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PH.D. Thesis 

Total p-td Curvature 

an 
Foliations and Connections 

M.0". Derrick 



ABSTRACT. 

This thesis i s i n two parts. In Part I we consider integrals of 
the p-th power of the t o t a l curvature of a manifold immersed i n Rn 

and thus introduce the notions of t o t a l p-th curvature and p-convex. 
This generalises the ideas of t o t a l curvature(which corresponds to t o t a l 
1st curvature)and tight(which corresponds to 1-convex)introduced by 
Chern, LQshof , and Kuiper. 

We f i n d lower bounds for the t o t a l p-th curvature i n terms of the 
b e t t i numbers of the immersed manifold and describe p-convex spheres. 
We also give some properties of 2-convex surfaces. 

F i n a l l y , through a discussion of volume preserving transformations 
of Rn we are able to characterise those transformations which preserve 
the t o t a l p-th curvature (when p>1)as the isometries of Rn. 

Part I I i s concerned with the theory of f o l i a t i o n s . Three groups 
associated with a leaf of a f o l i a t i o n are described. They are a l l factor 
groups of the fundamental group of the l e a f : the Ehresmanngroup, the 
holonomy group of A.G.Walker, and the "Jet group". This Jet group i s 
introduced as the group of transformations of the f i b r e s of a suitable 
bundle induced by l i f t i n g closed loops on the leaf, and also by a 
geometric method which gives a means of calculating them. 

The relationship between these groups i s discussed i n a series 
of examples and the holonomy groups and Jet groups of each leaf are 
shown to be isomorphic. The holonomy group of a leaf i s shown to be 
not a Lie group and, when the f o l i a t i o n i s of codimension 1, i t i s 
proved that the holonomy group i s a factor group of the f i r s t homology 
group with integer coefficients and has a torsion subgroup which i s 
either t r i v i a l or of order 2. 
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P A R T I 

Total p-th Curvature 

SUMMARY 

Our object i s to study integrals of the curvature of a manifold, i n • 
a way which extends the known results i n the topic of " t o t a l absolute 
curvature". A l l the work i s original unless otherwise stated r That i s , 
chapters II-V and a l i t t l e of chapter I i s or i g i n a l r 

In chapter I we define the t o t a l curvature of an inmersion 
f -.if1 •*• R0*1* by the integral t ( f ) = / K(m) u where K i s the t o t a l curv-

.wr* n 
ature at m E n and u i s the riemannian volume form on JVr induced from 

n 
the euclidean metric on i s assumed to be' closed, compact, Gl 

and orientable. We then state the main theorems about i ( f ) and snow how 
the theory extends to non-orientable manifolds. 

We show that for any there are iranersions, f , for which t ( f ) i s 
a r b i t r a r i l y large, i.e. there are no theorana of the type 
"x(f) ̂  constant for a l l f M . On the other hand the infimun! of i f f ) , 
over a l l immersions f , i s an interesting numberj i t i s a d i f f e r e n t i a l i n ­
variant of M11. Immersions for which i n f t ( f ) i s attained are called 
" t i g h t " c In chapter I I the t o t a l p-th curvature of f i s ds-'ined as 
t»(f) = K?(m) w . As Kpu i s not dimension free there are no theorems P n n 
for Tp which generalise those we have stated for x- However we show that 
i f the immersions considered are such that the volume of f(M°) i n R"+N 

i s fixed, analogues of the theorems true for T are true for T^-. The i n -
fimum of T p ( f ) i s a d i f f e r e n t i a l invariant of vf1 for every p and immers­
ions for which this infimum i s attained are called "p-convex", 1-eonvex. 



i s equivalent to t i g h t . We also prove that T ( f ) i s a convex function 
of p. 

Total curvature has been generalised b y j ( l ) immersing M" i n an 
arbitrary riemannian manifold,(2) integrating a curvature other than the 
to t a l curvature . Where there are theorems i n these more general situat­
ions, they extend to include powers of curvatures, For example we show 
that i f M2 i s a smooth closed compact surface i n R3 with area kit and 
mean curvature H, / |H|P O>2 ^ 4m for a l l p > 2, equality being attained 

M2 

when M2 i s the unit sphere, (The case p = 2 i s due to WillmoreK 
Just as sup r ( f ) was unbounded we show, i n chapter I I I , that 

sup T p ( f ) i s unbounded for a l l values of p * 0, Also,it:is proved that 
i n f T ( f ) = 0 for p < 0 and 0 < p * 1 and that there are no immersions 
for which these suprema and infima are attained-. 

The t o t a l p-th curvature and p-convexity of curves and surfaces i s 
examined i n chapter IV c We describe p-convex curves and spheres for a l l 
possible values of p and show that there i s no 2-convex toruo of revolut­
ion i n R3, We then examine 2-convex surfaces i n R3 by variational 
techniques, deriving equations which 2-convex immersions must satisfy c 

We thus prove that there i s no 2-convex torur, with one principal curvat­
ure constantt 

In chapter V we investigate the group of transformations, which pre­
serve p-convexity. As p-convexity i s defined via immersions with a 
fixed volume we are led to a study of transformations of a riemannian 
manifold which preserve the volume of every k.-dimensional submanifold^ 
These "k-volume preserving" maps are defined both locally and globally 
and the two definitions are shown to be equivalent. Finally, these maps 



are shown to be isometries and i t then follows that the p-convexity pre­
serving transformation group i s the isometry group, 
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C H A P T E R I 

Total Curvature and Tight Immersions 

§1, Introduction 

One of the most important results of classical Differential Geo­
metry i s the Gauss-Bonnet Theorem. I f M2 i s a C2 surface (closed and 
compact) i n R3 with Gauss curvature K and surface volume element dA, 

/ KdA = 2ir X(M X) 
M2 

where x(M2) i s the Euler characteristic of M2* 
The result i s so striking that one immediately asks i f there are 

analogues for manifolds of arbitrary dimension and other types of curv­
ature, (the mean curvature, for example). With a suitable change i n the 
constant 2n and a choice of the curvature K the theorem i s indeed true 
for manifolds of even dimension greater than two, (the most comprehensive 
statement of the Gauss-Bonnet theorem i n this generalisation i s due to 
S. S. Chern C O ) 8 0 ( 1 a t present there are, broadly speaking, two "other 
types of curvature" that have been considered. One. i s the Differential 
Geometric approach to characteristic classes given by S. S. '.hern 

(especially i n H O ancl see also Kobayashi and Nomizu QSLjj 
i n which the Gauss-Bonnet theorem appears almost as a special case. 

The other type of curvature, t o t a l curvature, has i t s roots i n the 
following theorem of Penchel £ l ^ . I f Y i s a closed C2 curve i n R3, k 
is the Serret-Prenet curvature and d's i s the line element, 
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/ |k|ds * 2TT 
Y 

equality being attained when y i s a plane convex curve. This theorem, 
which was later generalised to curves i n R0 by Borsuk Q l ^ , with i t s 
inequality and special curve i n the case of equality, i s the prototype 
for a l l the theorems which followed. 

This chapter i s concerned 
with the statement of these theorems i n the form we shall use them later 
Our ultimate purpose i s to extend them to theorems about yet another 
"type of curvature", p-th curvature. 
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§2. Total Curvature 

rf1 w i l l be a closed, compact, orientable, C2, n-manifold* 
Let f i r f 1 •+ R n + N be a C2 immersion of rf1 into euclidean space of 

dimension n + N; that i s the induced map f* of tangent spaces i s a mono-
morphism (or, equivalently, f has non-zero Jacobian). 

Following Chern-Lashof * ̂  denote by Bf: S r f 1 the unit normal 
bundle of f. B f i s the subset of TOf 1*) x rf1 of pairs (e,m), where 
m e rf1 and e i s a unit normal vector to f (rf 1) i n R"+N at f(m). TT i s the 
natural projection T(R" + N) x rf1 -* rf\ into the second factor, restricted 
to Bf. 

For each point (£,m) of Bf, the unit vector £ at f(m) may be identi­
fied, by euclidean parallel translation, with a unit vector at the 
origin of I f we denote the unit hyper sphere at the origin of 
Rn+I* by s" + N~^ we thus have a map 

. n Qn+N-1 
y - B f * s

0 

which i s called the Gauss map of the immersion f. 
We denote by g the euclidean metric on Because f i s an 

immersion there i s a natural injection of Tfrf 1) into 
T ( Rn+N, 

and hence 

a natural restriction of g : T ( R " + N ) X T ( R N + N ) •*• R to a map 
T(rf*) x Ttrf 1) - R which we denote by g . 

rf1 

g i s a riemannian metric on rf, and i t gives rise to the 
rf1 

riemannian volume element, oi , on rf , associated with i t . Let 
* n ' 

(x 1 , . . . ^ 1 1 ) be a coordinate system about m e M (that i s , a chart 
( x 1 , . . . , ^ ) : U -*• R", such that U i s an open neighbourhood of m) and l e t 
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(x 1) 
be the metric g expressed with respect to these coordinates, 

then 

oi n = f * det 
(x 1) 

^ 6x1h ... Adx" 

o>n i s independent of the coordinate system chosen for i f (y 1,...,y n) i s 
also a coordinate system about m 

(y 1) rf1 (x 1) 

3 x P 3 x Q «nH 
— j — j , and 
3y 33T 

dy^ ... Adyn = dx1A dx 
3x 3x 

n dxAA Adx det 

Hence 

n det dy'A Ady 
(y 1) M" 

/ I 3* S^^/st\ n det dx'A Aax 

n dx:A Adx det 

H ) n dx'A ± det Adx 
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The + and - signs occurring when the Jacobian of the transformation 
y 1(x 1,...,x n) i s respectively positive or negative. I f M11 i s orientable 
there exists an atlas i n which every such Jacobian i s positive (Kobayashi 
and Nomizu C O * Volume I , page 3) and so u>n may be defined by means of 
this atlas. 

Now, each fibre ir _ 1(m) of B f i s an (N-l)-sphere i n It and so has 
induced on i t a volume form, a„ ,, whose construction i s the same as UL, 

1 N-l* n 
for M". Also, B̂ , i s a product and hence oN_^ Ao>n i s a volume form for 
Bj,. We also construct the volume form £

n + N _ 1
 o n s" + N - 1. 

aN-l A u n a n i Y* En+N-l a r e - b o t n (n+N-1)-forms on the (n+N-1)-dimens­
ional manifold Bf. These two forms must therefore d i f f e r by a real 
valued function on B̂,. We put 

Y * W l = G ( 5 ' m ) °N-1 A u n 

G:Bf •+ R i s the Lipschitz-Killing Curvature of f iM11 + Y^+li at m i n 
the direction «;. In co-dimension 1 G i s called the Gauss-Kroneker Curv-
ature and i s equal to the classical Gauss curvature when n = 2 and N =. 1.. 

The Total Curvature, K(m), at m i s defined by 

K(m) = / |GU,m)| o„ , 
n~1(m) 1 

and the Total Curvature of M" i s defined by 

TdKV.R^) = ̂  K U n 

= / |GU,m)| o j j , Au> 
B f 
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From the outset we have assumed that i s orientable, because only 
then i s u n globally defined and the integrals above are meaningful. 
However we may deal with non-orientable manifolds as follows: (see for 
example Abraham QQ). 

Let Sf 1 be the orientable 2-fold cover of M° and for a given immers­
ion l e t f" be the map given by the following commutative 
diagram, 

P 

where p i s the usual projection. 
The volume form on i s taken to be f*u> and G, being a function 

B f R i s easily " l i f t e d " to a function G- on B by defining &(?*?,m) = 
G(£,p(m)). ( r * i s here the usual induced bundle map; see Husemoller 

P-l8, and 21* i s clearly a monomorphism so that (J i s defined on the 
whole of B„ ). 

The t o t a l curvature i s then defined as 
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When M° i s orientable the orientable two-fold cover i s M" V 
(disjoint union). This explains the appearance of /2. 
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§3. Main Theorems 

Let $ be a C2, real-valued, function on a C2 manifold M̂ . A point 
m e M" i s a c r i t i c a l point of 4 i f d$ = 0 at nu Equivalently m i s a 
c r i t i c a l point of $ i f 

oX 

with respect to a local coordinate system ( x 1 , . . . , ^ ) about m-
A c r i t i c a l point m i s said to be non-degenerate i f the n * n matrix 

a2<b 
—T- S—r- (m) i s non-singular, and a non-degenerate c r i t i c a l point i s said 
3x ax0

 3 2 . 
to have index k i f the symmetric matrix — T ~ ^ ~ ? ( m) ̂ s index k. That 

3x ax*3
 3 2 . 

i s a coordinate system ( y 1 , . - . ^ ) exists i n which —,—£-.,. ± s the 
/ 1 k 0 \ ay1 3yJ 

matrix I - Q \~ZY~ J v^ i e r e * p i s t n e unit P x P matrix, 
4 i s a Morse function on M" i f a l l i t s c r i t i c a l points are non-

degenerate. I t i s well known that any C2 manifold supports Morse funct­
ions (see Milnor Cl^])* 

Definitions 
i s the set of Morse functions on M". 

@. (<|t) i s the number of c r i t i c a l points of index k of <t>, and 
K n 
8(<fr) = k £ 0 B kU)» i.e. the t o t a l number of non-degenerate 

. -critical.points of 
B^M") = minimum {Bk(<f»)l 

<f> e *(M") 
B(M") = minimum {&($)} 

4> e *(M?) 

Let F be a f i e l d , then the k-th b e t t i number bk(Mn;P) = dimp H^M^F) 

file:///~ZY~
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where H^CM^F) i s the k-th homology module with coefficients in F and 

dirrip i s the dimension as an F-module,, 

n 
bCM^F) = k £ Q b^M^F) and 

bQf 1) - maximum {b(Np;F)}, 
a l l fields F 

n n 
We remark that B(M") > K £ Q B K ( M N ) i s clear and that k £ Q 0 K(M N) 

b(vP) i s well known as a Morse inequality (see Milnor £l3)° Taken 

together these inequalities imply fKM11) ^ ( M 0 ) , 

For a given clearly varies with f» However we 

have the following theorem: 

Theorem (Kuiper). (See Kuiper Q l Q 8 1 1 ( 1 Wilson £l^)„ 

inf •r(M n,f,R r i + N) = B(M") c
n+jj_i» w n e r e t n e infimum i s taken over 

a l l C 2 immersions and c n + j j _ ^ i s the volume of the unit 

hypersphere in In the notation of \ 2 , 

c = / l n g n n 

For example, c Q = 2, C] = 2TT, C 2 = Mm and in general 

c = (see Flanders T i l ) -

Definition 

A C 2 immersion i s tijght i f TCMV.R™"* 1) = BCM") 

Note 1. 

Such immersions were originally termed "of minimal total ^absolute^ 
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curvature" for obvious reasons, and "minimal" for short (e*g t in Kuiper 

the second for ambiguity. A minimal immersion i s usually one for which 

the mean curvature i s zero everywhere. Other terms which have been used 

are "convex" and "generalised convex" (e.g. in Kuiper £33)° See below 

for motivation. As we shall later introduce the notion of p-convex we 

have chosen to c a l l the above immersions "tight" (as does Kuiper in P^H 

Note 2. 

We remark that sup i s of no interest. 

Consider the C° surface in R3 which i s homeomorphic to a disc and 

i s generated by the rotation about the "y-axis" of R3 by the curve given 

by 

£l3)« H*6 f i r s t of these has been dropped for reasons of auphony and 

( l - x ) 2 / x 2 

y(x) re when 0 < x ̂  1 

when x = 0 

Picture of Curve Picture of Surface 



14 c 

The total curvature of this "dome" surface i s independent of r and 
equal to 4TI, This calculation i s most easily done using KUR T ' S formula 
in \y3> P'8' 

Now, any 2-manifold can be immersed in R3 so that some pare of i t 

l i e s in a plane. An arbitrarily large number of circular discs of radius 

r may then be removed from this planar region and replaced by "domes" and 

the differentiability class of the surface remains the same-. I f n "domes" 

are introduced the total curvature of the immersion i s increased by iJim. 

