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PH.D. Thesis 

Total p-td Curvature 

an 
Foliations and Connections 

M.0". Derrick 



ABSTRACT. 

This thesis i s i n two parts. In Part I we consider integrals of 
the p-th power of the t o t a l curvature of a manifold immersed i n Rn 

and thus introduce the notions of t o t a l p-th curvature and p-convex. 
This generalises the ideas of t o t a l curvature(which corresponds to t o t a l 
1st curvature)and tight(which corresponds to 1-convex)introduced by 
Chern, LQshof , and Kuiper. 

We f i n d lower bounds for the t o t a l p-th curvature i n terms of the 
b e t t i numbers of the immersed manifold and describe p-convex spheres. 
We also give some properties of 2-convex surfaces. 

F i n a l l y , through a discussion of volume preserving transformations 
of Rn we are able to characterise those transformations which preserve 
the t o t a l p-th curvature (when p>1)as the isometries of Rn. 

Part I I i s concerned with the theory of f o l i a t i o n s . Three groups 
associated with a leaf of a f o l i a t i o n are described. They are a l l factor 
groups of the fundamental group of the l e a f : the Ehresmanngroup, the 
holonomy group of A.G.Walker, and the "Jet group". This Jet group i s 
introduced as the group of transformations of the f i b r e s of a suitable 
bundle induced by l i f t i n g closed loops on the leaf, and also by a 
geometric method which gives a means of calculating them. 

The relationship between these groups i s discussed i n a series 
of examples and the holonomy groups and Jet groups of each leaf are 
shown to be isomorphic. The holonomy group of a leaf i s shown to be 
not a Lie group and, when the f o l i a t i o n i s of codimension 1, i t i s 
proved that the holonomy group i s a factor group of the f i r s t homology 
group with integer coefficients and has a torsion subgroup which i s 
either t r i v i a l or of order 2. 
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P A R T I 

Total p-th Curvature 

SUMMARY 

Our object i s to study integrals of the curvature of a manifold, i n • 
a way which extends the known results i n the topic of " t o t a l absolute 
curvature". A l l the work i s original unless otherwise stated r That i s , 
chapters II-V and a l i t t l e of chapter I i s or i g i n a l r 

In chapter I we define the t o t a l curvature of an inmersion 
f -.if1 •*• R0*1* by the integral t ( f ) = / K(m) u where K i s the t o t a l curv-

.wr* n 
ature at m E n and u i s the riemannian volume form on JVr induced from 

n 
the euclidean metric on i s assumed to be' closed, compact, Gl 

and orientable. We then state the main theorems about i ( f ) and snow how 
the theory extends to non-orientable manifolds. 

We show that for any there are iranersions, f , for which t ( f ) i s 
a r b i t r a r i l y large, i.e. there are no theorana of the type 
"x(f) ̂  constant for a l l f M . On the other hand the infimun! of i f f ) , 
over a l l immersions f , i s an interesting numberj i t i s a d i f f e r e n t i a l i n 
variant of M11. Immersions for which i n f t ( f ) i s attained are called 
" t i g h t " c In chapter I I the t o t a l p-th curvature of f i s ds-'ined as 
t»(f) = K?(m) w . As Kpu i s not dimension free there are no theorems P n n 
for Tp which generalise those we have stated for x- However we show that 
i f the immersions considered are such that the volume of f(M°) i n R"+N 

i s fixed, analogues of the theorems true for T are true for T^-. The i n -
fimum of T p ( f ) i s a d i f f e r e n t i a l invariant of vf1 for every p and immers
ions for which this infimum i s attained are called "p-convex", 1-eonvex. 



i s equivalent to t i g h t . We also prove that T ( f ) i s a convex function 
of p. 

Total curvature has been generalised b y j ( l ) immersing M" i n an 
arbitrary riemannian manifold,(2) integrating a curvature other than the 
to t a l curvature . Where there are theorems i n these more general situat
ions, they extend to include powers of curvatures, For example we show 
that i f M2 i s a smooth closed compact surface i n R3 with area kit and 
mean curvature H, / |H|P O>2 ^ 4m for a l l p > 2, equality being attained 

M2 

when M2 i s the unit sphere, (The case p = 2 i s due to WillmoreK 
Just as sup r ( f ) was unbounded we show, i n chapter I I I , that 

sup T p ( f ) i s unbounded for a l l values of p * 0, Also,it:is proved that 
i n f T ( f ) = 0 for p < 0 and 0 < p * 1 and that there are no immersions 
for which these suprema and infima are attained-. 

The t o t a l p-th curvature and p-convexity of curves and surfaces i s 
examined i n chapter IV c We describe p-convex curves and spheres for a l l 
possible values of p and show that there i s no 2-convex toruo of revolut
ion i n R3, We then examine 2-convex surfaces i n R3 by variational 
techniques, deriving equations which 2-convex immersions must satisfy c 

We thus prove that there i s no 2-convex torur, with one principal curvat
ure constantt 

In chapter V we investigate the group of transformations, which pre
serve p-convexity. As p-convexity i s defined via immersions with a 
fixed volume we are led to a study of transformations of a riemannian 
manifold which preserve the volume of every k.-dimensional submanifold^ 
These "k-volume preserving" maps are defined both locally and globally 
and the two definitions are shown to be equivalent. Finally, these maps 



are shown to be isometries and i t then follows that the p-convexity pre
serving transformation group i s the isometry group, 
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C H A P T E R I 

Total Curvature and Tight Immersions 

§1, Introduction 

One of the most important results of classical Differential Geo
metry i s the Gauss-Bonnet Theorem. I f M2 i s a C2 surface (closed and 
compact) i n R3 with Gauss curvature K and surface volume element dA, 

/ KdA = 2ir X(M X) 
M2 

where x(M2) i s the Euler characteristic of M2* 
The result i s so striking that one immediately asks i f there are 

analogues for manifolds of arbitrary dimension and other types of curv
ature, (the mean curvature, for example). With a suitable change i n the 
constant 2n and a choice of the curvature K the theorem i s indeed true 
for manifolds of even dimension greater than two, (the most comprehensive 
statement of the Gauss-Bonnet theorem i n this generalisation i s due to 
S. S. Chern C O ) 8 0 ( 1 a t present there are, broadly speaking, two "other 
types of curvature" that have been considered. One. i s the Differential 
Geometric approach to characteristic classes given by S. S. '.hern 

(especially i n H O ancl see also Kobayashi and Nomizu QSLjj 
i n which the Gauss-Bonnet theorem appears almost as a special case. 

The other type of curvature, t o t a l curvature, has i t s roots i n the 
following theorem of Penchel £ l ^ . I f Y i s a closed C2 curve i n R3, k 
is the Serret-Prenet curvature and d's i s the line element, 
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/ |k|ds * 2TT 
Y 

equality being attained when y i s a plane convex curve. This theorem, 
which was later generalised to curves i n R0 by Borsuk Q l ^ , with i t s 
inequality and special curve i n the case of equality, i s the prototype 
for a l l the theorems which followed. 

This chapter i s concerned 
with the statement of these theorems i n the form we shall use them later 
Our ultimate purpose i s to extend them to theorems about yet another 
"type of curvature", p-th curvature. 
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§2. Total Curvature 

rf1 w i l l be a closed, compact, orientable, C2, n-manifold* 
Let f i r f 1 •+ R n + N be a C2 immersion of rf1 into euclidean space of 

dimension n + N; that i s the induced map f* of tangent spaces i s a mono-
morphism (or, equivalently, f has non-zero Jacobian). 

Following Chern-Lashof * ̂  denote by Bf: S r f 1 the unit normal 
bundle of f. B f i s the subset of TOf 1*) x rf1 of pairs (e,m), where 
m e rf1 and e i s a unit normal vector to f (rf 1) i n R"+N at f(m). TT i s the 
natural projection T(R" + N) x rf1 -* rf\ into the second factor, restricted 
to Bf. 

For each point (£,m) of Bf, the unit vector £ at f(m) may be identi
fied, by euclidean parallel translation, with a unit vector at the 
origin of I f we denote the unit hyper sphere at the origin of 
Rn+I* by s" + N~^ we thus have a map 

. n Qn+N-1 
y - B f * s

0 

which i s called the Gauss map of the immersion f. 
We denote by g the euclidean metric on Because f i s an 

immersion there i s a natural injection of Tfrf 1) into 
T ( Rn+N, 

and hence 

a natural restriction of g : T ( R " + N ) X T ( R N + N ) •*• R to a map 
T(rf*) x Ttrf 1) - R which we denote by g . 

rf1 

g i s a riemannian metric on rf, and i t gives rise to the 
rf1 

riemannian volume element, oi , on rf , associated with i t . Let 
* n ' 

(x 1 , . . . ^ 1 1 ) be a coordinate system about m e M (that i s , a chart 
( x 1 , . . . , ^ ) : U -*• R", such that U i s an open neighbourhood of m) and l e t 
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(x 1) 
be the metric g expressed with respect to these coordinates, 

then 

oi n = f * det 
(x 1) 

^ 6x1h ... Adx" 

o>n i s independent of the coordinate system chosen for i f (y 1,...,y n) i s 
also a coordinate system about m 

(y 1) rf1 (x 1) 

3 x P 3 x Q «nH 
— j — j , and 
3y 33T 

dy^ ... Adyn = dx1A dx 
3x 3x 

n dxAA Adx det 

Hence 

n det dy'A Ady 
(y 1) M" 

/ I 3* S^^/st\ n det dx'A Aax 

n dx:A Adx det 

H ) n dx'A ± det Adx 
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The + and - signs occurring when the Jacobian of the transformation 
y 1(x 1,...,x n) i s respectively positive or negative. I f M11 i s orientable 
there exists an atlas i n which every such Jacobian i s positive (Kobayashi 
and Nomizu C O * Volume I , page 3) and so u>n may be defined by means of 
this atlas. 

Now, each fibre ir _ 1(m) of B f i s an (N-l)-sphere i n It and so has 
induced on i t a volume form, a„ ,, whose construction i s the same as UL, 

1 N-l* n 
for M". Also, B̂ , i s a product and hence oN_^ Ao>n i s a volume form for 
Bj,. We also construct the volume form £

n + N _ 1
 o n s" + N - 1. 

aN-l A u n a n i Y* En+N-l a r e - b o t n (n+N-1)-forms on the (n+N-1)-dimens
ional manifold Bf. These two forms must therefore d i f f e r by a real 
valued function on B̂,. We put 

Y * W l = G ( 5 ' m ) °N-1 A u n 

G:Bf •+ R i s the Lipschitz-Killing Curvature of f iM11 + Y^+li at m i n 
the direction «;. In co-dimension 1 G i s called the Gauss-Kroneker Curv-
ature and i s equal to the classical Gauss curvature when n = 2 and N =. 1.. 

The Total Curvature, K(m), at m i s defined by 

K(m) = / |GU,m)| o„ , 
n~1(m) 1 

and the Total Curvature of M" i s defined by 

TdKV.R^) = ̂  K U n 

= / |GU,m)| o j j , Au> 
B f 
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From the outset we have assumed that i s orientable, because only 
then i s u n globally defined and the integrals above are meaningful. 
However we may deal with non-orientable manifolds as follows: (see for 
example Abraham QQ). 

Let Sf 1 be the orientable 2-fold cover of M° and for a given immers
ion l e t f" be the map given by the following commutative 
diagram, 

P 

where p i s the usual projection. 
The volume form on i s taken to be f*u> and G, being a function 

B f R i s easily " l i f t e d " to a function G- on B by defining &(?*?,m) = 
G(£,p(m)). ( r * i s here the usual induced bundle map; see Husemoller 

P-l8, and 21* i s clearly a monomorphism so that (J i s defined on the 
whole of B„ ). 

The t o t a l curvature i s then defined as 
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When M° i s orientable the orientable two-fold cover i s M" V 
(disjoint union). This explains the appearance of /2. 
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§3. Main Theorems 

Let $ be a C2, real-valued, function on a C2 manifold M̂ . A point 
m e M" i s a c r i t i c a l point of 4 i f d$ = 0 at nu Equivalently m i s a 
c r i t i c a l point of $ i f 

oX 

with respect to a local coordinate system ( x 1 , . . . , ^ ) about m-
A c r i t i c a l point m i s said to be non-degenerate i f the n * n matrix 

a2<b 
—T- S—r- (m) i s non-singular, and a non-degenerate c r i t i c a l point i s said 
3x ax0

 3 2 . 
to have index k i f the symmetric matrix — T ~ ^ ~ ? ( m) ̂ s index k. That 

3x ax*3
 3 2 . 

i s a coordinate system ( y 1 , . - . ^ ) exists i n which —,—£-.,. ± s the 
/ 1 k 0 \ ay1 3yJ 

matrix I - Q \~ZY~ J v^ i e r e * p i s t n e unit P x P matrix, 
4 i s a Morse function on M" i f a l l i t s c r i t i c a l points are non-

degenerate. I t i s well known that any C2 manifold supports Morse funct
ions (see Milnor Cl^])* 

Definitions 
i s the set of Morse functions on M". 

@. (<|t) i s the number of c r i t i c a l points of index k of <t>, and 
K n 
8(<fr) = k £ 0 B kU)» i.e. the t o t a l number of non-degenerate 

. -critical.points of 
B^M") = minimum {Bk(<f»)l 

<f> e *(M") 
B(M") = minimum {&($)} 

4> e *(M?) 

Let F be a f i e l d , then the k-th b e t t i number bk(Mn;P) = dimp H^M^F) 

file:///~ZY~
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where H^CM^F) i s the k-th homology module with coefficients in F and 

dirrip i s the dimension as an F-module,, 

n 
bCM^F) = k £ Q b^M^F) and 

bQf 1) - maximum {b(Np;F)}, 
a l l fields F 

n n 
We remark that B(M") > K £ Q B K ( M N ) i s clear and that k £ Q 0 K(M N) 

b(vP) i s well known as a Morse inequality (see Milnor £l3)° Taken 

together these inequalities imply fKM11) ^ ( M 0 ) , 

For a given clearly varies with f» However we 

have the following theorem: 

Theorem (Kuiper). (See Kuiper Q l Q 8 1 1 ( 1 Wilson £l^)„ 

inf •r(M n,f,R r i + N) = B(M") c
n+jj_i» w n e r e t n e infimum i s taken over 

a l l C 2 immersions and c n + j j _ ^ i s the volume of the unit 

hypersphere in In the notation of \ 2 , 

c = / l n g n n 

For example, c Q = 2, C] = 2TT, C 2 = Mm and in general 

c = (see Flanders T i l ) -

Definition 

A C 2 immersion i s tijght i f TCMV.R™"* 1) = BCM") 

Note 1. 

Such immersions were originally termed "of minimal total ^absolute^ 
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curvature" for obvious reasons, and "minimal" for short (e*g t in Kuiper 

the second for ambiguity. A minimal immersion i s usually one for which 

the mean curvature i s zero everywhere. Other terms which have been used 

are "convex" and "generalised convex" (e.g. in Kuiper £33)° See below 

for motivation. As we shall later introduce the notion of p-convex we 

have chosen to c a l l the above immersions "tight" (as does Kuiper in P^H 

Note 2. 

We remark that sup i s of no interest. 

Consider the C° surface in R3 which i s homeomorphic to a disc and 

i s generated by the rotation about the "y-axis" of R3 by the curve given 

by 

£l3)« H*6 f i r s t of these has been dropped for reasons of auphony and 

( l - x ) 2 / x 2 

y(x) re when 0 < x ̂  1 

when x = 0 

Picture of Curve Picture of Surface 
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The total curvature of this "dome" surface i s independent of r and 
equal to 4TI, This calculation i s most easily done using KUR T ' S formula 
in \y3> P'8' 

Now, any 2-manifold can be immersed in R3 so that some pare of i t 

l i e s in a plane. An arbitrarily large number of circular discs of radius 

r may then be removed from this planar region and replaced by "domes" and 

the differentiability class of the surface remains the same-. I f n "domes" 

are introduced the total curvature of the immersion i s increased by iJim. 

