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The viork presented in this thesis was carrie
out at the Department of lLathematics, Universily of
Durhar in the period from October 19 to June 19
under the supervision of Dr. D.E. Fairlie.

The author gratefully acknowledges his indebtedness
to Dr. Fairlie for his continued guidance and encourage-
ment as well as the introcuction to the subject itself.
He has also consented that the material in the parers

vritten by hin in corraboration with the present author

nay be used 1u this thesis. The author's thanks are

LRs

also due to his colleagues in particular to Lr. M. Ahmed
ana Grahan Ross for stimulating discussions.

Owing to the cowporative complication of the
mathenatics involved, it was thought aprropriate to
include a fairly comprehensive cescription of the
general framewor!: of the subject. The quotations from
the other authors are ex:licitly indicated in the text.
Otherwise, the work is vased essentially on two papers
by br. Fairlie and the author and a paper by the author
himself as well as some unpublished works carried out
by the author.

Chapter I incorporates those works done by Dr.

Fairlie and the author but also reviews the important
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works of other authors. 1

1.0 claim of originality is

made on Chapter 2, whicn is necessary only to explain

the basic idea of the subject. Chanter 3, Chapter &

and most of Chapter 5 are claimed to be original.
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ABSTRACY

e describe the non linear realizations of chiral
symmetry group and study some of its implications
in elementary particle physics. In Chapter 1, the
basic concepts of non lineur realization technigues
are introducea by the way of reviewing the special
‘case oY the chiral SU(2)x:SU(Z) group.
In Chexter £ the zeneral formalisi for chiral
SUMm )x<SU(p) is developed. This part is wholly dependent
on the worx by Colemnan, Wess and Zunrino.

In Chapter 3 the method is generalized for local

chiral invariance to describe the non-linear pauge

-,

ields.

The Chapter 4 illustrates the uce of non linear
realization technigues in conjunction with the
phenomenolo_ ical legran;ian. This chapter is
introductory to the final Chapter, 5, in which we
have a.temptecd to use thie phenomenological lagrangian
ith non linear realizat.on of chiral SU(Z)xSU(5) to
calculate some low energy hadronic reactions. As an
important acaition, a description of Lroken chiral
SU(3)xS8U(3) is _iven. This follows the general schene

put forward by Gell-llann, Cakes and Renner.



CHAPTER 1

Mon-linear realization of chiral SU(2)xsU(Z)

P

g1 Ion-linear realization with phenowienological

Lagrangian

The "non-linear realization" apgroach to chiral
symzetry has received much attention recently. Heinberg(1)
vas the first to realise that the results of current
algegra technigues which have been so successful
in exwlaining several features of elementary particle
physics can be reproduced very sinmyly by considering
the usual chiral (SU(2)}) symuetry as a dynamical
symnetry of a gauge-iype rather than a conventional
algebraic symmeiry with a linear representation theory.
By implementing this way of "realizing" chiral symmetry
in a simple [ield theoretical model, not only the
current algebra results may be ovbtained with wwuch less
labour but also we seem to pet more insight into the
physics we are trying to understand.

tieinberg's techniques have been quickly developed
by a nunmber of authors(2’3’4’5’6’7’8’9)and now there

are seen tc be rairly simple rules to construct a ‘'‘chiral

invariant" models Zor a wide rcnge of physical situation.
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This elso includes a prescription of how to break the
Syli.etry .

It ie still very difficult to =zee if we can
cstablish trnesze tecinigueus as being basec on the
orthoado:: field theory. A&lthough thcre is considerable

. A\
effort(1u’]1)

to ertablish then ac such by, for instance,
stuaying the possible renormalizability c¢f certain
Lagrangian field theor; connected to them, tihe
complete succews in this direction is not yet certein.

In this thesis, the discussion is confined
siricily to the phenomenological side of these techniques,
that is to say, the cystematic construction of certain
fairly simple dynamical model with a "Lagrangian', which,
in turn, will be considered merely as a way to calculate
physical o-matri: elements. This last statement means
that I use this "Lagrangian' to celculate ordinary
Feynman ravhs with i'ick's theorem but I onl; talie a
class of IFeynman yraphs which are obviously calculabie
(non civergent). These are the yreyphs without internal
loops (so calle« tree grophs) and thus, strictly speaking,

these technigues cannot be cconsidered even as a

¢

[]

rturbation a.irroxiration to quantum fiel: theory at

this stage.



W
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(3a)

ochwin_er in his worl of non-linear realiza-

tion techiniques has sujggested the foszibility of a new
phenounenological theory' of elementary-particle physics
which would give the :hysical basis for the disregard
of various field theorctical difficulties in such a
technique. Although I do not discuuss the _hilosophy
of Zchwinger here his way of develownin, the non-linear
realizzation techniques offers the convenient starting

soint.

g2 OSchwinger's non-linear realizcotion of chiral group

In this §, we follow and expand the amalysis of

chiral 3U(2):8U(2) sy.oetry of T -nucleon s _stews found

. o L {2,12)
in reference ja( ! ).

he low energy rion-anuclecon system can be cescribed

(2a)

=]

by the following phenomenological Lagrangian
oL = 3L - 5 Pt T
+CF(;%——MM)W
- fTrTcyon
AR
{EtGr g (T4
(fﬂjq’r—q’( )

(1.1)



with 7ﬁv 1.0 i&’v veb pive. the coirect voaiuve Zor L
and P viave J, —.. scactering, leu_th (when calculated
vith tr.e _rois oul,,.

nezite vae doveriance ofoé’ uitcer wouel itotonic
S, i. rotetioi..

us —)lT—Q_éAII_' (1.2a)

v ——)(l-f-(i—:_,g?é)kp (1.23)

senwin,er owserve. tiuet arart iro the [ iol oo ter..

-

. I . . N : o . o :
Z is alzo invoricat uncer ihe jaule ty-e trancformation

vwheve the reowld  arareoerc SJ ) S‘# are assu e to be

Treacicraations of nucleon fiel's (T..b ana
1ela) actuall; . enerate upe chniral SU(Z)uSU(L) roup
anu ¢ note thet there the conveutioncl yk~ transiorma~
tiown of nuclcon Tield. undcexr tice cuiral _rov, his Leen
sepliced by trne acduition of ¢ niu_le ion to vueleos:
stetei.

Pie trensiorreticn of joun Tieldn |, cuw tie otuer

8uG, _ives the cenmidir.ct vrocuct SU(I:T.. ilou

-



Schwin_er further observes thet if we rewnl:zce the

"t{ranslation" (1.7aj by the uon linear trausfornation
; /
T - lT+J_2"+(,ﬁ’ )1(21_![17-&")— 7]'152‘) (1.4)
/ﬂl

then voth nucleon and wion transformstionz _ enerzte
the _rou] 8U(2)xSU(2).

The jencratore of the transformation (1.%b) and
(1.4) are the crerators containing the c¢ifferenticiion
with respect to ion fields II.

Ve way write (1.2a), (1.2b), (1.Zb) and (1.4) in

opcrator form as
L 17+(L{ﬁ-1)ﬂ
ql — LP*P(CY,F’I,)LP |
T - T +sa )T

¢ — Y+ gy )

with

. - _° :
.I.: = - Le.'.J'Q Uﬁi (1.e)

(39D, (T2 ,)af (2, (1.7)
Cri= =5 { 5 (-NT)+2X70:5 }5%- (1.6)

(CT-/)J/t’ A (}; N q_';'>:d/{ (1.9)



where we write 20;4;4Ln and also For thoe cewne of

simpiicity, we have used the infinitesimal parumeter
. . . g /

of chiral trans.ormations {J=7]-&é.

It is easy; to show, by cdirect conmputction, that

[CTL/G,‘J":G'-]“ 1e (1.10a)

[Ic, CT)~J= LG"-)’KCT;; (1.10b)

in adcition to the fariliar i=zo-spin aljebra
'OE - ’
[ IL/ Ij J' Cire LA (1.10c)

n

r G.' and
i

Iy
C

ne same chiral SU(2)xSU(2) algebra holds
Ii'. (In showing this, we should rememwver thut the
rucleon transformations (1.2b) and (1.3b) are wriiten
in term of contraj;radient components of a vector,.

The non-linear transformation (1.4) can be regarded

as a simple _eneralization of the trenslation (1.3a)
iu the tence thelt it is o sukgrour of conforral

transiorwations in >S-uimenszioncl euclidian s ace.
(1.2}, (1.3b) and (1.4} with chiral SU(2)=xSU(Z)

realization o¢f chiral [ roun first studied by VWeinberg

ané Schwinger. Wow it will be im ediately observed

4.

that the lagrangian (1.1} is not strictly invariant



uncder these transformations. ©opui before trying to
peneralize (1.1) to "chiral invariant® form, it is
more convenient to study some msthenatical consequences

of these non-linear transforiections.

8> <“he relation withcchiral 4-vector

The exprezsion of generators of the chiral
SU(2)::6U0(2) _rouy (1.6) and (1.8&) car be used when
the _roup i¢ realized as a transformation _rovp over
the field of arbitrary —-olynomial or analytiéal
function of(T&_)fi. Qut of these polynomials, the
convitruction of actucl werresentation (linear) of
chiral suU(2)xSU(2) _rous may be attempted. That we
cannot get an arbvifrary ineducible regresentation of
chiral SU(2)xSU(2) group can be seen by computing the
operator zroduct I G and G I.

I _et frow (1.6) and (1.9)

LG = (-1 Tis g, ) (55, ) (850 (107 T) 42X n,T,,)‘,r
(—' Eist Tis {(B -2 Ty ’f'z)z( SﬁT}r-forTl))"‘
+ {537 (-¥T) +2 X T D3mean,

IG = (7) Eisy Tis] CA DT, + QT2

1y 2° 1
()T )2T¢I)T +2A rTr /ﬁ')ﬂr}



e O
ce Ji G=0

Similarly I get

fax

|
1
O

)

I G=¢CI=0implies (I + )% = (I - ¢)° i.e. in

Ir

constructing the representaticn of chiral SU(2)::85U(o)

- ! .
out of analytical function of T[p, then any such

representation contains the irreducible commponents of
. h nh Teoa o (T £077 0w +h

type ( /Z, /2 ) N,integer only. (I foliow the
usual notation for irrccucible reipresentations of
chiral £U(2)x8U(2) by writing it as (J,,J.)).

This condiiion is also

o]

» sufficient one and any
arhitrary representation of form (J1,J:) with J,]=J2

may be constructed. To sce this, it is sufficient

to explicitly construct the lowest (J,7) representation.
o

This is the so-called 4-vector representastion and must
i

i".
be constructed as a function of '17,»0 . (¢ol_),<=(
[4
Py= G(TV
t
Qpl = F(Tr )r‘- =12, 8

!
whichh under the transforination of?TpdefineQ above

(1.11)

{(1.2a and 1.4) transform as chiral 4-vector. (Or



9.
vector in 4 dinmensicnal euclidian space}. The transforma-
tion of )) punder izo-spin rotation (1.2a) is obvious
and the forums of G and F should be chosen so that under
the chiral vart of the transformation (1.4) q& and Qé:

transform like

$P, = 5. ¢

. (1.12)
S¢L ="¢‘f"ydi
Usin, (1.4) §T = §¥ (§:: (:-)’TI")-J}Q)’]T,-IJ)-);’_. in (1.11)

i.H.8. of (1.12) becomes

Sby = 2G (- X)) T 54 oA
s = 2F (1R .§£ T./22
+ E(CF Tt +2X° T 84 T )/

vihere / d({ /T) "’:/, d/_:(ﬂ‘z)
aTe q 7?2

50 that (1.12) becones

2G /(4N T8 [2) = - F L4
T4 T) 20 F JR-{4 T: /23
TE([=XT17) §6 /23 = G ol

or

= -2G (14T )/2) \
=-4, FO (AT

Tz - F (4T
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oL Cii. Chwoil, inte_rwuce (1.71.) anc  ct the _rnernl

o

colution wanci. iu ro

(1.1%)

L + aeme

Wreve «ois o wreitvary coustont.
Lt i oees, to caec. taot (1.14) actielly - tisTics the
original condition (1.1u).
4
viic b-vecvor coi-oncates (?@2‘ ore not Iiccendent
‘A =l -
ant o tizly a coucsiraint
1
2 2 )
@i+ R = U
st fo1 tie wrbitrary consta..t a, we cheouc it so that
~ = 77- +0(7Tz) “hca a = 1 ane the conslraint
L - L - - -d cll a adia b -
egquation is i.ow

6¢¢Q'+ cpz = %ékz =

(3

LA
“fo

g% Gursey-Cole.cu-.uninc-iccs araneteri:ation of =+
fields; iinearizztion ox nucleon fields

(1.15)

whe ciwplicity of wuin, « (lircar) rewresentetion

ic that wve cair alvays vormally “nteyratve the cifferential

1

rprecsions like (1.5) b, ucing, eox.oneantials. In case

of tne non-liancuor trensformetion of 7T field:, we can
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]
derive anuseful jarameterizction of]?ﬂvdih the aid

of (.,.) reyresentation constructec alove.

The simplest way to exprews the linear transforma-
tion belonging to the 4-vector or (3,7) represzentation
of iso scalor - iso vector pair ( qg qu is to consifer

the 2xz matrix

- b.qT (1.16
M) =-p+iT !
where (czilsare Fauli matrices.
‘then tle qgral transformation generatec by the

= i
infinitesimal forms (1.4) through (1.12) is(“’})

\ - (T.d LE.o
M) = Mig)= EFE Mg e

/ - ., 1y . 0 .

¢ beins the transform of by an element of the chiral

group with finite parameter o . Of course, with

resyect to iso-spin part of the group, we have the

usual
‘E L

M(P) — Mip')= eFEM P TF

In terns of original ﬂ’ﬂ . M(¢) is (from (1.14) with

SR VISR ) U R S
22 1tan? L+ N7
i |-'X'"24’2'\ﬂ'1

IS ER Y

(1.17)
N S S/ A

e

2A =0T T

i 14+ ATT

e.'N(4))___: M(W)‘Z—z

= 2T T
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and (1.17) can be taken as an intejrated form of

(1.4). (%)

v
0

= \T. i 4+cA /T .
HOTT 40T REE M+oz-1 o4 (1.18)

|=iAT.T |~ T/'T =TT
These relations with linear regrescentation automatically
guarantee the consistency of the original non-linear
transformatior. as a groun operation.

Vthen the integrated form of pion field trarsforma-
8

tiors (1.29) are _iven, there is an element of the
chiral _roup c¢f special interest, i.e. we nay look for
a transformation which reduces JC i's at given space
time point ¥ to zero. Putting the corresionding
parameters of the chiral transformation -~ g;(J) ,i2b 2.3
(0,9)

i= 1,&,5, wWwe have

F® (L OTO)T G R

e — €
|=<AT ()T = |
or
et?'sf’)ﬁ |+ AT
I~ 2T (1.19)

(1.19) can be reduced by using the prorerties of Pauli

ratrices



oo VT i F2 pAE _ LRT g7
X (AT 1+A’

=T e (7

3T

S 1

|+ T° Ve

and (1.19) reduces to

P e ta.lFv2)

s I = _L (1.20)
T e
also, the linear quantities can be ecxpressed in term
of new parameter
-0
: b= !
¢f‘ = 3 4—-1 = = CWV:?—,
2Z) L+ 24 2)

- _ T _ 5ol
142717 V3

The transformation formula (1.17) can be written as

(¥}

a transformation amiong corresponding parameters

TS TIY W T T/
e _, € =€% 6116/1 (1.22)

/ ;
where _% and _% are related to T and L through

(1.19) .



{lewe, 16 reizol.itiune 1 te Followin, (vi.:€.

] m i souatity (1..2) ceir ve trei.or .-
1l LatI'i.. C. daslivy e} CCli L€ Crelle,lOoX..w.o el

. i ‘?/'
(e:i-l‘/z e-‘i-l‘/z) eiiT/2
(e-:g.‘z/z e—:ii/z)ﬂc.;q.’:r 2. (1.3

wi.ce all tee Jzccovy 0f (Mee. ., arce unitory - w.irocdular,

the vnole noeri: U 1o re too il €Y e vricvien oS

an e:roucntial Tom

/
U - e-—-fﬁ-'# /2_
- , -«
iatrooucin, ¢ 4o O rewl ar LelLers q-(e encili, on

of cud :E .
LG
. . . SRR (L
Jhus L ocaw vrite (1.2_) as ')

2-T/2 (3.F/2 Rp/fe TR
e+ e = € e

: c.;.:\ T/ e-c;'ll‘! - é--'fl'zlz e:?'#/z (1.24)

(1.24; aciwwll, _ive:r the jroducc or w0 succeisive
ciairal traasiormetion. ¢ Lein, vccoriose: inte the
cLeltet vio& clilaul Lreustor.eztion and an orcinar
igso-5_1irn ireéacioi..aticn. woucl a deco .position 1s
e. sentialliy unicue.

In the couvenrtional trectieat ot chirul ivvorianc.
tue ( ,C) (G,i) reprecent. tien, . ..i_neu o tic rucleon

. . ) . . N Oy - . .
icle is el reasec 7 oupio X}if&flf\ . (o cwveicd

tihe iutrocucli.z of a jarity cGoullet,. It i. clear



that (1.24) can ve written as

e :Q-I/z-ke:;@/z e

Vet < /2 (1.25)
= e" fe 1’

Yor an infinitesimal warameter §é, I sheall comiute

. . ) - 4 . - -
exlicitly the value of ‘:z in teri of 2 ana 5‘?,/ -
e . . . '-'/._ \ .. - ;
First eli..inating ;; irom (1.2L), and takir; the tcri:

Tirst order in Jdonly, I et

(T2 ) F) + 4 ((F/2)(- £ 54 5) [T T[] = 0

Yrom this I ,et

U’¥/= ('___——“"'\)0_?/‘) 3152 (4004"))
?z

i.e. frow: (1.20).

:4_/= XTASL (1.25)

Lut (1.20) is precicely the varwmeter ag;earing in
(1.3a) c¢efining ithe infinitesimal non-linear trans-
forrmetion of uucleorn fielaq (J/under chiral _roup.

Su.pose that an iso-syinor L%f(which i5 also ordinary

Lirac cninor) transiorm:s under oxn infinitesimal

elewent of the chiral _roup accordin; to (1.3a).

o {1HiTh - OmAld) }
= ( l+£¢/?-"'4/)q)



et w. cofine the der Jdeld (’f 1. e . pin cae ico-

. A . "
PTEEV \ LGl Cl el

({' - eci-$/z'rf'(_l/ (1)

whe. frow (1.2, the trincioriciion of uneer au
iizdiciver ol elelint o clLiraol. row. uwill Le
L] /, / ’ /
\ . 20¢
T e'*? P
3 /
n eci"l/z e ocWFl2 q,
- C__,CS'.EI/Z'[r e:i/$/z‘b'rq)
- e:‘:l"I/ZJr &E‘

i.e. q{_# Q:MJ/:J(&P—

/
17 ve wverive '40_ Ll orcelr cu é iz tie nei_ilourhooc

oif dap », (1.2}, L c.u cousidew

&P—ﬁ 8:441./2 (P (1.2

1.2%. e conristuse;

el vhe iute subew Jor. oo (
0y (lear ) ¢ & ,mcv- orevetio: i: _uorentued tlhrouh
. - . rd N . - r -~ -

the welotion (Taez,; wne atris occur lit, (1.07) Wy

z

the Zd.occy wriuusleirtatioo

&I[ — e'2Fils @ (1.2,

Ll L NETC IOV Uil e waC L ULesadEol' Lit.as.or.. Tlcrs
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0 - ocel.

*O. Tl Cudven oLong

—~
[N
~

gl i.ovoriant La aci. ini. Qiie co.erlont cevivetives

I now cowc bac! to tle la_.:nziair (1.1). As
hove bee. ru.ari.e in g1, {(1.1) ic not reail; 1., wiavt
under the non-lilcar triu.iow. ctiecu (1.39) 2nd (1.4].
in s arciculayr, tle cdesivotiven il atl_or :}(f ally

trencior.. in v ther corrulicated oy uwider itie non-linear

transfornations ane cir_le iso-upin invariant coupling
canot yrocduce ot iaverient la_rangian. %o {inc

tic way cc construct chiral iuvarisant la, roiay

Clos

ia tnils gon- linecr recliiation scne.e, wll wicl. ives
the fori lile (1.1} az ¢ relevont w«_jro.i:ation, one
canl G, loit tre vels vion witi. linenr re resentatioas
ol cliral _rou tircusnsec ziove. 1t is cosy to
coagstruct ai fuveoricat g rengica i teln.o of tue
liacer re. rcuentietion lile Q' or Cfd iptro.ucer ir gor

onvarcg. ‘Thus o ciigle cliral dnverient _enerciinction

o tii¢ ovuiuar, iLcoe-suil lunvoricat ﬂ—'\/la~r:.;1__ic-.1; vith
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obvicusly reauces to

m[};’ kl) (1.36)

Colicctin, (1.3, (1.3%), (1.33) end (1.36), (1.30)
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L = ¥y +mPY
+1L GIore
z (H')"TTL)I (1.39)

- £ Fnnzy 22
Jaaiad t |+ 22T

(=N TY T AR
/‘”"') the |+A*TT®

Cnl; eiuunciia (ifferesnce Liere i: cthe hrence ol Lecscon
wils ter o suceh o ter. cinuot Le accounted uvunlens
the syiletr, uvrecldn, 1. iatrocuccc.

the dawveridince or ter.s ixm the 1o, roagian ¢iscunted
cvove cluc inplicos ihie recisl tr.onsfori. tiox _rorerty
cr enc. fectoers ccnoicting tihcoe terio.
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now eneral ig the cuanstruction of invariant legrangian

[
)
i
(el
[$]
L]
r
C
et
P
=2
(¢
m
(9]
Q
o
<
~
.
(=
©
[
=
o+
o
[0}
1=
=]
<
<

ctivec® "o malke the

later _euevalizution tc chiral SU(3) rore straightforward

- (8)

1 will. follow the argument of Colemasn wna Jumino

- .

an original treatment of Veinberg, in

=
M
ct
=3
o]}
1]
ct
N
jus
o
-y

ansvierin, this problen.
buj;ose that.lg is an arbitrary criral invariant
larengian
L LT, 2.7, ¢, 3 4w)

should be invariant under the non-linear chiral
trunsformations (1.1¢), (1.14) and (1.26). 1In
rarticular, the siecial transformation discussed
for the introcuction of the ; arameter E%_(J)(1.19)
should kcepcl3 invariant since this can be formally
considered as & chiral transforiation with parar.‘.eterﬂ
veinpg equal to fgcvwith arcitrary but definite space-

time poiant x. If this transformation is denoted by 3,,

"

as a menber of chniral grouy we pet iror (1.1G)

g¢» LW =0 (1.43)

The replacement of & by -_-2(1/\ in (1.24) gives f‘ﬁl.; o)

1
o

S0, for the anucleon field

9= G(n) (1.44)



A%}
.

