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ABSTRACT 

In Chapter I of this thesis a short review of the quanta! theory of ionizing 

collisions is presented, with particular regard to recent theoretical developments. 

A brief discussion is given of quanta! and classical approximations and their 

predictions compared with experimental data, and a brief outline of some useful 

empirical formulae. 

0 
The impulse approximation is derived in Chapter II and the evaluation of 

cross sections for the processes 

H (ls) +e ... H+ + 2e 

and 

H (ls) + H+ .... 2H+ + e 

is described in detail. The results obtained for the above processes are presented 

and are compared with the results obtained by other authors. 

and 

In Chapter III the evaluation of cross sections for the processes 

He + e ... He+ + 2e 

in which both He and Li + are initially in their ground states is described in detail. 

An open shell two-parameter wave function has been used for the ground state of the 

target. The cross sections obtained using both the length and velocity formulations 

of the Born approximation are in excellent agreement with experiment at energies 

higher than 25 times threshold and approach the Bethe limit (within 3%) at energies 

higher than 50 times threshold. The evaluation of cross sections with Hylleraas type 

correlated wave functions for the ground state of the target forms the subject of 

Chapter IV. Cross sections are calculated in the length formulation of the Born 

approximation, for the processes studied in Chapter III and the results obtained are 

presented and are compared with the length and velocity formulation results obtained 

in the latter Chapter. 
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CHAPTER I 

REVIEW OF THE THEORY OF THE IONIZATION OF ATOMS 

BY ELECTRON IMPACT· 

1. In traduction 

In recent years considerable experimental and theoretical work has been devoted 

to the study of ionization cross sections of atoms or ions by electron impact. The 

interpretation of a wide variety of physical phenomena demands an accurate evaluation 

of these cross sections. Ex·amples of such phenomena arise in the fields of thermo-

nuclear research, plasma physics, shock waves through gases, in the study of stellar 

atmospheres and the solar corona. During the last few years considerable progress 

has been made towards obtaining accurate ionization cross sections. On the 

experimental side a great deal of work has been carried out in which single or 

multiple ion~zation cross sections of atoms or ions initially in their ground ·states. 
. . 

have been measured. This work has been th·e subject of a review by Kieffer and Dunn 

(1966). Although there exis.ts a considerable amount of experimental data these are 

far ·from exhaustive. Many species require investigation and difficulties arise in the 

experimental determination of ionization cross sections from excited states. In these 

cases recourse has been made to theoretical studies. On the theoretical side a great 

deal of work has been devoted to the basic formulation of the problem and it is found 

that the theory of ionizing collisions differs quite appreciably from the theory of 

collisions in,volving excitation. A number of new approximate quanta! methods have 

been investigat~d but even so quanta! calculations are rather lengthy and not yet as 

accurate as could be wished. Alternative approaches have therefore been pursued in 

order to obtain reasonably accurate estimates in a very simple way. These approaches 

arise through the use of classical rather than quantal methods and from devising 
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semi-empirical formulae which may be used to estimate as yet unmeasured or 

uncalculated data. 

2. The Quantum Theory of Ionizing Coilisi.ons 

Several very extensive review articles concerned with ionizing collisions. have 

so far been published by Bates, Fundaminsky, Leech, and Massey (1950), Massey 

(1956), Veldre (19o5) and Rudge (1968). In this Chapter a short review of the quantum 

theory of ionizing collisions is presented, with particular regard to recent theoretical 

developments. A brief discussion is given of quantal and classical approximations 

and their predictions compared with experimental data, as well as a brief outline of 

some useful empirical formulae. The discussion throughout this Chapter is confined 

to the theory of ionization of atoms or ions by electron impact but applies with very 

little modification to the case of ionization by other structureless charged particles. 

2.1 Exchange in ionizing collisions 

The treatment of exchange in ionizing collisions differs in several respects 

from the treatment appropriate to elastic collisions and bound-state excitation and the 

most important features may be seen from consideration of the simplest case of 

ionization of atomic hydrogen by electron impact. Suppose that the incident electron 

and the atomic electron are distinguishable by having opposite spins. In the case of 

excitation one may define a direct cross-section proportional to I f (n, ~n) I 2 , for the 

process in which the atomic electron is excited to staten and the incident electron 

is scattered with relative momentum ~n• and an exchange cross section proportional 

to 1 g (n, ~n) 1 2 , for the process in which the incident electro-:1 is captured in state n 

and the atomic electron is ejected with relative momentum ~n· For the case of 

ionizing collisions one may similarly define a cross section, proportional to 

I f (~.~f) I 2 , for the process in which the incident electron is scattered with final 
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relative momentum !Hand an 'exchange' cross section, proportional to lg ~. kf)l 2
, for 

the process in which the incident electron has final relative momentum ~ and the atomic 

electron has final relative momentum ~f· Clearly f (~, ~f) and g ~f• ~), the direct and 

exchange ionization scattering amplitudes, describe the same physical process and so 

they must be proportional to each other. Peterkop (1961) was the first to show that, 

when normalization and phase factors are suitably defined 

r <~. ~f> = g <~f·~> . (2.1) 

For excitation of state n of atomic hydrogen the total cross section is 

proportional to 

(2.2) 

for distinguishable electron~ having opposite spins and to 

(2.3) 

for indistinguishable electrons having random spins. · In the case of ionization we have, 

using (2.1), that the cross sections are proportional to 

I f (~, ~f )I 2 + If ~f• ~) 1 2 (opposite spins) (2.4) 

!A I I f (~, ~f) + f (~f'~fl 2 + 31 f (!, !f) - f (~,!) I 2 I (random spins). (2.5) 

The total ionization cross section, defined ·in terms of the number of ions 

produced, may be obtained by integrating over ~f and~. subject to the condition kf > k 

(or kf < k), or by integrating over all ~f' ! and dividing the result by two. 

In the case of approximations for excitation g is taken to be zero when exchange 

is neglected. One then considers only the case for which the incident electron has a 

final energy which is larger than the (negative) final energy of the atomic electron. 

For ionization one cannot, because of (2.1) put g = 0. 

2.2 Threshold laws for single ionization 

The problem which has received most of the attention in recent ionization studies 

has been the behaviour of the ionization cross section near threshold. This problem 
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has been the subject of investigations by (among others) Wannier (1953), by Gettman 

(195fj), by Rudge and Seaton ( 1964), by Temkin ( 19fj6) and by Peterkop ( 19()9). 

By a classical approach, involving certain statistical-mechanical arguments, 

Wannier (1953) found that the threshold law for single ionization of an atom or ion has 

the form 

Q .. (E _ I)•· 121 (2.6) 

where Q is the total ionization cross section, E the total energy of the system and I 

the ionization potential of the atom or ion. A disadvantage of Wannier's result or of 

anyone elses from an experimental point of view is that there is no way of knowing 

how far above threshold this power law is supposed to be valid. From a theoretical 

point of view, it appears more desirable to approach this problem within the conventional 
. .. . 

framework of the quantum theory of inelastic collisions so that all approximations 

made may be clearly delineated. In their attempt to put the problem of the ionization 

of atomic hydrogen by electron impact on a rigorous theoretical footing Rudge and 

Seaton (1964), largely independently of Peterkop (19fi1), have derived an asymptotic 

form of the wave function. This asymptotic form can be used to determine a phase 

factor which must be known in order that an independently derived relation between 

direct and exchange ionization amplitudes be of use. Further, this asymptotic form 

is, in the important region of configuration space, proportional to the complex 

conjugate of a function 111 , a product of two Coulomb waves whose charges are 

functions of the velocities of the outgoing particles. This is the underlying basis 

upon which the latter have deduced that for ionization of hydrogenic systems 

Q .. (E- I) (2.7) 

near threshold. The work of Rudge and Seaton (1964) has been criticized by Temkin 

(1966) who points out inadequacies in the above asymptotic form, and shows by means 

of a simple model that the neglect of certain terms which must be made in deriving it 
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is not justified. The two arguments taken together, he argues, indicate that the 

asymptotic form is not correct. This in turn has obvious negative implications about 

the aforementioned phase factor and about the validity of a linear law at threshold; 

he propos~s an asymptotic form of the wave function which he argues ~s more 

acceptable, albeit less explicit, than the above. He then derives a 3/z power law for 

the simple model and infers that this is the correct result for e-H ionization threshold 

behaviour. Gellman (1956) obtains a linear threshold law on assuming that both of 

the electrons in the final state move in th·e unscreened field of the nucleus, but gives 

no justification for this assumption. 

Vinkalns and Gailitis (1967) have carried out a classical analysis of near 

threshold ionization of atomic hydrogen, similar to the work of Wannier, and deduced 

that there is a departure from linearity of about 1%. 

In the case of detachment from negative ions the only Coulomb potentia~ 

• operating in the final state is the repulsion between the two free electrons or, for 

detachment by positron impact, there is a Coulomb attraction between the two free 

particles. The threshold laws deduced in this case are Rudge (1964), Hart, Grey and 

Guier (1957) 

(2.8) 

for detachment from a negative ion by a .particle which is positively charged and 

(2.9) 

where >' is a constant, for detachment from a negative ion by a negatively charged 

particle. 

Theoretically little has been predicted as to how far above threshold these 

threshold laws are supposed to be valid. For example the linear law states that at 

threshold the first derivative of the ionization cross section does not vanish but does 

not state what the relative magnitudes of the first to. higher derivatives are in the 

7 



near-threshold region. All treatments ignore recoil of the target nucleus, i.e. they put 

the mass of the proton Mp = "' 

2. 3 Multiple ionization 

Owing to the numerical difficulty of a full quantal calculation little theoretical 

work has been done on multiple ionization. Geltman (1956) carried out calculations 

for the double ionization of Helium by electron impact taking into account only the 

s-wave; both contin!Ju~ electrons were represented as Coulomb waves belonging to 

charge z, with z the charge of the ion core. The final state of the atom was 

represented by the product of these two Coulomb waves and a delta function, 

[) ~~ + _k 2) where _k, and ,k 2 are the relative momenta of the two continuum electrons. 

The insertion of the delta function being based on the assumption that the dominant 

contribution to the cross section will arise from states in which the two ejected 

electrons take asymptotic directions just opposite to each other as a result of their 

mutual repulsion. Since s-waves only were included the calculations are only useful 

very near threshold, where the cross section behaves like (E - 1)2. This Geltman 

showed was in agreemenl with experimental data and inferred an (E - l)n threshold 

law for n-tuple ionization. Using what is essentially a form of the Bethe approximation 

Mittleman (1966) and Byron and Joachain (1966) derived expressions for the ratio of 

the single to double ionization cross.section valid at high energies. Mittleman (1966), 

k;. using a Hayree-Fock function for the initial state of helium, finds a ratio Q single/ 

Q double = 198. However, Byron and J oachain (1966) show that this ratio is strongly 

dependent on the form assumed for the initial and final state wave functions. (See 

also McDowell and Coleman (1969) for a more detailed criticism). 

3. Quantal Approximations 

The most salient features of the various quantal approximations which have 

been used may be discussed for the particular case of the ionization of atomic hydrogen. 
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3.1 Wave functions 

Let .!i denote the position vector of the i th electron relative to the nucleus, taken 

as a fixed origin, ~i the momentum of the incident electron, and ~f and~ the momenta of 

the continuum electrons in the final state. 

The total Hamiltonian of the system is written as H, and in general for an electron 

colliding with an N-electron atomic system, neglecting spin-orbit and like interactions, 

is (in atomic units) 

N + 1 
H = ~ H1• + ~ r .. -1 

lJ 
i=1 i>j 

where Hi the single-electron Hamiltonian is 

2 

H · = - ~ 'V. - z/ r· 1 1 1 

and 

rij = l!i - !jl · 

(3.1) 

(3.2) 

Bound-state hydrogenic eigenfunctions are written 1/1 a (.!) and satisfy the equation 

They are taken to be orthonormal with a denoting collectively the quantum numbers 

n, 1, m. a. = i and a = f will be taken to refer to the initial and final states of the atom 

respectively. The continuum eigenfunctions satisfy 

H .p (z, ~. !. ) = ~ k 2 1/1 (z, ~. r_) 

and are normalized such that 

(3.4) 

(3.5) 

The continuum solutions are not uniquely defined through the normalization condition 

(3.5). Integral expressions for the ionization amplitude involve a particular solution 

of (3.4) defined by 

-3/, 
ifJ (z, ~. r_) = (2 ") 2 x (z, - ~. !) (3.6) 
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where 

x· (z,- ~._!) = [2" y /(1- e·my )]
1

/z exp [i ~ (y)l exp (- i ~. !) ,F,li y, 1, i (kr +~.!)I 
(3.7) 

and 

>' = z/k, 1'/(Y) = arg r (1- iy) 

and where ,F. (a, c, x) is the confluent hypergeometric function. 

Asymptotically 

x(z,- k, r) ""exp[-i(k .r+ ylnl k r + ~. !))1 + [ f(O)/r]. exp i(k r + yln2kr),(3.8) 
--r ... oo --

where cos 0 = - ~ • !_and 

y r (1 - i y) exp 12i y ln[sin (0 iz) II 
f(O) ~ 2k 1~(1 +iy)sin 2 (0iz) (3.9) 

3.2 Cross section expressions 

Considering the particular case of the ionization of atomic hydrogen we let one 
' A 

of the conti~uum electrons be ejected with momentum !f in the solid angle d~f and the 

other with momentum~ in the solid angle d~, and let the energy of one of them, no 

. . 
matter which, be in the range df., · The differential cross section is 

I (~f' ~) d ~f d~ dr, (3.10) 

where 

l (~f' ~) = ~f ~. I I f (~f· ~) + f (~. ~f) I 2 
+ 3 I f (~f· ~) - f (~. ~f) I 2 

I 
1 

= kf k 1 1 f (k , k) 1 z + I f (~. ~f) I 
2

- Re f*(~f' ~)f (~. !f) I , 
k· -f -

1 

(3.11) 

where Re denotes the real part. 

The cross section for ejection of an electron with energy r in the range dr is 

a (•) de where 

(3.12) 
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and where • : Y.! k2 or Y.! k( Since E = Y.! (kf 2 ~ k 2
) is constant, " ( r) = o (E - r ). 

The total cross section for production of ejected electrons is 

Q - .rE < > d - a E t (3.13) 
0 

3.3 Born approximations 

For atomic hydrogen Born's method consists in making the approximations 

(3.14) 

This gives for the Born ionization scattering amplitude 

fa (~f' ~) =- ;, ( ('Vi(!..,!) (H-E) '~'r*(!. 11 !..z) d_!, d_! 2 

1 . i k· . .!..• 1 1 i ~f· .!..· 
= - 5, ( ( 91 (.!_ 2) e -l (- - _) X ( 1, - k, r 2) e d !..a d .!_2 • 

(2rr) t2 / - r • r 12 - -

(3.15) /~ 

The choice of the functions'~ i and 'l'f of Eq. (3.14) is not a serious defect at high 

energies, but at low energies it gives rise to substantial errors in the cross section 

and an incorrect threshold behaviour_ 

Neglect of exchange has been treated quite differently in work on ionizing 

collisions from what it has been in problems of excitation of discrete energy levels. 

Referring to Eq. (3.11) it is seen that neglecting exchange means that all terms 

involving f (~, ~f) should be excluded to give 

(3.16) 

An expression frequently used has been 

Q [ Born ( i) 1 = ~ (Ek d ( 1 k 2) .r I d kr d R I f 8 ( ~f' ~) I 2 
• 

17 ki . 0 z (3.17) 
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If we are dealing with ionization involving distinguishable particles then Equation 

(3.17) i's the right expression to use. ln the case of ionization by electron impact 

with random spin orientations, (3.17) would correspond to neglecting only the inter

ference term of (3.11) while retaining the 1 f (~,~f) I 2 term. This procedure .is 

obviously inconsistent and Eq. (3.16) is the more acceptable definition. The 

procedure followed -in order to get Eq. (3.16) is analogous to that used for excitation 

in the Born approximation, in which one puts g = 0. Results were obtained in the two 

approximations for the cases of ionization of atomic hydrogen [ Rudge and Seaton 

(1965)] from its ground state. When these are compared with the mean of the 

experimental measurements of Fite and Brackmann (1958), Boksenberg.(1960), and 

Rothe et al (1963) it is seen that the Born (ii) approximation is superior to Born (i). 

Sloan (1965) made use of both forms of the Born approximation to evaluate cross 

sections for the ionization of Helium from its ground state by electron impact. His 

results when compared with the observed results of Smith (1930) show once again 

that the main features are the same as for hydrogen, with Born (ii) approximation being 

superior to Born (i). 

ln the case of ionization of a hydrogenic positive ion of nuclear charge z by 

electron impact, the appropriate expression for r8 is 

X X (z - 1, - ~f• !,) d!J d!J . (3.18) 

The name Coulomb - Born approximation is appropriate to .this case in order to 

distinguish it from calculations where plane waves have been used to describe the 

incident and scattered electrons. The latter treatment is unsatisfactory at low 

energies but at higher energies becomes equal to (3.18). 
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Calculations in the Born (i) approximation have been reported in recent years 

by Omidvar (1965) for ionization of hydrogen from an initial state with principal 

quantum numbers n = 1 (1) 10; for He+ in the 1s and 2s states by Burke and Taylor 

(1965); for helium in the ground state by Peach (1965) and by Dalgarno and McDowell 

(1956), the latter authors calculating also cross sections for excited states of helium 

with (n, 1) = 2p, 3p, 4p, 3d, 4d; for Li by McDowell et al (1965) and Peach (1965); for 

Be by Peach (1965); for Ne by lnokuti (1962). Cross sections for inner-shell ionization 

of Ni, Ag, and Hg in the Born approximation neglecting relativistic effects have been 

calculated by Burhop ( 1940). Arthurs and Moiseiwitsch (1958) have calculated cross 

sections for inner-shell ionization of Ni including relativistic effects, and Perlman 

(1960) has in similar fashion calculated inner-shell ionization of N i and Hg. 

The Born (ii) approximation has been used for ionization of the species indicated 

by the following authors: H (1s) Rudge and Seaton (1965); H (2s), He+ (1s), and He+ (2s) 

Rudge and. Sch~artz (1966a); FeXV and .FeXVI R.udge and Schwartz (1966b); ·H, He, Li·, Be 

Peach (1965); Na, Mg Peach (1966a); B, C, N, 0, F, Ne, AI, Si, P, S, Cl, Ar Peach 

(1968); Na Bates et al (1965); He, Li+ Economides and McDowell (1969). 

Additional approximations are involved in the description of the bound-state 

wave functions and the wave functions for the ejected electron, in all the calculations 

of ionization of nonhydrogenic systems. 

3.4 The Bethe approximation 

The Bethe approximation [ Bethe (1930)1is a further approximation to those 

already made in the Born approximation, and gives the fonn of the Born in the limit 

of very high impact velocities. The main features of the approximation may be seen 

by examining the case of atomic hydrogen. Perfonning the integration in (3.15) with 

respect to £1 gives 
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fsorn <!f• ~) • - 2
,1. I r/1 i (!) ei...P·L x (1, - !, !) d.!. 

