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AHBSTRACT

variables. Furthermore, from the point of view of wave
functions it is shown how the dynsmical importance of spin

implies an internsl structure or extended description of

radrons which may be linked with duslity (or internsl symiuetry).

Then, in the following chapter, we first of 31l describ

how certain mathematical characteristics emerge as being

desirable for s strong interaction theory end indicate hc

these appear in various models, the relatljnsnlzs betviee

wiilch we slso explain. It then sppears that the most suit

able language in which to discuss these properties is theat

of two-dimensionz2l Riemann surfaces, which are most prominent

in the Analogue Model.
Chepter III indicates how the structure in dual modsls

may be simply derived without an explicit physical inter-

{ ~
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orrespondence Principle.

the surface description 2nd the mathematical sttributes ment-

sned sbove (without a tachyon). Furthermore, it amountis
to zn extended description of interacting hadrons, which,

. . . L . s . \ ; .
when reconciled with Poincare invariance, leads to the int

symmetry group of the original models.

ery

—

retation {(ss in the functionsl integrsl formelism) - Ramcnd's

[4h)
=



Inere azre two languages in terwms of which we may ciscuss
elementary interactions - field theoretic and the 3 - matrix
approsach. Each of these is involved in the developnent
dual theory. The purpose of the introduction is to en...

the relstionship between duslity and each of these framevworks

1, S - matrix

1.1  Duality

The idea of duality originsted within the context of

(O]

the S - mstrixe. Now, there are two representations of th

S - matrix, one of which takes simple form at low energies

a
e . v : 2,3
and the other at high energies.

The former is directly relzted to the presence of reson=.

pezaks in effective mass, corresponding to the formation cof

my 3

-~

ce

particles. These resonances, characterised by gquantum nuinbers,

form a spectrum with certain reguler features.

&) perticles belong to SU(3) multiplets of triality zero.
b) particles, wnen plotted on a Chew - Frautschi aiegram,
lie on straigdtllines (Regge trajectories)

iee J = a2+ bmz, {.J = Sp
Lm:.;a

-3
(") I_J.
w3

(at least, to a good approximztion.)

The other representation of the S - matrix is obtained

by continuing the amplitucde into the complex ahgular momantun

plene and assuming that the singularities encountered zre poles
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lyinz on Regge trajectories. This approach (Regge pole
theory), using asnalyticity and crossing properties of scattering

amplitudes, exnibits a close connection between scattering at

—

kY

high energies

)

né the mass spectrum (Fig.l)

©

\\ - y
h, " . 3
r

mol m: Il‘l"L > S
t>20, ¢t~ channe | teo, s~ ¢ hanne ! //‘ysicc/ region .
d < l d (2
[
|
t - | t-
a b a b
R #
. s s -
ad - he § ab »dc
FigeI (4, - point function)
Hence, we may find X (s) for
a) 3< 0 from high energy data,
o) S >0 from low energy data ie. messes, widths etc.,

-

with the following results,

i) All trojectories are approximately linear with e comron
/ g=2

slope K o~ 1 GeV "7,

ii) trajectories are exchenge degenerate,

iii) Ima&k <& Re X, ie. narrow widths.
': o '.‘.-'e

ie. we may @pyroximate a trajectory by

X (S) = &(o0) + o&X'S.

(The pomeron trejectory merits special trestment, see laterj.
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wWe therefore have for the 8 - channel physical rezion
either a sum over resonance pecles or a sum over Hegge poles.
Trese two expressions are ineouivalent if the sums are stopped

after a finite numoer of terms; ie. we must have an infinice

number of resonances and hegge poles. In order to compare tre
. , N N o - e T T 3y
tWo expressions we mgy use Finite Znergy Sum kules (FE3A's)
eg. (for the four - point case)

§ &y

N
L) ~ Z R
dv Vv jmT(VJ) - X, + N 1 (_L.lo.l.)

o
, s-u . .
where ) = , ( S =1+ 1 T)

=2
and saturate ImT'by resonsnce poles.
Hence, we have the scheme:
input is s - channel mass spectrum
output consists of trajectories and residues &, (%), (. (t),
or vice versa.

L

ie. we hesve a FESR bootstrap’ with s - channel resonances

tuilding up the cross - channel Regge poles.

Iy~ = =X

ie. §—=

¢

This is the origin of duslity. In fact,2

in an approximation
of tihhe emplitude by s meromorphic function ie. requiring only
resonance poles in the reaction channels, then the smplitude

may De written either as a sum over resonances in itnhe s - and

u channels or as a sum over Hegge poles in th

0]

t - channel,

ie. over resonances in the t - cheannel. If singulzrities
other than poles are present then duality does not nscessarily

Hy
o
=
—
O

Y . (The interference model has no connectiocn between

t - channel trajectories).

7
I
S

A special mention should be made concerning the Fomercn
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trajectory (invented to account for the asymptotic behaviour
of cross sections). This trajectory is not normally includec
in the dusl picture - ie. it is not dual to a sum of s -
channel resonances. This is because

a) the pomeron (vecuum quantum numbers) is independent of

§ - cnannel guantum numbers ie. of s - channel resonance

b) At high energies the pomeron is associated with the

proauction of large numbers of particles ie. it is associated

with cuts.

1.2 The Veneziano rlodel

: 5 .
Venzisno” proposed an explicit form for A(s,t),
(L - point smplitude) possessing 2nalyticity, crossing symmetry

and duality (so satisfying FESR's), which took the form

. 0 e VI, .
A [S,t) = 'ﬁ {'V(d‘I“f.) V(d ldt) \/(o(,lo(u):)} (1'2.1)

A7 1n
\Juer‘el

NEEENGEY! -X =
- = (-x-y)B(1-x-4) 2
V(X,‘J)- F(l--\‘-'ﬂ) ! (lo-...o-?)

A(s,t) has simple poles at CKS = n, for exzmple,
(no double poles), and is also Regge tehaved. However, &

fundamental defect was the violation of unitarity.

bl

Duslity follows from

: C, (%
Vix,y) = Z-——[-y) = 2 Co ()

n X = 7T M 5—m

1 .

‘This asmplitude has been compared with experimentsl cate

o
-

with not unfavourable results. For example in nis letter

Lovelace points out that the Veneziano amplitude accounts
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reasonably well for the boson spectrum and some decey widtns.

ie Aalso draws certain correspondences between tire predictions

of this amplitude z2nd those of current algetra. Indeed

2
Koldalov suggests that 3U(6) and 3U(3) mey be of dynesaical
origin - ie. determined to a large extent by the reguiremnent

duzlity. Of relevance here is the compatibility of duality

and SU(3) zero trislity multiplets, as demonstrated in dualit
]

&3]

rams. This apparently close relsztion to guark ideas i

brought out mnre clearly in s formulation of the generalised

T . 2 : .
dual N - point - function , in which guark lines zre convenient

mathematical constructs. Later, it will be shown trat the
most direct realization of this statement is the Anzlogzue sodel,

which serves ss the starting point for the author's contribution.

1.3 Generslization of the Veneziano Amplitude.

e ——

a) The extension to a five point process was given by

o 7

] ] . a0t [ ) Ny ] 1 7 k]
Bordakci and Ruegg , after which Chan and Tsou Tsun proposed

&
[

an N - point formula. These amplitudes were znalytic, crossin

(ID]

symmetric, possessed regge asymptotic behaviour, and were '"dual'.
In order 'to define what they meant by duality, Chan end Tsou

Tsun introduced, for e:sch Mandelstam channel, a conjugate

variable: consider F1G. 2.

Fitredoe
Ligere |




y

Novr, each partition of (l,----,N) defines a iandelstam

&

.-l bt 4
N El:“)el ;

\

+ l)""‘:j) (J + 1,-- N’l’“'_')i -1 = (i, j)

=
~~
|
-
I

s mlm ey = — 1 () = & (5y)
; 2

S; = x%i‘&

Then, two pertitions P = (i j), and P = (v, 7 ) are

dual to each other if

(b nidn(e-=,3) # B, (60id), (B5-07)
“ow, the conjugate veriables for twoe dual pertitions are
not allowed to vanish simultaneously (to prevent double

counting). fence, it may be shown that, if Up is the

Go= 1 - TG . Uy e [0,1]
over all P dual to P,

Fal

ne number of independent varisbles is the number o

varisbles which may vanish simultaneously (N - 3). In
order to visualize dusl and non-dusl chennels the following
disgram (dual diagram) is useful.
N-—)
)
¢ I
A Y /
\ /
. -7
Each channel may be represented by a diagonzl line

4 z . 2

3 corresponds to ¢ \\\\
/
& .S'/
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Dual channels have intersecting diagonals

s !
eg. does not correspond to a Feynman
¥
4 diagram.
3
b) Kobz ~ Nielsen variables
7

)

Koba and Hielsen found a methemeticelly pleasing

solution to the conjugaste variasbles, which opened the door

]

)

to furtc

-+

1er progress in this field. To do so they considered

the duality diegrams of Harari - Fosner® - ie. they built
into the solution the notion of quarks (this is the formulation
referred to in (1.2)). For, if each aquark line in the cuality
diagram is denoted by 2 small letter, i, say, ana if the mescn
containing this guark is represented by I and the meson
containing the antiquark end of the quark line by E; then a
solution to the conjugate variable for the crannel (i j)
(ie. quark i and anticuark j form a resonance) is given by
the anharmonic cross-ratio

U = (- %)k - %) ,

O (351 _ 3’7)[%-3';) (L.3.1)

where 4 is a point on the unit circle in the complex
plane, corresponding to the meson contsining the quark a.

Then, the N - point amplitude (corresponcing to this

ordering) is defined as
I xR
7_7. [Ux] — dVi (1.3.2)
o j-RI>1
where
N .
-1
Vo = { TT1%,= %07 te-nlin-wiix-n) [[ 4
A= gbe
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. QA
- 14 . «
% =C ; ; means the product over ell i,

J -
b C omitting a,b,c.

a
o > - o . . L [y “
I'he choice of 9 is guite grbitrary (cecause of th

3,0,C
form of &V yl.

Tre reason for the omission of the triple integral is that

a wobius trensformation

(r- ref)
e ——
(1- re*fy)

¥ > y' = {3&7 ) (?Jf:r all r-ea-/_)

(l.3.4)
maps the unit circle onto itselfl while preserving the znharmonic
cross-ratios. Therefore, we have a three-fold degeneracy.
Hence the integration is over N - 3 parameters only.

The full amplitude is obtained by sumning over non-cyclic
perimutations of the externazl momenta - this™is quite different
from reynman diagram rules.

Now that duality has been described and an N - point
function obtained via quark ideas, we now zo on to consider

some developments in wavefunctions relevant to dual models.

2. Field Theory.

2.1 Internal space

The success of Regge pole theory involved the combinztion
of mass and spin into one picture - the Hegge trajectory, thus
giving spin a dynamical role as important as tnzt of mass.

This letter point was suggested in 1964 by Lurg¢at  in

o)
c
ot
[¢]
O
L
(&)
(]

connection with field theory. Therefore, just as ir
of mass, we should consider particles "off spin sheail" ie.

complex angular momentum. He argued thst, to restrict oneself

to wevefunctions defined only on Hinkowski space is to force

iy

G O

particles to have definite spin (for finite representsat




-
A
i

. . -~ : . . o N .
the Poincaré group). For,the restriction to linkowski

sp=ce allows only point particles in the theory. sow, the

o

oriysical idea of a point particle is that of a2 small body in
the limit of ite dimensions disappearing. However, in teking
this limit we lose degrees of freedonm - viz rotational degrees

3 [

reedom in the classiczl case. fris is valid only if we

bty

of

-

may assume thet the latter (ie. spin) pley a minor role
dynamically, compared with the translational degrees of frecdo
(i.e. mess). (Probably the success of Quantum Electrodynzmics
is due to the validity of neglecting higher spin ie.
the electron may be trested as a point particle). |

Therefore, if we are to assume spin dynamically importvant
we should restore these degrees of freedom 1ie. the configur-
a2tion space is the full Poincaré group menifold, in the relat-
ivistic case.

o)

Zven before Lurgat's paper, D. Finkelstein® (1955)

considered the possivilities of adding internal degrees cof

freedom to particles, within the framework of quantum tieory

hJ

and special relativity. ile characterizes a rigid beay in

¢

classical physics in such a way as to lead n=turally to a

similar concept in relativistic physics, which is that the

4]

configuration spzce of such an entity is & homogeneous spac
of the Poincaré group. He then classifies sll such possible

- 1 2] 1 o DA PO 4 - -~ S

Speces. (Proper subspaces of the full Poincaré group m:nifold
correspond to symmetries in the internal configurastion spacej.

Ied

fore recently, Bacry and Kihlberg" (190G) also considered

wrvefunctions on nhomogeneous spaces, giving specizl =2ttention

to an & - dimensional space.
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In an attempt to combine mass and spin in one egust

] - - e Niys 2 3 iy 2 SR opn ey 2y . "y m ~
Bacry and Muyts zlso considered this 8 - diunensionzl honsieneous

SzacCe. Tris cpace was formed from ifinkowski zpacc together
with 2 two dimensional complex spinecr space. Any point in

triis space may be written CX_,f) wrere X € iiinkowski spsace,
and f = (f) . This point transforms as follows under the
3
1

action of the Foincare group

(x,§) — 5 (AxA+a, Af)

wrere N is 3 2 x 2 matrix of deterininant one,
X X 2 nermitian matrices.

his induces the representation of P (the universsl covering

of P, the Poincaré group),
-
[7?,,,/\) fles) = f(renl xf) (2.2.2)
from whick arc derived the Casimir eguations
T M e
P = B.P” = -0 « 3
wr= 0D+ where 0= 3 Qf“ (2.2.3)

Thie authors then propose the Lagra

L o= -aff + £ 4« b(05)(0F)

(2.2.4)
where 5*(X,§*) is the conjugate of ]C(fo)

o5

Tiiis leads to trne Buler equation

(-0-a -60) f(x,§)= 0 (2.2.5)
iec. mo= a +b s , m o= mass, s = spin.

ic. linear trajectories.
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In the above,wavefunctions of particles with spin
do not have indices, ie. they are scalars. The description
of spin is accounted for by the presence of internsl vari..ies.
Micre recently, Srink and Kihlberg8 applied the homogeneous
space ideas to duazl theory. dere, the Koba - Nielsen variables
are treated as internal veriables of a hadron wavefunction.
The SL(2 f ) symmetry of dual models, (Chapter II), wkich

accounts for duality, is interpreted as the Lorentz group

their respective treatments of du2l models. In chapter IV

this identification is reslized in a structure similar to the

zbove space of bacry snd Nuyts.

