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ABSTRACT,

This thesis is in two parts. In Part I we consider integrals of
the p-th power of the total curvature of a manifold immersed in R"
and thus introduce the notions of total p-th curvature and p-convex.
This generalises the ideas of total curvature(which corresponds to total
1st curvature)and tight(which corresponds to 1-convex)introduced by
Chern, Lashof , and Kuiper.

We find lower bounds for the total p-th curvature in terms of the
betti numbers of the immersed manifold and describe p-convex spheres.
We also give some properties of 2-convex surfaces.

Finally, through a discussion of volume preserving transformations
of R™ we are able to characterise those transformations which preserve
the total p-th curvature (when p>1)as the isometries of R".

Part 11 is concerned with the theory of foliations., Three groups
associated with a leaf of a foliation are described. They are all factor
groups of the fundamental group of the leaf: the Ehresmanngroup, the
holonomy group of A.G.Walker, and the "Jet group", This Jet group is
introduced as the group of transformations of the fibres of a suitable
bundle induced by lifting closed loops on the leaf, and also by a
geometric method which gives a means of calculating them,

The relationship between these groups is discussed in a series
of examples and the holonomy groups and Jet groups of each leaf are
shown to be isomorphic. The holonomy group of a leaf is shown to be
not a Lie group and, when the foliation is of codimension 1, it is
proved that the holonomy group is a factor group of the first homology
group with integer coefficients and has a torsion subgroup which is

either trivial or of order 2.
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PART I

Total p-th Curvature

SUMMARY

Our object is to study integrals of the curvature ofamanifcld in
a way which extends the known results in the topic of "total absolute
curvature". All the work is original unless otherwise stated. That is,
chapters II-V and a little of chapter I is original.

In chapter I we define the total curvature of an immersion

£:M > N by the integral =(f) = K(m) W where K 1s the total curv-

v
ature at m ¢ M* and W is the riemannian volume form on M® induced from
the euclidean metric on RmN. M' is assumed to be rlosed, compact, C?
and orientable. We then state the main theorems about z(f) and show how
the theory extends to non-orientable manifolds. |

We show that for any M" there are immersions, f, for which *(f) is
arbitrarily large, i.e. there are no theoruiiz of the type
"t(f) & constant for all f". On the other hand the infimu: of 1(f),
over all immersions f, is an interesting number; it is a differential in-
variant of M'. Immersions for which inf t(f) is attained are ‘called
"tight". In chapter II the total p-th curvature of f is ds= ined as

Tp(f) = ¥P (m) W As prn is not dimension free there are no theorems

%
for 'l'p which generalise those we have stated for 1. However we show that
if the immersions considered are such that the volume of f(M?) in gN

is fixed, analogues of the theorems true for r are true for p° The in~-
fimum of rp(f) is a differential invariant of M for every p and immers-

ions for which this infimum is attained are called "p-convex". 1l-convex



is equivaleﬁt to tight. We also prove that Tt p(f) is a convex function
of p.

Total curvature has been generaliséd by; (1) immersing M in an
arbitrary riemannian manifold (2) integrating aigurvature other than the
total curvature. Where there are theorems in thesé more general situat-
ions, they extend to includepowers of curvatures. For ex_ample we show
that if M? is a smooth closed compa.ct surface in R3 with area Un and
mean curvature H, {4 ) |H|p wy 3 Un for all p > 2, equality being attained
when M2 is the unit sphere. (The case p = 2 is due to Willmore).

Just as sup 1(f) was unbounded we show, in chapter III, that
sup rp(f) is unbounded for all values of p # O. Also,i'[;is proved that
inf -rp(f) =0 forp <0and O < p < 1and that there are no immersions
for which these suprema and infima are attained.

The total p-th curvature and p-convexity of curves and surfaces is
examined in chapter IV. We describe p~convex curves and spheres for all
possible values of p and show that there is no 2-convex torus of revolut-
ion in R}. We then examine 2-convex surfaces in R3 by variational
techniques, deriving equations which 2-convex immersions must satisfy.
We thus prove that there is no 2-convex toruswith one principal curvat=-
ure constant. |

In chapter V we investigate the group of transformations wh_i.ch pre-
serve p-convexity. As p-convexity is defined via immersions with a
fixed volume we are led to a study of transformations of a riemannian
manifold which preserve the volume of every k.-dimensional submanifold.
These "levolume preserving" maps are defined both locally ard globally

and the two definitions are shown to be equivalent. Finally, these maps
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are shown to be isometries and it then follows that the p-convexity pre-

serving transformation group is the isometry group.



CHAPTER I

Total Curvature and Tight Immersions

§1. Introduction

One of the most important results of classical Differential Geo=-
metry is the Gauss-Bonnet Theorem. If M2 is a C2 surface (closed and

compact) in R3 with Gauss curvature K and surface volume element dA,

/ KdA = 2r y(MY)
MZ

where x(M?) is the Euler characteristic of M2.

The result is so striking that one immediately asks if there are
analogues for manifolds of arbitrary dimension and other types of curv-
ature, (the mean curvature, for example). With a suitable change in the
constant 2n and a choice of the curvature K the theorem is indeed true
for manifolds of even dimension greater than two, (the most comprehensive
statement of the Gauss-Bornnet theorem in this generalisation is due to
S. S. Chern [1_]) and at present there are, broadly speaking, two "other
types of curvature" that have been considered. One.is the Differential
Geometric approach to characteristic classes given by S. S. ‘hern
(especially in [[2_] and see also Kobayashi and Nomizu [zj)
in which the Gauss~Bornet theorem appears almost as a special case.

The other type of curvature, total curvature, has its roots in the
following theorem of Fenchel El] . If y is a closed C? curve in R3, k

is the Serret-Frenet curvature and ds is the line element,

;



! |k|ds > 2n
y

equality being attained when y is a plane convex curve. This theorem,
which was later generalised to curves in R by Borsuk (17, with its
inequality and special curve in the case of equality, is the prototype
for all the theorems which followed.

This chapter is concerned
with the statement of these theorems in the form we shall use them later.
Our ultimate purpose is to extend them to theorems about yet another

"type of curvature", p-th curvature.



§2. Total Curvature

M? will be a closed, compact, orientable, C2, n-manifold.

Let f‘:M_n + B pe a 02 immersion of M into euclidean space of
dimension n + N; that is the induced map f, of tangent spaces is a mono-
morphism (or, equivalently, f has non-zero Jacobian).

Following Chern-Lashof [[1_], we denote by B.: ¥ M' the unit normal

f

bundle of f. Bp is the subset of T(RmN) x M* of pairs (g,m), where

me M and € is a unit normal vector to £(M*) in Rn+N at f(m). = is the
natural projection T(RmN) x M Mn, into the second factor, restricted

to Bf.

For each point (£,m) of B,, the unit vector £ at f(m) may be identi-
fied, by euclidean parallel translation, with a unit vector at the
origin of RmN. If we denote the unit hyper sphere at the origin of
g by SE+N-1 we thus have a map

. n+N-1
Y -Bf > So

which is called the Gauss map of the immersion f.

We denote by g the euclidean metric on RmN. Because f is an
immersion there is a natural injection of (M) into T(RMN‘- and hence
a natural restriction of g : T(RmN) x T(RmN) + R to a map
T(M") x ™(M?) + R which we denote by gl ..-

e

g is a riemannian metric on M , and it gives rise to the

M

riemannian volume element, W, On Mn, associated with it., Let

(xl,...,xn) be a coordinate system about m € M (that is, a chart

(x? ...,xn) : U+Rn, such that U is an open neighbourhood of m) and let
. .




Ts

5ij
(x*) [

then

be the metric g| ¥ expressed with respect to these coordinates,

2 gl ... pad

M’

= L]
w, f* det gij

(xi)

0, is independent of the coordinate system chosen for if (y!,...,y") is

also a coordinate system about m

. axP a3
&5 * fa| o3 o7
i i oy oy’
GHM oh
1 » 3
aylA ... Ady" = 31{ ax'a ... A-?-ill- ax*
X X
3y~ n
= det/ 2+ | dx!A ... AdX
9
Hence,
% n
1
det gla dy'A ... Ady
) [

a\1 i
det e axd det / A, \ax'a ... ia®
%pq oyt 2 axY
i y
(xH) |M?

aod i
= det [ g det(%}) det(iL) axIA ... AGKD
L P )
(xl) M?
= + det g ) axIA ... A
(xi) Mm?




The + and - signs occurring when the Jacobian of the transformation
yi(xl,. . .,xn) is respectively positive or negative. If M? is orientable
there exists an atlas in which every such Jacobian is positive (Kobayashi
and Nomizu El] , Volume I, page 3) and so w, may be defined by means of
this atlas.

Now, each fibre n~!(m) of Bf is an (N-1)-sphere in RmN and so has

induced on it a volume form, oy _,, whose construction is the same as w,

for M. Also, B, is a product and hence On-1 Aep is a volume form for

iy
B,.. We also construct the volume form I on sPi-1
f 3 * n+N-1 o *

and y*I are_both (n+N-1)-forms on the (n+N-1)-dimens-

On-1 Mo -1

ional manifold Bf. These two forms must therefore differ by a real

valued function on Bf. We put

= G(g,m) o l\uurl

*
YL N-1 N-1

G:B,. -~ R is the Lipschitz-Killing Curvature of £:M" > RmN at m in

£
the direction £, In co-dimension 1 G is called the Gauss-Kroneker Curv-

ature and is equal to the classical Gauss curvature whenn = 2 and N = 1.

The Total Curvature, K(m), at m is defined by

K(m) = s |G(g,m)| o
71 (1) N-1

and the Total Curvature of M’ is defined by

T(Mn,f,Rn+N) = ljv-[n Ku,

=1 |Gg,m)| oy_y Awg
Bp
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From the outset we have assumed that M is orientable , because only
then is W globally defined and the integrals above are meaningful.
However we may deal with non-orientable manifolds as follows: (see for
example Abraham [[17]).

Let M* be the orientable 2-fold cover of M" and for a given immers-
ion £:M* 2R 16t ¥ pe the map given by the following commitative

diagram,

n n+N
W — > R

where p is the usual projection.
The volume form on M* is taken to be }‘*mn and G, being a function

Bp

+ R is easily "lifted" to a function & on B? by defining Y sM) =
G(g,p(m)). (#* is here the usual induced bundle map; see Hussmoller

1] p.18, and *+ is clearly a monomorphism so that & is defined on the
whole of B_).

¥

The total curvature is then defined as

00,0,y - ¥ P, )
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When M" is orientable the orientable two-fold cover is M* V M
(disjoint union). This explains the appearance of %.
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§3. Main Theorems

Let ¢ be a C2, real-valued, function on a C? manifold M. A point

me M is a critical point of ¢ if d¢ = O at m. Equivalently m is a

critical point of ¢ if

%z—r(m)=...= i%(m):O

X

with respect to a local coordinate system (xl,...,xn) about m.

A critical point m is said to be non-degenerate if the n x n matrix

2
—-?_—L-.- (m) is non-singular, and a non-degenerate critical point is said
9x™ 9 2
to have index k if the symmetric matrix —-g—-!’—-r (m) has index k. That

n ox 9 32
is a cooprdinate system (y!,...,y ) exists in which -—-1-1---.- is the
In—k' 0 dy~ ay
matrix | -5—-z3- ) vwhere Ip is the unit p x p matrix.

k .
¢ is a Morse function on M if all its eritical points are non-

degenerate. It is well known that any C? manifold supports Morse funct-

ions (see Milnor [[17]).

Definitions

¢(Mn ) is the set of Morse functions on M,

sk(cp) is the number of critical points of index k of ¢, and
n
B(¢) = K0 Bk(¢'), i.e. the total number of non-degenerate

. -critical.points of ¢.

sk(mn) = minimm {8, (¢)}
o e oM

B(MY) = minimm {8(¢)}
o € oM™

Let F be a field, then the k-th betti number bk(Mn;F) = dimy, Hk(Mn;F)
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where H_(M';F) is the k-th homology module with coefficients in F and

dimFI is the dimension as an F-module.
WLE) = g b (M
b(M';F) = I, b (M';F) and

b(M') = maximm  {b(M;F)).
all fields F

(Mn) is clear and that an)

/

We remark that B(M") > kzo
b(M") is well known as a Morse inequality (see Milnor El]). Taken
together these inequalities imply B(Mn) b(Mn)

For a given Mn, 't(lVln,f,Rn N) clearly varies with f. However we

have the following theorem:

Theorem (Kuiper). (See Kuiper [[1_] and Wilson [[1_]).

inf (M, f Rm'N g(M™) Ch , where the infimum is taken over
F 1

2 = N . +N
all C2 immersions f:M* ~» B™" and ChaN-1

hypersphere in RmN. In the notation of 'Qz,

is the volume of the unit

In

cn =£n

For example, Co = 2, ¢] = 27, ¢z = 47 and in general

(n+1)/2
c, (n+1311r 3 (see Flanders [1.]).
r ( 2%3%
Definition
A C2 immersion is tignt if t(M,f,B°N) = g(M™)
Note 1.

Such immersions were originally termed "of minimal total (absolute)
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curvature" for obvious reasons, and "minimal" for short (e.g. in Kuiper
El:[) . The first of these has been dropped for reasons of =uphony and
the second for ambiguity. A minimal immersion is usually one for which
the mean curvature is zero everywhere. Other terms which have been used
are "convex" and "generalised convex" (e.g. in Kuiper E}]). See below
for motivation. As we shall later introduce the notion of p-convex we

have chosen to call the above immersions "tight" (as does Kuiper in f:_ﬂ:‘_.‘: :

Note 2.
We remark that sup (M ,f,RmN) is of no interest.
Consider the C~ surface in R? which is homeomorphic to a dise and

is generated by the rotation about the "y-axis" of R® by the curve given

by
(1 =x)2 /2
y(x) =\ re (1-x)*/x when 0 < x ¢ 1
0 when x =0
Picture of Curve Picture of Surface
X=y
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The total curvature of this "dome" surface is indep=ndent of r and
equal to 4n., This calculation is most easily done using Ku. ~r's formula
in [[27], p.8.

Now, any 2-manifold can be immersed in R?® so that some part of it
lies in a plane. An arbitrarily large number of circular discs of radive
r may then be removed from this planar region and replaced by “domes" and
the differentiability class of the surface remains the same. If n "domes"
are introduced the total curvature of the immersion is increased by 4m.
Furthermore, an arbitrarily large number can be introduced simply by
making r small. Consequently, sup t(M?,f,R?®) = «» for all 2-manifolds M2.
Similar procedures for n-manifolds will yield the same result.

wé now return to the mainstream of the discussion.

