement (Fig. 4). The number assigned to each boundary condition
will be used later, as they are concise. If we assume that displacements

are to be fixed only at zero, we have the above set of 8 possibilities

for each edge.
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4,2 Available Results

There are few analytical solutions to sandwich plate flexure
problems. The case of a circular plate with simply supported edges
under circularly symmetric loading has been solved (2) and it is also
possible to obtain exact answers for rectangular plates with simply
supported edges, and double sine wave distributed loading. These
cases aside, all other results appear to be either series solutions
(2, 23, 45, 65), or solution by some numerical method.’ Reissner
seems to have been the first to point out the separability of bending
and shearing effects, in plates with simply supported edges, under a
uniform loading. Plantema (2) shows results obtained using this
simplification. He added to the results obtaingd by classical plate
theory (75), the effects of the finite shear stiffness. An interesting
feature of these solutions is the independence of the shear stiffnesses
and the bending moments. Other series solutions for rectangular plates
with pinned edges under uniform and concentrated loadings are given by
Raville (65) and Gunturkun et al. (45). Lockwood-Taylor (57) gave a
series solution for the case of a square plate with clamped edges under
a uniform load. More recently research at Imperial College by Chapman
and W%}liams (24) and Basu and Dawson (14) has produced a large number
of solutions for cases éf rectangular sandwich plates in flexure,
Chapman and Williams used a finite difference program to produéela
very large number of:results, with various stiffness parameters and
edge restraints. Basu and Dawson using a dynamic relaxation program,
investigated the effect of various boundary conditions, and also
considered the behaviour of box girder structures, which behave in a

very similar manner to sandwich plates.



4,3 Comparisons with available theoretical and numerical results

The finite elements were used to solve a large number of

flexural problems, to which other solutions had been given.

L.3.1 Series solutions for rectangular isotropic sandwich plate,
under a uniform load, boundary condition 3

For this class of problem, the increase in deflection over
those of ''classical'' plate theory, is proportional to the inverse of
the shear stiffness of the plate. This prompted Basu and Dawson to
plot central deflection against the inverse of the shear stiffness
for a range of the plates (14). A similar presentation is shown in
Figs. 5, 6, 7, which show a wide range of results. The agreement
between the series solution values for the central deflection, due to
Plantema (2), and those obtained with the rectangular finite element
is excellent. The stress resultants also agree well, and as exﬁected,
are independent of the shear stiffness of the plate. The agreement
with the dynamic relaxation results which for clarity are not shown,
is also good. The results plotted were all for a 6 by 6 mesh of
elemen£s, applied to a quarter of the plate. Fig. 8. shows the
convergence of the central displacement, obtained by finite elements,
towards the series solution value, for a particular plate size and

stiffness, with an increasing number of elements.

4.3,2 Dynamic_Relaxation sqlution for a rectangular isotropic sandwich
plate, under uniform loading, boundary condition 7

The effect of the extra boundary condition, is to modify the
distribution of shear force across the plate boundary, the bending

moments, and the central deflection. The two sets of results (with
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and without an edge stiffener) are shown in Figs. 9, 10, 11, together
with solutions obtained by dynamic relaxation. The agreement between
the two methods is very good. The influence of this third boundary

condition is marked, in its modification of both displacements and

stresses.
4.3.3 Series, and Dynamic Relaxation Solutions for a clamped plate

with boundary conditions 1 and 4

The series results due to Lockwood Taylor (57) for the case of
clamped plate (boundary condition 4), are shown in Fig. 12. Results
for the same problem, obtained by dynamic relaxation (14) and with
finite elements for both clamped boundary conditions (1 and 4) are
also shown. Again a 6 by 6 mesh of elements was used. The agreement
between the dynamic relaxation and finite element results is excellent.
Dawson suggests that the slight difference hetween his results and those
of Loclwood Taylor, is due to Lockwood Taylor's premature truncation of
a series, The close agreement of the present results with those of
Dawson, lends weight tothis hypothesis. The difference is still very

small.

4,34 Series, and dynamic relaxation solutions for a rectangular
sandwich plate, with isotropic faces and an orthotropic core, boundary
condition 3

The table in Fig. 13 shows results obtained by Raville (65)
using a series method, and Basu and Dawson using dynamic relaxation,
compared with results obtained using finite elements. The agreement
is uniformly excellent, despite as Dawson remarks, Raville's completely

different formulation,
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4.3.4 Chapman and Williams' Results

Chapman and Williams (24) produced many results, of which two
have been chosen for comparison. Theée were a clamped plate under a
uniform transverse load, with varying shear stiffness, and a simply
supported plate under uniform transverse load, with varying orthotropic
flexural properties. Figures 14 to 16 are the authors Figs. 3 to 5, with
finite element results superposed. For each case the mesh of elements
was varied from 1 by 1 to 6 by 6. The agreement between the Chapman
and Williams results (obtained by a finite difference method), and the

finite element results is excellent.

4,3.5 Sander's skew plate results

Sander (73) gives moments and shearing forces obtained by the
finite element method, for the case of a 30° skew plate, under a uniformly
distributed load, with both types of pinned edges (3, 7). He solves the
problem for a fairly high value of shear stiffness (S: = $:=2|8.4 b:: /az ).
Fig. 17 shows the displacements obtained by analysing % of the plate with
a regular mesh of 36 of the triangular elements described in section 2.5,
(for boundary condition 3). Figs 18 and 19 show shear forces and moments,
compared with those obtained by Sander, for the case of the stiffened
edges. The agreement of moments and shear forces is quite tolerable.

