
Durham E-Theses

Mars - the analysis of the mars data and the absolute

rate of energy loss of muons in iron

Wells, S. C.

How to cite:

Wells, S. C. (1972) Mars - the analysis of the mars data and the absolute rate of energy loss of muons

in iron, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/8668/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8668/
 http://etheses.dur.ac.uk/8668/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


MARS - The Analysis of the MARS Data and the 

Absolute Rate of Energy Loss of Muons i n I r o n 

by 

S.C. Wells, B.Sc. 

A Thesis submitted to the 

University of Durham f o r the 

Degree of Doctor of Philosophy 

October, 1972. 

8 DEC 1972 
, 8GCTI0H J 



i 

ABSTRACT 

The method by which the data from the new Durham cosmic ray muon 

spectrograph, MARS, are analysed by the on-line computer i s described i n d e t a i l . 

P articular reference i s made to a new computer technique which has been 

developed f o r the analysis of flash-tube data and an attempt has been made to 

reconcile experiment and theory. I t i s concluded that the technique correctly 

interprets the flash-tube data, especially with regard to extraneously discharged 

and i n e f f i c i e n t tubes, and that i t s accuracy i s s u f f i c i e n t to enable the cosmic 

ray muon momentum spectrum to be determined by MARS to beyond 5000 &eV/c. 

Details of a preliminary measurement of the v e r t i c a l muon momentum spectrum 

and charge r a t i o f o r the momentum range of 10 - 500 GeV/c are given. Satisfactory 

agreement i s found between these results and those of previous workers. 

An experiment i s described by which a direct measurement of the absolute 

rate of energy loss of muons i n i r o n f o r the momentum range 5 - 4 0 GeV/c has 

been made. Agreement i s found with the predictions of Sternheimer and Peierls 

f o r i o n i s a t i o n loss (together with values f o r other losses) to w i t h i n the 

experimental uncertainties. As such, t h i s experiment i s a measurement of the 

rate of energy loss i n a momentum range not previously studied by a di r e c t 

technique. 
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PREFACE 

The work presented i n t h i s thesis was undertaken during the period 

1968-71 w h i l s t the author was a research student under the supervision of 

Dr. M.&. Thompson i n the MARS Cosmic Ray Research Group i n the Physics 

Department of Durham University. The author was employed as a Research 

Assistant i n the same department during the following year. 

The spectrograph was designed and constructed by the members of the MARS 

Group; the author having special r e s p o n s i b i l i t y f o r the core store and i t s 

c i r c u i t r y and the on-line computing system. The computer teohnique by which 

the flash-tube data are analysed was the conception of the author, as was the 

method by which the data from the spectrograph as a whole are analysed. The 

data used f o r the measurement of the muon momentum spectrum and charge r a t i o 

and that f o r the measurement of the absolute rate of energy loss of muons i n 

i r o n were obtained with the help of the authorfe colleagues, but the processing 

of the data and the i n t e r p r e t a t i o n of the results were the r e s p o n s i b i l i t y of 

the author alone. 

The data analysis technique has been reported by Thompson and Wells (1972). 

The preliminary measurement of the muon spectrum and charge r a t i o and the absolute 

rate of energy loss of muons i n i r o n have been reported by Ayre et a l . (1971a) 

and(l971b) respectively. 
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CHAPTER 1 

Introduction 

1.1 The Significance of Cosmic Ray Studies 

The study of cosmic rays has now been a well founded science f o r over 50 

years. The interest of cosmic rays t o the physicist l i e s i n t h e i r astrophysical 

significance and i n the nuclear physics of t h e i r interactions with the earth's 

atmosphere. The wide range of t h e i r energy spectrum, from an arbitary value of 

about 1 MeV up to energies of about 1 joule, and the t o t a l energy carried by them, 

which i s almost equal to that of s t a r l i g h t , have posed many problems f o r the 

theoretical astronomer. I n p a r t i c u l a r , mechanisms by which cosmic rays are 

generated and accelerated have had to be found and astronomical objects such 

as supernovae and quasars are currently cited as possible candidates f o r these 

processes. 

For many years, cosmic rays have provided the nuclear physicist with a beam 

of very energetic particles and the properties of the primary and the seoondary 

p a r t i c l e s , the l a t t e r o r i g i n a t i n g i n interactions of the primaries i n the 

atmosphere, have long been the subjeot of intensive study. With the .advent of 

p a r t i c l e accelerators, controlled experiments with high p a r t i c l e densities have 

become possible and the considerable knowledge gained from cosmic rays studies 

has been greatly extended. However, even the l a t e s t generation of accelerating 

maohines w i l l only enable nuclear interactions to be studied up to laboratory 
11 

energies of 3 x 10 eV and cosmic rays are expected to remain an important f i e l d 

of study f o r some years to come. 

1.2 The Primary Radiation 

The primary radiation a r r i v i n g at the earth appears to be iso t r o p i c at 

energies above about 20 GeV. Below t h i s energy, the magnetic f i e l d of the earth 

imposes an asymmetry i n the a r r i v a l directions of these predominantly p o s i t i v e l y 
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charged radiations. An i n t e g r a l primary spectrum has been deduced from the 

results of many workers by Greisen (1965) and i t i s summarised i n table 1.1. 

Table 1.1 

The I n t e g r a l Primary Cosmic Ray Energy Spectrum 

(After Greisen 1965) 

Energy Range 
(eV) 

_ 2 I n t e n s i t y _ 1 

(m~ .sec"1. sterad" ) 

1 0 1 0 - ~ 3 x 10 1 5 

~ 3 x 10 1 5 - 1 0 1 8 

> V 8 

io~4 ( I O 1 4 / E ) 1 , 6 

2 x 10 1 Q (10 1 7/E) 2 , 2 

k x 10" 1 6 ( 1 0 2 0/E) 1* 6 

Two features of t h i s spectrum are immediately obvious and they are the 
15 

increase i n spectral slope at ~3 x 10 J eV, from -1.6 to -2 .2 , followed by a 
18 

reduction jin slope back to -1.6 at ~10 eV. The increase i n slope i s generally 
accepted to be due to the increasing i n a b i l i t y of the galactic magnetic f i e l d to 

15 
contain primaries with energies above ~3 x 10 eV and the region between 

15 18 
~3 x 10 3 and 10 eV represents a gradual loss of the l i g h t e r elements by 

the galaxy as t h e i r i n d i v i d u a l magnetic r i g i d i t i e s are exceeded (Linsley, 1962). 
18 

The reduotion i n spectral slope at above 10 eV was i n i t i a l l y a t t r i b u t e d to 

extra-galactic sources of radiation but more recently, a re-analysis of the data 

i n t h i s region, which comes exclusively from a i r shower measurements, has raised 

doubts as to the existence of this 'kink' i n the spectrum. (See the review by 

Wolfendale, 1972). 

The discovery of the 2.7°K isotropic black-body radiation i n the Universe 

(e.g. R o l l and Wilkinson, 1967) has increased the i n t e r e s t i n the primary 
18 

radiation at energies i n excess of 10 eV. I f these primaries are of extra 

galactic origin,then the spectrum (which i s expected to be e n t i r e l y composed of 

protons at these energies because of fragmentation) i s expected to terminate 
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20 abruptly at ~10 eV because of the onset of photomeson interactions 
( p + y - * p + 7T'S) between the protons and the microwave background (Greisen, 
1966). At present, confirmation or otherwise of such a discontinuity i n the 
spectrum has to await the a v a i l a b i l i t y of more data. 

Table 1.2 
10 

The Mass Composition of Primary Cosmic Rays at 10 eV 

(After Wolfendale, 1972) 

Nucleus I n t e n s i t y 
-2 -1 —1 -1 (m .sec . .sterad (MeV/nucleon) ) 

Abundance 
by 
Number 

P 8.0 x 10"1 88.2$ 

H e 4 1.0 x 10 _ 1 11.0$ 

Li,Be,B 1 x 10~ 3 0.1$ 

C,N,0 5 x 10" 3 0.6$ 

Z >16 ~ 6 x 10~ 4 ~ 0.1$ 

The composition of the primary radiation has been measured with f a i r 
10 

accuracy i n the region of 10 eV by s a t e l l i t e techniques and i t i s summarised 

i n table 1.2 (Wolfendale, 1972). A comparison between th i s composition and 

that of the Universe shows that there i s a considerable excess of L i , Be and B 

nuclei i n the primary ra d i a t i o n . This can be explained i f these elements are 

the result of the fragmentation of heavier nuclei i n penetrating the ~3gm.cm 

of matter on t h e i r way to earth. This would i n f e r that possible sources of 

cosmic rays are supernovae where heavier elements are i n abundance. 
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The composition of the primary radiation up to energies of 10 ' ev i s 
10 15 

believed t o be similar to that at 10 eV,but above 10 eV the s i t u a t i o n 13 not 

clear except that there i s expected to be an increase i n the proportion of 

protons because of the fragmentation of the heavier nuclei (Wolfendale, 1972). 

1.3 The Propagation of Cosmic Rays through the Atmosphere 

The primary cosmic radiation which enters the earth's atmosphere suffers 

multiple nuclear interactions with a i r nuclei and the r e s u l t i n g cascade of 

particles i s known as an extensive a i r shower. As was described i n the previous 

section, the primary radiation i s mainly composed of protons, the i n t e r a c t i o n 
_2 

length f o r protons being approximately 80 gm.cm at high energies. The thick-
_2 

ness of the earth's atmosphere i s 1030 gm.cm and consequently the majority of 

the protons i n t e r a c t at a mean height of 18km above the surface of the earth. 

The i n e l a s t i c i t y of these interactions i s about 0.5 and hence the protons lose 

about half of t h e i r energy i n each i n t e r a c t i o n . The majority of the energy 

which i s l o s t manifests i t s e l f as pions, but a small proportion (which probably 

inoreases with primary energy) appears i n the form of kaons and hyperons. The 

t o t a l number of secondaries, N , i s dependent upon the primary energy, E , and 
s p 

to a good approximation the empirical relationship i s N = 2.1 E 4 (Wolfendale, 
s p 

1972). 

The three charge states of the pion are produced i n almost equal quantities 

and i t i s the difference between the decay modes of the charged and uncharged 

pions which produces some of the characteristics of an a i r shower. The 7T° 
-16 

component, with a mean l i f e time of 10 sees, decays i n t o two y rays and these 

i n i t i a t e an electron-photon cascade by way of pair production and brerasstrahlung. 

There i s also a small proportion of photomeson production and pair production 

of muons. The growth of these cascades i s approximately exponential ( H e i t l e r , 

1948) u n t i l a point i s reached when the average electron energy f a l l s below the 

c r i t i c a l energy f o r a i r (84 MeV). When th i s occurs, absorption of the electrons 

by the atmosphere begins to dominate and the shower size decreases. Those 
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oascades- which originate from a primary proton with an energy greater than 

5 x 10 eV are not completely absorbed by the atmosphere and can be observed at 

sea l e v e l by arrays of p a r t i c l e detectors. 
—8 

Charged pions have a mean l i f e time of 2.6 x 10 sec3 and the mean i n t e r -
_2 

action length f o r them i s 120gm. cm . These pions either undergo fur t h e r 

nuclear interactions or they decay i n t o muons and neutrinos. The i n e l a s t i c i t y 

f o r the former process i s 1.0 but more pions are produced as a r e s u l t of these 

interactions. Again there w i l l be a proportion of neutral pions produced and 

consequently some of the energy of the i n i t i a l l y charged pions i s gradually l o s t 

to the electron-photon cascade. The mean l i f e time of muons i s 2.2 x 10 ^ sees 

and because they are weakly i n t e r a c t i n g , muons with energies above a few &eV w i l l 

easily reach the surface of the earth before decaying. 

The p r o b a b i l i t y of a charged pion either i n t e r a c t i n g or decaying depends 

upon the density of the atmosphere and the r e l a t i v i s t i c l i f e time of the pion. 

I n the v e r t i c a l d i r e c t i o n where there i s a rapid increase i n the density of the 

atmosphere, interactions are more probable,but at larger zenith angles, the pion 

spends comparitively more of i t s time i n a r a r e f i e d atmosphere and decay i n t o 

high energy muons becomes more important. As a consequence, the i n t e n s i t y of 

muons above an energy of about 100 G-eV increases with the secant of the z e n i t h , 

angle of t h e i r t r a j e c t o r i e s and t h i s is known as the 'sec 6 1 enhancement. 

1.4 Cosmic Ray Muons at Sea Level 

1.4.1 Introduction 

Cosmic ray muons are the r e s u l t of meson decays i n the upper atmosphere and 

the comparatively long l i f e time of the muon means that there i s a considerable 

f l u x of them a r r i v i n g at sea l e v e l . The properties of these muons r e f l e c t the 

characteristics of the nuclear interactions from which t h e i r parent mesons came. 

Consequently, i t i s possible to i n f e r parameters of nuclear interactions at 

energies w e l l beyond those attainable by machines although the i n i t i a l 
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i n t e r a c t i o n i s not d i r e c t l y observed. Two properties of cosmic ray muons which 

oan be observed are t h e i r momentum spectrum and t h e i r charge excess (there 

being more positive than negative muons). From these, i t i s possible to deduce 

the nature of the secondary p a r t i o l e s of the interactionsand also t h e i r 

m u l t i p l i c i t y . 

The muon momentum spectrum and charge r a t i o are discussed below together 

with an int e r e s t i n g r e s u l t reported by Bergeson et a l . (1968) from Utah who did 

not observe the expected sec 0 enhancement, discussed i n section 1 . 3 , at energies 

above 500 GeV. 

1.4»2 The Cosmic Ray Muon Momentum Spectrum 

The cosmic ray muon momentum spectrum has been measured by many observers 

and the i n t e g r a l spectrum of Osborne et a l . (1960 i s shown i n figure 1.1. 

This spectrum was derived from sea l e v e l and underground measurements of the muon 

in t e n s i t y and i t was normalised to the in t e g r a l i n t e n s i t y above 1 G-eV as given 

by Rossi (1948). More recently, A l l k o f e r et a l . (1971) have reported the r e s u l t s 

of three experiments to measure the cosmic ray muon momentum spectrum and they 

are at variance with the absolute i n t e n s i t y of Rossi and with the speotra of 

other workers. Figure 1.2 shows the r e l a t i v e difference between the speotra of 

other workers and that of Allkofer et a l . I t i s evident that there i s considerable 

disagreement not only between the absolute i n t e n s i t i e s but also i n spectral 

shape.. 

I t i s concluded by Allkofer et a l . that the i n t e n s i t i e s of absolute spectra 

were underestimated by 20$ by many investigators. Evidence of a higher i n t e n s i t y 

than that given by Rossi have been provided by Ayre ( 1971 ) whose absolute 

i n t e n s i t y measurements are i n oloser agreement with those of Allkofer. However, 

there are s t i l l discrepancies as to the precise shape of the spectrum. 

1.4.3* The Charge Ratio of Cosmic Ray Muons 

There i s an exoess of p o s i t i v e l y charged muons i n the muon flux at sea l e v e l 

and figure 1 .3 i s a survey of the muon charge r a t i o as measured by several workers. 
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One explanation for t h i s phenomenum i s that the primary radiation i s predomin-
ently positive i n charge. However, the effects of this should only be evident 
at high energies where the parents of the muons originated i n the i n i t i a l 
i n t e raction. At lower energies,the parents are produced i n secondary interactions 
and the effect of the charge of the primary radiation i s diluted. The 
explanation of the charge r a t i o of low energy muons i s that a proportion of the 
parents of the muons are kaons rather than pions. The energy threshold for 
negative kaon production i s much higher than that for p o s i t i v e kaons for 
stangeness conservation reasons and the r a t i o of the number of positive to 
negative kaons i s about 4 . A contribution of about 20$ kaons to the parents of 
the muons i s able to explain the charge r a t i o of muons at low energies. 

I t i s evident from figure 1.3 that there i s again considerable disagreement 

between the values f or the charge r a t i o as a function of momentum given by 

different workers, but measurements at high energies are severely hampered by 

poor s t a t i s t i c s . Any fine struoture i n the charge r a t i o would r e f l e c t a change 

i n the nuclear processes which create the parent mesons and evidence to th i s 

e f f e c t i s continually being sought. For example,Allkofer et a l . ( 1971a) reported 

a minimum i n the charge r a t i o i n the region of 100 G-eV i n the v e r t i c a l d i r e c t i o n , 

but as can be seen from figure 1 . 3 , t h i s has not been substantiated by other 

workers. 

1 . 4 . 4 The Utah E f f e c t 

The propagation of muons through the atmosphere has been described i n section 

1.3 and the explanation of the enhancement of the i n t e n s i t y of muons with the 

secant of the zenith angle of t h e i r tracks was given. This explanation i s 

v a l i d under the condition that the muons are the progeny of pions and kaons, 

because i t i s the increase i n the probability of them decaying (as opposed to 

interacting) at large zenith angleswhich produces this enhancement. Bergeson 

et a l . ( 1968 ) measured the i n t e n s i t y of muons with zenith angle with apparatus 
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designed to study neutrino interactions. The apparatus i s situated i n the base 

of a mountain i n Utah at a depth of 1850 feet. The expected seo 6 enhancement 

was not observed i n their r e s u l t s at energies above 500 GeV and t h i s lead them 

to postulate the d i r e c t production of mesons or the X - process. 

These workers found that the i r r e s u l t s could be explained i f muons with 

energies above 500 GeV were not produced as the r e s u l t of pion or kaon decays 

but rather that they were produced direotly and i s o t r o p i c a l l y by some process. 

I t has been suggested that the intermediate vector boson could be responsible 

for this effect and many muon production models have been investigated 

(e.g. Carlson et a l . , 1 9 7 1 ) . One of the consequences of the theory of d i r e c t 

production i s that the v e r t i c a l muon spectrum, should be somewhat f l a t t e r and 

higher at energies above 500 GeV than had been previously observed. The 

discrepancy between the experimental r e s u l t s was resolved when further studies 

by the Utah group lead to the disoovery of experimental biases (notably with 

respect to the rock den s i t i e s ) and as a consequence,the divergence from the 

seo6 enhancement was not evident at energies l e s s than 1000 GeV. 

The lack of data i n t h i s energy region makes a comparison with other workers 

impossible but further evidence f o r the Utah e f f e c t has-been provided by the 
5 

same group aft e r the observance of 2 x 10 muons through t h e i r detector 

(Bergeson et a l . , 1 9 7 1 ) . However, more recently, Cassidy ( 1 9 7 2 , private 

communication) has reported that data from a new measurement of the muon i n t e n s i t y 

underground with the same apparatus (the analysis of which i s as yet incomplete) 

appear to behave i n a manner not inconsistent with the secd enhancement and 

that evidence for the Utah ef f e c t i s not so pronounced. 

An experiment performed i n the Kolar-Gold Mines i n India by Krishnaswamy 

et a l . ( 1969 ) studied the angular d i s t r i b u t i o n of atmospheric muons at various 

depths underground. These workers f a i l e d to observe the Utah effect and the i r 

r e s u l t s are consistent with the model that muons with energies up to several 

thousand GeV are produced wholly through the decays of pions and kaons. I f 



the Utah effect i s found to be true, then i t i s of fundamental importance to 

elementary p a r t i c l e physics but confirmation or otherwise of the eff e c t w i l l 

have to await the a v a i l a b i l i t y of data from other experiments. 

1 .5 Conclusions and the Present Work 

I t i s evident from the discussion presented i n t h i s chapter that the 

position regarding a precise knowledge of the cosmic ray muon spectrum and 

charge r a t i o at energies above ~ 1 0 0 GeV i3 most unsatisfactory and a new 

measurement i s required. The r e s u l t s presented by the Utah group have only 

increased the urgency f o r such a measurement. I t i s important that such a 

measurement should be made at sea l e v e l rather than underground so that 

uncertainties i n rock densities and the rate of energy loss are not present. 

I t i s for these reasons that the new spectrograph MARS (Muon Automated Research 

Spectrograph) has been designed and b u i l t at sea l e v e l i n Durham. 

MARS w i l l enable a precise determination of the muon momentum spectrum 

and charge r a t i o to be made to momenta beyond 5000 G-eV/c. I t i s f i r s t intended 

to operate the spectrograph i n the v e r t i c a l direction and then at some future 

time to reconstruct the spectrograph i n the near horizontal. I n the l a t t e r 

position i t w i l l be possible to use the spectrograph as a source of high energy 

muons and to study the interactions of these muons i n apparatus placed i n the 

p a r t i c l e beam of the spectrograph. 

The c h a r a c t e r i s t i c s of MARS are described in. Chapter 2 of this thesis and 

Chapters 3 and 4 are devoted to a description of the analysis technique used by 

the on-line oomputer to analyse the data. P a r t i c u l a r reference i s made to a new 

computer technique to locate the tracks of muons i n flash-tube trays. A 

detailed investigation of the properties of t h i s teohnique and of the data 

analysis programme as a whole i s given i n Chapter 5 and an attempt i s made to 

reconcile experimental r e s u l t s with theoretical predictions. A preliminary 

measurement of the d i f f e r e n t i a l muon momentum spectrum and charge r a t i o made 
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with MARS for the momentum range of 10 - 1000 &eV/o i s described i n Chapter 6 
and Chapter 7 reports an experiment to measure the absolute rate of energy lo s s 
of muons i n the iron of MARS. The momentum range of the l a t t e r experiment i s 
5 - W) G-eV/c and as such i s the only d i r e c t measurement of the energy lo s s to 
have been made i n t h i s range. 
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CHAPTER 2 

MARS - The Instrument 

2.1 Introduction 

Before i t i s possible to design an instrument to measure the sea l e v e l 

cosmic ray muon spectrum to beyond a momentum of 5000 GeV/c, due consideration 

must be given to several aspects of the properties of muons, the properties of 

t h e i r spectrum and the requirements of the experiment, namely 

t) The instrument must be s u f f i c i e n t l y s e n s i t i v e to resolve the muons 

with the highest momentum. 

2) The rate of muons at the highest momenta must be s u f f i c i e n t l y large 

so as to make the number recorded over a reasonable period of time (1 - 2 years) 

s t a t i s t i c a l l y s i g n i f i c a n t . 
i 

3) The interference of electron cascades (generated by interactions of muons 

i n the detecting apparatus) on the resolution of the t r a j e c t o r i e s of the muons 

must be minimised. 

4 ) The steepness of the muon spectrum implies that the muons with the 

highest energies must be extracted from the very much larger f l u x of low energy 

muons. 

The choice of instrument available to the experimentalist i s many and 

varied but, over the past few years, one pa r t i c u l a r type of instrument has 

dominated muon spectrum studies and t h i s being the magnetic spectrograph. 

The measurement of momentum with this instrument i s absolute, as opposed to 

those techniques, such as energy l o s s and ionisation where normalisation i s 

required to re l a t e the momentum to some measured quantity. I n addition, the 

magnetic spectrograph i s the only instrument with which the required momentum 

resolution can be obtained. I t i s for these reasons that a magnetic 

spectrograph was adopted for the MARS project and the design considerations 

w i l l now be discussed. 
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2 . 2 Design oonsiderationa 

The p r i n c i p l e of operation of a magnetic spectrograph i s that the deflection 

suffered by a charged p a r t i c l e i n a magnetic f i e l d i s observed and this deflection 

i s then related to the momentum of the p a r t i c l e . As a consequence, the design 

of such an instrument can be divided into several d i s t i n c t parts and each i s 

discussed i n d e t a i l below. 

2.2 .1 The Design of the Magnet 

When a p a r t i c l e of mass m and charge e traverses a magnetic f i e l d of flux 

density B at a v e l o c i t y v, then i t experiences the Lorentz force, P, whose 

magnitude and direction i s given by 

F = e v x B 

This force i s always perpendicular to the v e l o c i t y of the p a r t i c l e and hence the 

tra j e c t o r y of the partiole describes an arc of a o i r c l e . I f the radius of 

curvature i s r, then the equation of motion i s F = mv / r = Bev. Expressing r 

i n terms of the momentum of the p a r t i c l e , p, we have 

r = p/Be (2.1 ) 

I f the particle' moves a distance dl along the arc of the c i r c l e , then the angular 

deflection, dfl, suffered by the p a r t i c l e i s 60 = d l / r , and the t o t a l angular 

deflection,d , i s 

0 = e J B.dl ( 2 . 2 ) 
P J 

Expressing p i n GeV/c, B i n kilogauss and 1 i n metres we have 
-1 —1 

6 = 0 . 0 3 radians . m~ . kgauss ( 2 . 3 ) 
P 

The maximum magnetic path length available to MARS i n the v e r t i c a l direction i s 

about 5m and, assuming i t i s possible to determine 0 to within 5 x 10~^ radians, 

i t i s necessary to have a magnetic f l u x density of about 15 kilogauss i n order 

to resolve a momentum of 5000 GeV/c. The only method for maintaining steady, 

uniform magnetic f i e l d s of t h i s magnitude over a distance of 5m i s to use 

s o l i d iron magnets, where the f i e l d i s t o t a l l y enclosed and where the magnetic 



deflection occurs i n the iron i t s e l f . This i s the type of magnet adopted for 

the MARS project. 

2 . 2 . 2 Interactions of the Muons i n the Magnet 

Unfortunately, s o l i d iron magnets have two disadvantages. F i r s t l y , the 

muons lose energy i n the iron by electromagnetic interactions (amounting to 

about 1 . 4 G-eV/m of iron) and secondly, the muons undergo Coulomb scattering 

i n the iron. 

The t o t a l energy l o s t by muons through MARS iB about 7 . 5 G-eV and 

consequently, t h i s i s only of importance at energies below 50 G-eV when the 

loss i s a considerable proportion of the t o t a l energy of the muon. At higher 

momenta, the accompaniment of the muons by electron-photon cascades from 

eleotromagnetic interactions i s of greater importance. When such a cascade 

accompanies the muon through one of the p a r t i c l e locating l e v e l s of the 

spectrograph, then the information from t h i s l e v e l may be rendered useless 

as f a r as accurate t r a j e c t o r y location i s concerned. These cascades are the 

r e s u l t of interaction processes, namely, pair production, bremsstrahlung and 

nuclear interactions, and the cross-sections for these processes increase 

rapidly with muon energy. The probability of a cascade accompanying a muon 

out of a magnet block has been given by Said ( 1966 ) and h i s r e s u l t s are shown 

i n figure 2 . 1 . I t i s evident that a c r u c i a l design consideration of a 

spectrograph for the study of high energy iauons i s that the interference of 

these cascades with the location of the traj e c t o r y of the muon must be 

minimised. This has been achieved i n MARS by dividing the magnet into four 

blocks and interspersing and surrounding them with layers of p a r t i c l e detectors. 

Consequently, a maximum of two cascades at different locating l e v e l s i n the 

spectrograph can be tolerated. 

An examination of the Coulomb scattering process by Rossi and Greisen 

(1941) shows that the r e l a t i o n between the r.m.s. angle of scatter, <6a> , 

for a muon with momentum p(&eV/c) and the thickness; 1, of the medium traversed, i s 
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Figure 2.1 Probability of an Electron Cascade Accompanying 
a Muon out of a Magnet Block. (After Said, 1966) 
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where X q i s the radiation length of the medium. From equation 2 . 2 , the magnetic 
angular deflection can be written as 6^ = Bel/p, and hence the r a t i o of the 
r.m.a. angle of scatter to the magnetic angular deflection i*or muons with /3 = 1 
i s 

< g s > = 21 J _ . ( 2 . 5 ) 

I t can be seen that t h i s r a t i o i s independent of the momentum of the muon and, 

for a pa r t i c u l a r magnet material, i t i s only dependent upon the length of the 

magnet. 

The consequence of scattering i s that the measured magnetic deflection i s 

always unoertain by the amount given by the above r a t i o . I n practice, t h i s means 

that a low momentum muon may be assigned a1 much larger momentum and, i n the case 

of the muon speotrum where the slope of the spectrum increases with momentum, the 

measured speotrum i s distorted at high momenta by an excess of p a r t i c l e s . I f t h i s 

d i s t o r t i o n i s too severe, i t w i l l prevent the determination of the true spectrum, 

and therefore, i t i s necessary to make the effects of scattering as small as 

possible by minimising equation 2 . 5 • 

2 . 2 . 3 The Inten s i t y of Cosmio Ray Muons 

The v e r t i c a l , cosmic ray muon i i n t e g r a l spectrum, at sea l e v e l has been given 

by Osborne, Palmer and Violfendale ( 1964 ) and t h e i r r e s u l t s are shown i n f i g u r e \ l . 1 . 

I f a precise determination of t h i s spectrum i s to be made beyond a momentum of 

1000 G-eV/c, then the rate of muons with momenta above t h i s value must be large 

enough to ensure that a s t a t i s t i c a l l y s i g n i f i c a n t quantity of them i s collected 

during the running time of the experiment. For every muon with a momentum greater 

than 1000 &eV/c, there are 3 x 10^ muons with momenta greater than 7 &eV/c,all of 

which have to be analysed. 

Previous experiments have not processed the data automatically. This has 

imposed a serious l i m i t a t i o n on the quantity of data which could be handled and 

therefore reduced the upper momentum l i m i t to which the spectrum could be determined. 
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With the advent of modern electronic techniques and computers, i t i s now possible 
to construct d i g i t a l systems which automatically and continually analyse the data 
whilst the experiment i s running. Such a system has been designed for the MARS 
experiment and, because i t i s capable of handling one muon every two seconds, no 
problems a r i s i n g from the large amounts of data are envisaged. 
2 . 2 . 4 The Looation of the T r a j e c t o r i e s of the Muona 

An e s s e n t i a l feature of an automated spectrograph i s that the t r a j e c t o r y of 

the muons be located by detectors which are d i g i t i s e d . The information contained 

i n these detectors can then be used by an automatic system to calculate the 

momenta of the muons. There are many p a r t i c l e detectors capable of being 

d i g i t i s e d but for the MARS experiment i t was decided to use Conversi or neon 

flash-tubes (Conversi and Gozzini, 195!?)• 

A f l a s h tube consists of a glass tube f i l l e d with neon. After the passage 

of an ionising p a r t i c l e through a tube, the gas i s caused to discharge by the 

application cf a high voltage pulse across the tube. Unfortunately, the 

trajectory resolution of a single tube i s poor, but when tubes are combined 

together into several layers to form a hodoscope, resolutions of a fra c t i o n of 

a millimetre can be obtained. 