Thus at any given space-time roint x, the invariant
lagranéiancz: reuuces as

LTy, @I, ), S uy)
ﬂ[ (o), gz@rl()), (/zl)),?h?r‘[fm} (1.45)
=L7C 3292, 4w, 89 Gm)

As for the quantities 31%---. one rnust remember that
the space-time point x nmust ve considered as fixed so
that the g, is the chiral trancicrmation with

constant parameter (not the local chiral transzformation).

Thus

- D _ .
Ja?,,](‘o;h [—a-gr y,f[)lf-;)_]y_—_o (1.46)
Now
31 u/{]_,_.é) - eo/_v}_($/z q/“_‘_g)
o i+ AG Tty T
= A+ T (AryH)T

7/ . ;
wnere the varameter 2_/ and ¢ are _iven by the

matrix equation (1.24)

6:63{)}- ¥/z e-l_—c,fury)-fl’/f__e-t&?ﬁ"/?ec“#@ﬁ _

To compute the first derivatives t il y

e ~ ~ 1 -
is enou.n to

5
b} e

estinate the above relationc unto first order in
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(It is acsumed thit the "fields" ~§§37 and L}{J) can be
consicered here as suitebly smooth function of %9_).

Thei. I have

eFBOE GE RN, (1402 (r34))
Ix Y+4) & YPhary) + N EY

AT T(ey) e CF72 /2

So, from (1.46)

QY - Y22 Y
c’,\fzg,gr.g - @/2 -y
o FN(YEQZ)_ LFEVi) oF +:5.%/2
T Q9 =L IV I 137G 037
1%/ ?/ 2(__ 'ZL( €‘j$/?; 662'7-’/2__ etiﬂ'/?e 6—2#/1)

-5 T EFh, —FFl
6tl<2r(%/=~{1%rf+i%(€ Qizzgze?:iay?4-é’ ?%.6’ .);}S/)

R/ BT Rk ~ITA
cz zj,@/vm; T ere P TRe )

But these expre:sions are just the ones appearing

and

also

L

Thus

when I have defined covariant derivatives. Thus
looking bacl: at the transition fron (1.32) and (1.33)

(6)

to (1.35) and (1.34), it can be seen iinrediately
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=V (-I/ (1.47)

- V,"—t (1.48)

From these discussions, I can counclude that an arbvitrary

chiral invariant lagrangian reduces to the forn
& O

o[ * //(erﬁ); ‘f{]}, g(/{u) (1.49)

On the other hand, I have just zhown that these
covariant derivatives transiorm similarly to an iso-
spin type transformetion (1.28) ( I=} for $7- 5‘

I=1 for Therefere ifOZ? in (1.49) is constructed

in an iso~spin invariant way out of these arguuments,

then it is already invariant under the full chiral

<

SU(2)x5U(2). BSo a general rule of constructing an

invariant lagrangisn is the following: 'fake any iso-spin

. . . s, i -r’ , ,
invariant lagrangian which epends on [Aonly through

its derivatives. (The discussion above, in particularéﬁﬂ]”=0
shovis that there cen be no explicit dependence o@y{ﬂ).

Phis excludes for example, 1) -uwass term in an invariant



la rongian; and ve lace cle Cerivativ.. ¢z the

~

fieras b, corrc. onting coviriant aerivative:.

wnus rile ol course e lier to the Lyoste. ith
Yploas" wile iy LWu.or oo fieleaes witn arvitrar; iso-
woin.

z) Variational nethod

In the current zl eura apjyroaci tu chiral
syuiLeiry, it ig the vector auc anial vector currents
ruther than the lea_rwngian urici: are of central
i ortence.

if the functi nal {1.3%) is touen a:v a field
theoretical legren_ian, the corrcs.onding currents
can Le derived throuph iloether's theorern. (Gell-liann
)(14)

evy « uriting the infinitesiwal parameters of local

-

iso-s,.in anc cairal trensformaticn $¥hrand {g())
recspectively, tue usual cx_ recsion of vector and atial

vector curvents e found.

Y
JYTL g‘4$yp _#:o

r. _ & (1.51)
- 52‘--/- ¢=0

vhere

olvr 3.49/cX. jéyf z Q%_/@

(1.5C)
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irst, let us conzider the systen

- b ' -
w1tnTr;'s only. The

invariant term correspondin, %to this ic (1.39) is

L M

" Z Q)
= »EVE

Then the variation of 2,- 7T_ due to the sizce-tire

(1.52;

derivative ol infinitesimal iso-snin and cairal trans-

formation jarsmeters are frow (1.2a) and (1.4)

SsGT == TPNT + boam paobond T, 54

5491 5'_)} Qe(-ym)+ 23T ie )T } (1.58)

The suifixes "is™" and "ch" refer to local iso-spin and
chiral itransformation respectively

Thus

~ |

disg = (77‘_1—"_)_ 9 gé-@‘A;;.ﬂ)n)é bwne  (1.5%)

_\ et DS
Sad = Ty {q’x 193 0157
tex(n Q1 N1 '9,.3)}2—"/\ +{2 (5

(1.56)



So now (1.50) and (1.51) give

y = I’__ﬂ_pf_l (1.57)

f" Q—fx'ﬂ7 " 9

Ay _ AT+ AT LT

At - — ey | (HT3T+ A2 2)T)
(1.58)

Com:.cre this with the bilinear for:
Vrz*_Ar-z.
Frox (1.56) and (1.57) we have
(V24 hpt) X (4R )
= (T2 5ot (" MRz +R2Qn)n )"
= I) - (39 z)"
+ e (r,;/.n)+(,- yTmas) b0 T’

G X

= (lf’ﬁ\ ] ) 6;) i) )
A"

Gz
\/’,1*/4rz = ! _?f'_'i_)_.

(ATt

Thus

or

L = 27"(\/,}4-/4/.1) (1.59)
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s A PO a4 (15,18)
This is of the fori considered Ly JSugawara .

The nucleon contributios to the currents can he
derived by using the rest of lagrangian (1.39).

With the same notation as above

$4Q C//;cq/c}f_d/lr-a/z Lf +{2 m

(cf 1.28)

and thus . l__Aznd . |

S = MTAQRL T + s TAYfdah)
4—50‘ (oo

= (A7 M2 Tfe =57

”‘VVW' Hl’fr‘ 2
+ (4 (e

also g‘w\q—a}m@({/ Vf'st
{ @4t () 1)+ 28 (1 242)T }w s

Hu" ) -**

zn [+1’TV
+ {7 (e

Thuzs the nucleon part of axial current

‘é), = S‘oe/./”/d 2o
¥ / (”/IT)%

l—mzn'
* '}é{ |+1*"‘ LM’ ]‘“’/’%4—

==

cm)q/}

(1- 60)



For the iso-gpin trencformaiion, similsr argurents

lead to

=GPy ) = - AL Tz, 248) 0P

42T

_ T 124 QT I +04 b
_ g T TNy
Cs($ 452 ¢pro )

=+ GhpzFoUSfIT +E b=

anc thus
NI '
-’Zf ST & /e b// (71/
-+ ‘%Tu_ﬁﬂcp (z:;:f);{k (1.61)
iy .. Gyt
(W)u-f)»ﬁ’qa;r )(f

In the lowest order of F, (1.59) and (1.00) reduce
AN a—

Arf\f.ﬁ ¢J’,Jr T/ ¢ (1.62)
V[ /,_\’ JJ] ',:/2 q/ (1.63)

(1.6 gives the a:ial vector couiling constants to
rnucleon as 1{
c?. = (1.64)
v o
Thus G,/G, can bte accounted by -1l contact interaclions
£ v
in (1.39) (or rather auproximate (1.1)) which in

fact doninateT[ -ii scattering lenyths. Thic is
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essentiallytthe Adler-.eissber, er releciion as have

. : - 1) e . D
been notec by nelnberb( . Yurther, the nionic part
of cixial current (1.57) pives the a:iial vector coupling

to single pion as

Fefz == Yoz =_%_€%,._. (1.65)

‘\ h) .CL e=. +\ — - F"{
Giv T¥; o
Un the other hand {;}“.is the coerficient of derivative

tyve Yukawa coupling in (1.1). Resulting nucleon-

role tern in TT -1 scatterin; emplitude (with tree-_raph

2]

used to define N~ Jf couplin, constant ; as

only)

¢ . £ (1.66)

2 W’N /"‘ T
and thus

%‘l i (1.67)
v

Z2mv +,7)

Yhie is Goldberger-Wreiman relation. Eretnrer—rfeioomns

2 s,

It hrs becn slown thit stion g rwuglian (1.5

ne
~
(]
5]
o
o
(4]

written iu current-current forwm. (Sugaworec type..



Eairlie(1;’1b) has shown thsat the came exvressicn
nolds vorxr the entire TU - lagrangian if certain simple
term. are added to (1.39). “he ori:.inal cerivation
using awirectly the expression (1.55),(1..7), (1.59)
and (1.60) involves len_thy arithretic, sc I shall
leave the proof until the next char-ter wvhere the
convenient exypression for the curreni. is obtainec first.
Here [ shell state only the result. Using the
e:presison of total cu.rents
—_ i
O —m ZAI‘\L
A= 4% T
I D'f{ =21 T AT _u_._'g}(’b
[ (+xm 2 (+2~0 -
- | 21 e )
=) (IFATMYQ T 2227 1T T
(+2* 1) ?7\[( [~ )z
ana L3 1 AN 2
Vi q:()r? AP T | AFRC }c//
f I+x Tt Z |+A‘7’""
£ _2A__ g
- T AT
Fo FATLZ 94?.3}-CJ.A.. ) (#f
o+ (Tno. 7. )
2
(Trxr-rl)

WY e sl LT ) R ZY))

Since the 3leulon of non-derivative terw

22 {(Fn 2 )+ (f (%5 m/#) }

1.58)
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te o the la e iz cweL #oU Cuali. L il oLcrL. 0.0 wle

curicLts, trne neu logran,iwai

Lol 2 Z{ICWT/‘”’)I‘*—;(()EHI,TA‘QI (1.6%)

is o1 cupavara fornm
o[./_; ?27(/_)’-1_'_(/"‘2)4— Cﬂ:&ﬁ/wmmhf -Ampm‘f,j (1.°

1% haet Leel. _ro_.oted thit the fi--cint couniuct

oi i ty e (1.¢%) cin o ovooind i o er.tanéiog

. Co . A% .
Li. ener_y uucicoi-nucleon i teriecio. o507 Lo welate

Titic ddoe il oLt cuoveaL—-culre

1o acticcclive apne eve. cercai. “uueric: l cucce. & L.iB

cL e
(‘ [ R

sccerdia, Lo ihie eutihors ci (Lled. 17), i Fferential
croLi £icition sor - ciawtlic cotteria Zer nin

g..ery, —ar. e poumeicu . trint i bucci.co ro:ortiocial
|
co C% {t):icre Chqcﬂi: the “rotor ..a_.itic Loril
M
IﬁL*O' £, ou__C.ot 1 E orceclic el for
[ L 1 ¢ o LLC Lﬂ-,i‘] 2
qt QL) [4 Thy (\‘)ff’f)('s.,
where woie conztunc ond ﬂ(ﬁJ is lo: .ranchul triejectery .

In bheir anclycic, iv we.. _ouud

Q/\_o\x,(—_tﬂslr

interoction
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0w LR L oBe Tt e cor_ute Ll . LilvdT guite

Maivel, accelCi.n o ¢ e =St 1ol Lo terzefion (Moloy

(Caiviic Tese It i #ovie i T.e.. 1o tiooc i dves

[

the correc oun.iua_ cirxeres vill . =..ectio.

ao~ (:+(#/,z..>)
L F - gy
Y. tic re_ 'S —€ >

0 A [dP\ a?Gy, (1)
%E‘d>t-o T"(

vhore ‘- \/_(H(}{;) ) N

(.. the otiler naid trne . litude icocld fro.. (1.C0)

ic real while tie _Lp . dicll oo dituce oo ler e

il diory, Torite  Jbke cuviouv. Lioficdldt, merce i, that
thiese teclinicues witn  henonenoio_icel Lo Tioa low
cunnot we uLud in the roion viere the re_trictiion
cuc to the uniterit; is imicervent. At thic stoge,
tiere is no recll; couvinecin  ival of 1111Le__“.e ciiral

v

ia_roalea. reiuat.

(v, biver, ence e.vati.i, KSA(:aud eyvicietry wrcaiidy

I:. the current ol cura a-_roach, the diver ence

ecuaiions oi veclor cuc eiial vector currente ore

nwoct irgortent. It i, through the _articl concervotio:.

01 (ilar currentu (¢ elendCer which coua.cei: the
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. L

civevpence of axial currentc witlh Minterpolatin_, fields'™
of pi-mesgons that e cen deduce :hysicel zfreciction

Jrorn. the current co wutation relotion. It has even

(19,20) i

i

veen shown hat thece divergence equations in
the precvence of certain vector fields which act as

a perterbative factor to the strongly i.teracting
system (modified C.V.C and PCAC) are suificient to
reproduce most of the rhysical predicticn from current
alpebra.

I have just introduced the vec.or and axial
vector currents through the varictional rincixle
apjlied to the comiletely chiral invariant lagrangian
iel

(1.3%). WwWith respect such a varistion of the fie

o

,

variables with infinitesimal parsmeter #(2) (stands
for both (5‘0“7) and {A(2) ), the Buler-laprange ty:e
equation holds (Gell-Mann, Levy Ref.14)
@- _4:1[_’)_ — _‘fé (1.71)
[ 596 26

This cores from egquations of motion for field variables

\

and is quite indepencent of the invariance of the
Lagrangian unger the local transiorvmetions considered
here.

¥rowm (1.71), it ccn ve scen inwediztel; thet

the current:

n

. defined by (1.50) and (1.91) satisfy

the divergence enu:-itions
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% |y

£ \f

’D/ﬁr [ﬁ/ (1.73)
§2 |¢

.

Thus for the invariant lagrencianm (1.3¢), we have the

concerv..tion eguation

[
o
]
o
O
[
{
o
‘—l-
)
@
=
0]
l_J
n
o
]
Q
jnd
ot

FCAC, we ushould take
account of syi..etry breaking. I want to leave the
wore thorough disccuzsion of chiral syunretry bdrealing
till later when I should cdiscuwcs chiral SU(3)xSU(3)
syu: etry where the symmetry brualing is esscntial.
Fere I werely follow YWeinber; by assertirn_ that the

sun.etry oresa:in; should Le introduced ac a _eneralized

for.. of _iow mars terwms which {ranciory lilke ¥

iy

component oi chirsal %-vector - (9,7) representution

of chiral 5U(L)x5U(2). (I have already rentioned

o

that uou-zero wmais of -~ ilons necessiate: the introduetion

of no.-i:veriant ;iou-~zans vern inte the lagron_.iaa).

rro. che cimculsicu of §2, o winrle cencidate ior

such :idec:i ma.s tori: uiil Le
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Ly tie iuentification of A with

introducecd in the last - ari.

re_i

as
A ?
QA = 'R
—
The linear fields qb are relatec

through (1.14%

which i. the
Of courue,
of eiact FCAC. 1T

by Y,

T’z 8 = _=
E——
whicl males (1.73) iato

w
=
i

ne acdition of syrietry

ot
=
o
t—
jo)

gransian (1.39)

Y oand (1.%0) in ter.

L o,

~io0i. cecay constant
thic can e uritten

9

(1.78)

T rielcs

o e T hl
to original

of

(1.79)

conventional FCAC ecuation.

orcinary forwu

pion fields

(1.60)

i aé?
akking teri /,_ )
n

becoies fully ecuivaleni to

the approximate forwm (1.1) so far zs W - interaction

is concerned.



Ly s,

The relation with the current algebra. Cancnical
fiela theory. (&1, 22).

wn

¥rom the discussion in the preceding mnaregraph,
the affinity of non-linzar reclization technigues to
the current cl_e.ra approach is clear. _ut to . how
that thi. sort of lajrungian can be actually used as
a fielc theoretical model to the current zlge.ra,
certoin comlication shoule be ret. The a:parent
a0ifficulty lierc is that we should now tal.e the
operator nature oif ficlds variablec like s
seriously and owing tec the non cormututivity of bhoson
fields and their canonical momenta the standard
argument of Gell-liann and Levy(14) rnight not apply
unless a careful consideraticn of crcering of field
operators are taken. Tor the rarticular lagrangian

(1.52), it can be seen easily that if we write

15 l . X
—_— ) -
L2 (\-+7l‘7f’)(9f"') (1.81)

rather than

it

m

and define the canonical momenta of 1 in the usual

way
P 4

c < =<7 (1.62)

a1t
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also the currents with respect to the infinitesimal
transformation
T >+ (&)
as
J
=T e (1.83)

then the ordinary operator forimn of field transforration

gll’(_é): —-C-[‘&,'éz 7._(— ]

(1.8L4)

uith

\Jl
~

9»"'[)0(’)‘“3 (1.8

is ovtained.

In fact, it has been shown by Isham(zq) that (1.81)
in which now the position of the derivative E%-Zl

is important (the pion field is no longer a C number)
is still invariant under the transformation of ((i's
(1.4). His argument is very penerzl and awplies to
wider clacs of meson-lagrangian. After this, we

nay derive thc ordinary current algebra commutction
relation amon; the vector and axial vector currents.
The form of Schwinger term is exactly sypecified.

Now at this point a rather intereuting problem arices.
Since ve have now the currents in oﬁerator form ve

may consider the spectral representation of them. 1In

partbicular, we nLay try to uverive the swuectiral function



sun rule considered by ‘‘einterg .
It can be shown thet if we use the comiutation
relation with schwinger terwms <derived from the

pionic lagrangisn (1.061), then

. (0

S P (%) fa +§€A‘“.’ da =0 (1.8
o a

- l

where§>v' and ﬁh are the wvector part of the spectral
function of vector and axial vector currents
resyectively. They are, of cource sup.osed to be
positive definite and (1.86) implies (')v' '=/OA=O
“hig is the contradictiou first proposed by Jackiw(24)
but should be considercd as the indication that the
self-consistent model requires at least vector and
axial vector fields as an independent degree of
freedom. This is connected to the problem of gauge
fields in non-linear realization techniques which I
shall discuss in the next chagpter.

In the wresence oi sucn geuge fields, vie can
construct a model of the field algebra type and then
the derivation of current commutation relation can be
made very simple. The problem of gquantizing the non
linear lagrangian discussed in this paragraph is very

_|.)\
clearly treated in the paper by Barnes and Isham( “’.

I\
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CHAFTER 2

General theory of non-linear realization of chiral group

o~

51 'The method of Coleman-Wess-Zumino and Isham

In this chapter we give the general formalism
of the non-linear realization theory.

The main idea of the construction given here is
first applied by VWeinkerg to the use of the chiral
SU(2)x8U(2) group. 'The generalization to the case

of KxK where X is any compact, simply comnected lie

(6)

grour has been done by Coleman, Wess and Zurino ’

although the wost physically important ideas are already
to be found in the earlier paper by Cronin(d). The

mathematics employed by these authors reduces to the

(25)

poverful techniques Geveloped by Mackey The

matheratical aspects ol non-linecar realization technigues
¥ ]

- . o 3 O

have been fully investigated by Isham(j).
. . (26) . . N : o
Strathdee have treated a similar problenm in less

Salam and

abstract level but in an intuitively appealing menner.
It is surprising that this '“"theory of induced
representation’” by Vigner and mackey is found to be
relevant in such wice rznge of problems in quantum

pnysics.
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In my precsentction of the materiel, I naturally
euwphasize the various relations and formulae which
are necessary for actually constiructing chiral SU(3)
symmetric dynamical model, anc skii over the most of
the mathematics needea for considering the »nroblemn
in its full generality.

Although most of the isclated formnulae presented
here are derived by the author independently the
general formalisin closely follows that of Coleran,

(6)
Wess and Zuumino in the way rresented by Coleman and
Zumino at Erice Sumier School, Sicily 1968. I was
also influenced by an attractive presentation put
. e & 1 ctrathaaa (26)
forwara by Salam and Strathdee .

Chiral group l'-.n = SUM)xSU(M) can be regarded

as a lie group associated with the lie algebra with
N

21 elements (AL, \/C.).Fnd with the comrutation
.3

relation among them

[\/; , \/"] = - C?aig Vi

J (2.12)
[A:,\/jj=‘-Cc5£AL (210}
(A AjT=-ci5e Va (.10)

where is the structure constant of SU( ) and can

be taken as real, totally antisymmetric. The



cormrmutation releations jiven here are Jjust the well
known Gell-l.ann relation fundamental in Current Algebra
and the letter A, V have obvious implication with
respect to space-reflection operation. (Note that
commutation relation above differs by the factor
i from the usual one).
An arbitrary element of chiral SUM)xSUMY)
group is characterized by 2l real co-ordinates
’ P / . - . .
(o “'v(.' (_‘p'"ﬁN) and in a neiphbourhood of identity
element corresponding to (d-_’:o 6-,/:9'), they can be
expressed as the exponential
Zidflqa'riif;%/ﬁ
A (2.2)
For our .urpose it is enough to think of a group element
as realized as an element of the proup of continuous
transformsations in a certain manifold and thus
and in the above expression should be interpreted
as the operator operating in this same manifold.
The crucial wpoint for the construction of Coleman,

(8)

Wiess anc¢ Zumino iz that the any element g of

can be uniguely deconposea as

2d: A . V-
T=e e2f ¥*

N
no
L]

Ul

s
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that is to sa; the product oi the element of "“diagonal
subgroup SUMM) (I shall frequently denote it by letter E;
HC€K4y ) and the elements which are characterized by

!k-a 0 in our way of representation. (I may call
it the "chiral part" of I4 ). Using (2.3), wc

consider the cecomyosition of rarticular elenents

24 A v
86 =€ € (2.4)

W] o is an arbitrary element of L, and ® are
real nuubers.
I+ the decouposition (23) ic unicue, we can
- . o I e /. /
consider (2.4, az defining g anc f7 a5 the
function of _rou element 4 as well az the quantity )

and we can write

§=- U(ZE, F)
9 =(3. &)

U:n the other hand, we can consider (2.5) as
the definition of the operation of the element g of
the group i., realired as the transiormation of

rzal nunker tield (%) by -utting

& §= 87 (2.7



0f cour..e, we need & concistency condition for _rouy
oreration

91(912) ~ (9.9.) S (2.6)

1or any @.,%16}(“ . YWhis caa Le proven trivially
(Coleran-VWess-sumino nef.o).