Furthermore, an arbitrarily large number can be introduced simply by 

making r small. Consequently, sup r(M 2,f,R 3) - « for a l l 2-manifolds M2„ 

Similar procedures for n-manifolds w i l l yield the same result. 

We now return to the mainstream of the discussion., 

M° i s compact and so B (•) > 1 and &n(<)>) > 1 for any morse function 

<(>. (<|> i s continuous and i s compact and so <f> has a maximum and a mini­

mum. Morse's lemma (see Milnor QVQ) t n e n gives BQ(<I>) and P nU) > 1 ) -

Hence x(M n,f,R n + N) y 2 C f l + N_ 1 by the theorem of Kuiper. The next theorem 

i s concerned with the conditions under which equality i s attained or 

nearly attained. 

Theorem (CherirLashof Q ~ ) ) 

( i ) T(M n,f,R n + N) = 2 C + N _ 1 ^ , ^ r f 1 i s embedded in sum ?:•!) -

dimensional linear subspace of as a convex hypersphere* 

( i i ) i(M n,f,R n + N) < 3 C ^ j ^ =^M" i s tameomorphic to the n-

dimensional sphere, S n, with the usual differentiable structure. 

The theorems of this section w i l l always be quoted in the following 

form: 
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Theorem 1 

equality being attained w<-.=n f( M N ) i s 

a convex hyperaphere in some (n+l)-dimensional linear subspace o 

Theorem 2 

TCM^^R"*^) < 3 C
N + N _ i ^ ^ i s homeomorphic to the standard 

n-sphere. 
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§4. The[.TotalL Curvature of Surfaces 
n 

In the previous section i t was pointed out that bfM"), 

I f equality holds then theorem 1 i s equivalent to 

inf T(M n,f,H n + N) = b(rf») c h+N-1 

Thus relating the total curvature to the well known betti numbers. 
n 

Manifolds for which ^SQ B^(M^) = b(Mj are therefore of interest so we 

shall show that a l l surfaces (2-manifolds which are closed, compact, etc.) 

have this property and derive the form of Theorem 1 which w i l l be used 

in Chapter IV, 

Any orientable surface T', where g = 0,1,2, ,.„, i s obtained by ad-
D 

joining g orientable handles to a sphere. (See Greenberg £ l j ) . T Q i s 

the sphere and T? i s the g-fold torus, g i s the genus of T •„ 
O D 

Any non-orientable surface U^, where h = 0,1,2, e t», i s obtained by 

adjoining h "twisted" handlep or cross caps to a sphere. U Q i s the 

sphere, Ui i s the real projective plane, U2 i s the klein bottle, etc., 

The homology of these surfaces i s 
,2gj 

H+(U. ;F) « F, F^" 1 x F/(2), F 2 

H +(T iF) « F, F °, F 
O 

where F ^ = F x „„„ * F, (2) i s the ideal generated by 1 + 1 and 
2g times 

F 2 i s the set of elements annihilated by l e f t multiplication by 2; 
F 2 = {a e F:(l+1) a = 0} 

Hence b(T_;F) = 1 + 
o 

inf (T ,f,H 2 + N) = 2(g*l) c N + 1 

Hence b(T ;F) = 1 + 2g + 1 = 2(g+l) for a l l fields F and 
o 



17. 

I f P has characteristic not equal to 2 then (2) = F and F/(2) ̂ . 0. 

Also F 2 = 0 so that 

H*(Uh;F) = P, F*1"1, 0 

and b(U h;F) = 1 + (h-1) - h 

I f F has characteristic 2 then (2) = 0 and F/(2) • F. Also F 2 - F 

so that 

H +(U h;F) - F, F*1, F 

and b(U. ;F) = l + h + l = h + 2 h 

Hence = b(U h;F) when F has characteristic 2, for example 

F = Z2, and 

inf (U h,f,R 2 + N) = (h+2) c N + 1 

We note that 

x(T g) = b 2 - bj + b Q = 2 - 2g 

and x(U h) = 2 - h hence 

bCM2) = 4 - x(M2) for a l l surfaces and 

inf x(M 2,f,R 2 + N) = 2ir ( 4 - x ( M 2 ) ) 
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C H A P T E R I I 

Total p-th Curvature and p-Convex Immersions 

Note 

Total p-th Curvature i s different from the p-th total curvature of 

Bang-yen Chen . 

§1. Total p-th Curvature 

We have defined the total curvature of an immersion f sM0 •+ R" 4 1^ to 

be 

and we wish to generalise this and consider integrals of the type 

/ K p where p i s any real number. 

Definition 

The total p-th curvature of an immersion f rrf 1 * R° i s 
i 

T (IVp,f,R N + N) = / K p a) where p e R 
P KT n 

We shall refer to t _ ( f ) or just T when the reference to or f i s 
P P 

clear (or irrelevant, as in the next sentence). 

TI = T and so total 1st curvature i s the same as total curvature. 

Because x = f |G| o„ , A u a definition of T which has claims to 
n
 1 1 N-l n p 

B f 
beJ. \ a generalisation of total curvature i s 
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B 'N-l A u. n 

However the generalised notion of tightness, p-convexity, turns out to 

be useless i f we take this as our definition of x . A remark which 

points out the exact difficulty w i l l be made later. (p»23)e 

Our aim now i s to prove for x p analogues of a l l the theorems we have 

stated for T = TJ , Consequently we examine the infimum and supremum of 

T (f) over a l l immersions f„ 

Let f sM" •* H? + N, o e R such that o > 0 and define of ;Mn •* R n + N by 

(of)(m) = o(f(m)) where f(m) i s considered as a position vector in 

FT with origin 0„ I f the Lipschitz-Killing curvature for f i s G9 the 

curvature for af i s a" n G. Also, i f the volume form on M° induced by f 

i s u>n, the volume form induced by af i s a nu n. Hence T p ( o f ) = a ^ 1 _ P ) n 

T p ( f ) . For example Tj(of) = x ^ f ) and the total curvature thus depends 

on the "shape" of fffl/ 1) and not on i t s "size". I f p i s any real number 

other than one, T Cctf) can take any value i n the range 0 < x < » for p p 
fixed f hence inf T

p
 = 0 a n A sup t p = «. I f meaningful results are to 

be obtained we must r e s t r i c t the class of immersions over which we take 

infima and suprema. This i s done by restricting the "size" of f ( i f 1 ) so 

that Tp depends only on the "shape". This w i l l then be in analogy with 

the case p = 1. 

Definition 

P 

An immersion f :lP -> R" + N has the standard volume i f 

/_ w n = 2 c. 'n+N-1 
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We shall always consider immersions of this type for reasons which 

w i l l become clear. There i s no loss of generality i n doing so, for l e t 

g:^ •+ R n + N be an immersion for which / u = 2 a 1 1 C ,„ , where a > 0 i s 
ĵ n n n+N-1 

a suitable real number and let f = a Jg. T Q ( f ) = a"*1 T Q(g) = 2 c ^ 

and so f has the standard volume. Also, T (g) = a ^ 1 - p ^ n x (f) and there-
P P 

fore any results we may have about immersions with the standard volume 

always imply some result we may have about immersions with any (non­

standard) volumeo We shall also use the terms area and length for the 

volume of two and one-dimensional manifolds respectively. 

We now introduce the property corresponding to tight: 
Definition 

An immersion with the standard volume i s p-convex i f 

T (f) = inf I T (g)} where g has the standard volume., 
P gufcrf-" P 

There may not exist a p-convex immersion of the manifold i f 1 . For 

example i f if i s a sphere with a non-standard differentiable structure 

and N : 1, inf T
p
 s 2 c

n
 b v Theorem 3 and this infimum i s attained when 

the sphere i s convex. But a convex sphere i s the boundary of a disc and 

so has the usual differentiable structure. Hence there are no p-convex 

immersions of exotic spheres. 

However inf x p i s s t i l l defined and i s a differential invariant of 

This follows from the fact that the total pth-curvature of 

i s calculated from the properties of the point-set f ( i f 1 ) so 

that i f ̂ SN" -* if i s a diffeomorphism, f <t> i s an immersion of if with 

the same total pth-curvature as and conversely. 
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Note 1, 

T Q = 2 c
n+jj_i» hence every immersion i s 0-convex = 

Note 2. 

X] =t, hence 1-convex 6*tight, 

Note 3. 

In co-dimension 1, K = / |G| O Q = 2|G|« Hence, 

* P • ^ ^ i«i p »„ 

where G i s now the Gauss-Kroneker curvature and the standard volume i s 

2 c , For example, the sphere of radius 2 in an (n+1)-dimensional 

linear subspace of has volume 2 c and Gauss-Kroneker curvature V>% 

so that i = / u = 2 Ci Hence inf x - 2 c - . 

p n n p n 

Note 

Theorems about x can be put in the new notation e 

Theorem 1 becomes.' 
T i > T

0» equality being attained when fCM11) i s a convex 

hypersphere i n some (n+l)-dimensional linear subspace of 

Theorem 2 becomes: 
T i c y% T

0 i s chofrt'eomorphic to the standard n-sphere= 

We are now in a position to prove the analogues of these theorems 

for total p-th curvature, 
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§2, Main Theorems 

Theorem 3 

I f f ' . i f 1 •*• R° +^ i s a C 2 immersion of a closed, compact, connect­

ed, C 2 n-manifold, M", T P j , T q when p ^ 1. Equality occurs when f(M 0) 

i s a convex hypersphere in some (n+1)-dimensional subspace of I f 

also p > 1, the total curvature of the immersion i s equal to +1= 

Lemma 

I f f i s a square integrable function on with measure in and 

p i s a real number greater than 1, 

/ fP « /if u \ p 

— — ^ j, ( " j equality occuring i f and only i f f i s 

constant except for a set of measure zero. 

Proof 

I f g i s also square integrable we have, by Hfilders inequality 

(see Hardy, Littlewood and Polya 0 3 P»l40), 
1 1 

/ f g ion ^ (/ fP u n ) p (/ g q u>n)q for a l l q, 

equality occurring when f and g are proportional, except possibly on a 

set of measure zero. 

On putting g = 1 and q = p/(p-l) we find 

' f w n « ( / ^ u n ) ? ( / w n ) J ^ " 

Hence, 
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/ f p cu i ( / f w ) p / ( / w which gives the required n r n n 

inequality. Equality occurs when f i s proportional to 1 i.e. a constant« 

Proof of Theorem 3 

I f we put f = K in the above lemma we obtain 

equality occurring when K i s constant 

almost everywhereo However f i s C 2 and hence K i s continuous so that 

K = constant. By theorem 1 TI ^ T and so : >/ T . Then T = T implies 
* 1 ' O P ' O P O ^ 

TX = T q which implies K = 1 and we have the theorem. 

Note 1. 
We can now see why the definition T = / I G | P O M 1 A U . which 

p g 1 1 N-l n 
was suggested in §1, i s of no use. With a suitable* choice for the stand­

ard volume we can prove the theoremj i p ^ T q with equality i f and only 

i f G i s constant and fCj/ 1) l i e s i n an (n+1)-dimensional linear subspace 

of R™^. When N = 1 we can proceed to an investigation of convexity in 

a meaningful way. I t i s when N > 1 that difficulty occurs. 

Let g: . be an immersion such that N' < N and let 

i : R n + N ' •* R° +^ be an imbedding of rfl+N' as a linear subspace of R M t N. 

i o g : r ^ R n + N has the property that i f v i s any vector in R m N at a point 

of i Q g ( i f 1 ) normal to i Q g (M°) then G(v,m) = 0. This calculation i s most 

easily carried out using the geometric interpretation of G given in Chern 

and Lashof £X3» p.311. For example, i f g:S] -+ R2 <•* R3 and n and b are 

respectively the normal and binormal to g(S*) in R3, then G(n,p) = k and 

G(b,p) = 0 for a l l p e S 1. I t follows that i f fSM" •* R n + N i s the immers­
ion in the above theorem, G = 0. We have 
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' l Q l °N-1 A w n » 2 Cn+N-1 
B f 

and we conclude that such an f does not exist. Consequently, this defin­

ition of T P gives us a theory of convexity i n codimension 1 (which happens 

to be the same as we have already) and no useful theory otherwise* 

Note 2, 

Hfilders inequality also, gives information about when p < 1; 

(the inequality i s reversed) but we shall see i n chapter I I I that i n ­

equalities cannot give the strongest results for such values of p. 

Theorem 4 

I f f i s an immersion of the type specified i n theorem 3 and 
Tp K ( % ) P T q for p ^ 1, then i f 1 i s vhbnTeomorphic to a sphere = 

Proof 

By the lemma of theorem 3 we have 

( 3 ) P > J £ 3^ hence T I < % T and the 
To ' l \ J ° 

result follows from theorem 2. 

We shall also need the following theorem later. 

Theorem ^ 
dx 

X p i s a convex function, that i s exists and i s an i n ­

creasing function of"p. 

Broof 

i s closed and compact and K i s a bounded continuous function 

of M" because M" i s CV 
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d - d r vP 
-r- x = -5— /_ KT u dP P dp n 

When K < l j K^ i s a decreasing function of p and logg K < 0, hence 

RP log g K i s an increasing function of p. 

When K ̂  1; K 1 3 i s an increasing function of p and logg K ̂  0, hence 

RP logg K i s an increasing function of p. 

^ Tp i s therefore an increasing function of p and the proof i s 

complete. 

"Cjarollajgy 

1 < p < q => inf T ^ inf T ^ p q 

Proof 

l N < p . < q - > T
D ( f ) < T (f) for a l l f - . l f 1 E P + N 
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53. Other Total Curvatures 

I t i s possible to define total curvature for immersions into an 

arbitrary riemannian manifold. (Willmore and Saleemi l ^ l ^ ) * ^ h e n t h ^ s 

manifold i s complete, simply connected with non-positive sectional curv­

ature, many of the theorems on total curvature in euclidean space are 

s t i l l true. (Willmore and Saleemi £3-3» Chen QQ)» Consequently i t 

i s possible to define total p-th curvature and prconvexity in this more 

general context and prove a l l the theorems of §2. 

Another generalisation of total curvature i s "total mean curvature". 

The f i r s t result i s due to Willmore ^2^|: 

/ H 2 w2 >, 4ir 
M2 

where H i s the mean curvature of M2. Equality holds i f and only i f M2 

i s a round sphere. 

I f we put a = "sr" f |H|p and consider only those immersions whose 
. P M2 

area i s 4ir we may prove, by the same method used i n Theorem 3; 

/ |H|P >j 4ir for a l l p >2, Equality holding when M2 i s a 
M2 

round sphere of unit.radius. 

Chen has shown that not only i s Willmore's theorem true for manifolds 

of higher dimension, but there are theorems of this type for a l l the 

principal curvatures (Chen £0)' These theorems also generalise-by our 

method. 

We make a note on the problem of minimising the integral 
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/ (K+X)2 u>2 where X i s a constant. 
M2 

/ (K+X)2 u>2 = / K 2 u 2 + 2X / K w2 + X2 / w2 

M2 M2 M2 M2 

/ K w2 = 2n X(M 2) by the Gauss-Bonnet theorem and / u 2 = 4ir. Hence 
M2 M2 

/ (K+x) 2 u)2 and / K 2 u 2 differ by a constant and we conclude that: the 
M2 M2 

infimum of the integrals / (K+X)2 u>2 i s attained, for a l l values of x ? 

M2 

by the same immersion of M2, 
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CHAPTER I I I 

Ê cep t ion^L_ Case s 

S1, Introduction 

So far we have considered T only for values of p greater than one 
and have sought only lower bounds, not upper boundst We now justify our 
neglect in considering the case of p less than one and in finding suprema, 
by describing what happens in these cases-

To obtain results we shall give immersions only for surfaces in R3. 
However, exactly analogous results hold for arbitrary submanifolds in 
R"+N with very slight modif-i-eation. (An indication of how this is done 
is given at the end of the f i r s t lemma). I t has already been noted, in 
chapter I , that sup TJ = « and this result extends to the case p > 0 with 
suitable adjustment to keep the volume of the immersion fixed. 
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§2. Excejpitioned values of the total p-th curvature 

Lemma 1 
sup T = » when p ̂  0 

Proof 
Let an immersion of any surface in R3 be given for which there 

is a planar region, and consider a square, with sides of length R, in 
this region. Let the R x R square be divided up as a k x k "chess board". 

