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ABSTRACT

This work is an initiai attempt to extend to many-parameter
fémilies of smooth functions on a smooth manifold, and projections of
smooth maps inﬁo subspaces of higher dimension, ﬁﬁe well-known inter-
relations, between the space of Morse function on a smooth manifold
and the space of immersions of the manifold in a cartesian space,
which are given by the Gausb—maps.of the immersions, and the
§rthogonal projections of the immersions oﬁto lines in the cartesian

spaces.  Results, both local and global, are obtained. -
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INTRODUCTION

This work is concerhed with the category of4smooth finite-
dimensional manifolds and smooth maps, In particular, it examines the
geometrical and topological prope#ties of certain classes of mapé at
singular points, | .

In §1 are assembled the conventioné and, in particular, precise
statements of the principel methods of the type of locai differential
analysis that dominates this work. |

In §2, a review is made of the classicai theory concerning
smooth immersions, curvature, gauss-maps;., and 'height' functions.

Much of this matter can be found in the references [6], [9], [11], [12]
in connection with the theory of Total Absolute Cu:vature:-' )

Coherent measures on smooth bundles are defined in §3,‘and are
used as a technigue to generalise the global conclusions of §2.  The:
resuit of §2 states that a certain subset of aﬁ n-sphere has measure
zero. The result of §3 shows that the same subset is nowhere dense in
'most' great subspheres of thé n-sphere.

By Thom's Transversality Theorems, the classical Theorem of Morse
on the approximation of smooth functions is réeestablished in 84, By
the same techniques a local description is obtained of the 'generic' one
parameter family of smooth functions on a compact manifold., The ‘
presentation of $4 is modelled on [4] which treats the case n = 2,

In §5 the important paper of Whitney, [32] on mapping of a plane
to a plane, is generalised. The problem is to describe the 'generic'

gmooth maps of a smooth compact manifold into the plane. Connections

with the theory of $% are indicated.
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The work of § is generaliéed in §6 to describe the 'generic!
form of a many-parameter family of smooth functiogs'on a compact
smooth m§nifold. |

In:§7'g general Morse-type Lemma is established and is applied,
together with the Weierstrass-Malgrange Preparation Theorem of §1, to
give canonical forms for the singularities clas;ified in §§ - 6.
Thoéegfbr Whitney maps géneralise those of [32],i£hose for the mapyl’
parameter family-of smopth function realise some of the forms obtained
by Levine in [1&]; but without remainder terms. The technique of
_applying the Weierstrass-Malgrdnge in this way is suggested in (271

Vafioﬁs global properties of the meps of.§5 are illustrated in
§8. In particular connections are established with §§2 - 4, and with
the theory of 'minimal' maps [12]. |

In §9 a start is made on the problem of generalising the results
of §2 to the study of singularities of projéétions of immersion into
planes. Precise local diffefential,geometric descriptions are
obteined.

Finally §10 indicates further directions for attention and more

connections between the present work and other researches.
: ‘ ' '
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§1 PRELIMINARIES

(A): Assumptions and Conventions

Throughout, smooth means infinitely differentisble. For the

definitions and elementary properties of smooth manifolds, maps,

coordinate systems consult (31, [13), [11). 1If M, N are smooth

manifolds, and £ : M - N 1is a smooth map, then TM, TN will denote the
tangent bundles of M, N, Df : TM — TN will denote the derivative of f,
TmM denotes the tangent space to M at m and Df(m): TmM - Tf(m)N the

restriction of Df to TmM.

Cartesian n-space, ]Rn, is taken with its natural structures as
a smooth manifold, a wvector spaée, an inner product (euclidean) space, and
e riemannian manifold. Throughout this work there is a casual, but
sys‘bema'tic , identification between different tangent vectors and between
tangent vectors and points of r".

The Grassmann manifold of p-pla.ne’s through the origin of R" is
denoted by G(n,p). For its structure see [11], [8]. If R" is taken
with its standard inner product, then 0(n) = O(R"™) will denote the

orthogonal group of R,

1f M* is a smooth manifold, with x, : M > R for i =1,...,s @

subsystem of coordinate functions at a pbint meM, and if vy : M- R

for i = 1,...,8 then the Jacobian matrix of the ¥y with respect to the

{x

} at m,

J
dy
<__i(m): i=1,'..’r; j:l,cou,S)
ij : '

will be denoted by
3(ys eoes ¥ %ys 2oy X )(m).

When r = s, the Jacobian determinant of the ¥y with respect to the x 5

e w\?:t“i"“’
3 MAR19TZ
SN, _sibRakl




at m,

3(yys eees ¥,)

(m)

a(xl, couny xr)

will be denoted by

D(yys «oes YulXps ooy x,)(m) .

If {xi}, {sij}’ {tijk} are the components of a vector, a matrix
a tensor, for some ranges of the indices i, Jj, k, then they will be

represented occasionally by the symbols x, 8 3 ..

For the definitions and elementary properties of jet-spaces see
(81, [2]. 1If Mp, ¥ are smooth manifolds, then JF(M,N) will denote the
space of r-jets with source in M and térget in N. If £ : M » N is smooth,
then the r-prolongation of f will be denoted by vf(r): M- Jr(M,N).

If M,N are smooth manifolds, then Z(M,N) will denote the space
of smooth maps from M to N. Jf(M,N) is endowed with the topology of
uniform convergence of all partial derivatives on compact subsets of M.
See [2], [3], [29] for details. The cases of interest here are when M
is compact. If L is a smooth manifold a smooth map £ : L - L (M,N) is
one such that the associated map % : MXL - N is smooth,

Beyond the classical tools, the Implicit Function Theorem and
Taylor's Expansion Formula, there are now certain other results of great
importance for local differential analysis. They are outlined in the next

section.

(B): The Principal Tools of Local Differential Analysis

Sard's Theorem [24] and [8, p.316]

If M* is a smooth manifold and f : M* » BP is a map of class Ck,

and § = M® is & set of points such that rank Df(s) Sr, for a given

r <n; then £(8) has [r + (p-r)/k]-Hausdorff measure zero.




Consequences (i) If f is smooth with the conditions as above, then f£(8)

has [r + e]-Heusdorff measure zero for any positive € .

(i1) If n=p, r = n-1, S the singular locus of f, then

£(8) has n-Hausdorff measure zero.

One of the most inrportant applications of Sard's Theorem is to prove
Thom's Source Transversslity Theorem, [26], which is a major tool in the

study of smooth maps and their singularities.

}

Let Mn, W' be smocth manifolds, K a subset of M, and S = {sl,...,sk
a collection of disjoint submanifdlds of N which are 'stratified' in the

following sense:
(1) dimension S, > dimension 8, , , 1 =2,..4k

(11) 8. U oo U S, is closed inN, i =1,...,k
1 2

i
fe of(Mn ’ Np) is transversal to S in K if f is transversal to each of the

Si at each point of K. Then one may state

Thom's Source Transversality Theorem

Let M" be a smooth manifold,K s compact subset of M, and

S = {8y, +0ey 8, } & stratified submanifold of JE(M*, BP). Then the set

of fe L0, RP) such that f(r) : M o> JTOF BP) is transversal to

S on K forms an open dense subspace of Jf.(Mn, R ).

For completeness, one may state the companion:

Thom's Target Transversslity Theorem

Let M" be a smooth manifold, K a _compact subset of M and

S = {8,,...,5,} & stratified submnifold of (37(M", B°) )%, and let Mee)

denote the subset of elements of (M)t whose components are distinct. Then

the set of f e LM, ®®) such that f(r) x...xf(_r) : M(t)--»(J""(Mn,ZlRp))t

l
is transversal to S on (K)tﬂ M(t) forms a dense subspace of Z(M', RP) .




For proofs see [2], The case that concerns one here is when M is

compact, K = M.

The Welerstrass-Malgrange Preparation Theorem

Let Mn,<.VP' be- smooth manifolds, £ : M — V-a smooth map and let

{(u, o, {xi t 1= 1,000,n)) and (W, ¢, {yj t J = 1y00040)) be coordinate

systems centred onm € Mand v = £f(m) e V.  Let E s E, be the

R -algebras of germs of smocoth real valued functions a»f' meM veV.
Let f* : Ev - Em be the homomorphism induced by éomposiﬁon with f. Then
let :f‘j = .f‘*(yj) =¥, 5 f. E_ may be regarded as ‘an E,-module via f¥,

Let RI[[ gi\'l;, eooy Qn 11 denote the R-algebra of formal power
series in the indeterminates, and for g € B let gemII J,El, cees Qn 1
denote the Taylor expansion of g at m with reépect to the x, . #%

i
induces a map £ : RI[I fr\l, coey :{r\p‘]] - RI[I[ J/(\Zl, ceey Qn 11 such

that ’%*(ﬁr‘j) = (ygo £) = £r(y,) = ?j . Let £(f) denote the ideal
A

in RI[ ﬁl, so0s :/En 11 generated by ?l, seoy fp . Then the following

. statement cemes directly from the Corollary to Theorem 1 of [17, P.205] ¢

Let 8,5 oees g, € Em 3 then g, «eep g, generate Em a8 an

f‘*~Ev-module if and only if the cosets of 19 c0os 8, in the quotient
., A '
space TRI[I[ 3’?1, ceoy :Qn 11/ 8'¢) generate TRI[[ §1, cony :’c\n 11/ I{f) as &

vector IR-space.

Conseguences Let F e Em be regular of order r in xn, thus

ai
g“’"{F(m) =0, 0 < i < rl
5
n .
ar
r‘F(m) £ 0.
an

Let p = n, v = m, Letv:ge]Rn, and let (IRn, lZiRn ,‘yj ) be the
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standard coordinate system on R, Define £ : M- ;]Rn- by fi =X
i # n, £ =F. Nowin £, the first power of éc\n to appear with nenzero

A A
coefficient in x:, hence the ideal I(f) € RII[ Ql, ceey Qn 11 generated

A . . .
by J/El, ceey Qn-l’ F is equal to the ideal generated by }/él, ceey Qn-l’ :’:\nr..
Thus the cosets of T, J/én, cees J’é;_l in R[[ J’?l, cer) J/{\n 11/ £(£) generate

‘ : A
“(and in fact. form & basis of) the vector R-space IRI[[ Ql,.v_.,,:/c\n]]/’l(f).

Thus by the result above

oo r-1 : L
1, X 5 veey X generate E_ as an f*¥-E _-module, or

(1) Given any g€ E_there exist ai €E, 0 <i<r-l, such that
_ r-1
- i
g = Z i"’:"(ai).xn .

i=0

(1i) Let E! denote the subalgebra of En; of smooth functions in the Xy

1 < < n- : !
1 1 n-1. Then given any g € Em the_re e.axis.t q € Em’ bi € Em

such thaf

r-1

(1ii) There exist c, € E, 0 < i < r-1, such that

H
f
—

r " i
t*(c,) = x + f""(ci).xn .

[
[
et

(iv) There exist d, e El'n, qeE, 0 < i < r-1, such that




Now (iii), (iv) Acon'le direct from (.i), (ii) by specialisation and re-
arrangement, The derivation of (ii) from (i) is fairly direct and can be
geen in [ 17, p. 206] ; "or established by a different method in [16, p.08].
 The following facts about the special cases (iii)'and (iv) are important;
they are established by differentiating with respect to Jén repeatedly and

evaluating at m € M,

(1i1)" e (v) = ... = c,4(v) = ‘o'
de, aéo o : ,
~ (v) # 0, = (v) = 0 for i#n.

n ' i '

(iv)' 4,m) = ... = dr_l(m) = 0

a(m) £ O, and is the inverse of the coefficient of

A.Qr in ﬁ .
n )

Applications of (iv), (iv)' are made to make coordinate changes at source;

(1i1), (iii)' are used to make simultaneous coordinate changes at source

and target.

(c) Adapted coordinate systems

Lemms E‘EE f mn - ]Rm be a smooth function, f(g) = _Q,‘ '-g_r}g

rank Df(0) = k. Then there exist

(i) a coordimate system (U,6 ), with coordinate functions
{xi :1<1<n}, centredon 0¢ R",

(ii) an orthogonal matrix A € o(R")

~ such that, if {yi 114 Sm} are the standard coordinate ﬁln'g:tio.ns

on R" s then




(1ii) yi-oA'lof = X ’ 1<i<k,

3y . oA™tof)
. 2 . (0) = 0, l<a<mk, 1SiSn

(iV) :
: ‘axi

‘Such a coordinate system is said to be-linesrly adapted to fat 0 .

Proof Let Lk be the linear sub-space_of R which identifies with
the image of Df(0). Let P : B - L be orthogbnal projection onto L
and let {Azi : 1< i <k} be a system o_f.-or"chonorm‘al linear éoéfdiné.te
functions on L. The map Pof : R® — L has rank k at 0c¢ ‘R".  Hence,
by the Implicit Function Theorem, there exists af-coordinate .system
V(U., 0), with coordinate functions {x:L : 1<i<n} ’ centred on Oe IRn,v
such that;' -

zioPof = X

The functions W= z.loP : R® - R may be extended to a system of
orthonormal linear coordinate functions {wj :1<3j<m} on R",

Let A ¢ O(R®) be the orthogonal matrix such that

y'j = wjoA, l1<j <n,

‘where {y 3 t1sj s n} are the standard coordinate functions on r".

Then U, 6, x;, A are the required objects.

Corollery Let V%, W' be smooth manifolds, veV, weW, and

£:V? > W' & smooth map with £(v) = w, and rank Df(v) = k.

Then there exist

(i) a coordinate system (U, 6), with coordinate functions

{xi :1<i<n}, centredon vevV,

(11) & coordinate system (N, ¢), with coordinate functions
{yi :1<j<m} centredon wewW,,

“such that




(1ii) y;of = x,, 11 sk

: d(y,. of) '

(iv) ._l.aiis__(v) =0,  l<a<mk, 1<is<n,
% . .

Moreover the . {N, ¢, yj} may be obtained from an orthogonal

transformation of & given coordinate system centred on w € W.

"Such a pair of coordinate systems is said to be gdapted to f at V.

- Furthermore, given (V, W, £, v, w) as in this corollary, let

(v, o,
(w+, o

Consid

(1)

{11)

(1I1)

{xjL }, (n, o, {yj }) be adapted to f at v. Let (U', 6, {xi D,
', {Y;) }) be a pair of coordinate systems centred on v € V, w € W.
er the following three types of conditions:

X, = Y.of, 1<is<k L
i i oo
Yirg = Vep

xk+a = Koo . 1Sa$n—1§ J

D(Xygs eeer X [%eyps nees %)W) A O

= <i<
Xi = )Fi‘ 1 =14 k.
Y = Y. i | ]i.‘S <nm
73 Y5 J
D(Yk+1’ ooy leyk+1, ooy ym)(w) ¥ o A

J(Yk+1’ seey YmIAYJ_: coey Yk)(w) = g
X. = X, 1<1<n
1 1




It is a simple’matrix calculation to verify that each of these three
types of source-target coordinate changes produces.a pair'of coordinate
systems adapted to f at v, and that every adapted system may be obtained
from.a'given.one by a sequence (possibly trivial.at some stage) of
coordinate changes of these types. By this means, when one attempts to
find canonical forms for & class of smooth maps, where one has an
adapted system as a starting p01nt, to ensure that a final pair of
'coordinate systems is adapted it suffices ‘to restrict all changes of

coordinates at source and target to the three types, I, II and III.

‘Adapted systems are used, thoughtrnot named, throughout the papers
of Whitney, Thom, and others. Linearly adapted systems, though a Very
restrictive class, are an essentlal tool in studying the geometry of

"smooth maps into a rigid space such as IR " for regular submanifolds,

linearly adapted system constitute Monge presentations.-
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-§2 GAUSS-MAPS OF IMMERSIONS

Let M‘n be a smooth n-dimensional manifold and'f : Mn - ]Rn+k 8

, smooth immersion of M. Denote by <,> the standard inner product

~and let z € IRn+k have unit norm. Define the mep <z,f>: M - R
by | |
< z,f >(m)A = <.é,f(m) >
for m € M. |

" There is a simple geometrid descfiption of the points of M where
_7< z,f > is singular, or equivalently where D < z,f > has rank zero. For
let (U, 6, {xi :+ 1 <i <n}) be a coordinate system centred on m € M,

. Then m is a singular point of < z,f > if and only if, for each i, 1 €1i <n
3 ..
D<z,f><-—->(m)"= 0.
_ axi -

. _ )
Now - D<z,f> = <z,Df >, and the Df(-—-—(m)> -
: | . axi
span the immersed tangent space Df(TmM) of f at m. - Thus

Proposition 2.1 < z,f > is singular at m € M if and only if z is

perpendicular to the immersed tangent plane of f.at ﬁ.

This last criterion may be rephrased as follows, by consideriﬁg
the unit normal bundle of f and its associated gaussémap.'v

Definitions 2,2 Let Smk—1 denote the sphere of unit vectors of

R™5  Lith its standard smooth structure. The unit normal bundle of M
&EQ f,_denoted by UNM(f) or by UNM when there is no doubt about’ the
" identity of f, is a smooth compact (n+k-1)-dimensional manifold whose

ntk-1

underlying space is the set of pairs_(m,i) e MXS such that z is

perpendicular to the immersed tangent space Df(TmM) of f at m. - Let
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p:UWM > M,and ' : UNM - " k-1 denote the projections onto first

and gecond factors of UNM & M X _Sn+k‘1. The manifold structure on -
UNM can be cbtained either from bundle-theoretic considerations,'or

_ from identifying it with the boundary of a tubular neighbourhood of M :
in IRn+k, or; as will be seen later, by specifying local coordinate
systems in M X Snﬂ{“1 which reveal UNM as a regular submanifold. ‘
 The map p ¢ ﬁNMm—* M has the structure of a smooth (k-i)-sphere bundle;
whose fibre over m € M is the (k-1)-sphere of unit ve_c_tors of ]Rn+'k
perpendicular to Df(TmM). The map P‘: UNMQ' 'Sm+kf1 is called the

gauss-map of f. -

In these terms

Proposition 2.3 the singular set of < z,f > is the set p(F™*(z) ). The

“advantages of this approach are revealed when'oﬁe comeé.tovanalyse the
second-order structure of < z,f > at its singular points.

