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ABSTRACT

This work is concerned with elastic and inelastic
scattering of ions and atoms.

Semi-classical and quantal phase shift treatments
are applied to the system of lithium ions in helium. A
SCF-MO calculation of the interaction potential for the
ground state of the system is reported and the results
compared with other quantal calculations and with semi-
emperical cross-sections. The cross-section for scattering
through an angle greater than a given angle, the total
elastic cross-section, the diffusion cross-section and the
mobility are obtained and compared with experiment. The
presence of orbiting is seen in the total cross-sections.
It is predicted that the SCF-MO potential supports seven
bound vibrational states.

A classical binary encounter impulse approximation
is applied to ionization of atoms. The velocity distribu-
tion of the bound atomic electrons is given by Hartree Fock
wave function. Inner and outer shell ionizations cross-
sections of atomic helium, lithium, oxygen, nitrogen and
neon by electron and proton impact are calculated. The
results are compared with other classical and quantal cal-

culations, and where possible with experiment.
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Finally the excitation of atomic hydrogen by
proton impact is considered within the framework of the
impact parameter model. The closure approximation,which
implicitly takes account of all rearrangement channels, is
used to obtain excitation cross-sections into the 2s-state.
The calculation is performed retaining only two states
explicitly and the results are compared with those pre-
dicted by other quantal treatments. No experimental re-

sults are available for comparison.
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CHAPTER I

MODELS OF HEAVY PARTICLE COLLISIONS

1. Introduction

The theory of ion-atom collisions can be considerably
simplified by adopting models and using approximations that
take advantage of the comparatively large masses involved in
the collision. The present work investigates both elastic
and inelastic collisions for some ion-atom systems using
classical, semi-classical and quantal treatments.

In general, for elastic collisions, the nuclei can
be considered as moving in some averaged field due to the
interaction of all particles (nuclei § electrons) in the
system in a way in which, in the absence of excitations,
allows their motion to be considered independently of the
electrons. Such a separation of nuclear and electron motion
was first demonstrated by Born and Oppenheimer (1932). The
collision can”then be represented by a potential scattering .
model.

A classical potential scattering analysis is appli-
cable if the de Broglie wave length associated with the -
collision is small compared with atomic dimensions, which is
the case for heavy particle collisions above thermal energies.

However it is well known that the classical analysis fails

I-1
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for total elastic cross-sections for the realistic infinite
potentials that will be considered in this present work, but
it may be valid for differential elastic cross-sections,
I(8), over a wide range of angles say 6>6->0. An estimate
of this critical angle 6. below which the classical analysis
fails can be obtained form the uncertainty principle, and
for protons above thermal energies is of the order of 0.1°
(Mott and Massey 1965). At thermal energies, semi-classical
(see section 2) and quantal treatments are required.

Classical models of inelastic scattering would be
expected to be adequate if the dominant contribution to the
cross-sections came from angles greater than 6. For example
if energy transfers greater than AE are required for ioniza-
tion, there is a corresponding angle 6, (E) such that for
6<0, the energy transferred is insufficient to cause the
transition. Then for energies such that GO(E)>6C, it can be
expected that classical models could adequately describe
ionization. The major argument against the application of a
classical theory is that the theory is unable to describe
distant collisions correctly. This is reflected in the high
energy region of the cross-sections where the distant colli-
sions make a significant contribution. For example the be-
haviour of the classical ionization cross-section at high
energies 1s E! in disagreement with the correct quantal
result of E-11nE.

Ion-atom collisions with energies in the kilovolt
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region, can be described in the impact parameter model. In
this model the nuclei are treated as classical particles
describing rectilinear trajectories with constant velocity
and the electrons are treated quantum mechanically as they
move in the time dependant fields of the "infinitely massive"
nuclei. Mittleman (1961) has shown these assumptions not to
be unjustified in this energy region.

The following sections of this chapter will be de-
voted to elastic ion-atom scattering, classical theory of
inelastic collisions and impact parameter treatments of
heavy particles respectively. In view of the range of topics
included, a comprehensive review of the theory and previous
work in these fields will not be attempted (see Coleman §
McDowell, 1969) but the discussion will be such as to intro-
duce the particular theoretical models that will appear in

Chapters II, III, 1IV.

2. Elastic Ion-Atom Collisions

In the absence of inelasticity, the Born-Oppenheimer
separation allows ion-atom collisions to be treated in a
central potential model. The exact quantum treatment for
spherically symmetric potentials using the Faxen-Holtzmark
method of partial waves is well known (Mott § Massey 1965)
and the results will only be stated here. The differential
cross-section I(6) is given in terms of an elastic scatter-

ing amplitude, £(6)
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. © [ 2in, ]
£(8) = ¢ b (2r+1) (26 -1j P, (cos#) (1.1)
such that
1(6) = |£(8)]° (1.2)

Here PZ (x) is the Legendre polynomial of order & and Ny is the
2-order phase shift defined by the requirement that the asymp-

totic form of the regular solution of the radial equation.

2

L ektzw(r)- 2L () = 0 (1.3)
ldr
should be
) . 1
ug(r) rzw 51n(kr—7£ﬂ+n£) (1.4)

where in the usual notation, k is the momentum of the collision,
uis the reduced mass, V(r) is the interaction potential and £

is the angular momentum quantum number. Hence the phase shift
n, refers to the displacement of the solution of the radial
equation at large distances relative to that of the correspond-
ing 2th order spherical Bessel function, jz(kr). (krj2 is a

solution of (1.3) for V(r)

0). Thus, given any realistic
potential function, one solves (by numerical methods) the equa-
tion for successive values of & evaluating a sufficient number
of phase shifts to obtain convergence (to some specified limit
of accuracy) in the sum over 2 in eqn. (1.1).

However a complete quantal phése shift analysis can
be probibitively time consuming when large numbers of phase

shifts are required. Tord and Wheeler (1959), and more tecently
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Munn, Mason and Smith (1964) and Bernstein (1966), have ex-
amined the effect of '"semi-classical'" approximations in the
derivation of the phase shifts on the behaviour of the phase
shifts and on the scattering observables.

The two main deviations from the quantal analysis
which are made to obtain the semi-classical approximation
are:

(i) The exact phase shifts are replaced by JWKB phase
shifts (see Coleman and McDowell 1969). The approximate solu-
tion of Jeffreys to eqn. (1.3) from which the JWKB phases are
determined, is valid when the potential does not vary appreci-
ably in a distance comparable with the wave length 1/k. of
the collision. The JWKB phase shift -can be written as

JWKB lim_

r
g - r+wlIrm (kz‘Z'l]V(r)-(2+1/2)2/r2)1/2dr

i 2 2, 2,172
'J(z+1/2)/k (k%-(=1/2)%/x%)  dr (1.5)

where T is the classical turning point.

When 21is sufficiently large (eg. 2vkR where R is
some ''range' parameter of the potential), Massey and Mohr
(1934) showed that (1.5) could be simplied by expanding the

first integrand to yield the so called Jeffreys-Born phase

shift,

® pV(r) dr
%JB = -J 1/2 (1.6)

p+1/2  (k%-(2+1/2)%/1)
—x
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(ii) The summations of the phase shifts to produce cross-

sections are approximated by integrals.

The validity of the first approximation has been
examined by Munn et al (1964) for a L-J (12,6) potential.
The approximation is essentially valid for "large' k and they
show there is always a region of £ and k for which the approx-
imation is poor, and this region is dependant on the potential
parameters and the reduced mass of the collision. The success
or prior calculations using JWKB phase shifts and semiclassical
analysis (Bernstein (1960), Marchi and Mueller (1962, 1963))
was due to avoidence, for the most part, of these regions.

Massey and Mohr (1934) obtained an approximate ex-
pression (in closed form) for the total elastic cross-section
by considering two regions of angular momentum. The first
where the phase shifts are large and essentially random and the
randon phase approximation is applicable, and the second where
they are small and non-random but for which the cross-section
summation (Chapter II, eqn. (2.6)) can be replaced by an in-
tegral over the JB eqn; (1.6), approximation to the phase
shift., These approximations produce the Massey-Mohr cross-
section. Landau and Lifshitz (1959) obtained a more accurate
formula by replacing the whole sum by an integral over the
JB phase shifts. (Schiff (1956) obtained an identical expres-
sion using an independent treatment and the cross-section in
the analysis will be called the SLL approximation).

Undulatory deviations from the Massey-Mohr cross-
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section caused by regions of stationary phase corresponding to
glory scattering, were predicted by Bernstein (1961) and have
since been observed experimentally (Rothe et al, 1962).
Bernstein (1962, 1963) then semi-classically related the num-
ber of oscillations to the number of bound states (vibrational-
rotational) that the potential can support. Because the semi-
classical analysis fails for thermal energies the relationship
is not rigorous and can only be stated as '"The observation

of m maxima in the elastic cross-section implies the existance
of at least m vibrational bound states." (Bernstein, 1966)

Rainbow scattering also causes structure in the
cross-section and if an estimate of the number of vibrational
bound states is to be deduced from the behaviour of the total
cross-section using the Bernstein relationship, then this
structure must be identified and subtracted out before hand.
(Munn et al, 1964)

It is known that a semi-classical analysis includ-
ing approximations (i) and (ii), reduces transport cross-
sections to the results obtained by exact classical methods,
which are in error for low energies where orbiting and res-
onance effects occur. It is thus necessary to revert to the
exact quantal analysis for such results (Dickenson 1968a, b).

When averaging over transport cross-sections to
obtain mobilities much of the structure in the quantal cross-
section is lost and semi-classical analysis predicts mobili-

ties which are in reasonable accord with experiment for a
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wide temperature range (Dalgano et al (1958), Dalgano (1958)).
Experimental results of differentially scattering
can be used to predict interaction potentials using inversion
techniques (Hoyt (1939), Firsov (1953)). However the result-
ant potentials are only available for a restricted range of
internuclear separation and completely unsuitable for colli-
sions in the thermal energy range. Recently with the develop-
ment of fast digital computers, accurate a priori quantal
calculations of the potentials have become possible and are

comprehensively reviewed by Krauss (1967).

3. Classical Models of Inelastic Scattering
The classical binary encounter impulse approxima-
tion has been used to describe ionization, excitation and
charge-transfer in electron-atom and ion-atom collisions but
the following discussion will be in the main concerned with
ionization. The basic assumptions of the theory are:
(i) The projectile describes a classical orbit.
(i1) The mutual interaction between the atomic electron
and nucleus are disregarded during the collision.
This is known as the impulse approximation.
(iii) The interaction of the target electrons with the
projectile are treated independently. This is the

binary encounter approximation.

(iv) The projectile is regarded as a structureless
particle.

(v) The interactions of the projectile with the target
particles are Coulombic.

The cross-section for any process will be obtained

from the formulae




I-9

Q = NJd(AE)%O(Ej— (1.7)

where do/d(AE) is the differential cross-section for a given
energy transfer, N is the effective number of electrons in
the target and the integral is taken over those values of the
energy transfer which contribute to the process under consid-
ation. In the case of excitation and charge transfer a diffi-
culty arises. Only one value of AE is relevant, namely the
value which corresponds to the difference between the initial
and final binding energies (given by quantal treatments of
the electronic states or the use of empirical evidence), and
the integral (1.7) vanishes. It is necessary to assume that
a specific excitation or charge-transfer process will occur

if the energy transfer, pE, satisfies

E1 < AE < E

2
for suitable E1 and EZ‘ Similarly we assume ionization will
occur if the energy transfer exceeds the binding energy of the
atomic electron.

The atomic electrons in this model are assumed to
be independant scattering centres. This assumption is justi-
fied when the effective interaction between the projectile
and target takes place in a region small compared with atomic
dimensions. If this is the case, the energy transfer to the
target electron is far greater than the binding energy, and

the model should therefore be more accurate when applied to

ionization processes than for excitation and charge transfer.




Also for ionization there is no ambiguity in choosing the
classical band of energies to represent the final state where-
as for excitation and charge-transfer this is not the case.

In the following analysis let my and m, be the masses
of a target electron and incident projectile with charge z.
(designated by 1 and 2 respectively) and let v, and v, be their
initial velocities in the laboratory frame. Then the energy
transfer cross-section is

2.2

do(v,,v,) 21V _“"z
Yi,¥p) 2mVg 2. AE
IGH V2|AE|3 1-cos“y+ um,gcosw (1.8)

where AE is the energy transfer,u is the reduced mass, Yg is
the constant velocity of the centre of mass, V is the initial
relative velocity and ¢ is the angle between !g and V . (For
a detailed derivation of this, and following equations, see
Coleman § McDowell 1969). The range of AE is restricted by

the inequality.

A‘\E,'Vg <1 (1.9)

-1 <cosy -

T~

and this ensures that do/d(AE) is a positive quantity.
Thomson (1912) considered the simple case where the
atomic electron is at rest (ie, K1=0)- The ionization cross-
section at impact energy E2 is given by
_ E do (0,vy) - )
QT(EZ) _‘[I _HTZEjh_ d(AE) (1.10)

where I is the binding energy of the atomic electron and E is




the maximum value of AE such that the inequality (1.9) is

satisfied. It is convenient to use atomic units, then my = 1
and
zzm 2
2 1 +1 2
QT(EZ) = 'E—Z—I'— {:1'E2 (mZ ) ('rrao ). (1.11)

4m2

In the high energy 1limit the Thomson ionization cross-section

-1

is proportional to E, which is in disagreement with both

quantal treatments and experiment which both behave as Eé 1nE,.
In order to investigate the cross-section near threshold,
let

E2 = J+¢ e<<I

and a linear dependence on the excess energy near threshold
immediately follows forelectron impact (m2=1). This is in
agreement with the quantal result of Rudge and Seaton (1965)
for electron impact ionization of atomic hydrogen. For heavy
particle impact the model fails completely near threshold
because of the unrealistic assumption to consider the atomic
electron fixed (v1=0) in comparison with the heavy particle
at these energies. For example in the case of proton impact
ionization of hydrogen, the Thomson cross-section vanishes
below 6.25 k.e.V.

The derivation of eqn. (1.8) is completely symmetric
with respect to the two particles. When we consider the
scattering of a beam of particles with initial velocity Vs
the relevant differential cross-section is related to that in

(1.8) by a invariant reaction rate and is given by




do. (v,v,) do(v,,v,)
2 YY)y Y1:Yp (1.12)
d(AE) V; d (AE) )

For vy = 0, the cross-sections become identical.