A d i g i t i s a t i o n technique for neon f l a s h tubes has been described by Ayre and 

Thompson ( 1 9 6 9 , 1 9 7 0 ) . A metal probe i s placed adjacent to the window of a tube 

and a voltage pulse i s developed upon i t whenever the tube discharges. This pulse 

i s of s u f f i c i e n t magnitude (a few v o l t s ) to be used by integrated logic c i r c u i t r y 

for d i g i t i s a t i o n purposes. I t i s therefore possible to construct hodoscopes of 

these d i g i t i s e d tubes and use them to automatically locate the t r a j e c t o r i e s of 

the muons. 

2 .3 MARS - The Physical C h a r a c t e r i s t i c s 

2 . 3 . 1 Description 

Plate 1 i s a photograph of MARS and figures 2 . 2 and 2 .3 show the physical 

dimensions and the s i t i n g s of the various detectors. 
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MARS i s basically a multilayer speotropgraph consisting of four t o r o i d a l 

magnet blocks, interspersed and surrounded by p a r t i c l e deteotors. This 

p a r t i c u l a r configuration was chosen so that the interference of electron 

cascades, emanating from the magnet blocks and causing ambiguities i n t r a j e c t o r y 

location, would be minimised. I n addition, lead absorber may be placed on the 

top of the spectrograph to absorb the electrons from any a i r sho?/er accompaniment 

of the muons. This i s p a r t i c u l a r l y important at the highest energies where the 

muons are l i k e l y to be situated near the axis of an a i r shower, where p a r t i c l e 

densities are high. 

Each magnet block i s 3.66m long, 2.13m wide and 1.25m high. There i s a s l o t 

2m long down the centre of each block p a r a l l e l to the longer side, which 

f a c i l i t a t e d the winding of the energising coi l s onto the blocks to form a t o r o i d , 

and which divides the spectrograph i n t o two symmetric halves. The magnetic 

f i e l d i s i n opposite senses along either side of the spectrograph. Each block 

weighs 71 tons, there being 284 tons of magnet i n a l l , and the overall height i s 

7-62m of which 5m i s i r o n . 

The various detection levels of MARS have been designated a number as shown 

i n f i g u r e 2.3. The lowest l e v e l i s known as l e v e l 1 and the highest, l e v e l 5-

The azimuthal trays are known as levels 6 and 7• 

2.3.2 The Magnetic F i e l d 

The magnet blocks were s p e c i f i c a l l y designed to be toroids so as to ensure 

a maximum magnetic f l u x density. The magnet consumes lOkW of power supplied at 

100V and 100A, and the mean in t e r n a l f l u x density i s 16.3 _+0.'i kilogauss. The 

fl u x density is uniform to w i t h i n 2?? over the magnetic volumes adjacent to the 

sl o t and t h i s i s the region of the magnet through which the muons under 

observation pass. 

The t o t a l magnetic path length i s 5m and hence, equation 2.3 becomes 

p0 = 2.445 (SeV/c). radians. 
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Converting t h i B equation i n t o a l a t e r a l deflection,A , as defined i n fi g u r e 

2.5, and making a small correction f o r the effect of the a i r gaps between the 

magnet blocks, we have, at high momenta, 

PA = 390 &eV/c. cm. 

2 .3.3 Coulomb Scattering 

Substituting the radiation length of i r o n (13.3 gm.cm ) into equation 

2.5 and again making a small correction f o r the effects of the gaps between 

the magnet blocks, the r a t i o of the r.m.s. angle of scatter t o the magnetic 

deflection i s 12$. Preliminary calculations have shown that t h i s should i n 

no way prevent the precise determination of the muon spectrum to beyond 5000 &eV/c 

2.A- The Deteotion and Location of the Muona 

2.4.1 The S c i n t i l l a t i o n Counters 

The muon i s i n i t i a l l y detected by the three s c i n t i l l a t i o n counters on 

either side of the magnet. Each counter comprises of a sheet of NEl02a 

s c i n t i l l a t i o n material of size 1.77m x 0.75m x 0.05m, which i s viewed by four 

photomultipliers, two at either end of the phosphor. The. pulse heights derived 

from opposite pairs of photomultipliers are e l e c t r o n i c a l l y added together and 

the resultant pulse, a f t e r discrimination and shaping, i s taken i n coincidence 

with the equivalent pulse from the other p a i r of photomultipliers. I n t h i s way 

a pulse i s generated every time a muon passes through a s c i n t i l l a t o r . These 

pulses, from the three s c i n t i l l a t i o n counters of one side of the spectrograph, 

are taken i n coincidence together to generate a t r i g g e r pulse f o r the remainder 

of the detecting equipment every time a muon passes w i t h i n the acceptance of 

that side of the spectrograph, 

2.4.2 The Plash Tube Traya 

The t r a j e c t o r i e s of the muons are located i n the plane perpendicular to 

the magnetic f i e l d by means of d i g i t i s e d neon flash-tubes. Two sizes of tubes 

are used. The larger tubes are 2m long and have a mean external diameter of 

1.9 cm. They are stacked together i n a tube tray, which comprises four layers 
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of tubes, there being 39 tubes i n each layer. The layers are seperated by 

sheets of aluminium, which form the electrodes. Every time a muon traverses 

a p a r t i c u l a r side of the instrument, a high voltage pulse of amplitude 4-5kV 

and duration 3Ma i s applied t o the electrodes of these trays of that side. 

There are three such large tube trays on either side of the magnet and they are 

positioned at the same detection levels as the s c i n t i l l a t o r s . 

The smaller flash-tubes are again 2m long but these have a mean external 

diameter of only 0.8cm. Eight layers of tubes are used i n each of the small-

tube trays and there are 89 tubes i n each layer. The high voltage pulse 

applied to the aluminium electrodes, which seperate the layers, i s of amplitude 

6kV and of duration 1.5M&. There are f i v e such trays situated i n each side 

of the spectrograph. The large-tube trays are termed the momentum trays and 

the small-tube trays the measuring trays. 

The tubes pass through precision d r i l l e d brass plates at each end of the 

trays which locate the tubes at these points to w i t h i n 0.025mm. The axe3 

of the tubes run p a r a l l e l t o the magnetic f i e l d . The tubes are d i g i t i s e d by 

means of metal probes adjaoent to the f r o n t windows of the tubes and the pulse 

developed on a probe, when a tube discharges, passes i n t o electronic c i r c u i t s 

which complete the d i g i t i s a t i o n c i r c u i t r y . 

Across the top of the spectrograph, perpendicular to the magnetic f i e l d , 

are two trays each containing four layers of the large diameter flash-tubes.; 

there are 119 tubes i n each layer. These are used to define the angle of the 

tr a j e c t o r i e s of the muons p a r a l l e l to the magnetic f i e l d and they-are known 

as the azimuthal trays- These trays are common to both sides of the 

spectrograph and are operated by a coincidence pulse from either side of the 

spectrograph. 

i 



19 

2.5 general Properties of MARS 

2.5.1 The Aooeptance 

I n the absence of a magnetic f i e l d and neglecting scattering, the outer 

most s c i n t i l l a t o r s define the acceptance f o r muons. When a magnetic f i e l d i s 

present, muons with low momentum are deflected out of the magnet and as a 

r e s u l t , the acceptance i s lower f o r these p a r t i c l e s . The s c i n t i l l a t i o n counters 

have an area of 1 77.0cmx75..0cm and the outer most two are seperated by 649.6cm. 

Hence, the acceptance of one side of the spectrograph, f o r muons with i n f i n i t e 

momentum, i s (408 + 1 )cm . sterad. and f o r such muons the opening angle i n the 

plane perpendicular to the magnetic f i e l d i s + 6.8° and i t i s + 15.5° i n the 

p a r a l l e l plane. The acceptance of one side of the spectrograph has been 

calculated as a function of momentum f o r a magnetic f i e l d of 16.3 kgauss and 
i 

with the rate of energy loss f o r muons i n i r o n determined from the theory of 

Sternhe'imer and Peierls (1971), details of which are given i n Chapter 7. The 

results are shown i n figure 2.4 where the acceptance f o r the s c i n t i l l a t o r s alone ; 

and f o r the s c i n t i l l a t o r s and measuring trays together, are given as a function 

of momentum. 

2.5.2 The Expected rate of muons 

The t o t a l thickness of absorber through which a muon must pass before i t 
-2 

is detected i s equivalent to 3970gm.cm f o r v e r t i c a l muons and i s correspond­

ingly larger f o r t r a j e c t o r i e s i n c l i n e d to the v e r t i c a l . Consequently, from 

the energy loss theory of Sternheimer and Peierls (1971, given i n Chapter 7) 

there i s a low momentum cut o f f at 6.9 GeV/c to the observed spectrum. The 

contributions of the various elements of the spectrograph to the t o t a l 

absorber thickness are summarized i n table 7*2. 

With a knowledge of the t o t a l absorber thickness and the acceptance of 

the spectrograph, i t i s possible t o calculate the expected rates of muons above 

certain momenta from the OPV i n t e g r a l spectrum and these are given i n table 2.1. 
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The measured rates of muons down eaoh side of the spectrograph, with and without 
-1 -1 a magnetic f i e l d , are 18 +1 min and -21+1 min respectively. 

Table 2.1 

The Expected Rates of Muons through MARS 

Momentum (&eV/c) I n t e g r a l Hate > 6.9 36 min 1 

> 50 -1 > 50 2.3 mm 
-1 > 100 35 h 
-1 > 200 7.9 h 
-1 > 500 20 day 
-1 > 1000 3.2 day 
-1 > 2000 3.6 week 

> 5000 12.3 year -

2.5*3 The Maximum Detectable Momentum 

The maximum detectable momentum w i l l be discussed i n d e t a i l i n Chapter 5, 

because i t s value depends upon the method of analysis of the data. I t i s 

s u f f i c i e n t t o state here that the maximum detectable momentum i s 5427 GeV/c 

and with an expected rate (based upon the OFW spectrum) of about 10 muons per 

year above this momentum, i t w i l l be possible to determine the muon momentum 

spectrum and charge r a t i o up to t h i s momentum. 

2.6 Prinoiple of Operation 

A muon i s detected as traversing the spectrograph by a three f o l d 

coincidence from the s c i n t i l l a t o r s of one side of the instrument and high 

voltage pulses are then applied to the flash-tube trays of that side and to 

the azimuthal trays. The flash-tubes, through which the muon passed, discharge 
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and the d i g i t i s a t i o n pulses developed on t h e i r probes are recorded i n 

f l i p - f l o p memory c i r c u i t s situated near the ends of the tubes. 

The memories of the momentum trays are then analysed by a device known 

as the momentum seleotor. This i s capable of deciding w i t h i n 8C/is i f the 

l a t e r a l magnetic deflection was less than +1.0om. i f this-was the case, 

then the information contained i n the memories of the measuring trays i s 

passed, v i a a buffer memory (a f e r r i t e oore s t o r e ) , to an on-line IBM 1130 

computer, where the information i s stored f o r a fu r t h e r , more detailed, 

analysis. 

For every event, a device known as RUDI (Restricted Use D i g i t a l 

Instrument) automatically calculates the magnetic deflection of the muon from 

the information contained i n the momentum trays. This deflection i s used to 

generate an address f o r one of the memories of a PHA (Pulse Height Analyser), 

the contents of which are incremented by one, and consequently the deflection 

spectrum i s continuously recorded. Details of the i n d i v i d u a l devioes are given 

below. 

Thus, MARS i s able to measure and record continually the deflection spectrum 

f o r a l l muons detected by the instrument and-it i s able to extract those events, 

which are of in t e r e s t because of t h e i r high momentum, from the large f l u x of 

low momentum events. These l a t t e r events are made available f o r a more thorough 

and detailed analysis by computer. 

2.7 The Ind i v i d u a l Elements of MARS 

2.7*1 The Momentum Trays 

The momentum trays are s i t e d at the top, middle and bottom of the 

spectrograph, as shown i n figure 2.3. The electronics attached to each tray 

examine the configuration of the discharged tubes produced by the muon and 

assign the t r a j e c t o r y to one of the 152 x 5mm cells which form the d i g i t i s e d 

output f o r a tra y . The t r a j e c t o r y i s thus located at three points along i t s 

path and, from t h i s information, i t i s possible to calculate the deflection of 

the muon i n the magnetic f i e l d . 
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2.7*2 The Momentum Selector 

The momentum selector contains three s h i f t registers termed registers 

A, B- and C and they correspond t o momentum trays 5 f 3 and 1 respectively. 

Each register contains 152 elements which are i n a one to one correspondence 

with the cells of the momentum trays. The contents of the trays are strobed 

i n t o the s h i f t registers and the elements corresponding to the activated cells 

are set to a l o g i c a l 1. Figure 2.6 i s a schematic diagram of the momentum 

selector with one element of each register set to a l o g i c a l 1. 

A series of clock pulses are applied to the s h i f t registers and, ivhen 

the activated element of tray B reaches either element 76 or 152, the positions 

of the c e l l s i n A and C are examined to see i f they form a 1 straight l i n e ' with 

B. (Registers A and C are extended by 76 cells to allow f o r none v e r t i c a l muons). 

A 1 s t r a i g h t l i n e 1 i s defined as any tr a j e c t o r y with a deflection of less than 

two c e l l s . I f t h i s i s the case, the event i s c l a s s i f i e d as a high momentum 

event and the core store c i r o u i t r y and the on-line system are i n i t i a l l i s e d . 

An electron cascade through a momentum tray w i l l activate several cells 

of the momentum selector and, i f any c e l l forms a s t r a i g h t l i n e combination 

with the other two trays, the event i s c l a s s i f i e d as a high momentum event. 

Consequently, there i s no loss of high momenta muons because of electron 

accompaniment and i n f a c t , there i s a gain of some muons with lower momenta. 

The e f f i c i e n c y of the c l a s s i f i c a t i o n of high momentum events i s a function 

of momentum because the widths of the c e l l s . i n the momentum trays permit 

muons of d i f f e r e n t momenta to activate the same c e l l configurations. The 

ef f i c i e n c y of c l a s s i f i c a t i o n i s u n i t y f o r momenta above about 560 G-eV/c and 

f a l l s to zero at about 220 G-eV/c. 

2.7.3 RUDI 

Figure 2.5 shows the tra j e c t o r y of a muon through the cells of the momentum 

trays A, B and C; the activated cells are a, b and c respectively. By simple 

geometry, i t can be seen that the deflection,A , i n units of momentum tray c e l l s , 
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i s given by 

A = (a - b) + (c - b) (2.6) 

Whilst the s h i f t registers are being clocked, RUDI counts the clock pulses 

and observes the a r r i v a l of the activated elements of each s h i f t r e g i s t e r at 

element 152. Consequently, i t is able to ascertain the values of (a - b) and 

(c - b ) . RUDI then a t t r i b u t e s a deflection and a sign to the charge of the 

muon by means of equation 2.6 and a knowledge of the direc t i o n of the magnetic 

f i e l d . An address of one of the memories of a P.H.A. i s generated and the 

contents of this memory are incremented by one. The muon deflection spectrum 

and charge r a t i o are thus continually produced f o r the muons and they are 

recorded i n the P.H.A. 

2.7.4 The Measuring and Azimuthal Trays 

.There are f i v e measuring trays i n each side of the spectrograph, as shown 

i n figure 2.3* Each tray consists of 89 columns of 8 tubes and the columns 

are assigned a number i n the range 2 - 90. Because the azimuthal trays only 

consist of four layers of the large tubes, two adjacent columns are taken 

together t o form an eight tube combination. 

Column 1 and columns 91 - 96 of each tray are dummy. They are b u i l t i n t o 

the electronics and are always transferred to the computer. Column 1 i s the tray 

i d e n t i f i e r and i t contains the tr a y number i n binary. The other six columns 

are used during the analysis of the data f o r the storage of the answers. 

The d i g i t a l output from these trays i s i n the form of a column number 

followed by the tube configuration of that column. Only the columns which 

actually contain data are transferred. The column number i s a number between 

1 and 96, i s i n B.C.D. format (Binary Coded Decimal) and occupies 8 binary 

b i t s . Similarly, the tube configuration occupies 8 b i t s , one b i t f o r each 

of the eight tubes i n a column. 
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2.7-5 The Core Store 

Before the information contained i n the measuring trays i s transferred to 

the computer, the event i s assembled i n a f e r r i t e core 3 t o r e . This not only 

minimises the transfer time to the computer, which i s continually involved i n 

other tasks, but . more important, whilBt data transfer i s i n progress, the 

computer i s i n oomplete control and a prerequisite i s that data be made 

available to the computer as soon as i t i s required. This cannot be guaranteed 

unless the event i s f i r s t assembled i n a core store because of inherent time 

delays i n the d i g i t i s a t i o n oontrol o i r c u i t r y . 

The f e r r i t e core store consists of 1024 8-bit words or bytes in t o which 

binary information can be stored. Each byte i s accessed by presenting a 

binary address defining the byte required and the necessary control pulses. 

The core store operates i n two modes: the clear-write mode and the read-write 

mode. The clear-write mode is used to place data i n the store, the defined byte 

f i r s t being emptied, and t h i s mode i s used to load the core store. The read-

w r i t e mode displays the contents of the defined byte on the output lines of the 

core store and then writes the data residing on the input lines back into the 

byte. This mode i s used when the contents of the core store are transferred 

to the computer. A description of the core store and i t s peripheral c i r c u i t r y , 

including the data channel t o the oomputer, i s given i n Appendix A. 

For each.event, the data from the measuring trays i s preceeded by an event 

header. This consists of information relevant to the muon, namely, the event 

number, the time, date and year, the magnetic f i e l d d i r e c t i o n , the t r i g g e r 

mode (the side of the spectrograph to which the data pertains) and the prevailing 

atmospheric pressure. The data, including the tray headers and dummy columns, 

then follow from each tray i n turn. A complete description of the data format-

i s given i n Appendix B. 
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Once the data from the l a s t tray ( t r a y 7) has been loaded i n t o the core 
store, the event i s ready f o r transference to the computer. The capacity of 
the core store i s s u f f i c i e n t to contain a l l the columns of tubes of one side 
of the spectrograph but not, i n addition, a l l the columns of the azimuthal 
trays. I f the core store becomes f u l l , then loading i s terminated and the 
data transferred; any data remaining i n the azimuthal trays i s l o s t . This 
loss should not be detrimental to the experiment, because any event with t h i s 
quantity of data could only be i n i t i a l l i s e d by a dense a i r shower and i t would 
almost cer t a i n l y be impossible to i n f e r the properties of any individual p a r t i c l e 
present. 

When the loading of the core store i s complete the data channel i s opened and 

the transfer of data to the computer takes place. 

2.8 The On-line Computing System 

The on-line computing system consists ba s i c a l l y of two units: an IBM 1130 

computer and an interface, which forms the data channel between the oomputer and 

MARS. The on-line system services two experiments, namely, MARS and a bubble 

chamber experiment i n which i t i s used to col l e c t data and supervise the scanning 

of bubble chamber f i l m . I n f a c t , the l a t t e r experiment i s the main occupation 

of the computer and the only service rendered to MARS, whi l s t f i l m measurements 

are i n progress, is that of data storage. The MARS data are analysed overnight 

on t h i s computer, when f i l m measurements cease and a l l the f a c i l i t i e s of the 

computer are available t o MARS. 

Figure 2 .7 i s a schematic diagram of the organisation of the computer and 

on-line experiments. The computer consists of a 1131 C.P.U. (Central Processing 

Unit) with a 8192 16-bit (2 bytes) word memory and a cycle time of 3.6[J.s. To 

th i s are attached two disc drives, one main and one s a t e l l i t e , a paper tape 

reader and punch, the console p r i n t e r and keyboard, and the interface. 
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A disc i s a magnetic recording device resembling a gramophone record 

except that i t s surfaces are coated with magnetic material onto which data can 

be w r i t t e n or read from at very high speed. Each disc provides the CPU with 

an extra 512,000 words of memory and t h e i r main use i s to provide storage areas 

f o r data and f o r computer programmes. A disc i s divided i n t o areas known as 

sectors which are each 320 words long. This i s the minimum quantity of words 

which can be transferred to or from the disc at any one time. The two disc 

drives attached to the computer provide each experiment with t h e i r own data 

storage areas. 

The other main input and output devices are the paper tape reader and 

punoh, and the console p r i n t e r and keyboard. These provide the main input and 

output functions required by the computer f o r job control purposes such as the 

necessary commands to execute a programme. They also provide output from 

programmes and the console p r i n t e r i s greatly used, i n t h i s renpeot, to relay 

messages to the f i l m scanners about the progress of t h e i r work. 

The interface consists of a large amount of electronics and was specially 

designed to handle the MARS and bubble chamber experiments. I t i s connected to 

the computer by a two-way communications channel which provides f o r the transfer 

of commands and data between the computer and the experiments. This channel i s 

composed of four registers. Two of them are each 16 binary b i t s i n length and 

are known as the read and wr i t e buffers. Data and commands from the computer 

are sent to the interface v i a the w r i t e buffer and data are received back v i a 

the read buffer. The other two registers are smaller. One i s 4 b i t s long and 

is known as the control register. The i n t e r p r e t a t i o n of the contents of the 

wr i t e buffer by the interface depends upon the contents of t h i s r egister. The 

other r e g i s t e r i s 6 b i t s long and i s known as the i n t e r r u p t buffer. The b i t s 

of t h i s register inform the computer of the state of the read buffer and which 

experiment i s requiring service. 



27 

2.9 The Interrupt Principle of the Computer 

The IBM 1130 computer, when handling input and output devices, operates on 

the i n t e r r u p t p r i n c i p l e . When a device requires some kind of intervention i n t o 

i t s actions by the CPU (such as the transfer of more data), the device interrupts 

the CPU by setting one of the b i t s of an in t e r n a l r e g i s t e r of the computer. The 

sett i n g of this b i t i s immediately acknowledged by the CPU and oontrol i s passed 

from whatever tasks the CPU was pursuing at that time to the programmes residing 

i n core which handle the device. When the servicing of the device i s complete, 

oontrol of the CPU i s returned to the point i n i t s tasks where the int e r r u p t 

occurred. 

The majority of the input and output devices on the computer are much slower 

than the CPU i t s e l f and the philosophy of the i n t e r r u p t p r i n c i p l e i s that the 

CPU i s not t i e d to the timing of these deyioes. Consequently, the CPU i s able 

to perform other tasks w h i l s t awaiting the response from the device and i t i s 

also possible to operate several devices simultaneously. This i s not true of the 

interface because i t i s a f a s t electronic device, but i t does mean that the CPU 

can be f u l l y occupied, f o r example with data analysis, and only be interrupted 

when required by the experiments. 

2.10 The Operational Principle of the On-line System 

Aft e r the core store has been loaded, a pulse i s sent to the interface to 

s i g n i f y that MARS requires servicing. B i t 4 of the i n t e r r u p t buffer i s set and 

the computer i s interrupted. The computer then acknowledges the i n t e r r u p t and 

examines the i n t e r r u p t buffer to ascertain which of the two experiments requires 

service. (The bubble chamber experiment sets b i t 5 of the i n t e r r u p t b u f f e r ) . 

Having decided that MARS was the cause of the i n t e r r u p t , the computer opens the 

data channel to the core store by setting l i n e 1 of the control buffer and 

placing a special code (binary 79) i n the w r i t e buffer. This i s i n t e r p r e t e d 

by the interface as a control command and the channel i s opened. Control l i n e 

1 i s then reset. The computer then proceeds to send addresses to the core store 
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and to receive the data from the core store. This i s accomplished by setting 

control l i n e 1 and placing the address of a core store byte i n the w r i t e buffer. 

The addresses are produced i n l o g i c a l order s t a r t i n g at zero. The interface 

transfers the address to the core store together with a pulse which cycles the 

core store i n the read-write mode. The computer 7/aits f o r b i t s 1 and 2 of the 

inte r r u p t buffer to be set, s i g n i f y i n g that data have been received from the 

core store, and i t then reads i n the data from the read buffer. Control l i n e 

one i s then reset and the cycle repeated with the next address. 

The electronic control c i r c u i t r y of the core store counts the number of 

addresses received from the computer and, when a l l the data have been transferred, 

a control b i t i s set on the read buffer to s i g n i f y co the computer that 

transmission i s complete. The data channel i s then closed by the presentation 

of another special code (binary 1024) to the interface i n conjunction with the 

se t t i n g and resetting of control l i n e 1. The CPU then returns to continue i t s 

other tasks. 

The data received from the core store are only one byte long and, to 

economise disc storage space, two bytes are packed together in t o one 16-bit 

computer word. The data are retained i n the core of the computer u n t i l 320 words 

have accumulated and they are then transferred to the next available sector of 

the data storage area of the s a t e l l i t e disc. 

This disc i s transferred to the main disc drive at night f o r the data to be 

analysed by the programme to be described i n the following chapters. An empty 

disc i s placed on the s a t e l l i t e drive where data co l l e c t i o n continues f o r another 

24 hour period. 
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CHAPTER 3 

The Data Analysis Techniques, Aims and Problems 

3 . 1 Introduction 

The automatic c o l l e c t i o n and analysis of data, especially i n large 

quantities, means that much of the data w i l l go unseen and a great r e s p o n s i b i l i t y 

l i e s with the computer programmer to ensure that the data i s , i n a l l cases, 

correctly interpreted. The constituent flash-tubes of previous spectrographs 

have been recorded photographically and the patterns interpreted by f i l m 

scanners. Before w r i t i n g the computer programme to analyse the MARS data, a 

study was made of the actions of the scanner and the decisions made by him i n 

his i n t e r p r e t a t i o n of the data, especially with respect to the f i t t i n g of 

t r a j e c t o r i e s to flash-tube patterns. These' actions and decisions were then 

expressed as l o g i c a l procedures f o r the computer and included i n the analysis 

programme. 

This chapter i s devoted to a description of the analysis techniques adopted 

and the problems encountered. A more detailed description of the actual programme 

i s given i n Chapter 4. 

3 . 2 The Aims of the Programme 

The basic aim of the programme i s to i n t e r p r e t the binary coded information, 

transferred from the measuring trays and peripheral equipment of MARS tc the 

IBM 1130 computer v i a the on-line data channel, and to perform the following 

functions: 

a) to determine the number of p a r t i c l e s traversing the instrument, 

b) to eliminate spuriously triggered events e.g. those due to a i r 

showers, 

c) to distinguish and f l a g eleotron cascades i n any of the flash-tube 

trays, 
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d) to determine the momenta of the muons present, 

e) to determine the sign of the charge of the muons, 

f ) to determine the projected zenith and azimuthal angles of the 

t r a j e c t o r i e s of the muons, 

g) to provide f o r fu r t h e r col l e c t i o n of data from MAHS during data 

analysis, 

h) to continuously monitor and check the performance of the d i g i t i s a t i o n , 

the data channel and the general spectrograph operation, 

j ) t o convert the basic binary information and answers i n t o a form i n 

which i t can be transferred to the IBM 3 6 0 / 6 7 NUMAC (Northumbrian Universities 

Multi Access Computer) at Newcastle, via a land l i n e ( 1 6 miles), f o r storage 

on magnetic tape and to make such data easily accessible from a Fortran 

environment on that computer. 

Muons are detected by a 3 - f o l d coincidence from the s c i n t i l l a t i o n counters 

of one 3ide of the spectrograph. Unfortunately, a coincidence may be generated 

i n ways other than by the traversal of a single muon through the three counters, 

f o r example, as the consequence of an oblique extensive a i r shower or by a pair 

of muons, neither p a r t i c l e traversing the en t i r e instrument. A chance st r a i g h t 

l i n e combination i n the momentum selector c l a s s i f i e s the event as a high 

momentum event and i t i s a necessary function of the analysis programme to 

distinguish and f l a g such events which occur i n the data. 

The mean discharged flash-tube density along a muon track i n a tray i s 5 • 2 1 

and normally, there are no more than two discharged tubes i n any one layer. 

Occasionally a wide region of a tray i s discharged by an electron cascade 

accompanying the muor. These originate from electromagnetic interactions of 

the muon i n the material above the tray. 

The r e s u l t i n g cluster of discharged tubes i s known as a burst and, because 

the high tube density renders them useless f o r track location purposes, the flow 

of the analysis programme must be adjusted whenever one i s encountered. The 
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expected p r o b a b i l i t i e s of occurrence of these bursts, as given by Said (1966, 

see figure 2.1), increases rapidly with muon energy and i s h% per magnet 

block at 100 G-eV and 17% atlOOOGeV. Consequently, with MAES and f o r muons 

with an energy of 1000 &eV, there i s a 39$ chance of seeing one burst and 

only a kl% chance of seeing a track without any bursts. Clearly, i t i s most 

important that the programme should handle these bursts correctly. When the 

spectrograph i s operated such that there i s no absorber above tray 5, t h i s tray 

w i l l not be greatly affeoted by bursts, but i t w i l l be affected by small a i r 

showers. This again i s expected to be more important at the highest energies, 

where the muon i s more l i k e l y to be close to the axis of a shower, where p a r t i c l e 

densities are highest. 

