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ABSTRACT

In Chapter 1 we discuss the importance of a study
of high energy strangeness-exchange reactions in
elucidating the exchange mechanisms and symmetry properties
of meson-baryon scattering. The cross-section and
polarisation data for KN-+7Z,A and mN+KI,A are reviewed
in Chapter 2. An exchange-degenerate poles with weak
cuts model for the data is proposed, and the resulting
successful polarisation and unsuccessful cross-section
descriptions are discussed. The model's failure to
reproduce the well-known line reversal cross-section
inequality at intermediate energies is interpreted

in terms of low energy resonance effects.

A unified treatment of non-zero exotic exchange
processes and line reversal symmetry violation in terms
of Regge—-Regge cuts is presented in Chapter 3. After
a theoretical appraisal of a multiple scattering
approximation for these cuts we present explicit
calculations of the exotic strangeness-exchange cross-
sections for K p»rT i~ and n_paK+Z_. It is shown that
the small size of the data for these is not easily
explained. Since we also show that the inclusion of
non-leading cuts aggravates the disagreement between
data and the leading cuts model, the usefulness of
Regge—-Regge cut descriptions at intermediate energies

is called into question.



In Chapter 4 we propose an alternative method
of obtaining, from the data, information about
strangeness—-exchange amplitudes. It is shown how a
study of joint decay correlations can yield an almost
complete production amplitude determination. Using
the process n_p»K*A as an example, we present an
efficient means of accomplishing this and interpret
the ensuing numerical results making comparisons

with the model of Chapter 2.

Some conclusions are recorded in Chapter 5.
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1 : INTRODUCTION

1.1 The elementary particles

In the past two decades an increasing number of
so-called elementary particles have been observed in high
energy scattering experiments. Subsequent theoretical
efforts have been directed towards classifying these into
multiplets according to a set of quantum numbers describing
their internal symmetry properties, and according to their
physical characteristics such as mass and spin. Most of
these particles or resonant states can exhibit half-lives
and interaction times which are orders of magnitude shorter
than those of the typical electromagnetic interactions,
and are grouped together as a class and denoted hadrons(l)
(or strongly interacting particles). This thesis concerns
some aspects of the interactions among members of this
class.

Quantum numbers found to be useful, since they
correspond to conserved quantities in strong interactions,
are parity (P), charge conjugation (C), G parity, baryon
number (B), charge (Q), hypercharge (Y), strangeness (S)T
and angular momentum (J). The existence of this last
quantum number is a direct consequence of Lorentz invariance
which assumption forms a cormerstone of the theory of
elementary particles physics. The observation that hadrons
occur in multiplets of particles e.qg. (n_n°n+) possessing
similar properties apart from their charge Q, can be
explained by invoking a further invariance principle

that of isospin (I). In the S-matrix formalism(l) of

TY and s are not independent - see equation (l1.1.1).

o My
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particle scattering which we shall adopt, the assumption
of isospin invariance is implemented by postulating that
the amplitudes which describe particle interactions are
invariant under isospin-space rotations of the group SU(2).
This assumption has been experimentally well verified as
it had been previously in nuclear physics where it was
first introduced.

In the same way that observed isospin multiplets
were explained in terms of an underlying symmetry principle
and its associated group structure, it was suggested by

(3)

Gell-Mann(2) and Ne'eman that the observed grouping of
these isospin multiplets into higher multiplets (in fact
singlets, octets and decuplets) of particles with similar
properties, be explained by postulating some higher
underlying symmetry. In this case the invariance of
scattering amplitudes under rotations of the group SU(3)
was postulated. The power of the assumption comes in

relating the properties of isospin multiplets of different

strangness, and a priori unrelated guantum numbers e.qg.

(k°,k"), (+7,7°%,7") and (k7,x°). It therefore gives an
underlying meaning to the Gell-Mann Nishijima(4) rule
+
Q = I3 + B—2§ (1.

I3 being the third component of the isospin vector P

Just why particles only seem to occur}in multiplets
which are SU(3) singlets octets or decuplets, is not known.
The observed result can be reproduced however, by assuming
each particle to be formed from combinations of fundamental

triplets g and a of particles (quarks) which need have no




existence properties other than mathematical. In particular,
if we assume mesons are formed from qg combinations we find
only singlet and octet SU(3) representations may occur

- just as is found experimentally. Mesons not expressible

(5)

as g and baryons as gqgqg are called exotics The
experimental absence of such exotic particle states has
profound implications for S-matrix theory via the concept

of duality which will be introduced in the next section.

L2 Analyticity of scattering amplitudes

In our S-matrix approach the complete information
concerning a scattering process is contained in a (complex)
scattering amplitude whose modulus-squared repfesents a
probability. The conservation of probability then demands
unitarity of the amplitude - a non linear relation among
its matrix elements. Following the example of certain
field theories it is supposed that intermediate particle
or resonant states are to be associated with poles in the
scattering amplitude when considered as a complex function
of enexgy. It has so far been found sufficient to demand
analyticity of the scattering amplitudes apart from these
singularities and those generated from them by the {non-
linear) unitarity condition.t

The assumption of analyticity in complex energy
obvicusly imposes powerful constraints on the possible

forms of scattering amplitudes, as does that of crossing

t A more precise definition of maximal analyticity of the

first kind may be found in reference (1).




symmetry. In appendix 1A the definitions of the t- and u-
channel processes which correspond to a given two-body

process
a + b — ¢ + d (1.2.1)

are given, along with a summary of our choice of kinematic

(6) is that

variables. The assumption of crossing symmetry
the three analytic amplitudes describing the s-, t- and u-
channel processes are analytic continuations of each other.

In summary, the unitarity condition together with
the analyticity and crossing postulates leads to a picture
wherein bound states (particle states below a given threshold)
are manifest as poles in the amplitude on the real energy
axis below a threshold branch point. Resonant states are
seen as second sheet poles in the energy plane whose position
describes the resonance width(7).

Resonance poles are clearly reflected in low energy
scattering déta for the reaction cross-sections. Their
position in the energy plane can be reasonably well determined

(8)

using phase shift analysis techniques at energies near
threshold but as one proceeds to energies several proton
masses above this the resonant effects are less marked. The
onset of smooth reaction cross-sections indicates that the
resonances, if any, overlap and the low energydescription

of a scattering amplitude as a sum of resonance contributions
ceases to be useful by itself. Fortunately in this kinematic
region the angular momentum analyticity postulate can be

of service in providing an analytic form with which to

describe the amplitude. How this comes about is described

in the following.
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Having made a classical partial wave decomposition

of the scattering amplitude

A(t,s) = ; (22+1)P2(coset)£2(t) (1.2.2)
=1

where t is the total energy squared for the process

Qi
+

a— b+ d (1.2.3)

we may postulate that the amplitude'sz(t) is an analytic
function of &, apart from some specified singularities.

It is then possible to convert the sum of equation (1.2.2)
to a contour integral - the Sommerfeld - Watson transform.
The procedure of continuing g(t) to all complex & was first
justified in non-relativistic potential scattering by

Regge(g)

who showed that the amplitude developed poles
(Regge poles) along some trajectories g = ai(t) which for
integer % > -% could be associated with an exchanged
"particle", regarded.as providing the scattering potential.

The precise relevance of the above paragraph's
arguments to fully relativistic elementary particle
scattering is not clear but it would seem plausible that
if hadronic scattering is controlled by a similar well-
behaved (but short-range) potential, such Regge poles may
also exist in hadronic amplitudes and be associated with
physical particles.

The decomposition (1.2.2) which refers to the
t-channel proceés (1.2.3) is thus expected to be expressible
as contour integral term (the background integral) plus

contributions from Regge poles of the form(lo),




- 14 -

~imag (t)
R(s,t) 2T 8, (t) 122 = Py, (cose.) (1.2.4)

i sin nai(t) i

The crossing symmetry postulate then allows us to describe
the s-channel process (1.2.1) by a similar form and in
particular to describe high energy small angle scattering
by the parametric form

1 2704 (t)

5% (t)
sinnai(t)

A(s,t) = ¢ Bi(t) (1.2.5)

i
for t/s << 1 and where as in equation (1.2.4) the * refer

to the signature(lo)

of the relevant Regge pole. Obviously
this represents a strong prediction for high energy small
angle scattering cross-sections and in particular implies

a close connection between the amplitudés power law energy
dependence and its phase.

As distinct from the resonance description, this
parametrisation of the direct channel process (l1.2.1) is
expected to be useful in the high energy region where
resonance effects have died out. However we have supposed
the amplitude always to be analytic in energy, and a simple

application of the Cauchy theorem(ll)

to the amplitude
expressed in a resonance parametrisation at lower energies
and in a crossed-channel exchange parametrisation at higher
energies, will therefore strongly correlate the two sets

of parameters. The sum-rule thus obtained is known as a

(12)

Finite Energy Sum-Rule (F.E.S.R.). The assumption that
there exists an energy region where the two parametrisations
are equally valid and that there exists a class of amplitudes

to which the resonance saturation prescription applies,

constitute part of the duality assumption.
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When the absence of exotic states mentioned in
Section 1.1 is demanded of a direct channel resonance-
saturated amplitude, exchange degeneracy (E.X.D) of the

(13) and this in

crossed channel Regge poles is implied
turn imposes strict constraints on the phases of related
Regge amplitudes. Thus it is seen that the analytic forms
allowed in equation (1.2.5) are in many cases very much
determined by reasonable theoretical assumptions and it

is of interest to attempt phenomenological verification

of them.

L3 Regge poles in high energy scattering

Part of this thesis will be concerned with matching
analytic forms such as equation (1.2.5) to the scattering
data in an attempt to determine for a given Regge pole (i)
the trajectory ai(t) and residue Bi(t) (both supposed real
in the scattering region t<O which is below the crossed

channel threshold). It has been shown(l4)

that Regge poles
which saturate amplitudes must have factorisable residues.

That is, if pole (i) contributes to the processes,

a + b — a + b (1.3.1)

i i (1.3.2)
)
k is therefore of interest to see whether some structure,
e.g. a zero, in BiCdCd transmitted to Biade via equation(l.3.2)
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is found experimentally. An instance of such residue

structure is that implied by the presence of the so-called

"nonsense" or "sense mechanisms" required by the t-channel

angular momentum analyticity when correct account is

(15)

taken of spin.

An obvious feature of high energy small-angle

scattering implied by (1.2.5) is the presence of a forward

peak in the scattering cross-section (the modulus-squared

of an amplitude) if and only if the cross-channel quantum

numbers allow the exchange of a Regge trajectory of

particles. This correlation has been well noted in the

literature(lG)

Regge assumptions. Specifically, if qi(t), say, is the

highest trajectory in equation (1.2.5) when plotted in a

Chew-Frautschi(l7)

approximation

Py
|a® % B (t)s

_ o2 . '
= Bi(t)exp {Zlogs(ao+ai t)}

where we have assumed for the moment that

= + o
o, (t) o o't

and lends a measure of credibility to the

plot (Rea(t) vs. t) then to a good

(1.3.3)

(1.3.4)

i.e. that a(t) is a straight line in a Chew-Frautschi plot.

1ic +ha celone n +he vnonant+ial aalr ic
us ITNne s.¢ope ¢ che eXponentlal peak 1ls

pected to

decrease logarithmically with s - a characteristic prediction

of Regge pole dominance and the straight line trajectory

assumption which we might hope to be a reasonable one if we

accept as evidence the linearity of baryon resonance spin

when plotted against mass-squared (the t>0 part of the Chew
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Frautschi plot for baryon Regge trajectories). Unfortunately
no evidence of linearity in the meson case is available
independently.

When considering, as we wili later, meson-baryon

scattering processes like

TN — 7N
or ™ — KA (1.3.5)

we are able to make use of angular momentum conservation

to decompose |A|2 into the incoherent sum,

2 2 2
|A| = |N| + |F| (1.3.6)

where F is an amplitude corresponding to unit change in
the baryon spin state and N to no change. This decomposi-
tion is not unique and depends, for example, on the
quantisation directions for the baryon's spins. A

useful and simple way of quantising the spin is to project
it along the particle 3-momentum. This spin projection
called the particle helicity and introduced by Jacob and
Wick(la) can be used to define two-particle helicity

states and hence helicity amplitudes(ls) HA A (Ai and 2
SRS A §

are the initial and final baryon helicities in

f

processes (1.3.5)).

The Reggeisation procedure of paragraph 1.2 involved
amplitudes for the t-channel (spinless) process which were
analytic so that a simple analytic continuation gave the
s-channel ones. The correct crossing procedure for the
non-analytic helicity amplitudes was given by Trueman

(14)

and Wick and involves a matrix in helicity space (see
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Appendix 1B). For many applications it is more convenient

to use a Regge parametrisation of the s-channel helicity
amplitudes thus obtained than a parametrisation of the

direct analytic continuation of the t-channel helicity
amplitudes. Such an application is discussed in Secticn 1l.4.
By considering the properties of the helicity crossing

matrix¥ Cohen-Tannoudji et a1(20) have summarised the

effect of Reggeisation on s-channel amplitudes which turn

out to have simple analytic properties. The contribution

of a single Regge pole to process (l1.2.1) in the arbitrary

spin case is(zo)
X n/ -ina(t) (t)
s 2 2 lte S
T = (-t)° (t -t) B (t) = (=) (1.3.7)
Acxdxakb fo) Acxdkaxb sinna (t) So

where s, is an arbitrary scale factor

n = JACanfAd+ib| = nett helicity flip.
to = t
cos 6 = 1 (1.3.8)
X
The extra factor (-t)2 comes from the (dynamical)

(21) for the t-channel

assumption of an evasive solution
Regge pcle.
It is parametric forms of this kind which we shall

use in later chapters.

T The authors of Reference (20) claim the asymptotic
factorisability of the crossing matrix to be a necessary
ingredient of s-channel Reggeisations. We disagree with

this and give reasons in Appendix 1B.
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1.4 Regge poles in meson-baryon processes

-+ -+
In considering O ¥ — 0 % scattering (where the

P

symbols denote the J° of the participant particles) we

have only two independent helicity amplitudes, which have

the form
n .
= -ima(t) a(t)
s _ 2 lte S
Tn = (tO t) Bn(t) sinno(t) (so) (1.4.1)
for a sinéle contributing Regge pole. n(= 0,1) is defined
in equation (1.3.8). The expressions for the experimental

observables are given in Appendix 2A.

Using such formulae, attempts have been made(22’93’94)
to describe the near-forward scattering processes involving
rt, K* incoming beams on both proton and neutron targets.
The leading non-strange meson Regge trajectories (and their
quantum numbers) which have been used to describe some of

these are shown in Table (1.4.1).

Process Exchanges P G L
J I C Mass (MeV)
tp — 7t Pf
TP nop P P |2(?)|0F(2) |+ ?
T-p —» T°n
° P £ |2t ot + | 1260
m™—p — non A2
w 1~ o~ - 784
Kip — Kip Pfw pA2
0 1~ 1t - 765
Kfn — K#n Pfw pA2
_ A, |2t 1~ + | 1310
K"p — KOn pA,
Ktn — K%p PA,
(a) (b)

Table (1.4.1)




In this procedure of Regge pole phenomenology
several difficulties have been met with. Among these are:
(1) The observed constancy with energy of total and
elastic differential cross-sections at momenta between
15-25GeVt, requires the existence of a vacuum trajectory
(P) with intercept ap(0)=l. No particle with an SU(3)
classification is known to be associated with this
trajectory, the Pomeron. This uncertainty makes a Regge

pole description of elastic scattering difficult.

(ii) Factorisation of residue structure is not always

compatible with a pole dominance model.

(iii) 1In processes where only one leading exchange is
expected, the recoil polarisation from an unpolarised
target (see Appendix 2A) is predicted to be zero. 1In
n_p bﬁ»non, for example, a substantially non-zero measure-

ment has been reported(23).

(iv) The logarithmic shrinkage noted in Section 1.3
is not always found, indicating the presence of some

other exchange contribution.

(v) The high energy total cross-section measurements
of Kip and w*p above 30GeV are not compatible with a single
dominating vacuum pole (the Pomeron) which would have

predicted asymptotic equality of each pair.

(vi) The Sommerfeld-Watson transform for amplitudes

with spin exhibits fixed poles at wrong-signature nonsense

¥ We use units A = ¢ = 1 = GeV
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(15) (24)

points which are not allowed by unitarity in
amplitudes saturated by angular momentum plane poles.
The presence of cuts in angular momentum would restore

compatibility.

Finally in this section, we note that the baryons
and meson trajectories involved in the processes of
Table (1.4.1l) belong to non-strange multiplets. Within
this set of reactions, therefore, we are unable to test
SU(3) in its most powerful form, that is, when it relates

multiplets of differing strangeness, e.g. in
mp — KOI°

and 7 p — KOA° (1.4.2)

p, A and z© belong to separate isospin multiplets (unlike
p and n). However (l1.4.2) are expected to have the same
exchange mechanism (see Chapter 2) in much the same way
as do
Kp— Kp
and Kn— Kn . (1.4.3)
In paragraph 1.6 the advantages of discussing processes

like (1.4.2) will be discussed further.

L5 Absorption

In Section 1.4 we noted some theoretical and
experimental indications that further exchange contributions
should be added to those supplied by Regge poles alone.

d(25) that one meson

Historically it was foun
exchange models predicted angular distributions too large

in magnitude and not strongly enough peaked in the near-
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Hrward direction when compared with data. It was

suggested(zs)

that this forward peak in the data (which
looked like "shadow" scattering in an optical analogy)
could reflect the existence of the many inelastic final
state channels which are expected to be fed primarily from
low impact parameter collisions (large momentum transfers).
Thus it was thought that the low partial wave (impact
parameter b*%/q) amplitudes should be reduced below the
exchange model expectation in order to reproduce this
"absorption" effect. Indeed the agreement of data and
predictions was improved when this was done(zs).

Similar difficulties were encountered with the Regge
pole exchange model in describing angular distributions.
Although the Regge pole model should already include the
effects of absorption (as compared with the one meson

exchange) additional absorption(27'28)

achieved by
suppressing the low partial waves, was found beneficial(zs)
in that the angular distributions became more peripheral.
By peripheral, we mean that in impact parameter space only
a finite band of amplitudes contribute significantly to
the total scattering amplitude. A typical Regge exchange

amplitude before (R) and after (A) absorption is shown in

b-space in Figure (1.5.1).