(2rr) 2p2 

where~ a ~i- ~f' Expanding ei I!· !.as a power ·Series, using the ~rthogonality 

oondition, and assuming p is small, we have that 

fsethe (!f, ~) "' - 2 ! I r/Ji (!) r cos.9 x (1, - ~' !) d!. , 
(2rr) ~ p 

(3.19) 

(3.20) 

where f. is taken as the axis of quantization, and cos 9 = ~ • i Now transfonning the 

" ~f integration of (3.16) to one over p gives the i~nization cross section as 

1 E/2 1 Pmax dn • . 
QBethe = --f k d (-k2) I. .=.&:.Id k I< 1 I r coso I- k > 12 , (3.21) 

,, ki2 o 2 Pmin p 

where we define the notation 

< i I r cos 0 I - ~ > ~ I r/Ji (!) r cos 0 x (1, - ~. !) d.!_ , 

and where Pmin = ki - kr and Pmax a ki + kf. Since (3.20) is valid. only for small 

values of p, ·Pmax may be taken to be r (ki + kf), where r is a constant less than 

unity, to give 

Since the main contribution to the cross section comes from the region where k is small, 

we make the additional approximation by writing 

ki - kf ~ 21/(ki + kf> 

~ 1/k. , 
1 

and (3.22) becomes 

Q8 th = - 1-ln ( 2r ki 
2
) IE/

2
1 < i I r cos 9 I - .1! > 12 dk 

e e ,, k· 2 1 o 
1 

Writing Ei = ! ki 2
, (3.24) takes the fonn 

2 

14 

(3.23) 

(3.24) 



(3.25) 

where 

1 E/2 
A = - J I < i I r cos o I - .k > 12 d.k 

2773 0 

B = Aln ( 4r/l) + con st. (3.26) 

The additional constant in (3.26) arises from the terms which have been neglected in 

approximatin~ (3.19) by (3.20). The constant A thus depends on the optical properties 

of the atom and can easily be evaluated, but the constant B depends on a full Born 

calculation since it is determined through the cut-off parameter r and the neglected 

terms. If we now use sum rules proved by Bethe (1930) and average over the m states, 

for large E the constant A may be written 

A=.1[<r 2>-II i+1(R n',t+1)2+ 1 (R n',L-,2!), 
3 nl n' 2l + 1 n,l 2 L + 1 n,l 

where 

and 

RnlnT c Loo r3 Rnt (r) RnT (r) dr ' 
0 

OCI 

< rnl 2 > a f r• Rnl(r) Rnl (r) dr . 
0 

Alternatively, if Tn 'l',nl is the average oscillator strength defined by Bethe and 

Salpeter (1957) then we may write 

A - 4 [ 1< rnl 2 > _ I fnT, nl 1 
3 n'l' 21En- En·l 

The sums over n' in both (3.27) and (3.31} include n = n' . 

. , 
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An equivalent method may be used[Seaton (1962b)]to derive Bethe's approximation 

for ionization of ions. His method consists in replacing (! - ! ) i"n (3.18) by 
r I r u 

- ~ p i<r II rz>· The essential difference that results isin the Gaunt factor ln I 7 r - -
I 

which appears in (3.26). This is modified due to the·charge on the ion, and ·appropriate 

Gaunt factor formulae are in this case given. by Grant (1958). 

In the case of complex atoms the appropriate formula for A is 

A - 4 [.! < (I. r· )z > - I. ~T. nl 1 
3 · 

1 
n'l' 21En -En· I 

(3.32) 

In the case of hydrogen A decreases with 1 increasing for given n Bethe (1930), 

and Kingston (1965b) shows that when averaged over 1 is proportional to n. For Ir it 

follows from (3.32) that the constant A corresponding to the total detachment cross 

section is ~ < (L + LP ?' .and is large. In the case of the alkali metals on the other 

hand the dominant contribution to the sum over oscillator strengths in (3.32) comes 
. . 

from the resonance levels and in these cases A may be expected to ~e small. 

Seaton (1959) expressed Equation (3.22) in the form 

QB h - JI:L JE/2-I~ ln (4 E r)dw' 
et e rr a E o I + W I + W 

(3.33) 

where a(w) is the photo-detachment cross section for photon energy (W + I), W the 

energy of the ejected electron, IH the threshold ionization potential of hydrogen and 

a the fine-structure constant. Seaton (1959) using ~ethe's approximation derived a 

functional relation between the cross sections for electron impact ionizati<?n Q (E) 

and photo-detachment a (w) which may be used to give reasonable estimates of 

ionization cross sections. He considers two atoms, A and B, for which the photo-

detachment cross sections aA, a8 are such that 

(3.34) 
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Then from (3.33) and (3.34) 

IA QA (lAc) I aA (o) = IB QB(IB c) I aB (o) (3.35) 

Bethe's approximation (3.33) is valid for large values of c = Ell. For values of c 

which are not large (3.33) is expected to give similar percentage errors for Q Aand QB 

and that the functional relation (3.35) will remain a useful approximation. This 

approximation has been used by Seaton (1959) to calculate ionization cross sections 

for Ne, 0, and N, and McDowell and Williamson (1963) have used the Bethe approx

imation, Equation (3.33), to calculate electron detachment cross section for H- by 

electron impact. 

3. 5 The Born-Oppenheimer approximation 

The Born-Oppenheimer approximation assumes that the relative phases of the 

direct and exchange amplitudes are the same for all ~f and ~- Further it assumes 

that the slower electron screens one unit of nuclear charge from the faster electron. 

One disadvantage in the latter approximation arises from the lack of orthogonality 

between initial and final states which tends to give an unphysically large cross 

section close to threshold. This lack of orthogonality means that if a constant were 

added to the Hamiltonian (which corresponds to a null force), the cross section 

calculated in this approximation would change, and this is clearly absurd [ Schiff 

(1952)1. Exchange is taken into account in this approximation by adopting expression 

(3.10) for the differential cross section. Burke and Taylor (1965) show that the 

method is much better in the case of ionization of positive ions than it is for neutral 

species. The Born-Oppenheimer approximation has been used by Geltman (1960) for 

H-, by Malik and Trefftz (19o1) for 0 4+, by Trefftz (1963) for o5+, and by Burke and 

Taylor (1965) for evaluating the ionization cross sections of H (1s), H (2s), He+(1s) 

and He +(2s). 
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3.6 The Born-Exchange approximation 

The Born-exchange approximation is an alternative to the Born-Oppenheimer 

approximation which makes use of the· relation between the exact direct and exchange 

scattering amplitudes. This method is an improvement over the Born-Oppenheimer 

approximation in that there are no orthogonality difficulties. Making use of Eq. (2.1) 

for the magnitudes of the respective amplitudes and introducing a·phase factor into 

the relationship, the approximation is 

'" k) i 7 (~i· ~f) gB.E. ~f·- a e fBorn ~. kf) . (3.36) 

The method suffers· from the inaccuracies inherent in adopting the Born approximation 

for f (~f' ~) and these are likely to be greatest where k > kf, that is the region where 

(3.36) is applied. Three possible choices which have been made for this phase 

factor are: (1) Peterkop (1962) defined 

(3.37) 

which gives the smallest cross section in any approximation for f, since it allows for 

maximum interference; (2) Peterkop (1962), Geltman, Rudge, and Seaton (1963), and 

Sloan ( 1965) defined 

7 2 <kp k> a arg [ r (1 - iz/kf) I r (1 - iz/k) l , (3.38) 

where z is the net charge on the new ion produced; (3) the third choice, which is 

useful when partial-wave expansions are used, has been described by Burgess and 

Rudge (1963) and by Rudge and Schwartz (1966a). 

The Born-exchange approximation with various choices of the phase factor has 

been used by Peterkop (1962) and Gettman, Rudge, and Seaton (1963) for ionization of 

• + + XV 
H (1s), by Rudge and Schwartz (1966a, b) for H (2s), He (1s), He (2s), Fe , and 

FeXVI, by Sloan (1965) for He (1s 2
), and by Peach (1966b) for ionization of He, Li, 

Be, Na, and Mg from their ground states. 
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The results of Peterkop (1962) and Geltman, Rudge, and Seaton (1963) for ionization 

of H ( 1s) and those of Sloan ( 1965) for He ( 1s 2) show that the Born- exchange approx-

imation gives substantial improvement over Born calculations. 

3. 7 The Bom-Ochkur approximation 

The Born-Ochkur approximation retains the Born approximation for the direct 

scatter~ng amplitude but selects an.alternative exp~ssion for the exchange scattering 

amplitude. Different formulae have been proposed, the first given by Ochkur (1964) 

appropriate to excitation problems and the second, by Ochkur (1965) appropriate to 

ionization problems. Rudge (1965) modified the expression of Ochkur for excitation 

and derived a third formula, by a different argument, which he shows to be obtainable 

from a variational principle while Ochkur's is not. 

Ochkur (1964) and (1965) argues that the deficiencies of the. calculations using 

the Born-Oppenheimer approximation are not due to the fact that the method is 

essentially bad, but due to an incorrect extrapolation into the low energy region. In 

the derivation of the Born-Oppenheimer formula, as in the derivation of the Born 

formula, the incident and scattered electrons are both described by plane waves. This 

is correct at high energies, and it is obvious Ochkur argues, that if we consider this 

condition to be satisfied and expand the Born-Oppenheimer expression for the exchange 

scattering amplitude in a series in inverse powers of ki or kf, then only the leading 

term of this series will have a real meaning. The remaining terms he discards 

because they are of higher order of smallness. In the case of excitation he obtains, 

by this procedure, the result that for neutral species 

(1) a~ f 
gOch k·2 Born· 

1 

Extending his analysis to the ionization case Ochkur (1965) obtains the result 
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(2) pl f 'k k) 
g Och <I!{. ~) = l~i _ kll Born \!!f• - • (3.40) 

which he further simplifies by replacing I ~i - ~ 1
2 by (ki 2 

- k2
) to give a third 

approximation 

(3.41) 

The derivation of Ochkur's results is of an ad hoc nature and is not clear why 

his method is a marked improvement over the Born-Oppenheimer approximation. T"he 

1/r term which appears in the Born-Oppenheimer approximation is simply discarded in 

this approach. The discarded term gives a large contribution to the cross section due 

to the non orthogonality of the initial and final states and this might probably accoun·t 

for some of the improvement, but in the problem of proton-hydrogen atom, charge 

transfer, for example, the neglect of this term leads to worse results rather than an 

improvement. 

The Born-Ochkur approximation Equation (3.41) has been applied by Ockhur 

(1965) for ionization of H (1s); the Born-Ockhur method Eq. (3.39) has been used by 

Prasad (1965) for H (1s), H (2s), and H (2p), by Peach (1966b) for ionization of He, 

Li, Be, Na and Mg from their ground states, and by Peach (1968) for ionization of 

B, C, N, 0, F, Ne,· Al, Si, P, S, Cl and Arfrom their ground states. 

A comparison of the results of Ochkur (1965) with the Born (ii) results of Rudge 
• 
and Seaton (1965) and experimental data shows that the .Born-Ochkur method is a 

marked improvement over the Born. 

3.8 The distorted-wave Born-Oppenheimer method 

Apart from the question of phase of the amplitude, the most drastic approximation 

used in evaluating the scattering amplitude has been the form assumed for 'Pi (.!_., _!,). 
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Burke and Taylor (1965) have carried out calculations in which the initial state is 

represented in the form 

s 
11J. (L, L) a [ 1 + (- 1) P 12 ) I t/1 l (L) F 1 (L) , 

1 nl, n 1 n 1 

(3.42) 

where 1/1 nl ~) are hydrogenic eigenfunctions and the sum over n1 1 in (3.42) goes over 
I . 

1s, 2s and 2p states. F nl
1 
(! . ..> are determined through the Hartree-Fock equations 

f ..Pnl
1
* ~)(H-E) 'Pi {L, L) dL = o , (3.43) 

and the operator [ 1 + (-1)SP 12 ) explicitly symmetrizes or anti-symmetrizes the 

solution according to the total spin S. The final state was chosen as in the Born-

Oppe~heimer approximation. A comparison of this approximation with the Born, 

Born-exchange approximation, and experiment for ionization from the ground state 

shows that, despite the much greater complexity of Eq. (3.43), there is little improved 

agreement with experiment, which indicates that a better description of the final state 

is also necessary. ln the case of ionization from the 2s state, Burke and Taylor find 

that the effeCts of close coupling in the initial !:!t"ate are of much greater importance. 

Similar work to that of Burke and Taylor (1965) has been carried out by Veldre and 

Vinkalns (1963). 

3.9 Improved final-state approximation 

This approximation has been described by Rudge and Schwartz (1966) and 

applied by them to ionization of H (1s). The method.consists in adopting the 

approximations 

'l'. (r r ) a ·'·. (r-) ei ki . !.a 1 _u_2 ¥'1 :.:J. ' 

'l'f (L, L) a -
1-x* (ze- kf, !.a) x* (1,- k. L) I (3.44) 

(21T)1 -
with 

ze = 1- _k_._f~ 
lkt -kl 
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With this choice a linear-threshold behaviour is obtained but, in order to evaluate the 

cross section, one more integration is needed than in the previous approximations. A 

little improvement is obtained in the agreement between theory and experiment in the 

case where exchange is neglected. However, at higher energies than 1.5 times threshold 

there· is a discrepancy between theory and experiment and this discrepancy increases 

with inclusion of exchange. This they argue might be due to choice of effective charges. 

3.10 Gellman approximation 

In this approximation both continuum electrons are represented. as Coulomb waves 

belonging to charge z, with z the charge on the new ion produced. The method of 

Geltman (1956) was adopted by Trefftz (1963) and by Malik and Trefftz (1961) in 

considering the ionization of o4+ and o5+. A linear-threshold behaviour is obtained 

in this way but the cross section is over- estimated at low energies. This approximation 

has been examined in great detail by Veldre and Vinkalns (1963) both including and 

excluding exchange. 

3.11 Plane-wave approximation 

In this approximation plane waves are used to describe both continuum electrons, 

one of these being orthogonalized to the ground state of the atom. This approximation 

has been used by Michael (1963) in considering the ionization of hydrogen and cesium. 

A threshold behaviour like E 2 is obtained, which gives results which are too low at 

low energies, while it over-estimates in the region of the maximum of the cross 

section. The approximation is very poor. 

3.12 Impulse approximation 

This approximation forms the subject of Chapter II. 

4. Classical Approximations 

The application of classical mechanics to describe ionizing collisions involves 
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three basic approximations. These are: 

(1) The initial state of the system is described quantally. 

(2) The collision is described in terms of Newtonian Laws 

of motion. 

(3) In the simplest case of ionization of hydrogen by electron 

impact the equations of motion are further simplified by 

treating the three-body problem as though it were a sum 

of two-body collisions. 

4.1 The Thomson theory 

Thomson (1912), in the earliest treatment of ionizing collisions, considered 

classically the ioQization of an atom of mass m2 and charge z2e by ·a particle of mass· 

m, and charge z,e with the assumption that the atomic electron is at rest. The energy 

transfer ~E in the course of a Coulomb collision in which the incident particle has 

speed v and impact parameter b relative to the atomic electron is 

where "0 is the angle between the initial and final relative velocities and 

p. am, m/(mi·+ m2) is the reduced mass. Expressing (4.1) in terms of b we get 

2p. zvzz' zzz ze4 
~Ea ______ _ 

mz [z,zzz2e4 + bzv4p.2] 

The Thomson expression for the cross section is given by 
b 

Q a 271 f max b db ' . 
0 

with bmax chosen so that ~E a l, the ionization potential. 

The cross section for an energy transfer ~E c I, in the case of a collision 

between two free electrons, is 
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Q 11e• ( 1 1 2 
= - -- --) (em ) . 

E· I E· · 1 1 

In tenns of the Bohr radius, a0 ~ h 2/me 2
, and the hydrogen ionization potential, 

lH ~ me•/2!1 2
, this gives 

(4.4) 

where Ei = ~ m 1 V 2 and x = E/1. We have assumed in deriving (4.4) that only one 

electron was available to be removed from the atom. In the case of ionization from a 

shell of n equivalent electrons (4.4) must be multiplied by n. The first prediction of 

Thomson's theory is that ionization cross sections obey a scaling law expressed by 

saying that 

(4.5) 

is a universal function of n. It .is referred to as the reduced ionization cross section. 

This result is useful and a compa~ison with experimental data for H, He and Na + shows 

that for these species at low and intennediate energies the prediction is in good 

agreement with data. However, (4.4) does not give the correct shape of the ionization 

curve. Bethe's theory shows that at high energies the cross section behaves like 

Aln E/Ei + 8/Ei, but in (4.4) there is no logarithmic dependence. This is a severe 

drawback, because at high energies the logarithmic tenn is the dominant. Thomson's 

theory for ionization by other particles, for example, protons or alpha particles gives 

for the cross section the Thorn son formula 

(4.6) 

This formula predicts a threshold where 
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(4.7) 

which is only correct for electrons with m 1 = 1. The correct expression for the 

threshold energy is 

(4.8) 

so that for ionization of atomic hydrogen by proton impact, for example, at threshold 

vz ~ 41/mz while in Thomson's theory v 2 ~ 1/2. Equation (4.6) shows that the cross 

section for ionization by proton impact, for example, approaches from above the cross 

section for ionization by an electron having the same velocity, as the velocity 

increases. This result may be derived froin quanta! expressions for the ionization 

cross section, but Thomson was the first to deduce this relationship. 

4.2 The classical methods of Gryzinski and others 

Interest in the classical methods appeared to have lapsed for many years but 

the publication of Gryzinski's work [ Gryzinski (1959)1 dramaticafly revived it. 

Essentia~ly this was an independent reworking of the calculation of Williams (1927) 

and Thomas (1927). Gryzinski used the results of Chandrasekhar (1941) and 

Chandrasekhar and Williamson (1941), who calculated the energy transfer between two 

colliding particles moving arbitrarily with respect to one another under an inverse 

square law force. Scattering in Gryzinski's calculation is considered in the centre of 

mass frame of the incident and struck electrons followed by transformation to a frame 

at rest relative to the nucleus. In the course of his calculation Gryzinski made the 

simplifying approximation of replacing the true relative speed of the electrons 

v = IY
1

- Yzl by its average value ~V 1 2 + v/)
1

~. This approxima.tion was later removed 

by Ochkur and Petrun'kin (1963) and by Stabler (1964). Defining Ez to be the initial 
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kinetic energy of the atomic electron, introducing another reduced variable y = E/1, 

and assuming the distribution of electron velocities to be isotropic,Stabler's result 

for the ionization cross section is 

X~ y + 1 

~ 8n (IHP 1 (x - 1)3 
1

;; 

3 I ;cl y I 

(4.9) 

With the additional approximation me_ntioned above and taking y = 1,Gryzinski's 

result for the ionization cross section is 

x~2 

(4.19) 

A comparison of the Gryzinski-Stabler classical theory Eq. (4.9) with experimental 

data for H(1s) shows that far from improving the Thomson theory it actually makes it 

worse. The subsidiary approximation made by Gryzinski to give ( 4.10) suffers like 

(4.9) from the following defects: 

(a) The shape of the ionization curve is still in error at high 

energies. 

(b) The low energy behaviour of the cross section is like 

(x - !)';;rather than (x - 1), as given quantally and in 

the Thomson theory. 