¢.)

o .
"a,z ? = g ig defincec ty the help of (2.4)

9, e L 3TV

Sicilarly, g ) (37 g): g Y is _iven by
9, e3P 3% Y @)

~~
0
o

On the other hanc, by the asscciative law of group

elements

(3.90 €= 2.(§2M)
eatxé} eindeﬁfv (2, <2§03) eﬂiv
2y % S, v”v/ 7 e% A( eﬂ/ e’W )
Lince the dia_onal elements ( @ V, Zorm a sukgroup
(%) we have

70‘/ e ,),H\/ )
e’ e =€ £ F‘

anc ue et

(4.32)e LI Qéu?q TV

Assurring the uniquenecs of the (ecornocition (2.4),

thi: should we ideatical with the ecuation cefining



=
\M

(3131)§ = %N,

'”//" ,17””|/
3'3(2 C%A-‘-‘— eg e

e %///= %;/ , {7”/: QZ

That is to say

¢

h

($.8)= (3:32)'S

(CED)

Vhen (2.4) cnd (2.7) are concidered us cefinin, the
. . o ot LR P PO > - Fal PO T
rou . opecre.tion of wwm in the field of quaatity
[ - I q v
§=(§-. ---%N'), the analogy with Wi _ner's construction
becomes a;_ arent. Ualan et al. (2.%) and (2.7) iives,

in particular,

e2hco) = €

il
a]
(2]

h(e) =(o) ‘sm-dmg- he H (.o

It is c¢leo obvicus that the cecond ecuation hoids only
for the elenent oi H, and tnat I can ve characterized
as the _rour oi elemente viich lecave (G) (in % ~field)

invariant.



\csuriin,, no.. the operation of I in field
(Z.7) together with (2.9) anc (2.10) is known Lcefore-
hend, we cuan write an arbitrary element of 4 of L
as ’ ‘A A -—§/A

A —%h, . F
- ¥ e "ge®> e
7

wnere g‘ = g %
Tien, by (2.9), the element &€ 3Q, leaves

(0) in the %.-field invariant, cnd thus belongs to
nzl\/ __2" ;A

e’gﬁ (2.11)

e Ceriting, € have

3 GS’A en{ v
This ic just recovering (2.4), but prerented in this
vay, it is ana a:alogy of the constructicon of the

hicner rotation in stuayiu,, the inhororeneous Lorentz

In the case of chiral 3U(2)x8U0(2) = K&, the
relation (2.4) has been alrecady introduced in (1) by
an exwplicit construction (1.24%). In the context of
tlie wore jeneral treatment of the pre.ent chapter the
importance of the jarameter ?g is arparent.

The aprarent resenblence should not let us thini:
that the mathematicc in both cases of chiral SU(
and the Poincare _roup are identical in the simple

viay hinted here. 1In the casc of the latter, we are
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given the four di..ensioncl momentur. cpace, ac the
horioyeneous cpace of the grouy owneration froi begianning.
The invariant subgroup consisting of the translations
gives a label to the rewresentations we are loolking
for. This is "mass'". It ie after vetermining this
characteristic of the representation thit we start
constructing the Wwigner Rotation. In the case of
chiral SU(H )xSU(#), the lack of "nomentuxr" in the
proper vense malies the construction of the Wigner
rotation in (2.11) more like an attractive way of
presenting the decomposition theorem (2.4), andé
its power for studying further mathematical structures
seems to be limited.

Yet, it may be possible to make this analog)
more profound and useful by annexing to X 's siruciure
something like a translation group. Then we will have
to define the M"orbit" in such a space which reduces
to the manihold of %=(§,-— ‘?,J)introc'.ucec'. above.
In case of KZ’ vi¢c have already scen how to Vembed!
the space of "pi-mesons'" or (%, )-gq 3,) in the

,

syace of l4-dimensional reprecsentation (7,%) of K
(Chapter 1). The orbit condition in thig case is,

using the notction of Chawnter 1.

37+ 3.8] - g5 - LE) (eonat)
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It shoula be noted that Lor higher , we will
neec the space of very higi: dirension. For chiral
SU(_)xSU(3%), for instance, 1c¢ dimensional momentum
space will be a choice(zg).

Returning to the equation (~.11), the obvious
next =ten is to construct an "auxiliary" representation
in an analogy with the construction of generalized
spinor in the case of the relativistic free particle
system(27). First of all, I must introduce ‘''the particle
multiplet! which is just the irreducible revresentation
of H.

Wve denote it as the set of "field operator" LL& '

on which tiic action of h» € H is defined as

('KKP)* =o@df(2)ke& , de H a2

¢Q> iz the matrix belonging to an irreducible rejresenta-
tion of k trunsforming as h.
Tc define the opcrstion of whole group l(n on \+%

Vie considerq/d ana an element of g field together as
2.8) = Wu, 5: ) (2.13)

Then, remembering the definition of the 'Wigner Rotation"

(2.4), we define the transformation of the quantity

éﬁd(ﬁ;)as
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(B3UE (D0, &) )

/ 7
vhere (Z ané § are aefined by (2.4). It is easy

to see the transformation law
( 7'
(J‘q/)o, = Q@d'g(e )qu =(e"¢ )dﬁﬁi*ﬁ (2.15)

is consistent as a group operation. The matrices
N
't;) are the pgencrator matrices corresponding,
Y
to the irreducible reprecentation of SU(M) belonging

to L+9

The relations (2.7),(2.15) and (2.4)

are fundamental for non-linear realization technigues
for chiral SUM) symmetry.

These relations are, of course, the result of
the unique deconposition (2.4) and in analogy with
the iigner qecoiposition, boost our Yauxiliary
reyresentation'.

Liow I write (2.1

5
¢ o@f('?"aeg"w@ (o16)

Taire the arbitrary representation of K which when

St

a.s
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restricted to diagonal subgroup SUML) contains

this particular regpresentation of 3U(N) spanned by
(P”. Then, denoting the matrices associated with
this representation of K, in a suitable co-ordinate
cystem as c;’(qa, I can factorise the matrix element

ayiearing in (2.16) as

Dupt & 8 e*)
=2 D.yte” )D <(3) Dgf(e

(2.17)

where Jl » 8 correspond to a complete sei of base

vectors in the vector space carrying the representation
g

D, widen g ,P corresponds tc the icentification of

the subsel of these bases to the vectors carrying the

representation &é of SUM) as assumed above.

Let us define the ncw quantity SDB by
"
¥, = D@, (2.18)

Then, under the action of g(.‘, k“, I nave from (2.7),

(2.15) anc (2.5k)

T, & D&
cheﬁ"‘)a@ (% ‘gﬂ)%

fom (~.17), the last expression is equal to
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Daste?™) Danrte 3 Dasrty) Dple®h 4,

= Das(@) DSPCegﬁ-)q"’s
- Dns (8‘)@-_8

Thus d;_transforms as the jiven linear representation

of --M

?(—'Ez = Dl @s (2.19)

This shows th..t we can obtain out of an arbitrary
linear reprecentation of X proviced it does contain
~ j vy %7
the rejrescutation of SUM) spanned by %
iy 3 = L (8)
'he converse i5 also true, we can ask what
sort of reprezentation of X can be constructed a.
the function
-7 Ru(Y
Up 2;_ F/u e (2.20)
where § and ('k‘ obey the transformation rule (2.7)
and (2.15) with (2.4).
we should transform according to some given

-

representation of K

U'\- ":3—7 DJ‘LS’ (3') Usz

Then it can be shown that the necessary and suificient

—~
n
.
n
-

~

condition for (2.21) weing realised by suitably
choosing F(%) in (2.20) is that the representationog

n - 5 -~ . " . e |
of SU(M) associated with LL& when restricted to the
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subgroup H = SUM). 7The following proof is due to
Coleman, lless anc Zumino(o).
As the result of (2.7), (2.15), (2.4) and

(£.20), the transformation law (2.21) can be written

as

3 En(e &, €7 ')iP
& 4

=2, Du ) RelDW,
Sp
choosing, the element hE L, anc talking the particulsr
value of % ) EEO we pet
I;ia(o) Sbgg({i)
= [>Ju;(4{) F;ﬁ@ (P )

(2.22)

e . - P 3 : - 11" o -
Since 20:_ F;-u(?)\‘-;\ is supposed to transform linearly
under K. , and also li. acts transitively on the <%
-field, Fid(d) = O viould mean
;Z; Eﬁu(??)[41i =

S0 I should look for the solution of (2.22) in which
Fﬁd(o) are not identically zerc. (lon-trivial

. wm C . s s .
solution). lh%, since is irreducible, the Schur':

1s the vhi i85 now > 4

lemma tells us that ”SGQ), which is now the direct
sur. of the irreducible representationc of ii, should
contain at least one represent tion of II which is

equivalent to ég .
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if E)u%) contains only one such representation
of h, then the constructior (2.20) is essentially
unique. The expression (2.18) is an exact analogue
of the "auxiliary fields" of lYeinberg and Mattheus-
Feldman for free relativistic particle. The coeificiants
C%gﬁémf)is takin, the role of generalized cpinor.
(It is formally of came form - boost matrix elements).
The construction of linear revyresentation of L together
with the theorem of Coleman, Wewss and Zumino described

above ic il

:portant when we consider the problem of

symr.etry breaking.

§2 ¥xplicit expressions

The three equations (£.7), (2.15) and (2.%4) given
in(§1) is fundamenital to all the results of the present
chapter. First I must show that we can determine the
explicit form of the _rouy operation on the field

’ /
of g"’ anc L{«-o. I shzll do it only for the

[92]

infinitesimal element of K, by these equations.

For this iurxose, 1 regara the group K, realized
as a linear representation in a certain vector space.
Then we can consider the A's and V's as anti-hermitian

rat ) as T4 1 (T o T 1 =Y ~ 2
ratrices. writing them (as matrices) anc ( '



the equation (2.4) reduces to.the matrix formula
@edcﬂ .‘.?’(ﬁec'z’q/’ (
To solve (L.23) in general, we may apweal to the
formula due to Eecker-Canbdell-liaussdorfi. But we
require the ceclution in all order of % but only in
the first order in the parameters of a grou. element,
and for this, we can find the explicit solution in
an elementary way.
(1} Chiral usart
I consider the case
3_ - e:aL-u%
where is considered as infinitesimal, (2.23)
becomes
wet g 3 Y
€ e = @ e (2.24)
I look for an analytical solution only aand I may

conciaer

oz’,\, O(d)
§2=3 -3~ 0(L)

Thus, I may write the above forrula as

|+ < Q:L?TS?)'% e'iid‘

- -?0’,7 V '—V%"# 0(0(?.)



Usin;

L]

the well knouvn formula in elementary matrix
calculations, we lLave, uz to the firct order in ¢of ,

LOL# Z L'Lglﬂ [—\.§0¢; -..SS‘J?J ]

a)

ol

> (¢ A ] ]

+Z_"'\’/‘C°§l7¢ [§ L’ZJ

N=d -
N

Ey usin, the commutation relation of matrices and

frowm (1.1a) (1.1¢) the Eple comautators in R.E.S can

ve transiormed, ana ve nave
9

Ll = o3 BHHELFY
a ¥ S 2 A

4+ ($3eLT)-80E3) g
2

- F¥
i an’e'}?+€‘: )?/‘

2
_Y TF¥
+ c')(/ e -¢ £
Q

where Lxi matrices I is cefined by
Fa = - Gy
- - L e

and the function Ei(E)is defined by the series
ot M-t 2
6R)-> 2 _ _ e —|

- [}
N3 ] 3
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Choosing, tne rerzresent: tion in whick the matrices

(7¢and /yr arc independent, we get the following

ecualities ) oy , -3 :F3
aé,_gg-&tﬁ)i*ﬁﬁ +9 e - ¢
2 2
(2.25)
9 -GGTY TPt ’
o =g GiFY-EGF Loy €5+ e
2 Y, S
Iror: these, we ct 3 'iF?

:F
S% . d € + €
T GliFY) + E(-CFE) (2.26)

and -F

/ [ - e
OZ - & | +e--:Fj‘r (#.27)

(&) diagonal subyroup
Conzider now g. = e‘ﬂ’V’ é "'l

The relation o - # ‘gw ~rz’/z/’
& #” eI _ of e (2.28)
sives iastecd of (2.25),
-{F3 3
0- STECEI+EITFY) ¢ - ¢
2

2 (2.29)
F? .29

=53 G- ((FY + 7’ e—CF?-i— 3
2 2

tror (2.2¢), it is eacy to see Lhal ur to the iirst

oraer of F.
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anc
§$ = B-({FT)
The last equality can Le writter as

§$ = (LF)S

P
ny
[ ]

i
Y
~

(2.30) ana (2.31) the faci thot under the

®
v
k2
c
:
)

action oi subgrougp Ii. %E field a.. well asu t~p field

transferns as linea

H
o)
H
o
o

T sentation (re;, ular representa-
tionj. In cose of K'l anc Kg s this izeans that non

linear i1.eson Tielus belhave &= tri.let ¢nd octet with

2

reswect to

= he 8U(z) znd SU(Z) svis.eiry.
The result (2.20), (2.27), (2.30) an. (2.31) is
of courze ...¢epenueut oi articular reprczcentation used

. /
to colculate 8% anc "Z since, a;art from the

-

indeyendence of matrices 0¢ and , we have neeced

§3 Covariant derivatives

I have cGerived the transformaticn induccd by
chiral :roup Kwon the field of quantities ?-L andqa
- . . . ? /
I am, of courwe, oin_  tc use these ?A and Q4 95
aynamical variavles. l.ore s,ecifically, they are

3

congiucred a the local "field veriable! cepending on
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5_ace-tiLe 2# ou. of ..Lich I want to construci the

la_rangian functional. Lut in stucyi their trons-
fornetions, we more or less consider thece cuantities

au C-nulber Tunction of '%«. Aleco we ralle an assunption
e s X inA X i

that the expression Cg for arbitrary 2 is
ieaningiul ao an element of ciircl 'art of _roun .

Yo consceruci the lagrangian nioGel with these
quantities as fielcd variables, we nited at least the
fir.t order cdifferenticl cocfficients 1%.%(1) and

i3 Ny

?/.. ) to_ether with original ?,a ana ‘-/’/, .

vow from the noan-lincar transferiaticn of §§/°

il ) . . R 3
anc q’ﬁ uncer the action oI an element of K.. given by
(2.7), (2.15) ana (2.4) of §1, it is clear thot these
derivatives do not transform in a simgple way under the
grouy Ku -

To et the guantities which generwlire these
cerivatives but have sinple transformation under the
sroup, we u.e the techniques analogous to the
construction of covariant derivatives in general
relativity theory.

’ . ’e - (26) .

bollowiu Salan and SHthrathdee , I stort from

the following dquantity

A WA\
Arqi”) Dy, (€ )9 an @ )4? 1) (252
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vinere the matrix 1) is, as in 81, of any rezresentation

of l(nvﬂnch contains the represcntation of H swanned
i) . o e , )

by(+h. It is clear, in the light of construction

given in §1, [Sr‘%a transforns according to (2.15)

i.e. in the same viar os ﬂg itself.

A,th & B, e™ ap (/I{g (2.33)
(2.52) car be viritten as
-9 =34
A = B4 +{ D ¥ BRI},
D(e“ghl-/’) %r Dleg‘”’A)
= g 2 D) DBV

g

Using the fundamental fornmula (2.4), we can write

-FOMA _S(rtYrA ) ®
e e - €?§ A 657 1Y

\a:cn

with

e-gm'ﬁ 2 (a+4) - g(o;

A fe)
e G (1+9) = S“f (e”") LPK (2).

o ) - .
I may a.sunme ét), {70«. Ol4), so that Dle §"‘M)
X'QIID(Q?u»A> can be now written as
, (@) . (e
. 2 gﬂ -+ ~QV:%W-'2 ‘
29 g:°

= ¢ 5?4',

=0
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Thus I get

A : 2 MW
Arth = Gt + °q[°‘:""§' la"’ qj"

()
+b0§l/‘397 I-g:o "Pf‘

) g;_?r(e_’?wﬁ@““w)‘) "0:0

N (L J
-"hé—-yr (e lny)), /4(1) (2.34)

vhere rv/”and J# have the same meaning as in §2 for a
yiven representition of |, ,]).

Wwe congcider the transformation of the first term
of R.I.S. of (2.34) h.lc‘1 contalnsg q) Under PQH

% {e ?.U)ﬁq/} (]%) ___) a“ (e JQII) A&‘-}/) (1+3)
N St -
g{;"‘g('7 ¥ 3)3(4”} (X+y. )

from (1.4)

Y _$
2 ™G, vy

_ 2 ) ,71,,\/ , SA .
93,.(9 f(e J(e %)ﬁ(; %)

u\l 2 _,?uh
= 94[( e agr‘f( ’q/),a(l“?)}
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lAA
Thus the cuantity ~2 ) ) (1*9)transforms in the

3r
same wWay as Lk* under t(u . On the other hang,

clearly this quantity is independent of the choice

of particular "auxiliary representation" D of Kn

S0 I shall put
Tl (- 2 ( ?um(tL [14—'9)""0
=9,i£.(1) +L%,e 'g"j”'r?@)), oq’f‘” (2.36)
. "9;"}& + L"'v/z (—-r“?mi,.,%(")

where ﬁ,o &5 the sawe matrices ap: earing in (2.15) and
call it the covariant derivatives ofqa .
Sinilarly
D B 94

3 (e '/"3‘"‘;} )?%u’r‘a)
- ‘5;"

- ‘%‘_ (e"'gci'))-rq 3. §l1+g));
- r.fy) 2 ﬁﬁ%’?(ﬂ‘a))\f

5} 29

%

"

Thus if I nut

- a ..?ﬂ)
V?(z) sqr ¢ ?(1*3), (2.37)

thenvr %())3.150 transform covariantly according te the



representction of H {6 which % belongs.

:7,,?1)) (e‘”) Vf 1) (2.38)

These q_uantitiesq,q s Vr ? are just the.generalization
of covariant derivatives derived in Chapter 1 for Kz
and tne, coincide with the result of Chapter 1 for K‘L .

I can cvaluate 9,:4 gb’and 9,.'0 ’7(0' explicitly
as fol::_’o;;n&’.k %oi"g)side‘r/]/. 2 ‘3,?(”

= D(e-gwﬂ) 9 D (egnvh)
R-H§ = ,D(e 'gu).A) D( €§nf¥)ﬁ) |a=o
9 { ;u)d er(i’u»a,; '$")eA

= Z,—L [naﬂ”i [ﬂv‘{ § cv‘f 3] -]
ws) N *—/—‘v-.—“—/
- £a%f € (iFE)+ E-1FD) |- A

Thus, compzring the coefficients of (/ and ,f,

vie et

(2.39)

Nis) g3 BUR) + &LiR)
Jr ? lgw' 9[’3 9

9{1 "7@)\y=., =23 SUR)-GEI) (o k)
2
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Thus we obtain the followin, cxrreusion for the

covariant derivatives

q%,(3)=%%(1) v e "*ﬁ ,? (E(IFi);E(‘-zﬁ?"(z_w
J

\7[ %: { _1)-; 9/- EJ (JJ(E.GQ)-;E".{F?)J - (2.42)
JL

The expression of covariant derivatives piven in
(2.36) anc¢ (2.37) can be readily peneralized to the

higher corder uerivatives lilke

,_.,,LPH)

_gu)fp)d mﬁy)i (2.43)

-

9&""

"
~FU)A _
‘7»1 " ?U)' e S.(2¢ (2.44)
l P gr- "‘ . r." 3& 3)
@30
To evaluate there fTorms explicitly, we neeé the higher
order cxransion ofi the matrix like

o- 3A e;(§+8§)-0¢

used in deriving (z.41) anc (2.42). The followin

03

formula proposea by Feynman<a9) ig useful



where A, & are arbitrary n qu matrices and T(....)
means ordered product vwith reswmect to the rarameter
t. Using this u. tc second order in B, I can derive,
for instance. A A
Bolle =03, +if A0+ ihrrt e +ifwt )
whoo gL =L F(ELFR) - GI-(FF))
Bpv=t 23(6(F3) - BU-iF8) ) (.a)
Vv § = 39 BB+ EFD)
+2 (ol iF)-fy + 9u-LeF)-fp )
where
- \7 / - - F%
A=V 3 = £ 9 F(66FD) +6-F5 )
(2.46)

Since we have not found yet hou to use these Lizher
derivatives oi fields, we do not consider thenr any

further.
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vie case ol chiral 5U(2)xSU(z)  (i.n)

“he fun.anental relation (2.4) in cocse of chiral

Mo

5U(2)x8U(s) can be written in terms i (4,0)@(0,7)

[
re,resenci.tion as

etﬂ‘d/z e-::_"{‘-_%/z: €:£T=372 LT 2

ifor cliral part of the g rour. This ic just the (1.24)

of Chapter 1. ¥ro:n this, it i: clecy inat the guantitiec
introcuced here oo ;arcreverizming the elements o

chirsl part of the sroup (a G/L) exactly corres: onds

to the %A introcuccu in Chapter 1 ac varsneterising

om— - A -- 4 ’ / -

IC -fields. 1. Chapter 1, _?ﬂ ere cxiressed as

4

certain non-linear transiorr. of JL ':. Since, wy the
ecuivalence zrinci:le, it is _eruminsi.le to recefine
Physical rion fielas with winy non-linecr transformaticn
(without cervivatives), we nay '"c_§4 instee.” ¢ Tl.oo
o Vodon-fields" in the Tield theorctical calculeation
of CJ-nazrix ecleienti. In the present chapter, iie have
treuted the _enerul case of I = SUM)=STM). Tor
N=5, we _ct "octets" (5 ) transforiing as the

<=

(U) dimensional revreseniction of SU(3). In what

folleuso I chall use tihewe $p as tuace zhjoical octet

sseudo cculor neson fielde (whicl. coatcin pions; and
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vill not scel the "min ler™ forn. corraciondiug to

o
o
bt
—
1]
N
<l
[
L]
L

o e rovlern of fincii_ the rarallel
treatment for Keym2 3uith leinber, 't and schwinger's
methot Tor Kt hac Lee: studicd by i.cfarlaine and Eeisz(BC).
Tut the peneral resultr seer. to be very cormliccted.