For an isotropic distribution of Xl,eqn{l.lZ) may be averaged

over angles,

do., (Vy,V,) V do(vq,v,)
2WVsVa) g Yy:¥2) o (1.13)
I0AE) v, —dE) :
C

where C denotes the solid angle (for given El, EZ’ and E) in

which the inequality (1.9) is satisfied. The ionization

cross-section is then give. by

E
2 dorz(v1 ’VZ)
Q(ElEz) = ———————— d(AE) (1.14)
I d (AE)

Stabler (1964) performed both these integrations for

election impact ionization (ie. m1=m2=1) and obtained cross-

sections in closed form.

3/2
Q (E,,E,) = 2 (Fp- 1) (ma %) E,3Eq+1

1°°2 ) 1772 0 2%

38,1 B

(1.15)
2E. +31
1 1 3 2 ,
3E, 2 E,"E, (ma ")E, ¢ By +'1

As early as 1927, Thomas (1927a, b) and Williams
(1927) had independently refined the theory of Thomson by

considering the atomic electrons to have a spherically
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symmetric velocity distribution. They derived expressions

for dcz(vlvz)/d(AE) by performing the integration in (1.13)
but only obtained results for restricted energy ranges and
hence were unable to derive the ionization cross-sections
(1.15). More recently Gryzinski (1959) derived classical re-
lations for coulombic collisions of two moving particles and
laid the foundations for Stabler (1964) to derive the ioniza-
tion cross-sections for the ''equal mass'" case obtaining agree-
ment with the Thomas-Williams energy transfer cross-section

in the process.

McDowell (1966) and Vriens (1967) have pursued the
theory for unequal masses. McDowell, for proton impact ion-
ization of hydrogen evaluated egqn. (1.13) in closed form and
then numerically integrated (1.14) to obtain the ionization
cross-section., Vriens introduced the momentum transfer as a
variable in the analysis and obtained ion-impact ionization
cross-sections to first order in 1/m2 in closed form in a

simple way.

2
2 v
222 1y 1 2 ]
Q(E},Ep) = == |+~ - 7| (ma,") I € 2vy(vy-vy)
v, I 31 2(v2 -Vy )
L
2 | 3/2
2z 1 11 3.3 2
= |ty ev )t T YR, 122V tvy (2R T)
v, 1“2 71 1
2
(1rao ) 2v2(v2-v1) < I« 2v2(v2+v1) (1.16)

= 0, otherwise.
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Gerjuoy (1966) derived energy transfer cross-sections
for unequal masses, and in the relevant energy regions they
were identical to the much earlier formulae of Williams (1927).
Garcia, Gerjuoy and Welker (1968) using these cross-sections
performed the integration (1.14) analytically and obtained
exact classical ionization cross-sections for ion-impact with
bound electrons at fixed non zero velocity.

The cross-section (114) is given for fixed values of
E1 & E2 and it should therefore be averaged over the velocity
distribution, f(vl), of the bound electrons to give an ioniza-

tion cross-section

Q(E,) =\[ QEy=3v1,Ey) £(vy)dv, (1.17)
0

where, of course,

\[m I(Vl)dv1== 1. (1.18)
o .
McDowell (1966) calculated Q(Ez) for electron and
proton impact ionization of hydrogen using the classical micro-
canonical velocity distribution for the atomic electrons
(Mapleton 1966) which is identical to the quantal result. Be-
cause of the lack of knowledge of velocity distributions in

other systems, it is usual to assume

1/2
£(vp) = 8(vy-(2D) ) (1.19)
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Prasad and Prasad (1963) with this assumption used the early
Gryzinski theory to calculate ionization cross-sections for
several atoms and diatomic molecules. Bauer and Bartky (1965)
further extended the theory to excitation and ionization of
molecules. Proton impact ionization cross-sections for noble
gases have been performed by Garcia et al (1968).

In general the results are in excellant agreement,
considering the simplicity of the model, with quantal calcula-
tions and experiment, differing at most by a factor of two up
to large impact energies. The failure of the classical model
to take account of distant collisions causes the high energy
limit of the ionization cross-section to behave as E-2 in
disagreement with both the experimental and quantal result of
E! 1nE.

The above models with minor refinements have been
applied by numerous workers to other processes such as excita-
tion (Kingston 1964a,b, 1966a,b) and charge transfer (Thomas
1927, Bates § Mapleton 1967, amongst others) without the same
measure of success in reproducing experimental and quantal
results,

Finally, Percival and his collaborators (Abrines §
Percival 1964, 1966a, b) have considered classical models of
proton impact ionization of atomic hydrogen in which the
target gas 1s represented by a classical microcononical en-

semble of two body (e+p) systems which are allowed to interact

classically with the incident proton. The Newtonian equations
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of motion of the three particles are then solved numerically
for a wide range of impact parameters, incident energies and
a suitable distribution of two body systems. The resultant
trajectories are examined to see whether as t » «, they rep-
resent a bound orbit of the initial target pair, electron
transfer to the incident proton or three free particles (ion-

ization).

4, Impact Parameter Methods

For not too low impact velocities, the theory of
collisions between atomic systems can be considerabl& simpli-
fied by considering it within the frame-work of the impact
parameter model. In this model the motion of the heavy nuclei
are not only treated classically, but in most cases the motion
is assumed to be rectilinear and can be uniquely distinguished
by an impact parameter p and a velocity v. The electrons are
treated quantum mechanically in the time dependant field of
the nuclei.

The following discussion will be confined to proton-
hydrogen collisions as this avoids unnecessary algebraic com-
plexity in the analysis without undue loss in generality.

Electron transitions of the type

+ + ' '
H + Hn,2) » H + H(n ,2 ) (1.20)
(direct excitation) and
H* + H(n 2) > H(n',2') + H* (1.21)

(rearrangement) will be considered.
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In the impact parameter model, the target nucleus,
A, is assumed to be at rest and the proton, B, moves in a
straight line with velocity v. Let R be the position vector
of B relative to A then

R=p+ vt

where the time, t, 1s choosen so that A and B have a minimum
separation p at t=0. Denote the centre of mass by 0 then let
the position vectors of the electron, e, relative to A, B and
0 be x, s and r respectively.

The time dependant Schrodinger equation (in atomic

units) for the complete electronic wave function ¥(r,t) is

(TA + VB)W =0 (1.22)
where
_ 1, 2 1 . 9 1
TA = 7Vr + X + l—a_f VB =3 (1.23)

Let ¢i(r) denote the hydrogenic eigenfunction with eigen-
energy €, which satisfies

1521

(7V +?+€n) ¢n(r) =90 (1.24)

To allow for the translation motion of the protons, Bates

and McCarroll (1958) introduced travelling orbitals

A _ ! 1.2
Qn(ﬁ) = ¢n(x) exp 1(71.£+§v t+ent) (1.25)
and it is readily shown that
T, o® = 0 (1.26)
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The boundary conditions (as t—> -9 of the required
solution of (1.22) must describe an electron bound to the
proton A in a state p, say. In early impact parameter treat-
ments (c.f. Bates 1958), it was assumed that a sufficient

boundary condition was given by ignoring the term V_ in (1.20)

B
for large t, and hence the boundary condition was

Yoo o (x).

t>o

Cheshire (1964) showed that the Coulomb potential VB has a
residual effect at large t and the boundary condition should

be multiplied by a phase factor and is given by

AV .\ i -
Wt+_w ¢p(§) exp Vln(VR v't) (1.27)

For excitation transitions it 1s convenient to consider a
formal expansion of

v = o A (1.28)

where @A is a row matrix with elements ¢ﬁ and A 1s a column

matrix with elements an(t) with boundary conditions.

i r
an(t) toYe anp exp[-vln(vR-v t)J (1.29)

The scalar product in (1.28) implies summation over all bound
states and integration over the continuum. The probability

of excitation to a bound state q, also on A, is given by

P,(psq) = lim.

torw

2
aq(t)\ (1.30)




The Schrodinger equation may also be written
(TB+VA) ¥ =0 (1.31)

where

9 1
= Vy = (1.32)

+

2 1 .
T s 1

and travelling orbitals centred on the proton B are given by

B _ . 2
o = op(s) exp [1(1'§-!§£_€nt)] (1.33)
When considering rearrangement collisions, it is convenient

to expand ¥, in parallel with (1.28), as

¥ =9 B (1.34)
and the probability that the electron is finally bound to
proton B in state g is given by

Py(p,q) = linm. Ibq(t)lz; (1.35)

R o

The major difficulty of such an expansion (1.34), is
that the boundary condition of the solution ¥ as t+-« describ-
ing a bound state of A, cannot be represented by a linear com-
bination of functions 9B centred on proton B, It is thus
necessary to also include an expansion of the form (1.28) in
the analysis of charge transfer collisions,

Finally, cross-sections for transitions (1.20) and
(1.21) are obtained by integrating the relevant probabilities

over all impact parameters.

QA,B(p,q) = Jdp_ PA’B(p’q)' (1'36)
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It has long been realized (Frame (1931)) that the
cross-sections given by (1.36) are equivalent to the exact
(non-relativistic) quantum theory result provided that the
impact energy is much larger than the energy transfer in-
volved in the collision. Following Moiseiwitch (1966) and
Crothers and Holt (1966), McCarroll and Salin (1966) proved
this result with the added restrictions equivalent to ensur-
ing that the deBroglie wavelength of the relative motion 1is
small compared with atomic dimensions so that the orbit of
the heavy particle may be described in an unambiguous way.

More recently, McCarroll and Salin (1968) have con-
sidered the impact parameter formulation in terms of a purely
quantal formalism in the limit as the masses of the atomic
muclei become infinite and have succeeded in obtaining ex-
pressions for differential scattering cross-sections in terms
of amplitudes obtained from the impact parameter calculation.

A few previous applications of the impact parameter
model will now be considered. Projecting the Schrodinger
equation (1.22), on the complete set of states QA résults in

a equivalent set of equations

CRENTI IS OV (1.38a)
Similarly for equation (1.31) and ¢B,
@31 |v) = - BV, |¥) (1.38b)
B A
o *
where (R B1zly) = [ dr oh»B7zy (1.39)
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Using the expansion (1.28) of Y and equation (1.26), (1.38a)

reduces to

R =it vy leMa (1.40)

This is an infinite set of coupled differential equations for
the variables an(t) and is exact up to this point within the
framework of the impact parameter model. In practice these
equations are reduced by neglecting all terms containing
states other than the few bound states considered to be most
dominant in the collision (e.g. initial, final and an inter-
mediate state). One would hope that as more intermediate
states are included the final transition amplitude would con-
verge to the correct results.

If only the diagonal elements in (1.40) are retained

then
_ [ t[.A NS
a, = 6np exp [1-[ [®n|VB|©n]dt J (1.41)
The distortion approximation of Bates (1959) for excitation

into state q, is obtained from (1.40) by retaining only terms

containing states p and q
. LA A A A
a_ = + Vo | @
q [®q|VBl¢q]aq 1l¢q| B P]ap (1.42)

and substituting from (1.41) for ap. This procedure can be
extended by retaining more states and solving the coupled equa-
tions numerically (Lovell § McElroy, 1965) but the usefulness

of (1.40) is extremely limited as it contains no coupling to
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the important rearrangement states on proton B, and so the
hope of converging on the correct solution by the addition of
more states, can never be realized.

As an alternative to (1.40), we can consider the

equations
R = it vlePys (1.43a)
A
2 - i(eB|v,]0o)A (1.43b)

obtained from (1.38a, b) using expansions (1.35) and (1.28)
respectively. Rearrangement amplitudes can be obtained using
(1.43b) once the matrix A is known. The Brinkman-Kramers
approximation is obtained by substituting an=6np’ but as
Cheshire (1965) pointed out, this is in consistant with the
boundary conditions (1.29). The modified Brinkman-Kramers

approximation is obtained using

- i .2
a = 6np exp[ 5 In(vR-v t)] (1.44)

in the right hand side of (1.43b).

It is easily shown that the only effect of the addi-
tion of an arbitary function, W(R), of the internuclear dis-
tance to the Hamiltonian of the Schrodinger equation (1.31),
is to change the exact solution ¥ by a phase factor and
hence will leave the calculated cross-sections unchanged.
Bates and Dalgano (1952), and Jackson and Schiff (1953) per-
formed rearrangement calculations including the nuclear-

nuclear interaction term in the matrix elements and hence




solved

(TB+Vi) ¥ = 0 (1.45)
where

Vas L g (1.46)
and with the boundary condition given by

Y v, % (X) (1.47)

The exact solution ¥, is identical to that obtained from
(1.31) (1.32) and (1.27). This is not true when Y is rep-
resented by truncated expansions of atomic orbitals and the
cross-sections of Bates § Dalgano differed from the Brinkman-
Kramers approximation. We now have the unsatisfactory situ-
ation where the cross-sections are not independant of the
nuclear-nuclear interaction potential.

To rectify this, Bates (1958) proposed an over com-
plete expansion

Yy = @AA + @BB

The advantage of this two centre expansion is that 1s make
explicit allowance for each reaction path and circumvents the
defect of the single centre expansion where rearrangement
states are contained in the continuum. Substituting (1.49)

in (1.38a, b) gives

dA A,.B,dB . A A . A B
I& + @ e gy = i(eT|vgle™a + 17|V, leT)B (1.50)
%% + (¢B|¢A)dA = i(¢B|VA|¢B)B + i(¢B|VB|¢A)A (1.51)
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and these equations, when truncated, give cross-sections that
are uneffected by the addition of W(R) to the Hamiltonian.
Equations (1.50) and (1.51) have provided the basis for sev-
eral calculations on proton-hydrogen collisions. McCarroll
(1961) calculated resonance charge transfer between the 1s
states and included only one orbital on each nuclei. Lovell
and McElroy (1965) extended the calculations to excitation
and capture into the 2s-states. They used various combina-
tions of 1s and 2s orbitals, with a total maximum of three,
to investigate rates of convergence of the cross-sections.
However the most extensive calculation of this type so far
is that by Wilets and Gallaher (1966) who include all n = 1
and n =-2 states of A and B and check convergence by extend-
ing the calculation to 3s and 3p states for some selected
impact parameters and energies. The change in the cross-
sections with the addition of the n=3 states is small and
although the solution would have appeared to have converged,
no account has yet been taken of continuum states.

In an attempt to include effects due to continuum
states, Gallaher and Wilets (1968) expanded the electronic
wave function in terms of Sturmian functions. These functions
form an infinite discrete and complete basis'set without a
continuum and the transition amplitudes are obtained by pro-
jection onto the hydrogenic states.

