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ABSTRACT

We investigate the nature of the Pomeranchukon (Pomeron P)
singularity in the complex angular momentum plane. To distinguish
between simple pole and branch point, we establish and test the
factorization rule when Pomeron 1s exchanged in three particle final
states. TFurther we ﬁredict results on the polarization states of
resonances when definite parity for Pomeron-pole and mixtures of
parities for Pomeron-cut is exchanged. To make comparison of the
Pomeron trajectory with other low-lying meson trajectories, we also
establish a factorization test for the Rho trajectory and compare it
with experimental results.

In Chapter I, we give a general review of Regge-pole theory and
also show what difficulties we have with the Pomeron trajectory as
compared to other ordinary trajectories. This chapter lays the ground
work, explains the problem, and serves as a motivation for the work
which was undertaken.

In Chapter II, factorization test for the Pomeron is suggested
for reactions with three particle in the final states. It is applied
to the available experimental data on "N — =« and NN - nNN and is
found to be satisfied reasonably well. This gives one evidence that
Pomeron is a simple pole.

In Chapter III, we establish a direct test of factorization for
the Rho and show from the experimental data, that there is a significant
failure of the factorization and also mixture of parities is exchanged
in the Rho dominated reactions. It is suggested that cuts play an
important part at high energy and indication exists that the Rho

particle is a parity doublet.



In Chapter IV, parity test suggested by Gribov is applied to
several Pomeron dominated reactions in the high energy production of
single baryon or meson resonances. Wherever the experimental data
is available, it has been used to compute the relative magnitudes of
the residue functions for different helicity states of the Pomeron
exchange. Definite predictions on the spin space density matrix
elements of the resonances are made for the pole and the cut
separately. Suggestions are made to carry out experiments on the
decay of unsteble particles to check the consistency of our results.

In Chapter V, we conclude by giving a brief review of the

present status of the Pomeron trajectory.
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CHAPTER I

Introduction and Basic Concept of Regge-pole Theory

1. Regge-pole Model

The idea of analytically continuing the angular momentum to
complex values (J-plane) goes back to the work of Watson and Sommerfeld(l).
The subject had achieved success in high energy physics since 1959 when

(2)

Regge demonstrated the usefulness of considering the analytic
properties of a non-relativistic scattering amplitude in the J-plane.
Soon afterwards this idea was applied to relativistic scattering of
elementary particles by Chew and Frautschi and by Gribov and

(3)

Ponmeranchuk The theory attempts to describe the direct channel
reaction in terms of the analytic properties of the crossed channel
amplitudes as a function of the cross channel angular momentum, In
this section we briefly explain the mathematical concept and also

introduce the notation, which we shall use in the following chapters.

Consider the direct channel {s-channel) process a+b — c+d and

let it be described by the amplitude £°(s, 9,) where
8 = (centre of mass energy)?

9s = gecattering angle in co.m.

Consider also the crossed channel (t~channel) process a+c = b+d
(where bars indicate the corresponding anti-particles) and described
):

by the process ft(t, o,

where t = (c.m. energy)?

9t = gcattering angle in c.m,
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The result of Regge on potential scattering for the t-channel process

in the limit cos st ~ o

B, (t) ' .
ft(t, Gt) - E: — (cos et) i
cos 6,~» 4o sin nai(t)

where ai(t) are trajectory functions associated with the Regge-poles
and Bi(t) are residue functions, and the sum runs over t-channel Regge-

poles, The relativistic generalization of the above formule is

; a, (t)
0t 0) ;e Z: £, (£) B, (t) (cos 6,) *

where §i(t) is called the signature factor given by

-ima, (t)
1+ te

£ (t) =
sin uai(t)
vhere T = *1 is the "J-parity" or signature, and has to be introduced
in relativistic scattering due to the direct and exchange forces. The
functions ai(t) are called Regge trajectories, and describe the family
of particles, since a value of t such that ai(t) is a non-negative
integer is & pole of the amplitude and hence a particle.

There is then an important and most powerful tool of crossing
syrmetry, For spinless particles f°(s, Gs) = ft(t, et). It means
that if the function f is analytically continued from one physical
region to the other (they do not overlap), then both the processes are

described by the same function, Since
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where t = - (momentum transfer)® in s-channel, therefore the region of
high energy s >> 2m® and small momentum transfer |t| < km® in direct
channel corresponds to having cos et - o, Using the Regge-asymptotic
form and the crossing symmetry, one gets,

S—»

a, (t)
£(s, 6.) - Z g, (£) B, (t) (5;) i (1.1)

valid for s >> 2n® and [t| < m®, where s, is a scaling constant.
This is the most far reaching result of the Regge theory. The
asymptotic behaviour in cos 6 of one reaction here gives the observable
high energy limit of the reaction corresponding to the crossed channel,
Further this crossed-channel theory is very desirable because
experimentally high energy reactions are characterized by a definite
correlation between the peaking (or lack of it) of a reaction in the
forward or backward direction, and the existence (or lack of it) of
particles with quantum numbers exchanged in the respective crossed-

channel.

At asymptotic énergies, a reaction will ultimately be dominated
by the single trajectory with definite quantum numbers; Isospin (T),
Strangeness (8), C-Parity (C), Parity (P), and variable spin a(t). Let

this leading trajectory be o (t), then (1.1) reduced to
%,

1 + 7e

—i'l'l:tlL(‘b) o (t)
(="

(¢ —
g U sin nu.L(t) \ 8o /

This gives the differential cross-section



For fixed t, therefore, the differential cross-section of all reactions
with the same exchange of quantum numbers will have the same power

behaviour,

Further, to make contact with experiments, we have the optical
theorem, which relates the total cross-section with the imaginary part

of the elastic scattering amplitude in the forward direction (t = 0),

0o (5) & % In £(s,0).

So far, we have taken & very naive picture of having simple poles
as in potential theory. But as we shall see that in strong interaction
dynamics, which is governed by J-plane singularities, thes;a
singularities may be poles, cuts or other essential singularities,
Unfortunately at present, there existsno reliable method for computing

theoretically the strength of cuts or essential singularity contributions.

2, Diffraction Scattering

The scattering in which the vacuum quantum numbers (Baryon no.
hypercharge = T spin = 0) can be exchanged in the t-channel is called
Diffraction scattering. All elastic scattering sare of diffractive
nature and any two-body inelestic reaction A + B = A' + B' in which
A' and/or B! have the same internal quantum numbers as A and/or B,
would look like diffraction (called the diffraction dissociation).
Similerly; in many-body reactions if the final partlcles can be
combined in such a way that the internal quantum numbers of the group
of final particles are the same as that of inltlal partlcles, then

vacuum quantum numbers can be exchanged. See figure No. 1 below.
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Internal quantum numbers as B,

el

Internal quantum numbers as A.

Figure 1

On the contrary, any reaction, for example, k™p — n'n*A,
cannot be of diffractive type since none of the two particles in the
final state can be combined to give the same internal quantum numbers

as the initial particles,

3. Froissort bound

(5)

It was proved by Froissort that for the scattering of scalar
particles the total cross-section can at most behave like (logs)® as

8 tends to infinity. This bound on the scattering amplitude with the
help of the optical theorem (unitarity) would imply that a(0) <1 for
all trajectories. We shall see in the following section that this
bound coupled with the constancy of total cross-sections would lead,

at very high energy, tc the appealing suggestion that forces are as

strong as possible if a(0) = 1,

Lk, Pomeron Trajectory

Pomeranchuk in 1958(6) has conjectured two theorems about the

high energy limits of total cross-sections, namely:



(1) oy = o5 88 § 2 o,

where a is any particle target and b and b are particle and anti-

particle beams,

1
(i1) oa;r - oa;r as s - o,

where UabT and oabT' are the total cross-sections for any
collision (a,b) in the isotopic spin channels T and T' respectively.

The firgt theorem was based on dispersion relations ahd the assumption
of a finite radius of interaction, which implies that total cross-
sections approach constants at high energy. This theorem has since
been refined by a muynber of authors and established under much wider
conditions., To explain this feature of apparent constancy of total
cross-sections as a function of energy, & trajectory which is called the
Pomeranchukon or Pomeron trajectory P, is postulated. From constant

total cross-sections, the optical theorem coupled with the Froissort

bound demands that aP(O) = 1,

Since the nature of the Pomeron trajectory is the subject of our
thesis, we shall only describe in this section a few facts which are
fully established. In the last chapter, we shall review the details
of the present status of the Pomeron trajectory.

Firstly the quantum numbers of the Pomeron are that of vacuum
implying that Pomeron exchange in the t-channel is consistent with

diffraction scattering, This can be seen as follows.

Since many elastic amplitudes involve a two-pion vertex P = +1
and G = + , the signature 7T -1s positive. (In this section,
we shall also give two other convincing reasons for the Pomeron to have

a positive signature). The second theorem implies that cross-sections
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in the limit of high energy are independent of isospin. This means
that Pomeron has zero igospin. This means that Pomeron has zero isospin.
From the first theorem of Pomeranchuk, applying line reversal, one can
ghow that Pomeron must have positive charge conjugation. This also
follows from T = O and G = +ve, or from the fact that only mesons with
C = +ve contribute to spin average total cross-section.

