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ABSTRACT

This thesis treats the symmetric spaces (originally studied by

E. Cartan) and their various generalisations.

Chapter I presents the necessary fundamental definitions and

results.

Chaepter II describes the historical background to the subject: in
Part A the relevant aspects of the theory of symmetric spaces are reviewed,
the notion of k-symmetric space (due to A.J.Ledger) is introduced and
various results (in particular those due to Gray for 3-symmetric spaces)
are noted; in Part B the theory of Jordan algebras is summarised (as
needed in this thesis) and the intimate relationship between Jorden algebras

and symmetric spacesis discussed.

Chapter III contains largely original results on a class of
manifolds, the symmetric spaces of order k (a generalisation of the
symmetric spaces made in the spirit of the "algebraic" approach to symmetric
spaces developed by O, Loos). A symmetric space of order k is a
differentiable manifold M together with a smooth multiplication
Lt MXM-> Msatisfying certain properties. The main result is thet
on such a manifold M an affine connexion V may be defined in terms of the
multiplication ;3 M may then be shown to be a reductive homogeneous space

and V the (complete) canonical affine connexion of the second kind.

Chapter IV presents two originsl observations concerning the

relationship between Jordan algebras and symmetric spaces (of order 2).

Chapter V contains a summary of results and varlous suggestions for

further research, A bibliography follows Chapter V.
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INTRODUCTION

Here I shall outline briefly how my interest in Jordan algebras,
symmetric spaces and generalised symmetric spaces developed, how the
contents of this thesis are arranged, and which of the results I claim as
my original contributions to the subject.

At an early stage of my research work under his supervision,
Professor T.J.Willmore suggested that a fruitful area of research might
be the examination of Jordan algebras with a view to exploring their
relationships with, or applications in, differential geometry. At that
time only two references seemed readily available in the literature,
namely Ottmar Loos's books on "Symmetric Spaces" (Loos [1]) and a paper by
. U. Hirgebruch [2] concerning Jordan algebras and compact Riemannian
symmetric spaces of rank one. This relationship between Jordan algebras
and symmetric spaces fascinated me and I began to study Loos's books and
Hirzebruch'$ paper in some detail. In the course of these studies I
conjectured and proved what is the main result (viz. Theorem IV.1) of
Chapter IV of this thesis.

Aware of my growing interest in symmetric spaces, Professor Willmore
mentioned to me the notion of k-symmetric space due to Dr. A.J.Ledger.

Not long afterwards in the University of Leeds (at a Colloquium in horour
of Professor Ruse on his retirement) Dr. A. Deicke delivered a lecture on
k-symmetrié spaces; during that lecture the question occurred to me

as to whether the algebralc approach to symmetric spaces developed by Loos
could be applied to the study of k-symmetric spaces. Some months later,
after several stimulating conversations with Dr. Ledger, I beceme
convinced that indeed they could be so applied, and I then began an
earnest attempt to generalise the methods of Loos. Chapter III contains

the results of that endeavour, TR LT
A naiane 07
1 3 1 MAY 1972
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(1)

(i1)

Do

I now summarise, chapter by chapter, the contents of thg thesig:
Chapter I presents fundamental definitions and results whiéh w;ll
be needed in the subsequent pages. -Here the definitions of
differentigble manifold, affine connexion, Lie group, Jordan algebra,
etc, are presented, together with various known results relating
these notions,

Chapter II describes the historical background to the new results
of Chapters III and IV. In PART A the theory of symmetric spaces
is reviewed in those aspects which are relevant to this thesis, the
notion of k-symmetric space is introduced, and various results
about s-regular k-symmetric spaces (especially for k = 3) are noted.
In PART B the theory of Jordan algebras is summarised (as needed
here), the intimate relationship between Jordan algebras.and

symmetric spaces is described and various details are discussed,

(i1i) Chapter III contains largely original results on a class of

manifolds - namely, the symmetric spaces of order k - which are a
generalisation of the symmetric spaces, the generalisation being made
in the spirit of the approach to symmetric spaces taken by Loos [1],
[3]; a symmetric space of order k is a differentiable manifold M '
together with a smooth multiplication 4 : M XM - M satisfying
certain properties (cf., Definition III.1).