' First, at a point m € M, with (U, 6, {xi-: 1si'< n} ) a coordinate
system centred on m, the second differential D®< z,f > = < z,D°f > is
characterised by the matrix

 9Pf | o
<<z, ———— (m) > : 1€i, jsn>
“ Bxiax.
L J
which is the hessian matrix of <z, £° > =<z, f007> > at 0 ¢ R".

Secondly one may analyse the iocal geometry of £ at my and

interpret D% < z,f >, when m i5 a singular point of < z,f >, variously as

" a second fundamental form, & curvature matrix Of-a hypersurface, and the

differential of the gauss map ' .

LetmeM, (U, 8 {x, : 1Si<n}) be as above, z € g1
perpendicular to the immersed tangent space of £ at m.' Let
{gj : 1< < n+k } be an orthonormal basis of R™F  such that

. +k .
{e, s 1<is n} span the linear subspace of mn. parallel to Df(TmM)
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and hence {gs : ntl <5 < n+k} are perpendicular to Df(TmM) , and let

- Sn-f z.‘l Let {y 3 : 1 <3 <ntk} .be-the cprre'sponding"c':oo:fdinate

furictions on ]Rn+k, aﬁd let‘{fd t1sj s p+k} " denote their éompo'sitions
with £,

If V. denotes the Levi-Civita connection in R™™, then

PP - S IO
Vs X < Vﬁ.( ) = ./
5x_i .j Bxi r=1 x,j Jr

Now, evaluating at m, and ‘takling thé normal component one obtains ;che"

'_following formula for the Second mndamental form am of g.g m e M:

> 2 R S 5
am m—— m— ) = S-"‘“‘a"" (m) . Eq
Xy ox,g o=mrtl 1T

The second fundamental form hz g_f_‘ f E.E m € M in the normal direction z

is given by:

d (.)' d () - d
o <.._ n), — m> c<a(— —),z>
o z < m \
S Bxi' : ij o ox, axj-
ntk Ffo
=‘<e g (m)o >
=n+k? -q
o=n+1 axiaxj
2f
= —2K (),
Ox, Ox
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.B'ut f+ic = ’<g'+k,f> = <z,f>. _ Herrce

<-——-—(m),-—(m)> ax x_'<z‘,f>.A(nr). Thus

- Proposition 2.1&. At a singular poiht of < z,f >, the gecond I‘undamerxtal

form o'f' f in the direction z is equivalent to the hessian matrix, or

' . gsecond di.fferential of <z,f>...

. Nex‘b, by the same considerations ag in ’che preceding paragraph,
.'consider the map fz obtained by projecting r" n+k. ~into the (n+1)—dimensional
| ‘1i'n'ear subspace spanned b:} z and Df('I‘mM), 'and composing with f. £, has’

" rank nat m e M and henceé in some neighbourhood U of meM imerses U as

a hy'persurface in an R™,  Let (U, 8,. {x t 1S4 <n}) bea coordinate

| _system linearly adapted to f, at m, 1. e such ‘that {Df (m)( 3;‘— )

| 1s1 < n} is an orthonormal basis of DfZ(TmM)._ The second fundamental

- form, or vcu.rvature matrix, of fz at m is given by the hessian of <.z,f > -V
at m € U, In particular the principal'curvatures and Gauss-Kronecker
curvature of (U, fz) at m € U are given b& the eigenvalues and

determinant of the hessian of < z,f > at m, up to sign. = Thus

Proposition 2.5 At a singular poin-_t of < z,f >, the curvature matrix,

and in particular the principal and Gauss-Kronecker curvatures, of the

" projection of £(M) into_the space spenned by the tangent space of (M)

" at f£(m) and the normal z, are determined by the hessian matrix of < z,f >

- at m and the riemannian metric induced on M by f.

' Finally, to calculate the differential‘ of— ‘the gauss-map I' at
(m,z) € UNM, one may introduce local coordinates in UNM- in a neighbourhood
. of (m,z) as fo].‘Lows. Let {e 1 1<) <ntk } “be as before, with

Sk = and let (U,6, {x 1)) be . the coordinate system centred onmeM




Let M= U8

1,

_obtained by first applying f, then projecting orthogonally into
(D£)(r M), ‘then by parallel translation into the {e;, +.., ¢, J-plane
- and 'ﬁnally applying the canonical map _1pto -IR;n given by the b_abisﬂ , |
{S_v vesy gn} v In some neighbourhood U-of m, this map isa
diffeomorphism, 6, For x = (X, veey xnl) e 6(U) 4
- B .
] _ - L e
P = 00 ) = L) ) st ) e (e
= ' i=l o= S _
-where
Mo ,=. < Enio? ¥ (x) >~ < snf,d’, f(l?) >
and
__.'."_".?(m)‘ = 0, »f1$»ask’ .l's.i“ng.

i

Now consider z = g . € gkl the north pole, and let

sn-f'l':--l n+k 1

3, {ves P < g V> 0} bve ‘the upper hemisphere, The

n+k-1 n+k-1

central projection f from S onto the (n+k-1)-plane of ]R

tangent to g" k-1 at sﬁ+k is a diffeomorphism, which by composing with

the coordinate functions {y)\ : 1 SAS n+k-1} gives coordinate functions
) : ntk .

then, if v é-z vy & o
i=l

n+k-1

© fw, : 1S \Sntk-1}. Ifves,

k,
n+k-1

wk(v) =-v)\/vn*k_. _ Note that v +k< Z W (v).e >+ ik * & en+1$ = V.
o A 4 A=l : .

n+k-1 and let N = ’nn UnM, The functions

{xi, vy i 11 n, 1<)s n+k 1} for a system of coordinate functions '

on N, centred on (m,z). ' ‘
. Now let (m*, 2*) ¢ N' . z* is perpendicular to DF(T_,M) and hence

“forw_l. €£i<€n
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of

0 = <z¥, — (m*) >
R axi. :
| k-l | k o
_ o ' ln+o ‘
g 0 =< Z‘ﬁ(z oy * S &1 Z S e
. ‘ l=1 . '°=1 » i -
o A k-1 3 .
_ . Ao . O\
- o (g * nt+d, .y ntk ,
80 0 = Vi(z ) +Z wn+o(._z ) = (m*) + — (_m*): ..

o=1 e TG

‘These equations display TL' as a submanifold of M of codiméﬁgion_n, and
show.that in 7l' the functions A{xi, Wt 1 €i<n, 1<o0<Sk-1}define.
a coordinate system (71', ¢) centred on (m,z). . Let T, =woT, A

1 <\ Sntk-1. Then for 1.€i<n, 1<o<kl,

S k-1 ':Aa)“+. N N
e, o) m s ) (o) 2 () - ()
' o nto dx. . . x,

P, (b, %) = v, (%)

" Hence the Jacobian matrix of I' in the coordinate syétems (71',‘¢) and

(Sﬁ+k_1, B) at (m*, z*) ¢ ' 1is given by
. k"l 3\

or ; , - W A
_..-i (m*,z*) = - Z wn+c(z*) _—_‘I_lig (m*) - -a——-g—;:-ls (m*)
oxy o=1 a"i_ 3 %%y
T, A .

Léyo#) = - —2=Z @)
Yntr §xi _ - 3 : o 4 ’ ? .
2 (m*, 2%) = 0 ‘ | -
’ij' ' . o L _
'3Pn+o ) , . 3 . ,
A~ (m*, z*) = . 801_ ) . » J : |
ayn+f , : . R T '
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wh‘ere 1<i, j<n, 1=og, < k-1, Evaluating these equations at

(m,z) which is the origin of the coordina.te system ('n' ¢) one obtams,

a>m _
_using the fact that g m) = 0,
. X
i
ar : P A
! +k
— (m,v) = e ; (m)
Xj xi xj
ar, .
E (m:v) = e . 0 (
n+'r_ o axj
_Bl"n+° e
ay_ ) =, _80'7 . /
n+T ) _
CBut Ay = <g o £> = <zf> ‘hence the jacobian matrix of the

“gauss-map ' of UNM at (m,z) is given by

(- hessian matrix of < z,f >) @ identity matrix.
| | 3 A | o
If, as before, the { —— (m) @ 1 = 1,...,n} form an orthonormal
. i .
basis of T M with respect to the f-induced metric, then the determinant of

this jacobian matrix, multiplied by (- 1) , . determines a curvature density

'G(m,z) on the unit normal bundle of (£,M) called the Lipschitz—Killing
curvature.

In this ma.nner‘ one may state

o Propositlon 2 6. At e singular point of < z',f > the differentiel of the -

. gauss map at the corresponding point of the unit normal bundle of £ is

characterised by. the second d.iff‘erential of < z,£ >  In particular tlx_g

,nullity of the gauss map is equal to the nullity of the second differential

__f_‘<z,f>.
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Definition 2.7 One describes a singular point of a real—valued function

as degenerate or non-degenerate according as the mllity of the.second

a differential of the fﬁnction is positive or zero, or equivalently as the
heééian matrix of the function in some coordinate'syStem is singular or
non-singular, at the point in question.

By an application of Sard's Theorem, ,

‘Proposition 2.8 The set of singular values of P has (n+k-1)-hausdorff

B . +
meagure zero in g" k- 1. Combining Props.-2.3,6 and Defn. 2.7 and this last

 fact one obtoins:

B ’ _ : i - . . ) ‘
‘Proposition 2,9 - For almost every z € g k 1, each singular point of

'.l'< Z,f >Vis‘non-degenerate.,

| Definition 2. 10 Define a Mbrse function on M* to be a smooth real valued
v,function all of whose singular points are non-degenerate, then one may

restate

Proposition 2.11 If f ¢ £oe, I!n+k) ig an immersion, thenAfor almost

A e A
every z € Sn k-1 < z,f > is a Morse function.
every ’ ’ .

If n: Sn+k"1 Sn+k?1, n(z) = .-z, denotes the antipodal involution

nt+k- l

of §™%1 then it is simple to show that UNM S M X § is w-invariant,

ntle-1 is a nhinvariant map. One may identify

and that I' : UNM = S
,Sn+k-1/ ‘with G(n+k, 1), the projective space of lines through the origin '

of IRn+k, UMW 1 with the space NIM of normal lines of the immersion f of

M. IfL e G(n+k,1) corresponde totze Sn+k-1, then Pp, the orthogonal
‘pro.jection of IRn"'k onto PL corresponds to <z, >/n and PLof : M‘n -+ L

corresponds to < z,f >/n . The terminology 'singular?, 'degenerate',

'Morse', etc. is invariant under the action of m ., 'One has a gauss-map

I/m : NIM = G(nk, 1).
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In these terms Proposition 2,9 becomes

Proposition 2,12 If fe Zo0, ]Rn+k) is an immersion, then for almost

jg.l._l'l'. € G(nt+k-1), Pof isa Morse_map.
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§3 COHERENT MEASURES AND 1-GOOD MAPS

Definition 3.1 Let F = E % X be a fibre bundle with structure group. -

G, and let Hps Hgo By be positive measures on the corresponding spaces. -
The measures {“F’ Hp» u.x} will be said to be n—cohérént if conditions .
" (i) and (ii) below hold.
(i) Mp 8nd py fa_i‘e invariant under the adtioh_ of G.
_ (i1) For each open set U € X over which there is a m-trivialising
G-map 6: wi(U) - U XF the measure %IU 'indu,é_éd from w, .
| by restriction to m*(U) is equal, via 6, to u.xIU‘x Mg on

U X F, where " ”‘Xlﬁ is the réstriction'of By ""to'U.
. The particulé.r' application of éohere.nt.measufes which concerns one
: .'.hére' is to an extension of Fubini's Theorem [8, p.1151,

' Proposition 3.3. Fubini's Theorem If F-E B X is a fibre bundle with -

~ 'structure group G and m-coherent measures '{QF, Mg u.x} and if NeEisa

- uE'—measura‘p_le set then

(1) ="*(x) NN is pF-me'asurablél via a m-G-isomorphism between

n*(x) and F, for ux-almoéSt—eveg_g x € X,

(11) pE(N) = fp.F(n'l(x) n N)dux(x), where My is interpreted in'the

gsense of (1).

Coroliary 3.3 If N* &< E has oufper—uE.—measure zero, then fozj ux-almogt-

. every xeX nt(x) NN* has outer-uFfméasure Zero.
_' Consider now the fibre bundles

© o(N-1)/0(s-1)>0(n-5) - 0(x)/0(1) x0(s-1)xO(n-s) > 0(N)/0(1)x 0(x-1)

¢

o(s)/__é(_l')x 0(8-1)=0(N)/0(1) XO(s-1) X O(N-8) 2 O(N)/0(s)x O(N-s),
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with structure groups o(N-1) and O(s), fibres G(N-1, s~ 1) and. a(s,1), and
base spaces G(N,1) and G(N,s) respectively. Denote O(N)/O(l)xo(s 1)x O(N-s)
‘by' E. Then, in G(N-1, s-1) = E E»G(N,l), E may be interpreted as the
, space of ordered pairs (T, P) where L is a line through ‘the origin of ]RN and
P is an (s-l)—plane through the origin of BY ~orthogonal to.L, . , (L,P) =L,
~and the fibre over L € G(N,1) is the space of (s-l)-—planes through the '
| 'origin in ‘the (N-l)—dimensional orthogonal complement of L. Similarly, in:
G(s,1) = E 1:»2 G(N,s), E may be interpreted as the space of ordered pairs
. (L,Q) where Q is an s-plane through the origin of ]R and L is a line lying
.- in Q and containing the origin, = (L,Q,) = Q, and the fibre over @ € G(N,s) |
a o :.LS' the space of _lines in Q through the origin. The . identification between

these two interpretations of E is performed by the maps
@B e @ D)
(L, @) » (5, ,._(Q.,';) )
vhere L(Q,L) denotes the orthogonal eomplement'of L in Q.

Now the Haar measures on O(N) , O(N-1) and 0(s) induce measures on
E, G(N,1), G(N,8) which are O(N) invariant, on G(N-1, s- ~1) which is O(N—l)
invariant, and on G(s,l) which is 0(s) invariant. In particular, the
._'measures on G(N -1, g-1) and E are O(N-l) 1nvariant and the measures on )
- G(s,1) and E are 0(s) invariant, Moreover, from the fibre-wise (coset-
- wise) manner in which these measui‘es are constructed from homogeneous
~ principle bundles, it follows that the measures on the two fibre bundles are

-coherent in the above sense., - See [8 §2.7 l.

Now let f: : M - EN be & smooth 1mmersion of a smooth manifold.
'Let -A» = G(N,l) be the set of lines L € G(N,l) such that Py o f is not Morse, '
or more explicitly has a degenerate singularity. - (If PN(M,f) denotes the

proje'ctiife' bundle  of normal lines and Pr : PN(M,£) = G(N,1) denotes the’
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associated projective gauss map then .A: is the image under PI' of the
singular point . set of Pr). By Proposition 2.12, /A has outer measure zero

in G(N,1), and hence n‘l(ﬂ:) has outer—uE-measure zero in E. By direct

o , application of the Corolla.ry 3,3 of the Fubini theorem for coherent

T .
measures to 'rrll(ﬂ:_) B = E in the bundle G(s,l) - E - G(N,s), one -
o ‘concludes that for almost every Q € G(N,s) 'l(Q) NP has outer measure
o zerb in- ir;l(Q) s G(s,1). But # = = 1()‘-), g0 l(Q,) n£ a % l(Q)nn'l(A:)

is precisely the set of members of- A which lie in Q. Hence

"Proposition 3L If £ Mn EN is a smooth immersion then for almost

, every g-plane Q in EN the followmg property holds

for almost every line L through the origin of Q -and 1ying in Q@ the map

P of : M > L ig Morse.

| L |
Definition 3.5 Now define a map ¢ : M = E® to be 1-good if for almost

"all L e G(s,1) P o¢ is a Morse map. Then observe that if Q cgs B

~are linear sﬁbspaces end if PQ and PQ-. ere the COirespending orthogonal

projection then PQ =P IQ,' oPQ . Then Proposition 3.k becomes:

Progosition 2.6 ;_:f._’ f: M - EN is a smooth immersion _then _for a‘lmoet
every s-plane Q ’e G(N,s)_, 1<s <N, PQof : MN - Q is l-good, A

' Tndeed this is a synthesis of the following two statetnents; the i‘irst
of which has been al.ready stated in three sepa.rate forms, and the second of

which is a direct consequence of the bundle-measure argmnents.

