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ABSTRACT

Dafa from the four UKAEA éeismic arrays have been
combined to measure the slope of the P-wave travel time
curve (dT/d A , or slowness) of events occurring at
distances A = 30° to 104°. Slowness is the quantity
that enters into any calculation of the compressional
velocities to give the main source of direct detailed
information regarding the mantle. Mﬁltiple regres;ion . - =
analysis was used and corrections, which are azimuthally : -
dependent, estimated to correct for the near surfacé
geology under the arrays. By using all available events
and removing the bias introduced by the array geology,
the slowness-distance curve should represent the best
average for the world.

Anomalous features in the slowness curve occur at
distances of around 35-36°, 48-49° 60°, 68-70° and
84—850. These correspond to high velocity gradients
within the lower mantle near the depths of 900, 1200,
1550, 1900 and 2500 kms., and support the hypothesis
that the mantle is inhomogeneous at depth.

A comparison is made between'these features and
regions considered to be inhomogeneous found at similar
distances by other studies.

The site corrections obtained for each seismometer
are attributed to inhomogeneities in the sub-array geology.

The correctionsﬁderived for the arrays.situated in
Canada (YKA) and India (GBA) are small in magnitude and

show the crustal layering to be essentially horizontal;




The corrections at the array in Scotland (EKA) are
shown to be related to the relative altitudes of the
instruments. A velocity of 2.94 km/sec. was derived for
the.velocity in the top 170 m of crust.

The corrections for the Australian array (WRA) show
that to a first approximation, the layering in the,crusﬁ_ o
is dipping at 3.6° in the direction N195°E. The.corrections

have 'a large azimuthal component and show the presence

of an anomaly near the cross-over point of the array.
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PREFACE

This thesis gives a description of a new method to
measure the derivative of the P wave travel time curve and
investigates the implication of the results obtained in
relation to the physical conditions within the Earth's
mantle.

The Introduction describes previous attempts to
estimate slowness using travel timeslqnd-siggle-a;rays_gnd“__
discusses the difficulties encountered. The basic data
-are the observed relative onset times of 'the w;vefront
from an event as it crosses a seismic array. The equation
for calculating slowness is gi#en in Appendix A, and the
met hod of combining the results from four arra&s is
described in Section 1.1.

The coordinates and a brief descriptioﬁ of each of éhe
- four UKAEA arrays used in the study are contained in
Appendix E. The data recorded by the network came from the
478 events listed in Appendix G and are discﬁssed in
‘Section 1.2. )

The mean values of slowness in_the épicgntral range

A = 30-1040-are estimated over two degree distance

intervals. By using multiple regression analysis and least
squares to invert the data from ali the arrays.simultaneously,
mean values of slowness, corfections for sub-array geology
and confidence limits can bé obtained difectly. ‘The method
of obtaining the solution to the matrix equations is given

in Appendix B, and Appendix C describes how the.values of
slowness may be obtained for individual events once the

corrections for the sub-array geology have been estimated.



The corrections are discussed in Section 2.2 and listed
for each array in Appendix F.

Confidence limits on all unknowns are obtained using
the matrix equations given in Appendix D and an analysis
of the errors involved given'in Section 1;3. -

The least_squares method depends on the data having
a Gaussian distribution if the regression coefficients
and confidence limits are to be correctly estimated. The
problem of noﬁ-normal data is discussed in Section 1.5
which describes a method used to eliminate data associated
with large residuals.

The final slowness estimates depend on how accﬁrately'
the onsets have been obtained from the original records.
Section 1.4 describes how the records were read, and an
experiment conducted to compare the accuracy of three
different methods of obtaining relative onset times.

The slowness results with 95% confidence limits are
given in Seétion.2.1'and compared with the results from
other studies in Section 2.3. The body wave results are
integrated by the Weichert-Hefglotz method in Section 3.1
and used with the results of shearwave studies to calculate
the elasticity of the lowef mantle in Section 3.2. The
conclusions follow in Chapter 4.

The main computer program, used with an IBM 7030,
to calculate the velocity strueture from the slowness

results and to truncate data to a normal distribution are

described and listed in Appendix H.
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INTRODUCT ION
The mantle extends from a depth of between 8 and 70 kms beneath

the solid surface of the Earth to the liquid core at a depth of around

- 2920 kms. Within this region processes are occurring which probably account .

for the distribution of oceans and continents, the production of volcanoes
and e;rthquakes and the building of mountains. * Unfortunately, because of
the crust, the mantle at present can only be iﬁvestigated by indirect
methods, and it is the vekgcity'of.P and S body waves that provides the

most accurate data regarding the structure of the inféridr of the earth.

From a knowledge of these velocities, and using classical techhiqués,“

it is possible to infer the thermal propérties, temperature, crustal structure,:

and orientation and creep rate. Modern methods have been developed to

compute the variation of the anelasticity, or Q with depth from the attenu- ..

. ation of body and surface waves, and the study of free oscillations has led
to a method of determining density in a direct manner. If densities are -
estimated from the velocities of P and S waves, theh assumptions have to be .
made concerning the gross structure of the Earth.

The fundamental dafa of classical se;smology are the travel-time.

tables and these provide the basis for the determination of the velocity

distributions in the Earth by the Weichert-Herglotz method. The velocities .

are in remarkable agreement over the region of the lower mantie, and the}e
can bé little doubt that these models do not deviate from the true velocities
by more than &+ per cent.

It was on the Sasis of the available seismic data that Bullen

(1940) found it convenient to divide the Earth from the crust to the inner

core into the regions A, BycseesesG. These regions have since been modified

and subdivided as new data has become available,
The regibns constituting the mantle are those designated B, C'and
D. Region D has since been subdivided into DT and D11 following evidence

-1
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that the velocity gradients below 2760 kms are significantly different.

Region B starts from just below the crust and extends to thé
transition region (C) at a depth of 413 kms. The most important feature
of the B and C regioﬁs igs the so-called 20° discontinuity. Investigations
by Niazi and Anderson (1965) and Anderson (1967) show that the feature
probably consists of two distinct discontinﬁities beginning at depths of
365 and 620 kms. The boundary between C and D1 is taken by Bullen to be
at a depth of around 950 kms, but neither ﬁhis nor the 413 km boundary seems
to be a sharp discontimity, and the transition.from.one region to the éther
is probably gradual.

Although the study of the B and C regions of the upper mantle has
occupied the attention of many wrifers, (Anderson in "The Earth's Mantle" ed.
Gaskell gives an excellent review) velocities in the lower mantle between
about 800 and 2800 kms depth have not received a similarly detailed scrutiny
untii the last two years. . The récent increase in interest has ﬁndoubtedly
been because of the coﬁstruction of large aperture arrays of seismometers
which enable the velocities in the -deep mantle to be measured directly.

The increésed quantity and quality of bbdy wave data from thesg arrays have
produced results which show that although -the general trend of velocities
with depth are very similar to the models'of Gutenberg and Jeffreys, there
are significant differences and a revision of velocities is in order.
Because these velocities occupy such a fundamental position in our under-
standing of the 10wer>mant1e, any small improvements which c;n be made in
their values are important and worth the effort made in obtaining them.

The standard method of obtaining an average velocity depth curve
is by meésuring the travel times of earthquake body waves, smoothing the
data, measuring the slope (dT/dA) and integrating by the Weichert-Herglotz

method. o )
Scatter is introduced to the travel-time data by errors in the
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hypocentre and origin times, itwo quantities which, with regard to earthquakes

.

propogating over a finite area are necessarily difficult to define.
Variations in the crust and upper mantle at the source and near the receiver
will also, if large, introduce errors by deflecting the ray from its average
path. Calculations of the absolute time of arrival of a phase not only
depends on knowing the exact origin time of the event, but also measuring the .i
onset time of the particular phase against a lqcal.clock. Further gcatter
will therefore be introduced if the exact onset of the bhase cannot be
identified or the clock is in error.

Uncertainty in the hypocentre and origin times can be considerably

-reduced by using travel times from nuclear explosions, although the data is

gparse and tends to be grouped into particular areas. Large computers have
made it possible to use data from a great number of source regions covering
a large range of azimuths. .Regional bias can then be partially eliminated
and the effects of crustal variations at the receiver removed, making it {
meaningful to define an "average" travel time curve. However, such a travel :
time curve estimated to an accuracy of 0.1 seconds in several huﬁdred_(e.g.
the Herrin (1968) travel times) will, when numerically differentiated yield

a derivative (dm/db) curvenaccurate'to'énly + 0.2 secs/deg. Tt is clear _
therefore, that travel times cannot be used to give-accurate-information
concerning the fépidly changing features within the Earth. ‘

The construction of large arrays of seismometers however, has ﬁow
made it possible to measure the slope (dT/dA) of the travel time curve directly?
(dT/dA)'is also known as "glowness", its reciprocal as "phase velocity" |
or "apparent velocity"). It is dT/dA that enters directly into any calcu- _'ﬂ“
lation of the velocity'@istributioﬂ'with depth. The great advantage of |

this méthod is that it does mnot depend upon absolute times, but only on the

time difference takqn.by:aﬁseismicnphase to.cross adjaggpy seismometers.

-.3- . '—_'_.".- .




“may result-in erroneous conclusions being drawn about deep mantle variations

As arrays are usually constructed to record the outputs from all the seis-
mometers siﬁultaneously with the time code, the time differences can be easily
estimated to a high degree of acéurady. Onsets recorded at an array with an
aperture of 200 kms (e.g. LASA, the Large Aperture Seismic Array in Montana) -

with an accuracy of 0.1 seconds will then'yield a slowness curve accurate to

' 0.05 seconds/degree.

Considerable. attention, however has to be given to correcting for the
effects of the local crust which separates the mantle from the array. For a

large array extending over.a geologically inhomogeneous area, these effects ——

rather than properly attributing them to features within the crust. Sheppard

(1967) has pointed out that er%ors of up to O.5'secs/deg. in slowness and 6° ‘

in azimuth are observed with LASA if crustal corrections are not made. The

size of an array can therefore only be increased by an amount which will- be.

dictated by the geological homogeneity arid seismic noise level of the_arga.
The problem may algo be wprsened;when working with event; at distances less than _f;
300’-(the angle éﬁbﬁqnded at the centre.of the earth by the source and the
récéiver) by variations of upper mantle structure with direction. Events within -
the teleseismic "window".of 30° to 90o emerge from the mantle at a. high angle
of incidence and arc less likely to be affected by lateral inhomogeneities.

Direct measurements of élowness in the teleseismic region have been
made using single arrays by Chinnery'ané Toksgz,(1967) and Greenfield and
Sheppard (1969) using LASA, and Johnson (1969) who used the extended array
at the Tonto Forest Seismological Observatory (TFSO) in Arizona. These papers
present curves of slowness as a function of distonce for particular regions_of
the Earth's mantle after independently estimating and correcting for the effects
of strucfure beneath the:array. .Chinnefy and Toksgz derived their corrections
from the travel times of the LONGSHOT explogion; Greenfield and Sheppard

corrected the observed values of slowness by restricting the events used to only
-l '




those from opposite azimuths; and Johnson constructed a model of the crust

beneath the TFSO array from seismic refraction and gravity data. All these -

studies have emphasised the difficulty of determining crustal and upper

mantle structure. Because of this, it is better to estimate slowness and
R the effects of array substructure simultaneously, taking the best site

corfections as being those that give the least scatter in results.

Douglas and Corbishley (1968) showed how to do this by combining
%F?- the data from several arrays, and the method has been used to derive a P.wave;£;
slaness cufve for the distance range 30° — 104° (Corbishley 1969). Within'—;%
this range the rays are relatively unaffected by the lateral inhomogeneities B
within the crust and as mahy event—-array ray paths were uséd regional

blas was eliminated. The slbwness values should then represent the best

average for the world. Another advantage of the method is that'confidenbe
limits on the curve can be easily established. The arrays used have suffi- g
ciently small apertures to minimise +the structure corrections ;nd still!'j‘
produce a'staSIe estimate of slowness, provided special care is taken in .

reading the records. A section of this thesis has been_devoted.to the

estimation of the minimum random reading errors using the constant event-

station paths provided by underéround explosions iﬁ Kazakh.
The results show anomalously large gradients 6ccur in the slowness
curve near the epicentral distance of 35-36, 42-49, 60, 68-70 and 84-85
degrees. The curve has been inverted by the Weichert-Herglotz method aﬁd
these regions are found to correspond to possible variations iﬁ the P—velocity;‘
gradient near the depths of 850-900, 1200, 1550, 1800-1900 and-2560 kms. | |
A comparison is made between these featufesvand those found at similar
distances by other array studies as well as measurements of travel-time and
amplitudes. The hypothesis that therg aré enomalies in-the lower mantle is
strongly éupported and the.implications of theseianomalies_for.varidtions in
_the elaatic'babaMéteré is a;soninvestigétédf{gff. n J-m‘  IR '-_¥d
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CHAPTER 1

1.1 ESTIMATION OF SLOWNESS

The slowness dT/dA and azimuth a© of a plane wave propagated by an
event at a distance 4°(subtended by the centre of the Earth), and crossing an

array of n seismometers is given by:-

ti' = C - Ri cos <?i - a). %%-+ €y 1.1

(Appendix A) where Ri Gi are the polar coordinatés of seismome£er i; ti is the. “
relative arrival time at seismoﬁeter i with respect to an arﬁjjgany origin = _.__+¢
and will usually be in error €39 and C is :a constant and defines the position ﬁé;
of the arbitrary origin. At each distance-A, a scatter bf points is obtained.i;
through whichna mean curve must be drawn. .

Any éystemgtic trend in'the geology beneath the array, including
variation in the altitude of the individual seismometers, will produce vari-
ations in the observed vaiues.of slowness calculated using equation 1.1
which will usually be a function.of azimuth. |

Chinnery and Toksez (1967) assumed the geology beneath LASA has
such a sysfematic trend and so restpictea their event-~to=array paths to only '_ 
those from a narrow azimuth range. The rays were then effect%vely travelling‘.;
up or down dip. The slowness curve Qastthué displaced by a constanf éﬁount' .
and the Dé shift corrected for By adding a constant to thelobserved values.

An obvious disadvantage of this method is that the émount of data

available is severely reduced by restricting the azimuth range. = Also the .

exact value of the DC shiftﬁhas to Ee obtained~from.independent data.

Chinnery and Toksoz corrected their values of slowness by making the integral :°

under the slowness-distance curve compatable with the observed tfavel times
from th% LONGSHOT explosion. | | |

| Theéé restrictions can be overcome by assuming'thé'Slowness is ?f;
constant for all events falling within the same (shall)ﬁdiStance.intérVal.'-f
As all rays froii évents ét'the same diétance_frbm an array will reach their ‘ ;%
lowest point at a commpnldqpth;'this not'unreason;ble.aséggﬁfioﬁ iﬁplies.

R




the Earth is radially symmetrical with depth. Events from all azimuths
may be included and slowness and the effects of array sub-structure esti-

mated simultaneously.

The equation of condition for the jth event that falls in the kth
distance interval is now, for i = 1, 2 ceceseseeeess n seismometers.
' T
t,. = S, + C. -R, ¢ . = X ) d + € 1.
ij i J i 9% (91 J) / Ak ij 2

Si is the time correction for the effects of geology under the ith seis~-
mometer.

The equations can then be solved for Si’ Cj’ aj and_d?/dﬁk
by least squares. As only events are used whose epicentres are given on
the UDCGS PDE cards, the a.zimutha._j is restrained-to the value computed
from the known epicentre, so reducing the number of unknowns in each eqﬁation
of condition by one. The Si and Cj terms are linearly dependent and so any
ad justment in one set of parameters can be compensated by an adjustment in
the other. To enable equation (1.2) to be solved, the constraint Si = 0 '
has to be applied. The unknowns Si, Cj and dT/dt\k can then be evaluated.

Equation 1.2 is difficult to apply because earthquakes are not
generally well distributed in agimuth about an array, but occur along narrow
belts. The results may then be biased for if many events within the
distance range k lie in roughly the same direction, the Ri cos(}ﬁ.-“j >
terms are approximately constant. Si and dT/dAkwill then be linearly
dependent and their estimation biased.

The difficulty can be overcome by +the simultaneous estimation
of site corrections and slowness using several arrays as described by
Douglas and Corbishley (1968)7 The overall distribution of events in
azimuth will then be greatur. The equation of condition for array h is now:

= - 5] - dr €
i Spi * Oy Ry cos ( hi = %hj ) @t Cniy 1.3
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FIG.! EXAMPLES OF TWO-TERM FIT TO RESIDUALS.
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FIG.2 EXAMPLES OF TWO-TERM FIT TO RESIDUALS.
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n

and zi%hi for all h.

These equations can thus be solved for thc sub-array correction term
S,i+ the slowness dydAk and the constant Chj (Appendix B).  Substitution
of these'values into equation (1.3) gives the errors ehijon the onset times
thij' If ehij are normally distributed about a zero mean, then the variance
and 95% confidence limits can be found on all unknowns (Appendix D).

The equations of condition are not set up explicitly but to

reduce the computer store needed, the normal equations are formed directly.

S,.. — C, . in equation (1.1), values of

By replacing ti by thij - 55 hj

slowness can be calculated for each event corrected for the effect of
structure under the array (Appendix c).

The residuals ehij are used to define site corrections for each
corrections for each seismometer, incorporating both a constant and
azimuthally varying term. In the method described here the azimuthal
dependence was initially approximated by fitting the following éine curve

to the residuals using least squares (the program to do this was written

by Mr. R.C. Lilwall): '
Spi- * fhij T Pni * P <Sin “hj*Ehi) 1.4

where ahj is the azimuth of the jth event at the array h. The site

corrections shi are included with the residuals so that the constant Ahi

is a better estimate of the DC component of the site correction. It was

later found that a better approximation to the residuals was 'a least square

fit of a two term Fourier series:
Spi * Snij = Apg * Bpg sin (“hj + 8hi> * T 51“(2%3‘ + Ghi) 1,

The residuals for typical sites at the four arrays and the least
squares solution of equation 1.5 are shown in Figures 1 and 2. The least
squares solution of equation 1.4 for each seismometer of the WRA array is
shown in Figures 24 and 25. A complete list of the five parameters Ahi' Bpys'
Eni, Fi and Gpj derived from equations 1.4 and 1,5 is given in Appendix F,
and they are discussed more fully in Section 2.2,

-8-



With a sufficiently large computer, equations 1.4 or 1.5 could be o
incorporated into the right-hand side.of equation 1.3 and the azimuthal site
correction parameters estimated at the same time as the equations are solved
for dT/, . Instead, the appropriate time correction for each seismometer,
as defined by the five parameters in equation 1.5, are subtracted from thg
left-hand side of equation 1.3 and the equations of condition again solved

ar
for §;y Cp and /dAk.

If the azimuthal:corrections have correctly estimated the effects
of geology beneath each seismometer, then the residual corrections Shi should
now only contain a distance dependent effect and be free of azimuthal bias.
The corrections Chj will have the same value as previcusly and the slowness
estimates dT/dAk will also be corrected for the effects of array sub-

structure. Re-substituting (% S Chj) back into equation 1.1 gives

hij = “h
estimates of the individual values of sglowness for each event, corrected for
the azimuthally and distance dependent effects of the structure under the
array.

By using several arrays with differing, but relatively uncomplicated
sub-array structure, an unbiassed estimate of dT/dAk should be obtained. As
the integral beneath the slowness curve is simply the travel time, an indepen=
dent check on the estimates of dT/dAk, can be made by comparing the travel
time obtained b& integrating the dT/dAk curve with known values. Any bvias

may” be corrected for by constraining the area under the dT/dﬁ\ curve to the

Observed values. This is done by including the equation of condition:

ar= ar dT) dT) =7 -
D1('d.A )1 + D2<n)2 oo.nn.n.ooo.Dk 'ax ..to.o.om EK —Tm
k

D, is the integral in degrees over which the slowness is dT/dAk and Tm is

k
the observed travel times across the range from D1 to Dm. As will bve

seen later, the application of this constraint was not ﬂgcessany.

-9-




Even if there are no errors in reading onset times and punching
computer cards, real variations in seismic travel times result in the resi-
duals ehij' In order that an unbiased estimate of the variance is made
and the confidence limits give the true 05% coverage, the residuals Ehig
from the least squares analysis (after removal of the azimuthal terms) must
be normally distributed. A computer program (TRUNGATE) to estimate the
regsiduals showed that after truncation by three standard deviétions, the

distributions were nearly normal. A full description of TRUNCATE is given

in Section 1.5,

~
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1.2 THE DATA

Arrival time data for events from a large range of azimuths

. recorded at four arrays was used to compute slowness, The arrays are located . -

at Eskdalemuir, Scotland (EKA); Yellowknife, Canada (YKA); Geuribidanur,
India (GBA); and Tennant Creek, Australia (WRA). They have been described
by Truscott (1964) and in an AWRE publication'(1967). The configuration of
each array and a brief description is given in Appendix E.

| A1l 478 recordings of events, which oqgurred between chober'1965 .
and Jan&ar& 1968, having magnitudes greatér than 4.9, focal depths less than“;%

100 kms, epicentres between 300 and 10!4.o from the arrays and which gave sharﬁﬂz

P onsets with a high signal to noise ratio were used in the analysis. The

epicentres, depths and magnitudes are assumed to be those given by the USCGS

. PDE cards. A copy of these cards is held at UKAEA, Blacknest, stored in the 7y

program GEDESS (Young & Gibbs 1968), This program sorts and lists the events
in accordance with the above criteria and also calculates the azimuth,
distance and arrival time for each event with respect to each array.: Thei‘_*{f
events and the pqsitions of the four arrays are plotiea in fig'3 and the' .
events are listed in Appéndix G. :
The relative arrival times for each event were measured from
paper records played out so that 60 mm was equivalent to 1 second of record= -.-%
ing., The playout speed was accurately determined by measuring the distance
between second markers, and the relative onset times measured by matching
waveforms as described in Section 1.4. Equation i.} was solved ﬁith the

slowness curve divided into two degree distance intervals, except where the

. curve appears to be rapidly varying when the interval was~decreased to one

" degree, and except where the data is sparse (between & = 390 - A2° and

98° - loud)where'the inter§a1 was incfeased. Tﬁe large number of recordings t{
made it immracticable to solve the equations of condition. for all the data
aimultanoously and the ourve wag estimatod in five diatan&e rangest :
30° - 1;4°, u°_-- 58°, 57° = 7°, 70° - 84° and 83° - ;oa°. Any difference "

: -;_...;'._ 1 - -' ~ _1-_-1---. . J -
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in dT/dAk at the one degree overlaps betwecen adjacent. distance ranges wvas
always well within the 95% confidence limitc, but to obtain a single value
at these overlaps, dT/dAk was restrained to the mean of the two.estimates,
and the adjocent sections of the curve re-estimated. The mean slowness
curve, estimated using two-term azimuthal corrections to remove any bias
caused by the geology at the array sites, yielded five sets of onset time
residuals ehij’ one set for each distance range.

An accurate estimate of the regression coefficients of the
equation of condition relies on these residuals being normaily distributed
with a zero mean. The residuals for each distance range were tested for
normality and gross values (greater than three standard deviations from
the meadian) were removed using the program TRUNCATE, described in
Section 1.5. This left five aﬁproximately normal samples, The number of
regiduals eliminated after truncation by three standard deviations was as

follows (expressed as a percentage):

Range % Rejected Total Humber, n
30 - 44° 0.5 1223
43 - 58° 1.2 1175
57 = T1° 0 1481
70 - 84° 0.7 1604
85 - 104° 0 1482

The very low number of rejected residuals was because misreadings
" and mispunchings had been eliminated at an earlier stage after recourse to
the original records. The normalised,cumulative digtribution plots for
each distance range after elimination of the gross residuais are shown in
Fig 4 along with the theoretical normal distribution.

The fopulation parameters calculated as deviations from the meaﬂ,
for the five samples are given in the following table:

-12-




Range Mean x Variance Skewneas, &4 Kurtosis, 85
30 - 44° | -0.00021 .00034 - .040 0.161
43 - 58° 0.00020 .00025 - 13 0.477
57 - 71° 0.00004 00050 - .080 0.643
70 - 84° 0.00101 ,00042 - .226 0.435
83 - 104° | -0.00030 . 00057 - .120 0.273

The Kolmogorov-Smirnov distance for each sample showed they are all
drawn from normal populations at the 5% level of significance.

The hirher moments of skewness and Kurtosis are used to infer the effects
on the confidence limits of the slight departures from normality that are
encountered here.

For a population with mean X and variance<72, these gstatistics are

E [(x -5':)3]
Kurtosis, g, = o4 E l: (x - 5)4:] -3

For a normal population of n samples, the skewness 84 is approximately

defined in terms of expectation as:

Skewness, g = o3

normally distributed with a zero mean and a standard deviation of,JF(SYn)
(Snedecor, 1967 p86). IFor the five sets of residuals here, & is not significantly
greater than its standard deviation (o) except in the range 70-84° where
81/o = 3.7
A further estimate of any departure from normality is given by the

kurtosis, go. Values of g, at different significance levels for various sample
sizes are tabulated by Snedecor. Except for the range 30-440, all the values of
kurtosis are greater than the upper 1% level of significance, showing the
populations to be more peaked than the normal distribution.

Calculations of the skewness and kurtosis show that the normality
assumption has been violated in some cases, and this will have an effect on
inferences made using normality.

However, inferences about means are only slightly
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affected by departures from normality, (Scheffé 1964 p 336) and the
estimates of the regression coefficients should not be biased.

95% concidence limits will alco be affected by non-normality, and in
particular values of kurtosis, g, that are not negligible., Tables showing the
effect of non-normality on the nominal 95% concidence limits not covering
the true confidence limits are given by Scheffd. These show the probability
is less than 0.1 within each distance range for the magnitude of kurtosis
encountered here,

For the slowness curve to be treated as a world average,’the
underlying assumption is made that all the observations have been drawn
from the same world, population which is distributed about the same mean
with similar standard deviations. |

The standard test (Bartletts' 1937 test) for equivalence of sample .
variances is usually very sensitive but tends to find differences in
variances where none exist for positive values of kurtosis (Scheffd, p 362).
The test was therefore not applied in this case.

It is concluded that the five sets of corrected onset time
observatiops have been drawn from generally normal populations, the
departures from which are not great enough to affect either the estimates

of the regression coefficients, or the 95% confidence limits.
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1.3 ERROR ANALYSIS

There are several sources of error which affect the calculation
of slowness and arise from the assumptions mede in Appendix A where the
basic formula for dT/dA is derived. These are

| (1) Assumption of plane wavefront

(2) Changes in apparent slowness with changes in epicentre.

(3) Changes in slowness arising from the spread of the arrays.

(4) Random reading errors.

It is showvn that errors arising from 1-3 may be disregarded for
events at epicentral distances greater than 300 and errors in epicentre no
larger than 20 Kms.

(1) Assumption of plane wavefront

It is assumed that the wavefront traversing an array from an event
with slowness S at an epicentral distance 8° is planar, If the centre of
the array is taken as the reference point, then the time difference between
the curved wavefront and the theoretical planar front at the eitremities
of the array is negligible when 4> 300. This can be seen from the fol;owing
argument,

If the length of one arm of the array is 2a° then the time

SUICHDEN

which on expansion reduces to & =.%§r secs

difference & is given by

& will be largest for the largest arrays (YKA and WRA) where a is
approximately 12 Kms, end vhen 8 is a minimum of 300, corresponding to

S = 8.9 secs/deg. The effect of neglecting curvature 6 is therefore less
than 2 ms., and so is negligible.

(2) Changes in apparant slowness (and azimuth) with changes in
epicentre

The epicentres were taken as those given by the USCGS Preliminary

Determination of Epicentres (PDE) cards. Only events greater than

magnitude 4.9 were used, and these are conservatively assumed to be in
-15_ .
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erroxr by up to 20 Kms. Tables show the maximum change in slowness will
be at small distances, and when 4 = 30°, d2T/dA? = =0,05 seca/degz, the
error in slowness will be less than 0.01 secs/degree.

Errors in azimth will also be small. Referrang to Fig. 5_
and applying the sine theorem, the azimuthal error dg for an event at
epicentral distance & is given by

sin d¢ _ 5inb
sin D s8in &

dgp is therefore a maximum when A-= 30?—and-when-e is a maximum, —¥f—the—-

¢

error in epicentre D = 20 kms then d¢ will be less than 0.4° and so 1s
negligible. .

(3) Changes in slowness arising from the spread of the arrays

The terms epicentral distance and azimuth are ambiguous when
referred to an array of seismometers spread over the finite distance of
approximately 12 kms for the smaller arrays (EKA & GBA) and 25 kms for
the larger arrays (YKA & WRA). Azimuths and distances are calculated
from the hypocentres gaiven by the USCGS PDE cards to the centre points
of each array using geocentric coordinates and GEDESS (Young and
Gibbs 1968). It has .already been shown in paragraph 2 that the
variations in olowncss are groatost whon 4 ls losn thuh 30°. TFor an array
spread over 25 kms tho maximum error in slowness will be of the order of
0.1 secs/deg. at most.

It can therefore be concluded that errors arising from the
slight mis-locations in epicentres at distances greater than 300 may dbe
safely -ignored, and consequently inhomogeneities near the focii of the
eventd will not affect the azimuth and slowness estimates. Any errors
arising from mislocation of epicentres are still further reduced when the
results from several arrays are used and slowness estimates averaged over

. . . o .
discrate distance intervals of 27, as they were here.
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(4) Random Reading Errors

Errors in calculated slowness are propagated if it is assumed
that the arrival times at individual seismometers of an array are
accompanied by random errors arising from reading the records. Kelly (1964)
has derived formulae to compute the error in slowneas (and azimuth) when
the reading errors are independent Gaussian variables with a variance
o2 (secsz).

The root mean square error ds-in slowness S (secs/deg) is then

ds = 0K l_var x.cos?ﬁ -2 cov (x,y).sinp.cosp
,/ND
2 :]%
+ var y.sin g
where N is the number of seismometers in the array
D = var x.var y ~ cov (x,y)2

K = number of kms. per deg.

>
]

azimuth of epicentre from array

cartesian coordinates of the seismometers with respect to N-S
and E-W,

X,y

The rms error in calculated azimuth dp is given by

58 5 gé) | ver x.sinzﬁ + 2 cov (x,y) sinB.cosp +

2]_
vary.cos f

It is shown in section 1.4 that the minimum value of ¢ that
can be obtained when reading the records is, for each array

o = 0.013 secs., for EKA

o = 0,011 secs. for YKA
o = 0,014 secs. for WRA
o = 0,012 gecs. for GBA

A computer program was written to calculate the corresponding
values of ds, and values of dg are shown in Fig. 6 for each array.
It iz concluded that the individual estimntes of alowness should be no
larger than 0.18 secs/deg for the smaller arrays (GBA and EKA) and can

be asgumed to be less for a combination of results.
-17-




1.4 READING CHSKT TINES AFD RAITDOM READING ERRORS

Sources of crrors affecting the calculation of slowness which
arise from assumptions of a plane wavefront and epicentre location have
already been discussed,

In this scction an estimate is made of the random errors that
arise from reading the onset times and also those that arise from the
recording and play-back system.

Becouse of the relatively small apertures of the arrays (the
smallest being 12 Kms in extent, the largest 25 Kms) it is essential to
find a method of meaéuring the time taken by the P wave to cross the array
that is repeatable to plus or minus a few hundredths of a second. An
experiment was conducted whereby three different methods of reading onset
times were compared, viz.(1) estimating the relative arrival time of the
first peak (2) estimating the time of the first cross-—over and (3)
estimating the relative arrival time by matching waveforms. Mcthod (3)
is shown to give the lowest repeatable error in onset time and therefore
matching waveforms were used to measure all the data.

Data from 22 présumed underground explosions fired in E. Kazakh,
US5R, vere used. These occured within an area of a few hundred sqyuare kms
(Blamey and Gibbs, 1968), so the ray .paths from each event to a given
recording station should be very nearly constant and the explosions
considered as identical repetitions of the same experiment. The only sources
of error in the observed onset times are therefore in the recording and
playback system and the reading error. An estimate of the variance of the
errors can then be found for each method of reading the records for
arrivals at each array.

Transcribing ané Reading the Records

The facilities available at UKABA, Blacknest for the handling

and processing of seismic data are described in AVRE Pamphlet No.2.
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The outputs from the seismometers of each array are recorded
continuously on 1 inch wide magnetic tape and consist of 21 signal channels,
two error correction channels for wow and flutter, and one channel for timing.
Frequency modulation is the recording technique used, with a tape speed of
0.3 inches/second, which provides for 3 days continuous recording using
14 inch diameter reels, The tapes are stored for two years, after which
they are compreased by a factor of 8 and transcribed onto a library tape.

Reading the Records

Unfiltered, original recordings of the events were played out
from the magnetic tape onto paper using an eight channel Mingograph
recorder. The speed of playout was adjusted so that approximately 60 mm.
was equivalent to 1 second of recording. It should then be possible to
estimate onsets to within 0,01 seconds if the records are read to an accuracy
of a few tenths of a mm. The playout speed was accurately determined by
measuring the distance between second markers with a mm, graticule.

Fig 7 shows o full-gize reproduction of 5 record channels
and the time channel of an event that occurred on 20 April 1967, recorded
at EKA. A base line has been drawn perpendicular to the traqes and P shows
the position of the first peak. By measuring the distance frém the base
line to each P and knowing the playout speed, the relative onset times with
respect to the base line of the 5 channels can be calculated. The outputs
from all 20 channels were played out in 3 groups of 7, each with the time
trace. The base line could then be drawn relative to all the traces. The
arrow X indicates the positions of the first cross-over points, the relative .
onset times of which were estimated in a similar way. |

The method of matching waveforms involves tracing one of the
curves (eg. R1, here) onto-transparent paper, and using the paper as an
overlay, matching the traced curve by eye with each of the recordings in
turn., The relative displacements with respect to the arbitrary datum line
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TABLE 1.4

EVENTS RECORDED AT THE EF. KAZAKH TEST SITE SSR.

APPROXIMATE LATITUDE = 49.8 DEGS. N
APPROXIMATE LONGITUDE= 78.1 DEGS. E

S — RECNRDED AT EKA. !
VZS—— RECORDED AT YKA.
e ¥ —— RECORDED AT WRA.
S Gmm———— RECORDED AT GBA.
o DATE ORIGIN TIME
5 H MIN SEC .
R 71 21.11.65 4 57 57.9 oy R

R 2 13.02.66 4 57 57.9 Y W
3 20.03.66 €550 . Y oW
4. 21.04.66 3 57 58,1 oy W

-5 29.06.66 6 57 58,1 E .. Y W

6 21.07:66 3 57 57.9 E : W

7 05.08.66 . 3 57 57.5 £ Y oW

@ 00 0 0 o o @

8 19.10.66 3 57 57.9. € o W

9 03.12.66 . €502 . 6.
10  18.12.66 4 57 58.7  E Y W 6

11. 25.03.67 C5 58 . E Y W T
12 20.04.67 4 07 58.1 - 3 y W G -
13 28.05.67 - C4 08 _ . E Yy . W G

14  29.06.67 c2s7 . B O ° Y

215 -15.07.67 - . .3 26 57.4 E Y W G -
16 04.08.67 ., C658 . E Y W
177 16.09.67 4 03 58.0 E vy oW o

o T. 18 22.09.67 5 03 57.9 Y W 6

19 . 17.10.67 ° 503 58.0 E Ty W .G -
20 30.10.67.5 603 57.9 = E \ W 6 ¥

- 21 © 08.,12.67 . 603 57T.1 . E ,' YL W o P 5

22.7707.01.68 €347 .. _ E

A




can then be determined. All channels recording onsets for the 22 events
listed in Table 1.4 were read using the three methods described.

Analysis of Variance

An analysis of variance was performed to estimate the random
reading error associafed with a single determination of onset time using
the 22 Kazakh explosions.

For any array the arrival relative time at the ith seismometer
of the jth event is taken to be of the form

t,, = P, + C, + &% + €_, (1.6)

‘ 1) i J 1J

Assuring there.is no event-seismometer interaction, then P; depends on

the position of the ith seismometer in the array, Cj depends on the

arbitrary zero from which the relative onset times have been measured

_(the base line in Fig 7). t: s will usually be associated with an

iJ
erroz-eij. Because tij is a relative value, the constant T is introduced.

Equation (1.6) however cannot be solved as written because any change in

either one of the sets Py or Cj can be compensated for by adjustments in

“the other, The following constraints are therefore applied:

C

The model describes a simple two way analysis of variance with the onset

times displayed in the‘Matrix of CObservations:

ij
P t \t
T r1 re
rc
== :
The average onset time of the average event is 1t = < 2_1 ti.j)A c
ij

the average onset time at the ith seismometer for all explosions is

Pi- = ‘ % tij}/é'; and the average onset time of the jth explosion at

j=1
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T .
\
all seismometers is given by (Z tij//r - t vwhere ¢ is the number of
i=1 ’
expleosions and r the number of seismometers.

By substituting Pi’ cj and t into equation (1), the unassigned or unknowm

variation due to random errors eij’ can be found. An estimator of the

z ()"

me-n ——

variance 82 is then given by

S =

where m-n is the number of degrees of freedom obtain from the number of
equations of condition m with n unknowns. This method can be used if
2ll tij are lkmown., Unfortunately this was not always so, as not all the
seismometers were working for all of the events., The equations have
therefore to be solved by least squéres, which does not require that all
tij to be known and a special purpose least squares program (LSHMF Douglas 1966{
'used to derive SZ. Using the 22 Kazakh explosions listed in the Table 1.4
‘the variance 82 of the random reading errors was estimated at each array
for each of thé three methods of reading onset times.

For 52 to be an efficient estimator of the population variance
0'2 the errors eij should be normally distributed. The program TRUNCATE
was used to eliminete residuzls larger than three standard deviations
when the Kolmogorov-Smirnov statistic was exceeded at the 95% level. 'For

the 9 estimates of S2, the number of residuals rejected were as follows

(expressed as a percentage):

Array Matching Waveforms 1st Peak 1st Crossover
EKA 0 1.2 0

YKA 3.2 1.8 2.4

WRA 0 0 1.2

GBA 0 1.4 0
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After elimination of the onset times associated with these gross
residuals, the analysis of variance was repeated. - The standard deviations
(in seconds) of a single estimate of the relative onset times for the

normalised samples are:

Array Matching Vaveforms 1st Peak 1st Crossover
EKA 0.013 0.012 0.019
YKA 0.011 ' 0,017 0.020

' WRA 0.014 0.017 0.024
GBA 0.012 c.018 0.016

The technique of matching waveforms is seen to be marginally better than
the other two methods for reading records and was therefore used to read
all subsequent recordings.

DISCUSSION OF ERRORS

The technique of matching waveforms was first described by
Evernden (1958) for the calculation of surface. wave phase veiocities across
tripartite arrays. The advantage of this technique over the other two is
that it does not depend on an accurate recognition of the fiist notion or
crbss—over, as the times can be computed from any part of the waveform.
Records with fai;ly emergent onsets can then, in theory, also be used.

The velocity filtering methodé (Birtill and Vhiteway, 1965) gives‘infefior
results to the manual method because correlation has to be carried out
over a fixed length of record for each trace. Correlating the records by

- eye, although a slow process, overcoﬁes this difficulty.

The accurate estimation of onset times by either of the three
methods described assumes the recorder pens are not displaced relative to
each other. The Mingograph recorder is equipped with ink jets that
Aoperate ;n»a plane perpendicuiar to the direction of the trace. They ére'
therefore ungffected by displacements.between traces which is a disadvantége

/
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 encountered with recorders equipped with pens pivoting around a radius,

Any relative displacement of the ink jets can be éhecked by observing a
pulse such as a lightning flash or a power failure that is recorded
simultaneously on all channels. Displacements introduced by misaligned
magnetic tape heads and also "snaking" as the magnetic tape passes across
the heads can similarly be estimated.

Fig 8 shows & simulated power failure at YKA played out at .
60 mm/second and recorded on all available channels, No displacemgnts_of
the onsets are observable within the limits of reading e*ror) and a
simila¥ conc%usion was reached for recordings from the other 3 arrays.
It is therefore concluded that the recording and transcription does.not

introduce significant errors into the reading of the onset times.