The position of the maximum given by (4.9) is incorrect, though for hydrogen the 

position of the maximum given by (4.10) is more correct and numerical values are in 

better accord at intermediate energies. 

One may conclude that neither (4.9) nor (4.10) represents an appreciable 

improvement over the Thomson theory. 
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In order to force a logarithmic dependence in the ionization cross section 

Gryzinski reconsidered the problem in a series of papers (1965 a, b, c) by assuming 

a continuous velocity distribution for the atomic electron. An empirical distribution 

function was. chosen so that on averaging. over this distribution, a logarithmic 

dependence would .be obtained. He introduced the following distribution function for 

the atomic electron: 

f (v) =a v- 3 exp (- {J/v) , (4.11) 

where a and fJ are constants. This is completely at variance with any quanta! velocity 

distribution; the fact that it yields an infinite kinetic eriergy also leads to difficulties. 

Burgess and Percival (1968) point out whom we quote: "We feel that it could not be 

accepted by any who interpret atomic structure according to quantum mechanics in the 

final analysis." By averaging over the distribution (4.11) Gryzinski obtains 

Q ... 4n ~2 ~ (x - ~ 
3

4 [1 + 2(1 -l) In 12.7 + (x- 1) •41] . 
I x x + i' 3 2x 

(4.12) 

Eq. (4.12) again has an incorrect form at threshold. There is now a logarithmic 

term, but the coefficient multiplying it is in general incorrect, the correct factor 

being given by (3.27). The choice of the velocity distribution (4.11) is made in an 

arbitrary fashion which is simply an ad hoc device for obtaining the logarithmic term 

of (4.12). 

Gryzinski (1965 d) reconsidered the problem of velocity distribution for the 

atomic electron. He argues that the correct velocity distribution is that for an 

electron of a Bohr atom in which it has only radial motion, corresponding to a 

degenerate line ellipse. The velocity distribution is in this case 

(4.13) 
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where Y.! vnz ~ !Enl• and where En is the energy at the initial state with principal 

quantum number n. Kingston (1964 a, b, 1966 a, b) has applied the Gryzinski (1959) 

theory and the corrected form of this theory to electron impact ionization from the 

ground state and several excited states of hydrogen. He gives. cross sections obtained 

from putting E 2 .. I and from averaging over the prop~r quantum mechanical velocity 

distribution, and compares them with Born approximation results. Prasad and Prasad 

(1963) have used t~e Gryzinski (1959) theory with E 2 · .. I, to calculate ionization cross 

sections for several atoms and diatomic molecules by electron and proton impact. 

McDowell (1966) and Vriens (1967) have worked out the theory for a binary encounter 

between an incident proton and an initially bound electron with non-zero E 2, to first 

o.rder in mzfm.. McDowell gives the ionization cross section, arid Vriens the quantity 

dQ ( 6E)/d( £\E) which 'is then integrated to give excitation or ionization cross sections. 

Fock (1935) has shown ~hat the momentum distribution for the level n of the 

quantal H atom is independent of n and is given by 

(4.14) 

where the classical momentum Pc is given by 

(4.15) 

and where me is the mass of the bound electron. Abrines and Percival (1966 a, b) and 

Mapleton (1966) show that the result (4.14) is obtained also from the classical micro-

canonical distribution provided that an integration is performed over the classical 

angular momentum. However, if such an integration is not effected, then,for a 

degenerate line ellipse, Mapleton (1966) shows that the Gryzinski result (4.13) is 

obtained .. Abrines and Percival (1966), Percival and Valentine (1966), and Abrines, 

Percival and Valentine (1966) integrated the classical equations of motion exactly 
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thus discarding the binary encounter approximation. The initial momentum distribution 

was taken to be that given by ( 4.14) and a Monte Carlo calculation was performed to 

average over initial classical states of the system. Percival and Valentine (1966) show 

that for proton impact ionization of hydrogen the result of removing the binary encounter 

approximation is to reduce the cross section by a factor of 2 at its maximum. A 

comparison of the results of Abrines et al.(1966) for electron impact ionization of 

hydrogen with experimental data shows a quite reasonable agreement. The agreement 

with experiment is not nearly so good as for protons at low incident electron velocities; 

this disagreement is due in part at least to the quantum mechanical interference 

between direct and exchange scattering, which is shown to be important by the ·bin~ry 

encounter theories. 

4.3 . The exchange-classical approximation 

In order to improve· th~ Thomson theory Burgess (1963) and (1964) argues that 

certain features of the quantal treatment must be introduced into the approximation. 

The first of these features is that exchange must be incorporated in the approximation. 

This in a pure~y classical treatment is obviously impossible but the Thomson cross 

section expression makes a good starting point for a semi-classical modification of 

the theory. Including exchange means that the Thomson cross section expression, 

Eq. (4.3), is replaced by 

with the usual energy relation 

and where the upper limit of integration has been chosen to be in agreement with 
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quantal theory. However the integrand in (4.16) is not symmetric, i.e., the relation-

ship f ilif' ~) = g ili. ~f) is not satisfied [ Burgess ( 1963)1 . If integration in ( 4.16) 

is extended over the full range of energy and a factor of'~ is in traduced, which i s 

an equivalent procedure in a quantal treatment, then (4.16) diverges. In order to get 

over this difficulty Burgess (1963) made use of a procedure similar to the one 

employed by De la Rippelle ( 1949). The expression ( 4.16) is then replaced by one 

which is symmetric in kf and k. This expression is given by 

Assumin·g the argument of the cosine is cqnstant and equal to Y, then (4.17) becomes 

Q .IJ.I~ 1 1 X I 
a 4 (-r-' 2 (x + 1)ll- X- cos [y ln (~] • (4.18) 

Burgess (1964) and Vriens (1966) assume the atomic electron to have an initial 

kinetic energy. This complicates the analysis and the results of these authors do 

not coincide. Vriens (1966), on carrying through the procedure of Burgess (1964), 

obtains 

(4.19) 

where T is the gain in kinetic energy of the incident electron. 

Expressions ( 4.18) and ( 4.19) are a substantial improvement in the theory in 

that they remove one of the major defects of the Thomson expression. However they 

do not represent the correct high energy behaviour. 

4.4 Exchange-classical impact parameter (ECIP) approximation 

If the influence of the nucleus may be ignored the close electron-electron 
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encounters have been treated exactly in the pre.viou~ sections. On the other hand .in 

the impact parameter method Alder et al.(1965) and Seaton (1962b), the distant 

collisions are treated in a good approximation. Burgess (1963) and (1964) in his 

efforts to improve the Thomson theory suggested combining the previous theory with 
. . 

an impact-parameter formulation. Calculations by Burgess. (1964) indicate considerable 

success for this method. The treatment is elegant in that the correct behaviour at low 

and high energies is obtained while at the same time the quantitative predictions are 

profoundly sound. Unfortunately the method does not produce any simple formula such 

as those obtained previously. 

5. Empirical -Formulae For Ionization Cross Sections 

In using empirical formulae to calculate ionization cross sections certain 

criteria must be met, these being: 

(a) . To give a good fit to the known data at all energies. 

(b) To predict variations in the ionization cross sections for 

members of iso-electronic sequences. 

(c) To give the variations in the ionization cross sections as 

a function of the quantum numbers of the initial. state. 

A multitude of empirical formulae have appeared in the literature many of which 

are only of limited usefulness and have been superseded-by the formulae we discuss 

below. 

The latest and most extensive list of formulae for ionization cross sections and 

for reaction rates for ionization has been compiled by Lotz (1967). Lotz writes the 

ionization cross section in the form 
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The expression (5.1) applies to an atom or ion containing several shells of electrons, 

the Ij being successive ionization potentials; a is a fixed constant, and the (j are 

numbers, the relevant values of which Lotz tabulates for the three energy regions of 

the ionization curve. For the high energy part of the ionization curve the ( j are equal 

to the number of electrons in each shell. The constants are determined from experi

mental data and apply to ionization from tlie ground state. 

The expression (5.1) is derived from a very successful formula of Drawin (1961), 

who wri~es the reduced cross section ofEq. (4.7) in the form 

Q (x) - 2.66 f; (X - 1> In (1.25 fa x) 
X 

(5.2) 

where x. is the reduced energy and f 1 and fa are constants which, in' ~he absence of 

further data, Drawin recommends be taken equal to unity. Expression (5.2) has a 

linear behaviour near the threshold region and its form at high energies agrees with 

the Bethe theory. It gives a very reasonable estimate of the ionization cross section 

for a large number of species from their ground states but with the choice f. • f2 = 1 

it is less accurate for ionization from excited states. 

Percival (1966) gives formulae for the average cross section for ionization from 

excited states of hydrogen and hydrogenic positive ions. The formula of Percival for 

the average ionization cross section from an initial state of hydrogen with principal 

quantum number n is 
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Q (x) ~ (x - 1) (1.19 ln x + 5.26) I (x 2 + 1.67 x + 3.57) if n = 1 

= (x- 1) 1l.28 1n ~ + 6.671 I (x 2 + 1.67 x + 3.57) n nz if n ~ 2 . 
(5.3) 

For large x and large n, (5.3) gives 

Q (x) "' 11.67 
X 

a form which derives from the Gryzinski or exchange-classical approximations when 

the ·initial kinetic energy of the bound electron is taken to be equal to I. It has been 

shown by Abrin es and Percival (1966b) that for large n, the classical and quantal 

cross sections are equal when expressed.in terms of the reduced energy, and 

calculations performed by Abrines, Percival and Valentine (1966) are in accord with 

the exchange-classical results at high energies. The reduced ionization cross 

section of hydrogenic positive ions, Percival (1966) writes 

Q (z, x) = 1 + 2·3 Q (1, x) 
(1 -/J + 2 (x - 1)2 

(5.4) 

whe~e z is the nuclear charge. 

For positive ions the reduced ionization cross sections are greater than for the 

neutral member of the given isoelectronic sequence as a result of the focusing of the 

incident electron beam by th~ attractive. Coulomb field of the ion. If we denote by 

zi the initial charge on the ion, then a factor of focusing F can be defined by 

z· 1 Fa 1+-l-xn (5.5) 

and the reduced ionization cross section for the isoelectronic sequence can be written 

Q (zi, x) = F Q (o, x) . (5.6) 

In the case of the hydrogen isoelectronic series expressions (5.4) and (5.6) give a 

good representation of the variation of the reduced cross section with z. 
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CHAPTER II 

THE IMPULSE APPROXIMATION 

1. Introduction 

Fermi (1936) was the first to make an explicit study of an impulse approximation 

in discussing the effect of molecular binding on neutron scattering by protons in 

hydrogen molecules. Chew (1950) introduced the term "impulse approximation" in 

connection with nucleon-deuteron scattering. Studies of this approximation were 

subsequently made by Chew and Wick (1952) and by Ashkin and Wick (1952) and the 

approximation gen~ralised by Chew and Goldberger (1952} within the framework of 

the formal theory of scattering. 

The basic assump~ion of the impulse approximation is that the effects of the 

binding potential of the target can be neglected during the collision, except insofar 

as it determines the initial state of the system. This neglect of the effects of the 

binding potential is termed the impulse hypothesis, in analogy with the treatment of 

impulsive reactions in classical mechanics, where the motion of the target is neglected 

for the very short t-ime during which the impulsive force acts. 

In the present Chapter our primary aim is to reconsider the approximation used 

by Akerib and Borowitz (19fi1). In view of this we shall restrict our attention ·to a 

model problem in which the effects of the interaction between the projectile and the 

target nucleus are neglected, this essentially being the model considered by Akerib 

and Borowitz. In the case of electron impact the possibility of exchange is 

consistently excluded. 

2. Notation 

Atomic units are used (e, the electron charge, m, the mass of the electron, and 

11, Planck's constant divided by 211, are taken as the fundamental units and therefore 
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have the value unity); E denotes the total positive energy of the system in these units. 

Cross section expressions and cross sections are expressed in units of rra0 
2, where a0 

is the first Bohr radius of atomic hydrogen (rra
0 

2 is 8.806 x 10- 17 em 2). 

Throughout this Chapter we shall be concerned with collisions between a 

structureless particle 1 and an hydrogen atom consisting of a nucleus 2 and an 

electron 3. 

The masses and charges of the particles 1 and 2 are denoted by M., M2 and 

Z 1 , z 2 respectively and .!_t, !J, !J are the position vectors of the three particles with 

respect to some arbitrary fixed origin 0. The relative co-ordinates B_, _! and!. are 

defined by 

(2.1) 

If the position vector of particle 1 with respect to the centre of massof 2 and 3 

is denoted by£. and that of the centre mass of 1 and 3 with respect to 2 by !!. then 

~ = a .!. - ~' e = _! - b ~ , (2.2) 

where the dimensionless quantities a and bare defined by 

(2.3) 

The position vector, Q, of the centre of mass of the system with respect to the origin 

0 is given by 

Q a ~ {M I !J + M Z L + ~l) > 
(2.4) 

where M = M 1 + M 2 + 1. 

In the centre-of-mass frame of reference the Hamiltonian of the system is 

where V .. is the potential acting between particles i and j, and H0 is the kinetic 
lJ 

energy operator. 
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With the use of Equations (2.1)- (2.3) the kinetic energy operator can be 

expressed in the alternative forms 

(2.6) 

where 

(2.7) 

At infinite separation of the target and projectile before the collision _the Hamiltonian 

of the system is 

(2.8) 

Let ¢i (!) and e: i be the wave function and corresponding eigen energy of state i 

of the system (2 + 3). Then ¢i (!) satisfies the equation 

1 2 
1- - 'iJ r + V 21 (r) I c/Ji (.!) = , 

1
• c{J

1
• (r) 

2a - · 
(2.9) 

If ~i is the initial relative momentum of the colliding systems, the wave function 1/Ji 

of the initial unperturbed state.of the system is given by 

i k· (j rfJ· = e -1 · - ¢· (r) 
1 1 - J 

and satisfies the Schrodinger equation 

where 

(2.10) 

(2.11) 

(2.12) 

The form of the final unperturbed wave function t/Jf depends on the type of transition 
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considered. The normalization has been chosen so that V1i represents a projectile 

beam of unit density. 

The wave function 'Pi of the system, in the presence of the perturbing potential 

Vi, satisfies the equation 

(H-E) '~'i = o · (2.13) 

This may be written as 

(E- H·) 'I'· = V· '1'. I 1 1 1 1 (2.14) 

where 

(2.15) 

Equation (2.14) is equivalent to the integral equation 

± . -. ± 
'Pi m .Po + (E- Hi ± 1-l) Vi 'Pi (2.16) 

In (2.16) E is a small positive quantity which is allowed to go to zero when all the 

relevant integrations have been carried ·out, and 1/1
0 

is any solution of (2.11) determined 

from the boundary conditions imposed on the relevant solution of (2.14). 'l'i +.and 'Pi

are solutions of (2.14) obtained from (2.1fl) with the former solution containing outgoing 

scattered waves and the latter containing ingoing scattered waves. The wave function 

which describes the colliding systems in the presence of all their interactions and 

which evolves from the state 1/Ji is 

"'. + = •1•• + (E - H. + i l)- I v. '11• + 1 ¥'1 1 1 1 
(2.17) 

If A and a are two operators for which inverse operators A-• and a-· exist, then 

A -• = a-• + a-• (a- A) A-• 

~ a-• + A-• (a- A) a-• 

Writing 

we have that the Green's functions operators 
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G± a (E- H ± i £)"' 

satisfy the integral equations 

G± a G· ± + G± v. G.± 
1 1 1 

(2.20) 

(2.21a) 

(2.21b) 

By operating on both sides of (2.17) with G+ Vi and making use of (2.21a) we obtain 

G + Vi 'I' i + = G + Vi r/1 i + G + V'i G / Vi 'I' i + 

+ + + + 
= G V · ·'· · + (G - G · ) V · 'I' · 1 ¥'1 1 1 1 • 

(2.22) 

It follows that 

(2.23) 

and 

(2.24) 

2.1 Formal derivation of the impulse approximation 

The wave function for the three-particle system, corresponding to an initial state 

1./Ji and outgoing wave boundary conditions is 

+ + 
'I'· an ·'·· 1 ¥'1 • (2.25) 

where 

o+ = 1 + G+ V· 
1 • (2.26) 

The three-body scattering operator o+ is expanded in terms of the simpler two-body 

operators wij + defined below; from this expansion the impulse approximation will be 

derived. 

Let Xm belong to the complete set of free-particle wave functions satisfying the 

the Schrodinger equation 

(Ho - Em) Xm = o . (2.27) 

The two-body operators wij + (i, j a 1, 2, 3 . i r j) are defined by the equation 
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W!·+(m)x =[1+(E -H -V .. +ift•V .. ]x 1J m m o lJ 1J m 

= VIm+ (ij) . 

It is clear that the function 1/Jm + (ij) satisfies the equation 

(H0 + Vij - E ) 1/Jm +(ij) ~ o 

provided that 

lin e: 1/Jm + (ij) ~ o 

f .. 0 + 

(2.28) 

(2.29) 

(2.30) 

It has been shown by Mapleton (1961) that the condition (2.30) is not satisfied when 

Vij is a Coulomb potential and in that case (2. 29) will be taken as the equation defining 

1/Jm + (ij). 

Taking A = E - H - V · · + i e: and 8 ~ E - H + i e: and making used of the m o 1J 

operator identity (2.18b) gives 

G+=(E-H +i e:)-• =(Em-H0 -Vij +i e:)-• 

+ G+ LEm - E + V 12 + V u + V 23 - Vij] (Em - H0 + Vij + i t)-• 

and therefore 

G+ vij ~ bij+ (m) + G+ [Em- E + Vu + Vu + v2J- vij] bij+ (m) I 

where the operators bij + are defined by 

bi( (m) ~ Wij + (m) - 1 , 

(2.31) 

(2.32) 

(2.33) 

where the plane wave basis Xm is understood. Operating on 1/Ji and making use of the 

fact that 

(Em - E) < X I .p. > ~ < E X I .p. > - < X I E .p. > . m 1 mm 1 m 1 

a-<x IVni.P·> m 1 
(2.34) 

we obtain 
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G+ v .. 1/J· -I G+ v .. v < v 1 1/1 > 
lJ 1 m lJ "-m "-m 

where [a, b] denotes the commutator of the operators a and b and 

bi( a~ bij+ (m) I )(m> < )(m I . 

Combination of (2.26), (2.35) and the definition of Vi gives 

o+ + + + [ + + l + + + 
= (wiZ + Wu -1) + G Vw (baa + bu) + G (VI2 bu + vll bu ),~ 

where 

•. + b .. + 1 wlJ = lJ + • 

The transition matrix element is given by 

T if - < 1/1 f I V f I 'IIi +> 

a < '~'f- I Vi I .Pi> 

where V f is the perturbation in the final state and 

From a combination of Equations (2.25), (2.37) and (2.39a) we have that 

Tif c < '-/lf I Vf I (w 12 + + w 11 +- 1) '-Pi> 

+ + +) +<1/JfiVriG [Vzs,(b 12 +bu ]1/Ji> 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39a) 

(2.39b) 

(2.40) 

(2.41) 

The neglect of the effects of the binding potential means that the commutator 

involving the potential V u will vanish. This simplified (2.41) but some additional 

approximation must be 'made before one can evaluate Tif· The third term in (2.41) 

arises from multiple scattering and it vanishes if V 12 is zero. When the projectile 

is a heavy particle, the contribution to T if from the potential V 12 is expected to be 
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of the order of 1/M compared with the contributions from other potentials, and 

therefore negligible. For a more detailed discussion the reader is ref erred to 

Bransden (1965) or McDowell and Coleman (1969). In applications of the theory 

it is customary to make the additional approximation of neglecting V 12 in V f and 

of replacing w 12 + by unity. Thus we obtain 

which is called the "post" form of the approximation. 