2.3 Extended Structure

a) On another line of approach in giving perticles
3 - J fal 3 . s l O . > a
internal degrees of freedom, de Broglie et al™ considered
guantum numbers such as isospin, straangeness etc. as due

to the extended structure of particles in space-time, ie.

not, 2s is usual, due to symmetries in an egbstract speace,
dissociated from sinkowski space. This idea was also put
~forward in Finkelstein's paper.

ttention

©

These considerations have received a lot of
from Japanese physicists following on Yukawa's idea of

e . .10 | - N C
elemeéntary domsins™ , invented in an effort to 2void the
divergences of conventional field theory, which were thougit
to be the result of using point particles. In fact, in 1970,
Hara and Gotc proposed a "Deformable Sphere riodel of Hadrons @10

which accounted for 3U(3) and SU(6) without invoking physical
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quarks, snd also restricted hadrons (ie. excited states of

the spnere) to zsro triality. The authors point out the
larity with duasl models - the sphere 2rising from tnree

strings, wnile duasl models are thought to bte relazted to tre

11
a string - ie. SU(3) is & result of there being

o
Hy

i

o

ynamics o

]
cr
=3
[0
0
Pt
o
[8)

three spac

@

dimensions. dowever, the sphere i
non-relativistically and the model nas only been given
free hadrons.

Nevertheless, it is interesting to recall from I, that
dual models have, in some way, SU(3) and zero trislity built
in, while giving some SU(8) results’ (Lovelace’).

t) A possible relationshiﬁ between particle symmetries zand

12 in & multilocal

space-tine was also proposed by Tzkebayashi
theory of a relativistic oscillator model. Here, the free
hadron, having an extended structure with relativistic internal
motion, obeyed an infinite - component viave eguation. By
taiking the limit of the number of oscillators to infinity
Takabasyashi made a direct link with the string model of Nambu
and Sus"“lndll. (The simplest way of handling thlie infinite
number of oscillators is to order them in one dimension).

In his paper512 entitled "Detailed “ave Ecquation end Dual
Amplitudes™ he does not insert duality as a prerequisite,

but it does appear as a charecteristic feature of sn extended
structure. Trhat the wave equation should hold at 211 peints

of the string is a stringent recguirement and 1imposes a set of

subsidiary conditions - the gsuge relations of dual theory!
Hemarks
In trhe introduction we have descrived how

a) duality arose from phenomenoclogical considerations
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conteining some netion of quarks.

b) it is possible to visualize duality as a characteristic

of extended structures, which may allow for internsgl symretries.
Now, the thesis traces the mathematical formulation

enc developament of dual theory, describing those points in

its structure which are looked upon as being fundamental.

Finslly, an expiénaﬁion is offered for the internzl sy.maetry

group, in terms of sn extended structure in space-time (but

quite different from the string model).
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CHAPTZER IT

In orcer to introduce the main steps in the develcpment
cf dual theory we employ the operatorial apnroasch, by me=ns
of which the factorizability of the dual amplitudeé is readily
understood. In this way we see thet it is possible to build
a2 mathematicsl model which embodies, in & consistent maanner,

whiat are thought to be basic properties of 2 strong interaction

These properties, and the structure in which they are

rezlized, will become apparent in this chapter, thus laying

ct

he foundations on which the final chapter is based.

1. N - scalar amplitude

Y

1.1 The Cnerator rormalisn

1

This procedure allows duel gmplitudes to have 2z Teynman -
like intergretation - ie. the amplitude may be written as =
secuence of vertices and propagators. These_oEjects are
described in terms of an infinite set of crestion and enni-

hilation opersators, which have the comnutztion relations,

C‘3:1 a/"] q&gfaabm'J =0

J
Lan ame o - 5 (Z.l.l)
Vst P v 9/4.;! mn
where‘/LJy are Lorentz indices; n,m = 1,2-----5 %#v=(l,-1,—l,-l,

Using these we define the more convanient operators «

by p e a0
o()_ = -3¢ Jn 69'
-Nn - » ﬂ‘f n= ’J 2., =
%w = ¢ ﬁ:@%
£ = /T
S //b“' (2.1.2)
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ﬁ being the momentum operator;
S : )

P
r

At

the coamutation relstions now r

n m
[%w)“yj='ngw

The zeroth mode corresponds to a point-like .onr

m+n, 0 (?0103)

13

the iigher modes to internal excitations. Following Remxond,

we assume that these internal excitations are periodic, with
period 2 , say. The parameter describing the internzl evol-
ution we denote by » @nd introduce the generalized position

and momentum operators,

S g™ . g oS &
Q. =2 9 = ¢ r ¢c2
M aro A # ne-* 7
ag n = n (Reloly)
= = &
p/" néa/ Il:Z-W/ J
where
n ) n nt ¢ n_ ™
70 (alra) s g (27— %
° L 4 ot =
¢ =g lalal) = Xy
-n
LY = B o(gr-art) « (45 47)

.o T . e . ) ~ N
7 being the creation operator for the zerotn mode.
arises from a consideration of 3U{(1l,1)

represenations; here we are concerned with the J = - €/

(

1. .
representation , € being equated to zero at the end of zll

[e¢]

calculations.

The internal motion is described by tiie Nambu hamiltonian

oo
4 [

H < -2 (nef)arta’ = -2« j4«
. mns=o ' (2.1.5)

N
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J

wihich gives rise te linear trojectories.

Therefore, the Heisenberg equations of motion

[HJ") = 1 Q_f ’
at
. H t H
imply ) = ﬁ"t e
Q,. G
) 0 o . 2, x? _-inx
= g v L Z e (2.1.5)
ana, similarly,
ad n _-inT _ Q ('C)
p (-C) Y Z 0(/' e = z e
-ob

—
o)
~~
o
r
O
o
~
<
|
]
1
)
3
\CQ
Q
QA
o
9
o~
—

z (2.1.7)

55(1 t)dtc” j&('c z )dr]

-meg, J(ee) ) Vo= 2

>t

| e
O
o~
o
L -y
D
<
Lo
H\
o,

N

(

X

-

O
T x,;

Wle may now define the vertex for the emission of an
15

on-shell scalar of momentum %;b
J

\/; (X,3)= | exp [iAR. Q)]

_ziﬁeéﬁx

s it L EF )y (AR EET)

(201.3)
L -ctH

)iz \{(i,l) ve. T=0 in 3} = E".r_
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DIatsy] = \ de #7570y |
o (2.1.9)
o0 ‘- -
: % (H-ats)+8)
4:0 1! | ’

where (7). is Pockhsmmer's symbol

- l:.L b r')

r | Y]
7

X{s) = 5 + s, and x is the Chan variable
(ie. conjugste varisble) for the Heggeon line.
\ . . R, .
Now we may write down the amplitude™ for N scalars

scattering off each other (Fig. 3 .)

AN(é k)= Cp 1IN (£, )0 -+ DIV, (B)]f ;0> (2.1.10)
where S; =(é}3)2 J IOJK > = eblgﬁ lo> ) }O> . be_l_ng

=
the vacuum defined by &, [0 <0 ,n>0.

A
Y
|
I

R e e b

Fige 3.

Thiis expression is eqguivalent to that in (1.5).




1.? Properties of Ay

At this stage, in order to sporeciste the ensuing
development of the field, it is worthwhile looking at some
of the properties of the N '« point zmplitude.

(i) First of all, it satisfies what are thouzihit to be
derirable recuirements of an amplitude, since it is ecuivalent
. - b ] . ko) ~ - 1 b 7

to the Bardakci - Huegg formula.

viz. a) Analyticity

b) Regge behaviour

c) Factorization

. — . . : AU Y

ie. consistency with the bootstrap hypothesis in that

511 particles are bound states of others. By analyzin;

m

intermediste states we may discover the spectrum of the model.

- - - -L . ”~ ~ . ~
It is found that the degeneracy of states a&s a function of

spin, d(J), increases exponentially as the mass

ie. d(J) o¢ expl(bm)

[\)]
H
(0]
)
ct
[
8}
[0
o]
[
(O]
ct
4]
ct
'-J
[0)]
ct
._l
(@]
[o4]
[

This exponentisl dependence is also
16

models (Hagedorn, Frsutschi)
d) Duality

ie. Ay is invariant with respect to cyclic permutatioas

A Vi iy e 15 .
of the external momente. Meveu and Schwartz™” show thnat
this property depends on
Dy s . . S | T
1y fobius invariance cf Azt eg 4y = 4dpy, 4 o = ;’Jl, an = 9N_1)

ii) how Vgy(k;, Zi) commutes with Vo(kj,éi)
We postpoene, till after the introduction of the “uwisting

operator', the discussion of operatorial duality
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(

where a,b,c,d, are arbitrary states.

e) Crossing syminetry
f) Hesonance poles lie on linearly rising trajectories.
fowever, since all poles lie on the real axis (ie. zero
widths), unitarity is violated. Later, in section 3, a
procedure for implementing unitarity in a perturbative manner,
will be outlined. |
ii) If we now focus attention on those states obtained by
a chain of propagaztors and vertices (definition of physical

. . 1,1 :
states) we find that they satisfy ’ >

Lolog> = -m*lp)

(2,1.11)
L, lg> = O
where P
L, = -4, =~ Z ., %,
L, = L,= - 26, ni
e (2.1.12)
L= L= L!

(: : denotes normzl ordering)

The sbove oper=ators give the following elgebra,

[.Lo, LI J= b L: .) LL"J L*J =4 L° (2.1,




ie. the algebra of SU(L,1) {or SL(2R )) of projective

trensformstions

’ Ay tf
rF vy = Tyt é

Tris group appesred in connection with the Xoba -

Nielsen formulation of the N - point amplitude, the latter

being invariant with respect to the above trensformations on

the z's forming the conjugate varizsbles. If we nad chosen
the z's to belong to the real line (which we c2n do, for zll

that is reouired of the z's is that the relevant cross-ratios
are real and belong to the interval (0,1)), then the corres-
ponding group to 3U(1l,1) is SL(2 JR ) which meps the real axis
onto itself.l5
These considerstions suggest that a study of the invariants
of 5U(1,1) or 3L(2 [R ) may be useful. Indeed, a number of
papers have been written which do construct ezmgplituces from
this point of view.lbr In fact some peoplel. have gone further
and suggest that SU(1l,1l) bte regarded a2s a subgroup of SL(2 L ),
the latter then being identified with the Lorentz gzroup, which
may allow a treatﬁent of spin. Neverthless, at this stage
there is little justificstion for this peoint of view.
riowever, the gbove group-theoretic investigetions do
not provide a natural framework for other operetors which have
proved to te of importgnce.' |

n L o T 19 » e y
Irese operators, first found by Virasoro, are cCefined
5

as follows,t




o
L,! — _5.’_ mém Xlpm o Koppyn (n>o)
. S ! 5
) _g,, o Kuen 77 ,E, K+ Knem ©(2.1.14)
*

with the zlgebra

D LI .
[Ln)Lm_] = (h-m) Ly, el )5,\”..,0 S (2.1.15)
(D = dimension of spsce-time),
Tre above .operators, which include the 3U(1,1)
15

generators L,, L,, have the following effect on Vo lk,2)

YA
[La, V£y)] = 3 (}é/}, n&’)\/a[f,}) (2.1.16)

Therefore, if we restrict ourselves to the simple,

but unphysicel, cese of k¥ = m~ = -1, we obtain

La V5 (X, = 34 [any
Lbn, Vet 3)] }o/}[} v (£3)] (2.1.17)

(Note, if n? = O, then

[Lo,va (R30] = 578 Vo ldy) - VAL s~+fzg‘")- V()
(2.1.1%8)

Uk

ie. an infinitesimal conformal transformation of
However, if we reouire all z's to lie on a circle (&s

Q

1
gz
o .
= 3
n 1S

in the Kobz-Nielsen prescription) the

[43]

verfect

differential and so, integration over the whole

z—> f(z)

circle will

)



_ 1
yield zero,

. [L, V(8]0 () e

where dy
ViE) = 8 P 4,7)
These releztions imply certsin subsidiery conditions on
phiysical states. Indeed, if ]}'0> is 2 physical state,
=0 -
L" /?> (2.1.230)
This follows from

(Lo-tn-1) = YWR) = e V6 (R) (LomLn=1)

Lo+n-1

wnich implies
(Lo-Lp=-0)f 0 WA Do Vb (R,..) ] 10k > =0

since 2 _ -
(Lo Lo=1)10,Bu> = = (B +1) 10, %> = 0
0 . . 2
Ef:l is the propagator for m = -1l.
o
Hence, we have an infinite set of cenditions on the

act, if Is> = L_,I1¥>, |¥> being

where Da =

Hy

physical states. In

sny stete in the Fock space, tnen |§> decouples from 211

prysical states; Tfor |
(slgd> = <Y lkalg> =0

ates |s)» are termed “spurious"

ct

Sucn s
This fact implies that there exist linesr rel=ztions

between residues of any state (pole). ese relations zre

suificient to remove =211 negative resicues ie. Zhost stzt

arising from tire indefinite Lorentz metric, which is the
o b

content of the following section.

25



1.3 Absance of CGnhosts

In their search for the physical spectrum in tiie Fock
. 2C . . -
space, Del Giudice et sl. constructed & set of states

which satisfied

}>=0 )L0,>=1>
they were orthonormal and had positive norm.
These states (DDF) are created from the vacuum by the
. i oo
operstors A_ , defined by

An:i_ﬂtb§; E.i?:JaJ}/)}+

v o\ T s ha,~"" t=1,2, s 0-2
= ) J
A.n = (Aﬂ) P n ! 4
. i
where D = space time dimension, and k = %(1,¢,0,-1).
T 21 ] 1 :
Laver, i1t was shown that these states, for the speciel

case D = 26, were the only physical states to couple. Inde=sd,

intrcducing K, := k. %, , then all DDF states satisfy ip =

In =0, n=1,2---; the converse is a2lso true. Now, if we
o 2

let F = set of DDF states with R = ¥ (R = Ly~ p , where 22

t
0
1 .
= /) + N, p = (0,0,0,1)), and G its orthogonal complement
in the subset of all states with R = ., then neitﬁer F nor G
contain . null states, and, furthermore, F“ is positive deflinite.
Hence, for D = 26, thnere are no ghosts in the physicel

snectrum. In fact, any phyéical state |¥ 7 asy ve decomposed
1¥> = (9> + Ins >
where /@) 1is # UDF state and Ins) is null spurious ( =

null state is one which is orthiogonel to all physical states,

cluding itself.)
The critical dimension D = 206 is precisely the one for

ind not a cut) (Lovelace

M)

which the Pomeron sppears as a pole (:

]
l e



for o< 2G

straightforward to show that,

)}, there are still no pghosts.
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2. N- Heggpeon Amnplitude

2.1 Introduction

Je have seen the emergence of two important points in

the last section, 2) SU(l,1) algebra sccounting for duality,
b) the gauge algebra which leads to the
absence of ghosts.