A completely different approach was proposed by

Cheshire (1965). Using equations (1,43), he eliminated the R
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coefficients by using closure, and then the calculation of
the A amplitudes from the resulting second order equation
would take implicit account of the complete set of rearrange-

ment states. This closure approximation is discussed further

in Chapter IV.
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CHAPTER I1

ELASTIC SCATTERING OF LITHIUM ION IN HELIUM

1. Introduction

The system Li+, He is sufficiently simple as to pro-
vide a testing ground for theoretical models of elastic ion-
atom scattering. Data of Aberth and Lorents (1965) show that
the inelastic component of the cross-section is less than 1%
of the elastic component at an angle of 10° for an incident
energy of 600 e.V. Therefore the system provides a ready
comparison between theory and experiment without having to take
inelastic effects into account.

The scattering predicted by some of the semi-empir-
ical potentials (derived from experimental data) has been
analyzed by Weber and Berstein (1965) using a JWKB approxi-
mation for the phase shifts. The purpose of this present
work is to extend this analysis to more recent semi-empirical
potentials and more importantly, to the more accurate a
priori potentials now available. 1In the regions where the
JWKB is inaccurate, exact quantal phase shifts are obtained.
Experimental measurements of differential scattering through
angles greater than a given angle, S(0), (Zehr and Berry,
1967), differential cross-sections, I(©), (Aberth § Lorents,
1969) and the temperate variation of the mobility K (Hosel-
itz, 1941), are available for comparison. Atomic units are

II-1
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used throughout except where otherwise stated.

2. The Radial Equation and Solutions
In the absence of inelastic processes the scatter-
ing of Li* by He may be described by the appropriate solution

of the differential equation

2
2wy () - Ay (1) = 0 (2.1)
dr
satisfying
-1/2 . 1
ug(o) =0, ug(r) vk / 51n(kr—72ﬂ+n2) (2.2)

T oo

where ny is the phase shift, 2 is the angular momentum quan-
tum number, k is the relative momentum of the collision, wu
is the reducedmass of the system and V(r) is the interaction
potential,

This equation can be solved numerically and the
phase shift can be determined at large r. Extraction of the
phase shift from the solution at a finite value of r, T, say,
incurs an error since the effect of the non-vanishing poten-
tial for T>T1 has not been accounted for. At large r the
potential is slowly varying and a JWKB analysis has been used
by Seaton and Peach (1962) and by Burgess (1963) to determine,
to first and second order respectively, a correction factor
to the solution at r=rj .due to the long range tail of the

potential, r>T1,. For large r, the interaction potential 1is
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(90}

effectively the polarization potential of He written
- _ _Qa
Vpol(r) = T a.u. (2.3)

where a=1.384 aos,is the polarization of helium (see section
4).
If we write

Uy (1) v sin(¢(r)+ny),

the second order approximation (including terms up to r-s)
of ¢(r) for a potential (2.3) as derived by Burgess is
2.2 1/2 18w 1 5¢
¢(r) = (k“r“-c) -5 v 0 -
2 8 (k2r2-c)/2  gaFrZ.c)3/2
with ¢ = %2(2+1) and (2.4)
where 1
0 = (C+1/8)arc sin & /2 + ““(kzrz‘c)l/z
1 kr 2
c 8cr
2 1/2
opk .
- arc sin c >
8C372 kr .
=1 _ Mo =
8kt  12kr3 ¢

The phase shift can now be determined to a high
degree of accuracy without the necessity of continuing the
step by step integration of the radial equation to the much
larger distances required if only the first order asymptotic
forms of the solution are used.

At sufficiently large energies (Munn, Mason and
Smith, 1964), the JWKB approximation is valid and can be used

to determine the phase shifts (eqn. (1.5)). These phase
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shifts themselves can be replaced for large 2 by the Jefferys-
Born phase shift (eqn. (1.6)). At these large distances
(r&z/k) the potential is given by (2.3) and the J-B phase
shift is readily obtained in closed form

2
ngB = kT (radians) (2.5)

2(2+1/2)°
3. Theoretical Prescription of Scattering Cross-Sections
The derivation of cross-sections in terms of infin-
ite sums of phase-shifts is well known (Mott & Massey 1965)
and the cross-sections required in the following analysis
will be only stated here for the purpose of completeness.

The total elastic scattering cross-section is given

by,
@ 2
Qu; (k% = 27 (20+1)sin’n, (a,”)  (2.6)
k™ f=o0
while the diffusion cross-section 1is
Q . 2
Q (k) = %% I +1)sin®(ny-n,,1) (a,2). (2.7)

£=0

The differential scattering cross-section at angle 0 1is

~ 2
1(e) = =, (a%+3%) (3,7)  (2.8)
4k
where
A = %(22+1)(cosZnQ-l)Pz(cose)
B =

%(2£+1)sin2n2P2(cosG)
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By integration, the cross-section S(0©) for scatter-
ing outside a cone of semi-angle O about the forward direc-
tion

2y, (2.9

5(0) = ZH‘JCOSGI(O) d(cos®)  (a,

The above infinite sums in practice have to be trun-
cated and the number of phase-shifts giving an appreciable
contribution is determined by the range, R, of the interaction
and the momentum, k=pv, As will be seen in the next section,
the range of the interaction potentials is of the order of

10a0.

Now QmaxaRk’ which means at the highest collision
energy considered, Ev250 eV (k=3x1023.u.), approximately
3x103 phases shifts are required. However for extremely low
energies of interest in mobility calculations, fewer than 102
phase shifts contribute to the cross-sections.

Finally the mobility, K, is determined from the dif-
fusion cross-section Qd’

K = %BT (cm2 volt 1 sec-l) (2.10)

B

where T is the absolute temperature, k, is the Boltzmann's

B
constant, e is the ionic charge and D, the diffusion coeffi-
cient, is given by

1/2 {2k,T
- 37 B |1
D 16n { u ]F (2.11)
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with
® 2.5 2 uv?
P = exp(-x )X Qd(X)dX y X 7 -ZFET (2.12)
o

to first order (Dalgano et al, 1958) where n is the number
density of the gas. We ignore the second order correction
factors of the Chapman-Enskog theory (Dickenson 1968). The

reduced mobility K' is that obtained with n=2.98x1019 cm_s.

4, Li+ -He Interaction Potentials

Several groups of workers have attempted to deduce
an interaction potential for the ground state of LiHe" from
one or other set of experimental measurements. Potentials
derived from mobility data may be represented by that of
Dalgano et al (1958),

-2.,75r -4
Vl(r) = 37.10e - 0.695r , for all r. (2.13)

Zehr and Berry (1967) used a classical model (Hoyt, 1939) to

invert their data on S(©) to obtain

V, (1) = 13.60e"2° 707 0.1<r<l,da_ o (2.18)

while Olson et al (1969) have deduced a potential

-2.287 -10.79r

Vs(r) = 10.92¢ + 37.01e 0.3<r<1.7ao(2.15)

from the differential cross section measurements of Aberth
and Lorents (1969) by a classical analysis with the aid of

expansion formulae (F.T. Smith et al, 19606).
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With the development of fast, large digital compu-
ters in the last few years, a priori calculations of the
potential have become possible. Preliminary calculations
for a restricted range of the internuclear separations
(0.2<r<1.4a0) have been made by Fischer (1968) and of the
long range part (2<r<8a0) by Schneiderman and Michels (1965).
An outline of a more extensive calculation performed in the
main by Kaufman and Sachs, and reported more fully by Catlow
et al, 1969, covering all internuclear seperations is now
reported and results presented.

The calculations were of the Hartree-Fock-Roothaan
type (Roothaan 1951) where the wave function for a closed
shell species is a single determinant of the one-electron
molecular orbitals (MO's) built up from the atomic orbitals
centered on the atoms. The actual computations were carried
out with the MOSES program (Sachs and Geller 1967) utilizing
Gaussian basis functions centered on both atoms. Gaussian-
type orbitals have the same structural form as Slater-type

-Tr

orbitals except the exponential, e , in the latter is re-

-or2
placed by a Gaussian.e ox

There is no denying that the
Gaussian-type orbitals are far inferior basis functions to
the STO's in representing atomic orbitals but their advan-
tage lies in the coﬁtrasting simplicity of the evaluation of
molecular integrals over Gaussian functions.

In Table 2.1 are listed the Gaussian exponents used

in the present calculations. As a check on the necessity of



TABLE 2.1

Gaussian Exponents

He Li
S1 0.1080 0.02854
S5 0.2409 0.0772
Sz 0.5526 0.2634
sS4 1.3524 0.7179
St 3.5223 1.9060
S 9.7891 5.4033
S7 30.1799 16.7798
Sg 108.7723 60.0718
Sg 488.8941 267.0960
S10 3293.6930 1782.9000
P1 0.0035 0.0140
P, 0.0085 0.0340
Py 0.0217 0.0870
Py 0.0525 0.2100
Pg 0.2000 0.8000

Pg 0.8250 3,3000
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including p orbitals in the basis set to allow for polariz-
ation, EHF of LiHe® was calculated using only the 105 expon-
ents on each atom.

In spite of the fact that Ey;(LiHe™) (10%;10%)
(=10.09832145 a.u.) at r=3.75a0, was for ordinary purposes
quite close to the EHF(LiHe+) (1056P;1056P) (=10.10022048
a.u,) at the same r, it failed completely when calculating
the polarization potential, the discrepancy of 0.00290598
a.u. being actually larger than the entire calculated attrac-
tive polarization potential of -0.002363 a.u.

The calculated quantity is the energy Emol(r) of
the ground state of the LiHe™ molecule. It is related to

the scattering potential V(r) by
V(r) = Emol(r) - EO(Li+) - EO(He) a.u. (2.16)

where EO(A) is the ground state energy of atom (or ion)A.

We take the Hartree-Fock values of Eo(Li+), EO(He) generated
with the same basis set, so much of the small error due to
omission of the correlation energy in the MO-SCF procedure
is subtracted out. The program becomes impractically time
consuming for r<0.1ao and an extrapolation to the spectro-
scopic value of the united atom energy is made. As Fischer
(1968) has already pointed out the (10)2 (20)2 ground state
configuration of LiHe" goes over in the united atom 1limit to
the (15)2 (25)2 ground state of B",

At moderate values of v, (5<r<8a0) the calculated
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potential V(r) is closely fitted by the polarization poten-
tial (2.3) which is then used for r>8a0.

The potential of Fischer (1968) is also calculated
in the MO-SCF model with Gaussian basis sets and is indis-
tinguishable from the present calculations in his range of
values. The potential given by Schniederman § Michels (1965)
is not @5 close a fit to (2.3) for r>5a0 as the present re-
sults.

An independant calculation of the interaction poten-
tial by Junker § Browne (1969), denoted by V4(r) here, is in
progress and preliminary results are available for comparison.
Table 2.2 shows that Junker's total separted atom energy is
closer to the spectroscopic value than the present work but

that the latter agrees well with SCF values of Roothaan et al.

TABLE 2.2
Separated Atom Energies

E = Eo(Li") + Eq(He)

Browne(a) This work Best SCF(b) Experiment(c)
-10,17198 -10.09786 -10.0981 -10.1809
(a) Junker and Browne (1969)
(b) Roothaan et al (1960)

(c) Moore (1949)

In comparing the two sets of values of V(r), (Table 2.3) it

is seen that Junker and Browne's potential is shallower than
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TABLE 2.3

Comparison of the SCF-MO and the Junker-Browne
potentials in a.u.

r(a.u.) SCF-MO Junker-Browne
V(r) V4(r)

0.1 46.977379

0.25 13.667331 13.69017
0.5 4.794386 5.05615
0.75 2.331407 2.43838
1.00 1.211805 1.28242
1.25 0.632821 0.68392
1.5 0.327374 0.36129
1.75 0.166478 0.18899
2.0 0.082306 0.09721
2.25 0.038786 0.04716
2.50 0.016708 0.02148
3.00 0.000123 0.00314
3.5 -0.002259 -0.00072
4.0 -0.002171 -0.00106
4.5 -0.001591 -0.00085
5.0 -0.001011 -0.00064
5.5 -0.000765 -0.00046
6.0 -0.000544 -0.00037
7.0 -0.000298 -0.00021
8.0 -0.000181 -0.00016
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V(r) at all r“and though both have a minimum near r=3.75ao,
the depth of the minimum of V(r) (-0.002363 a.u. = -0.064 e.V.)
is considerably larger than their value (-0.0011 a.u. =
0.030 e.V,). For r>5ao, V(r) is much closer to the polariza-
tion potential than is Junker and Browne's potential. How-
ever the differences between the two potentials are small.

The potentials Vz(r) and VS(T) are compared with the
results of the quantal calculations in the core region
0<r<2.Sa1 in fig. 2.1. Neither of the semi-empirical poten-
tials is sufficiently repulsive at small r (r<1.0ao), though
the Olson et al potential agrees well with the quantal cal-
culations in the range 1.0<r<2.0a0. Neither of these poten-
tials produce binding so no comparison is made with the
quantal calculations for larger r. Olson et al point out
that their absolute values are uncertain by * 25%, so there
is no disagreement in magnitude with our potential, however
their slope is too shallow.

The potential Vl(r) deduced from mobility data does
show a minimum and has the correct long range behaviour.
For r>la it is in excellant agreement with the potential

presented here.

5. Numerical Evaluation of Phase Shifts and Phase Shift Sums
In general the phase shifts for a given potential

at a centre of mass collision energy Ecm (momentum k =

(Zﬁcmu)l/% were evaluated in the JWKB approximation (1.1)

using the modified Clenshaw-Curtis quadrature method of Kennedy
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\
FIGURE 2.1
10 L — S.C.F.-M.0. potential; this work.
-x-x Zehr-Berry potential.
-0-o0 Olson et al.
--- Junker-Browne quantal potential.
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Quantal and Semi-Empirical Potentials.
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and Smith (1967).

If we write

11/2
F(r) = [I-V(r)/Ecm bz/rz} (2.17)

where b is the impact parameter, the JWKB phase shift (1.1)

can be approximated by

krmr N=1
Iy = — ZO hN F(r /cose ) sin® /cos 0y
kbr Mol N . 2
+ o= szl hg [F(b/cos@z)—51n62]sinez/cos 0, (2.18a)
if b2r_, and
m
k(r +a)m N-1 5 9 1/2 5
___1____. z h VF(rS)—(l-b /rs) sinez/cos 9,
2 2. 1/2
+ k [b arccos (b/rm) - (rm -b%) ] (2.18b)
if b<rm. In these formulae
0, = 1r 1+COSﬁS/N. 0, = 1w l+cosms/N
1 Zo 1772 &
r, = arccos (rm/b), r. = (rm+oc)/cose2 - o
and hg are the weights given by
2(-1)° %N in [(2r-1)sm/N]
_ ST sin r-1)smw
hs = —I\'I?—:—l-— + N— Sln N— rzl 21‘-1 i (2.]9)
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The constant o is a scaling factor and was taken to be equal
to a_. Results of Kennedy and Smith for a L-J potential at
three energies were reproduced to five decimal places with
maximum N=64.