$

ffﬁ;ﬂ
!

1 1 — »
: 3 i
b (fermd)
Figure (1.5.1)
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Why a more strongly peaked angular distribution is
obtained is easily seen with reference to equation (1.2.2).
The more rapidly varying Pz(cose) near cosé= 1 are those
with high &, so that the angular variation of the overall
amplitude is then determined by the relative weights of the
high and low order polynomals. Suppressing the low
f2 amplitudes therefore is expected to increase the angular
variation (slope) of the overall amplitude.

The details of how such absorption is achieved in
a given reaction will be discussed in Chapter 2 and
Appendices. The procedure may be described roughly as
adding to the Regge exchange, a b-space convolution of this
exchange amplitude and a Pomeron exchange amplitude
representing the diffractive part of the associated elastic
scattering. 1In a loose sense this is seen to represent a
double Regge pole exchange, probably a cut singularity in
the crossed channel f%-plane and as such might provide a
solution to problem (vi) of Section 1.4. The theoretical
implications of this interpretation of the absorptive
correction as an angular momentum cut will be discussed
briefly in Chapter 3. For the moment we treat absorption
simply as a prescription but may loosely describe the
corrective term as a "cut" for convenience of notation.

Two distinct philosophies on the construction of

pole plus cut amplitudes have arisen:

(i) The basic Regge pole exchange should have the
residue structure demanded of it by analyticity in the

t-channel (nonsense mechanisms etc.) and by dual schemes
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(e.g. exchange degeneracy). Then the unenhanced convol-
ution part should only weakly modify the basic structure

given by the pole(zg).

(ii) The basic Regge pole should be structureless since
analyticity requirements should apply to the complete
amplitude. Any structure in the final amplitude is
obtained from destructive interference with aﬁ enhanced

convolution part(3o)'

The weak cut prescription (i) has proved more

successful in describing the dip/no dip systematics of

(31) (30)

meson-baryon scattering , while the strong cut model

has had notable successes in photo-induced processes(32)
where the small energy dependence of the cross-sections

is a problem for pole or weak cut models. Their implica-
tions for strangeness——exchange interactions will be
discussed in Chapter 2. An extension of such cut models

has been to replace the vacuum exchange (Pomeron) by another
Regge pole and thus try to explain double charge-exchange

processes, for example. Applications like this will be

made in Chapter 3.

L6 Strangeness—-exchange processes

The previous sections have shown that in order to
develop a dynamical theory of hadronic physics, it is
necessary to identify the exchange forces and their
underlying symmetries. Useful concepts which provide a

framework within which to operate have been listed:-
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(a) Regge pole exchange and possible absorptive
corrections.

(b) The duality assumptions.

(c) SU(3) symmetry.

In order to investigate these phenomenologically

(i.e. by constructing models to compare with experiment)

it is advantageous to select a set of reactions for which

there exists as complete a set of data as possible, and

whose Regge exchanges span complete SU(3) multiplets.

Ambiguities in an analysis are reduced by choosing each

reaction in the set such that it involves as few exchanges

and as few spin amplitudes as possible*. Reactions of the

type

PB — PB

(1.6.1)

where P is a pseudoscalar (JP=Q') meson and B an octet

baryon (51, satisfy these criteria well. The non-

strange exchange mediated subset listed in Table (1.4.1)

have been well studied whereas the following strangeness

exchange reactions have been less so,

KN — gy

TN — KY

where N is a nucleon and Y a hyperon (A or 1I). The

expected exchanges in (1.6.2) are the K* (890) (the
P _ .-

J- = 1 8U{3) octet partner of the p and w) and the

(the J¥ = 2+ partner of the A, and f). These mesons
J

natural parity since they have P = (=) . Only two

t An exception to this is discussed in Chapter 4.

have
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spin amplitudes are involved, e.g. s-channel helicity
flip and non-flip. Since A is an isospin singlet and

I an isospin triplet in the same SU(3) baryon octet,

a chance occurs of testing SU(3) symmetry for vertex
couplings. The helicity flip amplitude is seen to
dominate(zg) in p or A2 exchange processes (witness the
forward cross-section turnover in x~p - 7°n) so that the
non-flip amplitude is not well-determined. The absence
of a forward turnover in reactions (1.6.2) gives the hope
of a dominant and hence well-determined non-flip helicity
g+

amplitude. Also since the A and decays are not parity

conserving, the spin state of the final state baryon (the
polarisation) is simply analysed experimentally(33),
leading to a more complete set of measurements than is
readily obtainable for the processes of Table (1.4.1).

There are further theoretical reasons for examining
processes (l1.6.2) which are henceforth denoted as a class
by H.C.E.X. (Hyper-Charge Exchange, or equivalently

strangeness exchange) reactions. s-channel processes of

the form

a + b — ¢ + 4

and c + b — a + 4d (1.6.3)

are said to be related by line reversal. The nomenclature
is easily understood on drawing symbolic t-channel

exchange graphs (Figure (1.6.1))
::i:gii: i::gi:i ;:i}§:ij
b d )3 d b d

Fig.(l.6.1)
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which are evidently related by "twisting” the top lines.

In our case if

A(RN — my) = g (1- Bt S PRk A BT(1+e'l"°‘T)s°‘T (1.6.4)
then
A(TN — KY) g (l-e”"*V)s?V 4+ g (l+e TTOT)T (1.6.5)

where v denotes the vector (17) K*(890) and T denotes the
tensor (2%) K*(1420). The vector sign change comes from
its negative signature (¢ = -1). For the measurables,

relations (1.6.4) and (1.6.5) imply certain symmetries

(e.qg. P%% (RN) = -P%% (rN) T for all s and t) which are

readily subject to experimental text.
Finally if we apply the duality constraints of
paragraph 1.2 simply summarised by the Harrari-Rosner

(34)

duality diagram rules , we find the diagram for

KN — 7Y to be non-planar (Figure (1.6.2)),

Fig.(1.6.2)

thus predicting A(KN — 1Y) of equation (1.6.4) to be
real at high energies and for all small |t|. Consequently
we expect

av.(t) = aT(t) = qg(t)

Bv(t) = BT(t) = B (t) (1.6.6)

+ The measurables are defined in Appendix 2A.
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in the small angle high energy scattering region,
suggesting that

o(t)

A(KN — 7Y) = 28(t)s (1.6.7) (a)

1]

-inta(t) a(t)
S

and A(mN — KY) T 2B(t)e (1.6.9) (b)

both very strong predictions. This is a specific example

of the E.X.D. Regge poles referred to in Section 1l.2.
These reactions, therefore, offer a possibility

of investigating ideas (a), (b) 'and (c) of page 25

and perhaps shedding light on some general features already

found in studies of the processes of Table (l1.4.1). Such

an analysis is recounted in Chapter 2.

Of the closely related processes
Kp—rzt (1.6.8) (a)

Kp—>nts” (1.6.8) (b)

only (a) falls into category (1.6.2) since (b) allows only
t-channel exchange of isospin 3/2 (exotic) quantum
numbers. This exchange can be achieved by the "double
Regge" exchange of Section 1.5 - a Regge-Reggecut. 1In
Chapter 3 we discuss an attempt to correlate the properties
of such cuts as applied both to the allowed reactions
(1.6.2) and to exotic exchange reactions typified by
(1.6.8) (b).

In Chapter 4 we discuss an alternative approach
to the problem of extracting from the data, information
on strangeness exchange. Motivated by the lack of success
of high energy models as discussed in Chapters 2 and 3,

a method is proposed whereby the joint decays in strangeness



exchange processes of the type

TN — K* Y
A\

RN — Vv v, (1.6.9)

are analysed in order to obtain directly the production
amplitudes themselves. 1In (1.6.9) V ié any non-strange
vector meson and Y, a hyperon such as A or %t whose
parity non-conserving decay enables 12 decay correlation
parameters to be measured. From these 12 parameters we
show how 10 of the 11 determinable amplitude parameters
may be obtained. An efficient means of converting all
the available decay data into information about the
production process, is advocated. The results of an
application to n_p —>» K*A are compared to those of

Chapter 2,




CHAPTEHR TWO

STRANGENESS-EXCHANGE, LINE REVERSAL

AND ABSORPTION
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2. Strangeness—-exchange, line reversal and absorption+

In this chapter the data on reactions (l1.6.2)are
analysed with regard to high energy models, in particular

the weak cut model of Section 1.5,

2.1 Regge Poles in HCEX processes

We saw in Chapter 1 how high energy data are usefully
analysed in terms of the crossed-channel angular momentum
plane singularities of which Regge poles are the simplest,
but that existing data have many finer details necessitating
the inclusion of additional singularities. Among the more
extended Regge models which have been considered are

(a) complex poles(35),

(b) strong cuts, and (c) EXD
poles plus weak cuts. We shall show that of these only (c)
easily predicts the observed hyperon polarisations in the
line-reversed pairs of HCEX reactions. The shortcomings
of model (c¢) in describing the non-asymptotic differential
cross-sections, will be discussed as a prelude to Chapter 3.
As previously noted, the HCEX reactions are expected
to be dominated by exchange degenerate (EXD)K{ and K% Regge
poles following application of the Harari-Rosner duality

diagram rules. Thus we expect for both spin amplitudes

(see equation (1.6.7)):-

A(KN — Y) real - denoted type R (real)

-ina
and A{ N — KY) e ""¥R* - denoted type C (complex)

Immediate consequences are that

P(R) = P(C) = O
dog _ do
and EE(R) = HE(C) (2.1.1)

tpart of this work was done in collaboration with A.D.Martin
and C. Michael and was published in Reference (42).
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at any given s and t with %% showing the Regge shrinkage
of paragraph 1.3. ©None of these features is substantiated
by the data in any sizeable region of s and t (see for
example Figures (2.1.1l) and (2.1.2)).

Allowing EXD breaking in residues and/or trajectories

does not allow agreement with the data as can be seen by

reference to equations (1.6.4) and (1.6.5).

(i) If SV # BT but ay = O then
do - o
a prediction which is certainly wrong below 10 GeV , and
P(R) = =-P(C) #0
2

which is wrong for |t] g .2 GeV”,

(ii) If By # Brp and ay # . then
do - Go
whenever ap = O or ay = 0. No such equality is seen in

the data for any reasonable trajectory functions.

We are forced to conclude that a simple two-pole
model (EXD or not) does not describe the data. A pole
model which introduced daughter trajectories (one unit of
spin lower than the parent K*) would not describe the
energy independent polarisation features which are evident
in Figure (2.1.2).

Before discussing possible models to remedy this we
give a brief discussion of the data existing at the time

of the analysis.
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2.2. The HCEX Data

In addition to the cross-section data there are
sufficient polarisation data to illuminate the spin

decomposition of the amplitudes although measurements of

(36,37)

the R and A parameters , which describe the scattering

from a polarised target, are necessary to complete this

analysis (see Appendix 2A). Sufficiently accurate R and/or

A data (P2 + R2 + A2 = 1) would of course provide a

definitive test for any high energy model, but in their

absence there are many significant %% and P features to

challenge existing models. We discuss such features in

the following subsections.

(1) The @ ff parameter

Before a detailed analysis of %% is attempted, it
is useful to assess the compatibility of the data with a
Regge-type energy dependence and the mutual consistency

| of the various experiments themselves, in terms of the

Seff parameter(38’39). Following convention we write(39)
2a (t)
L = L x(s) A vooff (2.2.1)
Py,
_ S = u
where v = an

For s>>1 and t<<l v behaves like s/2M whereM is the
mean mass of the target baryon and its recoil. The
expression (2.2.1) may be fitted to the data (using least

(t)

squares method) to obtain the effective trajectory o ff

and effective residue VA({t). The parameter x(si) is
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optional and allows a t-independent renormalisation factor

for all energies si of a given experiment to be determined

in the fit(4o). This latter facility is useful when the

analysis includes %% data from an experiment of uncertain

normalisation. For example, analyses including the 8 and

16 GeV data of Birnbaum et al(43(e)'48)

in backward m-p elastic(4l), K_p — o1 X

have shown that
*(42) ana n7y* (1385)
a common renormalisation factor of 0.66 is suggested. 1In
subsequent work we assume the presence of this factor.

Plots of the O £ f parameter are shown in figures

(2.2.1) and (2.2.2) where the following features are in

evidence.

(a) "N — KI, KA show high intercepts ( aeff(O) I .6)

and steep slopes (“é = 1.1) although the KA data is not

ff

abundant (see (ii)).

(b) KN — mZ, mAh show lower intercepts (nearer the K*
pole expectation of 0.4) but very little shrinkage -

1 z
Ly 0.4.

That (a) and (b) are incompatible with an EXD K¥
trajectory of
a(t) = .35 + .8t (2.2.2)

is plain. It is also worth noting that within the errors
the 7N — KI data are the most at odds with an EXD pole

model energy dependence.

(ii) Differential cross-section structure
All %% data(43_47) show a forward peak with no

obvious turnover at t = t

-

o indicating dominance of the
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cross—-sections by the non-flip amplitudes. We define the

cross-section slope b GeV-2 by

b(t-t
do Ae ( o)

3t (2.2.3)

at a given energy. All data for these HCEX reactions

show a shoulder or break in slope at t = -0.4 GeV2 which

K+Z+(46(e)) where it is seen

is most pronounced in wntp —
to disappear rapidly with momentum from 3 to-14 GeV
(shrinkage). 1In general at intermediate momenta the

slope b of the forward peak for a C type reaction is
greater than that for the corresponding R type, as can be
seen by reference to Table (2.7.1). The cross-section of
the R type is some two times larger than its C counter-
part at lower momentum. This is clearly shown in Figure
(2.1.1) where a sample plot of %% for £ final states is
shown. The data is interpolated at fixed t to exhibit the
relative shrinkages and the momentum dependence of the
cross-sections inequality. As in thg case of KN and KN

CEX(49)

a disappearance of the line-reversal symmetry
violation is seen towards higher momenta - 5 GeV in the
CEX case, but more like 10 GeV in our case.

We emphasise two features of this cross-section
difference:-

(a) a decrease with increasing momenta

(b) a decrease with increasing t.

(iii) Polarisation structure

(43-47)

The available polarisation data are shown

in Figure (2.1.2). The ntp — K*:' data show no
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measurable energy dependence between 3 and 14 GeV and we
make the plausible assumption that the other reaction
polarisations have a similarly constant behaviour. From

(50)

SU(3) considerations the polarisation is expected to
change sign under A — I interchange and the data
(Figure 2.1.2) clearly support this. P (aN — KA) and
-P (7N — KI) are zero near t = -0.3 GeV2 and reach almost
-1 for -0.8 ¢ t s -0.6. A positive maximum of P (KN —> xA)
and -P(KN — rI) is reached and maintained by

2

-t = 0.4 GeV”. At such maxima we have the fullest possible

spin decomposition since R * A * O necessarily.

2.3 High energy models

(a) Regge Poles

For the reasons set out in paragraph 2.1,

simple pole models (e.g. ref. (51)) are not expected to

(35) (52)

describe the data. The complex pole model can explain
the line reversal symmetry violation at a given energy but
mt the energy dependence of the cross-sections themselves
and finds difficulty in reproducing the polarisations.
The theoretical motivation for such a model is dubious(53)
and its implications unpleasant (the symmetry properties

of the residues for example).

(b) Strong cut model
1(30)

This mode , which uses a structureless
Regge pole (with the phase expected of a Regge signature
factor) as input to a convolution integral (see Appendix 2B),

is only predictive when amplitude zero systematics are

imposed as follows.
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Schematically, a helicity amplitude An is

constructed as

An(s,t) = Rn(s,t) + Ancn(s,t) (2.3.1)
where n = net s-channel helicity £flip
Rn = Regge pole amplitude
and C, = corresponding cut amplitude.

We saw in section 1.5 that the convolution Cn ihvolves a
diffractive amplitude (Pomeron exchange) as well as the
exchange amplitude Rn' The diffractive amplitude can connect
to the initial state certain inelastic final states as

well as the elastic one. The multiplicative factor An

is inserted in equation (2.3.1) to help reproduce the
additional absorption due to these diffractive inelastic

intermediate states and is expected to be about 1~2 in
(30)

value . With these canonical wvalues of An' a cancella-
tion in An(s,t) occurs at t = -0.2 GeV2 for n = O and at
t = -0.6 GeV2 for n = 1. These cancellations are used

for example to reproduce respectively the observed wip

(54)

Do s - o
cross-over effect and dip in the n p — 7 n cross-

(30) at the above t-values.

section
These systematics therefore predict small or zero

polarisationgs in HCEX processes at around t = -0.2 and

-0.6 GeVz, since P is a bilinear of A0 and Al' The data

for P(¥N — KY) clearly contradicts the second zero and

P(RKN — nY) both zeros (Figure (2.1.2)).
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(c) EXD Poles with Weak Cuts Model

We briefly summarise the results of previous
attempts using Models of this class to describe the
HCEX data.

The model of reference (55) used a Regge pole

(56) to a weaker

input whose residues satisfied a solution
set of duality constraints than is usually applied. A
necessary ingredient of their good description of the cross-
sections was an uncomfortably large vielation of exchange
degeneracy in one of their amplitudes. The accompanying
polarisation description is poor. A very restrictive weak
cut model which assumes U(6)@U (6)®0(3) symmetry for
residues has been reported(57). The resulting failure to
describe the sign of the cross-sections difference is not
surprising (see Section 2.5). The polarisation predictions
are also wrong in sign.

A qualitative discussion of the polarisation
predictions of EXD pole plus weak cut models was given
by Krzywicki and Tran Thanh_Van(llgl and in the next section

some quantitative calculations using this framework are

presented.

2.4 A new HCEX analysis : the model

In the spirit of equation (l1.4.1l) we parametrised

the Kg and K% EXD pole contributions to s-channel helicity

non-flip (n=0) and flip (n=1) amplitudes as,

/ A,Zent
2 Yo ' gm

i¢)a(t)

R (s,t) = (to-t)n (se (2.4.1)

In units of GeV. For R type reactions ¢ = O and for
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C type ones, = -n as predicted by duality diagrams.
The overall amplitude normalisation is as given in
Appendix 2A.
Following reference (30), the amplitude Rn(s,t)
was absorbed using the procedure of Appendix 2B. The
absorption parameters which were the same for all reactions,

were an effective diffraction cross~section of

o = 30 millibarns,a diffraction peak slopeof A = 8 GeV-2
and a Pomeron slope of a'p = 0.5 as indicated in the pp
scattering data of reference (58). For practical reasons

a non-zero value of a'p was found necessary to avoid

(i) a deep dip in %% (RN — 1Y) at t = -0.4 GeV2 from
amplitude cancellation of Ro and CO (c.f. equation (2.3.1l.))
and (ii) zero polarisation in the same process since

both amplitudes would then be real.