I t was shown i n section 2.2.1 that the radius of curvature of a charged 

p a r t i c l e i n a magnetic f i e l d i s proportional to i t s momentum and this radius 

may be found by reconstructing the t r a j e c t o r y of the muon through the discharged 

flash-tubes of the spectrograph. The di r e c t i o n of curvature and of the magnetic 

f i e l d determine the sign of the charge of the muon. The actual momentum measured 

i n t h i s way by MARS i s the projection of the true momentum on the plane normal 

to the magnetic f i e l d . The true momentum may be derived i f the projected zenith 

and azimuthal angles are known and these may also be found from the t r a j e c t o r y 

reconstruction. The theory of the derivation of the true momentum and also the 

true zenith and azimuthal angles i s given i n section 3«7>6. A knowledge of the 

true azimuthal and zenith angles i s essential i f the momentum of the muon i s to 

be calculated at i t s production, because i t i s necessary to know the thickness 

of atmosphere traversed by the muon to allow f o r the energy loss. This i s 

especially important i n the horizontal d i r e c t i o n where path lengths are large 

and, because of the earth's magnetic f i e l d , they are d i f f e r e n t f o r each sign of 

the charge of the muon. This has an important bearing on the observed charge 

r a t i o . 
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Whilst data analysis i s i n progress, i t i s intended to continue operating 
MRS. Consequently, the computer must be available at any time f o r the storage 
of data and data analysis w i l l be frequently interrupted f o r that purpose. An 
important programming consideration i s that the storage of new data does not 
i n t e r f e r e with the data analysis, besides a b r i e f i n t e r r u p t i o n , and that 
interrupts at inopertune moments i n the analysis are delayed u n t i l a position 
i s reached where data storage may prooeed. This occurs when the analysis 
programme i s using one of the disc drives and MARS requires to store data. I f 
data storage was allowed to proceed immediately, there i s a high p r o b a b i l i t y 
that the disc handling routines would not be able to cope and a programme error 
would r e s u l t . 

The computer i s able to monitor continually and check the performance of 

the spectrograph because the data, other than the actual tubes discharged, are 

i n a s t r i c t format defined by the d i g i t i s a t i o n electronics. I t i s easy f o r the 

analysis programme to compare the data with the expected format and f l a g any 

discrepancies* For example, only i n the header information are data words 

allowed to be zero. I f t h i s i s otherwise, then information has been l o s t between 

the flash-tubes and the computer. A oomplete l i s t of the various errors flagged 

by the programme i s given i n table 4.4L. 

The NUMAC computing system at Newcastle, to which Durham University i s 

attached by a land l i n e , consists of an IBM 3 6 0 / 6 7 computer, which provides a 

very large and f a s t CPU and large amounts of back-up storage on magnetic tapes 

and discs. This f a c i l i t a t e s easy handling of large amounts of data such as that 

accumulated by MARS over the period of several months. A l l the data collected 

by MARS are stored on magnetic tape on thi s machine after'processing on the 1 1 3 0 . 

The best programming language environment to work i n on the 36O/67 i s a high 

l e v e l one, such as Algol or Fortran, and, as the data from MARS are i n coded 

binary, i t i s necessary to translate this data in t o a form which oan be accessed 
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by a high l e v e l language. Hence an i n t e g r a l stage of the data analysis i s the 
tra n s l a t i o n of t h i s data i n t o a form which can be accessed by programmes on the 
3 6 0 / 6 7 . 

A l l the features described i n this section have been included, at various 

stages, i n the programmes f o r the analysis of the MARS data. Several 

environmental problems had to be considered whilst the programming was i n progress 

and these are described next. 

3 . 3 Environmental Problems and Considerations 

The on-line IBM 1130 computing system has been described i n the previous 

chapter. As a computer i t i s rather small and slow and i s l i m i t e d i n the 

operations i t can perform. However, i t i s i d e a l l y suited to small, on-line 

experiments such as MARS and the bubble chamber experiment, and where a much 

larger and v e r s a t i l e computing system (NUMAC) i s at hand, to which data received 

by the on-line system may be sent f o r f u r t h e r and more detailed processing. 

Unfortunately, the NUMAC computer i s extensively used by the Universities 

of Durham and Newcastle, and there i s i n s u f f i c i e n t time available each day f o r 

the processing of a l l the data collected by the on-line system. Whenever MARS 

is running, i t i s necessary t o have the 1130 computer operational to co l l e c t 

data. During the daytime, the computer i s involved i n other tasks but, overnight 

and a t week-ends, i t s services are only required by MARS and then only f o r a 

few milliseconds every one or two minutes. I t i s i d l e f o r the remainder of the 

time. I t was decided to take advantage of t h i s available computing time to 

analyse the data from MARS. Eleven hours of computing time every night and a l l 

of the week-ends are available and thi s i s more than s u f f i c i e n t to perform a 

complete analysis of the data. 

The major l i m i t a t i o n of the IBM 1130 computer i s the size of i t s core. 

This consists of 8192 1 6 - b i t words of which 7 5 0 2 are available to the user, 

the remainder being occupied by the resident monitor including the disc 

handling routine. I n addition, 4 5 0 words are required by the programme and 
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data storage area f o r the on-line system. Consequently, any programme to analyse 

the data must be contained i n the remaining 7 0 5 2 words of core. 

Two programming languages are available to the user of the IBM 1130 computer. 

One i s a high l e v e l language, Fortran, and the other a low lev e l language, 

Assembler. The main differences between these two languages i s that the Fortran 

compiler i s responsible f o r the t r a n s l a t i o n of programming instructions i n t o 

machine code, whereas with Assembler (which i s symbolic machine code) the 

transl a t i o n i s the r e s p o n s i b i l i t y of the programmer. As a r e s u l t , i t i s very 

much easier to programme i n Fortran, but execution time and the amount of core 

required by the programme can be considerably reduced by w r i t i n g i n Assembler. 

For these reasons and also the f a c t that the binary data from MARS i s d i f f i c u l t 

to handle i n Fortran, the programmes t o analyse the MARS data have been w r i t t e n 

i n Assembler language. 

As the data are analysed, a large amount of output i s produced by the 

programmes which, not only includes the results of the data analysis, but also 

a description of the decisions made by the programme i n a r r i v i n g at these r e s u l t s . 

The handling of t h i s output, and also the data i t s e l f , promotes a serious problem 

because there i s no fa s t output device on the computer to which t h i s information 

can be sent, other than the discs. The main input and output device i n Durham 

f o r the NUMAC oomputer i s also an IBM 1130 computer, which has a f a s t l i n e 

p r i n t e r attached to i t , and i t i s able to accept discs from other 1130 computers. 

I t i s thus possible to transfer discs from the on-line system to t h i s computer 

and either, p r i n t the answers on the p r i n t e r , or transmit the data to Newcastle 

f o r storage. The only prerequisite i s that the data f o r transmission be on 

the disc i n pseudo card images, so th a t , as f a r as the NUMAC computer i s concerned, 

the input i s coming from cards. 

3 . 4 The Analysis of the Data - A General Outline 
i 

3 . 4 . 1 The Scanning of the Data 

The quantity of data f o r any event i s variable and i t i s solely dependant 

upon the number of flash-tube columns containing discharged tubes. The events 
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are packed together as the data are received and stored on the disc. A long 
data f i l e i s thus created amounting to about 200 sectors of the disc f o r a 24 
hour c o l l e c t i o n periodj there being between 4 and 5 events per sector. 

The analysis programme systematically works through t h i s data f i l e and i t s 

f i r s t task i s to i d e n t i f y each event i n t u r n , and the amount of data pertaining 

to i t . The data f o r the event are then scanned and divided up i n t o the various 

flash-tube trays. The dir e c t i o n of the magnetic f i e l d and the trigger mode of 

the spectrograph (the side of the spectrograph from which the data came) are 

extracted from the header information. These are required to define the sign 

of the oharge of the muon and the co-ordinates of the flash-tube trays (the 

l a t t e r being d i f f e r e n t f o r each side of the spectrograph). 

3.4.2 The Scanning of the Trays 

Each tray i s examined i n turn and they are subdivided i n t o groups of 

discharged tubes through which the muon could have passed. A group i s defined 

as a cluster of tubes, seperated from any other group by at least two empty 

columns, and containing at least one discharged tube i n any three of the eight 

layers.. This was introduced to distinguish between spuriously flashing tubes 

and the actual muon track but, because of tube i n e f f i c i e n c i e s , a loss of some 

muon events res u l t s . 

The theoretical layer population frequency d i s t r i b u t i o n i s shown i n 

figu r e 3*1 and was derived using a Monte Carlo technique. A l l tracks up to 

an angle of 9 ° were considered together with the t r i a n g u l a r angular acceptance 

function of the spectrograph. I t can be seen that no tracks have a tube 

population of only two tubes and the only candidates f o r such a population are 

those traoks with i n e f f i c i e n t tubes . I t i s calculated i n Chapter 5 that 14$ 

of a l l tracks have one i n e f f i c i e n t tube and thi3 corresponds to a tube i n t e r n a l 

efficiency of 9 6 . 6 $ . Folding t h i s e f ficiency i n t o the layer population 

frequency d i s t r i b u t i o n yields a.0 .13$ p r o b a b i l i t y of observing a tray with 

only two tubes along a muon track. Consequently, f o r the f i v e measuring trays, 
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0.62% of a l l events w i l l be l o s t because of the insistence that at least three 

layers contain discharged tubes. This loss w i l l be momentum independent and 

w i l l therefore not d i s t o r t any derived spectrum. 

I f a group comprises more than 5 columns or more than 1 0 discharged tubes, 

the group i s said to contain a burst and i s not used d i r e c t l y i n l a t e r calcur 

lation3. These figures were derived a f t e r a f i l m 3tudy of bursts i n flash-tube, 

trays. For a muon with a momentum 100 GeV/c, the maximum angle of the muon's 

tra j e c t o r y through a flash-tube t r a y , even allowing f o r an increase i n angle 

due to magnetio bending, i s 9 ° and consequently i t s t r a j e c t o r y should always 

be contained w i t h i n two tube columns. I t was found that, whenever the track 

occupied more than two columns, the muon was apparently accompanied by another 

p a r t i c l e and, i f i t spread over more than f i v e columns, there was l i t t l e chance 

of extracting any information as to where the o r i g i n a l muon passed. The 

theoretical mean tube population along a track was found to be 5 . 2 1 4 + 0 . 0 0 8 . 

from the d i s t r i b u t i o n of figure 3 . 1 , and so, i f there are more than 1 0 tubes 

discharged i n a confined region of the t r a y ( f i v e columns or less) then there 

are at least two part i c l e s present. The interference of these p a r t i c l e tracks 

with one another makes i t d i f f i c u l t to ascribe specific tubes to each p a r t i c l e , 

and a l i m i t of 1 0 tubes was introduced i n t o the track f i t t i n g routines above 

which the results of the track f i t t i n g were adjudged to be suspect. 

Normally, there i s only one group of tubes i n a tray but occasionally there 

are more. These are due to accompanying p a r t i c l e s , either another muon or a 

p a r t i c l e a r i s i n g from an i n t e r a c t i o n of the muon somewhere i n the spectrograph. 

I t i s necessary f o r the analysis programme to determine which group of tubes 

pertains to the actual muon and which were due to the other p a r t i c l e s . I f there 

are more than two groups i n a tray , the tray i s deemed unusable and no f u r t h e r 

examination of that tray takes place. This feature was introduced to assist i n 

the elimination of large bursts and a i r showers and also to reduce the number 

of calculations to be done by the analysis programme and the amount of core 
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storage that would have been required f o r them. 

3 . 4 . 3 The F i t t i n g of the Trajectory 

The handling of multiple groups, bursts and unusable trays i s dealt with 

i n d e t a i l i n Chapter 4 , where a oomplete description of the analysis programme 

i s given. For the purposes of the present outline, we s h a l l confine our 

attention to an event comprised of a single, unaccompanied muon with one group 

i n each tray, none of which contain bursts. 

Each group i n the f i v e measuring trays i s examined i n turn and the muon 

traj e o t o r y i s located i n them. The actual procedure f o r t h i s i s described i n 

seotion 3 * 6 , but b r i e f l y , the flash-tube pattern i s studied and a small region 

of the tray, through which the muon passed i s defined, The mid point of t h i s 

region i s then used as an approximate co-ordinate f o r the muon i n that measuring 

tray during the next stage of the calculations. 

A more precise point can be defined i n the measuring tray i f the angle, at 

which the muon traversed the tray, i s known. This also forms a c r i t e r i o n f o r 

selecting the group pertaining to the muon when more than one group i s present 

i n a tra y , because i t i s u n l i k e l y that both groups w i l l contain tracks at the 

correot angle. The angle at a measuring l e v e l i s defined by constructing the 

entire t r ajeotory of the muon through the spectrograph using the approximate 

co-ordinates, and taking the d i f f e r e n t i a l of the r e s u l t i n g curve at the measuring 

l e v e l . This angle i s defined very precisely because the approximate 

co-ordinates are only i n error by a f r a c t i o n of a millimetre and the change i n 

angle due to such an uncertainty i s negligible over the length of the 

spectrograph. 

The t r a j e c t o r y f i t t e d to the co-ordinates i s a parabola and, f o r the 

f i t t i n g purposes, the magnet i s assumed to be a continuum of i r o n , rather than 

a multilayer device. Consequently, two approximations are introduced: f i r s t l y , 

the parabola i s not an accurate description of the projected t r a j e c t o r y , which 

i s , more preoisely, four arcs of a c i r c l e joined by tangents, and secondly, 
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the magnetic path length i s increased by assuming a continuum of ir o n . I t i s 

shovrn i n section 5*6 that the effects that these approximations have on the 

analysis of high momentum events are either negligible or necessitate the 

application of a simple, momentum independent, correction factor to the results. 

Once the angle of the t r a j e c t o r y has been defined at each l e v e l , a more 

preoise determination of the co-ordinates of the t r a j e c t o r y i s made, and a 

f i n a l parabola i s f i t t e d to these new co-ordinates. The momentum of the muon 

and projected zenith angle are then calculated from the coefficients of the 

parabola f i t , see section 7 , and the sign of the charge of the muon i s derived 

from the di r e c t i o n of the magnetic f i e l d and the d i r e c t i o n of curvature of the 

tra j e c t o r y . 

The projected azimuthal angle i s found from trays 6 and 7 , the azimuthal 

trays, by simply calculating the mean points of the discharged tubes i n a 

group, i n each of the two trays and f i n d i n g the angle subtended. No actual 

track f i t t i n g i s attempted i n these trays because of the laok of s u f f i c i e n t 

core storage f o r the necessary programmes and also because the method i s 

s u f f i c i e n t l y accurate as not to merit a more detailed analysis. The accuracy 

attained i s discussed i n Chapter 5 . 

3 . 4 . 4 The Storing of the Answers 

The muon's momentum, projected zenith and azimuthal angles, together with 

other information relevant to the goodness of the parabola f i t and the decisions 

made by the analysis programme, are then placed i n an answer f i l e on a disc 

and also inserted back amongst the data i n the dummy columns of the event. 

I t i s necessary to have the answers stored i n these two d i f f e r e n t ways because 

i t keeps the answers and data together f o r transmission to the NUMAC computer. 

I n addition, i f the programme i s unable t o in t e r p r e t the data of a p a r t i c u l a r 

event, nothing can be inserted back amongst them, whereas the answer f i l e 

contains the error code ind i c a t i n g the f a u l t with the data. 
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3 » 4 « 5 Completion of the Analysis 

Having stored the answers, the analysis of the event i s complete and the 

programme then continues with the next event. This process continues u n t i l 

the end of the data f i l e i s reached and analysis i s terminated. 

At some l a t e r time, the answer f i l e i s transferred to the l i n e p r i n t e r of 

the IBM 1130 s a t e l l i t e computer of NUMAC, where a l i s t of events and answers 

i s produoed. The data f i l e , and i t s embedded answers, are also translated i n t o 

card images : on another disc, and that disc i s transferred to the s a t e l l i t e 

IBM 1130 and the data transmitted to the .NUMAC computer. Here the data and 

answers are stored on magnetio tape where i t i s available at any time f o r 

further study. 

3 » 5 The Location of the Muon1 s Trajectory i n the Flash-tube Trays 

3.5 ."1 Review of Previous Techniques 

The flash-tube has been widely used i n cosmic ray spectrographs over the 

past f i f t e e n years and, during that time, a va r i e t y of methods have been 

developed to locate accurately the p a r t i c l e t r a j e c t o r i e s i n the flash-tube trays. 

Ashton, Kisdnasany and Wolfendale ( 1 9 5 8 ) compared three methods of determining 

the best estimate of the t r a j e c t o r y . Their experimental arrangement consisted 

of two flash-tube trays, some distance apart, and t h e i r aim was to determine 

the angle at which the p a r t i c l e traversed the trays. 

The three methods examined were as follows: 

i ) A l i n e was drawn between the centre of gravity of the discharged 

tubes i n eaoh tray. 

i i ) A cotton f i b r e was adjusted across the surface of a f u l l scale 

diagram of the tube assembly to give the best estimate of the track d i r e c t i o n . 

i i i ) The photographic records were projected onto a rotatable screen, 

ruled with close p a r a l l e l l i n e s , and the d i r e c t i o n of a l i n e determined which 

s a t i s f i e d the oondition that the sum of the distances from the centre of the 

flashed tubes to the l i n e was a minimum. 
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They compared the results obtained by the three methods and concluded 

t h a t , although method ( i ) was objeotive, i t was i n f e r i o r to methods ( i i ) and 

( i i i ) because i t d i d not u t i l i s e the information available about the approximate 

angle of the track, as defined by the two trays taken together. Methods ( i i ) 

and ( i i i ) u t i l i s e d t h i s information but were both subjective i n that they 

required the scanner to in t e r p r e t the flash-tube patterns i n some way. Of 

these two methods, they concluded that method ( i i ) was more accurate because 

not only the tubes but also the gaps between t h e i r sensitive regions could be 

used to locate the t r a j e c t o r i e s . 

Hayman and Wolfendale (1962) analysed data from a similar experimental 

arrangement to that of Ashtoh et aL, by a track simulator method. The device 

consisted of an enlarged model of the flash-tube tray fronts i n which the 

discharged tubes were represented by illuminated l i g h t s . The track was located 

by plaoing a cursor aoross the tube pattern, at the angle defined i n conjunction 

with the tubes i n other trays, and then positioning i t l a t e r a l l y using certain 

c r i t e r i a . A comparision of the location accuracy achieved by t h i s method with 

that obtained by the authors simply placing a cursor on projected images of 

the events, shows that the track simulator was 2.5 times more accurate. 

A widely used computer method f o r the analysis of flash-tube data has been 

described by B u l l et a l . (1962). Their method u t i l i s e s the p r o b a b i l i t y of a 

flash-tube discharging as a function of the distance the p a r t i c l e passed from 

the centre of the tube, and the p r o b a b i l i t y d i s t r i b u t i o n used i s shown i n 

figu r e 3.2. Traoks are drawn between the flash-tube trays and the p r o b a b i l i t y 

of a tube flashing or not flashing i s calculated at each layer. The product of 

these p r o b a b i l i t i e s gives the t o t a l p r o b a b i l i t y f o r the track and the track with 

the highest p r o b a b i l i t y i s selected. Hayman and Y/olfendale (1? 6 2) compared the 

accuracy of the computer teohnique with t h e i r own and found l i t t l e difference 

i n the attained t r a j e c t o r y resolution. 
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3 » 5 « 2 . Conclusions and Dlaouasion 

I t i s concluded from the preoeeding review that i t i s essential to include 

two features i n any t r a j e c t o r y looation technique i f high precision i s to be 

attained and they are 

1) that the gaps between the sensitive areas of the tubes through 

which the muon passed should be used, as wel l as the discharged tubes r f o r 

track location purposes f and 

2 ) that due consideration should be given to the required angle of the 

track i n a tray as defined by the other flash-tube trays. 

Several other properties of flash-tube trays must also be considered, 

namely 

1) that a flash-tube may be discharged i n a layer a f t e r i t has been 

traversed by a l o c a l l y generated knock-on electron, whereas the muon passed 

outside of the tube's sensitive volume; 

2 ) that f l a s h tubes are not 1 0 0 $ i n t e r n a l l y e f f i o i e n t and they may not 

disoharge a f t e r being traversed by an ioni s i n g p a r t i c l e ; and 

3 ) that there i s always an uncertainty i n the p o s i t i o n of eaoh individual 

tube because of the variations i n the tube diameters and the bending of the tubes. 

Hayman and Wolfendale ( 1 9 6 2 ) commented that they encountered d i f f i c u l t i e s 

i n establishing f i t t i n g c r i t e r i a f o r t h e i r track simulator because of the f i r s t 

two effects but they do not state what were f i n a l l y adopted. The use of a 

pr o b a b i l i t y function by B u l l et a l . ( 1 9 6 2 ) i s an attempt t o allow f o r a l l three 

effeots, but the success of this method i s dependant upon the severity of the 

interference of these effects with the actual track. For example, consider 

two i d e n t i c a l tracks i n a flash tube t r a y , i f , f o r one of these tracks, there 

was a knock-on electron or a tube i n e f f i c i e n c y i n one layer.then the analysis 

of the two tracks with the B u l l et a l . p r o b a b i l i t y function would y i e l d two 

di f f e r e n t t r a j e c t o r i e s . This i s because the t r a j e c t o r y w i l l be biased either 

towards ( f o r knook-ons) or away from ( f o r i n e f f i c i e n c i e s ) the offending tube 

and w i l l never coincide with the true t r a j e o t o r y . 
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I t i s shown i n Chapter 5 that the p r o b a b i l i t y , PJJQ , of there being a tube 

on a muon track, which was discharged by a knock-on electron, whereas the muon 

passed outside of the sensitive region of the layer containing the tube, i s 

17.2 + 2 . 0 $ per tray. Consequently, ( 4 O . 4 + 0.8)% of the events w i l l have one 

knock-on i n one of the f i v e trays and (38.9 + 4 . 7 ) $ w i l l have none at a l l . 

S i m i l a r l y , f o r tube i n e f f i c i e n c i e s , the expected p r o b a b i l i t y of o c c u r r e n c e , , 

i s (14.2 + 3»7)% per tr a y , and consequently ( 3 8 . 5 + 3 - 4 ) $ of the events w i l l 

have a tube i n e f f i c i e n c y i n one of the f i v e trays and (46.5 + 1 0 . 0 ) $ w i l l have 

none. The p r o b a b i l i t y of an event having neither tube i n e f f i c i e n c i e s or tubes 

discharged by knook-on electrons i n any tray is given, approximately, by 

( 1 - P j N - P^Q) and hence ( 8 4 . 4 + 4 . 7 )$ of a l l events w i l l be contaminated i n 

some way, i n at least one tra y . 

Contamination of the data i n a flash-tube t r a y also occurs when the muon i s 

acoompanied by other p a r t i c l e s emanating from the magnet blocks. These, even i f 

they do not traverse the whole tray, cause flash-tubes to discharge which do not 

l i e on the muon's t r a j e c t o r y . I t i s d i f f i c u l t to see how a pr o b a b i l i t y function 

could i n t e r p r e t t h i s data correctly and produce the correct t r a j e c t o r y , because 

every discharged tube, even i f i t i s completely unrelated to the tr a j e c t o r y of 

the muon, i s included i n the f i t ' . The only way to i n t e r p r e t t h i s data correctly 

i s to do exactly what the f i l m scanner would do and that i s to eliminate the 

extraneous tubes from the data using certain o r i t e r i a . 

I t i s f o r these reasons that the technique involving the tube discharge-

p r o b a b i l i t y function, as used by B u l l et a l . ( 1 9 6 2 ) to analyse flash-tube data, 

i s considered to be unsatisfactory and an alt e r n a t i v e technique has been 

adopted. 

3*6 A New Computer Technique f o r the Analysis of Flash-Tube Data 

3 . 6 . 1 Introduction 

The only method by which consistent answers as to the position of the 

tra j e c t o r y of a p a r t i c l e i n a flash-tube t r a y may be produced from two 
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i d e n t i o a l tracks, except that one has suffered a knock-on electron or a tube 

i n e f f i c i e n c y , i s to is o l a t e the offending tube and correct i t accordingly by 

turning i t ' o f f or 'on 1. This method i s open to c r i t i c i s m because the data 

are being altered and there i s a chance that the wrong oorreotion may be made 

to them. I n Chapter 5, a comparison i s presented between the decisions of the 

programme and oertain properties of the data which r e f l e c t knook-ons and 

in e f f i c i e n c i e s , and experiment and theory agree exceedingly w e l l . I t i s 

oonoluded i n Chapter 5» that these results j u s t i f y the decisions made by the 

programme and that the technique i s successful. 

3.6.2 The Basic Technique 

The flash-tube configuration i n a tray i s examined and one tube i s selected 

from each layer that contains a discharged tube. I f a layer contains more than 

one tube both are taken i n t u r n and the process, described below, i s repeated 

f o r both of them. A stra i g h t l i n e i s f i t t e d , by the method of least squares, to 

the co-ordinates of the centres of the tubes. The layers which do not contain 

any discharged tubes are then examined and the centre point of the gap, between 

the sensitive areas of the flash-tubes nearest to the l i n e , i s selected. A 

oo-ordinate i s thus obtained f o r every layer and a new l i n e is f i t t e d through them. 

Small perturbations of position and d i r e c t i o n are now made around t h i s new 

l i n e to see i f i t i s possible to draw a l i n e through t h i s configuration of f l a s h -

tubes without v i o l a t i n g any information. This occurs when a l i n e cannot be 

oontained w i t h i n . a l l the discharged tubes and selected gaps at the same time. 

The perturbations made are shown i n figure 3.3. Six points are defined above 

and below the t r a y , centred around the f i t t e d l i n e , and they are /10 t h of a tube 

spacing apart.. 

A l l the possible lines (36) are drawn between these points and f o r every 

l i n e a cheok i s made to see i f any information i s violated. I f , f o r a few l i n e s , 

no information i s v i o l a t e d , then the track i s considered to be satisfactory. I f 

none of the l i n e s f i t then there i s either a tube present which was discharged 
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by a knock-on electron, rather than the muon, or a tube has been i n e f f i c i e n t . 

I n t h i s case the programme has several options open to i t to t r y and detect 

and adjust what i s wrong with the data. These are discussed i n the next section. 

The l i n e s that are drawn through the tray define a channel through which 

the muon could have passed and a t y p i c a l channel i s shown i n figure 3»4« The 

position of the centre of t h i s channel a t the centre of the t r a y (between tube 

layers 4 and 5) i s taken as the approximate co-ordinate of the track u n t i l a 

more precise value i s available, a f t e r using an angular c r i t e r i o n at a l a t e r 

stage i n the calculations. 

3.6.3 Knock-ons, I n e f f i c i e n c i e s and Bent Tubes 

As mentioned i n section 3.5.2, there are three properties of flash-tube 

trays which must be taken in t o consideration when analysing flash-tube data, 

namely, tubes discharging due to knock-on electrons, tube i n e f f i c i e n c i e s and 

the uncertainty i n the absolute diameter and position of each tube. These a l l 

render the data d i f f i c u l t to analyse and i t has been necessary t o include 

features i n the analysis programmes for the MARS data, i n an attempt to resolve 

these d i f f i c u l t i e s . 

Allowance i s made f o r the v a r i a t i o n i n tube diameters and f o r bent tubes by 

l e t t i n g the i n t e r n a l diameters of the tubes and the gaps between t h e i r sensitive 

regions overlap-by a small amount, as shown i n fi g u r e 3-5• This, i n e f f e c t , 

produoes a small, neutral region around a tube w a l l f o r which, i f the muon track 

l i e s w i t h i n i t , no regard i s taken as to whether the tube discharged or not. 

The amount of overlap required depends upon the properties of the flash-tube trays 

and i t i s very d i f f i c u l t to measure d i r e c t l y . I n Chapter 5, a detailed analysis 

i s described of a sample of data which was analysed with various sizes of overlap. 

I t i s concluded, i n that chapter, that an overlap of 5% of a tube spacing i s 

required at each edge of a tube f o r the MARS measuring trays. 
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I f i t i s impossible t o draw a l i n e through the tube configuration, then the 

programme has a series of options open to i t which adjust the tube pattern. 

These options are examined i n order of decreasing pr o b a b i l i t y u n t i l a p a r t i c u l a r 

option produces a configuration which s a t i s f i e s the f i t t i n g c r i t e r i a . A l i s t 

of these options i s given i n table 3*1 and they are i l l u s t r a t e d i n f i g u r e 3.6. 

The f i r s t option i s that of a single tube which was discharged by a knock-

on electron, rather than the muon. The programme turns ' o f f the tube from one 

of those layers which contains only one discharged tube i n turn and then t r i e s 

to r e f i t the track. Consequently, the track i s forced to l i e outside of the 

sensitive regions of each layer i n turn. I f a successful f i t i s achieved with 

t h i s option, the analysis i s complete otherwise f u r t h e r , less probable options 

are t r i e d . For tube i n e f f i c i e n c i e s , two tubes adjacent t o the already suggested 

traok are turned 'on' i n one of those layers which contain no discharged tubes, 

i n turn, and a track f i t i s attempted. The other options r e f e r to combinations 

of knock-ons and i n e f f i c i e n c i e s . 

Y/hen an option produces several possible f i t s , then the f i r s t f i v e found 

are stored and the correct one selected i n the next stage of the analysis when 

the angle c r i t e r i o n i s applied. Only the f i r s t f i v e are stored because of lack 

of available oore spaoe but, as only about ^% of trays analysed ever contain more 

than f i v e possible tracks, the majority of the data are unaffected. I t i s also 

highly probable that the correct track i s amongst the f i v e . 

3.6.4 The Angle C r i t e r i o n 

A parabola i s f i t t e d t o the co-ordinates of the tracks i n those trays which 

were not classed o r i g i n a l l y as unusable and which d i d not contain a burst. The 

angle of the t r a j e c t o r y i n a tray i s found by taking the d i f f e r e n t i a l of the 

parabola at that tray. Lines are then drawn at t h i s angle through the tube 

configuration (either the i n i t i a l configuration or that chosen by the options) 

and a check i s made, f o r each l i n e , to see i f any information i s v i o l a t e d . The 
1 t h ^ li n e s which are drawn are /80 " of a tube spacing apart and they begin /k of 



Table 3.1 

The Traok F i t t i n g Options 

Description 

Good f i t - no information has to be assumed. 

A knock-on electron i s assumed (a discharged 
tube i s neglected). 

A tube i n e f f i c i e n c y i s assumed (an undischarged 
tube i s assumed to have discharged). 

A knock-on electron and a tube i n e f f i c i e n c y i n 
di f f e r e n t layers are assumed. 

Two knock-on electrons i n d i f f e r e n t layers 
are assumed. 

Two in e f f i c i e n c i e s i n d i f f e r e n t layers are 
assumed. 

One single knock-on and one double knock-on 
are assumed i n d i f f e r e n t layers. 

