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ABSTRACT 

We investigate the nature of the Pomeranchukon (Pomeron P) 

si n g u l a r i t y i n the complex angular momentum plane. To distinguish 

between simple pole and branch point, we establish and t e s t the 

fact o r i z a t i o n rule when Pomeron i s exchanged i n three p a r t i c l e f i n a l 

states. Further we predict r e s u l t s on the pol a r i z a t i o n states of 

resonances when de f i n i t e p a r i t y for Pomeron-pole and mixtures of 

p a r i t i e s for Pomeron-cut i s exchanged. To make comparison of the 

Pomeron t r a j e c t o r y with other low-lying meson t r a j e c t o r i e s , we also 

e s t a b l i s h a f a c t o r i z a t i o n t e s t for the Rho t r a j e c t o r y and compare i t 

with experimental r e s u l t s . 

I n Chapter I , we give a general review of Regge-pole theory and 

also show what d i f f i c u l t i e s we have with the Pomeron tr a j e c t o r y as 

compared to other ordinary t r a j e c t o r i e s . This chapter l a y s the ground 

work, explains the problem, and serves as a motivation for the work 

which was undertaken. 

I n Chapter I I , f a c t o r i z a t i o n t e s t for the Pomeron i s suggested 

for reactions with three p a r t i c l e i n the f i n a l s tates. I t i s applied 

to the available experimental data on TtN -» nnN and NN -» uNN and i s 

found to be s a t i s f i e d reasonably w e l l . This gives one evidence that 

Pomeron i s a simple pole. 

I n Chapter I I I , we e s t a b l i s h a di r e c t t e s t of fa c t o r i z a t i o n for 

the Rho and show from the experimental data, that there i s a s i g n i f i c a n t 

f a i l u r e of the f a c t o r i z a t i o n and also mixture of p a r i t i e s i s exchanged 

i n the Rho dominated reactions. I t i s suggested that cuts play an 

important part at high energy and indication e x i s t s that the Rho 

p a r t i c l e i s a p a r i t y doublet. 
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I n Chapter IV, p a r i t y t e s t suggested by Gribov i s applied to 

several Fomeron dominated reactions i n the high energy production of 

single baryon or meson resonances. Wherever the experimental data 

i s a v ailable, i t has been used to compute the r e l a t i v e magnitudes of 

the residue functions for different h e l i c i t y states of the Pomeron 

exchange. Definite predictions on the spin space density matrix 

elements of the resonances are made for the pole and the cut 

separately. Suggestions are made to carry out experiments on the 

decay of unstable p a r t i c l e s to cheek the consistency of our r e s u l t s . 

In Chapter V, we conclude by giving a b r i e f review of the 

present status of the Pomeron trajectory. 
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CHAPTER I 

Introduction and Basic Concept of Regge-pole Theory 

1. Regge-pole Model 

The idea of a n a l y t i c a l l y continuing the angular momentum to 

complex values (J-plane) goes back to the work of Watson and Sommerfeld^. 

The subject had achieved success i n high energy physics since 1959 when 
(2) 

Regge* demonstrated the usefulness of considering the a n a l y t i c 

properties of a n o n - r e l a t i v i s t i c scattering amplitude i n the J-plane. 

Soon afterwards t h i s idea was applied to r e l a t i v i s t i c s c a ttering of 

elementary p a r t i c l e s by Chew and Frautschi and by Gribov and 

Pomeranchukv . The theory attempts to describe the di r e c t channel 

reaction i n terms of the a n a l y t i c properties of the crossed channel 

amplitudes as a function of the cross channel angular momentum. I n 

t h i s section we b r i e f l y explain the mathematical concept and a l s o 

introduce the notation, which we s h a l l use i n the following chapters. 
Consider the di r e c t channel (s-channel) process a+b -» c+d and 

l e t i t be described by the amplitude f ^ f s , 9 ) where 
s 

s <s (centre of mass energy) 2 

9 a scattering angle i n cm. s 

Consider a l s o the crossed channel (t-channel) process a+c -» b+d 

(where bars indicate the corresponding a n t i - p a r t i c l e s ) and described 

by the process f * ( t , 9^); 

where t =» (cm. energy) 2 

9. a scattering angle i n cm. 
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The r e s u l t of Regge on potential scattering for the t-channel process 

i n the l i m i t cos 0̂. -* » 

f*(t, O - ) L — (cos 0 ) 1 

cos 0t-»°° ^ s i n irc^Ct) 

where ct^(t) are t r a j e c t o r y functions associated with the Regge-poles 

and 0^(t) are residue functions, and the sum runs over t-channel Regge-

poles. The r e l a t i v i s t i c generalization of the above formula i s 

«t(t) 
f * ( t , 9.) -» V t ( t ) Mt) (cos 0.) 

* COS e -»« ̂  1 1 11 

where £^(t) i s c a l l e d the signature factor given by 
-ma. ( t ) 

1 + re 1 

s i n nct^t) 

where T a ± 1 i s the "J-parity" or signature, and has to be introduced 

i n r e l a t i v i s t i c scattering due to the d i r e c t and exchange forces. The 

functions oc^t) are c a l l e d Regge t r a j e c t o r i e s , and describe the family 

of p a r t i c l e s , since a value of t such that ot^ft) i s a non-negative 

integer i s a pole of the amplitude and hence a p a r t i c l e . 

There i s then an important and most powerful tool of crossing 

symmetry. For spinless p a r t i c l e s f ^ f s , 0 g) = f * ( t , 0^). I t means 

that i f the function f i s a n a l y t i c a l l y continued from one p h y s i c a l 

region to the other (they do not overlap), then both the processes are 

described by the same function. Since 

2s 
cos 0. = -1 + t Um2 
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where t = - (momentum t r a n s f e r ) 2 i n s-channel, therefore the region of 

high energy s » 2m2 and small momentum transfer | t | < Um2 i n d i r e c t 

channel corresponds to having cos 9̂ . -* «. Using the Regge-asymptotic 

form and the crossing symmetry, one gets, 

v a l i d for s » 2m2 and [t[ < Um2, where s 0 i s a s c a l i n g constant. 

This i s the most f a r reaching r e s u l t of the Regge theory. The 

asymptotic "behaviour i n cos 6 of one reaction here gives the observable 

high energy l i m i t of the reaction corresponding to the crossed channel. 

Further t h i s crossed-channel theory i s very desirable because 

experimentally high energy reactions are characterized by a d e f i n i t e 

correlation between the peaking (or lack of i t ) of a reaction i n the 

forward or backward direction, and the existence (or lack of i t ) of 

p a r t i c l e s with quantum numbers exchanged i n the respective crossed-

channel. 

At asymptotic energies, a reaction w i l l ultimately be dominated 

by the single t r a j e c t o r y with definite quantum numbers; Isospin ( T ) , 

Strangeness ( S ) , C-Parity ( c ) , P a r i t y ( P ) , and variable spin a ( t ) . Let 

t h i s leading t r a j e c t o r y be 0L.(t), then ( l . l ) reduced to 

«, 00 f ( s , e ) -» ) 
S—» oo L-i 

(l.D 
1 

Mt) 1 + Te 
(•, * ) &r ( t ) \ so J S s i n noL(t) S-»oo 

This gives the d i f f e r e n t i a l cross-section 

2 o T ( t ) - 2 
da Pr ( t ) dt S—• oo 



For fixed t , therefore, the d i f f e r e n t i a l cross-section of a l l reactions 

with the same exchange of quantum numbers w i l l have the same power 

behaviour. 

Further, to make contact with experiments, we have the o p t i c a l 

theorem, which r e l a t e s the t o t a l cross-section with the imaginary part 

of the e l a s t i c scattering amplitude i n the forward direction ( t = 0), 

<* t o t(s) « | La f ( s , 0 ) . 

So f a r , we have taken a very naive picture of having simple poles 

as i n potential theory. But as we s h a l l see that i n strong interaction 

dynamics, which i s governed by J-plane s i n g u l a r i t i e s , these 

s i n g u l a r i t i e s may be poles, cuts or other e s s e n t i a l s i n g u l a r i t i e s . 

Unfortunately a t present, there exists no r e l i a b l e method for computing 

t h e o r e t i c a l l y the strength of cuts or e s s e n t i a l s i n g u l a r i t y contributions. 

2. D i f f r a c t i o n Scattering 

The scattering i n which the vacuum quantum numbers (Baryon no. a 

hypercharge = T spin a 0) can be exchanged i n the t-channel i s c a l l e d 

D i f f r a c t i o n scattering. A l l e l a s t i c scattering are of d i f f r a c t i v e 

nature and any two-body i n e l a s t i c reaction A + B -* A* + B' i n which 

A 1 and/or B 1 have the same i n t e r n a l quantum numbers as A and/or B, 

would look l i k e d i f f r a c t i o n ( c a l l e d the d i f f r a c t i o n d i s s o c i a t i o n ) . 

S i m i l a r l y , i n many-body reactions i f the f i n a l p a r t i c l e s can be 

combined i n such a way that the i n t e r n a l quantum numbers of the group 

of f i n a l p a r t i c l e s are the same as that of i n i t i a l p a r t i c l e s , then 

vacuum quantum numbers can be exchanged. See figure No. 1 below. 
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B 

I n t e r n a l quantum numbers as B. 

In t e r n a l quantum numbers as A. 

Figure 1 

On the contrary, any reaction, for example, k~p -» TI~TC+A, 

cannot be of d i f f r a c t i v e type since none of the two p a r t i c l e s i n the 

f i n a l state can be combined to give the same i n t e r n a l quantum numbers 

as the i n i t i a l p a r t i c l e s . 

3. F r o i s s o r t bound 

I t was proved by F r o i s s o r t ^ that for the scattering of s c a l a r 

p a r t i c l e s the t o t a l cross-section can at most behave l i k e ( l o g s ) 2 as 

s tends to i n f i n i t y . This bound on the scattering amplitude with the 

help of the o p t i c a l theorem ( u n i t a r i t y ) would imply that ot(o) ^ 1 for 

a l l t r a j e c t o r i e s . We s h a l l see i n the following section that t h i s 

bound coupled with the constancy of t o t a l cross-sections would .lead, 

at very high energy, to the appealing suggestion that forces are as 

strong as possible i f <x(o) = 1. 

k, Pomeron Trajectory 

Pomeranchuk i n 1 9 5 8 ^ has conjectured two theorems about the 

high energy l i m i t s of t o t a l cross-sections, namely: 



6. 

M aab "* °ab a s s "* " ' 

where a i s any p a r t i c l e target and b and b are p a r t i c l e and a n t i -

p a r t i c l e beams. 

/..\ T T* 
( 1 1 ) a a b - a a b as s - » , 

T T 1 

where a ̂  and 0 ^ are the t o t a l crossrsections for any 

c o l l i s i o n (a,b) i n the isotopic spin channels T and T* respectively. 

The f i r s t theorem was based on dispersion relations and the assumption 

of a f i n i t e radius of interaction, which implies that t o t a l cross-

sections approach constants at high energy. This theorem has since 

been refined by a number of authors and established under much wider 

conditions. To explain t h i s feature of apparent constancy of t o t a l 

cross-sections as a function of energy, a t r a j e c t o r y which i s c a l l e d the 

Pomeranchukon or Pomeron t r a j e c t o r y P, i s postulated. From constant 

t o t a l cross-sections, the o p t i c a l theorem coupled with the F r o i s s o r t 

bound demands that Op(0) = 1. 