2.5 The fit

Since the polarisation comes from a phase difference
between non-flip and flip amplitudes it was found easier
to obtain larger polarisation with no absorption in the
flip amplitude (Al=0). Such a conclusion is supported by
the simple pole-dominated flip amplitude description of
the mirror symmetry of the N elastic polarisation data(sg).
If we assume the non-flip amplitudes to be dominated by
the largely imaginary Pomeron contribution the difference
Pc(ﬂ+p) - Po(n p) is seen to be the product of a smooth
Pomeron amplitude and the real part of the p-pole flip
amplitude which contains a double zero, in agreement with

(59)

the data The pole-like shrinkage observed in
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flip-dominated g% (n-p~—+ non) is also evidence for
little absorption in flip amplitudes.

The cut contribution to the R-type process is
expected to be larger than to the C-type. This is simply

understood as follows. In equation (2.3.1), which applies

equally well to our model, Cn has the schematical form,

—imalt :
c, (s,t) =//e l"uptlelq’u(tz)kn(s,t,tl,tz)dtldtz (2.5.1)

where kn has a constant phase. Since aé is not large the
contributions to the double integral add coherently

giving a large result for ¢= O, but cancel somewhat for

¢ = -1 giving a smaller result. Destructive interference
of Rn and Cn then forces the prediction of the model

do
dt

(R) < g—z () (2.5.2)

at non-asymptotic energies. Asymptotically of course the
cut terms vanish and cross-section equality is regained.
(2.5.2) is in complete disagreement with the data

(Figure (2.1.1)) so that in this model a simultaneous
description of R and C cross-sections is not feasible

at intermediate energies. In view of the CoFE analysis

of Section 2.1 we choose to fit the R type reactions and
prédict the C ones.

The do (R) fit is good, the break to a flatter

a+
s

slope at t = -0.4 GeV2 being accounted for by the flatter

t-dependence of the cut contribution beginning to

dominate. Figure (2.1.1l) shows a sample of the %% (R) fit
at fixed t along with the dg (C) prediction which is

dt
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obviously only reasonable asymptotically ( 2 10 GeV).

The large polarisation P(R) was readily described
by the model and the prediction for P(C) astonishingly
good (Figure (2.1.2)) and is in accord with SU(3)
expectations (Section 2.2 (iii)). The origin of the

polarisations is easily seen:-

P2 = 2Im apA)
= -2x_ Im (C_R;™) (2.5.3)

In the R case (¢ = 0), Rl is real so that the slowly

varying cut phase is directly reflected in the smooth

rise of P%% (R). When ¢ = -n however Co and Rl both

have varying phases. The phase of Rl starts behind CO

at t = to but varying more rapidly (o«' = .8) soon over-

takes Co at t * -0.3 GeV2 and begins to dominate. The

equal phase situation at t ®* -0.3 of course produces a

zero in P(C) (see Figure (2.1.2)).
Also shown in Figure (2.1.2) are predictions from
our fits to RN — Y for the R parameter of Appendix 2A -

A is not shown since Az =1 - P2 - ﬁz

and its sign is

simply obtainable from the parameters listed in the next
section (see also Table (4.5.1)). We claim, contrary to

the suggestion of Reference (60), that the R and A
predictions of weak cut and strong cut models can be
qualitatively similar, as in this case (c.f. Reference (60)).

An experimental measurement of the R and A parameters

would need to be extremely accurate to separate them.
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2.6 Parameters of the fit

do
dt
data above 4 GeV, discussed in Section 2.5 yielded the

The fits to all available RN — q4A,Z and P

parameter values

v 2% 2 421 Ao 47,3 e = 1.07
o . Yo o

I° - 17.0 v, =13.0 e, = 0.77 (2.6.1)
.Yl L] 1 [ ] l L] - [ ]
a(t) = .4+.8t A, = 1.2

The trajectory is very close to the straight line through

*

T poles on a Chew-Frautschi plot. The

the K; and K
enhancement factor of Ao = 1.2 is not unusual for meson
baryon processes.

Assuming SU(3) for the constant residue factors
Zs/A

Y we may write
5©
Y /3 ((F/p)_ - 1]
n - n (2.6.2)
v A 3(F/p) | + 1
n
yielding
(F/D)o = -2.8 (2.6.3)
(F/D), = 0.38
in fair agreement with other estimates(so). In terms of
(61)

the f mixing parameter

g

f = F+ D (2.6.4)
our estimates are
£ = l.6 (1.0)
o]
(2.6.5)
f = 0.28 (.24)



The figures in brackets for comparison are those

suggested by vector meson dominancéGz).

We may compare
the residues obtaineéd in the fits with those of o
exchange, using SU(3). We form the flip/non-flip ratio

of the p couplings to a nucleon-nucleon vertex:-

m)—o z - 1.9 (2.6.6)

which is lower than most other estimates(Gz).

A

The
magnitude of Yy is not well determined in our fit, due
to lack of precise data and the non-flip dominance of the
processes, so that the result (2.6.6) is not expected
to be very reliable in comparison with those using
finite energy sum rule information.

In the above residue calculations the expediency
of comparing couplings at t = to was used. SU(3) symmetry
is expected to apply to couplings at the particle poles
(in this case, t = 0.89 or t = 1.42 GeV2) but the constant
factors Yn and residue exponents €n are only determined in
the scattering region t < to’ and it would be unwise to
extrapolate as far as the poles themselves.

The overall dominance of non-flip amplitudes in
K* exchange processes (especially x production) is to be
contrasted with the SU(3) - analogous situation in N and
KN charge-exchange (CEX) reactions where the ; and A2
exchanges are dominantly flip. If we believe the
suggestions (Section 2.5) that absorption effects are
more important in non-flip than in flip amplitudes,

then it is clear that HCEX reactions offer a better chance

than CEX for studying absorption systematics. Indeed we




have already noted one feature of standard absorption
prescriptions inconsistent with the HCEX data - the
relative overabsorption of the real amplitude as compared
to the complex one. We devote some attention to this

in the next section.

2.7 Non~-asymptotic contributions

The observed violation of line-reversal symmetry
of HCEX cross-sections in a direction and to a degree
not explained by our asymptotic model can be usefully
analysed from two standpoints. Firstly in the t-channel
exchange formalism, it is conceivable that at intermediate
energies lower lying J-plane singularities may be
important. Alternatively (or perhaps equivalently in a
duality sense) we may feel that at such energies an
s—channel discussion of resonance effects is more relevant.

These are considered in turn.

(i) Regge-Regge cuts

These lower lying J-plane singularities have been

suggested(63)

as a possible duality violation mechanism.
Chapter 3 is devoted to a discussion of their calculation

and application.

{(ii) Direct channel apprcach

We remarked in Section 1.6 that duality diagrams
predict a real amplitude for KN — 1Y at high energies.
If we take seriously the duality assumption that the

imaginary part of the amplitude can be saturated by




- 49 -
nesonances(lz) then we must conclude that those con-
tributing to ImMA(RN — ;¥) must couple with alternating
signs thus cancelling on the average, while those to

ImA (TN — KY) will not. This is shownschematically in

Figure (2.7.1).

Y*

N
Imde | N\ /\ AN N
4> =) ImARdS*o

\/ \\// \ Ns So

i | NN NATE

Fig.(2.7.1)

The first of these finite energy sum-rules (FESR)

involving Y* resonances and hyperon bound states has been

checked at t = m 3 (where the KG pole is expected to

v (64)

dominate) by Schmidt and Storrow and found to be well

satisfied. A scattering region FESR for K n — m A and
+ + . (65)
mT n — K A has been reported by Jackson and Field .

Despite several parametrisation problems (see Reference (65)),

the following tentative conclusions were reached:-

{a) The EXD pole prediction was good for the t-channel
helicity flip amplitudes only (and consequently the
s-channel flip also).

do
at

dependence was well described only in RN — TA,

(b) The energy and momentum transfer
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c) It was concluded that the natural duality of
leading resonances and leading poles is broken in
™ —> KA by the presence of strongly coupled resonances

which lie lower in the Chew Frautschi Plot.

We show a direct link between dominant s-channel

d . . .
resonances and a% slope at intermediate energies.

Ignoring spin and using equal mass kinematics we partial-

wave decompose the amplitude as

T = I (28+1)P (cos6)f (s)
2 % L
where g% = |T|

2

If we define the slope b as in equation (2.2.3), then

since
_ _t_
cos 6 = 1 + 292
we find
£ (20+1) £, L{etl)
b.1 dT - X 492 L e (a+l)y
2 T dt £ =0 E(Zz+1)f£ 4g2

We thus expect processes dominated at low energies and

small angles by the higher spin resonances to exhibit the

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)

greater forward peak slopes at momenta where FESR arguments

can apply, say 2-4 GeV.

Mean values of b in the range 3-4 GeV were
calculated and are compared in Table (2.7.1l) reaction by
reaction with the positions in the Chew-Frautschi plot of
the relevant dominant baryon resonance trajectories. The

integers in the third column qualitatively describe in




ascending order the highest to lowest trajectories.

Dominant J-plane Mean b
Reaction ;—channel Position Gev 2
esonances
+ +5+
mnp —> K'L A 1 1o
‘h'-p —> KOZO A, N* 2 10
n p — K°A° N* 3 2
Kp —> 1°2° Yo* 4 -
- -+ * *
K P —>» T I YO IYl > 8
- -.0
Kn— 1 I Y, * 6 5
- -,0
Kn— 1 A Y * 6 >
Kp —> 7%n° Yl* 6 >
-— *
K°p — w7 A° 1 ° °

Table (2.7.1)

A high degree of correlation between the
s—-channel resonances and the cross-section slopes is
evident, indicating the relevance of considering direct
channel effects at momenta as high as 3 or 4 GeV.

Also by inspection of the Particle Data Group

(66)

tables of masses, spins and branching ratios, we

note that empirically the Y* resonances are more strongly

coupled to KN than the N*'s are to KY even allowing for

threshold factors, so one would expect that %% (R) > %% (C)

at intermediate energies as observed.




Finally, in this chapter we summarise our
findings. We believe from the evidence of the high energy
fits to the data presented in this chapter and from sundry
FESR arguments, that HCEX reactions are reasonably well
described by EXD poles with weak absorption only at high
momenta and small |t|. At lower momenta the absorptive
corrections to the predominantly real R-type amplitude
appear too strong as compared to the C-type. 1In view of
this the excellent polarisation description is
surprising.

The necessary extra corrections can be appreciated
as the persistent effects of direct channel resonances
which are outside a classical dual scheme (non—peripheral)(ss)
Alternatively it may be (see Chapter 3) that a multiple

t-channel exchange picture is relevant at intermediate

energies.
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CHAPTER ‘T HR E E

LINE REVERSAL, EXOTIC EXCHANGES

AND REGGE-REGGE CUTS




3. Line reversal, exotic exchanges and Regge-Regge cuts

In this chapter we investigate a possible explanation
of the observed line-reversal equality violation noted in
Section 2.1 and of certain non-zero double charge (exotic)
exchange reaction cross—sections(67). The explanation is
in terms of multiple Regge exchanges and the formalism used
is the same "box-diagram" prescription of Section 2.4. 1Its

interpretation in terms of J-plane singularities is

briefly discussed.

3.1 Motivation for Regge~Regge cuts

The need for some J-plane cuts to shield fixed

poles at wrong signature nonsense points(24)

has already
been noted. The assumption that simply Pomeron-Regge cuts
are phenomenologically important is only obvious at very
high energies assuming we know correctly how to calculate
the branch points. In the absence of any well-defined
method of calculating their strength, the possibility of
Regge-Regge cuts cannot be discounted in any consistent
picture of multiple t-channel exchanges.

A hierarchy of Reggeised exchanges has been

(68)

considered by Harrari and can be represented

schematically by

T = R + P8R + RGR + R2P2R + RSR2R +..... . {(3.1.1)

/b\/ }( +)__< + ﬂ +>I( +>I( Feinnn. (3.1.2)

where R are non-Pomeron Regge exchanges and P is the

Pomeron. As is the case throughout this chapter, the
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symbol ® denotes a b or t-space convolution (see

Appendix 2B and Section 3.3) so that the second, third
etc. terms of equations (3.1.1) and (3.1.2) loosely
represent absorbed Regge pole, Regge-Regge cut, absorbed
Regge-Regge cut, and so on. The question of whether such
box diagrams can approximate true J-plane Regge cuts is
considered in Section 3.2,

When the R term in equation (3.1.1l) is taken to
be EXD Regge poles, it was shown in Chapter 2 that the
first two terms of equation (3.1.1l) together predict a
Line-Reversal Symmetry Violation (LRSV) of the wrong sign
and of too small magnitude at intermediate energies. It
was suggested by Michae1(63)'that inclusion of the next
term of series (3.1.1) might account for the observed
energy dependence (Figure (2.1.1)) of the LRSV since the
branch point of a Regge-Regge cut can be estimated to be

typically about acut(o) = -.5 compared with a_ ., (0) = .4.

po

Analqggously to forward scattering, the presence
or absence of a peak in backward meson-baryon scattering
is usually correlated with the presence or absence of a
non-exotic u-channel baryon exchange. The observation
of a sizeable peak in backward K_p scattering at 5 GeV(69)
can then only be understood in terms of exotic u-channel
quantum numbers. One realisation of this exotic exchange
would be in terms of the simultaneous exchange of

non-exotic meson and baryon Regge trajectories.

We have noted a LRSV in

K-p —-)11_2+

and ntp — ktrt (3.1.3)
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These processes are intimately related to the processes

K_p — ot5”

and »p — Kz~ (3.1.4)

In terms of t-channel amplitudes, (3.1.3) involve isospin

It = % and exotic It

Chapters 1 and 2), whereas (3.1.4) involve only It = @%,

= 3é(assumed zero in the arguments of

Thus at high energies where t-channel single exchange
amplitudes are expected to be a good approximation, to
the same extent we expect vanishing cross-sections for
processes (3.1.4). This is not what is observed(67)
(see Figure (3.1.1)). The possibility then exists that
the LRSV in reactions (3.1.3) and the non-vanishing cross-
sections for (3.1.4) have a common explanation - non-zero
It = 3/, amplitudes described by the simultaneous exchange
ofIt = 1 and It = % Regge trajectories.

Before proceeding to more theoretical considerations
and a quantitative calculation, we give an estimate of

the magnitudes of the above effects.

The relevant amplitudes are

t g -5ty = 2 1
A"(Kp—m1') = 3 I!E + 3 I3é (3.1.5)
t ot +p+y = -2 1 4 1 41

A7(vFp — K'IT) = -3 I% + 3 13/2 (3.1.6)
+ - 1 - ; s \
A"(Kp—>un'L) = 13/2 (3.1.7)
At(‘ﬂ_p — Kkt ) = 1:31/2 (3.1.8)
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Fig. (3.1.1)
Exotic exchange data with predictions from lowest

intermediate states, unsymmetrised, unabsorbed
box diagram. The data is from reference (67).
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Note that for line-reversal symmetry

1
II% I |1, |
l = —
and 13/2 = I3é 0 (3.1.9)

At t = to’ only the non-flip amplitudes are non-zero. We

consider this situation:-

= ién/.
Let In/2 Mn/2 e *n/y (3.1.10)
Then
- 2 2
g% (r=3%) ) g(M%) + %(M%Q) + MMz, cos (0,703 /)
dg ptoty 2
(Kt t) 4,.1.2 1,1 .2 _ 4,1 12 1_1
at 9(M%) + 9(M3/2) 9M%M3§ cos(¢% ¢36)
M
3/2
N M% 2 1 + H%— cos (¢% - ¢3/2)
b (ﬁr T (3.1.11)
: 1 - M—r?’/z cos (¢l - ¢l )
M% X lé
M3/ 2
gsuming (M—Z << 1 (3.1.12)
%

Now suppose M!5 is given by abosrbed Regge exchange as in
Chapter 2 (P is assumed to be an isosinglet) and that M3é

is given by

<o - pd
M =|/gt (n+£ ) = /GubGeV 2 (3.1.13)
&Q
1 _ /99 (k*z7) = /.5ubGev (3.1.14)
M =/ dt
35
using data from Figure (3.1.1) at 4 GeV. The largest

possible cross-section ratio (3.1.11) occurs when both

cosines are near unity.
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l.e.
do, —.+
== (m )
dt 300 1+ .1
do +.+. < 500 1- .03 ° 58 (3.1.15)
ae(® e )

The LRSV due to pole plus Pomeron cut (in the wrong
direction) completely outweighs any LRSV due to the

It = 3/§ amplitudes. We conclude that if Regge-Regge

cuts do provide a common explanation of the features of

processes (3.1.3) and (3.1.4), then It = 34 cuts

[ (It = %)@(It = 1l)] are responsible in the exotic exchange
case, but It = % [probably from (It = %)Q(It = 0)] are

responsible for the cross-section inequalities in (3.1.3).

3.2 Theoretical aspects of Regge-Regge Cuts

It has been well known for some time that the
angular momentum plane cuts represented by amplitudes
such as (3.3.15) and diagrams such as in (3.1.2) and
Figure (3.4.1) are cancelled by other graphs (whose
presence is required by unitarity), when interpreted in
terms of Feynman diagrams(7o)f The essential feature
lacking in diagrams like those of Figure (3.4.1) is the

(71)

presence of a third double spectral function which
would ensure a non-zero angular momentum plane discontinuity
in a Froissart-Gribov projection of the partial-wave
amplitude. The simplest Feynman ladder diagram with this

property, necessarily a non-planar one, is shown in

Figure (3.2.1).
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b

a'/ | TRI \

Fig. (3.2.1)

The "ladders™" Rl and R2 are the Feynman diagram representa-
tions of Reggeons used in the Gribov Reggeon Calculus(72).
It is formally possible to calculate diagrams like that
in Figure (3.2.1) together with its higher order analogues
but as with other hadronic perturbative expansions, the
convergence problems are insuperable at present.