Furthermore, an arbitrarily large number can be introduced simply by 

making r small. Consequently, sup r(M 2,f,R 3) - « for a l l 2-manifolds M2„ 

Similar procedures for n-manifolds w i l l yield the same result. 

We now return to the mainstream of the discussion., 

M° i s compact and so B (•) > 1 and &n(<)>) > 1 for any morse function 

<(>. (<|> i s continuous and i s compact and so <f> has a maximum and a mini

mum. Morse's lemma (see Milnor QVQ) t n e n gives BQ(<I>) and P nU) > 1 ) -

Hence x(M n,f,R n + N) y 2 C f l + N_ 1 by the theorem of Kuiper. The next theorem 

i s concerned with the conditions under which equality i s attained or 

nearly attained. 

Theorem (CherirLashof Q ~ ) ) 

( i ) T(M n,f,R n + N) = 2 C + N _ 1 ^ , ^ r f 1 i s embedded in sum ?:•!) -

dimensional linear subspace of as a convex hypersphere* 

( i i ) i(M n,f,R n + N) < 3 C ^ j ^ =^M" i s tameomorphic to the n-

dimensional sphere, S n, with the usual differentiable structure. 

The theorems of this section w i l l always be quoted in the following 

form: 



15. 

Theorem 1 

equality being attained w<-.=n f( M N ) i s 

a convex hyperaphere in some (n+l)-dimensional linear subspace o 

Theorem 2 

TCM^^R"*^) < 3 C
N + N _ i ^ ^ i s homeomorphic to the standard 

n-sphere. 
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§4. The[.TotalL Curvature of Surfaces 
n 

In the previous section i t was pointed out that bfM"), 

I f equality holds then theorem 1 i s equivalent to 

inf T(M n,f,H n + N) = b(rf») c h+N-1 

Thus relating the total curvature to the well known betti numbers. 
n 

Manifolds for which ^SQ B^(M^) = b(Mj are therefore of interest so we 

shall show that a l l surfaces (2-manifolds which are closed, compact, etc.) 

have this property and derive the form of Theorem 1 which w i l l be used 

in Chapter IV, 

Any orientable surface T', where g = 0,1,2, ,.„, i s obtained by ad-
D 

joining g orientable handles to a sphere. (See Greenberg £ l j ) . T Q i s 

the sphere and T? i s the g-fold torus, g i s the genus of T •„ 
O D 

Any non-orientable surface U^, where h = 0,1,2, e t», i s obtained by 

adjoining h "twisted" handlep or cross caps to a sphere. U Q i s the 

sphere, Ui i s the real projective plane, U2 i s the klein bottle, etc., 

The homology of these surfaces i s 
,2gj 

H+(U. ;F) « F, F^" 1 x F/(2), F 2 

H +(T iF) « F, F °, F 
O 

where F ^ = F x „„„ * F, (2) i s the ideal generated by 1 + 1 and 
2g times 

F 2 i s the set of elements annihilated by l e f t multiplication by 2; 
F 2 = {a e F:(l+1) a = 0} 

Hence b(T_;F) = 1 + 
o 

inf (T ,f,H 2 + N) = 2(g*l) c N + 1 

Hence b(T ;F) = 1 + 2g + 1 = 2(g+l) for a l l fields F and 
o 
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I f P has characteristic not equal to 2 then (2) = F and F/(2) ̂ . 0. 

Also F 2 = 0 so that 

H*(Uh;F) = P, F*1"1, 0 

and b(U h;F) = 1 + (h-1) - h 

I f F has characteristic 2 then (2) = 0 and F/(2) • F. Also F 2 - F 

so that 

H +(U h;F) - F, F*1, F 

and b(U. ;F) = l + h + l = h + 2 h 

Hence = b(U h;F) when F has characteristic 2, for example 

F = Z2, and 

inf (U h,f,R 2 + N) = (h+2) c N + 1 

We note that 

x(T g) = b 2 - bj + b Q = 2 - 2g 

and x(U h) = 2 - h hence 

bCM2) = 4 - x(M2) for a l l surfaces and 

inf x(M 2,f,R 2 + N) = 2ir ( 4 - x ( M 2 ) ) 
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C H A P T E R I I 

Total p-th Curvature and p-Convex Immersions 

Note 

Total p-th Curvature i s different from the p-th total curvature of 

Bang-yen Chen . 

§1. Total p-th Curvature 

We have defined the total curvature of an immersion f sM0 •+ R" 4 1^ to 

be 

and we wish to generalise this and consider integrals of the type 

/ K p where p i s any real number. 

Definition 

The total p-th curvature of an immersion f rrf 1 * R° i s 
i 

T (IVp,f,R N + N) = / K p a) where p e R 
P KT n 

We shall refer to t _ ( f ) or just T when the reference to or f i s 
P P 

clear (or irrelevant, as in the next sentence). 

TI = T and so total 1st curvature i s the same as total curvature. 

Because x = f |G| o„ , A u a definition of T which has claims to 
n
 1 1 N-l n p 

B f 
beJ. \ a generalisation of total curvature i s 
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B 'N-l A u. n 

However the generalised notion of tightness, p-convexity, turns out to 

be useless i f we take this as our definition of x . A remark which 

points out the exact difficulty w i l l be made later. (p»23)e 

Our aim now i s to prove for x p analogues of a l l the theorems we have 

stated for T = TJ , Consequently we examine the infimum and supremum of 

T (f) over a l l immersions f„ 

Let f sM" •* H? + N, o e R such that o > 0 and define of ;Mn •* R n + N by 

(of)(m) = o(f(m)) where f(m) i s considered as a position vector in 

FT with origin 0„ I f the Lipschitz-Killing curvature for f i s G9 the 

curvature for af i s a" n G. Also, i f the volume form on M° induced by f 

i s u>n, the volume form induced by af i s a nu n. Hence T p ( o f ) = a ^ 1 _ P ) n 

T p ( f ) . For example Tj(of) = x ^ f ) and the total curvature thus depends 

on the "shape" of fffl/ 1) and not on i t s "size". I f p i s any real number 

other than one, T Cctf) can take any value i n the range 0 < x < » for p p 
fixed f hence inf T

p
 = 0 a n A sup t p = «. I f meaningful results are to 

be obtained we must r e s t r i c t the class of immersions over which we take 

infima and suprema. This i s done by restricting the "size" of f ( i f 1 ) so 

that Tp depends only on the "shape". This w i l l then be in analogy with 

the case p = 1. 

Definition 

P 

An immersion f :lP -> R" + N has the standard volume i f 

/_ w n = 2 c. 'n+N-1 
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We shall always consider immersions of this type for reasons which 

w i l l become clear. There i s no loss of generality i n doing so, for l e t 

g:^ •+ R n + N be an immersion for which / u = 2 a 1 1 C ,„ , where a > 0 i s 
ĵ n n n+N-1 

a suitable real number and let f = a Jg. T Q ( f ) = a"*1 T Q(g) = 2 c ^ 

and so f has the standard volume. Also, T (g) = a ^ 1 - p ^ n x (f) and there-
P P 

fore any results we may have about immersions with the standard volume 

always imply some result we may have about immersions with any (non

standard) volumeo We shall also use the terms area and length for the 

volume of two and one-dimensional manifolds respectively. 

We now introduce the property corresponding to tight: 
Definition 

An immersion with the standard volume i s p-convex i f 

T (f) = inf I T (g)} where g has the standard volume., 
P gufcrf-" P 

There may not exist a p-convex immersion of the manifold i f 1 . For 

example i f if i s a sphere with a non-standard differentiable structure 

and N : 1, inf T
p
 s 2 c

n
 b v Theorem 3 and this infimum i s attained when 

the sphere i s convex. But a convex sphere i s the boundary of a disc and 

so has the usual differentiable structure. Hence there are no p-convex 

immersions of exotic spheres. 

However inf x p i s s t i l l defined and i s a differential invariant of 

This follows from the fact that the total pth-curvature of 

i s calculated from the properties of the point-set f ( i f 1 ) so 

that i f ̂ SN" -* if i s a diffeomorphism, f <t> i s an immersion of if with 

the same total pth-curvature as and conversely. 
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Note 1, 

T Q = 2 c
n+jj_i» hence every immersion i s 0-convex = 

Note 2. 

X] =t, hence 1-convex 6*tight, 

Note 3. 

In co-dimension 1, K = / |G| O Q = 2|G|« Hence, 

* P • ^ ^ i«i p »„ 

where G i s now the Gauss-Kroneker curvature and the standard volume i s 

2 c , For example, the sphere of radius 2 in an (n+1)-dimensional 

linear subspace of has volume 2 c and Gauss-Kroneker curvature V>% 

so that i = / u = 2 Ci Hence inf x - 2 c - . 

p n n p n 

Note 

Theorems about x can be put in the new notation e 

Theorem 1 becomes.' 
T i > T

0» equality being attained when fCM11) i s a convex 

hypersphere i n some (n+l)-dimensional linear subspace of 

Theorem 2 becomes: 
T i c y% T

0 i s chofrt'eomorphic to the standard n-sphere= 

We are now in a position to prove the analogues of these theorems 

for total p-th curvature, 
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§2, Main Theorems 

Theorem 3 

I f f ' . i f 1 •*• R° +^ i s a C 2 immersion of a closed, compact, connect

ed, C 2 n-manifold, M", T P j , T q when p ^ 1. Equality occurs when f(M 0) 

i s a convex hypersphere in some (n+1)-dimensional subspace of I f 

also p > 1, the total curvature of the immersion i s equal to +1= 

Lemma 

I f f i s a square integrable function on with measure in and 

p i s a real number greater than 1, 

/ fP « /if u \ p 

— — ^ j, ( " j equality occuring i f and only i f f i s 

constant except for a set of measure zero. 

Proof 

I f g i s also square integrable we have, by Hfilders inequality 

(see Hardy, Littlewood and Polya 0 3 P»l40), 
1 1 

/ f g ion ^ (/ fP u n ) p (/ g q u>n)q for a l l q, 

equality occurring when f and g are proportional, except possibly on a 

set of measure zero. 

On putting g = 1 and q = p/(p-l) we find 

' f w n « ( / ^ u n ) ? ( / w n ) J ^ " 

Hence, 
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/ f p cu i ( / f w ) p / ( / w which gives the required n r n n 

inequality. Equality occurs when f i s proportional to 1 i.e. a constant« 

Proof of Theorem 3 

I f we put f = K in the above lemma we obtain 

equality occurring when K i s constant 

almost everywhereo However f i s C 2 and hence K i s continuous so that 

K = constant. By theorem 1 TI ^ T and so : >/ T . Then T = T implies 
* 1 ' O P ' O P O ^ 

TX = T q which implies K = 1 and we have the theorem. 

Note 1. 
We can now see why the definition T = / I G | P O M 1 A U . which 

p g 1 1 N-l n 
was suggested in §1, i s of no use. With a suitable* choice for the stand

ard volume we can prove the theoremj i p ^ T q with equality i f and only 

i f G i s constant and fCj/ 1) l i e s i n an (n+1)-dimensional linear subspace 

of R™^. When N = 1 we can proceed to an investigation of convexity in 

a meaningful way. I t i s when N > 1 that difficulty occurs. 

Let g: . be an immersion such that N' < N and let 

i : R n + N ' •* R° +^ be an imbedding of rfl+N' as a linear subspace of R M t N. 

i o g : r ^ R n + N has the property that i f v i s any vector in R m N at a point 

of i Q g ( i f 1 ) normal to i Q g (M°) then G(v,m) = 0. This calculation i s most 

easily carried out using the geometric interpretation of G given in Chern 

and Lashof £X3» p.311. For example, i f g:S] -+ R2 <•* R3 and n and b are 

respectively the normal and binormal to g(S*) in R3, then G(n,p) = k and 

G(b,p) = 0 for a l l p e S 1. I t follows that i f fSM" •* R n + N i s the immers
ion in the above theorem, G = 0. We have 
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' l Q l °N-1 A w n » 2 Cn+N-1 
B f 

and we conclude that such an f does not exist. Consequently, this defin

ition of T P gives us a theory of convexity i n codimension 1 (which happens 

to be the same as we have already) and no useful theory otherwise* 

Note 2, 

Hfilders inequality also, gives information about when p < 1; 

(the inequality i s reversed) but we shall see i n chapter I I I that i n 

equalities cannot give the strongest results for such values of p. 

Theorem 4 

I f f i s an immersion of the type specified i n theorem 3 and 
Tp K ( % ) P T q for p ^ 1, then i f 1 i s vhbnTeomorphic to a sphere = 

Proof 

By the lemma of theorem 3 we have 

( 3 ) P > J £ 3^ hence T I < % T and the 
To ' l \ J ° 

result follows from theorem 2. 

We shall also need the following theorem later. 

Theorem ^ 
dx 

X p i s a convex function, that i s exists and i s an i n 

creasing function of"p. 

Broof 

i s closed and compact and K i s a bounded continuous function 

of M" because M" i s CV 
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d - d r vP 
-r- x = -5— /_ KT u dP P dp n 

When K < l j K^ i s a decreasing function of p and logg K < 0, hence 

RP log g K i s an increasing function of p. 

When K ̂  1; K 1 3 i s an increasing function of p and logg K ̂  0, hence 

RP logg K i s an increasing function of p. 

^ Tp i s therefore an increasing function of p and the proof i s 

complete. 

"Cjarollajgy 

1 < p < q => inf T ^ inf T ^ p q 

Proof 

l N < p . < q - > T
D ( f ) < T (f) for a l l f - . l f 1 E P + N 
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53. Other Total Curvatures 

I t i s possible to define total curvature for immersions into an 

arbitrary riemannian manifold. (Willmore and Saleemi l ^ l ^ ) * ^ h e n t h ^ s 

manifold i s complete, simply connected with non-positive sectional curv

ature, many of the theorems on total curvature in euclidean space are 

s t i l l true. (Willmore and Saleemi £3-3» Chen QQ)» Consequently i t 

i s possible to define total p-th curvature and prconvexity in this more 

general context and prove a l l the theorems of §2. 

Another generalisation of total curvature i s "total mean curvature". 

The f i r s t result i s due to Willmore ^2^|: 

/ H 2 w2 >, 4ir 
M2 

where H i s the mean curvature of M2. Equality holds i f and only i f M2 

i s a round sphere. 

I f we put a = "sr" f |H|p and consider only those immersions whose 
. P M2 

area i s 4ir we may prove, by the same method used i n Theorem 3; 

/ |H|P >j 4ir for a l l p >2, Equality holding when M2 i s a 
M2 

round sphere of unit.radius. 

Chen has shown that not only i s Willmore's theorem true for manifolds 

of higher dimension, but there are theorems of this type for a l l the 

principal curvatures (Chen £0)' These theorems also generalise-by our 

method. 

We make a note on the problem of minimising the integral 
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/ (K+X)2 u>2 where X i s a constant. 
M2 

/ (K+X)2 u>2 = / K 2 u 2 + 2X / K w2 + X2 / w2 

M2 M2 M2 M2 

/ K w2 = 2n X(M 2) by the Gauss-Bonnet theorem and / u 2 = 4ir. Hence 
M2 M2 

/ (K+x) 2 u)2 and / K 2 u 2 differ by a constant and we conclude that: the 
M2 M2 

infimum of the integrals / (K+X)2 u>2 i s attained, for a l l values of x ? 

M2 

by the same immersion of M2, 
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CHAPTER I I I 

Ê cep t ion^L_ Case s 

S1, Introduction 

So far we have considered T only for values of p greater than one 
and have sought only lower bounds, not upper boundst We now justify our 
neglect in considering the case of p less than one and in finding suprema, 
by describing what happens in these cases-

To obtain results we shall give immersions only for surfaces in R3. 
However, exactly analogous results hold for arbitrary submanifolds in 
R"+N with very slight modif-i-eation. (An indication of how this is done 
is given at the end of the f i r s t lemma). I t has already been noted, in 
chapter I , that sup TJ = « and this result extends to the case p > 0 with 
suitable adjustment to keep the volume of the immersion fixed. 
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§2. Excejpitioned values of the total p-th curvature 

Lemma 1 
sup T = » when p ̂  0 

Proof 
Let an immersion of any surface in R3 be given for which there 

is a planar region, and consider a square, with sides of length R, in 
this region. Let the R x R square be divided up as a k x k "chess board". 

