

Durham E-Theses

Electron impact studies on organometallic compounds

Chambers, D.B.

How to cite:

Chambers, D.B. (1968) *Electron impact studies on organometallic compounds*, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8646/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

ELECTRON IMPACT STUDIES ON ORGANOMETALLIC COMPOUNDS

by

D.B. Chambers, B.Sc.

(Grey)

A Thesis submitted for the degree of Doctor of Philosophy in the University of Durham.

July, 1968.

ACKNOWLEDGEMENTS.

It is a pleasure to thank Prof. G.E. Coates, Dr. F. Glockling and Dr. M. Weston for their help and encouragement throughout the work described in this Thesis.

I am indebted to the Science Research Council for a maintenance grant, and to those members of the Chemistry Department, University of Durham, who so readily gave advice and assistance.

(iii)

NOTE

The work described in this Thesis was carried out in the University of Durham between October 1965 and July 1968. The work has not been submitted for any other degree and is the original work of the author except where acknowledged by reference.

PUBLICATIONS

The work described in this Thesis has been the subject of the following publications:

"Mass Spectra of Organo-germanes and -stannanes", Chem. Comm., 1966, 282. (with F. Glockling, J.R.C. Light and M. Weston.)

"Mass Spectra of Organo-stannanes and -plumbanes", J. Chem. Soc., (A), 1967, 1759. (with F. Glockling and M. Weston.)

"Mass Spectra of Metal-Metal Bonded Compounds", J. Chem. Soc., (A), 1968, 735 (with F. Glockling.)

A review "Mass Spectra of Organometallic Compounds" has been accepted for publication by Quarterly Reviews. (with F. Glockling and J.R.C. Light.)

The author also gave a lecture "Electron Impact Behaviour and Bond Energies of Beryllium and Group IVb Organo- compounds" at the 3rd international Symposium on Organometallic Compounds, Munich, 1967. (with F. Glockling, J.R.C. Light and M. Weston.)

CONTENTS

SUMMARY

ź

Chapter	<u>1.</u> I	NTRODUCTION	1		
1.1.	Mass Spectra of Organometallic Compounds of the Main Group.				
1.2.	Ionization and Appearance Potentials.				
1.3.	Derivation of Thermochemical Data from Appearance Potentials.				
Chapter	2. E	KPER IMENTAL	35		
2.1.	Preparation of Compounds.				
	Organostannanes.				
	Ph ₃ C•CMe ₃				
	Metal-Metal Bonded Compounds.				
	Infra-Red Spectra of Metal-Metal Bonded Compounds.				
	Organoberyllium Compounds.				
	Organoaluminium Compounds.				
2•2•	Recording Mass Spectra.				
	2.2.1.	Sample Handling Systems.	45		
	2.2.2.	Obtaining Spectra for Abundance Measurements.	49		
	2.2.3.	Detection of Metastable Peaks.	. 49		
2.3.	Measure	ment of Appearance Potentials.	50		

Chapter	- 3. CAI	CULATION OF RESULTS.	54					
3.1.	Evaluati	Evaluation of Appearance Potentials.						
3.2.	Identifi	Identification of Ions.						
3.3.	Calculat	Calculation of Abundances.						
3.4.	Assignme	Assignment of Metastable Peaks.						
Chapter	4. RES	ULTS AND DISCUSSION.	73					
4 . 1.	Appearan Dissocia	ce Potentials and Derivation of Bond tion Energies and Heats of Formation.	73					
	4 . 1.1.	Accuracy of Appearance Potential : Measurements.	73					
	4.1.2.	Appearance Potentials and Bond Dissociation Energies for Organotin Compounds.	73					
	i)	Appearance Potentials.	73					
	ii)	Bond Dissociation Energy Differences.	78					
	iii)	Bond Dissociation Energies in Molecular Ions.	80					
	iv)	Heats of Formation of Triphenyltin Compounds.	82					
	vi)	Ph ₃ Sn-R Bond Dissociation Energies.	83					
	4 •1•3•	Conization Potentials and Bond Dissociation Energies of Dialkylberyllium Compounds.	89					
	i)	Ionization Potentials of Dialkylberyllium Compounds.	ո 89					
	ii)	Appearance Potentials of Fragment Ions and Bond Dissociation Energies in Ions.	91					

4.2. Mass Spectra of Organocompounds of Silicon, Germanium, Tin and Lead. (vi)

100

	4.2.1.	Organostannanes.	100
		Decomposition Modes at 70eV.	100
		Major Rearrangement Decompositions.	106
		Minor Rearrangement Decompositions.	110
		Mass Spectra of Ph Sn _{4-n} , Et Sn ₂ ,	
		$Ph_{6}Sn_{2}$ and $(CH_{2})_{4} > Sn \langle (CH_{2})_{4}$	117
		Mass Spectra of Triphenyltin Halides.	120
	4.2.2.	Metal-Metal Bonded Compounds.	121
		Modes of Decomposition at 70eV.	121
4•3•	Mass Sp	ectra of Beryllium Dialkyls.	142
	4.3.1.	Effect of Source Temperature.	142
	4.3.2.	Mass Spectra and Modes of Decomposition.	150
		Modes of Decomposition of Associated Ions at 70eV.	151
		Modes of Decomposition of $C_x H_y Be^+$ ions.	
		Distinguishing Isomers.	158
4•4•	Mass Sp	ectra of Organoaluminium Compounds.	160
	4.4.1.	Effect of Source Temperature.	160
	4•4•2•	Modes of Decomposition.	170
	4•4•3•	Mass Spectra.	176

(viii)

APPENDIX 1.

Tin and Lead Isotope Masses and Abundances. 178 Calculated Mass and Abundance Data for Sn₂, SnGe, Ge₂, SnCl and SnBr.

APPENDIX 2.

Ion Abundances, as Percentage of Total Ion¹⁷⁹ Current, for Beryllium Dialkyls at 70, 15 or 12eV, and High and Low Source Temperatures.

APPENDIX 3.

Primary Experimental Data for Appearance Potential 188 Measurements.

REFERENCES.

SUMMARY

This thesis is concerned with electron impact studies on organoderivatives of beryllium, aluminium and Group IVb metals (mainly tin). The primary objectives of the research were:

i) To obtain, from appearance potential measurements, comparative and if possible absolute bond dissociation energies in both molecules and ions, together with other thermodynamic data.

ii) To examine the mass spectra of representative organometallic compounds with a view to determining the effect of the metal, changes in organic groups and spectrometer conditions.

From the appearance potentials of ions produced in the electron impact mass spectra of some organostannanes, bond dissociation energy differences, heats of formation of triphenyltin compounds and the dissociation energy of the bond $Ph_3Sn - X$ (X = Me, Et, Ph, I, GeMe₃, $SnMe_3$, $SnPh_3$) have been derived. The ionization potentials of beryllium dialkyls and the appearance potentials of the major beryllium - containing fragment ions have also been measured and bond dissociation energies in molecular and fragment ions evaluated.

In the mass spectra of organoderivatives of the Group IVb metals, the most abundant fragments are even-electron metal-containing ions in which the metal is three-co-ordinate. Parent ions are of low abundance and decompose mainly by radical elimination e.g.

$$R_{4}M^{+} \xrightarrow{\bullet} R_{3}M^{+} + R_{\bullet}$$

Bond energy measurements suggest that the bond most readily cleaved in this decomposition is the weakest in the neutral molecule. In further fragmentation even-electron ions maintain their even-electron character by molecule: elimination.

Certain trends are attributable to the increasing metal-carbon bond strength from lead to silicon. Molecular ions decrease in the order Si>Ge>Sn>Pb while metal ions, $M^{+\circ}$, are appreciable only for tin and lead. Ions formed by carbon-carbon or carbon-hydrogen cleavage, although always of low abundance, increase in importance from lead to silicon.

With beryllium dialkyls the abundance of all beryllium-containing ions but especially di-and tri-metallic ions falls with increasing source temperature due to dissociation of weak bridging bonds and thermal decomposition before ionization. The major di-and tri-metallic ions are even-electron and readily lose alkene. In contrast to Group IVb derivatives, odd-electron $C_a H_b Be^+$ ions are appreciable. Parent monomer ions, $(C_n H_{2n+1})_2 Be^{+\cdot}$, decrease in abundance as the size of the alkyl group increases and major fragments are produced from the parent by elimination of the radical $C_n H_{2n+1}^{\bullet}$, and alkane, $C_n H_{2n+2}^{\bullet}$.

Organoaluminium compounds give mass spectra which depend on source temperature. This is especially true for dimethyl- and diethylaluminium hydride which show thermal rearrangement above 100°C producing trimethyl- and triethyl-aluminium respectively. The decomposition modes of aluminium-containing ions are almost identical to those of Group IVb organoions.

 (\mathbf{x})

1. INTRODUCTION.

1.1 Mass Spectra of Organometallic Compounds of the Main Groups.

1.2 Innization and Appearance Potentials.

1.3 Derivation of Thermochemical Data from

Appearance Potentials.

1. INTRODUCTION.

A mass spectrometer is an instrument which produces a beam of ions from a substance being investigated, sorts these ions into a spectrum according to their mass to charge ratios and records the relative abundance of each species of ions present. The theory and design of these instruments has been widely discussed ^{1,2} but a recent review sums up the salient points 3. Most early studies in mass spectrometry employed single focussing instruments using a magnetic field to separate ions by their mass to charge ratio. The resolution of such instruments never exceeded one part in three thousand and recent developments have been with the aim of extending their mass range, versatility and precision. With a careful choice of design parameters electric and magnetic fields may be combined to increase the resolution by elimination of the two main . abenations limiting the resolution of magnetic sector instruments: a) the angular divergence of the ion beam and b) variations in the velocity of the ions.

Such high resolution mass spectrometers have brought a new dimension to the subject. Not only are these instruments capable of measuring ion masses, in some cases up to 1000 mass units, with a precision of a few parts per million, but they can also give ion abundance values to a high degree of accuracy. These instruments are thus able to provide at least in theory, data which can lead to the exact elemental analysis of every ion in the spectrum. Such information is often vital in structural analysis. For example the loss of 28 mass

units from an ion observed in a low resolution spectrum could be identified as CO, N_2 , C_2H_4 or NCH₂ loss by the high resolution measurements.

Although the majority of mass spectrometric investigations resolve ions by magnetic deflection, there exist other techniques of growing importance. For example the time of flight method has been developed into a versatile technique and several commercial instruments are available 2 .

Various methods are available for ion production 1 but that most widely used is electron bombardment of gaseous molecules when the generally accepted interaction occurs 1,4,5,6 :

 $e + XYZ \longrightarrow XYZ^+ + 2e$

 $XYZ^+ \longrightarrow XY^+ + Z;$ or $YZ^+ + X;$ or $X^+ + YZ$ etc.

The electron beam energy normally employed (about 50 or 70eV) is in excess of the minimum energy required to cause ionization. (Generally the ionization potential rarely exceeds 10eV and the bond dissociation energy 5eV so that the incident electron beam has more than three times the minimum energy needed for the above reactions).

Ions may also be formed by pre-ionization or pre-dissociation⁷ when the interaction of an electron and a molecule does not lead directly to the formation of an ion but to a neutral excited molecule. The energy imparted to the molecule is postulated to be greater than, or at least as great as, the ionization potential so that the excited molecule may subsequently decompose: -

 $XYZ^* \longrightarrow XYZ^+ + e$ $XYZ^* \longrightarrow XY^+ + Z$

From the available evidence ⁸ indirect ion formation may compete with direct ionization.

е

The mass spectrum produced under specified ionization conditions is sometimes known as the cracking pattern, and is characteristic of the compound. This pattern will contain all possible combinations of ions as shown above, but it will also include ions of the type XZ⁺ which can only arise by a rearrangement process since in the original material the two constituents of this ion were separately attached to Y but not to each other.

One of the difficulties encountered in the analysis of spectra arises from the presence of these rearrangement ions. Although this interesting and difficult field has been the subject of extensive and detailed study for organic molecules with the aim of finding rules^{1,4,5,9} which are broadly applicable, when the work described in this thesis was begun, there were only few published reports on the spectra of organometallic compounds. For example for the particular metal-compounds examined herein there were only two papers for tin, both describing the mass spectrum of tetramethyltin, and none for beryllium, aluminium or metal-metal bonded compounds of main group metals.

Most of the reported studies on organometallic compounds have involved mono-isotopic elements or elements containing one dominant isotope. Furthermore only low resolution spectra have been

recorded and so have been without direct confirmation of the elemental composition of ions in the spectra obtained. The present study has made considerable use of high resolution mass measurement which for polyisotopic metals is based on data specifically calculated for each polyisotopic unit considered. This need for repeated mass measurement has arisen for a number of reasons which are discussed in chapter 3., Calculation of Results.

1.1. Mass Spectra of Organometallic Compounds of the Main Groups.

A number of papers on the mass spectra of organometallic compounds of the main groups have appeared either during or since the completion of the present work. Those papers of immediate relevance and comparability to this research, which in some cases have provided confirmation of the results reported in this thesis are dealt with in Chapter 4.2. of the Discussion.

In the following review the mass spectra were produced by electron impact using 50 to 70 volt electrons. Ions in which the number of bonding electrons is <u>odd</u> are represented as $(ion)^{+}$, whereas even-electron ions are represented as $(ion)^{+}$. This distinction has been found in the present study to have considerable significance for main group organometallic compounds, though for transition metal complexes, where ionization may involve removal of an electron from a non-bonding orbital such considerations often have no relevance.

Group I Li.

The mass spectra of lithium alkyls are of interest since they contain ions of associated species. For example ethyl lithium vapour ¹⁰ gives Et_5Li_6^+ , Et_4Li_5^+ , Et_3Li_4^+ , Et_2Li_3^+ , EtLi_2^+ and Li^+ . The appearance potentials of Et_5Li_6^+ and Et_3Li_4^+ are far lower than those of the other ions and from this it was tentatively deduced that the vapour of ethyllithium consisted of a mixture of hexamer and tetramer molecules (Et_6Li_6 and Et_4Li_4) which decomposed on ionization: 5.

٦

$$Et_nLi_n + e \longrightarrow Et_{n-1}Li_n^+ + Et + 2e n = 4$$
 or 6

Further evidence for the composition of the vapour came from a shift in the ratios of ion intensities as a result of varying the temperature of the vapour prior to ionization.

All other ions produced were due to decomposition of the $Et_{n-1}Li_n^+$ species.

 $\operatorname{Et}_{n-1}\operatorname{Li}_{n}^{+} \longrightarrow \operatorname{Et}_{n-x-1}\operatorname{Li}_{n-x}^{+} + (\operatorname{EtLi})_{x}$

Lithiomethyltrimethylsilane $(\text{LiCH}_2\text{SiMe}_3)^{11}$ vapour produced a spectrum showing ions which could have been derived from tetramer molecules $(R_1\text{Li}_4)$ via the ionization and decomposition processes shown above.

Group II Zn,Hg.

The compounds $Me_2 Zn \ ^{12}$, $(t-Bu)_2 Zn \ ^{13}$, $Me_2 Hg$, $Et_2 Hg$ and $(n-Bu)_2 Hg \ ^{14}$ have been examined. All give MR_2^+ , MR^+ and M^+ ions (M = metal, R = alkyl) in high abundance, indicating that the major decomposition processes are bond cleavages:

 $R_2M^+ \longrightarrow RM^+ \longrightarrow M^+ \longrightarrow$

RMH⁺ and MH⁺ ions are present in low abundance. Hydrocarbon ions are major species in the spectra of the mercury compounds but may arise from thermal decomposition before ionization.

The ionic cyclopentadienyls $(C_5H_5)_2Mg$ and $(C_5H_5)_2Mn$ give similar spectra producing fragment ions, $C_5H_5M^+$ and M^+ , formed by

metal-ring bond cleavages ¹⁵. $\left((C_5H_5)_2 Mg^{+*} 21\%; C_5H_5 Mg^{+*} 38\%; Mg^{+*} 31\%$ and $(C_5H_5)_2 Mn^{+*} 19\%; C_5H_5 Mn^{+*} 29\%; Mn^{+*} 25\%$; abundances expressed as percentage of total ion current. The bis-cyclopentadienyls of transition metals produce: similar fragment ions although in different relative abundances and the molecular ion is generally the most intense ion ^{15,16}.

Group III Al

Trimethylaluminium gives Al^+ , $AlCH_3^+$; $AlMe_2^+$ and $AlMe_3^+$ as the most abundant metal containing species ¹². Rearrangement ions AlH_2^+ and $HAlMe^+$ are of low abundance.

From clastograms (Plots of ion current VS. Electron energy) and appearance potentials of the major ions it may be deduced that simple bond cleavage decomposition of the parent ion occurs.

 $AlMe_3^{+\bullet} \longrightarrow AlMe_2^{+\bullet} \longrightarrow AlMe_2^{+\bullet} \longrightarrow AlMe_2^{+\bullet} \longrightarrow Al^+$

Although trimethylaluminium is known to be dimerie in the gas phase 17 Al₂Me₅⁺ was the only bi-aluminium species detected in extremely low abundance. Work described in this thesis however shows that this is most probably due to a high source temperature ($\sim 200^{\circ}$ C) an important instrument condition not specified by Winter and Kiser 12 in their study.

In contrast $(R_2AINCPh_2)_2$, R = Me, or, Ph, ¹⁸ produce a weak peak corresponding to the molecular ion and $Ph_4(CN)_2Al_2R_3^+$ is the most abundant aluminium-containing ion. Weak ions

corresponding to monomer species were also observed but the major ion in the spectrum was Ph_2CN^+ .

Group IV Si,Ge,Sn,Pb.

Although all the work published prior to 1966 is described below, some later papers are more appropriately dealt with in the Discussion of this thesis.

The mass spectra of a variety of organosilanes, mainly methylderivatives, have been described. All show low intensity molecular ions and major ions are produced by bond cleavage decompositions in the molecular ion. For example cyclic silicon organocompounds such as

 $X = -CH_2^{-}, -NH_{-}, \text{ or } -O_{-}$

(I)

÷.,

(II)

 $X = -CH_2$, or -NH-.

give similar spectra, loss of methyl from the molecular ion producing the most abundant ion 19,20,21,22,23 . The eight-membered ring compound II (X =-CH₂ -) in addition gives ions of high abundance resulting from ring fragmentation.

In general the cyclic compounds are more stable to electron impact induced fragmentation than linear compounds containing the same number of silicon atoms. Thus for Me₄Si,Me₃Si·CH₂·SiMe₃, Me₃Si·CH₂·SiMe₂°CH₂·SiMe₃ and Me₃Si·CH₂·SiMe₂°CH₂·SiMe₂°CH₂·SiMe₃ silicon-carbon bond cleavage takes the form of methyl radical loss for the lighter compounds but for Si₃ and Si₄ compounds fragmentation of the silicon-carbon skeleton occurs by cleavage of Si - CH₂ bonds. 19,24 Substitution of the methylene hydrogen atoms in Me₃Si·CH₂·SiMe₃

by methyl or benzyl groups, increases the probability of the molecular ion decomposing by cleavage of the central Si - CR₂ bonds. ¹⁹ Such behaviour is perhaps not surprising being paralleled by alkanes which also tend to fragment at highly branched carbon atoms. ^{1,9} The observation is useful, however, in that it allows a clear distinction to be made between isomers of the type $H_2MeSi \cdot CH$ (Me)·SiMe₂H and $HMe_2Si \cdot CH_2 \cdot SiMe_2H$. The stability of the skeleton to electron impact induced fragmentation is also reduced by increasing the number of methylene groups between silicon atoms. Thus $Me_3Si \cdot CH_2 \cdot CH_2 \cdot SiMe_3$ gives Me_3Si^+ as the most abundant ion whereas for $Me_3Si \cdot CH_2 \cdot SiMe_3$, $(P-Me)^+$ i.e. (parent ion minus methyl) is the base peak. ¹⁹

Replacing any or all of the methyl groups of I (X = CH_2) and Me₃Si·CH₂·SiMe₃ does not affect the lability of the molecular skeleton to fragment after ionization ²¹. The loss of H from fully methylated compounds is not generally observed but with $H_3Si\circ CH_2^\circ SiH_3$ dissociation

of carbon-hydrogen bonds must occur at some stage since all the ions from $CH_7Si_2^+$ to CSi_2^+ are observed. When silicon-hydrogen bonds are present in a molecule $(P-H)^+$ ions are always observed in addition to $(P-Me)^+$ ions but methyl groups when present are lost preferentially. 24,21

With alkylchlorosilanes R_3SiCl , R_2SiCl_2 and $RSiCl_3$ where R is CH₃ or C_2H_5 , loss of both alkyl and chlorine from the molecular ion occurs but again cleavage of the silicon-carbon bond predominates. ^{25,26}

Rearrangement ions are often observed in the spectra of organosilanes. For example Phenylohbrosilanes, Ph_2SiCl_2 and $PhSiCl_3$ produce Ph_2^{+} and $PhCl^{+}$ ²⁵ and with $Me_nSiH_{4-n}(n = 0,1,2,3,4)$ compounds ²⁴ rearrangement ions are of high abundance, the elimination of a stable molecule from an ion often being accompanied by a metastable peak:

Although no metastable peaks were reported in the mass spectra of silicon-methylene compounds ^{19,20,21}, ions of low abundance were often observed especially for the cyclic compounds which could have resulted by emission of methane from (P-Me)⁺ ions. Similarly silazanes ²² eliminate neutral molecules from (P-Me)⁺ ions and in some cases metastable peaks are present. Thus (Me₂SiNH)₃ and (Me₂SiNH)₄ show loss of both CH₄ and NH₃ from (P-Me)⁺ ions, the loss of NH₃ although requiring considerable rearrangement being confirmed ²² by a metastable peak. Similarly Me₃Si•NH•SiMe₂Cl shows loss of HCl from (P-Me)⁺ while (MeO)Me₂Si•NH•SiMe₂(OMe) eliminates formaldehyde after losing a methyl group. Though the molecular weight of an alcohol is often found from the mass spectra of its trimethylsilyl derivative (Me_3SiOR) which show a large (P-Me.)⁺ ion ²⁷, the origins of the rearrangement ions were not elucidated ²⁸ using deuterium labelling until 1967. The mechanisms involved are illustrated by the fragmentation of pentan-1-ol trimethylsilyl ether which exhibits peaks which appear in the spectra of practically all trimethylsilyl ethers

In the above solid straight arrows represent processes confirmed by metastable peaks and the numbers are the percentage of the total ion current carried by that ion. Curved fishhooks (\nearrow) represent movement of one electron and curved arrows (\nearrow) movement of two.

The trimethyl derivatives of secondary alcohols $Me_3Si=0-CH$; in addition give an intense peak corresponding to loss of the larger alkyl group R' or R.

An unusual feature of the methylsilalazanes, methylsiloxanes and methylsilicon methylene compounds is the production of multiply charged species often in quite high abundance. Thus

$$ClMe_2 N < Si_{Si_NMe_2}Cl$$
 produces $(P-2Me_{\bullet})^{++}$ as the second most abundant Me_2

ion and the cyclic siloxane $(Me_2SiO)_3$ shows $(P-2Me \cdot)^{++}$ and $(P-3Me \cdot)^{+++}$ Dibeler et. al. ²³ first observed this high abundance of doubly charged ions when there were two silicon atoms present and triply charged ions when there were three and proposed that the most probable ionization process involved the removal of one electron and methyl group from each silicon atom within the molecule.

As with organosilanes, molecular ions of lead alkyls are of low abundance as are all ions heavier than $C_6H_{15}Pb^+$. With the compounds Me₄Pb, Me₃PbR (R=Et, n-Bu, s-Bu, t-Bu), Me₂PbEt₂, MePbEt₃ and Et₄Pb loss of the heaviest alkyl group from the molecular ion gives R₃Pb⁺ as the most abundant ion in the spectrum.²⁹

Rearrangement ions were very common. For example with tetra-n-propyl-and tetra-iso-butyl-lead, CH₃Pb⁺ was the most abundant ion in their spectra. No metastable peaks were reported, however, that could indicate the mode of formation of these rearrangement ions even though some, such as hydride ions, were quite abundant.

The mass spectra of the tetramethylderivatives of carbon, 30,111 silicon, germanium, tin and lead have been compared . Again the molecular ion is small and Me_3M^+ is the most abundant ion. This led to the suggestion that ionization occured by loss of a bonding electron between the central atom and a methyl group. The abundances of M^+ , MR^+ , and MR_2^+ increase from carbon to lead while ions resulting from the dissociation of hydrogen atoms decrease from carbon to lead.

Hydride ions $H_2MCH_2^*$ and H_3M^* also decrease in abundance from silicon to lead and it was postulated that extrapolation of the abundances could give information concerning the origin of some of the peaks in the spectrum of tetramethylmethane. Thus the height of the H_3M^+ peaks varies from zero for tin and lead to 5.1% for Si (base peak for all compounds is $Me_3M^+ = 100\%$) whereas the abundance of the methyl ion decreases from 12.4 in tetramethyllead to 5.07 in tetramethylsilicon. The abundance of the CH_3^+ peak has an intensity of 9.3% and it was argued that the trend observed with the other tetramethyl compounds showed that some of the CH_3^+ ions were in fact trihydrides of the central carbon. Measurements $a_1^{13}CMe_4$ showed $_{31}^{31}$ however, that no $_{13}^{13}CH_3^+$ ions occurs in the spectrum illustrating the unsatisfactory nature of the use of one element as a homologue of another.

Group V As, Sb, Bi.

For triphenylderivatives 3^2 molecular ion abundances diminish in the order As > Sb > Bi whereas metal ion abundances M⁺ follow the reverse order, as expected from the variation of metal-carbon bond strengths within a group. Similar observations concerning M⁺ ions

may be made for the trimethyl-compounds. 12,33

Of these compounds trimethylantimony has been studied in most detail ¹² and clastograms and appearance potential measurements on the major ions $Me_{3}Sb^{+*}(78\%)$, $Me_{2}Sb^{+}(100\%)$, $MeSb^{+*}(36\%)$ and $Sb^{+}(37\%)$ indicate simple bond cleavage decompositions

 $Me_xSb^+ \longrightarrow Me_x - 1Sb^+ + Me^+$

Loss of H_2 (or 2H•) from $R_2^{M^+}$ ions is observed for all the arsenic and antimony compounds but not the bismuth.

1.2. Ionization and Appearance Potentials.

The first iomization potential of a molecule is defined as the energy difference between the ground state vibrational level of the lowest electronic state of the molecule and the molecular ion. This is sometimes referred to as the "adiabatic" ionization potential and is of importance in understanding the structure of molecules. Electrons of sufficient energy can ionize molecules by the process:-

The conditions under which ionization takes place are governed by the Franck-Condon principle since for electron bombardment ionization the time of interaction is so short (of the order of 10^{-15} sec.) compared to the time necessary for a vibration $(10^{-12} \text{ to } 10^{-13} \text{ sec.})$ that nuclei may be considered as fixed at their equilibrium distances during the ionization process. If the potential energy curves representing the molecule before the transition and the molecular ion after the transition are plotted, the points on these curves representing the conditions before and after ionization will correspond to the same nuclear separation and will thus lie on a line parallel to the energy axis. Such a transition is referred to as a vertical transition, and the ionization potential measured in this way as the vertical ionization potential. For the case of diatomic molecules various possibilities of electronic structures are shown in fig. 1.

It can be seen that ionization potentials of molecular ions which are obtained by electron impact measurements must be considered

X

Potential energy curves showing:-

a) Equal vertical and "adiabatic" ionization potential V = A
b) V +
c) Vertical ionization potentials leading to dissociation of the parent i
into fragments
d) Upper potential energy curve repulsive with
ionization leading to dissociation.

as upper limits of the "adiabatic" value. However even when the interatomic distances of the two possible states differ appreciably as in fig 1.b),c). there is still a finite possibility that ionization to the lowest vibrational level of the ionic state will occur. This suggests that in some cases the measured value of the ionization potential may depend on the sensitivity of the detecting apparatus used. Increasing the sensitivity is, in fact, equivalent to "broadening" the Franck-Condon region.

Fig. 1(d) shows a transition to a repulsive upper state. Fragmentation accompanies all such transitions and the excess energy of the fragments formed is given by the height of the transition region above the dissociation asymptote. Thus the appearance potentials of fragments obtained by methods involving vertical transitions also give values which are upper limits of the "adiabatic" or "true" value.

The experimental problem in measuring appearance potentials is to determine accurately the intercept, on the voltage axis, of graphs of ion current versus accelerating voltage of the ionizing electrons (ionization efficiency curve). The general shape of these curves is well established. With decreasing voltage the curve increases to a maximum value followed by a region of linear decrease. The curve then approaches the energy axis almost exactly exponentially, there being two reasons why this should be so.

Firstly, this behavior is inherent in the ionization process as may be understood from consideration of fig. 2.

Suppose that precisely monoenergetic electrons are used of energy equal to the energy of the transition shown on the diagram. As the energy is reduced so that there is only sufficient energy for transitions first to the $\mathbf{v}' = 1$ and then $\mathbf{v}' = 0$ levels, the requirements that the transition must be shown as vertical line means that the transition must originate from further to the right in the lower state. However the probability of finding AB molecules with such internuclear separations is decreasing, consequently the number of ionized AB⁺ formed (i.e. ion current of AB⁺) decreases following the shape of the probability curve of the $\mathbf{v}'' = 0$ level.

Secondly, a non-monoenergetic electron beam causes further curvature of these graphs. Normally a mass spectrometer source forms the electron beam by acceleration of electrons emitted from a hot filament. The energy distribution of the emitted electrons will be 34,35essentially Maxwellian and thus even when the minimum value of the electron energy is equal to the appearance potential of AB $[A (AB^+)]$ appreciable ion current: persists because appreciable numbers of electrons with higher energies remain. Further reduction of the electron energy is required before the ion current at mass AB^+ disappears and the approximately exponential curvature of the energy distribution of the emitted electrons must lead to the ionization efficiency curve approaching the energy axis asymptotically.

In addition to difficulties arising from the shape of the ionization efficiency curve, other sources of error can enter into the measurement of appearance potentials by mass spectrometry. These have 36 been discussed by Waldron and Wood and are briefly outlined below.

The occurrence of a potential gradient within the ionization chamber will lead to the electrons being given an additional increment of energy and for this reason the ion repeller voltage is kept to a minimum. Provided the voltage of the repeller is kept constant however, this effect should not lead to an error in measuring the difference between two ionization potentials. The field within the ionization chamber is partly due to penetration of the ion accelerating field through the slit via which the ions emerge. Thus if the field within the ion chamber is to be the same for the examination of two ions of different mass, magnetic scanning must be used. The slit leading from the ionization chamber to the electron trap is usually relatively wide and the voltage of the trap can produce a considerable field penetration extending to the ionizing region. It is therefore ideal to work with the trap at the same potential as the ionization chamber. There is also the effect of the magnetic field in which the ionizing region is immersed. This will give rise to discriminations in that ions of different mass which are observed will originate in different regions of the ionization chamber and might thus receive different accelerations as they travel along the weak fields within the ionization chamber. This effect will be negligible if all the ions are formed in a region in which the lines of equipotential are parallel to the electron beam.

If the temperature of the filament, producing the electron beam, increases so does the energy spread in electron energy. It is therefore desirable that the filament temperature should be held constant

during measurement of a pair of ionization efficiency curves. Contact potentials within the ionization chamber may vary when a sample is introduced and for this reason it is usual to use an "internal standard" when measuring appearance potentials i.e. to introduce a second substance of known ionization potential whose ionization efficiency curve can be compared with that of the substance under investigation while they are both in the system and thus identical potential conditions.

The problem of determining the true origin of the ionization efficiency curve and hence the appearance potential has been critically discussed by Nicholson 37. The early means of determining the true value for the ionization potential was the "initial break" i.e. extrapolating the curve back to its intersection with the energy axis 38,39. The method is not very satisfactory because of the effect of the electron energy spread in making the curve asymptotic to the energy axis so that the point detected in this way will depend on the sample pressure, the number of bombarding electrons and the sensitivity of the detector employed. When a rare gas is introduced at the same time as the sample, differences in the electron energy corresponding to the minimum detectable current in each case can be used to obtain the appearance potential. There still remains the objection that the shapes of the curves may not be the same very near to the potentials at which the two currents vanish.

A second method, now little used, was introduced by Vought 40 who extrapolated the linear portion of the ionization efficiency curve to zero ion current using the extrapolated value as the ionization

potential. Its main disadvantage is due to using the current/voltage relationship comparatively far above the ionization potential where the ions may not be in their lowest energy states. The results obtained are generally higher than those from other methods especially when appearance potentials of fragment ions formed by complex reaction paths are being studied. It should be noted however that the method of Vought is practically the only one available for the determination of the potentials of second and higher breaks in the ionization efficiency ourve.

An extension of the "initial break" method is due to Warren.⁴¹ In this method, which uses an internal standard of known ionization potential, the ion current scales for the two graphs are adjusted so as to make the straight line portions parallel. The difference in voltage between corresponding ion currents on the curves is plotted against ion current and from the voltage difference at zero ion current the appearance potential is found. The same objections apply to this method as to the "initial break" but the method has the advantage of rendering differences in the shapes of the two curves clearly visible.

Several other methods which also depend for their success on the shapes of the two curves being compared being closely similar are classified by Nicholson as the "logarithmic" methods. The first of these due to Honig and Wannier ⁴² whilst not attempting to eliminate the electron energy spread accounts for it in an analytical expression which indicates that for about 1 eV below the ionization potential the curve will be approximately exponential. A semi-log plot of the ionization efficiency curve will give a slope of $\frac{2}{(3 \text{ kT})}$ at the ionization potential. Dibeler and Reese 43

measure the voltage difference between the particle being studied and a substance whose ionization potential is accurately known. The two graphs of ion current/electron voltage are plotted on the same scale so normalised that the two graphs are parallel. This normalisation is obtained by adjusting the partial pressure of the two components of the mixture until the ion current of each species is approximately equal with an electron beam of 50 - 70 eV energy. Another method similar to this is due to Lossing, Tickner and Bryce.¹⁴⁴ The pressure is again adjusted so as to get comparable intensities at 50eV, and a log. plot of peak heights, as percentages of the abundance at 50eV, against the electron energy yields parallel curves at the onset. Generally, voltage differences at 1% of the intensity at 50eV are taken as significant.

All the methods discussed give values which are usually reliable to 0.1eV for ions which give curves similar in form to those of the inert gas ions.

Morrison 45 has proposed an interesting analytical proceedure : for treating ionization efficiency curves, which enabled him to remove at least partly the blurring effect of energy spread and to obtain from a given curve more information (particularly about excited states of ions). It is the derivative method. The method shows that if p(E), the probability of ionization to a given state, is a polynomial of the Kth degree, the (K + 1)th derivative represents the electron energy distribution, reversed with respect to the energy scale. An electronic device may be built to obtain automatically the derivative of the ionization

efficiency curve 46. With this technique, Morrison was able to detect the appearance of excited states of ions and correlate them with known spectroscopic states. The technique is capable of giving interesting results, it has for instance allowed the estimation a of relative probabilities for electronic transitions 47 . Ionization efficiency curves become easier to interpret if mono-energetic electrons are used since any fine structure which is smoothed out when there is a spread in electron energies is more easily observed. If, as is suggested by Nicholson³⁷ all errors arise from the fact that ionization efficiency curves do not have the same shape and differences in shape are due to different contributions of upper energy levels of the positive ions to the ionization efficiency curve, accuracy will be increased by any method which can detect fine structure in the curves. Clarke⁴⁸using a beam of nearly mono-energetic electrons has shown that as the spread in electron energy is reduced the curves do, in most cases, become segmented straight lines with little curvature as the ionization potential is approached.

A quite different approach to the problem of obtaining the effect of mono-energetic electron beam has been made by Fox, Hickam, Kjeldaas and Grove^{49,50} with their "retarding potential difference method". Ionization potentials determined by this method give results much closer to those calculated by spectroscopic methods than do the methods which do not employ "mono-energetic" electrons. This is especially so for molecules such as benzene 51,52,53,54 in which there are excited states of the ion close to the ground state 55,56. Nevertheless there are some
difficulties in the results obtained by this method which have not been resolved 37 .

In addition to the instrumental difficulties involved in reducing the electron energy spread, such reduction gives a correspondingly smaller electron current and therefore worse signal-to noise ratio in Morrison ⁵⁷ has recently proposed an analytical method the final data. for reducing the effect of energy spread. This "deconvolution" method is based essentially on the use of Fourier transform relationships and communication theory and obtains a marked reduction in the scatter in the experimental data and reduces the effective electron energy spread by a factor of four or five times. Although an exact knowledge of the form of electron energy spread is not required, the better this knowledge the better the ultimate result. Tests made on several artificial examples and on two actual cases show that the methods are of some promise. Eland, Shepherd and Danky ⁵⁸ used the same technique to obtain the ionization potentials of a series of aromatic amines. The method however does not mean that there is no advantage to be gained by using a beam of ionizing electrons with reduced energy spread. Morrison found it not possible to estimate an energy spread to a much greater accuracy than about $\frac{1}{4}$ to $\frac{1}{5}$ of its width, so that the smaller the width in the first place the better the ultimate result.

25.

1.3. Derivation of Therochemical Data from Appearance Potentials

Appearance potentials may used in conjunction with ionization potentials, and/or calorimetric data allowing an estimation of certain thermodynamic quantities such as heats of formation and bond dissociation energies. Ionization by electron impact and subsequent fragmentation of the molecular ion by bond cleavage may be represented in a cycle of the form

where $I(A^{*})$ ionization potential of A^{*} $A(A^{+})AB$ appearance potential of A⁺ from molecule AB D(A-B) dissociation energy of the bond A-B.

From this cycle the following relationships may be obtained.

$$A (A^+)AB = I (AB) + D (A^+-B) + E_1 = 1.1$$

 $A (A^+)AB = I (A^-) + D (A-B) + E_2 = 1.2$

Here the terms E_1 and E_2 represent excess kinetic energy of the dissociation plus any excitation energy of the products A^+ and B^- . The alternative products B⁺ and A may also be obtained leading to

A(B ⁺) AB	=	I(B°)	+	D(A—B)	+	E3		1.3
A(B ⁺) AB	=	I(AB)	+	D(B+A)	+	E_	·	1.4

The values of E, E, E and E are not necessarily the same and in general will differ.

One simplfying assumption often made is that E_1, E_2, E_3, E_4 are zero i.e. that both the ion and the radical are produced in their ground state and that the kinetic energy term is zero. As $E_2 \neq E_3$ and $E_1 \neq E_1$, in general, this assumption will be true for only one of the two series of possible products. Stevenson ⁵⁹, has pointed out that one might expect that ionization $e + XY \rightarrow X^+ + Y + 2e$ where $I(X \cdot) < I(Y \cdot)$ may lead to the formation of the ion and radical in their ground states. In many cases where the hypothesis that one of the excess energy terms is zero may be tested it has been found to hold 4,6 . A fairly extensive series of measurements has been made for singly substituted methane derivatives CH3X and these are shown in table 1.3.1 along with the bond-dissociation energies estimated by other methods. The agreement between the values from electron impact studies and other methods is good supporting the view that the fragments are produced in their electronic ground states and that E = 0. The use of equation 1.2. to estimate accurate bond dissociation energies requires an estimate of the ionization potential of the free radical. Few direct measurements of such quantities have been made for organometallic radicals and accurate estimations of bond

Table 1.3.1

Bond-dissociation	energies	•	$D(CH_{3}-X)$
-------------------	----------	---	---------------

X	Electron Impact (e <u>V</u>)	Other methods ^C (eV)
H	4.43 ^a	4• 37
CH3	3.99 ^a	3.60
NO2	2.54 a	2,34
OH	3•95 b	3.90
Cl	3.40 b	3.47
Br	2.33 b	2.91
I	2.30 b	2.30

a) reference 6

- b) R.I. Reed and W. Snedden, Trans. Faraday Soc., 54, 301, (1958).
- c) "The strengths of Chemical Bonds", T.L. Cottrell, 2nd Edition, 1958, Butterworths, London. (1st Edition 1954.)

· .,

2

dissociation energies by other methods from which ionization potentials could be calculated by a combination with the appropriate appearance potentials are often lacking. For example various workers 60,61,62have measured appearance potentials of the Me_Si⁺ ions from various trimethyl_silyl compounds obtaining good agreement. Accurate bond dissociation energies for Me_Si-X bonds remained in doubt, until recently 63 because of different estimations of D(Me_Si-SiMe_3) from which I(Me_Si^) is calculated.

Relative bond dissociation energy measurements may still be calculated however without knowledge of ionization potentials. If for the compounds L_{n}^{M-R} the appearance potential of $L_{n}^{M^{+}}$ is measured then by a subtraction of the two equations.

$$A(L_{n}M^{+})L_{n}M^{-}R_{1} = I(L_{n}M^{+}) + D(L_{n}M^{-}R_{1})$$

$$A(L_{n}M^{+})L_{n}M^{-R} = I(L_{n}M^{-}) + D(L_{n}M^{-R})$$

Bond dissociation energy differences are found.

$$D(L_n M - R_1) - D(L_n M - R_2) = A(L_n M^+)L_n M - R_1 - A(L_n M^+)L_n M - R_2$$
 1.5

Hess, Lampe and Sommer⁶⁰ have introduced an indirect method of estimating ionization potentials which is applicable to the organocompounds of metals which form homonuclear metal-metal bonds. To explain the method equation 1.2 must be modified to involve other thermodynamic data. The bond dissociation energy D(A-B) is the heat of reaction

$$AB \rightarrow A \cdot + B \cdot$$

hence

$$D(A-B) = \triangle H_{\mathbf{f}}^{\circ}(A) + \triangle H_{\mathbf{f}}^{\circ}(B) - \triangle H_{\mathbf{f}}^{\circ}(AB)$$
 1.6

where $\triangle H_{\rho}^{\circ}$ represents the standard heat of formation.

Thus 1.2 becomes

$$A(A^{+})AB = I(A^{\bullet}) + \triangle H_{f}^{\circ}(A^{\bullet}) + \triangle H_{f}^{\circ}(B^{\bullet}) - \triangle H_{f}^{\circ}(AB) 1.7$$

assuming

$$E_{2} = 0$$

Also

$$I(\mathbf{A}^{\bullet}) = \Delta H_{\mathbf{f}}^{\circ}(\mathbf{A}^{+}) - \Delta H_{\mathbf{f}}^{\circ}(\mathbf{A}^{\bullet})$$
 1.8

and so

$$A(A^{+})AB = \triangle H_{f}^{\circ}(A^{+}) + \triangle H_{f}^{\circ}(B^{\cdot}) - \triangle H_{f}^{\circ}(AB)$$
 1.9

Suppose that for the compound AB, $\triangle H_{f}^{\circ}$ (AB) and $\triangle H_{f}^{\circ}$ (B) are known, then $\triangle H_{f}^{\circ}(A^{+})$ can be found from the measurements of $A(A^{+})AB$. With this value $A(A^{+})$ can be measured from A-A. If $\triangle H_{f}^{\circ}(A-A)$ is known and it is assumed that any excess energy release associated with the formation of A^{+} and A is zero, the measurement permits a computation of $\triangle H_{f}^{\circ}(A)$. The ionization potential of A can then be estimated using 1.8. Using this "indirect" method heats of formation and ionization potentials of the radicals SiMe₃ and SnMe₃ have been evaluated and bond dissociation energies $D(Me_{3}Si-R)^{60}$ and $D(Me_{3}Sn-R)^{64}$ found.

The high abundance of the metal ion (M⁺) in the spectra of some organometallic compounds has prompted several workers 65,66,67 to measure the appearance potential of this ion in order to determine the heat of formation of the parent compound or mean metal-carbon bond dissociation energies. Aside from instrumental errors, it will be apparent from the preceding discussion that the validity of using appearance potentials in the derivation of thermodynamic quantities depends primarily on the correct designation of the process involved in the threshold measurement. Since this may be difficult for processes involving extensive fragmentation, more reliance may generally be placed on values derived from appearance potentials of ions formed by less extensive dissociative processes. Even so quite accurate estimations of thermodynamic quantities have resulted from the appearance potential of M⁺ for various transition metal carbonyls and cyclo_pentadienyl complexes.

Mean metal-carbon bond dissociation energies for a ML_n compound (M is metal and L ligand) may be calculated if we assume that the appearance potential of M^+ is the energy required for the decomposition

 $e + ML_n \longrightarrow M^+ + nL^+ + 2e \bigtriangleup H = A(M^+)ML_n$

Assuming no excess energy release the cycle below may be writtem:-

where $\overline{D}(M-L)$ = mean dissociation energy of M-L bond in ML_n $\overline{D}(M^{\pm}L)$ = mean dissociation energy of M-L bond in ML_n^+ . 31.

From this

$$\tilde{D}(M-L) = \frac{1}{n} \left[A(M^+) M L_{\tilde{M}} - I(M) \right]$$
 1.10

$$\overline{D}(M^{t}-L) = \frac{1}{h} \left[\overline{A}(M^{t})ML_{n} - I(ML_{n}) \right] \qquad 1.11$$

Providing the appearance potential measurements can be accurately carried out then mean bond dissociation energies can be calculated in both the neutral molecule and molecular ion.

Some measurements for transition metal carbonyls are shown in Table 1.3.2. The appearance potential measurements give larger values for D(M-CO) than those calculated from heats of combustion. This discrepancy may be attributable to the failure of the negligible excess energy release assumption made in deriving equations 1.40 and 1.11.

Heats of formation may also calculated. If M⁺ is formed by the process below with no excess energy release:-

 $L_{n}M + e \longrightarrow M^{+} + nL + 2e \Delta H = A(M^{+})ML_{n}$ then $A(M^{+})ML_{n} = \triangle H_{f}^{\circ}(M^{+}) + n \triangle H_{f}^{\circ}(L) - \triangle H_{f}^{\circ}(L_{n}M)$

from which
$$\triangle H_{\mathbf{f}}^{\circ}(\mathbf{L}_{\mathbf{n}}^{\mathsf{M}}) = \triangle H_{\mathbf{f}}^{\circ}(\mathsf{M}^{+}) + \mathbf{n} \triangle H_{\mathbf{f}}^{\circ}(\mathbf{L}) - A(\mathsf{M}^{+}) \mathbf{M}_{\mathbf{n}} = 1.12$$

Since the heats of formation of metal ions in their ground states are known, then providing the heat of formation of the ligand L. is known, measurement of the appearance potential allows an estimation of the heat of formation of the parent molecule. 67

Table 1.3.2

Mean metal-carbon bond dissociation energies in transition metal

carbonyl molecules and ions

			Kcal. mole	1	
	Bidinost	;i et. al. ⁶⁵	Foffani e	t.al66	Thermochemi cal ^a
	D(M—CO)	D(M+	D(M—CO)	D(M ⁺ -co)	D(M—CO)
N1(CO) ⁴	4.3	37			35•2
Fe(со) 5	33	32	32	30	27.7
cr(co)6	31	31	31	25	27.1
Mo(co) ₆	71	39	42	38	35•9
w(со) ₆	50	4.8	4 , 8	747	42.1
v(co) ₆	34	31			

a) F.A. Cotton, A.K. Fischer and G. Wilkinson, J. Amer. Chem. Soc., 1959, <u>81</u>, 800.

Sometimes appearance potential data can also throw light

onto the decomposition process occurring just above the threshold measurement. Winters and Kiser ⁶⁸ measured the appearance potential of the metal ion from compounds of the type $(C_5H_5) \le (C_0)_x$ (M = Co, Mn,V). Heats of formation of the neutral molecules were calculated assuming in one instance metal ions to be formed by the decomposition

$$(C_{5}H_{5}) M (CO)_{x} + e \longrightarrow M^{+} + C_{3}H_{3} + C_{2}H_{2} + x CO$$
 1.13

and in another by

$$(C_{5}H_{5}) \mathbb{M} (CO)_{\mathbf{x}} + e \longrightarrow \mathbb{M}^{+} + C_{5}H_{5} + \mathbf{x} CO$$
 1.14

Decomposition 1.13 was considered to be the most probable since the heat of formation obtained for this process agreed with values estimated from bond strength data of similar compounds.

2.	EXPERIMENTAL.
----	---------------

- 2.1 Preparation of Compounds.
- 2.2 Recording Mass Spectra.
- 2.3 Measurement of Appearance Potentials.

. .

2. EXPERIMENTAL

2.1 Preparation of Compounds

Et₄Sn: Prepared from the reaction of stannic chloride and ethylmagnesium bromide in ether ^{69,70}. The main impurity, triethyltin chloride was removed from an ether solution by agitating with aqueous/alcoholic potassium fluoride solution and filtering off the precipitated triethyltin fluoride ⁷¹. Vapour phase chromatography [Pye 104 dual columns (5ft. 4 m.m. i.d.) dual flame ionization detectors. Stationary phase 10% Apiezon L on 100-200 mesh celite. Carrier gas N₂.] Temp. 200°C showed only one peak, b.pt = $174-176^{\circ}$ C/ 760 m.m.

(CH₂:CH)₄Sn: The addition of anhydrous stannic chloride to vinylmagnesium bromide gave tetravinyltin in at least 60% yield ⁷². b.pt. 160-163[°]C/760 m.m.

<u>Ph_SnCl:</u> prepared from freshly distilled stannic chloride and tetraphenyltin by the redistribution reaction 73

 $3 \operatorname{SnPh}_4$ + $\operatorname{SnCl}_4 \longrightarrow 4 \operatorname{SnPh}_3 \operatorname{Cl}$ Pure triphenyltin chloride was obtained by sohxlet extraction of the powdered product using ether ⁷⁴. m.pt. = 106-107°C

Ph_SnBr: Prepared in the same way as triphenyltin chloride using anhydrous stannic bromide. m.pt. = $122^{\circ}C$.

Ph_SnF: Triphenyltin chloride solution in hot ethanol was added to a hot aqueous/alcoholic solution of potassium fluoride. On cooling snow white fine crystals of triphenyltin fluoride formed 75 m.pt. = At 341°C the solid turned brown and at 355°C liquified.

<u>Ph_3SnI:</u> Sodium iodide (45 g.) in acetone (300 cc.) was added to triphenyltin chloride (19.2 g.) in acetone (50 cc.). The mixture was refluxed for 6 hr., decanted from sodium chloride and more sodium iodide (30 g.) added with further refluxing (8hr.). The crude iodide was purified by soxhlet extraction with light petroleum (b.pt. 40-60°C) from which it crystalised, m.pt. = 121°C.

EtSnPh₃: The reaction of triphenyltin chloride with ethylmagnesium bromide in anhydrous ether as described by Lesbre et. al. ⁷⁶ gave ethyltriphenyltin in 63% yield.

The product was purified by alternatively recrystalising from ether and hexane until the mass spectrum showed no change after ten recrystalisations. m.pt. = 56° C.