In the course of the unitarisation program of the

(73) (74) .6

Veneziano amplitude considerable progress
been made in developing perturbative expansions of dual
amplitudes each term of which corresponds in some way

to an order of multiple Regge exchange. Two results

from consideration of the dual aspects of double exchange

concern the present analysis.

(1) The Finkelstein Selection Rule‘js)

Suppose a double exchange diagram can be represented
as two successive Reggeon-particle amplitudes each in
principle constructed from a dual amplitude (e.gq.

Veneziano) as shown in Figure (3.2.2).
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Fig. (3.2.2)

The kinematics for amplitude Al(sl,tl,ul) are as
shown. The third double spectral function requirement
can be satisfied by demanding the existence of a planar

su duality diagram for each of the s-channel processes.

a Ry —mc R (3.2.1)
and R2 b — Ry d (3.2.2)
Br example, if an S,uy Veneziano term can be written for
the amplitude Al of Figure (3.2.2) then the S, and Uy

channels will both contain resonances so that the double
discontinuity (third double spectral function) will be
non-zero.

This strong necessary condition derived from a
reasonably weak set of assumptions has several implications
(75)

for the existence properties of Regge—Regge cuts

However no constraints are imposed on,

(a) Pomeron-Regge cuts, since the Pomeron lies

outside single exchange dual schemes,
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or (b) the R®R cuts in processes (3.1.3) and (3.1.4),

which we shall consider.

(ii) Single loop diagrams and multiple

scattering models
(76)

Lovelace has compared the explicit cut
amplitudes implied by the naive multiple scattering
model (Appendix 2B and Section 3.4) and by the double
scattering dual expansion analogue of Figure (3.2.1)
that is a single loop non-planar diagram which has been

(77)

shown to contain a Regge-Regge cut. The comparison

is made in terms of the Gribov Regge cut calculus(72) in
which the third double spectral function is non-zero
through the presence of fixed poles in the sub-amplitudes

whose residues are crucial in determining the strength of

the double-exchange cut. Thus
T = a2k Nk, 0-%)1 2R (-k2,8)R (- (5-K) 2,8)  (3.2.3
Gribov . & Kr2-k)] X 48 4=%) +8 -2.3)

where R are Reggeon propagators
k is a loop momentum

2 = -t

Lovelace shows that N is a residue of a fixed pole (in

the Veneziano subgraph in this instance, an (s,u) term

in fact - see (i)). By comparison the multiple scattering
MS) model would give

s = gfj[ézg R(-k2,8)R(- (4-K) ) (3.2.4)

H

where g is the coupling of a box diagram vertex.
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Direct comparison yields

2 4 _-2(a(s)+a(u))

N = g" 2 (3.2.5)

when a zero'th order Veneziano graph is used. The extra
factor amounts to

2
2-20'[2mi -t] (3.2.6)

where m, is the mass on each Veneziano leg. Since the
convolution (3.2.3) is dominated by |t| << 1 this does
not represent any great departure from the amplitude
structure predicted by the MS model. The application to
reactions with spin (our case) is not clear since we
cannot even describe realistically single exchanges with
spin in a dual model, but the form of the results is
encouraging. A more serious problem is the convergence
properties of sums of terms like (3.2.4) each representing
a particular pair of intermediate states. The approxima-
tion of the MS model can be summarised as being the

(78)

assumption of saturation of the Schwarz sum rule

N(t) =] mma®)(s! eyast (3.2.7)

So
by the first intermediate bound state possible in the
Reggeon-particle scattering amplitude A(S)(sl,t), the
effect of higher states being accounted for by a
multiplicative constant A>1l. Lovelace has shown(76) that
in some cases, assuming saturation by all possible
intermediate states,(3.2.7) may not converge and that in

all cases any finite truncation (as in the MS model)

will produce an incorrect result.
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In the absence of any other prescription, we will
assume that the coupling constants g are decreasing and
that some renormalisation procedure exists such that the
finite sum of the terms like (3.2.4) is approximately
given by the lowest well-known strongly coupled states.

3.3 The multiple scattering model

The absorption prescription of Chapter 2 can be
seen to be only the second term in a multiple scattering
expansion which arises in an eikonalisation procedure.

In this latter treatment(79)

which has its origins in
nuclear physics, a small angle scattering process is
viewed as a plane wave (the projectile) passing through
the scattering medium (the target) suffering a series
of infinitessimally small deflections such that at each
stage the wave gathers a small phase change, the momentum
being unaltered (i.e. the partial waves have small non-
zero phase shifts).

The helicity amplitudest for the process may be
partial-wave decomposed
A (s,t) = 161 3 (23+1)d}, (cose)f, (s) (3.3.1)

J=min (A ,u)

where X and v are baryon helicities and n = |[A - u|, the

net helicity flip. We follow the treatment of Reference (71)

and make the impact parameter approximation to equation (3.3.1)

TThe normalisation of Chapter 2 is again used.
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[~

32nq2—jgdb £_(b,s)J_(bY=t) (3.3.2)
(o]

An(s,t)

where J = dgb-% (3.3.3)
defines b, the impact parameter and
7(s) = f_(b,s) (3.3.4)
n'® N n'’ U

The eikonal phase xn(b,s) is defined by

2167 (s)
J _ e J - 1
£ (s) = ia/7e (3.3.5)
ixpn(b,s) _
* f_(b,s) = n 1 (3.3.6)

4iq/’s

Qabstituting equation (3.3.6) in equation (3.3.2) leads, on

expanding the exponential, to

w 2 3
X: b ) Xn(brs)
A _(s,t) = 8ng’/s |bdblx_(b,s) + i-8 (bys) - _n
n n 2 3
O a
x Jn(b/:t) (3.3.7)

which should be a rapidly convergent series if the small

phase shift assumption is good. At this stage we replace

the ., x2, X3: ..... terms by
R
Xp ™7 X
x2 1 1
—121 A LSRR AR S SRR A
3
a _, L (XXX + ) (3.3.8)
37 37 ‘XRXRlXp T e 3.

etc.
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It will be seen that ignoring the R term in the
first two lines of (3.3.8) reproduces the absorption model
result of Chapter 2, Of course the right side of (3.3.8)
is summed over all possible helicity configurations giving
net helicity flip n. The m! in the denominators of (3.3.8)
corresponds to the number of ways of ordering the m
exchanges in a box diagram.

The inverse of equations (3.3.2) and (3.3.6) is

o]
R _ 1 dt = R
%y (PsS) = B“—qﬁf S Jpb/-t) AT (s,t) (3.3.9)

where Ag(s,t) is some single exchange amplitude. Suppose we

can express this amplitude in the simple parametric form

n
2 b. (s)t
Aﬁ(s,t) = (-t)? (Zman(S)tm)e n () (3.3.10)
m
R _ 1 _\m
then xn(b,s) = m E\( ) amIm’n (3.3.11)
where I = dx  mtn/y ~bnX; /%) (3.3.12)
m, 2 n _
(o]
bn - b2/4bn
bow I = e (3.3.13)
o,n (2b )n+1
n
m dm
= B 3.3.14
ad Ton (=) o Ion ( )
n

®nsequently, using equation (3.3.7), a double exchange

(1 and 2) gives a contribution to An(s,t) of




a a
n n
1,2 i 1 2
An (s,t) = 8rqrs n1+l n2+l Hnl'nz(s,t) (3.3.15)
(2bp,) (2bp,)
where 2
® b 1 1
n+n, 75 t B _
H (s,t) = bdbb e ni ny g (b/=t) (3.3.16)
M1r0 n

O

in the case where no summation is involved in equation (3.3.11).
When higher terms are present, derivatives are taken as in
equation (3.3.14). The n, in equations (3.3.15) and (3.3.16)
are the net helicity flips at the single exchange vertices.

Thus we see that although Al(s,t) can receive contributions

only from xoRl R2 and permutation, Ao(s,t) includes terms

X
1
both like Xglxgz and like XﬁlXTZ_ We therefore use

1 1
n/, t/ (s =)
H (s,t) = -t e’ Pn1  bn2 3.3.17
a5 T (3.3.17)
(%) (5—~ 5 )
n ny
for all nl, n2 such that nl + n2 = n, and
- 1 1
8[1 + —=5—|e* By * By
(——+77/—)
b b
H, .(s,t) = n) 12 (3.3.18)
1,1 ’ ( 1 + 1 )2 tet
b b
ny na
vhen n = O and n, = n., = 1.

1 2

In our applications only the first three lines of
series (3.3.8) are used. The possible inclusion of the
third line follows the work of reference (80), which was
received after most of the analysis to be described was

completed. When an extra Pomeron exchange is included,

the alteration to terms like (3.3.17) and (3.3.18) is
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simple if the Pomeron is assumed to couple only to non-
flip baryon vertices (as in Chapter 2). Equations
(3.3.15) and (3.3.17) for example then acquire the

additional term

1,2,P _ np mp P
%1 (s,t) = 5 nl+l n2+1 Hnl,nését)
(8n1gv/s)“ (2b_ ) (2b_ ) (2b,) !
nl n2 P
(3.3.19)
where t/(sl— + Bl— + SL)
( )n/2 " "2 i
_ -t e
Hn ,n SS,t) = ny/ ) (3.3.20)
1'%2rp RS IS S S B
bn bn bP
1 2

The 5% in equation (3.3.7) is cancelled since for each
of the 2! configurations in double exchange there are

three orderings of the extra Pomeron exchange. When (3.3.19)
is added to (3.3.15) it is found that a very close can-
cellation occurs between them, especially in the n = o
amplitude. This cancellation, which is made important

at t near to by inclusion of an enhancement factor (i),

is much more complete than that between single exchange

and its cut term where the cut is only some 20% of the pole
in magnitude in the forward direction. This fact will be
made use of in the next section.

3.4 Application to exotic exchange processes

Previous model calculations in the field of exotic

hypercharge exchange processes such as (3.1.4) have been

(63) (81)

made. Those of Michael and Dean took little
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account of the effects of spin which will be shown to

be qualitatively as well as quantitatively important.

(82)

A K-matrix calculation by Rivers of the t = t

o
cross—~section for these processes agrees well with one
of our estimates under a similar set of assumptions
(lowest intermediate states only, no s-u symmetrisation,
and no additional absorption). Calculations taking into
account the effects of spin were made contemporarily but

independently of the present work, by Quigg(83)

(80)

and by
Henyey, Kane and Scanio The similarities and
differences with oux analysis will be noted.

The data (%% near t=to) for the reactions

Kp—n'z (3.4.1) (a)
- + -
Tp —=>KZI (3.4.1) (b)
ae shown in Figure (3.1.1). Note that little data

(particularly for (3.4.1) (a)) are available above 3 GeV
where a t —channel description might be thought relevant.

The strong s-dependence (s_g) of dg between 2 and 4 GeV

dt
(67). The scarcity of data above

has already been noted
3 GeV prevents the possibility of a Regge~Regge cut
description (energy dependence ~s-3) being discounted
at the outset.

We make the assumption of lowest intermediate states
only, leading to the diagrams in Figure (3.4.1) which

may be broken down as indicated into the convolution of

a charge exchange (CEX) and a hypercharge exchange (HCEX)
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Lowest intermediate state diagrams for exotic exchange.
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graph. Where a single exchange graph does not correspond
to a well-measuredprocess for which phenomenological fits
exist, SU(3) and/or isospin is used as necessary to relate

it to one which does, as follows:-

2(Kp—1°1°% = Kp—=nzt = En -tz (3.4.2)
_ 1+2f - -t
Kp —> A = 275 (1-2%) (Kp—>m ) (3.4.3)

1°:°—> 717 = -/2f(n p — 1°n) (3.4.4)
1°0°— oTr7 = —/%(l-f) (n p —> 7°n) (3.4.5)
®©1° — k't = /2£(&°p— K'n) (3.4.6)
K°0° — kty- = /g(l-f) (R°p — K'n) (3.4.7)
°n —m xkt T = - —/%(.'n+p — K*17) (3.4.8)

where f is given by equation (2.6.4).
The pole parameters for use in equation (3.3.10)

were taken from the references of Table (3.4.2). For the

*

EXD poles KV, K; and p,A2 the parameters were expressed as

éao(i¢+log s)

o1}
|

n Yn

(3.4.9)(a)

o)
°

I
[+
-
-
-+
F—l
0
Q
4]
+
™

n n

and for the p pole we wrote
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(-ao m=20
im al m=1
m. a5(log s = ) {
a_ = iy_e X
n n @,
) m= 2
2mp
1
Q- ) m=3
2mp
_ 1 _ ;T
bn = o (log s 12) + e,
R
€n 2
Mo

The values of alr al, Yn' €n and 4 used in the cases

(3.4.9) (b)

(a) and (b) are shown in Table (3.4.1) where the couplings

refer to the processes of Table(3.4.2).

*
Exchange K v,T p,A2 p
o 0.4 0.5 0.5
o}
ol 0.8 1.0 1.0
¥ 59.5 7.5 -17.0
o}
Yy 24.0 62.0 -139.0
€q 1.07 0.0 0.54
€1 0.77 0.0 0.54
$ 0 -7 —

Table (3.4.1)
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Note that:

(i) Since the KN CEX fit was not absorbed we made a
20% increase in the non-flip residues for the sake of

consistency.

(ii) Since the K-p - noA data are inferior to those
for K_p — n-2+, parameters for the latter were used in

every case (see equation (3.4.2)).

Exchange Process Type of Fit Reference
K" Kp— w7 | ExD poles/weak | (42)and
cuts Chapter 2.
p nfp - non pole/weak cut (84)
-— _O .
p,A2 Kp—Kn Veneziano (85)

Table (3.4.2)

The approximate compatibility (via SU(3)) of the

exchange parameters in nmN and KN CEX graphs was checked.

Currently acceptable(so’Gz) octet mixing parameters of
(F/D) = -5 £ = 2
n=0 e} 4
, or , (3.4.10)
(F/D)n=l -3 fl -5

were used to give the results presented, although other
values such as those of Chapter 2 were tried. Cross-
section predictions were essentially independent of these

changes.

Under the assumptions outlined above ard in the

case Oof no extra absorption, we predict the cross-sections
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shown in Figures (3.1.1) and (3.4.2). Note that

(Figure (3.1.1)) the prediction for K-p — 1Tz is
compatible within the large error bars but that for

n-p — XK'z~ is much too large being on the wrong side of the
K p — 771 prediction. The energy dependence of the

calculated values corresponds to

aeff(t) z -0.3 + 0.1t (3.4.11)
: . Al (71)
as compared to the simple asymptotic argument ¢
1 14
61e2
a () = a;,(0)+a,(0)-1+ ——— =--0.1 + 0.4t (3.4.12)
c 1 2 0Ll+ml
1 2
where @) = Opx and a2 = ap

The outstand feature of the angular distribution
(Figure (3.4.2)) is of course the overall helicity-flip
dominated character of the predictions. The origin of the
effect can be appreciated in Figure (3.4.3). Because of
our EXD pole assumption we expect vector exchanges to
contribute little to cut amplitudes since unlike the tensor
components they contain nonsense factors, a(t), which
induce cancellations in the cénvolution. The dominance of
the non-flip K;/flip A2 contribution is thus anticipated.
Our estimates contrast with the overall non-flip dominance
predicted in Reference (83) where unreasonable gquark
model spin couplings are used. We are also at variance
in this respect with Reference (80) where the non-flip
dominance is claimed to come from the relative importance
of the double flip cut (c.f. our estimate in Figure (3.4.3)).

We shall return to this point.
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— TP K*E"
Kp=>nt3"

-2

doit b GV

Fig. (3.4.2)

Regge-Regge cut prediction from unsymmetrised,
unabsorbed box diagram.

aeff(t) = =0,26 + 0.1t
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Fig. (3.4.3)
Amplitude contributions to the cut of Fig. (3.4.2)

--------- total double-flip

— - — K*(non-flip) @ p,A; (flip)
F total overall-flip
N total overall-non-flip
g total (cross-section)
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Quigg has observed(86) that amplitudes for
processes like (3.4.1l) constructed in this way are not
S-u crossing-symmetric and suggests a simple ad hoc way
of ensuring this symmetry. It amounts, in our model,
to allowing the incoming particle to scatter off the
outgoing baryon first so giving a box diagram as given

in Figure (3.4.4) (a).

K™ nt " y(+

AN RN

K° K°®
X K" EK*’ AP
£5A oA
/ @) _ AR
b - p b
Rc nt K- “Rc
K* ® f:ﬂa.
b N Z5A ="
(c)
Fig. (3.4.4)
(72,86)

To calculate this diagram it is first untwisted giving
the product of the signatures times the graph of
Figure (3.4.4) (b). 1In this example, to calculate the
* *
contributions of the single exchanges (KV, KT’ P, A2)
we line-reverse the graphs of Figure (3.4.4) (c) picking

§

crossed box diagrams reduce to those uncrossed ones for

up (1)? for each exchange. It is then noticed that the
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the u-channel process but with the phases of the poles
corresponding to the s-channel one. As a consequence,
in this s-u symmetric scheme processes (3.4.1) (a) and (b)
have the same diagrams (c.f. Figure (3.4.1)), the only
difference (apart from the obvious kinematic ones) being
that of the phases of the individual exchanges.

This modification to our unabsorbed model yielded
the following predictions for the near-forward differential

cross—-section at 4 GeV

L (Kp o> trT) = 4.7(2.3) ub Gev 2 (3.4.13)
%—;’: (s p — Kz-) = 7 (16) ub Gev 2 (3.4.14)

showing a line-reversal splitting which is less marked
(the figures in brackets are the corresponding
unsymmetrised ones). The magnitudes are compatible with the

estimates of references (8l, 82, 63) but much larger than

(83)

those of Quigg Our prediction of overall flip

dominance remains.

During this analysis details of the work of Henyey,

(80)

Kane and Scanio were received. 1In this last work,

absorption by P®RO®R terms is included. As hinted in

Section 3.3 this greatly suppresses the R®R amplitude,

in fact

y almost an order of magnitude in the cross-section.
By using K*NK couplings with more flip character than

indicated by the data (see Section 2.2(ii)) and by

assuming the pBB coupling to be dominantly flip for all

1 (80)

octet baryons, Henyey et a claim the processes (3.4.1)
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to be overall non-flip dominated by (flip) ® (flip) cuts so
taking advantage of their kinematic suppression due to the

two /-t factors in the convolution. We claim that the Azzf

coupling is sufficiently non-flip that, because of the above-
mentioned kinematic suppression, even the Az(non"flip) @ K*

(flip) contribution is larger than the A, (flip) ® K" (flip)

2
one. In the notation of Section 2.6 we have

(Ya_z1) (YA_NN)
—2 ©° : o3 —2 0 (3.4.15)
(A,IT), ( A,NN),
ad
Y - ~ Y N
( Ya,:3) 1.8 (YA,NN) (3.4.16)

using the mixing parameters of equations (3.4.10).
Finally with respect to the work of Reference (80),

we comment on the importance of decuplet intermediate states.