Since the nature of the Pomeron t r a j e c t o r y i s the subject of our 

t h e s i s , we s h a l l only describe i n t h i s section a few facts which are 

f u l l y established. I n the l a s t chapter, we s h a l l review the d e t a i l s 

of the present status of the Pomeron trajectory. 

F i r s t l y the quantum numbers of the Pomeron are that of vacuum 

implying that Pomeron exchange i n the t-channel i s consistent with 

d i f f r a c t i o n scattering. This can be seen as follows. 

Since many e l a s t i c amplitudes involve a two-pion vertex P = + 1 

and G = + , the signature T i s pos i t i v e . ( i n t h i s section, 

we s h a l l also give two other convincing reasons for the Pomeron to have 

a positive signature). The second theorem implies that cross-sections 
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i n the l i m i t of high energy are independent of isoepin. This means 

that Pomeron has zero isospin. This means that Pomeron has zero isospin. 

From the f i r s t theorem of Pomeranchuk, applying l i n e r e v e r s a l , one can 

show that Pomeron must have positive charge conjugation. This also 

follows from T = 0 and G = +ve, or from the fact that only mesons with 

C a +ve contribute to spin average t o t a l cross-section. 

We give two more reasons to e s t a b l i s h that the Pomeron must have 

positive signature. F i r s t l y , the signature factor can be written as 

r —i—r^sgA)] f o r 
atn(m(t))/2 I \ 2 J -I s i n ( i t o ( t ) ) / 2 

e(t) 

T = +ve 

cos(Tto(t))/2 -
exp for T = -ve 

*x ( t ) 
I f T a -ve, then cos —*• => 0; £(t) would have a pole at 

lir 

t = 0. To avoid t h i s one has to assume that the signature i s p o s i t i v e . 

The second motivation i s more convincing. The Pomeranchuk theorem i s 

a t o t a l ( a b ) = °total ( 5 b ) 

The t-channel reaction of the l e f t hand side and the right hand side 

are respectively aa -» bb, and aa -» bb. Wow 6^ i n the t-channel 

cm. i n the f i r s t reaction, i s the angle between a and b and i n the 

second the angle between a and b. Since a and a are i n the centre of 

mass system, therefore cos (0^.) changes to - cos(9^) i n going from 

reaction aa -» bb to aa -» bb. We know the positive signature 

amplitude i s symmetric as a function of c o s ( 0 t ) , since the 

contribution of such a Regge-pole to ab and ab e l a s t i c scattering i s 

the same. Hence only a positive signature Pomeron tr a j e c t o r y can 

account for the equality of cr^Cab) and ^ o t ^ ) • 



8. 

5. Comparison of the Pomeron t r a j e c t o r y with other t r a j e c t o r i e s 

One of the most f a r reaching consequences of Regge theory i s the 

c l a s s i f i c a t i o n of p a r t i c l e s , that a l l known p a r t i c l e s and resonances 

could be grouped into families, each family being associated with a 

given Regge tra j e c t o r y , and consisting of several members d i f f e r i n g only 

i n the spin quantum numbers by alternate integer or half-integer. 

The square of the mass of the p a r t i c l e of spin J would be the value of 

t for which r e a l part of <x(t) i s equal to J . 

Chew and Frauchtshi, making simplest possible assumptions, drew 

straight l i n e s representing ot(t), joining p a r t i c l e s with the same 

i n t e r n a l quantum numbers and d i f f e r i n g by two units of spin and 

deduced that the slope of the t r a j e c t o r i e s p, n, w, Ag, N ... are 

equal to 

^ 1 = B«(t) « l ( G e v / c ) - 2 . dt 

A l l these t r a j e c t o r i e s are now regarded as reasonably w e l l 

established, but doubts e x i s t for the Pomeron trajectory. 

For example, i f the slope of the Pomeron t r a j e c t o r y i s s i m i l a r 

to that of other leading t r a j e c t o r i e s , there should be an i n d e f i n i t e l y 

continuing shrinkage, as the energy increases, i n forward peak widths 

for a l l reactions, both e l a s t i c and i n e l a s t i c . More p r e c i s e l y , i f 

otp1 (0) i s the Pomeron t r a j e c t o r y slope at t =» 0 and h i s the peak 

width i n | t | , then for a l l reactions with the Pomeron exchange the 

inverse peak width i s predicted to behave as 

h" 1 -» constant + 2ot (̂o) log s 
S-»oo 

where s i s the square of the t o t a l energy. Unfortunately t h i s 

shrinkage i s slow and d i f f i c u l t to observe. For example, i n the range 
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of lab. energies between 10 and 30 Gev a t y p i c a l value of the inverse 

for other leading t r a j e c t o r i e s , then the peak width i s predicted by 

the above formula to decrease by only 20$, where s increases by a 

factor 3- For lab. energies below 100 Gev, variations of such an 

order of magnitude i n the shape of the forward peak can e a s i l y be 

produced by t r a j e c t o r i e s l y i n g below the Pomeron. 

Another long standing d i f f i c u l t y with the interpretation of the 

Pomeron as a Regge-pole has been the apparent absence of a / = 2 + , 

T* = 0 p a r t i c l e on the t r a j e c t o r y . I f we take the recent experi-

mental data from Serpukhov*' , which show a s i g n i f i c a n t shrinkage i n 

the d i f f r a c t i o n peak i n pp scattering, then the Regge f i t y i e l d s a 

value of O.h for the slope of the Pomeron tra j e c t o r y . Therefore, 

i f the Pomeron tr a j e c t o r y i s approximately given by 

then a l i n e a r extrapolation would place the p a r t i c l e at a mass of 

1730 Mev. No such resonance has been seen so f a r . Therefore, doubt 

e x i s t s on the very nature of the Pomeron tr a j e c t o r y as compared to 

other t r a j e c t o r i e s . 

I n t h i s t h e s i s , we s h a l l investigate the nature of the Pomeron 

si n g u l a r i t y and also for the comparison study the nature of the Rho 

t r a j e c t o r y . 

There are several ways whereby a branch point and a pole can be 

experimentally distinguished. One, suggested by Gribov, u t i l i z e s the 

fact that a pole has a good p a r i t y but a branch point i s u n l i k e l y to 

have a good parity. And the other uses the w e l l known fact that a 

simple pole must have factorizable residues, whereas for a branch 

width h" 1 i s about 10 (Gev)" 1. I f <(0) i s 1 (Gev) as i s true 

a ( t ) = 1 + 0.1* t , 
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point the fac t o r i z a t i o n does not hold. I n the next section, we 

show that there i s every reason to believe that branch points e x i s t 

i n the J-plane. 

6. Cuts i n the J-plane 

We include t h i s section to show also that cuts can have dominant 

influence at high energy i n elementary p a r t i c l e physics. I n non-

r e l a t i v i s t i c potential theory, the only s i n g u l a r i t i e s occurring i n the 

J-plane to the right of the l i n e Re i => -\ , are the Regge poles. 

But t h e o r e t i c a l arguments e x i s t v ' that for hadron reactions, once 

Regge poles are introduced, the cuts i n the J-plane are inevitable. 

These authors showed that cuts would normally e x i s t i f two Regge-poles 

are exchanged. S p e c i f i c models have also been suggested that show how 

s i g n i f i c a n t a part cut can play at high energy. I t i s Shown that i f 

a A ( t ) and oc 2(t) be two Regge poles, then the cut going to the l e f t 

from a position « c(t) i n the J-plane i s given by 

Q . (X 
<* c(t) =» a J O ) + a 2(0) - 1 + ~ t . 

1 2 

The main thing i s to evaluate the influence of a cut at high energy. 

I t i s shown that the dominating contribution from the cut i s given by 

C 1 0 g i r ) D > 0 -
* • \J • 

One can give examples to show that cut can play an important 

part. For example, take the charge-exchange reaction 7r"p -» n°n , 

the cut can be due to P and p, and i f a^(o) = l , then 
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« c(t) > 

I n other words, the contribution 

over the p-exchange contribution 

at t = 0. 

a p ( t ) for t < 0. 

of the cut i s expected to dominate 

for a l l values of t except possibly 
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CHAPTER I I 

Factorization Test f o r the Pomeron 
i n Three Pa r t i c l e F i n a l States 

1. Factorization Test 

The one p a r t i c l e exchange (OPE) model has one characteristic 

property that coupling constants occur twice ( f i g . 2). 

^ Figure 2 

g related t o one vertex and g, , to the other vertex. Now OPE °aec °bed 
model gives that i t s amplitude must be proportional to g a g c S^^t 

that i s , i t factor!zes i n t o one contribution from each vertex. We 

see i t s p a r a l l e l i n one Regge-pole exchange. 

For one pole contribution i n Regge-pole model the amplitude « 

/ s \ a ( * ) 

P(t) 600 ̂  — J • I f f a c t o r i z a t i o n holds, i t turns out that the 

residue function 
P(t) a (known kinematical factors) 7^^) 7 ^ p d ( t ) 

i n the t-channel. 

There are two p r a c t i c a l points of importance o f t h i s f a c t o r i z a t i o n 

property. F i r s t l y i t i s the property o f one Regge-pole exchange, and 

two Regge-poles or cut would desctroy f a c t o r i z a t i o n . Secondly one and 

the same Regge-pole coupling 7 a p- ( t ) may occur i n d i f f e r e n t reactions, 

since i t i s independent of how the Regge-pole couples to the other two 
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p a r t i c l e s . Therefore, i t relates together d i f f e r e n t reactions. We 
explain t h i s by an example: l e t pp, Tip, TCTC he e l a s t i c scatterings 

and assume asymptotic energy so that the Pomeron only contributes. 

Factorization implies i j j a 7 p p p y^ ; T^a y^ y^ ; 

ef 
T o 7 -o 7 -a • Hence f a c t o r i z a t i o n immediately yields the r e l a t i o n . 
TCTt TtJPTC TCrTC * 

a t o t ( p p ) a t o t ( 7 t 7 t ) B ( a t o t ( 7 C p ) ) S ' 

This i s a safe t h e o r e t i c a l prediction depending upon the exchange of 

one Regge-pole "P". So f o r o e.s. t o t a l cross-section i s not 

measurable experimentally at high energy, and so one i s not able to 

tes t t h i s hypothesis. 

This conjecture of f a c t o r i z a t i o n can be studied i n any d i f f r a c t i o n 
(q) 

dissociation process. Freund^' applied t h i s to the two body i n e l a s t i c 

processes pp -• pN* ; up -* TCN* where N* i s a T - l/2 nucleon 

resonance. In the l a t t e r case, the cross-sections are much smaller, 

but f a c t o r i z a t i o n could nevertheless be q u a l i t a t i v e l y tested and was 

found to hold with i n errors. Since i t was suggested** 0^ that 

Pomeron i s not a pole, but a much more complicated s i n g u l a r i t y , i t i s 

therefore of great interest to study the f a c t o r i z a t i o n for a l l 

d i f f r a c t i o n dissociation processes. To te3t the f a c t o r i z a t i o n f o r the 

Pomeron exchange, Freund applied the formula to e l a s t i c and i n e l a s t i c 

reactions, 

f f ( p p - p p ) _ ~(pp-*pN*(lM)0)) _ §2(pp-4PN*(l688)) 

|̂ (Ttp-»7tp) ~ |2(icp->n!!*(lUO0)) ~ |£(Trp^TcN*(l688)) 

At t =0, the experimental data gives the values of the above equality 

2.7» 5.2 and 2.9 respectively with background errors of 0.6. This 

means f a c t o r i z a t i o n holds f o r the Pomeron i n t h i s case. One can make 
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the conclusion that since the stun of a leading Pomeron and the 

Mandelstam cut i t generates i s not factorizable, the f a c t o r i z a t i o n of 

the Pomeron means that cut effects i n such a model can be small. 