<u>MeSnPh</u>₃: Prepared in an identical way to $EtSnPh_3$ using methylmagnesium bromide. Five alternate recrystalisations from hexane and ethanol were carried out. m.pt. = $58^{\circ}C$

Et₂SnPh₂: Diphenyltindibromide first prepared in the following manner. Tetraphenyltin (109 g. 0.5 mole) was suspended in ethylenedibromide and bromide (80 g. 1 mole) in the same solvent added drop wise over a period of three hours. Ethylenedibromide and bromobenzene were removed by distillation at reduced pressure leaving a brown liquid. The distillate boiling at 156-170°C/1 m.m. was collected yielding diphenyltin dibromide (100g. 60%) Diethyldiphenyltin was prepared from the reaction of this bromide with ethylmagnesium bromide in ether ⁷⁵. Unforseen complications arose however because of the pre:sence of chlorine even in analar bromine which resulted in the presence of some PhEt₂SnBr, PhEt₂SnCl and Ph₃SnEt in the diethyldiphenyltin obtained.

Purification was effected by chromatography using a column of silica gel (100/200 mesh, activated by heating for 3 days at 120°C) and eluting with petroleum (b.pt. 40-60°C). Retention on the column was in the order PhEt₂SnCl, PhEt₂SnBr > Ph₂SnEt₂ > Ph₃SnEt. Using such a column (dimensions: length 18in. diameter 1in.) and by taking a middle cut of the petroleum fractions, 0.1 g. of pure diethyldiphenyltin was obtained from 1.5 g. of crude material. This sample gave only one peak by vapour phase chromatography using two stationary phases at 200°C (10% apiezon L on 100-200 mesh celite and N.G.A. ; carrier gas N₂) and showed no peaks in the mass spectrum corresponding to PhEt₂SnCl, PhEt₂SnBr (i.e. PhEtSnCl⁺ or PhEtSnBr⁺) or Ph₃SnEt (i.e. Ph₃Sn⁺).

Et₃SnPh: The preparation from tetraethyltin by the sequence Et_4^{Sn} SnPh: The preparation from tetraethyltin by the sequence Et_4^{Sn}

37.

 $\frac{Br_2}{\longrightarrow} Et_3 SnBr \xrightarrow{PhMgBr} Et_3 SnPh has been described 77.$ Again the presence of chlorine in the bromine used resulted in the product being contaminated with $Et_3 SnBr$, $Et_3 SnCl$ and $Et_2 SnPh_2$. These were removed by silica gel column chromatography eluting with petroleum (b.pt. 40- $60^{\circ}C$) (as for the diethyldiphenyltin purification described) followed by preparative scale vapour-phase chromatography using a 9ft. column of 10% apiezon L on celite and nitrogen as carrier gas.

It is interesting to note at this stage that an alumina column (Brockman No 1) and eluting with petroleum (b.pt. $40-60^{\circ}$ C) would not separate either Et₂SnPh₂ or Et₃SnPh from their impurities.

<u>Sn₂Et₆</u>: Sodium amalgam (225 g. Hg + 1.13 g. Na) triethyltin chloride (11.7 g.) and cyclohexane (10 cc.) were shaken in a nitrogen purged flask for 14 days. No colour change was observed, but the mercury became more mobile and sodium chloride separated. Normal work-up gave two fractions, b.pt. 85-110°C/10 m.m. (3.6 g.) and b.pt. 148-150°C/10 m.m. (4.2 g.), both of which contained some Et₃SnCl which was not completely removed by shaking with aqueous/alcoholic KF or by chromatography on silica gel. The higher fraction was refluxed with potassium (3 g.) in benzene (50. cc.) for 10 hr. giving pure hexaethyldistannane (0.5 g.) b.pt. 100-151°C/15 m.m.

1

<u>5 - Stannaspiro (4,4.) nonane</u>: The di-Grignard reagent from 1,4 dibromobutane (92 g.), magnesium (22 g.) and ether (400 cc.) was added to stannic chloride (26 g.) in ether (500 cc.) and the mixtures refluxed for 10 hr. After hydrolysing with saturated ammonium chloride solution the two layers were separated and the aqueous layer extracted with more ether. The combined ether solutions were dried and the ether removed by distillation. The residue was distilled yielding 2.1 g. of colourless liquid b.pt. $108-110^{\circ}$ C/30 m.m..Its infra red spectrum showed no Sn-H absorption. (Found C58.9%; H4.7%; C₈H₁₆Sn requires C58.8%; H4.9%).

Ph₃Sn-S-Ph: Thiophenol (12 g.) in dry methanol (20 cc.) was added to sodium methoxide (5.4 g.) in dry methanol (20 cc.) Triphenyltinbromide (42 g.) in tetrahydrofuran (50 cc.) was then added slowly. The mixture was boiled with reflux for 30 min. and filtered; the product crystalized from the filtrate. Recrystallisation from ethanol gave a colourless product (37 g. 82%) m.pt. 103° C (Found C 62.8%; H 4.5%; requires C 62.7%; H 4.4%.)

 $\frac{Ph_{3}C \cdot CMe_{3}}{from purified}$ Tertiarybutylmagnesium chloride in diethylether was prepared from purified ⁷⁸ tertiarybutylchloride. This was reacted with tritylbromide (1 mol.) (freshly prepared from triphenylcarbinol ⁷⁹) giving a 61% yield of tertiarybutyl-triphenylmethane m.pt. 175-177°.

<u>Attempted preparation of tertiarybutyltriphenyltin</u>: The reaction of tertiarybutylmagnesium bromide with triphenyltin chloride yielded only hexaphenylditin.

<u>Metal-Metal bonded Compounds</u>: These were prepared by the addition of the R_3 M Li derivative (M = Si, Ge, Sn; R = Me, Ph) to an equal number of

Table 2.1.1.

-

Products o	f reaction R ₃ MLi	+ $R_{3}^{'}M'X$ (M	.,M = Si,Ge,Sn;X =	= C1,Br)
Lithium Reagent	Halide	Solvent	Derivative and yield	^M 2 ^{Ph} 6 yield
Ph ₃ SnLi	Me ₃ SiCl	T.H.F.	-	62%
	Me ₃ SnBr	13	Ph ₃ Sn°SnMe ₃ 14%	21%
	Et ₃ SiCl	u	.	51%
Ph ₃ SiLi	Me ₃ SiCl	T.H.F.	Ph ₃ Si•SiMe ₃ 79%	-
	Et ₃ SnBr	*1		66%
	Et ₃ SiCl	J1	Ph ₃ SioSiEt ₃ 53%	-
Ph ₃ GeLi	Me ₃ SnBr	Et ₂ 0	Ph ₃ Ge•SnMe ₃ 67%	
	Et ₃ SnBr	n	-	68%
	Et ₃ SiCl	ji -	Ph ₃ Ge•SiEt ₃ 58%	7%
Me ₃ GeLi	Ph ₃ SnCl		Ph ₃ Sn•GeMe ₃ 20%	present
Me ₃ SiLi	Ph ₃ SnCl		-	present

moles of $R'_{3}M'X$ (M' = Si,Ge,Sn; R' = Me or Et) $R_{3}MLi + R'_{3}M'X \rightarrow R'_{3}M'-MR_{3} + LiX.$

The results of these reactions are given in table 2.1.1. Because of halogen-metal exchange the symmetrical compounds R_{62}^{M} and $R_{62}^{'M'}$ were often formed.

The preparations of a) $Ph_{3}SnLi$ in tetrahydrofuran (T.H.F.) from $Ph_{3}SnCl \ ^{80}$ b) $Ph_{3}SiLi$ in T.H.F. from $Ph_{3}SiCl \ ^{81}$ and c) $Ph_{3}GeLi$ in diethylether from $Ph_{3}GeH \ ^{82}$ have been described. $Me_{3}GeLi$ and $Me_{3}SiLi$ were prepared from the mercury derivative $(Me_{3}M)_{2}Hg$ by reaction with lithium under an atmosphere of nitrogen.

<u>Me_3GeSnPh_3</u>: m.pt. 110° - 111°C recrystalised from benzene. <u>Me_3SnGePh_3</u>: m.pt. 81° recrystalised from 1:1 (V:V) mixture of petroleum (b.pt. = 40 - 60°C) and diethylether. (<u>PhCH_2)_3GeSiMe_3</u>: ⁸³ m.pt. 64° <u>Me_3SiSiPh_3</u>: m.pt. 108° <u>Et_3SiSiPh_3</u>: m.pt. 89 - 90° <u>Et_3SiGePh_3</u>: m.pt. 91 - 91.5° all recrystalised from methanol <u>Me_3SnSnPh_3</u>: m.pt. 106° separated from Sn_2Ph_6 by: successive recrystalisations from diethylether. <u>Ph_3SiSiPh_3</u>: m.pt. 237° recrystalised from benzene <u>Ph_3SiSiPh_3</u>: m.pt. 365° recrystalised from benzene 41.

•2•	
-	
2	
Je	
ر م	
Ø	
E-	

Infra-red data for $A_{X}M - M B$, compounds.

Infra-red data	for A ₃ M - M B ₃ com	pounds.				с _{снс} – м ⁸⁴	
	Metal-Phenyl ^a Characteristic Vibration	Methyl ^b deformation	Methyl ^b Roôk	CH ₃ - CH ₃ - Stretco stretco asym.	M ^b h sym.	Z 5 oharacteristic symmetrical CH2 deformation	g
Ph ₃ S1•SiMe ₃	1102s	12538	8518 8358	စစ်ဒေလ	ired		
Ph3Ge.GeMe3	1083 s	1230 w	826 s	564m	594a		
Ph ₃ Ge · SnMe ₃	1083 s	1193 w	771sb	508m	5238		
Ph ₅ Sn-GeMe ₃	1068 s	1230 w	824 . 8	561m	5448		
(FhGH ₂) ₃ Ge•SiMe ₃	1	1240m	84,7ah 837m	opso	jured.∄		
Ph ₃ Si•SiEt ₃	1101s					1232w 956	61
Ph_Ge•SiEt3	1084.s					1233w 956	6 HA

84,85,86,87. 84,88,89,90. refs. refa. a a

The spectra are quoted in om "1. Methyl rock, Methyl-metal stretching frequencies were recorded in cyclohexane and the metal-phenyl characteristic vibration and methyl deformation were recorded in pressed discs in potassium bromide.

w weak, m medium, s strong, b broad, sh shoulder.

Infra-Red Spectra of Metal-Metal bonded Compounds.

In order to establish that the compounds prepared were in fact of structure $A_3M - MB_3$ and not $A_2BM - MB_2A$ etc, infra-red spectra were recorded using a Grubb-Parsons spectromaster. The characteristic bands observed are shown in Table 2.1.2. from which it is immediately obvious that the infra-red data is consistent with structures Ph_3M-MR_3 with all the phenyl groups attached to a single metal.

Organoberyllium Compounds.

reagent on beryllium chloride 92

These were all prepared by P.D. Roberts, to whom my thanks are due, using the general methods ⁹¹ outlined below. 1. The dialkyls are obtained by the action of the Grignard

 $Cl_2Be(OEt_2)_2 + 2RMgX \longrightarrow R_2Be + MgX_2 + MgCl_2$ The separation of the product from the reaction mixture presents some difficulties. The dimethyl may be obtained by a process of "ether distill_ation" at atmospheric pressure whereby ether continuously circulates carrying dimethylberyllium from the reaction mixture to a receiver which is kept well above room temperature, excess ether evaporating from the latter and returning to the reaction vessel via a condenser ⁹³. The higher alkyls should be distilled from the reaction mixture at reduced pressure at as low a temperature as possible (generally 50-80°) to minimise thermal decomposition. The use of non-ethereal Grignard reagents ⁹⁴, or lithiumalkyls alkyls in hydrocarbons, allows the preparation of ether free beryllium alkyls directly from beryllium chloride.

2. Dimethylberyllium ⁹⁵ has been prepared by the action of the corresponding organomercury compound on metallic beryllium.

 $Me_2Hg + Be \longrightarrow Me_2Be + Hg$

Organoaluminium Compounds.

These were available from Ethyl Corporation. After distillation the compounds were sealed in a tube containing a breakseal and attached to the direct evaporation line of the mass spectrometer.

2.2. Recording Mass Spectra

Spectra were recorded on an A.E.I. M.S.9 double focussing instrument. Routine measurements, such as high resolution mass measurements, were carried out as described in the instruction manual and unless otherwise stated ions were produced under the following conditions:

Ionizing electron beam voltage = 70eV Trap Current (i.e. electron beam current) = 100 μ Amps Ion repeller voltage = -2 to + 4 volts Source temperature = 190 to 210°C

Since some difficulties were encountered with the methods of sample introduction, the production of reproducible spectra for abundance measurements, the detection of metastable peaks and measurement of appearance potentials these topics are discussed in detail.

2.2.1. Sample Handling Systems

Since electron impact sources require sample vapour at a pressure of about 10^{-5} m.m., the usual approach is to maintain a pressure of about 10^{-2} m.m. in a large reservoir from which vapour passes to the source through a leak which reduces the pressure by the requisite factor $\sim 10^{-3}$. The sample reservoir is filled according to the nature of the compound.

a) Permanent gases and compounds with room temperature vapour pressures of a few cm. or more use a "cold inlet" where by an aliquot of the gas/vapour (i.e. a volume of $\sim 10co.$ of pressure $\sim 7 - 8$ cm.) is

expanded into a 2 litre reservoir.

b) With relatively involatile liquids a volume of about a drop (i.e. handleable in a micropipette) is introduced, via a gallium covered sinter, into a reservoir whose volume can be 100 cc. or ~ 1000 cc. The whole system can be heated to $\sim 200^{\circ}$ C to cause vapourisation.

c) For very involatile liquids and solids the sample is introduced into a thimble where it may be frozen down in liquid nitrogen whilst the air in the thimble is evacuated. The sample is then given direct entry into the reservoir, and the thimble is heated in an oven until the vapour pressure reaches the required level. The oven and reservoir can be heated to $\sim 350^{\circ}$ C.

Using this "heated inlet" system sometimes poses problems for solids because decomposition occurs: either the compound decomposes in the solid and it is the decomposition products that vapourise or else the vapour decomposes in the gas phase in the hot reservoir, possibly catalysed by the metal parts of the valves. A technique to minimise these troubles is the "direct insertion probe". A few micrograms of the solid are packed into a glass or ceramic probe. This is then introduced through a vacuum lock, directly into the source within a few m.m. of the electron beam. Sample vapourises from the probe under the influence of the source vacuum and source temperature $(\sim 200^{\circ}C)$: If, under these conditions of vapourisation virtually directly into the electron beam, decomposition still occurs then it can probably never be eliminated.

To record mass spectra of solids the direct insertion probe

. .

·

Fig. 3.

was always used to introduce sample into the mass spectrometer.

With dialkylberyllium compounds in addition to difficulties encountered because of the highly reactive nature of these compounds to air and moisture, extensive decomposition of these compounds occurred whenever these inlet systems were used. Thus the volatile di-tertiary-butylberyllium decomposed giving mainly butene in the cold inlet system and dimethylberyllium, which does not thermally decompose until 200°C, produced a mass spectrum showing only peaks due to Me_3Sn^+ , Me_3Ge^+ and hydrocarbon ions when introduced via the heated inlet system at 100°C. Such decomposition occurred even after the heated inlet system had been "baked" for 6 hours at 350°C before cooling to 100°C in order to remove any volatile residues that would react with the organoberyllium compound.

In case this decomposition was catalysed by metallic surfaces, an all glass inlet system was constructed; a schematic diagram of which is shown in Fig. 3. The rate evaporation of material into the source was controlled by altering the temperature of the sample. To give a reading on the source ionization guage of 2 to 8×10^{-6} m.m. the following sample temperatures (°C) were required for organo-beryllium and - aluminium compounds; Me₂Be 48°, Et₂Be 16.5°, (i-Pr)₂Be $O'_{,}$ (n-Pr)₂Be 25°, (i-Bu)₂Be 29° (t-Bu)₂Be - 60°, Me₃Al - 25°, Et₃Al - 15°, Me₂AlH - 22°, Et₂AlH 22°. (temperatures in degrees centigrade). A disadvantage of this inlet system is that the beryllium or aluminium sample has to be sealed in a tube with a breakseal and then glass-blown onto the inlet line. To remove the sample, the source and inlet line to the 4 - way manifold has to be let down to pure dry nitrogen and the sample tube and inlet-line sealed using a blow torch.

It was not possible to introduce di-n-butylberyllium through any of the sample inlet systems described because of its low volatility. Using the direct evaporation inlet system elimination of butene occurred when the sample was heated above 85°C. Prolonged heating at this temperature caused further decomposition and the sample turned to a grey viscous liquid. At no stage was the mass spectrum of di-n-butylberyllium recorded.

2.2.2. Obtaining Spectra for Abundance Measurements

These were recorded using a resolution of 1 part in 5,000 and a source pressure not so high that "sparking" of the high voltage employed in the source occurred. It is also important that a constant monitor current (i.e. a quantity proportional to the total ion current issuing from the ionization chamber found by intercepting part of the ion beam before it enters the magnetic sector) prevails while the spectra is recorded if meaningful abundances are to be obtained. With the inlet systems which employ a leak to regulate the flow of material into the source (i.e. the cold, heated and gallium systems) this is relatively easy but using the direct insertion probe some manipulation is necessary, especially with solids m.pt $>100^{\circ}$ C, before constant evaporation into the source is obtained.

2.2.3. Detection of Metastable Peaks

For detection of such peaks an ion repeller voltage of + 20 to + 25 volts and a resolving power of one part in 500 to 1000 were used 49.

since it has been shown ¹. that the height of these peaks increases relative to the others under these conditions.

2.3. Measurement of Appearance Potentials

While an appearance potential is being measured it is essential that a constantmonitor current prevails (i.e. for about thirty minutes) Thus whenever possible the cold, gallium, heated or direct evaporation inlet systems were used. However for some solids of high molecular weight, such as Ph_6Sn_2 , decomposition ensued if the heated inlet system was used, and the direct insertion probe had to be employed. Even so it was found that by patient manipulation a constant monitor could be maintained for the duration of the measurements (Often, in fact, this constant monitor current occured because material fell from the probe into the source, producing a back ground spectrum of the material and constant monitor current for several hours) The inlet systems used for the various elements and compounds for which appearance potentials of ions were measured were as follows:

Direct Evaporation: All dialkylberyllium compounds. Heated Inlet: Ph₄Sn, Ph₃SnI, Ph₃SnEt, Ph₃SnMe, Ph₃Sn.GeMe₃. Gallium System: Et₄Sn, Et₃SnPh, Et₂SnPh₂, ^{Et₆Sn₂. Cold Inlet: All inert gases.}

Direct Insertion Probe: Ph₆Sn₂, Ph₃Sn•SnMe₃, Ph₃Sn•SMe.

After the sample which produced an ion whose appearance potential (A.P.) was to be measured had been introduced via the appropriate inlet system, a standard compound was introduced through one of the remaining systems. (The required A.P. is measured relative to the A.P. of an ion produced in the spectrum of the standard material, which was generally tetraethyltin for organotin compounds when SnEt⁺_j was the standard ion or the inert gases, argon, krypton or xenon, for organoberyllium compounds.)

The precautions taken in measuring appearance potentials may be illustrated from a specific example. For the measurement of $A(BeCH_{j}^{+})BeMe_{2}$ argon was used as the standard. The CH_jBe⁺ peak was first tuned, by adjusting the magnetic field, onto the collector meter and the ion beam focussed to its maximum value with the ion repellor voltage set within the limits - 1.0 to +5 volts (i.e. readings on the ion repeller dial of 1.35 to 3.30), the electron beam voltage at 20V. and the trap current at 10 μ A for organotin compounds and 20 μ A. for organoberyllium compounds. The electron beam voltage was then increased to 50V, and the ion currents given on the collector meter for the two ions, CH_jBe⁺ and Ar⁺; adjusted to give equal values by altering either the pressure of argon in the cold inlet reservoir or the temperature of dimethylberyllium in the direct evaporation system. (One scanned from the CH_jBe⁺ peak to the Ar⁺ peak and vice-versa by altering the magnetic field).

Since the accuracy of A.P. measurements depends on the sensitivity of ion detection this was made as great as possible by using: a) A high source pressure produced by sample and standard compound vapour. The pressure normally used was $\sim 8 \ge 10^{-6}$ m.m. since it is important that this pressure is not so high that "sparking" occurs in the source. If "sparking" does occur while measurements are in progress then the A.P. determination must be restarted because potential gradients within the source are altered.

b) Whenever possible the source slits were opened to give a resolution of only 1 part in 500. In practice this was not always possible. For example when measuring $A(C_2H_5Be^+)BeEt_2$ the ion $C_3H_2^+$ also occurred at the m/e value of 38. Since it is essential that the two ions were completely resolved a resolving power of 1 part in 1000 had to be used.

The electron beam was then reduced to 20 volts and the ion giving the largest ion current at this voltage tuned onto the collector meter. (In this case it was CH_3Be^+) The ion multiplier voltage was then increased so that the ion current was approximately 2 to 7 x 1000 units on the meter. In practice it was found that no advantage was gained by increasing this voltage above 2.8KV. (i.e. a reading on the ion multiplier dial of 6.00) Above this the collector meter reading was so unsteady for small ion currents that the advantage of increased sensitivity was annulled by a decreased accuracy of the readings.

Having made sure that the collector meter reads zero at an electron beam voltage of 5 volts (well below the appearance potential of ions under study) and the ion beam correctly focussed, the voltage was reduced in 0.2 volt steps and ion currents for CH_3Be^+ and Ar^{+*} measured after each step. The meter was zeroed periodically when no peak was tuned onto the collector meter and readings of ion currents discontinued when they became less than $0.5 \ge 1$ units. A graph could then be drawn of ion current against electron beam energy (in eV) and the linear portion of the ionization efficiency curve established.

In measuring the same appearance potential again ion currents

were read in 0.4 volt steps while in this linear region and reduced to 0.2 volt steps only when tailing of the ionization efficiency curve commenced. When the two ions were no longer being formed the voltage was increased to 20 volts and ion currents again read and checked with those found at the start of the appearance potential measurements. If there was any discrepancy between the values then that particular set of data was discarded.

Appearance potentials were determined from at least four sets of measurements using methods described in Chapter 3.1. Calculation of Results.

3.1	Evaluation of Appearance Potentials.
3.2	Identification of Ions.

CALCULATION OF RESULTS.

3.3 Calculation of Abundances.

3.

.

3.4 Assignment of Metastable Peaks.

3. CALCULATION OF RESULTS

3.1. Evaluation of Appearance Potentials

Two methods were used in the evaluation of appearance potentials from the data obtained following the experimental procedure described earlier (p. 50). Both methods are illustrated by reference to specific examples.

a) Modified Warren Method

Ionization efficiency curves for Me_2Be^+ and Ar^+ are shown in fig. 4,a). In the Warren ⁴¹ method of evaluation the linear portions of these curves are made parallel by multiplying the curve of steeper slope by the ratio of the slopes of the linear regions. In this case ion currents for Ar^{+*} are multiplied by 0.87. These standardised ion currents when plotted as log. (ion current) vs. electron energy give the graph shown in fig. 4b). The curves so produced also have linear portions, AB and A'B'. Within this region voltage differences $\Delta V(eV)$ are taken at corresponding ion currents and plotted to give graph 4c). From the voltage difference at zero ion current the ionization potential of Me_2Be is found.

b) Semi-logarithmic Method

Typical ionization efficiency curves for SnPh⁺₃ (in this case from Ph₃SnI) and SnEt⁺₃ (derived from SnEt₄) are shown in fig. 5a). In obtaining this experimental data ion currents of the two species at 50eV had been made equal and no further "standardisation" was carried out. In fig. 5b) log. (ion current) is plotted against electron energy producing the essentially straight line portions CD and C'D'. Voltage differences taken within this region at corresponding ion currents when

55•

plotted give graph 5c). The voltage difference at zero ion current allows $A(SnPh_3^+)Ph_3SnI$ to be found relative to $A(SnEt_3^+)SnEt_L$.

3.2. Identification of Ions

The mass spectra of Group IVb organometallic compounds, particularly germanium and tin, are complicated by the polyisotopic nature of these elements and characteristic patterns are produced for each metal containing ion which reflect the isotope abundances of the metal, as in the following illustration.

Even when x is as large as 18, the effects of ¹³C are not sufficient to alter the visual appearance of these patterns. Tin and lead isotope masses and abundances are given in Appendix 1. Since lead isotope abundances vary with sample origion these were calculated from the actual specimens of tetraethyl - and tetraphenyl-lead used.

Ions containing two or more polyisotopic elements produce a relatively high combined mass, extending over several mass units. 57•
The combinations of isotopes for Ge₂ are shown below:-

Isotope (mass	Combination numbers)	Mass	Abundance Product
70	70	139.848554	4.22714
72	70	141.846017	11.2751
73	70	142.847637	3.20325
74	70	143.845427	14-9965
76	70	145.845637-	3.19091
72	72	143.843480	7.51856
73	72	144-845099	4.27204
74	72	145.842890-	20.0001
76	72 ·	147.842099	4.25558
73	73	145.846720-	.606841
74	73	146.844510	5.68203
76	73	148.844720	1.20901
74	74	147.842300	13.3006
76	74	149.842509	5.66014
76	76	151-842719	.602176

Number of combinations:- 15

The abundance product is the product of isotope abundances and factorial of total number of atoms, divided by the product of the factorial of numbers of each isotope present and is proportional to the probability of occurrence of the isotope combination.

Those combinations which have the same nominal mass (such as 76 Ge 70 Ge, 74 Ge 72 Ge and 73 Ge 73 Ge) cover a mass spread of less than 50 p.p.m (parts per million) and even with a maximum spectrometer resolution of 1:20,000 appear as a single peak corresponding to the weighted arithmetic mean of the exact masses of the contributing combinations. For example the precise mass of the peak at mass 146 is given by

$$\frac{145 \cdot 84672 \times 0.606841 + 145 \cdot 84289 \times 20 \cdot 0001 + 145 \cdot 845637 \times 3.19091}{0 \cdot 606841 + 20.0001 + 3 \cdot 19091}$$

= 145.843356.

The peak height of this mass is proportional to the sum of the relative abundances of the individual combinations

(i.e. 0.606841 + 20.0001 + 3.19091).

The isotope abundance pattern for Ge₂ and the precise masses of the peaks are given below:-

Nominal Mass	multiplicity	spread (ppm.)	Peak Mass (wtd mean)	Relative Abundance
140	singlet		139.848554	17,7626
- 141	no combinatio	n	• > > • • • • > > > + •	1.1.1020
142	singlet		141.846017	47,3786
143	singlet		142.847637	13.4602
144	2	14	143.844777	94-6093
145	singlet		144-845099	17,9513
146	3	26	145.843357	100.0000
147	singlet		146.844510	23.8762
148	2	5•4	147.842494	73.7720
149	singlet		148.844720	5.0803
150	singlet		149.842509	23.7842
151	no combination			
152	singlet		151.842719	2.5304

It will be observed that the most abundant peak does not occur at the sum of the mass numbers of the predominent germanium isotopes i.e. $74 \text{ Ge} \cdot \frac{74}{2} \text{ Ge} = 148$. Often for combinations of elements which do not have one outstandingly predominant isotope, the integer mass of the most abundant peak does not correspond to the sum of the mass numbers of the predominant isotopes.

A computer programme has been written 96 to determine the mass and relative abundances of combinations of up to three different polyisotopic elements. Abundances and masses for Sn_2 , SnGe, Ge_2 , GeSi, SnCl and SnBr combinations, calculated using this programme are given in Appendix 1.

.

Fig. 6

The characteristic patterns produced by ions containing a polyisotopic metal or metals are useful in allowing an immediate recognition of metal-containing ions and the determination of the number of metal atoms in an ion from the low resolution spectrum [see for example the spectrum of hexacthyldistannane and hexaphenyldistannane (Fig. 6).] However the pattern produced by a major ion often masks the presence of a low abundance ion only a few mass units different. As an example of this consider the group of peaks at $m/e \sim 240$ in the spectrum of hexacthyldistannane where four ion patterns overlap: $Sn_2^+, Sn_2H_3^+$ and $Sn_2H_5^+$. Although it is possible to identify overlying ions from the low resolution pattern produced, the identification of ions present in a spectrum is more easily accomplished by measuring the precise masses of ions to 7 significant figures (using a resolving power of 1 part in 20,000).

This identification of overlying by precise mass measurement often poses problems especially in cases where mass differences between two peaks of the same high integer mass are small and barely resolved under high resolving conditions. With hexaethyldistannane the ions 240 Sn_2Et₂H⁺ and 242 Sn_2Et₂H⁺ are only just resolved having a mass difference of 45 p.p.m. For low abundance ions present under a group of peaks recourse must be made to the extremities of the peak pattern where peaks due to the more abundant ion may not be present. Thus $\text{Sn}_{25}^{\text{H}^+}$ in the spectrum of Et_6Sn_2 was identified by a precise mass measurement of $^{244}\text{Sn}_2\text{H}_5^+$. With ions containing only one metal atom similar difficulties sometimes occurred ${}^{120}\text{SnC}_{18}\text{H}_{19}^+$ and ${}^{119}\text{SnPh}_{4}^+$ are unresolved at high resolution differing in mass by only 23 p.p.m. and identification is achieved using the ${}^{112}\text{Sn}$ and ${}^{124}\text{Sn}$ isotopes respectively.

With organo-beryllium and - aluminium compounds it is essential to measure precisely the masses of each ion in the spectrum since the monoisotopicity of these metals means that metal-containing ions cannot be distinguished from hydrocarbon ions in the low resolution spectrum.

The empirical formulae of <u>all ions</u> described in this thesis were established by precise mass measurements. The agreement between measured and calculated mass was in all cases better than 6 p.p.m.

3.3. Calculation of Abundances

For ions containing monoisotopic elements abundances are found quite easily from peak heights produced by the ions in the low resolution spectra. Thus if A⁺ is of peak height 4 arbitary units (a.u.), B⁺ Ja.u., C⁺ 2a.u., and D⁺ 1a.u., the abundance of A⁺ as a percentage of total ion current is 40%. In comparing the abundances of ions containing polyisotopic elements with other types, contributions from each isotope combination must be summed. For example a spectrum showing three peaks of relative height 2:1:1 due to ¹²⁷I⁺, ⁸¹Br⁺, and ⁷⁹Br⁺ corresponds to a 1:1 ratio of I⁺ to Br⁺. (⁸¹Br = 49%; ⁷⁹Br = 51%) Similarly in the reported spectrum ⁹⁷ of $(C_6F_5)_4$ Ge although $(C_6F_4)_2^+$ is the largest peak, when allowance is made for the presence of germanium isotopes $(C_6F_5)_3$ Ge⁺ is found to be the most abundant ion.

In calculating the abundances of ions allowance has also been made

for the presence of ${}^{13}C$. The natural abundance of ${}^{13}C$ is 1% and for ions containing n carbon atoms n% of the ions will contain a ${}^{13}C$ atom. Thus if the effects of ${}^{13}C$ are neglected the abundances of ions containing a large number of carbon atoms will be underestimated.

In the following illustrations of the method of calculation of abundances the following symbols are used:-

$$i_{n} = peak height due to ions at m/e = n$$

$$i_{n}(A_{w}C_{x}H_{y}M_{z}^{+}) = peak height at m/e = n carried by ion$$

$$A_{w}C_{x}H_{y}M_{z}^{+}) = the sum of the peak heights of all A and M isotopic variants of the ion of composition A_{w}C_{x}H_{y}M_{z}^{+}) = I(A_{w}C_{x}H_{y}M_{z}^{+}) + I(A_{w}^{-13}CC_{x-1}H_{y}M_{z}^{+})$$

$$i_{n} \begin{bmatrix} 1_{3}C(n-1) \end{bmatrix} = contribution to peak height at m/e = n for one \frac{1_{3}C}{2} atom present in ionnor ions at m/e = (n-1).$$

$$U(A_{w}C_{x}H_{y}M_{z}^{+}) = abundance of ion A_{w}C_{x}H_{y}M_{z}^{+}.$$

For ions including only monoisotopic elements and for hydrocarbon ions it is obvious that

$$i_n(A_w C_x H_y M_z^+) = I(A_w C_x H_y M_z^+)$$

For the aluminium and beryllium compounds, where hydrocarbon ions were important, abundances have been calculated using the formula

$$U(A_{w}C_{x}H_{y}M_{z}^{+}) = \frac{It(A_{w}C_{x}H_{y}M_{z}^{+})}{\int It(A_{w}C_{x}H_{y}M_{z}^{+})} - 3 \cdot 2$$

where the summation in the denominator is carried over all ions. For the metals silicon, germanium, tin and lead hydrocarbon ions generally comprised no more than 5% of the total ion current and abundances have

been found by restricting the summation in the denominator to metal-containing ions only.

Ion currents are measured in arbitary units (a.u.) which depend on sample pressure in source and on instrument sensitivity of ion detection while the spectrum is being recorded. Abundances on the other hand are dimensionless quantities and are hence not dependant, at least to a first approximation on instrument sensitivity.

When a single peak in a low resolution spectrum was known to include currents of two or more ionic species, the current at this mass number was divided amongst the ion species present in the ratio of the ion currents measured for the species when separated under high resolution $(1:20,000)_{\bullet}$

For example in the spectra of diethylberyllium (70eV, source temp. 196°C) the ions $C_2H_6Be^{+}$ and $C_3H_3^{+}$ are present at m/e 39. High resolution measurements show that

$$i_{39}(C_{2}H_{6}Be^{+}) = 8.625 \times i_{39}(C_{3}H_{3}^{+})$$
 3.2
The current carried by ions at m/e = 39 is found from the low resolution spectra as 1.76 a.u.

 $1.76 \ a.u. = i_{39}({}^{13}C38) + i_{39}({}^{C}_{2}H_{6}Be^{+}) + i_{39}({}^{C}_{3}H_{3}^{+}) \ 3.3$ $i_{39}({}^{13}C38) \ \text{is found from the peak height of m/e 38 which is 8.51 units.}$ $i_{39}({}^{13}C38) = i_{38}x \ ({}^{13}C \ \text{natural abundance}) \ x \\ (\text{no. of C atoms in 38^+ ions})$ $= 8.51 \ x \ 0.01 \ x \ 2 = 0.170 \ a.u.$

hence from 3.3

1.59 a.u. =
$$i_{39}(C_2H_6Be^{+*}) + i_{39}(C_3H_3^{+})$$
 3.4

from equations 3.2 and 3.4 it follows

$$i_{39}(C_3H_3^+) = 0.165 a_{\cdot}u_{\cdot} = I(C_3H_3^+)$$

 $i_{39}(C_2H_6Be^{+*}) = 1.425 a_{\cdot}u_{\cdot} = I(C_2H_6Be^{+*})$

The contribution due to the presence of one ^{13}C atom is found as : follows:

$$It(C_{2}H_{6}Be^{+*}) = I(C_{2}H_{6}Be^{+*}) + I(C^{13}CH_{6}Be^{+*})$$

= 1.425 + 1.425 x 0.01 x 2
= 1.454 a.u.
Similarly It(C_{3}H_{3}^{+}) = I(C_{3}H_{3}^{+}) + I(C_{2}^{13}CH_{3}^{+})
= 0.168 a.u.

The total ion current for diethylberyllium is 52.681 a.u. from which using 3.1

$$U(C_{2}H_{6}Be^{+*}) = \frac{1.454 \times 100}{52.681} = 2.76$$
$$U(C_{3}H_{3}^{+}) = \frac{0.168 \times 100}{52.681} = 0.32$$

With polyisotopic metals the calculation is similar. In the spectrum of tetraethyltin the peak pattern produced in the region of m/e 150 is due to the overlap of EtSn⁺ and EtSnH⁺₂. High resolution mass measurements give

$$i_{151}$$
 (¹²²SnEt⁺) = 0.0995 i_{151} (¹²⁰SnEtH⁺₂) 3.5
The current carried by ions at m/e 151 is found from the peak height
of m/e 151 in the low resolution spectra.

$$3.105 a.u. = i_{151}(^{120}\text{SnEtH}_2^+) + i_{151}(^{122}\text{SnEt}^+) + i_{151}(^{13}\text{C150})$$

- 3.6

 $i_{151}({}^{13}C150)$ is found from the peak height of m/e 150 which is 0.77 a.u. $i_{151}({}^{13}C150) = 0.77 \times 0.01 \times 2$ = 0.01 a.u.

hence from equations 3.5 and 3.6

$$i_{151}(^{122}SnEt^+) = (3.105 - 0.01) \ 0.0995 = 0.28 \ a.u.$$

 $i_{151}(^{120}SnEtH_2^+) = (3.105 - 0.01) \ 0.9005 = 2.815 \ a.u.$

 $I(SnEt^+)$ and $I(SnEtH_2^+)$ is then found

$$I(SnEt^+) = i_{151}(^{122}SnEt^+) \times \frac{100}{\text{natural abundance of }^{122}SnEt^+}$$

= 0.28 x $\frac{100}{4.91}$ = 5.945 a.u.

Similarly $I(SnEtH_2^+) = 8.540 a.u.$

Adding the contributions for the presence of one ${}^{13}C$ atom in these ions gives $It(SnEt^+) = 5.945 + 5.945 \times 0.01 \times 2$ = 6.064 a.u.

Similarly $It(SnEtH_2^+) = 8.711 a_{\bullet}u_{\bullet}$

from which

Choosing another set of peaks the values of $It(SnEt^+)$ and $It(SnEtH_2^+)$ may be re-evaluated and mean taken. When ion currents of other metal containing ions have been found the abundances of the species are calculated using equation 3.1.

With ions containing 2 or more polyisotopic elements use is made of the calculated probabilities of occurrence of the various isotope combinations. (given in Appendix 1.) Thus if

$$i_{351} \begin{bmatrix} 197(\text{SnBr})\text{Ph}_2^+ \end{bmatrix} = 9.73 \text{ a.u.}$$

$$I \begin{bmatrix} \text{SnBrPh}_2^+ \end{bmatrix} = 9.73 \text{ x} \frac{100}{\text{probability of occurrence}}$$

$$= 9.73 \text{ x} \frac{100}{67.2} = 14.469 \text{ a.u.}$$

$$It(\text{SnBrPh}_2^+) = 14.79 \text{ x} 1.12 = 16.216 \text{ a.u.}$$

3.4 Assignment of Metastable Peaks

The phrase metastable peaks is used for peaks arising in the mass spectra due to decomposition of metastable ions during their flight through the mass spectrometer tube 1,2. They are recognisable not only from the fact that they appear at non-integral mass numbers but also because they are imperfectly focussed compared with peaks due to ions which travel the whole length of the spectrometer without decomposition. Because of the directional focussing properties of the sector magnetic field the decomposing ions most likely to be recorded are those which undergo the transition in the field free region preceding the magnetic analyser. For the decomposition

 $\underline{\mathbf{m}} \longrightarrow \underline{\mathbf{m}}_{2} + (\underline{\mathbf{m}}_{1} - \underline{\mathbf{m}}_{2})$

with internal energy release TeV the position of maximum intensity for the observed metastable peak covers a mass range given by 98

$$\mathbf{m}^{*} = \frac{\mathbf{m}_{2}}{\mathbf{m}_{1}} \left[1 \quad \mathbf{F} \left(\frac{\mathbf{m}_{1} - \mathbf{m}_{2}}{\mathbf{m}_{2}} \cdot \frac{\mathbf{T}}{\mathbf{eV}} \right)^{\frac{1}{2}} \right]$$

where V is the accelerating voltage between the ionization chamber and entrance slit to the electrostatic analyser. For most metastable decompositions however the internal energy release is small enough to be neglected and the position of maximum intensity is given by

$$\mathbf{m}^* = \frac{\mathbf{m}_2^2}{\mathbf{m}_1}$$

Although the shape of metastable peaks is generally roughly gaussian the peaks often differ widely in width and factors such as finite beam dimensions, angular spreading and kinetic energy of separation of fragments and discriminations against production must be considered

for a complete analysis 99.

The values m_1 and m_2 associated with any metastable peak m^* can usually be determined by a process of trial and error, remembering that the apparent mass is smaller than either of the masses of the ions giving rise to the peak and that the peaks at masses m_1 and m_2 will be much larger than the metastable peak. Of great help in this assignment are tables of m^* values that occur for various values of m_1 and m_2 ($m_1 \leq 500$ and $500 \geq m^* \geq 1$)¹⁰⁰.

With polyisotopic elements present in an ion, metastable peaks produced by the decomposition of such an ion eliminating a neutral species consisting of essentially monoisotopic elements (e.g. a hydrocarbon) must follow the peak pattern of the daughter and parent ions. For example 7a) and b) show metastable peaks for decomposition of $\operatorname{Sn_2CxHy}^+$ and SnCxHy^+ ions respectively. When a polyisotopic element is lost as a neutral fragment, the ion formed will have a different peak pattern from its precurser. The resulting metastable peaks may merge because of their diffuse nature producing a single broad metastable peak. Examples of such are shown in fig.7c) and d). Fig.7e) shows the approximate metastable peak envelope for the decomposition

 $Ph_6 Sn^{+\bullet} \longrightarrow Ph_3 Sn^+ + Ph_3 Sn^{\bullet}$ This has been calculated by considering all the possible decompositions for $Ph_6 Sn^{+\bullet}_2$ ions containing the abundant tin isotopes.

Metasta	able peaks for .	$\begin{array}{c} \operatorname{Ph} \operatorname{Sn} \operatorname{Sn} \operatorname{Ph}^{+\bullet} \to \operatorname{Ph} \operatorname{Sn} \operatorname{Sn} \operatorname{Sn} \operatorname{Sn} \operatorname{Sn} \operatorname{Ph} \operatorname{Sn} Sn$	n ⁺ + Ph ₃ Sn [•]	
Tin iso Ph Sn • 3	otopes in SnPh ⁺ (m ⁺) 3 1	Tin isotope in $Ph_3 Sn^+ (m_2^+)$	$\begin{pmatrix} = \frac{m^2}{2} \\ \frac{m}{1} \end{pmatrix}$	abundance of m [*]
116	116	116	173.5	1
116	117	116	173.25	1
116	118	116	173.0	3.5
117	118	117	173.7 173.7	2 2
116	119	116	172.8 175.8	1
118	118	118	173.5	3
116	120	116	172•5 176 5	4+5 1-5
117	119	117	173•5 175-5	0.5
117	120	117	173•3 176•3	2•5 2-5
118	119	118	174-3	2
118	120	118 120	174 176	- 8 8
116	122	116 122	172 178	0.5 0.5
119	119	119 119	175 175	0.5
119	120	119 120	174•8 175•8	3 3
117	122	117 122	172.8 178.8	0•5 0•5
120	120	120 120	175•5 175•5	5•5 5•5
118	122	118 122	173•5 177•5	1 1
116	124	116 124	171•5 179•5	1 1
119	122	119 122	173•5 177•3	0.5 0.5
117	124	117 124	172•3 179•3	0.5 0.5
120	122	120 122	175 177	1•5 1•5
118	124	118 1 <i>2</i> 4	173 179	1•5 1•5

119	124	119	173.8		0.5
		124	178.8		0.5
120	124	120	174•5		2
		124	178.5	•	2

The relative abundance of the metastable peak produced is found from the relative abundance of the isotope combination of the "parent" m_1^+ ion. For example the relative abundance of the $116_{Sn}118_{Sn}$ combination is 7 and hence the relative abundance of the metastable peak formed by decomposition of $Ph_3^{116}Sn^{118}SnPh_3^{+\circ}$ to $Ph_3^{118}Sn^+$ or $Ph_3^{116}Sn^+$ is 3.5. The m/e values at which the various metastable peaks occur were rounded off to the nearest 0.5 and plotted against relative abundance as shown in fig. 7e). The approximate metastable peak envelope was then drawn bearing in mind the guassian shape of metastable peaks.

It will be apparent that the shape of the metastable peak for a decomposition

 $MM^{*}C_{a}H_{b}^{+} \longrightarrow MC_{e}H_{d}^{+} + M^{*}C_{a-e}H_{b-d}^{+}$ depends on the polyisotopic nature of M and M^{*}. 4. RESULTS AND DISCUSSION.

4.1 Appearance Potentials and Derivation of Bond Dissociation Energies and Heats of Formation.

4.2 Mass Spectra of Organocompounds of Silicon, Germanium, Tin and Lead.

4.3 Mass Spectra of Beryllium Dialkyls.

4.4 Mass Spectra of Organoaluminium Compounds.

Table 4.1.1.

Comparison of measured ionization potentials (I.P.s) with literature values.

	Standard used	Indiv deterr Warren method	ridual minations eV. Semi-log method	Measured I.P. eV.	Literature 3 values for I.P. eV.
Argon	Krypton I.P = 14.00eV	15.80 15.80 15.76	15°76 15°74 15°78	15°77 1 °01	15.755 spectro- scopic
Benzene	Krypton	9.50 9.50 9.52	9°56 9°52	9₀53 <u>±</u> ₀01	9.52 ±.10 9.38 ±.10 electron- impact
					9.247 spectro- scopic .
					9。245 photo- ionization
Nitrogen	Argon I.P. = 15.76eV	15.60 15.58 15.64	15.60 15.60	15°60 7° 01	15.60 <u>+</u> .01 electron impact
					15.58 ±.02 spectro- scopic

Source temperature 185 - 195°C

Ion repeller voltage 0.4 - 2.0 volts.

4. RESULTS AND DISCUSSION

<u>4.1</u> <u>Appearance Potentials and Derivation of Bond Dissociation</u> <u>Energies and Heats of Formation</u>.

4.1.1. Accuracy of Appearance Potential Measurements.

To test the accuracy of the appearance potential measurements, ionization potentials of argon, nitrogen and benzene were measured using the logarithmic and Warren method. Different sets of experimental data were used for each method of calculation. The results of these measurements together with published values of the ionization potentials are presented in table 4.1.1.

The values obtained for argon and nitrogen agree well with the values obtained by other workers and it is apparent in this case that the adiabatic and vertical ionization potential are one and the same. With benzene the measured ionization potential agrees well with the values found by other workers using electron impact methods but is some 0.28eV higher than values obtained by photo ionization or spectroscopic methods.

Both methods of evaluation hence give good estimations of vertical ionization potentials.

<u>4.1.2.</u> Appearance Potentials and Bond Dissociation Energies for Organotin Compounds.

i) Appearance Potentials

Since R_3Sn^+ ions from mono-metallic compounds give similar ionization efficiency curves and under this condition the most accurate determinations of appearance potentials are obtained 101,

 Et_3Sn^+ from Et_4Sn was used as standard except for PhSnEt₃ which produced this ion in its mass spectrum. For this compound Ph_3Sn^+ from triphenylethyl - or tetraphenyl-tin was used. The relationship between $A(Ph_3Sn^+)Ph_3SnR - A(PhSnEt_2)PhSnEt_3$ then enabled $A(Et_3Sn^+)Et_4Sn$ - $A(PhSnEt_2)PhSnEt_3$ to be found.

The ionization efficiency curve for a typical R_3Sn^+ ion is shown in fig. 5 (p. 56) "Tailing" of the ionization efficiency curves often associated with excess energy was observed only for Ph_3Sn^+ ions derived from $Ph_3Sn \cdot SnPh_3$, $Ph_3Sn \cdot SnMe_3$ and $Ph_3Sn \cdot GeMe_3$. The extent of this tailing is shown in fig. 8. where the ionization efficiency curve for Ph_3Sn^+ derived from $Ph_3Sn \cdot GeMe_3$ is shown. A similar long tail has been observed with the ionization efficiency curve of Me_3Si^+ obtained from hexamethyldisilane. 62

The appearance potentials of R_3Sn^+ and R_4Sn^{+*} ions relative to that of Et_3Sn^+ from tetraethyltin are shown in tables 4.1.2. and 4.1.3. Separate sets of experimental data were used for each method of calculation.

A(Et₃Sn⁺)Et₃SnPh was not measured since this ion was of too low abundance.

The reproducibility of the measurements is good, the standard error of the mean being always less than \pm 0.05eV and generally < 0.03eV. In calculating dissociation energy differences an error of twice the maximum observed standard error of the mean has been used (i.e. \pm 0.10eV) 75.•

.

· .

Table 4.1.2.

Appearance potentials of R_3Sn^+ ions.

		A(Et ₃ Sn ⁺)Et ₄ Sn -	$A(R_3Sn^+) eV$	
	R ₃ Sn ⁺	Warren method	Semi-log method	Mean
PhSnEt ₃	$PhSnEt_2^+$	0.17	0.14	0.19 + 0.0
	_	0,21	0,22	0° 19 ± •02
Ph ₂ SnEt ₂	$PhSnEt_2^+$	0.17	0.13	0.15 + 01
		0.17	0.14	
	Ph2SnEt+	0.12	0.13	0.41
		0.15	0.14	0•14 ± •01
PhzSnEt	Ph_SnEt ⁺	-0,31	-0.30	
2	6	-0,21	-0.27	$-0^{\circ}27 \pm .02$
	Ph _z Sn ⁺	0.15	0,17	0 47 . 02
	<i>,</i>	0.15	0.05	
Ph, Sn	Ph _z Sn ⁺	-0,90	-0.90	0.00.01
4)	-0.88	-0.92	$-0.90 \pm .01$
PhzSnI	Ph _z Sn ⁺	0.10	0.05	0 40 00
))	0,10	0.15	0+10 I +02
Ph_SnMe	Ph _z Sn ⁺	0.0	0.02	0.0/1 + .01
2	2	0.01	0.03	
		0.06	0.06	
		0.05	0.08	
Ph ₃ Sn•SPh	Ph _z Sn ⁺	-0.40	-0.30	-0.31 + .03
,)	-0.35	-0.23	
			-0.28	
Ph ₃ Sn•SnPh ₃	Ph _z Sn ⁺	-0.02	-0.07	-0.03 + .02
<i>, ,</i>)	-0.08	-0.10	
		-0.10	+0.04	
			+0.13	
			-0.02	
Ph ₃ Sn•GeMe ₃	Ph _z Sn ⁺	-0.40	-0.29	- 0.38 + .05
, <u>,</u>	1	-0.33	-0.48	
Ph_Sn•SnMe_	Ph _z Sn ⁺	-0.36	-0.28	- 0.24 + .03
כ כ	2	-0,27	-0.17	
		-0 •18	-0.20	

Source temperature 195 - 210°C

Ion repeller voltage 0.4 - 2.0 volts

Table 4.1.3.

Ionization Potential (I.P.) of Et₄Sn and Ph₂SnEt₂ A(Et₃Sn⁺)Et₄Sn - I.P. eV

	Wa rre n	Semi-log	Mean
Et_4Sn	0•58 0•60	0.63 0.59	0.60 <u>+</u> .01
Ph2 ^{SnEt} 2	0•57 0•49	0•62 0•54	0.56 <u>+</u> .03

Source temperature 200°C

Ion: repeller voltage 0.4 - 2.0 volts.

ii) Bond Dissociation Energy Differences.

These have been derived using:

 $A(R_{3}Sn^{+})R_{3}SnR = I(R_{3}Sn^{*}) + D(R_{3}Sn-R) + E 4_{\bullet}1$ where $I(R_{3}Sn^{\bullet}) =$ Ionization potential of $R_{3}Sn^{\bullet}$ $D(R_{3}Sn-R) =$ dissociation energy of bond $R_{3}Sn - R$ E = excess energy associated with $R_{3}Sn^{+}$ and R^{\bullet}

In all calculations E has been taken as zero. By Stevenson's rule ⁵⁹ this will probably be a correct assumption provided $I(R_3Sn^*) \leq I(R^*)$. The low abundance of R⁺ compared to R_3Sn^+ is consistent with this and as mentioned earlier tailing of the ionization efficiency curve was observed only with metal-metal bonded compounds. For Ph_3Sn^* it can be shown that $I(Ph_3Sn^*) \leq I(R)$ (p. 89). It must be emphasised however that possession of the lower ionization potential together with a simple appearance potential curve does not ensure the absence of excess energy so that calculated bond dissociation energies must be regarded as upper limits.