We glve two more reasons to establish that the Pomeron must have
positive signature. Firstly, the signature factor can be written as

1 -
-——-——-—-—-—[exp(—iﬂ%i‘-Z)J for T = +ve

gin(na(t))/2
E(t) =

1 o
S —— [ exp (—i Egéﬁl > for T = =ve

cos(ma(t))/ 2

ne_(t)
If T a -ve, then cos -—;&—- = 0; &(t) would have a pole at

t = 0. To avoid this one has to assume that the signature is positive.

The second motivation is more convincing. The Pomeranchuk theorem is

Opota1(80) = Oy iq (8D)

The t-channel reaction of the left hand side and the right hand side
are respectively ad — bb, and & — bb. Now 8, in the t-channel
c.m, in the first reaction, is the angle between a and b and in the
second the angle between a and b. Since a and & are in the centre of
mass system, therefore cos (et) changes to - cos(et) in going from
reaction aa = btb to 8a — bb. We know the positive signature
amplitude is symmetric as a function of cos(et), since the
contribution of such a Regge-pole to ab and ab elastic scattering is

the same, Hence only a positive signature Pomeron trajectory can

account for the equality of atot(ab) and atot(ab) .



5. Comparison of the Pomeron trajectory with other trajectories

One of the most far reaching consequences of Regge theory is the
classification of particles, that all known particles and resonances
could be grouped into families, each family being associated with a
given Regge trajectory, and consisting of several members differing only
in the spin quantum numbers by alternate 1nteger or half—integer.

The square of the mass of the particle of spin J would be the value of

t for which real part of a(t) is equal to J.

Chew and Frauchtshi, making simplest possible assumptions, drew
straight lines representing a(t), Joining particles with the same
internal quantum numbers and differing by two units of spin and
deduced that the slope of the trajectories p, m, w, A,, N ... are

equal to

2%%?2 = a'(t) x 1(Gev/e)™® .

All these trajectories are now regarded as reasonsbly well

established, but doubts exist for the Pomeron trajectory.

For example, if the slope of the Pomeron trajectory is similar
to that of other leading trajectories, there should be an indefinitely
continuing shrinkage, as the energy increases, in forward peak widths
for all reactions, both elastic and inelastic. More precisely, if
q; (0) is the Pomeron trajectory slope at t = O and h is the peak
width in |t], then for all reactions with the Pomeron exchange the

inverse peak width is predicted to behave as

n~* = constant + 2a£(0) log s
S~

vhere s is the square of the total energy. Unfortunately this

shrinkage is slow and difficult to observe. For example, in the range



9.

of lab. energies between 10 and 30 Gev a typical value of the inverse
width h™! is about 10 {(Gev)™. If a;(o) is 1 (Gev)™, as is true
for other leading trajectories, then the peak width is predicted by
the above formula to decrease by only 20%, where s increases by a
factor 3. For lab. energies below 100 Gev, variations of such an
order of magnitude in the shape of the forward peak can easily be
produced by trajectories lying below the Pomeron,

Another long standing difficulty with the interpretation of the
Pomeron as a Regge-pole has been the apparent absence of a JP = 2t s
¢ = o* particle on the trajectory. If we take the recent experi-
mental data from Serpukhov(7), which show a significant shrinkage in
the diffraction peak in pp scattering, then the Regge fit yields a
value of 0.4 for the slope of the Pomeron trajectory. Therefore,

if the Pomeron trajectory is approximately given by
aP(t) = 1+ 0.,b %,

then a linear extrapolsetion would place the particle at a mass of
1730 Mev. No such resonance has been seen so far. Therefore, doubt
exists on the very nature of the Pomeron trajectory as compared to

other trajectories.

In this thesis, we shall investigate the nature of the Pomeron
singularity and also for the comparison study the nature of the Rho

trajectory.

There are several ways whereby a branch point and a pole can be
experimentally distinguighed. One, suggested by CGribov; utilizes the
fact that a pole has a good parity but a branch point is unlikely to
have a good parity. And the other uses the well known fact that a

simple pole must have factorizable residues, whereas for a branch
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point the factorization does not hold., In the next section, we
show that there is every reason to believe that branch points exist

in the J-plane.

6. Cuts in the J-plane

We include this section to show also that cuts can have dominé.nt
influence at high energy in elementary particle physics. In non-
relativistic potential theory, the only singularities occurring in the
J~plane to the right of the line Re I = -%, are the Regge poles.

But theoretical arguments exist(e) that for hadron reactions, once
Regge poles are introduced, the cuts in the J-plane are inevitable.
These authors showed that cuts would normally exist if two Regge-poles
are exchanged. Specific models have also been suggested that show how
significant a part cut can play at high energy. It is hown that if
al(t) and az(t) be two Regge poles, then the cut going to the left

from a position ac(t) in the J-plasne is given by

! al
1 * Tz
at=a0+ao-1+______._t.

The main thing is to eveluate the influence of a cut at high energy.

It is shown that the dominating contribution from the cut is given by

a (t) _
Bc(t)<»§z>é(t (_1og§0)° v>o0.

One can glve examples to show that cut can play an important

part. For example, take the charge-exchange reaction =n'p — 7°n ,

the cut can be due to P and p, and if GP(O) = 1, then
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ac(t) > ap(t) for t < 0.

In other words, the contribution of the cut is expected to dominate
over the p-exchange contribution for all values of t except possibly

at t = 0,
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CHAPTER II1

Factorization Test for the Pomeron
in Three Particle Final States

1, Factorization Test

The one particle exchange (OPE) model has one characteristic

property that coupling constants occur twice (fig. 2).

Figure 2

g related to one vertex and 8ped to the other vertex. Now OFE

aec

model gives that its amplitude must be proportional to 8oec Bped’

that is, it factorizes into one contribution from each vertex, We

see its parallel in one Regge-pole exchange.

For one pole contribution in Regge-pole model the amplitude «

s \a(t)
B(t) &(t) (-;— ) . If factorization holds, it turns out that the
(o]

residue function

B(t) = (known kinematical factors) 7aPE(t) 75palt)

in the t-channel.

There are two practical points of importance of this factorization
property. Firstly it is the property of one Regge-bole exchange, and
two Regge-poles or cut would desctroy factorization. Secondly one and
the same Regge-pole coupling 7aPE (t) may occur in different reactions,

since it is independent of how the Regge-pole couples to the other two
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particles. Therefore, it relates together different reactions, We

explain this by an example: let pp, mp, nn Dbe elastic scatterings

and assume asymptotic energy so that the Pomeron only contributes.

el el
Factorization implies T a y T a 3
P pp © "pPp "pPp * “mp  “mpn "pPp °
el . .
Tnna‘ynPn 7nPn' Hence factorization immediately yields the relation,

0ot (PR) 0 (nm) = (o, (wp) )2 .

This is a safe theoretical prediction depending upon the exchange of
one Regge-pole "P". So for O €5 total cross-section is not
measurable experimentally at high energy, and so one is not able to

test this hypothesis.

This conjecture of factorization can be studied in any diffraction
dissociation process. Freund(9) applied this to the two body inelastic
processes pp — pli* ; mp — mN* vhere N* is a T = 1/2 nucleon
resonance., In the latter case, the cross-sections are much smaller,
but factorization could nevertheless be qualitatively tested and was
found to hold with in errors. Since it was suggested(lo) that
Pomeron is not a pole, but a much more complicated singularity, it is
therefore of great interest to study the factorization for all
diffraction dissociation processes. To test the factorization for the
Pomeron exchange, Freund applied the formula to elastic and inelastic
reactions,

do ag, . do,; L
st(ep=pp)  Fp(pp-p*(1400)) == (pp~pit*(1688))

~ ~
~ ~

%E(‘ITP-» D) -g-%(np—t nN*(1400)) %%(np-» v (1688))

At t =0, the experimental date gives the values of the above equality
2.7, 3.2 and 2.9 respectively with background errors of 0.6. This

means factorization holds for the Pomeron in this case. One can make
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the conclusion that since the sum of a leading Pomeron and the
Mandelstam cut it generates is not factorizable, the factorization of

the Pomeron means that cut effects in such a model can be small.,

Good and Walker's(ll) idea that diffraction dissociation may
play an importent role in high energy hadron collisions has recently
received strong support from a detailed analysis of 3, 4 and 5-body
final states in pion-proton collisions. For the processes
np ~» 2m¥ (N = nucleon) and mp = 2nA (1238 Mev) at 8 and 16 Gev/c

are found to be (h’la)

strongly dominated by the dissociations of the
proton into 7N and =nA respectively. Similarly in four body
reaction(ls’lh) ©p = 2n n'p at 11 and 16 Gev/c and 5-body

reaction np— 21 n'n°p has revealed marked diffraction dissociation.
The lengthy technique for this evidence cannot be given here, But
briefly it is based on the smallness and approximate constancy of
transverse momenta and makes use of the esppropriately weighted
distributions in longitudinal phase space, thereby deriving from the
bubble chamber data highly differential information on the collision

amplitude.

