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ABSTRACT

The work presented is a theoretical and experimental investigation
into the effect of coupling between torsional and flexural modes of vib-
ration in cantilever beams.

Two theoretical approaches are made: firstly, a finite element
idealisation in which the beam is divided into a number of elements which
possess cubie variations of deflection ang rotation along thelr lengtas;
and, secondly, a more analytical method in which tiie simultaneous differ-
ential equations of motion are solved directly by application of Laplace
Transforms.

The investigation is restricted to the simplest cross section which
possesses a single axis of symmetry, the isosceles triangle. The exact
solutions for the torsion and flexure of such sections of general shape
do not as yet exist, but use is made of several approximate techniques
which have been developed for this section for the calculation of the
torsional stiffness and position of the centre of flexure.

It is shown experimentally and theoretically that torsional oscill-
ations do not take place about the centre of flexure ( or centre of
torsion ), but about a point which may be considered to be coincident
with the centroiq.

It is shown theoretically and confirmed experimentally that the effect
of coupling on either mode is extremely small unless the original frequencies
of torsional and flexural motion are almost coincident, in which case the
tvwo frequencles are separated into coupled modes which possess both torsion-
al and flexural characteristics. The effect is not, however, as significant

as the coupling of flexural modes due to pretwist in sections which approx-

imate to those of turbine blades.
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ENGLISH SYMBOLS

(]
[5]

NOTATION

Area of cross - section

[Al A, A3 Ay] matrix of constants
(B, B, B Bu] matrix of constants
Torsional stiffness per unit length
Young's Mogulus

[Ey B2 E3 Ey] matrix of constants
Functions of z

Shear Modulus

Second moments of area about XX and xx axes
respectively

Second moments of area about YY and yy axes
respectively

Polar moment of inertia about centroid per unit
length

Polar moment of inertia about centre of flexure
per unit length

Node numbers of a typical beam element

Radii of gyration about given axes
Polar radii of gyration about centroid, centre
of flexure

Length of beam element

Length of beam

Laplace transform of F(z) = £'°‘—ss F(3) ol

Bending moment




m Mass per unit length of beam
p Circular frequency - radians / second.
ry » Ty Coordinates of the centroid from the centre

of flexure in x and y directions

T Kinetic energy
t Time
T(t) Function of time’’
4) Potential energy
\'/ Shear force
1) A force
XXs YY Fixed axes through the centre of flexure
X, ¥ Deflection of centre of flexure in x and y
directions
XX , YY Principal planes
2,9 Maximum values
2 Axés of beam length, through the centres of
flexure
z Distance along the Z axis
GHEEK SYMBOLS
ol Angle between the equal sides of the iscsceles

triangular section.
Angle of elastic twist about the Z axis.

Poisson's ratino

P Density

- = oxr
ﬁ = x’i&l xl'. - Zj
X Pretwist about Z axls

t

Frequency in Hertz



OTHER SYMBOLS

3rd XX

1st YY

e [ 9"

Fig. 1 shows the terms used in relation to the beam.( To
maintain consistency with familiar usage the above symbols may be

redefined in parts of the text.

Third mode vibration along XX axis

First mode vibration along YY axis

do | o'e
c(_; oy
ole e
dr ' T

<t

et

In these cases the rédefinition

appli es only to the section in which it occurs ).
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CHAPTER 1

INTRODUCTION

The development of the turbine in the last two decades has produced
considerable interest in the study of the vibration of cantilever beams.
It is obviously of some importance to the turbine designer to ﬁave some
indication of the vibration characteristics of the blading, as great dam-
age may be caused by a blade breaking loose due to fatigue fallure.

For the untwisted rectangular section ( the simplest case ) there
are three independant types of motion: as the beam 1s continuous there
exlst an infinlte number of bending modes in both the ¥z and Xz planes
( Fig.1l ) and an infinite number of torsional modes about the Z axis. The
three types are sald to be uncoupled as any mode of a given type has no
component of any other type present. W.thin the limitations of beam theory
all the frequencies of each type may be determined analytically by the
solution of straightforward differential equations.

Practical turbine blades are usually of aerofoil cross-section, which
of course possesses no axes of symmetry, and are pretwisted along their
length. They may also be tapered, and, particularly in the low pressure
end of the turbine, be braced together by wires to reduce excessive osc-
illatory movement.

As a first approximation to what is therefore quite a complicated
problem, the vibration of pretwisted réctangular sectional cantilevers
has been studied by many authors including Carnegle, Rosard and Slyper.
Pretwl sting couples the two bending modes, producing modes which have
both X and ¥ components. An exact analytical solution of the simultan-

eous dl fferential equations does not exist but several approximate



techmiQues have been developed.

Torsional coupling ( with either or both of the bending modes ) is
introduced 1f the cross section possesses less than two axes of symmetry.
In this case the centroid is no longer coincident with the cemntre of
flexure or centre of torsion ( Chapter 2, Section 2 ). Conslderations of
symmetry show that if the section‘ possesses one axls of symmetry the
centre of flexure and centre of torsion will be on that axls.

In studying the vibration of pretwisted rectangular sectioned beams
the above investigations have assumed torsional coupling to be negligible,
and in general torsional coupling has recelved little attention. Carnegie
however, in an attempt to investigate torsional coupling nas studied the
flexural vibration of a pretwisted beam of aerofoil section ( 12, 21).*
Although this represents the true turbine blade, it is extremely 4iffi-
cult, if not impossible, to define certain properties of that section -
ie. the torsional stiffness and the positions of the centroid and centre
of flexure. Whereas Grif:fith's graphical methog ( described in Chapter 3,
Section 3) may be used to gi.vé a fairly accurate value of the torsional
stiffness, the centre of flexure can only be found by experiment, and with
great dlfficulty.

The effects of torsional coupling can, however, be studied without
encountering the difficulties of the aerofoil and the present work is an
investigation of the vibration of the simplest ( untwisted ) section
which possesses a single axis of symmetry: the isosceles triangle. This
has several advantages over the aercfoil. Although, to the author's know-
ledge, no exact analyslis of the flexure or torsion of isosceles trianguhar

sectional beans exists, there are several approximate solutions applicable

¥ References in Appendix 1




to sections of general apex angle, or to ones in which the apex angle is
limited to less than about 10°. This means that the torsional stiffness
and the coordinates of the centre of flexure may be obtained theoretic-
cally to within a reasonable degree of accuracy. It is also much easler
to obtain uniform cross-sectional dimensions in the manufacture of the
isosceles triangular section.
The author feels, therefore, that in attempting to pfesent a

better understanding of the nature of torsional coupling, future work on

the vibration of the aerofoil-sectional blade with be facilitated.




CHAPTER 2

HISTORLCAL INVESTIGATION

This investigation divides convenlently into three parts. The first
deals with the attempts at a solution of the torsional problem for isos-
celes triangular prisms in the absence of an exact solution for a general
triangle, or even a general isosceles triangle. The second section cons-
iders the flexural problem of isosceles triangular prisms, from which
theoretical estimates of the coordinates of the centre of flexure are
obtained ; and the third part deals with different methods of analysing

the whole problem of cantilever beam vibration.

2.1 Torsion of isosceles triangular prisms.

St. Venant noted that reasonable accuracy could be obtained by treat-
ing the section ( not necessarlily triangular ) as an ellipse having the same
cross-sectional area and polar moment of inertia. This method mekes use
of the exact solution for the ellipse and can glve an accuracy of as good
as 5% ( from torsional frequency experiments ) in some cases.
~Grifﬁth(1) presented a graphical method which is rather compllicated
and involves rounding off the corners of the section with a radlus depend-
ent upon the angle in the corner and applying a ! torqQue correction factor °'.

An approximate formula, applicable to long thin sections of any shape is

also given.

The exact solution for the sector of a circle ( in terms of infinite
series ) has been described by 'l‘imosheako(a) and this can be used to give
an upper and lower boundary to the torslional stiffness of isosceles tri-

angular sections of small apex angle. Two calculations are made: one in




which the radius of the sector is equal to the length of one of the

equal sides of the section; and a second in which the radius equals the
perpendl cular di stance from the apex to the smallest side. The required
triangle lies in between these two sections and thus a range of accept-
abllity is obtained by which other methods may be judged. ( Fig.3.3.2 ).

Duncan, Ellis and Scruton (3)presented an approximate stress
function solution derived using Ritz's ( variational ) technique. The
expression deduced is exact for an eduilateral triangle and the fraction-
al error tends to zero as o tends to zero. A characteristic of this type
of approach is that it gives a much better approximation to the stiffness
than to the stresses themselves.

Nuttall(u)presented two approximate Raylelgh-Ritz solutions applic-
able to any isosceles triangle. These are derived from the exact solutions
for an equilateral triangle and a right angled l1sosceles triangle, both of
which are series solutions. He concluded that the formula derived from
the equilateral triangle 1s more accurate for «260° ang the formula
derived from the right angled isosceles triangle should be used for« > 90°.
In the range 8)05 o £ ?)‘) the formulae serve as a check on each other.

Scholes and Slater(J)presented an empirical formula similar to
Griffith's, and it was claimed that the formula is an improvement on
Griffith;s'at small values of the ratio maximum thickness to chord, as
Griffith's correction is not sufficiently effective at these values.

A éompgg;gzrof these methods 1s presented in Chapter 5 for varying
apex angle in the range 2° to 6°, ang the cross sectional area 13

constant.




2.2. The centre of flexure.

The centre of flexure, or shear centre,1s defined as that point
through which the resultant of a system of transverse loads acts so
that the section deflects without rotating. By symmetry it is seen
that if a section possesses an axis of syr;metry, then the centre of flex-
ure lies on that axis. However, in the case of the 1sosceles triangular
sectlons consldered in this work, it is required to know the displace-
ment of the centre o'f flexure from the centroid along the axis of
symmetry, as it is this displacement which causes coupling between tors-
ional and flexural modes of vibration.

There 1s another point associated with a cross-section, called the
centre of twist, which is the point of zero deflection ( in the plane of
the section ) under the action of a pure couple acting in the plane of
the section. The relationship between these two points has been consig-
ered by Duncan, Ellis and Scruton(j)and Timoshenko(2 )who concluded that
by the reciprocal tiieorem for a rigld encastré support the centres are
coincident, ang that for practical fixing conditlions they are almost
colncigdent. Experimental evidence presented by the former authors
confirmed this, and in this work the centres of flexure and twist are
assumed to be coinecident.

Once the bending stress function for a section is known the calcul-
ation of the coordinates of the centre of flexure is trivial, but an
exact stress function for a general isosceles triangle does not exist

and therefore approximate methods must be considered.



(6)
Griffith ang Taylor presented a method of calculating the shear

stresses in bending using soap films and stated that a simplification
inspired by the soap film experiments and valig for sections whose
boungaries consist of nearly parallel curves or straight lines, permits
a mathematical solution leadging to the formula for the centroid-centre

of flexure distance n, (Fig. 1 ) as

3 where t is the half-
- f yl‘ d_c’

Vy =
J - =
e} oty thickness of the section.

(8)
This formula was refuted by Duncan who derived an approximate

stress functlion and, for thin sectioned bars, arrived at the formula
b
g = A3 Jat'
[ f £1 ‘(3

It is seen that Duncan'!s formula reguces to Griffiths when » = 0.

Both Griffith and Duncan presented experimental evidence in support

of their formulae, but Scholes ang Slater(S)

in applying then to a bar of
thin trapezolidal section ingicated that their own experimental results
agree more closely with Griffith's formula than with Duncan's.
Both formulae are applied tc; the sections considered 11:1 this work.
Young, Elgerton and Pearson (9)considered the torsion produced when
a section of a cantllever, possessing one axis of symmetry, is geflected
by a concentrated load applied at the centroidq at right angles to the axis

of symmetry. The work is restricted to the sectors of a circle and, as

i



12.

with the torsional stiffness, approximations may be obtained by consigering
the sectors of equal apex angle to the isosceles triangle, ( Fig.3.3.2 ).
However, no mention is made of the centre of flexure or any similar con-
cept, but its position may be calculated from the results presenteg in

the paper.

2.3. Methods of analysis of beam vibrations.

An analytical solution governing the vibration of uniform pre-
twlsted rectangular sectioned beams has been obtained by Troesch,
Anliker ang Zigler(lo) viith the assumption that the flexural rigigity
in one direction is infinite. However, the method 1s very involved and
lacks extension to more general cases, and therefore the problem is app-
roached using approximate methods ang numerical procedures.

Rayleigh's method, involving the equating of the maximum potential
ang kinetic er-xergies 1s useful in that the final equations are fairly
simple. Usually it is only possible to obtain the fundamental mode,
but by assuming an appropriate higher mode shape which 1s orthogonal to

the lower modes an approximation to the mode frequency is possible.