By expanding 'l'f-in terms of the operators 

w· .-=I. w··- (m) I v > < v· I 
lJ m lJ ""m ""m 

where 

wi( (m) = [1 + (E- H0 - Vij - i £)-' Vijl Xm 

we obtain the "prior" form of the approximation. In general the cross sections 

(2.42) 

obtained from the post and prior forms are not equal and their difference is called 

the post-prior discrepancy. 

2.2 Reduction of the transition matrix element 

In this section the transition matrix element given by (2.42) is reduced to a 

form suitable for computation. The processes considered are: 

(2.43) 

In the impulse approximation the cross section for the processes (2.43) is 

given by 

(2.44) 

where the vectors ~ and ~f are as defined in Chapter I. Transforming the ~f 

integration of (2.44) to one over p, defined in Chapter I, gives the ionization cross 

section as 
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Q a llz Jkmax dk JPmax I T· IMP lz d 
2 z k z - p lf p 
" i o Pmin 

a ll z fkmax dk JPmax I I + l I z d 
2 ZkZO -p· p 1Z 

13 p 
" i mm 

(2.45) 

where 

I .. = < rPf I v .. I cuu+ .P· > 
lJ lJ 1 (2.46) 

with V u =~and V u = - ~. tn accordance with the definition (2.28) of the operator 
R X 

w 13 +I the wave function w 1 ,+ 1/Ji can be written as 

w1/ .Pi=; cuu+ Xm < Xm I .Pi> 

.. I "' +( 13) < X I "'. > m m m 1 

and a convenient set of plane wave solutions of (2.27) is 

Xm = (2rr}- 3 exp [i <K. ~ +!.. }!)] 

the energy Em is then given by 

(2.47) 

(2.48) 

(2.49) 

and the summation over m in (2.47) implies integration over all values of K and !: With 

i a 1 and j = 31 (2.29) becomes 

( - 1 " z + _1 " z z I E ) +( 13) v v +-+ V' =o. 
2~t f!. 2b ~ x m m 

This equation is satisfied by 

with a= bz 1 and 

"' +(13) a N (K) X IF I [ ia I 1 I i (Kx - K . x)] 
m m K - -

N (K) .. e"a/2K r (1 -~ 
K 
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Using Eqs. (2.2), (2.10) and (2.48) it follows that 

where 

G 1s (~) = f ei J! · !. r/1 ls (!) d.!_ • 

Substitution of (2.51) and (2.53) in (2.47) gives 

x G1s (aki -!) 5 (ki + K - b!) 

= (2"br 3 fdK N (K) exp (- i ~. ~i) .F. [i~, 1, i (Kx -li. ~)1 

x G1 fk. (a-!)- !KI exp [!.tk; + K). r], s -1 b b- b ~. - -

the final result being obtained by performing the ! integration and noting that 

With 

we have, using Eqs. (2.42), (2.54), (2.55) and the definition of Iij• that 

- i kf a - i k· x lu m (2"b)- 3 f f d~ d!. e - ·- ¢f*(!) V u f d~ N (K) e !!I ·-

(2.53) 

(2.54) 

(2.55) 

. 1 1 ! i (ki + K) . r 
x .F. [ 1~, 1 , i (Kx - K . ~)] G1s l(a -"if !i - b~ I e - - - (2.56) 

since V 13 = - ~ (2.56) gives 
X . 

43 



Iu '"-(2rrbr] z. JdK N (K) G1s (- ;.l!i- ~1.9 Gf* 1- ~(.l!i + K> +a .l!f.l I(- 2, K> 

. (2.57) 

where 

I (2, K> = f d]! ~ ei 2 · 1! .F 1 iK, 1 , i (Kx - K . ~] (2.58) 

The evalua~ion of I (p , ~) is discussed in Appendix A. Substituting (A.9) in (2.57) we 

obtain 

Iu .. - z. fdK N (K) G1s (- v- ~K) Gf* (- v- !K- aJ!) 
. 2rr2 b3 p2 - - . b- - b-

~ 

[
(- .R + K)2- K2 - K 

X ] (2.59) 
p2 

where v .. _!k·. 
- fJ.-1 

If the interaction between the projectile and the target nucleus, V 12, is neglected 

and if it is assumed that the ejected electron is adeq~ately represented by a plane 

wave 

(2.60) 

· then (2.45) becomes 

k p 
Q = _1_ f max dk f max I I lz d 

2 2 2 - p I] p ' 
" v 0 Pmin 

(2.61) 

and 

. . (., . 1 
3 

1 \.Y + - K + a E. - k) . r 
Gf* (- _y- ~~- ap_)(2rrr:ta fe b- - -d!. 

]/, 1 
= (2rr) 2 8 (y + b Ji + a E. - ~) (2.62) 

Substituting (2.62) in (2.59) we obtain 
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(2.63)" 

where ~ ~ b!!_- abe_- by_. The Fourier transform of the initial state is easily evaluated; 

stn~e cfJls (!) a ,~·4 e·r ~e have that 

.a;, i(a~-k)·r 
G1s (a~ - ~) = " 2 f e - - e·r d.!. 

(1 +·(a~- ~) 2P 

Substituting (2.64) and (2.52) in (2.63) gives 

(2.64) 

1ra ia 

Iu=-8vT~·e2K( "a 1~ (1+(a~-~)21·-.z(l- 22 ~.K1-Kei., ,(2.65) 

p
2 

K sin h (i{-) p 

where T"J = arg r (1- ~· 

An undesirable consequence of the use of a plane wave to describe the ~jected 

electron is the lack of orthogonality between the initial and final unperturbed wave 

functions. In the Bethe approximation (Chap. I, 3.4), the dipole term provides the major 

contribution to the ionization cross section which for large incident energies Ei takes 

the form 

Q = Aln E·/E· + 8/E· • 1 1 1 

However, if non-orthogonal wave functions. are used the monopole term does not vanish 

and the resulting cross section tends to a finite (non-zero) value as E i - ro. This 

difficulty can be circumvented by using a Coulomb wave or, more simply, the function 

-
3
/, i k . r i k . r 

4>r {f)= (2") 2 (e - -- < e - -I cp1s (!) > cpls {f)l 

(2 )- 3/, [ i k . r 8 . -r
1 = " 2 e - -- e 

(1 + k2)2 (2.66) 

for the ejected electron. Substituting (2.66) in (2.56) the simple expression (2.65) is 
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replaced by 

(2.67) 

where the first term, Im on the right hand side of (2.67) is given by (2.65). 

Further reduction of (2.67) in closed form has not proved possible, and it's 

e~alu~t.ion, like the evaluation of the corresponding expression obtained by using a 

Coulomb wave to describe.the ejected electron, p~esents a formidable computational 

task. In order to obtain cross sections one must therefore make some approximation 

which reduces the integral to a form suitable for computation. 

The Born approximation transition amplitude with expression (2.66) taken to 

represent the ejected electron is 

(2.68) 

Performing the~ and~ integrations of (2.68) we obtain 

(2.69) 

To examine the effect of using the wave function given by (2.66) we noted that the 

Born and impulse approximations agree in the high energy limit and therefore made 

the approximation of replacing the second term on the r.h.s. of Eq. (2.67) by the 

second term on the r.h.s. of Eq. (2.69), having ascribed to it the phase of I.u i.e. we 

put 
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Ia 

With this additional approximation the expression (2.67) is replaced by 

~ 17U 
1/z 

I.P> m- 8 ~;z•[e2K I K sinh <1[> 1 16 

11 + (a Q- ~) 2 P 

ia 
2 - K i11 • xD--n.K] e. 

p2J:. -

(2.71) 

with ~ = bk - abe_ - b!. 

Substituting (2.71) in (2.61) we obtain 

11a 

64 
z k p 2K 77a •~z 

Q = ~ f maxtl~ f max~[e I K sinh (j{) I 
I 77z vz 0 p . p 

mm 11 + (a-9 -.kYP 

16 . (2.72) 

(1 + kz)z (4 + az pZ)z 

The Born approximation cross section is given by 

(2. 73) 

Substituting (2.69) in (2. 73) and integrating over~ we obtain 

32 

+ (2.74) 
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If the ejected electron is represented by a Coulomb wave, Eq. (3.7) of Chap. I, 

3.1, the ionization cross section in the Born approximation (Mott and Massey 1965 

p. 490) is given by 

k . 
Q ~om= ~ f max dk lmax .QP. k exp [- ~arctan ( 2k )] 

vz o Pmin P (1- e· 277/k) k 1 ·t- Pz- kz 

The limits of integration are given by 

Pmin = ki - kf ' Pmax a ki + kf · 

The equation of conservation of energy is 

1 k z . 1 k z 1 kz - . + (' =- f +-
2/L 1 1 2/L 2 

(2. 75) 

(2.76) 

(2. 77) 

Using (2. 76) together with the equation of conservation of energy (2. 77) we find that 

(2.78) 

(2.79) 

and 

kmax = (IL v z - I)~~ ' (2.80) 

where I (= - 2 ci) is the ionization potential of hydrogen in Rydbergs. 

Cross sections have been calculated for the processes (2 .. 43) in the impulse and 

Born approximations by performing the integrations in '(2. 70), (2. 74) and (2. 75). The 

numerical methods employed are discussed in Section 3 and the results are presented 

and discussed in Section 4. 
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3. Numerical Methods 

The integrations were carried out using a frame of reference Oxy z with the z-axls 

along ~ and such that the xz-plane is the plane of ~ and ~i. Sphe~cal polar co-ordinates 

in this frame are denoted by (k,v,.p). The calculation of ionization cross sections in 

the impulse approximation involves the numerical ev.aluation of a four-dimensional 

integral, namely, the integrals with respect to .p, ,J, p and kin (2.70). The evaluation 

of ionizati.on cross sections in the Born approximation involves the numerical evaluation 

of a double integral, namely, the integral with respect to p and the final integration 

over kin (2.74) and (2.75). 

First we describe the method used to evaluate the expression (2.70). The 

integrand in this expression is a well-behaved function of the four variables .p, ,., p 

and k, with no singularities within the range of integration. In our frame of reference 

v can be written in the form 

Y.. ~ v (sin 8 , o , cos 8) . (3.1) 

Making use of the equation of conservation of energy, the equation defining ~' and 

Eq. (3.1) we can write K in the form 

(3.2) 

Repeated Gaussian integration formulae of various orders were used to evaluate 

the ·integrals over the variables r/J, v, p and kin the following order: (a) r/J, v, p, k; 

(b) v, ¢, p, k; (c) p, r/J, v, k. As a result of tests carried out for the r/J, ,J, p, and k 

integrations it was decided to split the range of integration in the following way: 

(1) The range (o, 11) for the r/J and v integrations was split into four parts, (o,~, 

(.!!., .!!}, (.!!., ~.( 377 , 77); (2) the range (a , b) for the p and k integrations was split 
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into sixteen parts, (a, a + t), (a + t, a + 2t),(a + 2t, a + 8t) and (a + 8t, b) where 

t = J
6 

(b - a). Gaussian quadratures of order 4, fi, 8 and 12 were in tum applied to 

each part. In the case of proton impact the range of integration was truncated at 

p ~ 15 and k .. 15 because the integrand becomes negligible for large values of p and 

k. A very good agreement was obtained between the different methods, and the 

indications are that the cross section values obtained are at least accurate to three • 

significant figures. 

The integrals over the variables p and k in (2. 74) and (2. 75) were evaluated 

using (a) the Simpson integration formula, the steplength being chosen on the basis 

of the observed behaviour of ·ITifBornl 2 as a function of·p and k, and (b) Gaussian 

formulae of order 4, 6, 8 and 12. The agreement between the results obtained, using 

the Gaussian integration formulae and Simpson's formula, is better than four 

significant figures. The Born cross sections were obtained using the Born (1) 

approximatio·n (Chap. I, 3.3, Eq. 3.17). 

4. Results 

Cross sections for the processes (2.43) are given in Tables 1 J:~nd 2. In these 

Tables QI denotes the cross sections obtained with the use of Eq. (2.72), QB(1) 

denotes. Born (i) cross sections with Coulomb wave for the ejected electron and 

QB (2) denotes Born (o cross sections with wave function (2.66) for the ejected 

electron. The results are also presented graphically in Figs 1 and 2, to allow 

comparison with experiment and with other approximations. In Fig. 1 we display 

the results for the process e + H (1s) .... e + H+ + e and in Fig. 2 the r.esults for the 

+ + + process H + H ( 1s) ... H + H + e. 

The present approximation over-estimates the true electron impact ionization 

cross section at all energies in excess of 1.5 times threshold, a result which is in 

50 



striking contrast with that obtained by Akerib and Borowitz (1961). At high energies, 

as mentioned previously, Q1 ... Q8 but the approach to the limit is very slow, the ratio 

Q1 /Q8 being approximately 2.54 at an incident energy ~f 45 rydbergs. 

For proton impact the present approximation grossly over-estimates the 

ionization cross section at all energies in excess of 25 kev. Again at high energies 

Q1 ... Q8 but the approach to the limit is extremely slow, the ration Q1/Q8 being 

approximately 4.9 at an incident energy of 750 kev. 

The present model, which is identical with the non-exchange approximation of 

Akerib and Borowitz (1961), leads to results which are incompatible with experiment 

and with the predictions of the Born (i) approximation. Furthermore, a drawback of 

the model, in the case of electron impact, is that it does not seem possible to include 

exchange in a logical way in view of the fact that V aa is taken to be identically zero. 

5. Conclusions 

We conclude that the agreement with experiment obtain by Akerib and Borowitz 

for electron impact ionization is fortuitous. The indications are that the impulse 

approximation will not give good results if I u' (Eq. 2.67) is evaluated without a 

further agproximation. The computational effort required to _evaluate (2 .. 45) when the 

ejected electron is described by a Coulomb wave is not, in our view, justified until 

the validity of the impulse approximation is better understood. 
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E (Ryd) 

2 

3 

4 

6 

8 

10 

12 

16 

20 

30 

40 

45 

Table 1 

Cross sections ("ao 2) for H (ls) + e .... 1:1+ + e + e 

1.025 

1.391 

1.499 

1.483 

1.389 

1.287 

1.192 

1.034 

0.916 

0.715 

0.586 

0.538 

52 

Q (1) 
B 

1.016 

1.195 

1.145 

0.958 

0.804 

0.690 

0.604 

0.484 

0.406 

0.293 

0.233 

0.212 

Q (2) 

B 

0.466 

0.864 

1.066 

1.138 

1.071 

0.983 

0.901 . 

0.766 

0.666 

0.506 

0.411 

0.377 



E (kev) 

5 

10 

IS 

20 

25 

so 

100 . 

~00 

300 

400 

500 

750 

1000 

QI 

0.153 

0.818 

2.276 

3.984 

5.521 

8.782 

7.542 

4.692 

3.320 

2.559 

2.078 

1.413 

1.070 

Table 2 
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(1) 
QB 

0.667 

1.625 

2.149 

2.377 

2.445 

2.122 

1.448 

0.873 

0.631 

0.497 

0.412 

0.291 

0.227 

Q (2) 
B 

0.237 

0.479 

0.718 

0.960 

1.17X 

1.716 

1.653 

1.2·26 

0.965 

0.801 

0.687 

0.514 

0.415 



1·6 

1-4 

1·2 

0·2 0·4 0·6 0·8 1·0 1·2 1-4 1·6 
Log(Ej/I) 

+ Fig. I Cross section for H(IS) +e-+ H +2e 

I: Experiment, Fite and Brockmann (1958) 
(I) (21 · 

2 = 0
8 

, 3= 0
8 

, 4 = Q:r, 5 = Veldre 8 V1nkaln (1963) 

54 



-NO 
c 
I= 

V1 -V1 0 

4 

3 

2 

0' I I I =:f I I I I I I I I I I I 

0 

Fig. 2 
I : Q(2l 

B ' 

0·4 0·8 1·2 1·6 2·0 2·4 2·8 
Log Ej (Ej in kev) 

Cross sections for H (I 5) + H+ ~ 2 H+ + e 

2 = Q~, , 3 = Q
1 

divided by 2 



CHAPTER III 

IONIZATION OF He AND Li+ BY ELECTRON IMPACT 

1. Introduction 

Cross sections are evaluated, in the Born (ii) approximation (Chap. I, ·3.3, Eq. 3.16), 

for the processes 

He + e ... He+ + 2e 

Li+ + e ... LP+ + 2e 

in whic~ both Helium and Li+ are initially in their ground states. 

(1.1) 

(1.2) 

For ionization of Heli urn by electron impact there· are several sets of theoretical 

results (Massey and Mohr 1933, Erskine 1954, Sloan 1964, Peach 1965, Inokuti and 

Kim 1969) and experimental results (Smith 1930, Rapp and Golden 1965, Schram et al. 

1965, Gaudin and Hagemann 1967). The results of Smith and Rapp and Golden differ 

very slightly ov~r the ~nergy range covered by Rapp and Golden, but the difference 

between these two sets of experimental measurements and thoseof Schram et al.and 

Gaudin and Hagemann is quite appreciable. The calculations of Erskine and Sloan 

agree well with experiment at energies between 500 ev and 1 kev. Erskine used a 

one-parameter function for the 1s state and solved for one electron in the average field 

of He+ for L = 1 which gives the largest contribution to the total cross section. Sloan 

made use of a polarized orbital for the ejected electron. Peach has used a Hartree-Fock 

wave function for the initial bound states, together with an undistorted Coulomb function 

for the ejected electron. 

For ionization of Li+ by electron impact the only theoretical results available 

are an unpublished evaluation of the Bethe limit by Kim and Inokuti (1969) and an 

unpublished Coulomb-Born calculation by Moores (1969). Two independent sets of 

experimental results are available (Lineberger et al 1966, Peart and Dolder 1968, and 
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Peart and Dolder 1969). The experimental measurements of both these groups are 

compatible in the energy range in common. 

Two experiments have also been carried out on electron impact detachment from 

the isoelectronic system H- (Dance et al.1967., Tisone and Branscomb 196~) together 

w.ith several theoretical calculations for this process, in particular a Born calculation 

by Bely and Schwartz (1969), a Bethe-Born calculation McDowell and Williamson (1963), 

and a sum rule evaluation of the Bethe limit lnokuti and Kim (1968). These three 

theoretical estimates of the cross section are in agreement with each other and with 

the Dance et al experiment, but are .in disagreement with the Tisone and Branscomb 

experiment. It is therefore of interest to extend the earlier Born calculations for He 

to higher energies to test whether the Bethe asymptotic limit is approached correctly, 

and to get some estimate of the reliability of the computed cross section by using 

alternative formulations, and to extend the work to Li t 

2. Reduction of the Matrix Element 

The Born (ii) cross section for the ionization of a two-electron atom by electrons 

incident with energy~ ki 2 (Chap. I, 3.3, Eq. 3.16) 

where c = ~ k 2 and cmax = ~ (~ ki 2 
- 1). All other quantities are defined as in 

Chapters I and II. The matrix element f (~, p) is (Chap. I, 3.3, Eq. 3.15) 

2 . 
f.lk, n) = - 1. I f e1 1! · !.j'l'

0 
(r, , r.) 'l'k"' (!J , !J) d!J d!, 

1.}-~ p·j=1 - ~-
(2.2) 

'I' 
0 

(!, , _!2) and 'l'k (!, , ,.!2) being the wave functions of the ground and final states 

respectively. 