An unusual feature of Sander's results is the non-zero shear force at

the oblique corner, which is unexpected (cf equations 2.3.24). Away

from this corner, the agreement of shear forces is good.
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4,4t Comparison with experiment

Figs 20 to 30 show displacements obtained by the finite element
program, with experimental results superposed. Seven different plates
were used as described in 8.6. In each case 1 of the plate was analysed,
using meshes of elements from 1 by 1 up to 6 by 6. As can be seen the
agreement between experiment and theory is varied. The closest agreement
is for the aluminium plate, 7, for which the experimental and theoretical
results are practically identical. The thicker plywood and fibreglass
plates (1 and 4), also show very good agreement of displacements. The
largest differences, of up to about 25%, occur with the thinner fibre-
glass and plywood plates. In.general it seems that the larger the ratio
c/f, the better the agreement between theory and experiment. This was
also noted by Elliott (34), and it is entirely consistent with the
assumptions made in deriving the theory for sandwich plates in flexure
(section 2.3). Stress resultants h\” and qj , obtained for a
quarter of each plate are shown for plates 7 and 8. Some experimental
results are also shown. The values of the moments nf' , calculated
from strain gauge readings are plottéd. The agreement with the theory
is not good for the aluminium plate. For the hardboard plate the one

|

experimental value of nﬂ' agrees very well with the finite element

value.




4.5 Conclusions from plate bending results

The finite element is at two removes from the reality which it
is supposed to represent. It is based on a mathematical model of the
real plate, and it introduces approximations into the treatment of this
model. The second step, that from model to finite element was tested
by the comparisons in section 4.3. These show conclusively that the
finite elements described are a feasible, accurate and powerful method
of solving the sandwich plate equations, in numerous situations, The
results of section 4.4t demonstrate the solution of real problems. These
problems are more stringent. First, the accuracy of the mathematical
model chosen to describe the plate, is tested. Second, it happens that
the particular problems chosen, plates with corner supports and point
loads, are a more searching test of the finite elements themselves than
those in section 4.3. In the neighbourhood of the point supports and
the point load, the kinematic modelling of the element has to accommodate
large displacement and stress gradients. In particular at the centre of
the plate, there is & conflict between the requirements of symmetry (that

61 = 6;' = O0) and those of equilibrium (that the shear forces should
balance the load). However, even classical plate theory collapses be-
neath point loads. Just at the point support, the equations demand that

q_‘ = q_z — 00 ., This is not possible either in reality, because the
support is not really a point, or in the element, because of the chosen
representation for x1 and Xz (equations (2.4.2, 3) and (2.5.2, 3)).

As can be seen in Figs 28 and 30, there are large peaks in 1} and q}
at the point support. The displacement finite element achieves equil-
ibrium by a variation on the displacements. In general the worse the

representation of the displacements the greater the lack of equilibrium.
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Even in the stringent tests the finite element results show that the
boundary conditions, of no shear forces or moments, across plate edges,
are closely approached (Figs 27 to 30). The agreement between ex-
perimental and theoretical displacements is very good for some of the
plates, and even the errors with the thinner plates are not surprising.
They show that if used judiciously the elements will give a very good

representation of the behaviour of a real plate.
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5. The dome elements

No attempt was made to make a rectangular sandwich dome element.
The two dome elements used were triangular. Both derived from the
triangular flexural element described inm 2.3, in combination with three
of the membrane elements described in 3.2. The simpler of the two dome
elements consisted merely of the sum of these elements. It had a
stiffness matrix of order 28, The ordering of the nodal degrees of
freedom was
{
15 v‘i 22 ?)m_
6 vy 23 g
7 Vs 24 ¢y [VJEW]
. V/4

=0 0o

2 19 @i 26 Vi

The set of displacements Vi , at each vertex, is complete,

and is capable of transformation. The set of rotations however is not
complete, since there is no rotation about the axis normal to the element.
To complete the set of rotations it would be necessary to introduce this
rotation into the plane stress element. Although this has been suggested
by Cheung and Zienkiewicz (25), it is accompanied by difficulties in
algebra and in compatibility, and no displacement element of this form
appears to have been reported. It is possible that it would produce

poor conditioning of the resulting equilibrium equations since the
stiffness corresponding to rotations about the normal axis would be

much greater than that due to rotations about the in plane axes. For
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these reasons, this rotation has always been discarded. In this respect

we follow the procedure of Cheung and Zienkiewicz (25).

In the second element the four degrees of freedom at the centre
node were eliminated by static condensation. This process has been
described in, for example (25). It will be briefly repeated here. The
nodal degrees of freedom are divided into two sets, those which are to
be retained, and those which are to be eliminated. The element stiffness

matrix may then be partitioned, so that

{Ff} = [K,,]{S,} + [K,,_]{ 82} (5.1)
"6} = I} + [K8) o

On premultiplying 5.2. by [K 21][}(2;.'] and subtracting from 5.1.

we obtain

(- JicIED =)l [s], o

The unvanted displacements may also be eliminated from the stress

matrices, so that if originally

(6] =[@){s}+ (@i} o»

then after condensation

(Is}- [ ;e D =(1Q,]- [Q.IK; ][KZJ){S‘} (5.5)
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After the elimination of the 4 degrees of freedom at the centre
node, the element has 24 degrees of freedom. The slopes of the middle
surface of the plate ﬁP and f} in the first element, are replaced by

total rotations at each of the nodes, in the second element.