Good and W alker's^^ idea that d i f f r a c t i o n dissociation may 

play an important role i n high energy hadron c o l l i s i o n s has recently 

received strong support from a detailed analysis of 3, k and 5-body 

f i n a l states i n pion-proton c o l l i s i o n s . For the processes 

Tip -» 2nN (N = nucleon) and 7cp -* 2rcA (1238 Mev) at 8 and 16 Gev/c 

are found to be ^*^ 2^ strongly dominated by the dissociations of the 

proton i n t o nN and nA respectively. S i m i l a r l y i n four body 

r e a c t i o n ^ ^ ' ̂ ) Tt~p -» 2-n~n+-p at 11 and 16 Gev/c and 5-body 

reaction n"p-» 2ir~n+Tr°p has revealed marked d i f f r a c t i o n dissociation. 

The lengthy technique f o r t h i s evidence cannot be given here. But 

b r i e f l y i t i s based on the smallness and approximate constancy of 

transverse momenta and makes use of the appropriately weighted 

d i s t r i b u t i o n s i n longitudinal phase space, thereby deriving from the 

bubble chamber data highly d i f f e r e n t i a l information on the c o l l i s i o n 

amplitude. 

2. Factorization f o r the Pomeron i n Three P a r t i c l e F i n a l States 

From the above experimental evidence i t i s useful to w r i t e the 
(15) 

fa c t o r i z a t i o n formula and check i t with the available experiments 

In t h i s section we develop the theory to derive the t e s t and then make 

conclusions by comparing i t with the data at 10 Gev/c. 

a) Derivation of the formula:-

F i r s t , take the reaction TCN -» TIUN and l e t p and q be the i n i t i a l 

four momenta of the nucleon and pion, respectively; k x and k g are the 
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f i n a l momenta of the pion and p' i s the f i n a l nucleon momentum 

( f i g . 3) . 

f r—.» 
N ' . p" 

Figure 3 

(Pomeron exchange i n the reaction TIN -* itriN ) 

The i n e l a s t i c d i f f e r e n t i a l cross-section i s given by 

1 M2 

da (*) = F ( t ) fi(t) G(W2, t ) S 4 ( k + k + p» - q - p) 
i n 8 ( 2 * ) B Flux 7111 1 2 

d 3k d 3k d 3p' 
X — (2.1) 

W l W
2
 E' 

where w2 and E' are the energies of the f i n a l pions and the 

nucleon. M i s the nucleon mass. The variables t and W2 are given 

t - -(q - \ ) S , W2 = - ( 1 ^ + p ' ) 2 

F and G are quantities 

F ™ C t ) = k i * p! < 1 > ' 2 

G(W2, t ) = ^ l< k
2 > P ' I P ' P 

spins 
> i 2 

and ^ means sum over f i n a l spins and average over i n i t i a l spins, 
spins 
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S(t) represents the square of the exchanged trajectory's "propagator". 

Equation (2.1) s i m p l i f i e s t o 

1 d 3k 
dor. (*) = F ( t ) i(t) GfW2, t ) . i . 

i n 8(27t) 5 Flux ** W l 

5(w, + w + E' - w - E)d3p« 
. — S (2.2) 

Each of the l a s t two factors i n the equation (2.2) is. Lorentz invariant 

and may be evaluated i n any convenient frame. We evaluate i t i n the 

frame k 2 + p' = 0, and labe l i t by the subscript v. Now 

where u i s the mass of the pion. 

dW 

Therefore 

5(w A + wg + E' - w - E)d 3p' 6(w l y + W - v y - E v)d 3p. 3 V v 
w_E' w« E' 2 2v v 

+ W -w - E J dp' l v v v 
w0 E* 2v v 

v d. \ w / k 

Thus, we have 

6 ^ + w2 + E« - w - E)d 3p' { v v \ fl 

Also 

*Q (2.k) 
wa E' N W / p v 

d 3k d \ k? d k n 

— = — — 7 ^ **u. * » t t ( 2'5) 
W i W1L W1L d W l L 

where L denotes the laboratory frame jg = 0. 



17. 

Now 

w 1L ( k * L - ^ ) l / 2 

( d w l L ) / d k l L - ^ L ^ I L * (2.6) 

From (2.5) and (2.6), we get 

d 3k 
= k 1 T dw 1 T dfi. 1L 1L k,_ wx 1L 

" k l L d w l L ( s i n 01L d 9 l L ) d * l L (2.7) 

We now calculate the d i f f e r e n t i a l i n (2.7) i n terms of t and W2. For 

that we need the r e l a t i o n 

dt dW2 = 

at at 
a(cos e 1 L) aw '1L 

aw2 aw2 

a(cos e 1 L) aw1L 

d(cos ^ii)^^ (2.8) 

Let us calculate the JacoMan. 

t = -(q - k x ) 2 = 2n2 + 2q.kx 

- 2M2 + 2q Lk 1 L cos 0 1 T - 2WT W I 1L L 1L (2.9) 

with k 1 L = ( v ^ - H 2 ) ' 

W2 = - ( k 2 + p«) 2 = - ( q + P - k J 2 

a s + n 2 + 2(q + p) . k A 

= s+ u2.+ 2(q +p)_ . k i L - 2(q c+ Po) L
wu 

- s + n 2 + 2q Lk 1 L cos e i L-2(M+w L)w 1 L . 

(2.10) 
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From (2.9) and (2.10), we have 

dt St w 
= 2 q k ; = 2q - — cos 0 - 2w 

o ( c o s e i L ) 1 L ow 1 L
 L k 1 L

 1 L 

dW2 dw2 w. 
— - 2qL k ; _ = 2q -S cos fl - 2(M + w ) 

a (cos e 1 L ) dw 1 L k 1 L 

Hence, the Jacobian i s 

J * -UMqL k 1 L . 

Therefore, (2.8) reduces to 

dt dW2 - UMqL k 1 L ( s i n © 1 L de i L)dw 1 L (2.11) 

From (2.7), we have 

d 3k 1 
i = dt dW2 d* 1 T . (2.12) 

wx ltMqL
 L L 

Putting (2.U) and (2.12) i n (2.2), and since Flux = Mq^, we get 

1 1 
do. (TC) =» . — . F f t ) . 6(t) . GfW2, t ) 

i n 32(2TC)5 q 2 ™ 

x (P̂ /W) dn . dt dw2 d * 1 L (2.13) 
p v 

The lower vertex i n figure 3 represents the scattering 

P + p -+ kj, + p» , 

where the mass-squared of the Pomeron i s -P2 = -(q - k^* = t . 

The d i f f e r e n t i a l cross-section f o r t h i s process i s given by 
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M2 1 ( 1 % d 3p' 
da p o . . 6*(k 2+ p 1 - P - p ^ W ^ t ) 

U(27t) 2 Flux w E 1 

2 

^ 1 + E' - P N - E)d 3p' 
. GfW2, t ) 

H(2ir)2 Flux wg E» 

However, as before 

&(wg
 + E' - P Q - E)d 3

P' _ *(v2v - E; - P ^ - E v ) d 3
P ; 

w2 E ' w 2 v Ev 

- ( ^ ) d n 
\ W / P v 

Hence, 

M2 

U(2n)'-M ^ w ' *v 
M / p \ 

d 0 = ^ G(W 2, t ) ( ) dfl , 
P U(2*)2N V W / P^ 

or f GfW2, t ) (h ) dfl , = U(2*) 2 1 ^ (W2, t ) (2.1U) 
J \ W / P v M2 P 

where N denotes the f l u x f o r the process and w i l l cancel out from our 

relations eventually. 

From (2.110 and (2.13), we obtain 

1 N 
da (n) = -— r ~ - F ( t ) | ( t ) a ( W ^ t j d t dW2 d* . 

i n 8(2ir) 3 M^q?) 2 7 1 7 1 P 1 L 

L 

Integrating the R.H.S. with respect to *, we e x p l i c i t l y get 

d 2o. (it) 1 N 
= F ( t ) ! ( t ) a . f t i 2 , t ) (2.15) 

at aw2 8(2T0 2 M 2 ^ ) 2 7 1 7 1 P 

(2.15) i s the f i n a l form of the i n e l a s t i c d i f f e r e n t i a l cross-section 

f o r the process TIN -» miN . 
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Sim i l a r l y , we t r e a t the process NN -» TENN (Figure U) 

i , » - " 

p N 
> 

Figure k 

(Pomeron exchange i n the reaction NN -*HrtN). 

The d e t a i l s of the calculation are the same as i n the case of the 

f i r s t process. I n t h i s reaction we f i n d , 

o*a i n(N) 

dt dW2 2(2TI) 2 (q£) 

where F ^ t ) = £ |< k ^ P l q >| 2 . 

(2.16) 

spins 

We now calculate the d i f f e r e n t i a l cross-section f o r the e l a s t i c 

scatterings nN -» 7iN and NN NN (Figure 5 ) . 

p' 

Figure 5 

I n the case of NN -* NN 

M4 

do = 
(2u ) 2 Flux 

1 8(w'+ p'-w-E)d 3q' 
NN W2 E* 
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M4 1 

(2TC)2 Flux ^ m W 

M4 1 

2w Flux '
 FNN ( t ) * ( t ) F ™ ( t ) S i n 6 d 6 NTT W 

Hence. 

d g e | W 
dt 

M 

cm.1 

(2.17) 

S i m i l a r l y , f o r TCN 

d g e l ^ m 

dt 

TCN, ve get 

1 ^ 
F ( t ) | ( t ) F m T ( t ) 

16K W^p* ) 2 «" 
(2.18) 

From (2.15) t o (2.18), we get, at given values o f W2 and t , 

q? N 2 r (^o. («))/(* SW2) 

(in i n 
( o 2 a i n (N))/(dt 0W2) 

Tt 
/ Pcm. [ ( d a e i ( T t ) ) / d t 

Pc.m. 7 L Cda e £(N))/dt 

(2.19) 

However, since 

( # 2 £B [W2 - (M + u ) 2 ] [W2 - (M - n ) 2 ] 

t Nv 2 _ _wf 
UM2 

(w2 - k i f ) 

- ^ [ W 2 - ( M + . ) 2 ] [ W 2 - ( M - M ) 2 ] 

From these expressions, we f i n d that 

( S ) 2 - ( 5 * ) 
' cm. 
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Hence, from (2.19), we obtain the f a c t o r i z a t i o n formula 

r d2o. (N) /d 2a. (it) -| 

L St dw2 / dt dw2 J 
do e X(N) /d° e fU) 

dt / dt 
(2.20) 

Equation (2.20) i s the basic res u l t of our calculations. The i n e l a s t i c 

r a t i o on the l e f t hand side fo r f i x e d t must remain approximately 

constant as W2 i s varied. This would by i t s e l f be an evidence f o r 

f a c t o r i z a t i o n . 

The above f a c t o r i z a t i o n t e s t i s expressed i n terms of a double 

d i f f e r e n t i a l cross-section (at f i x e d momentum transfer and invariant 

mass of the two-particle subsystem i n the f i n a l state) of the i n e l a s t i c 

reactions. I n applying i t to the reactions riN -+ unhand NN -• nNN, 

we f i n d that experimental data at the same value of momentum transfer 

f o r the two reactions are not available. We have, therefore, averaged 

them over a range of momentum transfer 0.01 < | t | < 0.2 (Gev/c) 2. 