R R 

That is k 2 squares, each ^ x ^ . 

Picture for. _k_ _=_ 3. 

N 

\ 

k3 
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square remove a circular disc of diameter In each and re 
i i I! place i t with a "dome" of the type described in §3. of chapter I . 

Picture for k__=_ 3 

k 

Let the area of a disc of radius r be Dr2 (D is used instead of * 
for ease of generalisation to other dimensions) and the area of a dome 
on this disc be Vr2« Then the total area of the surface contained within 
the boundary of the R x R square is 

R 2 _ k 2 + k 2 V ^ ) Z = R 2 C1-0^) 

The total area of the surface is independent of n when n ̂  1. De
noting the surface which is the original surface with the above modific
ation by we see that i f is linearly expanded to give i t a standard 
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volume, the same expansion w i l l give a l l the the standard volume. 
Now, calculation shows that the curvature at each point of a dome 

is of the order k 2, hence the total p-th curvature of each dome is of 
order k^*5""^ and the total curvature of a l l the domes is k^. When 
p > 0, k̂ P can be made as large as we please by letting k tend to i n 
f i n i t y . As a l l the are homeomorphic we obtain sup = « for a l l 
surfaces, as required. 

To extend this result to manifolds of dimension n in we f i r s t 
immerse m such that some region lies in a linear R° i n R"+N. Domes are 
then constructed on this region i n codimension 1 by rotating the generat
ing curve about i t s axis in A consideration of the curvature in 
i t s geometric interpretation given inChern and Lashof O-D a^ a w s t h a t 

the curvature of a dome, constructed as above, has the same order of 
magnitude in a l l codimensions. Hence an increase in the number of domes 
gives an increase in the total curvature just as for the case n = 2, 
N = 1 given in Lerana 1. 

Lemma 2 
inf T =0 when p < 0 and 0 < p < 1. P 

Proof 
Let f:M2 •* R3 be an immersion such that fCM2) has a planar 

region as in lemma 1. Define an immersion f :M2 -*• R3 by modifying nf as 
follows. 

afCM2) w i l l have a planar region and in this region let a disc of 
radius ra be removed and replaced by a "dome" of the type used i n lemma 
1 into which has been inserted a cylinder of length RE 
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Picture 

K 

CI 

1M K 

R is chosen so that the immersed surface has the standard area and 
the final surface defines fa„ Clearly fa(M2.) is a smooth, immersion such 
that f"a(M2) is homeomorphic to M2 for a l l values of a such that 
0 < a < a for some a . 

o o 
Now the curvature of the cylinder is zero and so 

T p ( f a ) = tp(af) + p-th total curvature of a "dome"B 

But, 

T p(af) = a ( l ^ n
 T p ( f ) when p i 0 
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and the p-th total curvature of a dome is of order a 2' 1 p \ as in lemma 
1. When p < 0, 1-p > 0 and so lim T n ( f n ) = 0. The reasoning breaks down 
at p = 1 for then we have a-0 P a 

T (f ) - T (af) + volume of cylinder p o p 

and the volume of the cylinder tends to the standard volume as o tends 
to zero.. Hence inf x p = 0 over the desired range. 

Lemma j? 
Sup T =oo when p < 0 P 

.Proof 
Let q be a real number such that 0 < q < 1. Then i f • < 0, 

T >, a where a is given by the following diagram and using the convexity P 
of t p as a function of p. (Chapter I I , Theorem 5) 
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By considering the triangle ABC we see that 
a-T 
T -T q o q 

Hence, 

o = T q + (x 0-x q)(q-p)/q , and 

Tp > Tq + ^o" Tq ) ( q" p ) / ( J 

T 
By lemma 2 i t is possible to choose an immersion such that x q ̂  f 0 r 
a l l q in the given range. Hence, 

i p > (TQ-Tq)(q-p)/q * TQ(q-p)/2q 

Now, lim ( j = » and so sup T = °° for p < 0 as required. 
q-0 V. q / p 

We collect the results of the previous three lemmas into: 

Theorem 6 
For any closed compact C2 manifold immersed in euclidean space, 

sup x = » for p t 0 P 
inf T - 0 for p < 1 and p i 0 P 
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§ 3. Non-exiajenĉ e of inrigrsioris 

We have the following corollaries to theorem 6. 

Corollary, 1 

There are no p-convex immersions for p < 1 and p ̂  0, 

Proof 
Suppose is a p-convex immersion where p < 1 and 

p i 0. By theorem b, 

! Kp u) = 0 and so K = 0 on i f 1 

M" n 

But by Theorem 2 of Chapter 1 we have 

K u n 3, 2 hence there does not exist such an f „ 

Cbrollaiy 2 
There are no immersions for which sup T is attained when p ̂  0. 

P 
Proof 

By Theorem 1 sup x p = « when p t 0. However f is C2 and I ^ 1 is 
compact; hence K is bounded on a compact manifold and cannot attain values 
for which x = °°c P 
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CHAPTER I V 

Curves and Surfaces 

In this chapter we completely classify p-convex immersions of curves 
and spheres and strengthen the results of Chapter I I in the case when M0 

is a surface. 
By surface we mean a closed, compact, C2, two-dimensional manifold. 

§1. Curves in R^1 

Let f rS1 -* be a C2 immersion, then by the theorem of Borsuk 

~ /f(gi) M ds ̂  2 where k is the curvature of fCS1) given by 
the Serret-Prenet formulae as usual. 

I f we consider immersions with length 2n and define 

T
P = 7 ' k l P d s 

we have, by the methods of theorem 3» 

Corollary. 1 
I f f rS1 -*• R 1 + N is a C2 immersion with length 2TT 

\ "^f(S1) ' k l P d s ^ 2* e { l u a l ^ - t y being attained when ffS 1) i s 

a plane unit circle for p > 1, and a plane convex circle for p = 1. 

Proof 
One only needs to check that i f the total curvature of a plane 

curve is constant, then so is the "Serret-Frenet" curvature. This 
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follows easily from Chem and Lashof's geometric interpretation of the 
Lipschitz-Kiiling curvature in £l^. 

Analogues of the immersions given in the previous chapter show that 

inf T P = 0 for p < 1 and p i 1 

and sup T = » for p i 0 as we should expect e 

We can now give the complete set of p-convex immersions of S1 in 
with length 2ir. 

inf T P 

-

p-convex iirmersion 

p < 0 0 None 
p = 0 2TT Any immersion 

0 < p < 1 0 None 
p = 1 2n Plane convex circle 
p 1 2ir Plane unit circle 
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§2. Surfaces in R3 

Let f :M2 -*• R3 be a C2 immersion.Vfe have, from Theorem 2, 

~ / |K| dA > b(M2,Z2) = 4 - xCM2) £ 2 where K is now 
M2 

the classical Gauss curvature. 
I f we define 

x = i - / |K|P dA P 2TT M Z 1 

we have for immersions with area 4TT, 

To = 2 

T l - T »> 2 

By the lemma of theorem 3 we have 

* ' f e y - and hence 

Corollary 2 
I f f :M2 •*• R3 is a C2 immersion with area 4ir 

S |K|P dA > ^ f f l ) P 5-2 for p * 1, the equality 

•5- / |K|P dA > 2 being attained When M2 is homeomorphic to S2. Also, 
^ M2 

S2 is embedded as a unit sphere (respectively convex sphere) for p > 1 
(respectively p = 1). 
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Proof 
One only needs to check that a sphere with constant curvature 

in R3 and with area bit is the unit sphere. That this is so follows from 
the theorem of Liebmann that a closed orientable star-shaped surface with 
constant Gauss curvature is a sphere. (Guggenheimer P»252). 

W can now give the complete set of p-convex immersions of S2 in R3 

with area 4ir. 

inf 
P 

p-convex immersion 

p < 0 0 None 
p - 0 Any immersion 

0 < p < 1 0 None 
p = 1 4* Convex sphere in some R3 C R 
p > 1 QjVJ 

Unit sphere in some R3 C R 

When M2 is the torus, xCM2) =0 and corollary 2 gives 
•sp / |K|P dA > 2 P + 1 . The inequality is strict because K can never 

Torus 
be constant on a torus. 

When p = 2 we have 

h ' K 2 > 8 

Torus 
This estimate can be improved by considering special cases of immersions. 
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Lemma 1 

i - / K2 dA > ir 2 ( T I 2 = 9.869 ... > 8) 
d J l Torus 

Proof 
Consider the torus of revolution in R3 given by coordinates 

S1 x s 1 •+ R3 

(6,*) •* ((R+r Cos*) Sine, (R+r Cos*) Cose, r Sin?) 

(This torus is embedded when r < R »>r < - ), 
/a 

The Gauss curvature of this torus is 

K - Cosd> 
r(R+r Cos*) 

and an element of area is 

dA = r(R+r Cos*) d* de 

Hence 

/ dA = f2v /?" r(R+r Cos*) d* de = 4ff2r R 
0 0 

so that i f the torus has area 4n. R = -r- . 
* irr 

Denote by T the torus of revolution with R - ~- , then 

t v2 H« - r2v r 2 i r Cos2* d* de 
/ K 2 dA - / Q / r ( R + ; 3 ^ ) 
r _ 2 f2ir ' d* _ 4w 

~ Jo 1+irr* Cos* ~ r* 
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This is well known to be equal to 

/ 2TT \ _ 4ir 

and can be shown to take i t s minimum value of 2ir3 at r = 0. Hence, 

/ K2 dA i . 2ir3 

That i s , 

T r 

^- / K2 dA ̂  I T 2 

Torus of 
revolution 

Ais©-,-there is no value of r for which equality is attained and we 
obtained the required inequality. 

Corollary 
There is no 2-convex torus of revolution. 
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§3. 2-Convex Immersions in R3 

Let a closed orientable C2 surface M2 in R3 with area 4ir be given 
by the position vector r and denote by M2 the surface whose position 
vector is r = r - aN where a e R and N is one of the two unit normal a 
vector fields on M2. The area 2-form and Gauss curvature on M2 are then 

a 

given by 

dAQ = (1+2 H +K a 2) dA 

K = K/(l+2 H +K a 2) 
8. cL 

where.dA is the area 2-form on M2 and H and K are the mean curvature and 
Gauss curvature of M2 (see Willmore QVJ P*H7)» 

I f the surface M is given by the position vector cr , the area 
ol) C cL 

form and the mean and Gauss curvatures are given by 

dA „ = c 2 dA a,c a 
K „ * K /c2 

a,c a 
H = H /c a,c a 

The total 2nd-curvature of M„ „ is then 
a,c 

Ka.c) = / K 2
a > c dA a > c = ^ /Ka^dA 

1 . K2dA 
" c7 J " 1+2 H +K * a a 

Now, 1 + 2H + K 2 = (1+a kj)(l+a k 2) where k\ and k 2 are the principal 
£L St 

curvatures of M2, hence 1 + 2 H + K 2 = 0 i f and only i f kj or k 2 = - ™ 
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As M2 is C2, kj and k2 w i l l be continuous bounded functions on M2 and so 
1 + 2 H + K 2 i 0 where a is in some open interval containing 0. We 
shall be interested i n the derivative of I(a,c) when a = 0 and hence for 
our purposes there w i l l be no singularities in the integrals. 

We choose c such that 

/ dA a j C = / dA 

i=e= c 2 / (1+2 H +K 2 ) dA = / dA = lir 
G L C L 

men I(a.c) = / (1+2 H a +K &
2) dA / ( l + f ^ 2) 

a a 

Hence, 

dl 
da • i ' K a > " ' dnrfr* a a 

, (2H+2 K ) K2 dA 
" h ' ( 1 + 2 V Ka 2 ) <* ' ( l + 2 L V ) ' 

OP CL 

dl 
da a=0 

and we obtain 

dl 
da a=0 

2ir /HdA/K 2dA-2/HK 2dA 

= 0 <**f H dA / K2 dA = I T T / H K2 dA 

On taking the second derivative of I we find 

= ~- / K dA / K2 dA - - / H dA / H K2 dA d 2 I 
da 7 

a=0 2ir 

(1) 

- - / H dA / H K2 dA - / 2K2 dA 
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Thus, i f I has a local minimum at a = 0 

\- / K dA / K2 dA - - / H dA / H K2 dA - 2 / K3 dA * 0 
e l l 11 

(2) 

I f M2 i s the torus 

^ f K dA = 0 by the Gauss-Bonnet theorem so that (2) becomes 

/HdA/HK 2dA + ir/K 3dA,<0 (2') 

But by (1) 

/ H dA / H K2 dA = ^ (/ H dA) 2 / K2 dA 

and hence 

^ (/ H dA) 2 / K2 dA + ir / K 3 ^ 0 (3) 

Any 2 convex torus i n R3 must satisfy equation (3). 

Lemma 2 

A torus with one principal curvature constant cannot be 2-

convex. 

Proof 

As before we denote the principal curvatures by kj and k 2 and 
l e t kj be constant 

2H = kj + k 2 and K = k 2 k 2 hence H = + and 
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/ H dA = / dA because / K dA = 0 by the Gauss-Bonnet theorem 
and / H dA = 2TT k l 0 

Similarly 

/ H K2 dA = 1 ^ / K2 dA + / K3 dA 

and / H dA / K2 dA = 2TT ki / K2 dA 

Hence (1) becomes 

2ir k x / K2 dA = 2ir k : / K2 dA + ^ / K3 dA 

and. / K3 dA =. 0 

Hence (3) becomes 

(/ H dA) 2 / K2 dA ̂  0 

This i s only possible i f either H = 0 or K = 0, both of which i s 
impossible. 

Because of this lemma and the corollary to lemma 1 we make the 
following conjecture. 

Conjecture 
i h f ^ f K2 dA =• I T 2 where the infinum i s taken over 

Torus 
a l l t o r i i n R3 with area 4ir. Also, there i s no immersion for which this 
infimum i a attained. 
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C H A P T E R V 
Volume Preserving Maps 

SI. Introduction 

We have been examining immersions for which f(M°) has 
the geometric property of p-convexity. In such a situation i t i s natural 
to consider the set of a l l transformations of R"+N which preserve this 
property. ( I t i s , i n fact, i n the s p i r i t of the "Erlanger Programm"). 
This set of transformations w i l l always form a group (because by trans
formation we mean at least bijection) and we shall not only want to find 
what the transformations are but also specify the group structure. 

For example, "straightness" of lines i s preserved by homothetic 
transformations of R" , 2-convexity of spheres by isometries, and the 
property of being a conic by projective transformations. Moreover, i n 
each case the transformation group given i s the largest group which pre
serves the given property for a l l the geometric objects possessing the 
property, N. H. Kuiper (in f^Q,p.l3) has shown that the projective 
group of R3 i s a subgroup of the group which preserves 1-convexity of 
surfaces. However, this i s clearly not true for p-convexity when p > 1 
and the theorem has no analogue when the ambient space i s anything but 
R3. 