Muirhead (1968) discusses variations in the onset times introduced

by variations in seismometer characterisfics at the WRA array: (1) a

phase shift produced by the finite paés band of the seismometer, (2) varia-

tions in seismometer damping. He found that (2) could be neglected.

However, over a number of days at random the spread of the natural

. frequency of the seismometers varied between 0.9 and 1.1 Hz. It was

computed that this variation could introduce an error of up to 0.04
seconds at the first cross-over point for a signal with a fundameptal
frequency of 1 Hsz. Muirhéad concluded that to overcome this variation,
only high frequency events should be used, and the first convenient part
of the waveform usedtto measure onset times. Consequently impulsive,

high frequency events were used throughout the analysis wheréve: possible.
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145 NORMAL ERROR THEORY AND ELIMINATION OF EXTREME VALUES

This section discusses the assumptions made when the léast squares
technique is used and describes a method of rejecting Aata to obtain a
normally distributed set of residﬁals.

The estimation of slowness from the large number of equations of
condition (approximately 1400 in each of the five distance ranges) uses the
technique of least squares. The basic assumption behind this method is
that the set of onset time measurements is actually the most probable set -
of measurements. In other words, it is hoped that the probability of
obtaining the particular set of onset times observed has been maximised.
This is the Principle of Maximum Likelihood. If the observations are dis- |,
tributed normally, then the probability is maximised by minimising the sum
of the squares of the deviations from the most probable value.

On estimating the regression coefficients dT/dbk, Chj and Shi

" from the equation of condition.

Sy * Chj - (xhl sin % 5 + yﬁi sin “hj) %k = thij + ehij

| 1.7
it i% assumed that‘the errors shij associated with the observed onset ti@es
thij are normally distributed, so jusfifying the use of least squares.

Any departure from the underlying assuhption of normality will bias

- the estimates of the regression coefficients and also the estimates of the

L}
confidence limits (Scheffe 1964 p.331). It is therefore necessary to test

e

the distribution of residuals ehij for -normality.

The computer proéram (Appendix H) written to solve (1.7) gives a -
list of the residuals. Relatively large values are easily spotted and
misreadings and mispunchings can be corrected by recourse to the original
records. However, a few large residuals will still remain and it is

necessary to derive a technique for dealing with them.
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The problem of truncation of data to eliminate large residuals is
a controversial one, and there is no agreement among authorities as to a
definite answer. If a relatively large residual is retained it can bias
the estimate of the mean and have an even greater effect on the variance.
If it is discarded, then a degree of subjective judgement is introduced,

Criteria for the rejection of observations have been given by
Peirce and Chauvenet and alternative methods are discussed by Tukey (1962).
Between the extreme views of Chauvenet and the brinciple of not rejectihg
any observation at allare more moderate views. A technique that has a
better theoretical justification is the method of uniform reduction
(Jeffreys 1961), although it is complicated to use. A comprehensive
discussion of methods for dealing with contaminated seismic data is contained
in Freedman (1968). |

In order to, at least, partially eliminate tﬁe contaminated
population, the foiloWing procedure was adopted, which ;s a modification of
the subroutine TRUNCATE (Herrin et al 1968).
(1) The goodness of fit of the observed data to an assumed theoretical
(normal) distribution was tested by the Kolmogorov—Smirnov distance at the
95% significance level. ‘
(2) If the distribution was found to be éontaminated by gross errors,
then the dafa was truncated at plus‘and minus three mean deviations from the
median.
(3) The sample mean and variance from the mean were calculated for the
truncated sample, and the sample variance corrected for tfuncation (Freedman
1966). .

To test whether or not a sample is drawn from a population having
a specific.distribution, the X? test of goodness of fit is usually employed.
To carry out this tést, the:null hypothesis is first set up that the sample
has been drawn from a universe with a known distribution, e.g. the normal
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distribution. The observed and the theoretical distributions are then
divided into analogous classes, and a table of relative frequencies or
probabilities in each class calculated. If the set of frequencies to be

tested is 01, O2 ........On and the reference set C1, C ""'Cn’ where n

o
is the arbitrary number of classes, then the X2 statistic is given by

2 = 2 (0(3) - 6(3))°
c(i)

i=1
The calculated valiue of X2 with n-1 degrees of freedom is compared with the
tabled value of xi at a selected level of significance (). If the computed

value of X? is equal to or'exceeds‘x2 the null hypothesis is rejected.

Q!
Although widely used, the test has some serious limitations
(Williams 1950). One such drawback is that the choice of number and width
of c;ass interval can seriously affect the result of the test. An alter-
native test was therefore used based on the maximum difference between the
‘observed and the hypothetical cumilative distributions. This distance (d)
is known as the XKolmogorov-Smirnov distance. As the test is based on- the
continuous cumulative distribution of the population, it has the advantage
that there need not be ﬁny arbitrary grouping of
To use the test, it is supposed that the population has a specified
cﬁmulative frequency distribution function Fo(x). For a given value of x,
Fo(x) will be the proportion of individuals in the population with measure-
ments less than or equal to x. The obser&ed cumulative step~function

SN(x) of N observations in the sample is expected.to be fairly close to the

specified distribution, and the sampling distribution of

d = maximum/Fo(x) - SN(x)/
is known and is independent of Fo(x) if Fo(x) is continuous. If SN(x) is
not close enough, then this is evidence that the hypothetical distribution is

not the correct one.
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A graph of Fo(x) is first drawn and curves at a distance dg(N)
are drawn above and below the hypothetical curve. If the observed cumulative
distribution SN(x) passes outside of this acceptance band at any point, the
hypothesis that the true distribution is Fo(x) is rejected at the a level of
significance.

Tables of the maximum distance dy(N) for various sample sizes N and
for different significance levels & have been compiled by Owen (1962). The
asymptotic value (for a sample size N greater than 35) at the 95% significance

level (which was the level used thfoughout) is:

Indicdtions are that the test, which is considerably easier to
use than the %2 stétistic, is also superior to X2 (Massey 1951). Any
sample population which failed the Kolmogorov-Smirnov test was truncated
;o reé&&e non—nofmal errors using the sample median and the mean deviation
about the median. These estimators are preferred to those of the sample
mean and standard deviation from the mean when working with contaminated
data (Tukey 1960, Herrin et al 1968). The sample median is less affected
by extreme values than the mean, which may no longer be the appropriate
estimator of the population mean.

It was considered a reasonable procedure to discard all data beyond
three times the square root of the ﬁean square deviation about the median.
When the sample median is near the population mean in the'normal case, the
probability of observing iata outside these limits is less than 0.603 and
so any data rejected can be assumed to be caused by gross errors.-

This procedure resulis in the rejection of a fraction (1=k) of
the data. If the bopulation of jhe central k per cent is considered normal,
then the variance of this central portion is 0'15 = o2p(k)where o°

is the popuiation variance and p (k) is a function independent of the

=28~
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population mean and variance. On obtaining p(k) for the fraction k
(Freedman 1966), an estimate of the population variance in the normal

case after symmetrical truncation is given by
2 - sk
plk

where S2(K) is the sample variance of the central X per cent.

A computer program (TRUNCATE) was written to perform the oparations-

-29-

(1) to (3) to test the distribution of residuals and is listed in Appendix H..
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CHAPTER 2
RESULTS

2.1 SLOWNESS CURVE

Values of slowness were estimated for 478 recordings, comprising
61 at EKA, 145 at YKA, 129 at WRA and 143 at GBA. The azimuthal distribu-

tion of the events at each array is shown in the shaded areas of Figures 9

" and 10. It is apparent that the distributions at arrays WRA and GBA

are different whcn events in the first two distance ranges (@ = 30° - 58°)
are compared with events at distances greater than 58°. Thereis a greater
spread of azimutﬁs fdr the events in the fifét two distance ranges.

This change»in the azimuthal distribution of events with distance
affects the values of the azimuthal site corrections derived from the event
residuals. Tvwo sets of corrections were therefore estimated;- one set for
the distance range 4 = 30° - 580 and a further set fora= 30° - 104°.
found the reduction in scatter of slowness is greater for the inner range
4 = 300 - 580 than when all events are corrected with the same-corrections.

Calculation of the slowness estimates results in a reduction of.
the variance from 0.00054 to 0.00044 secs® & = 30° = 44°) and from 0.00035
to 0.00032 secs® (A = 43° - 580).when the site corrections for the inner.

ranges are used.

-

As only events with clear P onsets and a large signal to noise
ratio were used, only a low number of events were selected at EKA, with

most concentrated at distances greater than 580. Lvents at distances
greater than 58° are well distributed in azimuth at YKA, while those at a
smaller distance are few but distributed at opposite azimuths, and are less
likely t6 produce biésed estimates of the azimuthal corrections.'

The mean estimates of slowness, dT/dAk and 95% confidence limits

-
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for all five dxstance ranges, corrccicd by removal of second ordor
azimuthal corrections computed from & = 300 - 58o and & = 30o - 104o
distance ranges are shown in Figure 11,

The curve has been estimated in two degree distonce intervals
except where the curve appears to be rapidly varying, when the interval was
decreased to one degree and except when the data 1s sparse (between
L = 390 - 420 and 98o -~ 1040) when the interval was increased. Estimates
of slowness made with the intervals all reduced to one degree and all in-
creased to three degrees resulted 1n an increase 1n variance. For the data
available, a two degree distance interval is considered optimum.

Indavidual estimates of slowness were also made for all events.
The uncorrected values obtained using equation 1.1 are shown ain Figure 12,
Fagure 13 shows slowness estimates after correcting for non-zimuthal
site corrections (equation 1.3), Figure 14 the estimates after
applying azimuthal site corrections containing a single sinusoidal term
(equations 1.3 and 1.4) and Figure 15 shows the slovness estimates after
correcting for azamuthal site corrections containing a iwo-term sinusoidal
approximation (equations 1.3 and 1.5) for the two distance ranges 4 = 30O -

O  ,A40

a0 _ ; o) e Vo ~
50 culG.u = Su - 0U4 - Th.Ls ].a,b"f: h 3.

o ths unsmoothe
dLT/dAk estimates of Figure 11,

The striking reduction in scatter as the site corrections are
successively applied sufficiently illustrates the power of the method.

The value of the second order azimuthal term in reducing scatter
1s clearly illustrated aif portions 3n the curve in Figures 13 and 15
are compared between 70 and 740: s1x events in Fagure 13 have values of
slowness which are much lower than the mean curve. One event 1s frem the

Greenland Sea and recorded at GBA, the other 5 are from the Alcutian Islands,

recorded at EKA with azimuths of 349.0°, 349.6°, 356.8°, 358.0°, 360.5°.
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Pogsible explanations are that these low values are evidence for lateral
inhomogeneity in the mantle between EKA and the Aleutian Islands, anomalous
velooities beneath the Aleutian Islands, or inadequate corrections for the
effects of array structure. However, the reduction in scatter (Figure 15)
vhen two~term azimuthal site corrections are used shows that the last
possibility to be more likely. -

. It is noted that although the three events with azimuths

. greater than_3569 gtill lie below the mean ourves, this may be due-to———
the approximation used in deriving the pite correctiona. If the slowness
of the same group of events corrected using one-term azimuthal corrections
(Figure 14) is compared with Figure 13, the reduction in scatter is

seen to be only marginal. The inclusion of the second order term in the
site corrections is seen therefore, to be an essential feature of the method.
A similar explanation may provide the reason for the anomalously large values
of slowness observed by Johnson (1969) for 7 earthquakes in the region of
the mid-Atlantic ridge between A = 55° - 63°. Johngon was unable to account
for ilhese observations and left open the question of whether they are due

to anomalous velocities near the axis of the mid-Atlantic ridge, in the deep

"mantle or due to inadequate sits corrections at TFSO array.

Othexr regions of high scatter in the corrected slowness curve
(Figure 15) besides that already mentioned near & = 70° are near 40°, 60°
and as the core is approached beyond 880. As will be seen later, these
regions are all associated with large gradients in the slowness curve,
dT/

dAk for each distance interval

(Figure 2.13) were smoothed at the mid-point of each cell by Jeffreys Nethod

The mean slowness values

of Summary Values (Jeffreys 1961), which is now described.
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Smaothing the slowness curve

The tendency of raﬁdom errors is to always increase thé irregularities
in the observed data, and attempts were made to estimate those parts of the
irregularities that are attributable to random errors and remove them. The
technique adopted for smoothing data must not however remove useful information
.and so must provide for some form of control over the amount of sﬁoothing to be
.-applied.

The fitting of a series of polynomials to the data by -leasi-squares—can
be used. However; the coefficients of the function chosen do not generally have
any physical significance and the standard errors in the coefficients are not a
veiy convenient method of measuring the reduction in error.

| A technique that does provide a form of control is Jeffreys Method of
Summary Values which can be used to smooth data at any tabular intervals. The
method assumes that most of third or even second or first differences at the
. -actual tabular intervals, are no larger than the known uncertainty in the
individual values, but that values at wider intervals show these differences to
be systématic. The method of summary values is used to establish how wide the
intervals must be so that ipformation on the second deviative of the functioh 
can be safely ignored while retaining the information provided by systemmatié
differences.

The data curve is therefore divided into inter&dls. A linear solution
(which is uniquely determined by two points) is used to find -the points in the
range where the difference between the linear solution and a quadratic solution
is negligible. The two points where the two solutions agree are the "summarj
values" and are independent of the curvature, Jeffreys method findsthe two
points within each inter;al. To test the goodness of fit, the summary values
are interpolated at the original tabular values and the x2 test applied at the

95% significance level.
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A computer program was written to accept thg unsmoothed data of

Figure 11, along with twelve arbitrarily chosen ranges. -Vhlueé of slowness
'we¥e taken at the mid point of each two degree cell and the ranges were betwecn
3° and 6° long. The program calculated the summary values and interpolated them
using third divided differences at the original tabular values and calculate@ X .
The ranges were then adjusted until x? was within the appropriate range. Ior
16 degrees of freedom,.x2 was found to be 18,5 which is well within the 95%
confidence region of 8;0 to 26.3 for the data of Figure 11.

. Table 2;11 presents the summary values and Table 2.12 shows the
smoothed slovmess values interpolated at the original tabular values with their

95% confidence limits. Table 2.13 gives values of slowness interpolated at one

degree intervals.

TABLE 2.11

SUMMARY VALUES

o o First Summary Point Second Summary Point

ange
. A Slowness | a Slowness

{31 - 36.5 [ 31.600 9.052 + .020 | 35.099 8.662 + .021
38 - 41 38.275 8.262 + .029 | 40.725 8.248 + .029
43 - 48 43.831,  8.178 + .027 46.762 7.893 + .023
50 - 54 50.487  7.445 + .039 | 53.686 .7.250 + .034
56 - 59 56.272 7.104 + .034 58.796  7.041 + .031
61 - 65 61.413  6.775 + .029 | 64.567 6.685 + .030
67 -~ 70.5 | 67.131 6,514 + .030 | 70.162 6.166 + .036
72 ~ 78 72.696  5.992 + .021 77.168  5.711 + .021
80 - 83.5 | 80.081 5.445 + .027 | 82.506 5.345 + .041
85 - 89 ] 85.228  4.892 & .027 88.540 4.713 + .034
91 =95 | 91.127  4.490 + .034 | 94.866 4.496 1 .035
97 - 103 98.021 4.4804;(.024 102.276  4.480 + .022°
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Smoothed values of dT/d A and 95% confidence limits

Table 2.12

(Degs) dT/d A (secs/deg) 95% c.l. (Degs) dT/dA (secs/deg) 95% c.l,
30 68
9.089 .054 6.321 .096
32 70
8.966 . 048 6.161 .092
34 71
8.700 . 054 6.057 . 056
36 73
8.483 .112 5.937 .060
37 75
8.308 ,072 5.815 .058
39 77
8.264 .072 5.652 .061
L2 79
8.235 . 086 5.474 .056
ey 81
8.149 . 098 5.400 .080
45 83
8.003 046 5.214 .198
47 84
8.762 .100 4,952 . 060
L9 86
7.520 .102 4,803 .078
51 88
7.365 . 086 4,694 .088
53 90
7.253 .080 4,522 .072
55 92
7.139 . 084 L. 492 - 136
57 94
7.103 .086 4,518 074
58 96
7.046 .072 4,508 .078
60 98
6.839 074 4,499 . 062
62 100 i
6.746 .068 L, 497 .062
64 102 _
6,686 .076 4,510 . 062
66 104
6.548 .064
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Table 2.13

dT/H.A values interpolated to one degree intervals

Distance - dT/d A Distance © aT/d A Distance aT/d A
(degs) (secs/deg) (degs) (secs/deg) (degs) (secs/deg)

30 9.128 55 ©7.191 80 5.474
31 9.089 56 7.139 . 81 5. blh
32 9.053 57 7.11% 82 5. 400
33 8.966 58 7.089 83 5.286
34 8.843 59 7.046 84 5.126
35 8.700 60 6.946 85 L,952
36 8.553 61 6.839 86 . 4.860
37 8.415 62 6.783 87 4.803
38 8.308 63 6.746 88 4,750
39 8.269 64 6.719 89 L.694
4o 8.264 65 6.686 90 4,603
b4 8.270 66 6.628 91 4,522
b2 8.261 67 64548 - 92 4,495
43 8.235 68 6.438 93 4492
Ly 8.184 69 6.321 ok 4. 504
45 8.105 70 6.211 95. 4,518
4% - 8.002 71 6.122 96 4,515
L7 7.885 72 6.057 97 L. 508
48 7.762 73 5.995 .98 k.503
ko 7.635 74 5.937 99 4,499
50' 7.520 75 5.878 -100 L, 497
51 : 7. 434 76 5.815 101 L, 497
52 7.365 77 5.737 102 - 4,501
53 7.307 78 5.652 103 4.510
5k 7.253 79 5.558 104 4. 523
~36-
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2.2 SITE CORRTCTIONS

Time residuals ehij at each seismometer are obtained from the
observed onset times after subtraction of the calculated onset tiﬁés.
When added to the DC site correction, Shi' they can be expressed as a
function of azimuth and termed "azimuthal site corrections". A corrécted
mean slowness-distance curve can then be eatimated for epicentres in the
five distance ranges'using these azimuthal site corrections. Farther
"regidual® site corrections are obtained for each gite from this second .
calculation in each of the five distance ranges from the observed (corrected)

onget times and the calculated onset times. These residual site correc-

tions should then be free of any azimuthal bias.

'However; as~a différent get of residﬁals i; obtai;é&—;;r ;Aéh'm-' |
distence range, a distance dependence may still.be present in the corrections.
The residual site corrections for each distance range.are-plotted againsf
distance in Figs 16 to 18 for each seismometer sile. =ach correction is
obtained with ité 95% confidence limits and an average value of this érror
is also showm. o

The correﬁtidns are generally small (less than + 0,03 seconds ),
and the diagrams éleérly show that at three arrays there is no significaﬁt
distance dependence. Any trend is within the magnitude of the 95%

confidence limits, The Warramunga'corrections show a slight distance

dependence and these are discussed below.

-37-




o VR i LS Ty e

O 0S
.
- @
B o
z
& [+]
&
w
-0 0S
[{{e12]
T ol
QG
, O 05" -
3
i
]
a Cr
t. -, 780
- 15 .

.

N ALTITUDE OF SUTES
3 \-..“‘_,a””t"‘ B
‘&

- \\ -
H BLUE LINE, 8 W HED LINE £
T T T R s sl St e e Bt S
w 9 a 7 ¢ 8 4 3 2 t 2 a3 &4 B & 7 B ¥ W©

] B A+H SIN (&+P) A
wrn @l o= A4B GIN IE4P1 4 € SIN{AES AN A

wewed R A4 D SIN WP 4+ C BINL2EST A B

YELLOWKNIFE_SIYE CORRECTIONS (A" YERM )

ANTTIDR o BITES -

\. /’J‘A"\/

2198 LINE s ;
~3 T S et bl | "
6 ] 4 3 2 i -8 2 3 4

_
N

i ek onflon Sl

Rlelind (o0 L)
360+ 140
3Q9- Sud

4wy

RED UINR
I - ..‘th—

8 -86.. 7

. . -1

1

e e ih m o % s Laeh X

e

ST




0-asf FIGUREQOGAURIBIDANUR _ SITE CORRECTIONS (A" TERM)
}-
r
L
" N
a
E o
-
-
w -
i- 2600 r
ro, 2500 b \
. i - |
~C 0% W 400 \
2300 F \ ALTITUDE OF SITES /\
H N e S o \\
FEZST NN
" BT 1 NF 3, o S TREY 1 M
. oo e . = Tt T ttTYTT— Yy
< 1 E) Fl ' ] 2 5 ] A
-- i oot p B Gy g P T
-2 Too-E - BnINIQ o) 4 0l gt P Y T o T
.3 R d + B $@1 + CSIN {20 $#A - & = I~ 68°
. WARRAMUNGA SITE CORRECTIONS (A’ TERM)
© 0 o8 - i
B
ol
8 I
[
"
-
-005}
-
s
- N BLUE LINE s w RED LINE &
f T ™7 L4 T T T -1 ) T T T T T T |
-o-:oL o 9 7 6 5 4 3 2 1 i 2 3 4 8§ 6 7 10

—t——— L_.._,.b_—‘;

A

| BT




on

)

b e B

The cause of the site correctlons can be attrlbuted to inhomoEeneztles
in the Earth. However, it is dlffleult to establish which part of the Earbh is

‘making the major contribution to the site correctioms. It is hoped that as many

events in many azimuths have been analysed for a widely distributed set of arrays,

the average effect of the mantle has been removed and any lateral variations in
the mantle or scurce effects will manifest themselves as individual values of

vslownees which are higher’of lover than the world average-cur#e. Variations in

-- -time -corrections et individual §iteés are then assumed to be due only to geoldgical

variations in the crust beneath the array.

Expressing the azimuthal site corrections in the form

(shi+ehij> - A+Bsin (;%¢) L (2a1)

- op (shi+ehij) = A+ Bsin (¢ +¢) + C sin (2a + A) | (2.2)

~ facilitates the handling of the residuals in the computer program, as the number

of independent parameters is reduced to 3 and 5 respectively. Equation (2.1) also

hae the advantage that 1t can be simply interpreted as the anomaly assoclated with

a single dipping layer beneath the array. Equation 2.2, incorporating a eecond
. ‘order term was found to give e'better fit to the data (as the variance was
~reduced) than the first'erqer'eorrecfions, However, the physical significance

- of the expression is more complex than.a single dipping layer, and the ideal fit.

would be an even more complex mathematical expression., Any model made | up of a

ser1es of dlpping 1ayers will not be unique,as a series of 1ayers dipping in

" different di:ectlons can give rise to identical residuals as a single layer

_ (kelly, 1969).

Equationas (2,1).can-be thought of as the average site correction 4,
pertufbed by the azimuthally varying term. The A terms are not identically equal,
in equations 2.1 and 2 2.

It haa already been mentioned that because of the significant change in

.-distribution with distance of events recorded at GBA and WRA, equation 1.3 was
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solved twice, once for events in the distance range 30° - 58°, and once for

-events in the total distance range 30° - 104°,

Figures 19 and 20 show the values of the DC term A for each array

. obtdined from data in the dlstance ranges:

(1)a = 30° = 104° using equation 2.1

:(2)A

30° - 104° using equation 2,2

1)

(3)A _5 30° - 58°'ueing equation 2,2

5repreeenta significant variations in the eub-array geology._

R e
i 2 E

D e =k

Values of A for all the arrays aré given im Appendiz F: - T E

It is noted that generally there is very little difforence between the

values of A for each array except at EKA, where extreme values obtained using

- events in group (3) are due to the lack of data and are countered by generally

larger valuee of B.

As pointed out previously, scatter in slowness is significantly reduced

:-by'using onset times corrected using equation (2,1), and further reduced when

' equation (2 2) is employed. Although C is generally small, this further reduction
;1n scatter is brought about by the presence of the second order term in

.'equatlon (2 2) 95% confxdence 11m1te on the A terms are of the order of

.+.0,01 eeconds. The varlation in the A terms acrosa the arrays therefore. 1->'
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Site Corrections for EKA

Figure 19 shows the values of the DC site correction terms and aléo
the altitude of the seismometer sites,_which range between 900 and 1400 feet
above meaﬁ sea level. To obtain a general picture of. the correspondencg
between the average site correction and altitude, the A termé (equation 2.1
and Appendix F) have been vlotted against altitude and a least squares line
‘fitted to the points (Figure 21). Values of A for sites R9 and R10 are
shovm, although they were not included in the regression because they are
associated with standard deviations greater than twice the average. This
is a reflection on the lack of data used to derive these two corrections.
The correlation coefficient is = 0.77 with 16 degrees of freedom. Values
tabulated by Fisher (1958, p.209) show that for n = 16, the probability is
less than 0.01 and so a significant linear relationship exists between the
magnitude of the site corrections and their altitude. The gradient of the
line is V° = 2.90 + 1.27 kms/sec and represents the seismic velocity in the
topmost surface layers beneath the array.

It has been assumed in this calculation that the rays are
incident vertically beneath the array, however teleseismic events at
distances of 30o to 100o have angles of incidence (i) beneath a 3 km/sec
crust of between 6° and 14°. A better estimate of the velocity in thus

v=VY9 = 2.9 = 2.94 + 1.3 km/sec

©08 1 cos (10°)

Removal of the height effect by assuming a near surface velocity of
2.94 km/sec reduces the average site corrections to leés than + 0.02 secs,
except for RS where the corrections still remain high (- 0.035 secs) and
which is probably associated with the seismometer coupling‘the state of
the rock immediately beneath the site, or possibly an incorrect estimate
of the seismometer altitude. The rcduced site corrections show no trend
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across the array which is confirmed by the small magnitude
of the azimuthal component. The only exception is R10
which has already been explained as being due to the lack
of data recorded by that seismometer. Residual site
corrections analysed as a functioq of distance (Figure 16)
are also generally small, with the éxception of R9 and R10
and less than 0.02 seconds.

The arréy-af EKA has been described in detail by B
Truscott (1964) and.a crustal study in the vicinity described
by Agger and Carpenter (1964). Jacob -(1969) describes
crustal phase velocities recorded at EKA from first zone
explosions. |

The crustal model obtained by Agger and Carpenter is
shown in Figure 22. The near surface vélocity of 4.7
km/sec was obtained from geological evidence. If this
velocity is modifiea to 2.94 km/seﬁ., then the time terms
they estimated can be used to re-compute the depths to
the various layers; assuming Pg.= 6.12 km/sec. and
Pn = 7.99 km/sec. The depth to the Moho is found to
remain unchanged at 27.0 kms. while that of the surface
layer is 170 m. This assumes plane layéring; which
because of the small azimuthal terms in the site

corrections is justified. Both models are shown in

Figure 22.
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Site Corrections at YKA

Site corrections at YKA show very little depéndence on
azimuth (less than 0.01 secs) and the average corrections are
generally small and léss than + 0.02 secs (Fig. 19). There is
no preferred direction of trend and they do not appéar to be
related to altitude. Figure 17 shows the residual site

_cgrrectiops”plptted.as a function éﬁ_distance, and no distance . - - _
dependence is observed within the limit of accuracy (95%
confidence limits = + 0.08 secs). It must be concluded éhere-
fore, that as far as teleseismic data is concerned YKA is
situated in a region of very uniform crustal material wifh
horizontal layering.

A crustal'seismic experimenf carried out in the
vicinity of the.array (Veichert and Whitham 1969) confirms this
uniformity and proposes the structure shown in Figure 23.

They found the Moho to be essentially horizontal, or possibly

-sloping slightly upwards to the SE and NW of the array. Known

" faults approach to within 5 km of the east end of the array

But are assumed to have a negligible effect on velocities.
Slight crustal inhomogenities are observed at 30 kms SE

of thg array and a few tens of kms. further SE into fhe Great
Slave Lake, where there are known faults. It was concluded
that telései;mic rays with angles of incidence in the crust

o b :
of 15 -30o should not therefore be affect and an essentially

- horizontally stratified crust could be assumed.
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EXAMPLES OF ONE-TERM FIT TO RESIDUALS: FIG.24
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EXAMPLES OF ONE-TERM FIT TO RESIDUALS: FIG. 25
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Site Corrections at WRA

The average site corrections 5t VRA show the greatest variation of an&
~of ;he arrd&s, rénging from around 0.04 secénds at B2 to - 0,06 secconds at B1O
(Figure 20). The distinet linear trend in the blue line (N - S) corrections is
not repédted along the red line (E - VW) where tho corroctions are more variable.
{f Distinct &éparturea are also noted gt Bé.and in the region of the cross—over point.
; _ .The trend of the site corregtions across the array hints that a sloping
%L%;i," f"iayered structure may be-the>oause. On fitting a least squares plape through.
| _tlTe éivérége site corrections plottéd in Fig 20 (equatiow 2:T), the plane was
found to have a gradieﬁt of 0.0045 secs/km in the direction ¥ 194.7°E. To

o interpret this gradient in terms of a dip angle it is necessary to know the

Véioc;ty ratiovatithe dipping interface; _

‘ | Underwood (967), from a time term analysis of shots fired near the WRA -

; lé;fgfrérray interpreted his results as being coﬁsiatant with a two lafer model

“7(V, ='5.42, V,'= 6.10 kn/sec) dipping at 5.3% in the direction N 205.5°E. |
CIQaiy,'Vright and Muirhead (1968), however, from the anélysis of five tele=

;gbeismié events recorded at WRA, favoured a higher velocity contrast of 0.7,

‘lurather than the 0.9 of Underwood's model.

ﬁgffjf —.i From the observed gradieﬂt of 0.0045 secs/km-and assumiﬁg a Qelocity‘

i '“'ratio.qf 0.7 with a velocity below the3dip§ing'interface of 6.1 ﬁm/sec, the dip
of the s&fucture is found to be 3.60 in the direction N 194.7°E, This compares

Po.o
' .

_'ﬁith-the value of 6.0° found By Cleary et al, Figures 24 and 25 show the

corrections_for each seismometerlsite approximated by the one term series: -
R :-_Q A+Bsin (@ +¢)
This sér@aa has the advahtagé that it représents thé observational anomaly from
‘ a’sing}e diPping intérface, where thefiphése angle' ¢ is related to the maximum
:angle of dip as | | '

Dip direction = 90° - ¢°. (from North)
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Residuals and DG site corrections are calculated £6 sum o zero:
and sb the average correction A Yaries from + ve to = ve values across the
array, (Fig\;re 20). Vhen the term (A ~ B) is negative, the direction of
maximum dip is given by .

Dip direction = (90° - ¢°) + 1800.
Figure 26 is a plot of the maximum direction of dip marked as vectors of
length (A + B) when A is positive and (A~ B) when A is negative. The directions
of the vectors show a consistent dip.tq t@e'wggt'alppg the blue arm and a dip__
.fo the soufh alOﬁé the red arm, At the crossover point the trend is N for -the
éites Rl, R2 and B!, B2 and B3, The general increase in site corrections along
“the blue arm from North to South implies an increase in depth to the structure
from Nortﬁ to South. The plofs imply that the anomaly is shapéd in the\form
of a syncline, ﬁhose axis trends nofthfeasterly, and deepening towards the
south-west, .At the cross-over point the general trend is north-westerly.

The aﬂomalous results for the region near the c?dssover point are also
confirmed in Figure 18, This shows the residual site corrections after removal
of the azimuthal term, plotted as a function of distance. The blue line shows

' a general increase with distgﬁce, while the red line decreases with distance,

At R1, R2 and R3 however, there is a general increase with distance

Evidencé for an anomalous region near the cross-over point has also. f
been deduced from two indeéendeﬁt studies.

An aeromagnefic survey of the area (ABMR, 1962) shows the presence of
an anomaly to the west of thé crossover point of the array and trending towardsl
the north—ﬁest.v A possible interpretation (Worthington,'1969) shows a rise'in”a

' magnetic basement from a depth of 2.56 kms to within 0,34 kms of the surface.
A similar thinning of the crust.iﬁ the fegion of the crossover point is also
supportedlby Cleary et al (1968) from their analysis of teleseismic signals from

the Aleutian Islands and south of Africa.

Ly




Site Corrections at GBA

The average value of the site corrections 1s small (1ess than 0,025
seconds) (Figure 20)and the azimuthal component is also small (Appondix F).
Any trend in the sate corrections would favour a gently dippang structure,
dipping 1n the direction N 306°E at an angle of less than 1.5° (assumng
velocities at the interface of 4 and 6 km/sec) Residual site corrections show
no trend with dastance and i1t is concluded that the GBA array is satuated on a

very uniform crustal structure
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2.3 DISCUSSION !'

Wthen the assumption is made that the deep mantle has z'adia.i
gymmetry, it follows that the slovmess. should be constant for events
falling within the came small distance intervals. Bvents from all azimths
can be included in the computation, the time corrections and azimithal terms
for unknown near surface geological variations having been included in the
equations of condition. The problem of bias due to the restriction of '
seismic zones to particular areas is overcome by using several well gj._.s-g_
tribﬁt—e-d_ arr:;ys:- "_'}jpe validity of the method has already been pointed out
by the remarkable reduction in scatter af‘ter applying the time terms inl the
Figures 12 to 15, '

The smoothed version of the mean slowness values was interpolated at
one degree intervals (Figure 27 and Table 2,13) using third divided differences.

The curve should be sufficiently free of local effects to be
treated as a standard slowness-distance curve. Along with other geophysical
data, it can be used to etab_l'ish significant changes in velocilty gx_*aciient
with depth, and used for locating regional differences from the average,.-

Figure '28- graphs the integrated area under the smoothet} -slowness
curve minus the Jeffrays-Bullen travel times and compares it with “;he curve
obtained by Lilwall and Douglas (1969) from 81 evenis recorded by the wwésn.
To provide a better fit to the Lilwall & Douglas curve, the integ'ra'hhed -
travel-time curve has been rote,teq. by an amount that corresponds to an
upward DC shift of 0.023 secs/deg in the slowness ourve. Thi's‘ fj.'gtzre
is well within the 95% confidence limits. Chimnery and ToksBz (1967)
shifted their. slowness curve by 0.05 secs/deg {0 fit their observed travel
time data from LONGSHOT, and a shift of 0.8 seos/deg is required if

Greenfield and Sheppard's (1969) slowness curve is to be made compatable

with J-B travel times.
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The correspondence of the travel times from the slowness distance
curve to the standard travel times of Lilwall and Douglas is further evid-
ence for the success of the method. The Lilwall-Douglas curve is the best
available (in that it predicts the travel times and epicentres of known
explosions better than any other curve), and the accuracy of the intergrated
¥esidual travel time curve is not high. However, the agreement hetween the
two beyond 60° ig remarkably good, while between 450,- 59° the fit is poorer
and this is thought to reflect the lack of data in the second distance
interval. An increase of 0.1 secs/degree in slowness near 50o brings the
two travel time curves into agreement.

The smoothed slovmess curve shows that there are éeveral regions
where the gradient is changing rapidly. On referring to the smoothed
histogram version of Figure 11 +there are several regiqhs where there is a
significant difference between this curve, and thé average curve of Herrin
et al (1968). Herrin's curve lies outside the 95% confidence limits of
the smoothed curve in the distance ranges 30° - 36°, 42° - 47°, 58° - 60°,
66° - 68° and 81° - 830. These five regions represent a flattening of
- the curve_énd have vélues of slowness that are all higher than
Herrin's. At distances immediatély beyond these flat regions there are
regions where there is an anomalous steepening of the slowness curve and
the gradient is changing rapidly. These five regions are near 350 - 36?
48° - 49°, 60°, 68° ~ 70° and 84° -~ 85°, and are more clearly indicated in
the curve of d2T/dA2 (Figure 29) by the five pronounced relative maxima.
The difference between the mean values of the curve at these distances all
show significant decreases in the curve at these points.

The 95% confidence limits on the difference between adjacent
mean values of slowness are found from the covariance matrix of results

(Appendix D) and are calculated in the computer program. Forming the
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t-ratio of differences between means and the standard error of the
difference for the -smoothed curve, t = 7.6, 4.6, 4.1, 4.4 and 3.2 for the
. five regions respedively. All these values exceed the limit t = 1.96
and show the five distance ranges correspond to regions where there is a
significant decrease in the sloﬁness curve.

The curve attains a minimum value of 4.492 secs/deg ;t A= 930,'
increases slightly to 4.518 at 950- and then decreases to a minimum of
4.497 at &= 100°.

These figures compare with Herrin (ed.) (19685 who considered
core-m;ntle grazing occurs at 99.3° (slowness = 4.5643 secs/degree) using
smoothed P travel time data, Johnson (1968) whd.asgumes 9701 and Sacks who
puts the shadow boundary of the core atd = 96° usin'g diff-ra.cted P arrivals.
Beyond 100° the curve slightly increaées once more.

- Although the final value of slowpess (4.523 km/sec at-A = 1040)

is obtained because of the extrapolation involved in the smoothing program,

" the unsmoothed curve also shows indications of an increase in velocity over -

the las% two distance ranges 96° - 98° and 98o - 104°. The covariances
give the standard error on the difference beiween the unsmoothed slowness
values (4.470 and 4.538 secs/deg respectively) as being 0.48. The t
staxiétic of 1.42 is thus just below the level needed to show a significant
rise in slowness. Ansell (1969) has shown that an increase in slowness
within the core shadow zone is possible if diffraction is
taken into account. Beyond 95° the higher frequencies are attenuated at a
greatei rate than.lowef frequencies (Sacks, 1966), thch results in an
apparent delay in the arrival time of a pulse propagated round the core;
: and:hence an increase in slowness. Téis frequency dependenﬁ effect also
per;ufbs' waves of different periods at the same distance resulting in a
gengral increaée in scatter of observed slowness as the core is approached. -
The scatter beyond 88° is clearly seen’'in the plot of the individual siqw-
ness estimate (Figure 15) and by the higher variance estimated for the
final distance interval (A = 83° - 104?). Johnson (1969) measured the .

| | | ~L8L




period of all waves arriving at distances greater than 90° and applied the -
appropriate correction to the obServed slowness values. Although lateral
variations at the mantle-core boundary are thought to be responsible for some
scatter, the seatter in the corrected slowness values was reduced.

The five regions of anomalously steep slowness gpadient near 35° - 360,
48° - 49°, 60°, 68° - 70° and 84° - 85° are the result of high gradients in the
- lower mantle velocity structure, that is, when Bullens parameter - Z = rdv/&dr,
representing the_nonrdimensional velocity gradient, is a-maximum (Bullen 1963,
ﬁ. 112), These regions are indicated by dotted lines in Figure 27 vhich also
shows the results from three studies of slowness using single arrays. The
criterion for selecting anomalous gradients is not made clear by Chinnery and
Toksoz (1967) and Greenfield and Sheppard (1969), partly because there are serious
gaps in their data, but the regions they consider anomalous are included in
Figure 27.

Lateral inhomogeneities in the lower mantle

Further evidence for the sharp change in slope near 35° from array
measurements is given by Fairborn (1967), who analysed 400 slowness observations
in both the north-west and south east azimuths from LASA. Changes in slope for
events from the north-west azimuth were also observed at distances of 55° and 70°,
The two -curves derived.from opposite azimuths show distinct differences between
65° and 750, which Fairborn attributes to lateral inhomogeneities within the
lower mantle, |

The problem of detecting lateral }nhomogeneities can only be solved
if the corrections applied to the slowness observations sufficiently corréct for
the effects of array geology. The method of analysing the observations described
in this thesis has been to obtain a world aﬁerage curve and lateral variations
have not been specifically looked for. Lateral variations in the lower mantle.
can however, be tested by combining observations from events in the same
geographical area and testing them against the world average curve shown in
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Figure 27. Fairborn's snalysis, which is similaer to that of Chinnery and

Tokso; (1967), does not use any corrections for the upper mantle structure

below LASA, but relies on assuming the structure can be approximated by a
constantly dipping interface. If this is correct, then the differences between
his curves from opposite azimuths will represent real lateral variations. The
failure of seismic refraction and gravity data (Steinhart and Meyer, 1961;
Borcherdt and Roller, 1967) to detect any large scale structural anomaly suggests
the true picture may be more complicated.