M? is compact and so Bo(¢) >, 1 and Bn(¢) 3 1 for any morse function
¢. (¢ is continuous and M is compact and so ¢ has a maximum and a mini-
mum. Morse's lemma (see Milnor [[17]) then gives B,(¢) and B (4) . 1).
Hence T(Mn,f,Rn+N} > 2 cn+N-l by the theorem of Kuiper. The next theorem
is concerned with the conditions under which equality is attained or

nearly attained.
Theorem (ChernLashof [:l:])

(1) e, BN = 2 ¢ €M is enbedded in sum 1) -

+N-
dimensional linear subspace of Rn+N as a convex hypersphere.
(ii) r(MP,f,Rn+N) <3 Coynel =>M" is Womeomorphic to the n-

dimensional sphere, Sn, with the usual differentiable structure.

The theorems of this section will always be quoted in the following

form:
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Theorem 1
+N
(M, e, 5, 2 Cran-

a convex hypersphere in some (n+l)-dimensional linear subspace o. RmN.

1 equality being attained wn=n £(MY) is

Theorem 2

(M ,f,RmN) <3c => M! is homeomorphic to the standard

n+N-1
n-sphere.
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§4, The Total Curvature of Surfaces

n

In the previous section it was pointed out that ko

kaMn\ 2 (M),
If equality holds then theorem 1 is equivalent to

. +N
inf (M, £,K°) = p(MY) ¢ 00

Thus relating the total curvature to the well known betti numbers.

n
Manifolds for which k§O Bk(Mn) = b(Mn) are therefore of interest so we

shall show that all surfaces (2-manifolds which are closed, compact, etc.)
have this property and derive the form of Theorem 1 which will be used
in Chapter IV.

Any orientable surface Té

joining g orientable handles to a sphere. (See Greenberg [:1:]), Tb is

, where g = 0,1,2, ..., is obtained by ad-

the sphere and T& is the g-fold torus. g is the genus of Té,

Any non-orientable surface U _, where h = 0,1,2, ..., is obtained by
adjoining h dtwisted!-handies—ox cross caps to a sphere. Uo is the
sphere, U; is the real projective plane, U, is the klein bottle, etc.

The homology of these surfaces is

Hy(T,F) = F, FE, F

Ho(U3F) = F, 7 x F/(2), Fp

where F2g = F x ;., x F, (2) is the ideal generated by 1 + 1 and
e’

2g times
F, is the set of elements annihilated by left multiplication by 2;

F, = {a ¢ F:(1+41) a = O}.
Hence b(Té;F) =1+2g+1=2(g+tl) for all fields F and

: 24N .
inf (Tg,i,R2+ ) = 2(esl) ¢y,
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If F has characteristic not equal to 2 then (2) = F and F/(2) = 0.
Also F, = O so that

H,(U;F) = F, 1, 0

and b(Uh;F) =1+ (h-1l) = h

If F has characteristic 2 then (2) = O and F/(2) = F. Also F, = F

so that

H (U F) = F, P, F

Uy

and b(U3F) =1 +h+1=zh+2

Hence b(Uh) = b(Uh;F) when F has characteristic 2, for example

F = Z,, and
inf (U 6,2 = (n42) ¢y,
We note that
x(Tg) =0z = by +b =2 -2g
and x(U) =2-h hence
b(M2) = 4 - x(M2) for all surfaces and

inf (M2, £, B2 = 2n (Uey(M2))
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CHAPTER ITI

Total p-th Curvature and p-Convex Immersions

Note

Total p-th Curvature is different from the p~th total curvature of
Bang-yen Chen [1_].

§1. Total p-th Curvature

We have defined the total curvature of an immersion f:Mn - RmN to

be

'r(lVln,f,Rm'N) = {I]n K W

and we wish to generalise this and consider integrals of the type

s KP vhere p is any real number.

The total p~-th curvature of an immersion £iM* Rm'N is
I

N
Tp(Mn,f,Rn+ ) = 1{4“ KP W where p € R

We shall refer to -rp(f) or just Tp when the reference to M ,_RmN or f is
clear (or irrelevant, as in the next sentence).
Ty = 1 and so total 1st curvature is the same as total curvature.
Because t = / |G| Op- M v, & definition of « D which has claims to

B
f
be:. : a generalisation of total curvature is
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Aw

I IGIp oN-1 n

p Bf
However the generalised notion of tightness, p~-convexity, turns out to
be useless if we take this as our definition of Tp* A remark which
points out the exact difficulty will be made later. (Ps23).

Our aim now is to prove for L analogues of all the theorems we have
stated for v = 1;, Consequently we examine the infimum and supremum of
rp(f) over all immersions f.

Let £:M" » RN o ¢ R such that o > O and define of:M® + B®'V by
(af)(m) = a(f(m)) where f(m) is considered as a position vector in
RN \ith origin 0. If the Lipschitz-Killing curvature for f is G, the
curvature for of is a ™ G. Also, if the volume form on M* induced by f
is W s the volume form induced by of is unmn. Hence T p(uf) = u(l-p)n
rp(f). For example t;(af) = 1;(f) and the total curvature thus depends
on the "shapa" of £(M") and not on its "size". If p is any real number
other than one, rp(-af) can take any value in the range O < o < » for
fixed f hence inf rp = 0 and sup 'cp z @, If meaningful results are to
be obtained we must restrict the class of immersions over which we take
infima and suprema. This is done by restricting the "size" of £(M) so
that b depends only on the "shape". This will then be in analogy with

the case p = 1.
Definition

An immersion f:l\'_lr1 -+ Rm'N has the standard volume if

l{]n Un © 2 -1
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We shall always consider immersions of this type for reasons which

will become clear. There is no loss of generality in doing so, for let

g:M" - R**N be an immersion for which l'Cln w =2 o CaN~1 Where o > 0 is

: " =gl =aq D -
a suitable real number and let f = a ‘g. 'ro(f) = a TO(g) =2 ¢ N1

and so f has the standard volume. Also, tp(g)_ - o{1-P)n 1-p(f) and there-~
fore any results we may have about immersibns with the standard volume
always imply some result we may have about immersions with any (non-
standard) volume. We shall also use the terms area and length for the
volume of two and one-dimensional manifolds respectively.

We now introduce the property corresponding to tight:

Definition

An immersion £:M' -+ R* with the standard volume is p-convex if

1 (f) = dinf  {r (&)} vhere g has the standard volume.
p +N p
g:MLRD

There may not exist a p-convex immersion of the manifold M®. For
example if M is a sphere with a non-standard differentiable structure
and N = 1, inf T =2 ¢, by Theorem 3 and this infimm is attained when
the sphere is convex. But a convex sphere is the boundary of a disc and
so has the usual differentiable structure. Hence there are no p-convex
immersions of exotic spheres.

However inf " is still defined and is a differentizl invariant of
M'. This follows from the fact that the total pth-curvature of
£:M > RMN is calculated from the properties of the point-set f(M“) S0
that if ¢:Nn + M is a diffeomorphism, fo ¢ is an immersion of N with

the same total pth-curvature as £+ R® N and conversely.,
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Note 1.

Ty = 2 € uN-1» hence every immersion is O-convex.
Note 2.

Ty = 1, hence l-convex &Pptight.
Note 3.

In co-dimension 1, K = / |G| o, = 2|G] . Hence,

- p
L 2P l{f‘ |G| W

where G is now the Gauss~Kroneker curvature and the standard volume is

1/n in an (n+l)-dimensional

2 ¢,: For example, the sphere of radius 2
linear subspace of Rn+N has volume 2 , and Gauss-Kroneker curvature %,

so that Tp = f w, = 2 cne Hence inf Tp =2 cn=

Note 4.
Theorems about tv can be put in the new notation.
Theorem 1 becomes:
T 3 T equality being attained when £(M") is a convex
hypersphere in some (nt+l)-dimensional linear subspace of RmN.
Theorem 2 becomes:

X oV M is donfeomorphic to the standard n-sphere.

We are now in a position to prove the analogues of these thzorems

for total p-th curvature.
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§2, Main Theorems

Theorem 3

1f £:M » BN is a €2 immersion of a closed, compact, ccrnnect-
ed, C? n-manifold, M*, W YT when p > 1. Equality occurs when £(M")
is a convex hypersphere in some (n+l)-dimensional subspace of RmNg If

also p > 1, the total curvature of the immersion is equal to +1.
Lemma

If f is a square integrable function on M? with measure w, and

p is a real number greater than 1,

ffpwn <J'fwn_p
7

e ——— — equality occuring if and only if f is

W
n n

constant except for a set of measure zero.

Proof’
If g is also square integrable we have, by H8lders inequality

(see Hardy, Littlewood and Polya El] p.1U40),
1 1
Jfguw g (s P mn)p (s gq mn)q for all q,

equality occurring when f and g are proportional, except possibly on a

set of measure zero.

On putting g = 1 and q = p/(p-1) we find

1 p-l
Jfw g (J‘fpwn)p 0 wn)p
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;£ W, % (S fu n)p !/ (J wn)p-l which gives the required

inequality. Equality occurs when f is proportional to 1 i.e. a constant.

Proof of Theorem 3

If we put £ = K in the above lemma we obtain
T

\ P
-2 >,< -:—L) equality occurring when K is constant
o o

almost everywhere. However f is C2 and hence K is continuous so that
K = constant. By theorem 1 1) > 7/ and so T 7 7o Then L implies
T =T, which implies K = 1 and we have the theorem.

Note 1.

We can now see why the definition t p - S IGlp o L which

N-1
was suggested in §1, is of no use. With a suitablla.g choice for the stand-
ard volume we can prove the theorem, o R with equality if and only
if G is constant and £(M") lies in an (n+l)-dimensional linear subspace
of RmN. When N = 1 we can proceed to an investigation of convexity in
a meaningful way. It is when N > 1 that difficulty occurs.

Let g:M' » Rm'N'. be an immersion such that N' < N and let
i:RmN' + R N be an imbedding of' Rm'N' as a linear subspace of RN +N,

iog:Mn - RmN has the property that if v is any vector in RmN

at a point
of iog (M") normal to iog (M) then G(v,m) = O. This calculation is most
easily carried out using the geometric interpretation of G given in Chern
and Lashof [[17], p.311. For example, if g:S! + R« R3 and n and b are
respectively the normal and binormal to g(S!) in R3, then G(n,p) = k and

N

G(b,p) = O for all p € S!. It follows that if £:M" + R is the inmers-

ion in the above theorem, G = O. We have
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L 18] ony Ay > 2 0py,

by
and we conclude that such an f does not exist. Consequently, this defin-
ition of Tp gives us a theory of convexity in codimension 1 (which happens

to be the same as we have already) and no useful theory otherwise.

Note 2.
H¥lders inequality also. gives information about L when p < 1;
(the inequality is reversed) but we shall see in chapter IIT that in-

equalities canmnot give the strongest results for such values of p.
Theorem 4
If £ is an immersion of the type specified in theorem 3 and
o < (%)p T for p 3,1, then M is sh.'om‘eomor'phic to a sphere.
Proof

By the lemma of theorem 3 we have
T 71 \P
(32)p>7rp- }(7;1-) and hence 11 < %toandthe
o] o

result follows from theorem 2.
We shall also need the following theorem later.
Theorem
v oaE oa o= . dT
T , 18 @ convex function, that is F exists and is an in-
creasing function of"p.
Proof

M” is elosed and compact and K is a bounded eontinuous function
of M* because M is C%:
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a. . - 4 p
g ‘p  dp ,{,InK“n

- P
= {"ln K loge K 0
When K < 13 KP is a decreasing function of p and loge K < 0, hence
xP 1oge K is an increasing function of p.
When K 3 1; KP is an increasing function of p and 1oge K 3> 0, hence
P 1oge K is an increasing function of p.

%ﬁ ‘l'p is therefore an increasing function of p and the proof is

complete.

l{p<q=7inf'rp\<inf-r

lspecq = 'l‘p(f) < rq(f) for all £:M* » RPN
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§3. Other Total Curvatures

It is possible to define total curvature for immersions into an
arbitrary riemannian manifold. (Willmore and Saleemi [17]). When this
manifold is complete, simply connected with non-positive sectional curv-
ature, many of the theorems on total curvature in euclidean space are
still true. (Willmore and Saleemi [_1_]; Chen [[2_]). Consequently it
is possible to define total p-th curvature and p-convexity in this more
general context and prove all the theorems of §2.

Another generalisation of total curvature is "total mean curvature".

The first result is due to Willmore [ 2_]:

J szzalhr

where H is the mean curvature of M?. Equality holds if and only if M2
is a round sphere.
If we put o, = ,%«1; J , |H|P and consider only those immersions whose
L8
: M

area is 4r we may prove, by the same method used in Theorem 3;

rClzlﬂlp 5 Un  for all p 3.2. Equality holding when M is a

round sphere of unit.radius.

Chen has shown that not only is Willmore's theorem true for manifolds
of higher dimension, but there are theorems of this type for all the
principal curvatures (Chen ]:1]). These theorems also generalise: by our
method.

We make a note on the problem of minimising the integral
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fz (K+1)2 wp where X is a constant.

M
J (K"‘A)z wy = J K2 wy *+ 22 J K wy + A2 J wp
M2 M2 M2 M2

I ) K wy = 21 x(M?) by the Gauss-Bonnet theorem and f , V2 * 4w, Hence
M M

’ (K+A)2 wy and I K2 w, differ by a constant and we conclude that: the
M M

infimum of the integrals f2 (K+1)2 w, is attained, for all values of 1,
M

by the same immersion of M?.
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CHAPTER ITITI

Exceptional Cases

§1. Introduction

So far we have considered '\'p only for values of p greater than one
and have sought only lower bounds, not upper bounds. We now justify our
neglect in considering the case of p less than one and in finding suprema,
by describing what happens in these cases.

To obtain results we shall give immersions only for surfaées in R3.
However, exactly analogous results hold for arbitrary submanifolds in
Y witn very slight modifieation. (An indication of how this is done
is given at the end of the first lemma). It has already been noted, in
chapter I, that sup ty = = and this result extends to the case p 3 O with

suitable adjustment to keep the volume of the immersion fixed.
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§2. Exceptional values of the total p-th curvature

lemma 1

Sup T = ® when p 3,0

_Proof
Let an immersion of any surface in R3 be given for which there
is a planar region, and consider a square, with sides of length R, in

this region. Let the R x R square be divided up as a k x k ™chess board".

That is k? squares, each -E X -E .

Picture for k = 3

Plamar nﬂion
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In each -E X -E square remove a circular disc of diameter -E and re-

place it with a "dome" of the type described in §3. of chapter I.