It is reasonable to assume following Stodolsky and Sakurai(87)

that the most significant pNA couplings ( A a member of the

P

J° = 3/2+ decuplet) correspond to the A, = % >, = -% or 3/>

N
transitions (i.e. n = 1l). Using this assumption, the authors
claim a cancellation between octet and decuplet intermediate

states of the form,

2 2
do L ? NA
do (octet) [1 —P—SOO] (3.4.17)
where 92 NA=222 and the cross—-section is assumed to be
P

dominantly flip @ flip. In our view the p,A, exchange and

2

p exchange cut contributions of Figures (3.4.1) (a) and (b)

for the flip 8 flip diagrams become
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r 1 1 1 R
Cut = Cut Ll -3 7T + — ] (3.4.18)
o 5 3 1-2f, f, 6F, (1-2f,
ad cut = cut 1 -4 _R (3.4.19)
p,A2 n 3 l-2fl e

when the A contribution is included. Cutz refers to the

£ 1intermediate state part of diagram (3.4.1) (a) and Cutp A
’

2
refers to the diagram with p,A2 exchange and including both
-octet and decuplet baryon states.

g2
R = _%EA (3.4.20)
gpNﬁ

where gpNA corresponds to the » = ¥ — -% transition. A

rough comparison of the 4 GeV differential cross-sections for

- p — 1°n (39 (3.4.21)

(88)
+
and v p — 7oA + (3.4.22)
gsuming n = 1 coupling dominance, suggests a rough value for

R of

R = .38 (3.4.23)

With this value of R, the p,A2 ® K* cut suffers an enhance-
ment of about 100% in the cross-section. By inspection, it
wuld appear impossible to obtain large cancellations simultan-
eously in equations (3.4.18) and (3.4.19) for any

reasonable values of R and fl' Even with the couplings of
Reference (80) a cancellation of the form (3.4.17) is
unrealistic since the (non-flip) ® (flip) cuts for example

would then be expected to be dominant. In this analysis we

proceed no further with a speculative treatment of
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decuplet states and return to our (perhaps unrealistic)
"lowest states only" model.

We saw how in the lowest states approximation,
the prediction for n p — K"t~ was much too large
(Figure (3.1.1)). For the sake of completeness we follow
Reference (80) and absorb the box diagrams which we have
SO far considered (Figure (3.4.1l)). As with absorption
of simple poles we enhance the absorbing cross-section

of 30 millibarnswith a factor

A = 1.5 (3.4.24)

in this case the same for all diagrams. Equations (3.3.10),
(3.3.19) and (3.3.20) are used to calculate the additional
terms. This time since the R®R and R®R@P cancellation is
much more complete than that of R and R®P, the choice of

A 1is very sensitive. With the value given in equation
(3.4.24) we reproduce the observed cross-sections within
the very-considerable errors (see Figure (3.4.5)).

The overall flip character of the predicted angular
distributions is enhanced by the absorption since the
cancellation is more pronounced for the (non-flip)@(non-£flip)
cuts than for the (flip)® (non-flip) ones.

We conclude this section by emphasising the
difficulty in reproducing the small size of the data using
It = 3/2 cuts without some kind of absorption. However the
freedom allowed by the absorptive mechanism which we have

employed reduces the usefulness of the description. The

problem of magnitude becomes even more accute at higher




10

. /ué C:evi"a?.

do
a?'ltz

.ol
KN'J ¥ jo |5 Jdo 30{ L O
& -— KN
s GeV \
Fig.(3.4.5)

Predictions from (s-u)symmetric, absorbed, lowest
intermediate states diagrams. Data as in Fig.(3.1.1)
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momenta (see Figure (3.4.5)) since the ueff(o) of even

the absorbed cut is,

& fg (0) = -0.27 (3.4.25)

while the data represented by the upper limits shown suggest

(although do not demand) a somewhat lower value.

3.5 Application to Line Reversal Symmetry Violation

We showed in Section 3.1 that the assumption that

most of the Line-Reversal Symmetry Violation (LRSV) came

(42)

from a non-zero I_ = 3/, exotic amplitude is untenable.

t
Also we showed in Section 3.4 that Regge-Regge cuts in a
multiple scattering formalism do not naturally describe the
anomalously small observed It = 3/9 cross-section. In this
section we investigate whether, on the other hand,

(I, = 0) @ (It = %) Regge-Regge cuts can explain the large

t
difference in magnitude between the I% and Ié amplitudes
of equations (3.1.5) to (3.1.8) which we have to conclude
are mainly responsible for the LRSV.

The lowest order diagrams to be considered in a

description of

Kp — =zt (3.5.1) (a)
+ + +
and Tp — K1I (3.5.1) (b)
are shown in Figure (3.5.1]). 1In the s-u symmetric model

which we considered, both sets of diagrams in Figure (3.5.1)
would be shared by processes (3.5.1) in the manner

described in Section 3.4. As well as the It = 1 exchanges
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v K e
K~ /;{/ radl /;f/
PEw -
phe < o
b \z* , A z* \z .

@) K p~ s

kY Tt
mt / K+
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j"-.Az
Z+ P/ Z_+

() mrp> K*ZT

Lowest intermediate-states box diagrams
for non-exotic HCEX reactions.

Fig.(3.5.1)
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whose dominantly flip character we noted in the last
section, we now have the It = 0O exchanges, P, £ and w
which in an EXD framework have dominantly non-flip
couplings(sz).

The contribution from the P8R cuts has already
been estimated in Chapter 2. As regards the non-Pomeron
cuts we expect the dominantly non-flip w, £ and K*
exchanges to ensure the overall dominance of (non-flip)

@ (non-flip) diagrams, remembering the natural kinematic
pre—eminence of such diagrams. We can go further in
selecting from Figure (3.5.1) the dominant diagram in a
rough calculation. We have already noted that (tensor) @
(tensor) cuts are by far the most +important in an EXD

framework because of the lack of nonsense zeroces in the

convolution, i.e. we expect f @ K; to be dominant.
(61)

Assuming SU(3), ideal mixing and EXD
e 4f -1
£NN = 2 1.6 (3.5.2)
T o

for non-flip couplings. The diagrams of Figure (3.5.2)
are then selected for calculation as the most significant

contributions from Regge-Regge cuts towards LRSV in the

It = % amplitudes.
K- ra mt K*
\\ K /7,/ N\ T '//
§£w> %K* £ %K*
P )// ’ \S\‘z+' i P +
@) ] ) g

Fig. (3.5.2)
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In order to calculate the largest possible effects
due to these diagrams, we do not consider an s-u symmetric
model, i.e. Figure (3.5.2) (a) is the dominant non-Pomeron
contribution to K p — « ¥ and Figure (3.5.2) (b) con-
tributes to ntp — Kt:t.

The contribution of Figure (3.5.2) (a) was calculated
via SU(3) and EXD from the analogous diagram of
Figure (3.4.1), taking care to estimate correctly, within
our EXD scheme, the relation sign of w,f and P couplings
(see Appendix 3A). The non-flip amplitudes at 4 GeV from
PRK" (Chapter 2) and from PRK* + (w+f)®@K* are shown in

Figure (3.5.3).

A

o b
\ Kp—s

- PL= L.GeV

w}- ~~ POR+RAR
N POR

3~ -ReA,

n \ R

S L 1 ) 1 L 1 L 1 1 -
-z, L5 04 o o8 »

-GV ?)

Fig. (3.5.3)
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At best the non-Pomeron cuts are only some 10%
in modulus of the leading cut and are only comparable (in
the present case of a dominantly real amplitude) in the
imaginary part (see Figure (3.5.3)). More significant,
however, is the prediction that these secondary cuts
add in both the real and imaginary parts. A similar
effect is found in w+p — K*zt since the f and P couplings
have the same sign in ntp elastic scattering (see Appendix 3A).
We therefore c¢laim that inclusion of Regge-Regge cuts makes
the prediction of the leading cut model worse, and that

their effect may be summarised by replacing
A — 1.1 (3.5.6)

in the estimates of Chapter 2. This result is in accord
with the calculation of Michael(63).

Finally in this section we estimate the effect of the
inclusion of non-leading cuts in the polarisation description
put forward in Chapter 2,

We have demonstrated that the overall flip Regge-
Regge cuts in processes (3.5.1l) are expected to be small
compared with the non-flip ones. Indeed the flip cuts will
be comparable in magnitude with those calculated in
Section 3.4 which were typically one tenth or less in
magnitude of the flip pole amplitudes. If we therefore
neglect them, the polarisation model of Chapter 2 is only
altered in that we now include Regge-Regge terms in the
non-flip amplitudes as shown in Figure (3.5.3). For
simplicity we consider the origin of the hyperon polarisa-

tion in K_p — 7 7 but the argument applies analogously



to ntp — K+z+. We have

do *
PEE = ZIm(AoAl) (3.5.7)
_ R P&R R®R
= 2Al (ImAo + Ion ) (3.5.8)
since AlR (in an obvious notation) is purely real within
our assumptions. From Figure (3.5.3) and Equation (3.5.8)
do

we deduce that I will have the same shape as in

FPat
simple absorption, but largersince the two terms in (3.5.8)
add. In a fit to the data %% will remain constant so
that we predict the polarisation to be similar to that in
Chapter 2 but larger if anything.

The above arguments allay the naive suspicion of
Chapter 2 that if Regge-Regge cuts are required to
reproduce the LRSV at intermediate energies, an immediate
consequence might be to ruin the simple polarisation
description which in some sense is a rather delicate

(second order) phase effect. Similar conclusions were

arrived at independently by O'Donovan in Reference (89).

3.6 Conclusions on the Role of Regge-Regge Cuts

The theoretical justification of saturation of the
Schwarz sum—-rule for the Reggeon-particle scattering
amplitude, by lowest intermediate states only, is very
weak although given this saturation, the multiple
scattering formalism is thought (Section 3.2) to give
a reasonable approximation (Section 3.3) to a more correct

but impracticable calculation of a Regge-~Regge cut.




Great difficulty is experiencedin explaining the
small size of exotic exchange cross-sections (Section 3.4),
some kind of additional absorption being found necessary.
The LRSV observed in reactions (3.5.1) is found

to originate almost entirely ih the I, = % amplitudes.

t
The observed size of the violation cannot be explained
(Section 3.5) by Regge-Regge cuts whose effects on the

cross—-sections and polarisations are almost negligible.
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CHAPTEHR FOUR

STRANGENESS-EXCHANGE AMPLITUDES

FROM DECAY CORRELATIONS
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4, Strangeness—-eéxchange amplitudes from decay

correlationst

Since the analyses described in Chapter 2 and
Chapter 3 were performed it has become clear that no
exchange model with any predictive power can describe in
detail all the O—%+ - O—%+ scattering data. In the case
of strangeness-exchange (HCEX) reactions we showed in
Chapter 2 how the weak absorption model implies that the
Kp — S pole amplitude which is expected to be
predominantly real is reduced by absorption more than that
of n+p — K+Z+ which has a large imaginary part at small
angles. This predicts a line-reversal symmetry violation
(LRSV) opposite to that shown by the data. There has been

(90) inat it should be the

presented, other evidence
predominantly imaginary non-flip amplitude which should
be heavily absorbed rather than the real.

In O-%+ — O-%+ scattering there are two spin
amplitudes (Section 1.4) and, since there is an overall
phase which is not in general directly determinable, we
can describe a process having one t-channel isospin com-
ponent by three real numbers. Such numbers could be
taken to be %%, P and R (see Appendix 2A) but in order to
compare the underlying structure of high energy exéhange

models it is more useful to use as the three numbers, the

mxduli and relative phase of the amplitudes. When R and A

TPart of the work described in this chapter was done in

collaboration with M. Abramovich, A.D. Martin and C. Michael,

and was published in Reference (105).




1
measurements were made (91)

for w*p elastic scattering,
the processes w*p elastic and n_p charge exchange
scattering which as a set involve 2 isospin times 2 spin
amplitudes (7 real numbers) were analysed in this way
by Halzen and Michael(gz). As a result, the suspected
absorption systematics outlined in the first paragraph
were confirmed in #N scattering. Significantly perhaps,
the five Regge pole fit of Reference (93) was shown to
provide an excellent interpolation of the amplitudes
derived in the analysis. Making the assumption that this
model provides a good extrapolation of the amplitudes to
larger momentum transfers, an impact parameter decomposition
can then be made(gs), so elucidating the partial wave
structure (see e.g. Figure (1.5.1)) which is relevant to
a discﬁssion of absorption effects.

In this chapte£ we will propose analogous

techniques for extracting exchange amplitudes from the

data for resonance production processes.

4.1 Decay correlation parameters

The measurement of P in nN‘?->nN scattering
illuminates the spin state of the final nucleon while
R and/or A measurements correlate this with the spin state
of the target nucleon in a scatter. 1In HCEX reactions a
measurement of P, the recoil polarisation, is simply given
by observation of the parity non-conserving hyperon decay.
However for technological reasons, R and A measurements

have not yet been possible in this case so that the
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complete "amplitude analysis" described above is not a

current possibility for strangeness-exchange amplitudes.

We now explore a different but related line of approach.

Reactions of the kind

Kp — ¢A

are expected to be mediated by strange meson exchange.
Because of the extra unit of spin in the final state,
unnatural parity poles such asK may be exchanged in
addition to the natural parity K& and K; trajectories.
In all, some six independent production amplitudes are

involved in each process. These may be taken as, for

example, the helicity amplitudes of equation (1.3.7).

s s s s s s
Tors  Tor-  Tree  Tio T Tiog
where +(-) refer to A = +%(-%) and we have used the

parity relation(zo)
A A, =Aq=A
7S N _ n(=) € b "d "a TS s oy -
Ac d"a’b -Ac- d "a b

(4.1.1)

(4.1.2)

—~
=
.
=
.
W

~

to identify the independent amplitudes. In equation (4.1.3)

n 1is the product of the intrinsic parities and
Sc+Sd—Sa-Sb i
(=) which in our case of




O — 1% (4.1.4)

gives n = -1.

Although in the absence of polarised target
experiments we can never measure the scattering dependence
on the target nucleon spin, we can come very near to a
complete amplitude analysis. Of the 11 real numbers
describing the production amplitudes it turns out
(Section 4.3) that we can determine unambiguously 10O
by using the vector meson and hyperon decay correlations
to give information about the spin states produced in
the collision.

Besides learning about the role of natural
parity exchanges in éhe vector meson production processes
(4.1.1) and its implications for O-%+ - O_%+ scattering
through factorisation, we might also hope to investigate
unnatural parity K exchange which, although important,
has so far been difficult to isolate. SU(3) of course
relates K exchange in reactions (4.1l.1l) to m exchange
in 1N — pN - a mechanism of great theoretical

(96)

importance due to the proximity of the = pole to the
scattering region (-1 <cos 8 g 1l). Measurement of the
above-mentioned 10 real numbers for this process however
involves the use of a polarised target, and the
possibility of acquiring, without this effort, the same
degree of information for the SU(3) related processes
(4.1.1) is certainly an attractive one.

A convenient link between the production

amplitudes for a final state resonance and the angular

L




_95_

distribution of its decay products is provided by the spin
density matrix. An expression for the angular distribution
in terms of the density matrix elements was given by

(97). For example for the K* vector

Gottfried and Jackson
meson decay in

= *0O

T p —  K*O) (4.1.5)

the angular distribution is

sinze coqu'>l

_ .2 ) 2.
Wo(01s67) = pyysiney) + (1=2p,))c0870) = o 1

- V2 Re p1o Sin 26, cos¢, (4.1.6)

1

in the case where the polar axis and the resonance spin
quantisation are along the direction of flight of the
resonance (helicity quantisation). The angular distribution
Wv(el,¢l) is the probability per unit solid angle of observing
one of the decay products (in a two-body decay) in the

direction (el,¢l). An analogous distribution WY(e ) for

2'%2
the parity non-conserving decay of the spin-% A can be

expanded(ga)

in terms of one parameter e.g. the polarisation
parameter, P.

The 3 independent measurables from the K" decay
(pll,pl_l,Replo) together with the one measurable from the
A decay (P) constitute only 5 pieces of information. If
the decays are simultaneously observed, however, (i.e.
W(el,¢1,92,¢2)) 10 independent pieces of information are
measurable since in general the K* and A decays are
correlated. An expression for W(el,¢l,92,¢2) in terms of

1
double density matrix elements, pﬂﬂ,, was given in

reference (99), and in terms of statistical tensors in
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Reference (100). For the case of processes (4.1.4) where
the baryon decay does not conserve parity (e.g. process

(4.1.5)) the angular distribution is

JlJ M M2
J.Jd 172 1 2
. M1M2
1772
(4.1.7)
vhere
I, & 28 = 2, J, ¢ 28, =1 (4.1.8)

and the Fi(Ji) are known(loo)

constants of the decays.
This expression is 'in terms of statistical tensors but the

relation between them and density matrix elements is

linear(loo)
1 1 _ _
mlml - ro +my J1+%+m2 J2 1 1
M1M2
172 I3
x Tyl (4.1.9)
172
Pilkuhn and Svenson(gg) have given the relation between
the double density matrices and helicity production
amplitudes. For processes (4.1.4) it is
mlmi my m%*
P 1 = r H_ & 1 (4.1.10)
m2m2 M mou mzp

where (as throughout this chapter) we choose to normalise™

so that in the reactions being considered

T i.e. the cross-section, the 10th measureable, is

taken as 1 for the time being.
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do = 1 (4.1.11)

In equations (4.1.10) and (4.1.11l) the Hﬁv are either

s— or t- channel helicity amplitudes where X, y and v are
the vector meson, final baryon and initial baryon
helicities, respectively.

Using the orthogonality properties of the Y? in

equation (4.1.7) it is possible to project out from the

experimental angular distribution, certain combinations
JlJ2 m;m
of the T or p 1
MM moma

This extraction procedure is termed "the moment method."