A tube i n e f f i c i e n c y and a knock-on i n the same 
layer are assumed. 

Two knock-ons i n the same layer are assumed 
(muon passed between them). 

Two knock-ons i n the same layer are assumed 
(muon passed t o one side of them). 

An i n e f f i c i e n c y and a double knock-on are 
assumed i n the same layer. 

Assumes an i n e f f i c i e n t tube between two 
knock-ons. 
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a tube spacing on one side of the i n i t i a l co-ordinate and f i n i s h /l+ of a tube 
spacing on the other side. A t o t a l of 41 l i n e s are drawn. A t y p i c a l channel 
i s i l l u s t r a t e d i n f i g u r e 3*7« 

I f some of these lines do not v i o l a t e any information, then they define a 

region of the tray through which the muon could have passed and the centre of 

this region, at the middle of the tray, i s taken as the f i n a l co-ordinate of 

the muon i n that tray. I f several configurations of tubes were possible then 

they are a l l examined with the angle c r i t e r i o n to determine which one i s oorrect. 

I f none of the configurations contain a track at the correct angle then other 

track f i t t i n g options are t r i e d and the angle c r i t e r i o n reapplied u n t i l a 

successful combination i s obtained. 

3.7 The Determination of the Muon's Momentum and the Zenith and 

Azimuthal Angles 

3.7*1 The Momentum of the Muon 

I t was shown i n section 2.2.1 that the t r a j e c t o r y of a charged p a r t i c l e 

moving i n a magnetic f i e l d describes the arc of a c i r c l e . Figure 3.8 shows such 

a t r a j e c t o r y and i t s equation of motions con be w r i t t e n as 

(x - p) + (y - q) = r 

where (p,q) i s the centre of the c i r c l e , whose radius i s r 

Hence y = q ± r j ( l - ( i = - J » ) ^ (3.1) 

I n the co-ordinate frame of the spectrograph shown i n fi g u r e 3-9, p~rsin0., q~rcos0 

where 0 i s the zenith angle, and f o r a 100 G-eV/c muon, the radius of ourvative r , 

from equation 2.1, i s 204m. The zenith angle has a maximum value of ~ 7° 
2 2 

and becausex~3in. the term (x - p ) / r has a value of 0.02. Hence equation 3.1 
can be expanded binomially, higher order terms being neglected to give 

y =_1. x 2 = j D X + ( q - r ^ J T J 

2r r V 2 r / (3.2) 

The negative sign of the square root has been taken because y«vO i n the reference 

frame. 
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2 I t oan be seen that t h i s can be w r i t t e n i n the form y = ax + bx + c and 

the l a t t e r i s the general equation of a parabola. I f such an equation i s f i t t e d 

to the oo-ordinates of the trajeotory of the muon, the radius of curvature of 

the t r a jeotory (and hence the muon's momentum) may be extracted from the 
2 

co e f f i c i e n t of the x term. From equations 2.1 and }.2 the momentum of the 
muon, P , can be defined i n terms of the parabola c o e f f i c i e n t , a, as 

P 
= Be/2a, or, sub s t i t u t i n g the characteristics of MARS 

P = 0.2445 GeV/c (3.3) 
M a 

I t i s shown i n section 5*6 t h a t , to allow f o r the effects on the derived 

momentum of the gaps between the magnet blocks, a correction factor of 0.7972 

must be introduced in t o the above equation. Hence 
P = 0.1949 GeV/c (3.4) 
^ a 

and t h i s i s the equation that the programme uses to calculate the momentum of 

the muons. The accuracy of equation 3*4 i s disoussed i n Chapter 5* 

3.7.2 The Theory of the Parabola F i t t i n g 

The parabola f i t was found by the method of 'least squares', where the 

standard deviation of the points around the f i t t e d curve i s minimised. For the 
2 

equation y s ax + bx + c, the sum of the standard deviations, S, of the points 
around the ourve i s defined as 

1/2 

For S to be a minimum the following conditions must be s a t i s f i e d 

as = as = as = o 
>a db dc 

and hence the following equations must also be s a t i s f i e d 
4 3 2 2 a Sx + b Sx + c £x -Zy x = 0 
3 2 a l J x + b S x + c 2 x - 2 y x = 0 
2 

a S x + b 2 x + c 2 l - 2 y = 0 
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The ooeffioients of the parabola f i t are found by solving these three l i n e a r 

equations f o r a, b and c. 

3.7.3 The Zenith Angle of the Muon 

The programme calculates the projection of the angle of the muon's tr a j e c t o r y , 

at l e v e l 5, on the measuring plane and t h i s angle i s termed the zenith angle. 

This angle, ip , i s defined as the gradient of the parabola at l e v e l 5 and t h i s 

i s given by 

tp = 2a.x 5 +b (3.5) 

The angle, so defined, i s the tangent of the required angle but because i t 

i s usually less than 7° f o r the higher momenta muons, the angle i s accurate to 

better than Q.&fo 

3.7.4 The Azimuthal Angle 

The azimuthal angle, which i s again the projected azimuthal angle, i s defined 

by the flash-tube trays aoross the top of the spectrograph. As described i n 

seotion 3.4.3, no aotual f i t t i n g of a t r a j e c t o r y i s attempted through the 

discharged tubes but only the mean point of the discharged tubes i n eaoh tray i s 

taken. A l i n e between the two trays i s so defined and the i n c l i n a t i o n of t h i s 

l i n e to the v e r t i c a l i s taken to be the azimuthal angle. The quantity defined 

i s the tangent of the required angle and because t h i s angle may take values up 

to 15*5° aocount must be taken of t h i s approximation i n l a t e r calculations. The 

accuracy .attainable by th i s method of measuring the azimuthal angle i s discussed 

i n Chapter 5« 

3.7.5 Energy LOSB 

Energy i s l o s t by the muons, at a rate of about 1.4 GeV/m of i r o n , as they 

traverse the spectrograph. Consequently, t h e i r t r a j e c t o r i e s are not c i r c u l a r but 

are helioes. No allowance i s made by the programme for t h i s energy loss because 

the majority of events should have a momentum greater than 200 GeV/c and the 

energy l o s t by these muons amounts to < 5% of t h e i r t o t a l energy; an amount f o r 

which a correction can be easily made. Values f o r the correction factors are 

given, with details of t h e i r derivation, i n section 5*6• 
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3.7.6. The True Momentum and the True Zenith and Azimuthal Angles 

Only the projeoted momentum and angles are measured with MARS but with a 

knowledge of a l l three projected values the true values may be calculated. 

Consider fi g u r e 3.10. The plane XZ represents the measuring plane f o r the 

momentum and the zenith angle and the plane YZ the measuring plane f o r the 

azimuthal angle. I f P , Z and a are the measured momentum, zenith and 
o o o 

azimuthal angles and P̂ , Z^ and OL^ are t h e i r true values then 

AH = P T cos Z T = P q cos Z q (a) 

AB = P T cos Z T tan ZQ = P T s i n Z^ sin 0^ (b) 

AC = P T cos Z T t a n a Q = P T s i n Z^ cos a T ( c ) 

2 2 2 from equations (b) and (c) tan a_ = tan Z oot a and tan Z_ = tan Z + tan a * ' T o o x o t 

henoe substituting Z j i n equation (a) we obtain, f o r the three true values 

p_, = p cos ZN A + t a n 2 Z^ + t a n 2 a 7* 1 0 0 *- o o-
Z T = tan" 1 ^ " t a n 2 Z Q + t a n 2 aQJ^ (3'6) 

= t a n - 1 ^tan ZQ cot aQJ 

I t should be noted that the values of the projected zenith and azimuthal 

angles calculated by the programme are, i n f a c t , the tangents of the respective 

angles and they oan be substituted d i r e c t l y i n t o equations 3*6. I f a= tan ct Q 

and Z s tan ZQ, i . e . a and Z are the values given by the programme, then 

? J-

Z T = t a n - 1 ( z 2
 + a 2 ) * (3.7) 

a T = tan" 1 (z/a ) 

Hence, the true momenta, zenith and azimuthal angles may be found from the 

values of t h e i r projections on the measuring planes calculated by the programme 

"with; Equations (3.7). 
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CHAPTER 4 

The Data Analysis Programme 

4*1 Introduction 

A complete description of the analysis programme i s given i n t h i s chapter, 

together with l o g i o flow phart3 and explanatory notes. The name given to the 

programme, which i s executed to i n i t i a l l i s e data analysis, i s MARS1 but t h i s 

i s not the programme whioh performs the actual analysis. MARS1 only prepares 

the computer f o r data analysis by loading data and various spectrograph 

co-ordinates i n t o a special area of oore (a common area). A l i n k i s then 

performed t o the analysis programme whose name i s CHURN. 

The programme whioh i s used t o locate the measuring trays , with the data 

from a zero magnetic f i e l d run,, i s also described. Programme execution i s 

i n i t i a l i s e d as above exoept that the respective programme names are MARSZ and 

ZCHRN. 
* 

I n order that the analysis programme can be understood, i t i s f i r s t necessary 

to consider how the programme handles m u l t i - p a r t i c l e events, bursts and a i r showers. 

4.2 The Handling of Multi^traoks. Bursts and A i r Showers 

The programme, i n determining the type of event, divides the discharged 

tubes i n a tr a y i n t o groups of columns, as defined i n seotion 3*4*2. I t i s 

demanded that each t r a y contains .at least one group, otherwise the event i s 

deolared void. This feature assists i n the removal of spurious events such as 

those due t o a i r showers. 

Any tray which contains more than two groups i s declared unusable and the 

tray i s omitted from any of the t r a j e c t o r y f i t t i n g procedures. This reduces the 

number of calculations and the core storage requirements, and i t occurs when the 

muon i s aooompanied through a t r a y by two or more w e l l separated particles which 

originated i n an a i r shower or in t e r a c t i o n of the muon. 
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The remaining multi-track events f a l l i n t o two categories: 

1) where a l l the usable trays contain two groups and 

2) where only some trays contain two groups, the others one. 

The two categories of events are handled d i f f e r e n t l y by the programme. 

When a l l the trays contain two groups, i t i s assumed that the spectrograph 

was traversed by two muons. I n addition, i t i s assumed tha t the two 

t r a j e c t o r i e s do not cross and that the set of f i r s t groups contains the 

t r a j e c t o r y of one muon and the second set, the other. Consequently, the 

analysis of such an event i s r e s t r i c t e d to the set of f i r s t and to the set of 

second groups separately and cross combinations are never considered. Any event 

which oonsists of a pair of muons w i t h crossed t r a j e c t o r i e s w i l l not be analysed 

correctly and w i l l c e r t a i n l y f a i l the f i t t i n g c r i t e r i a . I t i s considered that 

t h i s w i l l not constitute a s.evere loss of p a r t i c l e s because, of a l l the muons 

observed photographically (10 ,000 , details of which are given i n Chapter 6) no 

mupn pairs were observed which were t o t a l l y contained w i t h i n the acceptance of 

the spectrograph. For those events i n which i t was possible to trace the 

t r a j e c t o r i e s of a pair of muons through at least two levels of the spectrograph, 

a l l the t r a j e c t o r i e s were w e l l separated and none crossed. The approach to the 

analysis is f u r t h e r j u s t i f i e d by the f a c t that muon pairs, each with momenta i n 

excess of 100 &eV/c, w i l l c ertainly have originated high i n the atmosphere and 

t h e i r t r a j e c t o r i e s w i l l be essentially p a r a l l e l . I f t h e i r t r a j e c t o r i e s are 

separated s u f f i c i e n t l y to enable each t r a y to be divided i n t o two groups, then 

there i s i n s u f f i c i e n t curvature on t h e i r t r a j e c t o r i e s to enable them to cross. 

For those events where some trays contain two groups and the others only 

one, the programme has to decide which combination of the groups forms the 

tra j e c t o r y . To simplify the procedure and to minimise the number of calculations 

and core storage requirements, i t i s assumed that, f o r those trays with two 

groups, the traj e c t o r y l i e s w i t h i n either the set of f i r s t groups or the set 
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of second groups. Each of these sets i s then combined with the trays 
containing only one group and the programme ascertains, using certain c r i t e r i a , 
whioh group combination forms the tra j e c t o r y . Normally, only one group 
combination s a t i s f i e s the f i t t i n g c r i t e r i a but, i f both do, then the t r a j e c t o r y 
which has the smallest standard deviation of i t s co-ordinates around the 
f i t t e d parabola i s selected. 

A group which contains a burst i s omitted from any precise t r a j e c t o r y 

location procedures. However, i f there i s another group i n that tray which 

does not contain a burst, t h i s group w i l l be used f o r t r a j e c t o r y location 

purposes but only under the group combinations described above. At a l a t e r 

stage i n the calculations a check i s made to see i f the bursts, i n the selected 

group combination, l i e w i t h i n 1.0cm of the f i t t e d t r a j e c t o r y . This distance 

was calculated by scattering 100 G-eV/c muons through the spectograph, with 

<0£>/0 m = 0 .12 , and fin d i n g the d i s t r i b u t i o n of the distance of the co-ordinate 

i n any one measuring tray to a parabola f i t t e d to the other four co-ordinates. 

The distance used i s three times the standard deviation of these d i s t r i b u t i o n s . 

4 .3. Summary of the Handling of Multi-track Events 

The group configurations, including bursts and a i r showers, which are 

correctly handled by the programme are shown i n f i g u r e 4 . 1 and those which are 

unsuccessfully handled are shown i n f i g u r e 4 . 2 . Of the l a t t e r , the only two 

configurations which f a i l because of an incorrect i n t e r p r e t a t i o n of the data 

(rather than because of a lack of useful information) are 4 . 2(a) and ( d ) . 

Configuration 4 . 2(a) has been discussed and does not constitute a serious loss 

of p a r t i c l e s . Configuration 4 . 2 ( d ) , where side tracks at two levels on opposite 

sides of the muons tr a j e c t o r y do not permit a correct i n t e r p r e t a t i o n of the data, 

w i l l ( a f t e r Said, 1966) constitute 6.0$ of the data at a momentum of 1000 G-eV/c 

and w i l l therefore cause a small loss of muons at high momenta. The programme 

w i l l , however, attempt to produce answers from these two configurations by 

omitting those trays i t considers t o be offending. This procedure i s described 

i n the next section. 
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Figure 4.2 The Group Configurations which are Unsuccessfully 
Handled by the Analysis Programme. 
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4.4-. Event and Tray Rejection 

Apart from the demands made previously on the data, i . e . that every t r a y must 

contain at least one group with a t least three layers containing discharged tubes, 

there are other reasons f o r event re j e c t i o n . A syntax error i n the data w i l l 

terminate the event and s i m i l a r l y , i f there are less than three usable trays with : 

which to define the t r a j e c t o r y of the muon, termination w i l l occur, (A minimum 

of three points i s required to define a parabola). 

An outline of the analysis technique was given i n section 3 .6 .2 and i t can 

be seen that the tube patterns are investigated twice} once to define an 

approximate co-ordinate and then to f i n d a more refined co-ordinate using the 

angle c r i t e r i o n . I f , on the f i r s t investigation, the programme i s unable to 

place a track through the flash-tube configuration of one t r a y , then the analysis 

of the event i s terminated. This i s because the programme i s unable to i n t e r p r e t 

the data even when a l l the f i t t i n g options are t r i e d and so the event i s rejected. 

I f a track cannot be placed through the tube configuration at the required angle, 

then only the t r a y i s rejected. The analysis of these events i3 continued and 

other trays rejected as necessary, u n t i l either an answer i s obtained or analysis 

terminated because of a lack of remaining co-ordinates. 

4 . 5 . The Input F i l e 

The events are packed together on the disc as they are collected and 

consequently some events overlap seotor boundaries. I t i s advantageous to have 

the e n t i r e event i n core during i t s analysis and therefore, i t i s necessary to 

have a buffer i n core 640 words long to hold the two sectors of data which contain 

the event. 

The answers to the analysis are stored baok amongst the data and so the data 

on the disc are overwritten with the same data and t h e i r embedded answers. The 

analysis programme works through the buffer i n the core and, when the end i s 

reached, the f i r s t 320 words are w r i t t e n back onto the disc i n the sector from 

where they came. The second 320 words of the buffer are then transferred to the 

f i r s t 320 words of the buffer and the next sector of data i s read in t o the second 

320 words. 
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Table 4.2 

The Error and Warning Codes Flagged by the Programme 

£1 No track i n a group or event. 

E2 Tray missing or trays out of order. 

E3 No data f o r a tray. 

Eif Trigger mode undefined. 

E5 No discharged tubes i n a column. 

E6 Less than seven trays present. 

E7 A tray i d e n t i f i e r missing. 

E8 No data f o r event ( i . e . header only). 

E9 The event cannot be contained i n oore. 

E10 Erroneous zeros i n data. 

E11 No dummy columns i n a tray. 

E12 Less than three usable measuring trays. 

E13 Unusable trays and bursts i n f i r s t set of groups exceeds tv/o. 

E14 Unusable trays and bursts i n second set of groups exceeds two. 

E15 Two muons but f i r s t did not s a t i s f y f i t t i n g c r i t e r i a . 

E16 Two muons but seoond did not s a t i s f y f i t t i n g c r i t e r i a . 

E17 Other groups present but too many unusable. 

E18 Magnetic f i e l d d i r e c t i o n undefined. 

E19 Tray deemed unusable as more than two groups present. 
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An example of a sector of data before analysis i s given i n table 4.1. The 
data are i n hexadecimal format, one oharacter representing four binary b i t s . 
The binary equivalents of the characters are given i n Appendix B. The sector 
contains nearly 5 events and the event header and the in d i v i d u a l trays of the 
f i r s t event completely contained i n the sector are depicted. An explanation of 
the contents of the header and of the format of the tray data are to be found i n 
Appendix B. 

4 . 6 . The Scanning of the Data 

4.6.1, Introduction 

Before the analysis can proceed f o r any event, i t is necessary to scan the 

data f o r that event and define the quantity of data f o r each tray and the positions 

of the various f l a g s , such as tray headers and dummy columns. The consistency of 

the data i s also examined during scanning and errors are generated i f any f a u l t s 

with the data are detected. A complete l i s t of the generated errors i s given i n 

Table 4 . 2 . Errors E1 - E11 and E18 are produced during scanning and a l l of them 

except E6 and E18 terminate the analysis of the event. A l l of the errors are 

plaoed i n the output f i l e and when possible back amongst the data. 

The subroutine which i s responsible f o r t h i s scanning of the data i s known 

as SIFT. A diagram of the logic flow of t h i s programme i s shown i n fi g u r e 4 .3 

and i t i s described i n the fo l l o w i n g sections. The numbers i n parentheses i n 

the t e x t r e f e r to the numbered stages of the lo g i c flow diagram. 

4.6 .2 . Defining an Event 

The beginning of an event i s defined by the event header and the end of an 

event by the header of the next event. The f i r s t and ninth words of a header 

are always zero and they are used to i d e n t i f y the header. The only other place 

zeros can occur i n the data i s w i t h i n the header, never i n the data f o r the 

trays. 

As each event i s found, the core address of the beginning of the next 

event i s stored and this serves as the continuation point at which to s t a r t 
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(1) soanning the next event v '. (For the f i r s t event, the continuation point i s 

the beginning of the data b u f f e r ) . 
(2) 

The data are scanned fo r a word which contains zero and when found, 
(3) the eighth word a f t e r i t i s examined to see i f the two together form a header 

I f t h i s i s not the case, then scanning i s continued u n t i l a header i s f o u n d ^ \ 

The contents of the header are then examined to see i f i t i s e n t i r e l y composed 
(5) 

of zeros x ', i n which case the end of the data f i l e has been reached and the 

analysis of the data i s terminated^^. The contents of the header are placed 

i n the output f i l e ^ ^ so that- any error codes and the answers to the analysis 

may be associated w i t h the header (which includes an event number). A complete 

description of the header i s to be found i n Appendix B. 

The next zero word i s then found i n the d a t a ^ ^ and a check i s made to see 

i f t h i s also belongs to an event header . I f i t does then the end of the data 

f o r the event ha3 been found, i f i t does not, then an erroneous zero has been found 

amongst the data i n d i c a t i n g that the data i s unreliable. Error E10 i s generated 
(10 11) 

and the analysis of that event i s terminated^ ' 

I f at any time during the scanning the end of the data buffer i s reached, 

new data i s brought i n t o core and the old returned to the disc, as described i n 

section 4.5. This i s only allowed to occur once whilst the length of one event 

i s being determined, otherwise i t means that the data f o r that event stretch 
(12) 

over three sectors and cannot be contained i n core x . Ar- event with t h i s 

quantity of data must have at least 264 columns containing discharged tubes. 

I t i s improbable that the data f o r such an event could be in t e r p r e t e d because 

they were probably the r e s u l t of an extensive a i r shower. Error E9 is generated 
(13 11) 

and analysis continues with the next event v ' 

4.6.3. The Soanning of the Trays 

The data f o r the event are then divided i n t o the respective flash-tube 

trays. I f there are no data f o r the event (only an event header), error E8 is 

generated and analysis continues with the next e v e n t v ^ The f i r s t data 
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word of each t r a y (as desoribed i n Appendix B) i s the tray header. The l e f t 

hand 8 b i t s of t h i s word are a l l set at l o g i c a l ' 1 ' and the r i g h t hand eight 

b i t s contain the t r a y number i n binary. I f a tray header i s not found 

immediately following the event header or the data f o r the previous t r a y , error 
(17-19) 

E7 i s produoedv '. The trays should follow each other i n l o g i c a l order 
(20 21) 

and, i f this i s not found to be the case, then error E2 i s generated^ ' . 

The analysis of the event i s terminated i n both cases v . 
(22 21) 

The data f o r the t r a y are then scanned u n t i l column 91 i s found v ' 
which i s the beginning of the dummy columns. The positions of these dummy 

(27) 

columns amongst the data are stored f o r l a t e r use v . Error E11 i s generated 

i f the dummy columns are not present and the event i s terminated^^ -^" 1 ̂ . A 

check i s made at thi s stage on each data word to ensure that they each contain 

at least one discharged tube. Error E5 i s generated i f they do not and analysis 

t e r m i n a t e d ^ T h e data are also divided i n t o groups^»^) f bursts being 

flagged as necessary^^'^ 1 \ and spurious tubes i g n o r e d ^ . I t should be 

noted that i t i s not demanded of the azimuthal trays (trays 6 and 7) that a 

group must contain at least three layers of discharged tubes because of the low 

tube density from these trays with only 4 layers of tubes^^'^*^. Once column 91 has been found, a count of the number of groups i n the t r a y 

> groups^ 
,(24-26) 

(24) (27) i s made* . The tray i s flagged as unusable i f there are more than two groups v 

Error E3 i s generated i f there are no groups and the event i s terminated 

Information as to the position of the groups w i t h i n the data and also the lengths 
(27) 

of the groups are stored f o r l a t e r use v '. 

The above processes continue u n t i l a l l the trays have been scanned and the 

end of the data f o r the event i s reached* ' . 

4.6.4 Completion of the Spanning 

The d i r e c t i o n of the magnetic f i e l d and the t r i g g e r mode of the spectrograph 

are extracted from the event header^*^'^^. Errors E18 and E4, respectively, 

are generated i f these quantities are undefined^ ̂ . A positive magnetic 
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( 52) f i e l d d i r e c t i o n i s assumed i f the f i e l d d i r e c t i o n i s undefined v ' but an 
undefined t r i g g e r mode terminates the e v e n t w '. 

Error E6 i s generated i f any of the trays are not present and these trays 

are flagged as unusable^^'-^. This w i l l occur when there i s a large amount 

of data f o r the f i r s t few trays and the l a t e r trays could not be contained i n 

the core store. The analysis of these events i s continued i f there are s u f f i c i e n t 

trays present to do so. 

The scanning of the data i s now complete and the data are ready f o r analysis. 

4.7 The Analysis of the Data 

4«7»1 Introduction 

The analysis programme i s necessarily rather complex and a diagram of the 

logic flow i s given i n fig u r e 4.4. Once again, the numbers i n parentheses i n 

the t ext r e f e r to the numbered stages of the l o g i c flow diagram. I t i s essential, 

i f the programme i s to be understood, that the manner i n which the programme 

handles multi-track events and tray f a i l u r e , as described i n e a r l i e r sections, 

be born i n mind w h i l s t following the programme. 

The term 'group combination' i s used to describe any combinations of the 

groups i n the trays permissable under the group handling scheme, described i n 

section 4.2. The termination of an event i s always by way of the portion of the 

programme^^"^) described i n section 4.7.7, except that the answers are only 

stored and the azimuthal trays analysed when i t i s possible to do so. 

4.7.2 Special Features of the Programme 

I t w i l l be seen from the flow chart ( f i g u r e 4*4) that the f i r s t decision 
(1) 

made by the programme i s 'Is termination required?' v , Whilst the programme 

i s running, at least one of the oonsole entry switches of the computer must be 

'on' otherwise, i f they are a l l ' o f f , the programme terminates (including data 

storage) at the oompletion of the analysis of the event being processed. 
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Another feature of the programme i s that counts are kept of the number of 

eventa which are successfully and unsuccessfully analysed. These may be placed, 

f o r examination i n the display panel of the computer by turning 'on' console 

entry switches 1 or 2 respectively, and depressing the * INT. RBQ.' (i n t e r r u p t 

request) button on the computer console. Depressing 'Programme Start' continues 

the data analysis. This feature enables the progress of the analysis to be 

monitored. 

The storing of data from MARS whilst data analysis i s i n progress, i s 

accomplished by a special subroutine which i s loaded i n t o oore with the analysis 

programme. Interrupts from MARS are trapped by t h i s subroutine and consequently 

data storage i s unseen by the analysis programme. The only linkage between the 

two programmes i s an i n i t i a l c a l l from the analysis programme to the subroutine 

to f a c i l i t a t e the loading of the subroutine i n t o core. 

4«7«3 Selection of the Event and the Q-roup Combination 

The data are f i r s t scanned by the programme described i n section 4 . 6 and 

control i s returned t o the analysis programme when an event has been found which 

is suitable f o r a n a l y s i s ^ . 

At least three trays are required by the programme to f i t a parabola and a 

r thai 
( 5 , 6 ) 

( 4 ) 
count i s made of the number of unusable trays* I f t h i s i s greater than two, 
then error E12 i s generated and the analysis of the event terminated v 

The f i r s t group combination i s studied and a count i s made of the number of 

unusable trays, including b u r s t s ^ . Analysis continues i f there are at least 

three usable trays otherwise error code E13 i s g e n e r a t e d ^ I n the l a t t e r 

case, a check i s made t o see whether another group combination exists which has 
(9-13 17) 

not been examined and analysis continues with t h i s combination i f possible^ ' 
Error E14 i s produced i f there are i n s u f f i c i e n t usable trays i n the second 

(14-16) combination* ^ 
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4 . 7 . 4 The F i t t i n g of the Trajeotory 

A l l of the usable trays i n the group combination are examined and a traok 
(18) located i n each of them using the track f i t t i n g technique described i n Chapter 3 . 

A group i s f i r s t divided i n t o subgroups. These consist of three columns, or less, 

of data and they l i m i t the angular search f o r tracks (which do not spread aoross 

more than three columns). They also help to separate close side tracks from the 

muon's track. A group consisting of f i v e data columns w i l l be divided up i n t o 

three subgroups, each of three columns. The f i r s t subgroup w i l l contain the f i r s t 

three columns of the group; the seoond, the middle three columns; and the t h i r d , 

the l a s t three columns of the group. A group wi t h four columns w i l l be divided 

up into two subgroups and one wit h three columns or less i n t o one subgroup only. 

Each subgroup i s examined i n turn and the subgroup whioh oontains the track with 

the most probable tray option f i t i s selected. A record i s kept of a l l subgroups 

which contain tracks* '. 

When the programme i s unable to plaoe a track anywhere w i t h i n a group and 

the f i r s t group combination i s under examination, then the programme examines 
(18} 

the second group i n that tray . I f there i s not a seoond group present or 
the second group f a i l s as w e l l , error code En1 (where n i s the tray number) i s 

(19 20} 
generated and the event terminated* " '. This error i s automatically generated 
i f the second group configuration i s under examination and a tray f a i l s at t h i s 
stage of the analysis^ 1 9» 2 0). 

A parabola i s f i t t e d t o the co-ordinates of the tracks i n the flash-tube 

trays. When there i s more than one possible track i n a subgroup, the mean point 
(21) 

of t h e i r co-ordinates i s taken* The gradient of the parabola at the various 

measuring levels of the spectrograph i s then used to define the angle of the 

tra j e c t o r y i n each tray and a more refined co-ordinate i s found by the method 

described i n section 3 . 6 . 4 ^ 2 2 ' 2 ^ . 
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A new parabola i s then f i t t e d to these more precise co-ordinates and the 
C52) 

coefficients of t h i s parabola are used i n the calculation of the f i n a l answers* 

I f there i s more than one possible track i n a subgroup, even a f t e r the angle 

c r i t e r i o n has been applied, parabolas are f i t t e d to a l l possible combinations 

of the co-ordinates and the combination which has the smallest standard deviation 
(S2) 

of i t s points around the parabola i s chosen* '. 

Any bursts contained i n the group combination are then examined to see i f 

at least two tubes l i e w i t h i n 1.0cm of the f i t t e d t r a j e c t o r y (see section 4 . 2 ) * - 5 ^ . 

I f none do, then error En1 , where n i s the tray number, is generated but the 

analysis continues^"^. 

4 . 7 . 5 Comparis on of the Group Combinations 

When only some trays contain two groups, the programme examines both group 

combinations and selects the better f i t either on the basis of tray f a i l u r e or 

the one w i t h the smallest standard deviation of i t s co-ordinates around the f i t t e d 

t r a j e c t o r y * ^ 5 5 " " 5 6 ) . 