Vinnmik and Nikolayev (1969) used two networks of seismometers in
Siberia and Kirgizia with 200 km apertures to directly measure slowness for
200 earthquakes mainly in the Pacific seismic belt, They did not correct for
subcrustal effects, but found that events from both arrays fell near an average
curve except for observations at Kirgiz from the north-easterly azimuth. These
values had to be increased by 0.3 secs/degrees to fit the other data. They
attributed some of the scatter on their curve to lateral inhomogeneities and
found that events from Europe and North America géve values of slowness generally
larger than those from the Pacific area. Lower mantle inhomogeneities, resulting
in a flattenin - . istances of 30 - 360,

40 - 45o and beginning at 920. A steepening in the gradient of their curve
therefore occurs bhetween 36 - 40Q, vhich is in good agreement with Figure 27,

The clustering of slowness values for events from the Aleutian Islands
measured at EKA has already been mentioned (Figure 14). Vhen sub-array corrections
containing a two-term azimuthal component are used, the events move nearer to
the avérage curve, although they still have slowmess values less than average.
Further analysis is needed to establish whether these results are due to path
differences or méarly inadequate site corrections. It is however, worth
mentioning tﬁat the same events from the Aleutian Islands recorded at the CGBA
array (at distances of 88o and 980) also have slowness values less than average.
Low slowness values are also recorded at GBA for Kurile Island events at
disténces between 68° and 70°.
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BEvidence for deep mantle structure

Figure 27 also compares the work of others who have found evidence
for variations in deep mantle structure.

Repetti (1928) from a study of Mohoro;icié's travel times found
evidence for abrupt changes in slowness at distance of 32.20, 39.40, 65° and
77.5°. Vvedenskaya and Balakina (1959) investigated the amplitude P waves
to SH waves and SV to SH waves and found anomalously large values near 38 = 420,
51 - 55° 70° and 80°. Bugayevskiy (1964) performed a least squares analysis
of empirical travel time curves and noted discontinuities at epicentral
distances of 35 - 38°, 50 = 54° and 70 - 72° Carder (1964) interpreted travel
time data from nuclear explosions in the Central Pacific as having breaks at
distances of 39°, 52°, 69°, 791° and 89;—°. Kondorskyaya et al (1967) studied
the spectra of P waves and found discontinuities at distances of 380, 52°, and
710. All the regions that are interpreted by these workers as being
"anomalous" are included in Figure 27.

Kondorskaya and Slavina (1969) have recently made a statistical -
analysis of travel time residuals from 1144 earthquakes recorded at 15 stations
throughout the USSR. Siﬁilar variations in the residuals were found for
different stations at distances of 30°, 60 — 70° and 85°, and it was inferred
that their cause was inhomogeneities in the mantle with a world-wide distri-
bution.

The comparison of distances at which anomalies are observed to
occur by different workers is made more difficult because different
parameters have been measured and different qualities are being compared

whose effects may be observable at different distances.

[y
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Johnson (1969) used the same criterion to define anomalies as
has been used here - that is apparent steep portions of the slowness curve.
The fit of Johnson's curve to that of Figure 27 is particularly good over
the greater part of the'distance range beyond -about 450, and with the
exception of 84° - 850, the regions of his anomalous gradients correspond
almost exactly with the curve presented here. Although not a véry striking
anomaly in this work, all other studies agree that velocities at 66° - 70o
(about 1800 km depth)-are smaller than expected and the strong inflexion in
the Lilwall-Douglas travel time, which begins in this distance range is
strong corroborative evidence for this feature.
| On the other hand, only Johpson agrees with the anomaly at 60°,

“and, wi£h the exceptiod of Johnson, most of the other studies suggest that
the change at 48o - 490 is observed at slightly greater disfances. Only
two of the four array studies present evidence for anomalous velocities within
the range BOb - 900, and Johnson's result agrees with those of %he earlier

studies in finding the anomaly at about 80° rather than 84° - 85° as here.

average curve eépeciélly well. At 40° for example, the high gradient found
by Johnson coincides with the well developed minimum on the average curve.
Between 30o and 40° the results of the earlier studies are scattered but
there is a slight sugéestion in the array studies of two separate anomalous
gradients around 350 and 40°. The former is strongly confirmed by all but
one of the four array studies, as well as by the Lilwall-Douglas travel time
curve.

The reasons for the significant deviations,-at the shorter distances,

of Johnson's curve from the average derived from combining the four arrays
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is not known. One possibility is that there is bias which is caused

by insufficient data and/or inadequate azimuthal corrections in one or
both curves. The point has been discussed in the case of GBA and WRA
in the sec£iop on results; the geological model for the Tonto Foresi
array used by Johnson may not be sufficiently exact. A second more
interesting possibility is that if bias from these sources has been mini-
mised in the average curve, and if the Tonto Forest model is good enough,:
the Johnson curve hay indicate real differences from the assumed spheri-
cally symmetric earth at depths 'betv‘ween 800 kms and 1200 km.- Such conjecture
will only be resolved after'a standard set of slgwnesg tables has been
agreed. | |
The correlation of the regions where velocity gradients are
changihg rapidly, with the amplitude-distance curve of Carpenter et al
(1967) is not as good as one would expect. The five large relative maxima
of Figure 29 should correspond to maxima in amplitude (Bullen 1963, p.130)
(it is for this reason the curve has heen.plotted with the sign of the
y-axis reversed), In fact, only the amplitude maxima at 350 and at 48° -
54° show high correlation, and except at 94° the minima in Figure ?9. do
not correlate well. Tﬁis may be due to the overall lack of Aata in the
amplitude-distance curve, which was estimated in 30 intervals. Now that
new data from explosions is afdilable, the revised curve may show a better
correlation. | |

Comparison with a recent amplitude distance curve derived from

long period P observations at LRSM stations in the region near 40o (willey,
1969) is especially good. His curve coincides very closely to the

thenberé and Richter curves (Richter 1958) beyond 45° but near 40° i£ shows

a significant drop in amplitudes as is predicted here. A similar flattening
of:the amplitudevdistance curve near 40° ﬁas been observed by Cleary (1967) for

"short period P arrivals at LRSM stations.
: ~53-




CHAPYER 3
3.1 INVERSION "

The problem of obtaining a unique velocity model of the Earth:
from geophysical data is still unsolved. If the classical method of
Veichert-Herglotz is used to obtain a velocity-depth distribution from the
geismic tra§el times, then only an approximate result will be obtained.
This is because there are always many velocity-depth curves that correépond

to_any real set of seismic_observations. The range of possible.solutions

can only be limited by incorporating additional geophysical data, or—by

‘making the assumption that the travel-time curve is continuous and has a

continuous derivative. The slowness curve must therefore have no violent

changeé in gradient. Bullen (1963, Pe 112) has discussed the conditions for

a wvave to exist within a given layer.

For a ray with a velocity v at a radius.r from the cenfre of the
Earfh; the radius qf curvature is dv/vdr, vhile the radius of curvatqre at

that level is '/r. . For a discontinuity at the radius r, a change in the

_'shape of the rays of a given family will result vhen the ratio of the two

radii of curvature defined by:

&=xd

dr

<1
<

pass througﬁ f. & defines the maximum velocity gradient within each 1ayef

- - for a wave to emerge into the next layer. For a ray to exist, & must be

less than 1. Provided there are no low velocity layers where this condition '

-is violated, the Weichert-Herglotz method may he used to integrate the L

slowness-distance curve.
" A description of the method is given by Byerly (1942, p179
for further references); and a computer .program (listed in Appendix H)

vritten to obtain the veloéity-depth curve from the slowness observations,
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The method depends on evaluating the integral

A1
T
log "o 1 f -1
— e cosh P .
1 ™ o p,

, 1
vhore p are the values of slowness tabulated at each A up to Py at an epi-

ceﬁtral distance A1 . ro is the radius of the Earth. The equation givés
Ty the distance from the centre of Earth to the bottog of the ray emerging
atd,, that is, ‘the depth at which the vglocit& v = r1/ (r°p1). The accuracy
of the meﬁhod will depend on how accurately the integral can be evaluated,
since the_afea under the cosh-1 P/p1 againgt distance curve must be evaluated
for each pair of TyaV values required,

From the integral, it can be seen that slowmess values are required

from an»epicentral distance of 0°. Herrin's (1968) values of slowness for

" the upper mantle were therefore smoothed into the observed, correct values

of Figure 27. Herrin's model is an average for the upper mantle and is
representative of the stable, continental region under the central United
Stnteé bu£ is ﬁot intended to represent the actual velocity structure anyvhere
on the Earth. The actual upper mantle siructure chosen is unimportant as
long as the angles of_ihcidence of the rays within the model are small and

the corréébondihg tra&el—times are average and do not contaiﬁ discontinuities.
The compbsite slowness curve was interpolatéd at & degree intervals to enable
the Weichért-Herglotz integral to be evaluated witﬂ sufficient accuracy.

The observed slowness curve contains a discontinuity near 4 = 40°
and this vas smoothed between 39° and 41° to remove the inflexion and fulfill
Bullen's conditipn §~J' Figure 30 shows the corresponding average BN1
velocity.modeiifor the lower mantle. TFor comparison the model of Ierrin,
et al (1968) is also shown, which was derived from average travel-time

curves. This modwl is very smooth, with no anomalous features and against

it the high gradient regions of BN show up clearly at the depths of
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850 - 900, 1200, 1550, 1800 - 1900 and 2500 kms, corresponding to the
epicentral distances 35 - 36 , 48 - 49°, 60°, 68 - 70° and 84 - 85°
respectively. In general BNl has velocities that are less than Herrin's
below 1500 Ikms, |

In an attempt to make the high velocity gradients of Figure 30
more conspicuous, the non dimensional velocity gradient - 7z = -r/v (4V/ar)
has been plotted as a function of depth (Figure 31), and these regions of
high velocities can be seen as peaks against the values derived from Herrin's
model which éhows no anomalous features in the lower mantle, Minima in the
plot of =y show the positions of unusually flat portions or low velocities

in the velocity structure.
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B.é ELASTICITY OF THE IOWER MANTLE

The results from the slowness-distance curve strongly support
the hypothesis that there are anomalies in the lover mantle. In this-
section, variations of the elastic parameters of the earth that are implied
by the BN! velocity structure are discussed in the light of the classical
theory of elasticity and assumptions of homogeneity.
The classical theory of elasticity for an isotropic, homogeneous
medium relates the adiabatic bulk modules (ks) and the ridgidity modules (M)

to the compression («) and shear (B) body waves (Bullen 1963):

2

(kg + 300
82 - b

writing ¢ = «? - %B 2, then the ratios

k/fp = ¢, wh = 82
and Poisson's Ratio, 0'.

o = § (£ -28%)/(=" -8?)
can all be found directly from the seismic velocities.
K, and B cannot be caléulated without a kmowledge of how the density p
varies with depth. An estimate of the variation in density through the
Earth's interior can be obtained from a study of P and S wave velocities
if it is assumed that the change in density with depth is the result of

adiabatic compression alone. Adams and Williamson (1923) shoved

dphp = -g %
when g and ¢ are the values of gravity and the seismic parameter at a redius
r, respectively. Although this equation will give the change of density
within eéch layer, absolute densities must be adjusted to satisfy the

conditions of mean density and moment of inertia.
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Density can now be obtained directly from the study
of long period surface waveé and free oscillations.

Information on the viscosity, chemical and mineralogical -
properties of the lower mantle, aﬂd its temperature is,
however, most inadeduate at present. Th; temperature in
the D layer will lie somewhere betwéen the adiabatic pressure.
and melting pﬁint curves, bﬁt both of these quantities are
unreliabl§_de?prmined for the lower mantle and leave a
range of uncertainty of.several thousand degrees.

The ¢omposition of the lower mantle can be
inferred from thg analysis of meteorites. The results of
high pressure measurements, information on seismic velocities
and densities can-then be extrapolated by means of equations
of state to give the properties of rocks that are stable at
temperatures and pressureé below the Moho,

‘Under the equatidnsibf state, the pressure, volume

‘and temperature of a body can be related. Bridgman (1950)

began experimental studies of the prdperties of matter at
pressures of seVefal dozen kilobars. The isothermal curves
for the static compressibility of many elements and
compounds were obtained using devices consisting of a piston
and cylinder.

Measurements in the high pressure range approaching
the actual pressures encountered in the interior of the |
BEarth (of the order qf\1 M bar) can only be made using
dynamic meﬁhods. In these methods, the velocity of a
shock wave and of the material behihd the shockwave are

determined as the wavefront passes through the material.
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The two velocities, which experience shows to be linearly
related, are then related to the density, pressure and
.volume by means of conservation lawa. However, the
compression of matter in the shock wave is followed by
intense heating, resulting in the pressure, volume and
temperature changing simultaneously on the adiabatic
shock curve. This change is much more rapid than in the
Earth's interior and in the région of the lower mantle
it is almost' impossible to obtain systematically
theoretical equations of. state. For this reason, semi-
-empirical methods based on potential theory have been
employed.

The concept of this method is to obtain a
quantitative relationship between the potential energy of a
crystal and the lgttice constants (or volume of the body).
The numericél values of the parameters entering into the
relation can then be found from experimental data.
Equations of state for iohic crystals have been found by
Born and Mayer (1931). Once the equations of state of a’
sufficiently large number of rocks and minerals are known
then the method can be used for the determination of the
chemical composition of deep sections of the Earth.

The results of the preceding chapters of this
thesis have enabled the compressional velocity ( g ) to
be determined. Provided B is well known then the depth
dependence of the seismic parameter (@) can be found quite
accurately. It has already been mentioned that the depth:
dependence of the density is known less accurately and

for this reason, comparisons are made using @ only.
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The question of how fﬁr the mantle 1s homogeneous
has been investigated by Birch (1952). He compared observed
values of the rate of change of & with depth with the values
predicted for a homogeneous layer. A test of‘uniformity
of composition can:then be madg.

Following Bullen (1949), Birch introduces I' , a

function that can be calculated directly from @-depth

tables: .
T ' 1 d¢
I‘ - 1 - g dr 30 21

where r is the radius and g the acceleration due to gravity
at r (which departs veiy little from 103 cm sec_2 throughout
the mantle). Birch shows that for a homogeneous layer in
which changes of density and compressibility result from
self compression in'a gravity field and variation of

temperature, then

akT \ ' 2 aZeC
= [ —= T Tav) arex
r . ‘«(ap )T + ayh + (Tay)“B + 2

. Bullen (1949) gives simply dKs/dP for the right hand side.

However, to allow for the effect of temperature and
temperature gradient, Birch introduces the isothermal
incompressibility KT. Here, q is the coefficient of thermal
expansion; ¥ is Gruneisen's ratio = aKs/pCp where Cp is

the specific heat at constant pressure; T is the absolute
temperature; € the differepce between the actual and
adiabatic temperature gradients. A, B and C are functions

of the homogeneous material. From a review of the parameters
of many solids, Birch (1952) found that although the absolute

nmagnitude of compreséibility varies some hundredfold, and

in spite of the differences in chemical binding between
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various compounds, there are sytematic relations which
enable A, B and C to be found. If the assumptions made are
valid then g_"law of corresponding states" holds for a

ﬁide range of substances.

The numerical values-for the D region of the
lower mantle.enable the secqnd order term to be ignored
and A and C are of the order of -5 and -2, respectively.
‘The” equation therefore -becomes .

- X .
To evaluate the left hand side of equation 3.22, g was
assumed to §e ‘103 cmlsec-2 and the compressional velocity
structure.of section 3.1 used. To inﬁestigate the effect
of the high velocity regions in this model on the elastic
parameters in the lower mantle, a composite shear velocity
model was constructed that also represented an average
world stfucture.

A study of shear velocities to a similar degree of
accuracy as that of compresgional velocities has yet to.be
made, Howevef,IBrahim and Nuttli (1957) have made a study
of S wave travel times out to about 50° using a polarization
technique to identify arrivals.

"They determined a shear velocity structure that
was in gross'agreeménp_with the upéer-mantie-P structure
“determined by Johnson (1967). Doyle and Hales (1967) have
detérmined a new shear travel-time curve between 28° and
800,_éna in a recent paper by Anderson and Julian (1969),
these two shear travel times have been inverted to yield a

shear vélocity structure that is compatible with Johnson's
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"model. The model obtained by Anderson and Julian (US26)
specifies velocities to a depth of 1800 kms. Velocities
below this depth were taken from the Gutenberg-Birch II
model (Ande;son, 1964). The combined shear wave model is
one with.no pronounced discontinuities below 800 kms. At
this depth, g = 6.30 km/sec.and.increases smoothly to the
core boundary at 2898 kms, where g = 7.24% kms/sec. The
model waé interpolated' at depths of 50 kms and along_with
the compressional velocity model (BN1), used to obtain the
deptﬁ_variatibn_of the seismié parameter @ . Because
of the smooth form of the shear model, all rapid variationg
in the elastic parameters with depth must be due to variation
in BN1.

" The results show there is a relatively uniform

increase of ﬁ with depth below 1000 kms. ‘R/p. and'-g
~also increases uniformly ﬁithin tﬁis region, exc;pt near
1209 kms, where_q- shows.a marked increase. This is tﬁé
regioﬁ'of the high P-velocity gradient, and an.increase in
Poisson's ration is consisfent'with an increase in .
temperaéure and pressuré. Poisson's ratio shows a marked
flattening near 1500 kms depth (Figure 32), followed by
an increase in value. Values of o obtained by Anderson
and Julian for their US26 model and the data of Ibrahim
and Nuttli .are also shown. Decreases in g in the upper
mantle: observed by Anderson ‘and Julian were thought to

be due to changes in crustal structure. Shock wave data
shows that for # gi;en crysta; coordination, Poisson's
ratio decreases as the packing index of Fairbairn (1943)
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increases, an@ for a given mean atomic weight, Poisson's
ratio decreases as the coordination increases. For

simple oxide phase changes there is such an increase in
packing index; The phase changes are also necessary to
produce model densities that agree with the observed
values (Clark and Ringwood 1964). It is then unnecessary
to postulate an increase in den51ty near the lower mantle

by 1ncrea51ng the FeO/(FeO + Mg0O) ratio as suggested by

Anderson (1967).

The geophysical and g;ochemical implications
rely heavily on the reliability of the estimates of the
lower mantle velocities. Until a study of shear wave
velocities has been made with an accuracy comparable to
that of body wavés it will be difficult to estimate how

far the trends in Figure 33 are reai and how far they are

. just due to random scatter. High pressure laboratory data

is also very limited at present, and unavailable for

the lower mantle regions and so any hypothesis produced

to explain the high velocity gradients cannot be checked.

Figure 33 shows the rate of change of ¢fwith depth for

the lowér mantle, plotted as the function 1 - éw%g = I

For comparison, the values obtained from Gufénberg's (1958)

dafa are shown. -
Theoretical values, obtained by Birch (1952),

using equation 3.22 are also shown. For T of the order of

several thousand degrees Tqy will be about 0.1 - 0.2.

fhe quantity ea¢/g lies between 0.2 and 0.1 for a super

adiabatic gradient .of 1°/km. These two‘terms form

corrections to (aKT/ P)T which is about 3.5 for the lower

mantlé, decréasing with depth. The calculations assume -
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that the mantle material is homogeneous and isotropic.
Regions where there are gross departures from the
theoretical curve indicate that the region is either not
isothermal or not homogenecous or both.

A conspicuous feature of both of the observed
curves is the high value of p in the region above 800-900
kms which represents'Bullen's NC!" region of rapid rise of
velocity. If the layer weré homogeneous, - values would be
expected in the neighbourhood‘of Lk from equation 3.22,
decreasing with pressure. Theligh value of I' cannot be
explained by high temperatures, as this would have the
effect of reducing the observed values. In the transition
region, both the density and seismic velocities increase |
more rapidly than they would by compression of a homogeneous
solid. It is therefore thought that in this region there
is a change in composition or a phase change witﬁ a resulting
rearrangement of the atoms in the lattice.

Gutenberg interpreted relatively straight sequents
of the travel-time curve befween 40° and 440, and 530 and
630 as being anomalous, as they represent a relatively slow
increase in velocity with depth within the mantle. These
regions are seen between 900 and 1000 km and 1400 and 1500
km, and are indicated as minima in p in Figure 33. As
pointed out in Chapter 2, anomalous regions in this study
have been tgken as meaning those regions where the velogity
is changing rapid;y with dépth and these regions are shown

as the shaded areas in Figure 33.
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The region of the upper mantle above 1000 kms has
already been discussed. The observed values of p also show
a marked increase near 1200, 1550, 1800-1900 and 2500 kms.
Within these regions p is varying rapidly with depth, although
in the two regions near 1550 and 1800-1900 kms, the actual
value of ' is not significantly different from Birch's
calculated value. The increase in I above the theoretical
value neaf 1200 kms is most pronounced. As the core is
approached, both Gutenberg's and the observed curve incréase
above the theoretical value.

The discontinuity near 1000 kms has been investigated
by Ringwood (1969) and interpreted as phase changes in oxides
of magnesium and iron with coordinations higher than six.
Similar transformations'are postulated for increases in -

seismic velocities below 1000 kms.

-65=




CHAPTER 4

CONCLUSIONS

k.1 THE DATA

A slowness-distance curve has been derived using-
all available data recorded by the four UKAEA arrays.

' As more dataare collected the curve, which is

estimated in intervals of two degrees, will be revised
and the intervals reduced to give more information -of the
fine structure. With the construction of further arrays
it will also be possible to obtain a far greater coverage
of azimuths than is possible with the present distribution.
From Figures 9 and 10 it can be seen that there is a
general lacE oflevents to the south of each array. An
arraj situated in Brazil would be able to remedy this to
some extent. Ideally, results from a location in Siberia
woulé provide the necessary coverage. ’

The arrays used have a sufficiently small aperture
to minimise structure corrections and still produce a stable
estimate of sloﬁness. It is however necessary to read.
the events to an accuracy of a few hundredths of a second,
aﬁd the laborious method of matching waveforms, described
in Section 1.4 was used. For the large number of events
available, the reading of oqset times (approximately 9000)
also took a considerable length of time. If events were
available in digital form and the data handling performed
with the aid of a video 'screen, then thé brqgess of reading
arrivals could be speeded up, whi;e still allowing the
operator the very necessary facility of being able to

match the waveforms by eye. Signél processing techniques

-66=




could also be easily incorporated to enhance the onsets,
and so make available a larger population of events that
at present have to be discarded because of low signal to
noise ratios and ill-defined P onsets.

4,2 SITE CORRECTIONS

The site corrections are attributed to inhomo-

geneities in the geology beneath the arrays. The corrections

derived for each array show the crustal layering beneath

YKA and GBA to be horizontal and to have very little effect

in perturbing the slowness of the wavefronts crossing the
arrays. The magnitude of the corrections, especially at
GBA, is small (less than +0.0% seconds). GBA has now

been extended from 10 to 20 instruments and the number of

events recorded warrants the experiment to be repeated to

obtain corrections for all chqnnels; This should also
remove any possible weighting effect that may have biased
the slowness estimatéé by using an array with oniy half
the number of seismometers. |

The corrections at EKA have been shown to be a
function of the relative height of the instruments. By
assuming a crustal velocity of 2.94 kms/second in the top
170 m this height effect can be effectively removed, with
the excepti&n of R5. The correction at this pit still
remains large after the removal of the height effect, and
it is suggested that thié is due to the seismometer
coupling or an erromeous value fsr the altitude. Because
of thg lack of data recorded by seismometers R and R10,
no conclusioné could be reached for these two pits.
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The corrections derived for WRA array show that
to a first approximation the layering in the crust is
dipping at 3.60 in the direction N195°E. The corrections
therefore have a relatively large azimuthal component.

The directions of dip beneath individual seismometers show
a trend towards the NW for the seismometers near the

cross-over point. The available geophysical evidence

from the érea confirms a rise in the basement near the NW

of the cross-over point.

4.3 SLOWNESS ESTIMATES

The slowness curve obtained from the available
data should represent the best average for the world.

The curve is in good agreement with the results of observed:
travel times and shows several anomalous features.

These correspond to regions of anomalously high
velocity gradients at the distances of 35-36°, 48-49°,
60°, 68-70° and 84-85°,

| | The features have been interpreted as radially

anomalous Qeloqity gradients within the lower mantlelnear
.the depths of 900, 1200, 1550, 1900 and 2500 kms. Those
' near 900, 1200 and 1900 kms. are confirmed by other array
studies and also independent studies; the consistency
of the evidence near 1900 kms. is especially noteworthy.

By estimating slowness in narrow distance ranges,
uéing data f£om éll azimuths, a single model can be
estimated against which it is possible to test the
existence of lateral mantle variations. Comparison with

a single array study (Johnson, 1969) suggest the possibility

of differences from the world average structure at depths
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of 800 to 1200 kms. Below 1200 kms. the assumption that
the mantle structures are very close to radial symmetry
is strongly .supported by this and other array studies.
The P wave velocities for the lower mantle have
been combined with shear velocities to obtain an estimate
of the rate of change of the seismic parameter @ with
depth. This quality can be used as a measure of the
degree of homogeneity. Because the scatter in this curve
(Figure 33) is unknown, the significance of the departures
from homogeneous behaviour is difficult to estimate. The
results confirm Gutenberg's (1958) observations near the
aepths of 960-1060 kms. and 1400-1500 kms. The features
near the depths of 1200 and 2500 kms. show the greatest
departure from homégeneity. However, until a shear
;elocity structure has been derived with an accuracy
comparable to that of the éompressional_wave studies no
reliable conclusions regarding the geochemical né£ure of

the fine structure in the lower mantle can be drawn.
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APPENDIX A
The equation to estimate the slowness and azimuth of a plane
wave. propagated across an array of seismometers is derived.
Consjder an array of 7 seismometers, with cartesian coordiantes
(xi y V) ————— (xn ,_yn) with respect to the arbitary origin (0, 0) at 0,
the Y-axis.N—S and the X-axis E-W.

The wavefront of a seismic signal from the direction OA at an

(o)

-aximuth &~ from north with respect to O, traverses the array with a constant

velocity V. The distance travelled by the wave is assumed to be large so
that the wavefront can he approximated by a plane and the veloéity of the
wavefront .V is constant for all the seismometers (Figure A1).

If the seismometer i is at a radial distance Ri and azimuth ei

from the centrepoint O, the apparent or phase velocity of the wave along

. \'
Ry 18 oo (®-a)’

The arrival time of the wave at X; ¥y relative to that at the

origin is: 0, = - Ry , A
V/cos @, - a)
. 1 ,
Now coordinates Ri COS8 i =,Yi and Ri Sin 21 = X;, and on expanding equation

- Al.and substituting:

0. = - (X; sin @ + Y, cos &) A7
1 v

The arrival time relative to an arbitary zero time (which preceeds the
onset time at i) will be:

ti = 0i o+ to + &
where t, = arrival time at the origin, and €4 is the error in the observed
arrival time ti
‘Hence from A2 t;, = t - (X; sin @+ Y, cos a) + e, A3

v
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For n seismometers there are ti -—-—--——-——-tn'relative arri?al
times, and n equations of condition, and three unknowns & V and to.
These equations can be solved in the presence of the errors Bi by least
squares if‘ei are hormally distributed, to yield the solutions (sin %ﬁv)'

'(cos‘l/v) and to' from which @ and V can be obtained, viz

cosa
v
& = arctan :
sina
v
1
v =
1'
singz * col o]
( v ) . Los &

v

The phase velbcity is simply the reciprocal of the travel time derivative

"slowness", and puttiné to = C we have from A3
' _~ d_T ]
t;, = C=R, cos (& - a). 35 * S
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APPENDIX B

The equation to be solved has the form

[y . - . e - O . . = .
ToeSpg v e Gy - By °°s< hi hj) Py hi

which is a simple series of linear equations in Sh

In the case considered h =
(no. of seismometers in array h) ; j
' dT

at array h). P, = /dA>k

, thij is the appropriate onset time.

1, 2 --- 4 arrays ; i =

=1, 2 === J

i' “ni' Pk

2 == I,

1, h

h

the slowness of event j at a distance K = 4.

(no. of events recorded

The matrix of coefficients comprising the equations of condition

B.1 can be set up. The A matrix is:

é—I1-x_Ia—x-IB—X-Ik—x-J1-x-J2—x—J3-x—Ju9
equations _
J3X13 U B M
Jy x Iy v F N

S is a matrix containing the coefficients of the site corrections. There

are J1 sets of I1 X I1 coefficients, derived from the LHS of the equation

of condition (1) ie
r1s1 + 05, +
0s + 152 +
I, equations 4 OS1 + 05 +
LOS1 + 05, +
154 + 1Sp &

T, U, V are similar matrices for the

OS3 ______ OSI1

OS3 ------ OSI1

153 ______ 0SI4 for array
h =1

OS3 ------ 154

TSB ------ 1511

site corrections at arrays 2, 3 & 4.

The additional terms in the I1 + 1 row of the S matrix is included with

zerc on the R.H.S. of the equals sign to include the condition }jé_ =
i

0.

¥

i
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Three similar equations are included in matrices T, U and V, so that tZSi = 0
5

for all h. C is a matrix containing the constants and consists of J1 sets

of J1 X I1 matrices, derived from the LHS of equation B.1.

_________ )
E'IC1 + OC2 + OC3 OCJ1 )
(1C4 + 0OC, + OC, ——mmeeem- oc._. ) : '
I; equations ¢ 1 2 5 J1 ) for array h = 1
OC. cmcmmmeem )
2101 + OC2 + OC3 OCJ1 )
)

D, E, F are similar matrices for the constants for the other 3 arra§é. If
event 1 at. array 1 falls in the & > (say) distance range, then K is a

matrix containing the terms:

- - = - : a =
R, ( ei aj > (xi sin “j + ¥y cos 3 ) Ki B.3
4, A 2 :A:3 _________________ Ak:
( )
( K )
I1e9uations § Ki ; for array h=1
( )
( ' )

There are thus J1 sets of k x I1 matrices. L, M, N are similar

‘matrices for the 3 other arrays, all with the same number of columns K.

The elements of the matrices compriéing the STUV, CDEF terms will
all be ones or zeros and the KIMN terms will be of the form given by

equation B.3.
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{

The unknowns HOrm ithe column vector X =

S11

542

g
11,

. site corrections for each array

SE1

S22

S

21, . _ E —

etc

c constants for each array

W.U
i
>
-
)

1
>

o
~
"

>

If Y is a column vector comprising the observed onset times t then the

) hij’
system is ovérdetermined and characterised by the linear set: AX =Y
where A has HIJ rows and (HI + HJ + K) columns. The most probable values of
X are obtained by choosingvthe values that minimise the sum of the squares
of the deviations of these values. Forming the residual vector

IAX -Y =r

The condition for the least squares solution is that r2 is a minimum.
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The least squares solution becomes

A ~
~ ~

AAX = AY A = transpose of A
XA is now a symmetric matrix with (HI + HJ + K) rows and columns. The
vector X is thus given by

~

X = (AA)"1 AY

where (Kh)-1 is the inverse matrix of AA.

A is a HIJ x (HI + HJ + K) matrix. For H = & arrays,l = 20 seismometers —
- per array and approximately J = 120 events recorded per array in K = 31

-distance intervals (assuming A = 300 - 104° in 2° intervals) then A will

have approximately 4.9 x 106 locations. A more efficient method is to set
up the normal equations'KA,'directly. The number of equations is thus |
reduced to the numbe¥ of unknowns, with a corresponding reduction in storage
locations. | |

As an example, consider equation B.1 rewritten in the form:

€ +a ¥ +a;x,+ azXy = Y B.4
where x1,x2,x3-are the unknowns (regression coefficients) = Shi’ Chj’ Pk
a, a, a3 are the independent variates, and if y = thij is the dependent-

. variate which will usually be in error €.

In the example quoted .here three normal equations can -be

constructed from (4), and if zi stands for summation over all observations

T L)+ e - o)

or (AA) X = AY

(AA) is a matrix symmetrical about the leading diagonal.
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It is noted that in order to restrain the parameters to the

3

condition }ij x; = 0 it is only neceséary to add 1 to each coefficient of
i

a on the LHS of the normal equatioﬂs.

The matrix AA containing the elements of the normal equations can
be solved by matrix inversion giving the covariance matrix C, which vwill
also be'symmetrical about the leading diagonal.

Matrix C is related to the normal matrix by the relationship

C(AX) = I, the unit matrix. -

<Xa1 )2 2 () 2ew)

( ) )
¢ oM 1273 y = §1 0 03
( ) _ ) ( )
€1y Cy c23§ ( )Z( ) Z(aa)) . {0 1 0
( ) 237y ( )
( )t - Y« )
(c.. c c.) <L(aa)Z( )Z(a)a .G oo
( B 32 33) (Lu\13 : 37 ) T« )

B.5

Once the six values of C are known then the regression coefficients may

be found fronix = C'K.Y

/ - / \
. )
1€ X = Cqq Ekaﬂﬁ) * Gy z&aa-ﬁ) * Cos a3y1) )
' )
2o e o Lo) o o L) 3
X = G2 Lo a15'2> oG L aaya) * ‘ a3ya> g
| z
3 0= Ga3 Z(aﬂ'}) * G Z(a.a%)- * S Z(%%) )

B.6
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APPENDIX C
The method of solving the equation of condition:
: : daT = .
- a » . «Q 0 d-A - Cc1
Sps + Cpjy (X.hl sin &y + ¥y, €08 &y, > /aby = tnij

for Shi’ Ch" and 4T/gax hes already been described. (Appendix B). In this
J

section the equations of condition are derived for the corrected values of

slowness for individual events.

The observed relative onset times thij are measured with respect

to an arbitrary zero line (which isArepresénted by Chj in equation C.1).
On solving C.1, corrected onset times can be obtained by subtraction of the
site correction term:

t., = ¢t - 5 .
i hij hi

Values of dT/dA for individual events can then be obtained from the equation

c -_(xi sing + y; cos a> _g% = ti C.2

Chj will generally be a better estimate of the constant time-shift C, and

so in deriving dl/dA. C-ﬁas made equal to C The corrected relative

hj*
onset times are row
t; = th:LJ = Sps - ChJ
and the equation of condition
-XSina+ycosa£=t
‘ i- i ' b i
- putting -(:xi sina + y; cos a) = Fi ' the least squares estimate

of dT/dA for i = 1, 2 «+... n onset times is

n
. : " F. t. :
. slowness = EET 11 for each event.
| dd _ _i '
i F.2
' 1
i
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APPENDIX D

CONFIDENCE LIMITS

The normal error-law shows that any item picked at random from a
normal population distributed with a variancecr2 and mean x will lie between
* 1.96 0 with a probability of 95%. Hence + 1.96 are called the 95 per
cent confidence limits. |

However, the distribution we are dealing with is usually only a sample

of "the total pOpuléfion,'i'Hﬁa_a'é%e"fEETETBFé"ﬁﬁkﬁbﬁn{ and have to be

estimated. _An'estimate of 02.( = Sz)_can be made from the errors e:
.- 2
5% = iei
' i
B s ¢ e

'_where‘m—h is the number of degrees of freedom obtained from m eguations
of. condition with n unknowns. The errofs ei can be obtained by substituting
the regression coefficients x into the equations of condition B.4 (Appendix B
'.Confidence limits for the regression coefficients x can- be estimated from
the covariance matrix C
011 C12 C13
Ci2 G Oy
“13  Ca3 °33J

. Rearranging B.6, it can be éhown that x is a linear function of y :

x,I = Zy1 [qu a, + 012 a, + 013 a3_J

¥2 = X Y2 [C‘IE ag *. Chpay+ Cy3 25
- L ~ D.1
= c

*3 Zys '_ 13 31 * Coz 3, + Cy3 85 |

Now the yariance vix] of ahy linear combination of uncorrelated random

variables:

X =k + k y1+k

(o) 1

4 k
2 Y2 "

393 =mm==m=m
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is given by T ' j}‘
' : _ ol 2—/ x 2
Ll om
i

when o2 is the variance of ' (Douglas 1966 p 2%). It is now shown that

—_
> J;i is simply equal to the appropriate diagonal element of the covariance

matrix.

If the quantity in brackets in equation D.1 is represented by

2
Vix] = 0‘22["11 84 % Cyp 8y * Cy3 aBJ

where 0'2 is the variance of ¥, ie the variance of the errors € which has

ki’ the variance of x is:

been estimated to be SZ.

Expanding the term in the brackets:
0'2 k c a + C a + c a
i 11 ™1 12 "2 13 3
o2 { c k., a + C k. a + ¢ k, a D.2
11 A R | 12 i 2 13 i™3 :

considering only the first term, and expanding once move:

0-2 c.ﬁc a + C a + C a a
11. 11 %1 12 %2 13 °3 1

o al 2 1
2 €49 l—c_n.z_a,‘ + c,lzza,] ay + i3 Za1 aj-‘U

It is noted that the term inside the square brackets is equal to the product

VI x]

of the first row and the first column of equation B.5 (= 1), Similarly
the other terms of equation D.2 can be obtained by expanding equation B.5

and are thus zero.

!}

Hence V'[ x1] o2 44 y Or more generally

o2 . . .
v xi-J = ci4 where C.5 is the ith diagonal element

of the covariance matrix.

Now if x5 is normally distributed, then the confidence limits

——
x; ot t”,IV[xi]

tw S Cii vhere S is an estimate of o,
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' For large numbers of degrees of freedom t,= 1.96 for 95% confidence
) : limits

2.58 for 99% confidence
limits

1,04 for 66.7% confidence
) limits

for small numbers of degrees of freedom, t can be found from tables.
In a similar way, the confidence limits on the difference of two
x's i.e. x, and x, can be obtained from the appropriate elements of the

covariance matrié Cii' The 95% confidence limits on the difference between

x, and X, is:

1

2 2 2
itw(s ¢,y + 8°C,, - 25 c12>

where C,, and 022 are the diagonal elements of the covariance matrix as

11

pfeviously defined, and C,, is the appropriate off-diagonal element. 32012

12
is thus the covariance of x and Xoe

The 95% confidence limits on all means and differences between
means are formed when the values of slowness are computed, and can be obtained

from the computer print-out.
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APPENDIX E

The four UKAEA-designed seismic arrays

Scismic signals have to be detected against a continual background
of seismic noise. For teleseismic signals in the range 30° - 100°, the noise
should not be greater than 10-6 cm/sec rms. in the frequency band 1-2 Hz.
Noise levels generally decrease with cdistance from oceans, and so inland
rather than coasﬁal sites are to be favoured. Other factors to be considered

“are proximity to vehicle traffic, industrial areas and trees, all‘éf which
tend to increasé noise levels. Sites should also be chosen in regions that
are geologically stable and free from elastic discontinuities and with low
relief.

The configuratién chosen for the four UKAEA arrays is L~shaped,
which has advantages in being able to differentiate between seismic signals
coming from different directions. The two lines of seismometers (designated
"red" E-W and "blue" N-S) are spaced at 2.5 Xms at each array, except EKA |
where the spacing ié 986 m., Each array has 20 seismometers except GBA ‘
where 10 were operating for the duration of the experiment. Willmore Ik II
short pericd verticle coﬁ“onent sgismomelers, with a damping factor of 0.6
and a natural period of_1 Hz, are used throughout the system. A descripiion
of the recording system has been given by Keen et al (1965) and in AWRE
Pamphlet No 2.

Eskdalemuir (EKA)

EKA is situated in Scotland and possesses the highest background noise
levels of the four arrays, varying from 3.5 x 1070 cm/sec to 2 x 1072 cn/sec
in the ¥ to 3 Hz band under typical conditions (Truscott 1964). The numbor
of events recorded with well defined onsets was therefore fewer at this array
than the other three. During some periods of its operation, a Hall-Sears HS 2

geophone vas used at position R4. As onset times recorded by the geophone

-81-







vere found to be significantly altered, data was only used when a VWillmore
ﬁk‘II wvas sited at the R4 position,

The configuration of the array is shown in Figure E1 aﬁd the site
coordinates and altitudes listed in Table El,

Yellowknife (YKA)

The array is situated oﬁ the Northern shore of the Great Slave Lake,
Canada. The configuration is shown in Figure E! and the relative coordinates

of the site positions used- in the- experiment -are-given in.Tabie-E2:-“The"array'

J}

has recently been re-surveyed with a precision of 4m. using low level air
photography. The new co-ordinates are signifiéantly different from those
shown in Table E2 (the average site being moved approximately 75 m north-west).
Seismologically the shift is negligible for slowness measurements, except very
short range crustal measurements (Weichert and Manchee, 1969).

