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ABSTRACT

In Chapter [ of this thesis a short review of the quantal theory of ionizing
collisions is presented, with particular regard to recent theoretical developments.
A brief discussion is given of quantal and classical approximations and their
predictions compared with experimental data, and a brief outline of some useful
empirical formulae.

The impulse approximation is derived in Chapter II and the evaluation of
cross sections for the processes

H(ls) +e-H*' + 2e
and
H(ls) + H* 5 2H* + e

is described in detail. The results obtained for the above processes are presented .
and are compared with the results obtained by other authors.

In Chapter III the evaluation of cross sections for the processes

He + e » He* + 2e
and
Li* + e - Li** + 2e

in which both He and Li* are initially in their ground states is described in detail.
An open shell two-parameter wave function has been used for the ground state of the
target. The cross sections obtained using both the length and velocity formulations
of the Born approximation are in excellent agreement with experiment at energies
higher than 25 times threshold and approach the Bethe limit (within 3%) at energies
higher than 50 times threshold. The evaluation of cross sections with Hylleraas type
correlated wave functions for the ground state of the target forms the subject of
Chapter IV. Cross sections are calculated in the length formulation of the Born
approximation, for the processes studied in Chaptér IIl and the results obtained are
presented and are compared with the length and velocity formulation results obtained

in the latter Chapter.
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CHAPTER I

REVIEW OF THE THEORY OF THE IONIZATION OF ATOMS

BY ELECTRON IMPACT-

1. Introduction

In recent years considerable experimental and theoretical work has been devoted
to the study of ionization cross sections of atoms or ions by electron impaét. The
interpretation of a wide variety of physical phenomena demands an accurate evaluation
of these cross sections. Examples of such phenomena arise in the fields of thermo-
nuclear research, plasma physics, shock waves. through gases, in the study of stellar
atmospheres and the solar corona. During the last few years considerable progress
has been made towards obtaining accurate ionization cross sections. On the
experimental side a great deal of work has been carried out in which s'inglelor
multiple ionization cross sections of atoms or ions initially in their ground :stétéé'_
have been measured. This work has been the subject of a review by Kieffer and Dunn
(1966). Although there exists a considerable amount of experimental data these are
far;'f.;(-)_r; exhaustive. Many species require investigation and difficulties arise in the
experimental determination of ionization cross sections from excited state.s. In these
cases recourse has been made to theoretical studies. On the theoretical side a great
deal of work has been devoted to the basic formulation of the problem and it is found
that the theory of ionizing collisions differs quite appreciably from the theory of
collisions involving excitation. A number of new approximate quantal methods have
been investigated but even so quantal calculations are rather lengthy and not yet as
accurate as could be wished. Alternative approaches have tﬁeréfore been pursued in
order to obtain reasonably accurate estimates in a very simple way. These approaches

arise through the use of classical rather than quantal methods and from devising



semi-empirical formulae which may be used to estimate as yet unmeasured or

uncalculated data.

2. The Quantum Theory of lonizing Collisions

Several very extensive review articles concerned with ionizing collisions have
so far been published by Bates, Fundaminsky, Leech, and Massey (1950), Massey
(1956), Veldre (1965) and Rudge (1968). In this Chapter a short review of the quantum
theory of ionizing collisions is presented, with particular regard to recent theoretical
developments. A brief discussion is given of quantal and classical approximations
and their predictions compared with experimental data, as well as a brief outline of
some useful empirical formulae. The discussion throughout this Chapter is confined
to the theory of ionization of atoms or ions by electron impact but applies with very

little modification to the case of ionization by other structureless charged particles.

2.1 Exchange in ionizing collisions

The treatment of exchange in ionizing collisions differs in several respects
from the treatment appropriate to elastic collisions and bound-state excitation and the
most important features may be seen from consideration of the simplest case of
ionization of atomic hydrogen By electron impact. Suppose that the incident electron
and the atomic electron are distinguishable by having opposite spins. In the case of
excitation one may define a direct cross-section proportional to | f (n, k,) |? for the
process in which the atomic electron is excited to state n and the incident electron
is scattered with relative momentum k, and an exchange cross section proportional
to | g (n, k,) | % for the process in which the incident electron is captured in state n

and the atomic electron is ejected with relative momentum k. For the case of

ionizing collisions one may similarly define a cross section, proportional to

| £(k, k¢) | %, for the process in which the incident electron is scattered with final



relative momentum k¢ and an ‘exchange’ cross section, proportional to |g (k, kpl?, for
the process in which the incident electron has final relative momentum k and the atomic
electron has final relative momentum k¢. Clearly f (k, k¢) and g (k¢ k), the direct and
exchange ionization scattering amplitudes, describe the same physical process and so
they must be proportional to each other. Peterkop (1961) was the first to show that,
when normalization and phase factors are suitably defined
£k, k) = g (kp. K) - (2.1)
For excitation of state n of atomic hydrogen the total cross section is
proportional to
| £, k) 1*+ [ g, k)| | (2.2)
for distinguishable electrons having opposite spins and to
a U £(n, ky) +g(n, k)| *+31f(n, k) —g(n, ky)|*! (2.3)
for indistinguishable electrons having random spins. "In the case of ionization we have,
usidg (2.1), that the cross sections are proportional to
| £k, kel * + | f (kg K) | * (opposite spins) (2.4)
%11k ko) + f(gf,!:_)'] *+ 3| f(k, kp — f (kpk) | *} (random spins),  (2.5)
The total ionization cross section, defined in terms of the number of ions
produced, may be obtained by integrating over k¢ and k, subject to the condition k¢ > k
(or kf < k), or by integrating over all ke k and dividing the result by two.
In the case of approximations for excitation g is taken to be zero when exchange
is neglected. One then considers only the case for which the incident electron has a
final energy which is larger than the (negative) final energy of the atomic electron._
For ionization one cannot, because of (2.1) put g = 0.

2.2 Threshold laws for single ionization

The problem which has received most of the attention in recent ionization studies

has been the behaviour of the ionization cross section near threshold. This problem
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has been the subject of investigations by (among others) Wannier (1953), by Geltman
(1956), by Rudge and Seaton (1964), by Temkin (1966) and by Peterkop (1969).

By a classical approach, involving certain statistical-mechanical arguments,
Wannier (1953) found that the threshold law for single ionization of an atom or ion has
the form |

Q« (E = Iy - (2.6)
where Q is the total ionization cross section, E the total energy of the system and I
the ionization potential of the atom or ion. A disadvantage of Wannier’s result or of
anyone elses from an experimental point of view is that there is no way of knowing
how far above threshold this power law is supposed to be valid. From a theoretical
point of view, it appears more desirable to approagh this problem with_in the conventional
framework of the quantum theory of inelastic collisions so that all approximations
made may be clearly delineated. In their attempt to put the problem of the ionization
of atomic hydrogen by electron impact on a rigorous theoretical footing Rudge and
Seaton (1964), largely independently of Peterkop (1961), have derived an asymptotic
form of the wave function. This asymptotic form can be used to determine a phase
factor which must be known in order that an independently derived relation between
direct and exchange ionization amplitudes be of use. Further, this asymptotic form
is, in the important region of configuration space, proportiqnal to the complex
conjugate of a function %, a product of two Coulomb waves whose charges are
functions of the velocities of the outgoing particles. This is the underlying basis
upon which the latter have deduced that for ionization of hydrogenic systems

Q«(E-T) (2.7)

near threshold. The work of Rudge and Seaton (1964) has been criticized by Temkin
(1966) who points out inadequacies in the above asymptotic form, and shows by means

of a simple model that the neglect of certain terms which must be made in deriving it
6



" is not justified. The two arguments taken together, he argues, indicate that the
asymptotic form is not correct. This in turn has obvious negative implications about
the aforementioned phase factor and about the validity of a linear law at threshold;
he proposes an asymptotic form of the wave function which he argues is more
acceptable, albeit less explicit, than the above. He then derives a *; power law for
the simple model and infers that this is the correct result for e—H ionization threshold
behaviour. Geltman (1956) obtains 5 linear threshold law on assuming that both of
the electrons in the final state move in the unscreened field of the nucleus, but gives
no justification for this assumption.

Vinkalns and Gailitis (1967) have carried out a classical analysis of near
threshold ionization of atomic hydrogen, similar to the work of Wannier, and deduced
that there is a departure from linearity of about 1%.

In the case of detachment from negative ions the only Coulomb potential
operating in the final state is ‘the repulsion between the two free electrons or, for
detachment by positron impact, there is a Coulomb attraction between the two free
particles. The threshold laws deduced in this case are Rudge (1964), Hart, Grey and
Guier (1957)

Q= (E-TD* 2.8)
for detachment from a negative ion by a particle which is positively charged and
Q« (E-1)% expl—fE -1 %] (2.9)
where y is a constant, for detachment from a negative ion by a negatively charged
particle.

Theoretically little has been predicted as to how far above threshold these
threshold laws are supposed to be valid. For example the linear law states that at
threshold the first derivative of the ionization cross section does not vanish but does

not state what the relative magnitudes of the first to higher derivatives are in the
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near-threshold region. All treatments ignore recoil of the target nucleus, i.e. they put

the mass of the proton Mp =~

2.3 Multiple ionization

Owing to the numerical difficulty of a full quantal calculation little theoretical
work has been done on multiple ionization. Geltman (1956) carried out calculations
for the double ionization of Helium by electron impact taking into account only the
s-wave; both continuum electrons were represented as Coulomb waves belonging to
charge z, with z the charge of the ion core. The final state of the atom was
represented by the product of these two Coulomb waves and a delta function,

5 (k, + k,) where k, and k, are the relative momenta of the two continuum electrons.
The insertion of the delta function being based on the assumption that the dominant
contribution to the cross section will arise from states in which the two ejected
electrons take asymptotic directions just opposite to each other as a result of their
mutual repuision. Since s-waves only were included the calculations are only useful
very near threshold, where the cross section behaves like (E — I)*. This Geitman
showed was in agreement with experimental data and inferred an (E — )" threshold
law for n-tuple ionization. Using what is essentially a form of the Bethe approximation
Mittleman (1966) and Byron and Joachain (1966) derived expressions for the ratio of
the single to double ionization cross.section valid at high energies. Mittleman (1966),
using a Ha;free-Fock function for the initial state of helium, finds a ratio Q single/

Q double = 198. However, Byron and Joachain (1966) show that this ratio is strongly
dependent on the form assumed for the initial and final state wave functions. (See
also McDowell. and Coleman (1969) for a more detailed criticism).

3. Quantal Approximations

The most salient features of the various quantal approximations which have
been used may be discussed for the particular case of the ionization of atomic hydrogen.
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3.1 Wave functions

Let r; denote the position vector of the i th electron relative to the nucleus, taken
as a fixed origin, Ei the momentum of the incident electron, and _Igf and k the momenta of
the continuum electrons in the final state.

The total Hamiltonian of the system is written as H, and in general for an electron

colliding with an N-electron atomic system, neglecting spin-orbit and like interactions,

is (in atomic units)

+1
Hl + 3 l'ij-l
=1 i>j 3.1)

N
H-3
i
where H; the single-electron Hamiltonian is
H; = — % Viz - 2/ (3.2)
and
fij = 5 — _f_,l :
Bound-state hydrogenic eigenfunctions are written ¥, () and satisfy the equation
H‘ba@:Ea‘l'iz@ .o 3.3)
They are taken to be orthonormal with « denoting coliectively_ the quantum numbers
n,l,ma=1 anda =.f will be taken to refer to the initial and final states of the atom
respectively. The continuum eigenfunctions satisfy
Hy(z k1) =%k y(z K 1) _ (3.4)
and are normalized such that
[U(z,k D *(zk Ddr=5@k-k) - (3.5)
The continuum solutions are not uniquely defined through the normalization condition
(3.5). Integral expressions for the ionization amplitude involve a particular solution
of (3.4) defined by

W@k ) - 2%y (2 -k 1) (3.6)



where
x'(Z, —E,_r) ={2ny/(1-eny )]l/’ exp [iﬁ(y)] exp(—ik.n F, liy, 1,i(kr+k.rn)]

(3.7
and

y=2z/k, n(y)=argl' (1 -iy)
and where \F, (a, c, x) is the confluent hypergeometric function.
Asymptotically

x(z, -k, 1) ~expl-i(k -t+ylnl kr +k.t)] +[f(0)/r] . expi(k r + yln2kr),(3.8)
f» ™

where cos 9=~ Kk.r and

y ' (1 —iy)exp {2iy Inlsin (0 pI}

£(6) - 2k T(l+iy)sin?(64)

3.9)

3.2 Cross section expressions

Considering the particular case of the ionization of atomic hydrogen we let one.
of the continuum electrons be ejected with momentum k¢ in the solid angle -dgf and the
other with momentum k in the solid angle dk, and let the energy of oné of lhel;l, no

matter which, be in the range de. © The differential cross s'ectio.n. is
U (ke k) d kg dk de, (3.10)

where
1(5,,5)=‘§£k5 [ f (ke k) + £k, ke |2+ 3| f (ke k) = £k, kp)|®
i

K G 0017+ TG, k) - Re Bk, ) £, DU (3.11)
i

where Re denotes the real part.

The cross section for ejection of an electron with energy ¢ in the range de is
o (¢) de where

o ()= [dkdklkp k) , (3.12)

10



and where « =% k*or % k¢’ Since E = % (kg? + k? is constant, o (¢) = 0o (E — ¢).
The total cross section for production of ejected electrons is

0- {;E o (e)de . (3.13)

3.3 Born approximations

For atomic hydrogen Born’s method consists in making the approximations

ik.. r,
q‘i (Ln Lz) =¢| (Lz) e 1 - s

iker,
We(r, 1) - 1o %(1L -k 1)e T,

(3.14)
(2m) %

This gives for the Born ionization scattering amplitude

fg (K ) = — 21_” (W, (0,0 (H - E) ¥, £)dr, d1,

1=

A
L ¥a)e T

i keor ,
(Lo Ly, -krye T drdr,. (315 /4
VIK L, T /kv

rl!

The choice of the functions ¥. and ¥;of Eq. (3.14) is not a serious defect at high

energies, but at low energies it gives rise to substantial errors in the cross section

and an incorrect threshold behaviour.

Neglect of exchange ﬂas been treated quite differently in work on ionizing
collisions from what it has been in problems of excitation of discrete energy levéls.
Referring to Eq. (3.11) it is seen that neglecting exchange means that all terms

involving f (k, Ef) should be excluded to give
k . s
Q[ Born (i) )] = —— sz(he) [ fdkedk | fg(ke R * - (3.16)
rki o 2 -
An expression frequently used has been

) kf E , .. ) )
QU Bom ()] = Z- [k d Lk 7/ akpak | ig(kp DI . (3.17)

11



If we are dealing with ionization involving distinguishable particles then Equation
(3.17) is the right expression to use. In the case of ionization by electron impact
with random spin orientations, (3.17) would correspond to neglecting only the inter-
ference term of (3.11) while retaining the | f (k, ko)l * term. This prb;:edure is
obviously inconsistent and Eq. (3.16) is the more acceptable definition. The
procedure followed in order to get Eq. (3.16) is analogous to that used for excitation
in the Born approximation, in which one puts g = O. Results were obtained in the two
approximations for the cases of ionization of atomic hydrogen { Rudge and Seaton
(1965)] from its ground state. When these are compared with the mean of the
experimental measurements of Fite and Brackmann (1958), Boksenberg.(1960), a.nd
Rothe et al (1963) it is seen that the Born (ii) approximation is superior to Born (i).
Sloan (1965) made use of both forms of the Born approximation to evaluate cross
sections for the ionization of Helium from its ground state by electron impact. His
results when compared with the observed results of Smith (1930) show once again
that the main features are the same as for hydrogen, with Born (ii) approximation being
superior to Born (i).

In the case of ionization of a hydrogenic positive ion of nuclear charge z by

electron impact, the appropriate expression for fg is

- 1 1
fg (kg ) = (2”),/2f¢i- (0 x (2 =1k, 1) ¢ - rl’ X (z, =k, 1,)

xx(z—-1,-kgp)dyd, . (3.18)
The name Coulomb — Born approximation is appropriate to this case in order to

distinguish it from calculations where plane waves have been used to describe the

incident and scattered electrons. The latter treatment is unsatisfactory at low

energies but at higher energies becomes equal to (3.18).
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Calculations in the Born (i) approximation have been reported in recent years
by Omidvar (1965) for ionization of hydrogen from an initial state with principal
quantum numbers n = 1 (1) 10; for He" in the 1s and 2s states by Burke and Taylor
(1965); for helium in the ground state by Peach (1965) and by Dalgarno and McDowell
(1956), the latter authors calculating also cross sections for excited states of helium
with (n, 1) = 2p, 3p, 4p, 3d, 4d; for Li by McDowell et al (1965) and Peach (1965); for
Be by Peach (1965); for Ne by Inokuti (1962). Cross sections for inner-shell ionization
of Ni, Ag, and Hg in the Born approximation neglecting relativistic effects have been
calculate(i by Burhop (1940). Arthurs and Moiseiwitsch (1958) have calculated cross
sections for inner-shell ionization of Ni including relativistic effects, and Perlman
(1960) has in similar fashion calculated inner-shell ionization of Ni and Hg.
The Born (ii) approximation has been used for ionization of the species indicated
by the following authors: H (1s) Rudge and Seaton (1965); H (2s), He* (1s), and He* (2s)
Rudgé and Séh“;artz (1966a); Fexv and 'F eXVI R-udge and Schwartz (1966b); ‘H, He, Li', Be
Peach (1965); Na, Mg Peach (1966a); B, C, N, O, F, Ne, Al Si, P, §, CI, Ar-Peach
(1968); Na Bates et al (1965); He, Li* Economides and McDowell (1969).
Additional approximations are involved in the description of the bound-state
wave functions and the wave functions for the ejected electron, in all the calculations
of ionization of nonhydrogenic systems.