On the successful completion of the analysis of the f i r s t combination, the 

programme sets suitable flags and then analyses the second combination^58»59 ,6 l , 62 ) 

The two results are compared and the better one s e l e o t e d * ^ ' 6 ^ . When the f i r s t 

combination i s selected t o be the better of the two, i t has to be rerun because 

a l l the r e s u l t s of i t s o r i g i n a l analysis were destroyed during the running of the 

second combination. The f i r s t combination i s also rerun i f the second combination 

4 . 7 » 6 Tray Failure w i t h the Angle C r i t e r i o n 

---..Occassicnally the programme finds that i t i s unable to f i t a t r a j e c t o r y at 

the required angle through a subgroup, even when a l l the t r a y f i t t i n g options 

are t r i e d * When t h i s occurs, the other subgroups of the group, i f present, 

are examined to see i f they contain a track which s a t i s f i e s the f i t t i n g c r i t e r i a 

(24125)^ j f . programme i s s t i l l unable to f i n d a suitable track the programme 

decides what other group oombinations are available to i t and examines any 

p o s s i b i l i t i e s ^ 2 6 " 5 1 ^ . 
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When a l l the trays contain only one group,the offending t r a y iB omitted 

from any f u r t h e r calculations and error code En1, where n i s the tray number, 

i s generated and the analysis continues^ 2 9 ,28, 4 6 - 5 1 

When n i l the trays contain two groups error E15 i s generated i f the f i r s t 

combination fails^ 0' 5 1» 2 8) and E16 i f i t i s the second^ 2 6~ 2 8). i n both cases 

the offending tray i s omitted, error oode En1 generated and analysis continued 
(46-51) 

• 

The options available to the programme are more complex when only some 

trays oontain two groups,because i t has to decide which i s the best option to use. 

When tiie f i r s t group combination i s under study, the other combination i s examined 

(^ 2»^), j f . there a r e i n s u f f i c i e n t usable trays i n the second combination, oode 

E17 i s generated and the event terminated^ 1*'^"^, otherwise the Becond groups, i n 

those trays with two groups are examined^'"^. I f any f a i l , the f i r s t group 

i n that t r a y i s r e r u n * - W h e n a set of new co-ordinates has been obtained a 

new parabola i s f i t t e d and the angle c r i t e r i o n applied. I f t h i s combination f a i l s 

as well then the offending tray(s) are omitted, error code En1 generated and 

analysis continued w i t h this combination*^"''^. 

When a tray i s omitted from a group combination,, a count i s made of the 

remaining usable trays and- i f t h i s becomes less than three, error code E12 is 

produoed^^'^^'^ 1\ Analysis i s then terminated unless a l l the trays contain two 

groups and the second combination i s yet to be examined, i n which case analysis 
(15-17} 

continues with the seoond combination* '. 

4 . 7 . 7 The Storing of the Answers 

The momentum, the sign of the charge of the muon and the projected zenith 

angle are then calculated from the coefficients of the parabola f i t f o r the group 

combination, using equations 3 . 4 and 3*5 and the d i r e c t i o n of the magnetic f i e l d 

{^7}m The answers, together with the standard deviation of the co-ordinates 

around the parabola and the tray f i t option codes, are stored i n the dummy columns 

of the data and i n the output f i l e . Bursts and unusable trays are also flagged 

i n the o u t p u t ^ 6 8 \ 



Table 4 .3 

The Contents of the Dummy Columns a f t e r Analysis 

C o l u m n Contents Number Number — — — 

91 Unchanged 
92 Tray 1 codes* 
93 1st Error Code 
94 2nd Error Code 
95 3 r d Error Code 
96 4 t h Error Code 

91 Unchanged 
92 Tray 2 codes* 
93 Number of muon tracks analysed 
94 Number of azimuthal tracks analysed 

95 and 96 Unchanged 

91 Unchanged 
92 Tray 3 codes* 

93 and 94 Momentum of 1st muon 
95 and 96 Momentum of 2nd muon 

91 Unchanged 
92 Tray 4 oodes* 

93 and 94 1s t azimuthal angle 
95 and 96 2nd azimuthal angle 

91 Unchanged 
92 Tray 5 codes* 

93 and 94 Zenith angle of 1st muon 
95 and 96 Zenith angle of 2nd muon 

91 Unchanged 
92 Tray 6 oodes* 

93 and 94 Standard deviation of tr a j e c t o r y of 1s t muon 
95 and 96 Standard deviation of t r a j e c t o r y of 2nd muon 

91 Unchanged 
92 Tray 7 codes* 

93 - 96 Unchanged 

* Tray codes are: /number of groups (8 b i t s ) / t r a y f i t code of 1st muon 
( 4 b i t s ) / t r a y f i t code of 2nd muon ( 4 b i t s ) / . 
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When a l l of the trays contain two groups, the second combination i s then 

analysed and the results s i m i l a r l y s t o r e d ^ ' 

4 .7 . 8 The Analysis of the Azimuthal Trays 

The azimuthal trays, i f present, are only analysed by the programme i f a 

momentum f i t has been successful, otherwise they are ignored^^'^ 1 ̂ . A 

maximum of two groups i n a tray can be handled otherwise the trays are flagged 

as unusable. The method of calculating the azimuthal angle i s described i n 

section 3*4*3. Because no track f i t t i n g i s attempted, i t i s impossible t o 

distinguish between spurious groups of tubes and those pertaining to the aotual 

muons. Once again, the t r a j e c t o r i e s of multiple p a r t i c l e events are assumed to 

be p a r a l l e l and the f i r s t groups i n each tray are taken together and the second 

groups, i f present, likewise. I f one tray has two groups and the other only 

one, only the two f i r s t groups are taken. The calculated azimuthal angle(s) 

are stored with the rest of the d a t a ^ 2 ' ^ ^ . 

The analysis of the event i s now complete and the programme continues with 

the next event v 

4 .8 The Format of the Dummy Columns and the Answer F i l e 

Table 4*3 shows the contents of the dummy columns of the data af t e r analysis. 

The answer f i l e oonsistaof the event header information and a direc t copy cf the 

dummy columns. I f a serious error has prevented the storing of the answers i n 

the dummy columns, then the output f i l e only contains the event header and the 

error code. 

Column 91 of a l l the trays i s never altered and acts as a div i d i n g l i n e 

between the tray data and the answers when the data i s rescanned f o r transmission 

to the NUMAC computer. Column 92 of a l l the trays contains the tray f i t code 

f o r that t r a y . I t contains E19 i f the tray was unusable otherwise, assuming the 

event was analysed, i t contains details of the number of groups i n that t r a y , 

t h e i r tray f i t option codes and a special f l a g i f they contained a burst. 
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The format of t h i s column i s also shown i n table 4.3-

The oontents of the remaining columns i n a tray depend upon the tray number. 

Tray 1 contains any generated error codes (a maximum of 4 are stored). Columns 

93 and 94 of t r a y 2 contain the number of muons and the number of azimuthal 

trades analysed respectively. Two 16-bit words are required to store a f l o a t i n g 

point number and consequently, two dummy columns are required to store each 

computed momentum, zenith angle and azimuthal angle. Columns 93 and 94 of tray 

3 contain the momentum of the f i r s t rauon and columns 95 and 96 contain the 

momentum of the second, i f present. These momenta are stored a3 negative 

numbers i f the sign of the charge of t h e i r muons was negative. S i m i l a r l y trays 

4 f 5 and 6 contain the azimuthal angles, the zenith angles and the standard 

deviations of the parabola f i t s respectively. 

When any of the trays are not present i n the data, the corresponding 

quantities, which are stored i n those trays, are omitted. 

4.9 The Output from the Programme 

The answer f i l e is transferred to the s a t e l l i t e IBM 1130 computer of NUMAC 

i n Durham and here i t i s inter p r e t e d by a special programme, known as ANSER, 

which produces a l i s t of the events on the l i n e p r i n t e r . For each event, the 

contents of the event header are decoded and printed as are the other 

quantities stored i n t h i s f i l e . Figure 4.5 shows the output f o r a t y p i c a l event. 

Any error codes associated with an event are printed immediately a f t e r the 

header and the l a s t l i n e is repeated i f two muon t r a j e c t o r i e s were analysed. 

The f i l e containing the o r i g i n a l data i s , a f t e r analysis, translated by a 

special programme, known as TRANF, which prepares the data f o r transfer to 

NUMAC. The output from t h i s programme i s another data f i l e which i s composed 

of pseudo punched card images. The f i r s t few cards are the job control 

statements necessary to have the magnetic tape mounted and to execute a 

programme which reads the data and writes them on the magnetic tape. The 

cards that follow these statements contain the data f o r a l l the events. 
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The f i r s t oard of each event contains the following quantities: the event 

number, the time and date and the atmospheric pressure ( a l l i n decimal format); 

a special code containing the tr i g g e r mode, the direction of the magnetic f i e l d 

and the magnet current; and then, i n decimal format, come the number of muons, 

azimuthal tracks, errors and trays present, the length of the data f o r each 

tray, the t o t a l length of the data and any error codes. The second card 

contains the momentum, azimuthal and zenith angles, and the standard deviation 

of the tracks, f o r a l l muons analysed. These are a l l i n decimal format. The 

t h i r d and subsequent cards contain information pertaining to each tr a y . The 

number of;;groups i n each t r a y and t h e i r respective track f i t t i n g options appear 

f i r s t , followed by the data f o r eaoh t r a y , excluding the t r a y headers and 

dummy oolumna. The information i n these cards i s i n the same format as the 

o r i g i n a l data and i t i s read by the NUMAC computer i n binary format. This 

sequenoe of cards is- continued f o r a l l the data i n the input f i l e . A f t e r these 

data oards, there are a few more job control statements which terminate data 

storage. 

The diso containing t h i s f i l e i s placed on the s a t e l l i t e IBM 113.0 computer 

and the f i l e i s transferred to NUMAC. Here i t appears as a normal job entered 

from cards and i t i s subsequently executed. 

4.10 The Zero Magnetic F i e l d Data Analysis Programme 

I t i s essential that the positions of the measuring trays are known very 

precisely and the best way of f i n d i n g these positions i s to analyse the 

t r a j e c t o r i e s of muons through the spectrograph when there i s no prevailing magnetic 

f i e l d . A minimum of three points i s required to define a parabola and i n f a c t , 

i t i s only necessary to know the p o s i t i o n of one point with respect to two 

others. Consequently, trays 1 and 5 are taken to be the reference frame and 

the distances between the traoks i n trays 2, 3 and 4 and a s t r a i g h t l i n e drawn 

between the traoks i n trays 1 and 5 are calculated. The scattering of the 
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muons i n the magnet broadens the d i s t r i b u t i o n s of these distances and many muon 
tr a j e c t o r i e s have to be analysed before the tr a y positions can be found precisely. 

The method of analysing the data i s exaotly the same as f o r the momentum 

analysis, except f o r the calculation of the f i n a l answers. I f either tray 1 or 

5 i s unusable or contains a burst,the event i s declared void. The distances 

from the st r a i g h t l i n e drawn between the tracks i n these two trays and the 

traoks i n the other three trays are calculated and they are histogrammed by 

the programme. Any tray which was either unusable, or contained a burst, or had 

an associated error oode, i s omitted. The three distanoes are also stored i n the 

dummy columns of the trays t o which they pertain. The three histograms are 

made available f o r inspection at the end of the analysis. 
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CHAPTER 5 

The Properties and Aoouraoy of the Analysis Programme 

5«1 Introduction 

This chapter i s devoted t o a study of the properties of the analysis 

programme, the accuracy of i t s results and the corrections which have to he 

applied to them. The maximum deteotable momentum (m.d.m.) of MARS i s 

also calculated. The track f i t t i n g options used by the programme to locate 

the t r a j e c t o r i e s of the muons are investigated and an attempt i s made to 

reooncile the frequency of t h e i r occurrence with t h e o r e t i c a l calculations and 

data. The data used to investigate the properties of the programme were the 

same as those used i n the experiments described i n chapters 6 and 7. The mean 

momentum of these data was only 20 GeV/o and only 140 events were analysed with 

momenta i n excess of 100 GeV/c. Although i n i t i a l l y the programme was not 

intended t o analyse data with momenta as low as t h i s , the data served as a 

useful oheok on the programme's performance. 

5.2 A Comparison between the Aocuracy of Track Location 
Achieved by the Computer Technique and Visual Processing 
The accuracy of the looation of tracks i n flash-tube trays by the technique 

described i n section 3*6 was compared with that achieved by conventional visual 

processing of the same data. The data was taken from the experiment of 

Alexander and Thompson (1969) and a schematic diagram of t h e i r apparatus i s 

shown i n figure 5«1. .Pour flash-tube trays A, B, C and D were used to locate 

the muon's tr a j e o t o r y before and a f t e r traversing a magnetic f i e l d . When the 

two t r a j e c t o r i e s , ab and cd, are constructed,they do not intercept at the 

oentre of the magnetic f i e l d . This discrepancy, e, can only be a t t r i b u t e d to 

uncertainties in.track location because the use of an a i r gap magnet minimised 

the partioles Coulomb scattering i n the apparatus. The standard deviation of 
the d i s t r i b u t i o n of the discrepancies i s a measure of the location accuracy and 

th i s was used to compare the two methods of track location. 
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F i g u r e 5.1 A Schemat ic Diagram of the Apparatus of 
Alexander and Thompson (1969) 
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The data f o r the experiment were collected photographically and the method 

of v i sual processing was to study a projected image of the events and t o 

determine the best position of the tracks by placing a cursor across the tube 

patterns. The co-ordinates of the tracks i n each tray were recorded. The tube 

patterns f o r the same events were suitably coded and t h i s information was used 

by the computer teohnique to locate the t r a j e c t o r i e s . 

The discrepancies at the centre of the magnet were calculated f o r each 

event and the d i s t r i b u t i o n of discrepancies f o r eaoh method are shown i n 

figu r e 5.2. The standard deviation of the d i s t r i b u t i o n f o r the v i s u a l l y 

processed data was 0.153 + 0,013 cm and 0.109 + 0.010 cm f o r that processed 

by the computer technique. I t i s concluded that the computer technique f o r the 

location of tracks i n flash-tube trays i s more accurate than the method of 

visu a l scanning. 

5.3 Examination of the Track Option F i t s 

5«3«1 Introduction 

The frequency that the track f i t t i n g options occur i s dependent upon the 

sizes of the tubes and the spaces between the tubes that are used i n the analysis 

programme. I t was stated i n Chapter 3 that i t i s necessary to allow some overlap 

of the tubes and spaces to compensate f o r the v a r i a t i o n of the tube i n t e r n a l 

diameters and f o r the s l i g h t bending of the tubes. The amount of overlap 

that i s required cannot be measured d i r e c t l y but can only be inf e r r e d by an 

analysis of data from the flash-tube trays i n question. I f the frequency of 

occurrence of one of the traok f i t t i n g options can be calculated t h e o r e t i c a l l y 

then i t i s possible to determine the overlap that i s required. 

5.3.2 The Expected Rate of Knock-on Electrons 

Knook-on electrons, which are produced as the muon traverses matter, may 

sometimes cause a tube t o be discharged i n a layer of flash-tubes,whereas the 

muon passed outside of the sensitive region of that layer. Before the programme 
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i s able to f i t a t r a j e c t o r y to the r e s u l t i n g flash-tube configuration, i t i s 

necessary that the offending tube be turned ' o f f by the programme. Such events 

are handled by track f i t t i n g option 1. 

An estimate of the p r o b a b i l i t y of production of these knock-on electrons 

has been made wi t h the theory of Bhabha (1938), the range-energy curves f o r 

electrons as given by Katz and Penfold (1952) and the angular d i s t r i b u t i o n of 

electrons as given by Rossi (1961). After Bhabha, the p r o b a b i l i t y of an energy 

transfer of E1 to an electron, of mass M , from a muon of mass M and energy E i s 

*(E,E'). dE1 =0 . 3 M O 2. Z. dE1 „ (1 - /32EI +1 ( 5) ) 
— o - A W) \ 2 VE +M .0 J 
13 * 

-1 -2 gm . cm 

where E i s the maximum transferable energy. Z and A have t h e i r usual meaning m 
and are the average values f o r the material being traversed. The flash-tube 

trays consist of aluminium and glass and the mean value of Z/A i s 0.2+B2. For 

a 30 &eV incident muon /3 = 1 and E m = 23 &eV. The physical conditions placed 

on the knock-on electron by the option 1 f i t i s that i t must be contained w i t h i n 

one layer of tubes and, from the range-energy r e l a t i o n of Katz and Penfold, the 

maximum energy transfer that i s permitted i s ~1 MeV. Hence, E'/Em << 1 and 
2 

E'/(E + M C ) « 1 and consequently, f o r aluminium and glass 

i*.(E,E») dE' = 0,0739. dE f
n (5 . 1 ) 

This equation has been used to calculate the rate of track f i t t i n g option 1. 

A section of a flash-tube layer, as shown i n f i g u r e 5*3, wa3 considered and the 

rate that knock-on electrons enter either of the two tubes a f t e r production i n 

the region between the two v e r t i c a l lines was calculated. For these calculations 

i t was assumed that 1) above the top electrode there was a layer of glass which 

corresponded to the tube layer above and i n which knock-on electrons could be 

produoed; 2) there was a sim i l a r layer of glass below the bottom electrode 
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beyond which knock-on electrons must not pass and 3) i f the electron reached 

the inside of the tube,then the tube discharged. 

The angular d i s t r i b u t i o n of the electrons, the amount of absorber traversed 

and the geometrical acceptance of the tubes were also considered. The sp a t i a l 

angular d i s t r i b u t i o n of electrons with respect t o the trajectory of the muon 

is a function of the electron's energy and, a f t e r Rossi, i s given by 

The acceptance fbr the knock-on electrons was calculated as follows. I t was 

assumed that, f o r the tube to discharge, the electron had to be inside the tube 

before i t was below the mid point of the tube layer. With reference to f i g u r e 

5.4, i f h i s the height of production above the mid point, d the projected 

horizontal distance to the tube and x the perpendicular distance to the tube, 

then d = x.sec <p , where if/ i s the azimuthal production angle. Also 

d = h. tan 0^, where 0^ i s the angle between the muon and the electron. Hence 

sec ij/ = (h/x). tan 0^ . A l l electrons w i t h i n an azimuthal angle of ^ tj/ are 

accepted by the tube and the mean projected angle between the muon and electron 

i s 

COS 0 ( e' y 
\E' + 2M J 

(S2) 

e p <*/2)>. tan (tan 0.. cos 

Hence 

cot 0 . = x/h + J ( x 2 / h 2 + 8tan 2 6 ) 

k tan Q 

The angular acceptance, A, f o r such an electron by one tube i s 2;.jp/ir and 

hence 

A = 2 cos" ( x cot 0 A ) 
7T 

(5.4) 
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The region of in t e r e s t i n figure 5-3 f o r the production of knock-on 
electrons was divided up i n t o small c e l l s of known x and h. The pr o b a b i l i t y 
of a tube discharging due to a knock-on electron i n a c e l l was then c alculated 
by integrating equation 5•1 and multiplying by the acceptance at the mean value 
of 0^. The energy range of the integration was found by considering the 
permitted angular range of the knock-on. This was defined by the geometrical 
acceptance of the tubes, the minimum and maximum thickness of absorber through 
which the electrons had to pass to reach the tube (allowance was made f o r the 
va r i a t i o n of these with the azimuthal angle), and the angular l i m i t a t i o n imposed 
by equation 5»2. The l a t t e r occurs because the electron's energy at a certain 
angle may be i n s u f f i c i e n t to enable i t t o traverse the absorber. 

The t o t a l p r o b a b i l i t y of a knock-on electron causing a tube to discharge 

i n a layer which would not have otherwise contained a discharged tube was found 

to be 5*2 + 0.8/S. The error was estimated a f t e r considering the uncertainties 

i n density and the integ r a t i o n l i m i t s . The p o s s i b i l i t y of the same electron 

entering the next layer of tubes without being detected i s also included i n the 

error. 

5.3-3 The Theoretically Expected Frequency of.Option .1 F i t s 

Before i t i s possible to calculate the expected rate of option 1 f i t s , two 

properties of the experimental data with which i t i s to be compared have to be 

considered. F i r s t l y , the data has an angular d i s t r i b u t i o n somewhat larger than 

7° beoause i t i s predominantly composed of low momenta part i c l e s and secondly, 

the knock-on p r o b a b i l i t y calculated above has to be corrected for the occurrence 

of spuriously discharging tubes close enough to the track as to give r i s e to an 

option 1 f i t . 

An examination of the f i l m data yielded a spurious rate of 5«7 + 1.7 

tubes per tr a y , and, as there are 712 tubes i n a tr a y , the chance of a spurious 

discharge occurring i n a tube next to the muon track i s (1.6 + 0.5)% per layer. 
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Of these 5*2$ w i l l be accompanied by a knock-on electron and they w i l l not 
contribute to the option 1 rate. Hence, the t o t a l p r o b a b i l i t y of an 
i n f l u e n t i a l tube discharging i n a layer either spuriously or because of a knock-
on electron i s (6.72 + 0.94)$. 

The angular d i s t r i b u t i o n of the muon tracks i n the flash-tube trays f o r -

the data i s shown i n f i g u r e 5»5 and i t can be seen that i t extends to beyond 

15°. The theoretical tube population d i s t r i b u t i o n along a track has been found 

by taking 2500 randomly positioned tracks i n a flash-tube tray with an angular 

d i s t r i b u t i o n corresponding to that of the data and the r e s u l t i s shown i n 

f i g u r e 5.6. The i n t e r n a l f l a s h tube diameter used i n deriving t h i s d i s t r i b u t i o n 

was the experimentally measured value of 0.543 + 0.003 cm. The mean tube 

population of the d i s t r i b u t i o n i s 5.024 + 0.034. The uncertainty was determined 

by the s t a t i s t i c s of the calculation and the uncertainty i n the mean tube 

diameter. 

The expected rate of option 1 f i t s was calculated from the tube population 

d i s t r i b u t i o n by taking a binomial p r o b a b i l i t y of 0.0672 f o r a l l those layers not 

containing discharged tubes. The r e s u l t i n g p r o b a b i l i t y of an option 1 f i t i s 

(17.22 + 2.0)%. I n practice however, the option 1 rate w i l l be s l i g h t l y lower 

than t h i s value because some option 1 candidates w i l l s a t i s f y the f i t t i n g c r i t e r i a 

with option 0. 

5.3.4 The Theoretically Expected Frequency^ rof Option 2 F i t s 

The expected frequency of occurrence of the tube i n e f f i c i e n c y option 

(option 2) i s more d i f f i c u l t to calculate because the efficiency of a flash-tube 

cannot be s a t i s f a c t o r i l y explained on purely t h e o r e t i c a l grounds. I t can 

however be calculated from the experimental and the o r e t i c a l layer e f f i c i e n c i e s 

of the trays and the rate of option 1 f i t s . The theor e t i c a l layer e f f i c i e n c y , 

17^, of the tube population d i s t r i b u t i o n i n f i g u r e 5-6 i s 0.628 + 0.004 and 

the experimental layer e f f i c i e n c y , 77 , of the data (from 24000 tracks) i s . 
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i s 0.6298 + 0.0009- This l a t t e r value contains tracks with knock-on electrons 

and with tube i n e f f i c i e n c i e s and i t can be expressed i n terms of the th e o r e t i c a l 

layer efficiency by the equation 

77Ma'PT 7 7 T * ^O^KO + PK0K0 7 7 KOKO + IN + PININ ^INIM + PKO PIN 7 7T 

(5.5) 

with the condition that 

PT + PK0 + PK0K0 + P I N + PININ + PK0 P I N = 1 * 
Here T?^, P

K 0 K Q > P J N and I-JJJJJJ a r e, t n e p r o b a b i l i t i e s of no knock-ons or 

in e f f i c i e n c i e s , of one single knook-on, of two knock-ons i n d i f f e r e n t layers, 

of one tube i n e f f i c i e n c y and of two i n e f f i c i e n c i e s i n d i f f e r e n t layers, 

respectively, and T}^, V KQ, V KQKQ» .Vj^ a n d 7 ? i N i N 0 X 9 ^ corresponding layer 

e f f i c i e n c i e s . 

Whilst calculating P̂ Q i n the previous section, the tube population 

d i s t r i b u t i o n f o r option 1 events was calculated and i t had a mean layer 

e f f i c i e n c y of 0.7237 + 0.0048. P K 0 K 0
 and77KOKD h a v e b e e n c a l c u l a t e d i n a 

s i m i l a r manner and have values of 0.0146 + 0.0041 and 0.8088 + 0.0054 

respectively. The equivalent quantities f o r tube i n e f f i c i e n c i e s could also 

be calculated i f a value f o r the flash-tube i n t e r n a l i n e f f i c i e n c y was known. 

However, as the quantities are determined by the ohoice of i n e f f i c i e n c y , 

successive values can be chosen u n t i l one i s obtained which causes equation 

5.5 to be s a t i s f i e d . The r e s u l t of such an i t e r a t i o n leads to a value of 

0.0325 + 0.0074 f o r the tube i n t e r n a l i n e f f i c i e n c y and the corresponding 

values of P T„, P ™ , , 77™ and 7?™™ are 0.142 + 0.037 , 0.010 + 0.005, 
AH ' All i l l JL.il J.11J.JN ~ 

0.5206 + 0.0035 and 0.4211 + 0.0028 respectively. 

I t i s concluded that the t h e o r e t i c a l l y expected frequency of occurrence 

of option 2 iB (14.2 + 3.7)$ but again, the experimental frequency should be 

s l i g h t l y lower because some option 2 tracks w i l l be l o s t t o option 0 or to 

option 1. 

http://JL.il
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5»3»5' Comparison of the Theoretical and Experimental 
Frequencies of Options 1 and 2 

A sample of data comprising of 200 events (1000 tracks) were analysed f o r 

various sizes of the tube i n t e r n a l diameters and the gaps between the tubes and 

the frequency of occurrence of the track f i t t i n g options found. Figures 5.7 and 

5.8 show the frequency of option 1 and option 2 respectively. The abscissa and 

the parameter of eaoh graph are plotted as a percentage of the mean measured 

in t e r n a l tube diameter and gap sizes which were 5.43 + 0.03 mm and 3.17 + 0.03 n 

respectively. . The accuracy of the data i s 0.2$ but the points have been 

normalised to the respective option rates obtained from the analysis of 32,500 

tracks. The points are not independent because they are based on the same sample 

of data but an alte r n a t i v e sample has also been analysed i n a si m i l a r manner and 

i t shows a form consistent with the results presented. 

The corresponding theoretioal rates with t h e i r uncertainties are also shown 

on the figures and i t can be seen that the experimental and theoretical results 

are i n good agreement. I t is now possible to calculate the e f f e c t i v e i n t e r n a l 

tube diameter and gap sizes f o r the flash-tube trays and hence the values t o be 

used by the analysis programme. 

5.3.6 The Eff e c t i v e Tube and &ap Sizes 

The possible l i m i t s which can be placed on the tube diameters and gap sizes 

from the analysis of option 2 events can be displayed on the same diagram as 

those f o r option 1, as shown i n figure 5.9. I f the experimental frequency of 

options 1 and 2 are to be kept to w i t h i n one standard deviation of the theoretic^ 

a l l y predicted values, the selected tube and gap sizes must l i e somewhere w i t h i n 

the area defined by ABCD. 

Before the actual valueB can be chosen, i t i s necessary to consider two 

other properties of the programme which are dependent upon the tube and gap sizes 

namely, the execution time and the accuracy of location of the tracks i n the trays 
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The execution time i s a function of the tube parameters because, before a track 

f i t t i n g option i s reached, a l l previous options have to be t r i e d and t h i s i s 

time oonsuming. S i m i l a r l y , the accuracy of track location i s a function of the 

parameters because the channel widths i n the trays depend upon these parameters. 

A f t e r consideration of the accuracy of the theo r e t i c a l r e s u l t s , the 

discussion above and the f a c t that the observed frequencies of occurrence of 

option 1 and 2 w i l l be lower experimentally because of losses to option 0 (and to 

option 1 i n the case of option 2 ) , i t i s oonoluded that allowance i s s a t i s f a c t o r i l y 

made f o r the various deficiencies i n flash-tube alignment and sizes by considering 

that the tube diameters and gaps are each 10$ larger than the mean geometric 

sizes. The tubes are therefore considered t o have a diameter of 5*97 mm and 

the gaps between the sensitive regions to be 3.49 mm wide. The distance between 

tube oentres i s 8.6 mm and hence there i s a region of overlap of 0.43 mm where 

no regard i s taken as to whether the tube discharged or not. 

5.3-7 The Order of the Track F i t t i n g Options 

With a tube and gap enlargement of 10$, the rate of option 1 and 2 events 

from figures ' 5 * 7 and 5«8 are 15.0$ and 10$ respectively. I t i s possible to 

calculate the theoretical rates of a l l the other options from these two values 

and these are tabulated i n the order of decreasing p r o b a b i l i t y i n table 5.1. 

The p r o b a b i l i t y of option 3 i s simply the product of options 1 and 2. However, 

the p r o b a b i l i t i e s of options 4, 5 and 6 are not simply the square of the 

corresponding option 1 or 2 p r o b a b i l i t y , beoause the number of layers available 

to the second i n e f f i c i e n c y or knock-on i s one less than that f o r the f i r s t . 

This has been considered i n the theoretical calculations. The p r o b a b i l i t y of 

there being two tubes discharged on the same side of the track due to knock-on 

electrons i s unknown because they are either the r e s u l t of a small electron 

shower or a badly scattered high energy knock-on electron. Consequently, i t 

has only been possible to estimate the p r o b a b i l i t i e s of options 6, 9 and 10. 

An option 1 rate of 15-0$ corresponds to a p r o b a b i l i t y of 5.6$ per layer of 
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producing a knock-on and an option 2 rate of 10.0$ corresponds to a tube 

i n t e r n a l efficiency of 97.8$. The pr o b a b i l i t i e s of options 7 and 8 were 

calculated by taking the product of either option 1 or 2 and the layer p r o b a b i l i t y 

of either a knock-on or an i n e f f i c i e n c y occurring. The r e s u l t was halved f o r 

option 8 because the two knock-ons have to be i n opposite directions. Option 11 

i s the product of the p r o b a b i l i t i e s of option 2 and of two knock-ons i n opposite 

directions i n the same layer. 

