Some fluoride ion-initiated reactions of fluoroethylenes

Gribble, Michael Yorston

How to cite:
Gribble, Michael Yorston (1972) Some fluoride ion-initiated reactions of fluoroethylenes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8664/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
A THESIS

entitled

SOME FLUORIDE ION-INITIATED REACTIONS OF

FLUOROETHYLENES

submitted by

MICHAEL YORSTON GRIBBLE, B.Sc.

(GREY COLLEGE)

A candidate for the degree of Doctor of Philosophy

1972
ACKNOWLEDGEMENTS

The author is indebted to Dr. R.D. Chambers for his continual help and encouragement during his supervision of the work described in this thesis, to Professor W.K.R. Musgrave for his interest, and to Dr. R.P. Corbally for many helpful discussions.

Thanks are also due to Dr. R.S. Matthews for assistance with the interpretation of some nuclear magnetic resonance spectra, to many technical and laboratory staff for their help, and to Mrs. E. Duddy for the typing of this thesis.

Finally, thanks are due to the Science Research Council for a maintenance grant.
TO

PAM AND MY PARENTS
MEMORANDUM

The work described in this thesis was carried out in the University of Durham between October 1968 and September 1971. This work has not been submitted for any other degree and is the original work of the author except where acknowledged by reference.

Part of this work has been the subject of the following publication:-

SUMMARY

Some Fluoride Ion-Initiated Reactions of Fluoroethylenes.

Development of an atmospheric pressure system suitable for fluoride ion-initiated reactions of some fluoro-olefins with perfluoro-N-heteroaromatic compounds has minimised some of the problems encountered in analogous autoclave reactions. From the observed results it is concluded that polyfluoroalkylation of perfluoro-pyridine and -pyridazine is possible under relatively mild conditions.

In the presence of caesium fluoride and tetraglyme, tetrafluoroethylene and pentafluoropyridine afforded five products in low to moderate yields, identified as the 4-, 2,4-di-, 2,4,5-tri-, tetrakis and pentakis-(pentafluoroethyl) derivatives. Defluorination of perfluoro-(4-ethylpyridine) and perfluoro-(4-isopropylpyridine) over heated iron filings gave perfluoro-(4-vinylpyridine) and 2-(2',3',5',6'-tetrafluoropyridyl)-pentafluoropropene respectively. Treatment of perfluoro-(4-ethylpyridine) with sodium methoxide in methanol gave the 2-methoxy derivative and similar reactions with perfluoro-(2,4-di-ethylpyridine) and perfluoro-(2,4-di-isopropylpyridine) gave the corresponding 5-methoxy derivatives. Fluoride ion-initiated rearrangement of perfluoro-(2,4,5-tri-ethylpyridine) to the 2,4,6-isomer was not observed at elevated temperatures.

Analogous perfluoroethylations of tetrafluoropyridazine gave low yields of the 4-, 4,5-di- and 3,4,5-tri-(pentafluoroethyl) derivatives. Treatment of perfluoro-(4-ethylpyridazine) with sodium methoxide in methanol gave the 5-methoxy derivative. Fluoride ion-initiated rearrangement of perfluoro-(4,5-di-ethylpyridazine) to the 3,5-isomer was not observed at elevated temperatures.
Excess perfluoroisobutene, in the presence of caesium fluoride and sulpholan, reacted with perfluoro-pyridine and -pyridazine to give perfluoro-(2,4,6-tri-t-butylpyridine) and perfluoro-(3,6-di-t-butylpyridazine) respectively. The unique substitution pattern of the latter was deduced from a correlation of the observed and calculated 19F n.m.r. spectra, and from results of hydrolysis reactions under acidic and basic conditions.

In conjunction with previously reported results for analogous perfluoroisopropylation reactions, it is concluded that a clear cut variation from kinetic to thermodynamic control of products is observed for polyfluoroalkylation reactions of CF$_3$CF$_2$, (CF$_3$)$_2$CF, and (CF$_3$)$_3$C with pentafluoropyridine and tetrafluoro pyridazine.

Fluoride ion-initiated reactions of chlorotrifluoroethylene with pentafluoropyridine gave 1-chloro-(2',3',5',6'-tetrafluoropyridyl)-tetrafluoroethane, 4-chlorotetrafluoropyridine and the previously characterised mono-, di- and tri-perfluoroethylpyridines. The relative ratios of products formed were observed to be strongly solvent dependent. Analogous reactions with tetrafluoro pyridazine afforded the previously characterised mono-, di- and tri-perfluoroethylpyridazines; no chlorine-containing polyfluoroalkyl derivatives were detected.

In comparable reactions of bromotrifluoroethylene and pentafluoropyridine, halogen exchange between CF$_2$=CFBr and CF$_3$CFBr occurred in preference to polyfluoroalkylation, giving 1,1-dibromotetrafluoroethane. A polyfluoropyridine derivative, 1,1-bis(2',3',5',6'-tetrafluoropyridyl)-tetrafluoroethane, was also isolated and perfluoro-(4-vinylpyridine) was shown to be an intermediate in its formation. No bromine-containing
polyfluoroalkylpyridines were detected. Similar reactions with tetrafluoropyridazine resulted in polyfluoroalkylation rather than halogen exchange, however, the products isolated were the known mono-, di- and tri-(pentafluoroethyl) derivatives and tetrakis(pentafluoroethyl)-pyridazine. No bromopolyfluoroalkyl derivatives were detected.

Loss of chlorine and bromine in these reactions was shown to occur after polyfluoroalkylation and it was concluded that either a benzylic-type or a pseudo-\(S_N^{2'}\)-type displacement mechanism was operating.

A fluoride ion-initiated reaction of trifluoroethylene with pentafluoropyridine gave a low yield of 1,1-bis(2',3',5',6'-tetrafluoropyridyl)-tetrafluoroethane, however, a similar reaction with tetrafluoropyridazine gave no tractable products.

Preparation of several 2,4,5-tri-substituted perfluoroalkylpyridines, containing both \(\text{CF}_3\text{CF}_2^-\) and \((\text{CF}_3)_2\text{CF}^-\) groups, and their reactions with fluoride ion at elevated temperatures, indicated the factors which affect the ease of rearrangement to the 2,4,6-isomer. It is tentatively concluded that the migratory aptitude of the 5-substituent is the major factor, with steric interactions and the effect of the 2-substituent of lesser importance.

\(^{19}\text{F N.m.r.}\) studies have been carried out on the prepared fluorinated compounds.
CONTENTS

General Introduction 1

INTRODUCTION

Chapter 1. Nucleophilic Substitution in Polyfluoroaromatic Compounds

1.1. Polyfluorobenzenoid compounds 3

1.1.1. Rationalisation of the observed results of nucleophilic substitution 4

1.2. Polyfluoroheterocyclic compounds 7

1.2.1. Polyfluoroaromatic nitrogen heterocyclic compounds 7

(a) Basic conditions 7

(b) Acidic conditions 12

Chapter 2. Fluoride Ion-Initiated Reactions of Fluoro-olefins

2.1. Experimental conditions 14

2.2. Polyfluorocarbanions 16

2.2.1. Substituent effects 16

(a) α-Substituents 17

(b) β-Substituents 18

2.3. Orientation of addition of fluoride ion to fluoro-olefins 20

2.4. Relative reactivities of fluoro-olefins 21

2.5. Products formed in fluoride ion-initiated reactions of fluoro-olefins 22

2.5.1. Proton abstraction 23

2.5.2. Substitution reactions 23

(a) Vinylic substitution 24

(b) Allylic substitution 25
2.5.3. Reactions with activated compounds 26
(a) Fluoro-olefins 27
 (i) Acyclic 27
 (ii) Cyclic 29
 (iii) Co-dimerisation 30
(b) Polyfluoroaromatic compounds 31
(c) Polyfluorocarbonyl compounds 36
(d) Halogen, nitrogen and sulphur compounds 37
 (i) Halogen compounds 37
 (ii) Nitrogen compounds 39
 (iii) Sulphur compounds 40

2.5.4. Olefinic and aromatic rearrangements 41
(a) Fluoro-olefins 41
(b) Perfluoroaromatic compounds 44
 (i) Perfluoroalkylpyridines 45
 (ii) Perfluoroalkylpyridazines 46

2.6. Fluoride ion-initiated reactions of non-olefinic unsaturated fluorocarbons 47
2.6.1. Perfluoroacetylenes 48
2.6.2. Fluorocarbonyl compounds 48
2.6.3. Fluoroepoxides 50
2.6.4. Polyfluorocarbon-nitrogen compounds 50

DISCUSSION OF EXPERIMENTAL

Chapter 3. Polyfluoroalkylation with Perfluoro-olefins

Introduction 52

3.1. Development of experimental procedures 52
 3.1.1. Metal fluoride-solvent 53
 3.1.2. Reaction temperature 54
 3.1.3. Reaction conditions 54
 (a) Oligomerisation 55
 (b) Rearrangement of products 55
 3.1.4. Work-up of the mixture 56
3.2. Reactions at atmospheric pressure 56
3.2.1. Flow system 57
3.2.2. Static system 59
3.3. Structure determination 61
3.4. Reactions with tetrafluoroethylene 62
3.4.1. Pentafluoropyridine 62
(a) Conditions and products 62
(b) Structure 65
(c) Mechanism 68
3.4.2. Tetrafluoropyridazine 74
(a) Conditions and products 74
(b) Structure 76
(c) Mechanism 78
3.5. Reactions with perfluoroisobutene 81
3.5.1. Pentafluoropyridine 82
(a) Conditions and products 82
(b) Structure 82
(c) Mechanism 83
3.5.2. Tetrafluoropyridazine 85
(a) Conditions and products 85
(b) Structure 85
(c) Mechanism 88
3.6. Kinetic vs. thermodynamic control of products in polyfluoroalkylation of pentafluoropyridine and tetrafluoropyridazine 89
3.6.1. Pentafluoropyridine 90
3.6.2. Tetrafluoropyridazine 90
3.7. Reactions of perfluoroalkylpyridines 91
3.7.1. Defluorination reactions 91
Chapter 4. Polyfluoroalkylation with Substituted Polyfluoro-olefins

Introduction 95

4.1. Reaction conditions 95

4.2. Type of products formed 96

4.3. Possible reaction processes 96

4.3.1. Oligomerisation of CF₂=CFX 97

4.3.2. Vinylic displacement 97

4.3.3. α-Elimination of X from CF₃CFX 97

4.3.4. Halogen exchange between CF₃CFX and CF₂=CFX 98

4.3.5. Polyfluoroalkylation of Ar-F 99

4.3.6. Displacement of X from CF₃CFX-Ar 99

(a) Direct benzylic-type displacement 99

(b) Concerted benzylic-type displacement 99

(c) "Pseudo-allylic" displacement 100

4.4. Reactions with chlorotrifluoroethylene 101

4.4.1. Pentafluoropyridine 101

(a) Conditions and products 101

(b) Structure 103

(c) Mechanism 104

(i) Chlorine displacement 105

(ii) Nucleophilic aromatic substitution 106

4.4.2. Tetrafluoropyridazine 108

(a) Conditions and products 108

(b) Structure 111

(c) Mechanism 111

(i) Chlorine displacement 111

(ii) Nucleophilic aromatic substitution 111
4.5. Reactions with bromotrifluoroethylene

4.5.1. Pentafluoropyridine
(a) Conditions and products
(b) Structure
(c) Mechanism

4.5.2. Tetrafluoropyridazine
(a) Conditions and products
(b) Structure
(c) Mechanism
(i) Bromine displacement
(ii) Nucleophilic aromatic substitution

4.6. Mechanism of halogen displacement from polyfluoroalkyl derivatives

4.6.1. Direct benzylic-type displacement
4.6.2. Concerted benzylic-type displacement
4.6.3. Pseudo-S_N^{2*}-type displacement
4.6.4. Conclusion

4.7. Reactions with trifluoroethylene

4.7.1. Pentafluoropyridine
(a) Conditions and products
(b) Structure
(c) Mechanism

4.7.2. Tetrafluoropyridazine

Chapter 5. Fluoride Ion-Induced Rearrangement Reactions of Perfluoroalkylheteroaromatic Compounds

Introduction

5.1. Polyfluoroalkylation reactions

5.1.1. Heptafluoroisopropylation of perfluoro-(4-ethylpyridine) (I)
(a) Conditions and products
(b) Structure
(c) Mechanism
5.1.2. Heptafluoroisopropylation of perfluoro-(2,4-diethylpyridine) (II)
 (a) Conditions and products
 (b) Structure
 (c) Mechanism

5.1.3. Pentafluoroethylation of perfluoro-(4-isopropylpyridine)
 (a) Conditions and products
 (b) Structure
 (c) Mechanism

5.1.4. Heptafluoroisopropylation of perfluoro-(2-ethyl-4-isopropylpyridine) (XX)
 (a) Conditions and products
 (b) Structure
 (c) Mechanism

5.2. Rearrangement reactions

5.2.1. Perfluoro-(2,5-di-isopropyl-4-ethylpyridine) (XVIII)
 (a) Conditions and products
 (b) Structure
 (c) Mechanism

5.2.2. Perfluoro-(5-isopropyl-2,4-di-ethylpyridine) (XIX)
 (a) Conditions and products
 (b) Structure
 (c) Mechanism

5.2.3. Perfluoro-(2,5-di-ethyl-4-isopropylpyridine) (XXI)

5.3. Rationalisation of the possible effects controlling catalytic rearrangement of some tri-substituted perfluoroalkylpyridines

5.3.1. Steric effects

5.3.2. Stabilising effect of the 2-substituent

5.3.3. Migratory aptitude of the 5-perfluoroalkyl substituent
EXPERIMENTAL

Reagents 139

Instrumentation 139

Experimental Procedure 141

Introduction 141

Procedure 141

Chapter 6. Experimental for Chapter 3

6.1. Reactions of tetrafluoroethylene with pentafluoropyridine 144

6.1.1. Short reaction times 144

6.1.2. Long reaction times 147

6.2. Reactions of tetrafluoroethylene with tetrafluoropyridazine 149

6.2.1. Short reaction times 149

6.3. Reaction of perfluoroisobutene with pentafluoropyridine 152

6.3.1. Excess perfluoroisobutene 152

6.4. Reaction of perfluoroisobutene with tetrafluoropyridazine 154

6.4.1. Excess perfluoroisobutene 154

6.5. Reactions of perfluoroalkylpyridines 155

6.5.1. Defluorination reactions 155

(a) Defluorination of perfluoro-(4-ethylpyridine), \(\text{C}_7\text{F}_9\text{N} \) 155

(b) Attempted defluorination of \(\text{C}_7\text{F}_9\text{N} \) over zinc 156

(c) Defluorination of perfluoro-(4-isopropylpyridine) 157
6.5.2. Nucleophilic substitution with methoxide ion
(a) Preparation of 4-pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine
(b) Preparation of 2,4-perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine
(c) Preparation of 2,4-perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine

6.6. Reactions of perfluoroalkylpyridazines
6.6.1. Nucleophilic substitution with methoxide ion
(a) Preparation of 4-pentafluoroethyl-5-methoxy-3,6-difluoropyridazine

6.6.2. Attempted hydrolysis reactions of perfluoro-(3,6-di-t-butylpyridazine)
(a) Sulphuric acid
(b) Potassium hydroxide in t-butanol

Chapter 7. Experimental for Chapter 4

7.1. Chlorotrifluoroethylene, CF₂=CFCI
7.1.1. Reactions of chlorotrifluoroethylene with pentafluoropyridine
7.1.2. Reactions of chlorotrifluoroethylene with tetrafluoropyridazine
7.1.3. Reaction of chlorotrifluoroethylene and cyclohexene
7.1.4. Reactions of C₇F₈NCl, (XII)
(a) With caesium fluoride
 (i) Atmosphere of nitrogen
 (ii) Atmosphere of CF₂=CFCI
(b) With methoxide ion
 (i) One molecular proportion of methoxide ion
 (ii) Two molecular proportions of methoxide ion
(c) Defluorochlorination of C₇F₈NCl
7.2. Bromotrifluoroethylene, CF₂=CFBr

7.2.1. Reaction of bromotrifluoroethylene with pentafluoropyridine 171

7.2.2. Attempted reaction of caesium fluoride and carbon tetrabromide 172

7.2.3. Preparation of 1,1-bis(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane 173

7.2.4. Preparation of 2,2-bis(2',3',5',6'-tetrafluoropyridyl)hexafluoropropane 174

7.2.5. Reactions of bromotrifluoroethylene and tetrafluoropyridazine 175

7.3. Trifluoroethylene, CF₂=CFH

7.3.1. Reaction of trifluoroethylene with pentafluoropyridine 178

7.3.2. Reaction of trifluoroethylene with tetrafluoropyridazine 178

Chapter 8. Experimental for Chapter 5

8.1. Polyfluoroalkylation reactions

8.1.1. Preparation of perfluoro-(2,5-di-isopropyl-4-ethylpyridine) 179

8.1.2. Preparation of perfluoro-(5-isopropyl-2,4-di-ethylpyridine) 180

8.1.3. Perfluoroethylation of perfluoro-(4-isopropylpyridine) 181

8.1.4. Preparation of perfluoro-(2-ethyl-4,5-di-isopropylpyridine) 183

8.2. Fluoride ion-initiated aromatic rearrangement reactions

8.2.1. Attempted rearrangement of perfluoro-(2,4,5-tri-ethylpyridine) 184

8.2.2. Rearrangement of perfluoro-(2,5-di-isopropyl-4-ethylpyridine) 185

8.2.3. Rearrangement of perfluoro-(5-isopropyl-2,4-di-ethylpyridine) 186
8.2.4. Attempted rearrangement of perfluoro-
(2,5-di-ethyl-4-isopropylpyridine) 187

8.2.5. Attempted rearrangement of perfluoro-
(4,5-di-ethylpyridazine) 187

Chapter 9. Nuclear Magnetic Resonance Data

Introduction 188

9.1. Polyfluoropyridine derivatives 189

9.1.1. Chemical shifts 189
9.1.2. Coupling constants 189
9.1.3. Substituent shifts 189

9.2. Polyfluoropyridazine derivatives 191

9.2.1. Chemical shifts 191
9.2.2. Coupling constants 192
9.2.3. Substituent shifts 192

9.3. Data for polyfluoropyridine derivatives 194

9.3.1. Mono-substituted compounds 194
(a) Perfluoro-(4-ethylpyridine) 194
(b) Perfluoro-(4-vinylpyridine) 195
(c) 2-(2',3',5',6'-Tetrafluoropyridyl)-
pentafluoropropene 196
(d) 1,1-Bis-(2',3',5',6'-tetrafluoropyridyl)-
tetrafluoroethane 197
(e) 2,2-Bis-(2',3',5',6'-tetrafluoropyridyl)-
hexafluoropropane 197

9.3.2. Di-substituted compounds 198
(a) 4-Pentafluoroethyl-2-methoxy-3,5,6-
trifluoropyridine 198
(b) 1-Chloro-(2'-methoxy-3',5',6'-tri-
fluoropyridyl)tetrafluoroethane 199
(c) Perfluoro-(2,4-di-ethylpyridine) 200
(d) Perfluoro-(2-ethyl-4-isopropylpyridine) 201
9.3.3. Tri-substituted compounds

(a) 2,4-Perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine

(b) 2,4-Perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine

(c) 1-Chloro-(2',6'-dimethoxy-3',5'-difluoropyridyl)tetrafluoroethane

(d) Perfluoro-(2,4,5-tri-ethylpyridine)

(e) Perfluoro-(2,4,6-tri-t-butylpyridine)

(f) Perfluoro-(2,5-di-isopropyl-4-ethylpyridine)

(g) Perfluoro-(2,6-di-isopropyl-4-ethylpyridine)

(h) Perfluoro-(5-isopropyl-2,4-di-ethylpyridine)

(i) Perfluoro-(6-isopropyl-2,4-di-ethylpyridine)

(j) Perfluoro-(2,5-di-ethyl-4-isopropylpyridine)

(k) Perfluoro-(2-ethyl-4,5-di-isopropylpyridine)

9.3.4. Tetra-substituted compounds

(a) Perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine)

9.4. Data for polyfluoropyridazine derivatives

9.4.1. Mono-substituted compounds

(a) Perfluoro-(4-ethylpyridazine)

9.4.2. Di-substituted compounds

(a) 4-Pentafluoroethyl-5-methoxy-3,6-difluoropyridazine

(b) Perfluoro-(4,5-di-ethylpyridazine)

(c) Perfluoro-(3,6-di-t-butylpyridazine)

9.4.3. Tri-substituted compounds

(a) Perfluoro-(3,4,5-tri-ethylpyridazine)

9.4.4. Tetra-substituted compounds

(a) Tetrakis(pentafluoroethyl)pyridazine

Appendix 1
Mass Spectra Data

Appendix 2
Infra-red Spectra

References
General Introduction

Research into synthetic fluorocarbon chemistry, principally conducted during the last thirty years, has become of considerable academic and industrial importance. This arises from the unique ability of fluorine to extensively or completely replace hydrogen, in a hydrocarbon system, without serious distortion of the geometry of the system. Consequently the differences in properties between fluorocarbons and hydrocarbons are not, despite the slightly larger size of the fluorine atom, significantly affected by stereochemical considerations. Clearly, therefore, a whole branch of synthetic organic chemistry primarily founded on carbon and fluorine rather than carbon and hydrogen is feasible.

The differences in the properties of fluorocarbons compared to their hydrocarbon analogues can be attributed to the variation in the electronic environment on the functional groups in the molecule. Such variations originate from the difference in electronegativity between hydrogen and fluorine; extensive replacement of hydrogen by fluorine leads to functional groups which are relatively electron deficient. Thus the chemistry of unsaturated fluorocarbons is complementary to that of their hydrocarbon analogues since the former undergo predominantly nucleophilic attack whereas the latter undergo predominantly electrophilic attack. Clearly, therefore, the fluoride ion in fluorocarbon systems has a parallel chemistry to the proton in hydrocarbon systems and the resultant fluoro-carbanions are equivalent to the well-studied carbonium ions. Confirmation of accepted theories in hydrocarbon chemistry and illuminating information about mechanisms and reaction processes in fluorocarbon chemistry can be acquired on studying reactions involving such fluoro-carbanion intermediates.
The enhanced thermal and chemical stability of fluorocarbons compared to hydrocarbons derives from a high carbon-fluorine bond strength and increased shielding of the carbon skeleton due to the higher electron density and marginally larger size of the fluorine atom. Commercial exploitation of these advantageous characteristics is at present limited to aliphatic fluorocarbons, notably for inert polymers, lubricants, coolants and sealants, aerosol sprays and refrigerants, however, possible applications of aromatic fluorocarbons are being continuously investigated.

The work described in this thesis is concerned with two types of fluoride-ion initiated reactions of fluorocarbons. The first is attack by fluoride-ion on some fluoro-olefins to produce a carbanion which subsequently displaces fluoride ion from a perfluorinated N-heterocyclic system, and the second is a novel fluoride ion catalysed rearrangement of some perfluoroalkyl-N-heterocyclic compounds.
INTRODUCTION
CHAPTER 1

Nucleophilic Substitution in Polyfluoroaromatic Compounds

In general, highly fluorinated aromatic compounds undergo nucleophilic substitution by a process analogous to electrophilic substitution in aromatic hydrocarbon chemistry. The orientation of substitution in polyfluorobenzenoid compounds can be predicted largely on the basis of a controlling I_π effect, except in certain instances where steric or specific interactions are important. In contrast, the orientation of substitution in polyfluoro-aromatic nitrogen heterocyclic compounds is dominated largely by the hetero-atom, with a relatively minor contribution from the I_π effect.

1.1. Polyfluorobenzenoid compounds.

Nucleophilic substitution in hexafluorobenzene is effected quite readily with a variety of suitable reagents including OCH_3, OH, SH, NH_3, $\text{N}_2\text{H}_4\text{H}_2\text{O}$, CH_3NH_2, CH_3, $\text{HN.C}_6\text{H}_5$, $\text{N(C}_6\text{H}_5)_2$, $\text{O-CH}_2\text{-CH}_2\text{-OH}$ and $\text{HN-CH}_2\text{-CH}_2\text{-OH}$ to give reasonable yields of the corresponding pentafluorophenyl derivatives. Further nucleophilic substitution of these pentafluorophenyl compounds, C_6F_5X, was reported extensively by Tatlow, Burdon and co-workers who showed quite clearly the interesting possibility of positional isomerism. The orientation of substitution in C_6F_5X compounds was investigated with a series of nucleophiles and it was observed that attack occurred predominantly at the para position when $X = \text{H, CH}_3$, C_6H_5, CF_3, C_6F_5, SCH_3, $\text{N(CH}_3)_2$, SO_2CH_3, Hg and halogen. In contrast, when $X = \text{O}^-$ or NH_2 meta attack predominated, and when $X = \text{OCH}_3$ or NHCH_3 similar yields of meta and para products were observed. Anomalously high ortho replacement when $X = \text{COO}^-$, NO, NO_2 or when $X = \text{NO}_2$ and $\text{Nuc.} = \text{NH}_3$.
were attributed to solvent effects and specific nucleophile-
substituent interactions respectively.

1.1.1. Rationalisation of the observed results1-21 of nucleophilic
substitution.

The observed orientation and relative reactivity in nucleophilic
substitution reactions of polyhaloaromatic compounds were rationalised22
in terms of the stability of the ground and transition states involved.

Thermodynamic evidence suggested22 that, qualitatively, electron
withdrawing substituents destabilised and electron donating substituents
stabilised the ground states of pentafluorophenyl compounds relative to
hexafluorobenzene.

Wheland intermediates of the type 1 usually provided a good guide
to the transition states in nucleophilic aromatic substitution reactions
and of the two resonance hybrids, 2 and 3, the former para quinoid
structure was assumed to be the major contributor to this intermediate,

\begin{center}
\begin{tikzpicture}
\begin{scope}
\node at (0,0) (1) {\includegraphics[width=0.3\textwidth]{image1}};
\node at (1.5,0) (2) {\includegraphics[width=0.3\textwidth]{image2}};
\node at (3,0) (3) {\includegraphics[width=0.3\textwidth]{image3}};
\end{scope}
\end{tikzpicture}
\end{center}

Nu. = nucleophile

with 3 of only minor importance. This assumption was substantiated by
molecular orbital calculations23 and experimental evidence24.

The effect of substituents in pentafluorophenyl compounds, \textit{C}_6\textsubscript{5}X,
on the stability of the transition state in nucleophilic substitution
reactions was derived from a consideration of all the possible
intermediates, 4 to 6, especially 4(a), 5(a) and 6(a), and the effect of
the substituent on the stability of the localised negative charge.

Clearly, if X stabilised the negative charge more than fluorine the

\[\begin{align*}
X & \quad \text{a)} \\
\text{F} \quad \text{F} \quad \text{Nu} & \quad \leftrightarrow \\
\text{b) } & \\
\end{align*} \]

intermediate stabilities would be \(4 > 5 > 6 \), due to major and minor contributions from \(4(a) \) and \(5(b) \). Nucleophilic attack would therefore occur para, and to a lesser extent ortho, to the substituent. Conversely, if X destabilised the negative charge then the intermediate stabilities would be reversed and meta attack would predominate. However, if X and fluorine had an identical effect upon the stability of the negative charge, a statistical ratio of 1:2:2 for para:ortho:meta substitution would be predicted.
Effect of substituents.

In general, the nitro and perfluoroalkyl groups stabilised the negative charge whereas the halogens destabilised it in the order $F > Cl > Br > I \sim H^{22}$ due to I_σ repulsion.\(^{25}\) This repulsion arises from Coulombic interaction between the p-electrons of the halogen and the ring π-electrons on the neighbouring carbon atom and is maximised in nucleophilic aromatic substitution due to the enforced planar geometry. Hence, the order of stability of hybrids of the type 2 for $C_6F_X (X = H \text{ or halogen})$ is:

\[
\begin{align*}
&\text{H} & \sim & \text{I} & \text{Br} \\
&\text{Nu} & F & \text{Nu} & F & \text{Nu} & F
\end{align*}
\]

Quantitative I_σ repulsive effects were not similarly derivable for nitrogen and oxygen but were assumed to be $N > O > F$ which received some justification from observed data.\(^{14}\)

In certain cases, the observed low percentage ortho replacement was attributed\(^{5b,14,15,26}\) to steric interaction between the substituent and the nucleophile, or the ortho fluorines. Conversely, the observed high percentage ortho replacement of $C_6F_5NO_2$ with NH_3 or CH_3NH_2 was attributed\(^{11,21}\) primarily to hydrogen bonding between the nucleophile and the substituent. Further work indicated\(^{20}\) that substitution of $C_6F_5NO_2$ by other nucleophiles e.g. CH_3O^- depended upon the polarity of the solvent.
1.2. Polyfluoroheterocyclic compounds.

Extension of nucleophilic substitution reactions to polyfluoro-heterocyclic compounds has been concerned primarily with polyfluoro-aromatic nitrogen heterocyclic compounds, although similar replacement reactions of heterocyclic compounds based on sulphur have been reported recently.

1.2.1. Polyfluoro-aromatic nitrogen heterocyclic compounds.

(a) Basic conditions.

Nucleophilic substitution of perfluoro-pyridine27-33 (7), 34,35 quinoline (8), 34,35 isoquinoline (9), 36-41 pyridazine (10), 42-44 pyrimidine (11) and 45,46 pyrazine (12) under moderate conditions with a variety of nucleophiles, gave mono-substituted compounds predominantly at the positions indicated.

\[
\begin{align*}
& \text{7} & \text{8} & \text{9} \\
& \text{10} & \text{11} & \text{12}
\end{align*}
\]

Chambers, Musgrave and co-workers37 proposed, on the basis of the observed results, that the orientation of nucleophilic substitution in polyfluoro-aromatic nitrogen heterocyclic compounds is controlled, in contrast to the polyfluorobenzene systems, by the influence of the ring nitrogen atom(s), rather than the effect of \(I_{\alpha} \) repulsion, on the stability of the transition state. Clearly the latter effect must be
considered but a high electron density on nitrogen in the transition state, as in 13 and 14, reduced the electron density on the carbon atoms, compared with substitution in polyfluorobenzenes, and consequently the relative importance of the I_y destabilisation. This was consistent with

the observed order of reactivity, hexafluorobenzene < pentafluoropyridine < heptafluorquinoline and -isoquinoline < tetrafluoropyridazine.

The predicted position of nucleophilic attack para to the nitrogen atom in 7, 8, 10 and 11 was identical with the nitrogen or the I_y repulsive effect as the controlling factor. However, for heptafluoroisoquinoline (9) the I_y effect predicted 3-substitution, via hybrid 15 analogous to octafluoronaphthalene, whereas 1-replacement was observed via hybrid 16 which indicated control of orientation by the nitrogen.
The transition state preceding the intermediate 16 is therefore more stable than that preceding intermediate 15, despite the unfavourable I_{γ} effect in 16(a), due to the influence of the ring nitrogen. Simplified M.O. calculations of the localisation energies\(^{48}\) for nucleophilic substitution in heptafluoroisoquinoline indicated\(^{49}\) quite clearly that 1-substitution was preferred.

In general, 4-substituted tetrafluoropyridines reacted with suitable nucleophiles\(^{28,30}\) to replace the 2-fluorine; further reaction of the 2,4-dimethoxy derivative with methoxide ion\(^{28}\) afforded 2,4,6-trimethoxy-3,5-difluoropyridine. Some evidence for a two step mechanism in nucleophilic aromatic substitution was obtained\(^{30}\) from the replacement of the 2-fluorine, and not the 4-bromine, by methoxide ion in 4-bromo-tetrafluoropyridine.

In contrast, the reaction of 4-nitrotetrafluoropyridine (17) with methoxide ion\(^{50}\) afforded two minor products, due to replacement of the 2- and 3-fluorines, and a major product, due to replacement of the nitro-group.

\[
\begin{align*}
\text{NO}_2 & \quad \text{F} \\
\text{N} & \quad \text{CH}_3\text{O}^- \\
\text{CH}_3\text{OH} & \quad \text{OCH}_3
\end{align*}
\]

\begin{align*}
17 & \quad 70\% \\
18 & \quad 7\% \\
19 & \quad 23\%
\end{align*}
Methoxylation of pentafluoronitrobenzene11 (18) and 1,2,4,5-tetrafluoro-3-nitrobenzene37 (19) occurred para and ortho to the nitro-group respectively. However, on the basis of a controlling I_{π} effect it was predicted that, for the latter, replacement of the nitro-group would be preferred. The different behaviour of the nitropyridine (17), and the hydro-compound (19) was attributed37 to extreme stabilisation of a transition state in which high electron density was localised on a ring-nitrogen, or a nitro group, and not to unfavourable I repulsive effects.

Reaction of heptafluoroquinoline (8) with methoxide ion34 afforded a mixture of 2-methoxy and 4-methoxyhexafluoroquinoline in the ratio of 3:4:1, which was predicted37 qualitatively from the similar stability of the hybrids 20 and 21.

![Chemical Structures](image)

The higher reactivity of tetrafluoropyridazine37-41 (10) and -pyrimidine42-44 (11) compared with tetrafluoropyrazine45,46 (12) towards a variety of nucleophiles, and the observed orientation of substitution were rationalised in terms of the stability of the transition states, assuming similar ground state stabilities. Type 2 Wheland intermediates, with the negative charge localised on the ring-nitrogen, were possible for tetrafluoro-pyridazine (22) and -pyrimidine (23). However, for tetrafluoropyrazine, which was not subject to orientation complications, only a less stable type 3 hybrid (24) was possible.
Further nucleophilic substitution of the trifluoro-pyridazine and pyrimidine derivatives occurred, as expected, para to the second ring-nitrogen, however the orientation of disubstitution in tetrafluoropyrazine depended upon the initial substituent. The observed results were rationalised from a consideration of the stability of the possible type Wheland intermediates, 25 - 27.

The stability of hybrid 25 relative to 26 and 27, was increased if X was alkyl or chlorine, due to reduced L_repulsion, and decreased if X was alkoxy, due to enlarged L_repulsion. Para replacement was predicted, and observed, for the former substituents while ortho or meta replacement was predicted for alkoxy substituents; only ortho substitution was
observed. The proposed rationalization was that the fluorine atom adjacent to the localised negative charge on the ring-nitrogen in 26(b) stabilised the transition state more than the alkoxy-group in the corresponding intermediate 27(b). Analogous carbanion stabilisation by β-fluorine atoms has been reported previously.51

(b) Acidic conditions.

Acid-induced nucleophilic substitution of polyfluoro-aromatic nitrogen heterocyclic compounds, in contrast to the preceding discussion on replacement reactions under basic conditions, were reported recently.52,53,46 Rapid or slow dilution of concentrated sulphuric acid solutions of perfluoro-pyridine and -isoquinoline gave52 unchanged starting material, however with heptafluoroquinoline under identical conditions, hexafluoro-2-hydroxyquinoline was obtained exclusively in trace and large amounts respectively. Addition of methanol, followed by water, to an acidic solution of heptafluoroquinoline afforded52 substantial amounts of the 2-methoxy and 2-hydroxy derivatives.

The orientation of nucleophilic substitution in tetrafluoropyridazine was reversed under acidic conditions compared with the previously reported results37—41 under basic conditions. Slow dilution of a concentrated sulphuric acid solution of tetrafluoropyridazine with water or methanol afforded53 the 6-hydroxy and 6-methoxy derivatives respectively; the former compound was shown to exist as the pyridazinone tautomer. Reaction of tetrafluoropyrazine with methanol under acidic conditions46 gave the

![Chemical structures](image-url)
6-methoxy and 5,6-dimethoxy derivatives. The orientation of substitution of tetrafluoropyrazine, unlike tetrafluoropyridazine, was identical to that observed under basic conditions.

Chambers, Musgrave and co-workers showed that these contrasting orientations did not arise from kinetic versus thermodynamic control of reaction products. The observed 6- rather than 4-replacement was attributed to the relative stabilities of the transition states, being higher for formation of uncharged intermediate 28 than 29; elimination of hydrogen fluoride from 28 and 29 was equally probable and unlikely to be the rate- or product-determining step.

\[\text{R} = \text{H, CH}_3, \text{C}_2\text{H}_5. \]
CHAPTER 2

Fluoride Ion-Initiated Reactions of Fluoro-olefins

Evidence for the complementary nature of the chemistry of hydrocarbon and fluorocarbon olefinic and aromatic systems increases continually, however, the fundamental analogy between the proton and fluoride ion towards their respective unsaturated systems was emphasized some years ago by Miller and co-workers.54,55 They showed that fluoro-olefins were susceptible to nucleophilic attack and that addition of fluoride ion afforded a polyfluorocarbanion in contrast to hydrocarbon olefins which were predominantly susceptible to electrophilic addition, forming carbonium ions with protons.

\[\text{F}^- + \text{F} = \text{C} = \text{C} \quad \overset{\text{+}}{\overset{\text{\rightarrow}}{\text{\Rightarrow}}} \quad \text{F}^-\text{C}^-\text{C}^- \]

\[\text{H}^+ + \text{H} = \text{C} = \text{C} \quad \overset{\text{+}}{\overset{\text{\rightarrow}}{\text{\Rightarrow}}} \quad \text{H}^-\text{C}^-\text{C}^- \]

The high basicity of such polyfluorocarbanions necessitated the development of suitable experimental conditions which subsequently afforded important advances in preparative and mechanistic fluorocarbon chemistry.

A discussion of these experimental conditions, the factors governing the stability of polyfluorocarbanions, the formation and reactions of polyfluorocarbanions from fluoro-olefins and fluoride ion, and associated fluoride ion-induced rearrangements is presented; fluoride ion-initiated reactions of other types of unsaturated fluorocarbons, e.g. acetylenes and carbonyls, are also briefly discussed.

2.1. Experimental conditions.

Reversible addition of fluoride ion to perfluoro-olefins under suitable conditions has been known for a considerable time. Alkali metal fluorides
with low lattice energies, particularly those of potassium and caesium, are the most frequently reported sources of fluoride ion, however, the similar tetraethylammonium, silver and mercuric fluorides have also been utilised. The observed order of reactivity of the alkali metal fluorides is CsF > RbF > KF > NaF > LiF, the reverse order of their lattice energies. This order of reactivity was further confirmed by exchange reactions of labelled alkali metal fluorides (MF) and hexafluoropropene.

\[CF_3-CF=CF_2 + MF \rightarrow C_3F_6 + MF \]

Possible reaction media are hydroxylic or dipolar aprotic solvents. The former dissolve significant amounts of alkali metal fluorides but are too acidic to co-exist with polyfluorocarbanions and therefore afford, by proton abstraction from the solvent, polyfluorocarbon hydrides. Conversely, the solubility of alkali metal fluorides in the latter, from which proton abstraction is considerably reduced owing to the absence of labile hydrogen atoms, is extremely limited. Anhydrous solvents of this type include acetone, chloroform, acetonitrile, dimethylformamide, sulpholan, di-, tri- and tetracyglyme. In general, cations are strongly solvated in such solvents which usually possess a high electron density localised on an exposed oxygen atom allowing strong ionic interactions with the cation. In contrast, anions are less efficiently solvated owing to the relatively dispersed positive end of the dipole; solvation decreases with decreasing anionic size in the order:

\[I^- > SCN^- > Br^- > N_3^- > Cl^- > F^- \]

Reactions in the absence of a solvent have avoided the inherent complications, however, the system is clearly less reactive and requires more forcing conditions than the moderate temperatures (20°C - 180°C) and
pressures (1 - 25 atm.) employed with a solvent.

2.2. Polyfluorocarbanions.

Since polyfluorocarbanions have been cited \(^{62,69}\) as reaction intermediates in fluorocarbon chemistry it is essential to consider the effects of substituents upon their stability. Such carbanions are formed on addition of a nucleophile \(^{69}\) (Nu\(^\text{-}\)) to polyfluoro-olefins, however, the majority of the quantitative results related to their stabilities were obtained from measurements of relative acidities of fluorocarbon hydrides, \(^{51a}\) when proton abstraction by a suitable base (B) afforded the polyfluorocarbanion. However, the conclusions made are equally applicable to carbanions

\[
R_fH + B \rightleftharpoons R_f^- + BH^+
\]

produced by the former, or any other route.

2.2.1. Substituent effects.

The stability of polyfluorocarbanions was shown, from the results discussed in the following sections, to depend on the inductive (I\(_\text{C}\) and I\(_\text{F}\)), hybridisation (sp\(^2\) - sp\(^3\)), mesomeric and 2p - 3d orbital overlap effects for \(\alpha\)-substituents while only inductive effects are important for \(\beta\)-substituents. The most commonly used nomenclature for the position of substituents in polyfluorocarbanions is as shown. The order of ability

\[
\begin{array}{c}
\begin{array}{c}
\text{C-C-} \\
F \\
\beta \quad \alpha
\end{array}
\end{array}
\]

of fluorine to stabilise a carbanion was found to be \(\beta\text{-F} > \alpha\text{-F (on sp\(^3\)-C)} > (\alpha\text{-H}) > \alpha\text{-F (on sp\(^2\)-C)}\).
(a) α-Substituents.

Kinetic measurements of the base-catalysed deuterium exchange of a series of haloforms, substituted methanes (CHX₃; X = OEt, perfluoroalkyl) and substituted ethanes (CF₃CHXY; X, Y = Cl, Br, I) indicated that α-substituents facilitated carbanion formation in the order: I > Br > Cl > F > OEt, which was subsequently confirmed by results for alkoxide attack on 1,2-dihaloperfluorocyclic-olefins.