Hence in the present calculations, N initially took
the value 16, and was increased in two steps to a maximum of
64 and the criterion for convergence was that the proportional
increase in the new value of IN was less than 10_4.
Congergence was poor for k<3 a.u. (0.02 e.V.) so in

this region the radial equation (2.1) was solved by Numerov's

method. The solution was started at the point r=s where

V(s) +

’L_(_’E_;l - 150 a.u. (2.20)

Veff (s,2) :

with 1nitial condition

[74]

- _ -30
uz(s) =0, uz(s+h) = 10

and the step length, h, equal to 5x107 2.

Throughout the energy range for which Numerov's method was
employed (k<3.5 a.u., see below) the solution was insensitive
to the choice of the starting point criterion (2.20) or its
starting values. This is illustrated in Table 2.4 where phase
shifts derived with different varying initial conditions are
compared. The phase shift was determined from the asymptotic
form of the solution by the Burgess procedure (2.4), the

criterion for convergence being that ten consecutive values

of Ny extracted at r+2mh (m=0,9) should agree to 2){.10—3 radians.



TABLE 2.4

Variation of the Phase Shifts with Different
Starting Criteria at E = 0.15 e.V.

II-16

2 =0
Starting point Step length, h,
S 0.01 0.005 0.001
0.8 2.58123
0.5 2,58872 2.58328 2.58302
0.3 2,58302
L= 20
0.8 -2,30497
0.5 -2.29958 -2.30454 -2,30495
0.3 -2.30495

(Identical values are obtained if the second initial
value of the solution is taken as uy(s + h) = 1)



I1-17

At large %, for all k, the JB approximation (2.5)
to the phase shift is adequate and was adopted with n%B agreed
with ny or n%WKB to within 0.01 radians. The phase shift sums
were truncated when the phase shift became less than 0.01
radians.

The energy at which the JWKB approximation became in-
adequate for at least some value of £ was estimated from Munn,
Mason and Smith's results and at different neighbouring
energies results from both the JWKB procedure and the Numerov
method were compared. For k>3.5 agreement was good for both

phase shifts and the summed cross-sections,and this shown for

the latter in Table (2.5).

TABLE 2.5
Comparison of exact and JWKB cross-sections (aoz)

in the region near k=3.5 for the potential V(r)

k(a.u.) E_ (eV) Qo1 (k%) Qq (k%)
Exact JWKB Exact JWKB
3.5 3.576,-2 1041.9 1044.6 163.1 163.7
4.0 4.671,-2 1047.1 1049.7 130.3 126.8
4.5 5.912,-2 958.3 957.9 102.1 101.5
5.0 7.298,-2 835.4 834.9 81.97 81.52
6.0 1.051,-1 715.0 717.2 58.04 57.79

It is estimated that the quantal phase shifts are

correct to 10—4 radians and the JWKB phase shifts to 10-2

radians.
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Typical low energy phase shifts for<36 are shown
in fig. 2.2 and for k<2.0 discontinuities show the occurrence
of classical orbiting and the presence of resonance bound
states. These jumps in the phase shifts occur when there is
a loss of a zero in the solution and this is illustrated in
fig. 2.3 for k=2.6a.u. The zero energy limit of the s-wave
phase shift was found to be 77 and if Levinson's theorem can
be applied the potential can support seven bound states.

A1l the above preliminary results were calculated
using the SCF-MO potential, V(r), which possesses both a
short range repulsive part and a long range attractive part.
Other potentials of this form will predict phase shifts ex-
hibiting the same qualities as above. It is well known that
the positive phase shifts arise from the attractive well of
the potential whereas the repulsive region predicts negative
phase shifts. Purely monotonic repulsive potentials (eg.
Vo, Vz) produce no positive phase shifts and the features
such as orbiting and glory scattering cannot be seen. At
low energies where the positive phase shifts dominate the
scattering there is a substantial disagreement in the total
cross-sections and transport cross-sections predicted by the
two types of potentials. This will be discussed later.

The computer code included six potentials for the
Li*-He system which were the SCF-MO potential, Junker-Browne
(1969), Zehr-Berry (1967) Olson et al (1969), Dalgano et al

(1958) and Weber and Bernstein's V4 (1965). The first two
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FIGURE 2.2
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Exact Phase Shifts.
Calculated using the S.C.F.-M,0,potential. The

numbers on the curve indicate the values of the
momentum k (a.u.).



11-20

= 23 \

N\

Radial Wave Function

Illustrating‘phenomenon of tunneling through the
centrifugal barrier for k = 2.6 a.u. (The amplitudes
are unrelated)
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were non-analytic and have been given in table (2.3). The
values of the potential at intermediate points was obtained
using Aitken-Legrange interpolation routines. At small
internuclear distances r<0.2 a.u. where these routines were
inadequate, the potential was given by a crude analytic fit
to the small internuclear values and at r=0 to the ground

2 1

state of B+(1s2 2s 7, SO).

V(r) = 14.57r - 14.26 + % (a.u.) o<r<o.2a0.

(2.21)
The code calculated total and diffusion cross-

sections (2.6, 2.7) and also included the option of evaluating
differential cross-sections (2.8) at specified angles.
Legendre polynomials when required were generated by the

usual recursion relation until =300 when their asymptotic

form for large 2

2ms1ino

Pe(cose) = {——zv— ]1/2 [[1_%E]cos[(2+1/2)e—w/4]

+ 1 cotesin[(2+1/2)6-1/41|  (2.22)
was used (Hobson 1931).

The code also evaluated S(©), (2.9), from I(@) using
a Simpson's integration. Because of the absence of structure
in the differential cross-sections (Ecm>10e.V.) only 150
Simpson intervals were required in the range 0+180 degrees.

The computations were performed on the N.U.M.A.C.
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I.B.M. 360/67 computer of the Universities of Newcastle and
Durham. The time required for one phase shift, varied but an
estimated average value is of the order of 400 JWKB phase-shifts
and 60 quantal phase-shifts per minute. The interpolation
routines for the non-analytic potentials were found to be time
consuming and total run times for these potentials could be
increased by as much as a factor of three. Although in this
present work the speed of the computer allowed the non-analytic
potential to be used throughout the energy range, it was found
that except in the low energy region where the shape of the
potential is important, these potentials could be adequately

represented by good analytic fits.

6. Results
The computer codes were checked by reproducing (i)
the JWKB phase shifts of Kennedy and Smith (1967), and (ii)
the differential cross sections of Weber and Bernstein (1965)
for their potential V4(r) shown in their figures 6 and 7.
Differential cross-sections I(0©) were computed for

potentials V V2

V3 and V4 at three centre of mass energies
’ ’ '

corresponding to the measurements of Aberth and Lorents
(1969) and also at two lower energies. Results are shown in
figs. 2.4 a,b,c.

Excellent agreement is obtained with the classical

results of Olson et al (1967) for the potentials V, § V3 (not

2
shown). The agreement with the experimental results as in the
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FIGURE 2.4a.
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The circles are samples of the experimental points of
Aberth and Lorents (1969). The full curves § = 1,2,3,
are theoretical values calculated semi-classically using

the potentials V(r), Vz(r) and V3(r) respectively.
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work of Olson et al, is also excellent except at the large
angles for each energy where the calculated cross-sections
are consistently larger. The predicted values of S(09),
discussed in more detail below, also agree well with the ob-
served values of Zehr and Berry (1967). However any rea-
sonable extrapolation to large angles of the Aberth and
Lorents measurements gives values of S(9), O>700 lying sub-
stantially below the Zehr-Berry data and inconsistent with
them.

At E.,= 3.64e.V. the differential cross-section from
the SCF-MO potential shows some structure although this
cannot be seen in fig. 4a. More detailed results at centre
of mass energies 1.33, 2.65 and 3.64 e.V. are shown in figs.
2.5 for V(r), Vz(r) and V4(r). Considerable structure 1is
predicted by the SCF-MO potential and the Junker-Browne po-
tential at centre of mass angles in the range 5°<0<15°. The
Zehr-Berry potential,which is purely repulsive, gives a mono-
tonic decreasing differential cross-section and no evidence
of structure. The larger number of phase shifts contributing
to I(0) at small angles (O<5°) lead to convergence diffi-
culties with the code and results in the near forward direc-
tion are not shown.

The structure predicted at Ecm=3.64 is not seen in
the published experimental data of Aberth and Lorents (1969).
However the amplitude of the oscillations are of the same

magnitude as the random error associated with the experimental
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work. A more detailed experimental investigation of the
energy region below 10e.V. at angles less than 15° would be
of interest.

Calculated values of S(O) predicted by the SCF-MO
potential and the Zehr-Berry potential are compared at five
laboratory energies with the experimental measurements of
Zehr and Berry in fig. 2.6. The two sets of results are
equally consistent with the data. The slope of the experi-
mental points is less steep than the theoretical curves at
small angles and in this region better agreement is obtained
with the Zehr-Berry results. At larger angles the SCF-MO
potential results are closer to the experimental points.

Total cross-sections Qel(kz) and diffusion cross-
sections Qd(kz) are given in detail in the appendix for the
SCF-MO and the Junker-Browne potential at energies k=0.02
(0.01) 0.12(0.02)1.0 (0.1) 4.0 (0.5) 20.0 (5.0) 100.0. It
is readily seen that for the greater part of the low energy
range (Ecm<10e.V.) the Junker-Browne cross-sections lie sub-
stantially below those predicted by the SCF-MO potential, by
as much as a factor of three or four at the lowest energies.
This is because the former's potential well is shallower,
having only half the depth of the SCF-MO potential well, and
at low energies the long range attractive part of the potential
dominates the collisions. The discrepancies in the cross-
sections increase for the monotonic repulsive potentials.

Total cross-section results for the SCF-MO potential and the
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monotonic repulsive potentials of Zehr and Berry (Vz) and
Olson et al (VS) are compared at a few energies in Table 2.6,
It can be seen that energies of the order of 5.102 greater
than the well depth (0.05e,v.) are required before the well
becomes negligible.

Bernstein (1962, 1963) has analyzed total cross-
sections and related the number of glory scattering undula-
tions, about the random phase approximation, semiclassically
to the number of bound (vibration-rotation) states that the
potential supports. The SCF-MO total cross-section is com-
pared with the SSL approximation (Bernstein and Kfamer, 1963)
in fig. 2.7 and is seen to have nine undulations for k>0.02

_ -6
a.u. (Ecm—1.16 x 10

e.V.). The two maxima at k=0.03 and
k=0.34 arising from ortiting or rainbow scattering (2=2 and 7
respectively) while -‘the remaining seven correspond well with
the zero energy limit of the s-wave phase-shift which was
found to be 7. If Levinson's theorem applies, this indicates
the occurrence of seven bound vibrational states. A further
estimation of the number of bound states, n, the SCF-MO poten-
tial could support was given by the JWKB approach in which

oo

.1 J ulviry DY 2ar (2.23)
T

m
where ro is the classical turning point and we assume there are
no bound states at zero energy. A hand computation gives the

ths of (2.23) to be equal to 7.59, consistent with Levinson's



Comparison of Total Elastic Cross Sections
for the SCF-MO potential and the Monotonic
Repulsive Potentials, V, and V

. 21354, 2
.30178,2
.36952,2
.47749,2
.67527,2
.95433,2
.11683,3
.13478,3
.16526,3

13,
26.
39,
53.
79.

(e.V.)

.33
.65
.98

.15

31
59
86
03
73

TABLE 2.

6

SCF-MO

103.
78.
61.
44,
29.
21.
17.
16.
14.

701
120
846
993
819
036
831
138
309

3

18.
17.
15.
14.
14.
13.

30.
28.
27.
25.
23.
21.
20.

-2
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989
707
403
786
668
633
437
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FIGURE 2.7
|
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k (a.u.)

Total Elastic Cross Section.

The full curve is calculated using the S.C.F.-M.O.
potential and the dashed curve is the SLL ap-
proximation.
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theorem prediction and the number of glory undulations in the
total cross-section. This confirms in this case Bernstein's
(1966) conjecture that '"the observation of :m maxima in the
elastic cross-section implies the existence of at least m
vibration states'" and Munn et als (1964) criticism that the
undulations due to rainbow scattering must not be counted.
The diffusion cross-section for the SCF-MO poten-
tial is shown in fig. 2.8 and compared with the polarization
diffusion cross-section. The latter is obtained from the
polarization potential (2.3) and the JB approximation. It

can be evaluated analytically and is given by

Q.por () = T2 a” (2-24)

The SCF-MO diffusion cross-section has considerable
structure which hasn't a simple interpretation. For small k
the successive maxima are separated by as little as k=0.16
corresponding to a temperature variation of less than 1°K.
In averaging over Qd to obtain the mobilities most of the
structure is removed.

The reduced mobility, K', as a function of tempera-
ture in the range 10°K<T<600°K is shown in fig. 2.9 for the
SCF-MO potential and the Junker-Browne potential. The results
obtained from the former are consistent within the limits of
experimental error with the measurements of Hoselitz (1941)

over the entire range of temperatures. They do not approach
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FIGURE 2.8
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Diffusion Cross Section
The full curve is calculated using the S.C.F.-M.O.

potential. The dashed curve is the polarization
cross-section.
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the Langevin limit (Langevin, 1905) (30.6 cm2 v~ 1 5_1) as T-o
but drop sharply below it due to the mean value of Qd being
larger than Qd.pol in the temperature range of interest (see
fig. 2.9). At 20°K the equivalent energy is n0.17 x 10_2 e.V.
and the integral (2.12) has a lower limit corresponding to
1.1 x 10°% e.v.

It was noted earlier (section 4) the excellent
agreement between the SCF-MO potential and the potential of
Dalgano et al (1958). Dalgano et al derived their potential
by trial and error fits to the Hoselitz mobility data using a
semiclassical approach for the cross-sections. They reduced
the data by a factor of 1/1.08 (which they attributed to a
systematic error-in Hoselitz's experiment) and ignored the
points at T=20°K and 78°K to allow their fitted curve to have
the Langevian zero energy limit. In the light of these ad-
justments, the two calculated mobilities show remarkable
agreement considering the diversity of the methods used.

The mobility results predicted by the Junker-Browne

potential lie much higher in the temperature range shown.