The rezlization of the 5U(1l,1) group is that of conformal,
one-to-one, mappings of the unit disk onto itself. In tkre
case of the full complex plane the corresponding group is
SL(2L ), which leads to the Virasoro amplitude.9 Later we
will show how the gauge group is also realized by transformations
of the complex plane.

The prominence of the z - plane and projective transform-
ations is emphasised by Lovelace's expression for the N -

23

Heggeon vertex. Indeed, in their introduction to the
operator formalism, Alessandrini et all found it convenient to
'introduce infinite - dimensional representations of projective
transformations (canonical forms) to handle certain operstors
appearing in tnis approach. This correSpongence V&S eitended

to the following:

If w(y) =

& +

¥ F 0(6‘(3'5::]
-(3,.,.5 J H)
dimensionsl matrix C,, , corresponding.to the transformation

then the infinite

w(y) is defined by
n

[3) oo m .
—_— = Cnm _?—- nzl ( ith ol ) +1
n m=o Iy J ) Wit Tine convenvion

_l_
n s =1 )

4

(2.2.1)

O
I
g%

00




Tre oroduct of two such metrices is given by

(C'CI )n K%O (C) )ﬁm.';(c')no go,m i Sn,a(c’- )o”; (2.2.?)

This correspondence w —> C is a representation of the

group of proje CElV 1appings only if zero mocdes are zbsent.

4

. . . ' ’ 4 .
Notation: if w takes f,g,n to f , g , h , respectively,

=]
then we denote the correspondlnb infinite mztrix by

(f
( X4
( Py

h )
r 5! )
)

n

0 0%

7.7 The Resgreon Vertex.

wnen we consider the vertex for the emission of & scelar

(ie. Ew y the zero mode, only, is present), a possible
‘. -
generalization might be to replace £ by the generzli
p" . . N . o C o i
momentum n (t) thus introducing higrer modes into the
: . ’ v “ - : \
emitted state. In this way a,(t) (considered ss 2 ¢ - number
o T . ) : , .
for the moment, with "Fourier" components &, ) characterizes
the emitted Reggeon. However, since the description shou
te invariznt under projective mappings (to ensure duality),
we may compare two feggeons only if their generslized momenta
are each defined on the same intervsl. Therefore, we restrict

7z Lo some standard interval and introduce, for eachr aegegeon,

a projective map gj which performs the function of the icobs -

Nielsen variable z4 in the scalar cazse. Tiien, following
- - Lo 2L v W o ] .
Kosterlitz and ualto, the N - Heggeon vertex is

o N
A, %‘//“N Glerp| 55 Z Vax @yl poyloy o, )
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)\-rb.c

()—>a) -
l -n

B (y)=i30.(3)= Zp - “Z mlaly oy ]

, the standard interval being the unit

£ Im )

[ dy. dy, 4% ]"
D = L T -7) Lem ) m)

o o Zeﬂ‘%-.:
% ) e]j (7/ - %

e A
o (a
o
X

for m"= -1)'
)
<H
22 being the usual Koba-Nielsen variable.
The first exponential corresponds to the emission of
- v o : C s
N Reggeons fi » the second caricelling certain divergences
occurring in the former (¢f. the Analogue odel where the
divergeinces zre seen gs self-energies)
Mmoo 5o o . 23 A
Nowi, in Lovelace's expression the standard intervasl
is the real axis. So the form of Ay becomes (Kosterlitz and

20
S2ito )

[958 o1on i 2 aQlgonk o
x%é{-i':% [ Ik fong-f'ldﬁf'}

\:‘?';3‘6)

J(;__r KDE = 5 &l 7k

and g (f) is defined by the associeted infinite metrix
<

[ o y oo ]
36 = Zc %*( }g"

. . £ . .
whicl. is the V% of Lovelace.<>



7]
Inteprating we obtain ( ¢.f. Kosterlitz ond Saito )
° AAULAVL J
- \ g, § 2%6{-17_ Cxé UV o >}
/\N , P N % e (9.2.7)

T . ~

where each Hegpeon 1is represented by an infinite vector | x>

N

with coherent state basis components cx; ) 3 end

. Vi 8o i
Ub= V) oo !

2.3 Canonical forims of Operators
e S S o .
In addition to U , V defined zbove, there 2re certain

other operators recuired in the discussion of loops (unitarity

correcticons). One of these, viz. the propagator, has alresdy
been mentioned. The part of this which depends on trhe hsrmonic

- , L ; . a . . . L.,
oscillators, X ¢ , ras the following associated infinite
. 1,23
matrix

Lo
x 0 o0 b4

H

Another construct is the twisting operator
- fo) oo ]
AL = 1 ob o
which reverses the order of the external particles
(txnink of <tle 24 s lying along the real axis; L) reverses

this line.)

ie. if X denotes the action of {L to the rignt,
2 3 4 5 2 3 2 3 6 5
L1 [] RES
fl X “<—b = | > 6 = [ i I —¢ &




rfrom this definition - neve

Cplxtelwy = Lplm X1y

Loln'nlvy = Lpl¥2
where | @>, |¥)> ere phy-sical states.

Hoviever, ss operator eguations, these relztions do
not nold. Nevertheless, by introducing a gsuge transforu-
ation (1 - x)#, = Lo = L - (which leaves 2 physicsl stete
uncrianged), we may define anoti:er operator, 9 , which perform

]
the same functions as (L .

Bix)y= 0 (1=-x)"
' - 4
[xl"° 9-]1' - xLaG

The latter, called a twisted propagetor, has an associsted

Ve then have

infinite matrix

.XL°(9 =

2.4  Properties of AN

a) Hobius invariance.

N o - . . i 23
This is shown by the following argument dus to Lovelace;”~

map esch zi onto ;: by the same siobius transf{oraation, thus
imply ing
r }f-n _ & Fian ‘(.—I fd r'.'-t-l ]

=1
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i

rnence, 0y sandwiching this between U ana v y €ach

C'Q

¥y = 3. , while leaving the expression unchanged (uo.
[ &

>
7/ N¢ is itself Yobius invariant). Therefore, just as in
tne case of the N - scaler amplitude we may arbitrsrily {ix
any three zji's
b) Cyclic symmetry23
c) Factorization
There sre s number of forms of the N - Reggeon vertex which
the sbove. These vertices differ because a Reggeon
is invariant under a gauge transformation

ie.  x%ilay =led | w=Lo-L. .

1 25
ror example, Alesszndrini et al. wuse Olive's ? vertex

to exhibit the bootstrap property. This vertex is given by

e )

the following
- X ot st
(s, TT (52 ) Lo gt 707XV 0 o

. 7 .
The X{ are Chan variables’' for each external leg.

f}]

ing

The simplest way of treating these variables is bty u g
Eoba - Nielsen varisbles to express them, which is acnieved

by adding two scalar legs, + , ¢ , to esch external leg.

Then,
1 % 3
X, = (% 5 %0, %, 0=)
b""’ -~ }L‘fl 3_ - }L‘ﬁ

¥ - }ﬁT }g - ?;u_
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a3 wmay be seen from
3’m \,“/
J ’
. ..
—— ﬁ PR AL .
\ 4

b . .

DI
aYe

e

T

which is part of the duelity diagram corresponding to the
previous graph ( ¢.{. equation (1.3.1))

The other terms are given by

N y-_'bo.
D 2
Gv) = - T
AN R Y

¢ [ = Y
) QI
fo) o0 !
L~
[ oo o) |
i
= 5 %m

(The dot mesns that sll external legs are on the same

ia

1
Now, Alessandrini et al. showed that two vertices may

1 ]

{

d, using a twisted propagator 9 (L) for s

Lovelace
. 23 L . sy .
vertex, so that in Olive's case no spurious ststes are

propagated), to give a larger vertex; ie.

sirnce
P




Tre relation between Glive's and Lovelace's vertice

n

wp T4 @K Y 0> =

+
Wi
77[‘_(2’:!) }r'__:l) }_r_j ,:‘.)]
. J_ ot . J jT 0-.N

where 31= y; = 3(,; ) (= Xi = 0 ie. on mass-shell)

d) Operaztorial Duaiity.
1
Using the above notation this property is the statement .
. ' 2
kR
- \/ () ?
P . ra} < E
3
& 3

™

FFor example,

(1,3)

C

Let %X,y, etc. be the Chen varisbles outlined. Then, in

a tresz amnlitude containing either of the above grapts, we

recuire thet their contributions to the integrals be the same.
ie. Rl = Rz, where

Rz x,t 0u) V(b)Y 80u) V5 (h) 1" dutn) du (9) culs,)

R, = X" VI(h) b 04.) V(L) X' 0 (5) dunydp(9.) dul)
with
-1).

dw (x) = dx .o (m* =

Tris is so if X1 = %3y 24 = Zq




and ; ' -

1 -yylxy + 2y =% zy)

which 1s the relation between Chan varisbles given by Chan

in ref.7.

nemark .
In the next section, on perturbative unitsrity, the

correct definition and manipulation of lcops depends on two

points’ .

a) Loop amplitude must be independent of the particular

set of Reggeons chosen to be "sewn".

b) Internzl lines may be dualized.
These two requirements follow f{rom

a) Factorization

t). Operatorial duzlity.

3. Perturbative Unitarity - Multiloops.

3.1 The K.3.V. (Kikkawa, Sakits, ViraSor027) approach to
the problem of rendering the dugl N - point function unitery
was to regard the latter as the Born term in a perturbativé
scheme. The elementary entity propagsted is a tower of
hadrons {(required to satisfy duality and superconvergence).
The higher order terms correspond to more than one of these
towers beinz propagated. Each tower of hadroans is e regzeon ,
and so multiloops are constructed by "sewing' Heggeons in a |
tree amplitude. |

The fnllowing is merely an indication of the steps
K

involved in c¢slculating the M - loop zmslitude. The poir

to notice is the emergence of zn automorphic group #na ..



corresponding Riemann surface, which plays a prominent role
in the Analogue tiodel, thus enabling a simple statement of
the unicarization programme to be made.

. RE,29
3.2 The 1 - locpn Amplitude.

e outline the "sewing' »rocedure using Lovelace's vertex,

the one for Olive's being performed similarly.

a) #e consider the N - Reggeon amplitude with the integrand
T - T g <l UiVilai>
1€i<i& N (2.3.1)

assuming that the Koba - Nielsen variables zj are on the
unit circle.

Introduce the infinite matrix
a b =
fﬂ [‘/a ‘b ‘lc
which corresponds to z —p» l/z ; this is not & kiobius
B .' . -O
matrix, but it acts consistently on iobius matrices. ’
If we map all the z;'s onto the real line by a projective

transformation, then

. -\ T
vt (vr) I

I = ef[32 <a,‘l(V")+/_'lea—5>J '

1

and

. 1 . .
where the convention, U V= = 0, is adopted.

29

ain

.

o) Factorizing I by a resl functional integrsl, we ob

T feer) [ Begpf-gcsiriio e 5 <riviiais

=

where we rave used

§f _
LR - FIA LS <blf =
= et | - <Kf >+ >§
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77 f/fn

= [det Al ouf f <bI AT1EY
A is any diagonalizable

26

operator of finite non-zero Frednolm determinaznt det A.

“1\“
3\\

Now, we wish to sew M pairs of Heggeons; let uhe//A°k pair
ve <atl= (CI/,[} and  |a’d> = [ Cu 7, and

virite

. ~ . ~ .+
Y= U= Tr, Gomuis LT

NB. QL differ because they depend on different Xoba-
Nielsen varisbles, viz. ( zy_j, 2, s 2isl ) and ( z3.), 2
Zj-i-l).

Finally, let 45» y the propagator joining thQ/APh pair
cf Reggeons, have the Chan variable %>w s, and put 21l unsewn
Reggeons in their ground state.
c) The trace of I over non-zero modes is given by functionally
integrating over [ 4. (omitting the zero mode, which will be

N . \ . . 28’?9
Computea Separatel}’), witn the measure

,(TLT §(Re @«)S(Jma/) - <4n10>

Tris yields

Trace I = L-c/etj j <{][ f,(‘;“+§*+)]FH>

(2.3.2)
* Z (a0 <150+ 3 <azIX H>}
/‘,-l
where S = v.A
e G Spwe U
Xeo = b+ Q7 :
(2.3.3)

(ref.2G)




1
A\WS]
(&)

I

Then, integrating over 5f , wWe obtzin

. -iF
Trace I = -5%7 , wiiere
*oa
FeShh<an sy - ZPO’!"E)}. O >

f S hasiX, T 5> ¢ I <aliXTE X e

v
after undoing tihat projective mapping which took the unit

circle onto the real line:

H
-'-
S = > (5+8)
J":‘
A = det (1-3) (2.3.4)
: . : . €,29
There are two points to note here
i) 42“, , when restricted to non-zero modes, &s it is

+
kere, is unitary (D; representation of SU(1,1))

dence,

ii) The absernce of diagonal terms has the effect of

(S, +S2') (2.3.5)

1

Ehﬁ:

s -1 . : :
forbidcing é;,J {» . To occur as neighbours in the

exvansion of (t — % )7

N
L]
Wl
L ]
O
S

iec ~ 1 (
(1-2)" = 2T«
&
where each T; occurs only once, and the set of all T; is

the group of projective transformstions generated by the 5;_

-~
[

(infinite matrices of)

This identifies the a2utomorphic Erou“ for the

N
i 18 , X variables.
a) The integration aver the zero modes (ie. the momenta)
)
"1veo‘9

4]

B e asp ] =5 2 ppI (5, 5)] (
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w)*ére f\/ﬁ (}’,;J}_,') =
TEI T B> * z L<nl—x (=0 1% >(A) G 17

/-V

¢ AL = <BIG0TH (L0

)
(@)

m

. . - . B e . .
Inen, using Burnsicde's worl on Poincare theta serics and

Abelisn integrals, the following relations may be established
L .
§<z¢1n]};> X Re Wiy (%)

(& veing the third Abelian integral with complex normaliz-
28,29,30,31

2<% (s2'=) 18> = Re@ (3)

?o being the first Abelian integral (independent of EL )
/Af

4

/&~v = Re By 3
K;kvbeing the.period matrix:
( &= means sguality up to factors cancelled by momentum

conservationj.