Hine, Adolph and Kamlet, and more recently Kaplan and Pickard have shown that the effect of α-substituents, especially fluorine, on carbanion stability depends upon the conformation and electronic configuration of the carbanionic carbon. The measured pKa values for a series of nitromethanes depended upon the substituent Y, which determined the hybridisation of the central carbon; the observed carbanion stabilisation was Cl > H > F for a given Y group (except for Y = NO₂, where Cl ≈ H). The "α-fluorine effect" was demonstrated by the greatly increased nucleophilicity of fluorodinitromethide ion towards methyl acrylate, due only to destabilisation of 31, compared to methyl-, ethyl-, and chlorodinitromethide ions.

The destabilising effect of α-fluorine on a planar (sp²) carbanion, in contrast to a stabilising effect on a tetrahedral (sp³) carbanion, was
rationalised by Hine as a weakening of the carbon-halogen σ bond resulting from the increased electronegativity of an sp²-hybridised carbon relative to an sp³-hybridised carbon, being more pronounced for fluorine than chlorine, bromine or iodine. An alternative explanation based on the I₇ effect was also proposed. Coulombic repulsion, between the non-bonding electrons on fluorine and the non-bonding electron pair on carbon, is maximised for a planar (sp²) carbanion (32) and minimised for a tetrahedral (sp³) carbanion (33). The magnitude of I₇ repulsion effects was shown to be F > Cl > Br > I and therefore this effect is less important for chlorine, bromine and iodine than fluorine, and non-existent for hydrogen.

Electrostatic polarisation of the halogen, which increases F < Cl < Br ~ I, and carbon 2p-substituent 3d orbital overlap were also postulated to account for the observed effects of α-substituents on carbanion stability.

(b) β-Substituents.

A systematic study of the effect of β-substituents on carbanion stability has only been reported for fluorine. Andreades measured the rates of base catalysed hydrogen-deuterium exchange for a series of mono-hydrofluorocarbons (Table 1, 34 - 37), from which it was deduced that the order of carbanion stability was tertiary > secondary > primary. Polarographic data on electrochemical reduction of a series of compounds,
Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Relative Reactivity</th>
<th>pKa Value I</th>
<th></th>
<th>pKa Value II</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 (\text{CF}_3\text{H})</td>
<td>1</td>
<td>28</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>35 (\text{CF}_3(\text{CF}_2)_2\text{CF}_2\text{H})</td>
<td>6</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 ((\text{CF}_3)_2\text{CFH})</td>
<td>(2 \times 10^5)</td>
<td>18</td>
<td></td>
<td>22.5</td>
</tr>
<tr>
<td>37 ((\text{CF}_3)_3\text{CH})</td>
<td>(10^9)</td>
<td>11</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

\(a\) Streitweiser scale - Ref. 78, page 70

\(b\) by polarography - Ref. 79

\((R_f)_2\text{Hg},\) afforded \(^79\) estimated pKa values of the corresponding hydrides, \(R_f^H,\) which were in reasonable agreement with those reported previously. Estimated pKa values \(^79\) for 38 and 39 of 25 and 14 respectively demonstrated the superior stabilising effect of \(\beta\)-fluorine, compared to \(\alpha\)-fluorine, on carbanions.

\[
\begin{align*}
\text{F}_3\text{C} & \text{C} \equiv \text{O} \\
\text{F} & \text{OEt}
\end{align*}
\]

38

\[
\begin{align*}
\text{F}_3\text{C} & \text{C} \equiv \text{O} \\
\text{F}_3 & \text{C} \text{OEt}
\end{align*}
\]

39

Andreades \(^51a\) attributed this stabilisation of a carbanion by \(\beta\)-fluorine to a negative hyperconjugation effect \((40)\) analogous to the stabilising hyperconjugation for carbonium ions \((41).\) To establish the significance of this effect Streitweiser \(^51b\) investigated the relative rates of base-catalysed hydrogen-tritium exchange for 1-H-undecafluorobicyclo[2.2.1]-heptane (42) and (tristrifluoromethyl)methane (43). Since the intermediate
carbanion from 42 is forced to remain pyramidal the possibility of stabilisation by negative hyperconjugation is remote compared to 43 and hence, on this basis, the predicted rate of exchange was 43 \gg 42. The reverse order was observed with $k_{42}/k_{43} = 5$, which Streitweiser rationalised51b in terms of increased stabilisation of the intermediate carbanion from 42 by enhanced inductive effects.

The exchange reactions of m-dihalobenzenes80 indicated that β-fluorine may be more effective than β-chlorine at stabilising a carbanion although evidence to support the reverse has been reported.72

2.3. Orientation of addition of fluoride ion to fluoro-olefins.

In general, nucleophilic addition to fluoro-olefins proceeds via the intermediate carbanion which is most stabilised by the particular substituents. For example, addition of fluoride ion to 44 and 47 occurred exclusively at the difluoromethylene group69 to afford 45 and 48 respectively, with more stabilising β-fluorines and fewer destabilising α-fluorines compared to the alternative carbanions 46 and 49 respectively.
2.4. Relative reactivities of fluoro-olefins.

The absence of data relevant to nucleophilic attack on a series of fluoro-olefins under identical conditions has prohibited a quantitative comparison of their relative reactivities. For such reactions, however, a possible energy profile can be represented schematically as in Fig. 1 and clearly the relative reactivities of fluoro-olefins depend upon the effect of the substituents on the stabilities of the ground and transition states.69 Substituent effects in the former have not yet been reported, whereas substituent effects in the latter are approximated to those in the intermediate carbanion (C), which have been discussed previously (See 2.2.1). Recent work indicated81 that, for nucleophilic attack by ethoxide on polyfluoro-olefins, the formation of B is the rate determining step, however,
in the discussion the author has shown that, for fluoride ion-initiated reactions of fluoro-olefins, this is certainly not always the case and that much more complex energy profiles are observed.

In general, it was concluded\(^{69,82}\) that an olefin containing a difluoromethylene group is the most reactive to nucleophiles and that reactivity increases along the series:

\[
\begin{align*}
\text{CF}_2=\text{CF}_2 &< \text{CF}_2=\text{CFCF}_3 < \text{CF}_2=\text{C(CF}_3)_2 \quad \text{Ref. 69} \\
\text{CF}_2=\text{CF}_2 &< \text{CF}_2=\text{CFCI} < \text{CF}_2=\text{CFBr} \quad \text{Ref. 82}
\end{align*}
\]

2.5. **Products formed in fluoride ion-initiated reactions of fluoro-olefins.**

Carbanions, formed by nucleophilic addition to fluoro-olefins, were shown\(^{81}\) to be intermediates and subsequent reactions of them have been extensively reported.\(^{62,69}\) In general, the following discussion is limited to a review of fluoride ion-initiated reactions of fluoro-olefins (50), analogous to proton induced reactions of hydrocarbons (51), and the possible modes of reaction observed for the polyfluorocarbanion intermediates.

Several different processes are known to occur under suitable conditions and these are conveniently considered in sections on proton abstraction, substitution reactions, reaction with activated systems and olefinic and aromatic rearrangements. Reactions of carbanions formed on addition of fluoride ion to other types of unsaturated fluorocarbons are also briefly mentioned.
2.5.1. Proton abstraction.

Miller and co-workers55 reported the formation of hydrogen fluoride adducts in fluoride ion-initiated reactions of fluoro-olefins due to proton abstraction from the solvent, formamide (See Table 2). Resultant

\[\text{F}^- + \text{C}=\text{C} \xrightarrow{\text{solvent}} \text{F-C-C}^- + \text{solvent anion} \]

competition between the solvent and fluoride anions for the olefin adversely affected the yields of hydrogen fluoride adducts and afforded complex side products. Graham83,84 showed that secondary reactions with the solvent clearly depended upon the reactivity of the intermediate polyfluorocarbanion since the stable tristrifluoromethyl anion,84 although protonated by dry gaseous hydrogen chloride, was not reactive enough to form diglyme anions by proton abstraction. However, in similar reactions with tetrafluoroethylene,83 a substantial proportion (50\%) of the olefin reacted with diglyme anions which were readily produced on deprotonation by the much more reactive pentafluoroethyl anion.

<table>
<thead>
<tr>
<th>Olefin</th>
<th>Temp. °C</th>
<th>Reaction Time (hr.)</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF\textsubscript{2}=CFC\textsubscript{1}</td>
<td>55</td>
<td>30</td>
<td>CF\textsubscript{3}CHFC\textsubscript{1}</td>
<td>72</td>
</tr>
<tr>
<td>CF\textsubscript{2}=CFCF\textsubscript{3}</td>
<td>25</td>
<td>5</td>
<td>CF\textsubscript{3}CHFCF\textsubscript{3}</td>
<td>60</td>
</tr>
<tr>
<td>CF\textsubscript{2}=CC\textsubscript{1}CF\textsubscript{3}</td>
<td>25</td>
<td>6</td>
<td>CF\textsubscript{3}CHC\textsubscript{1}CF\textsubscript{3}</td>
<td>61</td>
</tr>
<tr>
<td>CF\textsubscript{3}CF=CFCF\textsubscript{3}</td>
<td>81</td>
<td>24</td>
<td>C\textsubscript{2}F\textsubscript{5}CHFCF\textsubscript{3}</td>
<td>35</td>
</tr>
</tbody>
</table>

* Ref. 55

2.5.2. Substitution reactions.

Nucleophilic substitutions in fluoro-olefins, which predominated over proton abstraction for internal, branched and cyclic olefins, were classified54 as either vinylic or allylic replacements. Two mechanistic
interpretations of these reactions were proposed by Miller and Park, based on a concerted process \((S_N2^ investigative processes\) and discrete carbanion formation respectively. Both mechanisms are considered, however, recent evidence indicated that the latter was more probable.

(a) \textit{Vinyllic substitution.}

Examples of vinyllic substitution in fluoride ion attack on acyclic fluoro-olefins are limited owing to the relatively low reactivity of the \(=CFX\) group \((X = Cl, Br, I, OR, H)\) compared to the difluoromethylene group. However, direct vinyllic displacement of chloride by fluoride from 1,2-dichlorotetrafluoropropene \((52)\) in formamide, and subsequent hydrogen fluoride addition to the 2-chloropentafluoropropane \((53)\) was proposed by Miller et al. to account for the observed 2-chloro-1,1,1,3,3,3-hexa-

\[
CClF=CCClF_3 + F^- \rightarrow CF_2=CClCF_3 + Cl^-
\]

\((52)\)

\[
CF_2=CClCF_3 + F^- + H^+ \rightarrow CF_3-CHClCF_3
\]

\((53)\)

fluoropropane \((54)\). Nucleophilic attack by ethoxide on 2-phenylpentafluoropropene \((55)\) afforded the saturated ether \((56)\) (15%) and the vinyl ethers \((57)\) (76%) and \((58)\) (9%).
Reaction of polyfluorocyclic-olefins (59) and (60) with potassium fluoride in N-methyl-2-pyrrolidone afforded good yields of the perfluorocyclic-olefins (61) and (62) respectively, via vinylic substitution of chloride by fluoride ion.

Alkoxide attack on polyfluorocyclic-olefins, extensively reported by Park and co-workers, resulted in vinylic and allylic (See 2.5.2.(b)) substitution. The observed orientation of substitution was attributed to the stability of the intermediate carbanion, determined by the substituents, and the order of leaving groups for carbanions: $I > Br > Cl > F > OR > H$

(b) Allylic substitution.

Nucleophilic attack by halide ions on polyfluoroallyl systems of the type CF$_2$=CXCYRR* (X,R,R* = halogen, H, perfluoroalkyl; Y = Cl, Br, I) afforded replacement of Y, the allylic halogen. Miller and co-workers proposed a concerted mechanism (S_N^{2*}) with initial attack at the difluoromethylene group (63) accompanied by rearrangement and loss of allylic halide ion, Y$^\text{-}$. Involvement of the difluoromethylene group, rather than direct S_N^{2}
displacement of Y, was confirmed by the inertness, under equivalent conditions, of C\textsubscript{6}H\textsubscript{5}CF\textsubscript{2}Cl, CFC\textsubscript{1}=CF\textsubscript{2}Cl and CCl\textsubscript{2}=CC1CF\textsubscript{2}Cl, and also the observed54 order of reactivity of attacking halide ions was $F^- > Cl^- > Br^- > I^-$, the reverse of that observed for S_N^2 reactions.90

Reaction of fluoride ion with 3,3-dichloro-1,1,3-trifluoropropene (64) and 3,3-dichlorotetrafluoropropene (65) further confirmed54 the mechanism involved in allylic substitution. Structurally different products were predicted for S_N^2 and $S_N^2^*$ mechanisms, however only those from the latter were observed.

$$\begin{align*}
\text{CF}_2=\text{CHCF}_2\text{Cl} & \xrightleftharpoons{S_N^2} \text{CF}_2=\text{CHCFC}_2\text{Cl} & S_N^2 \rightarrow \text{CF}_2\text{CH}=\text{CFC}_1 \\
64 & & \\
\text{CF}_2=\text{CFC}_2\text{Cl} & \xrightleftharpoons{S_N^2} \text{CF}_2=\text{CFCFC}_2\text{Cl} & S_N^2 \rightarrow \text{CF}_3\text{CF}=\text{CFC}_1 \\
65 & & \\
\end{align*}$$

Park and co-workers74,85 observed similar allylic substitutions in reactions of ethoxide with halogenated cyclobutenes. The orientation of substitution was rationalised,85 as for vinylic substitution (See 2.5.2.(a)), on the basis of the stability of the intermediate carbanion and the order of leaving groups for carbanions:85a,87

$$I > Br > Cl > F > OR > H$$

2.5.3. Reactions with activated compounds.

Polyfluorocarbanions are themselves nucleophiles and therefore capable of attack at electron deficient centres, especially on carbon. Fluoride ion-initiated reactions of fluoro-olefins with activated systems have been extensively reported62 and are, for discussion, divided into reactions of polyfluoroalkyl carbanions with fluoro-olefins, polyfluoroaromatic compounds, polyfluorocarbonyl compounds, and halogen, sulphur and nitrogen compounds.
(a) **Fluoro-olefins.**

In general, fluoride ion-initiated polymerisation of fluoro-olefins, although theoretically possible, has not afforded suitable high molecular weight products for several reasons. Double bond migration, rather than propagation, was the observed effect of fluoride ion on fluoro-olefins which contained in excess of three linear carbon atoms (See 2.5.6.(a)), while for fluoro-olefins in which this was not structurally possible, proton abstraction from the solvent, formation of low molecular weight highly branched unsaturated oligomers or simply non self-condensation was observed.

(i) **Acyclic.**

Oligomerisation of tetrafluoroethylene by caesium fluoride in di-, tri- and tetraglyme under moderate conditions was reported by Graham\(^\text{83,91}\) to yield complex mixtures of highly branched internally unsaturated products of general formula \(\left(\text{C}_2\text{F}_4\right)_n\) in which \(n\) was 4, 5, 6 and 7. The mechanism proposed,\(^\text{83}\) as shown, involved nucleophilic addition of pentafluoroethyl anion to tetrafluoroethylene, elimination of fluoride ion, possibly with rearrangement, to form an olefin which reacted further

\[
\text{C}_2\text{F}_5^- + \text{C}_2\text{F}_4 \rightarrow \text{C}_2\text{F}_5\text{CF} = \text{CF} = \text{CF} + \text{F}^- \rightarrow \text{C}_3\text{F}_3\text{CF} = \text{CFCF}_3
\]

![Chemical diagram](image-url)
with pentafluoroethyl anion. Identification of tetraramers (66) and (67) substantiated this mechanism. Product yields were reduced owing to consumption of the olefin in side reactions involving the solvent, however the reaction rate was increased with increased quantities of caesium fluoride and change of solvent in the order monoglyme < diglyme < triglyme < tetraglyme. Similar results were obtained independently using a greater variety of solvents and initiators under more forcing conditions.

In contrast, under moderate conditions in the presence of alkali metal fluorides hexafluoropropene only di- and tri-merised, with or without a solvent. The reaction mechanism shown was proposed by Haszeldine and co-workers, who identified two dimers, (68) and (69) and three trimers, (70), (71) and (73), of hexafluoropropene and observed,

\[
\begin{align*}
\text{CF}_3\text{CF}=\text{CF}_2 & \quad \overset{\text{F}^-}{\underset{\text{F}^-}{\rightleftharpoons}} \quad \text{(CF}_3\text{)}_2\text{CF}^- \\
& \quad \overset{1) \text{C}_{\text{F}}_3\text{F}}{\underset{2) \text{F}^-}{\rightarrow}} \quad \text{(CF}_3\text{)}_2\text{CF}=\text{CFCF}_3 \\
& \quad \overset{68}{\downarrow} \quad \text{(CF}_3\text{)}_2\text{C=CFCF}_3 \\
& \quad \text{(CF}_3\text{)}_2\text{C=CFCF}_3 \\
& \quad \text{69}
\end{align*}
\]

\[
\begin{align*}
\text{69} & \quad \overset{1) \text{(CF}_3\text{)}_2\text{CF}^-}{\underset{2) \text{F}^-}{\rightarrow}} \quad \text{(CF}_3\text{)}_2\text{C=CCF}_2\text{F}^- + \text{(CF}_3\text{)}_2\text{C=CFCF}_3 \\
& \quad \overset{\text{70}}{\uparrow} \quad \text{(CF}_3\text{)}_2\text{C=CFCF}_3 \\
& \quad \text{69}
\end{align*}
\]

\[
\begin{align*}
\text{70} & \quad \overset{\text{F}^-}{\rightarrow} \quad \text{(CF}_3\text{)}_2\text{C=CFCF}_3 + \text{(CF}_3\text{)}_2\text{C=CFCF}_3 \\
& \quad \overset{69}{\downarrow} \quad \text{F}^- \\
\text{F}^- & \quad \overset{1) \text{C}_{\text{F}}_3\text{F}}{\underset{2) \text{F}^-}{\rightarrow}} \quad \text{n-C}_{\text{F}}_7\text{(CF}_3\text{)}_3\text{C=CFCF}_3 \\
& \quad \overset{\text{72}}{\uparrow} \quad \text{n-C}_{\text{F}}_7\text{(CF}_3\text{)}_3\text{C=CFCF}_3 \\
& \quad \text{73}
\end{align*}
\]

in the presence of fluoride ion under suitable conditions, the conversion of 68 into 69, the equilibrium between 70 and 71, the formation of the
thermodynamically stable trimer (73) from 70 and 71, but not the dimer (72). The formation of terminal olefin (74) from 69 and ethoxide at -80° substantiated the postulation of 72 as a reaction intermediate.

\[
\text{CF}_3\text{C} = \text{CF}_2\text{F}_5 \overset{\text{OEt}}{\rightarrow} \text{CF}_2\text{C} = \text{C}(\text{CF}_3)\text{CF(OEt)}\text{C}_2\text{F}_5 + \text{F}^-
\]

Only dimerisation of perfluoroisobutene was observed with caesium or rubidium fluoride in an inert solvent at -50° to -20°, possibly due to the low reactivity of the tristrifluoromethyl anion. Graham reported a mixture of perfluoro-olefins (75) and (76), however, a recent patent claimed that a single product, identified as 75, was obtained.

(ii) Cyclic.

Certain polyfluorocyclic-olefins were also found to oligomerise with caesium fluoride in dipolar aprotic solvents. Pruett and co-workers reported the anionic di- and tri-merisation of perfluorocyclobutene in the presence of pyridine, however a fluoride ion-catalysed reaction has been described subsequently. Caesium fluoride and perfluorocyclobutene in dimethylformamide rapidly afforded two dimers, (77) and (78) and trimers, predominantly a single isomer (79), via the proposed mechanism.
Only dimerisation of perfluorocyclo-hexene and -pentene was observed, requiring more vigorous conditions than similar reactions for perfluorocyclobutene. The proposed mechanism for perfluorocyclohexene involved vinylic substitution of fluorine by perfluorocyclohexyl carbanion to form the observed perfluoro(1-cyclohexylcyclohexene) (80), however, perfluorocyclopentene afforded the symmetrical dimer (81) as the only product, via initial vinylic substitution accompanied by a fluoride ion-induced rearrangement to 81, the thermodynamically most stable isomer.

(iii) **Co-dimerisation.**

An extension of fluoride ion-induced oligomerisation to co-dimerisation of a mixture of fluoro-olefins proved successful. However, the products obtained depended upon the reactivity of each olefin towards
fluoride ion and also towards the individual perfluorocarbanions formed from both olefins. Consequently dimers of each olefin as well as co-dimers were also expected.

In the absence of solvent the major process for several pairs of olefins was found to be the independent reaction of one or both olefins with fluoride ion, but co-dimers were obtained with pairs of olefins which were individually reactive towards caesium fluoride.

An investigation into fluoride ion-catalysed co-dimerisation of fluoro-olefins in solution indicated a strong solvent dependance for the observed products. In dimethylformamide perfluoro-propene and -but-2-ene afforded a co-dimer (82) as the major product, while in tetrahydrofuran

\[\text{CF}_3\text{CF}=\text{CF}_2 \xrightarrow{F^-} (\text{CF}_3)_2\text{CF}^- \rightarrow \text{dimer} + F^- \]

\[\text{CF}_3\text{CF}=\text{CFCF}_3 \]

\[\text{F}^- + (\text{CF}_3)_2\text{CF=CFCF}_3 \xrightarrow{F^-} (\text{CF}_3)_2\text{C=C(CF}_3\text{C}_2\text{F} \]

the dimer of the former was obtained preferentially. Similar results were observed for the co-dimerisation of perfluoro-propene and -cyclobutene.

(b) Polyfluoroaromatic compounds.

Nucleophilic displacement of fluoride ion from highly fluorinated aromatic compounds by a polyfluoroalkyl carbanion, analogous to Friedel-Crafts reactions in hydrocarbon chemistry, was reported originally by

\[\text{F}^- + \text{CF}_2=\text{C} \xleftarrow{\text{CF}_3\text{C}^-} \text{Ar}^\text{F} \rightarrow \text{CF}_3\text{C}=\text{Ar} + \text{F}^- \]

\[\text{H}^+ + \text{CH}_2=\text{C} \xleftarrow{\text{CH}_3\text{C}^+} \text{Ar}^\text{H} \rightarrow \text{CH}_3\text{C}=\text{Ar}^\text{H} + \text{H}^+ \]

Chambers, Musgrave and co-workers. Subsequent investigations have confirmed polyfluoroalkylation as a general synthetic method in this field
and have also afforded some interesting mechanistic and orientation effects, some of which are discussed in Chapters 3, 4 and 5.

Perfluoroalkylation of hexafluorobenzene \(^{98,99}\) under moderately severe conditions (up to 75 atm. and 150 °C) with \(\text{CF}_2=\text{CF}_2\), \(\text{CF}_3\text{CF} = \text{CF}_2\) or \((\text{CF}_3)_2\text{C} = \text{CF}_2\) and caesium or tetraethylammonium fluoride in a dipolar aprotic solvent afforded perfluoroalkylbenzenes of the general formula \(\text{C}_6\text{F}_{6-n}\left(\text{R_F}\right)_n\), where \(\text{R_F} = \text{perfluoro-olefin}\) and \(n = 1\) to 6. Similar results were reported \(^{98}\) for perfluoro-toluene, -biphenyl, -naphthalene and -anthracene; for chlorofluorobenzenes, eventual loss of chlorine poisoned the catalyst.

Using moderate conditions, the expected 4-substituted derivatives were obtained \(^{33}\) from both octafluorotoluene and methylpentafluorobenzoate with hexafluoropropene, whereas hexafluorobenzene, bromopentafluorobenzene and 1,3,5-trichlorotrifluorobenzene were inert. \(^{33,100}\) Heptafluoroisopropylation of pentafluoronitrobenzene (83) with potassium fluoride and hexafluoropropene in sulpholan at 120 °C gave, in addition to the 4-isopropyl- and 2,4-di-isopropyl-derivatives (84) and (85), products (86) and (87) from displacement of the nitro-group.

\[
\begin{align*}
\text{NO}_2 \quad \text{F} \\ \text{83}
\end{align*}
+ \quad \text{CF}_3\text{CF} = \text{CF}_2
\xrightarrow{\text{KF-sulpholan}}
\begin{align*}
\begin{array}{c}
\text{NO}_2 \\ \text{F} \\
\text{84} \\
\text{R_F} \\
\text{85}
\end{array}
+ \\
\begin{array}{c}
\text{R_F} \\
\text{86} \\
\text{87}
\end{array}
\end{align*}
\]

\(\text{R_F} = (\text{CF}_3)_2\text{CF}\)
A similar reaction with pentafluorobenzonitrile was carried out at 20°C, being uncontrollable at higher temperatures, to give perfluoro-4-isopropylbenzonitrile.

Polyfluoroalkylation of pentafluoropyridine, which is of comparable reactivity to pentafluoronitrobenzene towards nucleophiles, has been extensively studied by Chambers, Musgrave and co-workers. When pentafluoropyridine, hexafluoropropene, potassium fluoride and sulpholan were heated in a sealed tube at 120°C, a ca. 90% yield of perfluoro-(4-isopropylpyridine) (88) was obtained together with a trace of perfluoro-(2,4-di-isopropylpyridine) (89). An evaluation of solvents and initiators for this reaction concluded that sulpholan was superior to dimethylformamide, di- and tri-glyme as solvent, and caesium fluoride was a more effective initiator than potassium fluoride; the latter observation was in agreement with previous results from fluorination reactions. However, for other systems different solvents were shown to be more effective, as for example in the polyfluoroalkylation of octafluoronaphthalene using tetraglyme in preference to sulpholan.

Despite the use of excess hexafluoropropene, further substitution in 88 was very limited owing to the preferential formation of dimers and trimers. However, reaction in an autoclave at elevated temperatures and higher pressure (ca. 30 atm.) afforded 102 4-, 2,4-bis- and a mixture of 2,4,5- and 2,4,6-tris-(heptafluoroisopropyl) derivatives, (88), (89), (90)
and \((91)\) respectively, probably due to an increased concentration of the olefin at the reaction site. In a separate experiment under similar conditions it was shown that \(90\) rearranged to \(91\) in the presence of fluoride ion.

Reaction of tetrafluoroethylene and pentafluoropyridine with caesium fluoride in sulpholan at an elevated temperature in an autoclave\(^{33}\) gave a mixture of perfluoroethylpyridines of general formula \(\text{C}_5\text{F}_5\text{N}(\text{C}_2\text{F}_5)_n\) for \(n = 1\) to 5. Similar polyfluoroalkylation reactions of pentafluoropyridine\(^{39,104,105}\) and chlorofluoropyridines\(^{104}\) have also been reported recently.

Perfluorocyclic-olefins were also shown\(^{97}\) to be suitable for the polyfluoroalkylation of pentafluoropyridine. Under autogenous conditions perfluorocyclohexene afforded 4-, 2,4-bis- and 2,4,6-tris-(undecafluorocyclohexyl) derivatives, \((92), (93)\) and \((94)\) respectively. Similar
reactions with perfluorocyclo-pentene and -butene gave only the 4-substituted compounds.

More recently, heptafluoroisopropylation of tetrafluoropyridazine under mild conditions gave a mixture of 4- and 4,5-bis-(heptafluoroisopropyl) derivatives, (95) and (96) respectively, while more vigorous conditions afforded the 4,6-bis- and 3,5,6-tris-(heptafluoroisopropyl) compounds (97) and (98) respectively. Conversion of the 4,5-disubstituted compound (96) into the 4,6-isomer (97) was effected at elevated temperatures.

\[
\text{\begin{align*}
\text{C}_3\text{F}_6 + \text{C}_3\text{F}_6 & \xrightarrow{\text{KF-sulpholan}} \text{F} \text{N} \text{F} + \text{N} \text{F} \text{N} \\
\text{N} & \text{F} \text{N} \text{F} \quad \text{N} \text{F} \text{N} \text{F} \\
\text{N} & \text{F} \text{N} \text{F} \quad \text{N} \text{F} \text{N} \text{F}
\end{align*}}
\]

with potassium fluoride in sulpholan, giving substantial disproportionation to the mono- and tris-substituted compounds, (95) and (98) respectively.

Reaction of hexafluoropropene and tetrafluoropyrimidine with caesium fluoride in sulpholan at 70° afforded 4-, 4,6-bis-, 2,4,6-tris- and tetra-(heptafluoroisopropyl) derivatives, (99) - (102) respectively, in agreement with the previously observed orientation for nucleophilic

\[
\text{\begin{align*}
\text{C}_3\text{F}_6 + \text{C}_3\text{F}_6 & \xrightarrow{\text{CsF-sulpholan}} \text{F} \text{N} \text{F} + \text{N} \text{F} \\
\text{N} & \text{F} \text{N} \text{F} \quad \text{N} \text{F} \text{N} \text{F} \\
\text{N} & \text{F} \text{N} \text{F} \quad \text{N} \text{F} \text{N} \text{F}
\end{align*}}
\]

\[R_f = (\text{CF}_3)_2\text{CF}\]

\[
\text{\begin{align*}
\text{R}_f & \quad \text{R}_f \\
\text{R}_f & \quad \text{R}_f
\end{align*}}
\]

\[
\text{\begin{align*}
\text{R}_f & \quad \text{R}_f \\
\text{R}_f & \quad \text{R}_f
\end{align*}}
\]
substitution. Interconversion of 101 and 102 was observed in the presence of fluoride ion and a dipolar aprotic solvent.

Formation of perfluoroalkyl-substituted s-triazines was reported from fluoride ion-catalysed reactions of fluoro-olefins with cyanuric fluoride (2,4,6-trifluoro-1,3,5-triazine). In the absence of a solvent under autogenous conditions, hexafluoropropene and caesium fluoride at 100° gave a mixture of mono-, bis- and tris-(heptafluoroisopropyl) derivatives, (103), (104) and (105) respectively. Variation of reactant ratios afforded preferential formation of any one of the observed products. Similar results were observed for perfluoro-ethylene, -propene and -butenes with alkali metal fluorides in dipolar aprotic solvents at moderate temperatures and pressures.

(c) Polyfluorocarbonyl compounds.

The susceptibility of polyfluorocarbonyl compounds to nucleophilic displacement by polyfluoroalkylcarbanions was demonstrated by the fluoride ion-catalysed reaction of a number of fluoro-olefins with carbonyl fluoride in a dipolar aprotic solvent. Hexafluoropropene, carbonyl fluoride and potassium fluoride in acetonitrile at 100° afforded heptafluoroisobutyryl fluoride (106) in high yield, and subsequent reports showed that such polyfluoroacyl fluorides reacted further with polyfluoro-
alkyl carbanions to give disubstituted ketones, e.g. (107) in moderate yields.

\[
(CF_3)_2CFOF + (CF_3)_2CF^- \rightarrow ((CF_3)_2CF)_2CO + F^-
\]

(106) (107)

Caesium perfluoroalkoxides and tetrafluoroethylene in diglyme at 100°C afforded, on acidification, a perfluoro tertiary alcohol (108) and not an ether, which indicated that nucleophilic attack by \(C_2F_5^-\) upon the equilibrium concentration of the ketone was favoured.

\[
\text{CF}_2=\text{CF}_2 \quad \xrightleftharpoons{\text{F}^-} \quad \text{C}_2\text{F}_5^- + \quad \text{R}_\text{f} \quad \text{C}=\text{O} \xrightarrow{\text{H}^+} \quad \text{C}_2\text{F}_5\text{C}=\text{OH}
\]

(108)

A reversible fluoride ion-initiated reaction between tetrafluoroethylene, hexafluoropropene or chlorotrifluoroethylene and carbon dioxide in triglyme gave, on acidification, the corresponding polyfluoro-carboxylic acid (109). A similar reaction with perfluoroisobutene was unsuccessful.

\[
\text{CF}_2=\text{CFY} + \text{F}^- \quad \xrightleftharpoons{} \quad \text{CF}_3\text{CFY}^- + \text{O}_2 \quad \xrightarrow{\text{H}^+} \quad \text{CF}_3\text{CFYCO}_2\text{H}
\]

(109)

(d) Halogen, nitrogen and sulphur compounds.

(i) Halogen compounds.

Krespan observed that the addition of iodine to a variety of fluoro-olefins in the presence of potassium fluoride and a dipolar aprotic solvent afforded perfluoroalkyl iodides. The proposed mechanism involved displacement of iodide ion from iodine by a polyfluorocarbanion, generated by addition of fluoride ion to the fluoro-olefin, and the formation of isomeric products from terminal olefins was due to fluoride ion-catalysed rearrangement to the internal olefin and subsequent addition of IF. Similar results were obtained in reactions of perfluoroalkylsilver compounds,
formed from silver fluoride and fluoro-olefins in a dipolar aprotic solvent, with hydrogen chloride and bromine. Displacement of chloride and bromide ions respectively resulted in overall addition of HF and BrF to the olefin.

\[
\begin{align*}
\text{C}=\text{C} & \quad + \quad \text{AgF} \quad \rightarrow \quad \text{F}-\text{C}-\text{C}-\text{Ag} \quad \rightarrow \quad \text{F}-\text{C}-\text{C}-\text{Br} \quad + \quad \text{AgBr} \\
\end{align*}
\]

Reaction of mercuric fluoride with fluoro-olefins gave polyfluoroalkylmercuric fluorides (110) via a proposed ionic mechanism involving initial nucleophilic attack by fluoride ion on the fluoro-olefin. Subsequent reaction of 110 with chlorine or iodine displaced chloride and iodide ions and effectively gave addition of chlorine- and iodine-monofluorides respectively to the fluoro-olefins. However, this ionic mechanism has been disputed recently since the absence of a suitable catalyst and solvent is not conducive to nucleophilic displacements.

Knunyants and co-workers have reported the displacement reaction of polyfluoroalkyl carbanions, from alkali metal fluorides and fluoro-olefins in an inert solvent, with mercuric fluoride and chloride. At 40° in dimethylformamide (DMF) and 1,2-dimethoxyethane (DME) perfluoropropene, potassium fluoride and mercuric chloride afforded bis-perfluoroisopropyl mercury (111) and perfluoroisopropylmercury chloride (112) respectively. Similar results were observed with perfluoro-isobutene and -cyclobutene.
A related investigation114 into the reactions of the stable bisperfluoroalkyl mercurials showed an increased lability of the substituents in the presence of alkali metal fluorides and are therefore a convenient source of perfluoroalkyl carbanions.

Miller et al.115 recently reported the preferential nucleophilic displacement of carbon from halogen in perhaloalkanes by fluoroperhalocarbanions, generated from fluoride ion and fluoro-olefins, rather than addition of the carbanion to the sterically hindered parent olefin.

\[
\begin{align*}
\text{C} &= \text{C} + \text{F}^- \rightarrow \text{C} = \text{C}^- + \text{X} \text{C} = \text{C} - \text{Y} \rightarrow \text{C} = \text{C} - \text{X} + \text{C} = \text{C} - \text{Y} \\
\text{X, Y} &= \text{Cl, Br, I}
\end{align*}
\]

In general the products formed were a different perhaloalkane, an olefin and an halide ion as, for example with 1,1-dichlorodifluoroethylene, potassium or caesium fluoride and 1,2-dibromotetrafluoroethane which gave 1-bromo-1,1-dichlorotrifluoroethane (113), tetrafluoroethylene and bromide ion.

\[
\text{CF}_2 = \text{CCl}_2 + \text{F}^- \rightarrow \text{CF}_3 \text{Cl}_2 \rightarrow \text{CF}_2 \text{BrCF}_2 \text{Br} \rightarrow \text{CF}_3 \text{CCl}_2 \text{Br} + \text{CF}_2 = \text{CF}_2 + \text{Br}^-
\]

113

(ii) Nitrogen compounds.

Only a few examples of nucleophilic displacement at nitrogen by polyfluoroalkyl carbanions have been reported in the literature. Heptafluoroisopropylation of perfluoropiperidine afforded68a a product which was originally identified as the N-substituted derivative, however, a more recent investigation116 of the reaction gave the same product which was correctly characterised as perfluoro-(2-isopropylpyridine) (114).
Formation of 114 was rationalised as shown, with catalytic defluorination by the autoclave.

Knunyants and co-workers demonstrated the fluoride ion-catalysed addition of fluoro-olefins to nitrosyl fluoride and dinitrogen tetroxide in sulpholan to give, in both cases, nitrosoperfluoroalkanes. Hexafluoropropene, potassium fluoride and nitrosyl fluoride or dinitrogen tetroxide at 30° afforded 2-nitrosoperfluoropropane (115). Similar results were obtained with perfluoro-isobutene and cyclobutene.

(iii) Sulphur compounds.

Fluoride ion-catalysed addition of hexafluoropropene to sulphur tetrafluoride at 150° in the absence of a solvent afforded a mixture of mono- and bis-(heptafluoroisopropyl) derivatives, (116) and (117) respectively. Hexafluoropropene, caesium fluoride and CF₃SF₃ gave the mixed disubstituted compound (118).
Heptafluoroisopropylation of a series of N-perfluoroalkyl imino-sulphur difluorides \(R^N N=SF_2 \) at 80° without a solvent produced 120 the corresponding S-heptafluoroisopropyl derivative (119) in fair yields. Similar reactions between perfluoro-ethyl or -isopropyl carbanions and

\[
\text{CF}_3\text{CF} = \text{CF}_2 + F^- \rightleftharpoons (\text{CF}_3)_2\text{CF}^+ R^N N=SF_2 \rightarrow R^F N=S\text{CF}(\text{CF}_3)_2
\]

\(R^F = \text{CF}_3, \text{C}_2\text{F}_5, (\text{CF}_3)_2\text{CF} \)

sulphuryl fluoride afforded 121 perfluorodiethyl sulphone (120) and heptafluoro-2-propanesulphonyl fluoride (121) respectively. Attempted preparations of the perfluoro-di-isopropyl- and ethylisopropyl-sulphones were unsuccessful.

2.5.4. Olefinic and aromatic rearrangements.

(a) Fluoro-olefins.

A special example of allylic substitution 54, 55 (See 2.5.2.(b)) is fluoride ion-catalysed rearrangement of fluoro-olefins in which equilibration between isomers occurs. It was shown that internal olefins required much more vigorous conditions than terminal olefins 62 which contained the reactive difluoromethylene group, 54 however, extended reaction times generally afforded the thermodynamically most stable isomer. The operation of a concerted mechanism \((S,2^*) \) or formation of a discrete carbanion for such rearrangement reactions is still uncertain.
Polyfluoro-1-heptene was isomerised\(^{55}\) to a mixture of cis and trans perfluoro-2- and -3-heptenes, (122) and (123) respectively, by tetraethylammonium fluoride in chloroform at room temperature. Increased concentration of catalyst and a longer reaction time favoured higher conversion and formation of 123. Oligomerisation of hexafluoropropene\(^{68a,92,93}\) (See 2.5.3.(a)(i)) gave isomeric unsaturated dimers and trimers, the formation of which was rationalised in terms of fluoride ion-induced rearrangements to give the thermodynamically most stable product.

Similar results were reported by Burton and Herbes\(^{63}\) who developed a Wittig-type synthesis of \(\beta\)-substituted perfluoro-olefins from triphenylphosphine, sodium chlorodifluoroacetate and polyfluorinated ketones. Using 1-phenylpentafluoropropanone in diglyme at 100\(^{\circ}\) they obtained not only the desired 2-phenylheptafluoro-1-butene (124) but also the more stable isomeric cis and trans 2-phenylheptafluoro-2-butene (125).

\[
\begin{align*}
(C_{6}H_{5})_{3}P + ClCF_{2}CO_{2}Na & \quad \text{diglyme} \quad 100^{\circ} \quad C_{6}H_{5}C(CF_{3})=CF_{2} \\
C_{6}H_{5}C(CF_{3})=CF_{2} & + C_{6}H_{5}C(CF_{3})=CFCF_{3}
\end{align*}
\]

Treatment of pure 124 with caesium and rubidium fluoride indicated that rearrangement of 124 afforded cis and trans isomers of 125.

\[
\begin{align*}
C_{6}H_{5}C(CF_{3})=CF_{2} & \quad F^{-} \quad C_{6}H_{5}C=CF_{3} + C_{6}H_{5}C=CF_{3} \\
cis & \quad trans
\end{align*}
\]
Fluoride ion-catalysed rearrangements of perfluorodienes and perfluoroallenes have also been reported. When perfluoro-1,3-butadiene was heated122 with caesium fluoride at 150° in the absence of a solvent hexafluorobut-2-yne (126) was formed. A similar reaction with perfluoro-1,4-pentadiene at 250° afforded122 perfluoropent-2-yne (127), however,

\[
\text{CF}_2=\text{CFCF}=\text{CF}_2 \xrightarrow{F^-} \text{CF}_3=\text{CCF}_3
\]

in the liquid phase at 45° two intermediate dienes (128) and (129) were isolated which confirmed the reaction mechanism as a series of fluoride ion-initiated S_N2 substitutions.

\[
\begin{align*}
\text{CF}_2=\text{CFCF}=\text{CF}_2 & \xrightarrow{F^-} \text{CF}_3=\text{CCF}_2=\text{CF}_2 \xrightarrow{F^-} \text{CF}_3=\text{CCF}=\text{CF}_2 + \text{F}^- \\
\text{CF}_3=\text{CCF}_2=\text{CF}_5 & \xrightarrow{F^-} \text{F}^- + \text{CF}_3=\text{CF}=\text{CFCF}_3 \xrightarrow{F^-} \text{CF}_3=\text{CF}=\text{CFCF}_3
\end{align*}
\]

Recently Haszeldine and co-workers123-125 reported similar results in fluoride ion-induced isomerisations of perfluoroallenes. On passing perfluoropenta-1,2-diene vapour over caesium fluoride at 100° perfluoropent-2-yne (127) was formed,123 however perfluoro-(3-methylbuta-1,2-diene)

\[
\text{C}_2\text{F}_5=\text{CF}=\text{CF}_2 \xrightarrow{F^-} \text{C}_2\text{F}_5=\text{C}=\text{CCF}_3
\]

at 205° gave124 only partial isomerisation to perfluoroisoprene (130) via perfluorocarbanion (131). When perfluoro-(1,2-dimethylene cyclobutane) (132),

\[
(\text{CF}_3)_2=\text{C}=\text{CF}_2 \xrightarrow{F^-} \left[\text{F} \cdots \text{CF}_2\left(\text{CF}=\text{C}=\text{CF}_2\right)^{-}\right] \xrightarrow{F^-} \text{CF}_2=\text{C}=\text{CF}_2
\]

at 205° gave124 only partial isomerisation to perfluoroisoprene (130) via perfluorocarbanion (131). When perfluoro-(1,2-dimethylene cyclobutane) (132),
the dimer of tetrafluoroallene, was heated125 with caesium fluoride at 100\textdegree C perfluoro-(2-methyl-3-methylene cyclobutene) (133) was obtained

\[
\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2 \xrightarrow{\text{F}^-} \text{CF}_3\text{CF}_3
\]

quantitatively via an S_N^2 process. Attempts to isomerise 133 further under more forcing conditions were unsuccessful.