7. Conclusions
An accurate SCF-MO interaction potential for LiHe"
(162202) over the range 0.1<r<8.0 as is presented and scattering

cross-sections of Li by He have been calculated and compared

with experiment.
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Differential cross-sections I(0) agree well with
the experimental measurements of Aberth and Lorents (1969) for
angles <70°. For angles greater than 70° the measurements
are too low and become inconsistent with the calculated values
and the measurements of S(0) by Zehr and Berry (1967). It is
of interest to note that analysis of (He+, He) scattering by
Boyle (PhD Thesis Queen's University, Belfast, 1969) yields
results, from a modified quantal potential, which are incon-
sistent with the measurements of Lorents, Aberth and Hester-
man (unpublished) for Ecm>100 eV and 0>40°. Using Bernstein's
semiclassical relationship, the undulations in the total
cross-section for the SCF-MO potential indicate that the po-
tential supports at least seven bound vibrational states. A
similar analysis for the Junker-Browne potential shows it
supports three such states. It was seen that the potential
well depth 0.054 e.V. had a considerable effect on the magni-
tude of the total cross-section up to energies of the order of
25 e.V.

There are no direct measurements of the diffusion
cross-section Qd but the results from the SCF-MO potential
correctly reproduce the observed mobility of Li* ions in He
both in magnitude and temperature variation. The mobility of
the shallower Junker-Browne fails to do this.

These results together with the mobility results
point to a well depth of not less than 0.05 e.V. Also it is

estimated that for 2.5<r <8,Oa0 the SCF-MO potential should
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be correct to within 0.05 e.V.

It has been seen that the differential cross-sections
above 10 e.V. are comparatively insensitive to the choice of
interaction potential; all the potentials considered being equal
consistent with the experimental points. The mobility data
can be used as a criterion for comparing the relative merits
of the long range parts of the potentials. However results
of a more detailed experimental investigation, if feasible,
of differential cross-sections for energies less than 10 e.V.
and at angles less than 15° would provide a stringent test

for potentials.
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.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
. 34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56
.58
.60
.62
.64

APPENDIX

Total Elastic and Diffusion Cross-Sections for the
SCF-MO and Junker-Browne Potentials.

E
C

OO0 OO O OO0 OO0 OOOO

m(e.V.)

.11677,-5
.26273,-5
.46708,-5
.72982,-5
.10509,-4
.14304,-4
.18683,-4
.23646,-4
.29193,-4
.35353,-4
.42043,-4
.57218,-4
.74733,-4
.94584 -4
.11677,-3
.14129,-3
.16815,-3
.19734,-3
.22887,-3
.26273,-3
.29893,-3
.33470,-3
.37834,-3
. 42154 ,-3
.46708,-3
.51496,-3
.56517,-3
.61772,-3
.67260,-3
.72982,-3
.78932,-3
.85126,-3
.91548,-3
.98204,-3
.10509,-2
.11222,-2
.11957,-2

Qel (a.u.)
LCAO-SCF J-B
8572.983

37759.713
25411.703
14635.127
14456.097
15224.961
16109.800
17290.532 1211.
16668.105 1182.
15648.819 1168.
14068.394 1160.
11760.144 1110.
8996.284 1099.
7772.640 1100.
7415.217 1102.
6171.557 1106.
4722.883 1119.
4183.848 1174.
4191.458 1445,
4488.247 2310.
4985.756 2010.
5448.470 1705.
4134.605 1560.
4321.499 1472.
4685.607 1414.
4941.954 1386.
5138.954 1403,
5205.556 1455,
5082.699 1486.
4815.250 1452.
4497.857 1372.
4221.623 1274.
4008,026 1178.
3827.463 1093.
3661.358
3501.046 1405.
3353.394 968.

255
742
507
640
606
588
145
726
976
939
039
958
562
662
918
242
686
509
285
548
831
419
176
05

05

59

56

38
41

Qd (a.u.)

LCAO-SCF

1689.065
43444.071
37024.733
17361.906
13640.926
12806.702
-11564.664
10500.138
8859.688
6507.804
5296.349
3371.540
2516.185
2461.331
3572.983
4327.223
3727.801
3052.648
2577.514
2204.004
1896.055
2043.999
2321.905
1754.961
1464.349
1317.902
1279.835
1316.416
1412.950
1470.430
1445.685
1356.462
1248.251
1145.870
1055.659
974.319
902.572

J-B

1458.
1395,
1310.
1233,
1067.

979.

901

921

817

908.
489.

I11-11

234
613
077
204
416
787

.658
833.
798.
794.
886.

1302.

1971.

1253.

.279

813.

778.

780.

803.

828.

.105

756.

676.

605.

550.

506.

469.

884
737
872
358
735
063
761

152
259
512
896
364

916
052
279
750
875
859

049
128
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.12716,-2
.13499,-2
.14304,-2
.15133,-2
.15986,-2
.16862,-2
.17761,-2
.18683,02
.19622,-2
.20598,-2
.21591,-2
.22607,-2
23646, -2
.24709,-2
.25795,-2
.26904,-2
.28037,-2
.29193,-2
. 35323,-2
.43037,-2
.49337,-2
.57218,-2
.65683,-2
.74733,-2
.84367,-2
.94584,-2
.10539,-2
.11677,-1
.12874,-1
.14129,-1
.15443,-1
.16815,-1
.18245,-1
.19734,-1
.21281,-1
.22887,-1
.24551,-1
.25273,-1
.28054,-1
.29893,-1
31791, -1
.33747,-1
.35761,-1
.37834,-1
.39965,-1
.42154,-1
.44402,-1
.46708,-1
.59115,-1
.72982,-1

3190.993
2931,185
2477.401
2305.658
2397.225
2477.032
2528.723
2558.047
2573.195
2585.493
2417.522
2476.936
2464.928
2465.569
2487.037
2524.981
2569.939
2612.981
2612,003
2553.582
2318.837
1993.246
1843.026
1624.061
1564.47 -
1596.54
1517.66
1581.70
1611.93
1563.82
1614.22
1486.77
1397.91
1335.01
1287.78
1172.69
1129.71
1120.80
1059.87
1043.07
1051.35
1045.85
1044.55
1053. 84
1053.37
1054.68
1055.85
1047.06
958.29
835.37

835.
750.
676.
607.
546.
497.
468.
479.
554.
623.
581.
498,
433.
395,
387.
458.
623.
444,
535.
801.
789.
824.
978.
832.
787.
781.
682.
627.
590.
555.
550.
.03
554.
572.
590.
611.
632.
648.
662.
.90
676.
677.
674.
668.
659.
648,
636.
622.
556.
500.

544

671

46
39
19
09
60
35
37
67
59
48
35
73
99
91
92
28
06
71
36
22
03
79
88
19
33
54
59
45
35
64
19

07
38
63
11
28
62
18

59
80
96
79
89
79
21
54
82
93

851

852.
948.
939.
838.
759.
704.

671
654

651.

703

692.
702.
703.
692,

673

047.

620

520.
500.
440.
474,

414

378.
344,
305.
301.
308.
300.
282.
242,
242.
225.
213.
208.
187.

186

194.
181.
178.
176.
170.
163.

158

150.
143.
136.
130.
102.

81

.188
996
455
560
843
169
497
.608
.994
418
.753
617
439
402
761
.006
757
.879
925
835
970
355
.496
791
128
438
030
170
075
050
595
808
066
392
124
545
.015
582
536
311
465
985
711
.109
034
231
886
305
076
. 965

392.
355.
332.
314.
304.
303.
320.
375.
.078

486

573.
.039
471.
419.
387.
371.
397.
632.
481.
375.
497.
412.
293.
361.
340.
363.
345.
309.
299.
269.
246.
225.
204.
.070
171.
157.
144.
133.
124.
115.
108.
101.

95.

90.

85.
.014
.165
73.
70.
59.
51.

541

187

81
77
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437
020
581
489
153
041
582
541

004

608
587
888
387
377
606
914
211
373
188
876
503
897
070
218
635
458
258
355
723
708

696
121
917
976
139
693
093
383
395
053
292

699
571
070
309



5.5 0.88308,-1
6.0 0.10509
6.5 0.12334
7.0 0.14304
7.5  0.16421
8.0 0.18683
8.5 0.21092
9.0 0.23646
9.5 0.26346
10.0  0.29193
10.5 0.32185
11.0  0.35323
11.5 0.38607
12.0 0.42037
12.5 0.45613
13.0 0.49336
13.5 0.53204
14,0 0.57218
14.5 0.61378
15.0 0.65683
15.5 0.70135
16.0 0.74733
16.5 0.79477
17.0 0.84367
17.5 0.89402
18.0 0.94584
18.5 0.97912
19.0 0.10539,+1
20.0 0.11677,+1
25.0 0.18245, 1
31.5 0.28966, 1
36.5 0.38892, 1
41.5 0.50277, 1
46.5 0.63122, 1
51.5 0.77426, 1
56.5 0.93190, 1
61.5 0.11041, 2
66.5 0.12910, 2
71.5  0.14524, 2
76.5 0.17084, 2
81.5 0.19390, 2
86.5 0.21842, 2
91.5  0.24441, 2
96.5 0.27185, 2
101.5  0.30075, 2
106.5 0.33111, 2
111.5 0.36293, 2

750.
715.
708.
706.
694.

671
638

87

95
02
33
16
51

.35
.58
601.
564.
530.
500.
476.
457.
442,
431.
423.
418.
414,
411.
409.
407.
405.
403.
401.
399.
396.
393.
390.
382,
332.
266.
224.
191.
166.
146.
130.
118.
108.

99.

93.
.21
82.
.02
74.
71.
68.
65.

49

19
69
31
09
39
55
77
14
17
22
04
19
41

42
06
41
40
06
39
39
53
12
15
05
40
90
48
31
98
04

28

41
21
42
98

468.
456.
.86
456.
458.
459,
457.
453.
.40
437.
427.
415.

453

446

403

341

92
02

17
59
42
65
10

49
12
73

.75
391.
378.
365.
353.
.00
329.
317.
306.
296.
286.
276.
267.
258.
250.
242,
228.

00
37
78
28

19
79
79
25
22
59
39
71
54

04

67.951
58.035
50.895
45.589
41,553
38.391
35.860
33.786
32.063
30.602
29,344
28.245
27.275
26.409
25.626
24.914
24.261
23,659
23.101
22.581
22,094
21,636
21.204
20.795
20.407
20.037
19.683
19. 344
18.708

45,
42.
39.
36.

35

26

25
24

23

22.

22

19

960
116
211
929

.082
33.
32.
31.
30.
29.
28.
27.

532
208
057
034
134
324
593

.913
26.
25.

273
669

.095
.551
24.
23.

029
534
063
611

.174
21.
21.
20.
20.
20.
19.

753
347
957
584
231
895

. 262
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The figure after the commas indicate the power of ten by which
the entry is multiplied.
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CHAPTER III

A CLASSICAL MODEL FOR PROTON AND ELECTRON IMPACT IONIZATION

1. Introduction

Although, as discussed in Chapter I, classical models
of ionization are in reasonable accord with experiment, they
consistently predict cross-sections that are too high at
moderate energies and fall off too fast at high energies. In
an attempt to partially correct this failing, we will consider
a model for ionization of atoms in which the velocity distri-
bution of the atomic electron is given by the analytic Hartree-
Fock wave functions of Roothaan and co-workers.

The model is essentially that of Gryzinski (1959).
That is to say that the electrons are regarded as indistinguish-
able and interact separately with the incident particle. Also
the binding forces between the bound electrons and target
nucleus are switched off during the collision. It is thus a
classical binary encounter impulse approximation.

We consider the case of an incident particle of mass
m, and velocity v, impinging on a bound electron with velocity
vy- In the following analysis we shall use atomic units
throughout, except for energies which will be expressed in
rydbergs. It is convenient to adopt dimensionless variables
s, t defined as

2 2,02 2 _ 2, 2 _ - o
s” = v, /vO tt = vy /vo = bl/u (3.1)
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where u=vo2 is the ionization potential in rydbergs. Using
these dimensionless variables Stabler's (1964) ionization

cross-sections for electron impact (eqn. (1.15))become

4 2(s?-1)3/2

uzQ(s,t) = 3 T (ﬂaoz) 1$szst2+1
3s
_ 4 2tttz o3 (ra 2y s2y¢te1 (3.2)
352 52—t2 0 -

and from Vriens (1967) for proton impact (eqn. (1.16))

u?Q(sit)

2 .
4 1+2t 1 2
- - (ra_“) 1g<4s(s-t)
2 [ 3 4(52-t2)J o]

3/2 2

57 )| ma

_ 2 1 b4 2.,.3,.3.
Zt [4(s+t) 3(25 +t7- (1+t

4s(s-t)<1lgds(s+t) (3.3)

0, otherwise.

Q(s,t) is the ionization cross-section for a pro-
jectile of energy mzszu rydbergs (m2=1 for electron impact)
incident on a bound electron (binding energy in rydbergs) of
kinetic energy tzu rydbergs. Hence the total ionization
cross-section for the projectile incident on a target atom is

from eagn. (1.17)

Q(s) =}

n

. NnQJ.m £ (1) Q(s,t)ut’/ 24t (3.4)
0
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where the summation is over the outer subshells of the tar-
get atom, f ,(t) is the velocity distribution of one electron
in the subshell and an is the number of bound electrons in

the subshell.

2. Velocity Distribution for Atomic Electrons

The velocity distributions are obtained from Fourier
transforms of Hartree-Fock wave functions. The wave functions
are from Roothaan et al (1960, 1962, 1963) and Bagus (1966)

and are of the form

wnlm(z) - [zciRin(r)]YQm(er¢r) (3.5)

where Y%m are spherical harmonics, Rin are Hartree-Fock
radial functions and c; are normalization constants. In mom-

entum space the wave function is

1
(2m)

ip-r
wn&m(B) 3/2J~lpn!&m(rer(br)e dr (3.6)
where P describes the position in momentum space. Now we
employ two well known properties of spherical harmonics

(Messiah, 1961)

’ *
S o Yy, 1déd(cos0) = 8 .8, (3.7)
0 -1
ip-r > & .. *
BT = am § T iT5 (pr)Y,(0,0,0%,,(0,6,) (3.8)

L=0 m=-¢
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where jz is the spherical Bessel function and the subscripts
on the angular variables indicate the vector to which they

refer, Hence the momentum space wave function readily re-

duces to

_ 1 * . 9. 2
Wnlm(E) = E;;3377-~[0[ gciRin(r)]4n1 Jz(pr)Yzm(Op¢p)r dr
(3.9)
The velocity distribution, which in atomic units is identical

to the momentum distribution for electrons, in the '"n&" sub-

shell of the atom is given as

L
- _ 1 *
Png(¥y) = i21+1)mz_2 Ynem Ynam (3.10)

Using (3.9) in (3.10)

Pno(¥y) = ;iz J\:(ZCiRin) j,(vyr)r? dr ’
(3.11)
Now
Pre(vy) = epe(yy) (3.12)

and hence the required distribution function for equation (3.4)
is

£ ,(t) = antPup_,(ul/%t) (3.13)

It is easily seen that the correct normalization of the wave

functions require that
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* f 1/2
[ £, (tul/2ae = 1 (3.14)
J o
for all n, %

The wave functions of Roothaan et al and Bagus can
‘be written as in (3.5) with the radial functions of the form

n+l/2 rn-l e-C-T

Rin () = (zn1)"1/2(225) i (3.15)

and C;,Ly are tabulated constants. The velocity distribution

then reduces to a sum of elementary integrals Iin of the form

L

-1/2 n+1/2 | ® n+l -g;r .
Ling = ¢i(2nf) / (2%5) / jor e b Jplvyr)dr
(3.16)

which can be evaluated in closed form (Dwight 1964)

3. Results & Discussion

Cross-sections for inner and outer shell ionization
of He, Li, O, N and Ne by both electron and proton impact are
presented and in a few cases and compared with Born calcula-
tions of Peach (1968) and experiment.