/
/
/ p— |
5 y Figl(z.j.l)
/] b 4
f lL
o J
(11)
Assuming a mode shape Y(z) it can be shown that the circular

frequency p is given by
L k3
= o d.}"

[; Ag™els




The closer the assumed shape Y(z) is to the exact mode shape, the
closer the approximate frequency is to the exact value.

Although the method is severely limited by the required assumption
(12)

of a mode shape, it has been successfully applied by Carnegie in the
determination of fundamental modes of vibration of uniform pretwisted

rectangular sectioned cantilevers. In this, Carnegie obtained the mode

shapes from the results of a previous paper(lj) dealing with the static bengd-

ing of the cantilevers.
Rayleigh's method may be extended, and its usefulness considerably

improved, by ;.ssuming for ¥(z) a series in the fom
"
Y = & A Ve
r=|

where each Yr(z) satisfles the boundary conditions. This is the basis of
the Raylelgh-Ritz or Ritz procedure. A characteristic of the Rayleigh
method is that it gives values of p which are higher than the true value.
This is dque to the fact that the inaccuracy of the assumed mode shape is
equivalent to applying additional constraints to the system. To minimise
this the coeffl cients are chosen to glve a minimum value of p.

The equations

¥ _ o r= 2,3 - n
QA

are found, glving an n th order equation in p2, the roots of which
are the first n frequencles of the systen.
The method may be iterated as more terms of the series are employed,

hence giving an assessment of the accuracy.



The method of matrix iteration is an iterative procedure in
which a mode shape is assumed and iteration performed until the mode
shapes gtabilise.

In matrix form the equations of motion may be written

(4] = MAily) 231

Where X = J*for stiffness formulation and p° for flexibility
formulation ( the Stodola methog ).

A geflected shape is assumed for[_tj_f on the right hand side of
2.3.1 which may be very rough indeed. The operation of '2.3.1 is per-
formed resulting in{y} on the left hand side. This is normalised by
making a chosen amplitude unity, giving a new starting shape for the
right hand side. It can be shown that after successive 1terations the
deflected shape stabllises to the dominant root of the equation, i.e.
the lowest value of A .

Higher modes ( or lower, depending on the formulation ) are
possible but are rather qifficult anq convergence becomes slower. The
lowest mode {5}’ must be accurately determined before it is " purified
out " of the secong moge { y L, using the congition of orthogonality,
otherwise an attempt to converge to{gjlwill amplify the component of {35’
vielding eventually the original [y}' .

Good agreement was obtained by Slyper(ll") for the first seven
modes of vibration of uniform rectangular beams of pretwist 0°, 90.9°
and 877o using this method programmeq for digital computation, but
there is a risk of instability inherent in the method ang it is felt to

have been superceded by more modern techniques.




The Holzer methog for torsional oscillations has been agapted by
Myklestad to analyse beam vibrations. The beam is divided into a
finite number of stations with the distributed mass of the beam replaceg
by concentrateld masses at the stations.

By working from one end of the system to the other, the geflection,
slope, moment ang shear are computed at each station for an assumeg
value of p. The values of p which satisfy the boungary congitions of
the problem are the natural freqQuencies.

In the case of simple flexure in the Yz plane, the matrix equation

=
I

moment

v
%
M

< 3 A«
i
I

v \') shear

n

is formed, where Agj= f@')

Application of the boundary congltions

Hﬂ= %d = Mu = VK = O '

glves a determinant whose value may be plotteq against p2:

|A|

P

The boundary conditions are then satisfied when the determinant is

Zero.




(15)
The method was employed by Rosard and Lester to analyse the

vibration of uniform pretwisted rectangular sectioned cantilevers of
various width/thickness ratios and by Isakson and Eisley(l6) who
further extended the method to cov er rotationé( about an axis parallel
to the x axis in Fig. 2.3.1 ) pretwisted rectangles, but the latter
did not obtain sufficient results to enable general conclusionsg to be
drawn.

It is thought that this approach is superior to that of Stodola as
first ang higher modes are obtained with equal ease without any need of
" purification ®. It has been criticised as a trial and error method,
ﬁut a reasonablé estimate of the required frequency is usually avai lable
ang a swliftly converging iteration procedure easily programmed. It also
has the agvantage that ingivigual frequencies may be investigatedq with-
out the need of obtaining all frequencies.

Gendler and Mendels.ohn(lT)claimed an improvement on the Myklestag
metnog by introgducing the concept of station functions. It is stateg
that the Myklestad method involves the assumptions that the inertial
loads in an interval can be replaced by a resultant concentrated mass
and that this load produces the same deflection as the dlstributeg load.

Station functions eliminate these assumptions by assuming that the
inertial loads are continuous functions along the beam; ie. the beam is
approximated to the sum of a set of continuous station functions each of

vhi ch satisfies the boungary condltions ang vanishes at all stations

other than the one with which it is associategd.
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With modern computing techniques it is doubtful whether this
offers any real adgvantage over the original Myklestad.

Although the above methods may be used for the solution of relativd y
simple problems without the use of a computer, its arrival naturally
permits thelr extension to more general problems, as has been indgicated.
Use of a computer also enables the equations of motion to be. .solved
directly by various numerical integration routines, and the agvent of
finite element theory means that such complex problems as car body
vibration can be solved.

Dawson, Ghosh and Carnegie used the dgirect numerical solution of
the equations of motion to determine the effect of slenderness ratio
on the natural frequencies of uniform pretwlsted rectangular sections,
allowing for shear deformation ang rotary inertia(la). By suitable

substitution the equations of motion are rejuced to a set of eight

first order linear gifferential equations which are solved as follows:

1). A trial frequency is assumed, ang the four known boungary
values at the root set to thelr respective values.

2). The four unknown values at the root are assigned arbitrary
values and the eight equations solved by a Runge-Kutta process yielding
a set of solutions at the tip.

3). This procedure ( with the same frequency ) is repeated three
times with the unknowns at the root set to other arbitrary values.

4). There are now four sets of ingependent solutions and since
the gifferential equations are linear, the complete solution is a

linear combination of the four sets of ingepengent solutions.:



1®

If Y;(L) is the complete solution at the tip,
i:’-—‘

73
SV E Ay Ve,e (L)

v=/
where Y (L) 1s the ", &" indepengent solution.

Appli cation of the boungary values at the tip ylelds the matrix

equation:

[ Ve ]fag {o]
and the condition that the gifferential equations have a solution

sati sfylng the boundary congitions is that
I ‘/C’, [ = O

In the finite element methoqd, the structure is assumeq to be
divided into elements to which are ascribed a finite number of degrees
of freedom. The stiffness and distributed mass matrices for each element
are calculated, which are then assembleqd to form the stiffness ang mass
matrices of the overall structure. After application of the boungary

conditions, the problen reduces to an eigenvalue problem of the form
[ [«]— p2tm]]{s} = [°f

where [ K] is the structural stiffness matrix
[M] is tne structural mass matrix

and [S} 1s the structural nodal displacements.




The term " noge " in this context refers to the extremities of
an element, not to the nodes of the elastic curve of the structure.

It is @ifficult to draw comparisébns between these methods as
much depends on the efficiency of the programming. It can be saig,
though, that numerical integration probably requires less storage than
a finite element solution of the same problem, but finite element
theory does not require foreknowledge of the equations of motion ang
is therefore more general.

Dokumaci, Thomas angd Carnegi.e(lg) illustrated the use of finite
element theory applied to the vibration of uniform pretwisted rect-
angular sectional beams, and good agreement was obtained with other
methods. This theory is extended by the present author to cover
uni form pretwisted beams of any cross sectional shape, details of which
appear later in this thesis.

A more sBophlsticated application is shown by Ahmag, Anderson ang
Zimld.e-ricz(EO) using thick curved shell elements to analyse the vib-
ration of turbine and compressor blaging. The agreement between theory

and experiment is not very good, but may possibly be explainedg by the

dl £ficulty of true experimental modelling.



CHAPTER 3

THEORETICAL ANALYSIS

Introduction.

The equations of motion governing the most general case of uniform

beam vibration, that of pretwisted agymmetric section are given by

Carnegiec”.
EIZ& a_i? -+ Ezv 2“1 - M 2_".7 <+ My a’-& - O
)3‘/ l‘l ¥t PR
a Pt — o
' £ Ty, 3 m o 8x emy ==
STw N v Tsi ot Tow T

i
0

¢ Mo - IO . oy . me ¥y
P QI At pyas
( * Carnegie assumes that torsional oscillations take place about
the centre of flexure and therefore replaces Iog with Icf' This is
incorrect, for reasons which are presented in section 5 of this chapter ).
In the particular case of a rectangular section, ry =r,=o and the

equations 3.1 reduce to

ET.. f/_"_:! -+ E..Z‘,\7 of “x — h-p‘-j = O
d.‘q o(s‘l
Ergj olx -+ Efv 0_11_7 — ~plx = o 3:2
dJ‘l ”Sq
ot "o L] = ¢
¢ S T Tgee 2

N
(assuming harmonic motion x = x sin pt etc.) - in which the first
tWwo equations are simultaneous and the third represents the uncoupled

torsgional motion.




r A |

For a straight beam, symmetrical about one axis only ( say the Y,

hence r, = o ) vibration takes place in the principal planes YZ and X2,

a.ndey=o.
Hence
ET ol 9x — mplxy = mo# -
y’ aju J £
c o LI, pw = —mvPx -
75 9 P J -3
= I Ay 2, = O
xx 4(3‘1 ‘7

- in which the first two are simultaneous governing the coupled
torsion/bending in the XX direction, and the third represents the un-

coupled YY direction movement.

Boundary conditions and secondary effects.

The above equations do not take into account the secondary effects
of rotary inertia and shear deformation. However, Dawson, Ghosh and
18
Camegie indicated( ) that for the beams considered in this work the

effects of these will be negligible.

12
Carnegi e ) included the effect of the bending of longitudinal

fivres in torsion and derived the fourth order equation

c, © — co® — Ably Ao -4

{
V]

( where C) is a constant for the section ) for torsional motion.

By the calculus of variations the boundary congitions




= 8" =0 atz=0

' = 6" =0 atz=L

were devived, amongst other possible sets of conditions. Carneglie
then stated that for an encastré support it would probably be more
realistic to let #'= 0 at z = 0, but the above conditions are defended
on the grounds that higher modes would be little affected by a change
in root condition and lower modes are little affected by the bending of
longitudinal fibres. The condition =0 at z =0 is only adopted

when fibre bending is considered, as in this case the torque T, is

glven by
T, = CcO'- coe™
otherwise
To = C&'
and therefore =0 at z = L

The warping displacement w is defined (7) by a function

w = & ¢(xy)
from which the same equation for torsional motion ( 3.4 ) was
derived by Barr ( communications to 22 ) who stated that the conditions

for a cantilever are: at z = 0, twist and warping displacement zero.

ie. ®= O@'= o

and at z = L,torque and warping stress zero
le. e’ —c, o =0

and e"=o

Both agree however, that for a long thin beam there would be close

22
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agreement 1n frequency between the two sets of results.

As the same equation may be deduced from the two apparently
independent concepts of fibre-bending and section warping, it may be
deduced that these concepts are in fact inter-related; the one causing
the other.

The effect of fibre bending on torsional modes has been studied

by Carnegle (12)

who concluded that the frequencles are raised by a
factor which intreases with mode number. For the first torsional
mode ( which 1s the only one considered in this work ) the beam
frequencl es are ralsed by approximately 0.3% ( Appendix 2 ), which
may be neglected when compared with the accuracy with which the
torsional stliffness can be determined. The effect of fibre bending

( or section warping ) is therefore not considered, and the torsional

boundary conditions assumed are

at z = =0

0
and at z = L Torque =0 ie. e'= o

Solution of the equations

Dokumaci, Thomas and Carnegle presented a matrix displacement

analysis (19) of the pretwisted rectangular sectioned beam, and for

the purpose of investigating torsional coupling the author adapted this
method to include sections possessing one or no axes of symmetry, with
or without pretwlst. Additionally, a very much faster program, based

on the solution of the flrst two equations of 3.3 by Laplace Transforms
is presented, and is used when initial estimates of the frequencles are

readily available. Although the computer operation of this method
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enploys certain numerical procedures, it is basicly an analytical
solution, as it solves the equations directly, without recourse to a

mathemati cal idealisation or numerical integration.

3.1. Matrix displacement analysis.

The beam is assumed to be divided into a number of elements, the
extremities of which are termed nodes. Each element has only a finlte
number of degrees of freedom, in this case the deflections of the nodes
in the x and y planes, the slopes _:7: » _:_’/:31 s the rotation & about
the z axls, and the torque f_‘(?:’ .J A cubic variation along the
element for Xy and & is assumed and the energy expressions for a
typlcal beam element are derived in terms of the nodal displacements.
Appli cation of Lagrange's equations gives the element dynamic stiffness
matrix, and the complet; matrix for the whole beam 1s formed by assemb-
ling the element matrices and applylng the boundary conditions. The
el genvalue problem can then be solved for the fregquencies and mode
shapes of vibration.