I t i s obvious that Pomeron exchange i n the two reactions discussed 

requires that the (TIN) subsystem i n the f i n a l state have T = 1/2. The 

T = 1/2 contributions i n the data have been estimated by making use of 

the results of Boggild et a l ^ * ^ , who have shown that at the 19 (Gev/c) 

proton-proton interaction there i s a predominance of 70$ of the (TIN) 

system i n the isospin T = 1/2 state, and s i m i l a r l y i n n +p interactions, 

by the l o n g i t u d i n a l phase-space considerations, there i s a dominance of 

80$ of i s o s p i n - l / 2 states of the (TIN) system i n the reactions, 

w+p -» n + ( i r + n ) and n +p -» it+(n°p) or i i + p -» n°(n+p) . 

E x p e r i m e n t a l l y t h e curves of the i n e l a s t i c Tip and pp i n t e r -
3 2o 

actions relevant to our calculations are given as k. v mb/(Gev/c)3 

b) Comparison with experiments 
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p l o t t e d versus the r a t i o p/pg£ of p a r t i c l e momentum to that of 

e l a s t i c a l l y scattered p a r t i c l e s at the same angle. For our purpose, 

we require to express the r a t i o p/p e ; j i n terms of W. 

For Tt +p i n t e r a c t i o n , p/p e Jj can be expressed i n W2 as follows, 

(see Figure 6) . 

Pi 

Figure 6 

i n e l a s t i c " " ( p2 " P ) 2 

= M2 + W2 + 2p 2 . P (2.21) 

Also energy-conservation gives 

M + P
L = P

, L + pj; 
•̂ 10 F i o o 

I n the laboratory frame, p^ = 0, therefore, from (2.21), we have 

2tf + 2Mp5;0 = 2Mp[^ + 2MP£ 

- 2Mp^ + M2 + W2 - t i n 

i . e . 

Also 

2M(p!b. = t , + M2 - W2 + 2M p;' ^ l o ' i n i n * i o 

2M(p^) e< = t e i + 2M P; 10 
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or 

Now, since t i s small, we can approximate the r a t i o by the 

formula 

p if - W2 + 2M wT « £ . 
p e i 2M wL 

where ŵ  i s the incident pion laboratory energy. 

Sim i l a r l y , f o r the pp in t e r a c t i o n , we use the following formula to 

obtain the value of W from experimental given r a t i o p / p e j = x (say), 

x( p j . ) 2 + M2 , Iff* - W2 + 2M Ej^ v 2 • i v r - w -f taxi J !^ \ 

( l ^ ) 2 + I f 5 \ 2M 

where i s the incident proton laboratory energy. 

(17) 

For the n +p i n e l a s t i c reaction, we use the date^ ' at 10.02 Gev/c 

incident momenta i n the range of momentum transfer 0.01 < | t | < 0.2 

(Gev/c) 2, and f o r the pp in t e r a c t i o n we use the data at 9»86 Gev/c 

incident momentum for the same range of momentum transfer. I n Table I 

we give the experimental values o f the r a t i o of the i n e l a s t i c cross-

sections f o r d i f f e r e n t values of the ef f e c t i v e mass W of (itN) ranging 

from 1033 to 2113 Mev. I n the r a t i o , we have taken i n t o account only the 

T = 1/2 contribution at high energy, as explained i n the beginning of 

t h i s section. Similarly, Table I I gives the r a t i o s o f the e l a s t i c 

d i f f e r e n t i a l cross-sections o f pp and n +p at 10.8 Gev/c incident momenta 

f o r values o f momentum transfer i n the range of 0.058 < | t | < 0.268 

(Gev/c) 2. ( 1 8 ) 



Table I Ratio o f the I n e l a s t i c double d i f f e r e n t i a l cross-sections 

of pp and ir+p. 

W(Mev) Ratio W(Mev) Ratio W(Mev) Ratio W(Mev) Ratio 

2133 2.28 1926 2.17 1719 2.3^ 1338 2.U5 

2091 2.31 1901 2.70 I69I 2M 1315 2.37 

2068 2.31 I876 2.61 I663 2.58 1278 2.35 

20U5 2.35 1851 2.hk I63U 2.50 12kl 2.U3 

2022 2.kk 1852 2.28 IV83 2.17 1202 2.U3 

1998 2.50 1799 2M 1U51 2.32 1162 2.27 

2.61 1773 2.k6 1U8 2.U0 1121 2.27 

1950 2.71 17^ 2.k6 138U 2.33 1033 2.32 

Table I I Ratio of the el a s t i c d i f f e r e n t i a l cross-•sections of 

PP and T I +
P . 

- t Ratio - t Ratio - t Ratio 

0.058 
• i . 

2.h8 0.157 2.16 0.256 2.31 

0.08U 2.39 0.203 2.29 0.268 2.10 

0.116 2.33 0.250 2.20 
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c) Results 

The comparison of the two tables shows that the i n e l a s t i c r a t i o varies 

from 2.71 t o 2.17 and the el a s t i c r a t i o varies from 2.k8 to 2.10. 

Further, w i t h i n the range of the v a r i a t i o n 0.01 < | t | < 0.2 (Gev/c) 2 

i n Table I I , t h e r a t i o of the el a s t i c d i f f e r e n t i a l cross-sections varies 

smoothly. This shows therefore, that our results agree with the 

fa c t o r i z a t i o n formula, thus favouring the p o s s i b i l i t y that the 

Pomeron s i n g u l a r i t y i s a simple pole. Also we notice that the case 

discussed by Freund i s a special case of our r e s u l t . I n addition, here 

we do not have any d i f f i c u l t y about the "background" which one has to 

subtract from the experimental results i n order to f i n d the resonances. 

We conclude by observing that since the usual Regge analysis of e l a s t i c 

processes involve more than the Pomeron, specially at 11 Gev/c, the 

comparison with i n e l a s t i c scattering i s surprisingly good. 
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CHAPTER I I I 

Factorization Test fo r the Rho Trajectory 

1. Introduction 

As pointed out i n Chapter I , i t i s an established fact now that 

i n high energy scattering, other than simple Regge-poles i n the J-plane, 

there can be dominant contributions due to the branch points. I t i s 

therefore o f prime importance to study the nature of the dominating 

s i n g u l a r i t i e s . 

(9 15 19) 

Recent work ' * shows that there i s a good evidence that the 

Pomeron s i n g u l a r i t y , which dominates d i f f r a c t i o n scattering, i s a simple 

pole. As one already knows and also from the analysis of recent 
(7) 

experimental data on pp sc a t t e r i n g x the Pomeron t r a j e c t o r y i s 

d i f f e r e n t i n many aspects from other dominating t r a j e c t o r i e s p, w, A g, 

n and N, etc. Therefore any evidence f o r the Pomeron t r a j e c t o r y 

cannot be st r a i g h t away taken to be true f o r other t r a j e c t o r i e s . On the 

other hand, the t r a j e c t o r i e s , p, w, Ag, ti, N, ... etc. are s i m i l a r , and 

once the nature of one such t r a j e c t o r y i s established, then one must 

seriously look f o r similar behaviour f o r other t r a j e c t o r i e s . 

I n t h i s chapter, we s h a l l closely investigate the nature of the 

Rho-trajectory. F i r s t l y , one must note that among other major 

t r a j e c t o r i e s , the Rho-trajectory i s the only one that can p a r t i c i p a t e i n 

the charge-exchange reaction it"p -» 7t°n, where i t appears to be 

responsible f o r an a-dependent dip at t a -0.6, i . e . <*p(-0.6) = 0^®\ 

The Rho-trajectory i s also thought to be a leading participant i n other 

charge-exchange reactions such as: 
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k'p -» k°n, Tin -» wA, 7P -* Pn ; 

Tip -» TI°A' and rai -» wp 

Many f i t s t o these reactions have been made, and the Rho-trajectory 

looks apparently l i n e a r i n t and the values o f the intercept vary between 

0.52 and 0 . 6 5 ^ 2 1 ^ 

I n the following sections we s h a l l obtain a di r e c t t e s t f o r the 

Rho-factorization and then compare i t with the available experimental 

data. We s h a l l also see that i n Kho-dominated reactions mixture of 

p a r i t i e s i s being exchanged. F i n a l l y , we s h a l l make some observations 

of our results about the nature of the Rho-trajectory. 

2. Factorization Test f o r the Hho Trajectory 

(a) Derivation o f the formula 

F i r s t , take the reaction TIN -* wN, and l e t p,q be the i n i t i a l four-momenta 

of the nucleon and pion respectively, q* and p' are the f i n a l momenta of 

w-particle and nucleon. The i n e l a s t i c d i f f e r e n t i a l cross-section can be 

wr i t t e n as, 

(1) M2 1 1 

Flux w2E' 
da i n - x X 6 4 (q« + p» -q - p) X 

I < C L ' , p k > l 2 Ut) V | < P * | P , P > I av x 
spins 

d-p 
( 3 . D x 

(2*) 3 

where wg, E1 are the energies the w-particle and f i n a l nucleon. 

Define 
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|<CL', P k > | 2 = F w ( t ) 

V |<p'|p, p > | 2 

I—* av spins 

where ^~ means sum over f i n a l spins and average over i n i t i a l spins, 
spins 

g(t) represents the square o f the Rho-trajectory exchange. 

Further, the following quantities "being Lorentz invariant are evaluated 

i n the rest frame of the f i n a l nucleon state. 

84(p» + q' - p - q)d 3p'd 3q' 6(w 2 + E» - w - E)d3q» 

w„Ef w E' 
2 2 

and 

8(w_ + E* - w, - E)d3q« p 
1 1 = - dft 

w2E« W 

where and E are the i n i t i a l energies o f pion and nucleon. p i s the 

i n i t i a l (= f i n a l ) centre of mass momenta and W = -(p + q ) 2 i s the t o t a l 

centre o f mass energy. dfl = sin0 dS d<t> . 

By d e f i n i t i o n , t = - ( q - q ' ) 2 

= mS + in2, + 2p 2 cos 9 - 2wxw2 

mJL and m̂  are masses of pion and w-particle. 

dt = - 2P2 s i n 0 d0 

Putting a l l these values i n (3.1) and integrating i t with respect t o 4> , 

we f i n a l l y get 

( i ) = X — x I x F w ( t ) | ( t ) F M ( t ) . (3.2) 
\ d t A 8(2TU) Flux Wp ™ • 
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We need not know the value of the f l u x , because i n the f i n a l r e s u l t s , 

the f l u x being the same, automatically cancels i n a l l the reactions. 

Simil a r l y take the second reaction nN -* wA + + and we obtain the 

f i n a l formula f o r the d i f f e r e n t i a l cross-section as 

/ . x MM* 1 1 
( S? ) = X X ~ * rA„ ( t ) (3.3) 
V d t / 2 8(2*) Flux pW w A n 

where 

F A N ( t ) - £ |<p"| P, p>|; | 2 

'av 
spins 

p" and M* are the four-momenta and mass of A + + respectively. 

