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ABSTRACT

R

The manuscript is organized as follows,
In Chapter 1 the Chew-Mandelstam equations are derived and there is a general
discussion of the partial wave disperison relations and the CDD ambiguity.

The dispersion theoretic method of Dashen and Frautschi is presented

in Chapter 2 both for single as well as multi channel case, PATON's
investigation of the Dashen-Frautschi method is reviewed in Chapter 3,0ne c¥
the criticisms concerned the poor convergence of the edquations in the
presence of short range forces, while the other dealt with the problem of
including contributions coming from infra-red divergent terms in the
input to the DF expressions,In order to handle the first difficulty a method
of modified perturbed dgﬂsPersion relations is presented and applied to a
model calculation in potential theory with good results A modified Pagels-
type procedure to solve the resulting equations for N and D functions is
employed,This procedure is then applied to inve¢tigate the modified
verturbed dispersion relations technique in the presence of long range forces,
All this is done in Chapter 4,The modified Pagels-type procedure is employed in
Chapter 5 to generate Regge trajectories, the object bheing Lo see whether
reasonable it is possible to Reggeize the direct channel while using unreggeized
input in the crossed channels,It is shown that this is possible provided the
cut-off is chosen suitably,

In Chapter 6 the problem of infra-red divergent contributions to the
input in the Dashen-Frautschi method is again treated alcng the lines of a
suggestion due to SQUIRES,The procedure is carried out within the context of
potential theory where it is shown to give satisfactory results,The

full details of the method are exposed in an Appendix to this Chapter,



http://channels.lt

In Chapter 7 a critical discussion of all previous attempts to calculate

the neutron-proton mass difference is given,Chapter 8 is devoted to a
detailed examination of the relation of Dashen-Frautschi perturbation theory
to field theoretic self-energy calculations.It is found that Dashen's
estimate of the contribution of N intermediate state to the neutron—pr%on

mass differnce is wrong by several orders of magnitude.This is one of many
errors in Dashen's calculation of the neutron-proton mass differnce.

In Chapter 9 the neutron-proton mass difference is calculated with use of
SQUIRE'S prescription for taking infra-red divergent contributions to the

mass shift into account.In contrast with Dashen, who uses a simple form of

expression for the D-function, and which is known to disagree with
experimentally determined phase shifts , we construct the D-function from
the phase shifts of Donnachie et. al ( upto 2 Gev/c) and of Bransdon et al
(upto 5 Gev/c).The resulting value for the mass differnce is opposite to
the experimentally measured value, a result which Barton,and Shaw and Wong
predicted on the basis of their criticisms of the Dashen calculation.It is
likely that Dashen's unlikely result may be due to several factors , including
1) inadequate representation of the unperturbed strong interaction problem,
the proper specification of which i§ demanded by the Bashen-=Frautschi mehod;
2) Dashen's choice of the D-funct¥::7gs shown to conflict with the correct
D-function built from pion~nucleon phase shifts; 3) Dashen's neglect of all
infra-red divergent contributions to the mass shift.
It is made clear that even with the adove factors being put right there is
the quesfion of contributions coming from inelastic intermediate states.
Nevertheless the ground has been prepared to attempt a multi-channel calculation
of the neutreon-proton mmass differences

A computer programme to calucléte the phase shifts from the Scthdinger

equation is attached.
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NOTATION CONVENTION

Our space time metric is such that the fourth £ component of
four vectors is imaginary. i.e., P = ('ﬁ’, ipo). The inner product

- _mz’

- e . 2
P, - P, =Py - pg - P1oPo0 for a free particle p = p
m being the particle mass. 4 = ¢ = 1 units are used at some places

in the text. e and grrNN‘ are taken as rationalized, renormalized

2
electronic charge with & = L - -J‘T and 2ﬂ'NN = 14.8
bye 157 ey

Our X matrices are hermitian, andzxjﬂ ij - EJK V"]")"f= 1,2,5, k.
The Divac equation for a free particle of momentum p is
(1 . p+m) up) = O

Matrix A is denoted by:

T + ¥
det () = (A) & determinant of 4, and Trd = ;¥ A;; = the trace of A.

ﬁuﬂ?ﬂﬁ}
3 0 SEPIIN
for




PART 1

CHAPTER ONE

EQUATIONS along the lines of CINI and FU=-INI, partial wave dispersion
relations are derived, and finally ¥/D equaticns are introduced and
discussed.

(1)

g 1. The Mandelstam Representation .

Let us consider a Feynman diagram with four external

SO

The reaction can be formally written as a 4+ b 4+ ¢ + d —a vacuunm

lines,

or more realistically in terms of possibly observable reactions

a+b=—>Dc+d,

a+c—> Db«

(a)

o

ol

a+ d-——3 b+

1
The conservation of energy andé momentum implies.
PL+tp,+p4+p = O,

and all four vectors are subject to the mass-shell conditions, i.e,
2 2

Py 4 m = 0 (L =1, 2, 3, 4).
We caun form two independent scalar products out of four mementa.
2 2
sy or s = —(p1 + p2) = -(p3 + Du) )
or 2 2
82 t= - (p ¢ p3) = =(py +p,)"7 (B)
5. or u = —(p; - p )2 . .
3 17 P = -(p, - p3)2 .

- L[BRRRY. -

s SO

R
weior i
C: O SEP1971



each of which represents the square of the total barycentric energy

of a corresponding process given in (A). These three scalar products

are not independent but satisfy & relation,

) 2 2 2 2 2
ZS:.L=s+L+u=Zmi=m14-m2-|>m3+mlr .
In order to represent a set of variables s, t, u we use the

so-called Dalitz plot. For simplicity we shall usezmi2 = MZ_

Draw and equilateral trianghe whose height is MZ_ The sum of

lengths of the perpendiculars to the sides from a point P is equal

to Ma; 514 S5, 4 MZ.

2t By =

Vd
/ \
4 N\ —
3

When the point P is outside of the triangle we assign negative

values to some of the variables so that the above equation is
algebraically satisfied. W%When the variables 5, t, and u are so
chosen that one of the processes in (A) is physically realizable,
we say that we are in the s, t, or u channel, respectively. The

physical domains of these channels can be plotted on a two- dimen-

sional graph introduced above (the Mandelstam plot).

]

<A

<=T\‘

/ ‘v:' ;{<='§—_
/}// TS

Different processes in (A) correspond to difierent domains on
this plot. For instance, for all m; = m, the shadeq domains above
correspond to the three different processes mentioned above. In
order to find the precise form of the physical domains one has to

study the kinematics.



The invariant scattering amplitude:} becomes an invariant funct-
ion of s, t, and u; we define a function F(s, t, u) which represents §
in the physical domains. Here we shall consider meson-nuclean

scattering in the scalar model and shall identify

3
then
= 2
S= - (p+q)° == (p'+q")
t =z -- (p—q')a- (q' q)a
u = -(p-q')a--(p'-q)a.

Let us study the structure of the contribution of a typical

fourth order diagram .

]

a3
-+
2
1

o/
-+
<

The expression for ¥ is

F igh d“k

Emt [_k2 + 27 [u - 02 4 ¥7] E(pl - 1) 4 Mi] [(p - k)2 4 MZJ

First, let us regard F as a function of s by fixing t and calculate
the discontinuity of F across the branch cut starting from the
Landau singularity caused by both intermediate particles being on

the mass shell. By using Cutkosky's rule.

AgF = (s ¢ ig) - F(s - i€)
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igh [ dtk  (2rr1)? fé(kz -0-)12) ‘fpl:(w - k)% MEJ

i (2n)l*/ [r - 02 4 ¥¥] [(p - )% 4 17 ]

by o 1 N2p 2, 2 12, .2y (4 1
o d*kdhe (2w 1) [ (% 4 g f (K M) S (ke k- W)

N . ]
" [(pl - k)% 4 I'-'IJ Ep - k) 4 M2]

1

. 3 3 I 2 2
_ -i a’k dk )‘ (k + &' - w ~8 -8
(2m?® | 2k 2k ! (p'-k)% + M2 (p - k)2
. 3 21 -
_ -1 ok a’k J(k*kl_W)F;; P
3 1 n nl
16n k k_

where Fba denotes the second order invariant scattering amplitude

for a—>b. In the s - channel A F = 2 AiImF , so we get

Im F

d)%ﬁ JuﬂPn - Pi) an Foi
<1°> %no

which is just the unitarity condition, From this example we see
that Cutkosky's prescription is a generalization of the unitarity
condition,

In order to show that the left - hand side is the absorptive

part in the s - channel we should write

AF = 2iIm F.

Then we can write a dispersion relation for F in s as well as in t.



F(s,t) 1

45—  m_F(s,b) =%r dt
- s th -t - e

(M 4 p)2 (am)®

jIH
0

[
N

The absorptive part can be computed again by using CUTKOSKY's rule.
We now write the dispersion relation for F and 4Q_F:

-

F(s,t) = —= j ds’ ASF(sl.t);
214 1 o
(wypy2 & -8 -8
oo
SRR U (- rek ol
AGF(8) =3 1 Ay 4, Tt

(2M

and by combining them we get;

%o S
1 dsl dt?: A 4 F(s ,t)
F(s,t) o) 2 1 ) il — =t %
1) N
(M 4 (2m)°
vhere

L
Ay 4 .F(s,t) =—2E— (em)* qu({p(kz-rpa)J;[(W-k)2+M2]J [pte fMJ

(em*
((p[(p-k)'2 * Ma]

- ig" [a™ cfp (% ) J'Ew-k)amﬂ {1; [(pl;ek)zmz](fp Lp—k)z N Ma]

It is clear, however, that simultaneous discontinuity does
not occur in the physical region. Therefore, this function survives
only in the unphysical region. Let us denote the value of the

1

integral by 3 -D for later convenience; then

{ bt
F o 18 =

Hence we find

Ith(s,tl)



1
F(s,t,) = A [ _ds at’ (51’ 1)
TTaf‘sl - s 1 /‘D

where

L
. - S
,/Ms,t)_ 8y D

In defining the physical amplitude in the s channel we must take

Lim F(S " lE’t)y
&0

and a corresponding expression in the t or u channel.

The discontinuity integral can be done as follows:

L = e {p(ka-ﬁya)‘fl;[(w-k)anZJ‘g Bpl-k)a-}MﬂJ;[(p-k)a-fMa]

2y-D

1
- Jd“k $,0208)  PaP-acnpf) (a0t 2y £ (epiet j)

We make a transformation of the variables of integration

2

1l
kln kZ’ k39 koa —> k~, kW, p7k, pk,

but this is a two to one correspondence, so we get;

L _ [ 9Cs s Koy Ky kpa)f 1 ak? a(2kW) d(2kpt)d(2kp)

e

x 5 (e g) d, (W2 o) fp (21p 44 afp (2kpt i}

-1

2
|3<k2, KW, kpt, kp)l 8

1 b Q (?, kW, kpl, kp)
Ll- la(kl, k2) k}’ ko’)

Hence



KW L} Wp
kPl Wp P

kp Wp

47} kpl

kp

Wp

pp

The scalar products involving k should be replaced by those not

depending on k putting the arguments of the four d‘ functions

egual to zero.

variables:

lct

%(M2 - s -/ua)
-5

l,..2 2

590 - s - M%)

l,..2 2

—Z-(IM - s - M7)

..M2 +

zt

Then D is given explicitly in terms of external




The double discontinuity function is different from zZero in a
domain where
2 ) 2
D} 0, sy (M +F) , and t» 4M~,
as is clear from its derivation. If we put M =/J for simplicity,

the boundary curve is described by

(s - 4pf) (t - 4,5) - g,F
and the domain for the discontinuity (support) is given by
o e - gd) (6 - d) gﬁﬂ.

We can show through the fourth order by an explicit calculation
that the most general form of F is given by

F(s,t,u) = L dsljol(sl) +# 1 |att fz(tl) 1 et P b
™ s1 - S L tl - t m ul -1
¥ des att ;Dla(s.l thy ¢+ 1 [lattadt /2 (%, ut
(st-8) (£1-t) n’ (ttot) (ut-w)
N 1 dulds%jpil(ul,sl)
m (ut-u) (st-5)

support of the double

spectral functions,
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This integral representation is the MANDELSTAM representation; it
gives explicitly the analyticity properties of the amplitude F as
function of two invariant variables.

As we have already mentioned, the physical amplitude in the
s channel is given as the boundary value of the function F by

lim F(s 4 ig, t,u).
Ex2 0

Next, let us study the consequences of the crossing symmetry. The

crossing transformation is

0 = -t or —

and in terms §f the s, t, u, variables we get
s !?FD u, t ~—>» t.

-~

This shows that F is symmetric in s and u, i.e.,
F(s,t,u) e F(u,t,s)

Finally we shall reproduce the dispersion relation for meson-
nucleon scattering in the scalar model starting from the MANDELSTAM
representation,

Assume that t is negative and fixed, then this domain includes
both the s and u channels. Ve shall further split this domain in
two according to whether s)u or u)ds. The absorptive part of the

amplitude in the s channel is given by

msF(:s,t,u) = F ( ) + 'ﬂ' Qtl Pla(s gl )
t

W —_—
J/ u - u

for s > u,

and in the u channel by
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S =5

ImuF(s,t,u) = ﬁ(u) +1-]; Jdtlfaﬁ(tl'i)_ + 3; dsljzl(ul,s)
1
t7 -t .

#or ud s,

From these relations we get for t ¢ O the expression

F(s,t,u) = %; dst ImSF(sl,t,ul) + L (et 1 Fest,e,uh)
sl-s-i‘é TT. ul—u-iE
Sl) ul
: " . s 1 1. .
nrovided uhatfa(t) = 0. In carrying out s~ and u”~ integrations

it should be noticed that sl and ul are not independent since

514u1 =-Zm2-t:

If we use crossing symmetry we find that the two dispersiocn

integrals are related to one another through the transformation

S u, so that g
F(s,t,u, ) = 1 ds1 —1 ImsF(sl,t,ul) 4 (sﬁu)
™ 1
5 -8
sty ul
_ & ey p— N L Im F(s',t,u’)
-m 1 1
s =8 s - u
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g 2. The Cini-~Fubini Approximation
The analyticity properties of the scattering amplitudes

as functions of two variables manifest hemselves through the
MANDELSTAM representation, When we combine the MANDELSTAM
representation with unitarity in various channels we find a coupled
set of non-linear integral equations in two variables. This is an
extremely complicated mathamatical problem and we have to find some
means to reduce the number of variables. The introduction of
partial wave dispersion relations fits this purpose and the
MANDELSTAM representations provides the appropriate basis for their
derivation. In this section we shall discuss the problem'a la
Cini and Fubini(a).

Let us first consider meson-meson scattering and denote the

meson mass by/ﬁ. The MANDELSTAM variables in this case satisfy

s+ttu e 4)u2 .

The s channel is characterized by

4luz< S< oo l,wa - set<O.

If we write the four-momenta as

= 1
P, = (gawq)a Py = (:as“' .')’ p3 = (‘-fql-n 'Wq)s P)_{_ - (ﬁ "“'q)s

a
with
qql = q° cos & = VPcos & ,
2 - j 2
Wq = q+}f = \74}] ’
then

s= 4(y+pS), t= -29(1-cos®) , usz -20(L+ cose)

Similarly the domains
I 2
M- tgee, hﬂ - t€uo,
s

and

4,}2<u<o,, 4;12 -u¢sgO0,



- 1% =

characterize the physical regions of the t and u channels, respectively.
The HMANDELSTAM representation can be written as

l ad

F(s,t,u) = dx dy A(x,y) 1 + 1 + 1 *]
(x-5) (y=t) (x~t) (y-u) -ex-u)(y-s)_J

2 2
4P L p
where A(x,y) is a real symmetric function corresponding to11'2p(x,y).
The lower limit %Fa is determined by the lowest possible mass in the
intermediate state which can be reached by the two-meson systemn.

Jlow let us assume that the neutal meson under consideration is

pseudo-scalar so that reactions of the type

odd number of mesons<?-5’even number of mesons

are forbidden. -An important consequence of this assumption is that
no two of the variables of integration reach the lower limit %ﬁ 2
at the same time. In order to see this let us insert a cut into a
scatteriné diagram; then the various possible intermecdiate states

involve 2,4,6,..... particles :

P e . . 2
Of these diagrams only the first one can reach the lower limit 4/0
in the s channel; but if we cut this diagram again in the t or u
.
channel, we find that the intermediate states now must have 4,78, lo,

12,.... particles because of the conservation of parity:

a'iT_;

., [

5 ,
/‘/>
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. . . . . 2 . s ,
This shows that if the lower limit 4/, 1s rezched in one of tae
variables of integration, the lovier 1limit for the other is 16/42.
If one takes the two alternative diagrams to compute the boundary

curves for the support of the double spectral function one gets

two intersecting curves.

f

(1Y

The boundary curves are

We can compute the boundary curves by the method studies in the

preceding section:

2
. 1l X
A (x,y) = 0, if Y<_EL2’
X - 4/1
2
A, (my) = 0, ir xe XopY

y - upc

Therefore we shall vwrite each of the three integrals in the

MARDELSTAM representation in the form
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o 5
dx dy ACx,y) = E dx/[ dy A (x,y)
(x=-s.)(y-s.) 2 (%~s8.)(y-5.)
i J 2 2 i J
%ﬂ l6ﬂ
S
v 1 dy ax - A(xy)
2 (X-Si)(Y"Sj)

2

4p2 16r

Where 84 Sj’ = 8,t,u and Al(x,y) = Aa(x,y).

For the present purpose this representation is useful; the
MANDELSTAM representation consists of three pairs of terms, each
term having a cut in one variable starting at 4}}2 and another cut
in the other variable starting at lﬁ,;. Now it is convenient to
introduce the new variables

2, =t - u, 2, = u-= 5, z = s -t .

l—
In the s channel we have

Z) = L4y cos ©,
We recombine six terms in the MANDELSTAM representation as follows.

F(s,t,u) = o((s,.zl) +q(t,z2) + U\(u,z3) )

With

OK(S,Z) = I dx J dy Al(xsy) 1 + 1
2 bl
b 1

-5 2y ¢+ 5 = %Na + 2z 2y + s - 4/? -2

As long as ve deal with elastic scattering below the threshold
energy for inelastic processes, the variables s, t and u are all
smaller than léﬁg, and the denominators in the integrals starting
at 16#? never vanish., Therefore, we introduce an expansion of the

denominators to obtain an approximation valid in the elastic region.
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S

Oo

g i 2 el 2 2
als,z) v 5 dx J dy Al(X,y) 14 L*l“ - S +(I+I" -5) + 2 4.,

2 (x —s» 16/42 y B 5

2y Ly Ly

First, let us keep only the first term in the expansion, then
; " dx
o(s,z) ~n ——— FO(X) ,
2 X -8
K

50

w T
F(s,t,u ] ax

2

) ¥
#

(x) + ax polX) # dx (x)
st x -t 0 X - U fO
2
Llrll; I+P

In order to determine the unknown functionf:o(x) we have ke 7o use He

tinitarity condition in terms of partial waves, recalling the relation

F= -8mwf(8) ,

or for identical particles the modified relation

F- -8f w[f(e) + £(r - e)] .

-

Then we see that J;
EL(V) ' d(cos®) PL (cos 8) F(v,cos8)

e “{L sincfi’[l - (-l)L]

If we use the approximate one-dimensional representation only
the first term has a non-vanishing absorptive part in the s channel,

s0 we keep only the first term at low energies.

(=)
ho(v) % ax Po

. X-L},AZ-Lv-i
/ ¢ €

1+,A2

Thus
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Imhp (v) ¥ @ Polx)

Im l'i'L(v) Yo, for L > o.

By introducing this approximation into the one-dimensional represent-

ation we get

eo
F(y, cos ) = ‘-11- I’: ho("l)
Y-y - ig
0
oo
+ ﬁ avtIm ho(yl) ( T3 1 * T3 1
1 Ly +L+‘p 42v(1~Cos @) Ly +4lu +2v(1~Cos0)

o)
This equation shows that only the s vwave term has a non-vanishing
absorptive part so that this approximation is vzlid only when

sinél is smaller as compared with cos{L forf> oO.

By taking the s wave projection 6& F we obtain an equation for

hy(¥):
rl
O 1 :
hy(y) = E '(,dvl Imhy (y7) + E_ d(cos @) av- Ith(vl)
™ v v - 113
0 -1 0
X 1 + 1
4v1+ 4#2 +2v(1~Cos @) uvl + 4 2 + 2V (1 + Cose)

It is also possible to write this equation in the form

o ’fﬁ )

. 1 1
how) =1 [ DBV gty oy | _HVD
n vl-v-i 111 V1 -V
o _“

wWith



) = & avIn n(pH)

0

The latter form shows that ho(v) has two cuts, one starting from
O and continuing along the positive real axis and the other along

the negative real axis.

left hand cut % x right hand cut

- "/“2 0 o

The equation is satisfactory in that the unitarity condition for
the s wave can be satisfied in all three channels., It is necessary,
however, to introduce a subtraction in order to exclude the trivial

solution hO 0. Therefore we fix F(s,t,u) at the summetrical

. L 2
point s = t = u = 3,1 = S0

F(sy 5o So) = A -
This defines a coupling constant for the effective interaction of

the ¢4 type. Making the subtraction, we find that the one-

dimensional representation is modified into

3 b (x)
F(s,t,u) = \ + Z (s; - s0) f ax /Oo

ie 1 4P2 (x - xo)(x - si)
with S; = 8 5, = t, and 83 = u, Or, if one keeps the second term
(A/F - s8)/2y in the expansion introduced previously, one

automatically gets a subtracted form:

% p
oism) ¥ [ —L—p () & (s - 1) ( E—py )
J X - 8 J X -8
2 p
L) p
= K, +(s -s;) ?ﬂ ax ol (x)
° ) (- g)x - 9)

with
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A(x) = Polx) + (x = 4 p,(x), X, = Asy, O).