Progosition 3.7 A smooth immersion is l-good

Proposition 3.8 Iff: Mn. = EN is 1-good, then for almost» every s-iplane

Qe G(N,s), 1S5 <N, Bof : M - .Q is 1l-good.
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S MORSE FUNCTIONS AND CERF PATHS

A now .classic_al application of Thom's Source Transversality Theorem
istoa proof of Morse's Theorem [18,"p.178] , -on the approximation of
smooth functions. See [25, p.61] end [33, $161, |
Let M be a compact smooth manlfold of dlmension n, and a{,(M,m) be
, i the space of smooth real-valued function. on M, ‘and let J“(M,]R) be the
“correspen.ding space of l-jets, Let I £ = J*(M,R) be the set of 1- jets
of elements of. i(M,JR) at points where their differentlals are zero, L
turns out to be a regular subm.'anifdl_l.d‘of Jl(M;IR) of codimension n. |
Define f € Jl(M,IR) to be Morse if f(l) P M- JHM,R) is transve:eal

IOn Z . Then the transversallty theorem yields

| 'P.roposition k.1 Morse functions form an open dense subspace of ﬂ(M,IR)

To describe a Morse f\mction in classieal Language, let (U, 8) be a
coordinate system in M with coordinate functions‘ {xi :1=1, «oo, n}.
Let; J*(U,R) be the part of J*(M,IR) lying over U; then one may cover
J*(U,R) with a coordinate chart and coordinate fun.c’qions-

&, % 5 ¢ 1<1i<n} where if fe L(MMR)andmel then
s D)y | |
g, 0f .(m) = xi(m)
Sfof(l) (m) = £(m)

5060w = gz; (m)

In this coordinate system the map

A m2n+2 - ]Rn: (2) ¥, §) - (g)

defines the part Z(U) of & which lies in J*(U,R); i.e.
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£(U) = A"*(0). A has maximal ra.nk every'where and hence I is a sub-
_manifold of J*(M,IR) of codimension n, The transversality condition for

- a Morse f e I.(M,]R) becomes

at every point meU where Ao f(l)(m) = 0

the_mag aoett) i 1 o mn has maximal rank,

L df - .
~ Now A'of(l)__(m). = ..f. (M), +eey — (m)>
o xl

50 the jacobian matrix of Ao f(l) at ﬁ €U is .

Pt - o o
( @ 1%, 3<n)
Ox, Ox., S .
R

~ which is the hessian of f at m, Hence f ¢ L(M,R) is a Morse function

' _ﬁ;i.f"and only if whenever Df(m) is zero, the hessian matrix of f at m is
’non-singular. Thus there is agreement between>previous and present uses
_of the adjective 'Morse'. Then Proposition 4.1 becomes ‘the classical

theorem of Morse:

Proposition 4.2 Any f e L(MR) may be arbitrarily ciosely approximated

: bx an f' € .i(M,]R) all of whose singuJ.ar points are nondegeneré.te.

Taking account of the effect of a change of coordinétes on a héssian,
one se_es' that the only algebraic invariants of a hessian are those of the
orbits of the space of symmetric matrices under the similarity action
- (a8 ) - gtsg of the general linear group, na.mely rank and index. Thus

Athe algebraic invarlants of the singular points of a Morse function are their
indices. The canonical forms and topological relationships for the
| " singular points of the various possible indices are well-known (19, p.25]

and [22], It is immediate from the transversality type definition, that
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a Morse ﬁmction .h‘as isolated critical points, and hence, for compact M,.
only a finite number; ‘ | ' | o | |
. 'Lét M be compact, and let ML(M,R) be the space of Morse Mctions |
on M IML(M_',IR') is an open-dense subspace of L{(M,R). However the
'sta'bility of non-degenerate critical points ‘qf each 3iﬁf1ex-type implies Al
that two elements in the same pgth-component o_f .ML(M,]R) have th'e_ same
h ,mmlbe'r‘bf critical poin’és of each iﬁdex-type ;5 but ML(M,IR) contains |
| _elements for whiéh these numbers differ; as may bé 'sho-wn by reversing the
,iJiocédures of [20] to obtain two extra singular points, one o_f index zero
‘and bne of index 1. Thus the space of smooth paths in MLM,R) is very
) far,frdm dense vin the space of smooth paths in i(M,IR). |

' Thus the.Questioh arises: what is the class of singulé.r}fies that a

dens"e"subspace of the space of smooth paths in _£(M,IR)'must exhibit?

| A smooth path £ : I » L(M,R), t =%, is identified with a
smooth map £ ¢ £ (M x I, R). Let J5(M x I, RR) be the corresponding
bundle of 2-jets, and let I & JZ(M x I, R) be the set of 2-jets,
f(e)(m,t),‘ of smooth.maps f:MxI - TR  vhere m is a degenerate

* singular point of the partiasl map f,_ € L(M,R).

In fact, let (U, 6, {xi :1=1, ..., n }) be a coordinate system
in M, Then one may introduce on J2(U x I, R ), the open subspace of
J2(M X I, R) lying over U X I, a coordinate system 6', with coordinate
- functions '

{ii"‘E’ ¥y ﬁi’ s, gi,j’ :'-li: y:1<i<j<n}
“giving ‘maps .
- %, B, §: 02U XI, R) » R

£:3WUx1, R) =» I
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§:B@UxI, R) » R

<
-
ol
-
<=

ln(n+1)

: J3(U x I R) - ]R symmetric

“ml

Matrices of order n,

where if fe £(MXI, R), meU, tel, thenfor 1<i<j<n

-iiof(2)(m.,t), ' xi(ﬁ?) )

i}
o

to 5(2) .(m,t)

5i‘d'f(2)(m:t) = "g;fc" (m,t)
':1'§'o‘f(2) (m,t) = f(xﬁ_,t)

00t® @) = & @)
Aéijof(?)(m,t)= Fr (m,t)
Y ox, Ox, l

- 2r
5,06 m,t) = —(mt)

Bxiat
Fot® ) = E o) |
n+1A'

Let A : J3(UxI, R) - R be defined by

2% (5 % 5, B 5 B V) =»<§,fdet<§>)emn.>_<m. )

. Then,. if Z(U) denotes the part of £ that lies over U X I, Z‘.(U) is
: deﬁned by the map A, i.e. Z(U) = "1(0, 0) -where (0,0) € R™ is

the origin. Now % (U) possesses a natu.ra.l 'gtratification’. ccording
~to the rank of § ; in particular one may decompose Z'.(U) as En- (U) Us*(u),
Awhere a point of Z(U) is in = 1(u) or Z*(u) according as rank s = n~1 or

rank S < n"lo
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This decomposition may be interpreted, via A, in the following. wayi |

i 1(U) is the set of points of Z(U) where DA has rank (n+1), and Z*(U)

ig the set of points of Z(u) where DA has rank less than (n+1). This

varises from the observation that the cofactors, and in general all

the mlnors, of the 'general! determinant of order n may be got from

appropriate differentiations of the corresponding polynomial function of

" degree n ‘in n® variables. I 1(U) is thus a regular submnlfold of |

| J2(U X I, R) of codimension (n+1), and =% (u) is & 'stratiﬁed' collection

of submanifolds of codimensions greater than (n+1) _ |
Evidently the requirement that €L (M X I, ]R) should contain only

'_ essential or 'generic' degeneracies can be described by insisting that

f(?) be. 'transversal' on Z. In vierv of ﬁhe above data ooncerning'

_eodimensions- one may define:

" Definition 4.3 f e L(Mx I, R) is a Cerf path if f(z)(MX'I) nee = @

' and'f(e) is transversal on -1,

'Th'om's Source Transversality Theorem gives the result

Proposition h h Cerf paths form an open dense subspace of .{,(M x I, IR).

- To detemme a. coordinate descr:.ption of a Cerf pa.th, let
J2(U x I, IR) - R denote the function det(s) Then for
'.'fe.f.‘(UxI,]R), ‘
- . . . . aaf | . ‘
8o f(?) det ( :1<i, j<n )
' ‘ ox, Ox, :
1

| -, of R A N
v= D Iy ey S"'_ l xl,...,xn> -

ox, X

n(5o£® | x) .
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~ Since Zn'-l(u) is the set of regular points of the map A, given by (k.1),
which lie in Z(u), and hence vhere DA has rank (n+1), the condition of

L trarisversality pf f(2) when £ is a ‘Cerf path is that

D(A§ f(e)) has renk (n+1) at .afll p'oint.s '
(m,t) e U xI where 'gof(a)(in,t) =0
: ;a._r_l_(_l_ 'Slof(a)(lm,t) =' 0. o |
- Now Ao f(2) ='(‘i_iof(2), §o f(2>),'- thus the'jacob,_ianvmatrixaof
‘-Aof(a) at (myt) e UXI is | |
| 3(502®, 50:® |y, )@y
with : de'terminant' | _ |
p(poe®, 502® |y, )me) = P

Observing that one could define a function 5 on J3(U X .I, .]RA»)A, by
" appropriate extension of the coordinate system 6' to take in fhe.third

- order derivatives, such that: D=D of(i) , one may state

. Proposition 4,5 f e (M x I, R) is a Cerf path if and only if ine

system of coordinate charts (U, 6, {xi : 1<1is<n}) which covers M,

(2)

and hence in all coordinate systems, the (n+2) functions Hof" '

‘Bo f(z) y D onU x I are never simultaneously zero. Moreover, eve

ge L(MxI, R) canbe arbitrarily closely approximated by an

fe ‘.C(M X I, R ) which satisfies these local conditions everywhere.

Definition 1&.6 Henceforth f € i,(M X I, R) will denote a Cerf path.

The next stage is to analyse the geometry of f, or more precisely of the

singularities that it encounters, For this purpose one defines the

‘v‘c:haracteristilc curve of f, denoted by C(f), to be the set of points of M X I

such that the point of M is a Sing\ﬂ.ar_point‘ of the corresponding partial




. function:

c(¢) = {(mt) €M xI:D(g)m) = 0}

The trackingmap Tof £, T:MxXxI = IXR is defined by

T(m;t)' = (t: f(m,t) )3
The image of C(f) under T is called the track of f and is denoted by T(f).
. »Return now to local coordinates.'on U and 'J2(U X I, R). - On U,
¢(f) is defined by the equation Bo f( 2) = 0. -On C(f), 8o f(z) and
are never simultaneously zero, since f is Cerf (Prop. 4.5), and hence the

jacobian matrix J(po f( ) | x, t), obtained from J(po f( ), Bof( )I X, t)

: by omitting the last row, has rank n at every‘ point of ¢(£). Hence

Prqposi'tion'h.] The characteristic curve of £ is a‘'singularity-free

curve, given locally in U X I by the trangversal intersect‘i_.on's of the hyper-

-_gurfaces
of
, — = 0, 1<i<n,
( Bxi

Consider the set H°(f) of points of U X I where Bo f(e) is zero.

At their points of intersection HO(f) is transversal to ¢(f), since
ﬁof(?) defines C(f) and do f(a) defines HO(f), and where HO(f) meet C(f)
P =D(Bo f(z), 50£(2) | x,t) is non-zero. Thus, as could also be

deduced from the transversal jet definition and the codimension of =" 1

Prpposition 4.8 5of(2) is zero at only a finite set of points of the

characteristié curve of f.

350 £y
Let Di be the cofactor of ~———————— in the matrix

ox 1

J(pof(2), Sof(2)| x,t). Together with 8o f(z), the Z)i are the signed

n-by-n minors of the matrix J(Po f( ) | x, t), which is known by previous
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considerations to have rank n at every point of C(f). Hence at a point
of C(f) where 5'01“(2) is zero, i.e. in HO(f) N C(£), one of the l)i
must be non-zero.

¢(f) is defined by the equation po f(2) = 0, and so, along C(f)

ax, ax_ at - a(Bor®) |
— o, I eeeems = —-—-—rz—)- = = do (l-l». 2)
D, D, oot ’ ~

o 3 9
for some parameter o. = With respect to the basis {5;-, SE s 1 <€4i < n}

" the direction coefficients of the tangent to C(f) in U X I are proportional
to (D'l, -D2, P Dn’ 8o f(z)).  Hence the points of C(f) where 5o f(z)
is zero are precisely those -points where the tangent to C(f) is

horizontal, that is - annihilated by the lateral projection M X I = 1I.

Let (m,t) € C(f) be a point where the tangent is horizontal. Assume,
without loss of generality, that Dn 4 0. Using Prop. 4.5, one may

define a local parameter o of C(f) by the e_qué.tion

do /

""“=1D'

dx n
n

One has

8o f(2)

!

a2t } d(5of(2)) i D‘.

do?® do

Now D (m,t) # 0, since (m,t) € C(f) and gbf(z)(m,t) = 0, Thus

\ dat - it . _
—~ (mt) = 0, == (mt) # O
do dca. -

Hence
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Proposition 4.9 At a point of the characteristic curve of f where the

tangent is horizontal, ¢(f) has a simple maximum or simple minimum under

the projection M X I — I and in particular c(f) lies locally on one side

‘of the horizontal hypersurface there.

In other words, lateral projection restricted to ¢(f) is a Morse map.
If D(m,t) < 0, then, as t' € I passes through t from below, £( , t') has
two non-degenerate singular points in a neighbourhood of m which move
together towards m, coalesce when t' = t at m where f( ,t) has a
degenerate singularity, and then vanishes when t' > t (death-point). If

"D (myt) > 0 then this process occurs in reverse (birth-point).

To complete the present local description of a Cerf path, one will
now'turn to the tracking map. Let f € L x I, R) be a Cerf path,

then . _
M xI o+ IXR; (mt) » - (t, £(m,t) )

defines the tracking mep.. First one must discover the singularities of 7.

The jacobian matrix of T at (m,t) in a coordinate neighbourhood
(Ux1I,6x1, {xi, t}) of (mt) is

0 ... O 1

 (m,t).
of of of

ox, axn ot
Hence (1) rank DT = 1 _
(ii) rank DT(m,t) = 1 if and only if m is & singular point of

£, = f_( , t)e

Thus T is regulér;at points of M X I'which do not lie on C(f). Now

consider the effeét of T restricted to C(f). By equations (4.2), at a

point of c(r) wheré; 5<>f(2) is non-zefo, the cbordinate t may be taken
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as a local parameter, Hence, at_points of C(f) where the tangent is not

~ horizontal T restricted to c(f) is locally a regular map.

Finally, one must consider the effect of T restricted to c(f) at

points where the tangent is horizontal. At such points
of of

D ===y ceoy == | Xy 00ey X is zero, but
ox,’ ! an 1 *n

gof(e) =

o 3 of - (2)
D=0 SZ:’ cees SE; , do0f

Xl, a..o, Xn,‘b > iS non-ZerO. AS

of of

.has been seen, J | ===3 ceoeg
SN
n

Xy eees X > has rank (n-1) at such a

point., Now, considering this as the hessian of the function £( , t)
where (m,t) € C(f) is the point in question, one may choose a coordinate

system centred onm € M, (U, @ {xi} ), such that

of of . _ , ’
J <' — eees S | Xus e %y (m,t) is non-singular
1 n-1 '
*r | T
Bxiaxn _ N J

(see [21, Theorem 4.2] and §7 of this work). Such a coordinate system

is said to be hesslan-adapted to f at (m,t)..

(2) _

Tn such a coordinate system, now make the simplification cof c

where ¢ is a function on J%(U x I, R). Expand

5 = gof(e) = D(pl, evey pnlxl, ceey Xn) along the last row to get

n aEf .
5 = 5, ow————- , where
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3% . -1 | o
- Now 'é_— (m,t) = eee = (m,t) = 0
X1
| n-1 X
o8 3 : '
= (m,t) = & _(m,t)-. (m,t) - '
axn 3 n 2 ax.na J . J

a‘?f 7 Pr
| A axl.axn axl?t
J(pl, 000y pn_llxl’ e xn-l) a;f B aéf
x|
32¢ Pr | s . | Pe
axl,axn | | axn— laxn . ax: axnat .
38 . 38 i %
ox, axn-1 an *

FPr 3%
Whence b(m,t) = <D(Pl’ ceoy pn_llxl, ceey _xn_l) .-a—x:-a-t— . 5;:;) (m,t).

( Fr Br <

= ko 3 > . t .

. Ox ot ax 2 > (m,t) :
n n .

Pr 3r
Now L (mt) # 0, hence gc;gt— (m,t) # O # -a-x;é- (m,t).

.Aiso D l(m,t) = 4ee = Dn_l(m,t) = 0, bn(mf,_t) £0.

Introduce therefore, the parameter o ‘on C(f), centred on (m,t):
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o(mt) = O
i _
&g = VP

Now regard X, ty, ¥y ¢+sy as functions of o on C(f). One has the track

map given by o + (t(o), y(o) ), and '.

8(0) = 0
Py = 0 " . - - (4.3)
dp, ' '
_._]-: = 0
do
n
dx, 3
.pr_ | To | P, = + 6% |
i=1
n
= Pi D 4 + ¢8
i=1
a2y dpy d g\ a0 st
— = Z(-—- +p — + e D+ O —
do? 1\ do do - do do y
. ' - (2) of
using (4.3) and remembering ¢ = ¢of =5
" Thus
o
No) =
do(o) 0
a2 as <
— (0) = ¢(0) — (0) | 3
do do
a®y ) as a2s .
— (0) = 2— (0) = (0) + ¢(0) — (0) J
do® do do do

 Also




-g:;-(o) 8(0) = O "
d®t ©) - s ’
de® o '
a3t ) o) )
— (0) = = (0). J
do® dg2
 Hence - _ , v .
| a2t Bt | /'35 , \ ¥ ¢ ;.
do2 do® ' A : ‘
a a®y
J— (o) J——
do do®
- Now = %% (0) = D(mt), - and.
@ _ a3
do =~ do \ ot
D Pr ax, Pf adt
= L + o e
2
= dx.0t do ot ds
no¥Rr Pr
= 4 F m— . O
: ox, ot Jt?
i= i
of
a2 D(B: 'gE Xy t)
= determinant of the hgssian of f.
| ¢ *f , ] 3
Hence = = (0) = == (m,t). D (m)t) £ 0.
: do dx ot o
n
Hehce
dst | t" "




at (m,t). . Thus the track of f traces out a cusp of the first species
(ramphoid, simple, [10, S410] and [23, p.46]°) at such & point.