Bond dissociation energy differences are calculated directly from the differences in appearance potentials of the same ions produced from different compounds. Thus using eqn. 4.1 assuming E = 0

 $A(Ph_3Sn^+)Ph_4Sn = I(Ph_3Sn^+) + D(Ph_3Sn - Ph)$ $A(Ph_3Sn^+)Ph_3SnR = I(Ph_3Sn^+) + D(Ph_3Sn - R)$

and by subtraction

 $A(Ph_3Sn^+)Ph_4Sn - A(Ph_3Sn^+)Ph_3SnR = D(Ph_3Sn-Ph) - D(Ph_3Sn-R)$ Even though appearance potentials are known only relative to $A(SnEt_3^+)Et_4Sn$ appearance potential differences may still be found.

> • • • •

÷

, .

•

Table 4.1.4.

Bond energy data.

.

Bond dissociati	on e	nergy differences	(Kc	al. mole -1)	
T	oler	$ance = \pm 3.2$ Kcal	• mo	le ⁻¹ .	
D(PhzSn - Ph)	-	D(PhzSn - Et)	=	23.8	
D(Ph ₂ EtSn - Ph)	-	D(Ph ₂ EtSn - Et)	=	10.4	
D(PhEt ₂ Sn - Ph)	-	D(PhEt ₂ Sn - Et)	Ξ	1.2	
Values of the d	iffe	rence (\triangle) D(Ph	3 ^{Sn}	- Ph) - D(Ph ₃ Sn	– R)

where:-

R 🖻		Δ
GeMez		12.0
SPh	•	13.6
SnMe ₃		15.2
SnPh ₃		20.1
Me		21.7
.I		23.1
Et	, .	23.8

Dissociation energies in molecular ions Koal.mole⁻¹

$D(Et_3Sn^+ - Et)$	=	13.9	±	2.3
D(Ph ₂ EtSn ⁺ - Et)	=	9•7	±	3.2
$D(Ph_2EtSn^+ - Ph)$	=	9•5	±	3.2

Thus

$$A(Et_3Sn^+)Et_4Sn - A(Ph_3Sn^+)Ph_3SnEt = 0.13eV$$
$$A(Et_3Sn^+)Et_4Sn - A(Ph_3Sn^+)Ph_4Sn = -.90eV$$

which by subtraction gives:

$$A(Ph_3Sn^+)Ph_4Sn - A(Ph_3Sn^+)Ph_3SnEt = 1.03eV$$

which is also $D(Ph_3Sn - Ph) - D(Ph_3Sn - Et)$.

In this way the bond dissociation energies differences shown in table 4.1.4. were calculated.

The decrease in the difference in the energies of dissociation $D(Et_nPh_{3-n}Sn - Ph) - D(Et_nPh_{3-n}Sn - Et)$ as n increases from 0 to 2 emphasises the well known unacceptability of the simple model of constant, transferable and additive bond energy terms. A similar variation occurs with methylphenyl tin compounds.

 $D(Me_{3}Sn - Ph) - D(Me_{3}Sn - Me)^{64} = 8 \pm 6 \text{ Kcal. mole}^{-1}$ and $D(Ph_{3}Sn - Ph) - D(Ph_{3}Sn - Me) = 22 \pm 3 \text{ Kcal. mole}^{-1}$

This may indicate a general rule that the energy difference in removing an alkyl or phenyl group from gaseous (alkyl) SnPh becomes less with increasing alkyl content.

The bond dissociation energies in table 4.1.4. have been extremely useful (see page 105) in interpreting the nature of the mass spectra of these organometallic compounds.

> iii) <u>Bond Dissociation Energies in Molecular Ions</u>. These were obtained using the relationship

 $A(R_{3}Sn^{+})R_{1}Sn = I(R_{1}Sn) + D(R_{3}Sn^{+} - R)$

assuming the excess energy associated with the formation of R. and R₃Sn⁺

• • • • • · · ·

α. **ν.**θ.

• •

-

- · · · · · · · ·

Table 4.1.5.

Appearance potential of Et_3Sn^+ derived from Et_4Sn (eV)

	Warren	Semi-log	Mean
A(Et ₃ Sn ⁺)Et ₄ Sn	8.66	8.48	8.70 <u>+</u> 0.09
	8.93	8.73	

Source temperature 195° C Standard used Xe I.P. = 12.13eV.

Appearance potentials of Ph₃Sn⁺ ions and heats of formation of triphenyltin compounds.

	$A(SnPh_3^+)$	$\Delta \operatorname{H}_{\mathbf{f}}^{\circ}(\operatorname{SnPh}_{\mathbf{z}}\mathbb{R})_{\mathbb{F}_{\mathbf{f}}^{\circ}}$
	(<u>+</u> .2eV)	Kcal. mole -1
Ph ₄ Sn	9.6	114 ± 1 ¹⁰³
Ph ₃ SnEt	8.6	91 ± 7
PhzSnI	8.6	91 ± 7
Ph ₃ SnMe	8.7	97 ± 7
PhzSn•SPh	9.0	103
Ph ₃ Sn•GeMe ₃	9.1	-
Ph ₃ Sn•SnMe ₃	8.9	92 <u>+</u> 8
Ph3Sn•SnPh3	8.7	· •

to be negligible. Again appearance potentials measured relative to $A(Et_3Sn^+)Et_4Sn$ yield values for these energies viz:

 $A(SnEt_{3}^{+})Et_{4}Sn = I(Et_{4}Sn) + D(Et_{3}Sn^{+} - Et)$ Since $A(SnEt_{3}^{+})Et_{4}Sn - I(Et_{4}Sn) = 0.6eV$ (table 4.1.3. p. 77) If follows that

$$D(Et_3Sn^+ - Et) = 0.6eV$$

Similarly $D(Ph_2EtSn^+ - Et)$ and $D(PhEt_2Sn^+ - Ph)$ were evaluated the results being displayed in Table 4.1.4. Other dissociation energies in parent ions were not measured, because in these cases the parent ion was of such low abundance that the appearance potential could not be measured. The low Sn - C bond energies in R_4Sn^{+*} ions compared with those in the molecule (see Table 4.1.6.) are consistent with a bonding electron being removed from an Sn - C bond.

iv) Heats of Formation of Triphenyltin Compounds.

To determine heats of formation the absolute values of appearance potentials are required. Thus $A(Et_3Sn^+)Et_4Sn$ was measured using xenon as standard $I(Xe^{\circ}) = 12.13eV$ ¹⁰² giving the result shown in Table 4.1.5. In the determination of heats of formation an error of $\pm 0.2eV$ which is twice the standard error of the mean has been assumed. Using this value of $A(Et_3Sn^+)Et_4Sn$ (8.7 \pm 0.2eV) appearance potentials of Ph₃Sn⁺ ions were derived using Table 4.1.2. and are shown in Table 4.1.5.

Heats of formation have been calculated assuming the occurrence of a simple dissociative process involving no excess energy:-

 $Ph_3SnR + e \longrightarrow Ph_3Sn^+ + R + 2e$

It follows that

 $A(Ph_{3}Sn^{+})Ph_{3}SnR = \Delta H_{f}^{o}(Ph_{3}Sn^{+}) + \Delta H_{f}^{o}(R \cdot) - \Delta H_{f}^{o}(Ph_{3}SnR)_{g}$ from which

 $\Delta H_{f}^{0}(Ph_{3}SnR)_{g} = \Delta H_{f}^{0}(Ph_{3}Sn^{+}) + \Delta H_{f}^{0}(R \cdot) - A(Ph_{3}Sn^{+})Ph_{3}SnR - 4 \cdot 2$ First $\Delta H_{f}^{0}(Ph_{3}Sn^{+})$ must be evaluated from a calorimetric estimation of $\Delta H_{f}^{0}(Ph_{4}Sn)$ gaseous $(114 \cdot 3 \pm 1 \text{ Kcal. mole.}^{-1})^{103}$, $A(Ph_{3}Sn^{+})$ and $\Delta H_{f}^{0}(Ph^{-})$ gaseous $(72 \pm 2 \text{ Kcal. mole.}^{-1})^{104}$. This quantity $(263 \pm 5 \text{ Kcal.mole.}^{-1})$ combined with the appropriate appearance potential and standard radical (gaseous) heats of formation $(CH_{3} \cdot 34 \pm 1 \, {}^{104}; C_{2}H_{5} \cdot 26 \pm 1 \, {}^{104}; Phs \cdot 50^{104};$ $Me_{3}Sn \cdot 35 \pm 4^{64}; I \cdot 25 \cdot 54 \pm 0 \cdot 01^{102} \text{ Kcal. mole.}^{-1})$ gives the standard heats of formation for triphenyltin compounds shown in table 4.1.5.

v) Ph₃Sn - R Bond Dissociation Energies.

For absolute evaluation of these dissociation energies the ionization potential of Ph_3Sn • is required. Since it is possible to evaluate this quantity from the appearance potential measurements provided $\Delta H_1^0(Ph_6Sn_2)$ (gaseous) is known ⁶⁴ a calculation of this quantity using the Franklin group parameter method ¹⁰⁵ was attempted.

It was shown for hydrocarbons that ΔH_{f}^{0} was an additive function of the groups making up the molecule and ΔH_{f}^{0} values for many characteristic hydrocarbon groups were calculated from known heats of formation for various hydrocarbons. Unmeasured heats of formation could then be estimated by the addition of these group values although for highly branched molecules correction factors had to be applied.

The ΔH_{f}^{0} group value for tetravalent tin can be found from the standard heats of formation of gaseous organotin compounds using:

$$\Delta H_{f}^{o}(R_{4}Sn)_{g} = 4 \times G(R^{\bullet}) + G(Sn^{\bullet})$$

where

 $G(R{\boldsymbol{\cdot}})$ is the ${\bigtriangleup H}_{\mathbf{f}}^{\circ}$ group value for $R_{\boldsymbol{\cdot}}$

G(Sn) is the ΔH_{f}° group value for tetravalent Sn. Using ΔH_{f}° group values for R given by Franklin ¹⁰⁵ [In Kcal.mole⁻¹ at 298°K G(CH₃•) = -10.1; G(-CH₂-) = -4.9; G(-CH:CH₂) = 15.00; G(C₆H₅°) = 22.1] and the calorimetrically determined standard heats of formation for nine R₄Sn compounds ¹⁰⁶, G(Sn) is evaluated at 298°K as 38 ± 3 Kcal. mole ⁻¹.

Using this group value the following heats of formation were estimated at 298°K. $\triangle H_{f}^{\circ}$ (Ph₃SnEt) = 89 ± 3 Kcal. mole ⁻¹ and $\triangle H_{f}^{\circ}$ (Ph₃SnMe) = 94 ± 3 Kcal. mole ⁻¹. which agree with the experimentally determined values in table 4.1.5. [i.e. $\triangle H_{f}^{\circ}$ (Ph₃SnEt)_g = 91 ± 7; $\triangle H_{f}^{\circ}$ (Ph₃SnMe)_g = 97 ± 7 Kcal. mole ⁻¹.]

Because a correction factor may apply to compounds containing a tin-tin bond calculated heats of formation of such compounds (obtained using the above ΔH_{f}° group values) were compared with experimentally determined values.

	Calculated Kcal. mole ⁻¹ .	Measured Kcal. mole-1.	Difference Kcal. mole ⁻¹ .
$\Delta H_{f}^{\circ} (Me_{6}Sn_{2})_{g}$	15 ± 6	-7.6 ±2 106	22.6
$\Delta H_{f}^{\circ} (Et_{6}Sn_{2})_{g}$	-13 ± 6	-37 ± 3^{106}	24
$\Delta H_{\mathbf{f}}^{\circ}$ (Ph ₃ Sn•SnMe ₃) _g	112 <u>+</u> 6	92 <u>+</u> 8	20

From these it follows that 22 Kcal. mole⁻¹. should be subtracted from the calculated heat of formation for a ditin compound. ΔH_{f}° (Ph₆Sn₂)_g was thus estimated as 186 ± 6 Kcal. mole⁻¹.

2

From equation 4.2 it follows that -

•

... • . --- •

-. · _ ..

. ·· _ · -

· · ·

Table 4.1.6.

Bond dissociation energies.

5

	Kca	Kcal. mole -1.		
R	$D(Ph_3Sn - R)$	D(Me ₃ Sn -R)	D(Me ₃ Si - R)	
	This work	Ref. 64.	Ref. 63.	
Ph	83 ± 10	81 <u>+</u> 5		
Et	60 <u>+</u> 10	68 <u>+</u> 4		
I	60 <u>+</u> 10	80 ± 4	69 <u>+</u> 2	
Me	62 <u>+</u> 10	73 ± 4	76 <u>+</u> 2	
SPh	69 <u>+</u> 10			
GeMe3	71 <u>+</u> 10			
SnMe3	67 <u>+</u> 10	76.0		
SnPh 3	62 <u>+</u> 10			
SiMe3			67 <u>+</u> 2	

$$\Delta H_{f}^{\circ} (Ph_{3}Sn^{\bullet}) = \Delta H_{f}^{\circ} (Ph_{6}Sn_{2}) + A(Ph_{3}Sn^{+})Ph_{6}Sn_{2} - \Delta H_{f}^{\circ}(Ph_{3}Sn^{+})$$
$$= 124 \pm 9 \text{ Kcal. mole } -1.$$

The ionization potential of the triphenylstannyl radical is hence:-

$$I(Ph_{3}Sn^{\bullet}) = \Delta H_{f}^{\circ} (Ph_{3}Sn^{+}) - \Delta H_{f}^{\circ} (Ph_{3}Sn^{\bullet})$$

= 139 ± 10 Kcal. mole ⁻¹.
= 6.0 ± 0.4 eV.

Values for $D(Ph_3Sn - R)$ determined from this ionization potential and $A(Ph_3Sn^+)Ph_3SnR$ (using eqn. 4.1) are given in table 4.1.6.

 $\overline{D}(Sn-Ph)$ has been calculated as 61.4 ± 2 Kcal. mole -1 from ΔH_{f}° (Ph₄Sn)g. ¹⁰³ using the relationship

 $\overline{D}(Sn-Ph) = \frac{1}{4} \triangle H_{f}^{\circ}(Sn)g. + \Delta H_{f}^{\circ}(Ph) - \frac{1}{4} \triangle H_{f}^{\circ}(Ph_{4}Sn)g.$ giving $D(Ph_{3}Sn-Ph) = \overline{D}(Sn-Ph) + 22 \pm 10$ Kcal. mole⁻¹. A similar relationship has also been found with tetramethyltin where $D(Me_{3}Sn-Me) = \overline{D}(Sn-Me) + 21 \pm 4$ Kcal. mole⁻¹. Thus it appears that one should not attempt to approximate a bond dissociation energy with a mean bond dissociation energy for organotin compounds. With silicon the picture is somewhat confusing. $D(Me_{3}Si-Me)$ is about the same as the value ~77 Kcal. mole⁻¹. for $\overline{D}(Si-Me)$ calculated from $\triangle H_{f}^{\circ} = (Me_{4}Si)g.$ ¹⁰⁷ and $\triangle H_{f}^{\circ}(Si)g.$ ¹⁰². But with alkysilanes $D(H_{3}Si-R)$ are higher than mean $\overline{D}(Si-R)$ values calculated assuming that the values for $\overline{D}(C-H)$ and $\overline{D}(Si-H)$ determined for CH_{4} and SiH_{4} can be carried over to RSiH₃ compounds.¹

Even though $\overline{D}(M-C)$ values for group IVb organometallic compounds increase steadily from lead to carbon,¹⁰⁶ $D(Me_3Si - Me)$ is only slightly larger than $D(Me_3Sn - Me)$ and $D(Ph_3Sn - Me)$. Surprisingly the metal-metal bond strength in hexamethyldisilane is equal or even weaker than the tin-tin bond in ditin compounds.

Comparison of $D(Me_{j}Sn - R)$ and $D(Ph_{j}Sn - R)$ shows that the strengths of tin-alkyl, tin-phenyl and tin-tin bonds are very similar for the two sets of compounds. The tin-iodine bond however is far weaker in the triphenyltin iodide and this is difficult to explain. $p\pi - d\pi$ interaction between silicon and halogen atoms has been invoked to explain the variation of $D(Me_{j}Si - X)$ from X = Cl to X = I, this interaction being greatest for iodine ¹⁰⁹. If such interaction occurs for tin it may be that with $Ph_{j}SnI$ the $\pi -$ electron cloud of the phenyl groups interact with d - orbitals of tin and prevent any $p\pi - d\pi$ interaction between tin and iodine so producing a weaker Sn - I bond than found in $Me_{j}Sn - I$. Alternatively there may be steric interaction between iodine atoms and the bulky phenyl groups.

It is interesting to compare the ionization potentials of Group IVb R₃M·radicals and Me₁M molecules.

 C
 Si
 Ge
 Sn
 Pb

 Me_4^M $10.29e^{102}_{eV}$ $9.8 \pm .15eV^{111}9.2 \pm .2eV^{111}$ $8.25 \pm .15eV^{111}8.00 \pm .4eV^{111}$
 Me_3^M .
 $7.42eV^{102}$ $7.1eV^{63}$ $6.54eV^{64}$
 Ph_3^M .
 $7.23eV^{110}$ $6.00 \pm .4eV$

The ionization potentials decrease with both increase in atomic number of the central atom and with increasing phenyl content. This allows an approximate estimation of ionization potentials:- $I(Me_3Ge) \sim 6.8eV.$, $I(Me_3Pb.) \sim 6.2eV.$, $I(Ph_3Si.) \sim 6.8eV.$, $I(Ph_3Ge.) \sim 6.4eV.$ and $I(Ph_3Pb.) \sim 5.6eV.$
e 4 * -

			•	
	•			

-

_

. ---

- κ 7
- .
- a _ _ -
- · _ _
- •_ *
- •_ ~ ~ ~ `

Table 4.1.7.

Ionization potentials of dialkyberyllium compounds.

۰

	Ionization Potential eV	Values of Individual Determinations eV	Standard Used	Ion Repeller Voltage	Source Temp. oc
Me2 ^{Be}	10.67 <u>+</u> 0.07	10.64 10.76	Argon	0	217
		10,50	18	-0.2	193
		10.76	Ħ	-0.2	187
		10.88	tt		185
		10.46	11	₩ 0•2 0	220
Et ₂ Be	9•46 ± 0•05	9.66	Krypton	_1	230
		9.50	ti ti	0.1	213 - 230
		9.36	tr	0.4	197 - 213
		9.48	11	-1	230
		9.38	ft	0.4	197
		9.38	tt ·	0.4	195
(n-Pr) ₂ Be	8.71 ± 0.06	8.52	Argon	- 5	180
		8.76	11	5	180
		8.60	· 18	5	180
		8.84	. H	5	180
		8.84	11	5	180
(i-Pr) ₂ Be	8.80 ± 0.02	8.80	Krypton	-0.7	205
		8.88	17	-0.7	205
		8.80	tt	-0.7	205
		8.80	t1	-0.7	205
		8.72	Argon	-0.5	210
(i-Bu) ₂ Be	8•74 <u>+</u> •05	8.69	Xenon	5.0	205
_		8.71	Ħ	5.0	205
		8.89	11	2.4	19.8 - 205
		8.89	ŧ1	5.0	205 _
		8.71	11	5.0	205
		8.57	łŧ	5.0	205

These estimates and values for the ionization potentials of other radicals 102 (I(CH₃) = 9.86eV, I(C₂H₅) = 8.80eV., I(C₆H₅) = 9.4eV. and I(I.) = 10.45eV.) verify the validity of the assumption made earlier that for the molecule Ph₃SnR, I(Ph₃Sn.) \leq I(R.).

4.1.3. Ionization Potentials and Bond Dissociation Energies of Dialkylberyllium Compounds.

i) Ionization Potentials of Dialkyberyllium Compounds.

Appearance potentials of $R_2Be^{+\cdot}$ ions produced in the spectra of dialkylberyllium compounds have been measured. At the high source temperature used during these measurements (c.f 200°C) electron deficient associated species such as R_4Be_2 are almost totally decomposed to monomer R_2Be . Thus it is most likely that $R_2Be^{+\cdot}$ ions are formed by ionization of R_2Be molecules rather than decomposition of ions containing more than one beryllium atom. The appearance potential of this ion is hence most probably a measure of the vertical ionization potential of unassociated berylliumdialkyls.

The ionization efficiency curves for these ions were very similar to those produced for the inert gases and in fig. 4 (p. 55) typical curves obtained are illustrated. Values of the ionization potentials obtained by the Warren method are given in table 4.1.7. As with measurements on organotin compounds the reproducibility of the determination is good.

The determination of $I(i-Bu_2Be)$ is probably high because the intensity of the ion $i-Bu_2Be^{+}$ was low so making the sensitivity of ion detection low.

.

•.

۰.

" ---. .

. .

.

• • •

.

• • •__ •

Table 4.1.8.

Vertical ionization potentials of main group organometallic compounds.

Group I	Ib						
	R	I.P.(eV.)	Ref		R	I.P.(eV.)	Ref.
R ₂ Zn	Me	8 . 86±.15	12	RSiMe3	OMe	9•79±•04	60
-		(8,90+2)	111	-	F	10 . 55 <u>+</u> .06	60
R ₂ Hg	Me	(9.1 ± 1)	112		Cl	10.58±.04	60
	Et	8.5 +.1	112		Br	10 . 24 <u>+</u> .02	60
	i-Pr	7.6 +.1	112		NET 2	8 •06<u>+</u>•0 2	60
				P Ce	Мо	0 2 + 2	
Group I	IIb			1400	7476	702 <u>T</u> 02	111
R _z B	Me	8.8 ±.2	113	R , Sn	Me	8.25±.15	111
5	Et	9.0 ±.2	113	4	Et	8 . 1 <u>+</u> .2	115
RzAl	Me	9 •09±• 3	12	Rt SnPh	÷	94+0	445
, 				2 2 2			115
Group I	Vb			R, Pb	Me	8.0 +.2	111
RSiH3	Et	10 . 18 <u>+</u> .05	114	4			
	i-Pr	9•85 <u>+</u> •1	114	Group Vb			
	t-Bu	9•5 <u>+</u> •2	114				-
RSiCl ₃	Me	11 . 36 <u>+</u> .03	114	R ₃ As	Me	8.3 ±.1	116
-	Et	10.74+.04	114	-	CF3	11.0 <u>+</u> .1	116
	i-Pr	10.28±.1	114		н	10.6 ±.1	116
RSiMe ₃	H	9.8 ±.3	111		Cl	11.7 +.1	116
-	Me	(9.8 <u>+</u> .15	111	RAsH ₂	Me	9•7 +•1	116
		(9•98±•03	60	Z RAgCl	Мо		116
	Et	9. /0±.01	60	$\frac{1}{2}$	ine Ne		110
		9•50±•03	60	$RAs(CF_3)_2$	Me u	$10_{\bullet}5 \pm 1$	116
	t-Bu	9.04±.06	60		11 C]	10.9 ± 1	116
	Simez	8.79±.08	60	RAsMe	CF-	$9_{-}2 + 1$	116
	OSiMe3	9•59±•04	60	2			444
					n Cl	$y_{\bullet}U \pm_{\bullet}1$	116
				D GL	UL VL	フ•フ <u>キ</u> •1	110
				rzod	Me	8 • 04 <u>+</u> •16	12

R₃Sb

12

The most apparent trend is the lowering of the ionization potential as the size of the attached group is increased, the largest drop being 1.21eV between $I(Me_2Be)$ and $I(Et_2Be)$. A similar variation occurs with the vertical ionization potentials of other organometallic compounds (see table 4.1.8.) of the main group.

The physical basis for such a result is the macroscopic view that in removing an electron from a molecule the resultant charged species can distribute the charge at least partially over its surface. Consequently the repulsive energy due to the net charge will be less as the surface increases. Another point of view is that any charged species will induce a dipole in any uncharged species and hence be attracted to it. Thus the work in removing an electron will be less if another species is in its neighbourhood.

The ionization potential of Me_2Be is higher than any other fully alkylated organometallic compound. If the dimethylcompounds of group IIa vary in the same way as those of IVb, this ionization potential will also be higher than those of Me_2Mg and Me_2Ca . Such a trend is however not apparent in group IIb where the ionization potentials of both Me_2Zn and Me_2Hg are about 8.9eV and in group IIIb the ionization potential of Me_3B is lower than that of Me_3Al .

ii) <u>Appearance Potentials of Fragment Ions and Bond</u> <u>Dissociation Energies in Ions</u>.

The appearance potential curves for $C_{4}H_{9}Be^{+}$ and $C_{4}H_{8}Be^{+}$ produced from di-iso-butylberyllium are shown in fig. 9. The curves produced are typical of those given by ions $C_{n}H_{2n+1}Be^{+}$ and $C_{n}H_{2n}Be^{+}$ produced from $(C_{n}H_{2n+1})_{2}Be$. It is immediately apparent that some "tailing"

Fig. 9

· •

· • • •

,

.

. . . .

. • •

. .

• A

***** 1

*

•

· --

,

• _____.

n .

• _

. . .

•

• • • • · · ·

• . • • • • • •

, (**۲** ۲ * ·

* 2

• • • • • <u>م</u> . n . c ٤. • : × • • · c * · c **x** · · •· c + (

• <u>ہ</u> • 、 • ૨ ٤ * · · ·

* c = . ¢ r 'c 2 n ç

۲ ۲ . . r (n ۴ • c * ; * * ; * n + ÷. * 2 × · n

---. . • • • ۰. . 5

• · * 2 " • --

Table 4.1.9.

Appearance potentials of major ions in spectra of beryllium dialkyls.

	Appearance Potential eV.	Values of Individual Determinations eV.	Standard Used	Ion Repeller Voltage	Source Temp. °C.
Me ₂ Be					
CH ₂ Be ^{+•}	11.92 ± .05	11.92,11.96,12.02 12.01 11.70	Argon Me ₂ Be Argon	-0.2 0 0.1	193 199 210
CH ₃ Be ⁺	12.67 ± .02	12.70,12.70,12.68 12.71 12.58	Argon Me ₂ Be Argon	-0.2 0 0.1	193 194 210
Et ₂ Be					,
C ₂ H ₄ Be ⁺ •	10.35 ± .03	10.42,10.26,10.26 10.44,10.28,10.38 10.42	Argon "	1.4 0.2 0.5	220 200 225
^с 2 ^H 5 ^{Be+}	11.51 ± .05	11.50,11.76,11.34 11.32,11.52,11.64 11.52	Argon "	1.4 0.2 0.5	220 200 225
(i-Pr) ₂ Be		· · ·			
с ₃ н ₆ ве+•	9.60 ± .01	9•57,9•56,9•66 9•70,9•51	Argon "	-0.5 1.0	205 190
C ₃ H ₇ Be ^{+•}	10.65 ± .01	10•59,10•68,10•67 10•75,10•54	Argon "	-0.5 1.0	205 190
(n-Pr)2Be					
C_H_Be ^{+•} 3 6	9.86 ± .05	9 •92,9•98,9•7 6 9•72 ,9 •92	Argon "	+ 4.6 + 4.6	185 185
с _{.Н.Ве} +• 37	10.81 <u>+</u> .05	10.92,10.92,10.72 10.72,10.76	Argon "	+ 4.6 + 4.6	185 185
(i-Bu)2Be					
с ₄ н ₈ ве+•	9•14 ± •03	9.14,9.02 9.20 9.16 9.16	Krypton " "	5.0 2.5 3.0 2.4	205 198 205 205
C ₄ H ₉ Be⁺	10.00 ± .05	10.18,9.90 10.04 9.94 9.96	Krypton "	5•0 2•5 3•0 2•5	205 198 205 205

occurs with these fragment ions especially for the $C_n H_{2n+1} Be^+$ ion (i.e. in fig. 9, $C_1 H_9 Be^+$).

In table 4.1.9. the values of the appearance potentials as determined by the Warren method are given. Again the reproducibility of measurement was good and the standard error of the mean of estimations never exceeded \pm 0.05eV. In calculating bond-dissociation energies an error of twice the maximum observed standard error of the mean has been used (\pm 0.1eV).

If the ion RBe^+ from R_2Be (R = alkyl) is formed by the simple dissociative process:-

 R_2^{Be} + e \longrightarrow RBe^+ + $R\bullet$ + 2e involving no excess energy then

 $D(RBe^+-R) = A(RBe^+)R_2Be - I(R_2Be)$ 4.3 The excess energy term is most likely to be zero if $I(RBe^{\bullet}) \leq I(R^{\bullet})$. The low abundance of R^+ in comparison to RBe^+ at low source temperatures (when hydrocarbon ions are less likely to be formed by thermal decomposition of beryllium dialkyls prior to ionization) is consistent with this. The occurrence of "tailing" of the ionization efficiency curves is however not consistent with a negligable excess energy term and so all derived bond dissociation energies must be regarded as upper limits.

Using equation 4.3 bond dissociation energies shown in table 4.1.10 have been derived.

Table 4.1.10.

Bond dissociation energies in dialkylberyllium.

molecular ions.

R	$D(RBe^{\pm}-R)$ Kcal. mole. ⁻¹ *(error = \pm 3.2 Kcal. mole. ⁻¹)
Me	46.1
Et	47.3
i-Pr	48.7
n–Pr	42.7
i-Bu	29•1

* error calculated assuming a tolerance of \pm 0.1eV in the appearance potential measurements.

The low value obtained for $D(i-BuBe^+-i-Bu)$ probably results from the estimation of $I(i-Bu_2Be)$ being too high (see p. 89)

Beryllium-carbon bond strengths in molecular ions of the dialkyls are much stronger than the tin-carbon bond strengths in $Et_4Sn^{+\cdot}$ or $Ph_2SnEt_2^{+\cdot}$ which were of the order of 10 Kcal. mole.⁻¹. Other metal-carbon bond strengths in molecular ions may be evaluated from appearance potentials published in the literature assuming the decomposition

 $R_nM + e \longrightarrow R_{n-1}M^+ + R_{\bullet} + 2e$ to occur with no excess energy release. Values are given in table 4.1.11.

The Be-C bond dissociation energy is most similar to that for zinc-methyl in $Me_2Zn^{+\bullet}$. For dimethyl zinc the metal-carbon bond in the molecule is almost the same as in the ion indicating the removal of an essentially non-bonding electron upon ionization i.e. $D(MeZn \rightarrow Me)^{106}$

Table 4.1.11.

Bond dissociation energies in molecular ions (Kcal.mole.⁻¹)

 $D(MeZn^{+}-Me)^{12}$ $D(RHg^{+}-R)$ $J2 (Me)^{111,112} 27 (Et)^{112} J5 (i-Pr)^{112}$ $D(R_{2}B^{+}-R)^{117}$ J5 (Me) I4 (Et) $D(Me_{2}A1^{+}-Me)^{12}$ J2 J2

= 47.2 ± 1 Kcal. mole.⁻¹ With dimethylmercury however the Hg-C bond strength in the ion is lower than in the molecule and in this case the electron comes from a bonding orbital i.e. $D(MeHg-Me)^{106} = 51.5 \pm 2$ Kcal. mole.⁻¹; $D(EtHg-Et)^{106} = 42.5 \pm 2$ Kcal. mole.⁻¹.

With beryllium dialkyls it is difficult to envisage removal of anything but a bonding-electron upon ionization in which case the beryllium carbon dissociation energy in the molecule D(RBe-R) will be greater then ≈ 45 Kcal. mole.⁻¹. It would be interesting to compare this value with a mean beryllium-carbon bond dissociation energy to see whether the beryllium dialkyls resemble dimethylmercury in which D(MeHg-Me)= 51.5 ± 2 Kcal. mole.⁻¹ and $D(Hg-Me) = 6.9 \pm 3$ Kcal. mole.⁻¹ or dimethylzinc where the difference between the two dissociation energies is much less $D(MeZn-Me) = 47.2 \pm 1$ Kcal. mole.⁻¹ and $D(Zn-Me) = 36.8 \pm 3$ Kcal. mole.⁻¹. Unfortunately however no calorimetric data is available for beryllium dialkyls.

A metastable peak present for berylliumdialkyls shows that the $C_nH_{2n}Be^{+*}$ ion is formed by the process

 $e + (C_nH_{2n+1})_2Be \rightarrow C_2H_{2n}Be^{+\cdot} + C_nH_{2n+2} + 2e$

· .

. .

÷ .

n 7° 1 .

* , *****

• ... •

• •

97.

• • • · • •

Table 4.1.12.

Enthalpy change (ΔH) for reaction:

 $C_nH_{2n+1}Be^+ + C_nH_{2n+1} \rightarrow C_nH_{2n}Be^+ + C_nH_{2n+2}$

 $\Delta H(\text{Kcal. mole.}^{-1})$ error ± 3.2 Kcal. mole. $^{-1}$

CH ₃ Be ⁺	+	^{СН} 3•	\rightarrow CH ₂ Be ^{+•}	+ CH ₁₄	-17.30
^с 2 ^Н 5 ^{Ве+}	+	^C 2 ^H 5•	$\rightarrow C_{24}^{HBe^{+}}$	+ ^C H 26	-26.8
$n-C_H_{3}$ Be ⁺	+	n-C _H •	$\rightarrow C_{3}H_{6}Be^{+}$	+ ^C 3 ^H 8	-21.9
i-C ₃ H ₇ Be ⁺	+	i-C ₃ H↑	$\rightarrow c_{3H_6Be^{+}}$	+ ^C ₃ ^H 8	-24. 2
i- C ₄ H9 ^{Be+}	+	с ₄ 49	$\rightarrow C_{4}H_{8}Be^{+}$	+ ^C 4 ^H 10	-19.8

error calculated assumed a tolerance of ± •1eV for appearance potential measurements.

Table 4.1.13.

Bond dissociation energies $D(BeC_nH_{2n}^+-H)$ (Kcal. mole.-1)

$D(BeCH_2^+ - H)$	86•7 ± 3•4
$D(Bec_{2}H_{4}^{+}-H)$	71•5 ± 3•4
$D(Be-i-C_3H_6^+-H)$	76.0 ± 3.8
$D(Be-n-C_3H^+-H)$	70•7 ± 3•4
$D(Be-i-C_{\mu}H_{8}^{+}-H)$	77•7 ± 3•8

Hence

and

$$\mathbf{A}(\mathbf{C}_{n}\mathbf{H}_{2n}\mathbf{B}\mathbf{e}^{+}) = \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n}\mathbf{B}\mathbf{e}^{+}) + \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n+2}) - \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n+1})_{2}^{\mathbf{B}\mathbf{e}}$$

$$\mathbf{A}(\mathbf{C}_{n}\mathbf{H}_{2n+1}\mathbf{B}\mathbf{e}^{+}) = \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n+1}\mathbf{B}\mathbf{e}^{+}) + \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n+1}\cdot) - \Delta\mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{C}_{n}\mathbf{H}_{2n+1})_{2}^{\mathbf{B}\mathbf{e}}$$

by subtraction

$$\Delta H = A(C_nH_{2n}Be^+) - A(C_nH_{2n+1}Be^+) = \Delta H_f^0(C_nH_{2n}Be^{+}) - \Delta H_f^0(C_nH_{2n+1}Be^+) + \Delta H_f^0(C_nH_{2n+2}) - \Delta H_f^0(C_nH_{2n+1})$$

Thus ΔH is the enthalpy change for the reaction

 $C_nH_{2n+1}^{Be^+} + C_nH_{2n+1}^{\bullet} \rightarrow C_nH_{2n}^{H}Be^{+\bullet} + C_nH_{2n+2}^{\bullet} \Delta H$ 4.4. These values of ΔH are illustrated in table 4.1.12. The reaction 4.4. is exothermic in all cases to the extent of -22 Kcal. mole.⁻¹.

From eqn. 4.4. it also follows: $\Delta H_{f}^{0}(C_{n}H_{2n}Be^{+}) - \Delta H_{f}^{0}(C_{n}H_{2n+1}Be^{+}) = \Delta H - \Delta H_{f}^{0}(C_{n}H_{2n+2}) + \Delta H_{f}^{0}(C_{n}H_{2n+1})$ and so the dissociation energy

 $C_{n}H_{2n+1}Be^{+} \longrightarrow C_{n}H_{2n}Be^{+} + H^{\bullet}$

may be found

$$D(BeC_{n}H_{2n}^{+}-H) = \Delta H - \Delta H_{f}^{0}(C_{n}H_{2n+2}) + \Delta H_{f}^{0}(C_{n}H_{2n+1}^{-}) + \Delta H_{f}^{0}(H^{+})$$

These dissociation energies are given in table 4.1.13. In this calculation
the following heats of formation were used (expressed in Kcal. mole.⁻¹):

$$\Delta H_{f}^{0}(CH_{3}^{+})^{104} = 34 \pm 1; \Delta H_{f}^{0}(Et^{+})^{104} = 26 \pm 1; \Delta H_{f}^{0}(n-Pr)^{104} = 21 \pm 2;$$

$$\Delta H_{f}^{0}(i-Pr)^{104} = 17.6 \pm 1; \Delta H_{f}^{0}(i-Bu)^{104} = 14 \pm 2; \Delta H_{f}^{0}(CH_{4}^{-})^{118} = 17.9;$$

$$\Delta H_{f}^{0}(C_{2}H_{6}^{-})^{118} = -20.2; \Delta H_{f}^{0}(C_{3}H_{8}^{-})^{118} = 24.8; \Delta H_{f}^{0}(n-butane)^{118} = -29.8;$$

$$\Delta H_{f}^{0}(2 \text{ methyl propane})^{118} = -31.4.$$

Excepting for $D(BeCH_2^+-H)$ these ion dissociation energies are very similar at around 74 Kcal. mole.⁻¹. This exception for the $CH_3^-Be^+$ ion can be explained if some stabilising rearrangement is assumed for $C_{\text{n}} = 2n$ be^{+•} ions containing more than one carbon atom. Thus the structure of the ethyl compound may be $\begin{bmatrix} -CH_2 \\ H_2 \end{bmatrix}$ ^{+•} rather than $\left(CH_2 = CH_2 + CH_$

(where each dotted line represents a bond containing only one electron) and similarly $C_{3}H_{6}Be^{+\cdot}$ ions may be $\begin{bmatrix} -CH(Me) \\ Be^{-CH_{2}} \end{bmatrix}^{+\cdot}$. Alternatively the structure $\begin{bmatrix} CH_{2} \\ CH_{2} \end{bmatrix}^{+\cdot}$ may be proposed which bears

similarities to the cationated cyclopropane rings which have been postulated to explain the breakdown ¹¹⁹ of t-butyl-benzene - $\propto -^{13}C$ and the structure ¹²⁰ of $C_{3}H_{7}^{+}$ ions which are abundant in so many hydrocarbon spectra. Similar structures may be drawn for $C_{1}H_{8}Be^{+}$ ions;

With the methyl compound it may not be possible for CH₂Be⁺. to attain a ring structure and hence the hydrogen atom in CH₃Be⁺ is more tightly bound.

<u>4.2.</u> <u>Mass Spectra of Organocompounds of Silicon, Germanium,</u> <u>Tin and Lead</u>.

4.2.1. Organo-stannanes.

Since no data was initially available on the electron impact induced fragmentation of organo-tin compounds other than tetramethyltin^{30,111}, a mass spectroscopic study of the following tin-compounds was undertaken: Ph_SnEt_4-n(n=0,1,2,3,4), Ph_3Sn R (R = SPh,CH_2CH_2Ph), spiro - $(CH_2)_4$ Sn $\langle (CH_2)_4$, Ph_3Sn X (X = F,Cl,Br,I), R_6Sn_2 (R = Et, Ph). The abundances of ions (calculated as described in the calculation of results section) are given in tables 4.2.1., 4.2.2., and 4.2.3.

An electron energy of 70eV was mainly used to obtain spectra but for some compounds (given in table 4.2.1.) 20 volt electrons were also used. Other ionizing conditions are given in chapter 2.2 of the Experimental. (p.45).

The assignment of metastable peaks allows the decomposition modes of organotin compounds to be classified and these are outlined below. Throughout m^* refers to the observed mass of a metastable peak. The shapes of metastable peaks for processes in which a polyisotopic element is eliminated has already been commented upon. (chapter 3.3.). The experimental values quoted for such peaks are the mass spread of the metastable peaks and its mass at maximum intensity. In all other cases m^* refers to the most abundant isotope or combination of isotopes. The agreement between observed and calculated values of m^* was always better than \pm .1 a.m.u.

Decomposition Modes of Organostannanes at 70eV.

Metal-containing ions are generally the most abundant, accounting

SURHAM U.HVERSIN SOLE LE 1 1 OCT 1968 LIBRARY

.

.

Ion abundance relative to total tin-containing ions

_	SnPh.			SnI	ħ ₁ Et		Sn	Ph _s Et _s ~	•	Su	PhEt,		
Ion		ev	;	lon*	^	ev	lon+	^- //	<u>}</u>	Ion+	-^ e	2	
		70	20		70	20		70	20		70	20	
SnPh₄ SnPh₄	0- . 42-	11 26	0·17 53·78	SnPh ₈ Et SnPh ₈ SnPh ₂ Et SnPh ₂ Et	0-05 62-87 0-47 1-26	0:05 89:90 1:02 1:06	SnPh,Et, SnPh,Et SnPhEt, SnPhEt,	1.35 50.52 1.14 14.19	1-38 68-97 0-94 18-26	SnPhEt, SnPhEt, SnEt, SnPh/Ft)H	0-26 30-37 0-62 13-77	0.50 53.17 <0.1 24.07	
SuPh	• 10.	-1	95.09	C- Dh			SnPh(Et)H SnPhH	0-53 0-89	0-94 0-89	SnPhH ₁ SnEt ₁ H SnEtH ₁	10-76 0-35 0-20	$12 \cdot 31$ < $0 \cdot 1$ < $0 \cdot 1$	
SnPh	17.	66 86	6.94	So Dh	17.47	0.32	C - DL	30.40		C-DL	10.00		
SnH		7.4	0.1	Sall	11.01	0.04	Shrn	10.40	0.33	ShPh	19.94	0.80	
			••	0011	0.14	0.04	SnH	1.07	0.15	SnH	3.10	<0.1	
Sn	18-	61	13-06	Sn	13-35	2.66	Sn	9.61	2.21	Sn	9-83		
SuC ₁₁ H ₁₁	. 0	03	0.03	SnPh.Me	0.09	0.08	SnCH.	0.65	0.30	SnC.H.	1.26	~0.1	
SnC ₁ , H	· 1.	53	1.40	SnC. H.	0.61	0.27	SnC. H.	0.18	_	SnC.H.	0.11	201	
SnC ₁₀ H	0-	10		SnC ₁ ,H,	0.10	-	SnC.H.	0-09	_	SnC.H.	0.89	<u>``</u>	
SnC,H,	0.	14		SnC H	0.16		SnC H	0-14		SnC, H	0.33		
SnC H	0	90	0.20	SnC.H.	0.73	0.40	SnC,H	0-09	0.20	SnC,H	3.31		
SuC'H	0.	41		SnC ₄ H ₈	0.60	-	SnC H	0-58	0.32	•			
SnC ₄ H	0.	17		SnC.H	0.24	-	SnC ₄ H ₈	0.51					
SIIC ₁ H	7.	69	-	SnC ₃ H	1-48		SnC ₄ H SnC ₈ H	0-18 1-59	=				
Sn	Et,	-		SnPh _a (CH _a -C	H ₁ Ph)		So,Ph.		Sn ₂ Et,		spiro{C	H ₈] ₄ > Sn	<[CH ₁]
Ion+	-	ev o		Ion+	70 ev	'Ion+	70 cv	Ion	+	70 ev	· Ior	1+ 1	70 ev
	40	21			.				200	•• 100*•			
SnEt	0.87	2.7	6	SnPh ₁ (CH ₂ CH ₂ Ph)	0.01	Sn,Ph,	6.51	Sn ₁ Et.	1.9	04 4-48	SnC,H	14	10-19
				SnPh _i CH _i Ph SnPh	0.74	Sn _s Ph _s	1.48	Sn ₂ Et ₃	19.	74 15-42	SnC ₄ H	11	8.94
SoFt +	28.1R	48.9	0		0.01	Sn ₂ Pn ₄	0.68	Sn ₂ Et ₄ 1	1 10-0	00 12.33	SnC ₄ H	4	20.80
SoFr H+	24.16	29.6	8	Saph (CH Ph)	0.91	Sabb	0.09	Sn ₁ Et ₁ E	I. 12-	54 10.65	SnC,H	۰ ·	35.29
SuEtH.	17.24	14.7	7	SnPh.	A1.60	Shrn	49.30	Sn_Et_i	1. 3.	66 3·59	SnH,		0.73
SnH.	1.31	0.4	9	SoPh-H	0.13	Sn Ph.	1.93	Sn Did	1 2.	78 3·13	6-11		
			-		• •	SnPh	24.59	So FtH	4 01	91 5.40	SnH		7.46
						SnH	0.38	Sn.FtH	9.1	RR 9.71	31		10.98
				SnPh,	0.18	Sn	18-42	Sn.H.	0.	38 0.39			
SnEt	11.93		•	SnPh	18-85			Sn.H.	2.0	33 2.74			
SoH	12.13	0.3	7	SnH	0-49	SnC ₁₄ H ₁₁	0.42	Sn.H	2.	31 2.41			
c						SnC ₁₁ H	0.88	Sn.	3-1	77 8-92			
Su V. V.	4.89	~	·.	Sn	15.35	SnC ₁₀ H,	0.10	-					
SnE GMe	0.12	0.0	4	SnC ₁₁ H	0.52	SnC ₄ H ₄	0.14	SnEt,	9.1	16 8 -01			
SnC ₁ rt ₁	0.10	_		SnC U	0.07	SnC.H.	0.80	SnEt,H	8.0	01 7.23			
SnCH.	0.46	0.9	7	SnC H	0.40	SnC ₄ H ₄	0.35	Snith,	3.4	4 4.87			
Union,		••	•	SnC.H	0.18	ShC H	0.50	SnH,	0.1	8 0.25			
				SoC.H	1.19	Suctu	0.00	SALL	6.2	2 7.32			
				~				Sn	1.6	14 2'36 17 0.05			
								SnEt M	· 0.7	a (1.97) Da (1.97)			
								SnC.H.	0.1	7 0-15			
								SnCH.	ŏ.2	0.25			
								SnCH,	ŏ-0	4 0.04			

• Temperature of ionisation chamber.

Table 4.2.2.

Abundances of ions in triphenyl tin halides at 70 ev relative to total tin-containing ions

	to total this	contamin	5 10113	
Ion +	F	Cl	Br	I
SnPh ₃ X	0.81	1.22	1.40	0.05
SnPh _s X SnPh _s	44·44 3·59	46-96 1-51	46·28 5·16	3·70 52·63
SnPh, SnPhX	0·50 1·48	$0.19 \\ 2.10$	0·13 3·90	0-20 0-08
SnPh SnX SnH	12.08 25.03 0.35	10·12 27·61 0·37	4·75 26·22 0·47	19-89 5-55 0-49
Sn	5.13	5.10	6.59	11.94
SnPh ₄ C ₆ H ₄ X SnPh ₅ C ₆ H ₄ SnPhC ₆ H ₄ SnC ₁₀ H ₇ SnC ₆ H ₅ SnC ₆ H ₅ SnC ₄ H ₅ SnC ₄ H	$\begin{array}{c} 0.23\\ 2.12\\ 1.30\\ 0.11\\ 0.10\\ 0.57\\ 0.27\\ 0.25\\ 1.02\end{array}$	0.63 0.77 0.52 0.05 0.09 0.60 0.35 0.15	0.10 1.09 1.15 0.15 0.07 0.26 0.36 0.34	1.61 0.54 0.05 0.09 0.97 0.43 0.28
51011	1.02	1.00	1.30	1.42

T&ble 4.2.3.

Ion abundances * in thiophenyltriphenyltin at 70eV.

' Ion ⁺	
Ph ₃ SnSPh•	3.56
Ph ₂ SnSPh) Ph ₃ SnS)	1.21
Ph ₃ Sn	47•24
Ph2Sn •	0.62
PhSnSPh•) Ph ₂ SnS• }	1.99
PhSSn) PhSnS }	3.63
PhSn	22.16
HSn	0•54
Sn•	12.97
^C 12 ^H 9 ^{Sn}	0.56
^C 10 ^H 7 ^{Sn}	0.77
C ₈ H ₅ Sn	0.09
^C 6 ^H 4 ^{Sn}	1.06
^C 4 ^H 3 ^{Sn}	0.32
C ₄ HSn	0.36
C ₂ HSn	1.11

* Expressed as % of total tin-containing ions.

for about 95% of the total ion current. The electronegativity of carbon is greater than that of tin ¹²¹ and it is apparent that the charge is most likely to remain on the metal-containing fragment formed when an ion decomposes. The work confirms the influence of the odd bonding or even bonding-electron character of an ion on its dissociation reactions ⁵ and in all cases the even-electron ions $R_3^{M^+}$ and RM^+ are the most abundant. Parent ions, which are of low abundance decompose mainly by elimination of odd-electron fragments and even-electron ions tend to maintain themselves even-electron by eliminating an even-electron molecule.

i) Radical Elimination by Bond Cleavage.

This is a dominant process for odd-electron ions: Thus parent ions eliminate a group attached to the metal producing an even-electron ion in high abundance.

Ph ₃ SnX ⁺ •→ Ph ₂ SnX ⁺	+	Ph•	* n* n* * *	232 $X = F$ 2474 $X = C1$ 291.7 $X = Br$ 336.4 $X = I$
Ph ₃ SnI ⁺ • → Ph ₃ Sn ⁺	+	I• .	m*	257•7
$\operatorname{Et}_4\operatorname{Sn}^+$ \longrightarrow $\operatorname{Et}_3\operatorname{Sn}^+$	+	Et•	· m*	181.6
$\operatorname{Et}_6\operatorname{Sn}_2^{+\bullet} \longrightarrow \operatorname{Et}_5\operatorname{Sn}_2^{+}$	+	Et•	m *	358.0
$\operatorname{Ph}_{6}\operatorname{Sn}_{2}^{+} \operatorname{Ph}_{5}\operatorname{Sn}_{2}^{+}$	+	Ph•	m*	556•4
>Ph ₃ Sn ⁺	+	Ph ₃ Sn•	m*	173.5 - 176 max.,= 175
$Ph_zSnSPh^{+} \longrightarrow Ph_zSn^{+}$	+	PhS•	m*	267.8

With unsymmetrical compounds different groups may be lost from the parent ion producing different three co-ordinate ions. The mixed ethylphenylstannanes produce two R_3Sn ions the more abundant being

.

Table 4.2.4.