Hence, the momentum integration yields the first
Abelian integrels required to change the third Abelian integrasls
from complex to resl normalization.Bl Thus, /Vé (?;Jﬁy) is
Neumann's function for the Riemenn surface B corresponding to

0
the automorphic group above.3 »31

e) The Riem=nn Surflace B.

%y + B

32

then takes the isometric circle

Sa
C. @ 1%y +& 1 = |

into the isometric circle

c;: (5.r -l = 1.




The plsne outside these 24 circles (w=!,---" LM ) is
. 30,32
the fundementsl  recion for the automorphic zroup. The

Riemznn surface B is

obtained by identifying corresponding

points on C.,C. to zive a sphere with K hezndles

el
ir

S, =

o i

for A0X.) a

R

twisted

23

propsgator, then, following Lovelazce

and reading right to left; unit circle 2nticleckwise —>

real axis leftwards

circle anticlockwise

transformed into itsel

untwisted progagstor
into its exterior.

Reggéons results in
propagators yields n

the automorphic

(1]
g

(Convergence of the
Now, the genere

depend on tlree psre

tle three parts of g,,.

’11

arameters for simil

a

| S
oup is rfuchsian™ , the latter ileinian”™ .

_> real axis rizhtwards —> unit
y ie. the interior of the unit circie is
T Alternatively, if A(%.) is zn

, then the interior of the disk is mspped

Thus, using twisted propzgatiors to sew

orientable surfasces, while using untwisted

on-orientable surfaces. In tne former

-
s N . 2
Poincaré seriesis discussed by Lovelsce
tors of the automorphic group, Sw , each
meters 5;J F » Xm, corresponding to
Hence, subtracting three of these
32

arity trensiormations of the é}; e

(which merely gives s conformally eqguivalent Riemann surface),

we have the "ucomorphlp group depending on 3i - 3 parameters.

Normelly, topologic

be related by 3:&#-3 complex parameters.

tnus showing thet

2lly equivalent surfaces of

genus M owill

31

dowever, all the

.operators, 5)~ , used above, leeve the unit circle invarient,

we sre dealing with a symmetric Riemann




surface (ie. esch is the double of some open surface).

Therefore, the surface depends on 3 - 3 real parameters

only. Variation of these parameters corresponds to varying

the surface B while retaining the same tcpology. Now ,

Neumann's function is singular at these points of this 3 - 3

by

daimensional domein corresponding to chan

1]

£e in topolozy

ie. when a hole shrinks to zero or two roles touch. LUomain
e . 31 . . . . ke
variational theory”™ may be used to analyse these singularities
] . .26
(Alessandrini and Amati™ ).

In the one -~ loop case the singulerity occuring when the

radius of the inneér circle (of tie znnulus whose double

a torus) vanishes, has been investigated

ation suggested which is unique (maintaining cduzlity end

Regge behaviour), and renders a finite contribution.

is

and a renormaliz-

Physically, the divergence is due to the exponential dependence

of the number of intermediate states.

In the analysis of the one~loop case by U. Gross et 31.33,

there appeared a new singularity in the orientable ncn-planar

graphs. This singulerity, a cut, corresponded to vacuunm

tuantum numl 8 as therefore associsated with ths
ntum numbers and w therefore ociated th ti

ie.
= = p 3 X
However, because it was a cut its vresence was inccapatible
with perturbative unitarity. In the case of D = 26 ( N -
scaler agmplitude, section {1.3)) the Pomeron sppears as a pol
thus, hopefully, complying with uniterity requirements.
According to the sbove procedure of unitarizing tie dual

-
COifeEYrone.

~
[

amplitude tihie order of a disgram in the perturbative series is

22



-0, 0=

determined by the number of vertices appearing in it.

ege.
4
1 ~ b
g e 9% b
x* X ¢
N~
g = perturbstion parameter.
Remsrks: From the above account ws see that the Kobae-

Nielsen plane sppears as the complex plans on which the
autemorphic groun of 3 varticular greph acts to give the
corresponding Riemann surface. The lastter two structures

sso0ciated Neumann's

%)

(group and surface), together with the

function were given a more primary role in the Analogue Fodel.
In this model, fectorization is not evident but it does provide
a natural framework for the notion of duslity.

This spproach to dual amplitudes is now introduced.

bo The Anzlosue idodel.

Leol Introduction

This zpproach originasted in 2 paper by Nielseth (elso

Susskindjb), in which the integrand of the generalized
Veneziznc amplitude was written ss the expornential of the
extremal velue of s certain integrszl.

To show this he took the Kobe - Nielsen varistles on the
unit circle 2nd considered the unit disk to be 2 homogeneocus

conducting medium which cerried various flows of quantum

‘numbers. For example in the case of momentum there were four
fields each corresponding to one component of momenturn. Hde



1=

trnen worked out the energy dissipated in the disk by the N
. M X x . . : '
moinenta /b (for the N - point amplitude) entering at the

[

point z; on the boundary of the disk. This energy is the

ferred to in the previous paragraph; we have

0]

i
integral r
E=o Z pplegly-%] ,
> SR
omitting the self-energies. . iHence, the integrand is 4496-54
(0 = resistivity of the medium)
-0 p - p
ie. TT’%‘%/ éﬁ
C#
Therefore, assuming ™ (S) = 1 + oS , the above assertion may

be proved.
. 34 . Co . . s
Nielsen also gave a physical interpretation in wiich
hadronic material was viewed as a one dimensional continuum
(or infinitely long chain of "molecules"). Thus, the l.sdron'

evolution traced out 2 world sheet. He viewed interactions

between hadrons as "tunnel effects", the gmplitude for crossing
a8 varrier being given b ;
. = e d S,@[,bat/ﬁ) oxp [- .(M(*)dt]
}oath

JE being a measure of the violation of energy conservation
for a given path; 1ie. the greater the violation the less
probable was the penetretion. However, AE of a string is

an integral over the length of the string. dence, the eipon-

ent is a surface integral of a quantity which czn be suitably

crosen because nf the freedom of choice in defining tne param-
eter of length.
1 ) D [ 3,
In the same pasper”™ he suggests why the hzdronic meteris

is onne-dimensional. For, ii we approximste the world-shest

i
ct
jog
w
o]

by a dense network of rFeynman vertices anc propagators

the only non-tiivial cese is when the world volume is two

O,
ks
=
ct
O
i
[&)]
jo)
o

c¢imensional. The particles propagated zre calle
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the Feynman formula for such a network uses an electricsl

3633?

analogy not dissimilar from the analogue model, viz.

L= enp i ZRpP -
Amplitude = S g c* ‘ [ 5 ‘”bi f % mﬁo{ﬁ] ﬂd%}{
0 o

fhjis the "resistance™ of the diegram considered as an
electrical network of lines with resistance 0<£ (Feynman
hzpameter) between the two positions of entry of “currents'

R

J

e

L.2 Formulation of lodel

n :
Later (Fairlie and Nielsen)7) the Analogue model was
regarded as a non-particle approach to strong interactions.

(fFrior to the emergence of duasl amplitudes it was assumed

that an amplitude was dominsted by nearby singularities.)

The new terminology was to be based on the geometry of duality

- ) m
diagrams. To e
7

3

open surface” . "Currents™ of momenta were allowed tc flow

Q

ch diagram was associated a two-dimensionz
on this surface, the sources being the momenta of tiie external
perticles which entered at the boundary of the surface.
Reggeons are represented by a distribution of momsnta; in
fact the coherent state parameters of s Heggeon m2y be regarded
3¢
as tne multipole moments of this distribution.

The amplitude is given by a functionzl integrazl over

2ll possible surfaces, each surface being weighted by exp(-1),
E teing the energy dissipated on the surface (as explained in

fuwn.)
S(W—E) c/(‘conj-'l'gur-a.tions) .

A -

gd (configurations)




‘e may clessify the surfaces according to their topolosy;

s» that, in one class we sum over all topolesically eguivalent

surfeces. roviever, we reauire a measure for the intepration
rer cornformally inequivslent surfaces (since, by the nature

of the problem, the energy is the szme for conformally esuivel-

ent surfaces); this depends on the cuantum-mechznicazl nature

of tire problem and is not given by the model. Hdowever,
S 2U 29 . s
Lovelac nas proved the ecuivalence of titis approach to

hat of the operator formalism, as wes indicated in the previous

ct

section; the amplitude for a given topology being the sum of

wp [ -3 5 PP Mew)]
les  wqp(-E)

Wi TR H o nati ) =
with the measure (ecguation (2.3.7)) LA‘ detAJ'

The sum over topologically inequivalent surfeaces, to
ensure equivalence with the operstor approacr, is done using
tre factor g@ » & being the perturbative perameter, cepend=-
ing on the number of external particies ancd the genus of the
surfece involved.

6,39

Note on Duality Disgrams.

These disgrams sre well-known for their démonstration
of duality; so it is not surprising that the corresvonding
surfaces exhibit duslity in a natural manner:

) £ S
eg. 2a) / \ 2

I

4 3 - 3

nas the duality diagram (each line treces the motion of a guark)



Ly~
| 2

\\\%,//
4 //’—f\\\\ 3 | 2

ard the corresponding analogue surfsce

4 3
nowever, all simply-connected surfaces are conformally

) N 31
ecuivelent (Hiemann iepping Theorem )-

=

ie. each of these diagrzms gives the same result (NB. summing

kence

over.all surfaces in this case means summning over all positions

of the external momenta)

b) The one duality diagram ;;;\zzfig’///

/

O

has
\

the following equivalent Feynman grapns

any two of winich eare related by duality transformasticns;

the latter may be realized on the above duslity dizgram oy
deformations of the analogue surfece (2nnulus) while maintain-

ing the saine toJolOZY'

\ - /
}i::ig;;;g;:::{; ~
However, annuli of different radii are conformally
ecuivalent only if the ratid of theradii is the samne in each
case. Trerefore, the measure on non-conformal annuli is

37

5 function of this retio.

|l
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As an illustretinn we give the cszlculations for the
orientable and non-orientable surfaces of geitus one, end

also the measure for each, which may te derived {ron tre

dense Feynman network corresponding to each surface.

These disgrams may be divided into two groups;
viz. those with

a) even number

b) odd number, of twists.

Consider the first class;

2) Orientable surfzces

A disgram with an even number of twists corresponds to

5
an orientable surface ege.
[
[ ——
3 2

has tne duality diagram

5 _ 3

7
{
= ¢




Lo

and the corresponding enalogue surface is an annulus (or

cyiinder),

NGRS

We represent the general case by a cylinder with N

momenta entering at one circumference and M at the other. -
The cylinder is characterized, in the (x,y) plasne, by the

rectangle )4 X .

¢ p') + ..... *. -‘.+ cmp)
&n

% % 7
['F:'(") .. .. i ﬂl-("’)
R

17
1] J ﬂ
with the proviso that functions in the (x,y) plane are functions

on the cylinder only if they are periodic in x with period 2
The most general harmonic function on the cylinder is

therefore
(-]

?'“[x, y) = Z iﬂhﬂxla.:‘nM}lny + b:‘Cos};ng]

4+ €OS nat Lc’f"ﬁ,;n},ng + d:"cashng]}

This inust saztisfy the boundary conditions

2 }:;# §(-0;)
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thus determining the coefficients a,b etc.

Therefore (Appendix Al } we find that the energy dissipated
( 0 = resistivity)
v 1tT)
E = &4 5 akk 6y [ I Sige [j(-/J
! L4y 2. (9\/" e ?o ("q
' T
Lz akg [ Se] )
with v 1
9;"89 ‘o ¢ - Q. - ﬂ;- 9‘
Vi 2n RO 1rr7’ ) YT

T = 15?}”—: b/, g=e

b) Non-orientable surfaces.

A diagram with an odd number of twists has an analogue
5
surface which is non-orientable

eg.

has the duality diagram
g

tr/ﬁ , T :

3
3
and the corresponding analogue surface is
S
]
A
3
3

ie. & :tiobius band.



(x,y) plane by

-8

“e may represent a Mobius bend in the
a rectangle with s suitable identification of the boundaries.

Consider the figure
R Th 2 IA
6, O En &; &
y =2m;3
—%—él
. 2,
(3”:"@)

y =Y.

The point (x, § ) is identical to (X+#27 ,-§ ),
50,

e

and (77 , Y ) is identical to (-717

The double of the Mobius band is the rectangle of length 4717
Now, any function on the band must be of

period 4JT in x, and satisfy the sbove identifications;

and width 28 .
any harmonic function on the band has the form
M e — L T
+(C,. sin p~4 X + o/;“'Cas n-2 ¢ ) sinh a-{ 93

co
2 {(C‘Zus'm ne + b cosnx)coshny
=1

@ (x,y)
n

%79’“ (x,)

Yo
- 30 (xe,-p)

NB'
conditions are
N M
_Z/b §(x-86;)

The boundary
PM
> Tyeg oo

el Qv
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Then, from the

20

2 pp e

¥ AT

o™

is the energy dissipated in a

Relation withfy'functions

b3

Miobius

.
‘,J

band

nf Gross et

c)

i) Orientable diagranms

In the notation of Gross

33

et al. we may show that

ﬂ,(Mult)

Zbgév
T

14 Ccii)

?03 ZIIQ.

ﬂo (vi;1T)

Log w
21T

)

C..

J

¥ (

C..

where
Jb

Ce:

Chan variables

Further

and

twists) 30’(6%;) is chosen if there are an even nuitber of

twists between /b.; and ,(L)J

eol z /A

the procuct being over all

ﬂag CJ';
-eog w

In their formula for the one loop case (even number of

o}

, ie. /b ,/@ enter on tre san
L J

circumference of the cylinder.

_ }? (Cﬁ; ) is used for an ocd nuwber of twists between
FA
/P and /b ,
[ J
e on different circumferences.

1Co. ar

.



Therefore, there is agreemen

ii) Non-orientable diagrams.

03

Again we may show that

toger S L¥IE] T [¥IE]
v

P~

H

(CJ") T €4 f: Zd(,

-y < V;‘j*" E-n
/i = Togw jL’:VLJz_’I'E] J3£ 3 )1_!
7{7 (C"'".) i T 2c e ¢

where A

f:r(‘*_‘ g™""")

2

)I- o) _-‘
, Y, & as before).

As in the case of orientable disgrams, use ‘VQ CCJLJ

®

( G

. . - 3 ’ h]

if there are an even number of twists between P and ,é 5
L

ﬁ&”.(cﬁ) if there are an odd numver of twists.,

(N = non-orientable , T = twisted)

~

To understand this in terms of the #Mobius band consider

the following diagrams.