2, Factorization for the Pomeron in Three Particle Final States

From the above experimental evidence it is useful to write the
factorization formula and check it with the available experiments(IS).
In this section we develop the theory to derive the test and then make

conclusions by compering it with the data at 10 Gev/ec.

a) Derivation of the formula:-

First, take the reaction 7N - 7N and let p and q be the initial

four momenta of the nucleon and pion, respectively; kl and k2 are the



15.

final moments of the pion and p' is the final nucleon momentum

(fig. 3).

q Ky
¢ . -
— T =%
S p " L.
7 - Vi 7
N N e

_Figure 3
(Pomeron exchange in the reaction n¥ — ami )

The inelastic differential cross-section is given by

1 M2
day() = s e B (8) H8) GO, 060, ey + 0 - a0

a%k. a3%k_ d3p'
1
x 2 (2.1)
w W E!

where w,, w, and E' are the energies of the final pions and the
nucleon, M is the nucleon mass. The varisbles t and W° are given
by

t = -(a-%k)% W = -(g, +p')?

F and G are quantities

= 2
an(t) = |< k, ; Plg >
< .
G2, t) = ) [<ky, p'[Pp >[®
spins
and means sum over final spins and average over initial spins.

spins
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E(t) represents the square of the exchanged trajectory's "propagator".

Equation (2.1) simplifies to

(x) - ol (t) &(t) a(w?, t) s
dO‘ T = F t §t G t . .
in 8(2n)5 Flux ° ’ W,
5(w, + w_ + E' - w - E)a%p!
Lor T v P (2.2)
waE' .

Each of the last two factors in the equation (2.2) is Lorentz invariant
and may be evaluated in any convenient frame., We evaluate it in the
frame k, + _g_' = 0, and label it by the subscript v. Now

W = (p‘tra + M2)1/2 + (plva + u2)1/2

where u is the mass of the pion.

. d‘w ’ t ] T [ ]
e 3‘1;3" = p /B, + 0 iy, = Wp [ (W, EI) (2.3)
Therefore
3 3 1
B(w, + w, + E' - w - E)a®p' ) 5(w1v W - Ev)d P,
] ]
waE wavE v

8(w,. +W-w =-E) dp! 1
- lv v Y p'2 Yaa, =<-—‘—'>d9 .

' v P p!
w2v Ev dv v W v
Thus, we have
8(w, + wo + E' - w - E)d®p' p!
MG - (X Van, (2.k)
W, B! \ w / pv
Also
a3k a3k K2 dk
g P VY 1 dw . AR (2.5)
v i, Vi gy,

where L denotes the laboratory frame p = O,
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Now

2 2y1/2
vy = (K * %)

. . (wmﬂﬂm =(Hﬁ”ﬁﬁ (2.6)

From (2.5) and (2.6), we get

dskl
k 1L dwlL ko
w, 1L

3 dwlL(sin 0.1, delL)dolL (2.7)

We now calculate the differential in (2.7) in terms of t and W2, For

that we need the relation

Jt 3t
. d(cos elL) dwyy, ( ) o5
dt d = d(cos 8..)aw 2.
) W2 §_w_2__ 1L 1L
d(cos 91L5 owyy,

Let us calculate the Jacobian.

t = -(q-k)® = 2u®+2qk
= 2u2+2q. k.. cos 0. -2u.w (2.9)
L 1L 1L~ LML
g | 2y%
with k. = (w“{L p2)
W o= -(kp+p')? = -(g+p-k)?

s+uf+2(qg+p).k

2 -
s+u®+ 2(2_+_1_))L. ks, 2(a + pO)LwlL

s+u+ 2qu1L cos 91 -2(M+ wL)wlL .

L

(2.10)
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From (2.9) and (2.10), we have

ot ot Wy
R . — = -1 6. -
d(cos 6..) 2qL le ’ ow 2qL k P 2WL
1L ' 1L 1L
w2 w2 wyr
d(cos 6,.) 2qL L’ ow 2qL k "1 2 WL)
1L 1L 1L
Hence, the Jacobian is
Therefore, (2.8) reduces to
at aw® = Mg, k. (sin 6,4 delL)dwlL (2.11)

From (2.7), we have

dakl 1
= — dt W a0 . (2.12)
LA thL

Putting (2.4) and (2.12) in (2.2), and since Flux = Mg, , we get

1 1
do, (%) = 32(%;;.;%. F_(t). &(t). (w2, t)
% (p"r/W) a8, at a® ae (2.13)
\'2

The lower vertex in figure 3 represents the scattering
P+p - k2 +p',
vhere the mass-squared of the Pomeron is -P* = -(q - k) = t.

The differential cross-section for this process is given by
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Mg 1 d.skz d3p|
dop = . . 8%(k* p' - P-p)G(W",t) ~—— —
L(2x)2 Flux W, E'
M 1 8(w, + E' - P, ~ E)d3p’
= . . G(W3, t) 2 2 .
k(2x)® Flux v, E'

However, as before

1 _ - 341 -~ E' - - o

8(w, + E P, - E)d% i 5(Wév E; - P, Ev)d 1 M
1 1
W, E Wéva

1
B
W pv

Hence,

M2 p '
do, = — G (WP, t)<—1’>dn.
4 (2n)2N W Py

or [ G(w2, t) (%—')dﬂp\.’ = h(21t)2—;- op (w2, t) (2.14)

where N denotes the flux for the process and will cancel out from our

relations eventually.
From (2.14) and (2.13), we obtain

1 N
F
8en)® W(q])2 ™

doin(n) = (t) &(t) cP(w2,t)dt aw= de,

L .

Integrating the R.H.S. with respect to ¢, we explicitly get

>0 ; g (t) &(t) o (W3, t) (2.15)
—————emee— = t a. .
3t w2 8(2r)2 W ()2 ™ P 7

(2.15) is the final form of the inelastic differential cross-section

for the process nN — nnlN .
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Similarly, we treat the process NN -~ nNN (Figure 4)

a . N N . k1
r 4 P
P ko .
T ’441 -
P N -7 T=3
4 N V4 p'
Figure b

(Pomeron exchange in the reaction NN - NmN).

The details of the calculation are the same as in the case of the
first process. In this reaction we find,

2
o ain(N) 1

N
W 2(en) B Fy(t) &(t) o (W2, t) (2.16)

where FNN(t) =Z |< k ,Pla >[® .
spins

We now calculate the differential cross—section for the elastic

scatteringe mN — =N and NN - NN (Figure 5).

q'
1 /) s
P
P, , P
P4 r &
Pigure 5

In the case of NN - NN

M4 1

= . . F_(t) £(t) F__(t)
% (2x)2 Flux NN( ( NN(

5(w'+ p' -w-E)da%q’
W E
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M4 1

= . « P (t) e(t) F,.(t) Pan
(en)2  Flax W NNy
e 'n<) (¢) 2
a2 =, —— . F_(t) £(t) F.(t) = sin 6 d6
on Flux W N g
Hence,
o LM (t) &(t) T (t) (2.17)
=T A F._(t) &(t) F. (t 2,17
at 16n W2(py . )@ W NN
c.m,
Similarly, for nN - 7N, we get
Yot L ¥ (8) £(t) F () (2.18)
& = F_(t) &(t) F_ (¢ 2.1
dt 16 We(pr )2 ™ N

From (2.15) to (2.18), we get, at given values of W® and t,

q; )2[ (%0, (n))/ (3t BWZ)] _ (B;.:.E:. 2[ (a0, ,(n))/at ]
o/ L@, )/t af) w7 Llao ) /e

(2.19)

However, since

(ap)? =. HIF W2 - (M + u)?] (W2 - (M - p)?]
@2 = Z5 W - we)

(pz.m.)2 = TJ}JE W2 - (M + u)2) [ w2 - (M~ u)2]
(Py.p )2 = § (W - W)

From these expressions, we find that

T n
9, \2 Po.m, \ 2
N = \N
qL pc.m.
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Hence, from (2.19), we obtain the factorization formula

(2.20)

[ Bzcin(N) Bzoin(n) }

[ dael(N) ddez('l’t) ]
ot ow® ot ow?

dat dt

Equation (2.20) is the basic result of our calculations. The inelastic
ratio on the left hand side for fixed t must remain approximately
constant as W2 is varied. This would by itself be an evidence for

factorization.

b) Comparison with experiments

The abové factorization test is expressed in terms of a double
differential cross-section (at fixed momentum transfer and invariant
mass of the two-particle subsystem in the final state) of the inelastic
reactions, In applying it to the reactions =N — mnNand NN - N,
we find that experimental data at the same value of momentum transfer
for the two reactions are not available. We have, therefore, averaged
them over a range of momentum transfer 0.01 < |t| < 0.2 (Gev/e)Z2.

It is obvious that Pomeron exchange in the two reactions discussed
requires that the (nN) subsystem in the final state have T = 1/27 The
T = 1/2 contributions in the data have been estimated by making use of
the results of Boggild et 81(16), who have shown that at the 19 (Gev/c)
proton-proton interaction there is a predominance of 70% of the (7N)
system in the isospin T = 1/2 state, and similarly in n*tp interactions,
by the longitudinal phase-space considerations, there is a dominance of

80% of isospin-1/2 states of the (nN) system in the reactions,
a'p » n*(2*n) and w*p » 7t (n%) or n'p = n°(n'p) .

Experimentally(17) the curves of the inelastic mp and pp inter-

324 -
actions relevant to our calculations are given as 5%-55 mb/. (Gev/ c)®
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plotted versus the ratio p/PeZ of particle momentum to that of
elastically scattered particles at the same angle. For our purpose,

we require to express the ratio p/pez in terms of W.