Similar fluoride ion-catalysed isomerisations have been reported for perfluoro-ketenes and α-ω-bisazomethines. Passage of bis(trifluoromethyl)ketene (134) vapour over sodium fluoride at 300\textdegree C afforded126 an equilibrium mixture of 134 and pentafluoromethyl acryloyl fluoride (135). In the

\[
\text{(CF}_3\text{)}_2\text{C}=\text{C}=\text{O} + \text{F}^- \xrightarrow{\text{C}} \text{CF}_3\text{C}^\equiv\text{C}=\text{O} \xrightarrow{\text{C}} \text{CF}_2=\text{C}^\equiv\text{C} + \text{F}^-
\]

presence of caesium fluoride, perfluoro-2,4-diazapenta-1,4-diene (136) isomerised127 rapidly at room temperature to bis(trifluoromethyl)carbodiimide (137) and was shown to be a typical example of a series of such rearrangements.

\[
\text{CF}_2=\text{N}-\text{CF}_2=\text{N}-\text{CF}_2 \xrightarrow{\text{F}^-} \text{CF}_3\text{N}=\text{C}=\text{NCF}_3
\]

(b) Perfluoroaromatic compounds.

Acid induced rearrangements of alkylbenzenes128 in hydrocarbon chemistry have been extensively investigated, however, the analogous fluoride ion-induced rearrangements in fluorocarbon chemistry were reported only recently.102
(i) Perfluoroalkylpyridines.

Nucleophilic substitution in pentafluoropyridine with methoxide ion afforded 4-methoxy-, 2,4-dimethoxy- and 2,4,6-trimethoxy- derivatives, however, with heptfluoroisopropyl carbanion (See 2.5.3.(b)) a mixture of 4-, 2,4-bis-, 2,4,5- and 2,4,6-tris-(heptfluoroisopropyl) derivatives was obtained. Fluoride ion-catalysed rearrangement of the 2,4,5-isomer (90) to the 2,4,6-isomer (91), via Wheland intermediate (138) and under more vigorous conditions than for their preparation, was reported by Chambers, Musgrave and co-workers who postulated that 90 and 91 were the products of kinetic and thermodynamic control respectively.

Replacement of the 5-fluorine atom of perfluoro-(2,4-di-isopropylpyridine) by a heptfluoroisopropyl carbanion, despite adverse steric interactions, was attributed to the much larger stabilising effect of an \(\alpha \)-perfluoroalkyl substituent, compared to an \(\alpha \)-fluorine, on the intermediate carbanion (139). Further investigation of the fluoride ion-induced rearrangement of the 2,4,5-isomer indicated that loss of the 4- and 5-substituents occurred via carbanionic intermediates (139) and (140) respectively. This result was attributed to the comparable stabilities of

![Diagram of 90, 138, 91, R_f = (CF_3)_2CF, 139, 140](attachment:image.png)
(ii) **Perfluoroalkylpyridazines.**

Perfluoroisopropylation of tetrafluoropyridazine\(^{38,40,41}\) under mild conditions afforded perfluoro-(4-isopropylpyridazine) (95) and perfluoro-(4,5-di-isopropylpyridazine) (96) while under more vigorous conditions perfluoro-(4,6-di-isopropylpyridazine) (97) and perfluoro-(3,4,6-tri-isopropylpyridazine) (98) were obtained. Similar results were reported\(^{39}\)

![Diagram](image)

\[R_f = (CF_3)_2CF \]

under moderate conditions (i.e. 70°) and clearly the products isolated depended on whether kinetic or thermodynamic control operated.

Attempted fluoride ion-induced rearrangement of 96 at 150°\(^{40,41}\) gave a mixture which contained approximately equal amounts of 95, 97 and 98. Further reaction of 96 with \((CF_3)_2CF^-\) produced\(^{39}\) the 3,4,6-tri-substituted compound (98). The observed results were rationalised, as shown, by either\(^{40}\) initial rearrangement of the 4,5-isomer (96) to the 4,6-isomer (97), via the mono-substituted derivative (95), with
subsequent attack of \((\text{CF}_3)_2\text{CF}^-\) at the 3-position of \(97\) to form \(98\), or alternatively, initial formation of the 3,4,5-tri-substituted derivative \((141)\) which rearranged to the isolated 3,4,6-isomer \((98)\). The relief of steric interactions in \(96\) or \(141\) would facilitate rearrangement.

\[
\begin{align*}
\text{96} & \xrightarrow{1) \text{RF}^- \ 2) \text{F}^-} \text{141} \\
\text{95} & \xrightarrow{1) \text{F}^- \ 2) \text{RF}^-} \text{142} \\
\text{97} & \xrightarrow{1) \text{RF}^- \ 2) \text{F}^-} \text{142} \\
\end{align*}
\]

\(R_f = (\text{CF}_3)_2\text{CF}\)

2.6. **Fluoride ion-initiated reactions of non-olefinic unsaturated fluorocarbons.**

The formation of polyfluorocarbanions on addition of fluoride ion to unsaturated fluorocarbons, other than fluoro-olefins, has been extensively reported, especially in the patent literature. Fluoro-acetylenes,
- 48 -

-carbonyl compounds, -epoxides and polyfluorocarbon-nitrogen compounds have afforded carbanions with fluoride ion, under suitable conditions, which subsequently reacted with activated substrates in an analogous manner to carbanions derived from fluoro-olefins.

2.6.1. Perfluoroacetylenes.

Hexafluorobut-2-yne and caesium fluoride in a dipolar aprotic solvent gave \({\text{perfluorovinyl-}} \) and, on dimerisation, perfluoro-alkadienyl carbanions which effected nucleophilic displacement either in the acetylene giving a polymer eventually or in an activated polyfluoro-aromatic compound such as perfluoro-benzonitrile, \(^{130}\) pyridine \(^{131}\) or pyridazine. \(^{131}\) Pentafluoropyridine afforded low yields of compounds 143, 144 and 145, the latter two of which were not formed \(^{131,132}\) by extension of the side-chain in 143.

\[
\begin{align*}
\text{CF}_3\text{CF}=\text{CCF}_3 & \xrightarrow{\text{F}^-} \text{CF}_3\text{C}=\text{CCF}_3 \\
\text{CF}_3\text{CF}=&\text{CCF}_3 & \xrightarrow{\text{CsF, sulpholan}} & \text{C}_5\text{F}_5\text{N}, 110^\circ & \text{[C(CF}_3)=\text{C(CF}_3\text{)]}_n \text{F} \\
\end{align*}
\]

143 144 \(n = 2 \)

145 \(n = 3 \)

Miller and co-workers \(^{59}\) have prepared perfluoro-1-methylpropenyl-silver (146) from silver fluoride and hexafluorobut-2-yne in acetonitrile at 35°. Reaction of 146 with water or hydrogen chloride and bromine

\[
\text{AgF} + \text{CF}_3\text{C}=\text{CCF}_3 \rightarrow \text{CF}_3\text{CF}=&\text{CCF}_3\text{Ag}
\]

146
gave exclusive trans addition of HF and BrF respectively.

2.6.2. Fluorocarbonyl compounds.

Caesium, potassium, silver or tetraethylammonium fluorides and
polyfluoroketones in dipolar aprotic solvents afforded133 polyfluoro-
carbanions which effected nucleophilic displacement in activated
substrates. Hexafluoroacetone and potassium fluoride reacted134 with
cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) to give 2,4,6-tri-
perfluoroisopropoxy-1,3,5-triazine (147); variation of the reactant
ratio gave the mono- and di-substituted derivatives also. Similar

\[
(CF_3)_2C=O + F^- \rightleftharpoons (CF_3)_2CFO^- + \begin{array}{c}
\text{N} \\
\text{C1} \\
\text{N} \\
\text{N}
\end{array} \\
\begin{array}{c}
\text{R}_f \\
\text{O} \\
\text{O}
\end{array}
\]

\[R_f = (CF_3)_2CF\]

\text{Reactions with carbonyl fluoride resulted in the formation of the}
chloroperfluoromethoxy derivatives.134

Previous reactions between caesium fluoride, perfluoroketones and
tetrafluoroethylene in diglyme afforded110 only perfluoro tertiary
alcohols from nucleophilic attack by C\textsubscript{2}F\textsubscript{5}- on the ketone. However, under
similar conditions in the presence of a halogen an ether was formed
exclusively.135 Perfluorocyclopentanone, caesium fluoride, tetra-
fluoroethylene and bromine gave perfluorocyclopentyl-2-bromotetra-
fluoroethyl ether (148) and in general, the proposed mechanism involved

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{F} \\
\end{array} + F^- \rightleftharpoons \begin{array}{c}
\text{F} \\
\text{F} \\
\text{O} \\
\end{array} + CF_2=CF_2 \rightleftharpoons \begin{array}{c}
\text{F} \\
\text{F} \\
\text{OCF}_2CF_2Br \\
\end{array} + Br^-
\]

an "olefin-halogen complex" (149) with subsequent nucleophilic attack by
perfluoroalkoxide and elimination of an halide ion.

The metal fluoride catalysed addition of C\textsubscript{1}F and F\textsubscript{2} to perfluorinated
carbonyl compounds, to form hypochlorites136 and fluoroxyperfluoroalkyl derivatives137 respectively, involved a perfluoroalkoxide carbanion which displaced fluoride ion from chlorine monofluoride and fluorine.

2.6.3. \textbf{Perfluoroepoxides}.

Fluoride ion-catalysed polymerisation of perfluoroepoxides afforded138 fluorinated polyethers under suitable conditions and the products obtained were inert high boiling liquids of general formula (150).

\[
\begin{align*}
\text{R}_f\text{CF} \equiv \text{CF}_2 + F^- \rightarrow \text{R}_f\text{CF} \equiv \text{CF}_2 \equiv \text{CF}_2\text{O} \equiv \text{CF} \equiv \text{CF}_2 \equiv \text{CF}_2\text{O} - n - \text{CF} \equiv \text{CF}_2
\end{align*}
\]

\(\text{R}_f = \text{F}_3\text{C} \equiv \text{C}_{2} \text{F}_5\)

2.6.4. \textbf{Polyfluorocarbon-nitrogen compounds}.

Investigation of fluoride ion-induced reactions of unsaturated carbon-nitrogen compounds has been mainly concerned with polyfluoroazomethines (\(\text{R}_f\text{N} \equiv \text{CF}_2\)), however, a few similar reactions of nitriles (\(\text{R}_f\text{C} \equiv \text{N}\)) and terminal N-fluoroimines (\(\text{R}_f\text{CF} = \text{NF}\)) have been reported.

Perfluorodimethylaminocarbanion (152), from perfluoro-2-azapropene (151) and fluoride ion, reacted with activated substrates including 151, cyanuric fluoride, nitrosyl fluoride and fluoro-olefins. Self-condensation afforded a dimer (153).

\[
\begin{align*}
\text{CF}_3\text{N} = \text{CF}_2 + F^- \rightleftharpoons (\text{CF}_3)_2\text{N}^- \rightarrow (\text{CF}_3)_2\text{NCF} = \text{NCF}_3
\end{align*}
\]

\(\text{CF}_3\text{N} = \text{CF}_2\)

\(\text{CF}_3\text{N} = \text{CF}_2\)

\(\text{CF}_3\text{N} = \text{CF}_2\)

Ruff139 has reported the catalytic fluorination of perfluoroacetonitrile and -propionitrile at -78° with elemental fluorine in the presence of caesium fluoride to give perfluoroalkyldifluoroamines (154) and (155) respectively.
The reported fluoride ion-initiated co-polymerisation of perfluoroguanidine (156) and formaldehyde illustrated the susceptibility of a terminal N-fluoroimine group to nucleophilic attack, giving a polymer of general formula (157).

\[
\text{(156)} \quad \begin{align*}
(\text{NF}_2)_2 \text{C}:=\text{NF} & + F^- \xrightarrow{\text{CsF}} (\text{NF}_2)_2 \text{CFNF} \xrightarrow{2\text{CH}_2\text{O}} [(\text{NF}_2)_2 \text{CNF(}\text{CH}_2\text{O})]_n \\
\end{align*}
\]
DISCUSSION OF EXPERIMENTAL
CHAPTER 3

Polyfluoroalkylation with Perfluoro-olefins

Introduction.

Nucleophilic substitution in activated fluoroaromatic compounds with polyfluoroalkylanions, generated from fluoride ion and fluoro-olefins, was shown previously in Chapter 2 to be widely applicable to the preparation of polyfluoroalkylaryl compounds. Originally described by Chambers, Musgrave and co-workers, polyfluoroalkylation afforded numerous highly fluorinated aromatic compounds which are complementary to alkylaryl hydrocarbons prepared in Friedel Crafts reactions. Earlier work in these laboratories employed autoclaves and it was originally thought that elevated temperatures were also essential. In this and related work we have shown that apparatus operating at atmospheric pressure can be used with obvious advantages in convenience, as well as other advantages, described later. Considerable effort has been made to develop the best experimental procedures, which vary with the system; the relative merits of these processes are described first.

Previous investigations of fluoride ion-initiated reactions of polyfluoro-olefins with highly fluorinated aromatic compounds in autoclaves indicated their complex nature as well as their potential
synthetic usefulness 49,102 and, therefore, the following discussion outlines the complexity and difficulties encountered in such reactions. Some of the more obvious equilibria which exist in such reaction mixtures are summarised in Equations (A) - (H) and demonstrate some of the problems which are involved in polyfluoroalkylation reactions.

Initiation:

\[\text{MF (solid)} \rightleftharpoons M^+ (\text{solv.}) F^- \]
\[\text{MF (solid)} + \text{C=C} \rightleftharpoons R^-_F + M^+ (\text{solv.}) \]
\[M^+ (\text{solv.}) F^- + \text{C=C} \rightleftharpoons R^-_F + M^+ (\text{solv.}) \]

Polyfluoroalkylation:

\[R^-_F + \text{ArF} \rightleftharpoons R^-_F\text{-Ar} + F^- \]
\[R^-_F\text{-Ar} + F^- \rightleftharpoons \text{rearranged} (R^-_F\text{-Ar}) + F^- \]

Side-reactions:

\[R^-_F + \text{C=C} \rightleftharpoons R^-_F \rightleftharpoons R^+_F\text{-Ar} + F^- \]
\[R^-_F + \text{solv} \rightleftharpoons R^-_F\text{H} + \text{(solv)}^- \]
\[(\text{solv})^- + \text{C=C} \rightleftharpoons \text{involatile products} \]

3.1.1. Metal fluoride-solvent.

Previously, Storey 49 and Jackson 101 observed that potassium fluoride, despite its economic advantages, is a less efficient initiator than caesium fluoride, however, the choice of solvent was much less clear cut. For some polyfluoroalkylations, sulpholan was superior to the glymes, 49 and for others tetracylgme was better than sulpholan, 101 however, reactions at elevated temperatures (ca. $> 150^\circ$) were usually better in sulpholan than tetracylgme because the by-products of tetracylgme
decomposition cause more difficulties in the work-up stage. In general, therefore, it appears difficult to deduce any correlation between the solvent employed and the reactivity of the system. A possible exception was indicated by Graham who reported that a combination of caesium fluoride and tetraglyme is the most effective system for initiating reactions of tetrafluoroethylene, which was confirmed by preliminary perfluoroethylation of pentafluoropyridine.

Formation of polyfluoroalkylanions from fluoro-olefins and fluoride ion theoretically only requires catalytic quantities of alkali metal fluoride, however, previous reports not only indicated their relative effectiveness as CsF > KF > NaF but also demonstrated a dependence of reaction rate upon the quantity of initiator present, which suggested that a surface effect must be involved.

3.1.2. Reaction temperature.

Carbanion formation, from fluoride ion and a fluoro-olefin, is temperature dependent as expected and, although polyfluoroalkylanions can be formed at room temperature, their rates of formation are increased at higher temperatures. Subsequent nucleophilic substitution by polyfluoroalkylanions in perfluoro-N-heteroaromatic compounds is also temperature dependent, varying from ca. 20° to ca. 150° with the reactivity of the substrate and the carbanion involved.

3.1.3. Reaction conditions.

Previously, polyfluoroalkylation was thought to proceed only in autoclaves at elevated temperatures (ca. 120°), however, under these conditions, the unwanted competing reactions outlined previously are apparent. Therefore, the reaction conditions are invariably critical
in determining which of the possible reactions occurs preferentially, as shown in the discussion of the atmospheric pressure reactions. The common side-reactions in autoclaves are discussed below.

(a) **Oligomerisation.**

Self-condensation, as in Equation (F) is particularly pronounced with

\[
F \quad \text{R}_f^- + \quad \text{C} = \text{C} \quad \longrightarrow \quad \text{R}_f^+ \quad \longrightarrow \quad \text{R}_f^+ \text{C} = \text{C} \quad + \quad F^- \tag{F}
\]

perfluoro-propene \(^{101}\) and -cyclobutene \(^{97}\) to give their respective dimers and trimers; for hexafluorobut-2-yn the sole product obtained was a polymer of the acetylene, with no polyfluorovinylation of pentafluoropyridine being observed. \(^{132}\) Although tetrafluoroethylene is known to oligomerise under these conditions, \(^{68b,83}\) no mention was made of this on formation of perfluoroethylpyridines, \(^{101,104}\) however, the major side-reaction in this system was reaction between the solvent and the olefin, as shown in Equation (H), to give highly involatile products. \(^{83,101}\)

\[
\text{(solvent)}^- + \quad \text{C} = \text{C} \quad \longrightarrow \quad \text{involatile products} \tag{H}
\]

(b) **Rearrangement of products.**

Another complication is the variability of isomer ratio with reaction conditions. Tri-substitution in pentafluoropyridine by heptafluoroisopropylanions was achieved previously only in an autoclave at ca. 150°, but \(^{19}\)F n.m.r. spectroscopy indicated that a mixture of 2,4,5- and 2,4,6-isomers, (158) and (159) respectively, was formed. \(^{33}\) Further treatment of the mixture with caesium fluoride at ca. 180° afforded \(^{102}\) the pure,

\[
\text{R}_f = (\text{CF}_3)_2\text{CF}
\]

![Diagram](image)
thermodynamically stable 2,4,6-isomer (159) as in Equation (E), however, it was not possible to obtain the pure, kinetically controlled 2,4,5-isomer from autoclave reactions.

3.1.4. Work-up of the mixture.

Recovery of products from autoclave reactions by vacuum distillation and ether extraction of an aqueous solution of the involatile reaction mixture varied from excellent to moderate.\(^{49,101}\) Heptafluorooiso-propylations invariably afforded almost quantitative yields of products whereas reactions with polyfluoroethylenes appeared to be much more complex,\(^{101}\) giving varying quantities of intractable tarry residues. No comprehensive theory has been proposed previously, however, these results do correlate with observations by Graham, who found that decreased stability of the carbanion gave reduced recovery and yields.\(^{83}\) Miller and co-workers\(^{55}\) reported the formation of water soluble products from fluoride ion-initiated reactions of some polyfluoroethylenes, therefore, reduced yields may possibly be attributed to loss of products in the work-up of the involatile reaction mixture which was dissolved in water and ether extracted.

3.2. Reactions at atmospheric pressure.

The use of atmospheric pressure systems for reactions originally carried out in autoclaves has avoided or, more often, minimised some of the difficulties discussed previously, however, others appear to be inherently part of polyfluoroalkylation reactions. Development of systems suitable for polyfluoroalkylation has led to essentially two procedures with additional modifications in some cases.
3.2.1. **Flow system.**

It was observed that on bubbling gaseous polyfluoro-olefins through a heated and stirred reaction mixture consisting of caesium fluoride and pentafluoropyridine in sulpholan under dry nitrogen, limited polyfluoroalkylation occurred. Extension of this crude method to a closed apparatus containing an atmosphere of fluoro-olefin, which was circulated with a pump through the stirred reaction mixture, gave an automated system (Fig. 2) and, in some cases, efficient polyfluoroalkylation.

![Diagram](image)

Fig. 2

Heptafluoroisopropylations of pentafluoropyridine in sulpholan at ca. 70° - 135° in a flow process gives comparable yields of substituted derivatives, (160) - (163), to those reported for autoclave reactions at higher temperatures. However, self-condensation of hexafluoropropene to oligomers was substantially reduced owing to a lower concentration of olefin than perfluoroaromatic compound in the reaction mixture, which results in less competition for the heptafluoro-
isopropylanions than in an autoclave and hence preferential nucleophilic aromatic substitution. With this method it is also possible to obtain virtually a single tri-substituted product, the kinetically controlled 2,4,5-isomer (162) in ca. > 90% purity, and an excellent recovery of materials.129

In contrast, similar reactions with substituted polyfluoroethylenes, CF\textsubscript{2}=CFX (X = F, Cl, Br, H), gives poor recovery of tractable material and low yields of substituted pyridines. Intractable tar formation is attributed to the relative reactivity of intermediate carbanions, once formed, and the lack of nucleophilic substitution to loss of pentafluoropyridine from the reaction flask, past the condensers, in the outflow of hot circulating olefin. This latter effect results from the relatively slow formation of less volatile substituted products, compared to heptafluoroisopropylations,129 due to either the slow rate of formation or low reactivity of carbanions from these olefins. Marginal improvements obtained on modification of the apparatus to incorporate an acetone-Drikold condenser and a very slow flow rate were not sufficient to persevere with this system for polyfluoroalkylations using these substituted polyfluoroethylenes.

Fluoro-olefins and -acetylenes which primarily self-condense during fluoride ion-initiated reactions with polyfluoroaromatic compounds in autoclaves, giving negligible nucleophilic aromatic substitution, gave similar results in a standard flow process.97,132 Therefore, the fluoro-olefin or -acetylene is competing much more effectively for the carbanion than the fluoroaromatic compound, hence a reduction in the concentration in solution of the former is essential for preferential aromatic substitution. This was effected by dilution of the gaseous substrate with a large amount of dry nitrogen which, particularly in reactions of
perfluoro-cyclobutene97 and -but-2-yn131,132 with pentafluoropyridine, either suppressed oligomerisation or minimised polymerisation to give the substituted products (164) - (166) as shown.

\[
\begin{align*}
\text{CF} \quad + \quad \text{NF} \quad \xrightarrow{\text{CsF}} \quad \text{sulpholan} \\
\text{164}
\end{align*}
\]

\[
\begin{align*}
\text{CF}_3\text{C} &= \text{CCF}_3 + \bigg[\text{(CF}_3\bigg) &= \text{C(CF}_3\bigg) \bigg]^n \text{F} \\
\text{165} & \quad + \quad \text{166} & \quad \text{n} = 2, 3
\end{align*}
\]

3.2.2. Static system.

Development of a static system suitable for polyfluoroalkylation with substituted polyfluoroethylenes, \(\text{CF}_2=\text{CFX}\) (\(X = \text{F, Cl, Br, H}\)), which avoided the difficulties encountered in the flow system due to the circulation of the fluoro-olefin, simply consists of a reaction flask, condenser and variable volume reservoir (See Fig. 9, page 142). Moderate yields and reasonable conversions are obtained in most cases; consequently this method was used extensively for polyfluoroalkylation reactions and is described fully in the Experimental Section (page 141).

The system was found to be useful over a large temperature range (ca. \(20^\circ \text{-} 150^\circ\)), minimising self condensation of the fluoro-olefin and permitting the preparation of unrearranged products at moderate temperatures. Intractable tar formation is still observed but varies considerably with the reactants, however, it does appear to be less than equivalent reactions in autoclaves at elevated temperatures. A visible estimation of the extent of reaction at any instance is possible.
from the relative volume of the collapsable reservoir, therefore, for polysubstitution in fluorinated aromatic substrates it is possible to judge approximately when to terminate a reaction in order to obtain a required ratio of products.

Since the reaction most probably occurs in solution, polyfluoroalkylation depends upon dissolution of the fluoro-olefin in the reaction mixture; the factors which control this, excluding temperature, are thought to be two-fold, although no quantitative results were measured. Firstly, variation in the rate of magnetic stirring of the reaction mixture alters the surface area of solvent in contact with the gaseous fluoro-olefin and hence faster stirring appears to give a faster rate of reaction. Secondly, it was observed that vigorous degassing of the solvent prior to admitting the fluoro-olefin also seemed to facilitate its dissolution in the reaction medium. It had previously been noted that dry solvent appeared to dissolve a considerable volume of dry nitrogen while stored under it, which was removed under high vacuum. Similarly, addition of fluoro-olefin to thoroughly degassed solvent followed by immediate removal under high vacuum, again indicated that a substantial amount of gas had dissolved in the solvent.

A modified technique was developed for polyfluoroalkylations with gaseous substrates which polymerise rapidly in the presence of fluoride ion similar to that discussed previously for flow reactions. Reactions are carried out under dry nitrogen at slightly less than atmospheric pressure (ca. 65 cms. Hg) with small controlled additions of the substrate e.g. hexafluorobut-2-yne, from the collapsable reservoir. The concentration of the fluoro-olefin or -acetylene in the reaction mixture therefore is small compared to the polyfluoroaromatic compound, which favours nucleophilic substitution in the latter by the intermediate
carbanion to give e.g. 165 and 166 rather than self condensation with the former to give a polymer (167).

3.3. Structure determination.

The structures of products prepared in reactions using the atmospheric pressure systems described previously were proposed on the basis of information from several sources. Application of substituent chemical shifts (s.c.s.) to the known chemical shifts of ring fluorine atoms in perfluoro-pyridine and -pyridazine can be useful in assigning the orientation of nucleophilic substitution in these substrates, when correlated with the experimental data obtained. This procedure is only valid because of the large differences in chemical shifts of the various non-equivalent fluorine atoms in the heterocyclic compound and, even though s.c.s. are neither expected nor found to be always constant, the differences in calculated shifts for different substitution
patterns are so large as to make the assignments often quite unambiguous. Ortho, and to a lesser extent para, s.c.s. for polyfluoroalkyl groups are larger than for other substituents giving quite distinctive results, however, where possible confirmatory evidence has been obtained, particularly from additional chemistry such as, for example, the preparation of methoxyl derivatives.

Final support for the proposed substitution pattern was obtained from the self-consistent 19F n.m.r. results. This data is listed comprehensively in Chapter 9, including calculated chemical shifts from s.c.s. values, however, where a structural determination is less clear cut it is also incorporated in the discussion.

3.4. Reactions with tetrafluoroethylene.

Since it was shown that a combination of caesium fluoride and tetruglyme is the most effective system for initiating reactions of tetrafluoroethylene, all of the reactions described here involve these reagents. The results are discussed under the heading of the perfluoro-N-heteroaromatic compound used.

3.4.1. Pentafluoropyridine.

(a) Conditions and products.

Previously reported perfluoroethylations of pentafluoropyridine were carried out in autoclaves at elevated temperatures and afforded five products, of which only the tetra-(IV) and penta-substituted (V) derivatives have been characterised in the literature. Atmospheric pressure reactions, using a static system, were investigated at ca. 80° to obtain the fastest rate of reaction with the maximum concentration of pentafluoropyridine (b.pt. 83.5°). Unreacted tetra-
fluoroethylene, identified by i.r. spectroscopy, and a colourless liquid were recovered after the reaction was terminated. The latter contained unreacted pentafluoropyridine and up to five products (See Scheme 1) which were separated by preparative scale v.p.c. and identified as perfluoro-(4-ethylpyridine) (I); perfluoro-(2,4-di-ethylpyridine) (II); perfluoro-(2,4,5-triethylpyridine) (III); perfluoro-(tetra-ethylpyridine) (IV); and pentakis(pentafluoroethyl)pyridine (V) in order of their increasing retention time. Of the latter two products, V was identified by comparison of its i.r. spectrum with that of an authentic sample obtained previously in an autoclave reaction101 and IV, which was difficult to obtain pure in reasonable quantities, was identified by mass spectrometry only.

The remaining products were, however, fully characterised. Product yields under these conditions, for short reaction times are summarised in Table 3, and clearly increased reaction time gives a higher conversion and more extensive substitution.
Attempts to improve the percentage yield of pentakis(pentafluoroethyl)pyridine (V) using a longer reaction time (ca. 7 days) at ca. 80° and 120° afforded a colourless liquid and a white crystalline solid. The latter was identified as V by comparison of the i.r. spectrum with that of an authentic sample and chromatographic analysis of the former indicated a complex mixture of products including III, IV, V and a product of almost identical retention time with IV. The yields obtained for III and V are shown in Table 4; the reaction at ca. 80° giving a significantly increased yield of V compared to much shorter reaction times whereas at ca. 120° the reaction is more complicated and less satisfactory.

Attempted separation of the unidentified product in the mixture by preparative scale v.p.c. afforded a small amount of colourless liquid
Table 4

<table>
<thead>
<tr>
<th>Temp. oC</th>
<th>Estimated Yields* (%) after 7 days</th>
<th>Percentage Yields after 8 hrs.†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>III</td>
<td>V</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>120</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

* Based on 100% conversion.
† See Table 3.

whose mass spectrum had a similar breakdown pattern to known perfluoroalkylpyridines and m/e = 769. Since the maximum molecular weight for perfluoroethyl substituents in pyridine is 669, it is suggested that this product arises from oligomerisation of the tetrafluoroethylene and subsequent reaction of the anions with either pentafluoropyridine or perfluoroethylpyridines. Because of the practical difficulties involved in separation, no further investigation of this compound was undertaken. Extraction of the involatile reaction mixtures afforded large amounts of intractable tars which were not investigated further.

(b) Structure.

Correlation of calculated chemical shifts from s.c.s. data for mono- and di-substitution at the 4- and 2,4-positions by perfluoroalkylanions in pentafluoropyridine \(^{141}\) with the observed \(^{19}\text{F\ n.m.r.}\) shifts for I and II respectively confirmed the expected substitution pattern based on similar heptafluoroisopropylation products. \(^{33,141}\) The proposed structures for I and II were further substantiated by methoxylation of pentafluoro-
pyridine,27,28 4-methoxytetrafluoropyridine28 and perfluoro-(4-ethyl-pyridine) (I) to give 4-, 2- and 2-substitution respectively as shown.

However, the recently proposed structure of perfluoro-(tri-ethyl-pyridine) as the 2,4,6-isomer,104 analogous to tri-substitution in pentafluoropyridine with methoxide,28 is totally incompatible with the observed ^{19}F n.m.r. results for III. These results correlate with calculated values, from s.c.s. data, for 2,4,5-substitution as shown,

<table>
<thead>
<tr>
<th>Chemical shifts for ring fluorines in III</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>Obs.</td>
</tr>
<tr>
<td>Calc. using I</td>
</tr>
<tr>
<td>Calc. using II</td>
</tr>
</tbody>
</table>
but are significantly different from those for 2,4,6-substitution. Heptafluoroisopropylation of pentafluoropyridine similarly affords, under suitable conditions, the 2,4,5-isomer. Formation of perfluoro-(2,4,6-tri-ethylpyridine), as reported previously, is extremely doubtful because, although the reported preparative conditions were not repeated exactly i.e. ca. 110° and 20 atm., it was found that only the 2,4,5-isomer was formed at ca. 120° and atmospheric pressure, and III does not rearrange to the 2,4,6-isomer in the presence of fluoride ion even at ca. 190°, unlike perfluoro-(2,4,5-tri-isopropylpyridine) which readily isomerises to the 2,4,6-derivative at ca. 160°..

Reactions of perfluoro-(2,4-di-ethylpyridine) (II) and -(2,4-di-isopropylpyridine) with methoxide at ca. 20° and 70 - 85° to give the 5-methoxy derivatives, (XXVIII) and (XXIX) respectively, substantiated the proposed structure for III. The products were identified by correlation of the observed ¹⁹F n.m.r. data with calculated chemical shifts, derived from s.c.s. values for 4-heptafluoroisopropyl-2-methoxy-3,5,6-trifluoropyridine, as shown. In reactions of perfluoroalkylpyridines with methoxide there is no evidence to date for replacement of alkyl, rather than aromatic, fluorine atoms analogous to that reported by Kobayashi.
and co-workers144,145 in reactions of trifluoromethylquinolines with MeO− and NH\textsubscript{2}−. The mechanism proposed for these novel reactions is discussed fully in Chapter 4 in connection with observed fluorine-halogen exchange.

(c) Mechanism.

Recently, the orientation of nucleophilic substitution in perfluoro-N-heteroaromatic compounds has been rationalised from a consideration of the stability of the intermediate carbanions.37 It was concluded that stabilisation due to localisation of a negative charge on a ring nitrogen atom was more important than avoiding destabilising \(\text{I}_\text{N}\) repulsions in such intermediate carbanions.37 With pentafluoropyridine, therefore, mono- and di-substitution by CF\textsubscript{3}CF\textsubscript{2} are expected, and observed, at the 4- and 2,4-positions via the most stable intermediate carbanions (168) and (169) to give I and II respectively.

\[\text{R}_f = \text{CF}_3\text{CF}_2 \]

\[\text{168} \]

\[\text{II} \]
Further substitution in II by CF$_3$CF$_2^-$ is expected at the 6-position from the preceding argument and by analogy with most other anionic attack on pentafluoropyridine, however, only replacement of the 5-ring fluorine atom is observed to give perfluoro-(2,4,5-tri-ethylpyridine) (III). The observed orientation of substitution in II can be attributed, from a consideration of the intermediate carbanions (170) and (171) for 5- and 6-substitution respectively, to the strongly stabilising effect of an α-

\[R_f = CF_3CF_2 \]

pentafluoroethyl group on the localised negative charge in 170 compared to the destabilising I$_\pi$ repulsive effect of α-fluorine in 171. A somewhat similar situation has been reported for heptafluoroisopropylation of pentafluoropyridine, with mainly perfluoro-(2,4,5-tri-isopropylpyridine) formed at moderate temperatures due to kinetic control of the products, however, at elevated temperatures (ca. > 135°) the thermodynamically-stable 2,4,6-isomer was obtained; no analogous isomer of perfluoro-

\[170 \]

\[171 \]
(tri-ethylpyridine) was observed, even at ca. 190°.

These observed differences between perfluoro-ethylation and iso-propylation of pentafluoropyridine can be rationalised from a consideration of a qualitative representation of the relevant general energy profile for each system (See Fig. 3), which is intrinsically very complex, giving an insight into the factors controlling the reaction products.

\[
\begin{align*}
 R^+.E (1) + F^- E (2) & \xrightleftharpoons{R^- E_a} \rightarrow R^+.E (3) R^+.N^+R \quad (1) \\
 R^+.E (4) & \xrightarrow{R^- E_a} \rightarrow R^+.E (5) \\
 a & \\
 (a) \ R^- = (CF_3)_2 CF \\
 (b) \ R^- = CF_3 CF_2 \\
 R^+.E (1) & \xrightarrow{F^-} \rightarrow R^+.E (2) R^- E_a \rightarrow R^+.E (3) R^- E_a \rightarrow R^+.E (4) R^- E_a \rightarrow R^+.E (5) R^- E_a \\
 172 & \quad 173 & \quad 174 & \quad 173 & \quad 172 \\
 176 & \quad 175 & \quad 172
\end{align*}
\]

Fig. 3

Free Energy

Reaction Co-ordinate
The activation energy for addition of R^- to the di-substituted compound (172) to form the intermediate carbanion (173) is $E_a(1)$, which is always larger than $E_a(4)$, the activation energy for loss of R^- from 173. Therefore, if further substitution by R^- in 172 is energetically possible then, theoretically, loss of R^- from 173 is also possible.

However, fluoride ion-initiated reaction of the 2,4,5-isomers, (174(a)) and (174(b)), at elevated temperatures in the presence of heptafluoroquinoline, which readily reacts with carbanions, clearly indicated that, under these conditions, addition of $(CF_3)_2CF^-$ to 172(a) is reversible whereas addition of $CF_3CF_2^-$ to 172(b) is not reversible.

From a consideration of Fig. 3, two explanations of the different behaviour of the two systems are possible. Either $E_a(2)$, the activation energy for formation of 173 from 174, is significantly increased for $R_f = CF_3CF_2$ compared to $R_f = (CF_3)_2CF$ or alternatively, $E_a(3)$ and $E_a(4)$, the activation energies for the two modes of decomposition of 173, are very different for $R_f = CF_3CF_2$ but similar for $R_f = (CF_3)_2CF$. This effectively gives only a single mode of decomposition in the former case in contrast to the possibility of both types in the latter.

The former reason is highly unlikely from steric considerations and furthermore, results obtained from rearrangement reactions of XVIII, XIX and XXI, as discussed in Chapter 5, indicated reasonably conclusively that this is not the controlling factor. It is concluded, therefore, that the latter reason is the important one and can be represented schematically
for the two systems as in Fig. 4. Clearly, the rate of loss of fluoride ion and (CF₃)₂CF⁻ from 173(a) are similar whereas the rate of loss of fluoride ion from 173(b) is much faster than the rate of loss of CF₃CF²⁻.

The activation energy, Eₐ(5), for nucleophilic substitution at the 6-position in the di-substituted compound (172) must necessarily be greater than Eₐ(1), for analogous substitution at the 5-position. Clearly, since some 2,4,6-isomer is formed on heptafluoroisopropylation of pentafluoropyridine at ca. 100⁰C, Eₐ(5) and Eₐ(1) are fairly similar, however, since pentafluoroethylation at ca. 120⁰C and atmospheric pressure gives only the 2,4,5-isomer, there is obviously a substantial difference between Eₐ(5) and Eₐ(1) in this system.
The relative difference between $E_a(5)$ and $E_a(1)$ for the two systems may result from a reduction in $E_a(1)$ or an increase in $E_a(5)$ for perfluoroethylation compared to perfluoroisopropylation. A combination of both of these effects is the most likely and is shown schematically in Fig. 5. The reduction in $E_a(1)$ for $R_f = CF_3CF_2$ compared to $R_f = (CF_3)_2CF$

(a) $R_f = (CF_3)_2CF$
(b) $R_f = CF_3CF_2$

Fig. 5
probably arises from decreases in the transition- (173(b)) and ground-state (172(b)) energies, relative to 173(a) and 172(a) respectively, due to diminished crowding between the perfluoroethyl substituents. An increase in $E_a(5)$ for $R = CF_3CF_2$ can be attributed to the lower ground state energy of 172(b) and possibly a higher transition state energy for 175(b). Results obtained from attempted fluoride ion-initiated rearrangements of 177, XVIII, XIX, XXI and III have indicated, as discussed fully in Chapter 5, that $E_a(5)$ varies with the perfluoroalkyl substituents, however, a lot more results are required before any definite correlation can be drawn.

3.4.2. Tetrafluoropyridazine.

(a) Conditions and products.

Using a static system, nucleophilic substitution in tetrafluoro-
pyridazine with $CF_3CF_2^-$, generated in tetraglyme at $ca. 80^\circ$ from caesium fluoride and tetrafluoroethylene comparable to previously discussed perfluoroethylations of pentafluoropyridine, afforded low yields of 4-, 4,5-bis- and 3,4,5-tris-(pentafluoroethyl) derivatives, (VI) - (VIII)
respectively (See Scheme 2), and large amounts of intractable tarry

\[
\begin{align*}
&\text{F}^+ \text{N} \quad \text{F} \quad \text{N} \quad \text{F} \quad \text{N} \\
&\text{R}_f^+ \rightarrow \text{F} \quad \text{N} \quad \text{F} \quad \text{N} \quad \text{F} \quad \text{N} \\
&\text{VI} \quad \text{VII} \quad \text{VIII}
\end{align*}
\]

\[R_f = \text{CF}_3\text{CF}_2\]

Scheme 2

residues. No evidence for the formation of a tetra-substituted derivative was obtained. Reaction times in excess of five hours were not investigated owing to the low yields of products recovered; the results obtained are summarised in Table 5.

Table 5

<table>
<thead>
<tr>
<th>Reaction Time (hrs.)</th>
<th>Products: Percentage Yields* (%)</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{C}_6\text{F}_8\text{N}_2)</td>
<td>(\text{C}8\text{F}{12}\text{N}_2)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

* Based on the weight of \(\text{C}_4\text{F}_4\text{N}_2\) consumed.

The surprisingly low yields of identifiable products observed with such a reactive substrate as tetrafluoropyridazine are difficult to rationalise, however, it may simply be that, since the system is highly moisture sensitive, the solvent is not adequately dried giving mainly polymeric hydrolysis products. Whatever the reason, this system
obviously merits further investigation, possibly with different solvents and initiators over a large temperature range.