Sim i l a r l y taking the t h i r d reaction o f nN charge exchange, we get 

( % ) • ' x - x F j t ) l ( t ) F j t ) . (3.U) 
V d t / 3 8(2*) Flux pW 1 1 7 1 m 

The d i f f e r e n t i a l cross-section f o r the fourth reaction *N -+ *A + + 

can be w r i t t e n as 

00 MM* 1 1 
x — x ~ x F ( t ) g ( t ) P A _ ( t ) (3.5) 

^ 8(2it) Flux pW 

Collecting a l l the results from (3.2) t o (3.5) we f i n a l l y get the 

fa c t o r i z a t i o n formula f o r the Hho-trajectory as 

3gft(«°P - wp) gjga^-p -+ *°n) 
M ^ ( n +

P - w°A + +) = *2gp(* +p -» ' 

The formula (3.6) i s a basic r e s u l t of our calculations. This must be 

tested at the same centre of mass energy W and at the same value o f the 

momentum transfer t . 
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(b) Comparison with Experiments 

Experimental data at nearly ^-5 Gev/c laboratory momenta exists f o r 

a l l the four i n e l a s t i c reactions of equation (5.6) . The cross-section 

data da/dt versus - t f o r 7t+n -• pw° have been taken at 5 • 1 Gev/ c 
(22) 

from Orsay-Bari-Bologna-Florence group v . 

Data f o r T I + P -• w°A + + at 5 Gev/ c has been given by Bonn-
(22) 

Durham-Nijmegen-Paris-Strasbourg-Turin group x . 
fo-x\ 

Data f o r Tt~p -» ir°n v 7 1 i s at k Gev/c, and data f o r 

ir +p -* it°A++ at k Gev/c (see reference page 105) have been used. 

Table I I I gives the comparison o f the two r a t i o s i n equation (5.6) 

versus negative value of the square of the momentum transfer. The data 

f o r a l l the four reactions i s available upto t = -0.55 and beyond t h i s 

r e l i a b l e data does not exi s t . 

(c) Result 

Table I I I shows large s t a t i s t i c a l errors and therefore i t excludes the 

exact i n t e r p r e t a t i o n of the data. Nevertheless, the comparison rules 

out simple f a c t o r i z a t i o n picture and apparently shows a s i g n i f i c a n t 

f a i l u r e of the f a c t o r i z a t i o n f o r the Rho-trajectory. On the other hand, 

there are two important points which have t o be taken i n t o consideration. 

F i r s t l y , we have used the data at much lower energies, and therefore one 

cannot neglect the e f f e c t of lower t r a j e c t o r i e s , l i k e B mesons, which 

contributes t o omega production and i s probably s i g n i f i c a n t at lower 

energies. Secondly, cuts on the other hand should not s p o i l the 

f a c t o r i z a t i o n t o any great extent. Therefore, we suggest that the 

breakdown of the f a c t o r i z a t i o n must be confirmed by good experiments at 

higher energies. 



Table I I I 

- t 
6.0/ + o\ ^ ( i r n -» pw u) 6of - 0 \ 

- t 

.05 .229 + .033 .1+92 + .0U9 

.10 .200 ± .020 .5^2 ± .060 

.15 .267 ± .055 .633 ± .180 

.20 .212 ± .037 .U73 + .126 

.25 .267 ± .0U4 .U73 + ,09k 

.50 .300 ± .105 .591 ± .365 

.55 .175 ± .07 .329 ± .09 

.ho .U80 + .153 1.107 + .555 

M .keo ± .199 .758 ± Ml 

.50 .300 ± .100 .861 + .557 

.55 .360 ± .072 .953 ± .632 

.60 .0 + .02 — 

.65 .20 ± .053 .529 ± .11 

.70 .50 ± .09 — 

.75 0 + 0 — 

.80 .uo ± .230 — 
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We also point out that our conclusion i s not very surprising, since 

other evidence f o r the f a i l u r e of f a c t o r i z a t i o n exists. A good example 

i s pp and pp scattering, where i t i s necessary fo r a simple pole 

exchange, to have a zero i n the w-residue at t = -0.1 (Gev) 2. This 

does not occur i n the w-contribution to ir +n -» pn, as i t would have 

to do i t f a c t o r i z a t i o n holds. Secondly, Ag mesons are now experimentally 

i d e n t i f i e d to be two closely spaced resonances of i d e n t i c a l quantum 

numbers, and therefore f a c t o r i z a t i o n of A 2 t r a j e c t o r y does not hold. 

3* Exchange of Parity 

Take the reactions TtN -* wN and uN -» wA++. The simplest 

production mechanism i n these two reactions i s the exchange of the Rho 

Regge-pole i n the t-channel. We are interested i n the decay 

correl a t i o n of the unstable p a r t i c l e w. Simple Rho exchange implies 

that pnr. = 0, where p" , i s the density matrix element f o r the w uu » mm 
expressed w i t h respect t o t-channel axis. Experimentally, p 0 0 i s 

1/2 i n the forward d i r e c t i o n , i n d i c a t i n g an appreciable amount of 

unnatural p a r i t y exchange. I n many other reactions, the data i s 

explained by adding another pole, but i n t h i s case even by adding B 

meson the calculated density matrix elements s t i l l do not agree. 

We observe the following: 

I f natural p a r i t y (-1)^ i s exchanged i n the above reactions, then 

Poo - °» R e P 1 0 " 0 a n d l p i - J ^ 0 • 

I f unnatural p a r i t y ( - l ) J + 1 i s exchanged, then 

Poo - W K v ( s ' t ) | 2 ' R e p i o - °' l p i - J - °. 
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But experimentally , one finds , 

Poo * °> and ^ 0 • 

The f i r s t indicates an appreciable amount of unnatural p a r i t y 

exchange, while the second, the natural p a r i t y exchange. This gives an 

ind i c a t i o n that experimental data can be explained i f mixture of 

p a r i t i e s i s exchanged i n the Rho-dominated reactions. This destroys 

the simple Rho-pole pict u r e , and indicates that Regge-cuts may play an 

important part. 

h. Conclusion 

Failure of the f a c t o r i z a t i o n and mixture of p a r i t i e s exchanged 

can suggest that Rho-particle can be a p a r i t y doublet. This would not 

be very surprising since experimental evidence of Ag p a r i t y doublet 

ex i s t s , and therefore, through exchange degeneracy one can suggest that 

i f A 2 i s a p a r i t y doublet, then so i s Rho. One can also generalize 

these results and suggest that similar behaviour can exist f o r other 

low-lying meson t r a j e c t o r i e s . 
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CHAPTER IV 

Parity Test f o r the Pomeron i n Resonance 

Production Processes 

1. Parity Test 

I n t h i s chapter, we investigate another t e s t f o r the Pomeron 
(25) 

s i n g u l a r i t y suggested by Gribov x . Gribov, by the reggion graphic 

technique i n the r e l a t i v i s t i c scattering problem, studied with respect 

to p a r i t y the e f f e c t of the Mandelstam cuts which are expected to be 

present. I n the t-channel reaction a + b -» c + d, Gribov shows 

that P r = ( - l ) J P = +1 f o r the Pomeron pole and P r => ± 1 f o r the 

Pomeron cut; where J i s the t o t a l angular momentum and P the p a r i t y 

of a+b state. This has important observational consequences. I f 

we take c = d = proton and a and b are 0" and 0 + meson respectively, 

then P r = ( ~ l ) J P => ( - l ) J H a T J 2 ( - 1 ) l = -1 since J = L f o r two mesons, 

and Tjg are opposite p a r i t i e s of the mesons. This means the Pomeron 

pole does not contribute} the Pomeron cut does. Another example, i s 

the reaction 0~+p -» l~ + p. The amplitude f o r the Pomeron pole 

exchange vanishes as s i n 6 i n the forward d i r e c t i o n , while the Pomeron-

cut amplitude i s small ( i n >T-t) without vanishing. Gribov has not 

discussed such cases but one can mention that the same d i s t i n c t i o n 

could be applied when a i s a proton and b i s a proton isobar, the 

importance of the Pomeron-pole and the Pomeron contributions being 

essentially reversed, depending on the p a r i t y of the isobar. 

We have used the above idea i n the production of a single baryon 

or meson resonance i n many two body reactions. Since i n the regge-pole 
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model the nature of the exchange of states i n the t-channel has a 

d e f i n i t e dependence on the polarization states of the resonances, 

therefore we have considered here the specific information contained 

i n the f i n a l state polarization due to the exchange of d e f i n i t e p a r i t y 

fo r the Pomeron-pole and mixed p a r i t y f o r the Pomeron-cut. 

(26) 
Morrison recently considered the contribution of the 

+ ± 

Pomeron to i n e l a s t i c reactions such as pp -» pN* and n p -» n N*. 

He noted that while other i n e l a s t i c cross-sections decreased with energy, 

there i s one constant energy case; that i n which an N* i s produced from 

an i n i t i a l nucleus f o r which the change i n isospin i s zero and the 

change i n p a r i t y (AP) and the change i n spin (Aj) obey AP = ( - 1 ) ^ . 

Similarly f o r meson resonance production Morrison found that f o r 

reactions where the change i n quantum numbers between the resonance and 

the i n i t i a l meson obey AT = 0 and AP = ( - l ) ^ , the cross sections 

are nearly constant. We have, therefore, considered the processes 

NN -» NN* (N*; T = l / 2 , J F = l / 2 + , J P = 3/2") itN -* TtN* 

(N*; T = 1/2, J P = l / 2 + , J P = (5/2:t)"n-p -» Ap (A; T - 1, J P = 1 + ), 

Kp -» K*(1320) p (K*, T = 1, J p = 1 +) and Kp -» K* (l790)p, 

(K*, T => 1/2, J P = 2") which are of d i f f r a c t i v e nature. We use the 

fact that the Pomeron-pole and the Pomeron-cut have the same quantum 

numbers: signature P̂  pos i t i v e , isotopic spin zero, and positive 

G-parity. For the Pomeron-pole, i n addition, d e f i n i t e p a r i t y i s 

exchanged, therefore, with the available experimental data on d i f f e r e n t i a l 

cross-sections we have computed the spin-space density matrix elements of 

d i f f e r e n t resonances f o r the pole exchange. I n the presence of the 

Pomeron-cut, since mixture of p a r i t i e s with unknown r a t i o between them 

i s exchanged, we predict results on the density matrix elements and also 

establish relations that are to be s a t i s f i e d f o r the Pomeron-cut. 
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I n the following section, we develop the Regge-pole formalism 

required f o r the single Pomeron dominant exchange and also state the 

conservation laws that have been used. I n t h i s case, we then compute, 

with the help of the experimental data, the r e l a t i v e magnitudes of 

the residue functions f o r d i f f e r e n t h e l i c i t i e s of the Pomeron exchange. 

The knowledge of the residue functions then enables us to determine 

the density matrix elements of d i f f e r e n t resonances i n d i f f e r e n t 

range of momentum transfer. We also make predictions for the 

Pomeron-pole and the Pomercn-cut separately. I n conclusion, we s h a l l 

suggest that experiments on the decay of unstable p a r t i c l e s , studied 

i n over reactions, be done to check the consistency of our results. 

We have used h e l i c i t y representation throughout and also used the 

following assumptions: 

1) The same phases f o r the amplitudes belonging to d i f f e r e n t h e l c i t y 

states f o r the cut have been used. 

2) The results are generally true to the leading order i n the f i r s t 

power of the centre of the mass energy. At present laboratory energy, 

there can be sizeable corrections. 

3) The residues are real functions of t and Pomeranchuk-Okun theorem 

holds, i . e . only the Pomeron contributes at high energy. 

U) The h e l i c i t y amplitudes f o r resonance production can be w r i t t e n as 

single dispersion relations i n either energy or momentum transfer. 