R R 

That is k 2 squares, each ^ x ^ . 

Picture for. _k_ _=_ 3. 

N 

\ 

k3 
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square remove a circular disc of diameter In each and re 
i i I! place i t with a "dome" of the type described in §3. of chapter I . 

Picture for k__=_ 3 

k 

Let the area of a disc of radius r be Dr2 (D is used instead of * 
for ease of generalisation to other dimensions) and the area of a dome 
on this disc be Vr2« Then the total area of the surface contained within 
the boundary of the R x R square is 

R 2 _ k 2 + k 2 V ^ ) Z = R 2 C1-0^) 

The total area of the surface is independent of n when n ̂  1. De­
noting the surface which is the original surface with the above modific­
ation by we see that i f is linearly expanded to give i t a standard 
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volume, the same expansion w i l l give a l l the the standard volume. 
Now, calculation shows that the curvature at each point of a dome 

is of the order k 2, hence the total p-th curvature of each dome is of 
order k^*5""^ and the total curvature of a l l the domes is k^. When 
p > 0, k̂ P can be made as large as we please by letting k tend to i n ­
f i n i t y . As a l l the are homeomorphic we obtain sup = « for a l l 
surfaces, as required. 

To extend this result to manifolds of dimension n in we f i r s t 
immerse m such that some region lies in a linear R° i n R"+N. Domes are 
then constructed on this region i n codimension 1 by rotating the generat­
ing curve about i t s axis in A consideration of the curvature in 
i t s geometric interpretation given inChern and Lashof O-D a^ a w s t h a t 

the curvature of a dome, constructed as above, has the same order of 
magnitude in a l l codimensions. Hence an increase in the number of domes 
gives an increase in the total curvature just as for the case n = 2, 
N = 1 given in Lerana 1. 

Lemma 2 
inf T =0 when p < 0 and 0 < p < 1. P 

Proof 
Let f:M2 •* R3 be an immersion such that fCM2) has a planar 

region as in lemma 1. Define an immersion f :M2 -*• R3 by modifying nf as 
follows. 

afCM2) w i l l have a planar region and in this region let a disc of 
radius ra be removed and replaced by a "dome" of the type used i n lemma 
1 into which has been inserted a cylinder of length RE 
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Picture 

K 

CI 

1M K 

R is chosen so that the immersed surface has the standard area and 
the final surface defines fa„ Clearly fa(M2.) is a smooth, immersion such 
that f"a(M2) is homeomorphic to M2 for a l l values of a such that 
0 < a < a for some a . 

o o 
Now the curvature of the cylinder is zero and so 

T p ( f a ) = tp(af) + p-th total curvature of a "dome"B 

But, 

T p(af) = a ( l ^ n
 T p ( f ) when p i 0 
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and the p-th total curvature of a dome is of order a 2' 1 p \ as in lemma 
1. When p < 0, 1-p > 0 and so lim T n ( f n ) = 0. The reasoning breaks down 
at p = 1 for then we have a-0 P a 

T (f ) - T (af) + volume of cylinder p o p 

and the volume of the cylinder tends to the standard volume as o tends 
to zero.. Hence inf x p = 0 over the desired range. 

Lemma j? 
Sup T =oo when p < 0 P 

.Proof 
Let q be a real number such that 0 < q < 1. Then i f • < 0, 

T >, a where a is given by the following diagram and using the convexity P 
of t p as a function of p. (Chapter I I , Theorem 5) 
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By considering the triangle ABC we see that 
a-T 
T -T q o q 

Hence, 

o = T q + (x 0-x q)(q-p)/q , and 

Tp > Tq + ^o" Tq ) ( q" p ) / ( J 

T 
By lemma 2 i t is possible to choose an immersion such that x q ̂  f 0 r 
a l l q in the given range. Hence, 

i p > (TQ-Tq)(q-p)/q * TQ(q-p)/2q 

Now, lim ( j = » and so sup T = °° for p < 0 as required. 
q-0 V. q / p 

We collect the results of the previous three lemmas into: 

Theorem 6 
For any closed compact C2 manifold immersed in euclidean space, 

sup x = » for p t 0 P 
inf T - 0 for p < 1 and p i 0 P 
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§ 3. Non-exiajenĉ e of inrigrsioris 

We have the following corollaries to theorem 6. 

Corollary, 1 

There are no p-convex immersions for p < 1 and p ̂  0, 

Proof 
Suppose is a p-convex immersion where p < 1 and 

p i 0. By theorem b, 

! Kp u) = 0 and so K = 0 on i f 1 

M" n 

But by Theorem 2 of Chapter 1 we have 

K u n 3, 2 hence there does not exist such an f „ 

Cbrollaiy 2 
There are no immersions for which sup T is attained when p ̂  0. 

P 
Proof 

By Theorem 1 sup x p = « when p t 0. However f is C2 and I ^ 1 is 
compact; hence K is bounded on a compact manifold and cannot attain values 
for which x = °°c P 
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CHAPTER I V 

Curves and Surfaces 

In this chapter we completely classify p-convex immersions of curves 
and spheres and strengthen the results of Chapter I I in the case when M0 

is a surface. 
By surface we mean a closed, compact, C2, two-dimensional manifold. 

§1. Curves in R^1 

Let f rS1 -* be a C2 immersion, then by the theorem of Borsuk 

~ /f(gi) M ds ̂  2 where k is the curvature of fCS1) given by 
the Serret-Prenet formulae as usual. 

I f we consider immersions with length 2n and define 

T
P = 7 ' k l P d s 

we have, by the methods of theorem 3» 

Corollary. 1 
I f f rS1 -*• R 1 + N is a C2 immersion with length 2TT 

\ "^f(S1) ' k l P d s ^ 2* e { l u a l ^ - t y being attained when ffS 1) i s 

a plane unit circle for p > 1, and a plane convex circle for p = 1. 

Proof 
One only needs to check that i f the total curvature of a plane 

curve is constant, then so is the "Serret-Frenet" curvature. This 
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follows easily from Chem and Lashof's geometric interpretation of the 
Lipschitz-Kiiling curvature in £l^. 

Analogues of the immersions given in the previous chapter show that 

inf T P = 0 for p < 1 and p i 1 

and sup T = » for p i 0 as we should expect e 

We can now give the complete set of p-convex immersions of S1 in 
with length 2ir. 

inf T P 

-

p-convex iirmersion 

p < 0 0 None 
p = 0 2TT Any immersion 

0 < p < 1 0 None 
p = 1 2n Plane convex circle 
p 1 2ir Plane unit circle 
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§2. Surfaces in R3 

Let f :M2 -*• R3 be a C2 immersion.Vfe have, from Theorem 2, 

~ / |K| dA > b(M2,Z2) = 4 - xCM2) £ 2 where K is now 
M2 

the classical Gauss curvature. 
I f we define 

x = i - / |K|P dA P 2TT M Z 1 

we have for immersions with area 4TT, 

To = 2 

T l - T »> 2 

By the lemma of theorem 3 we have 

* ' f e y - and hence 

Corollary 2 
I f f :M2 •*• R3 is a C2 immersion with area 4ir 

S |K|P dA > ^ f f l ) P 5-2 for p * 1, the equality 

•5- / |K|P dA > 2 being attained When M2 is homeomorphic to S2. Also, 
^ M2 

S2 is embedded as a unit sphere (respectively convex sphere) for p > 1 
(respectively p = 1). 
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Proof 
One only needs to check that a sphere with constant curvature 

in R3 and with area bit is the unit sphere. That this is so follows from 
the theorem of Liebmann that a closed orientable star-shaped surface with 
constant Gauss curvature is a sphere. (Guggenheimer P»252). 

W can now give the complete set of p-convex immersions of S2 in R3 

with area 4ir. 

inf 
P 

p-convex immersion 

p < 0 0 None 
p - 0 Any immersion 

0 < p < 1 0 None 
p = 1 4* Convex sphere in some R3 C R 
p > 1 QjVJ 

Unit sphere in some R3 C R 

When M2 is the torus, xCM2) =0 and corollary 2 gives 
•sp / |K|P dA > 2 P + 1 . The inequality is strict because K can never 

Torus 
be constant on a torus. 

When p = 2 we have 

h ' K 2 > 8 

Torus 
This estimate can be improved by considering special cases of immersions. 
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Lemma 1 

i - / K2 dA > ir 2 ( T I 2 = 9.869 ... > 8) 
d J l Torus 

Proof 
Consider the torus of revolution in R3 given by coordinates 

S1 x s 1 •+ R3 

(6,*) •* ((R+r Cos*) Sine, (R+r Cos*) Cose, r Sin?) 

(This torus is embedded when r < R »>r < - ), 
/a 

The Gauss curvature of this torus is 

K - Cosd> 
r(R+r Cos*) 

and an element of area is 

dA = r(R+r Cos*) d* de 

Hence 

/ dA = f2v /?" r(R+r Cos*) d* de = 4ff2r R 
0 0 

so that i f the torus has area 4n. R = -r- . 
* irr 

Denote by T the torus of revolution with R - ~- , then 

t v2 H« - r2v r 2 i r Cos2* d* de 
/ K 2 dA - / Q / r ( R + ; 3 ^ ) 
r _ 2 f2ir ' d* _ 4w 

~ Jo 1+irr* Cos* ~ r* 
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This is well known to be equal to 

/ 2TT \ _ 4ir 

and can be shown to take i t s minimum value of 2ir3 at r = 0. Hence, 

/ K2 dA i . 2ir3 

That i s , 

T r 

^- / K2 dA ̂  I T 2 

Torus of 
revolution 

Ais©-,-there is no value of r for which equality is attained and we 
obtained the required inequality. 

Corollary 
There is no 2-convex torus of revolution. 
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§3. 2-Convex Immersions in R3 

Let a closed orientable C2 surface M2 in R3 with area 4ir be given 
by the position vector r and denote by M2 the surface whose position 
vector is r = r - aN where a e R and N is one of the two unit normal a 
vector fields on M2. The area 2-form and Gauss curvature on M2 are then 

a 

given by 

dAQ = (1+2 H +K a 2) dA 

K = K/(l+2 H +K a 2) 
8. cL 

where.dA is the area 2-form on M2 and H and K are the mean curvature and 
Gauss curvature of M2 (see Willmore QVJ P*H7)» 

I f the surface M is given by the position vector cr , the area 
ol) C cL 

form and the mean and Gauss curvatures are given by 

dA „ = c 2 dA a,c a 
K „ * K /c2 

a,c a 
H = H /c a,c a 

The total 2nd-curvature of M„ „ is then 
a,c 

Ka.c) = / K 2
a > c dA a > c = ^ /Ka^dA 

1 . K2dA 
" c7 J " 1+2 H +K * a a 

Now, 1 + 2H + K 2 = (1+a kj)(l+a k 2) where k\ and k 2 are the principal 
£L St 

curvatures of M2, hence 1 + 2 H + K 2 = 0 i f and only i f kj or k 2 = - ™ 
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As M2 is C2, kj and k2 w i l l be continuous bounded functions on M2 and so 
1 + 2 H + K 2 i 0 where a is in some open interval containing 0. We 
shall be interested i n the derivative of I(a,c) when a = 0 and hence for 
our purposes there w i l l be no singularities in the integrals. 

We choose c such that 

/ dA a j C = / dA 

i=e= c 2 / (1+2 H +K 2 ) dA = / dA = lir 
G L C L 

men I(a.c) = / (1+2 H a +K &
2) dA / ( l + f ^ 2) 

a a 

Hence, 

dl 
da • i ' K a > " ' dnrfr* a a 

, (2H+2 K ) K2 dA 
" h ' ( 1 + 2 V Ka 2 ) <* ' ( l + 2 L V ) ' 

OP CL 

dl 
da a=0 

and we obtain 

dl 
da a=0 

2ir /HdA/K 2dA-2/HK 2dA 

= 0 <**f H dA / K2 dA = I T T / H K2 dA 

On taking the second derivative of I we find 

= ~- / K dA / K2 dA - - / H dA / H K2 dA d 2 I 
da 7 

a=0 2ir 

(1) 

- - / H dA / H K2 dA - / 2K2 dA 
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Thus, i f I has a local minimum at a = 0 

\- / K dA / K2 dA - - / H dA / H K2 dA - 2 / K3 dA * 0 
e l l 11 

(2) 

I f M2 i s the torus 

^ f K dA = 0 by the Gauss-Bonnet theorem so that (2) becomes 

/HdA/HK 2dA + ir/K 3dA,<0 (2') 

But by (1) 

/ H dA / H K2 dA = ^ (/ H dA) 2 / K2 dA 

and hence 

^ (/ H dA) 2 / K2 dA + ir / K 3 ^ 0 (3) 

Any 2 convex torus i n R3 must satisfy equation (3). 

Lemma 2 

A torus with one principal curvature constant cannot be 2-

convex. 

Proof 

As before we denote the principal curvatures by kj and k 2 and 
l e t kj be constant 

2H = kj + k 2 and K = k 2 k 2 hence H = + and 
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/ H dA = / dA because / K dA = 0 by the Gauss-Bonnet theorem 
and / H dA = 2TT k l 0 

Similarly 

/ H K2 dA = 1 ^ / K2 dA + / K3 dA 

and / H dA / K2 dA = 2TT ki / K2 dA 

Hence (1) becomes 

2ir k x / K2 dA = 2ir k : / K2 dA + ^ / K3 dA 

and. / K3 dA =. 0 

Hence (3) becomes 

(/ H dA) 2 / K2 dA ̂  0 

This i s only possible i f either H = 0 or K = 0, both of which i s 
impossible. 

Because of this lemma and the corollary to lemma 1 we make the 
following conjecture. 

Conjecture 
i h f ^ f K2 dA =• I T 2 where the infinum i s taken over 

Torus 
a l l t o r i i n R3 with area 4ir. Also, there i s no immersion for which this 
infimum i a attained. 
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C H A P T E R V 
Volume Preserving Maps 

SI. Introduction 

We have been examining immersions for which f(M°) has 
the geometric property of p-convexity. In such a situation i t i s natural 
to consider the set of a l l transformations of R"+N which preserve this 
property. ( I t i s , i n fact, i n the s p i r i t of the "Erlanger Programm"). 
This set of transformations w i l l always form a group (because by trans­
formation we mean at least bijection) and we shall not only want to find 
what the transformations are but also specify the group structure. 

For example, "straightness" of lines i s preserved by homothetic 
transformations of R" , 2-convexity of spheres by isometries, and the 
property of being a conic by projective transformations. Moreover, i n 
each case the transformation group given i s the largest group which pre­
serves the given property for a l l the geometric objects possessing the 
property, N. H. Kuiper (in f^Q,p.l3) has shown that the projective 
group of R3 i s a subgroup of the group which preserves 1-convexity of 
surfaces. However, this i s clearly not true for p-convexity when p > 1 
and the theorem has no analogue when the ambient space i s anything but 
R3. 