If the wave functions are exact, then 
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(2.3) 

Substituting (2.3) in (2.2) gives 

f '
k ) 2 [ 2 i Q '..!am l1l *d d 2' i Q '_!alii a Ill * d d ] (2 4) 

\A, R = p fe To Tk r.. b- 1p .fe To -a Tk !.1 !_2• • p2 (I + £) _ z1 _ 

Substituting (2.2)· in (2.4) we obtain 

f (k ) 8i i p . r. ... a ... * d d v ' P =- f e - - To- Tk la 12 · 
- - p (k 2 + p 2 + 21) a z 1 

(2.5) 

This alternative expression for the amplitude was first derived by Bates et al. 

(1950). The expressions (2.2) and (2.5) are equivalent for exact wave functions but 

not, in general, if approximate wave functions are used. Their difference is, in a 

weak sense, a test of the accuracy of the approximate wave functions used. Following 

Chandrasekhar (1945), we call (2.2) and (2.5) the length and velocity forms off~ , J!), 

respectively. Kennedy and Kingston (1968) made use of expressions similar to (2.2) 

and (2.5) in their work on the excitation of the 2 •p state of Helium, while McDowell 

(1969) has also studied both forms in a Born calculation of electron impact ionization 

ofLi. 

For the ground state we use an open shell two-parameter wave function, the 

variational parameters being given by Silverman et al (1960). The parameters used 

are listed in Table 1, together with the correspo.nding value of the ionization 

potentials. We write the initial and final wave functions as 

111 • ( ) = N [ - ar 1 - /Jr 2 • • - a r 2 - /3 r q 
, 0 !J,!z e te 1 

where N is a normalization constant. Here z is the charge of the target nucleus, 

r/J 
1
s (z , !) = (z"

3

) 

1

,; e- z~ and the function r/1~ (!) for the ejected electron of 

momentum!! may be written 
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1/Jk (!) = 1 . ~ (2£ .~ 1) iL e- i (at + "~t) r·' ul (k r) Pl (~ . .i)~ (2.8) 
- (2")/z klz£ = 0 

where Pl (x) is the l th Legendre polynomial, and the radial function u l (k , r) is 

regular at the origin, with asymptotic form 

ul (k 1 r)""' ~sin [kr + (z -l)ln (2kr)- lt" + 01 + T/·1 (2.9) 
r .... ""k 'z k 2 " I. 

where o l = arg r [ L + 1 - i (z k 1~ while "~t is the non-Coulomb part of the phase 

shift. 

He 

Table 1 

Parameters used in evaluating the matrix element 

z 

2 

a 

2.183171 

/3 

1.188530 0.8756614 
\'1-~ ,1 n ~ 

Li+ 3 3.294909 2.078981 2.'748748 
\'~'\~'{\, 

The final state wave function IJlk (!J 1 _! 2) is automatically orthogonal to the 

ground state function IJl 0 (.!_, , ~) for l > o; for l = o we orthogonalize the ground and 

final state wave functions by writing the latter in the form 

'Vk (Orthogonalized) = 1l'k (.!_, 1 .!_z) - < IJl 0 I ivk > IJI0 (!, , .!_z) 

The orthogonality factor< IJl 
0 

1 'Ilk >in Eq. (2.10) is given by 

< "' 0 I IJI~ > = f J d.L d!z IJl 0 * (.L I !z) IJI! (.!_, I !J) 

(2.10) 

which, with the use of Eqs. (2.6) 1 (2.7) arid (2.8)1 we can easily reduce to the form 

I '" 16z'l:zN.-i(oo+T/o)"" (k )[e-ar e-{3r ')d 
( 'Jl0 Tk > = . I . e r f U , r + r 

kYz ·o 0 (z+,8) 3 (z+a) 3 

Substituting (2.6) and (2.10) in (2.2) gives 
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f (k ) 4 ( · [ 1 l • :!c ( ) • "' ( ) • :!c ( ) • "' ( ) ' II L _,E =-p-z . .l v.2uls· Z,.!_~l,J~·!... "uls' Z,£.J l,~· !JI--.-,'o 

i Q . L 'l' '· ) d d x e 0 \.!1 , L L L 

(2.12) 

where 

I 2 /2 r J ·'· * < > ·'· * < > i .Q • r.. 'I' < > d d I a - p. . 'I' ls z' ~ 'I'! .! I e 0 !.. ' G .! I L' (2.13) 

I = 2 /2 r J .I. * ( ) ,/ * ( \ i _Q • r 1 111 ( • ) d d 
2 - 2 '~~1s z, L v''k !JJ. e - r o \!I '.!z !.1 .!z ' 

p -
(2.14) 

and 

I = 4 . I 'I' *f J IIJ * ( ) i 1?. • !.1 111 ( ) d . d 
3 -2 < 'II 0 k ~ 'I 0 .!_1 I _!z e T 0 !_I i _!2 !__. _!J • 

p -. 
(2.15) 

The integrations were carried out in a franie o'f reference Oxy z with the z-axis 

along E· In 'this frame the spherical polar co-ordinates of_!, , _! 2 and ~ are denoted by 

Substituting (2.6) and (2.8) in (2.13) and making use of the expansion 

(2.16) 

where jn (pr) is· the n th spherical Bessel function of the first kind we obtain, after 

performing the integrations with respect to _! 2 , () 1 , and ¢ 1 , the result 

32z3fz.N~ (2i+1)ei(al+71J)P.t oo e-ar -/3£ 
11 =- "" ,. " (cos")f. rut(k,r)jl(pr)( + e ldr. 

P2 k /2 l = o o . (z + /3)3 (z + a)l 

(2.17) 

In a si~ilar man ner we obtain 

'l, · ( ) -/3 r -n r 
[ 2 =- ~~~e1 ao + 11o .f r u

0 
(k, r) [_(z I· '~_e __ ' --~_ul~~·---1 dr, (2.18) 

p 2 k t; 0 I ( z + (L) 2 + p 2 p I( 7. I /~), + p, p 
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and 

~ -ar -~r 

x f r u0 (k, r) [ e + e 1 dr 
o (z + ~)3 (z + a)l 

(2.19) 

Substitution of (2.17), (2.18) and (2.19) in (2.12) gives 

~ -ar -~r 
x 5 f r u0 (k, r) I e + e I dr 1 
t ;O o (z + ~) 3 (z + a)l 

32z
3

~N·"" t i(ol+n,> (L)) 
= - '/, I. .(2 + 1) e ' Pt (cos v) Vt (k, p) . (2.20) 

P2 k 2 t = 0 

Expression (2.20) gives the required ionization scattering amplitude in the length 

formulation of the Born approximation. Substituting (2.20) in (2.1) and performing the 

integration with respect toR yields the result 

Substitution of (2.10) in (2.5) gives 

- -12 < "'ol'~'k >"'-a· a "'o* (!..I .G)I - z, 
(2.22) 
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The differential operator tz is in spherical polar co-ordinatE:'s given by 

.1_ = cos () _Q_ - sin t1 _Q_ 
az ar r ao 

With the use of (2.23) we have that 

ul (k,r 1) • () ~ p (kA A)] 
Z Sln I a / .r I rl (J~c,--

and · 

a 5 'l, -zr 
-1/Jls (z, r 1) =- (.!__) z cos 0 1 e 1 

azl - , 

Substituting (2.24) and (2.25) in (2.22) gives 

fv (k , p) = J • + J z + J 1 

where 

X [cos 01 I ~(k,rl)- UL(k,rl)l p (k.r)- ul(k,rl) . () a p (kA A )I 
r, dr. r. t __ I r.z SlO I ao. l _._.!. 

and 
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{2.29) 

When the !J integration of {2.27) is carried out we obtain 

. [cos 011 du,·{k,r~)_ ul(k,r.) 
1 

p {k •• ) _ ut{k,r.) . 
0 

_lp (k. • )l 
~- I • r I Sl n I ao t . r I 

r. dr. r. • -- r.z .• --

which with the use of the addition form~la for the Legendre polynomials 

• • n tn, m" m m 
P n<!~:Y = P n(cos 0) P n {cos v) + 2 I ~· J:l n {cosO) P n (cos •~) cos m {rp 1 -rp) 

m=1 (n+m)! · 
(2.~0) 

becomes 

x (0,~9 • 1 ~~' (k,r ,) - U£~·'•) I IPI (cosO,lP, (cos v).+ ~t ~:::~: Pi m(coso,)P1 m(cos •·) 
I 

x cosm(rp 1 - rp)l 

U (k r ) . d (I - m" m d m 
+ t ' • sin 20 1 IP, (cos v) Pl (cos0 1) +2I ~PL (cos v) PL (cosO.) 

r
1

2 ' d(cos0 1) m'"1 (i. +m)! d(cosO.) 

x cos m(r/>. - r/>) II 

·~ 1 '( ) oo 1 -ar 1 -/3r 1 
32z 2Ni ~ ("~' +1) (-1·)• el "'Z +T/, p ( )f z d ,. d( fJ) [ e e I ~ u. "' cos v r. r. cos • --- + ·----

pk'l:z(kz+pz+2l)L=o 0 · -1 (z+,ll) 3 (z+u) 1 
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We have obtained the last result by performing the integration over if> 1• 

Using (2.16) and the recurrence formulae 

(1- z 2) dPn (z) = n P (z)- n z P (z) 
dz n- 1 . n 

(2.31) 

(2 n + 1) z P n (z) = (n + 1) P (z) + P (z) 
n+1 n -1 

(2.32) 

the above expression for J 1 reduces, after the integration over 0 1 has been performed, 

to the form 

64 % N 00 i .(ul + n ) . 00 -ar I e- /3 r I 
J 

1 
"' -

1 
z I e ·1 Pt (cos v) f dr 1 [ e + ] 

pk~ (k 2 + p 2 + 21) =0 ° (z + ·/3) 3 (z + aP 

x dd lr 1 ut (k, r 1)1] . 
rl 

Now integrating by parts the term, in the above expression, which contains the 

derivative of the radial function u L (k, r 1) and making use of the recurrence 

formulae 

n j (z) - z A_ j (z) = z j (z) 
n dz n n + 1 

z j (z) + z j (z) = (2 n + 1) j (z) 
n-1 n+l n 

we obtain 

-ar e-/3r 1 -ar -/3r 
X I e . + I - -I{L +1) jL(pr) - pr j (pr)ll ae + {3e n 

(z + f3P (z + aP p t-1 (z + /3) 3 (z + a) 3 
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The_!, andj 2 integrations of (2.28) can quite easily be carried out and the latter 

expression then reduces to the form 

Performing the integrations over r, and r2 in (2.29) we obtain - -

(2.36) 

Substituting (2.35), (2.36) and (2.37) in (2.26) and making use of (2.11) we obtain 

64 z ~ N "'" i (ol +71t) (v) 
fv (~, Q) =- 1 I. (2l + 1) e Pt (cos 1') Vt (k, p) 

k ~ (k 2 + p 2 + 2I)l=O 
(2.38) . 

where 

(v) "" -ar -{Jr 
V£ (k, p) • f r ul (k, r) [ljl (pr)- 8 A(p) II e + e 1 

o t.o (z +f3P (z + aP 

· -ar -{Jr 
- __!, l(l + 1) j 1 (pr)- prj (pr)llte )3 + pe I 

rp a. l -1 z +/3 (z + a) 3 

-ar -{Jr 
+ 8 z I e + e ll dr , (2.39) 
L ,o ( (z + f3 )2 + pz)z ( (z + a )2 + pzp 

and where 

Expression (2.38) gives the ionization scattering amplitude in the velocity 

formulation of the Born approximation. Substituting (2.38) in (2.1) and integrating 
,. 

over k we obtain 

2•s 3 Nz"" kmax Pmax pdp (v) 
Q (k. 2

) - z 11 I ('l/. +1) J kdk J IV t (k, p) 12 (11a0 
2
). (2.40) 

V l k· 2 
I "'0 0 p • (k 2 +p 2 +2J)Z 
" mm 
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3. The Method of Polarized Orbitals 

Sloan (1964), following Temkin and Lamkin (1961), takes the total wave function 

for scattering by an hydrogen-like ion to be of the form 

pol 
'l'k (!. •.!2) = (1 ± Pu) r/lk (!.) [r/11s (z d2) + r/1 (!. •l2)] • (3.1) 

_where P u permutes .!a and _! 2 , and the upper and lower signs correspond respectively. 

to singlet and triplet scattering. The 'static' problem is to determine r/lpol (!. ,_!2), 

an approximation to the first-order perturbation of the ground state function r/1 1s (z, _! 2) 

by a stationary electron at_! •. Generalizing the methods of Temkin (1959) to an 

arbitrary nuclear charge z and us~ng_ atomic units Sloan obtains 

where 

,,,pol(r r)=- 1 r(r.,rz) -zr(.!zrz+r)cosO 
"' _.,_2 -------._;, 2 e 2 2 z 12 

(77Z) 2 r. 

1 
£ (r 1 , r 2) = I 

0 

(3.2) 

(J u = arc cos (! •. _!2). For r. > r 2 and r 1 ... oo, r/lpol (!. , _!2) is the dipole contribution to 

the first-order perturbation of r/1 1s (Z,_!2). 

The -variational principle used by Sloan implies that 'l'k {!: 1 _! 2) satisfies the 

equation 

(3.3) 

where 

and 
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The result of using (3.3) with \Ilk (! 1 , .. !) given by (3.1) is to obtain integra-differential 

equations for the scattering wave functions. Thus, replacing .pk (!) by the expansion 

(2.8) we find that the radial function u (k, r) satisfies. the integra-differential equation 

-l £ +1 I l 1 L 1 1 x [r I(~ +1,r) + r 11{-£ ,oo)- ( .. ,r) --
2 

8 (Z 2 + k2
) 1(- + ,oo)l 

L ,o 

+ lt+1) rl+1 J {-i-3 r)l] 
(2L +3) ' 

4 -2zr 3 1 1 dul (k,r) 
+-z5 e [{-z 2 r2 +-zr-3)ul(k,r)-(-zr2 +r) l, 
- 3 L ,1 2 2 2 dr 

(3.4) 

where 

(3.5) 

r -zx m 
I (m, r) = f e u £ (k, x) x dx , 

0 . 
(3.6) 

oo -zx m J (m, r) = r e UL (k, x) X dx 
·r 

(3.7) 

The direct polarization potential has the property 

/3 (zr) a 
--"" 
(zr)• r ... oo r• 

where a = 9/2z• is the dipole polarizability. 

The exchange polarization agproximation is obtained if on the right-hand side 

of equation (3.4) the terms in the two final square brackets are omitted. The exchange 

aP,proximation [Morse and Allis (\933); Seaton (1957)] is obtained by omitting ·.pP
01(! 1 ,_!2) 
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from the total wave function (3.1). 

In the present work we have taken u l (k, r) to be a solution of the integro-

differential equation 

x [r-L l (l +1,r) + rL+
1 II {-£ ,oo)- I {-L ,r)- -

2
1 S (Z 2+k 2

) I (-/ +1,oo)l] , (3.8) 
l•O 

where A. , A2 and A3 are constants whose function is to switch on or off the terms 

which they multiply. 

3.1 The normalization of the continuum wave functions 

In this section the amplitude of the solution of (3.8) is examined in the 

asymptotic region and adjusted so that (2.9) is satisfied. This is easily achieved 

by means of the Stromgren method (cf. Bates and Seaton, 1949). In the asymptotic 

region the r~dial part u L (k, r) of the continuum orbital satisfies an equation o.f the 

form 

(3.9) 

which; as can easily be verified, is satisfied by 

uL (k, r) = C ,-~ sin lr/J (r) + Sl (3.10) 

where C is a constant and (, which represents ~· is given by 

(3.11) 

This equation can be solved by iteration; the convergence is very rapid - indeed it 

is usually only necessary to replace (in the second term by ,\ (k, r). As r -• "'• 
. .· '\· I 

,\ (k, r) tends to k 2
, so that the asymptotic amplitude of (3.10) is simply C k-Yz. The 

determination of the multiplying constant C involved in any particular solution of 
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(3.9) can be carried out in the following manner: choosing two radial distances r, and.r2 

and introducing 

(3.12) 

it can easily be shown that 

(3.13) 

Since (is known from (3.11), this can easily be evaluated. 

3.2 The solution of the continuum integro-differential equation 

It is convenient to write (3.8) in the form 

d2 r -zx -t L +1 L +1 -t t +1 
dr 2 uL(k,r) = ft(k,r) ut(k,r) + gL(r) f

0 
e ul(k,x) lr x . - r x I dx + r ag/r) 

where 

ft (k, r) .. t ( L + 1)- k2- 2 (z- 1)- 2 A (z + .!) e-2zr- A ~ 
r 2 r ' r 2 (zr)4 

' 

8z ,A -zr 
g (r) = --3 e 
t (2L +1) 

oo -zx : - L 1 
a=f e u,(k,x)x 11--~x(z 2 +k 2)ldx 

o ' u,-, 
/ 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Following Percival and Marriott [Marriott (1958)1 if we define Xt (k, r), Y t (k, r) as 

solutions of the equations 

(3.18) 

d2 r -zx -L l+1 t+1 -L l+1 
dr 2 Yt (k,r) = ft (k,r) Yt (k,r) + gl(r) f

0 
e Yt (k,x) lr x - r x I dx + r gi(r) 

(3.19) 
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then clearly 

ut (k, r) = Xt (k, r) + a Yt (k, r) (3.20) 

is a particular solution of (3.14). Substituting (3.20) in (3.17) we obtain 

f
00 

{zx Xt (k, x) x-t 11 - -
2
18 X (z 2 + k 2)1 dx 

0 t 0 a = ~:__ ________ -=..L,;=----------
oo -zx -t 1 

1 - f e Y t (k, x) x 11 - 2 8 x (z 2 + k 2) I dx 
0 t ,o 

(3.21) 

The non-iterative method that was used for the solution of (3.18) and (3.19) is 

described in Appendix B. In this A9pendix we also describe the numerical methods 

used for the evaluation of the exchange integrals I (m, r), the radial integrals in (2.20) 

and (2.39) and the integrals over the variables p and k in (2.21) and (2.40). 

4. Results 

Although we have calculated cross sections in the Born (ii) approximation using 

both (2.21) and (2.40) for the following set of values for A, , A2 and A,, 

(i) A, = A2 = A, = 0 , 

(ii) A, = A, .. 1, A2 = 0 

(iii) A, "' A2 "' A, = 1 1 

we shall only present results for the case (ii). Case (i) corresponds _to the work of 

Peach (1965), and (iii) to· that of Sloan (1964). Cross sections obtained in case (ii) 

and case (iii) differ by less than 0.1%. Repeating the previous calculations of Sloan 

(1964) and Peach (1965) provided a good test of our computer program; good agreement 

.was obtained in all cases. The method used for obt~ining the phase shifts for 

scattering by ionized helium is that of Burgess (1963). 