3.4 The Bethe approximation

The Bethe approximation [ Bethe (1930)lis a further approximation to those
already made in the Born approximation, and gives the form of the Bom in the limit
of very high impact velocities. The main features of the approximation may be seen

by examining the case of atomic hydrogen. Performing the integration in (3.15) with

respect to I, gives
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fBorn kp 10 = = —2—[9; () e-PEx (1, -k, D (3.19)
(2m) 2 p?

where p = k. — kg Expanding e'2 Lasa power series, using the 6rthogonality

condition, and assuming p is small, we have that

fpethe Up K) = — —2i—fy; @ rcos.f x (1, =k Ddr , (3.20)
(2m)%p

where é is taken as the axis of quantization, and cos ¢ =E . i Now transforming the

A
Ef integration of (3.16) to one over p gives the ionization cross section as

1 E/2 1 Pmax dp, ;¢ .
= kd(=k? dkl<ilrcos@]-k>|*, (3.21)
QBethe o kizfo (2 ) Ipmin P f 2 I l l A |

where we define the notation
<ifrcos@|—-k>=[¢y;(@®rcosd x(l, -k, n)dr,

and where p. = k; — kpand pp.. = k; + kg Since (3.20) is valid only for small

values of p, -pmax may be taken to be - (ki + kf), where 7 is a constant less than

unity, to give

E/2 : .
QBethe - ”,L,fo kln | "E'_‘:k“f) ld(%k’)fdg.l <i|rcos@|-k>|*. (3.22)
1 1

Since the main contribution to the cross section comes from the region where k is small,
we make the additional approximation by writing
k; — kg > 21/(k; + kp)
~I/k, (3.23)
and (3.22) becomes

.2 E/2 . \
Qgethe - 1 ln(2rlkl)fo |<i|rcos@|—k>|*dk . (3.24)

m ki'

Writing E; - % ki? (3.24) takes the form

14



Q - Aln E;/E; + B/E; (3.25)

where

1 (E
2 3

I |<i|rcos6|-—|_(>|’dk
o .

B = Aln (4+/1) + const. | (3.26)
The additional constant in (3.26) arises from the terms which have been neglected in
' approximating (3.19) by (3.20). The constant A thus depends on the optical properties
of the atom and can easily be evaluated, but the constant B depends on a full Born
calculation since it is determined through the cut-off parameter r and the neglected
terms. If we now use sum rules proved by Bethe (1930) and average over the m states,

for large E the constant A may be written

4[<l’ z>_2|t;(Rnln t+1)z 2—(R n’,l"})z;] , (327)

20+ L
where
$i (© =Ry (0 Y © (3.28)
Ru"" - fomf’ Rn1 (0) Ry’p (1) dr, (3.29)
and
<tgp*> = [ 71 Ryy(n) Ry (1) dr . (3.30)

Altemnatively, if fn “1',nl is the average oscillator strength defined by Bethe and

Salpeter (1957) then we may write

a-arlerpsos ool g (3.31)
3 ol 21E, — E_.|

The sums over n’ in both (3.27) and (3.31) include n = n;.

15



An equivalent method may be used[Seaton (1962b)jto derive Bethe’s approximation

for ionization of ions. His method consists in replacing (l - l) in (3.18) by
2

(ki + k) |
o Kk
which appears in (3.26). This is modified due to the-charge on the ion, and appropriate

- :—'r P(f, f,). The essential difference that results isin the Gaunt factor In {;

Gaunt factor formulae are in this case given by Grant (1958).

In the case of complex atoms the appropriate formula for A is

f 'd Kd
A-4rlcs ) > -3 —alial 4 X (3.32)
3 i n’l'2|En - En‘l

In the case of hydrogen A decreases with | increasing for given n Bethe (1930),
and Kingston (1965b) shows that when averaged over 1 is proportional to n. For H™ it
follows from (3.32) that the constant A corresponding to the total detachment cross
section is g <(r, + 1,)* > and is large. In the case of the alkali metals on the other
hand the dominant contribution to the sum over oscillator strengths in (3.32) comes

from the resonance levels and in these cases A may be expected to be small.

Seaton (1959) expressed Equation (3.22) in the form

-8 (B/2-Tg (w1 (4E 14 3.33
CBethe naEfo 1+w"(1+w)w’ (3.33)

where a(w) is the photo-detachment cross section for photon energy (W + I), W the
energy of the ejected electron, IH the threshold ionization potential of hydrogen and
a the fine-structure constant. Seaton (1959) using Bethe’s approximation derived a
functional relation between the cross sections for electron impact ionization Q (E)
and photo-detachment a (w) which may be used to give reasonable estimates of
ionization cross sections. He considers two atoms, A and B, for which the photo-

detachment cross sections ay, ap are such that

ap (15 x) /'ap (o) = aé (g %)/ aé(o) . (3.34)
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Then from (3.33) and (3.34)

IpnQa(p 0/ ap(0)=Ig Qplge) /ag (o) . (3.35)
Bethe’s approximation (3.33) is valid for large values of ¢ = E/I. For values of ¢ |
which are not large (3.33) is expected to giv.e similar percentage errors for Q pand QB
and that the functional relation (3.35) will remain a useful approximation. This
approximation has been used by Seaton (1959) to calculate ionization cross sections
for Ne, O, and N, and McDowell and Williamson (1963) have used the Bethe approx-
imation, Equation (3.33), to calculate electron detachment cross section for H™ by
electron impact.

3.5 The Bormn-Oppenheimer approximation

The Born-Oppenheimer approximation assumes that the relative phases of the
direct and exchange amplitudes are the same for all k¢ and k. Further it assumes
that the slower electron screens one unit of nuclear charge from the faster electron.
One disadvéntage in the latter approximation arises from the lack of orthogonality
between initial and final states which tends to give an unphysically large cross
section close to threshold. This lack of orthogonality means that if a constant were
added to the Hamiltonian (which corresponds to a null force), the cross section
calculated in this approximation would change, and this is clearly absurd [ Schiff
(1952)]. Exchange is taken into account in this approximation by adopting expression
(3.10) for the differential cross section. Burke and Taylor (1965) show that the
method is much better in the case of ionization of positive ions than it is for neutral
species. The Born-Oppenheimer approximation has been used by Geltman (1960) for
H™, by Malik and Trefftz (1961) for O4+, by Trefftz (1963) for 05+, and by Burke and
Taylor (1965) for evaluating the ionization cross sections of H (1s), H (2s), He*(1s)

and He+(2s).
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3.6 The Born-Exchange approximation

The Born-exchange approximation is an alternative to the Bom-Oppenheimer
approximation which makes use of the: relation between the exact direct and exchange
scattering amplitudes. This method is an improvement over the Bom-Oppenheimer
approximation in that there are no orthogonality difficulties. Making use of Eq. (2.1)
for _the magnitudes of the respective amplitudes and introducing a-phase factor into
the relationship, the approximation is

i kg, k)
epp Gph-e 0

fBorn &, Kf) ’ (3.36)
The method suffers from the inaccuracies inherent in adopting the Born approximation
for f (Ef, k) and these are likely to be greatest where k > kf, that is the region where
(3.36) is applied. Three possible choices which have been made for this phase
factor are: (1) Peterkop (1962) defined
v, (kp k) = arg t f(kp, K) / f(k, kp 1, (3.37)

which gives.the smallest cross section in any approximation for f, since it allows for
maximum interference; (2) Petetkop (1962), Geltman, Rudge, and Seaton (1963), and
Sloan (1965) defined

r, (kg k) = arg [ T (1 —iz/kg) / T (1 - iz/k) 1, (3.38)
where z is the net charge on the new ion produced; (3) the third choice, which is
useful when pértial-wéve expansions are used, has been described by Burgess and
Rudge (1963) and by Rudge and Schwartz (1966a).

The Born-exchange approximation with various choices of the phase factor has
been used by Peterkop (1962) and Geltman, Rudge, and Seaton (1963) for ionization of
H (1s), by Rudge at:d Schwartz (1966a, b) for H (2s), He+(1s), He+(25), Fexv, and
FeXVI by Sloan (1965) for He (1s?), and by Peach (1966b) for ionization of He, Li,

Be, Na, and Mg from their ground states.
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The results of Peterkop (1962) and Geltman, Rudge, and Seaton (1963) for ionization
of H (1s) and those of Sloan (1965) for He (1s?) show that the Born- exchange approx-
imation gives substantial improvement over Born calculations.

3.7 The Bormn-Ochkur approximation

The Born-Ochkur approximation retains the Born approximation for the direct
scattering amplitude but selects an alternative expr_essibn for the exchange scattering
amplitude. Different formulae have been proposed, the first given by Ochkur (1964)
appropriate to excitation problems and the second, by Ochkur (1965) appropriate to
ionization problgms. Rudge (1965) modified the expression of Ochkur for excitation
and derived a third formula, by a different argument, which he shows to be obtainable
from a variational principle while Ochkur’s is not.

Ochkur (1964) and (1965) argues that the deficiencies of the calculations using
the Born-Oppenheimer approximation are not due to the fact that the method is
essentially -bad, but due to an incorrect extrapolation into the low energy region. In
the derivation of the Born-Oppenheimer formula, as in the derivation of the Born
formula, the incident and scattered electrons are both described by plane waves. This
is correct at high energies, and it is obvious Ochkur argues, that if we consider this
condition to be satisfied.and expand the Born-Oppenheimer expression for the exchange
scattering amplitude in a series in inverse powers of k; or k¢, then only the leading
term of this series will have a real meaning. The remaining terms he discards
because they are of higher order of smallness. In the case of excitation he obtains,

by this procedure, the result that for neutral species

(D _ p?
€0ch I‘:?fBom' - (3.39)

Extending his analysis to the ionization case Ochkur (1965) obtains the result
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g(()i)h (l-(-f’ k) - |—ITI; fB(‘_"_'n (Bf: k), (3.40)

which he further simplifies by replacing | k; — k | * by (k;* — k?) to give a third
approximation

3 - p
€0ch (Kf’ k) ——(k-’ e Bom (k (3.41)
1

The derivation of Ochkur’s results is of an ad hoc nature and is not clear why
his method is a marked improvement over the Born-Oppenheimer approximation. The
1/r term which appears in the Born-Oppenheimer approximation is simply discarded in
this approach. The discarded term gives a large contribution to the cross section due
to the non orthogonality of the initial and final states and this might probably account
for some of the improvement, but in the problem of proton-hydrogen atom, charge
transfer, for example, the neglect of this term leads to worse results rather than an
improvement..

The Born-Ochkur approximation Equation (3.41) has been ap;;lied by Ockhur
(1965) for ibnization of H (1s); the Born-Ockhur method Eq. (3.39) has been used by
Prasad (1965) for H (1s), H (2s), and H (2p), by Peach (1966b) for ionization of He,
Li, Be, Na and Mg from their ground states, and by Peach (1968) for ionization of
B, C, N, O, F, Ne, Al, §i, P, §,Cl and Ar from their ground states.

A comparison of the results of Ochkur (1965) with the Born (ii) results of Rudge
;nd Seaton (1965) and experimental data shows that the Born-Ochkur method is a

marked improvement over the Born.

3.8 The distorted-wave Born-Oppenheimer method

Apart from the question of phase of the amplitude, the most drastic approximation

used in evaluating the scattering amplitude has been the form assumed for ¥; (r,, r,).

20



)

Burke and Taylolr (1965) have carried out calculations in which the initial state is
represented in the form

Y @R DRI b @ Fy @), (3.42)
where '-I’nll (r,) are hydrogenic eigenfunctions and the sum over nl,'in (3._425 goes over
1s, 2s and 2p states. Fnl, (r,) are determined througﬁ the Hartree-Fock equations

[ * @) H-E) ¥, L) dr -0, (3.43)

and the operator [1 + (-l)SP,,] explicitly symmetrizes or anti-symmetrizes the
solution according to the total spin S. The final state was chosen as in the Born-
Obpe_nheimer approximation. A comparison of this approximation with the Bom,
Born-exchange approximation, and experiment for ionization from the ground state
shows that, despite the much greater complexity of Eq. (3.43), there is little improved
agreement with experiment, which indicates that a better description of the final state
is also necessary. In the case of ionization from the 2s state, Burke and Taylor find
that the effects of close coupling in the initial s_t'até are of much greater importance.
Similar work to that of Burke and Taylor (1965) has been carried out by Veldre and
Vinkalns (1963).

3.9 Improved final-state approximation

This approximation has been described by Rudge and Schwartz (1966) and

applied by them to ionization of H (1s). The method.consists in adopting the

approximations
‘Pl (Ln Lz) = llll (_l_"z) ei kl O ,
Ve ) = —Lox* 2y —kp 1) x* (L -k 1), (349
(2r7)?
with
7o 1- (3.45)
kg — k|



With this choice a linear-threshold behaviour is obtained but, in order to evaluate the
cross section, one more integration is needed than in the previous approximations. A _
little improvement is obtained in the agreement between theory and experiment in the
case where exchange is neglected. However, at higher energies than 1.5 times threshold
there is a discrepancy between theory and experiment and this discrepancy increases

with inclusion of exchange. This they argue might be due to choice of effective charges.

3.10 Geltman approximation

In this approximation both continuum electrons are represented as Coulomb waves
belonging to charge z, with z the charge on the new ion produced. The method of
Geltman (1956) was adopted by Trefftz (1963) and by Malik and Tl.'efftz (1961) in
considering the ionization of 0* and 05*. A linear-threshold behaviour is obtained
in this way but the cross section is over- ést.in.xated at low energies. This approximation
has been examined in great detail by Veldre and Vinkalns (1963) both including and
excluding exchange. -

3.11 Plane-wave approximation

In this approximation plane waves are used to describe both continuum electrons,
one of these being orthogonalized to the ground state of the atom. This approximation
has been used by Michael (1963) in considering the ionization of hydrogen and cesium.
A threshold behaviour like E? is obtained, which gives results which are too low at
low energies, while it over-estimates in the region of the maximum of the cross
section. The approximation is very poor.

3.12 Impulse approximation

This approximation forms the subject of Chapter II.

4. Classical Approximations

The application of classical mechanics to describe ionizing collisions involves
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three basic approximations. These are:

(1) The initial state of the system is described quantally.

(2) The collision is described in terms of Newtonian Laws
of motion.

(3) In the simplest case of ionization of hydrogen by electfon
impact the equations of motion are further simplified by
treating the three-body problem as though it were a sum
of two-body collisions.

4.1 The Thomson theory

Thomson (1912), in the earliest treatment of ionizing collisions, considered
classically the ionization of an atom of mass m, and charge z,e by a particle of mass
m, and charge z,e with the assumption that the atomic electron is at rest. The energy
transfer AE in the course of a Coulomb collision in which the incident particle has
speed v and impact parameter b relative to the atomic electron is

i’ @.1)

m,
where 0 is the angle between the initial and final relative velocities and

p =m, m,/(m, +m,) is the reduced mass. Expressing (4.1) in terms of b we get

24,2 2 244
AE - 2u*v?z, z,% @.2)
m, [zlzzlzeo + bzvquz]
The Thomson expression for the cross section is given by
b
Q-2n fo“‘a"b db, . (4.3)

with b .. chosen so that AE - |, the ionization potential.
The cross section for an energy transfer AE = I, in the case of a Eollision

between two free electrons, is



In terms of the Bohr radius, a, - h?/me?, and the hydrogen ionization potential,

IH = me*/2n? this gives
Q- 4 A -y , (4.4)

where E; =% m, v? and x = E;/I1. We have assumed in deriving (4.4) that only one
electron was available to be removed from the atom. In the case of ionization from a
shell of n equivalent electrons (4.4) must be multiplied by n. The first prediction of

Thomson’s theory is that ionization cross sections obey a scaling law expressed by

saying that

Q) -y 2 4
H "
is a universal function of n. It is referred to as the reduced ionization cross section.

This result is useful and a comparison with experimental data for H, He and Na* shows

that for these species at low and intermediate energies the prediction is in good
agreement with data. However, (4.4) does not give the correct shape of the ionization
curve. Bethe's theory shows that at high energies the cross section behaves like
Aln Ei/Ei + B/Ei, but in (4.4) there is no logarithmic dependence. This is a severe
drawback, because at high energies the logarithmic term is the dominant. Thomson’s
theory for ionization by other particles, for example, protons or alpha particles gives

for the cross section the Thomson formula

Q- @y 202/ (- ¢

)1 - (4.6)

1+m,
ml

This formula predicts a threshold where
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=m, vi= _ 4.7
2 4 m, 47
which is only correct for electrons with m, = 1. The correct expression for 'the
threshold energy is

I1m, m,

Zm,em, V0 99

so that for ionization of atomic hydrogen by proton impact, for example, at threshold
v? ~4[/m, while in Thomson’s theory v? ~1/2. Equation (4.6) shows that the cross
section for ionization by proton impact, for example, approaches from above the cross
section for ionization by an electron having the same velocity, as the velocity
increases. This result may.be derived from quantal expressions for the ionization
CIOSS sec_tion, but Thomson was the first to deduce this relationship.

4.2 The classical methods of Gryzinski and others

Interest in the classical methods appeared to have lapsed for many years but
the publication of Gryzinski’s work [ Gryzinski (1959)]_ dramatically revived it.
Essentially this was an independent reworking of the calculation of Williams (1927)
and Thomas (1927). Gryzinski used the results of Chandrasekhar (1941) and
Chandrasekhar and Williamson (1941), who calculated the energy transfer between two
colliding particles moving arbitrarily with respect to one another under an inverse
~square law force. Scattering in Gryzinski’'s calculation is considered in the centre of
mass frame of the incident and struck electrons followed by transformation to a frame
at rest relative to the nucleus. In the course of his calculation Gryzinski made the
simplifying approximation of replacing the true relative speed of the electrons
04,

v = |y, —v,| by its average value (v,* + v, This approximation was later removed

by Ochkur and Petrun’kin (1963) and by Stabler (1964). Defining E, to be the initial

25



kinetic energy of the atomic electron, introducing another reduced variable y = E /I,
and assuming the distribution of electron velocities to be isotropic,Stabler’s result

for the ionization cross section is

I
Q=4n(-[ﬂ)=%u+33¥—x—fy1 x3y+1
1 4.9)
I A (
gs_g(_lﬂ)z xl;(x;yl)_; l¢xgy+1

With the additional approximation mentioned above and taking y = 1,Gryzinski’s

result for the ionization cross section is

I Y
- Hy:¢ X 2 1.5 _
Q- an ey X% 16 %; X3 2
. . 4.10)
16vZnly,, x 4 1 A (.1
- e At ja- @ lexs2.