From the subtracted form of F we get

%
. 1 .
B =\ £ 2 (v 2

' _In h (v
(v + -%ﬂa)(vl-v-ie)

0
t1 >

1 1
1 d(Cos ) (2y(1 - Cos®) 4 5}42) @™ Im hy(v™)
m ’ (v'-2,2) ( of
=3 ) Lhpr=2v(1 - Cos®))

so the equation for ho(v) now reads

°v 1 1
hy(v) = —(v+ ,F) av" Im By (v)
° 1, 2 2y,.1
(V4 SpO07 - P - de)
0
- B
1 1
4 2 dv__ f(v7)
- vV + = )
-8
with
=\ + = 1¢ Im h.(v") v+ M _
aoA m v m v /JZI V*BFZ 171*%!‘2‘/

and £(¥1) gefined previously .

These equations were first derived by CHEW and MANDELSTAM(3):
by solving them we can cdetermine the scattering amplkitude without
recourse to the Feynman-Dyson theory. The advantage of the partial
wave dispersion relations lies in the fact that the number of
variables we have to deal with has been reduced to only one as

compared with two in the original MANDSLSTAM representation,



§ 3. The PBartial VWave Dispersion Relations

In the preceding section we have discussed a dynamical
formulation of the scattering problem based on the CINI-FUSINI
approximation. In this section we shall now show that the partial
wave dispersion relations are valid in general without making a
particular approximation. We choose the probvlem of nucleon-nucleon
scattering for the scalar model to illustrate this technique.

5TANM variables is made as follows:

P, = P, P, = Nh, D, = -ol - -nl
fa Ll—p’ -LZ- ? _3— = ] pb — .
[}
n p
)
T
Then ve get n p

sz -(v4m° tz =(p-op

which corresoond, respectively, to the channels

s:p-&n-}pl-rnl, t:p-f.fal-}nlﬁ-?l, u:p+ﬁl_,pl+‘r.1.

S

In the present mocdel only the t channel has a pole arising from
the one {(neutreal) meson intermediate staté. Therefore, in analogy
with the analysis of the :receding section we can write the

amplitude as

o %
£ 1.1
F(s,t,u) = & v+ st att P15t
t ¢,lf we/. 5 (st-8)(t1-t)
LMe 4/,
Ve 1.1
+ L d.tl dul f2§(t )
me /., 5 (- o)t - w
s 1M
10
+ ‘-1-2 dut as’ Pz v, s7)
n LmZ LI-MZ (ul - U.)(Sl - s)
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In addition we should add single-integral terms but we shall not
write them dovm explicitly. Then in the centre-of-mass system of
the s channel we introduce the relative momentum q and the
scattering angle © as in the pjreceding section, ana recall the

partial wave expansion of the amplitude

F- -8 Vs £(8)

£(9)

LY (2h+1) K1) sinfy Py (Cos 0)
q P L
The partial wave amplitude hy is then defined, as in the preceding

section by,
tl &
hy = % d(Cos 8) ll(Cos 8) F(q°,Cos0) = - 167t M .3 qno@

and the MANDELSTAM variables are

s= 4M + D) = 4M° 4 W)

t = -29°(l-cos 8) = -2V¥(l-cos 8)

u = -2q2(l+cos e) -2v(l¢cos @)

Now we shall study the analytic structure of F(qz' cos &) or

hL(qa).
There are four kinds of denominators in the MANDELSTAM representation.
(1). & - s = st - LM% - 4
sl runs from qMa toea, s0 that this denominator

vanishes for

© S’ V €00
giving rise to the right hand cut.

;
(2). t} -t =t - 2v(1 - cos ©) with t")_qya

This denominator vanishes for
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! 1 2
V’1 - - t or _¢l> i s L 2

2(1 - cos @) - N

or 1 5
Sl SR JLV

which produces the left hand cut.

(3). L — + 2¥(1 ¢ Cos @) with ul> L|.MZ.

In this case we get a left hand cut beginning at -Ma.

(). The pole term has the &nominator

t -,412 = -29(1 - Cos 8) - Y°

2
which generate a left hand cut beginning at - M} .
L

The complete cut situation is illustrated below:
0

2 > 2
- %o

Hence Im hx‘vanishes for -/ﬁ ¢V¢ O and ve can vrite

2 4

.
1 1
hp(\?) - L gt Iy v oL gl Im k(v
Y 1 " ;

V- -y - ig l--\?-j.tz,
“ o 0

We can also give an explicit form of the pole contribution to the

partial wave amplitude:

+1 +1
’ 2 —ga
1 , g -
h, (v) = 5 dx B (x) =
L’ ~‘Pole 2 /4 ~2v(1-x) -4° 2
/_1 4 o
-1
ax PL (x)

2v(l-x) +,u2
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The right hand cut corresponds to the contributions from

intermediate states in the s channel (N-N scattering) and the left
hand cut results from those in the t and u channels (N - ﬁ scattering).
The explicit form on the left hand cut contributions can be given

only after the N -~ ﬁ scattering problem is solved. We shall simply

assume here, however, that the result is known and shall write it as

f{v). Then
¢ g
1 ( .1 Im hy(vh) ) d 1 £, (vh)
hy(v) = = av- "R + = dv LY
t s 1 . ™ 1
0 v - v - it V. - v
Co

If ﬁt(v) is known, this integral equation determines hl(V)'
As a starting point we often replace the left hand cut by

the pole contribution, then an approximate egquation is

dv1 Im hzizz

4 hy(¥)
Y LV pole

31

ht(V) =
0
In the problem discussed in the preceding section this approximation

cannot be used since there is no pole fterm in that process, but the

unknown left hand cut can be expressed by the same function occurring

on the right hand cut. In general

2 2
hy (v) = A& & - L paas+f_)
L' 'pole 4 ISR s L !
-
and in particular
2
ho(Mpoie = In (1« &!2 )
Y M

In order to determine hxﬁv) ve have to take account of unitarity,

the result of which can be seen from the expression for @y(v) in
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terms of the ,L—th partial wave phase shift,

Im hy(v) = == \/" h o (v)
v 160 N v 4 M2 L

2, for v 20,

This form is obtained by neglecting the contributions from inelastic

channels, and for that reason this relation

unitarity.

is called the elastic

Upon inserting this into the dispersion integral we

obtain a non linear integral eguation for the partial wave

amplitude hL(v).



5§ L. The N/D Method,
In order to simplify the unitarity condition we

introduce the partial wave amplitude Fg(v) by
Fg(v) = --l-g— hi(v) = —v—t—lvl-eld); sin&
: l6m

v

then the elastic unitarity assumes the form

v

Im FL(V) :/———2-— FL(V) 2, for wa 0

v M

The scattering equation then reads

=

’ 1
1 Inm F
12(\") = g7 / dv _T_IL) "'FL(V)Pole
A v - v - if

In order to linearize the eguations we introduce the N/D method
devised by CHE¥% and MANDELSTAM, Ve write the amplitude as the
guotient of two functions:

Bv) =

Dy (v)
where NL(V) has only a left hand cut and is real for ‘1?)0, and

D,(v) has only a right hand cut and is real for VXQ0. The elastic

L

unitarity can be written in the form

-1 e
Im (EL(V)) - - —-v——-,-, = - F(v), for >0
For y> 0, this gives

Dy(w) Im Dg(v)
Im (EL(V))-l = Im —‘l;——— = '—-_—é;-— ) --f?V)
. NL(V) NL(V)

or
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Im D (V) = -P(v) Ny () for ¥> 0
For v ¢ O,

Im N, (v)
Im F (v) = _m—L
L Dl’(v)

or

ImNL(y) - DL(V) ImFb(y) ~ DL(v)Im FL(v)Pole , for v O

Vle define yet another function, which will :n general be known, by

1
Im FL(V)lPole = -= ](v) = v, (V).

161t

Tor the example considered in the preceding section

\Y)
[

2 . -
(v) -2 (BE—y41 P(1 442 ) = B
2y

- 6l

2
v (1 "'" )’ for V"_y_
b 160 4y L ¢ L

Then
Im DL(ﬂ) = —P(V) NL(V)’ for va o0

and

Im Nb(v) = VL(V) De/(v), for vCO

Let us normalize N and D by D (0) = 1, and write the
once subtracted dispersion relation for DL(V):

Y[ [gt ImD (v ) - Jfk__l

D (V) - 1 "' — _.
{ w v (yloy-1i8) vo-v-ie

Then ﬁL(O) = ﬁL(O), and the subtracted dispersion relation for
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NL(‘P)is O
(v) (0 Im N (v )
N, (v = FO"‘—
12 L v (v - v - it)
- 0o
0
(v)D(v)
= Fy0) + 2 av? ” 2
L vi(vh - v - ig)

~-Qo
Together the dispersion relations for N and D form a coupled set

of linear integral equations, Ve may also assume that NI}V)

satisfies an unsubtracted dispersion relation.

0
1 Vb( ) D-!;( vl)

vl -V - ig

dv

N[(V) =

-

-be
With the help of this method we have succeeded in linearizing the
original non-linear integral equation. The next step consists in
transforming the singular equation into a non-singular equation.

Combining the dispersion relations we can eliminate NL(V).

-ﬁ_ OQ 1
D) = 143, ol 1l[fav“o<" It - 2 ﬁ]
n v -Yv v vo-v Vo=y
0

ll)

x x%(vll) D (v

If we solve this equation for negative values of v, then szv)

is real and there is no singularity since

2
4 11
y L, 11 K(v) = K(v~7) 11 11
D(v) = 1+ .,.,.2 j ay v_vll VL(V )DL(V )

with
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o)
1
w2 [t Bl fad ol N —
vy (v - v) (v(v + M%) vV - v
0

0

Once EL(v) is known for negative values of v, one can compute
NLjv) for all values of v and then plfv) using dispersion relations,
Let us put v = -x, ?ﬂ(-x) = D(x), and VL(—X) = v(x), in order

to discuss the integral equation for negative values of V. The

integral equation for D is

11
T 2 L1
X - X
2
M
b
Defining the symmetric kernel
11 Vi
K(x,xll) _ K(=x)-K(-x"7) _ P 1
x1 - x \/ vi(vT + I“IZ) vh o4 o) (vl
0
we have _
D(x) = 1 - ;LZ dxll. X. [K(x,xll)v(xll)D(xll)] .
"

s
L
In case ¥ has a cefinite sign we can immediately transform this

equation into the standard form. Take, for instance, the s wave

amplitude for n-p scattering in the scalar model, then

Vo (-X) = - .

11, . . s .
Assume that v(x ) is negative definite, amd writc

v(x) = -l v(x), ,



- 29 -

then the integral ecguation can be transformed into

L"—(—’QLD(}:) = LvGol +;2 Fxll X'V(x)lK(x,xll)lxl],\r(xll)l
X X n

Vs

Ly

ngxlli' D(xll)
xll
which is an integral equation of the FREDHOLM type.

To conclude, we have overcome three major difficulties step by
step: Tirst, we have reduced the number of variables from two to
one by introducing the partial wave dispersion relations.
Secondly, we have transformed the original non-linear integral
equations into linear ones on the basis of the N/D method.
Thirdly, we have reduced the linear but singular equations into
the non-singular FREDHOLM type.

The FREDHOM equation is non-~singular and is subject to
various methods of solution. Thus the scattering problem in
dispersion theory can be formulated in principle without recourse

to the Feynman-Dyson theory.
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g 5. Further Discussion on the Scattering Equation

In the preceding section we have studied a general

method of solving the scattering equation of the form

5 i

1

: ) 1 -
ImF, (v7) b v, (v}
FL(\')) - 2 lavt _l_L__._ - & avr .{/_v_
" vo-v-ig n vo-v-if
Y -%

with

Im ?lfv) = f(?) ‘?L(v) ‘2 , for v ) 0

We have exploited the N/D wmthod to linearize the equation and
eliminate the singular kernal from the equation. Because of the
non-linearity, however, it happens that the solution discussed in
the preceding section is not unique, and occasionally it is not
even the solution of the original equation,

Before discussing these noints we shall study the relation
between the D function and the phase shift., The function DISV)

satisfies a dispersion relation of the form

1 Im D (vl)
De(v) = 1 ¢+ A dv —T—%%———*-
L T vi(ve - v - ig)

0

In order to evaluate Im D let us recall the relation
Db = NL/FL 9

and also the fact that QLis real for v >» 0. Thus we have

or
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ph F aid,
L L

Combining the dispersion relation with

InD(v) = =-tand. (¥). Re D (v).
A L L

we get the standard Muskhelishvili-OmﬁEs equation for DLCV). The

solution is

Had 1
D (v) = exp _¥ dv dl("l)
v vl(vl - v - i)

We shall now discuss the problem of zeros and poles of the

D - function(4): Let us consider a simple example
o = -pAdvee) (9,30

The integral equation reduceg to an algebraic equationjg,i.e.,

° 1 1
1 1 vb(v ) Db(v ) "
NO(V) -= av T = — DO(-Vi) .
L V. - v - if vy + ¥
~-%
Instead of normalizing Dby DO(O) = 1 we may choose an alternative

normalizing Do(-vi) = 1, then

NO(V) = __[1__

]
Vifv

angd
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1 1
Do¥) = 1 - "tV [ at Lo . No vy
T v t vy vl - v - i€
0
o 1
= 1 - ﬂ(""’i) vt Y 7
T viane b g v )% v-ie)
0
- 1- [T ViV

2M ZAYEN f[—v_-ié')a

where we have evaluated the dispersion integral in the non-
relativistic approximation, i.e., ‘V((MZ. This expression is
certainly Feal for ¥¢O, but it develops an imaginary part for
Yy > 0.

In the physical region ¥ >0, we find

Re DO(V) ID(V) cottf;) - é cotoc)
N_(v) M
0
14 V.
= (L -Ld) 4 (d 31
2M ooy,

Comparing this formula with the standard non-relativistic effective

range formula

2 2
rq 1 (q = V)

=
-

q cot({o = = 4+

[\

we see that

=
1]

=
<

]

J—

?[
[_l-



1 M _ 1 1

Mo, L
2 Moalv; Vs av,

If 'y 2M JC;, we can find a solution of the equation

Dy(v) = 0,
that is,
2 1-au N 2
- V= 0( = V. X (_—_L_)
+ + M v
e 2 vy
This determines the position of the bound state, since the zeros
of DL(v) are the poles of EL(V) or QL}V), and we are forced to
accept such states. When such is the case ¥ = -6€ represents a
pole, which is not present in the original dispersion relation.
There is another subject concerning the poles of BL(V).

Assume that Dl}v) has poles at v, (i=-1,2,....,n), then v, appears
zeros of the amplitude EL(V). The zeros are not singularities so
that FL(V) can have poles without modifying the dispersion relation
for Fl(v). Therefore, the equation

Im ?L(v) = - f(v) SL(V), (v > 0)

does not determine the dispersion relation for Dl(v) unigquely,

e.8.y, We may write it as

%
n
DL(V) = 1-9’[1 dvlﬂg_l N!(vl) +Z C; + A
Ll v vi-v-i& izl v, -V
0

The reality condgition for DL(V), for v£O0, implies that all C,, v,

and A be real. This kind of non-uniqueness was first discussed by

o

[
CASTILLEJO, DALITZ and DYSON'”/, and these points are called CDD

zeros. Vhether or not the A term is present depends on the



convergence of the unsubtracted dispersion relation for Ny(v). The
term A is associated with a CDD zero at v =ee .(6)
One of the important conditions that has to be fulfilled is
that DL(V) should not vanish between the branch cuts, otherwise
this zero would show up as a pole in the amplitude ?L(v) which

originally does not have a pole in this domain, e.g., for the simple

scalar model of Sec.3.

DL(V) # 0, for0D vy -EL;
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CHAPTER TWO

In this chapter the equations of the DASHEN - FRAUTSCHI
perturbation theory are derived, both for the single channel and

the multichannel case.

Derivation of D.F. Eguations

Ye consider a partial wave scattering amplitude Tle) vhich

(1),

can be written as

nE) = MEL (1)
D(E)
vhere N(E) is real for E » O, and is in analytic function of E
except for having the cuts of T(E) for B¢ O,, D(E) is real for
E € O, goes to 1 as E~» o9, and is analytic except for having Ehe
cut of T(E) for real E >0 given by physical unitarity.
For E > 0, T(E) may be written

elq sin B

T(E) = -
A (&) (@

where n is a real phase shift and‘P(E) is a phase space factor.
D(E) has the phase e " for E >»0.(2)
Bound states of the potential appear as zeros of D(E), and thus

poles of T(E) for E € 0. For such a bound state, we @&fine

N(ER)

R = Lim (E - EB)T(E) =

E-E, DH(E (3)

B’

Now assume that a small perturbing potential is introduced. From

Eq.(1) we can write to first order
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o2drth@® - pm M@ - nEdt (E) (%)

Evaluating Eq.(4) at E =E; and using the result

gy 1)

“5(2) (A)
D (EB)
we find
o - , = . > (5)
N(EZ)D™(Eg) R(D™(EgR))

As is apparent from Eq.(4), the quantity (D%d&‘l))(E) is finite

2

and, in general, non-zero at £ = EB' TFor E> O, we have from Eq.

(2)4)

in
f(E) (6)

Since D°(E) has the phase e”2M for £ D 0, the ouantity

(Dadh(l))(E) has no imaginary part for E» O. If an unsubtracted

dispersion relation is now written for (D2 T(l))(E) and evaluated

at B = EB’ then we obtain from Eq.(6) ezactly the equation of

DASHEN and FRAUTSCHI(E) for the first order shift in energy of a

bound state due to a perturbation:

0
IERCO I 1 1 )@ 2 @
R(D"(Eg)) m E° - Eg

- %%

Noy consider relativistic two particles scattering. We write the

partial wave scattering amplitude, T(s) = N(s)/D(s), where s is

the square of the centre of mass energy. N(s) is an analytic
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function of s except for Xeft hand cuts (LHC). D(s) is an analytic
function of s except for the cuts given by physical unitarity for
s real and above the threshold for two particle ctattering. VWe
refer to these as right hand cuts(RHC). Above the threshold for
two particle scatteiing, we may write

Ziq

o - 1

T(s) = T (8)

Zif( s)
vhere p(s) is a phase space factor and n is a phase shift, which
becomes complex above the first inelastic threshold. .

Bound states appear as zeros of D(s) and thus poles of T(s).

Let us assume the existence of such a bound state at s = sB. The
residue at the bound state pole is then defined by
. - K2
R - Lim ('J - SB)T(S) = N(SB)/D (SB) [} (9)

s-%sB

vhere the primc now denotes the derivative with respect to s.

It is now simn>le to generalize what we did in the case of
potential scattering, and to derive a first orcer expression for
the change in posifion of the bound state when the relativistic
partial wave amplitude is verturbed. Since the algebra used to
derive Eq.(A) or (5) is independent of the assumption of potential
scattering, the same equations are true for the relativistic case
with s in place of E as an independent variable., 1t is more
convenient for purposes of later calculation to have the change in

terms of dﬁ rather than Jb,

[¢7

state ener

the boun

We therefore use Eq.(5), and find for the first order change in

position of the bound state,
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£, ® . (02Tt (s5)
R(D*(s))°

(10)

In the following we will drop the superscripts on d;B and Jﬁ, since
we shall be concerned from here on only with first order quantities.
As in potential theory, we wish to write a aispersion
relation for (D%{T)(SB). One has to assume that: (1) D(sB) = 0,
(2) D(sl_é const., as s<30s and (3) D(s) is an analytic function of
s except for having the right hand cut of T(s). As P(s) will be
chosen so that T(s) =®0 as swpooat least as fast as s_l, J’I’(s) will
also=>0 as sopat least as fast as s_l. We may then write an
uhsubtracted dispersion relation for the quantity (DZJ&)(SB) in

Eq.(10). Ve then have

2 Y
(SB 1 1 [Im(DJT)(s) gt 9(11)

¥ 2 X <
R(D (oB)) Weuts 57 - sy

On the left hand cut where ImD(s) = O, we have

InD%T = DZImfT (12)
On the right hand cut, we assume elastic unitarity before the

perturbation is introduced,

InT(s) = p(s) ‘T(s), 2 (13)

vhere P(S) is a phase space factor which @®pends on our choice of
amplitude (see Eq.(8)). when the perturbation is introduced,

T-)T + ' and, since the masses of external particles may change,

",.-gf +J‘P,so that

Im(T + {T) = (F*‘ff’),T*JTF +§P 1\({:%‘ 2 (14)

wvhere the second term on the right hand side of eguation (14) is
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the contribution to the absorptive part of the partial wave amplitude
qoming from nev inelastic states, i, and f; is the corresponding
phase space factor., Tor example, in pion-nucleon scattering with
electromagnetism considered as a perturvation, a possible inelastic
state is the photon-nucleon state, in which case({Ti is a pion
photoproduction partial wave amplitudeob).

Combining Eq.(13) and (1l4), we have to first order

mft =dpre (xdm) tdpfr|? 4 Kp, LA (15)

or, oh rearranging terms

dp Re D(redm) + cﬂo\Tla +ini\ﬁi\ . e

1l - ZfIMT

Imt‘\'l‘ =

Then, since we have assumed elastic unitarity, T = el?sin qﬂh and

D = \Dl e—iq where n is real. From Eq.(16) we then find
A = pPdplefF + Lp e[ = w¥dp 4 Jof iz(’i\‘ﬁ‘i\ aetd

Although we shall not make use of it in this work, we note in
passing that by the same methods one can easily derive an equation
for the first order change in the residue, R, of the pole in T(s)
as s = sg:

(s - sB)a

1 [I’“(D%’)(S}) ast (18)

(D(s))2 1Icr:uts sl - B8

dR =

2.