				SnR ₁ +			•
Compound nPh4	SnIX ₄ +• 0-11 0-05	Sn Ph _a + 42·26 62·27	SnPh ₃ Et+	SnPhEt ₂ +	SnEt ₃ +	SnPh ₂ (CH ₂ ·CH ₁ Ph)+	
nPhEts nEt	0-97		60·52	1.14 30.37	0-62 26-18		
лРА ₃ (СН ₃ -СН ₂ РА)	0-01	61-60			-	0-01	

Abundances of SnR4+ and SnRa+ ions relative to total tin-containing ions for ethyl-phenyl tin compounds at 70 cv

Table 4.2.5.

Abundances of SnR₃⁺ ions making allowances for subsequent decompositions of the SnR₃⁺ ions. Abundances relative to total tin-containing ions SnR₊⁺

SnEt ₃ +				1.17	9 9-03	th + hq
SnPhEt ₂ +			4.04	90-22 °		nrocees Sn
SnPh ₂ Et+		1.73	04.61			rnored since
SnPh ₃	83.15 4	64·14 b				Cuph to io
Compound	SnPh,	SnPhiEt	SnPh.Et.	SnPhEt,	SnEt,	s Abundance of

• Abundance of $SnPh_3^{+\bullet}$ ignored since process $SnPh_4^{+\bullet} \longrightarrow SnPh_3^{+\bullet} + Ph_3 occurs. • Abundance of <math>SnPh_3^{++}$ and all derivative ions ignored since the decompositions $SnPh_3^{++} \longrightarrow SnPh_3^{++} + Ph_3^{--} occur. Thus both <math>SnPh_3^{-}Et+$ and $SnPh_3^{-+} \longrightarrow SnPh_3^{-+} + are sources of <math>SnPh_3^{+-}$, "SnEt+ and $SnPh_3^{++}$ are sources of $SnPh_3^{+-}$, "SnEt+ and $SnPh_3^{++}$ and $SnPh_3^{++}$ are sources of $SnPh_3^{+-}$, "SnEt+ and SnH_3^{+-} ignored since $SnPh_3^{++}$ and $SnPh_3^{-+}$ are sources of these ions.

Table 4.2.6.

Dependance of hydride ion formation on the number of Sn-Et bonds present. Abundances (%) relative to total tin-containing ions

		SnH ₄ +	•				1.31	
		RSnH ₁ +	ŀ		0-89	10.96	17-24	absent.
,	(SnH+ +	R ₃ SnH+) +	0.36	2.00	16-79	19-92	36-29	+ and R ₃ SnH+
		Sn+	18-61	13-35	9-61	9-83	4.89	 RSnH
			SnPh,	SnPh _a Et	SnPh,Et,	SnPhEt ₂	SnEt,	

that containing the greater proportion of phenyl groups. (table 4.2.4.) This could be due to the ease with which further decompositions of ions containing Sn - Et groups occurs, but in table 4.2.5. an attempt has been made to allow for the subsequent fragmentation of R_3Sn^+ ions, using the decomposition diagrams fig. 10. (p.118), thereby giving an estimate of the ratio of the two $Ph_nSnEt_{3-n}^+$ ions initially formed from the ethylphenyl stannanes.

 ${\cal O} = {\cal O} \, {\cal O} \, {\cal O} \, {\cal O}$

Even when these allowances are made, the ion containing the greater proportion of phenyl groups is always the more abundant. The relative probabilities of the dissociative processes available depends on the relative bond strengths in the molecular <u>ion</u> and also on the relative stabilities of the radicals and ions produced. Appearance potential measurements discussed earlier were not sensitive enough to distinguish between $D(Ph_2EtSn^+ - Ph)$ and $D(PhEt_2Sn^+ - Ph)$ and the high abundance of the R_3Sn^+ ion containing the greater proportion of phenyl groups may not be due entirely to bond strengths but also to more effective delocalisation of positive charge in the R_3Sn^+ ion having the greater proportion of phenyl groups.

In the neutral molecules, however, the indications are that a tin-phenyl bond is stronger than a tin-ethyl although in some cases the difference is small.

 $D(Ph_{3}Sn - Ph) - D(Ph_{3}Sn - Et) = 23.1 \pm 3.2 \text{ Kcal. mole.}^{-1}$ $D(Ph_{2}EtSn - Ph) - D(Ph_{2}EtSn - Et) = 10.4 \pm 3.2 \text{ "}$ $D(PhEt_{2}Sn - Ph) - D(PhEt_{2}Sn - Et) = 1.2 \pm 3.2 \text{ "}$ $D(Me_{3}Sn - Ph) - D(Me_{3}Sn - Et)^{64} = 13 \pm 6 \text{ "}$

Thus it appears that the radical most readily lost is that which would be

expected to be most weakly bonded totin in the neutral molecule. With hexaphenyldistannane less than 10% of the total ion current is carried by ions containing a tin-tin bond. Appearance potential measurements given earlier showed that the Sn - Sn bond in hexaphenyldistannane was some 20.1 Kcal. mole.⁻¹ weaker than the tin-phenyl bond in tetraphenyltin. Also in the spectra of ethylmethylstannanes 122 the major ion is produced by ethyl loss and known bond dissociation energies give $D(Me_3Sn - Me) > D(Me_3Sn - Et).^{64}$

Loss of R. from an R₂Sn⁺ ion has never been observed. PhSn⁺ is the only even-electron ion which shows a bond-cleavage process.

 $PhSn^+ \longrightarrow Sn^{+\circ} + Ph \circ m^* = 73.1$ The odd electron metal ion, $Sn^{+\circ}$, is of high abundance for all the tin compounds studied.

Ions formed by cleavage of C - C or C - H bonds are always of very low abundance. This probably reflects the weakness of tin-carbon bond strengths relative to C - C or C - H. Loss of a hydrogen atom is observed only for tetraphenyltin and the triphenyltin halides. In each case low abundance ions are produced, e.g.

 $Ph_{L}Sn^{+} \rightarrow C_{2L}H_{19}Sn^{+} + H^{-}$

Major Rearrangement Decompositions.

ii) <u>Alkene Elimination</u>. $>Sn^+ - Et \longrightarrow Sn^+ - H + C_2H_4$

This process which is probably general for even-electron ions containing the grouping $R_2CH \cdot CH_2M$, has been observed with tetraethyl and ethylphenyltin compounds. The percentage ion-current carried by hydride ions increases with the number of Sn - Et bonds table 4.2.6. p. 104) and with the strength of the metal-hydrogen bond (table 4.2.7.)

Table 4.2.7.

Hydride ion abundances relative to total tin-containing ions in MEt_L at 70eV.

	М+	MH ⁺ and Et ₂ MH ⁺	EtMH ⁺ 2	н ₃ м+	Total
$Et_4 Ge^{123}$	1.8	41.30	15.40	2•4	59•1
Et ₄ Sn	4.89	36.29	17.24	1.31	53•53
Et ₄ Pb [*]	10.33	11.95	0.79	-	12.74

* See table 4.240. p. 123.

Metastable confirmed decompositions of this type are

Et ₄ Sn .	$\operatorname{Et}_{3}\operatorname{Sn}^{+} \longrightarrow \operatorname{Et}_{2}\operatorname{SnH}^{+} +$	•	с ₂ н ₄	* m	154•8
Et ₄ Sn	$\text{Et}_2\text{SnH}^+ \longrightarrow \text{EtSnH}_2^+ +$		°₂ ^н ₄	m*	127•4
PhSnEt 3	$\operatorname{Et}_{2}\operatorname{SnPh}^{+} \rightarrow \operatorname{EtSn}(\operatorname{H})\operatorname{Ph}^{+} +$	•	с ₂ н ₄	m*	202
PhSnEt ₃	$EtSn(H)Ph^+ \rightarrow H_2SnPh^+ +$	•	^с 2 ^н 4	m*	174•5
Ph2SnEt2	$EtSnPh_2^+ \longrightarrow Ph_2SnH^+ +$	•	с _{2^н4}	m*	249•5

It seems probable that transfer of a hydrogen from a β - carbon atom is involved since ethylene elimination readily occurs from ions containing only one Sn - Et bond.

(here fishhooks / represent movement of one electron) In the spectrum of tetraethyltin the presence of H_3Sn^+ can be explained by ethylene loss from H_2SnEt^+ which is of high abundance.

Elimination of ethylene from odd-electron molecular ions has never been observed and by the above mechanism would require a pentaco-ordinate transition intermediate which may be energetically unfavourable compared with loss of an R radical. With hexaethyldistannane, loss of ethylene from the parent ion is not observed but it must occur from tetraco-ordinate tin at some stage although this may not involve a pentaco-ordinate intermediate.

Labelling studies would provide valuable information concerning the above mechanisms.

Alkene elimination from other alkyltin compounds has also been observed.¹²⁴ The decompositions

$$R_3Sn^+ \longrightarrow R_2SnH^+ \longrightarrow RSnH_2^+$$

give metastable peaks when R = n-Pr, n-Bu and $-CH==CH_2$. Whether alkene elimination from alkyl groups is a specific rearrangement is a question which can only be satisfied by deuterium labelling.

iii) Elimination of RR' from - SnR'R+.

This process has been observed when R and R' are H, Ph, halogen or vinyl. Metastable peaks corresponding to loss of $C_6H_5 \cdot C_2H_5$ and $C_2H_5 \cdot C_2H_5$ have been searched for but none found.

124 Tetraphenyltin, hexaphenyldistannane and tetravinyltin show this process from odd-electron ions.

The elimination of biphenyl from $Ph_6Sn_2^{+*}$ leads to a product ion which may be formulated as $Ph_3SnSnPh^{+*}$ or $Ph_2SnSnPh_2^{+*}$.

 \bigtriangleup H^o_f(Sn^{+•}) calculated from the appearance potential¹²⁴ of Sn^{+•} in the spectrum of tetraphenyltin agrees with biphenyl elimination.

 $Ph_{4}Sn + e \longrightarrow Sn^{+} + 2Ph_{2} + 2e$ Since the abundance of $Ph_{2}Sn^{+}$ is only just detectable for a variety of triphenyltin compounds which show a strong $Ph_{3}Sn^{+}$ ion it may be inferred that biphenyl loss from $Ph_{4}Sn^{+}$ is the major process leading to $Ph_{2}Sn^{+}$, and that loss of a phenyl radical from $Ph_{3}Sn^{+}$ occurs to only a minor extent. It also follows that reactions such as

 $Ph_3SnEt^{+} \longrightarrow Ph_2Sn^{+} + Ph \cdot Et$

do not occur to any significant extent.

Elimination of RR' molecules from even-electron ions X-SnR'R⁺ is a major process. Thus for all triphenyltin compounds examined the decomposition

 $Ph_3Sn^+ \longrightarrow PhSn^+ + Ph_2 m^* = 110.6$ is observed. Diphenyltin halide ions eliminate both biphenyl and halogenobenzene

The diphenyltin hydride ion, from diethyldiphenyltin decomposes by elimination of benzene whilst loss of hydrogen is observed from -SnH² ions derived from tetraethyltin and hexaethyldistannane.

Ph2SnEt2	$Ph_2SnH^+ \longrightarrow PhSn^+ +$	^с б ^н б	m *	141.1
Et ₄ Sn	$\text{EtSnH}_2^+ \longrightarrow \text{EtSn}^+ +$	^H 2	m*	147.0
Ft cSn	$\text{Et}_2\text{Sn}_2\text{H}_3^+ \longrightarrow \text{Et}_2\text{Sn}_2\text{H}^+ +$	^H 2	m*	293
1065112 \	$\mathrm{EtSn}_{2}^{\mathrm{H}}_{2} \longrightarrow \mathrm{EtSn}_{2}^{+}$ +	^H 2	m*	263

The elimination of ethane has been observed in the spectrum of triethyltin chloride¹²⁵.

 $\text{Et}_2\text{SnH}^+ \longrightarrow \text{EtSn}^+ + \text{C}_2\text{H}_6$

This elimination of RR' molecules could proceed via a 3 centre transition intermediate.

Here fishhooks (/) represent movement of one electron. Minor Rearrangement Decompositions.

iv) Molecule Elimination by Cleavage of One Sn X Bond.

Such a process is observed in the spectra of Ph₃Sn•SPh_/

Ph3SnEt, PhLSn and triphenyltin halides producing ions of low abundance

$$\begin{array}{cccc} \operatorname{Ph}_{3}\mathrm{Sn}^{+} & \longrightarrow & \operatorname{Ph}\mathrm{SnC}_{6}\mathrm{H}_{4}^{+} & + & \mathrm{C}_{6}\mathrm{H}_{6} & \mathrm{m}^{*} & 212.3 \\ \operatorname{Ph}_{2}\mathrm{SnCl}^{+} & \longrightarrow & \mathrm{Cl}\mathrm{SnC}_{6}\mathrm{H}_{4}^{+} & + & \mathrm{C}_{6}\mathrm{H}_{6} & \mathrm{m}^{*} & 172.6 \end{array}$$

It would be interesting to determine the hydrogen atom which is transferred in this process. This could be accomplished by deuterium labelling in specific positions in the phenyl group. It seems plausable that a 6 - hydrogen may be involved with formation of a 5 - centre transition intermediate.

Here fishhooks (\nearrow) represent movement of one electron. These product ions might involve a \mathcal{C} - bonded phenyl group from which a hydrogen atom has been removed, or they could be formulated as

each dotted line represents

1 and 1/7 electrons.

Here the tin is trico-ordinate and extensive delocalisation of positive charge is possible. The high stability of trico-ordinate tin ions (tables 4.2.4. and 4.2.5. p. 104) is one of the dominant features revealed in this work.

The elimination of HX from Ph₃SnX^{+•} producing the ion $Ph_2SnC_6H_4^{+\bullet}$ in low abundance has been metastable confirmed for the fluorotin compound.

> $Ph_3SnF^{+\bullet} \rightarrow Ph_2SnC_6H_{L}^{+\bullet} + HF$...***** 331

With 5 - stannaspiro (4,4) nonane elimination of ethylene from the parent ion and $C_4 H_8 Sn^{+ \bullet}$ may involve cleavage of a tin-carbon bond.

[™] 179•4

SnCH2CH2.

or

or

с₂н₄

126 Similar ethylene eliminations have been observed with gila - and germa

cydoalkanes. With the germanium compound deuterium labelling shows that Ge - C cleavage is involved.

v) Fragmentation of Phenyl Groups Attached to Tin:

Such processes require considerable energy and dis apear from the spectrum at 20eV. Phenyltin ions fragment by successive loss of acetylene and, although these transitions are not metastable supported for tin, they are for germanium and silicon (see p. 136)

$$PhSn^{+} \xrightarrow{-C_{2}H_{2}} C_{4}H_{3}Sn^{+} \xrightarrow{-C_{2}H_{2}} C_{2}HSn^{+}$$
$$-H_{2} \xrightarrow{-H_{2}} C_{4}HSn^{+}$$

Tetraphenyltin and compounds of the type Ph_3SnX and Ph_2SnX_2 produce the ion $C_{12}H_9Sn^+$ which can be formulated as the trico-ordinate ion (I). Whenever $C_{12}H_9Sn^+$ is present so are ions which are probably derived from it by successive loss of acetylene.

$$c_{12}H_9Sn^+ \longrightarrow c_{10}H_7Sn^+ \longrightarrow c_8H_5Sn^+$$

The analogous decomposition from silicon and germanium ions is confirmed by the presence of metastable peaks (see p. 136).

It is significant that ring fragmentation processes involving loss of acetylene from Ph_3Sn^+ are not observed. This may be because of other more favourable modes of decomposition available to Ph_3Sn^+ (i.e. such as biphenyl or benzene loss). Alternatively a certain minimum positive charge may be necessary on a phenyl group to cause $C_{2}H_{2}$ elimination. The triphenyltin halides, which produce $XSnC_{6}H_{4}^{+}$ ions in low abundance, also do not show ring fragmentation products $XSnC_{4}H_{2}^{+}$ or $XSnC_{2}^{+}$; this may be due to a mesomeric effect of the halogen atom reducing the positive charge on the organic group.

vi) Methylene Elimination from SnCH₂CH₃

All ethyltin compounds and triphenylethyltin show low abundance ions ascribable to a methylene elimination reaction

Since for tetracthyl - and ethyltriphenyl - tin the ion currents of the product ions vary linearly with those of Et_4Sn^{+} and Fh_3Sn^+ , respectively, the above unimolecular process is favoured, but this does not exclude the possibility of slow (rate determining) methyl loss followed by rapid hydrogen attachment. The ethylbromide used in the preparation of ethyltin compounds was free from methyl halides thus excluding the possibility that the ethyltin compounds contained traces of methyltin compounds. Moreover the mass spectrum of tetraethyltin showed no change in abundance of Et_2SnMe^+ over the temperature range 20 - 200°C, indicating that the ion is not produced by thermal rearrangement. Corresponding ions which could result from methylene elimination are observed with tetraethyl-germane ¹²³ and - lead (table 4.2.10. p. 123) and ethyltriphenylgermane ¹²³. With triphenylphenethyltin methylene elimination

from the parent ion involving transfer of a phenyl group rather than a hydrogen atom if the mechanism given on p. 107 applies.

The compounds Et_6Sn_2 and Ph_2SnEt_2 also show ions which could result by methylene elimination:

 $Et_{3}Sn^{+} \longrightarrow Et_{2}SnCH_{3}^{+}$ $PhSnEt_{2}^{+} \longrightarrow PhSnMeEt^{+}$ $PhSnEt(H)^{+} \longrightarrow PhSn(H)Me^{+}$

In the last example the ion $PhSn(H)Me^+$ could also be produced by ethylene elimination from $PhSn(Me)Et^+$. Methylene elimination has also been observed with ethyltrimethylstannane where the decomposition gives a metastable peak ¹²²

 $Me_3Sn^+ \longrightarrow Me_2SnH^+ + CH_2$: $m^{\frac{1}{2}}$ 138.2

Compounds which produce a high abundance of Ph₂Sn⁺ ion show a weak metastable peak corresponding to the transition

 $Ph_3Sn^+ \longrightarrow Sn^{+} + C_{18}H_{15} m^{+} 41.0$ This may occur in one step but it could also result from the consecutive reactions

occurring in the field free region between the magnetic and electrostatic analysers. The presence of a metastable peak does not mean that the observed elimination occurs in a single step. ¹²⁸

viii) Fragmentation involving Formation of Hydrocarbon Ions.

With the triphenyltin halides the Ph₂^{+•} ion is of unusually high abundance (i.e. accounts for about 10% of the total ion current) and is produced by elimination of PhSnX from the parent ion.

$$Ph_{3}SnX^{+} \longrightarrow Ph_{2}^{+} + PhSnX: \qquad m^{*} \quad 60.2 - 63 \\ max., \ 61.6X = Cl \\ m^{*} \quad 54.5 - 56.5 \\ max., \ 55.3X = Br \\ m^{*} \quad 64 - 65.5 \\ max., \ 64.3X = F$$

This decomposition is identical to process iii) (p.108)

 $-SnR^{\dagger}R^{\dagger} \longrightarrow -Sn^{\dagger} + R^{\dagger}R$

except that the charge is retained by the hydrocarbon fragment. This expulsion reaction in which two moieties not directly bonded in the molecule are found combined in the fragment ion are now known to be quite common for organic compounds.¹²⁹

The triphenyltin halides, with the exception of the iodide, also produce the ion $C_{18}^{H}H_{15}^{+}$ in about 0.5% abundance. For the chloride a metastable peak is present corresponding to the decomposition:

$$Ph_{3}SnC1^{+\bullet} \longrightarrow C_{18}^{H}_{15}^{+} + SnX \bullet m^{*} 136.5 - 141, max., 138.6$$

Identical eliminations have been observed with triphenylhalogermanes.¹²³ Such a process involves considerable rearrangement and a variety of complex structures are possible for $C_{18}H_{15}^+$. In view of this rearrangement the elimination of the radical $C_{18}H_{15}^+$ from Ph_3Sn^+ should be regarded as a distinct possibility.

Mass Spectra of Ph_nSnEt_{4-n} , Et_6Sn_2 , Ph_6Sn_2 and $(CH_2)_4 > Sn < (CH_2)_4$

Using the observed decomposition modes for organostannanes, the probable decomposition processes for these compounds are shown in fig. 10.

For all the compounds the molecular ions are of very low abundance. At 20eV many of the fragment ions formed from ethylphenylstannanes virtually dissapear; for example phenyl group fragmentation is no longer observed. With the exception of tetraphenyltin 90% of the ion current is carried by R_3Sn^+ ions (table 4.2.1. p. 101). For Et_4Sn and Et_3SnPh the ions Sn^{+*} , SnH^+ and $EtSn^+$ fall to very low values. This is most readily ascribed to the non-occurrence of the process

 $EtSnH_2^+ \longrightarrow EtSn^+ + H_2$

Hexaethyldistannane contrasts with hexaphenyldistannane in that almost 70% of the total ion current is carried by Sn_2 species. The earlier observation that the bond most likely to be cleaved on decomposition of the molecular ion was the one which would be expected to be the weakest in the neutral molecule can be used to explain this since $D(Ph_3Sn - SnMe_3)$ is about 8 Kcal. mole.⁻¹ weaker than $D(Ph_3Sn - Et)$ and $D(Me_3Sn - SnMe_3)$ is about 8 Kcal. mole.⁻¹ weaker than $D(Me_3Sn - Et)$.⁶⁴ The ion $Et_5Sn_2^+$ can then decompose further by successive eliminations of ethylene producing hydride ions.

There is some evidence that hexaethyldistannane undergoes partial thermal decomposition at an ionization chamber temperature of 200°C since at 100°C the abundance of the parent ion is doubled, with a decrease in the abundance of both Et_5Sn_2^+ and Et_3Sn^+ . (table 4.2.1.)

Tetraphenyltin, hexaphenyldistannane and the triphenyltin halides show the tin hydride ions SnH⁺ which do not feature in fig. 10. and are not
118.

Decomposition diagram for organostannanes.

Fragmentation of ions common to two or more compounds are shown only once. Solid arrows indicate metastable confirmed transitions.

* Abundance < 1% of total tin-containing ions.

explicable by any of the fragmentation modes discussed earlier. The abundance of SnH⁺ varies linearly with that of Sn^{+•}, hence it is probably not produced by hydrogen attachment but by processes such as $C_2HSn^+ \longrightarrow SnH^+ + C_2$ and $PhSn^+ \longrightarrow SnH^+ + C_6H_4$.

An interesting feature of the spectra of Ph_6Sn_2 is the occurrence of $C_{24}H_{19}Sn^+$ (i.e. $Ph_3SnC_6H_4^+$). Since its abundance varied linearly with that of the parent ion it is best explained in terms of the transfer of an organic group from one tin atom to the other with cleavage of the tin-tin bond. Such transformations, which are clearly more readily studied when the two metals are dissimilar, are described in more detail in the following chapter 4.2.2.

In the mass spectrum of 5 - stannaspiro (4,4) nonane the molecular ion and first bond cleavage product have the same mass and cannot be distinguished. Similarly a number of reasonable structure can be assigned to the fragment $C_6H_{12}Sn^+$.

Mass Spectra of Triphenyltin Halides

The decomposition diagram for these compounds is given in fig.10. The cracking patterns are very similar except for the iodide, where cleavage of the Sn-I bond is the important process. This probably implies that $D(Ph_2ISn-Ph) \ge D(Ph_3Sn-I)$ whereas for the other triphenyltin halides the order is reversed.

4.2.2. Metal-Metal Bonded Compounds A3M-M'B3

(M = Si, Ge and Sn) and Organoplumbanes.

The mass spectrum of hexaphenyldistannane showed the presence of an ion $(SnC_{24}H_{19}^+;)$ in which transfer of an organic group from one metal to the other had occurred. To investigate this rearrangement more fully the mass spectra of a variety of $A_3M-M^*B_3$ compounds were recorded at 70eV. The specific compounds studied and the abundances of their decomposition products are shown in table 4.2.8.

Since it was apparent that the modes of decomposition found for the organo-tin ions applied equally well to organo-silicon and - germanium ions, the mass spectra of tetraethyl - and tetraphenyl - lead, tetraphenylmethane and t-butyltriphenylmethane were also recorded for comparison. The abundance of ions produced for these compounds are shown in tables 4.2.9., 4.2.10., and fig. 11. The spectrum of tetraethyllead shows minor differences from earlier observations ¹⁴ which may be attributed to different source temperatures and spectrometers.

Modes of Decomposition at 70eV.

The major feature of the mass spectra of $A_3M-M^*B_3$ compounds (M,M* = Si,Ge,Sn; A,B = phenyl, methyl, ethyl, benzyl) is the presence of ions, often in high abundance where transfer of organic groups between metal atoms has occurred (table 4.2.14) Apart from this these compounds and the organoplumbanes studied decompose under electron impact in ways very similar to those observed for organostannanes (chapter 4.2.1.). Metal-containing ions are always the most abundant accounting for ~95% of the total ion current. Again this is not surprising since the electronegativity of carbon is greater than for the other group IV elements.

121

Table 4.2.8.

Ion abundances •

Si SiPh,
14-8 Si 0-07
0-07 Si ₂ * 0-04 0-02
69-45 3 1-30
Ph 5-47 2 1-75 1 0-05
H ₁ 1-31 0-05 1-29 0-43
3-48 0-02 0-05
0-05 0-02 0-01
0.07
0.02 0-01

Percentage of metal-containing ions.

Table 4.2.9.

Ion abundances and metastable transitions in tetraphenylmethane at 70 ev relative to total carboncontaining ions

Ion	+	Abundan	ce	Ic	n+	Abundance
Сн		12.60		CH.		0.23
C.H.		2.53		С. н.		0.54
C.H.		0.23		С. Н.		0.41
C.H.		32.98		C.H.	++	1.07
C H.		0.87		Č.H.	++	0.15
C H		2.61		С.Н.		0.61
C H		0.46		C.H.		0.26
C'H'		2.40		C.H.		0.10
C H.		0.20		С.н.	++	0.18
C H		0.41		CH	++	0.64
CH.		1.84		C.H.		1.15
с"н".		0.46		C.H.		0.20
С"Н.		0.84		Č	++	0.08
С.Н.		1.41		С.н.		3.30
C.H.		0.15		C.H.		0.95
С Н		0.43		C.H.		0.28
CH.		0.20	•	С.Н.		1.74
C H		0.84		Ċ.н.		0.26
C H.		0.15		С.н.		0.28
с"н		0.20		Ċ.н.		0.28
C"H"	•••••	0.38		č.н.		0.56
C"H"		0.10		Ċ.H.		0.89
с"н.		0.13		C.H.		0.54
C"H'		1.41		С.н		0.10
С'н".	•••••	0.28		C.H.		0.84
CHI .		1.43		С.Н.		0.18
C H .	••••••	2.35		С.Н		0.13
C H	•••••	13.91		C.H.		0.10
с"н ·	•••••	0.77	•	Ċ.H.		0.10
С'н С'н	•••••	0.59		C.H.		0.10
CH.		0.56		CH.		0.03
~1810 .		0.00				
						m •
C	.H 10+	•	C'''H''	+ + C	H° I	84.6
C		≽ C	,,H,+	$+ C_{\bullet}$	H, I	12.0

C.H.+ C.H.+	$+ C_{\bullet}H_{\bullet}$	112.0
C.H.+ C.H.+*	+ CH.	214.0
C H + - C H + -	÷н•	241.0
C H + C H + C H + C	+ H•	240.0
C_{19}^{11}	μ ['] H	239.0
$C_{19}^{11}_{15}$	т ла	238.0
$C_{19}\Pi_{14}$	T 11	237.0
C19H13 C19H11	T 112	164.0
$C_{13}H_{10}^{++} \longrightarrow C_{13}H_{9}^{++}$	+ 1	104.0
$C_{13}H_{9}^{+} \longrightarrow C_{13}H_{8}^{+}$	+ n [*]	109.0

Table 4.2. 10.

PbEt₄ and PbPh₄ ion abundances at 70 ev relative to total lead-containing ions

PbI	Et.	1	PbPh
Ion+ A PbEt, PbEt, PbEt, PbEt, PbEt, PbC,H13 PbEt, PbEt, PbC,H4 PbC,H5 PbC,H6 PbCt,SH6 PbEtH2 PbEtH2 PbEtH3 PbEt4 PbEt5 PbE4 PbE4 PbE4 PbE4 PbE4 PbH PbH	bundance 0.42 0.27 35.00 0.02 2.20 6.51 0.01 0.18 0.79 33.17 0.17 1.16 0.02 9.75 10.33	Ion ⁺ PbPh, PbPh, PbPh, PbC, H, PbC, H, PbH Pb	Abundance 0.05 0.02 33.80 0.37 0.60 33.30 0.14 0.16 31.56

~,`

* abundance < 1% of total lead-containing ions.

•

× • • •

• • • •

.

· · · · ·

-

-

, , , , ,

Table 4.2.11.

Abundances of rearrangement ions formed by group transfer across the metal-metal bond.

Me ₃ M•MPh ₃	Me 2MPh+	MeMPh ⁺ 2				Sum of a	abundances of all
Me ₃ Si•SiPh ₃	3.09	7.33				group tr	cansfer lons. 12.21
Me ₃ Ge•GePh ₃	t+e 64	12.03	A				17.54
Me ₃ Sn•SnPh ₃	7.17	17.36					25 • 04
A ₃ M•M¹B ₃	A2MB ⁺	AMB ⁺	B ₃ M⁺	B ₂ M [•] .A ⁺	BM • A+	A ₃ M ⁺⁺	
Ph3Ge•SnMe3	Ph ₂ GeMe	PhGeMe2	Me ₃ Ge	MezSnPh	MeSnPh2	Ph ₃ Sn	
	13.00	1•47	06•0	1.67	0.48	0.12	31•56
Me3Ge•GePh3	Me2GePh	MeGePh2	PhjGe	Ph ₂ SnMe	PhSnMe ₂	Me ₃ Sn	
	9•02	5.50	26•0	0•65	0•65	0•39	22.45
Me ₃ Si•GeBz ₃	MezsiPh	MeSiBz ₂	Bz3Si	Bz2GeMe	BzGeMe2	MegGe	
	12,33	3 •89	I	0•01	0•19	06•0	17.10
Et ₃ Si•GePh ₃	Et2SiPh	EtSIPh2	Ph ₃ S1	Ph ₂ GeEt	PhGeEt ₂	Et ₃ Ge	
	0•87	0.35	67*0	0.42	1.49	t	
с ₂ н ₄							
corrected	7.54	2.43	0•49	0•42	1.62	I	26.67

Loss of a radical from parent ions by cleavage of a M-C bond is a dominant process and in general even-electron ions are the major species and maintain themselves even-electron by eliminating a neutral molecule.

i) Migration of Organic Groups across a Metal-Metal Bond.

Ions formed by such migration are of high abundance for all $A_3^{M*M*B_3}$ compounds studied (table 4.2.11.). It is doubtful that rearrangement occurs prior to ionization. The infra-red spectra (p.43) give no indication that different groups are attached to the same metal. Thermal decomposition of Me₃Sn·SnEt₃ has been studied ¹³⁰ and found to be free of dissociation when heated for several hours at 170°C. At 190°C general decomposition occurred with formation of Me₄Sn, Et₄Sn and traces of Me₆Sn₂ and Et₆Sn₂. The mass spectra of $A_3^{MM*B_3}$ compounds did not show ions corresponding to these symmetrical compounds. Furthermore only slight changes were observed in the mass spectrum of (PhCH₂)₃GeSiMe₃ when heated at 220°C for a period of 6 hours (fig. 12.)

These rearrangement processes make the identification of isomeric compounds of the type $A_3 B_3 MM'(M = Si,Ge,Sn)$ by mass spectrometry somewhat ambiguous.

For Me $_{3}^{\circ}$ MPh₃ compounds the Ph₂MMe⁺ ion is always the most abundant rearrangement ion of this type and the abundances of these ions decrease in the order Si<Ge<Sn. With Me₃C·CPh₃ no ions resulting from the transfer of Me• or Ph• are present.

Each of the compounds $A_3^{M} \cdot M^* B_3$ show all six rearrangement ions. $A_3^{M} \cdot M^* B_3^{+} \longrightarrow A_2^{M} B_2^{+} + AMB_2^{+} + MB_3^{+} + B_2^{M^*} A_3^{+} + B_2^{M^*} A_3^{+} + BM^* A_2^{+} + M^* A_3^{+}$ Concerning the relative abundances of these ions the observation may be made that if M is the lighter metal (i.e. forms stronger M-C bonds) in the compound $A_3^{M} \cdot M^* B_3$ then ions formed by migration of groups are most common for M, the most abundant being $A_2^{MB^+}$ followed by AMB_2^+ (table 4.2.11 p.126). In this table since metal-ethyl groups in $Et_3^{Si} \cdot GePh_3$ have a highly favourable mode not available in metal-phenyl or -methyl compounds $(Si^+-Et \rightarrow SiH^+ + C_2H_4)$, allowance has been made to correct for ethylene elimination in obtaining the abundances of ions containing ethyl groups.

There is evidence that rearrangement occurs in the molecular ion either prior to elimination of a neutral species or as a synchronous process.

 $Ph_3Et_3Si_2^{**} \rightarrow Ph_2SiEt^{*} + PhSiEt_2^{*}$ m^{*} 119. For this rearrangement to occur in the molecular ion would require a 5 - co-ordinate intermediate, probably with d - orbital participation, and this may explain why the hydrocarbon $Ph_3C \cdot CMe_3$ does not show these types of rearrangement ions. If exchange of groups occurs in the molecular ion it is difficult to see why this should not lead to all possible isomeric ions of the type $A_3B_3MM^{*+*}$; the proportion of each would be strongly influenced by relative bond energy considerations.

The formation of these rearrangement ions from $A_2^{M \cdot MB_3^+}$ ions has been confirmed in a few cases.

Ph3Si•SiMe3

 $\operatorname{Ph}_{3}\operatorname{Me}_{2}\operatorname{Si}_{2}^{+} \longrightarrow \operatorname{Ph}_{2}\operatorname{SiMe}^{+} + \operatorname{PhSiMe}_{2}$

128.

m[#] 122.4

Ph₃Sn·SnMe₃

All these ions could have structures such that the products are simply the result of cleavage of the metal-metal bond; the necessary rearrangement having occurred in the parent ion. However there seems no reason why rearrangement should not also occur in fragment ions when d-orbital participation by the metal need not be invoked since at least one metal atom will be less than 4-co-ordinate. If rearrangement occurs in $A_2^{M \cdot MB_3^+}$ ions then the abundance of $A_2^{MB^+}$, AMB_2^+ etc. ions will be influenced by the rate of formation of $A_2^{M \cdot MB_3^+}$ from the parent ion, the lifetime of $A_2^{M \cdot MB_3^+}$ which must be long enough to allow rearrangement to occur, the activation energy for the rearrangement and the stabilities of the resulting ion and fragment. With the carbon compound $Ph_3^{C \cdot CMe_3^+}$ the major decomposition of the parent ion is formation of $Ph_3^{C \cdot CMe_3^+}$ will thus also be of low abundance.

In $\text{Et}_3\text{Si}\cdot\text{SiPh}_3$ the rearrangement ions Et_2SiPh^+ and EtSiPh_2^+ are present but of low abundance. The hydride ions $\text{Et}(H)\text{SiPh}^+$, $H_2\text{SiPh}^+$ and HSiPh_2^+ may arise by hydrogen transfer from one silicon atom to the other or by ethylene elimination.

Et(H)Si•SiPh⁺₃ → Et(Ph)Si•Si(H)Ph⁺₂

$$Ph(H)Si \cdot Si(Et)Ph_2^+ \longrightarrow Ph_2SiEt^+$$

In Ph₃Ge•SnMe₃ the PhSn⁺ ion is of high abundance and a metastable peak shows that it is produced largely by the reaction.

Ph2SiH

 $Ph_{3}Me_{2}Ge \cdot Sn^{+} - PhSn^{+} + Ph_{2}GeMe_{2}$ m^{*} 82 - 86.5 max., 85.2

ii) Radical Elimination by Bond Cleavage.

This is the major mode of decomposition for molecular ions:

Ph3Sn•SnMe3*	\longrightarrow Ph ₃ Sn•SnMe ⁺ ₂	+	Me•	n *	484.4
	PhzGe•SnMet	+	Me•	m*	440 <u>.</u> 5
Ph3Ge•SnMe3	\longrightarrow Ph ₂ Ge•SnMe ⁺ ₂	+	Ph•	m *	428.6
	Ph ₃ Ge ⁺	+	Me ₃ Sn•	m [#]	194-199 max.,198
PhzGe•GeMet	\longrightarrow Ph ₃ Ge ⁺	+	Me3Ge•	m*	216-220 max.,220
Ph ₃ Si•SiMe ⁺ ₃ •	$\longrightarrow Ph_3Si^+$	+	MezSi•	m*	202
	Ph3Si ⁺	+	Et ₃ Si•	m*	179•4
Ph ₃ Si•SiEt ⁺		×			
<i>,</i>	Ph3Si.SiEtz	+	Et•	m*	318 . 2
Ph ₃ Ge•SiEt ⁺ *	\longrightarrow Ph ₃ Ge•SiEt ⁺ ₂	+	Et•	m*	364
Ph ₃ Si•SiPh ₃ ^{+•}	$\longrightarrow \operatorname{Ph}_{3}\operatorname{Si}^{+}$	+	PhzSi•	m *	129•5
	-				

As with organostannanes discussed in chapter 4.2.1. it appears that bond cleavage of the molecular ion proceeds largely in the direction expected for the weakest bond in the molecule, although all four product ions are observed. Thus ions containing metal-metal bonds are abundant only for those compounds where the metal-metal bond is expected to be stronger than any metal-carbon bonds in the neutral molecule. For example with PhzGe.SnMez and PhzGe.SnMez cleavage of an Sn-Me bond in the parent ion gives ions of high abundance and the available bond dissociation energies suggest that this is the weakest bond in the molecule. $D(Ph_3Sn-Ph) - D(Ph_3Sn-Me) = 21.7 \pm 3.2$ Kcal. mole.⁻¹ $D(Ph_3Sn_SnMe_3) - D(Ph_3Sn_Me) = 6.5 \pm 3.2$ $D(Ph_3Sn-GeMe_3) - D(Ph_3Sn-Me) = 9.7 \pm 3.2$ $D(Me_3Sn-SnMe_3)^{64} = 76$ Kcal. mole.⁻¹ $D(Me_3Sn-Me)^{64} = 73 \pm 4$ Kcal. mole.⁻¹ $D(Me_3Sn-Ph)^{64} = 81 \pm 5 \text{ Kcal. mole.}^{-1}$ Also Me₃Si•SiPh₃ and Ph₃Si•SiEt₃ give C_xH_ySi⁺ species as the major ions and the strength of the silicon-alkyl bond is stronger than the silicon-silicon bond in these compounds. 62,131 Ions resulting from phenyl-metal bond cleavage from the parent are always of low abundance.

Parent ion decomposition by metal-metal bond cleavage can give two ions:

 $A_3M \cdot M^* B_3^* \longrightarrow A_3M^+$ or B_3M^{*+}

If A is phenyl and B methyl then Ph_3M^+ is always the more abundant. This may be due to several factors: the ionization potential of Ph_3M^+ radicals may be lower than R_3M^+ radicals; charge delocalisation in Ph_3M^+ will tend to stabilise the ion, and in individual cases there may be fewer low energy decomposition routes available for Ph_3M^+ than R_3M^+ ions.

. • • • •

.

Table. 4.2.12.

,

	ge of two m A bonds (M = b), oc, or big	
$Ph_{3}Sn \cdot GeMe_{3}$ $Ph_{3}Sn \cdot SnMe_{3}$	$Ph_2Sn^+ \longrightarrow PhSn^+ + Ph_2$	110-6
Ph3Ge·SnMc3 Ph3Ge·GeMc3	$Ph_3Ge^+ \longrightarrow PhGe^+ + Ph_2$	74.8
Ph ₃ Ge·SiEt ₃ J (PhCH ₂) ₃ Ge·SiMe ₂	(PhCH ₂) ₂ Ge·SiMe ₃ ⁺ → PhCH ₂ Ge ⁺ + PhCH ₃ ·SiMe ₃	82.7
Ph ₃ Sn·SnMe ₃ Ph ₃ Sn·GeMe ₃	$Ph_2Sn^{+} \longrightarrow Sn^{+} + Ph_2$	52.5
Alkene elimination		00.4
(PhCH ₂) ₃ Ge·SiMe ₃	$(PhCH_2)SiMc_2^+ \longrightarrow PhCH_2 \cdot SiH_2^+ + C_3H_4$	98.4
(PhCH ₂) ₃ Ge·SiMe ₃ Ph ₂ Si·SiMe ₃	$Me_{3}Si^{+} \longrightarrow MeSiH_{2}^{+} + C_{2}H_{4}$	27.7
Ph ₃ Sn·GeMe ₃	$Me_3Ge^+ \longrightarrow MeGeH_2^+ + C_2H_4$	69·6
Ph ₃ Ge GeMe ₃	$PhSiMe_2^+ \longrightarrow PhSiH_2^+ + C_2H_4$	84.8
1	$Et_3Si^+ \longrightarrow Et_3SiH^+ + C_2H_4$	65.8
	$Et_2SiH^+ \longrightarrow EtSiH_2^+ + C_2H_4$	40.0
Ph ₃ ·SiSiEt ₃	$PhSiEt_{2}^{+} \longrightarrow PhSiEt(H)^{+} + C_{2}H_{4}$	111-9 84-8
	$PhSiLt(H)^{+} \longrightarrow PhSiLt_{2}^{+} + C_{2} R_{4}$	158.7
Ļ	$Pn_2SiEt^* \longrightarrow Pn_2SiII^* \oplus C_2II_4$ Db Et Si + Db Et (H)Si + $\pm C_2H_4$	291.3
Ph ₂ ·SiSiEt ₂	$PH_3E(_2SI_2) \longrightarrow Ph_3E(_11)SI_2 = O_1I_3$	263.5
	Ph.Et.GeSi ⁺ \longrightarrow Ph.Et(H)GeSi ⁺ + C.H.	337
Dh CarSiEt	$Ph_Et(H)GeSi^+ \longrightarrow Ph_H_GeSi^+ + C_H_A$	$309 \cdot 3$
FII3Ge-SIEt3	$Ph_{s}GeEt^{+} \longrightarrow Ph_{2}GeH^{+} + C_{s}H_{4}$	204-1
Molecule elimination by cleave	age of one $M-X$ bond ($M = Si$, Ge, or Sn)	
Ph ₆ Si ₂		126.5
Ph ₃ Si·SiMe ₃	$Pn_{3}Si^{+} \longrightarrow C_{12}n_{9}Si^{+} + C_{6}n_{6}$. 1200
Ph ₃ SrSiEt ₃		
$Ph_3Ge SnMe_3$	$Ph.Ge^+ - C.H.Ge^+ + C.H.$	168.0
Pligoe Genes		100 0
Dh CeiSiFt 1	• • •	100.0
Ph ₃ Ge·SiEt ₃ J Ph ₂ Sn·GeMe ₂ J	DL C-t C U Sat I C U	212.4
$Ph_3Ge SiEt_3$ $Ph_3Sn GeMe_3$ $Ph_SN Sn Me_3$	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$	212.4
Ph ₃ Ge·SiEt ₃) Ph ₃ Sn·GeMe ₃ } Ph ₃ Sn·SnMe ₃ } (PhCH ₂) ₃ Ge·SiMe ₃	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{8}H_{8}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{8}$	212-4 170-8
Ph ₃ Ge·SiEt ₃) Ph ₃ Sn·GeMe ₃ } Ph ₃ Sn·SnMe ₃ } (PhCH ₂) ₃ Ge·SiMe ₃ Molecule eliminations without	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $M-X \text{ bond cleavage}$	212·4 170·8
Ph ₃ Ge·SiEt ₃) Ph ₃ Sn·GeMe ₃ } Ph ₃ Sn·SnMe ₃ (PhCH ₂) ₃ Ge·SiMe ₃	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $\underline{M-X \text{ bond cleavage}}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$	212·4 170·8 96·0
Ph ₃ Ge·SiEt ₃ Ph ₃ Sn·GeMe ₃ Ph ₃ Sn·SnMe ₃ (PhCH ₂) ₃ Ge·SiMe ₃ <u>Molecule eliminations without</u> (PhCH ₄) ₃ Ge·SiMe ₃	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GcSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $(PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$ $(PhCH_{2})_{4}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2}$	212-4 170-8 96-0 221
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule \ eliminations \ without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $(PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{3}$ $(PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{19}Ge^{+} + H_{3}$	212-4 170-8 96-0 221 343
Ph ₃ Ge·SiEt ₃) Ph ₃ Sn·GeMe ₃ } Ph ₃ Sn·SnMe ₃ (PhCH ₂) ₃ Ge·SiMe ₃ <u>Molecule eliminations without</u> (PhCH ₂) ₃ Ge·SiMe ₃	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{3}$ $(PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{19}Ge^{+} + H_{2}$ $C_{7}H_{7}Ge^{+} \longrightarrow C_{8}H_{5}Ge^{+} + C_{2}H_{2}$	212-4 170-8 96-0 221 343 117
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule \ eliminations \ without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:SnMe_{3} \end{array}$	$\begin{array}{cccc} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline M-X \ bond \ cleavage \\ \hline (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{19}Ge^{+} + H_{2} \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{6}H_{6}Ge^{+} + C_{2}H_{2} \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \end{array}$	212-4 170-8 96-0 221 343 117 239
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule \ eliminations \ without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{5}Si:SiMe_{4} \end{array}$	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6}$ $(PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2}$ $(PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{19}Ge^{+} + H_{2}$ $C_{7}H_{7}Ge^{+} \longrightarrow C_{6}H_{6}Ge^{+} + C_{2}H_{2}$ $Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3}$ $Ph_{5}SiMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{3}$	212-4 170-8 96-0 221 343 117 239 193-1
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ \end{array}$ $\begin{array}{c} Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}G:SiMe_{3} \\ Ph_{3}G:SiMe_{3} \end{array}$	$\begin{array}{cccc} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline M-X \ bond \ cleavage \\ \hline (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6} \\ (PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{10}Ge^{+} + H_{2} \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{6}H_{6}Ge^{+} + C_{2}H_{2} \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ Ph_{2}SiMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{4} \\ Ph_{2}SiMe^{+} \longrightarrow C_{7}H_{7}Si^{+} + H_{4} \end{array}$	212-4 170-8 96-0 221 343 117 239 193-1 117-0
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \end{array}$	$Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6}$ $(PhCH_{2})_{2}Mc_{3}GcSi^{+} \longrightarrow C_{10}H_{16}GcSi^{+} + C_{7}H_{6}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6}$ $(PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2}$ $(PhCH_{2})_{3}Ce^{+} \longrightarrow C_{21}H_{10}Ge^{+} + H_{2}$ $C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3}$ $Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3}$ $Ph_{2}SiMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{2}$ $PhSiMe(H)^{+} \longrightarrow C_{7}H_{7}Si^{+} + H_{2}$ $PhSiMe(H)^{+} \longrightarrow C_{6}H_{3}Si^{+} + H_{2}$	212-4 170-8 96-0 221 343 117 239 193-1 117-0 101
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiEt_{3} \end{array}$	$\begin{array}{c} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline \\ \hline M-X \ bond \ cleavage \\ \hline \\ \hline (PhCH_{2})_{3}SiMe^{+} \longrightarrow C_{10}H_{16}Si^{+} + H_{4} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{21}H_{16}Ge^{+} + H_{2} \\ \hline \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{6}H_{6}Ge^{+} + C_{2}H_{2} \\ \hline \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ \hline \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{2} \\ \hline \\ Ph_{5}SiMe^{+} \longrightarrow C_{6}H_{5}Si^{+} + H_{2} \\ \hline \\ PhSiMe(H)^{+} \longrightarrow C_{6}H_{5}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{3}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{5}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{5}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{3}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{18}H_{12}Si^{+} + H_{2} \\ \hline \\ \hline \\ PhSi^{+} \longrightarrow C_{18}H_{12}Si^{+} + H_{2} \\ \hline \\ \hline \\ PhSi^{+} \longrightarrow C_{18}H_{12}Si^{+} + H_{2} \\ \hline \\ \hline \\ \hline \\ PhSi^{+} \square \\ \hline \\$	212·4 170·8 96·0 221 343 117 239 193·1 117·0 101 255
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si_{3} \\ Ph_{3}Si \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si \\ Ph_{3}Si \\ Ph_{3}Si \\ Ph_{3}Si \\ Ph_{3}Si \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si \\ Ph_{3}$	$\begin{array}{c} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline \\ \underline{M-X \ bond \ cleavage} \\ \hline \\ \hline \\ (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2} \\ \hline \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{11}H_{10}Ge^{+} + H_{2} \\ \hline \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{2} \\ \hline \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ \hline \\ Ph_{2}SiMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{2} \\ \hline \\ PhSiMe(H)^{+} \longrightarrow C_{6}H_{5}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{3}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{6}H_{3}Si^{+} + H_{4} \\ \hline \\ Ph_{3}Si^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ \hline \\ Ph_{3}Si^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ \hline \\ \hline \\ Ph_{3}Ge^{-}Ciii^{+} + M_{4} \\ \hline \\ \hline \\ Ph_{3}Ge^{-}Ciii^{+} + M_{4} \\ \hline \\ \hline \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ \hline \\ \hline \\ Ph_{3}Ge^{-}Ciii^{+} + M_{4} \\ \hline \\ \hline \\ \hline \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ \hline \\ $	212.4 170.8 96.0 221 343 117 239 193.1 117.0 101 255 253 179.4
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{5}Ge:SiEt_{3} \\ Ph_{5}Ge:SiEt_{3} \\ \end{array}$	$\begin{array}{cccc} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline \hline M-X \ bond \ cleavage \\ \hline (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{9}H_{6} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{15}H_{16}Si^{+} + H_{2} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{13}H_{16}Ge^{+} + H_{2} \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{4} \\ Ph_{5}SiMe^{+} \longrightarrow C_{14}H_{15}Si^{+} + H_{2} \\ PhSiMe(H)^{+} \longrightarrow C_{14}H_{15}Si^{+} + H_{2} \\ PhSit^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ PhSit^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ PhSit^{+} \longrightarrow C_{12}H_{2}Si^{+} + H_{4} \\ PhSit^{+} \oplus PSit^{+} \oplus PSit^{+} + H_{4} \\ PhSit^{+} \oplus PSit^{+} \oplus PSit^{+} \oplus PSit^{+} + H_{4} \\ PhSit^{+} \oplus PSit^{+} \oplus P$	212.4 170-8 96.0 221 343 117 239 193.1 117.0 101 255 253 179.4 103
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{$	$\begin{array}{cccc} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline \underline{M-X \ bond \ cleavage} \\ \hline \hline & (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{9}H_{11}Si^{+} + C_{6}H_{6} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{13}H_{16}Si^{+} + H_{2} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{13}H_{10}Ge^{+} + H_{2} \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ Ph_{2}SiMe^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{4} \\ PhSiMe(H)^{+} \longrightarrow C_{7}H_{7}Si^{+} + H_{2} \\ PhSiMe(H)^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{4} \\ PhSi^{+} \longrightarrow C_{12}H_{6}Si^{+} + H_{4} \\ PhSiH_{13}Si^{+} \longrightarrow C_{12}H_{6}Si^{+} + H_{4} \\ PhSiH_{4}^{+} \longrightarrow C_{12}H_{6}Si^{+} + H_{4} \\ PhSiH_{4}^{+} \longrightarrow C_{16}H_{6}Si^{+} + H_{4} \\ PhSiH_{6}^{+} \longrightarrow C_{16}H_{6}Si^{+} + H_{6} \\ PhSiH_{6}^$	212-4 170-8 96-0 221 343 117 239 193-1 117-0 101 255 253 179-4 103 331
$\begin{array}{c} Ph_{3}Ge:SiEt_{3} \\ Ph_{3}Sn:GeMe_{3} \\ Ph_{3}Sn:SnMe_{3} \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ \end{array}$ $\begin{array}{c} Molecule eliminations without \\ (PhCH_{2})_{3}Ge:SiMe_{3} \\ Ph_{3}Ge:SnMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Ge:GeMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiMe_{3} \\ Ph_{3}Si:SiEt_{3} \\ Ph_{3}Ge:SiEt_{3} \\ Ph$	$\begin{array}{c} Ph_{3}Sn^{+} \longrightarrow C_{12}H_{9}Sn^{+} + C_{6}H_{6} \\ (PhCH_{2})_{2}Mc_{3}GeSi^{+} \longrightarrow C_{10}H_{16}GeSi^{+} + C_{7}H_{6} \\ \hline \\ \hline \\ \hline M-X \ bond \ cleavage \\ \hline \\ \hline \\ (PhCH_{2})_{2}SiMe^{+} \longrightarrow C_{10}H_{16}Si^{+} + H_{2} \\ (PhCH_{2})_{3}Ge^{+} \longrightarrow C_{11}H_{10}Ge^{+} + H_{2} \\ \hline \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{10}Ge^{+} + H_{2} \\ \hline \\ C_{7}H_{7}Ge^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{3} \\ \hline \\ Ph_{2}GeMe^{+} \longrightarrow C_{13}H_{11}Ge^{+} + H_{2} \\ \hline \\ PhSiMe(H)^{+} \longrightarrow C_{13}H_{11}Si^{+} + H_{2} \\ \hline \\ PhSiMe(H)^{+} \longrightarrow C_{14}H_{3}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{16}H_{13}Si^{+} + H_{2} \\ \hline \\ PhSi^{+} \longrightarrow C_{12}H_{9}Si^{+} + H_{3} \\ \hline \\ PhSiH_{2} \longrightarrow C_{18}H_{15}Si^{+} + H_{3} \\ \hline \\ PhS_{14}GeSi^{+} \longrightarrow C_{18}H_{16}GeSi^{+} + H_{3} \\ \hline \\ PhS_{14}GeSi^{+} \longrightarrow C_{18}H_{16}GeSi^{+} + H_{3} \\ \hline \\ Ph_{3}H_{3}GeSi^{+} \longrightarrow C_{18}H_{16}GeSi^{+} + H_{4} \\ \hline \\ \end{array}$	212-4 170-8 96-0 221 343 117 239 193-1 117-0 101 255 253 179-4 103 331 285

Loss of H• or 2H• by cleavage of C-H bonds becomes increasingly important for Ph_3M •MMe_3 compounds in the order C>Si>Ge>Sn (table 4.2.8. and fig. 11 p. 122 and 124) which probably reflects the strength of the M-C bonds (C>Si>Ge>Sn). With the lead compounds (table 4.2.10. p. 123.) hydrogen loss does not give abundant ions.