One may sumuarise:

Proposition 4,10 ~ The tracking map of & Cerf path is regularAexcept on

the characteristic curves which it immerses regularly except for a finite

‘number of gimgle cusps. The tangent tq the'track is never vertical.

Mgreover,'in any hessian adapted_coordinate gystem -at a point- where

the tracking map has a cusp point
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§5 WHITNEY MAPS

Let M be a compact smooth -n-dimensional manifold. The problem
now under consideration is to determine the types of singularities that
amap f ¢ M® - IR® need exhibit generically, or to find a criterion of
tgoodness' in LM, B’2).

Aé in the previous section, the determination is Best performed in
the jet-spaces of (M, IR®) by designating an hiéra.rchy of 'natural'vz
transversality conditions, Let Z.Q J(M, 1’R®) be the 'stAra.ti.fied.' pair
of manifolds given by the 1-jets of maps in £(M, R?®) at pointswhere .
 they are singular; excluding the case n = 1 hence-forth, being ca.Ate,red
foi by Whitney's immersion theorem, singular prints occur precisely when
the rank is not equal to 2. In order that the singular rank structure of

f e L(M, ]R2) be as simple as possible, one defines

Definition 5.1 £ € L(M, BR?) is said to be rank-good if

. f(l) : M - J*(M, I®) is transversal on Z.

Having confirmed that Z is the tgtratified' union of two regular

submanifolds of J l(M‘, &) s one has by source transversality

- Proposition 5.2 Rank-good maps form an open dense subspace of L(M,]Rz ).

In order to describe a rank—gdod map in local terms, let

(u, o, {xi :1<i<n)) bea coordinate system in M, and let

(R, 1p2 {ya : « =1,2)) be the standard coordinate system on r2.
Then a coordinate system (J*(U, IR?), 8 ) may be introduced on the open
subspace J1(U, BR®) of Ji(M, ®R?) with coordinate functions

(., 9, 5. :1<i<n, a=12}, vhere, 1f fe L(M, B®) and
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- (2) )

X; 0 f = X

- o(2) _

Yaof = yaof = fa ? : (5.1)
f) o f(z) _ B(yao f) } Bfa

o 3, x, J

i i

Tn this coordinate system Z°(U), the part of Z lying over U -

containing jets of rank O, is defined by map A : Jt(u, B®) - R2?
' .given by
8,. - = -
A, (%, 5. 8) = B,

that is to say, Z°(U) = A;l(g). Now iAo has (maximal) rank 2n at every -
- point, thus £0(U) is a submanifold of J*(U, ]’R?) of codimenéion 2n. So
50 15 & submanifold of J*(M, R’2) of codimension 2n. Thus o

: f(l) ¢ M - J*(M, ]®) is transversal on >;° if and only if

f(l)(M') Ns® = @ . Hence

Proposition 5,5 A rank-good map in  (M,1R%) has_rank everywhere equal

to 1 or 2.

Supfose now that £ € £ (M, R2) has renk Df equal to 1 at m € M.
Let (U, o, {xi D, (B2, £ et?, »{ya}) be systeme linearly adapted to f
at m. Using the conventions (5.1) for the coordina’ce functions on
J* (U, B®) one has

ﬁllOf(l)(m) = 1 (5.2)

0, otherwlse.

1]

B0 £(1) (n)

1f T* denotes the part of I consisting of jets of rank 1, end o u)
denotes the part of £ 1lying over U, then in an open nei ghbourhood Wof

¢ () ¢ v in J*(U, ®®) in which the functions B, and §), do not
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similtaneously vanisk UL N Z(U) is defined by the map

A Jtu, R®) N U - r*1,
7%, 5,5) = (5, B, -P, B, :2<r<n)
1 2 L B 11 *or 21 “1r ° )

A; has (maximal) rank (n-1) at every point of J*(U, IR®) N Uu.
‘Thus Z*(U) NU is g regular submanifold of J*u, ®B) N U of
codimension (n-1), and so Zl. is a regular submanifold of J*(M, R ) of
codimension (n-1).

Now f(l) is transversal on I at m e U if and only if

Alof(l) : U > BR™! hes maximal rank at m. Ifm' €U
dfy  Of, . Of e x
notM) « (=) Za) - =) =) 2<x Sn>
ox, axr Coox, axr :

Hence the jacobian matrix of A o f(l) at m' € U is given by
. ‘.\\

2f, - of of &£,
(') =) + —Hn') ——(n')
Bxlaxi . er : X, wOK, )< r < g
2, of 3, Pr 1 <1 =<mn
) =) + (') ——(n')
ox,dx, - Ox X, %_OX. :
i r L r i _ .

Using /5,2,1), the jacobian matrix of 4,0 f(l) at m is thus

Fr, |
< (m) : 2<r<n, 1<i,<n> , (5.3)

dx_dx,
r i

which has rank (n-1) if £(1) ig traneversal on Z* at m.

2)

Moreover, in the linearly adapted systems, S'rlo f(

Hence Alof(l)(m') = 0¢ R if and only if
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Thus the points of U where Df has rank 1 are given by the equations

§2r0f(2) = 0, "gsr g#l. 4 (5,4-)_ -

. The jacobian matrix (5.3) is just
30t ®), i, Bp08® [k, iy @)
the statement that this matrix has rank (n-1) at m and the fact that
§2r of(2)(m) = 0, (2 <r <n), imply that the points of U where Df has
rank 1 are given by the transveréal intersections of the hypersurfaces
.'( 5 4). Hence, by compactness, as could also be deduced from |

" transversality and the codimension of Z* ,

 Proposition 5.k If f e LM, ®B2) is rank-good, then the points of M

where Df has rank 1 form a finite collection of smooth regular closed

curves which do not intersect one another.

‘ Furthermore one has the following local criterion for rank-good
maps: '

Proposition 565 fe .Z,(M, ]Rz) is rank-good if and only if

(1) . rank Df is greater than zero everywhere

(ii) at any point m € M where rank Df(m) = 1, and in any

coordinate system adapted to fatm, thg matrix

8, |
< (m):1$iSn,,2§rSn>

erax Y

has rank {n-1).

One will denote by C(f) the curves of a rank-good map f € Lo, 2)

described in. Prop. 5.4, and wiil call them the crease-turves of f.
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There is one further transversality condition that it is natural to .
impose on f € ;{(M,ZIR2 ), namely that f, when restricted to its crease
curves, should be as regular as possible. At each point m € c(f), Df(m)

has rank 1 and hence kernel rank (n-1); f restricted to C(f) is regular
so long as the tangent to C(f) at m does not lie in the kernel of Df(m).
Thus the condition to be imposed on f is that this type of singularity '
should happen as cleanly as 'possible. :

If f ¢ L(M, B?) is rarnk-good, and if m, m' € C(f), then, in

coordinate systems adapted to f at m, the kernel of Df(m') is spanned by
3 o

——y ssey ———, and ¢(f) is given by the intersections of the surfaces
ox,, X :
. n
- 9fy .
' 5% =0, 2<r<n, The condition that the tangent to C(f) at m' lies
- . . _

" in the kernel of Df(m') is thus given by the equivalent conditions

, azfa | : |
det( (m|)=2$r’. S$n>= 0
Ox.0x
TS
= (2) = (2), - N
D(P220f g ovey p2n°f | X9 sees xn)(m )=0
- 2 - ) )
J(ngof( )) ceey PQnOf( )ng.v ceey Xn)(m") is singular |

One observes in passing that for f rank-good and m € c(£) the condition
- 2 - 2
that J(p220 f(.), cees pgnof( )le, Xpy eoes xn)(m) has rank (n-1)

implies that J(i5220 f(z), ceey "iiznof(z)l X, eoes xn)(m) cannot have

rank less than (n-2).

Now consider J2(M, R?), which m‘ay"be considered in a natural way as
a bundle over Jl(ﬂ, ®2), 1If (U, 6, {xi'} ) is a coordinate system in M
then composing the coordinate functions on Ji(U, IR®) with the projection

from J2(U, T2 ) and using the same symbols for the objects corresponding

one obtains cocrdinate functions .
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{ii )?a: Fai; S .,.:1<j<i<€n a= 1,2}

on J2(U, IR®), where

X of(g) = X. 4 )
i i
sraof(z) = yof =
| }
f) . Of(2) = ifg
al : ox.
i
oij Jx, Ox..
i J

Now let f ¢ [ (M,JR%), m € M, rank Df(m) = 1 and let the coordinates

above be linearly adapted to f at m. Assume further that

(2) of(n) | Xoy +oe) xn)(m) is singular. Now

J(PEEOf ) *°* P2n

£t < 53(M, ’R?) is defineg in a ‘neighbourhood Y of f(z)(m) e It by

the map Al, where

N~

O, - - . S - - -
AL (B §o B0 B) = (Byy By By Byt 2SE SN

and in the neighbourhood U of f(g) (m) the members of £+ which display
the second order singularities of the type which have been described, and
i

which f has at m, are defined by the map B, : J*(U, R’?) » BYIxm

where
Be(iips)z (P,, Dn. = Doy P det(S, ) :2<r, s <n)
1*3=2 L7 22 g 11 “2r 21 *1r’ 2rs’ ’ - :
* — 2 o
Let 21* be the corresponding jets. Zl = Zl’n 2 U... U Zl’o

2

- ghn-? U Zl,deg’ where locally glsn= are the regular points.of Bl*

. * . *
lying in Zl , and Zl,deg are the sgingular points of Bl* in El . The

*
stratification of El is given locally by the rank of the matrix
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(8, t 25T, s <), %2 15 thus a submanifold of JZ(M, B ) of

codimension n, and glsd€8 o o collection of submanifolds of J2(M, R?)

of codimensions greater than- n.

The matural condition to impose on T € L(M, R2) is tat £(2) be

(2) l,deg o

transversal to Zl’n—e, and that f meets no points of I’

define

Definition 5.6 f ¢ .C(M,JR?”-) is crease-good if f(z) + M - J2(M, R?)

'is transversal to 072 and f(‘)(M) n glodeg _ g |

!

Source transversality ylelds:

Propesition 5.7 Cresse-good maps from an open dense subspace of ,C(M,IRZ)

By observation above, the condition f(e)(M) n 51s9€8 _ ¢ 15 redundant for
rank-good maps. | | ' |

For a local coordinate description of crease-good meps, let
f e L(M, ]R?) be crease-good, -m € M, rank Df(m) = 1, and |
D(ﬁgeof(a) | of(2)| %y coos x)(m) = 0, let (U, 8, {x,}) ve

adapted to £ at m and tske the usual coordinate system on 2 (U, ®).

’ OOD’ :pan

Let 5 : J2(U, B®) » R be defined by 5'°(%, , B, 5)=det(§,,, 12<r, sS

Then By = A X § : J2(U, ’R®) - R IxR, & O

- . o(2) = (2}

D(p220f g seey Dy OF i Ky sees xn). Then the transversality

condition is that Bl*o f(a) s U = ]Rn_l X R has msximal rank n &t m € U,

Now
of of

B Of(z) o "“"'“2” 9 ooy ""“"E ) 5'0f(2) )
1* N3 3x

% n

hence Bl*o f(a) has jecobisn mstrix at m:.

of, of, _
2 2 = 2
J ety oeey 9 B'Of( )'xl, eoo0y Xn>(m)
ox, axn
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and the trangversality condition implies that at m. This watrichas (maximal)

. . . of, of,
rank n. Observe that at m, the n surfaces === =0, ¢s0sy = = 0,
v S S x
n

8'o f(z) = O have transverssl intersectlon. Thus the local criterion
for crease-gcodness is

Propogition 5.8 f e L(M, mg) ig r«reaseuggod if and only if et eny

‘point of M where rank Df(m) = 1 and in any coordinate gysten a.dapted to £

at m either | 3¢

(1) 5'of(2)(m)udet »-—‘?-:ésr, sSn)(m)qu
: B:craxB

. Or . .' N .
= of, . Of,
(ii) s' o] f(e) (m) = 0 and D ‘-a—f’ YY) S‘;’e‘ ,8' o] f(2) lxl,ooo,xn>

%z
k‘ (m) # 0.

Points of M where a crease-good 'niap has rank 1 are thus characterised by

o=t
whether < nes rank (n-1), (type I), or rank (u-2), (type II).

L I A
By the fact that points of type TI are glven by the transversal intersection -
of n hy:iersurfaces in an n-dimensional space and by compactness, or from

1,n-1

the transversality definition and the codimension of Z , & crease-

good map has only & finitg nupber of poiats of type II.

Defipition 5.9  Now defining £ ¢ L(M', B®) to be & Whitney map 1f £ is
rank-good and crease-good, Props. 5.2,7 glve

Proposition 5,10  Whitney maps form an open dense subspace of L (M, R?).

Propositions 5.5 and 8 give 1
Proposition 5,11 fe L (M, R2) is a Whitney map if and only if ‘

(1) rank Df(m) 1 for all all m € M
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(11) if m €M and Df{m) has rank 1, then in any coordinate systems

' ‘Bfax' - I ~.
adaEted 'bO f E.:E m the ﬁlnctions 5' = D ,-‘-"_, ses g T x2, eeey xn ggg
of, of, 08! | A
D' =D I‘S—’, ecoy ‘g"‘"‘? ‘5‘""‘ Xl, xg, toey xn> do notboth vanish at m.
X, xn‘ )

Moréover, the set of points, C(f) the crease '_cui've_ of f,‘ vwhere Df has
rank 1 is a finite collection of smooth closed nonintersec{;:’mg curves., The
points m € C(f) where 6'(m) § O are called the fold Ebints of £, the
points m € C(f) where 5'(m) = O are called the cusp points of f.  There
.are & finite number of cusp ﬂpoints. D' is non-zero at dusp points.

Whitney originally defined Whitney mpsfaé in‘Proi)'. 5.11 fqr‘ the
case n = 2 in [32, §4]. It is a simple matter to translate the present

Prop. 5.11 into [32, §4. 1-7]. The general case is gmentionea in [33,%181],

The parallels with the analysis of the previous section are now clear.
By substituting n+l for n in Prop. 5.11 then t for-xn, comparing with
Prop. 4.5, and extending the definitions of a Whitney map in the obvious

‘way to manifolds with toundary, one may state:

| Proposition 5.12 The tracking map of & Cerf path'is 8 ‘Whitney TMAD .
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§6_wmwm CELLS

The problems and procedures of $& admit a natural extensi,on.

""‘-,Let /‘l(M) ‘denote the space of Morse functions on the compact smooth

o n-dimensional manifold M. Then one constructed in J(I; L(M,]R) )

" = .Z(M X I, R) the open dense subspace Cov) of Cerf paths of M,

. jElements of C(M) are paths in ,Z(M, R) which pass through Just a

finite number of points riot in M(M), where they exhibit non-_Morse

. singularities transversally. |

Again, from their transversality deﬁnition, the numbers of
characterigtic cur-es and death/birth points of two elents in ‘the same

- nath component ot L(¥) E‘.L(M x I, IR) are the same, 'But, again,

C(M) contains elements for which these numbers dif:t‘er. _More i

.'speciﬁca]_'l.y, given f € f(M) » then in any open region of M X I not
vcontaining characteristic points of f one may mke an arbitrarily c°- | |

' close approximation f' of £, which agrees with £ outside the open set, _
~ such that £' € C(M) and the characteristic set of £' contains precisely

~ one more curve, with one more death point and one more birth point on it,

. besides the cha.racteristic get of f, - This one may do by constructing-
& smooth tdymamic! l—baramet'er version of the introduction of two |
' singular pc‘»inte with consecutive indicee followed by their removal., A -

- "description of the analogous procedure for Whitney maps ie fouhd dn, ' |
[32, §21.]. In handle-body. language the process corresponds to making

the trivial addition of an n-cell, wh:lch has & standard decomposition as

the sum of a A\-handle and.a (k+1)-ha.ndle, followed by the identiﬁcation

of (M U (n-cell) ) with M. | |

Thus the problem a.rises to discover what points of LMxz, ]R)

other than those of C(M) a smooth path in Z(M X I, R) must contain.
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| ‘A‘Ev;idenf,‘ly, having discovered this clé.ss of maps in Z(I,'af(M X i,' R)
 1 = .,i(M x I2, R), one might raise the whole problem again for this new
'class. Thus one 1is led to considering the general case of k-parameter
' f‘ami],.iés of functions on M, i.e. -‘the space LM x Ik,']R), but keeping
- rigid one's regard for the order of the parametere {tj : 1 <3< k} in T,
) ‘6ne proceeds by the following inductive scheme, -' :
_ Let (U, 6, {xi : 1= 1,.>..,n}) be & coordiﬁate eystem~ on'M, aed
o l'et ‘k :be any non-negative integer. Consider’ the mep space ,L(M X I y IR)

o and the associated jet space & 2(M X Ik IR), which contains

. J‘k+2(U X Ik ]R) as an open subspace. Then one may define on

Jk+2(U X Ik ]R) mnctlons {pi, mj H i = 1, ceey n, J = o’ seey k}

x'such that for £ « l(M x 1%, m)

'af'f 4.af-'

*(i)“p - 50:®) L gtely) = (—y vy —
‘ = - A ik, o

(ii) D 3 is an algebraic function of the standard coord:.nate
functions on 3972 x I, R) Lifted to F2m x %, R) by
the projection of J~T2(M x T, R) - 72w x ¥, R) -
Jj+2(M. X I'j, .T.R) where the first mapAis tﬁe'standa,rd jet-
bundle projection and the -second map is induced by the
‘canonical projecﬁioh of T on T given by |

(byy wees 8) B (5, vees t):
(1ii) Defining DJ = 5jof(k+2) one has
Do = D(g'_:s)
D, = D(g, Do'l.c’ tl)

o
i

D(B’ DO"D.'LI?E} tl’ t2)

113 -o-

D(_I_).: oDo: l)l””’;bk—lb-c’ '-tl, tzé’»"‘,tk )
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: Definition 6.1 f e ,C(M X l'k,» R) i,s"a-Whi’cneylk-—cell if and only if

>."for'_each- coordinate system (U, 6, {xi t =1, oo, n})on M
(1) p, Do 2)1, coey -'Dk are never simultaneously zero.