By carefully constructing an analogue of the affine connexion

defined by Loos on a symmetric space (of order 2), I have defined in
Definition III.6 an affine connexion on a symmetric space of order k
for which all the "left multiplications" are affine maps (cf. Theorem
III.1(a) ). I then prove that with this connexion a symmetric spece
of order k is an s-regular k-symmetric space in the sense of

Graham and Ledger [1]. The connexion of Definition III.6 is,



moreover, complete; in fact, a symmetric space of order k may be
represented as a reductive homogeneous space and the connexion of
Definition III.6 is the canonical connexion of the second kind in

the terminology of Nomizu [2].

The DefinitionsITT.1 and III.6 and the proof of Theorem III.1(a)

are modelled on the corresponding definitions and proof given by
Loos [1] for the particular case k = 2; the necessary modification
of his work to arbitrary integer k = 2 required some care and I
consider this modification to be one of the major original L
contributions to the subject contained in this thesis., 'Theorem
III.l(b), which asserts that the symmetric spaces of order k are
exactly the s-regular affine k-symmetric spaces, follows fairly
easily once Theorem III.1(a) has been established; this equivalence
was conjectured during a conversation between Dr. Ledger and myself,
and the desire to prove the validity of the conjecture motivated the
work presented in Chapter III. The proof of the first part of
Theorem III.1(c) which shows that the symmetric spaces of order k are
homogeneous spaces of Lie groups follows the argument of Ledger and
Obata [1], with the piece of their proof involving the exponential
map replaced by a direct computétion (using differentiability which
Ledger and Obata had not assumed in their hypotheses). The proof
of the part of Theorem III.1(c) which shows that the symmetric spaces
of order k are reductive homogeneous spaces is a slightly more
detailed but nevertheless direct adaptation for all k of the method
of proof given by Gray [6] in the special case k = 3, I am
completely responsible for the part of the proof of Theorem III.1(c)
which shows that the connexion of Definition IIT,6 is in fact the
canonical connexion of the second kind; the proof invelves explicitly
computing an expression for the connexion in terms of an appropriste

Lie algebra.
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Finally, Theorem ITL.2 gives a characterisation of the isotropy sub-
group in the representation of a symmetric space of order k by the
homogeneous space of Theorem III.1; the proof is a direct
adaptation for ali k of the method of proof given by Loos [1] in
the special case k = 2 (cf. also Gray [6] in which the method of

Loos was adapted to the case k = 3).

(iv) Chapter IV concerns the relationship between Jordan algebras and
symmetric spaces (of order 2). One of the examples of symmetric
spaces given by Loos [1] is the set I(A) of invertible elements in
a Jordan algebra A. Essentially, I have examined the connexion
on such a symmetric space and shown it to be related to the various
isotopes of A (cf. Theorem IV.1). The statement and proof of
Theorem IV.1l are original work carried out by me, but in a comprehensive
paper on this subject Helwig [6] establishes the same result (by a less
direct method of proof); it plays a significant role in his treatment,
In Section 2 of Chapter IV I describe an observation that Jordan
algebras are naturally associated to certain conformal transformations

of Riemannian manifolds; this observation does not seem to appear

in the literature.

(v) Chapter V contains a summary of results and some remarks on a

programme for further research,

(vi) The Bibliography contains the relevant references required in
establishing the new results of Chapters III and IV and contains also
general references to other subjects discussed, In two areas it is
intended to provide a reascnably complete survey of the existing
literature: viz. firstly for the work on k-symmetric spaces and

secondly the applications of Jordan algebras to differential geometry.



CHAPTER I

FUNDAMENTAL DEFINITIONS AND RESULTS

1. Differentiable Manifolds, Maps and Tensor Fields

This chapter contains hasic definitions and fundamental results
which will be used in the subsequent chapters; results here are quoted
not in their full generality but simply in the form required for the work
presented in this thesis. In the present chapter only a few proofs are
given: viz. in those cases where there seems to be no standard reference
in the literature. This first sectlon introduces as briefly as possible
some very basic notions and noltational conventions; it concludes with a
statement of the version of the inverse function theorem requiréd in
Chapter III.