Two further options are available within the element.
They are for use,

1 for edges of intersecting plates,

and 2 for nodes at the intersection of more than 2 plates.

In both cases the displacements Vi are transformed to global
coordinates. In the first option the total rotations are transformed
into coordinates defined by a given edge of the element, and the
vertical plane through it. The shear angles about this edge are
then condensed out. (There is no requirement of continuity of this
shear angle). In the second option, the two shear angles at the node
are condensed out, and the rotations are transformed into global co-

ordinates.
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6. _Programs

All programs used in this work were written in FORTRAN IV, and

were run on the NUMAC I.B.M. 360/67 computer.

Initially, when the finite element programs were being developed,
and even later, for medium size programs, it was feasible to store the
entire program and its working store, in the fast store of the computer.,
The "core' storage of the 360 was 512 K bytes*. Approximately 330 K
bytes of this storage was available for users, and with 4 bytes to a
word large stiffness matrices with up to about 50,000 non zero terms
within the half band, could be stored. The early programs were written
on an ad hoc basis for each element, and had the following features.

1. The assembly routine was written specially for each
element.

2. Simple constraints were applied by eliminating a row and
column from the stiffness matrix, replacing with zeros,
and putting a unit on the diagonal.

3. Half the stiffness matrix, within the band was stored
as a vector.

4 . Solution was by the Choleski method. (38).

For large problems it was evidently no longer possible to store
everything in 'core', particularly as double precision words would be

needed.

Fortunately, at about this time descriptions of the frontal

solution method, and even program listings were published (13,52,53,54).

* 64 bits = 8 bytes= 2 words =1 double precision word
K = 1024
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The Mark VI Irons frontal solution program (54), was modified so as
to suit my needs. The main innovations were
1 A scheme to allow the assembly of any type of element.

2 A Lagrange Multiplier package for applying constraints.

Irons (53) advocates the use of Lagrange Multipliers for
applying constraints. There is no doubt that they are the most

general, powerful and elegant method available (56,51,53,52,26).

In operation on the NUMAC I.B.M. 360/67, the Irons frontal
solution program uses 3 disc data sets as backing store. The limits
on the size of problem have not yet been encountered in operation.
The "front" of active degrees of freedom must contain less than 24l
degrees of freedom, in the present version of the program. The program
is available in two forms, one for use on the time sharing system, and

one for use on the batch system.
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7. Results from dome elements

The dome elements were applied to the following structures.

1. Three tetrahedral domes (Fig. 31) composed of plates 1, 2
and 3. (guide to numbersn Appendix I1) ~

2. A square pyramid (Fig. 32) composed of plates 7.

3. A hexagonal pyramid (Fig. 33) composed of plates 9.

4, A barrel vault (Fig. 35) described by Benjamin (3, 19, 20).

5. A dome with 16 faces (Fig. 34) composed of plat;s 3.

Some description of the various domes is given in 8.6.

7.1 Tetrahedral dome results

These are shown in Figs. 43 to 59. Each of the 3 domes was
analysed under 2 loadings. These were a unit vertical load at the cen-
troid of each face and at the centroid of one face., This gave a total
of 6 load cases. Attention has been concentrated upon the loaded faces.
Deflections and stresses in other faces were relatively small. The 6
displacement profiles for loaded faces are in Figs. 43 to 47. The ex-
perimental results obtained for these domes will be discussed later by
Mr. Parton., The experimental displacements which were measured at the
load and at the midpoint of the lower edge of each face were larger than
the theoretical ones. The horizontal displacements of the plate folds
are shown for some load cases in Figs. 49 to 52. TFig. 53 shows normal
displacements over half the tetrahedral dome made of plates 1. Stress
resultants are shown in Figs. 54 to 58. The results are all for a 6 x 6
mesh of 36 elements on each face. For the dome made of plates 1 under 3
loads the convergence was closely investigated. A plot of an important
displacement varying with the mesh size is given in Fig. 59. For the

smaller meshes the convergence is not monotonic, but this is probably
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due to load lumping, and from the 4 x 4 mesh onwards to 10 x 10 the
convergence is smoothly monotonic. The results generally appear to be
consistent and plausible. Bending displacements of the loaded face
dominate the dome behaviour. The in plane displacements are very much
smaller typically only a tenth of the bending displacement. Also the
carry over of bending effects to adjacent panels seems from Fig. 53 to

be relatively small. The effect of a plate fold on bending is very similar
to that of a spring support in a continuous beam. The downward deflection
of one face under load is matched by a much smaller upward deflection of

adjacent faces.

7.2 Square pyramid results

These results are shown in Figs. 60 to 72. The horizontal dis-
placements in Figs. 60 and 61 display the symmetries that are expected
for the cases with the same load on each face or with just one loaded
face. Again Figs. 62 to 65 show the normal displacements of individual
faces for the two load cases. These figures also show experimental
results. The agreement between theory and experiment is quite good.
The differences are systematic as though the shear stiffnesses were
slightly wrong. The normal displacements over the square pyramid with
a point load on one face are shown in Fig. 66. The effect of continuity
over the plate fold noted in the tetrahedral dome is seen again. The
few strain gauge readings have been used to calculate stresses. The
agreement of the moments nh' and rnzl with theory is excellent
(Figs. 67 and 68). The agreement is much better than that seen in the
plate bending experiments, and it corresponds to a change to a better
strain gauge adhesive in the experiments. The representation of the

direct sitresses n" and I’]zz is clumsy because of the nature of the
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finite element. Since the plane stress component of the finite element

is constant any stress representation obtained from it must be discontinuous.