• a 1 m

.

Bond cleavag	ge decompositions in eve	n-ele	ectron ions	also occur:
$(PhCH_2)_3 Ge \cdot SiMe_2^+$	\longrightarrow (PhCH ₂) ₃ Ge ⁺	+	Me ₂ Si:	m [*] 293-300
(PhCH ₂) ₂ GeMe ⁺	\longrightarrow (PhCH ₂) ₂ Ge ⁺ ·	+	Me∙	m [*] 242
PhSn ⁺	\longrightarrow Sn^{+}	+	Ph•	m* 73 . 1
Ph3Ge•SnMe ⁺ ₂	\longrightarrow Ph ₃ Ge ⁺	+	Me2Sn:	m [*] 201-206.5
Ph2GeMe+	$\longrightarrow \operatorname{Ph}_2 \operatorname{Ge}^+ \cdot$	+	Me•	m [*] 214
PhzSi•SiHz	$\longrightarrow \operatorname{Ph}_3Si^+$	+	H ₂ Si:	m [*] 232 . 1

The metal ions M⁺ are of high abundance only for the tin and lead compounds. This is probably a reflection of the energy to remove all the groups from the metal decreasing in the order Si>Ge>Sn>Pb. ¹⁰⁶ iii) <u>Ethylene Elimination</u>. M^+ —Et $\rightarrow M^+$ —H + C₂H₄ $-MMe_2^+ \rightarrow M^+$ —H + C₂H₄

Metastable confirmed decompositions for this process are shown

in table 4.2.12. Loss of ethylene occurs from even-electron ions containing an M⁴—Et bond and the mechanism is probably similar to that previously discussed for tin (p. 106). Other even-electron ethyl-germanium ¹²³ and - silicon ¹³² ions show ready loss of ethylene.

With the ions MezGe⁺ and MezSi⁺ ethylene elimination also occurs. Although such a process may involve rearrangement to an ethylmetal hydride, loss of this molecule may also occur by concerted cleavage of two M-C

bonds.

A similar elimination of stilbene 123 occurs from (PhCH₂)₃Ge⁺.

iv) Molecule Elimination by Cleavage of two M-X Bonds.

Such decomposition of parent ions has been noted for tetraphenyl-tin and -germane 123 as being responsible for the formation of $Ph_2^{M^{+}}$ in high abundance. With tetraphenyllead Ph_2Pb^{+} is of low abundance and no metastable peak corresponding to biphenyl elimination from the parent ion was observed.

With Ph3Ge•SiEt3 and Ph3Sn•GeMe3 a similar decomposition occurs giving an odd-electron ion in high abundance.

In the second process a Ge-Ph bond is produced by cleavage of a weaker Sn-Ph and Sn-Ge bond (the metal-metal bond since this is the weakest in the molecule will probably be one-electron and hence very weak). A similar situation occurs with $Ph_3Ge\cdotSiEt_3$ when a stronger Ph-Si bond is formed by cleavage of the weaker Ph-Ge and Ge-Si. In both cases the ions Et_2Si^{+*} and Me_2Ge^{+*} , which would result from elimination of Ph_3GeEt and Ph_3SnMe , respectively, are of very low abundance. However the selectivity of this elimination process will also depend on the stability of the resulting odd-electron ion. The bond energy argument applied to $Ph_3Ge\cdotSnMe_3^{+*}$ would favour a process giving Me_2Sn^{+*} , but this ion is not observed and Ph_2Ge^{+*} is of very low abundance. Compounds of the type $Ph_{3}M \cdot MMe_{3}(M = Si,Ge, or Sn)$ also fail to show this elimination.

Elimination of RR' molecules from even-electron ions are very common and examples observed with metal-metal bonded compounds are given in table 4.2.12. Biphenyl elimination from Ph_3M^+ ions is observed for M = Ge,Sn, and Pb but not M = Si, or C.

$$Ph_{3}M^{+} \longrightarrow PhM^{+} + Ph_{2} \qquad \begin{array}{c} m^{*} & 74.8 & M = Ge \\ 110.6 & M = Sn \\ 185 & M = Pb \end{array}$$

This is probably a reflection of the greater Si-Ph and C-Ph bond strengths in these ions. This type of decomposition may occur however from other silicon ions.

On the other hand these decompositions may not involve hydrogen atoms not attached to silicon.

In tetraethyllead the elimination of butane from Et₃Pb⁺ ions occurs. Et₃Pb⁺ \longrightarrow EtPb⁺ + C₄H₁₀ m^{*} 190.4 Such elimination is not observed with triethyl-silyl, - germyl or -stannyl ions. A similar decomposition occurring from the parent ion of tetraethyllead could also explain the high abundance of Et₂Pb⁺ which contrasts with the low-abundance of Et₂M⁺ ions for tetraethyl-tin and - germane. ¹²³

 $\operatorname{Et}_{\lambda}\operatorname{Pb}^{+\bullet} \longrightarrow \operatorname{Et}_{2}\operatorname{Pb}^{+\bullet} + \operatorname{C}_{\lambda}\operatorname{H}_{10}$

A metastable peak for this process was not observed however.

v) <u>Molecule Elimination by Cleavage of one M-X Bond</u>. Benzene elimination from Ph₃M⁺ ions gives a metastable peak for all group IV elements C, Si, Ge, Sn, Pb;

$\operatorname{Ph}_{3}\mathbb{M}^{+} \longrightarrow \operatorname{PhMC}_{6}\mathbb{H}_{4}^{+}$	+	с ^{6н} б	. * *	112.0 126.5 168.9 212.4 297.0	M = C $M = Si$ $M = Ge$ $M = Sn$ $M = Pb$
---	---	-------------------	----------	---	---

With $Ph_3M \cdot MMe_3$ compounds the abundance of the resulting ion decreases in the order C > Si > Ge > Sn (table 4.2.8. and fig. 11. p.124). With Ph_1M compounds the ion $PhMC_6H_1^{+}$ is less abundant for Pb than Sn.

A somewhat similar elimination is loss of toluene from benzyl ions (table 4.2.12. p. 131).

In some trimethyl compounds, Me₃M·M'R₃, ions are produced in low abundance which can be explained as successive loss of methane, e.g.,

$${}^{\text{Me}_{3}\text{Ph}_{2}\text{Ge} \bullet \text{Sn}^{+} \to c_{14}H_{15}\text{Ge} \bullet \text{Sn}^{+} \to c_{12}H_{7}\text{Ge} \bullet \text{Sn}^{+}}$$

vi) Fragmentation of Phenyl Groups attached to Metal.

Ions which could result by successive elimination of acetylene by fragmentation of phenyl groups attached to metal are present in the triphenyl derivatives of silicon, germanium and tin.

In phenyltin compounds these processes are not metastable confirmed. In tetraphenyllead only C_2HPb^+ was observed and then in very low abundance. (table 4.2.10.)

Table 4.2.13.

Abuluances 01	Privio 6n4, Prim	and lons	produc	ea by C	2 ^H 2 elimina	tion
	PhMC ₆ H ⁺	$PhMC_4H_2^+$	$PhMC_2^+$	PhM+	C ₄ H ₃ M ⁺	^C 2 ^{HM+}
Ph3Si.SiEt3	6.28	1.49	0.64	8.21	0.10	1.10
Ph3Si•SiMe3	6.52	1.42	0.62	5.01	0.75	1.21
Ph3Ge•GeMe3	5.04	0.28	0.19	11.56	1.21	1.04
Ph3Sn•SnMe3	0.27	0.11	0.05	27.83	0.26	0.56

From table 4.2.13. it will be observed that the fragment ions decrease in abundance in the order Si \rangle Ge \rangle Sn, which is probably a reflection of the change in metal-carbon bond strength.

vii) Loss of Hydrogen H• or H₂

Some of the H₂ eliminations e.g.

 $Ph_{3}H_{2}Si_{2}^{+} \longrightarrow C_{18}H_{5}Si_{2}^{+} + H_{2}$ may well be decompositions of category iv (p. 134) and have been discussed there. Others such as

PhSi⁺ \longrightarrow C₆H₃Si⁺ + H₂ probably do not involve metal-hydrogen cleavage and are shown in table 4.2.12. (p. 132)

Decomposition modes of organo-silicon, - germanium, - tin and - lead compounds have been shown to be very similar for a variety of ions containing M-Me, M-Et and M-Ph bonds. From a detailed study of the mass spectra of organogermanes ¹²³ it is apparent that similarities to organostannanes extend over a wide variety of compounds.

The abundances of parent ions show some trends for group IV organometallic compounds. For example the abundances at 70eV of parent

ions for the following compounds are:

	Si	Ge	Sn	РЪ
Ph6 ^M 2	14.87%	8.9%	6.51%	
Ph ₃ M [•] MMe ₃	9.14%	4.00%	1.83%	
Ph4 ^M		2.00%	0.11%	0.05%
Et ₄ M		2.00%	0.97%	0.42%

Such a trend is probably due to the increase in M-C bond strength in the order Si > Ge > Sn > Pb. The increase in abundance of ions resulting from C-H or C-C cleavage in the order C > Si > Ge > Sn > Pb is also probably because of the variation of M-C bond strength.

The decrease in abundance of \mathbb{RM}^+ and \mathbb{M}^{+*} ions in going from anologous compounds of lead and silicon may also be related to the decreasing energy required to strip organic groups from the metal in going from silicon to lead. Gielen, Nasielski and Boue ¹³³ relate the intensity of \mathbb{RM}^+ fragments primarily to the stability of the \mathbb{M}^{II} oxidation state which increases in going from silicon to lead. These authors also regard parent ions as \mathbb{M}^V species and $\mathbb{R}_2\mathbb{M}^{+*}$ as \mathbb{M}^{III} species. The high abundance of the even-electron ions \mathbb{RM}^+ and $\mathbb{R}_3\mathbb{M}^+$ is attributed not primarily to the even-electron character but to the stability of \mathbb{M}^{II} and \mathbb{M}^{IV} oxidation states relative to \mathbb{M}^{III} and \mathbb{M}^{IV} .

Rearrangement processes involving hydrogen migration are prevalent with these compounds especially when metal-alkyl bonds are present. Alkene elimination from even-electron ions containing alkyl groups with formation of metal hydride ions is particularly very favourable. Such hydrogen migrations are also well known in the mass spectra of organic compounds, for example the rearrangement of a odd-a hydrogen to a palar functional group is often observed ⁹. e.g.

Rearrangements where migration of a functional group occurs, although common for the organometallic compounds discussed in this chapter, has only recently been shown to occur with organic compounds.¹²⁹

$$\begin{bmatrix} \mathbf{A} - \mathbf{B} - \mathbf{C} \end{bmatrix}^+ \rightarrow \begin{bmatrix} \mathbf{A}^{\mathbf{C}} \\ \mathbf{A}^{\mathbf{C}} \\ \mathbf{A}^{\mathbf{C}} \end{bmatrix}^+ \rightarrow \mathbf{A} - \mathbf{C}^+ + \mathbf{B}$$

With transition metal complexes which have been widely investigated such rearrangement processes are well known.

Thus the iron-tin complex $\pi = c_5^{H_5}(c_0)_2^{Fe} \cdot \text{SnPh}_3$ shows the metastable confirmed rearrangement.¹³⁴

Similarly PhMn⁺ is observed in low abundance in the spectrum of $Ph_3Sn \cdot Mn(CO)_5$.¹³⁴ Transfer of an initially π -bonded cyclopentadienyl group from a transition metal to a non-transition-metal is a common process and for

 $\left[\pi - C_5 H_5 (CO)_2 Fe\right]_2 SnCl_2$ the ion $C_5 H_5 Sn^+$ is the most abundant ion in the spectrum. Trialkylgermyl-molybdenum and - tungsten complexes,

 $\pi - C_5 H_5(CO)_3 M \cdot GeR_3$ behave similarly in forming $C_5 H_5 Ge^+$. Similar migrations are observed with platinum-germanium phosphine complexes.¹³⁶. The μ - mercaptide, μ - alkoxo and μ - dialkylamido derivatives of chromium, iron and nickel produce rearrangement ions, a metastable peak for the

compound

process:-

The migration of carbonyl groups across a metal-metal bond seems to be 138 139 138uncommon. However with $\operatorname{Re}_2(\operatorname{CO})_{10}$, $\operatorname{ReMn}(\operatorname{CO})_{10}$ and $\operatorname{HRe}_3(\operatorname{CO})_{14}$ it must occur since the ion $\operatorname{M}(\operatorname{CO})_6^+$ is produced in very low abundance. Sometimes however ions observed may result from thermal decomposition followed by ionization, as in $\operatorname{Hg}\left[\operatorname{Mn}(\operatorname{CO})_5\right]_2$ where 42% of the total in current is due to ions $\operatorname{Mn}_2(\operatorname{CO})_{0-7}^+$.

Such migration reactions are not confirmed to metal-metal bonded compounds. A variety of compounds involving two metals π -bonded to the same ligand (such as

produce M-M ions.

ŕ

Migration of groups from carbon to metal has also been observed. The spectra of some substituted π - bonded arene complexes 0 142 $\int_{Fe}^{0} C-R$

produce ions resulting from transfer of R to the metal i.e. $C_5H_5FeR^+$ and FeR^+ .

Trimethylsilyl derivatives of benzylalcohol and benzylamine

(Me₃SiOCH₂Ph and Me₃SiNHCH₂Ph) produce phenylsilyl ions although this rearrangement is only a minor feature of the corresponding sulphur compound.²⁸

Group migration reactions are common in fluorocarbon metal compounds, presumably because of the high strength of metal-fluorine bonds. Tetrakis(pentafluorophenyl)germane ⁹⁷ produces $(C_{6}F_{5})_{2}$ GeF⁺ in high abundance contrasting with the low abundance of Ph₂GeH⁺ derived from tetraphenylgermane.¹²³ Similar migrations of fluorine are observed with fluorocarbon derivatives of silicon ⁹⁷, arsenic ¹⁴³ iron ^{97,144,145,146} manganese ^{140,147} and rhenium ¹⁴⁷, and elimination of neutral metal fluoride is often observed.

4.3. Mass Spectra of Beryllium Dialkyls.

Since most dialkyls of beryllium form electron deficient associated molecules in liquid and vapour phases 91 the mass spectra of these compounds are of considerable interest because of the possibility of forming ions from these associated molecules in high abundance. The following beryllium dialkyls were investigated using an ionizing electron beam of 70, 15 or 12 volts and various source temperatures:-Me₂Be; Et₂Be; (i-Pr)₂Be; (n-Pr)₂Be; (i-Bu)₂Be and (t-Bu)₂Be. Ion abundances for these compounds are given in Appendix 2.

The method of sample introduction for beryllium dialkyls has been discussed in chapter 2.2.1. p. 48. It is worth commenting here, however, that the temperature of the sample required for di-tert-butylberyllium reflects its monomeric structure ¹⁵³. Thus whereas di-iso-butylberyllium required a sample temperature of 0°C to give a source pressure reading of 5×10^{-6} m.m., a similar source pressure was obtained for the tertiary-butyl compound when the sample was solid at -60° C.

4.3.1. Effect of Source Temperature.

This was most apparent for diethylberyllium and fig. 13 shows the 70eV spectrum recorded at various source temperatures. As the temperature rises the abundance of monomeric ions, $C_xH_yBe^+$, increases whereas that of trimeric ions, $C_HBe^+_3$, and the much more abundant dimeric ions, $C_{a}H_{b}Be^+_2$, decreases (fig. 14 and table 4.3.1.). Such behavior can be explained by increased dissociation of associated molecules to monomers at higher source temperatures prior to ionization.

Ë

å

0

σ

Source temp. °C		% of total io	n-current	carried by:	-
	C _d H _e Be ⁺	C _a H _b Bet	$C_{y}H_{v}Be^{+}$	Hydrocar	bon
	ions	ions	ions	m/e > 30	m/e≤30
45 - 55	0.45	25.67	47.29	1.38	25.06
55 -65	0.14	11.74	60.35	0,90	26.86
70 85	0.03	2.57	67.43	0.94	29.00
85-100	0.006	2.14	67.23	1.21	29.43
110-122	0.003	1.93	66.22	1.20	30.68
135-142	0	1.60	64.98	1.32	32.09
150-155	0	1.87	67.25	1.32	29.51
167-170	0	1.59	67.52	1.40	29.47
184-186	0	0.79	68.02	1.60	29.58
196	0	0.72	67.29	1.11	30.65

Variation of ion abundances with source temperature for diethylberyllium (70eV)

The greater importance of hydrocarbon ions at higher source temperatures is in agreement with the thermal decomposition of diethylberyllium which produces ethane, ethylene and butane from about 85°C.

The two propyl compounds also produce dimeric ions (table A23.p. and fig. 15).

At corresponding source temperatures such ions are of much lower abundance than with diethylberyllium and this reflects the decreasing degree of association of beryllium dialkyls as the size of the alkyl group increases.⁹¹ Like the ethyl compound the abundance of dimeric ions falls with increasing source temperature and there is a complementary increase in the intensity of monomeric ions. Again this is because associated molecules dissociate to monomer molecules prior to ionization at high source temperatures.

Dimeric ions, $C_{a}H_{b}Be_{2}^{+}$, are more abundant at corresponding source temperatures for $(i-Pr)_{2}Be$ than for $(n-Pr)_{2}Be$ from which it may be inferred that dimer molecules are more abundant in the vapour for the iso compound. A tentative explanation of this observation is that the inductive effect of methyl groups attached to the bridging carbon atom in the dimer molecule

increase the electron density in the Be-C-Be bridging bonds. Inductive effects should be less pronounced with the n-propyl compound. Extending this argument to the butyl compounds one would expect di-tert-butylberyllium to be more associated than di-n-butylberyllium which is not the case; the tertiary compound being monomeric in benzene solution ¹³ and the normal compound dimeric ¹⁵⁴. Steric effects must also be considered to influence the degree of association and with di-tertiary-butyl_beryllium the size of the organic group probably inhibits association. Steric hindrance has been postulated to explain why diethylberyllium unlike dimethylberyllium does not form a polymer.¹⁵⁵

With di-iso-propylberyllium the abundance of hydrocarbon ions $m/e \leq 42$ increases from a source temperature of 55°C and rapidly above $\sim 150°C$. Since this compound is known to decompose thermally giving propene from about 50°C, the reaction becoming rapid at 200°C, these observations may be ascribed to thermal decomposition prior to ionization. Although hydrocarbon ions $m/e \leq 42$ are more abundant for di-n-propylberyllium they do not increase in abundance until about 165°C, source temperature, indicating that the n-propyl compound is somewhat more stable to thermal decomposition than the iso compound. The initial high abundance of hydrocarbon ions for the normal compound is probably because of a high •

•

#

٠

.

- *
- . *****
- •
- . n.
- •
- · · ·

- •
- •
- .

Table 4.3.2.

Variation of ion abundances with source temperature (70eV).

di-iso-butylberyllium.

Source temp.	% of total ion current carried by:-		
	C _H Be ⁺ xy ions	hydrocarbon ions m∕e ≥56	hydrocarbon ions m∕e ≤ 56
75 - 90	43.46	1.74	54.80
95 -13 0	41.88	1.56	56 . 56
160–170	36.61	1.53	61.86
200-210	29.61	1.30	69.09
235	20.70	1.34	77•50

di-tert-butylberyllium.

Source temp. oc	% « C _x H _y Be ⁺ ions	of total ion current hydrocarbon ions m/e ≥ 57	carried b y:- hydrocarbon ions m/e ≤ 56
55 -7 5	52 . 31	10.77	35•27
75-80	51.94	11.21	36.72
125-135	47.86	11.37	40.70
140.155	51.14	11.90	37.66
155-165	45.86	12.05	41.89
165-175	44.00	10.32	45•71
240	27.11	7.27	65.69

concentration of dissolved propene in the sample of di-n-propylberyllium when the spectra was recorded.

Even though di-iso-butylberyllium is dimeric in benzene ¹³ only monomeric ions $C_x H_y Be^+$, are detected in the mass spectrum. As with di-tertiary-butyl beryllium, the abundance of these monomeric ions falls with increasing source temperature while hydrocarbon ions m/e ≤ 56 increase in abundance. (table 4.3.2.). This reflects thermal decomposition to involatile hydride and butene prior to ionization.

Although solid dimethylberyllium is a long chain electron deficient polymer as revealed by X-ray analysis ¹⁵⁶

ions containing two or more beryllium atoms are of low abundance in the mass spectrum at 70eV and low source temperatures. This may be because only discrete monomer units can escape easily from the polymeric solid in contrast to liquid diethylberyllium which probably contains dimer and trimer molecules which can leave the surface of the liquid as complete entities. The infra-red spectrum of dimethylberyllium also indicates that the unsaturated vapour consists mainly of monomer while the saturated vapour gives a complex spectrum due to the presence of dimers and trimers.⁹¹

Since thermal decomposition of dimethylberyllium giving mainly methane does not occur until above $\sim 200^{\circ}C^{91}$ it is not surprising that the abundance of hydrocarbon ions in the mass spectrum of this compound increase only slowly as the source temperature rises to 210°C (table 4.3.3.)
Table 4.3.3.

Variation of	ion	abundances	with	source	temperature	for	dimethylberyllium
(70eV).					.		

Source temp. oc	% of t	total ion curr	ent carried b	y
	C _x H _y Be ⁺ ions	$C_{a}H_{b}Be_{n}^{+}$ ions	Hydrocarbo m/e > 16	on ions m∕e≤16
37 - 50	83.28	3.45	4.01	9.27
73-87	83.86	0.97	3.92	11.17
115-127	84•86	0.63	3.87	10.64
164–170	84• 57	0.60	3.90	11.01
195–198	83.64	0.24	2.02	12.35
210	81.10	0•41	3.78	14•52

With dimethyl-,di-iso-butyl- and di-tert-butyl-beryllium which show essentially only $C_x H_y Be^+$ ions, the monomeric parent ions, $R_2 Be^{+}$, are most abundant at low source temperatures. In this respect they are like hydrocarbons ^{1,157} which show a similar trend. As with hydrocarbons the effect is most pronounced in the highly branched molecules such as di-tert-butyl-beryllium. (table 4.3.2.).

4.3.2. Mass Spectra and Modes of Decomposition.

Unlike the organo derivatives of Group IVb elements, even-electron ions of the type, $C_x H_y Be^+$, are not outstandingly more abundant than odd-electron ions, as is illustrated in the following table calculated from the spectrum obtained at high source temperatures at 70eV.

The high abundance of odd-electron ions is mainly because of two factors:-

a) Monomer parent ions, $(C_nH_{2n+1})_2Be^{+\cdot}$, are abundant for all beryllium dialkyls except the butyl compounds. As the size of the alkyl

	Abundance of $C_x H_y Be^+$ ions	odd-electro	n	Abundance of even- electron C _x H _y Be ⁺ ions
$(C_{n}H_{2n+1})_{2}Be$	$(C_nH_{2n+1})_2Be^{+}$	C _n H _{2n} Be+	Total	
Me ₂ Be	17•91	15.14	39.63	41•47
Et2 ^{Be}	8.02	23.05	38.75	28.83
(i-Pr) ₂ Be	2.36	13.80	24+93	26.94
(n-Pr) ₂ Be	1.34	11.09	16.85	25.21
(i-Bu) ₂ Be	0.08	3.34	5•26	15 <u>.</u> 44
(t-Bu) ₂ Be	0.37	2.70	6•36	20.78

group increase so the abundance of the monomer parent ion decreases.

b) The odd-electron ion, $C_nH_{2n}Be^{+\cdot}$, is produced in high abundance by elimination of the alkane, C_nH_{2n+2} , from the parent monomer ion. This process is discussed in more detail when the decomposition modes of the monomeric ions, $C_xH_yBe^+$, are discussed.

In contrast abundant associated ions, $C_{f}H_gBe_n^+$, are even-electron and maintain themselves even-electron by eliminating a molecule such as hydrogen or a hydrocarbon. (Figs. 16 and 17).

Modes of Decomposition of Associated Ions at 70eV.

 $C_{f}H_{g}Be_{n}^{+}$ ions are observed in the spectra of dimethyl-, diethyland di-propyl-beryllium compounds at low source temperatures. The observed metastable transitions for these ions are given in figures 16, 17 and 18.

The decomposition of these ions is very simple. The parent ion of the associated species, $R_{2n}Be_n^{+\cdot}$, first loses an alkyl group R, giving an even-electron ion which maintains its even-electron character by

Metastable confirmed decompositions for $C_a H_b Be_2^+$ and $C_d H_e Be_3^+$ ions in spectra of diethylberyllium.

Et Be H 2 33 $-C_2H_4$ Et Be $_3H_4^+$

70eV; numbers are mass of observed metastable peak.

Fig. 17.

Metastable confirmed decompositions for di-propylberyllium compounds.

70eV; numbers are observed mass of the metastable peak. Solid arrows indicate metastable transitions common to both propyl compounds. Arrow $--\rightarrow$ indicate transitions observed only for (i-Pr)₂Be

Fig 18.

Metastable confirmed decompositions for dimethylberyllium

 $C_{2}H_{5}Be^{+} \qquad C_{2}H_{6}Be^{+} \xrightarrow{-H_{2}} C_{2}H_{4}Be^{+} \xrightarrow{-H_{2}} C_{2}H_{4}Be^{+} \xrightarrow{-H_{2}} G_{2}H_{4}Be^{+} \xrightarrow{-H_{2}}$

$$^{C}_{12}^{H}_{33}^{Be}_{8}^{*} \xrightarrow{-^{C}_{2}^{H}_{6}^{Be}}_{177.1} \xrightarrow{C}_{10}^{H}_{27}^{Be}_{7}^{*} \xrightarrow{-^{C}_{2}^{H}_{6}^{Be}}_{139.3} \xrightarrow{C}_{8}^{H}_{21}^{Be}_{6}^{*}$$

70eV; numbers are observed mass of metastable peak.

1516.

successive loss of neutral molecules.

With the ethyl compound successive elimination of ethylene from EtzBe⁺ and Et₅Be⁺ yields hydride ions in high abundance at low source temperatures

$$Et_{3}Be_{2}^{\pm} \longrightarrow Et_{2}Be_{2}H^{+} \longrightarrow EtBe_{2}H_{2}^{\pm} - - - \rightarrow H_{3}Be_{2}^{\pm}$$

$$Et_{5}Be_{3}^{\pm} \longrightarrow Et_{4}Be_{3}H^{+} \longrightarrow Et_{3}Be_{3}H_{2}^{\pm} - - \rightarrow$$

$$--- \rightarrow Et_{2}Be_{3}H_{3}^{\pm} \longrightarrow EtBe_{3}H_{4}^{\pm}$$

(metastable confirmed decompositions are given as solid arrows) Such rearrangement may involve an intermediate similar to that postulated for ethylene elimination from even-electron ions of the Group IVb metals (p. 107)

Alternatively or in addition a more complex mechanism involving a bridging ethyl group may apply.

The resulting ions can obviously be formulated in a variety of ways depending whether a hydrogen atom or ethyl group is involved in a bridge between two beryllium atoms. For example EtBe₂H² could be

In addition trimer ions can be formulated as a 6-membered ring or a spiro structure:

The hydride ions $\text{Et}_2\text{Be}_2\text{H}^+$ and $\text{Et}\text{Be}_2\text{H}_2^+$ also decompose by H_2 loss producing low abundance ions.

 $Pr_3Be_2^+$ produced in the spectra of both propyl compounds shows successive elimination of propene giving $Pr_2Be_2H^+$ and $PrBe_2H_2^+$. In addition loss of ethylene is observed from $Pr_2Be_2H^+$ which may involve formation of a methyl group. e.g.

The bridging propyl group may also be involved.

Ions of very low abundance are observed at low source temperatures which could be produced by methane loss

$$\Pr_{3} \operatorname{Be}_{2}^{+} \longrightarrow \operatorname{C}_{8}^{\operatorname{H}_{17}\operatorname{Be}_{2}^{+}} + \operatorname{CH}_{4}$$

$$\Pr_{2} \operatorname{Be}_{2}^{\operatorname{H}^{+}} \longrightarrow \operatorname{C}_{5}^{\operatorname{H}_{11}\operatorname{Be}_{2}^{+}} + \operatorname{CH}_{4}$$

Although the mass spectrum of dimethylberyllium shows no ions of the type Me_{2n} $\operatorname{Be}_{n}^{+ \circ}$, Me₃ $\operatorname{Be}_{2}^{+}$ carries 0.82% of the total ion current at low

153a.

Fig. 20.

Metastable confirmed decompositions for $C_x H_y Be^+$ ions for di-propylberyllium compounds.

70eV; numbers are observed mass of the metastable peak. Solid arrows indicate metastable transitions common to both $(n-Pr)_2$ Be and $(i-Pr)_2$ Be Arrows $- \rightarrow$ indicate transitions observed only for $2(i-Pr)_2$ Be. Arrows $+ + \rightarrow$ indicate transitions observed only for $(n-Pr)_2$ Be.

153c.

Metastable confirmed decompositions for di-iso-butylberyllium.

Fig. 22.

source temperatures. The ion $C_2H_5Be_2^+$ could be produced by methane loss from Me₃Be₂⁺. With this compound the ions $C_{12}H_{33}Be_8^+$, $C_{10}H_{27}Be_7^+$, $C_8H_{21}Be_6^+$ and $C_6H_{15}Be_5^+$ are observed in low abundance together with metastable confirmed eliminations of C_2H_6Be (Me₂Be?)

 $^{C}_{12}^{H}_{33}^{Be_{8}^{+}} \xrightarrow{-^{C}_{2}^{H}_{6}^{Be}} \stackrel{^{C}_{10}^{H}_{27}^{Be_{7}^{+}}}{\longrightarrow} \xrightarrow{-^{C}_{2}^{H}_{6}^{Be}} \stackrel{^{C}_{8}^{H}_{21}^{Be_{6}^{+}}}{\longrightarrow} \stackrel{^{C}_{8}^{H}_{21}^{Be_{6}^{+}}}{\longrightarrow$

Since these are all even-electron they must be fragment ions of some unobserved parent ion. It seems unlikely that $(Me_2Be)_8^{+\cdot}$ is the parent ion since four carbon atoms and fifteen hydrogen atoms must then be lost either as radicals or molecules to give $C_{12}^{H}_{JJ}Be_8^{+}$. It is possible that these ions are produced by ionization of a complex associated beryllium molecule formed during slight thermal decomposition of the dimethylberyllium polymer at 50°C (i.e. the sample temperature required) involving methane and hydrogen loss.

Obviously many structures can be postulated for these ions. However it does reflect the polymeric nature of solid dimethylberyllium that ions containing up to eight beryllium atoms are observed. Modes of Decomposition of C H Be⁺ ions.

Metastable confirmed decompositions for these ions are given in figures 18,19,20,21 and 22. The modes of decomposition observed for parent monomeric ions, R_2Be^+ are first discussed since these are similar for all compounds.

Parent Ion Decompositions.

The simple bond cleavage decomposition

 $R_2Be^{+\bullet} \longrightarrow RBe^+ + R^{\bullet}$

with formation of the abundant even-electron ion RBe⁺, is not confirmed by a metastable peak for any compounds studied. With di-tert-butylberyllium $C_{4}H_{9}^{+}$ is produced in much higher abundance than for di-iso-butylberyllium which suggests that for this compound the fragmentation:-

 $(t-Bu)_2 Be^{+} \rightarrow Me_3 C^+ + C_4 H_9 Be^{-}$

is important.

Carbon-carbon bond cleavage is also observed the following decompositions being metastable confirmed:

 $\begin{array}{cccc} \operatorname{Et}_2 \operatorname{Be}^{+ \bullet} & \longrightarrow & \operatorname{Et} \operatorname{BeCH}_2^+ & & \operatorname{CH}_3 \bullet \\ (\operatorname{t-Bu})_2 \operatorname{Be}^{+ \bullet} & \longrightarrow & \operatorname{t-Bu-Be-CMe}_2^+ & & \operatorname{CH}_3 \bullet \end{array}$

For di-tert-butylberyllium the resulting ion is of high abundance especially at 12eV. This is perhaps expected in view of the fact that hydrocarbons cleave readily at the carbon atom of greatest branching 1,9 . With the iso-butyl compound the (p-Me)⁺ ion (i.e. parent ion minus methyl) is only of low abundance.

In contrast the $(p-Me)^+$ ion for di-iso-propylberyllium is lower than for the normal compound. (i.e. $(p-Me)^+$ constitutes 0.23% of the total beryllium-containing ions for di-iso-propylberyllium and 0.55% for di-n-propylberyllium). Surprisingly diethylberyllium gives an abundant $(p-Me)^+$ ion especially at 12eV.

Parent ions also decompose by processes which involve rearrangement. All the dialkyls show a metastable peak for

 $(C_nH_{2n+1})_2Be^{+\bullet} \rightarrow C_nH_{2n}Be^{+\bullet} + C_nH_{2n+2}$

The ion $C_n H_{2n} Be^{+}$ is a major beryllium-containing ion. A simple hydrogen migration can be postulated; thus for the methyl compound a 4-centre intermediate can be invoked.

• * • • • ·

т д ц д . .

1

u u a p 2 • •

н • • • •

· · ·

. . .

· ·

•

ν

•

и .

٢

* .

· · ·

ił

Table 4.3.4.

2 ٤. 5 ł ۲. > ions and major Be-containing ions for beryllium dialkyls.

	235 ⁰	0-2150	21	220 ⁰	215-	-60	19	90 90	Source temp.
17•4	54-0 8	5 84-4	66.	83•2	51.6	93•5	75•1	96.8	total ion nt due to ke ⁺ ions ed by above 80.1
7.34	3.34	09 24+-53	11.	30.76	13.70	30 . 67	23.04	+ 6.89	1 ^H 2n+2) ^{+•} 15•11
8.86	7.87	67 15.94	14 •	12.04	66° 6	9.33	14.92	3 2.52	H _{2n+1} •) ⁺ 31•9
0.55	0.44	.69 0 . 89	•	1•34	0.61	0.43	2.76	1	H _{2n})+• -
0.28	0.08	,17 0.56	0	0.16	0.12	4.03	2.02	below)	•) ⁺ (see
0.23	0.08	.34 3.75	•	6.91	2.76	21.28	8.02) 78.37	nt ion 2n+1)2 ^{Be+•} 17.99
) ₂ Be 12eV	(i-Bu) 70eV	n-Pr) ₂ Be Dev 12eV	70 70	۳) ₂ Be 12eV	(i- P 70eV	:2 ^{Be} 12eV	70eV	²₂ ^{Be} 15eV	М 70еV

For the other dialkyls the position of hydrogen atoms involved can only be found by deuterium labelling in the alkyl group.

From the energy of dissociation

$$C_{n}H_{2n+1}Be^{+} \rightarrow C_{n}H_{2n}Be^{+\bullet} + H^{\bullet}$$

found from appearance potentials (p.98) it has been tentatively suggested that the ion $C_nH_{2n}Be^{+}$ (n \geq 2) formed by the above process may have a ring structure.

A metastable peak corresponding to loss of the alkene, C_nH_{2n} , is observed from parent ions, $(C_nH_{2n+1})_2Be$, of di-iso-propyl-, di-n-propyl and di-tert-butylberyllium. Such rearrangement probably involves hydride formation. For example:

$$\begin{bmatrix} CH_2 \\ n-Pr-Be \\ H \end{bmatrix} \xrightarrow{CH_2} CH - CH_3 \end{bmatrix} \xrightarrow{+ \cdot} n-Pr-BeH^{+ \cdot} + CH_2 = CH-CH_3$$

Although no metastable peak is present, the ions RBeH⁺ (R = Et or i-Bu) are probably produced in a similar way in the spectra of diethyl- and di-iso-butylberyllium. With dimethylberyllium the ion CH_3BeH^{+} is not observed, probably because its formation from Me_2Be^{+} would involve CH_2 : elimination.

In table 4.3.4. it will be seen that parent ions and fragment ions formed by the decompositions of parent ions discussed above account for most of the ion current due to $C_x H_y Be^+$ ions observed at high source

temperatures. This is especially true at low electron woltages when the number of types of ions formed is far less.

In addition to the decompositions discussed above, $(t-Bu)_2Be^{+\cdot}$ and $(i-Bu)_2Be^{+\cdot}$ show a metastable peak for propene elimination producing $C_5H_{12}Be^{+\cdot}$ in low abundance. A low abundance ion is also produced for methane elimination from Et₂Be^{+\cdot}

Fragment Ion Decompositions.

Elimination of H_2 from $C_x H_y Be^+$ ions is very favourable and many metastable peaks for such decompositions are observed. (Figs. 18-22) Whenever an abundant $C_x H_y Be^+$ ion occurs, then ions of much lower abundance are also observed 2,4,6 etc. mass units below formed by loss of hydrogen. Loss of a hydrogen atom gives a metastable peak in one case only:

$$HBe^+ \longrightarrow Be^{+\bullet} + H^{\bullet}$$

The propyl and butyl compounds produce ions which show metastable peaks for methane loss. Such decomposition is present for both odd- and even-electron ions. It is interesting to note that methane loss is the only alkane elimination from fragment ions that gives a metastable peak.

Both ethylene and propene on the other hand are eliminated from fragment ions (figs. 20,21,22) e.g. $(t-Bu)_2Be$ $(i-Bu)_2Be$ $C_7H_{15}Be^+ \rightarrow C_4H_9Be^+ + C_3H_6;$ $C_6H_{11}Be^+ \rightarrow C_4H_7Be^+ + C_2H_4$ $(i-Pr)_2Be$ $C_5H_{11}Be^+ \rightarrow C_3H_7Be^+ + C_2H_4$ Et_2Be $C_2H_4Be^+ \rightarrow Be^{+\bullet} + C_2H_4$

The elimination of Be is observed only from $C_3H_3Be^+$ produced by the propyl and butyl compounds.

$$C_{3}H_{3}Be^{\dagger} \rightarrow C_{3}H_{3}^{\dagger} + Be m^{*} 31.7$$

With the two butyl compounds the metastable peak at 31.7 can only be assigned to the above process but for the propyl compounds the transition

$$c_{5^{H}10^{Be^{+\bullet}}} \rightarrow c_{3^{H}5^{Be^{+}}} + c_{2^{H}5^{\bullet}}$$

can also apply.

If $C_3H_3^+$ formed is identical to that produced by ionization of •CH₂- C=CH then it is not surprising that the charge is retained by the hydrocarbon species since

> $I(\cdot CH_2 - C \equiv CH) = 8.25 \pm 0.08eV$ I(Be) = 9.32eV ref. 102.

and the charge would be expected to reside on the fragment of lowest ionization potential. 1,4

Obviously the $C_3H_3^+$ ion could also have a ring structure especially if the ion $C_3H_3Be^+$ has the structure $\begin{bmatrix} CH \\ ---Be \\ CH \end{bmatrix}^+$ in the spectra of

diethylberyllium the ion $C_3H_3Be^+$ is only of low abundance, which may account for the absence of a metastable peak corresponding to Be elimination. More probably this is because the ion, $C_3H_3Be^+$, has a different structure for this compound. It could for example be $(CH_2 - Be - C \equiv CH)^+$ rather than structures discussed earlier which involve all three carbon atoms bonded together.

Distinguishing Isomers.

The 70eV spectra of the two propyl compounds differ mainly in the relative intensities of the ions $C_{3}H_{6}Be^{+}$ and $C_{3}H_{7}Be^{+}$. At 12eV the spectra are almost identical. In contrast di-iso-butyl- and di-tert-butyl beryllium are most easily identified from their mass spectra at 12eV. At this voltage the tertiary-butyl compound gives an intense ion formed by carbon-carbon

cleavage in the parent ion:

 $(t-Bu)_2 Be^{+\bullet} \rightarrow t-Bu-Be-CMe_2^+ + Me \bullet$

For the iso-butyl compound the ion $C_7H_{15}Be^+$ although observed is always of low abundance.

4.4. Mass Spectra of Organoaluminium Compounds.

In view of the considerable effect of source temperature in the mass spectrometry of organoberyllium compounds, it is desirable to determine the effect of this instrument parameter on the mass spectra of organoaluminium compounds which, like the beryllium compounds, form electron deficient molecules. It is also of interest to compare the decomposition modes of the organoderivatives of this metal with those observed for beryllium and group IV derivatives.

Ion abundances of the compounds studied are shown in tables 4.4.1, 4.4.2. and 4.4.3. Unfortunately the sample of triethylaluminium used was contaminated by diethylaluminium ethoxide and so it was not certain which of the peaks in the mass spectrum obtained are due to the ethoxide. Since the major peaks in the spectrum of mixture of diethylaluminium ethoxide and other oxides all contain oxygen, it was assumed that all ions not containing oxygen are due to triethylaluminium. The mass spectra given in table 4.4.3. are thus obtained. Abundances are expressed as a percentage of the base peak rather than as percentage of total ion current because hydrocarbon peaks can come from both triethylaluminium or the ethoxide.

4.4.1. Effect of Source Temperature.

a) Trimethylaluminium.

The mass spectrum of trimethylaluminium has been recorded at 70eV and dimeric ions $Me_5Al_2^+$ detected in extremely low abundance.¹² The effect of source temperature was not considered.

The present study shows that dimeric ions $Me_5Al_2^+$ and $Me_3Al_2^+$ are

160.

Table 4.4.1.

Ion abundances * for Me₃Al and Me₂AlH.

	Me ₃	Al			Ν	Me2AlH	
m/e	Ion	Source oc	Temp.	m/e	Ion ⁺	Source	Temp.
		195	45 - 50			210	50 - 70
129	Me5A12	•14	2.97	159	Me5Al3H3	•01	•45
99	Me ₃ Al ₂	•04	•55	115	Me_Al_H	•79	4.93
72	Me ₃ Al•	4.60	6.13	101	Me ₃ Al ₂ H ₂	4.18	24.72
57	Me2A1	64.78	67.15	72	Me ₃ Al•	3.06	0.44
56	^с 4 ^н 8•	•45	1.14	58	Me2AlH•	1.51	0.99
	C2H5A1.	•69	• 66	57	C ^H Q	1.64	0.23
43	C ₃ H ₇	•43	•74		MezAl	60.68	39.38
	CH4A1	3.07	2.37	56	C _A H ₈ •	1.51	1.97
42	с ₃ н ₆ •	•15	•29		C2H5A1•	0.54	0.67
	CH3A1.	5.06	3•49	55	C _A H ₇	• 32	•37
41	CH2AI	•75	• 60			•09	•20
29	^С 2 ^Н 5	.20	•41	44	C ₃ H ₈ •	•05	•05
	H ₂ A1	•88	•83		CH ₅ Al•	•07	•06
28	^C 2 ^H 4	•15	•29	43	C ₃ H ₇	1.48	1.59
	HAl•	•44	•41		CHAL	2.85	2.23
27	^C 2 ^H 3	•30	•41	42	C ₃ H ₆ •	•64	•74
	Al	12.00	8.29 .		CH ₃ Alo	3.86	3.14
26	^с 2 ^н 2•	•12	•19	41	C3H5	1.19	1.50
16	сн ₄ •	2.58	1.17		CH2A1	•50	•18
15	CH ₃	2.54	1.46	29	C2H5	•67	•65
14	CHź	•31	•33		H ₂ A1	•83	•37
13	CH	•11	•10	28	^C 2 ^H 4 [●]	•19	•20
12	C•	•08	•02	• •	HAl •	•33	.20
			-	27	^C 2 ^H 3	•21	•24
				26	Al C ₂ H ₂ •	7•33 •13	.12
				16	CH ₁ •	2.63	1•97
				15	CH3	2.27	1.78
				14	CH2°	•30	•31
				13 12	CH C•	•09 •03	•12 •05

* expressed as % of total ion current at 70eV.

Table 4.4.2.

Ion abundances \star for Et_2AlH

m/e	Ion ⁺	Source 214 C	^{тетр.} 32-45 ⁰ С	m/e	Ion	Source 214 ⁰ C	Тетр. 32 - 45 ⁰ С
229	Et 5 ^{A1} 3 ^H 3	•02	•27	42	CH3A1 -	•53	•16
172	Et4Al2H2	•05	•90	30	°₂ ^H 6°	•99	4.37
171	Et4 ^{A12H}	•18	1•54	29	с ₂ н ₅	1.41	3.87
143	Et3Al2H2	1.16	12.79		H ₂ A1	4.72	2.50
115	Et2A12H3	•91	5.83	28	^с 2 ^н 4	11.84	14.71
114	Et ₃ Al •	3•54	1.21		HA1•	1.18	•39
113.	C6 ^H 14 ^{Al}	•05	•32	27	C2H3	7.22	5.80
87	EtAl2H4	•07	. 18		Al	8.56	5•71
86	Et2AlH °	1.13	•78	26	C2H2	5.89	3.33
85	Et2Al	19.18	19•27	25	C2H	•64	•86
71	C3H8A1	•88	•47	24	°2•	•24	.20
70 °	C3H7A1 [®]	•07	•08	16	сн_•	.11	•40
69	с ₃ н _б аі	•06	•21	15	сн ₃	•23	•71
57	C2H6A1	22.26	10.27	14	^{CH} 2	•27	•38
56	C2H5 ^{A1-}	2.36	•86	13	СН	•11	•13
55	C2H4A1	2.36	.86	12	C•	•05	•06
43	CH4A1	1.75	• 62				

* expressed as % of total ion current at 70eV.

Table 4.4.3.

Ion	abundances	*	for	Etal	and	Et ₂ Al (OEt)
-----	------------	---	-----	------	-----	----------------------	-------

m/e	Ion ⁺	Abundance	- E+ A1	m/e	Ion ⁺	Abundance
			<u> </u>			
114	Et ₃ Al •	12.5		57	HAlEt	100
99	EtzAlCH2	3•4		56	EtAl•	6.07
85	Et ₂ A1	69.7		55	C2H4₽I	7.18
84	CAHQAI•	•20		43	CHAI	4.29
83	C,H ₈ A1	•74		42	CH3A1 •	1.48
71	C ₃ H ₈ A1	2.74		29	H ₂ Al	14.29
70	C ₂ H ₇ Al•	•93		28	HAl·	2.07
69	C ₃ H ₆ A1	•99		27	Al	23.83
		. 1	Et ₂ AlOEt			
260	Et _{Al2} (OEt)2 °	•45		131	$C_{4}H_{13}A_{2})$	2.62
259	C ₁₂ H ₂₉ A1 ₂ O ₂	1.35		129	C4H11A120	3•49
231	C ₁₀ H ₂₅ Al ₂ O ₂	100.		117	C2H7A1202	9.28
215	C _Q H ₂₁ Al ₂ O ₂	1.23		115	С2 ^H 5 ^{A1} 2 ^O 2	5•47
	C ₁₀ H ₂₅ Al ₂ O	3.67		101	EtAI(OEt)	10.30
203	C ₈ H ₂₁ A1 ₂ O ₂	74.1		or		1 23
187	C7H17A1202	6.54		80	² 2 ¹⁷ 7 ¹² 2 ⁰	4•2J 8.60
	C8H21A120	2.50		09 73	$\frac{1}{3}$ $\frac{1}{2}$ $\frac{2}{2}$	11.20
175	C ₆ H ₁₇ A1 ₂ O ₂	51.0		[2		11.20
173	C6H15A1202	14.0				
159	C ₆ H ₁₇ Al ₂ O	2.86				
147	C ₄ H ₁₃ A1 ₂ O ₂	28.80				
145	$C_{A}H_{11}A1_{2}O_{2}$	9.08	,			
143	C4H9A1202	2.94				

* expressed as % of total ion current at 70eV.

Table 4.4.4.

Variation of ion abundances * of Me₃Al with source temperature.