The Precambrian granite in the vicinity-of the_array is thought to

be very wniform for teleseismic fays (Weichert and Whitham, 1969).

Warramunga

The array is sited approximately 300 miles north of Alice Springs.
The geometry is shown in ;ig E2, and the relative cqordinafes given in
Table E3. The seismometer sites are situated on granite outérops and the
microseismic noise level is- low. .Slowness and azi@ﬁth measurements made at
the array are perturbed by variations in the structure under the array

(Cleary, Wright and Muirhead 1968, Underwood 1967).

Gauribidanur

The array is situated approximately 50 Km north of Bangalore.

-Data was utalised from 10 sites, before the array was extended to 20 seis-

mometers. The array is shown in Fig E2 , and the coordinates given in
Table E4. The array is situated on deep rooted granite gneiss with

relatively shallow weathering. Noise levels are low (approximately

1.2 x 1072 cm/sec at 0.75 Hz).
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ESKDALEMUIR ARRAY ({EKA)

P ' GEOGRAPHIC COORDINATES QOF INTERSECTION

L ONG ITUDE 55.332° DEGS
LATITUDE -3.155 DEGS
CARTESIAN COORDINATES AND ALTITUDES OF SEISMOMETERS
SITE % Yy ALT ITUDE
s o o : KMS ~ - KMS ——FEET -
B1 -1.049 = =2.659 _ 901
B2 : - 717 -1.829" 1028
| B3 . ~-.521 -.952 " 1025
. B4 ~.056 -.168 981
é- 85 .276 <662 1017
i' B6 _ -606 " 1.493 1108
i B7 . 937 2.323 1431
B8 1.313 3.281 1330
B9 1.598 3,984 1306
B10 . 1.929 4.814 1074
R1 O a1a74 . .am 1167
R2 . -.342 136 1148
N R3 : <489 -.199 1055
R4 1.320 . ~.534 1108
RS 2.151 -.869 1007
. Ré 2.983 -1.204 1297
R7 - 3.814 -1.540 1144 )
RS 4,645 -1.874 1376
RO 5,477 -2.210 1406

R10 6.308 -2.545 1258




TABLE E2

YELLOWKNIFE ARRAY {YKAI}

GEOGRAPHIC COORDINATES Of INTERSECTION

LONGITUDE 62.493 DEGS
LATITUDE =114.605 DEGS

CARTESTAN COORDINATES AND ALTITUDES OF SEISMOMETERS

- SITE X Y . ALTITUDE -
G e KMS ~TKMS FEET
B1 20.000 ° 10.000 565
: B2 20.000 12.500" 590
f B3 20.000 15. 000 615
% B4 20.000 © 17.500 633
! BS 20,000 . 20.000 . 645
B6 20.000 - 22.500 664
- BY 20.000 25,000 670
B8 . 120.000 27.500 | 649
| B9 20.000 30. 000 699
B1O . - 20.000 32.500 | 726
R1  2.500 20,000 557
R2 | 5.000 20.000 574
R3 7.500 20.000 ' 580
R4 10.000 20.000 568
RS 12.500 20.000 600
R6. 15.000 20.000 630
R7 - 17.500 20.000 ' 652 '
RS 20.000 20.000 645
RO 22.500 20.000 . 659

R10 25.000 20.000 672




TABLE E3

WARRAMUNGA ARRAY (WRA) .

GEOGRAPHIC CNORDINATES OF INTERSECTION

LONGITUDE -19.948 ODOEGS
LATITUDE 134.358 DEGS

CARTESIAN COORDINATES AND ALTITUDES OF SEISMOMETERS

SITE X Y | © ALTITUDE
F ] KMS KMS ~ . .. FEET __ ____

Bl ~.310 -1.476 0

B2 .183 .373" )

B3 . .638 2.558 0

B4 1.025 4.724 .0

85 1.762 7.519 0

B6 1.863 10.095 0

BT 3.150 11.662 0

B8 - 3. 291 14.635 *0

B9 3.623 17.132. 0

Bl1O . 4.554 19.816 0
CR1 . -1.033 391 0

R2 ‘ 1.552 140 0

R3 3.934 -.264 0

R4 5.998 <. 465 0

RS 8.052 -1.314 0

R6 | 10.998 -. 846 0

R? : 13,263 -1.004 0 ‘

RS 15.826 -1.074 0

R9 17.334 ~1.281 0

R10 20.016 -1.,502 ' 4]




TABLE Eb

GAURIBIDANUR ARRAY (GBA)

GEOGRAPHIC COORDINATES OF INTERSECTION

LONGITUDE  13.607 DEGS
LATITUDE 77.403 DEGS

CARTESIAN COORDINATES AND ALTITUDES OF SEISMOMETERS

SITE X Y o ALTITUDE
KMS KMS FEET— -mmmo o

B1 000 ..000 2250

B2 -1.503 -1.844" 2250

B3 -2.856 -4.302 2325

B4 -3.908 -6.454 2375

BS — 54412 -8.297 T 2550

R1 -1.202 .615 2260

R2 -3.457 1.844 2240

R3 -5.411  3.534 2250

‘R4 -7.515 4,456 2300




APPENDIX F

List of first and second order azimuthal site corrections derived
from the lMultiple-Array Slowness Analysis program to correct for the sub-array
structure beneath each seismometer at each array.

The first order corrections are for all events &4 = 30° - 104°,

The second order corrections were derived in two groups:

° - 58°,

(1) for all events & = 30° = 104° and (2) events & = 30
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ESKDALEMUIR ARRAY (EKA)

FIRST ORDER AZIMUTHAL SITE CORRECTIONS, (DELTA = 30 - 104 DEGS

EQUATION IS
R = A + B*SIN(AZIMUTH+E) SECS.

{ WHERE

; SITE A B €

: Bl -.01330 , 01666 -87.38
B2 -. 00666 .00548 -52.52
B3 . =.02672 . 00947 77.90
B4 .00236 .00773 129.63
BS -. 00324 «00475 -140.66
B6 -.02086 .01210 149,75
R7 .03141 .01307 65443
B8 . 02868 .02187 68:59
B9 .N2213 - 01995 B6el2
Bl10 - -. 00476 .02267 140,32
R1 -.00218 .01155 154446
R2 -. 00358 . 401147 140.80
R3 -.00939 .01029 61.90
R4 «D1743 .00420 58.71
RS -. 04924 . 01598 -66.,90
R6 .N1297 : .00921 -12,.37
R7 -.00154 . 00719 -45,65
R8 . 01723 < 00644 ~84.45
R9 -.01793 .01708 67.83

R10 -.05661 " .11148 70.08




ESKDALEMUTR ARRAY (EKA)

—— s o - - - -—

SECOND ORDER AZIMUTHAL SITE CORRECTIONS. (DELTA = 30 - 58 DEGS

EQUATION IS
R = A + BXSIN(AZIMUTH+E) + F%SIN(2%AZIMUTH+G) SECS_

WHERE
SITE A B E F : G
L‘ o B1 14.01201 14.91823 -17C.04
j B2 5.11962  5.44457  —170.24 - N
] B3 .23006 L2464 =168.56
| B4 «43207 46215 =168.45
BS -.23101 .23535 9. 31
B6 -.20290 .15030 18.53
B7 $29627 .27353 -167.10
B8 -.10849 «16053 2.36
B9 -4.51327  4.83890 S.14
B10 -.91983 .95376 8,70
i R1 «02632 .05342 -128.30
i R2 «03392 «04730  -144.74
B
R3 «23050 .24901 -170.11
R4 L03125  L0O1172  =45.00
R5 ' -.05596 .03054 56.18
R6 .10271 07625 =174.18
RT -.17257 .19050 10. 30
R8 « 75137 .78450 =173.79
R9 -.25069 . 26165 19.06

R1C «44300 « 48087 179. 96

INSUFFICIENT DATA FOR £ AND G TERMS




ESKDALEMUIR ARRAY (EKA)

SEZOND ORDER AZIMUTHAL SITE CORRECTICNS. (DELTA = 30 - 104 DEG

EQUATION IS :
% R = A + 3%SIN{AZIMUTH+E) + F&SIN(2%AZIMUTH+G) SECS
f WHERE '
1_ SITE A B E F G
B1 -.02879 . 00350 154.78 .01076 -68.29
B2 -.01813 01599  95.61  -.01269 -69.10
B3 -.03527 .02464 92,95 .00966  ~78.28
B4 - .00901 .00703 -115.87 . 00770 89.86
BS -.00505 .00632 -169.77 . 00517 4.88
B6 -.02433 .01634 120.36 = 01067 ~-142.68
B7 .03970 .01520 7.15 .02116 168.07
f B8 .03167 .02803 45.49 .02628 ~174.73
i B9 03564 .01523 -3.52 .02726 162422
B10 .00384 . 00605 166. 41 .02182 161.09
- R1 . 01534 .02631 -104,20 - .01820 93.71
R2 .00116 .00573 ~175.42 .00634 135.47
-R3 -.02125 «(03109 87.66 «01372 -91.50
; R4 .02834 .01844 -64.40 .01244 114,07
RS -.04901 .01788 -86.88 «01341 13.58
R6 .02100 .02001 -62.67 01154 64043
R7 -.01763  .02355 93.92 .C1818 -T4.23
RS -.00682 «03417 111.09  .02877 -52.33
R9 -.02125 .02391 124.11 .03102 -18.21

R10 « 24836 55267 -102.,63 »32311 32,03




YELLOWKNIFE ARRAY (YKA)

FIRST ORDER AZIMUTHAL SITE CORRECTIONS. (DELTA = 30 - 104 DEGS

EQUATION IS
R = A + B¥SINI{AZIMUTH+E) SECS.

WHERE
SITE A B E
B1 .01597 .00227 153.72 o
B2 . 01526 01221 -107.95
B3 -.00352 .00586 -144.22
B4 .00383 .00597 115.07
85 "—. 01540 .00289 51.24
B6 -.01178 .00533 -56.46
| B7 -.01316 .01073 ~41.70
% B8 -.013259 .00916 -29.83
. B9 00166 . 00801 S =28.81
B10 -.00395 .00712 © -6.02
R1 01535 .00537 ; 154,73
R2 .01018 .00317  _140.17
R3 .02121 .00278 171.21
R4 .00022 .00501 82.12
RS .00166 .00136 -43.70
R6 . 00986 00404 -13.63
RT .00023 .01037 5.97
R . =.01540 .00289 51.24
RO -.00074 .01364 156 .49




YELLOWKNIFE ARRAY (YKA)

| : SECOND ORDER AZIMUTHAL SITE CORRECTIONS. (DELTA = 30 ~ 58 DEGS
L EQUATION IS
R = A + BXSIN{AZIMUTH+E) + F%SIN{2%AZIMUTH+G) SECS

WHERE

NI . SITE A 5 E F G
Bl .02008 .01675 30.00 .01292 -81.67
B2 02664 . 00480 38.98 . C0430 69.87
B3 7 .00763 . 01745 ~103.74 . 01867 8.19
B4 01347 .02052 21.94 « 02046 ~65.34
85 -.01015 02173 =-149.91  .02820 41.05
B6 -.00089 .02453 ~-93.92 .02587 -12.89

! B7 -.00978 .02537 -78.17 .02017 ~35.90

" 88 -.01308 .01398 -70.91 . 00896 -32.43
89 .00580 .01293 .65 .01487 -66.68
B10 -.00810 .00965 1.78 . 00877  -170.29

- R1 . -.01418 .05022 178.99 «C5578 133.02
R2 -.01153 .01219 72. 20 « 04464 167.42
R3 .01182 .01336 68. 84 003372  -172.48
R4 -.00765 02217 129.00 .01873 145.87
RS 00299 . 01941 55. 86 .00997  -163.10
R6 .02862 07024 19.80 . 04591 -100.63
RT .00576 00595 -1.35 01629 14.69
R -.01015 .02173 =149.91 .02820 41.05
R9 -.00763 .03300 -173.66 « 02532 69.42

R10 -.03649 01199 142.10 « 01956 -40.94




SECOND NRDER AZTIMUTHAL

YELLOWKMIFE ARRAY (YKA)

EQUATION IS

WHERE

SITE

81
B2
B3
B4
85
B6
B7
B8
B9
B1O
R1

R2

R4
RS
R&6
R7
R8
R9

R10

R = A + BXSIN{AZIMUTH+E) + F*SIN(2%AZIMUTH+G) SECS

01718
201610
-.00330
« 00430
-.01362
-.,01108
-.,01218
-.01299
00477
-.00605
00969

«00549

«N1685
-.0N005
« 00309

01226

«00006

-.03411

« 00384

-.01554

01720

«01583

.01349 .

.00825
«01036
«N1014
«02176
00892
02009

.01338

«00306
« 01974
01028
eN2263
« 00465
«01349
« 02934

« 02734

SITE CORRECYTIONS,

51.60
-118.11
-149,01
-173.47
-158.03
-1C8.00

-50.99

-22. 41

69. 05
40,80
20.19
24.33
-55.26
-158,03
~173. 44

154,03

(BELTA

. 00515
. 00489
01178
« 01562
«01815
«CN675
00324
« 001560
01587
« 00557
002741

« 02354

« 01197
« 01641
« 00981
«C1917
«01331
»C1815
«N1967

01082

30 - 104 DEG

-79.80
49.58
67.67
66.31
53.59
60.02
17.50

-86.95
-95.42

-170.30

~136.46

-124,45

-163.64
-111.77
-91.42
-8T.16
33,24
53.59
62.35

73.38




WARRAMUNGA ARRAY (WRA)

FIRST ORDER AZ IMUTHAL SITE CORRECTIONS. (DELTA = 30 - 104 DEGS

EQUATION IS
R

WHERE

SITE

B1
B2
B3
B4
B85
Bb
B7

B8

R4
RS
R6
R7
RS
RO

R19 .

= A + B*STN{AZIMUTH+E} SECS.

02082
03757
<01443
-. 00077
-.01102
~.0315]
-. 03840
-.05954

neEnc
e \ioT

(=]
rJ

« 00946

. 03172

« 03025
« 03341
.02318
«N2418
« 00536

« 02086

-000219

«NN584

.02112
.02768
.02477
.01681
.01139
.01225
. 062230
.03215
. 03942
.04581
.01774

03301

03347

«03224
«.01294
« 01965
« 02666
.03686
«13C84

04183

135.91
128.58
151.94
_164.09
21.55
16.17
5.89

9.34

x

«72

1

>
W

[»]

103.29

138.10

171.83

-169%9.27 .

-145.35
-119.59
-94 .60
-81.38
-86.04

-73.40




WARRAMUNGA ARRAY {WRA)

SECOND ORDER AZIMUTHAL SITE CORRECTIONS. (DELTA = 30 - 58 DEGS

EQUATION IS
R = A + BXSINIAZIMUTH4E) + FXSIN(2%AZIMUTH4G) SECS
WHERE
B SITE A B E F 777776 -
B1 00171 .01618 46429 .01829 104.67
82 02478 .01257 113.76 .01182 77.95
; B3 .01650 .04136 -160.33 .02265  -10.44
| B4 .00572 06207  -147.23 .03123  -16.35
B5 .00 205 .02248 =139.97 .03357 -29.20
B6 -.01819 .02983  -166.72 .05412  -37.46
BY -.02143 02136  -124.72 .04665  -22.82
88 -.05426 .01568 16.91 .02853  -43.80
B9 04296 .08579  -145,77 .08718  =31.73
B10 -.06845 .N4876 31.65 .02169 -84.97
R1 -.00279 .01208 45,99 01192 118.62
R2 .00884  .01599 56.11  .03087  119.75
R3 02368 .02004 164. 88 01557 144461
R& .02523 .00834 -152,85 .02337 130.98
R5 .02106 .00543 38,32 . 02148 144,77
R6 .01030 02129 29.13 . 2598 145.82
R7 01383 .00604 =156.47 03644  =171.29
R8 .N2996 .00330  ~134.76 .02609 ~156.47
R9 00817 .00065 =175.16 .03184 =179.66

R10 «00484 «02156 16.91 02971 ~178.92




WARRAMUNGA ARRAY (WRA)

SECOND ORDER AZIMUTHAL SITE CORRECTIONS. {DELTA = 30 - 104 DEG

EQUATION IS | '
R = A + BxSIN(AZIMUTH+E) + F#SIN(2¥AZIMUTH+G) SECS
WHERE
o - SITE A B E F -7 66—
{ B1 .02163 .02169 141.41 .00267 15.89
i' B2 . .03735 .02485 132,38 . 00661 77.73
? B3 .02020 03320 166.59 .01256 -14.08
B4 .00 446 .02888 167.73 .01710 -42.19
BS - =.00149 .01148 152.59 .02848 -39.71
B6 -.01442 .02324 171.15 . 04489 -40.18
87 -.02957 .00412 -.67 .02385 -26.32
38 -.05401 .02179 15.70 . 01609 -41.10
B9 -.02407 .02293 21.14 .02536 -44,10
B10 -.05800 .04317 25.63 . 01060 -66.03
- R1 .01023 01762 108,97 .00213 -5.30
R2 .03134 .03179 140,39 . 00409 70.21
R3 .02591 .02669 162. 40 .00929 170.01
R4 .03181 .02861  ~-169.28 < 00448 158.56
RS .01990 .00782 ~109.89 .01195 153.91
R6 .02189 01996 =106.04 . 00898 115.95
R7 -.00621 03416 -42.50 .03341 15744
RS .01165 < 04476 -52.38 .02684 149.78
RY -.02553 .06094 -30. 89 . 05860 140.09

R10 -.0035A4 « 05689 -49,50 «03307 139.25




GAURIBIDANUR ARRAY (GBA)

FIRST ORDER.AZIMUTHAL SITE CORRECTIDNS. (DELTA 30 - 104 DEGS

EQUATION IS
R = A + B=SIN(AZIMUTH+E) SECS,

WHERE
T T TTTTTUTSITE T T TR T Tt s B - e E -
BL -.01688 .01368 ~15.65
é B2 -.01429 .02498 27.99
gi 83 -.00078 .00205 51.40
S | B4 .00106 .01178 -3.17
| B5 . -.01834 .01976 94,36
R1 .0N070 .01281 16.56
R2 -.00303 .01255 -34.95
I R3 .02359 .02808 -155.73
R4 : .02304 © .02708 -142.09

RS .00437 .02703 168,75




GAURIBIDANUR ARRAY (GBA)

SECOND ORDER AZIMUTHAL SITE CORRECTIONS. {DELTA = 30 - 58 DEGS

EQUAT ION 1S |
| R = A +# B¥SIN(AZIMUTH4E) + F&SIN(2%AZIMUTH4G) SECS
\ WHERE -

é’ SITE A B E F G
; B1 ~.01124  .0l444  =70.70  .00381  -T4.04

B2 -.01451  .00906 33,45 .01007  -62.03

B3 00513 .02140 -152.45  .01654  ~46.90 ;

B4 -.00568  .00790  22.54  .00887  -58,98
; B5 00119  .01689 =142.84 02269 . 24.48 |
' R1 -.00445 .01384 35.67 00756  -140.30 |

R2. -.00208 . 02648 -30.81 .02138 126432 4

R3 .01621 .00999  129.05  .01687  159.86

R4 -.03265  .07389 55.32 04405 ~177.24

RS © -.00263  .02720 118,09  .00636  171.46

gt . b e s Ty e —aye e & . PR RS S e Aemg vt )




GAURIBIDANUR ARRAY {GBA)

SECOND ORDER AZIMUTHAL SITE CORRECTIONS. (DELTA = 30 - 104 DEG

EQUATION IS
R = A + BxSIN{AZIMUTH+E) + F¥SIN(2*AZIMUTH+G) SECS

WHERE

SITE A B e F 6
B1 -.01362 . 00706 -74.97 «C1350 43,11
B2 -.00882 .01148  13.69  .01312 -21.98
B3 .00220 .01211  =178.34 .01633 -50,52
B4 .00856 .01393 -71.61 . 00913 11.78
85 -.00984 .00891 147.59 . 60977 29.95
R1 ~.00207 .00867 144 17 < 00446 -39.53
R2 -.00613 .02318 -13.19 «Cl467 130.90
R3 01651 < 01446 17774 .01423 166.35
R4 . 00474 .00921 30,03 .02615 156411

RS -.00034 «01948 143,76 « 01264 148.71

R I PR T N Radan et R AT Ll T Rttt AR

(L




APPENDIX G

List of all events used to compute slowvmess., Latitudes, longitudes
and depths were taken from USCGS PDE cards, and the distance and azimuth of

each event relative to the arrays calculated using GEDESS (Young and Gibbs,. 1968).

-84
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DO NCWVSWN

EVENTS RECORDED AT ESKDALEMUIR

DATE

26,07E67
19.08E66
11.01E67
21.07€66
05.08E866
18.12E66
25.03E67
20.04E67
15.07€67
30. 10E67
08.12E67
18.N9E66
20.02E47
05.01E6T
20.01E67
30.NAF &6
07, 10666
N6.03E66
15.08E86
27.06E66
16,1266
16.04F 66
07.02567
NL.NTEST
16.01€66
01.C6E67
15.N9E67
01.N6EHT
15.09€67

2b.09E66

14. 067
19."6E67
02-06E66
30. 06E 66
18.10E67
14.07E66
19.01E68
13.09€67
27.05E67
0&6/07Eb6

29. 1CFAS
29, 04EBT
11.05€66
03.03E66
28.0N9E66
N9.04E66
Ol.04F67
NB/NJELS
10.0R€E67
18. 08E 66
07.,N8E A6
12.11E66
09, 12E65
N4.11E67

-04.11E67

28, N5E6S
23.03E66
12.04E67
N3,09E67
21.NBE6T
11.05E67

DELTA
DEGS.

32.8
33.8
39.7
4T.%
47.4
47.4
47.4
7.4
47.4%
67.4
47.4
49.2
56,7
59.8
59.9
60.4
60.5
61.2

62.5 ..

62.9
63.0
65.9
6643
68.7
6S.8
T0.4
70.6
10.4
70.6
71.0
Tle2
T1le5
71.7
T1.7
71.7
T1.8
72,2
72.3
73.1
73.3

73.6
73.6
74,7
75.0
75.0
77.0
17.0
77.2
77.2
77.3
78.6
79.3
79.8
83.6
R3.6
88.1
AB.7
91.2
91.2
92.2
93.4

AZ.
0EGS.

$400
99,600
1.700
60,400
60,400
60,400
60,400
60.400
605400
60.400
50.400
99,600
7.700
48.200
48.300
41.100
42.600
75.400
78.700
76.500
76.500
42,700
44,700
44,500
6.800
49,000
69,900
49.000
69,900
69,200
67.400
49,600
9.600
9.600
9.600
3,600
9.600
2.800
«509
58,000

58.000
56, 800
14.000
15.400
63.600
68,100
17.700
18.700
18.800
77.200
24,900
24,300
85,500
55.700
55.70C
47,800
47,900
79.100
53,100
80.600
38,700

50
13
45
313
i
4C
12
37
16
a6
13
57
99
99
33
51
55
18
33
67

LAT,
DEGS

39.5
39,2
34,1
49.8
49, R
9.8
49.A
49.8
49.8
©9,.8
49,8
27.8
337
48a.1
48.0
61.13
61.6
3l.6
28.7
29.7

29.6

57.0
56.7
Sh.b
54,9
53.7
27.4
53.7
27.4
27.5
28.4
52.7
37.4
37.4
37.4
53.1
37.4
52.7
51.9
51.7

5la%
51.64
48.9
48.3
?T.4
9.6
45.8
L5.4
45.4
l4.6
42.1
41.8
17.3
=2.8
=2.8
24.4
23.8
5.3
=10.6
3.6
-20.3

LONG .
DEGS .

D5
41.7

45,7

78.1
8.1
78,1
78.1
18.1
78.1
78.1
8.1
54.3
75.3
102.8
102.9
-147.5
=150,1
80.5
78.9
8n.9
a1.0
-153.6
-157.2
~158.0
165.8
-165.6
91.8
-165.,6
91.8
92.6
9%4.1
-166.9
~116.6
~116.6
~116.6
171.1
=166,6
172.5
176.1
179.9

179.2
-178.3
156.2
154.3
100.1
~B4.1
151.8
150.5
150.3
-91.7
143,0
146.1
~100.0
-77.7
=-77.7
122.5
122.8
96.5
-79.8
95.8
~68.5
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41
42
43
44
45
46
47
48
49
50
51
52
53
564
55
56
ST
58
59
67
61
62
63

64

65
66
67
68
63
70
71
72
73

T4

15
76
7
78
79
80
31

32
a3
Ao
85
86
A7

EVENTS RECORDED AT YELLOWKNIFE

DATE

28/01Y67
28.0lv67
NT/08Y66
07.08Y66
22.01Y66
23.11Y67
11.06Y66
27.11Y66
29.04Y67
O4/07Y66
04.,07Y66

27.05Y67

17.08Y66
02.06Y66
13.09Y67
27.10Y66
13/04Y67
13.04Y67
25,09Y66
21.06Y66
18.08Y66
21/11Y.66
01.04Y67
01/04Y67
20/03Y67
08,09Y66
10.08Y67
07.12Y66
18.01Y67
22.N9Y67
12.10Y66
03.10Y67
19.03766
09, 04Y66
19.09Y67
04/11Y67
09, 04Y66
19.09Y67
04/711Y67
27.03Y66

24/12Y67
24.12Y67
12.11Y66
24, 01Y67
17.01v67
04.11Y67
03.04Y66
D8.01Y66
05/01Y67
05.01Y67
20.01Y67
09.02Y67
27.11Y68
21.11Y65
20.03Y66
21.04Y66
29,06Y66
18.12Y66
20~06Y67
28.,05Y67
26, 11Y4S
10.06Y66
09.06Y66
25.06Y66
12/11Y65
30.11Y67
23.05Y66
25.06Y66
12.11Y65
30.11v67
23.05Y66
N4, 11767
08/02v66
22.03Y66
05,02Y66
22.NTY6T
02.03v66
D5.N1VA6
28.02Y65
20.N46Y 66
29,03Y68
1n.02Y60
06, 06Y6T
05.NeY67
nN5/Q04Y67
25.Q046Y86
07.0%66

DELTA
DEGS.

3Q.2
2803
30.7
32.3
32.6
32.8
34.9
34,9
35.0
35.6
37.1
37.2
37.4
37.8
38.2
44,2
449
45,1
45.2
464
50.5

51.2

52.2
52.3
52.6
53.1
53.2
53,5
53,7
54.3
55,1
55.5
56.7
57.2
57,2
57.2
57.2
57.2
57.2
58.1

58.1
5842
58.7
59.9
62.4
63.4
64.3
64.8
65.4
65.8
65,7
66.3
67.5
67.6
67.6
6T.6
67.6
67.6
67.6
67.6
68.3
69.3
69,5
70.0
70.0
70.3
70.6
79.0
70.9
70.3
0.6
70.9
71.5
72,7
72.8
73.5
73.7
74.9
75.1
75.2
75.2
15.9
76.1
1602
76.2
T6.6
77.0

Al.
DEGS .

76,200
75.900
79.800
75.100
T8.400
16.900
82.000
17.500
81.700
B83.40N
86,100
86.400
87.700
85.500
B9.ACN
4.300
99.200
60.500
61.400
97.200
50,800
98.-100
98,000
97.900
98,100
38.600
98.700
96,909
25.600
98.800
45,300
45.100
« 600
43.500
« 800
1.900
©3.500
« 800
1.900
42.900

15.600
15,400
90N
2.200
« 300
-100
«400
2. 600
33.400
33.500
33.400
35.800
98.5C0
51.100
51.100°
51.100
51.100
51.1C0
51.100
51.10¢C
97.900
34,700
95.7C0
95.600
97.600
346,300
97.600
95.600
97.600
34.300
97.600
«0.600
30.900
20.6N0
346.000
26.800
14,900
87.900
5.100
13.200
92.70n0
87.700
86.600
86.500
B86.60N
57.000
18,700

DEPTH
KMS,

50
32
33
39
56
1n
&0
33
50
13
28
34
32
41
3%

50
86
.60
14
76
40
&0
40
51
32
a7
26
11
&0
43
21
1
30
84
e
30
84
30
40

LAT.
DEGS

52.4
52.3
31.8
50.6
51.7
80.2
51.6
78.5
51.4
51.7
51.8
51.9
52.3
51.1
52.7
T3.4
52.1
180.5
18.3
50.1
14.6
4637
45.8
45.7
4566
65, %

LT

64,3
5646
44,5
11.2
10.9
43.3

Q.6
43,0
43.5

9.6
43.0
43.5

8.9

17.4
17.2
41.%9
4l.4
38,1
37,4
3647
37.3
48,4
48,1
4RO

2.9
32.9
49.9
49,8
49,8
49,A
49,8
49,8
49.8
12,1
45,1
3.1
29.6
30.5
41.5
30.0
29.6

‘30,5

41.5
30.0
~2.8
4l.4
37.5
39,2
40,7
43.0
21.8

29,2,

1.7
23,7
20.8
20.1
20,40
20.N
bl,?
39.1

LONG.
DEGS .

~-169.4
-169.3
-114.5
~171.3
=-173.5
-1.Nn
-178.4
6.l
-178.13
179.9
176. 4
176.1
174.9
176.0
172.5
54.8
157.6
-100.2
-100.8
157.8
-91.7

15255

151,48
151.8
151.4
160.95
152.3
151t.7
120.8
149.4
~86.2
-85.9
145.8
-84.1
145.2
164,11
-84.1
145.2
l44.1
-83,4

-61.3
-61.1
144.1
141.9
1421
141.6
140.8
18,3
103.1
102,8
102.9
~74,9
140.6
78,1
78,1
78.1
78,1
78.1
78.1
78.1
140.9
99,7
142.2
142.1
140.2
21,5
139.8
162.1
140.2
20.5
119.8
-77.7
25.1
115.0
22.0
.8
45,3
146.6
130.1
48,2
142,10
146.3
147.2
167,2
147.1
49.72
L1,7



1?2)
121
122
123
124
125
126
127
128
129
13
131
132
133
134

135
136
137

138

139

149

141
1642
143

144
145

20/0N4Y66
13, 04Y67
1464, 02Y66
2R, N1lYbA
11.04Y66
25.11Y65
16.11Y65
I0,07v6s
30.08Y67
20, 06Y66
14,P7Y67
14.07v67
06, 11Y65
N3.11v65
26,08Y6R7
28/09Y66
14,73v67
13.02v66
nNs,N2Y66
27.06Y66
16.172Y66
24,01Y66
15.N9Y67
N0T7.02Y66
21796Y6S
07,11Y67
18, 0QAY 66
14,06Y67
a1.01Y67
11.05Y67
03.02Y66
25.12Y67
21.12Y67
19.01Y67
27.N7Y6G
18.05v67
21.06Y67
Ng, 03767
11.03v67
10. MY &6
21. PRY &6
13,0367
31.01Y66
15.N6Y6H
27.11Y65
13.01Y67
28.09Y67

27.12Y67
15.11Y67
17.02vY67
2312Y66
14.1?7Y66
10.06Y 66

n{. 09Y66

13.12Y67
08.03Y66
18/0RY 66
18.n8vY66

77.4

T7.4
78.1
78.4
79.0
38C. 1
80.4
81.5
82.0
82.0
3.6
83.6
R4.1
84.5
B85.9
B6.2
86.5
86.7
86.7
27.3
87.4
87.9
88.9
88.0
89.4
89.5
89.6
90.0
90.1
9n0.2
0.4
90.7
9t.1
1.7
93.3
94,1
94,2
94.3
94.5
95.1
95.2
Q5.4
a5.7
96.3
36.5
Q6.6
96.7

96.9
97.3
98.3
99.5
99.5
99.9
100.0
1n00.8
101.3
103.6
103.7

86,200

5.400
31.300
53.9N0
$5.90Nn
66,200

7.600

T.100
30,500
84,600
40,100
40,100
19.300
79.500
Ad, 500
29,500
34.7CH
26,500
26,600
46,50
L6.4CN
564300
35. 700
564600
&.300

35,400

9,800
35.80C
315.870
37.400

8.600
39,500
29,300
4N, 600
40.300

<500
40.800
55,500
55.500
35,400
99,400
25,000
35.400
60.200
61.700
59.801
68.700

34,000
42.500
33.4n9
73,000
78.00N
43,400
95,300
49,500
96,909
Q7,300
97.300

23
15
19
43
T4
b4
96
51
ER)
13
56

18,8
27.3
35.1
39,3
8.1
-17,1
25.4
24.7
3.7
13.9
-16.0
-14,9
-22.1
-22.3
12.2
27.4
28.%
26.1
2641
29.7
29.6
29.9
27.4
’9.a
28.1
-14.9
27.4
-15.2
-15.1
-20.3
16.6
-21.5
=21.8
-14,9%9
-24.7
10.0
=25.2
-10.6
-1n.7
~20.1
8.5
19.7
-24,R
-10.2
~10.46
6.6

-22.3
-28.7
-213.7
-7,1
-4.R
-31.5
2.4
=19.1
1.9
-.1
-y'?

16,9
1728.7
?7.2
73.1
70.6
-1NN_4&
125.2
125.2
10,3
146,11
-73.4
-73.4
~-113.8
-114.1
140.7
10,1
94,13
ni,. 2
103.1
an.9
Al.N
69.7
Q1.8
69,7
56.0
-173.0
54,43
-173.6
-173.6
-68,5
120.9
~70. 4
-72.,0
-178.8
-7Nn.,3
126.1
=70.5
164,13
166.2
-175,.3
126.7
2g,0
"'Alo.lo
161.1
159.7 -
161.4
163.4

-174.8
-71.2?
-175.2
148, 3
143.9
-71.2
128.4
168.7
126.4
125.1
125.1
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(3]
62
3
&4
45
46
47
48
49
5D
51
52
53
Sé
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
mn
T2
73
T4
75
76
17
78
79
80
81
82
83
84
85
86
87

EVENTS RECORDED AT WARRAMUNGA

DATE

02.01wW67
N1/MIWeT
01-01W67
0l.06W66
23, 11M66
07/06M66
03.05466
29. 06H66H
D1-06Wb6
11.03W67
09,N3W67
06.06W66
28. 10W66
17.05W67
25.08467
26508167
26¢08W6T
26~ 08WET
25.05W66
26/ 08K 66
05.00W67
0T7.NMWsT
1.2.09%66
13, 09466
22.08W66
15.08W66
20.05W66
23/05H66
26.10W66
25/05W66
21.07Wb6
20/05W 66
27.06M66
05/06W67
05-04K67
06.04W67
28.08W66
10/02W66
27/10W66
27/710M66

26.08W66
23,08W66
10/07H66
07.06W66
29/06NW66
05.05W66
25/10W67
28.05H66
30.06H66
25.10W67
26.11W67
23, 05K 66
03.04M66
04, 11W67
28,09W66
03.06H066
04. 11W67
28.09W66
17.01W67
07.03W66
22-03W6b
227031066
22.034A6
30. 0RUET
24.01W67
14, 03W67
26. 09066
12. 11¥66
11/11W67T
15.09%67
11.1IN67
19,09467
19.03H66
04/11uW67
15.N8W67
10.N8HG67
08.09W66
20.,03wb7
01704467
D1.06067
04.06M66
10. 12467
10. 12¥67
18.12W66
27/06H66
27.06M66
06.03W66

DELTA
DEGS.

30.7
31.1
31.2
3l.4
3l.4
31.5
31.5
31.5
31.6
32.0
32.1
32.3

32.3.

32.5
32.6
32.%
32.6
32.6
33,2
33.3
31.5
33.6
33.8
33.8
33.8
35.4
35.6
35.6
35.7
38.4
38.5
41.1
41l.2
hl.b
41,6
41.7
41.7
42,2
43.4
43.4

44.7
44.8
45.3
45.4
45.4
45.5
45.5
45.6
45.6
45.7
48.4
49.5
56.7
57.4
ST.6
56.7
57.4
57.6
58.4
59.8
59.8
59.9
60.0
60.9
6l.4
61.7
62.1
62.1
62.5
62.6
62.7
63.4
63.8
63.8
64.0
66.6
66.7
67.1
67.2
6T.3
68.1
70.1
70.1
Tl.2
71e3
71.3
T2.7

AZ.
DEGS «

79,200
80,900
78.300
83.90¢C
86.000
9.9Mn
14,100
83.900
86.700
78.100
78.100
86.400
96.300
86.900
11.9nn
11.600
11.600
11.800
99.200
- 100
73.200
6.100
1.900
1.800
« 700
37.700
19.9C0
20.400
37.400
55.000
54.700
42,100
25.300
18.300
18,200
18.300
21.700
17.600
15.700
15.700

1

9.300
45.400
48.400
44,700
44,700
44,900
44,400
44.800
44.400
44,500
54,900

6,200

6.200

6.800
23.600

6.200

6.800
23.600

T.200
©2.000
42.300
42.400
42.300
26.900

6,500
19,900
18,000

8.200
73.500
17.400
73.600

8.900

9.300

7.900
21.600
12.200
12.300
12.900
13.200
13.100
13.400
98.100
98.100
12.400
12,500
12.500
13.800

DEPTH
KMS.

33
33
33
48
48
50
10
35
93
49
59
37
19
36
13
33
14
30
35
33
33
33
49
28
19
14
66
39
51
33
36,
96
54
50
50
22
94
33
29
29

59
17
58
41
33
60
67
33
47
65
33
28
68
46
33
68
46
33
44
13
40
33
11

69
24
33
33
33
57
34
84
11
30
33
37
32
51
40
40
27
kX
33
25
40
37
44

L AT,
DEGS

-11.7
~12.4
-11l.1
~13.4
-14,9
11.3
10,9
=-13,8
-15.2
-10.7
-10.7
-14.9
=20.1
=-15.1
12.2
12,2
12.2
12.2
-21.6
=22.1
-53,2
-48.8
-23.1
-23.0
=22.%

13.3.

13.9
13.8
13.5
=52.9
-52.8
19.46
-38.0
20.0
20,0
20.1
-35.8
20.7
22.2
22.2

-27.5
23.8
24.8
24.2
2442
26444
24.3
24.4
24.4
24.5
28.6
30,0
36,7
37.4
27.6
36.7
37.4
27.4
38.3
37,2
37.3
37.5
37.5
31.7
41.4
28.4
27.5
41.8
-6.1
L2744
-6.0
43,0
43.3
43.5
3.1
45.4
45.4
45.6
45.7
4s.8
46,5
17,7
17.7
29.6
29.7
29.7
31.6

LNNG «
DEGS .

165.1
165.8
165.5
166.6
166.9
139.6
141.8
166,7
167.2
166.2
166.3
167.8
168.8
168.1
140.9
140.7
140.7
140.8
169.9
17,9
140.6
112.7
170.6
170.6
170.6
121.3
146.1
146, 4
121.0
160.0
160.3
122.0
177.2
147.2
147.1
147.2
178.5
146.9
145.9
145.9

-177.3

123.2
125.3
122.5
122.5
122.6
122.
122.5
122.2
122.2
130.0
139.8
140.8
lal.6
100.1
140.8
141.6
100.1
142.1
11%.8
115,.1
115.1
115.0
100.3
141.9
94,3
92.6
144,1
Tle4
91.8
T1.3
145.2
145.8
144,11
93.7
150.3
150.5
151.4
151.8
151.8
152.5
73.9
73.9
81.0
81.0
80.9
80.5




20.01W6T
N6, 12466
23.10W66
05, 08WAS
2%/ 10u66
19.04K66
30, NRW 66
20, 11466
22.07W66
N8, 06WAG
08.11%66
n2.06W66
13. 09467
91.08Wa66
N1/08W66
27.05467
29,10465
04.07Wb6
29.N4H6T
15.NSW66
11.06W66
07.N8Whb
29/06WA6
21.017W66
£S. NAWLE

19, 10W A6,

18, 12Wb66
20. 046867
2R O5HAT

15.0Tnb67

16.09W67
17.17W67
30.10467
18.N14d67
Ng.NTd67
19, 56467
19, "5wAb
N1, DTWET
22.78467
11.10W66
14,794 A6
02,02ub7

73.3
73.3
73.9

T6.0
T74.0

75.9

76.0

T7.4
7T.5
79.4

79.5.