It ic ezs, to see tilot the jeneral non-linear
trensToric tion fornulae (2.20) and (2.27) or tle
es.pre.sivn of coveriant cerivatives in this chapter
recucei;. to tnc faiillicr e rension of ‘eirberg :iven
in Cheyter 1 in the case of SU(2)xSu(2).

For ins.ance, consider (2.2%). In case of chiral

sL(2)x8U(2), this reduces to

- =% . . -
where U'= (J . j’i J ) 15 the gererator of I=1
reprecenti.tion of SU(2) ;roup and

(J—c) €. o3k =1L,2,3

- = - ~-_& L., ), ’ )

Jh j J
The gimplicity with SU(2) is that J+% satisfies the
characteristic eguation

(;_r.__%_)i 7.3

B < 2
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32
ety _ )

7. d(:TF) = ——=

’Z - - ﬁi e:v}"‘_’, '
) ‘t‘am(\ﬁ;/l

' £}

'"his reduces to the familiar form

¥rom this,

{wd

4LCT.

of the "  fiela"

ul
9]

is cefined

am - (P g
5
But this is just the parameterication introcuced in

Chapter 1. In ter.. of J natrices,
- 3 ¥
QIL-) = e - -
3.2
e ="- 4

‘his corresponds to I:% forwi given in Chapter 1.

AT - € -

They are, of course, all equivalent.
. . . ! . .
The correct transformation of MA given in

Chapter 1 are guaranteed wecause of the similarity of

(2.4) to (1.24) in case of chiral SU(2)xSU(2).
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CHAPTEL 3

Local chiral sy.ietry and paupe Fieldo

31 The relevance of the gauge fields

This chaxrter iz the continuation of the Chagpter

2. I start with considering the yroblems which arise
when the transformations of K, over the field quantities
are made stace time dependent. Thiz leads to the
introduction of paupe fields in the ordinary way.
On the other hand, for the non-linear realization
of K. , this is not the only way we can introduce
gauge fields. The transformation of "linear" fields
4& , givea by (2.15) looks very m.ch like the ordinary
SUM) transformation with svace-time dependent parameter

/

(M, This alre.dy suppests the introduction of
SUM) gauge fields. In his paper on the noi.-linear

-

realization of chiral SU(;)xSU(E)({) Weinberg has
introduccd vector jauge fields (”p mesons") in this
way and constructed a lagraqgian which ic completely
invariant under the chiral transformations with constant
parameters. It is razther nice to consider the vector
pauge fields as arisin, from chiral symietry instead

oi conventional local SU@) symmetry. In the case of



the latter, the sy.letry is always brokea unless ihe
nass teri: of the gauvge fieladas is absent. ‘einberg's
construction does not reguire the axial vector mesons
as the gauge fields. The role of the axial vector
fields in a chiral symmetry scheme is not absolutely
clear even forpgetiing the experimental uncertainty
about their existance. 1In the aipplication, such as a
famous culculation of electromagnetic mass difference
of pi-mesons, they are given an ecsential role(za).

But this is always tied tc the soit meson arproximation
and to me it is not clear if the axial vector exchange
diagram could not be interwreted as certain limit

of gseudo-scalor meson exchange diagram 33).

Irom the point of view of the consistency of
chiral lagrangian method as a field theory, we have
already seen in Chapter 1 that we need at least the
vector and axial vector gauge fields in addition to

essential RS meson fields to aveid the contradiction

of zero spectral function.

82 The local chiral transformation

I have determined the transforration of the

field guantities both “linear" and "non-linear" (as
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well as their covariant derivatives) in Chapter 2.
Now I w.nt to consider what ha;pens when the
parameters of a proup element depend on the co-
ordinate (ﬁ}). By attaching; different elements of
the group to each space-time point, only the
derivatives of field quantities will be affected,
and thus I should determine the transformstion of
covariant cerivatives V% and%(’»under the local
chiral transformations.
Congider the first orcer variation of the
P C L. o ¢ hY i .
field quantities ( §(])or kl/( 1) ) under the action
of an elerent of local chiral group where now the
(infinitesimal) parameters of zroup are made dependent
of the space time co-ordinates. 1 may write
S OX- AN . oy

SF() = ZL Ve X5
vhere qn)stands for S or fields and /-
there ({ 3 (3) (1) s C
stands for the gsroujy parameters.

Then the varistion of derivatives are
- i !
[ ' — - - - \Z)y fx 7
50.§(0= 2,9 ¥ i)+ 2, Je Yo
?
+0(f7)

where Y. = 9 X

/L r ;
Writing like this, I should azsume that the space-

time dependence of ,roupr parameters are smootih enough
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so that we may consider c%»I}(I)as being ''small".
I call the term proportional to the derivatives of
the parameters which arisez from sypace-time dependence
of the transformation the local term; S@r -F th .
and the term independent of the derivatives of the
paraneters i.e. Za’L X: y the syunetry term S’a’.{)
since this part has the sane form as the variatioﬁﬁﬁw
under the transformation without space-time dependence.

Thus, I write in genercl

598 8,75 + 5,7 ¢ |

At Sot

1Y = 6% Y, 8im Y,

Sc}sitnifies that the infinitesimal variation @ «..

3P

is due to the operation of group element g. In
particular, I am j0ing to consider SH"" and Sdk oo
Gue to the infinitesimal elements eﬂ\/ and Qd/’
respectively (with the notation of Chapter 2). S?”Wﬁ“ﬂ
is, of course, given by (2.35) anc (2.38), and I have
to calculate only S‘J"nﬂ wvhich depenas on O[,o’(l)
and 9rﬂ>(‘7 ]

(a) V?_i%(’x )

From (2.31) ancé (2.26),



76.

S = - ({F%)
iF$

-iF%
04% . & *C

& ({F§) + &i(-(F§)

50 it can be seen that
&mﬁmﬂ=%@4m§> 5.2)

.3)

\)J

F3
94 (7 ?)’ -9 £ 7 e
[ ™ &l d—‘%)+E«(-~F§)

S}%%is, of course, ordinary derivatives. Futting
(3.2) and (3.3) in the expression of Vr% given in

(2.42), I get

SHVr%‘ "){g(e‘rg e‘;}J 3.4)

Yoe
Sa,
(b) U gl/

Let us first examine the transiormation of

-~
Wy

‘ , ( CF3 ~IF§\
e =4 (674 € ) (5.5)

avpearing in (2.36). I shall call this quantity

after Coleman ana Zwuino, since this is a rather
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important quantity together uith v;% .
By substituting (Z.2) and (3.3) into the expression

(2.40) of @r, I will get

_ NS B o o
gH(_s,,L -lope™+ei2) G

é‘“@rlyf— Z_Pq;roz E.r.,:f,?)_e,(-a:?) C'elﬁ,,,g"‘ﬁ) (3.7)
G FE) HE(-TFE)

Fror the expression of covariant derivative (2.36),

together with (2.15), I have

% 4 }uq_ - ( ".Qrozlllq. +35frl)- /{‘f (Lf (3-8

Substituting (3.6) or (3.7) as well as the expressions

/
of (7 (2.30) for Ou or (2.27) forSd . I get

S;'Vf%,_: z'%g (éF%-p €":F?)u4\ (P (3.9)

and

] FY O -iFh P
&.qu)lk (9 (')t (3.10)
. 2
(3.0), G.7), (3.9) and (3.10) give the required
transformation law for the covariant derivatives under

the local chiral group.
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B3 The gauge fields

The simple transformation law for the covariant
derivatives can be recovered only by introducing a
set of gauge fields.

- . . . o (B) .
Following ¥ess and Zumino in the case of
chiral SU{2)xSU(2), I start by considerinyg the gauge
fielas for the ordinary linear representation
formalisu of group k§ . The construction of such
rauge Tields is well known since the work of Yang and
Hills(Bq), Gell-hann and Glashow(Bs). In the present
case, vwe have set of vector and axial vector Tields

. N
(b}z) Cﬁ:);w with Yang-kills type transformation

under the operation of the infinitesgimal element

b | Sl = LT O + 29,
Sh‘qr:(«:F'ﬁ)ar

(3.11)

oA %¢U}=(CF¢)QT

(3.12)

PraBe)
N
o

: . !

Suay = (2 FR+ 4ok
Except for the derivative term the above transformations
constitute tlhe reducilkle represcntotion (hh I)ﬁb(f,hl)

of Kh.
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To make ther useful in non-linecr ccheme, I have
to convert them to the guantities transforming under

s
the rule like (2.15) with non-linear parameter i?

¥or this, T will try to use the relation between non-
linear reculization and lincar representation of /<h
discuvsed in Chapter 2.

I is convenient novw to firust comnstruct the

irreducible components as

(_]2}@_._) = U} + ar (3.12)

: 7y - | (3.14)
G (R =0 =%
Apart fron the cerivative tern, and

trancforr. under the infinitesimal elements of as

ot Q-(DL?(’" = (CF-/) YJ (L)

Sa LL'(L.)),,F (Fa) FeL) M
oy T (R)a= (PR TIR)
" W /K (3.16)

Sa QC(R)I,.Fr(—CFJ)_‘k(R)

Frouw these, it can be seen that the "oost" matrix

A %A)
’E>(e discussed in Chapter 2 should be taken as

f.’ﬂﬁ for S['(L)and Q}(P) respectively.
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“lLus by 'antiboosting' the linear representation ar(L_)
and &T?)accordin{: to the discuesion of Chanter 2 §1
(cf €e.e (2.10) to get a non-linearly traansforring

. . - - - s - . . P . os - VRN
object, I ar leac to cefline the followin_  fields ).

')(r_f q_) ana (Xr ¢ ( R)

X ()= e Peop vap) 3.17)

fy]» (R) = ech(O} -'ar ) (3.10)

e syuietry rart of the transfornation of tihese

guantities under 3(-:‘(.. is cleerly of the type (2.15)

Sa’Xr(L)L?Jma(:F-’y‘)()/f () (2 .19)

o, ..,,’

I have alrecd, anticiiated the usual zarit; assijnments

:(CF-T)’)/}, (L) (%.20)

with the fielas Uf and ar . 50 tue quauntities /)(/b-((_)
and W}(R)have no deilnite yarity. The fieldz vith

definite warity ere cefined as

"X-[i = (X,(L')i,Xr(ﬂ) 5.
! 2

Ut
[A¥]
-
~




Iotorme ol owlid alOF YT a,, s - Cio. Luidte

Liier TLe celion ¢l Liu 1oun k,, Ci.LTTy

fiiale Lo ntion o q91 cre o sven b (0G0 med (CL.lC)

= o
— sl

8g -')('ffl-.—. ((F-m)NE (.oh)

L te.c olier nenc, . Yloc 1V powt of

tne trenciorna-

: . e .. . N
Lien cii. te o.tainco Ly osuvhotitutin, (D.11) wad (CDl1D)
icte (Lelc) i (Lez )a Nt

5’:1’)([«'*),«:_;_9”3 et e (.25)

+ by -iF%
Sd (XI’ qu =19 € Fg; e (5aiih)
2

Lut othie Jor ol (Tezu, wnt {e.2L, wre cioceil, the

acoitioral. itcior L o earin, iu the triaclowra.tion
0 coviriunt (eviveviver under local chivel LU( )
(ev)y (Sovsy (el cnd (et2)e It i mor wrivial
1o com.truct il coivoriant guantitics uncer the local

cuiral ticoifornctionn. whuc i1 I difisce



J%% = Vr g - S'Xf (5.27)
Wq’ = qu/-ié‘,(%;'/t‘)q) (3.28)

then I will heve

S @ 3) (,oq =0
%Q(qu’))j,ﬂ = ©

Sg (Df%m) = (F Y (Drgm) (5.29)

. N ) )
d (D M) =Y (D.G) 5
g (D40 ””r” (3.30)
viher n/ M X
vihere 7(7)':' (‘}, (1)
The substance of tue foregoin; cdiscucsion is already
fully realisec¢ by Weos anG sZumino for X.. But it is
fa
due to the simpler cndé more ;eneral realization discussed
in Chapter = that this elementary derivation could be

reacdily arpliecd to eneral .

85 Covariant i

To construct the chiral invariant dynamical

rodels with a local lagrangian functional sonme further
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covuriant quentities besices a q; or‘&f 2re neeced.
(a) Covariant curls of vector and axial vector fields.
In coastructin_ the lagrangian, the lineraticzl
ter.. ci vector or axial vector fielcs should be
modifiea co that it is invariant under the chiral
transformations, anc for that I need usual covariant
curl of Yang-l.ill fields. wince this kinematical
tern is not troublec by the presence of non-linear
quantities, I may azrly cirectly the technigues of
Yang and hills(B;’Bs) to linear fields (Up, af ).
The irreducible part of (3.11) and (3.12) can be

writteu as
SQ-,, = (F (Ef +\l§r?,—b/ (3.31)

with some sroun parameters (rl -- -fM) . (_.E/l are
the cawme combination of ﬂr and Uf which o_peared in

(3.13) and (3.14). The corres:oné covariant curls

C%tl S [ q@P,7d?% ]C
=9 lI_rf-Dv(F-z-g @" -4) Qfﬁ“

Rele-o- M
LWriting (3.32) explicitly in term of A, and 0 , and

(53.32)

again taking the parity eigen-vectors, I get the

following covariant curls.
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(;;,w: A0 + HG WS # 4 LFOY 2.53)
-~ .- U;I
C.‘.rv =?rqu_,ov6(’_ -f-g{([f-(:F)ﬂy""ar(u‘")&} (B-BIF)

I X . . . . "
G’rv are the cuvariant jeneralization of tne?r(ﬁl‘a/()r
and&%ﬁv,9ﬁ7 neeced to construct free lagrangian of

vector and axial vector fields.

(b) Covcriant curls with non-linear transformations.

The ty=e of linearly transforming curls discussed
above it convenient when we need not consider more
complicated coupling or gauge fielés and non-linearly
transforming fields. DBut when for instance, we want
to discuss the "magnetic" coupling of gauge fields to
non-linear type "Daryon" fields, we need the covariant
curls with similar non-linear transformations.

If the general techniques used in introducing;

above 1s applied cirectly, the quantities like
N -

u? -;F% - \',Ff___ "ZF?
Nt Gh eret | GreTFe
f f I 2
are obtained, and they do transform like (2.15) as

< 4

2

required. liowever simpler construction is possible

without further introducing non-linear factors like
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let uc consider the quantities

BN g
¢/ "W*“"??% (5.36)

) + . By -
From the {ransformations of 99 given by (3.25) and

W

(>.20) and those of 6kgiven by (3.6) ané (3.7) under
local chiral grouwn, it can be seen that the transforma-

. . At . 5 s - .
tion of g¢ under the action of the group is

e - an/ 1-. ) ! /
Y = o ' ‘
5‘39 (M= ({7 "7/’@ Mtz 2/’; (3.37)
As i'or%-a it is juct the covariant derivative ‘?%

for local chiral group defined in (3.27). Thus
3 j e - , -—
53,&).(71)= (cf-"7)¢/ (7) (3.38)

If we apply Yang-Hills techniques to (3.37) then

we will immediately get the covariant curl of the
vector fields and this is enough for giving, for
instance, the invariant magnelic moment coupling of
vector fields. UHNevertheless, it is sugpgestive to
treat vector and axial vector fields in a more

(4

symmetric looking way -

If I cefine the quantities

(L)= 47 +
hi-gh-
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then the transiormution of the fieldu cerived from (2.37)

and (2.58) are written in the form of (3.31) as

& (EYV o+ g (3.39)
) gg<i} = ( f'?)(¥f~’+ 6_;%'67 2
where Q,_, here stznds for ?(L} or ﬁ-’ﬂ) and /7/-5(7’/3,5(11)

with (2.4) and (2.15). From these, it can be seen
that the forms [‘?}. © , ¢v[(—)] and [¢7- ()Z), ¢,, (R)J
using the notation of (3.32) are the required non-
linear coveriant curls.
hApain taking the linear combination with
dcfinite parity, I obtain the following covariant curls

/

G <=2 AR FLIN Gose)

G{/;:’%’/’:94?;‘4’?{‘7/'\(21‘-%'44/57;7:)4&0'* } (3.41)

Cqm of course triensform with the transformation law

(2.15) under the local chiral SU(MWxSUM)
/w = (tFY°) CI/“V (5.4h2)

'he tranclormation law like (3.37) corresyonds

to the “einbery's roint of view for the ouge fields
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(/)

in a non-linear rezlization . (5.37) is valid

\‘I

indepencent of it the transiormation is co-ordinate
dependent or not. If the vector fields with (3.37)
re used to nerely replace non-linear ﬁ% factor in
the expression oft7v/’to keep the covariance under

constant chiral transformation, this is just the

Leinberg's cefinition of vector gauge fieldc.

g4 The relation petween linear and non-linsar formdf

gauge fields.

In 83, I huave derived tuoc different types of
covariant curls. It can .e seen that the 'hon-linear"
type (3.40) and (3.L1) can be obtained from conventional
the linezr type (3.33) and (3.24%) by replacingd; ,(Qf
with 7 Q defined in (3.35) anc (3.36).

Now I shall show that this relation between 9? t
and Ur /rexyressed in (3.35) and (3.36) can be
interpreted as a local chiral transformation. For this,
I consider the infinitesimal gauge transformation
(5.31) which is obeyec by irreducible components OT'tZEP

=(cp-sl)g@+7;farsb’ .

3.43)

Let us try to solve this equation for finite value of

'K b, inteyrating it. This can be done by conszidering
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the group operation alony the one . arameter subgroup

é U{}'lt‘, (t is independent of co-ordinate). Then

(3.43) will be converted to the ordinary differential

d .
LUACR DRSS

with (I'(c Q’— |
e bhOlld find g(g)(f/:, as Q).(I)

r-F can be diagonalixed by some

(3.44)

unitary matrix as
Y
\J)w
Putting o
vhte)=%t)
vY =T

AhS o pC Lo 7t )
_cl%t = AP ""y'?//'_’ (3.45)

(No sumiation involved)

I heave

The solution of the last differential equation is

¢(t)—d L) + 7Tt o Ao
c},f(:)-=?;‘(u)+(e“”‘ :)m}(v)’fm AT) fors
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But the latter is regular at ‘\; =Q and reduces to
the former if Qagoes to zero. Thus the solution
of (3.45) is 2 .
)= 3 O+ (E =) B9+ =, 9T)
Fo=9 A=y

or

T e CAi_ ¢ -
C}}U)=e ‘/;(o)+@:,\;' %9,7” (5.46)

Transforming back to qqpbg the matrix(}d, I get the
sclution of original (3.44) as
&0)- ec”glf +FBCROPY G
where the matrix function éz(z) has appeared already
in Chapter ¢ and defined by the scries expansion
of (Q%f.i)/z
Thus the finite gauge transformation generated

by the infinitesimal form (3.43) is

LI} E.Ii. e“"’@r‘ + ?’)‘_— E(EF--T)QfI (5.48)

Ap.lying this result to the irreducible components
(3.13) and (3.14) i.e. QETr(L.)=U? +€f/, and #{L’):Uf—ar
with the element of the chiral part of the group;

d=€ A0 1 et

M - - 4 R = L
1) &S @ qu 7 6 F)E)s 59)
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A o

13)

\n

JF’@ (B +3 86FD3) .
(ef; 515 and 3.16)

In termc of the parity eigen vectors {7 and ar

r
-A$)  _ft F§ o-<F F?
e - e +€ vr - €
U_r - 2 r + 3 r

-3 { B1CTF) - BEFD} 3§

these can be viritten as

-AS -F% ; ~{FV
o eiu)_F en +eF+€F%ar
I . 2 i 2

- LB C-F)+C(IFS)}D S
Comparin,, the zbove recults with the expression derived
in Chapter 2 §) and 8§85 of the present chapter ((3.22)

and (3.23)), thece are seen to be equivalent to

-3}
Ui f___,’XF ‘—-3'- Fr (3.51)

-A-‘Eu)

Qr - ?'?. \?E (3.52)

‘thus, iron. (5.3%) ané (3.36)

Kr A { 3"

g - \y

o
W)
W
~
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L . . A30)
ihe srecizl chiral tronsrornation © is
just the inverse-bcocost opecr.tor utilizcd so much in

Chepter 2. Butr here I am taking it as the loczl

chiral transformation anc at each srace-time pointfxr

. <>
I toke corresponding rarameter 3

L)

Thus, in particular, beside the usual

-A-S0V <

e (1) = 0

I can also write
‘A‘g(z)- gj = -
e 9r|. --r'v (' )_— O
''he results on covariance under local chiral

transiormatior

in 2 of the present chayter coulcd he
derived in somewhat simpler way if we utilize the
relation (5.53). For this, I shall consider a simple
inveariant coupling of fielde as I have done in
Chapter 1.