7.3 Hexapmonal dome results

The hexagonal dome results are shown in Figs. 73 to 79. No
stresses are plotted since no experimental strain measurements were made.
Figs. 73 and 74 show the horizontal displacements of the dome for the two
load cases of one face loaded and all faces loaded. The normal displace-
ments over half the dome with one face loaded are showm in Fig. 75. They
are more complicated than the corresponding displacements for the tetra-
hedron and the square pyramid. The deflected profiles in Figs. 76 to 79
show a very good agreement between theory and experiment particularly for
the case of one face loaded. In these results and those of the tetrahedral
domes and the square pyramid the excess of the experimental deflections

over theoretical ones may be due to the panel joints not being rigid.
7.4 Benjamin Barrel Vault results

Benjamin analysed his barrel vault as an arch using a weighted
mean of the second moment of area of the changing section which the folded
plates form. His approximate centroidal line is shown in all the Figs.80
to 85. His experimental and theoretical deflections agree very well.
Unfortunately Benjamin does not say exactly where on the stfucture he
measured the deflections., He also refers to the displacements shown in
Figs. 80 to 85 variously as displacements and vertical displacements.

It is not clear whether the horizontal displacement component is included

or not.

i The first attempt at finite element analysis used 81 elements and
each face of an Yarch rib" was divided into 9 elements. The deflections

were much smaller than those found by Benjamin (Fig. 80). A more intense
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investigation was then started. Attention was restricted to the 5 plates
of a half arch rib. A 5 x 5 mesh using a total of 125 elements was used
(Fig. 82) and when the results from this were not satisfactory &% x 4 and

6 x 6 meshes (Figs. 81 and 83) were used. Finally an 8 x 8 element mesh
comprising 320 elements was used. Of all problems attempked this had the
largest number of unknown displacements. Even so the answer does not agree
exactly with Benjamin's theory or experiment.

In most of the figures the displacements of the outer fold line of
the barrel vault have been plotted as it was thought that this displacement
would compare most precisely with Benjamin's centroid displacement. For
the 8 x 8 mesh the displacements along the centre line of the arch rib
have also been plotted. However these will be affected by the bending
and shearing deformation of individual plates which Benjamin neglected
in his overall analysis but which are important especially under the load.
The study of the convergence (Fig. 86) indicates that the finite element
solutions have not converged to the final answer even with a relatively
fine mesh., It does however make it possible to put reasonably confident
bounds on the final displacement. Benjamin's mathematical model of the
vault supposes that it acts as an arch and this seems to work very well.
The bending action of the arch is being represented by the in plate action
of the finite elements. The constant stress plane stress finite elements
are notoriously slow to converge in bending situations, and probably these
results are another manifestation of this disadvantage. They also show
the importance of ensuring that the finite element solution has converged.

7.5 16 faced dome results

One eighth of the total dome was analysed using a 10 x 10 mesh

of 200 elements in all. Only a symmetrical load pattern could be applied.



A study of the convergence was not made. The inner of the two faces

was subjected to a 1 N vertical load at the centroid. This corresponds

to a 1 N vertical load at each of the inner face centroids in the complete
dome. The displacements are shown in various parts of the dome in Figs.
87 to 89. As was noted in the other domes bending effects in the loaded
plate appear to dominate the structural behaviour. A fuller discussion
of these results and comparison with experiment is to be produced by

Mr. Parton.
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8. Experimental Work

The tests applied to the materials were orthodox and widely
accepted. The results obtained for material properties, and in beam

tests were broadly similar to those reported by other testers (3, 11,

34, 42, 49),

8.1 Materials

The following materials were used

for faces birch marine plywood
hardboard
aluminium
fibreglass

for core expanded polyurethane

expanded polyvinyl chloride

The sizes and properties of these materials are shown in Appendix

II. Details of foamed materials are given in (21, 22, 50).

8.2 Testing of Materials

An earlier programme of work by Elliott (34) had established
the properties of some of the materials used, and even more helpfully,

had bequeathed a number of proven experimental techniques.

Tensile tests were carried out on an "E" type tensometer, as
described by Elliott. Extensions were measured using strain gauges and
a Hounsfield Extensometer. Torsional tests on materials were performed
on a Tecmatic torsion testing machine., Elliott's equipment for shear
tests, based on the ASTM method (9), was also used. The properties
obtained by this testing programme (some due to Elliott) are shown in

Appendix II.
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8.3 Plate and beam construction

All the plywood/expanded polyurethane plates were glued up
using "Mouldrite" UF 232, a urea formaldehyde synthetic resin in the
manner described by Elliott. The fibreglass/expanded PVC and the |
aluminium/expanded PVC plates were supplied ready made. The hardboard/
expanded polyurethane plates were made using '"purlboard". This is an
I.C.I. product, which consists of plates of expanded polyurethane of
1 inch nominal thickness, bonded to hardboard. The thick sandwich
plates, 8, were formed by glueing two of these plates together, at
the polyurethane side, using mouldrite. The thin sandwich plates, 9,
were formed by glueing a sheet of hardboard directly to the exposed

polyurethane, again using mouldrite.