(see Appendix 4A for example).

Having extracted various combinations of the p elements
it is then possible to use them to gain insight via
equation (4.1.10) into the production process. Certain
limitations on the amount of information gained in this
way are worth noting. Although stated in terms of density
matrices, similar remarks apply to the use of statistical

tensors,

(1) Given (as we shall see) only 10 real numbers by
the method of moments, it is impossible to invert

equation (4.1.10) uniquely.

(1i) Since only 10 of the 12 measureable p's
(Appendix 4A) are independent there exist among them
relations (linear or gquadratic). The moment method does

not guarantee that these constraints be satisfied.

(iii) In view of (ii), one may ask what is the physically
allowable range of a given element? 1Is the measured value

significant in terms of the estimated error and the
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physical range? For example it is shown in references
(101, 102) that in the case of a vector meson single
density matrix the allowed ranges of the 3 independent
elements can be represented by a 3-dimensional cone.

The naive supposition that the physical domain be the cube
superscribing this cone would be misleading. It is not
practicable to extend this geometrical argument, however,

to joint decays described by 10 independent parameters.

(iv) In view of (iii) it is useful to attempt to
identify which elements should be well-determined
experimentally. It turns out that many of the observed
elements are ill-determined in that they have large
(although correlated) errors. We may form combinations

of these having small errors. For example we know that

(4.1.12)

being the coefficient of sinze in the expansion (4.1.6),

1
is in some sense a "low moment," and consequently well-
determined by the data.

(v) Although we have stated that 10 of the 12
measurable elements are independent, this is not obvious
from consideration of equations (4.1.7) and (4.1.9) alone.
No general algorithm for calculating the maximum number
of independent measureables, for arbitrary spin and parity,
is known.

We will, however, introduce an expansion of

W(el,¢2 62 ¢2), involving directly a set of six production
’ [
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amplitudes, which in some measure will answer the
questions and criticisms raised in points (i) to (v)
regarding the use of density matrices and statistical

tensors as representations of the decay data.

Following Byers and Yang(103) we expand W in
terms of the 6 direction cosines
(xi,yi,zi) i = 1,2 (4.1.13)
where
Z. = coso , (4.1.14)
i i
. _ . i¢4
X, + iy, = 51neie (4.1.15)
That is, we use a cartesian basis (x, y, z) for the
expansion rather than a spherical one, Y?(e,¢). The choice

of rectangular axes will be described in the next section.
By noting that the K* decay is parity conserving and the

A decay not so, or simply by expanding the Y? in terms

of the (xi, Yo zi) it is seen(103) that W is quadratic in

(xl, Yy zl) and linear in (x2, Yoo zz). It turns out

(Section 4.3) that the coefficients of these terms are
(104)

bilinear combinations of transversity amplitudes
Transversity amplitudes differ from helicity amplitudes in
that the particle spins are quantised along the normal to
the reaction plane.

In a later section we will discuss the advantages
of this expansion and demonstrate why an expansion

directly in terms of helicity amplitudes is not practicable.
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4.2 Transversity and helicity axes

Let us return, for demonstration purposes, to
the well-known expansion (4.1.7). To completely specify
it, we must first of all choose 2 sets of axes to which
we may refer (ei,¢i) and along which we may quantise the

angular momenta. Our discussion will be in terms of

T p — K* A
el

»Ktn— (4.2.1)
where (el,¢l) specify the direction of the K' from the K*
decay and (62,¢2) refer to the A-decay proton direction.
By convention, in helicity-type frames we quantize
(choose Zi) along the particle momenta (K* and A), define
Yi as the production normal (Basle conventiont) and introduce
Xi to complete right-handed sets of axes (Xi,Yi,Zi).
For transversity-type axes the Zi are taken along the

production normal, the Xi along the particle momenta and

Yi completing the right-handed sets. Relabelling axes

T T T H
x%, ¥v¥, zT) = iz, xH, ¢ (4.2.2)

relates the two choices.

The complete definition of axes involves specifying
the Lorentz frames in which the particle momenta are
measured. Useful and conventional choices are
(i) s-channel frames: XE are along the particle

momenta in the s-channel centre of mass.

Tthe normal in meson baryon scattering is taken to lie

along gi X gf where Ki (kf) is the ingoing (outgoing)

meson momentum.,.
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(1i) t-channel or Gottfried-Jackson(97)

frames: X?

i
is taken along the incoming meson (baryon) in the rest
frame of the decaying meson (baryon). The choices (i)

and (ii) for the K* axes are shown in Figure (4.2.1).

,x?.

(i) s-channel (ii) t-channel
Fig.(4.2.1)
They are related by a rotation (in the sense of crossing
angle), xit(s,t) about the production normal ﬁ.

Under any rotations xl(s,t) and xz(s,t) about ﬁ,

statistical tensors transform as(loo)
' . .
JlJ2 _ 1Mlxl 1M2x2 JlJZ
Tv, M = e Ty M (4.2.3)
172 172
. . (100) C .
The parity relations and the hermiticity relations
. . %
Tiliz I R TT;JEM ) (4.2.4)
172 1 2
- = I
leave the following set of measureable tensors
00 10 02 12
TOo ' TOO ' TOO and Too (4.2.5)
which are real, and
2, 92 | pl2 0 g pl2 (4.2.6)

11 '’ o2 ' 02 =11
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which are in general complex - a total of 12 measureable
real quantitites. From equation (4.2.3) we see immediately
that tensors (4.2.5) and the moduli of tensors (4.2.6) are
invariant under rotations about the production normal.
We denote such quantities "frame invariants." Their
uses will be discussed in Section 4.4.

We now define 3 sets of production amplitudes.

(i) Helicity amplitudes

We denote the helicity amplitudes of Jacob and

Wick(ls)Jr for this process by

1 1 1 1 0 0
H , » H__, H_ ., H_,, H__ and H__ (4.2.7)

where the indices are those of equation (4.1.11).

(ii) Transversity amplitudes

We denote the transversity amplitudes of

Kotanski(104)by

1

0 o 1 1 T—l and T;

- TL (4.2.8)

where in T ’ m_x, M
mAmp K R

, A and p transversities (spin projections along the

and mp are respectively the
K*

production normal).

(iii) Byers and Yang amplitudes

We define amplitudes a, ., b+-and C, similar to

those of reference (104), by the transitions shown in

Table (4.2.1).

t Unlike references (18, 105) we do not include a factor

S37A
(=) in our two-particle states.

. < mFEE
L Pl .

s

-
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Bgr | ™ | M
a, | 2,7 | 5| %
b, | x,7 | -% ¥
c, YlT -% %
a_ | 2,0 | =% | -%
S I S T T
c_ YlT % -%

Table (4.2.1)

In the table AK* is the axis (X, Y or Z) along which

the K* has zero spin component.

Relation between (ii) and (iii)

We use particle spin states

V1, mp v Y 5, m> o m Ny, m> (4.2.9)

in which u is the (transversity) axis along which particles
V (vector meson), Y (hyperon) and N (nucleon) have spin

components Mg, My and My - We may write for example,

a, =< V10|, <¥ik|, TNk, 4>, = T, (4.2.10)

Similarly,

a = T (4.2.11)

We also have

(4.2.12)

(4.2.13)
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Now
-im _iryg
_ 2 Jy _ ZVY),
|1,0>_ = e |1,0>_ =1 |1,m>_<1,m|_e 1,0
_ .l w (4.2.14)
- dm,O‘i)
1
- = [|1,—1>z - |1,1>z_] (4.2.15)
and
~im g
1,00, = e % %100 (4.2.16)
- irm _im
1 2 2
= Ve _? |l,—l>z - e |l,l>z}
= /—1_2 [|1,—1>z + |1,1>ZJ (4.2.17)

Therefore from equations (4.2.12), (4.2.13), (4.2.15) and

(4.2.17) we find

1
T_+ = <Vl’l|z<Y%l-%lz T lN%’%>z
b - ic
_ _ T+ + (4.2.18)
/2
and
vl = <v1,-1]_<vy,-%| T[Ny, %>
- ’ Z ’ pA ' 2
b, + ic
= e — (4.2.19)
V2

+1
+-

An identical argqument gives T and in summary we find
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a = °
+ +t
S = gl (4.2.20)
— -, | .2.

+—

b + ic _ -1

£ o= T,

+—

Relation between (i) and (ii)

We consider, for example, s-channel helicity
amplitudes and relate these by axis rotation to the
transversity amplitudes, (ii). The unique sequence of
rectangular rotations about Z, Y and Z axes is shown in
Figure (4.2.2) and is accomplished by the operation of DJ
matrices,

L1
J = J i T _ imm J _T
D, (R) £ D 1 (-5, =5 0) = e 5 d 1 ( 2) (4.2.21)
m m m m

acting to the right,

4%

Q- —--- - - —-. >

H T
z’ 2 A

Fig. (4.2.2)
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We therefore have(104)
* * 1
A
™, = ol ®) p* (r) D (r) B (4.2.22)
R TLIR e WL o1y W11
_im, 101 1 1
- e” TGl 1ha¥ -Dat, Dw
AH ulu vlv plvl
111
ATw (4.2.23)

The dll (6) and d%l (6) matrices are given in Appendix 4B.
m m m m

Evaluating equations (4.2.23), using the parity relations

(equation (4.1.3))

Hﬁv = -(—)*'“*“Hjﬁ_v, (4.2.24)
we find
T, = 2—'/% (H,, + L+ 1Hi__ - 1Hf+)
% (HD_ + Hy, - iHI, + iH})
= 7%i [(Hi+ +HL) + i(EL - Hf+)], (4.2.25)

(4.2.26)

H
1
1
I
1
S|
1
fa s
<+
+
+
ba s
I
1
1
|
tm
+ +~
1
|
e o]
|
+
| SS—



(H

[}
-

I~

st

(H

.

A,
Ho

oL

ol

H,, U
O
H_ U

++
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1

R R |
~H__)+i (H,_+H_

1

-H ) 1(H +H

~HL_)+4 (Hy_+H.

2)

1 o o
+)]-E7?[(H++-H+

T_o1
+) 7§LH +1H ],

_)+i(Hi_+HE+)]+j%[H +1HS ],

ol 1
_) 1(H+_+H_

N U
++ 7§(H++ H
1 Lyt
R et

1 70
o)zl

1 _
) Nev =
1 _
) N _ =

M

1
(H+++H

1
(H+_-H

Z)

_+)

. O o
_)+1(H+_+H_+1

(4.2.27)

(4.2.28)

—HS_)~i(Hi_+H?+)]

(4.2.29)

(4.2.30)

(4.2.31)
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since we know(zo)

that to leading order, the combinations
denoted N and U represent respectively natural and unnatural
parity exchange in the t-channel. In terms of these, we

have shown

TO, = —1[#+++1Ni;] ™ = -1:#++-iNi_]

Ti_ = 3%:?1+'1U17J - f;ipi+-iui_:

i, = %:-[Ji++iu_}__:| - —/:L—Ezu‘:;iuj_j (4.2.32)
T;f = §%L?i+-lUif} + 7%[ﬁi+-1ui;:

T:i = %:Ui++iUi_‘J + /—%E[U$++1U2__—

Relation between (i) and (iijii)

From equations (4.2.20),(4.2.31) and (4.2.32) we

deduce™
1 1 1
H,, + H._ = /2N = —=(a,+a_)
1 .1 L _ 1, _
H . - H, = /5N+_ = /—E(a+ a_)
1 1 1 __1
H, H _ = /§U++ = /7(C++C_) (4.2.33)
1 1, R
b- TH_ = J2ul . = /5(c+ c_)
1, = o, 1 (b,+b_)
++ ++ < + -
o - o . i -
Hy- = U ==3 (by~b_)

TOur helicity amplitudes differ from those of reference (105)
in not including the Jacob and Wick phase convention, and
in being v¥2 smaller in normalisation.
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Relations (4.2.33) apply equally well to both s- and t-
channel amplitudes except that the notation N and U only
has the interpretation described above, for s-channel

helicity.

4.3 Derivation of a Byers and Yang-likedistribution

The explicit expansion of equation (4.1.7) in terms

of double density matrix elements has been written downT

in reference (106) and is shown in Appendix 4A. Here we
expand in terms of (xi, Yy zi) as given by equations
(4.1.14) and (4.1.15), and achieve a form
W = Fo + 9A (x2Fl + y2F2 + 2F3) (4.3.1)
where
_ 2 2 2
Fi = FiiXp *Fv) +F;2,
+ Fi4xlyl + Fi5xlzl + F16ylzl (4.3.2)
and
3F,, = 1-2F; Fog = —2/2F2
3F,, = 1+F-3F, Fig = 2/5F9
3Fyy = 1+F+3F, Fig = 2/2F5 (4.3.3)
3F,; = 2F,-2F, Fog = 2/§F8
3F32 = 3Fll-F7—2F4 F16 = 2F6
3F33 = 73F)F,m2F, Fae6 = 2Fyo ¢
The other Fij being zero.
TNote that in reference (106), the factor % in the

F and F should not be present.

expressions for F8' Fg' 10 11
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In equations (4.3.3) the Fi are the correlation

parameters of Appendix 4A.

U

sing the relations between

the Fi and density matrix elements (given in Appendix 4A)

along with equation

F,.
iJ

Foi

Foo

Fo3

Foq

F3g

Fi1

Fis

33
15
25

F

16

Faoe

-

to helicity amplitudes.

and Yang amplitudes of Section 4.2 (iii).

(4.3.3) we relate the coefficients

= by = 2‘HS+ 2+ 2|8 12 (4.3.4)
i
= oy = |HE, - HE_ |+ \Hif " Hi+l2 (4.3.5)
S ety Hy, + HD_ | }Hi- B HE+}2 (4.3.6)
=-2/2Re p , = -2/5Re[nii(Hi+-nf_)+ﬂif(ﬂi_+ﬂf+)] (4.3.7)
= 2/ZIm(p,o-p10) = 2/51m[n$f(Hi+—Hf_)—H2:(Hi_+Hf+ﬂ (4.3.8)
= -2ImpQ° = -4Im[H2+ Hif] (4.3.9)
= Im(pl M-l -0t teolly = -21m[(ni+—nf_)(Hi_+nf+)f](4.3.10)
= Im(-py_+po t-p 4ply = 2Im[<Hi++H}_) (Hi_—HL)*] (4.3.11)
- 2/51m(pi$-pi?)=2/5lm:Hi:(Hi++HE_)+H2f(Hi_—H}+)] (4.3.12)
= 2/§Im(p12+ai2)=2/innE€3Hf+jHi_)+Hi_(H}_+Hi+)] (4.3.13)
= 2mm(p,; " =p2 7= ammqul nl* - Hi_Hf:) (4.3.14)
= 2mn(o} Tl = -ammeml mp ¢ wl_l)) (4.3.15)

With the aid of equations (4.2.33) we may finally express

the F,. of expansion (4.3.2) in terms of the Byers
-J

Thus
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2 2

Foy = |by % + |b_] Fyy = 2Re(b,c} + b_cl)
2 2

Fo, = le %+ [c_| Fy, = "2Re(b c} - b_c¥)

_ 2 2 * *

Foy = la ™ + |a_| Fig = 2Re(a,b, + alb_) (4.3.16)
2 2 *

Fyp = -[b,|% + [b_| F,. = -2Im(ab, + a’b_)
2 2

Fay = =lc,® + [c| Fig = 2Re(a+c: + a’c_)
2 2

Fay = lag|® - |a_| Foe = -2Im(a,ci + a¥c_)

An alternative derivation of the angular

distribution (4.3.1), (4.3.2) and (4.3.16) was given by

(103)

Byers and Yang who advocated solving the 6 equations

on the left side of (4.3.16) for the 6 amplitude moduli,
using the last 4 of the right side to determine the

relative phases within the sets (a+, b+, c+),

(a_, b_, c_) and then resolving the discrete ambiguities

04 and F34.

Assuming the Fij have been extracted from the decay data

in this solution with the measured values of F

by the usual method of moments, this solution procedure

is inefficient for the following reasons:

(a) There is no guarantee that the moduli, so determined,
and the cross product measurements (last four in
equation (4.3.16)) are compatible. This problem is

partially analogous to (ii) of Section 4.1.

(b) Even if, in view of (a), a solution is possible,
the use of the last two measurements as mere checks

constitutes a waste of information.
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(c) The sequential method of solution does not allow
the last 6 moments of equation (4.3.16) to be treated with
equal weights. Elimination of these problems will be
discussed in the next section.

Already, with the introduction of these amplitudes,
we note that some of the criticisms (i) to (v) of

Section 4.1 have been answered.

(i) The amplitudes, a, describe t-channel natural
parity exchange while b(c) describe unnatural parity
production of helicity O(l) vector mesons (see

equation (4.2.33)).

(ii) The 6 moduli and 4 relative phases are independent,
subject to compatibility of the measurements. A method

of ensuring this is described in the next section.

(iii) The ranges of the 10 parameters are given simply

by
2 2 2 2 2 2 d
la | + | |  + Je, |© + la_|® + |b_|° + |c_|° = 5¢ (4.3.17)
and
-7 £ phase (a+) < 1T etc. (4.3.18)

(iv) Equations (4.3.1) and (4.3.2) indicate that the
Foi’ then the F3i are the "lowest" moments so that we
expect the moduli to be better determined than the phases

which depend in an intricate way on the higher moments.

(v) It is immediately obvious from the right sides of
equation (4.3.16) that only 10 of the 12 measureable
(Fij in this case) can be independent since none of the

moments relates the relative phases of '+' amplitudes to

ones.

|
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From the last remark in (v) it is now clear that
to solve equation (4.2.33) for helicity amplitudes one
requires this extra relative phase between amplitudes for
target nucleons of opposite tfansversity. Such information

is obtainable only from polarised target experiments.

4.4 Maximum likelihood method

Some disadvantages ((a), (b), (c) of Section 4.3)
of the moment method are avoided by using the moduli and

4 relative phases of the Byers and Yang amplitudes in a

(107)

maximum likelihood search. That is, we form the log-

likelihood function

w(P) = =-Log[L(P)] (4.4.1)
N w 1
_ i ioio i i iy 9
where L (P) = 121 W(P; xl yl z] X5 Y, 22) (4.4.2)

Inequation (4.4.2) W is given by equation (4.3.1), P is

the set of 10 parameters

A

*

Il
o

<
il

phase (b,) - phase (a)
B, = |bt| - - (4.4.3)

phase (ci) - phase (ai)

=3
I

-1 & ¢ < W (4.4.4)
i i

(xj, Yj' z;) are the two sets of direction cosines for each

event (i) of the N events. w; is the geometrical weight

assigned to event i (see Appendix 4C).
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w(P) = - I

log|w (P; xi yi zi, x; y; z;)]wl (4.4.5)
l .