The equations for strain energy and kinetic energy of a pretwisted

uniform beam of asymmetric section are

Wws X smX o El, O o -SaX
- 1 " "
-2 [ g x 9'_7 —5aX X o o Eri‘l o S X wsX O
> () o / o o ¢

— 3.1

L. .
. g+ 6
2[[5«nod [2+56] 4] [$155] 4 502
>

éso

o
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which may be written

< T 51’:«; o =
u=‘z‘_[ [E.][o %o][EJ,S 3.1-3
et [ae) « ;

J" ' ws X — > "sax
y" sm X + x"asx
al

j “« 2B
> -(-13'9‘
/239

Assume a cubic variation along the element for x y and & of the form

9= [1 3 3* 3*][a]

z
]
By
P
1

Ny

P

L g
1

x= [/ 3 3 3][5]
o = [t 3 3 3°7[e]

then the continuity of displacements along an element on a fixed
frame as in Fig. 3.1.1 is given by

[&]
Y :[[ / 3 3" 3{]8«&%,[/3 J"JJJ ©sX, © o o }[4] 3145
[e]
s8]
>c-_[[/ 3 3033 ] e, L1 333 ], 0 © °°][[E4]1 3-1-6
[&]

9:.[Oooooo oo/;;‘;i}:}] 3-1-%

Nodal displacements of the element ( i, i+l ) are represented as a

vector




FIG 3.1.1. COORDINAYE AXES

PRETWISTED BEAM

26



(e "'{56)"»‘; , dn 0. u
5 %

Gl @& Jeer s Xow, % ‘) :?,él-«

which may be written

{#] = 2][c]
where
[c] = [& 4 & 4 £ & 4, 8. 4 €5 €]
and[d] is glven in Appendix 3.

Thus

[c] - [3] (8] — 318

From equations 3.1.5, 6, 7 and 8

[8] = [e][c] = [e][27](®]

an

"] - [ejre] = [&1[08]

)

where
[6,] =
o,-¢,28, -@*3. 9 0, U], -pi3r+2, b¥3r -p2g3 +by, 0, 0
% 0,03 ~ 26,0, 0, ¥32  -ud3 ,-pilebs, —by3r, o 0
o, 0, 6 o, o I, °, 9 , o, ° , ,3
and [Ez_J -
@y /ey 3, T, 3%, 9, 3%, 9, JII"-\J" " 33
/) 0, 1, ol(‘]l 3.:7[ 3‘, 0,31'0,,:731., ':*,JJ :
g, o 0_, 0, és ; x‘ca, o, 0) o o 31." J:’é
Hence 3.1.3 and 3.1.4 become o J J
v - T
u= 40T [e][2]E09
o 4 [97] (8] [ —_— 3-/-9
Oounel . - -
™= 2 (87 [~pLS]
o 2T [M][Bf ——r 3t

whens [M.] = f;l[é,_'][:éa_] dj

2

F
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ana [k] = foz[e,*][ Fje;, :][&]‘0

as shown in Appengix 3.
Applying Lagrange's equations to 3.1.9 ang 3.1.10 for a

conservative system

[za_ e o £]=o

3D e LIPD 3.1.11

and since [N] and [M] are symmetric

[%g = [M][ﬁ] anat ,’Z‘,[%] = u\.[M][ﬁ"]

Hence 3.1.11 becomes
[4] £8F + m[m]{E] = o

Assuming harmoni ¢ motion of circular frequency p J

(o] = (B] «** wnere i = //
te. [In] - p‘[M]][é] = o
[A] ang (M] may be summed for the whole beam to give
[(sn] — p*w[en]]fS} = o

which may be solved as an eigenvalue problem.

_3.2. Solution by Laplace Transforms

For an untwisted beam whose cross-section is symmetrical about the
Y axis, the equations of coupled bemding and torsional vibration 3.1

reduce to

2C = -__':_' i - m ’j 2
W eyy

A 25
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911: Mfyi - m /,Jz "‘"L"i) 9-
<

and the third equation is independent of x and & and governs
the uncoupled motion in the YY direction.

The above equations further reduce to

x" = axX + 4 & 3.2.1
" = eX + o8& 3.2.2.
where a= "M ; b=-M§ ; c= mpy ; d= Mm(ricb'y)
EZ; -
a7 &zyy < <

Consider that the solutions are separable, and of the form
x = FG&y - T@

e= 6Gy- T(¢Y

vhere both time functions are equal for a given normal mode.

Substituting in 3.2.1 and 3.2.2

F" o (oFes&) T/p
£ " .'1—' o
aF+b6 - 7 - 4

ie. T «p*T = O

hence p represents the circular frequency of vibration,

Fm' = __Pz /a Vs + 4‘6) — 1‘2-3

and “ — ___p'a. (CF _/.dG) —_— 3-2.4
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The boundary conditions are that at 2z = 0, deflection, slope and

rotation are Zero; and at z = L, bending moment, shear force and torque

are zero, le.
F(aJ = F’@J = & (0) = 0
F"(LJ - F"'(LJ - GI(LJ = o

Taking Laplace Transforms of 3.2.3
Z(F™) = -pra L(F) - p < 2E)

ER 3 ZZFJ _SJ /_'('y — st FI@ - F‘l[oj - F'.'(OJ'—’-—P’“G..(@

— pr6 L)
F (o) ana F ' (o) are unknown, therefore they are replaced by Q

and R ( which are functions of t alone ) hence
sYZ(e) ~ s®R - € = -pPTa L] - pri L] — 325

Similarly, teking Laplace Transforms of 3.2.4, and replacing the

unknown Gl (o) with W ( a function of t alone):

s*Zl) — W = -pre ) —pro Ll — 3-2-¢

Solving 3.2.5 and 3.2.6 simultaneously for JZ (F) and £ (G) 1t is
found that

S0 —Spte @ —Pplc + Wpla
J@= 3.2.7
s‘ - Sl pl‘( -(-S"P"q, -fp"[lcl-‘c)
and
1 2 — W et a Lol
IF - S*@R -+ sl PHL «Sptid@ vlpld 3.2.8

$é «g¥piot + S¥p2a + p¢ (ast —bc)

Assume now that  ( F ) may be reprsented as

LE = HAs=x8 , & «d

+ Es tH
£2—oL s> B

st-7r
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where «, 2,y are the roots of the denomdnator of 3.2.8 and

A,B,C,D,E and H are constants which are determined by equating coefficients

of 87, n =0 to 5.
Hence JZ (F) is given by L(F) =

G(p*dwt] [S j_,, Q(p*« + L) j (Q@‘di-d
t et -A

¥ 3-a)(s* -&)

(B ) L) @pXe-p) Lst

R/p?ol 4ol] ! Ripd +B) /) B{p"d-oa

(/z-.cxa--.g '{S'-/.L * (gl &8y (s s>p] @ X B¢ &‘ j
L’("F"‘d [ j 4 W/ -pe) ) . {‘P"‘rl 10

(B ~sY ) [ sr— G- r8) Ls*-p) G -v¥g-s) “";_Ja.g

Similarly, as the denominators of 3.2.7 and 3.2.8 are identical,

(G) is glven by L(6) =

Q[-prec) s @(-p?c ) @/-p) I
oairs (ad * aatem Gl @i )

Rf-p2c) [ ), _R(-plc] 3 R (-piec) { ,j
(G-sdv- (s*-2)  &p)ep [s3-p)  @-¥Xa-¢) [S*-¢

Wipta «ot?)f 1],  _W(pa+8)f | ) tpasl) {‘_ ’j
E-aXvsy (5207 CopxXvm) G-p) &-xdp-y G-7

_— 3.2.10




Taking inverse Laplace Transforms of 3.2.9 and 3.2.10 and letting

cogl of "4(1— cogl /3qt ’-d*i— cotk 6”"-3
[A&] ?-J.)(ar-atj[u;.l ‘tjj * éc R ¥-R) [ o1 gh 3 j @'ﬁ)(ﬂ-&} ‘os.Y”:.Jj

[’3(9 = ol +od .z ﬁ..L./'h 2o 4 'g.xp"'- + P+ (r%ubyn
] (fz-.gx‘n,\ oL ™% o L% j -A)(2A) "*rwﬁ'*ﬁ (-8XB-¢)( ¥esn ?’*33 }’

[<t)]

—Pr8) [t " et uny Cpt) (B s pyy) v (£°4) "-su- b"j
(TE .1"’-;-.4. J"! A/ p)(a-p) s ﬂ"’_; Q ?)(ﬂ 3’) LA ,é

[D('S)] = P sl .!"llj -

Pte ol B ), -pic {&;i 22
ZA?-.LSCH] wsd 'y @G-8 B | ex B -y Y A1) L 25 3™ }
[=Gy] =

2" gy st 36 &+ -P ;3*‘::4 ¢ _Ple 7 g 3'"
- .Lfa W Mnesng)  @-pXwall ot s-u./-?* @23t HLE™ 5w 3™y

H(S)] 08 Y| s'u..l-/‘ e e [ﬂi‘ru.l.ﬂ" Lee [3'%‘5'-4-‘ )'t
() (v s cwﬂ W

" sty ) - Y Ey( ¥ am ¥

( wWhere the hyperbolic functions in the chaln brackets are chosen if

the root is positive, and the trigonometric functions if the root is
negative) then

F= alAg] «elig] +olcgy] — 221

and G = QCDQJ + RLEG}] + U[_“@)] _ 3212
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Applying the boundary conditions at z =L, the matrix equation
[2+g] [e'w] [c'@]l[®] |®
[r~w] [&"@] [c~@]|{® }=
[va)g [e'w] @] [(w] o

3.2.13

is formed, and the condition that p 1s a natural frequency of the
system is that the determinant of the coefficients of Q,R and W on the

left hand side of 3.2.13 is zero.

3.3 Torsional stiffness: methods of calculation

1. Elliptical apprc;ximati on
The exact stress function solution for the ellipse ylields

Ase
Actk%
and can be applied to certain non elliptical sections with

C =

reasonable accuracy.

2. Griffith's methods(l)
a). Gra;.:hi cal method
This is rather complicated and can be difficult to apply
but nevertheless good agreement is obtained with other more sophisticated
methods.
It is deduced that a first approximation may be obtained from the

formula

C = Ji Cﬁ[ln):.
E-) where p 1s the section
perimeter.




3¢

However, there are two important cases in whica tids formula
requires modification; the presence of snarp outwardly pro jecting
corners ( as in the triangle ) causes the formula to give a low value
to C. This problem is overcome by rounding off the corner with a
radius r which is a certain fraction of the ragius of the inscribegd
circle. The fraction depends on the angle in the corner in question
(1.) and a graph, obtained partly from known results anq partly from
soap film measurements was presented in the paper. After the rounging
off process, a new figure is obtained, with Area A; and perimeter Pl

and thus a corrected value of C is obtained from
¢ = 4o (28)°
: P
The second case requiring modification occurs when the ratlo

°/ 2a
P ( a= radius of inscribed circle )

is appreciably less than unity. This makes the value Cl too large

by an amount which is nearly the same for all sections having the same
value of the above ratio and hence a correction factor ( k ) is included

which is obtained from a graph of "/24 agalnst K.
P

The modified formula i1s now

k=
C, = L.CuA. 31.)
P

- As has been stated, this method is tedlous in its practical
application, but by employing curve-fit procedures for determining r

and K it may be programmed for digital computation. The graphs from




which the rounding off radius r and correction factor K are obtained

are included for reference in Appendix 5.

b). Direct formula
Griffith presented a formula applicable only to extremely
thin sections, which is exact for an infinitely long rectangular sect-
ion. It is deduced by considering that the longitudinal curvature of

a soap film on a long narrow slit may be neglected, giving the fozmu;.a

C = —g—fg:jld*- = %I ¢ = length of section.

half width at distance
x along the section.

<
1

(Fig. 3.3.1)

It is further stated that the case of ellipses suggests the modlf-
ication
A

z
Aec*

A = sectional area
| +

e

which allows for longlitudinal curvature of the soap film.
3. Approximation to the sector of a circle(a)

There exists an exact stress function solution ( in the form of a
series ) for the torsion of a sector of a circle, which may be applied _
to the thin isosceles triangle:

From tigure ( 3.3.2 ) it can be seen that the isosceles triangle
OCD is greater in area than the sector OAB but less than the sector
OCD, and tnerefore the torsional stiffness of the triangle should lie
in between tre kno'm values cf tie two scctors. Obviously, the differ-
ence between the torsional stiffness of the two decreases as tends

to zero.