A differentiable manifold (or simply, a manifold) is a Hausdorff
_topological space endowed with a differentisble (C° ) structure of finite
dimension., (For further details on this terminology and indeed on this
whole section, refer to Chapter 1 in each of: Kobayashi and Nomizu [1],
Helgason [1], wWolf [1]). A chart on a manifold of dimension n is a pair
(¥, U) of an (open) neighbourhood U in M (U being called a coordinate patal)
end a homeomorphism ¥ : U - ¥(U) € R" (¥ being called a chart map)
where ¥(U) is an open set in ]Rn, the n-dimensional vector space over the
real numbers IR (with the ususl topology on IRn); a chart (¥, U) defines
"local coordinates {ui};;l on U" thus: relative to (¥, U) and the

n n . 1 1
standard basis {ei}i~1 of R, a point p ¢ U has coordinates {u (P)}i—l

if ¥(p) = u'(p) e, (the usual "summstion convention" being used),
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In the standard way (cf. the books by Helgason and Wolf referred to
above), the following notions may be introduced: The class F(M) of
differentiable real-valued functions on M; the tangent space Mi at g
point p € M; the class T:(M) of differentiable tensor fields of type (r,s)
on M, in particular the class Té(M) = T (M) of differentiable vector
fields; a differentiable map from M into another manifold N; a
diffeomorphism between two manifolds, a diffeomorphism of M onto itself
being called a transformation of M; and the direct product manifold
M XN of two manifolds M and N.

For each i = 1,2,...,n, the "coordinate function” ul : U -» R

(associated to a chart (¥, U)), where u' maps p € U into ul(p), is an
element of F(U); i.e., ul is a differentiable function on U, A
differentiable map ¥ : E - M from an open interval E of IR into M ﬁill be

called a curve in M, and if E = IR, one will speak of "the curve 7(t)".

Analogously to the notion of differentiable (C) structure just
discussed, the notion of (real-) analytic (C*) or complex-analytic structure
on a manifold may be formulated; 1likewise the related notions of analytlc
(resp. complex-analytic) maps, diffeomorphisms, functions, etc. may be

introduced,

At a point p € M the differential (d0)p of a differentiable map
$ : M > N is the linear transformetion (d¢)p : Mp - No(p) induced by ¢ on
the tangent space Mb; when it is obvious that (dd’)P is acting on a vector
XP € Mp the subscript "p" will be suppressed and the expression d¢(xp) will
be written (instead of (do)p(xp)). If ¢ :M> Nand 0 : N 2 P are two
differentiable maps then their composition NMo¢ : M = P is differentiable;
moreover for any p € M: (d(no 'b))p = (dn)¢(P) ) (d¢)p. Given a
transformation ¥ of M and X € T(M), the vector field dv(X) € T*(M) is

defined by (dNr(x))p = d\y(x‘y_l(p)) for p € M.
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. n
Also, in terms of a system of local coordinates {ul}i_1 related to a

d
chart (¥, U) the (local) vector field S—I e T1(U) is introduced for
a )

d n
i1=1,2,.00yn; at a point p € U the set {(-—l-> } forms e basis
ou- /p Ji=1 ,

of the tangent space Mp. Indeed for a vector field X € T*(M) the vector

xp for p € U may be represented as a differential operator on F(M) thuss

: 3 ;
X = X (p) ( -~ > vhere the X~ define
P du o

differentiable functions on U; it is observed that Xi(p) = Xpui (the real

number obtained by the action of Xp on the element u~ of F(u)).

The juxtaposition, XY, of two vector fields X, Y € T*(M) has the

following significance: at a point u in a coordinate patch U (with local

. 1.0 : i, ) i CH
coordinates {u }i=1 ), X, =X (u) < 5;{ ) and Y =Y (u) ( g;{ > and
| u u

the differential operator XY is given at a point p € U by:

(xv), = x'(p) Y)(p) (-a-f—:—u—J )p * (o) @5‘ >p ( Eua'i >p :

(MY)p is also denoted XﬁY (notice that with regard to X, (XY)p_does in
fact depend only on Xp); notice further that this juxtaposition of vector
fields has a derivative nature in Y, i.e. considering the vector field f¥
defined by (fY)x:= f(x)Yx for x € M (where f € F(M) and ¥ € T*(M)) then

for X € T*(M) (or simply Xp € Mb):
XP(fY) = (xpf)Y + f(XPY).

In terms of this juxtaposition the Lie bracket of two vector fields may be
defined; thus, given two vector fields X,Y € T*(M) the vector field

[X,Y) ¢ T*(M) is given at a point x € M by:
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[x,¥], = XY -¥YX.