1 g

is then minimised to give the set of parameters Po with

"maximum likelihood"”. Calculation of the parameter

variances and covariances is described in Appendix 4C.
Since the method involves minimisation, uniqueness

is difficult to ensure (unlike the moment method). This

is alleviated by using a set of frame invariant measureables

(see Section 4.2) as consistency checks on independent t-

and s—-channel solutions. We introduce a set of 9 such

quantities which are not, of course, all independent but

which possess physical significance. They are

- 2 2 _
oy = lagl® +fa|® = Fog (4.4.6)
2 12 2 2
oy = Ib [T+ |b_["+ |e | + |c_|® = Fgo + Fg, (4.4.7)
2 .
N VR U L N (4.4.8)
2 2 2 2
gy = b T = b 1%+ Je|® - |e |® = Fgy; +F,, (4.4.9)
2.2 _ 2 Ky _ aet ot 4.2
ind = am®o,cl) = af] £ - (£ (4.4.10)
2
252 = a(b,|%#b_|?) (lc,|*+]c_|?)-are? (b c}+b_c)
5 (4.4.11)
= 4F5) Fopy ~ Fou
2 2 * - 2
Lpy = 4la (bygic) + al(b_+ic_)
= (F,.FF. ) + (F,.tF )2 (4.4.12)
Fi57 " 26 Fa5F6! 4.4.12]
where
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n, = %(lIPU)oU (4.4.13)

P, = 0N+oUi(A+n+-A_n_) (4.4.14)
t = -

£ = % (Fg; ¥ Fyy) (4.4.15)

They are identified as being invariant with respect to
rotations about the production normal, by noting the rotation

properties of transversity amplitudes(104)

(Tﬁv)' = eiixa+i(w-v)x2 Tﬁv (4.4.16)
The quantities in equations (4.4.6) to (4.4.15) are suitable
combinations of the |Tﬁv| and moduli of bilinear combina-
tions of the Tﬁv having the same Axl + (u-v)xz. They are
expressed in terms of Byers and Yang amplitudes using
equation (4.2.20).

oN(oU) represents thaf part of the cross-section
due to natural (unnatural) parity exchange. The polarisation

PN(PU) has a similar interpretation. The decomposition of

GU’ PU into
o _ 2 2 _
oy, = Ib |° + |b_|® = Fy = pgo (4.4.17)
1 2 2 _ }
GU - |C+| + |C_I - Foz = pll pl_l (4.4.18)
o o _ _ 2 2
Py oy = -|b %+ [b_|[T = Fq (4.4.19)
- lo l - _Ic I2 + Ic I2 = F 14 4 20\
U U I +| [ _I 32 (4.4, )

is obviously not frame independent ( the O and 1 refer to
either s- or t-channel vector meson helicity). The
quantities A, which directly measure the phases -¢;;
whose sign they share, have the form of vector meson
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pplarisation parameters for unnatural parity exchange and

lie in the range

0 <« A < 1. (4.4.21)

+
Ii’ which are similarly normalised, measure the inter-
ference between natural and unnatural parity amplitudes.
The above-mentioned 8 invariants are independent. The
ninth invariant Ao’ normalised as in (4.2.21l), measures
(like A,) the spin and phase coherence of the meson
helicity O and 1 unnatural parity amplitudes, but is much

better determined experimentally since it depends only on

the meson decay,

- - %
_ _ _ 2
Aoou = 2 -poo(pll pl_l) 2(Replo) J (4.4.22)
. . (108)
It is a measure of to what extent the relation
- 2
PootP117P1-1) » 2 (Rep,4) (4.4.23)

(sometimes known as the Kaidalov relation) is saturated.

Shown in Table (4.4.1) are the amplitude moduli
and relative phases together with a selection of measure-
ables resulting from independent maximum likelihood
determinations carried out in the s- and t-channels for

the process

T p — K*A (4.4.24)
. (102)
at 3.9 GeV. The data used were those of Abramovich et al

(102)

using a K* effective mass cut' of

0.868 < M(K'm~) < 0.920 GeV (4.4.25)
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] 0< ~t' < 0.2 0.2 < ~t' < 0.4 9.4 < -t <00
t channel s channel t cheannel 8 channel t channel 8  channel
|n"2 0.0940.13 0.05£0.14 U. 1740.19 0.1740.18 0.0Y4D.22 0.07£0.27
(0.1120.17} | (0.1120.17) | ( 0.1020.17) | ( 0.1020.17) | ( 0.0420.17) | ( 0.0440.17)
|b1.|2 0.11£0.12 0.1540.16 0.0340.09 0.2010.15 - 0.1640.20 0.0340. 14
{ 0.0320.16) | ( 0.1420.17) | (-0.0320.13) | ( 0.2420.15) | ( 0.1640.15) | ( 0.030.15)
|c+l2 0.17:0.14 0.0540.09 0-1740.15 0.00£0.31 0.0540.13 0.1740.21
( 0.2120.14) | ( 0.1120.15) | ( 0.23£0.14) | (-0.0420.12) | ( 0.0640.16) | { 0.1920.15)
la_]? 0.26£0.15 0.7330.17 0.3240.16 . 0.3220.17 0.4740.23 0.4820.22
( 0.29+0.16) | (.0.28+0.16) | ( 0.3830.18) | ( 0.3740.18) | ( 0.534+0.19) | ( 0.53%0.19)
|b_|2 0.3210.13 0.3110.15 0.2810.12 0.0740.14 0.174:0.19 0.07%0. 12
( 0.3620.13 {( 0.2940.18) | ( 0.3240.16) | ( 0.08x6.14) | ( 0.2240.16) | ( 0.02:0.16)
Ic_|2 0.0520. 12 0.1120.10 0.0340.15 0.2340.09 0.07+0.11 0.17£0.21
(-0.01x0.14) | ( 0.05£0.15) { (- 0.0120¢.12) | ( 0.2530.15)| (-0.01x0.15) | ( 9.19:0.18).
”;c ~0.7 £1.1 ~3.0 46.8 0.2 5.3 2.5 £78.6 -1.2 32.0 ~2.4 4.2
ﬁ:u -0.8 2.1 0.3 6.7 -1.4 2.0 -2.9 £79.5 -2.9: 45.2 1.0 £7.1
ey 1.5 42.0 2.6 £2.5 1.6 45.6 0.3 & 2.1 -2.3 45.5 1.5 £5.9
R 1.5 1.0 1.7 #0.7 Tod £1.4 2.3 % 1.6 1.9 31.2 1.2 £1.5
ﬁ;a 1.3 £1.2 0.7 #1.3 0.7 £1.8 -1.8 & 1.1 1.9 £2.5 -0.5 £2.7
p;b . -2.7 0.8 -1.0 #1.0 ~2.2 1.5 ~0.4 + 1.8 2.5 £2.8 0.7 $2.2
06(:1-0'5) 0.65 0.62 0.50 0.51 0.44 0.45
Py ~0.50 -0.72 -0.30 -0.31 -0.66 -0.74
Pﬁ 0.12 0.33 0.23 0.22 0.07 0.10
a. 0.63 0-17 0.15 -0.02 0.72 0.48
A- .66 -0.87 -0.61 -0.65 -0.86 -0.84
A, 0.87 0.81 0.92 0.94 0.87 0.85
oy 0.44 0.46 0.30 0.217 0.33 0. 11
O‘l} 0.22 0.16 0.20 0.23 0.11 G.2%4
B 0.47 0.33 0.81 -0.47 0.03 0.30
PJ -0.57 0.33 -0.66 1.00 0.16 0.01
Table (4.4.1)

Moduli and relative phases of s-

amplitudes determined by maximum

and t-channel
likelihood method.
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The resonance is treated as pure p-wave since the narrow
width renders negligible any s-wave contribution. 1In

Table (4.4.1l) the three event bins are

0O <-t' < 0.2 , 59 events
0.2< -t! < 0.4 : 58 events (4.4.26)
0.4 <~-t' < 0.8 , 47 events
where
t! = t -t - (4.4.27)

The figures in brackets are the equivalent quantities

obtained from a conventional moment analysis(los).

4.5 Interpretation of results

The presented sample analysis of 7 p —> K*A
involved a total of 164 events with roughly 50 in each of
3 t-bins. These statistics are not sufficient to reliably
determine 10 real numbers per bin, but the consistency of
the method outlined in Section 4.4 is nevertheless evident.

From Table (4.4.1) we note that

(i) the moduli are much better determined than the
phases.
(ii) the phases of amplitudes with negative transversity

are better determined than those with positive.

(iii) the invariant quantities (particularly those
depending only on moduli) provide a consistency check

on s- and t-channel solutions.
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It is tempting to compare the natural parity
exchange in 7 p —> K*A with that in m p — KOA. For
example, the polarisation in the latter (see Chapter 2)
is slightly positive for -t <0.3 GeV2 and large and
negative at larger -t, whereas we see from Table (4.4.1)

a consistently negative trend for P, throughout these

N
t ranges. With saturation of a, by absorbed K* exchange
we would éxpect identicai polarisation behéviours so that
the discrepancy indicates a different mechanism altogether
and/or the presence of large absorption corrections to

the unnatural parity pole exchange in ﬂ_p-—e K*A —
absorption is known to mix t-channel parities.

Ao has a significantly non-zero value implying the
presence of more than one unnatural parity pole exchange
since a single pole would give a phase coherence to all
4 amplitudes as indeed would an EXD pair (K,KB) with their
identical spin structure and correlated phases. This has
independently been noted by Field(log).

An identical analysis of K-p-—+ ¢A which is, by
duality diagram and quark model arguments, expected to
have the same amplitude structure, would provide a very
interesting comparison with this work. The similarity
of the two processes, at the more superficial level of

density matrix elements, has already been noted(llo),

SO
giving further credence to the duality diagram/quark
model scheme.

More detailed analysis of the implications of our

results, in terms of helicity amplitudes requires a
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knowledge of, or guess at, the relative phase between
amplitudes of opposite nucleon transversity. We suggest
3 ways of obtaining this.

(i) A polarised target experiment(lo3).

This represents
a lot of effort for one extra piece of information (the

11th observable).

(ii) Using theoretical prejudice gained from some
exchange model to predict the vanishing of one of the
N or U helicity amplitudes. For example if K alone couples

to s-channel Ui+ one might anticipate this coupling to be

small, in an SU(3) limit (c.f. wNN (11D).
o . .
Then |U_ | = O implies
b B+2 + B2
COS¢_+ = T TSB B (4.5.1)

where ¢? is the relative phase between b, and b_.

+
(iii) Using an exchange model which successfully predicts
some measureable combination(s) of the a, b, ¢ amplitudes
to predict the relative phase. For example, suppose the
observed values of P in T p — K*A had more closely
resembled the 7@ p — K°A polarisation predicted in

Chapter 2, then we might have assumed that model to give

a good account of the natural parity a, amplitudes, in
particular their relative phase. For pedagogical reasons

we shall make this assumption.

We identify

(4.5.2)

n
Hh
-‘.
-
le

a, <Af|Tipt>

[V}
i

_ <Ay |T|py> £ - ig (4.5.3)



in an obvious notation, where f(g) is the pseudoscalar

meson baryon spin non-flip (flip) scattering amplitude
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(l)(a)'

Their connection with the equivalent helicity amplitudes

is

)

s/

so that

a,
where 6 1is,
angle.
Pyoy = lal

Similarly we

>

then

A

A + iR

To make a complete determination of all amplitudes

(including the overall phase) we assume a phase for N, _

3 . 0 ¢
! 1l cosé siny cos2 f++
- sin
~sin sing ~-Ccosz f
2 2 -
- i®
+ .
= e (£,, = if )
as usual, the s-channel c.m. scattering

The polarisations are then connected by

2

*

|2
+-

- |la_ = 2Im(f£ £ )

notice that if (Appendix 2A)

*
2Re (f++ £7 )

- +=
- 2 2
£, 1% +]£,_|
2 2
ol 1P - e, ]
- 2 2
l£,,1% + |£,_|
; *
2elea+a_
la, 1% + [a_|?

(4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)

(4.5.8)

(4.5.9)

which, having baryon helicity flip, we expect to have a

pure pole behaviour

(Section 2.5):~-
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1
N+- a+ - a_ -ino (4
= = = e .5.10)
Int_| ay T A
where @ = Gpa
We then may write
" A 2 2
1 1 2 A+iR +|a_
+ 2 is
2e
Then, up to 27, we get
* A4 iR
phase (Nl_a_) = =m0 - & = phase AtiR b4 la,| - =1 (4.5.12)
+ - 22,52 ie
|AT+R la_le
from which we may calculate a_ the phase of a_. From
equation (4.5.9) we then find
a, = phase (A + iR) + a_ - 8 (4.5.13)
and consequently
.
By = %+ 0 (4.5.14)
+
Yy = a, + ¢.o : (4.5.15)

where 8, and vy, are respectively the phases of b, and

C+ .

The results of such a calculation using the
R and A predictions of Chapter 2 are shown in

Table (4.5.1) along with the input R and A. The entry
marked %% gives roughly the correspondingly

cross-section of reference (102) to which the output
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t'range
Fan 0 2 .2 4 .4 .8
Amp. Mod. Phs. Mod. Phs. Mod. Phs.
l -
NI, .36 3.0 .33 3.0 .21 1.4
Ny .25 | -1.0 .37 -.5 .48 .25
ut 15 | -1.5 25 73 27 1.6
T, i . : : ) .
ur_ .24 1.3 .25 2.3 .32 1.6
O
v?, .16 1.5 .33 1.0 .21 2.3
ug_ .45 2.1 .18 -1.5 .11 -1.3
e .16mb GeV 2 .09mb Gev 2 .04mb GeV 2
R -.7 -.95 -.4
A 7 .3 -.45

Table (4.5.1)

anplitudes must be normalised to give absolute values.

The results are exhibited graphically in Figure (4.5.1)

and are merely indicative of a possible treatment given

1

4+~ 1s shown

*
better statistics. The input EXD K phase for N

adlong with the duality diagram expectation for an EXD (K,KB)

pair. It is perhaps fortuitous that the phase of Ui_ is
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Modulus and phase of natural and unnatural parity

exchange s—-channel helicity amplitudes under the

assumption of Section 4.5 (iii).
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like that expected when pure EXD (K,KB) poles unaffected
by absorption are coupled to a baryon helicity-flip
vertex. The N and U amplitudes have a small-t' behaviour

of (see equation (1.3.7))

1 /=T
N++ v t
Ni_ v 1
1 (4.5.16)
!
U++ v t
Ui_ v 1
o
Uit v 1
ug_ N /T
so that the very large value of Ui_ compared to U2+

at small -t confirms the expectation of a K exchange which
couples predominantly to baryon s-channel helicity flip
(c.f.m ). This effect is not nearly so marked in Ui_ and
U$+ possibly due to the importance of the EXD (KA,KZ)
which are expected to couple predominantly to baryon

(111)

helicity non-flip (KA is the SU(3) analogue of the

Al trajectory).
The considerations following equation (4.5.1)

are completely speculative and merely indicate a possible

line of approach whereby a consistent set of assumptions

may be arrived at, given better joint decay statistics.
The method of analysis advanced in this Chapter

will be of most benefit when applied to pairsof reactions

such as

|
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T p —> K*A
(4.5.17)

and K p — ¢ A

using counter data of high statistics rather than, as
here, bubble chamber data. Data over a spread of incident
momenta would assist in identifying unambiguously whether
the unnatural parity contributions present are due to

some type of absorption effect acting on natural parity
poles (a high ueff(t) for the amplitude) or due to
unnatural parity pole exchange itself (much lower lying

effective trajectories).
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CHAPTER FIVE

CONCLUSTIONS
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5 : CONCLUSIONS

In this final chapter we summarise what has been
achieved by the work reported in this thesis and point
out some lessons for future analyses.

We have presented a model independent discussion
of the cross-section and polarisation data which exists
for meson-baryon strangeness-exchange reactions. We
attempted to describe these data with a simple high-
energy model which used the precise predictions of
exchange-degeneracy for octet Regge pole exchange.

These poles were absorbed with the weak cuts associated
with a Pomeron moving pole so yielding, for the first
time, a natural and unified description of all polarisa-
tions observed in HCEX reactions. The cross-section

line reversal symmetry violation at intermediate energies
was not successfully explained since the predicted real
amplitude was too heavily reduced in our absorption
prescription.

We demonstrated how anomalies in the intermediate
energy cross—-section data could be related semi-quantitatively
(without performing FESR) to anomalies in the low energy
resonance parameters of the direct channel process. It
was suggested that the pressing problem of the cross-
section inequality be attacked from two approaches -
in terms of either s-channel effects as above or further
crossed channel singularities which might be important
at non-asymptotic energies.

This last possibility was thoroughly investigated

within the rather dubious assumptions of the multiple
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scattering model of Reggeised exchanges. Using
knowledge of the spin properties of the octet meson-
baryon couplings gained in the foregoing analysis,
an attempt was made to give, for the first time, an
honest treatment of the spin effects in double exchange
diagrams. Critical comparisons with later and with
contemporary but independent analyses were given. We
presented explicit calculations of exotic HCEX reaction
cross-sections (K p —> n'% and 7 p —> K'2 ). It was
shown how the direction of the cross-section inequality
in these reactions was not correctly predicted (as in
the non-exotic case) and that some degree of absorption
of the Regge-Regge "cut" diagram was necessary to explain
the observed smallness of the overall magnitude of these
reaction rates. A unique prediction, of what we believe
was a consistent treatment of spin couplings, was a
forward dip present at all energies in both reaction
cross-sections. This feature and the predicted cross-
section energy dependence of s_3 are open to experimental
test in the foreseeable future. In view of the artificial
and imperfect cross-section descriptions, however, we
were forced to conclude that the exotic amplitudes are
not naturally or usefully described by the multiple
scattering formalism of Regge-Regge cuts.