The f i r s t criterion for a transformation which preserves p-convexifcy 
i s that i t preserves volume" p-convexity i s defined for a set of 
immersions a l l having the same volume. Furthermore, the volume of a l l 
immersed sub-manifolds must be preserved, otherwise the transformations 
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obtained w i l l only preserve a particular p-convex immersion» 
Our f i r s t objective i s then to calculate the group of transformations 

of a riemannian manifold which preserve the volume of every n-dimensional 
sub-manifold. As we shall want to calculate the t o t a l pth curvature of 
the submanifolds we shall assume that the transformations are d i f f e r -
entiable. The required transformation group w i l l be shown to be the 
isometry group of the manifold and because an isometry preserves a l l the 
riemannian structure, the isometry group w i l l be the group which pre
serves p-convexity. 
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§2. Locally k-Volume Preserving Maps 

We have seen i n §1. of Chapter I that on an n-dimensional manifold 
with metric g, there i s a locally defined n-form g*2 cb̂ A ... Adx" 

where g 2 i s the square root of the determinant of g as a symmetric 
matrix with respect to the coordinate system (x1,«..,xn). I f i s a 
k-dimensional submanifold of there i s a naturally induced metric on 
v given by i*g where i : i s the natural inclusion. Hence g gives 
rise to a k form on V̂ , namely ( i * g ) ^ 2 dyxA ... Adyk, where ( y 1 , . . . ^ 1 1 ) 
i s a coordinate system on i n which v i s given by y 1 = constant for 
i = k+l,...,n. However, we should l i k e a k-form on which measures the 
volume of every k-dimensional submanifold. This w i l l be the form u 
definition 1. I t w i l l be defined locally and, for the most part, 
used locally; but when a global extension i s needed an integration i s 
always involved and we shall assume the procedure i n §1. of Chapter I , 

Let M° be a C1 riemannian n-manif old with positive definite metric 
tensor g and l e t ^ be a k-dimensional subspace of the tangent space of 

at m. Denote bye , the restriction of g to r and chose a coordin-
yic m 

ate system ( x 1 , . . . , ^ ) m on a neighbourhood of m such that i s spanned 

. m 

H„ 3 3 

D y 3xT «•••• 3 xk. " 

Definition 1 
m 

/ d e t g . \ dxU ... Adxk 

where det i s the operation of taking the determinant of g| . a s a k x k 
i nc x 1 m matrix with respect to coordinates ( x 1 , . . . , x n ) . The form u v i s d i f f e r -

m 
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entiable as a map G. -*• R where G. i s the Grassmann bundle of k-
planes. Also, u 

m 
i s invariant under -a change of coordinates which 

I , n respect V^j that i s , i f we choose another coordinate system (y 1,...,y ) 
Trrr ,•••> — r , a straightforward 
3 y 3y k 

about m such that i s spanned by m 
calculation shows that 

^ dx*A ... Acb^ ( r k ) / det g . \ ' 2 dy!A ... Ady* 

(This calculation was carried out, mutatis mutandis, i n Chapter 1 
of part I ) . Hence u 

Definition 2 
m 

is a local k-form on rf1. 

A C1 map f r r f 1 - rf1 of a c'reimannian n-manifold, rf1, i s locallj 
k-volume preserving i f 

f*(u ) = u 
m 

where f * i s the usual "pull-back" of forms;ahcl l ^ k ^ h . 
The set of a l l locally k-volume preserving maps forms a group by 

considering i t as a subset of Di f f (rf^M 1 1). 
Note 1 

I f ( x 1 , . . . , ^ ) i s a coordinate system, chosen as above and 
• • locallij 

y = x o f , then i f f is^k-volume preserving 

" k " ̂  v* ' 
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and using f * - ~ r = , 
ay ax 

| m N " 

" U V 5*"7?) 
m * but 

i / a a 
I ay 

m N ay ) i f a f 1 a af 1 a \ 

a f 1 

*=> det = 1 
a r 

We see that an equivalent definition for locally k-volume preserving iss 
Jacobian of f equals 1 on every k dimensional subspace of the tangent 

space. 

Note 2 
I f V* i s a k-dimensional submanifold of m and f i s k-volume m 

preserving, then 

u 
m m m 

) 

by usual integration theory, (see, for example, Flanders Ch.V), 

m m 
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Hence the volume of and fCV^) i s the same and we can say that f 
m m 17 

preserves the volume of every k-dimensional submanifold of M° t The volume 
of may, of course, be i n f i n i t e . 

Note 3 
I f k = n i s a locally n-volume preserving map it w volume pre

serving i n the usual sense. Such maps occur naturally, e=g. as motions 
of incompressible fluids or as the flows of Hamiltonian vector fields 
i n "phase space" ( L i o u v i l l e ^ Theorem). The set of a l l such maps forms 
a Lie group and can be given a f a i t h f u l unitary representation into 

,u), the set of complex valued functions on I ^ 1 with w-summable 
square (-Arnold and Avez 0-13 P»23 with a b i t more work _to show that _the 
given map i s a f a i t h f u l representation)„ 

Note 4 
When k = 1, V_ i s a one dimensional distribution on- • we * m 

may choose coordinates (x 1,...,* 0) such that V i s spanned by -r^r i n a 
I I I dX 

neighbourhood of m. 

m | m 
4 » 

and with the previous definition of ( y 1 , ...,3^) as y 1 = x 1 of 

/ ( W » I F ) = g L fax 1 "' 3X1") V v ' v f ( m ) V. / 
g _ V 

and hence a locally 1-volume preserving map preserves lengths. I t 
follows (by flyers and Steenrod that f i s an isometry. Clearly 
then, locally 1-volume preserving 4$ isometry. 
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Another property of k-volume preserving maps i s given i n the 
following 

Lemma 
A k-volume preserving map i s a local diffeamorphisnu 

Proof 
Let £ ^ . . . , 5 ^ be k linearly independent vectors at m e and 

l e t be spanned by £ C h o o s e a coordinate system ( x 1 , . . . ^ ) in it 
about m such that g i s the identity n * n matrix with respect to these 
coordinates and i s spanned by ~ r ,..., -\: . 

m " 3xA * " 
Let 5. = £.J" - ^ - r . Then 

1 x. - a i ? ] -

. ( 5 i , . . . , 5 k ) - / d e t g| . y 
I x 1 \ m J 

*z (dxxA ... Adx ) U i , •>...£,,) 

= (dxxA ... Adxk) ( e 1 - 2 T 5 1 -4r J 
Vs. 1 ax 1 k a x 1 / 

= det e 1 

j 

I t follows that are linearly independent i f and only i f 

I f f i s k-volume preserving 
f * to 

m 
(5i » • • • 

= u 
^ffcn) 
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Hence f # d,,..,^ £, are linearly independent i f and only i f 5i,...,5„ 

are linearly independent. 
I f f + i s not of rank n at m, there exists a tangent vector at m, V] 

say, such that f + \>i = 0. I f ̂ 2,..,,^ are then any other tangent 
vectors at m such that are linearly independent, 
f * are not linearly independent. This contradicts the fact 
that f i s k-volume preserving and we deduce that f „, i s of rank n at a l l 
points m e Hence f i s a local diffeomorphism (see for example Plett 

DG>-
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13. Globally k-Volume Preserving Maps 

We have defined volume preserving (definition 2) i n terms of local 
forms and this i s the most useful definition of the concept of volume 
preserving when calculations are to be made. However, another formulat
ion, that given i n the introduction, requires that the t o t a l volume of 
each submanifold be preserved. This appears below as definition 2'. We 
have seen that definition 2 implies definition 2' but i t i s the converse 
which w i l l be of most use, and this we prove. 

Definition 2' 
A C1 map f sM11 + rf1 of a C1 riemannian n-manifold i s 

globally k-volume preserving i f for a l l C1 k-dimensional submanifolds 
V* of M°, 

We have denoted the tangent space of by "V*" but there i s no con
fusion i n doing t h i s . 

Both sides of the equality may of course be i n f i n i t e . 

Theorem 1 
Definitions 2.and 2* are equivalent. 

Proof 
By note 3 of §1. locally k-volume preserving implies globally 

k-volume preserving. 
As for the converse, l e t Dl be a closed k-d^mensional C1 disc i n M71 

with C1 boundary, and l e t D2 D3 be two other such discs such that 
aDx = 3D2 = 3D3 and-the three surfaces D. U D.; i , j = 1,2,3; i i j are 



55. 

C1 smoothable. For example, i f we consider Dx U D2, which i s homeomorph-
ic to Sk, there exists a C1 immersed submanifold L = OV1!] x S1 s u c n 

that Dj U LU D2 i s a C1 sphere. 

Picture: Cross-section 

TP,***. ^ 

I f f i s globally k-volume preserving 

Volume of (Dx U L U D2) = Volume of (f(Di U L U D 2)) 
- Volume of (f(Di) U f ( l ) U f( D 2 ) ) 

Hence, 

Volume of (Dx U D2) + Volume of L 
= Volume of f(Di U D2) + Volume of f(L) 

Now, the volume of L can be made a r b i t r a r i l y small and so the volume of 
Dx U D2 i s preserved although i t may not be a C1 manifold. 
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Let the volume of be and l e t the volume of f(D^) be b^, then, 

a i + a 2 = ^ i + ^2 

&2 + &3 = &2 + b3 

a 3 + aj = b 3 + bi 

Hence a^ = b^; i = 1,2,3 j - ' the volume of Dj i s preserved and Dx 

*IS' arbitrary. 
Let (x 1,...jx") be any coordinate system about m e i f 1 and l e t 

De = (p E rf1 : ̂  ( x ^ p ) ) * ^ £ j x k + 1 = ... = x" = 0} 

There certainly exists eQ > 0 such that Dg i s homeomorphic to a 
closed C1 k-dimensional disc for a l l e £ e . Then we have 

N o 
/ (0 

D '« f(D c) e 
f(D e) 

Hence, 

/( - f * ( I ) f(D ) } = 0 f°r a l l e < eQ e 
(1) 

I f u i f * u / f * CO f(D e) on some £,̂ 2 j at some m E M°, then u 
neighbourhood of m because u and f are both C1 and the integral i n (1) 
would be non-zero. We conclude that u = f*u and f i s locally k-volume 
preserving. 

Prom now on k-volume preserving w i l l mean either locally of globally 
k-volume preserving according to the context. 
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We come now to the main theorem on k-volume preserving maps, 

§4. Characterisation of k-volume Preserving Maps. 

By note 5 of the previous section, the group of transformations 
which preserves 1-volume i s a l i e group whose continuous part ( i . e . ex
cept for "isolated" transformations) i s of dimension J^n(n+1). (See 
Kobayashi and Nomizu H l H ) . On the other hand, a consideration of 
note 3^ shows that the group of transformations which preserve n-volume 
i s i n f i n i t e dimensional. We might expect, then, that the transformation 
groups which preserve k-volume have dimensions which increase as k i n 
creases. This i s not the case-. 

Theorem 2 
On a C2 manifold with positive definite riemannian metric, a 

k-volume preserving map i s an isometry for ]0<k.<h. 

Proof 
Let f i l f 1 •*• M*1 be a k-volume preserving map of a C2 riemannian 

n-manifold with metric g^, m e M*1. and f * g f ̂  are both positive 
definite metrics on M*1 and positive definite symmetric matrices with 
respect to a coordinate system. Hence, there exists a coordinate system 
( x 1 , . . . ^ ) on an open neighbourhood U of p such that gp i s the identity 
matrix and f * g j . ^ i s diagonal. This i s the classical theorem of 
WeierstrasS' on symmetric forms (see, for example, Van der Waerden £l^]» 
p.27). 
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Put 

and f * «f(m) ( ^ 1 • ̂ j) = a i 6 i j ( n o summation) 

Let V̂ j be the subspace of the tangent space of rf1 at m which i s 
spanned by (-r^r ,..., . Then, as f i s k-volume preserving 

V 3x k/P 

(1) 

Let V be an open neighbourhood of m such that f: i s a local diffeo-
morphism, and choose coordinates y 1 = x 1

 Q f 1 on the open neighbourhood 
f ( U n V) of f(m). 

(1) becomes 

y 1 K(m)J V 
Ady*" f f„ g£r ,...,f„ 

Now, 

hence, 

3 ^ ) 

f„, A = -T- for a l l i , 
3x 3y 

det g 
i 
y 

det g 
m 
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By the choice of ( x 1 , . . . ^ 1 1 ) , det g| . = 1 and 
i hr 
x m 

f* 

= a. 6.. 

and we obtain 

det g 
y 

= i l i a i = 1 

We chose to be the subspace spanned by the f i r s t k of the set of 
vectors, / -At -~A but we could equally well have chosen any set 

V, 3 x ax 1 1; 
of k. Hence 

ir a^ = 1 
ieK 

where K i s a set containing k of the integers, l,..,.,n. To complete the 
proof of the theorem we need the following. 

Lemma 
I f (a l a...,a n) i s an n-tuple of real numbers such that the 

product of any k i s 1, when k < n, then 

k odd a^a^ = 1 for a l l i 

and k even =^a^ = 1 for a l l i;and'ttie a^'s are a l l positive 
or a l l negative). 
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Proof of Lenma 

The lemma i s t r i v i a l for k = 1. 

Let k ̂  2 and choose any k + 1 of the a^, say the f i r s t k + 1. 

We define 

P = ̂  a^ and 

k+1 
i l l 
i A 

P A = i i 1 a i for 1 ̂  X ,< k + 1 

Then, 

P = a x P^ and P x = 1 for a l l X by hypothesis. 

Hence = P for a l l X, and 

k + 1 J»l 

and, 

P*. 

I f k i s odd, P = 1 and so a- = 1 for a l l i ; l ^ i ^ k + l 

I f k i s even, P = ±1 and so a^ = ±i for a l l i ; 1 ,< i ^ k + 1 

Finally we note that we chose the f i r s t k + 1 of the a^'s but could 

have chosen any set of k + 1. The result then follows. 

Conclusion of the Proof to Theorem 2 

«f(m) ( f* ~ T •
 f* ̂) = * 6 i j ( b y t h e 
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However, f*g i s positive definite because 

tfwC^-1^ =^)(f-(ui^)f-(ui^)) >° 
Hence f*gf ( m) = 6^ and f i s an isometry as required. 

Note 1 

By the previous "note 5", the above theorem for k = 1 i s the 

theorem of Payers and. SteenrodD]. 

Note 2 

On a manifold with non-positive-definite metric, the definit

ion of volume preserving makes sense. I t i s therefore possible to ask 

i f theorem 2 remains true i f the "positive-definite" condition on the 

metric i s relaxed. The proof of theorem 2 given breaks down i n the non -

positive definite case at a crucial point and we do not have a counter

example. 
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85» p-Convexity Preserving Transformations 

We have seen in the introduction that the most general transform

ation which preserves total p-th curvature must be k-volume preserving. 

I t so happens that this necessary condition i s also sufficient. 

Theorem 

A C 2 map of a reimannian manifold i f 1 onto i t s e l f preserves p-

convexity i f and only i f i t i s an isometry. 

Proof 

When i f 1 i s euclidean n-space the group of isometries i s the 

group of euclidean rigid motions and the result i s clear. In the 

general case i t follows from the fact that isometry preserves a l l the 

riemannian structure (see Hicks), but we shall not go into the details 

because we should need, as a prerequisite, a f u l l account of the defin

it i o n of total p-th curvature i n a general riemannian manifold. 

Note 

When i s n-dimensional euclidean space we can consider p-

convex maps for a l l fixed volumes because the p-convex immersions for 

different volumes differ only by a linear multiple or rigid motion of 

(see §2. of Chapter I I ) . Hence the group of transformations of 

which preserves p-convexity for a l l fixed volumes i s the group of homo-

thetic transformations. 
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P A R T I I 

Foliations and Connections 

SUMMARY 

The theory of foliations, initiated by C. Ehresmann and G, Reeb, i s 

studied mainly as a branch of topology or differential topology. However, 

the work of A„ G. Walker, R. Bott and others has shown that the methods 

of differential geometry are also effective i n the study of foliations. 

Our work i s very much in the s p i r i t of differential geometry and i s 

especially indebted to the work of A. G. Walker. 

All results are original unless otherwise stated but some of the 

material was developed with P. M. D. Purness (see Purness C O ^ o r 8 1 1 

alternative proof of the main theorem i n Chapter V). 

In Chapter I we give the definition of a foliation on a manifold M*1 

(following A. Haefliger) and describe i t s leaves, leaf topology and 

special maps. We introduce the germs and j e t s of special maps, using 

them, i n .Chapter I I , to construct covering spaces of The c l a s s i c a l 

Ehresmanngroup i s then obtained by " l i f t i n g " the fundamental group of a 

leaf into the covering space.constructed from germs. The same.procedure 

performed in the covering space.constructed from j e t s gives a group for 

each leaf which we a l l the "Jet group". Both groups are factor groups 

of the fundamental group of the leaf for which they are defined and the 

Jet group i s a factor group of the Ehresmann group. We then give a geo

metric method for calculating these groups. 