EX 3



FIG. 3.3.1

FIG. 3.3.2, SECTOR LIMITS
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From elasticity theory

a = radgius of sector

where ¢$is the stress function given by

¢ = COl-v2(1-cp) . /6°1J1 ¥ o 22F
z [ o ) h%' &) (a) W+ zx)(..- 2¢)

It is found that terms in the series beyond n = 5 are negligible,
and therefore substituting the expression for @ in the equation for C

and integrating gives

-

C

h“’)]-"

from which C for the two sectors may be calculated.
4. Approximate stress function for a narrow isosceles triar:gle(3)

Duncan, Ellis and Scruton have obtalned an approximate stress
function for an isosceles triangle using Ritz's variational technique.
The expression produced for C is exact for th:a equllateral triangle
and the fractional error tends to vanish as <( tends to zero.

If y' be the torsional stress function for the section, then

we f[{4(3) 5 0y 2nf =

the integral

/
2C at —,“‘;'d - Ii‘iz[—z A’-(%::*_l)é.*gél)(n_%;)]-

33
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is stationary for small variations of ¥ which vanish on the
boundary.
It is assumed that for the section ifA Fig (3.3.1) bounded by
y = *mx

X = cC

v = mixt gl /cétj

l=mt

where f(c) =0

Appli cation of the calculus of variations results in the approx-

Imate stress function

peomme (- F))

{-mt

J bmteio

where r = - 2
2
from which
cC = 26 m3 e / &
R( 1-m2) "“‘f)
5. Alternative variational method(u)
The total potential encrgy of a rod of length 1, shear modules G,

twisted through an angle © radians per unit length is glven by

s [JLGT -G - weoe] =
R

_ 3.2

38
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where ¢6,,j) is the stress function which must satisfy

Poisson's equation for torsion:

2
z—f <+ iif = va = —ZG &
dar y> (3.3.2)
The usual procedure adopted 1s to determine a stress function
45@.,3) which satisfies (3.3.2) and has zero value along the boundary

of the cross section.

Nuttall(u), however, determines a function ¢w@.3) which has

zero value along the boundary and satisfies the equation

Vity = AT L) (3.3.3)

If N\, and ) s are eigenvalues corresponding to the eigenvectors

¢, and ¢ , ancapplication of Green's theorem gives,

-L‘f[% Ve - f Vﬁ""] olx oly = O"L"}‘st)_//‘?’/?’s olnoly
R
=f[¢, ¥ _ g, a_g,] s

. dn

as ¢, = ¢_< — ¢© along the boundary

If, therefore \,” 7 As  the orthogonal relationship

f[ @, P olncly = O L satisfied.

R




If the stress function is now expanded in the form
¢ = Z- A" ‘/V
| o

and substituted in equation (3.3.1) and ie.

_ _é ' x+ 2
U= ;_(,I-_EF AE N qus,d,.,& _ace{—n.,ffe ¢,o¢,.,5_]
the condition 2Y = p ‘that U shall be stationary provides
2A¢

the equations for determining A.:

ie. n, = 266 _@L[/ér el oy
R

»

where . ]/ 8 day =

The stress function ;é may therefore be written as

é = 2@9%[%f/¢,daﬁ]¢,

By this method, Nuttall obtalned solutions for rods of ( amongst

others ) equilateral and right angled isosceles triangular sections.

These exact solutions are further modified to produce Rayleigh-Ritz

approximate solutions for cross sections of any isosceles triangular

shape.

In each case the approximate stress function ¢ 18 written in the

form ¢= $ A. ¢, where , 1s given by one or other of the

following expressions:

¢v o, - 2 Sun Rhae CX Ty | Cul 2Wmhx .
(' f]) Y4ba 34 B

where helght = 3b, width = 2a




Py = cos| = é"+->x] cos [ 5= (o) J]

] ] af o]

n i

Each of these functions has zero value along the boundary, and
(3.3.4) is exact in the case of the equilateral triangle, while (3.3.5)
is exact for the right angled isosceles triangle.

The solution corresponding to (3.3.4) gives

C = 26 6416‘

(3.3.6)
at 34
and that corresponding to (3.3.5) gives
$S29¢ £a343 n=
- q¢ Cele —
CT e &L Ry e

Ré(c*+9¢ - =i at+96L

(3.3.7)

It is stated that in the range of < 60° equation (3.3.6) should
be used and in the range o > 90° equation (3.3.7) is more accurate.

For 60"« 4 £ Q0° the equations serve as a check on each other.

6. Empirical formula for C

Scholes and Sla.ter(S) commented that Griffith's formula for very

thin sections:

G <
C = :3__[ ?J‘olx Fig. (3.3.1)
o
or c: &T
3

€ended to glve results which are rather high, even after the




modi fication described previously. Hence an empirical formula was
presented which allows for the reduction in stiffness at the ends of

the section.

7 A a

The reduction in stiffness is assumed to depend on the end radius
( for a round ended bar ) or the radius of the local inscribed circle
( for a square ended bar ) Fig. (3.3.4)

The formula thus derived is of the form
C_._._ G[r/s —_ é'Jz (6,"'*6;“)}

where k) 1s a factor for round eded bars, and ko applies to
square ended bars.

From published data it is stated that

k; = 0.068

k, = 0.106

2

Thus for the thin i1sosceles triangular sectlion

C= C.,'[l_‘/_3 - 0-106 a‘:} where a = ragius of inscribed
) circle.

(b; or by = 0 for pointed ends )

G2



3.4 Posltion of the centre of flexure

2
1. Determination by scap film ana.logy( )

A force W is applied at the centre of flexure, ¢, of a section
symmetrical about the Y axis. (Fig 3.4./)
The general theory of elasticity is applied which glves the shear

stresses Xz, Yz by

Xa= W (l‘-”—_"_‘*v‘) (3.4.1)
"—gJ ) z 2(1+»)

Yz = - 2 (3.4.2)
I?kdj dx

in terms of a function V‘é":])

A Wy o+ [[byy - y¥) ooy

A f ua“ -+ __£ ——_1 ol
[.[ J 2 +2[l+p)) ('1343)

From the boundary condition, it is deduced that

¢ = L[y - U L eomst (3..0)
z(l*») 3

which gives the value of (. on the boundary of the section.

Suppose that a hole is now cut in a piece of metal such that 1its
projection on the XY plane has the same shape as the section, while
the %oordinates_ represent to some scale, the values of Y- given in
equation (3.4.4) Fig. (3.4.2)

If a soap film is now stretched over the hole with zero pressure

difference between the two sides and the z coordinates of the film are

&3
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sufficiently small in comparison with the x and y dimensions, then the
z coordinates of the film represent the value of at all points in
the cross section. Hence contour lines of the film may be drawn and
Xz and Yz determined.

During the soap film measurements, 1t was noted that if the section
is bounded by curves vihich are nearly parallel of separation t, then if
t is small cert;a.in lines on the soap film may be assumed to be straight.

Applying this assumption to the theory, Xz, Yz and ry become

T X LEEDEES
Yz = _5%% ] (“(”g)ds +c_)

L]
it

0" [[Jet=t) % <] (- 3]

where tl = (‘El_é

From ( 3.4.5 ), for a thin beam

. = .gl_ fl__,ﬂ_ oba - ff]:ld‘
'y 2‘“"77.[[3( ) f"%(s)

2. Determination of r-y by an approximate stress function
Duncan, similarly, derives the fundamental theory of

flexure resulting in the equations for the shear stresses: ( Fig. 3.4.1 )

L !
Yz = __" ¢
M‘ﬁ/ d
. w ¢ ot ol ( 3.4.6)
ST {T s v—4
k44 Ay} Z(l-qu

in terms of a function ‘t‘lé‘j)

“s
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A stress function fL is introduced where

= §¢- 8¢q) which vanishes on the boundary if
J 3
B = f +2 - v { g —a JJ
@) 8] ’5 (,( (=)

Also as V*¢ =zo

——— -

dﬂ . (3.4.8)

vin o+« dA?8 o

To obtaln the approximate stress function, £l is expanded in the

S oyl et f

form

and as /L vanishes on the boundary Xt

o = fly ~trf'G L4 fG) - -
Hence a = -lfa.éfz“—-pcz") /n@J

Substitution in (3.4.8) gives
- © 2 -0
AL i_ (_ ‘4\\/ ‘\(JJ - i_ 3¢ Alf h(j) - i— 2"(2“_1) D‘_Zh-l.fg.C’)
] ! []
+ 48" = o
(3.4.9)
= o
where D oy
Equating to zZero the coefficients of x2 and higher powers, the recur-
rence relation
f'n@J = 2(~IJ " bz""‘fl@)
(2&.’

The superscript in f’@) may noWw be omitted. The terms in (3.4.9)

(3.4.10)

independent of x become on substitution from (3.4.10),

D8 +202° ; ('lng”.)‘wl P S f(.” _Qf(ﬁ/ = o
an)!




Ce?

gving  figy= B[ L& +£f’“(-/J“"$“'Lf@j (3.4.11)
The function B(y) is the sum of a term dependent on x and one

independent of x.

1r 8, = > (a3 —g3)

é{l-fl-’)
and £, = -g_fj(-“{j
then %J = Ko + 6).

/

and the first approximation of f(y) arises from Bo on the right hand

side of (3.4.11)

I

From (3.4.10) the exact expression for JL is
- n-i “ 2. -2
n- 25 CJ (.."1"‘)5 f@
I (z)!
and the first approximation to L

(6-»-) f@W

is ey,

=i ti-a2)y (3.4.12)
2( l+b)

As r-y is the distance from the centroid to the centre of flexure,

then

Wry = —f]( xYy —g Ky) ol=oty
= = 2 3,
- p,m,y_/][—i("'“”‘,\ + 9 __:L’ +"———5'Q“’}°‘”‘:\

Yy Ax

3613
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[J1E-=dasg

and from Green's theorem

5J04%

jf(j ih—'n + 3% 3N ) dady =-zﬂ‘.nab.¢6 (3.4.14)

d

Therefore from 3.4.13 and 3.4.14, taking the first approximation

to SL as given by (3.4.12), as this is the limiting case for thin

sectlions,
Ve = 1+ 3 fﬂ"3°ﬁ
a =+ ) f F3 ,6

3. Approximation to the sector of a circle.

= =—r. Y ( 3.4.4)

Young, Elderton and Pearson(g) consider the torsion produced in
a sector by a force W applied at the centroid at right angles to the
axis of symmetry. ( It is not, of course strictly applicable to the
triangle, but has been included very briefly for completeness).

Tae torsion produced per unit length is given by
o = Wa

S-le- 1S

Where K is a constant dependent
upon ¥ and « , and may be
calculated from formulae given

in the paper.
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The torsional stiffness per unit length, by definition, is given

by C= T
e
where T is the applied torque
= \-J/a
©
- Wr
e = =1 (3.4.16)

Hence from (3.4.15) and (3.4.16)

[ 4 - Ca K
J Er

3.5. Torsional oscillations of asymmetric sections

It is not strictly valld to consider an asymmetric section exc.ecut-
ing purely torsional osclllations as the motion will always be coupled
wlith transverse motion in the direction of either or both principal axes.
However, if the predominantly torsional frequency differs from the
nearest bending mode frequency by more than 20%, the influence of the
bending mode is very small and the section may.be considered to be
oscillating in torsion alone.

Consider a section of cantilever beam of narrow isosceles triang-
ular cross-section at a point some distance from the root. Fig.3.5.1.

Under the action of a force F applied at the centroid in the
positive X direction and an equal and opposite force applied at the
centre of flexure, C, the section will rotate about C by definition,

as it 1s under the influence of a pure couple.

However, 1f does not follow from this static argument that the
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section oscillating in torsion does so about the centre of flexure.
Consider the equilibrium of an element of the beam of length dg
at some distance z from the root. (Fig.3.5.2)

Net. torque across the element
FY

3
- oo 4 as o6 = Ty
}J'— c

Rotary inertia couple ( applylng d'Alembert's Principle)
= b %‘_.f oly when k is the radius of gyration
F
about axis of rotation.

Net bending force across element
= “a_’ d_] = av = >LM

= ErL 2%
¥

Linear inertia
o= I N 43 az.xo
- Yk
Assume that the section oscillates about the centre of flexure C,
(Fig.3.5.3)

Taking moments about C :
on 'S g
mvgdyxo « mbe Oy - cotdy = O
but resolving vertically produces the impossible situation
MO(.S y"o = O

hence the section cannot be osclllating about C.

1
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Assume therefore that the section oscillates about the centroid O:
(Fig.3.5.4).

Taking moments about ©
Ml:'é.dj - C 9"4/_3 -'EZa.'“'dJ 5 s = O

but resolving vertically produces
Ez.: z“-uu ’{3 = o

which cannot be true.

In order to obtain a valid equilibrium condition, therefore, the
section must osclllate about some point which does not lie between © and
C. Suppose this point is at A ( Fig. 3.5.5 ) a distance € from O on the
side remote from C .