We put forward the hypothesis that although exotic
cuts had to be very small, spin effects were such that
the related non-exotic Regge-Regge cuts could, in contrast,

be much larger. Explicit calculation in a typical case
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:showed this to be the case but none-the-less too small
to significantly affect the incorrect cross-section
description given by the leading Pomeron cuts. 1In
fact we confirmed the statement of Michael(63) that
these cuts made the situation worse. It was shown that
the simple polarisation description by leading cuts was
unaffected by the inclusion of non-leading terms.

Before leaving the topic of line reversal symmetry
violation we now make a few further comments. Instead
of attributing the cross-section suppression of C-type
TN —> KY relative to R-type KN —> 1Y, to their exchange
degeneracy phase properties, we could point to another
significant difference in their duality diagrams(lls).

Only in the first case is a AX quark final state

involved: -

"\E_/)K
//”:;_;%A v

We also notice the relatively high mass of the final

N

state in this type of reaction. In common with 7N — KY

(116)

it is found that n-p —> nn at low energies has

large contributions from non-peripheral resonances

. , . , o)
(see Section 2.7) in comparison with m p —= 7 n for

o

example. We note the high mass and AX content of n

. o D s
relative to n~. The deviation of = p — nn from an

exchange degenerate pole high energy behaviour has been

g (38)

well note . Other examples of reactions which have
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Ax high mass final states and which show anomalous
behaviour at high and/or low energies are not difficult
to find. The suppression of ¢ photoproduction relative
to the standard quark model expectation via vector
dominance from p and w photoproduction has been noted

(117), The data for = p — K*A and

in the literature
K-p —> oA (both with AX final states) show a similar
suppression relative to K—p — pAand K_p-—9 wh. Note
that KN and KN charge exchange cross-sections with their
line reversal equality at intermediate energies and the
pole-like behaviour prove no exception to these rules
since both have equal mass kinematics and involve no A\
production. A modified form of these cross-section
systematics has recently been commented upon by Lo(lls).

We submit that the cross-section suppression
observed in certain strangeness-exchange reactions is not
unique and that a unifying examination of all similar
effects at high and low energies will be more fruitful
than a model-dependent analysis of each of the separate
reactions. The common element in the "abnormal”
processes (e.q. n_p —> KOAO, ﬂ+p'—ﬁ K+Y*(1385) and
T p —> nn) seems to be the production of AX pairs and
consequent high mass final states. Some analysis in
terms of quark dynamics thus seems appropriate.

In the fourth chapter of this thesis we proposed
an alternative method of obtaining information on
strangeness-exchange amplitudes. Rather than parametrise

data with a high-energy model which was known to be wrong,
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we chose to attempt to calculate directly from data,

the scattering amplitudes themselves. By studying the
correlations observed in joint decay angular distributions
it was shown how, but for one piece of information, all
production amplitudes for processes like n_p — K*A
could be disentangled in a completely unambiguous and
model-independent manner. Having described the
disadvantages of using conventional density matrices and
statistical tensors to represent the decay information,
we introduced a set of transversity-like amplitudes in
terms of which we presented a complete analysis of

T p —> KA at 4 GeV. The simple relation between these
new amplitudes and conventional helicity amplitudes was
derived. The implications of the numerical results for
w_p -> KfA were discussed and, in particular, it was
concluded that K exchange alone was insufficient to
account for the measured uynnatural parity exchange
amplitudes. Since high statistics counter experiments
on vectér meson production processes are now a very real
prospect, it is to be hoped that the methods proposed

in the latter part of this thesis will, in the near future,
be used to gain much needed insight into both natural

and unnatural parity strangeness-exchange amplitudes.
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APPENDIX 1

A. Kinematics

We consider the 2-body scattering process shown

in Fig. (1A.1)

(1A.1)

Fig. (1A.1)

m, are the particle masses and ki(pi) are particle 4(3) -
momenta in an arbitrary reference frame. We use a metric
such that

k2 = (-8, pp? = p® - E° (1A.2)

-~

where E is the total energy.

Conventionally we define

_ 2
s = (ka + kb)
t = -(k. - k)2 (1A.3)
a c '
_ _ 2
u = (ka kd)
By s (t or u) - channel process we mean the process for

which s (t or u) represents the total c.m. energy squared,

viz.
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s—-channel: a+b—c+4d
t-channel: a+c—b+d (1A.4)
u-channel: a+d—c+b

We use the following notation for kinematical quantities,

standard throughout this thesis

q,q'

s-channel c.m. 3-momentum magnitudes of

particles a and c.

beam particle laboratory momentum.
s—channel c.m. scattering angle.
t-channel c.m. scattering angle.

laboratory frame baryon recoil angle for

near-forward scattering.

the value of t corresponding to 6 = O.

Some useful relations involving these are collected

together:-

s+ t +u

I
]
+
=]
o

+
=
+
=t

(1A.5)

= m 2 + m 2 + 2m, vYp 2 + m 2 (1A.6)

2qq

a b b *L a
= mpr//; (1A.7)
= [s-(m  + mb)zj[g-(ma - mb)z]/4s (1A.8)
= [s-(mc + md)zj[s-(mc - md)z]/4s (1A.9)
s(t = u) + (m 2 - 2y(m 2 = m 2)
_ a ' b c d (1A.10)
4sqq
t - to
= 1+ — (1A.11)
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coset is found by replacing (s,t,mb,mc) by (t,s,mc,m

in equations (1A.8) to (1A.l0)

3

mb sinb
tan wL = —r e (1A.12)

é%/q'Z + md2 - /g2 + m _2 cos®é

b

where is in the first quadrant for near-forward

vy,

scattering. In fact

4y — 5 ,ass =, t —O0_. (1A.13)
t = m2+m? - Z/qu rm2)(g'? +m 2y 4 2qq'  (1A.14)
o a c a c )
B. Helicity amplitude factorisation

We write the contribution of a single t-channel

Regge pole (n) to s- and t-channel helicity amplitudes for

s (n) t (n) (19)
the process ab — cd as Hcdab and -HEdaE . Then
s(n) _ bfd'a'c' _t(n)
HCdab - Z deac H}_)-'d'a'z'.' (lB-l)
a'c’
Bldl
B'd'a's' _ .Sb sa Sa s¢
(1B.2)
. . : (19)
and S;r Xy is the spin and crossing angle of

particle i whose helicity is also represented by i. Note
that X is exactly factorisable into four parts (one for
each particle)at all energies.

We consider the four processes

a+b—¢c+d
e+ f—>g9+h
e+ b-—>>g+d (1B.3)
a

+ £f—c+ h
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Then

LS(M) s (n) E 5 b dlelgl flhl

gdeb chaf fhac

15l 15t
bldl flhl
t (n) t (n)
x H — - 1B.4
plalelgl Flplalgl (1B.4)

(113)

Following the Fox and Leader we assume the asymptotic

factorisation of t-channel Regge pole amplitudes,

t (n) t (n) . gto gt (®) (1B.5)

H 3
Blalelgl glnlalct glalalsl Flnlelg!

so that equation (1B.4) becomes on substituting,

Hs(n) Hs(n) - > > xflhlelgl Ht(n)
gdeb “chaf ~ fheg Flhlelgl
1-1 J1zl €9
e g
blal flhl
=1.1 1-1
b"d"a ¢ t (n)
X X H (1B.6)
bdac EldlalEl

vhere we have regrouped the d°~ functions to form the new
crossing matrix elements. Equation (1B.6) is now seen to
contain the product of two s-channel amplitudes, thus

s(n) ps(n) S (n) s (n) (1B.7)

Hydeb Hchaf ° cdab ghef

iie. for a given exchange, s-channel helicity amplitudes

factorise as shown in Figure (1B.1)
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Fig. (1B.1)

into upper and lower vertex parts. It is this result which
is used in reference (20), but note that the only
asymptotic equality used is that in equation (1B.5) - the

factorisability of the crossing matrix is exact.
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APPENDIX 2

guantities

Our normalis

dt 2

d 0.3893
2 - 23833
64rqg s

in the notation of C

do
at '’

scattering probabili

the differentia

ation is such that

2 4 |A1|21 millibarns/Gev? (2a.1)

hapter 2 (An has units of Gev = 1).
1l cross-section, is the reaction

ty per unit momentum-transfer squared(l).

With the Basle convention for the direction of the normal

to the production pl

ane, the recoil baryon polarisation is

*
2 Im(AOAl)

P = (2A.2)
2 2
a1 + [a,|
If we define
. 2 Re (a_AT)
R = — 3 (2A.3)
2 2
A = 3 > (2A.4)
|2,1% + |2, ]
th . . . (36,37)
en the Wolfenstein spin-correlation parameters are
R = R sinxL - A cosxp (2A.5)
A = R A

where Xg, ¢ the laboratory frame baryon recoil angle

cosxL + A siny

|
n

given in equation (1A.12).
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B. Absorption prescription

We follow the procedure of reference (30) whereby
the partial wave exchange amplitude fix(s) is modified by
initial and final state absorption. Ignoring spin for the

moment, the absorptive modification is

ex

2i¢, (el)
g x

fl(s) = £ s)e (2B.1)

where Gz(el) is the elastic phase shift which is given, in
our normalisation, by

. . el
2162(el) 1qf£ (s)

e = 1 - — (2B. 2)
4nv's

If equations (2B.l) and (2B.2) are used to modify a partial-

wave decomposition of the amplitude Aex(s,t) we get

As,t) = a%%(s,t) - £S5 2 (20+1)P, (cos0) £5%(s) fil(s)
(2B.3)
Then, if the partial wave projection formula
1
£,(s) = % d(cos8)P, (cosé)A(s,t) (2B.4)
-1

is substituted in equation (2B.3) and the orthogonality

properties of the P, (cos6) made use of, we get

A(s,t) = Aex(s,t) - ——i%——ijfd(cosel)d¢Aex(s,cosel)Ael(s,cosez)
167“Ys

(2B.5)

(30)

where ¢ 1is some function of cosel and cose2 which need

not concern us. The essential feature of the result (2B.5)
is that absorption by partial wave modification by the
relevant elastic S-matrix element gives a correction term

which is a convolution integral of the exchange amplitude
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ard some elastic scattering amplitude which we may take to

be saturated by Pomeron exchange i.e.

1
2%l (s,£) = -iaglc, eBTimTopIt/2 (2B.6)

T

A is the forward elastic peak slope width, a; the Pomeron
trajectory slope and O the relevant asymptotic total
cross-section. In some sense (Section 3.2) the convolution
integral then represents double Regge exchange, e.g.

for n+p —_ K+2+ this would be as shown in Figure (2B.1)

n+ K+ nf K+
\3\ K:; 4/*/ \ﬁ\ n: ,Z/
K* P P K*
/?/' E* ‘\\\+ _/a/’ ﬁf '\s\+
P L p I
Fig. (2B.1)

The parameters A and Srp should then be interpreted as some
mean of those for n+p and K+Z+ scattering. Similarly the
O parameter in the correction term for K-p — azt
scattering will be a mean of those for K-p and n_z+ so that,
treating P as an SU(3) singlet, O is expected to have
the same value for both line reversed reactions.

In the remainder of this Appendix we merely collect
together the formulae used in Chapter 2 to calculate

absorption corrections to meson baryon scattering. When

spin is accounted for correctly, equation (2B.5) becomes
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(equation Allb) of reference (30)).

ex ('i)n°T A't/p Odt' A;t' ex
An(s,t)=An (s, t)-———— e e Jn(iA'/(t_-to)t')An (s,t")

47 2
(2B. 7)
where
A' = A -ina'P (2B. 8)
If Aix is taken as
( n/, Ent( 1o (£)
Rn(s,t) = to-t yne se ) (2B.9)
then
An(s,t) = Rn(s,t) + Cn(s,t) (2B.10)
where \ F-
A'B)t £
]
. .ru& oT - i¢a° A n \A'+B/ 2 Bt
Cn (s,t)=-~ (to-t) Yn 47 (se a+e © e—5— (2B.11)
and
B . .
> = &4 + o' (log s + i¢) (2B.12)

For the reasons outlined in Section 2.3(b) we include
an enhancement factor_kn to multiply Cn(s,t) in

equation (2B.10).
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APPENDIX 3

A. Coupling signs in KN and gN scattering

Consider a simple pole description of KN and
mN elastic scattering.

(a) KRN

If P, £, w, ¢ and A, poles couple to K p

scattering such that

A(Kp) = P+ f+uw +p+A, (3A.1)
then

A(Kp) = P+ f-uw -p + A, (3A.2)

A(Kn) = P+ f+w -p - A, (3A.3)

A(ktn) = P+ £ -u +p = A, (37.4)

We assume {y,f) and (p,Az) to be EXD pairs of poles with

intercepts @, = %¥ so that at t = O,

p . 5 = YAZ(l_i) etc. (3A.5)

where Y, are real couplings. EXD then implies

Yf = —Y(.U 4 YD = - 'YAZ (3A-6)
Then
+ + .
A(Kp) + A(Kn) = 21YP - 4y (3A.7)
w
and
A(K p) + A(Kn) = 2iv, + 4iY (3A.8)

Using the optical theorem we obtain

- - + +

cp{K p) + o(Kn) - ¢ (K'p) - c,(K n) = 4y (3A.9)

-
-
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at4 GeV by inspection of the total cross-section data(ll4).
That is the w + f contributions to A(K p) in
equation (3A.1)

w+ £ = 2iy (3A.10)

has the same phase at t = O as the Pomeron contribution

and therefore adds constructively.

(b) N

We wish to calculate the relative coupling signs
of P and £ in 7N elastic scattering. As in the KN case,
the sum of the amplitudes for all charged states only

involves the contribution P + f£. That is if

A( Tp) = P+ f+op (3A.11)
then
A(t'p) = P+ £ - o (3A.12)
© that
Im A(n p) + Im A(n'p) = 2Im(P+f) (34.13)

Unlike the KN case it is not possible to directly isolate
the f contribution using EXD arguments. It is enough

however to note(ll4)

that, experimentally, the quantity
oT(w_p) + zén+p) falls to its constant Pomeron dominated
value, in order to see that the P and f contributions

add in 7N scattering.
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APPENDIX 4

A. Double density matrix expansion

By expanding equation (4.1.7) and substituting
the inverse of equation (4.1.9) the following expression

is obtained(loe) for helicity-type axes,

_ _ i 0 ™ 1
3W(0,,6140,00,) = 1 4/; Y1) F, + 24/% Re Y2 (1) F,

T 2 T 1 lémo O 1
12/%g Re Y2 (1)F, + 4u/% Im ¥](2)F, - 2522 ¥(2) Im Y, (1) Fq

+ Brad? YO (2) Ing(l) F

2 1 o
5 Yy - SHG/L— ImYl(Z)Yz(l)F7

6 15

1 1 2 1 1
+ 16na/§—Re Y1(2) ImYz(l)F8 + lGnan.ImYl(Z) ReYz(l)F9

1 2 /L 1 2
lGna/T Re Yl(2) ImYz(l)F 16nav5 ImYl(Z) ReYZ(l)Fl

5 10 ~ 1
(4A.1)

where

- - _ 1-1 _ 1-1
Fl = P11 7 %00 Fo = Imloy, Plyly)

_ _ 11 -1-1 _ . oo
F, = Repj, Fo o= Imleyly ¥ oeyly™ = 20y00y)

_ _ 10 10
F3 = 9019 Fg = Imlpy_y % pyy)

_ _ 1-1 1-1
Fyp = Imoy_, Flo= Im(p;i_!5 + p_%%)

11

_ 10 _ 10

F5 = Im(p%!i p_%_%) (4A.2)

In equation (4A.1) Y?(i) denotes Y§(61'¢i) and o is

the lambda decay asymmetry parameter, “£98)

which is
about 0.65 in value. Note that in reference (106) the

additional factor of % in the expressions given for
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Fé, Fg, Flo and Fll should not be present.
B. Angular momentum functions
The d;,m(e) functions for J = %¥ and 1 are
m
m' % -%
!5
az, : 8 —sin®
“m'm X cosy sinjy
.0 0
-1 9 9
L sing cos2
m
m' 1 0 -1
dl . 1 Y (1l+cosb) -J%sine % (1l-cosé6)
"m'm
1 . 1l .
0 J551n6 cosb /551ne
1
-1 l-cos® ~—sinb l4+coseo
5 ( ) 7 i E( )

The first few normalised spherical harmonic functions

are

3 +1 - / . +i
Yg(e,¢) = /Z? coseé, Yj (6,9) = +/§% sinoe**?

2 i¢

: *
cosfsinfe

=)
R I%]

8-1), Ysl(e,w =+

2(6,¢) =/ ignsin26e121¢

(o} 5
Y2(6,¢) = 1_6“(3cos

Y

N+

(4B.1)

(4B. 2)

(4B.3)

(4B.4)

(4B.5)
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C. Maximum likelihood error estimation

We use a log-likelihood function

W(P) = - log [L(P)] (4C.1)
where
N gl
L(P) = TTW(P;Xi) (4C.2)
i=1

and W(P;Xi) is the angular distribution of Chapter 4.

In equation (4C.2) P represents a set of parameters

pj(j = 1,10) (e.g. 6 amplitude moduli and 4 phases) and

Xi the set of 6 direction cosines for event 1i. wgi is a
number less than 15% gfeater than 1 called the geometrical
weight and assigned to each event (i) by the experimentalist
to account for unseen neutral decays in the bubble

chamber. Its motivation is, heuristically, as follows.

Wi = W(P;Xi) is the probability of observing 1
event at Xi and to get the joint probability for N events
we form a product. Suppose for every event actually
observed at Xi there were, statistically speaking, W& real
evgnts. Then the "joint" probability for this would be
%}%. For all N observed events the joint probability
(4C.2) is then obtained.

The covariance matrix associated with the set

of parameters P with maximum likelihood is(107)

-1 .1 -1

C = cov(P) = H H H (4C.3)

. ; . 1 .
: where the matrices H and H" are given by
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oW\ (3w,
apk> 3, (4C.4)
2
(awi) (awi
(4C.5)
W, 9Pk apz)

The estimated errors AP to be assigned the parameters

k2

I
Il
2=
'I' Iz
£
j: Q-
N

o
~ =
»
0
21—
.|\/'z
13
\Q
N

P are got directly from the variances,

Apk = —_ (4C.6)

For any other measureable quantity

m = m(P) (4C.7)

the estimated error is

1 // om am

am = —= I — —C (4C.8)
/ d ke
N /x,» Pk °Py
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