For n'p interaction, p/pe! can be expressed in W2 as follows.

(see Figure 6).

T T

p, —-—-—-—- >- e
/”’, P
P g~
Figure 6
. e

tnelastic (p, - P)

= M +W +2p,.P (2.21)

Also energy-conservation gives

L L, .L
M+ Po = Pt ¥

In the laboratory frame, D, = 0, therefore, from (2.21), we have

oM + DMp- oMp' L 4+ oMpP

D)0 107 o

2Mpig+ MW - b

i.e,

Also



2k,

or
P (o), bt oW oM By,
Pes ] piL) ] tel + oM p&o .
Now, since t is small, we can approximate the ratio by the
formula

P M - W+ 2M iy

—— S

Pay M Y1,

where v is the incident pion laboratory energy.

Similarly, for the pp interaction, we use the following formula to

obtain the value of W from experimental given ratio p/pez = x (say),

x(p, )2 + M M - WE o+ 2ME
(:)zma ) ( )

where EL is the incident proton laboratory energy.

For the ='p inelastic reaction, we use the date(17) at 10.02 Gev/c
incident momenta in the range of momentum transfer 0.01 < |t| < 0.2
(Gev/c)2, and for the pp interaction we use the data at 9.86 Gev/c
incident momentum for the same range of momentum transfer. In Table I
we glve the experimental values of the ratio of the inelastic cross-
sections for different values of the effective mass W of (nN) ranging
from 1033 to 2113 Mev, In the ratio, we have taken into account only the
T = 1/2 contribution at high energy, as explained in the beginning of
this section. Similarly, Table II gives the ratios of the elastic
differential cross-sections of pp and x*p at 10.8 Gev/c incident momente

for values of momentum transfer in the range of 0,058 < |t| < 0.268

(Gev/C)a.(la)
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Table I Ratio of the Inelastic double differential cross-sections

of pp and 7'*p.

W(Mev) Ratio W(Mev) Ratio W(Mev) Ratio W(Mev) Ratio

2133 2,28 1926 2.17 1719 2,34 1338 2.h5-

2091 2.31 1901 2.70 1691 2.k2 1315 2.37

2068 2,31 1876 2,61 1663 2,58 1278 2.35

2045 2,35 1851 2.4 163k 2.50 12h1 2.43

2022 2.4 1852 2.28 1483 2,17 1202 2,43

1998 2.50 1799 2.4k 1451 2.32 1162 2.27

197k 2,61 1773 2.6 1418 2,ho0 1121 2.27

1950 2.71 17hb 2,46 138k 2.33 1033 2,32

Table IT Ratio of the elastic differential cross-sections of

pp and w'p.
-t  ’Ratio -t Ratio - Ratio
+,0.058 2,48 0.157 2,16 0.256 2.31
"0.08l 2,39 0.20% 2.29 0.268 2.10

0.116 2,33 0.250 2,20
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¢) Results

The comparison of the two tables shows that the inelastic ratio varies
from 2.71 to 2,17 and the elastic ratio varies from 2.48 to 2,10.
Further, within the range of the variation 0.01 < [t| < 0.2 (Gev/c)?

in Table II,the ratio of the elastic differential cross-sections varies
smoothly. This shows therefore, that our results agree with the
factorization formula, thus favouring the possibility that the

Pomeron singularity is a simple pole. Also we notice that the case
discussed by Freund is a special casge of our result, In addition, here
we do not have any difficulty about the "background" which one has to
subtract from the experimental results in order to find the resonances.
We conclude by observing that since the usual Regge analysis of elastic
processes involve more than the Pomeron, specially at 11 Gev/c, the

comparison with inelastic scattering is surprisingly good.
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CHAPTER III

Factorization Test for the Rho Trajectory

1. Introduction

Ag pqinted out in Chapter I, it is an =stablished fact now that
in high energy scattering, other than simple Regge-poles in the J-plane,
there can be dominant contributions due to the branch points. It is
therefore of prime importance to study the nature of the dominating
singularities,

Recent work(9’15’19)

shows that there is & good evidence that the
Pomeron singularity, which dominates diffraction sesttering, is a simple
pole, As one already knows and also from the analysls of recent

(7)

experimental data oh pp scattering the Pomeron trajectory is

different in many aspects from other dominating trajectories p, w, A2,
n and N, ete, Therefore any evidence for the Pomeron trajectory

cannot be stralght away taken to be true for other trajectories. On the
other hend, the trajectories; p, w, Ay T Ny e00o etc. are similar, and

once the nature of one such trajectory is established, then one musi

seriously look for similsr behaviour for other trajectories.

In this chapter, we shall closely investigete the nature of the
Rho-trajectory, Firstly, one must note thal among other msjor
trajectories, the Rho-trajectory is the only cne that can participate in
the charge-exchange reaction np — n°n, where it appears to be
responsible for an a-dependent dip at t = -0.6, i.e. ap(—0.6) = 0(20).
The Rho-trajectory is alsoc thought to be a leading participant in other

charge-exchange reactions such asz:



27.

kp > k%%, mm - wh, 7p > on;

wm - 1°A**, and mm - wp.

Many fits to these reactions have been made, and the Rho-trajectory
looks apparently linear in t and the wvalues of the intercept vary between
0.52 and 0.65(21)'

In the following sections we shall obtain a direct test for the
Rho-factorization and then compare it with the available experimental
data. We shall also see that in Rho-dominated reactions mixture of
parities is being exchanged. Finally, we shall make some observations

of our results about the nature of the Rho-trajectory.

2, Factorization Test for the Rho Trajectory

(a) Derivation of the formula

First, take the reaction nN — wN, and let p,q be the initial four-momenta
of the nucleon and pion respectively; q' and p' are the final momenta of
w-particle and nucleon. The inelastic differential cross-section can be

written as,

(1) M 1 1
doy /= X X x 8% (q' + p' - - p) X

4(2x)2 Flux w,E'

xI<aty ola>2 8(6) ) [<2'le, 2>, X
8pins
dsql dap'

X . . (3.1)
(2n)®  (2m)

where LAY E' are the energies the w-particle and final nucleon.

Define
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. 2
|<a's ela>® = F_(t)

|<p'lp, p >[2
spins i

where Z means sum over final spins and average over initial spins.
spins

E(t) represents the square of the Rho-trajectory exchange.
Further, the following quantities being Lorentz invariant are evaluated

in the rest frame of the final nucleon state.

8%(p" + q' - p - q)a®p'a’q’ 8(w, + E' - w, - E)a%q"
\J = ] .
W E LA
and
8(w, + E' - w, - E)a°q" P
= - df
]
w B W

where W, and E are the initisl energies of pion and nucleon. p is the
initial (= final) centre of mass momenta and W = -=(p + q)® is the total

centre of mass energy. dQ = gin6 46 4% .

By definition, t = -(q - q')?

2 2 2
+ -
m, + o, 2_;9 cos 6 2w1w2

m, and m, are masses of pion and w-particle.

dt = -2p® sin6de .,

Putting all these values in (3.1) and integrating it with respect to ¢ ,

we finelly get

o 2 1 1
(%‘E >1 ] 8(2x) g Flux g ;;1-J g Fw(t) ) ?M(t). 0-2)
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We need not know the value of the flux, because in the final results,
the flux being the same, automaticelly cancels in all the reactions.
Similarly take the second reaction mN — wA** and we obtain the

final formula for the differential cross-~section as

1 1
( ) x x — X F_(t) £(t) F, (t) (3.3)
8(2n) Flux W

where

2
Fop(t) = Z |<®"le, p >3,

spins
p" and M* are the four-momenta and mass of A** respectively.

S8imilarly taking the third reaction of =N charge exchange, we get

1 1
( ) X - X — X F_(£) &(5) Fyy(t). (3.1)
8( 21:) Flux pW

The differential cross-section for the fourth reaction ¥ — ma**

can be written as

1 1
< > X X — xF_(t) &(t) F, (t) (3.5)

8(2r) Flux W

Collecting all the results from (3.2) to (3.5) we finally get the

factorization formula for the Rho-~trajectory as

a do(w), -

—"ﬂ)(n% = wp) —,-;‘{—2(1; P = 7°n) (&)
= \JeYy

dgtw (x*p — wOA*™) do’di'btlz(n-l-p - TOA*)

The formula (3.6) is a basic result of our calculations, This must be
tested at the same centre of mass energy W and at the same value of the

momentum transfer t.




(b) Comparison with Experiments

Experimental data at nearly 4-5 Gev/c laboratory momenta exists for
all the four inelastic reactions of equation (3.6). The cross-section
data do/dt versus -t for =m*'n — pw° have been taken at 5.1 Gev/c

from Orsay-Bari-Bologna-Florence group (22).

Data for =n'p = wPA'" at 5 Gev/c has been given by Bonn-

Durham-Ni jmegen-Paris-Strasbourg-Turin group(aa).

Data for np = 7°n (23) is at U Gev/c, and data for

n*p » n°A** at b Gev/c (see reference (22), page 105) have been used.

Table III gives the comparison of the two ratios in equation (3.6)
versus negative value of the séuare of the momentum transfer. The data
for all the four reactions is available upto t = -0.55 and beyond this

reliable data does not exist.