Taking moments about A

2 S oo ? n
m b, O @ +mEdfx, —CO '5{3 —ETx, .dj ('ﬁ"’é)a:9= o

and resolving vertically

EL »™ dj = l'hdf; ::r:, Yy (3.5.1)

Now, if © is small, cos & x/

)
x:‘l (‘,J - e-) 9””

Xy = 66 = Ep* &

and assuning the first mode of torsional oscillation ie.

2 .E_L _c_
P T Ul aky
O - O sw kK3

2L

then on substitution for Xo and X, 3.5.1 becomes




54

T A
EI/’J*éJL es'k:—f‘fj = Mo{xékl C é‘fu‘k'

7 —_— = 1
lée U™ by 2L
hence € =
ET >
B
S4L ‘ ':7

C ETLr*

b a

" lel

and it 1s shown in Appendix 6 that for a typlcal beam considered

in this work
N
< > ETx
loy Ll

and hence A lies at a very small distance from O on the side
remote from <C , and may in fact be considered to be coincident with

o

Deflection measurements across the section ( Chapter 4 and Appendix
8 ) confirm this, and frequency measurements indlcate that Icg should be

used in place of I,f in equation 3.1.
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CHAPTER 4

EXPERIMENTAL METHOD

To confimm the theoretical predlictions of frequency ang mode shape
of coupled torsion bending vibration, five beams of suitable size for
laboratory testing were manufactured. Four were machined from 43.5 mm x
12.7 mm steel bar and one from'duralwnin'designed ( App. 7 ) so that the
frequencies of the fourth ang fifth modes of vibration ( ie.3rd XX ang
1lst torsional modes ) coincided at a length between about 0.3 and 0.4 m.
These overall dimensions were sufficient to ensure that effects que to
shear geformation ang rotary inertia were negligiblefle)

For testing, a beam was clamped securely to a cast iron bedplate
mounted on a concrete plinth which could be raised about 10-15 mm on
four alr springs to minimise the effect of floor transmitteq vibrations.
This was found to be particularly necessary quring experiments to deter-

mine the deflected sheape.

4.1 Development of the apparatus.

Bright ( cold-rolled ) steel bar was foung to be ﬁnsuitable for the
beams as the release of residqual stresses during machinery produced cons-
iderable dlstortion. The beams were therefore machined from black ( hot-
rolleid ) steel bar or ! quralumin ', which go not distort. Steel was
chosen for the maJorits-r of the beat;ls for the purely practlcal reason of
ready availahllity.

For accurate work the means of excitation and the measurement of

response inust contribute as little as possible to the mass or stiffness of




5t

the beam. This prohibited excltation by any contacting method, and an
infini tely variable oscillator ( Dawe type 440 B ) driving a coil ( with
a power amplifier for modes above 200 Hz ) was employed here. ( The
means of ex'oita.tion may be different for steel ang ' quralumin '. In the
former case, the effect may be predqominantly ferrom;g:etie as ol;posed to
an eddy current effect. The core of the coil was not a permanent magnet
eng therefore an opposite pole was induced in the beam every half cycle
of the input resulting in two attractive pulses to the beam every cyclé.
In the case of the 'quralumin the excitation was by eddy curremts which
induced a like pole in the beam every half cycle. In both cases there~
fore the beam was excited at twice the frequency of the input to the coil.)

The response of the beam was indicated by a barium titanate piezo-
electric crystal glued near the root off the line of centroids. Tnls
detected all the modes satisfactorily ang the output was both displayed
on the Y axis of an oscilloscope and measured quantitatively using a

valve voltmeter.

The resonant frequency was assumed to be that at maximum amplitude,
as gamping was negligible, and was accurately det.)ernﬂ.ned by applying a
"Muirheag" gecade osclllator ( type D-890-B) to the X axls of the
oscilloscope and obtaining Lissajou's figures.

During the experiments to obtaj:n the mode shapes it was foung that
the valve voltmeter reading fluctusated by about 10%. This was unsatis-
factory as it prodquced scatter in the reagings ang r;lay have been caused
by "beating" ie. the driving frequency not coinciding exactly with the

resonant frequency, or variation in the level of the power supply to the




coll. Once the resonant frequency hag been determinedq, the problem was
overcome by using the Muirhead, which permitteqd much finer frequency
control, to power the coil in place of the Dawe.

Initially, attempts were mage to measure the deflection at the apex
and base using ! Vibrometerj' inguctive transqucers, but it was soon
found that thes;e were being-influenced by the magnetic field generated
by the coil. This effect was independent of the beam material and only
slightly dependent on the position of the coll relative to the trans-
ducers. A method of excitation similar to the 'tuning fork' principle

l - -
(1%) was investigated, in an attempt to isolate the ex-

used by Slyper
citer coil from the transdueers,'but the response obtalnable was insuff-
lcient angd the method was much less easy to operate.

Any contacting method of deflection m_ea.surement would be unsatis-
factory as it woulg produce locallsed alstortion. The method employed
was therefore required to be non-contacting, and in orger to detect
torsion/bending coupling, be able to measure the geflection along both
gdges of the beam, and detect any phase change between the two edges or
along elther edge.

Carnegi e, Dawson ang Thomas(al) describeq a method which employed
a stroboscope ang travelling mlcroscope, ang used it to determine the
deflected shape of the tralling edge of a pretwisteg aerofoll sectioneg
beam. The method, though, had the disadvantage that it coulq not dgetect
any change of phase.

Capacitive probes, however, are unédffected by a magnetic field, and

it is shown below that a change of phase was easlly detected by




di splaying the carrier signal to the probes on the oscilloscope.

In principle, the probes Were mounted with the faces parallel to
the surface of the beam. A capacitance was thus formed between the
beam ( earth ) ang the probe itself. Variation of the separation of
the probe ang beam vari ed the capacitance which modqulatedq the 7 Volt

(wAYNE -G )
( r.m.s ) 50 KHz carrier signal from the supply meter (,Type B 731 B )
to give ( according to the size of the probe ) a static, or mean
dynamic, distance reading ang peak to peak amplitude of oscillation
of the structure. To give an accurate static geflection the face of
the probe must be parallel to the structure surface, but it was found
that the amplituge readings were not affected by small degrees of non-

alignment.

4.2 Preliminary tests. ( Appendgix 8 )

Using a single probe, the following preliminary tests were mage:

1). Axis of torsional oscillation. Fig. A 8 (1)

This experiment was performeq to confirm the conclusion
drawn in part 5 Chapter 3 ( p. 49 ) that torsional osclllations take
place about a point very close to the centroiq.

A single probe was moved across the beam surface at right angles
to the beam axls and its position across the surface determineg by a
verni er depth gauge. Amplitude readings taken at small intervals across
the surface confirmed the theoretical conclusion ang also illustrate the
linearity of the deflection across the surface. This information was

requlrej so that the computer results in terms of the getflection of the




centre of flexure and the section rotation could be related to apex
and base deflections.

2). Relation of piezo-electric crystal response to probe amplitude

reading Fig. A 8 (2).

The purpose of this test was to find the amplitude which
could conveniently be obtalned within the limits of the exciter coil.
From this the probe with the most suitable full scale deflection was
selected. Also, had the results not been repeatable, ie. had they
shown excessive scatter, it would have shown that the piezo~electric
crystal and voltmeter system would be unsatisfactory as a monitor of
constant amplitude.
The results show that the sensitivity of the crystal was satis-

factory.

During this experiment the resonant frequency was found to be

invariant with amplitude.

3). Position of exclter coil.

For constant piezo-electric crystal response the probe
amplitude reading was found to be invariant with coil position ( App-
endlx 8 ). The input power to the coll to produce a given response of

course varied considerably with coil position.

4.3. Measurement of base and apex deflections.

Two probes were uscd, supported in a mounting block above the beam
as shown in Fig. 4.1. Both were connected through a junction box
( JBT51B ) to the vibration meter.

The bottom surface and side A of the probe mounting block ( Fig.

4.1 ) were ground and the holes for the probes drilled perpendicular to

$9
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the bottom surface in positions such that a line Joining the centres
was at right angles to side A. Using slip gauges the probes were
inserted and clamped so that they protruded equally from the underside
of the block.

With the beam to be tested clamped in position, a ruler was mounted
slightly above and to one side of it. The ruler was set up using a
travelling microscope so that both probes were above the beam with side
A in contact with the ruler and the distance d from ruler to beam edge

constant to within 0.1 m along the beam.

4.5.1 Support of the probes.

The method of supporting the probes must meet the following
requirements ( Fig. 4.2.).

l. Freedom to move along the Z axls in order to traverse the beam
length.

2. Fine rotational adjustment about an axis parallel to Z so that
the probes are an equal dlstance from the beam surface.

3. Fine rotational adJjustment about an axis parallel to Y so that
the probes are perendicular to the beam surface.

4, Fine linear adjustment in the X direction to bring both probes

within thelr operating range.

For the modes of interest to this work the maximum deflection wés
approximately 75 x 10"6m, hence probes of 125 x 10m full scale
deflection were used, necessitating the fineness of the adjustments

described above.
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All the requirements were met using a precision variable height
clamp ang attaching the probe block with variable angle clamps
glving the fine rotational movement. The whole clamp assembly was
then placed with the side A of the block in the requireq position
against the ruler, and the agJjustments made so that:

1). The static deflection reagings for each probe were within
10% of full scale deflection of each other. This also ensures that
th; probes are parallel to the XZ plane.

2). The underside of the block was parallel to the beam surface,
ie. parallel to the YZ plane. Preliminary tests showeg that vibration
measurements were ingependent of probe rotation about an axis parallel
to Y (or Z ) within the limits of visual accuracy.

3). The static geflection of each probe was approximately 80%
of full scale deflection. This distance was governeq by rules des:-
cribed in the probe operating instructions, but in general the ampl-
itude of the motion must not be such that the beam comes into contact

with the probes.

Both the top surface of the cast iron beqplate ang the bottom
surface of the precision clamp were machined ang the whole assembly
( having falrly substantial mass ) was found to be perfectly stable

in all positions.

4.3.2 Change of phase.

The vibration meter glves a girect reaging of peak to pesak
amplitude of each probe, but with this information alone it was

impossible to distingulsh between cases A ang B below:
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da__stATic posiTion

Beam surjaee

\

B d, | d; STHTIC DoSiTioN.

In each case the probe readings woulgd be d; and dp as ingicateg,
but in case A there is a change of phase. In pure bending or pure
torsional vibrations it is known intuitively which type of motion is
taking place, but for coupled motion the distinctions are blurreg
ang the exact type of motion by no means obvious.

Aggitional informatic.m was obtalned, however, by glsplaying the
pl ezo-electric crystal output ang the amplituge mogulated 50 KHz of
the carrier signal to the probes on an oscilloscope. The amplitude of the
carri er signal 1s proportional to the separation of the probe ang
structure, ang was therefore amplituge mogulateg at the frequency of
oscillation. From thi; the phase may be obtaineq and an arbitrary

convention agopted:

/\/\/\/ w—piezo -electvic  erystal
oubput -

/\/\/\/\q—pge‘)o - electvic crysh:(

oubtput

D.
ayp— Moclulatedd ceavvier slgna.l.-
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C ang D vere said to be in phase and out of phase respectively,
and hence the magnituge and phase of the displacements at the apex ang
base of the triangle were determineg.

The amplitude of vibration must be helg constant for reagings to
be free from scatter, ang some initial trouble in this respect has been
mentioned ( p. §6 ). It was found, though, that provided the reaging
was taken when the monitor voltmeter was at its predetermineq value to
within visual accuracy the results obtaineg were repeatable and as can
be seen ( Chapter 5 ) almost completely free from scatter. It woulg be
an improvement to have the amplitude held constant automatically by a
sultable control loop, which woulg conslgerably shorten the experimentel
time,as great care must be taken to ensure that the monitor signal is
exactly set on the predetermined value. The refinement of the control

loop is of course not necessary.
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CHAPTER 5

RESULTS AND DISCUSSIONM

5.1 Determination of material properties ( Appendix 9 )

Suitable specimens were manufactured from the black-bar steel
for the determination of Young's Modulus E, the shear modulus G,
Poisson's Ratio v , and the der-lsity/o .
Der—lsity
Th e density was obtalined by accurately shaping and grinding
a rectangular block which was wel ghed and measured.

This gave 0 = 7.8 x 10° Kg/m3

Young's Modulus and Poisson's ratio

1). A tension test using an extensometer and 'Denison' type T42B4
testing machine gave the value E = 2.09 x 10'! N/n2. All the experim-
ental results were analysed by linear regression. ( Appendix 9 ).

2). A similar test to the above, but with the extensometer replaced
by two foil straln gauges on the princlpal axes gave

E =2.09 x 10! N/w?