Ion type	44-50	50 57	Source 60-75	Tempera 75 - 85	ture ⁰ (85 - 98	; 120 – 128	155-16	0175 - 17	8 195
Me3A1+	6.13	7.06	6.93	6.72	6.07	5.82	5.31	4.88	4.60
Monomer AlC H	89•93	91.82	92.02	91•17	91.91	90.50	90.91	90.37	92.27
Dimer $Al_2C_yH_z^+$	3.52	2.16	0•99	0.62	0•40	0.29	0.22	0.16	0.18
HydroCcarbon m/e > 16	3•44	3.02	3.07	2.81	2.52	2.96	2.58	2.61	1.80
m/e ≼ 16	3.08	3.00	3.92	5•40	5.16	6.24	6.29	5.41	5.62

* expressed as percentage of total ion current at 70eV.

Table 4.4.5.

Variation of ion abundances * of Me₂AlH with source temperature.

Ion type		0-	Sourc	e Tempe	rature	°C	405	040
	50-70	70-85	90–102	125-135	135-160	175-180	195	210
Dimer $Al_2C_yH_z^+$	29.65	24•34	22.80	20.00	16.56	7.40	4.39	4•97
Trimer $Al_{3}C_{w}H_{x}^{+}$	0.45	0.05	0.04	0.05	0 .0 5	0.04	0.06	0.01
Monomer $AlC_{a,H_{b}}^{+}$ except Me ₃ Al ⁺	56.13	50.33	62.07	60.57	67.96	71.20	77.80	78.59
Me3al+	0•44	0.52	0•45	1.02	1.66	2.30	3.07	3.06
Hydrocarbon m/e > 16	7.66	9•43	9•53	12.62	9.28	10.47	10.33	8.03
m/e 🖌 16	4.23	5.32	5.11	6.77	4•49	8.60	4.35	5.32

* expressed as percentage of total ion current at 70eV.

164.

quite abundant at source temperatures of $\sim 40^{\circ}$ C but their abundance rapidly diminishes as the source temperature increases (table 4.4.4.). Such variation is adequately explained by decomposition of dimer molecules to monomer molecules, prior to ionization, becoming increasingly important as the source temperature increases. The low heat of dimerisation of trimethylaluminium is in agreement with this.¹⁴⁸

 $2Me_3Al \implies Me_6Al_2 \bigtriangleup H = -20.2 \text{ Kcal. mole.}^{-1}$

The pyrolysis of trimethylaluminium at 200 - 250°C has been studied¹⁴⁹ and proceeds by the elimination of methane and formation of aluminium carbide. The variation given in table 4.4.4. shows that as the source temperature increases so hydrocarbon ions $m/e \leq 16$ become more important. However even at 195°C all hydrocarbon ions constitute only 7.5% of the total ion current.

b) Dimethylaluminium Hydride.

The variation of the 70eV mass spectrum with source temperature is given in table 4.4.5. At low source temperatures dimeric ions constitute a large proportion of the ion current and the trimeric ion $Me_5Al_3H_3^{+}$ carries 0.45% of the total ion current. As the temperature increases so monomeric ions, $C_aH_bAl^+$, become more predominant, and this may be partly due to the thermal decomposition of associated molecules into monomer molecules prior to ionization. However from the marked increase in abundance of Me_3Al^{+} with increase in source temperature, thermal rearrangement of $(Me_2AlH)_n$ species to trimethylaluminium prior to ionization is mainly responsible for the high abundance of monomer ions, $C_aH_bAl^+$, at high source temperatures. The presence of Me_3Al^{+*} at low source temperatures Table 4.4.6.

Abundances of monomer ions, $C_{a}H_{b}Al^{+}$, due to trimethylaluminium and dimethylaluminium hydride in the spectrum (70eV) of dimethylaluminium hydride at various source temperatures.

	50 70	Source 75 - 85	Temperat 85-98	ure C. 120-128	155–160	175–180	195
Me ₃ Al ⁺ plus	5•72	7.05	6.81	16.04	28.53	42.57	60.09
decomposition ions CaHal							
Me ₂ AlH ^{+•} plus	50.41	53.28	55.26	44•53	39•43	28.63	17.71
decomposition ions C _a H _b Al							

Table 4.4.7.

Variation of ion abundances * in 70eV spectrum of diethylaluminium hydride with source temperature.

	32 45	45 , 63	70-87	90 - 105	105–12	0130–14	0158-16	5189 - 192	214
Dimer $Al_2C_yH_z^+$	21.24	18.90	17.08	16.55	14•98	14.36	10.26	4.27	2•37
Trimer Al ₃ C _W H	0.27	0.19	0.08	0.06	0.05	0.06	0.04	0.03	0.02
Monomer AlC _a H ⁺									
except Et ₃ Al	42.50	44•79	47•19	48.57	50.12	53•94	58.43	63.74	64.09
Et ₃ A1 ⁺ ?	1.21	1•57	1.55	2.12	2.27	2.55	2.66	3.18	3•54
Hydrqcarbon ^C 2 ^H 6	4•37	4.22	3.46	3.31	2.80	2.11	1.55	0.98	0.99
m/e ≤ 29	30•45	30.34	30.65	29.38	29•77	26.99	27.05	27.80	28.03

* expressed as percentage of total ion current.

166.

may indicate that the sample of dimethylaluminium hydride used was contaminated with trimethylaluminium or that the ion originates partly from dimer or trimer ions in which transfer of methyl groups from one aluminium atom to another occurs. Certainly in view of the ready transfer of organic groups occurring in the ionization and subsequent decomposition of $A_3^{M-M^*B_3}$ compounds (M,M* = Si,Ge, or Sn) this possibility cannot be ignored entirely.

For trimethylaluminium the variation of the abundances of Me_3Al^+ and other $C_aH_bAl^+$ ions with source temperature is known (table 4.4.4.) Thus from the abundance of Me_3Al^{+*} in a spectrum of dimethylaluminium hydride the percentage of total ion current carried by $C_aH_bAl^+$ ions formed by ionization and subsequent decomposition of trimethylaluminium can be found. In table 4.4.6. the abundances of monomer ions, $C_aH_bAl^+$, due to trimethylaluminium and $C_aH_bAl^+$ ions due to dimethylaluminium hydride in hydride the spectrum of dimethylaluminium at various source temperatures are given.

The abundances of $C_{y}H_{z}Al_{2}^{+}$ and $C_{a}H_{b}Al^{+}$ ions from dimethylaluminium hydride and $C_{e}H_{f}Al^{+}$ ions from trimethylaluminium are plotted as a function of source temperature in fig 23.

Up to 100° C as dimer ions decrease in abundance so monomer ions from dimethylaluminium hydride become more important. This is because dissociation of associated molecules to Me₂AlH becomes more important as the source temperature increases. At 100°C the thermal rearrangement of (Me₂AlH)_n species begins to increase in importance and ions formed by ionization and subsequent decomposition of trimethylaluminium become significant. At 200°C the mass spectrum recorded is predominantly that of trimethylaluminium.

Thermal rearrangement of dimethylaluminium hydride was not observed when the vapour density was measured 150 within the temperature ranges 83 - 95°C and 160 - 167°C. The apparent molecular weights obtained were: Temperature °C. 95.05 82.9 88 89 90.8 160.1 167 Measured molecular 141.6 141.6 139.5 weight. 143.3 142.6 118.8 118.5 The little variation of the apparent molecular weight in the temperature range 83 - 95°C was noted by the authors as disturbing. Their results would obviously be greatly influenced by any disproportionation of dimethylaluminium hydride to trimethylaluminium and involatile aluminium hydride.

c) Diethylaluminium Hydride.

Diethylaluminium hydride appears to behave similarly to dimethylaluminium hydride (table 4.4.7.) in that the abundances of dimeric and trimeric ions fall rapidly with increasing source temperature. The ion $\text{Et}_3\text{Al}^{+*}$ becomes more abundant as the source temperature increases but it is also significant at lower temperatures. This may indicate that transfer of ethyl groups from one aluminium atom to another occurs in dimer or trimer ions or that the sample of hydride used contained some triethylaluminium.

The proportion of ion current carried by dimer and trimer ions falls off rapidly with increasing source temperature. Although the mass spectrum of triethylaluminium has been recorded the sample used was contaminated with ethoxide. Thus the proportion of monomer ions, $C_{ab}^{H}Al^{\dagger}$ due to triethylaluminium in the spectrum of diethylaluminium hydride

169.

cannot be calculated. At 214°C the proportion of triethylaluminium is significant however since the mass spectrum obtained is very similar to that of triethylaluminium (table 4.4.3.). Whereas at a source temperature of 32 - 45°C the most abundant ion is Et_2Al^+ , at 214°C the base peak is the same as for triethylaluminium i.e. EtAlH⁺.

Disproportionation of diethylaluminium hydride giving triethylaluminium has been observed in the purification of this hydride by distillation ¹⁵¹. The bath temperature should not exceed 80°C and the presence of solid phase in the still pot avoided since this appears to accelerate the disproportionation. In a study of the thermal decomposition of triethyl... aluminium in a glass vessel disproportionation reactions occurring in rapid succession were purported to lead to the deposition of aluminium as a mirror.¹⁵²

4.4.2. Modes of Decomposition.

With the limited number of compounds studied, major ions are predominately even-electron. The ratio of the abundances of even-electron aluminium-containing ions to odd-electron aluminium-containing ions for the following compounds is:

	Abundance of even-electron	Abundance of odd-electron	Ratio even-electron ions	
	Al - containing ions	Al — containing ions	odd-electron ions	
Me_Al	82.76	10.69	7.74	
MeoAlH	60.84	4.38	13.89	
Et 2AlH	81.17	5.50	14.20	

)

(c.f. organoberyllium compounds p. 151

Only for diethylaluminium hydride is a parent ion of an associated organoaluminium molecule detected. At low source temperatures this ion, $(\text{Et}_2\text{AlH})_2^{+\bullet}$, constitutes 0.90% of the total ion current. Although ions corresponding to the parent monomer ion may be fragment ions derived by decomposition of dimer and trimer ions, such ions are quite abundant at both low and high source temperatures.

The modes of decomposition for organoaluminium compounds are very similar to those of the group IV organo compounds and may be classified in a similar way.

a) Bond Cleavage by Radical Elimination.

With all compounds a major even-electron ion is produced by loss of a group bonded to aluminium in either parent monomeric, dimeric or trimeric ions.

 $R_{3}Al^{+\bullet} \longrightarrow R_{2}Al^{+} + R^{\bullet} \qquad m^{*} \quad 45.1 \qquad R = Me, \\ 63.4 \qquad R = Et, \\ Et_{4}Al_{2}(OEt)_{2}^{+\bullet} \xrightarrow{} Et_{3}Al_{2}(OEt)_{2}^{+} + Et \bullet \qquad m^{*} \quad 205.2 \\ \xrightarrow{} Et_{4}Al_{2}(OEt)^{+} + OEt \bullet \qquad m^{*} \quad 177.8 \\ \end{array}$

With dimethyl - and diethyl-aluminium hydride loss of both alkyl and hydrogen from the parent dimer ion occurs but loss of alkyl occurs to the greater extent. This H• loss probably results from cleavage of the aluminium-hydrogen bond since in the spectra of trimethyl - and triethylaluminium loss of H• from $C_a H_b Al^+$ ions by cleavage of a carbon-hydrogen bond is not significant.

With the methyl compounds a methyl group is lost from the even-electron ion Me₂Al⁺ but the resulting odd-electron ion is not of high abundance.

 $Me_{2}Al^{+} \longrightarrow MeAl^{+} + Me^{} m^{*} 30_{0}9$

The appearance potentials of the ions Me₂Al⁺, MeAl⁺ and Al⁺ in the spectrum of trimethylaluminium correspond to simple bond cleavage decompositions. ¹²

$$\text{Me}_{3}\text{Al}^{+} \rightarrow \text{Me}_{2}\text{Al}^{+} \rightarrow \text{MeAl}^{+} \rightarrow \text{Al}^{+}$$

Rearrangement Processes.

b) Alkene Elimination.

With the ethylcompounds the elimination of ethylene from even-electron ions is a major process. For example with diethylaluminium ethoxide eleven metastable peaks are present corresponding to ethylene elimination from even-electron ions. (fig. 25). Also

Et2A1+	\longrightarrow HALEt ⁺	+	с ₂ н ₄	. m	38.2
Et4AlH ⁺	$\longrightarrow \text{Et}_3\text{Al}_2\text{H}_2^+$	+	с ₂ н ₄	m *	119•6
Et 3AlH2	$\longrightarrow \text{Et}_2\text{Al}_2\text{H}_3^{\dagger}$	+ 1	с ₂ н ₄	m*	92. 5
Et_AlH3	\longrightarrow EtAl ₂ H ⁺ _L	+	с ^{2н} т	m*	65•8

As with M^+ -Et ions (M = Si,Ge,Sn,Pb) a mechanism involving transfer of a β - hydrogen may be envisaged for elimination of ethylene from -Al⁺-Et ions. With diethylaluminium ethoxide ethylene may be lost from both ethyl or ethoxy groups attached to aluminium. The formation of H₃Al₂O⁺₂ must involve loss of ethylene from both. The high abundance of H₂Al⁺ with the ethyl compounds is readily ascribed to

 $\operatorname{Et}_{2}\operatorname{Al}^{+} \longrightarrow \operatorname{EtAlh}^{+} \longrightarrow \operatorname{H}_{2}\operatorname{Al}^{+}$

MeoAl⁺ also loses ethylene:

 $Me_2Al^+ \longrightarrow H_2Al^+ + C_2H_4$ m^{*} 14.75 This elimination is probably very similar to the elimination of ethylene from Me_3Si^+ and Me_3Ge^+ . The ion H_2Al^+ is not as abundant for the methyl compound as the ethyl.

c) Methane Elimination.

In addition to ethylene elimination Me₂Al⁺ ions show a metastable peak for methane loss. The resultant ion although even-electron is of only low abundance.

 $Me_2Al^+ \longrightarrow CH_2Al^+ + CH_4$ m^{*} 29.5 In the spectrum of diethylaluminium ethoxide an ion m/e 215 corresponds to methane loss from $Et_3Al_2(OEt)_2^+$.

d) Molecule Elimination by Cleavage of two Al-X Bonds.

Two metastable peaks which may correspond to this process are given below:-

Me2Al+	\rightarrow	A1+	+	°₂ ^н 6	m*	12.8
EtAlH ⁺		Al ⁺	+	CoHc	m*	12,8

The first process is observed with trimethylaluminium and dimethylaluminium hydride, the second with triethylaluminium and diethylaluminium hydride. Since the presence of a metastable peak does not necessarily indicate an elimination in a single step 128 the two processes above could involve elimination of $2CH_3$ and (H and C_2H_5) respectively. With trimethylaluminium the appearance potential of Al⁺ corresponds to the process 12

e + Me₃Al \longrightarrow Al⁺ + 3Me• + 2e e) Hydrogen Loss (H₂)

This is observed with the ethyl compounds studied.

Fig. 24.

Decomposition diagrams for Me_3Al , Et_3Al , Me_2AlH , and Et_2AlH .

Fragmentations common to two or more ions are shown only once. Solid arrows indicate metastable confirmed decompositions.

Fig. 25.

f) Elimination of R₃Al (R = Me, Et or H)

Unlike dimer ions of beryllium but like dimeric ions of group IV metals $Al_2C_xH_y^+$ ions decompose to $AlC_aH_b^+$ ions by loss of R_3Al molecules. The process is metastable confirmed only for dimethyl - and diethyl - aluminium hydride; a fact that may be accounted for by the high abundance of dimer ions with these compounds.

Me4Al2H+	\longrightarrow	Me2A1+	+	HALMe ₂	m *	28.25
Me3Al2H2	\longrightarrow	Me2Al+	+	MealH ₂	m*	32.2
Et 3AL 2H2	\longrightarrow	Et2A1+	+	EtAlH ₂	.m *	50 • 5
Et2Al2Ht	\rightarrow	Et2A1+	+	H ₃ Al	m*	62.8

4.4.3. Mass Spectra.

The decomposition diagrams of the compounds studied are shown in figs. 24 & 25 and the abundances of ions in tables 4.4.1., 4.4.2.and 4.4.3.

The spectra recorded for trimethylaluminium at 70eV and source temperature of 195°C is virtually identical to that previously reported.¹²

Hydride ions are far more abundant for the ethyl compounds than the methyl which reflects the ease of ethylene elimination from ions containing Al - C_2H_5 bonds.

A variety of structures may be written for ions containing two aluminium atoms. For example $\text{Et}_{3}\text{H}_{2}\text{Al}_{2}^{+}$ may involve hydrogen or ethyl bridges or both:

 $\operatorname{Et}_{2^{Al}} = -H_{-} = -H$

With oxygen containing ions structures involving oxygen bridges are probably more likely because of the ability of oxygen to donate a lone pair of electrons to the aluminium atom.
APPENDIX 1.

Tin and Lead Isotope Masses and Abundances. Calculated Mass and Abundance Data for Sn₂, SnGe, Ge₂, SnCl and SnBr.

	Tin and lead iso	tope masses and	d abundances
	Mass •	Abı	indances
- 112Sn	111.90494		0.95
114Sn	113-90296		0.65
115Sn	114.90353	i.	0.34
116Sn	115-90211	•	14-24
117Sn	116-90306		7.57
118Sn	117.90179	:	24.01
119Sn	118.90339		8.58
120Sn	119.90213		32.97
1 22 Sn	$121 \cdot 90341$		4.71
¹¹¹ Sn	$123 \cdot 90524$		5-98
·		PbPh ₁	PbEt,
104Pb	203.97307	1.69 ± 0.08	1.42 ± 0.09
***Pb	205.97446	24.77 ± 0.08	25.17 ± 0.08
107Pb	206·97590	22.52 ± 0.06	21.90 ± 0.08
208Pb	207.97660	51.02 ± 0.07	51.51 ± 0.06

• L. A. Konig, J. H. E. Mattauch, and A. E. Wapstra, Nuclear Phys., 1962, 31, 18. † J. H. Beynon, 'Mass Spectrometry and its applications to Organic Chemistry,' Elsevier, Amsterdam, 1960.

Ň	iominal	·	Spread	Peak mass	Relative
•	mass	Multiplicity	p.p.m.	(wtd. mean)	abundance
			CoSp	, , <i>,</i>	ł
;	100		Geon	101 00000	0.05
	182	1		100.00207	0.90
•	184	2	3.0	183.82087	1.92
	180	. 2	2.7	105 00607	16.01
1	180	3 9	9.1	100.02027	10.01
!	187	3 E	10	100.02/19	0·20
ł	188		10	107.02000	94.70
	189	4	10	100.00456	24.10
	190	0	11	109.02400	93.40
	191	4	4.9	190.02477	34.13
	192	0. 	20	191.02072	20.60
	193	3 4	0.0 0.0	194.04494	70.80
	194	4	00 10	199.04900	5.02
	190	2	10	105.09477	99.90
1	190		10	190.02477	20.00
	191		N.0	107.99616	19.40
÷	199	. 4	ند 0	100.89660	9.96
	200	1		199-32000.	2.20
			GeSi		i
-	98	1		97.90120	· 54·40
	99	1		98-90077	2.78
4	100	2	6.3	99·89865	74.39
	101	2	20	100-89997	24.32
:	102	3	43	$101 \cdot 89803$	100.00
i	103	2	5-1	$102 \cdot 89758$	5.63
	104	. 2	32	$103 \cdot 89782$	23.80
;	105	1		104.89785	1.05
à	106	1 .		105.89512	0.69
			Ge		
	140	Singlet	-	139.848554	17.76
	141	No combination			l
	142	Singlet		141.846017	47.37
	143	Singlet		142.847637	13.46
	144	2	14	143.844776	94-61
	145	Singlet		144.845099	17.95
÷	146	3 1	26	145.843356	100.00
1	147	Singlet		146-844510	23.88
	148	2 \	5.4	147.842494	73.77
	149	Singlet		148.844720	5.08
;	150	Singlet		149-842509	23.78
•	151	No combination	L		0 50
,	152	Singlet		151-842719	2.03
		-			

	[
:	Nominal		Sprand	Peak mass	Relative
1	mase	Multiplicity	(nnm)	(with mean)	abundance
1	mass	Multiplicity	(p.p.m.)	(wea. mean)	abundance
t		· · ·	Sn ₂		
ł	224	singlet		$223 \cdot 80988$	0.02
ļ	225	no combination		005 00500	0.07
I	226	singlet		225-80790	0.07
ļ	227	singlet		226-80847	0.04
i	228.	Z ·	5.0	227.80703	1.93
ļ	229	. 2	0.0	228-80790	0.82
٠	230	3	8.7	229-80625	3.01
ţ	231	3	12	230-80697	1.88
l	232	4	12	231-80491	10.18
ł	233	3	5.1	232-80523	1.3.91
ł	234	5 '	19	233.80419	44.41
ł	230	· 3	3.4	234.00313	09.44
ł	230	5	28	233-80423	82.44
l	237	3	1.4	230.80319	100.00
ł	238	4	10	201.00411	25.64
1	239		14	238.80303	99.47
l	240	3	13	239.80470	0.52
	241	2	0.2	240.00709	22.93
	242	ند همانی سالم	ئد.0	241-00020	5.70
	243	singlet		242.00000	99.18
	244	Z ne combination	2.9	243.90134	23.10
	240	no combination		915.90965	2.12
	240	singlet		240.00000	5.12
1	247	no combination		947.91049	1.00
l	248	singlet		247.01040	1.22
		9	SnCl		
	147	singlet		146-87380	2.33
	148	no combination			
	149	2	6.6	$148 \cdot 87150$	2.35
	150	singlet	•••	149-87239	0.83
	151	2 .	14	150.87093	35.46
	152	$\overline{2}$	16	151-87188	18.85
!	153	2	17	$152 \cdot 87022$	70.24
	154	2	21	153-87152	27.07
	155	$\overline{2}$	21	154.87036	100.00
	156	singlet		155-86929	6-82
	157	2	27	$156 \cdot 86932$	37.77
	158	no combination			
1	159	2	30	$158 \cdot 87312$	18.42
ĺ	160	no combination			
	161	singlet		160-87114	4.75
	10-	· · · · ·	SnBr	100 00000	1,69
	191	singlet		190-82329	1.09
	192	no combination	0.10	109.00100	9,90
	193	2	0.13	192.82129	2.80
	194	singlet	۳ 0	193.02100	98.34
	195	Z	0.9	194.04041	12.00
	196	Z	1.9	190'02104	A7.90
	197	Z	10	107,99088	98.29
Í	198	2	14	100.01050	100.00
	199	Z	12	100.01000	14.89
	200	singlet	18	199.01910	85.51
	201	4	10	200.01000	
1	202	no combination	10	909.89109	18.75
	203		19	202.02102	10/10
1	204	no combination		204-82158	10.37
	400	augier			
κ.					

APPENDIX 2.

Ion Abundances, as Percentage of Total Ion Current, for Beryllium Dialkyls at 70, 15 or 12eV and High and Low Source Temperatures. Ion abundances for Me2Be.

Ion ⁺	70eV * 37-50°	70eV * 210 ⁰	15e⊽ *210°	Ion ⁺	70eV *37 - 50°	70e⊽ * 210 ⁰	15e⊽ *210 ⁰
^C 12 ^H 33 ^{Be} 8	•48	•09	2.50	^C 2 ^H 6°	•11	•07	
^C 10 ^H 27 ^{Be} 7	•67	•23	1.21	^C 2 ^H 5	•18	. 15	
^с 8 ^н 21 ^{Ве} 6	• 15	•06		с _{2^н4} .	•78	1.00	•31
^С 6 ^Н 15 ^{Ве} 5	•48	•03		^С 2 ^Н 3	1.10	1.02	
Me ₃ Be2°	•82			^C 2 ^H 2 [•]	•40	•37	
^с ₄ ^Н 9	•13	•12	•16	с ₂ н	. 40	•45	
^с ₄ ^н 8•	•11	. 15	• 24	∫ ^c 2•	• 20		
^с 4 ^Н 7	. 10	•13	•	CH3Be	30 . 13	31.93	2.52
^C 2 ^H 5 ^{Be} 2	•85			CH₂Be∙	16.02	15.14	6.89
^C 3 ^H 7	•13	•12	•15	CHBe	1.30	1.61	
^C 3 ^H 6 [•]	•09	•12	•29	CBe∙	•17	• 29	
с ₃ н ₅	• 28	•08		Сн ₄ •	3.29	5•95	•13
C₂ ^H 6 ^{Be} ●	22.19	17.91	7 <mark>8•</mark> 37	CH3	4 •47	6.61	4•35
С ₂ Н ₅ Ве	•54	•40	•09	CH₂•	1.22	1.45	
°2 ^H 4 ^{Be●}	3•43	2.65	2.69	CH	• 24	. 40	
^C 2 ^H 3 ^{Be}	1.66	1.45		∫ ^H ₃ Be	< .01	<₊01	
°2 ^H 2 ^{Be●}	•79	•72		(C•	•05	•11	
C ₂ HBe	3.59	3.90		H ₂ Be•	01. >	∢₊01	
C₂ ^{Be} ⁰	•18 [°]	•29		HBe	1.68	2.18	
				Be *	1.60	2.63	. 11

* Source temp. oc

Ions with same integer m/e ratio are linked by {

Ħ

~

. .

. .

					U	•
				•		
•		-				~
		-		1		4
	7					
	٠	*	-			n
	-	4				n 1
	я		•			л
			a.			
	r .	•		*	n	٢
	•	*				*
	h	^				n
			~			
	đ	•			•	h
	. .			r		ð
	r	~				*

	n	*		! x	•	•		
	7	*		•	•	•	•	
		n	•	•		•		
	۲	, K				٠		
	•	'n		· 7.	*	n	•	
		•	n		*	r		
4	•	•			•	i n	e .	
. +	^	٦	•			1		
, *	*	R				~		

.

L

Ion abundances for Et_2^Be

Ion+	70eV *45 - 55°	70eV ★ 196 ⁰	12e¥ ★196 ⁰	Ion ⁺	70eV *45 - 55°	70e⊽ *196°	12e∛ *196 ⁰
Et ₅ Be3	•14			с ₄ н ₉	• 23	. 05	•03
Et ₁ Be ₃ H	•06			C ₄ H ₈ •	•04	•04	•09
Et Be 2	•38			C ₄ H ₇	•07	•05	•04
Et_Be_H	•06			С _и н ₆ •	•03	•03	
Et_Be	5.46	• 18	• 26		•05	•07	
C6H14Be2	.30				•03	•03	. 12
Et2 ^{Be} 3 ^H 3	•06			C _H Be	1.19	2.02	4.03
Et Be H	11.11	•42		C ₃ H ₆ Be•	• 31	•48	•95
C _H Be ₂	.22		. 16	C ₃ H ₅ Be	•46	•48	1.57
C _L H ₇ Be ₂	• 29			$\left\{ C_{2}^{H} B e_{2}^{B} \right\}$	6.02	•19	
^C 5 ^H 10 [•]	. 02		•04		∎ 24	•14	•40
с _{_Н}	.02		•04	∫C_H_Be_•	. 27	•06	
С _Н Ве• 410	3.72	8.02	21.28	C ₃ H ₃ Be	•50	•41	
C _H Be	•48	•34	<mark>₀</mark> 41	∫CH Be	•72	•02	
С _и н ₈ Ве•	• 31	•19	• 28	C ₃ H ₂ Be	• 20	•15	
С _. H_Be	• 24	. 10	•04	$\int C_2 H_4 Be_2$	•08		
{C ₄ Be ₂	•12			C ₃ HBe	•05	•06	
(C ₄ H ₆ Be•	• 31	• 28	. 16	C _H Be	، 45	•03	
CHBe	•19	• 18		C H Be •	. 24	-	
C H Be•	. 12	•03		^C 3 ^H 7	•14	•05	•03
$EtBe_3^H_4$	•13			с ₃ н6•	•06	•05	•07
C ₄ H ₃ Be	•13	. 11		C ₃ H ₅	• 26	•15	•06
∫C, HBe	.07			{C ₂ H ₇ Be	" 06	. 10	. 10
C,H ₁₀ •	•07	•0 6	•07	C ₃ H ₂ .	•04	• 28	•44

Ion abundances for Et₂Be

Ion ⁺	70e⊽ * 45-55°	70eV *196⁰	12eV *196 ⁰	Ion ⁺	70e⊽ *45∙55°	70eV *196⁰	12eV * 196 ⁰
∫ ^C 2 ^H 6 ^{Be} •	1.72	2.76	•43	∫ ^c 2•	0.31	•28	
C3H3	•37	•32		CH ₃ Be	1.07	1.09	•09
С _Н Ве 25	10,25	14•92	9•33	CH ₂ Be∙	•54	•56	•04
C ₂ H ₄ Be∙	13.13	23.05	30.67	CHBe	•07	•08	
^с 2 ^Н 3 ^{Ве}	4•54	5.15	•37	∫ ^H ₃ ^{Be} 2	•11	く 01	
C ₂ H ₂ Be∙	1.38	1.66	•19	CBe•	•01	ڊ. 01	
C ₂ HBe	2.39	2.50		CH4.	•02	•01	
с ₄ н ₈ ве ⁺	•01	.02		CH3	•14	. 11	
^с ₄ н ₆ ве ⁺	•05	.11		сн ₂ •	•33	• 21	
$C_{4}H_{4}Be^{+}$	•09	•17		CH	.12	.08	
^C 2 ^H 6•	•10	. 10	•23	∫H ₃ Be	‰01	₹ •01	
^C 2 ^H 5	1.00	•84	•73	l c.	•06	•04	
^C 2 ^H 4•	9•47	13.58	25.32	H_Be•	≪₊01	₹. 01	
^С 2 ^Н 3	7.02	8.06	•52	HBe	1.64	1.05	
^C 2 ^H 2 [•]	5•44	6.42	1.21	Be∙	1.82	1.30	
°2 ^H	1.05	0.92					

* Source temp. °C

.

Ions with same integer m/e ratio are linked by {

,

- .
- .
- .
- ,

- .

- (

.

.

.

, ,

- - , ٢
- 4

.

¢

٦

Ion abundances for $(i-Pr)_2^{Be}$ and $(n-Pr)_2^{Be}$

	(i-Pr)	2 ^{Be}		(n-Pr) ₂ Be			
Ion ⁺	70e v *55 - 75°	70eV *215 - 220 ^{0.}	12eV *215 - 220 ⁰	70eV *35 45°	70eV 1 *210 215 ⁰ *	2eV 210 215 ⁰	
Pr,Be2•	•36					•	
Pr ₃ Be ₂	1.61	•02	•06				
C ₈ H ₁₇ Be ₂	•04						
Pr ₂ Be ₂ H	2.43	• 04	•06	. 3.12	•04		
^C 6 ^H 14 ^{Be}	3.96	2.36	6.91	.3.12	1.34	3.75	
C ₆ H ₁₃ Be	•09	•23	. 18	•Ó7	. •10	•56	
C ₆ H ₁₂ ^{Be} ∾	•16	•08	•59	•17	•05	•13	
C ₅ H ₁₁ Be ₂	•23					•	
C ₅ H ₁₁ Be	•17	.12	•16 [.]	•29	•17	•56	
C ₅ H ₁₀ Be ●	•17	•11	.09	•15	•04	• 05	
C ₅ H ₉ Be	•31	•25	•18	•12	.06	•09	
℃ ₅ H ₈ Be。	•30	•24	•12	•12	•04	•08	
C ₄ H ₁₁ Be ₂	1.50			1.10	• 02		
C _A H ₁₀ Be	•78	.82	2.36	1.36	1.22	4.10	
C _A H _Q Be	•86	• 60	• 64	1.03	.76	1.19	
C_1H ₈ Be∙	•28	•17	•23	.21	•15	•19	
C ₄ H ₇ Be	•66	•63	• 42	.16	•14		
C ₄ H ₆ Be∘	•37.	•26	•17	•15	•06		
PrBe2H2	2.27	•12		•83	.02		
C ₄ H ₅ Be	•17	•17		•06	•06		
C ₄ H ₃ Be	•04	•08		•08	•07		
C ₄ H ₉				.82	•33	•31	
C ₄ H ₈				•54	•25	1.11	
C _A H ₇	•17	•23	•03	•51	•25	•18	
C ₃ H _o Be	•58	•17	•29	•15	•11		
C ₄ H ₆ .	•17	•06		•11	.05	•28	
C ₃ H ₈ Be	•96	.61	1.34	• 69	•69	•89	
C ₃ H ₇ Be	11.65	9•99	12.04	11•42	14.67	15•94	
C ₃ H ₆ Be•	13.96	13.80	30.86	8.83	1.1.09	24.53	
C ₃ H ₅ Be	8.15	7.23	2.13	3.57	5.09	.88	

Ion abundances for $(i-Pr)_2Be$ and $(n-Pr)_2Be$

	·	(i-Pr) ₂ Be		(n-Pr) ₂ Be	
Ion ⁺	70eV *55 -75°	70eV *215-220°	12eV *215 - 220 ⁰	70eV *35-45°	70eV *210-215°	12e⊽ ' * 210–215 ⁰
C_H_Be•	•58	•44	•06	•65	•45	
C ₃ H ₃ Be	2.61	2.38	. 10	1.83	1.71	
C ₄ H ₂ Be•	•37	•40		•31	•32	
C ₃ HBe	•08	• 11		. 10	•09	
С ₃ н	•27	•19	•15	•76	• 30	• 39
C ₃ H ₇	2.33	2.43	2.14	2.34	1.30	2.02
С _Н • 36	6.92	8.80	30.30	9.01	10.49	33.12
C ₃ H ₅	9.91	13.90	4.32	13.72	14•94	5•49
С _. Н.•	2.18	3.24	•96	2•94	3.35	1.53
C ₂ H ₆ Be•	•97	•66		•09	. 11	
CH 33	4•31	6.40	•03	7•33	8.78	
C ₂ H ₅ Be	•97	1.03		• 50	•78	•23
.С _{.Н} . 32	1.13	2•33	• 25	1.89	1.94	
C ₂ H ₄ Be•	2.74	2.78	2.15	•70	•93	1.00
с _з н	• 58	1.37		1.70	1.33	
C ₂ ^H ₃ Be	• 9 5	.82	•03	•66	1.02	
C₂ ^H ₂ ^{Be●}	1.57	1.83	•21	•72	•98	•17
C2 ^{HBe}	. 80	•77		•60	•66	
^C 5 ^H 10 ^{Be+}	•05	.02		•08	•07	
C ₅ H ₈ Be ⁺	•08	•04		•05	•07	
°5 [°] 6 [°] Be ⁺	•05	•02		•05	•06	
C_H, Be ⁺ 5 4	•02	•01			•04	
^C 4 ^H 6 ^{Be+}	•13	•02		•21	. 18	
С Н Ве ⁺ 4 4	•13	•02		•09	•15	
СН 25	•73	•79	. 10	1.79	1.74	•43
C_H_+	. 60	• 85	. 18	2.45	1.17	•72
C ₂ H ₃	2.67	5.09	• 10	3.48	4.42	• 11
C ₂ H ₂	•45	•96		1.03	•98	

Table A.2.3. continued

Ion abundances for (i-Pr), Be and (n-Pr), Be										
•	(i-	-Pr) ₂ Be		4	$(n-Pr)_2Be$	9				
Ion+	70eV *55 - 75 ⁰	70eV *215 - 220°	12eV [*] 215 - 220°	70eV *35 - 45°	70eV *210-215°	12́e⊽ *210–215º				
{C _H	•06	•13		•18	•16					
CH, Be•	•03	•04		•02	•03					
CH ₃ Be	1.98	1.94	•03	1.28	2.00					
CH_Be•	. 14	. 20		•18	.• 29					
CHBe	.10	•01		•02	•02					
C ₃ H ⁺ 5	•05	•06		• 10	•08					
C H	•14	• 24		•27	•30					
	. 10	. 12	, •	•19	• 25					
C _H ⁺	•15	• 25		•30	• 34					
CH,	•06	•04		•04	•04					
CH ₃	• 20	• 36		•49	•43					
CH2•	•06	•14		• 19	. 16					
CH	. 02	•04		•05	•04					
(C•	•01	•02		•03	.02					
H _z Be	•01	•01		•01	• 01					
HBe	•15	• 27		•19	• 29					
Be•	•14	•23		•19	• 28					

* Source temperature °C

Ions with the same integer m/e ratio: are linked by

		_	
	-		

· · · · · ·

l

· · · · · · · · ·

Ion abundances for $(t-Bu)_2Be$ and $(i-Bu)_2Be$

{

ł

	(i-Bu) ₂	Be		(t-Bu) ₂ Be					
Ion ⁺	70e v *75 – 90°	70e V *235 0	12eV *240 ⁰		70e v *55 - 75°	70e V *240 ⁰	12eV * 240°		
^C 8 ^H 18 ^{Be} ♥	•89	•08	•23		5.01	•37	3.36		
^C 8 ^H 16 ^{Be}	•05	• 02	•06		•12	•03	•22		
С ₇ Н ₁₅ Ве	•19	• • 08	.28		5.71	1.95	15.29		
C ₇ H ₁₄ Be∙	•06	•02							
С ₇ Н ₁₃ Ве	•04	•02							
C ₆ H ₁₁ Be	•05	•02			1.48	• 65	•15		
C6 ^H 10 ^{Be}	•08	•03							
C ₆ H ₉ Be					•36	•17	•11		
C6H8Be	•01								
C ₅ ^H 12 ^{Be●}	•48	•19	•47		•74	•30	2.87		
C ₅ H ₁₁ Be	2.02	•76	1.11		-1•70	• 62	2•44		
C ₅ H ₇ Be					•05	•03			
C ₄ H ₁₀ Be [•]	•94	•44	• 55		1.00	•47	2.28		
C ₄ H ₉ Be	16.54	7.87	8.86		8.43	4•59	8.62		
C4H8Be•	8.17	3.34	7•34	· ·	4•59	2.70	9•54		
C ₄ H ₇ Be	3.51	2.04	•36		6.49	4.01	1.36		
C ₄ ^H 6 ^{Be}	•47	•25			.82	•51			
C4H5Be	•26	•08			•43	•25			
C4H3Be	•19	•14			•17	•09			
C4H10	•20	•09	•18		•79	•49	•54		
C ₄ H ₉	1.54	1.25	3•45		9•98	6.78	6.78		
C4H8.	9.13	12.30	58.76		4.58	8.55	32.48		
C4H7	3.56	5.88	2.28		1.77	3.30	1.03		
с ₄ н ₆ .	•41	•52			•20	•40	.81		
C ₄ H ₅	•89	1.28			•57	1.03			
C ₃ H ₇ Be	•34	•21	•13		1.21	•79	•54		
C ₄ H ₄ °	•19	•28			•14	•29			
^С 3 ^Н б ^{Ве}	•36	•26	•12		1.04	.81	•38		
C ₄ H ₃	•35	•97			•40	•79			

Ion abundances for $(t-Bu)_2 Be$ and $(i-Bu)_2 Be$

	(i-Bu)	2 ^{Be}			(t-Bu) ₂ Be		
Ion+	70eV *75 - 90°	70e⊽ * 235 ⁰	12eV * 240 ⁰	70eV *55 - 75°	70eV ≭ 240°	12eV *240 ⁰	
°C ₃ H ₅ Be	2.98	1.91	• 22	3.27	2.26	. 22	
(C,H.	• 69	1.27		•46	1.09		
{C ₃ H _L Be•	•32	₀ 07		•61	• 39		
	. 16	•34		•13	• 25		
C ₃ H ₃ Be	2.29	1.28		4•95	3•34		
C ₃ H ₂ Be•	•19	.12		• 33	• 21		
	•52	• 24		•06	•03		
C ₃ H ₇	2.55	1.79	1.13	3.72	5.83	2•33	
CH.	1.70	1.58	1.27	2.21	2.86	1.46	
C _H	15.97	23.91	10.75	8.78	18.87	4•56	
C ₃ H ₁ .	1.31	1.91	•84	•92	1.82	•54	
	5.00	8 .0 4		4.05	7.18		
C H Be	. 60	.21					
C ₅ H ₈ Be ⁺	•42	•22		• 16	•09		
C_H_Be ⁺				• 10	•06		
(C_H_Be	•15	. 11		. 21	• 26		
C ₃ H ₂ •	•66	1.07		•46	•97		
				• 28	•19		
с _т н	•33	• 55		•23	•53		
C ₂ H ₃ Be	•37	•22		•53	•37		
C ₂ H ₂ Be•	•1 8	•11		•27	•19		
C ₂ HBe	•36	•22		•68	•43		
C ₂ ^H 6 [•]	•1 5	•14					
CH	3•77	4• 59	• 18	2•35	3.37	•05	
C ₂ H ₄ .	2.84	4.60	1.45	1.12	3.10	•70	
CH	3.15	4•54		2.35	3.81		
C ₂ H ₂ •	•69	•93		• 32	•67		
С Н 2	•08	•14		• 04	•08		

Table A. 2.4. continued

Ion abundances for $(t-Bu)_2Be$ and $(i-Bu)_2Be$

	(i-Bu)	2 ^{Be}		$(t-Bu)_2$ Be				
Ion ⁺	70eV *75 - 90°	70e V *235°	12eV 240 ⁰	70e⊽ 55 - 75°	70eV 240 ⁰	12e⊽ 240°		
CH_Be	•73	•42		1.06	. 85			
CH_Be•	•09	•06		•11	•07			
CHBe	•01			• •01	•01			
CH. •	•05	•05		. 05	•06			
CH	•42	•62		•33	• 39			
CHZ•	.12	• 15		•06	• 10			
CH	•02	•04		•02	•03			
C•	•01	•02		•01	.02			
HBe	•09	•06		•14	• 11			
Be•	•09	•06		•11	•09			

* Source temperature °C

í

Ions with the same integer m/e ratio are linked by

Primary Experimental Data for Appearance

Potential Measurements.

Throughout the following abreviations are used:-

S.T. = Source temperature; I.R. = ion repeller voltage;

I(A) = Ionization potential of A.

 $A(X^{+})XY = Appearance potential of ion X^{+} from XY.$

For beryllium diakyls:-

 $i(Be) = Ion current of parent ion <math>(C_n H_{2n+1})_2 Be^+$ $i(Be^*) = Ion current of fragment ion <math>C_n H_{2n+1} Be^+$ $i(Be^*) = Ion current of fragment ion <math>C_n H_{2n} Be^{+*}$

For organotin compounds:-

i(Et) = Ion current of Et₃Sn⁺ i(Ph) = Ion current of Ph₃Sn⁺ i(Ph')= Ion current of PhSnEt⁺₂ i(Ph")= Ion current of Ph₂SnEt⁺ i(PhEt) = Ion current of Ph₂SnEt⁺₂ i(4Et) = Ion current of Et₄Sn⁺

I(Me	Be)			• -				<u>ــــــــــــــــــــــــــــــــــــ</u>	_		_	1076
(eVx	5) i(Be) i (Ar	i(Be)	i(Ar)	i(Be)	i(Ar) $\widetilde{i(Be)}$	i(Ar)	i(Be)	i(Ar)	i(Be)	i(Ar)
100	2800) 1690	4400	1220	3150				1058	510	349	187
99 98		1500		1000 997			3050	1370		470		163
97		1390		910			50,00	1215		390		133
96		1270		812		1270		1140	_	350		117
95	2950	1170	4150	714		1130	3025	1030	1080	310	349	100
94 03		940		010 525		1000		940 840		275		90 76
92		820		427		800		730		195		64
91		713		361		700		564		160		54
90 90	2850	630	3250	298	2825	600	2975	530	1070	130	334	44
89 88		505		221		500		434 374	1045	100 79		. 32
87		320		129		320		271	1030	58		18-2
86		230		91		250		195	983	37		10.5
85	2600	170	2575	59.5	2600	178	2675	135		25	7	.4-8
84 83		108		36 23		122		90 54	13	5.8-7.4	5 4.	2-4.8
82		36.5	· 10	25)•5 - 11.	.1	45		31	3		2	81
81		19.1	4	1.4-4.6	5	26	÷ .	16	1	•5-1-8		35
80	2200	11.1		2.3	2250	11.4	2250	7.9	756	•4-•6	230	
79 78		4.9	•	•9-•1	2100	5•4		3.8	718		214	
70		1.0-1.2	/ 2	•)	1960	.9		•9	617		184	
76		.67	1860			- 7			573		169	
75	1650		1720		1700		1560		529		158	
74	1520		1620		1640		1430		479		143	
13 72	1260		1340		1400		1250		397		118	
71	1160		1220		1260		1120		353		105	
70	1040		1110		1140		1010		315		94	
69 68	940		920 815		1040		920 805		272		03 72	
67	730		725		830		675		197		62	
66	610		610		720		600				53	
65	520		510		610		480		146		43	
64 63	420 300		337		230 430		342		93.2		29	
62	270		252		340		257		70.6		21	
61	208		183		262		192		55		17	
60	155		132		202		132	-	38		11.8 8.1	
59 58	98 64		09 55		130		48		25 15		4.4	
57	37		31		52		36		8.8		2.5	
56	19		14		27.5		18		5.0	1.	.37	
55	9•5	. 6	6;7	12	·2-13.	4	8.5		2.4		•7	
54	4-4.3	2.	0-3.2	4	•) -)•) • 5		2.0		•9			
52 52	.69				•)		9		- r			
51	.24	•	J• J				- / - /					
S.T.	193	1	87		215		183		217		220	
I.R.	2	-	2		0.2		2		0		0	

189.