Picture for k = 3

Let the area of a disc of radius r be Dr? (D is used instead of =
for ease of generalisation to other dimensions) and the area of a deme
on this disc be Vr2. Then the total area of the surface contained within

the boundary of the R x R square is

2 2
RZ - k2 D(—E) + k2 V(—E) = RZ (1-D+V)

The total area of the surface is independent of n whenn 3 1. De-
noting the surface which is the original surface with the above modific~
ation by Mk we see that if M, is linearly expanded to give it a standard
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volume, the same expansion will give all the Mk the standard volume.,
Now, calculation shows that the curvature at each point of a dome
is of the order k2, hence the total p-th curvature of each dome is of

k2(p-1) and the total curvature of all the domes is k°P. When

order
p >0, k2p can be made as large as we please by letting k tend to in-
finity. As all the Mk are homeomorphic we obtain sup Tp = « for all
surfaces, as required.

To extend this result to manifolds of dimension n in R we first
immerse M" such that some region lies in a linear R® in K +N. Domes are
then constructed on this region in codimension 1 by rotating the generat-
ing curve about its axis in R™L. A consideration of the curvature in
its geometric interpretation given inChern and Lashof Elj shows that
the curvature of a dome, constructed as above, has the same order of
magnitude in all codimensions. Hence an increase in the number of domes

gives an increase in the total curvature just as for the case n = 2,

N =1 given in Lemma 1.

Lemma 2

inf1p=0 whenp <O and O <p < 1,

Proof

Let f:M2 » R3 be an immersion such that f_(Mz) has a planar
region as in lema 1. Define an immersion fu:Mz + R3 by modifying ~f as
follows.

of (M2) will have a planar region and in this region let a disc of
radius ra be removed and replaced by a "dome" of the type used in lemma

1 into which has been inserted a cylinder of length R.
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Picture

R is chosen so that the immersed surface has the standard area and
the final surface defines fa, Clearly JE'G(M2 ) is a smooth immersion such
that fu(Mz) is homeomorphic to M2 for all values of a such that
O<ac«< LA for some o e

Now the curvature of the cylinder is zero and so

Tp(fu) rp(uf) + p~th total curvature of a "dome".

But,

'rp(a.f) a(l—p)n 'rp(f) whenp # 0
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2(1-p)

and the p-th total curvature of a dome is of order o , as in lemma

1. Whenp < O, 1-p > O and so lim rp(fa) = 0. The reasoning breaks down

a0
at p = 1 for then we have

Tp(fu) = rp(af) + volume of cylinder

and the volume of the cylinder tends to the standard volume as o tends '

to zero. Hence inf 1 D = 0 over the desired range.

Lemma 5
Sup 1-p'= o whenp <O

Proof

Let q be a real number such that 0 < q < 1. Then if ¢ < O,

2 3 o where o is given by the following diagram and using the convexity

of - as a function of p. (Chapter II, Theorem 5)




By considering the triangle ABC we see that

g=T
SRS SR b <)
o -rq q
Hence,
o= T + (ro-rq)(q-p)/q . -and

Tt ('ro-'rq)(q-p)/q

By lemma 2 it is possible to choose an immersion such that Tq <

all q in the given range. Hence,

T, > (rgm1)@p)/a 3 1 (a-p)/2q

Now, lim (%'B) = » and SO sup o = « for p < O as required.
a0

We collect the results of the previous three lemmas into:

Theorem 6

34,

TO
5 for

For any closed compact C2 manifold immersed in euclidean space,

w forp#0

su
D "o

inf <t

b O forp<landp #0
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§3. Non-existence of immersions

We have the following corollaries to theorem b.

Corollary 1

There are no p-convex immersions for p <1 and p # O.

FProof
Suppose £:M° - RmN is a p-convex immersion where p < 1 and
p # O. By theorem b,
]{{lxpmn=o and so K = 0 on M

But by Theorem 2 of Chapter 1 we have

IJJ‘ln Kuw 32c ng hence there does not exist such an f.
Corollary 2

There are no immersions for which sup t b is attained when p # O.

Froof
By Theorem 1 sup ™ = @« when p # O. However £ is C2 and M" is
compact; hence K is bounded on a compact manifold and cannot attain values

for which 'I.'p z= =,
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CHAPTER IV

Curves and Surfaces

In this chapter we completely classify p-convex immersions of curves
and spheres and strengthen the results of Chapter II in the case when M’
is a surface.

By surface we mean a closed, compact, C%, two-dimensional manifold.

§1. Curves in RN+1

Let £:S! » RN be a C2 immersion, then by the theorem of Borsuk

1 . .
T 'rf(sl) k| as >, 2 where k is the curvature of £(S1) given by
the Serret-Frenet formulae as usual.

If we consider immersions with length 2r and define

= X p
Tp = “ ff(Sl) Ikl ds

we have, by the methods of theorem 3,

Corollary 1
1+N

If £:8! + R is a C? immersion with length 2n

ff(sl) |k|p ds > 2, equality beir_lg attained when 1{S!) is

(s1)

b Af-

a plane unit circle for p > 1, and a plane caonvex circle for p = 1.

Proof

One only needs to check that if the total curvature of a plane

curve is constant, then so is the "Serret-Frenet" curvature. This
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follows easily from Chern and Lashof's geometric interpreta:ion of the
Lipschitz—Killing curvature in [[1_].

Analogues of the immersions given in the previous chapter show that

inf =

o O for p<landp#1l

and sup 1'p == for p # 0 as we should expect.

We can now give the complete set of p-convex immersions of St in

RN with length 2r.

inf D p-convex immersion
p<O 0 None
p=0 on Any immersion
O<p<1l 0 None
p=1 en Plane convex circle
p>1 en Plane unit circle
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§2. Surfaces in R3

Let £:M2 +~ R3 be a C2 immersion,We have, from Theorem 2,

%’E L K| dA 3 b(M2,Z5) = 4 = x(M2) » 2  where K is now

the classical Gauss curvature.

If we define

- L. P
o 5w ]{[2 |K|* aa

we have for immersions with area Um,

T1

L]

-

\\.
N

By the lemma of theorem 3 we have

T P P
—2 > (l].) = ﬂ_XL and hence
5 2 \% P

o
Corollary 2
If £:M?2 + R3 is a C2 immersion with area Ur )

5 -1 32 for p 3 1, the equality

P
5 r{IZIKI"dA%L:‘L-)—" M)
2

32'-1-'- fz |K|P dA 3 2 beirg attained when M2 is homeomorphic to S2. Alsoc,
M

S? is embedded as a unit sphere (respectively convex sphere) for p > 1

(réspectively p = 1).
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Proof

One only needs to check that a sphere with constant curvature
in R3 and with area Ur is the unit sphere. That this is so follows from
the theorem of Liebmann that a closed orientable star-shaped surface with
constant Gauss curvature is a sphere. (Guggenheimer [[1_] p.252).

W can now give the camplete set of p-convex immersions of S2 in R3

with area 4r.

inf p p-convex immersion
p<O 0] None
p=0 Y Any immersion
O<p<cl o] None

p=1 Uy Convex sphere in some R3 C getN

p>1 U Unit sphere in some R3 C reHN
When M2 is.the torus, x(M2) = O and corollary 2 gives
-]é"; / |K|p da > 2p+1‘ The inequality is strict because K can never

Torus
be constant on a torus.

When p = 2 we have

1

. 2
50 J K>8

Torus

This estimate can be improved by considering special cases of immersions.
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lemma 1
L 5 K> (12 = 9.869 ... > B)
Torus
Proof

Consider the torus of revolution in R3 given by coordinates
Sl % 8! 5 R3

(6,¢) + ((R+r Cos¢) Sine, (Rir Cos¢) Cose, r Sing)

(This torus is embedded when r < R = r < i )e
Vn
The Gauss curvature of this torus 1§
- Cos R
K= r(R+r Cosé)
and an element of area is
dA = r(R+r Cos¢) d¢ de
Hence
. _ 2w 2% = No2
S dA = fo Iy r(R+r Cos¢) d¢ de = 4r“r R
so that if the torus has area U, R = -1‘?

Denote by T ” the torus of revolution with R = %}- s then

2 _ .2n 21 Cos?¢ dp de
é k* da fo 1 r(R+r Cosé)

r

|

2 21 d¢ B
™ Jo  TearZ Cosp P
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This is well known to be equal to

‘31.- 2n _ ﬂg
r ’]'-——2"!;‘_" T r

and can be shown to take its minimum value of 2n3 at r = 0. Hence,

; K2 dA 3 2nd
lI‘r
That is,
L ;K2 dA > w2
2n -
Torus of
revolution

Alse,~there is no value of r for which equality is attained and we
obtained the required inequality.
Corol

There is no 2-convex torus of revolution.



42,

§3. 2-Convex Immersions in R3

Iet a closed orientable C? surface M? in R3 with area 4n be given
by the position vector r and denote by M2 a the surface whose position
vector is r-a=r—anhereasRandNis one of the two unit normal
vector fields on M2. The area 2-form and Gauss curvature on M2 g are then

given by
- 2
dA, (142 H+K & ) dA
= ; 2
K, K/(1+2 H+K a )

where .dA is the ‘area 2-form on M2 and H and K are the mean curvature and
Gauss curvature of M? (see Willmore [1_] p.117).
If the surface Ma o is given by the position vector cry, the area
3

form and the mean and Gauss curvatures are given by

= a2
dAaa.,c ¢ dAa
= 2
Ka,c Ka/c
Ha, o = Ha/c

The total 2nd-curvature of Ma c is then
]

= 2
I(a,c) = f K a,c dA

1 2

1 s K2dA
ez Y- 1'+2"'H"a+' 'K'a'z

Now, 1 + 2 H, + Ka’Z = (1+a k;)(1l+a ky) where k; and k, are the principal

curvatures of M2, hence 1+2Ha+Ka2 =-0 if and only if k; or k, = -% >
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As M2 is C2, k; and k, will be continuous bounded functions on M2 and so
1L+2H + Ka2 # O where a is in some open interval containing O. We
shall be interested in the derivative of I(a,c) when a = O and hence for
our purposes there will be no singularities in the integrals.,

We choose ¢ such that

faA, = dA
i.e, c? f (1+2 Ha+Ka2) dA = f dA = Un
. 1 2 K2 dA
Then I(a,c) = T 7 (1+2 Ha+Ka ) dA s T35 Ha+Ka
aI _ 1 . K2 dA
- ™ f(2H+2Ka)dAJ' m;z
1 (2H+2K)K2
Hence,
af - L syansK2aA-2 /s HEK dA
dal__ an
a=0
and we obtain
%%- O=o¢'=fHdAfK2dA=lmeK2dA (1)
a:

On taking the secord derivative of I we find

d21 1 2 1 2
=7 = 5~ fKAAsKAA- = FHAASHK2 A
daa___o 2n ]

;1[- fHAASHK2 dA - f 2K2 dA



by,

Thus, if I has a local minimum at a = O

J KAA f K2 dA - JHAASJHK2AdA~-2/7K3aA 30

(2)

1 2
2n "

If M2 is the torus

%1? S KdA = O by the Gauss-Bormet theorem so that (2) becomes

JHAA JHK*dA+ v fK3dAgO (2')

But by (1)

SHAA FHK  dA = 3 (S HdA)? f K2 dA
Tr

and hence

= GHAA)? SRR aA+ 7/ K g0 (3)

Any 2 convex torus in R3 must satisfy equation (3).

Lemma 2
A torus with one principal curvature constant cannot be 2-

convex.
Proof

As before we denote the principal curvatures by k; and k, and
let k; be constant

2H=k +kyand K=k kp hence H= £ + -2% and
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JHAA = -129- / dA because S K dA = O by the Gauss-Bormet theorem
and f HdA = 2n k.
Similarly

SHK A = 12& S K2 A + Ell{; S X3 aA

and JHAA S K2 dA=2nrk; f K2 dA

Hence (1) becames

S K3 da

2nky fKEdA=2rk S KX dA+ 12(—'1'

and- —-— JK3aA=0©

Hence (3) becomes

(fHdA)2 S K2 dA g O

This is only possible if either H = O or K = O, both of which is
impossible.

Because of this lemma and the corollary to lemma 1 we make the
following conjecture.

Conjecture

inf %— I/ K2 @aA =2 where the infinum is taken over
T Torus

all tori in R3 with area 4n. Also, there is no immersion for which this

infimum.is attained.
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CHAPTER V

Volume Preserving Maps

§1. Introduction

We have been examining immersions £:M > ® for which £(M") has
the geometric property of p-convexity. In such a situation it is natural
to consider the set of all transformations of RmN which preserve this
property. (It is, in fact, in the spirit of the "Erlanger Programm").
This set of transformations will always form a group (because by trans-—
formation we mean at least bijection) and we shall not only want to find
what the transformations are but also specify the group structure.

For example, "straightness" of lines is preserved by homothetic
transformations of R" s 2-convexity of spheres by iscmetries, and the
property of being a conic by projective transformations. Moreover, in
each case the transformation group given is the largest group which pre-
serves the given property for all the geometric objects possessing the
property. N. H. Kuiper (in _I'_'_Zj +P-13) has shown that the projective
group of RY is a subgroup of the group which preserves l-convexity of
surfaces. However, this is clearly not true for p-convexity when p » 1
and the theorem has no analogue when the ambient spece is anything but
R3.

The first criterion for a transformation which preserves p-convexity
is that it preserves volume. p-convexity is defined for a set of
imrersions all having the same volume. Furthermore, the volume of all

immersed sub-manifolds must be preserved, otherwise the transformations
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obtained will only preserve a particular p-convex immersion.