Calculated partial wave cross sections Q l (ki 2) ·, 
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are presented in Tables 2 - 5. The s-.wave results (t a o) depend on the orthogonal-: 

ization procedure adopted, and may be significantly in error. However, the agreement 

of both sets of results with Bethe's sum rule at energi~s in excess of SO times threshold 

indicates that this error cannot be greater than 10% of the s-wave contribution in this 

energy range. As expected, the dipole contribution dominates and the convergence of 

the partial wave sum is rapid for t ~ 1 at all energies. 

In our analysis we neglect the fact that the incident electron, in the case of 

Li + .... Li 2 +, should be represented by a Coulomb wave and not a plane wave. However, 

the total cross sections obtained for process (1.2) are in excellent agreement with 

the values obtained by Moores (1969, private communication) using a Coulomb~Born 

approximation, at energies as low as five times threshold. 

The length and velocity formulations yiel~ results for the total cross section 

differing by less than 9% for He and less than 6% for Li + at all energies. It is 

therefore judged unlikely that the true Born cross section (i.e. the cross section 

computed with exact wave functions) would differ from the mean of our results by 

more than 10%. 

Our results for the total cross section for processes (1.1) and (1.2) are presented 

in Tables 6 and 7 respectively. In the latter table we also present the results of 

Moores for comparison. 

In Fig. 1 we compare our calculated cross sections for He with the experimental 

measurem~nts of Golden and Rapp (1964) and ?f Smith (1930), and with the Bethe 

asymptotic results (derived from sum rules) of Inokuti and Kim (1969). Th·ey give 

with 
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A = 0.489 , 8 = 0.036 + 2 ln 2 

to within 1% for Ei ~ SO. Our length calculations agree with this result to within 3%. 

for Ei > 1 kev. The velocity formulation results appear to be low, compared with experiment, 

but are in good agreement with the data of Smith within his estimated errors. A fit to . 

. our length results of the form 

yields 

Q (Ei) = ;. ["Aln Ei + 81 ("ao 2) 

1 

A = 0.480 8 = 0.758. 

A fit to our velocity results of the above form gives 

A = 0.428 8 = 0.743. 

In Fig. 2 we compare our results for ionization of Li+ with the experimental 

results of ·Peart and Dolder (1968, l969). The results of Lineberger et al are 

consistent with those shown. Kim and Inokuti [private communication, (1969)1 find 

that for process (1.2) at impact velocity v em sec-', the 8ethe limit is 

where 

v 
f3 = c' A= o.144S, 8 = 1.552 ± o.os8. 

-For Ei > SO our length results agree with the results of Kim and Inokuti to within 4%, 

while our velocity results are approximately 6% lower, though both are compatible with 

experiment. We note that in both cases (He and Li+) a plot of Ei Q (Ei) vs In Ei has a 

linear region in the neighbourhood of Ei = 10 with a slope substantially larger than the 

one finally attained. A fit to our length results of the form 
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gives 

A = 0.1513 , B 1.5636 . 

A similar fit to our velocity results gives 

A = 0.1414 , B = 1.4753. 

In Fig. 3 we compare our results for ionization of Li+ with the results of 

Moores. Both our length and our velocity results are in excellent agreement with 

the values obtained by Moores, at energies as low as five times threshold. 

In order to explain the origin of the results presented in Tables 8 - 13, we 

write 

where 

with 

It(L) (k p) = 12u zl "(2/ + 1~1/, ~ V (L) (k p) 
' 3 k t ' ' p i 

73 



A sample of our calculated results for the quantities I~L) (k, p) and I,(v) (k, p), 

for the process He + e -+ He+ + 2·e, are presented in Table·s 8 and 9, and illustrated 

in Fig. 4. A similar sample for the· process Li+ + e -+ Li H + 2e are presented in 

Tables 10 and 11 and illustrated in Fig. 6. A sample of our calculated results for 

the differential cross sections a 5L) (k 2
) and a ,<v! (k 2

) are p~esented in Table 12 and 

illustrated in Fig. 6, for the process He + e -+ He+ + 2e, and in Table 13 and Fig. 7 

for the process Li+ + e -+ Li H + 2e. 

The excellent ·agreement obtained between our Born (ii) calculations for He and 

for Li + and experiment, and with the sum rule limits indicates that the similar agree-

ment of Bely and Schwartz's (1969) and McDowell and Williamson's (1963) calculations 

for H- detachment with the experimental results of Dance et al. (1967) is not 

accidental. We believe it substantially reinforces Bely ~nd Schwartz's conclusion 

that their calculation is "incompatible with the Tisane-Branscomb experiment. 

5. Conclusions 

Using a partial wave. expansion for the ejected electron we have calculated 

cross sections for electron impact ionization of the ground state of He and Li~- in 

the Born (ii) approximation at energies from threshold to 9 kev. Cross sections 

calculated with an open shell two-parameter wave function for the ground state of 

the target in both the length and velocity formulations are in reasonable agreement. 

In both cases the calculated cross sections are in agreement with experiment at 

impact energies in· excess of 25 times threshold. They aP,proach the Bethe 

asymptotic limit correctly. We conclude that electron impact ionization of two

electron systems is well described by the first Born approximation at energies in 

excess of 25 times threshold. This implies that in the case of H-, the Dance et al. 

experiment is to be preferred to that of Tisone and Branscomb, in agreement with the 

conclusions of Bely and Schwartz. 
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Table 2 

Born (ii) approximation (Length formulation) partial cross sections Q ("ao 2) 

for electron impact ionization of the ground state of Helium 

Ei (ev) Qo Q, Q2 Q3 Q • 

40 .445 (-l)t .193 .282(-1) .267 (-2) .238(-3) 

60 .600 (-1) .344 .595(-1) .830(-2) .121 (-2) 

80 .599 (-I) .397 .725(-1) .120 (-I) .221(-2) 

100 . .562(-1) .408. .760(-1) .140 (-1) .294 (-2) 

125 .507 (-1) .398 .748 (-1) .149 (-!) .352(.:._2) 

I SO .456(-1) .379 .711(-1) .151 (-1) .385 ( --2) 

200 .375(-1) .338 .624 (-1) .143 ( --1) .407 {-2) 

300 .271 (-1) .272 .483 (-1) .120 (-1) .386 ( -2) 

400 .211(-1) .226 .387(-1) .101 (-1) .347(-2) 

600 .145 (-I) .171 .275 (-I) .745 (-2) .278 (-2) 

800 .110 (-1) .139 .211 (-1) .587 ( -2) .228 (-2) 

1000 .886(-2) .117 .172(-1) .482 (-2) .192 (-2) 

2000 .447 (-2) .683 ( -1) .880(-2) .252 (-2) .lOS (-2) 

3000 .299(-2) .492 (-1) .591(-2) .170(-2) .718 (-3) 

4000 .225 ( -2) .389 (-1) .445 (-2) .128(-2) .544 (-3) 

5000 .180(-2) .323 (-I) .356(-2) .103{-2) .438 {-3) 

6000 .150(-2) .277 (-·I) .297(-2) .860 ( -3) .366(-3) 

7000 .129(-2) .243 (-I) .255 (-2) .740 (--3) .315(-3) 

8000 .113(-2) .217(-1) .223 ( -2) .648(-3) .276 (-31 

9000 .101 (-2) .196 ( -1) .198 {-2) .577(-3) .246 (-3) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 3 

Born (ii) approximation (Velocity formulation) partial cross sections Q (rra
0 

') 

for electron impact ionization for the ground state of Helium 

Ei (ev) Qo Q, Qz Ql Q4 

40 .419 (-l)t .174 .259(-1) .231 (-2) .197(-3) 

60 .571 (-1) .311 .554 (-1) .741 (-2) .lOS (-2) 

80 .573 (-1) .360 .684 ( -1) .110(-1) .198 (-2) 

100 .539 (-1) .369 .723 (-1) .131 (-1) .270 (-2_) 

125 .487 ( -1) .360 .716(-1) .142(-1) .330 (-2) 

ISO .439 ( -1) .343 .683 (-I) .144 (-1) .365 (-2) 

200 .360 (-1) .305 .603 (-I) .138(-1) .392(-2) 

300 .261 ( -1) .245 .467 { --1) :117 (-1) .377 (-2) 

400 .202 (-1) .204 .375(-1) .983 (-2) .340 (-2) 

600 .139(-1) .154 .266 (-1) . .730(-2) .273 (-2) 

800 .106 (-1) .125 .205 (-1) .576 (-2) .225 (-2) 

1000 .851 (-2) .106 .166 (-1) .473(-2) .189 (-2) 

2000 .430 ( -2) .614 ( -1) .852(-2) .247 (-2) .104 (-2) 

3000 .287 (-2) .442 (-1) .572 (-2) .167(-2) .709 (-3) 

4000 .216(-2) .349 (-1) .431 (-2) .126(-2) .537 (-3) 

5000 .173 (-2) .289(-1) .346 (-2) .1 01 (-2) .432(-3) 

6000 .144 (-2) .248 (-1) .288 ( -~) .844(-3) .362(-3) 

7000 .124(-2) .218 (-1) .247 ( -2) .725(-3) .311(-3) 

8000 .109 (-2) .195 ( -1) .216 (-2) .636 ( -3) .273 ( -3) 

9000 .966 (-3) .176(-1) .192 (-2) .567 (-3) .243 (-3) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 4 

Born (ii) approximation (Length formulation) partial cross sections Q ("ao z) 

for electron impact ionization of the ground state of Li + 

Ei (ev) Qo Q • Qz Q, Q4 

83 . 857 (-3)t .266 (-2) .338 (-3) .173 (-4) .551 (-6) 

98 .283 (-2) .I 05 (-1) .154(-2) .109(-3) .593 (-5) 

125 .524 ( -2) .237(-1) .405 (-2) .405(-3) .360 (-4) 

150 .635 (-2) .324(-1) .599 (-2) .723(-3) .828 (-4) 

175 .686 (-2) 381 ( -1) .742 (-2) .102{-2) .138 (-3) 

200 .703 (-2) .417(-1) .839 (-2) .126(-2) .19:3 (-3) 

260 .682 (-2) .451 (-1) .950 (-2) .165 (-2) .309(-3) 

400 .563 (-2) .429 (-1) .930 (-2) .. 194(-2) .463 (-3) 

600 .427(-2) .364 (-1) .780 (:---2) .183(-2) .519(-3) 

800 .338 (-2) .310 ( -1) .649 (-2) .162(-2) .508 (-3) 

1000 .279 (-2) .270 (-1) .550 (-2) .143(-2) .477 (-3) 

1400 .205 (-2) .215 (-1) .418(-2) .114(-2) .409 (-3) 

2000 .147 (-2) .166 (-1) .304 (-2) .856 (-3) .327 (-3) 

3000 .989 (-3) .122 (-1) .208(-2) .599 (-3) .240(-3) 

4000 .745 (-3) .973 (-2) .158(-2) .459 (-3) .188(-3) 

5000 .597 (-3) .814(-2) .127 (-2) .371 (-3) .154(-3) 

6000 .499 (-3) .703 (-2) .106 (-2) .311(-3) .130(-3) 

7000 .428 ( -3) .620 (-2) .914 (-3) .268(-3) .113 (-3) 

8000 .375 (-3) .556 (-2) .801 (-3) .235 (-3) .994 (-4) 

9000 .333(-3) .505 (-2) .713(-3) .209 (-3) .887 (-4) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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Table 5 

Born (ii) approximation (Velocity formulation) partial cross sections Q ("ao l) . 

for electron impact ionization of the ground state of Li + 

Ei (ev) Qo Q. Q2 Q] Q. 

83 .834 (-3)t .250(-2) .328 (-3) .159 (-4) .483 (-6) 

98 .276(-2) .981 (-2) .148 (-2) .998 (-4) .515 (-5) 

125 .513(-2) .222 (-1) .388 (-2) .371 (-3) .316 (-4) 

ISO .625 ( -2) .304 (-1) .576 (-2) .668 (-3) .738(-4) 

175 .676 (-"2) .358 (-I) .715 (-2) .947 (-3) .124 (-3) 

200 .694 (-2) .392 (-1) .812(-2) .119 (-2) .177 (-3) 

260 .675 (-2) .424 (-1) .925 (-2) .158(-2) .290 (-3) 

400 .558(-2) .404 (-1) .912(-2) .188(-2) .446 (-3) 

600 .422(-2) .342 (-1) .766 (-2) .180 (-2) .509 (-3) 

800 .335 (-2) .291 (-1) .639 (-2) .160 (-2) .500 (-3) 

1000 .276 (-2) .254(-1) .542 (-2) .141 (-2) .471(-3) 

1400 .203 (-2) .202 (-1) .411 (-2) .112(-2) .405 ( -3) 

2000 .145 (-2) .156(-1) .299 (-2) .847 (-3) .324 (-3) 

3000 .979(-3) .114(-1) .205 (-2) .593 (-3) .239 (-3) 

4000 .737 (-3) .913 (-2) .155 (-2) .454 (-3) .187(-.3) 

5000 .591 (-3) .764 (-2) .125 (-2) .367 (-3) .153 (-3) 

6000 .494 ( -3) .659 (-2) .105 (-2) .308 (-3) .130(-3) 

7000 .423 (-3) .582 (-2) .899 (-3) .265 (-3) .112(-3) 

8000 .371 (-3) .521 (-2) .788(-3) .232 (-3) .987 (-4) . 

9000 .330 (-3) .473 (-2) .702 (-3) .207 (-3) .881 (-4) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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Table 6 

Born (ii) approximation cross sections Q (11a
0 

2
) 

for electron ionization of the ground state of He 

Ei (ev) Q (Length) Q (Velocity) 

40 .268 .244 

60 .473 .432 

80 .544 .498 

100 .557 .511 

125 .542 .498 

150 .514 .473 

200 .456 .419 

300 .363 .333 

400 .300 .275 

600 .223 .205 

800 .179 .164 

1000 .150 .137 

2000 .851 (-1)t .777 (-1)t 

3000 .605 (-1) .551 (-1) 

4000 .474(-1) .431 ( -1) 

5000 .391 (-1) .356 (-1) 

6000 .334 (-1) .304 (-1) 

7000 .292(-1) .265 (-1) 

8000 .260 (-1) .236 (-1) 

9000 .234(-1) .213 (-1) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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Table 7 

Born (ii) a;proximation (Length and Velocity formulations) and Goulomb-Born 

approximation (Moores, 1969) cross sections Q ("a 0
2
) for electron impact 

ionization of the ground state of Li + 

Ei (ev) Q (Length) Q (Velocity) Ei (ev) Q (Coulomb-Born) 

83 .387 (-2)t .368 (-2)t 85.05 .. 123 (-l)t 

98 .149 (-1) .142(-1) 94.5 .219(-1) 

125 .334(-1) .316 (-1) 113.4 .371(-1) 

150 .455 (-1) .432 (-1) 170.1 .595(-1) 

175 .536 (-1) .508 (-1) 226.8 .655 (-1) 

200 .590 (-1) .556 (-1) 302.4 .650 (-1) 

260 .634 (-1) .603 (-1) 378.0 .613 (-I) 

400 .602(-1) .574(-1) 453.6 .570(-1) 

600 .508(-1) .484 (-1) 755.6 .434 ( -1) 

800 .430(-1) .410 (-I) 944.5 .370(-1) 

1000 .372 (-I) .354 (-1) 1511.2 .261 (-I) 

1400 .292 (-1) .278 (-1) 2266.8 .186 (-1) 

2000 .223 (-I) .212 (-1) 3000.0 .150(-1) 

3000 .161(-1) .153 (-1) 5000.0 .977(-2) 

4000 .127(-1) .121 (-1) 15000.0 .386(-2) 

5000 .105(--1) .1 00 ( -1) 25000.0 .261 (-2) 

6000 .903 (-2) .857 (-2) 

7000 .792 (-2) .751 (-2) 

8000 .707 ( -2) .670 (-2) 

9000 .639 (-2) .606(-2) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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Table 8 

I, (k, p) for electron impact ionization of the ground state of He 

k = 0.949 (-1) t a.u. 

p I ~L) (k, p) I~V) (k, p) 

0.190 0.101 (l)t 0.929 

0.402 0.653 0.604 

0.679 0.428 0.400 

OJ~91 0;309 0.291 

0.100 (I) 0.258 0.245 

0.122(1) 0.182 0.173 

0.149 (I> 0.113 0.108 

0.170 ( 1) 0.781 ( -1) 0.747 (-1) 

0.210 (I) 0.398 (-1) 0.375 (-1) 

0.337 (I) 0.575 (-2) 0.516 (-2) 

0.503 (I) 0.788 (-3) 0.700(-3) 

0.630 (I) 0.234 (-3) 0.212 (-3) 

0.709 (I) 0.121 (-3) 0.111 (-3) 

0.879 (I) 0.355 (-4) 0.337 (-4) 

0.110(2) 0.944 (-5) 0.919 (-5) 

0.127 (2) 0.398 (-5) 0.392 (-5) 

t The numbers in brackets denote the power of I 0 by which the ei;try should be multiplied. 
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Table 9 

I. (k, p) for electron impact ionization of the ground state of He 

k = 0.555 a. u. 

p I •(L) (k, p) 
(V) 

I. (k, p) 

.213 .756 .717 

.424 .519 .492 

.700 .368 .349 

.911 .284 .270 

.1 02 (1 )t .245 .233 

.123 {1) .181 .173 

.151 (1) .119 .113 

. 172 {1) .842(-1) . .804 (-1) 

.212.(1) .443 (-1) .419 (-1) 

.338 (I) .665 (-2) .602(-2) 

.504 (I) .923 (-3) .826 (-3) 

.630 (1) .275(-3) .250 (-3) 

.709 (1) .142(-3) .132(-3) 

.878 (1) .419 (-4) .398 (-4) 

.110(2) .112 ( -4) .109(-4) 

.127 (2) .470 (-5) .464 (-5) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 10 

I, (k, p) for electron impact ionization of the ground state of Li' 

k = 0.906 (-l)t a.u. 

p 
(L) 

I., (k, p) I ~V) (k, p) 

.482 0.206 0.197 

.685 0.168 0.161 

.949 0.135 0.130 

.I IS (I) 0.115 0.111 

.126 I I) 0.106 0.102 

.146 ( 1) 0.908 (-1) 0.877 (-1) 

.173 ( 1) 0.733 (-1) 0.709 (-I) 

.193 (I) 0.617 (-·I) 0.598 (-I) 

.230 II J 0.441 (-1) 0.429 (-1) 

.352(1) 0.141 (-I) 0.136 (-I) 

.510 (I) 0.336 (-2) 0.31<> (-2) 

.632 (I l 0.126 (-2) 0.119(-2) 

. 707 ll) 0.721 (-3) 0.682 (-3) 

.86<> ( I ·1 0.246 (-3) 0.235 (-3) 

.I 08 ( 2) 0.745 (-4) 0.721 (-4) 

.124 (2) 0.337 (-4) 0.330 (-4) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 11 