2. Regge-pole formalism 

Consider the t-channel reaction 1 + 2 -• 3 + The p a r t i a l 
(27) 

wave expansion can be expressed i n the h e l i c i t y representation v ', 
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00 
PX,3u.X«X. ( t' x ) = ( - ^ T ( J + i ) < ^ | T J ( t ) I V 4

> < x » ( x ) 

(^.1) 

where, X = Xx - X^ X' = X 3 - X4 , t i s the square of the centre of 

mass energy i n the t-channel and x = cos "being the scattering 

angle between p a r t i c l e s 1 and 2. d ^ , (x) i s the usual r o t a t i o n 
(2Q) 

function and we follow the phase convention o f Gunson and Andrewsv . 
Changing the summation over J int o the contour in t e g r a t i o n , and 

(29) 

performing the usual Sommerfeld-Watson transformation v , we can 

iso l a t e the leading Regge-pole contribution t o the h e l i c i t y amplitudes 

ignoring other s i n g u l a r i t i e s as, 

Rea> - f 
Regge poles 

X dT .,(-x,o) x 1 (k.2) 
A' A sin n(a - X) 

+ 

where 0~ are residues, the sign being positive or negative according 

as J - X i s even or odd. The asymptotic behaviour of d ^ , (x; as 

x -» co, neglecting l/ x and higher powers (see equation (A.2) of 

re f . 29) 
. . i „ r(2o + l ) 

< „ ( x ) - i X- X ,(£x)° : ~ j 
* x [r(o+ x+ i ) r(a- x+ i)r(o+ x»+ i ) r(a- x» + i)]a 
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and 

d^_ji(-x,<0 = £[d^_ x,(-x) + d^ x,(x) ] 

since 

d ° x , x ' ( x ) - ( - ^ a " X d x , - x ' ( - x ) 

We write the asymptotic behaviour f o r d x _ x, (-x,oy as 

d ) x + x ' (-h*)a(t) r ( 2 a + 1)(1 ± a - i « C « - ^ ) ) 
<C ., (-x,a) « £ . , 
*'~A [r(a+ X+ l)r(a* X+ l ) r(a + X» + l ) r ( a - X'+ l ) ] a 

Equation (b,2) can therefore be w r i t t e n as, 

F x x > x x ( t , x ) - - n ( - l ) X " X ' V ( a ( t ) + i ) x r ( 2 a + 1) 
* *' 3 4 Re a>-£ 

Regge poles 

! + e-in(a-X) 
r 1 x £ f ) x ( - i X ) o ( t ) cxx,(c 
L 2 s i n n(o - X) -I hfe>*a\ x x 

where X, X' dependence has been e x p l i c i t l y taken out i n 

jX+X1 

c ( ° ) a . (^.5) 
x x ' [ r(o+ x+ i)r(a-x+ i ) r(o+ x» + i ) r(o- x1 + i ) ]£ 

Further, since we consider Boson exchange, 

1 ± G

- i * ( < X " X ) ( - 1 ) X ± e _ i not 

2 sin 7t(a - X) 2 sin it a 

and t h i s factor can be combined with 3 ± ( t ) f o r a l l h e l i c i t i e s . 
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Redefining 

and 

+ + 

a ± ± 

Nov 1 sign corresponds to the signature of J i n 

XjX^XaX^ L g s i n n a -I 2 sin Tta 

OL( t ) 
Secondly, we absorb the t-dependence of (-x/2) * ' i n t o the 

residue functions 

^XxX2,X3X4^t^ [ ( i ^ i y y j j i " J R*i>2»*s*4 

where 

s - s D ( t ) 
x M t " " 

and 

( t + M 2 - 4 ) ( t + ̂  - M2) 
s Q ( t ) = + M2 -

2t 

such that 

Incorporating these results i n equation (b.k), we f i n a l l y obtain the 

formula f o r h e l i c i t y amplitudes: 
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\wlt,X) a ",I("1)X"X, I («(t)+4)r(2a(t) + 1) 
Regge poles 

L 2 sin no J \ k(iyyy^Ja/ * i V A 3 A 4 k k 

(*.6) 

D i f f e r e n t i a l cross-section i n the s-channel can now be w r i t t e n and by 

crossing r e l a t i o n f o r h e l i c i t y amplitudes*^ , and including the 

normalization factor, the d i f f e r e n t i a l cross-section i n terms of the 

t-channel amplitudes can be w r i t t e n as: 

da "^V v _ i 
d t 1 6 K [ ( S - M J - 1 ^ ) - I H ^ H J ] ( 2 S i + l ) ( 2 s 2 + 1) 

where the product of masses appears for the fermions only, and s 1 and 

s 2 are the spins of the i n i t i a l p a r t i c l e s . I n t h i s formalism, i f 

one Regge-pole dominates, then the d i f f e r e n t i a l cross-section can be 

w r i t t e n as: 

d f f «TJ(2M<) 1 
zS. a , — i x x (o(t) + t ; c 

d 1 J 6 U [ ( S - 4 - M J ) 2 - ^ M | ] ( 2 S l + l ) ( 2 s 2 + 1 ) 

i ̂  0.2 no(t) /.\ 2o(t) 
/ 1 + C O t 2 - 4 - * v • S - S ( t ) \ V ' 

X [r(2o(t) + l ) ] 2 X ( 2 W o \ 

x ^ K - i W - ^ ^ J t J c ^ i " . 



ku 

The above form i s f o r s -» or x - » - » , with t f i n i t e and 

negative. This i s the main formula, which we s h a l l use t o f i n d the 

unknown residue functions. 

3. Conversation Laws 

( i ) The p a r i t y conservation law: This law holds among strongly 

i n t e r a c t i n g p a r t i c l e s and i t reduces the number of amplitudes to hal f . 
(27) 

Following Jacob and Wick v , we have 

( s 3 + s 4 ) - ( S l + s 2 ) x , 
F-X -X_ -X--X a C"1) ("I) F . 

(U . 8 ) 

where i s the i n t r i n s i c p a r i t y of the p a r t i c l e i . 

( i i ) The G-parity conservation law: I n the cases where the two 

pa r t i c l e s i n the i n i t i a l state of t-channel are NN, t h i s implies 

r e s t r i c t i o n s on the amplitudes. The use of the asymptotic property of 

the d-functions (equation (U.3) ) , and the d e f i n i t i o n of the G-parity 

at NN state, 

G|J, XJJ Xjj > = ( - 1 ) J ^ |J, X- X N > . 

We derive t h i s r e l a t i o n involving G-parity by w r i t i n g the amplitude as 

= ( 2 J + 1) < X 3 X j T J ( t ) G|Xg > < *gl<"£(t>0| *„>S > d ^ ( 0 ) 
J 

= M g ( - l ) J ( - l ) T ( - l ) X N * ^ ^ ( 2 J + 1) < x 3 x 4|T J(t ) | x f x N > d^(e ) . 
J 



Hence the r e l a t i o n 

U 2 . 

( t . 9 ) 

where g i s the G-parity of the Pomeron. I n our analysis we s h a l l 
T 

take g P j ( - l ) = + v e , & H * n e reactions. I n t h i s case, the 

Pomeron pole, cut, and also P*, p, w, n, etc. Regge-poles and 

the branch points a r i s i n g from the exchange of these poles and 

n-vacuum poles can be exchanged. Through our assumption (3) we 

exclude a l l poles l i k e : n, p, ... of the isotopic spin one at high 

energy. Table IV f o r gP^(-l)' 1' = p o s i t i v e , gives the possible 

t r a j e c t o r i e s that can be exchanged. 

T g Associated t r a j e c t o r i e s 

0 + + P,P*,A,B,C,f,X,Ti, .... 

0 - - W,4>, .... 

1 + - p, .... 

1 - + i t , Ag, • • • • 

Table IV 
\T 

Trajectories exchanged due to g P j ( - l ) =» po s i t i v e 

( i i i ) The law of d e f i n i t e p a r i t y exchange: We use the d e f i n i t e 

p a r i t y conserving amplitudes. By taking l i n e a r combinations of 

h e l i c i t y states, we construct states of d e f i n i t e p a r i t y and form p a r i t y 

conserving p a r t i a l waves amplitudes of (-1)^ and p a r i t i e s , 

as p a r t i a l waves amplitudes can have contributions from states of both, 

even and odd p a r i t y . Keeping track of the number of such combinations 

of p a r t i a l waves amplitudes, we deduce by the method given below the 

r e l a t i o n f o r ( - l ) J and ( - l ) J + 1 . 
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J 

= (-i)x'x,V(ar + l ) < x 1 x 2 | p | x p x x p | F P J ( t ) | x 3 x 4 

J 
x < x ( x ) 

I f P|Xp> » (-l) J|Xp> 

P l X ^ > = ( - 1 ) J + S 1 + S 2 T ^ t g - X ^ > 

then 

^wi'" 0 ' n^ (- l )X ("l)Sl+S2 F~vv v« 
Therefore, 

( i ) I f (-1)^ parity i s exchanged i n the intermediate state, then 

^X1X2,X3X4^ ' ̂  ^ l 1 ^ ^ ^ ^ ^-x 1-x 2,x 3x 4 

Similar relation holds for the other vertex. 

( I I ) I f parity i s exchanged in the intermediate state, then 

These two relations enable us to put restrictions on the amplitudes i n 
case of the Pomeron-pole and cut^^K 
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k. Expressions for the density matrix elements 

The most convenient form of the expression for the density matrix 
elements expressed by continuing i n terms of the t-channel h e l i c i t y 

(32) 
amplitudes is given by Gottfried and Jackson w ', 

mm' W^ra X^^m' 

where the normalization constant N i s fixed by the condition that the 
trace of matrix p , = 1* and m, m' are the he l i c i t y quantum numbers mm 
of the resonance. For convenience, we shall while writing, denote 
m, m* as twice the actual values of the h e l i c i t y numbers. 

The number of independent measurable density matrix elements for 
half integer spin J are: 

p 1 < m ̂  2J mm 
Re p n < m ̂  2J mn 
p 0 < m $ 2J m-m 

(33) 
and i n case of integer spin 3, ' 

p 0 < m € J mm 
Re p |n| < m ̂  J mn 
p 0 < m ̂  -J m-m 

Using equation (k.6)f we express the density matrix for our purpose 
as, 

X ^ ^ X ^ ^ ^ m ' CX1-X2,X3-m(<x) ̂ - X^X^* ^ 
Q » A L . 
mm i y t ) 

(^.10) 
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vhere, 

N p(t) = l ( - D X - X ' B * - i V V ( t ) c u , ( a ) | -

Np(t) i s calculated from the formula 0*.7) "by f i t t i n g the available 
data on d i f f e r e n t i a l cross-sections for different processes. This 
enables, us then, to find the residue functions for different h e l i c i t y 
states of the Pomeron exchange. Since C^f (a) are known, we can 
compute p ( t ) for the given range of momentum transfer. mm1 

5. Application to different processes and predictions 

(A) NN -+ NN* . 

( i ) For N*(l!+00), J P = ( l / 2 ) + , T = 1/2 we are l e f t with six 
h e l i c i t y amplitudes after applying the conservation laws. 

For Pomeron-pole Pr a (-l)^P «a +1, hence only (-1)^ parity 
conserving amplitudes contribute. We are therefore l e f t with the 
following four independent amplitudes: 

F l / 2 1/2; 1/2 1/2 ' F l / 2 l/2, l/2 -1/2 

F l / 2 -1/2; 1/2 1/2 5 F l / 2 - l / 2 , 1/2 -l/2 . 