Cut the above dizgram across AB and open out to give:-

&

!
I

s

i

A

X

'8

A4

¢ 217

-

! 3|¢r

strip hes an 2dge of length 47T

; ie.

If we call the length of -this band 217 ,

il |

: 9 ' eJ 9@

27 to be in accord with the

49)
o)
7
[
=
o]

o

2

analogue

<~

¢L+ 277

=0,

s we must sugaent the aifference in th

V,;J'"'l

~

e show how to obtain the measure for

mocells

Hence, if ﬁ ; /) , 2re seprrated by an od
4 B

nroximeting the conducting surface by & cense

formula; for
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in wihich tre top enc joins the bottom to {orm a cylinder.

i -
ms. Syl o A e e - ~ T akhal I W b yag T+ 4
Ire circulsting momenta are labelled hj as shown. If tne

X = (K:f-'JKLJK:u-’KLJ--.. K;)

- 1 - .
ren " oy - i3 S e o -, o ~ At etes RRON ;
Lrhen thre enersy aissipated for the above distrivution, is

I A (MN 2z MN)

%

>
u
]
£~

3
O
o
(=1
g}
Q
=3
o
oyt
®
m
'U .
G
o
3
[oR
'_l-
be
(1
(@)
o
ct
m
},.l
=

and the integration is over all X,




o

b T_T:g-ﬁlf<f = jKGIXL

In the Aprendix it is shown thet

N=> ®
where o
2
- - 25N W =
fwy= [lG-) , w=¢
1
The limit converges if

[th)

If we alsc join the sides of the atove network then ws

S

p-

nave a torus. Jde may calculate the weight attached to th

torus by replacing Cy oy

[r—l -

. -t & -
T G
N .
0 S
L—l -l.lo-J
" in the Appendix calculaztion. Jie then obtain

Al = et



this agrees wiutr the cylinder celculetion when one remembers

v

e

4 a : w3 2L S aia . R o -1 2 = 1*(3'
th thhe double of the cylinder hes length -

‘le may ottain the measure for the Jobius tand, now thet

h

the torus mezsure is known. For, the T' of the :obius strip
is related to the T of the cylinder by

T'= T+ /o

of the cylinder are rotated relstively to one

(ie. the ends

egnotrer by TT.)

Hence, g is replaced by iq
ie. w is repliaced by - w
ie. f{w) is replaced by f(-w).



ral fornulastion

}._I
=
.'_')
(\)
"r‘\

5 TI e Functinns

5.1 Introduction

The

alculations in section 4 have been performed in
momentum space. The reformulation of the problem in config-
uration sorce 2llows an identification to be made. with

functional integral approach of Hsue, Sekita znd Virasoro .

.  om .. L2 . . . .
Gervais and Sskita”” extended threse considersations to multi-

’\'\

loop amplitudes (but not including non-orientable diagrams),
providing the framework to bridge the gap between the operztor

language and that of the analogue model. In this approach

the dégeneracy of conformally equivalent dl?b ams is directly
. 19

linked with the Virasoro algebra.

Their amplitudes are defined by "functional integrals

which correspond to transition smplitudes of quantum - mechan-

L2

ical systems of strings with imaginary time.? Trhe latter
g Y

aspect zrises becasuse the Lagrangian for a free string

L (@) = ’i{(’g ) Gf)] (2.5.1)

~

vecomes the qur'nglan used in the {functional integral approach

2
on identifying y = - T

ie. t is pure imaginary, since y is real.

5.2 Anslogue Model.

Tn see tre connection with the zsnslozus model we consider
the N — Reggeon vertex. Now, ezch amplitude is built up

from "rudimental® amplitudes. Tre rudimental amplitude in

this case is the functional average of



N i
*.”‘/[dmﬁé §/ﬁ(f)' %[%H}Jﬁj (2.5.2)

over 5@ (x,y) on the unit disk (or, in fact, any simply -
/U-

connected region D), where‘f€ ooundary of tie diske. As in

. . . . 21
Kosterlitz and Saito's form of the N - Reggeon vertex. ™

ﬁé R ‘f —>» part of curve in (x,y) plane where the momentum
/_‘2 (f) is emitted.
/_‘é(f) are N momentum distributions corresponding to
the N Reggeons.

The functional average of a functional of.f
gl

, AP

say, is given by

<A(@)% = ﬁtgﬂ‘@(x”)Aw/ﬁ-’C@) dr. dy (2.5.3)
DL - -1 (G Y
n, = [em*§@]” SS D13 e [[[Z ) dea].

The method of evaluation of these functional averzges
exhibits the link with the analogue model. ror, let hJ(%}”)
be Neumann's function for the domain DBl (not necessarily
simply - connected) of definition of the functions we are
considering, and make the change of integraticn variables

é —_ 5!'5 ’)' where

BEEE AR ALY

( 9{ allows the A? to be defined on the standard interval,
© £ F £ 1, ie half of the unit circle)

Now, translational invariance implies
D(F) = O°(P)

( ? ) é’ differ by a constant function)
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’'ne exporient in the integrand of the functional sverage is

gg L(Pldeedy + sz_Frg f_:/é[“f% (£)] d);

- (2@ aeas - £ 2 ([ ACIPCE) NL8O, G L8] e 4f

Hence, ;
(eplem 2, b g miaf p
(arr)‘rgb(ij"@ ff)df).wxf) [i— Z ﬁ/c'é[f)'/’(”/\/[ga“7/9,-(!")]&[4}"}

The -1”st factor ensures the conservation of momentun,
ssipated in

while the exponent of the second is the energy di
3" of

the relevant domain of resistivity l/? with "current

momenta /b. ( §) entering on the boundary.
p .

The self-energies are subtracted in the definition of

For example the N - scalar enplitude is

the amplitude.

e k2
defined by (intercept , &€ (0) = 1)

(zrr)"S""[Zf]V (R, B) :
]Td9 <~e¢c/—52% Q-[h)>

Lo
Cf jf"" E (s, %)

[ self-energy of i®
el | )fi‘ff,gdv@:c@f‘n‘- hulp, (x)y) 50313"37]

§(x - FEcont; ) §(y- FEam )

4 Séurct]

W/)ﬂ"'e) E(}‘:)z:_z)

Colxv) =
¥ = e b y = X+ey,
9,;# 8, tnt . -1
C = f do, [dos | G-nX5-& X3 - 3.
é

?
This ﬂtproach, wvlcb is equivalent to the operator
neasure associated with 2

hl Le 2lso furnishes the me
main of definition of ? ,
/A—




~58-

then the corresponding measure is given by

wp [[L D

For the one-lcop case, for example,

ga@"m et (§ L (&)t

over all éi“’ defined on the annulus (or torus) gives the

partition functinon as cealculated previously.

Operator rormalism

N
-
(3 )

“nen factorization in the functional integrzl spproach
is considered, it is found that the relationship of _@ [f)
/’
to f;* () is that of a generalized position to a general-

ised momentum. Indeed, 5? , may be gquantized zs follows

§ 1) = e 2O ienr (520 92)]

. (2.5.5)
the canonicsal momentum being
GRS EVIRS RO T
= = + - cosn (a -a ) _
L o~ P
A J2r M n= - (2.5.9)
where [-%»,}$J = °q»v ;
o = fg L
and q”f ) q’”* are the ceation and annihilation operators

introduced in section 1.
#e may associate this field with a free siring of length

7T , if we use imsginary time so that the Lagrangian is

L (§) = ‘i[(%g)z*(%f)zj (2.5.7)




I
AW}
O

i

(It is assumed, when such an identification is made, that
the ick rotation, to the Lorentz metric, can b2 made after
all calculestions have been completed).

Furthermore, the Hamiltonisan for this system may be
derived from the given Legrangian, snd is founc to be the
Nambu Hamiltonian,

H= p° Snaa’

i
as in the operetor formalism.
Now, the relation between iL’, above, and G of tne

operator model, is

5 63) = 3[8me o]

L.
Where |3l = |, ref.2s4.

Tre explanstion for the above is to be found in the
definition of the standard interval for each case. ror,
~ . e B2 . .
Gervais and 3zkita use the half-circle, O ¢ f’é T,
(7= 36;))whereas in Ramond's wor'k13 the full circle is
used. -

‘Ne may carry this two-dimensionazl field model further
by deriving those operators whigh generate the transformations
leaving the Lazgrangian invarisznt (WNoether's theorem). In
this way we find,
a) 3L{2/R ) ie. ilobius invariance (Duality)
b) Conformsl invarisnce; the generators of the conformal

transformations are the Ln's:
L. ¥=13'

vhere n

(3')" = ¥" » ne

(Lo, L + 1 generate 3L(2 R ))




The operators are ootained by exponentisating the Lp's to
give C) (g), say, where g is a zonformsl mapping. These act
on é as follows,

/A—

O § (33007 = §.0,7)

with ,
y = 9(x).

Hence, duality and the gauge zl;ebra are seen to be
properties of the Lagrangian, Indeed, factorization itself
(going back to the beginning of this section) follows from the
loc2l nature of the Lagrangian. ror, from the diagram

H=BH vH

1

we have S‘Zdw - gzdw + S.ol:dw
O L L,

ie. S = S‘. * \Yl

Therefore, e’ = e
This, together with the fact that the measure factorizes

similarly, accounts for the bootstrap property.

m
1

he three reguirements, duelity, gzug

ation (s8ll guaranteed oy the properties of the Lazsrangian)

L3

restrict the Lagrangians possible. Indeed, CGervais and 3ekita
introduce new Lagrangians which yield other duzl amplitudes
already asrrived 2t by other means. dowever, functional inter-

] 1 . 1 y ' ] -~ N e e ~ay e = - =+ 1.oa P p
gration docs unify the descriptions of dusl amplitudes givea

in this chapter.



Remarks

Now that we have presented three approaches to dual

@
)

amplitudes, we may discuss the merits #nd demerits of cr
in an attempt to ascertain those chzracteristics which mignt

remain in future modifica2tions.

)

a) The Operztnr Formalism.

At the beginning of this chapter was presented-a mathemét-
ical model for constructing amplitudes which, starting from the
assumption of infinitely rising linezr trajectories and narrow
widths, incorporated in an aposrently consistent manner the
following attributes. &)  analyticity b) crossing -
symmetry c¢) duality d) factorization (explicitly
exhitited in this approach—— Feymman - like diagrams)

e) Regge asymptotic behaviour. Uniterity was to be enforced
parturdatively and there were no ghosts in the model.

nowever, quite apart from the fact that it did not

3
3
o]
[}
<
0
o
U]
3
(]
@O
}_—l

istic spectrum, there were some drawbacks.
The first of these was th2t the ground state was 2 tachyon.

Furthermore, the operator formalism mekes use of the Koba -

emergence of these surféces,in terms of space~-time is not
accounted fof in this framework. Indeed, the surfeces play
a role secondary te the operators in this technique, although
they (ie. the surfaces)give the most convenient terminoslogy

[ I
~ . . . . e s A Y
for discussing tne singularities of the amplitude .



b) The Analosue MModel.

n to

bt

—

In this approach the two-dimensionsl surfaces

Il
duslity diagrems and so incorporating something of the notion

of quarks - c.f Chapter I) zre naturelly sccomodated within it.
However, the languagze of this model mskes no mention of spece-

time, nor of its relation to the, perhnaps basic, surfaces

(apert from the momentum flows which sre constructed on the

‘.
(@]
jab]
e

surfaces). Indeed, there is no attempt to offer & physi
interpretation, as for example in the [functional interration

fermalism (ie. no physical, space-time, meaning for the ccuplex

plene is given). Thie geomstry and relsted constructs depend
critically on the Euclidesn metric and Laplace's eguation,

compared with the functionzl approcach where s hyperbolic eguastior
is more sppropriate. Thus, it is quite abstract, and, as such,

may be a fruitful ares in which to explore possible modificastione

Q
Q;

and, later, interoretations, once the relation with external
space-time hzs been elucidated.

It is interesting to note that if we regard the inter-
grations over the 3/;’8 as part of the sum over a2ll possible

configurations, then the classicsl contribution is the extremal

IT 15-%i*

c#)

value of

<o~

with respect to variations of the 7 . Iiis expression,

C i . o pras . o ia R 2 '
without the differentiels, is ¥obius invari=nt if p." = m = G.
iz 1is to be compared with the ideas of Chopter 1V. (In

fact the clzssical contribution is the same in esch case).



However, tne bootstrap property (factorization) is not

(.1

clear in the Analogue prescription end tre gauge algebra

|

ies of the

ct

(‘\

ultin rom the conformal invsrisnce proper

(r

o
]

surface functions - c¢.f. the functional integration approach)

has been realized. Furthermore, there is no means, within
the model, of determining the nmeasure on the space of coniorm-

ally inequivelent surfeces. The mneasure is & characteristic
of the quantum mechanicsl nature of the problem and (section
on sewing Reggeons). unitarity. As there is no space-time
interpretation for this model the Guestion of the measure

must be left unanswered.

c) The Functional Integration Formalism

At first sight this approach seems to be the most prefer-

able of the three, since it may be linked with either of thre

first two in & direct manner. It supercedes tie operator
formelism since it incorporates the Riemann surfaces of thne

Analogue ifodel (but only applies to orientable surfsces -
ie. spurious free). However, although factorizstion is not
mznifest it mey be pnroved. Furthermore, it orovides the
measure and yields the gauge algeb ra, bpth'missing from the
Analcgue Model. .
stion of the conformel degeneracy of the surfaces.

latter points are possible because of the physical interpret-

ation gziven to this approach - ie. the dyna2mics of a string.
dowever, the motion of the string evolves in imaginery tine
(the ‘ick rotation has to be assumed possivle). A proper

J_

trestment {(ie. real time) would, of course, cestroy the nature
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of the Analopue geometry; the only reason for doing s0 SCoins
to be to force 2 physical interpretation on the dﬁal models.
Since the latter have not been fully develeped it would eppear
prudent tc consider the structure in trhese models, when expressec
in an abstract, methematical manner, before attempting to
impose a physicel interpretetion. For, the Koba - Nielsen
varieble (and so the surfasces) emerged as convenient mathemst-
ical éonstructs with no definite preconceived physical meaning

Z
(indeed duality diagrams,O first introduced es helpful'mnemonics,

do not have an explicit space - time significance).




1. Intrcduction
There were a number of approsciies to dual amplitudes

which were iaportant to The aevelopment of the subject 33

i\

wnolee. In =2ddition to those already mentioned was the
- Y " a1t o l['r ] lS . N . "
roup-theoretic method; SU(L,1), SL(RIR ) invariants,

g
<

or SL(2 G:) which led to tre Virasoro amplitude - czrs and

o

1
4

Gursey. tlowever, perhaps one of the most appealing, in
its introduction of structure in dusl models, was flamond's

. 13 i
sttempt at a field t”eoretlc interpretztion of the latter.
It certainly proved useful in guiding resesrcrers to an
extension of the originzl model.