I, (k, p) for electron impact ionization of the ground state of Li + 

k = .109 (l)t a.u. 

p I.~L) (k, p) I ~V) (k, p) 

.578 .139 .136 

.777 .119 .116 

.104 (I) .101 .978 (-I) 

.124 (I) .894 (-1) .868 (-1) 

.134 (I) .841 (-1) .816 (-1) 

.154(1) .747(-1) .725 (-1) 

.180 (I) .635(-1) .616 (-1) 

.200 (1) .555 (-1) .538(-1) 

.237 (I) .421 (-1) .409 (-1) 

.357 (l) .151 {-1) .147(-1) 

.513 (I) .386 (-2) .370 (·- 2) 

.632 (I) .148(-2) .141 (-2) 

.707 (l) .858 (-3) .816 (-3) 

.866 (I) .297(-3) .284 (-3) 

.107 (2) .910(-4) .883 (-4) 

.123(2) .414 (-4) .406 (-4) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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Table 12 

Differential cross sections a, (k 2
), in units of "a0

2
, for He+ e-+ He++ 2e 

E· ~ 600 ev E· = 800 ev 
1 1 

k a5L) (k 2) a~V) (kz) k a!V) (kz) a,(V) (kz) 

.200 (-l)t .348 .298 .232 (-1) .282 .241 

.949 (-1) .343 .295 .110 .276 .238 

.193 .328 .284 .224 .261 .226 

.268 .311 .271 .311 .243 .212 

.308 .301 .263 .357 .232 .204 

.383 .278 .246 .444 .210 .186 

.480 .247 .221 .557 .180 .162 

.sss .223 .200 .644 .I 57 .142 

.695 .178 .163 .807 .118 .109 

.114(1) .761 (-1) .702 (-1) .133 (I) .422 (-I) .386 (-I) 

.173(1) .228 (-I) .204 (-I) .201 (I) .I OS (---I) .915 (-2) 

.218 (I) .921 (-I) .80S ( -2) .253 (I) .377(-2) .326 (-2) 

.246 (I) .531(-1) .462(-2) .286 (I) .205 (-2) .178(-2) 

.306 (I) .176(-2) .ISS {-2) .355(1) .619 {-3) .552 (-3) 

.384 (I) .518{-3) .475 (-3) .446 {I) .178(-3) .166 {-3) 

.444 (I) .223{-3) .209 (-3) .s 16 {I) .746 (-4) .712(-:-4) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 13 

Differential cross sections a 1 (k 2), in units of "ao 2, for Lr'· + e ... LP+ + 2e 

E· = 600 ev 1 Ei ~ 800 ev 

k a
1
(L) (k 2) (V) (L) (V) 

a& (k2) k a& (k2) a& (k 2) 

.191 (-l)t .267 (-1) .248 (-1) .224 (-I) .224(-1) .208 (-1) 

.907 (-1) .266 (-1) .247 (-1) .106 .223 (-1) .207(-1) 

.184 .263 (-1) .244 (-1) .216 .219(-1) .203(-1) 

.256 .258 (-1) .240 (-1) .300 .214(-1) .199(-1) 

.294 .256(-1) .238(-1) .345 .211(-1) .196 (-)) 

. 
.365 .249 (-1) . 232(-1) .429 .204(-1) .190 (-1) 

.459 .240 (-1) .224 (-1) .539 .193 (-1) .180 ( -1) 

.530 .232 (-1) .216(-1) .623 .184 (-I) .172 (-I) 

.664 .214(-1) .201 (-1) .780 .165 (-I) .156 (-I) 

.101 (l) .152(-1) .144 (-1) .128 (l) .lOS (-1) .999 (-2) 

.165 (I) .839 {-2) .796(-2) .194 (I) .495(-2) .469 (-2) 

.208 (I) .500(-2) .472 (-2) .245 (I) .263 (-2) .247 (-2) 

.235 (I) .357 (-2) .336 (-2) .276 (I) .172(-2) .165 (-2) 

.292 (l) .173(-2) .162(-2) .343 (I) .763 (-3) .712 (-3) 

.367 (I) .685 ( -3) .644 (-3) .431 (I) .273 (-3) .257 (-3) 

.424 (I) .348 ( -3) .330 (-3) .498 (I) .132{-3) .126(-3) 

t The numbers in brackets denote the power of 10 by which the entry should be multiplied. 
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CHAPTER IV 

IONIZATION OF He AND Li+ BY ELECTRON IMPACT 

(WITH A HYLLERAAS CORRELATED WAVE FUNCTION FOR THE GROUND STATE) 

1. Introduction 

The effect of the interaction between the continuum electron and the core. can 

only be fully obtained if the trial function defining the initial bound state depends 

explicitly on the distance r 12 between the core and the continuum electrons. Such 

wave functions have been obtained for two-electron systems by a number of authors 

but correlation has never been allowed for in previous calculations for the ionization 

of He by electron impact. It is therefore of interest. to reconsider the processes 

(cf. Chap. III) 

He + e .... He+- + 2e 

Li+ + e .... LP-l- + 2e 

(1.1) 

(1.2) . 

using a Hylleraas type correlated wave function for the ground state of the target, in 

order to ~est the reliability of the computed cross section. Ag~in, a partial wave 

expansion is used for the ejected electron, the radial functions used being continuum 

Hartree-Fock. 

The partial wave cross sections l = o and l = 1 are calculated .in the length 

formulation of the Born (ii) approximation (Chap. I, 3.3, Eq. 3.16. ). It is found that 

the correlated wave function used predicts the dipole oscillator strength for the 

transition (1.1) in satisfactory agreement with experiment and gives partial wave 

cross sections intermediate between the length and velocity results, obtained with 

an open-shell two-p~rameter wave function for the ground state of the target, and 

presented in Chapter III. 
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2. Reduction of the Matrix Element 

We adopt the same notation as that used in the previous Chapters. All quantities 

not defined in the present Chapter are as defined in Ch.apter III. For the ground state 

we use a Hylleraas type correlated wave function, the variational parameters being 

given by Green et al.(1954). The parameters used are listed in Table 1, together with 

the corresponding value of the ionization potential. We write the initial wave function 

as 

where N is a normalization constant. 

He 

L .+ 
. 1 

where 

and 

Table 1 

Parameters used in evaluating the matrix element 

z a 

2 1.436 

3 2.362 

{3 

2.208 

'3.299 

The orthogonality factor< 'l-' 0 .1 '~'k >.is given by 

=1 1 +1 2 , 

95 • 

c 

0.2924 

0.2770 

(2.1) 

I 

1.80284 

5.55436 

(2.2) 

(2.3) 

(2.4) 



The .!z integration of (2.3) can easily be carried out to give 

Making use of the partial wave expansion for 1/Jk (!,) and integrating over .!a we obtain 

16 z 
3/z N -i(a0 + 110 ) "" e-ar e -{3r 

I. = k •~z e .(
0 

r u0 (k, r) [ + ] dr 
(z + {3) 3 (z + a) 3 

(2.5) 

With the use of the expansion 

1 (2.6) 

where r< =the smaller of r, and r 2 , r> a the larger of r, and r 2 , we write 

') . "" 
_ -:..r_,_r2 .,.. (r<)n 1 [( 1) p ( (J ) p ( (J )1 

r> D=O r> (2n + 1) n+ n+1 cos 12 + n n-~ cos u · (2.7) 

Substjtuting (2. 7) in (2.4) and integrating over .!a gives 

Again with the aid of the expansion for 1/Jk (!,) we obtain, after we perform the 

integration over_!, , the result 

8 z 
3
/z c N -· i (ao + l'lo> "" I 

2 
= 

1 
e I r, u

0 
(k, r ,) I (r ,) dr 1 , 

kY; 0 
(2.8) 

where 
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The r z integration can now be performed to give 

(2.9) 

Substituting (2.9) in (2.8) we obtain 

3. . 

Iz = 16 z~·:;; c N e-i(oo + T/o) ( Uo (k, r) [4 IT~ (r)- T' (o) e-(z +a+ {3)rl 

+ r lr T, (r)- T. (o) e-(z + tz + {3)r,n dr I (2.10) 

-ar -{:Jr 
e e 

where T n (r) = :1- ---
(z + mn (z + a)n 

Substitution of (2.5) and (2.10) in (2.2) yields 

-(ZHH{i)r 
+r (1 ' cr) T 3 (r) - cr T. (o) e l dr (2.11) 

The matrix element is 
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f( 
4 . ip_.r, 

k, p) =- p
2
f fd_! 1 d_!2 'l'.!i* (Orthogonahzed) e - '1' 0.(.! 1 ,_!2) 

where 

(2.12} 
and 

J 
_ 4<'11

0 iq'k>*N 2 iJ!._! 1 -2('ar 1+f1r2) -(a+t1}(r 1 +r 2) -2(ar2+f3r,) 
2 

2- p2 f fd_!l d.!z e [e +2 e + e ] [lt-2cr 12+CZr 12 1. 

(2.13) 
We write 

(2.14} 

(2.15} 

where 

J ffd d [ *( ) *' .. ) *( ) *'r)][-ar 1-f1r 2 -ar2-{3r,1 iJ!._!, "= _!, .!2 .P1s Z..!z .Pk \!1 + .P1s Z,_! 1 .Pk \.!_2 e + e e , 
- - . ~-1~ 

· . -ar,-f3r2 -ar 2-{3r,. ip.r 1 

J 12 = c ffdr 1 c;lr 2 [.p 1 *(z,r2)t,bk*(!) + .p 1 *(z,_!,).Pk*(!2)] [e + e I e--. ru , 
- - s - - s (2.17} 

(2.18) 

Jzz = c f fdrl dr2 [e-2(ar,+f1rz) + 2 e-(a+f1}(rl+r2) + e-2(ar2+f3r,)] eie":.!~ (2ru+cr,/). (2.19) 
- - . 

In Chapter III the integral J 11 has been reduced to a form suitable for computation and 

the integral J 2, evaluated in closed form. In this section we describe the reduction of 

J 12 to a computable form and evaluate J 22 in closed form. It is convenient to write 
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J u = C lJ m + J uz.l , 

where 

1 ffd d ·'· * ( ) ·'· * ( ) [ -ar,-{3r2 -ur2-f3rr1 i E. r, •z• = ...! , ...!z 'P ls z, ..!z 'P k _!, e + e e - r u , 

J * ( ) * ( ) [ -ar,-{3r2 -ar2-{3r,1 i £. _! 1 
122=ffd_.!,d_!2tP1s Z,_!, ifJk _!2 e +e e ru 

(2.21) 

(2.22) 

Use is made of the relation (2.7) and integration overlz is effected to yield, from 

(2.21), the result 

Now use is made of the expansion for t/Jk (!,), the Legendre polynomial expansion for 

ei E . .!• (Chap. Ill, 2, E 2 16 ) d . . . ff d . q. . an t~tegration over .!• ts e ecte to gtve 

2z 3 '4 ~ i(o: +Jl ) ··· "" . oo 1r, 2+r/) 2r,rzr< J •z• ~ 4(-k ) l (2l+l) e l l Pl (cos v) f r,ul(k,r,)JL(pr,)dr, J r/ r - -
3

. 2 l l =O · o o r> . r> 

[ 
-ar,-{3r2 -ar 2-{3r,

1 
-Zr2 

x e + e e dr 2 

which with the use of (2.9) we can write in the form 

2 3 '4 oo i(o: +Tf ) · • "" (z 1 • 1 a)r 112 , = 8(__!_) I (2L+1) e l ~ P. (cos v) f u (k,r)j£ (pr) [4 IT ,(r)- T ,(o) e- ··-c. ,_. I 
k l =o L. · o l 

I T ( ) T ( ) -(Z+ct+f3}rll d +rr 3 r- .oe r. 

(2.23) 

Performing the j, integration of (2.22) yields 

J - 4( 3)',; ~ ·n f d ,/, *'·) Joo 2' ( ) -zr, r -ar,-{3r2 -ar2·{3r,.] 
122 - 77Z ~ 1 lz'Pk \.! 2 r,J pr, e e +e 

n=O - 0 n 

Replacement of t/Jk * (!2) by its expansion and integration over_r2 leads to the expression 

1122 -- 4 (-2z3)·~ ~ ei (o, + TfJ )~ oo ( ) I ( ) ~ ' " (cos •~> J
0 

r ul k, r L p,r dr, 
k l =0 

(2.24) 
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where 

L 
"" -zr -ar -~r -ar -~r r< L r...., £~-1 r·..::•] I (p r ) - r r 2 ]. (pr) e I [e I ,.... 

2 + e 2 
,.... 

11--[r 2+r 2-2r r 1-- ~ + -- ~ dr l ' 2 - . o • L I r L + 1 I z I z 2£-1 r < 2L +3 r> I 

> 

It is convenient to write this as 

oo L+2 l £+2 l+4 
[ r 2 r2 £ 1 . r 1 ] 

+ J · L -1 - l -3 + -1 - L+ 1 
rz (2L+3)r 1 (2l-1)r 1 (2L-1)r 2 (2L+3)r 2 

[ -ar 1-(3r2 -ar 2-(3r 11 . ( ) d 
x e + e J l pr 1 r 1 (2.25) 

Substituting (2.23) and (2.24) in (2.20) we obtain 

2z 3 ~~ ""' l i(u +T/ ) 00 
• -(Z+rl+{3)r J 12 = 8(k) c l: (2 +1) e l l P.l (cos 11)f ul (k,r) [Jl(pr)I4(T ,(r)-T, (o) e ) 

[=0 0 

-(Z+a+(3)r 1 
+ r (rT 3(r)- T 4(0) e )I+ r IL (p, r)] dr . 

2(2£ +1) 
(2.26) 

Using the relation (2. 7) and performing the iz integration of (2.19) we obtain 

J 4 d 
oo 

2 
[ -2(ar 1+(3r2) 

2 
-(a+{3)(r,+r 2) -2(ar 2+(3r 1)) i e_. _! 1 

22 = 11Cf _! 1 f r 2 e + e +e e 
0 

Now integrating over I 1 we get 

J 16 2 "" 2. "" 
2 

-2(ar,·•-(3r2) -(at-{n(r 1+r 2) -2(ttf2+(-ir 1) 

22 = "c f rl J0 (prl)drl f r2 [e + 2 e + e I 
o ·o 



Subdividing the range of the r! integration into sub-ranges (o, r.) and(r., ""),integrating 

over r, and then over r. gives 

J zz = 8"3 l I 
:1 64 1 

I + + 
as (4tp + p3) (a + fJ}S( (a + fJ)z + p3) W (4az + p3) 

+ 6c I f3 32 (( 

+ + 
as (4(J' + p3)Z (a + {3)4( (a+ {3)3 + pzp (P (4a3 •· p3)Z 

·1- 21 
(12~3- EZ) 

+ 
16 (3 (a + ~)Z - E3) 

+ 
(12a3 -n I 

al (4fj3 + p3)l (a + fJ)l ((a + fJF + p 3)3 W (4clz -+ pz)l 

1 64 1 
<-;;s (a+ ms w> 

(4 (a + {3)3 + p3) 
(2.27) 

Use of (2.26), (2.27) and the results of Chapter Ill for the integrals J 11 and J 21 

gives 

f (k, p) =- 32 z% Ni (2L.+ 1) ei (al + 71£) p (cos IJ) vl (k, p)' (2.28) 
P3 k ~ l=o L 

where 

"" -( z + u + f-nr 
Vl(k, p) = f ul (k, r) [lj (pr)- 8 A (p)ll4c (T 5 (r)- T 5 (o) e ) 

o l t,o 
-(z + a + fJ)r 

+ r (1 + cr) T 3 (r) - crT 4 (o) e I 

-ar 
(z + (:J) e 1 

((z + mz -+ p2)2 

+ -·- c r I l (p, r)l dr , 
2 (2l'+ 1) 

(2.29) 

with 
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+ 2c N z J 22 • (2.30) 

For l = o the integral I l (p, r) has been evaluated in closed form; fort > o one 

more integration is needed than in the calculations described in Chapter III, since 

the integral of the form 
00 

( X (r) dr 
·a 

occurring in (2.25) cannot be evaluated in closed form, with the result that the time 

of computation increases considerably. In view of this and of the fact that the dipole 

contribution dominates we have restricted ourselves to ~he calculation of cross 

sections for the partial waves l = o and l = 1. The numerical methods used. for the 

evaluation of these cross sections are described in Appendix B 

3. Results 

Calculated partial wave cross sections Ql ( l = o, 1), in the length formulation · 

of the Born approximation, are given in Tables 2 and 3. Again, the s-wave results 

( l "' o), because of the orthogonalization procedure adopted, may be significantly in 

error. 

The analysis neglects the fact that in the case of ionization of an hydrogenic 

positive ion o(nuclear charge z by electron impact, the incident electron should be 

represented by a Coulomb wave belonging to charge z - 1, and not a plane wave. 

However, the partial wave cross sections obtained in the case of Li+ ... LiH indicate 

that the total cross sections would be in excellent agreement with the values obtained 

by Moores (1969), private communication, using a Coulomb-Born approximation, at 

energies as low as five times threshold. 
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The length results obtained with the wave function (2.1) for ~he ground state 

are intermediate between the length and velocity results presented in the previous 

Chapter. 

4 
Our results for the total cross section ( I QL being the result obtained, in 

l =2 . 

the length formulation, with a two-parameter wave function for the ground state of 

the target) are presented in Table 4 and illustrated in Figs. 1 and 2. In these two 

figures we compare the length res~lts obtained with the wave function (2.1) for '11
0 

with the length and velocity results obtained with a simple two-parameter wave 

function for the ground state. 

Sample results for the quantity I 5L) (k, p) (for two ejected electron energies) 

and the differential cross sectiono;(L) (k 2
) (for two impact energies) for the proces_s 

He + e _, He+ + 2e, obtained with the two-parameter and three-parameter wave functio~ 

for 'I' 
0

, are presented in Tables 5 and 6 respectively and illustrated in Figs. 3 and 4 

respectively. 

A fit to our helium results of the form 

gives 

A= 0.488 8 = 0.536 . 

A fit to our Li+ results of the form 

Q(Ej)= -.i[Ailn( f3z')-WI+8] 
E ... oo E. 1- W 

1 1 

gives 

A=· 0.157 , 8 = 1.564 . 
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4. Conclusions 

We have calculated partial wave cross sections ( l = o, 1) for electron impact 

ionization of He and Li + in the Born (ii) aRproximation at energies from threshold 

to 9 kev. The results obtained reinforce our conclusions of the previous Chapter 

that electron· impact ionization of two-electron systems is well described by the 

first Born approximation at energies above 25 times threshold. 
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E. (ev) 
1 

40 

60 

80 

100 

125 

ISO 

200 

300 

400 

600 

800 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

Table 2 

Cross sections Q l (rraa l) for He + e -• He+ + 2e calculated with 

the three-parameter correlated wave function for '11 
0 

Qo Q. 