(c) Result

Table III shows large statistical errors and therefore it excludes the
exact interpretation of the data. Nevertheless, the comparison rules
out simple factorization picture and apparently shows a significant
failure of the factorization for the Rho-trajectory, On the other hand,
there are two important points which have to be taken into consideration.
Firstly, we have used the data at much lower energies, and therefore one
cannot neglect the effect of lower trajectories, like B mesons, which
contributes to omega production and is probably significant at lower
energles, Secondly; cuts on the other hand gshould not spoil the
factorization to any great extent. Therefore,.we suggest that the
breakdown of the factorization must be confirmed by good experiments at

higher energies.



Table  III

o | g | Eee
FE('p - woa*) st(tv'p - n°A™)
.05 .229 * ,033 kg2 + ,0kg
.10 .200 + ,020 542 £ ,060
.15 .267 £ ,055 .633 £ ,180
.20 .212 + 037 LT3 ¢ 126
.25 .267 t 0Lk A73 % 09k
.30 .300 t ,105 591 £ ,363
35 175 £ .07 .329 * ,09
40 480 t .153 1.107 £ ,553
U5 480 * .199 .T38 £ k11
.50 +300 t .100 .861 t ,557
.55 360 t ,072 953 t ,632
.60 0 .02 _—
.65 .20 t,053 329 + ,11
.70 .30 % ,09 —
+ 15 0 0 —
.80 4o %t 2% -—
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We also point out that our conclusion is not very surprising, since

other evidence for the failure of factorization exists. A good example
is pp and pp scattering, where it is necessary for a simple pole
exchange, to have a zero in the w-residue at t = -0.1 (Gev)z. This

does not occur in the w-contribution to n*n = pn, as it would have

to do it factorization holds. Secondly, A, mesons are now experimentally
identified to be two closely spaced resonances of identical quantum

numbers, and therefore factorization of A, trajectory does not hold.

3. Exchange of Parity

Take the reactions =N — wN and 7N = wA**. The simplest
production mechanism in these two reactions is the exchange of the Rho
Regge~pole in the t-channel. We are interested in the decay
correlation of the unstable particle w. Simple Rho exchange implies
that pyq = 0, where ﬁmm' is the density matrix element for the w
expressed with respect to t-channel axis, Experimentally, py, 1s
1/2 in the forward direction, indicating an eppreciable amount of
unnatural parity exchange, In many other reactions; the data is
explained by adding another pole, but in this case even by adding B

meson the calculated density matrix elements still do not agree.

We observe the following:

If natural parity (—1)J is exchanged in the above reactions, then

foo = 0, Rep, = 0 and le,.,1 # 0.

If unnatural parity (-1)V*1 1s exchanged, then

Poo = 2NlFV v (s,£)[%, Repy = 0, [p,| =0

2 2°00
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But experimentally(ah), one finds ,
Poo # 0, and [p_,| # O.

The first indicates an appreciable amount of unnatural parity
exchange, while the second, the natural parity exchange., This gives an
indication that experimental data can be explained if mixture of
parities is exchanged in the Rho-dominated reactions. This destroys
the simple Rho-pole picture, and indicates that Regge-cuts may play an

important part.

L, Conclusion

Failure of the factorization and mixture of parities exchanged
can suggest that Rho-particle can be a parity doublet. This would not
be very surprising since experimental evidence of A2 parity doublet
exlsts, and therefore, through exchange degeneracy one can suggest that
if A, is a parity doublet, then so.is Rho, One can also generalize
these results and suggest that similayr behaviour can exist for other

low-lying meson trajectories.



CHAPTER IV

Parity Test for the Pomeron in Resonance

Production Processes

1. Paritx Tegz

In this chapter, we investigate another test for the Pomeron
singularity suggested by Gribov(zs). Gribov, by the reggion graphic
technique in the relativistic scattering problem, studied with respect
to parity the effect of the Mandelstam cuts which are expected to be
present. In the t-channel reaction a + b = ¢ + 4, Gribov shows
that P = (-1)9 P = +1 for the Pomeron pole and P, =11 for the
Pomeron cut; where J is the total angular momentum and P the parity
of a+b state. This has important observational consequences. If
we take ¢ = d = proton and a and b are 0~ and 0% meson respectively,
then P, = (--1)J P = (--1)J 1, 1]2(-1)L = =1 since J = L for two mesons,
n, and n, eare opposite parities of the mesons. This means the Pomeron
pole does not contribute; the Pomeron cut does. Another example, is
the reaction 0"+ p = 1 +p. The amplitude for the Pomeron pole
exchange vanishes as 8in 6 in the forward direction, while the Pomeron-
cut amplitude is small (in 'f;f).without vanishing. Gribov has not
discussed such cases but one can mention that the same distinction
could be applied when a is a proton and b is a proton isobar, the
importance of the Pomeron-pole and the Pomeron contributions being

essentially reversed, depending on the parity of the isobar.

We have used the above idea in the production of a single baryon

or meson resonance in many two body reactions. = Since in the regge-pole
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model the nature of the exchange of states in the t-channel has a
definite dependence on the polarization states of the resonances,
therefore we have considered here the specific information contained
in the final state polarization due to the exchange of definite parity

for the Pomeron-pole and mixed parity for the Pomeron-cut.

(26)

Morrison recently considered the contribution of the

Pomeron to inelastic reactions such as pp = pN* and ntp - n:N*.

He noted that while other inelastic cross-sections decreased with energy,
there is one constant energy case: that in which an N* is produced from
an initial nucleus for which the change in isospin is zero and the
change in parity (AP) and the change in spin (AJ) obey AP = (—1)AJ .
Similarly for meson resonance production Morrison found that for
reactions where the change in quantum numbers between the resonance and
the initial meson obey AT =0 and AP = (—IYAJ, the cross sections

are nearly constant. We have, therefore, considered the processes

P

NN - MN* (N¥; T =1/2,J /2%, 3t = 327) N -

P

P

(n*; T=1/2, T =1/2% 7

+
ot P
(5/27)Wp —» Ap (A5 T=1,J0 =1%),

Kp - K*{1320) p (K%, T

1, JP = 1*) and Kp = K* (1790)p,
(k*, T = 1/2, JF = 27) which are of diffractive nature. We use the
fact that the Pomeron-pole and the Pomeron-cut have the same quantum

numbers: signature P, positive, isotopic spin zero, and positive

J
G-parity. For the Pomeron-pole, in addition, definite parity is
exchanged, therefore, with the available experimental datea on differential-
cross~gections we have computed the spin-space density matrix elements of .
different resonances for the pole exchange. In the presence of the
Pomeron-cut, since mixture of parities with unknown ratio between them

is exchanged, we predict results on the density matrix elements and also

establish relations that are to be satisfied for the Pomeron-cut.
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In the following section, we develop the Regge-pole formalism
required for the single Pomeron dominant exchange and also state the
conservation laws that have been used. In this case, we then compute,
with the help of the experimental data, the relative magnitudes of
the residue functions for different helicitles of the Pomeron exchange.
The knowledge of the residue functions then enables us to determine
the density matrix elements of different resonances in different
range of momentum transfer. We also make predictions for the
Pomeron-pole and the Pomercn-cut separately. In conclusion, we shall
suggest that experiments on the decay of unstable particles, studied

in over reactions, be done to check the consistency of our results.

We have used helicity representation throughout and also used the

following assumptions:

1) The same phases for the amplitudes belonging to different helcity

states for the cut have been used.

2) The results are generally true to the leading order in the first
power of the centre of the mass energy. At present laboratory energy,

there can be sizesble corrections.

3) The residues are real functions of t and Pomeranchuk-Okun theorem

holds, 1i.e. only the Pomeron contributes at high energy.

L) The helicity amplitudes for resonance production can be written as

single dispersion relations in either energy or momentum transfer.

2. Regge-pole formalism

Consider the t-channel reaction 1+ 2 = 3 + L, The partial
(27)
1

wave expansion can be expressed in the helicity representation
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Py dasdad, (2% = ('1))‘4_'}; 3+ ) <a 70 (8) [aga > ad ()

(k.1)

where, X=X =273 A =i, -, , t is the square of the centre of
mass energy in the t-channel and x = cos (Gt) ’ Gt being the scattering
angle between particles 1 and 2, di)\' (x) is the usual rotation
function and we follow the phase convention of Gunson and Andrews (28) .
Changing the summation over J into the contour integration, and
performing the usual Sommerfeld-Watson transfomation(ag) s We can
iéolate the leading Regge-pole contribution to the helicity amplitudes
ignoring other singularities as,

¥

Mg, B0 = - (-1 z (ot 3)8;

Rea> -4
Regge poles

1222 )‘37‘4“)

1
sin n(a - )

t
X d-}\,_)‘l('x:“) X (k.2)
4o
where B~ are residues, the sign being positive or negative according
a8 J - A 1is even or odd. The asymptotic behaviour of d;)‘, (x) as
X - w, neglecting 1/x and higher powers (see equation (A.2) of
ref. 29)

r(ee + 1)

&L,x) = N E0°

(C(a+r+ 1)I(a=r+ i)I‘(u+ AT+ 1) (o= A+ 1)]'5'

(4.3)
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and
ay f(xe) = HLaY | (x) 2 a) () ]
since
a p(x) = (TP (=)

+
We write the asymptotic behaviour for d, k.(-x,eﬁ as
,-

()M (230%E) prags 1)(1 £ o 1 M@=y

[P(a+ A+ 1)I(a= A+ 1)r(a+)‘"+ 1)M(a- 2+ 1)]% .