(b) **Structure.**

As mentioned previously, correlation of calculated chemical shifts, determined from s.c.s. data,\(^{41}\) and observed chemical shifts is a valid procedure in structure determination of substitution products from tetrafluoropyridazine due to the large difference in chemical shifts of the 3,6 and 4,5 ring fluorines, making assignments often quite unambiguous. Such correlations indicated that mono- and di-substitution in tetrafluoropyridazine on nucleophilic attack of CF\(_3\)CF\(_2\) occurs, as expected, at the 4- followed by the 5-positions, para to the ring nitrogen atoms, to give VI and VII respectively. This is in agreement with

![VI](image1)

![VII](image2)

heptafluoroisopropylation of tetrafluoropyridazine at ca. 60º\(^{41}\) and confirmed by reaction of tetrafluoropyridazine,\(^{37}\) 4-methoxytrifluoropyridazine\(^{37}\) and VI with methoxide to give 4-, 5- and 5-replacement respectively as shown.

![MeO\(^{-}\)](image3)

![MeO\(^{-}\)](image4)

![MeO\(^{-}\)](image5)

![VI](image6)

![VII](image7)
However heptafluoroisopropylation of tetrafluoropyridazine at ca. 150° afforded an isomeric 3,5-di-substituted derivative which was also formed by fluoride ion-catalysed rearrangement of the 4,5-isomer at ca. 150°. An attempted fluoride ion-catalysed rearrangement of perfluoro-(4,5-di-ethylpyridazine) (VII) at ca. 150° gave only recovered starting material. Initial investigations of VII had shown certain inconsistencies in the relative intensities of several absorptions in the i.r. spectrum which were thought to be due to a mixture of isomers. However, 19F n.m.r. spectroscopy indicated quite clearly that only the 4,5-isomer (VII) was present and further investigation of the i.r. spectrum revealed that a marked change in intensity of several absorptions occurred with a change of phase of the contact film from liquid to solid (see Appendix 2, Spectra 29(a) and (b)). This interesting phenomenon may possibly be due to rotational isomerism of the perfluoroethyl substituents similar to that reported previously in 19F n.m.r. studies of related systems.

From a correlation of the calculated and observed chemical shifts, tri-substitution by CF$_3$CF$_2$ in tetrafluoropyridazine to give perfluoro-(3,4,5-tri-ethylpyridazine) (VIII) is indicated, which is in agreement

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Calc.*</th>
<th>Calc.†</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.2</td>
<td>75</td>
<td>107</td>
</tr>
</tbody>
</table>

* From VII and s.c.s. of (CF$_3$)$_2$CF group in perfluoro-(3,5-di-isopropylpyridazine).
† From VI and s.c.s. of (CF$_3$)$_2$CF group in 4,5- and 3,5-isomers of perfluoro-(diisopropylpyridazine).
with the reported substitution pattern for the tri-methoxy derivative but contrasts with the reported identification of a 3,4,6-isomer only on heptafluoroisopropylation. However, formation of perfluoro-(3,4,6-tri-isopropylpyridazine) was suggested to proceed via the thermodynamically-stable 3,5-di-substituted compound and therefore, on this basis, formation of perfluoro-(3,4,6-triethylpyridazine) is not expected since perfluoro-(4,5-di-ethylpyridazine) (VII) is not catalytically rearranged to the 3,5-isomer.

(c) **Mechanism.**

The effect of the ring nitrogen on the stability of the intermediate carbanion was shown previously to be the major factor controlling the orientation of nucleophilic substitution in perfluoro-N-heteroaromatic compounds. On this basis, mono- and di-substitution by \(\text{CF}_3\text{CF}_2^- \) in tetrafluoropyridazine are expected, and observed, at the 4- and 4,5-positions via the most stable intermediate carbanions, (178) and (179), to give VI and VII respectively. These results are similar to those reported previously for heptafluoroisopropylation of tetrafluoropyridazine at up to ca. 60°, however, unlike perfluoro-(4,5-di-isopropylpyridazine),
VII is not rearranged to the 3,5-isomer by fluoride ion at elevated temperatures (ca. 150°C).

Clearly the energy profiles for the two systems differ considerably and, since two possible mechanisms have been proposed previously, three-41 two qualitative schematic representations are possible. Rearrangement of 180 via the mono-substituted compound (181) is considered in Route 1 and Fig. 6, and via the tri-substituted derivative (186) is shown in Route 2 and Fig. 7.
Pentafluoroethylation of tetrafluoropyridazine afforded a single tri-substituted derivative which was identified as the 3,4,5-isomer (VIII), in contrast to the formation of only the 3,4,6-isomer (188) on heptafluoroisopropylation, presumably formed via intermediate carbanion (186) on substitution by CF$_3$CF$^-$ in VII. Formation of VIII is
expected since, unlike the formation of 188 which involves rearrangement to relieve steric interactions between adjacent substituents, rearrangement of VII is not observed and steric effects appear less important for pentfluoroethyl than heptafluoroisopropyl substituents, as surmised from the pentafluoropyridine system.

3.5. Reactions with perfluoroisobutene.

Nucleophilic substitution in perfluoro-N-heteroaromatic compounds by perfluoro-t-butylanions, generated by reaction of fluoride ion and perfluoroisobutene, are of interest for several reasons. The products from such reactions are an integral part of a series which include perfluoro-ethyl and -isopropyl derivatives and, from a consideration of all of the results, it has been possible to make certain conclusions relating to kinetic and thermodynamic control of reaction products \(^{146}\) (see Section 3.6.). Due to the high degree of symmetry of a perfluoro-t-butyl group it may be possible to measure rotational energy barriers in certain cases from \(^{19}\)F n.m.r. data. An estimate of the steric requirements of this very bulky substituent may also be possible from the preparation of suitable compounds.

Only reactions involving excess perfluoroisobutene were investigated by the author, thus introducing the maximum number of perfluoro-t-butyl groups into pentafluoropyridine and tetrafluoropyridazine, however, more selective reactions with the former substrate have been investigated subsequently. \(^{143}\) The high toxicity of perfluoroisobutene necessitated minor modifications to the static system described previously to ensure maximum safety; the procedure is fully described in Section 6.3.1.
3.5.1. **Pentafluoropyridine.**

(a) **Conditions and products.**

Excess perfluorobutene, caesium fluoride and pentafluoropyridine reacted smoothly and quickly in a static system at ca. 80° with sulpholane as solvent. Recovery of material after reaction was excellent and the products obtained consisted of small quantities of dimers of the olefin, identified by mass spectrometry, and a white crystalline solid. The latter separated on vacuum transfer of the products and was identified as perfluoro-(2,4,6-tri-t-butylpyridine) (XXXI) in high yield (ca. 85%). XXXI was a high melting solid which was insoluble in common organic solvents.

\[
(CF_3)_2C=CF_2 + F^- \leftrightarrow (CF_3)_3C^- + XXXI
\]

Under these conditions no mono- or di-substituted derivatives were observed, however, since perfluoro-t-butylanions are readily formed at room temperature, it is feasible that more selective polyfluoroalkylation is possible at lower temperatures. Subsequently, reaction at room temperature afforded perfluoro-(4-t-butylpyridine) as the major product. No evidence for a 2,4,5-tri-substituted isomer was found at ca. 20° or 80°.

(b) **Structure.**

Correlation of the calculated chemical shifts for tri-substitution by \((CF_3)_3C^-\) in pentafluoropyridine, derived from s.c.s. data for perfluoro-(4-t-butylpyridine) and perfluoro-(2,4-di-isopropylpyridine), with the observed \(^{19}F\) n.m.r. chemical shifts for XXXI indicates quite clearly that 2,4,6-substitution occurs. This is expected on the basis
of the previously discussed progression from the 2,4,5-isomer exclusively
with \(\text{CF}_3 \text{CF}_2 \) to a mixture of the 2,4,5- and 2,4,6-isomers with \(\text{CF}_3 \text{CF}^- \). Analysis of the uncomplicated \(^{19} \text{F} \) n.m.r. spectrum, which contained two
overlapping resonances at 60.7 and 61.8 due to twenty seven fluorine atoms
and a broad resonance at 87.3 due to two fluorine atoms, further substantiate
a symmetrical 2,4,6-substitution pattern.

(c) Mechanism.

The usual pattern of nucleophilic substitution in pentafluoropyridine
at position 4 followed by 2 then 6 has been rationalised in terms of
increased stability of transition states in which the negative charge is
localised on the ring nitrogen compared to a carbon carrying an \(\alpha \)-fluorine. Therefore, mono- and di-substitution by \(\text{CF}_3\text{C}^- \) are expected at the 4- and 2,4-positions, analogous to perfluoroisopropylation reactions, and this has been confirmed recently. However, nucleophilic substitution in perfluoro-(2,4-di-isopropylpyridine) at moderate temperatures occurred at position 5, and not 6, despite adverse steric interactions. This was
attributed to the powerful stabilising effect of an \(\alpha \)-perfluoroalkyl group
compared to an \(\alpha \)-fluorine in the intermediate carbanions (189(a)) and
(190(a)) respectively. In contrast, similar stabilisation of the intermediate
carbanion (189(b)) for nucleophilic substitution in perfluoro-(2,4-di-t-butylpyridine) at the 5-position does not compensate for the much increased steric interactions, hence formation of the 2,4,6-isomer (XXXI) is favoured via the most stable carbanion (190(b)).

From a consideration of a qualitative representation of the general energy profile, postulated previously in connection with analogous perfluoro-isopropylation and -ethylation reactions (see Fig. 3, page 70), an insight into the factors controlling the reaction products is possible. The ground state energies of 172 and 174 are increased and, more important,

\[
\begin{align*}
R_f &= (\text{CF}_3)_3\text{C} \\
E_a(2) &\quad E_a(4) \\
E_a(3) &\quad E_a(5)
\end{align*}
\]

\[
\begin{align*}
+ F^- &\quad -F^- \\
(\text{2}) &\quad (\text{3})
\end{align*}
\]

\[
\begin{align*}
\text{173} &\quad \text{172} &\quad \text{175} \\
\text{174} &\quad \text{176}
\end{align*}
\]

\[R_f = (\text{CF}_3)_3\text{C}\]

\[E_a(2) \quad \text{and} \quad E_a(4) \quad \text{are significantly decreased, especially the latter with respect to} \quad E_a(3), \quad \text{and although position 5 is kinetically preferred, loss of} \quad (\text{CF}_3)_3\text{C}^- \quad \text{from 174 is extremely facile. Since the ground state energy of 172 is increased,} \quad E_a(5) \quad \text{is decreased, favouring the formation of the thermodynamically-stable 2,4,6-isomer (176).}\]
3.5.2. **Tetrafluoropyridazine.**

(a) **Conditions and products.**

Excess perfluoroisobutene, caesium fluoride and tetrafluoropyridazine reacted smoothly and quickly in a static system at ca. 80°C with sulpholan as solvent. Recovery of material after reaction was good and it consisted of a white solid and a colourless liquid. The former was recrystallised from acetone and identified as perfluoro-(3,6-di-t-butylpyridazine) (XXXII) in 75% yield. Chromatographic analysis of the latter showed dimers of the olefin, a minor product (< 3%) which was not identified, and large amounts of dissolved XXXII. No isomeric di-substituted products were observed under these conditions.

(b) **Structure.**

Correlation of calculated chemical shifts for di-substitution by \((\text{CF}_3)_3\text{C}^-\) in tetrafluoropyridazine, derived from s.c.s. data for perfluoroisopropylpyridazines, with the observed \(^{19}\text{F}\) n.m.r. chemical shifts for XXXII clearly shows that 3,6-replacement occurs, which

<table>
<thead>
<tr>
<th>Chemical shifts for ring fluorines in XXXII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
</tr>
<tr>
<td>Calc.</td>
</tr>
</tbody>
</table>

![Diagram](attachment:image.png)
is quite distinct from any previously reported polyfluoroalkylation reactions of this substrate. Analysis of the 19F n.m.r. spectrum, which contained only two resonances at 62.4 and 129.2 due to eighteen and two fluorine atoms respectively, further substantiated the symmetrical substitution pattern.

Structure confirmation from chemical evidence was obtained from hydrolysis reactions under basic and acidic conditions. It was demonstrated recently that in reactions of tetrafluoropyridazine with nucleophiles, the 4,5 fluorine atoms are the most reactive under basic conditions, while the 3,6 fluorine atoms, adjacent to the ring nitrogen atoms, are replaced preferentially under acidic conditions. Consequently, in contrast to perfluoro-(4,5-di-isopropylpyridazine), perfluoro-(3,6-di-t-butylpyridazine) (XXXII) should be readily hydrolysed under basic conditions, due to the presence of the highly reactive 4,5 ring fluorine atoms, but relatively inert to hydrolysis under acidic conditions.

Reaction of perfluoro-(3,6-di-t-butylpyridazine) (XXXII) with potassium hydroxide in t-butanol at ca. 70° and 25° readily afforded a quantitative yield of highly involatile solid. In contrast, XXXII was stable to and virtually insoluble in concentrated sulphuric acid at ca. 80°, giving quantitative recovery of starting material, however, at ca. 160° for 45 hours, only a 30% recovery of starting material was obtained along with an involatile solid similar to that formed so readily under basic conditions. The involatile solid from these reactions contained carbon, nitrogen and fluorine, was stable at ca. 350° for several hours and was too involatile to obtain a mass spectrum. 19F N.m.r. spectroscopy indicated the presence of perfluoro-t-butyl groups but no evidence was found for ring fluorine atoms.
These results suggest that the involatile solid is polymeric in nature, possibly formed by base-catalysed self-condensation of XXXII to give a polyether-type structure as shown:

Alternatively, loss of aromaticity may occur, allowing nitrogen-carbon bond formation in the polymerisation step:
Whatever the mechanism of the reaction and the structure of the product, the susceptibility of XXXII to nucleophilic attack under basic conditions confirms the presence of the 4 and 5 ring fluorines and, therefore, the perfluoro-t-butyl substituents at the 3 and 6-positions.

(c) Mechanism.

The usual pattern for nucleophilic attack on tetrafluoropyridazine is position 4 followed by 5, due to increased stability of transition states in which the negative charge is localised on the ring nitrogen atom compared to a carbon carrying an α-fluorine. Di-substitution by \((\text{CF}_3)_3\text{C}^-\) at ca. 80°C is therefore expected at the 4,5-positions, as found for perfluoro-ethylation and -isopropylation\(^{39-41}\) under similar conditions, or possibly at the 3,5-positions, analogous to heptafluoroisopropylation at elevated temperatures (ca. 150°C),\(^{40,41}\) to reduce the steric interactions between the substituents. However, the only product isolated was perfluoro-\((3,6\text{-di-t-butylpyridazine})\) (XXXII).

Rationalisation of the formation of XXXII can be postulated from a consideration of a qualitative schematic representation of the general energy profile which was outlined previously for perfluoro-isopropylation and -ethylation reactions of tetrafluoropyridazine (see Route 1 and Fig. 6, page 80). Nucleophilic attack at the 4 position by \((\text{CF}_3)_3\text{C}^-\) to give 182 should be possible since the steric interactions are comparable to those for the observed 4-substitution by \((\text{CF}_3)_3\text{C}^-\) in pentafluoropyridine. The higher ground state energy of 182 will facilitate further substitution at the 6 position to give 184 and not at the kinetically preferred 5 position, from which loss of \((\text{CF}_3)_3\text{C}^-\) would be very easy. The 4,6-isomer, once formed, will rapidly rearrange in the presence of fluoride ion to the thermodynamically more stable 3,6 isomer (XXXII), the observed product, via 191.
3.6. **Kinetic vs. thermodynamic control of products in polyfluoroalkylation of pentafluoropyridine and tetrafluoropyridazine.**

A clear cut variation from kinetic to thermodynamic control of reaction products is observed for polyfluoroalkylation reactions of CF$_3$CF$_2^-$, (CF$_3$)$_2$CF$^-$ and (CF$_3$)$_3$C$^-$ with pentafluoropyridine and tetrafluoropyridazine. It has been reported previously that reaction of (CF$_3$)$_2$CF$^-$ with pentafluoropyridine or tetrafluoropyridazine could result in kinetic or thermodynamic control of reaction products, depending on the conditions. A comparison of these results with those discussed above from corresponding reactions of CF$_3$CF$_2^-$ and (CF$_3$)$_3$C$^-$ provides one
of the most striking examples available of the interplay of kinetic vs. thermodynamic control in aromatic substitution reactions.

3.6.1. Pentafluoropyridine.

\[R_f = \text{CF}_3\text{CF}_2 \]
\[(\text{CF}_3)_2\text{CF} \]
\[(\text{CF}_3)_3\text{C} \]

Considering only the tri-substituted products from pentafluoropyridine at 80°: with \(\text{CF}_3\text{CF}_2 \), isomer 192 is obtained exclusively, which is not rearranged when heated with fluoride ion even to 190°; with \((\text{CF}_3)_2\text{CF} \), mainly isomer 193 is obtained which is rearranged on heating with fluoride ion at 180°, to give a mixture of 194 and side products; while with \((\text{CF}_3)_3\text{C} \), only 195 is obtained directly. Therefore, across this series there is a complete transition from kinetic control, in reactions with \(\text{CF}_3\text{CF}_2 \), to thermodynamic control of products with the bulky \((\text{CF}_3)_3\text{C} \).

3.6.2. Tetrafluoropyridazine.

\[R_f = \text{CF}_3\text{CF}_2 \]
\[(\text{CF}_3)_2\text{CF} \]
\[(\text{CF}_3)_3\text{C} \]
The situation is even more striking with tetrafluoropyridazine, here considering only di-substituted derivatives formed at 80°. From CF$_3$CF$_2$, isomer 196 was formed exclusively and was not rearranged by fluoride ion even up to 150°; (CF$_3$)$_2$CF gave 197 which afforded a mixture of 197 and 198 on heating with fluoride ion; 41 while (CF$_3$)$_3$C gave only 199. This is quite distinct from the other products described and clearly steric interactions are minimised with both of the bulky (CF$_3$)$_3$C groups adjacent to a ring nitrogen, rather than being flanked by fluorine atoms attached to the ring.

3.7. Reactions of perfluoroalkylpyridines.

Perfluoroalkylpyridines, prepared in fluoride ion-initiated reactions of perfluoro-olefins and pentafluoropyridine, were subjected to further reactions to introduce either a vinyl or a methoxyl group. Products derived from the latter reactions have been discussed earlier in connection with structure determination of perfluoroalkylpyridines; the former reactions were effected by defluorination of the perfluoroalkyl substituent as discussed below.

3.7.1. Defluorination reactions.

The introduction of unsaturation into highly fluorinated compounds by catalytic removal of fluorine has been extensively studied by Tatlow and co-workers, 147-150 who observed that passage of perfluoroalicyclic compounds over iron or nickel at ca. 400° - 650° afforded perfluoroaromatic derivatives. More recently, defluorination was effected by zinc under relatively mild conditions (ca. 230°). 97

Perfluoroethylbenzene (200), prepared in 15% yield on defluorination of perfluoroethylcyclohexane, 147 was further defluorinated over steel Dixon gauzes at ca. 600° to give a 15% yield of perfluorostyrene (201). Extension of this technique to perfluoroalkylpyridines similarly afforded vinyl
derivatives, however, the yields were only moderate, in accord with previous results.

Perfluoro-(4-ethylpyridine) (I) was passed over heated iron filings to give a mixture of I and perfluoro-(4-vinylpyridine) (IX), which was separated by preparative scale v.p.c.; the results obtained at various temperatures are summarised in Table 6. Attempted defluorination of

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Percentage Yield* of IX (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>420</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>450</td>
<td>25</td>
<td>95</td>
</tr>
</tbody>
</table>

* Based on weight of I consumed.

I over zinc was found not to be a feasible route to IX due to low yields and conversions, as shown in Table 7.

Spectral information obtained for perfluoro-(4-vinylpyridine) (IX) was in agreement with that reported for perfluorostyrene (201). The ^{19}F n.m.r. spectrum of IX was analysed by analogy with 201 and confirmed the
Table 7

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Wt. of I used</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>1.0 g.</td>
<td>0.8 g. unchanged I</td>
</tr>
<tr>
<td>320</td>
<td>0.6 g.</td>
<td>0.55 g. " "</td>
</tr>
<tr>
<td>380</td>
<td>0.7 g.</td>
<td>0.2 g. mixture of I and IX</td>
</tr>
</tbody>
</table>

expected structure.

Perfluoro-(4-isopropylpyridine) was similarly defluorinated on passage over heated iron filings, however, for this substrate it was possible to obtain a moderate yield of product, 2-(2',3',5',6'-tetrafluoropyridyl)-pentafluoropropene (X), with a 100% conversion (see Table 8). Spectral data obtained for X confirmed the expected structure.

![Chemical structure](image)

Table 8

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Percentage Yield* of X (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>45</td>
<td>85</td>
</tr>
<tr>
<td>420</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>450</td>
<td>Only gaseous material recovered</td>
<td></td>
</tr>
</tbody>
</table>

* Based on weight of C₈F₁₁N consumed.

Attempted rationalisation of an unexpected medium intensity absorption at 6.08μ in the i.r. spectrum of IX in addition to the expected strong C=C absorption at 5.64μ revealed, on further investigation, a possible
correlation between steric interactions and relative intensities.

\[
\begin{array}{c}
\begin{array}{c}
\text{IX} \\
\begin{array}{c}
\text{CF}_3 \\
\text{C} \\
\text{F} \\
\text{F} \\
\text{F} \\
\text{N}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{X} \\
\begin{array}{c}
\text{CF}_3 \\
\text{C} \\
\text{F} \\
\text{F} \\
\text{F} \\
\text{N}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{165} \\
\begin{array}{c}
\text{CF}_3 \\
\text{C} \\
\text{F} \\
\text{F} \\
\text{F} \\
\text{N}
\end{array}
\end{array}
\end{array}
\end{array}
\]

Similar absorptions have been reported previously for conjugated vinyl-aromatic systems and were assigned to the carbon-carbon double bond. The corresponding absorptions in X and 165 were significantly weaker, from which it is tentatively postulated that increased steric interactions decrease the extent of conjugation between the vinyl and aromatic systems, however, many more examples are required before anything definite can be formulated.
CHAPTER 4

Polyfluoroalkylation with Substituted Polyfluoro-olefins

Introduction.

In general, fluoride ion-initiated reactions of substituted polyfluoro-olefins $\text{CF}_2=\text{CF}X$ ($X = \text{Cl}, \text{Br}, \text{H}$) result in attack at the difluoromethylene group to give 202, the more stable intermediate carbanion, rather than at the $\text{CF}X=\text{C}F$ group to give 203. The relative reactivity of these olefins $\text{CF}_2=\text{CF}X$ towards fluoride ion is increased compared to $\text{CF}_2=\text{CF}_2$ owing to the incorporation of the substituent X, however, the reactivity of the resultant polyfluoroalkylanion (202) is reduced compared to $\text{CF}_3=\text{CF}_2$ owing to diminished importance of I_rr repulsions, with a consequent relative stabilising effect for the substituent X.

4.1. Reaction conditions.

The majority of the experimental problems associated with fluoride ion-initiated reactions were extensively discussed in Chapter 3 and are equally applicable to reactions involving substituted polyfluoro-olefins ($\text{CF}_2=\text{CF}X$) with perfluoro-N-heteroaromatic compounds. In general, better yields are obtained using a static system rather than a flow system, however, the yields are still only moderate due to side-reactions. Sulpholan
and tetraglyme are suitable solvents and, in one instance discussed later, a pronounced dependence of the product distribution on the solvent used is observed. Potassium and caesium fluorides are suitable initiators, however, in contrast to previously discussed polyfluoroalkylations, observed displacement of X implies that, theoretically, equimolar quantities of initiator are required. In practice, the yields obtained in reactions with equimolar amounts of initiator were similar to those with substantially less initiator.

4.2. **Type of products formed.**

Identification of the products clearly indicates that these reactions are much more complex than those discussed previously. In all, three types of substituted products have been identified from a series of fluoride ion-initiated reactions of substituted polyfluoro-olefins, $\text{CF}_2=\text{CF}X$ ($X = \text{Cl}, \text{Br}, \text{H}$), with perfluoro-$N$-heteroaromatic compounds. These are firstly, substitution in $\text{Ar}-\text{F}$ by polyfluoroalkylanions, $\text{CF}_3\text{CF}X$, to give $\text{CF}_3\text{CFX}-\text{Ar}$; secondly, the formation of perfluoroalkyl-N-heteroaromatic derivatives, $\text{CF}_3\text{CF}_2-\text{Ar}$, which requires the replacement of X ($X = \text{Cl}$ and Br only) with fluorine at some stage; and thirdly, formation of a perfluoro-$1,1$-bis-arylethane, $(\text{Ar})_2\text{CFCF}_3$, which similarly involves loss of X, and a perhaloalkane, CF_3CFX_2.

Clearly several different competing processes are possible, as indicated in the following discussion, and the type of product obtained depends upon the relative rates of these various processes for particular reactants.

4.3. **Possible reaction processes.**

A general review of the possible processes in which polyfluoro-olefins
(CF$_2$=CFX) and polyfluoroalkylanions (CF$_3$CFX) may be involved, and also in which displacement of X may occur, subsequently facilitates discussion of specific reactions. Therefore, in fluoride ion-initiated reactions of polyfluoro-olefins with perfluoro-N-heteroaromatic compounds the feasible processes are considered to be: oligomerisation of CF$_2$=CFX; vinylic displacement of X from CF$_2$=CFX; α-elimination of X from CF$_3$CFX; halogen exchange between CF$_3$CFX and CF$_2$=CFX; polyfluoroalkylation of Ar=F; and displacement of X from CF$_3$CFX−Ar.

4.3.1. Oligomerisation of CF$_2$=CFX.

Fluoride ion-initiated oligomerisation of CF$_2$=CFX, analogous to the previously discussed oligomerisation of CF$_2$=CF and CF$_2$=CFCF$_3$, is theoretically feasible as shown. In practice, no oligomers are obtained for X = Cl or H, however, for X = Br an involatile polymeric material containing bromine may

\[
CF_2=CFX + F^- \xrightarrow{CM} CF_3CFX + CF_2=CFX \rightarrow CF_3(CFCF_2)_nCF=CFX
\]

possibly be due to such an oligomerisation as shown.

4.3.2. Vinylic displacement.

The formation of tetrafluoroethylene, on direct displacement of X from the polyfluoro-olefin CF$_2$=CFX by fluoride ion, is also a possible process for loss of the substituent X. Subsequent fluoride ion-initiated reactions of CF$_2$=CF$_2$ with Ar=F would give the observed products, as shown previously in Chapter 3.

\[
F^- \xrightarrow{X-C=CF_2} CF_2=CF_2 + X^- \xrightarrow{CM} CF_3CF_2 \xrightarrow{Ar=F} CF_3CF_2-Ar + F^-
\]

4.3.3. α-Elimination of X$^-$ from CF$_3$CFX.

An α-elimination of X$^-$ from a polyfluoroalkylanion to give a
perfluorocarbene (204) is a plausible process for loss of X. Subsequent addition of fluoride ion to 204 would give a pentafluoroethylanion (205) which would react rapidly with an activated perfluoroaromatic substrate

\[
\text{CF}_2=\text{CFX} \xrightarrow{\text{F}^-} \text{CF}_3\text{CFX} \xrightarrow{\text{X}^-} \text{CF}_3\text{CF}_2=\text{Ar} + \text{F}^- \quad \text{(204) to (205)}
\]

(Ar-F) to give a perfluoroethyl derivative.

4.3.4. Halogen exchange between CF\textsubscript{3}CFX and CF\textsubscript{2}=CFX.

Nucleophilic attack by polyfluoroalkylanions on halogen, other than fluorine, in perhaloalkanes to displace the carbon-halogen bonding electrons has been reported previously to give a different perhaloalkane (206) and a different polyfluoroalkylanion (207).115

\[
\text{F}^- \xrightarrow{\text{CF}_3\text{CFX}} \text{CF}_3\text{CF}_2=\text{C-X} \xrightarrow{\text{F}^-} \text{CF}_3\text{CFXY} + \text{F}^{-} \quad \text{(206) to (207)}
\]

Therefore, in addition to the possibility of nucleophilic attack of CF\textsubscript{3}CFX on carbon in CF\textsubscript{2}=CFX to produce oligomers, attack on X would give a perhaloalkane (208) and a highly reactive trifluorovinylanion (209). Rapid reaction of 209 with Ar-F would give the perfluorovinyl derivative (210) which, in the presence of fluoride ion, would give 211. Subsequent

\[
\text{CF}_3\text{CF}_{\text{X}} \xrightarrow{\text{Ar-F}} \text{CF}_3\text{CFX} + \text{CF}_2=\text{CF}^- \quad \text{(208) to (209) to (210)}
\]

substitution in excess Ar-F by 211 would give a perfluoro-1,1-bis-arylethane (212).
4.3.5. Polyfluoroalkylation of Ar-F.

Nucleophilic substitution in perfluoro-N-heteroaromatic compounds by polyfluoroalkylanions (CF$_3$CFX) to give polyfluoroalkyl derivatives (213) would be expected by analogy with previously discussed reactions using perfluoro-olefins (See Chapter 3).

\[
\begin{align*}
\text{CF}_2=\text{CFX} & \xrightleftharpoons{F^-} \text{CF}_3\text{CFX} & \text{Ar-F} & \xrightarrow{213} \text{CF}_3\text{CFX-Ar} + F^- \\
\end{align*}
\]

4.3.6. Displacement of X from CF$_3$CFX-Ar.

Displacement of X after polyfluoroalkylation by CF$_3$CFX would also give perfluoroalkyl derivatives, however, more than one process is feasible for such a reaction. Three possible processes are proposed and they are considered in the following sections.

(a) Direct benzylic-type displacement.

Nucleophilic attack by fluoride ion on the α-carbon atom of CF$_3$CFX-Ar (213) would give a direct benzylic-type displacement of X$^-$ from the side-chain and would result in the formation of a perfluoroalkyl derivative.

\[
\begin{align*}
\text{CF}_3\text{CF}X & + F^- \xrightarrow{213} \text{Ar-CF}_2\text{CF}_3 + X^- \\
\end{align*}
\]

(b) Concerted benzylic-type displacement.

Nucleophilic substitution by CF$_3$CFX in a perfluoro-N-heteroaromatic compound, e.g. pentafluoropyridine, proceeds via a σ-complex (214) which is also formed on addition of fluoride ion to the polyfluoroalkyl derivative (213). On the breakdown of such a complex, it is possible that the leaving fluoride ion attacks the α-carbon, displacing X$^-$ in a concerted benzylic-type process involving the aromatic nucleus, to give
the observed products.

(c) *Pseudo-allylic* displacement.

Kobayashi and co-workers144,145 recently proposed that the replacement of the first fluorine substituent in 3-trifluoromethylquinoline by ethoxide involved a *pseudo-allylic* or pseudo-S_N^2 process as shown to give 216 via 215. Subsequent displacement of fluorine from 216 to give 217 occurred via benzylic-type displacements owing to their increased lability.
Extension of this type of process to the displacement of X from $\text{CF}_3\text{CFX-Ar} \ (213)$ is also feasible as shown with, for example, a 4-substituted pyridine (218) which would give I.

4.4. Reactions with chlorotrifluoroethylene.

Atmospheric pressure fluoride ion-initiated reactions of chlorotrifluoroethylene are conveniently discussed under the heading of the perfluoro-N-heteroaromatic compound used. Since the formation of perfluoroalkyl derivatives is a predominant feature of both these reactions and the analogous reactions of bromotrifluoroethylene, the main conclusions about the mechanism for loss of halide ion are drawn after a discussion of the results obtained for reactions of the latter.

4.4.1. Pentafluoropyridine.

(a) Conditions and products.

Previously reported fluoride ion-initiated reactions of chlorotrifluoroethylene and pentafluoropyridine were carried out in autoclaves at elevated temperatures (ca. 190°).32,49,101 Unreacted starting materials and five products were obtained, three of which were identified as
perfluoro-(4-ethylpyridine) (I), 4-chlorotetrafluoropyridine (XI) and 1-chloro-1-(2',3',5',6-tetrafluoropyridyl)tetrafluoroethane (XII). \(^{49,101}\)

Atmospheric pressure reactions with a combination of caesium fluoride and sulpholan or tetraglyme at ca. 90°, using a static system, gave unreacted CF\(_2\)=CFC\(_1\), identified by i.r. spectroscopy, and a colourless liquid. Chromatographic analysis of the latter indicated unreacted pentafluoropyridine and five products, which were identified as perfluoro-(4-ethylpyridine) (I), perfluoro-(2,4-di-ethylpyridine) (II), perfluoro-(2,4,5-tri-ethylpyridine) (III), 4-chlorotetrafluoropyridine (XI) and 1-chloro-1-(2',3',5',6-tetrafluoropyridyl)tetrafluoroethane (XII) as shown in Scheme 3.

\[
\begin{align*}
\text{CF}_2\text{C}=\text{CFC}_1 + \text{CsF} & \xrightarrow{90^\circ} \text{CF}_2\text{CF}_3 + \text{CF}_2\text{CF}_3 + \text{CF}_3\text{CF}_2\text{CF}_3 + \text{CF}_2\text{CF}_3 \\
& \xrightarrow{90^\circ} \text{I} \quad \text{II} \quad \text{III} \\
\text{Cl} & + \text{XI} \quad \text{XII}
\end{align*}
\]

Scheme 3

However, the relative ratios of the products were observed to be extremely solvent dependent, while yields and conversions were only marginally increased with longer reaction times as shown in Table 9. In contrast to reactions in sulpholan, which give low yields of all five products, analogous reactions in tetraglyme give moderate yields of XII as the major product, low yields of II, III and XI, and negligible amounts of I. Under no circumstances were any derivatives containing two or more
chlorine atoms isolated which, in connection with the halogen displacement mechanism, is extremely important.

Table 9

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reaction Time (hrs.)</th>
<th>Percentage Yields (%)*</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Sulpholan</td>
<td>4</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Sulpholan</td>
<td>24</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Tetraglyme</td>
<td>4</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Tetraglyme</td>
<td>24</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

*Based on the weight of C$_5$F$_5$N consumed.

(b) Structure.

Correlation of the calculated chemical shifts, derived from s.c.s. data for 4-substitution by polyfluoroalkylanions in pentafluoropyridine, with the observed 19F n.m.r. shifts for XII confirmed the expected and previously reported structure.32,49 Formation of the 2-methoxy (XIII)

\[
\begin{align*}
&\text{CF}\text{CF}_2\text{CF}_3; \\
&\text{CF}_2\text{CF}_3; \\
&\text{CF}_2\text{CF}_3; \\
&\text{Cl} \\
&\text{XII} \\
&\text{I} \\
&\text{II} \\
&\text{III} \\
&\text{XI}
\end{align*}
\]

and 2,6-dimethoxy (XIV) derivatives of XII on reaction with methoxide, identified by correlation of the calculated chemical shifts, determined from s.c.s. data for 4-heptafluoroisopropyl-2-methoxy-3,5,6-trifluoropyridine,33 with the observed 19F n.m.r. chemical shifts further substantiated the proposed substitution pattern for XII.
The structures of products I, II and III were discussed previously in Section 3.4.1.(b) and the structure of XI has been reported previously.

(c) Mechanism.

Suitable mechanisms for the formation of I, II, III, XI and XII in fluoride ion-initiated reactions of chlorotrifluoroethylene and pentafluoropyridine are clearly more complex than the previously discussed perfluoroalkylation mechanisms of Chapter 3. Initially it is essential to establish whether loss of chlorine occurs before or after nucleophilic aromatic substitution, since it is then possible to decide if both CF_3CFCl and CF_3CF^- or only the former are substituting in pentafluoropyridine. Of the previously proposed processes for loss of the substituent X (See Section 4.1.2.(b)), vinylic displacement and α-elimination occur prior to substitution in contrast to direct benzylic, concerted benzylic- and pseudo- S_N^2-type displacements which occur after substitution. A consideration of the results of several experiments...
enables the two possibilities to be differentiated.

(i) **Chlorine displacement.**

Loss of chlorine by vinylic displacement is discounted because no evidence has been obtained for the formation of tetrafluoroethylene in previously reported fluoride ion-initiated reactions of chlorotrifluoroethylene.\(^{55,101}\) Similarly, no tetrafluoroethylene was observed, by i.r. or mass spectroscopy, in the gaseous residues from reactions of chlorotrifluoroethylene with pentafluoropyridine in which perfluoroethylpyridines were formed. Qualitatively, the rate of formation of perfluoroethylpyridines in reactions with \(\text{CF}_2=\text{CFCl}\) is significantly faster than similar reactions with \(\text{CF}_2=\text{CF}_2\), indicating that the intermediacy of the latter is highly unlikely.

\[
\text{CF}_2=\text{CFCl} + \text{F}^- \rightleftharpoons \text{CF}_2=\text{CF}_2 + \text{Cl}^-
\]

An \(\alpha\)-elimination of chloride from \(\text{CF}_3\text{CFCl}\) would give a perfluorocarbene (204) which, if formed, should be trapped by a suitably activated substrate such as cyclohexene to give a cyclopropane derivative (219). A fluoride ion-initiated reaction of chlorotrifluoroethylene and cyclohexene resulted in quantitative recovery of the latter, which indicates that 204 is not formed and that chlorine is not lost via this type of process.

Consequently, from these results it is concluded that displacement of chlorine must occur after aromatic substitution, in which only \(\text{CF}_3\text{CFCl}\) attacks pentafluoropyridine. This was confirmed since XII was completely
converted to perfluoro-(4-ethylpyridine) (I) in 60% yield in the presence of fluoride ion and under identical conditions to its preparation.

However, a discussion concerned with the differentiation of the previously proposed mechanisms for displacement after substitution is deferred until after discussion of the results for analogous reactions of CF₂=CFCl with tetrafluoropyridazine and CF₂=CFBr with perfluoro-pyridine and -pyridazine.

(ii) Nucleophilic aromatic substitution.

The major factor controlling the orientation of nucleophilic substitution in perfluoro-N-heteroaromatic compounds was shown recently to be the effect of the ring nitrogen on the stability of the localised negative charge in the transition state.³⁷ Therefore, on this basis mono-substitution by CF₃CFCl in pentafluoropyridine is expected, and observed, at the 4-position to give XII via the most stable intermediate carbanion (220). Since no other chloropolyfluoroalkylpyridines have been observed, it is concluded that the rate of displacement of chloride from XII to give I must be much faster than the rate of further substitution by CF₃CFCl in XII.

Further substitution in I by CF₃CFCl⁻ is expected at the 2-position, as discussed previously (See Section 3.4.1.(c)), via 221 and, since 222 is not isolated, displacement of chloride from 222 by fluoride to give II must be rapid. Substitution by CF₃CFCl in II is expected at the 5-position via 223 to give the kinetically preferred product (224), analogous to previously discussed perfluoroethylation reactions, followed by rapid displacement of chloride from 224 to give III, the observed product.
Further evidence for this type of mechanism was obtained from fluoride ion-initiated reactions of chlorotrifluoroethylene with XII at ca. 90°, from which the only tractable products recovered were perfluoro-(tetra-ethylpyridine) (IV) and pentakis(pentafluoroethyl)pyridine (V) in low yields, even after a one hour reaction.
Displacement of chloride ion by fluoride ion during these reactions introduces a further nucleophile into the reaction mixture which is expected to attack the 4-position in pentafluoropyridine to give XI via 225.

Reaction of chloride ion with C$_5$F$_5$N under similar conditions has been reported previously to give 4-chlorotetrafluoropyridine (XI).101,154

\[
\begin{array}{c}
\text{F} \\ \text{N}
\end{array} + \text{Cl}^- \xrightarrow{\text{C}^\text{F}^\text{N}} \begin{array}{c}
\text{F} \\ \text{N} \\ \text{F} \\ \text{F}
\end{array} \rightarrow \begin{array}{c}
\text{F} \\ \text{N}
\end{array}
\]

The different product distribution observed for reactions in tetraglyme, compared to analogous reactions in sulpholan, can be attributed to a substantial difference in the rate of displacement of chloride from XII, since the rates of formation of XII in both solvents, estimated from the observed yields of XII and the products derived from XII, are approximately the same. A substantially slower rate of displacement in tetraglyme, compared to sulpholan, may result from increased stabilisation of XII, decreased stabilisation of the transition state and intermediate (226) or a combination of both of these effects. A qualitative schematic representation of the energy profiles for the displacement reaction in both solvents is shown in Fig. 8 (p. 109).

4.4.2. Tetrafluoropyridazine.

(a) Conditions and products.

Atmospheric pressure fluoride ion-initiated reactions of chlorotrifluoroethylene and tetrafluoropyridazine at ca. 90°, using a combination of caesium fluoride and either sulpholan or tetraglyme in a static system, gave unreacted CF$_2$=CFCl and a colourless liquid.

Chromatographic analysis of the latter indicated unreacted tetrafluoro-
pyridazine, two major products and one minor product.

The former products were identified as perfluoro(4-ethylpyridazine) (VI) and perfluoro-(4,5-di-ethylpyridazine) (VII) as shown in Scheme 4. Characterisation of the minor product was not possible owing to the low yield obtained, however, its v.p.c. retention time was identical with 4-chloro-3,5,6-trifluoropyridazine, which may be formed during the reaction due to attack of chloride ion on tetrafluoropyridazine, in an analogous
manner to that reported recently in reactions between lithium chloride and tetrafluoropyridazine.155

No chlorine containing polyfluoroalkylpyridazines were isolated from these reactions and, although the ratios of products were similar in both solvents, noticeably lower yields were obtained using tetraglyme (See Table 10), as mentioned previously for pentafluoroethylations of tetrafluoropyridazine (See Section 3.4.2.(a)).

Table 10

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Percentage Yields (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>Sulpholan</td>
<td>57</td>
<td>19</td>
</tr>
<tr>
<td>Tetraglyme</td>
<td>41</td>
<td>9</td>
</tr>
</tbody>
</table>

* Based on the weight of $\text{C}_4\text{F}_4\text{N}_2$ consumed.