Finally in this section the following theorem is quoted:

Theorem I.1 TLet M be a differentiable manifold and let ¢ : M = M be

a differentiable map. If for a point p € M the linear transformation

(d¢)p : Mb - M¢(p) is non-singular, then there exist neighbourhoods
V, and V, of p and ¢(p) respectively such that ¢|v1: v, - ¢(Vl)==Vé

is a diffeomorphism of Vl onto Vé ’

A proof of this theorem is given in Wolf [1], Chapter 1.
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2. Lie Groups and Homogeneous_Spaces

Except for Theorems I.2 and I.5 the results of this section are
proved in Chevalley [1], Helgason [1] or Hochschild [1]; Theorem I.2 is

due to Ledger and Obata [1] and Theorem I.5 is proved here.

(i) A Lie group is an analytic manifold G with a group structure
such that themaps A : G X G - Gand vV : G - G are analytic (where for
g,8' € G: AMg,g') = g.g' = gg' the group product of g and g', qﬁd
v(g) = g™t the group inverse of g). e denotes the identity element of G.
For g € G the two analytic diffeomorphisms Lg : G = Gand Rg 1 GG

are defined by Lg(g') 1= gg' and Rg(g') := g'g for g' € Q.

The set g of "left-invariant vector fields on G" is defined as

follows:

g = {XerTHE) : X, = dl(X,) forall gg' <Gl

and the set gR of "right-invariant vector fields on G" is defined by

gR = {X e THG) : X,

' = ng(xg,) for all g,g' € G} .

An element of g or of gR is in fact an analytic vector field. If

X ¢ TY(G) then X} will be understood to denote the (unique) element of g?
for which (xR)e =X, TFor X,Y ¢ g the Lie bracket [X,Y] is also a
vector field in g, and this product of left-invariant vector fields
defines on g the structure of an n-dimensional Lie algebra over R (where
n = dimension of G); as a vector space g 1s isomorphic with Ge’ a vector
field X € g being identified with Xe € Ge’ and the Lie bracket defines a
Lie algebra on the n-dimensional vector space g because the two
characteristic properties of & Lie algebra are satisfied: namely for al}

X,Y,Zec g:
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[x,¥] = -[y,x]
and (x,[y,z]1 + [y,[z,x1] + [2,[x,Y]] = o.

For X® ¢ gR, Y e g the Lie bracket [XR,Y] vanishes at e € G; this is
the only result in the present section which dpes nof séém_to be
explicitly proved in the literature: e proof 1s given at the end of this
section (see Theorem I.5), because the result is needed in the proof of

Theorem IIT,.1.

For X € g the curve exp tX ¢ G (defined for -o < t < =) 1is the
integyal curve of X passing thrbugh eat t =AQ. :Moréovef, the curve
exp tX gives an analytic homomorphism of the additive Lie group of the real
nurtbers IR into G, and the curve exp tX is called the one-parameter subgroup
of G belonging to X; in particular, (exp tX). (exp tlx) = exp(tq +'tl)x
for all t,,t, € IR. Also there exist a neighbourhood Ue of e in G and a
neighbourhood V, of O in g such that the map exp i Vg = Ues defined by
exp(X) := (exp tx)t=1 for X € V_, 1is a diffeomorphism. These results have
the gtraightforward consequence that given a positive integer k, there exists
a neighbourhood U, of e in G such that if an element g € U, satisfies
g = e, then g = e; (explicitly Ué can be taken as exp( i(Vo) ) vhere

%(Vo) = {Xeg:kkeVy) )

The identity component G, of a Lie group G is the largest connected
subset of G containing the identity e; G is a closed (and open, also
normal) subgroup of G and G, naturally inherits from G the structure of a
Lie group (closed subgroups are diséussed further in part (ii) below),
Finally it is remarked that for a Lie group G, a continuous (group)