I(E	t_Be)	\sim	\sim	\sim	\sim	~		~		<u> </u>		190.
eVx	<u>2</u> 5 i(Be)) i(Kr)	i(Be)	i(Kr)	i(Be)	i(Kr)	i(Be)	i(Kr)) i(Be)	i(Kr)	i(Be)	i(Kr)
98		900		570		1270		1580		840		1000
96		780		520		1150		1480		760		890
94		670	2400	470		1000		1340		680		750
.92		580	2350	400	-	840		1150		590		640
90	3100	480		360	1800	720		980		510		540
88		420	2350	310		595		810		405		450
86		340		255		490		665		343		380
84		270		200		390		530		255		300
82		200		146		300		415		180		220
80	2600	140	2275	98	1490	200	1695	288	1020	118	1170	155
79		105		75		163	4500	233	05.0	86		120
78	2350	84	2250	55	1400	120	1580	172	950	62		92
11		61	0050	39	4300	89	4490	132	070	40	043	64
76		39	2250	23	1300	62	1480	94	870	25.5	943	43
75	2100	24.5	12	. 13•4		30	4330	202	1	5 - 10-4		20
74	(10.5)•) - (•2	21100	24	1330	315	0	•) - / • 0		010
73	0	• • • 7 • 4	2.	0-3.1	-	11.9	4000	22	2	•9-3•5	050	0.2
72	1850 :	3.2-3.7	1.	1-1-4	<u>کر</u>	.5-0.2	1200	11.1	1	•4-1•9	059 4	4-4.5
71	1	.2-1.0	•	5-•7	2.	•03•1	2.	4-5.1	605	•5-•0	775	1•/ - 2
10	1700	•5-•1	1900		000		2-		02J		115	•0-•0
69	4500	• 1-• 3	1670		900 6	• 5 ••7	1000	ا سر	520		681	• 4
60	1280		1010		760		015	•∠−•4			616	
01	1280		1220		600		852		126		561	
00 45	1200		1200		620		770		420		511	
0) 64	1070		1160		570		703		358		160	
64 62	1010		1010		530		632		٥رد		409	
60 60	000		860		171		570		267		440	
61	840		760		414		512		201		360	
60	710		585		382		440		193		318	
50	500		160		320		370		156		268	
58	480		380		268		310		123.5		218	
57	360		250		211		260		99		163	
56	270		167		154		200		70		126	
55	190		108		111		148		47-48		86	
5/	130		59		80		108		28.5		60	
53	84		34		53		70		18		40.5	
52	52		16.5		33		46		10		24.3	
51	30	9	.2-10		20	3	1-32	1	5.5-6	1	4-15	
50	16	4	•5-5	12.	7-13.2	2	20	2.	.4-2.8	8.	2-8.6	
49	7.6-8.4	1.	9-2.2		6.6	10.	6-11.6	5.	1-1.3	4	-4.4	
48	3.6-4.2	•	6-1		3.3	5.	4-5.9		•5–6	1.	8-2.2	
A7	1.8-2.2	•	24	1.	2-1.4	2.	5-3.0			•	8–1	
46	.58	-	•	•	45	1-	1.2				•3	-
S.T.	195		230		197-2	213	213-	-230	230).	215	2
I.R.	.4		-1		•4		•4	Ļ	-	1	-1	I
	-				·							

••

I(i-	-Pr ₂ Be)		\frown	~				
eVx5 100	<u>i(Be</u>)	i(Kr) 720	i(Be) 1215	i(Kr) 655	i(Be) 3560	i(Kr) 1609	i(Be) 1210	i(Kr) 600
98 96	1100	645 565	-1190	575 510		1363 1210	1200	540 470
94	1050	485		440	2600	1086		400
92 90		408 350	1000	380 330	2410 2343	937 790	1040	350 295
88	910 90-	287		270	2215	680		250
87 86	885	260		242 220		607 554		215 205
85		208	0.5	193		479	900	177
84 83	795	183 157	837	167 143	1960	437 350		133 129
82	•	132		122		315		113
81 80	595	112 93	700	106 82	1683	260 217	730	93 75
79	,,,,	69	100	66		170	100	61
78 77		55 40		47 35		129 97		46 31
76	585	28		24	1470	68		23.5
75 74		16 9 – 11	550	16 7 .8 –8.8		38 20•5	575	15–17 7.6–9
73		5-6		4.4-5.4	1220	12		3.5-4.5
72 71		2-2.6 •9-1.4		2•3 - 3 •9 - 1•5		4 2		1.8-2.4 .8-1.4
70		•4-•9		•4–1				•1 – •5
69 68	365				965 897		372	
66	310		302		784		306	
64 62	262 223		254 213		684 570		264 222	
60	181		175		460		186	
58 56	143 102		140 102		354 277		141	
54	71		67		177-187		70	
52 50	41 19		30•7–40 17•3–19		51 − 53		19	
51.5	34.5-35.5		31-34		91 - 96		30 - 34 21-23	
49	11-12.25	-	11.3-13.	2	34 - 36		11-12.9	
48 46 5	6-7 2.5-3.25		5•4 - 7 2•7-3•5		18–19 6–9		6-6.7 2.4-2.6	
40•9 46	1-1•75		1.1-1.6		3-4.7		1.1-1.7	
45	•3-•5							
S.T. I.R.	205 7		205 7		205 -•7		205 -•7	
			•					

										192.		
I(n-Pr, Be)												
eVx5	$\frac{1}{i}(Ar)$	i(Be)	i(Ar) i(Be)	i(Ar)	i(Be)) i(Ar)	i(Be)	i(Ar)	i(Be)		
98	1525	- (/		/ - / - /	3150		- (/	- 、 ・ /		、		
96	1375				2800							
94	1213				2475							
92	1075		1188		2175		3050					
90	925		1038		1850		2550		775			
88	780		875		1540		2100		670			
86	650		725		1280		1700		534			
84	520		570		1000		1280		410			
82	410		440		800		940		305			
81	350		375		680		805		259			
80	300		305		570		645		181			
79	245		250		460		505		173			
78	200		195		380		375		138			
77	153		148		280		26 0		103			
76	109		104		203		190		81			
75	76		67		130		115		57			
74	47•5		46		88		70		37			
73	28.3		29		54		42		26			
72	15.8		15.5		30		23.5		16			
71	8.2-9		8.3		16		12		10.3			
70	4.8-5.2		4.1		8.6		5.7-6.2		6.11			
69	2.4-2.7		2-2.2		4.2		2.7-3	-	3.0-4.1			
68	1.3-1.5		1-1-2		2.3		1.4-1.7	Ż	2.2-2.4			
67	•6-•8	45.40	• 6• 7	4560	1.2	1480	•5-•0	1720	1			
64		1540		1500		1260		1580				
62		1400		1200		1250		1440		1040		
60 50		1290		1120		1100		1250		980		
50		1130		070		050		1070		900		
50		820		870		780		900		800		
24 50		680		670		650		730		720		
72 50		540		540		520		600		585		
18 18		A20		415		410		450		500		
40 A7		355		350		340		380		440		
46		295		300		293		320		375		
45		250		250		240		255		320		
44		205		195		190		205		270		
43		158		150		136		150		220		
42		122		108		119		114		175		
41		85		82		82		80		130		
40		61		56		60		52		100		
39		41		35		31		32		74		
38		23		22		22		10.5		51		
37	1	12-13.6		11.8		10-12	-			52		
36		6.5		6.4-6.9	. 6	o• o −7•5)•5 - 5•(42		
35	-	3.5-3.9		j.4-j.0	-	5•5 - 5•9				ט•כו יי כו א ק_ק		
34	4	1.9-2.2		1•5-1•0		۱۰ <i>۲</i>	1	• 5- 1• (Λ_Λ_Λ_Q		
33		•0-7•2		• /= • 185		0 ون 185		0 185		185		
S.T.		105		5		5		5		5		
T•U•))				-		-		

I(n-Pr	Be)		I(i-Bu	"Be)			
eVx5	$\frac{2}{i(Ar)}$	i(Be)	(e Vx 5)		i(Xe)	i(Be)	i(Xe)
999886427098777777777777770987420867420886421409877654321709887420886421409877654321709887420865555208	3000 2600 2000 1750 1300 950 800 675 500 380 260 186 120 65 40 22 10 6 3 1.4-1.7 .58	1700 1500 1420 1200 1000 950 700 550 425 370 310 250 203 145 110 75 50 30 19 9 $5-5 \cdot 5$ $3-3 \cdot 2$ $1 \cdot 3-1 \cdot 7$ $\cdot 5- \cdot 6$ 210	100 98 96 92 90 88 84 80 76 74 70 86 64 20 86 54 20 86 44 20 86 44 20 86 34	265 260 250 235-240 225-235 220-230 215-220 205-215 195-205 195-205 195-195 165-175 165-175 165-175 165-175 145-155 124-130 114-120 102-108 90-94 80-84 70-73 58-61 48-51 37-41 27-29 18-19.5 9.8-11 4-4.7 1-1.6 $\cdot14$ 02	7600 7200 6800 6500 6100 5800 5400 5100 4700 4400 4000 3650 3100 2900 2500 2100 1700 1320 920 620 350 160 50-52 20-22 1.5-2 .3-5	32-34.5 28-31 27-28.5 24.5-27 24-25 21-23 21-24 -9-10 2-3-3 1.5-2.4 -9-1.9 -3-7	675 620 560 490 455 400 377 335 310 300 278 247 217 190 160 136 113 83 61 37.5 22 9-10 3-3.4 .68
I.R.		5		5		5	

I(i-Bu₂Be)

1	94.	94	
	74.	24	

I(i-	Bu ₂ Be)		\sim			\sim	\sim	
eVx5	i(Be)	i(Xe)	i(Be)	i(Xe)	i(Be)	i(Xe)	i(Be)	i(Xe)
100	36-38.5	720	22.5-25	550	110-114	1000	25-27	116-122
98	33.5-36	650	22.5-25	500	110-114	950	24-27	106-110
96	31.5-34	580	22.5-25	460	108-112	910	22-25	98-100
94	29-31-5	520	21-23	440	104-110	870	23-25	90-95
92	26-30	470	19.5-22	380	104-106	850	17-18	7 9 82
90	24-27	430	18.5-20.	5 360	102-108	870	17-18.5	67-69
88	22.5-26	400	17-18.5	- 330	98-102	790	17-19-5	60-64
86	22.5-26	360	18-20-5	305	96= 102	740	15.5-18	64-66
84	22-25	330	17.5-20	305	86-90	695	15-5-17	56+60
82	21.5-24	310	17.5-20	270	86-90	620	14.5-16	50-52
80	21.5-24	290	17.5-20	260	82-86	575	14.5-16	47-50
78	21.5-24	270	16-18	240	80-84	505	13.5-10	42-44
76	21-22-5	250	14.5-17	205	70-74	405	14.5-15.5	30-39
74	19-21.5	215	13-14.6	185	69-72	387	14-16	35-30 22 25
72	17-19	185	12.4-14	155	65-78	343	12.5-15	33-35
70	16-17-5	154	12-14	136	60-64	282	1214	27 ⊷3 0
68	12-15-5	120	12-14	122	57.5-62	238	11-13	22-29
66	11.4-13.4	90	11.4-12.	8 100	52-50	178	10-12	15-17
64	11-13	62	10.4-12	74	49-53	130	9-10	10-12
62	9.8-11.4	41	9-10.8	52	45-40	0/ 50 5	0-10	0.2-1.2
60	8.6-10	21.5	7.6-8.6	32	42-49	52.5	(.0-0.0	3.2-4
58	7.8-9	8.5-10	7-8.4	16.5	38-40	23	6.2 - 0	1.0-2.1
56	6.6-8.2	2.4-3.1	1	6.8-7.2	<u>رد - دد</u>	12-13.0	4.5-0	•) - • (
54	7-8.4	/ 1•		1.6-2.4	26.5-20	2.2-3.2	4 ~ 7	
52	5.6-6.6		4.8-5.8	• 3• (22.5-23.5	• 3•4	3•2-4•2	
50	4.2-5		4-4.9		1/-19-2		2•2-3•2	
48	2.8-3.8		-3-4		13-15		1.9-2.9	
46	2-2.8		2.0-3.1		9-11			
44	•9-1•7		1.5-1.9		5.5-0.3		• 2 - 1 • 3	
42	•4-•8		.8-1.2		2.5-3.4		• د	
40	•2•5		•3-•7		1-1-4			
38			•1-•3		•4-•2			
36								
s m	205		205		205		198 - 205	5
T.R.	5				5		o xr	
					2		6.4	

$A(CH_3Be^+)Me_2Be; A(CH_2Be^+)Me_2Be.$												
eVx5	i(Be'))i(Be'')i(Ar)i(Be')i (Be")	i(Ar)	i(Be)i(Be	')i(Ar)	i(Be)i(Be	")i(Ar)
100 99 98 97 96	2900	1350	600 562 530 500	3050	1450	870 800 750 700 640	2800	1350	780 730 680 630 580	2900	1800	760 715 670 620 572
95 94 93 92 91	2600	1300	417 370 335 300 257	2740	1350	590 520 480 430 361	2600	1230	540 490 440 390 330	2400	1200	539 470 420 380 310
90 89 88 87 86	2150	1120	215 172 137 109 80	2200	1175	300 260 206 155 118	2100	1080	286 230 182 140 104	2000	1070	279 215 180 120 102
85 84 83 82 81	1550	900	58.51 37.4 22.6 12.1 6.9	1580	. 930	85 58 35 18•5 11•1	1490	860	75 48 31 16.17 8.9	1400	840	72 45 29 15.17 8.1
80 79 78 77	880	620	3.0 1.5 .7 .4	920	64 0	5.2 2.3 1.2 .5	860	600	4•1 2•0 •95 •45	830	550	4.0 2.0 .8 .4
75 74 73	* 370 300 220	355 300 260		390 305 240	370 320 275		338 275 210	330 285 250		325 270 205	300 270 230	
72 71	160 120 80	215 180		175 127•6 86	233 190 150		146 114 78	203 168 136		140 108 70	200 161 125	
69 68	56 37	112 88		. 60 41	118 94		53 35 22	109 86 62		50 31 20	101 78 60	
66 65	- 23•5 14 7•6–8•	46 231.5		14•4 9	49		12.4 5.75	44 28-29)	12 4	42 27	
64 63 62	3.9-4.3 2.0-2.5 .9-1.3	20.5 12+13 6.6-7	.2	5-5.6 2.4-2. 1.0-1.	23-24 7 13-14 3 7.2-8	8.0	4.0 2.0 .8–1.1	19-20 11-12 5•9-6	•0	د 2 1۰0-و.	10–11 5•7	
61 60		33- 1-5-1-	4 8	•5•8	3.9-4 1.8-2	↓•3 2•1 .9	•4-•6	3-3-5 1-4-1- -57	7	•5	3.2 1.2–1. .4–.6	6
58 58 5.T.		•1-•3 193	,		•3 193	4		•12 193 2			•1 199 0	

 $A(C_2H_4Be^+)Et_2Be^+, A(C_2H_5Be^+)Et_2Be^-$

A(CH₂Be⁺)Me₂Be

							_			A(CH	Be ⁺)Me	² Be
eVx5	5 i(Be)i(Be)i(Ar)	i(Be	")i(Be')i(Ar)	i(Be	')i(Be)i(Ar)	i(Be [*])i(Be'	
100	.4200	2150	500	5600	2400	800			1120	3850	6800	10000
98			450			710			990	3650	6250	9600
96			400			630			890	3400	5700	9350
94			350	5000	2450	560			730	3150	5200	8950
92			305	4800	2250	460			630	2900	4700	8600
90	3400	1600	260			390	4600	2100	540	2600	4050	8000
88			215	4250	1950	320			430	2350	3500	7600
86			170			235	4000	1740	335	2070	2950	6900
84		1300	135	3850	1650	180	3750	1590	243	1800	2400	6400
83		1220	118	3700	1575	150			200			-
82			100	•		120	3500	1440	165	1550	1900	5800
81			84			94	- ,	•••	132			
80	2600	1060	68	3300	1325	72	3300	1310	102	1300	1500	5300
79	2550	1010	55	3200	1250	57	33**		71		.))))
78	-)) •	1010	12	9200	,0	37.5	3050	1150	18	1000	1010	1550
77	2/00	900	31			23	50,00	170	29	1000	1010	4770
76	2325	860	21	2800	1020	15.5			16.3	770	680	1000
75		000	12	2625	020	7.1		8	1.8_0.1	680	550	4000
イノ マイ			6 4	202)	,20	2-3 5				570	120	3325
14 72			22		ر 1	2-17		- 1	5_1 7	480	320	3050
13		4)•) 0 1 E		1.) • I • C •			•)= • (400	220	2725
[2		1	•2≓[•] ∠ 7	0050	600	•)•)	2050	610	•4•• (205	165	2 2 2
[]		500	• 0• (2050	020		2050	510		343	107	2500
70	1600	500	•2•3	1900	550		10/0	540		207	115	2200
68	1380	395		1625	430		1580	415		160	51	1//0
66	1200	315		1320	320		1290	295		76	17.3	1280
65	1100	265		1200	270		1180	255		. 54	11	1140
63	900	190		960	185		920	169		18.52	•5-2-6	5 740
62	800	155•5		850	150		800	128		8.9	•9-1•0	510
61	720	130		740	117		690	103		4.4	•3–•5	430
60	630	105		640	89	-	600	78	1.	7-2.0		305
59	535	78		530	64		515	685	•	69		195
58	450	58		430	44		407	39•5				120
57	370	40		360	31		330	27				. 68
56	308	29		290	21-		260	16.8-1'	7.8			37
55	255	21		225	· 14		210	12.4				18
54	195	13.5		175	9-9.8		152	7.4-7.	9			9.2
53	155	8.8		128	5-4-5-6	5	109	4.5-4.	9			3.4
52		5.6		94	1.8-1.9)	77	2.9-3.	2			1.2
51	90	3.8		•	1.1-1.2	2	53	1.9-2.	1			.3 6
50	62 2	2.4-2.	7	41	•7.		34.5	.9-1.	1			
19	12	1.5-1.	8	•	•		23	.68				
+/ 18	29	-9 - 1-	1	16.5								
40	16 5	6-8	,	,				•				
+1 16	0_0_4	• • • • • • •		Λ.Λ								
10	¥-7•4 ע 8 ⊑יי	า		4•4 2 1								
42	4.0-7.0	2		2•1 8_1	0							
14 4 2		2		• • • • • •	•							
ל ל	•4 ~ •]	200			200		2	25			19/	
р•Т• г Ъ	ć	200					2	-) •5			0	
		• 6			• -			~ /			-	

A(C	² ^H ₄ Be ⁺)	Et ₂ Be;	А(С ₂ н ₅	Be ⁺)E	t₂ ^{Be}					· _	\sim	197
eVx	5 i(Be	")i(Be	')i(Ar)	i(Be	<u> </u>)i(Ar)	i(Be	")i(Be')i(Ar)	i(Be")i(Be	')î(Ar)
100			1580	3050	3100	1440-	9400	4900	2350			1400
98			1430			1280			2175			1240
.96			1280			1150			1920			1140
94			1100			1020			1710			1000
92	6000	2750	970 705	5100	2400	900 760	8000	3700	1400	4200	2000	007
90	0000	2790	650	5100	2400	610	0000	3100	1080	4300	2000	610
86			510	4700	2100	510	7300	3225	845	3900	1730	500
84		2300	385	4400	1900	380	6900	2960	640	3675	1600	363
83		2200	330	11	.,	330		-/	550	5-17		315
82		2150	270	4150	1750	270	6520	2700	455	3450	1450	260
81		2050	210			225	•		368			218
80	5000	1740	156	3856	1560	183	6150	3450	300	3250	1320	173
79			122			132			220			129
78	4600	1740	81	3550	1380	98	5700	2175	163	3000	1170	99
77			55			68		• • • • •	110	0.750		67
76	4325	1540	28.5	3300	1240	46	5200	1840	67	2750	1010	39.5
75			15			20		•	41.5			23
14		2	1.1			14 5 6		0	22 1_10 8	2	Λ	د ا م_5 2
13		ر 1	Λ_1 7	•		2.4		9 1	•4-10•0	,	4	.0-2.1
71		. 1	•4-1•1 •5•7					4	2-3		•	• 95
70	3150	900		2300	700		3850	1020	1.5-2			•3•4
68	2675	700		2000	560		3300	900	-	1560	440	
66	2250	530		1650	420		2700	660		1320	328	
65	2050	450		1500	350		2450	560		1200	280	
63	1600	310		1240	255		2000	400		970	195	
62	1440	250		1100	210		1730	302		860	160	
61	1260	197		970	165		1560	252		760	125	
60	1110	145		840	128		1320	193		640	96	
-59	930	108		720	98		1130	143		550	12	
58	705	(6 E 4		600 500	70 56		785	75		380	32	
51	540	20		400	34		630	5/		305	25	
50 55	125	26		320	22.5		515	38		245	17.5	
51 51	320	148-16		250	15.3		372	24		190	11	
53	235	10.4		195	10		305	16		138	6.4-7	
52	175	6-6.8		1386	.0-6.3		220	10.5	•	106	4•5	
51	1173	.5-3.9		4	4•5-5		160	8-9.5		82	2.7-3	•
50	84	2-2.5		82 2	.8-3.0		106	4.5-6		54	1.5-1	•8
49	. 51	1-1.4		51 1	•5-1-8		68	3•5-5		35	•8	
48	26	•3–•6		29 1	•0-1•1		44			20		
47	15•5			17.5	•5		31			12•4		
46	5.7-6.7		10	-10.4			10 5		2	4		
45	2.9-3.4	•	ر				6.8		•ر 1	3_1 5		
44	1.6–ر.1		2.	0-2.9	م		0=0	200	1.	ر ۱۰–د ج	00	
ъ•Т• т ₽	2	5		21	.4			1.4			•4	
т•ц•		•)			• -7			· • •			•	
								:				

A(C,H	[_∠ Be ⁺)i	-Pr ₂ Be	e; A(C,	H ₇ Be ⁺)	i-Pro	Be.						1985
eV	i(Ar)	i(Be')i(Be')i(Ar)	i(Be	") i(B	e)į (Ar)	i(Be"	')i(Be')i(Ar)	i(Be	")i(Be')
19.43	900	5720	3700	820	5350	3410	8770			780		
19.05	800			750			720			130		
18.65	715			600			- 0 <u>0</u> 0			500Z		•••
10.21	030 560			545	٠.		520			510		
17.50	165	5300	3100	242 460	5100	- 3000	135			/132		
17.12	405))00	5100	390	5100	0000	365			370		
16.73	315			315	•		298			305		
16.35	245			235			225			235		
16.00	172.5			170			154			160		
15.60	114	4650	2500	108	4325	2225	107	4330	2320	110		
15.4	82			82			77		:	79		
15.2	55			62 20 5		•	51			22 41		
15.0	39.5			39.5			24			29		•
14.0	2) 13			12.8			15.6			16		
14.03	6.4-6.	7		7.4			7.6			8		
14.23	2.8-3.	2	2.	9-3.1			3.7-4			3.9	·	
14.0	1.4-1.	6	1.	0-1.3		,	1-1.4			1.7		
13.84	•4•5		•	34		•	67			•6	07(0	4200
13.64		3200	1400		3000	1320		2750	1200		2760	1300
13.25		0500	1180		2265	1120		2150	820		2200	850
12.0/		2700	900 770		2000	700		1800	625	•	1900	630
12.40		2157	575		2000	530		1000	480			490
11.7		1480	415		1380	390		1240	350		1270	370
11.32		1180	263		1080	250		1000	233		1050	245
10.93		870	168		870	150		760	146		790	152
10.53		655	94		630	94		560	84		600	89
10.14		466	53		443	52		303	40		390	49
10		435	47		225	41		305	30		310	31
9.0		262	20.5		248	19.5		233	19.3		243	20
9.4		192	12.9		188	12.2		185	12.8		192	13
9 . 2		136	7.1		133	6.8-7.	6	127	• 7.6		131	8.1
9.0		95	4.7		96	2.8-3.	1	96	5-5-4		98	5.2
8.8		63	2.8-3.1		67	1.3-1.	4	64	2.9-3.2	2	65 4 4	3.1
8.6		42.5	1.7-1.9) .	43	•7-•9		43.5	1.0-2.	 >	44 30	1.2
8.4		275	1.0-1.4	2	2/•5	•4•0)	29 16	- 15	-	16	.5
8.2	Q	10.2	•) (8	1_9_1	• [-•2		9,2	•45	•	9.4	.2
0.U 7 8	0. 1	2-1 1		1.	1-4-9-1			4.7			5.0	
7.6	44	9 <u>-</u> 2.1		-+• 1.	7-2.1			2.2			2.2	
7.4		8-1.1			58	•	,	.9-1.1			1.0	
7.2		46		•	34			•3-•4			•4	•
S.T.		205			. 205	1		205	,	•	19	0
I.R.		 5 ·			5			-•5			• [0

(C ₃ H	I ₆ Be ^{+*})n-:	Pr ₂ Be;	(C3H7	Be ⁺)n-	Pr,Be		~ ~		\frown		\sim	
• • • • • • • • • • • • • • • • • • •	$ \begin{array}{c} i (Ar) \\ 4950 \\ 4400 \\ 3800 \\ 3200 \\ 2700 \\ 2100 \\ 1600 \\ 1070 \\ 680 \\ 490 \\ 340 \\ 230 \\ 128 \\ 74 \\ 43 \\ 20 \\ 11.1 \\ 6.3-6.5 \\ 3.5-3.7 \\ 2.2-2.3 \\ 1.6-1.8 \\ 1.3-1.5 \\ \end{array} $	i (Be"	(<u>3</u> <u>7</u>)i(Be' 2 1)i (Ar) 3475 3050 2650 2250 1900 1460 1090 750 475 360 256 166 109 62 33 16 10.2 5.1 .5-2.7 .7-1.8 1.1 .9	i (Be))i(Be	')i(Ar) 3200 2800 2425 2075 1700 1328 1000 690 435 330 220 110 86 49 25.8 12.9 6.8–6.9 3.7–3.8 1.9–2.1 1.2–1.3 .8–.9	i (Be")i(Be)i(Ar) 2450 2150 1850 1600 1325 1050 800 565 360 363 183 122 76 43 24 11.1 5.5 2.75 1.55 .9-1 .7 .5-6	i (Be	")i(Be)
665432109876543210987654321098765432109876543210987654321098765432109876543210		2175 2025 1850 1680 1510 1350 1220 1060 910 760 625 393 2855 156 106 72 44 23 20 1 4.1 1 8.5 355 1.95 1.15	1325 1130 970 820 690 560 460 355 260 195 134 92 64 26 18 10.6 6.7 3.7 .2-2.4 .5-1.7 .5	3	2075 1950 1650 1480 1200 1200 890 630 515 4105 2305 1659 1050 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 27.59 10.68 3.44 1.95 2.10 1.95 2.10 1.95	1325 1175 1000 890 700 590 475 375 275 208 143 107 71 49 30 20 12.6 8 5.5 2.2 1.6 .9 .6	6. 3.	1940 1780 1620 1500 1370 1240 1120 935 830 720 600 495 370 295 162 114 68 32.5 1.4 83 20.5 1.3.9 10 1-6.3 6-3.7 2.3 1.25	1240 1060 920 785 650 540 450 3258 195 145 101 63.5 299 11.7 6.6 4.4 395 1.25 .6	1. 1.	2000 1820 1680 1560 1420 1320 1160 1040 890 770 660 550 445 355 260 210 148 103 63 42 25 14.4 8.4 5.15 2.35 7-1.8 1-1.8 2.35	1280 1120 980 840 710 590 490 390 300 228 160 120 82 59 37 27 16.6 10.4 5.7 3.5 2.2 1.3 .8 .9 .6
S.T. I.R.		185 4•6		. •	195 4 :6			 4_′	15 16		18: 44	5 . 6

	+१		+、	,	+ •	200.
$\underline{\mathbf{A}(\mathbf{C}_{3}\mathbf{H}_{6}\mathbf{B})}$	e)n-Pr ₂ Be	; A(C ₃ H ₇ Be)n-Pr ₂ Be.	$\underline{\mathbf{A}(\mathbf{C}_{4}\mathbf{H}_{8}\mathbf{B})}$	e')i-Bu ₂ Be;	$A(C_4H_9Be')i-Bu_2Be$
eV x 5	i(Ar)	i(Be'') i(Be')	i(Be'')	i(Be')	i(Ar)
90	.2075	• -	-		-	2120
94 92	1600					1925
90	1375					1450
88	1100					1320
86	880		•			1140
84	660			2500	4200	950
02 80	470			2315	3075	620
79 79	220			2370	2(2)	020
78 77	165 106			2200	3000	420
76	66.5			1630	2425	268
75 74	36.5		•	1560	2075	215
74 73	9•5 			1200	2012	127
72 71	5.2 2.6			1440	1870	84
70	1.4			1330	1470	30
69 68	.8 .67			1080	1180	17-17.5 8-8-2
67	-			-		3.5-3.9
66 65		1860 1720	1220 1060	870	860	1.3-2.5
64		1600	930	750	660	•1-•2
63 62		1450 1340	670	590	470	
61		1210	560		•.•	
60		1110	460	452	297	
59		970	365	403	225	
20 57		720.	200	202	132	
56		615	165	270	104	
55		515	113	223	84	
54		420	77	182	60.5	
53		323	53	147	42.5	
52		260	36.5	128	34	
51		205	26.5	101	25-26	
50		140	15.0	[5 /	12-12 5	
49 48		90 67	5.9-6.1)4 12	7.8-8.2	
40		12	3.4-3.6	30	5.5-5.8	
41		26.5	2.2-2.3	20.5	3.1-3.5	
45		15•4	1.3	10.4-11	1.7-2.0	
44		8.8	•8	5.7-6.1	.8-1. 1	
43		5	•5-•6	2.9-3.2	•4-•6	
42		2.9		1.3-1.6		
41		1•5-1•6		•) - • (
40 39		• / • • / • / ›			> ~	
S.T.		1.85			+5	
I.R.		4.6			· •	

A(C	H. Bo)i.	-Bu Bo	• A(C H	· Bot)								201.
$\frac{1}{eVx^2}$	<u>i (Be</u>	") i (Be	$\frac{7}{1}$	$\frac{9^{10}}{1 (Be')}$	$\frac{1}{1}$	~• 7]; (Kr)-	i (Bo	//) i (Bo	$\frac{1}{1}$	i (Po	1/); (Po	$\frac{1}{1}$
00	-(20	/1(20	1200	1 (20)1(10	1040	1/10		1550	T (De)1(Ar)
88			1480			1040	2230	4500	1550	2250	4450	1400
84			1100			920	2150	4125	1230	2150	4150	1310
00	0(00)		1060			840	1975	3775	1140	2050	3800	1130
84	2600	4300	900	3900	6600	740	1900	3500	920	1920	3550	1030
82	2478	3950	730	3800	6300	620	1780	3200	840	1810	3325	825
80	2425	3850	620	3750	5900	520	1720	. 2950	700	1720	3050	755
79			580	3650	5400	410	-		650			
78	2150	3375	510	3000	4700	370	1620	2750	590	1600	2700	590
77			345	2950	4400	290			510		·	
76	1500	2250	273	3100	4450	265	1500	2450	430	1520	2500	460
75			215	3000	4200	230			350	.)=0	-900	700
74	1250	1820	162	2950	1100	190	1380	2100	300	1400	2250	345
73	1290	1020	128	2650	3700	1/0	1,000	2100	255	1400	22,0	200
72	1150	1610	00	2300	3150	101	1210	1020	205	1280	1010	230
14		1010	90	2300	0750	64	1310	1920	205	1200	1910	407
70	4430	4760	47	2150	2150	04	4400	4(20	· 109	4470	4 (0 0	107
10	1130	1300	41	2050	2500	44	1190	1030	117	1170	1680	143
69	7 0 -		28.5	1950	2450	30			88			107
68	780	930	12.4	1900	2150	14.5	1090	1370	53.5	1090	1460	_75
67 .		5	• 6 • 6 • 1	1800	1950	7.2-7.8			32			48.5
66	660	705 '	1.9-2.1			3.4-3.8	890	107 0	17	935	1150	27.5
65			1-1.3			•9-1•3			9.8-11			15.5
64	510	530	•4-•5			•3–•6			4.9-5.6	5 810	900	7 - 8
62	410	345		1200	1000				2.3-3.1	ŀ	1	.4-1.8
60	332	245		940	640		630	555	1.3-1.6	5 585	525	
59	295	205		840	550				•7-1			
58	255	165		720	420		535	390	•	480	375	
57	225	127		630	340		,.,				515	
56	208			550	270		440	272		<i>A</i> 10	270	
55	176	77		500	215		/10	235		410	-10	
57	148	575		430	160		355	105		312	176	
24 53	140	77		240	100		208	152		J4C	110	
)) 50	109	41		200	01		262	116		250	108	
)2 54	100	24		290	68		200	. 110		2,0	100	
21	94 74	~0.2		180	40		186	62		186	62-64	
50	71	99•3		140	20 E		149			154	03 - 04	
49	52	15+2		142	32+7		140	22+2		104	וכ	
48	44	9.3		102	21	C	120	40		122	30	
47	33	6.5-1	~	15	14.5-1	0	91	21		103	29	
46	25.5	4.1-4.	6	48	8.8-9)	70	17		. 19	21	
45	17•5	3-3.6	. .	33	5-5-4		50	13.5		61.5	14.5	_
44	10.6	1.5-1.	8	19	2.6-3	3•1	41	8.4-9.	4	39	8.8-1	0
43	6-6.5	•9-1•	1	9.6	1.2-1	•6	26	5.5-6.	5	31.5	6.5-7	•3 ·
42	2.8-3.1	.46	4.	8-5.4	.6	.9	15	3.3-3.	9	19•5	3 .8- 4	•5
41	1.4-1.7		2.	2-2.6	.2	4	9.6	2.2-2.	5 12.	4-13-2	22.0-2	•4
40	.68		•	9-1.2		4	.1-4.	7 1.4-	1.3 6.	4-7.1	1-1.4	
39			-			2	•3-3·	.0	4-	4.8	.6-1.0	
5.T-		205		19	98		-	205	·		205	
T.R.		3		2	.5			5			7	
		-		-	-			-			9	

			-					
A(Ph3	Sn ⁺)Ph ₃ Sn	I vs. A(E	t ₃ Sn ⁺)Et ₄	Sn			\frown	
eV	i(Et)	i(Ph)	i(Et)		i(Et)	i(Ph)	i(Et)	i(Ph)
70	840	860	850	960	1060	1080	900	1520
19.6	730	918	818	1160	720	613	619	880
18.9	720	804	806	1020	550	523	473	750
18.1	700	772	784	980	. 530	488	456	700
17.3	680	725	760	920	520	474	447	680
16.5	630	677	706	860	490	432	421	620
15.7	590	615	660	780	460	411	396	590
14.9	540	575	605	730	430	397	370	570
14.1	480	527	538	670	410	383	353	550
13.4	400	433	448	550	330	293	284	420
12.6	315	335	353	425	270	247	232	355
11.8	240	200	269	355	185	184	159	265
11.1	205	232	230	295		•		•
11.0	165	193	185	245	126	118	108	170
10.6	13/	155	150	196	106	109	91.2	156
10.2	88	118	98.6	150	64	66.9	55	96
10.2	70	98.1	76.1	125	52	58.5	44.7	84
0.8	52	75.6	59.4	96	40	44.6	34.4	64
0.6	37	55.9	<u> </u>	71	26	31.4	22.4	45
0.1	25	38.6	28	49	16.5	20.2	14.2	29
0 2	17	27.2	19	34.5	10	12.5	8.6	18
0 0	10-10-2	17.7	11-11.4	22.5	5.6-5.8	74	4.8-5	10.6
88	5.6	9.9-10.1	6.3	12.7	3.6	4.5	3.1	6.4
8.6	3.1-3.2	5.2-5.3	3.5-3.6	6.6-6.7	1.5	.2	1.3	3
8 4	1 5-1 6	2.4-2.5	1.7-1.8	3,1-3,2		•1	.6	1.5
0•4 8 0	7_ 8	1 2	.8	1.5-2.6	.3	.4	•3	.6
8 0	• /—• O	1.5	14	-6	-2	.2		•3
7 8	• 1-•4	•4J 15	• 1•4	.2	•=			
1.0		• 1)	0.05	•=	4.0	דר	0	10
S.T.	19	5	205		15	<i>†</i> (2	
I.R.	0.4	4	0•4		0.	• 2	C	• 0
A(Ph ₂ S	n ⁺)Ph _A Sn	vs. A(Et	₃ Sn ⁺)Et ₄ S	n	\sim		\sim	
eV	$\frac{4}{1(Et)}$	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)
67.3	191	191	157	270	650	660	1480	1490
19.6	370-375	368	305	520	475	410	1080	930
18-9	362	361	297	510				
18.5	3	-	2.	-	444	350	1015	800
18.1	355	336	291	474				
17.7			2		418	315	950	712
17.3	347	311	285	440				
16.9	541	U / /	2	•••	396	270	900	610
16 5	33/	272	274	385				
16.1	554				374	235	855	530
10/1	320	211	262	345	- • •	-		
1)+1 15 2	205	205	250	290	354	190	805	. 430
1/ 5	290	177	238	250	328	154	745	350
13.7	262	136	214	192	292	118	665	270
13.0	007	07 6	187	128	211	82-100	555	190
13.0	221	71.0	101				,,,,	

203.	
2428	

17						\sim		~
v 2.6	1(LT) 205	i(Ph) 79.2	i(.Et) 168	i(Ph) 112	i(Et)	i(Ph)	i(Et)	i(Ph)
2.2 1.8	179 156	61.5 48	147 128	87 68	195	53	442	120
1.4	133	37	109	52	143	31 33	325	71
1.0	. 105 80 3	24 16 5	86 ∠⊏ 8	34	121	24	275	54
0.2	63	10.7	0)•0 51.7	23•7 15 1-16	א ר לל סבק	10.4	217	37
.8	45	7	36-37	9.8-10	13•7 58.1	8.2	•2 100 132	27.0 18
.6	39.5	64 65	32.4	9-9-2	47.5	5.9	108	13.3
•4	31•5 32	4.6-4.7	26	6.5-6.7	40.5	4.9	92	11
,2	23.5-24	3.1-3.3	19 - 19•7	4.4-4.6	28.2	3.7	64	8.4
,0 0	17-17-4	2.0-2.1	14-14.3	2.8-2.9	26	2.85	58.5	6.4
0 6	12-12-4 8 2-8 1	ز∙⊺ ۵	9.0-10.2	1.0-1.9	19	1.9-2.2	43	4.3-5
.4	5.1-5.4	• 7	0•1=1 A.2=A.A	1.2-1.5	17+2	1.4-1.0	رد ۲ ۵4	3.2-3.0
2	3.1-3.3	•2 ~- •3	2.5-2.7	• 3 • 4	7-7.4	• • • • • • • • • • • • • • • • • • • •		2=2•5 1.6
0	1.9-2.0	-	- 1.6	•2-•3	4.6-4.8	•3	10.4-10.	8 .7
8	•9-1		•7-•8	•1	2.9-3.1	.12	6.5-7	-
6	•4		•3		1.6-1.8		3.6-4	
4 っ・	• 2		•2		•0		1.ď 9	
0	• •	•	• I		•4 •2		•0. •1	
ጥ_	195		210		105		2012 2Ω2	
	1.2.2		5. 137		171		201	
R.	•4		•4		•4		1.5	
R. Ph ₃ s	$\cdot 4$ $\frac{3n^+}{Ph_3SnF}$	St vs. A(1	$\frac{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}{\frac{1}{(\text{Et})}}$	Sni(Ph)	•4	· (Ph)	1.5	
R. ^{2h} 3 ⁵	•4 3n ⁺)Ph ₃ Snl i(Et) 170	Et vs. A(1 i(Ph) 170	$\frac{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}{i(\text{Et})}$ 180	Sn	•4 i(Et) 670	i(Ph) 670	1.5 i(Et) 870	i(Ph) 900
R. Ph ₃ s •3 •9	•4 <u>5n⁺)Ph₃SnI i(Et) 170 705</u>	Et vs. A(1 i(Ph) 170 640	$\frac{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}{i(\text{Et})}$ 180	Sn i(Ph) 140	•4 i(Et) 670 580	i (Ph) 670 618	1.5 i(Et) 870 700	i(Ph) 900 830
R. Ph ₃ s •3 •9 •5	.4 $\frac{3n^{+})Ph_{3}SnI}{i(Et)}$ 170 705	Et vs. A(1 i(Ph) 170 640		Sn i(Ph) 140	•4 i(Et) 670 580	i(Ph) 670 618	1.5 i(Et) 870 700	i (Ph) 900 830
$\frac{Ph_3}{3}$	•4 $\frac{3n^+}{Ph_3SnI}$ i (Et) 170 705 709 721	Et vs. A(1 i(Ph) 170 640 680 720	$\frac{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}{i(\text{Et})}$ 180	Sn i(Ph) 140	•4 i(Et) 670 580	i (Ph) 670 618	1.5 i(Et) 870 700	i (Ph) 900 830
$\frac{2h_{3}}{3}$ 395135	$\cdot 4$ $\frac{5n^+}{Ph_3}SnI$ i (Et) 170 705 709 721 705	Et vs. A(1 i(Ph) 170 640 680 720 760	$ \underbrace{^{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}_{i(\text{Et})}}_{180} $	Sn i(Ph) 140	•4 i(Et) 670 580 540	i (Ph) 670 618 551	1.5 1.5 1(Et) 870 700 660	i (Ph) 900 830 740
R. Ph ₃ ^s • 3 • 9 • 5 • 1 • 3 • 5 • 1	•4 <u>5n⁺)Ph₃SnI</u> <u>i(Et)</u> 170 705 709 721 705	Et vs. A(1 i(Ph) 170 640 680 720 760	$\frac{\text{Et}_{3}\text{Sn}^{\dagger}\text{Et}_{4}}{i(\text{Et})}$ 180	Sn i(Ph) 140	•4 i(Et) 670 580 540 480	i (Ph) 670 618 551 469	1.5 i(Et) 870 700 660 580	i (Ph) 900 830 740 630
$\frac{2^{2}h_{3}}{3}$ 395 135 17	•4 $\frac{3n^{+}}{170}$ Ph ₃ SnI <u>i (Et)</u> 170 705 709 721 705 689	Et vs. A(1 i(Ph) 170 640 680 720 760 800		Sn i (Ph) 140 630	•4 i (Et) 670 580 540 480	i (Ph) 670 618 551 469	1.5 1.5 1.5 1.5 1.5 870 700 660 580	i (Ph) 900 830 740 630
R. Ph_3 $\cdot 3$ $\cdot 9$ $\cdot 5$ $\cdot 1$ $\cdot 3$ $\cdot 5$ $\cdot 1$ $\cdot 7$ 9	•4 <u>3n⁺)Ph₃SnI</u> <u>i(Et)</u> 170 705 709 721 705 689 640	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790	4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670	Sn i(Ph) 140 630 620	•4 i(Et) 670 580 540 480	i (Ph) 670 618 551 469	1.5 i(Et) 870 700 660 580	i (Ph) 900 830 740 630
R. $\frac{2}{3}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{7}$ $\frac{3}{5}$ $\frac{1}{7}$ $\frac{3}{5}$ $\frac{1}{7}$ $\frac{3}{5}$ $\frac{1}{7}$ \frac	$\cdot 4$ $3n^+$)Ph ₃ SnI i(Et) 170 705 709 721 705 689 640 582	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760		Sni(Ph) 140 630 620	•4 i (Et) 670 580 540 480 365	i (Ph) 670 618 551 469 327	1.5 1.5 1.5 1.5 1.5 870 700 660 580 440	i (Ph) 900 830 740 630 440
R. $\frac{Ph_3}{}$ $\cdot 395.1$ $\cdot 135.1$ $\cdot 795.1$ $\cdot 795.1$ $\cdot 795.1$	$\cdot 4$ $3n^+$)Ph ₃ SnI i (Et) 170 705 709 721 705 689 640 583 559	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730	4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540	Sn i (Ph) 140 630 620 600 580	•4 i (Et) 670 580 540 480 365	i (Ph) 670 618 551 469 327	1.5 1.5 1(Et) 870 700 660 580 440	i (Ph) 900 830 740 630 440
R. Ph ₃ : ·3 ·9 ·5 ·1 ·7 ·9 ·5 ·1 ·7 ·7 ·4	$\cdot 4$ $3n^+$)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690	4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510	Sn i (Ph) 140 630 620 600 580 540	•4 i (Et) 670 580 540 480 365	i (Ph) 670 618 551 469 327	1.5 i (Et) 870 700 660 580 440	i (Ph) 900 830 740 630 440
$ R \cdot \frac{Ph_{3}}{\cdot 3} \cdot 3 \cdot 5 \cdot 1 \cdot 7 \cdot 9 \cdot 5 \cdot 1 \cdot 7 \cdot 4 \cdot 9 \cdot 5 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 9 \cdot 5 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 1 \cdot 7 \cdot 9 \cdot 1 \cdot 7 \cdot 1 $	$\cdot 4$ $5n^+$)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518 478	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640	4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460	Sn i (Ph) 140 630 620 600 580 540 500	•4 i (Et) 670 580 540 480 365 270	i (Ph) 670 618 551 469 327 234	1.5 1.5 1.5 1.5 1.5 870 700 660 580 440 330	i (Ph) 900 830 740 630 440 315
R. Ph ₃ · 9 · 1 · 3 · 5 · 1 · 7 · 9 · 5 · · 1 · 7 · 9 · 5 · · 1 · 7 · 9 · · 1 · 7 · 9 · · 1 · 7 · 7 · 7 · 7 · 7 · 7 · 7 · 7 · 7 · 7	•4 5n ⁺)Ph ₃ Snl i(Et) 170 705 709 721 705 689 640 583 559 518 478 437	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435	Sn i (Ph) 140 630 620 600 580 540 500 460	•4 i (Et) 670 580 540 480 365 270 205	i (Ph) 670 618 551 469 327 234 175	1.5 1.5 1.5 1(Et) 870 700 660 580 440 330 250	i (Ph) 900 830 740 630 440 315 235
$\begin{array}{c} \mathbf{R} \cdot \\ \mathbf{Ph}_{3} \\ \cdot \\ $	•4 Sn ⁺)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518 478 437 387	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382	Sn i (Ph) 140 630 620 600 580 540 500 460 400	•4 i (Et) 670 580 540 480 365 270 205	i (Ph) 670 618 551 469 327 234 175	1.5 i (Et) 870 700 660 580 440 330 250	i (Ph) 900 830 740 630 440 315 235
$\begin{array}{c} \text{R} \\ \text{Ph}_{3} \\ \text{\cdot} \\ \\ \text{\cdot} \\ \\ \\ \text{\cdot} \\ \\ \text{\cdot} \\ \\ \\ \text{\cdot} \\ \\ \text{\cdot} \\ \\ \\ \\ \text{\cdot} \\ \\ \\ \\ \text{\cdot} \\ \\ \\ \\ \\ \text{\cdot} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\cdot 4$ $5n^+$)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518 478 437 387 332	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515 455	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382 310	Sni (Ph) 140 630 620 600 580 540 540 500 460 400 360	•4 i (Et) 670 580 540 480 365 270 205 132	i (Ph) 670 618 551 469 327 234 175 115	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	i (Ph) 900 830 740 630 440 315 235 154
$\begin{array}{c} \mathbf{R} \cdot \\ \mathbf{Ph}_{3} \\ \cdot \\ $	•4 <u>5n⁺)Ph₃Snl</u> i(Et) 170 705 709 721 705 689 640 583 559 518 478 437 387 332 279 233	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515 455 385 325	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382 310 280 240	Sn i (Ph) 140 630 620 600 580 540 500 460 400 360 304 256	•4 i (Et) 670 580 540 480 365 270 205 132 102 74	i (Ph) 670 618 551 469 327 234 175 115 95.2 71 4	1.5 i (Et) 870 700 660 580 440 330 250 160 120 90	i (Ph) 900 830 740 630 440 315 235 154 128 96
$\begin{array}{c} \mathbf{R} \cdot \\ \mathbf{Ph}_{3} \\ \cdot \\ $	•4 Sn ⁺)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518 478 437 387 387 332 279 233 186	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515 455 385 325 265	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382 310 280 240 171	Sni(Ph) 140 630 620 600 580 540 500 460 400 360 304 256 209	•4 i (Et) 670 580 540 480 365 270 205 132 102 74 44	i (Ph) 670 618 551 469 327 234 175 115 95.2 71.4 46.1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	i (Ph) 900 830 740 630 440 315 235 154 128 96 62
$\begin{array}{c} \text{R} \\ \text{Ph}_{3} \\ \text{\bullet} \\ \\ \text{\bullet} \\ \text{\bullet} \\ $	$\cdot 4$ $5n^+)Ph_3Snl$ i(Et) 170 705 709 721 705 689 640 583 559 518 478 437 332 279 233 186 143	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515 455 385 325 265 198	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382 310 280 240 171 135	Sni(Ph) 140 630 620 600 580 540 500 460 400 360 304 256 209 156	•4 i (Et) 670 580 540 480 365 270 205 132 102 74 44 25	i (Ph) 670 618 551 469 327 234 175 115 95.2 71.4 46.1 27.9	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	i (Ph) 900 830 740 630 440 315 235 154 128 96 62 37.5
R. Ph3 ·9·5·13·517496284062	•4 Sn ⁺)Ph ₃ Snl i (Et) 170 705 709 721 705 689 640 583 559 518 478 437 387 387 387 387 322 279 233 186 143 112•5	Et vs. A(1 i(Ph) 170 640 680 720 760 800 790 760 730 690 640 580 515 455 385 325 265 198 156	•4 Et ₃ Sn ⁺)Et ₄ i(Et) 180 700 670 590 540 510 460 435 382 310 280 240 171 135 110	Sni(Ph) 140 630 620 600 580 540 500 460 400 360 304 256 209 156 123	•4 i (Et) 670 580 540 480 365 270 205 132 102 74 44 25 16•5	i (Ph) 670 618 551 469 327 234 175 115 95.2 71.4 46.1 27.9 23.8	1.5 i (Et) 870 700 660 580 440 330 250 160 120 90 53 30 20	i (Ph) 900 830 740 630 440 315 235 154 128 96 62 37.5 32

1	\sim	\sim	\sim	\sim	\sim	\sim	204	
eV	.i (н. t.)	i (Ph)	i (Fet)	i (Ph)	i (F;+)	i (Ph)	, (ह+)	i(Ph)
0 6	70 -	100	1(10)		1(100)	1(11)	1(116)	1(11)
9.0-	10.5	100	15	05	5.0	9.1	0.0	12.2
9•4	. 62	85-86	60	67.5	ک	5.6	3.6	7•5
9.2	48•5	65-67	49	52	1.4-1.5	3.1	1.7	4•1
9.0	36•5	51-52	39	40.5	•6	1.6	•7	2.2
8.8	27	- 3 7	25	20	1-2	6-7	· 1 · 2	· 8 - · 9
8.6	18.5-18	26	18	20 3	•••••	1	• • • • • • •	5
0.0	10.5.10	16 6 17	44 5	42.00		•4		•)
0.4	11.5-12	10.0-1/	11.5	13.2		•15		•2
8.2	7.3-7.6	10.2-10.	4 7-8	8-8-2		,		
8.0	4.1-4.6	3.2-3.4	4 - 5	4•7 - 5	· ·			
7.8	1.9-2.3	1.4-1.5	2-2.2	2.5-2.7				
7.6	.78	.67	.69	1.1-1.2				
7.1	23	2-3	2-3	.56				
1 • •			1	•) • •				
S.T.	200	ł	195		195		195	
I.R.	2.0	i	2.0		2.0		2.0	
	+		· + ·					
A(Ph)	Sn)Ph ₂ Sn	SPh vs. A	.(Et _a Sn')E	H⊿Sn	\sim	\sim	\sim	\sim
-17	<u>, , , , , , , , , , , , , , , , , , , </u>	t.(Dh)		<u>4</u>	÷ (1724)	; (Dh)		i (Dh)
ev	1(16)	1(PI)	1(E)		T(DP)		T(PC)	1(F4)
70	1000	1360	930	2400	980	1240	920	1860
19.6	1000	1180			980	1060	900	1580
17.7	1000	1140	1080	1950	900	900	840	1360
15.7	740	760	800	1400	780	680	740	1040
13.7	500	460	540	860	590	120	520	610
11 8	250	200	270	280	205	175	260	260
	200	200	210	300	295	107	200	200
11•4	205	150	225	305	230	121	210	200
11.0	154	111	180	240	186	100	165	148
10.6	119	80 .	130	166	135	72	120	100
10.2	80	51-52	89	108	102	48.5	84	66
10	65	39-40	74.5	86.5	. 81	36.5	70	53-55
0.8	53	30-32	50	65 5	65	28	53-55	38
9.0	22	_ر_ر ۵۸	79	47	47	10 5	20 41	26
9.0	31.5	21	43	41	41	19.5	39-41	20
9•4	28	14-14.6	31	32.5	- 33	12-12.8	27.5	16.8-17.2
9•2	17.8-18.6	8.8-9.2	21 22	21	23•5	7.6-8.1	16.5	8-8-8
9.0	11.4-12.2	4.5-4.8	13-13-4	12.6-13	13.2-14	4.2-4.6	11.3	3-3-3
8.8	6.8-7.5	2.6-2.9	8-8.5	7.5-8	8-8.7	2.4-2.8	665	1.7
8.6	1-1-1-6	1.4-1.7	4.8-5.2	4.4-4.7	4.5-4.9	1.4-1.6	3.9-4.1	.9-1.1
8 4	1.0_2.2	.6.8	2.6-2.9	2.4-2.5	2.5	-8	2-2.4	45
Q • 4	0_1 1	2	1 2 1 5	1-1 3	1 2 1 1	1	. 0-1	.2
0.2	• 9	ر .	1.2-1.5		6	• 4	•) 1	•2
0.0	• 3• 7		00	•	•0	000	2	^
S.T.	1	197	20	2		203	2	03
I.R.		•9	•	8		•0		•0
AV.	j(17:+)	j(Ph)	eV	j (Ft.)	j(Ph)	eV	j(Et)	i(Ph)
70	1400	2400	10 6	127	122	8.8	7.8.8.1	5.2
10	1400	2400	10.0	97	رد ، عد	8 6		27
19.6	1380	1960	10.2	01		0.0	4 ~ 4∙4	<u>∠</u> • 4 A
17•7	1250	1720	10	66	63.5	0.4	2.2-2.5	1•4
15.7	800	1300	9.8	56	49	8.2	•9-1-1	• > >
13.7	540	770	9.6	40	33	8.0	•46	•1
11.8	270	330	9.4	29.5	23			
11 1	212	217	9.2	20	14-15			
11+4	162		0 0	12_6	Q			
	د د ا			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, 		2	00
S.T.	2	2U3	X	۵۵ ۲	2		, –	1
I.R.		•9		-1		7		1

A(Ph.	Sn ⁺)Ph ₂ SnM	le vs. A(1	Et_Sn ⁺)Et	, Sn				205
eV 70 19.6 18.8 17.6 16.9 15.7 14.9 13.7 12.9 11.8 11.4 11.0 10.6 10.2 10 9.8 9.6 9.4 9.0 8.8 8.6 8.4 8.2 8.0	i (Et) 2450 3050 3100 3000 2950 2600 2300 1700 1340 800 620 450 305 210 154 110 74 47.5 39 16 9.6 4-6 2.2-3.6 .9-1.9 2-1.1	i (Ph) 1200 1360 1400 1250 1200 1040 885 620 500 300 250 185 126 83 67 50 30 19 12–14 6–8 3–4-5 1.9–2.5 .5–1.3 .2–.7	i (Et) 858 1067 1067 1090 1050 1030 910 805 595 469 280 214 158 107 73.5 38-39 25-27 16-17 14 5.3-6 3-3.7 1.4-2.1 .8-1.3 .37	$\begin{array}{c} 4 \\ i (Ph) \\ 1120 \\ 1400 \\ 1360 \\ 1300 \\ 1220 \\ 1020 \\ 880 \\ 620 \\ 490 \\ 310 \\ 245 \\ 180 \\ 124-128 \\ 81-86 \\ 65 -69 \\ 46-49 \\ 29-31 \\ 18-21 \\ 12-14 \\ 6.5-7.5 \\ 3.5-4.4 \\ 1.8-2.7 \\ .5-1.4 \\ .27 \end{array}$	i (Et) 3050 3500 3450 3200 2800 2450 1950 1540 1000 800 620 430 265 210 141 92-100 57-62 34-37 17-20 8-11 3-4.5 1-2.3 .25	i (Ph) 1580 1680 1680 1660 1580 1480 1280 1100 830 655 450 365 293 207 133 106 73 50-54 32-35 21-23 11-13 5-6.5 2-3.5 9-1.7 19	i (Et) 1250 1430 1420 1350 1310 1150 1000 800 631 410 328 254 176 109 84-88 57-59 38-41 21-25 14-15 8-8.2 3.3-4.5 1.2-1.9 .49 .25	i (Ph) 2100 2240 2210 2100 1970 1705 1460 1090 875 600 478 390 273 177 139 93-100 67-72 43-47 27-31 15-17 6-8 2.7-4.7 1.2-1.3 .1-1.2
S.T. I.R.	· 19 •	95 4	200 1.6		19 •	5 4	20 28	00 • 6
70 19.6 18.4 17.6 16.5 15.7 14.5 13.7 12.5 11.8 11.4 11 10.6 10.2 10 9.8 9.6 9.4 9.2 9.0	2100 2380 2330 2050 1850 1700 1520 1300 875 620 500 370 255 149 114 79–82 49–54 32–33 17–19 7.5–10	2650 2900 2800 2400 2050 1800 1620 1320 910 650 530 405 275 172 135 94 62-66 40-45 23-27 13-15	2600 3000 2950 2580 2330 2142 1920 1640 1100 781 630 466 320 185 144 101 64.7 40-42 22-24 9.5-12.6	2700 3000 2900 2450 2000 1820 1600 1290 890 640 510 400 275 168 130-140 90-98 63 42 20-25 512-14	780 960 860 850 780 720 580 490 335 238 193 140 60-63 49.5 31.5 21 12-13 6-7 3-4	800 860 850 730 670 520 420 295 220 180 134 99 64 52.5 36.5 24 14-16 8-9.4 5-5.5	1560 1920 1720 1700 1560 1440 1160 980 670 480 390 280 200 123 99 65 42 25–27 13•5 6–8	850 780 800 810 715 660 500 400 300 210 130 95 60 51 37 23 13-17 8-9 4-6