A similar atmospheric pressure reaction at ca. 120$^\circ$, using a combination of sulpholan and excess potassium fluoride in a static system, afforded three products, identified as VI, VII and perfluoro-(3,4,5-tri-ethylpyridazine) (VIII) in 23%, 32% and 9% yields respectively. A moderate amount of intractable tarry residue was also recovered but contained no identifiable products.

\[
\begin{align*}
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{F} \\
\text{N} & \quad \text{F} \\
\frac{R_f}{R_f} &= \text{CF}_3\text{CF}_2
\end{align*}
\]
(b) **Structure.**

The structures of VI, VII and VIII have been discussed previously in connection with perfluoroethylation reactions of tetrafluoropyridazine (See Section 3.4.2.(b)) and, apart from the fact that nucleophilic attack by CF$_3$CFCl occurs followed by chlorine displacement rather than by CF$_3$CF$_2^-$, the arguments are equally valid.

(c) **Mechanism.**

In contrast to fluoride ion-initiated reactions between chlorotrifluoroethylene and pentafluoropyridine, no chloropolyfluoroalkyl derivatives are observed in the analogous reactions with tetrafluoropyridazine. Therefore, the proposed mechanism for the latter reactions relies, to some extent, on the conclusions deduced from results for the former reactions.

(i) **Chlorine displacement.**

Since displacement of chlorine in the pyridine system was shown previously to occur after polyfluoroalkylation, it is reasonable to assume that a similar situation exists in analogous reactions of tetrafluoropyridazine. However, the rate of displacement of chlorine in the latter system must be substantially faster than in the former, a fact which must be accounted for in the displacement mechanism discussed later.

(ii) **Nucleophilic aromatic substitution.**

Mono- and di-substitution by CF$_3$CFCl in tetrafluoropyridazine are expected at the 4- and 4,5-positions, via 227 and 228 respectively. By analogy with the pyridine system, loss of chlorine is expected to occur prior to further substitution, as shown, to give VI and VII, although no direct evidence for this has been obtained. Since VII is not catalytically rearranged to the 3,5-isomer under these conditions, further substitution by CF$_3$CFCl in VII is expected at the 3-position via 229,
analogous to pentafluoroethylation reactions, followed by rapid chlorine displacement to give VIII.

4.5. Reactions with bromotrifluoroethylene.

Atmospheric pressure fluoride ion-initiated reactions of bromotrifluoroethylene are conveniently discussed under the heading of the perfluoro-N-heteroaromatic compound used.

4.5.1. Pentafluoropyridine.

(a) Conditions and products.

Previously reported reactions of caesium fluoride, bromotrifluoroethylene and pentafluoropyridine in autoclaves at elevated temperatures (ca. 170°)
gave 1,1-dibromotetrafluoroethane (XV) and, allegedly, 1,2-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (230).

\[
\begin{align*}
\text{N} & \quad \text{F} \\
\text{CF}_2 & \quad \text{CF}_2
\end{align*}
\]

Atmospheric pressure reactions with a combination of caesium fluoride and sulpholan at ca. 90°, using a static system, gave unreacted \(\text{CF}_2\text{=CFBr}\) and a colourless liquid on vacuum distillation of the reaction mixture. Chromatographic analysis of the latter indicated two components which were identified as pentafluoropyridine and 1,1-dibromotetrafluoroethane (XV).

The involatile reaction mixture gave a water insoluble polymeric residue which contained carbon, fluorine and bromine but was not identified or investigated further. Ether extraction of the aqueous solution gave an orange oil containing several products, however, of the major components only 1,1-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (XVI) was identifiable in low yield, as shown in Scheme 5.

\[
\begin{align*}
\text{F} & \quad + \quad \text{CF}_2\text{=CFBr} \quad \xrightarrow{\text{CsF, ca. 90°}} \quad \text{CF}_3\text{CFBr}_2 \\
\text{N} & \quad \text{C} & \quad \text{N}
\end{align*}
\]

Scheme 5

No evidence was obtained from chromatographic analysis, i.r., mass or \(^{19}\text{F}\) n.m.r. spectroscopy for the formation of either perfluoroethylpyridines or bromopolyfluoroalkylypyridines in these reactions.

(b) Structure.

The structure of 1,1-dibromotetrafluoroethane (XV) was determined previously by mass and \(^{19}\text{F}\) n.m.r. spectroscopy. However, although the
i.r. spectrum of the pyridine derivative isolated from the involatile reaction mixture was identical with that recorded previously, the observed 19F n.m.r. spectrum contained an extra resonance, which was only observed owing to superior instrumentation, and consequently is not consistent with the previously proposed structure (230). The spectrum consists of four absorptions at 78.4, 90.4, 139.6 and 164.1 in the ratio 3:4:4:1 respectively. The absorptions at 78.4 and 164.1 are characteristic of a trifluoromethyl group and a tertiary fluorine respectively while those at 90.4 and 139.6 correlate with the calculated chemical shifts, derived from s.c.s. data for perfluoro-(4-ethylpyridine) of 89 and 140 for the 2,6- and 3,5-ring fluorines in a 4-perfluoroalkyl substituted pyridine nucleus. These results are therefore consistent with the postulated structure (XVI), rather than 230, for which only three absorptions of equal area are expected, as reported previously.

\[
\begin{align*}
\text{N} & \text{F} \quad \text{CF}_2 \quad \text{CF}_2 \quad \text{N} \\
\text{F} & \quad \text{N} \\
\end{align*}
\]

(c) **Mechanism.**

Formation of 1,1-dibromotetrafluoroethane (XV) was previously rationalised as removal of Br$^+$ from CF$_2$=CFBr by fluoride ion to give trifluorovinylanion (231) and BrF; subsequent addition of the latter to the olefin would give XV. To investigate the proposed abstraction of Br$^+$ by F$^-$, caesium fluoride and carbon tetrabromide were heated at ca. 90°C in acetonitrile. In order to trap any CBr$_3$ formed, tetrafluoropyridazine was also added to the reaction mixture, however, only quantitative recovery of the starting material was obtained. Consequently there is no evidence to date to substantiate this type of mechanism.
A more likely mechanism is nucleophilic attack of CF_3CFBr (232) on bromine in $\text{CF}_2=\text{CFBr}$ to displace the carbon-bromine bonding electrons, by analogy with results reported by Miller and co-workers in reactions of fluoroperhalocarbanions and perhaloalkanes, to give XV and 231. Formation of XV in similar reactions of $\text{CF}_2=\text{CFBr}$ by itself indicates that pentafluoropyridine is not involved in the process.

In contrast to analogous reactions of $\text{CF}_2=\text{CFCl}$, fluoride ion-initiated reactions between $\text{CF}_2=\text{CFBr}$ and pentafluoropyridine give no polyfluoroalkylpyridines, however, significant quantities of CF_3CFBr_2 are formed. These contrasting results emphasize the competition between polyfluoroalkylation of Ar-F and halogen exchange with $\text{CF}_2=\text{CFX}$ by CF_3CFX. The preferential nucleophilic attack on halogen, rather than carbon, in this system by CF_3CFBr can probably be attributed to a combination of the increased steric requirements and increased stability of CF_3CFBr, compared to CF_3CFCl, making halogen exchange energetically more favourable.

However, formation of 1,1-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (XVI) clearly requires nucleophilic aromatic substitution of some description. Since the mechanism for the formation of XV affords highly reactive trifluorovinylanions (231), aromatic substitution is
expected at the 4-position of pentafluoropyridine, via 233, to give perfluoro-(4-vinylpyridine) (IX). Subsequent rapid addition of fluoride ion to IX to give 234 is expected, which can substitute at the 4-position in pentafluoropyridine to give the observed product (XVI) via 235.

![Chemical structures](image)

Confirmatory evidence for this mechanism was obtained on isolation of XVI in 60% yield from a fluoride ion-initiated reaction of IX, prepared by defluorination of perfluoro-(4-ethylpyridine), with pentafluoropyridine. A similar reaction with 2-(2',3',5',6'-tetrafluoropyridyl)-pentafluoropropene (X) and pentafluoropyridine afforded 2,2-bis-(2',3',5',6'-tetrafluoropyridyl)hexafluoropropane (XVII) as the only product in 60% yield, which further substantiated the proposed mechanism for the formation of XVI in fluoride ion-catalysed reactions of $\text{CF}_2=\text{CF} \cdot \text{Br}$ and pentafluoropyridine.

Formation of complex intractable residues in these reactions is quite consistent with the existence of such highly reactive intermediate carbanions as 231 and 234 in the reaction mixture. Similar results have
been observed previously in fluoride ion-initiated reactions of tetra-
fluoroethylene.

4.5.2. Tetrafluoropyridazine.

(a) Conditions and products.

Atmospheric pressure fluoride ion-initiated reactions of bromotri-
fluoroethylene and tetrafluoropyridazine at ca. 90° and 120°, using a
combination of caesium fluoride and either sulpholan or tetraglyme in a
static system, gave unreacted CF₂CFBr and a colourless liquid.
Chromatographic analysis of the latter indicated unreacted tetrafluoro-
pyridazine, two products at ca. 90° and the same two products plus a third
at ca. 120°. The components were identified as perfluoro-(4-ethyl-
pyridazine) (VI) and perfluoro-(4,5-di-ethylpyridazine) (VII) at both
temperatures and perfluoro-(3,4,5-tri-ethylpyridazine) (VIII) at ca. 120°
only, as shown in Scheme 6. The results obtained are summarised in
Table 11.

\[
\begin{align*}
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{H} \\
\text{F} & \quad \text{N} \\
\text{N} & \quad \text{H}
\end{align*}
\]

\[\text{R}^2_{F} = \text{CF}_3\text{CF}_2\]

No bromine containing polyfluoroalkylpyridazines were isolated from
these reactions and, although the ratios of products were similar in both
solvents, substantially lower yields were obtained for reactions in
tetraglyme, as seen from Table 11, analogous to previous polyfluoro-
alkylations with this solvent and substrate (See Sections 3.4.2.(a) and
4.4.2.(a)).

Using a combination of caesium fluoride and sulpholan in a static
system at ca. 90° with a much longer reaction time afforded not only
VI, VII and VIII, but also a fourth product which was identified as
Table 11

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temp. °C</th>
<th>Percentage Yields (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>Tetraglyme</td>
<td>90</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Sulpholan</td>
<td>90</td>
<td>51</td>
<td>18</td>
</tr>
<tr>
<td>Tetraglyme</td>
<td>120</td>
<td>52</td>
<td>25</td>
</tr>
<tr>
<td>Sulpholan</td>
<td>120</td>
<td>41</td>
<td>28</td>
</tr>
</tbody>
</table>

* Based on the quantity of CF_4N_2 consumed.

tetrakis(pentafluoroethyl)pyridazine (XXXIII) in low yield. This product had not been observed previously in similar reactions with either $\text{CF}_2=\text{CF}_2$ or $\text{CF}_2=\text{CFC}_1$ to give perfluoroethylpyridazines.

A combination of potassium fluoride and sulpholan at ca. 120° in a static system was also found to be suitable for the formation of perfluoroethylpyridazines, giving VI, VII and VIII in 27%, 33% and 6% yields respectively.

(b) Structure.

The structures of VI, VII and VIII have been discussed previously in connection with perfluoroethylation of tetrafluoropyridazine (See Section 3.4.2.(b)) and, despite the fact that the attacking nucleophile is CF_3CFBr with subsequent rapid bromine displacement and not
the arguments are equally valid.

Only one structure is possible for tetrakis(pentafluoroethyl)pyridine (XXXIII) and broad absorptions in the $^{19}\text{F n.m.r.}$ spectrum and low extinction coefficients in the u.v. spectrum ($\lambda_{\text{max}} = 260 \text{ m}\mu$, $\epsilon_{\text{max}} = 743$; $\lambda_{\text{max}} = 356 \text{ m}\mu$, $\epsilon_{\text{max}} = 200$; cf. perfluoro-(4,5-di-ethylpyridazine) (VII), $\epsilon_{\text{max}} = 4990$) indicates extreme steric crowding and possibly distortion of the aromatic ring.

(c) \textbf{Mechanism}.

In contrast to analogous reactions of $\text{CF}_2\text{=CFBr}$ and pentafluoropyridine, no 1,1-dibromotetrafluoroethane (XV) or perfluoro-1,1-bis-arylethane were observed, which indicates that CF_3CFBr preferentially polyfluoroalkylates tetrafluoropyridazine instead of abstracting Br^+ from $\text{CF}_2\text{=CFBr}$. Since no bromopolyfluoroalkyl derivatives of perfluoro-pyridine or -pyridazine have been isolated, the proposed mechanism for the formation of VI - VIII and XXXIII in these reactions is based largely on the conclusions deduced from similar reactions of $\text{CF}_2\text{=CFCI}$, especially with $\text{C}_5\text{F}_5\text{N}$.

(i) \textbf{Bromine displacement}.

Displacement of bromine from $\text{CF}_2\text{=CFBr}$ by vinylic substitution or an α-elimination process are not expected; the analogous processes do not occur with $\text{CF}_2\text{=CFCI}$. Alternatively, displacement of bromine after polyfluoroalkylation by CF_3CFBr is expected by analogy with previous results.

(ii) \textbf{Nucleophilic aromatic substitution}.

Mono- and di-substitution by CF_3CFBr in tetrafluoropyridazine are expected at the 4- and 4,5-positions, via 236 and 237 respectively. By analogy with the $\text{CF}_2\text{=CFCI}/\text{C}_5\text{F}_5\text{N}$ system, rapid displacement of bromine is
expected to occur prior to further substitution as shown to give VI and VII, although no direct evidence for this has been obtained. Since VII is not catalytically rearranged to the 3,5-isomer, further substitution by CF$_3$CFBr is expected at the 3- and 6-positions, via 238 and 239 respectively, followed by rapid bromine displacement to give VIII and XXXIII.

\[R^* = CF_3CFBr \]
\[R_f = CF_3CF_2 \]

From the results obtained in fluoride ion-initiated reactions of \(\text{CF}_2=\text{CFCI} \) with itself, pentafluoropyridine and cyclohexene, and the action of fluoride ion on XII to give I, it was concluded in a preliminary discussion that halogen displacement occurs after substitution by the polyfluoroalkylanion, \(\text{CF}_3\text{CF}X \), in the perfluoro-\(N \)-heteroaromatic compound. However, differentiation of the previously postulated possible processes for displacement of halogen from a polyfluoroalkyl derivative is potentially much more difficult. The mechanism must account for not only the formation of the observed products, but also the observed differences between the perfluoro-pyridine and -pyridazine systems. In particular, a substantial increase in the rate of halogen displacement is evident in reactions with the latter compared to those with the former since, in contrast to the isolation of XII, no analogous chloro- or bromo-polyfluoroalkylpyridazines have been isolated.

4.6.1. Direct benzylic-type displacement.

Classically, a direct benzylic-type displacement of the halide ion (\(X^- \)) by fluoride ion is the obvious mechanism for this type of reaction and accounts for the formation of the perfluoroethyl derivatives. The marked increase in the rate of displacement of \(X^- \) on changing the aryl substituent (\(\text{Ar} \)) from tetrafluoropyridyl to trifluoropyridazyl is less obvious. However, it was found previously in displacement reactions of benzyl halides that if bond formation predominated in the transition state (i.e. \(S_N^2 \)-type
mechanism) then electron withdrawing substituents in the aromatic ring stabilised the transition state, compared to the unsubstituted compound, increasing the rate of halide substitution. In contrast, if bond breaking predominated in the transition state (i.e. S_N^1-type mechanism) the converse applied. It is possible, therefore, that the different observed rates of displacement of halide from polyfluoroalkyl-pyridines and pyridazines may be attributed to a "substituent effect" of the nitrogen(s) in the aromatic ring, although no evidence for this was reported previously.

4.6.2. **Concerted benzylic-type displacement.**

Extension of the direct benzylic-type mechanism to a concerted process involving the aromatic nucleus, as shown, also accounts for the formation of perfluoroethyl derivatives. Experimentally it is impossible to distinguish between these processes and, therefore, similar considerations are expected to apply to the concerted mechanism as apply to the direct mechanism.

4.6.3. **Pseudo-$S_N^{2\prime}$-type displacement.**

The stages involved in displacement of X via the recently proposed
pseudo-S^2_N process144,145 are shown for both systems, however, confirmatory experimental evidence for such a mechanism has not been obtained to date. The relative rates of displacement of X from the mono-substituted derivatives is attributed to the relative susceptibilities of the heteroaromatic nuclei to attack by fluoride ion ortho, or para, to the polyfluoroalkyl substituent. Since ortho attack at the 5-position in 244 is preferred, rapid displacement of X is predicted via this process, however, ortho attack at the 3-position of 240 is not favoured hence displacement is expected to occur much less readily.
Since no evidence for halogen (X) containing polysubstituted derivatives of either system was obtained, subsequent displacement of X must be rapid. Extension of the previous argument similarly accounts for these observations since ortho or para attack to CF₃CFX by fluoride ion is favourable, as shown for example, in the di-substituted pyridine (248).

4.6.4. Conclusion.

From experimental evidence it is difficult to decide which of the mechanisms discussed is operating. The direct benzylic-type process is a well established mechanism in organic chemistry and, consequently, it is the immediately obvious choice. However, the pseudo-S₅²⁺ process does appear to account for the observed results quite nicely and several subtle experiments are required to provide some factual evidence for or against such a novel mechanism.

4.7. Reactions with trifluoroethylene.

Atmospheric pressure fluoride ion-initiated reactions of trifluoroethylene are conveniently discussed under the heading of the perfluoro-N-heteroaromatic compound used.

4.7.1. Pentafluoropyridine.

(a) Conditions and products.

Previously reported fluoride ion-initiated reactions of trifluoroethylene and pentafluoropyridine in an autoclave at ca. 200° gave only
recovered starting material. An atmospheric pressure reaction with a combination of caesium fluoride and sulpholan at ca. 140°C, using a static system, gave unreacted starting materials and a low yield of 1,1-bis-(2,3,5,6-tetrafluoropyridyl)tetrafluoroethane (XVI). Ether extraction of an aqueous solution of the involatile reaction mixture gave a substantial amount of intractable tarry residue which was not investigated further.

\[
\text{F} \quad \text{+ CF}_2=\text{CFH} \xrightarrow{\text{CsF} \ 140^\circ} \text{F} \quad \text{N} \quad \text{F} \quad \text{I} \quad \text{F} \quad \text{CF}_3 \quad \text{N}
\]

XVI

(b) **Structure.**

The structure of XVI was determined principally from the observed $^{19}_F$ n.m.r. spectrum and is discussed in Section 4.3.1.(b).

(c) **Mechanism.**

Nucleophilic substitution in pentafluoropyridine by trifluorovinyl-anions (231), generated by abstraction of a proton from CF$_2$=CFH by either F$^-$ or CF$_3$CFH, gives perfluoro-(4-vinylpyridine) (IX), which subsequently affords XVI as shown. The low yield of XVI (~10%) and formation of substantial quantities of intractable tarry residues are attributed to side reactions of the very reactive intermediate carbanions and solvent decomposition, which are more pronounced at elevated temperatures.

4.7.2. Tetrafluoropyridazine.

A fluoride ion-initiated reaction between trifluoroethylene and tetrafluoropyridazine at ca. 90°C in a static system gave only recovered olefin and an intractable tarry residue which contained no identifiable
\[\text{CF}_2=\text{CFH} + \text{F}^- \longrightarrow \text{CF}_2=\text{CF}^- + \text{HF} \]

or \[\text{CF}_2=\text{CFH} + \text{F}^- \rightleftharpoons \text{CF}_3\text{CFH} \stackrel{\text{CF}_2=\text{CFH}}{\longrightarrow} \text{CF}_3\text{CFH}_2 + \text{CF}_2=\text{CF}^- \]

products. This result may be due to either non-formation of the intermediate carbanion, \(\text{CF}_3\text{CFH} \), under these conditions or, if formed, it is not reactive enough to substitute in tetrafluoropyridazine. However, no tetrafluoropyridazine was recovered after the reaction and, therefore, it is more likely that side reactions involving the solvent occurred in preference to polyfluoroalkylation, to give the observed high molecular weight involatile material.
CHAPTER 5

Fluoride Ion-Induced Rearrangement Reactions of Perfluoroalkylhetero-aromatic Compounds.

Introduction.

Previous polyfluoroalkylations of pentafluoropyridine using \(\text{CF}_3\text{CFCF}_2\text{CF}_3\), \((\text{CF}_3)_2\text{CF}^-\) and \((\text{CF}_3)_3\text{C}^-\), as discussed in Chapter 3, indicated that kinetically controlled or thermodynamically controlled tri-substituted products can be obtained, depending upon the perfluoroalkylanion and the conditions employed. In an attempt to distinguish the possible effects influencing these reactions, a series of mixed perfluoroalkylpyridines were prepared in atmospheric pressure reactions at moderate temperatures (ca. 70° - 80°) and, where possible, the effect of fluoride on the tri-substituted derivatives at elevated temperatures (ca. 150° - 190°) was investigated. The discussion is conveniently presented, therefore, in sections concerned with the polyfluoroalkylation reactions and the attempted aromatic rearrangement reactions, followed by the conclusions drawn from these results about the relative importance of steric effects, the ability of different perfluoroalkyl substituents to stabilise an intermediate carbanion and the migratory aptitude or stability of the perfluoroalkylanion in rearrangement reactions.

5.1. Polyfluoroalkylation reactions.

5.1.1. Heptafluoroisopropylation of perfluoro-(4-ethylpyridine) (I).

(a) Conditions and products.

Fluoride ion-catalysed reaction of hexafluoropropene and I in a static system at ca. 75° for 40 minutes afforded dimers and trimers of the olefin and a single product, identified as perfluoro-(2,5-di-isopropyl-4-ethylpyridine) (XVIII) in quantitative yield. No di-substituted derivative was observed in this reaction.
(b) **Structure.**

The observed chemical shifts for I in conjunction with the previously reported chemical shifts for 2-substitution by $(\text{CF}_3)_2\text{CF}^-$ afford calculated chemical shifts for the ring fluorines of perfluoro-(2-isopropyl-4-ethyl-pyridine) (254). Using these calculated values and the known s.c.s. for introduction of $(\text{CF}_3)_2\text{CF}$ at C-5 and C-6, calculated shifts for the 2,4,5- and 2,4,6-isomers are obtained which are, as shown below, in close agreement with the observed results for XVIII and XXV respectively; see later for rearrangement of the former to the latter.

<table>
<thead>
<tr>
<th>Chemical shifts for ring fluorines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Obs. (XVIII)</td>
</tr>
<tr>
<td>Calc.</td>
</tr>
<tr>
<td>Obs. (XXV)</td>
</tr>
<tr>
<td>Calc.</td>
</tr>
</tbody>
</table>

(c) **Mechanism.**

Mono- and di-substitution in I by $(\text{CF}_3)_2\text{CF}^-$ are expected at the 2- and 2,5-positions, via 253 and 255 respectively, by analogy with perfluoro-ethylation and isopropylation of pentafluoropyridine. (See page 129).

5.1.2 **Heptafluoroisopropylation of perfluoro-(2,4-di-ethylpyridine) (II).**

(a) **Conditions and products.**

Reaction of hexafluoropropene and II in a static system at ca. 80°
for 60 minutes gave dimers and trimers of the olefin, unreacted starting material and a single product, identified as perfluoro-(5-isopropyl-2,4-di-ethylpyridine) (XIX) in 65% yield.

(b) Structure.

The substituent chemical shifts which arise from introduction of $\text{(CF}_3\text{)}_2\text{CF}$ at C-5 and C-6 have been previously determined;33,141 with perfluoro-(2,4-di-ethylpyridine) as reference, the calculated and observed shifts for XIX and XXVI are in close agreement, as shown. Rearrangement of XIX to XXVI is discussed later.
Chemical shifts for ring fluorines

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. (XIX)</td>
<td>115.2</td>
<td>-</td>
<td>53.6</td>
</tr>
<tr>
<td>Calc.</td>
<td>114</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>Obs. (XXVI)</td>
<td>111.5</td>
<td>108.6</td>
<td>-</td>
</tr>
<tr>
<td>Calc.</td>
<td>108</td>
<td>107</td>
<td>-</td>
</tr>
</tbody>
</table>

(c) Mechanism.

Substitution in II by $(\text{CF}_3)_2\text{CF}^-$ is expected at the 5-position, via a similar mechanism to that indicated previously, and by analogy with similar perfluoro-ethylation and -isopropylation reactions.

5.1.3. Pentafluoroethylation of perfluoro-(4-isopropylpyridine).

(a) Conditions and products.

Analogous reactions of tetrafluoroethylene and perfluoro-(4-isopropylpyridine) at ca. 80°C for 5 hours gave unreacted starting materials and a mixture of four products, which were separated with difficulty. They were identified as perfluoro-(2-ethyl-4-isopropylpyridine) (XX), perfluoro-(2,5-di-ethyl-4-isopropylpyridine) (XXI), perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine) (XXII) and perfluoro-(tetraethyl-4-isopropylpyridine) (XXIII), as shown in Scheme 8, and were obtained in low to moderate yields.
(b) **Structure.**

The chemical shifts which arise from introduction of CF$_3$CF$_2$ at
C-2 and C-5 have been previously determined. With perfluoro-(4-isopropylpyridine) as reference, the calculated and observed shifts for XX
are in close agreement, as shown. Similarly, with XX as reference, the
calculated and observed shifts for XXI are also in close agreement.

<table>
<thead>
<tr>
<th>Chemical shifts for ring fluorines</th>
<th>Chemical shifts for ring fluorines</th>
</tr>
</thead>
<tbody>
<tr>
<td>in XX</td>
<td>in XXI</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Obs.</td>
<td>Obs.</td>
</tr>
<tr>
<td>115·7</td>
<td>114·8</td>
</tr>
<tr>
<td>123·3</td>
<td>-</td>
</tr>
<tr>
<td>83·8</td>
<td>52·9</td>
</tr>
<tr>
<td>Calc.</td>
<td>Calc.</td>
</tr>
<tr>
<td>115</td>
<td>113</td>
</tr>
<tr>
<td>123</td>
<td>-</td>
</tr>
<tr>
<td>83</td>
<td>55</td>
</tr>
<tr>
<td>Calc.*</td>
<td>Calc.*</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>* assuming a 2,4,6-isomer formed.</td>
<td></td>
</tr>
</tbody>
</table>

Since no absorption is observed below 73·9 in the complex 19F n.m.r.
spectrum of XXII, the calculated shifts for the remaining ring fluorine,
with XXI as reference and utilising the previously determined s.c.s. for
introduction of CF$_3$CF$_2$, indicate quite conclusively that 6-substitution
in XXI occurs to give XXII.

<table>
<thead>
<tr>
<th>Calculated chemical shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>for ring fluorines</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>2,3,4,5-isomer</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>40-50</td>
</tr>
<tr>
<td>2,4,5,6-isomer</td>
</tr>
<tr>
<td>100-110</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Assuming that the 4-heptafluoroisopropyl group is not displaced during
these reactions, there is only one possible aromatic structure for XXIII,
as indicated.

(c) **Mechanism.**

Substitution in perfluoro-(4-isopropylpyridine) by CF$_3$CF$_2$ to give
XX - XXIII is as expected from previously discussed perfluoroethylations of
pentafluoropyridine and occurs via an analogous mechanism.

5.1.4. **Heptafluoroisopropylation of perfluoro-(2-ethyl-4-isopropylpyridine) (XX).**

(a) **Conditions and products.**

A similar reaction of hexafluoropropene and XX at ca. 80° for 150 minutes gave dimers and trimers of the olefin, unreacted starting materials and a single product, identified as perfluoro-(2-ethyl-4,5-di-isopropylpyridine) (XXIV) in ca. 80% yield.

(b) **Structure.**

The chemical shifts which arise from introduction of \((\text{CF}_3)_2\text{CF}\) at C-5 and C-6 have been previously determined\(^{33,141}\) with XX as reference, the calculated and observed shifts for XXIV are in close agreement, as shown.

<table>
<thead>
<tr>
<th>Chemical shifts for ring fluorines in XXIV</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>113.6</td>
<td>-</td>
<td>52.4</td>
</tr>
<tr>
<td>Calc.</td>
<td>111</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Calc.*</td>
<td>106</td>
<td>104</td>
<td>-</td>
</tr>
</tbody>
</table>

* assuming a 2,4,6-isomer formed.

(c) **Mechanism.**

5-Substitution in XX is expected via an analogous mechanism to previously discussed perfluoroisopropylation.

5.2. **Rearrangement reactions.**

The effect of fluoride ion on a series of 2,4,5-tri-substituted
perfluoroalkylpyridines at elevated temperatures gives a variety of results depending upon the particular system, and these are discussed in the following sections.

5.2.1. Perfluoro-(2,5-di-isopropyl-4-ethylpyridine) (XVIII).

(a) Conditions and products.

Attempted fluoride ion-catalysed rearrangement of XVIII at ca. 160° gave a 3:2 mixture of XVIII and a single product, perfluoro-(2,6-di-isopropyl-4-ethylpyridine) (XXV) in ca. 55% yield. A similar reaction at ca. 180° gave XXV only in ca. 30% yield.

(b) Structure.

The proposed structure of XXV was shown previously, in Section 5.1.1.(b), to be consistent with the observed spectroscopic data.

(c) Mechanism.

Loss of the 5-substituent in this type of aromatic rearrangement reaction was recently proposed to be the reverse of its introduction. Regeneration of the 2,4-di-substituted derivative and subsequent attack at the 6-position by the liberated perfluoroalkylanions gives the thermodynamically stable 2,4,6-isomer. Hence the proposed mechanism for the rearrangement of XVIII to XXV is as shown, via 255 and 256.

5.2.2. Perfluoro-(5-isopropyl-2,4-di-ethylpyridine) (XIX).

(a) Conditions and products.

A similar reaction of XIX at ca. 160° gave a 2:3 mixture of XIX and
a single product, perfluoro-(6-isopropyl-2,4-di-ethylpyridine) (XXVI) in ca. 50% yield.

(b) **Structure.**

The proposed structure of XXVI was shown previously, in Section 5.1.2.(b), to be consistent with the observed spectroscopic data.

(c) **Mechanism.**

The mechanism for rearrangement of XIX to XXVI is analogous to that discussed for rearrangement of XVIII to XXV in Section 5.2.1.(c).

5.2.3. **Perfluoro-(2,5-di-ethyl-4-isopropylpyridine) (XXI).**

In contrast to previously discussed related reactions, attempted fluoride ion-initiated rearrangement of XXI at ca. 180° gave neither
recovered starting material nor identifiable products. It is feasible that, by analogy with equivalent rearrangements of perfluoro-(2,4,5-tri-isopropylpyridine), the 4-heptafluoroisopropyl substituent is displaced rather than the 5-pentafluoroethyl group, and that the resultant 2,5-di-substituted derivative is unstable under these conditions. Further investigation of this system at lower temperatures is therefore required, however, due to the difficulties encountered in the preparation of XXI in sufficient quantities for such reactions, this has not been possible to date.

5.3. Rationalisation of the possible effects controlling catalytic rearrangement of some tri-substituted perfluoroalkylpyridines.

The possible effects which determine whether a 2,4,5-perfluoroalkylpyridine is catalytically rearranged to the 2,4,6-isomer, under suitable conditions, are considered to be: steric interactions between the 4- and 5-substituents; the relative stabilising effect of the 2-substituent on the intermediate carbanion for loss of the 5-substituent; and the migratory aptitude of the perfluoroalkylanion, primarily determined by its relative stability. From the observed results for polyfluoroalkylation reactions and fluoride ion-induced rearrangements it is possible to comment on the relative importance of each of these effects.

5.3.1. Steric effects.

In contrast to perfluoro-(2,4,5-tri-isopropylpyridine), which readily rearranged to the 2,4,6-isomer at ca. 160º, perfluoro-(2,4,5-tri-ethylpyridine) was unaffected by fluoride ion, even at ca. 190º. If the
relief of adverse steric crowding is the driving force in the former, then XVIII, XIX and XXI, which should have identical steric interactions between the 4- and 5-substituents, would be expected to either all rearrange, or all not rearrange under similar conditions. In practice, XVIII and XIX partially rearrange at ca. 160°, however, in contrast to complete rearrangement of XVIII at ca. 180°, XXI does not afford any identifiable products.

Since only partial isomerisation of XVIII and XIX occurs at ca. 160°, unlike perfluoro-(2,4,5-tri-isopropylpyridine), variation in the steric interactions does affect the ease of rearrangement to some extent, however, non-isolation of a 2,4,6-isomer of XXI, under identical conditions with those for successful rearrangement of XVIII, clearly indicates that steric interactions are not the major effect in this type of reaction.

5.3.2. Stabilising effect of the 2-substituent.

The relative ease of loss of a 5-substituent in attempted rearrangements of 2,4,5-perfluoroalkylpyridines may be related to the effect of the para perfluoroalkyl substituent on the stability of the transition state and intermediate carbanion. Variation of the free energy of the transition state and intermediate carbanion alter the activation energies for the addition and displacement of the 5-perfluoroalkyl substituent, thus changing the possibility of polyfluoroalkylation of the 2,4-di-substituted derivative and rearrangement of the 2,4,5-tri-substituted compound.
Since heptafluoroisopropylation of I and II gives quantitative and partial conversion to XVIII and XIX respectively, and rearrangement of XIX to XXVI gives a slightly higher conversion than rearrangement of XVIII to XXV under identical conditions, it appears that a \(2\text{-CF}_3\text{CF}_2\) group increases the activation energy for addition of \((\text{CF}_3)_2\text{CF}^-\) at the 5-position and decreases the activation energy for loss of \((\text{CF}_3)_2\text{CF}^-\) from the 5-position. However, this argument does not appear to be true when the 5-substituent is \(\text{CF}_3\text{CF}_2\), since XXI does not readily afford a 2,4,6-isomer, which therefore suggests that the nature of the 5-substituent, and not the 2-substituent, is the controlling factor.
5.3.3. Migratory aptitude of the 5-perfluoroalkyl substituent.

The available evidence to date indicates that the possibility of fluoride ion-induced rearrangement of a 2,4,5-perfluoroalkylpyridine to the 2,4,6-isomer is governed primarily by the nature of the 5-substituent, and the relative stability of the perfluoroalkylanion formed on displacement. Since rearrangement of XIX is observed, in contrast to perfluoro-(2,4,5-triethylpyridine), the stability of the leaving perfluoroalkylanion is clearly the important factor, assuming that steric interactions are of secondary importance as shown earlier.

Clearly, loss of $(CF_3)_3C^-$ is extremely easy, due to its high stability, since no 2,4,5-isomer was observed; $(CF_3)_2CF^-$ is of intermediate stability and is displaced reasonably readily at elevated temperatures; $CF_3CF_2^-$, the least stable anion considered, was not displaced even under forcing conditions. Hence the following order of migratory aptitude for this system is postulated:

$$(CF_3)_3C^- > (CF_3)_2CF^- > CF_3CF_2^-$$

which is substantiated to some extent by the action of fluoride ion on 258 to give 259, which losses $(CF_3)_2CF^-$, in preference to $CF_3CF_2^-$, to give 260.

\[\begin{array}{c}
(CF_3)_2C=CC\text{CF}(CF_3)_2 \quad \xrightarrow{F^-} \quad (CF_3)_2C=CC\text{CF}(CF_3)_2 \quad \xrightarrow{F^-} \quad (CF_3)_2C=CC\text{CF}(CF_3)_2
\end{array} \]
EXPERIMENTAL
Reagents.

Hexafluoropropene, trifluoroethylene and bromotrifluoroethylene, purchased from Peninsular Chem. Research Inc., were utilised without further purification. Vacuum and atmospheric pyrolyses at ca. 600-700°C of powdered Teflon, kindly donated by I.C.I., provided, after rigorous vacuum fractionation, pure samples of tetrafluoroethylene and perfluoroisobutene respectively. Chlorotrifluoroethylene was prepared in high yield on dechlorination of Isceon 113, CF₂Cl-CFCl₂, with zinc dust suspended in ethanol.

Pentafluoropyridine and tetrafluoropyridazine were prepared as described in the literature. The latter was stored over magnesium carbonate and phosphorus pentoxide to exclude any traces of moisture.

The caesium fluoride was reagent grade, dried by heating under high vacuum for several days, powdered in a glove bag, stored under vacuum and, when required, equilibrated to atmospheric pressure with dry nitrogen. Attempted purification of the caesium fluoride by extracting a neutralised aqueous solution of it with methylene chloride, to remove any organic impurities, gave only identical material, as shown by i.r. spectroscopy. Caesium fluoride roasted in air in a platinum crucible was shown to be contaminated, possibly due to the formation of caesium carbonate. The potassium fluoride was reagent grade, dried by heating strongly over a bunsen flame for several days, and stored in an oven at 150°.

Sulpholan and tetraglyme were purified by fractional vacuum distillation; the middle fraction, collected over suitably dried molecular sieves (Type IVA), was retained and stored under dry nitrogen at room temperature.

Instrumentation.

Infra-red spectra were recorded on a Grubb-Parsons "Spectromaster" spectrometer and a Perkin-Elmer Model 157 spectrophotometer. Volatile
liquid or gaseous samples were vaporized into an evacuated cylindrical cell with potassium bromide end windows; liquid and low melting point solid samples were in the form of thin contact films between potassium bromide plates; solid samples were pressed into homogeneous thin discs with potassium bromide.

Ultra-violet spectra, in cyclohexane (Spectrosol grade) as solvent, were recorded using a Unicam S.P. 800 spectrophotometer.

Proton (1H) and fluorine (19F) nuclear magnetic resonance spectra were recorded on a Varian A56/60D spectrometer, operating at 60 and 56.4 Mc/s. respectively. Chemical shifts are quoted in p.p.m. relative to T.M.S. and CFCl$_3$ respectively. Variable temperature facilities permitted spectra to be recorded at temperatures different from 40°C, the standard condition.

Mass spectra were recorded using an A.E.I. M.S.9 spectrometer, and all molecular weights were determined using this instrument.

Carbon, nitrogen and hydrogen analyses were obtained using a Perkin-Elmer 240 Elemental Analyser. Analysis for halogens was as described in the literature. 162

Quantitative vapour phase chromatographic analysis (v.p.c.) was carried out on a Griffin and George, D6, Gas Density Balance (G.D.B.), using columns packed with silicone elastomer on Celite (column "O") and di-n-decyl-phthalate on Celite (column "A"). For this instrument, when correctly standardised, the number of moles of any compound in a mixture is directly proportional to its peak area. Calibration of the instrument with standard mixtures indicated that, within experimental error, this relationship was valid. Further non-quantitative chromatographic analysis was performed using Perkin-Elmer "Fractometer" models 451 and 452 with the same column packings ("O" and "A"). Preparative scale vapour phase chromatography was
performed on either a Varian "Aerograph" instrument or a Perkin-Elmer "F-21" instrument, using columns "O" and "A" in both instruments. Boiling points were determined by Siwoloboff's Method and are not corrected for changes in atmospheric pressure.

Experimental Procedure.

Introduction.

A static atmospheric pressure system was developed, as discussed previously (See Section 3.2.2.), for fluoride ion-initiated reactions of some fluoro-olefins with perfluoro-N-heteroaromatic substrates. The experimental procedure was identical in all cases, perfluoroisobutene reactions excepted, and a detailed description is most relevant at this stage.

Procedure.

The required quantities of dry caesium fluoride and dry dipolar aprotic solvent were rapidly introduced into the baked, purged reaction apparatus (Fig. 9) against a flow of dry nitrogen. Evacuation of the apparatus was accompanied by degassing of the solvent, after which the flask was heated to the required reaction temperature. Sufficient gaseous polyfluoro-olefin was admitted to the system to equilibrate it to atmospheric pressure and approximately half-fill the reservoir. The perfluoro-N-heteroaromatic substrate was rapidly added to the reaction mixture which was vigorously stirred.

Partial collapse of the reservoir and colouration of the reaction mixture were usually observed during the reaction.

On completion, the volatile material was vacuum transferred from the reaction mixture into a cold trap (liquid air) at temperatures up to ca. 90°C. An atmospheric pressure fractionation of the recovered
volatile reaction mixture was utilised for the removal of gaseous components, which were identified initially by infra-red spectroscopy and frequently shown to be unreacted polyfluoro-olefin. Exploitation of the Gas Density Balance (column "O", 78°C) permitted analysis of, and product yield estimation in the residual colourless or pale yellow liquid, the components of which were frequently separated by preparative scale gas chromatography.

The residual involatile reaction material was poured into water (400 mls.), extracted with ether (4 x 25 mls.) and the combined extracts washed with water (2 x 10 mls.). After drying (MgSO₄) and filtering the extracts, removal of the solvent invariably left a dark brown tarry residue, vacuum distillation of which gave small amounts of yellow oil and intractable tar.
Chromatographic analysis (G.D.B., column "O", 150°C) of the oil frequently indicated the presence of extracted dipolar aprotic solvent and higher boiling material, possibly olefin oligomers, formed in side reactions.
6.1. Reactions of tetrafluoroethylene with pentafluoropyridine.

Atmospheric pressure, fluoride ion-initiated reactions of tetrafluoroethylene and pentafluoropyridine resulted in the formation of perfluoroethylpyridines as shown in Scheme 1.

\[
\text{F} + \text{nCF}_2 = \text{CF}_2 + \text{CsF, 80}^\circ \text{CsF, 80}^\circ \text{tetraglyme} \rightarrow \text{I} + \text{II} + \text{III} + \text{IV} + \text{V}
\]

Scheme 1

6.1.1. Short reaction times.

A series of reactions was undertaken to investigate the effect of reaction time upon product distribution at 80\(^\circ\). The standard experimental procedure was adopted (See p. 141), using caesium fluoride (3.0 g., 20 m.moles), tetraglyme (40 mls.), pentafluoropyridine (3.0 g., 17.8 m.moles) and excess tetrafluoroethylene (10.0 g., 100 m.moles).