A comparison of the Gryzinski-Stabler classical theory Eq. (4.9) with experimental
data for H(1s) shows that far from improving the Thomson theory it actually makes it
worse.. The subsidiary approximation made by Gryzinski to give (4.10) suffers like
(4.9) from the following defects:
(a) The shape of the ionization curve is still in error at high
e.nergies.
(b) The low energy behaviour of the cross section is like
x - 1)’/1rather than (x — 1), as given quantally and in
the Thomson theory.
The position of the maximum given by (4.9) is incorrect, though for hydrogen the
position of the maximum given by (4.10) is more correct and numerical values are in
better accord at intermediate energies.
One may conclude that neither (4.9) nor (4.10) represents an appreciable

improvement over the Thomson theory.
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In order to force a logarithmic dependence in the ionization cross section
Gryzinski reconsidered the problem in a series of papers (1965 a, b, c) by assuming .
a continuous velocity distribution for the atomic electron. An empirical distribution
function was.chosen so that on averaging.over this distribution, a logarithmic
dependence would be obtained. He introduced the following distribution function for
the atomic electron: | _

f(v)=aviexp (- g8/vV), (4.11)
where a and g are constants. This is completely at variance with any quantal velocity
distribution; the fact that it yields an infinite kinetic energy also leads to difficulties.
Burgess and Percival (1968) point out whom we quote: “We feel that it could not be
accepted by any who interpret atomic structure according to quantum mechanics in the

final analysis.” By averaging over the distribution (4.11) Gryzinéki obtains

Q-4 gl_lﬂy(%)(’;: i)’/* (1 + %(1-_21;) 127 +(x=-D%N. . (412

Eq. (4.12) again has an incorrect form at threshold. There is now a logarithmic
term, but the coefficient multiplying it is in general incorrect, the correct factor
being given by (3.27). The choice of the velocity distribution (4.11) is made in an

arbitrary fashion which is simply an ad hoc device for obtaining the logarithmic term

of (4.12).

Gryzinski (1965 d) reconsidered the problem of velocity distribution for the
atomic electron. He argues that the correct velocity distribution is that for an
electron of a Bohr atom in which it has only radial motion, corresponding to a

degenerate line ellipse. The velocity distribution is in this case

f(v) = dvgr (vie v, (4.13)
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where ' v,? = |E,|, and where E, is the energy at the initial state with principal
quantum number n. Kingston (1964 a, b, 1966 a, b) has applied the Gryzinski (1959)
theory and the corrected form of this theory to electron impact ionization from the
ground state and several excited states of hydrogen. He gives cross sections obtained
from putting E, = I and from averaging over the proper quantum mechanical vel'ocity
distribution, and compares them with Born approximation results. Prasad and Prasad
(1963) have used the Gryzinski (1959) theory with E,. = I, to calculate ionization cross
sections for several atoms and diatomic molecules by electron and proton impact.
McDowell (1966) and Vriens (19675 have worked out the theory for a binary encounter
between an incident proton and an initially bound electron with non-zero E,, to first
order in m,/m,. McDowell gives the ionization cross section, arid Vriens the quantity
dQ (AE)/d(AE) which is then integrated to give excitation or ionization cross sections.
Fock (1935) has shown that the momentum distribution for the level n of the

quantal H atom is independent of n and is given by

8 ppt

p(P) - W J (4.14)

where the classical momentum p. is given by
Pe? = 2mgl , (4.15)
and where me is the mass of the bound electron. Abrines and Percival (1966 a, b) and

Mapleton (1966) show that the result (4.14) is obtained also from the claséical micro-
canonical distribution provided that an integration is performed over the classical
angular momentum. However, if such an integration is not effected, then,for a
degenerate line ellipse, Mapleton (1966) shows that the Gryzinski result (4.13) is
obtained. .Abrines and Percival (1966), Percival and Valentine (1966), and Abrines,

Percival and Valentine (1966) integrated the classical equations of motion exactly
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thus discarding.the binary encounter approximation. The initial momentum distribution
was taken to be that given by (4.14) and a Monte Carlo calculation was performed to
average over initial classical states of the system. Percival and Valentine (1966) show
that for proton impact ionization of hydrogen the result of removing the binary encounter
approximation is to reduce the cross section by a factor of 2 at its maximum. A
comparison of the results of Abrines et al.(1966) for electron impact ionization of
hydrogen with experimental data shows a quite reasonable agreement. The agreement
with experiment is not nearly so good as for protons at low incident electron velocities;
this disagreement is due in part at least to the quantum mechanical interference
between direct and exchange scattering, which is shown to be important by the binary
encounter theories.

4.3 The exchange-classical approximation

In order to improve the Thomson theory Burgess (1963) and (1964) argues that
certain fea_tﬁres of the quantal treatment must be introduced intc; the approximation.
The first of these features is that exchange must be incorporated in the approximafion.
This in a purely classical treatment is obviously impossible but the Thomson cross
section expression makes a good starting point for a semi-classit.;al modification of

the theory. Including exchange means that the Thomson cross section expression,

Eq. (4.3), is replaced by

-8 1 1__ 1 1, @K Ly 41
ik A k@ g T e (g4 (0

with the usual energy relation
Yhki*-Yki=1hk*+1,

and where the upper limit of integration has been chosen to be in agreement with
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quantal theory. However the integrand in (4.16) is not symmetric, i.e., the relation- .
ship f(gf, k) = g (k, kp) is not satisfied [ Burgess (1963)] . If integration in (4.16)

is extended over the full range of energy and a factor of ¥ is introduced, which is

an equivalent procedure in a quantal treatment, then (4.16) diverges. In order to get
over this difficulty Burgess (1963) made use of a procedure similar to the one
employed by De la Rippelle (1949). The expression (4.16) is then replaced by one

which is symmetric in k; and k. This expression is given by

(b ki’ -1

Q- —2 L ,_1 _. 1 cos—2L—1n @Y gk . (4.17)
(ki+20) © (2Ikg)® (20+k7) * vk 2k (2LekD% 2ok

Assuming the argument of the cosine is constant and equal to ¥, then (4.17) becomes

-4 (—H) ll —1_cos [y In (———)]I (4.18)

Burgess (1964) and Vriens (1966) assume the atomic electron to have an initial
kinetic energy. This complicates the analysis and the results of these authors do

not coincide. Vriens (1966), on carrying through the procedure of Burgess (1964),

obtains
2 cos-( In x
Q- 4(il) (_,1311-_+-y<1 L cslyan) (4.19)

where T is the gain in kinetic energy of the incident electron.

Expressions (4.18) and (4.19) are a substantial improvement in the theory in
that they remove one of the major defects of the Thomson expression. However they
do not represent the correct high energy behaviour.

4.4 Exchange-classical impact parameter (ECIP) approximation

If the influence of the nucleus may be ignored the close electron-electron
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encounters have been treated exactly in the previous sections. On the other hand in
the impact parameter method Alder et al.(1965) and Seaton (19625), the distant
collisions are treated in a good approximation. Burgess (1963) and (1964) in his
efforts to improve the Thomson theory suggested combining the previous theory with

an impact-parameter formulation. Calculations by Burgess (1964) indicate 'considera.ble'
success for this method. The treatment is elegant in that the correct behavi.our at lo(n
and high energies is obtained while at the same time the quantitative predictions are
profoundly sound. Urllfortunately the method does not produce any simple formula such
as those obtained previously.

5. Empirical Formulae For lonization Cross Sections

In using empirical formulae to calculate ionization cross sections certain
criteria must be met, these being:

(a) . To give a good fit to the known data at all energies.

(b) To predict variations in the ionization cross sections for

members of iso-electlronic sequences.
(c) To give the variations in the ionization cross sections as
a function of the quantum numbers of the initial state.

A multitude of empirical formulae have appeared in the literature many of which
are only of limited usefulness and have been superseded by the formulae we discuss
below.

The latest and most extensive list of formulae for ionization cross sections and

for reaction rates for ionization has been compiled by Lotz (1967). Lotz writes the

ionization cross section in the form
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The expression (5.1) applies to an atom or ion containing several shells of electrons,
the Ij being successive ionization potentials; a is a fixed constant, and the (,- are -
numbers, the relevant values of which Lotz tabulates for the three energy regions of
the ionization curve. For the high energy part of the ionization curve the ¢ j are equal
to the number of electrons in each shell. The constants are determined from experi-
mental data and apply to ionization from the ground state.

The expression (5.1) is derived from a very successful formula of Drawin (1961),

who writes the reduced cross section of Eq. (4.7) in the form
Qe - 266 f, A=D1 (1.25¢,%) , (5.2)

where x is the reduced energy and f, and f, are constants which, in the absence of
further data, Drawin recommends be taken equal to unity. Expression (5.2) has a
linear behaviour near the threshold region and its form at high energies agrees with
the Bethe theory. It gives a very reasonable estimate of the ionization cross section
for a large number of species from their ground states but with the choice f, = f, = 1
it is less accurate for ionization from excited states.

Percival (1966) gives formulae for the average cross section for ionization from
excited states of hydrogen and hydrogenic positive ions. The formula of Percival for

the average ionization cross section from an initial state of hydrogen with principal

quantum number n is

32



Q (x) =(x - 1)(1.19 In x + 5.26) / (x* + 1.67 x + 3.57) ifn=1

(5.3)

=(x—1)ILng-8—ln(Bx—z)+6.67!/(x’+1.67x+3.57) ifn2.

For large x and large n, (5.3) gives
~ H.67
Q (%) X ,

a form which derives from the Gryzinski or exchange-classical approximations when
the initial kinetic energy of the bound electron is taken to be equal to I. It has been
shown by Abrines and Percival (1966b) that for large n, the classical and quantal
cross sections are.equal when expressed.in terms of the reduced energy, and
calculations performed by Abrines, Percival and Valentine (1966) are in accord with
the exchange-classical results at high energies. The reduced ionization cross

section of hydrogenic positive ions, Percival (1966) writes

2.3
(1-2_1,;+2(x-1)z

Q(z,x) =1+ e, x , | (5.4)

where z is the nuclear charge.

For positive ions the reduced ionization cross sections are greater than for the
neutral member of the given isoelectronic sequence as a result of the focusing of the
incident ele-ectron beam by the attractive. Coulomb field of the ion. If we denote by
z; the initial charge on the ion, then a factor of focusing F can be defined by

F=1+ in,/ , (5.5)
x4

and the reduced ionization cross section for the isoelectronic sequence can be written
Q(z, x) =FQ o, %) . (5.6)
In the case of the hydrogen isoelectronic series expressions (5.4) and (5.6) give a

good representation of the variation of the reduced cross section with z.

33



CHAPTER II

THE IMPULSE APPROXIMATION

1. Introduction

Fermi (1936) was the first to make an explicit study of an impulse approximation
in discussing the effect of molecular binding on neutron scattering by ;;totons in
hydrogen molecules. Chew (1950) introduced the term “impulse approximation’; in
connection with nucleon-deuteron scattering. Studies of this approximation were
subsequently made by Chew and Wick (1952) and by Ashkin and Wick (1952) and the
approximation generalised by Chew and Goldberger (1952) within the framework of
the formal theory of scattering.

The basic assumpt_.ion of the impulse approximation is that the effects of the
binding potential of the target can be neglected during the collision, except insofar
as it determines the initial state of the system. This neglect of the effects of the
binding potential is termed the impulse hypothesis, in analogy with the treatment of
impulsive :éactions in classical mechanics, where the motion of the target is neglected
for the very short time during which the impulsive force acts.

. In the present Chapter our primary aim is to reconsider the approximation used
by Akerib and Borowitz (1961). In view of this we shall restrict our attention to a
model problem in which the effects of the interaction between the projectile and the
target nucleus are neglected, this essentially being the model considered by Akerib
and Borowitz. In the case of electron impact the possibility of exchange is
consistently excluded.

Atomic units are used (e, the électron charge, m, the mass of the electron, and
11, Planck’s constant divided by 2#, are taken as the fundamental units and therefore
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have the value unity); E denotes the total positive energy of the system in these units.

Cross section expressions and cross sections are expressed in units of nay?, where a,

is the first Bohr radius of atomic hydrogen (may? is 8.806 x 10™'" cm?).

Throughout this Chapter we shall be concerned with collisions between a
structureless particle 1 and an hydrogen atom consisting of a nucleus 2 and an
electron 3.

The masses and charges of the particles 1 and 2 are denoted by M,, M, and
z,, z, respectively and r,, 1;, I, are the position vectors of the three particles with
respect to some arbitrary fixed origin O. The relative co-ordinates R, x and r are

defined by

R-n-r,x=-,-1,1=-6-10,, 2.1)
If the position vector of particle 1 with respect to the centre of massof 2 and 3
is denoted by o and that of the centre massof 1 and 3 with respect to 2 by p then

grar-x E;I‘bE’ (2.2)

where the dimensionless quantities a and b are defined by

(2.3)

The position vector, G, of the centre of mass of the system with respect to the origin

O is given by

My, + M, 5+ 1), 2.9

I
=

where M = M, + M, + 1,
In the centre-of-mass frame of reference the Hamiltonian of the system is
H=H,+V,+V,+V,,, (2.5)
where Vijis the potential acting between particles i and j, and H is the kinetic

energy operator.
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With the use of Equations (2.1) — (2.3) the kinetic energy operator can be

expressed in the alternative forms

H.--1ly’_ _1¢! ]
0 T3, 2 25t (2:6)
S WA X v,
2[1' L4 2b X
where
P YU IS TS @27

At infinite separation of the target and projectile before the collision the Hamiltonian
of the system is

H;=H, + V.. (2.8)

Let ¢; (r) and ¢ be the wave function and corresponding eigen energy of state i

of the systém (2 + 3). Then ¢;(r) satisfies the equation

- 51;% Vo () 1o (D = ¢ o () . (2.9)

Ifl‘i is the initial relative momentum of the colliding systems, the wave function \;

of the initial unperturbed state.of the system is given by

b me B2y . (2.10)
and satisfies the Schrodinger equation
Hi- i = E Ui (2.11)
where
E-2—tki’+ G - (2.12)

The form of the final unperturbed wave function ¢/¢ depends on the type of transition
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considered. The normalization has been chosen so that y/; represents a projectile

beam of unit density.

The wave function ¥; of the system, in the presence of the perturbing potential

V,, satisfies the equation

(H-E) ¥ =0. (2.13)
This may be written as |
(E-H) ¥, -V; ¥, (2.14)
where
Vi=V,+V,. (2.15)

Equation (2.14) is equivalent to the integral equation .

‘Pii =ygo +(E~Hj+ie' Vi ‘l‘ii . (2.16)
In (2.16) € is a small positive quantity which is allowed to go to zero when all the
relevant integrations have been carried out, and l/JOiS any solution of (2.11) determined
from the boundary conditions imposed on the relevant solution of (2.14). ¥;* and ¥;~
are solutions of (2.14) obtained from (2.16) with the former solution containing outgoing
scattered waves and the latter containing ingoing scattered waves. The wave function
which describes the colliding systems in the presence of all their interactions and
which evolves from the state Y; is

‘l'i+ =y¢;+(E-H;j+id'V; ‘l’i+ . (2.17)

If A and B are two operators for which inverse operators A™ and B™* exist, then

A" -B"+B'(B-A)A" (2.18a)
-B'+A'(B-A) B . (2.18b)
Writing _
Gt ~(E—-H;+i g (2.19)

we have that the Green’s functions operators
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Gt=(E-Hzsie (2.20)
satisfy the integral equations .
G*-G*+G6"V; G* (2.21a)
-G* +G{* V; G* . (2.21b)
By operating on both sides of (2.17) with G* V; and making use of (2.21a) we obtain
G'V¥;*=G*'V;y; +G' V; G;* V; Wt

-GtV g 6T -GVt (2.22)
It follows that
G'Viy; -G* V¥, (2.23)
and
¥’ =(L+ GV gy (2.24)

2.1 Formal derivation of the impulse approximation

The wave function for the three-particle system, corresponding to an initial state
y; and outgoing wave boundar.y conditions is
v'-ay; , (2.25)
where
0*- 1+G*V; , (2.26)
The three-body scattering operator Q" is expanded in terms of the simpler two-body

operators w; j+ defined below; from this expansion the impulse approximation will be

derived.

Let xp, belong to the complete set of free-particle wave functions satisfying the
the Schrodinger equation

(Hy-Ep) x_-o . (2.27)

Y m

The two-body operators “’ij+ (i, j = 1, 2, 3. i #j) are defined by the equation
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a)ij+ (m) xp =1 +(E —H - Vij +ie)! Vij] Xm
- @) | (2.28)
It is clear that the function Y, ' (ij) satisfies the equation
(Hy + vij -E) \/Jm"(ij) =0 (2.29)
provided that
lin € Y, " (ij) =0 -
€0 ¢+ (2.30)
It has been shown by Mapleton (1961) that th-e condition (2.30) is not satisfied when
Vij is a Coulomb potential and in that case (2.29) will be taken as the equation defining
¥m" (if).
Taking A=E; —H, - Vij +ieand B= E~H + ie and making used of the
operator identity (2.18b) gives _
Gt*=(E-H+ie) ~(Ep-Hy = Vj; +i )
+G'[Epy —E+V,+V,+V,, - Vijl (B —Hg + Vjj +i 0" (2.31)
and therefore _
G* vij = bij+ (m) + G* [Ey-E+V,,+V,+V,, - Vij] bij+ (m) , (2.32)
where the operators bij+ are defined by
bij* (m) = wij (m) -1 | (2.33)
where the plane wave basis x, is understood. Operating on ; and making use of the
fact that
(Em—_E)<xm| ¢i>=<mem|¢i>—<xm|Eupi>
== <xp | Vil 9> (2.39)

we obtain
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G+Vll¢l-%G+Vuxm<xm[¢ >
= [byj" (m) + G By —E 4 Vyy + Viy ¢ Vay = Vi by * ()] xpy < iy | 95
=it + 6T [Vay, byi*l + GH (Vi + Vi = Vi bt 1y, (2.35)

where [a, b] denotes the commutator of the operators a and b and
b1.|+ = % b”+ (m) l xm> < xm | . (236)
Combination of (2.26), (2.35) and the definition of V; gives
Q" = (w+ @," =D+ G [V (0,7 +b,0] +GT (Vb7 + V00,0, (23D)
where
wijt = bjjt + 1. (2.38)
The transition matrix element is given by
Tlf =< lﬁf | Vf | q‘l * (2.398)
=<¥ | Vilyi> (2.39b)
where Vi is the perturbation in the final state and
Y= (1+ G V) g . (2.40)
From a combination of Equations (2.25), (2.37) and (2.39a) we have that

Tig = < ¥ I Vg [(@n” + 0" =Dy >

+< l/’f | vf l G+ V., (bu+ + bn+)] ¢1 >

<y Ve 1GT (Vb + Vb, gy > (2.41)
The neglect of the effects of the binding potential means that the commutator
involving the potential V,, will vanish. This simplified (2.41) but some additional
approximation must be rr'n_ade before one can evaluate T;s. The third term in (2.41)
arises from multiple scattering and it vanishes if V,, is zero. When the projectile

is a heavy patticle, the contribution to Tif from the potential V,, is expected to be
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of the order of 1/M compared with the contributions from other potentfals, and
therefore negligible. For a more detailed discussion the reader is ref erred to
Bransden (1965) or McDowell and Coleman (1969). In applications of the theory
it is customary to make the additional approximation of neglecting V,, in V¢ and
of replacing w,,* by unity. Thus we obtain

T; MP - < g | Vg o, gy > (2.42)
which is called the “post” form of the approximation.