79.6
79.6
a0.2
R0.3
80.3
Rl.2
81.7
32.2
82.3
82.3
B4.9
85.4
85.4
AS5.4
85,4
BSe4
85.4
85.4
85.4
B5.4
85.4
85.4
87.6
7.7
88.4
0.6
93.8
Q7.8
98.5
98.8

100.7

38.500
16.8M0
16.000
14,200
16.000
15.20n
41.300
44,200
24,800
21.500
22.9nC
25.200
22.500
6.700
6,700
24.700
?26.600
26.700
27.700
27.6M0
27.500
A.300
727.400
27.400
27,400
27.400
27.400
27.400
27.400
27.%00
27.4C0
27.400
27.4C0
21.000
31.00n
Al.4C0
31.200
32,860
an, 2nn
89,7101
89.30n
90.}00

48.0°

SCel
51.0

32.6

5141
53,1
51.7
55.1
42.8
531
52.4
51.1
52.7
29.9
1n.A
51,0
51.4
51.7
51.4
51.5

Sleb

50,6
49,9
49.8
49,8
49,8

49.9

49.19
49.R
4G.R
49.R
49.%
49,9
572.5
52.h
5?2.7
54.1
Sh.b
-6n.%
-60.3
60,1
=57.9

102.9
159.8
159,2
79.6
159.2
159.3
104,64
129.4
A4, 5
17,1
173.0
176.0
172.5
L]
68.7
176,1
179.2
179.9
-178.3
-178.4
-178.4
=-171.3
78.1
78,1
78.1
TR. 1
78.1
78.1
78.1
TR.1
78.1
T8.1
78.1
-168.13

- =168,2

-166.9
=166,1
-158."
=24.6
~26.0
-27.9
~25.7




EVENTS RECNRDED AT GAURIBIDANUR

DATE DELTA az. DEPTH LAT, LONG.

) ) DEGS. DEGS. KMS. DEGS DEGS .

1 26.02667 33.5 24.300 33 -6.2 104.7

2 11.01667 35,3 10.900 34 34,1 45.7

3 22.09667 16.2 .900 o 49,8 78.1

4 19.10666 36.2 . 500 o ‘49,8 78.1

5  29.06366 36.2 .900 0 49,8 78.1

6  21.04666 36.2 .900 0 49,8 78.1

7 13.02666 36.2 . 900 0 49.9 78.1

8  20.03666 16.2 .900 o 49.8 78.1

9 21.07G6b 36.2 .900 I 49,8 78.1

19 18.12666 36,2 .900 o 49.8 8.1

11 03.12666 16.2 .900 o 49.8 78.1

1z 17.10G667 36.2 . 900 o 49.8 78.1

13 30.10G67 36.2 .900 o 49.8 78.1

14 13703667 37.4 84.700 7 19.7 38.9

15  05.01667 40.3 26.300 13 48,1 102.8

16 19.08G66 40,5 15.700 26 39.2 41.7

17 ,20.08666 411 15.400 37 19,3 40.9

18 ‘04.M567 41.2 74.700 33 20.3 120.0

19 24.11387 41.3 19.500 80 -8.1 112.9

‘ 20 15.08666 42.6 85.100 14 11.3 121.3
21 19.02G67 42.0 20,700 0 ~a,2 1131

22 26.10567 43.5 68.700 63 24.5 122.2

: 23 25.10667 43.5 68.700 65 24.5 122.2
~ 24 23.02667 43,7 69.200 48 24.2 122.5
25  28/05G66 43.8 68,900 33 2444 122.5

) 26  26.10667 42.5 68.700 63 24.5 122.2

27 25.10667 43,5 68.700 &% 24.5 122.2

28 23.02567 43.7 69,200 48 24.2 122.5

29  28/05G66 43.8 68,900 1 2646 122.5

i 30 05.05666 43,9 68.900 60 26.4 122.6
31 23.08566 44,4 69.800 37 23.8 123.2

122 11701667 4444 4,400 23 -1 120.1

33 30.03667 45.0 21.100 33 -11.0 115.5
36 12.07G66 45.9 20.300 26 44,6 37.4.

35  10.07G&6 46.2 69.500 28 24.2; 125.2

16 10/07666 4643 68.700 58 24.48 125.3

37 23704666 46.5 3,900 19 -5 122.2

38 23.04G66 46.8 4,300 45 -.9 122.4

19 10.11667 47.8 88.200 53 10.4 126.3

40 25.02667 48.0 2.500 10 .0 123.9

41 06.06566 48.1 89.200 45 a.6 126. 4

42 06.06G65 48,2 90,200 69 R.Q 126.4

43 07.04566 48.3 67.100 46 26.1 127.4

44 21.08666 48.6 90.600 67 8.5 126.7

45  22.07667 48.7 12.700 4 40,7 0.8

46  07.10666 48.8 96.000 86 4.5 126.1

4T  18.08G66 49.2 2.300 56 -2 - 125.1

48 23/02G67 49.3 67.200 10 26.1 128.5

49 26/10667 49.3 2.200 42 -2 125.2

50 13.03G6K7 49.4 97,000 s 1.6 176.5

51  13.04667 49.6 65,700 18 27.3 128.7

. 52 26.11667 50,9 64,200 33 28.6 130.0
ro 53 02. 12666 S1.1 96.900 92 3e2 128.1
Lo 54  N8.09G6A 51.6 97,800 9% 2.6 128.4
55  02.01667 54,0 46.500 23 S =102 28.5

56  18.01GAT S4.1 27.900 n 56.6 120.A

57  02.03666 54,5 3.600 41 -2.9 129.8

58  01.05667 55.5 9.0n0 15 39.7 21.3

59  19.N03G67 55.9 7.900 60 6.7 179.9

69  12.10G67 55.9 A.400 45 -T.1 129.8

61  23.N6G67 56.1 6.600 L] -5.8 130.5

62  09.08667 56.2 7.300 B9 -6.% 1.4

53 30.11667 5644 10,900 29 41.5 20,5

64  25.05G66 56.9 7.000 39 6.4 131.1

55  25.05666 56.9 7.000 39 —6.4 131.1

. 66  22.08G66 58.3 .700 13 ~1.18 136.2

; 67  08.11567 59.2 4,700 33 5.3 134.0
| 58  07.06G66 60.6 84.600 50 1.3 139.6
69  01,04G66 60.7 55,500 68 26,7 140.8

79 27.10666 61.2 52.700 0 . T3.4 54.8

1 21.10G67 61.2 52,700 0 73.4 54,9

i 72 04.11G67 61.4 54,700 46 7.4 141.6
; 73 06.04G656 61.5 65.200 13 45,8 96.1
; _ 74 26.085357 61.5 83.400 33 12.2 140.7
: 75 29.03366 61.7 70.300 79 23.7 142.1
: 76 17.01667 61.9 53,700 a4 28.3 14241
L 71 24.01667 62.0 50.200 69 41,4 141.9
8 78 04.09G66 62.9 - .0D0 19 -2.5 130.8
i 79 07.01G47 63.5 83.500 36 1.9 142.7
A 33 12.11666 63.7 50,000 1 41.8 146.1
81  19,09G67 64.6 48.700 84 3.0 145.2

. - R2 19703666 85.1 48.400 1n © 43,3 145.8
- 83 27/10666 65.3 7,706 29 22.2 145.9
b 86 10.07G66 65.8 . T3.100 4 20.8 146.3
X 35  11.12666 66.4 $1.200 50 13.6 166.0
i b 22.09G47 87.7 47,300 60 44,5 149,64
. 87  18/12665 68.1 ~ 47,100 1 44,7 149,9.




8
]9
kR

92
93
a
as
a9
97
99
bk

179

101

172

123 .

106
125
106
1n7
108
109
(Y]
111
112
113
s
115
116
117
118
112
120
121
122
123
126
125
126
127
12R
129
13)
131
132
133
134

135
136
137
128

139

14)
141
142
143

13712665
13.12565
18.17G4S
10.08G67
20.03667
07.12666
07712666
01.04G67
01/04G67
N4,06566,
27.04566
N4.N6G66
21, 04566
07-12365
03.03566
n5,02666
11.12665
11-05666
11.05666
11705666
28.01566
08.04G66
21.06566
N8/ P4G66
18.10667
23710666
19.04566
22. 10666
22.02666
28, 19667
16.01666
16.07666
2310666
26.09G67
27.05667
02.CAGS6
1 S/N4GAG
15.06G A6
15-06366
13.71667
29.10665
04.07366
05, 08666
11.06666
15.05666
29,04667
08.03666

07.0RG6H6
29.06G 66
18.01667
01.06G67
16.02G66
13.12667
22,12G6%
16,045 66
12,N9G 66

68.3
68.3
68.3
68.4

,69.2

69.4
69.4
69.5
69.5
70.0
7C.1
70.0
7C.1
T1.2
71.2
71.8
7.9
T2.5
12.5
T2.6
73.0
73.4
73.5
73.5
T4l
74,4
Ta.b
75.9
75.9
78.0
78,1
78.9
19.7
80.4
R4,7
A4.8
85.9
6.1
6.1
86.7
86.7
87.0
87.6
88.0
38.1

88.2
92.4

92.6
92.5
93.4
94.3
94,5
95.5
97.3
98,0
98.1

647.100
47T.800
47,600
46,400
46.200
47.6C0
47.600
46.000
46100
45.300
44,700
45,300
44.700

1.700
43,400
41,600
&1.10N
424600
42.700
42,800
19.900
40.300
41.5C0
40,300
49,700
40,500
38.300
16,100
99.200
99.R00
36,209

Aa.200
99,30n
99,709
3g.onn
A8.400

1.500

lL.600

1.400

1.702
38,000
37.500

1.700
37.200
37.300
37.400

3.600

36.500
3,500
33.900
32.100
7.000
8.200
24.200
25.400
11.800

a5
ek
36
3
51
26
26
40
40
27
65
27
&5
109
45
98
110
2R
13
32
107

14
48
23
1R
62
59
2R
44
15
33
4
94
34
4

M
1

13
32

13
S3
60
k1]
50
37

a9
35
a7
6N
31
s1
50
33
49

L4,.7
4.1
44,1
“S.4
45.6
44.3
L P )
45,8
45,7
46.5
47,0
46.5
47.0
-6.4
48,3
50.2
50.5
49,0
%8.9
48.8
51.6
51.2
50,1
51,2
79.8
51,0
51,1
55.2
-5.4
-6.6
54,9
-53.9
-6.5
-T.1
51,7
51.1
-1n.2
-10.4
-10.2
-10,6
51,4
S1.7
-10.9
51.6
51.5
51.4

-13.9

50.6
-13.8
5245
53.7
-17.7
-19,1
58.4
57.0
=23.1

150.1
150.2
15n.2
150.3
151.4
151.7
151.7
151.8
151.8
152.5
152.7
152.5
152.7
166.3
15443
1551

155.3

156, 2
156..2
156.3
157.0
157.7
157.8
157.8
2.4
159,.2
159.1
162.0
151.5
153.4
165.8
27.5
155.7
155.8
176.1
176.0
60,7
160.8
161.1
1616
179.2
179.9
162.3
-178.4
-178.4
-178.3
166.6

=-171.3
166.7

-168.3

~165.6
167.9
168.7
-153.0
-153.6
170.6




APPENDIX H

This Appendix contains three computer program listings written or
adepted by the author.

The programs are written in FORTRAN IV for an IBYM 7030 (Stretch)
computer that has approximately an 80,000 word store.

1. Multi-Array Slowness Analysis Program.

2‘ Inversion of Phase Velocity-Distance Curve.

This program uses the Wiééhert-Herglotz integral method to invért
the 97/dA against & curve to a velocity - depth curve.
3. Truncate.
This program computes the cumulative distribution of residuals

and checks the distribution against the normal curve. A description

has already been given in Section 1.5.




MULTI-ARRAY SLOVNESS ANALYSIS PROGRAN

This section describes the program that computes the corrected
slowness values dT/qﬁk from the observed relative onset times.

The program consists of a MAIN program used fo read in data and
seventeen associated subroutines as well as subroutines used to graph output
on a SC 4060 plotter and vwhich have already been described elsewhere (Young
& Douglas 1968). The programs are written in FORTRAN IV for an IBM 7030
(Stretch) computer and will accept data from up to 120 events recorded at
4 arrays that each possessing up to 20 seismometers.

‘f. INPUT

The first part of the input consists of cards containing standard

tables:
(1) Students t tables for the 95% probability level.
(2) Travel time and slowness-distance tables at 1° intervals
(from Herrin 1968).
(3) Jeffreys-Bullen (1939) travel times at 1° intervals.
2, There follows an instruction card defining the slowness=distance
curve:
RAHNGE (1) - the lower limit of epicentral distance in degrees.
RINT - the unit increment in distance
NP ~ number of increments

eg if dT/dAk is to be estimated from 70° to 84° in 2° intervals, then
RANGE (15 = 70, RINT = 2 and NP = 8,_and INSTR 2 = EVEN. If the curve is
to be estimated over uneéual intervals, then RINT and IESTR 2 are left
blank apa then follows card(s) with each distance intérval %abulated from

‘?Qo to au°,
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o

The remainder of the card contains switches enabling the
calculated travel time to be restrained to any fixed value and dt/dék to
be restrained to fixed values at both ends. The card also contains

witches to produce cards puncned with results, residuals and site
corrections, and also full printouts of normal and inverted matrices.

3. The next section consists of 4 sets of cards, one for each grray'
with the cartesian coordinates in kms (referred to N-S and E-W axis) of
the seismometef sites constituting each array. If the first card of each
set is punched with the velocity in the top 500 feet of the array (VEL),
then the onset times will be corrected for site altitudes (ALTIT), (if known),
4, If ICOR = 1 is punched on card 2 then cards follow with parameters
A, B, E, F, G for each seismometer which correct onset times fér azimuthal
site effects. The correction for an event at azimuth« from an array is

(Appendix F)
=A+§sin(a+E)+Fsin (2a + G)

If only first order corrections are known, then F & G should be lefit blank.
5. " A directory follows listing all events recorded by the 4 arrays,

with details of their epicentres. Data that is essential for ihe running

the program is:

)

o
AZ - azimuth g of the event from the array
TFACT - the playbut speed of the paper records used to measure
the onset times - ie the conversion factor from
distance (usually mm) to seconds
EVENT -~ a unique code defining the event
DELTU -~ hypocentral distance from the array.
If DEPTH of the event is also punched then DELTU will be corrected for
depth and put equal to DELTA.
6. Four blocks of cards, one block for each array then follow.

Each block of cards contains the relative stepouts measured in mm. from

eacnh record. The events should be arranged in the same order as the

directory (paragraph 5) for speed of operation.




PROGRAR MAIN

This program reads in all the data listed above and converts the
step-outs to relative onset-times, applies all corrections and prints out
tne input data. The following corrections may be applied to the onset times:
p 2 Y pp

(1) Altitude correction

If values of altitude (ALTIT) are known for individual sites, as
well as the seismic velocity (VEL) in the top 500 feet of the array, then

individual onset times are corrected by

ALTIT - ALTITe
VEL

correction =

where ALTITo is the lowest site altitude at an array.

(2) Depth Correction

If the aypocentre of the event is known then the epicentral
distance (DELTU) is corrected for the depth of the event using subroutine
DEFTHA. The corrections are made using the upper mantle model of

Herrin et al (1968) shown in Fig HA1.

(3) Azimuthal Corrections

Onset times of an event at azimuth g can be corrected for
azimuthal siie corrections defined by the param=:ters 4, B, E, F, G,

(see paragraph 4). If azimuthal site corrections are used, they will
incluce the altitude corrections (1).

The matrix of coefficients of the normal equations (the A matrix)
is then set up in subroutine NORMAL. As explained previously, if the
equations of condition were set up, a prohibitively large amount of computer
storage would be needed; this is avoided when the matrix of normal
coefficients are Iormed directly. NCRMAL checks that each epicentral
distance is in the correct distance range and also sets 5_up the conoltlon
that the site corrections at each array sum to zero K\ > hl = 0 for all h,/ .

ot
Without this condition the normal equations are insoluble. If restraints

are to be placed on the slowness and travel time curves, these are also
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included at this stage. The restraints that may be applied to the data
are contained in the following subroutines:
SEOLDS
al
The value oi slowness in the first distance interval /b =
can be resirained to any value , that may be read in, by including thne

eguation of condition

g, & = |a .¢
N 'dAk=1_'\ N

where ¥ is a number, large with respect to , and taken to be 105. (see

Payne and Irones 1967).

The value of slowness in the last distance interval can be

similarly restrained to any value by including

o}

. ., o i e e .
The total slowness curve (8 = 30 -.104 ) was estimated in five sections

each overlapping by one degree at the ends. At the overlaps there was

H,
)

(28

ound to b

[(1]

o
n
}_J
}.l
m
oy
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[¢]
(o]
0]
l..J
<]

the slowness gstimates. SHOLDS and SEOLDE
were gsed to-restrain the value of slowness'to the mean of the two estimates,
anc¢ the curve re-estimated.
JBTIME

An independent check on the slovness distance curve is to
compare its integral (travel time) with known values or alternatively to
restrain the travel time to a fixed value. JBTIME is used to include in

the matrix the equation of condition

[ an (o1 ) " ar ) [ ar )
\ H < - mnTR
D1\~dh)+ Dz\-——d ) ““'Dk(_—‘d[s/““'nm\*di\)' 'dnm
T \
where Dk is the interval in Kms, over which the slowness is d /dﬁ/ and
1~

TJBm is the Jeffreys-Bullen travel time across the range D1 to Dm.
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This is & subroutine similar to JBTIME that allows the travel
time to be resirained io any value (= THOLD).

The complete matrix of coefficients of the normal equations are
inserted using subroutine SOLVE derived from the Harwell Program Library

" (N¥o. MBO1A). This uses the method of traingular decomposition (HMSO, 1961)

Hly

to form the inverted masirix, which is stored on disk. From the inverted
natrix, subroutine RESIDL compuies the site corrections S(HI), constants C(HJ)
and slowness S(X) for each distance interval K. (n subsituting these values
into the original equations of condition, the error terms RESID (H1J), and
hence 32 the estimate of the variance of the errors can be found. ' From 52
and the diagonal elemenis of the inverted matrix, the 95% confidence limits
on S(HI), C(HJ) end S(X) are computed.

The observed onset times AT(HIJ) corrected for S(HI) and C(HJ) are

used to calculate the individual estimates of slowness for all events, from

the equation

dT/on = T p, 1,

= 21 (see Appendix C)
b F ’
iti
where Fi. = —(xi sm @ + Yyi cosa ) and ti is the corrected onset time
1':_i = AT(HIJ) - C(HJ) - S(dI). Printed output from the progrem is:
(1) Tables of slowness S(K), (secs/deg) for each distance interval K

" with 95% confidence limits, and the reciprocal of slowness, "phase velocity"

v (km/sec).
(2) Tables showing the best estimates of S(HI) and C(HJ) with 95%

confidence limits,

(3) Tables showing the residuals for each site RESID (HIJ)
(4) Tables showing the calculated onset times for each site
¢T(HIJ) = AT(HIJ) - RESID(HIJ)
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(5) The integrated area under S(X), ie, the total t?avel time across

K cistance intervals and 95% confidence limits and differences from the
Jeffreys-Bullen (1939) and Herrin (1963) travel time tables.

(6) _-4ables showing the values of dlI|/c1L\ for individual events corrected
£6% sub array structure.

(7) ~ Tables of 95% confidence limits on the differences between S(K)'s.

Output available on punched cards isi=~
(1) Corrected epicentral distance DELTA, corrected individual estimate
oi slowness dT/d&, corresponding phase velocity V, event code LECODE.

(2) RESID (HIJ)
(3) RESID (HIJ) + SHI). These cards are used to derive the
azimuthal site corrections.

Graphical output is also available using the SC 4060 plotter.
Subroutine GRAPH plots all grapns using the standard package POLGRF derived
from the subroutine CARGRF described by Young and Douglas (1968).

Graphical output is:-

(1 Area under S(K) - DELTA curve plotted with Jeffreys-Bullen and
Herrin 1968 travel times.

(2) Observed travel time - J.E. plotted against distance.

(3) V(K) - DZLTA curve, 95% confidence limits and phase velocity from
Herrin (1968).

(4) V(K) - DELTA curve, 95% confidencé limits and individual.estimates

of V corrected for sub array structure.

(5) " S(XK) - DELTA curve, 95% confidence limits and GT/dA from Herrin (19¢
(6) S(K) - DELTA curve, 95% confidence limits and individual estimates
of dl/dA.
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TYPE,COMPILGO,F4
SUBTYPE, FIDD
24100, DISK
END
SUBTYPE,FORTRAN, LHAP,L STRAP

1 '
MULT[=-ARRAY SLOWNESS ANALYSIS PROGRAM. DEREK J. CORBISHLEY.
CO0EPEESEENGLOROIFSEUCEEIETRGEINSOEOG CEGEUELAGTENENEEESO S

THIS PROGRAM ESTIMATES TYHE DERIVATIVE OF THE TRAVEL-TIME CURVE
DT/DX(SLOWNESS) AND [TS RESIPROCAL (PHASE VELOCIYY) IN DISCRETE
DISTANCE INTERVALS. THE DATA READ IN IS ONSEYTIMES FRCM UP TO 120
EVENTS RECORDEC AT 4 SEISMIC ARRAYS. THE PLANE WAVEFRONT APPROXIMA
TION IS ASSUMED FOR EVENTS AT A EPICENTRAL DISTANCE GREATER THAN
30 DEGREES. ALL DATA IS INVERTED SIMULTANEQUSLY USING LEAST SQUARE
S+ UNSET TIMES CAN BE CORRECTED FOR AZIMUTHAL PIT CORRECTIONS.

AND ALTITUDE, EPICENTRAL DISTANCE (S CORRECTED FOR FOCAL DEPTH.

QUTPUT INCLUDES GRAPHS OF DT/DX WITH 95 PER CENT CONFIDENCE LIMITS
(95 PCCL) , PHASE VELOCITY WITH 95 PCCL, TRAVEL TIME QWTAINED B8Y
INTEGRATING AND CORRECTED VALUES UF DT/DX FODR ALL EVENTS AND SITE

CORRECTIONS.

THE ‘EQUATION (OF CONDITION FOR AN EVENT{(J} IN THE DISTANCE INTERVAL
(K} ARRIVING AT A SEISMUMETER(I) AT THE ARRAY(H) IS

TUHIJ) = S(HI) + CUHI) = R{HI)*COS(THET(HI)-AZ(HJ)) *(DT/DXIK

WHERE
S{I) = TIME CORRECTION FOR STRUCTURE UNDER SEISMOMETER(I)
C(J) = A CONSTANT
RCHIICOS{ThET(HI 1=AZIHJ)) = X(HI}eSIN(AZ(HJ)) + Y(HI)}®*COS(AZ
(HJ)})o. FOR SEISMOMETER COORDINATES X(HI) ,Y(HI) AND EVCNT AT
AZIMUTH AZ(HJ),.

THE PROGRAM SOLVES FOR Sy Cy DT/DX.

ThHE PROGRAM IS WRITTEN FOR H = & ARRAYS (ONLY)
I = 20 SEISMOMETERS /7 ARRAY (OR LESS)
J = 120 TOTAL EVENTS (DR LESS)

K = 30 DISTANCE INTERVALS (QOR LESS)

SEE
{DOUGLAS AND CORBISHLEYy NATURE, 30/3/68, PAGE 1243)

THE ORDER OF THE INPUT DECK IS

THE FIRST 3 INSTRUCTIONS REMAIN CONSTANT FOR ALL RUNS

1 CARDS WITH
ST(I) 57 VALUES OF STUDENTS T.
THE FORMAT FOR PUNCHING IS IN STATEMENT NO.89.

2 CARDS WITH
TIMEH({1) TRAVEL-TIMES AND SLOWNESS OF P FOR DISCRETE EPICENTRAL
SLOWH{I} DISTANCES FROM O TO 108 DEGREES AT 1| DEGREE INTERVALS
DOBTAINED FRUM HERRIN (1968).
THE FORMAT FOR PUNCHING 1S IN STATEMENT NO. 90.

3 CARDS WITH
TIMEJC(L) 112 VALUES OF TRAVEL-TIMES(JEFFREYS=BULLEN} FRCA O TO
111 DEGREES AT 1 ODEGREE INTERVALS.

VESOSDEEOHLSORUUCEICHEOEL SUCHIGEEHSENETABUDRUOOOGRUSEOUUDOSUSEOERE
THE FOLLOWING INSTRLCTIONS DEFINE THE DT/DX - X CURVE,

4 CARD WITH

RANGE( 1) LOWER LIMIT OF EPICENTRAL DI STANCE FROM STATIONS. PUNCH
IN CULS T7-8,

RINT INCREMENT IN DEL TA. PUNCH IN COL 11,

NP NUMBER OF INCREMENTS. PUNCH IN COLS 13-14,

INSTR2 PUNCH ~EVEN- [IF INCREMENT IN UELTA IS CONSTANT CVER ALL
NP, UTHERWISE OMIT. (PUNCH IN COLS. 16-19)
IF INSTR2 = BLANK, THEN CARDS FOLLOW WITH VALUES CF RANGES
{AFTER INSTRLCTIUN 5)TO A MAXIMUM OF 30 (SEE FORMAT 96)

IHOLD PUNCH 1 TO HCLD TRAVEL=~TIME ACROSS DISTANCE RANGE TQ THAT
GIVEN IN COLS 23-29. (F6.3)1. PUNCH N COL 21.

THOLD CURVE RESTRAINED T THIS TIME(SEE -IHOLD~)

ISTART PUNCH 1 TO HOLD STARY OF SLOWNESS CURVE TO VALUE GIVEN IN
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COLS 23-38 (F&.33 PLNCH 1 IN COL 31

SSTART START OF CLRVE RESTRAINED TO THIS SLOWNESS (SEE ~ISTART=)

LENDS PUNCH 1 TO HOLD END OF SLUWNESS CURVE TO VALUE GIVEN I[N
COLS 43-48 (Fé¢,3) PUNCH 1 IN COL 41

SENDS END OF CURVE RESTRAINED VO THIS SLOWNESS (SEE -JENDS-)

IRSTRN PUNCH 1. TO RESTRAIN TOTAL TRAVEL-TIME ACROSS DISTANCE
RANGE TO THAT GIVEN BY J.B, (PUNCH IN COL. 52)

1800G PUNCH 1 TO REMOVE HERRIN SLOWNESS EFFECT FROM ARRIVAL
TIMES.(PUNCH IN CDL.54) BY PUNCHING -1B0DG- EACH ONSETTIAM
E 1S CORRECTED BY SUBTRACTING THE THEORETICAL GANSET TIME
OBTAINED FROM HERRINS({1968) TRAVEL TIMES, THE PROGRAM
THEN CALCULATES —SLOWNESS DEFECT- AND THE RESIDUALS AND
PIT CORRECTIONS WILL BE INDEPENDENT OF ANY DISTANCE TERM.

IRESID PUNCH 1.FOR CARDS PUNCHED WITH TOTAL RESIDUAL = (RESIDUAL
¢ PIT CORRECTION)., OTHERWISE LEAVE BLANK. (PUNCH IN COL
561,

IMTREX PUNCH 1.FOR PRINTOUTS OF MATRICES.OTHERWISE "LEAVE BLANK.
(PUNCH IN COL. 58)

{VEL PUNCH 1.FOR CARDS PUNCHED WITH (DISTANCE ,SLOWNESS,PHASE
VELOCITY,EVENTY CODE)

OTHERWISE LEAVE BLANK. {PUNCH IN COL. 60)

{1COR PUNCH 1.TO READ IN CARDS PUNCHED WITH AZIMUTHAL PIT

CORRECTIUNS~=~~=SEE STATEMENT 7 BELOW. {PUNCH IN CCL 62}

IPUNCH PUNCH 1.FOR CARDS PUNCHED WITH PIT RESIOUALS. GTHERWISE
LEAVE BLANK, (PUNCH BN COL. 66)
THE FURMAT FOR PUNCHING IS IN STATEMENT NO.88.

COOIINIRAUUEENEACRORESEPRNINEEEEN KOBFSSFUSUCE SO CUSEORERNOIVOIEIORES
ThHE FOLLOWING INSTRUCTIONS GIVE DETAILS OF THE FOUR ARRAYS.

5 UNE CARD WITH

STN THREE LETTER CODE OF ARRAY STATION(I}.

NPITULI) NUMBER OF P[TS AT STATION.

SLAT(L) LATITUDE OF STATION.

SLONGU{ I} LONGITUDE OF STATIUN.

VELI I VELOCITY IN TOP S00 FT, OF STATION OF P WAVE. FOR HEIGHT
CORRECTIUONS (IF KNOWN) : ’
THE FORMAT FOR PLNCHING IS IN STATEMENT NOJ31.

o (J) CARDS WITH
STN( T NAME OF STATION(I1}
PIT{(I.J) REFERENCE NUMBER OF PIT(J) AT STATION (I},
X{i,d} "“X-COORDINATE OF PIT POINT,.
Yiled) Y-COORDINATE OF PIT POINT,

ALT(I,J) ALTITUDE OF PIT POINT IN FEET.FOR HE IGHT CORRECTIONS.
COR{IvsJ) CURRECTION TO ONSET TIME(SECS).LEAVE BLANK FCR NO
CORRECTION
THEKE MUST BE 20 SETS OF COORDS. IF J LT. 20 THEN THE NUMBER
SHOULD BE MADE UP WITH BLANKS.
THE FORMAT FOR PUNCHING IS IN STATEMENT NO.4l.

THERE ARE (I} BLOCKS OF CARDS.EACH BLOCK HAS ONE CARD PUNCHED
AS IN S5(ABUVE ) FOLLOWED BY{JICARDS PUNCHED AS IN 6(ABOVE).

7T CARDS WITH
IF ~ICOR~ HAS BEEN PUNCHED AS IN 4.ABDVE, THEN FCLLOW ONE
CARD FOR EACH PIT WITH AZIMUTHAL PIT CORRECTIONS OF THE
FORM .

CORRECTION = ALPH1 + BEYL®(AZ + GAMML) + BET2(AZ +
GAMM2)

IF CORRECTIONS ARE OF ONLY THE FIRST ORDER THEN LEAVE
BET2 AND GAMMZ BLANK.

ALPH1 AZIMUTHAL PIT CORRECTIONS 1ST ORDER
BET1 AZIMUTHAL PIT CORRECTIONS 1ST ORDER
GAMM1 AZIMUTHAL PIT CORRECTIONS 1ST ORDER
BET2 AZTMUTHAL PIT CORRECTIONS 2ND ORDER
GAMM 2 AZ IMUTHAL PI1Y CORRECTIONS 2ND ORDER

FURMAT FOR PUNCHING IS IN STATEMENT NO.4l
IF PIT CORRECTIONS HAVE, QR HAVE NOT BEEN lNCLUDEDz THERE FOLLOWS-

POVFUVEESAFEEEHEVECTL QU SECE COCEIVESTVLACHHEVUTLOL IS VR ABBE030C0DD

THE FOLLOWING INSTRUCTIONS ARE A DIRECTORY OF THE EVENTS USED

8 ONE CARD WITH
NEL L) NUMBER OF EVENTS RECORDED AY ARRAY (1)
NE(2}) NUMBER OF EVENTS RECORDED AT ARRAY (2)
NE(3) NUMBER OF EVENTS RECORDED AT ARRAY (3}
NE(&) NUMBER OF EVENTS RECORDED AT ARRAY (&)
TOTAL NE{L1)eNE(2)¢NE(2)¢NE(4) MUST BE LESS THAN 121
- THE FORMAT FOR PUNCHING IS IN STATEMENT NO.5.

9 4 BLOCKS OF CARDS EACH WITH
ViK} PHASE VELOCITY{KM/SECIOF SIGNAL FROM EVENT(K).
ACROSS ARRAY FROM USCGS, IF KNOWN,
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AL(K) AZIMUTH(DEGREES)FROM USCGS.

TFACT(K) FACTUR FOR CONVERTING ONSET TIMES TO SECONDS (iE. IF
UNSETS ARE IN MM. THEN TFACT = X MM./SEC)

EVENT(K) DATE OF EVENT(K), ALL EVENTS MUST BE DEFINED UNIQUELY.

OEPTHIK) DEPTH OF EVENT FROM USCGS, ASSUMED ZERQ IF UNKNOWN,

DELTUIK) EPICENTRAL DISTANCE FROM ARRAY,

CLAT{K) LATJTUDE(DEGREES)IOF EPICENTRE IF KNOWN.NORTH IS5 POSITIVE,

ELONG(K} LONGITUDE(DEGREE SIUF EPICENTRE IF KNOWN.EAST IS POSITIVE.
FORMAT FOR PLNCHING IS IN STATEMENT NO.9.

THERE SHOULD BE CNE CARD FOR EACH EVENT, BLOCKS CF CARDS
FOR EACH ARRAY SHOULD BE IN THE SAME ORDER AS [NSTRUCTION
’ 5 .
SECENINIUCOVECHU RS BUEUERSOEUEIEPESSHSEES AT SRR VRIS ENEERNIEI OB End

THE FOLLOWING INSTRUCTIGNS CONTAIN ONSETTIME DATA RECCROED AT EACH
SEISMOMETER (PIT). THEIR SHOULD BE 4 BLOCKS UF DATA IN THE SAME
OROER AS INSTRUCTION 5, EACH BLOCK OF DATA HAS

10 ONE CARD WITH
ASTN NAME OF STATION.
FORMAT EOR PUNCHING IS IN STATEMENT NU.7T.

11 ONE CARD ®iTH
AEVEN2? EVENT CODE.
ANAME LUCAT IUN OF EVENT,
FORMAT FOR PUNCHING IS IN STATEMENT NO.45.

12 CARDS wWlTH
APIT NAME OF PIT,
T UNSET TIME AT PIT
FORMAT FOR PUNCHING IS IN STATEMENT NO.12.

THERE SHOULD BE ONE CARD FOR EACH PIT.IF A PIT IS MISSING,THE
LAST CARD SHOULD BE A BLANK.

AT L ARAUSBUERICEETCU P CIA RN E EIT QB U R EECC S XU SO E OO NCO RS R IOGCIOSEESS
SECEEOSCUE RIS OEREE OO R R VOELINOE SRR RO O SEC RN IS H S EPURDEEPUCEOESE LGS
T L L Y Y Ty T T L Ty PP P T T I Y Ty

THIS -MAIN- PROGRAM READS IN THE DATA AND CORRECTS THE ONSET TIMES
AND PRINTS OQUT IN TABULAR FORM,

CIDVCRTHSREPENC S AP T IE PR CRNO PR O B ER A B OO OE PR QPUUI PRIV SO QFBTR

COMMON /AMATRX/ ALT(4,20), COR(4,20}, TFACT(120}, ELAT(120],

1 ELONG(120), AIND(120,2C)

COHMON /ATT/ AT(4,120,20)

COMMON /BMATRX/ B(231) ,

COMMUN /EVENTT/ EVENT(12G), NEVENT, NE(4), AZ(120), DELTA(120),
1 INDEX(120}

CUMMUN /GRFF/ TITLE(2C), XMAX. XMIN,YMAX, YNIN, INOX, INOY, INO,
1100T, INSTR1, XLIMIT, YLIMIT, SCALX, SCALY

COMMON /PITT/ STN(4), PIT(4,20), X{4:20)y Y(4420)s APIT(4)
CUMMON /REST/ v(120), ENAME(120,31, VELOC(120), M

COMMON /RJ4ST/ $(231), D(231)

CUMMON /RNGE/ RANGE(30), RINT, NP

CUMMON /SLV/ N, IMTREX, IRESID, IRSTRN, IVEL, I1BODG, IHOLD, [START
1, [ENCS, THOLD, SSTART, SENDS, IPUNCH

CUMMON /STATS/ ST(57)

COMMUN /TTCVS/ TIMEML109), AMPV(24), TIMEJ(112}, SLOWH(109)
DIMENSION SLAT(4)y SLONG(4), VEL(4), ANAME(3), BMIN(4), HMIN(4],
1 DEPTH{120), DELTU(12C), ALPHA(4,20], BETA (4,201, GAMMA(4,20)

2, ALPH1{4,20), HET1(4420), GANML(4,20) 4BET2(4+20), GAMM2(4,20)

CATA EVEN(BHEVEN )
DATA STAR(BH® )
VATA BLANK( 8H )

Plag,*ATAN(1.)
RTUD=180,/P1
DTOR,= P1/180.
RADIUS=6371.028
REAL INSTR2

SPECIAL LIBRARY ROUTINES
CALL SCLIBR

CALL EBUMP

‘CALL SDATE(DATE)

CALL SECCLK(TS}

00 22 I=l,4
DO 33 u=1,20
X(1sJd) = 0.0
Yil:d) = 0.0
ALT(L,J) = 0.0
COR{I+d) = 0,0
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99

91

92

88
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95

98
97
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ALPRA(LT,J) = 0.
BETALT, ) = 0.
GAMMA( [,J1 = Q.
ALPHIL{,J1 = Q.
BET1(1,3) = 0.
GAMH1(1,J4) = Q.
BET2({,Jd) = 0.0
GAMM2( 1,41 = 0.0
DO 20 K = 1, 120
AY({1sKpJ) = 0,0
CONT INUE

CUNT INUE

CUNT INUE

COBREOOLNBNCEEOEOESREARCERSRNORAOEIERNESREERINSHBENTINOSNIIETOEGE
READS IN FIXED TABLE OF CONSTANTS

READ 89, (STII}, I = 1, 57}
PRINT89,y (STi(I)y I = 1, 57)

FURMAT (11X, 15F5.2)

READ 90, {(TIMEH{[), SLOWH(I), I = 1, 109}

PRINT90, (TYIMEHII), SLOWH(I)y 1 = 1, 109)

FORMAT ((S5(F8.4y 1X, F7.4))}

DO 99 I = I, 1CS

TIMEH{ I~1) = TIMEH{I)

SLOWH(I-1) = SLOWH{I}

CONT INUE

READ 91, (TIMEJ(I)}, I = 1, 112)

PRINT91, AT-IMEJ{1)y I = 1, 112)

FORMAT (2X, 7F10.2) : :
00 92 I = 1, 112 . ) ) i . _
TIMNEJTI~1) = TIMEJS(I)

CONT INUE
SETS ARRAYS TO Z2ERO
IHOLD = 0
[START = 0
LENDS = @
IRSTRN = 0
IBOVG = 0
IRESID = 0
IMTREX = 0
IVEL = O
{COR = 0
IPUNCh = @

BB EL BRI ORNESRESES O OONE S CV G SOCR K CCHEE LS TN G LGB EIR OIS 2SO EECRR U

READS IN DETAILS OF OISTANCE INTERVALS AND
SWITCHES

READ 88¢ RANGE(1),RINT,NP,INSTR2y IHOLD » THOLD o ISTART ,SSTART , 1 ENDS,
1SENDS+ IRSTRN, [BODG, IRESID,IMTREX,s IVEL, ICOR, IPUNCH

PRINT88, RANGE(1),RINT,NP+INSTR2, [HOLD ,THOLD, ISTART ,SSTART,IENLCS,
1SENDS, IRSTRN, L BUDG, IRESID,IMTREX, IVEL, ICOR, IPUNCH

FURMAT {6Xy 12y 2R4s 110 1XKe 12y 1Xe A4,y 11Xy Ily L1Xe F7.3, 1X, I1,
1l 1X, F6e3s 2Xy Ily 1Xy F6e3, 3Xy Il, 6(1X, I1))

{HOLO = I[HOLD +
ISTART = [START
1ENDS = IENDS +
IRSTRN = [RSTRN
IB0OG = (BODG +
[RESIC = IRESID
IMTREX = [IMTREX
IVEL = IVEL ¢ 1
ICOR = JCOR ¢ 1 f
IPUNCF = [PUNCH ¢ 1

LA N I
-

o

NP = NP + 1

IF { INSTR2.EQ.EVEN)GU TQ 95 - ‘
READ Gé, (RANGE(I), I =1, NP} .
PRINT9&6, (RANGE(I), I = ), NP)

FORMAT (9F8.2) .

GU TO 97 '

DO 98 I = 2, NP

RANGE( 1) = RANGE(1) + FLOAT{I~1)®RINT

CONT INUE

COUNT INUE

NP = NP = }

00‘.“..‘0#..‘.‘..‘..‘.“..““‘.....“."0..“.‘.0.0‘..t‘....‘tt.