Our first objective is then to calculate the group of transformations
of a riemamnian manifold which preserve the volume of every n-dimensional
sub-manifold. As we shall want to calculate the total pth curvature of
the submanifelds we shall assume that the transformations are differ=
entiable. The required transformation group will be shown to be the
isometry group of the manifold and because an isometry preserves all the
riemannian structure, the isometry group will be the group which pre-

serves p-convexity.
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§2. Locally k-Volume Preserving Maps

We have seen in §1, of Chapter I that on an n-dimensional manifold
M with metric g, there is a locally defined n~form g,yz axiA ... A
where gyz is the square root of the determinant of g as a symmetric
matrix with respect to the coordinate system (x!,... ,xn)a 1r V¥ is a
k-dimensional submanifold of M" there is a naturally induced metric on
Vk given by i*g where i:Vk + M® is the natural inclusion. Hence g gives
rise to a k form on Vk, namely (i"‘g)y2 dy!a ... Adyk, where (y!,...,57)
is a coordinate system on M in which VK is given by yi = constant for
i = k+l1,...,n. However, we should like a k-form on M which measures the
¢

definition 1. Tt will be defined locally and, for the most part,

volume of every k-dimensional submanifold. This will be the form w of
used locally; but when a global extension is needed an integration is
always involved and we shall assume the procedure in §1. of Chapter I.
Let M* be a C! riemannian n-manifold-with positive definite metric
tensor g and let V:(n be a k-dimensional subspace of the tangent space of

-

ate system (xl,...,xn) M ona neighbourhood of m such that; V:{n is spanned

M! at m. Denote by 8 the restriction of g to V:{n and' chose a coordin-

9 d
by T sceey T e
oxX axk'
Definition 1
w =f det g b axlA ... AGxS
VK i |vE
m X m

1
X

where det is the operation of taking the determinant of gl Vk as a k x k
m
matrix . with respect to coordinates (x!,.. .s¥"). The form w

is differ-
vk

m



49.

entiable as a map Gk, n” R where Gk,

planes. Also, w Vk is invariant under -a change of coordindtes which

n is the Grassmarn bundle of k-

m e
respect V‘km; that is, if we choose another coordinate system: (yl,...,yn)

about m such that V: is spanned by ?31- seeny —aE » a straightforward
. ay
calculation shows that

det g >% ax!A ... AdiS = st g| oagn ... aay®

1
X

1

m y m

(This calculation was carried out, mutatis mutandis, in Chapter 1

is a local k-form on M,

vk

m

of part I). Hence w

Definition 2

A C! map £:M" + M? of a C'reimannian n-manifeld, M*, is ‘oca.uy

k— volume preserving if

*(w

w e

f(m)

Vk

m

where f* is the usual "pull-back" of forms, anJ 1<k ¢n.
The set of all locally k-volume preserving maps forms a group by
\ considering it as a subset of Diff (Mn,Mn).
Note 1
If (xl,...,xn) is a coordinate system, chosen as above and

y = x £, then if £ is)(k—volume preserving

(—a—ar ,...,Lk>=f*(w ) ('3'31' socey _3?)
"xl; Y ay "le(m) 3y
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n
e

and using f —a-{ = —-a-i-,
oy X

but

= w

aft 9 ot 3
- ey — ——
vE\ Y 5t ay" ax*

m
i
<axI et k)

5%
Z |
N

(det —_—

det £ . 1
=> de ay'J

We see that an equivalent definition for ‘oca\h k-volume preserving is:
Jacobian of f equals 1 on every k dimensional subspace of the tangent

space.

Note 2
Ir V:l is a k-dimensional submanifold of M" and.f is k-volume
preserving, then

2

/ W = f f’i‘(w
U Ll o |

by usual integration theory, (see, for example, Flanders [:1] Ch.V).

vk

m

‘J;km
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Hence the volume of Vi{nand f(Vﬁ) 'is the same and we can say that f
preserves the volume of every k-dimensional submanifold of M'. The volume
of Vk may, of course, be infinite.

Note 3
If k = n is a locally n-volume preserving mapirls volume pre-

serving in the usual sense. Such maps occur naturally, e.g. as motions
of incompressiue . fluids or as the flows of Hamiltonian vector fields
in "phase space" (liouville’s Theorem). The set of all such maps forms
a Lie group and can be given a faithful unitary representation into

12 (M ,w), the set of complex valued functions on M" with w-summable
square (Armold and Avez [ 1_] p.23 with a bit more work to show that the

given map is a faithful representation).

Note 4
1
When k = 1, V is a one dimensienal distribution on-M* . . we

1
may choose coordinates (xl,...,xn) such that Vm is spanned by 3'321' in a
neighbourhood of m.

3 3 Y
12[5 1<ax13 ax]>]2dx1
v
, m
and with the previous definition of (yl,...,yn) as yl = x° of

] ]
f‘m)

and hence & locally l-volume preserving map preserves lengths. It

follows (by Myers and Steenrod J17] § that £ is an isometry. Clearly

then, locally l-volume preserving &) isometry.
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Another property of k-volume preserving maps is given in the

following

Lemma

A k-velume preserving map is a local diffeomorphism.
Proof
Let'al,...,sk be k linearly independent vectors at m e M and
let V:; be spanned by 51,..,,Ek. Choose a coordinate system (xl,.u.,xn)
about m such that g is the identity n x n matrix with respect to these

2
,0.0’ L]
ax"

coordinates and Vrlfl is spanned by --5%1-

R
Letgi—ﬁi_ :a-'_;]r_n m

d?t g yz (dx]'A Y X Adxk) (Eli°°°’£k)

1

mvk (El""',gk)

m . X m

(Ax1A oo. AGKS) (el 2 e
1 ax k 8x

det £t
J

It follows that £;,...,E, are linearly independent if and only if

J (El,ono,ek) #0:
W

If f is k~volume preserving

* u

|
€

vk (Elpﬂ-'pgk) =

(E1500256,)
f(m) vrl:

z W (fy Eysesesfy ek)
Vg(m)
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Hence f, E15000,f g, are linearly independent if and only if E1seensb,
are linearly independent.

If £, is not of rank n at m, there exists a tangent vector at m, v,
say, such that f, v; = 0. If V2yeee,V, are then any other tangent
vectors at m such that Vlsess,Vy are linearly independent,
fu Vigeoesfy vy are not linearly independent. This contradicts the fact
that f is k-volume preserving and we deduce that f, is of rank n at all

points m ¢ M'. Hence f is a local diffeomorphism (see for example Flett

).
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§3. Globally k=Volume Preserving Maps

We have defined volume preserving (definition 2) in terms of local
forms and this is the most useful definition of the concept of volume
preserving when calculations are to be made. However, another formulat-
ion, that given in the introduction, requires that the total volume of
each submanifold be preserved. This appears below as definition 2'. We
have seen that definition 2 implies definition 2' but it is the converse

which will be of most use, and this we prove.

Definition 2'

AC! map £:M" + M of a C! riemannian n-manifold M" is
globally k=volume ;Sreserving if for all C! k~dimensional submanifolds

Vkof Mn,

I}

.

We have denoted the tangent space of VK by "Vk" but there is no con-

eV l<kgn.

fusion in doing this.
Both sides of the equality may of course be infinite.

Theorem 1
Definitions 2.and 2' are equivalent.
Proof
By note 3 of §l. locally k-volume preserving implies globally
k-volume preserving.
As for the converse, let D; be a closed k-dﬁ.nensional ¢! disc in M
with C! boundary, and let D, D; be two other such discs such that
aD; = 8D, = 3Dy and-the three surfaces Di U Dj; i,j = 1,2,3; 1 # j are
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Cl smoothable. For example, if we consider D; U Dy, which is homeomorph-
ic to Sk, there exists a C! immersed submanifold L = [0,1_] » S! such
that D; UL U D, is a C! sphere.

Picture: Cross-section

If f is globally k-volume preserving

Volume of (Dy UL UD,) = Volume of (£f(D; UL U Dp))

Volume of (f£(D;) U £(1) U £(D;))

Hence,

Volume of (D; U D;) + Volume of L
= Volume of £(D; U D,) + Volume of f(L)

- Now, the volume of L can be made arbitrarily small and so the volume of

D; U D, is preserved although it may not be a C! manifold.
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Let the volume of D; be a; and let the volume of f(Di) be b,, then,

a; +a; =b; + Dby
ap +az = by + by
az +a; = by + by

Hence a; = b3 i=1,2,3, i the volume of D; is preserved and D,
«|s» arbitrary.

Let (x!,...,¥") be any coordinate system about m ¢ M" and let

k .
D ={peM: g (EN2ge; #* = =d=0

There certainly exists e 0> O such that De is homeomorphic to a

closed C! k-dimensional disc for all ¢ X €5+ Then we have

/] w =S w =f f*u
p P rm) [F) b f(D,)
€ € €
Hence,
f(wD'-f*wf(D -).) =0 foralle§eo (1)
€ £

Imee #f*mf(DS) at somemsMn, thean #f*mf(De) on some
neighbourhood of m because w and f are both C! and the integral in (1)
would be non-zero. We conclude that w = f*w and f is locally k-volume
preserving.

From now on k-volume preserving will mean either locally of globally

k~volume preserving according to the context.
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We come now to the main theorem on k-volume preserving maps,

§4. Characterisation of k-volume Preserving Maps.

By note 5 of the previous section, the group of transformations
which preserves l-volume is a lie group whose continuous part (i.e. ex-
cept for "isolated" transformations) is of dimension ¥n(n+l). (See
Kobayasg% and Nomizu [17]). On the other hand, a consideration of
note 3Ashows that the group of transformations which preserve n-volume
is infinite dimensional. We might expect, then, that the transformation
groups which preserve k-volume have dimensions which increase as k in-

creases. This is noet the case-. -

Theorem 2
On a C2 manifold with positive definite riemannian metric, a

k~volume preserving map is an isometry for 0<k<n.

Proof
Let £:M° > M" be a k-volume preserving map of a C? riemarnian

n-manifold M* with metric B ME M. &n and f* ¢ (m) are both positive
definite metrics on M* and positive definite symmetric matrices with
respect to a coordinate system. Hence, there exists a coordinate syatem
(x},...,¥") on an open neighbourhood U of p such that & is the identity
matrix and £* gf(m) is diagonal. This is_ the classical theorem of
Weierstrass: on symmetric forms (see, for example, Van der Waerden [[1],
p.27).
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3 3
Put — — = 6.,
L 'ax") +
] ] .
and * g -~ , —r | =a. ;. (no sumation)
£(m) <ax1 ’ axJ) 14

Let Vll: be the subspace of the tangent space of M® at m which is

spanned by (—a—ir- 2ecey -a—ai{-> . Then, as f is k-volume preserving
X/p

_ar-a_) _ar,.e.,i)
Vl;(m) X axk v::l X axk

(1)
Let V be an open neighbourhood of m such that f: is a local diffeo-

f* w

morphism, and choose coordinates yl = x* of" 1 on the open neighbourhood
f(UN V) of £(m).

(1) becomes

}’2' 1 k.( ] ] )
det g S .
<y1 ) o

(s o N oin vk (e 25
i Vk 9x
X m
Now,
] - ] .
fo—r = —x for all 1,
1
ox 3y
hence,
det g = det g
v Ivlg(m) xt v:cn
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By the choice of (xl,...,xn), det g = 1 and
i [vE
X m
] 9 ] 9
* g e I = — , =T
f(m) ot oxd gf‘(m)(ayl ay'))
and we obtain
k
d:?-t 8|vk = i1='l al =1
y f(m)

We chose an to be the subspace spanned by the first k of the set of

vectors, ( 3'-;-1- 30s0s -a-n) but we could equally well have chosen any set
ox

of k. Hence

where K is a set containing k of the integers, 1,...,n. To complete the

proof of the theorem we need the following.

Lemma

If (a),...,8 ) is an n-tuple of real numbers such that the
product-of any k is 1, when k < n, then

koddsai 1 foralli

and k even -.‘7ai 1 for all'i ,anA the ai's are all positive

or all negdtive).



Proof of Lemma

The lemma is trivial for k = 1.
Iet k 3 2andchooseanyk+1ofthea1, say

We define
k¥l
P = il ai and
k+l
PA=iI-[1ai f'or1<7\ k+1
i#a
Then,

P=a PAandPA=lforallxpympothesis.

Hence a, = P for all A, and

A
P=li{:_1-iai=Pk+l
and,
=1
Ifkisodd, P=1 and 80 a, =1 for all i; 1 ¢ i ¢
Ifkiseven,P=ilandsoai=tlforalli;l\<i§

60.

the first k + 1.

Finally we note that we chose the first k + 1 of the ai's but could

have chosen any set of k + 1. The result then follows.

Conclusion of the Proof to Theorem 2

8o (m) ( —-1- s Ty axJ 6ij (by the lemma)

-_gm —r,——r

axt
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However, f*g is positive definite because

i s ia\ . 1 3 \ i
e (0 o) " e (< =) - ( ) 20

Hence f*gf(m) = 8y and f is an isometry as required.

Note 1
By the previous "note 5", the above theorem for k = 1 is the
theorem of Myers and.Steenrod[1].

Note 2

On a manifold with non-positive-definite metric, the definit-
ion of volume preserving makes sense. It is therefore possible to ask
if theoprem 2 remains true if the "positive~-def'inite" condition on the
metric is relaxed. The proof of theorem 2 given breaks down in the non-
positive definite case at a crucial point and we do not have a counter-—

example.
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§5. p~Convexity Preserving Transformations

We have seen in the introduction that the most general transform-
ation which preserves total p-th curvature must be k-volume preserving.

It so happens that this necessary condition is also sufficient.

Theorem
A C?2 map of a reimannian manifold M onto itself preserves p-

convexity if and only if it is an isometry.

Proof

When M* is euclidean n-space the group of isometries is the
group of euclidean rigid motions and the result is clear. In the
general case it follows from the fact that isometry preserves all the
riemannian structure (see Hicks), but we shall not go into the details
because we should need, as a prerequisite, a full account of the defin-

ition of total p-th curvature in a general riemannian manifold.

Note
When M* is n-dimensional euclidean space we can consider p-
convex @s for all fixed volumes because the p-convex immersions for
different volumes differ only by a linear multiple or rigid motion of
R® (see §2. of Chapter II). Hence the group of transformations of R?
which preserves p~convexity for all fixed volumes is the group of homo-

thetic transformations.



63.

PART II

Foliations and Connections

SUMMARY

The theory of foliations, initiated by C. Ehresmann and G. Reeb, is
studied mainly as a branch of topology or differential topology. However,
the work of A. G. Walker, R. Bott and others has shown that the methods
of differential geometry are also effective in the study of foliations.
Our work is very much in the spirit of differential geometry and is
especially indebted -to the work of A. G. Walker.

A1l results are original unless otherwise stated but some of the
material was developed with P. M. D. Furness (see Furness [_1_] for an
alternative proof of the main theorem i1;1 Chapter V).

In Chapter I we give the definition of a.foliation on a manifeld M
(following A. Haefliger) and describe its leaves, leaf topology and
special maps. We introduce the germs and jets of special maps, using
them, in Chapter II, to construct covering spaces of M’. The classical
Ehresmanngroup is then obtained by "lifting" the fundamental group of a
leaf into the covering space. canstructed from germs. The same. procedure
performed in the covering space.constructed from jets giveé a group for
each leaf which we all the "Jet group". Both groups are factor groups
of the fundamental group of the leaf for which they are defined.and the
Jet group is a factor group of the Ehresmann group. We then give a geo-
metric method for calculating these groups.

The examples in Chapter III, as well as illustrating the concepts
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introduced in Chapters I and II, are used to make observations on the
relation between the Ehresmann and Jet groups of leaves in topologically
equivalent foliations. Also, as an application of differential tech-
niques, we consider C2 foliations in codimension 1 on a riemannian mani-
fold and derive a differential equation with the property that a unit
vector field will satisfy the equation if and only if it is perpendicular
to a foliation. C? foliations in codimension 1 are thus classified by
vector fields satisfying a differential equation and we deduce a decom-
position theorem for a manifold M with such a foliation.