The frequency that the options occur has also been found experimentally by 

analysing the data eleven times with a d i f f e r e n t option f i r s t each time. The 

proportion of tracks which s a t i s f i e d the f i t t i n g c r i t e r i a f o r each option when 

i t was f i r s t are also shown i n t a b l e 5*1* I t can be seen that, i n general/, the 

theoretical and experimental rates are i n very good agreement. 
5.3.8 The Flash-Tube layer Efficiencies of the Track 

F i t t i n g Options 

A sensitive t e s t on the performance of the flash-tube track f i t t i n g technique 

i s a comparison between the layer e f f i c i e n c y of those tracks c l a s s i f i e d by the 

programme under each option and the th e o r e t i c a l values given i n sections 5-3.3 

and 5.3.4. The th e o r e t i c a l layer e f f i c i e n c i e s , r\ , are almost independent of 

the ohoice ofe , where e i s the p r o b a b i l i t y of observing either a tube discharging 

because of a knock-on electron or a tube i n e f f i c i e n c y , because dr}/d£'~0.1 f o r 

a l l options and hence A77~0.001. The largest contribution t o the uncertainties 

i n the layer e f f i c i e n c i e s i s that due to the uncertainty i n the theoretical mean 

tube population which amounts to 0.7$. Consequently, agreement between the 

the o r e t i c a l and experimental layer e f f i c i e n c i e s f o r the options would indicate 

that the programme i s i n t e r p r e t i n g the f l a s h tube tracks correctly. 

The theoretical layer e f f i c i e n c i e s have only been calculated f o r options 

0, 1, 2, 4 and 5 but the layer e f f i c i e n c i e s of the other options are each related 

to one of these predicted values. Option 3 should have a layer efficiency 

corresponding to option 0 and so should options 7, 10 and 11; whereas options 

8 and 9 should correspond to option 1 and option 6 to option 4 . 



Table 5.1 

The T h e o r e t i c a l and Jiixperimental F r e q u e n c i e s of 
Occurrence of the Track F i t t i n g Options 

Option 
Number 

P i c t o r i a l 
D e s c r i p t i o n 

T h e o r e t i c a l 
Frequency {•?/) 

Experimental 
Frequency (;•!) 

0 0 # o 
0 o\o -69.6 64.2 +1.1 

1 o\© 15.0 14.7 + 0.8 

2 0 \>o 10.0 11.1 + 0.7 

3 
6\ )o 1.5 4.5 + 0.2 

4 ol<§o 1.4 2.0 + 0.2 

5 
_o_i)_o_ 
O <J)0 

0.8 1.7 + 0.2 

6 _o_©lq_ 
0 

- 0 . 8 0.61 + 0.08 

7 0 ([)© 0.6 0.5 + 0.1 

8 0 *|@ <0.4 0.38 + 0.07 

9 0)99 <0.4 0.21 + 0.05 

10 § © e 0.4 0.14 + 0.04 

11 • <()• 0.02 0.04 + 0.01 
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Table 5.2 contains the experimental and theoretical layer efficiencies 
and t h e i r equivalent mean tube density f o r a l l the track f i t t i n g options. I t 
can be seen that they are i n excellent agreement and thi s i s taken as conclusive 
evidence that the technique developed to analyse flash-tube data correctly 
interprets the flash-tube configurations. 
5-4 The Maximum Detectable Momentum of MARS 
5.4.1 Theory 

The maximum detectable momentum, m.d.m., i s defined as that momentum at 

which the uncertainty i n the momentum i s equal to the momentum and i t i s the 

res u l t of the uncertainties i n the absolute position of the tracks i n the f l a s h -

tube trays. I t i3 calculated by a method similar to that as given by Al l k o f e r 

et a l . (1971 b ) . Prom equation 2.3, the momentum i s given by p = O.O3BH/0 , 

where B i s the magnetic f i e l d (kilogauss), H i s the length of the magnet (metres), 

and 6 i s the angular deflection (radians). 6 can be rewr i t t e n as l / r , where 1 i s 

the overall height of the spectrograph and r the radius of curvature of the muons 
2 

tra j e c t o r y . The radius i s related to the coe f f i c i e n t of the x term of the 

parabola f i t , a, by a = ?r - ,(section 3-7.1) and hence p = 0,03BH/21a. I f the 

uncertainty i n a i s A a , then the m.d.m. i s defined as 
m.d.m. = 0.03BH (5 .6 ) 

21 Aa 

The'coefficient a i s defined from the parabola f i t as 

^ 2 2 2 2 2 a = £x (N Exy - £x s.y) - Sx ( SxySx - Sx Sx ) -.- Sx y (N Sx - (Sx) ) 
Ex 4 ( ( E x ) 2 - N Sx 2) + Sx 3 (N EX 5 - SxSx 2) - Sx 2 ( Sx 3 Sx - ( S x 2 ) 2 ) 

(5 .7 ) 

where x and y are the co-ordinates of the parabola, N the number of points and 

''•2JX^ s H x™ . For the spectrograph, the x co-ordinates are known precisely 

because they are the positions of the trays, whereas the y co-ordinates are 

subject to the uncertainties of the track location i n each tray. I f the 



Table 5.2 

The Theoretical and Experimental Layer Effioiencea 
f o r the Track F i t t i n g Options 

Experimental Value 

Option 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Mean tube 
density 

Mean Layer 
efficiency 

4.947 + 0.009 61.84 + 0.11 

5.705 + 0.017 71.31 + 0.21 

4.137 + 0.016. 51.71 + 0.20 

4.910 + 0.025 61.38 + 0.31 

6.577 + 0.052 82.21 + 0.65 

3.324 + 0.077 41.55 + O.96 

6.81 + 0.14 85.I + 1.7 

4.94 + 0.12 61.8 + 1.5 

5.50 + 0.35 68.8 + 4.4 

5.68 + 0.50 71.0 + 6.3 

5.0 + 0.7 63.O + 9.0 

6.0 + 0.8 75.0 + 10.0 

Theoretical Prediction 

Mean tube 
density 

Mean layer 
efficiency 

5.024 + 0.034 62.80 + 0.42 

5.790 + 0.039 72.37 + 0.49 

4.165 + 0.028 52.06 + 0.36 

as option 0 

6.47 + 0.043 80.88 + 0.55 

3.369 + 0.023 42.11 + 0.30 

as option 4 

as option 0 

as option 1 

as option 1 

as option 0 

as option 0 
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! 
uncertainty i n the track location i n a tray i s Ay, then the uncertainty i n the 

c o e f f i c i e n t a i s 

N 2 

J 
Hence, from equation 5.7, 

Aa = F(x).A y 

where F(x) i s purely a function of the co-ordinates of the spectrograph and i s 

defined as 

F ( X ) J / N S x 2 - ( S x ) 2 \ 

N « x 4 ( r f s x 2 - ( S x ) 2 ) - N ( S x 3 ) 2
 + 2 S x 3 S x 2 S x - ( S x 2 ) 3 / 

Hence the m.d.m. i s given by 

m.d.m. = 0.03BH (5-8) 
21F(x).A y 

5«<f.2 The Accuracy of Track Looation 

The programme when f i t t i n g a track through a flash-tube configuration defines 

a channel i n the flash-tube t r a y through which the muon passed. The mid point 

of t h i s channel i s used as the traok co-ordinate although the muon oould have 

passed anywhere w i t h i n the channel and the discrepancy between the centre of the 

channel and the true t r a j e c t o r y i s the uncertainty i n track location. 

The d i s t r i b u t i o n of these discrepancies has been found by simulating the 

tracks of 10,000 randomly positioned muon3 i n a flash-tube t r a y with an angular 

d i s t r i b u t i o n corresponding to the 7° triangular zenith angle acceptance function. 

The channel width of the flash-tube configuration at the angle of the track 

was defined f o r each track and the discrepancy between i t s mid point and the 

o r i g i n a l track was calculated. The r e s u l t i n g d i s t r i b u t i o n of the discrepancies 

i s shown i n figure 5.10. The standard deviation of t h i s d i s t r i b u t i o n i s the 

location accuracy i n each t r a y and t h i s i s 0.318 + 0.002 mm. 
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The Maximum Detectable Momentum 

The m.d.m. can now be calculated using the r e s u l t of the previous section 

and equation 5 . 8 . The m.d.m. which i s applicable to a p a r t i c u l a r muon depends 

upon which trays were used to define i t s t r a j e c t o r y and consequently the m.d.m. 

has been calculated f o r a l l the various tray combinations. The term H/l i n 

equation 5 . 8 r e f l e c t s the e f f e c t that the gaps between the magnet blocks have 

on the measured momentum and i t i s more preoisely the r a t i o of the true t o the 

observed momentum. This l a t t e r r a t i o has been calculated f o r a l l the t r a y 

combinations i n section 5 * 6 . 1 and these values, at a zenith angle of 2 ° (the 

mean incident angle), have been substituted i n t o equation 5 * 8 f o r H/l when 

calculating the m.d.m. 

Table 5 * 3 contains the m.d.m. f o r the various t r a y combinations. I t can 

be seen that when a l l f i v e trays are used to determine the momentum. MARS has 

a m.d.m. of 5427 + 136 GeV/c and i t i s concluded that the spectrograph w i l l be 

oapable of determining the cosmic ray muon momentum spectrum accurately to 

beyond 5000 &eV/c. 

5 . 5 The Acouraoy of the Azimuthal and Zenith Angles 

I t was stated i n Chapter 3 t h a t only the mean points of the discharged tubes 

i n the azimuthal trays are used to calculate the azimuthal angle of the muon. 

The flash-tubes i n these trays and t h e i r configuration are i d e n t i c a l to those 

of the momentum trays and the l a t t e r trays place the t r a j e c t o r y of a muon i n t o 

oells which are 5 mm wide. The uncertainty i n track l o c a t i o n i n the momentum 

trays i s the discrepancy between the true p o s i t i o n of the tr a j e c t o r y and the mid 

point of the c e l l and the standard deviation of a l l possible trajectories around 

the centre of the c e l l i s given by 

I f i t i s assumed that a .comparable locati o n accuracy can be achieved i n the azimuthal 

0 . 2 5 2 
1 .hU mm. x dx 

0 . 2 5 



Table 5*3 

The Maximum Detectable Momentum of the 
Various Tray Combinations 

Trays used M.D.H. (GeV/c) 
A l l trays 5427 • 136 

1235 5162 + 129 

1345 5094 + 128 

1245 4392 + 110 

1234 3075 + 77 

2345 2749 + 69 

135 2*705 + 117 

125 3543 + 89 

145 3329 + 83 

1 2 4 2481 + 62 

134 2472 + 62 

245 2276 + 57 

235 2110 + 53 

345 1346 + 3 4 

123 1210 + 30 

234 1111 + 28 
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trays, then, because the azimuthal trays are separated by 4-5.85 cm, the 

uncertainty i n the azimuthal angle i s 0 . 2 6 ° . 

The zenith angle i s defined as the angle between the v e r t i c a l and the 

union's t r a j e c t o r y at l e v e l 5 and i t i s calculated using equation 3-S. The 

uncertainty, , i n t h i s angle due to track location uncertainties of Ay at 

each measuring l e v e l i s given by 

da/d.y has been calculated i n section 5.lf - . 1 and b i s defined as 

b = Sx 4( Sy Sx - N Sxy) + Sx 2 (SxySx 2 - Sy Sx 3) + Sx 2y (N S X 5 - SxSx 2) 
Sx 4 ( ( S x ) 2 - N Sx 2) + Sx 3 (NSx3 - SxSx 2) - Sx 2(Sx 3 Sx - ( S x 2 ) 2 ) 

henoe db = ( 8 (db Y V 
dy \ i = 1 Vdy, / / 

3 
Simplifying the r e s u l t i n g equations w i t h the approximation that £x = Sx = 

we obtain db/dy = ( Sx ) ~ z . When the t r a j e o t o r y i s f i t t e d to a l l f i v e trays 
~5 "*2 ""1 da/$y = 10 m and db/dy = 0.204m"" , hence, with a track location accuracy of 

0.318 mm, the uncertainty i n the zenith angle i s 0 . 0 0 3 5 ° . 

5.6< The Corrections t o be Applied t o the Computed 
Momentum and Zenith Angle. 

5 . 6 . 1 The Effect of the G-aps between the Magnet Blocks 

When the parabola i s f i t t e d t o the track co-ordinates, i t i s assumed that 

the spectrograph i s a continuum of i r o n rather than a multilayer device. 

Consequently, the J B.dl of equation 2 . 2 i s overestimated and hence the 

momentum i s likewise. The relationship between the true and observed momentum 

has been oaloulated precisely f o r the momentum range 10 - 5000 G-eV/c. A 

computer has been used to simulate the t r a j e c t o r y of a muon of known momentum 

through the spectrograph and to recalculate the muon's momentum from the 

coefficients of the parabola f i t t e d to the co-ordinates of the t r a j e c t o r y at 

the measuring levels. The energy loss of the muon was neglected. Figure 5 . 1 1 
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shows the r a t i o of the true to the observed momentum as a function of the true 

momentum f o r various zenith angles. The sign of the zenith angle shown i n t h i s 

f i g u r e i s not that derived from the parabola's coefficients but the product of 

t h i s , the magnetic f i e l d d i r e c t i o n and the sign of the charge of the muon. This 

i s because the path length of a muon through the spectrograph i s a function of 

the zenith angle and the d i r e c t i o n of curvature of i t s t r a j e c t o r y . As would be 

expected, th i s i s more important at low momenta where curvature i s largest. 

The value of the r a t i o of the true to the observed momentum used by the 

analysis programme i s that f o r a zenith angle of 0 ° , namely 0 . 7 9 7 2 . The momenta 

of muons at other zenith angles have to be corrected accordingly, but as can be 

seen from f i g u r e 5 . 1 1>this only amounts to a correction of ~ 1 .3$ f°r muons 

with momenta above 100 GeV/c even a t a zenith angle of 6 ° . 

The corrections become more important when not a l l of the f i v e measuring 

trays are used t o define the t r a j e c t o r y . Table 5 . 4 contains the correction factors 
0 ••o 

f o r the various t r a y combinations at zenith angles of 0 and + o by which the 

computed momentum must be m u l t i p l i e d . Once again i t i s apparent that the 

correction factors become p r a c t i c a l l y constant at momenta above 100 G-eV/c. 

I t i s concluded that a l l that i s required to correct the computed momentum 

f o r the effects of the gaps between magnet blocks i s a simple correction factor 

and that t h i s j u s t i f i e s the method of t r a j e c t o r y reconstruction described i n 

Chapter 3* 

5.6.2 Energy Loss 

The computed momentum must also be corrected f o r the energy l o s t by the muon 

i n the spectrograph. The t o t a l thickness of absorber i n MARS i s 3970 + 21 gm.cm 

and the rate of energy loss of the muons was calculated from the equations of 

Sternheimer and Peierls, which are given i n Chapter 7 . An additional correction 

f o r energy loss due to pair production, bremsstrahlung and nuclear interactions 
- 6 - 2 

was also included and t h i s amount to 4 x 1 0 .E MeV/(gm.cm ) ( a f t e r Hayman et a l . 
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1963). The t r a j e c t o r i e s of muons were simulated through the spectrograph f o r 
various values of momentum and zenith angle and with the corresponding rate of 
energy loss. Scattering was neglected. A parabola was then f i t t e d to the 
co-ordinates of the t r a j e c t o r y at the measuring levels and the effective 
momentum calculated f o r a l l tray combinations w i t h the momentum correction 
factor of 0.7972, 

Table 5*5 contains the discrepancy between the incident and computed 

momenta as a function of incident momentum, zenith angle (as defined i n the 

previous section), and tray combination. I t i s apparent t h a t , as would be 

expected, the energy loss i s only important below 100 GeV/c and i t i s f a i r l y 

independent of zenith angle. The corrections given i n the table are f a i r l y 

constant at low values of momentum because of the domination of energy loss 

and what fluctuations there are can be accounted f o r by the extrapolation of 

the momentum computed f o r the tray combination to the momentum of the muon at 

the top of the spectrograph. At higher momenta, where energy loss i s less 

important, the v a r i a t i o n i n path length (and hence the momentum correction f a c t o r ) 

with zenith angle accounts f o r the flu c t u a t i o n s i n the corrections. 

5»6»3 The Corrections t o be Applied to the Computed Momentum 
•> i 

The momentum of a l l muons i s corrected by the analysis programme f o r the 
ef f e c t of the gaps between the magnet blocks using the f a c t o r f o r a muon with 

a momentum of 1000 GeV/c, a zenith angle of 0° and when a t r a j e c t o r y i s f i t t e d 

to a l l f i v e t r a y s , namely 0.7972. This correction i s only approximately true 

f o r other tray combinations, momenta and zenith angles. However, the energy 

loss corrections tabulated i n table 5 . 5 have also been calculated using t h i s 

correction factor and consequently they contain any necessary re-adjustment 

factors. Hence the muon1s incident momentum can be calculated from the computed 

momentum by the simple addition of the appropriate correction contained i n 

table 5 . 5 . 
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The above oorreotions to the oomputed momentum allow f o r the systematic 

biases of the spectrograph and the method of data analysis. However, the 

momentum of any muon can never be determined absolutely, because f i n i t e 

uncertainties are introduced i n t o i t s value by Coulomb scattering and the 

m.d.m. of the p a r t i c u l a r t r a y combination being used. The. uncertainty due to 

Coulomb scattering amounts to 12$ of the momentum of the muon and i t i s 

independent of momentum (see section 2 . 2 . 2 ) whereas the m.d.m. introduces an 

uncertainty i n t o the momentum, p, of p/(m.d,m.) and hence t h i s increases with 

momentum. 

5»6»4 The Corrections to be Applied t o the Computed Zenith Angle 

The true and oomputed zenith angles were oompared f o r the simulated muon 

tr a j e c t o r i e s of seotion 5 * 6 . 2 and table 5 *6 contains the re s u l t s . The discrepancy 

between the two angles i s tabulated as a function of tray combination,/ 

momentum and true zenith angle. The sign of the zenith angle and the corrections 

apply t o a p o s i t i v e l y oharged muon i n positive magnetic f i e l d . For any other 

oondition the sign of the zenith angle t o be used i s the produot of the signs of 

the oomputed zenith angle, the muon's charge and the magnetic f i e l d d i r e c t i o n . 

I t can be seen that the computed zenith angle i s very close to the true angle f o r 

a l l t r a y combinations above a momentum of 50 G-eV/c but below th i s value, the 

corrections beoome increasingly important. 

5 . 7 Programme Diagnostics 

The time that i t takes the programme to analyse one event depends upon how 

many traok f i t t i n g options have to be t r i e d before the f i t t i n g c r i t e r i a are 

s a t i s f i e d and also upon the number of tubes i n the groups. The minimum time 

taken f o r a f i v e t r a y f i t i s 8 sees/event but the average time taken to analyse 

an event i s about 30 sees. Consequently, the overnight analysis of the data 

oolleoted i n a 24 hour period ( 500 events) w i l l only consume k of the 11 hours 

available. 
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The maximum amount of data whioh can be analysed at any one time i s 

determined by the amount of disc space available. There are usually about 1000 

seotors available on a disc, but as there must be s u f f i c i e n t space f o r the 

answer f i l e created by the programme, only about 600 sectors can be used f o r 

data storage. This i s equivalent to about 2800 events, or 6 days worth of data, 

and t h i s would take about 24 hours to analyse. I t i s thus feasible to analyse 

the data f o r a whole week over the week-end rather than n i g h t l y . 

5 . 8 Conclusions 

The investigations of the properties of the flash-tube track location 

technique presented i n t h i s chapter provide conclusive evidence that the technique 

correctly interprets the flash-tube configurations and i t correctly allows f o r 

tube i n e f f i c i e n c i e s and knook-on electrons. This i s p a r t i c u l a r l y true of the 

results of the mean layer e f f i c i e n c i e s of the options, where the theoretical 

and experimental values agree exceedingly w e l l , and also, to a somewhat lesser 

extent,true of the correlation between the th e o r e t i c a l and experimental values 

f o r the frequency of occurrence of the options. I t i s also concluded that the 

uncertainties i n the absolute tube positions and t h e i r i n t e r n a l diameters are 

allowed f o r by inoreasing the geometrioal tube diameters and gaps between the 

tubes by 10$ 

The track loc a t i o n acouraoy of 0 . 3 1 8 mm achieved i n the measuring trays 

gives MARS an m.d.m. of 5427 ± 136 G-eV/c and t h i s w i l l enable the muon momentum 

spectrum to be determined precisely t o beyond 5000 6-eV/c. 
i 
I t has been shown that the programme as a whole i s easily capable of 

handling a l l the data from MARS and i t i s concluded that the programme and 

flash-tube traok location technique s a t i s f a c t o r i l y meet the requirements of the 

experiment. 
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CHAPTER. 6^ 

A Preliminary Measurement of the Muon Momentum Spectrum & Charge Ratio 

6 . 1 Introduction 

During the construction of MARS when the computer l i n k was incomplete, a 

stage was reached when i t was possible to record photographically the measuring 

t r a y flash-tubes of one side of the spectrograph. These data which were a l l 

analysed by the programme described e a r l i e r were to serve as a source f o r a 

preliminary measurement of the cosmic ray muon momentum spectrum and charge 

r a t i o . They also provided real data with which to test and investigate the 

properties of the analysis programme. The former work was presented at the 

International Conference on Cosmic Rays at Hobart, Tasmania, 1971• 

6 . 2 Details of the Experiment 

The experimental arrangement was the same as that shown i n figure 2 . 3 

except that the measuring t r a y and s c i n t i l l a t o r at l e v e l 1 were reversed and 

the measuring and momentum selector trays at l e v e l 5 were likewise. The measuring 

trays(with t h e i r d i g i t i s a t i o n eleotronioB and probes removed) were used to locate 

the t r a j e c t o r i e s of muons traversing the spectrograph. Fiducial l i g h t s were 

attached to the fronts of the trays and a mirror system was constructed which 

enabled the recording of a l l f i v e trays on one photographic frame of a camera 

situated at l e v e l 3 . A clock and an information board were included i n the 

f i e l d of view of the camera and i t was ensured that the camera looked down the 

axes of the tubes so that maximum luminosity would be achieved. 

Delay lines were used to' generate the high voltage pulses f o r the f l a s h -

tube trays. These were discharged with a spark gap through a r e s i s t o r which 

had the characteristic impedanoe of the delay lines ( 3 7 ft ) and the pulses to 

the flashr-tube trays were taken from aoross these r e s i s t o r s . The actual pulses 

were of 2/is duration and of 6kV amplitude. The l a t t e r pulse parameter was 

variable and the value used was determined by a series of voltage flash-tube 

ef f i c i e n c y measurements. 
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The trays were made p a r a l l e l to one another to w i t h i n 0.5mm by means Of 
two plumb, bobs down the side of the spectrograph at either ends of the trays. 
The approximate co-ordinates of the trays r e l a t i v e to the plumb bobs were also 
measured. More precise co-ordinates f o r the tray positions were provided by 
data from a zero magnetic f i e l d run, details of which are given below. 

The spectrograph v/as triggered by a three f o l d coincidence from the 

s c i n t i l l a t o r s and, 2/J.B l a t e r , the high voltage pulse was applied to the trays, 

the images of the discharging tubes being recorded on the f i l m . There then 

followed a 4 second paralysis period during which time the f i d u c i a l s , clock 

and information board were illuminated and the f i l m i n the camera wound on to 

the next frame. 

Altogether, 10,000 events with zero magnetic f i e l d were recorded and 

50,000 events w i t h a f i e l d of 16.3 + 0.1 kgauss. The l a t t e r events were divided 

equally between positive and negative magnetic f i e l d directions t o remove any 

experimental bias. 

Plate I I shows a t y p i c a l event recorded on the f i l m . A positive muon with 

a momentum of 29.1 G-eV/c i s shown, which was accompanied by a burst at l e v e l 4* 

6 , 3 The Transfer of the Data to the Computer 

A l l the data were analysed by the programme and techniques described i n the 

e a r l i e r chapters and consequently, the data had to be presented t o the programme 

i n an i d e n t i c a l form to that which i s received from the on-line system. This 

was aooomplished by f i r s t t r a n s f e r r i n g the f i l m data onto paper tape at a 

scanning table and then i n t e r p r e t i n g t h i s tape w i t h a special programme on the 

computer which placed the data on a disc i n the correct format. 

Bach event was projected onto a diagram of the flash-tube t r a y patterns of 

a l l f i v e trays. The positions of the f i d u c i a l l i g h t s were also marked so that 

the tubes which discharged could be i d e n t i f i e d . The flash-tube information and 

the time of the event were then transferred onto paper tape as described below. 
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Plate H A Typical Film Event. 
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Those events which would obviously be rejected by the analysis programme, e.g. 
those due to a i r showers e t c , were not entered onto the tape. 

The paper tape devioe consisted of two panels, i n t o which data oould be 

entered, and a paper tape punch. One panel consisted of a matrix of 40 buttons 

representing a portion of a tray and including f i v e columns of tubes. These 

buttons remained illuminated once depressed and the flash-tube configuration 

of a blook of tubes containing the muon's track i n a tray was entered i n t o t h i s 

panel. The other panel contained f a c i l i t i e s f o r entering the number of the 

flash-tube tray and the flash-tube column number of the s t a r t of the block of 

tubes. The time of the event from the clook was also entered i n t o t h i s panel. 

A l l of t h i s information was then punched onto the tape f o r each tray except the 

time which was only entered once f o r each event. 

A l l the tracks contained i n any one t r a y were punched on the tape with the 

proviso that a maximum of 15 columns (3 blocks) could be punched f o r any tray. 

This l i m i t a t i o n occasionally required the scanner to i n t e r p r e t and e d i t the 

data but' as t h i s only ocoured when the trays contained more than three w e l l 

spaced traoks or a large burst, both of which would be ignored by the analysis 

programme, i t i s not thought to have introduced any bias i n t o the data. 

The data oh the tape was carefully cheoked by the tra n s l a t i o n programme 

f o r i n t e r n a l oonsistenoy. Header information, dummy columns and azimuthal trays 

were attaohed to those events which were found to be consistent and they were 

then stored on the disc. The header information contained an event number 

assigned to the event, the date and the time of the event, and the d i r e c t i o n 

of the magnetic f i e l d . A r t i f i c i a l bursts were placed i n the azimuthal trays 

rendering them incapable of being analysed. 

A data f i l e i d e n t i c a l i n format to that produced by the on-line system was 

thus generated and t h i s f i l e was then analysed by the programme described i n 

e a r l i e r chapters. After analysis, the data and answers were transferred to 

magnetic tape i n Newoastle where they were subsequently studied. 
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6.4 The Zero Magnetic F i e l d Data 

One thousand of the events reoorded without a magnetic f i e l d were scanned 

and analysed w i t h the zero f i e l d analysis programme described i n Chapter 4. 

B r i e f l y , a straight l i n e was drawn between the tracks located at levels 1 and 5 

and the discrepancy between th i s l i n e and the track oo-ordinates at each of 

the other three levels oaloulated. Of the 1,000 words scanned, 700 events 

were f i n a l l y used to define the tray positions. The remainder were rejected 

beoause of the presence of a i r showers and spurious events and because of the 

condition that the track had to he unambiguously defined i n levels 1 and 5. 

The histograms of the discrepancies f o r trays 2, 3 and 4 are shown i n 

f i g u r e 6.1 ( a ) , (b) and (c) respectively. The differences i n the widths of 

the three distributions r e f l e c t the effeots of scattering, energy loss and the 

anchoring of the reference l i n e at levels 1 and 5. The approximate co-ordinates 

f o r trays 2, 3 and 4 used by the analysis programme were corrected by the mean 

values of the respective histograms to give the f i n a l t r a y co-ordinates f o r the 

analysis of the magnetic f i e l d data. 

The uncertainty i n the positions of trays 2, 3 and 4 from the histograms 

and the location uncertainty i n levels 1 and 5 of 0.32mm leads to an m.d.m. 

f o r the f i l m data of 2500 G-eV/o. 

6.5. The Magnetic F i e l d Data 

A t o t a l of 7081 events were analysed and the momenta of the muons, t h e i r 

zenith angles and the signs of t h e i r oharges were determined by the programme 

described i n e a r l i e r chapters. To remove any experimental bias, the events 

were selected, as f a r as possible, equally from the data f o r the two directions 

of the magnetic f i e l d . The f i n a l t o t a l s were 3611 muons with a positive f i e l d 

and 3470 with a negative.field.> These data were used to calculate the d i f f e r e n t i a l 

momentum spectrum and charge r a t i o f o r the muons. 
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6 . 6 . The D i f f e r e n t i a l Momentum Spectrum at Sea Level 
i n the V e r t i c a l Direction 

The differences i n the position of some of the p a r t i c l e detectors i n the 

spectrograph to those shown i n figure 2 . 3 necessitated the r e c a l c u l a t i o n of the 

corrections for energy loss and for the gaps between the magnet blocks. The 

value for the l a t t e r correction used by the analysis programme was 0 . 8 0 8 3 and 

table 6 . 1 contains the energy l o s s corrections to be added to the computed 

momenta. 

The data were f i r s t corrected f o r energy loss by the amount defined by the 

tray combination used and given i n Table 6 . 1 . They were then divided into 

momentum c e l l s whose mean momenta and c e l l widths are given i n Table 6 . 2 . Data 

were available for muons with an inoident momentum between 7 andlO&eV/c but, 

due to' uncertainties i n the c e l l width and the acceptance of the spectrograph 

at these momenta and also because of the r e l a t i v e l y large energy l o s s and the 

poorness of the parabola f i t at these exceptionally low momenta,these data were 

negleoted. 

An attempt was made to minimise the e f f e c t s on the derived speotrum of 

noise i n the data. A measure of the * goodness of f i t 1 of each track was 

available i n that the standard deviation of the track co-ordinates around the 

f i t t e d parabola was calculated for each event. The distributions of these 

deviations were studied for each momentum c e l l . These distributions are i n f a c t 

r.m.s. distributions and as such do not conform to the normal properties of 

gaussian distributions. A study was made of an r.m.s. di s t r i b u t i o n simulated 

by f i t t i n g a parabola to f i v e points which had been i n d i v i d u a l l y displaced 

from a straight l i n e by an amount randomly selected from a gaussian d i s t r i b u t i o n . 