READS IN ARRAY I[NFORMATICN AND PRINTS OuT

o0 1 1s 1, 4

READ 21,STNLLINPIT{I),SLATLI ) SLONGI1) ,VELLL)

FORMAT (1X, A4y 3%y [3, Xy F8.34 2X, FB8.3, 3X, F6.2)

READ 41y (STNUIDPITULsddy XCIyddy YII,d4), ALY(L,Jd)y J = 1, 20)
FORMAT (1Xe A%y 1X, A3, 6Xs Fl0s5,FL0.5,F10.5)

—
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CONT INUE

PRINT 10, DATE

FORMAT (1nl/73Xy 29MMULTI=ARRAY VELOCITY PRODGRAM , 30X, 20HDEREK J.
1 CORMISILEYey J0Xy, AR/Z3IX, 29livesecosacsecsccssscosocessdss, 30X,

2 20:cevcvceccvrecvcesees, 30X, SHeveseewn)

PP INT )8
FORMAT ( /73X, 24HCODRDINATES OF STATIONS.
173X 4 24H-===w=mccreccccmcvacaa =——//730X, THNAME OF ;3X¢5HNO. OF ;3Xy BHLAT

2LTUDE, 3X+ 9HLONGI TUDE, 3X, 1 4HVEROCT TY UNDER .
730X, THSTATION 44X ¢ 4HPITS 15X 6

3
GHIDEGS )1 SXy6H{DEGS) +6 Xy 14HSTATION (FT/S)

] 130K, TH=mwmm == y 3K o= === “13X 48 H-
P +3X y OH==mmm e o 13X 14H=mmm e )
PRINT 3, (STNCT),NPITIT),SLATE T} ,SLONG (1) ,VELUI}, Isly %)

FURMAT (32X, A4y 5X, I3, 5Xs F8.3y 4X, FB.3, 5Ky Fb6.2)

PRINT 4, (PIT(1,J), X{1ed)y YUl pd)y ALTLLed)y COR(1,J),

1 X{24Jd)0 Y(24d), ALTH2,4), COR(2,44),
2 : X{34J) 0 Y(3,J)y ALY(34J)y CORI34 ),

3 Xi4 )y Yi4sd)y ALT(4,4), CORI&,d), J=1, 20}
FORMAT(//3X¢62HCARTES [AN COORDINATES,ALTITUDES AND CORRECTIONS OF
IPIT POINTS./3Xy63H==-=memerrcnnr e ena—-— e —mcmescccc et a———-
P e /701Xy IHEKA ,2BX,3HYRA, 28X, 3HHAA ,28X,3HGBAZ/IX ¢3HP]
3T,4(4Xe MHXy TXeIHY y5SXe6HALTI T4 42 X,5HCORR, )

4/ 1Xy IH===, 4{ 2%, 2SH===r=—mcccceccmcaaccac= - —emw)
S/{1X, A3, 2X, Fb.3¢ 2Xe Fbe3y 44Xy 14y LXy FS.24 3K,
[} Fbede 2Xsy Fbedy 4Xy L[4,y 1Xy FS5.2, 3X,

7 Foedy 2Xy Fé€e3y 4Xe [4y 1X, F5.24 3X,

8 Fbedr 2Xe F6e3s 4Xy [4y 2X, F5.2))

60 TQ (110,111)ICOR

PRINT 112

FORMAT (1H1/3X, 9SHAZIMUTHAL PIT CORRECTIONS CF THE FORM CORR.= A
ILPHT + BET1*SINUIAZ.* GAMML) ¢ BET2eSTN(2%AZ.¢ GAMM2)/3X,25Hsress6s
2esnsosonssseudnes/ /3N, 23HTWO TERM FOURIER SERIES/3X, 23Heessssos
JeRE e eLOoRENbEETR /) |

4 17X, SHARRAY, 9X, 3HPIT, 10X, SHALPHY, 10X, 4HBET1, 12X, SHGAMML,
5 10X, 4HBETZ2, 12X, SHGAMM2/)
Do 113 1 =1, 4

READ 115, (STNUIDPITCToJd) ¢ALPHLILT ¢ J) ¢BETL{L,J) +GAHMLI(I,d),
1BET2(19Jd), GAMM2{I,J},y J = 1y 20)

FORMAT (1X, A4, 1Xo A3, €X, 5F10.5)

CONT INUE

DO 114 I = 1, 4

PRINTL16, (STNUIT}yPIT Led} JALPHLI(TI o J}sBETLI(I,J) sGAMML(T ,J1,
18ET2(14d)y GAMM2(I,J), J = 1, 20)

FORMAT (18X, A4, 99X, A3y TX, F10.5, &X, F10.5, 6Xy Fl0.2, %X,

1 F10.5) 6Xy Fl0.2)

CONT IKUE

BEEEIAFCEORILE RS SRS P REU DS EOIP RSN EOECERCROGEERRISINEIANNAUSS
READS IN DIRECTORY OF EVEANT INFORMATION ANC
PRINTS OUT

READ 5S¢ NE(1), NE(Z), NE(3), NE(4)

FORMAT (7X,y (3, Xy [23, X, 13, 7X, I3)

NEVENT = NE(1) & NE(2) ¢ NE(3) ¢ NE(&)

READ 9y (VIK)s AZ(K), TFACT(K), EVENTI(K)y DEPTH(K), ODELTU(K),

1 ELAT(K), ELONG(K}, K = 1, NEVENT}

FORMAT (2X, F8.3, 2Xy FBs3y 2Xs FTe3e» 2X, AB» 3Xy I3, 6Xy F5.1,
1 2Xy Fbely 2Xy F6ol)

CORRECTS FOR FOCAL DEPTH

CALL CEPTHA(DEPTH, DELTU, DELTA, NEVENT)
BOUEGIROBDUGESVEOGORINOOCEEESUEOSUSBECR

PRINT 51
FORMAT (1H1/3X, 4OHTABLE OF ALL EVENTS USED AT EACH STATICN
1/ 3%, 4OH=-==c=- ————— e cmmmm—————————— ————

2//12Xy THDATE OF, 6X, LOHPHASE VELes 4Xy» THAZIMUTH., 5X, SHTFACT,
3 3X, SHDEPTH, 33X, 1CHUSCGS UIST, 4X, 10HCORR, DIST, 4X, B8MLAT ITUDE
by 4Xy GHLONGITUDE/ 13Xy SHEVENT, BX, BH(KM/SEC), 4X, 9H(DEGREES},

5 12Xy S5H(KMS)s 4X, 9H (DEGREES)y & Xy 9H(DEGREES)y &X, 9H(DEGREES),
6 46Xy 9H(DEGREES))

LIM1 = NELL)

LIM2 = NE(2) + LIM]

LIM3 = NE(3) + LIM2

LIM4 = NE(4) + LIM3

LLIML = LIML + )

LLIM2 = LIM2 ¢+ 1

LLIM3 = LIM3 ¢ )

PRINT 3%, STN(1}

PRINT 17y (EVENT(K) VIK) AZ(K)4TFACTI(K), DEPTH(K), DELTU(K),

1 DELTA(K), ELAT(K), ELONGI(K)y, K = 1, LIM1)

PRINT 39, STN(2)

PRINT 17, (EVENT(KD)sVIK)+AZ(K)}TFACT{K), DEPTH{K), DELYU(K),

1 DELTA(K), ELAT(K), ELONG(K), K = LLIML, LIM2)

PRINT 39, STN(M)

PRINT 17, (EVENT{K} V(K)sAZ(K)TFACT(K}, DEPTH{K), DELTU(K),

1 DELTA(K)y ELAT(K}s ELONGIK}y K = LLINZ, LIK3}

PRINT 39 STN(4) ,

PRINT 17y C(EVENT(K)oVIK) JAZ{K) yTFACT(K), DEPTH(K), DELTUIK),

1 DELTA{K), ELAT(K)y ELONG(K), K = LLIN3, LIM&)




39
17

[alalaXaRaNaly

(229

50

43

42

70

26
21

45

“b

48
49

47

93

12

16

37

107

C
106

onNne

71

72
15
4%

FORMAT {1X, BHSTATION , A&4/1X, llH-=—-======- )
FORMAT (12X, A80€XoFEa lpBXyF 5. 145X ,Fbe2¢ XKy 139 5%y F5.1, 9Xs» F5.1
1, 8K, F6al, &6Xy Féol} -

CVEPOELOCACOEEBINCER O NPT CETC GOV S EGEEISLUAREARIGNIOCVORIIEOEINCGHT

ROGRAM NOW READS IN ARRAY, EVEAT AND ONSET
TIMES CHECKING EACH AGAINST THE DIRECTORY,
A IF A MISTAKE OCCURS THE J0B [S REJECTED

KEVENT = 1
LEVENT = NE(1)

SELECTS ARRAY

00 i1 =1, &

READ 7, ASTN

FORMAT (1X, A4)

DU 50 IS = 1, 4

IF (ASTNJLEQ.STN{IS)) GO TO 42
CONT INUE

PRINT 43, ASTN

FURMAT (//4X, 3THJIOB REJECTED, CANNOT IDENTIFY STATION, 48/4X,
1 ATHR2 4SS 00 S G S SO LR ORAEESIRS IS SNEE]
CALL EXIT

10 = IS

MEVENT = NECIQ}

NLIM = NPIT(IO)

FINDS HEIGHT OF LOWEST PI Y

CALL AAMIN(ALT, 20, HMIN, I0)
BICTEODN NGB R IR CEE RSB Ok

00 70 4 = 1, 20

ALTUIG.J) = ALT(10,J}) — HMIN(IO)
CONT [NUE

DO 21 K = 1, 120

DO 26 J = 1, 20

AIND(K,J} = BLANK

CUNT INUE

CONT INUE

SELECTS EVENT

DO 44 K = KEVENT, LEVENT

READ 45, AEVENT, (ANAME(L), L = 1, 3)
FURMAT {6X, A8, 26X, 3A8)

DO 46 KS = KEVENT, LEVENT
IF(AEVENT .EQ. EVENT(KS)) GO TD 47

CONT INUE

PR INT 49, AEVENT .

FORMAT (//4X, 35HJOB REJECTED, CANNOT IDENTIFY EVENT, A8/4X,
1 35HO $8UEEEETUSHERIOIEPESCEIEIASEOBEN OS]

CALL EXIT

KO = KS§

DO 93 IA = 1, 3

ENAME(KD, [A) = ANAME(IA)

CONT INUE

SELECTS PIY

00 15 Jd=1,20

READ 12, APIY, T

FORMAT (66X, A3, 3Xy F10.42)

IFLAPIT.NE.BLANK) GO 10 6

GO TO 44

00 2 JS = )}, 20

IF (APIT.EQ.PIT(IO,JS)) GO 10 37

CONT INUE '

PRINT 16, APIT

FORMAY (//4X, 35HJ0B REJECTED, CANNOT IDENTIFY PIT , A8/4X,
13ISHE R S0S 0RO UEONURBCAICEVUARCRIBEEOSDES)

CAaLL EXIT

Jo = J§

AGAMMA = (AZ(KQ] ¢ GAMMA(10,J0)31e¢0TOR

AGAMM] = (AZ(KO) + GAMMLI(IO0,JO)I*DTOR

AGAMM2 = (2.¢AL(KO} + GAMMZ2(I0,J011*DTOR

ONSETTIMES CORRECTED FOR PIT CORRECTIONS .
AT(10+K0,J0) = T/TFACT(KOL} - (ALPHA(IO,JO)¢BETA(IO,JO) *SIN(AGAMMA)
1) = CALPHI{ID,JO)+BEYL(I0,JO}*SINCAGAMML) + BET2{I0,J0) *SIN{AGAMM2
2)) + 0.00001

GO TO (106,107) 180DG

ONSETTIMES CORRECTED FOR TRAVEL TIMES

CALL TIMOUT(10,KD,J40)

LI LT T T P T T YT

AIND{KD,JUu) = STAR

IF (VEL(IO)) 71, T1, 72

GO 70 15

ONSET TIMES CORRECTED FOR HEIGHT OF PITS.

AT(I0,K0,J0) = AT(10,KO,J0O) ~ ALTLID,JD)/VEL(IO}

CONT INUE

CONT INUE

‘.0.0.000!.00‘..0....'#0‘."...“..C.G.Ot"‘.‘l“.ot.0?....033‘.0‘
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C PRINT GLT ONSET TIMES

N9 = (MEVLNT - 11/6 +
PRINT 23, STN(IO)
23 FORMAT (1M1/3X, 31HCBSERVED ARRIVAL TIMES AT PITS, J
173Xy 3lH-=~=wmwmomommme o —————— cmmmmemme =/ 3K, IHSTATION  JAG/3Xy13H=~
: IFIVELITU) - 0.) 24, 24y 3¢ .
| : 36 PRINT 25, VEL(IO) ’
I 25 FURMAT(// 3%, 5OHOBSERVED ARRIVAL TIMES AT PITS HAVE BEEN CORRECTEC/

13X, 6l H======m === M e mmceme—m—eeemcmo-—eao -2/ 3X,32ZHFUR ALY ITUDE
2 USING A VELOCITY OF ;Fb6u0 BHFEET/SEC/INy32H=mmmmmmmmecmmccmaee—eee

‘ 3----- ———

f 473X, 3SHTHE LOWEST PIT BEING TAKEN AS REFERENCE

: 5/ 3Ky 3QHm=m === === mm—m—m e B e L L P S
YN )

GU T 28 . o
2% BR[NT 24 ’
34 FUORMAT (755X, 24HIUNSET TIME AT PITSUISECS) i
1/55%X, 24H-~m====e=e=a- m————— ————=) )
28 DO 30 IZ = 1, NS
NLOW = (JZ =11%9 ¢ KEVENT
NHY = NLOW + 8
[F (NRY.GT.LEVENTIJNHY = LEVENT
PRINT 29, (EVENT(K}y K = NLOWs NHY)
29 FUORMAT (775X, 3nPIT, Sl4X, AB)/)
: DO 35 J = 1, NLIY
= - PRIMNTI2, PITIIUwJ) o (ATHIO G KoJd-d JAIND(KgJ)-9K = NLUW, NHY) - - -
32 FURMAT (6X, A3, 9(3X, FB8u.2,y Al))
1 35  CUNT INUE
= 30 CONT INUE -
. Iy = 10 ¢ 1 ’
KEVFNT = KEVENT ¢ NEC(ID - 1)
. LEVENT = LEVENT ¢ NELIO)
' 14 CUNT INUE

[aNaNal

SETS UP NUPMAL EQUATIONS
CALL NORMAL
LI TR YY)
. INVERTS NORMAL EQUATIONS
! CaLL SOLVE B
) LA Al Al l L]
OUTPUTS RESULTS.
CALL RESILL

[a N gl

on

[ PosodnRERKE

GU T0(200,300) IBODE

THIS SUBRUUTINE PLOTS Thi GRAPHS ONLY.
200 CALL GRAPH

(g}

[gRaNalal

CALL SECCLK(TF)
T5=TF-T5S
PRINT 227,TS
227 FORMAT(/7/715X, 20HTIME TAKEN FOR JOB =,F7.3,THSECONDS)
300 RETURN g
END )
SUBTYPE,FURTRAN,LMAP,L STRAP

SUBRUUTINE UEPTHA(H, X, XC, NI
COUEDPENUE I CL UORDEOSSENSOEED

CUMPUTES THE CORRECTED EPICENTRAL DISTANCE(XC) FROM THE CLD
DISTANCE(X) FUR AN EVENT AT A DEPTHIH), (N) IS THE NO.OF EVENTS.
THE STRUCTURE USED IS THAT UF HERRIN (1968}, IE.
Co KMS, VEECENOICC AT ROETEIVITECUNORSERIDOEOROREE
6 KM/SEC.
15. KMS, G0C0CCOCOTOSSGERUTEORODLIOCEUOOBRNRORN
6.75 KM/SEC.

40 KMS., 9¢6 2080 ¢0 &G0t EteossdadCE&dstt2d0abd0cond

8+049KM/SEC.

(s aNal ol o e N aNa N oW o N o Wa W o Wa W Wel oW o OO0 -

: CUMMUN /TTCVS/ TIMEH(1GS), AMPVI24) 4y TIKEJ(112), SLOWHII0Q) :
lg OIMENSIGH H{N), X{N), XC(N), RR{500) !
1 .

RACIUS = 6371.028 .
ATOK = 1./111.19533836 - =
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[sNaNaNaN W gl

[WILVRYV.]

¥l = ¢.0

Hl1 = 15.0

v2 = 46.75

H2 = 40.0

V3 = B.049

R1 = RADIUS - HIl
R2 = RADIUS -~ H2
Do 2 I = 1, N
31 = Q.

B2 = 0. ! N
83 = 0.

21 = 0.

02 = 0.

D3 = 0.

IND = [FIX{X{1)¢0. %) + 1

P = SLOWH({IND)*RADILS*ATOK
RHII)} = RADIUS ~ HI(I)
IE(HIT}.GT.H11 GO TO 3

Bl = ASINIVI®P/RH(I))

Ol = HIII*TANIBLI®ATOK
XCtI) = Xtr) « 01

G0 TO 2

Bl = ASIN(VI1eP/RL)

D1 = HI*TAN(BE1)*ATOK
IF(H{1)Y.GT H2) GO TO S

B2 = ASINIV2*P/RHLI1))

D2 = (HUI)=HL)*TAN(B2)*ATOK
XC(I) = x{i) « D1 ¢ D2

GO 1O 2
B2 = ASIN(V2¢P/R2]

D2 = (H2-H1]*TAN{B2)*ATOK

83 = ASIN(V3*P/RHI{]]

D3 = (H{T)-H21*TAN(B3)*ATOK

XCO1) = X(1} » D1 ¢ D2 + D3

CONT INVE

RETUKN

END

SUBTYPE, FORTRAN,LMAP,L STRAP

SUBROUTINE AAMIN(Xs N, XMIN, 1)
SNEUSEEPE RGO ERTRAR AL ERIS R ORR R

r's
THIS SUBPROGRAM FINDS THE MINIMUM OF THE ARRAY X(N) = XMIN(1).
DIMENSION XIN)}, XMIN(I)
KQ = 1
KP = KQ
[F (KQ = N} 3, 4, 4 B

KQ = KQ + 1
IF (X(KP) = X{KQ)) 2y 5, §
XMIN(I) = X{KP)
RETURN
END
SUBTYPCE, FORTRAN, LMAP,L STRAP

SUBROUTINE NORMAL
L T I Y R Y

THIS SURRNUTINE SETS LP THE NURMAL EQULATIONS DIRECTLY, (THE
EQUATIONS OF CUNDITION ARE NOT FORMED).

CUMMUR /AMATRX/ A{231,221)

COMMON /ATT/ AT(4,120,2C)

COMMUN /BMATRX/ BL231)

CUMMON /ZEVENTT/ EVENT(12C), NEVENT, NE(&), A2(120}), DELTA(L120),
1 INDEX(120)

CUOMMON /PITT/ STNUG), PITI4,20), X{%,20), Y(4.,20), ANPIT(4)
CUMMON /REST/ V(120), ENAME(120,3), VELOCL120)}, M

COMMUN /RNGE/ RANGE(3C), RINT, NP

COMMON /SLV/ N, IMTRE Xy I[RESIDy IRSTRN, [VEL, IBOUG, iHOLDy ISTART
L, [ENDS, THOLD, SSTART, SENDS -

OIMENSION FaCT{4,12C)

Pl = 4.,0aTAN(1,.)
DTOR = Pl/ 180,

CATA BLANK(3n

o 1 1 =1, 231

00 2 J = 1, 23]
AlLyJ) 3 0. ’

CONT INUE

CONT INUE

N = 80 ¢ NEVENT ¢ NP
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10
24
23
27
26
29
28
31
32
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NO = N ¢ ]

NP = NP ¢ |

1 =1

XPIT =1

LtPIT = NPIT{I)
KEVENT = 1

LEVENT = NE(I)

M s 0 ] .
K = KEVENT
IF{K-LEVENT )3, 3,4
JA = 70 ¢

L L Yy R P R N e A R R PRy Y
SELECTS CORRECT DISTANCE RANGE FCR EVENT.

IF (CELTA{K).GT.RANGE {1).ANDsUELTA(K} .LE.RANGEINP)) GO TC 5

PRINT &, DELTA(K]), RANGE(1), RANGE(NP}

FORMAT (/4X, 22HJOB REJECTED, DISTANCE, F6.2, %BHDEGREES LIES OUTS
1IDE RANGE UF DISTANCE SPECIFIED/4Xy 9HWHICH WAS, F6.2s 1X, 2HTO,
2 F6.2, THDEGREES)

caLL EXIT

VO 7 JD = 2, NP

IF (DELTAIKI.GT.RANGE (JD-1} AND.DELTA (K]} «LE.RANGEIJO}) GO TG 8
CONT INUE

JOo = JC - 1

JB = 83 ¢ NEVENT &+ JD

INDEX(K) = 4B

THETA = AZ({K)®DTOR

DU 9 J = KPIT, LPIT

JE = 4 - KPT & 1 -

IF (AT(1,K,JEDEQaQ4) GU TO 9

FACTU [4JE)= X(T+JEV*SINITHETA) ¢ Y@y JE)®COS(THETA)

FACTU1,JE) = =FACT([,JE) &

L=

IF (1.EQ.%¢AND JJEGEslHl L = L = 5

oo-.-o-..----t-‘-ctoto-a-oo--tt--.cuo--.-}-.c.--a.-.c.oooo,.c--o-.
FORMS NURMAL EQUATIONS «

A{LsL) = ATLIL) ¢ 11,

AlLesJdA) = AlLedal) ¢ 1.

AlLsJB) = A(L,JB) + FACT(I,JE)
A(LINO) = A(L,NO) ¢ ATIIsKyJE)

ALJALJA) = AlJA,JA) ¢ ],

ALJAVIB) = ALJA,JB) ¢ FACT(I.JE)

A(JAGNU) = A(JANO) ¢ AT(I4K,4JE)

ACJBy, JB) = A(JB,JB) ¢ FACT([.JEV*FACT{I,JE)
A(JByNC) = A{JB,NO) ¢ FACT(l,JE)SAT(I K, JE)
M =M ¢ ]

CUNT INUE

K =K ¢ 1

GU Ty 11

1 =1 +¢1

COVCRTUOEH VAN BN ISR O RS AL I SO YRV UGB UCE RO ESGUB R CUIURUAOPESORDOORR

SETS UP CONDITION SUM S(J) = Q.

CALL ADDER(KPIT,LPIT)
XA LRI TESYRR]FET]

IF (1.6T.4) GO TO 1C

KPET = KPIT « NPIT([ = 1)
LPIT = LPIT » NPIT{{)
KEVENT = KEVENT ¢ NE(I = 1}
LEVENT = LEVENT + NELD)

G TO 12

BIUBOH LU EEEA RGO AN U RSP RSO C AN B O RGO N U AE S DO UAO RS DAOOONNINEGS
RESTRAINING SWITCHES, SEE INSTRUCTION 4.

GU TO (23,24) [RSTRN
CALL JBTIME(NEVENT, N}
GU TU (26, 27} [HOLD
CALL TTTIMEINEVENT)
GU TO (28, 29) ISTART
CALL SHULDS(NEVENT)
GO TO (30, 31) IENDS
CALL SHOLOF(NEVENT)
O 15 1 = 1, N

DU Lb J = I, N

AL, 1) = AlL,d)
CUNTINU

CUNT INUE

NP = NP - ]

DO 19t = 1, N

B(I) = ALI,NU)

8
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CONT INUE

COBUNGEECITRGCEL S GRSV EFAB OIS E EOR B S GOSN CUTAGOPTUINNCHO SN CISOBIIOE

PRINTS NORMAL EQUATIONS IF REQUESTEC.
GO T {17, 18) IMTREX
PRINT 14
FUR%AT (1H1/3X, Ll6HNNRMAL EQUATIONS/3X, léH==sazcwm=scacszs)
DU 25 1 = 1, N b
PRINT 13, (A(I,J}, J = 1, NU)
FORMAT (1X, 12F10.5) -
CONT INUE
Gu TO 17

RETURN
END )
SUBTYPE, FORTRAN,LMAP,L STRAP

SUBROUT INE ADDERINLy NH)
CHOER RNV LD ER O U NBR KDY

THILS SUH&UUTINE ADDS 1. TG THE UPPER DIAGONAL OF THE ARRAY A(NyNl}.
CUMMIN /AMATRX/ A{231,231)

DO 1 1 = NL, NH
DO 2 J = 1, NH
A(Tod) = AlT4d} ¢ 1.
CONT INUE
CUNT INUE : ) _ . _
RETURN
END

SUBTYPE, FURTRAN ,LMAP,L STRAP

SUBRQUTINE SHILDSINEVENT)
COEPEISUEIENRC LA BN REEEER N B

THIS SUBROUTINE RESTRAINS THE SLOWNESS IN THE FIRST DISTANCE
INTERVAL TU = SSTART,

COMMON ZAMATRX/ A(221,231)

COMMON /SLV/ N, IMTREX, IRESID, IRSTRN, IVEL, IBODG, I1HCLD, ISYART
1y IENDS, THOLD, SSTART, SENDS

HUGE = 1.0E+5
DYOK = 111.1952383%
Il = BO + NEVENT ¢ 1}
NO = N ¢ 1
ALILy11) = AUILl,I1) » HUGE
ACIL,NOY = ACL1.NO) + SSTART®HUGE /DTOK
RETURN
END
SUBTYPE, FURTRAN,LMAP,L STRAP

SUBRNUTINE SHOLDF(NEVENT)
CESSOONSUU RSN ATEERRINAEEE R ED

THIS SUBRUUTINE RESTRAINS THE SLOWNESS IN THE LAST DISTANCE
INTERVAL TO = SENDS.

CUMMON /AMATRX/ A{Zz21,:221)
CUMMON /SLV/ Ny IMTREX, IRESID, IRSTRN, IVEL, 1800G, IHCLD, ISTART
le IENOS: THOLD, SSTAR1, SENDS

HUGE = 1.0€+5 "
DTUK = 111.19533836 .
NU = N + 1 - L
A(NJN) = AIN,N) + HUGE :
A(N,ND) = A(N)NO) + SENDS®*HUGE/DTOK
RETURN
END
SUBTYPE, FORTRAN,LMAP,L STRAP

SUBROUTINE JBTIME(NEVENT, NI
COSECURRSEOOROUNIBR ARSI S LS

THIS SUBROUTINE RESTRAINS THE TOTAL TIME ACROSS NP INTERVALS TO
THE J.B. VALUE.

COMMON /AMATRX/ A{221,231)
COMMIN /RNGE/ RANGE(3C), RINT, NP
COMMON /TJCVS/ TIMEHL109), AMPV(24), TINMEJ(L12), SLGWH(109)
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[s¥aXaNaXal [aNaNal, |

ABOOONO0 Onen =

[aRalaNuNa NVl NOO -

DTOK = 111.1953283S

[STRT = PANGE(1)

IFINN = RANGE(NP)

11 = 80 + NEVENT + 1
NGO = N « 1

py 1 1 = 11, N

12 = | - RO - NEVENT
bu 2 3 = I N

13 = J - 4Q - NEVENT )

Alled) All,J) + (RANGE(12¢1)-RANGE(I2))®(RANGE(I3+1)-RANGELI3)}*
IDTOK *CTIK
CONT INUE
A{1,NUJ = A(L NGO} * {(RANGE(I2¢11-RANGE(I2)}°(TIMEJ(IFINN)~
I TIMCJUISTRTI)I*ITUK
CUNT INUE
RETURN
ERD
SUBTYPE FORTRAN,LMAP,L STRAP

SUBRUJUTINE TTYTIME({NEVENT)

I.ﬂc.l.l.D.t‘tl‘..l"."...‘“

THIS SUBRUUTINE RESTRAINS THE TOTAL TIME ACROSS NP INTERVALS TC
A VALUE = THOLD (SECS).

COMMON Z7AMATRX/ A(221,231)

CUMMON /RNGe/ RANGE-{.30}, R.INT, NP

COMMON /SLV/ N, IMTREX, IRESID, IRSTRNy IVEL, I80DGe IHGLD, [START
1, IENDS, THULD, SSTART, SENUS

DTOK = 111.19532836

[1 = 80 ¢ NEVENT ¢ 1

KU = N + 1

00 1 1 =11y N

12 = I -~ 40 = NEVENT

D) 2 J =1, N

I3 = J - 40 - NEVENT )
AlLyJd) = AlTed ) ¢ (RANGE( T2+1 )-RANGE(I[2))}®*(RANGE(I3+L)-RANGE([3))
LDTOK*DTO

CONT INUVE

A(LING) = A(LNO) ¢ (RANGE(I2¢Ll)~-RANGE(I2))eTHOLLD=OTOK
CONT INUE

RETURN
END
SUBTYPc» FURTRAN, LMAP,L STRAP

SUBROUTINE TIMNUT(T,K4+d)
SEBEEOPRROUNEIRBONODIN BN

THTS SUBRIUTINE REMOVES THE EFFECT OF THE HERRIN SLCWNESS FROM
EACH ARRAYFOR EACH EVENT. THE HERRIN TIME CONTRIBUTION AT AN AKRAY
iS5 SUBTRACTED FROM EACH PIT FGR EACH EVENT AT (TS PARTICULAR
DISTAMCE. -APVA- THEN EFFECTIVELY CALCULATES THE SLUWNESS OEFECT.

COMMON /ATT/ AT(4,129,2C)

CUMMIN /EVENTT/ EVENT(120), NEVENT, NEl4), A2{120), DELTA(L2U],

1 INDEX(120)

COMMON /PITT/ STN{4), PIT(4,20), X(%,20), Y{4,20), APIT(4)

COMM:N /SLV/ N, IMTREX, IRESID, IRSTRN, IVEL, 1BDDG, [HOLD, ISTART
Iy [ENDSy THOLD, SSTART, SENDS . .

CUMMIN /TTCVS/ TIMEF( 129}, AMPVI24), TIMEJ(112), SLOWH(109)
DOIMENSION FACT(4,20) . :

P1 = 4.,6ATAN(1.)
RTOD = 180./P}
ATOD = 1./111.15533€3¢

IDELT = [FIX(DELTA(K} + 0.5)
THETA = AZ(K)/RTOD .
FACT(I1+J) = X(I,J)®SINCTHETA) ¢ Y{I,J)*CCS(THETA)}
ATCL Ked) = AT(1,KyJ} - SLOWH(IDELT)I®FACT(I,J)*ATQO
RETURN
END

SUBTYPE,FORTRAN,LMAP,L STRAP

SUBROUT [NE SOLVE
SU00OREBEOETELD

THIS SUBPROGRAM INVERTS THE NURMAL EQUATICNS.

THE METHOD USED IS CALLED TRIANGULLAR DECOMPOSITICN
FRUM N.Po.L. MODERN COMPUTING METHUDS
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50
150

63
61

62

SASED UN LIBRARY SUBROUTINE

COMMON /AMATRX/ A(221,231)
COMMON /BMATRX/ B(231)

COKMUN /RJST/ X(231), D(231)
COMMON /RNGE/ RANRGE(3C), RINT,

COMMON /SLV/ M, IMTREX, IRESID,

1, IENDS, THULD, SSTART, SENDS
DIMENSION IND( 221}, C{231)

AMAX=0.0

D3 2 I=1,M

INDCT)=1

IF(ABS (A(I,1))1-AMAX) 2,243
AMAX=ABS (A(I,1))

I4=1 .

CONT INUE

MM=M~1

DU 111 J=1,MM
IF{L4-J)b6,0604

[STO=IND(J )
IND{J)=IND(]14)}

INDC [4)=1STO

DO 5 K=1,4M

STO=A{[4,K)

Al T4,K)I=ALJWK}

AlLJ4K 1=5T0.

CUNT INUE

AMAX=0.0

JIEgel

NO 11 I=J1,M

Al TyJ1=A(14d)/7A0J9J)

DO 10 K=J1l+M

Al T, K)=A(T1KI~A(I,d)%A(JyK)
IF (K=J1lll4yl4ylC

IF(ABS (ACL.K))-AMAX) 10s1Cel?
AMAX=ABS (A(I1,K)])

fe=1

CONT [NUE

CONT INVE

CONT INVE .
DU 140 Il=1,MM .
[=Me¢l-T11

12=1-1

DU 41 Jl=l,12

J=12+1-J1

J2=J¢1l

Wl=-a(l,J)
IF(12-42)141,423,43
DU 42 K=J2,12
Wl=W1-A(K,J)}*C(K)
CONT INUE

CtJri=wl

CONT INUE

NO 40 K=1,12
AlL.KI=C(K}

CONT INUE

CONT INUE

DO 150 I1=1,4
I=M+¢1-11

[2=1¢1

w=al(l,1)

PO 56 J=1l.M

IF (1-J)52,53,¢%4
Wl=0.0

w0 TO 55

Wl=1l.0

GO Ty 55
Wl=A{1,J}
TF(I1-111564156457
0N 58 K=12:,M
Hi=Wl=A(1,K)*A(Kyd)
CUNT INUE

ClJi=wl

CONT INUE

00 50 J=1,M

AL, 3)=ClJ}/w
CUNT INUE

CONT INUE

DO 60 I=1,M
[FOINDCTI=1)61s60,61
J=IND(I}

DO 62 K=l,M
STO=AIK, )

ALKy 1)aAlK,J)
A{Ky J)=5TD

CONT [NUE
ISTu=INDLJ)

INDUJ =Y
INDUL)=ISTO

MBOL1A

NP
IRSTRN,

IVEL,

1600G, ,1HOLD,

[START

MBO1A003
HBO 14004
MBO1A005
MBO1ACO6
MBO1A007
MBO 14008
MBO 14009
MBO 1ACL0
MB0 14011
MBO1A012
MBO1A013
MBO 14014
MBO1AO1S
MBO1AC16
MBO1A017
MBO1A018
MBO1A019
MB0 14020
M801A021
MBO 14022
MBO1A023
MDBO 14024
MBO 14025
MBO 14026
MBU 14027
MBO1A026
MBO 14029
MBO 1A030
MBO 14031
MBO 14032
MB0 14033
MBO 1A034
MBO LAO35
MBO 14036
MBOLAO37

MBO1A0138
MBO1A039
MB0 1A040
MBO 14041
MBO 1AQ%2
MBO1A0%23
MBO 14046
MB0 14045
MEN1AQG A
MBO 14047
MBO1A0GSE
MBO 14049
40014050
MBO 1A051
MBO 14052
MBO1A0S3
MB0 14054
MBO 1A055
MBO1A0S6
MBD1A0S57
MBO 14058
MB0 14059
MBO 1 A0 60
MBO1AOG61L
MB0 14062
MB0 14063
MBO1ACLS
MB01A065
MBO1A066
MBO 1A067
MBO1A06S
MBO 14069
MBO14070
MBO1A071
MBD 14072
MBN 14073
MBO14074%
MBI 14075
MBO1AQO76
MB21A077
MBO 14075
MBO1A07¢
MB0 1A080
MBD1A081
MBO 14082
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GO Y0 63
CONT INUE

DO 66 J=1,M

S7T0=0.

DD 67 I=1,M
STU=5TO¢«Al I J)=B(L)
CONT [NUE

X(J1=57T0
0lJ)=Aa0d4sJ)

CONT INUE

PRINTS UUT THE MATRIX [F REQUIRED.
6u TQ (68, 102) IMTREX

CONTINUE

PRINT 80

FURMAT (1Kl/3X,
no 81 2 1, M
PRINT 82, (All,J), I
FORMAT (IXs 12F10.5)
CONT INUE

PRINT 21, (XUJ)y DULID,
FORMAT (//710X, &HX{J),
1 9X97F15451))

lSH=soas=nzasssazn)

LSHINVERTED MATRIX/3X,

= 1, My BLS)

J
10X,

= 1y M)

L THOI AGONAL ELEMENTS/(2X, Fl5.5,

THE FOLLNOWING PRINTS THE MATRIX REQUIRED FOR THE COVARIAMNCES,

PRINT 83

FORMAT {1H1/73X, 1THCOVARIANCE MATRIX/3X, l7Hssc==szagascasrxzncs)
PRINT 88y My NP

FORMAT (11X, 3IHM o, FLlG.5y 5Xy 4HNP =, F10.5)
M =M =-1

MM = M = NP ¢+ 1

DU 37 J = MN, M

PRINT 86¢ (AlL,Jdy 1 = MM, M)

FORMAT (1Xy 12F10.5)

CONT INUE

CONT INUE

STURE MATRIX UN DISC

DO 84 J = MMy, M

HRAITE(Z4) (A(f.4d)e I = MM, M)

CONT INUE

REWIND 24

M =M+ 1

RETURN

END

SUBTYPE, FORTRAN,LMAP,L STRAP

SUURNUT INE RESIDL
SIURCITTEUBEET SRS

THIS SUBRUUTINE CALCULATES THE RESULTS FROM THE INVERTED MATRIX.

CUMMON /AMATRX/ RESID(4¢120,20), CT(4,120,20) 4 FACT(4,120},
1 CONST{120), VELC(SO,4), DLTISO,4), TVELOC(120), ERR(120},
2 Cv4(120,120), COV(12C,120), AIND(120), PS5(260}), PNS{260), PV(260)

3, PNV(260), VBAR(120), TJB(112), TAT(112}, VELH(109), TH{109).
4SLUW(260), TDIFF(1121, DIST(8C), PVEL{80), ERLO(8BCG}, ERHY(BD),
5> TPVEL{(BO), DDIST{8C), TERLO(BOI, TERHY(BO), EELO(BO), VHERIN(3G},

& SHERIN(30), ARANGE(3C)

CUMMON /ATT/ AT(4,120,20)

COMMON JEVENTT/ EVENT(120), NEVENT, NE(4)}, A2
1 INVEX{129)
CUMMUN /GRFF/
1LIDUT, INSTR1L,
COMMON /PITT/
COMMUN /REST/
COUMMON /RJST/

(120) , DELTA(120),

TITLE{2C), XMAX, XMIN,YMAX,
XLIMITy YLIMIT, SCALX, SCALY
STN(4), PIT(4,20), X(4,20)y Y{4,20)y NPIT(4)
v(120}, ENAME(120,3), VELOC{120), M

S{(231). O(231)
COMMUN /RNGE/ RANGE(30), RINT,
COMMON /SLV/ N, IMTREX, IRESID,
1, IENDS, THOLD, SSTART, SENDS,
CUMMUN /STATS/ ST(57)

COMMON /TTCVS/ TIMEH{ 109}, AMPV(24), TIMEJS{IL2),

YMIN, INDX, INDY, IND,

NP
TRSTRN,
I[P UNCH

[VEL, IBODG, IHCLD, [START

SLAWH(109)

Pl
RTQOD
DTOX
ATov
REAL
DATA
DATA

4.« ATAN(1.)
180./P1

a2 111.19533839
1.7111.16533836¢
INSTR1
STAR{ 8He=
BLANK ( 8H

)
)

CALL SDATE(DATE)
SET ARRAYS TO ZERQ
oo 14 1, 20

DG 2 K =1, 120

MBO 14083
MBO 1A084
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AIND(K) = 0.

00 3 1 =1, 4

RESID(T,Ked} = 100CC.

CT{IKyJ) = 0.

CUNT INUE

CUNT INUE

CUNT INUE 1 .
NO = N + 1

ST A SO UCUCI PO EEDUUCHSILENRERBAREROEDNOEN BUTTUNSESININTOINIIORR
CALCULATES RESIDUALS, CORRECTED CNSETTIMES

SELECT ARRAY
[ =1

KPIT = 1

LPIT = NPITILI)
KEVENT = 1
LEVENT = NELT
SUM = Q.

ADD = 0.

SELECT EVENT
00 & K = KEVENT, LEVENT
KA = K = KEVENT + 1
THETA = AZ(K}/RTOD

JA = 80 + K
[l = INDEX(K)
T1 = Q.

Fl = 0.

F2 = 0.

Pl a 0.