automorphism 7 : G —» G is necessarily an analytic diffeomorphism of G,
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(11) A Lie group H is a Lie subgroup of a Lie group G if
(1) H is a subset of G, (2) H is a subgroup of G, (3) the
inclusion & :+ H - G is analytic, and (4) the differentinl
(di)h : H - G 1is one-to-one for each h ¢ H, The Lie algebra h of H
ié then a subalgebra of the Lie algebra g of G conversgly, correaponding
to a given subalgebra of g there is exactly one connected Lie subéroup of
G vhose Lie algebra is the given one. Given a Lie group G and a
topologically closed subset H of G with H also a subgroup of G, thenIH
admits a ﬁnique analytic manifold structure such that it becomes a Lie
subgroup of G and such that the topology on H is exactky the topology
1nduced on H as & subset of the underlying topological space of G; more-

over in this case the Lie algebra h of H is given by:

h = {Xeg:exptXeH forall ~m<t<m},

" (i1i1) A Lie transformation group G of a differentiable manifold M
1s a Lie group G whose elements are transformations of M, for which group
multiplication is compositipn of transformations, and for which the map
@a:GXM- M is differentiable (where «(g,p) = g(p) for p ¢ ﬂ gnd ga
transformation of M belonging to G). Notice that if H,ig a Lie subgroup
of such a T.de transformation group, then with { ¢ H = G the cprresponding
inclusion map, the map a' : H XM — M (defined by a'(h,p) := h(p) for
for p € M, h € H) may be written as a'=ao (i X idM) whence, since a, {
and idM are differentiable maps, o' is & differentiable map and H is
therefore also a Lie transformation group of M, Concerning Lie
transformation groups, the following thearem (due to Ledger and Obata [1])

will be used in Chapter III :

Theorem I.2: Let G be a Lie transformation group of a connected

differentiable manifold M. If G is locally transitive on M, 1i.,e, if
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for each point p € M there exists a neighbourhood U of p such that U is
conteined in the orbit G(p) := {z ¢ M : z = g(p) for some g € G}, then
G is a transitive Lie transformation group of M. (G is transitive on

M if for any two points x,y € M, there exists an element g € G such

such that g(x) = y).
The proof of this theorem is a straightforward topological argument,

The following theorem is valid:

Theorem I.3

(a) Let H be a closed Lie subgroup of a connected Lie group G,. Let
g and h denote the Lie algebras of G, and H resp. and consider a

vector subspace m of g chosen such that g =h @ m (direét sum).

Then the homogeneous space GO/H of cosets of Gp modulo H admits

a Hausdorff topological space structure uniquely determined by the
requirement that m : Go -+ Go/H (defined by m(g) = gH) be an open
and continuous map; GO/H further admits an analytic manifold
structure uniquely determined by the requirement that G, be a Lie
transformationgwoq;of@%ﬂ{(for the natura} action g(g'H) = (gg')H

for g € G, and g'H € G,/H).

Then the projection m : G, - GOIH is analytic and moreover given

a point a € Gy there exists a connected neighbourhood V, of all in the
manifold Go/H and an analytic "cross-section" Wﬁ : Va = G, such
that nc>¢a = 1dva. For a = e, Ve and We may be chosen to

satisfy also the following two properties: We(eH) = e and

dwe((GO/H)eH)_= m (m being considered as a vector subspace of (GO)e

under the natural isomorphism between g and (Go)e ).
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(b) All the statements made in (a) remain valid if the connected

Lie group G, is replaced by any Lie group G.

This theorem follows from various results contained in Helgason [1],
Chevally [1] and Hochschild [1]; the heart of the matter lies in the fact
that for the decomposition g = h @ m there exist open balls Uh and Um

about O in h and m resp. such that the map ¢ : Uh X Um -V CZ‘GO "
(defined by ¢(X,Y) = (exp X).(exp ¥) for X € Up Ye Uh) is an analytic

diffebmorphism of Uh

X U onto en (open) neighbourhcod V of e 1in G,

The following important theorem is also valid (cf, Helgason [1],

Chapter II):

EBEEEEQ.I:E:. Let G be a transitive Lie transformation group of a connected
differentiable manifold M; G, denotes the identity component of G. Let
P, be a given point in M and define the ("isotropy") subgroup H of Go
by:

H := {geG :alp,) = py}

Then H is a closed subgroup of Go, G, 1s a transitive Lie transformatlon
group of M end the map 1 : G,/H » M (defined by n(gH) = g(py) fur

gl € Go/ H) 1is a diffeomorphism (where G&/H has the (unique)
differentiable manifold structure compatible with its natural anglytlc
manifold structure of Theorem I.3, H being endowed with the natural