The fibreglass/expanded PVC plates were not marked by a distinct
core/face boundary. The expanded PVC and fibreglass overlapped, so that
it was impossible to define the core thickness and the face thickness.
It was not possible therefore to derive the properties of the plate,
from those of its components. The reinforcing of the fibreglass was

randomly oriented chopped strands.

8.4 Beam Tests

These tests were designed to find the flexural and shearing
stiffnesses of the materials as they were to be used in the plates.
The values obtained in these tests were compared with those obtained
by substituting the elastic properties and dimensions of the plate into
equations (2.3.20) and (2.3.24). The tests were of two sorts: three

point, and four point bending.




The first was used to determine the shearing stiffness of the
beam and the second to determine its bending stiffness. Some tests
were carried out as described by Elliott, using two simple roller
supports and hangers and weights. Also a 100 kN Denison Universal
Testing machine was used. Later a special bending rig was constructed
to fit the Tensometer Ltd., "E" type tensometer, and a large number of
tests were performed on that. This rig could deal with both the tests
mentioned above. Curvatures were measured by a dial gauge reading to
001 mm. Other displacements were measured directly by the tensometer.
All the flexural and shearing stiffnesses are shown in Appendix II.
The inplane stiffnesses of the plate [in equations (3.1.9)] were

derived directly from the earlier elastic properties.

8.5 Plate Tests

All the plates tested were square, with sides of .5m or lm,
Loads were applied at the centre of the plate by means of a hanger.
This was a piece of prestressing wire, which was passed through a hole
in the centre of each plate, and fixed with a prestressing cone. De-
flections under load were measured by means of an array of dial gauges,
reading to 0.01 mm, which covered a triangle of 1/8th of the plate area.
The whole apparatus is shown in Fig. 36. Tests were performed on all
the plates listed except 9. Plates 7 and 8 were lm square, and the
rest were .5m square. The plates were supported at all four corners
on point supports, consisting of ball bearings. The plate edges were
unstiffened. The compression of the plates over supports was measured
by a dial gauge reading to ,.002 mm , Plates 7 and 9 vere also in-
strumented with a number of strain gauges. The two aluminium plates

each had 16 strain gauges fixed to them, and the hardboard plates had
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2 strain gauges fixed to them. Fig. 37 shows the location of these
gauges. The strain gauges used were Tokyo Sokki Kenyujo RR 200 and
RR.5,120 ohm rosette wire gauges, and Tinsley type LSG8/4/CN/E, 120

ohm linear foil gauges. Gauges factors were 2,08 and 2.14 respect-

ively. Loads up to 60 kilogramf were applied to each plate. All the
plates behaved linearly, and the deformations were all recovered upon
unloading. Plots of typical dial and strain gauge readings under loading,

are shown in Figs. 38, 39.

The plate bending results are shown in Figs. 20 to 26. 1In
each case profiles of the deflected shape are shown for + of each plate,
in metres, under a central load of 1 N. All these tests were repeated
several times, and most were performed on more than one specimen. The

results were consistent. Those shown are means.

8.6 Dome Testing

Much of the dome:testing was performed by Mr. Parton of Durham
University as part of this same programme of research. The first tests
by Mr. Parton were on a set of 3 externally statically determinate tet-
rahedral domes, composed of plates 1, 2 and 3, (Fig. 31). Later Mr.
Parton went on to test a set of much larger and more complicated domes
(Fig. 34). These were again composed of the plywood/ex%anded polyurethane

plates 1, 2 and 3.

A Hexagonal dome, was constructed from plates 9. It was supported
on 6 feet, and was thus 3° indeterminate. Three components of horizontal
constraint were applied, so that the horizontal reactions were determinate.
Provision was made for vertical loading at the centroid of each of the
6 faces, by means of hangers. The dome was instrumented in two different

ways. The purpose of the first set of tests was to establish whether the




dome behaved linearly and elastically. Dial gauges were placed as
shown in Fig. 40, In the second set of tests, largely as a result of
the first set, attention was directed towards the behaviour of an

individual penel, and dial gauges were positioned as shown in Fig.l4l.

A "square' dome with l faces was constructed from sections of
aluminium plate 7. The dome had a base of .85m, and a central rise of
.26m. This gave a base to rise ratio of roughly J[ . Again the
supports were arranged so that horizontal reactions would be determinate.
The vertical reactions were 1° indeterminate. The instrumentation was
again by dial gauges, and this time, in addition, strain gauges were

used. Loads were applied vertically at the centroid of each face.
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9. Conclusions