Take the "linear" type "baryon'" field (+Q
described in Chapter 2, §1. Thic ic associated with
some irreducible reiresentation |)of SU(). Further,
let us avsuume, for the sale of siwmplicity of notation,
that it is also an orainzry Dirac spinor as in
Chapter 1. The.., @5 has becn shown in Chapter 2, §1

(also Chapter 1, g3), the new fields

¥, - et ’&)a/‘q)/« (5.54)
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trensform as the reuresentation(i,0) ®(0,D) of chiral
SUM)xsUM) . Fror instince
WA
J- ™ e(u.am- ‘k
—_

Then the following cournling

Jm= /(-EL], (9[ __;??(UF",JCQF).) @ (3.55)

is clearly iuveriant under local chiral transformation.
(rhis is just the ordinary covoriant cerivative for the
rerresentation of chiral SUY)=SU%)). “hus,
trancforming the fields involved in (3.55) by the

e A3

local chiral trunu:ormation ith

q_ . é—c?g)drsp- - (_P

- ;A§2,>%'" ' .
%‘L __)ﬁr{e(f ) Q’W}:"H)

U} c}f*
—
o d-
[ [

T

et
Vi A
o= PN i G g) P o)
[ F=r
yron tne iuv:iriance of (5.56), T czn conclude ac in

g4 of Chapter 1, that

(998 #) P



N -
s (¢ Cf/ )¢
are coveriant, anc¢ frei. the covariance of the sccona
fori,, the covariance of ¢: itzell cen Le concludeca.
This ig just zhowin_ the covariance 01"3/_\}/ ana Dr%

civen in (5.78) anc (F.27) of §3.
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Chircl invaviant la von_ians

81 The la -:&ngian oo bre curreuts

In this chapter, I woulda like to a, :l; the
résults oi the prececin; chrapgters to construct a
feu exaryles of chiral inveoriint la_rengian uocdels.
Althourh these rodels are chosen with thc arpliccotion
to the wetual phycvical mroclers in nind, in the
srecent charxter I shall diccuss wainly
structure of these lagrangians, and lesve the rnore
tractical problerss to the next chapter where the
detailed c¢iscussion of how to breai: synietry will be

Liven.

(a) The lagran_ ian and the currents without the gzauge
fields

The simplest exanple of o chircl inveriant
lagran.iaen is one with only the wultiplet of uon-
linear fields (é?l.--- Eav) which is, in Lhe physical
case of chiral SU(3), icdentified with the octet of
pseudoscalar resons (T[,I(,‘% J. Consider thc chiral

invaeriant lagrangian censity
Q ad {2 (L \
Le = L 2, (€ ta1)
.§ 2 P | ( r )
where \7,.% ig the covariant derivative discuzsed in

Chanpter 2, and a it a constant. (Ve use the netric



. . - , r
conventlsn Eo0™ 1, Biq 7 -1 for i=1,2,5 and 7:3:'%_9
=20lao":2‘753; ).

L s

(4.1) is the generzlization of thc pion lagrangian
(K,-,‘._ (1.52) discussed in Chavter 1, §5.

The vector and the axial vector currents are cefined
by Noether's theorem vwith rezpect to the infinitesimal
local chiral transformations

g-.— C’SF")'V’\., ’+SF/7)'V
and )
,-
9 . 5~ 1+ S A
Az in Chapter 1, B85, I have
pis - &L
/ sa'p: vector currents
pio _ 5Lz
[~ $ M

By using the transformation laws for given in

axial vector currents

(3.4) and (3.5), I get 1mned&ftely
V/v -a. e’ Vg (k.2)

:F3 -3
e + €
Ap=-a 2_*° pg o

Then, comparing thel. with the original lagrangian

(4t.1), I finu immediately

[g ‘ y” +A AP

This is the eztention of the result found in Chapter 1

g5 (1.59) to chiral SU@)xSU).
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Let us consider now what will happen vhen the
arbitrary SU@#) multiplet (qé.) transforming by
(2.15) iz included. I take the simplect model
lagrangian with ecsentially Yukawa type couunling of
non Hnear "meson" fields to this multiplet ("baryons'")
o[f.’,lr = £ ('\7r§)z"’q/\:(‘:rr\7r""')q’.
-+ (q»/ ¢rl Jr"(’l %\7.‘__% (k.5

where are essentially C~G coefficients. For instance,
in the case of the chiral 8U(3), if we consider the
4+

coupling of octet p-s mesons to octet -

2

baryons with
BBl Yulawe coupling, t has the well linown form
& o

A - : :
= (=) F+ dD° = Lz, ..§

The spin of the ~fields is not essential

.y

although I have taken it for the ordinary spin =
dirac spinor to avoid unnecessary complications. To
édefine the currents, the transformation laws for‘??)
given in (3.9) and (3.1C) are needed. Taking the

variation of (4.5), I find

Y —3_3%/1
50 - Y -
__s .,F-} F 'L"?_ N
— [ o __e e e
=-fa € 73 £ Fhty
+ ../ e‘F'g -T-'Sh A




A, = ._8’£
r Fi T s~
-{ C‘ +€ \7I§ e -e L//Sl

+6 L__Fs-;_‘? Frrrt ¢}

From (4.6) anéd (4.7), I get the following expressions

(4.7

for the bilinear forms of the currents.

2w
21 ] . .
- ot \7'§ (e-Fﬁ__.e N3 )4 Vrfé-
Y 2
S c’"Fj ? Nr
+ Ny (C e

Y Vi PR
I 2 2
. ES £
2/ NS ( e _e ) v
2
v o (4.8)
2. A AT .
= e;F-_+e-‘.F _
=q1vl_§( Fsz )Vf‘?
ez . ~iFT\2
— h/r ( - € PJ

CTJZNI PRI N o~ iF8 ZNfT
[ 2

L C-i e
2

F3 -t p
_7_QV[2 c e —¢c N




' Y -FE PR -
.+2(,/Nr e ;e e :e Nt

. (4.9)
. -iFgy2
+2qqlvrf (e‘F3+€ 'Vrg
where I write Al 2 -
M GOt Y
TR A

Z (ViVT+ ACAT)

= 0’22V +24G'N VR

C N T TPL A 1 ¢
L VTR A AT (VN T+ NN
-2 GV +q/MVE

Covyaring this with (&.5), I get
Liy= G QLY M)
+ /e AFS L,
+ 3 (v i -4——ArA ) (4.10)

_a gt 1 5‘2. sk
2 (MVHG M N

or

This is the result stated in g5, Chapter 1, for pion-
nucleon lagrangian. BSuprose ve add the aduitional
L-y0int contact term(13)

+2 (N G VS NTT)
to the original lagrangian of (4.5). Then the

modified lagrangian



; e
L34 = YREY-M) Y 1)
(16)

is of "Sugawara form" except for the clhiral

invariant kinematical term of 4/ fielas.

(&)

{(b) The introduction of gauge fields

As 1t can be scen fronr the results of Chapter 3,
the chiral invariant lagrangian can be made invariant
under the local chiral transformation by replacing
the covariant derivatives \7,.? and Vr (‘, by D’. 2
and flfq/of (3.27) and (3.28).

L (2%, ¢, g @)

—"o[ (p,,;, ‘-/’: P,\.}/) (4.12)
3%-v3-3%
=Ry 3R
{>;-+,')&’are dGefined according to (3.22) and (3.23)
in terms of gauge fields c‘/., tJ'r and non-linear
"meson" fields .g . FEesides the rerlacement (4.12),
we need to introduce a kinematical term of dynamical
variables U;, ana Qfa.llich must be itself invariant.
Starting frowm the chiral invariant lagrangian
cfg_*.(h.'j), the replacement (4.12) induces the following

change
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Ly (RE, 4, 3 )
‘“’0(:%&(\7; 3, ¢, % Y) +AtAz )

where

A a2 AT % AN -0 w7t

<f
Az=3‘f\/r’x
Using (3.22) and (3.23), I can wllte it as

2 <F3 ¢ -2FS
A,:a_zg_.(xrfx 9{ e Y AP Al S

F3 ; ,c‘-‘;
~4a/{y €P-e” +q,e‘fi+_ze_’ }fo
_aJ FY _-FE -F% r

A, HU—[ e +e +dy e'F € }I\/

And thus

AitAz = _J&-C‘r W’r

oiFL, P
+duli-a ___—&—eF [2'—(1/ : .,ie ’Vfr
+ PB4

iy }

FS
+3a7_q €F-£€ f? q g N(

iF3 -:F ¥
+ e '+e N }
2 r
Couparing this with the expressions (4.{} anda (4.7)

for the currents, it can be seen that

A:+Az=f§2‘1,’7_r+9/(/"l/r +“rﬂr) RS
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where Arand \/r are tne sane functi-nal of the fields
?; and LP as defined in (&4.6) and (&4.7).

The invariant kinematical term can be constructed
out of covariant curls discucsed in g3, Chapter 3 and

can be written as
/ + ooV - sV i
o[M=‘é(G’AuG+ "f'a’myé F ) (.15

If the lagrangian is constructed out of (4.13),
(4.14) and (4.15), it is completely invariant under
the local chiral transformation. DBut then the field
variables oq,and ﬁ,can represent particles with
serc mass only and we cannot consider them as, for
instance, the phenomenoloygical description of known .
heavy vector or axial vector mesons. To give masses
to these fields, I should brea the invariance

under the local chiral transformation. The mass
teri: which is still invariant under constant chiral

transformation is
0[/’ “‘ozg L YT ‘
mary T = (‘(r qa -+ I U (4.16)
T =
This is the unigue expression since the chiral inveriant
s . l. . . e
bilinear forms are 0&.10})1n terms of irreducible

quantities and we nust eliminate the parity non-

conserving product term ar.U¢ .
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The auaition of (4.10) violates the invariance
uncer the logal chiral transforiations, but on the
ther hand, it has an attractive feature when the
currents are considered. Taking the usual variation
of the lagrangian

N R S Y L+ Lom

I get immediately

V. "= = —55 = —2° b1
/ Jﬁ?ﬂ 7 0? (4.17)
A 4 <f¢4” g : \
=-C=" o M (4.18)
§ol~ ¢
This is Jjust the field current identity of Lee and
Zumino() j/). It is shown(}a) by Lee, Leinberg

4

and Zumino that if é znuiU} are congicercd as
canonical variables and ordinarly canonical
com.utationsrelations from df%rare acsumed, then the
chiral SUQ)x8U(H) current algebra type co-xutation
relations between the currents /& and V( can be

aerivec ana that the Schwinger terms arwvearing there
are finite and c-nunbers. It shoulé bte notea that

from the uerivation of (4.17) and (4.18) the quantitdies

like masses, coupling constanis ant. field themselves

(36

are unrenormalized. Put it has bcen shown also

that if the lagrangiar ch is rencrralizable with

ViR
‘w:nn: L

= DEC1969



105.

finite jropagation then the cuantities appearing in
the R.l..o of (4.17) ané (4.18) can be replaced by
the cor:esponding renormalized guantities.

cl/;“ is still invariant under the chiral
transformation and the corresponding currents are
conserved

/V/ - 9/-5’, =0 (4.19)

9//4/ ; 9[ al = o (4.20)
This means theat ifeézrcan be consicered as defining
a quantizec field theory then the spectral functicns

’ ’,
of the field operators V,‘ (orrl) and /4, (or a /)
contain the vector (spin 1) parts only except the mass
loss excitation corresponding to the S% fields
(Goldstone boson).
Finally, collecting (4.10), (&4.14), (4.15) and

(4.16), the form ofolszeCOmes
Lo < FH-WY—+( G3)+(Ga) )
BRIV,
Z\(N[‘N +(T’/V/- N7)
r
+

(4.21)

1 2
LAY eq 4) + G

-+ "-al—-l— f?‘f.) :
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Ll-)

(c) The further invoriant couplings(

Yie can acc a few other invariant couplin.s of
vhysical interest to (4.21). These can contribute
to the anomalou:z magneiic noments of particles.

(1) Hagnetic coupling to qJ field
7 +p
Ly /“f g f '? (4.22)

where /"V‘ 5 ry]ana '(' lil:ef of (k.9)
reprecsents general SU( ) coupling hetween )
4 /
. + ) t . - . .
and (O rv fel e /N/ are “non-linear" covariant
curls defined in (Z.40). /“ is a constant.

() "rilinear couplin: of the yauge fields

o/z’é; L/j”l ’75};9‘.5 6”;/“, (4.23)

/4
where f ajain reprevents the SU@/) coupling

P - ‘*C
b : P - a
between '47\ ) ¢y. anc G . kg is a consiant.

v

82 The rhenomenocleojyical lagrangian

2To use (4.21) (with possible (4.22) anc (4.23)),
v
as a.phenomenological lagrengian, e can imiose some

further restrictions. The argument use¢ by VWecs and

o) s

Lhe chiral 8U0(2)xbU(z) inveriant model
can be applied to (4.21) without alteraticn. First,
it s.oulc be not.d thst the non-linear lagranjian

(4.21) does c .ntain thc term like 4 Vg which n:odifies



The _ro_w_.cor b, L. {dreel titounpivie.. etulon Clr
. ne % Tie..co. ‘:tc cLindiuotec .uenr o ter., the

.. TC ¢ oio-inture of = Verilld

ur ficle in .81
vector ricloh l"{\r ond o (c=cceor ficld % o5
/\ .
a, = + C
b=+ R

‘..otecuw oo tendin . thic styoci_ntforwer. (econ_owition.

I icllo.. .eco -ac cuwndanc to write it

N3
- 8 +C(%3+3.E ~€ r)(.._

<i:0 i Gitlonall ter.. contoinil.., U}.;‘iel( loolie ¢

Jittle avuiteor, . Cre way of juctifying tiic Jorr
ig tne cinglicity with uniclh thce electro-nc_nctlic
iutericiion of % tielc cai L¢ iutroduced. (c.fj. Bl .
z _ 2

. . Q ~+2 mEc, 2 .1

Len, loo!ing at the terrs. ?(%g) + 5 (4 +V“ -
. N A .
.- P - i i iyt
tie coefficients of — g fg -
‘ 3 LWLV ,—z—orar , =tV
ni RE-Al e (5.21) eredeag e, Maag?
ana rg -q i {42 gre +ﬂ(l-ﬂ£ s n 4»6(5 )
1 .

] 'u.ndM'eoaau-?c)res;'»ec'l:ivel;; . (Accorcin; to tlhe ergument
cvout (4.17) anu (4.10), I now a.suie n and . o¢
renor:.eli:cvc quantities anc u.e the letter n incteac

of » . e couctition of tle abseace of the tew:

i tlc _Lenonenclo_iccli la ot

«

g

D
3

m'¢=ag3ci- 3¢

or
c = .__._‘."_5:___i
m’+a g
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1 Zz
'The coefficients of 0} anc ar can ve considered

as the wass squares of vector and «iiial vector fields.
. - b A YA R .

Go putting, M= +C(3_ (i.ass square of axrial vector

field) the above conditicn can be written as

- Z l
C o - m_— M (k.25)

W

. o N - . .
I have stated the (%) are bu(’ﬂ,) generalization
- -
(-]

ot pion fieclcs of Chapter 1. But the coefficient

H

o] LV’,%)?. tells us thet it is not »roperly normalized
as the | henomenoloiical wescription of the particles.
Thus detinin, the "uhysicel" fields by (‘):-‘ZE % , the
condition for the correct normalization is

%)’(c’m‘-cf all-g¢)') =1

In terms of introauced above,
—_— b)
m — M Wl

N4
@ 5 =

. <k |Fi_m
F=82 |5
“m a*

It i=s irpossible to

or

(L.2€)

et further restrictions by the
chirzl invariance alone. One of the well known
results suggesteda from the calculation in the current
algebra is the ratio r/m and the relation between g

and F. One way of recovering; these results is to

introduce an additional physical acsumption of Y"vector
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eeoon dousdnaneot.s ihio ic of gource, the F ~Gomlnonee
nodel of .ahurai in the cac: of chiral 2U(8)xLU(.) Lut
probably can te curtenaced to cuiral SU(Z)alU¥(3) too.
(B421) does contain fs'f- centact $cro duc to T,r’? q/
if‘°§_4150atteritg coplitude” iu reguired to Le
aduways rodiated vy vegtor sicldo %;, then the
¢ocific.ent of a peoclible é?_Ya basoint contoct term
shouwlu bo gut equal Lo sero. .ince

53-""'—’ {9’- f:\/t\ (ﬁ. -9 ’X,-T) } q"

x> {5 +i%(98 B3 -~3«(o?,+ar(¢F§)))} ¢

and

qr\d /Oi\r + ¢ ?r %
the cocfficient in guoeotion ia (% "3 ‘:—)

thus I zay conclude

(: = _ZLa- ("5027)

Then, frou (L.25),

mt o
0 z (ha2$)
. N . 2.:: ' -
which is the Leinborg'c relation >/, iico frou (ko2G)

F- ‘!%-v‘ (b.30;
(5¢)

which is tho rawarabayashi-duzublii reiction .
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Finally, I note that with thc relations obtained
above I get

a-%z;.;;f—-Vht'= m

) ]
9 a 2 —Vﬂ-z'
The lagrangian (4.21) rcduces to rather simple

form
Lot = Tep- 1% - ,L(ccf-f '+ (ap)’)
%‘ (M cT’l ‘)

4.21)

((\//L‘*-—\fr)+ (hy+5 7)Z)+ (’X,')

The model discussed above due to Y¥ess and Zumino
does not reprecsent unique chiral invariant lagrangian
with gauge fields. lieinberg has emphasized the likeness
of chiral SU(2)xSU(2) invaeriance in non-linear
realization technique to the ordinary local SU(2)
invariant coupling. According to this idea, instead

of (4.21), we have 2
/

0[2 fl- (‘%ﬂ?} 4--—— éX}‘f'— = OP\I
+ k’/(‘f/(a—.,g‘( U"/)-t—H)L]/ (4.31)
+ (,’\Tmr 4 P2
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where +/ / \
=0+ 7 fr

. , - /
(}?\v, = 9r v -9y V.r/""{ S.U'r/< TFUY

The new gauge field {f, transform under the chiral

|
SU()xSUCM) according to (3.37)

Sup /= (CF-")')UF"-I—%- or”}’ (4.32)

In this model, where there is no nced ior an qﬂr
field, the identification of various arbitrary
constants can be done somevhat more simply. In
particular (4.30) can ve obtained as the result of
the universal counling of vector gauge fields.
Fote that (4.32) gives according to the expre.sions
given in Chagptfer 2.
/i i /

S5l = 5 27 _

é‘ QT{SJ’\E BE(if3) +6i-iR) ¢ |

CCF§:+ e-cF?'i CJTF%"‘J .

a %'( Qr(sg sz_?)

- o1 e R 4 ; 1s { .__E itk
In term of "“physical" field (P > E viith
Kaviarabayashi-Suzuki relation, the last expreision
reduces to
% 9.(sp-TFP)
mt
> a2
- g\ - s o H
= 19}' (CvJ'ft ¢J & 4’{ )

"
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which is equivelent to the transiormation used by

(3)

Schuinger

B> The equivalence relations

Wle can use a _.henomenological laprengiar like
(4k.21) accordin; to the idea discussed in B1 Chapter 1.
But then it should be renembered that the definition
of ""physical" fielus is not unique. If, for instance,

#; ,; g‘_' 15 used as second cuantized F-5 . eson

fields to coriute the Feynman rejhk with given la, rangian,

any trensformztion

Xe= f:(3)

(433

with 449}:0 can be used with the same (transforned)
lagrangian. This has the analoygy in forunal field

theory with tke non uniqueness of intecriyolating field
orerator. Coleman and Sumino(b) pive a general »nroof
that the 'Y'canonical transformation' like (4.3%3) leaves
not only the exact cn masc shell S-matri: elemnents
inveriant, vut it leaves the velue of the sum of Feynman
pravhs with o« fixed number of internal loops invariant.
In particular, the value of amnlitudes obtainec in

the tree approzination (Chajter 1) is not affected by
such a transformation. Instead of quoting their proof.

I would like to give some enamplec of fiela transforma-
& 1

tions.
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vith the theorem of Colenan and Zuwino, there is no
reason wh, the new scheme (of llavarabayashi) should
be compatible with the old one (of Wess and Zumino).

Let us consicer the coupling of E's to(li. .

First the relevant part of Vless-Zunino lagran;ian

is

> _gf c? ("?t.§- 3UF - CF?)‘
+32_((.-gc) 9,2 - %(i-—af)c';’-«‘;}"?)?

> a (mC+ - C)")Gfr)z \f -9 ¢-( LF ' CF‘{“)}

Bult because of the normalization condition discussed

in the last section, the last expression reduces to

L .{-9,4»(0,-_ -CF?)} (4.34)

To examine the analogous coupling term in the
Kawarabayashi lagrangian, I should first repeat the
analysis of the last section to relate various
arbitrary constants. Thus, I introduce again the

decomposition

> /\/ C/ 4 o3y
qr - ar + 372 .35
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A7
The elimination of tern like /‘%§Ctr gives

C7/ ]ﬂ_ _%_'__— (4.36)
’

— A
where vn’ is the mass of ﬁ’ffield.

;-
u . . < R . -
The normalization of @% ~Tfields is conpletely
analogous to the Vess-Zumino lagrangian and
. . — — - 0 —
normalization constant ¢=-£_— % satisfies (4.56)

lL.€.

(__F’) ' bﬂ (,,,,,/ W ) (4.37)
z EAZ .
ltow tne trilinear coupling oi the form QT"'A(VI\"FQS) in
Kawarabayashi lagrzngian cormes solely from the term
V’\Tl((}‘r.....é- (5)_)1. (Ve may modify the decomposition (4.35)
to include vector fleld term like

ar’x ar e % +qUp - (FS))
But the contribution coming from sucl: an addition in
the case of the Kawarabayashi form does cancel.)