The examples i n Chapter I I I , as well as ill u s t r a t i n g the concepts 
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introduced in Chapters I and I I , are used to make observations on the 
relation between the Ehresmann and Jet groups of leaves i n topological^ 
equivalent foliations. Also, as an application of differential tech
niques, we consider C* foliations i n codimension 1 on a riemannian mani
fold and derive a differential equation with the property that a unit 
vector f i e l d w i l l satisfy the equation i f and only i f i t i s perpendicular 
to a foliation. C 2 foliations i n codimension 1 are thus classified by 
vector fields satisfying a differential equation and we deduce a decom
position theorem for a manifold with such a foliation. 

Chapter IV describes the D-connections, and Chapter V the holonomy 

groups, introduced by A, G, Walker. In analogy..with the c l a s s i c a l holo

nomy theory we define these groups for piecewise C^ curves on a leaf with 

basepoint and show that, up to isomorphism, the groups are the same for 

a l l values of k and for a l l base points. After showing the existence of 

a special coordinate chart, whose use greatly simplifies the analysis, 

we show that Walker's holonomy group and the Jet group of a leaf are iso

morphic. 

Some properties of the holonomy group are given in Chapter VI. I t 

i s shown that the holonomy group cannot be a l i e group (this time con

trasting with the c l a s s i c a l holonomy theory) and that when the foliation 

has codimension 1 i t i s a factor group of the f i r s t homology group of the 

leaf, with integer coefficients, and has torsion subgroup of order 0 or 

2. Finally, we give a l l the possible isomorphism classes of holonomy 

groups of compact leaves in foliations of two- and three-manifolds. 

*Our convoiW is "H\fi)" lit grouts L A * . "̂*»e*\s'ion ° • 
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C H A P T E R I 

Definitions 

§1, Foliations 

The definition of a foliated structure (or foliation) to be given 

here w i l l follow A. Haefliger . 

A foliated structure i s put on a manifold in much the same was as 

a differentiable or Piecewise linear structure i s put on a topological 

space, i.e. we begin with a standard example of a foliation which w i l l 

be mapped on to the manifold, locally, in several "patches"; Maps of 

the standard example onto i t s e l f w i l l then be used to "glue" these patches 

together. We therefore begin with. 

The Standard Foliation of R n i n codimension p. 

be the rectangular cartesian coordinate system 

of R0* Denote by early greek letters (e.g. O,B,Y) any suffix taking 

values from 1 to n-p and by late greek letters (e.g* any suffix 

taking values from n-p+1 to n. Let roman letters denote suffixes taking 

values from 1 to n. The leaves of the standard foliation are the (n-p)-

dimensional planes defined by x* = constant and the leaf through an 

arbitrary point ( x Q
1 , . n . , x Q

n ) of R11 w i l l be { ( x 1 , o . . ? x n ~ p , x " ~ p + 1 , . . , x o
n ) : 

x a c R). 

N.B. We are here following A. G. Walker's convention of defining the 

leaves by x* = constant. A Haefligerfe convention i s x™ = constant. 

Leaf-preserving Local Maps 

A local C r homeomorphism, h, of R11 i s a homeomorphism between 
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two open sets of such that both h and h" 1 are C : r = 0,1,2.. =,..<» or 

u. By C° we mean continuous, C r means differentiable r times and C10 mea 

analytic. A leaf perserving local (f homeomorphism hiff -*• R0,, where R*1 

has the standard foliation in codimension p, i s a local C r homeomorphisn 

such that i f (x a,x*) i s any point of R° about which h i s defined, 

ha = ha(x\xv) 

hX = h V ) 

i.e. h maps leaves to leaves, h" 1 w i l l also have this represent

ation i n coordinates. 

Foliation 

A foliation, 3" of class r and codimension p on a n-mani-

fold if (r ,< k) i s defined by a maximal collection of charts 

called "leaf charts of 3"", where i i s in some 

indexing set, I say. 

Each h^ i s a C r homeomorphism of an open set u^ of R° into i f 1 . The h^ 

must satisfy 

(1) {h^(u^)>^ e I i s an open cover for M°. 

(2) Any map of the form h."*1 h. i s a leaf preserving loral C r 

J O 1 U j j 
homeomorphism of R 0 where i , j e I and u.. •- h.~ 1(h. (u.) n h.(u.)), 

l j i l i 0 J 
i s called topological, differentiable of class r or analytic 

according to whether r = 0, 0 ^ r ^ « o r r = u respectively.. 
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By a "maximal collection of charts" we mean the following! 

I f u i s an open subset of R n and h:u •* M " i s a C r local homeo-

morphism such that h r 1
 Q h n «=i(hi(u )^h(u)) * 8 a l o c a l l e a f preserving 

map for a l l i e I , then h:u •* i f 1 i s i n the collection of charts j£K 

The Leaf Topology 

We now describe a new topology on vf1 which i s finer than i t s 

usual topology. In this topology the leaves of £3" are connected compon

ents and consequently n^M^m) = ni{Ltm) where L i s the leaf through 

merf 1, 

Let M° be a n-manifold with C r foliation "3". On R11 = R0"13 x RP 

put the topology T Q which i s the product of the usual topology on R n~ p 

and the discrete topology on RP, Relative to T Q the leaves of the stand

ard foliation on R" are connected components. 

A local leaf preserving homeomorphism h of R11, with the usual topol

ogy, i s also a local leaf preserving homeomorphism of R11 with the topol

ogy T Q because h a(x S,x v) i s continuous in x^ with the usual topology and 

hence for T Q alsoflnJh a(x S,x J 1) i s automatically continuous in x w because 

the topology i n Rp i s discrete. The charts of !3" w i l l therefore induce 

a topology on M° which w i l l also be denoted by T Q c I t i s easily checked 

that T Q i s finer than the usual topology (using the definition of "finer" 

in Kelly Q ~ J p.38). 

Special Maps 

Let IT be the projection R^P x RP - RP given by projection on 

to the second factor and l e t h^:u^ •*• R 0 be the charts of a foliation ;
 r^-J 

of a manifold A continuous map f of an open set V of K into k i s 
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called a special map of at i f for a l l m e V there exists a chart 

h. :u. -»-Mn such that f = ir h." 1 on h. (u.) H V. The terminology 
1 1 0 1 1 1 . 

"special map" i s not standard because there seems to be no universally 

accepted translation of A. Haefliger's "applications distinguees". 

(A. Haefliger p.369).' 

I f we denote .the special maps by f^:V\ *• where i i s indexed by 

some set, I ' say, then we have immediately 

(1) {V.}. T, i s an open cover for ̂  because IT h.""1 ;f. (u.) iP i s 

a special map and so ( f . ( u - ) } . x i s an open cover for i f 1 and f.(u.) = V. 
1 1 1 E 1 1 1 J 

for some j e I * by definition. 

(2) I f f.:V. * flP, f.;V. * R p and m e V. r\ V. then there exists a 
i i J J i J 

local (f homeomorphism of R^hySadithat f. - h f.. For i f V CV. D V, 
i s an open set for which f. - TT h."1 and f. = TT h.""1 then e l o Tc j o I 

( h k " 1 ) a = ( v 1 ) a ( ( V 1 ) 3 » ( V 1 ) W ) 

( h k ~ 1 ) X = ( h k " 1 ) X ( ( h ^ 1 ) 1 * ) using h - 1 as a coordinate chart on 

V. (ir Q h j - 1 ) * i s a homeomorphism i n the variables ( h ^ 1 ) 1 1 = (ir 0 h " 1 ) ^ ' 

Hence ir Q h^"1 and ir h^"1 differ by a local C homeomorphism. 

Given a foliation 3", the set of special maps may be constructed. 

Conversely, i f a manifold i f 1 supports a set of charts f^:v\ •* with the 

above conditions (1) and (2), a foliation i s defined on i f 1 by letting the 

leaves be locally defined by f ^ - 1 ( x ) where x e R^. In other words the 

special maps completely characterise the foliation and we may expect that 

properties of ^3" such as the Ehresmann groups, w i l l be described in terms 

of them alone. 
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§2, Germs and Jets 

Let X,Y be topological spaces. Two continuous functions f and g 

from X to Y are said to be in the same germ at x e X i f there i s an open 

neighbourhood of x on which f and g are equal. We define the germ of f 

at x,G(f,x) to be the set of continuous functions g:X + Y such that f and 

g are in the same germ at x. 

I f X = Y we may consider the set of al.l.G(f,x) such that f(x) - x 

and f i s a local C r homeomorphism. We denote this set by G r(X,x), and 

i t s elements by G r ( f i x ) , abbreviating these symbols to G(X) and G(f) 

respectively when the reference to x and r i s clear. There i s a natural 

product "o" which makes G(X) into a group. We let 

G(f) Q G(g) = G(f Q g) 

This product.is well defined, for i f G(f) - G(f') and G(g) = G(g«) 

then fI = f'I for some open set u and g| = g' for some open set V. 
l u l u I / V 

Hence f 0 g | g - i ( u ) v = f' o g'|g"Hu) V i m o Wjt) = OWj?). 
Associativity i s immediate. I f i d x i s the identity map on X, G(id x) i s 

clearly an identity for G(X) and as each f considered i s a local 

homeomorphism there exists an open neighbourhood u of x such that 

f " 1
 Q f „ = idj„. Hence the inverse of G(f) i s G C f 1 ) and "o" puts a U X|U 

group structure on G(X). 

Jets of C 1 maps 

The j e t s we are about to describe are usually called 1-jets but 

as we shall have no occasion to use n-jets when n > 1 we shall c a l l these 

1-jets simply " j e t s " . 
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l/et Xn, Y11 be C 1 manifolds. Two local C 1 homeomorphi3ms f and g 

from X° to Y11 are said to be i n the same j e t at x e i f f* •= g # at x. 

We define the Jet of f at x, J(f,x) to be the set of local C 1 homeo-

morphisms gjX 1 1 •> Y N about x which have the property g +(x) = f+(x), I f 

( x 1 , . r . , x n ) i s a C 1 coordinate chart x and (y 1,...,y n) i s a C 1 coordin

ate chart about f (x) then the condition g +(x) = f.+ (x) i s equivalent to 

_L _L 
iS,. - i f f 0 r i s j = i f . . . , n 
ax1* ax*1 

This condition i s , as may be expected from i t s intrinsic definition, 

independent of the coordinate charts chosen. I f x" = Y" we may consider 

the set of a l l J(f,x) such that f(x) = x. We denote this set by JCX^x); 

i t s elements are J(f,x) and we abbreviate these symbols to JCX11) and J ( f ) 

when the reference to x ?w ̂  is clear. 

There i s a product "o" which makes J(X n) into a group. We let 

J ( f ) Q J(g) = J ( f Q g ) 

This product i s well defined because 

J ( f ) = J(f !)<fe> f + ( x ) ^ f^'Cx) 

J(g) = J(g) g,(x) = g +'(x) hence 

(f 0g)*U> = ( f + Q g*)(x) = ( V Q g / ) ( x ) = ( f Q g'^Cx) and J ( f 0 g ) 

J ( f g'). Associativity i s immediate. As with germs, J ( i d ) i s the o yii 
identity and the inverse of J ( f ) i s J C f * 1 ) . 

There i s a natural map**: when r 1 defined by 
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a(G r(f)) = J ( f ) . a i s well defined because i f G r(f) = G r(g), f = g on 
some open neighbourhood of x and hence f*(x) - g +(x). a i s also a group 
homeomorphism, for 

a(G(f) Q G(g)) = a(G(f 0g)) = J ( f Q g ) = J ( f ) Q J(g) = a(G(f)) Q a(G(g)) 

I f we write G (X51) = ker a = {G r(f) : J ( f ) = J ( l „)} then o ^ 

J(X") E GOC") / G Q(X n) 

Finally, we note that as f + i s an invertible linear map of T (X 1 1), the 

tangent space of X° at x, JCx") i s naturally identified with GL (n,R)j the 

qeioeraL linear group on fP. 
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C H A P T E R I I 

The Ehresmann and Jet Groups 

SI. Covering Spaces of Germs and Jets 

Let ^ be a foliation of class r on a C^ manifold We shall 

assume i n this section that has the leaf topology, T . 

We define the covering space of germs of special maps ̂  by 

= {(m, G r(f,m)) : m e M ° and f i s a special map defined on some 

neighbourhood of m}. 

The r which appears in this definition i s the same r as the class 

of the foliation and w i l l in future be omitted. 

The projection for this covering space, a^,:^ M " i s defined by 

aG(m, G(f,m)) = m 

I f r ̂  1 we also define the covering space of .jets of special maps, 

by 

^ = f (m, J(f,m)) : m e ff 1 and f i s a special map defined on some 

neighbourhood of m}. 

The projection, Oji^ if1 is defined by 

aj(m, J(f,m)) = m 

In the rest of this section we shall j u s t i f y the above terminology by 

proving that ̂  and with the projections o Q and O j , are covering 

spaces of rf1. 
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Let f^:u^ be a special map of ̂  with m e u^, and let 

u f m = f^" 1
 Q f^(m), i.e. u f m i s that part of the leaf through m 

which intersects u.. u~ „ i s an open set because we have the leaf 
1 f^m 

topology on rf1. Let 

^ f . ^ G = { ( x ' ^ i . x " e ^ : X e Ufi,m f i : u i * # i s a 

special map}. 

< u f . m >J ^ s d e f i n e < * similarly be replacing G and^, by J and^r . 

Lemma 1 
{<u- >„} i s a base for a topology on \ L and 

f i ' m G i , l 9 

{<u- >,} i s a base for a topology on *p = 
f i ' m J iel» * 

Proof 

We need only show that for given f. :u. •* R P , f j J u . •* RP, m e u. 

and Q e u^* there exists a special map f j c
: u j c ^ and an x e u^ such that 

< U P H <u« > P - <u„ > n and similarly for J . (Kelley iJ-D* i^,m u j ' ^ k 
p.47). 

Let (x, 0(f.x)> . < u f i j m > G 0 < u
f., q>G 

( I f this intersection i s empty the proof i s complete). 

Then x e u„ (\ u- _ 
i * j * q 

and G(f. x) = G(f. x) 

Hence i f u. 0 u. = and f^ = f^ 
J 

^ f . ^ G n <uf q > G = <u f k > x> 
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The proof for j e t s i s obtained by replacing ̂  by ̂  and 0 by J through

out. 

Theorem 

O I Q S ^ - + i f 1 and i f j ^ -*• M° are covering spaces when rf1 i s given 

the leaf topology and ̂  and ̂ > are given the topologies whose bases are 

{<u- >PJ and {<u„ >,} respectively. f.,m G i e I f.,m J i e I f 

Proof 

Let m e and f^JU^ •* Vt be a special map such that m e u. „ 

TV,"*1 (u- ) = {<u_ > : f. = h f.J where h i s a local homeomorphism 
i * j» J 1 j> 

of BP„ TTQ"" 1 (U^. m ) i s thus the union of open sets of \̂  and thus open. 

Also, v I<u_ >I - u„ which i s also open in M0. Hence n„ i s a local G 1 f̂ ,m 1 f^,m c G 
homeomorphism. Similarly we prove that u T i s a local homeomorphism. 

We now show that about every m e M° there i s an open set whose i n 

verse image under ir„ or TI . i s a disjoint union of homeomorphic copies. 

(See Spanier P»62). 

Consider the open neighbourhood ffl of m. 