Yy =0.28

Shear Modulus -

1). A torsion test using a torsiometer with the load measured by a
spring release on a torque arm gave G = 8.49 x 1010 N/m2

2). The above test repeated using a B.P.A. load cell ( type D90 )

and transducer meter ( type C52 ) in place of the spring balance :
N/m2

G =8.53x 1010
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However, E, v and G are interdependent and the values above are not
compatible.

The above value of E must be accepted as correct, as both the
strain gauges and extensometer agree. The Denison testing machine con-
formed to Grade Al of B.S.S. 1610 ( 1964 ), and its accuracy was confirmed
using a calibration proving ring.

Similarly, the values of G obtained by the two methods are within
0.5% of each other, which is acceptable.

) Attempts were also made to obtain G by measuring the frequency of

torsional oscillations of rectangular sectioned beams of differing thick-
ness: Appendix 9.

Length = 0.30 m.

Width = 0.04334 m.
2
THICKNESS G, N/m
0.01275 8.21 x 20™°
10
0.00948 8.33 x 10
0.00640 8.44 x 1070

As the thickness decreases, the calculated G appears to converge
to the static value. This indicates that the relative improvement of the
root fixing as the thickness decreases yields values of G which are closer
to the static value.

Accepting, therefore, the values of E = 2.09 x 10]':L N/m2 and

2
G =8.53x 1010 N/m  glves YV = 0.23, which is lower than expected.




Poisson's ratio is, however, extremely difficult to obtain directly

by experiment, and little confidence is attached to the value of 0.28

given by the strain gauges.
It is concluded that, therefore, the values

E =2.09 x 1011 N/m2

v =0.23
¢ = 8.53 x 10°° N/
pP=T1.8x 103 Kg,/m3

must be accepted.

5.2. Variation of torsional stiffness with apex angle.

In this section the terms " in defect " and " in excess

" are used

when a value is respectively less than or gfea.ter than a given yalue.
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The calculations based on the two sectors of a circle ( Fig. 5.2.1 b )

are exact solutions and, particularly at small apex angles, give a use-

ful standpoint for the comparison of other methods.

5.2.1

Figure 5.2.2 is plotted by varying the apex angle such that the

cross sectional area is constant ( at an arbitrary value ).

Thi s means
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that the volume of material per unit length is constant and the graphs
represent the variation of torsional constant with shape alone.

For apex angles of less than 3° it 1s seen that Nuttall's method
and the elliptical approximation are in defect of the sector—]imits
by 38% and 29% respectively. All other methods are in good agreement
to wi;.hin 5%: In particular, Scholes and Slater, and Duncan, Ellis
and Scruton.are only Just outside the exact range, the discrepancy
being less than one part in two thousand.

At the other end of the range, o = 60°, both Muttall and Duncan,
Ellis and Scruton give exact solutions for the equilateral triangle.
The elliptical approximation is in excess of the eract solution by
14%, and Griffith's graphical method is in defect by only 4.5%.
Ob\.riously the forr;lula.e inteded for small angles only are invaiid here.

In the range 2° 2 L < &° only Duncan, Ellis and Scruton
remalns exactly within the sector limits, but Griffith's graphical
method and Schole‘s and Slater's formula is seen to be much more
accurate than Grif‘ﬁth's for sn]all apex angles: at o = 10°, Schole's
and Slater's is only 3:3% above the accepted range, whereas Griffitk:'s
is almost éo% above. Nui-'.tall and the elliptical approximation give ‘
very low valx.zes throughout .

Above o« = 10°, the section can no longer Justifiably be termed
thin, and Scholes and Slater's formula, while remaining closer than
Griffith's, hecomes increasiz?lgly inaccurate. Griffith's graphical

method and the formula by Duncan, Ellis and Seruton remain within the

bounds of the sectors for increasing « up to o = 60°. Throughout




200 £ L = 30° the elliptical approximation is probably within 5%
of the truth, being in defect for << 20° and in excess for o > -300.
Nuttall remains in defect of the lower sector limlt by over 5%.

In general, therefore, as far as isosceles triangular se;:tions are
concerned, the formula due to Duncan, Ellis and Scrjuton is probably most
accurate throughout the total range. It is stated by Nuttall(u) that his
formula is probably in defect by 4% when o = uo°: applying this correct-
ion ylelds a value which is within‘o.s% of Duncan, Ellis and Scruton.

Throughout the total range Griffi;.h's grapnical method remains with-
in 5% of Duncan, Ellis and Scruton, whicl;, in view of its claimed

general application would inspire confidence in its use when considering

more complex cross-sectional shapes.

5.3 Variation of centroid/centre of flexure distance: r

h's

o] (o] O o

o = 14.98 13.10 9.75 6.86
GRIFFITH 0.528 0.529 | 0.550 | 0.5%
DUNCAN 0.725 0.729 | 0.755 | 0.727

10° SECTOR OF - - 0.455 -

CIRCLE

YOUNG, ELDERTON 0.784 0.789 { 0.8%2 0.909
AND PEARSON 0.829 0.803 | 0.914 0.919

FIG. 5.3.1, VALUES OF ry (x10"> m) CALCULATED BY EACH METHOD
( WiERE APPLICAHLE. )

Griffith's and Duncan's formulae are specifically for thin sections,

in which case « = 14.980 and 13.100 are probably outside the range.




With that limitation, both are independent of o/ , whereas the formula
due to Young, Elderton and Pearson ( from which the values of ry for
the limiting sectors are calculated ) is dependent upon « , and it is
seen that this formula gives higher values of ry than Duncan's or
Oriffith's throughout the range. The discrepancy decreases ‘;ith
1nerease-1n o .

Griffith states(6) that by soap film measurement the centre of
flexure of a 10° sector of a circle is 0.78 of the radlus from the apex.

Tris is applied to the 9.75° triangle giving ry = 0.455 x 10'2m.

5.4 Effect of coupling on beam frequencies and mode shapes.

Introduetion.

If two independent vibrating systems having nearly equal

natural frequecies are coupled together, the resulting system has one
natural frequency above the higher and one below the lower of the two
uncoupled frequencies.

This is readily demonstrated in the case of the simple spring-mass
system ang its extension to the coupling by pretwisting of XX ang YY
direction bending modes of rectangular sectioned cantilevers is illustrat-
ed specifically by Rosard and Lester(ls).

The present results show the same effect in the case of coupled
torsion/bending modes.

A total of five beams are investigated: one symmetrical about the
X axis ( Fig. 5.4.1 ) and four of varying apex angle symmetrical about

the ¥ axis. The frequency results are presented as a logarithmic plot
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( to base 10 ) of frequency against length in the region where the

uncoupled first torsion and 3rd XX bendlng modes coinclde.

\(/_ couplead mooles Fig. 5.4.1

zog,, ()

Uncouptesd Ist Torsion

In the case of the beam symmetrical about the X axis, ry = 0 and no
coupling exists between the 3rd XX and list torsion modes. Hence prog-
ressive shortening of the beam from point 3 to point 1 yields the uncoup-
led straight lines of 3rd XX and lst torsion. ( Fig. 5.4.2 ).

In the cases of the other four beams, however, ry # 0, and the
frequencies are separated around the critical length ( point 2 Fig. 5.4.1)
into two curves representing the fourth and fifth modes of the beam - the
first three being lst XX, 2nd XX ang lst Y¥Y, in ascending order.

These fourth and fifth modes possess both 3rd XX and lst éorston mode
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Mode shape presentation and normalisation.

The output from the eigenvalue solution routine gives the deflection
of the centre of flexure and the rotation about the z axis at the nodes
of the elements. This must be related to the experimental deflections
of the apex ang base.

There are two alternatives. The deflection of the centre of flex-
ure and the rotation of the section may be calculeted from the experi-
mental apex and base deflections and the ratio deflection / rotation
calculated for each point. Provided the units of deflection ang rotat-
ion agree with the theoretical, this should correspond to the theoretical
deflection / rotation ratios. Alternatively, the theoretical results
may be converted to apex and base deflections and both theory and exper-
iment plotted according to some normall sation convention.

The latter procedure, apart from presenting a better visual picture,
is preferable mathematically as the first involvessubtracting two exp-
erimental observations which may be nearly equal. Any error may thus
become a substantial part of the result:

For the calculation of the deflection / rotation ratios, the deflect-
ion is calculated by taking a welghted average of the apex and base
readings. In the worst case, assuming the error in both readings is +€

then the deflection § is glven by
S' = é|’¢| +kx, + @'*kl)é
where 3¢, angd X,are the apex and base deflections and &, and é,_

constants such that

b+ & =/




]
]

é.k., -+ é,_x,_ + €

The rotation is calculated by taking the difference, and in the
worst case the errors are opposite in sign:

X, +€ 3 >, - €
rotation ¢ = X, -x; + 2€

Hence the final error may be twice the observational error, and
would be particularly significant where >, &%, .,

The normalisation convention adopted initially was that of making
the apex deflection at the tip of the beam unity. In most cases this is
satisfactory, but can give rise to erroneous results if that deflection
is very small. Hence the improved method of making the sum of the
modull of the apex and base deflections at the tip unity is adopted for
all the mode-shapes presented:

If x,, and X,,are the tip apex and base deflections then
(et K= Ix,.,[ *le'r/

whi ch normalises the other readings to

L Y
K K

In the 2z direction the length is taken to be one unit. ( Appendix 10

shows the calculation of the theoretical apex and base deflections. )

Comparison of theoretical and experimental results

The results obtalned from the finite element solution were identical

( $o within 0.5 Hz ) with those obtained from the Laplace Transform




theory, releasing the former program for use only when both the freq-
uenci es and mode shapes were required: at poilnts 1,2 and 3 ( Fig. 5.4.1 ),
thus economising on computer time. The solution system of the finite
element theory is part of the computer software library and both the
eigenvalues and el genvectors are produced automatically.

The first theoretical results assumed a value of E = 2.09 x 10']"]'N/m2
and the value of C calculated by the formula of Duncan, Ellis and Scruton
assuming G = 8.53 x 1020 N/m2. This gave an agréenent between theory and
experiment of + 1.78% to - 1.9%% in 3rd XX modes over the four beams for
whi ch ry 40, but at.+ 4,07% to-- 5.9% based on Duncan, Ellis and Scruton
the range of error of torsi;nal modes-is greater. It was suspected that this
discrepancy could be due to the root fixing and on completion of all the

tests an examination ( as far as possible ) of the variation in experiment-

al error with length, thickness and mode number was made.

AAEBx Ang oL° 6- 56 q-7s t3-10 1679
anen A ~* | o-que v 146 wvo" ¥ 1-§2 wio™? 2.0% xio"¥
st %x +S8-19, +2-617, (“:flu.) -2-79
2nel KX +2:99, -0-149, 45 —1-657, Flé §-u3,
el XX +1-79 - 1-93% —0-02%, —1-76%
Ist Torgnna < L-039, +1-139, +0-339, -599

The table ( in Fig. 5.4.3 ) shows the variation in experimental
error ( positive when the experimental value exceeds the theoretical )
averaged over the lengths taken for the beams vibrating in the first

three XX and lst torsion modes. The variation with length was less




than 0.5% and there was no correlation of error with length. This
indi cate; consistency of clamping for each beam.

However, for the bending modes it can be seen that there is a sign-
ificantly greater variation in error with mode number. This applies to
all the beams except the thickest where the values are generally low and
closer together.

Similarly it can be seen from all the rows of the table that the
error algebrai c;ally greater for the thinner beams, decreasing algebraic-
ally with increasing thickness. The bending modes of the two beams in
the middle of the range are anomalous in this respect, but there was an
error in the manufacture of the beam of o = 9.75° which necessitated
the root being trimmed down on a grinder after the machinéng of the
triangular section. This was not thought to be significent before test-
ing, but may account for the anomalous behaviour here.

It is suggested therefore that the root fixing becomes less effect-
ive with higher modes, and with increasing thickness. In retrospect
therefore, duralumin would have been the better material for all the
beams as the root reaction to a given cantilever deflection is much less

for a beam of duralumin than for one of steel.
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At some distance from the critical point ( points 3 or 1 ) the effect

of one mode on the other due to coupling 1s very small, and an error in
elther frequency compared to the theoretical prediction based on measured
values of the material properties does not produce a significant error
in the mode shapes. In the critical regi.on:'-f).vhowever, for accurate
prediction of the mode shapes the experimental and theoretical estimates

of the critical length must be within 1%.




To show therefore that good agreement of the mode snapes can be
obtained, 1t is thought to be justifiable to choose an effective value
of E based on the experimemtal frequencies at lengths which differ
conglderably from the critical. Similar reasoning applies to the sel-
ection of an effective value of the torsional constant C, which incorp-
orates any error in the determination of G and the inaccuracy of the
method of calculation. Choosing an effective value of C is therefore,
in the absence of an exact solution, more easily Justified but the
variation required of C is greater than that of E. The two mid-range
beams o = 9.75%, 13.1()o both have effective values of C which are with-
in 1% of the sector of circle limits, but the thinnest beam gives a
valu.e 7.3% ebove the 1limit, and the thickest a value 10.8% below.