In Ramond's work, the structure - SU(1,l), zauge algebra,

spectrum - was exposed more readily than in cther models by

3 . ! . .
13,kk instead of

considering free wave eauations of nadrons
the field in interaction ie. the actual amplitude.
As in the previous chapter, section one, it is assumed

)

ti:at hadrons heve a2 structure with periodic internsl excitst-

ions. The position and momentum operators are-gsneralized to
the Q/k R RJ* of equation (2.1.6), with the Hamiltonian H

{genersting the spectrum) given in eguation (2.1.5). Mo,

13 S . s
Ramond assumes that all physical guasntities are aversges,

over the internal period, of their generalized counterparts;

ie. the average of an operator A(T ) is
21
—
°
5.

TR
(B, o)

NS




the physicszl position and momentum (in =zppropriste units
N.b. “hen applied to products of operztors nermal ordering

riust be enforced.

<o The iree noscn wauation

e now restrict ourselves to bosons and consider

Klein - Cordon equatinn for a particle of mass n,

ie., m* = ﬁ/)"": P> Pted) (3.2.1)

At this point Hamond introduced whet he called 2

"Correspnndence Principle", by mesns of which products of
averages were replaced by the average of normel ordered
ﬁroducts,

iz. (3.2.1) becomes

m> = : < Bo) P(e) > (3.2.2)

-
¢}
°

H - m* =0

However, if we go further end reguire ecustion (3.2.2)

to hold for all modes and not just the aversge (ie. zero mode),

then we have

n
O

AA . +
T P s = M
Ptz (t)
uhhich becones, on expanding,

Z» L_ B_;nt m’— 0 (3'2'15)
n -—

Nz = co
where .
Ly = <1 EmPray; e
L.. = La' (3.2.3)
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) Ll
3. The Free Fermion Dauation

(1) The Torm of this ecuation is, by tie Uorrespondence

Principle,

. ] - P =m = 0 :
L KL P | (5.3.1)

wrere EL_[t) is as before and f:w (t) is a generslization,.
of the Dirac matrices 7J .

To determine (T) Ranmond recuired

M
a) that they reduce to the Dirac matrices wihen thare are

no internal excitations

"
ie. </:~[t)> = z-Ln dz /:,_'(t) = _D;‘_

t) thest they satisfy the relations

: . = -t d 2m)
i/}. (), 1] (=0} = 29, §@ T (me (’-3.3.2)

whnich is thke simplest recuirement consistent witli the
snticommutation relations of the é;.

¢) that they also obey

T
. ) o, Doy, (2.3.3)

- for simplicity

These three conditions dictzte & unigue Ffourier

expansion of ftﬂ, () viz.

Pt = g e my B4 G
nere,
25/)’") VM} = ’9‘,8mrmo A m = [
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(ii) The spectrum is given by considering

h

M PO>LMPY> -m- =0

(s
.
(€S)
-
L
~

ie. . (
1 ) d L
P> - LD g Dgmy p =m0
- ie.
oo - —
b S futa o ndna ) o
i
thus giving linear trajectories.

Trhat part of the mamiltonian depencing on the d's is

R R TY

nd that part on the of's

Hy = <P,

We tnen find

«

_ . d | |
[He y[.cwa]l = 5 Date) (3.3.6)
Furthrer,
oL = E KRR

satisfy the Lorentz algebra; so

MV = M/.VB + M

A~ AV
give the totsl generators of the Lorentz group.

(iii) As in the boson case 2 gauge algebra emergas.

For, if we define

LB < ezﬁnl: le"J ‘>

ss before, znd ' (3.3.7)

F - =t ZLnB' g/f-t c) °
L., . Qe Dotm g et >

Fal

and require ecustion (3.3.5) to hold for &ll internsl modes,
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then we have

o0

Pl 2 Lye " —m %> =0 ’

PV (3.3.8)

~

where’

™ -
o
a

o . ‘ . B
Now, the L, obey the same algebrs as the L, , &nd commute

Ky

with the latter. Hence the I..},1 a2lso generate the Virasoroc

%}

W

ilgeora.
Therefore,

L"’P> = 0 In.:l,Z,-..
where [ @ > sotisfies equation (3.3.1)

de may go further end require (3.3.1) to hold for zll

modes,
Kol M. Pyt =m 9> =0
ie.
(Pl 2 Fe ™ omly> =0
ie.
where Fn - <~66h=: Pz Pee) > 3.3.9)

Hence, we obtsin furtner gauge conditions; viz.

F. lg> =0 , n=1,--- (3.3.10)

and equation (3.3.1) becomes

o

]
g

F, - m

The Fn have tre algebra

LLa, Fu ]

{FAJ F ]

£ u

v

Q'[-n+m (3'3711)
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) ) . L L5 . . ) . i .
(iv) Neveu and ochwaruz*5 introduced an inter=ction into

gamond's fermion ecuztion, by means of a vertex for the
emission of & meson. Tris vertex was compativle with the

ceuge conditions (3.3.8) and (3.3.10) only if m? = - l/2,

m being the mass of the ground state of the emitted meson.

There is, in fact, 2 close connection between the above

ar
]

structure snd that existing in the pion model of Neveu and

Schwartz 2 - the amplitude of the latter being obtained by
factorizing the amplitucde for a fermion eritting mesons, in
the quark - antiqusrk channel nesr the first pole (m° = -1/2):
Furthermore, the new gauge operators are similar to those of

Remond, ie. the Fp, when the pion model is formulated in the

. -—_ . ’ < £ T o [ 2 s lb
second rock space introduced by Neveu, Schwartz and Thorn.

k)

Now, people have proposed other extensions of the originsl

; o N o . L6
model which add to the existing structure — Bardakci - Hezlpern

and Clavellih7

rr

models, described in sn SU(1l,1l) context by

- . 1L iy . | ~ S

Ramond. However, the Neveu - Schwartz approach hes more
gauge conditions leading to a no-ghost theorem. (Goddara

and T‘norn2l

.demonstrate this point, showing in particular that
for a» space - time dimension of tén,,the Pomeron singularity
appears as a pole). iMoreover, the spectrum of the model -
shows considerable improvement over the originsl. e refer
the reader to the papers quoted for a discussion of the meri
and demerits cof this model.

The purpose of this chapter was to present an zlternative

means of deriving the gauge algebra in a straightforward manner,

but which did not recuire a physiczl interpretation such as

@

that in the functional integral approache. Furtiermore,

described an extension of this which augmented the existing

[
gauge l2lgetra. This new algebre is isomorphic to that of

the Neveu - Schwartz model.
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In the next chapter we outline an alternztive framsework
within whkich may be accomodated Ramond's {orrespondence Princ-
iple. Any future modifications to this new approsch may

develope along lines similsr to those given in this chapter.




Introduction

From the remsrks made at the end of Chapter II it would
apoear thet the mnst appropriate msthematical structure is
based on the language of two-dimensional surfaces (which
originated from quark duslity diagrams). Indeed, using
the functional integration formslism the tiobius group snd
gruge conditions may be attributed to the properties of tre
Lagrangisn defined on such surfaces. fdowever, this ap;roach
to dual models depends on the, imﬁroper, treztment of a
string evolving in im2ginery time. Eehce, 2 possible modi-
fication of present considerations would be to use resl time
in 2 string model of hadrons,several zuthors have done this,
taking for the most natursal Lagrangisn, the arez of the world-

sheet traced out by the string (8 direct extension of the

D

Lagrangian for a point particle, viz. the invariant length

of the world-line). Nevertheless, this does involve 3

bzsic change in the character of the surfaces from the
original formulation, the hyperbolic wave ecustion now

being sppropriste,whereas Laplace's equation was formerly.

! P
However, there i

w

arother line of attack wiiich rem2ins
closer to the criginsal model, proceeding, 2s it does, by a
direct extension of the msthematicel treztment of the Analogue
aparoaclie It involves interpreting the complex plsrne {or
regions thereof) 2s a parameter snece for the description of
surfaces in a iinkowski space. The equations expressing

the extremum of the energy dissipated in sn Anslogue surface

are read as the conditions for the represented surface in



7l

¥inkowski spzace to be of minimal are=z. Thus, this method
is also based on the geometry of surfaces, although here

the character of the surfaces remains unchsnged (definite

D

metric). Furthermore, a#gain in contrast to the string
model, the surface is not intrinsic to sny one hadron,

but is primsrily an expression of the extension of the

interaction between hadrons rather than of the extension of
trt.e hadrons themselves ie. the dynamics of the interaction
is determined by the geometry of the systen. For, in the
case of scalar particles scattering for exampnley, the suriace
is bounded by the moments of tkese particles. One consequence
of this is thet we mey only discuss the scattering of =t
least three particles (to give a finite surfz2ce) - quite an
acceptable situation.

(It is interesting to note that, via bootstrap ideés,
the compositeness of a particle is the result of 211 possible
interactions which, from the above, are governed by geometrical-
considerations. Hence, the description of one particle is
in some way determined by the geometry of surfaces (Newmansg)
ie. extension of interaction of hadrons implies internal
structure for hadrons.)

As a result of this approach we find that we are
constrained to have a ground stste of zero rest mass -
ie. no tachyon. Furthermore, we are sble to incorporate
Ramond's Correspondence Principle, in 5 modified form,
which a3llows a derivation of the Virasoro operators and
tre subsidiary conditions (missing in the Analogue sgpuroszch).
foreover, by the very nature of the model there is & direct
correspondence between the intern2l and the extern=zl coordinates,

which is such that '"rotstions" of the lztter (Lorentsz group)




anoear 2s linear fractional transformations of the complex

)

-

plane. In fect, the Lorentz group, 2cting on the momenta,
manifests itself on the Kobe - Nielsen variahles as obius
transformations. This fact adds to the relevance of the
work of Domokos et al, Bars and Gursey, Bacry And Brink,

who assumed the above identification. Indeed, the intefnal
group, SL(2 [Ror C ), had assumed such a psramount role

in dual models that various asuthors (Hsmond and Clavelli)
developed a group - theoretical prescription for constructing
dual amplitudes bazsed on the representatiocns of SL(2 R ).
(SL{(2C ) applicable in the context of tre full plane, leading
to Virasoro-type amplitudes eg. Bers % Gursey; Shapiro -
Zi's 2llowed to rosm over the full sphere instead of only

2 circle.)

ct
o
(0]

However, there remains the problem of interpreting

ct
~
}_I
(5]

surfsces in & spsce~time context. In the string model
is epparently straightforward (viz. world-shest), although
there is the problem of introducing an interaction between
strings in 2 geometrical manner. recalling the origin of

trhe Analogue surfaces (duzlity disgrams) one might expect

the represented surfaces to retain some of the gharacteriétics
of a quark-like structure, although 2t present it is noﬁ st
211 clear how this is realized. rurthermore, 2t first

sight the boundary appears unusuidl - the momenta deing
tangential rather then norm2l to the "interaction region'.

However, (see section l.4 ) by tszking the real part instesd

Lo

of the imeginery part of the "complex potential' we may

obtain a surface with a typical boundary



Trhis point may be resolved once the surface itszell has
been given an explicit meaning.

Cn a note of speculation, the author would like to
iraw the reader's attention to some work of Newman and
others in which internel structure is given to particles.
The dynemics (velocity and accelerstion of the psrticle -
non-quantum trestment) is determined by a two-dimensional
geometry. In fact, the distortions of the surfece of a
sphere in three-space yield the internsli degrees of freedon
of the particle. Similsrly, in the peper by Goto znd H=ra,
deformstions of & sphere (also in space - non-relativistic
treatment) produce a hadronic spectrum incorporating 35U(3)
without gquarks. These indications mey provide-an interesting

line for future research.
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1. ainimal Surfz2ces in riinkowski Space
A Cl=szsical Descrintion
1.1 ne~resentation of Surfaces.

We first indicate how surfaces in a Zuclidean space

. e . . . . L9 . 5C
sre descrived, given s boundery (J. Douglas,™” K. Courant,
Tor exemple.)

Suppose we are given a set of k contours ( I ) in this
Euciidean space, each of definite sense; then we may construct
a surface 48 of & prescribed tepological type - viz. genus A )
and either orientsble or non-orientable - bhounded by ( [ )
as follows.

Let B be any symmetric Hiemann surface (ie. there exists

. G
an involutory transformation T of R onto itself '), whose semi-
LG
-~ 7/ I d \ . ~ .
surface, R, hes genus ﬁ and k bounderies (C) which =re
topologically ecuivalent to (/7 ).  Further, if ws zllow

JCJM,(u,v) to be any single-valued, continuous vector function
which takes the same value 2t conjugate points (ie. points
eaquivalent under T) of R, and which also maps (C) into (I ),
then the surface traced out by X., of genus p and bounded
by ( [ ), is norientzble or not orientable =ccording as = is

L9

ie. wWnetvher

of tre first or second kind in the X£lein sense

the locus of points invarient under T separstes & or not)

. - o d . o o
ie. X, transforms R’ topologically into 3. Tris is =
particular representstion of 8. The most gener=l represernt-

#tion 1s obtained by topologically tr=asforming i into itselfl

o]
cr
n

oI 3 Iromeomorpinic surface whilie preserving conjugute poi

ie denote a particulsr representation by (g, R) if 2z s the

T3
W
o]



boundsries (Z) of & into (/[ ).

M. in the langusge of references 3C,31, R is the
w3 D .k A § Ny - . 'n’ o 3 Fad S - 2 s . . S o
SCrOottKy coutle of o, The locus ol tnose points invarisnt

S

being the bound#ries of the open surface.

Ll
-

under
Now, any Riemenn surface of genus p snd ~ssigned orient-

zpility may be repgresented by the fundzmentsl rsgion o

groun of linesr fractionsl transformstions (eg. Jurnside” ,
__— 32 : . . e , X
Lehrier” ), ie. the automorphic group of the surfsce. G0,

any suriace in DZuclidean space, or Minkowski spsce if the
metric is space-like (for if this is not so then the metric

is indefinite and so clezrly the surface cannot be conformal
to 2 region of the Non-Zuclidesn plane), may be represented by

20,32
- S pr e
a normal polygon” '

(fundamental region) in the complex plane
together with & mapping of tre boundaries of the polygon into

trre boundesries of the surface.