By expanding ¥¢~in terms of the operators

wij” = 2 wjj” (m) | xp > <xp |

where
wij_ (m) = (1+(E~H, - vij —ier! Vij] Xp

we obtain the “prior;’ form of the approximation. In general the cross sections
obtained from the post and prior forms are not equal and their difference is called
the post-prior discrepancy.

2.2 Reduction of the transition matrix element

In this section the transition matrix element given by (2.42) is reduced to a

form suitable for computation. The processes considered are:
H(ls) + (g} -H' v e+ (5, - (2.43)

In the impulse approximation the cross section for the processes (2.43) is

given by

k .
Q- 2k ,(——>::f [k dk £ f i dig | TP 12 (rag) (2.44)
T .
1

where the vectors k and k¢ are as defined in Chapter L. Transforming the Ef

integration of (2.44) to one over p, defined in Chapter I, gives the ionization cross

section as
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: k Pm
max
Q- A — " aks " p 1M |2 ap
2r' ki"o Pmin
! max Pmax I.+L.1°4d ' (2.45
2n’k’f° fpmmpl wths|?dp (2.45)
where
Iij =<y Vij | @, ¥; > (2.46)
with V, =z§and V= —%. In accordance with the definition (2.28) of the operator

w,,', the wave function w,,” i can be written as

+

@), '/Jl =%"Jn+ Xm<xm l '/ll>
+
= E‘ I[lm (13) < Xm | l[li >, (2.47)
and a convenient set of plane wave solutions of (2.27) is
X = @m 7 expli(K.x+t.p)) (2.48)

the energy E,, is then given by

E th, (2.49)

1
n" 30t

:r|7~'«

and the summation over m in (2.47) implies integration over all values of K and t. With

i=1landj=3,(2.29) becomes

1 2 1 2 z, -
(zvﬂ + EBVE + ;+ E,) |/;m+(13) =0 . (2.50)

This equation is satisfied by
*(13) = ia 1 i(Kx-
Y (13) = N (K) X Fi [ e 1,i(Kx-K. x)] (2.51)

with a = bz, and

NK) -eXpra- (2.52)

=|R
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Using Egs. (2.2), (2.10) and (2.48) it follows that
<xp | 9> (20 ffdxdry  Wexp-i(K.x+t.p—Ki. o)

- Gy (ak; -~ 8 (k; + K —bt) , (2.53)

where
G @=sell Ly, (dr.

Substitution of (2.51) and (2.53) in (2.47) gives
@it 9y = @ [ARAN () exp iR x+ 2.0 F, (12,1, § K- K . )

- (2nb)* fOK N (K) exp (- ik . k;) ,F, [iﬁ, 1,i(Kx—K. %]

x Gy, Ik; (a—%)— —;_l_(!exp[i—b@i+l$).1], (2.54)

the final result being obtained by performing the t integration and noting that
d(at)=a 8 (t).

With

ikf.o

pp=e 1 %g @ (2.55)

we have, using Egs. (2.42), (2.54), (2.55) and the definition of Iijv that

Lo = @rby* ffdxdre 56 2 g v, faR N (R) & Ki X

=it (2.56)

since V,, = — zx—', (2.56) gives
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1

Ly =(27b)” z, fdK N (K) Gy (- =K; - = IQ Gg* {=— —(_ +K)rakedl(-p,K)
(2. 57)
where _
1@,@=1@%€9' F,?,Limx-z.y] ' (2.58)
The evaluation of I (p , K) is discussed in Appendix A. Substituting (A.9) in (2.57) we
obtain
Iy -- JIKNGOGB(—V-—MGf(—v—iK—am

. 2”2 b: 2

NSNS
P

NIE'

(2.59)

where v = —lki.
-
If the interaction between the projectile and the target nucleus, V,,, is neglected

and if it is assumed that the ejected electron is adequately represented by a plane

wave
%@=&ﬁ285¢ (2.60)
" then (2.45) becomes
1 Kmax Pmax
Q= 2 2 zf dEf pllnlzdp y (261)
mtvio Pmin
and
1 : i@?%5+an—p-1
W*Fx—sg-ammﬂ%fe e

=Qﬂ26(!+%g+ag—g) . (2.62)

Substituting (2.62) in (2.59) we obtain
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ia

Ly - @% SNKGap -k (1- Zp.KI , (2.63)

where K = bk — abp — bv. The Fourier transform of the initial state is easily evaluatéd;

since ¢1g (1) = n % e we have that

Gls(ap_—|_()=n'/’f “eTdr
%
- 8r7 (2.64)
(1+(ap-k7
Substituting (2.64) and (2.52) in (2.63) gives _
E% . . ia
— 2 1 - - -

LL,--8vy2 g;.e — ™ 14 [1s(ap-KkI171[1- %2 Kl Rel7 (265

K sin h (-’ﬁ‘—)
where » =arg [' (1 - ‘—122)

An undesirable consequence of the use c.>f a plane wave to describe the ejected
electron is the lack of orthogonality between the initial and final unperturbed wave
functions. In the Bethe approximation (Chap. I, 3.4), the dipole term provides the major
contribution to the ionization cross section which for large incident energies E; takes
the form

Q = Aln E;/E; + B/E; .
However, if non-orthogonal wave functions_are used the monopole term does not vanish
and the resulting cross section tends to a finite (non-zero) value as E; - @. This
difficulty can be circumvented by using a Coulomb wave or, more simply, the function

d>f(_)=(2n)-l/’ [elg'£—<elk'£l $1s (0 > &1 (O]

2y ik.r 8. -
=(27) " [e (1+kz)ze1 , (2.66)

for the ejected electron. Substituting (2.66) in (2.56) the simple expression (2.65) is
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replaced by

64y 2z,
”/z b? (1 + kz)’ pz

In'= lu +

AN ) L+ v+ 207" (10 (v LR w2

ia
x[l—%g.lﬂ L (2.67)

where the first term, I,,, on the right hand side of (2.67) is given by (2.65).

Further reduction of (2.67) in closed form has not proved possible, and it-’s
eyalu_at_ibn, like the evaluation of the correspoﬁding expression obtained by using a
Coulomb wave to describe the ejected electron, presents a formidable computational
task. In order to obtain cross sections one must therefore make some a;pproximation
which reduces the integral to a form suitable for computation.

The Born approximation transition amplitude with expression (2.66) taken to

represent the ejected electron is

TifBorn = [fdl‘ dL ¢1 vu ‘/’f*

- Z, ip.g 11—ik.t 8 -n~r 68
== ;' [[fdxdre ile - —e le . (2.68)
2/111 X (1 + k?»? .

Performing the x and r integrations of (2.68) we obtain

r — (2.69)
PP le(ap-k)l (1+k) (4+a p)

To examine the effect of using the wave function given by (2.66) we noted that the
Born and impulse approximations agree in the high energy limit and therefore made
the approximation of replacing the second term on the r.h.s. of Eq. (2.67) by the
second term on the r.h.s. of Eq. (2.69), having ascribed to it the phase of I,,, i.e. we

put
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" a
PN RN®) Ky 34 SRTPE: 1(1_'E
o (e pr N O e BEY L e g ca L - e K

ia
pz (1 + kz)z (4 +g? pz)z pz (2 70)
With this additional approximation the expression (2.67) is replaced by
e ma %
L0 - 82z Klcsnn @y 16 ]
[1+(ap - k) (1 +k)? (4 + a? p¥)?
- !I% ) (2.71)
x[1_p_2,g.5] el
with K = bk — abp — byv.
Substituting (2.71) in (2.61) we obtain
ma y
1 k P 2K —_fa 72
o - 6:1 zz..fo maxd fp maxgp_[ { K sin b (_,l,g_)l _ 16 1 . (2.72)
n°v min ‘1 + (a'[2 —K)zlz (1 + kz)z (4 +a? pz)z
The Born approximation cross section is given by
. k p
QB=om - maxd_J max ;| Ty Botn 12 dp | (2.73)
2nty o Pmin
Substituting (2.69) in (2.73) and integrating over k we obtain
Bom' 956 [Kmax Pmax dp 1 + 2 (a% p? + k?) + (a* p? — k?)* + 104 p* k*
Q = &0 Tk dk S P 3
mveo Pmin P’ 2
{1+2(a?p?+k?)+(@p?-k»)P
32
(1+k) (4 +a? p’)z fl1+2(a?p? +k?) +(a’p? — k?)'|
256 .
+ 1 . (2.74)

(1 + k2)4 (4 + a! p2)4
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If the ejected electron is represented by a Coulomb wave, Eq. (3.7) of Chap. I,
3.1, the ionization cross section in the Born approximation (Mott and Massey 1965

p. 490) is given by

k .
QB°m= 2y max dk fpmax 9o k___ exp(- 2arctan (——-gk—)
vio Pmin P (1 - e 2n/k) k *P"kz

(p? +%(1 + k)]
X 2 2.2 ‘ (275)
[(L+p*=k) +4k¥[1+2(*+k?) +(p*—-k?)]

The limits of integration are given by

Pmin = K = K> Pax = K; * kg - (2.76)
The equation of conservation of energy is
1 2 - 1 2 1 2
E; k1 + 6§ = ﬂkf + §k (2-77)

Using (2.76) together with the equation of conservation of energy (2.77) we find that

Pmin = -k , (2.78)

vils i1 - LK)
')

- I+ k"%
Pray = AV [1+ 11— ﬁ_uv_); 1 (2.79)
and
Kpag = (v =D% (2.80)

where I (= — 2 ¢;) is the ionization potential of hydrogen in Rydbergs.

Cross sections have been calculated for the processes (2.43) in the impulse and
Born approximations by performing the integrations in'(2.70), (2.74) and (2.75). The
numerical methods employed are discussed in Section 3 and the results are presénted

and discussed in Section 4.
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3. Numerical Methods

The integrations were carried out using a frame of reference Oxy z with the z-axis
along ;_) and such that the xz-plane is the plane of p and k;. Spherical polar co-ordinates
in this frame are denoted by (k,»,4). The calculation of ionization cross sections in
the impulse approximation invol.ves the numerical evaluation of a fouf-dimens_ional
integral, namely, the integrals with respect to &, », p and k in (2.70). The evaluation

of ionization cross sections in the Born approximation involves the numerical evaluation |
of a double integral, namely, the integral with respect to p and the final integration
over k in (2.74) and (2.75).

First we describe the method used to evaluate the expression (2.70). The
integrand in this expression is a well-behaved function of the four variables ¢, i/, p
and k, with no singularities within the range of integration. In our frame of reference
v can be written in the form

V¥=vy(sind,o0, cosd). 3.1)
Making use of the equation of conservation of energy, the equation defining p, and

Eq. (3.1) we can write K in the form
K? =b*[¢a+ 1) k* + (a + ;ll-)ap’+v’+al—kcos./ i(2a + %)p’ + T +Kk*/p

— k sin v cos ¢ I(p? - pminz) . (2uv - pmin)z -p* ! % /ppl . 3.2)

Repeated Gaussian integration formulae of various orders were used to evaluate
the 'integrals over the variables ¢, u,'p and k in the fol.lowing order: (a) ¢, v, p, k;
(b) v, &, p, k; (©) p, b, v, k. As a result of tests carried out for the ¢, v, p, and k
integrations it was decided to split the range of integration in the following way:

(1) The range (o, n) for the ¢ and v integrations was sblit into four parts, (o,%),

n, om (o, 3m) (37, ); (2) the range (a , b) for the p and k integrations was split
4 2 2 4 4
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into sixteen parts, (a, a +t), (a +t, a + 2t),(a + 2t, a + 8t) and (a + 8t, b) where

t - 1L6(b — a). Gaussian quadratures of order 4, 6, 8 and 12 were in tumn applied to
each part. In the case of proton impact the range of int_egration was truncated at

p = 15 and k = 15 because the integrand becomes negligible for large values of p and
k. A very good agreement was obtained between the different methods, and the
indications are that the cross section values obtained are at least accurate to three °
significant figures.

The integrals over the variables p and k in (2.74) and (2.75) were evaluated
using (a) the Simpson integration formula, the steplength being chosen on the basis
of the observed behaviour of—|TifB°m|’ as a function of p and k, and (b) Gaussian
formulae of order 4, 6, 8 and 12. The agreement between the results obtained, using
the Gaussian integration formulae and Simpson’s formula, is better than four
significant figures. The Born cross sections were obtained using the Born (1)
approximation (Chap. I, 3.3, Eq. 3.17).

4. Results

Cross sections for the processes (2.43) are given in Tables 1 and 2. In these
Tables QI denotes the cross sections obtained with the use of Eq. (2.72), QB(I) .
denotes. Born (i) cross sections with Coulomb wave for the ejected electron and
QB(Z) denotes Born (i) cross sections with wave function (2.66) for the ejected
electron. The results are also presented graphically in Figs 1 ;'-md 2, to allow
comparison with experiment and with other approximations. In Fig.- 1 we display
the results for the process e + H (1s) - e + H' + e and in Fig. 2 the results for the
process H* + H (1s) » HY*+H' +e.

The present approximation over-estimates the true electron impact ionization

cross section at all energies in excessof 1.5 times threshold, a result which is in
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striking contrast with that obtained by Akerib and Borowitz (1961). At high energies,
as mentioned previously, Ql - Qp but the approach to the limit is very slow, the ratio
Q; /Qpg being approximately 2.54 at an incident energy of 45 rydbergs. |

For proton impa-ct the present ;pproximation grossly over-estimates the
ionization cross section at all energies in excess of 25 kev. Again at high energies
Qq - Qg but the approach to the limit is extremely slow, the ration Q/Qpg being
approximately 4.9 at an incident energy of 750 kev.

The present model, which is identical with the non-exchange approximation of
Akerib and Borowitz (1961), leads to results which are incompatible with experiment
and with the predictions of the Born (i) approximation. Furthermore, a drawback of
the model, in the case of electron impact, is that it does not seem possible to include
exchange in a logical way in view of the fact that V,, is taken to be identically zero.

5. Conclusions

We conclude that the agreement with experiment obtain by Akerib and Borowitz
for electron impact ionization is fortuitous. The indications are that the impulse |
approximation will not give good results if I,,’ (Eq. 2.67) is evaluated without a
further approximation. The computational effort required to evaluate (2.45) when the
ejected electron is described by a Coulomb wave is not, in our view, justified until

the validity of the impulse approximation is better understood.
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E (Ryd)

10

16

30

40

45

Cross sections (ra,?) for H(1s) + e » H*+ese

O

1.025
1.391
1.499
1.483
1.389
1.287
1.192
1.034
0.916

0.715

0.586

0.538

Table 1
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M
QB

1.016
1.195
1.145
0.958
0.804
0.690
0.604
0.484
0.406

0.293

0.233

0.212

Q (2).
B

0.466
0.864
! .0§6
1.138
1.071
0.983
0.901
0.766
0.666

0.506

0.411

0.377



Table 2

Cross sections (ragy?®) for H (1s) + H* 5 H* + H* 4+ e

E (kev) Q QB(I) QB(2)
5 0.153 0.667 | 0.237
10 0.818 1.625 _ 0.479
15 2.276 2.149 0.718
20 3.984 2.377 0.960
25 5.521 2.445 1.178
50 8.782 2.122 1.716
100 - 7.542 1.448 ' 1.653
200 4.692 0.873 : 1.226
300 3.320 0.631 0.965
400 2.559 0.497 0.801
500 2.078 0.412 0.687
750 1.413 0.291 0.514
1000 1.070 - 0.227 0.415
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Fig.l Cross section for H(IS)+e —> H' +2e
I: Experiment, Fite and Brackmann (1958)
2:Q), 3:0, 4:Q., 5:Veldre & Vinkaln(1963)
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CHAPTER Il

IONIZATION OF He AND Li* BY ELECTRON IMPACT

1. Introduction

Cross sections are evaluated, in the Born (ii) approximation (Chap. I, 3.3, Eq. 3.16),

for the processes
He + e » He* + 2e (1.1)
Li+ + e » Li** + 2e (1.2)

in which both Helium and Li* are initially in their ground states.

For ionization of Helium by electron impact there are several sets of theoretical
results (Massey and Mohr 1933, Erskine 1954, Sloan 1964, Peach 1965, Inokuti and
Kim 1969) and experimental results (Smith 1930, Rapp and Golden 1965, Schram et al,
1965, Gaudin and Hagemann 1967). The results of Smith and Rapp and Golden differ
very slightly over the energy range covered by Rapp and Golden, but the difference
between these two sets of experimental measurements and those of Schram et al and
Gaudin and Hagemann is quite appreciable. The calculations of Erskine and Sloan
agree well with experiment at energies bet“;een 500 ev and 1 kev. Erskine used a
one-parameter function for the 1s state and solved for one electron in the average field
of He* for [ = 1which gives the largest contribution to the total cross section. Sloan
made use of a bolarized orbital for the ejected electron. Peach has used a Hartree-Fock
wave function for the initial bound states, together with an undistorted Coulomb function
for the ejected electron.

For ionization of Li* by electron impact the only theoretical results available
are an unpublished evaluation of the Bethe limit by Kim and Inokuti (1969) and an
unpublished Coulomb-Born calculation by Moores (1969). Two independent sets of

experimental results are available (Lineberger et al 1966, Peart and Dolder 1968, and
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Peart and Dolder 1969). The experimental measurements of both these groups are
compatible in the energy range in common.