Assur;ﬂ.ng therefore the effective values of E and C ;hown ( Fig.
5.4.4 ) the frequency / length graphs and modal curves for each beam

were drawn for varying Pye

BEAM EFFECTIVE, EFFECTT c C,SECTOR
oL = E x 10 N /i C N /m by DUNCAN of CIRCLE
ELLIS and SCRUTON

6.86° 2.16 28.67 26,48 26.46
26.65

9.75° 2.01 8. 47 83.57 83.41
84.63

13.10° 2.09 164.5 163. 42 163.12

167.5

14.99° 2.01 207.00 23474 233.59
241.75

Measured E = 2.09 x 101! N/m? Fig. 5.4.4

7%



79

Di scussion of results

Freguency [ length curves.

Figures ( 5.4.5 to 5.4.8 ) show the effect of coupling on the

frequency of 3rd XX and lst torsion modes of the four beams for which
y % 0.

With the exception of the fifth mode at lengths which are less than

r

the critical, which shows a decrease in frequency with increase of ry,
the figures s;how that the frequency of the fourth mode is reduced ang
that of the fifth mode is increased with increase of ry. This separ-
ation effect decreases with distance away from the ciitlical point. The
anomalous behaviour of the fifth mode at the shorter lengths cannot be
readily accounted for as the frequency of the next highest torsional
mode is almost three times that of the mode in question, but the effect
must undoubtably be due to coupling. The figures also show that the
true value-of ry appears to be less thah that given by elther Duncan's

or Griffith's formula. For the beam of apex angle 9.75° the experim:

ental .value-of ry deduced by Griffith gives close agreement ( Fig.
5.4.6 ). This is discussed later with relation to the mode shape curves
and the views of other authors.

The separation due to torsional coupling i1s not as significant as
the separation of adjacent bendlng frequencies due to pretwist. For
the beams considered the change in elther frequency is not greater than
2%, whereas for in rectangular sectioned beam of dimension ratios 1% x 4
x.ll the frequencies of the second mede in the flexible direction and

the first in the stiff dlrection are nearly equal, and an applied pretwist

of 40° decreases the lower frequency by 25% and increases the higher by
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30%(15). The effect of torsional coupling is therefore small compared

with the effect of prett;rist.

Mode shape curves

Figures 5.4.9 to 5.4.21 show experimental and theoretical mode
shape curves for each beam at points 1 and 3 ( Fig. 5.4.1 ) either side
of the criticel length and at point 2 in the critical reglon itself.

At point 1 the fourth mode is predominantly torsional but a slight
introduction of 3rd XX bending may be seen in the apex and base deflect-
ions ( 5.4.4 to 5.4.9 ). Similarly at point 3 the fourth mode is pre-
dominantly 3rd XX bﬁt the presence of torsion is shown by the edge def-
lections not belng coineident ( 5.4.12 to 5.4.14 ).

In the critical region 2 the fourth mode shape is a hybrid of Zrd
XX and lst torsion: both lines have a marked 3rd XX characteristic but
are not coincident, indicating torsion. ( Fig. 5.4.15 to 5.4.17 ). It
is therefore possible to see a progressive change in the fourth mode
shape from lst torsion to 3rd XX with increasing length. ( 5.4.18 ,
5.4.19 ).

Comparing the fourth and fifth modes a t a given length and noting
that the apex line 1s drawn so that it lies more on the positive side of
the 2 axis, 1t 1s seen that there is a change of phase between the two
modes. This is demonstrated by all the figures ( 5.4.9 to 5.4.17 )

where i1t is shown that the fourth mode consists of A superimposed upon

opex
Ist Eovsion
z

bage .

B‘ Fis5 5'4.22-

2er,




des

N

Fig. 5.4.22

whereas the fifth mode consists of A superimposed upon C.

£\,

besg

Fig. 5.4.22

To show the variation of the mode shape with the degree of coupling,
the theoretical curves are drawn for different values of Py. From these
i1t is seen that for a given mode, if the coupling 1s increased by in-
creasing ry the effect 1s to increase the proportion of the other mode
in the deflected shape.

Graphs 5.4.9 to 5.4.11 for example show the fourth and fifth mode
shapes at lengths appreclably less than the critical. The fourth is
therefore predominantly torsional but with evidence of 3rd X{ coupling.
It can be seen that increasing the degree of coupling increases the
bending characteristics. Similarly, in the case of the predominantly
3rd XX fifth mode at lengths less than the critical, amincrease of ry
increases the separation of the apex and base deflections indicating a

' greater proportion of the torsional fourth mode.
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¥ith the possible exception of Fig. 5.4.15 in which the theoret-
ical results based on ry calculated by Duncan's formula agree more
closely with the experimental, all the mode sr-lape and frequency /
length curves indlcate that Griffith's formula glves a better approx-
imation for r_ than that due to Dunc;n. The same conclusion is drawn
by Scholes and Sla't'.er(5 )who state that the formula by Griffith glves a
better fit to their static results.

The present curves show, though, that for each beam the true value
of ry is less than that predicted by either formula: in the case of the
beam of apex angle 9.75° the experimental value of ::-y deduced by Griffith
gives close agreement of frequency length and mode shape curves. Morley
( communication to 22 ) mekes an interesting comment in stating that for
propellor and compressor blades the theoretical shear centre lies bet-
ween the centroid and the leading edge, but measured shear centres tend
to lie between the centroid and the trailing edge. Approximating the
thin 1sosceles triangular section to an aerofoil such that the base of
the triangle corresponds to the leading edge, there may be a general
conclusion to be drawn that measured shear centres appear to be dlsplaced

away from the leading edge towards the tralling edge - possibly due to root

effects.

5.5. Error Analysis.

5.5.1 Frequency.

This section considers the variation in observed frequency due to

error in the measurement of physical guantities.
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Bending modes

_ ?-2s8) [ Eat
Wy, = o) vy
2zt y

Error in L
This 1s most likely to accur in setting up the beam in the clamping
block, but may also be introduced by failure to square off the tip after
reducing the length.
In the worst case, the error &, 1is estimated at 0.5 mm over a
length of 300 mm.
L€, = £ 0.166%

Hence error in LY = 0.3%

Error in /&Yy

Variation of micrometer readings over total length of beam showegd

an error of + 0.36%

Hence error in / Yy = % 0.86%

N !
Error in —

/P’

Variation in dimensions of rectangular block with surfaces groung

= 0.1%
Variation in volume= # 0.3%
Mass of block accurate to within =+ 0.001%

Hence error in -+ 0.15%

i




Accuracy of decade oscillator

At frequencies producing stationary Lissajou's figures with ref-
erence to the internal crystal oscillator the aect?traey is specified at
+0.005%. At other frequencies the accuracy is specified at =+ 0.05%.
In 1.'.he worst case therefore the error in frequency «w may be -
+(0.33+0.86 +0.15 +0.05 ) %
- 11.30% '

Torsion modes

Error in L

As before the error 1s estimated at + 0.17%

1
Error in /g

Area A = £ ( wigth ) x ( height )

Error in width, as before, = + 0.86%

The error in the height of the cross section = *1.468 which is
fairly large due to the difficulty of holding the beam acct..lrately during
tihe machining of the narrow angle along the apex.

Error in A = +£(1.46 +0.86 ) &%

=+2.32%

]
Error in j-f‘ =21.16%

. f 2
Error inyk ¢g.

kzcg' = kK°xx + kayy

As kaxx >> kay'y then. for the estimation of error

KPog > Koxx
Hence the error in Jkacg = £ 1.46%

~r PP
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The total error in &,, is therefore

+(0.17 +1.16 + 1.46 + 0.05 )% includlng possible error in
- the decade oscillator

= % 2.84%

The error in torsion is much larger than that in bending principally
because of the large error in the helght dimension. In practice, though,
with the small apex angle, the amount of material involved is very small
and the error 1s not therefore as significant as the above calculations

imply.

5.5.2 Mode shape error analysis

A quantitative analyslis of the total error in the mode shape
readings wou.ld serve little general purpose as the error varies with
each figure. This is inherent in the method of normalisation, and it
has been shown that the method of normalisation is chosen so as to min-
imise the error in plotting the shapes.

The good general agreement and lack of scatter confirms the accept-
ability of the method of probe support, the alighment of the support
block and ruler using a travelling mlicroscope, and the sensitivity of

the probes.
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CHAPTER 6
CONCLUSTONS

The assumption of a cublec polynomial variation in torsionel displace-
ment along an element in the finite element idealisation has been shown to
be valid in the study of coupled torsion / bending vibration. Also, the
accuracy and stability of the Laplace Transform solution is adequate pro-
vided double precisipn arithmetic is employed.

Cold rolled stecl bar cannot be used for the manufacture of beams
for testing because of distortion due to the release of residual stresses.
Hot rolled steel bar and duralumin ( neither of which distort ) are
equally sultable for electromagnetic excitation and response measurement
by capacitive probes, but guralumin is preferable as a better encastré
root fixing in steel may be obtalned.

For constant cross sectional area the torsional stiffness of an
isosceles triangular cross-section increases with apex angle . All the
methods of calculation considered give an approximately linear inerease up to
o = 10°. Within the range 27 < o < 6° the formula by Duncan, Ellis and
Scruton is probably the most accurate, but the graphical method by Griffith
is within 5% of the former, and is clalmed to be applicable to any cross-
sectional sk.lape. It should therefore give at least a good first approx-
imation to the torsional stiffness of more complex sections.

The static result:that an asymmetric cross section of a cantilever
under the influence of a pure couple in its plane rotates about the centre
of flexure has been shown to be inapplicable to an asymmetric section per-
forming torsional oscillations. As far as it can be stated that an

asymmetric section performs pure torsional oscillations about a point,
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the point has been shown to be on the axis of symmetry ( for an isosceles
triangular section ) at a small distence from the centrold on the side
remote from the centre of flexure. The displacement of the point from
the centrold has been shown theoretically to be extremely small and the
point may be assumed to be coincident with the centroiqd.

As with the coupling of bending modes by pretwisting, the effect of
coupling on the frequencies of othervise distincet torsion and bending
modes whose frequencies are within 10% of each other is to separate the
two frequenclies into coupled modes. '.i'hese coupled modes both possess
torsion and bending characteristics.

The separation increases with increase on r_ and decreases away

y
from the critical length. It is not as significant,as far as the usual
turbine blade shape is concerned ,as the separation of adJjacent bending
frequencies due to pretwist.

For the beams considered, the fourth mode changes from a pred;)min-
antly first torsion mode to a Zrd XX bpending mode with inecrease in length,
whereas the fifth mode does the reverse. At one particular length, there-
fore, the fourth and fifth modes must consist of torsion and bending
characteristics in equal proportions, but may be distinguished by a
phase change of 180° in the torsion / bending combination.

The overall conclusion on the position of the centre of flexure,
drawn from the frequency / length ang mode shape curves, is that Griffith's

formula gives a better approximation for the cemtroid / centre of flexure

coordinate than that que to Duncan, Griffith's experimental value of ry,
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deduced by soap film measurements gives particularly close agreement.
The results do, however, support Morley's observation that experi-
mentally determined positions of the centre of flexure are dlsplaced

further from the leading edge than the theoretical.
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APPENDIX 2

The effect of fibre bending on the first torsional mode

[V ]
-
-
-~

3
g

l\f L

The factor (F) by which the first torsional mode is raised when

fibre bendlng is taken into account is given by Carnegie (22) as

2 o1
F = // -+ —___EE ¢
LclL*
.‘L
where C, = L[ 42,3, and is constant for the
4 section.

|9

In this case t = f(b)

Suppose t = mb + k where m and k are constants

= - 24 ¥
wh 0 m("3hoy) <
and at h, ."Z’ = h\(él\—:-,} +4
. — [ R
k= o~ (Fheg)
and m = L
24
hence t = _"‘14-4_11\)_‘_“,
24 —l

24




The total thickness at a given value of b = 2t as the section is

symmetrical
2t = Lo A (Z-
2 3 W o+ Wy
4
= A.b +B for brevity
wiere A=Y and B= V( % ..~
A ( 3 Za')

Hence

‘I.
Co= b (A% <38Bgv «3AB 4 U\t
L

f—zi LE(L.,‘ “4f) « 3 A (b4 ~3 Aet( L")
8%/ .7 43
-+ 3 ( Ly, -4 ) j

Taking the extremes of thickness of the beams considered(Appendix

!

11) at L = 0.5n and C calculated by the formula of Duncan, Ellis and

Scruton, then for the thickest beam (ol = 14.986° ).