Lie group structure of a closed subgrour of G, mentioned in part (1i) ),

(iv) For a group G and an element g € G the automorphism Adﬁ(g): & - d

is defihed by Ad,(g)g' gg'g™™ for g' € Gi if H is a subgroup of @ then
Q

for he He G : Ad, (h) = Ad (h)l.,. 1If G is & Lie group then, since the
i ¢\ I H
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identity e is a fixed point of the (analytic) map AdG(g), the differential
(d(AdG(g)))e 1s a linear transformation of G_ and the corresponding
linear transformation of g (the Lie algebra of @, identified with Ge) will

also be denoted AdG(g). AdG(g) is a Lie algebra autamorphism of g.
With this notation the following definition is made:

Definition I,1: Let G, be a connected Lie group and H & closed subgroup

of Go; let g and h denote the Lie algebras of Go and H resp. Then the

homogeneous spacé Go/H (with the analytic manifold structure of

Theorem I.3) is said to be reductive if thepe exists a vector subspace
m of g such that g =h @ m and Addo(H)r_r,l € m  (The latter

inclusion means that for eschh e Hand X e m, Ad, (h)X € m ).
(o) -

(v) In this part (v) the following theorem is estaBlisheds

Theorem I.5: Let G be a Lie group and X,Y € Ge; XR, YL dencte the related
right-invariant, resp. left-invariant vector fields (uniquely determined

by the requirement (XR)e = X, (YL)e =Y).

Then [XR, YL]e = 0.

2522?} Observe firstly that for any f, € F(G):

Xt
1

d
3 Byl X) (1)

For given f € F(G) take £, YFs in (1); therefore for g € G

£, (8) = (£) 0

a . .
= EE I(g.(exp SY))I5=0 )
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and substituting this into (1) yields:

(') = f (& (e ). )| I . (2

In exactly similar fashion:

YK = gt (o e ). (e )] D o (3)

The expressions in (2) and (3) differ only in the orden of
differentiation with respect to s and t; but f € F(G), exp is a
differentiable map (on some neighbourhood of 0 in Ge), and group
multiplication (denoted by "." above) is differentiable: explicitly
denoting group multiplication bj At GXG - G, one notes that the
function 6:= folo (exp X exp)o (o X T) : R X R —» R is differentiable
at (0,0) (the differentimble maps o : IR — Goand T: R - G, are

defined by g(s) := sX and T(t) := t¥ for s,t € R); consequently

a2¢ a2e
3 = e )
dE‘d"E (0,0) dtds (0,0)

i,e. from (2) and (3):
X("c) - Y(xRE) = 0 for any f e F(G);
i,e., recalling that (XR)e = X,(YL)e = Y:

[XR,YL]ef = 0 for any f ¢ F(G),

i.e. [XR,YL]e = 0.

This completes the proof of Theorem I.5.
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3, Affine Connexions

Helgason [1] Chapter 1 and Kobayashi and Nomizu [1] volume I serve
as general references for this section; thg material on invariant

connexions on reductive homogeneous spaces is teken from Nomizu [2],

(1) Definition I.2:

(a) An affine connexion V on a manifold M is a map
v : THM) x T*(M) » T(M) which maps (X,Y) e T (M) x T*(M) into
VkY € T(M) and satisfies the following four conditions for all X, X,

Xyo ¥, ¥, ¥, € TH(M) and all £ € F(M);

(1) Vx(Yl + Ya) = YUY + VY,

(2) v(xl +x2)Y = vxly + van
(3) Vi)Y = £(%XY)
(%) Vx(ﬂ') = (XO)Y + £(%Y).

(b) An affine transformation ¢ of a manifold M endowed with an affine
connexion V is a transformation ¢ : M = M such that

- 1
vd¢(x) dmr)__ d¢(VxY) for all X,Y e T*(M),

Henceforth in this section M denotes a glven manifold endowed with
8 glven affine connexion V. Defining now the differential operator
r{x,y) := VY - XY for X,Y € T+(M), it is seen that a transformation
¢+ M M is en affine transformation of M 1iff
P(X,Y)p(fo ¢) = I'(as(x), d¢(Y))¢(p)f for all X,Y € T*(M), =&ll p € M and
all f € F(M); this follows directly from the observation that for any

transformation ¥ t M = M, (x!)p(fo ¥) = {(dw(x))(d\y(y))}wp)f for all
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X,Y ¢ T*(M), all p € M and all £ € F(M). Also given two affine
connexions ¥ and V on M it follows directly from Definition I,2 that a
tensor field D € T1(M) is defined by DP(X,Y) = CﬁkY - V&Y)p for