The integral (3.4) over the velocity distribution
of the bound electron was performed numerically by Gauss
and Gauss-Laguerre quadratures. The integrand is smoothly
varying and convergence is readily attained with a maximum
of 24 abscissa. The normalization of the Hartree-Fock wave

functions was checked by performing integrations of the form
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(3.14). Finally the computer code was checked by reproducing
previously published ionization cross-sections for hydrogen
(Kingston 1966a, McDowell 1966).

For electron impact, three formulations of ioniz-
ation cross-sections were calculated and compared. Q, was
obtained from (3.4) with §-function velocity distribution.

A Hartree-Fock distribution in (3.4) produced a cross-section

QZ’ which was subsequently modified, Q3, by taking

f(t) = o t>s

That is considering only collisions in which the incident
electron is the faster of the two (Kingston 1966) . This
agrees with the procedure used in a quantal calculation when
exchange is neglected (Peterkop 1961). In the case where
the ground configuration of the residual ion gives rise to
more than one electronic state (eg O+, N+), an average ion-
ization potential (Slater 1960) is used. Results at various
energies are given for the outer shells of He, Table 3.1 and
N, Table 3.2. It is readily seen that in going from Q1 to Q3
the maximum value of the cross-section is reduced and 1its
position is moved ta higher energies. In fact the maximum
of Q3 is 25% lower than Q1 in Tables 3.1, 3.2 and this 1is
typical of other cases considered. At high energies Q2 and
Q3 lie above Ql' As will be seen below,these features tend
to increase the agreement of the calculated cross-section

with experiment.
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Comparison of Ionization Cross Sections(ﬂaoz)

W O o0 W PN WO NN

TABLE 3.1

of Helium by Electron Impact

Ez(e.V.)

28.
40.
50.
60.
71.
81.
91.
101.
.97
162,
203.
243,
284,
365.
446.

131

42
60
75
91
06
21
36
51

42
03
63
24
45
66

O O O O O O O o oo O o o o o o

Q

.091
.526
.868
.978
L1962
.911
.853
.796
653
549
451
.382
.331
.261
.216

O O © O © O © O © © © O© O O O

QZ

121
. 530
.708
.788
.811
.808
.789
.763
.675
.593
.506
.438
.386
.310
.258

O O O O O O © O O O o o o o O
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.099
.455
.619
.697
.727
. 730
.719
.699
.628
.558
.481
.420
372
. 301
. 253



Comparison of Ionization Cross Sections(waoz)

TABLE 3.2

of Nitrogen by Electron Impact®

4]
[y]

L= Y . R 7, B SR ST
. « e+ e e e &

NS
—_ B O o
L] L] L]

[AS]
No
S = b1 OO YO OO WY O

446

16,
24,
32,
40,
50.
60.
71,
81.
91.
101,
131,
162.
223,
324,
.65

Ez(e.V.)

24
36
48
60
76
91
06
21
36
51
97
42
33
84

Q
0.078
1.746
3.778
3.721
3.470
3.119
2.797
2.522
3.201
2.095
1.662
1.375
1.018
0.711
0.522

* Only outer shell contribution.

S OHE NN W N W NN NN N - O

Q,

066
.378
.398
.981
.315
407
374
.280
.158
024
632
.298
.806
. 312
.982

O NN NN NN DDNDND DN O O
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.032
. 854
.648
173
. 536
.696
.740
.719
.663
. 588
.328
.079
.683
. 256
.954
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A sample of ionization cross-sections (Q3 for
electron impact, Q2 for proton impact) are compared with ex-
periment in figures 3.1-3.5.

(Results for helium given previously (Catlow and
McDowell 1967) are incorrect). For electron impact on nitro-
gen, Kieffer & Dunn (1966) think the cross-sections of Peter-
son (1964) are too large and Smith's (1962) values are to be
preferred. If this is the case, the classical results are
considerably better than the Born calculations of Peach (1968).
In the case of electron ionization of oxygen, although both
classical and quantal calculations are in close agreement
with the experimental results of Boksenberg (1961) in the
energy range shown, the experimental results of Rothe et al
(1962) (not shown for the sake of clarity) almost reproduce
the points of Fite and Brackmann(1959). This together with
the situation for nitrogen would tend to suggest that both
the calculations and Boksenberghs results are too high.

The results for neon produce the worst comparison
with experiment of the systems considered. This was to be
expected as neon is a inert gas with a complete outer shell
of six 2P electrons and is not a system to which a binary
encounter impulse approximation is really applicable. How-
ever these results are approximately 25% lower than those
presented by Garcia et al (1968) who used a §-function
velocity distribution for the atomic electrons. It is notice-
able that the quantal calculations also fail to an extent for

this system,
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The classical cross-section falls off faster than
the quantal cross-section at high energies, although this
inherent deficiency in the classical model is not as apparent
for electron impact if Q3 is considered.

Comprehensive tables (3.3-3.7) of cross-sections
for inner and outer shell ionization are given below. In
the table headings Q(n,%) is the ionization cross-section for
the loss of an "n&" electron from the atom. For high energies,
proton and electron cross-sections at the same velocity agree

closely,

4. Conclusions

Cross-sections for inner and outer shell ionization
of He, Li, N, 0 and Ne by electron and proton impact, as
calculated in a classical binary encounter impulse model,
have been presented. It was found that cross-sections ob-
tained with a Hartree-Fock velocity distribution for the
atomic electrons were as much as 25% lower at their maximum
values than corresponding cross-sections using a §-function
distribution, and hence in better agreement with experiment.

Apart from neon, ionization cross-sections for the
atoms considered were at most a factor of 2 in disagreement
with experiment and for the most part compared favourably
with quantal Born calculations. For systems such as neon

the model seems unsuitable,



Electron and Proton Impact Ionization of Helium

TABLE 3.3

Electron impact(ﬂaoz)

Q(1s)

E(e.V.)

28.
32.
40,
50.
60.
71.
91.
121,
142,
182.
223.
284,
365.
446.

Ionization potential

DB NNNWNNHFORARFOOONN A

OCOODD OO OOCOTDDODOO

.099
.233
. 455
.619
.697
.727
.719
.652
.603
.517
.448
371
.301
.252

1s =

Proton impact(ﬂaoz)
E(KeV)

11.
22.
29.
44,
52.
59.
74.
93.
111.
130.
167.
223.
261.
335.
410.
522.
671.
820.

TN WWR IO N NI N0 W

Q(1s)

. 549
.157
.385
.568
.583
.572
.509
.401
.291
.109
.016
. 827
.734
.597
.501
.404
.320
. 265

COOCOOCOORHER R RO

1.808 rydbergs.
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TABLE 3.4

Electron and Proton Impact Ionization of Lithium

Electron Impact (mag2) Proton Impact (mag?)
E(e.V.) Q(1s) Q(2s) E(K.e.V.) Q(1s) Q(2s)
6.1 1.529 11.2 0.014 18.694
10.2 7.061 18.6 0.039 13.695
14.2 7.047 26.1 0.068 10.484
20.3 5.902 37.3 0.109 7.798
28.4 4,734 52.2 0.153 5.899
40.6 3.676 74.6 0.197 4,385
50.8 3.116 93.2 0.217 3.633
71.1 0.008 2.417 130.6 0.231 2.730
91.4 0.045 1.981 167.8 0.228 2.210
121.8 0.082 1.565 223.8 0.212 1.738
142.1 0.096 1.373 261.1 0.199 1.525
162.4 0.103 1.224 298.4 0.187 1.355
182.7 0.107 0.104 335.7 0.176 1.216
223.3 0.107 0.924 410.3 0.155 0.995
263.9 0.103 0.796 484.8 0.139 0.827
324.8 0.095 0.661 596.7 0.119 0.642
365.4 0.089 0.596 671.3 0.108 0.551
446.6 0.079 0.499 820.5 0.092 0.422
Ionization potentials 1s = 4.736 rydbergs

2s

0.396 rydbergs



Electron Impact (mag%)
E(e.V.)

20.
24,
32.
40.
50.
60.
71.
91.
121.
142.
162.
182.
223.
263.
324,
446.

NOOWIPRHOOOR_REWOWOO RV W

Electron and Proton Impact Ionization of Nitrogen

Q(2s)

OO OO OO OO OOCDOOCO0O

.125
. 351
.502
. 555
.560
.543
.430
.384
. 350
321
. 275
.244
. 213
174

2

Q(2p)

OFEMFEMFEFENNNNNDNNNDE OO

Ionization potentials

. 397
. 854
.650
173
.541
.700
.740
.663
471
. 242
.081
.933
.683
.484
.261
.954

2s

TABLE 3.5

Proton Impact(waoz)

E(K.e.V.)

11.
22.
37.
44,
59.
74 .
93.
111.
130.
167.
223.
261.
298.
335.
410.
484,
596.
820.

VI HENNO 0000010 WO 00 W &N

2.046 rydbergs
1.136 rydbergs

Q(2s)

.372
.982
. 341
. 381
. 337
.233
.092
.967
.862
.706
. 559
.494
.445
.407
. 351
. 311
. 267
.212

OO OO OO OO OO MFMEEFEREOO
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Q (2p)

. 599
.097
.014
.190
. 244
.097
.807
.489
.182
.641
.013
.692
.428
.209
.866
.613
.336
.991

OFFRFEFNNNWGWRARRRUIUIUIULIAN



Electron Impact (wa

TABLE 3.6

Electron and Protom Impact Ionization of Oxygen

E(e.V.) Q(2s)

20.3

24.3

32.5

40.6 0.112

50. 8 0.262

60.9 0.346

71.1 0.384
91.4 0.391
121.8 0.347
142.1 0.315
162.4 0.286
182.7 0.261
223.3 0.224
263.9 0.197
324.8 0.169
446.7 0.138

2
°q(2p)

HEEENDNNNDNNDNNNNNDNNN-E OO

Ionization potentials

.214
.600
. 384
.989
.482
. 764
.910
.980
. 849
.712
. 567
.426
.168
.948
.682
. 309

2s

Proton Impact (wa
E(K.e.V.)

11.
22.
37.
44,
59.
74.
93.
111.
130.
167.
223.
261.
298.
335.
410.
484.
596.
820.

N~JoOoNORMHEOOMRRUIWULADOL BN

2.448 rydbergs
1.233 rydbergs

Q(2s

.180
. 549
.841
.907
.944
.915
. 845
.770
.699
.583
.463
. 409
. 367
. 334
. 287
.253
.218
.175

OCODOOCOOCOODOODOoOOOCOOOO

9"
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Q(2p)

HENNDNNWWWROTUTOUTOUMIUMTIAEN

.577
.110
.193
.469
.706
.700
.531
.288
.024
.511
.857
.501
.199
.940
. 524
.206
. 851
.393



Electron Impact (wagy?2)
E(e.V.)

24.
32.
40.
50.
60.
71.
91.
121.
142,
162,
182,
223.
263.
324.
446.

NOWOWWNNPRPHFOOPPFOOOUN W

TABLE 3.7

Electron and Protom Impact Ionization of Neon

Q(2s)

OO0 OOODOOOOOOO

.003
.060
.108
.165
.188
.184
.176
.166
. 145
.128
.108
.085

°Qzp)

Ionization potentials

HENODNNNDNNNNNNEHEREOOO

.072
.483
.942
.433

Proton Impact (rma
E(K.e.V.)

11.
22.
37.
44.
59.
74,
93.
111.
130.
167.
223.
261.
2908.
335.
410.
484,
596.
820.

VT~NNONAAPARHOORUNODWOOoWA~N

3.562 rydbergs
1.588 rydbergs

Q(2s

. 037
. 151
. 289
.338
. 401
.429
.435
.424
.405
. 360
. 300
. 267
.241
.219
.186
.163
.138
.110

OO OO OO OO OO OODODOOOCTOO

=

ITI-

20

Q(2p)

HRONWW WD D DS DS N

. 755
.895
.856
.180
.609
.834
. 937
.926
. 849
.607
.186
.918
.670
.445
.058
.741
. 364
.844
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CHAPTER IV
THE CLOSURE APPROXIMATION FOR EXCITATION
OF ATOMIC HYDROGEN BY PROTON IMPACT

1. Introduction

Several attempts have been made in recent years to
include continuum intermediate states in theoretical studies
of ion-atom collisions. In particular the Sturmian expansion
method of Gallaher § Wilets (1967) and the impulse approxima-
tion (Coleman § Trelease (1968)and earlier work referred to
therein) take partial account of the continuum in both direct
and rearrangement processes. The angular momentum expansion
of Cheshire § Sullivan (1967) includes all continuum states
of angular momentum <1 for direct processes.

Cheshire (1965) suggested an alternative treatment
of the continuum, within the impact parameter model, for
proton-hydrogen atom collisions., In this present work we

apply it to the process.

H® + H(1s) » H' + H(2s) (4.1)

Atomic units will be used throughout.