The sandwich plate bending finite element results are convincing.
The plane stress component of the dome element is well tried and reliable.
The finite element results for the square pyramid and the hexagonal dome
compare well with experimental results. The finite element results for
the tetrahedral domes and £he 16-faced dome appear reasonable. Those for
the Benjamin barrel vault are not the same as the experimental and simple
theoretical ones. The claim that a finer mesh of elements would give é
closer agreement is justifiable. The triangular sandwich dome element has
proved fairly successful in these applications. The barrel vault behaviour
is dominated by the arch bending action. This is represented by the plane
stress action of the element. The slow convergence leads to two conclusions.
First the bending part of the element is probably "wasted" away from the
load. Again in this and in many other folded plate structures the in plane
bending is important and it would probably be better to use an element
which could represent this exactly. For instance a quadratic variation
of the in plane displacements and therefore a linear stress distribution
would probably be more accurate. It would represent exactly simple bending
but at the expense of 6 extra degrees of freedom per element. The more
general case raised by this sort of structure seems to be this. Close to
the places where the loads are applied the plate bending effect is dominant.
Well away, perhaps two folds away, only the in plane effect is really
important. It might therefore be advantageous to use different kinds
of elements, which concentrated on bending or on the in plane action.
Far from the loading it might be feasible to delete the bending action

entirely. Presumably the usual criterion of convergence with finer



meshes could be used to test this hypothesis in action. Even with large
and powerful computers the size of 3 dimensional problems like these domes
is formidable and any saving obtained by a grading of element type which
matched element function to the behaviour of the structure would be worth-
while. This would of course require more judgement and understanding of
the structure on the part of the user.

Some itemised ideas for a new element are proffered in the light
of experience. Most are not original but they do not appear to have heen
applied previously to the present type of structure.

1. Use numerical integration and lagrange interpolation for.
shape functions. This has the advantage of simplicity and leads to an
open ended family of elements.

2. FYor nodal displacements choose the three displacements
and the two face rotations. This is the best set for application of
boundary conditions and inter element continuity.

3. For interpolation use the two shear angles. This ensures
that as the shear stiffness increases the behaviour tends towards classical
plate theory and the equations do not become poorly conditioned. [This
difficulty was reported by Ahmad, Irons and Zienkiewicz (6) and Sander
(73)1. |

ki, Have the element basically rectangular in form, with facilities
for different orders of shape function in the two directions and with a
parametric representation to accommodate curved and irregular boundaries.

A study of the results from the elements shows that generally
they are of little use unless accompanied by some indication of their
accuracy. Either bounds put on the results by anotber method as done

by Sander (73) or some convergence study are needed. To paraphrase
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Lord Hewart; the correct answer should not only be found, but should be
manifestly and undoubtedly be seen to be found.

The system of using a family of similar elements affords a
potentially cheap method of investigating convergence. The same mesh
can be used with various order elements and convergence with higher
order element instead of finer mesh should occur. This counld be useful
in irregular problems when mesh generation routines are not feasible and

data preparation devours time and money.
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Notation
Suffices, d" or a“ﬂ usually indicate tensor components.
A bar Q indicates a vector.

Square brackets [A] denote a rectangular matrix, and curly brackets

{A] denote a column matrix.
Symbol Meaning Section
a determinant of surface tensor 2.2
aii surface tensor 2.2
[ 8 constant normal vector 2.2
a plate and or rectangular element dimension 2.4,4,App.I.
[A] triangular el-ement component matrix (Fig 3) 2.5
b plate and, or rectangular element dimension 2.4,4,App.T1.
[5] triangular element component matrix (Fig 3) 2.5
c core thickness 2,3,4,Apps.
C'i.,s cartesian elasticity tensor 2.3,App.11, III.
[c] . triangular element component matrix (Fig 3) 2.5
C; polynomial coefficients 2.4
d,’ polynomial coefficients 2.k
D“P%t‘ stress resultant displacement relationmns
in curvilinear coordinates 2
[D] Melasticity" matrix cartesian strain tensor 2.4, App.I.
ers cartesian strain tensor 2.3,App.III
[E] triangular element, internal continuity
matrix 2.5
f face thickness 2,3,4, Apps.
F«M\r curvilinear elasticity tensor 2.5
{F,'] nodal forces 5
[F] triangular element, condensation matrix for
centre node 2.5
f ' coefficients used for local transormations,
] triangular element 2.5
g,- base vectors 2.2
g‘,’ metric tensor, contravariant components 2.2
9 determinant of metric tensor 2.2
© triangular element, part of internal

continuity matrix 2.5



Symbol Meaning Section

h half plate thickness 2.2
h;,' local transformation coefficients,
triangular element 2.5
[H] nodal displacements - polynomial coefficients
matrix 2.4,2.5
[I] unit ‘matrix 2.5
[K],[K/] stiffness matrix 2,3,App.I, III
[K'.] rectangular element component matrices App. 1
[K"j stiffness sub matrices 5
[1 ]’[L] rectangular element transformation matrices App. I
11- distances from vertices to centroid, triangular
element 2.5
md‘f contravariant stress couple components 2,4
I?\“ stress.couple 2.2
M o stress couple 2.2
M“f contravariant stress couple components 2.2
[M] triangular element, upper half of condensation
matrix 2.5
““f contravariant stress resultant components 2,4
ﬁ“ stress resultant 2.2
Kj“ stress resultant 2.2
N“f contravariant stress resultant components 2.2
[N triangular element condensation matrix 2.5
Pi coordinate function 3.2
[P] set of triangular element nodal displacements 2.5
[P] triangular element transformation matrix 2.5
q'i coordinate function 3.2
q't shearing forde components 2.2,2.3,3.1,4
Q shearing force components ' 2.2
{_Q] "strain-polynomial matrix 2.4,App. I
{‘L} set of element nodal displacements 2.5
[QI] stress submatrices 5
K coordinate function 3.2
r position vector 2.2
E position vector 2.2
{I‘] set of triangular element nodal 2.5
displacements