1f/i(<u„ > n) = UpĈ u. - >„) so that the inverse image of Ui,_is U i..m b li n i_,m u +;;»n l o 1 * i 
{^u^ f m > Q : h i s a local homeomorphism of Rp}./.et fx/iCg,*^ ̂ Mr X ^ O ^ L , 

o i ' ^ i ' 
( I f the intersection i s empty the proof i s complete). 

x e u^ and G(g,x) = G(f^,x) = G(h Qf^,x) and hence h - id and f_. = 

h o f i -

Therefore <u„ >„ = <u. - >_ and we conclude that the <u. ~ >„ f^,m G in^r^m G nQfji,m G 
are disjoint. 
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For j e t s we obtain J(g,x) = JCf^x) = J(h f ^ x ) and so =• i d ¥ and 

h* o V 
Therefore = ^ f ^ j -
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§2- The Ehresmarm and Jet Groups 

Covering projections over connected bases have the homotopy l i f t i n g 

property, so i f Y : Q ) , 1 ^ -* flf1 i s a continuous loop with base point 

m a Y ( o ) = Y ( D I there exists a " l i f t " , Y J Q 5 * 1 ^ ^jf which i s a con

tinuous map such that v^, y = y and the homotopy class of y dependB only 

on the homotopy class of y, y then determines a map ir^On) •+ T T ^ " 1 (m) 

given by y(0) -> Y ( D and hence a map E:iri(rf\m) •* G R(RP,0). E i s a homo-

morphism of groups (see Spanier £ l ^ P«86) and the group BCiT̂ rf1,™.)) i s 

unique up to isomorphism for a l l m i n the same path component - that i s 

leaves of a foliation ^ on 

The group ECirjtrf^m)) thus defined for a l l leaves L of a. foliation 

i s the Ehresmann Group and i s denoted by E(L)« E(ir 1(M n,m)) i s a rep

resentation of E(L) in G R(RP,0) = 

The same considerations apply to jets- Instead of E we obtain the 

map J:ir 1(M n,m) •*• J(RP,0) and the group J(vi (M\m)} a defined up to iso

morphism for each leaf L, i s the Jet Group of L and w i l l be denoted by 

J ( L ) , JUXCM'VO) i s a representation of J(L) in GL(p,R).(Se& 

We now give a geometric way of calculating these groups. 

Let Y : Q ) , 1 ^ L a continuous map (necessarily into a leaf L of 

Po.l"! i s compact and there exists a finite cover tv\). „ where 

f, :V, - # are ' . special maps of . Let t. , k = 0,..•,r be points of 

£0,1 J such that t - 0, t = 1 and Y t O v V u ^ £ V i f o r s o m e i* 

Let h:u •+ R11 be a leaf chart such that h Y(t f c) = 0 e i f and l e t 

P be the p-plane perpendicular to the standard leaves i n R11 through 0, 

T. = h - 1(P) D (u.}. i s the transverse disc to L at y(t. ) induced by 
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h. Let i r : ^ -> be given by n(x) = \r^\ (leaf through x}. (This TT i s 

thus the projection I ^ ~ p x FP *• R*5, on the standard foliation, mapped on. 

to the manifold by a leaf chart). 

I f W i s any subset of M0, the leaf topology on M° induces a topology 

on W. An equivalence relation i s then defined on W by x * y i f and 

only i f x and y are in the same path component of W. The set of equival

ence classes of W i s denoted by W„ Any transverse disc about m i s locally 

hcmeomorphic to u with the quotient topology (and quotient differential, 

structure when i t exists) so that a l l transverse discs are naturally 

locally homeomorphic about m. 

Let Y O ^ ) * Y ( t f c + 1 ) e v\ where f^sV^ •*• fP i s a special map. 

m are local CT homeomorphisms into RP such that f . L and f. 
' k "lk+" 

f i | T k = f i lk+l 
Y ^ w i ) * hence *, = f. - l . 

T 0 f.|m i s a local 
\+l ° 1|V k+l'» 'k,k+l 

C*" homeomorphism from T^ to T f c + 1. I f y i s l i f t e d to a curve V inl^e* Space 

o£ germs of local homeomorphisms of Jp9 Y ( t k ) and Y ( t k + ^ ) are both i n 
duced by the same special map f^< Hence 

r ( t k t l ) = G(fi T k o *k,k+l o ^ 

I f we choose the special map f ^ + ] 5 V ^ + 1 •* say, such that Y ( ^ k 4 ^ ) 

and Y ( t k + 2 ) e V i + 1 and G{F± T, ) = G(f, 
k+1 i+1 lk+l 

) we may choose special 

maps inductively beginning at k = 1 such that 
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commutes when germs of the maps are taken. We then have 

Y ( t p ) = Q(f p T ) s Q ( f > k o V o . . . o V l , r o f ) 

The maps of the form * , * ; 2 thus generate the elements of the 

Ehresmann group of a leaf, when a l l homotopy classes of curves y are 

taken, by taking their germs. The Jet group i s generated by taking j e t s . 
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C H A P T E R I I I 

Examples 

§1. Simple Foliations 

On an n-manifold with cF foliation there i s an equivalence re

lation ~ (introduced i n the previous section) given by x " y ^ s > x and 

y are in the same leaf. rf1/- i s called the space of leaves and a f o l i a t 

ion i s simple when rf1/" i s a manifold, i.e. there exists a map icrf 1 •* \Pt 

where \P i s a cF p-manifold, such that for every homeomorphism of class 

r, g;u -*• ŵ , where u i s an open set of flP, g"1 <J> i s a special map of 

^". The leaves are thus the inverse images under f of points of \P and 

the space of leaves i s given a manifold structure. The Ehresmann and Jet 

groups for each leaf are t r i v i a l by the geometric discussion of Chapter 

I I §2. 

I f rf1 C * Y" where and r are manifolds, the projection 

f sX11 * Y° -* Y11 defines a simple foliation on rf1 which i s a product f o l 

iation whose leaves are a l l homeomorphic to Y11. Not every simple f o l i 

ation i s a product. Consider the twisted S1-bundle over S 1 whose total 

space i s the Klein bottle, K. The projection ir:K -*• S 1 defines a simple 

foliation on K whose leaves are a l l homeomorphic to S 1; but K i s not a 

product. 
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§2. Integrable Distributions 

Denote by T(.vP) * M" the tangent bundle of a manifold rf1. A 

dimensional distribution. D. on i s a map such that IT D 

i s the identity on tf1 and D(m) i s a p dimensional linear subspace of 

ir" 1 (m) for a l l m e vP. I f , on a neighbourhood of m e vTt there are 

linearly independent vectors V\ which are a l l in DCrf1), we say that D(m) 

i s spanned by the V\ at m. D(M") i s a (f distribution i f the vectors V\ 

can be chosen to be C r vector fields about all points m £M. 

A p-dimensional distribution DCM11) i s integrable i f there i s a co

ordinate system ( x 1 , o o . , x n ) on a neighbourhood of each m e if1 such that 

Dtlf) i s spanned by -r^r - ~ on that neighbourhood,, In other 

words, D i s given by the tangent spaces of the submanifolds of u defined 

by x 1 = constant, i = p + 1,...,n. Hence the coordinate system 

(x,.,.,x n) i s a leaf chart of the same differentiability class as D(t^) 

and so the C r integrable distribution gives r i s e to a C r foliation, 

Conversely, i f h^iu^ i s a leaf chart of a C r foliation on 

h^ + w i l l map the tangent spaces of the standard leaves on onto 

tangent spaces of C r submanifolds on M° thus giving an integrable dis

tribution on 

I f r ̂  2 there i s a useful characterisation of integrable dis

tributions. 

Probenius' Theorem (see Dieudonne » P«308). 

A C 2 distribution on a manifold, with k j 2, i s integrable 

i f and only i f for any two C z vector fields u,v i n the distribution, 

£ u » v 3 i s a l a o iri the distribution. £ , ̂  i s the " l i e bracket" of 

vector fields defined by Q J , V 3 = uv - vu. 
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We now have a one-to-one correspondence between foliations and dis 

tributions satisfying an algebraic condition. This w i l l be used extens 

ively i n Chapters IV-V, 
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§3» Foliations in Co-dimension 1 

As an application of §2. we shall study foliations in co-dimension 

1. 

Let rf1 be a differentiate manifold with a differentiate foliation 

of co-dimension 1 and let g be any riemannian metric onrf 1, ^ defines 

an (n-1)-dimensional distribution on M" for which there i s a unique 

orthogonal one-dimensional distribution. We shall denote this d i s t r i b 

ution by ± "v where v i s a locally defined vector field* ( I f i s orient 

able i n the sense of Haefliger £ l ^ , V w i l l be globally defined). From 

we have constructed a local vector f i e l d v; however, not every such 

v gives r i s e to a foliation, For example, consider the vector fields 

in R1*, with cartesian coordinates (x,y,z,w), given by 

3 . 3 9 3 

v* = + x f e " x l i + * h 

3 3 3 3 
V3 = + W » + Z 3^ " y " X 3 ^ 

On 3 3 = t(x,y,z,w) e R1* i x 2 + y 2 + z 2 + w2 = 1}, v l 3 v 2 and V3 are 

orthonormal tangent vectors. That is^the v^ give a parallelisation of 

S 3 which i s orthonormal. Furthermore the v^ satisfy 

C v i » v 2 ^ = " 2 v3» C v 2 * v 3 3 = -2 v l t C v3» vlD = ~ 2 v2 

Hence V j ^ (the orthogonal compliment to v'i) i s spanned by v 2 and V3 but 

i s not integrable because £v2,V3^ £ v^ . 

We shall now seek algebraic conditions on v which are necessary and 
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sufficient for v to be integrable. 

Let (x 1,.,.,x n) be a coordinate chart of M11 on a neighbourhood of 
9 i m e M. Put e. = — T and let v = v e.. 
3x i k Define p. - e. - g(e.,v)v = e, - g.. v J v e., for i = 1,2,..c,n, 

J. 1 J. 1 XJ A 

Then g(p±tV) = g ^ \P - gty v*3 g ^ v vP, but g(v,v) = 1 hence 

g(Pi»v) - 0 and p. e V for a l l i . Also p. = 0 ^ e. - g(e.,v) v - 0 
e. 1 ®i e i =5 v = 1 \ , Hence i f p. = 0 also,, —r-—-r = tj „\- which i s gte^jV) * j * g(e^,v) g(ej,v) 

impossible, hence at most one p^ can vanish at any point of M"\ 

I f ot̂  e R, i = 1,.,, ,n we note that 

The e^ span the tangent space at m, hence so do Pi,»»»,Pn» v. 
J. " 

Therefore Pi,...,P n span V , 
J. _ a. 
V i s integrable i f and only i f LP-!»P,'J E v f o r 6 1 1 1 i»J • A 

j _ j ™ * 
routine calculation gives 

B(D>i.Pj3.v) = -( g . r v r v 8 ) , . g s u v u
 + (g. p vP vfl),j g ^ v U 

+ Sip vP v* ( g j r v r v s ) ( q g s u v u - g. r v1" v s (g. p vP v q ) | s g q u v u 

a 
where " i . " denotes covariant differentiation in the direction — w i t h 

-3X . -
respect to the riemannian connection of g. g(v,v) = 1 so that g^. v v J 

1 and g.. v 1 V5!, =0. Hence 6 i j |k 

- e. v r i . t e. vP| . + e. vP v^ e. v^i - g. v1" v S g. vP| = 0 s j r | i B i p |j ^lp v B j r |q * j r *ip |s 

i s a necessary and sufficient condition for v to be integrable. 
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We denote by v the riemannian connection of g and define the^vector 
fi e l d n by ^ v = kn where k i s a real valued function on vf1-. At any 
point m e k and n are the curvature and normal of the integral curve 
of vjthrough m, parametrised by arc length. 

• • • 

v v = v 1 vi . J e. = k nJ' e. * l J- J J 

v 1 v i ^ = krf 1 , hence 

- g. v r i . + g. v^i . + g. v*3 g. k n r - g. v r g. k n^ - 0 B j r | i B i p I j 6 i p B j r B j r 6 i p 

v . i . - v . i . = k (v.n.-v.n.) 

Finally, because the connection i s symmetric, 

v. . - v. . = k (v.n.-v.n.) (1) I . J j . i i j j i 

where " ." indicates the partial derivative — » 

We define (Curl v ) . . = v.,. - v . i ( T h i s i s the standard definit-Ji3 i | j j | i 
ion of curl in a riemannian manifold, see for example Willmore £ l H 

p.231.) 
i d i d Also, for vectors a = a — ^ , b = b — r - , define 

3x 3x 

(a*b).. = a-b. - a.b. - (axb).. i s a local 2-form on Vp~ which 

reduces to the usual "cross-product" of vectors when i s three dimens

ional euclidean space. (After the usual tangent/co-tangent identificat

ion). 
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(1) can now be written, 

Curl v = kv x n or Curl v = v x 7 v v (2) 

We note that i f v satisfies (2) then so w i l l -v : Hence we may 

speak of a unit distribution of one-dimension satisfying (2). We now 

have the theorem: 

Theorem 

On a riemannian manifold, C 2 foliations of co-dimension 1 are 

i n one-to-one correspondence with one-dimensional unit distributions, 

±v, satisfying Curl v = v x v v v, 

In regions where Curl v = 0 

(1) v = grad <|> for some Qivf1 •* R, and the leaves are given by 

• "^(x) where x e R. 

(2) v x ? v v = 0 ^ V y v = civ for some atlf1 •* R. Also, 

g(v,v) = 1, hence g ( ? v v,v) = 0, a = 0 and v i s a geodesic vector f i e l d . 

I f Curl v i 0 then v x v t 0 and 7 v v i av. ? v v therefore has a non-

vanishing component in v^. i.e. in the tangent space of the leaves. 

We now have, 

Corollary 

On a riemannian manifold i f 1 with C 2 foliation ^ " o f codimension 

1, there i s a closed seU*u on which the foliation i s simple and complem

entary to a geodesic vector f i e l d e d such that, on rf1 \ u there i s a non 

vanishing vector f i e l d which l i e s in the tangent space to the leaves. 

4ij Be/ etupiij 
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Note 

On any subset of u which i s an n-dimensional open submanifold 

of rf1, g i s bundle-like in the sense of Reinhart £ 0 ° 

In the special case u = i s simple (see §1*) and when u = Mn 

each leaf has euler class zero* 

§4. Foliations of S 1 x R 

The purpose of this section i s to present examples which il l u s t r a t e 

the relation between the topological and differentiable properties of 

foliations. We therefore calculate the Ehresmann and Jet groupss and 

differentiability class of the foliations in some detail. Statements of 

a general nature which may be deduced from these examples w i l l be made 

under the heading "observations" at the end. 

Let f:R •* R > 0 be a C 1 function of one real variable taking values 

which are s t r i c t l y positive real numbers. Also let ^ > 0 and 

lim f(x) - 0. The set of functions f(x+c) where c e R have the prop-

erty that their graphs foliate the open upper half plane, R * R> , 

Foliate the lower half plane similarly with a function g and add the leaf 

R x {0} to give a foliation of R2. Let " be the equivalence relation 

(x,g) " (u,v)<»> x-u e Z and y = v. R2/~ i s homeomorphic to S 1 * R and 

the foliation on R 2 i s induced onto S 1 * R by ~, Call the leaf 
Rx{0} T 
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Picture 

The Ehresmann group i s zero for every leaf except L when i t i s Z„ The 

Jet groups for a l l leaves except L are also zero but the Jet group of L 

depends on properties of the functions f and g. 

The local homeomorphism <j> of R corresponding to any loop on L which 

"goes round once" i s 

<(.f:y -* f ( f * V D 
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d^ - l 

I f the Jet group exists we must have " dy and i f this i s the 

case, a necessary and sufficient condition for the Jet group to be zero 

i s 

df ( f - i y + 1 ) d T l 
dy u y X } dy = 1 (1) 

That i s , $ f has the same derivative at 0 as the identity map.-. Otherwise 

the Jet group of L i s Z. 

Example A 

f(x) = e x, g(x) = - e \ 
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^ = e , f - 1 ( x ) = logg x, = - .. Hence condition (1) 

i s 
d*f 

= e 
log ey+l 1 

y=0 
= ye ± 

y=o 
e. Similarly 

The Jet group of L i s Z. As the leaves may be given by the distribution 

3x + y 3y * t n * s f o l i a t i o r i i - s c • 

Example B 

f(x) = - i g(x) = ± 

dx F * 1 w ~ x » dx 3 ? 

d(|.f 

dy" o =
 y = 0

 = y=0 
= 1. Similarly 

d<j> 
—..-EI 
dy 

= 1. Hence the Jet group of L i s zero. Also the leaves may be 

given by the distribution ~ + y 2 •§- and the foliation i s C 
ox <»y 

Example C 

Let f(x) = e and foliate S 1 x R by circles parallel to 

S 1 x {0}, 
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Picture 

d<|>f 
As in Example A, = e, but the f i r s t derivative of the local. 

homeomorphisms of R for y < 0 i s 1. Hence the Jet group of L does not 

exist. The foliation can be given by the distribution 

3X for y ^ 0 

which i s C° but not C 1. 