				~ —	\sim	\sim	206.		
8.8 8.6 8.4	i(Et) 4.5-5 1.3-2.3 .38	i(Ph) 6-8 1.5-2.5	i(Et) 5.7-6.3 1.6-2.8 .31	i (Ph) 5-9 1-3	i(Et) 1-2.2 .7-1 .25	i (Ph) 2.6-3 1-1.4 .37	i(Et) 3.2-4.4 .59 .35	i(Ph) 2-2.5 1-1.2 .36	
8.2									
S.T.	20	00	2	00	20	95	206		
I.R.	. •	7		•8	1.	2	1•5		
	+.		. +						
A(Ph ₃ S	in')Ph ₃ Sn•0	leMe ₃ vs.	A(Et ₃ Sn)Et ₄ Sn	\sim	\sim	\sim		
eV	i(Et)	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)	
70	3700	3000	2800	2750	3200	2600	290 0	2900	
19.6	3250	2150	2720	2200	2700	1850	2630	2120	
18.9	3150	1950	2560	2080	2650	1640	2550	1900	
18.1	3050	1720	2510	1700	2600	1470	2470	1700	
17.3	2750	1460	2460	1550	2450	1260	2230	1400	
16.5	2600	1240	2320	1350	2300	1040	2110	1200	
15.7	2425	980	2160	1075	2150	860	1970	950	
14.9	2125	740	1960	800	1840	670	1720	720	
14.1	1780	520	1680	610	1480	470	1440	510	
13.4	1460	350	1344	380	1300	310	1180	340	
12.6	1120	225	1064	243	1000	193	907	240	
11.8	820	120	768	140	680	110	664	130	
11.4	630	81	608	110	550	76	510	85	
11.0	460	54	452	68	400	53.5	373	56	
10.6	335	36	320	45	290	33	271	39	
10.2	207	21	208	27	178	18-20	168	20	
10.0	17/	16.6-17.3	2 166	20.5-19	148	15-17	141	16-17	
9.8	120	11.6-12.8	B 110	12-13-5	102	9.8-10.8	96-97	12	
9.6	82-84	8.1-9.2	82	8.6-9.6	74	6.5-7.2	67	8.8	
9•0 0 /	51 - 54	5.1-5.5	51	5.4-6.4	л. Л.Д	4-4 7	41-44	5-5.7	
2•4 0 2	30-33	3.3-3.5	31-32-8	3.2-1.1	28.5	2.5-3.1	25-26	3-3.5	
J• <u></u>	17-17 8	1.6-2.1	16.8-18	1.0-2.5	14-16	1.4-1.9	13.6-14.3	1.6-2.1	
9•0 8 8	0-10.2	1-1-3	9.6-10.1	1.2-1.5	7-8	.69	7.3-8.3	1-1.4	
8.6	4 4-5 1	5	1.1-1.9	-5-9	3.5-4.5	4	3.6-4.1	.56	
8 /	25-2.8	.21	1.8-2.5		1.8-2.1	.24	2-2.3	.24	
0•4 8 2	2.0-1.3	•6•4	.8-1.2	•5	.8-1.4	.12	•7 1•1		
8.0	• - 1• 5		.4		•4-•6		•36		
~ ~	•4 •1	05	- 7	010		05	-		
S.T.	2	U)		210	1	<u>رج</u>	2	7	
1.R.	1	•2		1•0	2	• U	I	• (

,

A(Ph	Sn ⁺)Ph _∠ Sr	vs. A(1	Et_Sn ⁺)Et,	Sn		•		207
eV	<u> </u>	i (Ph	<u> </u>	i(Ph)	i(Et)	i(Ph)	i (Et)	i (Ph)
70	2380	4100	5000	5600	8600	8300	7000	4000
19.6	1770	3750	4050	6500	7000	9600	5200	3700
17.6	1460	2750	3200	4100	5600	6050	/300	2700
15.6	1160	1500	2204	2600	3850	3850	21/0	1450
13.7	748	900	1570	1480	2700	2190	1300	850
11.7	415	450	870	800	1500	1180	760	420
11.3	354	390	789	660	1360	977	655	380
10.9	282	315	673	550	1160	814	523	310
10.5	228	250	545	440	940	651	A22	245
10.1	173	190	418	330	720	489	321	180
10	170	166	412	290	710	429	315	167
9.8	124	122	336	235	580	348	230	123
9.6	109	108	270	190	465	281	202	109
9•4	90.1	86	218	146	375	216	167	85
9.2	64.6	65	168	112	290	166	120	65
9	47.6	47-51	131	84	225	124	88.2	50
8.8	34-35	34-36	90	59-63	155	87-93	63 65	35
8.6	22.8-24.8	B 23 - 25	62.6	42-44	108	63.6	43-46	24.5
8.4	14.6	15	39•7	27	67–70	40	27.1	15-16
8.2	9•4	9– 10 . 2	24•4	17–18	42	25.2	17.3	9-10
8.0	4•9 - 5•4	5–6	13.1-14.5	9-1-1	22 •5- 25	13.3	9.2-10	5-6
7.8	2.2-2.5	2.4-3.2	5.2-7	4•5 - 5•5	9 - 12	6 .7- 8.1	4-4.7	2.3-3.1
7.6	1-1.4	1 – 2	2-2.9	2-3	3•5 - 5	3 • 4•4	1.9-2.5	1-2.2
7•4	•3–•5	•5-•7	•9-1•7	•5–1•5	1.5-3	7-2.2	•6-1	•5–•7
7.2			•3-•9		•5-1•5			.14
S.T.		205		205	2	205	20	5
T•U•		•4		•4		• 4	•	4
70	6900	2300	2620	4700	3300	3000	2150	3450
19.6	5700	1800	1940	3600	1600	1800	800	1640
17.6	4500	1340	1710	1680	1280	1140	620	980
15.6	3650	860	1390	1650	1060	610	520	600
13.7	2450	460	931	<u>9</u> 20	860	22 5	430	340
11.7	1300	220	494	450	440	155	235	134
11.3	1100	185	418	370	340	106		
10.9	880	148	334	300	250	66	140	70
10.5	690	118	262	235	160	34	96	43
10.1	510	88	194	175	94	35	58	22.5
10.0	5 10	80	194	160	78	23	50	25
9.8	410	64	156	125	57	13.4	34	15-16-5
9.6	315	49.5	120	100	31.5	7.2	22	10.4
9•4	245	38-40	93	80	17-19	3.7	12	5•4
9.2	190	29-31	72	60	9.6-10.2	1.9-2.4	5.0	2.6
9.0	137	22.5	52	45	<u>ン</u> つ)・)	•9-1•1	3.7	1•7
0.0	92	10-10	35	25-05	2.2-2.0	•フ	·]•[Ω ∡	•0
D•D B 4	02 2 - 2 - 2	10-10.0 E E 2 F		20-21	ر ⊪⊺ ⊫ا ⊃ ⊏		•0-1	•4→•う.
2.2	3 7-3 0	י_ס• י קי י_⊆	14 -5 -14-5 ۲ ۲ ۹	ן ו- יז	• 5=• 7			
3.0	20.7	J•J 1 ⊑ 0	/•0 − 0 > & ∧ ∠					
7 8	1012 5_6 1	1•) ~ 2 7_1 2	J. 0-2 A	<u>)</u> 4 1 ה_2 ה				
· • 0	4•0 - ر 2 2_2 7	· / - · · · · · · · · · · · · · · · · ·		.8_1 ⊑				
7 1		•4-•0	· · · · · ·	· / 7				

S.T.	200		210		195		200	
1.1.		1•(1.	1	1.	7	1.7	
A(Ph	3 ^{Sn⁺)Ph₃Sn}	•SnMe ₃ vs	• A(Et ₃ Sn	$^{+})$ Et ₄ Sn		\sim	\sim	~
eV	i(Et)	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)	i(Et)	i(Ph)
70	274	274	1160	319	620	620	2200	691
19•2	352	275	1180	330	400	380	1420	430
17•3	287	220	960	264	321	. 285	1140	325
15•4	212	162	710	194	248	225	880	255
13•4	150	110	500	132	161	140	570 [°]	158
11.5	65.8	40-43	220	50	87.4	60	310	68
11.1	59.8	34-38	200	43	74•7	47	265	53
10.8	40.1	24-27	140	30	60.6	40	215	44.7
10.4	34•5 - 37	18-21	120	22	49•4	30-33	170	35.1
10	29.9	14–16	95	17-19	39.2	22.5-25	145	25.5-28.3
9.8	23.9-24.5	11-13	82	16-17	32.4	16-19	115	18.1-21.5
9.6	19.4-22.4	10-12.4	70	13	26.8	13-15	90-100	14.7-17
9•4	17.9-20.9	8-10	65	12-15	20.4	9-12	7075	10.2-13.6
9.2	15-16.4	7 - 8	53	9.6-12	16.1	6.5-8	54-60	7.4-9
9.0	11-12.7	5-5-5	40	8.4-9.6	13	5-6	45-48	5.7-6.8
8.8	9-9-7	3.5-4.7	30-32.5	6-6.6	8.5	3.4	28-32	3.8-5.2
8.6	6.7-7.5	2.5-4	23-25	4.2-5.6	5.1	2-3	17-19	2.3-3.4
8.4	3.3-3.5	1-2.5	14-15	3-4.8	3.4	.5-1.6	10-14	.68
8.2	2.7-3.6	•5 - 1-5	9-12	1.2-3	2.1	-	7-8	
8.0	1.6-2.1	.1-1.5	5.5-7	.6-1.8	1.13		3.4-4.6	•
7.8		-	3-4.5	.1-1.8	•42		1.5-3	
7.6	•5-•9		1.5-3		·		•5-1-5	
7:•4	•3-•5		•9-1•5					
7.2			.1-1					
S.T.	205		205		210		210	
I.R.	.4		•7		•4		•7	
еV	i (Et)	i(Ph)	eV	i(Et)	i(Ph)	eV	i(Et)	i(Ph)
70	310	430	10.4	94-98	45	8.8	19-21.2	8-9
19.2	308	580	10	77	38	8.6	12.5-13.5	5.5-6.5
173	273	450	9.8	69	28.5-33	8.4	9.6-10.2	3.5-4.5
15.4	235	320	9.6	57	25-26	8.2	5.4-6.2	2.0-3.5
13.4	173	190	9.4	46	19-21	8.0	3.1-3.9	1-2
11.5	135		9.2	35-36	13-15	7.8	1.9-2.5	, .5-1
11.1	119	78	9.0	27-29	11-13	7.6	.8-1.2	
10.8	114	58				7•4	•4-•7	
S.T.	205		· ,				`	
I.R.	• 4		· • • •		· ·		• • • •	
							· · ·	
	+.	+	. + .					209.
---------------------	-------------------------------------	-----------------------	-----------------------	---------------------	----------------	----------------------	-------------------------------------	------------------
A(PhSr	nEt')Ph2S	inEt vs.	$A(SnEt'_3)$	Et_4Sn .	\sim	\sim		
eV	i(Ph')	i(Et)	i(Ph') i(Et)	i(Ph')	i(Et)	i(Ph')	i(Et)
67.3	475	479	3070	3055	630	630	1970	9 700
19.6	395	518	2560	3355	560	590	1750	9200
18.9	380	502	2460	. 3250	540	578	1680	8900
18.1	360	480	2330	3130	530	558	1650	8600
17.3	340	560	2260	2950	495	526	1540	8100
16.5	290	433	1880	2800	455	493	1420	7600
15.7	255	399	1650	2560	417	454	1300	7000
14•9	220	363	1420	2350	378	409	1170	6300
14.1	182	317	1180	2050	320	350	1000	5400
13•4	146	260	940	1660	265	292	827	4500
12.6	106	201	605	1300	210	221	075	3500
11.8	65 50	150	420	940	150	109	4//*	2600
11.0	50	01	325	500	105	109 80	320	1000
10.0	33	00	. 215	420	00 54	02 54 5	250	870
10.2	20	43	170	215	20	20•2	17	700
	12.8	34 25	80.2	161	22_25	42+4	100-100	700 515
9.0	13.0	17 17 6	60.2	101	25 <u>-</u> 27	22 - 24 25	78_84	282
9.0	- 9• 3	11-11 7	38.2	75	17 2-17 8	17_17.2	> 5 4 56	263
9•4 0 2)•9 4 2	6 7-7 0	27 1	13 5-15.5	12.6-13.2	11.7-11	. 9 39-11	182
9.4	2 15	A A-A 6	15.0	28-5-30	7.7-8.3	7.1-7.1	• <i>J JJ</i> =41 2 1 =26	112
8.8	2.4)	2.3-2.1	8.1	14.6-15.8	3 5:3-5.9	4.7-4.9	17-18.5	74
8.6	-8	1.2-1.4	3.9-5.2	8-9	3-3.5	2.4-2.5	9-11	38
8.4	. 35	.56	1.2-3.2	3.5-4.1	1.6-2	1.3-1.4	5-6.2	20-21
8.2	• 5)	.23		1.5-1.7	.9-1.1	.6-6.7	2.8-3.4	9.6-10.4
8.0		.112		.68	.46	•3	1.2-1.8	4-4.5
7.8				•3-•4	.24		.6-1.2	2
7.6								•9-1•1
7.4								•58
S.T.	200		200		20	0	200	
I.R.	1.4		1.4		1.	4	1.4	
A(Ph ₂ S	nEt ⁺)Ph ₂ S	SnEt ₂ vs.	$A(Et_3Sn^{\dagger})$)Et ₄ Sn	\sim	~	\sim	\frown
eV	i(Ph")	i(Et)	i(Ph")	i(Et)	i(Ph")	i(Et)	i(Ph")	i(Et)
70	5100	5100	625	625	4300	4300	880	640
19.6	5030	4900	781	710	4230	4140	1100	700
18.9	4900	4700	760		. 4140	3950	1070	660
18.1	4770	4550	739	667	4050	3840	1040	640
17•3	4500	4300	689	635	3000	3030	910	620
16.5	4240	4050	646	610	3500	3450	910	500
15•7	3910	3700	597	570	3300	2120	760	515
14•9	3570	3350	540	525 170	3000	2020	675	/
14•1	3050	2900	419	410	2120	2400	500	405
13.4	2520	2450	419 248	210	1650	1610	190	330
12.0	2000	1440	340 27∩	240	1290	1250	380	255
11.0	1250	1200	221	200	1100	1010	330	221
11.0	1050	920	199	185	850	745	280	180
+ + • •	10,0	200						

	\sim	\sim	\frown		\sim	\sim	_	211
eV	i (Ph")	i(Et)	i (Ph) i(Et)	i(Ph") i(Et)	i(Ph ⁴)) i(Et)
10.6	834	720	165	150	675	585	- 233	140
10.2	596	505			480	410		
10	503	410	112	100	407	335	158	98
9.8	404	. 330	95•1	84	326	267	134	82
9.6	. 295	245	78.1	68	- 240	198	110	69
9.4		178	62.5	54	180	144	88	52
9.2	156	· 122	48.3	41	126	98	68	40
9.0	.109•5	83	39.1	. 33	87.5	67	55	31
8.8	72.9	54	28.8	23.5	59	43•5	40.5	21.5
8.6	46-47	32.5	19•5	15.2-16	37.3	26.4	27.5	15-16
8.4	27.2-27.8	17.8-18.	6 13.9-14	•1 11	22.4	14.4-15.1	19.7	11.5
8.2	14.9-15.2	8.8-9.2	9.5	6.8-7.2	12.15	7.1-7.5	13.4	6.7-7.1
8.0	7-7-3	3.9-4.1	5.6	3.95	5.8	3.2-3.3	7.9	. 4
7.8	3.3-3.6	1.8-2	3.1-3.2	2.1-2.2	2.7-2.9	1.5-1.6	4.45	2-2.1
7.6	1.5-1.6	.9-1.1	1.6	1 .	1.2-1.3	•7-•9	2.2-2.3	1
7.4	.78	.56	.8	•5	.67	.45	1.1	•4-•5
7.2	•7	•4-•5	•4	•2 - •3	·		•5-•6	•1
S.T.	20	D5	2	10		205	- 1	98
I.R.	1.	4	* · 1	•2	×	1.3		•7
A(Ph ₂	SnEt ⁺)Ph ₃ S	SnEt vs.	$A(Et_3Sn^+)$	Et ₄ Sn				~
eV	i(Ph")	i(Et)	i(Ph")	i(Et)	i(Ph")	i(Et)	i(Ph")	i(Et)
67.3	254	1400	260	253-268	506 ⁻	700	260	1500
19.6	490	3150	495	600	957	1600	480	3200
18.9	520	3200	525	590 620	1000	1600	510	3150
18.1	530	3200	535	595	1040	1600	515	3150
17.3	510	3100	540	577	1010	1590	505	3160
16.5	470	2900	468	539	950	1450	465	2850
15•7	435	2780	442	512	890	1400	405	2800
14•9	387	2600	387	484	765	1305 .	390	2700
14.1	279	2050	282	386	550	1025	281	1950
13.4	165	1400	180	255	340	700	170	1390
12.6	130	1080	128-126	202	255	540	125	1070
11.8	74-79	710	74-80	132 -	149	355	76	710
11.0	3 0, 35	330	33-35	60-63	65	175	31-30	310
10.6	22 - 23	210	21-22.5	39	50-52	105	21-23	210
10.2	11–15	129	11.4-13	23-25	21-28	64.5	10-14	130
10	10.5	111	10-11	20-21	21-24	55	11	110
9.8	4-6	70	5-6	12.6-13.	4 11	34.3	46	65
9.6	3.2-4.1	43	3.5-4.3	7.8-8.4	7-8.6	21.2	3.3-4	40
9•4	2 •53• 1	28	2.5-3	5.1-5.5	5-6	14.5	2.0-3	25
9.2	1→1•7	19.5-21	1.4-1.6	3.6-3.9	2.8-3.6	10.1	.,] _],Ŏ,	19-22
9.0	•7-•9	8.8-10	•75	1.6-1.9	1.4-1.9	4.5-5	· •8	o-9.5
8.8	•4-•6	6-7	•5	1.1-1.3	.8-1. 2	3-3.9	•5-•6	6 .3- 7 . 1

.

		\sim	\sim	\sim		\sim		\sim	\sim
eV	i(Ph	n") i(Et) i()	Ph)	i(Et)	i (Ph)	j (Ett.)	$i(Ph^{h})$	i (Ett.)
8.6	.1	3 3-5		.1	•7	.26 1	.4-2.4	.1	3.1-5.1
8.4		1.4-1.	8		•3		•7 •9	• 1	1./-1.8
8.2		•4	6				.15		. 12
S.T.		205		197		205		20	• 4 ~
I.R.		•4		.6		.4	_		Δ
	т					•		•	т
A(PhS	nEt ₂)Ph	SnEt, vs.	A(Ph ₂ Sr	ı [⊤])Ph,S	Sn	~	<u> </u>		
eV	i (Ph)		i (Ph'	$\frac{4}{1}$	- oV	i (Ph)	i (Dh1)	i (Phi)	i (Ph)
70	520	520	1950	1050	12.6	1(11)	I(III)	682	128
19.6	350	162	1600	1300	12.0	27	170	002	120
18.9	570	402	1640	1160	12.02	~1	110	501	74
18.5	300	440	1040	1100	11.4	14 1	116	285	11
18.1	000	440	1620	1040	11.4	14•1	110	205	24 5
17 7	265	122	1020	1040	10.6	6.0	65	290	31.5
17 3	20)	455	1520	885	10.0		45	210	20.5
16 0	205	111	1930	009	10.2	3.5	42	139	10.9
16 5	22)	411	1460	740	0.8	1 0	06 7	00	0.9
16 1	184	282	1400	740	9.0	1 2 1 4	20.1	00	0.2
10+1	104	202	1220	500	9.0	·/• ∠ —/•4	10.2	ס (ס פ	4.3
12+1		764	1320	590	9•4	• (12.3	30.5	2.0
15+3	144	301	4000	4.45	9.2	4• - د•	7.9	22.6	1•45
14.9	440	244	1200	445	9.0		4.8	(==	
14.5	110	314		200	0.0		2.6	6.75	•4-•5
14.1		0/7	1040	320	8.6		1.4	4.8	
13.7	74	267	0	0.45	8.4		•6	2.1	
13.4			877	215	8.2		•4	1.05	
12.9	47	220		_	8.0			•4•6	
S.T.	2	10	20	2					
l.R.	1	•3	1.4	ł					
A (PhSn	E++)PhS	nEt vo	A(Ph Snt	Ph Sr	ክ ጉ				
	2/110	3 42.	3	/ "30		\sim	\sim	\sim	\sim
eV	i(Ph')	i(Ph)	i(Ph')	i(Ph)) eV	i(Ph')	i(Ph)	i(Ph')	i(Ph)
67.27	5000	5000	4950	4500	10.6	1000	750	980	750
19.6	5000	5100	5200	5210	10.2	764	588	700	590
18.9	5318	4950	5300	5110	10	596	455	600	460
18.1	5181	4800	5200	4910	9.8	509	400	500	400
17.3	5045	4550	5000	4600	9.6	388	308	400	307
16.5	4910	4300	4900	4300	9•4	297	242	300	· 241
15•7	4480	4000	4500	4000	9.2	220	183	210	180
14•9	4091	3500	4100	3600	9.0	159	128	165	130
14.1	3640	2900	3700	2850	8.8	100	80	105	80
13•4	3050	2350	3100	2400	8.6	64.5	51	65	50
12.6	2450	1850	2500	1900	8.4	37	29.2	40	30
11.8	1890	1350	1900	1400	8.2	22.5	16.8	21	17•5
11.0	1380	914	1400	920	_· .				a –
8.0	12.0	8.6-9	11.9	9.0	7•4	1.15	•9-1•1	1.1	•95

	\sim	<	\sim		\sim	$\sim \sim$	\sim	\sim
e V 7∙8	i(Ph) 5•45	i(Ph') i(H 3.8 6.	Ph) i(Ph 0 4.1	n') eV 7.2	i(Ph) •46) i(Ph') •3-•5	i(Ph) •5	i(Ph') •40
7.6	2.5	1.45 2.	3 1.3	7.0				·
S.T.	205		205					
I.R.	1.3		1.3					
I(Ph ₂ Sn	uEt ₂) vs.	$A(Et_3Sn^+)E$	t ₄ Sn		\sim			
eV	i(Et)	i (PhEt)	i(Et)	i (PhEt)	i(Et)	i (PhEt)	i(Et)	i(PhEt)
70	10000	46– 48	10000	46-49	9500	49-50	5100	50-51
.19.6	9800	70-72	9600	71-72	9100	71-75	5000	70-72
18.9	9500	70-72	9300	71-72	8900	71-75	4900	71-72
18.1	9200	73-75	9020	72-73	8700	71-74	4700	71-72
17.3	8800	72-74	8600	72-73	8300	72-75	4500	72-73
16.1	8400	75-77	8240	7273	7900	72-75	4300	12-13
15•7	7800	72-74	7650	72-73	7300	72-75	4000	(2-(3
14•9	7100	69-71	7000	70-72	6700	69-72	3650	69-71
14.1	6300	67-69	6200	68-70	5900	67-69	3200	68
13.4	5400	62-65	5300	61-64	5090	62-65	28	63
12.6	4300	55-57	4200	54-56	4050	56-58	2200	55-58
11.8	3250	47-49	3200	48-50	3050	48-49	1650	47-49
11.4	2900	42-44	2850	43-45	2700	43-44	1500	42-45
11.0	2200	36–3 8	2150	35-39	2070	36-38	1150	37-38
10.6.	1680	30-31.5	1650	31-32	1580	30-32	860	30-32
10.2	1280	25 26	1250	25-27	1200	25-26.5	660	25-27
10	1070	22.5-24	1050	23-26	1000	23–24	550	21-24
9.8	820	18.4-19.6	800.	18-19	770	19	420	17-18.5
9.6	. 650	15.4-16.4	640	15-16.5	610	15-16	330	14.5-16.3
9•4	475	12 .8- 13 . 4	465	1 3 13•5	450	12.8-13.3	243	12.7-13.2
9.2	345	10.2-11	340	10-11	330	10.3-11.1	178	10-11
9.0	245	8-8-8	240	8-9	230	9	125	8-0.9
8.8	158	5.6-6.4	155	5-6.5	150	5.5-6.5	81	5.4-6.2
8.6	95	3•9-4•5	93	4-4.6	90	3.8-4.4	49	3.9-4.4
8.4	61	2.9-3.3	60	3-3.2	57	3.0-3.4	31	2.9-3.1
8.2	29•5	1 •5– 1•9	29	1.5-1.8	28	1.6-1.9	15.1	1.5-1.0
8.0	15	•9-1•1	14•5	•9-1	14	•9-1-1	7.0	•9-1-2
7.8	7•5	•4-•6	7•5	•5		•5	3.0	•4-••
7.6	3.2	•2-•3	3.1	•25	3	•2-•4	1.7	•2-•3
7•4	1.7		1.5		1.5		•9	
7.2	•9		•8		•0	0.05	•4	00
S.T.	2	205		205		205		7
I.R.	,	1•4	·	1•4		1•4	1	• 1
I(Et ₄ Sn) vs. A(Et ₃ Sn ⁺)Et ₄ S	n —		\sim	<u> </u>		
eV	i(Et)	i(4Et)	i(Et)	i(4Et)	i(Et)	i(4Et)	i(Et)	i(4Et)
70	3900	106-108	4400	107	3900	107	2000	55-50
19.6	5100	152-156	5700	158 159	5100	158-159	2625	70-79
18.9	5000	152 - 156	5600	156-157	5000	156-157	2575	78-79
18.1	4850	156-160	5400	154-158	4850	151-157	2500	70-79
17.3	4700	152 - 154	526 0	152-154	4700	151-154	2425	00-01
16.5	4500	150 154	5000	152 154	4500	151-152	2300	(0-01
15.7	4350	150152	4900	152 - 154	4350	152	2250	77–80

ŝ

	\frown	\sim	\sim		\sim			213.
eV	i(Et)	i(4Et)	i(Et)	i(4Et)	i(Et)	i(4Et)	i(Et)	i(4Et)
14.9	4050	154–156	4500	150 1 53	4000	150-153	2010	78-80
14.1	3625	136-140	4050	139 140	3600	.139	1900	70-72
13.4	3150	128-130	3500	130-129	3100	131-	1625	66–6 8
12.6	2550	112-114	2860	110-113	2500	112	1310	58 59
11.8	2150	104	2400	105	2100	105	1100	54
11.0	1460	79 - 81	1 64 0	80	1500	81	750	41-42
10.2	840	55 - 56	95 0	57	850	56	440	28
10	760	53	850	51	750	50	390	27-
9.8	615	46	700	45	600	44	315	24-25
9.6	505	38.5-40.5	560	39	500	38.5	260	19.8–20
9•4	395	33-35	440	_ 34	400	33	200	17–18
9•2	292	27.5-28.5	325	28-29	300	28	150	14–15
9.0	225	23-25	250	22 - 24	215	24	115	12-13
8.8	159	18–19	175	18-19	160	18•5	82	9 - 9•5
8.6	111	14 . 2 . 15	125	14-15	110	14•7	57	7.3-8
8.4	73	10.4-11	82	10-12	75	10 , 11	38 .	5•4 - 5•7
8.2	41	6.8-7.2	45	6.7-7.5	40	7-7.1	21	3.5-3.7
8.0	25	4.6-5	28	4•7-5•1	20	4-6	13	2.4-2.6
7.8	12.6-13.	8 3.1-3.5	14-15-4	3.2-3.6	13.6	3-4	6.7	1.6-1.8
7.6	5•5	1.5-1.8	6.2	1.4-1.9	6.0	2.0	2.8	•8–•9
7•4	2.5	•7 ~ •8	2.8	•7-•8	3	•8	1.3	•4–•5
7•2	•9	•3-•4	1.0	•3	•8	•4	•5	
7.0	•5	•1 •2	•6		•3	•1		
ST		205	20	5	2	205		200
I.R.		1.2	1.	2	1	•4		1.2
۸ (Tr+ S	n ⁺)F+ Sn						•	
<u>3</u>	4	<u> </u>						
eV	i(Xe)	i(Et)	i(Xe)	i(Et)	i(Xe)	i(Et)	i(Xe)	i(Et)
70	365	250	435	285	420	415	365	370
19.6	217	275	227	290	216	440	215	384
19.2	207	271	213	282	202	428	205	379
18.9	202	268	204	274	195	415	200	3/4
18.5	189	258	193	269	103	406	190	300
10.1	103	200	104	204	168	400	180	270
1(•(180	211	168	201	160	395	182	374
16.0	105	248	158	254	151	385	172	370
16 5	165	240	1/19	248	1/1	375	164	360
16 1	155	235	1/0.5	240	135	370	154	351
15.7	1/1	220	131	238	125	360	140	328
15 3	121	216	119	231	113	380	130	323
1/1 0	122	210	105	221	101	335	121	314
14 5	111	204	100	224	95	340	111	304
14.1	00	101	85	213	81	323	99	285
13.7	85	179	695	200	66	303	82	267
13.1	72	166	57.5	188	54.5	285	72	24 ⁸
13.0	59.5	153	42	168	40.5	255	60	229
12.6	46.5	141	29	155	27.7	235	47	211
12.2	36	129	17.5	139	17.1	210	36	192
11.8	27	114	9.1	119	8.7	180	27	170
			_ · · · · ·	-				

		_						21
eV 11.4 11.0 10.6 10.2 9.8 10 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.6 7.6 7.4 7.2 7.0 6.8 6.6 6.4	i (Xe) 16.5 9.5 4.2 1.4 .3 1.0 .4	i(Et) 99.2 86.4 73.7 62.7 50.2 55 52 48.3 41.4 35.8 30.8 24.1 20.4 17 13.5 10.3 7.6-8 5.5-5.7 3.8-4.0 2.6-2.8 1.6-1.7 .9-1 .45 .23	i(Xe) 3.0 57 .2	i(Et) 100 85.8 72.6 55.4 43.6 49.5 41.6 34.3 28.4 22.4 17.2 12.9 8.6-8.8 5.8-6.1 3.6-3.7 2.2-2.4 1.3-1.4 .7	i(Xe) 3.0 .57 .2	i(Et) 152 130 110 84 66 75 63 52 43 34 26 19.5 13-13.4 8.8-9.2 5.5-5.6 3.4-3.6 1.9-2 1-1.1 .5 .25	i (Xe) 16.5 9.5 4.1 1.3 .3 .9-1.1 .3	i (Et) 148 129 110 93.6 74.9 79-89 81 72 62 53 45 36 30.4 25.5 20 15.5 11.5-12 8.2-8.5 5.6-5.9 3.9-4.2 2.3-2.5 1.3-1.5 .78 .3
6.4 6.2 S.T. I.R.	1 <u>1</u> 0	•2 - •3 95 •4	195 0•4		195 0•4		195 0•4	•3 •1–•2

REFERENCES.

- 1. J.H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry", Elsevier, 1960.
- 2. "Mass Spectrometry", A N.A.T.O. Advanced Study Institute. ed. R.I. Reed, Academic Press, London 1965.
- 3. R.I. Reed, Quarterly Reviews, 1966, 4, 527.
- 4. R.I. Reed, "Ion Production by Electron Impact", Academic Press, London 1962.
- 5. F.W. McLafferty, "Mass Spectrometry of Organic Ions", ed. F.W. McLafferty, Academic Press, New York 1963.
- 6. F.H. Field and J.L. Franklin, "Electron Impact Phenomena and the Properties of Gaseous Ions", Academic Press, New York 1957.
- 7. R.L. Platzman, Vortex, 1962, <u>23</u>, 372.
- 8. A.J.C. Nicholson, J. Chem. Phys., 1963, <u>39</u>, 954.
- 9. H. Budzikiewicz, C. Djerassi and D.H. Williams, "Mass Spectrometry of Organic Compounds", Holden Day Inc., 1967.
- 10. J. Berkowitz, D.A. Bafus and T.L. Brown, J. Phys. Chem., 1961, <u>65</u>, 1380.
- 11. G.E. Hartwell and T.L. Brown, Inorg. Chem., 1966, 5, 1257.
- 12. R.E. Winters and R.W. Kiser, J. Organomet. Chem., 1967, 10, 7.
- 13. P.D. Roberts, Ph.D Thesis, Durham 1968.
- 14. V.H. Dibeler and F.L. Mohler, J. Res. Nat. Bur. Stand., 1951, 47, 337.
- L. Friedman, A.P. Irsa and G. Wilkinson, J.Amer.Chem. Soc., 1955, 77, 3689.
- 16. J. Müller and L. D'Or, J. Organomet. Chem., 1967, 10, 313.
- 17. A.W. Laubengayer and W.F. Gilliam, J. Amer. Chem. Soc., 1941, <u>63</u>, 477.
- 18. K. Wade and B.K. Wyatt, J. Chem. Soc. (A), 1967, 1339.
- 19. G. Fritz, H. Buhl, J. Grobe, F. Aulinger and W. Reerink, Z. anorg. Chem., 1961, <u>312</u>, 201.

- 20. F. Aulinger, Colloq. Spectros. Intern. 8th Lucern, Switzerland, 1960, <u>1959</u>, 267.
- 21. F. Aulinger and W. Reerink, Z. anal. Chem., 1963, 197, 24.
- 22. J. Silbiger, C. Lifshitz, J. Fuchs and A. Mandelbaum, J. Amer. Chem. Soc., 1967, <u>89</u>, 4308.
- 23. V.H. Dibeler, F.L. Mohler and R.M. Reese, J. Chem. Phys., 1953, <u>21</u>, 180.
- 24. G.P. van der Kelen, O. Volders, H. van Onckelen and Z. Eeckhaut, Z. anorg. Chem., 1965, <u>338</u>, 106.
- 25. C.A. Hirt, Anal. Chem., 1961, <u>33</u>, 1786.
- 26. N.K. Sokolov, K.A. Andrianov and S.M. Akimova, J. Gen. Chem. U.S.S.R., 1955, <u>25</u>, 647.
- 27. A.G. Sharkey, R.A. Friedel and S.H. Langer, Anal. Chem., 1957, 29, 770.
- 28. J. Diekman, J.B. Thomson and C. Djerassi, J. Org. Chem., 1967, 32, 3904.
- 29. E.I. Quinn, V.H. Dibeler and F.L. Mohler, J. Res. Nat. Bur. Stand., 1956, 57, 41.
- 30. V.H. Dibeler, J. Res. Nat. Bur. Stand., 1952, <u>49</u>, 235.
- 31. C.P. Johnson and A. Langer, J. Phys. Chem., 1957, <u>61</u>, 1010.
- 32. D.E. Bublitz and A.W. Baker, J. Organometal. Chem., 1967, 2, 383.
- 33. R.G. Kostyanousky and V.V. Yakshin, Izv. Akad. Nauk. S.S.S.R. Ser. Khim., 1967, 2363.
- 34. R.E. Honig, J. Chem. Phys. 1948, <u>16</u>, 105.
- 35. W.B. Nottingham, Phys. Rev., 1939, <u>55</u>, 203.
- 36. J.D. Waldron and K. Wood, Mass Spectrometry." The Institute of Petroleum, London, 1952, p. 16.
- 37. A.J.C. Nicholson, J. Chem. Phys., 1958, 29, 1312.
- 38. A.O. Nier and E.E. Hanson, Phys. Rev., 1936, <u>50</u>, 722.
- 39. H.D. Hagstrum, J. Chem. Phys., 1948, <u>16</u>, 848.
- 40. R.H. Vought, Phys. Rev., 1947, <u>71</u>, 93.

- 41. J.W. Warren, Nature, 1950, <u>165</u>, 810.
- 42. See. 34.
- 43. V.H. Dibeler and R.M. Reese, J. Res. Nat. Bur. Stand., 1955, 54, 127.
- 44. F.P. Lossing, A.W. Tickner and W.A. Bryce, J. Chem. Phys., 1951, <u>19</u>, 1254.
- 45. J.D. Morrison, J. Chem. Phys., 1954, <u>21</u>, 1767.
- 46. J.D. Morrison, J. Chem. Phys., 1953, <u>21</u>, 2090.
- 47. F.H. Dorman and J.D. Morrison, J. Chem. Phys., 1961, <u>34</u>, 578.
- 48. E.M. Clarke, Can. J. Phys., 1954, <u>32</u>, 764.
- 49. R.E. Fox, W.M. Hickam. T. Kjeldaas and D.J. Grove, Phys. Rev., 1951, <u>84</u>, 859.
- 50. R.E. Fox, W.M. Hickam, T. Kjeldaas and D.J. Grove, Rev. Sci. Instr., 1955, <u>26</u>, 1101.
- 51. F.H. Field and J.L. Franklin, J. Chem. Phys., 1954, <u>22</u>, 1895.
- 52. See. 34.
- 53. J.D. Morrison, J. Chem. Phys., 1951, <u>19</u>, 1305.
- 54. J.D. Morrison and A.J.C. Nicholson, J. Chem. Phys., 1952, 20, 1021.
- 55. R.E. Fox and W.M. Hickam, J. Chem. Phys., 1954, <u>22</u>, 2059.
- 56. J.D. Morrison, J. Chem. Phys., 1954, <u>22</u>, 1219.
- 57. J.D. Morrison, J. Chem. Phys., 1963, <u>39</u>, 200.
- 58. J.H.D. Eland, P.J. Shepherd and C.J. Danby, Z. Naturforschung, 1966, 21a, 1580.
- 59. D.P. Stevenson, Disc. Faraday Soc., 1951, <u>10</u>, 35.
- 60. G.G. Hess, F.W. Lampe and L.H. Sommer, J. Amer. Chem. Soc., 1965, <u>87</u>, 5327; 1964, <u>86</u>, 3174.
- 61. J.A. Connor, R.N. Haszeldine, G.J. Leigh and R.D. Sedgewick, J. Chem. Soc. (A), 1967, 768.

- 62. J.A. Connor, G. Finney, G.J. Leigh, R.N. Haszeldine, P.J. Robinson, R.D. Sedgewick and R.F. Simmons, Chem. Comm., 1966, 178.
- 63. S.J. Band, I.L. Stephenson, I.M.T. Davidson and C.A. Lambert, Chem. Comm., 1967, 723.
- 64. A.L. Yergey and F.W. Lampe, J. Amer. Chem. Soc., 1965, 87, 4204.
- 65. D.R. Bidinosti and N.S. McIntyre, Can. J. Chem., 1967, 45, 641.
- 66. A. Foffani, S. Pignataro, B. Cantone and F. Grasso, Z. physik. Chem., 1965, <u>45</u>, 79.
- 67. J. Müller and L. D'Or, J. Organometal. Chem., 1967, <u>10</u>, 313.
- 68. R.E. Winters and R.W. Kiser, J. Organometal. Chem., 1965, 4, 190.
- 69. W.J. Jones, D.P. Evans, T. Gulwell and D.C. Griffiths, J. Chem. Soc., 1935, 39.
- 70. R. Sasin and G.S. Sasin, J. Org. Chem., 1955, 20, 770.
- 71. L.A.K. Staveley, H.P. Paget, B.B. Goalby and J.B. Warren, J. Chem. Soc., 1950, 2290.
- 72. D. Seyforth and F.G.A. Stone, J. Amer. Chem. Soc., 1957, 79, 515.
- 73. K.A. Kozeschkow, M.M. Nadj and A.P. Alexandrov, Ber., 1934, 1348.
- 74. G.J.M. Van der Kerk, J.G. Noltes and J.G.A. Luijten, J. Appl. Chem., 1957, 7, 366.
- 75. E. Krause and R. Becker, Ber., 1920, 173.
- 76. M. Lesbre, Mrs. R. Buisson, J.G.A. Luijten and G.J.M. Van der Kerk, Rec. Trav. Chim., 1955, 74, 1056.
- 77. K. Bowden and E.A. Braude, J. Chem. Soc., 1952, 1068.
- 78. J.F. Norris and A.W. Olmstead, Org. Synthesis Coll. Vol., 1, 138.
- 79. W.E. Bachmann, Org. Synthesis Coll. Vol., <u>3</u>, 841.
- 80. H. Gilman, O.L. Marrs and See-Yuen Sim, J. Org. Chem., 1962, <u>27</u>, 4232.
 G. Tamborski, F.E. Ford and E.J. Soloski, J. Org. Chem., 1963, <u>28</u>, 181.
- 81. M.V. George, D.J. Peterson and H. Gilman, J. Amer. Chem. Soc., 1960, <u>82</u>, 403.
- 82. H. Gilman and C.W. Gerow, J. Amer. Chem. Soc., 1956, 78, 5435.

83.	R.J. Cross and F. Glockling, J. Chem. Soc., 1964. 4125.
84.	A.L. Smith, Spect. Chim. Acta., 1960, <u>16</u> , 87.
85.	R.D. Kross and V.A. Fassel, J. Amer. Chem. Soc., 1955, 77, 5858.
86.	R.C. Poller, J. Inorg. Nuclear Chem., 1962, 24, 593.
87.	M.C. Henry and J.G. Noltes, J. Amer. Chem. Soc., 1960, <u>82</u> , 555.
88.	J.S. Thayer and R. West, Inorg. Chem., 1964, 3, 889.
89.	M.P. Brown, R. Okawara and E.G. Rochow, Spect. Chim. Acta., 1960, <u>16</u> , 595.
90.	R. Okawara, D.E. Webster and E.G. Rochow, J. Amer. Chem. Soc., 1960, <u>82</u> , 3287.
91.	G.E. Coates, K. Wade and M.L.H. Green, "Organometallic Compounds" vol. 1. 3rd ed., Methuen and Co. Ltd., 1967.
92.	H. Gilman and F. Schulze, J. Chem. Soc., 1927, 2663.
93.	H. Gilman and R.E. Brown, J. Amer. Chem. Soc., 1930, <u>52</u> , 4480.
94•	W.H. Glaze, C.M. Selman and C.H. Freeman, Chem. Comm., 1966, 474.
95•	A.B. Burg and H.I. Schlesinger, J. Amer. Chem. Soc., 1940, <u>62</u> , 3425.
96.	A. Carrick, PhD. Thesis, Durham, 1967.
	A. Carrick and F. Glockling, J. Chem. Soc., (A) 1967, 40.
97•	J.M. Miller, J. Chem. Soc., (A) 1967, 828.
98.	A.E. Williams, Proceedings of the 3rd Annual M.S.9. Users Meeting 1965.
99.	J.H. Beynon and A.E. Fontaine, Z. Naturforschung, 1967, 22a, 334.
100.	J.H. Beynon, R.A. Saunders and A.E. Williams, "Tables of Meta-Stable Transitions for Use in Mass Spectrometry", Elsevier, 1965.
101.	A.J.C. Stevenson, J. Chem. Phys., 1958, 29, 1312.
102.	V.I. Vedeneyev, L.V. Gurvich, V.N. Kondrat'yev, V.A. Medvedev, Ye. L. Funkevich, "Bond Energies, Ionization Potentials and Electrom Affinities", Arnold, 1965.
103.	A.E. Pope and H.A. Skinner, Trans. Faraday Soc., 1964, 60, 1402.

- 104. J.A. Kerr, Chem. Rev., 1966,66, 465.
- 105. J.L. Franklin, Ind. Eng. Chem., 1949, 41, 1070.
- 106. H.A. Skinner, Adv. Organometal. Chem., 1964, 2, 49.
- 107. H.E. O'Neal and M.A. Ring, Inorg. Chem., 1966, 5, 435.
- 108. G.G. Hess, F.W. Lampe and A.L. Yergey, Annals New York Acadamy of Sciences, 1966, <u>136</u>, 106.
- 109. S.J. Band, I.M.T. Davidson and C.A. Lambert, J. Organometal. Chem., 1968, <u>12</u>, 3P.
- 110. R. Ettinger, Tetrahedron, 1964, <u>20</u>, 1579.
- 111. B.G. Hobrock and R.W. Kiser, J. Phys. Chem., 1961, <u>65</u>, 2186; 1962, <u>66</u>, 155.
- 112. B.G. Gowenlock, R.M. Haynes and J.R. Majer, Trans. Faraday Soc., 1962, <u>58</u>, 1905.
- 113. R.W. Law and J.L. Margrave, J. Chem. Phys., 1956, 25, 1086.
- 114. W.C. Steele, L.D. Nichols and F.G.A. Stone, J. Amer. Chem. Soc., 1962, <u>84</u>, 4441.
- 115. D.B. Chambers, F. Glockling and M. Weston, J. Chem. Soc., (A) 1967, 1759.
- 116. W.R. Cullen and D.C. Frost, Can. J. Chem., 1962, 40, 390.
- 117. R.W. Law and J.L. Margrave, J. Chem. Phys., 1956, 25, 1086.
- 118. "Handbook of Chemistry and Physics", 46th Edition 1965-1966, The Chemical Rubber Co., Cleveland, Ohio, U.S.A.
- 119. P.N. Rylander and S. Meyerson, J. Amer. Chem. Soc., 1956, 78, 5799.
- 120. M.B. Wallenstein, A.L. Wahrhaftig and H. Eyring, "The Mass Spectra of large Molecules I. Saturated Hydrocarbons", University of Utah, Utah, U.S.A. 1951.
- 121. "Advanced Inorganic Chemistry", F.A. Cotton and G. Wilkinson, 2nd. Ed., Interscience, 1966.
- 122. E. Heldt, K. Hoppner and K.H. Krebs, Z. anorg. Chem., 1966, 347, 95.
- 123. F. Glockling and J.R.C. Light, J. Chem. Soc., (A) 1968, 717.
- 124. J.L. Occolowitz, Tetrahedron Letters, 1966, 5291.

- 125. M. Gielen and G. Mayence, J. Organometal. Chem., 1968, <u>12</u>, 363.
- 126. N. Ya. Chernyak, R.A. Khmel'nitskii, T.V. D'yakova, V.M. Vdovin and T.N. Arkhipova, J. Gen. Chem., 1966, <u>36</u>, 99.
- 127. A.M. Duffield, C. Djerassi, J. Dubac, G. Manwell and P. Mazerolles, J. Organometal Chem., 1968, <u>12</u>, 123.
- 128. K.R. Jennings, Chem. Comm., 1966, 283.
- 129. P. Brown and C. Djerassi, Angew. Chem. Int. Ed., 1967, <u>6</u>, 477.
- 130. W.P. Newman, E. Peterson and R. Sommer, Angew. Chem. Int. Ed., 1965, <u>4</u>, 599.
- 131. I.M.T. Davidson and I.L. Stephenson, Chem. Comm., 1966, 746.
- 132. N. Ya. Chernyak, R.A. Khmel'nitskii, T.V. D'yakova and V.M. Vdovin, J. Gen. Chem., 1966, <u>36</u>, 93.
- 133. M. Gielen and J. Nasielski, Bull. Soc. Chim. Belges., 1968, <u>77</u>, 5.
 S. Boue, M. Gielen and J. Nasielski, Bull. Soc. Chim. Belges., 1968, <u>77</u>, 43.
- 134. J. Lewis, A.R. Manning, J.R. Miller and J.M. Wilson, J. Chem. Soc., (A) 1966, 1663.
- 135. A. Carrick and F. Glockling, J. Chem. Soc., (A) 1968, 913.
- 136. E.H. Brooks, R. Cross and F. Glockling, Inorg. Chim. Acta., 1968, 2, 17.
- 137. F.J. Preston and R.I. Reed, Chem. Comm., 1966, 51.
- 138. J.M. Smith, K. Mehner and H.D. Kaesz, J. Amer. Chem. Soc., 1967, <u>89</u>, 1759
- 139. H. Svec and G.A. Junk, J. Amer. Chem. Soc., 1967, <u>89</u>, 2836.
- 140. M.J. Mays and R.N.F. Simpson, J. Chem. Soc., (A) 1967, 1936.
- 141. N. Moaz, A. Mandelbaum and M. Cais, Tetrahedron Letters, 1965, 2087.
- 142. A. Mandelbaum and M. Cais, Tetrahedron Letters, 1964, 3847.
- 143. R.C. Dobbie and R.G. Cavell, Inorg. Chem., 1967, <u>6</u>, 1450.
- 144. R.B. King, J. Amer. Chem. Soc., 1967, <u>89</u>, 6368.
- 145. M.I. Bruce, J. Organometal Chem., 1967, <u>10</u>, 495.

- 146. H.H. Hoehn, L. Pratt, K.F. Watterson and G. Wilkinson, J. Chem. Soc., 1961, 2738.
- 147. M.I. Bruce, J. Organometal. Chem., 1967, <u>10</u>, 95.
- 148. A.W. Laubengayer and W.F. Gilliam, J. Amer. Chem. Soc., 1941, <u>63</u>, 477.

D.P. Eyman, Inorg. Chem., 1967, <u>6</u>, 1461.

- 149. K. Ziegler, K. Nagel and W. Pfohl, Annal. 1960, 629, 210.
- 150. T.H. Wartik and H.I. Schlesinger, J. Amer. Chem. Soc., 1953, <u>75</u>, 835.
- 151. K. Ziegler, H.G. Gellert, H. Martin, K. Nagel and J. Schneider, Annal, 1954, <u>589</u>, 91.
- 152. W.L. Smith and T. Wartik, J. Inorg. Nuclear Chem., 1967, 29, 629.
- 153. G.E. Coates, A.J. Downs and P.D. Roberts, J. Chem. Soc., (A), 1967, 1085.
- 154. W.H. Glaze, C.M. Selman and C.H. Freeman, Chem. Comm., 1966, 474.
- 155. E. Weiss, J. Organometal. Chem., 1965, 4, 101.
- 156. A.I. Snow and R.E. Rundle, Acta. Cryst., 1951, 4, 348.
- 157. F. Nakao, Natl. Tech. Rept., 1963, <u>9</u>, 499. Chem. Abs., 1964, <u>60</u>, 13985b.