Two experiments have also been carried out on electron impact detachment from
the isoelectronic system H™ (Dance et al, 1967, Tisone and Branscomb 1968) together
with several theoretical calculations for this process, in particular a Born calculation
by Bely and Schwartz (1969), a Bethe-Born calculation McDowell and Williamson (1963),
and a sum rule evaluation of the Bethe limit Inokuti and Kim (1968). These three
theoretical estimates of the cross section are in agreement with each other and with
the Dance et al experiment, but are in disagreement with the Tisone and Branscomb
experiment. It is therefore of interest to extend the earlier Born calculations for He
to higher energies to test whether the Bethe asymptotic limit is approached correctly,
and to get some estimate of the reliability of the computed cross section by using

altemnative formulations, and to extend the work to Li *

2. Reduction of the Matrix Element

The Born (ii) cross section for the ionization of a two-electron atom by electrons

incident with energy ' k;* (Chap. I, 3.3, Eq. 3.16)

N ‘ma
Q (k) ki’fo

. P
“kdefdks T E(K, P 1* dp? (ray?), 2.1)
min )

where ¢ = Y4 k* and ¢ gy = % (% k;* = 1). All other quantities are defined as in

Chapters I and II. The matrix element f (k, p) is (Chap. I, 3.3, Eq. 3.15)

2 i .
ffl ) - — 52 fe BN (0, 1) Yt (o 1) dr d, (2.2)
l = =2

¥, (r,, r,) and ¥y (r, ,.r;) being the wave functions of the ground and final states

respectively.

If the wave functions are exact, then
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o (V2 + VI W% — Wk (Vi « VI) W, = —2(1+ ) Wt ¥, (2.3)
Substituting (2.3) in (2.2) gives
Fk, p) = —2—(p* el B Eru wdr, dr, - 2ip [l B Frwg L w,* dr, ar,1.(2.9)
p*(l +¢) 2 dz, =
Substituting (2.2) in (2.4) we obtain
fv(k,g)=—mz—+%z—+—21—)feig'—r”l‘o 2wyt dudr, (2.5)
This alternative expression for the amplitude was first derived by Bates et al.
(1950). The expressions (2.2) and (2.5) are equivalent for exact wave functions but
not, in general, if approximate wave functions are used. Their difference is, in a
weak sense, a test of the accuracy of the approximate wave functions used. Following
Chandrasekhar (1945), we call (2.2) and (2.5) the length and velocity forms of f (k , p),
respectively. Kennedy and Kingston (1968) made use of expressions similar to (2.2)
and (2.5) in their work on the excitation of the 2 'P state of Helium, while McDowell
(1969) has also studied both forms in a Born calculation of electron impact ionization
of Li.

For the ground state we use an open shell two-parameter wave function, the
variati(.mal parameters being given by Silverman et al (1960). The parametgrs used
are listed in Table 1, together with the corresponding value of the ionization
potentials. We write the initial and final wave functions as

Wy (r,,r) =N @ Al g2y (2.6)

Y (@, L) - \/—17 (15 (2 5) b (6) * 915 (2 1) ¥ @) @

where N is a normalization constant. Here z is the charge of the target nucleus,
s - .
d’ls (z,p-= (1”’_)/; e zf and the function ¢y (1) for the ejected electron of

momentum k may be written
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¢y (0 = ; )}k/,‘: e nite il ). u (k, 0P k.0, (2.8)
= n) 2 2{ = '

where P( (x) is the (th Legendre polynomial, and the radial function u, (k,r)is

regular at the origin, with asymptotic form

~ 1. z-1) 1 .
uy k,n ™ °o?/—zsm {kr + ngn (2kr) = ELn vop | (2.9)
where o = arg Fil+1-i LZ;—QI while m is the non-Coulomb part of the phase
shift.
Table 1
Parameters used in evaluating the matrix element
z a B I
He 2 2.183171 1.188530 0.8756614
. VRS 137228
Li* 3 3.294909 2.078981 2.748748
S T AR

The fi.nal state wave function ¥ (t, , I1,) is automatically orthogonal to the
ground state function ¥, (r, , r,) for [ > o; for [ = o we orthogonalize the ground and
final state wave functions by writing the latter in the form

¥\, (Orthogonalized) = ¥y (1, , 1,) — < ¥, | ipE SY (1, 1) . (2.10)
The orthogonality factor <'\I"O | \Pk >in Eq. (2.10) is given by
<Wo | ¥ >=[fddr, ¥o* (L, 1) ¥y (1, 1)

which, with the use of Egs. (2.6), (2.7) and (2.8), we can easily reduce to the form

3 __' 00 - r -
<¥y | ¥y >- 1625 N oo o) ru (€% . €T jgr (2.11)
L k% "0 (z+4)* (z+a)

Substituting (2.6) and (2.10) in (2.2) gives
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fr, (k. p)——p—r:[ L1016" (2. 1) 0 (1) < U1 * (2, 1) Ukt (L) — - Wy Wy EUOT(r,

<e B By () ar,
S S (2.12)
where
Sz ek @) e 2w, ) dr, dr,, (2.13)
L==2Y2 [y b (z, 1) v () e B-Liy (r,,r)dr dr, (2.14)
and
I, = -:—z< lllo| qlK ;sff\po* (r, , 1) P L ‘l’o (r, 5 ;) dr, dr, . (2.15)

The integrations were carried out in a frame of reference Oxy z with the z-axis
along g In this frame the spherical polar co-ordinates of r, , r, and k are denoted by
(r,,0,,¢),(,, 08,, ¢,)and (k , v, ¢) respectively.

Substituting (2.6) and (2.8) in (2.13) and making use of the expansion

ip.r
PR

M2

@2n+ )i, (pr) Py (p . D) (2.16)

where jn (pr) is the n th spherical Bessel function of the first kind we obtain, after

performing the integrations with respect to r, , 6, , and ¢, , the result

- 3224 N 3

-r -m’
_322ENS gL e )

P; (cos u)f ru‘ (k, 1) j, () [ € + £

pik% ( =0 (z+8) (z+a)
(2.17)
In a similar man ner we obtain
32 /z N l (U + 7 ) oo . (7 I- (1) e-m (Z )e-ul'
I, - zZ N o’ "t ug k, 1) [ -2 P ELAE ydr,  (2.18)
p*k” o (z + )+ p?12 Wz o p)* + p2i?
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and

I’=1024Z #* N? 1(ao+7’o) a . 8 N B }
p k% n’ (4 +p)?* (a+ A Wa + 9+ p** o’ (45" + p?)’
ar -Br
xf rug (k, 1) [ e v & ldr . (2.19)

(z+8) (z+a)

Substitution of (2.17), (2.18) and (2.19) in (2.12) gives

2L +1) ei(a[ +T’l) Pt (cos v) [ f r u (k, r)j (pr) | o e-ﬁ

322 :NQ ldr
( )’ (z+a)’

f(!‘_: )='—l—2
L B p*k’ (-0

cu (k, r)t(z“‘)e gz+p)e b dr
f 0 ((z+a)’+p’)’ (z + B)* +p?)*

~ 32 n2N?| a 8 . B |
B* (42 +p)* (a + B)'((a+ B)* +p?)* a* (487 +p)’

-al‘ -Br
% & ru, (k, r) 1-& e fdr]
{0 f ° (z+8) (z+a)

%N e io ) Ly
22 NE e TR sy o . e

Expression (2.20) gives the required ionization scattering amplitude in the length
formulation of the Born approximation. Substituting (2.20) in (2.1) and performing the
integration with respect to E yields the result

o ik, - 2:_nNz @0+ [ " kak [ a1 v, L)k, p) I (ray) . (2.21)

i L= min

Substitution of (2.10) in (2.5) gives

4421 P_ I * ® ek dy,
k. p) - - p(k’+p’+2[)ffd  dr, ¥oltnta) ldgg (z,_,) l/ (r,) / (l',) l/ls (2,1,
V<>t S @ )] (2.22)
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The differential operator 9 ;

3718 in spherical polar co-ordinates given by

D _cosgd _sing 3 (2.23)
dz or r dd

With the use of (2.23) we have that

. 1 A l(a +n,) cos 6, d K, (k,r,)
a—zlxllk* (c) = (-é”—)r—-:—lz 2L+1) (i) e [ e . dlrl. ( r)_ ] P (_ r,)
ulﬁkzrl) n o _"_ 5. P i) (2.24)
and -
9 sy -21,
.az_l./,ls (z,1)=- (27) cos 0, e (2.25)
Substit'uting (2.24) and (2.25) in (2.22) gives
fyk,p) =], +].+17, (2.26)
where
%N e ' . . '
J,-- 2z Ni S @) - 1)‘ l(al +1" ) [ di, dr, elP:li o726 (e-ar,-ﬂr, e-ar,-Br.)
aipk 4 (k+p®+20)L=0 . '
(22 0w QR Bl py (g . U ging, Tpy (i @.27)
5/2 : oo K ip. - -afl .~ a
. n’pilz(k::)’ﬂl)tz“o D 0 G f o, o, B ST (T Y g g
< %‘iﬁ) P (k. (2.28)

and
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8<¥y ll’p"‘N’i
p(k?+p*+2I)

I, -=- [ [dt, dr elg.L (e-ar,-,Br, ar,-ﬁr)( ar‘-pr2+ Be-ar’-

,3r,) cos 6,

3 EINEH i - - -
BN IMMNE | B o [ ANy L) () an ),
plk+p+21)

(2.29)

When the 1, integration of (2.27) is carried out we obtain

!/z : o0 i al, -prl
o203 e Y par e B E £
npk/’(k’+p’+2[)L =0 (z+8) (Z+a)
(0080 dy (k) A0 p -2 gin, 2p &)
I dl’l rlz 00

which with the use of the addition formula for the Legendre polynomials

P (k.0) = P_(cos 6) P (cos v) + 2 s (n:m)! P, (coso) Pn“‘(c_os v) cos m (&, -¢)

B m=1 (n+m)!
(2.30)
becomes
16z %Ni = Jilg +m) 4 et e?l e Ah
- T p) 2 +1 l d .
I npk/’(k’+p’+2[)l—o( ¢ )(l) fdr [(z+,8) (Z+a)’]

[coso Zu" (r) —‘-—lu or, {Py (cos6,)P, (cos v)+ 2>‘1 2 +m;' L‘m(°°sol)PL "(cos 1)
r,

x cosm(¢, - H)!

_Lu‘(k!rl) s .2 V. . L p m 0
. _—r.‘ sin ollFZ (cos )d p—" lPt(cose,) 25: (—‘ +m)'P 0S )d(coso,) | (cos0,)
x cosm(g, - )il
A Ni o9 + -al'| -8,
='3.—2z-m—2 (L +1) (-i) e‘(" 1) p (cos .,)f r,? dr, ; d(cos(),)l___._14 e |
pk/’(k’+p’+2[)l'"° (z+8)* (z+a)

lar. cosé, (duy (k,r,) ut(k r,) ug(ke) .oy d
[— s —& ™ === | Py (cosd,) + e sin?0, dcost) —~——— Py (cos0))] .
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We have obtained the last result by performing the integration over ¢,.

Using (2.16) and the recurrence formulae

1-z9%0@_1p -nzP (2.31)
dz n'l .n
20+ DzP (D =(+DP @D+ P (2 (2.32)
n+l n-1

the above expression for']l reduces, after the integration over 6, has been performed,

to the form
% o0 i e -ar, -hr,
J,--_084z°N 5 &Py (cos ) [Tdr, 12, €F
pk’ (k? +p? +2l) -0 ° (z + 4 (z +a)

x (€ +1) (£ +2) jl +1(pr‘) + [(l.*._l) i_l(prl)l ut(k,r,) - {(l+1) jl+1(pr,) - jt_l(pr,)l
d
x d_rlh' uy k, r)il .

Now integrating by parts the term, in the above expression, which contains the

derivative of the radial function uy (k, r,) and making use of the recurrence

formulae
i @-zdj (2)-zj ' 33
nj, (@ -z -, (@) z=l+1(z) (2.33)
Zj (2)+2zj (z) =(2n+1)j (2) (2.34)
n-1 n o+ n
we obtain
Ji==— —?/6—(4_2_/1—112_61? . A +1)ei'(al “7!) P[ (cos u)f:dr ul(k,r) [pr jt(pr)
pk 2 (k2+p=+21) L = :
-al -8t -ar -Ar
e & oLy e - prj  (eot1ee fe . (235
zr o @ po TR @ vy (
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The r, and 1, integrations of (2.28) can quite easily be carried out and the latter

expression then reduces to the form

64 Z!./z N i(og+ng) e e : e-ﬂl‘
L= - k, ]dr. 2.36
J AT AT e fo rug(k,r) [l(z+/3)’ - p’!’+l(z+a)’ o r (2.36)

Performing the integrations over r, and r, in (2.29) we obtain

64 n N? <Y | Wy o*
i ol *k a 8 B 1.(237

Js (kR ep +2) A (427 +p) (a + B) Ma +A) + P o (457 + P

Substituting (2.35), (2.36) and (2.37) in (2.26) and making use of (2.11) we obtain

%

- 2N 5 gpne T B s v P 2w
k% (et v pr e 2l |
where
v) . : ™ e’
Vi Gk p) - k, ~fo MO
t ( p) IO r ul ( f) [“t (Pf) l,o (p)l (z +B): + (Z + a)!

-afl -Br
aé se .

(z +8)° * (z + a)’!

1 . .
- 5—,!(1 +1) jt (pr) - prtj-l (pn)t i

-afl -Br
+8 z1—2 § —2° 1 dr, (2.39)
[ .© (z+ 81 +p)? (2 +al)+p?)?
and where
A(p)xlﬁrr’N’[ a + 8 + B

: |
B'(4a” +p)? (a+ ) Ma v A)T 4 P21 (407 + Y’
Expression (2.38) gives the ionization scattering amplitude in the velocity

formulation of the Born approximation. Substituting (2.38) in (2.1) and integrating

A
over k we obtain

. k P
2|sz3nNz°° max max pdp (V)

k) - 202N o kdk Py Yk, p)|? (na ). (2.40

Q G = IR @ 7tk e BRIV ¢ G )1 (rag ). 240
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3. The Method of Polarized Orbitals

Sloan (1964), following Temkin and Lamkin (1961), takes the total wave function
for scattering by an hydrogen-like ion to be of the form
Y (1) = (1P vy (0 [y (2 1) + P, (3.1)
where P, permutes r, and 1, , and the upper and lower signs correspond respectively .
to singlet and triplet scattering. The ‘static’ problem is to determine ¢pol (r,, 1),
an approximation to the first-order perturbation of the ground state function ¥1s (z, 1)
by a stationary electron at r,. Generalizing the methods of Temkin (1959) to an

arbitrary nuclear charge z and using atomic units Sloan obtains

ypol (r,, 1) = - (_tl/_ E(Lr‘;i)_e'" (%zr,’ +r)cos0,, , (3.2)
nzZ)’? 1
where
1 | S ,
€ (rl ) 1',) = |
0 r,<r, ;

6,,-arccos (r,.r,). Forr,>r,and r, 5 , ¢p°l (r, , t,) is the dipole contribution to

the first-order perturbation of 1s (z, 1,).

The variational principle used by Sloan implies that ¥, (r, r,) satisfies the

equation
[¥1s* (2, L) H -E) ¥ (r,, 1) dr, =0, 3.3)
where
- Llwlivhy_z_ 2z, 1
H=—5(V, 4 2) o
and

1
E = = (k? — 2% .
2( z?
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The result of using (3.3) with ¥y (r, , r,) given by (3.1) is to obtain integro-differential
equations for the scattering wave functions. Thus, replacing vy (r) by the expansion

(2.8) we find that the radial function u (k, r) satisfies the integro-differential equation

&, o, Ael) 220 (u+) __alz) 82
[F+k + - +2(z+F1)e = ]uL(k, r) 7=t ul(k’ r) & (2L+1)e

w1010 + e 1 o) - 164,0) % 2y @+ I Lo

-1 , .
;428 _l Sl 2) g3 13} o2 -/ 1 5, . { (-1 .1y
(2—“—1—)[‘6’1 { 5 z(g2+k?) 1 + (2k?) 2} J(-{,1) + JZrH N(Zl-l) r o J-i-1,r)
U L+l s an
+ (2L+3)r J(t ,l')_
L4 -2zr 3, ., 1o 1, dy, (k,r)
+ §zLS’l e [(Ez r Ezr 3 ul(k,r) (EZt +r) 5 1, 3.9
where
B (x) = %— %e-2x (x* + %x‘+9x’+ %x’# Z—gx+g%) , (3.5)
L, 0= €™ u, k0" dx (3.6)
T (m,t) = f:e'zx u, k%) x™ dx . G.7)

The direct polarization potential has the property

B(zr) a
(zr)* =
where a = 9/2z* is the dipole polarizability.
The exchange polarization approximation is obtained if on the right-hand side
of equation (3.4) the terms in the two final square brackets are omitted. The exchange

approximation [Morse and Allis (1933); Seaton (1957)] is obtained by omitting ¢p°l(_r, )
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from the total wave function (3.1).
In the present work we have taken u/ (k, r) to be a solution of the integro-

differential equation

A&, g, 2zeD) L 220 f({sD) |, , B(z0) _ 8zA, car
[dr‘+k + 4 +2Al(z+r)e " +A,(zr).]ul(k, r) (2l+1)e
-l (+1 1 2.2
x [07 T+L,0) + 0777 T (-f,00) - T (-(,1) - 5250 (z7+k?) 1 (-/+1,0)11 , (3.8)
where A, , A, and A, are constants whose function is to switch on or off the terms

which they multiply.

3.1 The normalization of the continuum wave functions

In this section the amplitude of the solution of (3.8) is examined in the
asymptotic region and adjusted so that (2.9) is satisfied. This is easily achieved
by means of the Stromgren method (cf. Bates and .Seaton, 1949). In the asymptotic -

region the radial part u| (k, r) of the continuum orbital satisfies an equation of the

form

Lyt 0+ Al Dyl D=0 | (3.9)

which; as can easily be verified, is satisfied by
uy (k, 1) = C¢ % sin 1o (1) + 81, (3.10)

where C is a constant and £, which represents %;—é, is given by

Cr=A(k, 1)+ 4 gri,(g"/z) . (3.11)

This equation can be solved by iteration; the convergence is very rapid — indeed it
is usually only necessary to replace ¢ in the second term by A (k, r). As o o,
A (k, r) tends to k?, so that the asympfotic amplitude of (3.10) is simply“C k '/1. The

determination of the multiplying constant Cinvolved in any particular solution of
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(3.9) can be carried out in the following manner: choosing two radial distances r, and.r,

and introducing

1, 1 )
a = %fr Cdl’, a, - <|/i ul (k, r), a,= Cz/z u[ (k, l‘,) (3'12)
it can easily be shown that

1[(a +a,)*sec’a + (a, — a,)? cosec? a]/’ . (3.13)

Nl

Since ¢ is known from (3.11), this can easily be evaluated.