The gaseous material recovered was shown, by infra-red spectroscopy, to be entirely unreacted tetrafluoroethylene. Chromatographic analysis (G.D.B., column "O", 78\(^\circ\)) of the volatile material indicated unreacted pentafluoropyridine and perfluoroethylpyridines, I (shortest ret. time)
to V (longest ret. time), in various proportions depending upon the reaction time. Similar analysis of the extracted material showed, for the longer reaction times, small amounts of III, IV and V only. Total yields of products, calculated from the chromatogram and based on the weight of pentafluoropyridine consumed, are summarised in Table 12.

Separation of the mixtures obtained from the above reactions was effected, with difficulty, by preparative scale gas chromatography (Aerograph, column "O", 80°). Only products I, II and III were characterised fully since IV was difficult to obtain pure in reasonable quantities, and V has been characterised previously.101

I was shown to be perfluoro-(4-ethylpyridine) b.pt. 114-115°.

(Found: C, 31·5; F, 64·1%; M, 269. \(C_{9}F_{13}N\) requires C, 31·2; F, 63·6%; M, 269). I.R. spectrum No. 1. \(\lambda_{\text{max}}\) (cyclohexane) = 280·5 \(\mu\mu\); (\(\varepsilon\), 3865).

Broad absorptions in the \(^{19}\text{F} \text{n.m.r.}\) at 89·0 and 140·3, due to two fluorines each, were assigned to the 2,6 and 3,5 ring positions respectively, consistent with calculated chemical shifts. Further absorptions at 86·6, (\(\text{CF}_{3}^-\)) and 113·2, (\(\text{CF}_2^-\)) were also observed.

II was shown to be perfluoro-(2,4-diethylpyridine), b.pt. 140-141°.

(Found: C, 29·5; F, 66·5%; M, 369. \(C_{9}F_{13}N\) requires C, 29·3; F, 66·9%; M, 369). I.R. spectrum No. 2. \(\lambda_{\text{max}}\) (cyclohexane) = 275·5 \(\mu\mu\); (\(\varepsilon\), 4747).

Broad absorptions in the \(^{19}\text{F} \text{n.m.r.}\) at 83·8, 118·5 and 126·4, due to single fluorines, were assigned to the 6, 3 and 5 ring positions respectively and were consistent with calculated chemical shifts for 2 substitution by \(\text{CF}_3^-\) in I. Further absorptions at 84·9, (2-\(\text{CF}_3\)); 86·6, (4-\(\text{CF}_3\)); 113·5, (4-\(\text{CF}_2\)) and 116·9, (2-\(\text{CF}_2\)) were assigned from the chemical shift and observed fine structure.
<table>
<thead>
<tr>
<th>Reaction Time (hours)</th>
<th>Weight of recovered C_2F_4</th>
<th>Weight of recovered volatile material</th>
<th>Products: Percentage Yields* (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C_7F_9N</td>
<td>$C_9F_{13}N$</td>
</tr>
<tr>
<td>1</td>
<td>8.5 g.</td>
<td>3.1 g.</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>2</td>
<td>7.5 g.</td>
<td>3.25 g.</td>
<td>76</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7.0 g.</td>
<td>3.6 g.</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>7.0 g.</td>
<td>3.6 g.</td>
<td>46</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>7.5 g.</td>
<td>3.8 g.</td>
<td>41</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>6.5 g.</td>
<td>3.8 g.</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>6.5 g.</td>
<td>3.9 g.</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>6.0 g.</td>
<td>3.8 g.</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

* Based on the weight of C_5F_5N consumed.
III was characterised as perfluoro-(2,4,5-triethylpyridine),
b.p.t. 165-166°. (Found: C, 28.2; F, 68.5%; M, 469. \(\text{C}_{11}\text{F}_{17}\text{N}\) requires C, 28.2; F, 68.8%; M, 469). I.R. spectrum No. 3. \(\lambda_{\text{max}}\) (cyclohexane) = 285 m\(\mu\); (\(\varepsilon\), 6470).

Broad absorptions in the \(^{19}\text{F}\) n.m.r. at 55.5 and 115.7, due to single fluorines, were assigned to the 6 and 3 ring positions respectively, and were consistent with the calculated chemical shifts for 5 substitution by \(\text{C}_2\text{F}_5^-\) in II. Further resonances at 81.4, (4 and 5-CF\(_3\)); 83.2, (2-CF\(_3\)); 103.3, (4 and 5-CF\(_2\)) and 116.0, (2-CF\(_2\)) were observed; assignments were based upon the similarity of the electronic environment of the 4 and 5 pentafluoroethyl groups.

6.1.2. Long reaction times.

Two identical atmospheric pressure reactions at (a) ca. 80° and (b) ca. 120° for 7 days were carried out using caesium fluoride, tetraglyme, pentafluoropyridine and tetrafluoroethylene (for quantities, See Table 13). The recovered gaseous material was identified as unreacted tetrafluoroethylene, by comparison of the i.r. spectrum with that of an authentic sample. Recovered products, for both reactions, consisted of a colourless liquid and a white crystalline solid, identified as V by comparison of the i.r. spectrum with that of an authentic sample obtained previously.\(^{101}\)

In both cases, chromatographic analysis (G.D.B., column "O", 78°) of the colourless liquid indicated the presence of III, IV, V and an unknown product of almost identical retention time to IV. Attempted preparative scale v.p.c. separation (Aerograph, columns "O" and "A", 80°) was futile, and gave only sufficient of the unknown compound for a mass spectrum, which had a similar breakdown pattern to known perfluoroalkylpyridines and \(m/e = 769\). It is tentatively suggested that such a product results
Table 13

<table>
<thead>
<tr>
<th></th>
<th>C5F5N</th>
<th>C2F4</th>
<th>CsF</th>
<th>Tetraglyme</th>
<th>Weight of recovered C2F4</th>
<th>Weight of volatile product</th>
<th>Weight of white solid</th>
<th>Weight of residual yellow oil</th>
<th>Estimated Yields*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3.0 g,</td>
<td>10.0 g,</td>
<td>3.0 g,</td>
<td>40 mls.</td>
<td>2.0 g, 20 m.moles</td>
<td>3.0 g.</td>
<td>1.6 g.</td>
<td>4.4 g.</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>17.8 m.moles</td>
<td>100 m.moles</td>
<td>20.0 m.moles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>3.0 g,</td>
<td>10.0 g,</td>
<td>3.0 g,</td>
<td>40 mls.</td>
<td>1.0 g, 10 m.moles</td>
<td>3.2 g.</td>
<td>0.95 g.</td>
<td>3.0 g.</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>17.8 m.moles</td>
<td>100 m.moles</td>
<td>20.0 m.moles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Based on 100% conversion.
from the dimerisation of tetrafluoroethylene and subsequent reaction of the perfluoro-sec.-butyl anion with pentafluoropyridine, II or IV.

The involatile reaction mixtures were worked up as usual and resulted in yellow oils which, on analysis (G.D.B., column "O", 78°), did not contain any perfluoroethylpyridines.

6.2. Reactions of tetrafluoroethylene with tetrafluoropyridazine.

Atmospheric pressure, fluoride ion-initiated reactions of tetrafluoroethylene and tetrafluoropyridazine, of less than 5 hours and analogous to 6.1.1., resulted in the formation of perfluoroethylpyridazines as shown in Scheme 2.

6.2.1. Short reaction times.

The standard experimental procedure was adopted (See p. 141). Reaction times exceeding five hours were not investigated owing to the low recovery of volatile products and the increased formation of intractable tarry residues. Caesium fluoride (3·0 g., 20·0 m.moles), tetraglyme (35 ml.), tetrafluoropyridazine (3·0 g., 19·7 m.moles) and excess tetrafluoroethylene (10·0 g., 100 m.moles) were stirred vigorously at ca. 80°.
The recovered gaseous material was identified, by comparison of the i.r. spectrum with that of an authentic sample, as unreacted tetrafluoroethylene. Chromatographic analysis (G.D.B., column "O", 78°) of the recovered volatile material indicated unreacted tetrafluoropyridazine and perfluoroethylpyridazines, VI (shortest ret. time) to VIII (longest ret. time), in various proportions depending upon the reaction time. A similar analysis of the extracted involatile reaction mixture showed the absence of VI, VII and VIII. The quantities of recovered materials and yields of products, calculated from the chromatogram and based on the weight of tetrafluoropyridazine consumed, are summarised in Table 14.

The mixtures obtained were separated, with difficulty by preparative scale v.p.c. ("F21" and Aerograph, column "O", 80°). The products, VI to VIII were subsequently characterised.

VI was shown to be perfluoro-(4-ethylpyridazine), b.pt. 144°. (Found: C, 28.3; F, 60.6%; M, 252. \(\text{C}_6\text{F}_8\text{N}_2\) requires C, 28.5; F, 60.4%; M, 252). I.R. spectrum No. 4. \(\lambda_{\text{max}}\) (cyclohexane) = 262.5 μm; (ε, 2582).

Broad absorptions in the \(^{19}\text{F}\) n.m.r. at 77.4, 97.5 and 120.6, due to single fluorines, were assigned to the 3, 6 and 5 ring positions respectively, and were consistent with calculated chemical shifts for 4-substitution in tetrafluoropyridazine. Further resonances at 87.0, \(\text{CF}_3\) and 115.0, \(\text{CF}_2\) were also observed.

VII was identified as perfluoro-(4,5-di-ethylpyridazine), m.pt. 37-37.5°. (Found: C, 27.5; F, 64.2%; M, 352. \(\text{C}_8\text{F}_{12}\text{N}_2\) requires C, 27.3; F, 64.8%; M, 352). I.R. spectrum No. 5. \(\lambda_{\text{max}}\) (cyclohexane), 277 and 285.5 inf1. μm; (ε, 4990 and 4475 respectively).

A broad absorption in the \(^{19}\text{F}\) n.m.r. at 77.7, due to two fluorines, was assigned to the 3,6 ring positions and was consistent with the calculated chemical shift for 5 substitution by \(\text{C}_2\text{F}_5\) in VI. Two resonances at 82.6, (4 and 5-\(\text{CF}_3\)) and 107.2, (4 and 5-\(\text{CF}_2\)) confirmed the
Table 14

<table>
<thead>
<tr>
<th>Reaction Time (hrs)</th>
<th>Weight of recovered (\text{C}_2\text{F}_4) (g)</th>
<th>Weight of recovered volatile material (g)</th>
<th>Weight of recovered involatile material (g)</th>
<th>Products: Percentage Yields* (%)</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9·0</td>
<td>2·7</td>
<td>0·9</td>
<td>(\text{C}_6\text{F}_8\text{N}_2) (VI) 37</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\text{C}8\text{F}{12}\text{N}_2) (VII) 7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8·5</td>
<td>2·1</td>
<td>1·9</td>
<td>(\text{C}{10}\text{F}{16}\text{N}_2) (VIII) -</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>7·5</td>
<td>1·7</td>
<td>2·85</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>7·0</td>
<td>1·35</td>
<td>4·2</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>7·0</td>
<td>0·75</td>
<td>4·9</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

* Based on the weight of \(\text{C}_4\text{F}_4\text{N}_2 \) consumed.
symmetrical substitution pattern.

VIII was shown to be perfluoro-(3,4,5-tri-ethylpyridazine), b.pt. 174-175°. (Found: C, 26.3; F, 66.7%; M, 452. C₁₀F₁₆N₂ requires C, 26.5; F, 67.3%; M, 452). I.R. spectrum No. 6. λ_max (cyclohexane) = 268 μμ; (Ε, 3130).

A broad absorption in the ¹⁹F n.m.r. at 70.2, due to a single fluorine, was assigned to the 6 ring position and was consistent with the calculated chemical shift for 3 substitution by C₂F₅- in VII. Complex resonances at 81.0, (4 and 5-CF₃) and 74.5, (3-CF₃), and broad absorptions at 93.0, 104.7 and 108.0, due to the difluoromethylene moieties, were also observed.

6.3. Reaction of perfluoroisobutene with pentafluoropyridine.

6.3.1. Excess perfluoroisobutene.

The hazardous nature of perfluoroisobutene necessitated the use of a slightly modified experimental technique for atmospheric pressure reactions. Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (35 mls.) and pentafluoropyridine (3.0 g., 17.8 m.moles) were introduced into the baked, purged apparatus (Fig. 10), which was subsequently sealed. After cooling the reaction flask in liquid air, the apparatus was evacuated. Perfluoroisobutene, from a pre-weighed cylinder, was admitted to the isolated apparatus, as it was heated to ca. 80°, until a small positive pressure was exerted. Rapid vacuum formation was observed when the reaction mixture was stirred vigorously, and further quantities of olefin were admitted to the apparatus. After ca. 30 mins. the rate of reaction decreased, even with a small positive pressure, and stirring was continued for a further 6½ hr.; a vacuum was formed slowly owing to dimerisation of the olefin. The weight of perfluoroisobutene consumed (15.0 g.,
75 m.moles) was obtained, after the reaction, on weighing the cylinder.

Removal of the volatile reaction product, under vacuum at temperatures up to ca. 90°, gave a colourless liquid (4.0 g.) and a white solid, which was contaminated with sulpholan. Chromatographic analysis (G.D.B., column "O", 78°) of the former indicated dimers of perfluoroisobutene and dissolved white solid. The contaminated solid was washed with boiling water to remove the sulpholan, filtered and recrystallised from ethyl acetate to give a white crystalline solid (10.0 g.), perfluoro-(2,4,6-tri-t-butylpyridine) (85% yield) m.pt. 161-162°. (Found: C, 26.4; F, 71.9%; M, 769. \(\text{C}_{17}\text{F}_{29}\text{N} \) requires C, 26.5; F, 71.7%; M, 769). I.R. spectrum No. 7.
\(^{19}\text{F n.m.r.} \) (ca. \(180^\circ\)) showed three absorptions, two of which overlapped, at (a) \(60.7\), \((4-(\text{CF}_3)_3\text{C})\); (b) \(61.8\), \((2,6-(\text{CF}_3)_3\text{C})\); (c) \(87.3\), \((3,5-\text{F})\); integration of \((a + b):c\) was 27:2.

The residual involatile reaction mixture was worked up in the usual manner and gave only a small amount \((0.2 \ \text{g.})\) of intractable tar.

6.4. Reaction of perfluoroisobutene with tetrafluoropyridazine.

6.4.1. Excess perfluoroisobutene.

The procedure adopted was identical with that described in 6.3.1. Caesium fluoride \((3.0 \ \text{g.},\ 20.0 \ \text{m.moles})\), sulpholan \((35 \ \text{mls.})\), tetrafluoropyridazine \((3.0 \ \text{g.},\ 19.7 \ \text{m.moles})\) and perfluoroisobutene \((12.0 \ \text{g.},\ 60.0 \ \text{m.moles})\) were stirred vigorously at ca. \(80^\circ\) for 10 hours; a vacuum was formed. Removal of the volatile reaction products under vacuum at temperatures up to ca. \(90^\circ\) gave a colourless liquid \((1.4 \ \text{g.})\).

Chromatographic analysis \((\text{G.D.B.}, \ \text{column} \ "O", \ 78^\circ)\) showed oligomers of the olefin and two products. The major product had an identical retention time to the crystalline solid isolated from the involatile reaction mixture.

A sulpholan and water insoluble product, which had partially sublimed, was filtered off during the standard work-up procedure and recrystallised from acetone to give a white solid \((7.5 \ \text{g.})\), \textit{perfluoro-(3,6-di-t-butyl-pyridazine)}, m.pt. \(135-136^\circ\) \((75\% \ \text{yield})\). \(\text{Found:} \ C, 26.3; \ F, 69.3%; \ M, 552. \ C_{12}F_{20}N_2 \) requires \(C, 26.1; \ F, 68.8%; \ M, 552\). \(\text{I.R. spectrum No. 8.}\)

Absorptions in the \(^{19}\text{F n.m.r.} \) (acetone) at \(62.4\) and \(129.2\) in the ratio 9:1 were assigned to the \(3,6-(\text{CF}_3)_3\text{C}\) and 4,5 ring fluorines respectively; the latter was consistent with approximate calculated chemical shifts for 3,6 rather than 4,5 di-substitution.
Extraction of the aqueous involatile reaction mixture gave only a small amount (0.35 g.) of intractable tar.

6.5. Reactions of perfluoroalkylpyridines.

6.5.1. Defluorination Reactions.

The standard procedure employed in these reactions was to pass the compound to be defluorinated through a silica tube (ca. 75 cms. in length), containing a suitable defluorinating agent (coarse iron filings or zinc dust/shavings as specified), by means of a steady flow of nitrogen, and application of heat to the sample. The defluorination tube was heated by a cylindrical heater and the products were collected in a cold trap. The average nitrogen flow rate was approximately 1 litre/hour.

(a) Defluorination of perfluoro-(4-ethylpyridine), C$_7$F$_9$N.

\[
\text{C}_7\text{F}_9\text{N (I) was passed in the vapour phase through the silica tube containing coarse iron filings. The reaction was investigated over a range of temperatures (See Table 15). Chromatographic analysis (G.D.B., column "A", 78°) of the products indicated unreacted starting material and a single product (IX).}
\]

\[
\begin{align*}
\text{I} & \xrightarrow{\text{Fe, ca. 420°}} \text{IX} \\
\text{C}_7\text{F}_9\text{N} & \quad \text{F} \\
\end{align*}
\]

The product obtained, after separation (Aerograph, column "O", 90°) was a colourless liquid, identified as perfluoro-(4-vinylpyridine), b.p.t. 130°. (Found: C, 36.1; F, 58.0%; M, 231. C$_7$F$_9$N requires C, 36.4; F, 57.6%; M, 231). I.R. spectrum No. 9. λ_{max} (cyclohexane) = 249 and 282 m$_\mu$; (ε, 7430 and 6550).
Table 15

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>C₇F₉N</th>
<th>Weight recovered</th>
<th>Products Yield* C₇F₉N</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>1.0 g., 3.7 m.moles</td>
<td>0.8 g.</td>
<td>50%</td>
<td>35%</td>
</tr>
<tr>
<td>420</td>
<td>1.0 g., 3.7 m.moles</td>
<td>0.6 g.</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>450</td>
<td>1.0 g., 3.7 m.moles</td>
<td>0.25 g.</td>
<td>25%</td>
<td>95%</td>
</tr>
</tbody>
</table>

* Based on the weight of C₇F₉N consumed.

Broad absorptions in the 19F n.m.r. at 89.2 and 138.8, due to two fluorines each, were assigned to the 2,6 and 3,5 ring positions respectively. Further absorptions at 93.8, 124.1 and 175.6 were assigned, by comparison with the spectrum of octafluorostyrene, to the vinylic fluorines.

(b) Attempted defluorination of C₇F₉N over zinc.

C₇F₉N (I) was passed in the vapour phase through a silica tube packed with a mixture of zinc dust and shavings at various temperatures (See Table 7). Chromatographic analysis (G.D.B., columns "O" and "A", 78°) of the recovered product showed unreacted starting material and, for higher temperatures, low yields of C₇F₇N (IX); the yield of product at ca. 380° was ~12%.

Table 7

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>C₇F₉N</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>1.0 g., 3.7 m.moles</td>
<td>0.8 g. unchanged C₇F₉N</td>
</tr>
<tr>
<td>320</td>
<td>0.6 g., 2.2 m.moles</td>
<td>0.55 g. unchanged C₇F₉N</td>
</tr>
<tr>
<td>380</td>
<td>0.7 g., 2.6 m.moles</td>
<td>0.2 g. mixture of C₇F₉N and C₇F₇N</td>
</tr>
</tbody>
</table>
(c) Defluorination of perfluoro-(4-isopropylpyridine), C₈F₁₁N.

\[\text{CF}_3 \text{CF} \] \[\text{C} \text{C} \text{CF}_3 \]

\[\text{Fe, ca. 420°} \]

\[\text{F}_2 \]

\[\equiv \]

\[\text{X} \]

C₈F₁₁N was passed in the vapour phase through the silica tube containing coarse iron filings. The reaction was investigated over a range of temperatures (See Table 8).

Table 8

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>C₈F₁₁N</th>
<th>Weight</th>
<th>Products</th>
<th>Yield* C₉F₉N</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>1·0 g., 3·14 m.moles</td>
<td>0·5 g.</td>
<td>45%</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>1·0 g., 3·14 m.moles</td>
<td>0·4 g.</td>
<td>45%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>1·0 g., 3·14 m.moles</td>
<td>Only gaseous material recovered</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Yield of C₉F₉N based on the weight of C₈F₁₁N consumed.

The product obtained, X, was a colourless liquid identified as 2-(2',3',5',6'-tetrafluoropyridyl)-pentafluoropropene, b.pt. 135°. (Found: C, 34·1; F, 60·5%; M, 281. C₈F₁₁N requires C, 34·2; F, 60·1%; M, 281). I.R. spectrum No. 10. \(\lambda_{\text{max}} \) (cyclohexane) = 276·5 m\(\mu \); (E, 3760).

Broad absorptions in the \(^{19}\text{F} \text{n.m.r.} \) at 89·2 and 139·8, both due to two fluorines, were assigned to the 2,6 and 3,5 ring positions respectively. Further resonances at 59·5 and 68·5 were assigned to the trifluoromethyl and vinyl fluorines respectively; the latter was complex.
6.5.2. **Nucleophilic substitution with methoxide ion.**

The standard procedure employed for nucleophilic substitution reactions with methoxide ion (CH$_3$O$^-$) was the addition of a predetermined volume of standard methanolic sodium methoxide solution, diluted with a similar volume of dry methanol, to a dry methanolic solution (30 mls.) of the compound at room temperature in baked, purged apparatus. The dropwise addition, with stirring, was carried out over a period of approximately one hr. The reaction mixture was stirred for a further 3 hr., with heat if necessary, poured into water (300 mls.), acidified, and the aqueous mixture extracted with methylene chloride (4 x 25 mls.). The combined extracts were washed with water (2 x 10 mls.), dried (MgSO$_4$), and the product obtained on removal of the solvent.

(a) **Preparation of 4-pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine.**

The standard experimental procedure was adopted, with addition of 28.3 mls. 0.08M methanolic sodium methoxide (2.3 m.moles) and dry methanol (25 mls.) to a stirred solution of perfluoro-(4-ethylpyridine) (0.6 g., 2.2 m.moles) in dry methanol (30 mls.). The recovered product, after the work-up procedure, was a single component (column "A", 125$^\circ$), pale yellow liquid which was shown to be 4-pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine, (0.5 g., 80% yield), b.pt. 164-165$^\circ$. (Found: C, 34.3; H, 1.3; F, 53.5%; M, 281. C$_8$H$_3$F$_8$NO requires C, 34.2; H, 1.1; F, 54.1%; M, 281). I.R. spectrum No. 11. λ_{max} (cyclohexane) = 299 μm; (E, 5180).

Broad absorptions in the 19F n.m.r. at 91.6, 139.0 and 151.5, due to single fluorines, were assigned to the 6, 3 and 5 ring positions and were consistent with the calculated chemical shifts. Further resonances at 86.0, (4-CF$_3$); 112.9, (4-CF$_2$) and, in the 1H n.m.r., 4.0, (OCH$_3$) were also observed.
(b) **Preparation of 2,4-perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine.**

Two reactions were carried out, at ca. 20° and 70°, between perfluoro-(2,4-di-ethylpyridine) (0.5 g., 1.36 m.moles) in dry methanol (30 mls.) and 17.2 mls. 0.08M methanolic sodium methoxide (1.38 m.moles) in dry methanol (15 mls.) using the standard procedure. Solvent extraction with methylene chloride gave, in both cases, identical, single component (column "A", 125°), pale yellow liquids which were shown to be 2,4-perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine. (0.45 g., 85% yield), b.pt. 195-196°. (Found: C, 31.2; H, 1.0; F, 59.8%; M, 381. C_{10}H_{3}F_{12}NO requires C, 31.5; H, 0.8; F, 59.8%; M, 381). I.R. spectrum No. 12. λ_{max} (cyclohexane) = 286 μm; (ε, 5025).

Broad absorptions in the 19F n.m.r. at 77.8 and 123.2, due to single fluorines, were assigned to the 6 and 3 ring positions respectively and were consistent with the calculated chemical shifts, which were sufficiently different for 5 and 6 substitution to differentiate the two possibilities. Further absorptions at 85.5, (2-CF$_3$); 86.4, (4-CF$_3$); 116.4, (4-CF$_2$); 117.2, (2-CF$_2$) and, in the 1H n.m.r., at 3.9, (OCH$_3$) were also observed.

(c) **Preparation of 2,4-perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine.**

Reaction of perfluoro-(2,4-di-isopropylpyridine) (0.5 g., 1.07 m.moles) in dry methanol (30 mls.) with 13.6 mls. 0.08M methanolic sodium methoxide (1.09 m.moles) in dry methanol (10 mls.), using the standard procedure at ca. 20° and 85°, gave a single component (column "A", 125°), pale yellow liquid which was shown to be 2,4-perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine. (0.45 g., 88% yield), b.pt. 199-200°. (Found: C, 29.7; H, 0.6; F, 63.1%; M, 481. C_{12}H_{3}F_{16}NO requires C, 29.9; H, 0.6; F, 63.2%; M, 481). I.R. spectrum No. 13. λ_{max} (cyclohexane) = 286 μm; (ε, 5620).
Broad absorptions in the 19F n.m.r. at 78.7 and 120.2, comparable to (b) previously and due to single fluorines, were similarly assigned to the 6 and 3 ring positions respectively. Absorptions were also observed for the trifluoromethyl groups, (76.2), and tertiary fluorines, (179.6 and 185.5), of the isopropyl substituents and, in the 1H n.m.r., for the methoxyl group, (3.8).

6.6. Reactions of perfluoroalkylpyridazines.

6.6.1. Nucleophilic substitution with methoxide ion.

(a) Preparation of 4-pentafluoroethyl-5-methoxy-3,6-difluoropyridazine.

Reaction of perfluoro-(4-ethylpyridazine) (0.5 g., 1.98 m.moles) in dry methanol (30 mls.) with 22.0 mls. 0.096M methanolic sodium methoxide in dry methanol (20 mls.), using the standard procedure (6.5.2.) at ca. 70°, gave a single component (column "A", 125°), yellow liquid which was shown to be 4-pentafluoroethyl-5-methoxy-3,6-difluoropyridazine, (0.4 g., 75% yield), decomposed above 100°. (Found: C, 32.0; H, 1.3; F, 50.1%; M, 264. $C_7H_3F_7N_2O$ requires C, 31.8; H, 1.1; F, 50.4%; M, 264). I.R. spectrum No. 14.

Broad absorptions in the 19F n.m.r. at 81.4 and 90.2, due to single fluorines, were assigned to the 3 and 6 ring positions respectively and were consistent with the calculated chemical shifts, which were sufficiently different for 3,5 and 6 substitution to differentiate the possibilities. Further resonances were observed at 85.5, (4-CF$_3$); 113.6, (4-CF$_2$) and, in the 1H n.m.r., 4.2, (OCH$_3$).

6.6.2. Attempted hydrolysis reactions of perfluoro-(3,6-di-t-butylpyridazine).

(a) Sulphuric acid.

i) $C_{12}F_{20}N_2$ (0.5 g., 0.9 m.moles) in concentrated sulphuric
acid (12 mls.) was treated dropwise with water (35 mls.) during 90 mins.
with vigorous stirring. The mixture was stirred for a further 60 mins.
at ca. 80°, cooled and then extracted with 4 x 25 ml. aliquots of ether.
The combined extracts were washed with saturated sodium sulphate
solution, dried (MgSO₄) and removal of the solvent left a white solid
(0.5 g.). This was recrystallised from acetone and was shown, by
infra-red and ¹⁹F n.m.r. spectroscopy, to be entirely unreacted starting
material.

ii) C₁₀F₂₀N₂ (1.0 g., 1.8 m.moles) in conc. sulphuric acid (10 mls.)
and water (5 drops) was heated to ca. 160° for 45 hr. A white sublimate
collected in the condenser and was recrystallised from acetone to give
unreacted starting material (0.3 g.) m.pt. 139-140°, identified by
comparison of the infra-red spectrum with that of an authentic sample.
The remaining sulphuric acid solution was poured into water and the
resulting precipitate (0.5 g.) washed with water, sublimed (220°/0.001 mm.)
with difficulty to give a light brown powdery solid similar to that
obtained in (b), and thought to be polymeric in nature.

(b) Potassium hydroxide in t-butanol.

i) C₁₂F₂₀N₂ (0.9 g., 1.6 m.moles), potassium hydroxide (0.4 g.,
7.15 m.moles) and t-butanol (9 mls.) were stirred under reflux at ca. 70°
for 5 hr. Water (15 mls.) was then added and the alcohol distilled
off, giving a white precipitate. The cooled reaction mixture was
acidified (dil. HCl) and methylene chloride added; the insoluble
precipitate was filtered off. The solid was dried under vacuum at
c. 190°, since an attempted sublimation was unsuccessful, to give a
light brown involatile solid (0.7 g.), stable at 350°, (Found: C, 24.1;
N, 4.8; F, 56.8%). I.R. spectrum No. 15. Too involatile to obtain
a mass spectrum. ¹⁹F n.m.r. indicated the possibility of perfluoro-t-
butyl groups but no ring fluorines were observed.

The combined methylene chloride extracts were dried (MgSO₄) and removal of the solvent left a small quantity (<0.1 g.) of intractable residue which was not investigated further.

ii) C₂₆F₂₂N₂ (0.65 g., 1.2 m.moles), potassium hydroxide (0.2 g., 3.55 m.moles) and t-butanol (9 mls.) were stirred at ca. 25° for 17 hr. Water (15 mls.) was then added and the alcohol distilled off, giving a white precipitate. The cooled reaction mixture was acidified, the precipitate filtered off and dried under vacuum at ca. 190° to give a light brown solid (0.5 g.), the infra-red spectrum of which was identical with that obtained in (i) previously. Extraction of the aqueous solution with methylene chloride gave a yellow oil (<0.1 g.) which was not identified.
CHAPTER 7

Experimental for Chapter 4

7.1. Chlorotrifluoroethylene, CF$_2$=CFCl.

7.1.1. Reactions of chlorotrifluoroethylene with pentafluoropyridine.

Caesium fluoride (3·0 g., 20·0 m.moles), sulpholan or tetraglyme (35 mls.), C$_5$F$_5$N (3·0 g., 17·8 m.moles) and CF$_2$=CFCl (for quantities and reaction conditions, See Table 16) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 90°. Removal of the volatile products under vacuum gave unreacted CF$_2$=CFCl, identified by i.r. spectroscopy, and a colourless liquid. Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed, in order of increasing retention times, unreacted C$_5$F$_5$N, I, II, III, XI and XII, 1-chloro-1-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane, (Scheme 3). The products were separated by preparative scale v.p.c. (Aerograph, column "O", 80°) and identified by comparison of the i.r. spectra with those of authentic samples. Vacuum distillation of the extracts of the involatile reaction mixtures gave small quantities of yellow oily liquids which did not contain any identifiable products.
Table 16

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reaction Time</th>
<th>(\text{CF}_2\text{CFC}_1)</th>
<th>Weight of Volatile Products</th>
<th>Weight of Residue</th>
<th>Percentage Yields*</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initially</td>
<td>Recovered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>4 hr.</td>
<td>9.0 g., 772 m.moles</td>
<td>2.0 g.</td>
<td>2.3 g.</td>
<td>0.8 g.</td>
<td>15 4 3 4 15</td>
</tr>
<tr>
<td>S</td>
<td>24 hr.</td>
<td>12.0 g., 103 m.moles</td>
<td>3.0 g.</td>
<td>3.1 g.</td>
<td>1.0 g.</td>
<td>19 8 8 5 17</td>
</tr>
<tr>
<td>T</td>
<td>4 hr.</td>
<td>8.0 g., 686 m.moles</td>
<td>1.8 g.</td>
<td>3.2 g.</td>
<td>1.2 g.</td>
<td>- 6 4 8 46</td>
</tr>
<tr>
<td>T</td>
<td>24 hr.</td>
<td>9.0 g., 772 m.moles</td>
<td>1.9 g.</td>
<td>3.1 g.</td>
<td>1.0 g.</td>
<td>- 5 8 9 40</td>
</tr>
</tbody>
</table>

* Based on the weight of \(\text{C}_5\text{F}_5\text{N} \) consumed.

S = Sulpholane.

T = Tetraglyme.
7.1.2. Reactions of chlorotrifluoroethylene and tetrafluoropyridazine.

Scheme 4

(a) Two identical atmospheric pressure reactions (See p. 141) with (i) sulpholan and (ii) tetraglyme were carried out in which caesium fluoride (3.0 g., 20.0 m.moles), solvent (35 mls.), \(C_F^2N_2\) (4.0 g., 26.3 m.moles) and \(CF_2=CFC1\) (for quantities and yields, See Table 17) were stirred at ca. 90° for 24 hr. Removal of the volatile products under vacuum gave unreacted \(CF_2=CFC1\), identified by i.r. spectroscopy, and a pale yellow lachrymatory liquid. Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed unreacted \(C_F^2N_2\), two products (VI) and (VII) (Scheme 4) and a small quantity of unidentified material (< 5%) with similar retention time to 4-chloro-3,5,6-trifluoropyridazine. VI and VII were separated by preparative scale v.p.c. (Aerograph, column "O", 95°) and identified by comparison of the i.r. and \(^{19}\text{F} n.m.r.\) spectra with those of authentic samples.

Table 17

<table>
<thead>
<tr>
<th></th>
<th>(CF_2=CFC1) Initially</th>
<th>Recovered</th>
<th>Weight of volatile product</th>
<th>Percentage Yield* VI VII</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>8.0 g., 68.6 m.moles</td>
<td></td>
<td>5.0 g.</td>
<td>57 19</td>
<td>58%</td>
</tr>
<tr>
<td>(ii)</td>
<td>10.0 g., 85.8 m.moles</td>
<td>2.0 g.</td>
<td>4.2 g.</td>
<td>41 9</td>
<td>53%</td>
</tr>
</tbody>
</table>

* Based on the weight of \(C_F^2N_2\) consumed.
Extraction of the involatile reaction mixture gave small quantities (approx. 0.1 g.) of yellow oily residue which did not contain any identifiable products.

(b) Potassium fluoride (7.0 g., 120.7 m.moles), sulpholan (45 mls.), C₄F₄N₂ (5.0 g., 32.8 m.moles) and CF₂=CFCl (11.0 g., 94.4 m.moles) were stirred in a standard atmospheric pressure reaction (See p. 141), at ca. 120° for 9 hr. Removal of the volatile products under vacuum gave unreacted CF₂=CFCl (2.0 g.), identified by i.r. spectroscopy, and a pale yellow liquid (7.0 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed a three component mixture of VI, VII and perfluoro-(3,4,5-tri-ethylpyridazine) in 23%, 32% and 9% yields respectively. The products were separated by preparative scale v.p.c. (Aerograph, column "O", 95°) and identified by comparison of the i.r. and ¹⁹F n.m.r. spectra with those of authentic samples. Extraction of the involatile reaction mixture gave an intractable tarry residue (3.6 g.).

7.1.3. Reaction of chlorotrifluoroethylene and cyclohexene.

Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (35 mls.), cyclohexene (12.0 g., 146.3 m.moles) and CF₂=CFCl (8.0 g., 68.6 m.moles) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 90° for 17 hr. Removal of the volatile products under vacuum gave unreacted CF₂=CFCl (0.5 g.), identified by i.r. spectroscopy, and a colourless liquid (11.6 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed a single component which was identified as cyclohexene by comparison of the i.r. spectrum with that of an authentic sample. Vacuum distillation of the extracts of the involatile reaction mixture gave a small quantity of yellow oil (0.3 g.), identified by i.r. spectroscopy as sulpholan, and an intractable tarry residue (5.7 g.).
7.1.4. Reactions of \(C_{7}F_{8}NCl \), (XII).

(a) With caesium fluoride.

i) Atmosphere of nitrogen.

Caesium fluoride (2.0 g., 13.3 m.moles), sulpholan (20 mls.) and \(C_{7}F_{8}NCl \) (XII) (0.95 g., 3.3 m.moles) were stirred under an atmosphere of dry nitrogen at ca. 90° for 24 hr. Removal of the volatile products under vacuum gave a colourless liquid (0.6 g.) which was shown to be a single component (G.D.B., column "0", 78°) and identified by i.r. and \(^{19}F \) n.m.r. spectroscopy as perfluoro-(4-ethylpyridine) (60% yield; 100% conversion). Extraction of the involatile reaction mixture gave an intractable tarry residue (0.1 g.).

ii) Atmosphere of \(CF_2=CFCl \).

Two atmospheric pressure reactions (See p. 141) for (a) 1 hr. and (b) 48 hr. at ca. 90° were carried out using caesium fluoride, sulpholan, \(C_{7}F_{8}NCl \) (XII) and \(CF_2=CFCl \) (for quantities, See Table 18). Removal of the volatile products under vacuum gave, in both cases, unreacted \(CF_2=CFCl \), identified by i.r. spectroscopy, and a pale yellow liquid. Chromatographic
<table>
<thead>
<tr>
<th></th>
<th>CsF</th>
<th>Sulpholan</th>
<th>C_7F_8NC1</th>
<th>(\text{CF}_2=\text{CFCl}_2)</th>
<th>Weight of Volatile product</th>
<th>Weight of Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>2.5 g.,</td>
<td>10 mls.</td>
<td>1.0 g.,</td>
<td>7.0 g.,</td>
<td>0.15 g.</td>
<td>3.1 g.</td>
</tr>
<tr>
<td></td>
<td>16.7 m.moles</td>
<td></td>
<td>3.5 m.moles</td>
<td>5.0 g.,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 g.,</td>
<td>35 mls.</td>
<td>3.0 g.,</td>
<td>8.0 g.,</td>
<td>0.55 g.</td>
<td>3.0 g.</td>
</tr>
<tr>
<td></td>
<td>20.0 m.moles</td>
<td></td>
<td>10.5 m.moles</td>
<td>1.0 g.,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
analysis (G.D.B., column "O", 78°) of the latter showed the major products to be perfluoro-(tetraethylpyridine) (IV) and pentakis(pentafluoroethyl)pyridine (V), which were separated by preparative scale v.p.c. (F21, column "O", 80°) and identified by comparison of the i.r. spectra with those of authentic samples. Extraction of the involatile reaction mixtures gave intractable tarry residues.

Reaction (iia) was repeated using caesium fluoride (2.5 g., 16.7 m.moles), tetraglyme (10 mls.), C\textsubscript{7}F\textsubscript{8}NCl (0.9 g., 3.2 m.moles) and CF\textsubscript{2}=CF\textsubscript{2} (7.0 g., 60.1 m.moles). Chromatographic analysis (G.D.B., column "O", 78°) of the recovered volatile product (0.25 g.) showed it to be similar to (iia). Sublimation of the extracted involatile reaction product (2.0 g.) gave a white crystalline solid (0.05 g.) which was identified as pentakis-(pentafluoroethyl)pyridine (V) by comparison of the i.r. spectrum with that of an authentic sample.

(b) With methoxide ion.
i) One molecular proportion of methoxide ion.

\[
\begin{align*}
\text{CFC}_1\text{C}_3 & \xrightarrow{\text{MeO}^-, 20^\circ} \text{CF}_1\text{C}_3
\end{align*}
\]

The standard experimental procedure (See 6.5.2) was adopted, with addition of 22.2 mls. 0.08M methanolic sodium methoxide (1.8 m.moles) and dry methanol (20 mls.) to a stirred solution of C\textsubscript{7}F\textsubscript{8}NCl (XII) (0.5 g., 1.75 m.moles) in dry methanol (30 mls.). The recovered product, after the work-up procedure, was a single component (column "A", 125°), pale yellow liquid which was shown to be 1-chloro-1-(2-methoxy-3,5,6-trifluoropyridyl)-
tetrafluoroethane, (0.45 g., 85% yield), b.pt. 192°. (Found: C, 32.0; H, 1.1; Cl, 11.9; F, 44.2%; M, 297 and 299. \(\text{C}_{8} \text{H}_{3} \text{F}_{3} \text{Cl} \) requires C, 32.3; H, 1.0; Cl, 11.9; F, 44.7%; M, 297 and 299). I.R. spectrum No. 16. \(\lambda_{\text{max}} \) (cyclohexane) = 301 br. m\(\mu \); (\(E \), 4265).