FT = 0.
SELECT PIT

00 S J = KPIT, LPIT
JE = J - KPIT ¢ 1
FACTIL,JE) = X{1,JE)*SINUTHETA) ¢ Y{I,JE)*COS(THETA)

FACT(I,JE) = - FACT(I,JE)
IF(AT{I)KeJE).EQ.0s) GO TO 5
L =J

CTULoKeJEI= SCITISFACTIILJEL ¢ SiIL) ¢ S(JA)
RESIOl IyKyJEY = AT(I4KyJE) = CT(I,4K,JE)

SUM = SUM + RESID(I,X,JE)*RESID(I 4K, JE)

ADD = ADD ¢ RESID{(I.K,JE)

AT(L)KyJE) = AT{I4KsJE) = S(L) = S(JA)

Tl = Tl ¢ AT{1,.K,JE)

Fl = F1 ¢« FACT{I,JE)

F2 = F2 + FACT(I,JE)*FACT(I,JE)
PL =Pl + 1.

FT = FT + AT{1.K,JEI®FACT{I,JE)
CONT INUE

CONST(K) = (FZ'YI-F]'FT)I(FZ'P}-F!‘FI)
VELOCIK) = F2/FT
VELC(KA; 1) = VELOC(K)

DLT(KA,I) = DELTA(K)
TVELOC(K) = DTOK/VELQC(K)
CONT INUE

SECVUOSIEIEROE SN BSFET ESCCISEICOCEUEBSPECOLIEOOECHTDOOOCUIVIEE RO SRS

GO TO (100,101} IRESID

PUNCHES (PIT CORRECTIONS ¢ RESIDUALS)
CALL SINCRVIKPIT, LPIT, KEVENT, LEVENT, !}
CRAEOCILEGECE R R RCUOECUREE S AR R SSRGS OO OSSO0
GU TN (114,115) IPUNCH

PUNCHES (RESIDUALS)

CALL RESUUT(KPIT, LPIT, KEVENT, LEVENT, [)
SERUSEIPICESCE CERCPS UL G SIS EODPEOOQICOROCORRE

[ =1+¢1

IF (1.6T.4} GO TO 6

KPIT = KPIT ¢ NPIT(I = 1)

LPIT = LPIT ¢ NPIT(L)

KEVENT = KEVENT ¢ NE(I ~ 1)
LEVENT = LEVENT + NE(I)

GO TO 7 ¢

CUNT INUE

PUNCHES (DISTANCE,SLOWNESS,PHASE VELOCITY,EVENT CODt!

GU TO (102,103) [IVEL ’

PUNCH 104, (DELTA{I), TVELOCIL1)oVELOC(l) 4EVENT(I) ]l = 1y NEVENT]
FORMAT (5X, 3F10.5, 24X, A8}

PRINTS OUT RESULTS FOR INDIVIOUAL EVENTS,

CALL QuTPUY

[ TIYYIYTIY LY

L00CUCONCEE U DRI CE OOV P ESE P0GV OG0B ADEGEIICERENIQAOB SO BERSEER

PRINTS QUT RESIDUALS OF (OQBSERVED =~ CALCULA
TED) ONSET TIME FOR EACH EVENT AT EACH
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90
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39
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20
19

21
22

SE 1 SMOMETER.

T =1

KEVENT = 1

LEVENT = NE(I)

NLIM = NPIT(D)

MEVENT = NE(I)

N9 = (MEVENT - 11/9 ¢ ]

PRINT By STN(I)

FORMAT (1H174X, 23HTABLE OF RESIDUALS FOR sA3/4X, 26H~==ecmccmccen

1
D0 9 IZ = 1. NS

NLOW = (IZ - 1189 ¢ KEVENT

NHY = NLUW ¢ 6

[F (NHY.GT .LEVENTINHY = LEVENT

PRINT 10, (EVENTIK)}, K = NLOW, NHY)

FORMAT (//5X, 3HPIT, Sl4X, A8)/)

DO 11 J = 1, NLIM

NO 87 K = NLOW, NHY

AIND(K) = STAR

[FIRESINDI 4K, J)EQe10CCCe) AINDIK) = BLANK
CONTINUE |

PRINT 12y PIT(I,d)s {(RESID(IsKsd)y AINDIK), K = NLOW, NHY)
FORMAT (&6X. A3, 913X, FB8.,3, Al})

CUNT INUE

CONT INUE

[ =1 +1

[F (I1.6T.4) GO T0 13

KEVENT = KEVENT + NE(I =~ 1)

LEVENT = LEVENT + NE(I)

GO TO 14

CONT INUE

COKIENVERE X OSSP CANS R QU GV ELER O VIR VDTG ICESISAT SETIVER OGO SER OGS G RO G

PRINTS OUT CALCULATED CNSET TIMES FCR EACH
EVENT AT EACH SEISMOMETER.

1 =1
KEVENT 1

LEVENT NE{I)

NLIM = NPITLI)

MEVENT = NE(I)

N9 = (MEVENT = 1)/9 ¢ 1
PRINT 38, STN(I)

FORMAT (1d1/4X, 36HTABLE OF CALCLLATED ONSET TIMES FOR 4A3/4X,

00 39 IZ = 1, NS

NLOW = [[Z - 11%9 + KEVENT

NHY = NLOW + 8

IF (NFY.GTJLEVENT) NHY = LEVENT
PRINT 40, (EVENT(K)s K = NLiOWs NHY)
FORMAT (//5X, 3HPLTY, S(4X, AB}/}

DO 41 4 = 1, NLIM

DD 90 K = NLDW, NHY

AIND(K) = STAR
TF(RESID(I+KyJV¥.EQ.10CCCs) AIND(K) = BLANK
CUNT [NUE

PRINT 42, PIT(1sd)y (CT{I,K,J),y AIND(K), K.= NLOW, NHY)
FUORMAT (&6X, A3, 913X, F&.3, Al}}
CUNT INUE

CONT INUE

I =1 +1

IF(I.GT.4) GO TO 43

KEVENT = KEVENT + NE{I - 1)

LEVENT = LEVENT + NE(I)

GO TO 37

CONT [NUE

CEPAONIE RN AR ARG BE RN ROA K EEUDONE B EBA R R AT SRR AUEACEO0OONNERANEPERA
CGMPUTES STATISTICS AND 95 PCCL.

DOF = FLOAT{M ~ N)

MDF = DF

IF (MDF.T.30) Gu TQ 1S

IF {(MDF.GE.300}) GO TU 2¢

MOF = MDF/ 10 ¢ 27

GO TO 19

MDF = 57

T = ST{MDF)

SUMSQ = SuM

AVSQ = SUMSQ/DF

SD = TeSQRT{AVSQ)/2.

DD 21 1 a2 1, N

FRR( Il = TeSQRT{AVSQEO0(i}])

CUNT INUE

PRINT 22

FORMAT {1H1/4X, 33HCOANFIDENCE LIMITS ON ALL UNKNOMWNS
176Xy 33H-momceecana e smm—e- s —ceee——

'
N
3
i
1
i



2/733K, 3HERA, 71X, VIYRA, 32X, IHhRA

3/78x, MWPIT, 10Xy 1IHCORRECTHIINS, 4%, LOHCONJLIMITS, 10X,
41 LHCURRECT IONS, &Xy 1ORCONSLIMITS, LOX, ILHCORRECTIGNS, 4X,
S 1OHCCN.LIMITS

6/ 36X, b6H* UR -, 29X, &HMe OR -, 29X, 6H¢ OR =~)

CPNCO OO G RGO CAREUCCO O R YU SOUR UG GGG LGB TRE RGNS VCACVESOGUO RS

1
PRINTS QUT PIT CGRRECTIONS AND 95 PCCL.

[aNalaNa¥al

i D0 231 = 1,y 20
J =1 + 20
K= J+ 2
PRINT 24, PITCLs0), SCI)y ERR{LD, S(J), FRRUJ), S{KI, ERRIK)
24 FORMAT (8X, A3, 3{1CX, F10.5, 5Ky F8.3, 2XI}
23 CUNTINUE
PRINT 25
25  FORMAT (//30X, 2HGBA//BX, 3HPIT, 10X, L1HCORRECTIONS, 4X,
1 JOHCCN.LIMITS/38X, 6H+ UR -]
- pa 26 1 = 1, 2C
! J =1 + 6d
PRINT 27, PIT(4y1), SIJ)y ERRJ)
217  FORMAT (8X, A3, 10X, Fl0.5, 5K, F8.3)
" 26 CUNT INUE

COEUVU PO EUERERE TR GV ANINCUQEULITU OSSR OCRUXECOGRECINESISTRIBICEOORER

PKINTS OUT CONSTANTS,VELOCITY,SLUWNESS WITH
95 PCCL FOR EACH EVENT,

[a¥aNaNalel

PRINT 29
29 FORMAT (////b6X, SHEVENT, 7X, LJOHCONSTANI C, 7X, 6i¢ CR -, 12X,
1 IOH1/VELOCITY, 7X, 6H® UR =, BX, BHVELUCITY, BX,14HV LIES BCTWEEN

N 216X, BFDISTANCEZ)

UJ 30 JP = 1, NEVENT

JO = 80 + JP

Ll = INDEA(JP)

: VBAR({JP) = 1./5(11)

! PSUIL) = SULE) ¢ ERRULD)

: BNSEIE) = SCLI) - ERRID)

PVCLL) = 1o/PSELT)

: . PNVIIIY = Lo/PNSUIT) .

¢ PRINT 31, JP, EVENT{JP}, $(JQ), ERR(JQ), SIIE}, ERR(LIL) s VBAR(JP),
1 PV(TI)s PNVEIL), DELTACIP)

31 FORMAT (1%, 13, 2X, AE, X, FB,3, TXy FB8s3, 12X, FO9.&, bX,

! 1 F9.4, 6X, F8.2, 5X, FB.2y 2X, 4H AND,F3.2,4X,F5,1}
30 CONT [NUE

PRINT 29
C
c CESEL BSOS EC R RE SR SAA QA SCCUACRCER RGN F VR E R VCE A UR SR OV OR SO SGSOOOEORUY
c .
C PRINTS DY/Z/UX = X TABLE wITH 95PCCL
[«
PRINY 32
32 FORMAT {1H1/73X, 34HTABLE DF DISTANCE AGAINST VELCCITY/3X,
1 3eH-—one=a- e e et ~//10X, 1B8HUISTANCE (CEGREES)
2y S5X» 1THVELUCITY (KHI‘EC). 5Xy 14HV LIES HETWEEN, AX, 24HMERRIN V
3TLOCITY (KM/SEC), 6Xy 1OHSLOWNESS (SECS/LLGI/)
90 ol I = 1, Lll2
TJ8tL 1) 0.

TAT{I) = 0.
ol CONT INUE

NP = NP ¢+ 1

EE = 0.

TT = Q.

14 = RANGE(1)
AA = TIMEJ(I4I

TAT(1) = S(NEVENT+71)*(RANGE(2}-RANGE(1))4DTOK + A&
DO 33 I = 2, NP

[2=1-=-1

I3 = 12 ¢ 70 « NEVENT

14 = RANGE(I2)

15 = 2¢]2 - 1

16 = RANGE( T}

TT = TIT ¢ SUI3)%(RANGE(I2+1) - RANGE(I2))

EE = EE ¢ ERR(I3)*(RANGE([2¢1} - RANGE(I2)]}

VBAR(I3) = 1./5(13)

TPVEL(I3} = SI[2)eDTUK

EELUC[3) = ERR{I3}*uTOK

VELHLI4) = DTOK/SLOwH (14)

VHER INC(12) = VELH([4)

SHERIN(12) = SLOWH(I4)

ARANGE(12) = RANGE([2¢1)}

TAT(I2¢1) = TAT(12) ~ Sll301)'(RANGE([OII-RANGE(I))'DTCK
TyB(12) = TIMEJ(I4])

TJB(I2+41) = TIMEJ(IED

TH{12) = TIMEHL4)

THUL2+1) = TIMEH(ILE}

TOIFF(12) = TAT(12) - TJBlI2+1)

PRINT 34, RANGE(I2}, VELH(l14),y, VBAR(I3), PV{I3), PNVI(I3],
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1 TPVELLI3), EELO(I3)
34 FORMAT {17Xy F5.1y 64X, FBa2 /35X, FB8.2, 44X, FB.2, 2X»

I 4H AND, F8.2, 38X, Fb6¢3,5H *OR~, F5,3)
33 CONT INUE

INP = RANGE(NP)

VELHUINP) = DTOK/SLOWH(INP)

PRINT 34, RANGE(NP), VELH{INP)

TJBINP) = TIMEJCUINP) )

THUINP) = TIMEHUINP)

SHGCEONONSCO0SUUEUEEH FREC EONEPAOOEETRESSAGUOC OIS 0SSR HIRINEOREGE
PRINTS(OBSERVED ~ J.B. }TRAVEL TIMES

PRINT 211, RANGE(1}
211 FORMAT (1Hl/3X, T6HTABLE OF DIFFERENCES FROM J.B. TRAVEL TIMES (J.

18, - CALCULATED) NORMALISED TO , F5.1, 1X, THDEGREES/3X, 9lH=m====
2 ——————————————————————————————————————— -y - - - - - -
Jmmme e /)
PRINT 209 .

209 FORMAT (10K, 1BHMDISTANCE (DEGREES), SX, 22ZHTIME DIFFERENCE (SECSI1/
1 -

PRINT 210, (ARANGE(T), TDIFF(L), [ = L, NP}
216 FORMAT (17Ks FEols 13K, Fél3)
NP = NP + 1
01S = RANGEINP) — RANGE(1}
DIFY = TJBINP) = TJB(1)
DLFH = THINP) = TH(L)
EEE = EE*VTOK
TTIT = TT#DTOK
PRINT &8, D15, TTT.EEE, DIFJ, DIFH
48 FORMAT (////19X, 29HTHE TGTAL TRAVEL TIME ACROSS 13, 1X,
1 LZHDEGREES IS =sFBa2, LX, SHeOR- , F4.2, L Xy SHSECS./57X,
2 TH{JeBe =¢FBa2y 1X, SHSECS)/48X,16H(HERRIN (1968) =, FBe2, LX,
3 SHSECSH)
G0 TO (204,205) IRSTRN
205 PRINT 206
206 FOAMAT (53K, 2EH*eRESTRAIANED 10 JoBe VALUE®®)
206 NP = NP - 1

C000COITEORES ISR RS NCREERNRCCHEEE DO CREPPECRRUEEB S NERLEEASIDNESRECED

CALCULATES COVAR[ANCE DT/DX MATRIX AND
PRINTS wITH STATISTICS.

PRINT £9
59 FURMAT {1H1/3X, J1HCOVARIANCE £/3X, llH=sscrz=sucz)
N=N=1
MM = N = NP « 1
00 64 4 = 1, 120
DO 65 1 = 1, 120
covil,J) = O.
3] CUNT INUE
b4 CUNT INUE
KN = N - MM ¢ |}
DU 68 J = 1, NN -
READ(24) (CVM{T,J)s T =1, NN}
68 CUNT INUVE
DO 55 J = 1, NN
00O 56 I = 1+ NN -
Cuvil,J) = TeSQRT(IAVSQe(CVMII 1) ¢ CVMI{J,J) = 2.eCVMIL,J0 )
56 CONT INUE
55 CONT INUE
D0 57 J = 1, NN
PRINT 58, (COVI(IeJ)s I = 1, J)
58 FORMAT (1Xs 12F10.5)
57 CONTINUE
N =N +1
PRINT 18, SUMS(, AVEQ, SDy DF4 Ny T, ADD
18 FORMAT (1A1//7/9Xy 2ériSUM UF SQUARED RESIDUALS =,F10.5
17/9X, 26HAVERAGE SQUARED RESIDUAL =,F10.5
2//15%x, 20HSTANDARD DEVIATION =,Fl10.5
3//5x, 30HNUMBER OF DEGREES OF FREEDOM =,15
4//15%, 20HNUMBER OF UNKNOWNS =,15
5//23X, 12HSTUDENTS T =,F6.2
6//17X, 18HSUM OF RESIDUALS =,E20.10}
RETURN v
END

SUBTYPE,FORTRAN,LMAP,L STRAP

SUBROUT INE QUTPUT
s008000cEBRO0NRRGE

THIS SUBPROGRAM PRINT S OUT THE SLOWNESS FOR EACH INOGIVICUAL EVENT.
COMMON /EVENTT/ EVENT(120), NEVENT, NE(4), AZ{120), DELTAL120),

1 INDEX(120])
COMMON /REST/ Vv(12C)e. ENAME({120,3}, VELOC(120}, M
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COMMON /RJST/ s(231), DI221)
DIMENSIUN VBAR{120), STC(120)

RADIUS = 6371.028
Pl = 4.¢ATAN(1.)
RTYOD = 180./P1

PRINT 15 . .
FURMAT (1HLl, &X, LSHTABLE OF EVENTS/4X, LSH-==ac-mem-maceen 1177)
PRINT 9

FORMAT 5X, THDATE GF, 12X, S8HLOCATION, BX, 9HT-T SLOPE,s 1X,
1 THUSCGS V. 2X¢ BHUSLGS AZ, 2X, BHLUMPED V, 2X, BHLUMPED C, 2X,
2 10HCORR, DIST, 2X, 9HINOIVID V. 2X, 76X,
3 SHEVENT,29X, SH{SEC/DEG), 2X, 6HKM/SEC, 3X, 6HIDEGS), 3X,
4 BH{KM/SEC)y 3X, 6H(SECS), 3X, 9H(DEGREES), 3X, BH(KM/SEC))

DU 10 JP = 1y NEVENT

JO = 8C « JP

Il = INDEX{JP)

VBAR({JP) = 1./8(11)

STCUJP) = RADILS/(VBAR(JP)ISRTOD)

PRINT 13, JP, EVENT(JPl, (ENAME(JP [} 40121431 4STCCIPIV(IP)AZ{JP),
1 VBAR{JP}, S(JQ), DELTALJP), VELOC(JP)

FURMAT (11X, 13, 1X, A8y 2X, 3ABy-3Xy F5.2y 4X; FS5¢1y 4Xy F5ely

1 5X, F5.2y 4X, F6.3, 6X) F5.1y 6Xy F5.2)

CONT INUE ol

PRINT 9

RETURN

END

SUBTYPE, FORTRAN, LMAP,L STRAP

SUBROUTINE SINCRVIKPIT, LPIT, KEVENT, LEVENT, 1)
SHECOBACEIEERECUOIIVEFRNANSATEOCESEOOEERIIEEIMS

THIS SUBPROGRAM PUNCHES CARDS WITH (PIT CORRECTION ¢ RESIDUAL)
AND ALSO PRINTS OUT WHEN INDICATOR IRESID = 1. (SEE INSTRUCTION 4}

COMMON /AMATRX/ RESID{4,120,2C)

LUMMON /ATT/ AT{4:120,20)

COMMUN /EVENTT/ EVENT(120)y NEVENT, NE(%), AZ(120), DELTA(L120),
1 INDEX{(120) .

COMMON /PITT/ STN(4), PIT(4420)¢ X{(4+20), Y{6,20), NPIT(4)
COMMON /RJST/ S(231), D(231)

D0 3 J = KPIT, LPIT
JE = J - KPIT + 1
PUNCH 8, PITU1,JE)y STN(I)
PRINT 8, PITUI,JE}, STN(I)
FORMAT (6X, 19HRESIDUALS FOR PIT , A3, 13H AT ARRAY , As4)
DO 4 K = KEVENT, LEVENT
JA = 80 + KX
IF (ATC(I,K,JE)EQ.0.) GO T0 4
L =J
IF (1.EQe4sAND.JE.GE.11) L =L - 5
RESIDII4KsJE) = RESID(I,K,JE} « S(L)
PUNCH 6¢ PITU14JE}RESIDIIyK,JE)y AZ(K)y STNII)}, EVENT{K)
PRINT 6y PIT(I1,JE) RESID(I¢KyJE)y AZ(K) s STN(I}, EVENT(K)
FORMAT {(2Xy A3y 2Xy F1Ga74 64Xy F7.,3, 30X, A3, 2X, AB)
RESID(IyKyJE) = RESIDUI 4KyJE) = S(L}
CONT INUE
PUNCH 7
FORMAT (72X)
CONT INUE
RETURN
END
SUBTYPE,FORTRAN,LMAP,L STRAP

SUBROUTINE RESOUT(KPIT, LPIT, KEVENT, LEVENT, 1)
UG OOE NI P RO S VNI NAS CUBEN SRR RO CNESEAO O L UTE SO E

THIS SUBPROGRAM PUNCHES CARDS WITH (RESIDUAL) bNLYn WHEN INCICATOR
IPUNCH = 1 (SEE INSTRUCTION 4 -MAIN-)

COMMON /AMATRX/ RESID(4,120,20)

COMMON /ATT/ AT(4,120,20)

COUMMIN /EVENTT/ EVENT(120), NEVENT, NE{(4}, AZ(120), DELTA(120),
1 INDEX{120}

COMMON /PITT/ STN(4)}y PIT(4420), X(4420), Y{4420)9s NPIT(4)
COMMUN /RJST/ S(231), D(231)

00 3 J = KPIT, LPIT

JE 3 J - KPIT + 1

PRINT 8y PITLI,JE)}, SIN(I)

FURMAT (6X, 19RRESIDUALS FOR PIT o, A3, 13H AT ARRAY: -, A4}
DU 4 K = KEVENT, LEVENT

JA = 80 + K

IF (AT{1)KyJED)+EQe0e) GO TO 4
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L =J

IE [ 1.EQ.4-AND.JEGE.11) L = L = 5
PUNCH 6, PITUI,JEIRESID(I,KyJENy AZIK), STHUII, EVENT(K)
PRINT oy PITUIsJE),RESID(I Ky JE) s AZ(K), STHCI), EVENT(K)
FORMAAT (2%, A3,y 2X, F1Ce7y 4X, F7.3, 30X, A3, 2X, AB)
CUNT INUE

CONT INUE

RETURN

END )

SUBTYPE,FORTRAN, LMAP,L STRAP

SUSROUTINE AMINIX, N, XMIN) .
I EXXERYZEINESRS RN R RN LN )

FINCS MINIMUM VALUE OF ARRAY X
DIMENSION XN} ~

KQ=1

KP=KQ

[FIKQ-N13 4,4

nQ=RQel

IFIX{KP)I=X{KQ))I2,5,5

XM IN=X(KP)

ETURN

ERD
SUBTYPE,FURTRAN,LYAP,L STRAP

SUBROUTINE AMAX{X, N, XMAX)
CONOIOPREAUNIACARAVNEAEDO IS

FINDS MAXIMUM VALUE OF ARRAY X
DIMENSIUN X(N)

KQ = 1

KP = KQ

IF(KQ ~ N} 3y 4y &

KQ = KQ ¢+ 1 .
IFIX{KP) = X(KQ))I2y 54 5
XMAX = X(KP)

RETURN
END
SUBTYPEFORTRAN,LMAP,L STRAP

SUBROUTINE GRAPH
ROAEDELH AL OTAOOE

THIS SUBROUTINE IS FUR GRAPHING ONLY. THE GENERAL GRAPHING ROUTINE
IS ~POLGRFIX,YyN)= WHICH JUOINS PUINT X{LIY(1) TO X(2)Y(2) TOsiees
eoX(N)Y(N). A FULL DESCRIPTIUN OF THE USE OF THE RGUTINES IS GIVEN
[N -YUUNG AND DOUGLAS (19¢&¢8) AWRE KEPORT NO. Os4l/68.

SUBKOUT INE -DUTLIN(X1,Y1¢X2,Y2)— JCINS POINTS (X1l,Yl) AND (X2,Y2}
WIiTH A DUTTED LINE.

INSTRUCTIUNS FOR GRAPHING ARE

100T = 21 PLUTS £
23 PLOTS G
264  PLOTS H
33 PLOTS J
42 PLUTS .
44 PLOTS =

48 PLOTS BLANK
54 PLOTS W
56 PLOUTS Y

INDX =1 LINEAR X SCALE.
[NDY =2 LNGLO(Y) SCALE.
INSTRL = AJOIN JUINS PUINTS WITH LINE.
= 2ZERO LEAVES PCIANTS CPEN.
. IND = O CALLS AND FIMISHES FRAME
’ =1 CALLS AND LEAVES OPEN,
= 2 FINISHES FRAME
=3 KEEPS FRAME (FEN.

CUMMON ZAMATRX/ RESIUL4,120,2C)s CT(4,120,20), FACT (4,120},

1 CUNST{120), VELC(50,)4), DLT(50,4}, TVELOC(120), ERR(L20),

2 CvM(120,120), COV(12C,i20), AIND(120), PS(260), PNS(260), PV(260}
3¢ PNV{260}, VBAR(120), TJB(112}, TAT(112), VELH(109), TH(L109),
4SLuwWl 2¢0), TDIFFLL12), DISTI3C), PVEL(BO), ERLC(BO}, ERHY(BO),
5 TPVEL{BOI}. DDIST(AC), TERLIIBO), TERHY(30), EFLO(80), VHERIN(30),
6 SHERIN(30)}, ARANGE(3C)

COMMON /ATT/ AT(4,120,20)

COMMON /EVENTT/ EVENT(120), NEVENT, NEI4), A2(120), DELTA(120},
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1 INDEX(1201}

COMMON /GRFF/ TITLE(2C), XMAXs XMINJYMAX, YMIN, [NOX, INDY, IND,
11D0OT, INSTR1, XLIMIT, YLIMIT, SCALX, SCALY

COMMON /PLITY/ STN(4), PIT14,20), X16,20), Y(4,20), NPIT (4}

COMMON /REST/ V(120), ENAME(120,3), VELOC(120), N

CUMMON /RNGE/ RANGE(?O). RINT, NP .

COMMON /TTCVS/ MIMEHUICY), AMPV(24), TIMEJ(I12), SLOWH(109)

D IMENSION ATITLE(10), BTITLELLIO), CTITLECLO),
1 DTITLE( 10}, FTIITLE(LO), XTITLE(S).,YTITLE(S),VMID(260)

SRR ENONICRCORANEDOUEREU COUE PRGN OUSTTEDNVEN G0ABLUTCEIOSNCEEROGRES
TETLES FOR GRAPHS.

DATA AJOIN(EHJIOQIN }o ZEROIBH Y

1 (ATITLECI),1=1,10)(8OHPHASE VEL~DISTANCE CURVE (H=--HERRIN CURVE,
2 ~-PHASE VELy +ee95 PER CENTY LINITS)),

3 (XTITLEC T}, 0=1,5(4ONCISTANCE IN DEGREES VELOCITY KM/SEC),

6 (BTITLECI),I=1,10)018CHY. /PHASE VEL =DIST CURVE (H-=HERRIN CURVE,
5 ==SLUWNESSy) «..S5 PER CENT LIKITS)},

6YTITLEC L) »I=1,5) 40HDI STANCE IN DEGREES SLOWNESS SEC/DEG)
DATA (CTITLE(I)oI=1,1C)(BCHTRAVEL - TIME CURVE (J=-J.8. CURVE,
I -=TRAVEL - TIME, H~-HERRIN (1S6B) CURVE)I],

200TITLECI), I=1, 41(32H (DATA POINTSISECONDS
DATA (FTITLE(1),[=1,10)(8CHDIFFERENCE TRAVEL TIME CURVE {0BSERVED
1 HINUS J.B. CURVE [N SECONDS )

CALL SDATE(DATE)

DTOK = 111.19513836

POOONERRIE NN AN SROEOB IR EROUBEOA0RIENINSTACROIIIEDIBOOIERRIBO NN
SETS UP ARRAYS FCGR PLOTTING.

00 51 § = L, NP
{1 = 21 - 1

IV = 1 ¢ B0 ¢ NEVENT
DISTE11) = RANGE(!I)
UISTLI1¢1) = RANGE(Ie¢ 1)
PVELILII) = 1./50(13)
PVELLIIeLl) = 1./5(13)
ERLOLII) = PV{13)

ERLOC LI+1) = PV(I3)
ERRY(II) = PNV(I3}

ERHY( [I+1) = PNV(I3)
TERLOG[1) = DTUK/ZERHY(IT)

TERLO(II#}) = DVYOR/ERHY(II¢1)
TERHY(II) = DYGUK/ZERLO(IT)
TERHY(I[¢1l} = DTUK/ERLO(LlIe*1}

TPVEL(IL) = DTOK*S{[3)
TPVELIIL+]l) = DTOK®S([2)
CONT INUE

NUM ='ll « 1

NUML = [

ERUDLEETECOECED PSR ROE CERRSICAOIN ORI O NSO RSO RSEE REEB XV ETPUIIVOOOC GO

PLCTS CALCULATED TRAVEL T{ME CURVE AND J.8,
AND HERRIN (1968) TRAVEL TIME CURVES,

by 52 1 =1, 2
TITLEG D) = XTITLE(L)
CuUNT [NUE

D} 53 | = 3, 4
TITLEUI#1) = DTITLECT)
CUNT INUF

nu 56 1 = 1, 1C
TITLE(L¢S5) = CTITLEC])
CUNT INUE

TITLE(LI6) = DATE
{WSTR1 = AJOIN

IND = 1
IDOT = 33
XMAX = 0.
XMIN = 0,
YMAX = 0,
YMIN = 0.
nx = 1
INDY =

CALL PULGKF(RANGE, YJB, NP}
CALL NUMBLR(NEVENT)

CALL ENDFME
(0 = 3

1007 = 24
NPLC = NP

DU 2t2 1 =1,
IF [RANUE(1).
I1F {RANGELl 1),
CONT INUE

CONT INUE

CALL PULGRF(RANGE, TH, NPC)

974) NPC = |
97.) GU TO 213

NF

GE
GE
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CALL ENDFME

Mp = 2

IDOT = 42

NP = NP - 1

CALL POLGRF(ARANGE.‘TAT, NP) .

CALL ENOFME
000BOU0EEEIABEVNSUTAIIIINUIIEOVBEAECURBACIOOIUETUORICUIIINESETETRS

PLOTS (OBSERVED-J.Be.) TRAVEL TIMES, -

IND = O
IDOT = 42

YMAX = Q.

YHIN = O,

DU 200 I = 1, 10

TITLE(I+S) = FYITLE(T)

CUNT INUE

CALL POLGRF{ARANGE, TOIFF, NP)
CALL NUMBER{NEVENT}

CALL 'ENDFME

AQROSPUPEEREECRNENEFE QOEE S UGEOEUU RSB RGO CU SLOCREEUEBI VIO UGCHGERD

PLOTS PHASE VELOCITY = X HISTOGRAM WITH
95 PCCL AND HERRIN (19681 CURVE
DO 71 I = 4, 5
TITLELL) = XTITLE(H)
CONT INUE
po 72 1 =1, 10
TITLECI + 5) = ATITLE(I)
CONT INUE
IND = |
1oar
AMAX 0.
XMIN = 0.
CALL AMAX(ERHY, NUM1, YMAX)
CALL AMINUERLU, NUM1, YMIN)
CALL POLGRF{RANGE, VHERIN, NP)
CALL NUMBER(NEVENT!
CALL ENDFME
INSTR1= AJOIN
IND = 3
100T = 48
CALL POLGRF(DIST, PVEL, NLM}
DU 70 i = 1, NUMLl, 2

24

KPLUTL = (DISTCI)=-XLIMIT)#SCALX ¢+ 123,
YPLUTY = 923, ~ (ERHY(l) - YLIMIT)&SCALY
XPLAT2 = (DIST{i+l) - XLIMIT}®SCALX + 123,
CALL OCTLIN{XPLOT1, YPLOTL, XPLUTZ, YPLOT)
YPLUT1 =%923, = (ERLOCL) - YLIMITIeSCALY
CALL DOTLINI{XPLOTL, YPLUTL, XPLOT2, YPLUT))
CONT [NUE

CALL ENDFME

DENCOEEBUDEIBESEDE RIS G RIBUBUEIGUS VOGO US O EURIE OBV NS IEEPNOOSBOBHD

PLOTS PHASE VELOCITY - X HISTOGRAM WITH
65 PCCL,VELOCITIES FUR INDIVIDUAL EVENTS
CORRECTED FOR SYRUCTURE. CODED E ~- EXA

Y = YKA
G ~ GBA
W = WRA

00 69 1 =1, 2

TITLELT + B) = OTITLE(!)

CONT INUE

po 73 1 = 11, 15

TITLECL) = BLANK

CONT INUE

INn = 1

CALL POLGKF(DIST, PVEL, NLM}

Call NUMBEK(NEVENT)

Call ENDFME

100T = 48

DO 85 [ = 1, NuMl, 2

XPLOTL = (DIST{II-XLIMIT)eSCALX ¢ 123,
YPLUTL = 923, = (ERHY(IL) = YLIMIT)eSCALY
XPLOT2 = (DIST{I+1) - XLINIT)I®=SCALX ¢ 123,
CAlL DOTUIN(XPLOTL, YPLUTL1, XPLOT2, YPLOTL}
YPLOT) = 923, - (ERLOUI) ~ YLIMITI®eSCALY
CALL DOTLIN{XPLOT1, YPLOT1, XPLOT2, YPLOTI}
CONT INUE

LCALL ENDFME

INSTR]1 = ZERU

IND = 3 .

00 86 1 = 1, &

NEE = NE(T)

M} 93 KA = ], NEC

TFLT.£Q.1) ILUT = 21

IFL1.EQ.2) IDOT = 5¢
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IF(1.EQ.3) IDDOT = 54

IF(I1.EQ.4) IDOT = 22

1F([.EQ.%) IND = 2

CONT INUE

CALL POLGRFC(OLT(Ls1)y, VELC(ls1), NEE)
CUNT INUE

CALL ENDFME

.O.'G“........'..‘..‘;..l."..C'..O'.....““.G..‘.......‘.‘.“.‘

PLOTS DT/DX=X HISTOGRAM WITH 95 PCCL ANC
DT/0X FOR INDIVIDUAL EVENTS CORRECTED FOR
SUB-ARRAY STRUCTURE

00 62 1 = &, 5
TITLE(L) = YTITLE(I)
CONT INULE

D} o6 | = 1, 3
TITLE(I+S) = BTITLE(IL)
CUNT INUE

DO 76 I = 1, 2
TITLE(I1+8) = OTITLE(I)
CONT INUE

VO 77 1 = 11, 15
TITLECT) = BLAAK

CUONT INUE
XMAX = 0.
XMIN = 0.

CALL AMAX[TERHY, NUML, YMAX)

CALL AMINITERLO, NUMl, YMIN}

IND = 1

INSTR1 = AJUIN

1007 = 48

CALL PULGRF(DIST, TPVEL, NUM}

CALL NUMBERUINEVENT)

CALL ENDFME

DU 75 1 = 1, NuMl, 2

XPLUTL = (DISTUI)-XLIMIT)®SCALX ¢ 123,
YPLOT1 = 923, =(TERHY(I) - YLIMIT)®SCALY
XPLOT2 = (DIST(I+1) - XLIMIT)&SCALX # 123,
CALL DUTLIN(XPLUTL, YPLOT1, XPLUT2, YPLOTL)
YPLOT]1 = 923, - (TERLO(I) = YLIMITIeSCALY
CALL OOTLIN(XPLOTLl, YPLOT1, XPLOT2, YPLOTL)
CONT INUE

CALL ENDFME

INSTR]1 = ZERO

IDUT = 44

IND = 2

CALL POLGRF(DELTA, TVELOC, NEVENT)
CALL ENDFME

CREUDOSEEEEEESEE AR VS KA CF S XU RUSE RSO XA GO SR TR SN GCBUKE VO G IV ROH XX

PLOTS DY/0X-X HISTOGRAM WITH 95 PCCL AND
HERRIN (1968) DT/0X CURVE.

D0 67 I = 1, 10
TITLE(1¢5) = BTITLE(IL}
CONT INUE
IND = 1
INSTH1 = AJOIN
1007 = 24
CALL POLGRF{RANGE, SHERIN, NP}
CALL NUMBER(NEVENT)
CALL ENDFME
INSTR1 = AJOIN
IND = 3
100T = 48
CALL- POLGRF(DIST, TPVEL, NUM)
D0 74 I = 1, NUML, 2
XPLOTL = (DISTCI)I-XLIMITI®SCALX & 123,
YPLOT1 = 923, -{TERHY{I} = YLIMIT)®SCALY
XPLOTZ = (DIST(I*l) - XLIMIT)®SCALX + 123,
CALL DOTLIN(XPLOTL, YPLOT1, XPLOTZ2, YPLOT1)
YPLOT1 = 923, - (TERLO(I) = YLIMIT}®SCALY
Ca4LL DOTLIN(XPLOTY, YPLOTL, XPLOT2, YPLOT))
CONT INVE
CALL ENDFME
RETURN
END
SUBTYPE,FORTRAN,LMAP,L STRAP

SUBRNUTINE NUMBER(NEVENT)
OROECIBHGHOBOGIBOUSOG 0N

THIS SUBROUTINE PRINTS THE NUMBER OF EVENTS IN THE GRAPHING
. ROUTINES
CALL TSP(847, 48, 39)

i
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1
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CALL C4020K

PRINT 111

FORMAT {16HNO, DF EVENTS = )
CALL C4O20I{NEVENT, 3)

CALL ENDFNME

RETURN

END
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SURTYPE, FORTRAN,LMAP,L STRAP
INVERSION OF PHASE VELOCI TY-DISTANCE CURVE. DEREK Jo CCORBISHLEY.
RSSO UOREEOUOBOEOUOOUNCELAEEIECOREONES I I T AT AT Ty ]

THIS PRUGRAM INVERTS THE SLUWNESS (DT/DDELTA) CURVE FRCM 0.YO N
DEGREES USING THE CLASSICAL METHOD OF WIECHERT AND HERGLOTZ
SEE BATEMANsH.y; 191C, PHIL.MAG, 6, P576-53T7.

IT IS ESSENTIAL THAT VALUES OF SLOWNESS SHOULD BE GIVEN FROM
ZERO OISTANCE.

OUTPUT INCLUDES 4 GRAPHS

1) SLOWNESS (SL) - DISTANCE(DELTA) INPUT.

2) VELOCITY(V) - DEPTH(H=RO-R) DUTPUT

3) Vv - H QUTPUT (LOWER MANTLE ONLY)

&) BULLEN®*S PARAMETER (R/V)®(DV/DR) = H (BULLEN,1963
PAGE 112} THI'S MYST ALWAYS BE LT. 1 FOR A RAY TO
EXIST.

GRAPHS 24 3,AND & ALSO HAVE HERRINS VALUES FOR CCMPARISON.

1, CARDS WITH . .
OM DEPTH-VELOCITY CURVE DERIVED FROM HERRIN (1968). THESE
VH CARQS ARE CONSTANT FOR ALL RUNS. '
FORMAT FOR READING IS ON STATEMENT NO.47

2, CARD WITH
FAT FORMAT TO READ SLOWNESS CURVE IN WITH.

PUNCH IN COLS.1.TO £0.

3, CARDS WITH
DELTA DISTANCE-SLOWNESS CURVE TO BE INVERTED. OELYA MUST BE
SL IN 0.1 DEG.INTERVALS O-5DEGS. AND 0.5 DEG. INTERVALS
5-ETC.DEGS. NOT MORE THAN 500 CARDS.
LAST CARD MUST BE A BLANK.,
PUNCH AS FORMAT ABOVE.

FOEZSXACEOOREF A DSAB G BUVERGRENIVE S VAR E O R IRE LS RSB OBATIOVSsEbd bbb e

COMMON/GRFF/TITLE( 20) ¢ XHAX, XMIN, YHAX, YMINJ IND Xy INDYy

1IND, IDOY,ANSTR 1, IF, XL IMIT, YLIMIT,SCAL X,SCALY

COMMON DELTA(500), SL(500), D(500}, V(500), B(500), DH(600!},

1 VH(6001, BH{600), MM .

DIMENSION THETA(S00), R(5C0), FMT(10), DV(500), A(500)}, AH(600),
1 DVH(6001), RH{ 600}

CALL SCLIBR

CALL EDUMP

CALL SCATE(OATE)
CALL SECCLKITS)
DTOK=111.19533839
RADIUS = 6371.,C28
Pl=4.,%ATAN{ 1.)