(ii) for each j = 0O,...,k and for each point (m,t) € U X I where
E = 9 and ’D.o, s00y Dj-l are Zerol, J(E,bo’...,Dj-llx,tl,...’tk)

has rank (n+j) at (m,t).

'A Proposition 6.2 Whitney k-—cells form an open dense .subspace of

Lonx ™, ®).

Indeed conditlon (i) is implied by condition (ii). And condition

T (1) states that when £2)(m, t) lies in the subspace of > 2(M x ¥, &)

~ .defined by the zeros of the map (3, Dos +oes ;Dj l) then f(k 2)(m t) is
' a regular point of this map and f(k 2) is transversal to the' stratified
' '_:"space glven by the zeros of this map, at (m,t) Thus by applyinnghom's
R Source '.T.‘ra.nsversality Theoren (k+1) times the space of Whitney k-cells is
the intersection of (k+1) open dense subspaces of a((M X ].:K R), hence the
‘prop051tion.
~ Denote by c(£), £edMx ™, IR) the points (m,‘t) € M X T* where
"D(f( , t) ) is singular. Denote by C (£) the p01nts of C(f) where,
"'iocaily, D, = Z) = vee = Z) = 0, and where ID 4 0. Then C (f)
'consists of a finite collection of points where f( E t) displays &
L singularity of codimension k. At points. of Cj(f), £( , tiy eeey tj’ )

M x Ik_lirlkdisplays a (k-j)-parameter family of singularities of

codimension ,j

From the rank conditions one knows that C(f) is & submanifold of
M X Ik~ of -dimension k, and that c (£) u o +1(f) U.eoe U Cyo (f) is a sub-
C ma.ni_fold of C(f) of dimension (k- ,j) The points of Cy (£f) are precisely

" - the singular points of the horizontal projection of
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.*;?C(f) s; M x ™ = (M X*Iknl) X I into I. More generally, the points of
C'k'(f)_‘ U‘....U Cj(f); being defined by p = 0, D, =_‘_ ... = Z),j-l = 0, aré
.'Préciseiy the singular points of the projection of | ‘
o) s MxTF e Mx 1) x Y inte TV,
|  Given £ e L(M X Ik, R) = af(I, ai(M X Ik—l,.IR) ) a whitney k-ceil,
‘except at the finite set Ck(f), the mep f£( , tk) is a Whitney (k-1)-cell.
;15P¢(f) is thus'éeperated.by the motion of the singular set of £( , tk) as

t, -runs through I, the points of Ck(f) being the places where the

' .Sinlgular set locally contracts to a point. .

By matrix manipulations, one ‘may show that at every point of C(f),

~ when f is a Whitney k-cell, J(p|x) has rank (n-1), and hence, by using

f -l'oéq.l. hessian-adapted coordinates, that at a point of Cj(f)

. S bf Q2f ‘ aj-l £ 3 _
o (i) | —p— = _-é e ——-—5-:—{ = O, o°f * 0
: C¥x, | Ox, ox ° o S;:jl N
S ar e ¥l kg1
. (i1) the map { ==, =7, ooy - ) : MxI - IR has
| x w2 T 3
- n n n
- rank j-l.

- Clearly the Whitney O-cellé' are the Morse ﬁmctibns,' and the Whitney

o ‘lfcelis are the Cerf paths. Moreover the singuls rities presgnted by

the tracking mep of & Whithey k-cell are of precisely the same type as are

s . ' o + .
. presented by the projection ¢(f) € Mx i 1 - ™ 1l ofa Whitney

(k+1)-cell, neglecting the regular part of the hessian,
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§7 CANONICAL FORMS

- The broad purpose of the sfudy of canonical forms is twofold: first
" the attempt to characterige a smooth map locally by algebraic invariants
derived from its diffErential coefficients, and second to produce simﬁle
fofms which display the geometric and tepological properties of the map.
;Cleerly'there can be no hope of being comprehensive in this reepect:

\ ;there is no way in which a study of the differential coefficients at the

forigin of IR can distinguish between the constant zero function and the

| :'vff}flat function exp(-1/x2).

After the Implicit Function Theorem [7, p.265], the Lemma of Morse

"‘ [19, p.hh Lemna 10.1] is the classic example of a canonical form. As

»:one has seen, the generic singularity of & smooth function of n real
‘variables is a point where the first derivatives of the function vanish,

"and the matrix of second derivatives is non-singular. The equivalence

. ¢lass of this matrix under regular coordinate changes at source is

.cheractefised by its index, or number of negative eigenvalues. Hence for
. two' functions of this type to differ by a source diffeomoxﬁhism, and a
'fconstaﬁt'at targent, it is necessary that their indices be the same.
-vaone% eriterion of 'egquivalence' permits order reversing diffeocmorphisms
,af targets in IR, then for two such functions to be equivalent in this
. sense, 1t is necessary thaet their. indices at the'points in question be
'_ the same or add up to n. The Lemma of Morse, by producing a canonieal
- form whose dependence on the index/coindex is patept,.shows that these
indicial criteria are sufficient. | | |
" In fact the methods that establish'the Lemma of Morse eare the source
- .of a'femily of results that have independent interest, and applications-

vbeyond_the scope of the original result. They are all of a 'preparatory’
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nature. The Arbitrsry Rank Morse Lemma [21, Theorem 4.2, p.27] is a

_prime example. By suitable choice of coordimates one may separate the

: ’»regular" and 'nonregular' parts of a function at a singularity.

Let M'™ be a smooth manifold, and V' & M a smooth submanifold.
" Let-v € V and let £ : M » 1R be a smooth function. Let

(W, ¢, {X)5 00y n+m} ) be a smooth coordinate system centred on v € M,
such that {yl, cees ¥y } which are the restrictions, of {x Xpqr0ees m+n}
to U =V N W are the coocrdinate functions of a smooth coordinate system

(U, 9," {y.5 eoos yn} ) centred gn veV, Let m=x, be the projection
.:G‘lonzotb:w-i‘u, vhere T, :'IRm+n.=': IRmxIRn_-' R’ is the-
'.prq;jéction on the second factor. |
. Norwl fort eR, w € W, cienot;a. by t.* w- ‘the point inWw '
xi(t-)_(-'w)? ’t.xi(w) for i = 1,0..,m and X, (t*w) = (w) for

| j = 1yeeeyn, Then O#w = m(w), s%* (t¥w) = st*w, 1*w =w, and’

1
- fw) = £(0 %w) +f "&%E £t *w)dt
0 ' .
4 m 1 af
= £(0%w) + Z xi[ — (t# w)dt
- S0 oy
m 1 af : m - 1 a
= £(0*w) + Z xif e (0% w)db + Z xixj[ e
S 0 o 1,31 0 o,
1 3¢
X —— (st %*w)dt ds
o 9%y
| n n
= (fon)(w) + Z , ——-»on) (w) + Z x; Xy ij('w)

{=1 - i,3=1
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Thus, by symmetrising, there exist smooth functions '

h.., = h,, :W- IR such that

ij Ji
| - 2 a¢ =z
f = fom+ Z X; o _B:c—o’"»+ Z X, x'j hi,j . | (7.1)
i"-—'l i i,3=1

. 4 | 3¢
A case of particular interest is that when -—-‘ax is zero on V for
i = 1’_oco,~ m, then : '

m

f = fom+ Z X X hij o (7.2)
1,351 |

B Definition 7.1 In order to gél further in this direction at this level

: c}f generality, one must describe the coordinate changes of the given
R :sys't-em- of v €e M which do not affect the spirit of the dec-omposivtion (1.2).
| :For the present one vis interested only in the alteration of the transverse
! "co_ord_in#te functions, {xi 1= 1, cos, M} A new éystem of coordinates

W'y o', { 2.y oooy 2 em }) centred on v € M will be said to be rigidly
" adapted to .(G,f)»g_g v if '

Zm_’_j = xmi.j for j’:l, oa.’no

Then the transverse m-sheets of the two systems are the same. The
* projections n, and ®,
% linear change in the x,; oo0p X is rigldly 'adapted._ Agsune

coincide where both are defined.

" that (hij(v) : 1,5 = ly00.,m) has rank r and index A . Then one mey

generalise the Arbitrary Rank Morse Lemme in the following

: Proposition 7.2  Under the foregoing hypotheses, one may find a coordinate

' : '.gx.stem (Wr, o, {zl, sooy zn+m}) rigidly adapted to (6, f) at v € M such

that
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r m
f = €, 22 + Z, 2 g
1% By Py Bk 2
i=1 Jyk=r+l
where
(1) 'ei = *1, and = -1 for A yvalues of i =1,...,r,

= M ! -
(i1) 831 8y * W' » R are smooth and gjk(v) = 0.

The proof is by induction on m and uses the standard talgebraic’
model. All the is 'equir .i to find 'standard' transverse coordinates

- at eéch point of U' = W' N V which can be pieced together globally.

: m
s;nce f= Z X5 Xy hij + fom, and (hij(v) ¢ i,j = 1,...,m) has
J= '

'rarik,r and index A, one may assume that, so longas r # 0 in which case

E one has a coordinate system of the desired type, h,,(v) # 0. All that

is required to achieve this is a linear change of the {x s eees X b
Let W' be an open neighbourhood of v € M on which hn 4 0. Set

m

(oo gl G+ RN
3=
§j = xj 3 J = 2yee.mtn,

Then in W' the {gi :41=1,,..,mn} are the coordinate functions of a
system (W', ¢%) rigidly adapted to (6, f) at v. In this system f takes
thev form

m

2 1
f = € § + Z §j§khjk+fo1t
J k=2

: ' 1
‘where €, = 11 according as hll(v) 0. The hjk can be chosen to be

a3 R LR

Im an¢

3‘MAR\972
" P
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symmetric. Now replace V by the manifold V* where L ¥ ;""%m are
zero. Let‘;.nl : Wyt ‘be - the corresponding projection. Then.
and-index 1, A-1 according as €, =X1.  Now apply the inductive
hypothesis for (m—l) to the configuration (M,V sEaVa Bk Lqseees b, )
The proposition establishes itself. '

The Morse Lemma and the Arbitrary Rank Morse Lemma follow from

'e'Proposition 7 2 by specialising to the case when V= {v}

i‘Cerf~paths:i 'static"case

Let Mp be compact and let £ : MXI > R be a Cerf path, (§ h)
- Let (m,t) be a point of the characteristic curve of f. Denote
N m, and canonical forms are known in this case, or. f' has a degenerate .

by f'. Then either f' has s nondegenerate singularlty at ’

?? singularity at m, | In the latter case,@m,t) is a cusp point of the
| tracking map of f, and the characterlstic curve of f has horizontal
tangent at (m,t). It is desired to find a simple model for the
singularity cf'f"at m.
| By the analysis of §4, there exists a (hessian adapted) coordinate

system , 6, {x,, ey ¥y } ) centred on m € M such that

N a
(1) = —m) = .. = =—(m) = O
ox, X .
 J3fY  of! o ' :
(1i) iy buey K.y eoey X ~> (m) is nonsingular
x X

azfi ' A 32¢

—_—m) =0

—
=
~
1
i

dx, Ox o ' Bx 1%
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(iv) = (m) = 0, -~ (m) ¢4 0.
X ° X '
n n _ |
. S - of!
Then in a neighbourhood U' of m the hypersurfaces 5—- = Qyeeey - = 0
. _ _ A 3x _
1 n-1

' inters_éct transversally to give- & smooth curve ¥ passing through m, on
~which 'xn may be taken as a parameter. Let the_ooofdinaté. presentation of
,v-bé :}

J.Cl. = al(Xﬁ), seoy xn_l = -an-l(xn) ’..‘

‘vhere a (0) = ... =8__,(0)'= 0. Then define onU' the finctions

Wl = xl'f al(xn)',

.®

[ 4

’ : .

A = X -8a X -
n-1 n-1 -nfl( n) 2.

W = X * P,
n n

~They define a coordinate system (U', 6', {w t 1= 1,...,n} )

| Let 1:».;-7-_1;9,4-.7 ~ Then by the preceding methods, using the ana.logues of

’ (i) to. (iv) o

- in some coordinate system (u", 6", {yl, ety ¥y }) rigidly adapted to
(o, f) at’ m where (v, ¢, {x = w = y }) is the system on V. Here,

",setting f' on =g as a function of yn one has

g - % ey
. e—(m) = — (@) = 0, -—_ (m) £ 0.

Hence g = y‘ns .k(y‘n) ‘where k(O) # Od;" NOW Se?xlﬂ Yl,...,Xﬁ;l = yn;ly ’
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“ k%

define a coordinate”map_x and a system in which f' takes the form

'.xn =y, . In & neighbourhood N of v € M, the {xi' : 1= 1,000,n)

n-1 v
] 2 3
f f'(m) + Z € X +X7 .

.This is the desired canonical form.

aﬂhitney cellsﬁ':'static case'.

By the samé token, if £ : M X Ik - R is a Whitney cell (§6)
, which exhibits at (m,t) a singularity of codimension Js then there exists-
a coordinate system (u, 6, {xl, eosy xn} ) centred on meM- guch that

T _ n-1 o '
=g, 8) = £ +Z DELR T

| Cerf. ﬁaths: ' 'd;mamic'- case

Let £ MP X I - R be a Cerf path. Let (m*,t*) € C(f) be a

"..pomt of the characteristic curve of f. One is now gomg to find
‘canonlcal forms for f in a neighbourhood of Ou* t*) As has been seen,
.one can find canonical forms for the part1a1 function of f at level t* in

..a.neighbqurhcod_of m*, However, as t* varies, and m* varies one may not

. be able to:chooseia coordinate system around m* € M which presents f

v'simply.;‘ Thevcoordinate gystems for:vneighbouring:points-of C(f) wili

- differ, One must therefore bresk one§ previous regard for the'separate

'1_ identities cf_M and I in the coordinate systems choseh on M X I. Initially

flhdweter; let (U, e,xfxl, cesy xn} ) be & coordinate system centred on

* € M., .There. are, as ever, two cases,’

S of.. - of
(1) Codimension zero. Here J | ——jeesy
: - o ' axl X

lei-;:¥€> (mf:t*)'

“is non-singular and
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)

Jf df

e (¥, t%) = ... = —(w¥,t*) = 0. C(f) is given by the transversal
xl . - xn ' S -
: , 4 ¥ T of _
“intersections of the hypersurfaces — =0, ..., = = 0. As has been -
. e ' .
1 n

seen, in a neighbourhood U' of (m¥*,t*) C(f) can be parametrised by t.
Let ‘the coordinate presentation of C(f) be -

X = bi(t)) eoey X 45_'bn(t)) :
where b, (t*) = ... = bn'(t*) = 0.. Then define on U' the functions

X, - bl(t) ,

N, =
n o nt ’
T_ = t»" t* oA . .

They define a coordinate system (U' 9' {'ql, eeey 'q o’ 1'} ) centred on .
" (m* t*) € M x I. By using the Proposition Te 2, one mey assert the |
existence of a coord:.nate system (u", 6", {yl, coey V9 'r} ) centred on

' (m*, t*) € M Xx'I in which f takes 'l:he ‘canonical form

n
£ = f-o1t_+ Z € Vi
i=1
where uAis the transversal projection onto C(f) gi\'rén by -the initial
system 6 X lI The functions { ¥y cers yﬁ} restricted to each

transversal sheet form a coordinate system.

(11)  Codimension one. ' Here one may assume that the initiel

. system 6 is Vhessia'.‘n._ edapted:
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, Of . of . :
Tl =) eeey Xy eeey X4 >(m*,t*) is non-singular
o, - Ox n
. n-l- |
of . of .
e (¥, £%) = 44. = —(m*,t*) = 0
xl X »
2t | Fr : - o P
. (m*, t*) = .. = (m*,t%) =-0 . - : .
:‘_'Bx Bx . x 2 o
K- SN o PRr - - T
(%, t%) O 4 e (mt¥) » o
x 2 - - Ox I J
n - “n
S . - -t of. , -
' Then the hypersurfaces == =0, se0,y - = O intersect transversally

o in & neighbourhood of (m* t*) in a 2-manifold on which (x , ) may ' be

taken a8 coordinates. Let the 2-manifold be called \'j and 1et it be given -

.. in coordinate ‘fom'by

xl = cl(xn, t) ,

-1 % cn—l(xn’t) ’

where ¢, (0, t*%) = ... = cn_l(O, t*)-.-.O..Norw' define functions

A

w, o= X - cl(xn, t)
V-1 Tn-1 cn-—l_(xn’ t) }
Vo % 'xn

"t. = t o J

In 'a_.‘.ne'q'.ghbourhood of (m*, t*) € M X I, they form a coordinate system

rigidly adapted to ({xn, t}, £) at (m¥, t*), By Proposition 7.2, one
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may find arother coordinate system (U", 6", {yl,..'.,yﬁ_'l,. X t}) at .

- (m*, t*) € M X I so-that
| | n-1 o
_ - 2
f = fom+ Z <—:i vy A.
_ ' i=1

'One may consider fox as a function g : V - 1R such that

og %g

S;:"(m*’t*) - x2(m*,t*) =‘ 0
n i n
2 ' asg . .
(w*,t*%) # 0 # ——(m¥,t¥)
anat -.axns A :

' Thén.g,-.- g(m*, t*) = g' is regular of order 3 in X, ‘at (m*,fc*). So
by the Weierstrass-Malgrange Preparation Theorem (iv), (iv'), (§1), .

th_eife. exist functions d,, d,, d, : R ~ ]R.,":q-':»V'-ﬁ R such that
g' = q. (xn + 3d,(t) . x =+ 5dl(t)_. x + d (t) )
where q(m¥,t%) 4 0, d (t¥) = d (t*) = d,(t*) = 0. Now set

o= bl ta8)).