Example D 

f(x) = ~ ~ and foliate S 1 x R < 0 as in Example Ct As in 

Example B 

i s given by 

d*1 

1, and the Jet group of L i s zero. As the df'ilinlm'tipn 
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3x ay 

ax for y^< 0 

for y j O 

,1V -foW- i 

i s C 1 but not C 2. 

Observations 

Examples A and B are topologically equivalent in the sense that 

there exists a homeomorphism of S 1 x R taking one foliation onto the 

other. However this homeomorphism does not preserve the Jet groups, 

i.e. Jet groups are not topological invariants. 

The Ehresmann and Jet groups i n Example B were not equal, but there 

existed a topologically equivalent foliation, namely Example A, for which 

they were. We ask then, "Given a foliation with different Ehresmann and 

Jet groups, does there always exist a topologically equivalent foliation 

for which they are the same?" The answer i s no because in Example D the 

jet s of local homeomorphisms i n the lower part of S 1 « R are j e t s of the 

identity. Hence the Jet group, i f i t exists, must be zero. However, 

the Ehresmann group of Example D i s Z. 
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§5= Three-manifolds 

Example A The "Reeb Component 
Let (x,y,z) be cartesian coordinates in R3

t The curves 
y = ( l - x 2 ) " 1 f c, z - 0, foliate the st r i p S = {(x,y,z) : jx| - 1, 
z = 0}- I f S i s rotated about the y-axis i n R3 we obtain a fo l i a t i o n of 
the open solid cylinder {(x,y,z) ; x 2 + z2 * 1}. By adding the leaf 
given by x 2 * z 2 - 1 and factoring out by the equivalence relation * given 
b v ( x > y j z ) " (u,v,w)£=> y ~ r e Z, x - u and z = w, we obtain a f o l i a r -
ion of a. closed solid torus, Each leaf, except the boundary of the 
solid torus, i s homeomorphic to R2„ 

Picture 

Example B Two Reeb Components 
By identifying the boundaries of two Reeb components we can foliate 

certain closed three-manifolds e0g<. 



( i ) The "ordinary" S2 bundle over S1, S2 * S ; 
Let the boundary of a Reeb component be given by coordinates 

(8,4>) where 9, <j> e R (mod 1) and let- two such components be identified 
by the relation - given by (8,<|>) ~ (8* 8 = 8' and <p' • * - /•> 
(mod 1). 

( i i ) The "twisted" S? bundle over S1 : 
As i n ( i ) but l e t the relation be (e,+ ) " ( e 1 , * ' ) ^ ^ e - -8' 

(mod 1) and $* •" <t> * / 2 (rood ^» 
( i i i ) The sphere S3- (The "Reeb Foliation" of S\) 

Let the relation be (8,<t>) ~ (e ,,* ,)^=> 9 - *" and <j> - 6 „ 
This f o l i a t i o n can be described as follows? 
Let D be a closed three-ball foliated by cylinders i n ir,s 

interior, and by circles, with two singular points ; on i t s boundary. 

Picture 
Interior Boundary 
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I f two such balls are identified by their boundaries to give a sphere, 

thus 

•A A 

H H 

we have the sphere foliated by t o r i , l i k e CDEP, and two singular c i r c l e s 9 

AB and GH, The torus CDEP divides the sphere into two solid t o r i because 
on both sides of CDEF the t o r i are "nested" about the circles AB and GH. 
These two solid t o r i can then be re-foliated by Reeb components to give 
the Reeb f o l i a t i o n of the sphere. 



Picture 
Interiors 

Boundaries 

0 
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Example C 
We can give a p i c t o r i a l description of S3 foliated i n dimension 1 

using the nested t o r i and singular circles of the previous example -
Each torus i s foliated^the well known "rational and irr a t i o n a l flows",. 

U one. oL 

7 

Tori near .AB have values of a near zero and t o r i near GH have values of 
a near TT/2O CDEP has a - TT/4 and a i s an increasing function for a l l Che 
other torio 
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Picture 

/ 

Example D 
Let D2 be the closed disc i n R2,.with polar coordinates ( r j S j j given 

by r 2 < .1 and let D2 x Q),1~J b e foliated by the lines fpj * T j V J 
where p t D2, When the discs D2 * 10} and D2 * {II are identified by 
the relation (r,e) " (r,0+a) we obtain a f o l i a t i o n of D2 *. 3 1 i n whi h 
the leaf (0) * S1 i s always a circle but the other leaves have homeo-
morphism types depending on n. 

Case 1 ~ i r r a t i o n a l , — 2n 
Each leaf other than {0} < S1 i s homeomorphic to R and has 

t r i v i a l Ehresmann and Jet groupsf {0} x S1 has Ehresmann and Jet groups 
Z when a t 0 and t r i v i a l groups when a = 0. 
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Case 2 = — where a,b are coprime integers: 
— — — tin D 

Every leaf i s homeomorphic to The Ehresmann and Jet groups 
for {0} * S1 are and t r i v i a l for a l l other leaves, b 

Note 

Because the Ehresmann and Jet groups are factor groups of the funda
mental group of the leaf, the only possible isomorphism classes for 

4 
these groups when the leaf i s S are Z^Z^J.-OJZ and the t r i v i a l group, 
We have, i n Example D, Foliations i n which an S leaf has a l l possible 
Ehresmann and Jet groups s The lowest dimension for a manifold i n which 
this can be done i s three» (See Chapter 6, Theorem 2, Example D o 
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C H A P T E R I V 

D-connections 

Sir Introduction 

In Example 2 we saw that a d i f f e r e n t i a t e f o l i a t i o n gives rise co 
an integrable distribution, and vice-versa„ We now study foliations from 
this point of view by ignoring the C1 distributions and applying 
Probenius> theorem. I n place of special maps, which are projections i n 
the standard f o l i a t i o n , we have a projection tensor on the manifolds, and 
instead of maps, * } between transverse discs we have parallel translat
ion between tangent spacesr Just as the maps * were defined by special 
maps, the parallel translation w i l l be defined by the projection tensor„ 
This approach to foliations, which from a geometric point of view i s 
very similar to that of Haef liger ^ s t* u e fco ^ 5 ^° tal k e r j Q . j , 

O Q and D 3 < 
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S2o Distributions 

Let D' be a differentiable distribution on a Ĉ  n-manifold, and 
let g be a riemannian metric on M11, We define D" to be the orthogonal 
distribution to D-„ I f D* has dimension n-p, D" w i l l have dimension p D 

I f A i s a local vector f i e l d on A decomposes uniquely as A - A * *• ? " 

where A' e D" and A" e D", We define the tensor a" by a-(A) = V for a l l 
such X. I f I i s the identity on TCM0) (i„e„ the identity l=covariant-P 

1-contravariant tensor) we put a" - I - a 5 so that a"U) - A " . - . 

In terms of a coordinate system ( x V . l f x n ) we write a-' 
a. — T - . Let a ^ i . ( r ) denote covariant differentiation with respect to 
J ax 1 J ' K 

a connection r on M (not necessarily the metric connection). 
' i " i i ' i Contractions with a. and a. = 6- - a, are written 
J J J J 

j k p p»k » j k l j k » j k l q p'q" 

We use the convention that contraction follows differentiation; 
thus 

i 'p i ~p ' i "q i ' C i . a* ~ C • & i . • C i i a a. — C»11 •• etco P|k J J»| k ' j|q p Tc j|k" 

We begin by deriving some fundamental identities satisfied by a' and a"-

i-» k̂*.Jfk.o n. 

a'a" = 0 because a'al!(A) = a !(X") = 0 for a l l local vector fields 
Aj hence 



lOlo 

( a , a n ) ^ i . = a ' i a"p + a'1 a"?. = 0 J |k p|k J P J|k 

»i " D ' i ! D by (1) 

Similarly 

a j " | k 

a"a' 

l j | k 

° a j I k a . i ' l k 
(2) 

! i * 'p ' i 'p ' i "q 'p 
a j ' | k = a p | k a j _ a p " | k a j _ a q | k a p a j -

' i 

Similarly 

a j"ik 

Finally 

aj»|k = a p | k a j " = V | k a j 
1 ~"p - a'JL a > ' i "q "p ' i "q ' i 

a q | k a p a j = a q | k a j " a j " j k 

and similarly 
ii it 

j '!k * a j j k 

Summarising, we have 

t _ t 
a ^ k = a j " j k -

« 

• i 
aj»|k 

I I 
Q ' i -
a j | k " Q

l i -
a j ' i k -

ti 
a ' i 
a j ' | k 

a j ' | k 
I I 

- a'1 

' a j " ! k = 0 

(3.) 
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These rules are i n fact true for any derivation locally defined, 

I t i s now convenient to define 
V H 

^ = » j t k + a j t k 

Prom (3) i t i s straightforward to prove 
i 

• i i 1 i i ' 
a j k = a j " k • a j " k 

i " i i " 
a j k - a j ' k ""• a j ' k 
i» i " 

a j ' k = a j " k - 0 

a j | k 
ii 

Let Y : R -* M11 be a C curve on We say that D* i s parallel along Y i f 
vectors i n D' remain i n D" when parallel translated along y* Let the 
tangent vector to y be b 1 — ~ r ; i 0 e 0 Y+[ ̂  ) - b 1 — r 

3x \ / i k Let X be a parallel vector f i e l d along Y» We have X j k b = 0» 
a'(A) i s parallel along Y i f and only i f 

taJ1»J)|k^'>Jfk»J » k + a*1 x j k b k . 0 

i k ' i i k Which, because X|k b = 0, i s equivalent to a^^ \° b * 0« 
Let X e Dv at one point of Y say Y(t). Parallel translation i s 

unique, hence x e D ' along Y i f and only i f a"(X) i s parallel akng Y . 
' i i k 

Hence X remains i n D' i f and only i f a ^ Xu b = 0, 
I f X i s an arbitrary vector f i e l d , along Y , i n D* i t i s of the form 

X1 a!J"» D1 i s then parallel along Y i f and only i f a!j k x p b k - 0 
for a l l x p. Hence a ' j k ^ b k a p| | k b k = 0, ^ S ^ T 6 ^ 
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' i k 
Similarly D" i s parallel along -y i f and only i f apM|k b - 0, 
I f D" i s parallel along a l l C paths Y i n D; we say that D" i s 

' i k k parallel relative to D*. We then have a^n^ b = 0 for a l l b such that 
k 3 ' i 

b — r - e D1. Hence a „i. , - Oo Similarly D' i s parallel relative to 
3x K ,. p ' K 

D" i f and only i f Bpt^,, - 0. 
When D' i s parallel along a l l C paths y i n D' we say that D'_ i s 

self parallel. The necessary and sufficient condition for this i s 
' i i ap'|k' = ®' Similarly for D", When written i n terms of a l l theBe 

conditions become, 

D' parallel relative to D" 4=> â ,.„ = 0 

D" parallel relative to D' p̂.>â ,,. , = 0 

D' self parallel a j ' k ' ' 0 

D" self parallel ^=>a^„k„ - 0 

(5) 

We shall see later that i f the connection i s symmetric, self parallel 
implies integrable. D" i s not i n general integrable so we seek a weaker 

• 

condition than self parallel. 

D* i s path-parallel i f for any m e i f 1 and any X e D ', the geodesic 
1 

determined by X remains i n D'« This condition i s equivalent to 

a. K XJ X = 0 for a l l x E D ' j |k m 

Hence &.]. a'J' a < k Xp x q = a!*,. Xp Xq = 0 and j|k p q P'R 

( ap'|q' + ai'|p« ) X ? X Q = ° 
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Therefore D* i s path parallel i f and only i f a t i • f a , = 0„ Tt i s 
p'|q- q*|p' 

convenient to denote symmetric alternation of suffices by ( ) and skew-
symmetric alternation by £ * 3- e°S° 

t A 
D' i s path parallel i f and only i f a^, | q, j - 0, 

Finally we seek the conditions on â . which are equivalent to 
J K 

intestability-
Let A,y be local vector fields i n D. Df i s integrable i f and only 

i f LTA»^Z1 e *"or a H such X,u (see Example 2) c Hence D' i s integrable 
i f and only i f a ^ a ' A ^ ' i T ] = 0 for a l l A,y (not necessarily i n D*) = 

3 i n i I f e. - — o n some coordinate chart ( x ^ s . ^ x ) and X = A e., 
i 3x -1 

y = u e^ 

a-'na'X.a'un = a " ^ 1 Xp e., a q
j u q e ^ 

= a'Ha"1 A P (a*J' y q) . e. - a'J' u q (a* 1 A P ) . e.} 
p q °i J q p u j i 

^ where " o i " denotes pa r t i a l differentiation by x ^ 

a j V j X p(a * u q) , - a'j y q ( a ^ A P ) .} e m l p q °J q p °J m 

= ( a " m a J a'1 . - a > a'J a 1 .) x p q = 0 l p q-j l q p°j 

for a l l X,u= Hence a " . - a ' , = 0 and by (3), a t . - a t . - 0. 
I f r i s symmetric this condition i s easily shown to be equivalent to 

apMq' " aqMp* " T h e n U S i n g ^ we may say 
D1 i s integrable i f and only i f a 1 = 0* Similarly for D". 

Cp'lq'U 
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Finally, we note that when r is symmetric we have the following 
interdependence of termss 

^ path parallel path parall' 
Self parallel >^ Self parallel ^ -f ~ 

integrable integrable 

§3. D-Connections 

A D-connection, D, on a manifold with the distributions D* and D" 
of &20 i s a symmetric connection with respect to which D' and D" are both 
path parallel and parallel relative to each other= The algebraic con
ditions for a D-connection are thus 

a ( j k ' ) = a(j"k") = V k ' = a j ' k " = 0 

Now, a j k r a^. - a j , k , + a^,, + aj„k, + aj„k„ 

Hence a y k j = a(j»k') + a(j"k") = ^ s o t h a t a ( j k ) = 0 f o r a P ~ c o n n e c t ~ 
ion. Conversely, a^ k^ = 0 ^> a ( P q ) a i a j = 0 

-> i 'p 'q . i 'p 'q i 0 

^ a ( p ' q ' ) a i a j r V'q") a i a j = a(p'q') * ° 

Similarly a(p"q") " 0 

Also' a^. k ) = 0 =>aj„k, • ajj..,, = 0 ^ a ^ , - 0 -> aj: I I k, = 0. 
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Similarly a * ^ = 0 =^ aj»k" = ^ a r K* t h e n e c e s s a r y sufficient con
ditions for a D-cormection become a^.^ = 0° 

I f i s an arbitrary connection on Vr, any other connection, D.^ 

say, i s given by + V j k where V j k is symmetric i n j and k 0 We dis
tinguish between covariant differentiation with respect to different 
connections thus; a ^ r ) and a ^ (r+V). 

Now, a.|k(D) = a . j ^ (r*V> 

' J * 4
 ( 4 + 4> a J - < + ^k> 4 

J|k J 
«• 

- a 

Similarly 

l ! J 

Hence aJk<D) a ^ D ) • a ^ ( D ) 

1 a j | k < r > * - ̂  • aj|k< r> - 1«k - ^ k 

Lastly, 2 a y k ) (D) = a L (D) * ajj (D) 

2 « o » ( r ) " ( Vj»k + i'k + Vjk" * 

so that the most general D-connection is given by 

D j k = r j k + ^ j k w h e r e v j k s a t i s f i e s 

I I S I I 
2 a ( j k ) < r ) 1 V j - k + V j k " + ^ k + Vjk' 



107. 