+
dk’ _RI (-x’a) =
Equation (4.2) can therefore be written as,

o -x(-1)¥N Z (a(t)+ %) x I'(2a + 1)

Re a> -%
Regge poles

Py, (8%)
12 3

+ o1 n(a-1)

[ 1 . x Bt (t))( (_é_x)a(t) C.. (a)
2 sin n(a - ) MAssdgr, AN

(4. h)
where A, \' dependence has been explicitly taken out in
AEM!

() : 4
G [P(a+ A+ 1)T(a =2+ 1)I(a+ A"+ 1)P(a= 2"+ 1)1%2 (4:3)

Further, since we consider Boson exchange,

1+ i (e-)) (-1)} + g~ine

2 gin n(a - 1) 2 sin na

and this factor can be combined with ﬁt(t) for all helicities.
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Redefining

% %

B}‘l)‘z’)‘a}u = B)‘llz’)‘a}m for even A
and

t x

ﬂllka'kal4 = -ﬁx112’13m4 for odd A .

Now I sign corresponds to the signature of J in
~ina
e

+ 1t
et L e |
Mo hgdy 2 sin na

Secondly, we absorb the t-dependence of (-x/2)a(t) into the

residue functions

* - -k, q aft) |
s " | it ] B
where
xkyqy = f_:_ngf_)_
and
8 (t) = I+ - (“Mf"@:i"”é-hﬂf)
such that

8 = s54(t) ]a(t) .

JOIE DR [u(M ot 1 el

(t) .

Incorporating these results in equation (k.4), we finally obtain the
formula for helicity amplitudes:



ko,

Fxlxz,laxsth) = -n(-l)l-x' }: (a(t)4~%)r(2a(t) + 1)

Regge poles

T

(¢) {2

- 5. (t) “(t)
g [ 2 sin na ] ( thlMZZSM )£> 112:1 A
(4.6)

Differential cross-section in the s-channel can now be written and by
crossing relation for heliclty amplitudes(3o), and including the
normalization factor, the differentiel cross-section in terms of the

t=channel amplitudes can be written as:

i T, Tz, ) 1
® " Gl (s 1E) - ] (25, +1)(2s,+ 1)

" Z 1%y g agh, (8 F
A

where the product of masses appears for the fermions only, and 8, and
s, are the spins of the initial particles, In this formalism, if

one Regge-pole dominates, then the differential cross-section can be

written as:

u1‘r(2M ) 1
5u[(s M -E)2 - mﬁé] (25, +1)(2s, + 1)

(27
Q

x (a(t) + )

[}
<H

1+ cot2 na(t)

] s = 5,(t)
x [T(2a(t) + 1)] "( + tan? 3&(&)) (u(MMMa:I)?>

1+ %
L L T TG
8

2a(t)
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The above form is for 8 & w, or x = =-w , with t finite and
negative, This is the main formula, which we shall use to find the

unknown residue functions.

2 Conversgtion Laws

(1) The parity conservation law: This law holds among strongly
interacting particles and it reduces the number of amplitudes to half.
Following Jacob and Wick(27), we have

Na N (sg+se)-(sy+85) 5y
= - -

F F
'}‘1')‘2’ -)‘3-14 M, Mo )‘1)‘2’ }'3)‘4

i

(4.8)

where qi is the intrinsic parity of the particle i.

(i1) The G-parity conservation law: In the cases where the two
particles in the initial state of t-channel are NN, this implies
restrictions on the amplitudes. The use of the asymptotic property of
the d-functions (equation (4.3) ), and the definition of the G-parity
at NN state,

J+T
(-1) |3, Mg Mg > e

¢|J, Ay N>

We derive this relation involving G-parity by writing the amplitude as

J
MZ (27+ 1) < 22|77 (1) 205 > 4

ooy T UL Sy ke he

MZ (25+1) < a2, |9 (t) 64y > < ,\gmg(t)aum > d‘{“(e)
i

ug(-1)’ (-1)"“(-1)1“-)172 23+ 1) < 20|77 (8) g2y > a2, (6).
J
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Hence the relation

(-1 7, (-1)" £

Fxs}\’)]\])ﬁ = }‘37‘4:)'1?)‘1\; (h.9)

where g is the G-parity of the Pomeron. In our analysis we shall
teke g Pj(—l)T = +ve, for all the reactions, In this case, the
Pomeron pole, cut, and also P', p, w, ¢, n, etc., Regge~poles and
the branch points arising from the exchange of these poles and
n-vacuum poles can be exchanged. Through our assumption (3) we
exclude all poles llke: =, py, ... of the isotopic spin one at high
energy. Table IV for ng(-l)T = positive, gives the possible

trajectories that can be exchanged.

T g Pj Assoclated trajectories
0 + + P,P',A,B,c,f,x,'ﬂ, seoe
0 - - w,°’ see e
l + - p’ evee
1 - + ﬂ, A2’ soee

Table IV

Trajectories exchanged due to gPJ(--l)T = positive

(1ii) The law of definite parity exchange: We use the definite
parity conserving amplitudes. By taking linear combinations of
helicity states, we construct states of definite parity and form parity

conserving partial waves amplitudes of (-1)J and (-1)J+1

parities,
as partial waves amplitudes can have contribuﬁions from states of bvoth,
even and odd parity. Keeping track of the number of such combinations
of partial waves amplitudes, we deduce by the method glven below the

relation for (—1)J and (-1)J+1.
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Fkﬁg,lslﬁt’x) = (-1)¥M Z (25+ 1) < A0, [T (6) g2, > dir (x)
Kj
= (MY Z (27 + 1) < M0 |RIG >< 2 [P (8) 22, >
J X d'{x(x)
1 PPy > = (-1)"[).P S
Pl > = (-1)75t82 g g |y, >
then

(£,%) (-1 ()"
F x) = .. (- -1 F
MAzsdghy 12 RO NP ¥ W)

Therefore,

() 1f (-1)J parity is exchanged in the intermediate state, then

8,+s A
F t = -1)t 2 () F
Moo }‘3}‘4( ) Y 2( ) 1) = =AasAgdy

Similar relation holds for the other vertex.

)J+1

(II) I1f (-1 parity is exchanged in the intermediate state, then

8,*s, A
F = - np(-1) 1) F
klla,lal‘ e ( =M Aoy

These two relations enable us to put restrictions on the amplitudes in

cage of the Pomeron-pole and cut(51).
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4, Expressions for the density matrix elements

The most convenient form of the expression for the density matrix
elements expressed by continuing in terms of the t-channel helicity

amplitudes is given by Gottfried and Jackson(se),

o ‘= N Z F F*
mm* MAorgl TN Ay, 0!
l1121314 .

where the normalization congtant N is fixed by the condition that the

trace of matrix p |, =1, and my m' are the helicity quantum numbers
m

of the resonance. For convenience, we shall while writing, denote

m, m' as twice the actual values of the helicity numbers.

The number of independent megsurable density matrix elements for

half integer spin J are:

o] l1<m=27

m

Re p n<m<27J
mn

p O<m=s2J

m-m

and in case of integer spin J,(BB)

P O<m<Jg

mm

Re p In] <m< J
mn

P o<ms J .

m-m

Using equation (4.6), we express the density matrix for our purpose

as,

x hd "
Z R WL
-4
o] ]

mm? Np(t)

(4.10)
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where,

N(t) = | (-0 Riﬁgﬂalﬁt) O

NP(t) is calculated from the formula (%.7) by fitting the available
data on differential cross-sections for different processes. This
enebles. us then, to find the residue functions for different helicity
states of the Pomeron exchange. Since Cn,(a) are known, we can

compute p '(t) for the given range of momentum transfer,
mm

5. Application to different processes and predictions

(A) NN - NN*

(1) For N*(1400), J© = (1/2)*, T = 1/2 we are left with six

helicity amplitudes after applying the conservation laws.

For Pomeron-pole P, (-l)J'P +1, hence only (-1)J parity
conserving amplitudes contribute, We are therefore left with the

following four independent amplitudes:

Fijo y2; 2 v2 3 Fye i, va -1/2
Fija -y2; ve y2 b Fyz -y2, y2 -y2.

The differential cross-section for the Pomeron pole at high enexrgy can

be written from the above formula

do kl 2 2
® " ey () Ve x[M(enp(t) + 1) T x

m:cc) > y ( s - (3P +102 - t) >"‘°x=‘t’

X (1 + cot® Y
b (M3Mx)2

X NP(t)

where
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Np(t) = Rin 10,12 ‘{‘/alcooI2 * (Rile -1/2,1/2 (it)2+ Rila 12,12 -1/2)

2 2 2
x e ol® + Ry/p -1/2,1/2 _yeltnl®

There is only one independent density matrix element p, , for

which the absolute vslue of Py for N* is given by

Py (8] = (Ryyp 172,172 12 By/2 -1/2,1/2 1/2!Cool [Casl
- Ry/o 1/2,1/2 -1/2 Ry/2 -1/2,1/2 -y2/Cal lcul),/mp(t) )

Individual residues must be determined to calculate Ipl_l(t)l. We have
used the data for pp — pN*(1400) given by Anderson et al.(sh) at the
incident laboratory momenta of 10, 15, 20 and 30 Gev/c in the range of
momentum transfer -0.1% < t < -0.013 (Gev/c)®. Our input for the
parameters of the Pomeron trajectory is aP(t) =1+ (0.4 * 047)t, which
has been taken for the latest high energy data of Serpukhov(7). We
have also assumed the residues to be linear functions of t, i.e.