The f i r s t criterion for a transformation which preserves p-convexifcy 
i s that i t preserves volume" p-convexity i s defined for a set of 
immersions a l l having the same volume. Furthermore, the volume of a l l 
immersed sub-manifolds must be preserved, otherwise the transformations 
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obtained w i l l only preserve a particular p-convex immersion» 
Our f i r s t objective i s then to calculate the group of transformations 

of a riemannian manifold which preserve the volume of every n-dimensional 
sub-manifold. As we shall want to calculate the t o t a l pth curvature of 
the submanifolds we shall assume that the transformations are d i f f e r -
entiable. The required transformation group w i l l be shown to be the 
isometry group of the manifold and because an isometry preserves a l l the 
riemannian structure, the isometry group w i l l be the group which pre­
serves p-convexity. 
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§2. Locally k-Volume Preserving Maps 

We have seen i n §1. of Chapter I that on an n-dimensional manifold 
with metric g, there i s a locally defined n-form g*2 cb̂ A ... Adx" 

where g 2 i s the square root of the determinant of g as a symmetric 
matrix with respect to the coordinate system (x1,«..,xn). I f i s a 
k-dimensional submanifold of there i s a naturally induced metric on 
v given by i*g where i : i s the natural inclusion. Hence g gives 
rise to a k form on V̂ , namely ( i * g ) ^ 2 dyxA ... Adyk, where ( y 1 , . . . ^ 1 1 ) 
i s a coordinate system on i n which v i s given by y 1 = constant for 
i = k+l,...,n. However, we should l i k e a k-form on which measures the 
volume of every k-dimensional submanifold. This w i l l be the form u 
definition 1. I t w i l l be defined locally and, for the most part, 
used locally; but when a global extension i s needed an integration i s 
always involved and we shall assume the procedure i n §1. of Chapter I , 

Let M° be a C1 riemannian n-manif old with positive definite metric 
tensor g and l e t ^ be a k-dimensional subspace of the tangent space of 

at m. Denote bye , the restriction of g to r and chose a coordin-
yic m 

ate system ( x 1 , . . . , ^ ) m on a neighbourhood of m such that i s spanned 

. m 

H„ 3 3 

D y 3xT «•••• 3 xk. " 

Definition 1 
m 

/ d e t g . \ dxU ... Adxk 

where det i s the operation of taking the determinant of g| . a s a k x k 
i nc x 1 m matrix with respect to coordinates ( x 1 , . . . , x n ) . The form u v i s d i f f e r -

m 
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entiable as a map G. -*• R where G. i s the Grassmann bundle of k-
planes. Also, u 

m 
i s invariant under -a change of coordinates which 

I , n respect V^j that i s , i f we choose another coordinate system (y 1,...,y ) 
Trrr ,•••> — r , a straightforward 
3 y 3y k 

about m such that i s spanned by m 
calculation shows that 

^ dx*A ... Acb^ ( r k ) / det g . \ ' 2 dy!A ... Ady* 

(This calculation was carried out, mutatis mutandis, i n Chapter 1 
of part I ) . Hence u 

Definition 2 
m 

is a local k-form on rf1. 

A C1 map f r r f 1 - rf1 of a c'reimannian n-manifold, rf1, i s locallj 
k-volume preserving i f 

f*(u ) = u 
m 

where f * i s the usual "pull-back" of forms;ahcl l ^ k ^ h . 
The set of a l l locally k-volume preserving maps forms a group by 

considering i t as a subset of Di f f (rf^M 1 1). 
Note 1 

I f ( x 1 , . . . , ^ ) i s a coordinate system, chosen as above and 
• • locallij 

y = x o f , then i f f is^k-volume preserving 

" k " ̂  v* ' 
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and using f * - ~ r = , 
ay ax 

| m N " 

" U V 5*"7?) 
m * but 

i / a a 
I ay 

m N ay ) i f a f 1 a af 1 a \ 

a f 1 

*=> det = 1 
a r 

We see that an equivalent definition for locally k-volume preserving iss 
Jacobian of f equals 1 on every k dimensional subspace of the tangent 

space. 

Note 2 
I f V* i s a k-dimensional submanifold of m and f i s k-volume m 

preserving, then 

u 
m m m 

) 

by usual integration theory, (see, for example, Flanders Ch.V), 

m m 
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Hence the volume of and fCV^) i s the same and we can say that f 
m m 17 

preserves the volume of every k-dimensional submanifold of M° t The volume 
of may, of course, be i n f i n i t e . 

Note 3 
I f k = n i s a locally n-volume preserving map it w volume pre­

serving i n the usual sense. Such maps occur naturally, e=g. as motions 
of incompressible fluids or as the flows of Hamiltonian vector fields 
i n "phase space" ( L i o u v i l l e ^ Theorem). The set of a l l such maps forms 
a Lie group and can be given a f a i t h f u l unitary representation into 

,u), the set of complex valued functions on I ^ 1 with w-summable 
square (-Arnold and Avez 0-13 P»23 with a b i t more work _to show that _the 
given map i s a f a i t h f u l representation)„ 

Note 4 
When k = 1, V_ i s a one dimensional distribution on- • we * m 

may choose coordinates (x 1,...,* 0) such that V i s spanned by -r^r i n a 
I I I dX 

neighbourhood of m. 

m | m 
4 » 

and with the previous definition of ( y 1 , ...,3^) as y 1 = x 1 of 

/ ( W » I F ) = g L fax 1 "' 3X1") V v ' v f ( m ) V. / 
g _ V 

and hence a locally 1-volume preserving map preserves lengths. I t 
follows (by flyers and Steenrod that f i s an isometry. Clearly 
then, locally 1-volume preserving 4$ isometry. 
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Another property of k-volume preserving maps i s given i n the 
following 

Lemma 
A k-volume preserving map i s a local diffeamorphisnu 

Proof 
Let £ ^ . . . , 5 ^ be k linearly independent vectors at m e and 

l e t be spanned by £ C h o o s e a coordinate system ( x 1 , . . . ^ ) in it 
about m such that g i s the identity n * n matrix with respect to these 
coordinates and i s spanned by ~ r ,..., -\: . 

m " 3xA * " 
Let 5. = £.J" - ^ - r . Then 

1 x. - a i ? ] -

. ( 5 i , . . . , 5 k ) - / d e t g| . y 
I x 1 \ m J 

*z (dxxA ... Adx ) U i , •>...£,,) 

= (dxxA ... Adxk) ( e 1 - 2 T 5 1 -4r J 
Vs. 1 ax 1 k a x 1 / 

= det e 1 

j 

I t follows that are linearly independent i f and only i f 

I f f i s k-volume preserving 
f * to 

m 
(5i » • • • 

= u 
^ffcn) 
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Hence f # d,,..,^ £, are linearly independent i f and only i f 5i,...,5„ 

are linearly independent. 
I f f + i s not of rank n at m, there exists a tangent vector at m, V] 

say, such that f + \>i = 0. I f ̂ 2,..,,^ are then any other tangent 
vectors at m such that are linearly independent, 
f * are not linearly independent. This contradicts the fact 
that f i s k-volume preserving and we deduce that f „, i s of rank n at a l l 
points m e Hence f i s a local diffeomorphism (see for example Plett 

DG>-
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13. Globally k-Volume Preserving Maps 

We have defined volume preserving (definition 2) i n terms of local 
forms and this i s the most useful definition of the concept of volume 
preserving when calculations are to be made. However, another formulat­
ion, that given i n the introduction, requires that the t o t a l volume of 
each submanifold be preserved. This appears below as definition 2'. We 
have seen that definition 2 implies definition 2' but i t i s the converse 
which w i l l be of most use, and this we prove. 

Definition 2' 
A C1 map f sM11 + rf1 of a C1 riemannian n-manifold i s 

globally k-volume preserving i f for a l l C1 k-dimensional submanifolds 
V* of M°, 

We have denoted the tangent space of by "V*" but there i s no con­
fusion i n doing t h i s . 

Both sides of the equality may of course be i n f i n i t e . 

Theorem 1 
Definitions 2.and 2* are equivalent. 

Proof 
By note 3 of §1. locally k-volume preserving implies globally 

k-volume preserving. 
As for the converse, l e t Dl be a closed k-d^mensional C1 disc i n M71 

with C1 boundary, and l e t D2 D3 be two other such discs such that 
aDx = 3D2 = 3D3 and-the three surfaces D. U D.; i , j = 1,2,3; i i j are 
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C1 smoothable. For example, i f we consider Dx U D2, which i s homeomorph-
ic to Sk, there exists a C1 immersed submanifold L = OV1!] x S1 s u c n 

that Dj U LU D2 i s a C1 sphere. 

Picture: Cross-section 

TP,***. ^ 

I f f i s globally k-volume preserving 

Volume of (Dx U L U D2) = Volume of (f(Di U L U D 2)) 
- Volume of (f(Di) U f ( l ) U f( D 2 ) ) 

Hence, 

Volume of (Dx U D2) + Volume of L 
= Volume of f(Di U D2) + Volume of f(L) 

Now, the volume of L can be made a r b i t r a r i l y small and so the volume of 
Dx U D2 i s preserved although i t may not be a C1 manifold. 
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Let the volume of be and l e t the volume of f(D^) be b^, then, 

a i + a 2 = ^ i + ^2 

&2 + &3 = &2 + b3 

a 3 + aj = b 3 + bi 

Hence a^ = b^; i = 1,2,3 j - ' the volume of Dj i s preserved and Dx 

*IS' arbitrary. 
Let (x 1,...jx") be any coordinate system about m e i f 1 and l e t 

De = (p E rf1 : ̂  ( x ^ p ) ) * ^ £ j x k + 1 = ... = x" = 0} 

There certainly exists eQ > 0 such that Dg i s homeomorphic to a 
closed C1 k-dimensional disc for a l l e £ e . Then we have 

N o 
/ (0 

D '« f(D c) e 
f(D e) 

Hence, 

/( - f * ( I ) f(D ) } = 0 f°r a l l e < eQ e 
(1) 

I f u i f * u / f * CO f(D e) on some £,̂ 2 j at some m E M°, then u 
neighbourhood of m because u and f are both C1 and the integral i n (1) 
would be non-zero. We conclude that u = f*u and f i s locally k-volume 
preserving. 

Prom now on k-volume preserving w i l l mean either locally of globally 
k-volume preserving according to the context. 
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We come now to the main theorem on k-volume preserving maps, 

§4. Characterisation of k-volume Preserving Maps. 

By note 5 of the previous section, the group of transformations 
which preserves 1-volume i s a l i e group whose continuous part ( i . e . ex­
cept for "isolated" transformations) i s of dimension J^n(n+1). (See 
Kobayashi and Nomizu H l H ) . On the other hand, a consideration of 
note 3^ shows that the group of transformations which preserve n-volume 
i s i n f i n i t e dimensional. We might expect, then, that the transformation 
groups which preserve k-volume have dimensions which increase as k i n ­
creases. This i s not the case-. 

Theorem 2 
On a C2 manifold with positive definite riemannian metric, a 

k-volume preserving map i s an isometry for ]0<k.<h. 

Proof 
Let f i l f 1 •*• M*1 be a k-volume preserving map of a C2 riemannian 

n-manifold with metric g^, m e M*1. and f * g f ̂  are both positive 
definite metrics on M*1 and positive definite symmetric matrices with 
respect to a coordinate system. Hence, there exists a coordinate system 
( x 1 , . . . ^ ) on an open neighbourhood U of p such that gp i s the identity 
matrix and f * g j . ^ i s diagonal. This i s the classical theorem of 
WeierstrasS' on symmetric forms (see, for example, Van der Waerden £l^]» 
p.27). 
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Put 

and f * «f(m) ( ^ 1 • ̂ j) = a i 6 i j ( n o summation) 

Let V̂ j be the subspace of the tangent space of rf1 at m which i s 
spanned by (-r^r ,..., . Then, as f i s k-volume preserving 

V 3x k/P 

(1) 

Let V be an open neighbourhood of m such that f: i s a local diffeo-
morphism, and choose coordinates y 1 = x 1

 Q f 1 on the open neighbourhood 
f ( U n V) of f(m). 

(1) becomes 

y 1 K(m)J V 
Ady*" f f„ g£r ,...,f„ 

Now, 

hence, 

3 ^ ) 

f„, A = -T- for a l l i , 
3x 3y 

det g 
i 
y 

det g 
m 
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By the choice of ( x 1 , . . . ^ 1 1 ) , det g| . = 1 and 
i hr 
x m 

f* 

= a. 6.. 

and we obtain 

det g 
y 

= i l i a i = 1 

We chose to be the subspace spanned by the f i r s t k of the set of 
vectors, / -At -~A but we could equally well have chosen any set 

V, 3 x ax 1 1; 
of k. Hence 

ir a^ = 1 
ieK 

where K i s a set containing k of the integers, l,..,.,n. To complete the 
proof of the theorem we need the following. 

Lemma 
I f (a l a...,a n) i s an n-tuple of real numbers such that the 

product of any k i s 1, when k < n, then 

k odd a^a^ = 1 for a l l i 

and k even =^a^ = 1 for a l l i;and'ttie a^'s are a l l positive 
or a l l negative). 
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Proof of Lenma 

The lemma i s t r i v i a l for k = 1. 

Let k ̂  2 and choose any k + 1 of the a^, say the f i r s t k + 1. 

We define 

P = ̂  a^ and 

k+1 
i l l 
i A 

P A = i i 1 a i for 1 ̂  X ,< k + 1 

Then, 

P = a x P^ and P x = 1 for a l l X by hypothesis. 

Hence = P for a l l X, and 

k + 1 J»l 

and, 

P*. 

I f k i s odd, P = 1 and so a- = 1 for a l l i ; l ^ i ^ k + l 

I f k i s even, P = ±1 and so a^ = ±i for a l l i ; 1 ,< i ^ k + 1 

Finally we note that we chose the f i r s t k + 1 of the a^'s but could 

have chosen any set of k + 1. The result then follows. 

Conclusion of the Proof to Theorem 2 

«f(m) ( f* ~ T •
 f* ̂) = * 6 i j ( b y t h e 
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However, f*g i s positive definite because 

tfwC^-1^ =^)(f-(ui^)f-(ui^)) >° 
Hence f*gf ( m) = 6^ and f i s an isometry as required. 

Note 1 

By the previous "note 5", the above theorem for k = 1 i s the 

theorem of Payers and. SteenrodD]. 

Note 2 

On a manifold with non-positive-definite metric, the definit­

ion of volume preserving makes sense. I t i s therefore possible to ask 

i f theorem 2 remains true i f the "positive-definite" condition on the 

metric i s relaxed. The proof of theorem 2 given breaks down i n the non -

positive definite case at a crucial point and we do not have a counter­

example. 
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85» p-Convexity Preserving Transformations 

We have seen in the introduction that the most general transform­

ation which preserves total p-th curvature must be k-volume preserving. 

I t so happens that this necessary condition i s also sufficient. 

Theorem 

A C 2 map of a reimannian manifold i f 1 onto i t s e l f preserves p-

convexity i f and only i f i t i s an isometry. 

Proof 

When i f 1 i s euclidean n-space the group of isometries i s the 

group of euclidean rigid motions and the result i s clear. In the 

general case i t follows from the fact that isometry preserves a l l the 

riemannian structure (see Hicks), but we shall not go into the details 

because we should need, as a prerequisite, a f u l l account of the defin­

it i o n of total p-th curvature i n a general riemannian manifold. 

Note 

When i s n-dimensional euclidean space we can consider p-

convex maps for a l l fixed volumes because the p-convex immersions for 

different volumes differ only by a linear multiple or rigid motion of 

(see §2. of Chapter I I ) . Hence the group of transformations of 

which preserves p-convexity for a l l fixed volumes i s the group of homo-

thetic transformations. 
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P A R T I I 

Foliations and Connections 

SUMMARY 

The theory of foliations, initiated by C. Ehresmann and G, Reeb, i s 

studied mainly as a branch of topology or differential topology. However, 

the work of A„ G. Walker, R. Bott and others has shown that the methods 

of differential geometry are also effective i n the study of foliations. 

Our work i s very much in the s p i r i t of differential geometry and i s 

especially indebted to the work of A. G. Walker. 

All results are original unless otherwise stated but some of the 

material was developed with P. M. D. Purness (see Purness C O ^ o r 8 1 1 

alternative proof of the main theorem i n Chapter V). 

In Chapter I we give the definition of a foliation on a manifold M*1 

(following A. Haefliger) and describe i t s leaves, leaf topology and 

special maps. We introduce the germs and j e t s of special maps, using 

them, i n .Chapter I I , to construct covering spaces of The c l a s s i c a l 

Ehresmanngroup i s then obtained by " l i f t i n g " the fundamental group of a 

leaf into the covering space.constructed from germs. The same.procedure 

performed in the covering space.constructed from j e t s gives a group for 

each leaf which we a l l the "Jet group". Both groups are factor groups 

of the fundamental group of the leaf for which they are defined and the 

Jet group i s a factor group of the Ehresmann group. We then give a geo­

metric method for calculating these groups. 