S

This equation, and multichannel generalization of it(A), have been

used in calculations involving the perturbation of strong interactions

(5)_

by the weak and electromagnetic interactions

As an example of the use of Eq.(11l) and its agreement with an
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independent calculation ot J;B’ let us consider the application of
the method of DASHEN and FRAUTSCHI to one channel elastic two
particle scattering with a left hand cut given by a single pole.

Vle take the imaginary part of the amplitude on the left cut to be

m¥(s) = med(s - s) (19)
from which we compute using the usual N/D equations,
Nsy o L / (mrs™)) oty 1 o E20s) (20)
T LHC st - s s - 5
and
1
1 1 (s™) gD(sy)
Ns) z 1 - 2 [B2 N(s ) gt -1 -2 Pl = ast  (21)
M s - s M j(s" - s)(s” - 5,)

Eq.(20) can then be solved for D(sl) explicitly:

D(s,) = . (22)

1
(=) > st

14+ 8 1
TrRHC (s -Sl

Let us assume that there is a bound state at Sp due to the vanishing

of D(sB):

gD(s, ) / (sh)
0 = D(SB) =1 - _"_—l" F dSl -(23)
™  REC (1

- sB)a(sl - sl)

Direct calculation from Eq.(21) then also gives

1
dD 1 (s™) 8D(s,)
Z(sg) = == f _ £ i ek (24)
ds T rUC (s - sB)‘(s* - 5)

The residue at the pole at s = Sg is then given by

R = gd (s) (25)
a2}
(sB - 5)) ds (s

B)
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Now let us consider the effect of making small perturbations
in g, s, and ?(s) on the position of the bound state pole. Ve shall

compute (rsB to first order directly from Eq.(23) and compare it with

({SB computed by the DASHEN - FRAUTSCHI formula, 1l),
A, Vary g: g8 + J.g
From (23), using
_d_ (._1.._.) = i (_.L__ - 1), (26)
dg D(sl) g B(s))

and (24), we have

de_ (=2 3y - _dE____* dsg dD(sp)

0 - ' (27)
g D(sl) gD(sl) D(sl) ds
or (53
D(s
== (sg)
g ds B

On the other hand, putting In{T(s) = -"(fé(f(s - sl) in the DASHEN-

FRAUTSCHI formula,(ll), gives immediately
2
. 1 - Jg(D(sl)) o ;fE dggs”. (29
B - - )
4D 2 8, = S 3 == (sp)
R P (sB) 1 B ds ‘"B
B, Vary 8y ¢ sl-o Sy ¥ (rsl
Direct computation from (23) gives
2 ap
d D%(s)d3 ¢ (s - =) (=) oy )
SB = s —— N (JO)

(sg - 5) Se(sp)D(s;)

with



1
aD 2 P(s”) 1 -
£2(s,) = -B(D(s;))= & J d 31
ds, 1 1 T RHC (st - sl)5 ° L)

To use the DASHEN - FRAUTSCHI equation we need d&(s), which we

compute directly from

gD(sl)
™(s) = N(&) - S~ 5 5 . (32)
- [ p(s™) gD(3))
D(s) L1 fl : a)
m J (s7=8)(s =~ 51)
RHC
we find
dr(s) = £ a (s - ) L (s) 4 (p(sN2]|dz .

Putting Eq.(33) in Eq,(11) and carrying out the integral over the
left hand cut as a contour integral around the pole at s =z 5;

gives exactly Eq.(30)).
C. Vary p(s): f(s)"‘y(s) +d?(s)

Again, starting from the bound state Eq.(23), we find

' 1
(s = 8,) D(s,)g 1 (s7)
o ¢ ———2A—3— - f de ast  (3h4)
%% sB) T ruc (sl - 5 2(51 - sB)

DASHEN - FRAUTSCHI expression (11) becomes

£ - 1 1 N(sHdp(sh (
B~ _ap,_ .2 1T 1 ° 35)
R astsp) RHC 5 = Sg



- Ll =

gD(s,)
On using N(s) = E??‘%‘ y Eq.(35) becomes
1
2 2
g~ (D(s;)) (s )
J-SB = 1 [ J-P dsl
R -—(s ) s -5, ) (sl-s )
B 1 B (36)
gD(s )(sp - sl) 1 / d}; (sl) 1
- ds™,
D (5) T ®ic (s' - 5)%(st-sp)

which is identical to Eq.(34)...

The results for J;B computed directly from Eqg.(23) thus agree
in every case with those computed using the DASHEN - FRAUTSCHI
formula, Eq.(11). -

In the electromagnetic mass differences problem which we will
consider in this thesis, it will be assumed that the strongly
interacting particles of the unperturbed problem appear as bound
state poles in two particle scattering amplitudes, In general we
must consider a n ~ channel unperturbed scattering-amplitude,
T(s), where T(s) i8 aj wxn symmetric partial wave scattering

matrix which has a bound state pole. Along the two particle
unitarity cut, we have in place of Eq.(13),

In Ts) = I(s) k) r(s)t, (37)
~ w i

where P(s) is a diagonal matrix containing. phase space factors

which are functions of the total centre of massanergy squared, s.

We assume that the unperturbed amplitude has been written in the

form

T(s) = N(s) _g’l(s), (38)

“where N(s) is a n x n matrix whoee elements are analytic in s except
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for left hand cuts, and'st) ia a n X n matrix whose elements are
analytic in s except for right hand cuts present in the partial
wave amplitude, J( s;) .

Viith assumption on_BSs) and d@Ss) similar to those given for
D(s) and T(s) for the one channel case, the analogue of Eg.(11)
(6)

for the multichannel is

1 [ ish) diesh) pesh)

T -
Rls, =A 1T T ds” A, (29)
S - S
B
CUTS
where
A = Lim (s - sB) D'l(s), (40)
~~ s-asp ~
ang
R - SI::Q (s - s5) I(s) = N(sp) A (41)
B

Multiplying both#sides of Eq.(39) by R and taking the trace of

both sides of the resulting expression, we find

v 1
£ T cuTs s~ - s (142)

B
e (rg]

On the left hand cut we have

T 1y fheod 1
T [B.ATl In(D"(s") d2(s") D(s") 3]

In(DdTD) = D ImfT D (43)
M aw " TN

which generalizes Eq.(12), On the right hand cut, the generalization

of Eq.(17) is

T T 4
In(0"dID) = W N + U ({T‘i &fg_{)g. , (L)

M A

vhere JTI is an m X n matrix if there are m new inelastic states,

With p; an m x m diagonal matrix of phase space factors for the
A



inelastic states.
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CHAPTER THREL

In the present chapter PATON's fundamental investigation of the DF-
method is summarized, Then DF prescription for handling the infrared divergent
contr tbutions to the input is presented, and we end with a critical discussion

of PATON's conclusions on this topic in the light of our findings,

i) REVIEW OF PATON's'!) INVESTIGATION OF DF-METHOD

The discussion of chapter 2 showed that if one were able to
evaluate the DF expression for the mass shift exactly, the result must be
the same as that obtained from the usual first order perturbation theory,
In practice however one will inevitably be forced to make rather drastic
approximation for the left-hand cut of 8T(s), This will usually consist of
' keeping one or two 'nearby" singularities, Therefore, it is important to get
| some idea of how converges to the exact (first order) answer as one includes
‘more and more distant contributions to the left-hand cut of &T(s). PATON has
carried out such an investigation, We shall sumarize PATON's result, after which
ve describe our attempt at . removing the deficiencies of the DF formalism exposed :
by PATON's study,
As the unperturbed problem PATON considers s-wave scattering in an exponential
well, a problem for which one can solve the Schrddinger equation and obtain the
N and D functions exactly, This problem is then perturbed in a number of ways,
One mainly wants to consider pwtential theory analogues of the case vhere
thie strong interactions are pertubed by electromagnetic forces, Then one type

of perturbation, corresponding to photon
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exchange "driving terms" is of long range. A reasonable potential
thbdry analogue of the photon exchange force might correspond to a
Coulomb potential regularized at the origin (l_;_g:ESX /r.

In the relativistic theory a second type of verturbation emerges
as a result of the changes in the masses and coupling constants of
the particles whose exchange produces the binding force. In contrast
to the vhoton exchange perturbations, this second type of perturbation
is of short.range (generally of about the same range as the binding
forces). For example, if we represent the binding potential as a
simple Yukawa potentialp then a change in the coupling constant will
give a perturbing potential which is again a Yukawa potential of

the same range, while a change in mass will be described by a

perturbing potential of exponential form.
Both the Yukawa and Coulomb type of perturbations can be
obtained as a superposition of exponential perturbations, since
K

=K -K
° ~Kr e lr - e Zr
e dK =
K

1 r

PATON therefore studies the exponential perturbations first and
then sums them to get the others.
The Schfgdinger equations for s - wave scattering in an

exponential form reads

a2 g (rR) + R pRyr) = ac”HTip(rR)
>
ar

i A . .
Where & jg5 the strength of the potential, the range and M the
reduced mass, K =4 s. The solutions of this eguation are well-known/2/

and in particualr the Jost function is given by




. o K, a . S p
2(,r,) = o W I () [T o 2y g (2/\/'3‘a 5
p ) Jauk ,
| y I

from vhich one can find N and D functions from the definitions

Dis) = £( - k,0), N(s) = % [f(:-:k.,o) - E(k,oﬂ

Thus defined, D has a right hand cut arising from the gjuare root

branch point of k(s) at s = o. The singularities of N(s) in this

case consist of an infinite set of poles at s =,_n‘é2 , N =1, 2....

L

For negative values of a, the potential is attractive and bound

states can exist for suitable values of a. These occur for sB

such that

1
a &
=0 or J_,, (2 -=32) = O

2ikp p
/L

The corresponding bound state wave functions are

e e -

[ -3
Py = 1w T 2k, (2"{}*2 e

m

where NB is a normalizing factor.

rols

The standard first order perturbation. theory formula for d;B

is now written down:

>w)
Co. - fJ:f (veE) dV(r) ar
- (1)

Bo

2 r

fJx (b 2) dr

0
where b = 2 i%@ N

- X e =2 ldB/
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This is to be compared with the result of DF - expression for ‘!;B’

Eq. (3). PATON first considers perturbations of the form ae” M~ -~

a e MT 4 («(a e “kr (2) but ,ﬁ is aésumed small compared to a.
Calculating the perturbed Jost function f(k,r) + J}(k,r)

corresponding to the potential in Eq. (2) one can show that, to first

order in d'a the singularities of fl‘(s) in the left hand plane will
)2 n=1, 2, 3... so that the

i ) 1
consist of poles at s = m (n/4+ K

total contribution of the left - hand singularities UJJHKS) is

given by the infinite sum of poles:

Qo 1
) Cm

n
n=2~0 Ls 4 ( np + K)%]

. . t
The coefficients ¢ n1 which are propertional to (-a)" dﬁa
2

have been evaluated by PATON., one then evaluates the DF expression

for the mass shift

2, 1 1
o - . L 2t dmel) 2

1 5 (3)
N(sg) D*(sp) 2vr i 8 -8

B

where the contour C is around the left-hand cuts of J&(s). In the
present case the contour integral can be explicitly evaluated as the
infinite sum of residue of Daaﬁi(s) at the poles of d%(s). One

finds

{: 1 1 §'; b\. il R

N(sB) Dl(sB) L n=20

! . o
It can be written out more explicitly if C nl are put in as given
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by PATON. Eq. (14) explicitly exhibits the sum of contributions

to d;B coming from more and more distant parts of the left-hand

cut of D2¢f5(s). If all the terms in Eq. (..4) were kept then this
expression for d(sB would be identical to that given by the standard
formula, Eq (3). This can be verified in detail.

The question here, however, is how well the exact first order
ansver is approximated when énly the first few terms in the infinite
sum in Eg. (4) are kept. PATON investigated this point numerically.
His conclusions can be summarized as follows:

i) The numerical results indicate that the rapidity of
convergence of the DF - method, i.e. the number of terms in the
sum (Bq B), needed to achieve a given accuracy compared to the
exact solution, depends rather strongly on the binding energy;

ii) In the case that the binding energy is small compared
to the energy as measured by the inverse range of the binding forces,
both the long and short range types of perturbing potentials yield
values for({éB which are accurate to within~10% for the second
Born approximation to dﬁ. In the relativistic theory this
approximation corresponds to taking into account one- and two-
particle exchange. Tor short range perturbations the convergence
of the DF - method gets worse more guickly with increasing binding
energy. As can be seen from the table in the next chapter for

2

Sp = Ail and for the exponential perturbing potential even in the

is underestimated by a facbor or two,

For Sp =M even the sign is wrong in the second Born approximation

for the perturbing potential Ja e” M,

It will be recallied that DASHEN used the DF - methed, in its

relativistic variant to compute the neutron-proton mass difference.
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If, for the moment, we were to forget about the infrared divergence
problem, then we can say this for the DF - method. The restriction
to "small binding" which is one aspect of the limitations of the

DF - method and pointed out by PATON, is not disastirous for the
calculation of the n - p mass difference. On the contrary, it would
appear to be well satisfied for the case of a nucleon considered as

pion - nucleon bound state though it would be violated in any

Fermi-Yang-type compound model of the pion,




ii) DF - METHOD(S) FOR TREATING 1.R. D CONTRIBOUTION:/1,2/ .

To begin with we shall recapitulate DF - prescription(s)
for the I.R.D. problem. Ve remind that the problem is not just that
of removing I.R.D. but in addition making sure that such a removal
does not lead to a reduction in the convergence rate of the dispersion
integrals for JEB and d&h Indeed it is to be clearly understood
that the DF - method is comparable to first order perturbation
theory only if it converges rapidly enough to the exact result.

Since Coulomb - forces are of infinite range the only way to
incorporate them in the DFF - formalism is to work with an
amplitude which has explicitly a fictitious photon mass in its
formalism.

According to DI the necessary modification of their method,
in the presence of long-range forces, is suggested by a study of
a perturbing potential of the form

2
1 m2 2

—— — where t = - 29 (1 - cos ®).
t -)\ t-m

Here )\is the fictitious photon mass which is ultimately supposed

to be put equal to zero. DF now remark that such a potential is
characteristic of 1 - photon exchange potential between two strongly

interacting particles possessing rapidly converging form factors.

The co-ordinate space representation of this potential is

C -Ar -mr \ 2 -mr‘7
i) - & \te - e * A -m e j (o)

[\Y)

r r 2m

This is a Coulomb potential regularized at the origin. If one

o] o~
were to evaluate the dispersion integrals for D d T using such a
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potential one would obtain a logarithmically divergent answer.
This is just the result of the long-range character of the
Coulomb interaction, owing to which the phase shift aequires a

divergent part projortional to lnféqr) or in (§ﬁ0 , hnamely:

A

J‘ = arg (L+1 +idy) - do bn (29
L q 2q A
We note that the divergent part of the phase shiftcaiis independent

of £ ana does not depend on angle, It will therefore appear only

as a phase factor exp [_ (i db) fa (g)] which multiplies the
a A

entire S-matrix.
DF propose to deal with the infrared divergence as follows.

First, remove from the S-matrix the infrared divergent factor

exp [-i (%) 5/5\%]

Where g(s) is an as yet unspecified function., Corresponding to

this S-matrix one introduces a partial wave amplitude

dﬁéhs)

exp {Ei(q 4 Fra)j? - l”

2iqg

exp %i(r1+{q+é§z"—%_§§ -1
2iqg

where N is the change in the stronginteraction phase shift caused

by the electromagnetic interactions, and({a :Ja-éﬁborn_ It is clear

that dMN(s) is related to dT(s) by
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Jte - e - 4‘%- I g8 (2

(o]

The amplitude¢{%(s) has the property that it is well behaved as
As,’go for any g(s). Consequently one may make use of this freedom
to choose g(s) so as to minimize the sensitivity of the dispersion
integrals to distant singularities.

The best choice for this purpose, according to DF, is to

choose g(s) so that

21 .
(f’i(S) = Jﬁ % = (ch - c(r] Born) o2 (6)
q q
with dnorn = -% sinlqr {V(r) ar

0

Now since Jﬁ Born contains the same fn;\dependence as d}], the
A
infrared phase shift is thereby removed from ((T(s).

Therefore ({;B and J% can be calculated in a way that is free

of infrared divergences if one uses c{%(s) in place of J&(s). This
is DF prescription No, 1, (DF - 1) (say).

Concerning the rate of convergence of dispersion integrals for
J-g(s), DF have this to say: DF remark that in potential theory any
phase shift tends to have its Born approximation at high energies.

A . . .
Consequently, Jh = da -'JaBorn will tend to zero more rapidly at high

energies than either c(;} or orr;R separately. This means that the

orn’
dispersion intergral for J%(s) will almost inevitably be more

rapidly convergent than that of(!&(s) and the influencéﬁthe distant

singularities correspondingly less. DF investigate this point for

the potential in Eg.(5). In this particular case it is possible to

show that




i N%z as s—yeowhile dn,

o |-

For this particular model in which V is short range, andch is cut
off at small distances, DF find that(f% falls off like 12 for large g
no matter what the asymptotic behaviour of the strong inte:raction
phase shift may be. DF therefore conclude that the dispersion
integrals for J%(s) should be less sensitive to distant singularities
than is usually the case,

In relativistic problems we are indeed forced to introduce
redefined amplitudes free of infrared divergences in problems

involving charged particles. In this case there are infrared
divergences associated with inner bremstrahlung (q@hoton connects

an ihitial with a final charged line) as well as Coulomb divergences
similar to those encountered in potential theory. DF again recommend
dealing with the redefined amplitude, free of,en)\ dependence, by

A
introducing J&(s) through the definition:
Nt I e
T(s) = ) - dnyo (6)

Here, as in potential theory case, the freedom to choose the
coefficient g(s)<>f£mﬂis to be employed so as to minimize the

sensitivity of the dispersion integrals to distant singularities.

It is not at all clear to vhat extent one may expect the
potential theory arguments showing the more rapid rate of converyence
of the dispersion integrals for cﬁ?@é) to carry over to the
relativistic case.

Firstly it is not implied that {r‘h>°(rlBorn at high enersies

more rapidly than the unperturbed phase shift 1 > YBorn®




_90_

Indeed, in strong interaction physics there is not the least
evidence that 5§ —9 Nsorn at high energies. Indeed the contrary is
most probably true,

Consequently one cannot use this argument to conclude anything
about the convergence of the dispersion integrals, nor can one
even say with certainty that g(s) chosen as to yield Eq.(6)
necessarily represents the optimal choice from the point of view of
convergence,

The second argument given for the rapid convergence of the
dispersion integrals depended on the short range of the strong

potential and the faét that the perturbing potential was cut off

at small distances. These are properties which one can nerhaps
imagine as holding true for strong interactions as well. However
one lacks any general demonstration in the relativisitic case these
properties actually guarantee a rapidly convergent behaviour for the
phase shift o) although it looks slausible.

The most serious objection, of course, arises from attempt to
treat infrared divergence in relativistic case in the same fashion
as in potential theory. It is clear that in practice working with
Eq. (2) is easy to speak oif but might prove extremely laborious to
carry out in practice.

Having made the suggestion contained in Eq(2) DF now find a
way to avoid the unpleasant task of actually computing Ea(2).
Instead the task is eliminated in favour of a "simpler way to subtract'.

. . . caon X

The prescription is simply to drop the terms containing (R *‘E(§T1?
since "its coefficient zhould have vanish anyway'". In addition
it is claimed that the new procedure ''would give the same results
as an exact calculation and can be shown toc give nearly the same

result in approximate calculations'.
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Here g(sB) is an arbitrary function which eccording to DF
has to be so chosen that it maximized the convergence of the dispersion
integrals. <The choice of g(sB) is made in the way described in the
next paragraph. This is DF prescription Ko. 2. (DF - 2) (say).

PATON has examined both these suggestions in potential theory
models. PATON found that if the modified amplitude é&'(s) is used
in the dispersion integr:l than the I.R.D. associated with A — 0
can be avoided. In, addition, it improves the convergence of the
dispersion integrals, Ve remark that DASHEN did not use the
prescription contained in Eg. (6) in the calculation of neutron-
proton mass Gifference. Instead he used the "subtraction'" procedure.
At least in potential theory models, PATON found that any prescription
for removing I.R.D. which involves dronping in each order.atterm

progortional to 1ln 2L , where K is some constant, although it
K

helps avoid I.R.D. destroys the nice property of making the
dispersion integral converge more rapidly. The prescription for
determining K is as follows.