Thus the corresponding couuling is
w1 ¥ :
_— | = - - (T 3
: 3 (‘FH A4l zr</>)} (4.38)

(4.34) and (4.37) reprecent the ”2<? decay process of
I5" in both VWess-Zumino and Kawarabayashi lagrangian.
Thus if I now require the compatability of two

lagrangianc in =spite of the improper transformations
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connecting thexn, I should conclude

A Ln_’(i ‘= q
2 4 \F
Using (4.37), this reduces to

.W"z
‘—”’—IZ___ mz

]
IS

or

Of course, I vill also require the equivalence
AV, A -—
of ﬂr to &, and put w

—2
m/m=10 (4.39)

 /
F-F=~V=" (4.40)

These are just lLieinberg and Kawarabayashi-Suzuki

2

relations, which are, in case of Vess-Zumino model
alone, derived with the assumption of vector dominance.
This result is derived by Kawarabayashi although I

have presented it in a little different way. Also,

the essence ol tlhe argument is contained already

in the original jpa_er by Ueinberg(T). The model of
Rawarabayashi can be re_arded as the generalization

of Weinberp's model discussed in the last section.
Unlike Veinberg's it ceontains an Qr field but it

does not satisfy a field-current identity like Vless

and Zunino's.
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(b) Cronin form of meson-nucleon laprangian

The lagrangians without gauge field (4.5) contain
as the special case the pion-nucleon lagrangian (1.42).
In Chapter 1, I have shown that (1.42) which is
the chiral invariant generalization of the Schwinger's
vhenomenological lagrangian (1.1), can be ajproximately
derived from the simple "linear field" lagrangian (1.30).
The ajpproxiumaticn nere is that I put in (1.42)

/]

which is eguivalent to(§ =1 in (4.5). I keep this
apiroximation in the ciscussion below for ifhe sake
of simplicity. Consider two forms of chiral (SU(2)

invariant (apart from the meson mass term) lagrangians

L. NFN - MmN
+ X (q3)-32T3
+ NLIr L NV

[
and

Lo < iNIN -N'MEIN
+ 2@ - 2XET e

(4 .41)

_2 L%
where M (?): W e = 200

m and /N‘are nucleon and meson masses. The mesons

are represented by the g; fields discussed in Chapter 1
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and Chapter 2 and the physical fields is jJust C#= E%et
rather than more com;licated functions of %fﬁ as in
Chapter 1.

(1)

It has been explained in Chagjter 1 that
(4+.41) can be obtained from (4.42) by the transforma-
tion of the nucleon fields
e’ ), = (%) N
( ﬁé ﬁ (4.43)
Weinberg in (Ref.1) has already noted thet (4.41)
(4.42) give the same meson-nucleon scattering amplitude
for tree gravhs. Of course, we can construct the
equivalent forn of (4.42) in chiral SU(3)xSU(3) scheme
and it is this form rather than the "derivative coupling
form" (4.5) which has been earlier proposed by Cronin(z)
as the model of octel meson-baryon interaction.
Nov, the transformation (4.43) is a form of
the canonical transforiiation in the sense of Coleman
and Zumino, and the invariance of on-macs-shell S-matrix
elenment under the transformation N'- N §-~>§ should
be expected from the.r equivalence theorem.
To see the relevance of Coleman~Zumino theorem a
little further, I conui@er the slightly more general

transformation than (4.43)

~

N—=N, N=e S Y (b bl
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where 6 is an arbitrary real constiant. (4.4k4)
cannot be considered as the chiral trensformation
of the nucleon field like (&.43).

Let us exzamine the nucleon-nucleon and the
meson-meson amplitudes in the tree apyroximation using
the lagranagian (4.42) and its transform by (4.44)
(which is equivalent to (&4.41) if '{ =1). By the

transformation (4.44).

L2 — LI}
NN — N o' e
=iV iHor+ 2 f03) +igp i) v
MmN MIEIN - m N’ grERry’
e M e.z.c{l—r)-'f;— % fr-/\/
oo gu(rs) =9/(,f-,§)E«'@-@;E‘(-—;ﬁ-rﬁ).[_\,_ /’-§-/l§_§

~¥ €. CJ’E-JJ}
e-;f_,if;— 2 A/

4 ((3) =30r9 EWEHIEETH & 123

Thus the relevant part of _/?(f)for cur purpose is
L CRHN- 's{',\'lz FITM ($132)
‘ Tg;] AT(,(T'D/-?)[“/\/ (b .145)
- mN NV +£(1:%)_V"’ V(TN
+ (=t )NV

2
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T

he H-N scatterin; in the tree arjroximation is solely
due to ouie pion e..change diagrams. The relevunt
coupling term in the above °£?(d) is

- —_ ) —_— —_

=0 m N (2N -L N (TR LN

A 22

But for calculating on-mass-shell =il scattering in
the pion exchange graph, the derivative coupling term

N fr rg-(l})r¢)ﬂ is equivalent to -~2CMW’£‘(T‘¢)N

thus malking the second term of the above exwnression
equivalent to ¥ T (7 ¢)J N
L N(T Rl
A
and the whole interaction is simply equivalent to
W N (22N
A

Thus the N-H amplitude in the tree approximation will
not be affected by the transformation (4.4L4).
The nucleon-mesan scattering is slightly more

complicated. For the process

Ne ) +Tell) — N 4T (TeP) )

I must calculate the diagrams

s L A N

\ / -~

-\\ // \\ // : ></\
K /\ / - \,¢ 4/ -\
J / /
b Ny (%) P P o

(a)
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The contact diagram (a) includes both the second and

the last terr of (4.45). The: each give the contribu-

tion to T-matrix» element

*;! 24
'r éJ

(L.40)

M-t i)

Sy Srfz

}l

respectively. The exchange diagrams (b) and (c) give,
on the other hand, the followin; contribution
[ BA ( S+3m’ q+3m")
Sdf- f@\' s-m? u-wm

) 1 oy

A? s -m? u-mt

+ w(;ﬂ(g o F =) J K

o, + )]

s+am? o u4sm  (hh7)
+ie5; fr,f[w( et

- W ____. |
| 7‘)( +_———m)

? i
+7 g-f)(s m‘+ u—m’)J/K

&:(&wh’)/z S= (P.‘.l)’ M=(P-")z

where



121.
The factors 7 .nd (1-§ ) come reviectively

iron the derivative anad non cerivative Yukawa couplings
in (&.45). Putting (4.46) anc (4.47) together, the

amplitude is found to be

Tyram = 31-,\‘ SWI-U‘H} [

3:1'51‘{-m’+/&(grlm*' u:dm‘)} (1. 48)
-+LC&~-'T1 O s ot 'urfm')]

The only chan:e causea by the transformation of the
nucleon field (4.44) is the overall constant factor
k3
(3 7 —3’-}1). On the other hand, the only way to
identify the arbitrary constant X is to compare the
residue of the pole term of (4.48) with the known
pion nucleon coupling constant, and this will fix
the value of ";‘z (3(1—31+|) uniguely. Thus the
rhenomenological 1agrun5ian°éa'(4.47) with the tree
arproximation sives a unique value for the meson-
nucleon scattering amplitude too. In the case of
rieson-nucleon amplitude, ve can consider an even
more general transformation

N=FEEE)N

vihere %(E) = ,-l- (i + X r"Z’ ~+ 0 (ZI) with arbitrary
2
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real . This causus the auwditional interaction of a
contact type like dia,ram (a) discussed above. These
additional contributions do, however, cancel each

other when the nucleons are on rass-shell.

g4+ The weak and the electroma;netic interaction

(a) The field current identity in electro-magnetic
interaction.

I would like to cdiscucs the problem of introducing
the elecironcgnetic interuction into the chiral
invariant model like (4.21). In whet follows, I
naturslly consider the chiral SU(3)xSU(Z) scheme only.

.y airl is to “ut in the additional electiromasnetic
interactiun in such a vway that both the ordinary
pauge irnviriance anc the field current icentity may
be satisfied. "The latter schence introduced by Lroll,

(jb,){,-—,rB)

Lee ana ;umino for the electromagnetic
interacticn nas several attractive features andéd gives
a theoretical Liasin for the assumptltion of vector necon
dominance vhich is very ouccesnful in ecxlaining
various features cof electiroumapgnetic interaction of
haarons. The kawell's equation for such syster is

written as

v
Fr = liniar combinstion of vector 1meson
1l1elas

+leptonic currents



TFollowin_ the rrescription by Kroll, Lee ance Zumino
for the iso-opin inviriant system. 1 make the following
replacement in the chirual 3U(3) invariant lagrangian

model discussed abozs
3 1.0
U "= 4‘(7? U«}
NS (D ] /\t [
(U_, ).q_)(o":)Cq Ulq = Ul'?+ﬁe/g %’ (L}"BO)
G'I_\ = U\fb I = 3,9
But I leave the vector meson mass tern
intact. DLecause of this, I et imiediately the right
hanc zice of (4.4¢) os
j/,w'( = hadronic electro magnetic current)
m’ 3. )
F
3

This is the field current identity.

i}

¥ (4.51)
) d

To see that this recplacement (4.50) guarantees
the gauge invariance, the following expressions for
the covariant quantities discussed so fer should be
noted

\7r§ = ar‘;‘( E () + E(-TFR)) /2,

(5r = 9,‘3(*&({!—’?) - El-1F3)) /2

A =l FEGFD HEL- D)2 +a(¢%e M)y,
o= 1+ iR (B GR)-EEFDfe )+ ez
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*rou these, I get
F3=9%3-9%
= (33— 1}- UFS) (Bii3)+ EL-9)) g, (4-52)

-4y (P ) /a,

eteo B - 4% = (43 - 30 Y (B -t

U - 9op(e- @)/
T ¢ = V - Cg’)(,f- ¢ (P (k.5
= (Qr_:gQ»Ur)¢
+ R (3 - gup- CF3)EMR)- BT i
._I‘JQ-Clr (eFL eP) |z

'fhus, the derivative C%f% andq% q( in tne lajgrangian
rodel (4.21) always a., ears as the combin:tions

( 9,. — 53(/‘ F>§ and C(a’. - Cg (f, 'F)LP resuectively.
It should be remembered also that there is an cxtra
tery: VT% introduced into ql,field. ~ut in the
case of Vess and Zumino(L}) dccomposition (4.24), V'_g

term aipears as only

‘7r% + g(e'u“?_ e_:Ff)/Z __U;'
= (?rggoowr-(,:g)(g,(:ﬁ)ml-uf?)) |z s



Az the result of these _articular combination of

veetor fields ana ordinary derivatives oi the fields,
the augye invecriance of electromarnetic interaction
generated by the replacement (4.50) ic guaranteed. The
replacement (4.50) is completely equivalent to the

ordinary formalisi: of introducing the electro-magnetic

interaction in which @ qJ and %3 should ve replaced

by (@, M)q/ and (%‘~Q—(74/~) % « The
avsignments of ele tromagnetic charge for the (E? )
is, oi course, that of pseudo scalor meson octet
(m, K, 7).

(4.54) justi

? -/q\r mixing (&4.24)

simplicity.

:ﬁ
]
o
o]

e Vess-Zunino oy of introducing

[

ro.. the point of view of

(b) The modified diverpence equation in the presence
of "weak" perturbations.

The divergence egquation (4.19) and (/+.20) for U}
anad ar fields should bhe modified in the presence of
the weak and electromaprnetic interaction. In certain

aprroach to the current,algebra, such modified

\I

1]

ivergence ex,

e uations were given the important role.
(Veltman, Nauenberg Refs. 19 and 20).
The modification of (4.19) anc¢ (4.20) (or as in

Chavter 1, the FCAC form vith megon mass term) uith
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the electiromagnctic interaction can be done by the
.4 (&4) . , ..
methoc¢ of Adler « The following argument is more
or less vnarallel to the Adler's discucsion founc in
(Ref. Ub).
First let us consider the vector field UF and
the divergence ecuation (4.19). The electromagnetic

interzction is introduced by the replacement (4.50).

Starting from the lagrangian without the elcctromagnetic

interaction
D . - z gl b L‘
S L5, 1)+ 2 Zip it (1.55)
where represents all the fields other than s

I have for the lazrangian with e-m interaction

oZC&I = a[:: “"!W
A mi=<, - ¢ (4.:-6)
L)« 5 gt -
(4.4) +2 2.0
Here, of course, Uf, QT etc. in (4.56) are different
from the cnes in (4.5%) since they obey the different
eguation of motion.

Consider the infinitesimal virtual displacement

of the field variables

ST = FpE
A
(‘(f

’
d

\ R
___9/§ (4.57)

o
jgc,\l
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A
where T is SU(.) gsener:tor matrix corresponding to
the multiplet ¢J°. Then for this vari:tion as long
as it is conpatible with the general constraints,

Gell-Mann Levy type variational equations hold.

0 § L _ L (1 .58)
S ype S
Under the variation (4.57), the term 0[?(6}-5 g?) is
invariant and the mass term —b—;LZZUi.:U';r gives
s (M)
c \2
<g(xmf-§Ah))

2 N\ 2 - N . L 2
=8(zm (- évr-ﬁf )
sl N 1l
52‘—le-€% /gp (“'F:j{ LG:J-)(fi‘)
- __”1212 (;C:(C']: e") 67-&(7¢}Uk

¢ J

where
g¢/‘=o (% 4y
543- 1= 3
\fg Cﬂey' [RE1
Thus )
§8a . _mie (Fop oAA”
§B: cFj O
and
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From (4.56), I get now

vaffgé,(cf:/‘:‘ (//;4)04/” (4.59)

As for fields, consider the virtual disvlacement

corresponding, to ai infinitesimal chiral transformation
A, = CFO(& “‘—i.
59 A
87 = LFoL Of

(4.60)
20${r=0 J :

And instead of (4.56), I write

fc;/ - f/((?/, ) + _‘/_”Z_f [(f/lz+c«[f) (4.61)

is again invcriant under (4.60) and I get
SE __we gt At
Sl < g r“4
¢ J? .za.Cf'

= M

§o0. = & F

And from ‘

9/61‘”: e( ¢ Fj-,e)a/‘“(%)r (4.62)

(4.59) and (4.62) are required modified divergence

equations. In the case of SU(Z2) with the only iso-



129.

vector part of e-m interaction considered, they reduces
to the form considered by Veltman
} .
v’ - e AN

20l =edNa
(20)

Veltnan further considered the modification due

to the perturbation of the weak interaction type.
This divergence equations: can be obtained by the
replacements of the field variables of the following

form o A
Gr — ay-fﬁé_ VV}

(4.63)
G v
(nd e A

. . L. , ant A
where G is the veak interaction constant. VV and
\l/ r
bfr correspond to different parity parts of "weak

boson'" fields. Then for chiral SU(2), I can get

the divergence eguations used by Veltman(zo).

%07 GlwWAT AT
Ju'=auyar’ +wrak)



CHA¥TER 5

The breaking of chiral SU(3)xSU(3) syru.etry in the non-
linear realization tcchnicues asna the az:lication to
the interaction of the hadrons.

81 The introduction

In the previous three chapters the principles of
the non-linear realization technigques for chiral SU(MH)
x8U(),) sym.etry have been discussed. I would nou. like
to vrecent sonme agplicutiops_of chiral SU(Z)IxSU(Z) syunetry
with the phenonenological lagrangian of the type
discussea in Chapter k.

There cre already many exar; les of successiul
apilicution of noh-linear realizztion tecuniques for

chiral SsU(2)xsu(z) symLetry(45)

. Becsuse it is free
of the lgboricus computations involved in the curirent

algebra techniques, it hac been found to be quite

useful in understanding c=ore

]

spects of elementary
particle interaction even though in many cases it
just reproduces current alrebra results. Also, this
technique found the aureal to sone peo.le because it
emphasizes more ostrongly the symmetry or the group
theoretical oint of view for the''chiral dynarndics".

The similar ap_licetions for the chiral SU(3)xSU(3)

case ore hiinderec by the fact thet there is yet no
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definite prescription of how to take account of the
symmetry brecking. O0Of course, this problem has
its parallel in the current algebra avnroach. To
estimate "goterms'", for instance, one is always
forced to make one or another of the plausible
assumptions. In the phenomenolojical lagrangian
method with chiral SU(3)xSU(3), the good agreements
with experiments were achieved often by putting in
the symnetry vrealking "by kand', for instance by
replacing soune invarianl mass tern in the lagrangian
by the physical masses(MG). (The best example of
an earlier agpplicction oi chiral SU(3) symmetry with
non-~linezr realization techniques ic found in the
paper by Cronin(z), where many of the ideas which
have nore conveniently fornulated later are already
present).

Recently, however, a theory of troken chiral
SU(%) symretry has been proposed by Gell-kecnn, Oakes

. (47) o aa
and Renaer 7 « Although maiy of their ideas can

S(48)

be found in the works of grevious author they

presented their method in such a way that it forrumlates
the prescription to the given problems with seeningly

nuch less ambiguity. In particular, the definite

ratio of the strength of SU(>) singlet and octet
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component of sy.retr; wrea.ing part of strong
interactions iz suy;pecsted ws a liind of universcl
constant.

The original authors treat the problewn in
terms ol currents und their coreutation relctioacs.
Lut it ie straightforwara to construct a parallel
theory in terms of a chiral lagrcngisn with non
linear realization. In fact the simpliciiy of the

Gell-iiann, QOake. and Renner scheve becomcs moct

apparent in the latter ciproach. A very thorough study
of the generul siructure of such a theory his been
Jiven by iacfarlane, Sundbery and “YWeisz. But their
eiphesic on the most jenerel definition of the fields
within the ncon-lincar rezliszction teciniques seens to
sive their wviork a fTorbiddingly complicated a;rearance
without rec.chin, the essential simplicity expected
from tne _rouy theory.

The brealir i chiral syvizcetry in.tic non-linca
82 The breakin o ruol sy.rcetry in.tihe non-lincar
realization.

It is well lnowvn within the frimewori. of ordinary
unitary syucetry thet one can rerecent the wyri.etry
breaiiing _art of the intersction as the conbination
of sinile rewnrescnt. tions of tue SU(3) ;rouw. And

the simplest anc the oot po,ular oane ir to concider



the cirong i..teracticn hzniltonian as the coibinstion
of an SU(3) singlet (i.e. gru.eiry recerving) anc
the octet reypresecnvition. Gell-iann, (.les arnd
Renner _eucralize this icee to chirdd SU(.) syi.ctirg.
he, cooune thet e .ume.ry Lrezking con te
considered as tihce siwple (linecr) re:recventetion of
the chirzl SU(Z) grou:, K3. “'he:; chooue & single
(.3)® (5.3) reprerentction as it ic the wirple:t one
vhicu satisfies viriocuz pnysical requirements.  Cheg
express thic idea in terr of hariltonian density

reswonaible for the gyireiry trecling.

O = —tHo—Clg (c.1)
vhere Yo and W§ are the SU(3) singlet and octet
contained in (3.3)@(5.3) revresentetion. Cf course,
the chiirality inplies the different parities and U, > Ug
should e concidered as the scdlors since the symmetry
breaking intcrac»ioncy 5till conserves the parity. The
intersction of the form (5.1) has bveen used rreviously
in the chiral laggrangian method(Lg). ut Gell-iann,

Oaker and DNenner further prorose to ut the constant

¢ uniguely deternined nw vcr indepencent of the particulaer

physical process uncer the considerction. Ther
deteriine tnce value of thie number ¢ fro:. the

consideration of siuvle matrix elements of the currents
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vuith the PCAC assumption, cerived frorm the triansforma-
tion of (_.3)+(3.3) represent:tion under the chiral
oroup K., and propoce to use the same value for

-
treating; morc coniplicated nrocess..

In e:precsing the idea of Geli-kann, Oalies and
Renner in terms of tne chiral lagrangian schene
discussed in the previous chapters, the first step
is, of coursze, to consiruct the quantities like Ue
or Mq in term of non-linearly transforming guantities

: ) i)
like gi,or q/p. But the construction of (linear)
reprcsentation of chiral yroup within the non-linear
realization schewme has been fully discucsed in Chapter
2. This is the problem solved by Coleman, ‘iess and
Lumino(g ).

Following the notation of Chaypter £, the representa-
tion U of the chiral group can be constiructed out of

non linecr Yfields" q1 as
¥A
Ur = D,. (€ )% (5.2)

provided thet the representutionégnof the diagonal

subgroup H (=sSU(3) in the case considered here) spanned

&}

4
by \Pﬂl contained in D when reslricted to H.

It should be noted thet Gell-kanun, CGakes and
Renner start fron the hamiltonian formalizm, and

the non-linezsr realiration scheme diccucced co far is
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is conveniently exrrecscd only in terrs of the
lagrangian. But they also demand thct the synretry
brealiing hamiltonian should be a Loreuntz scalor.

This reqgquirement is satisfied by the interzctions
which do not involve the derivative of field variables.
For such an interaction, the relation between the
lagrangian anc the hamiltoniaa is trivial.

For the sake of illustration, I shall give first
the construction of the form like (5.71) using the
non-linear fields (g:) 8only. The construction of

] i
the particular representetion (3,5)+(3,3) from §/" only
is possibtle, according to the theorem of Coleman,
Vless and Zumino discussed in Chapter 2, because this
representation contains the scalor reprecentation
(singlet) when restricted to SU(3) diagonal subgroup.
Choosing a suitable co-ordinate system, the eighteen
components of (3.3)+(3.3) represent: tion can “e given,

by (5.2), as

"

i
g

.. Q0 Q----Q-—
&
i

o-
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facaD'§ - eh;lﬁlo

P - »

{2 and§ebicrd'S

do

o---oNho---0P

On the other hand, ﬁé fields are going to be treated
as pseudo scalor with respect to space reflection.
Therefore if,”for insténce, the octet and singlet
components{ Ua} are required to bte rcalor so that it
can be used to comnstiructi the hariltonian of the type
(5.1), then the above jeneralization does not give

essentially new construction over (5.5) and (5.6).

B5 ''he pseudo scalor meson lapgranzian.

The chiral symietric lagrangian of the pseudo

scalor meson octet ic given by

04’ _ ; (\7’_ %)Z (5.7)

This represents the mass-less particles interacting
with each other. If, in addition to (5.7), I may
take the syunetry breakinyg intercction of type (5.71)
there is the possibility of givin, them the finite

macses as vell as their physical mass splittin_ within



within the octet. Taking the isc-spin hy_.ercharge
conserving niexbers of the scalor part of the

multiplet (5.5), I will write Gell-kMann, Cakes, Renner
type symuietry brealking interaction as

()-I = _/no’;{’ (Uo+CUg) (5.8)

where Lz% are (iven by (5.5), /40 s an arbitrary
constant and ‘) is to cancel the normalization constant
of the physical P-5 octet fields. I start by putting
(as in Chapter %)

: (Pt s ocdt) = 2.3,
Since the interaction (5.8) does nct contain the
derivatives, the kinematical term of the meson
lagrangian is contained in the chiral invariant part

(5.7). As given in Chapter 2,

amiFS
\_7,»§= Or?? CFa

93 + 0(3°)

1@3) %) (9 $) -

and

= 2
22, 9%)

|
2 o=l

Thus I get from the condition of correct kinematical

tern

P
\

Al= @ = {MWJ' V L (5.9
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This in fact implies that within our simple model of
the symmetry breaking, we cannot account for the
difference between the leptonic decey constants of
P-5 mesonc within the octet.