X,Y ¢ T'(M) and p € M; D is called the difference tensor of ¥ and ¥,
The following result is quoted (cf. Loos [1] volume 1, Chepter 1)t -

Egsgrem I.6: Let ¢ and ¥ be two affine transformations of a connected
manifold M endowed with an affine connexion V, If for at least one
point p € M, (d¢)p = (dlv)p as linear transformations from Mﬁ onto

M then ¢ = as transformations of M.
o(p)=¥(p)’ °°° v

Consider a curve 7 : (a,b) - M (with a > b); let 7(t) denote the
tangent vector to this curve at the polnt y(t) € M. Then given s € (a,b)
“there exists a vector field x5 e Tl(M) such that st)y(t) = ¥(t) for t in
some neighbourhood of s in. (a,b); 7 is called a geodesic (with respect

to the affine connexion V) if (Vv st)y(s) = 0 for each s € (a,b) (and
X

each choice of XS). The fundamental existence theorem for geodeslcs
asserts that given p € M and Xp € Mp there exists an € > 0 and a unlgue
geodesic ¥ : (-€,e) » M such that 7(0) = xp' If a geodesic ¥ may be
extended (as a geodesic)to a curve 7' : IR - M whose restriction %o
each finite non-f open interval of R is a geodesic (as just defined),

then such a curve y' 1g called a complete geodesic. 1f each geodesic

on M admits of such an extension to a complete geodesic, then V 1g callzd
a complete affine connexion and M is said to be complete with regpect te V{

One notes alsc that affine transformations map geodesics into geccdesics,

The vectbor field V&Y is referred to as the covariant derivative of

Y along X (with respect to V); the notion of parallel translating a
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vector field along a curve y : (a,b) = M may be ilntroduced (relative
ta V) in such a way that & vector field ¥ € T*(M) is invariant under

parallel translation along y iff (V%sy)y(s) = 0 for all s € (a,b) (ang

for Xs as in the above paragraph). The notion of covariant derivation
and parallel translation with respect to V may be naturally extended to
all tensor fields, in such a way that a tensor fleld Q € Tg(M) 1s
invariant under any parallel translation iff VkQ (the covariant derivative
of Q along X) vanishes for all X € T*(M), (For further details on the
covariant differentiation and parallel translation of arbitrary tensor

fields see Kobayashi and Nomizu [1]).

The set A(M,V) of all affine transformations of M (M being endowed
with the affine connexion V) forms a group, with composition of
transformations as the group multiplication; moreover A(M,V) admits the
structure of a Lie group with which A(M,V) is a Lie transfommation group

of M (cf. Kobayashi and Nomizu [1], Chapter VI).

Related to a glven affine connexion V on a manifold M, the
torsion tensor T ¢ T;(M) and the curvature tensor R € T;(M) are detined
by

T(X,Y) := VY - VX - (x,Y]

R(X,Y,Z) :

Ve (2) - % (%2) - iy 2

for X,Y,Z e T*(M).

(11) Tn this part (ii) some of the results of Nomizu (2]
concerning invariant affine connexions on reductive homogeneous spaces will
be summarised. Consider, with the notation of Section 2, a reductive

homogeneous space Go/H (of a connected Lie group Go) - reductive with
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respect to a given decomposition g =h ® m &8s in Definition I,1,
\lfe ¢t V- G, is the local cross-section (of Theorem I.5) defined on a
neighbourhood V of eH in Go/ H such that \lre(el{) = e anhd

av, ((Go/H) 4 = m.

Suppose now that the manifold GO/H is endowed with an affine
connexion V ; with the differentiable manifold structure naturally
induced on V as an open subset of Go/H, consider V endowed with the
corresponding restriction V¥ of V to vector fields in T*(V) as an affine
manifold. For notational convenience define 0 : V = o(V) < € by
o(p) := \jre_(p) for p € V: - then o is a diffeomorphism of the manifold V
onto o(V); o(V) is in fact a submanifold of G, whence it follows that

given X € T'(G) and p ¢ V a vector field X* € T(V) may bhe defined by:
x* = dn(X
( )p ( ‘

With this notation established, ‘the following important theorem (due to

Nomizu [2])is now quoted:

Theorem I.T: (The connexion V on GO/H is said to be Gg-invarlant 1f G,

ig a subgroup of A(G,/H, V).)