One is to express the phase shift daBnrn (Eq. 5) coming from

the perturbing potential acting alone in the form

{nps) = £ X+ 0N 7)
K g(s)

The K mentioned in the expressionen(gL) is now to be so chosen
K

that K = ,\/g'fs;

Thus BARTON is entirely right in stating that actually DF suggest
two separate prescriptions for dealing with I.R.D. BARTON's invest-
igation showed that "contrary to the claim made by DF their second

method (DF - 2) is not equivalent to their first (DF - 1); and

.
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that unlike the first it can easily give the wrong sizn", Tnis then is
indeed the reason why DASHEN's calculation of the neutron-proton mass
difference, using DF - 2 in its relativistic version, yielded the "physi-
cally impossible answer",

Thus we are left with the choice of either using DF - 1 to deal with
I.R.D, or invent some other procedure, Any attempt to use DF - 1 (eq B),
in a relativistic problem, would entail tle calculation of the Porn phase shif't
ch from the electromagnetic correction to the "generalized potential defined
by CHEW and FRAUTSCHI /3/. This choice would, hopefully lead to, though not
guarantee, the best possible convergence of the dispersion integrals for 6sB
and O R. One must always be aware of the limitaticns of an approach which
attempted to simulate relativistic dynamice by a purely formal 6 potential
theoretic .stvdles,

In a relativistic case one would have to calculate and take account
of many terms contributing to 6})Born' It is not altogether surprising thet
DF swiftly abandon DF - 1, The fact is that no one has used DF - 1 in a
relativistic problem, It remeins an open problem to which we hope to »:turn
in due course,

Qur approach is more transparent in that it honestly adwmits the existence
of problems connected with the existence of A=>0 Linit, Two separate
methods were explored, In the first method, a potential theory model is
studied along the lines of PATON's work discussed elsewhere, the photon
mass A is treated as a parameter, In the second approach, we arrange
cancellations between different contributions to § T through the introduction
of a function which serves the role of simulating contifutions from distant

left-hand cut contributions, One has sought to so choose the cut-off function

as to minimize the dependence
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of mass shift integral on the choice of this function. However the
results show a rathner wicde variation in the values of this function
if it is to serve its purpose and thereby point to the need for
inclusion of @ther channels in a realistic calculation,

Both sugge=tions have been studied in the osotential theoretic
context. The latter approach is then employed to calculate the
neutron proton mass difference, with the further inclusion of a
D~ function constructed directly from the experimentally determined
mN, g - %, 2,: 1, phase shifts, at least up to 2 Gev/c and beyond
up to 5 Gev/c, using respectively the phase shift data from
DOWNACHIE et. al. /4/ and ROYCHOUDHURY et. al. /5/. The pkoton-neutron
mass difference turns out to be of the opposite sign to its
experimentally measured value/6/. Clearly the problem is impossible
to treat as a one-channel calculation. Addition of CDD pole or

poles, together with inclusion of othsr channels is clearly desirable.

Wle hope to tackke this problem in due course.
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CHAPTER _FOUR

1. INTRODUCTION

Let us recall that PATON's investigation in a potential
model showed that whereThas in the weak binding limit the DF - method
is satisfactory, as the binding becomes stronger (approaching the
realistic case of strong binding) the DF method gives very
inaccurate results, even vhen the secona and third order Born
terms are included. The model considered was a particle in an
exponential potential: When the interaction became almost strong
enough to produce a second s - wave Sound state, then even a
combination of first and second Born terms proved to give the wrong
signa,

The purpose of the present chapter is to propose a rather
different method of treating perturbed dispersion relations and test
it in similar circumstances to those in PATON's calculation, We
vork entirely in the framework of the usual N/D method but, in
contrast to the DF - method, assume a perturbation in both N and
D functions, caused by perturbationsd(? in the kinematic factor
and dB in the driving term. We derive an integral equation for
dﬁ and Jb, and calculate the mass shift dEB from these. Our method
lacks the elegance of the DF - method, but has the considerable
advantage of giving correct answers in the potential model
considered.

In g 2 we describe our method with a description of the matrix
inversion method used to solve the N/D integral equations, which
is shown to be equivalent to (and more convenient) than the Pagels
method of solving N/D equations/ /.

In g > we give the results of the model calculation, and in
§ 4 the problem of infrared divergence is discussed within the

context of results of § 3. and some numerical work on the problem
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is reported.
The rest of the chapter contains an application of the modified

Pagels procedure to generate the Nucleon as well as J2~ trajectories

using N/D equatigns.

2. INTEGRAL EQUATIONS FOR dN, ¢D, aNDdS;.

The unperturbed N- and D~ functions are given by

ssgs) - S 34541
N(S) = B(S) +'lr sl(s - r(S sty ast , (2.1)
R
S (S )N(S lys _
- l ~ 9 ('2.2)
D(S) = = s

R.

where the symbols have their usual meaning. If we apply a

perturbation BB 4 JEB, F—A F +€{;0

S(B(S) ¢ dB(8)) - st(B(sY) 3 IB(sH))
sl(s - sh)

N(s) ¢+ dN(S) = B(S) + dB(S) # =

R
c(psh) +dpstnash) « ducshyast,  (2.3)

1 . . .
S { .8 (p(s™) ¢ dp(s (57) + JH(ST)) 46l
D(®) + dD(8) = - 11
S7(Ss" -~ 8) (2.4)
R
Subtracting Eq.(2.1) from Egs. (2.3) and (2.2) from Eg.(2.L) and,

neglecting terms of order B . Jﬁ we find:
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lp gl 1f ol
Ji(s) = dB(s) ¢ L |(SBLS) = SB(S7)) + (5dB(s) - s fB(s ))(fxsl)

w sl(s - sh)
R
1o, ol
t+ J?(Sl)) dn(st)ast + .; sfB(s) - s JB(s )(P(Sl) +¢f}(sl))N(sl)dsl
st (s - sh) (2.5)
R
s .P(sl)tﬁusl) s psH)nesty
2 T o ds s 2.6
DS) = S (2.6)

R

and finally the mass shift is given by

d%B - gD

dD/ds) .
S = SB

These equations are much more complicated thamn. the comparable DF

equation,

@
N

jr D(Sl)a*Imdﬁ(Sl) ggi

. N
B .R[DI'(SB)]Z / st - Sy

but they have three advantages: firstly our integrals are over the

pight hand cut, whereas the DF case the integrals are over the left
(which is generally more complicatéd), secondly our method explicitly
unitarises the perturbed amplitude, which we feel is important for
the case of electromagnetic perturbations, and thirdly higher

order perturbations may be simply included since Egs. (2.5) and

(2.6) are in principle exact.

We solve the N/D equations by a modified form of Gaussian

quadrature. The N- equation is written in the approximate form
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n aiB(ai) - SB(S)
N(S) = B(S) ¢ Z c;N(a,), (2.7)
i S(ai - 8)

where we have included the effect of the kinematic factor in the
Gaussian weights: a specific examp le of how to choose the weights
and positions is given in section % below, This is equivalent

to a form used by most workers in the field, and is usually solved

by putting S = aj and solving for N(ai) by matrix inversion.

Eq.(2.2) is clearly equivalent to the form suggested by Pagels/4/,
with the advantage that the s and a; can be easily cualculated for
any order, instead of being empirically fitted (which is incidentélly,

numerically a very unstable procedure for more than two points).

3. APPROXIMATION METHOD AND RESULTS

In the non-relativistic case, the integral in Eq.(2.1)

%
L [,l F(st, s) ast.
m 1

/s

(1 + x)/(1 - x) we can convert it to an integral

may be written

I(s)

substituting St

from -1 to 1, which may be evaluated by Tchebycheff quadrature,

yielding, after some algebra, a form like Eq.(2.7) with.

1l ¢+ x, (2i - )T
a. - — . where X. - cos ( 2l 1 )
i i
1 - x5 n

- S
n(l - xy) (3.1)

Vle specialize to the case where J} = 0: i.e. the only change comes

from the Born term. This leads to the related equations
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J,- n N(a ) - N(8)
D(8) = 1 4#1iyS N(S) ¢ Z ) cj (3.2)

j=1

- n SB(S) - a B(a )
fies) = @B+ § L) e dincay)
. 8 - a,
J=1 J
n S&B(S) - a Jb(al)
+4 | Z Cj s - aj )N(a ): (')-3)
n SB(S) - a B(a ) Jﬂ
) ¥ ( ), (3.4)
dn(s) = dB(s) ¢ 2 5 - aj “3 g
J=1
n chJN(ai)
Dsp) = - § A (5.5)

s %

The model we treat #nitially is an «&ponential well, for which

the L.H. cut degenerates 1o a series of poles and the solutions

are well known. We summarize the results below, using PATON's

notations
If
V(r) = ae M,
then
Ds) = exp (LD M -2tk - 1) 0_,, B2FE) K ={F 0.6
MR P M

This has zeros(corresponding to bound states) when

(2 =

=2 )
M T

0 (3.7)

J— Zik/ M

with the wave function
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oy

= J .. I -
ﬂr) = -2ikp/ph (af,ZeXp 9 2) ) (3.8)

Hence the lowest order, the mass shift with a perturbing potential

o
Ju(r) j P -
Jo(be™2") fvir)ar
0

J‘S ] (3-9)

B

oo
2 -lr
Jx(be 27 )dr

2 J-aéﬂd and X - -2ikp.

wvhere b

m

To check the basic numerical method, we compared the solution
derived from Eq.(3.2) etc. with the etact solution for a two pole
input.

VUriting B = gl/(S + ml), dB - ga/(s + mz), the error in N
from Bg.(3.3) is about 0.3 then n = 5, and falls slowly as n
increases.

Turning to the case of an exponential potential, it is known

that

r I
B(¢ 5) = 2w z ('f) 2 > (3.10)
r (r =1)!(4S 4 Spr) )

r= 1
is the so called "Born term" which in this case eixactly describes
the interaction. A similar expression is used to give JdB(S) from

P r =Kr
e

dV = da . A turther check on the accuracy of the imethod is
given by the erro in the unperturbed béund state energies: as
similar accuracy to that above was found.

For a range of values of the (dimensionless) parameter Kﬁ”

the mass shifts JBB/ a were computed using egs.(3.3) and (3.4).



- 69 -

In Eq.(:lk4) we
l.2
1.0
0.8 Lo

0.6

0.4

<\ b
0.6 se B

0.4

K/}‘

Fig. 1 Comparison of the mass shift({éB for the perturbation da

exp (-Kr) using Eq.(3.4)(curveIl)with the standard resbit (Curve I):
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(a) binding energy SB :‘42; (b) binding energy SB - PF/16.

made a further apprroximation in ignoring the third term in Eq.(3%.3):
in other words wve made a determinantal approximation in line with
the spirit of perturbation theory. Our results from Egs.(3.3) and
(3.4) are compared with some of Paton's in Table 1,, and it can be
seen that they are verymmuch better : of course,, this is not s
surprising, because we have employed an infinite series of terms

to represent the input, whereas Paton only uses the first three
Born terms, As the ratio K4M decreases, 1t is necessary to
increase the summation from n = 6 for K/F = 0.1 to nll for K{/W

= 0.001, The results are perfectly stable up to n = 20.

TABLE 1
1 2
2 =
°B M 16 M
DI estimates, third Borm 4 9L
Eq.(3.3) 99 99.3
Eq.(3.4) 97.% 98

Comparison of DF estimates of ng for the perturbation Jé exp
(-Kr), following Paton/3/, with estimates using eq.(313) and
(3.4), respectively, with the input eq.(3.10). The numbers are

percentages of the standard result.
For a perturbing potential of Yukawva form

\ 1{1‘
e’

frry = ourr (M = 100),

i

we are forced to consider only the first Born term. In the limit

-

K—20, this goes over to a Coulomb potential, which is of course

our basic interest. In this limit our method fails; however we

hope that for K small but finite we may obtain not unsatistactory


http://Eq-.C3.zO
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results, In this case

- 3 1 K
dB(s) - g1 + (3.11)

vhere the suffix emphasises that this is only the lowest order

Born term: higher orders would improwe the accuracy, but we
cannot obtain them in closed form. As can be seen from Table 2,
and figs., 2a, 2b results are satisfactory for K 0.03: we note
that the first order potential theory result does not change

very greatly between K = 0.3 and K = 0.01. Again numerical

consistency was achieved for n = 6 for K>0.5 to n - 12 for

K< 0.03.
TABLE 2
1l 2
2 -
S5 M 164
DF estimates, third Born 58 94
Eq.(3.3) 98.9 99.1.

Comparison of DF estimates of dﬁB for the perturbation Jé.exp
(-Kr)/r, following Paton/3/, with estimates using Eqgs.(3.3) and
(3.4), respectively, with the input Eq.(3.11)(K> 0.03)
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6
5
b g 26
3 g kol
2
1
0 1 2 3
Kﬁ,
2.6
2.0 F;J b
aﬁh&d
1.0
0 1 2 3
K/M

Fig 2
Comparison of the mass shifts JEB for the perturbation da exp

(-Kr)/r using Eq. (3.4)(Curve II) with the standard result

(Curve I): (a) binding energy SB = ﬁ/a; (b) binding energy
2

SB =IM /16.
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4. INFRA-RED DIVERGENCE

The infra-red divergence problem in the DF model has

been the cause of considerable congern, Ve propose the simplest
conceivable prescription: that it should be ignored. 1In other

worcs the photon should be given the smallest finite mass consistent
with numerical stabllity. This has a number of embarassing problems:
in particular a realistic photon has spin and giving it mass
introduces a helicity zero component. However, the results of

sect. 3 suggests that in the scalar case the approximation is not

bad. In this section we investigate the consequences of this
assumption further,

Halpern and Rix(HR) (5) have obtained, by an elegant and
exact method, a solution of the one-photon exchange N/D equations,
As one would expect, the D-~function develops an infinity of zeros
to cancel the vathological behaviour of the input near threshold:
this represents the infinite number of bound states which occur in
the model. The central point here is the enforcement of unitary on

the solution, which forces a finite solution despite a Born term

which is infinite everywhere.

It must be emphasised that the Coulomb scattering problem is
genuinely divergent in the following sense: the D-function really
does contain an infinitude of zeros and the S-matrix has an
essential singularity at threshold. To obtain these features in

a dispersion relation approach it is clearly necessary to start

with a singular inout (see, ref (5), Eq.(3)}:

2 5
Im Bil) (8) = MPL(I +Ay o ¢ -s -AE ) (4.1)
28 25

It must be additted that the colution is not tolally satisfactory,
as the one photon exchange term does not reproduce the Coulomb force

in its entirety.



- 74 -

The DF method is akin to the determinantal approximation in the
HR equations. The method here proposed at least has the advantage
of being demonstrably finite, but apparently suffers from two
serious flaws: first we cannot hope to reproduce an infinitude of
electromagnetically bound states by our rather crude approximation,
and secqndly the integral equation for N does not exist in the

1imit \ =» 0. Ve write

iy ° Tyn, el |
L & _a -57 + (5

vhere a is a small positive quantity. In the calculation of the
neutron-proton mass difference, one is interested only in the
behaviour of D(S) (in fact D(S)) near the mass of the bound state,
which lides wellbelow threshold; The lowest electromagnetically

bound state lies about 1 MeV below threshold, while the proton
(presumed to be a TN bound state) lies 137 MeV below threshold.

Hence, although the second part of the integral in Eq.(4.2) has a
somewhat peculiar behaviour as ImB blows up and D oscillates more
violently near S = 0, we may hope thaf the net effect on D(S) with
S large and negative may be negligible. The prescriptions of
leaving the phéton mass fifiite, or including a cutoff are
essentially equivalent,

To check this idea, we compare the HR solution in the limit

of large negative S

LY o (1—§=§l) +1 - [nBrp (L4.3)

DS l-——— . T
() 7 Y-S5 % M
S—-—>-°0
with our massive photon exchange solution for 8 = - 100. As can be

seen from table 3, the results are not unreasonable. AS/\ - 0
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instability is setting in, but for a value of A = 0.50 or
larger the approximate calculation agrees to within about 3 - 5%.
(Note that the figures are rather worse than they appear, as wve
ought to be comparing DHR(S) -1 with Dapp(s) - 1), This is
reasonable: although a photon mass of 0.50 sounds large, it is
still a very long-range perturbation compared with the mass of the

bound state.

TABLE 3

Bq.(4.3) Eq.(4.1) /\

0.9974 0.9406 0.01
0.9903 0.50
0.9933 1.00
0.9971 1.50
0.9976 1.75
0.9986 2.50
0.9991 3.50
0.9993 4.00

Comparison of HR D-function from Eq.(4.3) with the approximate D-

function using Eq.(4.1) as input as )V‘fbo. (8 = - 100, M = %).

An alternative method of handling the infra-red divergence
problem has been proposed by Squires, Poston and ome=ef the present
authorg., See  Chaplon ¢

To conclude, we have proposed and investigated a method for
evaluating perturbed disnersion relations, The method is very

satisfactory for short range forces, and gives reasonable answers

for long range (i.e. Coulombic)interactions., We intend to investigate

the model further in a more realistic strong-interaction model.
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CHAPTER FIVE

1. APPLICATION OF MODIFIED PAGELS METHOD TO_OBTAIN NUCLEON

aND JCTRAJECTORIES,

In this chapter the Pagels method in the modified form

given in the last chapter is used to solve the N/D equations in an
attempt to generate

1) the nucleon trajectory in the N system from N, N®
and F exchanges in the crossed channels,
and

11) the )’L(') trajectory in the K Z, system withA.and 3.
exchange in the u-channel as input.

It is obvious that our calculation is not of any intrinsic
interest since it is essentially a fixed-spin exchange calculation.
In a realistic calculation one woulid have to use the strip'
approximation of CHEW and JONES/1/, with full Reggeization and
with the input left hand cut derived from the leading trajectories
in.all three channels, In view of the ad-hoc nature of our
calculation, the strip-width parameter which in the fmll calculation
makks the transition from direct channel resonance AOminance to
crossed channel Regge dominance, is here simulated by the cut off

W The continuation of the partial wave amplitude for complex ﬂ

1
values is defined through the Froissart - Gribou projection formula.
The presence of the u channel leads to two different continuations
corresponding to odd and even integral values of f, The amplitudes
for which the coreect N/D separation can be made is obtained by

writing the partial wave amplitude as

By (W) = (o)
L() = kili_W) /'Dﬂ (w)

where




Kk 2Lt
fLan = (EH (@
+
with
and fﬁ is the partial wave amplitude given by
i .
£ (W)= _° % sindy
L k

< Guane 0’/ l“t
Nota.tion&tcoresponds to j = (,f % sy 8 = W2 is the, centre of

mass energy, and k2 the centre of mass momentum

2 2 2 2
K2 [(W+Mi) -,uij [(W-Mi) -/uiJ

N

The index i labels the relevent channel, N or K =, respectively

and = mg- or my respectively. For brevity we are treating

both JTN and K = systems on one footing, i.e. notations are inter-
changeable, except for jJ =!_‘_‘_‘ %. The dispersion relation for the

‘é-the partial wave amplitude is given by

Y

By (W) = BV(W) + L aw ImBL(wl) o1 ImB( dwl
{ L o + X __L

Wt w

..Wl

Here WO is the threshold energy in the relevant channel. BLV is the

so-alled generalized potential obtained from crossed channel

exchanges, As mentioned the object here is to simulate a strip-

approximation calculation by fixed spin exchanges in the relevant

channels with W;, the cut off, simulating the role of strip width.

2. MODIFIED PAGELS TYPE APPROXIMATIONY2/

We will not repeat the full description of Pagels method
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except to remark the following. In the strip approximation type

calculation the equation for N is singular. The usual method
separates the singular part of the kernel leading to a Wiener-Hopf
type integral equation whose inhomogenous term satisfies a Fredholm
equation. Here we solve the N/D equations by replacing the Pagels
pole fitiing procedure by a Gaussian interpolation, and then
solving the equations for N and D by matrix inversion.

On carrying out the procedure the N and D equations take the

form
n Vowy - a;B, ( 3) w.B, V(W)
N&(W) = BZV(W) -2 Cia:iN(ai) J 2 - OoZ
i=1 Yoy %o =2
(1)

o (W)

"n
c
12;1 i[

W
i WNy (W) - a;N lay } -w—(_’;- wONL(WO)
i

- alNL(al) g] (2)

The function & %zv(w) giving that part of the amplitude
containing the cuts which lie outside the strip is defined by

Eq.(@). The C; and a, are the parameters for pole-fitting of the

function
(W) awt n C.
F(X) - l _l.(il____.. = L , (A)
W (W - X - ay
i=1 -

R
and are the same as in Chapter4- . The right-hhnd. cuts cover the

strips =W < W ¢-W, and W, < W < W, W, being the threshold

0
energy in the relevent channel and Wy the cut off. QLﬂW)m outside

the guts is given by



n
; w
B 1 - Yo 8 Nap) [——‘"—— - —2 (3)
L1 L ay Wb - a4

By putting W= a; in Eq.(l) we get a set of simultaneous equations
in N(ai) which are then solved by matrix inversion.

We now treat the Nucleon and f?_ trajectories separately.

BALL and WONG/3/ in 1963 used PWDRs(partial wave dispersion
relations) to obtain integral equations for the PWAs (partial Wave
amplitudes) for AN scattering, using interaction terms arising from
the exchange of a Nucleon, the N¥ ana r’- meson, Adjusting the
value of the cut off to produce N¥ at éorrect energy, they found a

bound state, the Nucleon in the p- wave, I = J = % amplitude.

The effect of varying the coupling constant was also treated.

In our case the crossed channel exchanges are obtained in the
narrow resonance apprcximation. The relevant expressions were
taken from FRAUTSCHI and WALECK&/4/ after correcting some misprints
in their expressidéns

i) U - CHANNEL: N AND N*EXCHANGE

Nucleon exchange in fth partial wave in T = %-channel
is given by the expression:

St [-Eem@-m g+ E-mwy M)Ql_(.yl)]

where k° is defined earlier, f2 = 15 the TIN coupling constant,

WZ - MZ _laa
2k2
- . l 1l .
mass, The subscript [r means Jj = b= 3 is the total angular

-1, M is the nucleon mass; and Athe pion

_}.t

-yl = H

momentum,

The contribution from Ni exchange is
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2 :
W X35 - ek

y * + W2pE o - 1) 2op
3xN§(MNK t 2M +W) MN* -2M - W
X Q (yz] [(w-m) 5 + 5

(s ¢ 0% - 4 (g -M)° -
2 2
+ M

where yo = N

N

3xNx(MNa£+2M-I) ] M, 3-2M=-W

-2M2-2!ua

-1 9
2k2

and 333 is a coupling parameter, determined by BALL and VONG from

the experimental width of N

1i) T - CHANNEL: A - EXCHANGE
g,fz ) l[(w-m)a /F]\'—X(W-M) + Y, (aQu-M) you?
16nw
5 Q (ap) . g 5
- M2 4 2M° - L (W -

(a )
(2%, (W4 1) # ¥ (4M(W + M) + 2s+M/’2-2M2-2ju2)) j

M2
where a/) = 14+ 2

2k2

Here Xl and XZ are determined from the electromagnetic form
factors of the nucleon and are taken from BALL and WONG's paper.