For the .urpose of the present discussion, it is
sufficient to consider the firct few powers of
in ud(g) and U;(?) given by (U.5) and (5.6).

Expanding (5.5) ana (5..), I get

Us(8)= (1~ @DY, +(O'D2g ), +0(39
G -(PE— (P8¢ ), +O(F)

which can be explicitly written in terms of

=1- ¥ +@D]3 +03@)  (5.10
uc.=_' (-1+5/2 ) de 2 34
aw 3%3 2+ 03Y)

|xr e (5.11)

()3-.--%— d:\,‘&,?;?; 2\‘_ +0(37) (5.12)

J‘(,_? )§ +0(%7) (5.13)

‘-"l""x

Futting (5.10) and (5.11) into (5.8) and taking it

only upto the quadratic term in y I get

N a /ualz( 33-1 + b%' ds:J‘ 3-%)
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. 2 1 - e s '
Choosing lto be ecual to &, Q » «na introducing the
physical P-J uieson octet with the usual assignment

for charge etc. this can be written as
kX - .
o { (e e) (2 T+Th)
+ g (2 -—;—)(? KK+2KK) (5o
+ 3= (yz-¢) "]1}
3

fhis igs just the mass term we want. 1 can identify

the masses of P-5 meson octet as
pu - b 0
/"Kz=/aoz Zlm-%) (5-15)
["")z’-—' [AQZ g (ﬁ —-C)

L] hamalit 3
If I fit the experimental valuc for ﬁ;; //hF

(averaged over isosyin multiplet), I get

€ =-0.88¢xyz = ~1-26 (5.16)

anc l\noz = 0-96 Fl:

This gives [“ﬂ1= 30.26x ’IOG(]-iev)2 while experimentally
I&-,.,‘ = 30.11x10° (tiev)©.

I should remark at this point that here and throughout

the following, I entirely neglect the problem of

mixing.



141,

These results with (5.9) are the ones obtained
in tne paper by Gell-lann, Oakes and Renner. (5.15)
satisfies the Gell-lMann, Okubo mass formula for

squared masses

I 2 (5.17)
Ilext I consider the problem of PCAC. Vhen the .
chiral symmetry breaking part of interaction is given
by (..8), the axial current:z _iven by the viriational
principle from Lhe given lagrangian, as in Chapter 4,
A P 5‘£
F = sql
Y AL
satisfy the divergence conditions

aFp ¢ 3R 5 /
AL = - [, N1

fo‘A'C-F%UE-“"“jU})
poat((Z 8 4T cdey§)0-1)

From (5.15), the right hand sides can be written in

terms of the physical meson fields
poAN(F 3 (Fedre ;)
["‘17114;, 1,2, 3
rﬂn‘) 9. $.8. 6.7
2" 2 ¢ (=8

Thus I have

91 A° o f,. 145 (I- Q_z ) (5.18)

6A*

-,
"

™~
"
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Uuto the linecar term in +-S meson fieldas, (5.18) is
just the expression of PCAC, and coefficients
gives the "residue of one meson szingularity".
Thus A - F: sives the (uniform) leptonic decay
constents of jypseudo-iucalor meson octet. Ve have

within our a.proximation
Tr = Fu = F7 (5.19)

But (5.16) also has cubic correction term, this
inplies that FCAC cannot be assumed in calculating thee
meson-meson scattering amplitude. Thus if the off-mass
shell meson-meson amplitude is calculated using ¢: ,K)
as the physical ueson fields it will not satisfy the
Adler consistency concition.

Unlike the mass relation, the leptonic decay

constants F.
i,

and EK Uh,cannot be rneasured becouse

of fast radiative decay) are not too Gifferent and

(v .19) Ihn, FK can Le con.idered as reasonable.
Ilevertheless, the exierimental value FL/Fb'\’ 1.2€
should be sonel.ow accounted for. I may, for instance,

incorporate into the lagrangian terms containing the

derivatives of § ficlds like

.‘ ,1
o[dw.i, -_~..2; (U +c U ) (5.20)



with (U,_, + (L,2) .uivijlet wo. conctructecd ocut of

coveaiant cerivitivecs

Icv choule e moted clot ¢ inters=cvion "ilwe (2.,2C0)
c&liiot we con iceice o wedin titiin the -chere of

cell-lam., Uelee, Lwcnor. Thioo oo dltonic.. corrosondi

to (L.20) ic 1ct o loreatu .culor.

ct
4
'
J

rlidi, (5.20) Lo etl.or vith L,“, v rionc
>
- 7\ ( ?)
Lo = 2

I _iv vhe Jollewin_ sociliec ooiciion fur tie lesionic

acce] coke tuut,

A= A3 = '
Ao+ NAF = Fd (5.21)
A+ MY Fry'

S0 v te s red tivaz (2.15) Lhovlil we clno w0 ilice and

Taese cun ve colved o ol vy Cittin, tle volue Of/m/,q;

a. vell ae F\‘/Fn . Tuin jodifizs Lic value of ¢

cut wrin_ o it even clorer to -'_1

e~ 137
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3. GG f~q orc colculated to _ive
P? Ty o
by~ 40 MeV
On the other hind, the r:tio a/aékz is turncce cut

to be rather larse

~
\ -
°

n
.
~—

CA' VAT~ 049

the vey of accountin, forTa@/k% deccrited - hove is

N

ound later

Yy

probably uncotisfactory, anc it will be
thut for other calcul. tions lilke il scatt.rin, length

it iv dwnc.ortant to use the whysicel Fﬂ\value to et

the recsoncble o reerent. <Thuo thi. simple minded :fcheme
cannot e consicdered as catisfectory unless the Fk//rn
ratio is correctly cGeucrived. It hes becen gu_gested

that this anc related problems can Le treated in a
satisfactory way whe.. at least the vector and axial
-(50)

vector peuge fields are incorporatec

L=

The trouble
seens to be that it is not straizhtforward to
construct Gell-iionn - Qakes - Renner type interaction
to cdescribe, _or instance, bector reson mass osplitting

or the rixing between octet and =in;let nesons.

(b) lieson-meson scatterin,.
Let us return to the non-desivaitive interaction

(5.8) or the corresponding term in the lagrangian
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oC/" /“'°25|2 (4e +cUy)
with (5.5) for by .-

Interesting point zbout the non-linear realizaticn
scheme is that the introduction of mass tern like
(5.1%) does autometically ;enerate higher orcer terns
in § fields reguired from symietry. These teras in
pgeneral contriiute to the other thysical wmrocesses.
Thus the fourth order term of j% fields ((£.10) and
{5.11)) pive rice to the 4-point contact interaction
aniong, resons which nodiiies I'-5 lieson scattering

/
amplitudes. Conguting dc_ above upte fourth order

using (5.10) and (5.11), I get

(TR K T)
f-_}_(f Tagpk ke T (5.24)
zqfx,(l‘nk KT ) T+ e Kty 7°)

Lt dis gy
+‘{EX _) ¢4 (Z

Terr contributing to the scattering of TN, TCKand KK
i is

’ Scatiom

/ (C.05)

E ‘ ( 2. P ) f. 2 l : 2 ; )

p  equne 3 ¢ T .
oﬁmn 5 T42K K)\M_!-#—'Zﬂk K-K
The contribution to the scattering armlitudec fron

the chiral invarient term (5.7) has also been computed
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(51)

by Isham ana Patani

I et

L3y - gy

+ {4 (_z,gi._-_q)(gfﬁ-K +2TK K )

+4 ¢ (ZA71) (KT K - K'TD'K)

1779 RIK - 4T) kK] (9:26)
+{ 6 & X+ gk R =k xO(ark)

- (R X) (9, KK} ]

Then I set the contribution from (5.25) andc (5.26)
for each scattering process as follows

(4)
sr.a“-bwus

"[n‘n 6)1(@1‘7 ) QT>@)+ ,"Fz (f-) (5.27)

Computing, the scattering amplitude for the process

......

Tulh) +T ) —yp Telde) +Talds)

we et

7T
‘T ‘== _',. [‘9‘ vI,SQCS‘Ad +(u°rﬂ‘)$“,|§4¢
(5.28)

+(t- )3‘“8}4]-.‘. (24~ 7.)(5.,&#&48&“5,,&4)
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where

Sehutd)’ . U=(hu- £)* A4-(G-42)"

(5) KX
Sealloamy r Lor
din =t [ @REIOTRKEDHCK)

- ‘n"'(')r k 2TK —-(9’. 1Y KK
(5.29)

+ 3clﬁAarz)(9fETf_P K~ KCork)

R TN 2 1, .
+Q‘TT +{"K}ﬂ kkf‘
The scattering auplitude for the process

Tatha) + Ku @) — Telhe)+ Kplg)

—Ti K

- ] 65t G 2 ) See Soe

(5.30)
+3c(S-uU)Eea; (,0? )/s.,c }
wdoe  Setla+fe)®, UsCho-Rp)  tr(hu- )

(C) kK, X

j:‘:m? o {@rk K) 4'(?3( B) - (l?akXKD’K)
~ (E'k f%lKQ"K) "“’,”g k- } (5.31)

and for the process

Kitda) + Koy ) — Kpltg)+ Kslts ) |
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I et
KK

e = (-354 5k 30 )(Soe s +ouba) 30

anw S = (£a +S!.)?

It should be noted thut the amplitudes (5.28),
(5.20) and (5.32) do not satisfy the Adler consistency
conaition, in accordance with the discussion on ihe
mcdified FCAC equation (5.18). |

To recover such off-mass-shell condition, I can
redefine the rhysical meson fields so that the PCAC
relation holds urto higher order of meson fields. For

instance I can put, from (5.18), as
/ 2 2
d, (physical meson fields) = ¢ (‘— ¢ /(A )
t [

Then (5.18) becomes

- / £

A= AP ¢.” + 0(¢.")
. /
The effect of such transformation (i.e. to use qt
instead of(} as secona quantized meson fields in
our "tree approximation" calculation) is to add to
the T matrix elements the correction terms prorortional
to
4= p

2ok =2

In this way, I modify the off-mass-shell value of the

scattering amplitude so that it now satisfies the Adler
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conuition

Tin o [0 P8t 0P e

(5.53)
+ (- pe?) Sue I ]
T = o, [ (2 =22 ) Suc K, ;
TK YA /'IT r / (5.354)

4+ (S-U)E4ac (0'7:.3)2-']
Tex = 2, 5+ 24 - 207) (5.35)

We ray even have "exact PCACY instead of (5.18) if it
is put directly

¢.” - q\/}_;u: c=lo---.8

5
where (07 Z=, is defined in (5.6)

. - 7/
@’Ar‘ = Ap G, (5.36)

(5.36) is the jparallel of chiral SU(2) divergence
equation (1.80).

At this point, I can compare the results of the
present section with th.ose of Chapter 1 (g§5b). If I
take from the expression of M;Ain (5.5) the terms

containing Ypion fields" g' , }z, §3 only, these can
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be explicitly sumed up and I get

(“7i,= (—-Ho —-C(AX )Tt

= -P'%(ﬁ+c.)°w|/§’ + comalant o,
That is y
0[,'1-- = /"’nlﬂto“"/? #+37)

But this is just the expression (1.76) on chiral SU(2)
and shovis that the symnetry breaking term dc~:
is essentially the 4th components of L-vector
reyresentation (%,-) of chiral &U(z)xSU(2) group.

The representation (3,53 -+ (;;3) of the chiral SU(Z)xSU(3)
contains the representation (¢,7) when restricted to

the chiral SU(z)xSU(2), and the results of this section

can be considered as the generalization of VWeinberg's

scheme explained in Chapter 1. § §

he analysis of the meson-lagrangian presented
in this section is essentially not new. It can ue

(2)

found in the paper by Cronin where the identical
form of the symmetry breaking term is used. Morecver,

50 fur as mesons are concerne¢ his point of view 1is

more yeneral. The results of this section (2.27)~(5.22)
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coincice with Cronin's if, using his notation, a.= 4/3
-

in his formulae. This is as it should be since a3=4/3
in the expansion of mason natri:: in Cronin's paper

corresronc: to the exyponential meson ratrix used in

form

Lo

the preuent thesis. (Cronin consicers the wide
of meson matrix instecd of redefinin_ the meson fields
lilte I have done. ror instance, PCAC results with
Adler condition can be obtained in Cronin's formalism
vy putting the coeificients of Sré jower of mecson

fields in the meszon matrii a, to zero. These two

1

arircaches shouvld be eouivilent os has Leen shoun by
(7) . : c

lieinberg for cuiral SU{(z) and studied by lacfarlane

and eisz Tor jeneral case).

(c) The vector ,au;e fields

I have derived the exgrecsion of reson-rneso:n
scatitering amnlitudes f{roi: non-line:r la_rangian of

1
s

\n

\,

aZf = %;f<ﬁ? ?-)’ +WmMmdgo éﬂ:? (5.35

¥rowm the.e amlitudes, the scotterin, len_ti of

iesons can we ¢evived zonc the reculie ooree vith the

W (52) . ; L -
curreitt & gebra > “« On tlic other hane, it ic well

known tiact the lo v eneiyy meson-neson intceraction can



be accountece Jor rather well Uy the veclor douinance

e

rocel. Leinber_ in (def. 7) chowo thet nis ciizel

SU(2) invaricnt lagrangian with vector nesons gives

the sare result for lov enerpgy T~ ccittering as

the non lincar lagraongian o. Torm (5.38), ciceyt

tue diffcerence ol the order of /"”t/;?a,-'

Tnis result cail Le forwally oitendcd to the case

of cuiral ~U(3Z). ¥Yrorn the point of view of hysics,
. . . : . 1 ?

this o)y not ue so usceful since, for 1nst;nce,f-«/ﬁﬂ

~0., i. not too wmoll.

For tine caie of the sizlicity, let uc concicer
the 5U(Z) version of ‘.cinberg's model with non linear
type vector mczonc (Chap. 4), rather thon les: and
wumino or hawierabayashi nodel. Let ue also disrcegard
the cynuetry bredking viith res;ect to vector mesons.
Az it hag bcen deccribed in Chapter 4, the lagrangian

in question is cf the following form

[._, 'Az"l 1\7',§_)' +Mw.(ﬂ4;“
+ %%l .k) z’* 1% C%fvz

where 4

Cﬁ DT-—F —% /gr
(ﬁ}av = /artr;“;L(f} +1§Lq;(EI=)Lf;

"W

anc (}l, is, az usucl, equal to

Q. % &G(F3) ~&l- {F3)
r Q2




ilere of course F's are oréinsry T natriccs of SU(3)

an¢ defiued by

(T:;?j* = —-C{:Jng <, j. 4

n

?
1

[

¢ rass terms i 2.30) wné (5.39) are the zare and
The rass terms in (5 3
the rarts of the scattering arn-litude comin_ :rrom thern

are iucependent of the nrewence or the abcence oif the

',

vector field

U

[ o]
5
[

o for as the meson-mecon scattering i. corncerned

=G
4

~

~~

\!
.

!

viffers from (5.56) by the presence of the

m ﬁ 2 “"';—?U[t'ﬁr £.40)

[N
.

vec the contribution to the amplitude

because of the 4-pt contact term

NP fdﬁ (/sf(a.;)*,;) (5.41)

BE

s . . g . -~ .
where |=> and H-)re-preser:.t the initial znd the final
two meson statec.

On the other hanc, the seconc term ives rise to VUM

tyre interaction



i

. Y

Ul
s
.

The contribution to the ncattering amplitude comecs
fron the vector recon erchange dia_rarns

M

OV ' / W ﬁ\
M M M

This can be calculatec as
%) %i, &£ fwu j‘dvg TC (:l)iﬁ"‘m LB @) 1>
-1 Cae Qavp cfl: B0 p8)110>
~K(1~Y )}~
x (- 2y (v e gu@r«‘ ) (k—w?)

On the other hanc, from the consicerction of corresponding

dia,rans h is seen to reprresent the momentui: of the
exchanged vector reson ant the rain contrisuticn to
the integral over I. comes from K A P-S meson
momenta. In the low energy region where K zo./'c' for
the external momenta. I may conclude K/ KV,\,r_._lthus
if f;‘(( m s &Kv/mz in the vector meson proragator
can be neglected compared with (?rv term and the
akove exprgssion reduces as

L -‘%‘-’,S'mg'm 1 Bty B9y 1>

x(—:):'wl 8;58“(1-‘a-)

- (,;)m},g‘m <A
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vwhich does cancel (5.%41). Thus we will Le left with
2

the contribution couning from original A;@r ?) tern
only. "his result is indewencent of lhawaraboysshi-
Suzuki relation, and the vector meson exchange term
disappears rether then dominates lovw energy scattering.
Cn the other hand if the a-5 relation is assumed, then

(5.42) taker the usual forwn in the vector dominance

. v £
PR ¢J g/"¢
’ 3‘f:br4 /*
where 96m are the yphysicel F-3 meson fields.

?
In addition ﬁrl amJ (Vr 2) ternsc give

the 4-pt contact ter:w

{ pﬂz )y 2
"% g @r';‘(th) rs

mocuel

This ie still half as large as original contribution

from 07, 3 )l ter.
") . - z e
+’L%, %—' Qr‘.?(t F?) @rs

g4 leson-Baryon interaction

(aj
In this chapter, I would like to consicer the
interacticn of P-S meson octet with known baryon octet.

The chief interest here is again that the symmetry
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breaking term in lagrengian which »rimarilly accounts
for the baryon mass splitting within its octet gives
rise to the wodification to law energy meson-baryon
scattering amplitude.

Following CGell-liann, Oskec and Renner I am poing
to use the interaction of the type (5.1) with the same
value of c¢ eztimated in the preceding section by fitting
pseudo-scalor meson masses.

This time(l&A in (5.1) will he constructed,
according to (5.2), with "linear fields" (L& talien
as sone bilinear combinition of physical octet baryon
fields so that the interaction (5.1) gives rise first
of a1l to the bLaryon mass terms. Since the baryon

g .
fields (Bd)czl transform according to (2.15) with

B{, _4, (€:FT):J-B:,' (5.43)

I can get the following SU(3) covariant bilinear
combination (with right parity).

(i) The octet ()(;)g,,
—-X;r Mo(xd:Jt BJ-BL + Wo{.ﬂ.":)ﬁjk BJ Eﬁ (5h4)

(ii) The sin; let Xo

| J—

—Xo =) 2 B.B: (5.45)

c =l
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whereof , ﬁ and { are yet undeterninec constants and
M, repreczents the coefficient of chiral inviriant mass

tern

o < 35
M mies = Mo D, B. B (5.146)

<=
Usin, the same notation as the laut secction ((5.3),

(5.4)), I can write down the required chiral SU(3)xSU(3)

multiplet as

%o
Uo X
I,'lg - P‘“ afg *@’ (5.47)
Vo - o
' Z
t [
] 0
The syni.etry brealking interaction hawmiltcnian =-Uo~C“§

with (5.47), (5.44) and (5.45) aLove together with
the chiral invariant ter:. (¢ .46) gives the baryon mass
term

N mmase = Mo (1+T) ZQ_. f&BC

+CW1°{°( de'{. EJBQ + f’(ec)ﬁjl EB&}

If bi's are identified in ordinary way itk

v

this can be written as

=

ase = Mo (4 I+ (F+T 4354505
o (14 rs_)(ZZ 22 ¥22L



~Cod ¥ 5 A
+ WMol +Y —VT_?’- 4‘[2-3-5/8)(?”"'””)

(5.48)

-~ O

+ Mo( 144 -,;__i‘. ~ Ec./d) (273743202
=

+ mo(l+0 - ;__.;f ) Z/\

Thus the masses ol baryon octet is identified as

mz ="M H‘O“"f—?‘ ‘
of E)

Mz Wo(1+ ¥ -k +Fcf
as ﬁ) | (5.49)

L

(5.49) satisfics Gell-lann, Ckubo mass forrmula for
linear mass. The experimental Y'If 1163 ieV, My
= 939 keV, Wy = 1216 WV and MW, = 1115 LeV can be

fitted within one percent. Thus I get the estimate

of the parameters Myd , Moﬁ and Mo ((-ff) as

mell+¢)= 1154 Moy l
(5.

5C)

‘Mo € -f-:é 39 Mev ‘

MelZeq = —|10 Me
2
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Lkere again, the derivation of the baryon octet macs
formula is equivalent to the elementary derivation of
G-0 forwula under broken SU(35) with exclusion of Z7plet
(53)

from mass term

(b) leson-baryon scattcring.

To et the estimate of J.in chiral synuetry
breaking term (5.45), I must try to fit scattcring data.
Unfortunately, riany of the known haaronic reactions
are very inelastic ana I cannot hope to pet [ood agreement
with experiment by essentially a perturbation auiroach.
The way to tackle the probler. related to the unitarity
vith the phenouenclogical lagrengian metho¢ is not
yet fully developed. Thus I will have to confine
ryself mainly to the examination of elastic XN and TU N
reactions at threshold.

The contribution to the scattering amplitude can
be obtained by computin:; the chiral symmetry breaking
tern in the lagrangian.