The d i f f e r e n t i a l cross-section for the Pomeron pole at high energy can 
be written from the above formula 

, itM3M*' 
H = x ( o p ( t ) + l / 2 ) 2 X [ r ( 2 a p ( t ) + l ) ] 2 X 

hi s(s - kliF) ] 

, i t t ^ ( t ) \ / s - ̂ vF + w^-t) s 2 a p ( t ) 

X ( 1 + cot 2 — £ ) X ( j ) X N ( t ) 

where 
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N p(t) = R^2 1 / 2 , i / 2 ( l t / 2 l C o o l 2 + ( Rt/2 - l / 2 , l / 2 ( l / 2 + R l / 2 l/2,l/2 - l / 2 J 

* | C i o ' 2 + R l / 2 -1/2,1/2 - V 2 , C " 1 2 * 

There i s only one independent density matrix element for 
which the absolute value of p for N* is given by 

I P i - i M I = (R l / 2 j/2,1/2 1/2 R l / 2 -1/2,1/2 l / 2 l C o o l l C o J 

" R l / 2 1/2,1/2 -1/2 R l / 2 -1/2,1/2 -1/2' Coi' ' C n I ̂ V * ) ) 

Individual residues must "be determined to calculate | P 1 — 1 ( t ) | . We have 

used the data for pp -» pN*(lUoo) given by Anderson et a l . at the 
incident laboratory momenta of 10, 15» 20 and 30 Gev/c i n the range of 
momentum transfer -0.ik ^ t ^ -0.013 (Gev/c)2. Our input for the 
parameters of the Pomeron trajectory is otp(t) =» 1 + (O.U + 0Jf)t, which 

(7) 
has been taken for the latest high energy data of Serpukhov* '. We 
have also assumed the residues to be linear functions of t , i.e. 
R^(t) a + p^t where oĉ  and 0^ are the constraints to be determined 
for each residue R^(t). The unknown function of t , Np(t) i s determined 
by f i t t i n g the curve of the above data, the average value found for the 
range of momentum transfer -O.lU € t « -0.013 (Gev/c)2 i s 

N p(t) = 5.828 + 0.9 mb. 

The residue functions i n this range of momentum transfer are, 

10 -6 TJ2 R l / 2 1/2,1/2 1/2 ° ~(°' o e h 1 °'01) ~ (°'553 ± 0.0*0 mb 

1 0" 6 R l / 2 -1/2,1/2 1/2 = 1 0 " 8 ^1/2 -1/2,1/2 -1/2 

a (1.701 + .05) - (1.518 + , 0 l ) t mb 

K T 6 R^ / 2 _ l / 2 , i / 2 -1/2 " ( l U ' 3 5 1 * 8 ) + ( 1 , 5 1 1 , 0 8 ) t m b ' 
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With these values of the residue functions, we obtain the graph No. I 
for I p j ^ j J against t . This increases uniformly from zero at t = 0 
to the maximum value 1 at t = -0.13. I t i s suggested, that 
experiments on the decay of N*(l^OO) be done to compare with the curve 
obtained theoretically by us under the assumption of the single 
Pomeron pole exchange. 

For the Pomeron-cut, P = ±1 , therefore both ( - l ) J and ( - l ) J + * 
parity conserving amplitudes would contribute with an unknown ratio 
of parity between them. The following relations of h e l i c i t y 
amplitudes would hold i n the presence of the Pomeron-cut: 

F l / 2 1/2,1/2 1/2 ° F - l / 2 -1/2,-1/2 -1/2 = i F - l / 2 -1/2,1/2 l/2 

" ± F l / 2 1/2,-1/2 -1/2 

F l / 2 1/2,1/2 -1/2 = " F - l / 2 -1/2,-1/2 1/2 a i F - l / 2 -1/2,1/2 -1/2 

= £Fl/2 1/2,-1/2 1/2 

F l / 2 -1/2,1/2 1/2 " " F - l / 2 1/2,-1/2 -l/2 " " F - l / 2 l/2,l/2 l/2 

s F l / 2 -1/2,-1/2 -1/2 

F l / 2 -1/2,1/2 -1/2 = F - l / 2 1/2,-1/2 1/2 = " F - l / 2 l/2,l/2 -l/2 

= " F l / 2 -1/2,-1/2 1/2 ' 

Writing the expression for |p | under the restrictions Py = i 1 , we 
find that i t s only difference from the pole i s that at different values 
of t i n the above range of momentum transfer the value of |p x| 
becomes approximately zero. Hence for the cut, the curve w i l l not be 
smooth l i k e that of the pole, but w i l l have discontinuities i n the 
function | p 1 - J L ( t ) | at different values of t . 



( i i ) For N*(1520), J P = (3/2)", T = 1/2. 

For the Pomeron pole, applying a l l the conservation laws and for 
Pr = +1 exchange, we are l e f t with only eight h e l i c i t y amplitudes. 
The di f f e r e n t i a l cross-section for the pole i s , 

, TtM3 M* 
U ~ x («(t) + 1/2) 2 X [E(2a ( t ) + l ) ] 2 

k[s(s - kvF)] 

, nop(t) N , s - l/2(3M 2 + M* 2-t) x 2 0 tP ( t ) 

X ( 1 +.cot2. — ^ ) X ( t ) X N_(t) 
\ 2 / \ k(vPw)? ' p 

where 

N p(t) = R j / 2 l / 2 j l / 2 H^)\%o\* + ( R i / 2 -1/2,1/2 - l / 2 ( t ) 

+ R l / 2 -1/2,1/2 3/2 ( t ) > l C l l l 2 + ( R l / 2 -1/2,1/2 l / 2 ( t ) 

+ R l / 2 1/2,1/2 - l / 2 ( t ) + R l / 2 1/2,1/2 3/2 ( t ) ) l C l o l 8 

+ R l / 2 1/2,1/2 -3/2' C02l 2 + R i / 2 -1/2,1/2 -3/2'^a'* ' 

There are five independent density matrix elements i n which p 3 3 , 
i p 3 _ 3 and i p 1 - x are real, p 3 3, Re(p 3 1), Re(p 3_ x) enter i n the 
decay distribution of N* and the parameters P 3 _ 3 , p 1_ 1 contribute to 
other observables such as spin correlation, therefore these can be 
measured easily i n the experiments. We have computed the values of 
P 3 3 , Re(p 3 1) and Re(P3_1) for the single Pomeron pole exchange. 
We have, 

p 3 3 = ( l / 2 ( R 2
/ 2 l / 2 j l / 2 5 / 2 l C i o l 2 + Rl/2 -1/2,1/2 3 / 2 ' C " l a 

+ R l / 2 1/2,1/2 -3/2l Ccel 2 + R l / 2 -1/2,1/2 - 3 / 2 | C i 2 l 2 ) j / V * 5 
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Re p g l = - 1 / 2 [ R l / 2 1/2,1/2 1/2 R l/2 1/2,1/2 3/2' Cooll CoJ 

+ R l/2 -1/2,1/2 1/2 R l/2 -1/2,1/2 3/2' C i - 1 ' ' C i o l 

l l / 2 1/2,1/2 -3/2 R l / 2 1/2,1/2 - l / 2 | C 0 l ' lL02 

R l / 2 -1/2,1/2 1/2 R l / 2 -1/2,1/2 -3/2 

Re p 3 . 1 = 1 / 2 [ R i / 2 1/2,1/2 -1/2 R l / 2 l / 2 , l / 2 3/2 C o - i C o i 

+ R l / 2 -1/2,1/2 -1/2 R l / 2 -1/2,1/2 3 / 2 ' C i - i I l C i l I 

+ R l / 2 1/2,1/2 1/2 R l / 2 1/2,1/2 -3/2^C021 I C o i I 

+ R l / 2 -1/2,1/2 1/2 R l / 2 -1/2,1/2 - 3 / 2 , C i o l I C x a I ] / N p ( t ) 

where 

V*> " R l/2 1/2,1/2 1 / 2 ^ l Coo' 2 + ( R 2l/2 -1/2,1/2 1/2™ 

+ *V2 1/2,1/2 - l / 2 ( t ) ) i C ^ l 2 + ( R l / 2 -1/2,1/2 - l / 2 ( t ) 

+ R l/2 1/2,1/2 3/2 ( t ) + R l/2 -1/2,1/2 3/2 ( t ) ) , C J - I 2 

i o ' 

+ R l / 2 1/2,1/2 -3/2 , Ccel 2 + R l / 2 -1/2,1/2 -^2^^ ' 

f3 l0 
Data on the d i f f e r e n t i a l cross-section w ' is used for 10, 15, 20 and 
30 Gev/c incident laboratory momenta i n the range of momentum transfer 
- O.833 ^ t € - 0.252 , Our in-put i s the same as in the case of 
N*(lU00) for the parameters of the Pomeron trajectory. The unknown 
function of N p(t) is determined, i t s average value i n the above range 
taken at 16 different values of t is 0.6023 ± 0.05 mb. Individual 
residue functions are also determined i n order to calculate the values 
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of spin density matrix elements. The residue functions are for 
-O.833 < t s£ -0.252 , 

10 -6 T>2 
R l / 2 1/2,1/2 l / 2 ( t ) = (°->° 1 2 - + (0.1232 ± O.OlOt mb. 

1 0 - 6 R l / 2 -1/2,1/2 l / 2 ( t ) s 1 0" 6 R l / 2 1/2,1/2 - l / 2 ( t ) 

10 •6 n 2 R l / 2 1/2,1/2 3/2 ( t ) = (l-032tO.O^)- (0.258+0.01) mb 

1 0" 6 R l / 2 -1/2,1/2 - l / 2 ( t ) = 1 0" 6 R l / 2 -1/2,1/2 -3/2 ( t ) 

- (0.8595 ± 0.2) - (1.232 + 0.02)t mb 

1 0 R l / 2 1/2,1/2 -3/2 ( t ) = f 1 ' 8 0 0 2 - °'°9) + (1.3223 ± 0.05)t mb 

1/2 -1/2,1/2 -3/2' KT 6 R 2
/ o l / o W o , , _ ( t ) - (7.763 ± O.it) - (2.166 + 0 . l ) t mb. 

With the help of these residue functions we plot three curves (Graph I I ) 
for the values of p 3 3 , Re(p 3 1 ) and R e(P 3_ 1) against t . Experi­
ments on the decay of N*(1520) are suggested to compare with the values 
obtained by us. 

For the Pomeron-cut, we can only make a general observation, 
Pr = -1 contributes to only four amplitudes, a l l other amplitudes vanish 
due to the contradiction with the positive G-parity of the Pomeron 
exchange. We write the expressions for the density matrix elements, 
which gives for Pr => -1 values lying below the values obtained for 
Pr = +1. Hence, for the Pomeron-cut the points of p g 3 , Re(p 3 1 ) and 
Re(p 3 _ 1 ) against t either l i e on the curves of Graph I I or below i t , 
but cannot be above the curves. Further, the curve for the Pomeron-cut 
must have discontinuities, unlike the curves of the Pomeron-pole. 