They are given by
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ii4) RESULTS
With
( gN+sN§ L
BLV - k L_ ‘(’_ {-

PL (W)

and choosing the subtraction point at W = WO = 0, 32P°1e terms
we retained in the sum in Eq.(4).
The nucleon trajectory for 4 separate values of the cut off

W, are illustrated in the figure 1 W, is &n units of an

15
(W) W, = 10.0 W, = 10.5 W =10.8 W, = 1l.
.5 7.00 6.60 6.31 6.21
.6 7.50 7.18 6.81 6.77
.7 S 7.59 7.35 7.28
8 I _— - 7.68
i:o(-.(M) s W ‘”s‘.\“* 6} Hle Reﬁe ",.,Qu (Hrr 6—\'\"«. . It Vs Seanm .
3 "'hnt _“\M’;.\'O. & \7al0. Cowel CQOJL&E +° tla ‘B‘Ma“ux n.AM) 6 :{o=h|‘r0{;:

" " denotes that the trajectory grises above tnreshold.

t

J& _DYNAMICS

For this problem the most thorough work has been done by
JOHNSON and KAHANE/S/. These authors generated f{ thwomgh a proper
Reggerized calculation. We are only interested in seeing how well
the truncated appraoch using Pagels-type solution method works,
Following JOHNSON and KAHANE, we exclude Y¥ (33285 MeV) exchange since
this gives a repulsive contribution, whereas the exchange of a

victor meson in the t channel appears to have no significant effect

on the binging energy of R ~+ Our only input consists of Z and A_
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exchange in u channgl. The kinematics is similar to TIN system
except for the presence of two isospin amplitudes, T = O and

T = 1. We are interested only in T = O amplitude in the direct

2
f s
Ak = 1.68 These renormalized coupling constants were
b TT
42 4
-— - - Q
taken from JOHNSON and KAHANE, —-iz'</aﬁ

RESULTS $:-‘.AK/cm= b ek

. For various cut off values ™ (W) was calculated. The results

are tabulated below and illustrated in the Figure 2.
Wy is in Kaon mass unit

f;JE‘W) Wy =7.25 W =7.5 Wa=?7.75 W, = 8.0
1.2, 2.92 2.78 2.64 2.50
1.3 3.02 3.09 2.98 2.85
1.4 5445 3.35 3.25 3.15
1.5 3.6L 3.56 3.48 3.40

1.6 3.67 3.60

oL W) sronds f, W koﬁﬁhn of W
ﬁﬁvua W - He LT mrau Comes et

CONCLUSIONS

It is clear that the approximation method of replacing Pagels
pole-fitting technique by straight_forward Gaussian interpolatiadn
is zasy to use and appears to generate reasonable trajectories,

The results are off by about 10 - 15% from the "honest"
calculations of BALL and WONG and JOHNSON and KAHANE, regpectively.
our object was to see if it iis feasible to reggerize the direct
channel@ with unreggerized input in crossed channels,

The results are not too bad though of little significance for

any deep insight into the dynamics.
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CHAPTER SIX

1. Introduction

In 1964 DASHEN /2, attempted to calculate the neutron-proten mass
difference dué to electromagnetic elfects, using a perturbation techniyue
developed for the N/D method by DASHEN and FRAUTSCHI /2/, and discussed

in Chapter 2, The technique suffers from tle defect that it diverges for

9]

infinite range (e.g. Coulomb) forces and so some method of introducing
a cut-off had to be introduced, BARTON /3/ and PATON /4/ showed that this
introduced such a large measure of uncertainty into the calculation as
to make DASHEN's result meaningless,

It is the purpose of this note to discuss a particular method, due
to SQUIRES /1/, of removing this divergence and to test it in a situation
where exact results are available, namely potential scattering. We find that
in the cases considered the method works well, and apree with the exact
results for a wide range of hinding energies,

The method consists in the inclusion of box-diagran contributions to

the left-hand cut and arranging for the total infrared contributions to

[

cancel with the help of a fudge factur, the exact details of which are

worked out in Sec, 3 and the Appendix,

2, The DASHEN-FRAUTSCHI method

We consider the non-relativistic scattering of two spinless particles
2 e_"r

I

by a Yukawa potential -g . W& suppose that there is an S-wave

bound state with binding energy -s., and attempt to calculate the first-

-Ax/

B

. . ) . . 2
order change in s_ due to the perturbing Yukawa potential, -e'e T

B
which becomes a Coulomb potential when }\-—) o .
We use the N/D method and write the unvertubed s-wave scattering

amplitude as N/D:
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a(s) = .I\_ISEI’ (1)
D(s)
where
D(sB) = 0 (2)

the expression for the first order change in Sgy Wwas derived

earlier and is

1
1 __(__L____L_)_ _das”
tﬁsB - - 1 . D(s>)°Inda(s as . (3)
R(D"(sg)) - sp) T

where R is the residue of the pole in a(s) at s = Sg» and
ImAa(sl) is the first order change in Im a due to the perturbation
interaction; the integration is over the region of the real axis
wvhere Imda differs fom zero.

Now, Eq.(3) is an exact expression for the first order mass
shift and as such must be finite for any value of;% y 1.e, it is

g§qual to the more usual expression
2 2 - Ar
-e_ e
Iy =T
r (4)

where{f is the bound state wave function. However, in applications
of (3) it is usually necessary to make approximations; in particular,
in general one will not have an eact solution for the unperturbed
problems so D(s) will not be known exactly, and, more seriously,

it is usually necessary to approximate Impa. In fact Imda has

(a) (b)




(c) (d)

Fig 1. showing some of the diagrams which contribute to ImAa(s).
The dashed line represents the unperturbed interaction and the
wavy line the perturbation. The previous calculations have just
included (a); here we include also (b) and (c).

Fig. la gives a LH cut starting at s = -~ %1‘2' figs. 1b and 1lc

give a cut starting at s = - %(A +,U)2, other cuts start at

‘%(/\1- a,q)a, ete. Since it has not been found possible in general
to sum all diagrams of the form of fig. l. it is necessary to make
some approximation, and it is clearly necessary that such an
approximation conserves the property that (3) is finite aS/\ ~>0.
However, Dashen's original calculation(l) ignored all diagrams
other than fig la which contribute e21t/25 to Imaa(s) in the region

So<s < -%)\2, and hence leads to a contribution to dsy given by

e p2(0)

= 5 logA +0(1).  (5)
R(D (sB)) S

ASB(a) -
B

Since, in general D(0) F O, we see that this is infrared
divergence ( )\ —> 0) and the approximation of taking only fig. la
fails badly for long range forées.

We therefore try including in addition the contribution of the
bax diagrams, figs. 1lb and lc. Our hope that this might lead to
a significant improvement is strngthened by the work of Lumming/5/
and of Collins and Uohnson/6/, who found that the use of just

single-particle exchange diagrams for left hand cuts is always a

bad approximation when there is an s-wave bound state, but that
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inclusion of the box diagrams gives a good result for a wide range
of interactions., This hope is confirmed by the results we present
below.

3. INCLUSION OF BOX DIAGRAMS

The method of calculating the contribution of the
diagrams was first given by Mandelstam/7/ and we give the
details elsewhere. It is worth noting however that the infrared
devergence now arises already in Imaa and not from the integration
over ImAa in Eq.(3). In fact the divergent part of Imda is given by

2.2
maa®r¢) . =B qiog \ 4 6(1), -%<s<-%_p2 . (6)

- 45;{:5

When we put this into (3) and integrate, the loguA term partially
cancels with that given in Eq.(5). Of course, we cannot in general
expect that there will be complete cancellation since we have still
not kept all terms of the left hand cut. However, the coefficient
of log)\ will certainly be smaller, see below, so the result will
not be so sensitive on the cut off,

Alternatively we suggest that one could use the knowledge that
the coefficient of the 1og4\ term should be zero to remove some of
the other uncertainties. There are two possible approaches here:

i) Since our left hadd cut (including figs. la, 1lb, and lc)
is correct down to 5 = -/MF(for A = 0) we could multiply its
contribution by a factor which is essentially unity for —IAZ s <O
but which permits some deviation for s ('-7F. This deviation,
containing some free parameter, would account for the effect of
higher order terms (in ga) in ImAa. The free parameter caduld

be determined by the requirement that the coefficient of log,k in
sg be zero, and with this value of the parameter we could

evaluate the finite contribution uniquely. Here we use the factor



2
f(c ,S) - Q_i' CLe-Z'S/}‘
..s/,A

) (7)
c 4 e
where ¢ is the free parameter chosen to make the coefficient of
1og}\equal to zero.
ii) In practice, in the relativistic case, D(s) is not known

exactly, and indeed a linear approximation,

D(s) = const 5 = Sp

) (8)

has been used in some applications of the Dashen-Frautshhi method.

With this form for D(s) we can regard By as the free parameter to
be determined by the requirement that the log /\ term vanishes,

The most important aspect of the investigation is to obtain the
D function,

L. RESULTS AND CONCLUSIONS

These are summarised in table 1, where we have used
units such that/4 = 1l. We see from this table that, with the exact
D function, the inclusion of the box diagrams reduces the
coefficient of the 108‘A term by more than 50%. When we modify the
left hand cut by the factor f(c,s) then the values of the mass shift
agree to within §% with the exact values. This agreement is remarkable
when we note that the values of ¢ required to cancel the 1og;k term
vary considerably with Sge The use of the second method, involving
the approximaté..B function is not so accurate but the gualitative
agreement is good (particularly when we remember that even the

sign of the result is in dispute in methods where only fig. la is

included (see ref. (3,4)).
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TABLE 1
P Coeffieient of Corrected Method II  Method 1
g -5 log A\ Coefficient Exact
B (arbitrary units) 5o AsB c AﬁB Asy
2.34 0,09 11.10 4.70 0.45 0.5 0.4 0.75 0.73
2,76 0.25 4,00 1.75 1.10 0.76 1.30 1.04 1.0l
3.00 0.39 2.56 1.16 1.8 0.92 3.00 1.19 1.17
3,30 0.56 1.78 0.82 3,0 1,09 4,50 1.34 1.33
3.82 1.0 1.00 0.47 10.4 l.42 6.22 1.69 1l.64
We conclude therefore that this is a reasonable way to remove
the infrared divergence from this type of calculation. Calculations

using the method in the framework of a reasonable model of the

nucleon are presented.
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APPENDIX TO CHAPTER SIX-

In the present section we derive the input for the diagrams
p p

shovn in Figs. la - lc of the text. However, before doing that

a few general remnarks on the relationship between the MANDELSTAM

representation.

1. MANDELSTAM REPRESLNTATION IN POTENT iAl, SCATTERING,

In 1958 MAMDELSTAM suggested for a relativistic
scattering amplitude a double dispersion relation,
Vhile even now this conjecture has not been proved it
started a new line of approach vhich proved fruitful. An
immediate consequence was the rush to prove the conjecture in simpler
models like the potential scattering.,
In Khuwi's form of dispersion relations the MR for

Yukavian potential scattering reads

o 1,1
7(E,t) = £,() 43 &l®) 4 1 Inf(E &) gpl
n E - En w E - F
0
V(K) = —d
M X
Then O

£ (t)

{__Jﬂ)__ »
AR

M
It is known that if the potential is Yukawian f(E,t) is
analytic in the t - plane with the cut -oB< t £ - MZ . Let B

real). 0 and let us define (Imf)(E,t) as the amalytic continuation

of Im f(E,t), that is,

(Imf)(E,t) = 1 | f(E,t) - [f(E,E")f
24,



Clearly Imf(E,t) is not an analytic function of E,t; however
(Imf)(E,t) has at least the same analyticity domain as f(E,t).
Furthermore, since (Imfo)(E,t) = O as a consequence of the

analytic properties of the perturbation terms we have
Oa
. 1
(Imf)(E,t) - / ﬁlL—t—)— at*
m 4M2 t™ ¢t

where(o(E,t) will, in general, be a distribution. The contribution
to the integral MZ'S_tl ('QMa'vanishes because the first Born
approximation is real. Putting Imf into the first eguation, and
neglecting bound state contributions and interchanging the order

of integration we have
o

1 1| £ ey aEt
) 2 de 1 1
M-t T (B - E) (t7 - t)
M M2 o

(1)

If bound states are present, subtractions are needed in (1)

Ve owe to MANDELSTAM the idea of combining UNITARITY with the

above representation in the relativistic context to obtain thep's,

The unitari%% property of the scattering amplitude is expressed as

I-= 4N z 2L + 1) ' aLr Px’(cos Q) = f:ﬂ]:m f(cos 91)
L= o

with o

Yl

£(t) = Q:ZO (284 1) aLPL(cos @) and

e
= < and §L

eaidl(k)

In order to determinelfin potential theory directly BLANKENBELLER/1/
et. al now introduce the representation in Eq. (1) into the

unitarity equation above
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AW g f(E,t) = [f(E,tl) £ (E,t,) dqu
k

where E is the energy, t the momentum transfer according to

o — 2 2
t, = (ki - q)° = 2k (1 - Cos 61)
D=
t,z (kp - @)° = 2k°(1 - Cos 8,)

The integral in question &s of type oo
2
I dfa

= > - :
(a -Tg. TV, V';) H(jp)

P, - 1B +j{(A2 - 1) (8% - 1)}

Using Eq.(2) we find

oo o
[’(E,t) = ja’(,ul)d},l /‘ﬂl@) K(E,t,luf,/ug,) d/"a

Qo
(E 18q)
M

o}
ty ) K(B,t; t,, t,) |
dEl dE, ID AL L' 2 (3
(B, - E - ig) (E, -E - ig)
with é t. € ‘T,lt i
K(E,t5t2% ) - 10 ® Bt' Bl -a; : - HWE *‘*E(tl‘tz“‘tltﬂi
2 .

{E [t - (5 +ﬁ2)2] [t-(ﬁ-l-ft-.a)a]- Ltlt.% 3 |

The solution of Eq.(3) is simple although it looks very complicated.
Notice that
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T t

t. t _{t t 1
1t t2 + 12 + 12 {:lGE2 + hE(tl + tz) + tlt2 2
2E 2E

is the largest root of the second degree equation

S Y A5 | KXY i A IR )

If t> T we have D20, and

[t -ty *@)2] [— (ﬁ;-{t—z)aj > 0

Since t>T>t1 + t, the second factor is positive and so is the

2

first. Hence K(E t; t tz) vanishes unless

1l
2
> ({F ¢ {t
The second Born approximation therefore vanishes unless
t>L|,M‘2 and if L|M2( t (\:?MZ it coincides with f(E,t) because the
other terms in Eq.(3) vanish. Take now 9M2< t \'16M2. In the

right hand side offi Bq. (3) we have either
EJ-M \'E+/AV{E(L,M orﬁ. +(:2<‘11M.

In the first case the integration over tl runs over the range

ty < 9M2 where ‘D(E,tl) is known exactly, and in the second there

is no contribution because r(E,t ) = f(E,ta) = O unless

ﬁl 2.2y, J-:a > oM  which contradicts I-t'l +F2 < 4M.

We can therefore compute !P(_E,t) up to t € 7_1.61_*'!2e Proceeding
in this way it is possible to show recursively that f)(E,t) in

n°n2 < t< (n ¢ 1)2 MZ can be computed by straight forward

X 2 al 2
integration from the value of/o(E,t) in (n-1)M < th” M., We

can therefore computef(E,t) in a finite (though increasing with t)

number of steps up to any value of t. At each point E, t,F(E,t)



B

will be exactly given by a polynomial in the coupling constant, the
degree of the polynomial increasing with t,

The fact that we may compute p (E,t) exactly in any point does
not warrant that conclusion that we also know the scattering
amplitude exactly at any point in a finite number of steps because
in order to obtain f(E,t) we need to know simultaneously for all
t the value of(’(E,t), and this still takes an infinite number of
iterations. However, it appears reasonable that a convenient

approximation can be reached by pushing the number of iterations

high enough since the higher iterations will#contribute to points
which are far away in the t -~ plane. Once f(E,t() is known one
may compute the left-hand cut needed in the N/D method. We remark
that E is the Energy and this is relabelled Jg'in next section.

For relativistic purposes S = Wa = E2 is the nétation.

2. BORN AND BOX DIAGRAM INPUT

We now proceed to derive the input,
The kinematics is that of scalar particles, equal masses in
final state, unequal masses for the intermediate particle§.
Since our real object is to treat n-p mass difference, which

incidentally differs little from the potential theory calculation,

the 1§ exchange graph contributes a pole in the t - channel, the
bax graph may be said to simulate a two particle exchange depending
on which channel we look at, although for tde potential theory

caleuwt=bkg this is unimportant. The Bornm contribution, as is

known, is a pole in the channel in question,

2
By(s,t) = -~ 2— represents the contribution from Fig. la of

t -A2

the text. Partial wave projection yields for
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2

mdr = &I for 00 ¢s ¢ -A2
28 R
2. i) BOX DIAGRAM

, In our case since we have only a Yukawa
potential, and for the box diagram the double spectral function is
just P (er ¥ = K(s,t; 4, A°) where A is the fictitious
photon mass; M is the mass of the other intermediate particle,

One simple integrates t to get the contribution to the amplitude
dﬂT in the dispersion integral for the mass shift.

Writing

ez T att
) £ttty 5 s[tl_(ﬂ“a] Xkl-yr/\)‘?]'-[tlpz/\‘a] 3

As stated above the integral is to be taken over region of

positive real axis where the denominator D is real. D is real

when

s[tl -(/uf,\)z] [él -19/4‘-/\i2] -t1/4,42)\2 N O

i.e. vhen

o fpoew #2178 #n o]

25 us2

since the roots of D are given by
2 2

oo p? N At M [(4S4_,uz)(z+s +,\2):{ 3
28 S

= A # B (say)

Hence
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n 7 att 1 i
G =3 - - T I
2 0 - Vs [t5 - (A+ B)12 [¢5 - (& - BYJR
Putting tl -t = x, and doing a little algebra we get

- X dx

((x - (& - )% - B)®

il
.
-
— 8

A+B-t

Finally, after some more algebra, we obtain

x ] . fNa-B-% - A—B-tS

[o N

G(S;t) = + = -~ -1-: — —du T T Tt e e—— T
Ne [(a - o) - £12 Na-p-% -~Na-B-¢
with
L BN
= 4 )\d =
A ul + 25

N & A _—
B= -5 ([48+ £,][43 + N7])2
vhere
ty = |-12.
Te object is ©o obtain teris proportional ot 1oz A as well as those
not containing iog A, Terms with AN or powers of AN vanish when we take
the limit A = O,

one uway write approximately

B = %E [s(4S + u)]% - AF(S,u) (=ay)

Remenbering that A is esmall,

Wow simplifying
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log( fA{-B- t fJ A~-B-t ]after some algebra

we get in the limit A-—-—) 0

= log ia (/ua-t)g

Similarly for the term

1og[_/.A +4B-t¢ -Im] n— log (,‘a—t) + logb%s%‘f‘l

A—=0

the term proportion to log/\is thus

I log A
2(5_ (t -/ua)

without taking the limit A~ 0

one can easily show that

log [JA +B-t + ‘/A -B =t -Jcan be reduced, after some

algebra to the form

Log[(,ua-tj +,\2 +A‘."2L:- t )\y [48 fﬂz]% [us +AZJ %‘]

N N R .Y ) E : [_ :

¢ log it 1 + 125 |28 ) J
] 3

R

Consider a term like

log [/,42 -t +,\B(S,/uz,/\2) + \°D(s,t)  as A—=o

Away from W f_)\v = O log W + V>\ is continuous in)\. If

om";m%
3 0SEPI97]

+ JEOrIg;.
{8R &~

18R
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Moty Olog[ﬂa-t-}/\B +/\2D]' —) log (t, - t).

The next term in an expansion in powers of/\ is

log  (F - t) Aa B(s,/f, 0)
/ﬁ -t

s § 2 {L 1+ [ ]
L ¥

It can be reduced to the form:

W - )2 & MAZ 4+ NAL

A log (1 %

o (t) - t) 4 GA  $HM®

~ ! 2> 4B 2 .

= log I : where B and C are functions of
A 4+ C

5,t andA _

# log £1+ —CA+ ss 0t

A

= log {14 -3 2 N, ---)(1-cz\)----f

A

; log 2. The next term is - Cgs,t,OL)\log >
2

Similar analysis applies to

log [JA{-B-t -JA-B-t ]
i
>

1 ) 2,7 1
= log Uﬂa- t)2 [1 + [#5_ ¢ L*SJ E*,\a (P
-t

Y

1
va® w9l3 4 )2 p(AZ s,,«‘%f
-t

1

=

) saIUZ)

(1.2 ad L
2 2s

t
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= log) —t— [ ASE [S(lhs +IM2) ]32: +A2(C - D)’J

()2 -t)2

M (LS ¢

(lua-w

log

rol=frole=

2
A 4 —/-\———-1 (¢ - D) }
'»/—; (,ua - t)2

1
log \ + log [ms_xm?ﬂ* L= DO.ssHA108A | 52y ..
[$ 2

iy
(u5-)2 pMss +40)
Finally one has
N . 2 l
¢ AL —L lloga(tl-t)-log(/’r‘(‘*s*”)z)
2(F (P - 02sp)2 W - 05

- log/\ $ oA ....

o : 2 '

COUID A Thog o - 6 - §rogLUSEED log,\J
2fs (,ua-t) - (,4,42 -t) 8

In the DF method we need the imaginary part of the box-graph contrib-

ution which we now calculate.