The examples i n Chapter I I I , as well as ill u s t r a t i n g the concepts 
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introduced in Chapters I and I I , are used to make observations on the 
relation between the Ehresmann and Jet groups of leaves i n topological^ 
equivalent foliations. Also, as an application of differential tech­
niques, we consider C* foliations i n codimension 1 on a riemannian mani­
fold and derive a differential equation with the property that a unit 
vector f i e l d w i l l satisfy the equation i f and only i f i t i s perpendicular 
to a foliation. C 2 foliations i n codimension 1 are thus classified by 
vector fields satisfying a differential equation and we deduce a decom­
position theorem for a manifold with such a foliation. 

Chapter IV describes the D-connections, and Chapter V the holonomy 

groups, introduced by A, G, Walker. In analogy..with the c l a s s i c a l holo­

nomy theory we define these groups for piecewise C^ curves on a leaf with 

basepoint and show that, up to isomorphism, the groups are the same for 

a l l values of k and for a l l base points. After showing the existence of 

a special coordinate chart, whose use greatly simplifies the analysis, 

we show that Walker's holonomy group and the Jet group of a leaf are iso­

morphic. 

Some properties of the holonomy group are given in Chapter VI. I t 

i s shown that the holonomy group cannot be a l i e group (this time con­

trasting with the c l a s s i c a l holonomy theory) and that when the foliation 

has codimension 1 i t i s a factor group of the f i r s t homology group of the 

leaf, with integer coefficients, and has torsion subgroup of order 0 or 

2. Finally, we give a l l the possible isomorphism classes of holonomy 

groups of compact leaves in foliations of two- and three-manifolds. 

*Our convoiW is "H\fi)" lit grouts L A * . "̂*»e*\s'ion ° • 
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C H A P T E R I 

Definitions 

§1, Foliations 

The definition of a foliated structure (or foliation) to be given 

here w i l l follow A. Haefliger . 

A foliated structure i s put on a manifold in much the same was as 

a differentiable or Piecewise linear structure i s put on a topological 

space, i.e. we begin with a standard example of a foliation which w i l l 

be mapped on to the manifold, locally, in several "patches"; Maps of 

the standard example onto i t s e l f w i l l then be used to "glue" these patches 

together. We therefore begin with. 

The Standard Foliation of R n i n codimension p. 

be the rectangular cartesian coordinate system 

of R0* Denote by early greek letters (e.g. O,B,Y) any suffix taking 

values from 1 to n-p and by late greek letters (e.g* any suffix 

taking values from n-p+1 to n. Let roman letters denote suffixes taking 

values from 1 to n. The leaves of the standard foliation are the (n-p)-

dimensional planes defined by x* = constant and the leaf through an 

arbitrary point ( x Q
1 , . n . , x Q

n ) of R11 w i l l be { ( x 1 , o . . ? x n ~ p , x " ~ p + 1 , . . , x o
n ) : 

x a c R). 

N.B. We are here following A. G. Walker's convention of defining the 

leaves by x* = constant. A Haefligerfe convention i s x™ = constant. 

Leaf-preserving Local Maps 

A local C r homeomorphism, h, of R11 i s a homeomorphism between 
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two open sets of such that both h and h" 1 are C : r = 0,1,2.. =,..<» or 

u. By C° we mean continuous, C r means differentiable r times and C10 mea 

analytic. A leaf perserving local (f homeomorphism hiff -*• R0,, where R*1 

has the standard foliation in codimension p, i s a local C r homeomorphisn 

such that i f (x a,x*) i s any point of R° about which h i s defined, 

ha = ha(x\xv) 

hX = h V ) 

i.e. h maps leaves to leaves, h" 1 w i l l also have this represent­

ation i n coordinates. 

Foliation 

A foliation, 3" of class r and codimension p on a n-mani-

fold if (r ,< k) i s defined by a maximal collection of charts 

called "leaf charts of 3"", where i i s in some 

indexing set, I say. 

Each h^ i s a C r homeomorphism of an open set u^ of R° into i f 1 . The h^ 

must satisfy 

(1) {h^(u^)>^ e I i s an open cover for M°. 

(2) Any map of the form h."*1 h. i s a leaf preserving loral C r 

J O 1 U j j 
homeomorphism of R 0 where i , j e I and u.. •- h.~ 1(h. (u.) n h.(u.)), 

l j i l i 0 J 
i s called topological, differentiable of class r or analytic 

according to whether r = 0, 0 ^ r ^ « o r r = u respectively.. 
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By a "maximal collection of charts" we mean the following! 

I f u i s an open subset of R n and h:u •* M " i s a C r local homeo-

morphism such that h r 1
 Q h n «=i(hi(u )^h(u)) * 8 a l o c a l l e a f preserving 

map for a l l i e I , then h:u •* i f 1 i s i n the collection of charts j£K 

The Leaf Topology 

We now describe a new topology on vf1 which i s finer than i t s 

usual topology. In this topology the leaves of £3" are connected compon­

ents and consequently n^M^m) = ni{Ltm) where L i s the leaf through 

merf 1, 

Let M° be a n-manifold with C r foliation "3". On R11 = R0"13 x RP 

put the topology T Q which i s the product of the usual topology on R n~ p 

and the discrete topology on RP, Relative to T Q the leaves of the stand­

ard foliation on R" are connected components. 

A local leaf preserving homeomorphism h of R11, with the usual topol­

ogy, i s also a local leaf preserving homeomorphism of R11 with the topol­

ogy T Q because h a(x S,x v) i s continuous in x^ with the usual topology and 

hence for T Q alsoflnJh a(x S,x J 1) i s automatically continuous in x w because 

the topology i n Rp i s discrete. The charts of !3" w i l l therefore induce 

a topology on M° which w i l l also be denoted by T Q c I t i s easily checked 

that T Q i s finer than the usual topology (using the definition of "finer" 

in Kelly Q ~ J p.38). 

Special Maps 

Let IT be the projection R^P x RP - RP given by projection on 

to the second factor and l e t h^:u^ •*• R 0 be the charts of a foliation ;
 r^-J 

of a manifold A continuous map f of an open set V of K into k i s 
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called a special map of at i f for a l l m e V there exists a chart 

h. :u. -»-Mn such that f = ir h." 1 on h. (u.) H V. The terminology 
1 1 0 1 1 1 . 

"special map" i s not standard because there seems to be no universally 

accepted translation of A. Haefliger's "applications distinguees". 

(A. Haefliger p.369).' 

I f we denote .the special maps by f^:V\ *• where i i s indexed by 

some set, I ' say, then we have immediately 

(1) {V.}. T, i s an open cover for ̂  because IT h.""1 ;f. (u.) iP i s 

a special map and so ( f . ( u - ) } . x i s an open cover for i f 1 and f.(u.) = V. 
1 1 1 E 1 1 1 J 

for some j e I * by definition. 

(2) I f f.:V. * flP, f.;V. * R p and m e V. r\ V. then there exists a 
i i J J i J 

local (f homeomorphism of R^hySadithat f. - h f.. For i f V CV. D V, 
i s an open set for which f. - TT h."1 and f. = TT h.""1 then e l o Tc j o I 

( h k " 1 ) a = ( v 1 ) a ( ( V 1 ) 3 » ( V 1 ) W ) 

( h k ~ 1 ) X = ( h k " 1 ) X ( ( h ^ 1 ) 1 * ) using h - 1 as a coordinate chart on 

V. (ir Q h j - 1 ) * i s a homeomorphism i n the variables ( h ^ 1 ) 1 1 = (ir 0 h " 1 ) ^ ' 

Hence ir Q h^"1 and ir h^"1 differ by a local C homeomorphism. 

Given a foliation 3", the set of special maps may be constructed. 

Conversely, i f a manifold i f 1 supports a set of charts f^:v\ •* with the 

above conditions (1) and (2), a foliation i s defined on i f 1 by letting the 

leaves be locally defined by f ^ - 1 ( x ) where x e R^. In other words the 

special maps completely characterise the foliation and we may expect that 

properties of ^3" such as the Ehresmann groups, w i l l be described in terms 

of them alone. 
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§2, Germs and Jets 

Let X,Y be topological spaces. Two continuous functions f and g 

from X to Y are said to be in the same germ at x e X i f there i s an open 

neighbourhood of x on which f and g are equal. We define the germ of f 

at x,G(f,x) to be the set of continuous functions g:X + Y such that f and 

g are in the same germ at x. 

I f X = Y we may consider the set of al.l.G(f,x) such that f(x) - x 

and f i s a local C r homeomorphism. We denote this set by G r(X,x), and 

i t s elements by G r ( f i x ) , abbreviating these symbols to G(X) and G(f) 

respectively when the reference to x and r i s clear. There i s a natural 

product "o" which makes G(X) into a group. We let 

G(f) Q G(g) = G(f Q g) 

This product.is well defined, for i f G(f) - G(f') and G(g) = G(g«) 

then fI = f'I for some open set u and g| = g' for some open set V. 
l u l u I / V 

Hence f 0 g | g - i ( u ) v = f' o g'|g"Hu) V i m o Wjt) = OWj?). 
Associativity i s immediate. I f i d x i s the identity map on X, G(id x) i s 

clearly an identity for G(X) and as each f considered i s a local 

homeomorphism there exists an open neighbourhood u of x such that 

f " 1
 Q f „ = idj„. Hence the inverse of G(f) i s G C f 1 ) and "o" puts a U X|U 

group structure on G(X). 

Jets of C 1 maps 

The j e t s we are about to describe are usually called 1-jets but 

as we shall have no occasion to use n-jets when n > 1 we shall c a l l these 

1-jets simply " j e t s " . 
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l/et Xn, Y11 be C 1 manifolds. Two local C 1 homeomorphi3ms f and g 

from X° to Y11 are said to be i n the same j e t at x e i f f* •= g # at x. 

We define the Jet of f at x, J(f,x) to be the set of local C 1 homeo-

morphisms gjX 1 1 •> Y N about x which have the property g +(x) = f+(x), I f 

( x 1 , . r . , x n ) i s a C 1 coordinate chart x and (y 1,...,y n) i s a C 1 coordin­

ate chart about f (x) then the condition g +(x) = f.+ (x) i s equivalent to 

_L _L 
iS,. - i f f 0 r i s j = i f . . . , n 
ax1* ax*1 

This condition i s , as may be expected from i t s intrinsic definition, 

independent of the coordinate charts chosen. I f x" = Y" we may consider 

the set of a l l J(f,x) such that f(x) = x. We denote this set by JCX^x); 

i t s elements are J(f,x) and we abbreviate these symbols to JCX11) and J ( f ) 

when the reference to x ?w ̂  is clear. 

There i s a product "o" which makes J(X n) into a group. We let 

J ( f ) Q J(g) = J ( f Q g ) 

This product i s well defined because 

J ( f ) = J(f !)<fe> f + ( x ) ^ f^'Cx) 

J(g) = J(g) g,(x) = g +'(x) hence 

(f 0g)*U> = ( f + Q g*)(x) = ( V Q g / ) ( x ) = ( f Q g'^Cx) and J ( f 0 g ) 

J ( f g'). Associativity i s immediate. As with germs, J ( i d ) i s the o yii 
identity and the inverse of J ( f ) i s J C f * 1 ) . 

There i s a natural map**: when r 1 defined by 
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a(G r(f)) = J ( f ) . a i s well defined because i f G r(f) = G r(g), f = g on 
some open neighbourhood of x and hence f*(x) - g +(x). a i s also a group 
homeomorphism, for 

a(G(f) Q G(g)) = a(G(f 0g)) = J ( f Q g ) = J ( f ) Q J(g) = a(G(f)) Q a(G(g)) 

I f we write G (X51) = ker a = {G r(f) : J ( f ) = J ( l „)} then o ^ 

J(X") E GOC") / G Q(X n) 

Finally, we note that as f + i s an invertible linear map of T (X 1 1), the 

tangent space of X° at x, JCx") i s naturally identified with GL (n,R)j the 

qeioeraL linear group on fP. 
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C H A P T E R I I 

The Ehresmann and Jet Groups 

SI. Covering Spaces of Germs and Jets 

Let ^ be a foliation of class r on a C^ manifold We shall 

assume i n this section that has the leaf topology, T . 

We define the covering space of germs of special maps ̂  by 

= {(m, G r(f,m)) : m e M ° and f i s a special map defined on some 

neighbourhood of m}. 

The r which appears in this definition i s the same r as the class 

of the foliation and w i l l in future be omitted. 

The projection for this covering space, a^,:^ M " i s defined by 

aG(m, G(f,m)) = m 

I f r ̂  1 we also define the covering space of .jets of special maps, 

by 

^ = f (m, J(f,m)) : m e ff 1 and f i s a special map defined on some 

neighbourhood of m}. 

The projection, Oji^ if1 is defined by 

aj(m, J(f,m)) = m 

In the rest of this section we shall j u s t i f y the above terminology by 

proving that ̂  and with the projections o Q and O j , are covering 

spaces of rf1. 
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Let f^:u^ be a special map of ̂  with m e u^, and let 

u f m = f^" 1
 Q f^(m), i.e. u f m i s that part of the leaf through m 

which intersects u.. u~ „ i s an open set because we have the leaf 
1 f^m 

topology on rf1. Let 

^ f . ^ G = { ( x ' ^ i . x " e ^ : X e Ufi,m f i : u i * # i s a 

special map}. 

< u f . m >J ^ s d e f i n e < * similarly be replacing G and^, by J and^r . 

Lemma 1 
{<u- >„} i s a base for a topology on \ L and 

f i ' m G i , l 9 

{<u- >,} i s a base for a topology on *p = 
f i ' m J iel» * 

Proof 

We need only show that for given f. :u. •* R P , f j J u . •* RP, m e u. 

and Q e u^* there exists a special map f j c
: u j c ^ and an x e u^ such that 

< U P H <u« > P - <u„ > n and similarly for J . (Kelley iJ-D* i^,m u j ' ^ k 
p.47). 

Let (x, 0(f.x)> . < u f i j m > G 0 < u
f., q>G 

( I f this intersection i s empty the proof i s complete). 

Then x e u„ (\ u- _ 
i * j * q 

and G(f. x) = G(f. x) 

Hence i f u. 0 u. = and f^ = f^ 
J 

^ f . ^ G n <uf q > G = <u f k > x> 
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The proof for j e t s i s obtained by replacing ̂  by ̂  and 0 by J through­

out. 

Theorem 

O I Q S ^ - + i f 1 and i f j ^ -*• M° are covering spaces when rf1 i s given 

the leaf topology and ̂  and ̂ > are given the topologies whose bases are 

{<u- >PJ and {<u„ >,} respectively. f.,m G i e I f.,m J i e I f 

Proof 

Let m e and f^JU^ •* Vt be a special map such that m e u. „ 

TV,"*1 (u- ) = {<u_ > : f. = h f.J where h i s a local homeomorphism 
i * j» J 1 j> 

of BP„ TTQ"" 1 (U^. m ) i s thus the union of open sets of \̂  and thus open. 

Also, v I<u_ >I - u„ which i s also open in M0. Hence n„ i s a local G 1 f̂ ,m 1 f^,m c G 
homeomorphism. Similarly we prove that u T i s a local homeomorphism. 

We now show that about every m e M° there i s an open set whose i n ­

verse image under ir„ or TI . i s a disjoint union of homeomorphic copies. 

(See Spanier P»62). 

Consider the open neighbourhood ffl of m. 