Ri () = @, + Bt where o, and B, are the constraints to be determined

for each residue Ri(t). The unknown function of t, NP(t) is determined
by fitting the curve of the above data, the average value found for the

range of momentum transfer -0.14 < t < -0,013 (Gev/c)® is
Ny(t) = 5.828 £ 0.9 mb.
The residue functions in this range of momentum transfer are;

10™¢ R";/a V2,12 1/2 ° ~(0.084 * 0.01) - (0.353 £ 0.0k) mb

107 Kjjp _y,i/2 y2 = 07 By _ye,ye -y/2

= (1.701 * .05) - (1.518 * ,01)t mb

1078 Rﬁ,a 2,12 -2 = (1435 %.8) + (151 £ .08)t umb,
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With these values of the residue functions, we obtain the graph No, I
for Ipl_ll against t. This increases uniformly from zero at t = 0
to the maximum value 1 at t = -0.13, It is suggested, that
experiments on the decay of N*¥(1:400) be done to compare with the curve
obtained theoretically by us under the assumption of the single

Pomeron pole exchange.

For the Pomeron-cut, P, = 11, therefore both (-1)J and (—1)J+1
parity conserving amplitudes would contribute with an unknown ratio
of parity between them. The following relations of helicity

amplitudes would hold in the presence of the Pomeron-cut:

Fijo yz,1/2 Y2 = F-y2 -y/2,-1/2 -2 = *F_y2 _i/2,1/2 12

IFy0 1/2,-1/2 -1/2

Fyye 2,12 -1/2 = "Foy2 -y2,-1/2 V2 = *F.y2 -y2,y2 -y2

= #F2 12,-1/2 1/2

Fito —if2,i/2 2 = “Foy2 ye,-y2 -iy2 = “Foy2 2,172 12
= Fie -1/e,-1/2 -y2

Fito 2,12 -2 = oy ye,-y2 y2 ° ~F.y2 1/e,1/2 -1/2

= ~Fi/o _yo,-1/2 12 °

Writing the expression for |p1_1| under the restrictions P, =11, we
find that its only difference from the pole is that at different values
of t in the sbove range of momentum transfer the value of |p _ |
becomes approximately zero. Hence for the cut, the curve will not be

smooth like that of the pole, but will have discontinuities in the

function |p,_, (t)| at different values of t.
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(i1) For N*(1520), i = (3/2)-, T =12,

For the Pomeron pole, applying all the conservation laws and for
P, = +1 exchange, we are left with only eight helicity amplitudes.

The differential cross-section for the pole is,

do il (6) + 1/2)2 x [P(2a(t) + 1)
CO o e x {0 (t) + 1/2)2 x [[(2a (t) + 1
W Yy ls(s - bR)] (% P

2a,(t)

(i*iCOtz naz(t) > ( — l/iEZZ:;gg*Z.-t) ) X Np(t)

where
N(t) = K, 1/2,1/2 1/2{8)1Cool® * (Rile -1/2,1/2 -1/2(%)

* Ko 12,12 328 N0 1® + B o ye y2()
2

Rije 2,12 28t K2 /2,12 32(t) Mel®

2
*Ryyp /2,172 -3/2l%el® * Rp Loy ayalCil®

There are five independent density matrix elements in wh;ch Pag »
ipg.s and ip,_,  are real, pgg, Re(p,,), Re(p,_,) enter in the
decay distribution of N* and the parameters pj._5, Pp,.; contribute to
other observables such as spin correlation, therefore these can be

measured easily in the experiments. We have computed the values of

Paas Relpg,) and Re(p, ;) for the singlc Pomeron pole exchange.
We have,
_ 2 . o2 2
Pag = (1/2(R1/2 1/2,1/2 3/2/%10® * Rlya _1/2,1/2 37210l

+ By/p i/2,1/2 -32lCel® * R)/2 /2,2 -32IC12l?) ) /Np(t)
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Re g, = '1/2[1‘1/2 /2,2 1/2 R}/ 2,12 3/2! %ol [0l

Rij2 -y/2,1/2 12 Ry -1/2,1/2 3/2"’1—1| e,

Rij2 12,12 -3/2 Ry2 1/2,1/2 -1/2'°ox”°oe|

Ryjo -1/2,1/2 12 Rz -1/2,1/2 -3/2/C10l |°12|]/Np(t)

Re Py, = 1/2[16‘1/2 1/2,1/2 -1/2 Ri/2 1/2,1/2 3/2 Co-1Co3
* Ry -y/2,y2 -1/2 Ry2 -1/2,1/2 3/2/C1-1 lcy, |
Rif2 12,12 1/2 Ry/2 1/2,1/2 —3/2|C02||COJ.|
*Ry/p _1/2,1/2 12 M2 -1/2,1/2 -3/2/C10l lcl2|:| N (t)

where
Np(t) = Rilz‘ vz, 1/2 128 Ce0l% + (Y2 12,172 1/2(t)

* Ko e,z 1728 ML 1%+ ®yjo _y/2,1/2 -1/2(8)

* Rzi/2 /2,12 328 * Ri/a _1i/2,1/2 32(t) e, ol

K2 12,12 -32/Ce!® * Rijo _1/2,1/2 -3/2]%2!® -

Data on the differential CrOSS"SECtion(Bh) is used for 10, 15, 20 and
30 Gev/c 1incident laboratory momenta in the range of momentum transfer
-0.83% € t <€ -0.,252 . Our in-put is the same as in the case of
N*(1400) for the parameters of the Pomeron trajectory. The unknown
function of N (t) is determined, its average value in the above range
taken at 16 different values of t 1s 0.6023 * 0,05 mb. Individual

residue functions are also determined in order to calculate the values
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of spin density matrix elements. The residue functions are for

0.833 < t < -0.252 ,

-8 n2 - -
10 31/2 1/2,1/2 l/2(1;) = (0.3012 * 0.1) + (0.1232 t 0,04)t mb.

107 B}/, 2,172 128 = 1970 Ky 5 10 1y2()

-8 e
= 10 R1/2 1/2,1/2 3/2(1;) = (1.032%t0.04) - (0.258+0.01) mb

107° Ko _yya,1/2 -i/2(8) = 107 Kn yyn 170 3/2(t)

= (0.8595 % 0.2) - (l1.232 + 0.02)t mb
-8 2
107" Ry/o 1/2,1/2 _3/2(’°) = (1.8002 * 0,09) + (1.3223 t 0.05)t mb

A 2 5
107° Ry/2 -1/2,1/2 yoft) = (7.763 £ 0.4) - (2.166 + 0.1)t b,

With the help of these residue functions we plot three curves (Graph II)
for the values of pg,, Re(py,) and Re(ps_l) against t. Experi-
ments on the decay of N¥(1520) are euggested to compare with the values

obtained by us.

For the Pomeron-cut, we can only make a general observation,
P, = -1 contributes to only four amplitudes, all other amplitudes vanish
due to the contradiction with the positive G-parity of the Pomeron
exchange. We write the expressions for the denslty matrix elements,
which gives for P, = -1 values lying below the values obtained for
P, = +1. Hence, for the Pomeron-cut the points of p ., Re(py,) and
Re(p,_,) s&gainst t either lie on the curves of Graph II or below it,

but cannot be above the curves. Further, the curve for the Pomeron-cut

must have discontinuities, unlike the curves of the Pomeron-pole.

(B) aN — ¥
(1) we(1k00), JF = (1/2)*, T = 1/2.

In this reaction, in the t-channel, P, = +1 always, therefore only
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the Pomeron-pole contributes. It is of interest here to compute the
values of |p1_l| for the Pomeron-pole to compare and check with the
values obtained in the resction NN - NN*(1400). Applying the

conservation laws, we are left with only two amplitudes. The

differential crozs—-section is

dog TMM¥% . ( ( ) / )2 { ( ( ) ]2
[ X (o(t) + 1/2)% x [F(2e,(t) + 1
at 16[8-;;2_]@2)2 - hMZME'! LP P )
. ““P(t) s - $(2u+ M2+ M*-t) “P('t)
x[1+cot‘ ]x[ % N..(t)
2 ku(MM*)%‘ P
where
NP(t) = R§°:1/2 1/2|c°°'2 " Rf)O,l/E -1/2'00112
and

Roo,1/2 1/2(8) oo 172 —1/2(6)[Coyl [Cac]
Np(t) :

lp,_, 1

Recent data on =N — 7N*¥ at 8 Gev/c and 16 Gev/c laboratory
(35)

momenta are given by Anderson et al Uging this data, we obtain

the values of the rssiduc functions for 0,02 = -t < 0.13 sas

-3 =4 - -y ”
107" Rio,1/2 1/2(t) = (0.8633 * 0,05) + (0,304 ¥ 0.06)t mb

1072 Rﬁo’llz _y2(t) = (1725 £0.35) - (0.306 & 0.06)t mb

The curve of |p,_;| obtained in this case (Graph III) is the same as
in Graph I. It smoothly varies from 0.2 to 0.9 in the same range of

momentum transfer, confirming that the single Pomeron-pole exchange

cannot have discontinuities as found in the case of the branch point in

the reaction NN -» NN¥(1L00).
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(11) W*(1690), J% = (5/2)%, T = V2.