Chapter IV describes the D-connections, and Chapter V the holonamy
groups, introduced by A. G. Walker. In analogy with the classical holo=
nomy theory we define these groups for piecewise Ck curves on a leaf with
basepoint and show that, up to isomorphism, the groups are the same for
all values of k and for all base points. After showing the existence of
a special coordinate chart, whose use greatly simplifies the analysis,
we show that Walker's holonomy group and the Jet group of a leaf are iso-
morphic.

Some properties of the holonomy group are given in Chapter VI. It
is shown that the holonomy group cannot be a lie gr'oupa'i (this time con~
trasting with the classical holonomy theory) and that when the foliation
has codimension 1 it is a factor group of the first homology group of the
leaf, with integer coefficients, and has torsion subgroup of order C or
2. Finally, we give all the possible isomorphism classes of holonomy

groups of compact leaves in foliations of two- and three-manifolds.

*our convention is Tha lie qroups have. dimgnsion 7 0.
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CHAPTER I

Definitions
§1. Foliations

The definition of a foliated structure (or foliation) to be given
here will follow A. Haefliger [[17].

A foliated structure is put on a manifold in much the same was as
a differentiable or Piecewise linear structure is put on a topological
space, i.e. we begin with a standard example of a foliation which will
be mapped on to the manifold, locally, in several "patches". Maps of
the standard example onto itself will then be used to "glue" these patches

together. We therefore begin with.

The Standard Foliation of R" in codimension Po

Iet (x!,...,X") be the rectangular cartesian coordinate system
of R®. Denote by early greek letters (e.g. a,B,y) any suffix taking
values from 1 to n-p and by late greek letters (e.g. ;1 v) any suffix
taking values from n-p+l to n. Let roman letters denote suffixes taking
values from 1 to n. The leaves of the standard foliation are the (n-p)-
dimensional planes defined by x* = constant and the leaf through an

arbitrary point (xol,.”,xon) of R* will be {(xl,,a.,,,xn-p,x::-p)':L

n e
»° osxo )a
x* ¢ Rl,

N.B. We are nere following A. G. Walker's convention of defining the

leaves by x* = constant. A Heefligers convention is x* = constant.

Leaf-preserving Local Maps

A local C¥ homeomorphism, h, of R is a homeamorphism between
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two open sets of R such that both h and h™! are C'; r = 0,1,2,...,» or

w. By C° we mean continuous, C* means differentiable r times and C” means
analytic. A leaf perserving local cr homeomorphism h:R® + Rn, where R
has the standard foliation in codimension p, is a local ¢t homeomorphism

such that if (xu,x}‘) is any point of R® about which h is defined,

n* = h®(xP, %)

A

n* = n*(x")

i.e. h maps leaves to leaves. h-! will also have this represent-
ation in coordinates.

Foliation

k

A foliation, 3‘ of class r and codimension p on a C n-mani-

fold M (r & k) is defined by a maximal collection of charts

hi:ui-pMn, called "leaf charts of:_ﬂ'", where i is in same

indexing set, I say.

Each h_i is a CT homeomorphism of an open set uy of R into M, The hi

mist satisfy
(1) {hi(ui)}iEI is an open cover for M,
(2) Any map of the form hJ.“’lo hilu is a leaf preserving Incal C-
13

» ] ° - -1 . . . ‘\ .
homeomorphism of R" where i,j € I and uij hi (hl(ul) N h_J(uJ))

g— is called topological, differentiable of class r or analytic

according to whether r = 0, O rg& = or r = w respectively..
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By a "maximal collection of charts" we mean the following:
If u is an open subset of R® and hiu + M" is a C' local homeo-

morphism such that hi’1

o hlhi=1(hi(ui)n h(y)) 18 @ local leaf preserving

.

map for all i ¢ I, then h:u » M is in the collection of charts,

The Leal Topology

We now describe a new topology on M" which is finer than its
usual topology. In this topology the leaves of E‘ are connected conpon=-
ents and consequently 1r1(Mn sm) = my(Lym) where L is the leaf through
me M,

let M be a C% n-manifold with C* foliation . On B = B'P x @
put the topology T_ which is the product of the usual topology om R* P
ard the discrete topology on RP. Relative to T the leaves of the stand-
ard foliation on R* are comected components.

A local leaf preserving homeomorphism h of Rn, with the usual topol-
ogy, is also a local leaf preserving homeomorphism of r® with the topol-

ogy T, because h“(xa,x“) is continuous in x°

with the usual topology and
hence for To alsoand h“(xs ,x“) is automatically continuous in x" because
the topology in R° is discrete. The charts of '3' will therefore induce
a topology on M? which will also be denoted by To‘ It is easily checked
that To is finer than the usual topology (using the definition of "finer"

in Kelly [[17] p.38).

Bpecial Maps

Let = be the projection P x P » gP given by projection on
to the second factor and let hi:ui -> Rn be the charts of a foliation ; 'a—j

of a manifeld M, A coht-inuous map £ of an open set V of M into RP is
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called a special map ofg‘ if for all m € V there exists a chart

h, su, +M" such that f = T hi"'1 on hi(ui) N V. The temu‘nolc?gy
"special map" is not standard because there seems to be no universally
accepted translation of A. Haefliger's "applications distinguges".
(A. Haefliger [[17], p.369).

If we denote the special maps by fi:vi + RP where i is indexed by

some set, I' say, then we have inmediately

il . w], s 2
(1) {Vi}isl' is an open cover for M- because L hi .fi\ui) + RP is

. . . 14 -
a special map and so {fi(ui)]ial is an open cover for M and fi\ui) = Vj
for some j ¢ I' by definition.

(2) If £,:V, > 7, £y:Vy > R® and m e V; N V5 then there exists a
local CF homeomorphism of R‘:h,sui'h that f‘i z ho fj° For if V _cVi N Vj

. . - -} - -1
1s an open set for which fi =Ty hk and fj T hn, then
-1)% _ ~1y0 -5y B =11H
(h=1)*= (n 1) ((n,~1H*) using h,~! as a coordinate chart on
by by L 2

V. (n h~1)* is a ¢ homeomorphism in the variables (n~1)* = (r_ h=~1)¥.
Hence = hk‘1 and hm‘=1 differ by a local C* homeomorphism.

Given a feliation :} , the set of special maps may be constructed.
Conversely, if a manifold M® supports a set of charts £3V; = RP with the
above conditions (1) and (2), a foliation is defined on M by letting the
leaves be locally defined by fi“‘l(x) where x ¢ R°. In other words the
special maps completely characterise the foliation and we may expect that
properties of E’ such as the Ehresmann groups, will be described in terms
of them alone.
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§2. Germs and Jets

Let X,Y be topological spaces. Two continuous functions f and g
from X to Y are said to be in the same germ at, x ¢ X if there is an open
neighbourhood of x on which f and g are equal. We define the germ of f
at x,G(f,x) to be the set of continuous functions g:X + Y such that f and
g are in the same germ at Xx.

If X = Y we may consider the set of all G(f,x) such that f(x) = x
and f is a local C* homeomorphism. We denote this set by Gr(x,x), and
its elements by Gr(-.f',x), abbreviating these symbols to G(X) and G(f)
respectively when the reference to x and r is clear. There is a natural

product "o" which makes G(X) into a group. We let

a(r) , 6(g) = G(f, &)

This product.is well defined, for if G(f) = G(f') and G(g) = G(g')
then flu = f'lu for some open set u and glv = g'|v for some open set V.
= f! ' = 1 ot
Hence foglg"l w v ' 8 Ig"l(u) y &nd hence G(fog) G(f o8 ).
Associativity is immediate. If idx is the identity map on X, G(idx) is
clearly an identity for G(X) and as each f considered is a local ¢t
homeomorphism there exists an open neighbourhood u of x such that
-1 I
£ f|u = id,

Iu. Hence the inverse of G(f) is G(f=!) and "o" puts a

group structure on G(X).

Jets of C! maps

The jets we are about to describe are usually called l-jets but
as we shall have no occasion to use n-jets when n > 1 we shall call these

1-jets simply "jets".
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Iet x“, Y? be C! manifolds. Two local Cl homeomorphisms £ and g
from X" to Y are said to be in the same jet at x € X© if f, : g, at x.

We define the Jet of f at x, J(f,x) to be the set of local C! homeo-

morphisms g:Xn > ¥ about x which have the property g,(x) = f£,(x). If
(xl,...,xn) is a C! coordinate chart x and (yl,...,yn) is a C! coordin-

ate chart about f(x) then the condition g,(x) = f,(x) is equivalent to

i i
g ] s x
a 1 = fl for l’J = l,-qh’n
axY axY

This condition is, as may be expected from its intrinsic definition,
independent of the coordinate charts chosen. If = we may consider
the set of all J(f,x) such that f(x) = x. We denote this set by J(Xn,x);
its elements are J(f,x) and we abbreviate these symbols to J (X1 and J(£)
when the reference to x oy " is. clear .

There is a product "o" which makes J(X") into a group. We let

J(£), I(g) = I(£ )

This product is well defined because

J(F) = J(FT) &> £,(x) = £,'(x)

J(g) = J(g) ¢=» g, (x) = g,"(x) hence

(£,8)(x) = (£, &) (x) = (£, &g )x) = (£' | g")u(x) and J(f g) -
J(f7 o g'). Associativity is immediate. As with germs, J(id xn) is the
identity and the inverse of J(f) is J(f™).

There is a natural mapet:G" (X7) =2 J(X™) when r’» 1 defined by
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a(G7(f)) = J(£). o is well defined because if G (f) = G'(g), £ = g on
some open neighbourhood of x and hence f,(x) = g,(x). a is also a group

homeomorphism, for

a(G(f) | 6(g)) = a(B(£@) = I(£,8) = J(£) I(g) = a(6(f)  a(@(e))

If we write Gc(x“) = Ker o

{G°(£) : J(£) = J(1 )} then
X!
JXM = a(xX™) / Go(x“)
Finally, we note that as f, is an invertible linear map of Tx(Xn ), the

tangent space of X© at X, J (X™) is naturally identified with &L (n,R))' the

g'enera}. linear group on R
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CHAPTER II

The Ehresmann and Jet Groups

§1. Covering Spaces of Germs and Jets

Let 3’ be a foliation of class r on a CX manifold M*. We shall

assume in this section that M" has the leaf topology, Toa

We define the covering space of germs of special maps 9 by
%l = {(m, Gr(f,m)) :meM and f is a special map defined on some

neighbourhood of m}.
The r which appears in this definition is the same r as the class
of the foliation and will in future be omitted.

The projection for this covering space, GG:% + M is defined by

aG(m, G(fym)) =m

If r» 1 we also define the covering space of jets of special 8, ? _
by
? =z {(m, J(f,m)) :me M and f is a special map defined on some

neighbourhood of m}.

The projection, uJ:? > M* is defined by
aJ(m, J(f,m)) = m
In the rest of this section we shall justify the above terminology by

proving that 9 and }, with the projections @ and a5, are covering

spaces of M,
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let 15':|._:ui +FP be a special map of?'with me U, and let

= -l . .
ufi’m £,°0 o fy(m). i.e. ufi’m is that part of the leaf through m

which intersects U Up o is an open set because we have the leaf
il
topology on M. Let

Up PG = {(x, G(fi,x)) eg ! Xe ufi’m and f.:u, - RP is a

i
special map}.

Up >3 is defined similarly be replacing G a.ndg by J and? .
il

Lemma 1

} is a base for a topology on 9 and

{<u
£ iel

>
1om G

{<uf > J} is a base for a topology on?a
l, ] '
1 iel

Proof
We need only show that for given fi:ui -> Rp, fJ.:uJ. > Rp, me u;

ad q € Uys there exists a special map fk:uk >R and an x ¢ u, such that

‘ufi,nﬁg N <ufj ,36 ° <ufk,x>G and similarly for J. (Kelley [1_],
p.47).

Let (x, G(f,x)) € <ufi,m>G N <u j,q>G

(If this intersection is empty the proof is complete).

Then X € uf_,mﬂ uf.,q
1 J
and G(f, x) = G(f, x)
i,’ Js:
Hence 1fuiﬂ uJ. =ukandfk=fiuk,

<y u = <y >
fi,m>G n < fj ,q’G fk,x
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The proof for jets is obtained by replacings by? and G by J through-

out.

Theorem
agi Y M and nﬁ? + M? are covering spaces when M is given
the leaf topology and g and * are given the topologies whose bases are

{<u >.) and. {<u >} respectively.
L3am @ g1 fyomJ et

Proof
Iet m ¢ M* and £‘i:ui + M ve a special map such that m ¢ U o

-]
o (u

J
of RP, "G_l (uf m) is thus the union of open sets of{t and thus open.
¥

Also, m, |<ufi’m>| = ufi’m which is also open in M". Hence L
homeomorphism. Similarly we prove that Ty is a local homeomorphism.

f.,m) = {<uf_,m> : fj = h o fi) where h 1s a local homeomorphism

is a local

We now show that about every m € M there is an open set whose in=-
verse image under g OF "5 is a disjoint union of homeomorphic copies.
(See Spanier [[17], p.62).

Consider the open neighbourhood Ue m of m.
1"

“G(<ufi,m>G) = “G(<uhofi,m>G) so that the inverse image of Uffi.mls

{<uhofi’m>G : h is a local homeomorphism of RP}. [l (X;q(f],x\)f <H_§i’x>(\ <uh°$a,x>‘
(If the intersection is empty the proof is complete).

X e us and G(g,x) = G(fi,x) = G(hof'i,x) and hence h = id and £. =

hoii.

Therefore <uf
i ]

m“G = ':uhofi,m)G and we conclude that the <uh0fi,m:”G

are disjoint.
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For jets we obtain J(g,x) = J(fi,x) = J(hofi,x) and so h, = id, and
£3, =Py o Ty -

Therefore <u > = <UL >0
£,md uhofi,m J
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§2. The Ehresmann and Jet Greoups

Covering projections over connected bases have the homotopy lifting
property, so if y:[[0,1_] + M" is a continuous loop with base point

z y(0) = y(1), there exists a "lift", y I"’o l:l 9' which is a con-

tinuous map such that "G o y v and the homotopy class of y depends only

on the homotopy class of v. ; then determines a map wG'l(m) > nG"l (m)
given by ;(O) + v(1) and hence a map E:nl(Mn,m) + GY(RP,0). E is a homo-
morphism of. groups (see Spanier [_1_] p.86) and the group E( 7 (Mm)) is
unique up to isomorphism for all m in the same path component - that is
leaves of a foliation 3‘ on M*,

The group E(n;(M',m)) thus defined for all leaves L of a.foliation
is the Ehresmann Group and is denoted by E(IL). E(nl(Mn,m)) is a rep~
resentation of E(L) in Gr'(Rp,O)=

The same considerations apply to jets. Instead of E we obtain the
map J: 1r1(Mn m) -» J(Rp 0) and the group J(vrl(M‘ sMm)}, defined up to iso=
morphism for each leaf L, is the Jet Group of L and will be denoted by
J(L). ._J(nl(Mn,n)) is a representation of J(L) in GL(p,R).(See [>7l).