1f/i(<u„ > n) = UpĈ u. - >„) so that the inverse image of Ui,_is U i..m b li n i_,m u +;;»n l o 1 * i 
{^u^ f m > Q : h i s a local homeomorphism of Rp}./.et fx/iCg,*^ ̂ Mr X ^ O ^ L , 

o i ' ^ i ' 
( I f the intersection i s empty the proof i s complete). 

x e u^ and G(g,x) = G(f^,x) = G(h Qf^,x) and hence h - id and f_. = 

h o f i -

Therefore <u„ >„ = <u. - >_ and we conclude that the <u. ~ >„ f^,m G in^r^m G nQfji,m G 
are disjoint. 
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For j e t s we obtain J(g,x) = JCf^x) = J(h f ^ x ) and so =• i d ¥ and 

h* o V 
Therefore = ^ f ^ j -
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§2- The Ehresmarm and Jet Groups 

Covering projections over connected bases have the homotopy l i f t i n g 

property, so i f Y : Q ) , 1 ^ -* flf1 i s a continuous loop with base point 

m a Y ( o ) = Y ( D I there exists a " l i f t " , Y J Q 5 * 1 ^ ^jf which i s a con­

tinuous map such that v^, y = y and the homotopy class of y dependB only 

on the homotopy class of y, y then determines a map ir^On) •+ T T ^ " 1 (m) 

given by y(0) -> Y ( D and hence a map E:iri(rf\m) •* G R(RP,0). E i s a homo-

morphism of groups (see Spanier £ l ^ P«86) and the group BCiT̂ rf1,™.)) i s 

unique up to isomorphism for a l l m i n the same path component - that i s 

leaves of a foliation ^ on 

The group ECirjtrf^m)) thus defined for a l l leaves L of a. foliation 

i s the Ehresmann Group and i s denoted by E(L)« E(ir 1(M n,m)) i s a rep­

resentation of E(L) in G R(RP,0) = 

The same considerations apply to jets- Instead of E we obtain the 

map J:ir 1(M n,m) •*• J(RP,0) and the group J(vi (M\m)} a defined up to iso­

morphism for each leaf L, i s the Jet Group of L and w i l l be denoted by 

J ( L ) , JUXCM'VO) i s a representation of J(L) in GL(p,R).(Se& 

We now give a geometric way of calculating these groups. 

Let Y : Q ) , 1 ^ L a continuous map (necessarily into a leaf L of 

Po.l"! i s compact and there exists a finite cover tv\). „ where 

f, :V, - # are ' . special maps of . Let t. , k = 0,..•,r be points of 

£0,1 J such that t - 0, t = 1 and Y t O v V u ^ £ V i f o r s o m e i* 

Let h:u •+ R11 be a leaf chart such that h Y(t f c) = 0 e i f and l e t 

P be the p-plane perpendicular to the standard leaves i n R11 through 0, 

T. = h - 1(P) D (u.}. i s the transverse disc to L at y(t. ) induced by 
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h. Let i r : ^ -> be given by n(x) = \r^\ (leaf through x}. (This TT i s 

thus the projection I ^ ~ p x FP *• R*5, on the standard foliation, mapped on. 

to the manifold by a leaf chart). 

I f W i s any subset of M0, the leaf topology on M° induces a topology 

on W. An equivalence relation i s then defined on W by x * y i f and 

only i f x and y are in the same path component of W. The set of equival­

ence classes of W i s denoted by W„ Any transverse disc about m i s locally 

hcmeomorphic to u with the quotient topology (and quotient differential, 

structure when i t exists) so that a l l transverse discs are naturally 

locally homeomorphic about m. 

Let Y O ^ ) * Y ( t f c + 1 ) e v\ where f^sV^ •*• fP i s a special map. 

m are local CT homeomorphisms into RP such that f . L and f. 
' k "lk+" 

f i | T k = f i lk+l 
Y ^ w i ) * hence *, = f. - l . 

T 0 f.|m i s a local 
\+l ° 1|V k+l'» 'k,k+l 

C*" homeomorphism from T^ to T f c + 1. I f y i s l i f t e d to a curve V inl^e* Space 

o£ germs of local homeomorphisms of Jp9 Y ( t k ) and Y ( t k + ^ ) are both i n ­
duced by the same special map f^< Hence 

r ( t k t l ) = G(fi T k o *k,k+l o ^ 

I f we choose the special map f ^ + ] 5 V ^ + 1 •* say, such that Y ( ^ k 4 ^ ) 

and Y ( t k + 2 ) e V i + 1 and G{F± T, ) = G(f, 
k+1 i+1 lk+l 

) we may choose special 

maps inductively beginning at k = 1 such that 
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commutes when germs of the maps are taken. We then have 

Y ( t p ) = Q(f p T ) s Q ( f > k o V o . . . o V l , r o f ) 

The maps of the form * , * ; 2 thus generate the elements of the 

Ehresmann group of a leaf, when a l l homotopy classes of curves y are 

taken, by taking their germs. The Jet group i s generated by taking j e t s . 
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C H A P T E R I I I 

Examples 

§1. Simple Foliations 

On an n-manifold with cF foliation there i s an equivalence re­

lation ~ (introduced i n the previous section) given by x " y ^ s > x and 

y are in the same leaf. rf1/- i s called the space of leaves and a f o l i a t ­

ion i s simple when rf1/" i s a manifold, i.e. there exists a map icrf 1 •* \Pt 

where \P i s a cF p-manifold, such that for every homeomorphism of class 

r, g;u -*• ŵ , where u i s an open set of flP, g"1 <J> i s a special map of 

^". The leaves are thus the inverse images under f of points of \P and 

the space of leaves i s given a manifold structure. The Ehresmann and Jet 

groups for each leaf are t r i v i a l by the geometric discussion of Chapter 

I I §2. 

I f rf1 C * Y" where and r are manifolds, the projection 

f sX11 * Y° -* Y11 defines a simple foliation on rf1 which i s a product f o l ­

iation whose leaves are a l l homeomorphic to Y11. Not every simple f o l i ­

ation i s a product. Consider the twisted S1-bundle over S 1 whose total 

space i s the Klein bottle, K. The projection ir:K -*• S 1 defines a simple 

foliation on K whose leaves are a l l homeomorphic to S 1; but K i s not a 

product. 
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§2. Integrable Distributions 

Denote by T(.vP) * M" the tangent bundle of a manifold rf1. A 

dimensional distribution. D. on i s a map such that IT D 

i s the identity on tf1 and D(m) i s a p dimensional linear subspace of 

ir" 1 (m) for a l l m e vP. I f , on a neighbourhood of m e vTt there are 

linearly independent vectors V\ which are a l l in DCrf1), we say that D(m) 

i s spanned by the V\ at m. D(M") i s a (f distribution i f the vectors V\ 

can be chosen to be C r vector fields about all points m £M. 

A p-dimensional distribution DCM11) i s integrable i f there i s a co­

ordinate system ( x 1 , o o . , x n ) on a neighbourhood of each m e if1 such that 

Dtlf) i s spanned by -r^r - ~ on that neighbourhood,, In other 

words, D i s given by the tangent spaces of the submanifolds of u defined 

by x 1 = constant, i = p + 1,...,n. Hence the coordinate system 

(x,.,.,x n) i s a leaf chart of the same differentiability class as D(t^) 

and so the C r integrable distribution gives r i s e to a C r foliation, 

Conversely, i f h^iu^ i s a leaf chart of a C r foliation on 

h^ + w i l l map the tangent spaces of the standard leaves on onto 

tangent spaces of C r submanifolds on M° thus giving an integrable dis­

tribution on 

I f r ̂  2 there i s a useful characterisation of integrable dis­

tributions. 

Probenius' Theorem (see Dieudonne » P«308). 

A C 2 distribution on a manifold, with k j 2, i s integrable 

i f and only i f for any two C z vector fields u,v i n the distribution, 

£ u » v 3 i s a l a o iri the distribution. £ , ̂  i s the " l i e bracket" of 

vector fields defined by Q J , V 3 = uv - vu. 
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We now have a one-to-one correspondence between foliations and dis 

tributions satisfying an algebraic condition. This w i l l be used extens 

ively i n Chapters IV-V, 
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§3» Foliations in Co-dimension 1 

As an application of §2. we shall study foliations in co-dimension 

1. 

Let rf1 be a differentiate manifold with a differentiate foliation 

of co-dimension 1 and let g be any riemannian metric onrf 1, ^ defines 

an (n-1)-dimensional distribution on M" for which there i s a unique 

orthogonal one-dimensional distribution. We shall denote this d i s t r i b ­

ution by ± "v where v i s a locally defined vector field* ( I f i s orient 

able i n the sense of Haefliger £ l ^ , V w i l l be globally defined). From 

we have constructed a local vector f i e l d v; however, not every such 

v gives r i s e to a foliation, For example, consider the vector fields 

in R1*, with cartesian coordinates (x,y,z,w), given by 

3 . 3 9 3 

v* = + x f e " x l i + * h 

3 3 3 3 
V3 = + W » + Z 3^ " y " X 3 ^ 

On 3 3 = t(x,y,z,w) e R1* i x 2 + y 2 + z 2 + w2 = 1}, v l 3 v 2 and V3 are 

orthonormal tangent vectors. That is^the v^ give a parallelisation of 

S 3 which i s orthonormal. Furthermore the v^ satisfy 

C v i » v 2 ^ = " 2 v3» C v 2 * v 3 3 = -2 v l t C v3» vlD = ~ 2 v2 

Hence V j ^ (the orthogonal compliment to v'i) i s spanned by v 2 and V3 but 

i s not integrable because £v2,V3^ £ v^ . 

We shall now seek algebraic conditions on v which are necessary and 
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sufficient for v to be integrable. 

Let (x 1,.,.,x n) be a coordinate chart of M11 on a neighbourhood of 
9 i m e M. Put e. = — T and let v = v e.. 
3x i k Define p. - e. - g(e.,v)v = e, - g.. v J v e., for i = 1,2,..c,n, 

J. 1 J. 1 XJ A 

Then g(p±tV) = g ^ \P - gty v*3 g ^ v vP, but g(v,v) = 1 hence 

g(Pi»v) - 0 and p. e V for a l l i . Also p. = 0 ^ e. - g(e.,v) v - 0 
e. 1 ®i e i =5 v = 1 \ , Hence i f p. = 0 also,, —r-—-r = tj „\- which i s gte^jV) * j * g(e^,v) g(ej,v) 

impossible, hence at most one p^ can vanish at any point of M"\ 

I f ot̂  e R, i = 1,.,, ,n we note that 

The e^ span the tangent space at m, hence so do Pi,»»»,Pn» v. 
J. " 

Therefore Pi,...,P n span V , 
J. _ a. 
V i s integrable i f and only i f LP-!»P,'J E v f o r 6 1 1 1 i»J • A 

j _ j ™ * 
routine calculation gives 

B(D>i.Pj3.v) = -( g . r v r v 8 ) , . g s u v u
 + (g. p vP vfl),j g ^ v U 

+ Sip vP v* ( g j r v r v s ) ( q g s u v u - g. r v1" v s (g. p vP v q ) | s g q u v u 

a 
where " i . " denotes covariant differentiation in the direction — w i t h 

-3X . -
respect to the riemannian connection of g. g(v,v) = 1 so that g^. v v J 

1 and g.. v 1 V5!, =0. Hence 6 i j |k 

- e. v r i . t e. vP| . + e. vP v^ e. v^i - g. v1" v S g. vP| = 0 s j r | i B i p |j ^lp v B j r |q * j r *ip |s 

i s a necessary and sufficient condition for v to be integrable. 
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We denote by v the riemannian connection of g and define the^vector 
fi e l d n by ^ v = kn where k i s a real valued function on vf1-. At any 
point m e k and n are the curvature and normal of the integral curve 
of vjthrough m, parametrised by arc length. 

• • • 

v v = v 1 vi . J e. = k nJ' e. * l J- J J 

v 1 v i ^ = krf 1 , hence 

- g. v r i . + g. v^i . + g. v*3 g. k n r - g. v r g. k n^ - 0 B j r | i B i p I j 6 i p B j r B j r 6 i p 

v . i . - v . i . = k (v.n.-v.n.) 

Finally, because the connection i s symmetric, 

v. . - v. . = k (v.n.-v.n.) (1) I . J j . i i j j i 

where " ." indicates the partial derivative — » 

We define (Curl v ) . . = v.,. - v . i ( T h i s i s the standard definit-Ji3 i | j j | i 
ion of curl in a riemannian manifold, see for example Willmore £ l H 

p.231.) 
i d i d Also, for vectors a = a — ^ , b = b — r - , define 

3x 3x 

(a*b).. = a-b. - a.b. - (axb).. i s a local 2-form on Vp~ which 

reduces to the usual "cross-product" of vectors when i s three dimens­

ional euclidean space. (After the usual tangent/co-tangent identificat­

ion). 
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(1) can now be written, 

Curl v = kv x n or Curl v = v x 7 v v (2) 

We note that i f v satisfies (2) then so w i l l -v : Hence we may 

speak of a unit distribution of one-dimension satisfying (2). We now 

have the theorem: 

Theorem 

On a riemannian manifold, C 2 foliations of co-dimension 1 are 

i n one-to-one correspondence with one-dimensional unit distributions, 

±v, satisfying Curl v = v x v v v, 

In regions where Curl v = 0 

(1) v = grad <|> for some Qivf1 •* R, and the leaves are given by 

• "^(x) where x e R. 

(2) v x ? v v = 0 ^ V y v = civ for some atlf1 •* R. Also, 

g(v,v) = 1, hence g ( ? v v,v) = 0, a = 0 and v i s a geodesic vector f i e l d . 

I f Curl v i 0 then v x v t 0 and 7 v v i av. ? v v therefore has a non-

vanishing component in v^. i.e. in the tangent space of the leaves. 

We now have, 

Corollary 

On a riemannian manifold i f 1 with C 2 foliation ^ " o f codimension 

1, there i s a closed seU*u on which the foliation i s simple and complem­

entary to a geodesic vector f i e l d e d such that, on rf1 \ u there i s a non 

vanishing vector f i e l d which l i e s in the tangent space to the leaves. 

4ij Be/ etupiij 
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Note 

On any subset of u which i s an n-dimensional open submanifold 

of rf1, g i s bundle-like in the sense of Reinhart £ 0 ° 

In the special case u = i s simple (see §1*) and when u = Mn 

each leaf has euler class zero* 

§4. Foliations of S 1 x R 

The purpose of this section i s to present examples which il l u s t r a t e 

the relation between the topological and differentiable properties of 

foliations. We therefore calculate the Ehresmann and Jet groupss and 

differentiability class of the foliations in some detail. Statements of 

a general nature which may be deduced from these examples w i l l be made 

under the heading "observations" at the end. 

Let f:R •* R > 0 be a C 1 function of one real variable taking values 

which are s t r i c t l y positive real numbers. Also let ^ > 0 and 

lim f(x) - 0. The set of functions f(x+c) where c e R have the prop-

erty that their graphs foliate the open upper half plane, R * R> , 

Foliate the lower half plane similarly with a function g and add the leaf 

R x {0} to give a foliation of R2. Let " be the equivalence relation 

(x,g) " (u,v)<»> x-u e Z and y = v. R2/~ i s homeomorphic to S 1 * R and 

the foliation on R 2 i s induced onto S 1 * R by ~, Call the leaf 
Rx{0} T 
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Picture 

The Ehresmann group i s zero for every leaf except L when i t i s Z„ The 

Jet groups for a l l leaves except L are also zero but the Jet group of L 

depends on properties of the functions f and g. 

The local homeomorphism <j> of R corresponding to any loop on L which 

"goes round once" i s 

<(.f:y -* f ( f * V D 
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d^ - l 

I f the Jet group exists we must have " dy and i f this i s the 

case, a necessary and sufficient condition for the Jet group to be zero 

i s 

df ( f - i y + 1 ) d T l 
dy u y X } dy = 1 (1) 

That i s , $ f has the same derivative at 0 as the identity map.-. Otherwise 

the Jet group of L i s Z. 

Example A 

f(x) = e x, g(x) = - e \ 
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^ = e , f - 1 ( x ) = logg x, = - .. Hence condition (1) 

i s 
d*f 

= e 
log ey+l 1 

y=0 
= ye ± 

y=o 
e. Similarly 

The Jet group of L i s Z. As the leaves may be given by the distribution 

3x + y 3y * t n * s f o l i a t i o r i i - s c • 

Example B 

f(x) = - i g(x) = ± 

dx F * 1 w ~ x » dx 3 ? 

d(|.f 

dy" o =
 y = 0

 = y=0 
= 1. Similarly 

d<j> 
—..-EI 
dy 

= 1. Hence the Jet group of L i s zero. Also the leaves may be 

given by the distribution ~ + y 2 •§- and the foliation i s C 
ox <»y 

Example C 

Let f(x) = e and foliate S 1 x R by circles parallel to 

S 1 x {0}, 
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Picture 

d<|>f 
As in Example A, = e, but the f i r s t derivative of the local. 

homeomorphisms of R for y < 0 i s 1. Hence the Jet group of L does not 

exist. The foliation can be given by the distribution 

3X for y ^ 0 

which i s C° but not C 1. 