A = 0.2631

B = 8.365 x 10~
h, = T.9%x 1077
hy = - 3.178 x 1072

Hence F = ./ 1.0068 = 1.0034

Hence the frequency is ralsed by 0.34%
Similarly, for the thinnest beam od = 6.858°

1.198 x 10-1

=
L]

B = 3.815x 1077

{to



ty

hy = 7.967 x 10~2
hy = - 3.185x 107
hence F = ‘/ 1.0008 = 1.000%4

Hence the frequency is raised by 0.04%

It is seen therefore that the effect 1s greatest for the thickest
beam, and increases with decrease in length. Hence for all the lengths

of the beams considered the maximum effect will be 0.34%
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APPENDIX 4

Listing of programs and notes on running.

Both programs are written in Fortran 4.

1. Finite element solution

The beam is divided into 8 elements, which is more than necessary
to satisfy convergence, but enables the mode shapes to be drawm more
accurately. The difference in frequency of the 3rd XX bending mode is
less than 0.2% when run with 6 elements or 8.

The program is assembled thus:

LINE
8 Number of elements ( NELEM ) read in. If a number other
than 8 is required, it is only necessary to change NELEM
and the dimensions of the matrices in line 7 from 54 to
( NELEM + 1 ) x 6 and NODE to ( NELEM, 2 )
12 Beam dimensions.
ALL - total beam length
HEIGHT - dimension in XX direction metres
WIDTH - dimension in YY direction
PRIWST - pretwist over total length (radians)
anticlockwise positive looking from
root.
17 RX, RY are coordinates of the centroid from the centre
of flexure ( metres ).
21 C = torsional stiffness per unit length
I E, DENS Youngs Modulus E ( N /m® ) and Density /

Kg / m3




A

As listed, the program is limited to isosceles triangular sections

symmetri cal about the YY axis, as Elxx and Elyy ( A and B respectively )

are calculated with that assumption.

51 - 195
196 - 257
261 - 268
272 - 29
296 - 310

The matrices[k] and [m] (ie. AKK(I,J) and AMM(I,J)
are assembled. Both are symmetriec, hence only the

upper or lower triangular needs to be specified.

The matrix [D] is assembled and inverted ( line 257 )

by the Gauss - Jordan method.

[N] ang [M] (AN(I,J) and AM(I,J)) calculated from

[>T (6B ana [3-TTgrs™)

Matrices [EN] and [EM] (SAN (1,J) ang saM (I,J))
are formed from [ N] and [M/ according to the NODE
matrix which defines the aligmment of the elements in

the structure.

The boundary conditions are applied. If any or all of
the degrees of freedom at a node are to be constrained,
it is done by setting the appropriate row and colum of
the stiffness and mass matrices to zero, ang ma.king. the
point on the leading a4lagonal of the stiffness matrix
unity. NBOUND is the number of nodes to be constrained
( which in this case =2 ). ND (I) is the matrix of
constrained nodes ( nodes 1 and 9 in this case ).

IDN (I,J) is the matrix which defines the constraint at

each node. Its six columns refer to the degrees of
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freeqom at each constrained node. An element of IDN
which = 0 indlcates that that particular movement of
the noge is fixed at zero. A non zero value indicates

that it 1s free.

314 The elgenvalue problem is solved by a variation on the
Jacobl Diagonalisation procedure. ( W.W. Cooley and
P.R. Lohnes, Multivariate procedures for the Behaviour-
al Sclences, Wiley 1962, Chapter 3.) This yields
XL(I,J), the matrix of eigenvalues, and X(I,J) the
corresponding eigenvectors. The elgenvalues are
printed columwise as the mode shapes in order

¥, x._o_h_,.%, o, dp at each noge.

o a3

LAPLACE TRANSFORM SOLUTION

In principle the program is an iterative process, which, gives,
three frequenclies which are less than that of the fourth mode, in between
the fourth ang fifth modes,and greater than the fifth mode, converges to
the fourth ang fifth modes.

The subroutine ' CONDIT' calculates ' COND ', the value of the

determinant for a given frequency ( u ).
LINE

T4 - 77 The coefficients of the polynomial in s are calculated

ang




e

78 by means of the subroutine POLHT the roots ( «, &, ¥ )

of the equation are foung by the Newton - Raphson process.

79 - 120 From the roots the terms of the matrix in equation
3.1.135 are calculated.
121 - 125 The value of the gdeterminant calculateg and returneg to

the main program.

The theory is derived specifically for the solution of the equations
governing the coupled torsion / bendging frequencies of straight uniform
canti lever beams naving one axis of symmetry ( YY ). Hence the pretwist

(X)) ang r, are zero. Otherwise the data input is similar to that of the

finite elemnent program:

6 Beam length ( AL ), height, width ang ry read in as
before.

11 CS - torsional stiffness per unit length.

18 Three initial frequencies read in, in ascending order.

The frequencies are read in andq printegd out in Hertz,
but the program works with all frequencies in radians /

3econd.

Preliminary tests showed that for frequencles below that of the fourth
mode ang avove thal of the fifth COND was negative. At frequencies between

those of the fourth and fifth modes COND was positive.

38 - 41 Before iteration is begun, it is confirmed that the
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initial frequencies produce values of COND which are

respectively negative, positive, negative.

o - 57 Two iterations are performed, taking the mean of the
first and second frequency to find the fourth mode,
and the mean of the second and third to find the fifth.
Each iteration was terminated when [ COND ]} £ 5, where-

upon the frequency had converged to within 0.2 Hz.

Occasionally it was found that the iteration was unstable, and
( COND jwould remain constant at a value greater than 5. This v\-vas
thought to be due to round ~ off error, and was overcome by employing
double precision arithmetic. Usually the process had converged after

about ten iterations.
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APPENDIX 6

Analysis of torsional oselllations

Consider for instance the beam for which « = 9.75° at L = 0.4 m.

EIK" _ 2.09 llD" . -lf \uo"' «2-0M « ID-‘ ¥ E"
AL 4 v« Ol
= 4'7“’ x'ol
_%_ - 83.57 assuming A, = /i:;"
b& 9-302 20

-6/ xeo®

0.55 x 10-2 for this beam

Assuming r

E = 9-Fu&x 10 .
€-6ix 1D — -3, « 10

XO-S¥Fewt M

/-13 i « o ST xw -

623 x 10°° m

13%
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APPENDIX 7

Beam Lesign

The following two figures show the vardation with length of second
and third XX bending modes and first torsional modes. These, of course take
no account of coupling and are calculated on the basis of simple beam theory.
It can be seen that the first torsion mode colcides with the second XX mode
at lengths of less than 0.15 m, in which case effects of shear deflection
and rotary lnertia would not be negligible. Coincidence with the third XX
mode is achi eved between 0.3 and 0.4 m however, which 1s satisfactory.

A drawing of the beam mounting block is also included.
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APPENDIX 8

P

Preliminary Tests

Figure A V111 (1) shows the variation of beam deflection at right
angles to the beam axis, and from the relative positions of the centroid
and centre of flexure ( by elther formula ) it is seen that the section is
effectiVely osclllating about the centroid.

Figure A V111 (2)shows the variation in beam amplitude with plezo
electric crystal response. This curve,which shows the tip amplitude in
torsion at one edge for the beam where « = 130°, L = 0.3 m is not of
course the absolute truth for all the beams as the precise values will vary
with the beam, length of a glven beam, mode number and position of the
plezo electric crystal. The fact that the curve is smooth ( not necessarily
linear ) shows that the plezo electric crystal is a satisfactory indicator
of constant amplitude.

Figure A V111 (3)shows that for constant piezo electric crystal

response the measured amplitude is invariant with coil position.
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APPENDIX 9

1. Determination of the material oroverties.

Densitx/o
Rectangular block shaped and ground:
Length = 0.04194 m
Wigth =  0.01993 m
Hei'ght =  0.01174 m

Mass = 0.076724 Kg.

Hence densityp = 7.8 x 107 Kg m™>

Young's Modulus E

A test pice of suitable size for tension testing using an
extensometer and ' Denison ' tension testing machine was manufactured
from the same material as the beams.

The tension test shown in Graph A 9.1 was performed and the
results analysed by linear regression.

From the formula

L. E %
A L
Where P = applied force
A = cross sectional area of test specimen
= 2,398 x 10-4 m2

W = extension due to P.

L = test length = 5.08 x 102 m

henge E = P . L
iva A
S{« from the regression analysis = 1o1tq 20 ®
—y
P o
[ 4 - - L
E = X . ii':"_ = 2.09 x 10" Nfw>

1-0149 2-378 Y

[4S



L6

Shear Modulus G

Torque measurement : B.P.A. force transducer on 5 in. torque arm.
Angular deflection measurement: torsiometer measuring linear
1t

deflection at a radgius of 1 over

test length of specimen.

Accuracy of torsiometer gauge.

The torsiometer is calibrated directly in radlians, but its
accuracy may be determined using slip gauges as the radlus of 1" is known.

Gauge set to zero on 1.00" slip gauge.

ie. 1.00 = 0.00 rads.
tests =

0.95 + 0.120 = 1.070" 70.5 x 1072 rads.
0.95 + 0.140 = 1.090" 9.5 x 1072 rads.

0.95 +0.130 = 1.080" 80.5 x 1072 rads.

RN

50.0 x 10~ rads.

0.85 + 0.7 1.050"
The gauge is therefore accurate to approximately 0.8%.

Using the formula L . Ge L€ = L —
J v T

where T applied torque

Y
32

J = polar moment of inertia

D = specimen dlameter = 6.37 x 102 m

-t
[}

test length ( by travelling microscope )

= L4.972 x lO"2 m

© from regression results = 4.SBx 1079
T .9\22.51, Kla_l

hence G = 32» 4-97) xig"t 5‘:2'51, 0" "
& (#371) o -5 xio™Y

= 53 ™ AM/m2
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Measurement of G by torsional oscillation of a rectangular sectioned beam

For a rectangular sectioned beam of width 2b and depth 2a Timoshenko

and Goodier (23) give. the formula

-
¢ =4y (-2 5 L kinst ] _nay
™ ¢ nzy 3,5 h 2a -

for the torsional stiffness per unit length.

12
Carnegi. e( ) gives the formula for the first torsional frequency

(Hz) for a rectangular sectioned beam as

7 = _L- —-C—- ﬁ.'?—E (3 T'
“T Vonit, \/I M — ATz

S Cc?

where the effect of fibre benging in torsion is included.

Constants
E = 2.09::10111\I/m2
p = T7.8x lO3 Kg /m3
L = 0.202 m
Experiment 1
2a = 0.01275 n
2b = 0.04334 m

Summation £ = 1.0045

Hence from A 9.1

C = Gx2.4kx 107
first torsional mode measured at 1378 Hz
Hence from A 9.2

C = 2.003 x 10°
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G = 8.210 x 100 N /u°

Experiment 2

2a = 0.00948 m
2b = 0.04334 m
£ = 1.0085
hence ¢ = G x 1.0613% x 10~8

first torsional mode measured at 1075.5 Hz

hence G = 8.33 x 1010 N /m2
Egger'iment 3

2a = 0.00640 m

2b = 0.04334

£ - 1.0085
hence € = G x 3.4%5 x 10~9

first torsional mode measured at 757.7 Hz

8.4 x 10° N /2

hence G

I Gv
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APPENDIX 10

Relationship of computer program ( finite element solution ) to

deflections measured by capacitive probes.

%
| l Y ruler
le J ! d ¢
1 _ot/> leq |
! !
1
cf —vcq. =% |
a-p L = h -
————

The output of the program is in terms of the deflection ( x ) of
the centre of flexure (cf) and the rotation (&) of the section, and it
is desired to relate this to the deflection measured at the probes e and

d in the above dliagram in the form

I
$4

o casdfy, + eJ' )

'8 cas.l/z —Jd.©

Where S'._)S,L are deflections measured at the probes and the slgns of
the rotation term on the right hand side are known from the formulation
of the program theory. It is therefore required to fing the position of
the probes in relation to the section, which is to determine ej angd .

A travelling mi croscope was used to determine the horizontal
distances:

1). ruler edge to beam edge = bk = r, and was set up to be accept-
ably constant over the beam length.

2). The distance between the probcs = ed which was constant ang

= 0.0316 m.



12

3). The distance between the probe d and the edge of the block

agalnst the ruler = dk and was constant at 0.00722 m.

Hence the gistance from the probe d to the edge of the beam (db) =

( 0.00722 - r ) metres.

Now ac = -:’3—' h Cosod /.,
and ed = ab - ac - db
cd = ;&/L_ 2 hasey, — (o0922-1)
and e¢e = 0.0516 - cd'
Ja = ecd - ry cos olfy
and Je = ec + I'y cos .1/7_

Hence the relative deflections §, and Sy can be determined

theoretically.
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