We now give a geometric way of calculating these groups.

Let y:[[0,17] + L a continuous map (necessarily into a leaf L of
E]' ). EO,lj is compact and there exists a finite cover {Vi}ias where

+> RP are - . special maps ofg'. Let tk, k = 0,...4r be points of
[0,1] such that t_ = 0, t, = 1 and y([Tt,,t,,,]) € V; for some i.

Let h:u » K" be a leaf chart such that h o y(tk) =0¢e R and let

P be the p-plane perpendicular to the standard leaves in R® through O.

Tk = h"1(P) N {ui}ies is the transverse disc to L. at y(tk) induced by



7.

h. Let miu; + T, be given by n(x) = T, M (leaf through x}. (This = is
thus the projection R* P x R’ »~ R°, on the standard foliation, mapped on
to the manifold by a leaf chart).

If W is any subset of Mn, the leaf topology on M? induces a topology
on W. An equivalence relation is then defined on W by x ~ y if and
only if x and y are in the same path component of W. The set of equival=-
ence classes of W is denoted by W. Any transverse disc about m is locally
homeomorphic to U with the quotient topology (and quotient differentiai.
structure when it exists) so that all transverse discs are naturally
locally homecmorphic about m.

Let y(tk) 2 Y(tkﬂ) € Vi where f:'L:Vi > RP is a special map.

f. and f, are local C* homeomorphisms into R® such that

1T 1 Tk+1 .

fi1p Y(6) = £ v(ty,1)s bence ¢ .. = £, | is a loecal
lTk 1|Tk+l k+1 kel ~ ifm 0 |Tk

c’ homeomorphism from Tk to Tk 1° If v is lifted to a curve y m'ftm Sface
a{— germs of local homeomorphisms of Rp, Y(tk) and y(tkﬂ) are both in-

duced by the same special map fi° Hence

Y(ty) ilm o %k,kil o ™

41 © 11T

= G(f,
k

If we choose the special map fi £°

) = G(f,

Vil ™ Rp, say, such that Y(tkﬂ)

and y(t 2) € V and G(f, ) we may chocse special

+l e+l K+l

1|T 1+1|T
maps inductively beginning at k = 1 such that
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commutes when germs of the maps are taken. We then have

) .

~ -1 -1
v(t,) = G(irlTr) = G(fy T 0 *5,2 0000 r1,r 0 ™

The maps of the form ¢ ¢1’2 thus generate the elements of the

r=1,I 0cs.O
Ehresmann group of a leaf, when all homotopy classes of curves y are

taken, by taking their germs. The Jet group is generated by taking jets.
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CHAPTER III

Examples

§1. Simple Foliations

On an n-manifold with C° foliation :ﬂ— there is an equivalence re-
lation ~ (introduced in the previous section) given by x ~ y&=» x and
y are in the same leaf. M/~ is called the space of leaves and a foliat-
ion is simple when M/~ is a manifold, i.e. there exists a map ¢:M" > W,
where W is a C* p-manifold, such that for every homeomorphism of class
r, g:u + W, wheré u is an open set of R°, g~} o ¢ is a special map of
H‘ . 'The leaves are thus the inverse images under f of points of w° and
the space of leaves is given a manifold structure. The Ehresmann and Jet
groups for each leaf are trivial by the geometric discussion of Chapter
IT s2.

If M = X' x Y7 where X* and Y© are manifolds, the projection
£:X° « Y? > Y? defines a simple foliation on M which is a product fol-
iation whose leaves are all homeomorphic to Y%, Not every simple foli-
ation is a product. Consider-the twisted S!-bundle over S! whose total
space is the Klein bottle, K. The projection =:K + S! defines a simple
foliation on K whose leaves are all homeomorphic to S!; but K is not a
product.



§2. Integrable Distributions

Denote by T(M') 3 M? the tangent bundle of a c® manifold M. A P=

dimensional distribution, D, on M* is a map D:M"S T(M") such that D
is the identity on M and D(m) is a p dimensional linear subspace of

71 (m) for all m ¢ M. If, on a neighbourhood of m € M, there are
linearly independent vectors Vi which are all in D(Mn), we say that D(m)

is spamned by the Vi at m. D(M") is a C* distribution if the vectors Vi

n
can be chosen to be C* vector fields about a" Fafh‘rs meM.
A p-dimensional distribution D(Mn) is integrable if there is a co-

ordinate system (x!,...,x") on a neighbourhood of each m ¢ M" such that

D(-M-n) is spanned by a—?{-r seuoy -i—p on that neighbourhood. In other
9

words, D is given by the tangent spaces of the submanifolds of u defined
by xi = constant, 1 = p + 1,...,n. Hence the coordinate system
(x,.a.,xn) is a leaf chart of the same differentiability class as D(Mn)
and so the C* integrable distribution gives rise to a C* foliation.

Conversely, if hi:ui + M" ig a leaf chart of a C* foliation on Mn,
hi* will map the tangent spaces of the standard leaves on R® onto
tangent spaces of c* submanifolds on M thus giving an integrable dis-
tribution on M.

If rp 2 there is a useful characterisation of integrable dis-

tributions.

Frobenius' Theorem (see Dieudonne [_1_], p.308).

A C? distribution on a CX manifold, with k 3 2, is integrable
if and only if for any two C% vector fields u,v in the distribution,
Lu,v] is also in the distribution. [, ] is the "lie bracket" of

vector fields defined by l:u,vj = UV = VU
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We now have a one-to-one correspondence between foliations and dis-
tributions satisfying an algebraic condition. This will be used extens-
ively in Chapters IV-V,
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§3. Moliations in Co-dimension 1

As an application of §2. we shall study foliations in co-dimension
1.

Let M" be a differentiable manifold with a differentiable foliation ‘g-
of co-dimension 1 and let g be any riemannian metric on M, 2‘- defines
an (n-1)-dimensional distribution on M" for which there is a unique
orthogonal one-dimensional distribution. We shall denote this distrib-
ution by ¢+ v where v is a locally defined vector field. (If '3 is orient~
able in the sense of Haefliger [[1_], V will be globally defined}. From
g—- we have constructed a local vector field v; however, not every such
v. gives rise to a foliation. For example, consider the vector fields

in R*, with cartesian coordinates (x,y,z,w), given by

- 3_ a Ly 2
Vit-=V3x X35 "V Yo
= I R I 9
Va2 EH XS "WYY T ¥ Y ow
= bW 3, g3 3
Vit tWax tZyy TV T ¥w

On S3 = {(x,y,2,W) ¢ R* : x2 + y2 + 22 + w2 = 1}, v}, Vo and vy are
orthonormal tangent vectors. That is ) the vy give a parallelisation of
S3 which is orthonormal. Furthermore the A satisfy

Cvisved = =2 vy, Cvaeva] = 2 vy, [vani] =2 vy

4
Hence Vl (the orthogonal compliment to v;) is spamned by v, and vi but

1] [ ] ' *
is not integrable because [ vy,v3_] £ v, .

We shall now seek algebraic conditions on v which are necessary and
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4
sufficient for v to be integrable.

Let (x!,.. .,xn) be a coordinate chart of M" on a neighbourhood of

me M. Put e; = -9-]-_- and let v = vlei.
X ,
Define P; =& - g(ei,v)v =ey - gij vd vk e, fori=1,2,...,n.
) = - j k - -
Then g(pi,v) =g vP B v G vp, but g(v,v) = 1 hence

g(p:,v) = O0and p; e v for alli. Alsop: =0 D e, - gle,,v) v=0
i e i i 1,51

=y = i . _ i
-Jv-js-(-ei—-;;,—)-. Hence1pr = 0 also,

- J
gle;,v) s(ej V)
impossible, hence at most one p; can vanish at any point of M,

which is

If a; € Ry i = 1,...3n we note that

L osp; + Cr o; g(ei,v):[v = I ose;

The e; span the tangent space at m, hence so do PiscsesPps Ve

B
Therefore P1se.0,P, SPan V.

; - - & L] ; o a
V 1is integrable if and only if [:pi’pjj eV foralli,j. A

routine calculation gives
r.s u u
s(Epi.pjj,V) = -(gjr vV v )li By vVt (gip W vq)lj Equ ¥
| r . s u_ 8 q u
+gipJpv (gjr-“ J)lqgsuv gjrvrv (gipvpv )Isgqu"

where "l i" denotes covariant differentiation in the direction --aql- with
)
respect to the riemannian connection of g. g(v,v) = 1 so that gi,j vy s

13
land g.. Vv v‘:| = 0. Hence
&5 |k

-

=

- r a
s'rv|i+gipvp|j+gipvpv g;jrvrl

oS
5 -g.rvr.l gipvp

a 5 Is

o+
is a necessary and sufficient condition for v to be integrable.
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unil
We denote by V the riemannian comnection of g and define theAvector’
field n by \7v v = kn where k is a real valued function on M'. At any
point m e Mn, k and n are the curvature and normal of the integral curve

of v, through m, parametrised by arc length.

N SR RSN, g
vvv-v vli eJ. kn elj

1 J - J
v |i = k » hence

r T r P .
-, V. +tg V. +g. Ve k -g._ V .k =0
&;p |i &p |3 &ip Eip X 1 &;r Bip ¥ 1

Finally, because the comnection is symmetric,

Viaj - Vj.i = k (Vinj‘vjni) (l_)

where " .]'" indicates the partial derivative 2.,
° 9

We define (Curl V)ij = v.l (This is the standard def'init-

. = Vijsa
ilj ~ il
ion of curl in a riemamnian manifold, see for example Willmore Elj_

p.231.)

Also, for vectors a = a® -QT s D= bt —ai- s define
X X

(axb).. = a.b. - a.b. .
axp);; = a;b; - a5b;

reduces to the usual "cross-product" of vectors when M is three dimens-

(aXb)ij is a local 2-form on M which

ional euclidean space. (After the usual tangent/co-tangent identificat-

ion).
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(1) can now be written,

Curl v=kvxn orCurlv=vx9 Vv (2)
We note that if v satisfies (2) then so will -v. Hence we may
speak of a unit distribution of one-dimension satisfying (2). We now

have the theorem:

Theorem
On a riemannian manifold, C? foliations of co-dimension 1 are
in one-to-one correspondence with one-dimensional unit distributions,
$v, satisfying Curl v = v x v, v
In regions where Curl v = O
(1) v = grad ¢ for some q>:l\'ln -+ R, and the leaves are given by

¢1(x) where x € R.

(2)vxvvv=0$vvv av for some a:M® > R. Also,

0 and v is a geodesic vector field.

g(v,v) = 1, hence g(vv v,v) = 0, o

IfCurlv#Othenvxvvv#Oandvvv#av, Vvvt.hereforehasanon-=
. Y T .

vanishing component in v . 1i.e. in the tangent space of the leaves.

We now have,

Corollary

On a riemannian manifold M' with C2 foliation y3'of codimension
1, there is a closed seeﬁu on which the foliation is simple and complem-
entary to a geodesic vector field,am" sucln ﬂ'lat on M* \ u there is a non

vanishing vector field which lies in the tangent space to the leaves.

¥ u Md:j k’/%\ﬁ‘ﬂ .
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Note
On any subset of u which is an n-dimensional open submanifold
of Mn, g is bundle-like in the sense of Reinhart El] R
In the special case u = ¢, E‘ is simple (see §1.) and when u = M

each leaf has euler class zero.

§4. Foliations of S! x R

The purpose of this section is to present examples which illustrate
the relation between the topological and differentiable properties of
foliations. We therefore calculate the Ehresmann and Jet groups; and
differentiability class of the foliations in some detail. Statements of
a general nature which may be deduced from these examples will be made

under the heading "observations" at the end.

Let £f:R+ R0 be a C! function of one real variable taking values
which are strictly positive real numbers. Also let %xf' > 0 and

lim f(x) = O. The set of functions f(x+c) where ¢ ¢ R have the prop-
Xermco
erty that their graphs foliate the open upper half plane, R x R:'Og
Foliate the lower half plane similarly with a function g and add the leaf
R x {0} to give a foliation of R2. Let ~ be the equivalence relation
(x,8) " (u,v)<=) x-u e Zand y = v. R2/~ is homeomorphic to S! = R and
the foliation on R? is induced onto S! x R by ~., Call the leaf
Rx{0}
~ >
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Picture

The Ehresmarn group is zero for every leaf except L when it is Z. The
Jet groups for all leaves except L are also zero but the Jet group of L
depends on properties of the functions f and g.

The local homeomorphism ¢ of R corresponding to any loop on L which

goes round once" is

iy f(£f1y+1)
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S x ] J

/
£l

da¢é -1
f af af
Now — = = (f"ly+l) —— »
) H ay (£~1y+l) &
d¢f d¢
If the Jet group exists we must have —=— = B and if this is the
& |, & |, )
case, a necessary and sufficient condition for the Jet group to be zero
is
df daf-l
= (f~ly+l) =5— | =1 . (1
dy (£~ y+1) & |, (1)
That is, ¢ £ has the same derivative at O as the identity map. Otherwise

the Jet group of L is Z.

Examp _leA

£(x) = €, g(x) = -e*.
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daf X

o}
7

t
(=]

& - € £1(x) = log, X, —gz~ = % - Hence condition (1)
is
dé log y+1 dé i
.de e © 1 = ye L ' = ¢. Similarly 'r'iy'& = €.
o y y=0 y y=0 o

The Jet group of L is Z. As the leaves may be given by the distribution

%f +y g; , this foliation is c”.
Example B
£(x) =-%, g(x) = %
a1 gy - 1 aptl 1
ax - x2 T (x) = x?* dx = X2
d¢
f 1 1 1 | ..
v = = G2 = 1. Similarly
dy o - i +1 y ly:O y-1 Iy:O
d¢
a—y—g = 1. Hence the Jet group of L is zero. Also the leaves may be
o
given by the distribution —g—; + y2 %}—’ and the foliation is C .
Example C

o)

Let £(x) = e* and foliate S! x R by circles parallel to

sl x {0},
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Picture

d¢
As in Exanple A, d_yz ' = e, but the first derivative of the local
o

homeomorphisms of R for y < O is 1. Hence the Jet group of L does not

exist., The foliation can be given by the distribution

] ]
=YY fory 30

ay
2 for yg O
ax ~
which is C° but not Cl.
Example D
f(x) = --3—; and foliate S! x RC as in Example C. As in
d¢ .
Example B d_yz = 1, and the Jet group of L is zero. As the drsTriL-u 1N
o

is given by




9].&

2 2 2

% 1Y 3y fory 5 0O
] - DAL
X for LN 0 )’H‘W- 'fo\l{.dloh

'~

is G! but not C2.