Then in'amighboui-hood V' of (m*,t*) € V the functions (yn, t) are the

funcfions of a coordinate system in which g' takes the form
g = yo+ e (t).y, *ept) .

3!

Now e, (t*) = 0, and since (m*, £%) £ 0, Del(t"_*). 4 0. So put

ox_ot
n

T= e#(t) to get. a coordi}mate system {yn, t}in a neighbourh_ood V" of

(m¥, t*) € V in which g' takes the form

. .3 '
g' = ‘Yn + jyn.+ h(r).




29+

Thus one may assemble & coordinate system {yl, ceey y»n,‘ T} in .
which T differs from t by a diffeomorphism, which presents f in the form
n-1 ‘
2, '
f = k(-r).+ Z € vy¥ * yns Ty,
iml :

ﬁhez}e k is some smooth function.

This is the desired canonical form; according as - T is positively
f}or negatively related to t, f presen’cs a death or birth point at -

(m¥*, t*).

: 'Whi’qngy cells: codimension k singularities «"ﬂdynamic" case

‘Let f: vIn Ik - 1R have a singularity of codimension k at (m* %),
- Then _ﬁhgre- exicts a coordinate system (U', 6', {xl,..'.,.xn,_'rl,‘...,'rk} )
' éentfed on (m*, £*) :i.n'lMn x T such that B | o

n-1 '
k+2

f = {'t T )+ €. X2+ T . X + T X2+ ..+ T X +X
{_ 12 ' k) v 1 %1 1 *n 2 “n .o k n xn .
i=1 :

This, though technically more troublesome, is obtained frqm
Pi'oposition 7.2 and the properties in §6 ot Whithey cells in hessian-
. adapted systems, by‘ application of the Welerstrass-Malgrange Preparation

"Theor_em. At the last stage simultaneous substitutions for the tl""’tk

g‘lve the Tl,cqo,'rk .

Whitney maps: reduction to the case n = 2

Let n>2 and let £ : M = I]R% be a Whitney map, Letm e Mbe a
singular point of f.  Then by §5 there exist coordinate systems
(u, o, {il, cees xn»} ), (v, o, {yl,iyz} ).adapted to £ at m such that,

‘denoting yao»f by 'fa ’
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Y 1
f, of, of
2 2 2
"'"'(m) = "-"’(m) = s = """'(m) = 0,
! axé_ o,
. . yOf of, N
. andj, denotingD ey esey 'g;" x2, ceoy xn>by o' ’
"2 n 7
_either - 8'(m) # 'Q,

e, 3¢, R o
OI‘ ) D """.-, oof’ , 8 l Xl, x2, eeey x > (m) ‘ o. .
o ox, o OX 4 i

) n . . :
af .» | afa o -
But, in either case J g eeey = X5 ooy X ) (m) ‘has
6x24 ox_ T

- ‘rank at lé;a.'s‘i::',n??.* | Thus, by a linear change in the xz’ veiy xn 1t may

: be assumed that J , cony Xyy seey xn;11> (m) has rank n=2,
' axz’ ox - ‘ A
n-1 :
ey e
and that =—— (m) = ..o = = m) = 0.
o bea}:cn | an_flaxn : :
S . R afz _' ' 'afa . o
Then'the;hypersurfhces’ S—-~= Oy eeey === =0 intersect .

2 . Anf-.]‘.A

‘t:anQVe:sally at m in a surface V2 on which {xl; xﬁ}(may be -taken as

pgrametéré; 
X, = Ay(xy, %)
S zn-l(x;’ xn).

’ Proceeding'aé before to a new coordinate systémkwhiéh;prqsenfs V'

| as a plane, and épplying Proposition 7.2, oné gets & system of coordinate
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l:t‘un:etior"l_s; ' {xl, Vpy eees W ys xn} centred on m eM such thaft

y;of = X
e _ n-1 ° o
v = - 2 -
Ypof = elx, x)+ zé € Wy o
. ) Ai= ’

~ Now the restrictions on g are

-

either ——(m) # 0, [folapoint]’, Y

“or - (m) - # 0 # — (m), - [cusp point]
' ox, Ox . x3 o S
-n . n R .

. Thu,s Qhe_'is led to the consideration of |

Whitney maps..v cé.se n.é 2,

(1) Fold ;o_oint Let £ ¢ £(M?, B®) be a Wnitney map and let
meMbe a fold point of £, Then, in any coordinate' systems"

(U, 0, {x,, xg} ) (v, 0 {yl, y,} ), adapted to £at m

Y;Of o= .xl 1
o) 3y, o) «
| y_2° () = -Vgo‘ (m) ) O
dx, ° - Ox,, I ’.
| .Bz(y of)
—F—(m) # © )

‘:sz‘?‘
Hence yzo f is ‘regular of order 2 in %, at m. Thus"by (iii), (iii)'
of the Malgrange—Weierstrass Preparation Theorem there exist smoot.h '

, functio_ns__co,_ °1 at m' = £(m) € B> such that
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c,of = x22 + (clo'f).xz
co(m') = ¢ (m) = 0

de d

) = 0, —@) 4 0.
1 I .
Now define
| L, =9
Y2 = ¢,

In a neighbourhood of m' = f£(m) they are the coordimate functions of a
coordinate system (V', ¢') centred on m' € IR®, Together with
(v, 6, {x, x,} ) they constitute a Type III change of adapted -

coordinates (§1); in the new system

Ylo,f = X

] .
Y,of = x7° + (clof).xz .

Defining
Xl = X,

xg + %—(clof) 'J

X
. one gets a new coordinate system (U, 6') centred onm € M® which with

(v, ¢') constitutes a Type II change of adapted coordinates. In this new
system |

Ylof = Xl

Y,of = X22 - (%012)6f |

3(c,2) 3(ce,®)

(nt) =

Now cl(m')' = 0, hence. (m') = O,

1 2
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Thus defining

Z, = %
Z, = Y, ¢ %*":12

. gives a Type TII change of adapted coordinates;,a'nd.one finishes with
~ coordinate systems (U', ', {x,%,}), (v, ", {zl,‘ Z,}) in which’
f takes '_th'el canonical form | ' |
Z,08 = X,

. 2
Z20f = X2 .

(11) Cusp points Let f e L, T ) be a Whitney map, and let
| m € M be a cusp point of f. Then in any coordinate systems -

: (U;_ 8, {x;_: xz} )» (v, ¢, {Yl; Yz} ) adapted to fatm,

y,of = X
o(ypof) 3(y, 0 f) P (y,0£)
m = m) = v n == O,
ox, ox,, sze
My,of) F(y,of) | :
and p( —= , S (2, x, ) (@) # O,
‘ ox o 2 :
2 2
3%(y, o ) P(y,0 1)
or equivalently m) # 0 # m) .
Oxy Ox, 0%,

Then y,0 f is regular of order 3 in x, at m, so by (1ii), (iii)?
of the Weierstrass-Malgrange Preparstion Theorem there exist smooth
 functions e, e,, C; atm'=1f(m)e R? - such that’

coof = xzs + 3(c,0f) . x22+ 3(c, 0 £) . X, "

com') = c (@) = cy(m') = O

3 3
oy = 0, —2(mt) £o0 .

1 2




. Thus defining Y, =y,, Y, = ¢, gives a coordim te system
(v, 0ty {Y, Y} ) which with (U, 6) is related to the previous pair of -

systems by & coordinate change of Type III, In the new pair of systems

Ylof = X

i}

Y of x> + 3(c,0f) . 67 + 3(c, 0 £).x, .

Now defining
X = x

+
X, = x,+c,o0f

- gives a coordinate system (U', 0', {xl, X2} ) céntréd on meM which

with (V', ¢') is related to (U, 8), (V', ¢') by a change of Type II.

~

Ylof = Xl
Y, 0f = ’}(2:3 + 3(c, - c22)o.f.)(2 + (3c;c, - 2c2)of }
3 :

= X2+ (a0f). X, + (d,0%) o J

(¥, 01) 34, : :
Now : (m) # 0, hence —— (m) # O. So defining
X, OX,, . oY,
Wl = dl Vl = lef
and
W2 = Y, V2 = X2

gives coordinate systems (U", 6", {V,, V,}), (V", ¢", {w,, W,} ) related
to (U', 6'), (V', ¢') by a change of adapted coordinates of Type I.

Wlof = V1

a
Wzof = V2 .+_FV1V2+d20f.

Now d_ = 3c,c, - 2¢ ®  hence ==—(m) = ——(m); hence defining
2 12 2, .

d 2
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Zl = Wl_

Z2 = W2 - d2.
gives a coordinate system . (V" , o™, {‘zx,’ Ze} ) at m' € R° which with
| u", o", {v,, V, } ) forms an adapted pair which presents f at m in the
canonical form:

Z1°f = VJ.

s .
Z,0f = V2 +V, V, | .

Whitney maps: general case

Putting together the results of the two previous sections, one may
state |
| (1) If £ : M -+ ]2 is a Whitney map which has a fold point at
'm €M, then there exist coordinate systems (u, o, ‘{xl, ...,'xh} ),

(v, ¢, {yl, yz»}‘) adapted to f at m such that

n

' 2
y,0f = Xei x° .

i=1

(11) If £: M - R is a Whitnéy mep which has a cusp point at
m €M, then there exist coordimate systems (U, 6, {kl, cony xn} ),
(v, ¢, {y,, v,} ) adapted to f at m such that
v, of = X%,

‘n-1
-4
yzof @ € X4 +xn +xlxn .
i=1

These ‘are the desired canonical forms. -
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§8 GLOBAL PROPERTIES OF WHITNEY MAPS

1-goodness

Let £ : M » I]R2 beaWhitnéymap, and let 0 : IR - IR be a
‘function which hag no singularities. ‘One will proceed to investigate the
- singularities of the composed function cof : M nd R . .

.F.irst, if m € M is a regular point of f, then m is a regular point
of ogof. . A
Next, if n .c M is a fold point of f, then one may by- §7 ‘take
.vcoordinate systerhs (u, o, {xi} ), : (v, o, {ya} ) adapted to f at m such

| .that f eyssﬁmes the canonical form

1
>

y,of

n
|

»
+
o

ypof 3 . 5
i=2 J=xt+1

* Moreover, let the Taylor expansion of o at f(m) be
= + } + + 2 4 + 2, A( )
o Bg t 8,V T A, T8,V T 81aY1Vs T BaYn Yis 92

2 :
HE -
Where ao, al, aa, alJ, a; 2’ 522 € IR and A IR IR 1s smooth and

vanishes with its first and second order partial derivatives at (0,0) e b

Then
: S n
oof = ag+ayx - Z azxiz + Z azsz + é.llxlg *B(Xy,y eeey X))
i=2 J=At1

where B : R" = R is smooth, and vanishes with its first and second
derivatives at O € r", Now, ocof is singuler at m € M if and only if

=0, o0of Bms a non-degenerate singularity at m € M

&, = 0;- an;l when &,

if and only if the hessian matrix
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2a , 0 0
o  -er, ;.a, 0
0 0 21 a,

is non—singular, hence if and only if both a2 a.nd a '_ are -‘non-zero'.

»Now o 1s nowhere singular, hence a, and a, are not both zero. Hence.

gof _ha.s a singg_]_.arpo;nt at m if and only if 9.-1 ‘= 0, and the singularity.

i Adeg:einéifé.‘té: if and only if a,, = 0. '

‘Third, letmeM be a cusp point in f, andﬁe;ésumei tha.t';t,he- ,

_'éoordinate sjs‘liems chosen above' prese»nt £ at mA 1n the candnical form

y, 0 f = x o
: x ... n=1 _
,yzqf = _xlxn+x Zx z xi‘
D i=2 _i=k+1
and‘assume that o takes the form given above. _ The,n.
o A n-1
gof -‘-‘ B, + B X, *ax X * azxns - }: azxiz + aax'i""_'_ +a,%%
' i=2 i=2t+1

+ c(xl, coey xn)<

" vhere ¢ : R" ‘- R 1is smooth and vanishes with its ﬂrst and second

| derivai;,ives at 0-¢ R". Now ogof is singuler at m € M if and only if
= ‘0' and when ai =0, ocof has a non—degenerate smgularity at m € M

if and only if the hessian matrix
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2all _ 0
2 2;X—1 0
0
0 2a2ln_k
a2 0

s non-singular, hence if and only if-a is non—zero.' As was remarked -

' above, when a, = 0, a2 is non-zero and. so oof can only have & non-

1.
”degenerate singularity at a cusp p01nt of f.

| In order to classify the singularities of ac>f one ‘must interpret
: the conditions al 0 and &, ='0. “Let m € M be 8 fold'point, then in -
canonical coordinates the xl—axis gives. the creasacurve of f locally .

) The tangent to ‘the image of the crease curve through mis given by linear '

: multiples of —-—(v), where f(m) = v. The tangent to the 1evel curve of'

q through v 18 given by linear multiples of . aa (v) - a — (v)
' 1 . a

; Hence 8, = 0 if and only if the image of the crease 1ine of f at m is
:'tangent to the level curve of ¢ through vy or, in other words, if and
~only if o composed with the restriction of f to the crease curve is
hsingular at m. Moreover 8, = 0 is precisely the condition that oo f |
'._restricted to the crease curve of f will have'a'degenerate-singularity at
m, or equivalentlyvthat the image.of the crease-curve4and the levelhcurve
of o have. second order tangency at v. _
In the case that m is a cusp point, the crease curve is given
'locally by the equations X + 3x = x2 B ... = xﬁ_l,alor,and so the

o creagse curve is locally parametrised by X Restricting £ t0<the'crease
u'curve via.the parameter y 3 xn' - (- 5x » Oy vosy O, x ) , the tangent

to the image curve at f(y(xn) )s Axn'¥' 0, is given by linear.multiples




multiples.of a

s N |
of —6xn g—— (foy(xn) ) - 6xn2 — (fo7(xn) ), or equivalently by
1 2 S '

3

linear multiples of -— (foy) ) + X, -——'(foy(xn) ). .The limit of

1 2

" these tangent lines as x, = 0 is glven by linear multiples of

) : . _ . ,
~— (f(m) ), which will be called the tengent line to the cusp at v.

' "Again;"the tangent to the level .curve of ¢ at v isﬁgiiren by .lirie,‘a.r. 3

d - : .
- (v) - a, = (v). Hence a, =Oif and only if the

2
1 -

~ tangent to the cusp at v is equal to the tangent to the level curve of 0.

through v, or equivalently if and only if the cohipositi&l of o with the

o resti'ictiori<of f to the crease ourve has a point of infil_.exion_ at m.

o _':perpe_ndicularA'to z.

e In sﬁmi:iary 3

‘-Proposition 8 1. If f: M - :IR.2 is a Whitnéy map. arid g :V]R2-» IR

is a f‘unction which is nowhere singular, then oof is singular at m € M

o if and only 1f

(1) m_ lies on the crease curve of f and

'(ii)_ith'é level curve of o and the image of the crease curve are

tangent at f(m). Moreowiér
(iii) m is & degenerate singular point of go f if m is a fold point

| of £ and the tangency in (ii) is of the gecond or higher order.

" Now let z be & unit vector in W2 and let <z, >: R®— TR be

K ‘scalar product with z. Then < z, > satisfied the conditions of this

' Proposition, and the level curves of <z, >are Just the lines of R
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Corollary 8.2 If f: M' 5 B2 is a Whitney map end z is & unit-

vector in ]Rz, then <zf>:M- R is singular a’c meMif and only if

(1) m 1ies on the crease curve of f and

(ii) the tangent line to the image of the crease curve at m is

perpendicular to z. Moreover -

(iii) m ig adegenerate singular point of < z,f > if and only if

mis a fold point and the image of the crease curve hasg zero

"curvature at f(m).

The lastxremark is precigely the statement that < n;f > restricted to tne-
.g'crease curve of f has & point of inflexion at m. - Nou by'Proposition 2.11
idthe set of Z € Sl ‘such that z is perpendicular toa tangent line of

‘f ?f(C(f) - C*(f) ) at a point of inflexion has measure zero in Sl Hence

_;.for'almost every z € Sl < z,f > is a Morse function, or in the terminology

.rof §},»

"JPropositionfS.} ' A Whitney map is 1-good o
Lifting : ‘
" Let Mn be a smooth compact manifold and let £ €. Z(N, ]R2) be a
‘Whitney map.  Let C be a crease curve of £ and_let c: [0,1] - M,
| "¢(0) é'c(l), be a smooth paremetrisation of C with c¢(0) a fold point. .
o Denote.by C* the cusp points of £ that lie on"C. Let {tl, teey t }

;be the values’ of the parameter which correspond to C*

~ For t e_[O,l], let L(t), P(t) be respectively the tangent spaces of
¢ at cot), and. the kernel of Df at c(t). Imposing an auxiliary riemannian
metric on M, 1et N(t) be the normal space to C in M at c(t).