Broad absorptions in the \(^{19} \text{F n.m.r.} \) at 93.4, 137.2 and 150.0, due to single fluorines were assigned to the 6, 3 and 5 ring positions respectively and were consistent with the calculated chemical shifts. Further resonances were observed at 83.2, (4-\(\text{CF}_{3} \)); 125.3, (4-\(\text{CFCl} \)) and, in the \(^{1} \text{H n.m.r.,} \) at 4.1, (O\(\text{CH}_{3} \)).

ii) Two molecular proportions of methoxide ion.

\[
\begin{align*}
\text{CFCl-CF}_3 + 2\text{MeO}^- &\rightarrow \text{CFCl-CF}_3 \quad \text{MeOH} \\
\text{XII} &\rightarrow \text{XIII} \quad \text{XIV}
\end{align*}
\]

Reaction (i) was repeated with addition of 44.4 mls. 0.08M methanolic sodium methoxide (3.6 m.moles) to a stirred solution of \(\text{C}_{7}\text{F}_{8} \text{NCI (XII)} \) (0.5 g., 1.75 m.moles) in dry methanol (30 mls.). The recovered product (0.5 g.), after the work-up procedure was shown, by \(^{19} \text{F n.m.r.} \) and mass spectrometry, to be a 50:50 mixture of XIII and XIV, the mono- and di-methoxy derivatives of \(\text{C}_{7}\text{F}_{8} \text{NCI (XII)} \) respectively. The three absorptions in the \(^{19} \text{F n.m.r.} \) due to XIV at 83.0, (4-\(\text{CF}_{3} \)); 124.5, (4-\(\text{CFCl} \)) and 148.3, (3,5-\(\text{F} \)) showed that the 2,4,6-substituted isomer, and not the 2,4,5-isomer, was formed. Calculated chemical shifts for the two possible products were sufficiently different to be consistent with the former but not the latter.
(c) Defluorochlorination of C₇F₈NC₁.

\[
\begin{align*}
\text{CFC}_1\text{CF}_3 & \quad \xrightarrow{\text{Fe, ca. 400°}} \quad \text{CF}=\text{CF}_2 \\
\text{N} & \quad \text{N} \quad \text{XII} & \quad \text{IX}
\end{align*}
\]

A mixture (0.5 g.) containing predominantly C₇F₈NC₁ (XII) and small amounts of perfluoroethylpyridines was passed in the vapour phase through the silica tube packed with coarse iron filings heated to ca. 400°. Chromatographic analysis (column "A", 75°) of the recovered product (0.2 g.) showed a major component, identified by i.r. spectroscopy as perfluoro-(4-vinylpyridine) (IX), traces of C₇F₈NC₁ (XII) and perfluoroethylpyridines.

This was not a quantitative result since the preparation of XII in a pure state and high yield had not then been perfected, however it suggested that this was a superior route to IX.

7.2. Bromotrifluoroethylene, CF₂=CBr₂.

7.2.1. Reaction of bromotrifluoroethylene with pentafluoropyridine.

\[
\begin{align*}
\text{F} & \quad + \quad n\text{CF}_2\text{=CBr} & \quad \xrightarrow{\text{CsF, 90°, Sulpholan}} \quad \text{CF}_3\text{=CFBr}_2 \\
\text{N} & \quad \text{N} \quad \text{XV}
\end{align*}
\]

\[
\begin{align*}
\text{F} & \quad \text{C} & \quad \text{F} \\
\text{N} & \quad \text{CF}_3 \quad \text{N} \\
\text{XVI}
\end{align*}
\]
Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (35 mls.),
C_5F_5N (3.0 g., 17.8 m.moles) and CF_2=CFBr (16.0 g., 100 m.moles) were
stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 90°
for 2 hr. Removal of the volatile products under vacuum gave unreacted
CF_2=CFBr (5.0 g.), identified by i.r. spectroscopy, and a colourless
liquid (4.1 g.). Chromatographic analysis (G.D.B., column "A", 78°) of the
latter showed 1,1-dibromotetrafluoroethane (XV) (25% yield, based on the
quantity of CF_2=CFBr consumed) and C_5F_5N (17% recovery), both identified
by i.r. spectroscopy.

The involatile reaction mixture was washed with water (400 mls.), the
insoluble material (4.3 g.) was separated and the aqueous solution extracted.
Removal of the solvent, after drying (MgSO_4), gave a dark brown oily liquid
(2.45 g.) which was vacuum distilled. The collected orange oil (1.2 g.)
was shown, by comparison of i.r. and 19F n.m.r. spectra with authentic
samples, to contain approximately 35% by weight of 1,1-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (XVI), (approx. 15% yield, based on the
quantity of C_5F_5N consumed).

The insoluble material was dissolved in acetone, water (50 mls.) was
added to remove the insoluble caesium fluoride, the acetone was then
removed under vacuum and the residual aqueous slurry was extracted with
ether. The residual orange gum (2.7 g.) did not contain any readily
identifiable products.

7.2.2. Attempted reaction of caesium fluoride and carbon tetrabromide.

Caesium fluoride (3.0 g., 20.0 m.moles), acetonitrile (30 mls.),
carbon tetrabromide (10.0 g., 30.0 m.moles) and tetrafluoropyridazine
(4.0 g., 26.3 m.moles) under dry nitrogen were stirred at ca. 90° for 7 hr.
Chromatographic analysis (G.D.B., column "O", 78 and 150°) of an ether solution of the reaction mixture showed only quantitative recovery of the starting materials.

7.2.3. Preparation of 1,1-bis(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane,

\[\text{C}_{12} \text{F}_{12} \text{N}_2 \]

\[\begin{align*}
\text{IX} \quad \text{CF}=\text{CF}_2 & \quad \text{CsF} & \quad \text{50°} \\
\text{Sulpholan} & \quad \rightarrow \quad \text{XVI} \\
\end{align*} \]

C\(_7\)F\(_7\)N (IX) (0.9 g., 4.1 m.moles) was added dropwise over 15 min. to stirred caesium fluoride (0.5 g., 3.3 m.moles), sulpholan (3 mls.) and pentafluoropyridine (0.9 g., 5.3 m.moles) under dry nitrogen at ca. 50°. Removal of the volatile products under vacuum, after a further 45 min., gave a colourless liquid (0.5 g.) and a white crystalline solid (0.9 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the former showed a two component mixture of unreacted C\(_5\)F\(_5\)N (50% recovery) and C\(_7\)F\(_7\)N (7% recovery). The solid was recrystallised from methanol and shown to be 1,1-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (XVI), (60% yield, based on the weight of C\(_7\)F\(_7\)N consumed) m.pt. = 91-92°. (Found: C, 35.8; F, 56.5%; M, 400. C\(_{12}\)F\(_{12}\)N\(_2\) requires C, 36.0%; F, 57.0%; M, 400). I.R. spectrum No. 17. \(\lambda_{\text{max}} \) (cyclohexane) = 280.5 m\(\mu \); (\(\epsilon \), 8251).

Broad absorptions in the \(^{19}\text{F}\) n.m.r. at 90.4 and 139.6, due to four fluorines, were assigned to the 2,6 and 3,5 ring positions respectively. Two further absorptions were observed at 78.4, (-CF\(_3\)) and 164.1, (-CF) and confirmed the postulated unsymmetrical rather than the isomeric symmetrical structure.
Extraction of the involatile reaction mixture gave a pale yellow residue (0.75 g.) which was sublimed. The recovered white crystalline solid (0.05 g.) was shown to be XVI by comparison of the i.r. spectrum with that of an authentic sample.

7.2.4. Preparation of 2,2-bis-(2',3',5',6'-tetrafluoropyridy1)hexafluoropropane, \(\text{C}_{13}\text{F}_{14}\text{N}_2 \).

\[
\begin{align*}
\text{CF}_3 & \quad \text{CF}_2 \\
\text{N} & \quad \text{F} \\
\text{F} & \quad \text{X} \\
\text{CsF} & \quad \text{Sulpholan} \\
\rightarrow & \quad \text{XVII}
\end{align*}
\]

(a) \(\text{C}_8\text{F}_9\text{N} (X) \) (2.0 g., 7.1 m.moles) was added dropwise over 1 hr. to stirred caesium fluoride (2.0 g., 13.3 m.moles), sulpholan (10 mls.) and pentafluoropyridine (1.5 g., 8.9 m.moles) under dry nitrogen at ca. 75°. Removal of the volatile products under vacuum, after a further 2 hr., gave a colourless liquid (3.0 g.) which was shown by chromatographic analysis (G.D.B., column "A", 78°) to be unreacted starting materials.

(b) Caesium fluoride (1.0 g., 6.7 m.moles), sulpholan (6 mls.), \(\text{C}_5\text{F}_5\text{N} \) (1.4 g., 8.3 m.moles) and \(\text{C}_8\text{F}_9\text{N} (X) \) (1.6 g., 5.7 m.moles) were sealed in a glass ampoule and heated to ca. 150° for 18 hr. The tube was then cooled, opened, and the volatile products, a colourless liquid (1.0 g.) and a white crystalline solid (0.8 g.), were transferred under vacuum to a cold trap. Chromatographic analysis (G.D.B., column "A", 78°) of the former showed mainly unreacted \(\text{C}_5\text{F}_5\text{N} \) (55% recovery) and the latter was recrystallised from ethanol. Extraction of the involatile reaction mixture gave a brown oily residue (1.1 g.) from which a white crystalline solid
(0.7 g.), identical with the material obtained previously, was sublimed (80°/0.01 mm.). The recrystallised solid (XVII) was shown to be 2,2-bis-(2',3',5',6'-tetrafluoropyridyl)hexafluoropropane, (60% yield, based on the weight of C$_8$F$_9$N (X) consumed), m.pt. = 99.5°. (Found: C, 34.4; F, 58.9%; M, 450. C$_{13}$F$_{14}$N$_2$ requires C, 34.7; F, 59.1%; M, 450).

I.R. spectrum No. 18. λ_{max} (cyclohexane) = 279.5 µm; (ε, 8041).

Broad absorptions in the 19F n.m.r. at 89.6 and 136.1, due to four fluorines, were assigned to the 2,6 and 3,5 ring positions respectively. A further resonance at 64.9 (-CF$_3$), due to six fluorines, was also observed.

7.2.5. Reactions of bromotrifluoroethylene with tetrafluoropyridazine.

![Diagram](image)

Scheme 6

(a) Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan or tetraglyme (35 mls.), C$_4$F$_4$N$_2$ (3.0 g., 19.7 m.moles) and CF$_2$=CFBr (16.0 g., 100 m.moles) were stirred for 2 hr. in a standard atmospheric pressure reaction (for further quantities and reaction conditions, See Table 19). Removal of the volatile products under vacuum gave unreacted bromotrifluoroethylene, identified by i.r. spectroscopy, and a pale yellow liquid. Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed, in order of
<table>
<thead>
<tr>
<th></th>
<th>Solvent</th>
<th>Temp.</th>
<th>Weight of CF$_2$=CFBr recovered</th>
<th>Weight of volatile product</th>
<th>Weight of residue</th>
<th>Percentage Yields*</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>T</td>
<td>90$^\circ$</td>
<td>6.0 g.</td>
<td>2.8 g.</td>
<td>1.0 g.</td>
<td>30 9 -</td>
<td>62%</td>
</tr>
<tr>
<td>(ii)</td>
<td>S</td>
<td>90$^\circ$</td>
<td>6.0 g.</td>
<td>4.0 g.</td>
<td>0.2 g.</td>
<td>51 18 -</td>
<td>64%</td>
</tr>
<tr>
<td>(iii)</td>
<td>T</td>
<td>120$^\circ$</td>
<td>4.0 g.</td>
<td>6.0 g.</td>
<td>1.25 g.</td>
<td>52 25 5</td>
<td>66%</td>
</tr>
<tr>
<td>(iv)</td>
<td>S</td>
<td>120$^\circ$</td>
<td>9.5 g.</td>
<td>4.8 g.</td>
<td>0.4 g.</td>
<td>41 28 5</td>
<td>80%</td>
</tr>
</tbody>
</table>

* Based on the weight of C$_4$F$_4$N$_2$ consumed.

T = Tetraglyme.

S = Sulpholan.
increasing retention times, unreacted \(\text{C}_4\text{F}_4\text{N}_2 \), VI, VII and VIII (See Scheme 6); the products were separated by preparative scale v.p.c. (Aerograph, column "O", 95°) and were identified by comparison of the i.r. spectra with those of authentic samples. Extraction of the involatile reaction mixture gave small quantities of intractable tarry residues.

When reaction (ii) (Table 19) was repeated for a prolonged reaction time (18 hr.) a further component of longer retention time was observed, separated (Aerograph, column "O", 95°) and shown to be \text{tetrasik(penta-fluoroethyl)pyridazine}, m.pt. 37-38°. (Found: C, 25.8; F, 68.2%; M, 552. \(\text{C}_{12}\text{F}_{20}\text{N}_2 \) requires C, 26.1; F, 68.8%; M, 552). I.R. spectrum No. 19.

\[\lambda_{\text{max}} \text{(cyclohexane)} = 260 \text{ br. and } 356 \text{ br. } \mu\text{m} ; \text{ (E, 743 and 200 respectively).} \]

Three broad absorptions in the \(^{19}\text{F} \) n.m.r. at 73.2, (3 and 6-\(\text{CF}_3 \)); 91.2, (3 and 6-\(\text{CF}_2 \)) and 108.8, (4 and 5-\(\text{CF}_2 \)) and a singlet at 80.8, (4 and 5-\(\text{CF}_3 \)), due to 6, 4, 4 and 6 fluorines respectively, were assigned by extrapolation of the observed spectra of VII and VIII.

(b) Potassium fluoride (7.0 g., 120.5 m.moles), sulpholan (45 mls.), \(\text{C}_4\text{F}_4\text{N}_2 \) (5.0 g., 32.8 m.moles) and \(\text{CF}_2=\text{CFBr} \) (16.0 g., 100 m.moles) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 120° for 4 hr. Removal of the volatile products under vacuum gave unreacted \(\text{CF}_2=\text{CFBr} \) (1.0 g.), identified by i.r. spectroscopy, and a pale yellow liquid (8.0 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed unreacted \(\text{C}_4\text{F}_4\text{N}_2 \) (95% conversion), VI, VII and VIII in 27%, 33% and 6% yields respectively. The products were separated by preparative scale v.p.c. (Aerograph, column "O", 95°) and identified by comparison of the i.r. spectra with those of authentic samples. Extraction of the involatile reaction mixture gave an intractable tarry residue (4.0 g.).
7.3. Trifluoroethylene, CF$_2$=CFH.

7.3.1. Reaction of trifluoroethylene with pentafluoropyridine.

\[
\begin{align*}
\text{F} & \quad \text{C} \quad \text{F} \\
\text{N} & \quad \text{C} \quad \text{F} \\
\text{N} & \quad \text{C} \quad \text{F}
\end{align*}
\]

Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (40 mls.), CsF$_5$N (3.0 g., 17.8 m.moles) and trifluoroethylene (10.0 g., 121.9 m.moles) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 140° for 46 hr. Removal of the volatile products under vacuum gave unreacted trifluoroethylene (3.0 g.), identified by i.r. spectroscopy, a colourless liquid (0.8 g.) which was shown by chromatographic analysis (G.D.B., column "O", 78°) to be a single component identified as CsF$_5$N (70% conversion) by i.r. spectroscopy, and a white crystalline solid (XVI) (Scheme 7) (0.3 g.) XVI was shown to be 1,1-bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane, (11% yield, based on weight of CsF$_5$N consumed) by comparison of the i.r. spectrum with that of an authentic sample.

Extraction of the involatile reaction mixture gave an intractable tarry residue (4.5 g.).

7.3.2. Reaction of trifluoroethylene with tetrafluoropyridazine.

Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (40 mls.), C$_4$F$_4$N$_2$ (4.0 g., 26.3 m.moles) and trifluoroethylene (6.0 g., 73.2 m.moles) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 90° for 96 hr. Removal of the volatile products under vacuum gave only unreacted CF$_2$=CFH (4.0 g.), identified by comparison of the i.r. spectrum with that of an authentic sample. Extraction of the involatile reaction mixture gave an intractable tarry residue (4.0 g.).
 CHAPTER 8

Experimental for Chapter 5

8.1. Polyfluoroalkylation reactions.

8.1.1. Preparation of perfluoro-(2,5-di-isopropyl-4-ethylpyridine).

\[
\begin{align*}
\text{I} & \quad \xrightarrow{\text{CsF, sulpholan}} \quad \text{XVIII} \\
\begin{array}{c}
\text{C}_2\text{F}_5 \\
\text{F} \\
\text{N}
\end{array} & \quad \text{C}_3\text{F}_6, 75^\circ & \quad \begin{array}{c}
\text{C}_2\text{F}_5 \\
\text{F} \\
\text{N}
\end{array}
\end{align*}
\]

Caesium fluoride (3·0 g, 20·0 m.moles), sulpholan (35 ml's),
\(\text{C}_7\text{F}_9\) (I) (5·0 g., 18·6 m.moles) and hexafluoropropene (16·0 g.,
106·7 m.moles) were stirred, in a standard atmospheric pressure reaction
(See p. 141), for 40 min. at ca. 75°. Removal of the volatile products
under vacuum, at temperatures up to ca. 90°, gave unreacted \(\text{C}_3\text{F}_6\) (0·5 g.),
identified by i.r. spectroscopy, and a colourless liquid (19·5 g.).
Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed
dimers and trimers of \(\text{C}_3\text{F}_6\), identified by i.r. spectroscopy, and a single
product (XVIII) which was separated by distillation and shown to be
perfluoro-(2,5-di-isopropyl-4-ethylpyridine) in quantitative yield,
b.p.t. 176°. (Found: C, 27·1; F, 70·7%; M, 569. \(\text{C}_{13}\text{F}_{21}\text{N}\) requires
C, 27·4; F, 70·3%; M, 569). I.R. spectrum No. 20. \(\lambda_{\text{max}}\) (cyclohexane) = 286 br. \(\mu\); \(\phi\); 6780).

Broad absorptions in the \(^{19}\text{F} \text{n.m.r.}\) at 52·2 and 113·9, due to single
fluorines, were assigned to the 6 and 3 ring positions respectively and
were consistent with calculated chemical shifts. Further resonances
were observed at 72·3, (5-CF\(_3\)); 74·1, (2-CF\(_3\)); 80·3, (4-CF\(_3\)); 99·7,
(4-CF\(_2\)); 170·5, (5-CF) and 183·8, (2-CF).
8.1.2. Preparation of perfluoro-(5-isopropyl-2,4-di-ethylpyridine).

\[\begin{align*}
 &\text{C}_2\text{F}_5 \\
 \rightarrow \\
 &\text{C}_3\text{F}_7 \\
\end{align*} \]

Caesium fluoride (3.0 g., 20.0 m.moles), sulpholan (35 mls.), C\textsubscript{9}F\textsubscript{13}N (II) (4.0 g., 10.8 m.moles) and hexafluoropropene (11.0 g., 73.4 m.moles) were stirred, in a standard atmospheric pressure reaction (See p.141), at ca. 80\textdegree for 1 hr. Removal of the volatile products under vacuum, at temperatures up to ca. 90\textdegree, gave unreacted C\textsubscript{3}F\textsubscript{6} (0.5 g.), identified by i.r. spectroscopy, and a colourless liquid (13.4 g.). Chromatographic analysis (G.D.B., column "O", 78\textdegree) of the latter indicated a four component mixture of dimers and trimers of C\textsubscript{3}F\textsubscript{6}, II, and a single product (XIX), which was separated by distillation and preparative scale v.p.c. (Aerograph, column "O", 80\textdegree). XIX was shown to be perfluoro-(5-isopropyl-2,4-di-ethylpyridine), (65% yield), b.pt. 175\textdegree. (Found: C, 27.6; F, 69.0%; M, 519. C\textsubscript{12}F\textsubscript{19}N requires C, 27.8; F, 69.6%; M, 519). I.R. spectrum No. 21. \(\lambda_{\text{max}} \) (cyclohexane) = 286 br. m\(\mu \); (\(\mathcal{E} \), 6240).

Broad absorptions in the \(^{19} \text{F} \) n.m.r. at 53.6 and 115.2, due to single fluorines, were assigned to the 6 and 3 ring positions respectively and were consistent with calculated chemical shifts. Further resonances were observed at 72.3, (5-CF\textsubscript{3}); 81.0, (4-CF\textsubscript{3}); 83.1, (2-CF\textsubscript{3}); 100.1, (4-CF\textsubscript{2}); 116.1, (2-CF\textsubscript{2}) and 170.2, (5-CF).

A similar reaction at ca. 60\textdegree for 2 hr. resulted in an 80% yield of XIX.
8.1.3. Perfluoroethylation of perfluoro-(4-isopropylpyridine), C$_8$F$_{11}$N.

Caesium fluoride (6.0 g., 40.0 m.moles), tetruglyme (100 mls.), C$_3$F$_7$N (10.0 g., 31.4 m.moles) and tetrafluoroethylene (14.0 g., 140 m.moles) were stirred, in a standard atmospheric pressure reaction (See p. 141), at ca. 80° for 5 hr. Removal of the volatile products under vacuum, at temperatures up to ca. 90°, gave unreacted C$_2$F$_4$ (10.0 g.), identified by i.r. spectroscopy, and a colourless liquid (11.0 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the latter showed a five component mixture comprised of unreacted C$_8$F$_{11}$N (67% conversion), XX, XXI, XXII and XXIII which were separated by preparative scale v.p.c. (Aerograph, column "O", 80°). Vacuum distillation of the extracts of the involatile reaction mixture gave an oily liquid (1.5 g.) and an intractable tar (1.3 g.); XXII and XXIII were detected on analysis of the former (G.D.B., column "O", 78°).

XX was shown to be perfluoro-(2-ethyl-4-isopropylpyridine), (37% yield), b.pt. 158°. (Found: C, 28.4; F, 67.5%; M, 419. C$_{10}$F$_{15}$N requires
C, 28·7; F, 68·0%; M, 419). I.R. spectrum No. 22. λ_{max} (cyclohexane) = 274·5 m\(\mu\); (E, 4796).

Broad absorptions in the 1F n.m.r. at 83·8, 115·7 and 123·3, due to single fluorines, were assigned to the 6, 3 and 5 ring positions respectively and were consistent with calculated chemical shifts. Further resonances were observed at 75·1, (4-CF$_3$); 83·5, (2-CF$_3$); 115·0, (2-CF$_2$) and 180·0, (4-CF).

XXI was identified as perfluoro-(2,5-di-ethyl-4-isopropylpyridine), (27% yield), b.pt. 170°. (Found: C, 27·6; F, 69·3%; M, 519. C$_{12}$F$_{19}$N requires C, 27·8; F, 69·6%; M, 519). I.R. spectrum No. 23. λ_{max} (cyclohexane) = 285 br. m\(\mu\); (E, 6150).

Broad absorptions in the 1F n.m.r. at 52·9 and 114·8, due to single fluorines, were assigned to the 6 and 3 ring positions respectively and were consistent with calculated chemical shifts. Further resonances were observed at 72·1, (4-CF$_3$); 80·1, (5-CF$_3$); 83·0, (2-CF$_3$); 100·0, (5-CF$_2$); 116·3, (2-CF$_2$) and 170·1, (4-CF).

XXII was shown to be perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine), (18% yield), b.pt. 185° (Found: C, 27·4; F, 70·0%; M, 619. C$_{14}$F$_{23}$N requires C, 27·1; F, 70·6%; M, 619). I.R. spectrum No. 24.

The 1F n.m.r. consisted of complex bands centred at 73·9, 81·4, 84·8, 108·7, 117·3 and 171·9 which could not be fully analysed. The absence of an absorption at ca. 45, calculated from substituent chemical shifts, indicated that the 6, and not the 3, fluorine of XXI had been replaced.

XXIII was shown to be perfluoro-(tetraethyl-4-isopropylpyridine), (4% yield), m.pt. 35°. (Found: M, 719. C$_{16}$F$_{27}$N requires M, 719). I.R. spectrum No. 25.
8.1.4. Preparation of perfluoro-(2-ethyl-4,5-di-isopropylpyridine).

\[
\begin{align*}
\text{C}_3\text{F}_7 & \quad \text{C}_3\text{F}_6, \text{CsF} \\
& \quad 80^\circ, \text{sulpholan}
\end{align*}
\]

Caesium fluoride (2.0 g., 13.6 m.moles), sulpholan (20 mls.),
\(\text{CsF} \quad \text{C}_3\text{F}_6\) (18 g., 4.3 m.moles) and hexafluoropropene (10.0 g., 66.7 m.moles) were stirred, in a standard atmospheric pressure reaction (See p.141), at ca. 80° for 2.5 hr. Removal of the volatile products under vacuum, at temperatures up to ca. 90°, gave unreacted \(\text{C}_3\text{F}_6\) (5.6 g.), identified by i.r. spectroscopy, and a colourless liquid (5.5 g.). Chromatographic analysis (G.D.B., column "O", 78°) of the latter indicated a four component mixture of dimers and trimers of \(\text{C}_3\text{F}_6\), XX (50% conversion) and a single product (XXIV), which was separated by preparative scale v.p.c. (Aerograph, column "O", 80°). XXIV was shown to be perfluoro-(2-ethyl-4,5-di-isopropylpyridine), (80% yield), b.pt. 183°. (Found: C, 27.2; F, 70.5%; M, 569. \(\text{C}_{13}\text{F}_{21}\) requires C, 27.4; F, 70.2%; M, 569). I.R. spectrum No. 26. \(\lambda_{\text{max}}\) (cyclohexane) = 288 br. m\(\mu\); (\(E\), 3890).

Broad absorptions in the \(\text{^19F}\) n.m.r. at 52.4 and 113.6, due to single fluorines, were assigned to the 6 and 3 ring positions respectively and were consistent with calculated chemical shifts. Further resonances were observed at 74.0, (4 and 5-CF\(_3\)); 85.4, (2-CF\(_3\)); 117.9, (2-CF\(_2\)) and 167.8, (4 and 5-CF).
8.2. Fluoride ion-initiated aromatic rearrangement reactions.

8.2.1. Attempted rearrangement of perfluoro-(2,4,5-tri-ethylpyridine), C\textsubscript{11}F\textsubscript{17}N.

(a) C\textsubscript{11}F\textsubscript{17}N (3.0 g., 6.4 m.moles), caesium fluoride (3.0 g., 20.0 m.moles) and sulpholan (30 mls.) were sealed in a nickel tube and heated to ca. 160\(^\circ\)C for 16 hr. with continuous rotation. The tube was then cooled, opened, and the volatile products transferred under vacuum to a cold trap. The recovered colourless liquid (2.6 g.) was analysed with \(^{19}\text{F n.m.r.}\) and shown to be identical with the starting material. The involatile material was poured into water (400 mls.), ether extracted (4 x 20 mls.) and the combined extracts dried (MgSO\textsubscript{4}). Removal of the solvent left an intractable tarry residue (0.5 g.).

(b) Reaction (a) was repeated in the presence of heptafluoroquinoline (3.0 g., 11.8 m.moles) using C\textsubscript{11}F\textsubscript{17}N (1.2 g., 2.6 m.moles), caesium fluoride (3.0 g., 20.0 m.moles) and sulpholan (30 mls.) heated to ca. 160\(^\circ\)C for 72 hr. The recovered volatile products, a pale yellow liquid (0.9 g.) and a white crystalline solid (2.7 g.), were identified as perfluoro-(2,4,5-tri-ethylpyridine) and heptafluoroquinoline respectively by i.r. and \(^{19}\text{F n.m.r.}\) spectroscopy. Extraction of the involatile material gave no tractable products.

(c) Reaction (a) was repeated using identical quantities of material and heated to ca. 190\(^\circ\)C for 18 hr. The recovered colourless liquid (1.2 g.) was analysed with \(^{19}\text{F n.m.r.}\) and shown to be perfluoro-(2,4,5-tri-ethylpyridine). Extraction of the involatile reaction mixture gave an intractable tarry residue (3.5 g.) owing to reactant and solvent decomposition.
8.2.2. **Rearrangement of perfluoro-(2,5-di-isopropyl-4-ethylpyridine).**

\[
C_{13}F_{21}N
\]

(a) \(C_{13}F_{21}N\) (XVIII) (2.0 g., 3.5 m.moles), caesium fluoride (1.0 g., 6.7 m.moles) and sulpholan (10 mls.) were sealed in a glass ampoule and heated to ca. 160° for 24 hr. with continuous rotation. The tube was then cooled, opened, and the volatile products transferred under vacuum to a cold trap. Chromatographic analysis (G.D.B., column "O", 78°) of the recovered colourless liquid (1.5 g., 75% recovery) showed a two component mixture of the 2,4,5 (XVIII) and 2,4,6 (XXV) isomers of \(C_{13}F_{21}N\) in the ratio 60:40 respectively, estimated from \(^{19}\)F n.m.r. data. Extraction of the involatile reaction mixture gave an intractable tarry residue (0.2 g.).

(b) \(C_{13}F_{21}N\) (2.5 g., 4.4 m.moles), caesium fluoride (4.0 g., 26.6 m.moles) and sulpholan (30 mls.) were sealed in a nickel tube and heated to ca. 180° for 24 hr. with continuous rotation. The tube was then cooled, opened, and the volatile products transferred under vacuum to a cold trap. Chromatographic analysis (G.D.B., column "O", 78°) of the recovered colourless liquid (0.8 g.) showed a single component (XXV) which was identified as perfluoro-(2,6-di-isopropyl-4-ethylpyridine), (32% yield), b.p. 180°. (Found: C, 26.9; F, 70.0%; M, 569. \(C_{13}F_{21}N\) requires C, 27.4; F, 70.3%; M, 569). \(\lambda_{max}\) (cyclohexane) = 274 m\(\mu\); (E, 4540).
A broad absorption in the relatively straightforward $^{19}\text{F n.m.r.}$ at 111.4, due to two fluorines, was assigned to the 3,5 ring positions and was consistent with the calculated chemical shift. Further absorptions were observed at 74.5, (2 and 6-CF_3); 85.5, (4-CF_3); 112.3, (4-CF_2) and 185.2, (2 and 6-CF).

8.2.3. **Rearrangement of perfluoro-(5-isopropyl-2,4-di-ethylpyridine),**

\[C_{12}F_{19}N \]

![Diagram of molecules](http://example.com/diagram.png)

\[C_{12}F_{19}N \text{ (XIX)} \rightarrow C_{12}F_{19}N \text{ (XXVI)} \]

$C_{12}F_{19}N$ (XIX) (2.0 g., 3.9 m.moles), caesium fluoride (1.0 g., 6.7 m.moles) and sulpholan (10 mls.) were sealed in a glass ampoule and heated to ca. 160° for 24 hr. with continuous rotation. The tube was then cooled, opened, and the volatile products transferred under vacuum to a cold trap. Chromatographic analysis (G.D.B., column "O", 78°) of the recovered colourless liquid (1.3 g.) showed a two component mixture of the 2,4,5 (XIX) and 2,4,6 (XXVI) isomers of $C_{12}F_{19}N$ in the ratio 40:60 respectively, estimated from the chromatogram. The product (XXVI) was separated by preparative scale v.p.c. (Aerograph, column "O", 80°) and shown to be perfluoro-(6-isopropyl-2,4-di-ethylpyridine), (52% yield), b.pt. 168-169°. (Found: C, 27.5; F, 69.2%; M, 519. $C_{12}F_{19}N$ requires C, 27.8; F, 69.6%; M, 519). I.R. spectrum No. 28, λ_{max} (cyclohexane) = 274 br. m\$; (E, 4230).

Broad absorptions in the $^{19}\text{F n.m.r.}$ at 108.6 and 111.5, due to single fluorines, were assigned to the 5 and 3 ring positions respectively.
and were consistent with calculated chemical shifts. Further absorptions were observed at 76.4, (6-CF$_3$); 85.2, (2-CF$_3$); 87.4, (4-CF$_3$); 113.5, (4-CF$_2$); 116.8, (2-CF$_2$) and 186.9, (6-CF).

Extraction of the involatile reaction mixture gave an intractable tarry residue (0.3 g.).

8.2.4. Attempted rearrangement of perfluoro-(2,5-di-ethyl-4-isopropyl-pyridine), C$_{12}F_{19}N^*$.

C$_{12}F_{19}N$ (2.0 g., 3.9 m.moles), caesium fluoride (3.0 g., 20.0 m.moles) and sulpholan (30 mls.) were sealed in a nickel tube and heated to ca. 180° for 24 hr. with continuous rotation. The tube was then cooled, opened, and the volatile products transferred under vacuum to a cold trap. ^{19}F n.m.r. analysis of the small quantity of recovered colourless liquid (0.05 g.) did not indicate a perfluoroalkylpyridine. Extraction of the involatile reaction mixture gave a dark brown liquid (0.8 g.) which did not contain any identifiable products.

8.2.5. Attempted rearrangement of perfluoro-(4,5-di-ethylpyridazine).

C$_{8}F_{12}N_2$ (0.6 g., 1.7 m.moles), caesium fluoride (0.5 g., 3.3 m.moles) and sulpholan (3 mls.) were sealed in a glass ampoule and heated to ca. 150° for 18 hr. with continuous rotation. The tube was then cooled, opened, its contents poured into water, and extracted with ether, the organic layer was washed with water and dried (MgSO$_4$). Removal of the solvent left a dark brown residue (0.5 g.), which was shown by v.p.c. (column "O", 75° and 150°) to be a single volatile component. A white crystalline solid (0.2 g.), identified as starting material by i.r. and ^{19}F n.m.r. spectroscopy, was sublimed (50°/0.01 mm.) from the residue to leave an intractable tar (0.3 g.).
CHAPTER 9

Nuclear Magnetic Resonance Data

Introduction.

In recent years, 19F n.m.r. spectroscopy has emerged as an important method for determining the structures of fluorinated compounds. Of particular interest has been its effective use, in conjunction with substituent chemical shifts (s.c.s.), for differentiating the orientation of nucleophilic substitution in polyfluoro-aromatic and -heterocyclic compounds.

Substituent chemical shifts, or the effect of a substituent on the ring fluorines ortho, meta and para to it, are obtained from a comparison of the observed shifts for the same ring fluorine in the substituted and unsubstituted compounds. Using these s.c.s. for a particular substituent, it is possible to determine substitution patterns in other compounds containing the same substituent. Similarly, for fluorinated benzenes in which substituent effects have been shown to be approximately additive, it is possible to predict the spectra for multisubstitution. For fluorinated-N-heteroaromatic compounds the concept of s.c.s. is a useful one in determining the orientation of substitution and, despite variations in s.c.s. values, the assignments are often quite unambiguous due to the large differences in chemical shifts of non-equivalent ring fluorines in the parent compound.

Since the results presented are mainly concerned with perfluoroalkyl-pyridines and -pyridazines, and their respective derivatives, it is advantageous to first discuss the general features of the 19F n.m.r. spectra of these systems under the heading of the perfluoro-N-heteroaromatic compound.

The spectrum of pentafluoropyridine, which has been fully analysed previously, contains three resonances at $88^{\circ}1$ (2,6F), $134^{\circ}5$ (4F) and $162^{\circ}6$ (3,5F), relative to CFC$_3$, in the ratio 2:1:2. Introduction of a perfluoroalkyl substituent affords characteristic resonances due to aliphatic fluorines and also alters the chemical shifts of the remaining ring fluorines, as described later. Other substituents, e.g. CH$_3$O$^-$ have significant, though less pronounced, effects on the chemical shifts of the ring fluorines.

9.1.2. Coupling constants.

Analysis of the 19F n.m.r. spectra of polyfluoropyridines indicated that, in general, meta-coupling constants are smaller than either ortho- or para-constants. However, it was also observed that such spectra are frequently complicated by the broadening effect of the quadrupolar nitrogen nucleus on the 2,6-ring fluorine resonance. For perfluoroalkylpyridines, the coupling constants between aliphatic fluorines and neighbouring ring fluorines are often quite large, possibly indicative of a "through space" mechanism. Coupling constants are quoted where possible and some assignments have been made on the basis of them.

9.1.3. Substituent shifts.

The same s.c.s. cannot be used for a particular substituent in all pyridines since variations in ortho, meta and para shifts have been observed for several substituents in a series of fluorinated pyridines. Similar results were found for perfluoroisopropylpyridines, as shown.
These s.c.s. for (CF₃)₂CF substitution in fluorinated pyridines have been used to predict the ¹⁹F n.m.r. spectra of, and determine the orientation of substitution in related compounds, including those discussed later.

Substituent chemical shifts due to (CF₃)₂CF in perfluoroisopropylpyridines.

(Position of fluorine atom in parentheses)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Internal shifts arising from:</th>
<th>Effect on <sup>19</sup>F shifts (p.p.m.)</th>
<th>Ref. compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4(CF<sub>3</sub>)<sub>2</sub>CF</td>
<td>-244(3,5) -21(2,6) -</td>
<td>C<sub>5</sub>F<sub>5</sub>N</td>
</tr>
<tr>
<td>A</td>
<td>2(CF<sub>3</sub>)<sub>2</sub>CF</td>
<td>-224(3) -52(6) -13*2(3)</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>5(CF<sub>3</sub>)<sub>2</sub>CF</td>
<td>-336(6) -50(3) -</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>6(CF<sub>3</sub>)<sub>2</sub>CF</td>
<td>-193(5) -101(3)</td>
<td>B</td>
</tr>
</tbody>
</table>

R_f = (CF₃)₂CF

Emsley and Phillips have tentatively proposed that alkyl groups in fluorinated pyridines have similar s.c.s. The possibility of a similar situation with perfluoroalkyl substituents is justified to some extent.
from a comparison of the above results for \((\text{CF}_3)_2\text{CF}\) with the analogous observed s.c.s. for \(\text{CF}_3\text{CF}_2\). The latter results have also been used for structure determinations of related compounds.

Substituent chemical shifts due to \(\text{CF}_3\text{CF}_2\) in perfluoroethylpyridines.

(Position of fluorine in parentheses)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Internal shifts arising from:</th>
<th>Effect on (\text{^19F}) shifts (p.p.m.)</th>
<th>Ref. compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4 \text{CF}_3\text{CF}_2)</td>
<td>-22.3(3,5) 0.9(2,6)</td>
<td>(\text{C}_5\text{F}_5\text{N})</td>
</tr>
<tr>
<td></td>
<td>(2 \text{CF}_3\text{CF}_2)</td>
<td>-21.8(3) -5.2(6) -13.9(5)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>(5 \text{CF}_3\text{CF}_2)</td>
<td>-28.3(6) -2.8(3)</td>
<td>II</td>
</tr>
</tbody>
</table>

The spectrum of tetrafluoropyridazine contained two resonances at 93.95 (3,6F) and 147.6 (4,5F) of equal intensity. Substituents
give similar effects to those discussed previously for the pyridine system.

9.2.2. **Coupling constants.**

Detailed analyses of the 19F n.m.r. spectrum of tetrafluoropyridazine or the effects of substituents on the various coupling constants have not yet been published. Due to the broadening effect of the quadrupolar nitrogen nucleic on the 3,6-ring fluorines, the observed spectra of perfluoroalkylpyridazines are frequently complicated, however, where possible the extracted coupling constants are given.

9.2.3. **Substituent shifts.**

A detailed investigation of the specific effect of substituents on the chemical shifts of the ring fluorines is not available to date, however, preliminary results using CH$_3$O$^-$ and (CF$_3$)$_2$CF$^-$ indicate that similar principles to the pyridine system are applicable. The observed s.c.s. for (CF$_3$)$_2$CF in fluorinated pyridazines are shown, and have been used for structure determinations in related compounds, as indicated later.
Substituent chemical shifts due to \((\text{CF}_3)_2\text{CF}\) in perfluoroisopropylpyridazines.

(Position of fluorine atom in parentheses)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Internal shifts arising from:</th>
<th>Effect on (^{19}\text{F}) shifts (p.p.m.)</th>
<th>Reference compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rf</td>
<td></td>
<td>(\text{ortho})</td>
<td>(\text{meta})</td>
</tr>
<tr>
<td>4 ((\text{CF}_3)_2\text{CF})</td>
<td>-23*0(3)</td>
<td>-29*3(5)</td>
<td>+3*2(6)</td>
</tr>
<tr>
<td></td>
<td>a = fluorine adjacent to nitrogen, i.e. 3 or 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b = fluorine adjacent to carbon, i.e. 4 or 5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following shifts were observed for \(\text{CF}_3\text{CF}_2\) substitution in fluorinated pyridazines.

Substituent chemical shifts due to \(\text{CF}_3\text{CF}_2\) in perfluoroethylpyridazines.

(Position of fluorine atom in parentheses)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Internal shift</th>
<th>Effect on (^{19}\text{F}) shifts (p.p.m.)</th>
<th>Reference compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rf</td>
<td></td>
<td>(\text{ortho})</td>
<td>(\text{meta})</td>
</tr>
<tr>
<td>4 (\text{CF}_3\text{CF}_2)</td>
<td>-16*6(3)</td>
<td>-27*0(5)</td>
<td>+3*6(6)</td>
</tr>
<tr>
<td></td>
<td>a = fluorine adjacent to nitrogen, i.e. 3 or 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b = fluorine adjacent to carbon, i.e. 4 or 5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(R_f = \text{CF}_3\text{CF}_2\)
9.3. **Data for polyfluoropyridine derivatives.**

The following abbreviations have been used in presenting data concerning the fine structure of absorptions:

- **S** = singlet; **D** = doublet; **T** = triplet; **Q** = quartet; **P** = quintet; **H** = heptet.

9.3.1. Mono-substituted compounds.

(a) **Perfluoro-(4-ethylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.6</td>
<td>T(4b-3, 5 = 7) of</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td></td>
<td>T(4b4a = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.0</td>
<td>Broad</td>
<td>2</td>
<td>2,6</td>
</tr>
<tr>
<td>113.2</td>
<td>T(4a-3, 5 = 29.5)</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>140.3</td>
<td>T(3, 5-4a = 29.5) of</td>
<td>2</td>
<td>3, 5</td>
</tr>
<tr>
<td></td>
<td>Q(3, 5-4b = 7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reference compound = pentafluoropyridine; s.c.s. for 4-(CF$_3$)$_2$CF.

Recorded in ether solution with an internal CFCl$_3$ reference.

Using a variable temperature probe, spectra of I were recorded over the temperature range -100° to +40°, however, apart from a slight broadening of the absorptions, there was no significant change in the spectrum.
(b) Perfluoro-(4-vinylpyridine).

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>89.2</td>
<td>Broad</td>
<td>2</td>
<td>2,6</td>
</tr>
<tr>
<td>93.8</td>
<td>$D(J_{78} = 52)$ of $D(J_{71} = 36)$ of $T(J_{7-3,5} = 2.5)$</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>124.1</td>
<td>$D(J_{81} = 116)$ of $D(J_{87} = 52)$ of $T(J_{8-3,5} = 16)$</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>138.8</td>
<td>Complex multiplet</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>175.6</td>
<td>$D(J_{18} = 116)$ of $D(J_{17} = 36)$ of $T(J_{1-3,5} = 9.5)$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Recorded in ether solution with an internal CFCl$_3$ reference.