FASITIIETHSTTSINSLNNL ALLC SN QA KA LS AENB R LSS S CFCEVADETREOIVORE~ ~ T

READS IN DATA. -
BORLIEVY VO ENE RN AR EO IV AE NS B ERGN R ORCECASE TS S IR UP ST RO TR RV O AEB XS US
&

READ 47, (OKl{J)y VHILI)y I = 1, 574)
FORMAT (4(2F10.5)) T
READ 48, FMT

PRINT48, FMT

FORMAT (10A8)

I =1

READFMT, DELTA(I}, SL(I)
IF(SLII).EQ.0.) GO TO €1}

I =] +1

G0 Ta 50

Nag-=-1

J=1l

NN = N
MM = NN
CONTINUE

P000RVCRUCV OISO POURVECLINCLAERRSNGOSHGAB VX AGNISEINEITR IO SO INVUNESES

EVALUATION OF W.H.B.INTEGRAL
tocaoooanttgqtouetttttot.tttt.ottt.aat.t#atuuteote.ttoo-tot.tttttt

DO 10 I=1,NN

X = SLEI)/SLINN)
THETA(I) = ACOSH{IX
CONT INUE :

V0800 0HCORG OO TS EEROERCVE DN O RISV INBVUSEEEISEDEOVV GO0 OISV OCBNCOUCCGET

COMPUTES AREA UNDER COSH-1 CURVE.
PPEP0CURGELECIORU0S0V00SIICEHINOCODOESCTOINNCORROECNOOIESOBI0BGY

TF(OELTA(NN).LE.5.0) GO TO 28
CALL SIMPSN(AREALl, THETA, 51, 0.1}




28

[aXaNaNalal

200

(2R aXaNaNa)

54

57

55

[a¥aNalaXal

23

N
w

a o0hn

227

cooma o

CALL SIMPSNIAREA2, THETA(S51), (NN=51), 0.5)
AREAYl = AREA1*DTOK .

AREA2 = AREA2¢DTOK

AREA = AREALl + AREA2

GD TO 4

CALL SIMPSN(AREA, THETA, NN, 0.1)

AREA = AREA®DTOK )

VPELDEIBEREAT S SBOEV IR SO U RV ROV R RITCOUACEGOSGORUBG VN OEVOERECOGS

COMPUTES VELOCITY AND OEPTH
BV ROBGUREGORFRIOUEINCE AL OOV IS G OGERSSSGUIBS S8V AODEVVEHIDSSA020 0

RtJ) = RADIUS/EXP{ARE A/ (PI®*RADIUS))
D(J) = RADIUS - R(J)
V(3 =(R{JISDTOK}/(RADIUS#SLINN))

d=del

NN = NN - |
[F(J.GT.MM) GO TO 200
60 TO 100
CONT INUE .
CON LAV SBEEERRCRIPCVEX YR CE KRG CREN S VG CECCORCRUSFCQER UG SS O OB ORR SO BN

BULLENS PARAMETER (R/VIIDV/DR}
SRRV LB RS ISR OBGUSUTITIE SRS A SFG 4SS VRGO R ISR VLGOS0 SSAV LIV IVOI0 R

CALL DIFLA{V, MH, R, DV)
DO 54 I = 1, MM

A(TL) = VII)/RET)

B{I) = DVIIN/ALIL)

CONT INUE

00 57T I = 1, S74

RHCI) = RADIUS-DH(I)

CUNT INUE

CALL DIFLA(VH,5744Rbhy DVH)
00 55 I = 1, 574

AR{ 1) = VH{I}/RH{I)

BH{I) = DVH(I)/AH(I)

CONT INUE

VLG HNEVEHIG VLS EEL U DD S PSR G ER R UV RS S OS2 ERSCEBRQVB KOS IR IS ENR RV OES

PRINTS OUTPUT.
HISRVAOOPUTSSSEISESSE RENV CETONEES PRV EBOICR VSRS S0P OISO IBEDE

PRINT 23, DATE

FORMAT (1H1///5X, 3SHINPUT DISTRIBUTION AND OUTPUT STRUCTURE, 60X,
lAB/5X s 3OHE SRR AL CROOAR S ERAF S US I ATV OB USEREPEERA X%, 60K, BHOEO OSSR ES//
2 5Xe 11HOELTA(DEGS}y 2X¢ 18HSLOWNESS{SECS/DEG) s+ 3Xy LOHDEPTH(KMS),
3 3Xy 11HRADIUSI(KMS), 3X, 16HVELOCITY(KM/SEC), 3X, 12HOV/CR{(SEC-1},
4 3Xe 12H(R/VI{DV/DRI)/)

DO 24 I =1, MM

MHM = MM ¢ 1 = |

PRINT 25, DELTA(I)y SL{I), D(MMM) , R{MMM), V{NMM), DV{MHM), B{MMK}
FORMAT {5X,FLl0e245KeF 10e395KeFlOe 195X FL0Uels5XyFL0e347XsFL1045,

1 5X, F10.3)

PUNCH 3, DI{MMM]), V(MMM]

FORMAT (5X, 2F10.5}

CONT INUE

POBEOSIUGHEERERNCRRCAVEICOXEN ATV EOUSERHEBEEUIUGUUBU OGSO SUSBOD O
GRAPH DUTPUT.

CACHEVFDGE ISRV VERNSAO VSO SAER ORI EOEEA B AB RV QIR L0000 000 S0 0
CALL GRAPH

CALL SECCLKITF)

TS = TF - 1§

PRINT227, TS

FORMAT (////15%X, 20HTIME TAKEN FOR JO8 =, F7.3, 8H SECONDS)

RETURN

END
SUBTYPE,FORTRANy LMAP,L STRAP

SUBROUTINE GRAPH

THIS SUBRUUTINE PRODUCES GRAPHS USING A SC4060 PLOTTER.

OSSO RSEVNCECOA S SN OREPUOCTUONDISEERVUO ISR REASSEVEUZVVVVO0IGD RGOS

COMMON/GRFF/TITLE(2G) o XMAXyXMIN,YMAX YNIN,INDXINDY,

LIND, IDOTo»ANSTR1,1F, XL IMET, YLIMIT, SCAL X, SCALY

COMMON DELTA(500), SL{500), D(500), V(500), B(500), DH{600),

1 VH{600), BH{600)s N

DIMENSION XTITLE(S), ATITLE(L1O), B8TITLE(20), ZTITLE(5), CTITLE(1O)

DATA(XTITLE{IDs1=1,5) (4CHDISTANCE IN DEGREES SLOWNESS SEC/DEG!
Ly

20ATITLE(T)»I=1ly10) ( EOHCOMPOSI TE SLOWNESS == DISTANCE CURVE

3 )

DATA(BTITLE(I),I=1,10)( BOHBULLENS PARAMETER (R/V)(OV/OR) = OEPTH
1 seess o HERRINS 1968 CURVE Vo




202VITLECT), 12,5 4CHDEPTH {KMS) VELOCITY KM/SEC ),

BICTITLE( L), 1Ly 1OI( BOKVELOCITY = DEPTH CURVE ee s HERRIN 1968
4CURVE )
DATA AJOINIBHIOIN do BLANK(BH 1

CALL SOATE(DATE)

BP0 0NEASUNIINECEEEEUSUINSDCEHOELEIOEIAEE0ESAGOGOSSR000000800SES
GRAPH OF OISTANCE - SLOWNESS.

[aNaXal

00 8 1=1,5
TITLECT)I=XTITLE(]]}
8 CONTINUE
00 9 I=1,10
TITLE(1«S5)=ATITLE(]LD
9 CONT INVE
TITLE(16)=DATE
ANSTR1=AJOIN
IF = 3
IND=0O
1007 = 48
XMAX=0.
XM IN20 . L]
YMAX=0,
YMINaQ.
hd INDX=1
INDY=1 .
CALL CAKGRF(DELTA,SL,yN)
. CALL ENOFME
s [ - -
C S350 0408402 S SR RERIOERVENSUCNRPERQUSUSOEVENCEHOCESSSUTULVOGUNESSRS
c GRAPH OF VELOCITY - DEPTH,
DO 29 I = 1, 5
TITLECT)=ZTITLELD)
29 CONTINUE
00 27 I=1,10
TITLELT5)aCTITLE(I)
27 CONT INUE
DO 1 I =1, 3
TITLE(I+8) = BLANK
1 CUNTINUE
X XMAX=0Q,
r XMIN=0.
YMAX=0,
YMIN=0,
CALL CARGRF(D, VuN)
CALL ENDFKE

c
[ CICFEDSEARERN A SIS EETSCHCORCUEF VOSSO BLOEREECHEAACIE RNV GO NSHERDEES
[ GRAPH OF VELOCITY = DEPTH (LOWER MANTLE).

XMAX = 0.

XMIN = 0.

YMAX = Q,

YMIN = O,

DO 21 =1, 10
TITLE(1e5) = CTITLE(I)
2 CONT INUE -
IND = 1 p
00T = 48 .
NB = N - 90
CALL CARGRF(D, v, NB)
CALL ENDFME
XPLOT1 = (DH(125) - XLIMIT)*SCALX + 123,
YPLOT]1 = 923, = (VH{125) ~ YLIMIT)*SCALY
00 52 I = 126, 574
- XPLOT2 = (DH(I)-XLIMITI®SCALX + 123,
& YPLOT2 = 923, = (VH{I)-YLIMIT)®SCALY
- CALL OOTLIN{XPLOTL, YPLOT1, XPLOT2, YPLOT2)
- XPLDT1 = XPLOTZ2

e YPLOT] = YPLOT2
| 52  CONT INUE

I CALL ENDFME
il

i

SHOSPEBEERV R A HESCBIEISSE 00N IANE OB GEEEEAUSHESR ORIV DOVOICVONOD
GRAPH OF BULLENS PARAMETER - DEPTH
DO 62 1 = 1, NB
BOI) = -B(1) -
. IF{BII).GT.2.) BII) = 2,
: TF(B(I1.LT=2.) B(I) =:=2.
62  CONT INUE )
D0 63 1 = 1, 574
BHIT) = -BH{I)
63 CONT INUE

(2 ¥ a¥al

D0 41 I = 1, 2
TITLE(I+3) = BLANK
%1 CONT INUE
DO 42 1 = 1, 10
TITLE(1+5) = BTITLE(L)
42  CONTINUE
YMAX = 0.
YMIN = 0.




40

-

O OCanOn 000N 0O

[aNgXal [aNalal [aNeXgl [aXaKal [a N2l [a2XaXs] (o]

[aXal gl

RF(D, B, NB)

(DHIL30) - XLIMIT)I®S5CALX + 123,
723, = (BH({120) - YLIMIT)eSCALY
M) 40 1 = 121, 574

XPLUT2 = (DH{L)=XLIMITIeSCALX + 123,
YPLOT2 = 923. ~ (BH{])-YLIHIT)eSCALY
CaLll OQUTL INUXPLOT1, YPLOTL, XPLOT2, YPLOT2)
XPLOT1 = xPLOT2

YPLUT] = YPLOT2

CONT INUE

CALL ENDFME

(al
-~
-
—r—ovn
pouxp
[a "]

CALL ADVFLM(3)
CaLL FINISH

RETURN
END
SUBTYPE, FORTRAN, LMAP,L STRAP

SUBROUTINE SIHMPSN{A, Y, N, H}
COORUOIUREIBEGEIEE LB EBBGORUE

THIS SUBROUTINE CALCULATES THE AREA UNDER CURVES USING SIMPSONS
RULE WITH END CORRECTIONS FOR ANY NUMBER OF ORDINATES,
ALSO REQUIRED 1S SUBROUTINE DIFFER.

PLEASE RETURN TO DEREK J, CORBISHLEY.

AREA- CALCULATED UNDER CURVE.

-~ ARRAY CONTAINING FUNCYION VALUES.
NUMBER OF ORDINATES.
SPACING OF ORDINATES.

TZ<XPp

DIMENSIUN YIN), OY(50C),

A = 0.
AREA = 0.
AREAZ = O,
AREA2 = Q.
AREAS = 0.
AREAS = 0.
ERR = 0.

AA = FLOAT{N)/2.

NB = N/2
AA = 2.%AA
BN = FLOAT{2&NB)

IF(AA.NE.BN) GO TO 1
N [S EVEN,hHENCE USE CUADRATURE FOR ODD NOe. OF PANELS.

AREA FOR 1 PANEL (N = 2]

IFIN.NE.2) GO TO 2
A = (Y(1) + Y(2)I®H/2,
RETURN

AREA FUR 3 PANELS (N = 4)

AREA3 = (3.,4(Y(2)eY(3)) ¢ (Y(l)eY(4)))eB.%H/B.
A = AREA3

[FIN.NE.4) GO TO 3

RETURN

AREA FOR 5 PANELS (N = €)

IF{N.GT.6] GO TO 12

AREAG = (Y(4) + Y(5)e4, ¢ Y{O))®H/3,

AREAS = AREA6 + AREA3

A = AREAS

RETURN

OSSO0 LINCHERENUURI LD ARV EUBAG RS SL R UUEUOCSEDLEOLOPUREORRGENEAD

AREA FOR ZERO PANELS (N = 1)

IFIN.NE.1) GO TO &
A = Q.
RETURN

AREA FOR 2 PANELS (N = 3)

AREAZ = (Y(Ll) ¢ 4.0Y(Z) ¢ YI(3))oH/3,

[F(NNE.3) GO TQ 7

A = AREA2

RETURN

FOFGEVIVAP SOOIV EGU 00RO OBVO GOSESSEOBNIERBORBOIBCOINOOSDEEGESOGO

AREA FOR 4 OR MORE PANELS (NJ.GE.S)
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12

(s X2l gl

-4

[N aNaNaNaNal

[aNgNal

1l

10

AREAD = (3 9(YIN=-2)eY(N-11) ¢ (YIN=3)¢Y(N))I®3 eH/8,
KaN-=3

GO To 13

K = N

M= (K- 1172

DU S I = 2, M

[l = 2077 = 2 1 .

I11 = 200 = 1

AREA = AREA ¢ Y(LII) + 2.eY(I1)

CONT INUE

AREA = AREA + Y{1)/Z. + Y(K)/2. ¢ 2.®Y(K-1)
AREA = AREA®2.%H/3,

AREA = AREA3 ¢ AREA

CALCULATION OF ERROR CORRECTIONS.

o0 8 I =2/ M

[1 = 2¢1 - 2

i = 21 - 1

ERR = ERR ¢ Y(III) - Y(II) .
CUNTINUE .

ERR a ERR + Y(1)/2. ¢ Y{K)/2., = YIK=1)
ERR = ERR®4.,#H/15. -

CALL DIFFER(Y,y DY, Ky H)

CORR = (DY{K) = DY{1))sH*H/15.
-ERR = ERR - CORR .
AREA = AREA ¢ ERR

A = AREA

RETURN
END

SUBTYPE ,FORTRAN,LMAP,L STRAP
SUBROUTINE QUAD(A, 8, Cy» X1, X2)
BERCEEEC O AU CEBEE VR O ST NN S LS

SOLVES A QUADRATIC EQUATION FOR REAL SOLUTIONS ONLY.

" 'RETURN TO DEREK J. CORBISHLEY.

FACT = B*B - 4.sA%C
[IF(FACT=1.)1y 2y 2
PRINT 4

FORMAT (/5X, 2SHUNREAL SOLUTIONS TO QUADRATIC/)
RETURN

X1 = (-B ¢ SQRT(FACT)I/(2.%A)

X2 = (~B - SQRT(FACT))/(2.%A)

RETURN
END
SUBTYPE,FORTRAN¢LMAP,LSTRAP
SUBROUTINE DIFLA{F,N, X,0ERIV)
DIMENSION X{N),yFIN),DERIVI(N)
DIFFERENT IATES USING LAGRANGE ME THOD
N = NUMBER OF PQINTS
DEIV=DIFFERENTIATED VALUE AT EACH POINT
L=N=-2 -
00 1 I=1,L
J=l+1l
A=X{1)ex{]l+1)
B=X{[¢l)exX(I+2)
C=X{ I} +X{1+2)
D=X{ 1) =X(I+1}
EaX{I+l)=X{1¢2)
G = X(I) = xUI+2)
BB=F( l¢l)e(2.0%X{J)=C)/(-DeE}
CCaFl1e2)2(2,0%X(J)~A)/{G*E)
AA 3F([)®{2.,0°X{J)-B)/(D=G)
DERIVIJ) =AA +BB +CC
COUNT INUE
I=1
J=1
G0 TO 10
I=N=2
J =N
CONT INUE
A=X([)eX(1e2])
B=X{Ie1)ex(le2)
CaX( 1) exX(1+¢2)
D=X{1) =-X{I+1}
EsX{l¢1}=-X{1+2)
GaX(1) =Xx(1e2}
AA sF(1)o(2.09X{J)=B)/710*G)
BB=F(le1)®(2.0%X(J}~-C)/(-D%E)
CCaF{1+42)8(2.0%X{J)-A)/{G*E)




-

[a BN s Yo NaNaaNaRaNaNa Ny

10

20

DERIV(J) =AA +PB +CC
IF{J.EQ.1)60 TO 11
RETURN

END .
SUBTYPEFORTRAN, LMAP,L STRAP
SUBRUUTINE DIFFER(F,FD.N.HI
LOPEUOUREE VGO ER AT O R OOk B

PLEASE RETURN TO C. BLAMEY, BLACKNEST.
Fommewa FUNCTION VALUES.
Fh====- DIFFERENTIATED FUNCTYION.

Ne===-=NUMBER OF PUINTS IN FUNCYION.
H=e=«<~INTERVAL EQUIVALENT TO 0T,

DINCENSION FIN). FOIN)

FO(1) = =25.¢F(1)+448,*F(2)=36.*F{3)¢1l6.,%F(4)-3.2F(5)
FOU2) = ~25.,2F{2)04E.2F(3)=36.0F{4)¢16.*F(5)=3.2F(6)

N2 = N~ 2
Do 10 I = 3, N2

FOCL) = FUI-2)-8,9F(I=1) + B.#F(I+1) - F(l¢2)

CONT INVE

FO(N-1} = 25.*F(N’l)-48)'F(N—2)036.'F(N'3)-16;'F(N-4)03.'F(N-5I
FDI{N) B 25.8F (N} < 4B.*F(N-1)¢306,°F(N=2)-16.*FIN=-31+3.*F(N-4)

H2 = 1./(12.%H)
DO 201 =1, N
FOUL) = FDC(l)e*H2
CONT INUE

RETURN

END




TYPE,CUMPILGO,F4
SUBTYPE,FORTRAN,LMAP,L STRAP
- TRUNCATE DEREK J. CORBISHLEY.
sossonde, CECRBIIEFIGEOENIIOES
KOLMNGOROV —- SMIRNOV STATISTIC.
DeCETIERGEIRE LSS IENESIRENTRS

THIS PROGRAM COMPUTES TME CUMULATIVE DISTRIBUYION AND CHECKS THE
KOLMOGUROV-SMIRNOV STATISYIC AT THE 95 PRR CENT LEVEL.
(SEE MASSEY.Fades 1S51y JoSTAT.SOC.AMERICA., 46, P68-78)

THE NUMBER UF VALUES SHOULD BE PREFERABLY GREATER THAN 50.

IF CARD & IS PUNCHED AND THE KOL~SMIR. STATISTIC HAS BEEN EXCEEDED
THEN THE OISTRIBUTION WILL BE TRUNCATED BY SO STANDARD DEVIATIONS

FROM THE MEDIAN. VARIANCES FROM MEDIAN AND MEAN ARE CORRECTED FOR

TRUNCATIONSTATISTICS AND KOL .~SMIR, DISTANCE ARE. THEN RECCHPUTED.
(OTHERWISE LEAVE CARD 4 BLANK)

UUTPUY INCLUDES GRAPHS.
INSTRUCTIUNS FOR USE

1. CARD WITH
THE FIRST CARD IS A STANDARD 4060 CARD

2. CAROD WITH
TITLE DESCRIBING SAMPLE
{PUNCH IN COLUMNS 1-80)

3. CARD WITH
FURMAT TO READ DATA [N, _
(PUNCH IN COLUMNS 1-8C AND INCLUDE FORMAT [1 AT END IN COL.80)

4, CARDS WITH
SD DATA IS TRUNCATED BY SO STANDARD DEVIATIONS,.
PUNCH (62X, F10.5),

5o CARDS WITH
VALUES OF DISTRIBUTION X.THE LAST CARD MUST HAVE 1 IN COL 80.
FORMAT FOR PUNCHING GIVEN IN INSTRUCTION 3

SOECHIRROUSERRIUOSSOESASTSAERRRURBELNNO RIS LR OESILODASFHOCELCEREDS
PESEEPUSEEOEAECIRIPAN A DOUD RN GV ARG OU OO UV RTE UV OIG SR O SIREEEOEE S
THIS SUBROUTINE READS IN THE DATA.

(sl aRaNaNalaNaN e oY a koo e N el alalaRaN ool e Rl e N aXataiaiakaakalalaNaaRaN a N o Wa W o Wall s We W 3

COMMON X{6000), XC(60CC), YC(6000), YNC (6000} .PIT{6000) EVENT(60
10), N,ASD,XHI6G00Q),YINC{6000)
COMMON/GRFF/TITLE( 20} ¢ XMA Xy XMIN, YMAX, YMIN2 INDX, INDY,IND,IDOT,

1 ANSTRY, IF,XLIMIT,YLIMIT, SCAL X, SCALY

DIMENSION FMT(10)

C
CALL SCLIBR
CALL EDUMP
oy CALL SDATE(DATE)
Va C (LIS IIT YT LLT ¥
C

100 READ 2,(TITLE(I),[=&y15)
PRINT2,(TITLE(F)oIm6y 15)
READ 2,y FMT
PRINT2, FMT

s 2 FORMAT(10A8)
. READ 4,ASD
PRINT 4, ASD .
4 FORMAT (62X, F10.5)
i=1

25 READ FMT, PIT(I)y, X{I)y EVENT(I), IND
IFUIND.EQ.1) GO TO 24
I=]e¢l
GO TD 25

24 Na]-1

CALL SECCLK(TSI
PRINT 1, DATE

1 FORMAT ( R1H1//4X ¢ 39HKOL MOGOROV- SMIRNOV TEST OF OlSTRlBUTION. 72Xy A8
le /74Xy 39H=== ———————— cemmmecwee 72Xy BHem e/}

CALL AREAD
EBCOLERUSE S

Oon OO

CALL SECCLK(TF)
TSaTF=-TS
PRINT 3,TS
3 FORHAT(IIIIISK.ZOHTIHE TAKEN FOR JOB =, F7.3, 8H SECONDS)

GU Y0 100
END -

T SUBTYPE,FORTRAN,LMAP,L STRAP ;
SUBROUT INE AREAD

[ (AL LI YT T YT LY Y] .




29

13

[aX o}

[aXzKal an

10

44

22

[a R g}

23

o 000 0O

12

CUMMON X{6000), XCL6O0CC), YC({6000), YNC (6000} +PIT(6000} ,EVENT (60
100}, N,ASO.XH{6000),YINC(6000)
COMMON/GRFF/TITLE( 20) o XMAXyXMIN, YMAX, YHIN, INDX,INDY,IND, 1DOT,

1 ANSTRI, IF XLIMIT,YLIMIT,SCAL X,SCALY

DIMENSION YN{ 10000}, DIF{1CO0C)

PRINT 29,(TITLE(I),1=¢415) .

FORMAT(10A8)

PRINT L1yNy[(X(I)sIl=1,N)}

FORMAT(//4X¢ 18HNUMBER IN SAMPLE =,15/74X,12HDATA USED ~~/7(4X,
112F10.5))

CALL ORDABCIN: X PIT,EVENT)

8sSD = 20.
Igur = 1
AN = N

CALL STATIS{X,N,AN,XBAR,XMED, VARX yCVARX y SKEW ¢ AKURT 4 5D ,BS0VARK,

1 CVARM) |
‘ﬁl!.0“‘.0‘0'Fl"ﬂll.G#"‘....‘.“.‘.‘.‘.....l..........‘

CALL FISTUXyNy XC s YC yXH)
CUEEIERE B ECOE OSSR ERE BN

PRIINT 10
FURMAT(///74X,85FM} = SUM( X-XBAR) /N, VARIANCE = M2, SKEWNESS = M3
1/KM2*el,5, KURTOSIS = (M&/N2¢M2)~3.]

PRINT 44, XBAR, XMED,) VAR XsCVARX, VARM ;CVARM, SD, SKE Wy AKURT
FORMAT(//74X ¢ 6HMEAN =4 F10.5//64%¢8HMEDIAN =2,FLl0.5,//4X,LOHVAR[ANCE =
Ly Fl0.5//4Xs 20HCORRECTED VARIANCE =,FL0O.5//4X,22HVARIANCE FROM MED!
2AN =,F10.5//4X,24HCORR. VAR, FRUM MEDIAN =,F10.,5//4X,20HSTANDARD O
3EVIATION =,F10.5//4X,; LOHSKEWUNESS =,F10,5//74X,10HKURTOSIS =,F10.5})

COMPUTES THEORETICAL OISTRIBUTION.
PI125=SQRT(B.*#ATAN{ 1.)*CVARM)
PI25=1./P 125

$162==2.2CVARM

SIG2 = 1./8162

SUM=0.

DX = ABS{XhIN-1) - XH(Ll))/FLOAT(N-1}

XHl = XH{1}) - OX

N322 [=1,N

Bl = 1

XCUI) = xdl ¢ DXe8l

YN{I)=PL2Se*EXP{(XCLI)~ XHED)‘(XCtll -=XNED) ¢51621
YN(L} = YN(1)®100.,0DX

YNCUTI=YN(I)+SUM

SUK=YNC( 1)

CUNT INUE

INTERPOLATES THE CALCULATED ARRAY(XC,YNC) TO THE SAME X SPACING
AS THE OBSERVED ARRAY(XHsYINC).

00 23 I = 1, N

CALL OLIVODIFINSXCoYNCoXMIT),YINCUI))

DIFCI) = ABS(YC{I) - YINC(IN)

CONT INUE

PLOTS GRAPHS
CaLL FPLOT
(I TP T

CUMPUTES THE MAXIMUM KOLMOGDROV - SMIRNOV DISTANCE.
CALL AMAX{DIF,N-1,DMAX)

QIEE IO ENEEEOHSUQ YO 6N

OMAX=DMAX/ 100,

DISKS=1.3581/SQRT(N)

PRINT 4, DMAX,D ISKS .
FURMAT(//5X,29HMAX IMUF KOLMOGORGV DISTANCE =,F10,3/
1 5X,29H95 PER CENT STATISTIC =,F10,3}
IFLOMAX,LT.DISKS) GO TO 3

PRINTS

FURMAT{ L4X, J0Hs¢sos STATISTIC EXCEEDED eeess)

TRUNCATES DATA.
BSD = ASD
IFLIOUT.GT.1) GO YO 3

PRINT b6y ASD

FURMAT {//5Xy, 37HDATA HAS BEEN TRUNCATED YO A LIMIT OF F10.242X,
L4HS oD /5Ky 22HVALUES OF X REJECTED =)

1 =1

ASD = ASD®SQRT(CVARMI]

IF(ABSIX(1)).GT.ASD) GO TG 7

Il =11

IF{1.6T.N) GO TO 11

GO T0 12




7 PRINT 9, X{1),y PITCL), EVENTII)
9 P URMAT (35%x, F10.5, 6X, AB, 6X, AB)
N« N -1
DU 14 0 = 1, N
XtJ) = X(Jel})
PITIJ) = PITLI¢L) 1
EVENT{J) » EVENT(J+1)
14 CONT 1NUE
IFCTI.GT.N) GO TO 11
6N 10 12
11 [outr a 2
Gu T 13

3 RETURN :
END ) .
SUBTYPE,FORTRAN,LMAP,L STRAP

SUBROUT INt ORDERIN, A}
CeEROREOSB GBS ULBRB GRS

-

THIS SUBRUUTINE ORDERS THE ARRAY A INTO ASCENDING SIZE OF A (FOR
N NEGATIVE) UR UECEND ING SIZE (FOR N POSITIVE).

[alalalaNal

DIMENSION A(N) ’ ' -

IFIN) 5,70,35

(ol o

5 N==N
| N1l=sN-1
- DU 30 I=1,N1 ’ . S -
Il=1+] .

DO 20 J=11sN

IF(ACL)-AtJ))2042Gy10
10 S=A(J)

AlJ)=all)

Al1)sS
20 CONTINUE
30 CONT INUE

RETURN

35 Nl=N-1
" DO 60 I=1,Nl
{l=1+1
DO 50 J=11sN
IFCALT)I-A(d1040+5G45C
«0 S=AlJ}

L . atdi=atil

' INOSEN

50 CONT INUE

; . 60  CONT INUE

y 70  RETURN

END
SUBTYPE,FORTRAN, LMAP,L STRAP

SUBROUTINE ORDABC(N.A.B.C)

S40CLBENCEOVS SSRGS LRGSR

-

THIS SUBROUTINE ORDERS THE ARRAYS A,B+C INTO ASCENDING SIZE OF A.

[aNaNaNal

DIMENSION AIN)s» BIN)y C(N)

(al

NL = N -1
DG 30 I = 1, N1
L= 1+
00 20 J = 11, N
1F(ALL) = ALJ)) 20, 2C, LC
10 S = AL

[ S S O I}
P

POD>C~
-~ -
[

B(1)
ctn
20 CONT INVE M
30 CONT INVE

RETURN
END
T SUBTYPE,FORTRAN, LMAP,L STRAP
SUBROUTIKE STATIS{X,N,AN,XBARyXMED s VARX ,CVARX ySKEW,AKURT ySD+ASD,

! 1 VARM, CVARM)
0L RAPREA IRV H LA UC G PEXN RECEFRECRGENOPUOIROOEROZLO0NG00BBES

THIS SUBROUTINE CALCULATES THE FULLOWING STATISTICS FROM THE
DISTRIBUTIUN X(1)eoee oX{N}

N AN a N
N XBAR = MEAN OF DISTRIBUTION
XMED = MEDIAN

C
C
[+
C
C
C
C
C
C

=
VARX = VARIANCE
CVARX= VARIANCE CORRECTEO FOR TRUNCATION 8Y ASD STARDARD
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DEVIATIONS,
a VARIANCE FROM MEDIAN.
= CORRECYED VARJANCE FROM MEDIAN.
SKEW = SKEHWNESS
= KURTOSIS
s STANDARD DEVIATION
] .

OIMENSION X(N)

N = =N

CALL ORDER(NsX)

IMID = N/2

M = [MID92

IFIM.EQ.N} GD TO 2

IM{D = IKID ¢+ 1

XMED = X{IMID}

GO 1O 3

XMED = {(X{IMID)} ¢ X{INMID¢L)) /2,
CONT INUE

SUMX =043

SuMX2=0.

SUMX3=Q.

SUMX&4=0.

VARM = 0,

DO 1 I=1,N

SUMX = SUMX ¢ X(I}

X2 =X{I1ex(]}

SUMX2 =SUMX2 ¢X2

SUMX3 =SUMX3 #X2¢X(1])

SUMX4 =SUMX4 +X2%X2

VARM = (X{I)=XMED)®(X(1)=XMED) ¢ VARM
CONT INUE

VARM = VARM/AN

XBAR = SUMX/AN

AZMNT = SUMX2/AN

VARX =A2MNT ~XBAR®X8AR
ABMNT=SUMX3/AN = 3.¢XBAR®A2MNT ¢ 2,.#%{XBAR%®3)
AGMNT=5UMX4/AN = 4.9XBAR® SUMX3I/AN 46, °XBARSXBARCAZMNT =3, % (XBAR®®4}
SKEW=(A3MNT®A3MNT) /{ VARX® *3)
SKEW=SQRT(SKEW) .
SKEW=SIGN{ SKEW,A3MNT)

AKURT = {A4MNT/( VARX®VARX))=~3,
CALL CORV(ASD, VARX, CVARX}
CALL CORV({ASD,VARM,CVARM)}

SC = SQRT{CVARX)

RETURN
END

SUBTYPE s FORTRAN,LMAP,L STRAP
SUBROUTINE HIST(X, Ny U, Cy XH)
SORUIFEBBASBENRDARCRC S UNEOSOR 0N

THIS SUBROUTINE COMPUTES THE CUMULATIVE FREQUENCY.

X-=====X-ARRAY READ I[N (N POINTS)

Yoo e CUMULATIVE X-ARRAY,

[ CUMULAT IVE Y-ARRAY (AS A PERCENTAGE)
XKH====- CUMULATIVE X-aRRAY (AT U/2 SPACING)
DIMENSION X(N)y UINJ), CIN),y XHIN)

AN = N

F o= 1.

K =9

CiK) = 0,

L =29

I =2

K =1

SUM = 0,

utl) = xt1)

XHI1) = (X(L) & Xt2))/2.
C{l) = 100./AN
IF(XCTlNEX(I=-1)) GO TO 2
UlK) = X(I)

XHIK) = (x(I) + X{lel))/2,
F=F + 1}, .
C{K) = {100./ANI®F ¢ C(K=1)
I =1 ¢ 1

IF{I.GT.N) GO TO 4

GU TO 3

Kz K ¢ 1

Uikl = x(11

XHIK) = (X{I) ¢ X(I¢1l))/2.
Fal.

CIK}) = {100.7/aAN) ¢ CiK-1)
I =14+¢1

IF{1.6T.N) GO TO 4

GO TOo 3 '

N = K

RETURN

END

e
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SUBTYPE, FURTRAN, LMAP,L STRAP
SUBROUTINE HPLOT

THIS SUBRQUTINE PLUTS THF OBSERVED (XH,YC} AKD THEORETICAL
(XC,¥YNC} CUMULATIVE FREQUENCY DICTRIBUTIONS ON A SC4060 PLCTTER.
{SEE YUYNG.J.B. AND DCUGLAS,A.s 1968. HMSO AWRE 041/68)

COMMON X(6000}, XC(&0X0), YC(6000), YNC (6000)PIT(6300),EVENTI(6D

100), N,ASD,XH{000D),YINC{E00O)
COMMON/GRFF/TITLE( 20) y XMAX, XMIN, YMAX ,YMI N, IND X, INDY,IND,IGCT,
1| ANSTRL, [FeXLIMIT)YLIMIT,SCAL X,SCALY

UATA PCEN(BFPERCENT ) ,CLASS{BHCLASS LI) JALIMIBHMITS } s BLANK(8H
1 )
CATA AJUIN(BHJOIN )

CALL SDATE{(VITLE(1¢))

TITLE(11=CLASS
TITLE(2)=ALIM
TITLE(3)=BLANK
TITLE(®)}=PCEN
TITLE(5)=BLANK
XMAX=0,

XM IN=0.

YMAX = O
YMIN=0.

INDX = 1

INDY = 1
ANSTR1 = AJOIN
IF = 3

IND=1

IDOT=248

CALL CARGRF{XH:YCsN-1)
IND=2

CALL CARGRF{XCsYNCsN=1)
CALL ENDFME

RETURN
END
SUBTYPE, FOR TRAN, LMAP,L STRAP

SUBROUTINE OIVODIF(N, X, Y, X0, YO)
PULEO IR URONEVE OBV OANCEERREEEERRE

THIS SUBROUTINE INTERPOLATES USING THIRD DIVIDED DIFFERENCES.
({SEE -METHODS OF MODERN PHYSICS- JEFFREYS AND JEFFREYS,1956,P261)
THERE IS NO RESTRICTION ON ARGUMENT OR FUNCTION SPACING. THE
PROGRAM REQUIRES A MINIMUM UF N=4 POINTS TO OPERATE.

-------- NUMBER OF VALUES IN [NPUT,.
-------- INPUT ARGUMENT ARRAY.
-------- INPUT FUNCTION ARRAY.

== INTERPOLATE ARGUMENT VALUE.
------ INTERPOLATED FUNCTION VALUE.

RETURN TO DEREK J. CORBISHLEY.
OIMENSION X(N1. Y(N)

IF(N.GE.4) GO TO 12

PRINT 13

FORMAT (710X, 36HNO I NTERPOLATION AS N MUST BE .GE. &/)
RETURN

[F(XO - X{(1)) 3, 2, 3 §
YO = Y{1l)

RETURN -
[F(XO = X{N})S, 6+ 5

YO = Y(N) .

RETURN

DD 9 J =1, N
IF(X{J).GE.XO) GU TO 1C
CONT [NUE

Llhag -1

TF{X0 «GE X{N))] = N-1

IFLTeLT1) 1 =1

K= 1-1

IFIKlTel) K = 1

IF(K.GT.U{N=-2)) K = N2

L =K

EFILGT.IN=-3)) L = N=-13

SO IREC RN NSO UC TR R OIR VOIS S F USRI RN EIRLSEURONEEIOIDVEHTIIBRE
CALL DO3(Xx(L)y Y(L), D3)
CEECERCLOESNAONUONSE VOSSO0 ROUSEAREBUBCRICIDGHESSSOORI0OROUNTISS

It= I-1
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FLUl.LY 1) 01 = 3

A= X0 - XUII}

B8 = A%0D3

S0P ITUV00EEINVTRR NG 4N LS ELEUEEIBUNONOTIGESERCISHELSIONIOS

CALL CD2(X{K)y Y(K}, D2}
200 0E0I0NSILEIEDHUTIN ISR HEIVOBRNCEOAVOHIUBROAOOEOHUNTOE00S004080ES

C =02 +8
VUSSP NVSEOEE ST U OVE AV OGOV CGIOSRU SN EEGEOEOACCOICVOOSGISINEEDON S

CALL COMIX{1)s Y(1}, D)

XXX 2RI AR R Y TR R RIS R RO TR RN T R RTI ST I RIS YR YRR AT NY)
D = (X0 - XCI)18(X0 - X([el)) '

E = D*C

F = (X0 - X(I1)eD1 « Y(I)

YO = E ¢ F

RETURN
ENO
SUBTYPE, FORTRAN,LMAP L STRAP
SUBROUTINE NDL(Xe ¥, F1}
VOSHOVEON KOG UBE TIPS SO RO N
THIS SUBROUTINE FORMS FIRST DIVIDED DIFFERENCES.

-

DIMENSION X{21, Y(2)
Fl = (Y(2) = Y{LM/ZUX(2) - X(1})

RETURN
END . :
SUBTYPE, FORTRAN, LMAP,L STRAP

SUBROUT INE DD2(X, Y, F2)

SBERNOCEERECCEE A G RSN EEX

THIS SUBROUTINE FORMS SECOND OIVIDED OIFFERENCES.

DIMENSION X(3), Y2}

Calt DOL(X(2),y Y(2), A}
CALL 00D1lixX({1)y Y(1}), B)

F2 = (A = BI/Z7(X(3) - x(1))

RETURN
END '
SUBTYPE,FORTRAN, LMAP,L STRAP
SUBROUTINE 0D3{X, Y, F3)
STEEOPEHEEENEP S CE R SRS R

THIS SUBROUTINE FORMS THIRD DIVIDED DIFFéRENCES-
DIMENSIUN X{4)y Y(4)

CALL DO2(X{2)y Y(2), &)
CALL COL2(xl1}, Y(1)e B)

F3 = (A = BI/IX{a6) - X{1))

RETURN

END
SUBTYPE,FORTRAN, LMAP.L STRAP

SUBRNUTINE NTRUNCIC, P)

LAXI ATV VYT Y Py

THIS SUBRUUTINE CALCULATES THE AREA (PROBABILITY -P(K)) UNDER A
NORMAL CURVE THAT HAS BEEN TRUNCATED AT C(K).

C(K) IS5 THE VALUE SUCH THAT (K) PER CENT OF THE OISTRIBUTION LIES
WITHIN C{K} OF THE MEAN. P(K) WILL BE INDEPENDENT OF THE MEAN AND
VAR IANCE OF THE POUPULATION,

(SEE FREEDMAN BSSA VOL 56 NO.3, P677-695, JUNE 19661}

Pl = 4,¢ATAN(]1.)

H = C/500.

AREA = 0.

DO 1 I =1, 500

Y = CefLOAT(I)/500.
Y2 = YsY

ORD = YZ2eEXP(-Y2/2.)
AREA = AREA ¢ 2,%0RD
CUNT INUE

Y =¢C

Y2 = Yoy

OkD = Y2eEXP(~Y2/2.)
AREA = AREA - ORD

P = HOAREA/Z2.
¥ = SQRT(2./P1)ep

RETURN
END
SUBTYPE,FORTRAN,LMAP L STRAP
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SUBROUTINE CORV{ASD,VARX,CVARX)
EIERCEREREDAREEE NG ERERKCH QR G R

THIS SUBROUTINE CORRECT1S THE VARIANCE [(VARX) TO

TRUNCATION ,BY =-ASD~ STANDARD DEVIATIONS.

CALL NTRUNCIASD, P)
CVARX = VARX/P
RETURN

END

{SOLN.

ALLCwW FOR
= CVARX) .
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