3.2 The solution of the continuum integro-differential equation

It is convenient to write (3.8) in the form

gr—z,u[(k,r) = f,0e0) u (k1) + g, (1) f:e u, (k,x) It L ML “1 -‘l dx + 1 ag, ()

(3.14)

where

(=L D 0 _2@-D 58 g L2y, £@D,. 315

_8zA,
g () 2 1) , (3.16)
< -ZX : -d 1 24 2
a-= fo ey k, x)x 11 —_;_2-1875\" (z* + k)l dx . (.3.17)

Following Percival and Marriott [Marriott (1958)] if we define X; (k, r), Y/ (k, r) as

solutions of the equations

-4 L+1 [+1 -

X = (D) Xy + gy(0) £ X (600 I X tdx ,  (3.18)

Y[(k ) = £ (k,1) ¥y (k, r)+gl(r)fezxYl(k YR G K hax . v g/

o (3.19)
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then clearly
uy (k, 1) =Xj(k, 1) +a¥ (k1) (3.20)
is a particular solution of (3.14). Substituting (3.20) in (3.17) we obtain
X 0 xt 1= L5 w2t k9l dx
0 ' 2,0

a-= e . (3.21)
- ey, & 0x!11- 25 x(z' + k) dx
o 2,0

The non-iterative method that was used for the solution of (3.18) and (3.19) is
described in Appendix B. In this Appendix we also describe the numerical methods
used for the evaluation of the exchange integrals I (m,- 1), the radial integrals in (2.20)
and (2.39) and the integrals over the variables p and k in (2.21) and (2.40).

4. Results

Although we have calculated cross sections in the Born (ii) approximation using
both (2.21) and (2.40) for the following set of values for A, , A,and A,,
| W A - A, =~ A -0,
(i) A, = A, =1 A, -0,
(i) A, = A, = A, - 1,
\a;e shall only present results for ihe case (ii). Case (i) corresponds to the work of
Peach (1965), and (iii) to that of Sloan (1964). Cross sections obtained in case (i_i)
and case (iii) differ by less than 0.1%. Repeating the previous calculations of Sloan
(1964) and Peach (1965) provided a good test of our computer program; good agree-ment
was obtained in all cases. The method used for obtaining the phase shifts for
scattering by ionized helium is that of Burgess (1963).

Calculated partial wave cross sections Ql (k; "),

4
Q (k9 =‘Z Ql.(kiz) )

=0
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are presented in Tables 2 — 5. The s-wave results ({ = o) depend on the orthogonal-
ization procedure adopted, and may be significantly in error. However, the agreement

of both sets of results with Bethe's sum rule at energies in excess of 50 times thre;hold
indicates that this error cannot be greater than 10% of the s-wave contribution in this
energy range. As expected, the dipole contribution dominates and the convergence of
the partial wave sum is rapid for { > 1 at all energies.

In our analysis we neglect the fact that the incident electron, in the case of
Li* - Li*", should be represented by a Coulomb wave and not a plane wave. However,
the total cross sections obtained for process (1.2) are in excellent agreement with
the values obtained by Moores (1969, private communication) using a Coulomb-Born
approximation, at energies as low as five times threshold.

The length and velocity formulations yield results for the total cross section
differing by less than 9% for He and les's than 6% for Li * at all energies. It is
therefore judged unlikely that the true Born cross section (i.e. the cross section
computed with exact wave functions) would differ from the mean of our results by
more than 10%. |

Our results for the total cross section for processes (1.1) and (1.2) are presented
in Tables 6 and 7 respectively. In the latter table we also present the results of
Moores for comparison.

In Fig. 1 we compare our calculated cross sections for He with the experimental
measurements of Golden and Rapp (1964) and of Smith (1930), and with the Bethe

asymptotic results (derived from sum rules)'of Inokuti and Kim (1969). They give
Q(E)= 2 [AInE;+Bl(ra)
Ej»w Ej

with
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A - 048, B - 0.036 +21n2
to within 1% for E; » 50. Our length calculations agree with this result to within 3%
for E; > 1 kev. The velocity formulation results appear to be low, compared with experiment,

but are in good agreement with the data of Smith within his estimated errors. A fit to

our length results of the form
Q(E) - g—i['Aln E; + Bl (va,?)

yields
A =048 B = 0.758 .
A fit to our velocity results of the above form gives
A - 0.428 , B = 0.743 .
In Fig. 2 we compare our results for ionization of Li* with the experimental
results of Peart and Dolder (1968, 1969). The results of Lineberger et al. are
consistent with those shown. Kim and Inokuti [private communication, (1969)] find

that for process (1.2) at impact velocity v cm sec-!, the Bethe limit is

=00 1

' ' 4 : 2 2
Q (E) 3 2 lln(l%g) — B + Bl (ra,?)

where

0l

B=<, A-0.1445, B-1.552+0.058.

-For Ei > 50 our length results agree with the results of Kim and Inokuti to within 4%,

while our velocity results are approximately 6% lowér,' though both are compatible with
experiment. We note that in both cases (He and Li*) a plot of E; Q (E;) vs In Ei has a
linear region in the neighbourhood of E; = 10 with a slope substantially lqrger than the

one finally attained. A fit to our length results of the form
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4 B’ 2 PR |
QE) - (A un(lf’ﬂ)- Bt + Bl (va )

i—ooo l
gives

A - 01513 , B = 1.5636.

it

A similar fit to our velocity results gives

A = 01414 , B = 1.4753.
In Fig. 3 we compare our results for ionization of Li* with the results of
Moores. Both our length and our velocity results are in excellent agreement with
the values obtained by Mobres, at energies as low as five times threshold.

In order to explain the origin of the results presented in Tables 8 — 13, we

write
2 s kmax (L) 2 1 2
QL(ki)=[z=of0 Ol (k)d(ik),
Q. (k-3 fmax () o4 Ly
V(i =L=of0 04.()(7 ),
where
P L
"[(L) K = J m‘axI IZ( )(k, o) I dp
p .
min
P
ot ey = 171, 6y 1 p
Pmin .
with
L 13 3 1 L
1 122z @y Ny B g
p’ ki
1 () =122 0@ pth N Vt(V) (k, p) .

ki(kz+p 2.’"21)
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A sample of our calculated results for the quantities l,(L) (k, p) and Il(v) (k, p),

for the process He + e - He+ + Zé, are presented in Tables 8 and 9, and illustrated
in Fig. 4. A similar sample for the process Li* + e » Li*" + 2e are presented in
Tables 10 and 11 and illustrated in Fig. 6. A sample of our caléulated results for .
the differential cross sections a,(L) (k?) and al(v’) (k?) are p-resented in Tabie 12 and
illustrated in Fig. 6, for the process He + e - He* + 2e, and in Table 13 and Fig.. 7
for the process Li* + e - Li** + 2e.

The excellent-agreement obtained betweeh our Born (ii) calculations for He and
for Li* and experiment, and with the sum rule limits indicates that the similar agree-
ment of Bely and Schwartz’s (1969) and McDowell and Williamson’s (1963) calculations
for H detachment with the experimental results of Dance et al.(1967) is nt;t
accidental. We believe it substantially reinforces Bely and Schwartz’s conclusion
that their calculation is incompatible with the Tisone-Branscomb experiment.

5. Conclusfons

Using a partial wave expansion for the ejected electron we have calculated
cross sections for electron impact ionization of the ground state of He and Li* in
the Born (ii) approximation at energies from threshold to 9 kev. Cross sections '
calculated with an open shell two-parameter wave function for the ground state of
the target in both the length and velocity formulations are in reasonable agreement.
In both cases the calculated cross sections are in agreement with experiment at
impact energies in excess of 25 times threshold. They approach the Bethe
asymptotic limit correctly. We conclude that electron impact ionization of two-
electron systems is well described by the first Born approximation at energies in
excess of 25 times threshold. This implies that in the case of H™, the Dance et al.
experiment is to be preferred to that of Tisone and Branscomb, in agreement with the

conclusions of Bely and Schwartz. 74



Table 2

Born (ii) approximation (Length formulation) partial cross sections Q (ray?)

for electron impact ionization of the ground state of Helium

E; (ev) Q Q, Q, Q, Q.
40 445 (-1t .193 282 (1) 267 (-2) 238 (-3
60 .600 (-1) 344 595 (-1) .830(-2) A21(=2)
80 .595(—!) .397 25 (=1 A20(=1) 221 (=2
100 S562(—-1) 408 . - 760 (1) 40 (=D 294 (-2)
125 S07 (=1) .398 748 (—1) 149 (1) 352 (=2)
150 456 (—1) 379 (=1 dS1(-1) .385 (--2)
200 375 (1) 338 624 (—1) 143 (--1) .407 (-2)
300 271 (=1) 272 483 (-1 20 (=-1) .386 (-2)
400 211 =D 226 387 (—1) d01 (—1) 347 (=-2)
600 .145(—1) A71 275 (1) .745 (-2) 278 (=2)
800 A10(=-1) 139 211 (=1) .587 (-2) 228 (—2)
1000 .886 (—2) A17 A72(=1) 482 (-2) A92(=2)
2000 447 (-2) 683 (-1) .880 (-2) 252 (-2) 05 (-2)
3000 .299 (=-2) .492(—1) 591 (=-2) 170 (-2) 718 (-3)
4000 225 (-2) 389 (1) .445 (-2) 128 (=2) 544 (-3)
5000 180 (=2) 323 (-1 356 (—2) 103 (=2) 438 (-3)
6000 A50(=2) 277 (—1) .297(—1) .860 (-3) .366 (—3)
7000 129(=-2) .243(—!)- 255 (=2) .740 (--3) 315 (-3)
8000 Ad13(—-2) 217 (-1) 223 (=2) .648 (-3) 276 (—3)
9000 101 (=2) 196 (—1) 98 (—2) S77(-3) .246 (—3)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 3

Born (ii) approximation (Velocity formulation) partial cross sections Q (ray?)

for electron impact ionization for the ground state of Helium

E; (ev) Q Q, Q, Q, Q.
40 419 (-DF 174 ' 259 (-1) 231 (=2) A97 (-3
60 ST71(-1) 3l 554 (1) 741 (=-2) 105 (=2)
80 S73(=-1) .360 684 (1) A10(=1) 198 (-2)
100 539 (1) .369 723 (1) A31 (1) 270 (=2)
125 487 (-1) .360 e (1) A42(-1) .330(-2)
150 439 (-1) .343 683 (1) d44 (-1) .365(¥2)
200 360 (—1) .305 603 (—1) A38 (=1 392 (-2)
300 261 (—1) .245 467 (1) d17(=1) 377(-2)
400 202 (-1) .204 375 (1) 983 (-2) 340 (-2)
600 :139(—1) .154 266 (—1) - .730(-2) .273(—2)
800 06 (1) 125 205 (-1) 576 (-2) | 225 (=2)
1000 851 (-2) .106 J66 (1) .473(—2) 189 (-2)
2000 .430(—2) 614 (-1) 852 (-2) 247 (-2) 104 (-2)
3000 287 (-2) 442 (—-1) = .572(=2) 167 (--2) .709 (-3)
4000 216 (-2) 349 (-1 431 (-2) 126 (-2) .537(-3)
5000 A73(=2) 289 (—1) .346 (-2) 101 (=2) .452(—3)
6000 144 (=-2) 248 (-1) 288 (-2) .844 (-3) .362 (-3)
7000 124 (=2) 218 (-1) 247 (-2) 725 (=3) 311 (=3)
8000 A09(=2) - 195 (-1 216 (—-2) .636 (—3) 273 (-3)
9000 .966 (-3) 176 (—1) 192 (=2) 567 (—3) .243 (—3)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 4

Born (ii) approximation (Length formulation) partial cross sections Q (ray?)

for electron impact ionization of the ground state of Li*

E; (ev) % Q. Q. Q, Q.
83 857 (-3)t .266 (-2) 338 (-3) 173 (—-4) 551 (—6)
98 .283 (-2) d0S (-1) 154 (-2) 109 (-3) 593 (-5)
125 524 (-2) 237 (1) 405 (-2) .405 (-3) 360 (—4)
150 .635 (-2) 324 (-1) .599(—2) 723 (-3) .828 (—4)
175 | .686 (—2) 381 (-1) 742 (-2) 102 (=2) 138 (-3)
200 703 (-2) 417 (-1) .839 (-2) 126 (-2) 193 (-3)
260 .682 (-2) .45](—1) 950 (-2) 165 (-2) .309 (-3)
400 563 (-2) 429 (1) 930 (-2) ..194 (-2) 463 (-3)
600 427 (-2) 364 (-1) .780 (=2) .183 (-2) S19(=-3)
800 .338(-2) 310(-1) .649 (-2) 162 (-2) .508 (-3)

1000 279 (-2) 270 (1) 550 (-2) 143 (-2) 477 (-3)

1400 .205 (-2) 215(¢-1) 418 (-2) 114 (=-2) 409 (-3)

2000 147 (=-2) 166 (-1) 304 (-2) .856 (—3) 327(-3)

3000 989 (-3) A22 (1) .208 (-2) 599 (-3) .240 (-3)

4000 . 745 (=3) 973 (-2) 158 (-2) 459 (-3) 188 (-3)

5000 597 (-3) 814 (-2) 127 (-2) 371 (-3) .154 (-3)

6000 .499 (-3) 703 (-2) 106 (-2) 311 (-3) .130(—3)

7000 .428 (-3) .620 (-2) 914 (-3) .268 (-3) J13(=-3)

8000 375 (-3) 556 (-2) 801 (-3) 235 (-3) .994 (-4)

9000 333 (-3) 505 (-2) 713 (-3) .209 (-3) .887 (—4)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 5

Born (ii) approximation (Velocity formulation) partial cross sections Q (ray?) -

for electron impact ionization of the ground state of Li*

E; (ev) % Q, Q, Q, Q.
83 .834 (-3)t 250 (=2) 328 (-3) 159 (—4) .483 (—6)
98 276 (-2) 981 (-2) 148 (-2) .998 (—4) S15(=95)
125 S13(-2) 222 (1) .388 (-2) 371 (-3) 316 (—4)
150 625 (-2) 304 (1) 376 (—2) .668 (—3) 738 (—4)
175 676 (-2) 358 (—1) 15 (=2) 947 (-3) 124 (-3)
200 .694 (-2) 392 (-1) 812 (-2) A19(=2) A77 (=3)
260 675 (-2) 424 (—1) 925 (-2) 158 (=2) .290 (-3)
400 558 (—2) .404 (—1) 912 (-2) 188 (-2) 446 (-3)
600 422 (-2) 342 (-1) 766 (—2) .180 (-2) .509 (-3)
800 .335(—2) 291 (=1) 639 (-2) 160 (-2) 500 (-3)
1000 276 (—2) 254 (—1) 542 (=2) 141 (-2) 471 (=-3)
1400 203 (-2) 202 (-1) 411 (-2) d12(-2) 405 (-3)
2000 145 (-2) 156 (1) 299 (-2) .847(=3)  .324(-3)
3000 979 (-3) 114 (1) .205 (-2) .593 (-3) 239 (-3)
4000 737 (-3) 913 (-2) 155 (=2) 454 (-3) 187 (=3)
5000 591 (=3) .764 (-2) 125 (=2) 367 (-3) 153 (=3)
6000 .494 (-3) .659 (-2) 105 (-2) .308 (-3) 130 (-3)
7000 423 (-3) 582 (-2) .899 (-3) .265 (-3) A12(=3)
8000 371 (=-3) 521 (-2) .788 (-3) .232(—3) 987 (-4) -
9000 330 (-3) 473 (=2) 102 (-3) 207 (-3) .881 (—4)

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 6

Born (ii) approximation cross sections Q (nao‘)

for electron ionization of the ground state of He

E; (ev) Q (Length) Q (Velocity)
40 268 244
60 473 432
80 544 498
100 : 557 511
125 542 498
150 514 473
200 456 419
300 363 333
400 300 275
600 . 223 205
800 179 164
1000 150 ' 137
2000 851 (=)t 777 (-t
3000 605 (=1) 551 (=1)
4000 474 (=1) : 431 (—1)
5000 391 (-1) 356 (~1)
6000 334 (~1) 304 (~1)
7000 292 (—1) 265 (—1)
8000 260 (—1) 236 (—1)
9000 234 (1) 213 (=1

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Tablg 7

Born (ii) approximation {L.ength and Velocity formulations) and Coulomb-Born
approximation (Moores, 1969) cross sections Q (rao? for electron impact

ionization of the ground state of Li*

E; (ev) - Q (Length) Q (Velocity) E; (ev) Q (Coulomb-Born)
83 387 (-2)t 368 (-2)t 85.05 123 (=Dt
98 149 (-1) 142 (-1) 94.5 219(-1)

125 334 (1) 316 (1) 113.4 371 (-1)
150 455 (-1) 432 (-1) 170.1 S95(-1)
175 536 (-1) .508 (-1) 226.8 .655 (1)
200 590 (1) ..556 (-1 302.4 650 (-1
260 634 (-1) 603 (1) 378.0 613 (-1)
400 602 (=1) .-574 -1 453.6 S70(-1)
600 S08 (-1 484 (—1) 755.6 434 (-1
800 430 (-1) 410 (-1) 944.5 370(-1)
1000 .37i -0 354 (-1) ' 1511.2 261 (-1
1400 292 (-1) 278 (—1) 2266.8 186 (1)
2000 223 (1) 212 (-1 3000.0 A50(-1)
3000 Jd61 (—1) A53(=1) 5000.0 977 (-2)
4000 A27 (-1 d21 (=1) 15000.0 386 (-2)
5000 105 (1) 100 (-1) 25000.0 261 (-2)
6000 .903 (-2) 857 (=2)
7000 7192 (-2) 51 (-2)
8000 707 (=2) .670 (-2)
9000 639 (-2) .606 (-2)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 8

I, (k, p) for electron impact ionization of the ground state of He

0.190

0.402

0.679

0.891

0.100 (1)
0.122(1)
0.149 (1)
0.170(1)
0.210(1)
0.337 ()
0.503 (D
0.630 (1)
0.709 (1)
0.879 (1)
0.110(2)

0.127 (2)

t The numbers in brackets denote the power of 10 by which the eiitry should be multiplicd.

k =0.949 (-1)T a.u.

1™ &, p)

0.101 (1)t
0.653
0.428
0:309
0.258
0.182
0.113
0.781 (-1)
0.398 (—1)
0.575 (—2)
0.788 (—3)
0.234 (—3)
0.121 (=3)
0.355 (—4)
0.944 (-5)

0.398 (-5)

81 .