Thus, for the box-graph we have, up to order eaga

e : "_ga G(s,t;,ya,/\z) = Im f(s,t)

Tr2

ASA'_AO the leading term was obtained to be

e LZ—E—_"." - Trg'a —t los/\ = ﬁé—' . 2108/\
Me  2ys (b = 4% 2[5 v -p

The real part is obtained via Cauchy integral
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7 1
G g(s,t) = %_ Imf(t‘s ) dsl
S - 8
0
2.2 2 2
- _e-s-— logA - l = —e—L- l log A
2(t -/,2) sl (sl-s) 2t -2 (5

0

Partial wave projection gives

2.2 2
8o(5,t) = 2B 10g )\ 1log I: —L—]
q-s{-s

The cut runs from -%<s " -ﬁ
L

We now recall our prescription for cancellation of I,R.D. contribut-
ions: the coefficient of log)\ from first and higher orders is
made to vanish with proper choice of the fudge factor.

It can be pictorially described as follows:
_)\2 -/,12

fi # —{’\l‘ f g ¢ higher order terms | x

-5 -Do

FUEFE factor
£f(c,s) = 0. Here c is the parameter.

Far the preseht case we have infrared contributions coming from

—
-

- /A2 1
-0 s £ AL*_ e 32 1Y% exchange
28
'ﬂE 2 2 2,
-% < s < i | e T "-—ea}gox + lX exchange
4s J -8 2s

Having determined f£(C,S) from above prescription one simply computes
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the mass shift integral but now, with the inclusion of fudge factor,

£(c,s)
A

L

2, 1y .1
In [Tl D2(s) d8’ 4, g
8 =8

-%
After some algebra it is easy to obtain the contribution to Imeﬁ‘.

For the finite contribution one has

28 Ls 2{-s =45

% T o2 _ e g2 h 105[—(-2-'1'5 $4) M2

2 2
. 38 € 2
8s '(-s toe '48 +/M'

The contribution proportional to log/\ is given as
i) 2.2 -
- e-D"(0) log /\
Sp
coming from the integration of 1X exchange mass shift expression;

1i) There is the contribution from the box graph whose integral

itself contains 1og/\ contribution of the form

2 2
— A 10g A

45 (=8

3. D - FUNCTION

. ;
Our D-function was chosen in Omnes form

% 1
(s - sp) exp -8 = 5 ast 'ffo(’s ) .
113 (sl - so)(sl - 8 - 1¢)
0

D(s)

2

with s = k, with square of:jrmomentum
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This is the choice used also by SHAW and WONG/l/, and we use

exactly the same form for later n-p mass difference calculation.

The phase shift C(;(El) was obtained by solving the Schrodinger

equation with a Wukawa potential input, the coupling constant ga

being the parameter giving bound states for various values of ga

(l.: 0 for our case)

a2 Q( gge 1) 2 =M
£ T [:" + + EL—ji—-:E Aa&(r) = O
r

\ d

where u(r)satisfies the boundary condition

r,L-l

r
~~

up r<30 and k is the momentum
Our phase shifts agreed correctly with those of LUMING /2/. Our
computer program is able to obtain phase shifts for anyJL, any energy .

Following SHAW and WONG, and from lLevinson's tBeorem we normalize

the phase shifts by

J;) (s) > -‘n'

5 —\ Go
o = o

In actual fact J\(s)-;.0 but the normalization of SHAY and WONG is
S w=tn QO ’

the correct one for us, since we have no CDD poles in our calculation,

and also inelastic channels are absent.

Concerning phase shifts and redidue of the bound state pfle

we used the method of BURGESS/3/, which is perhaps the most
sophisticated available for the determination of the wave function
and thebhase shifts, NUMEROV's method af solving differential

|

equations is used throughout,

DF - results were compared with the first order perturbation
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theory results obtained from

A‘SB = ﬁ)(! cﬁrr-l—' av

Here thel's was obtained from hose tablilated by HULTHEN and
LAURIKAINEN/Y4/, The numerical solution is accurate to ggg.for a

three parameter fit to the expression (i.e. n = 3)

- 1 n
B = @-e Eexp [- (-8) 2 r-] X Z hve'vr .
ve O

for AU Aeodn o Bueges' welhod  we  vefe B Moo
Lol b ey B undeaded T

6w\'06iva, \(m.\om ‘%“'M wh
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PART _THREE

CHAPTER SEVEN

1. INTRODUCTION

Within the past few years there has been much theoretical
interest 1n electromagnetic mass\jafference within baryon isospin
multiplets. Part of this interest stems from the fact that theories
of strong;mnferaction symmetries can be used to relate the mass
splittings in one isospin multiplet to those in ébher isospin
multiplets(l). The subject of electromagnetic mass differences can
thus be looked upon as forming a testing ground for conjectures
about the strong interactions and strong interaction symmetries.

An interesting conjecture about the strong interactions is the
hypothesis that all strongly interacting particles are compoéite(a).
From this point of view, one looks at 2lectromagnetic mass diifferences
of particles in an isospin multiplet as arising from a difference
in their binding energies due to the electromagnetic interaction,

Within the past years, an "S matrix perturbation theory" hass

(3)

been developed by Dashen and Frautschi and has been used by

(3)

Dashen to calculate the neutron proton mass difference. 1In

Dashen's calculation, the nucleon is viewed as a composite particle

(4)

appearing in the TTN scattering amplitude In the absence of
electromagnetic interactions it is assumed that the proton and

<+
neutron have the same mass, M, and result in a pole in the JP =\%),

Iz 1, I, = ¢+ % and Iz = = % ‘WN scattering amplitudes
2

respectively. The neutron proton mass difference is viewed as

arising becaﬁse of a difference of binding forces in the


file:///iJ3f
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I, = + % and I = - % channels when the electromagnetic interaction

is turned on, The proton neutron mass difference is then calculated

from an eipression of the form

M. - M = 1 f——-L—U—I’“ D wl-ldw’* 91- (L)
13 n aD 2
R(EW (M)) cuts

where R is the residue at the nucleon pole, D(W) is the denominator

+

P 1
= (3 |

amplitude, and T is the difference between the I7N partial wave

function for the J ’ I = % partial wave scattering
scattering amplitudes in the proton and neutron channels.

Historically, the first calcaulation of ajmass difference
between memers of a baryon isospin multiplet was the calculation
by Feynman and Speisman of the neutron-pro»on mass dlfference(5)
Using the Dirac equation with a Pauli anomalous moment term to
represent the nucleon, they calculated the contribution to the
nucleon self-energy of the perturbation theory "bubble" diagram
shown in Figure l. Since they did not know the high energy
behaviour of the propagators or vertex functions, they used cut off
functions for the photon propagator and for the anomalous mogent
which could be regarded as charge and magnetic moment form factors.
For cut offj§energies of the order of several nucleon masses Feynman
and Speisman found that they ould obtain the correct experimental
mass difference of Mp - Mn o~ -~ 1.3MeV,

A similar analysis of the neutron proton mass difference was
made by Huang(6) who calculated the self-energy diagram shown in
Figure 1 in perturbation theory without form factors, but with a
momentum space cut off. He found that for a spin % fermion of
mass M, charge e, and Pauli anomalous moment in units of e/2M, the

self-energy is
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1 1
dM, = y X 3Mlog [v + (14 v2>2]+ -3 M[v2 - V(L ¢ va)a] (2)
ZTT 21r
- 1 1
- i(?}/ua #3p) S M (VL4 VA)Z - log [v + (L4 va)E])j
am .

Where V = k/M is the cut off momentum., The first term is the usual

expression for the electromagnetic self energy of & Dirac particle
in second order perturbation theory and diverges logarithmically
with the cut off momentum. Taken alone this term is positive and
would make the proton heavier than the neutron. However, the terms
linear and quadratic in the anomalous moment diverges dquadratically
with the cut off momentum and, using exXperimental values for the
neutron and proton anomalous moments, tend to make the neutron
heavier than the proton, So for a sufficiently high value of the
cut off momentum the contribution from the anomalous moment terms
will dominate that from the charge terms and one can obtain the
experimental mass difference. In fact, for a value of the ait off
momentum of V - 1.12 (corresponding to an energy of
(Vv J 13 72) Mc2 = 2.72 Mca) one can reproduce the observed
proton neutron mass difference(6).

A different method of calculating the electromagnetic self-
energy of strongly interacting particles was proposed in 1957 by

(7) (8)

Wick and Sorensen and by Goldberger . To second order in e
their expression for the nucleon electromagnetic self-energy can

be written

pe - 1
U(p)U(p)JMem = =3 | % x aly Df(y-X) -\‘T(j'[,\(y),jlu(X)I‘ 1

- (ol T\ j.M(y), J"A(x)\ 0 )} (3)
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Where DF(y-x) is the Feynman photon propagator, T(qp‘y),gp(x)) is
the time ordered product of the Heisenberg electromagnetic current
operators, and “37 and lo)are the physical one nucleon and vacuum
states pBespectively.

One might now consider inserting a sum %-lﬁ?<k' over a
complete set of ingoing physical states between the Heisenberg
current operators in Eq.(3) and then trying to evaluate (3) keeping
only the lowest mass intermediate states. Sunakawa and Tanaka(g)
have shown that keeping just the one nucleon and one nucleen plus
nucleon antinucleon pair states leads directly to the perturbation
theory expression of Feynmaniand Speismandwith charge and moment
form factors at the nucleon phédnn vertices., Using one parameter
fits to the nucleon form factors obtained from electron scattering
experiments, Sunakawa and Tanaka obtained for te neutron proton
mass difference a number roughly half of the experimental
magnitude, but of the wrong sign(9).

The expression given by Feynman and Speisman has since been
recalculated several times by various other aubhhmsxlo). If form
factors are used which(l) agree with the low momentum transfer data
for the nucleon form factors and (2) tend to zero as the momentum
transfer goes to infinity, i.e., no hard core, then the calculations
give results of the wrong sign for the neutron proton mass
difference. To obtain agreement with experiment using the Feynman
Speisman formula alone one must introduce a hard core and then a
cut off ﬁomentum of several BeV/c so that the contribution
from the anomalous moment terms dominates that from the charge
terms(11), However, if important contributions to the Feynman

Speisman expression for the slef energy come from the high energy

region of integration, then one is beggin the question of whether

other intermediate states make an important contribution to Eq.(3)
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at such high energies. In fact, as pointed out by Wick(7) and also

more recently by Cottingham(la)

there is abinitio no reason to
believe that other intermediate states, such as pion plus nucleon,
are not important. These "inelastic' contributions to Eq.(3) can
be related to quantities obtainable from inelastic electron nucleon

(12)

scattering experiments , but as yet there is not enough’ data

to draw any conclusions,

(13)

Coleman and Schnitzer have taken an alternative viewpoint
in calculating baryon electromagnetic mass differences. They
calculate the contribution of Figure 1 of Chapter 8 to the

self energies using form factors without hard cores and neglect
contributions to Eq.(3) from higher mass states, but they assume

the existence of '"scalar meson tadpole diagrams" which add a
constant to the unphysical photon nucleon scattering amplitude
involved in Eq.(3), but do not contribute to the absopptive part
of that amplitude(a). In their actual calculation the '"tadpole!
contribution to the baryon mass differences overshadows that from
Figure 1. The resulting mass differences (often &6 opposite

sign to the contribution from Figure 1) are in rather good
agreement with experiment, whereas the contribution of Figure 1
alone is in uniformly poor agreement with experiment(IB).

When one considers the previous methods of calculation of
electromagnetic mass differences, a number of questions about
Dashen's calculation arise: What is the relation of the S-—matrix
perturbation theory of Dashen and Frautschi to other perturbation
methods? In particular, is the contribution to the self energy
calculated by Feynman and Speisman contained in Dashen's
calculation? Can the method of calculation of Dashen also explain
other baryon electromagnetic mass differences?

In Chepten-8 we shall investigate the question of how older
calculations of the baryon electromagnetic self energy are

contained in a Dashen-Frautschi type calculation. In particular,
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ve shall see that the perturbation theory result of Huang(s) is
contained in a calculation to lowest order in the £rong and
electromagnetic interactions of the contribution of the photon
nucleon inelastic state to the right hand cut of the dispersion
relation of Dashen for the neutron proton mass difference. We then
go on to consider the general contribution of the phéton baryon
inelastic state to a Dashen-Frautschi calculation of baryon
electromagnetic mass differences. We find, that the net contribution
of the phéton baryon inelastic state to the dispersion integral of
Dashen and Frautschi for the mass difference is the same as in a
dispersion theoretic calculation of the "bubble!' diagram using the
full (strongly menormalized)photon baryon proper vertex function.
We conclude with a brief mention of the latest work on the

(12)

50 called Cottingham formula for calculating mass differences

among isospin multiplets. The work in question is by Harari and

(14)

Elitsur According to Cottingham, to the lowest order in the
electromagnetic interactions and to all orders in the strong
interéction, the electromagnetic self energy of a hadron can be
expressed as &n integral over the amplitude of forward Compton

scattering of virtual photons on the same hadron (see fig.2.)

RN
. / L
AMy m. = = 5 da A SHVM/N (d,v) (4)
2m g ¢+ 1 '
- %

where p and q are the hadron and photon momenta respectively; M is
the hadron mass and v = —Bﬁg_is the phton energy &n the lab. system.
Now Harari and Elitsur transform Eq.(4) into an expression
involving integration over space like phésan momenta only.
This is accomplished by rotating the integration contour in the

complex § - plane.
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‘AMe m is then expressed in terms of the absorptive parts of

the Compton amplitudes and the subtraction functions entering into
the calculations., The subtraction function can be expressed in
terms of the contributions of the t channel Regge poles (and,
possible fixed poles). Tﬁe Regge pole contributions, in principle,
can be calculated from the low energy inelastic data by the use of

EESR. Harari and Elitsur then conclude that, if the above procedure

is valid, '"the electromagnétic mass difference can be expressed
only in terms of low lying electren scattering data:" A calculation
of the neutron proton mass difference was carried out by expfessing
the subtraction function for the AI = 1 mass differences in terms

of the A2 residue function. The conclusion was that the contribution

of the Ap trajectory, as computed from FESR, cannot explain the

observed n-p mass difference.
We reported on the above calculation in detail since this

calculation with the many others cited earlier in the text all
testify to the lack of success in calculating the observed n-p mass
difference,

Only Dashen elAims: to have successfully solved this problem.
In the present work we shall attempt to shew that the DF method is,
by itself, just as good as the Cottingham formula., The troubles
arise only when one attempts to make use of them in practice to
obtain answers to physically relevahb problems. The principle
difficulty in all the approaches thus far adopted is the same: lack
of success in fully presenting the strong interaction part of the
problem. The DF method assumes this to be given.

We Bhall see in the following how a direct application of the

DF method yields the wrong answer for the n-p mass difference.

Clearly the problem is a multichannel one.
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CHAPTER EIGHT

RELATION OF DF METHOD TO PERTURBATION CALCULATIONS IN FIELD THEORY,

DASHEN'S NEGLECT OF INELASTIC INTERMEDIATE NX - STATE FOUND

UNJUSTIFIABLE,

Here we investigate the connection between the old field
theoretic self energy calculations and \ildspersion theoretic
perturbation theory of Dashen and Frautschi. 1I{ emerges that the
inelastic contribution from NJX intermediate state is many times that
taken by Dashen, thus invalidating his 'successful' calculation of
neutron pweton mass difference. Other aspect weakening Dashen's
result, the choice of the D function is only touched on partially.

A fuller discussion is given elsewhere. .

We try to discover in what senge calculations of the baryon

1.2.
electromagnetic self energy which invole the "bubible" diagram

are contained in a Dashen Frautschi type calculation. For this
purpose, let us imagine temporarily a world with only neutral
pseudoscalar mesons of mass m ("pions") coupled to charged spin
% baryons. of mass M ('"nucleons"). We assume the baryons are
coupled to the electromagnetic field with a coupling constant e.

With an eye to using the Dashen Frautschi method, we consider
pseudoscalr meson-baryon scattering (see Figure 2). Let Q = (ql, iwl)
and P, = (pl, iEl) = (-ql' iEl) be the initial four momenta of the
meson and baryon in the centre of mass system, and let 9, = (q2, iwa)
and p, = (Pa’ iEa) = (-qa, iEZ) be the final meson and baryon

four momenta respectively. Then

P, t 9 = Py + a (L)

by conservation of four momentum. We define the convential variables




) (2)

and u -(py - @))% with s $ t ¢ u = 2(M° 4 m°)

If W= E, ¢ W, = B, +W, = the total centre of mass energy,
q = l;fl = |ay|andz = § . G, then

5 = WZ,

t = - 2¢°1 - 2).

® = [l- gy 21;2 W - )3 (3)

We define the usual invariants A(s,t,u) and B(s,t,u) of pseudoscalar
meson=-baryon scattering in terms of the S matrix element for

scattering from an initial state i to a final state f by

J}i + (21‘T)LP i dﬂ(p2 +q,-Py - Q)

2 - 4, ¥ q '
- M U (p,)]A - 1Y . 2—23p U(pq)
LW. W_E.E 2

1727172
(4)

n
1

fi

In the following we will be workipg with the pattial wave
amplitudes for meson-baryon scattering. As is usual in doing
calculations involving such partial wave amplitudes we shall for
convenience work in the complex W plane rather than the complex s
plane. We refer the reader to the standard literature on the
definitions and analyticity properties of the partial wave amplitudesb’4

To avoid difficulties with kinematic singularities we shall

work with the £ = 1, J =4 - % partial wave amplitude

defined by >4
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. 2
To(w) - 0 LW _W_ . (y

2 2 1=

(W =M)T=m )

vhere f; (W) is the usual partial wave ampkitude which satisfies

elastic unitarity fn the form

< 2

‘ (I) . (I) ! l
A - - - - - -m
L. $ (W<~ m) Bt (E- m) ‘AZt ' (W - m) B!+‘ (6)

sz + Ma - M?)
2W

with E

Tl-(W) defined as above has a pole at W = M( the 'nucleon pole")
with residue equafl to -ga. We assume the pole is a bound state
due to the vanishing of the D function at W = M,

In the W plane, the expression for the change in mass of the
baryon due to electromagnetic interactions given by Dashen and

Frautschi now takes the form5’6.

> 5 2
oo 1 1 |G o) Mo
=D ((§Honé T WM E e
M.
t L fad Im.(DZJ"rl_: (ut)
v W~ M
LHC

Wherelf&l-(w) is the change in the meson-baryon scattering amplitude
due to the presence of the electromagnetic interaction. Here the
integral from M toO0 receives contributions from diagrams containing
s channel discontinuties with inelastic intermediate states such as
the photon baryon state. We are not interested at the moment in

contributions to SM due to extermal mass shifts whichualso contribute
to this integral. TFrom Eq. (17) we find that on the right hand cut

we have simply
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In D° Jml_ - \D\a 7; P, \cﬁi\z (8)

where we resall from Eq. (1l4) that '% fa ‘J&ila is just the contribu-~
tion to the absorptive part on the right hand cut of the partial
wave amplitude due to new inelastic states. The sum in Eq.(8) is
over new inelastic states,Jaﬁ.is a partial wave amplitude for the
proxess: meson + baryon (inelastic states)i, and FE is a phase
space factor for the itthe inelastic state. The integral over the
left hand cut, which I the W plane includes cuts on the real axis
from--M to +M, along the imaginary axis, and a circular cut about
the originB'u, receives contributions from diagrams with t and u
channel discontinuities,
Before proceeding, ket us also review our assumptions on D
from Pt.1l, Chapter two: (1) D(M) = O; (2) D(W) =Dconst.
as W= 0 ; (3) D(W) has the right hand cut” of T, _(W) and is
otherwise analytic in the W plane. .
Now that we have taken care of the preliminary definitions
and kinematics let us consider the contribution ®o Im(D%{%l_) of

the photon-baryon inelastic intermediate state. We start by consider-
ing the amplitude Jbl_(W) which comes from all Feynman diagrams
which contain a photon- baryon intermediate state in the s channel,
and which are second order in e and lowest order in g (also second
order). These diagrams are shown in Figure La-d (remember that our
"pions" are neutral and have no electromagnetic interactions).
Now recall that to obtain Eq.(7) we simply wrote an

unsubtracted dispersion relation for the quantity (D2 Tl-)(W).

Since D2 has a double zero at W = M, only contributions to J&l-

which have a double pole at W = M, give a non-zero contribution fo

Jﬁ. However, an inspection of Figs. La-d leads to the conclusion

that only Fig. 4a will give a contribution to Tl_(w) which has a
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double pole at W = M, while Figs. 4b,c, and d give contributions

to J&l- which have either a single pole or no pole at all at W = M.
Thus we see that only Fig.4a will give a non zero contribution to
the electromagnetic mass shift when we evaluate the dispersion
integral in Eq.(7) with J&l-(w) from Figs. La-d.