[K] strain-displacement matrix 2,3, App. III




Symbol Meaning Section

-@- -

polynomial coefficients 2.5
S ap shearing force-displacement
relations 2.3,2.5,4,App. I.
E stress vector 2.2
'-I:'. force vector 2.2
t' i l cartesian stress tensor 2.3
\X polynomial coefficients 2.5

—

U local transformation coefficients for

triangular element 2.5
u unit normal vector to middle line in

plate 2.2
Ua covariant components of U - 2.2
V} polynomial coefficients 2.5
Vx covariant curvilinear displacement

components 2,3,4,5
W displacement normal to plate 2,b,5

[w],[Ws],[wJ] triangular element curvature matrices 2.5

X; coordinates (variably rectangular

cartesian, and oblique) 2.3
04,0‘, angles in triangular element 2.5
(o & polynomial coefficients 2.4
{"} polynomial coefficient matrix 2.k
B, ﬁll angles in triangular element 2.5
X,X angles in triangular element : 2.5
"jcc covariant shear deformation 2.3
x“ components 2,4,5
{5}e element nodal displacements 2.4, App. III.

area of triangle

{i} "strain" matrix 2.4
Z“P covariant curvilinear strain tensor 2.3
;, polynomial coefficients : 3.2
11,' polynomial coefficients 3.2
9’, curvilinear coordinates 2.2,2.3
124 slopes 2.5

[O' ‘ stress matrix 2,5

L4
T covariant stress tensor 2.2,2.3
? slopes 2.5

function of C an,df 2.3
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Appendix I

The Component Matrices of the Rectangular Sandwich Plate Bending Element

The stiffness matrix may be written as

LY { [K,] D::-r [K,] D:: +[k,] D:: + K]0, + (K15 +[K,] Sf} L]

where [L] = 1 0 0 0 -1
Q 1 o© 0
o o |l o
o o0 o 1 ]

wa (1] =[1 o0 o o o |
O 26 0 O O
O O 2a O O
O 0 O 2a O
O O O O 2b

BEach matrix [K i‘] , 1 = 1 to 6, has the following pattern of symmetrical
submatrices, if the signs of the degrees of freedem 5, 8, 9, 10, 12, 17,

18, 19 are reversed.

P v Ne

,'B, C and D for each matrix.

Q
B
e
>

These component matrices for [KJ ,i_ = 1 to 6 and the matrix
[Q] are on the following pages. The matrices [KS] and [KG] are

very sparse, and are shown in condensed form.
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Appendix II

Properties of Materials and Plates

The behaviour of face materials, in the load ranges in which
they were tested, was linear. It was also time independent. The wood
materials were completely linear up to failure. So the assigning of

elastic properties to these materials is justified.

The core materials were both foams. The properties of foam
materials in bulk, are determined not only by the real properties of
the material but also by the geometry and modes of formation of the
foam.(21). The precise nature of the interaction of the material
properties and geometry in bulk behaviour is complex. However for
the purpose of our tests the foam materials were considered as ordinary
materials. They responded well to this assumption which is accepted
practice (9, 21). The behaviour of the core materials was time dependent.
They tended to creep under load, typically showing a 10% increase in
displacement after being loaded for 24 hours. Because all tests on
materials, plates, beams and domes were completed in short periods
(less than 80 minutes) this effect has been entirely ignored. The high
recoveries of deformation () 95%) also justify this step. For short
times the behaviour of the two core materials was linearly elastic.

Elastic Constants of Materials

These are given in rectangular cartesian coordinates.,

1. The face materials

Because of the assumptions made in the theory only the following

elastic coefficients are relevant:

“ 22 22 12 i 22
cﬂ ’ Clz ) Cﬂ ) Cﬂ. J c‘i 7sz



The most general material considered was orthotropic, so that the last
two terms were always zero.

2. The core materials
The relevant elastic coefficients are:

23 13 23
C,s €5 C13

The last term will always be zero for orthotropic materials, and for
3

. . . 3
t mat 1 =
isotropic erials st 13
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| ELASTIC PROPERTIES OF MATERIALS

No [Name or dwcription face or |ortho-or|thickness |thickness,
of material core | iso - (nominal) mcasur(ed),
ropic mean (M
1| plywood (marine, birch)| F 0 Y6 " | ooles
2 | aluminium I — 000486
3 | fibre 9lasé F I ~ | varied
4 |hardboard (1.CI) | F I | 5" | o408
5 | hardboard F I |27 |00
2 exPanded Po[\;urethane C [ [ .026
7 C I 3" |ot
8 C I 5" |.of25
q (as 6, bonded to hardboard) C I {4 026
{0 exPanded Poljvinylchlorider C | L7 1. off




elastic properties C;J;L

N/ml

il

12

23

22
c c2 ¢y, C C
(.2 to .78 to 32 b 5 oo = =
1.4;!0'0 .‘H./o‘° :58,‘!0'0 93410 - -
.68 10" L
o' |.e8.00" 20.10"| 48.00" | ~ _
56x 10| .56« 10°
42 .10°] 42,10
.z,fo: 2.0
2107 [ 2410
240 |.2.40
210 |.2.10
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2 ELASTIC PROPERTIES OF PLATES