L= ue+ cUy
upto second order in §§ fields. ¥rom (5.47) this can

be written as

ofs, w =L 58 33 Xy,
¢ (—chijr) .+ Ty __'E )] (5.51)
- ( E;f - -4%: (iaj '3 E} EE*_j)ijo
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Instead of writing down full RHS of (5.51) in term
of physical meson and baryon fielés. I shall extract

terms coutributing to EN and W H scattering

ol
£;’T = l”-: ('f; + € ) (._ ?-ﬂ
An +(3 f"

L 3ol - $)en(ToN) (ke:X)

(-3t S)ED]

)NNT( (5.52)

Using the result of the urevious section on nmesons,

(5.52) and (5.53) can also be written as

/ uu. l"‘n (2- 1)
MR = (‘\(—sf)*' ),\'NT
4 1) -
NE = )o :1[_ r {d"f)(ﬂ‘q\ )J)(k(f k)
o
)
+(¢f; -B)+ ¥ Y (INXKK) ]
Since'vy»r£ the influence of syrmnetry breal:ing inter-
action to J{ H (or anyTLB) reaction is expected to be
small, and the results obtained from chiral sy.netric
lasransian may eive irmtdop ()
agrangian may give good av.roximation .
In addition to (5.51), there is & chiral invariant

meson-baryon interaction term. This, I take to be

essentially the form given in (4.5), the relevant term is
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pded & s =
ngz 3 9 £’J‘ % 9[2‘ e Bl B (5.54)
+ Gy By g -0 e )BOT S

4o

The first term which is the form of 4-pt contact
interaction comes iron tie covariant derivstive of baryon
fields V?}% in the kineratical terw of baryon
lagrangian. The second tern cores Irom the chiral
invariant form ol Yukawa-Couypling ond GA (written G'
in Charter L) is renormalized a::ial vector foru factor
. /. .. \ . _
for baryons. ol 15 ordinary a/f retio. This tern
gives rise to the Goldbergur-Treiman relation for
cuiral SU(3). 1n jeneral, the contribution of the
derivative Yukawa coupling in (5.54) through Born term
is small comwvared i:ith the contribution from contact
terii. ‘l'he latter, of course, corresponds to the
current commutator ter:: in orcinary current algebra
. (52 .. ; .
calculation + This can be replaced by the vector
meson exkchange term according to the idea of vector
domineace vihich unlike in the case of ncn-linecr P-S
mesons explained in the last chapter ioriis in a
straightforvard vay.
i-tracting the relevant terr for <K and KI
frow (b:?ﬂ I get
L8 o TN Y2060 0T T )
L G'Aﬂa d f J

+ @ 9T NCEITN (5.55)
22
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dod o . — _ _
Ly = ‘ﬁif(ﬂ’ﬂfﬂt\l)(w‘:a’.k-%kﬂik)
" s(mm(' K& K-3% k)]

+ G {gimw,;;/\yf h. c} (5.56)

ﬁAx \3

+ (20"_“')}(9['7"6:* (Sl Na)th (]

M. scattering leny;,th

It is obvious that M. should be more odvantareous
for the pur;oce of estinating Wn057 chiral sym.etry
breanin, nass, since the corresygondins term in "L I
is5 exiected to be cmall.

Let us evaluate first the contact terms, i.e. the
(5.53) and the first half of (5.56).

To conpute the am, litude in term of its iso-spin
components, it is convenient to urite (5.53) andé (5.56)

in the follow llb vay .

Lo BLE-2) + &) FERYAKEH)
+-£)(3 (""' f)—r )(NE)(kN)J ,

M«JJ
LT LS [ WERTGKEN

- N m'ark KN o

5.57)
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vhere K = (K+) while K'(:(- K+, Ko)
ko
(%.58) shous that the chiral inveriant lag rangian
gives the vuhisling of the I=0 amplitude (e..cent for
the Zorn terr.).
“he contrivutior to £ wave iscsnin amplitude

fro.: (L.S?) ainé (5.58) are
I-g {A +,ﬂkB)
. (L.29)

2m (\;’—-)( (Zd /g.)'}%i)

oedazf

fra=(A+ peg)=d

Y L "”o z-£ ( + 5 (E.8C)
:\" ) o3 3z

“

Az Tor tuwe contribution frow Yuliawe couiling, I rust
comrute the diagrci. below Zrorn the latter halfl of

(£.56

(9 Y
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Lhis ypives the vaiue of Cth? rather cnallcr then the
value quoted in saic (wei. 40), Q”Kr ~-=0.9 7/,.
Cu tiv otker hancd if I counsiler ﬁo ~.0 for (5.59) as
a »jooa a.rroxination as sur _ested by core Cute, I _et
the estinote of Jyolf as

Mo T~ 170 HMeV

- . _
This correczonc. to QFKf’\'--o‘fo‘ . ke lact evaluation
0

wit ‘fzﬂvo is icentical with the calculetion by

J

. (55
Vou hir.el and Lis 2 ) ith current coniutator technigues.

( )Q, = 0 for (5.59) actusily gives W) = 174 beV
whick is Von ni: el et al.'s estinate).

As the unattoer of interest, I con formally comyute
the amplitude for the KIi reaction frowm the lagrangian

(5.51) and (5.54). Corresponding to (5.59) and (5.50),

LW WA Y r .
o ‘éi LS L) L]

ﬁ_‘.‘ 2rm°{r ..) -

I "y —+f)4‘—- (5.67)

The contribution of Lorn teri.s are c_ain swmall. (They

can ve outained fro:. (5.61) and (5.62) by chan.ing the



cenowinutor My —f'-WIB,__/l“. by My +Mg’ 'f‘/'hc) .

(2.66 ti

Lives a large (about the twice of ap?) rositive
scattering len th. Erpcrimentally this is uiven'ag

enormous negative velue. The contritution due to

s-weve unitarity cut for (HN)I_O is supposed to be
I‘E-F\)

N Tarle 1 o \DD m - o . . R

varticularly large « The situaticn ic not so bad

for -I=1 case (5.67) but again cxzwerimentally the
scattering length is negative.

It may we oi interent to comperce the celculation

2

of the LIl am:litude xzresented uere with the earlier

. (&)

vwor.. by &Lchechter, Uecaa and Venturi « In tre latter
1 9

)]

the mass splitting of baryoa octets are nut "by hand"
in the quacratic baryon mass terr, and there ic no

L-pt ter. directly arising from such syﬁmetry brealing.
Hoviever, they treal the chirsl symmetry following the
model by Crouin discussed at the en¢ or Chapter 4.

Thus the Yukawa couplin; =zy.ears in the non-derivative
form and the contribution of ILorn ternr is as large as
the contribution of 4-pt contact term (also of non
derivative form). As a result in their model the rass
splittin;, of baryon ogtets can affect scattering amplitude
at threshold through Z and A poles in the DBorn terms.
The good agreement irith experiment hes becn ol:tainced

in this way.



N iscattering, length

Peccei(55) calculated TN scattering length using
the thenomenologyical lagrangian wiiich ic equivalent
to the chiral inveriant mecson-baryon lagrangian
givern here. Apart from the wnrotler: of the eifect
of the symmetry bresziiing which is always sup.osed to
be small, his treatment is very thorough, and reasonable
agreement with ex.eriments is obtained for the s anad
F wave scattering length.

let us now discuss tue effect of the symnetry
Lreaiing Aﬂ[interaction (5.52). Using the values
of parameters which have been determined already, and
zutting 'Wo( to 200 eV, I get the following estimate

for the s-wave iso-spin amplitudes

7@"‘” _ _L (m _ZZMW
I=3/z - Aﬂ‘ 2

X 1 Mev
7£. 'L - L (/mr +22 )

L=y, = ]

/2 M
1 nev ra [ 3
The part 222 /' T only comes from (5.52), and the
L}

rest comes Irom the chiral symi..ctric centact terw in

(5.55). The contribution of Born term is cxtremely small.
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The syvnetry brealling affects only tihe iso-spin even

coupination of the amplitude
~+ - 3/ {V!)
= = (2 -+
Fr =4 (2f
and has no effect on the iso-s»in oad
. 3/:
- ya )
pr- L (P f

 t
Chircl syruietric rart gives jc-a 0O ana symretry
breaxiny; part makes it to

PT/FT A 0.3

whiclk yiver the correspondin; scattering length as

at~ 903 ()

(:r-\ " _ ) ) .
Experimentally /(}, a 1is smaller and sone aatc 1s
P : R + ~ . N
consistent wita a g C. Cne way is to axteal to the
eifect of (53) resonance. According to the calculation
 d

in (Ref. 53%), the N resonance contribute significantly

s gt (N*) ~=—0-05(p")

.o . s +
If this value is added to the result above, a will
be reducea to

a*a - 0-0 2(#;‘)

vlhich is not too far from the estimate by lWocodcock
=
and Samarayake()?)

at ~ -0-0|3 X 0.003 (’«r.q)
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Tnis irnterpretation is not an unique one. kecai rejects
the use of a sy.uetry breaking ter:r. anc rroposes to

. x

modify tle II exchange tern. zo as to get nore
- . : . (5¢)
reasonable assymptotic behaviour &t higi. energy

and gets almost complete cancellation (with the

ori;inal K*'contribution).

Qt~ -0.00 | (,w")

The arguments for the "rezsocnctle assynptotic bvehaviour

of tree dia_ rawns in general has veen jput forwarc by

Cm (57) __ . 4 .

veinberyg and several interesting cecnsequences have
been cerived. Lut the above result just quoted
certainly cannot be regarced as showiny the relevunce

of such a scheme, since this will .eave the cymmetry
b} ¥4 v

breahking contribution unaccounted for.
Cther amplitudes

The I=0 component of ¥ anplituGce has no inelastic
P P 1

channels openi.ng at threshold. The part of chiral
symmetry breaking term (5.51) which contributes toflzZ

scattering is

v

f/ [ celZ (1 M 5. 571
= o, O ( Ml ¢ ¥\ 2T (5.69
2

75
|



and the chiral syunuetric part of the interaction
el . =
2)n
I=C amplitude is
| (P
| e¥2, A 5.0
o = 4 [2pn + P2 e ol
c b3 3R

The sccouw terrn which re,resents the eifect of the
syunetry brealiing is extremely small and the amrlitude

is wore or less fchiral invariant''.

2
:ﬁtf ~ Eiltj;
Izo Aq

The corresjonaing ccatteriny len; th is

" Ugg(I-0) v 0-43 (/‘1,") (5.72)

According to nim, aﬁz(z=o)ji;about O.?(IW;U but the
uncercainty is very large.

(TA)

TA scatterin, terw does not cccur in the chiral
invariant confact meson-baryon interaction (the first
part of (4%.54)). 1In the current al_ebr: calculation
with coft meson apiroximeztion, {;p =z 0 -

/
The rcyrmeiry breaking interaction Jf(§cattering)

of (5.21) yives the contrivution to TT/{’scattering o

OC/ = (fz +¢)] Mol  mod Ly (5 .73)
am =5, e ){._.—_"-}TI/V\ i
L 3 ”‘3
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The § -wave scattering amplitude at threshold is

A
f T Z (T ) s

The corresponding s viave scatt.ring length is

Qua ~v o.oou(,p.,,")
ané still very siall. On the other hand, I must still

consiaer the born tern due to the coupling
'/ - -
'[TMZ = 24" 412 Ayl +/1Jr.ﬂ2) (5.75)
r3 zAﬂ -

coming trom the second half of (5.54).

The contribution to the s—wave“ﬁA amplitude is

Bz ol
n 2 GA) W -
A = (W + “%)[ m+mz~,\«n
Mg - Wi+ M ] (5.76)
(Mg + WA+ g =Mz +frn)

i
Numerically, for (K =0.75 this gives the scattering

length

Cin X S‘(/m") (5.77)
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The breakin;; of the couplin; constant

Tne construction like (5.47) is of course not
the unique synnetry bresking interaction within
Gell-kann, Cakes, Renner scheme. The one aavantage
of the lagrangian rethod is the ease with which various
roosibilities within a piven symnmetry =cheme can be-
exploited, andé ve rnay try to study soune other
examples of broken chiral 8U(Z) than the one discussed
above.

let us censider the following wultiplet

o o

; A8 '

WY - e(.a!'.B _o_.

Vs %%

V3 .
with ¥ YS

Yezc B ls(a'Dev p'F- ) B (5.78)
The corresyonding Gell-ilann, Cakes, Renner type
lagrangian is
/. / ! " _ s
L= 6 (_J% 3-y+ (P, ) +0(5)
=XG B (3Yiv g Y +302)
+ .\!f i (Ve + ot 3 %) e
3

2= S +0(%¢
i e g Vs } +( )



The interaction like (5.7 ) gives rise to an additional
Yukavia type couiling and brealks the syLretry of the
Born term exyreused by the chirel and 5U(3) sywmretric
coupling in (5.54). Cowparin, the residue of Forn
terns with or without (5.7 ), anc defining the neson
baryon couvling constants. 3253’ by iseneralized

N ~-.,.'.Q‘|\ . P i~ T o
uwoldberg=-Treinan relation, I et
A

\ 2 VZ+C 2
Ho )L [mrns T
3 ey 2o

/ , Fm/ g 2-¢
Etlﬁid m_r M’ 4
3-’“{g 2my

vhere g and 3 reprecent the co.pling cons

Q'KBS h M-C-W)/+- 1"(/"
3 k5 8/ 2 mp

with
or without (5.7 ). HNumerically, taking &= -1.26,

(" +¢) fyn 0.0 (G=Clz) 0.9 (r_-c') s
As to be eupected, the change of the BB couxnling
constant is swmall even if ﬂ{is order oi 2COQ LeV.
Although the reson saryon coupling constant is

(£9)

cuspected to differ conciderably; froi. 3U(3), the

interaction like (5.7 ) has no immediate ap.licotion.

s3tly, it shoulc be noted that the Yulkaua tyre

C'l

la

interaction (5.7 ) cannot e used to fit the KM



-
v

ccavtering cutle ciscunsed ricve. Uhe correcrondiniy
u-cnan. el Lorn ueri. ives nesative concrivution and
the contrivuviion of chirdl iuvericut contact tern is
alreedy ae;crive and too rar_e. So the modification
Ly v noone tern t, e interac.iorn vitkh, iIn -artvicular,
cihivel sy.retiy wicnidrn, ter of riren_tl: M000’
ge.criver wofore i the ol &y oo TLt tle note.
Dlic otren, tliene & lictic viic arow.ent Jor toc cuenti

-v
(&) - J

wile ’Moyuei;.__ _eyfieed.  Lecledn dul.



Discuusion

1 conciusion oi the worii precented here, I

wvoula lile to acd the iocllowin, reraris.

First, the imyortance of the "ecuivalence relation

of

i
i

ina Ciscucsed in the cnd of Chapter 4 should

Le enyhccized. Certain crliitr rise.s in choosiu_ the

b

jay,iccd ficlde orcroters & e.o to lecve the uncerlying
chirel oyclry and reloted (rou; theoretical structure
s tae only jlhyoicall
be possivle to reforiulate tne hole aljoritln of

"'echiral lagren_ian

ﬁ\

zlculation" in _rou; theoretical

uncancy which seenz to acconpany

[o N

- terns avoicaing the

=

-@
field theory. 'fhe derivition of n-S relztion and

Lieinter, .aos reliwtion seerns to su,_est that such

n g_roach nay hove interestin

)

vhysical resulis.

i
[

-
.

1 connection with this point ebout the non-uniqueneus

[}
i

the cheoice of phycic:l field, the notion of F.C.A.C

seerns to be

o

+ little yuzzling. In the current algebra
au,.roach, the diveruence eguation

. A s o e e . ; -
itself iX the uwatter of defining the right hana side
which, due to the right quantum nurbers, has the

singularity correspondin, to single meson state. But
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vhen ve stavt to ceg, tnet such ¢ Jolc teri. actuclly
coninctec tihe .Litri: elencnt .
r
AT LS

over certain ron,c ol uonewntur. troncfer

T = (Pa - ‘7’/5).z
<a<|’a,./}r; Ao /»z/{./f /(f’—— t)

chesr it ic a eanin, fvl oosunption cnd con ispoue
ti.c restriction cun tie - Lycics. IV 1o 1. thic _ori
we use "FCACY or (Lole corinence cisunption) in
current clgeora. Tuaus, wvhe. we uvrite the recaitiring
@iaplituce including theoe mesons in L.l.3 reduced
fori.,, the resicdue arltcr the rewoval of meson ole

P ctors Tac ) e e Mers n(52) . ]
factors nay be assumuG s "swooth' . l'or the
derivatioun of Acler's counistency relation, FCAC
interpreted in this way is ecsential. Also, this
sootincese csculgtion (ives the certesin preccription
for ovtaiuing :hyiiccl anplitude Irown soft ncson linit
which can Le deteriiined fro:.. curreat cl ebra. Thus
FCAC or the ole cominence assunption is the niost
importont ascumotion which cnables current al eira

echene to ralie predictions. On the other hand, it

is Gifficult teo rcco_niuze the role of FCAC in the
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chiral lagraiagian schewme. The field theoretical
divergence equation has its correspondence in the
lagrangian schene so thet the first teri: of divergence
of axial currents discussed in §5 is determined by
the symretry arpgument.

o M- piFRE 0(F%)

r e f FE

[ 4

this again cannot bec considered as an additional
assurption. IHow in the theory in which we have a

N
-

\
H

{

inite lzprangian, that is to scay a dynanical
equation of motion, the assertion about the warticular
form of the higher order terw. in the R.H.S above
certainly giver a non trivial restriction. If we
change the cefinition of the rhysical field to modify
the I'CAC equation this will chenge the result of
calculztion of the off-mass shell amplitude. At the
same time, unlike the current alyebra, these off-mas
shell amplitude is not important. The lagrangian
perturbation theory gives the on-mass shell amplitude
directly. Even in the example of weal: decay of K

(2

1iesons y, the correction term to the amplitudes due

£

tc the redefinition of the awplitude (i.e. FCAC or
"non" FCAC) vanishes when all the external mesons are

e e} 1 . R -
on mass shell, This is because even the weak or

electromagnetic interaction is written in ter of
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vefinite syumtietric quantities (i.e. vector or axial
vector currents) and thus independent of the particular
choice of "physical {ield". Our feeling is that FCAC
is deeprly connected with the orthodoir field theoretical
notions wvhich underlines the current algebra and gives
the formal expression for the off mass shell amplitude
throuch L.5.2 techniques.

Lastly in rractical calculations lilke =cattering
lengyth, the limitation due to the problem of unitarity
is strongly felt. Recently the pocsibility of using

A oo
certain techniques of sunring up(UO’U1)the verturbation
series to calculate the higher order rescattering proce:s
in the lagrangian approach has been su,gested. It
may be that a practicable and convincing prescribtion
of "unitarizing" chiral results will emerge from the
study of this technigue. ULut for the moment, it is
haré to do anything beyond the analysis of the rather
formal structure of the tlecory.

It is also possible tc go to an extreme "phenomeno-

logical' approach. TIor instance, we may use higher
g DE ] Y 13

M

isr

u

order covariant derivatives

a

zparding all the Tleld
theoretical difficulties. Cn the other hand, this
means that we will effectively abandon hope of extending

the restriction due to chiral syruetry beyond what can



be calculated by the tree apiroximatiun.
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Appendix

"lieson and latrices"

To study the forwmal structure of chiral lagrangian,
(2)

it is sonetines .Lore convenient to consicder the

"peson matrices!
<A d (A.1)
- TC A . : A.
M-’e N R'§=%A4§d

instezd of nmeson fields . liere d) are the

generators of (3) revrezentation of SU(Z) and ecual

to the half of Gell-ilann ratrices.

(U]

(2)

As has veen usea by previous authors y 1 can
write the chiral inveriant l.pgrangian in term of i.'s
and awpprcopriate traces. Thur, for instance,

. -3 ¥ a1, an?
Cvrg) =-EIE(6- o6 -e 5}6’)

. —-27 2:2%
=—2|-_D)(9re7tl\?9re 3)

and the chiral invariant wmeson lagrangian can be

written as

L = % 2 (?r M2rMY) .o

I would like to =tudy some consequences of the expression

like (A.2) to thow the use of I matrices.
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First, let us evaluate the contribution of the n-oint

contact terr. to the n-particle auplitude like

a\ Bn

E.eeesd_ are
1 n

SU(3) indeces
of the corres-
ponding u:esons

m

Yaiiin, tuc natri: element
Lo | T 1%9 Fl'?"P1* lCR. s Aa :)

the correupendin, arnplitude can be obtained irr:.ediately.

This is

T=--1 z" 2. Tof(2a, ---2cdaus)

3530 ponm(di--Gw) .
<, + G0 )=y e ) i
= (7E ;%é (_')S 12 (2q,-- )6n
ﬁ-ﬁ?wmﬂ'\"u
% Z_: (?Qa +t - -+ ?“h-s)
where Hl R ,70 are thesmoxqénnurn of meson Bye- ~Qy.

Thus T has the form

= ‘D.mq ) X, Fa) 423)

2 4“!

where ;:i means the sun. over the clacs of cyclic
(Ay- -4

per¢ututlong. is of course invariant under tne
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cyclic verrutation of (a, .«.. an). liore generally

1
the cingle vertex like (kig. 2) can be stuck together

to form an arbitrarly tree graph like

(Fig. 2)

Each internal line iz represented by the free

oropagator iroi. the factor like

J()A?« P )f ?f)>o

S
In coese the ght resons corresponding to (';“)Jsf
are all degenerate. (SU(3) symmetric), the resultant

rropagator with internal momentun ¢ is pronortional to

Z el . ,
o T pEaP e

where 1Ir 4=0 ithe aypuvropriate SU(3) invariant mass

ter.. like

T (M +M*)

should be a ded. Becauce of the forn of SU(3) factor

in the propagator above, sticlking two verteces liilke
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o' X g

at g
A

3 )
' |
\ /
Y s

414 "?
ém

uive the overzll factor

J W00 k) Tk k)

Tow it is well known that sums like this can Le

transiormed using the cor:leteness relation of

Z T Db da) T 0 s o)

:21()4.---')\«»")\&.;——- }\&m) (A.5)
—% Ty (ay - Xaw ) T8 - - )u.u.)

-imnatrices.

The simple trace factor seems to ke lost. On the
cther hand, suyrose there is ninth neson with same mass
/h and which comes into the interacting systeir. in such

L4
a vay that the sum E A&.Ad in the ypropagator should
o3y

)4 X 4

be replacec by

i

e

20

LN\

where

>\o "“'LI—%'- ]L (A.€)
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Then, instead of (A.c.), the overall trace fuctor of

two verteces stuck topether is

.,f); —Dt(jﬁt oo Ranl*)_[:t(}q)&-c -t )&m)

-+ T/L(‘)(ou' e 'Xf'{n 7\0)_1;!()0 ‘Aﬁl - A&m)

=2 Ta( Qa4 - Kaw A&.;—---)Gw)

Thus the trace factor will bLe recovered. In this way,
any nurber of verteces can Le stuck together to give
any tree praph while retaining the general form of
(A.7). The ninth meson can Le intrccuced by sinply

revlacing i. ratrices by 'monet I matrices"

<
. /= - -2 A.
M D(r(z:_:, C’}d ?A) (4.7)
Then M / ~ -L.Ao?o M

an 'pt'a r1,qa r4lf‘ o
i e‘“°9°9' e L%MNM*
- T,é I %) +13L('ar!‘1?>"”\ )
It is a.suin.eg to bhe chiral scalor, tihe resultant

lagran,iai

OK - __ggrmgm* .+§(2r %:,)Z (A.9)

is chiral invariant.