However, if we want to amlculate the contribution éf the imaginary
parts of the scattering amplitudes corresponding to EBigures La - d
to the dispersion relation, we must be somewhat careful because
the amplitude corresponding to Figure 4d has a t channel cut
(from a baryon-antibaryon intermediate state which gives cuts along
the imaginary axis in the W plane) which cannot be neglected. If
one took only the contributions to the s channel photon-baryon cut
from Figure 4d, then the result of evaluating the dispersion relation
with the contributions from Figures 4b, ¢, and d would not be zero.
It is only when all the singularities are taken together that these

N
contributions cancel.
To actually compute the absorptive part of the scattering

amplitude corresponding to Figures 4a - d is a straightforward but
somewhat laborious exercise in the use of the Feynman and Cutkosky
rules, We find for the absorptive part of the invariant amplitudes

(7)

A and B due to the photon-baryon intermediate state in the s channel

LA (wa t uﬂ - eagzk MKWZ - MZ) (3W2 - Ma) §MJ
9 - 1
2" g w2 (w2 - u2)2
t{u (W 4 M2 ) - 2M (& - D) |o, - 2N M(ME - ) J—7
Lw2 ! 2" A% 3
(9)
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[;?(wa N e S el Vel 8 S
STrw ) wi(w? - M3)° ﬁg - M2

2 2 2 2
¢op =B g L (e n? - d) LM 3,
W- - M W
(10)
where Jl, J2 and J3 are integrals defined by
1 d (Zﬁ 1 2Ek + 2kq
J = —= . )= == log
BE,k - 2k.q T | ¥ kkq 2E.k - 2kq
(11)
1
3, = dy
4E12k2 - 1k2q® - K2t(1-y2)
0
1
- 2
J3 = L}.k)El f i,].' - y) ay__
o (B ZePuiPqPkPe(1-y 3 (4B, PR- ke 4uk®e®(1-y7))

The quantities s,t,u,W,,E,, and'a? are all defined above in Eq.(2)
-

and following. k is the csatre of mass momentum of the photon (on

the mass shell when we compute the absorptive part), and has the

2 2
magnitude k = !Lzﬁ&lL-.

The first terms on the right hand side of Eq.(9) and (10) come
from Fig ha and characteristically have a double pole at W = M. The
second and third terms on the right hand side of Eq.(10) come from
Figures 4b and 4c and have a single pole at W = M, as was expected.

As we have just seen, figure La will give the only non zero
contribution to Eq.(§) fordM. Let us therefore first consider its

contribution to the dispersion integral. Rewriting the first terms

on the right hand side of Eq.(9) and (10), we have
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2 W2 w2y rae? 2
= pE—y M(We - MSY(3W° - M
A% 5 4a A3 16wt
2
(B) - {%—T_al w2 - M2 (Wt - eM%We 4 MYy
b3, 4a w--M 167r W

(12)
We then compute, using the usual formalism for partial wave amplitudes

3,4,

for pion-nucleon scattering

2

(SE_, B (g w2 (W - MR 4P - svw)

( T (W) -
1-¢ Dysua = we-M? 16TTw’

(13)
Note that as W.» w0, (JT_l_(W) )83 — 0, as 1/W so that the
dispersion integral in Eq.(7) converges rapidly if, as assumed,,

D(W) ~> 1 as W—>%,
In order to see directly that the contribution to Jﬁ from Fig La

is related to the older calculations of[M involving Fig 1, let us
impose one more assumption on our imaginary world. We assume g is
"small" and work only to lowest order in g for meson-baryon scattering.
To second order in g, there are only two diagrams which contribute

to meson baryon scattering (see Fig. 3 ). Also, as noted before,

the diagrams in Figs La - d are the only diagrams which are second
order in g and in e. To this order in g, Tl_(W) has a left hand

cut coming from the partial wave projection of B-g. 3b and a

pole at W = M coming from Fig. 3a, but no right hand cut, Writing
Tl-(W) = N/D, we assign the left Band cut of Tl-(w) to N and the

pole of T to a zero of D. Therefore, to second order iﬂg we take

p(w) = (GRMy (y _ ) (14)
aw

The actual value of %%(M) is not of interest, since it will drop out

of the calculation in the end. The D(W) given in Eq.(1l4) does not

satisfy the condition that D(W) —» 1 as W~ 0p . We expect this
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behaviour only from the complete D(W) obtained by taking Qiagrams of
all orders in gz. Eq.(14) is to be regarded as simply the first term

in an expression of D inbowers of ga.

Substituting Eq.(13) for  (JT,-(W)) and Eq.(1l4) for

53,4a
D(¥W) in Eq.(7), we find

©
2 ©
du - ﬁzﬂfﬁ%l— w4 10 4 97 - ) (15)
(M
&

- .-§¥%- (v - M)(Wn?+ M2 ¢ W)

M
or
dn o ot (3w*2 - M2) (16)
- 3

M

The two integrals in Eq.(15) are linearly divergent, but their sum

diverges enly logarimically. If we introduce a cut off energy

w , we have

max
W 2
{M = oM (Blog —28X -% + u ) (17)
2 M 2w2ma.x

This is exactly the perturbation theory result for the bubble
(8) (9)

if we write W max_ - y 4 A;z # 1 where y is a momentum cut-off,
M

diagram without form factors given by Weisskopf and by Huang

Using Eq.(14) for D(W) to lowest érder in g, let us also
consider the contribution of the other terms in Eq.(9) and (10)
to the dispersion integral in Eq.(7). First consider the second
and third terms on the right hand side of Eg.(10), which come from
figs. 4b and 4¢ and have a single pole at W = M. We find for their

contribution to the absorptive part of the partial wave amp}itude,



2
(fr-0 )y = % ‘”—iw% (% - =?) 3 - 1) (18)

The integral of the dispersion integral in Eq.(7) then regeives a

contribution
2
Im(DYT, -(W)) 2
4 p IO @iyyy2 22
W-n WM WA W2
(2 - D)y, -1y )= (wowZ (- wa M)
L We-M WM )\
= 0
(19)

The terms in Eq.(105 with a single pole at W = M thus make no
contribution to the dispersion integral. The remaining terms in
Eq.(9) and Eq.(10) have no pole at W = M. Calculating their

contribution to (d,Tl-(W)) we find a complicated sum of products

B
of Legendre polynomials of f;e second kind which gives a non zero
contribution to the integral over the right hand cut. This is not
unexpected, for it is only when the contribution of Eig.4d to the
left hand cut is taken into account that we expect a cancellation
resulting in zero net contributicn to Jh.of the terms with no pole
at W = M, We shall ieave the direct verification of this
cancellation to a future calcaulation,

Now that we have a better feeling for what is going on, let us
remove some of the mstrictions on our imaginary world. First of all,
instead of neutral mesons we can consider isospin multiplet of
pseudoscalar mesona (e.g. pions) coupled to an isospin multiplet
of baryons {e.g. nucleons). In our lowest order calculation this
gives rise to the additional diagrams with s channel photon baryon
intermediate states shown in Figs. 4e - i, However, none of these

new diagrams gives a contribution tot!&l_(w) with a double pole at

L M, and therefore give no contribution tocrh. Again note that



-~ 128 -

Fig, 4i has a t channel cut which must be included in the dispersion
integral. The inclusion of meson and baryon isospin multiplets in
the calculation also results in the multiplication of the residue
at the ''nucleon" pole of Tl-(W) by some isospin factor. It is
however not difficult to verify that this isospin factor cancels
out of the contribution of Fig. 4a to Eq.(7) and thus leaves
Eq.(16) or (17) for M unchanged.

We could now also consider diagrams which are higher order in
g. In a calculation to fourth order in g and second order in e,

D(W) is no longer (QQ(M)QW - M) , but acquires a right hand cut.
aw

Also, in place of Figs. 4a - 1 we would have meson baryon scattering
diagrams in which both the meson baryon and photon baryon vertices
acquire mesonic corrections. Instead of doing such a calculation
it is just as simple to consider the general contribution of the
photon baryon intermediate state to the dispersion relaiion fori{h
to all orders in the strong interactions.

For definiteness let us consider pion nucleon scatteripg in
the {=1, J = L-%, I-= % partial wave, The partial wave
amplitude Tl-(W) then has a pole at W = M with residue -Bga (the
3 is an isospin factor). We then wish to: consider the contributions
to Eq.(¥7) from all graphs with a photon-nucleon intermediate state
in the s channel. dﬁﬁ—(W) will then be rgkated to the Ysquare!" of a
photoproduction amplitude (integrated over the photon nucleon
intermediate state).

Such a photoproduction amplitude can in general be split into
a sum of a one nucleon reducible part and a one nucleon irreducible

10,11

part in a unique way . The one nucleon reducible part has

a pole at W = M and is equal to the Born contribution with all

(strong interaction) radiative correction. The one nucleon irreduc-

ible part has no pole at W = M, fThus, if we let M/M (W) be the
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partial wave photoproduction amplitude in the nucleon channel dr

photons of polarization/u, then we write 1l

. 1
Mgy (W) = f} g K(W). . P(W)fM (w) .
M WM /‘ /‘ irred
(20)
Where K(W) is the form factor (improper vertex function) for the
pion nucleon vertex with one nucleon off the mass shellla, and

E; (W) is the proper vertex functionl3 for the photon nucleon
verﬁex with one nucleon off the mass shell. va(W) is defined
to have no pole at W = M.
Furthermore, within the approximation of two particle
unitarity, K(W)/(W-M) is proportional to 1/D(W), since both have a
cut from W = (M ¢ m) to® with the same phase and both have a pole at

W = Mll. In fact we have =

W -M D(W) (21)
if the residues at the pole are to agree (k(M) - 1). Therefore

9D (M)
M, (W = 3 aut™ ]

D(W) irred (22)

When "squared" and integrated over intermediate states we will get a
contribution to (Babrbl-)(M) only from the "square" of the first term
of (22) since only it has a double pole at W = M. Furthermore the
first term of Eq.(22) leads to at{&l-(W) with only a right hand cut.
Substituting the "Sigré'of Eq.(22) into Eq(7), we find the net

contribution of the photon nucleon intermediate state to dﬁw to be

& = ﬁl_rfdwlz/;ﬂ o] | 2 s %wl)\ W ('wl.)l °

W~ M Wt M
(23)

wherelaxN(W) is a phase space factor for the intermediate photion

nucleon state. Factors from the pion nucleon scattering have thus
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cancelled out, leaving the contribution given in Eq.(23). Moreover,
Eq.(23) is exactly what one would obtain if one had set for himself
the problem of computing the contribution of the bulible diagram &d

Fig.l to the nucleon self energy by means of dispersion theory, and
had used the fully renormalized proper verter function at the photon

nucleon vertices,

The cancellation of factors from meson baryon scatteripng leaving
Eq.(23) occurs in the case of multichannel scattering as well. As an
interesting exercise, let us see briefly how this occurs.

We assume that a baryon, B, ofumass M occurs as a bound state in
n pseudoscalar meson baryon scattering channels. 3 E,, and Jii“ are

now n x n matrices, and the generaliztion of eqf7) is

~r AT 1 fdwl m(" JT D )wh Ql
JM =TI‘1--;~" — = A,

cuts W1 - M

where Tr (RR) (24)

A= lim (w-n D Hw (25)

o~ WM ~
and
R = lim (W - M) T (W) (26)
W-AM -~
Since the residue matrix may be factored(14); Rij = rirj(i’j =1,..n),
. T

we may write R = I'r (27)

where‘; =r .r. is a l ¥ n row matrix whose elements we take to be

1°°""n

real. In place of Eq(8),we have on the right hand cut (see Eq..42)
T T T

- = M . M D 28

w @t s B Ky Py 2 2@

where y is a 1 x n matrix for the prdcess: Xi Baimeson ¢ baryon.
As in the single channel case, we separate ~winto one baryon

reducible and one baryon irreducible parts:

l .
MI?‘W). = l;“ (w) WM w4 M/‘(W) irred (29)

where the meson baryon form factor, K(W), is now a 1 x n matrix

(16)_

For the multichannel @se the generalization of Eq.(21) is (15,16)

k(W) )= T AT Dt oW
W-M ST (30)

Substituting Eq.(30) for K(W)/(W - M) in Eq.(29), we find
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-1 -1
Mu(D) = Tp Dz A7 B0+ M (W) (31)

Siince only the reducible part of QQM&MD gives a non zero contribution

to the dispersion integhal, we have from Eq.(28) and (31) on dropping

terms containing M gy(W) irred .*.
e 2 EeE DRy 2 2
= (WO o # -1 (32)
Atz X @ fyslp x4
Since’I;T = r* andAT = A"'

Finally, Eq.(24) becomes

1 ( awt T, -1 T -1
'Tngc_w' —u T RA AR WPy oo 2 &)

N
= ®@Ern 1Tﬁ (B'B')dwl y v () Py ) [ )
— = = B
Tr ( B.R) m J’ Wl - ou M s

RHC
(33)

Using rTr = R, we have

] . : 2
du - % o /%/)'53(“'1) )_};,",(wl)‘ (34)

RHC
which is the same as Eq.(23).

Now that we have generalized to the multichannel case our result
Eq.(23), for the contribution of the photon baryon inelastic state
to the dispersion integral for JFM, let us note the following about
this result:

1) Let us stress again that taking the contributions &f figures
4a - i to just the right hand cut does not lead to Eq.(15). One
must. consider the left hand cut as well if the contribution of all
but Fig 4& is to cancel. Similarly, one must take the left hand
cut into account to obtain the more general result, Eq.(23) for Bie
confribution of the photon baryon intermediate state to the
dispersion relation for the mass shift of the baryon,

Note also that the diagrams in Figs. 4d,g,h,andb involve

photons connecfing initial and final <xternal lines., We find that

these "inner bremstrahlung diagrams" not only give a neglikible
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(i7)

contribution to the proton neutren mass difference as estimated. by DASHEN
but in fact give zero contribution to the mass difference when considexed
together with the contributions from Figs. 4b, c, e and I and when boti:
the right and left hand cuts are taken into account,

2) Numerically we find the contribution of the photon baryon intermediate
state to the electromagnetic shift in the msss of the baryon is not negligible,
For example, using Eq. (15) or the more general Eg, (23), and integrating
over just the part of the photon nucleon cut within a »vion nass of the

nucleon pole, we find a contributiun to the neatron proton mass diiference
several orders of magnitude greater tThan the 2 % effect on MP - D%

estimated by DASI-IEN(17). In fact it has a 12 % effect on {M = - l\In.

DASHEN simply ignored inelastic contributions, His calculation is thus
compietely unreliable, To take proper account of these contributions

presents formidable problems,

3) Eq. (16) is not exactly equivalent to the calculation of WICK(Z)
or CINI et, al(18) whose equations involve the phioton baryon improper

vertex function with the photon of the mass shell, One expects the two
expressions to be related, but their exact relationship is not clear, We
hope to examine this and other questions about the role of inelastic

states in a DASHEN-FRAUTSCHI calculation or e¢'ectronagnetic mags differences

in the course of future research.









- 135 =

REFERENCES TO _CHAPTER_EIGHT

1. R.P.Feynman and G. Speisman, Phys. Rev. 94, 500 (1954)

2, G.C.Wick, Proceedings of the Seventh Annual Rochester

Conference on High Energy Nuclear Physics, 1957, Interscience,
New York, 1957, pgs. 1l.-34.

3. W.R. Frazer and J.R. Fulco, Phys. Rev 119, 1420 (1960)
L, 5.C. Frautschi and J.D. Walacka, Phys. Rev. 120, 1486 (1960)
5. The right hand cut in the s plane from s = (M § m)aito %

becomes two cuts in the W plane: one from W = ¢+ (M ¢+ m) to%and
another from W= = (M ¢ m) to =oy. By a change of variables we
have written the integral over both cuts as going from +(M ¢ m) to
% . See Ref. 3

6. Because of the photon baryon intermediate state, the integral
over the right hand cut actually goes from M tode, even though the

region from M to M ¢ m is below the threshold for meson baryon

scattering.

7. Our ''nucleons'" have only a charge and no anomalous magnetic
moments, In computing Eq.(9) and (10) we used simply é# at the
photon nucleon vertices.

8. V. Weisskopf, Phys. Rev. 56, 72 (1939)

9. K. Huang, Phys. Rev. 101, 1173 (1956)

10, See the general discussion in M. Ida, Phys, Rev. 135, B499
(1964). For the case of pion nucleon scattering see Ref, 1l.

11. M. Ida, Phys. Rev. 136 B1767 (1964)

12. We define K(W) as in Ref 11 by

g M ’n’ - ilx (‘D %ﬁ K(W) * ‘III,'TL' illi&tﬂl
JZqOEO \ 2w 2w

~5n

o | fI NTE D
K(-W) ) 1), X U(p)
vhere M, p, E; and m, q, g, are the mass, momentum, energy of the

nucleon and pion respectively. W = (-(p ¢ q)a)l, K(M) is normalized

to 1, and K(W) = 1 for all W corresponds to lowest order perturbation

theory.



-1% -

13, We are usine;&]‘w) as a sumbolic shorthand for a sum of vertex
functions., We define the form factors for the photon nucleon vertex

with the nucleon off mass shell by

<0 ‘f lN‘p =£'M/J2k::E W= 3iY¥ (p ¢ k) F, (W) + W i)Y (p & KF (-W
0

2w 2W

Y TSR ICRSC P D JCIE S Ry g e
L 2w 2 2w 20 Hudke 00

where M, p, Ey and 0, k, k, are the mass, momentum,:zenergy of the
nucleon and photon respectively. W = (=(p ¢ k)a)%, and£14is the
photon polarization Fl(M) and FZ(M) are the nucleon charge and
magnetic moment respectively. Fl(W) = e, FZ(W) = 0 correspond to
lowest order perturbation theory. The proper vertex functions are
defined in terms of the drm factors by Fi(W) - s-1 S{ rl(W),

F 7F

i-1,2, where S, is the Born approximation for the nucleon

F
propagator and Sﬁ is the fully renormalized propagator.
L =e, [L = o, KW =1, DW = (SeN)(W - M) would
'l 2 aw
reproduce the result for M given in Eq.(15).
14, R. Dashen and S. Frautschi, Phys. Rev 137, 1313 (1965).
15, We obtain the equality in Eq.(30) by again demanding that
the residues at the pole at W = M agree. Note:‘EfM) = r.

i M
16. For a discussion of the multichannel N/D method and vertex

functions, see C. Albright, R. Blankenbecler, and M.L.Goldberger,

Phys. Rev 124, 624 (1961}
17. R. Dashen, Phys. Rev. 135, B1196 (1964).

18. M. Cini, E. Ferrari, and R. Gatto, Phys Rev. Letters 2, 7

(1959).



- 137 =

CHAPTER NINE

Sunmary
In the present chapter DASHEN's calculation of the neutron-proton

mass difference is critically examined , Various inadequacies of DASHEN's

calculation are pointed out, and some are overcome in the present calculation

In contrast with DASHEN's calculation here we build the D - function from

1 [

70 I=3

infrared divergent contributions to the mass-shift integral are explicitly

experimental TN phase shifts for J = state, Furthermore the
taken into account by using the prescription of SQUIRES which was developed
in Chapter 6. A cut off on the dispersion integrals at 2 and 5 GeV/c,
respectively, corresponding to the available phase-shifts from tle work of

(4) (5)

Donnachie, et, al , and Roychoudhury et. al , respectively, is employed,
The resulting change in the answer was of the order 15 - 20 % showing thereby
the importance of inelastic contributions, Our final value of &M = M? - Mh
difference is in conflict with the experimental velue of - 1,3 MeV. Our

answer is of the order + 1,01 MeV,
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i) INTRODUCTION

DF start with the Chew - Frautschi;(S) bootstrap view

of the nucleon prior to the onset of electromagnetic perturbations,
It may be recalled that in bootstrap - type calculations there
arises a so - called generalized potential for TtN scattering. The
potential includes various exchanges, such as Nucleon, N*%(1238)
resonance, e'etc. plus inelastic effects. It has been shown, to

various degrees of confidence depending on one's point of view since

doubters are a legion, that these exchanges provide sufficient

-+~
attractive force im the J = % y I = % channel to give rise to a

bound state, to be identified with the nucleon. Realistically
speaking the nucleon, according to the bootstrap point of view ought
to be treated as a bound stace with components ranging from Nmy,
Nerwr ,........ upwards. However in practice, DF assume it to be a
pole in TTN amplitude. The neutron and the proton have the same
mass since electromaghetic effects have not yet been included.

Now electromegnetic perturbations are switched on. They alter
the generized potential of Chew and Frautschi, or for that matter
any mechanism wvhich gave the nucleon as a bound state, be it
iterated as in Chew - Frautschi apprecach or otherwise. The claim
of DF - method is that the electromagnetic perturbations cause the
potential to change in such a vay that it discriminates between the
proton and the neutron, These changes may be of various ty.es.

. i) One photon exchange between J7 and IV, b-’-fr y YN etc. acting
as intermediate states, and in general the perturbations may be
loocked upon as being represented through all possible diagrams where
the intermediate state explicitly contains a photon or photons.,

11) All diagrams reprcsenting WN scattering where the
intermediate states are unchanged but the parameters characterising

the exchange, viz. the mass and the coupling constant are changed.
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-mr
. e
For example in f)exchange VﬁLJ g;_;__ , one can have an electro-
e . . - . . . I -mr
magnhetic shift 1n/pl\ll\! coupling constuant via SV ~Jdg e and/or a
r

% JTe-mr)
shift in the masz via Vv, 8 .
r

iii) Chanpes in the mass of the constituents (here yyand N). These
are called the external mass shifts. These work through the
mechanism of changing the range of the potential and by changing
the phase space factor in the unitarity relation used for the
purpose of obtaining the amplitude from the potential. For the
realistic but complicated Wucleon exchange, for instance, the
range is deduced from the location of singularities which depend
on the external mass,

An ideal neutron - proton mass difference calculation would
be a multi-channel calcuiation, DF do not claim to have done this
but rather to have calculated the mass diiference fM, wvhich is
written as a dispersion integral in JTQS)DZ(S) , where & T(s)
is the potential or the perturbed amplitude, and D is the
denominator function of the N/D method ana which is supposed to
represent the strong interactions exactly before electromagnetism
is switched on. After some algebra, done in earlier chapters one

gets for the mass-shift, the expression, .
1 (Da(sl) Im 4T (sl) dsl . !Im Dz(sl) J—T(Ql)dsl

fM—=— 2 ) 3
R[D (M)] m {5 cubs® ~ 5B

Sl-SB

(1)
or equivalently in the W - plane, for1£ =1,

o0 2 1
&M = ——-%———, _l_ Idwl l—"l(? "ﬁ“'l)(W ) 4 Im(D%[T-,_)(-Wl)
R DI(M)Z) T We - M W+ M

=2\

i } jwl Im(D2 g 1
+ aw T. (W (2)
v L ) H ] C . T-—;- _4

Where tﬁ‘l_(W) is the change in the MN scattering amplitude due to
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electromagnetism. The expression as well as its full significance
were exposed earlier in an exhaustive manner, and will not be
repeated,

As mentioned elsewhere in this work the DF - work has been
e e . m 4 (1
criticised by BARTON, PATON, and SHAW and %ONG(1) ,n4 others.