(B) irN -• uN* 

( i ) N*(1^00), J P = (l/2) + , T = 1/2. 
In this reaction, in the t-channel, Pr = +1 always, therefore only 
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the Pomeron-pole contributes. I t is of interest here to compute the 
values of I P ^ J J for the Pomeron-pole to compare and check with the 
values obtained i n the reaction NN -+ NN*(l^00). Applying the 
conservation laws, we are l e f t with only two amplitudes. The 

diff e r e n t i a l cross-section is 

da _ x (« ( t) + 1/2)2 x [ r( 2a ( t ) + l ) ] s 

a t l 6 [ s - u 2 - I ^ ) 2 - k\i ] * P 

1 + cot* 
s - ̂ ( 2 u 2 + ^ + M * - t ) f a p ( f c ) 

Uu(MM*)£ 
X N p(t) 

where 
N p(t) Roo,l/2 l / 2 | C o o l " + R

0 0 , l / 2 - l / 2 | C o i 

and 
Roo,l/2 i / g ( * > Roo,l/2 - l / 2 ^ ) l C o J l C o o l 

H p(t) 

Recent data on nN hN* at 8 Gev/ c and 16 Gev/ c laboratory 
(35) 

momenta are given by Anderson et a l w . Using this data, we obtain 
the values of the residue functions for 0.02 € - t ̂  0.13 as 
10 -3 

10 -3 

Roo,l/2 l/2 ( t> = (°*8653 t 0.05) + (0.301* + 0.0b)t mb 

Roo,l/2 - l / 2 ( t ) = ( 1 , 7 2 5 1 0 , 5 5 ) " ( 0 > 5 ° 6 1 0 , 0 6 ) t m b 

The curve of | Pi_JL| obtained in this case (Graph I I I ) i s the same as 
in Graph I . I t smoothly varies from 0.2 to 0.9 i n the same range of 
momentum transfer, confirming that the single Pomeron-pole exchange 
cannot have discontinuities as found i n the case of the branch point i n 
the reaction NN -» NN*(lU00). 
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( i i ) N*(l690), J P = (5/2)*, T = 1/2. 

Here again only the Pomeron-pole contributes, and we have used 
the data i n the range 0.02 ^ - t 0.22 at 8 Gev/c and 

(35) 
16 Gev/c incident laboratory momentav . Using the previous method, 
we obtain a l l the residues and compute the values of the independent 
measurable density matrix elements. The values of p__, p__, p_ . 

55 33 53 

p s l, P 5 - 1> P5-3> P 3 i
 a n d P3_j. a r e given i n the Graphs IV, V and 

VI. p s_ 5 and p 3 - Q vanish identically. We suggest, that 
experiments on the decay distribution of N*(l690) be done to compare 
with the results obtained theoretically by us. 
(C)-Ti*p -» A*p; Kp -* K*(l320)p. 

Both the produced resonances have the same quantum numbers except 
the masses. K* and AA have J P = 1 + and T = 1. In the t-channel, 
the Pomeron-pole and the Pomeron-cut can be exchanged. 

For the Pomeron-pole only four amplitudes contribute, 

F l / 2 1/2,0 I s F l / 2 -1/2,0 1 ; F l / 2 1/2,0 0 ; F l / 2 -1/2,0 0 ' 

So we have the following relations between the density matrix elements, 

P X 1
 + P1_1 = 0 and 2p x l + p O Q = 0 . 

Contribution of p 0 0 i s only due to the Pomeron-pole. 

For the Pomeron-cut, we have, p A 1 + p]L_1 = 2 N l F i / 2 l/2 0 1^ 

where N is the inverse of the di f f e r e n t i a l cross-section of the process 
at t = 0. There would not be any contribution from the cut to p 0 0 . 
Data on the above process does not exist. These reactions are extremely 
favourable to give a definite prediction on the nature of the Pomeron, 
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and therefore, experiments on the decay of A* and K* are suggested. 

(D) Kp -» K*(l790)p. 

K*(l?90); J P - (2)~ and T - 1/2. 

Applying the parity and G-parity conservation laws, we are l e f t 
with eight h e l i c i t y amplitudes. 

For the Pomeron-pole the following six parity conserving 
amplitudes contribute: 

F l / 2 1/2,02 5 F l / 2 -1/2, 02 5 F l / 2 1/2,01 

F l / 2 -1/2,01 5 F l / 2 1/2,01 5 F l / 2 -1/2,00 . 

There are eight independent density matrix elements for K*, therefore, 
we can write down the relations which must be satisfied when the 
Pomeron-pole i s exchanged. The relations are: 

P 2 2 - P 2 _ 2 - 0 ; 

o + o = 0 ; ( l - p ) + 2(p - p ) = 0 

Re p 2 1 + Re p ^ = 0 

P 2 2 P x 1 - | p 2 1 l a = o 

P 2 2 Poo " IPaol 2 a 0 

P i i Poo - I P i o l 2 - 0 

For the Pomeron-cut Pr = t 1 , we get the following restrictions among 
the density matrix elements and the h e l i c i t y amplitudes: 

P 2 2 - P 2- 2 " U w ' F l / 2 1/2,02|2 

P X 1 + PX.T = L / 2 F 0 1 \ Z 

Re p 2 1 + Re p ^ - M F ^ L / 2 T 0 2 \ \ ^ L / 2 L / 2 T 0 1 \ . 
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The right hand side of each equation becomes zero for Pf = + 1. 
Hence, i f ve plot the l e f t hand side against t for the cut, ve get a 
discontinuous curve. The principal mode of decay of this resonance 
isfflK, and an experimental study of the angular distributions of the 
decay process is suggested to verify our results. When this data 
becomes available, this would provide a convenient test on the 
nature of the Pomeron singularity. 

In conclusion, we s u g g e s t t h a t the experiments may be carried 
out on the decay of unstable particles. N*(isospin 1/2), A* , 
K*(1320) and K*(l790) to check the consistency of our results. 



55. 

CHAPTER V 

Present Status of the Pomeron Trajectory and Conclusion 

As i s clear from the earlier chapters, the Pomeron trajectory i s 
(17) 

different, i n many respects, from other ordinary t r a j e c t o r i e s W l ' . In 
this chapter, we b r i e f l y report the experimental results on the Pomeron 
trajectory, i t s theoretical implications and some aspects of i t s 
d i f f i c u l t i e s to explain the experimental data. 

F i r s t l y , one should be able to associate known particleswith each 
trajectory. The trajectory and the residue functions should also 
extrapolate smoothly to their value at the pole of the physical 
particles. The only exception is the Pomeron trajectory, where no 
known particle can be associated. The lowest particle on this 
trajectory must have spin 2 and a positive parity. Such a particle was 
found with mass of 1250 Mev, but the extrapolation from the ctp(o) = 1 
to the 2 + particle gave the slope of the Pomeron trajectory as 
O.65 (Gev)"2. But recent experimental data on pp-scattering at 
energies greater than 20 Gev/c, gives f i t s yielding the value of O.U for 
the slope of the Pomeron trajectory. Therefore one has to abandon 
this particle to l i e on the Pomeron trajectory. There is another 
reason namely that this known particle can f i t very well on other 
ordinary trajectories with the normal slope of 1 (Gev)"2. 

Other than the slope of the Pomeron trajectory, there are some 
doubts about the intercept of the Pomeron trajectory. As mentioned 
in the f i r s t chapter, the unit value of the intercept has been used to 
derive two high energy theorems. Also a recent discussion v ' of the 
analytic properties of the trajectories and their residues, as the mass 
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of their f i r s t physical occurrence approaches zero, suggests that the 
small value of the slope is closely t i e d to the fact that the intercept 
i s unity. But there are also evidences indicating that the intercept 

(39) 
i s slightly less than unity. A c a l c u l a t i o n v / of the s h i f t due to 
electromagnetic interaction of the intercept, which was assumed to be 
unity i n the absence of such interactions, found otp(O) = 0.9^. 
Another reason i s that i n order for the residue to obey the algebra 
of U(3) ® U(3), the intercept must be 0.93^°^. This also implies 
that the t o t a l cross-sections must tend to zero at asymptotic energy. 
The intercept of the Pomeron trajectory has also been determined from 

(hi) 

an application of continuous moment sum rules * ' to low energy itN 
t o t a l cross-section data to be unity with an uncertainty of 0.02 - 0.03. 

The Pomeron has been used i n many experimental f i t s i n elastic 
(k2) 

scattering by many authors x . I t has been used in P + P' + p 
+ 

model to f i t t o t a l cross-sections for n~p scattering, and in a 
P + P' + w model to make a study of the NN and UN elastic data. 
Recently, these two models have been used i n a combined study of up, 

(U3) 
pp and pp elastic scattering data v . One notices, that, i n general 
the parameters obtained for the P1 trajectory depend on what 
assumptions are made about those of the Pomeron. For example, Logan and 
Razmi. assume the intercept of the Pomeron to be unity and find 
Op,(0) o O.67; but i f they assume «p(0) =• O.93, they find Op,(o) = 0.6^ 
with a proper f i t . Hence, the conclusion is that there is s t i l l an 
uncertainty about the exact intercept of the Pomeron trajectory, but 
the slope is nearly well established from the highest available energy. 

There are arguments that the Pomeron singularity can be a fixed 
pole, or cut or some other essential singularity. As we mentioned i n 
the f i r s t chapter, the Pomeron can be exchanged with other trajectoriea 
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to produce a cut. I f the intercept of the Pomeron i s unity, the branch 
point of the cut w i l l have the same intercept as the other trajectory 
and a slope less than that of either trajectory. To avoid the 
accumulation of the branch points of an i n f i n i t e number of cuts at J = 1, 
i t has been suggested that <Xp(0) =» 1 - e The cut mechanism i s 
not sufficient to allow the slope of the Pomeron to be zero and, 
consequently, i t i s unlikely that the Pomeron i s a fixed pole x 

Therefore, the Pomeron may represent some other type of singularity. 

Few authors have suggested models for cuts, but so far without 
much success to evaluate i t s contribution. Qualitatively, to distinguish 
between a pole and a branch point, one would expect the pole to have a 
non-zero slope (shrinkage), definite parity and factorization to hold. 
In the case of the branch point,factorization would f a i l to some 
extent, there would not be unique parity, and the effective slope, i f 
non-zero, would be expected to decrease with increasing t . 

The present state of the Pomeron trajectory gives more evidence 
that i t is a simple pole. This is the main conclusion of our study i n 
this thesis. Chapter I I explains that the factorization is favoured i n 
case of elastic, quasi-two-body reactions, and for reactions i n three-
particles i n the f i n a l state. Secondly, Chapter TV also favours that 
the Pomeron must have a definite parity, though there are lots of 
predictions that are required to be tested experimentally. 

In conclusion, the Pomeron appears to possess pole-like properties, 
but surely i t i s an unusual trajectory and we have just begun to under­
stand i t s role i n high energy scattering. 
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GRAPH CAPTIONS 

graph 1 The graph of < p > against t in the reaction NN * NN*(lU00) 

for the Pomeranchukon pole exchange in the t-channel. 

Graph 2 The graph of P 3 3 , Re P 3 l , Re P 3 - 1 against t i n the reaction 

NN •+• NN*(1520) for the Pomeranchukon pole exchange in the 

t-channel. 

Graph 3 The graph of < > against t in the reaction «N + «N*(l400) 

for the Pomeranchukon pole exchange in the t-channel. 

Graph j j The graph of density matrix elements in «N •*• *N*(l690) for 

the elements p 9 S , p 5 l , P s _ j of the Pomeranchukon pole 

exchange i n the t-channel. 

Graph J ? The graph of density matrix elements i n *N + «N*(1690) for 

the elements P 5 _ 3 , P 3 3 , P , _ j of the Pomeranchukon pole 

exchange in the t-channel. 

Graph 6 The graph of density matrix elements in *N •* «N*(1690) for 

the elements p 5 3 , P 3 l of the Pomeranchukon pole exchange 

in the t-channel. 
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