^ ^ s 2 aWr) - aW>(r)
 - a(j"k«)' r )'

 cik 
Then a routine calculation gives 

v}«k + vj;„ + vj : k , . vj k < - 2 a | j k ) + c j ; k + cj;,. + c j : k * cjk„ 

Hence r ^ k + V^k i s a D-connection i f and only i f 

i " i 1 i w i * 
C j " k + C j k " + C j ' k f C j k " = ° s fchafc i s 

i ' i ' i * i " i " i ? V 
C j ' V + C j " k " + C j V ' * cj'k» • Cj'k!» + C j ' k " f C j ! ! k " 0 

A l l combinations of primed and double-primed suffices appear except 
i " i " 

^j'k' 3 0 ( 1 ^ j " k , u n e n c e a general solution is given by 
i i ' i " 

C j k - E^,k, t w n e r e E » p 3 1 , 6 symmetric but otherwise arbitrary. 
We deduce that the most general D-connection i s given by 

°fk = r j k * 2 a u k ) ( r ) - 4 r k ' > C r ) - a u « v ) ( r ) * * i"k« 
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C H A P T E R V 

Holonomy Groups 

51. Introduction 

Let vf1 be a differentiable manifold with a differentiate foliation 

. Let D' denote the integrable distribution given by the tangent 

spaces of the leaves of and let D" be any complimentary distribution.. 

I f a connection r on M has the property that D" i s parallel relative to 

D* we may define holonomy groups on each leaf L as follows. 

Let \i(L) 5 L be the bundle of p-planes D" restricted to L C [f„ 

v(L) i s the set of pairs (m,w) where m e L, w e and Tr(m,w) - m„ v('L) 

i s naturally identified with the normal bundle of L i n and so has the 

structure of a principal GL(p,R) bundle. Let Y be a closed piecewise 

Cfc curve (that i s , Cfc except for a fi n i t e number of points) such that 

Y(0) = Y(1) - m and let TT :D" ->• D" be parallel translation, with respect 
Y m m 

to r, along Y from Y(0) to Y(D» W i s an element of the structure group 

of v ( L ) c I f At(L,m) i s the loop space of piecewise curves at m then 

we define a map ir:At(L,m) •* GL(p,R) by TT(Y) = n - The image of At(L,m) 

under ir i s a group (Kobayashi and Nomizu 0 - 3 ) P-7D> , / f l i e n r i s a D= 

connection, this group i s denoted by J^(L9m) and i s called the Walker 

Holonomy Group of class t on L at m. 
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§2. Two lerrmas 

Lenma 1 

On a manifold M0, every continuous loop Y i Q o , l ^ •* M° i s 
nomotopic to some piecewise loop.. 

Proof 

Let Y(0) = Y(D = m e M" and l e t {<pi:Vi •+ RN) be a C k atlas on 

M0, Let m e V. for some j„ A.(V.) i s an open neighbourhood of <)».o Y(0) 
J J J J 

in R" and there exists a convex open set C. such that y(°) e C. 
J J J 

C • • ( V . )o We shall consider only those coordinate charts which are of J J 
the form <JK :u^ R" where ^ ( u ^ ) i s convex, 

Let {u^} be a cover for YL0»-O° Because y i s continuous and 
[ j D , l ^ i s compact, there i s a finite subcover of {u^} 3 Let 

- l _ 
tu.}. , „ be such that (u.)}. . „ covers L0,1~U l i - l , c . . , q l I i = l , o c o , q *— * —' 

q 
Subdivide C 0 * ^ b v L 0 * 1 ! ] = iUi O ^ ^ i - n D s u c h t h a t t i = 0, 

_ _ - l 
t q + 1 = 1, t i < t 2 < ... < t q + 1 and L ^ . t ^ J C (u j t) for some j , 
•j° Y C t ^ , t ^ + 1 3 i s a curve in a convex subset of RN, I f ̂ ( L ^ ) i s the 

straight line between Y(t^) and $.o Y(t^ + 1), L^ i s a curve joining 

y(t^) and Y(t^ + 1) which i s homotopic to Y]^ti»ti+iD because a convex 

subset of R" i s homotopic to a point. U L^ i s then homotopic to Y£O>0 
and except possibly at the points y ( t ^ ) . 
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U 
n 

Lemma 2 

On an n-manifold r^1 with a differentiate foliation, given by 

an integrable distribution D' of dimension n-p, and a complimentary dis

tribution D", there exists a coordinate chart (y1,=»*,yn) about each 

point m e such that 

(1) The leaves of the foliation are given by y 1 = constant; 

i = n - p t l j s o c,n a 

(2) On the leaf through m, D" i s spanned by — r j 
ay1 

i = n-p+1, >., tr\o 

Proof 

Denote suffices taking values l,,, c,n-p by o or 6 and suffices 

taking values n-p+l, 0 3 1 ,n by A or U. By definition of a foliation r,here 

exists a chart (x1
1..»,xn) such that the leaves are given by x 1 = con-

stant; i = n-p+1,«,n, Let DH be spanned by b. t — r for some 
A 3x a 3xA V 



I l l , 

Let DT* and D"* be the duals of D' and D", respectively. That i s 

the images under the usual identification T(M) •* T*(M) of the tangent 

bundle with the co-tangent bundle. In T*(M), D1* i s spanned by 

dx a - b? dxX and D"* i s spanned by dx\ because i f we put 

u a = dx a - b? dx* we find 
A 

4 * ^ ^ " ^ * # * * 

Let (y 1,...,y n) be the coordinate chart given by 

y = x - b" (x£) x A 

where x^ i s the value of on the leaf through m. 

dy a = dx a - b? (x£) dxA 

dy X = dx X 

hence dy a = u a on the leaf through m. D'* i s spanned by dy a and D"* i s 

spanned by dy . i.e., D" i s spanned by — j - ; i = n-p+l,,.»,n as required. 

Finally, i f we denote by J = det l^j ] the jacobian 
i i - n W ' of the coordinate transformation y - y (x 1, -...^ ), 



l i t . 

3XP 

3 
" 3x 6 

3 
3XM 3xP 

3 
3X01 3xa 

i £ 
3XA 

3 

'<? 
0 

(xa-b°(xl')xx) = -b° 
A O U 

(x u) ^ 0 

^ j and J = 1„ Hence (y 1,, c., ,y n) i s a coordinate Hence -^L-
3X*5 

chart about m with properties (1) and (2), 

§3o Main Theorem 

On a C k manifold M" with differentiable foliation (C 2 , 2) of which L 

i s a leaf, 

(1) m( e L and m" e L (L,m') ="Jt (L,m") 

(2) ]>i (L,m) e ,,f * j j ^ (L,m)o I f M" i s d " k may be «. 

(3) j j ^ ( L» m) j J ( L ) , the Jet group of L-. 

Proof 

We use the notation of Lemma 2. The projection tensor a* has 

components, 

a' S = flB, a'} ^ 0, a ! " = b? where b°(xu) = 0. a or l •* X X X o 



I f u i s a parallel vector f i e l d along a path of the form 

y 1 = constant; i * a, 

ui = u + D ir = 0 I a ya 

Pram the expression for an arbitrary D-connection given in 

Chapter IV §2., 

(r) - a (r) - a (r) (ya) i i . . i i ya ya 

II i 

y a 
L4" W X ")!>«. a coovrl/nale. chart s iicli J " on "flit leaf 

dfĉ i'iW 1>M ' x£ = constant D1 i s spanned by —- II and D" by 
dx 

We l i d * , Du\ - r x
a + 2 a (

x
a ) (r) 

= r x t a X (r) + a X (r) ya ya ay 

= r x + a'- (r) + a"? (r) ua u|a y|a 

+ a , x * (r) + a" x" (r) a|y a|y 

= r x - a»i (r) - a'• (r) ya y|a a|y 

= r x - a'| (since a , x = 0) ya a|y y 

= r x - a , x - r) a' 1 + r 1 a , x 

ya a°y ly a ay l 

= r X - r x (since a f X =0) ya ay l 

= 0 because r i s symmetric. 
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Hence, u* i s parallel i f and only i f I / q = 0, i-.e* = constant. Henc«=-
0 and u = constant i s parallel along a l l differentiabl 

curves through m and parallel translation along a curve depends only on 

•loss 
the homotopy typo of the curve. This result i s originally due to 

Walker, C Q -

L i s connected and locally euclidean and hence path connected 

(Spanier Q.^] p=65), and i f m', m" E L there i s a path a such that 

a(0) = m' and a ( l ) = m"= Then by lemma 1 there i s a C k path, 3, homo-

topic to a and therefore a map 

B : ̂ .(L.m') - Jt(L,m") given by 

0 (II(Y)) - n(a y a' 1) = n(a) II(Y) i K a ) " 1 . B i s a conjugacy 

and J t(L,m') * jJit(L,m"). ' I h i s Proves (*)• A s f o r (2) we note that 

3i(L,m) 2 j2( L» m) 2. 3 JT^CL.m) as subgroups, 

and as every piecewise C 1 loop i s C1 and every C l loop i s homotopic to 

a piecewise loop, ^(Ljm) ^(L,m). Hence the J t(L,m) are a l l iso

morphic , 

Finally we prove (3) . 

Let y C^> 1H a piecewise loop at m. As in Lemma 1 [j3»lI3 
q ~ 
•Vi LTtjjt.^,"] but this time with the condition that each YCTt..*-.. . 

l i e s in a coordinate chart (y1»»..,yn) with the properties (1) and (2) 

of lemma 2. Let T r and be transverse discs at Y ( t r ) and Y ( t r + 1 ) 

given by y* = constant. The tangent space of T r at Y ( t r ) coincides with 

D" at Y ( t r ) and similarly for T r +^. The local homeomorphism *:T r •* T ^ 
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introduced in Chapter I I §2., has the property that 

* (yV.. fy ) = y 

hence naps D",. , to D V a by u* •* u \ But we have shown that this 

i s the map of D",, » to D">. * given by parallel translation relative 
vt rJ ^ r + r 

to a D-connection* Because the maps like generate the Jet group of 

L we deduce that parallel translation relative to a D-connection also 

generates the Jet group, i.e. j^Cl^m) J(L) as required. 

Note 

I t has been thought that Walker's holonomy group i s the Ehresmann 

group. A counter example i s example B of Chapter I I I §4* i n which the 

Ehresmann group i s Z and the Jet group zero. The fact that the Walker 

holonomy group i s the Jet group and not the Ehresmann group can be 

partially explained by continuing our introduction to Chapter iv; The 

projection a" i s given by the f i r s t derivative of a special map so that 

the holonomy group w i l l be given by the f i r s t derivative of the maps 

between transverse discs. This i s just the Jet group. 
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C H A P T E R V I 

Properties of Holonomy Groups 

51. The Holonomy Group i s not a Lie Group 

Holonomy groups are, in general, l i e groups (Kobayashi and Nomizu 

C O P°73) and have no manifold structure only i n special cases» for 

example, a f l a t connection gives r i s e to a zero holonomy group. We 

show that a D-cormection on a foliated manifold i s one of these special 

cases. 

Lemma 

I f M*1 i s a paracompact, connected, di f f e r e n t i a t e manifold, 

•niivf1) i s countable, 

Proof 

M" supports a Piecewise Linear structure (Munkres C O 

Chapter I I ) and for this lemma we shall assume that M° has a triangul-

ation. Any continuous map Y : 0 ^ » O ~* ^ -̂s» b y the simplicial approx

imation theorem (Hilton and Wylie C O * P«37) homotopic to a simplicial 

map, Hence y i s homotopic to an edge path and can be specified up to 

homotppy by an ordered collection of O-simplexes, As £ 0 , 0 * s compact 

and y i s continuous, this collection of O-simplexes i s f i n i t e e 

Consider the open cover of vf1 given by the open stars of the 0-

simplexes. That i s , i f p i s a O-simplex on the star of p, denoted 

by u(p)s i s the union of a l l closed n-simplexes containing p. The open 

star of p, S(p) i s then given by S(p) = u(p) - 8u(p). 
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The collection of sets {S(p) : p i s a O-siitplex} i s an open cover for M" 

and each open star contains one and only one 0-simplex0 Hence there i s 

no subcover of M°. I^ 1 i s parajcompact and the topology of" rf1 has a 

countable base; hence every open cover has a countable subcover by the 

Lindelfif theorem (Kelley £ Q p.M9). In particular {S(p)l has a count

able subcover. But {S(p)} has no subcover and hence the number of 0-

simplexes i s countable, 

Finally, as each path on i s specified by a fi n i t e number of 0-

simplexes we deduce that the number of paths, up to homotopy, i s count

able, and hence i^Orf1) i s countable. 

Corollary 

I f tf1 i s a compact, connected, . differentiable manifold, 

TTJCJ^ 1) i s finitely generated. 

Proof 

As i n the lemma we find that the paths on M0 are, up to homo

topy, given by a finite sequence of C-simplexes where the number of 0-

simplexes i s f i n i t e . ir^M 0) i s therefore fi n i t e l y generated, 
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Theorem 

J-t(L,m) i s not a l i e group, M B . Our COHIW^JW « " L diawaoh 
4 a 1» group « >0. (HWw\&e. we. w»au restate.-Hot Hkaorw* as ' tAi*v» %t(ljn) = O . 

Proof J 

L i s a submanifold of J*?1 and therefore pa^icompact - (f^ 1 para-

compact -> existence of a metric => existence of a metric on L - ^ L para-

compact, See Hicks Q Q p=87)= J t(L,m) i s a factor group of n3 ( L ) , 

which i s countable, hence jj[t(L,ni) i s countable and cannot admit a mani

fold structure ̂ oj- dinw^on 

We conclude this chapter with a discussion of the properties of 

Tt(L»ni) when the foliation has ccriimension l t 

12. Holonamŷ  Groups _of Foliations of Codimension 1 

Theorem 

I f a foliation on a differentiable manifold has codimension 1, 

jE^XLjin) i s a factor group of H^CLjZ), the f i r s t homology group with 

integer coefficients, and has a torsion subgroup which i s either t r i v i a l 

or Z2. 

Proof 

5t(L»m) has a faithful representation i n GL(1,R.) * R \ {0} 

under multiplication. Hence the holonomy group i s abeliam 

Let a be the homomorphism aSTr^L) •*jL(L,m)« Since ̂ ( Ljm) i s 

abelian, the conmutator subgroup Tri'(L) of iri(L) i s contained in ker a. 

(Hall p.138). Let 3 be the map B ; - defined by 

B:a ^ ' ( L ) •* a ker a where a e iri(L). I f a -irj ''(L) = b T T ^ • (L), b* 1 a e 

ir 1'(L) and so b*1 a e ker a, a ker a = b ker a and 6 i s well defined. 
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Also, B(a irx'fL) b V ( L ) ) = P(a b V ( D ) 

= a b ker a 

= (a ker a)(b ker a) 

since ni'(L) and ker a are both normal in n,(L), Hence B i s a homo-

rnorphism. We define by the commutative diagram-. 

/y \ canonical irt (L) 6 n-) (L) a r ,T v 

andwehavei t(L,m) 2
 ffi ^ e ^ - ^ . Now, .« ^ ( L j Z ) ; 

(Greenberg £l3s and so the holonomy group i s a factor of the 

f i r s t homology group as required. 

F i n a l l y j>t(L,m) i s isomrophic to a subgroup of R N {0} and the 

only elements of fi n i t e order are ±1. Hence the torsion subgroup of 

J^CLjm) i s t r i v i a l or Z2, 

Corollary 

I f L i s compact, the isomorphism classes of j^CLjin) are Z^ and 

Z 2 x Z^ where q i s an integer 0-

Proof 

By the corollary of §1=, jTfc(L,m) i s fin i t e l y generated. Hence 

Jtt(L,m) * ̂  Z * Z q (Ledermann £V] P*151). By the theorem 
l n 

a b o v e .X̂  Zp = 0 or Z 2 and the corollary i s proved. 
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Example 1 

I f the dimension of L i s 1, *\{L) 5 0 or Z and <|»t(L,m) = 0* 

Z 2 or Z, The examples of Chapter I I I Si. exhibit the isomorphism classes 

0 and Z. The following foliation of the moebius band exhibits the class 

Z2 ° 

Example 2 

I f the dimension of L i s 2, Hj (T jZ) « Z 2 g where T i s the 
o o 

sphere with g handles and Hj (.u^Z) « Z 2 x z " where 1^ i s the sphere with 

h cross caps. Hence 

\ (T ,m) * Z q or Z 2 > Z q" x where q s< 2g 

and j^CUj^m) * Z q or Z 2 * Z q where q,< h-1. 

These examples give the isomorphism classes of the Holonomy group 
for a l l compact leaves of f o l i a t i o n s of 3-manifoldSr. 
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