‘Orient the field L, and the spaces (o), P(O) so that the ordered

pairs (L(0), P(O)') and (L(0), N(0) ) of complementary subspaces of
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T (O)M induce the same orientation on T (O)M' " Now extend the orientationé._

‘on N(O) and P(O) continuously round C to c(l) = c(o)

Since, for 1 =. 1,...,s, at t passes through t the line L(t) passes-t

.through P(t) transversally, the orlentations on T (t )M given by

,5(ts +). = lim O(t +€)
€0+

'6(ts -) = lim O(t -€).
€= 0+ L

will be incoinpatible. Here O(t), ¢t ¢ {5 ees g } denotes the
‘? -orientation induced on.T (t)M by the orientations on the ordered pair.
;?(L(t), P(t) ). Let B(t), t.e [O 1], denote the orientation induced on
itT (t)M by the orientations on the ordered pair (L(t), N(t) ) he

: following results are immediate.
(1) 8(0) is compa.tible with 8(0).

L (11) 0(0)'is compatible with 0(1) if and only if-
. ¢ has.an orientable tubular neighbourhood.
" (111) 8(0) s compatible with 0(1) if and only if the field P is
‘orientable. ' -

(iv) 5(1):is compatible with 6(1) if and only if s is even.

"-R'-Hence"

Vlf-'Proposition 8.4 - ‘A tubular neighbourhood of C‘and'the~field of'kernels

“'-of Df along C are simultaneous;y orientable or, non orientdble if and onLy

- f'if C contains an_even number of cusp points.

. Now sPecialis,e to the case n'= 2, Let f¢€ Lo, ]Rz) be & Whitney

map of & smooth compact surface M.
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Deﬁnitiop_s 8.5 A function g € #(ME, R) is said to 1lift f if

. fXxg ,:-Mz_-o R’® is an immersion. In this. case one says that £ 'admits

' ~thev _l.ilftinﬁg function g If f admits a lifting f‘unction, then f is the
projection of an immersion into a plane.- | |
Let ge L (M, R) 1ift £ ‘and - let C be an Aarbvitrary-crease. curve

‘ of f : Now in the notation of the last discussidnf,. g 1ifts £ if'and only-

: -'-if’ at ea.ch point c(t) €C, the kernel of Df and the kernel of Dg have

- trj,vial 1ntersecti‘on. Or equivalently if and only..if g is non—singuler

., ﬁat:'c“(‘t) and .P(t)' is transverse to the teﬁgent “to the lé%re:]. curve of g at .
. p(t) . - DR ] o e
- Now impose an- auxilliary riema.nnian metric of M,' denoted.by < >M
'..-,:then grad(g) is a. nowhere vanishing vector field along C such ‘that P(t) is
‘.:never orthogonal to grad(g) (c(t) ) | Choose 8 unit vector p(O) in .

"-:'IP(O) and extend it to a field p.of unit vectors round C, with
| p(0) = tp(1) accordin_g as P is orientable or' not. Then the ﬁmction

NS [0,1] - ]R4 .defined'by | o

Mt) = <), grad(s) (e(t) ) >y

is continuous _ahd is never zero. Hence p(1) := p(0), and in.consequence
o the field of kernels of Df along C is orientable. - |
| _ Conversely; let the field P aloné C be orientable. Using the
» riemannia.n metric on M, let I L be a field of unit tangent vectors along
¢ and let n € N be a field of unit normals along C. . Now 1(0) = 1(1),
. and n(l) - +n(0) according as C has an orientable or non-orientable
neigﬁb_ourhood inM. Letp € P be a field of un:.t vectors in P. Slqce
P is orientable, p(0) = 'p(l).. ' o

. Define functions - a, B : [0,1]'-' R by

a(t) = <p(t), £t) 3y BlE) = <p(t), n(t) 3y
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o 1is periodic of period 1, B 1§ periodic or antiperiodic according as
N(1) = +n(0).  (Here the words 'periodic’ and 'éntip_eriodj.c' are used
in the following sense. - Let 7 : [0,1] = TR be a smooth function and -

let ¥ : (-€, 1+€) - IR be a smooth extension of y. Then 7 is periodic

_ : : i i
| - . a4 -
" or antiperiodic according as 7(0) = % 7(0), - 7(1) = - y(0) - for
' at™ - dt '

i=1 ‘2‘,ood’~ )o
‘Now pa.ra.metrise a closed tubular neighbourhood N? of c with para.meters .

. (t,s) €I X [ 1 ,11, by identifying N' with the unit norma.l disc bundle N' of
¢ and by mapping (t,s) eI x [-1,1] onto 8. n(t) eN(t). ‘

A ﬂunction g on N* which is 1inear on the normal rays can be

. expressed in the for

._g";(t,s) . A(t)"-n.- sB(t) :. = :

- whére’ A is 'pér'iodic,' and B is periodi'c‘or aht‘ipéi‘io_’did _'é.é‘ooi'ding aé‘N'

' _f-is orlentable or not., .

Now, such a function g' lifts f on N' if and only if, for each

o) . (8) B B(E) A0 (B1)

Let a': A[O‘,'lj o R be a smooth f‘onction such that there eoci'st positive -
| real numbers €, t,, té, tgs t, with : |
0<t;-e<t% <t <t, +e<’c —e<ty <t <t te<l suchthat at
:'eqpals_a on [o, ti"el U [t24-€, ts-e] U [t‘+ €, 1], such_that a' is
.rvion-‘zero and takos,.opposite signs on [fl, t,] and [ts; t ‘j and such th.atA
for each t-¢ [0,1] | - |

a().a (1) * BB (D) 4 O
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‘Let 7y ¢ [0,1] » IR be a smooth function teking positive values, and
taking value 1 except possibly on [ty, t,] U [tg, t,] such that
L ,
[7(1:) @ (t) dt = oO.
5 .
.;'T‘h_is is made possible by exploiting the fact tha{-,_'a', has inﬁemlé'whefé '

'7 '1t takes‘positive-and-negative values.

" Now define
A(t) = fr(x) o (x) dx
_ ! o

L B(t) = y(t) B(t)
@' (6,5) = A(t) + sB(t).
-'Thén'é'éﬁeatisfyiné‘the requiremente,of emoothnese,»éeriodicity and fne
| inequality (8.1), is a function which lifts f on the tubulam neighbourhood
N, Pemform this construction for each crease cumve of_f and use the
m ‘Whitney extension theorem {28] to obtain a funcnion g: M - IR which
v lifts f.. Indeed, by making an arbitrarily smallfehange in g one will not

disturb the transversal property of the level curves of g and the kernels

of f, hence g may even be chosen to be a Morse function which lifts f.

: «Pro_position 8.6 I£fe l(, T)isa Whitney map, then £ admits &

"l 1if%ing function if -and only if the fleld of kernels of Df along egch

: orease curve ig orientdble.

Comblnlng this result with Proposition 8 4 one obtalns

",1Proposition 8 1 A Whitney map of a, cogggct smooth manifold admits a-

. -.lifting function, or equivalently, is the projectlon of an immersion in
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'-_I! 9 if and only if each crease curve contains an_even or - odd number of

o cusp points according as its tubular neighbourhood is orientable or non—

;orientable._

| 'Proposition 8.6 generalises in the:follouing'uay; Let n 2 3 and
'-let MI-l bé a compact smooth manifold. Consider the map spece .

_,,ﬂ(M, R20- 2) and the associated :jet-space Jt(M, R 2n‘-_2) By [33, §e1],

’:4 or by the methods of §5, there is an open dense subspace of

(M, 2n 2) whose members are called gggg maps, with the following '

2n 2

'Definition 8, 8 fe (M RTC) . is good if

| (i) rank"Df = (n-1) evezywhere,

(ii) f(l) M- J*M, R 2n—2)- is. transverse to the space of
-Jets of rank (n—l) - The singular locus'offfiisﬁtnuS'av'
finite collection of smooth closed curves, o '

(iii) the kernel of Df and the ‘tangent line to a singular curve
never coincide at a singular p01nt. _

Let £ : M - RP e good, then

Definition 8.9 g : M - R Llifts £ if and only if £.X g : M - man‘l

'is_an immersion..

Using anlausilliary riemannian metric on M, one determines that .
g M—omliftsfifandonlyif B

| < grad (g)(m), ker Df(m) > # {0}

, for each singular p01nt n of f.

Let K be any singular curve of f, let k : [0,1] = K be a smooth
: para.metrisation, and let P(t) be the kernel of DEf &t k(t) If g:lif‘ts £,
then projecting grad (g) (k(t) ) orthogonally into P(t) gives a nowhere

'zero smooth section of P, hence an orientation of P.
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‘ Conversely let pA.c P be a smoo{:h periodic ﬁeld of unit vectors.‘
.'Let N be the normal bundle of K in M and let N(t) be the normal space to
X at k(t)., Let m, eeeym _; SN Dbe a smooth orthonormal frame field
.wi’ch. Ty """mn-l_, periodic; and with ml(l) = *tm (0) accerdlng as N
s orientable or not. | -

 Let N' be a closed tubular neighbourhood of K in M. 'Denof_ing by
Pl the cidéed unit disc in Pt ,- one parametrises N' by pai_;e.meters

n-l, where § = (s, ceey S _1), by ident'if-ying N' with the
'unit norma.l disc bundle of K in M -and mapping (t,s) € IX D n-1 oﬁto- |

(t,s) e I XD

Lol ('c) +oue. + om 1(t) e N(t). A function g" on N' which is

n -1
linear on the nomal spaces can be expressed in the form
| ' ‘n-1 -
g'(t,s) = A(£) + Z B,(t). 5, .
=
Define a(t) = < p(t), £(t) >, Bi(t):s < p(t), mi(t) >, Approximate
: : | n-1 ' ,
« by o in the sbove fashion, so that a(t). a'(t) + Z Bf (t) 1is

_ i=1
never zero, and proceed as before. Thus

Proposition 8.10 A good map f € LM, 1R2n'2) 1ifts to an immersion

ig'lRan-l if and only if the field of kernels of f along each singular

curvei is orientable.

The Number of Cusg
The following proposition, due to Thom [25 » The 9, p.8h] will now be'

established. Let Mn be a smooth compact manifold.

" Proposition 8,11  The number of cusp pdints of a Whitney map of M has tl}e:_

: s’a.me'parity-as the Euler characteristic of M.




 First, letting £ ¢ £(M, B?) be a Whitney msp, C(f) the singular set of .

- £-and C*¥(f) the cusp points of f, one observes, from Morse's Euler

A‘-iformula [22], ‘that the Euler characteristic of M and the number of

'”singular points of a Morse function on M have the same parity.

Next, returning to the analy81s that precedes Pr0p081t10n 8.3,

let z e IR bea unit vector such that < z,f > 18 & Morse function, and -

‘?iiz is not-perpendiculer to any of the tangent‘lines to the cusps of.f.v

The number of singular points of < z,f > is precisely the number of points
of C(f) - C*(f) where the tangent to the imagepcreaSe curve'is"'
perpendicular to z. By the choice of z, the restriction of < z,f > to -

-¢(f) has simple maxima and minime at just these points.

.Let.Cfbe one of the components of C(f) and-let C* be the cusp set.i,
of £ on C. ,'Orient C, and define snoothly on'C* -Can oriented:tengentl-
to. the image of C* - C so that Df preserves the orientation.;' In the o
_3plimit, at a point of C* the oriented tangent to the image makes an anti-
podal jump. Thus ‘the. stationary points of < z,f > on C --C* are

‘.alternately maxime and minima; except that consecutive stationary points
ewhich ere separated by just one'cusp'point are of the same type. |
‘-éonsequently there are 2k + e singular points of < z,f > on C - C¥ where
k is a_non—negetive integer and 8 is the number of cusp points on C.
| ~ Summing over all the components of f,‘one.obtains: the number of critical
points of < z,f S on M has_the same parity es the-nnmber»of cusp points of

i £, " This, with . the first observation;‘yields_the‘proposition.-3

‘,Minimality and Lifting
Given a smooth compact manifold M of n dimensions, therelie'a well’

.1;‘known inveriant of M, known as the Morse number of M.




o f‘.,w.h'ere ‘uG( ,1) is_a normalised invariant measure. '

 * the standard embedding of S2 in IR® is a Whitney map which is minimal,
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~'Definition 8.12 1f ML(M, ]R) denotes the space of Morse functions on

M, and if 4: ML, R) » Z denotes the ﬁmction which assigns to each

' Morse f‘unction the nu.m'ber of its singular points, then the Morse number of M,

u(M), is defined by

u(M)T . 'inf'{‘#f £e J{.L(M, JR)}

Iffe .,((Mn IRP) ig l-good (§3), then for almost all L € G(p,l), .'

B #‘(PL.Q f) ig defined. Ohe d‘efine_s the total _curvature of £, T(£), by

(P of) duG( 1)(L) 3
G(P’l)

r £e L0, IRP) is 1-good, then £ is seid to be minimal if
(o) - (). o

) » There is an extensive literature concerning minimal immersions (see |
‘ [12] and- [9] for bibliographies). The connection between total curvature -
-and the classical definition in [6] is quickly recovered by applying

Fubini's Theorem [8 p.115] to the considerations of §2.

Trwially there 1s & minimal map in H(M, R).

Proposition 8. 13  Any compact’ smooth surface admit'saWhitney map which

' is m.inimal.

The proof is by example, divided 1nto the foJ._'Lomng three cases.

(1) If the surface is the sphere Sz, then any' planar projection of

A.The sing'tﬂ.ar locus 1s a great circle which is mapped dif‘feomorphical]y into
" & circle in the plane. T =2 = u(s?).
(1i) If the surface is the Klein bottle K2, then 3 minimal Whitney

© map of K2 into a plane mey be constructed as follows. Let A, A' be
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Flg. T
; »Let Pdy P q be radial segments, and cut A, A' along these segnents. -

"(Fig. II).

we ™

7"F1§.VII R

" Superimpose A upon A', identify the circular parts of the boundaries and

- - identify p g with 2, qét and p,'d," with p,dp o '“ (Fig. III)

Fig. IIT

These identifications give a smooth map of K% into IR2 which is Whitney
and minimal. ThHe singular locus is two closed curves .which are mapped

H(embedding) into ‘concentric circles in the plane. Talb= p(Ka)

| (ni) If the surfa.ce is the projective plane P2 then 8 minimal

.; Whitney map of P 1nto a plane may be constructed as follows Congider

the map f : D2 - m2 where D® is the disc of radius 3 in 1R2, given by
f(z) 22+ 2a([z|)z

using the Argand ,.representation of IRZ, where a.A: '[0,3]‘ -+ R 1isa

smooth function such that
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aft) = 3, O0sts1)
a(t) = 0, 2<t <3 ?

-15%1‘3;‘('0) <0, 1<tsz2]|.

<4

Then f 1s & Whitney mep with singular locus the c1rcle of radius. % and
cusp-p01nts at %) (*‘2ni/3). The image of. the 81ngular 1ocus of
£ is'a tricuspid. curve’ (Steiner s hypocycloid). (Fig. IV)

Fig. IV

.“The_hatchedlcurve representé the image of the:circle'of'radius 2,

| "the dotted curve the circle of radiﬁs:l's, the outer heavy curve ihe
.image of the circle of radius 3. Note that £ on {z t2S l | 'B)Iis a
;dqqhic'coveringi§f4 {z': ¥ <]z] <9}.. In particilar antipodal points of
 the ‘qomdary;'of'Dz-'are:mapped to the’same .pointv'of--IRzl:- in such:a way that

.:.“f énd'all its derivatives can be identified.

- The compact surface obtained by identifying the antipodal boundary
points of D® is just P2, BSince f respects this idenﬁification, f may be
‘regarded as a member of dZ(Pz R?). Thus regarded, f is easily seen to
j'? be & Whitney map whose crease set contains two closed curves. The first,
which is null—homotopic, contains three cusp pointe and is mapped |
. bijectively onto the tricuspid curve as above, The second, which is
,_essential, contains no cusps and is embedded as the circle of radius 9..

Mbreover f is minimal: the tricuspid contributes one singular
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* point, the circle two. T(f) = 3 = p(P%).

(iv) Handles may be added to the surfaces in (i), (i1), (iii) so
' -;that the respective Whitney map extends to a Whitney map with‘one extra
' crease ‘curve for each handle, corresponding to the 'waist' of a handle

_of negative curvature, (Fig. V), which is mapped to a circle in the plane.

Fig. V

_ Each handle contrihutes 2 to the total curvaturet Every“compact surface
: 5is_of one_of the types (M® plus g handles), where M® = 52, fz, K2,
‘(Sg'+ g handles) = 2(1 + g), u(P® +g handles)_: 1 +té(1'+_g): _

- p(k® + g) handles) =2+ 2(1 +g). Each of the corresponding Whitney

- maps is minimal; ‘the image of the crease set has the fonm ‘shown in

'Fig. VI, where the general figure has g dotted circles.'

-There are two aspects of this theorem, and its examples,-that are

:';worth:commenting on. First, by the criterion of this section, the

7-'orientable surfaces and their maps‘admit a lifting to iﬁmersions on ﬂf’-

'f: the corresponding minimal Whitney maps -are projections (vertical) of the

. 'standard' pictures of these surfaces as regular submanifolds of ]R2. The.