Observations

Examples A and B are topologically equivalent in the sense that
there exists a homeomorphism of S! x R taking one foliation onto the
other. However this hameomorphism does not preserve the Jet groups.
i.e. Jet groups are not topological invariants.

The Ehresmann and Jet groups in Example B were not equal, but there
existed a topologically equivalent foliation, namely Example A, for which
they were. We ask then, "Given a foliation with different Ehresmann and
Jet groups, does there always exist a topologically equivalent foliation
for which they are the same?" The answer is no because in Example D the
jets of local homeomorphisms in the lower part of S! x R are jets of the
identity. Hence the Jet group, if it exists, must be zero. However,
the Ehresmann group of Example D is Z.
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§5. Three-manifolds

Example A The "Reeb Component”

Let (x,y,z) be cartesian coordinates in R*. The curves

y = (1-x?)"% + ¢, z = 0, foliate the strip S = {(x,y,2) @ |x| - 1,

z = O}, If S is rotated about the y-axis in R® we obtain a foliation of
the open solid cylinder {(x,y,z) : x? + z2 < 1}. By adding the leaf
given by x2 + 22 = 1 and factoring out by the equivalence relation ~ given
by (x,y,2) ~ (u,v,w)=Y y ~re 2, x =uand z = w, we obtain a folizr=

ion of a closed solid torus., Each leaf, except the boundary of the

solid torus, is homeomorphic to R2.

Picture

Example B Two Reeb Components
By identifying the boundaries of two Reeb components we can foliate

certain closed three-manif'olds e.g.
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(i) The "ordinary" S? bundle over S!, S%? x §
Let the boundary of a Reeb component be given by coordinates
(6,6) where 8, ¢ € R (mod 1) and let: two such components be identified
by the relation ~ given by (8,¢) ~ (8',4%)4&> 8 =6'and ¢' * ¢ - /5
(mod 1).
(ii) The "twisted” S? bundle over S!
As in (i) but let the relation be (8,¢) ~ (8',6?)<=> & = =8
(mod 1) and ¢' - ¢ + ), (mod 1).
(iii) The sphere S®. (The "Reeb Foliation" of $%)
Let the relation be (8,¢) ~ (8',6')<=7 5 = ¢" and ¢ ¢ &,
This foliation can be described as follows-
Let D be a closed three-ball foliated by cylinders in its

interior, and by circles, with two singular points, on its boundary.

Picture

Interior Boundary
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If two such balls are identified by their boundaries to give a sphere,

thus (; C;

we have the sphere foliated by tori, like CDEF, and two singular circles,
AB and GH. The torus CDEF divides the sphere into two solid tori because
on both sides of CDEF the tori are "nested" abouf the circles AB and GH.
These two solid tori can then be re-foliated by Reeb components to give

the Reeb foliation of the sphere.
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Example C

We can give a pictorial description of S3 foliated in dimension 1
using the nested tori and singular circles of the previous exanple.

Each torus is foliated\(the well known "rational and irravional tLows®.

hﬂ one 0{.

oA

Tori near AB have values of o near zero and fori near GH have values of
o near n/2. CDEF has o = 7/l and o is an increasing function for all the

other tori.



Picture

Example D

Let D? be the closed disc in R?, with polar coordinates (r.8), given
by r2 < 1 and let D? « [0,17] be foliated by the lines {pj » T 0,17]
where p € D2, When the dises D? x {0} and D? = {1} are identiiied by
.the relation (r,8) - (r,8+s) we obtain a foliation of D2 - 3! in whi-h
the leaf {0} % S! is always a circle but the other leaves have homeo-

morphism types depending on a.

Case 1 %1? irrational.

Each leaf* other than {0} = S! is homeomorphic to R and has
trivial Ehresmann and Jet groups: {0} x S! has Ehresmann and Jet groups

Z when o # O and trivial groups when a = O.
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Case 2 %ﬂ- = % where a,b are coprime integers.
Every leaf is homeomorphic to S!. The Ehresmann and Jet groups

for {0} » S! are Zb and trivial for all other leaves.

Note

Because the Ehresmann and Jet groups are factor groups of the funda=
mental group of the leaf, the only possible isomorphism classes for

these groups when the leaf is Si

are z,‘,zs,.”,z and the trivial group.
We have, in Example D, Foliations in which an 81 leaf has all possible
Ehresmann and Jet groups. The lowest dimension for a manifold in which

this can be done is three. (See Chapter 6, Theorem 2, Example 1).
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CHAPTER IV

D-connections

§1. Introduction

In Example 2 we saw that a differentiable foliation gives rise to
an integrable distribution, and vice-versa., We now study foliations from
this point of view by ignoring the C! distributions and applying
Frobenius' theorem. In place of special maps, which are projections in
the standard foliation, we have a projection tensor on the manifold, and
instead of maps, ¢, between transverse discs we have parallel translat=
ion between tangent spaces. Just as the maps ¢ were defined by special
maps, the parallel translation will be defined by the projection tensor.
This approach to foliations, which from a geometric point of view is

very similar to that of Haefliger [[1 ], is due to A. G. Walker; [ 1],

[27] and [37].
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§2. Distributions

Let D' be a differentiable distribution on a C* n-manifold, M7, and
let g be a riemannian metric on M, We define D" to be the orthogonal
distribution to D*. If D' has dimension n-p, D" will have dimension p.
If A is a local vector field on Mn, A decomposes uniquely as a ¢ a! ¢ 2"
where A" € D' and A" ¢ D". We define the tensor a” by a*(a) = - for sll
such A, If I is the identity on (M) (i.e. the identity l-covariant.,
1l-contravariant tensor) we put a" = I - a! so that a™(x) = A".

In terms of a coordinate system (xI,g.aﬁxn) we write a’(:;af %
. ) . X
a% -2 . Let a;lk(r) denote covariant differentiation with respect to

ax-

a cormection I on M* (not necessarily the metric comnection).

L] . ’i "i i ‘i L]
Contractions with aj and a,” = dj - aj are written

J
C a'j = Ci : Ci a"p = Cp" H Ci ' a“k 2 Ci
k% okt Yik % TSk Vik % % T prg"

e

ete.

We use the convention that contraction follows differentiation,

thus

i |p R i . Ii llq - i!
Cplk % C.J"Ik’ C.;J')\q % % C.J'|k"

etc,

We begin by deriving some fundamental identities satisfied by a' and a'.

'] = "l
' n . - 1 1
a' +a" =1 7'aj]k + aj\k 0 (1.

a'a" = O because a’a"(d) = a'(a") = O for all local vector fields

A, hence
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| B " T4 n
a'a" zat aP+atal =0
(@'a")s)y plk “J p Jlk
[ n [ E] ]
= aka ajp - apl a.iTk =0 by (1)
]
-~ i ‘i
=7 ajuy = 3k
n (2)
Similarly a"a' = 0 = ai.i = a'.:}
Jle ” 5tk

t [ ]
5 . 15 'p _ i p_ '
57k %Ik ® T %Hk? T %k%H %

Similarly
aj"lk =

Finally

Ii' i" n ii . 1 n 1. li n v3

i i
al : al : 1 ] :' L[] : L) : »
3"k T %k ? T %"k ¥ alk % 25 T %k ¥ T vk

and similarly

1o '3 'i (3)
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('Ihese rules are in fact true for any derivation locally defined,

k

e.g. the partial derivative in the direction 2 5>
X

It is now convenient to define

Lt ne"

i 5

a.
Jlk
From (3) it is straightforward to prove

H

i _ 41 _ i _ '1
) R L A L S T
n
1n . i L _ v
1 R S A I W
i g

B T Fyme T 0

Let y:R » M be a C' curve on M'. We say that D' is parallel along y if

vectors in D' remain in D' when parallel translated along y. Let the

dt 1°
9x X . K

tangent vector to y be bl —9-11- ; 1i.e. y,,(g—-) = bt 2
Let A be a parallel vector field along y. We have )‘J].k b = Q.

a?(1) is parallel along vy if and only if

v ’s
(a.t ?‘J)lk bX - a.t

K. 'ij
J jlk

ik, K
AY b a.” A b
T8 Mk

"
(@]

k

Which, because )‘Tk b k

it

= 0, is equivalent to a |k A b 0-

Let A ¢ D' at one point of y say y(t). Parallel translaflon is

unique, hence A € D' along vy if and only if a'(A) is parallel al.ng ¥.

k

Hence A remains in D' if and only if a';'ll.k ad b =0,

If A» is an arbitrary vector field, along y, in D' it is of the form

3 | K l
At a; J. D' is then parallel along y if and only if a |k ap AP b X =0

for all Ap. Hencea Ik J b = l b]'c

p Ik = 0. Wltm

2 4 SEP1972
ARY
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Similarly D" is parallel along y if and only if a;')'l‘]k bk - 0.

If D" is parallel along all C' paths vy in D° we say that D" is

g

parallel relative to D'. We then have aLp,l.lk b% = 0 for all b¥ such that

bk —ak- e D'. Hence a "Ik' 2 0., Similarly D' is parallel relative to
ax

D" if and only if a 0.

'lk" =
When D' is parallel along all C' paths y in D' we say that D' is

self parallel. The necessary and sufficient condition for this is

'1

p k! = O, Similarly for D". When written in terms of a%k all these
conditions become,

D' parallel relative to D" &= a‘:;.L,k., =0

D" parallel relative to D' 4-..—.>a§,,k, =0

D! self parallel &> a‘]]:-'k' =0 2

D" self parallel &> aJi.,.k., =0

We shall see later that if the connection is symmetric, self parallel
implies integrable. D" is not in general integrable so we seek a weaker
condition than self parallel.

D! is path-parallel if for any m ¢ M and any A ¢ D m' » the geodesic

determined by A remains in D'. This condition is equivalent to

a‘. ).‘j Ak-O for all » e D!
et r n
a'l p'J 'k ,p,q 'i P ,q
Hence ava A A*t=aga A" At =0 and
%k % % p'lq’

i i
(8p11qr * 8qr]pr) A 4% = 0
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Therefore D' is path parallel if and only if a + a = 0, Tt is

lq lp
convenient to denote symmetric alternation of sufflces by ( ) and skew-

symmetric alternation by [ , _]. e.g

D' is path parallel if and only if a(p |q )

Finally we seek the conditions on a,:jlk

which are equivalent to
integrability.

Let A,u be local vector fields in D. D' is integrable if and only
if [Ca,u_] € D' for all such A,u (see Example 2). Hence D' is integrable
if and only if a" Ea'x,a’u] = O for all A,u (not necessarily in D!).

If e; = —a-i- on some coordinate chart (xi,“&,xn) and » = Ale,

3
. X i
= 1e
u ) u i
— !i Y3
a"[a'a,a'u_] = a" La, P e, aq‘] ud ej:j
_ama'iap ey 'j a D
- a ( € . - a A
a'fa " A% (a ), g ey (ap )es
(where ".i" denotes partial differentiation by xl,)
"m'J ,P¢,'i a 'J.q.,'1,P
= j « = a i a A < e
a; ta'd p M la g, g ¥ lagan) shey
"m lj i "y 'j i P a
= .ava_ .=a,ava_ DA =0
(@jap8g5 238385y
n n
'm m i 'i -
for all A,u. Hence aqop, - apnq = 0 and by (3), a qtep! " ap'uqi = 0,

If T is symmetric this condition is easily shown to be equivalent to
13 |i
a - n
p'|q" ~ %|p
D' is integrable if and only if a = 0. Similarly for D".

[ptla']

Then using (4) we may say
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Finally, we note that when I is symmetric we have the following
interdependence of terms:
;} path parallel path paralle.

Self parallel

Self parallel § ] .
integrable 1ntegrable

§3. D=Connections

A D-connection, D, on a manifold with the distributions D* and D*
of §2., is a symmetric connection with respect to which D' and D" are both
path parallel and parallel relative to each other. The algebraic con-

ditions for a D-connection are thus
i _ i i _ 1 .
a(jk") = a(jllkll) = aj"k‘ = aj'k" =0

i i i i i i
Now, a,:ij * ak;j = a},k, + a,j'k" + a,j"k‘ + aj"k"

i i i
t ak'lj' + ak'j" + ak"j' t a'k"j'"

i i i - i - -
Hence a(jk) = a(;j'k‘) + a(j"k“) = 0 so that a‘(jk) = 0 for a D=connect
. i Lo =>al P 'a .
lon. Conversely, a(jk) 0 -.>a(pq) ay aj 0

3 t 3 ] 1
= a’ P ' gt Pal: 0]

i .
(p'q) 21?5 "qpuqm ?i? % qpaqn ¢
» i )
Similarly a (p"q") * 0

1 it it i - o -
Also a(jk) =0 = aj"k' + a'kijll =0 $aj"k"' 2 0 =2 aj"k' = 0.



106.

Similarly a%jk) =0 =$>a§,k" = 0 and the necessary and sufficient con-
ditions for a D-connection become a%jk) = 0.

If r}k is an arbitrary connection on Mn, any other connection, D§k
say, is given by r}k + V%k where V?k is symmetric in j and k. We dis~
tinguish between covariant differentiation with respect to different
comections thus: a?k(r) and a%k (r+v).

Now, ati (D) = aii (r+V)
Jk J

S (T + Vi a - (r?k + V30 o,
* 23 ) ¢ Ve = Vi
Similarly
|k(D) : lk(” * Vj'"k - le';
' g K
Hence a;:k(D) = Jlk(D) +a Ik(D)
et v - v el o T i
= a;ijk(” - Vl"k V:)l"'k
Lastly, 2y (D) = & (D) + &y (D)
=2 8055 (M) = Wiy *+ Vo + Vn + )

so that the most general D-connection is given by

pt + Vl where V-, satisfies

Jk Jk

i i A in £
2 a(jk) (r‘) = v:.l.j-"k,"' V‘J]'-k-ll + v:]:Vk + V}k'
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Let vi

- i N, | _ i / L el
Then a routine calculation gives

i . ' i N v i - i i
Vime * Vir * Vv * Viier = 2 85 + Cjme * Cien * Gy + o

Hence r;k + VJ{-k is a D-connection if and only if

Iy 31 AL iV
Cl "Cl, +C—' 1

j“k 4 kaj j k + Cjk“ = 03 that 18

i =t gy :n n
lelki + CJ}ukn t Cj"k" t C;:’k" + C;',k“ + Cqui- t cj"k" =0

All combinations of primed and double-primed suffices appear except

Y l
Cj'k' and C.J mens hence a general solution is given by

i Y
C‘J].'k E;"k' t FJ"k" where E,F are symmetric but otherwise arbitrary.