The d i s t r i b u t i o n of the standard deviations of the points around the f i t t e d 

t r a j e c t o r i e s f o r 1 0 , 0 0 0 simulations i s shown i n figure 6 . 2 . I t was found that 

to chop the distribution at three times i t s mean value was almost equivalent 

to chopping a gaussian distribution at three standard deviations. This 
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Table 6 . 2 

Mean 
Uomentum 
(GeV/c) 

N + N- N Total 
C e l l 
Width 
(&eV/o) 

Relative 
Acoeptance N Total Charge 

Ratio 

11 . 0 5 9 8 4 6 6 1 0 6 4 2 0 . 5 5 0 9 6 7 . 3 1 . 2 8 + 0.08 

1 3 . 0 4 4 0 3 4 8 7 8 8 2 0 . 7 1 5 5 5 1 . 0 1 . 2 6 + 0 . 0 9 

14 .9 3 5 7 285 642 2 0.800 4 0 1 . 3 1 . 2 5 + 0 . 1 0 

16 . 9 3 2 6 207 5 3 3 . 2 0.860 3 0 9 . 9 1 . 5 8 + 0 . 1 4 

1 9 . 0 2 4 2 1 9 5 4 3 7 2 0 . 8 9 5 2 4 4 . 1 1 . 2 4 + 0 . 1 2 

22.1 3 8 9 3 0 6 6 9 5 5 0 . 9 2 5 1 5 0 . 3 1 . 2 7 + 0 . 1 0 

2 6 . 6 3 0 6 242 5 4 8 5 0 . 9 5 0 1 1 5 . 4 1 . 2 6 + 0 . 1 1 

3 1 . 8 2 0 1 1 7 1 3 7 2 5 0 . 9 6 6 7 7 . 0 1.18 + 0 . 1 2 

3 6 . 8 1 2 7 1 0 7 234 5 0 . 9 7 0 4 8 . 2 1 . 1 9 + 0 . 1 5 

4 2 . 2 95 69 • 1 6 4 5 0 . 9 8 0 3 3 . 5 1 . 3 8 + 0 . 2 1 

4 7 . 2 8 8 57 1 4 5 5 0 . 9 8 3 2 9 . 5 1 . 5 4 + 0 . 2 6 

5 2 , 9 4 9 . 3 4 8 3 5 0 . 9 8 5 1 6 . 9 1 . 4 4 + 0 . 3 1 

5 8 . 0 3 3 27 6 0 5 0 . 9 8 7 1 2 . 2 1 . 2 2 . + 0 , 3 0 

6 5 . 0 6 0 4 2 1 0 2 1 0 0 . 9 9 0 1 0 . 3 1 . 4 3 + 0 . 2 7 

7 5 . 0 4 0 41 81 1 0 0 . 9 9 3 8 . 2 0 0 . 9 8 + 0 . 2 1 

8 4 . 0 23 25 4 8 1 0 0 . 9 9 5 4.82 0 . 9 2 + 0 . 2 5 

9 3 . 0 2 0 1 5 3 5 1 0 0.997 3 . 5 1 1 . 3 3 + 0 . 4 3 

1 1 9 . 0 4 1 33 7 4 5 0 1.0 1 . 4 8 I . 2 4 + 0 . 2 9 

1 7 1 . 0 

2 6 2 . 0 

1 9 

9 

14 

11 

3 3 

2 0 

5 0 

2 0 0 

1.0 

1 . 0 

0 . 6 6 

0 . 1 0 

) 
j l . 2 3 + 0 . 3 3 

) 

) 
5 6 0 . 0 4 1 5 - 1 . 0 0,009 

) 
j l . 2 3 + 0 . 3 3 

) 

) 
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seleotion c r i t e r i o n was repeatedly applied to the dist r i b u t i o n of the standard 

deviations of the momentum c e l l s u n t i l s e l f - c o n s i s t e n t distributions were 

obtained. 

The number of positive and negative muons and also the t o t a l number of 

muons remaining i n eaoh c e l l after the application of the selection o r i t e r i o n 

are shown i n Table 6 . 2 . A t o t a l of 108 muons were rejected. The acceptance 

of the spectrograph r e l a t i v e to that at i n f i n i t e momentum as a function of 

momentum i s shown i n figure 6 . 3 * The acceptance for muons of i n f i n i t e 
2 

momenta had a value of 4 2 6 cm sterad. The values of the r e l a t i v e acceptance 

at the mean momenta of the oel l s are also shown i n Table 6 . 2 . The t o t a l number 

of muons i n each o e l l . has been corrected to the acceptance at i n f i n i t e momentum 

and unit c e l l width and the res u l t s are also tabulated. The highest 

momentum c e l l r e f l e c t s the int e g r a l i n t e n s i t y above 4 0 0 GeV/o and consequently 

i t s c e l l width i s undefined. Five muons with momenta above 4 0 0 G-eV/c were 

observed whereas, from the OPV int e g r a l spectrum, 5 - 6 are expected to occur 

within the data for the present experiment. The d i f f e r e n t i a l i n t e n s i t y for 

this o e l l has been plotted at the equivalent OFflT d i f f e r e n t i a l i n t e n s i t y corrected 

by 5 / 5 . 6 . 

Since the l i v e time of the spectrograph during the c o l l e c t i o n of the data 

was not recorded,no attempt has been made to calculate the absolute muon rates. 

Instead, the data have been normalised to the d i f f e r e n t i a l spectrum, derived 

from the OP/lf in t e g r a l spectrum, at a momentum of 26.6&eV/c. The experimental 

data points together with the OFff d i f f e r e n t i a l spectrum are given i n figure 6 . 4 . 

I t i s apparent that the normalised experimental points are i n very good agree­

ment with the QFR d i f f e r e n t i a l spectrum considering the poor s t a t i s t i c a l 

accuracy of the higher nomenta points and the method of the derivation of the 

spectrum. 
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6 . 7 The Charge Ratio 

The charge r a t i o for the accepted 'events i s shown as a function of momentum 

i n figure 6 . 5 . The l a s t three momentum c e l l s were combined together to improve 

the s t a t i s t i c a l accuracy and the resultant oharge r a t i o was plotted at the mean 

momentum of 21Q &eV/c. The broken l i n e on the figure i s the mean charge r a t i o 

of 1.286 + 0.026 for a l l the data. 

The r e s u l t s of the world survey of charge r a t i o measurements presented i n 

figure 1 . 3 have been combined together into momentum, c e l l s and are shown i n 

figure 6 . 6 . I t can be seen that the r e s u l t s of the present preliminary 

experiment are not i n disagreement with the combined world survey. I t i s also 

apparent that there i s evidence for the charge r a t i o remaining f a i r l y constant 

over the momentum range 10 - 1,000 Ge^ 0* However, there are some indications 

of fine structure i n the region above 60 GdV/c but confirmation of t h i s w i l l 

have to await the better s t a t i s t i c s which w i l l become available from spectrographs 

such as MARS. 

6.8 Conclusions 

The s t a t i s t i c a l accuracy of the present experiment i s s i m i l a r to that of 

previous experiments and confirms the OIW spectrum and previously measured charge 

r a t i o to within the experimental uncertainty. This agreement between the 

present r e s u l t s and those of previous workers indicates that the spectrograph 

and the analysis programme are performing correctly. 

I t i s of i n t e r e s t to note that a l l the data analysed were collected during 

18 hours of operation of the spectrograph and that they took over 2 months to 

scan. The necessity of having an automated spectrograph with which to make a 

preoise determination of the muon momentum spectrum and charge r a t i o beyond 

1.000GeV/c at sea l e v e l i s very evident. 
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CHAPTER 7 

The Absolute Rate of Energy Loss of Muons i n 

Iron for the Momentum Range 5 -^0 G-ey/c 

7 . 1 Introduction 

A reanalysis of the data presented i n the previous ohapter has enabled an 

absolute measurement to be made of the t o t a l rate of energy l o s s of cosmic ray 

muons for the momentum range 5*40 G-eV/c i n the iron of the magnet of the 

spectrograph. A study of the rate of energy loss i s of importance because i t 

serves as a cheok of conventional energy loss theory. This i s not a t r i v i a l 

point beoause an exact treatment has never been given (see the review of C r i s p i n 

and Fowler, 1 9 7 0 ) , and as f a r as i t i s known, t h i s work i s the f i r s t absolute 

measurement of the t o t a l rate of energy loss above values of p/mc of 1 0 0 (where 

p i s the momentum of a p a r t i c l e of mass m). 

7 . 2 The Theoretical Rate of Energy Lo3S 

7 * 2 . 1 I o n i s a t i o n 

The average rate of energy lo s s by ionisation, -( /p0 ) iE/dx, was given 

by Bethe ( 1 9 3 2 , 1 9 3 3 ) and Blooh ( 1 9 3 3 ) and, modified for the existence of the 

density e f f e c t , i s 
J l _ dE = A_2 (B + 0 . 6 9 + 2 1 n (p/mo) + I n (T) - 2$ -S ) 

MeV.gnf . cm" . ( 7 . 1 ) 

where A = 0 . 1 5 3 6 ( Z / a J and B = I n (m c 2 ( 1 0 6 e V ) / l 2 ) and where.: p i s the density 

of the medium whose mean ionisation potential i s I , atomic number i s Z and 

atomic weight i s A Q; p i s the momentum of the incident p a r t i c l e whose mass, m, 

i s larger than that of the electron, m . T i s the maximum transferable energy 

( i n MeV) defined by 

2 
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where E i s the t o t a l energy of the incident p a r t i c l e , if i s a correction due to 
the density effeot a r i s i n g from the pol a r i s a t i o n of the medium which reduces 
the effect of distant c o l l i s i o n s . 

An expression for the density correction was given by Sternheimer i n 1956 

but, more recently, Sternheimer and P e i e r l s (1971) have reformulated the 

equations to give 

S = 4.606X+C + a(X 1 - X ) m ( X Q <X <X 1) (7.2) 

$ = 4.606X+-C (X **,,) (7.3) 

Here X Q and X^ are p a r t i c u l a r values of X = l°g 1 0 (p/ m<0 such that S= 0 for 

X.<Xo and for X > X^ the assymptotic value of equation 7.3 i s reached; C, a 

and m are constants dependant on the properties of the medium. Substitution 

into the equations of Sternheimer and P e i e r l s f or the values of Z, A Q and p Q 

for iron of 2 6 , 55.85 and 7.90gm. cm respectively, gives I = 285.4eV and C = 

-4*285. For materials having these values of I and C, Sternheimer and P e i e r l s 

give X Q.e 0 . 2 , X 1 = 3.0, m = 3.0 and a = 0.1532 for the other constants. Hence 

for muons with momenta l e s s than 1006-eV/c ( f o r whioh equation 7*2 ap p l i e s ) , 

S= 4.606X - 4*285 + 0 . 1 5 3 2 ( 3 * 0 - X ) 3 (p>0 . l67GeV/c) 
(7*4) 

cT=0.0 (p <0.l67&eV/c) 

Henoe with the values of A and B as given by Sternheimer for iron of 0.0715 and 

15 .65 respectively, the average rate'of energy l o s s of muons i n iron due to 

io n i s a t i o n i s given by 

t-_2 dE = 0.0715 ( 1 6 . 3 4 + 21n (p/mc) + I n T - 2(3 ~o ) 

MeV.gm . cm . (7*5) 

This function has been oaloulated for the momentum range 0.1 - 100GeV/c and the 

r e s u l t s are shown i n figure 7*1* 
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7 .2 .2 Bremsstrahlung, Pair Production and Nuclear Interactions 

The measured rate of energy loss of muons i n MARS i s not r e s t r i c t e d to 

ionisation loss alone but includes that due to pair production, bremsstrahlung 

and nuclear interactions. Hayman et a l » ( l 9 6 3 ) have calculated the contribution 

to the t o t a l rate of energy lo s s by the three processes for standard rock and 

these values with the appropriate correction to Z and A for iron have been used 

i n the present oaloulations. 

The theoretical rate of energy lo s s due to pai r production has been given 

by Uando and Ronohi (1952) and that due to bremsstrahlung by Christy and Kusaka 

(1941) . Both theories reduce to the approximate r e l a t i o n that 

- dE = CZ 2 . E 
dx A 

where C i s a constant and has different values for the two processes. Hence, 

the rate of energy lo s s for the two processes i n iron can be calculated from 

the values for rock given by Hayman et aL by correcting for the difference i n 

Z /A. The rate of energy lo s s due to nuclear interactions according to the 

theory of George and Evans (1950) and Marshak (1952) i s independent of Z and A 

and henoe, the values given by Hayman et a l . do not need correction. 

Standard rock was defined as having Z = 11 and A = 22 and p = 2.65 gm.cm"̂  

and the iron of MARS has Z = 26, A = 55.85 and p = 7.90 gm.cm"̂ . The values 

for the rate of energy loss due to the three processes for standard rock and iron 

are summarized i n Table 7 . 1 . 

Table 7-1 

The Contribution to the Total Rate of Energy Loss by Pa i r Production (p.p.), 
Bremsstrahlung (b.) and Nuclear Interactions ( n . i . ) , a f t e r Hayroan et a l . (1963) 

Muon Momentum 
(GeV/c) Process -dE/dx - 1 2 (Mev.gm. cm ) Muon Momentum 
(GeV/c) Process Rock Iron 

10 
p.p. 
b. 
n . i . 

0.0074 
0.0077 
0.0073 

0.0163 
0.0169 
0.0073 

p.p. 0.132 0.290 
100 b. 0 . 1 1 8 0.260 

n . i . 0.073 0.073 
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7 . 3 Review of Previous Experiments to Measure the Rate of 
Energy Loss of Charged Pa r t i o l e s i n Matter 

Many experiments have been performed to measure the rate of energy loss of 

oharged p a r t i c l e s i n matter but very few have measured t h i s rate d i r e c t l y . Those 

experiments which have made a dire c t measurement have been confined, as f a r as 

i t i s known, to values of (3y ( = l e f l a than 1 0 0 . Bulher et a l . ( 1 9 6 4 ) 

measured the range of muons i n lead for momenta up to 2 . 4 8 CeV/c (@y = 2 3 . 5 ) 

and they found agreement with the theory of Stemheimer to within 2 $ , Backenstoss 

et a l . ( 1 9 6 3 ) studied the passage of 8 GeV/c muons through iron with p a r t i c u l a r 

reference to bremsstrahlung and knock-on electrons and found agreement with theory 

to within their experimental error of + 7%. More recently, Bellamy et a l . ( 1 9 6 7 ) 

made absolute measurements of the most probable energy loss of muons i n Nal ( T l ) 

f or the momentum range 0 . 5 to 1 0 . 5 GeV/o ( 0yc 5 to 1 0 0 ) . Their r e s u l t s agree 

to within the \% experimental uncertainty with the theoretical values. Other 

experiments include that of Bowen ( 1 9 5 4 ) , who made absolute measurements with 

accelerator produoed pions and muons and cosmic ray muons up to momenta of 

5 GeV/o i n Nal ( T l ) c r y s t a l s , and that of M i l l a r et a l . ( 1 9 5 8 ) who used a large 

l i q u i d s c i n t i l l a t o r to study cosmic ray muons with energies of 0 . 3 and 2 . 2 GeV. 

These authors found e s s e n t i a l agreement with the theoretical predictions. 

The c h a r a c t e r i s t i c property of indireot experiments to measure the rate of 

energy lo s s i s that the r e s u l t s have to be normalised to the theoretical values. 

Consequently, these experiments have only been able to oonfirm the basic shape 

of the energy l o s s curve and not i t s absolute magnitude. C r i s p i n and Fowler 

( 1 9 7 0 ) give an extensive review of many indireot experiments using techniques 

such as drop density determination i n oloud ohambers and blob density determina­

tion i n photographic emulsions. I n a l l experiments agreement i s found between 
1 

the theory of Sternheimer and the normalised experimental r e s u l t s . Another 

widely used, i n d i r e c t teohnique has been to compare the oosmic ray muon 

momentum spectrum or i n t e n s i t y at sea l e v e l with that underground. (See Ashton, 
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1 9 6 1 , and Pine et a l . , 1 9 5 9 ) . However, these experiments suffer from 

uncertainties i n the precise shape of the sea l e v e l momentum spectrum and the 

density of the overlying s t r a t a through which the muon3 pass. These i n d i r e c t 

measurements have confirmed the shape of the energy l o s s - (3y r e l a t i o n up to 

values of jSy greater than 1000. 

I t i s concluded from t h i s review that as f a r as i t i s known, the r a t e of 

energy loss of charged p a r t i c l e B i n matter has not been measured d i r e c t l y 

beyond values of 0y of 1 0 0 and only the shape of the energy l o s s - 0y r e l a t i o n 

has been oonfirmed beyond t h i s value. Consequently, the work presented i n 

t h i s chapter constitutes a new measurement of the absolute rate of energy loss 

over the range of (3y from 100 to 400. 

7.4 The Theory of t h e Experimental Method 

7.4 .1 The Equation of Motion of a Charged P a r t i c l e 
Suffering Energy Loss i n a Magnetic F i e l d 

As muons pass through the magnet blocks and other absorber of MARS, they 

continually lose energy and consequently the radius of curvature of t h e i r 

t r a j e c t o r i e s continually decreases. The rate of change of this ourvature i s 

related to the rate of energy l o s s . For a charged, r e l a t i v i s t i c p a r t i c l e with 

energy E and momentum p ( ~ E / c ) the radius of curvature, r , of i t s tra j e c t o r y 

i n a magnetio f i e l d i s given by 

r = mpc = mE 

where m i s a oonstant defined by the properties of the p a r t i c l e and the magentic 

f i e l d . The average rate of energy l o s s , k, i s defined by k = -dE/dS where dS 

i s the incremental path length of the p a r t i c l e i n the absorber. I n an (S,ip ) 

OQsordinate system, the radius of curvature i s given by r = dS/djJ/ and hence 

dS =-dE/k = mEd̂ r or 

<ty = zl . (7*6) 

mk " E 

d^ represents the change i n the angle of the tra j e c t o r y r e l a t i v e to a fixed l i n e . 

Integrating equation 7 * 6 over the energy range E Q to E and the angular range ipQ 
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to tp we obtain 

>P = * 0 * -L l n f E o ) mk V E - kS / o 

where kS i s the t o t a l energy l o s s . I f kS « E q then 

* = 0 O
 + * k S 2 (7.7) 

2mEQ
2 

Before t h i s equation can be applied to MARS i t i s necessary to convert 

from the (S,<p ) co-ordinate system to a cartesian one. To a f i r s t approximation, 

the arc length, S, of a c i r c l e which passes through the origi n and whose centre 

l i e s on the y axis of a cartesian system, i s given as a function of x and the 
2 2 

radius, r , by S = x (1 +x /2r ) . I n general, i f the oentre of the c i r c l e does 

not l i e on the y axis then i t can be made to do so by rotating the co-ordinate 

system through *pQ, and hence 
S . = x sec ipo . (1 + (x sec <pQ )2/2r2) (7.8) 

I n a cartesian co-ordinate system dy = s i n tp dS, and hence, with the condition 
2 2 

that S/mEQ + kS-/2mE i s small, 

dy = ( s i n tp Q + cos ip q (S/mEQ +kS 2/2mE o
2)) dS (7.9) 

Integrating equation 7.9 over y, between y Q and y, and over S between S q 

and S we obtain 

y = A + x tan ip + x 2 sec *p 0 * ̂  ( k + tan <p 0 ) s e ° 2 *P n + • • • 

where A i s a constant. 

I t i s concluded that the equation of the tra j e c t o r y of a charged p a r t i c l e 

undergoing energy l o s s i n a magnetic f i e l d can be approximated to the equation of 

a oubic and that the average rate of energy l o s s can be extracted from the 

coef f i c i e n t of the x^ term of a.cubic f i t t e d to the oo-ordinates of the tra j e c t o r y 

of such a p a r t i c l e . 
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7.4.2. A 'Least-Squares' Cubic F i t 
2 3 

The general cartesian equation of a cubic i s y. = &q + a^x + a,,x + a^x . 

I n a s i m i l a r manner to the derivation of the least-squares parabola f i t given 

i n chapter 3» i t can be shown that the ooeffioientsof a 'least-squares' cubic 

f i t to n points (x^, y ^ ) , where n > 4, can be found by solving the l i n e a r 

equations 2 x 6 2 x 5 2 x 2 x-

x 5 

a. 

2 x H 

where 2 x m 

2 x 4 2 x 5 

2 x 3 2 x 2 

n 
2 

2 rr 

2 x * 

2 x 

2 x 

2 x 

\ 
a 2 

f •« 2 

2 yx 
a1 2 yx 

J W / 

(7.11) 

m 
i = 1 * 

7.5 The Accuracy of the Energy Loss Determination 

I n theory, the rate of energy l o s s can be uniquely defined for each p a r t i c l e 

but because of Coulomb scattering i n the iron and uncertainties i n track location 

i t i s necessary to f i n d the mean loss for groups of p a r t i c l e s rather than 

in d i v i d u a l s . 

The dependence of the calculated energy l o s s upon the accuracy of track 

location can be found by the same method as that used to calculate the m.d.m. 
2 2 

i n chapter 5. From equation 7.10 with \fiq = 0, a^ = k/6mEo or k=6mEo a.y Hence 

dk = 6mE . da, . 
dy 0 d / 

(7.12) 

day'dy can be determined by d i f f e r e n t i a t i n g the determinates used to calculate 

a^ from equations 7.11. With the approximation that 2x = 2x^ = 2x" 0, 

M* da, - ( f i 2 S * 2 + f 2
2 2 x 6 + 2 ^ 2 * * ) ^ g 

d y ^ 2.x'- + f 2 2 x 

where f 1 = 2 x 4 ( 2 x 2 ) 2 - N ( 2 x 4 ) 2 and f 2 = N 2 x 2 2 x 4 - ( 2 x 2 ) 5 , and, f o r 

tray oo-ordinates of the f i l m data, day'dy = 0.0555 m\\ Hence from equation 

the 
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7.12 and with m = 2.046 m. GeV~1 

Ak = 0.68 E 2. Ay GeV/m. o 

The average track location uncertainty for the f i l m data was 0.82mm and 

hence the uncertainty i n the rate of energy lo s s at 10 GeV/c i n the absence of 

scattering i s + 0.056 GeV/m and at 100 GeV i s +5*6 GeV/m compared to a 

theoretioal mean value of about 1.6 GeV/m. These uncertainties w i l l be further 

increased by scattering, e s p e c i a l l y at the low energies. 

7.6 Experimental Details 

The data with which the average rate of energy lo s s was calculated were 

the same as those presented i n the previous chapter. A minimum of four points 

are required by the 'least-squares' f i t before the cubic i s uniquely defined, 

but a f i t to four points i s absolute and would include any disc o n t i n u i t i e s i n 

the trajeotory due to Coulomb scattering or large energy tr a n s f e r s . To ensure 

that the average rate of energy loss was calculated for each muon, only those 

muons whose t r a j e c t o r i e s were unambiguously defined at a l l f i v e measuring l e v e l s 

were selected. I n praotioe, this meant that those muons, f o r whom large energy 

transfers near the bottom of a magnet biook resulted i n them being accompanied 

by an electron shower through a measuring l e v e l , were rejected. A correction 

has been made to the theory for t h i s r e j e c t i o n and i s described below. 

The t o t a l thickness of absorber i n the spectrograph was measured and the 

contributions from the various spectrograph elements are given i n Table 7.2. 

The t o t a l absorber thickness was found to be (397Q + 20) gm. cm » of which the 

magnet blocks contribute 97.5$. 

7.7 The Experimental Results 

The data were collected into momentum c e l l s whose widths and mean momenta 

are given i n table 7*3« Data were also available for muon energies above 

45 QeV/c but because of the paucity of data i n t h i s energy region and the rapid 

increase i n the uncertainty i n the rate of energy lo s s with energy, these data 
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were ignored. The distributions of the value of k for each momentum c e l l are 
given i n figure 7.2. The mean values of these histograms do not represent the 
true rate of energy lo s s ( i n GeV/m) because they need correction for the effect 
of the gaps between the magnet blocks. These correction factors are calculated 
i n the next section. 

Table 7.2 

The Absorber Thickness of the Elements of MARS 

Element Material Thickness 
(cm) 

Density, 
(gm.om"* ) 

Thickness^ 
(gm. cm" ) 

Magnet Iron 4 9 L 3 7.90 3876.1 + 20.0 

Sointil-r 
l a t o r s Nel02a 15.0 1.032 15.5 + 0.3 

Measuring 
Trays 

(Aluminium 

[Glass 

5.5 

8.4 

2.7 

2,7 

.1.4.9 + 0.6 

22.7 + 0.9 

Momentum 
Trays 

(Aluminium 
( 
(Glass 

2.3 

3,9 

2.7 

2.7 

6.2 + 0.3 

10.4 + 0.5 

Miscel­
laneous - - 24.5 + 1.0 

TOTAL 3970.0 + 20.1 

I n an attempt to minimise the eff e c t of noise i n the data, the distributions 

of the standard deviations of the cubic f i t s f o r each momentum c e l l were studied. 

I t was f i n a l l y decided to r e j e c t the 10$ of events which had the largest 

standard deviations. This s e l e c t i o n c r i t e r i o n was adopted i n preference to 

that of ohopping the standard deviation distributions at three times t h e i r mean 

value, as was described for the momentum c e l l s i n chapter 6, because of the 



u 
4) c 

a) 
3 o 

CM e 
O 

B 
a o <o to > 
tfl CO +3 CO 1) 1) ̂  in o s s <; ptj t-3 

vo o 

+ i 
VO 
co 

+i o 
ON 
ON 

CM 
VO 
o 
+1 

ON 
ON • 

o 
o 
+ 1 
^— 
ON 
T-
• 

CM 

a o •H 
• p o u 
V O 

O CO 

00 -J- f-
CM CM CNJ 
0 • • v— 

ON 
CM 

<B • p 
o a> ?H (H O 

o CO C CO c 0) O 
p 
CIS « b S 
a) 4) 
a> s W 

ON ON 
!£> m o O o o • • • • o o o o +1 +1 + 1 +1 
CO CM 
VO VO r- o IfN ITN r -

* « • • 

- P 

<4H 
O 

a> 
u 

-p 

o 

CD 

O 

P , o ^ 
<D 0) 

o i*N 

VO 

VO 

00 
•J-

CM 

a) ca> 

a 
a 

+> c a) 
•H 
o 
S a c 

P o 
i > 
S D 
p o 

CM IfN o • • • • o CM 00 CM 
* N 

p a 
4) - p O 

•H D K l ? 

at c i 
H S PS V_X 
C O 

o 
• 

CNH 
I 

GO 

6 
m 

CM 

UN 
0 
I 3 I IfN 



X 
111 
•X3 

X 
u SO 

x 

Z 

X TO 
UJ 
•o 

Mean incident momentum, 
P = IO 2GeV /c 

Mean value. M = 1.4681O OSI GeV/m 

Number of muons. 
N = 653 

P . I2 5GeV/c 

M = 1-562 t 0 0 5 9 G e V / m 

N = 624 

4 6 

P*IB.5GeV/c 

M = l 57 l i 0 049GeV/m 

N = I623 

I 5 0 r 

P»32 5GeV/c 

M»I 7 0 1 0 lOGeV/m 

N= 933 

Average rate of energy loss, dE/dx (GeV/m, uncorrected 
for gaps between magnet blocks.) 

Figure 7 2 The Rate of Energy Loss Distributions for the 
Momentum Cells (Uncorrected). 



100 

uncertainties i n the quality of the cubic f i t at the lowest energies and i t s 

influence on the shape of the standard deviation d i s t r i b u t i o n s . However, as 

can be seen from table 7*4, where a comparison i s made between the mean values 

of the ori g i n a l histograms and those with 10$ of the events removed, the 

re j e c t i o n of these events had negligible effect on the mean values of the 

histograms. 

The mean values of the histograms and t h e i r associated uncertainties are 

given i n table 7*3* The mean value of the momentum of the muons at the centre 

of the spectrograph have also been calculated for each c e l l and they too are 

given i n the table. 

Table 7.4 

A Comparison between the Mean Bates of Energy Loss 
for the Data with and without the 10% Event Rejection 

Momentum C e l l (GeV/c) Mean Rate of Energy Loss (GeV/m, uncorrected) 

7.8 - 12.0 

12.0 - 14.1 

14.1 - 24.5 

24.5 - 45.0 

A l l data 10/S r e j e c t i o n 

7.8 - 12.0 

12.0 - 14.1 

14.1 - 24.5 

24.5 - 45.0 

1.47 +. 0.05 

1.58 + 0.06 

1.58 + 0.05 

1.71 0*12 

1.47 + 0.05 

1.56 + 0.06 

1.57 + 0.05 

1.70 + 0.10 

7.8 The Corrections to the Data 

The coe f f i c i e n t of the x^ term of the cubic gives the average rate of 

energy loss' through the spectrograph, i n GeV/m, assuming that the spectrograph 

i s a continuum of magnetised absorber. Consequently, the experimental r e s u l t s 

have to be corrected for the e f f e c t of the gaps between the magnet blocks. 

The correction factors were calculated by simulating muon tracks through the 

spectrograph with fixed rates of energy l o s s and for various momenta. 
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The r a t i o of the true to the observed rate of energy loss was calculated and 
thi s r a t i o i s plotted as a function of the true rate of energy loss for 
incident muon momenta of 10.2, 12.5,18.5 and 52.0 G-eV/c at t h e i r mean incident 
zenith angles of 10°, 7.5°, 4.4° and 2.5° respectively, i n figure 7-3. Prom 
these curves i t i s possible to extract i t e r a t i v e l y the true average rate of 
energy l o s s for the momentum c e l l s by successive approximation of t h e i r 
correction factors. The f i n a l correction factors used and the average absolute 
rate of energy l o s s for the momentum c e l l s are given i n table 7.3• 
7.9 Corrections to the Theory f o r the Rejection of Bursts 

I t was demanded of the data that the track of the muon be unambiguously 

resolvable at each measuring l e v e l . I t was considered that t h i s meant i n 

practice that i f the muon was accompanied by three or more electrons into any 

measuring l e v e l , the event was rejected. Consequently, the the o r e t i c a l rate of 

energy l o s s has to be corrected for the exclusion of these events. 