Example D 

f(x) = ~ ~ and foliate S 1 x R < 0 as in Example Ct As in 

Example B 

i s given by 

d*1 

1, and the Jet group of L i s zero. As the df'ilinlm'tipn 
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3x ay 

ax for y^< 0 

for y j O 

,1V -foW- i 

i s C 1 but not C 2. 

Observations 

Examples A and B are topologically equivalent in the sense that 

there exists a homeomorphism of S 1 x R taking one foliation onto the 

other. However this homeomorphism does not preserve the Jet groups, 

i.e. Jet groups are not topological invariants. 

The Ehresmann and Jet groups i n Example B were not equal, but there 

existed a topologically equivalent foliation, namely Example A, for which 

they were. We ask then, "Given a foliation with different Ehresmann and 

Jet groups, does there always exist a topologically equivalent foliation 

for which they are the same?" The answer i s no because in Example D the 

jet s of local homeomorphisms i n the lower part of S 1 « R are j e t s of the 

identity. Hence the Jet group, i f i t exists, must be zero. However, 

the Ehresmann group of Example D i s Z. 
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§5= Three-manifolds 

Example A The "Reeb Component 
Let (x,y,z) be cartesian coordinates in R3

t The curves 
y = ( l - x 2 ) " 1 f c, z - 0, foliate the st r i p S = {(x,y,z) : jx| - 1, 
z = 0}- I f S i s rotated about the y-axis i n R3 we obtain a fo l i a t i o n of 
the open solid cylinder {(x,y,z) ; x 2 + z2 * 1}. By adding the leaf 
given by x 2 * z 2 - 1 and factoring out by the equivalence relation * given 
b v ( x > y j z ) " (u,v,w)£=> y ~ r e Z, x - u and z = w, we obtain a f o l i a r -
ion of a. closed solid torus, Each leaf, except the boundary of the 
solid torus, i s homeomorphic to R2„ 

Picture 

Example B Two Reeb Components 
By identifying the boundaries of two Reeb components we can foliate 

certain closed three-manifolds e0g<. 



( i ) The "ordinary" S2 bundle over S1, S2 * S ; 
Let the boundary of a Reeb component be given by coordinates 

(8,4>) where 9, <j> e R (mod 1) and let- two such components be identified 
by the relation - given by (8,<|>) ~ (8* 8 = 8' and <p' • * - /•> 
(mod 1). 

( i i ) The "twisted" S? bundle over S1 : 
As i n ( i ) but l e t the relation be (e,+ ) " ( e 1 , * ' ) ^ ^ e - -8' 

(mod 1) and $* •" <t> * / 2 (rood ^» 
( i i i ) The sphere S3- (The "Reeb Foliation" of S\) 

Let the relation be (8,<t>) ~ (e ,,* ,)^=> 9 - *" and <j> - 6 „ 
This f o l i a t i o n can be described as follows? 
Let D be a closed three-ball foliated by cylinders i n ir,s 

interior, and by circles, with two singular points ; on i t s boundary. 

Picture 
Interior Boundary 
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I f two such balls are identified by their boundaries to give a sphere, 

thus 

•A A 

H H 

we have the sphere foliated by t o r i , l i k e CDEP, and two singular c i r c l e s 9 

AB and GH, The torus CDEP divides the sphere into two solid t o r i because 
on both sides of CDEF the t o r i are "nested" about the circles AB and GH. 
These two solid t o r i can then be re-foliated by Reeb components to give 
the Reeb f o l i a t i o n of the sphere. 



Picture 
Interiors 

Boundaries 

0 
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Example C 
We can give a p i c t o r i a l description of S3 foliated i n dimension 1 

using the nested t o r i and singular circles of the previous example -
Each torus i s foliated^the well known "rational and irr a t i o n a l flows",. 

U one. oL 

7 

Tori near .AB have values of a near zero and t o r i near GH have values of 
a near TT/2O CDEP has a - TT/4 and a i s an increasing function for a l l Che 
other torio 
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Picture 

/ 

Example D 
Let D2 be the closed disc i n R2,.with polar coordinates ( r j S j j given 

by r 2 < .1 and let D2 x Q),1~J b e foliated by the lines fpj * T j V J 
where p t D2, When the discs D2 * 10} and D2 * {II are identified by 
the relation (r,e) " (r,0+a) we obtain a f o l i a t i o n of D2 *. 3 1 i n whi h 
the leaf (0) * S1 i s always a circle but the other leaves have homeo-
morphism types depending on n. 

Case 1 ~ i r r a t i o n a l , — 2n 
Each leaf other than {0} < S1 i s homeomorphic to R and has 

t r i v i a l Ehresmann and Jet groupsf {0} x S1 has Ehresmann and Jet groups 
Z when a t 0 and t r i v i a l groups when a = 0. 
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Case 2 = — where a,b are coprime integers: 
— — — tin D 

Every leaf i s homeomorphic to The Ehresmann and Jet groups 
for {0} * S1 are and t r i v i a l for a l l other leaves, b 

Note 

Because the Ehresmann and Jet groups are factor groups of the funda­
mental group of the leaf, the only possible isomorphism classes for 

4 
these groups when the leaf i s S are Z^Z^J.-OJZ and the t r i v i a l group, 
We have, i n Example D, Foliations i n which an S leaf has a l l possible 
Ehresmann and Jet groups s The lowest dimension for a manifold i n which 
this can be done i s three» (See Chapter 6, Theorem 2, Example D o 
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C H A P T E R I V 

D-connections 

Sir Introduction 

In Example 2 we saw that a d i f f e r e n t i a t e f o l i a t i o n gives rise co 
an integrable distribution, and vice-versa„ We now study foliations from 
this point of view by ignoring the C1 distributions and applying 
Probenius> theorem. I n place of special maps, which are projections i n 
the standard f o l i a t i o n , we have a projection tensor on the manifolds, and 
instead of maps, * } between transverse discs we have parallel translat­
ion between tangent spacesr Just as the maps * were defined by special 
maps, the parallel translation w i l l be defined by the projection tensor„ 
This approach to foliations, which from a geometric point of view i s 
very similar to that of Haef liger ^ s t* u e fco ^ 5 ^° tal k e r j Q . j , 

O Q and D 3 < 
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S2o Distributions 

Let D' be a differentiable distribution on a Ĉ  n-manifold, and 
let g be a riemannian metric on M11, We define D" to be the orthogonal 
distribution to D-„ I f D* has dimension n-p, D" w i l l have dimension p D 

I f A i s a local vector f i e l d on A decomposes uniquely as A - A * *• ? " 

where A' e D" and A" e D", We define the tensor a" by a-(A) = V for a l l 
such X. I f I i s the identity on TCM0) (i„e„ the identity l=covariant-P 

1-contravariant tensor) we put a" - I - a 5 so that a"U) - A " . - . 

In terms of a coordinate system ( x V . l f x n ) we write a-' 
a. — T - . Let a ^ i . ( r ) denote covariant differentiation with respect to 
J ax 1 J ' K 

a connection r on M (not necessarily the metric connection). 
' i " i i ' i Contractions with a. and a. = 6- - a, are written 
J J J J 

j k p p»k » j k l j k » j k l q p'q" 

We use the convention that contraction follows differentiation; 
thus 

i 'p i ~p ' i "q i ' C i . a* ~ C • & i . • C i i a a. — C»11 •• etco P|k J J»| k ' j|q p Tc j|k" 

We begin by deriving some fundamental identities satisfied by a' and a"-

i-» k̂*.Jfk.o n. 

a'a" = 0 because a'al!(A) = a !(X") = 0 for a l l local vector fields 
Aj hence 



lOlo 

( a , a n ) ^ i . = a ' i a"p + a'1 a"?. = 0 J |k p|k J P J|k 

»i " D ' i ! D by (1) 

Similarly 

a j " | k 

a"a' 

l j | k 

° a j I k a . i ' l k 
(2) 

! i * 'p ' i 'p ' i "q 'p 
a j ' | k = a p | k a j _ a p " | k a j _ a q | k a p a j -

' i 

Similarly 

a j"ik 

Finally 

aj»|k = a p | k a j " = V | k a j 
1 ~"p - a'JL a > ' i "q "p ' i "q ' i 

a q | k a p a j = a q | k a j " a j " j k 

and similarly 
ii it 

j '!k * a j j k 

Summarising, we have 

t _ t 
a ^ k = a j " j k -

« 

• i 
aj»|k 

I I 
Q ' i -
a j | k " Q

l i -
a j ' i k -

ti 
a ' i 
a j ' | k 

a j ' | k 
I I 

- a'1 

' a j " ! k = 0 

(3.) 



10c 

These rules are i n fact true for any derivation locally defined, 

I t i s now convenient to define 
V H 

^ = » j t k + a j t k 

Prom (3) i t i s straightforward to prove 
i 

• i i 1 i i ' 
a j k = a j " k • a j " k 

i " i i " 
a j k - a j ' k ""• a j ' k 
i» i " 

a j ' k = a j " k - 0 

a j | k 
ii 

Let Y : R -* M11 be a C curve on We say that D* i s parallel along Y i f 
vectors i n D' remain i n D" when parallel translated along y* Let the 
tangent vector to y be b 1 — ~ r ; i 0 e 0 Y+[ ̂  ) - b 1 — r 

3x \ / i k Let X be a parallel vector f i e l d along Y» We have X j k b = 0» 
a'(A) i s parallel along Y i f and only i f 

taJ1»J)|k^'>Jfk»J » k + a*1 x j k b k . 0 

i k ' i i k Which, because X|k b = 0, i s equivalent to a^^ \° b * 0« 
Let X e Dv at one point of Y say Y(t). Parallel translation i s 

unique, hence x e D ' along Y i f and only i f a"(X) i s parallel akng Y . 
' i i k 

Hence X remains i n D' i f and only i f a ^ Xu b = 0, 
I f X i s an arbitrary vector f i e l d , along Y , i n D* i t i s of the form 

X1 a!J"» D1 i s then parallel along Y i f and only i f a!j k x p b k - 0 
for a l l x p. Hence a ' j k ^ b k a p| | k b k = 0, ^ S ^ T 6 ^ 
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' i k 
Similarly D" i s parallel along -y i f and only i f apM|k b - 0, 
I f D" i s parallel along a l l C paths Y i n D; we say that D" i s 

' i k k parallel relative to D*. We then have a^n^ b = 0 for a l l b such that 
k 3 ' i 

b — r - e D1. Hence a „i. , - Oo Similarly D' i s parallel relative to 
3x K ,. p ' K 

D" i f and only i f Bpt^,, - 0. 
When D' i s parallel along a l l C paths y i n D' we say that D'_ i s 

self parallel. The necessary and sufficient condition for this i s 
' i i ap'|k' = ®' Similarly for D", When written i n terms of a l l theBe 

conditions become, 

D' parallel relative to D" 4=> â ,.„ = 0 

D" parallel relative to D' p̂.>â ,,. , = 0 

D' self parallel a j ' k ' ' 0 

D" self parallel ^=>a^„k„ - 0 

(5) 

We shall see later that i f the connection i s symmetric, self parallel 
implies integrable. D" i s not i n general integrable so we seek a weaker 

• 

condition than self parallel. 

D* i s path-parallel i f for any m e i f 1 and any X e D ', the geodesic 
1 

determined by X remains i n D'« This condition i s equivalent to 

a. K XJ X = 0 for a l l x E D ' j |k m 

Hence &.]. a'J' a < k Xp x q = a!*,. Xp Xq = 0 and j|k p q P'R 

( ap'|q' + ai'|p« ) X ? X Q = ° 



iouu 

Therefore D* i s path parallel i f and only i f a t i • f a , = 0„ Tt i s 
p'|q- q*|p' 

convenient to denote symmetric alternation of suffices by ( ) and skew-
symmetric alternation by £ * 3- e°S° 

t A 
D' i s path parallel i f and only i f a^, | q, j - 0, 

Finally we seek the conditions on â . which are equivalent to 
J K 

intestability-
Let A,y be local vector fields i n D. Df i s integrable i f and only 

i f LTA»^Z1 e *"or a H such X,u (see Example 2) c Hence D' i s integrable 
i f and only i f a ^ a ' A ^ ' i T ] = 0 for a l l A,y (not necessarily i n D*) = 

3 i n i I f e. - — o n some coordinate chart ( x ^ s . ^ x ) and X = A e., 
i 3x -1 

y = u e^ 

a-'na'X.a'un = a " ^ 1 Xp e., a q
j u q e ^ 

= a'Ha"1 A P (a*J' y q) . e. - a'J' u q (a* 1 A P ) . e.} 
p q °i J q p u j i 

^ where " o i " denotes pa r t i a l differentiation by x ^ 

a j V j X p(a * u q) , - a'j y q ( a ^ A P ) .} e m l p q °J q p °J m 

= ( a " m a J a'1 . - a > a'J a 1 .) x p q = 0 l p q-j l q p°j 

for a l l X,u= Hence a " . - a ' , = 0 and by (3), a t . - a t . - 0. 
I f r i s symmetric this condition i s easily shown to be equivalent to 

apMq' " aqMp* " T h e n U S i n g ^ we may say 
D1 i s integrable i f and only i f a 1 = 0* Similarly for D". 

Cp'lq'U 
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Finally, we note that when r is symmetric we have the following 
interdependence of termss 

^ path parallel path parall' 
Self parallel >^ Self parallel ^ -f ~ 

integrable integrable 

§3. D-Connections 

A D-connection, D, on a manifold with the distributions D* and D" 
of &20 i s a symmetric connection with respect to which D' and D" are both 
path parallel and parallel relative to each other= The algebraic con­
ditions for a D-connection are thus 

a ( j k ' ) = a(j"k") = V k ' = a j ' k " = 0 

Now, a j k r a^. - a j , k , + a^,, + aj„k, + aj„k„ 

Hence a y k j = a(j»k') + a(j"k") = ^ s o t h a t a ( j k ) = 0 f o r a P ~ c o n n e c t ~ 
ion. Conversely, a^ k^ = 0 ^> a ( P q ) a i a j = 0 

-> i 'p 'q . i 'p 'q i 0 

^ a ( p ' q ' ) a i a j r V'q") a i a j = a(p'q') * ° 

Similarly a(p"q") " 0 

Also' a^. k ) = 0 =>aj„k, • ajj..,, = 0 ^ a ^ , - 0 -> aj: I I k, = 0. 
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Similarly a * ^ = 0 =^ aj»k" = ^ a r K* t h e n e c e s s a r y sufficient con­
ditions for a D-cormection become a^.^ = 0° 

I f i s an arbitrary connection on Vr, any other connection, D.^ 

say, i s given by + V j k where V j k is symmetric i n j and k 0 We dis­
tinguish between covariant differentiation with respect to different 
connections thus; a ^ r ) and a ^ (r+V). 

Now, a.|k(D) = a . j ^ (r*V> 

' J * 4
 ( 4 + 4> a J - < + ^k> 4 

J|k J 
«• 

- a 

Similarly 

l ! J 

Hence aJk<D) a ^ D ) • a ^ ( D ) 

1 a j | k < r > * - ̂  • aj|k< r> - 1«k - ^ k 

Lastly, 2 a y k ) (D) = a L (D) * ajj (D) 

2 « o » ( r ) " ( Vj»k + i'k + Vjk" * 

so that the most general D-connection is given by 

D j k = r j k + ^ j k w h e r e v j k s a t i s f i e s 

I I S I I 
2 a ( j k ) < r ) 1 V j - k + V j k " + ^ k + Vjk' 
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^ ^ s 2 aWr) - aW>(r)
 - a(j"k«)' r )'

 cik 
Then a routine calculation gives 

v}«k + vj;„ + vj : k , . vj k < - 2 a | j k ) + c j ; k + cj;,. + c j : k * cjk„ 

Hence r ^ k + V^k i s a D-connection i f and only i f 

i " i 1 i w i * 
C j " k + C j k " + C j ' k f C j k " = ° s fchafc i s 

i ' i ' i * i " i " i ? V 
C j ' V + C j " k " + C j V ' * cj'k» • Cj'k!» + C j ' k " f C j ! ! k " 0 

A l l combinations of primed and double-primed suffices appear except 
i " i " 

^j'k' 3 0 ( 1 ^ j " k , u n e n c e a general solution is given by 
i i ' i " 

C j k - E^,k, t w n e r e E » p 3 1 , 6 symmetric but otherwise arbitrary. 
We deduce that the most general D-connection i s given by 

°fk = r j k * 2 a u k ) ( r ) - 4 r k ' > C r ) - a u « v ) ( r ) * * i"k« 
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C H A P T E R V 

Holonomy Groups 

51. Introduction 

Let vf1 be a differentiable manifold with a differentiate foliation 

. Let D' denote the integrable distribution given by the tangent 

spaces of the leaves of and let D" be any complimentary distribution.. 