(V)

(k, p)
0.929
0.604
0.400
0.291
0.245
0.173
0.108
0.747 (-1
0.375 (- 1)
0.516 (-2)
0.700 (—3)
0.212 (-3)
0.111(=3)
0.337 (—4)
0.919 (=5)

0.392 (-9



Table 9

I, (k, p) for electron impact ionization of the ground state of He

k = 0.555 a. u.

p 1 &, p) 1Y & p
213 ' . 756 717
424 519 492
700 368 349
911 ' 284 : 270
102 (1) - 245 233
123 (1) 181 173
151 (1) 119 113
.i72(1) | 842 (~1) . 804 (—1)
212.(1) _ 443 (—1) 4191
338 (1) 665 (—2) 602 (~2)
504 (1) 923 (-3) 826 (—3)
630 (1) 275 (=3) 250 (—3)
709 (1) 142 (-3) ©132(=3)
878 (1) 419 (—4) 398 (—4)
110(2) . 112 (—4) 109 (—4)
€21 470 (=5) 464 (—5)

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 10

I, (k, p) for electron impact ionization of the ground state of Li'

482

.685

.949

J15(D
26 (1)
146 (1)
A73(H
193 (1)
.2301(1)
352 (1)
S10(D
632(1)
107 (1)
869 (1
108 (2)

124 (2)

T The numbers in brackets denote the power of 10 by which the entry should be multiplied.

k =0.906 (-1)t a.u.

1M &, p)

0.206
0.168
0.135
0.115
0.106
0.908 (—1)
0.733 (-1
0.617(-1)
0.441 (-1)
0.141 (-1)
0.336 (-2)
0.126 (—2)
0.721 (-3)
0.246 (-3)
0.745 (—4)

0.337(—4)

83

1Y) &, p)

0.197
0.161
0.130
0.111
0.102
0.877 (-1

0.709 (-1

0.598 (—1)

0.429 (-D
0.136 (-1)
0.319 (-2
0.119(-2)
0.682 (-3)
0.235 (-3)
0.721 (-4

0.330 (—-4)



Table 11

1, (k, p) for electron impact ionization of the ground state of Li*

k =.109 (1)t a.u.

p 1™ &, p) 1Y) &, p)
578 139 136
77 119 116
104 (1) .101 978 (- 1)
124(1) 894 (—1) 868 (1)
134(1) 841 (1) 816 (—1)
154 (1) 747 (—1) 725 (1)
180 (1) 635 (1) 616 (1)
200 (1) - 555 (=1) 538 (-1)
237 (1) 421 (—1) : 409 (—1)
357 (1) 151 (=1) 147 (=1
513(1) 386 (—2) | 370 (-2)
632(1) 148 (-2) 141 (-2)
707 (1) 858 (-3) 816 (—3)
866 (1) 297 (-3) 284 (-3)
107 (2) 910 (—4) 883 (-4)
123(2) . 414 (-4) 406 (—4)

T The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 12

Differential cross sections ¢, (k?), in units of »a,?, for He + e -~ He" + 2e

E; - 600 ev - E;-800ev
k My My k ‘Vwy Vi
200(=1)t 348 298 232(=1) 282 241
949 (~1)  .343 295 110 276 238
193 328 284 224 261 226
268 311 271 311 243 212
308 301 263 357 232 204
383 278 246 444 210 186
480 247 221 557 180 162
555 223 200 644 157 142
695 178 163 807 118 109
114(1) 261 (=1)  .702(=1)  .133(1) 422(-1)  386(=1)
173 (1) 228(—1)  204(=1)  .201 (1) 105 (-1 915 (=2)
218 (1) 921 (-1)  805(-2) 253 (1) 377(-2) 326(-2)
246 (1) S31(=1)  462(-2)  .286(1) 205(=2)  .178(=2)
306 (1) 176(=2)  .155(=2)  .355(1) 619(=3)  .552(=3)
384 (1) S18(=3)  .475(=3)  .446(1) 178(=3)  .166(=3)
444 (1) 223(-3) 209(-3)  S16(D) 746 (—4) 712 (=4)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. -
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Table 13
Differential cross sections o, (k?), in units of nag?, for Li* + e~ Li*t 4+ 2e
El = 600 ev El = 800 ev

(L) V) (L)

k o, (kY o, (k3 k o, (kY a,(V) (k%)

91 (=1)F 267 (1) .248 (—1) 224 (1) 224 (-1 208 (1)

907 (1) 266 (-1) 247 (-1) .106 223 (1) 207 (-1)
.184 263 (—1) 244 (1) 216 219(-1) 203 (1)
.256 258 (-1 240 (-1 .300 214 (-1) 199 (—1)
294 256 (—1) 238 (-1) 345 211 (=1 196 (-1)
.365 249 (-1) _.232(—1) 429 204 (-1) .190(—13
.459 240 (—1) 224 (-1) .539 193 (—-1) | 180 (—1)
530 .232(—1) 216 (—-1) .623 184 (1) A72 (=1
.664 214 (-1) 201 (1) .780 .165(—1) A56 (1)
A01 (1) A52 (-1 144 (—1) 128 (1) 105 (-1) 999 (-2)
165 (1) .839 (-2) 796 (-2) 194 (1) 495 (-2) 469 (—2)
208 (1) .500(-2) 472 (-2) 245 (1) 263 (-2) 247 (=2)
235(1) 357 (-2) 336 (-2) 276 (1) 172 (-2) 165 (=2)
292(D) 173 (-2) 162 (—2) 343 (1) 763 (—3) 12 (=3)
367 (1) .685 (-3) .644 (-3) 431 (1) 273 (-3) 257 (-3)
424 (D) .348(—3) 330 (-3) 498 (1) 132 (=-3) 126 (-3)

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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CHAPTER 1V

IONIZATION OF He AND Li* BY ELECTRON IMPACT

(WITH A HYLLERAAS CORRELATED WAVE FUNCTION FOR THE GROUND STATE)

1. Introduction

The effect of the interaction between the continuum electron and the core can
only be fully obtained if the trial function defining the initial bound state depends
explicitly on the distance r,, between the core and the continuum electrons.- Such
wave functions have been obtained for two-electron systems by a number of authors
but correlation has never been allowed for in previous calculations for the ionization
of He by electron impact. It is therefore of interest to reconsider the processes
(cf. Chap. III)

He + e - He* + 2e : (1.1)

Li*+ e Li*+ 2 (L2)°
using a Hylleraas type correlated wave function for the ground state of the target, in
order to test the reliability of the computed cross section. Again, a partial wave
expansion is used for the ejected electron, the radial functions used being continuum
Hartree-Fock.

The partial wave cross sections { = 0 and { = 1 are calculated.in the length
formulation of the Born (ii) approximation (Chap. I, 3.3, Eq. 3.16. ). Itis found that
the correlated wave function used predicts the dipole oscillator strength for the
transition (1.1) in satisfactory agreement with experiment and gives partial wave
cross sections inlermediate between the length and velocity results, obtained with
an open-shell two-parameter wave function for the ground state of the target, and

presented in Chapter III.

94



2. Reduction of the Matrix Element

We adopt the same notation as that used in the previous Chapters. All quantiti_es
not defined in the present Chapter are as defined in Chapter IIIl. For the ground state
we use a Hylleraas type correlated wave function, the variational parameters being
given by Green et al.(1954). The parameters used are listed in Table 1, together with

the corresponding value of the ionization potential. We write the initial wave function

as

Yo, 1) =N B B e, 2.1)
where N is a normalization constant.

Table 1

Parameters used in evaluating the matrix element

z a B c I .
He 2 1.436 2.208 0.2924 1.80284
Li* 3 2.362 '3.299 0.2770 5.55436

The orthogonality factor < ‘Po,l ¥, >.is given by

¥ \wk>~\7_5f rdr ar, 6P, PN (2,10 e) + ¥1z 1) 4, 0]

x (1 + cry,)

VEN frdn dn 8P Py (20 gy (00 (14 e

=1, +1,, | (2.2)
where
L= VN [fdr, dr, (PR &Py e (), 2.3)
and )
L= vaoN ffar, ar @ PR SNy @y @ @4



The r, integration of (2.3) can easily be carried out to give

I, 8(2z’)”Nrdr[erl ePh 1 ¢y () .
(z + B’ u+ﬂ=k

Making use of the partial wave expansion for yy (r,) and integrating over r, we obtain

hN - et = B
I, - 16 lz/ 2 N 1(00 + 7]0) f g (k, ) [ € l1dr . (2.5)
k" (z + B’ (Z+a)’
With the use of the expansion
1 15 1P
o :E (r_>) P, (cos 6,,) (2.6)

where r. = the smaller of r, and 1, , r, = the larger of r, and r, , we write

oo n
r,=(r2+r2-2r,r1,c0886,, é §=o (%i) P, (cos 6,)

1= I n
=(r,? + 1, Eﬁ—o (f_:) P, (cos 6,,)

_ 2 rz (r<)

& =0 T, (2 ) [(n+1) P nel(cos 6,)) + n P 1 (cos 0. )1. (2.7)

Substituting (2.7) in (2.4) and integrating over r, gives

L = 4VZ neN fdr, gy @) [ 17 01 (2, 1) [ %P, garrBry (174 6 2nntey

15N 3‘.)1
Again with the aid of the expansion for ¢ (r,) we obtain, after we perform the

integration over r, , the result

[ .8z%cN “ilag+1o)
2 I/ o
k’

(g (k1) I(r) dr, (2.8)
0

where
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4 dr,

I (l'.) = _r(:nl'l2 e‘Zrz l.e-arl-ﬁrz 4 e-url-ﬁrl'l {rl“: rzz) - 2 ;, l': r
> [}

1
r

r, . - - -afl .-
!;) e zr, [e al, Brz s e af, Brl] (rz‘ + 3r‘z r]!) d[z

N r:‘e-Zl'z [e-al'l-ﬁl'2 . e-al‘fﬁh] (3, + £t dr, .

The r, integration can now be performed to give

-al,; -Brl -af, -ﬂl"
2.4, e € £ :
N Y M R LA - Pl e

-4 |__1_+ __1__( e'(z““'ﬂ)r‘ -1 1 __1__! re-(z+u+B)r'] . (2.9)

+

(z+B)* (z+a)® (z+B)* (z+a)

Substituting (2.9) in (2.8) we obtain

1, - 102, eN om0 =y g rair, @ - T, @ 610 Py
cElE T, () =T, () e +a+ By g (2.10)
~af -Br

e e

where T, (1) = 4 .
e e

Substitution pf (2.5) and (2.10) in (2.2) yields

3

W |¥y> = l_z_!;z_N_ e-l(a°+n°) _f:uo (k, 1) [4c IT, () - T, (0) e

-(z-.La-c-ﬁ)l'l
k

-(z-l-a-l-B)r] dr

+(lier) T,(t)—crT,(0)e (2.11)

The matrix element is
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f(k,p) =~ piszd_r, dr, \I’K* (Orthogonalized) e 2o ‘l’q (t,, 1)

== éffd_fx dr, [\/1_5’-‘/’15* (2, 1) o * (_f.).+ PRSI (NER N L R CGRES]

e B L ¥, (r,, 1)
IR A
where
J.- '2;,/? N TS i (0 ) + gy Merdi Mol e BB P B ey,
(2.12)
and

4<¥, Loy * N ip.r, -2 - + -2ar,
J, - o :'z il fidr de, et (e (ar,+Br,12 o Bl 2(ar,+Br.)] (1+2cr,+cr,,7 .

(2.13)
We write
]|=— _2Apzmq[]u+]u] ’ (214)
JZ=W[J:|+J2J ’ (215)
pz
where

T = £1dn, dr, [ HEEMED + 6 1 MEr )y *(e)) e P, By (IR,

(2.16)
. : 4 ¢mar-Br, —alm Pl ip.f,
Jio = € f £, dn [0 MEm 0D+ Mzadp e (e At | gatePhy elEé.l.';),
Jou = [ fdr, dr, (e 20e0s+Br) 42 o (@B An) e'z(“"’“ﬁ'_')] AL (2.18)

Joa=c [ fdr, dr, (e Aar+Bra) g o (arf)rist) | 2atrBry oIPL1 (op sor, 7). (2.19)
In Chapter III the integral J,, has been reduced to a form suitable for computation and
the integral J,, evaluated in closed form. In this section we describe the reduction of -

] .. to a computable form and evaluate J,, in closed form. It is convenient to write
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Ju =C Ulu ]uz ' (220)

where
Jm - ffd_l_‘, d_r, 'ﬁls* (z,_r,) ¢k* (_l'n) [e-arrﬁl‘z + e-urz'ﬁl'l.l ei p.rI T (2.21)
Vo= [ 1At dr, iy (2, 1) g% () [P Pl R Dy (2.22)

Use is made of the relation (2.7) and integration over 1, is effected to yield, from

(2.21), the result

oo = 4("z:)l/z [ dr, ¢k*(!‘) eiE-_rl f:l‘,z [gr,zﬂ'zz) . 2|'|l'z:<] [e"“'n‘ﬁfz . e“"z‘ﬁrl] e'zrz dr,

l'> l‘>
Now use is made of the expansion for ¢ (r,), the Legendre polynomial expansion for

el n (Chap. III, 2, Eq. 2.16 ) and integration over r, is effected to give

+1,9) 2r‘r,r<

1

Jou =437 @10 &% 1B (@080 [rm Geni Graar, [ e

-~at-pr -al,-pr,, -Zr
X[e IB?+e IBIIe 2

which with the use of (2.9) we can write in the form

Jia = 8( ) t (2L+1) e(‘ ) 7 (cos v) [ ul(k r)lt (po) [41T4(r) - T,(0) € (zraBy

e T - Tuo) & Er BNy 4

(2.23)
Performing the_f". integration of (2.22) yields

lez = 4('7zz)l/z ; in fd_rzt/’k*(!z) f:fl’jn(Ph) e'ZI.'. [e-ar.-Br, + e-al‘,-Bl'.-]

rh n &oon+l I
> 2 +1,2-2r, 1, 1— = IIP cos 0,) dr, .
n+l 2 ! 2n-1 Te * 2n|3 IS ( 2

>

Replacement of t/lk* (r,) by its expansion and integration over r, leads to the expression

J.n-4(k i 5 & ”")Pz (cos )y G, D1 (), (2.24)
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where

: [
Substituting (2.23) and (2.24) in (2.20) we obtain

L
* -zr, . _-af,-fr, -af,-fr, < e2 L r) {+1 T
ll(p,r,) = fo r, ]L(pr,) e ‘'le +e ]r T (£, 241,211, ‘2[ T, T :;!] dr,
>
L 2 -
) r,? -ar -1, -ar~fr,
=fo 3T [2L 3 e e Vi (prJ dr,
oo r, i -af, Br, -al~fr, '
“fr,T TR 1” e Vi, (pridr, .
It is convenient to write this as
1+2 .
r, r‘ AT 13fz -af,-fr, . .
IN[ r1L+2 rzt rlt+2 : r‘l+4 ]
+ + -
noabat Tl @l @, T Lttt
N [e-ar.'ﬁfz + e'arz-BrI] j (prl) dl‘, . . (2.25)

=830 ¢S @) &% 1R (cos v) [, (k) [, (POIACT ()T, (0) & ZHeB)ry
k l=o l 0 l Z
T - T o) & BB 2(2[1+1)r 1 @, 0l dr . (2.26)

Using the relation (2.7) and performing the f, integration of (2.19) we obtain
o0 -2 -(a- - + ip.
J“ - dne fd_l_'. f l‘,z [e (arl+ﬁrz) +2e (a "ﬁ)(rx'”z) +e 2(“’2 Brl)] el p-I,
o
5 [2(r,’+r,’) _Arrre

f> 3l'>2

+c(r,>+ ) dr, .

Now integrating overf, we get
N * -2 [+t - Y -2 AT,
J“ = 16n%c I'o f:‘jo(Pl'l)dl‘, I;) 1, [e (a +3 2) ‘e ((U'B)(l' ) ‘e (eer +fA r)l
2(r 1Y) A
ry 3,
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Subdividing the range of the r, integration into sub-ranges (o, r,) and(r, , ~), integrating

over r, and then over r, gives

1, 64 , 1 ‘
a* (482 +p)  (a+B)((a+B)+p)  B*(4a®+p?)

Jzz=8”z[|

B +. 32 + = !
as (4Bz + pz)z (a + B)d((a + [3)1 + pa)z Bs (4(12 + pz)z

+ 6c |

L2y 128°-p) | _16(B+p)-p) |, (12'-p)
aJ (431 3+ p1)3 (ﬂ + B)J((a + B)Z + pZ)S BJ (4(12 4 pz):

c2acy BUB=P) | _8(@+B)-p) . a(a’-p)
al (4875 p)* * (a+ B ((a+ B +pd | B (4a? + PO

1 _ 64 1 1 32 1
e Gepr B UE T p@rP @.27)
(4 (a + B)* +p?) (4 (a + B)* +p?)?

Use of (2.26), (2.27) and the results of Chapter III for the integrals j,, and J,,

gives
3/z 0o - . -
f(k,p) == 322585 (ap,pe' (7 n‘)Pl (cos v) V, (k, p), (2.28)
p*k” (-0 L
where

(z + « + B)r

Yk, p) = f:uz(k, Oj, G0 =5 A e (T, O =T, ©)e )

L

+r(l+ct) T,(t) ~cr T, (0) e-(z e ﬁ)l“

.5 ,,izﬂ.)e'ﬁ' , zepe®
L0 ((z+a)+p) ((z+ B) +p)

+ ——C
220+ 1)

tl (Ol dr : (2.29)

with
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8 a
A = 32 .72 N2 ﬁ + 4 ]
@ Lo@B v o0 @ Bl el B e g

L2 N T, . | (2.30)
For { = o the integral Il (p, r) has been evaluated in closed form; for/ > o one
more integration is needed than in the calculations described in Chapter IlI, since
the integral of the form
_fa X (r) dr

occurring in (2.25) cannot be evaluated in closed form, with the result that the time
of computation increases considerably. In view of this and of the fact that the dipole
contribution dominates we have restricted ourselves to the calculation of cross
sections for the partial waves { = 0 and [ = 1. The numerical methods used for the
evaluation of these cross sections are described in Appendix B

3. Results

Calculated partial wave cross sections Ql (L =0, 1), in the length formulation -
of the Born approximation, are given in Tables 2 and 3. Again, the s-wave results
(L = 0), because of the orthogonalization procedure adopted, may be significantly in
error..