1.2 Plztesu's Problem:- briefly ststed is

To find g s&nd X;MJqu) such that the =res of the surl=ce
& (NB. topologicsl character already prescribed) is a minimauwn.
For a fuller statement 2nd discussion of the problem we

" - ! - 50 e
refer the resder to J. uouglash’ eand K. .Coursnt” . suffice
it to note here that lirstly, if isometric paragmeters are used,

tren Zuler's ecustions for the extremun of the erez of § reduce

=)

to the recuirement that each X, (u,v) be 3 rermonic functio

/h

Secondly, the corresponding Ulrichlet integral,

{wo to a factor of 2) when isoma
Hence, a minimisstion of the former, to five the

notentisl, implies the minimisation of tne lattcer.

by verying the boundary conditions of the Analogue




tiodel (
boundsry) to reach an

(corresponding to the

! g
Protlem; for we anou

29,30,

while waintzining tihc ssme contours of

istic Scusrtinn for
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4e 1a

tihe surflface

extremum of the energy integral

variation of g), we may solve Pletesu's

the solution to the 3inziopue Jroolem

—

snd also by J. vouzles LG

Fininal Surfaces.

Since, using isometric parameters, Zuler's ecuations

e

may regard them as the imeginecry parts of holomorphic

f z with z =
Lﬂ’(),'b

.03 =

ic.

or the area2 functional imply thet,ij(u,v) are harmonic, we

-~

iunctions

u+ 1ive.

fzw(“;") + _‘.'x/,(“)")

~wrere g}b is the conjugate hzrmonic function (ie. the potentiel

if)Q/b

is the strezmline function in the Ana2logue langusge

Then, using the Csucly - Riemsnn equations, we obtain

df,.

dy
36,
Qv

B(y) =

[\

- (E-¢

Hence,

for iscmetric

[

-2:F)

coordinates

ie
dy

2
)

(Lel.l)

(L.1.

D

)

(u,v)e.
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3

Trere

b

ore, if we have a hsrmonic vector function, then

it describes a minim=l surface if the corresponding charact-
eristic ecgustion (L.l.2) is satisfied. tor if tnis is so,

then the peraneters (u,v) are isometric, thus implying that

=)

uler's squations (now Laplace's ecuztion) have the above
vector function as a solution.

Null Coordinates (recuired later)

These zre defined by
dst=0 & dpdg =0
where (/b, 4 ) are null parameters. If we herve s pzir of

coordinates (u,v), we may put
ﬁ = % = w + v

w-ve , giving

and @ = y =

dst = E'dp* + 2Fdpde + 6'dgt
virere

LE'= E-6-2cF

LF' = E+6

L6’ = E-gr2iF.

“hen (u,v) are isometric, then (4.1l.2) implies

ds* = Edpdg = Eo/)d} ( )
Lol.3

MB. The element of ~res is
dA = ,JEG'F‘JA,CA,— = Ed/m/tz)

for null coordinstes.
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Quantisation of Characteristic Ecuation

oy
L 3

1.4 Subsidisry Conditions and Absence of Techyon

Since there is no direct physical model we cannot
cuantize in the manner of the functional integration formalism.
However, we may expand the surface vector f_ {(z) in powers of

/Ur
. . - . 13,1
z, With operator-valued coefficients, similar to Kamond. 35 b

ie. E« (3) = }:x"” rRp logy + 'ZF'_ (a"y’h 62’}‘") (Lolol)

so that
X/’ (u,vr) = jm /j,,(}))
is a8 harmonic operstor-valued function. (c.f. equation (2.2.4))
(X, F are the quantized forms of x, f respectively).
e then require (u,v) to be isometric parameters

ie. (4.1.2) must hold; since

Y]

Aoon
dEMm = -LZ4s
d}/ } - 00
" " 2 i i i I HL -1
(_a/w , oLl etc. as given in chapter .LI), then

Cgwl o= [ELm]

1]
I~
NI
[\
>
=
>
-
'_l
U

e
where, Lo
L-,, = . Z o(rvu-n - K,
ms=- o2

ie. the usual Virasoro operators with the gauge #lgebra

[_Ln, Lm] = (n-m) L-,,,,M_ + —s'-n(n‘—') d

n+m , 0

1

In this way we incorporate Ramond's method of deriving the

gauge algebra.
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Hence, our "ecuations of motion" reduce to
o 2]
no_
2 Lay" =0
- DO

for s8ll z. however, this is too stringent a condition.

(Lol:0)

Tre situation is similer to that in Q.E.D. where we do not

stipulate that

o o _
o A lphy31cal> = 0
but merely that

d. A""(')]physica.1> =0

2
(Schweber‘5 p 246), where AV (+) is tre destruction part
of At.
In our case, we require (4.l.6) to hold only betwezn

physical states., Therefore, we have the gauge conditions

Lalphysics1) = O (Lela?)
for n = 0,1,2,---
NB. for no internal excitations
z -—
L, =p =0
ie. the ground state hss zero rest-mass.

. . 51
(Gauge conditions also obtained in this way by Minami™ .)

The compasrison with Q.E.D. may be extended in & formal

menner as ifollows. If we write
d X P -
- Y = +LQ
dz’ Vad M
and put
F., = RO -EG
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then, the area Lagrangisn b may be expressed as
s/ ‘2
- JeF s ()T s 2
di v ~ Lo

since E = Pz, F = P.Q, G: Q

. . 2 s L . .
Now, in Q-E-D-5 variation of the Lagrangien yields

oA, =0

only provided e _
y A<= 0

ie. /?‘A =0

Therefore, by identifying & &> /f’w and ¢ @,.,‘—) -8/@“.
the gauge condition reads
P.Qe = F =0
which is part of the condition for isometric coordinates
(leading to Laplace's equation a2nalogous to [] ALw.:¢9 :)
Indeed, if we consider the equation for a scslar particle
of mass m containing the effects of the electromagnetic field
k5
(&—e&J = m’
(FeynmanSB, Principle of #inimal Electromagnetic Coupling)
and write down the analogous equetion for zero mass,
(B+ig) =0
then we obtain the characteristic equation
ie. E-G=-2iF =0
The "square root" of this equation may give the anslogue
to Hamond's generalisation of the Dirac equation, althcugh in
our €ase, zero mass, the neutrino equation would be more
eappropriste (c.f. section 3).
O

NB. 1in the usual formulations of the original dual model /.

was treated as a momentum varieble also.
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Remark It has becn sx.u_-:_-gest,edsl'P that the compstibility of
Poincaré invarisnce with the dynamical realizstion of duality
might lead to & situation of no ghosts. The authors of the
relevant paper cite the case of quantum electrodynamics in
vhickh the compatibility between Poincaré invariance énd long-
range intersaction gives constraints, tne gauge identities,
which destroy the ghosts. They then proceed to construct

a model, "relstivistic string", in which the ecuetion of
motion (of tre string) appesrs as a geometric constraint in
Minkowski space; the gauge conditions are a consequence of the
geometric n~ture of the model.

In the spprosch advocated in this chapter a similar
state of affasirs exists from a geometric point of view - the
Lagrangian in each case is & geometric invsrient viz. an sres.
The subsidiary conditions follow from the minimisation of the
respective aress. |

However, in our approach, the reconciliation of the
extended nature of the interaction of hadrons with Poincard
invariance leads to the internal symmetry group SL(2 € )

(section 3).
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2 Discussion of the Minimal Surface.

55

2.1 The Scattering of N Scalars.

If we consider the case of N scalars with momentun
A*”‘, i=1,---,N, then in the Anaslogue fodel the Born term
corresponds to the current distribution on a simply - connected
surface - usually taken to be tke unit disk. Trhe complex
potentiel for N currents /é ““ entering the disk st the

points z, 1is

N
f o= 2P, Cogls-%) (4.2.1)

Now, according to the characteristic equation (4.1.2),

5%12£~(})describes 2 minimal surface if and only if

[22] - ZhE -0

T, A .
dy L3 Grad- %) (4.2.2)
For z ~ 24 in this equation, the dominant term is
proportionsl to /? - m2. Hence, we must have all ground

. o . . th
masses zero. The above expression is equivalent to a (N - 2)

order polynomial in z. However, the coefficient of }-”‘2 is
T

Z /JPJ = (Z/))=0)(conservation of momentum). nence, we

N Y 1]

'JJ

which characterize

have (N - 3) conditions to be met by'the,zi,

the perametrizstion of the boundary. Trese (N - 3) constrzints
determine the (N -~ 3) Chan varisbles in terms of Lorentz

. . - e

invariants (formed from the . )

Now, equation (4.2.2) is equivslent to

h o4 .
1_21 1573 = 25 %
YLT-x)0- 7 ) A 7 (4+2.3)

where a . = ZN /;) /'1

L
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Hovever, (4.2.3.) must hold for all z, in perticular for

Z ~ T

i Hence’ ay = O, is equi\}alent to (L.--2-2)

(NB. We may obtain this result by minimizing the energy,

Z/’;’/g g |y - 3; | ,  with respect to esch zj.)
N p
2 .

: = 0 )
ve. : :
y=1 (}b"'},) (ll-'2-’+)
This equation is inveriant under SL(2 € ) transformation
ay+ B
y \ 3 —_—— I,
of the z's (ie. 3} —> £y 9 )a For,

ZN B (n-idy, -v) [5 B yowy] Gimo)
(3 -% )(u-v) = (5-%) (u-v)

(¥ -v)
(w-)

i

~ (%-%)+ (%
Z ﬁip‘, LE=-5)r (2 )
Y (}‘-}J)

:tr

1

ZN p- (% - )% -w)
l:=l (3: ) (L"_")

EV

= 0, if end only if a; = O, for u,v are quite arbitrary.

The invarience under the given transformations follows since

the c¢oefficient of A7./? in the first expression is a cross-
ratio. Therefore, we should be able to express our solutions
ir the form of cross-retios (SL(2€ ) invariants) or equivalently
in terms of Lorentz invsriants. This point is clarified in

section 3.



For the case of N = 5, the conditions that tire surface
is minimal are

2 hhuy =o

2 bk fyy =0

If we define

(F-0)Xy-%)
X = Xx'=1-Xx
(}1_3'3)(}’1—}1,)

(P-h)Chy-b)
(P.-pI(E-A)

>

and

- (/')/D“) (ﬁtlbs)

(PP (A, /’4) ) corresponding to X',
then x is the solution to (Appendix A5)

X, X
X

g = =
X! (4.2.5)

- the other cross-ratios obeying analogous ecuations.

For the four-point case the solution simplifies to

o

x = - N -

bh
S = (Ib:"'/’:.-)‘-) b=/lbl"lbs)l_) = {/)I'*/"c-)’-

This leads to the four-point classical amplitude

s
£ (L.2.6)

1}

where

2w

. 'S -at’t -
A(S,t,bb) = (-S) ("t) ('u) (4.2.7)



using s + t + u = O. This is Regge behaved as §-> oo, t
fixed, for :
&'t -’ _ &'t

( $—=> - o2 , is similar)

In order to treat the general case it proves ﬁo be
convenient to introduce spinors allied with some modificaticn
of 3 work of Eisenhart on surfaces in four dimensions. This:
is presented after a discussion of the bouﬁdary of tre minimal

surface.

23 The Boundary of the Born Term Surface

Tre minimal surface is given by
N
Xﬁ (y) = jm i'% ‘/ﬁb&g [}"}a)
& (L.2.8)

o= o pre
for z; satisfying the characteristic equation (4e1l.2); where
L. = arg(y-%)
Let ¥ = \359& » % =r~a"'9 » SO that the boundary is
J
given by =1~ .

Then we have,

vhere
Ay = 31(9-4»9,;)

and

rF+i -0
tan@, = = tan &%

with Y =1(-¢ , & 20  (for r =1 (4.2.8) describes
four points as 2z varies over the unit circle, ie. );b jumps
from point to point; we obtsin the boundsry by z trevelling

just inside 7 =1 )
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For
&= 06; -5 ) {34” o ) § >o
9 = @_, J (3_,' =0
= G- .= =TI
O = O+ PR CF EY

Tren
X(3) =
X, +Z—£/.)) J b=0 -4
X; ) & =9_.
)(J - Z‘:A J & = gJ *
So that as @ crosses O » X goes from X+ 5/3

through X; , at @ = 6&; , to X, - 1."’/3 _
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Figure of Boundary

As = 17 then X remsins st esch vertex for a

longer period, until 7~ reaches 1 when
. Ny
. 4 N A WONCE:
X. ()= 2ZP6-TZE )

- stregm-function for the Anzlogue Problem.

2.4 The General Solutinn to the Characteristic Sguation

rFrom the results of Appendix AL we have a general

expression for a surface in iinkowski space. ilowever, from

the Analogue a@pnprosch we also nave an expression for the

H

i1 ie. for certain vslues of the z.:, the minimal

T
stream Ifunctio Zis

-

vector. Therefore, by imposing the general form on the Analogue
function we m2y determine those zj which satisfy the character-

istic equation.
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For example in the case of N scazlars scattering we
have

Tren, using the general form for.x;b we find that

N '
49 = L g (/’,--iﬁj)f(r},-)fas(;-},-)—3}

b = B Gemtsto- 5 )

(g,f and their relation to X ., sre given in Appendix A4).

Using these expressions we may calculate_x;w and equsate
it to the streazm - function above.

We find thst, for
consistency, we require

. Ak
J o 3

ﬁJ - ﬁ_) (b0209)
ie.

each four - momentum determines e point in the complex
plane.

‘Ne may understand this relation by noting that for z
close to z ) 6/.)(“, ~

L d

function ( &

= } - }). ~

2? /b _, from tre stream -
g
o

)  Hore generzlly, for

a distribution of momenta f? (‘{;) (ie. Reggeon) we have

X, (¥) = f/mé gdf [, (%) X (x-§;)
. ¢
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where /3/‘- (.{;) is spread over CJ- . i:ence, at

¥ = ;’J we obtain

dx, (fi) +idx, (5)

5=

J

Ax, (5 ) = doey (5)

Po(L) + ¢ B(5)

1

/?a [j:) - /})3 [’):)

J

since 6/)(/.,(}') x ;L"_}g 6,..()7) , for }N{;
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3. Helation Between Internal a2nd External Symmetries

Sninors and SL(2 € )

L)
°
'-—l

In order to see the convenience of introducing spinors,
first consider the neutrino - type ecuation (NB., the zround

state is massless),

(o p)§ =0 (4.3.1)
_ AR .
vhere f - (;:) ) P s (IJQ’)J I’(ox) , arnd

af are the Psuli matrices

ie

/Z"/bB —/3“:'67. ;,’
‘/'7":};_ /’p*/"; ‘}:
This implies thst the soluticn satisfies
_ & hreh o
= /j"’ T - (4.3.3)
/J°+P3
Now, the Lorentz group has the action
C_}:_f-df,
J
a_}: +b}°’

ad- hec = | .