We deduce that the most general D-commection is given by
-1II

i
a‘(ji."ki)(r) "k")(r) + Ejuku T FJ"kv!

i _ i i _
Djk = rjk + 2 a"jk)(r)
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CHAPTER V

Holonomy Groups

§1. Introduction

Iet M* be a differentiable manifold with a differentiable foliation
?—J—. Let D' denote the integrable distribution given by the tangent
spaces of the leaves of g— and let D" be any complimentary distribution.
If a connection T on M has the property that D" is parallel relative to
D' we may define holonomy groups on each leaf L as follows.

let v(L) ¥ L be the bundle of p-planes D" restricted to L < M2,
v(L) is the set of pairs (m,w) whereme L, w e Dr'r'l and T(m,w) = m. V(L)
is naturally identified with the normal burdle of L in M" and so has the
structure of a prjincipal GL(p,R) bundle. Let y be a closed piecewise

¢ curve (that is, Ct except for a finite number of points) such that

C
y(0) = y(1) = m and let "ygDr'rin -»> D;,'l be parallel translation, with respect
to I, along vy from y(0) to y(1). LY is an element of the structure group
of v(L). If At(L,m) is the loop space of piecewise Ct curves at m then
we define a map w:At(L,m) + GL(p,R) by n(y) = L The image of l\t\’_L,m)
under v is a group (Kobayashi and Nomizu El:[, p-71). When T is a D-

comection, this group is denoted by It(L,m) and is called the Walker

Holonomy Group of class t on L at m,




§2. Two lemmas

Lemma 1
on a c* manifold M?, every continuous loop y: Co,17] - M is

homotopic to some piecewise Ck -]oqla.

Proof
- - M o n k
Let v(0) = y(1) =me and let {<pi.Vi + R’} be a C" atlas on

M., Letme Vj for some j. ¢J.(VJ.) is an open neighbourhood of ¢J.o v(0)
in R" and there exists a convex open set Cj such that ¢jo y(O) ¢ Cj
c ¢J. ('VJ.)., We shall consider only those coordinate charts which are of
the form ¢ iU; R" where ¢i(ui) is convex.

Let {ui) be a cover for yto,lj . Because y is continuous and

EO,lj is compact, there is a finite subcover of {ui]= Let

: -1
{uj_};i_:l,“.,q be such that {¢, (ui)}:'L:l,.“,q covers [ 0,1 ].

q
Subdivide [[0,17] by [[0,17] = .U, [Tt,,t; ;7] such that ¢y = O,

t '=l,t1<t2<oon<t

-1 .
g+l ) and l:ti’ti+lj c 05 (uj) for some j.

q+
. . n .
¢jo YEti’ti+1: is a curve in a convex subset of R*. If 1;3. (Li) is the

i+l)’ Li is a Ck curve joining

y(ti) and y(ti+1) which is homotopic to yEti,t

straight line between ¢J.o y(ti) and ¢J.o y(t
141 because a convex
subset of R is homotopic to a point. U L; is then homotopic to v[0,1]

and Ck except possibly at the points Y(ti)"
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Lemma 2

On an n-manifold M" with a differentiable foliation, given by

an integrable distribution D' of dimension n=-p, and a complimentary dis-

tribution D", there exists a coordinate chart (y!,...,y") about each

point m ¢ M® such that

e
]

[N
i

(1) The leaves of the foliation are given by yl = constant;
n-p""l, ane ,na
(2) On the leaf through m, D" is spanmned by 2. 5

1
ay
n=p+l,...,N.

Proof

Denote suffices taking values 1,...,n-p by a or g and suffices

! taking values n—p+l,...,n by 1 or u. By definition of a foliation nhere

| exists a chart (xl,“..,xn) such that the leaves are given by X = con-

| stant; i = n-p+l,...,n. Let D" be spanned by b‘; ——3-&- t --%- for some
a . aX X
\ b,\.
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Let D'* and D"* be the duals of D' and D", respectively. That is
the images under the usual identification T(M) - T*(M) of the tangent
bundle with the co-tangent bundle. In T*(M), D'* is spanned by

ax” - b‘; dx* and D"* is sparmed by ax » because if we put

o = ax® - ol dx’ we find

Let (y1,...,y") be the coordinate chart given by

<
i

a _ o u A
= X bA(xo)x

A

p-24

y =X

where x: is the value of x* on the leaf through m.

ay® = ax® - b} (&) ax

dyA dx"

hence dya = »* on the leaf through m, D'* is spanned hy dy°i and D" is

spanned by dyA. i.e. D" is spanned by ""a'i' S n-p+l,...,n as required.

oy syl
Finally, if we denote by J = det "'x'r) the jacobian
]

of the coordinate transformation y* = y© (x!,...,%),




1lz.

a
e B T A
X ax

o !
A= A () = p®
ax" ax" Ao u
ke . (g

st ogE X0
ax ax

gl . .
Lhge --’)T (x")

L
(=]
> =

1. Hence (yl,.,,.,,yn) is a coordinate

i §2 | -p*
Hence . = mgw{-—-% and J
ax? 0 | 5

chart about m with properties (1) and (2).

§3, Main Theorem

on a C* manifold M* with differentiable foliation (C>2) of which L

is a leaf,

() m' e Land m" ¢ L =g, (Lym') =7y, (L")
(2) 3y (L,m) = ... s 3, (L,m). Ir M* is C* k may be =,

(3) 3, (Lym) = J(L), the Jet group of L.

Proof
We use the notation of Lemma 2. The projection tensor a' has

components,

1B _ B - 1@ _ .0 O My
a' =¢6,a'; =0,a =D wher-eb}‘(xo) 0.
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If u* is a parallel vector field along a path of the form

y1 = constant; i # a,

From the expression for an arbitrary D-connection given in

Chapter IV s2.,

A A A _a o
Do * Taa * 2 & (ua) (r) B(urar) (r) B(u"a") (r)
A' . A"
+ Eu'o:' + Fu"u" .

Lef (¥, ..,,\’.“) be a coovdinale charl such thal on the lea'F
Jefl'hea\. 1’3 "% = constant D' is spanned by —>~ and D" by _3_i. .
© ! ax™ X

Y N A
We hqw,/ Duu = 1‘uci + 2 2(1a) (r)
N . A
= Iua + aua (r) + & (r)
= [‘A + a'%v (l") + a"}‘" (T)
ue © “ujo e
A' A"
+ a' r) + a" r
aulu (r) alu (r)
A A A
=T - ¥ r - i r
e = 3o (r) 2,1y (r)
= PA_ - a't (since ar? = 0)
e | p
= r" -a'* - I".‘ att + 1t a'%‘
o Qou 1y (V] oy 1
R N . A
= I‘um I‘mu (since a i 0)

O because T' is symmetric.
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Hence, W is parallel if and only if ufa =0, i.e. u>‘ = constant. Hence<
u’l‘a V¢ = u:‘q v* = 0 and uA = constant is parallel along all differentiable
curves through m and parallel translation along a curve depends only on
the homotopy zlz,%%of the curve. This result is originally due to
Walker, [[3].

L is connected and locally euclidean and hence path connected
(Spanier [[17] p.65), and if m', m" € L there is a path a such that
a(0) = m' and a(l) = m". Then by lemma 1 there is a Ck path, 8, homo-

topic to a and therefore a map

> ¢

: _Ty_t(L,m!) -+ E,t(L,m“) given by
E (n(y)) = n{o y a~1) = M(a) N(y) M(a)~1. E is a conjugacy
and :_\Ft(L,m') = §.(L,m"). This proves (1). As for (2) we note that

1 (L,m) 2 §o(L,m) 2 e 2 _Wk(L,m) as subgroups,

and as every piecewise C! loop is C! and every C! loop is homotopic to
a piecewise Ck loop, g-l (L,m) < l’k(L,m). Hence the _@t(L,m) are all iso=
morphic.

Finally we prove (3).

Let v : [[0,1 ] be a piecewise c® loop at m. As in Lemma 1 [o,1] =
ing Eti,ti +lj but this time with the condition that each v( Eti-‘h‘i‘:lj)
lies in a coordinate chart (y!,...,y") with the properties (1) and (2)

)

given by yA = constant. The tangent space of Tr at y(tr) coincides with

of lemma 2. Let Tr- and Tr'+l be transverse discs at y(t r) and Y(tml

(1] TR} » "
D" at y(t,) and similarly for T, ,. The local homeomorphism ¢:T, - Tral
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introduced in Chapter II §2., has the property that

A
e (ylyenesy™) 2y

hence ¢, maps D"(t y o D"(t ) by u* > u'. But we have shown that this
r

r+l

is the map of D" to D" given by parallel translation relative
(¢,) (tpsp)

to a D-connection. Because the maps like ¢, generate the Jet group of

L we deduce that parallel translation relative to a D-connection also

generates the Jet group. i.e. Ek(L,m) = J(L) as required.

It has been thought that Walker's holonomy group is the Ehresmann
group. A counter example is example B of Chapter III §4. in which the
Ehresmann group is Z and the Jet group zero. The fact that the Walker
holonomy group is the Jet group and not the Ehresmann group can be
partially explained by continuing our introduction to Chapter IV: The
projection a" is given by the first derivative of a special map so that
the holonomy group will be given by the first derivative of the maps

between transverse discs. This is just the Jet group.
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CHAPTER VI

Properties of Holonomy Groups

§1. The Holonomy Group is not a Lie Group

Holonomy groups are, in general, lie groups (Kobayashi and Nomizu
El:] p-73) and have no manifold structure only in special cases, for
example, a flat comnection gives rise to a zero holonomy group. We
show that a D-cormection on a foliated manifold is one of these special

cases.

Lemma
If M* is a paracompact, connected, differentiable manifold,

71 (M) is countable.

Proof
M" supports a Piecewise Linear structure (Munkres [[17]

Chapter II) and for this lemma we shall assume that M" has a triangul-
ation. Any continuous map vy : [0,1] > M is, by the simplicial approx-
imation theorem (Hilton and Wylie [[1_], p.37) homotopic to a simplicial
map. Hence y is homotopic to an edge path and can be specified up to
homotopy by an ordered collection of O-simplexes. As EO,l:J is compact
and y is continuous, this collection of O-simplexes is finite.

Consider the open cover of M given by the open stars of the (-
simplexes. That is, if p is a O-simplex on Mn, the star of p, denoted
by u(p), is the union of all closed n-simplexes containing p. The open

star of p, S(p) is then given by S(p) = u(p) = du(p).
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The collection of sets {S(p) : p is a O-simplex} is an open cover for M’
and each open star contains one and only one O-simplex. Hence there is
no subcover of M'. M’ is pard_compact and the topology of M has a
countable base; hence every open cover has a countable subcover by the
Lindel8f theorem (Kelley [17] p.49). In particylar {S(p)} has a count-
able subcover. But {S(p)} has no subcover and hence the number of O-
simplexes is countable.

Finally, as each path on M is specified by a finite number of O=
simplexes we deduce that the number of paths, up to homotopy, is count-

able, and hence n(Mn) is countable.

Corollar
Ir M is a compact, connected, . differentiable manifold,

7, (M) is finitely generated.

Proof
As in the lemma we find that the paths on M are, up to homo=-
topy, given by a finite sequence of O-simplexes where the number of O-

simplexes is finite. 1r1(Mn ) is therefore finitely generated.
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Theorem

T, (L,m) is not a lie group, N.B. Our conveﬁh:\ i el e dim esion
o{ o lie qroup is >0. Otherwise we way restale the dheorem as “ dim @ (Lm) = 0-

Proof
L is a submanifold of M" and therefore Pay_-acompact- " para-
compact = existence of a metric =>existence of a metric on L =’L para-
compact. See Hicks Elj p-87)- _'yl't(L,m) is a factor group of =,(L),
which is countable, hence _@t(L,m) is countable and camnot admit a mani-
fold stmcture(oS‘ dimension > O).
We conclude this chapter with a discussion of the properties of

_Tt(L,m) when the foliation has codimension 1.

§2. Holonomy Groups of Foliations of Codimension 1

Theorem
If a foliation on a differentiable manifold has codimension 1,
It(L,m) is a factor group of H,(L;Z), the first homology group with
integer coefficients, and has a torsion subgroup which is either trivial

or 2.

Proof
'_q':t(L,m) has a faithful representation in GL(1,R) = R \ {O}
under multiplication. Hence the holonomy group is abelian.
Let o be the homomorphism a:w; (L) -r'_'q;'t,(L,m): Since Et(L,m) is
abelian, the commutator subgroup =,'(L) of =;(L) is contained in ker a.
(Hall Elj p.138). Let 8 be the map B : % - %‘eé% defined by

B:a m'(L) » a ker a where a € m(L). If a m"(L)=bml(L), bt ac

m1'(L) and so b™! a € ker a, a ker o = b ker o and 8 is well defined.
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AlSO, B(a TI']_'(L) b ﬂl'(L)) B(a b ‘II‘]'(L))

ab ker o

(a ker a)(b ker o)

since n;'(L) and ker ¢ are both normal in =,(L). Hence 8 is a homo-
morphism. We define y by the commutative diagram.

canonical m (L) B8 my(L) Y
m (L) > T v ('L'y * ker o i’t lm)

~

and we have jt(L,m) = "‘L{géﬂ%(m . Now, :—‘1-%'% = H(L32);
(Greenberg Elj, p.U48) and so the holonomy group is a factor of the
first homology group as required.

Finally, jt(L,m) is isomrophic to a subgroup of R \ {0} and the
only elements of finite order are +l1. Hence the torsion subgron..tp of

lp't(L,m) is trivial or Z,.

Corollary
If L is compact, the isomorphism classes of Ipt(Lsm) are 729 and

Zy x 29 vhere q is an integer z O.

Proof
By the corollary of §1=,It(L,m) is finitely generated. Hence
n
= - . 74
T (Lam) = X zpi xnz (Ledermann [ 1_] p.151). By the theorem

i)=(l Zp 2 O or 2, and the corollary is proved.

above "
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Example 1
If the dimension of L is 1, m(L) 2 O or Z and \pb(L,m) 20,

Z, or Z, The examples of Chapter III §i. exhibit the isomorphism classes
O and Z. The following foliation of the moebius band exhibits the class

Zz.

Example 2
If the dimension of L is 2, Hy (T ;Z) = 7%8 where T_ is the
sphere with g handles and H, (uh;Z) 2 2y x 7281 wnere w, is the sphere with

h cross caps. Hence
I,C_(Tg,m) =722 or 2, » 72971 ynere ag 2

and It(u.h,m) = 723 or 7, x 29 where q$ hl.

These examples give the isomorphism classes of the Holonomy group

for all compact leaves of foliations of 3-manifolds.
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