Messel and Crawford (1970) have computed tables of electron-photon shower 

di s t r i b u t i o n funotions for lead, copper and a i r absorbers for a va r i e t y of 

primary and secondary electron energies. Their r e s u l t s for copper and for 

secondary electron energies above 10 MeV have been u t i l i s e d i n what follows 

because i t i s considered that these conditions most cl o s e l y resemble those of 

MAES. Figure 7*4 shows the mean electron density as a function of the thickness 

of absorber i n radiation lengths, for primary electron energies of 200, 500 and 

1000 MeV. I t i s apparent that only primary electrons with energies i n excess 

of ~ 800 MeV produce electron showers containing three or more electrons. The 

theorectical rate of energy loss has to be corrected for those energy transfers 

i n excess of 800 MeV which are s u f f i c i e n t l y near to the bottom of a magnet 

block as to produce an electron shower containing three or more electrons at 

a measuring l e v e l . 
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Rogers (1965) has caloulated the probability of energy transfers i n iron 
f o r the knook-on, p a i r production and bremsstrahlung prooesses and hi s r e s u l t s 
for muon energies of 10 GeV and 100 . fieV i n i r o n are shown i n figures 7.5 (a) 
and ( b ) . I t oan be seen that at 10 SeV the knock-on process predominates but 
at 100 GeV the p a i r production and knock-on processes contribute almost equally 
to the energy l o s s i n the region of in t e r e s t ( i . e . energy transfers i n excess 
of 800 MeV). Equation 5-1 gives the probability of an energy transfer of E ' 
for the knook-on process and hence, the contribution to the t o t a l rate of energy 
los s by energy transfers above 800 MeV i n ir o n i s given by 

T 
max 

I 0.07H 1 E*. dE' MeV. gm."1 cm2 (7.13) 

800 
where T i s the maximum transferable energy. At 10 GeV, T =4.8 GeV and max max 

-1 2 

equation 7*13 gives 0.128 MeV. gm. cm as the contribution above 800 MeV. At 

100 GeV, the maximum transferable energy i s 9P &eV and, i f i t i s assumed that 

equation 7* >3 also applies to pair produotion, then the t o t a l rate of energy l o s t 
-1 2 

by energy transfers above 800 MeV i s 0.674 MeV. gm. cm . 

Grupen et a l . (1972) i n a further experiment using MARS have studied the 

spectrum of burst s i z e s emanating from the magnet blocks. Their r e s u l t s are 

shown i n figure 7.6 where the probability of observing a burst of a certain s i z e 

i s given as a function of the muon energy. The broken l i n e on the diagram i s 

the extrapolation of t h e i r r e s u l t s to give the probability of observing a burst 

with > 3 electrons. The proba b i l i t i e s at 10 GeV and 100 GeV are 0.012 and 
.1 

0.057 respectively. Hence the p r o b a b i l i t i e s of observing burstsin one or more 

of the measuring l e v e l s below magnet blocks are, from the binomial probability 

theorem, 0.047 and 0.14 at 10 and 100 GeV respectively. Hence the t o t a l 
_1 

unaocounted rate of energy loss at 10 and 100 GeV are 0.0065 and 0.094 MeV gm. 
2 

om respectively and i t i s by these quantities that the theoretioal values have 

been reduced. 
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7«10 Comparison between the Experimental Results and the 
Theoretical Values 

The experimental r e s u l t s and the o r e t i c a l values are shown i n figure 7 .7 . 

The experimental points plotted r e f e r to the mean muon momentum, at the centre 

of the spectrograph. The theoretical curves for i o n i s a t i o n l o s s alone and for 

the t o t a l loss due to a l l prooesses are also given. As i s evident from the 

figure, there i s very good agreement between the th e o r e t i c a l predictions of 

Sternheimer and P e i e r l s (1971) (together with values for the rate of energy 

l o s s due to pair production, bremsstrahlung and nuclear interactions as given 

by Heyman and Wolfendale, 1963) for the absolute magnitude of the t o t a l mean 

rate of energy l o s s of muons i n iron. 

7.11 bi30U8sion and Conclusions 

The agreement between experiment and theory to within the experimental 

errors (which only range from 3.5% at 6 G-eV/c to 6% at 30 GeV/c) not only 

indicates that the theory of Sternheimer and P e i e r l s f o r the absolute rate of 

energy loss of muons i n iron i s correct, but i t also r e f l e c t s the accuracy of 

the technique by which t h i s absolute magnitude was measured. 

I t i s worth-while considering the l i m i t a t i o n s of th i s technique with respect 

to the momentum range over which r e l i a b l e r e s u l t s may be obtained. I n deriving 

equation 7.7, i t has been necessary to assume that the t o t a l energy l o s t was 

small compared to the i n i t i a l energy of the muon. Also, i n equation 7«9 a 

small angle approximation has been made. Hence equation 7*10 cannot be expected 

to be v a l i d at muon energies of only a few GeV. However, the analysis of the 

simulated events, the r e s u l t s of which are summarised i n figure 7>3i show that 

there i s no marked divergence of the oorreotion factors over the incident 

muon energy range 10-32 GeV and that the technique y i e l d s r e l i a b l e r e s u l t s 

even at the lowest energies. The possible extension of the technique to energy-

loss measurements at higher muon energies i s l i m i t e d because of the s t a t i s t i c s 

required to counteract the inoreased uncertainty i n the measured energy l o s s 
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(see equation 7.12). For example, even with a track location accuracy of 

0.3mm, 10^ muons are required to determine the absolute rate of energy loss 

for 100 (JeV muons to within 1#. 

I n conclusion, i t i s r e i t e r a t e d that the re s u l t s presented i n t h i s chapter 

represent an absolute determination of the t o t a l mean rate of energy loss of 

muons i n iron i n an energy region beyond a l l previous direct measurements and 

that excellent agreement i s found between the theory of Sternheimer and P e i e r l s 

(together with values for the rate of energy l o s s for other processes) arid the 

experimental r e s u l t s . 
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APPENDIX A 

The Core Store and I t s C i r c u i t r y 

A.1 Introduction 

The operation of the core store i n oonjunotion with the remainder of the 

MARS equipment has already been desoribed i n Chapter 3. This appendix contains 

a detailed desoription of the core store and the electronic c i r c u i t r y which 

provides the control pulses, data and addresses for i t . 

The core store i s a Mullard Core Memory System type MM1501. The control 

electronics were constructed from Mullard DTL integrated l o g i c c i r c u i t s , the 

basio lo g i c function being the NAND funotion. A schematic diagram of the oore 

store c i r c u i t r y i s shown i n figure A.1. The numbers i n parentheses r e f e r to the 

number of interconnections between the units. I t can be seen that the c i r c u i t r y 

i s divided up into eight d i s t i n o t u n i t s . Three units are responsible for 

providing the oore store with data, two are responsible for the core store 

addresses and one forms the data output l i n e s to the computer. The remaining 

two units are the core store i t s e l f and a unit which i s responsible for the 

timing and control of a l l the other units - the TCU (Timing and Control U n i t ) . 

Before each ind i v i d u a l unit i s described, i t i s i n s t r u c t i v e to outline the 

method of operation of the core store c i r c u i t r y . 

A.2 The Mode of Operation 

The core store c i r c u i t r y i s i n i t i a l l i s e d each time the momentum selector 

(Section 2.7*2) detects a 'high momentum1 event. The address s c a l e r and a l l 

the other r e g i s t e r s of the c i r c u i t r y are immediately reset by the TCU ready for 

the loading of the data which i s to be sent to the computer. There are two 

d i s t i n c t classes of loading cycle: that of the event header and that, of the 

measuring tray data, and afte r each individual cycle the address s c a l e r of the 

core store c i r c u i t r y i s incremented by one. 

The header information i s loaded f i r s t and for t h i s 18 load cycles are 

required. When t h i s i s complete, a pulse i s sent to the control c i r c u i t r y of 
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the measuring trays, whioh i s external to the core store c i r c u i t r y . The 

measuring trays are scanned and when a tube oolumn i s found which contains 

data a pulse i s returned to the TCU. Two load cycles then follow, one to load 

the oolumn number and the other to load the data from that column, both of 

which are residing on the input l i n e s to the c i r c u i t r y . A pulse i s then again 

returned to the measuring tray c i r c u i t r y . This prooess continues u n t i l a l l the 

trays have been scanned and a 'core store loaded' pulse i s returned to the TCU. 

This pulse i s used to i n t e r r u p t the computer and to prepare the c i r c u i t r y f o r 

the unloading of the core store i n t o the computer. 

The oomputer sends addresses to the core store i n conjunction with a pulse 

known as the 'address in', which cyles the core store i n the read-write mode. 

The addresses and the 'address i n ' are present f o r 25/j.s, a f t e r which time the 

opmputer assumes that the data from the core store resides on the computer input 

l i n e s from the interface. Addresses are generated i n l o g i c a l order and a f t e r 

each cycle the address scaler of the oore store i s decremented by one. When t h i s 

Boaler reaches zero the core store i s empty and an extra data l i n e known as the 

9th b i t i s set. This s i g n i f i e s to the computer that the data transfer i s complete. 

A.3 The Core Store 

The core store contains 1024 8 - b i t words which can be accessed i n a random 

manner. As was described i n section 2 . 7 . 5 , i t oan operate i n the dear-write or 

read-write modes. The former mode empties a word and then writes data i n t o i t 

and the l a t t e r places the contents of a word on the output lines and then writes 

new data baok into the word. The cycle time f o r e i t h e r operation i s i f / i s and the 

timing diagram f o r the control pulses i s shown i n f i g u r e A.2. The logic levels 

of the various commands and of the data and address lines are of no importance 

where they are shown shaded on the diagram. 

Eaoh word i n the core store i s accessed by placing a 1 0-bit binary address 

and i t s compliment on the core store address l i n e s and then applying the s t a r t 

command (Pst). The operation mode i s determined by the state of the Clear 
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l e v e l , Lc. I f a dear-write operation i s required t h i s l e v e l must be a l o g i c a l 
0 during the f i r s t 1.5 Ms of a cycle,whereas a read-write operation i s produced 
i f i t i s a l o g i o a l 1 during t h i s time. The data contained i n a word becomes 
available on the output l i n e s a f t e r 0.5/zs of a read-write cycle. The data 
output lines are always at a l o g i c a l 1 and only switch t o a l o g i c a l 0 f o r 
about 0.2jzs when the corresponding b i t of the word being accessed contained 
zero. After 2/is the data residing on the input l i n e s are w r i t t e n i n t o the word. 
At the end of eaoh oyole a 'cycle complete' (Pwoo) pulse i s returned from the 
core store. 

A.4 The Header Information C i r c u i t r y 

The data f o r the header information are provided by external c i r c u i t s and 

they are bupplied as d.o. logio levels. At the appropriate moment they are 

sampled by the core store c i r c u i t r y shown i n figure A.3. The header.information 

i s described i n Appendix B; the contents of one 16-bit computer word being the 

combination of two 8-bit oore store words. There are 18 8-bit header words and 

the c i r c u i t shown i n figure A.3 i s repeated (exoept f o r the f i r s t element) i n the 

oore store c i r c u i t r y . 

The c i r c u i t consists of a 9-bit s h i f t register and an 8 x 8 matrix of dual 

input NAND gates. Each column, of gates of the matrix are gated by the output of 

one of the l a t t e r eight elements of the s h i f t register and the outputs of each 

row of gates are OR-ed together to form one of the 8 data output l i n e s from the 

c i r c u i t . The header information i s fed i n t o the other inputs of the dual NAND 

gates and the data l y i n g on the inputs of a p a r t i c u l a r column of gates appears 

on the outputs of the c i r c u i t r y when the corresponding element of the s h i f t 

r e g i s t e r i s set to a l o g i c a l 1. 

The c i r c u i t i s controlled by the TCU desoribed l a t e r . The s h i f t register 

i s i n i t i a l l y reset such that the Q outputs of each element except the f i r s t 

are set to a l o g i c a l 0. On the application of s h i f t pulses, the l o g i o a l 1 



5 «* 
-> c 

6 3 
CO 

I , 

Mil Mil 

10 

U 

<h~o 

CP 

1 I I T 

E c 
3'Z 
o o 

c 
o 

V O I / I 

O t 3 
m l a 
I o . c 

e 

a 

a 

Li. 

1.1 cn 
I v 

• i 

Q. O 
I 
a. 

Ill 

c 
o 
Li. 
c o 
o 
E 
tm. 

o 

L. 
c* 
d 

.C 

< 

3 
L. 



108 

contained i n the f i r s t element moves through the s h i f t r e g i s t e r and each column 

of gates i s opened up i n t u r n . Consequently, the header information contained 

i n each column appears on the output lines i n turn. The s h i f t r e g i s t e r of the 

second o i r o u i t i s joined d i r e c t l y on to that of the f i r s t and hence a t o t a l of 

18 s h i f t pulses are required before the l a s t oolumn i s opened up. The s e t t i n g 

of t h i s l a s t element i s used by the TCU to route the loading sequence to the 

measuring trays. 

The data from these c i r c u i t s pass i n t o the f i n a l data fan-in c i r c u i t 

described i n section A.6. 

A.5 The Measuring Tray Data Fan-In 

The eight data l i n e s from each of the 12 trays ( 2 x 5 measuring trays + 2 

azimuthal trays) are combined together to form one set of eight l i n e s . A section 

of the c i r o u i t which accomplishes t h i s data fan-in i s shown i n f i g u r e A.4. The 

data l i n e s which correspond to the same tube layer i n each of the twelve trays 

are OR-ed together. Normally a l l of the data l i n e s are at a l o g i c a l 0 but when 

one of the tube columns i n one of the trays i s opened up by external c i r c u i t s , 

the discharged tube pattern i n that column appears at the output of t h i s c i r c u i t r y . 

These data are then passed to the c i r c u i t r y described i n the next section. 

A.6 The Data Fan-In t o the Core Store 

This section of the core store c i r c u i t r y routes the tray data, the column 

numbers and the header information onto eight data l i n e s f o r input to the core 

store and i t s o i r c u i t diagram i s given i n figure A.5. The header and tray data 

are supplied by the c i r c u i t s described i n sections A.4 and A.5 respectively but 

the oolumn number i s supplied externally. 

The data are selected by the gating pulses J, K and 11, which come from the 

TCU, and the data are placed i n the output f l i p - f l o p s f o r the core store to 

read. During the loading of the header information, gate pulses are only applied 

to U,but when the t r a y data are being loaded, the column numbers and tube 

configurations are entered by gate pulses applied to M and to K and J alternately. 
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The tray i d e n t i f i e r s (see Appendix B) are formed by t h i s c i r o u i t . 
Column number 1 s i g n i f i e s the s t a r t of tray and the 'tube configuration 1 contains 
the tray number. When oolumn 1 is detected, the data output lines are a l l gated 
to a l o g i c a l 1 to form the tray i d e n t i f i e r . The tray number i s unaltered. 
A.7 The Core Store Addresses 

The addresses f o r the core store are either provided by the core store 

c i r o u i t r y or by the computer. A diagram of the address scaler and address fan-in 

units of fi g u r e A.1 are shown i n figure A.6. A 10-bit reversible synchronous 

binary soaler i s used to generate the addresses used by the core store c i r c u i t r y 

and a section of i t s c i r c u i t diagram i s shown i n fi g u r e A.7. The basic element 

of the scaler i s the JK f l i p - f l o p . I f both the J and K inputs are at a 

l o g i c a l 1 then t h i s f l i p - f l o p changes state every time a clock pulse i s applied 

to i t . The scaler counts one. each time a clock pulse i s applied and the dire c t i o n 

of counting i s determined by the l o g i c a l state of the lines labelled 'forward' 

and 'backward'; these being the compliment of each other. 

The scaler i s reset at the beginning of each core load and the forward 

di r e c t i o n of counting i s selected by the TCU. The TCU also routes the scaler 

addresses t o the core store. After each core store cycle, the Wcc cycle 

complete pulse returned from the core store i s used to increment the scaler by 

one. The Wctf pulse i s returned to the TCU to s t a r t the next cycle. The 

oontents of the soaler are monitored and i f they reach 1022 the core store i s 

f u l l . The Wcc1 pulse i s not returned to the TCU but instead the computer i s 

interrupted by way of the pulse returned to the TCU by output 5A of t h i s c i r c u i t . 

When the oore store has been loaded,the TCU routes the computer addresses 

to the core store and the backwards count d i r e c t i o n i s selected. The Wco pulse 

received from the core store every read-write cycle decrements the scaler by 

one. The contents of the scaler are monitored by a 10 input gate and when the 

scaler counts down to zero the output of t h i s gate goes to a l o g i c a l 0. This 

l o g i c l e v e l informs the TCU that the core store i s empty and that data 

transmission i s to be terminated. 
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A.8 The Data Output to the Computer 

There are nine data lines to the computer. Eight carry the data from the 

core store and one, the 9 th b i t , i s used to inform the computer that the data 

transmission i s to be terminated. The lo g i c diagram of the data output u n i t 

to the computer i s shown i n f i g u r e A.8. 

The 9 th b i t flipr-flop i s set t o a l o g i c a l 0 at the beginning of each event 

by the TCU and when the core store has been emptied, i t i s reset t o a l o g i c a l 1 . 

I t remains i n t h i s state u n t i l the next event. The transient nature of the 

data from the oore store requires that these data be recorded i n f l i p - f l o p 

memories f o r the computer to read. A few' microseconds before a read-write cycle 

i s started,these f l i p - f l o p s are set such that the data lines to the computer are 

at a l o g i c a l 1 . Any zero data b i t s read out of the core store reset the 

corresponding f l i p - f l o p s such that t h e i r data lines are at l o g i c a l 0 . Line 

drivers are used on the output of the f l i p - f l o p s to enable a cable 25 yards long 

between the oore store and the oomputer to be driven. 

A.9 The Timing and Control Unit 

The timing and control u n i t synchronizes the operations of the core store 

c i r c u i t r y and determines the operation mode of the core store. A diagram of i t s 

log i c c i r c u i t r y i s shown i n fi g u r e A.9 and the numbers i n the t e x t r e f e r t o the 

numbered inputs and outputs shown on t h i s diagram. 

The c i r c u i t r y i s started by a 'High P 'pulse (6) and t h i s immediately resets 

the entire o i r c u i t r y ready f o r the loading of the core store. The 9 th b i t 

(see section A.8) i s set t o l o g i c a l 0 by the HP' pulse ( 7 ) , the two f l i p - f l o p s 
A* 

of c i r c u i t A.9 axe set to the required conditions and the s h i f t r e g i s t e r of the 

header information (section A.4) and the address scaler (seotion A.7) are also 

reset ( 1 5 ) . The forward counting mode of the address scaler i s selected and 

these addresses are routed to the oore Btore ( 5 ) . The clear—write mode of the 

oore store i s also selected by the gating out of the pulses from Lc ( 17 ) * 
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A f t e r a delay of 1 j u s tthe f i r s t s h i f t pulse i s applied to the s h i f t , register 

(if) and a f t e r a f u r t h e r 0.25 /is,the f i r s t word of the header information i s 

strobed onto the core store data input l i n e s (section A.6) by the gate pulse 

M ( 2 3 ) . 2 /is l a t e r the s t a r t command, Pst (16), i s given to the core store 

and a clear-write cycle proceeds. 

Whilst the header information i s being loaded i n t o the core store, the 

Wcc' (18) pulse returned to t h i s c i r c u i t r y at the end of a core store cycle 

(see section A.7) produces another s h i f t pulse and i n i t i a t e s another core store 

cycle by way of Route 1 , as labelled on the diagram. This cycling continues 

u n t i l a l l of the header information has been loaded and l i n e 8 goes to zero 

(see section A.4) e f f e c t i v e l y blocking Route 1 . For every subsequent cycle, 

f l i p - f l o p 2 i s caused to change state by the application of pulses to i t s dock 

input. The outputs of t h i s f l i p - f l o p a l ternately gate the column number and the 

tube configuration i n t o the core store. The state of the f l i p - f l o p a f t e r the 

end of the loading of the header causes the Wcc1 (18) pulse t o be routed t o 

the 'Gate Out' ( 19 , see section A . 2 ) . When a 'Gate-In* pulse i s returned from 

the measuring trays, the column number i s strobed onto the core store data l i n e s 

by pulses on K and U ( 2 2 , 2 3 ) . Another core store cycle i s i n i t i a t e d , t h i s time 

v i a Route 2 , and the Wcc' pulse returned strobes the tube configuration i n t o 

the oore store with pulses on J and M ( 2 1 , 2 3 ) . These two cycles are then 

repeated u n t i l a l l the data has been loaded. 

A store loaded pulse ( 9 ) from the measuring trays or a store f u l l ( 10 ) 

from the address c i r c u i t r y (see section A.7) sends an i n t e r r u p t t o the computer 

( 1 2 ) . F l i p - f l o p 1 i s reset and as a consequence,the backward counting d i r e c t i o n 

of the address scaler i s selected ( 5 ) . The computer addresses are routed to 

the core store ( 5 ) and pulses on Lc (17 ) are permitted t o accompany the Pst 

pulses (16) so that the core store operates i n the read-write mode. The 

'Address I n ' pulse ( 2 ) which accompanies the address from the computer i s 
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immediately shaped by a 10 jzs pulse shaper to remove any reflections i n the 

long oable from the computer. The data output f l i p - f l o p s are reset by RT>L 

(3, see section A.8). A f t e r a delay of 6/is, whioh allows.time f o r the address 

l i n e s to stabalise, Lc i s applied to the core store (17 ) followed by Pst (16) 

1 fx a l a t e r and the core store oyoles i n the read-write mode. The address scaler 

(see section A.7) i s decremented by one at the end of the cycle. A f t e r the 

oomputer has received the data, the next address i s sent and the cycle i s repeated. 

When the address scaler i s decremented to zero (1), the next 'Address I n ' 

pulse i s re-routed and the 9th b i t i s set (14) to t e l l the oomputer that data 

transfer i s opmplete. The address scaler and s h i f t r egister are reset and a f t e r 

5.m s, a reset pulse i s sent to the remainder of the MARS apparatus. 
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APPENDIX B 

The Format of the Data from MARS 

B.1 Introduction 

This appendix describes the format of the data received by the oomputer 

from MARS. The data are composed of an event header followed by the data f o r 

eaoh of the seven flash-tube trays i n t u r n . Before these are described, a 

useful representation f o r binary data is outlined. 

B.2 Hexadeoimal Numbers 

Each oomputer word i s 16 binary b i t s ( 2 bytes) i n length and a useful 

method by which the conditions of the i n d i v i d u a l binary b i t s can be described 

involves the use of hexadeoimal or base 16 numbers. Eaoh four binary b i t s are 

described by one hexadecimal charaoter and hence one 16-bit word can be 

described by 4 such characters. Table B.1 contains the 16 hexadecimal 

characters and t h e i r binary and decimal equivalents. For an example of the 

use of hexadecimal numbers, consider the 16-bit binary configuration 

0101 1001 1101 1000. The hexadecimal equivalent i s 59D8 and the decimal 

equivalent i s 23000. 

Table B.1 
Hexadeoimal Numbers 

Hexadecimal Binary Deoimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B* 
C 
D 
E 
F 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
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B.3 The Event Header 

The event header i s nine words long and i t oontains information relevant 

to eaoh event. The majority of t h i s information i s i n BCD format (Binary 

Coded Deoimal). Each d i g i t of a decimal number requires four binary b i t s and 

henoe one 16-bit word can hold 4 BCD characters. The binary equivalents of 

these characters are given i n Table B.1 (only d i g i t s 0 - 9 are used). 

The f i r s t and l a s t words of an event header are always zero and as 

described e a r l i e r , they are used to i d e n t i f y an event. The second and f i r s t 

h a l f of the t h i r d word contain 6 BCD d i g i t s which together form the event . 

number. The next 6 BCD d i g i t s oontain the time of the event i n hours, minutes 

and seconds, eaoh quantity being represented by 2 BCD d i g i t s . The date and 

month are contained i n the f i f t h word of the header. The date occupies 2 BCD 

d i g i t s but the month i s an 8-bit binary number. The sixt h word of a header 

contains the year (2 BCD d i g i t s ) and the f i r s t two d i g i t s of the four d i g i t 

magnet ourrent. The f i r s t h a l f of the seventh word of the header contains 

the remaining two d i g i t s of the magnet ourrent and the second h a l f contains 

binary information r e l a t i n g to the trigger-mode and the direction of the 

magnetic f i e l d . The trigger mode i s r e f l e c t e d i n the f i r s t three b i t s of the 

sepond h a l f of word seven and the b i t s from l e f t to right indicate that the 

side of the spectrograph whioh was triggered was the east, the west, and both 

east and west, respectively. The l a s t four b i t s of the seventh word describe 

the magnetic f i e l d direotion and r e f e r to, from l e f t to right, a positive f i e l d , 

a negative f i e l d , a zero f i e l d and a crossed f i e l d ( i . e . the magnetic f i e l d i n 

adjacent blocks i s i n opposite d i r e c t i o n s ) , respectively. The eighth word 

of the header contains a four d i g i t number i n BCD, which i s twice the 

atmospheric pressure i n millimetres of meroury. A summary of the contents of 

the header i s given i n Table B.2. 



Table B.2 

The Contents of the Event Header 

Under the heading description, the number i n parentheses i s the number 

of BCD d i g i t s a l l o t t e d to the quantity. 

Description Header word number 

Event i d e n t i f i e r Blank 1 

Event number Deoimal number (6) 2 and 3 

Time hr (2) mins (2) sees (2) 3 and 4 

Date day (2) month (2) year (2) 5 and 6 

Magnet Current Decimal number (4) 6 and 7 

TriggerMode Binary (3 b i t s - E,W, E and w) 7 

Magnetio f i e l d Direction Binary (4 b i t s - -t, 0, crossed) 7 

Atmospherio Pressure Decimal number (4) 8 

Header termination Blank 9 
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B .4 The Data from the Trays 

The f i r s t word of data from eaph tray i s the tray header. The f i r s t h a l f 

of t h i s word oontains hexadeoimal FF whioh i d e n t i f i e s the word as a tray 

headex?|ti(nd the second h a l f oontains the tray number i n binary. After t h i s 

header follow the data from the columns of tubes. The l e f t h a l f of each word 

oontains the oolumn number (2 BCD d i g i t s ) and the ri g h t half, the tube configura­

tion f o r that oolumn. The l e f t most b i t of t h i s l a t t e r h a l f corresponds to the 

bottom layer of tubes and the right most b i t the top layer . I f a b i t i s at a 

l o g i c a l * 1',then i t indicates that the respective tube discharged. A t y p i c a l 

tube pattern i n a tray and the d i g i t a l output from the tray for the pattern 

are shown i n figure B .1 . Only the columns which contain discharged tubes are 

transferred to the oomputer and hence the length of the data from each tray i s 

variable. At the end of eaoh tray oome the dummy columns. These columns are 

numbera91 - 96 and the l e f t and right halves of these words are i d e n t i c a l , the 

•tube configurations' being wired into the el e c t r o n i c s . 

The trays follow the header i n l o g i c a l order and an example of an event i s 

to be found i n Table 4.1. The event depioted has an event number of 102749 and 

i t oooured at 23 i 15 1 27 on 15/05/70. The magnet current was 102 amps, the 

east side of the spectrograph was triggered, there was a negative magnetic 

f i e l d and the atmospheric pressure was 760mm. of Hg. Column 35 of tr a y 1 

contains 4 discharged tubes, columns 29 and 30 of tray 2 oontain 7, column 44 of 

tray 3 oontains 5, oolumns 48 and 49 of tray 4 contain 4 and columns 49 and 50 

of tray 5 contain 7 tubes. Both trays 6 and 7 contain bursts. 
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Column Number: 26 / 27 28 29 30 

D © 

Column Number 

Decimal Binary 

27 00100111 

28 00101000 

29 00101001 

Tube Configuration 

Hexadecimal Binary 

80 1000 0000 

36 

CI 

0011 0110 

1100 0001 

Digital Output 

Hexadecimal 

2780 

2836 

29C1 

Figure B-1 The Digital Output from a Tray Associated with a 
Tube Pdttern. 
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APPENDIX C 

The Parameters of the Track F i t t i n g Technique 

The flash-?tube traok f i t t i n g technique described i n section 3.6 searches 

for traoks by drawing l i n e s through the flash-tube configurations. I t i s 

important that these l i n e s be s u f f i c i e n t l y numerous and close enough together so 

that tracks do not f a i l a f i t t i n g option because of an inadequate l i n e density. 

The properties of the track f i t t i n g technique (section 3*6.2) were found 

by analysing a sample of data several times with d i f f e r e n t l i n e d e n s i t i e s . 

The region of the tray which was ooveredwas the same as that shown i n figure 

3.3* Figure C.1 shows the proportion of tracks with option 0 f i t s as a function 

of the number of l i n e s drawn through the configuration. Before a p a r t i c u l a r 

l i n e density can be chosen, i t i s necessary to consider the execution time of 

the programme. This time i s approximately proportional to the l i n e density 

and henoe the l a t t e r should be kept to a minimum. I t can be seen from figure 

C.1 that the optimum l i n e density i s 36 and t h i s i s what i s used by the programme. 

The angle c r i t e r i o n described i n section 3*6.4 also draws l i n e s through the 

flash-tube configurations. I t i s e s s e n t i a l that the spacing between these l i n e s 

be smaller than the width of the narrowest channel i n the measuring tray so that 

at l e a s t one l i n e i s placed i n the channel. The d i s t r i b u t i o n of the channel 

widths i n the measuring trays has been found t h e o r e t i c a l l y for tracks up to 7° 

and i t i s shown i n figure C.2. I t can be seen that there are no channels 

with widths l e s s than 0.2mm and i t i s concluded that no l o s s of tracks w i l l 

r e s u l t as a consequence of the programme using a step s i z e of /80th of a tube 

spacing (0.1075mm). 
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