Py

ie. a3+5
¥yt vd

ie. 5 fractional linear transformation.

4

. i . : ) 50 eoy .
This suggests that in Eisenherts modified ecuations
we should choose the parameter z as
64@ + idx,

> -
: (he3ek)
d-xp + 6/.13 ’
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whicn would lead to eoustion (4.3.3)

It is in this menner that the internal group SL(2 € )
is directly related to the Lorentz group (indeed the Poincarg
group since éfx/w is the relevsnt guantity) acting on

Minlkowski spece ( X .. ).

3.2 Cross-ratios

We now return to the problem of the solutions to the
characteristic equation which, we said, could be expressed
either as cross-ratios or in terms of Lorentz invariants.

In the following we make the relation between these forms
explicit, using the spinors introduced in (3.1).
For, given two spinors JP./‘7 we may form the Lorentz

52
scalar

}’T c7J = '5’7L = §:'7

with Io) |
C = (_‘ 0)

X . . . J o .
fdence, if we associate 2 spinor jo with each momentum

- s

>
/b/_ such that

we may write,
. I
B)
e
5;

fsctor depending only on /AJ . Then
/4—

)
AG being a normalisation

o
('Y cCcy = MM(n-x)
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so that, for example,
Govotn-agy )T )[@) e 5

e [y ) [rer] J

wnich is Lorentz invariant.
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Conclusion

So far we have only discussed the Classical Born term.
For higher order terms the procedure would be similar to
that employed by Lovelace and Alexandrini in the perturbstiva
approach to the du2l model, although, ss in the Anzlogue
#fodel, there is no prescription for a measure, since &ss yet,

LG

time is not incorporated. In fsct, Douglas used thre theory

of Abelian Integrals to construct solutions to the Flateau

Problem in terms of multi-dimensional theta funétions.
However, -there remains the difficulty of calculating the

Quentum Born term, which involves the functional integration

of EG - F2 over all X .. and boundary parametrisations.

We cannot assume that the Quantum Born term is proportional to

to the Classical expression, as in the case of a quadrstic

57

Lsgrangian (Feynmane Hibbs”'). The string-model also fzaces

this problem, which is similar to the quantisation problem in
General-Relativity.58
Nevertheless, it is the view of the author that the
importance of dual mode1s lies in the emergence of a set of
. mathematical chsracteristics for a strong interaction theory.
Trese attributes (duslity or SL(2 € ) internal symmetry,
conformal inveriance leading to no ghosts) have been combined
in an approach which has no tachyon and also relates the
internal symmetry to the homogeneous Lorentz group. In fact,
there is a relation between.the internal coordinates (z) and
the external #inkowski space. Furthermore, the surface is
extended (c.f. Takabayashi,l2 duslity a consequence of Hadrons
being exténded) in #inkowski space, but it is not yet clear

how to regsard this point. The world-sheet of the relativistic




-97-

string model also exists in Minkowski space (here it is reasl
space-time), but the former cannot be interoreted in the
same manner. however, what does seem important is the
geometry, ie. tine metric, for it is the latter which éppears
in the eduations governing the model - ie. 2 local condition.

The structure obtained using the approach of the present
chapter is similar in some respects to that advocated by some
2uthors on homogensous space techniques,8 ty means of which
internal degrees of freedom are given to a system. These
degrees of freedom span a homogeneous space of the Lorentz
group. In fact, as explained in the introduction, Bacry
and Nuyt58 suggest an internal space composed of two-dimensional
complex spinors (replace z by 3? = (;: J }:.) ).

Furthermore, now that the relevance of tre Lorentz group
to the internal symmetries is understood, it may be possible
to include half-integer spin in the framework; perhaps by
attaching spin coordinates at each point cof the surface.

The preceding sentences suggest that, if this approach is to
'prove fruitful, one should consider ways of intfoducing thre
remaining two coordinates. The Koba-Nielsen variasble z may
be regarded as a stereographic projection from a sghere in
three-space. This may lead to s connection with some of thre
idess of Newmsn et 31,59 in which & two-dimensional geometry
determines the dynamics of the particle.

waever, the present formulation does allow the retention
of the desireble characteristics of dual models, wnile evading
tre tachyon, and also provides a possible frzmework on which
to build extensions to achieve hopefully, more rezlistic

conseguencese.
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Al Cylinder Calculation

o0

¢ = Z Zsl'nnx. (an'“'sp'nlng - bn'“'cashnlj)
A Nn=i

+ cosnan (Ci sinhny + d,(“'coslng)}

N N o0 enlx-6;)
?”’"/ = - ZRs0e-e;) = -y 4 5 &
y ‘j=F' l: *q e N=-o0 217
N co
. =4 Z k" (.s::nnx sinnd; + cocnx Lo.\‘nﬁ;)
| L Py

Y Vot M o "
Y /5;-9’ = FfI_ZZ .t; (“:”N‘- Sl:nng. + COS N cosnﬂ.)

Eguating coefficients,

N ;M NopA
an’“’ = 'g'é-#sdnn&-; f_, sdnnﬂ.’- -) bn‘“' = - ; .ﬁ.nnﬂ .Z_i; unn%- ,
ITh coshnp’ TN scnh np’
5 o N pu
o= Z-ﬁ’ cosnp - Z 7{ cosnd; ,dr s Z ¥ Cosn. +,Zk€;cosm9‘- )
Trn Cas}’nﬁ ’ . TfnSl;n/th'
- 3
Energy = £, = a’S ? S)no ds
b(/rg.

'0‘__ZN X, P L6, ) 7 }U(ﬁ) ¢°)

2=

)

_nof{ > f zcmn[o -8;) coshznp’ . Z ‘.z Ca;n{?;:-ﬁ.) (_.a.:ﬁznp'

m E#j n SunI)Zn[J L#j n sinh ZDP'

+ Q.ZZka -M)}

YRy ) nsinhznp'

"

T

20’{ ZRE [ 9, [V le] r 5 6.8 by 5,[%’;/(’]]

c#) q e"¢ £#) 2 (.)"‘r
. Z £ .t fog[“j"[;“;‘ﬂ:} } (Ref. 60)
L) o
V" = 9,, “Q, ; )J’ = ?,; —% ) u‘;. = ﬁ,; -g- , e = e‘—lp = ,
J 21 gl 21 J 277
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A2 Mobius Calculation

o2
50/"' = 2 {coshng [__a,‘,“'sdnnx - b:"cosn)c.:)
h=y

. by . — A —
+ Sinh n-{g[_c:":un pedx ¢ dn cos n-{x}}

é?"“lg_?

Y "Z/é’“'S(x-a‘,)
I & A g é
- - mx mé; mx m ;J
= s X sen Y% cos T cos 122
TTmZm ‘,Zl‘i [ T %
HenceJ N
- :
o . seanl
heven = 2n = a, = n‘nsdnﬁnp Z /‘Y" ‘
N
e Vol
= cosnb,
+ b" rrnsmhnp %é
-1 ok
M odd = 20~ cle

: ' = P Sinen-106
" Tlin-4)coshtn-{1f i /: sen(n-1)e,

iy

-1 N
g dit = > peosn-1)8
ITir-4) cosh(n-i)p 7 ¢

Energg = j’? 3? ds .: U',ZNB.?[&,P)

bdrg
- O /b cos n(8;-6;) coshnp Cas(n-.‘)(gi_a.)sb‘nh(h__-)P}
= = +
T ij,n ‘/? n scnhng (n-4) cosh(n-4)p

Yipx Gz
- %’_r.z. /J/: %g[ J9[3'13] 53[;_ 'l'i]} (Ref 60)
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A3 fieesure Calculation

a) Consider the matrix A, and diagonslize it by means of

2 imatrix B such that

B,AB = d‘;aﬂ(ll)'.'.llﬂ): O

and
BlB = I
Writing 3 = disg. (B,---,B)
we find also
, [ - _T
B AB = (01 :
2 0 - O
T 0
)
e -I D |

We may now interchange rows and colpmns to give
’ﬁlv“f’ﬁl = | diag. (A, - ;ANH

where

A/, = r-->\} =1 =1

=
| T -1 7\/,

MxM
This reordering leaves the determinant unchanged;

' )
for, to finish up with all A'S diagonal recuires that the

o
[

narity of row changes ecual the parity of column charnges.
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Therefore,

[h| = [BABI= TT[A]
ﬁ

b) Determin=stion of ;Sé

We wish to solve

| A-2I)=0
Let
[a -1 O-
CN - a -] ) a.
- A
O -]
- c
/ JA/$AI
= aC,u-z - Cy-n
sen (Nt1) ol
- Sin e
wnere a = dcosek
Hence,
n
CN =0 , for oL = d,/ = %l ) /b: -
ie. 7\/2 b - 2 cos £

Nl
c) Uetermination of [/y/

We note that

lAﬁl - )‘,6 CM-—I ~ACh-a T L

with

a = 7v e C,
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Hence,
. M
- - v b — '6
/A/” L sin (25)
where, |
A cos = Ay = - AL
(3;, b 4 2 cos —
ic.
sen i'@‘ = L.Sﬁlné.}.r
LINEI)

Trerefore, for b <L N,

L i
VIR Nt

"If we dennte the ratio of the circumference to the length

of the cylinder network by k = M/N, then
1% 7 .
[ Ayl = 4 sinh ENpT ]—-—> b sind* (p &)
2(N+)

as N> oo (dense. Feynmsn net.)

k| = TTIAI = [T o)
/,;4 )

By putting

we obtain
] = T e (- et)’

. . - - - . -ri
d) The Functional Integr=tion over 1A.
3

Consider, I = jw [—0(77 Y’LY] dYJ

) 4 -
wrere ¥ = (Y, . ... R

N T . n 0 7 o
y ), L symmetric. Then, if L = B DB,
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D = diag (G/,,- - -y a&), we may wWrite

=<
1

b~
]|

| jmﬂ-m?'o?w

ffw/ [ Zn (@Lﬁdd;)]Jﬁd%_

n

= T ()t 2 [arini]T

L=

Similarly,

[ epronxiaxiax- (411"

J

. 2 . .
X being & MN = kN™ row mstrix; the Lorentz index makes

each integral four-fold, giving the power -~ 2.
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AL Modification of Eisenhart's Ecuations.

Let x_/“_ [,5, Z) describe a surface imbedded in HMinkowski

space. Then .
d\sz = Eq//bL+ Q.Fdﬁdq + Gdzz' (AL.1)
where

() R e G

and the element of area is
V‘//é‘/i = JEG ‘F‘a/’édz. (AL.2)
Ve wish to minimise 55 \/dlé o/z ; the Zuler

eocuztions are (Forsyth p.313) :
e epe)]  y [L (e S
/,[ ) 9 V( <>/=) (AL.3)

If we now use null psrametric coordinates,

ie. E = 6 = 0, these eocustions reduce to

Y 4 = { = F , .
ag X0 e VR (Moot
Hence ) = (function of p ) + (function of ¢ )

These functions are only constrained by the conditions
E=O=6

Now, E = O implies
3

dx ! we

- + L3 a

_a_/b___blé_ = - B'A '6 = some function ofﬁ_ (AL.5)
X P A Ix'

DN %%
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We may define Ib by setting it equal to these fractions

R
ies 34 Y-
) "4'["
p o= e N (L. 6]
D/: —b‘ﬁ
Hence, ox' A /b_xa_ E-LJ) = apd (+)
Bty e wm) T

. . . . ]
since each side is s function of g only.

v . N YA M s oat
Therefore, solving for 9% /6,6 we find that

SN ERORENC

ot

L bgt(s) - f

( _4':_l+ o7

~—

@

e

2o pg'() + 5T

Jde apply similar considerations to & = 0, with ¢/{)
. { ” - . : ‘ n
replacing Jf(fo) ) %/Q) replacing g(ﬁ) . Now,
tecause X* (), 17) describes z real surfsce in xinkowski
L -
space we must have /6 conjugate to f(f , and similerly Jf =
¢ g = . Then, integrating (A4.7), we obtain.
J
!

x'= 2 Re

w
]
v
P
(<]
‘\.
-
[
{
(W
t
S
L

N

x®= 2Re L pg' -9 +j_] ) (2605
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In (A4.8) the functions J((/)) v 9 (,A)J are completely
arbitrary. ' |

If we put /5‘3’=“*‘:U',€=;='“";"')
then ( §(1.3) of Chapter IV) we see that u,v sre isometric

parameters.
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A5 The four & five point functions.

a) L=point “We require the solution to
A o
> kb , (toking j =1 )
L =1 }":—?l
ie.
2 Y S ¥ ) 6
¥ A 3’2- }._3’3 ¥, "}'., (A5.1)

We use the notation (¢j) = /‘",ﬁ’ , L6l = %, -¥ .
Multiplying equation (A5.1) by [4L1] we obtain

av Leld - an L&) (w -0

[21] £3i] ’
ie.
(12) ,+ E_f'_f_:}} ¢ (13) _[_-‘_'_Q + (&)
{21] {31 T,
ie. _
e L4 e fe) |
L31] [2:] g
ie.
[12][3¢4]) - _ (_‘_"_)
[13]1[2¢] (13)
ie. s ™
. ' = = 2 5.
R A YRR
- t = (ﬁ:.'*}’a-)l = 1/’;/‘}

Ch+h )

% = 2f0h (45.2)
(},_ 3’;)(13—}4.)
(3. -%nX&-7,)
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b) S5-poin In this case we heve two conditions. ‘e may

=0 ¢ 2 ot

z Lo,
c=2 },;“3’) . L=t }‘: -}’,_ (A5-3)
These may be written
(3) + ()X + (15)Y =0 :
(45.4)
(23) + (265 + (ZS?é =0 using the previous
notation, . and where
[24][13]) _ L25109]
L23) [ie] ? £231015)]

Eliminating y we obtain

X (236) v [a023)+ {a)lze) —is)(rs)] %+ (&) 20

If we put
(24 03) (2t (3¢) _
YIS ¥ X Govayy corresponding to x

& (1 - x) respectively, then we may show that the above

ecuation becomes

xt ¢ (X'=X-1)X + %=

-x) , (45.5)

+ —_—

X! [af x+x’-lJ
A similar equation holds for vy.

u L ’ 5 LS
Note. For the L-point case X = [E) ’ X = (;)

Hence,

-ie., X X' | where x'
X

v, gt (SsT-ut-tY)x o+ wttt =0

X J

-2
x* o+t (2ut)X +utt =0,

©

: 2
1€e. u -
(x.+ = - C’, ->
X eguivalent to nrevious
sclution.

oI
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