2. The Closure Approximation
The notation and preliminary results of Chapter I
(section 4) will be used. Within the impact parameter model,

the total electronic wave function 1s expanded, in turn,

Iv-1
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using travelling orbitals about the atomic nucleus, A, and

then similarly about the incident proton B

¥y = oA (4.2)

Yy = o°B , (4.3)

The time variation of the matrices A, B are descri-

bed by the coupled equations (1.43)

T = ity ]eP)B (4.4)
B - iePv,leha (4.5)

A truncation of both equations is generally neces-
sary. If however the B coefficients are eliminated between
(4.4) and (4.5) by using closure before truncation, then the
A amplitudes may be calculated with implicit account of the
complete set of rearrangement states. This is the purpose of
the closure approximation,

A detailed derivation of the approximationis given
by Cheshire (1965), and also by Coleman § McDowell (1969),
and will not be reproduced here. The elimination of the B
coefficients from (4.4) and (4.5) gives rise to an infinite

set of second orders coupled differential equations,

2
. - d A A
2 it vgrgvy tieMeR + (ef vy, 1eta=0 (4.6)

dt’
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Now

-1 _ .d 1.,2 )
VBTB VB = 1afanB + 7VB + VB VA (4.7)

(Coleman and McDowell, 1969) so that (4.6) is of the form

A+ GA + HA = 0O (4.8)
with
d A A i,.A2.A . A A
G = “I% (® IanB'Q ) —T(Q |VB|® ) -i(0 IVB_VA|¢ )

(4.9)
H

A A
(@ |VBVA[® )
Equation (4.8) is solved with boundary conditions (1.29),

' 2
a, = 8 exp [-%ln(vR-v t)] (4.10)

and the transition probability to state q is given by

= + o 2
Py,q (PoV) Iaq( )| (4.11)

where p is the impact parameter and v is the velocity of the

collision., The required cross-section is

o

Qg (V) = 2 Jop P (oV)dp  (ma ?) (4.12)

3. Analysis
In the present work, the set of equations (4.8) was
truncated and only two coefficients corresponding to the 1s

and 2s states were retained., Associated variables will be
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subscripted by 1 § 2 respectively.

The unitary transformation

_ in
al = C!l e

_— e-ist+int (4.13)

is applied to (4.8) where
. t
_ 1 L2 . 1
n = Vln (VR-v"t) = 1\[m ﬁdt

and

This removes the time dependant phase factors from the matrix
elements and the logarithmic phase factor from the boundary

condition (4.10), so that the equations (4.8) become
2 . 2
. + J G..oa: + ) H..a. =0 (4.14)

with the boundary conditions

ui(t) 4y §

Yoo 541 (4.15)

t t
Explicit forms of G and H are given in the appen-
dix and it can be seen that they involve only the basic matrix

elements

CHESES

ij ilxs1e;

Lij = (¢511ns o)) (4.16)
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Q5 = 7 (¢i|§21¢j) T

1's X

where

23 J'¢§(x) 2(x,s) ¢ (x)dx

[EAGEICDRENGL (4.17)

and ¢i is the hydrogenic eigenfunction. Now
Snom - Rng(x) YZm(x) (4.18)

where the Yzm are spherical harmonics and

_ -X
Ry = Ryg

2e

R, = R, = 2720 x/2)e X2,

Sack (1964) has expanded some functions of '"s" in terms of

Legendre polynonials,

Z(x,s) = ) v, (x,R) P, (cos0) (4.19)
2=0

where 0 is the angle between R and x. For s-states the angular

integrations of (4.17) are trivial and the integral reduces to
z.. = [2 RR,y x?dx (4.20)
1j o 12% )

From Sack the expansion functions Yo for 1ns and 5‘2 are

2
(x+R)" . x-R _1 . i
R PTCR| T2 (4.21)

1 .~ _ ] N
. = In|x-Rj +
Yo,1ns | |
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1 X+R
Yo,s-2 T xR M|XR| (4.22)

and the integrals (4.20) are reducible to linear combinations
of the exponential integrals. Explicit forms of equations
(4.16) are given in the appendix.

Unlike the usual procedure of imposing the boundary
conditions (4.15) at a large but finite internuclear separa-
tion (although see Bell (1967)), the initial solutions are
obtained by solving the equation (4.14) using asymptotic
expansions for the matrix elements and the solutions which
are valid for large negative values of the time, t. Let a
denote the column vector (ai,i=1,2) then for large R, write

the asymptotic expansions as

© () °_°
& = ) gn_l G' = ] &(n)
n=1 R n=1 Rn-l
©o (n) oo
& =7 i H' = | h(®) (4.23)
~ n=2 R" n=1 pn-1I
° Y(n)
i=3 %
-~ n=3 R"
where g(n),h(n) are square matrices. Hence from (4.14) in

the asymptotic region

y () ,

n
3 R n=1
m=1

h(n)g (m)

Rn+m-2

=0 (4.24)

He~18

n

Il it~ §
Joa

VamnY

=

p—
|

VY

3

+

-

—

I ne~18

n=1
m=1
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Writing

we obtain the relations

g™ = Y mem) M g (n*1-m) (4.25)
m=1

my _ "o (m) ,(n-m)

y o= 'mzl (n-m) =z g (4.26)

The g(n) and h(n) matrices can be obtained in closed form for

any n, and hence from (4.24), (4.25) and (4.26), the g(n)
vectors are found. This procedure was carried out for n=1..8

and the solutions and their derivatives were approximated by

7
") i- )

P
R
=1 PN
=

for large R.

4. Numerical Methods

In the above analysis the amplitude and matrices
were complex variables and it was convenient to separate
equations (4.14) into real and imaginary parts and solve
four coupled differential equations.

The starting solution for these equations at large

R (R:Ro,t=t0) is given by (4.27). The solution of equations
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(4.22) is non-trivial especially when considering the coeffi-
cients of the higher order powersof %. A procedure was

coded so the higher order coefficients and their derivatives
could be derived on the computer using values already evalu-
ated for g(ll,g(z) and Q(S). The approximate solution (4.27)
was tested by checking it satisfied equation (4.14) to a
pre-set precision. For example at R=R0=50 (t<o) we find agree-
ment to one part in 1011.

This expansion of the solution is a strict asymp-
totic expansion and is not valid for small R. The range of
validity was tested by comparing various solutions at t=-10
arising from different starting positions, Ro’ and perform-
ing the time integration. On starting the time integration,
it was checked that the solution ran smoothly from the asym-
totic region (i.e. continuous solutions and continuous first
and second derivatives). Results for three solutions with
different values of Ro are given in Table 4.1. It can be
seen that the solutions |a1l2, |oz2|2 are stable to one part
in 106 at t=-10. For Ro<12 the asymptotic solution did not
yield useful starting values.

The time integration of (4.,14) was performed using
a Runge-Kutta method for second order equations (Abramowitz

and Stegun, 1964). In addition (4.14) were transformed into

eight first order differential equations by writing
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(4.28)

!

. 2, 2
§. = Z G..a. - Zl Hijaj

1 1)) j
and separating into real and imaginary parts. These equations
were solved with the additional boundary condition.

6 t3=0  for a11 i (4.29)

using either a first order Runge-Kutta or Adams-Bashforth
predictor-corrector method. A sample of results for all
methods are compared in Table 4.2. No attempt was made to
deduce the relative merits of the integration procedures from
the solutions. All that was required was that the results
predicted by the various procedures for the same collision
parameters, were consistant with each other. It can be seen

that agreement was attained to 1%.

TABLE 4.2

Comparison of Solutions Predicted by Various
Integration Procedures

Collision parameters: v=1, p=1, R0=50

Integration procedures

First order methods |ul(t=50)|2 |0L2(t=50)|2
Runge-Kutta 0.8889 0.1599
Adams-Bashforth

predictor 0.8886 0.1589
corrector 0.8889 0.1589

Second order method
Runge-Kutta 0.8878 0.1575
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The derivative of the asymptotic solution, o, was
found to be of order lg for large R. However in the first
in the first order eqsation (4.28), the additional deriva-
tives, Si’ are of order iz for large R. This means that to
obtain the same degree of stability in the solution at large
R, the step length in the integration procedures for the
first order equations (4.28) must be considerably smaller
than that required for the second order equations (4.12). So,
in the main, calculations were performed using the second
order equations.

The matrix elements of G' and H' were coded as linear
combinations of exponential integrals; all possible concel-
lation of terms having been performed in the analysis (see
appendix). This ensured minimum round-off error in their
computation. The exponential integrals were evaluated to an
accuracy of sixteen significant figures., It was checked that
the asymptotic forms and the exact values of the matrix ele-
ments were in agreement for large R. For R>40 where the
routines for the exponential integrals were inadequate, the
exact matrix elements in G' § ﬂ' were replaced by their
asymptotic forms including terms up to 1/R7. This proved use-
ful in allowing the time integration to be continued to large
positive times.

The matrix elements varied smoothly with time through-

out the collision and their time derivatives could be obtained

from a standard five-point formulae.
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The computer code was written so that the equations
and solutions could be transformed at R=R1 say, to reintro-
duce the logarithmic phase factors into the solution and
remove the corresponding % terms from the matrix elements,
thus avoiding rapid changes in the latter near R=0. It was
found that there was no detectable change in eight signifi-
cant figures in the calculated amplitudes when this trans-
formation was made.

The step length h=AR (At=AR/v) could be changed at
six values of R throughout the run., In Table 4.3 solutions
lallz, |d2|2 obtained from integration procedures with differ-
ent mesh sizes are compared. Results predicted by the pro-
cedure using the larger mesh are in agreement to one part
in 107 with those obtained with the finer mesh. This might
be considered sufficient accuracy but for small velocities
(v<0.5) and certain impact parameters, the excitation prob-
ability to the 2s-state is of order 10_7 or smaller (see
fig. 4.2 below) and the crude mesh would produce an error in
the probability of a comparable magnitude to the probability
itself. For moderate velocities the transition probabilities

are larger and an integration mesh

=2
1t

0.1 R > 2

=
1]

0.01 R < 2

was sufficient.
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For t>0, the amplitudes |a112, lazlz exhibited an
oscillatory behavior and this is illustrated in fig. 4.1.
This behaviour hinders the task of obtaining an accurate
asymptotic value of the excitation probability |a2l2. Asymp-
totic expansions of the real and imaginary parts of the solu-
tion Ao, of the type

a ) sin(f(t

)
cos (g (t)

N

Real - (a +il+
R

Imag %2 o % (4.28)

8

where f(t) Yoo k(t), g(t) Yoo k(t), and use of an asymptotic
procedure similar to that used for large negative time, were
considered as a method of obtaining the exact asymtolic ampli-
tude ag - Unfortunately, although there is an overall damping
of the solutions as t—»e, the amplitude of the real and imag-
inary parts is not in practice a monotonic decreasing function
and cannot be fitted with the asymptotic solutions (4.28).

It was decided that the most expedient method to
obtain an accurate asymptotic value for the amplitude was by
close scrutiny of the maxima and minima of the real and
imaginary parts of the solution. The modulus of the maxima
and minima considered as a function of time is also a damped
oscillatory function but its behaviour is such that an accur-
ate estimate of it's 1limit for large t can be obtained. The
square of this 1limit was taken to be the excitation probabil-
ity to the 2s-state. A few sample solutions were integrated

out to R=500 and the above procedure gave a consistant result
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(to 3 decimal places) for the excitation probability with

that obtained from far fewer maxima and minima.

5. Results and Discussion

The calculations were carried out on the NUMAC IBM
360/67. The time taken for one computer run for one velocity
and one impact parameter was, of course, mainly depended on
the integration mesh size and also how far the solution was
integrated out for positive time. In the main, the average
time was 3 minutes but with the fine mesh used for the low
velocities, the run time might be extended to anything up to
30 minutes. Since care was taken to ensure minimum cancella-
tion in the matrix elements, computer round-off error was
negligible. Results were obtained in the energy range
1k, ev>625 k.e.V from impact parameters 0<p<3 a

The transition probability as a function of impact
parameter exhibited similar oscillatory behaviour at low
energies as observed by Wilets and Gallaher (1966). Figure
4.2 shows the transition probability for E=1 k.e.V. However
the final amplitudes for the ls-state do not oscillate
appreciably with impact parameter and furthermore in this
model |u2|2>0.985 for all impact parameters, E<10k.e.V. This
in disagreement with the experiments of Helbig and Everhart
(1965) and of other theoretical calculations which include
Q?s explicitly (Wilets and Gallaher (1966), Cheshire (1968))

Green (1965) has shown that for first order expansion

methods, the sum of the probabilities is conserved throughout
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the collision. Unfortunately this does not apply to the
closure approximation and for energies less than 50 k.e.V.
and small impact parameters (p<l), unitarity is violated.
At v=1, p=0.25 the sum of the probabilities reaches its over-
all maximum value of 1.31. Computed values of |a1|2 and
|0L2|2 for v=1, 2 are given in Table 4.4.

To calculate the excitation cross-section to the

2s-state, the probabilities are replaced when necessary by

- 12 2 2 2
luzl = |“2| / (|u1| + |“2| )

and are given for a range of energies and impact parameters
in Table 4.5. A sample of these transition probabilities
are shown in fig. 4.3 as a function of impact parameter.

Excitation cross-sections were obtained by a Sim-
pson's integration and are given in Table 4.6 and compared
with other theoretical calculations in figure 4.4.

At low energies (E<20 k.e.V.) the present results
lie between those of the two state calculation of Lovell and
McElroy (1965) and the impulse approximation results of
Coleman (1968). At intermediate energies (25<E<100 k.e.V)
the results are in general agreement with the two centre
hydrogenic expansion calculations of Wilets and Gallaher
(1965). Gallaher and Wilets (1968) give 6-state Sturmian
expansion results at two energies in this range and we also
show these values.,

Above 100 k.e.V,, the present results lie above
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TABLE 4.4

Probabilities |u1| , |a2|2

p !ullz |a2|2 2|a1l2
0.25 0.8920 0.4185 1.3105
0.5 0.8722 0.3513 1.2235
0.75 0.8760 0.2608 1.1368
1.0 0.8973 0.1671 1.0644
1.25 0.9256 00,0949 1.0199
1.5 0.9496 0.0485 0.9981
2.0 0.9813 0.0098 0.9911
3.0 0.9985 0.0000, 0.9985
v = 2 E = 100 k.e.V,

0.25 0.5847 0.3136 0.9983
0.5 0.6428 0.2223 0.8651
0.75 0.7172 0.1357 0.8529
1.00 0.7899 0.0739 0.8638
1.25 0.8506 0.0365 0.8871
1.50 0.8971 0.0164 0.9135
2.0 0.9522 0.0026 0.9548
3.0 0.9886 0.0003 0.9890
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TABLE 4.6

Excitation Cross-Sections

Energy
6

9.
12.
25.
37.
50.
75.

100.
225,
400.
625.

(K.e.V.)
.25

0

HY + H(1s) H'+ H(2s)

Q(rag?)
0.
0.