![Diagram of perfluoro-(4-vinylpyridine)](image)

This spectrum was analysed by comparison with the previously reported data for octafluorostyrene. 151,168
(c) 2-(2,3,5,6-Tetrafluoropyridyl)-pentafluoropropene.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.5</td>
<td>D(J<sub>17 = 17</sub>) of D(J<sub>18 = 11</sub>) of T(J<sub>1-3,5 = 5.3</sub>)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>68.0</td>
<td>Q(J<sub>71 = 17</sub>) of D(J<sub>78 = 7</sub>)</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>68.9</td>
<td>Q(J<sub>81 = 11</sub>) of D(J<sub>87 = 7</sub>) of T(J<sub>8-3,5 = 6</sub>)</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>89.2</td>
<td>Broad</td>
<td>2</td>
<td>2, 6</td>
</tr>
<tr>
<td>139.8</td>
<td>Complex multiplet*</td>
<td>2</td>
<td>3, 5</td>
</tr>
</tbody>
</table>

* Badly resolved due to weak sample.

Recorded in ether solution with an internal CF₃Cl₃ reference.
(d) **1,1-Bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane.**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Coupling constants in Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78*4</td>
<td>P(J<sub>7-3,5</sub> = 13*5) of D(J<sub>17</sub> = 9)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>90*4</td>
<td>Broad</td>
<td>4</td>
<td>2,6</td>
</tr>
<tr>
<td>139*6</td>
<td>Complex multiplet</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>164*1</td>
<td>P(J<sub>1-3,5</sub> = 26) of Q(J<sub>17</sub> = 9)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Reference compound = pentafluoropyridine; s.c.s. for (CF₃)₂CF.

Recorded in acetone solution with an external CFC₁₃ reference.

(e) **2,2-Bis-(2',3',5',6'-tetrafluoropyridyl)hexafluoropropane.**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Coupling constants in Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64*9</td>
<td>P(J<sub>1-3,5</sub> = 17)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>89*6</td>
<td>Broad</td>
<td>4</td>
<td>2,6</td>
</tr>
<tr>
<td>136*1</td>
<td>Broad</td>
<td>4</td>
<td>3,5</td>
</tr>
</tbody>
</table>

* Reference compound = pentafluoropyridine; s.c.s. for (CF₃)₂CF.

Recorded in acetone solution with an external CFC₁₃ reference.
9.3.2. **Di-substituted compounds.**

(a) 4-Pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.0</td>
<td>T(J<sub>4b-3,5</sub> = 7) of</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td></td>
<td>T(J<sub>4b4a</sub> = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.6</td>
<td>D(J<sub>63</sub> = 32) of D(J<sub>65</sub> = 20)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>112.9</td>
<td>T(J<sub>4a-3,5</sub> = 29) of</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td></td>
<td>Q(J<sub>4a4b</sub> = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.0</td>
<td>Complex multiplet†</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151.5</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-ethylpyridine); s.c.s. for CH₃O obtained from 4-heptafluoro-isopropyl-2-methoxy-3,5,6-trifluoropyridine.\(^{33}\)

† Badly resolved due to weak sample.

Recorded in carbon tetrachloride solution with an internal CFCl₃ reference.

The \(^1\)H n.m.r. consisted of a singlet at -4.0 (downfield from (CH₃)₄Si).
(b) 1-Chloro-(2'-methoxy-3',5',6'-trifluoropyridyl)tetrafluoroethane.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td>(Coupling constants in Hz)</td>
<td></td>
</tr>
<tr>
<td>83.2</td>
<td></td>
<td>D(J\textsubscript{4b4a} = 7.5) of T(J\textsubscript{4b3,5} = 10)</td>
<td>3</td>
</tr>
<tr>
<td>93.4</td>
<td>93</td>
<td>D(J\textsubscript{63} = 31) of D(J\textsubscript{65} = 21)</td>
<td>1</td>
</tr>
<tr>
<td>125.3</td>
<td></td>
<td>T(J\textsubscript{4a3,5} = 43.5) of Q(J\textsubscript{4a4b} = 7.5)</td>
<td>1</td>
</tr>
<tr>
<td>137.2</td>
<td>137</td>
<td>D(J\textsubscript{34a} = 43.5) of D(J\textsubscript{36} = 31) of D(J\textsubscript{35} = 13) of Q(J\textsubscript{34b} = 10)</td>
<td>1</td>
</tr>
<tr>
<td>150.0</td>
<td>148</td>
<td>D(J\textsubscript{54a} = 43.5) of D(J\textsubscript{56} = 21) of D(J\textsubscript{53} = 13) of Q(J\textsubscript{54b} = 10)</td>
<td>1</td>
</tr>
</tbody>
</table>

* Reference compound = 1-chloro-(tetrafluoropyridyl)tetrafluoroethane; s.c.s. for CH\textsubscript{3}O were obtained from 4-heptafluoroisopropyl-2-methoxy-3,5,6-trifluoropyridine.33

Recorded as a neat liquid with an external CFCl\textsubscript{3} reference.

The 1H n.m.r. consisted of a singlet -4.1 (downfield from (CH\textsubscript{3})\textsubscript{4}Si).
(c) Perfluoro-(2,4-di-ethylpyridine).

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Calc.*</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.8</td>
<td>83</td>
<td>$D(J_{65} = 32)$ of $D(J_{65} = 24)$</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>84.9</td>
<td>-</td>
<td>$D(J_{2b3} = 7)$ of $T(J_{2b2a = 1*5})$</td>
<td>3</td>
<td>2b</td>
</tr>
<tr>
<td>86.6</td>
<td>-</td>
<td>$D(J = 81)$ of $D(J = 65)$ of $T(J_{4b4a = 2*1})$</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>113.5</td>
<td>-</td>
<td>$T(J_{4a3_s5} = 31)$</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>116.9</td>
<td>-</td>
<td>$D(J_{2a3} = 24)$ of $Q(J_{2a2b = 1*5})$</td>
<td>2</td>
<td>2a</td>
</tr>
<tr>
<td>118.5</td>
<td>119</td>
<td>Broad</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>126.4</td>
<td>126</td>
<td>Complex multiplet</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-ethyl-pyridine); s.c.s. for 2-(CF$_3$)$_2$CF.

Recorded as a neat liquid with an internal CFC$_3$ reference.

![Diagram](image)

II

Using a variable temperature probe, spectra of II were recorded over the range -100° to $+40^\circ$, however, apart from a slight broadening of the absorptions, there was no significant change in the spectrum.
(d) **Perfluoro-(2-ethyl-4-isopropylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Obs.</th>
<th>Calc.*</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.1</td>
<td>-</td>
<td>-</td>
<td>Complex multiplet</td>
<td>6</td>
<td>4b</td>
</tr>
<tr>
<td>83.5</td>
<td>83</td>
<td></td>
<td>Complex, overlapping resonances</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>115.3</td>
<td>115</td>
<td></td>
<td>Complex, overlapping resonances</td>
<td>3</td>
<td>2a</td>
</tr>
<tr>
<td>123.3</td>
<td>123</td>
<td></td>
<td>Broad</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>180.0</td>
<td>-</td>
<td>-</td>
<td>Broad</td>
<td>1</td>
<td>4a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-isopropylpyridine); s.c.s. for 2-CF3CF2.

Recorded as a neat liquid with an internal CFCl3 reference.
9.3.3. Tri-substituted compounds.

(a) 2,4-Perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.8</td>
<td>D(J₆₃ = 32) of Q(J₆-OMe = 4)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>85.5</td>
<td>D(J₂b₃ = 7) of T(J₂b₂a = 1.5)</td>
<td>3</td>
<td>2b</td>
</tr>
<tr>
<td>86.8</td>
<td>D(J₄b₃ = 7.3) of T(J₄b₄a = 2)</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>116.4</td>
<td>Broad D(J₄a₃ = 39)</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>117.2</td>
<td>Broad D(J₂a₃ = 24.5)</td>
<td>2</td>
<td>2a</td>
</tr>
<tr>
<td>123.2</td>
<td>Broad</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,4-dieethylpyridine); s.c.s. for 4-OCH₃.

Recorded as a neat liquid with an external CFC₁₃ reference.

XXVIII

The 1H n.m.r. consisted of a doublet ($J_{6-OMe} = 4$) at -3.9 (downfield from (CH₃)$_4$Si).
(b) 2,4-Perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.2</td>
<td>Complex, overlapping absorptions</td>
<td>12</td>
<td>{4b, 2b}</td>
</tr>
<tr>
<td>78.7</td>
<td>Broad D(J$_{63}$ = 32)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>120.2</td>
<td>Broad</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>179.6</td>
<td>Broad D(J$_{4a3}$ = 112)</td>
<td>1</td>
<td>4a</td>
</tr>
<tr>
<td>185.5</td>
<td>Broad D(J$_{2a3}$ = 56)</td>
<td>1</td>
<td>2a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,4-di-isopropylpyridine); s.c.s. for 4-CH$_3$.

Recorded as a neat liquid with an external CFC$_3$ reference.

The 1H n.m.r. consisted of a doublet (J = 4) at -3.8 (downfield from (CH$_3$)$_4$Si).

High temperature studies of XXIX, especially at ca. 80$^\circ$, gave, in general, sharper absorptions, however, complications due to rotational isomerism are also possible under such conditions.
(c) 1-Chloro-(2,6-di-methoxy-3,5-difluoropyridyl)tetrafluoroethane.

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.0</td>
<td>T(J\textsubscript{4b-3,5} = 10) of</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td></td>
<td>D(J\textsubscript{4b4a} = 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.5</td>
<td>T(J\textsubscript{4a-3,5} = 44) of</td>
<td>1</td>
<td>4a</td>
</tr>
<tr>
<td></td>
<td>Q(J\textsubscript{4a4b} = 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148.3</td>
<td>D(J\textsubscript{3,5-4a} = 44) of</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>Q(J\textsubscript{3,5-4b} = 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reference compound = 1-chloro-(2-methoxy-3,5,6-trifluoropyridyl)tetrafluoroethane; s.c.s. for 6-OCH\textsubscript{3}. Recorded as a neat mixture (ca. 50:50) of the mono- and di-methoxy derivatives of 1-chloro-(tetrafluoropyridyl)tetrafluoroethane with an external CFC\textsubscript{13} reference.

The \(^1 \)H n.m.r. consisted of a singlet at -3.8 (downfield from (CH\textsubscript{3})\textsubscript{4}Si).
(d) **Perfluoro-(2,4,5-tri-ethylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5</td>
<td>Broad</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>81.4</td>
<td>Complex, overlapping absorptions</td>
<td>6</td>
<td>4b, 5b</td>
</tr>
<tr>
<td>83.2</td>
<td>D(J = 6) of D(J = 1.5)</td>
<td>3</td>
<td>2b</td>
</tr>
<tr>
<td>103.3</td>
<td>Broad multiplet</td>
<td>4</td>
<td>4a, 5a</td>
</tr>
<tr>
<td>115.8</td>
<td>Complex, overlapping absorptions</td>
<td>3</td>
<td>{2a, 3}</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,4-di-ethylpyridine); s.c.s. for 5-(CF₃)₂CF.

Recorded as a neat liquid with an internal CFCl₃ reference.
(e) **Perfluoro-(2,4,6-tri-t-butylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.7</td>
<td>Broad overlapping</td>
<td>27</td>
<td>4b</td>
</tr>
<tr>
<td>61.8</td>
<td>resonances</td>
<td></td>
<td>2b, 6b</td>
</tr>
<tr>
<td>87.3</td>
<td>Broad</td>
<td>2</td>
<td>3, 5</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-t-butylpyridine); s.c.s. for 4-(CF$_3$)$_3$C and 2,6-(CF$_3$)$_2$CF.

Recorded as a neat liquid at ca. 180° with an external CFC$_3$ reference.

XXXI
(f) Perfluoro-(2,5-di-isopropyl-4-ethylpyridine).

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.2</td>
<td>D(J<sub>63</sub> = 32) of H(J<sub>65b</sub> = 30)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>72.3</td>
<td>D(J<sub>5b6</sub> = 30) of T(J<sub>5b4a</sub> = 7) of D(J<sub>5b5a</sub> = 2.5)</td>
<td>6</td>
<td>5b</td>
</tr>
<tr>
<td>74.1</td>
<td>D(J<sub>2b3</sub> = 7.5) of D(J<sub>2b2a</sub> = 6)</td>
<td>6</td>
<td>2b</td>
</tr>
<tr>
<td>80.3</td>
<td>D(J<sub>4b5a</sub> = 31) of D(J<sub>4b3</sub> = 15)</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>99.7</td>
<td>D(J<sub>4a5a</sub> = 86) of D(J<sub>4a3</sub> = 52) of H(J<sub>4a5b</sub> = 7)</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>113.9</td>
<td>Broad complex multiplet</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>170.5</td>
<td>T(J<sub>5a4a</sub> = 86) of Q(J<sub>5a4b</sub> = 31)</td>
<td>1</td>
<td>5a</td>
</tr>
<tr>
<td>183.8</td>
<td>D(J<sub>2a3</sub> = 60) or H(J<sub>2a2b</sub> = 6)</td>
<td>1</td>
<td>2a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-ethyl-pyridine); s.c.s. for 2- and 5-(CF₃)₂CF.

 Recorded as a neat liquid with an external CFCl₃ reference.
(g) **Perfluoro-(2,6-di-isopropyl-4-ethylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74*5</td>
<td>-</td>
<td>D(J<sub>6b6a</sub> = 5) of D(J<sub>6b5</sub> = 4*5)</td>
<td>12</td>
</tr>
<tr>
<td>85*5</td>
<td>-</td>
<td>Broad T(J<sub>4b-3,5</sub> = 7)</td>
<td>3</td>
</tr>
<tr>
<td>111*4</td>
<td>108</td>
<td>Broad T(J<sub>4a-3,5</sub> = 32)</td>
<td>2</td>
</tr>
<tr>
<td>112*3</td>
<td>-</td>
<td>Broad D(J<sub>6a5</sub> = 59)</td>
<td>2</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-ethylpyridine); s.c.s. for 2,6-(CF₃)₂CF.

Recorded as a neat liquid with an external CFC₃ reference.

XXV
(h) **Perfluoro-(3-isopropyl-2,4-diethylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.6</td>
<td>50</td>
<td>Broad H(J\textsubscript{65b} = 29)</td>
<td>1</td>
</tr>
<tr>
<td>72.3</td>
<td>-</td>
<td>D(J\textsubscript{5b6} = 29) of T(J\textsubscript{5b4a} = 6.5)</td>
<td>6</td>
</tr>
<tr>
<td>81.0</td>
<td>-</td>
<td>D(J\textsubscript{4b5a} = 32) of D(J\textsubscript{4b3} = 14)</td>
<td>3</td>
</tr>
<tr>
<td>83.1</td>
<td>-</td>
<td>D(J\textsubscript{2b3} = 7)</td>
<td>3</td>
</tr>
<tr>
<td>100.1</td>
<td>-</td>
<td>Broad D(J\textsubscript{4a5a} = 87) of D(J\textsubscript{4a3} = 45)</td>
<td>2</td>
</tr>
<tr>
<td>115.2</td>
<td>114</td>
<td>Broad</td>
<td>1</td>
</tr>
<tr>
<td>116.1</td>
<td>-</td>
<td>D(J\textsubscript{2a3} = 23)</td>
<td>2</td>
</tr>
<tr>
<td>170.2</td>
<td>-</td>
<td>T(J\textsubscript{5a4a} = 87) of Q(J\textsubscript{5a4b} = 32)</td>
<td>1</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,4-diethylpyridine); s.c.s. for 5-(CF\textsubscript{3})\textsubscript{2}CF. Recorded as a neat liquid with an external CFC\textsubscript{13} reference.
(1) Perfluoro-(6-isopropyl-2,4-di-ethylpyridine).

<table>
<thead>
<tr>
<th>Shifts (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>(Coupling constants in Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.4</td>
<td>D(J_{6b6a} = 6) of D(J_{6b5} = 6)</td>
<td>6</td>
<td>6b</td>
</tr>
<tr>
<td>85.2</td>
<td>D(J_{2b3} = 5)</td>
<td>3</td>
<td>2b</td>
</tr>
<tr>
<td>87.4</td>
<td>Broad T(J_{4b-3,5} = 14)</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>108.6</td>
<td>Broad</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>111.5</td>
<td>Broad</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>113.5</td>
<td>T(J_{4a-3,5} = 32)</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>116.8</td>
<td>D(J_{2a3} = 23)</td>
<td>2</td>
<td>2a</td>
</tr>
<tr>
<td>186.9</td>
<td>D(J_{6a5} = 56) of H(J_{6a6b} = 6)</td>
<td>1</td>
<td>6a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,4-di-ethylpyridine); s.c.s. for 6-(CF_3)_2 CF.

Recorded as a neat liquid with an external CFCI_3 reference.
(j) **Perfluoro-(2,5-di-ethyl-4-isopropylpyridine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.9</td>
<td>T(J({65a} = 47)) of D(J({63} = 31)) of Q(J(_{65b} = 14))</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>72.1</td>
<td>Broad D(J(_{4b3} = 32))</td>
<td>6</td>
<td>4b</td>
</tr>
<tr>
<td>80.1</td>
<td>D(J({5b4a} = 33)) of D(J({5b6} = 14))</td>
<td>3</td>
<td>5b</td>
</tr>
<tr>
<td>83.0</td>
<td>D(J(_{2b3} = 8))</td>
<td>3</td>
<td>2b</td>
</tr>
<tr>
<td>100.0</td>
<td>D(J({5a4a} = 86)) of D(J({5a6} = 47))</td>
<td>2</td>
<td>5a</td>
</tr>
<tr>
<td></td>
<td>H(J(_{5a4b} = 6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.8</td>
<td>Broad multiplet</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>116.3</td>
<td>D(J(_{2a3} = 26))</td>
<td>2</td>
<td>2a</td>
</tr>
<tr>
<td>170.1</td>
<td>T(J({4a5a} = 86)) of Q(J({4a5b} = 33))</td>
<td>1</td>
<td>4a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2-ethyl-4-isopropylpyridine); s.c.s. for 5CF\(_3\)CF\(_2\).*

Recorded as a neat liquid with an external CFC\(_1\)\(_3\) reference.

XXI
(k) **Perfluoro-(2-ethyl-4,5-di-isopropylpyridine).**

<table>
<thead>
<tr>
<th>Shifts (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.4</td>
<td>50</td>
<td>D(J = 31) of H(J = 32)</td>
<td>1</td>
</tr>
<tr>
<td>74.0</td>
<td></td>
<td>D(J = 32; J = 32) of T(J = 7.5; J = 7.5)</td>
<td>12</td>
</tr>
<tr>
<td>85.4</td>
<td></td>
<td>D(J = 7.5)</td>
<td>3</td>
</tr>
<tr>
<td>113.6</td>
<td>111</td>
<td>Broad multiplet</td>
<td>1</td>
</tr>
<tr>
<td>117.9</td>
<td></td>
<td>D(J = 25)</td>
<td>2</td>
</tr>
<tr>
<td>167.8</td>
<td></td>
<td>Broad</td>
<td>2</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2-ethyl-4-isopropylpyridine); s.c.s. for 5-(CF$_3$)$_2$CF.

Recorded as a neat liquid with an external CFC$_3$ reference.

![Chemical Structure](image.png)
9.3.4. **Tetra-substituted compounds.**

(a) **Perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine).**

<table>
<thead>
<tr>
<th>Shifts (p.p.m.)</th>
<th>Obs.</th>
<th>Calc.*</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.9</td>
<td>-</td>
<td>9</td>
<td>4b, 6b</td>
<td></td>
</tr>
<tr>
<td>81.4</td>
<td>-</td>
<td>3</td>
<td>5b</td>
<td></td>
</tr>
<tr>
<td>84.8</td>
<td>-</td>
<td>3</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.7</td>
<td>-</td>
<td>4</td>
<td>2a, 6a</td>
<td></td>
</tr>
<tr>
<td>117.3</td>
<td>-</td>
<td>2</td>
<td>5a</td>
<td></td>
</tr>
<tr>
<td>171.9</td>
<td>-</td>
<td>1</td>
<td>4a</td>
<td></td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(2,5-di-ethyl-4-isopropylpyridine); s.c.s. for 2-CF3CF2.

Recorded as a neat liquid with an external CFC13 reference.

XXII

The observed spectrum of XXII consisted of broad resonances with little or no fine structure; assignments were made by comparison with the spectrum of the reference compound. An absorption due to the remaining ring fluorine (3) was not observed, however, large couplings with the substituent groups are expected to result in an extremely broad absorption of similar amplitude to the background.
9.4. Data for polyfluoropyridazine derivatives.

9.4.1. Mono-substituted compounds.

(a) Perfluoro-(4-ethylpyridazine).

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>77*4</td>
<td>D(J = 34) of T(J = 26.5) of D(J = 15) of Q(J = 8)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>87*0</td>
<td>D(J = 8) of D(J = 6) of T(J = 2) of T(J = 2)</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>97*5</td>
<td>D(J = 34) of D(J = 25)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>115*0</td>
<td>T(J = 26.5)</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>120*6</td>
<td>T(J = 26.5) of D(J = 25) of D(J = 15) of Q(J = 6)</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

* Reference compound = tetrafluoropyridazine; s.c.s. for 4-(CF₃)₂CF.

Recorded as a neat liquid with an internal CFCl₃ reference.
9.4.2. **Di-substituted compounds.**

(a) **4-Pentafluoroethyl-5-methoxy-3,6-difluoropyridazine.**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.4</td>
<td>80</td>
<td>D(J\text{36} = 34) of T(J\text{34a} = 33)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Q(J\text{34b} = 7)</td>
<td></td>
</tr>
<tr>
<td>85.5</td>
<td>-</td>
<td>Broad D(J\text{4b3} = 7)</td>
<td>3</td>
</tr>
<tr>
<td>90.2</td>
<td>92</td>
<td>D(J\text{63} = 34) of Q(J\text{6O}{Me} = 5.5)</td>
<td>1</td>
</tr>
<tr>
<td>113.6</td>
<td>-</td>
<td>D(J\text{4a3} = 33)</td>
<td>2</td>
</tr>
</tbody>
</table>

*Reference compound = perfluoro-(4-ethyl-pyridazine); s.c.s. for 5-OCH\text{3} obtained from 3,6-difluoro-4,5-dimethoxypyridazine.37 Recorded as a neat liquid with an external CFCl\textsubscript{3} reference.

XXX

The 1H n.m.r. consisted of a doublet ($J = 5.5$) at -4.2 (downfield from (CH\textsubscript{3})\textsubscript{4}Si).
(b) Perfluoro-(4,5-di-ethylpyridazine).

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.7</td>
<td>81</td>
<td>Broad complex multiplet</td>
<td>2</td>
</tr>
<tr>
<td>82.6</td>
<td>-</td>
<td>Complex multiplet</td>
<td>6</td>
</tr>
<tr>
<td>107.2</td>
<td>-</td>
<td>Complex multiplet</td>
<td>4</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4-ethyl-pyridazine); s.c.s. for 5-(CF$_3$)$_2$CF.

Recorded in acetone solution with an external CFC$_3$ reference.

VII

Variable temperature studies of VII at ca. 0°, 70°, 140° and 180° gave only broadened resonances and did not simplify analysis of the spectrum.
(c) **Perfluoro-(3,6-di-t-butylpyridazine).**

<table>
<thead>
<tr>
<th>Shifts (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>Calc.*</td>
<td>intensity</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td>-</td>
<td>18</td>
<td>3b,6b</td>
</tr>
<tr>
<td>129.2</td>
<td>133</td>
<td>2</td>
<td>4,5</td>
</tr>
</tbody>
</table>

* Reference compound = tetrafluoropyridazine; s.c.s. for 3-(CF₃)₂CF, obtained from perfluoro-(3,5-di-isopropylpyridazine).

Recorded in acetone solution with an external CFC₁₃ reference.

The calculated chemical shifts for the other possible di-substitution patterns are as shown.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5-isomer</td>
<td>70</td>
<td>-</td>
<td>71</td>
</tr>
<tr>
<td>4,6-isomer</td>
<td>67</td>
<td>103</td>
<td>-</td>
</tr>
</tbody>
</table>
9.4.3. **Tri-substituted compounds.**

(a) **Perfluoro-(3,4,5-tri-ethylpyridazine).**

<table>
<thead>
<tr>
<th>Shift (p.p.m.)</th>
<th>Fine structure (Coupling constants in Hz)</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.2, 75</td>
<td>$T(J_{65a} = 26)$ of $Q(J_{65b} = 17)$</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>74.5</td>
<td>$T(J = 15.5)$ of $T(J = 15)$</td>
<td>3</td>
<td>3b</td>
</tr>
<tr>
<td>80.9</td>
<td>$D(J_{5b6} = 17)$ of $T(J = 17)$</td>
<td>3</td>
<td>5b</td>
</tr>
<tr>
<td>81.7</td>
<td>Broad singlet</td>
<td>3</td>
<td>4b</td>
</tr>
<tr>
<td>93.0</td>
<td>Broad</td>
<td>2</td>
<td>3a</td>
</tr>
<tr>
<td>104.7</td>
<td>Broad</td>
<td>2</td>
<td>4a</td>
</tr>
<tr>
<td>108.0</td>
<td>Broad</td>
<td>2</td>
<td>5a</td>
</tr>
</tbody>
</table>

* Reference compound = perfluoro-(4,5-di-ethylpyridazine); s.c.s. for 3-(CF$_3$)$_2$CF.

Recorded as a neat liquid with an external CFC$_3$ reference.
9.4.4. Tetra-substituted compounds.

(a) Tetrakis(pentafluoroethyl)pyridazine.

<table>
<thead>
<tr>
<th>Shift (p.p.m.) Obs.</th>
<th>Fine structure</th>
<th>Relative intensity</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.2 Broad</td>
<td></td>
<td>6</td>
<td>3b,6b</td>
</tr>
<tr>
<td>80.8 Singlet</td>
<td></td>
<td>6</td>
<td>4b,5b</td>
</tr>
<tr>
<td>91.2 Broad</td>
<td></td>
<td>4</td>
<td>3a,6a</td>
</tr>
<tr>
<td>108.8 Broad</td>
<td></td>
<td>4</td>
<td>4a,5a</td>
</tr>
</tbody>
</table>

Recorded as an acetone solution with an external CFC13 reference.
APPENDIX 1

Mass Spectral Data
Mass Spectral Data of Polyfluoro-pyridine and -pyridazine Derivatives

$[^m/e \text{ values; relative abundance (\% of base peak) in parentheses}].$

All peaks > 5\% of the base peak (arbitrarily 100\%) are recorded;

* indicates parent peak.

Perfluoro-(4-ethylpyridine) (I).

269 (23)*, 250 (8), 201 (6), 200 (100), 150 (7), 131 (5), 117 (8),
105 (6), 100 (16), 93 (9), 86 (5), 69 (46), 31 (19).

Perfluoro-(2,4-di-ethylpyridine) (II).

369 (18)*, 350 (20), 301 (11), 300 (100), 269 (22), 250 (25), 231 (18),
201 (5), 200 (62), 181 (9), 131 (5), 117 (6), 100 (7), 93 (5), 69 (25),
31 (5).

Perfluoro-(2,4,5-tri-ethylpyridine) (III).

469 (12)*, 450 (28), 400 (79), 350 (44), 331 (12), 319 (5), 312 (7),
300 (27), 281 (42), 262 (35), 250 (8), 231 (10), 219 (14), 212 (13),
200 (16), 193 (7), 181 (6), 169 (5), 167 (5), 162 (13), 131 (14),
124 (7), 119 (5), 117 (14), 100 (10), 93 (11), 69 (100), 31 (10).

Perfluoro-(4-ethylpyridazine) (VI).

253(6), 252 (79)*, 233 (13), 184 (7), 183 (100), 155 (15), 152 (22),
124 (6), 119 (5), 105 (11), 93 (25), 74 (10), 69 (57), 55 (6), 31 (25).

Perfluoro-(4,5-di-ethylpyridazine) (VII).

353 (10), 352 (95)*, 333 (48), 305 (6), 284 (10), 283 (92), 267 (5),
255 (8), 234 (9), 233 (100), 205 (14), 186 (7), 183 (11), 177 (8), 155 (18),
150 (11), 119 (23), 117 (16), 100 (10), 93 (15), 86 (22), 69 (70).

Perfluoro-(3,4,5-tri-ethylpyridazine) (VIII).

452 (29)*, 433 (22), 383 (10), 352 (12), 333 (7), 305 (16), 286 (9),
283 (17), 267 (10), 255 (13), 236 (9), 233 (21), 217 (10), 205 (6),
183 (7), 155 (6), 119 (18), 117 (13), 100 (7), 93 (13), 69 (100), 31 (13).
Perfluoro-(2,4,6-tri-t-butylpyridine) (XXXI).
770 (7), 769 (29)*, 751 (10), 750 (41), 700 (19), 681 (14), 662 (5), 612 (7), 600 (11), 69 (100).

Perfluoro-(3,6-di-t-butylpyridazine) (XXXII).
553 (7), 552 (38)*, 534 (6), 533 (35), 454 (5), 367 (13), 317 (7), 255 (7), 120 (11), 109 (5), 97 (5), 95 (7), 69 (100), 57 (7), 55 (27).

Perfluoro-(4-vinylpyridine) (IX).
232 (9), 231 (100)*, 212 (20), 200(9), 186 (9), 182 (5), 181 (69), 162 (61), 136 (21), 131 (43), 124 (13), 117 (69), 112 (7), 105 (9), 100 (11), 98 (10), 93 (24), 86 (14), 81 (5), 74 (11), 69 (43), 31 (38).

2-(2',3',5',6'-Tetrafluoropyridyl)pentfluoropropene (X).
282 (7), 281 (72)*, 262 (36), 231 (10), 219 (12), 212 (20), 200 (30), 193 (8), 181 (7), 169 (11), 162 (17), 155 (13), 124 (9), 117 (22), 100 (10), 93 (13), 69 (100), 31 (17).

4-Pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine (XXVII).
282 (11), 281 (100)*, 280 (13), 262 (32), 253 (9), 252 (71), 251 (28), 250 (7), 238 (7), 213 (7), 212 (56), 201 (9), 200 (26), 197 (14), 188 (35), 185 (7), 184 (83), 182 (34), 181 (11), 171 (9), 169 (49), 164 (8), 162 (14), 155 (12), 150 (7), 143 (19), 134 (9), 132 (10), 131 (16), 124 (17), 119 (11), 117 (8), 105 (10), 100 (34), 93 (39), 92 (9), 86 (10), 84 (14), 80 (10), 74 (24), 69 (79), 48 (22), 31 (32).

2,4-Perfluoro-di-ethyl-5-methoxy-3,6-difluoropyridine (XXVIII).
382 (7), 381 (34)*, 362 (17), 312 (100), 278 (16), 250 (6), 228 (15), 200 (23), 155 (8), 138 (17), 117 (7), 69 (37), 33 (9), 31 (7).

2,4-Perfluoro-di-isopropyl-5-methoxy-3,6-difluoropyridine (XXIX).
482 (8), 481 (47)*, 463 (6), 462 (37), 428 (8), 413 (15), 412 (90), 363 (8), 362 (60), 328 (15), 263 (5), 262 (5), 250 (8), 200 (9), 31 (32).
167 (5), 117 (7), 93 (6), 69 (100).

4-Pentafluoroethyl-5-methoxy-3,6-difluoropyridazine (XXX).
265 (9), 264 (100)*, 245 (11), 216 (7), 195 (7), 193 (7), 165 (5),
164 (24), 155 (12), 147 (74), 143 (19), 137 (31), 135 (7), 124 (10),
119 (14), 117 (8), 105 (11), 100 (5), 93 (37), 90 (14), 87 (11), 86 (7),
76 (8), 74 (12), 71 (22), 69 (8), 60 (7), 51 (11), 33 (22), 31 (26).

1-Chloro-1-(2'-methoxy-3',5',6'-trifluoropyridyl)tetrafluoroethane (XIII).
299 (36)*, 298 (16), 297 (100)*, 296 (15), 278 (10), 270 (21), 269 (13),
268 (63), 267 (20), 262 (25), 234 (29), 230 (15), 228 (41), 216 (17),
212 (38), 200 (43), 199 (15), 198 (21), 197 (10), 185 (16), 184 (12),
182 (12), 181 (19), 178 (11), 169 (25), 162 (18), 159 (10), 155 (10), 150 (10),
143 (10), 131 (12), 124 (13), 117 (12), 109 (9), 105 (13), 100 (23),
93 (27), 92 (9), 85 (13), 74 (18), 69 (73), 31 (36).

1,1-Bis-(2',3',5',6'-tetrafluoropyridyl)tetrafluoroethane (XVI).
401 (14), 400 (97)*, 381 (15), 332 (15), 331 (100), 293 (12), 286 (18),
282 (6), 281 (48), 262 (19), 236 (6), 231 (10), 217 (5), 200 (23),
186 (6), 117 (8), 100 (8), 93 (8), 69 (58), 31 (12).

2,2-Bis-(2',3',5',6'-tetrafluoropyridyl)hexafluoropropane (X).
451 (11), 450 (66)*, 431 (10), 382 (5), 381 (26), 331 (14), 312 (11),
293 (25), 287 (8), 286 (63), 281 (15), 262 (16), 248 (7), 200 (7),
117 (6), 100 (8), 93 (6), 69 (100), 31 (9).

Tetrakis(pentafluoroethyl)pyridazine (XXXIII).
553 (18), 552 (98)*, 531 (51), 505 (7), 455 (16), 417 (8), 240 (42),
386 (6), 367 (29), 355 (21), 336 (9), 317 (47), 305 (10), 297 (6),
286 (8), 267 (40), 255 (6), 248 (7), 243 (8), 229 (5), 217 (19),
198 (7), 193 (32), 181 (8), 179 (10), 174 (5), 169 (5), 167 (13), 155 (11),
148 (20), 143 (24), 131 (10), 129 (6), 124 (21), 120 (6), 119 (100),
117 (8), 100 (25), 93 (10), 69 (99), 31 (14).
Perfluoro-(2,5-di-isopropyl-4-ethylpyridine) (XVIII).

570 (5), 569 (31)*, 551 (7), 550 (48), 501 (8), 500 (58), 462 (7), 451 (8), 450 (63), 412 (13), 400 (21), 362 (11), 312 (10), 274 (5), 69 (100).

Perfluoro-(5-isopropyl-2,4-di-ethylpyridine) (XIX).

519 (13)*, 500 (20), 450 (55), 400 (28), 381 (6), 362 (9), 350 (17), 312 (13), 93 (5), 69 (100).

Perfluoro-(2-ethyl-4-isopropylpyridine) (XX).

419 (16)*, 400 (19), 350 (100), 300 (12), 281 (16), 250 (19), 231 (10), 219 (9), 131 (6), 69 (44).

Perfluoro-(2,5-di-ethyl-4-isopropylpyridine) (XXI).

520 (5), 519 (30)*, 501 (10), 500 (74), 451 (17), 450 (99), 412 (7), 400 (17), 362 (16), 350 (24), 312 (24), 293 (5), 274 (5), 262 (11), 224 (7), 119 (5), 117 (5), 93 (7), 69 (100).

Perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine) (XXII).

619 (8)*, 601 (9), 600 (47), 551 (14), 550 (78), 500 (15), 462 (8), 450 (8), 412 (14), 400 (5), 362 (7), 350 (6), 267 (5), 119 (14), 93 (5), 69 (100).

Perfluoro-(2-ethyl-4,5-di-isopropylpyridine) (XXIV).

569 (17)*, 551 (5), 550 (30), 501 (9), 500 (52), 462 (5), 450 (20), 431 (5), 412 (10), 362 (11), 350 (5), 312 (6), 274 (5), 119 (8), 69 (100).

Perfluoro-(2,6-di-isopropyl-4-ethylpyridine) (XXV).

569 (33)*, 550 (73), 501 (9), 500 (96), 451 (12), 450 (100), 400 (6), 381 (8), 362 (6), 331 (5), 219 (32), 131 (22), 119 (6), 100 (8), 69 (99), 31 (47).

Perfluoro-(6-isopropyl-2,4-di-ethylpyridine) (XXVI).

519 (15)*, 501 (6), 500 (32), 451 (14), 450 (100), 400 (27), 381 (8), 331 (9), 117 (5), 69 (32).
APPENDIX 2

Infra-red Spectra
Solid samples were recorded as KBr discs and liquid or low melting solid samples as contact films between KBr plates.

<table>
<thead>
<tr>
<th>Spectrum No.</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perfluoro-(4-ethylpyridine)</td>
</tr>
<tr>
<td>2</td>
<td>Perfluoro-(2,4-di-ethylpyridine)</td>
</tr>
<tr>
<td>3</td>
<td>Perfluoro-(2,4,5-tri-ethylpyridine)</td>
</tr>
<tr>
<td>4</td>
<td>Perfluoro-(4-ethylpyridazine)</td>
</tr>
<tr>
<td>5</td>
<td>Perfluoro-(4,5-di-ethylpyridazine)</td>
</tr>
<tr>
<td>6</td>
<td>Perfluoro-(3,4,5-tri-ethylpyridazine)</td>
</tr>
<tr>
<td>7</td>
<td>Perfluoro-(2,4,6-tri-t-butylpyridine)</td>
</tr>
<tr>
<td>8</td>
<td>Perfluoro-(3,6-di-t-butylpyridazine)</td>
</tr>
<tr>
<td>9</td>
<td>Perfluoro-(4-vinylpyridine)</td>
</tr>
<tr>
<td>10</td>
<td>2-(2',3',5',6'-Tetrafluoropyridyl)-pentafluoropropene</td>
</tr>
<tr>
<td>11</td>
<td>4-Pentafluoroethyl-2-methoxy-3,5,6-trifluoropyridine</td>
</tr>
<tr>
<td>12</td>
<td>2,4-Perfluorodi-ethyl-5-methoxy-3,6-difluoropyridine</td>
</tr>
<tr>
<td>13</td>
<td>2,4-Perfluorodi-isopropyl-5-methoxy-3,6-difluoropyridine</td>
</tr>
<tr>
<td>14</td>
<td>4-Pentafluoroethyl-5-methoxy-3,6-difluoropyridazine</td>
</tr>
<tr>
<td>15</td>
<td>Polymer from hydrolysis of perfluoro-(3,6-di-t-butylpyridazine)</td>
</tr>
<tr>
<td>16</td>
<td>1-Chloro-(2',3',5',6'-trifluoropyridyl)tetrafluoroethane</td>
</tr>
<tr>
<td>17</td>
<td>1,1-Bis-(2',3',5',6'-tetrafluoropyridyl)-tetrafluoroethane</td>
</tr>
<tr>
<td>18</td>
<td>2,2-Bis(2',3',5',6'-tetrafluoropyridyl)-hexafluoropropane</td>
</tr>
<tr>
<td>19</td>
<td>Tetrakis(pentafluoroethyl)pyridazine</td>
</tr>
<tr>
<td>20</td>
<td>Perfluoro-(2,5-di-isopropyl-4-ethylpyridine)</td>
</tr>
<tr>
<td>Spectrum No.</td>
<td>Compound</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>21</td>
<td>Perfluoro-(5-isopropyl-2,4-di-ethylpyridine)</td>
</tr>
<tr>
<td>22</td>
<td>Perfluoro-(2-ethyl-4-isopropylpyridine)</td>
</tr>
<tr>
<td>23</td>
<td>Perfluoro-(2,5-di-ethyl-4-isopropylpyridine)</td>
</tr>
<tr>
<td>24</td>
<td>Perfluoro-(2,5,6-tri-ethyl-4-isopropylpyridine)</td>
</tr>
<tr>
<td>25</td>
<td>Perfluoro-(tetraethyl-4-isopropylpyridine)</td>
</tr>
<tr>
<td>26</td>
<td>Perfluoro-(2-ethyl-4,5-di-isopropylpyridine)</td>
</tr>
<tr>
<td>27</td>
<td>Perfluoro-(2,6-di-isopropyl-4-ethylpyrididine)</td>
</tr>
<tr>
<td>28</td>
<td>Perfluoro-(6-isopropyl-2,4-di-ethylpyridine)</td>
</tr>
<tr>
<td>29</td>
<td>Perfluoro-(4,5-di-ethylpyridazine)(a) ca. 60°</td>
</tr>
<tr>
<td></td>
<td>(b) ca. 15°</td>
</tr>
</tbody>
</table>
NO. 7.

NO. 8.
References

(b) H.C. Fielding and A.J. Rudge, *B.P. 1,082,127/1967*.

112. B.L. Dyatkin, S.R. Sterlin, B.I. Martynov, and I.L. Knunyants,
113. B.L. Dyatkin, S.R. Sterlin, B.I. Martynov, E.I. Mysov, and
114. B.L. Dyatkin, S.R. Sterlin, B.I. Martynov and I.L. Knunyants,
Sept. 1963, 14M.
Advances in the Chemistry of Polyhalogenoaromatic Compounds' Symposium,
117. B.L. Dyatkin, E.P. Mochalina, R.A. Bekker, and I.L. Knunyants,
120. R.D. Dresdner, J.S. Johar, J. Merritt and C.S. Patterson, Inorg.
1961, 83, 1767.
123. R.E. Banks, A. Braithwaite, R. Haszeldine, and D.R. Taylor,
129. R.P. Corbally, Private communication.
132. S. Partington, Private communication.
143. S.L. Bell, Private communication.
152. Sample supplied by Dr. R.P. Corbally.
157. See Section 9.1.3.