The criticism of BARTON and PATON was directed against the DF -
treatment of Coulomb-type perturbations, e suggested in a previous
chapter a procedure for handling infra - red divergent contributions
to § T(W), the essential idea of which is the introduction of an
energy dependent function to simulate the effect of distant singular-
ities and which is uniquely determined through the prescription that
all contributions from dT(s), which contain infrared divergent
contributions in the limit )an, wherelivis the fictitious photon
mass, mﬁst add up to zero. Of course, in an exact calculation

up to all orders this would or rather should come out naturally,
though this is as yet = hypothesis taken over bodily from the
experience of Q.E.D. For our purposes the practical aspect is simple:
it is to demand that the contribution proportional to iog )\,arising
from the discontinuity of the left-hand cut contribution due to the
one photon exchange in the t - channel of TN scattering be cancelled
by the cut contribution arising from other diagram(s) of the same
oréer. The terms proportional to log A,are to be multiplied by the
cut-off energy dependent fudge factor f£(€,W) of Chapter Six. The
demand that C be so chosen that the full contribution prooortional
to log )v in every order cancel, guarantees that high mass singular-
ities have been,,at least simulated, although ét the price of

introducing a parameter in each channel. However, this presumably

is unavéidable if one is going to do something with infra-red

divergent contributions other than drop them altogether as DF suggest.

The practical application of our prescription poses no problems. It
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is elementary. Ve worked out the procedure explicitly in the
Appendix for a particular potential theory model.

There is, however, a more serious criticism of the DASHEN's
calculation of the neutron - proton mass difference calculation,
This hinges on the proper choice of the D - function., SHAW and WONG
repeated LASHEN's calculation but with a physical D - function in

Pll and P33 channel and found that the DASHEN result could not

possibly be right since LASHEN represented the unperturbed strong

interaction problem through a D - function for I = L J = L

= 3 > channel by

b . W-M
11 - by

(W - Ml) vhere Ml = % M

Dashen chose Dll in order to simulate_BALﬁZS&s(a) D - function,
which has the serious defect that is suppresses the N® - contribution.
DASHEN introduces a factor C = 6 to account for the detailed shape

of the N® resonance. Unfortunately such a D11 function corresponds

to a Pll - partial waye with a negative definite phase-shift, in
contradiction to experiment. In other words D.SHEN misrepresented
the unperturbed problem altogether. We would like to point out
that in a later publicationQB) DASHEN admits this error, though he
puts the error in §M at around 20%. this, together with nearly 10%
from inelastic N¥ contribution we obtained in Chapter Eight plus
another 15 - 20% error in which DASHEN admits arises from neglected
effects of other channels to ¢ T(s) but which he did not calculate,
just about destroys the value of DASHEN's claim. In addition all

I.R.D. divergent contributions were also ignored. Thus it is
clear that DASHEN's calculation is of no#” use except to point out

the difficulty of doing a realistic calculation of the neutron-
oroton mass difference. A realistic calculation would be far more

difficult, and would certainly involve CDD - poles. Here we follow

SHAW and VONG in taking D ~ function(g) from the work of Donnachie
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et. al(Q) which correctly reproduces the experimental data up to

2 Gev/C. In addition we also used the phase-shifts due to
Roychoudhury et.al. (5) to create the D - function(g¥ up .to 5Gev/C.
The difference in the two values for d’M obtained with the phase
shift of ref. 4 withlhose from ref. 5 was of the order 15 - 20%.

In addition we used the prescription of Squires et, al. discussed in
Chapter TFive in the potential theory context, to take account of

the I.R.D. contributions. The final answer gave the wrong sign

as well as the wrong order of magnitude for JM = Mp - MN = ¢ 1.01,

in comparison with the experimental value of N - 1.3 Mev.
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ii) MASS - SHIFT CAICULATION - REQUIREMENTS

A realistic calculation of the neuitron -~ proton -ass Cirference
even in a 2 channel framework would have tc include the Tollowing

contributions, although some of them would undoubtedly give nepligible

contribution,
CONTRIBUTION CHAMNEL
1. \6 exchange t
2. external nucleon mass shift s, t, u
3, external pion mass shift nil
4, mass shift of the exchanged nucleon S, U
S, mass and coupling shift of l\lx exchange a
6. K N exchange g, U
7. YN s, u
8. my %
9. P, v, ¢ %
10, N'O’ s NTTY inelastic contributiun

DASHEN has claimed that No, 1 contribution is responsible for the whole
of the mass difference § M. We shall do this explicitly to show that

DASHEN's result, even with his poor D - function represented in either
of the forms given by DASHEN, gives a result which is a sort of warning

against treating the problem as simply a one - particle exchange problem,




iij) DETAILS OF |¥ EXCLANGE CONTRIBUTION

The S - matrix is jiven by

I MiMf
Sfi = 0¢y + (2m " 1 g(pf "'Qf = Pi = Qi) X
4wiwaiEf
- o a9
U (pg) |A - 1Y —=——= B[ U(py) (3)

Where A and B are functions of the usual invariants.

5 = -(pi + qi)2 = we
o= gy - qf)a
2
u = -(pi - Qf)

The partial wave amplitudes are easily defined if one introduces

% - ai' af = cosine of the scattering angle in the centre of mass,
They are given by

1 . .
ff = 3 dz fl&.(*’) + IEPD.-F l(alr)

Yhere R is the orbital angular momentum of the partial wave,

JERY K 21
P = (-1) . is the parity and the total angular momentum J =,Q: %

Ve shall be working in the complgx W - plane where W = JFE- is the
total centre of mass energy of the baryon and pion. The analytic
properties of the partial wave amplitudes in the W - plane are
thoroughly discussed in the literature and we shall not repeat them
here,

To avoid trouble with kinematic singularities we work with

partial wave amplitudes with L = 1, JaF = (%5+ and (g)+
I 2W .
Tes (w) = fJ(W) (4)

V' (B - M) (B - M)

Y ¢ w2 _ w2)((w - 12 - nd)
2w

with q =
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Let us stress that the case J :(gf+ has nothing to do with our
present one-channel calculation, It would be useful if N* exchange
were brought in, but this is a multichannel matter,

We now consider contributions to the driving terms from
diagrams which involve intermediate states with photons. First let
us examine the t channel singularities, where the one photon state
is the intermediate state of lowest mass. TFor the sake of future

reference we treat J = %, g case simultaneously.

The exchange of a single photon gives a contribution to the
left hand cut which is not present before the electromagnetic
interaction is turned on, and which is different, in general, for
states in the same isospin multiplet but with different values of
Iz. Let us define [Tx %ﬂ; and T:%; as the JP =(%)"' and
JP :(%7’ partial wave amplitudes for ﬁi meson-baryon scattering
with exchange of a single photon (see Chapter Eight, Figure 5).
Also, let Qg and QB be the pion and baryon charges in units of
/e/, B the baryon anomalous magnetic moment in units of /e/2M/,
and )~ a fictitious photon mass. Recalling the kinematics and
definitions of the partial wave amplitudes in Chapter it is

ah exercise-in the use of the Feynman rules and the formalism for

pseudoscalar meson-baryon scattering to show that

(% (Wt M2 - v
6T 2 (W) -y {(w W2 2 (W= M) Iqq + (Weh) IaQE}

1 (w4 M-8 1((wem? - m ‘
RO N T ( 2 - IL;}‘B% (5)

1 / i,
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where

(3) 2 2
§T2 (W) -olgpdiit M) =M
8 = S (W - M)2 - M° ( Qg + (W + M) 159
1f(w g M2 - w2 11 - (W4 M) - M
-3 I.Q, #+ = "6 MB
2(5»*1 3 MF - Ma} stz BB 4q®
+#1 (t) o (t)
I - [ az i S
1 = >
t =N
-l+1
Fm 0t) T, (t)
I, - a = 3
t =N
17
I = 08 . & . Py (). F(t)
1
+1
2
I @ 3o =1 Fplt) F ()
b 2 N >
/. - A
rl
325 -1 F_(t). F.(t)
I = a@ T L
-1 2 t- )Na
+l
”za -1
o] BT Pt Fi
)
£1
I7 = dz (3z 4 1) FTT(t) . FZ.(t)
21

and g is the

2

B

1o Mg

centre of mass momentum of the meson or baryon,

(6)

(7)
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t - - 2q2(1 - z), and M is the external baryon mass. Ve have also
written F}ﬁt) as the pion electromagnetic form factor, and Fl(t) as
the baryon Dirac and Paulli electromagnetic form factors, normalized

so that F (0) 2 Fl(o) = FZ(O) = 1./3/ Terms proportional to )\2

have been drooped in Egs (5, 6) since A\ will be set equal to zero
at the end of the calculation,

In calculating the contribution of one photon exchange to the
driving terms we shall be substituting the expressions in Eq. g
for JT into the dispersion intergrals in Eq 2. We must then do

integrals of the form (Mx is, of course, the nucleon mass).

. .
1 aw 2 1

= - Im(DETy) (W) (%)
T mcw - M frg

where M* is the mass of the bound state (resonance), and D(W) is

given by DASHEN apmroximetien, expression

E
1, ¥y ' M™ - Wo
D(W) = D (M7) (W - M) W o Vo

)

The integral in Eq. (%) is most easily done by contour methods.

If we use LASHEN's linear approximation for D(W), i.e. Wo =og,

with the specific representations of the form factors,

MZ Mla
F(t) -5 ,  Fi(t) =
U' M™ - t M -t
o) 1
andé
M22
Fo(t) = ——
2 pd
M2 - t

cuts, i.e. contpibutions from Ao, Bo, near the pole Ww - M, If this
is done the coefficient of QB in BEq(8) is in agreement with Bq(9) of

Dashen's paper /3/.
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then the results of doing the integral in Eq. (R) /3/ are

-

l: i
1 Lo et Im(Dzﬁ'y(Z) ) = 2@y J (71 - 21¥) rLog, Mp
L.H.C. -
M 2 M M 2M Mo2 ]
L _p_ Log Q. ¢ 1M 2 Log _Z_ | mB (8)
[ 2y 2 M B Yt 2 2 - M 2
M My 1 4M (Mp 2 M, |
2 ¢l ) ' M
1 _]__ dW _&.ﬁ;@_]_(_). = a,LQ“. (7M - 2M¥) [Log .
DL(ue¥) T L A
L.H.C.
2
M 2 Mp 29 M MD?MZ Log
_ b Log — Qg - 2(M ¢ -
> 5 " B I LM~ (M M
M < -HM 1 P a
P 1

As one expects in computing partial waves of coulomb scattering,
our result, Egs (8), (9), contains a characteristic infrared
divergence, i.e., a term which diverges logarithmigally as we let
the photon mass A=20. It should be noted that this infrared
divergence only occurs in the coefficient of QB, but not Of/*B'
Dashen and Frautschi have treated the problem of eliminating this
spurious infrared divergence in their original paper, and have N
given a prescription for removing the infrared divergence which we
shall follow here for showing the flaw in Dashen's calculation.

For one photon exchange, their prescription boils down to computing

the Born apnroximation to dffK(W) (without form factors) for W

.~
1

iear the boun at

(D
[l

¢ wpele, and identifying the term of the form

s

A
log &) which one then subtracts from the expression for J'TX (w)

computed above(with form factors), thus removing the infrared

divergent part. For the case of interest here, this nmeans

subtracting out the term which diverges as Log 2t asA-qg-O (e = 2.718).

qk
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Carrying this out, we obtain for the integrals in Egs. (8) (9):

For the pion form factor we shall use Mp =

both Fl(t) and Fa(t

Im (DZ((TB;Z ) ()

750 MeV,

/ = 20tQy ) (7M - 2%)|Log My
(D (M )) 1T - M 2M
L.H.C.
2 M pZMZZ y 2
_P____ , Log TB Qg + L9y 5~ o Log _EE (10)
- - o D
Mp Ml Ml L 4M (Mp Aa ) M2
Im(DZ(FI'X(Z) (w) « eM
—_— L dWl Wl ” = EQQQTT (?7M - 2M™) | Log -2
L.H.C.
2 -
2 M
2 M M_2u M-
) M Log -2 q - gQM[ b 2 > Log E /u.B (11)
Mpa _ M12 1 L uM (M - M2 ) 2

) we shall use the results of one pole fits

to the low momentum transfer behaviour of the nucleon form factors

which give Mla = M22 v 20M2. We then have (Mx = M)
" eM MEZ gg
Log —R =~ Log " = 1.4
2 2
. MS - M 1
- 2
2 2 M
My Mo Log _P_ | - .082
2 2 2 2

If for Fa(t)

we had used a Pauli

form factor

(12)
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Fo(t) = (—5— ) , i.e. a two pole fit,

vhich also fits the data, then the coefficient oﬁ/tB in brackets

would have been

2 4 2 2 2
M 2N - .

i -2 M =M - g Mo (13)
22 2.2 3 >

MEM 2 - 1,2 M, M,

If we require that F 1(0) - l——a, as for the one Pole form

2 20M%;
factors for Fa(t), then
M2 Mt M2 .-m2 ] If_-gz
p_ 2 _p 2 - Log —— = .062 (14)
L..ME(MPZ I M, 2

If now in the first term of Eq. (10), we put M¥ - M, i.e. the
nucleon mass which occurs in the girect channel, realize that there
is a kinematic factox'f(w) in DASHEN's definition of the perturbed
amplitude d’T, multiply with crossing factor, then we obtain, as

the first term contribution to

eM M 2 Mp
ST . R - _P_ Log|_ .
§u, - 2 = #_ L >— —
Vl. \ -
' 9 £ M M. M My My

have the residue at the nucleon pole is taken, as in DASHEN, equal
2
to _j%_ s Where f2 = . 08 ang M#is the pion mass,
M
This is precisely Eq. (9) of DASHEN. The term in square bracket,
gavé ) #1l.4 Mev, a moment ago. When all is done one gets the magic

number - 1.4 Mev.... Hessesrer
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iv) CONCLUSIONS AND LETAILS OF OUR CALCULATION

Our first reaction would be one of great surprise since
no one has suceeded, prior to DASHEN's work or aftervards in

obtaining the observed mass differencecfi - Mp - Mn-: =1.29 Mev.

The errors were indicated all along by us
i) neglect of an infinitely divergent contribution from

the infrared divergent terms;

ii) wrong choice of the D - function;
iii) the unpredictable and probably decisive role of inelastic
effects,

The best place to find out DASHEN's omissions is to repeat the
calculation with our D - function generated from the NN phase shifts
in Pll - state. We carried that out, first without altering
DASHEN's prescription of neglecting infrared divergent contributions.
The answer came out to be 42.1 Mev.

It is clear that the trouble is clearly connected with

1) DASHENLs attempt to treat mass difference problem as a

single channel wroblem, although never explicitly admitting it;

2) and secondly with using the D - function
1
D, = (W-M) ( o ) with M = (%)M (15)
(W - M)

in an attempt to simulate BALKZ'S D - function.

Now D11 given by Eq (15) has the feature that its slope
cohtinually decreases for W« M, which leads to the suppression of
N¥* exchange. Indeed the true pliase shifts used in the definition
of our Dll ~ function show that it has characteristic feature that
611 starts off negative and small but quickly turns over and becomes

large and positive going through M at the pion laboratory kinetic
2

energy ELa/6OO Mev, ("Roper resonance"). Then assuming that the
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"Roper Resonance" as well as the nucleon bound state are predominantly

due to forces in the nN-channel we may write, following SHAW and WONG

o B (W) aw
f 4.l

D, = (W - M) (- M) = : (16
" =P T M, (F - W(W - M) )

with 8y(w) = - =

On the other hand il the "Roper Resonance" is supposed to be due

mainly o inelastic clannels than a pair ol CDD zeros in the s-matrix for

T o e . 2id . . .
> state Ceilined B s,; = M;;e 11 ( My1 is the inelastic .-

J:;,I:

=t

Tactor), located at W = WP + il appears on the physical sheet, This result
EAY

I
6
is well known anc is dve to BANDER, CCULTER and SHAW / /_ Then &;1Qxﬁ =0

and Zq (13) Tor D, . » &y be changed to
t

Gl - ¥ )24 w2 "L w B, (W) aw
D = (W - 1) ~memmBee Lo % mypl. EH 22 ) (17)
1 G AL A o, (W - WP - N

e note that T (i3) and (17) hoth 2pproach a constant as W= o,

On the other hand, as mentioned alread;, the P11 Phase shifts of
BAIAZS is alwvays negative, which is contrary to experiment, Thus, if
DASHEN's calculation is done witn correct phase shifts, it will indeed
give exactly the opposite sipn, as it is showm by our result,

In fact SHAW and VIONG used the multichannel, A-matrix wethod of

z/
DASHEN et.al /3, tc compute n-p mass difference, Symbclically the 2 x 2

problem of N and N¥(1238) splitting is written as

.5“.‘,= '{\:’ KS»ng\; 5“'\’ - (%?)G\lg-,w l

® - Lg+\“’ Ba ™ F33> SV‘,P B %ﬁ FB)B_”*

I
_'-}--\- a

r1
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&mereﬂﬁﬁ's depend on D - function of the various channels, as well
on coupling constants. It is clear that the treatment of N* on
the same footing as N could Ethnly way to get a reasonable answer.
However, we have other doubts even on this program ( see later).
Even this procedure is not free from ambiguities as SHAW and WONG

admit. The presence of CDD zeros in the s - matrix for P - state

11
might imply that inelastic channels are important.

We wmeed existing phase shift analysis up to 5 Gev/c to determine
our Dll_ function. Beyond 5Gev/c we putcfil = 0.

When using Eq (17) we used a CDD zero near the pole of the

D¥ Dll function ( we followed SHAVW and WONG once again).

WR = 16, WI ~ 2 Here also the cut off was fixed at

5 Gev/c.

Since we did not dqﬁ'a multi-chaennel calculation like SHAW and
Vlong, who use a Chew - Low model as their static limit, and full
DF - multichannel A - matrix formalism, our calculation clearly is
not as good as SHAVW and VONG, In addition we took account of our
prescription for removing infrared divergent contributions by
cancelling IX’exchange in t channel ~vs - correc¢tion to the nucleon
exchange in the U - channel. The whole calculation was carried out
exactly as in the potential theory case. Let us remind the reader
that the only non zero contribution to dﬁM came from fig La of
Chapter Seven both in the s - chennel cnd in the U - channel., For
the s - channel, in Chapter Seven it was already shown that in field

theory a cut off has to be introduced and that;{ﬂ is then equal to

ol
((M S [ Eﬁlog Vmax - 1 ¢ M2 ]

M 2 ZWZ max
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Now HUANG (7 has shown that if the quantity within the square bracket were
so chosen, (here wmax = V;f-+ 1 +V, vhere V is a momentum cut off, equal
to 1.12 Mc, M = nucleon mass), then, one obtains the observed mass difference,
However, in view of our having obtained the wrong sign with just the left-hand
cut - input, the overall answer is still of the wrong sign, Perhaps field
theoretic and dispersion theoretic calculations are going to be plagued by the same
trouble which has haunted high energy physics ever since 1929, divergences
at high energies, We reluctantly agree with SHAW and WONG that 4 M is
"sensitive to the details of the strong interactions”; not only is the magnitude
uncertain but also the sign, It is clearly going to be necessary to have more
information about the high energy behaviour of form factors, and above all
better knowledge of the input, This is c¢learly a multichannel calculation for
which our present work has given us a fairly good preparaticn, we hope, The
role of inelastic contributions wculd still threaten any "would-be" cptimistic
calculator,

The nhumerical results are swmmarised in the attached table, For purpcse of
completeness the phase-shifts of Roychoudhury et., al are also attached in

Appendix II,
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We summarise the results

C(h = Mp - My o~ =1.29 Experimental number

OUR CALCULATIONS QUTPUT M WITH USE OF
INPUT D - Fn of Ea(16) D - Fn of Eq(17)

(CUT OFF 5 Gev/c)

1Y in t - channel 4 Nu - channel

(without infrared contributions) + 2.1Mev + 1.37 Mev

+ N X in s-channel
The same but with the cut off
factor f(c,s) of chapter
from -(M +A) to - cO + 1.08 Mev + 1.00 Mev
Value of C needed to just cancel

#» ®o infrared divergent terms

vas C s 3.73

s
i
INDIVIDUAL EFFECTS
1{ - t channel 1.73 Mev .76 Mev
g N§ - u channeld .38 .24 Mev
1"

s-channel
No I.R.D. contribution

SHAW and WONG

N - and N* - multichannel + 6.5 Mev
Reciprocal bootstrap with cut off

W = - i

max = 15, D Fn .~ same as in

Eqs (16) and (17) but D55 also

since calculation was multichannel.




RELATIVE COMPARISON OF OUR NUMERICAL D - TFUNCTION - vs - DASHEN's

D - FUNCTIONS. (in pion mass unit).

DASHEN D - FUN.

2
D11 = {W - M) D11 =(W-¥% _(¥5-5%5'5) D11 -~ from Eq 16 ENERGY (W)

via numerical

in Mev
phase shifts

~1314 -638 -1224 -375
-1239 -620 -1167 =300
-1189 -607 -1130 -250
-1139 -594 -1092 -200
-1014 -558 - 996 - 75
- 939 =534 - 939 0
61 6L 18 1000
1500
1061 7320 5.4 2000
~s 2100 3000

3.07 5000
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