I f a connection r on M has the property that D" i s parallel relative to 

D* we may define holonomy groups on each leaf L as follows. 

Let \i(L) 5 L be the bundle of p-planes D" restricted to L C [f„ 

v(L) i s the set of pairs (m,w) where m e L, w e and Tr(m,w) - m„ v('L) 

i s naturally identified with the normal bundle of L i n and so has the 

structure of a principal GL(p,R) bundle. Let Y be a closed piecewise 

Cfc curve (that i s , Cfc except for a fi n i t e number of points) such that 

Y(0) = Y(1) - m and let TT :D" ->• D" be parallel translation, with respect 
Y m m 

to r, along Y from Y(0) to Y(D» W i s an element of the structure group 

of v ( L ) c I f At(L,m) i s the loop space of piecewise curves at m then 

we define a map ir:At(L,m) •* GL(p,R) by TT(Y) = n - The image of At(L,m) 

under ir i s a group (Kobayashi and Nomizu 0 - 3 ) P-7D> , / f l i e n r i s a D= 

connection, this group i s denoted by J^(L9m) and i s called the Walker 

Holonomy Group of class t on L at m. 
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§2. Two lerrmas 

Lenma 1 

On a manifold M0, every continuous loop Y i Q o , l ^ •* M° i s 
nomotopic to some piecewise loop.. 

Proof 

Let Y(0) = Y(D = m e M" and l e t {<pi:Vi •+ RN) be a C k atlas on 

M0, Let m e V. for some j„ A.(V.) i s an open neighbourhood of <)».o Y(0) 
J J J J 

in R" and there exists a convex open set C. such that y(°) e C. 
J J J 

C • • ( V . )o We shall consider only those coordinate charts which are of J J 
the form <JK :u^ R" where ^ ( u ^ ) i s convex, 

Let {u^} be a cover for YL0»-O° Because y i s continuous and 
[ j D , l ^ i s compact, there i s a finite subcover of {u^} 3 Let 

- l _ 
tu.}. , „ be such that (u.)}. . „ covers L0,1~U l i - l , c . . , q l I i = l , o c o , q *— * —' 

q 
Subdivide C 0 * ^ b v L 0 * 1 ! ] = iUi O ^ ^ i - n D s u c h t h a t t i = 0, 

_ _ - l 
t q + 1 = 1, t i < t 2 < ... < t q + 1 and L ^ . t ^ J C (u j t) for some j , 
•j° Y C t ^ , t ^ + 1 3 i s a curve in a convex subset of RN, I f ̂ ( L ^ ) i s the 

straight line between Y(t^) and $.o Y(t^ + 1), L^ i s a curve joining 

y(t^) and Y(t^ + 1) which i s homotopic to Y]^ti»ti+iD because a convex 

subset of R" i s homotopic to a point. U L^ i s then homotopic to Y£O>0 
and except possibly at the points y ( t ^ ) . 
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U 
n 

Lemma 2 

On an n-manifold r^1 with a differentiate foliation, given by 

an integrable distribution D' of dimension n-p, and a complimentary dis­

tribution D", there exists a coordinate chart (y1,=»*,yn) about each 

point m e such that 

(1) The leaves of the foliation are given by y 1 = constant; 

i = n - p t l j s o c,n a 

(2) On the leaf through m, D" i s spanned by — r j 
ay1 

i = n-p+1, >., tr\o 

Proof 

Denote suffices taking values l,,, c,n-p by o or 6 and suffices 

taking values n-p+l, 0 3 1 ,n by A or U. By definition of a foliation r,here 

exists a chart (x1
1..»,xn) such that the leaves are given by x 1 = con-

stant; i = n-p+1,«,n, Let DH be spanned by b. t — r for some 
A 3x a 3xA V 



I l l , 

Let DT* and D"* be the duals of D' and D", respectively. That i s 

the images under the usual identification T(M) •* T*(M) of the tangent 

bundle with the co-tangent bundle. In T*(M), D1* i s spanned by 

dx a - b? dxX and D"* i s spanned by dx\ because i f we put 

u a = dx a - b? dx* we find 
A 

4 * ^ ^ " ^ * # * * 

Let (y 1,...,y n) be the coordinate chart given by 

y = x - b" (x£) x A 

where x^ i s the value of on the leaf through m. 

dy a = dx a - b? (x£) dxA 

dy X = dx X 

hence dy a = u a on the leaf through m. D'* i s spanned by dy a and D"* i s 

spanned by dy . i.e., D" i s spanned by — j - ; i = n-p+l,,.»,n as required. 

Finally, i f we denote by J = det l^j ] the jacobian 
i i - n W ' of the coordinate transformation y - y (x 1, -...^ ), 



l i t . 

3XP 

3 
" 3x 6 

3 
3XM 3xP 

3 
3X01 3xa 

i £ 
3XA 

3 

'<? 
0 

(xa-b°(xl')xx) = -b° 
A O U 

(x u) ^ 0 

^ j and J = 1„ Hence (y 1,, c., ,y n) i s a coordinate Hence -^L-
3X*5 

chart about m with properties (1) and (2), 

§3o Main Theorem 

On a C k manifold M" with differentiable foliation (C 2 , 2) of which L 

i s a leaf, 

(1) m( e L and m" e L (L,m') ="Jt (L,m") 

(2) ]>i (L,m) e ,,f * j j ^ (L,m)o I f M" i s d " k may be «. 

(3) j j ^ ( L» m) j J ( L ) , the Jet group of L-. 

Proof 

We use the notation of Lemma 2. The projection tensor a* has 

components, 

a' S = flB, a'} ^ 0, a ! " = b? where b°(xu) = 0. a or l •* X X X o 



I f u i s a parallel vector f i e l d along a path of the form 

y 1 = constant; i * a, 

ui = u + D ir = 0 I a ya 

Pram the expression for an arbitrary D-connection given in 

Chapter IV §2., 

(r) - a (r) - a (r) (ya) i i . . i i ya ya 

II i 

y a 
L4" W X ")!>«. a coovrl/nale. chart s iicli J " on "flit leaf 

dfĉ i'iW 1>M ' x£ = constant D1 i s spanned by —- II and D" by 
dx 

We l i d * , Du\ - r x
a + 2 a (

x
a ) (r) 

= r x t a X (r) + a X (r) ya ya ay 

= r x + a'- (r) + a"? (r) ua u|a y|a 

+ a , x * (r) + a" x" (r) a|y a|y 

= r x - a»i (r) - a'• (r) ya y|a a|y 

= r x - a'| (since a , x = 0) ya a|y y 

= r x - a , x - r) a' 1 + r 1 a , x 

ya a°y ly a ay l 

= r X - r x (since a f X =0) ya ay l 

= 0 because r i s symmetric. 
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Hence, u* i s parallel i f and only i f I / q = 0, i-.e* = constant. Henc«=-
0 and u = constant i s parallel along a l l differentiabl 

curves through m and parallel translation along a curve depends only on 

•loss 
the homotopy typo of the curve. This result i s originally due to 

Walker, C Q -

L i s connected and locally euclidean and hence path connected 

(Spanier Q.^] p=65), and i f m', m" E L there i s a path a such that 

a(0) = m' and a ( l ) = m"= Then by lemma 1 there i s a C k path, 3, homo-

topic to a and therefore a map 

B : ̂ .(L.m') - Jt(L,m") given by 

0 (II(Y)) - n(a y a' 1) = n(a) II(Y) i K a ) " 1 . B i s a conjugacy 

and J t(L,m') * jJit(L,m"). ' I h i s Proves (*)• A s f o r (2) we note that 

3i(L,m) 2 j2( L» m) 2. 3 JT^CL.m) as subgroups, 

and as every piecewise C 1 loop i s C1 and every C l loop i s homotopic to 

a piecewise loop, ^(Ljm) ^(L,m). Hence the J t(L,m) are a l l iso­

morphic , 

Finally we prove (3) . 

Let y C^> 1H a piecewise loop at m. As in Lemma 1 [j3»lI3 
q ~ 
•Vi LTtjjt.^,"] but this time with the condition that each YCTt..*-.. . 

l i e s in a coordinate chart (y1»»..,yn) with the properties (1) and (2) 

of lemma 2. Let T r and be transverse discs at Y ( t r ) and Y ( t r + 1 ) 

given by y* = constant. The tangent space of T r at Y ( t r ) coincides with 

D" at Y ( t r ) and similarly for T r +^. The local homeomorphism *:T r •* T ^ 
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introduced in Chapter I I §2., has the property that 

* (yV.. fy ) = y 

hence naps D",. , to D V a by u* •* u \ But we have shown that this 

i s the map of D",, » to D">. * given by parallel translation relative 
vt rJ ^ r + r 

to a D-connection* Because the maps like generate the Jet group of 

L we deduce that parallel translation relative to a D-connection also 

generates the Jet group, i.e. j^Cl^m) J(L) as required. 

Note 

I t has been thought that Walker's holonomy group i s the Ehresmann 

group. A counter example i s example B of Chapter I I I §4* i n which the 

Ehresmann group i s Z and the Jet group zero. The fact that the Walker 

holonomy group i s the Jet group and not the Ehresmann group can be 

partially explained by continuing our introduction to Chapter iv; The 

projection a" i s given by the f i r s t derivative of a special map so that 

the holonomy group w i l l be given by the f i r s t derivative of the maps 

between transverse discs. This i s just the Jet group. 
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C H A P T E R V I 

Properties of Holonomy Groups 

51. The Holonomy Group i s not a Lie Group 

Holonomy groups are, in general, l i e groups (Kobayashi and Nomizu 

C O P°73) and have no manifold structure only i n special cases» for 

example, a f l a t connection gives r i s e to a zero holonomy group. We 

show that a D-cormection on a foliated manifold i s one of these special 

cases. 

Lemma 

I f M*1 i s a paracompact, connected, di f f e r e n t i a t e manifold, 

•niivf1) i s countable, 

Proof 

M" supports a Piecewise Linear structure (Munkres C O 

Chapter I I ) and for this lemma we shall assume that M° has a triangul-

ation. Any continuous map Y : 0 ^ » O ~* ^ -̂s» b y the simplicial approx­

imation theorem (Hilton and Wylie C O * P«37) homotopic to a simplicial 

map, Hence y i s homotopic to an edge path and can be specified up to 

homotppy by an ordered collection of O-simplexes, As £ 0 , 0 * s compact 

and y i s continuous, this collection of O-simplexes i s f i n i t e e 

Consider the open cover of vf1 given by the open stars of the 0-

simplexes. That i s , i f p i s a O-simplex on the star of p, denoted 

by u(p)s i s the union of a l l closed n-simplexes containing p. The open 

star of p, S(p) i s then given by S(p) = u(p) - 8u(p). 
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The collection of sets {S(p) : p i s a O-siitplex} i s an open cover for M" 

and each open star contains one and only one 0-simplex0 Hence there i s 

no subcover of M°. I^ 1 i s parajcompact and the topology of" rf1 has a 

countable base; hence every open cover has a countable subcover by the 

Lindelfif theorem (Kelley £ Q p.M9). In particular {S(p)l has a count­

able subcover. But {S(p)} has no subcover and hence the number of 0-

simplexes i s countable, 

Finally, as each path on i s specified by a fi n i t e number of 0-

simplexes we deduce that the number of paths, up to homotopy, i s count­

able, and hence i^Orf1) i s countable. 

Corollary 

I f tf1 i s a compact, connected, . differentiable manifold, 

TTJCJ^ 1) i s finitely generated. 

Proof 

As i n the lemma we find that the paths on M0 are, up to homo­

topy, given by a finite sequence of C-simplexes where the number of 0-

simplexes i s f i n i t e . ir^M 0) i s therefore fi n i t e l y generated, 
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Theorem 

J-t(L,m) i s not a l i e group, M B . Our COHIW^JW « " L diawaoh 
4 a 1» group « >0. (HWw\&e. we. w»au restate.-Hot Hkaorw* as ' tAi*v» %t(ljn) = O . 

Proof J 

L i s a submanifold of J*?1 and therefore pa^icompact - (f^ 1 para-

compact -> existence of a metric => existence of a metric on L - ^ L para-

compact, See Hicks Q Q p=87)= J t(L,m) i s a factor group of n3 ( L ) , 

which i s countable, hence jj[t(L,ni) i s countable and cannot admit a mani­

fold structure ̂ oj- dinw^on 

We conclude this chapter with a discussion of the properties of 

Tt(L»ni) when the foliation has ccriimension l t 

12. Holonamŷ  Groups _of Foliations of Codimension 1 

Theorem 

I f a foliation on a differentiable manifold has codimension 1, 

jE^XLjin) i s a factor group of H^CLjZ), the f i r s t homology group with 

integer coefficients, and has a torsion subgroup which i s either t r i v i a l 

or Z2. 

Proof 

5t(L»m) has a faithful representation i n GL(1,R.) * R \ {0} 

under multiplication. Hence the holonomy group i s abeliam 

Let a be the homomorphism aSTr^L) •*jL(L,m)« Since ̂ ( Ljm) i s 

abelian, the conmutator subgroup Tri'(L) of iri(L) i s contained in ker a. 

(Hall p.138). Let 3 be the map B ; - defined by 

B:a ^ ' ( L ) •* a ker a where a e iri(L). I f a -irj ''(L) = b T T ^ • (L), b* 1 a e 

ir 1'(L) and so b*1 a e ker a, a ker a = b ker a and 6 i s well defined. 
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Also, B(a irx'fL) b V ( L ) ) = P(a b V ( D ) 

= a b ker a 

= (a ker a)(b ker a) 

since ni'(L) and ker a are both normal in n,(L), Hence B i s a homo-

rnorphism. We define by the commutative diagram-. 

/y \ canonical irt (L) 6 n-) (L) a r ,T v 

andwehavei t(L,m) 2
 ffi ^ e ^ - ^ . Now, .« ^ ( L j Z ) ; 

(Greenberg £l3s and so the holonomy group i s a factor of the 

f i r s t homology group as required. 

F i n a l l y j>t(L,m) i s isomrophic to a subgroup of R N {0} and the 

only elements of fi n i t e order are ±1. Hence the torsion subgroup of 

J^CLjm) i s t r i v i a l or Z2, 

Corollary 

I f L i s compact, the isomorphism classes of j^CLjin) are Z^ and 

Z 2 x Z^ where q i s an integer 0-

Proof 

By the corollary of §1=, jTfc(L,m) i s fin i t e l y generated. Hence 

Jtt(L,m) * ̂  Z * Z q (Ledermann £V] P*151). By the theorem 
l n 

a b o v e .X̂  Zp = 0 or Z 2 and the corollary i s proved. 
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Example 1 

I f the dimension of L i s 1, *\{L) 5 0 or Z and <|»t(L,m) = 0* 

Z 2 or Z, The examples of Chapter I I I Si. exhibit the isomorphism classes 

0 and Z. The following foliation of the moebius band exhibits the class 

Z2 ° 

Example 2 

I f the dimension of L i s 2, Hj (T jZ) « Z 2 g where T i s the 
o o 

sphere with g handles and Hj (.u^Z) « Z 2 x z " where 1^ i s the sphere with 

h cross caps. Hence 

\ (T ,m) * Z q or Z 2 > Z q" x where q s< 2g 

and j^CUj^m) * Z q or Z 2 * Z q where q,< h-1. 

These examples give the isomorphism classes of the Holonomy group 
for a l l compact leaves of f o l i a t i o n s of 3-manifoldSr. 
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