: non-orientable surfaces, on the other hand, have been_given minimal
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| JWhitney maps which do not admit liftings to immersions in RS. They -
can be lifted to immersions at all but a finite number of points, two
for (IP® +.g handles)', one for (K2 + g handles), where the map into R’®
exhibits singularities of the_'cusnidal' type described in [30],'[31J and
- B3, S0l | R
The second point is that for IP2 there is a gap in the dimensions
' of-the euclidean spaces into which there exist minlmal maps. : For it is :
known that there exist minimal immersions of :IP2 and R* ,’.and that there
' do not exist minimal immersions of I in '.TR‘3 [12]

A Whitney map of. JP2 into IR®~ which does admit lifting can be

' A,obtained by a suitable pro jection .f"its immersion in R® as ‘Boy's

rSurface. _ "An excellent photograph: illustrating such 8 Whitney map may be

o seen in 'Geometry and the- Imagination’ by Hilbert and Cohn—Vassen, Chelsea,

. New York, 1952. _.The total curvature of this Whltney map is greater than

(non—minimal) and less than 5. Fig. VII represents the _image of the

-.bunique'v crea_se curve of this map.

| - | Fig. VII
The fact that this map lifts derives directly f‘rom the criterion

above, or alternatively from the following easily proved result

Propos'ition 8.1k A Whitngy map of"a compact’ snrface, which has just one g

crease curve can be lifted to an immersion in RS.
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" §9 FROJECTIONS OF SMOOTH MAPS

Definitipns 9,1 ‘Let M be & smooth rﬁanifold, m € M, k and r positive

h _"'ilntegersv and £ : M > TR a smooth msp, Then f is rth ‘order"no'n-

o degenerat.e at m if in sbme, and hence any, coordinate system ;cqn‘baininig m,
'regarding_' £ and_its pgrtial derivatives of all ordefs as vector valued
»ﬁm’ctidqs s the space spanned by the partial' derivai:iire's of £ at my, up to

‘the rth order derivatives, has maximal dimension, [157.- One says that

o f'-i's‘ _rth order non-degenerate, if f is rth prdei' non-degenei'a;te at every
‘point of M.
. ' The following c.énéequences of ‘this defi_rxitioﬁ - are immediate:
(1) Ifk<n,and fee f(M, R ) is first order non-degenerate then Df
3 has.maximal zjénk k everywhere, or eq_ui.-vgle.n_tly is a submersion. |
‘ . . : ) . k ' ) . .
(11) Ifk >nand £fe f(M, R ) is first order non-degenerate then Df

has maximal rank n everywhere, or equivalently is an immersion.

(111) If n =1, k = 3, and £ ¢ L (M*, R®) is first and second order non-
degenerate thenA equivalen"cly. f is an immersion of a curve with
" nowhere zero curvature.

() Ifn=l, k = 3and £f.e L (M, R®) is first, second and third

| order non-degenerate then equivalently f is'an immersion-of a curve

with curvature and torsion nowhere zero.

n+l

() -‘AIf k=n+tl and f € I,,/f,(l»fn, R™") is first and second Qrdér non-

ideg_enerate then equivalently f is an inmeféion such that at no

" point are all the principal curvatures zero.
" (vi) The set of rth order non-degenerate maps in Lod, IRk).is open.

. Note ‘that in genéra.l they are non-generic, being defined by the condition .
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‘- :'that the jet prolongation does not encounter a jet-submanifold of

o poésibly.low codimension,

"Clos.ed* curireg '
‘Le.t s, mal)' be the space of smooth.-cidséd curves imiersed in
R, (%, R®) is open and dense in [ (8%, R®). In 5%(s%, B°) the
‘set of jets derived from elements of L[S, ]R®) &t points where
'iéurvatuié is zero forms & subménifold.of codimension 3. _-Thus.thé space
" No(s*, &) ofAfirst.and gecond order nondegenerate curves is opeﬁ and '
_"dehse in :EXS}, R®). 1In J3(s!, ]R®) the set of jets derived from
 Ve1eménts of.712(sl, R3) at points whére torsion is zero fbrm,a.éub—
manifold 6f*codimension 1. Define fJé 722(81, ) to be 3-regular if

o p(3)

is transversal to-this submanifqld.‘ B—regular.curves are'thﬁs
~ open and dense in ?12(Sl, 1R®) and are characterised by the propértiés:‘.-
"7{(5) curvature is never zero, and (b) when torsion is zero its derivative
is non-zero, (ﬁnd consequently torsion is zero at just a finife collection
"6f.bbints); |
 Let f = T(s*, ®3), m e S* and let f be iaarametrised by arc
. length in a neighbourhood of mvas base point. Using Taylor's'expansion

~formula and the Serret-Frenet formulae [3@], one obtains
©f(s) = f(m) + [s - Bs%3! - ke's%/8lt .
ok [ksBf2 4 ks (K" - ke = )sY bl
+ [k1s®/3! + (ek' 7 + K‘t')s"’/él Ib + 0o(s*) ,
‘where (%, b, D) s the Frenet frame of £ at m and K, T, K, T, K
 ‘ denote the values of the curvature and torsion and their derivatives at m.

Composing f with a projection P onto a-line L in RR® one sees that -

Po f has a singularity at m‘if and only if L isAparallel to the normal
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| plane of f at m, that the singularity is non-degenerate if and only if «
is not 'ze'ro; if however Kk is zero, the singularity is of codimension one
(r)

if k' is non-zero, and in genéral if Kk, K'y voey K ] ‘are zZero, then

’-_th'e gingularity is of codimension (r+1) if K(r+1). is non-zero. Hence

E f Prbposifion.:9.2 Iffe AL(s*, ®’3) isa second order non-degenerate

' immersion, .then every orthogonal projection of £ onto a line 6f R? is a

" Morse map.
Next, composing f € ,ﬁ(slr, R®) with a projection P onto a 2-plane
'-A"F,in, RS 'bne sees that Po f ha's a singularity at m if and only if = is

| 'paréli_l.lél'to the normal plane of f at m. Moreover, when this is the case:.

(1) If k# 0, 740 then the singularity is a cusp of the first

spec‘i.es with model y® = x® + 0(x3)

< (i1) If k40, T=0, T £0 then the singularity is a cusp of
‘the second species (keratoid) with model y2 = x* + 0(x*) . | B
.. Singularities of higher codimension are detérmined from further terms of
| "the AT‘aylor' expansidn under the dual conditions that kK, T are rth, sth
order regular (§1) at m. As has been shown, the. cases (i), (ii) ebove

cover the generic configurations.

'Proposition 9.3 If f e L(s', ®®) is a 3-regular immersion then

(1) projection of f into a plane has singularities if and only

1f the unit normal of the plane liés 6n the tangent indicatrix

of £

o (ii) the sing‘cﬂarifies are a finite number of cusps wpich (except

when the normsl of the plane is a point of the tangent -

indicatrix which has ur_u‘.t curyature) are a;.l of .gemi-cubical-

' pamboloid type;
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(1ii) projections along the finite number of exceptional directions

have at least one cusp of the second species.

. Surfaces
Let M® be a smooth compact surface and let £ : M = R® be a

- smooth immérsion. " Let z be a fixed unit vector in R®, let 115 < R be

- ..'*va plane orthogonal to z and let P : R® - ]I denote orthogonal

pro;jection onto IIZ . The question arises: wha.t is the relation between -
'the.geometry of f and the geometry of the singular locus of the composed
map P of : M ~IC 2 |

Let m ¢ M, and let (U, 6, {X, X} ) be a coordinate system centred

:,'o'n,m € M. Denote ]'[z 'y Pz ambiguously by- I, P; keeping z fixed throughout.

Df(m) is & mohomozphism' the kernel of DP(f(m)) is the line L through f(m)
:pe.-rallel,to 2. . Either Df(T M) has trivial intersection with L and

| '.D(Po f)(m) has rank 2 and m is a regular point of Po f, or Df(T M) contains
L and D(Po £)(m) has rank 1 and m is a singu.lar p01nt of Po f. NovvrA |
Df(’.[‘ M) contains L if and only if the line N normal to DE(T M) through

i f(m) is normal to L, if and only if the (two) unit normals of f at m lie
~on the great circle Sl(z) in 8% orthogonal to z... If p: UMM = N,

: UNM - 82 denote the unit normal bundle and? normal gauss-map of f one

B

may summarise this paragraph by

Proposition 9.U Pof : M® - 2 has rank e'vei'ywhere equal to 1 or 2;

the_set of points_where Po f has rank 1 is the set p(r™2(s*(z))).

Hence the singular locus of Pof is determined by the gauss-map of
~-the immersion f. Let'm € M bée a singular point-of Po f. Let
(v, 6, {x,, X,} ) be a coordinate system centred on m. . Let n : U - §2

be a selected unit normal vector field of f over U. Looally the singule.f
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. set of Pof is given by n"'(S*(z)). Note that n(m) € S(z)
. If n is transversal to S'(z) at m, then locally n"*(8%(z)) is a

- gmooth curve. . This condition is exhaused by the following two cases.
(1) Dg(m) has rank 2, i.e. the Gauss curvature at m € M of the
{mmersion f is non-zero, (see §2). Then n is locally a diffeéniorphism
- and n"*(8%(z)) is locally & smooth curve passing through m.
(41) Dn(m) has rank 1, i.e. the Gauss curvature at m € M is zero,
- but one of the principal curvatures is non-zero, é.nd DB(TmM) is transverse
to."Tn(m)Sl (z). . Then n71(s'(z)) is locally a smooth curve passing through m.
The' following two'ca.ses describe the occasions when n is not '
- transversal to $*(z) at m.

) : Y : - o 1.y -
o (1i1) DE has Ifank 1, and DE(TmM)'f Tn(m)s (z).

 (1v) Dn has rank 0.
The case (i) covers the elliptic and hyperbolic points,' (ii) and
(ii1) the parabolic points and (iv) the flat points of the immersion f of M.

To elaborate these cases and to discuss the restriction of Po £ to

" its singular locus, one will describe these cases in local coordinates.

Let m e M, and let (U, 6, {x,, x, }, (BR®, A, {y,, ¥o5 75} ) be

'coordinaté' systems linearly adapted to f at m. Then

x, = y,0f - (y;0f)(m) )

1
X, = ypof- (yyof)(m)

-gf-(m)- = < ot(n) | f

X1 1

) = 2ot ) |

ox o . : ]




Now m is a singular point of Pof if and only if there exist real

ngmbers A\, ), such that 112 + )22 =1 and |
. 3 of df of of
oz = A =—(m) + ) ——(m). - Note that ——(m) and -—(in) are
. ox, T o, - ox_ ox,
_ . : 1

" orthogonal _vecvtors. of unit length. - Let n* denote & unit normal of f at m,

. Then the_ plane i-through the oriéin_ of ]Rs, perpendiéular to z, has the.

“vector n¥ 'and z¥ = -, ——(m) + A (m) as an orthogonal basis.
- ox, X, S
- Hence -
"_Pof='<;z_*,f>_z_"‘('+<£1*,f>'£1*.
. Thus o L
R d(Pof) - df | A |
‘ = < g¥) - >z¥ 4 <p¥, —>n%,
bxa Bxa o Bxa

where @ = 1V,,2. Hence the singularities of Pof inU &M é;e given by

the geros of the map A : U = R, where

, of of - of af
A = <z¥, —=>< Ok > =<k, —— > gk, >,
ox, ox,, ox, ox,
of
Now, for a = 1, 2, < n¥, —(m) > = O, Hence
ox
| a
. o P | ®r df
—(m) = < z¥, —(m) > < n¥, (m) > -< n¥, ——E(m)_ > < z*, —(m) >
",axl, » X 12 1
R U YR P ®e - a |
- ——(m) = < z¥, - (m) > < n*, -—é(m) > - < n¥, ————(m) > < z¥, —(m) >
x5l ~ox) 0K, ox, 0x, :
of of

 Now z* = '-)‘2 ——(m) + A\, —(m), hence

X - X2
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aA()' azh*() 3Pn* \
-B;Zm'-:-)zaxlaxzm-)\lbxf(m)

aA() Bzh.*() - Pn* r
o T TegE g

2 12
where h¥ = <n¥, £>: M > R is the 'height function' of £ in the
‘ _ directi'on n* Denote the partial ‘derivatives of h* at m by sufﬁces.

Then the kernel of DA(m) is given by the space of

S d .
Wy ==(m) +p -—-(m) €T M 'such that
o %2 |
11"1 12 (e, + )‘2”‘ )hlz + )2“‘2 = 0

. Note that.the h:B ‘are by §2° the components of the second fﬁnda.menta.l form
'l’"of‘f at in in the. direction n*, ' The kernel of DA(m) is the 'tangent spa.ce'

: to the singular locus of Pof at m.

DA(m) has renk 0, A is not transversal t0.0 at m, if and only if

111 )2h12 = 0

A b 12 )‘zh .
' , d 3
' Now, if by choice =——(m), ——(m) are chosen to be orthogonal principal
A X, X ‘
o : _ 1 2 4
. axes [34] of fatmeM, then h";l, hgz are the principal curvatures
o of of
of f at m, assuming that <{ —(m), ——(m), n*} is a frame coherent
- ox, sz

with the standard orfentation of T®; and k¥, = 0. Thus, if

(1) m is &n elliptic or hyperbolic point of f, then A is

N transversal to 0 at m,
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_ (ii) ‘m is a parabolic point of f, then A is not transversal to O
at m if and only if z is perpendicular to the Df-image of the "direction

of brinc’ipal non-zero curvature at m, and

(iii) m is a flat umbilic point of £, then A is not transversal

to 0atm and T M is the kernel of DA(m).

Moreover, it fol_lows direct]y from the above that if T M contains a
vector, 'tangen*" to the singular -locus of Po f, whose Df-.lmage is

parallel to z¥, then this vector is asymptotlc [34] with respect to f at m.

. Projections of surfaces and Whitney maps
'Ih order to compare the singularities of‘Po f with those of a'Whi'tney

'map, one must- introduct coordinate systems which present Po f at the

. singular point me Y in a suitably adapted form.

Therefore define 7, : R® » R, £ :U- R by

M= oYL MY,

My = Ya [
Mg = 1Y
g; == 1le M
: §z = )‘1*1 X,
Then " n,0f = <z¥, £>
nzof = < 5_1*,' f>

ng0f = <z, £>

(< g*, £ - £(m) >

(72 .4
™
il

& = <E,:f”-f(m)’>‘-
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“Hence
n,0f = §l+<g*,-f(m)5
N,0f = <n¥ £> = n*
But - | _Pof = (nyof)z* + ('qzof)g* A
o . ~ 3ngot)  d(nyof)
Cand: oo (1) = ————(n) =
' ' SR 9%

' Thus (U, o', {51: gz} ), (R3, A, {n,, ns ng}l) are coordinate

- gsystems 1inear1y adapted to f at m (modulo transp031tion of - n2, ns)
such that (U, 6', (&, &1 ), (I > A" {n;, B} ) are linearly adapted

to Pof at m.

Applying the definitions of $5

(1) .m is & fold point of Pof if and only if

FP(ngof)
(m) # 0.
Now
| = - +:1)‘1§2
x, = M§& +2 €,
ani_i : n,of = h¥
o ‘Hence |
d(nyo0 £) oh* oh¥*
—— = At Ay —=
] 3 axl Bxg

Thus.
| ¥ (0 f)
: '8-52

- * * *
(m) = "1 hll + 20 M hT, + xa hz,
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Hence m is a fold point of Pof if and only if

2 * 42
MY, + 23kt + Al nE

| (II) Similarly, m is a cusp point of Po f if and only if

P (ns0f)
m) = 0
ot2 ~
o%(ny0£)
—(m) # 0
3¢ 3¢,
B(ngot)
5o m) # 0
2
- ‘Now
32("]20 f) ’ i
8§13'§2 (m) = -2 ANT, (}‘12 - 22 )h-:z +)‘1>‘zh.)2‘2 ’
and
T(m) = )‘ °n¥ L 4 E A, + 3NN Ry + AThE,,
- ,

Hence m is a cusp poin{: of Pof if and only if

2 2
xlh’l‘l + aaAhY, + Ao hE, = 0

2, % '
112"'}‘1)‘( )’ka'h;z’éo

.3 % S1.%
}‘l hlll + 5)'1 )2hll2 + Bl }\ hl22 + }‘2 h_222 * Y

(III) By the same token, Pof is rank good at m if and only if

~ either :
’ 2. % . 1. 2, % )
1'1 hll + 211l2hl2 + )2 h22 # 0

- 2. % ¥, * 2 %
. _ A Bt A (kg - hyy) - A # 0.




 Now, adopting as above, a coordinate system {xl, x2} on M such

that =——(m), —(m) are principal directions and denoting h¥_, n*
3x 3. ' 11? “22
Oy Xy | -
in this ‘system by 'kl, k, , the principal curvafures, one may reinterpret
(I, II, III) by the following geometrical forms.
2 .2 . .9 9
Ak, + Xk, =0 if and only if A, ——(m) + A, ~——(m) is an

- a'sympfofic direction at m of f.

A0k - k) =0 if and only if either m is an umbilic point of

: o d 9 ‘ _
£y, or A —~—(m) + A, —=(m) is a principal direction of f at m.
, Bxl x,,

Note that an elliptic point has no asymptotic directions, and a
- ‘hyperbolic. point has two asymptotic directions, ~ A parabolic point has one
asymptotic direction which is also principal, vrith principal curvature zero,

‘At a f_]at umbilic point all directions are both principal and‘asymptotic.

' Prbposition 9.5 If Pof : M —» 112 has m € M as a singular point, then

(i)A m is a fold point of Po f if and only if the Df-preimage of z

_i_j_l TmM is not an asymptotic direction of f at m.

(11) m is a cusp point of Po f if and only if the Df-preimage of

z in TmM is a nonprincipal, asymptotic direction of f at m, which is not

a zero of the cubic form D®(< 51_*, £ >)(m).
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be made to ofientable manifolds of even dimension., . The _fo:wﬁu],a 1;rou1d be
one which related th‘e. 'winding numbers' of the iméges of the crease curves
with the Euler number of the manifold., The methods of_‘ Propoéition .8.11
do this modulo 2. | " |
Finally, it would be satisfactory to des‘cribe, if possible, a
reasonable class of immersions -of surfaces in R® which are 2-good in
- the sénse '_thavt. ahnost all their planar projections are Whitney maps, and
;-hopeﬁllly to extend such a resuit and the a'nala.rsisl of §9 to inﬁqersions: and

more lgeneral smooth maps of manifolds of arbitrary dimension.
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