The analysis neglects the fact that in the case of ionization of an hydrogenic
positive ion of nuclear charge z by electron impact, the incident electron should be
represented by a Coulomb wave belonging to charge z — 1, and not a plane wave.
However, the partial wave cross sections obtained in the case of Li* - L_i“' indicate
that the total cross sections would be in excellent agreement with the values obtained
by Moores (1969), private communication, using a Coulomb-Born approximation, at

energies as low as five times threshold.
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The length results obtained with the wave function (2.1) for the ground state

are intermediate between the length and velocity results presented in the previous

Chapter.
4 _
Our results for the total cross section (lz ) QI. being the result obtained, in

the length formulation, with a two-parameter wave fﬁnction for the ground state of
the target) are presented in Table 4 and illustrated in Figs. 1 and 2. In these two
figures we compare the length results obtained with the wave function (2.1) for ¥,
with the length and velocity results obtained with a simple two-paraméter wave
function for the ground state.

Sample results for the quantity I,(L) (k, p) (for two ejected electron enefgies)
and the differential cross sectiona,'(L) (k?) (for two impact energies) for the process
He + e - He™ + 2e, obtained with the two-parameter and three-parameter wave function

for ¥, are -presented in Tables 5 and 6 respectively and illustrated in Figs. 3 and 4

respectively.
A fit to our helium results of the form
4 :
Q (El) = E— [Aln Ei + B]
E. Ej

i

gives
A-0.488 , B=0.536 .

A fit to our Li* results of the form

Y]

1 1

e} = _4 _L— 2.|.
QE)z Al B - g Bl

gives

A-0.157 , B-=1564 .
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4. Conclusions

We have calculated partial wave cross sections (/ = o, 1) for electron impact
ionization of He and Li* in the Born (ii) approximation at energies from threshold
to 9 kev. The results obtained reinforce our conclusions of the previous Chapter
that electron: impact ionization of two-electron systems is well described by the

first Born approximation at energies above 25 times threshold.
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Table 2

Cross sections QL(.-rao ?) for He + e » He' + 2e calculated with

the three-parameter correlated wave function for ¥,

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.

105

E, (ev) - Q, Q,
40 0.383 (- 1)t 0.156
60 0.555 (1) 0.297
80 0.572 (-1) 0.352
100 0.544 (~1) 0.367
125 0.496 (- 1) 0.362
150 0.449 (1) 0.347
200 0.371 (1) 0.312
300 0.269 (—1) 0.253
400 0.209 (—1) 0.212
600 0.144 (--1) 0.161
800 0.109 (=1) 0.130
1000 0.880 (—2) 0.110
2000 0.445 (-2) 0.645 (+1)
3000 0.298 (—2) 0.465 (—1)
4000 0.225 (-2) 0.366 (1)
5000 0.181 (-2) 0.304 (—1)
6000 0.151 (=2) 0.260 (— 1)
7000 0.130 (-2) 0.231 (—1)
" 8000 0.114(-2) 0.206 (1)
9000 0.102 (-2) 0.186 (--1)



Table 3

Cross sections Q[ (mag? for Li" + e - Li** + 2e calculated with

the three-parameter correlated wave function for the ground state

E; (ev) Q Q,
83 0.732 (-3)t 0.211 (=2)
98 0.268 (—-2) 10.920-(-2)
125 0.512(-2) 0.216 (- 1)
150 0.628 (—-2) 0.299 (-1)
175 0.681 (-2) 0.355 (- 1)
200 0.700 (-2) 0.391 (1)
260 0.680 (-2) 0.427 (- 1)
400 0.559(-2) 0.410(—1)
600 0.421 (-2) 0.349.(—1)
800 0.333 (-2) 0.298 (—1)
1000 0.274 (-2) 0.260 (—1)
2000 0.145 (-2) 0.160 (~1)
3000 0.991 (-3) 0.118(~1)
4000 0.769 (-3) 10,941 (~2)
5000 0.633 (-3) 0.788 (—2)
6000 0.526 (-3) 0.681 (-2)
7000 0.458 (-3) 0.601 (~2)
8000 0.413 (-3) 0.539 (-2)
9000 0.365 (-3) 0.490 (—2)

T The nimbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 4

Cross sections Qt(nao') for electron ionization of the ground state of He and Li*

He | __ Lit
4 - 4
Ei(ev) ié) : E; (ev) 0
) l =0
40 224 83 309 (~2)
60 422 98 A1)
80 496 125 312(=1)
100 Sl4 150 429 (1)
125 505 175 508 (--1)
150 - 481 200 563 (~1)
200 429 260 610 (1)
300 344 400 . .583(-D)
400 286 600 495 (—1)
600 | 212 800 47 (=)
800 170 1000 361 (1)
1000 143 2000 217 (=1)
2000 813 (= 1)t 3000 157 (~1)
3000 578 (=1) 4000 o 124 (=1)
4000 451 (=1) 5000 103 (- 1)
5000 372(<1) 6000 884 (- 2)
6000 317(<1) 7000 776/ (- 2)
7000 280 (—1) 8000 694 (—2)
8000 249 (<1) 9000 628 (~2)
9000 224 (—1)

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 5

[,(L) (k. p) for electron impact ionization of the ground state of He calculated

with the three-parameter correlated wave function for the ground state

k =.949 (-1)T a.u. k = .555 a.u..

P IFL) (k, p) p IfL)(k,p)
194 936 217 7129
406 606 428 499
682 397 704 .350
894 289 915 268
101 (1t 242 103 (1) 231
122(D 172 124 (1) T2
1501 107 A51(1) 113
171 (1) 741 (-1) 172(1) 802 (-1
2101 370 (=1) 212(1) 417 (1)
337(D | 461 (=2) 338 (1) .556 (—2)
503 (1) 497 (=3) 504 (1) 641 (-3)
630 (1) 128 (-3) 630 (1) .172(-3i
709 (1) 620 (—4) 709 (1) 852 (—4)
879 (1) 166 (-4) 878 (1) 236 (-4)
110(2) 419 (-5) 110(2) 607 (-5)
127 (2) 173 (=5) 127(2) 253 (—5)

t The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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Table 6
Differential cross section (r,(L) (k?), in units of ra,* for He + e - He* 4 2e

calculated with the three-parameter correlated wave function for the ground state

Ei = 600 ev Ei = 800 ev

K o1 (kn k o1 ey
200 (- Dt 299 232(-1) 243
949 (~-1) 296 110 239
193 285 224 228
267 273 310 215
.307 - 265 357 207
382 249 444 189
480 224 .555 165
555 | 204 644 - .146
.695 167 .806 113
114(1) 740 (-1) A33(1) A1)
173(1) 220 (1) 201 (1) 994 (- 2)
218(1) 872 (--2) 253 (1) 352(-2)
246 (1) .500 (-2) 285 (1) 191 (--2)
306 (1) 166 (-2) 355 (1) 585 (-3)
384 (1) 495 (=3) 446 (1) 171 (-3)
444 (1) 216 (=3) 515 (1) 730 (—4)

+ The numbers in brackets denote the power of 10 by which the entry should be multiplied.
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wave function)
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2‘ | - Two-parameter wave function for the ground
state (k=0-0949a.u.)
\ . 2: Three-parameter correlated wave function
\ for the ground state (k =0-0949a.u.)
3: Two-parameter (k=0-555a.u.) ]
\\\ 4: Three-parameter (k=0-555q.u.)
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APPENDIX A. EVALUATION OF I (p, K)

The integral I (p, K) defined by (2.58) is evaluated by considering the limit, as

B - 0, of the expression

J (e B) = fdxeP¥ el B X

¢ | b=

F, ;<_" 1,iKx-K. )l . (A.1)

A method due to Nordsieck (1954) will be described and the limit as 8 - 0 will be
examined in detail.

The method begins with the standard contour integral representation of the

confluent hypergeometric function

F.la 1 z] - -zl, o eZ @l 1yaar . (A.2)

14}

In (A.2) C is any closed contour which starts at the origin and encircles the poi-nt
t = 1 once in the positive sense (Erdelyi 1953, Vol. 1 p. 272). In this equation all
powers have their principal values. Substituting (A.2) in (A.1) gives

iu 1 ia -

T A - ieatt Ta-n K, (A.3)

wilere

() - fel B ¥ -;e'ﬁ" el tEx-K. 04 (A.4)

The change in the order of integration implied in (A.3) is allowed provided u (t)
converges uniformly with respect to t. A sufficient condition for uniform convergence
is that the inequality

B+2KImt-0 (A.5)
be satisfied for all t within and on C. We shall assume that the contour C has been

chosen to satisfy this condition.
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The integral in (A.4) is easily evaluated and we obtain

4n
B*+p*=2t(p.K +iBK)

u(t) =

which, on substitution in (A.3), gives

o ;s
2 tK t-1 K
- £ = A.6
Mo B =P grp o ke ipl) (4.6
The integrand in (A.6) has a simple pole at
t-t = Birp* (A.7)

0" 2(p.K +iBK)

and, since

B+2Klmto=_§(1—cos’u)22<0
B* +p*cos’v

where cos v = é . B, this pole lies outside the contour C. -Applying Cauchy;s theorem

to the region outside C we obtain

2 .1

-y
=k

(to — 1)
X . p +iBK)

wt
J(avﬁ)= °

ia
S g =K gy K
B rp . prp !

(A.8)

where q - p — K.

From (A.7) we have that

Ret - (B +p)(K.p)
o] 2[(1_(.22)+3sz1
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Imt - BK(@B +K)
0 2((K.pr+ B K

It follows that for 8 # 0 the point t = t, lies below the real axis and that it moves up

to the real axis as 8 - 0.
In considering the phase of the quantity

r=q = (K - iB)*

1

- epr o)
0

in the limit as B8 - 0, two distinct cases arise:

(i) IfK > g, then, when 8 =0,

Reto=_(l—(_+ﬂL<I
2(K*+K. 4l

and therefore, as 8 - 0, t , approaches the real axis between 0.and 1 from below.

follows that

arg t, = 0 (8)
and
arg (t,— D==7+0(B) .
(ii) We now suppose K < q. If p.K >0 it follows that Re t ,> 1 whereas, if
p-K<0,Rety<0. Thus, whenK < q, t and t ,— 1 have the same phase.
Therefore we have that .
argr= —m + 0 (B) . K>q
=0(pB) K<q .
Thus

I (E’ l_() = lim ] (ax /3)

-0 ia

4r (p + K)2 - K2 K
p P
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where

Ap) =1

= exp (—nu/K)
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APPENDIX B. NUMERICAL METHODS _

In this Appendix we describe the numerical methods used for the evaluation of
cross sections for the processes (1.1) and (1.2) of Chapter IIL.
We require the solutior-l to equation (3.i4) which is regular at the .origin and such
that | | _
u, (k, 0) =0 - (B.1)

and

ul(k,r)_ —r/—smlkr+(——ln(2kr)——[ 40

[0 k l * ”l ] ) (B.2)

The boundary condition (B.1) is satisfied if Xz (k, r) and Yl (k, r) are the solutions of

equations (3.18) and (3.19) respectively which are finite at the origin and such that_

Xl (k, 0) = YL (k,0)=0 . (B.3)
We therefore assume solutions iq the form

X, (k, 1) = :_o aOpro (B.4)

¥, (k, 0 =°§=o b, e, | (B.5)
where ao(t) £0, bo(l') £ 0 are arbitrary and o, p, the remaining an(l')’s and bn(t)’s are

to be determined. Near the origin f[ (k, r) and gl (r) are given by

[ (k1 --4-(;‘,,*--!-). z;° vz, vz, 0z, 000 0 () (B.6)
2R ca lacao (B.7)
g (l’) (—2'2——1-) Zr + 22 r? r , .
A 2 2
where z; = - 2(z~-1+A), z, = (2Az -k, z, = gl—zsz, Z, = z (2A z +A)) and

and.A,' = 42°A,. Substitution of (B.4), (B.6) and (B.7) in (3.18) yields
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N (n-i(’-j)(n-e'f.l- 1) a (l) rn-lr- 2 ) l[(_til_) \ _7‘_9I 2,172,042 0 (l")lz a (t) rnm
n-o n r2 r ’ ’ n

n-=0

(l) rn-o-(n 2

-2 §=o n et e D" « 01‘3)—" '
We are thus led to the following equations: for n = o,
loto-1) - 2L+ D1a, P o, (B.8)
forn=1, |
o+ =0t al)=zya ), (8.9)
forn - 2, -
o+ D@+~ L(Ls DIl -2z 0 2,0, @
forn - 3,
o2 (o3 s Dal) - z0aiza@® 174 O (B.11)
forn: 4. _

(o]

o= 3 (o d) = (Lot al) 20D 0280 42,00 1 (g, - haya 2 Y. 12

Since a (0

o *0: we have, from (B.8), that

o (o~ 1)-— [(L: =0 . (B.13)

The roots of this equation are:
o=0s1 |, o -=1. (B.14)
' (),

From the recurrence relations (B.9), (B.10), .. , we can determine the remaining a_

in terms of ao(L). The condition that Xl (k, 0) = 0 requires that we take o - { + 1. We

therefore have that

l(k ) = (t) ,(t) r+ a,(L) 2+ a,(") o+ a.(L) ' +0 (%)) . (B.15)
In a similar manner we obtain
Y( (k, r) = rt*'l [bo(l) : b,(” r+ b,(“ 2+ b,(” o+ b.(l) r* + 0 (%)) . (B.16)
If we write
I .zx lll
El (k, r) - _Ioe X X (k, x)dx , (B.17)
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F, (k, r)=f;e'" x-lX/ (k; x) dx ,
G/ (k, r)=;'e" £+1 l(k x) dx

and

Hl(k )_f le(k x)dx ,

then (3.18) and (3.19) can be put in the form

d* X, (k, r)

drz =fl (k, f) XL (k, r)+CL (k! r) ]

ay o .
dr? = ft(k, l') Yl (k: l') + DL (k’ l') s

where

Cl (k, 1) = g () {r IE[ k, 1) — rl+1 F, (k0]

3 = g . ) -1 !l ] 1 .

With the use of e quations (B.15) — (B.20) we obtain

2.3 gt | :a"(l)"ao(”( ,.a,<l)-éa.(‘)+%z=ao“-’

E (k,yg)=r fr2+ d(r’)l ;

{ @3 ehe 20+5)
ORI ORI D)
N S o a, -za, "+lz'a, :
Fl(k,r) r* | 2 ¢ | 3 fral a .“
NONNUIE ) _z,ao(t)
+1 s Fr! o+ 0] ,

) L (
G (e - 12443 [ bo b.“)-zbo( ) b,“)-_zb,( )sz,bp(t)

br+
l QL3 (20.4) (21 +5)

W LW, W W W, ., O
L b,""’-zbg b, "-zb, "+4z’by ,
Hl(k,f)—f[ 2 +1 3 br o+ | 2 tr

b(l.) b(l) 1. w1 O

-zb, ¢+ , g2’
3 2 6 0 i+ O(rd)l .

+ |
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(B.18)

(B.19)

(B.20)

(B.21)

(3.22)

(B.23)

(B.24)

(B.25).

(B.26)

(B.27)

(B.28)



Use of equations (B.23) — (B.28) yields

4 @0.,, @ W, .0
C (k) --28, e b3 20 B Ty, 2 -.Z""l g_/iz %y 0]
{ 2(2(.3) 3(2+4) 4(2L+5) (5.29)
@) (), (O
D (k) - - 24,625 1, Do . D2,
2(+1) 22 .;.3) 3(2£+4)
0, ( ) (3]
b, +¥iz’bg
- At 2 0(r9) B.30
s e (8.30)
Th .. ()] . . . <
e coefficients a5~ and by in the starting series (B.15) and (B.16)
respectively were arbitrarily clhosen to be
L D
agt) b, 1 (B.31)

The integro-differential equations (B.21) and (B.22) were then integrated outward from
the origin and used to evaluate the transformation factor a defined by (3.21). The

integrating routine employed Numerov’s method and a seven-point Newton-Cotes

formula of open type. If we write

1.,
w.=1— Lt B.
g 12h f (B.32)
B:-24 2h*f, (B.33)
j 6

where h is the integration step-length and fj - f(rj), then Numerov’s formula applied

to (B.21) and (B.22) gives

1
X. - 3. X. —a,  X. 1+ =h* !C +«10C. + C. ], B.34
j-1 uM” Y1751 12 it G (B-38)
Y ! iR Y Y —}-hHD 10D; + D. M| (B.3%)
g P T Tt P T T o

The seven-point Newton-Cotes formula (Abramowitz and Stegun, 1965) applied to the
exchange integral in (B.17) gives
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Ej.1 = Ej5+0.3n[11P, 4 — 14P; 3 26P; 5 — 14P; 1 « 1IP}} , (B.36)

where
p -Zl‘j 41 X
i=® fi i

with similar expressions for the other exchange integrals. Thus Ej+1 as obtained from

(B.3-7)

(B.36) involves only preceding values of X and the solution may be built ub step by
step.

To commence the integration routine six starting values are required and these
may be obtained by means of the series expansions at the origin (formulae (B.15),
(B.16) and (B.25) - (B.30) ). |

The radial integrals in (2.20) and (2.39) were evaluated with the use of the
Simpson integration formula. The range of integration was truncated at r = 12 because
the integrand becomes negligible for large values of r. Examination of the results
obtained by varying the step-length showed that it was unnécessary to carry the
integration farther.

Because of the spherical Bessel function j (pr) occurring in the integrand it
was feared that some error might be incurred in the numerical work when pr was small
(pr < 0.6). For values of pr< 0.6 the evaluation of j (pr) was therefore carried out
by two different methods. The first method consisted in making use of the recurrence

relation (2.34) and the formulae

. sin z
jo (@ = S22 (B.38)
i () - sinz cosz (B.39)

to generate jl (z} in terms of sin z and cos z which were then evaluated with the use
of library sub-programs buiit in the compiler. The second method consisted in making

use of the series
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The two methods gave identical results. We therefore concluded that the first metho-d
was quite satisfactory.

The final integrals over the variables p and k were evaluated by Gaussian
quadrature, the range (a, b) being split, on the basis of the observed behaviour of
V (k, p) as a function of p and k, into subranges (a, a + t), (a + t, a + 2t), (a + 2t,
a + 8t), and (a + 8t, b) where t = Ilé(b — a). Quadratures of order 4, 8, and 12 were

found to be adequate for the energy range between threshold and 1 kev, between 1 kev "

and 5 kev and between 5 kev and 9 kev respectively.
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