08
19

.24
.42
.40
.36
.29
.24
.13
.08
.05

Iv-22
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those of Cheshire and Sullivan (1967) and the second Born
approximation calculation of Holt and Moiseiwitch (1968).
The latter are indentical with the former and are not shown
in fig. 4.4,

It is noticeable that in calculations which include
the 1sA/1sB channel implicitly or explicitly (this includes
a psuedo-state expansion calculation of Cheshire,Gallaher and
Taylor (1969) which is not shown), the cross-sections peak at
higher energies than for the single centre expansions. This
is because the 1sA/1sB channel dominates the collision at low

energies.,

6. Conclusions

Direct excitation cross-sections into the 2s-state
have been calculated using the closure approximation, retain-
ing only the first two states in the expansion of the electron-
ic wave function. An accurate asymtotic solution for large
negative t allowed the time integration of the coupled equa-
tions to start at RO=15. The time integration for the second
order equations was performed by a Runge-Kutta method with an
error term of order hs. The 2s-state amplitude, a,, Was
extracted for large positive t with an accuracy of three deci-
mal figures.

The results are in reasonable accord with those of
other theoretical calculations but in the absence of experi-

mental information no conclusions can be drawn as to which

method is to be preferred.



APPENDIX

The (2x2) square matrices of the second order coupled

equations (4.12)

2 2
o. + G..a H..a. =0 i=1,2
1 jél 137 jzl 137) ’
are given by
G.. = i 2 1

ij Ui -1QiJ R €h12

ceL,.  2(e+hy

21 R

H.. = P.. + Qi' -ii.. + —12 €Q12-€L12(E+%)
R
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where
_ 1
L. = (6:]1n s 1[¢.)
1) 1 J
_ 1 1 11
Qij - 7(¢1];2|¢J) + (¢1|'§§

The exponential integrals

are defined as

© -t
_ e
X
© -t
E.(x) = -f S dt
i Jx ©
Let
= = _ AR
E1 = El(AR) = e El
= __=AR,
Ei = Ek(AR) = e hi
then

_ 1(,_ _-AR
11~ E[l © )

11

l¢j).
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QL2 2.2 - 2.2
Q, = Qpy = - [El(l—AR—A R®) + E; (1+AR-A%R%) + sz]
1 AR 1
S v (AR+1) - JI77,3
X = 3/2
_1{2.2_-AR_,_-AR
Pyz = §[E R®  Re J
-L = 1nR + 1 -6 + E (12-8+5R-1R2) + E (l&+8+§R+52)
22 n 3 1 S ) ilR )
Q,, = wrw|E; (2-2R-R%-R%) + E, (2+2R-R%+R%)
22 = 72R|E1 i

1(8 -AR 8 2 1
+ §[’r€ - e (§-+6+2R+R )] oy
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Abstract. Ionization cross sections of .He, Li, O and N by electrons and protons
are calculated in a classical model, and compared, where possible, with quantal cal-
culations and experiment.

1. Introduction

Recently, classical calculations of electron and proton impact ionization of atomic
hydrogen by Kingston (1966), McDowell (1966), Percival and Valentine (1966) and
Vriens (1967) have shown that such models can predict accurate values of the cross section
for such processes at low and moderate energies (up to proton energies of say 200 kev).

It is of interest to extend the calculations to other atomic species. The model adopted is
essentially that of Gryzinski (1965), as modified by Stabler (1964) and Vriens (1967). That
is to say, the atomic electrons arc regarded as distinguishable, and interact separately
with the incident particle, the binding potentials being neglected during the collision. Itis
thus a binary encounter classical impulse approximation.

In this paper the atomic electrons are taken to have a momentum distribution given by
the Fourier transform of the Hartree—-Fock density distribution.

The analysis is outlined in §2, and the calculations described and compared with
other estimates and the available experimental data in § 3.

2. Theory

Following McDowell (1966) if V,, V, are the velocities in atomic units of the bound
electron and the incident particle, and # = V2 is the ionization potential in rydbergs,
then introducing dimensionless variables s, ¢

2 =V2V3E, £2=V2[V? (1)

the ionization cross section for an incident particle of energy mys?u rydbergs (where my
is the mass of the incident particle in electron units) is

OG)=N f: J(0)O(s, t)ut'2 dt (in units of 7a,?) (2)

" (including only the contribution of the NN electrons in the outermost shell). Here f{(¢) is
the momentum distribution of a single electron in this shell, and Q(s, #) is the cross section
for ionization of a bound electron of energy #2u.

For electron impact (Stabler 1964, McDowell 1966)
4 2(s2-1)%2

uQQ(s,t)=§—-—t—— 1 <s2<2+1 3
=i{(2t2+3)— 3 } 22241 ¥
3s2 §2— 2
and for proton impact it follows readily from Vriens (1967) that
12Q(s, 1) = i{l + 2_12 - —1—} 1 < 4s(s—1)
52 3 4s?-12)
= —2-[ . + 1+ E{2s3+t"—(1+t2)f"2}] 4s(s—1t) < 1 < 4s(s+1)
s2tl4{s+1) 3 : ST
=0 1> 4s(s+1) 4

875
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for all atomic systems. The momentum distribution f(f) is given by

) = 4mtPupy(tu'’?) )
where p,(x) is defined by :
1 +1
Pnl(x) = pu(X) = m L |\Fnlm(x)lz' (6)
Here .
1
Vun®) = [ ®untey ex-ar @)

in which @,;,.(r) is a one-electron orbital.
" The normalization is

[ paix)dx = 1., (8)
The ®,,,(r) were taken to be of the form

D pim(r) = NuRo(r) Y n(Q)

where NV,; is a normalization constant and R,(r) are Hartree-Fock radial functions
(Roothaan, Sachs and Weiss 1960, Roothaan, Clementi and Yoshimine 1962, Roothaan and
Kelly 1963).

3. Results and discussion

Ionization cross sections have been calculated for H, He, Li, O and N. The results for
hydrogen are in agreement with earlier work.

For electron impact two alternative sets of results are presented: the initial calculations
were used in (2) above to give a value O, and were subsequently modified (Q,) by taking

f(it)=0, t>s 9)

(see Kingston 1966), that is collisions in which the incident electron is the slower of the two
are neglected. This agrees with the procedure used in a quantal calculation when exchange
is neglected (Peterkop 1961). The experimental results for electron impact ionization are
taken from the critical review by Kieffer and Dunn (1966) and from McFarland (1967).

In cases where the ground configuration of the residual ion gives rise to more than one
electronic state (e.g. O+, N*) an average ionization potential (Slater 1960) is uscd. The
results for electron impact are presented in figures 1 (a), (b), (¢) and (d). In general Q, is
too large, though the situation for atomic nitrogen is not clear, as Peterson’s (1964) experi-
mental values may be preferable, although much larger than the generally accepted values
(Smith 1962). If Boksenberg’s (1961) results for atomic oxygen are too high, our calcula-
tions would lend support to the view that the Smith values are to be preferred for nitrogen.

Our results for Q, at energies up to 250 ev are always within a factor or two of experi-
ment, and are in general much closer to experiment than this, particularly for Li and He.
The agreement in Li may not be relevant, in view of the uncertainty attaching to the
experimental values until the discrepancy at high energies between these and the Born
calculations is resolved.

Only Q, is relevant for proton impact. The results are shown in figures 2 (a), (b), ()
.and (d). The only comparison with experiment that is possible is excellent below 200 kev.
At high velocities (s > 20) the proton and electron cross sections agree closely. Both
fall off as s~2 as s — o,

When #20Q(s)/N is considered as a function of s, it is found that in this model curves for
H and Li, and for N and O are quite similar (in each pair), but there does not appear to
be any universal curve which will fit all the calculations to better than +30%,

As the number of electrons in the outer shell increases the error in the prediction of
the model appears te increase proportionately.
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PROTON IMPACT EXCITATION OF M(2s
M. R. C. McDowell+t

I. ?. Cheshire
A.E.R.E., liarwel., Zerks.

G. W. Catliow
Mathematics Department, University of Durham

Laboratory for Theoretical Studies
NASA-Goddard Space Flight Center
Greenbelt, Maryland
Various methods have becn proposed for including contimmm contri-

butions in eigenfunction exdansion:s for the proton-hydrogen atom

nroblem. Calcu}ations for the procecs
+ .
0+ H(1s) - HY = H{2¢)

discussed in this paper have been reporicd in the impulse approxima-
tion (Coleman 1967), a Sturmian expansion (Gallaher and Wileis 1G67)
and in an angular momentum expcnsion (Cheshire and Sullivan 1967), all
of which include some continuum contributions.

Ve report briefly on results obtained using a closure approxinma-
tion due to Cheshire (1965)% . Adopting ihe notation of that paper,
and working in an impact parameter formulation, thé time dependent

Schrodinger equation for the electronic wave function becomes

('1‘A +VB)Y= (TB +vA)\;/= 0] (1)
where
s
1,2, 1 3_ ok
TA‘27r ts i at’vB‘x
(2)
12,1 o X
TB ] 7r * X *i ot * vA T8

*Tne numerical results given in that paper should be disregarded.

,*National Acadcoiny of Sclences - National Research Council Resident
Research Fellow.

TOn leave of absence, 1967-8, from University of Durham.
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IDooo0soY Inon hvdeogen stow cigenfunction, the electron being on

proton A. then
|A >n = ¢n(5) exp {- i(% v.r-+ % vZ ¢+ ent)} (3)

satisfies

_TAlA > = 0. (%)

Defining the parallel set of states IB >m on B and expanding VY

. alternatively as
Y=gFolaz =zsls> | (5)

yields first order coupled equations

1 < Ajvg|B > Bj (a

b

(6)
3 =41 < > a..
By = 1 BIVAIA o, (b
Now differentiete {%2) wiih respest 1o Size axd elizinaie tha
B, using (6b) and closure
> < =
gl ><B| =1 (7)

to pbtain
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a, = 1 <Alv, TV TMAT> o3 - < ALV VA|A_-“> c =0 (8)
" . : i ‘13

% KB BB ATy ko 3

subject.to the boundary conditions
~ i’ R
le t - 6k1 € - (9)

We have solved {8) in a two-stzte approximation retainirg the
ls and 25 states of A explicitly. A four state (lsA, 2sA, 2pgA,
2p-A) calculation is in hand.

Noting that

<
AlvB T

-1 - ' -1
s Vg A >=x< AIVB(TA+ VpV,) Vg '|A >

and that
<AV, T, V.U A> - -1 & <Alin v Ja> +<AZV.2) A >
B B/ z VB

A B dt

(8) vecomes

. ) _ .
@ ty& +Ha =0 (84)
where
d 1 .
y = --a-£§A|anB|A>+§-<A|VB2|A>+<A|JB- VA|A>
H =

= < AlvB VA|A >,
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It i convenivii to rewriic (31) in Momiltonian form as
. - AY
X Yx+§ (ze}
Do L
ZTANY T o

with thoe boundary conditions 6r L~ 0 (211 n). Introducing the
| Y

r ¢l and imaginary parts of g, ¢ and retaining n states (9) becomes

\,-..'f\\“ =G A/ (11)

where Jﬁ’is a 4 x n dimensional column vector.

In solving (11) we first obtain asymptotic series (t - -~) for the
&y (x = 1,2) after removing the logarithmic phase factors. Reintro-
ducing these phase factors (so that all the elements of G are regular
near R = 0) (11)iz sclved either by Runge-Kutta-Gill or Adams-Bashforth

techniques. The solutions at large positive time behave as

. a a by
Re = + 9 4 2L 4. +._+--)
T (oés) (AQS el = ) ggﬁ (et + by T

and A;S(+ @) may be extracted without difficulty.

28 do not satisfy unita-

rity, their sum being as large as 1.12 for small velocities and small

' 2
In general the computed values of A1S A%
. H

impact parameters, and are replaced by

-2 2 2 2
AES = A2s /(Als+ AES)'
This is expected, as the expansion includes the 1lsA and 2sA states
both explicitly and in the closure.

Calculations were carried out in the energy range 6.25§Ei£100 keV,

for impact parameters in the range 0 < p < 3.0 a,. The asymptotic
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. . . . . : o
solutions were interval and inte;rution method dependendent to 1l accu-
racy, the forward integrations being stopped at t = + 70 in general.
Transition probebilities for four energies s a function of impact
’ : 0] 2 ]
yarameter are shown in Fig. 1. The values of A20 obtained nowhliere
»
viceed 0.5. For Eﬁ: 6.25 xcV a double peak is obtained as in Lovell

— ]
and MeZlroy s work,

In Fig. 2 we compare our valucs of the calculated cross section

Q =2 f p Ao (p,V) (na®)
s —= 28 =] (o}
with those obtaiied in other models. At low energies our results lie
between those of dhe 1s-2s (without closure, McElroy and Lovell 1965)
and impulse (continuum only, Coleman l967)_calculations. At higher
energies (> 4O keV) our results are larger than those obtained in
other models (with the possible exception of the 12 -state Sturmian
expansion, Wilets and Gallaher 1967). In comparing with Cheshire and
Sullivan's "all s + all p" non-adiabatice calculqtion it should be
ﬁoted that the present model, but not theirs, implicitly allows for the
1sA/1sB rearrangement which should reduce the value of A:S at low
energies (< 40 keV) where'that channel dominates. At higher energies
the present model, which makes some allowance for d and higher states
and implicitly contains part of all of them lies, not unreasonably,
above the 'all s'" and 'all s + all p' sequence.

We have shown the 12-state Sturmian resuit from 20 to 45 keV only,
as Gallaher and Wilets compute results at 25 and LO keV only. Their
approach is rather similar to ours, but includes rearrangements ex-

plicitly. The general trond compares well with our results. Both
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our results an:d those of Gallshev and “ilets ~ve in sirorne dis- ‘reen: nt
with -he impulse arproximation prediction. It wonld awpesr that this

is due to includins bound intermedistc in »ddition to continuum inter-

nediate states. Perhnaps exvcriment sy resolve the ambimiities.
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Fig- 1 Computed {unitarized) volues of the weighted transition
probability pA‘u (p} ot E; =128, 250, 375 and 50keV
ALL {s+p)
BORN
'
I\
SH! \
{ \ !
|
i \
< N |
« :
.} N STURMIAN : :
] N . CLOSURE ;
MP > \ALLS \>\\/. 1.2 i
~ — -~ .
2L ol ~—
. » - -~ \\\
- \~.'\~_ ““*—‘ i
1 ————a - :::: ————— i
12
] 1 i 1 L] 1 1 1
0 10 20 30 40 50 60 70 80 90 100
E) (keV)
Fig- 2 Calculated voluas of the 1s — 2s cross section:
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