0.383 (-1 >t 0.156 

0.555(-1) 0.297 

0.572 (-I) 0.352 

0.544 (-1) 0.367 

0.496 (-1) 0.362 

0.449 (-I) 0.347 

0.371(-1) 0.312 

0.269 (-1) 0.253 

0.209 (-I) 0.212 

0.144 (--1) ·0.161 

0.109 ( -1) 0.130 

0.880 (-2) 0.110 

0.445 ( -2) 0.645 (-:i-1) 

0.298 (-2) 0.465 (-I) 

0.225 (-2) 0.366 (-1) 

0.181 (-2) 0.304 (-1) 

0.151 (-2) 0.260 l-·1) 

0.130(-2) 0.231 (-1) 

0.114(-2) 0.206 (---1) 

0.102 (-2) 0.1 X6 ( --1) 

t The numbers in brackds denote the power of I 0 by which the entry shoukl be multiplied. 
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Ei (ev) 

83 

98 

125 

ISO 

175 

200 

260 

400 

600 

800 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

Table 3 

Cross sections Q L (rra 0 
2
) for L_l'· + e -• Li H + 2e calculated with 

the three-parameter correlated wave function for the ground state 

Qo Q. 

0.732 {-3)t 0.211 (-2) 

0.268 (·-2) . 0.920· ( -2) 

0.512 (-2) 0.216 (-1) 

0.628 (--2) 0.299 (-I) 

0.681 (-2) 0.355 ( -1) 

0.700 (-2) 0.391 (--)) 

0.680 (-2) 0.427 (-1) 

0.559 (-2) 0.410 (-1) 

0.421 (-2) 0.349. (-1) 

0.333 (-2) 0.298 (-1) 

0.274 (-2) 0.260 (-I) 

0.145(-2) 0.160 (--I) 

0.991 (-3) 0.118 (-I) 

0.769 (-3) . 0. 941 ( -- 2) 

0.633 (-3) 0.788 ( -·2) 

0.526 (-3) 0.681 ( -2) 

0.458 (-3) 0.601 (-2) 

0.413 (-3) 0.539 (-2) 

0.365 (-3) 0.490 (-2) 

t The mimbers in brackets denote the power of J 0 by which the entry should be multiplied. 

. 106 



Table 4 

Cross sections Q (~ra0 2) for electron ionization of the ground state of He and Li' 
l . 

He Li+ 

4 4 
Ei (ev) IQ Ei (ev). IQ L=o t =0 

40 .224 83 .309 ( -2) 

60 .422 98 .Ill (-1) 

80 .496 125 .312 (-1) 

100 .514 ISO .429 (-I) 

125 .505 175 .508(--1) 

150 .481 200 .563 l-1) 

200 .429 260 .610 (-1) 

300 .344 400 .583 (-I) 

400 .286 600 .495(-1) 

600 .212 800 .417(-1) 

800 .170 1000 .361 (-1) 

1000 .143 2000 .217(-1) 

2ooo· .813 (-I >t 3000 .157(-1) 

3000 .578 (-I) 4000 .124 (-1) 

4000 .451 (-I) 5000 .I 03 (- I) 

5000 .372 (-I) 6000 .884(-2) 

6000 .317 (-I) 7000 .776(.2) 
.. 

7000 .280 (-1) 8000 .694 (·-2) 

8000 .249 (-1) 9000 .628 (·-2) 

9000 .224(-1) 

t The numbers in brackets denote the power of l 0 by which the entry should be multiplied. 
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Table 5 

I~L) (k, p) for electron impact ionization of the ground state of He calculated 

with the three-parameter correlated wave function for the ground state 

k = .949 (-l)t a.u. k = .555 a.u .. 

(L) (L) 
p I, (k,p) p I I (k, p) 

.194 .936 .217 .729 

.406 .606 .428 .499 

.682 .397 .704 .350 

.H94 .289 .91 s .268 

.I 01 (I Jt .242 .1 03 (I) .231 

.122(1) .172 .124 (I) .172 

.I SO (I) .107 .IS I (I) .113 

.171 (I) .741 (-1) .172(1) .802 (-I) 

.210 (I) .370(-1) .212(1) .417 (--I) 

.337 (I) .461 (-2} .338 (1) .556 (-2) 

.503 (I) .497 (-3) .504 (1) .641 (--3} 

.630 (I) .128 (-3) .630 (I) .172(-3) 

.709 (I l .620 ( --4) .709 (I) .852 (-4) 

.~79 (I) .166 ( -4) .878 (I) .~36 (--4) 

.110 (2) .419 ( -·5) .110 (2) .607 ( -5) 

.127(2) .173 (-5) .127 (2) .253 (-5) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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Table 6 

Differential cross section rr .(L) (k 2), in units of rra
0 

2
, for He + e -· He+ + 2e 

calculated with the three-parameter correlated wave function for the ground state 

E. = 600 ev 
1 Ei "'800 ev 

k u.(L) (kz) k CT•(L) (kz) 

.200 (-I >t .299 .232 (--I) .243 

.949 (--I) .296 .110 .23lJ 

.193 .285 .224 .22X 

.267 .273 .310 .215 

.307 .265 .357 .207 

.382 .249 .444 .lg9 

.480 .224 .555 .165 

.555 .204 .644 .. 146 

.695 .167 .806 .113 

.114 (I) .740 (-I) .133 (I) .411(-1) 

.173 (I) .220(--1) .201 (I) .994 (- 2) 

.218 (I) Jn2c·-2> .253(1) .352 ( ·--2) 

.246 (]) .500 ( -2) .285 (I) .191 ( -- 2) 

.306 (I) .166 (-2) .355 (I) .585 ( -3) 

.384 (I) .495 (-3) .446 (I) .I 71 I --3) 

.444 (I) .216 (-3) .515 (I) .730 (--4) 

t The numbers in brackets denote the power of I 0 by which the entry should be multiplied. 
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APPENDIX A. EVALUATION OF I((!,~) 

The integral I (_e, ~) defined by (2.58) is evaluated by considering the limit, as 

{3 -· 0, of the expression 

J . -{Jx i E . X 1 F ia K K )] (n, {3) = 1 dx e e ·- - 1 1 1.-K , 1 , i ( x - _ . -~ . 
- X 

(A.1) 

A method due to Nordsieck (1954) will be described and the limit as {J .• 0 will be 

examined in detail. 

The method begins with the standard contour integral representation of the 

confluent hypergeometric function 

1 tz a-1 -a 
IFIIa,Lzl~--:-f e t (t-1) dt. 

2;rl c (A.2) 

In (A.2) C is any closed contour which starts at the origin and encircles the point 

t = 1 once in the positive sense (Erdelyi 1953, Vol. 1 p. 272). In this equation all 

powers have their principal values. Substituting (A.2) in (A.1) gives 

!~~ _ 1 lcz 

1 · K K 1 (rl, rn- 2; 11(: dt t <t- 1> u <t> , (A.3) 

wiaere 

( ) 
. i p . x 1 -~x i t (Kx- K . x) d u t = .1 e -- - -e ,., e - - x 

X --
(A.4) 

The change in the order of integration implied in (A.3) is allowed provided u (t) 

converges uniformly with respect to t. A sufficient condition for uniform convergence 

is that the inequality 

(A.5) 

be satisfied for all t within and on C. We shall :1ssume that the contour C has been 

chosen to satisfy this condition. 
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The integral in (A.4) is easily evaluated and we obtain 

which, on substitution in (A.3), gives 

ia _
1 

la 

K K 
2 t (t - 1) 

J (a, {3) = fJc W + p2 - 2t (~!_. ~ + i{3K) dt (A.6) 

The integrand in (A.6) has a simple pole at 

(jl + p2 t = t 0 = -....l:-'"----'-'"---
2 (_e • ~ + i{3K) 

(A.7) 

and, since 

{3 + 2 K I m t - - (3 ( 1 - cos 2 v) p 2 < 0 
0 

- fP + p2 cos 2 I/ 

A A 

where cos,,= _e.!, this pole lies outside the contour C. ·Applying Cauchy's theorem 

to the region outside C we obtain 

J (a, {3) = 

ia 1 ia 
K - - K 

, t0 (t0 - 1) 

(!5- . £ + i{3K) 

ia 

4~r [~(K + iQ.L] K 
f32+p2·. {P+p2 

where .9. : e - ~· 

From (A. 7) we have that 

Ret = 
0 

((32 + P2
) (K . R) 

2 [(~ . £2) + W K2] 
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. (j K ((j 2 + K 2) Im t "' - ____..;. _ __.;_ __ _ 
0 2 [(K . p)Z + W K 21 

It follows that for {3 /. 0 the point t = t 0 lies below the .real axis and that it moves up 

to the real axis as (j ... 0. 

In considering the phase of the quantity 

in the limit as (j ... 0, two distinct cases arise: 

(i) If K > q, then, when (j = 0, 

Ret
0

= ili+..Q)
2 

<1 
2 [K 2 + ~ • _g] 

and therefore, as (j .... 0, t 0 approaches the real axis between O.and 1 from below. It 

follows that 

arg to = 0 ({3) 

and 

arg(t
0
-1) =- 11 + 0 ((j) . 

(ii) We now suppose K < q. If .E. • ~ > 0 it follows that Re t 0 > 1 whereas, if 

_e.~ < 0, Re t 0 '< 0. Thus, when K < q, t 0 and t 0 - 1 have the same phase. 

Thus 

Therefore we have that 

arg r = - 11 + 0 ((j) 

= 0 ({3) 

I <e. ~) = lim J (u, (j) 
(J-·0 Ja 

411 (Q + K)2 - K 2- K 
= -[ - ] 

p2 p2 
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K>q 

K<q 

A (p) , (A.9) 



where 

A (p) ~ 1 

= exp ( -"u/K) 
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APPENDIX B. NUMERICAL METHODS 

In this Appendix we describe the numerical methods used for the evaluation of. 

cross sections for the processes (1.1) and (1.2) of Chapter III. 

We require the solution to equation (3.14) which is regular at the origin and such 

that 

(8.1) 

and 

1 . (z - 1) 1l 
u l (k 1 r) r-•oo k'izstn Lkr + k In (2kr) - 2 " + a1 + r~ 1_ · (8.2) 

The boundary condition (8.1) is satisfied if x1 (k1 r) and Yl (k 1 r) are the solutions of 

equations (3.18) and (3.19) respectively which are finite at the origin and such that_ 

X l (k 1 0) = Y L (k 1 0) = 0 (8.3) 

We therefore assume solutions in the form 

XL (k
1 

r) = I an (l) rn + a 
1 

n=O 
(B.4) 

Y (k ) - ~ b (l) n + P 
l 1 r - ... r 

n=o n 

h (£) · 0 b (L) · o b" d h . . (OI d b (l), w ere a
0 

~ , 
0 

'= are ar 1 trary an a 1 p1 t e rematntng an s an n s are 

to be determined. Near the origin r1 (k 1 r) and gl (r) are given by 

f (k I r) ..(~J.+ __ !) 1 ~ro 1- z, 1 z, r • z, r 2 ' 0 (r·') , 
r·• 

2 Al. 
g (r) = --- 11- zr ... 

2
1 Z2 r2 4· 0 (rl)l 1 

(2 L + 1) 

and As· c 4z 1 Al. Substitution of (8.4), (8.6) and (8.7) in (3.18) yields 
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(B.fi) 

(8.7) 



~ · (L) rl · IT - 2 .. · I.( <!_
2

_ I 1) ·! ZO (l) n I 11 - (n.,rtHn,•o- 1) a r -- • Z 1 ~ z, r 1 zj r' ' 0 (r 1
)[ ~ a

11 
r 

n=o n r r n,..,o 

.,.. (l) n.,.(,, 2 3 
-2A)~~ an [ r +O(rn-ta+ )"[ 

n=O (n-t-a·t-l·t-2) (n+a- L -~1) · 

We are thus led to the following equations: for n = o, 

Ia (a - 1) - l (l + 1)] a
0 
(l) = o 

for n ~ 1, 

(£) (l} 
[a (a + 1) - t ( l + 1)1 a 1 = z0 a

0 
, 

for n ,.. 2, 

(l} (l} (l} 
[(a+1}(a+2)-l(l+1)la 2 =z

0
a 1 +z 1 a0 , 

for n ~ 3, 

l"(cr+2)(a1.3)- L(l-·1>laY)=z a(t)+z a(l)+z a (l) 
' 0 2 I I 2 0 

for n , 4. 

(l) . 
Since a

0 
f. o, we have, from (8.8), that 

11 ((J - 1) - l ( l .; 1) = 0 . 

The mots of this equation are: 

C1 ~ l -·· 1 , (1 - - l . 

(8.8) 

(8.9.) 

(8.10) 

(8.11) 

(8.13) 

(8.14) 

From the recurrence relations (8.9), (8.10), .. , we can determine the remaining an (L),s 

in terms of a
0 

(L)_ The condition that X l (k, o)"' 0 requires that we take a"" l + 1. We 

therefore have that 

X l (k, r) = /+ 1 [a
0
(l) ~ a

1
(l) r + a,(L) r2 + a

1
(L) r 1 t a.(L) r• 1 0 (r5)l 

In a similar manner we obtain 

Y (k ) - L+ 1 [b (l} • b (l) b (£) , b (£) j · b (£) • 1 0 ( 5)1 { ,r-r 
0 1 r+ 2 r + 1 r1. r r 

If we write 

.r -zx [.,1 X 
E l (k, r) · J

0 
e ~ (k, x) dx , 
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(8.16) 

(8.17) 



~ -zx -L 
Fl (k, r) = J

0 
e x x1 (k; x) dx , (8.18) 

r -zx l +1 · · 
Gl (k, r) = J~ e x Yl (k, x) dx , (8.19) 

and 

r -zx -l 
Hl (k, r) = f

0 
e x Yl (k, x) dx , (8.20) . 

then (3.18) and (3.19) can be put in the form 

d 2 X.(k,r) · 
~ -= f l (k, r) XL (k, ~) + C l (k, r) , (8.21) 

dl Y (k, r) 
~ "' fl (k, r) Y/ (k, r) ~· Dl (k, r) 
dr 2 · 

(8.22) 

where 

Cl (k, r) = gl (r) ({IE l (k, r) - i+1 Fl (k, r)l (8.23) 

and 

) -l l d IH . Dl (k,r =g,(r)lr Gl(k,r)-r l(k,r)-111 (8.24) 

With the use of equations (8.15.) - (8.20) we obtain 

- l 
E ) 

2i+3 a(L) a.<l>.za(l) .a<L>.za(L)+~z 2a() · 
L (k,r = r [-0- + I 0 I r + I 2 

' 
0 I r 2 + O(r 3)l , (8.25). 

(2lt3) (2l·!-4) (2lt5) . 

a (L) a <l>.za (l) a (l)_za (l) +~z 2a (l). 
FL (k,r) = r 2 [-T + t·-1-J...Q__I r ~ l-2 ---·~---4-. _ _Q __ I r 2 

l 
. (l) (l} (l) (L) <l> I 2 (L) 

G (k.r) = r2 +3 [~ + I b 1 -zbo I r + I bz -~b, +~z bo I r 2 + O(r 3)l , (8.27) 
l . (2lt3) (2lt4) (2lt5) . 

b (l) b (L)_zb {L) b {L)_zb (L) ~~z2b (L) 
H l (k' r) = r l [ T + I I 3 o I r + I 2 I 4 o I r z 
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Use of equations (8.23)- (8.28) yields 

. -zr L-·3 ao({) al(l)_zao(l) 
C (k.r) =-2A 3 e r [ ·! 1------1 r 1 

L - 2(2l· 3) 3(2l-· 4) 

a (l)_za (l) !Ylz~a (l) 
1-~------1 -------~--1 r' 1 O(r-')l 

4(2£-·5) (8.29) 

-zr l+1 1 b (l) b (t)_zb (£) 
D (k,r) _,_...,. 2A 3 ·e r L---+ --0-·- r 2 

f I ' 0 I r 3 

(2{ d) 2(2{ .•. 3) 3(2[ ~ 4) 

b (l)_ b (£) ~ 2b (£) 
I ---2 -~-· ----~---~-0...--1 r• f O(r 5

) l 
4(2/4 5) 

The coefficients a0 ({) and b0 (l) in the starting series (8.15) and (8.16) 

respectively were arbitrarily chosen to be 

a
0 

(l} - b
0 
(l) ,_ 1 . 

(8.30) 

(8.31) 

The integra-differential equations (8.21) and (8.22) were then integrated outward from 

the origin and used to evaluate the transformation factor a defined by (3.21). The 

integrating routine employed Numerov's method and a seven-point Newto~-Cotes 

formula of open type. If we write 

((. ~ 1 - __ t h, f. 
J 12 J 

(8.32) 

(8.33) 

where h is the integration step-length and fj - f (rj), then Numerov's formula applied 

to (8.21) and (8.22) gives 

X. 
1 

= -~--·If~. X.- rL· 
1 

X. ·•- .1h' IC. 
1

.,. lOC. ·!C. 111, 
J ·• I( ' 1 J J J- j-1 12 J : J j-

J I 
(8.34) 

1 1 
y. 1. ---- lt~J- yJ.- ,. 1 y. 1 t· ---h 2 1D· 1 + 100· I DJ·-111 . J : J- J- 12 J .; J 

u j-· 1 
(8.35) 

The seven-point Newton-Cotes formula (Abramowitz and Stegun, 1965) applied to the 

exchange integral in (8.17) gives 
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E· 1 ~' E·"' i· 0.3h [llP· 4- 14P· 3 ·' 26P· 2- 14P· 1 I llP·I 1-'· J-;:1 . J- J- j- J- J (B.36) 

where 

-zr· -1 1 
P-=e lr. x., 

J J J 
(B.37) 

with similar expressions for the other exchange integrals. Thus Ej+ 1 as obtained from 

(B.36) involves only preceding values of X and the solution may be built up step by 

step. 

To commence the integration routine six starting values are required and these 

may be obtained by means of the series expansions at the origin (formulae (B.15), 

(B.16) and (B.25)- (B.30) ). 

The radial integrals in (2.20) and (2.39) were evaluated with the use of the 

Simpson integration formula. The range of integration was truncated at r = 12 _because 

the integrand becomes negligible for large values of r. Examin~tion of the results 

obtained by varying the step-length showed that it was unnecessary to carry the 

integration farther. 

Because of the spherical Bessel function j (pr) occurring in the integrand it 

was feared that some error might be incurred in the numerical work when pr was small 

(pr < 0.6). For values of· pr < 0.6 the evaluation of j (pr) was therefore carried out 

by two different methods. The first method consisted in making use of the recurrence 

relation (2.34) and the formulae 

j (z) = sin z 
0 z 

sin z 
. (z) =-
h zz 

(B.38) 

cos z 
z 

(B.39) 

to generate j l ("/ in terms of sin z and cos z which were then evaluated with the use 

of library sub-programs built in the compiler. The second method consisted in making 

use of the series 
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(8.40) 

The two methods ga\{e identical results. We therefore concluded that the first method 

was quite satisfactory. 

The final integrals over the variables p and k were evaluated by Gaussian 

quadrature, the range (a, b) being split, on the basis of the observed beh·aviour of 

V (k, p) as a function of p and k, into subranges (a, a + t), (a + t, a + 2t), (a + 2t, 

a + 8t), and (a + 8t, b) where t "' _l_ (b - a). Quadratures of order 4, 8, and 12 were 
16 

found to be adequate for the energy range between threshold and 1 kev, between 1 kev · 

and 5 kev and between 5 kev and 9 kev respectively. 
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