Here again only the Pomeron-pole contributes, and we have used
the data in the range 0.02 < -t < 0.22 at 8 Gev/c and

16 Gev/c 1incident laboratory momenta(35).

Using the previous method,
we obtain all the residues and compute the values of the independent

measurable density matrix elements. The values of p_, g, Psgs
Ps1? Ps.3? Ps.as Psy and p,_, are given in the Graphs IV, V and

VI. and p,_, vanish identically. We suggest, that

Ps.s
experiments on the decay distribution of N¥(1690) be done to compare

with the results obtained theoretically by us.

+ +
(c)wp = A;p; Kp - K*(1320)p,

Both the produced resonances have the same quantum numbers except
the masses. K* and A, have J¥ = 1* and T =1, In the t-channel,

the Pomeron-pole and the Pomeron-cut can be exchanged.

For the Pomeron-pole only four amplitudes contribute,
Fi12 2,0 18 T2 -y/2,0 18 Fiy2 12,0 00 Fi/2 -1/2,0 0 °

So we have the following relations between the density matrix elements,

+ p = 0 and. 2p11 + Pgo = 0.

Contribution of pyo 15 only due to the Pomeron-pole.

= 2oN|F |2

For the Pomeron-cut, we have, p,, + p,_,

1/2 1/2,0 1
where N is the inverse of the differential cross-section of the process
at t = 0. There would not be any contribution from the cut to p,, .

Data on the above process does not exist. These reactions are extremely

favourable to give a definite prediction on the nature of the Pomeron,



53.

and therefore, experiments on the decay of AI and K* are suggested.

(D) kp — K*(1790)p.
K*(1790); J° = (2) and T = 1/2.

Applying the parity and G-parity conservation laws, we are left

with eight helicity amplitudes.

For the Pomeron-pole the following six parity conserving

amplitudes contribute:
Fij2 2,023 Fya -y2, 025  Fye v2,01
Fi12 -y2,01 3 Fy2 y2,01 Fi2 -y/2,00 .

There are eight independent density matrix elements for K¥, therefore,
we can write down the relations which must be satisfied when the

Pomeron-pole is exchanged. The relations are:

Pap " Pap = 03
Py, * Py = 05 (L=pg)+2p_ -p,,) =0
Re p,, *+ Re Py = 0
Pop P13 ~ |921|2 = 0
Pom Poo = [P0l = 0
Py Poo = [P0l = 0

For the Pomeron-cut Pr = *1, we get the following restrictions among
the density metrix elements and the helicity amplitudes:

= UN|F |2

Pzp = Po-z 1/2 1/2,02

2
Py ¥ Pyey = hNIF1/2 1/2,01|

Re p,, + Re oy, = LN|F,,, 1/2,02||F1/2 1/2,01l :
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The right hand side of each equation becomes zero for Pr = +1,
Hence, if we plot the left hand side against t for the cut, we get a
discontinuous curve. The principal mode of decay of this resonance
isfiK, and an experimental study of the angular distributions of the
decay process is suggested to verify our results. When this data
becomes available, this vould provide a convenient test on the

nature of the Pomeron éingularity.
(36)

In conclusion, we suggest that the experiments may be carried
out on the decay of unstable particles. N¥(isospin 1/2), AI ,

K#(1320) and K*(1790) to check the consistency of our results.
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CHAPTER V

Pregsent Status of the Pomeron Trajectory and Conclusion

As is clear from the earlier chapters, the Pomeron trajectory is
different, in many respects, from other ordinary trajectories(57). In
this chapter, we briefly report the experimental results on the Pomeron
trajectory, its theoretical implications and some aspects of its

difficulties to explain the experimental data.

Firstly, one should be able to associate known particleswith each
trajectory. The trajectory and the residue functions should also
extrapolate smoothly to their value at the pole of the physical
particles. The only exception is the Pomeron trajectory, where no
known particle can be associated. The lowest particle on this
trajectory must have spin 2 and a positive parity. Such a particle was
found with mass of 1250 Mev, but the extrapolation from the ap(o) =1
to the 2% particle gave the slope of the Pomeron trajectory as
0.65 (Gev)™, But recent experimental data on pp-scattering at
energles greater than 20 Gev/c, gives fits yielding the value of 0.4 for
the slope of the Pomeron trajectory. Therefore one has to abandon
this particle to lie on the Pomeron trajectory. There is another
reason namely that this known particle can fit very well on other

ordinary trajectories with the normal slope of 1 (Gev)'e.

Other than the slope of the Pomeron trajectory, there are some
doubts about the intercept of the Pomeron trajectory. As mentioned
in the first chapter, the unit value of the intercept has been used to
derive two high energy theorems. Also a recent discussion(38) of the

analytic properties of the trajectories and their residues, as the mass
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of their first physical occurrence approaches zero, suggests that the
smell value of the slope is closely tied to the fact that the intercept
is unity., But there are also evidences indicating that the intercept
is slightly less than unity. A calculation(59) of the shift due to
electromagnetic interaction of the intercept, which was assumed to be
unity in the absence of such interactions, found aP(O) = 0.9L,

Another reason is that in order for the residue to obey the algebre

of U(3) @ U(3), the intercept must be 0.93(1‘0). This also implies
that the total cross-sectlions must tend to zero at asymptotic energy.
The intercept of the Pomeron trajectory has also been determined from

(k1)

an application of continuous moment sum rules to low energy TN

total cross-section data to be unity with an uncertainty of 0.02 - 0,03,

The Pomeron has been used in many experimental fits in elastic
scattering by many authors(hz). It has been used in P + P* + p
model to fit total cross-sections for ﬂtp scattering, and in a
P+ P' + w model to make a study of the NN and NN elastic data.
Recently, these two models have been used in & combined study of mp,

pp and pp elastic scattering data(hj).

One notices, that, in general
the parameters obtained for the P' trajectory depend on what

assumptions are made about those of the Pomeron. For example, Logan and
Razmi . assume the intercept of the Pomeron to be unity and find

dP,(O) = 0.67; but if they assume aP(O) = 0.93, they find aP,(O) = 0,64
with a proper fit., Hence, the conclusion is that there is still an

uncertainty about the exact intercept of the Pomeron trajectory, but

the slope 18 nearly well established from the highest available energy.

There are arguments that the Pomeron singularity can be a fixed
pole, or cut or some other essential singularity. As we mentloned in

the first chapter, the Pomeron can be exchanged with other trajectories
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to produce a cuts If the intercept of the Pomeron is unity, the branch
point of the cut will have the same intercept as the other trajectory
and a slope less than that of either trajectory. To avoid the

accunulation of the branch points of an infinite number of cuts at J

il
[
-

it has been suggested that aP(O) =1-c¢ (hh). The cut mechanism is
not sufficient to allow the slope of the Pomeron to be zero and,
consequently, 1t is unlikely that the Pomeron is a fixed pole(hS).

Therefore, the Pomeron may represent some other type of singularity.

Few authors have suggested models for cuts, but so far without
much success to evaluate its contribution. Qualitatively, to distinguish
between a pole and a branch point, one would expect the pole to have a
non-zero slope (shrinkage), definfte parity and factorization to hold.
In the case of the branch point,factorization would fail to some
extent, there would not be unique parity, and the effective slope, if

non-zero, would be expected to decrease with increasing t.

The present state of the Pomeron trajectory gives more evidence

that it is & simple pole., This is the maln conclusion of ow study in

this thesis., Chapter II explains that the factorization is favoured in
case of elastic, quasi-two-body reactions, and for reactions in three-
particles in the final state. Secondly, Chapter IV also favours that
the Pomeron must have a definite parity, though there are lots of

predictions that are required to be tested experimentslly.
In conclusion, the Pomeron appears tc possess pole-like properties,
but surely it is an unusual trajectory and we have just begun to under-

stand its role in high energy scattering.
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Graph 3

Graph b

Graph 5

Graph 6

GRAPH  CAPTIONS

The graph of < p, . > agaeinst t in the reaction NN + NN*(1400)

1

for the Pomeranchukon pole exchange in the t-channel.

The graph of p,,, Re Pyys Re p,_, against t in the reaction
NN + NN*(1520) for the Pomeranchukon pole exchange in the

t-channel.

The graph of < p,_, > against t in the reaction nN + nN*(1400)

for the Pomeranchukon pole exchange in the t-channel.

The graph of density matrix elements in =N + nN*(1690) for
the elements P55, Psyy; Ps.y ©Of the Pomeranchukon pole

exchange in the t-channel.

The graph of density matrix elements in nN + nN*{(1690) for

the elements op0y_3;, P P, oOf the Pomeranchukon pole

33’

exchange in the t-channel.

The graph of density matrix elements in =N + nN*(1690) for
the elements p,,, 0y, oOf the Pomeranchukon pole exchange

in the t-channel.
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