No. description materials bonding tdta\ ¢/
agcnt thickness )
(m)
f P\ywood and exPanded | &0 moﬁq\dr'rte
polyurethane :;2;2 03| |15.60
2 Plywood and expanded &7  Imouldrite
deurethane 8‘?;‘32 023 |44
J Plywmd and equnded | &8 [mouldrite
' resin | .ole | 7.5
po\jurethane oF 732
4 |fibre glass and expanded | 3&10 | cast
polé;vﬁi%nyl chloridga 0228 | -
5 ﬁbreﬂlass and e?‘panded 5&10 | cast 6179
po\yvmyl chloride ' -
6 [fibreglass and expanded | S&10 |cast | ofp4
| Po\_gvinyl chloride -
/ |alvminium ond expanded | 2810 |cast
pd}}vingl chloride 013 122.63
8 hardbbard and expanded 449 |cast
PoBur‘ethane 058 115.29
7 [hardboard and expanded |4& 5 cast
pelyurethane &9 [rouldritg 032 7.03
UF232
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Dn Dzz Dn D,;_ ‘Sl-sz_ Eu L-'ZL Ezz Elz
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A5 15 46 A1 18
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-294 .294 .725 A7 37 .66 |.66 |.19 47
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26 20 .79 .92 .4
103 . 10° <ot |. !O* ‘ 105
S7 .87 {47 4 1.99 |4 4 2 .29
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Appendix III

Variational Statements

The theorems about elastic bodies which have been used for finite
elements are widely available (1, 4, 25, 56, 71, 73). A summary of the
necessary proofs is given here.

A complete solution to the problem of an elastic body under load
must satisfy the requirements of equilibrium, the material stress-strain
relations, compatibility, and boundary conditions. The strain-displacement
relations must also be satisfied, explicitly or implicitly.

We consider a linearly elastic body, R, with a surface S, divided
into SV on which displacements are prescribed, and S T oo which tractions
are prescribed. We consider only small deformations, and for clarity
rectangular cartesian coordinates. Associated with the body are a
compatible displacement field, and a load field. Through the stress-
strain relations corresponding stress and strain energy fields may be
generated. The potential energy of the body, expressed in terms of load
and displacement fields is varied with respect to the displacement field,
and this variation is set equal to zero. It is asserted that this is
formally equivalent to the satisfaction of equilibrium over the body and
those parts of its boundaries where displacements are not prescribed.

Ve prove first a more general result, due to de Veubeke, and

quoted for two dimensions, by Sander (73). The equations are as follows.

1. equilibrium tij + Fi =0 (A III.1)

2. stress-strain relations t'] = Cl"fs €rs (A.I1I.2)
. I

3. on S, either Vv, =V, (A.III,3)

= AJIIT b
or Pi = Pi (A TII. W)



vhere a tilde indicates a fixed parameter, and
. =N.t.
P 1 ] ]
( r.l is the unit outward normal vector to S).

The strain energy density, WCe) , defines the stress-strain

relations.
W= ‘% CJ elje (A, I11,5)
AW () i
=Cce. =t (AIII1.6)
3e;- rs >~ rs !

The quantities U ’ P and D are now defined,

= J-JTW(C) dT (A.III.7)
R

n A (A.I11.8)
= -fffﬁvid‘[—sfﬂvids
D Jﬂt'l[' (V‘Jlﬂﬁ" U]d‘[-i-f})t (V.+v;)d (A.IIT.9)

Now consn.der the variation

S[U +P+ D] (A.III.10)

.’ yields fJ‘j( t".)) (A,III.11)



yields:

.Hﬂ:l Vi’j-rYl" 'J]dr +s nj (v,"V,)dS (A.III.12)
v

qu yields (via Green's theorem):

J{I(-t‘j7j-ﬁ)dr+ -s[(tijnj -Pi)ds +£(Pi—/};f)ds (A.III.13)

If the variations are equated to zero, then the equations (A.III.1 to
A.III. L) are satisfied over the domain of the body. Also the strain-

displacement relations

e. = ( +V: ) (A, III.14)
1 1,J n

are satisfied., If the requirements of (A.III.1k4), (A.III.2) and
(A.III.3) are satisfied a priori, then ]) becomes identically zero.
The equilibrium equations, and the remaining boundary conditions are
imposed by equating the variation of[} + P (the potential energy), with
respect to the displacement field, \Q , to zero. This is the
variational statement used in displacement finite elements. Ve now
apply this principle to finite elements. The matrix equations quoted
earlier relating stresses to strain and nodal displacements (3.2.4.,

2.4.8) are used again.

{6 } [D] [Z} (A.III.15)
{E] [R] {8} (A.III,16)

The body force density and surface tractions are expressed in

matrix form as {F} and {P}

|


http://CA.III.16

[f]T[D]{Z} p (A,III.17)

U= ZfH [D] (A.II1.18)

m (A III 16)

= 1 Te 1T dT (A.III.19)
][] R BIRIL

Now in matrix form

P= —Jij {SKT{ F}JT “f{S}T{P}dS (A.1I1.20)

If 8 [U+P_] =Q (varied with respect to the displacemen

then 'a [U+P] — O
'38 (A.III.21)

This gives

([[[riR1dr) (8- £ [{rpar- Sf {p}ds

(A.II1I1,22)

This applies equally to the entire body, or to any element. The

stiffness matrix [K] , 1
K- f RITIR1AT

and the loading ¢ written as a column matrix {‘f} s Where
Jﬂ‘{F dT j P} AS (A III.24)
Sy JI AL N

i NOVIYZ)

ts),



APPENDIX IV

Program Listings

1. Rectangular element.

2. Triangular element.
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