(a) There exists a one-to-one correspondence hetween the set of all

G

io—invariant affine connexions on the reductive homogeneous spacs=

Go/H and the set of bilinear functions « mXxXm-=nm for which
a(AdG (h)X, Ad, (h)Y) = Ady (h) o &(X,Y) for all X,Y € m and all
o o o

h e H,

For a given Gy-invariant affine connexion V on Go/H the

correspondence is explicitly glven by:

+ ot
o(X,Y) = do(Vx+ Y )-eH ,
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+ ot _ + ot Cxw .
where dqf%{+ Y )eH = dWé(V&+ Y )eH is considered ag an element of

m ¢ g under the identification of (Go)e with g .

(Recall here that m is the particular subspace of g with respect

to which Go/H is reductive).

(b) The Gy-invariant affine connexion on G /H corresponding to the
function o = 0 is called the canoniéal connexion of the second kind
(on Go/H). Go/H endowed with this connexion is complete; in fact
the geodesics through eH € GO/H are exactly the projections (under =«
of section 2) of the one-parameter subgroups of Gp s the images of

such projections under the elements of G, yield all geodesics,

(c) (For X,Y e g let [X,Y]m denote the m-component of [X,¥] with respect
to the decomposition g=h @ m), The Go-invariant affine

connexlion on GO/H corresponding to the function o given by

a(X,¥) = 3[X¥] for X,Yenm

is the unique torsion-free affine connexion on GQ/ H having the

same geodesics as the canonical connexion of the second kindj this

L

torsion-free connexion is called the canonicel connexion of the ilyrst

kind (on G4/ H),

Nomizu showed also that the canonlcal connexion of the second kind
is characterised by the fact that it is the unigue Gg-invariant affine
connexion on the redgétive homogeneous space Go/ H such that, for any
one-parameter subgroup exp tX in G,, the parallel translation from
n(exp t.X) to n(exp t X) along the curve ={exp tX) in G,/ H is
equivalent to the action of the differential of the transformation

(exp(t, - t,)X) € G .




i, Pseudo~Riemannian Manifolds

Wolf [1], Chapter 2, serves as & general reference for this section,

Definition I,3:

(a) A pseudo-Riemannian menifold is a differentiable manifold M
endowed with e tensor field g € To(M) such that g, t M XM - R
is a non-degenerate symmetric bilinear form on M_ for each p € M;

g is then called a metric tensor on M.

(b) If the bilinear form g, of (a) is positive-definite for each
P € M, then M endowed with g is called a Riemannian manifold; g is

then called a Riemannian metric on M,

(¢) An isbmetry of a pseudo-Riemannian manifold M is a transformatian

¢ + M -M such that for all X,¥ ¢ T*(M) and all p ¢ M:

&, (X ¥) = & () (0(X), d¢<Yp_))-;

(d) Two metric tensors g and g on a manifold M are sald tp be

conformally equivalent if there exists a function f € F(M) such that

é--fgo

The fundamental theorem concerning pseudo~Riemannian manifolds is

the following:

Theorem I.8: A pseudo-Riemannian manifold M with metrlic tensor g admits
exactly one torsion-free affine connexion with respect to which the
covariant derivative of the metric tensor vanishes,. This aounnexlon is

called the Levi-Civita connexion of M (relative to the metric tensor g).
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A useful fact is that isometries of a pseudo-Riemannian manifold M
are affine transformations of M with respect to the Levi-Civita connexion,
In general, on a pseudo-Riemannian manifold, affine concepts (such as
affine transformation, completeness and parallel transla,tion)_ always

refer to the Levi-Civita connexion (unless otherwise indicated),

The following remark (from Section 3,5 of Klingenberg et al, [1])
will be used in Chapter IV: given two conformally related metric tensors
g and g on a Riemannian manifold M (say g = fg with £ € F(M)), then the
difference tensor D of thelr respective Levi-Civita connexions ¥ ana v

satisfies for X,Y € TY(M):

D(X,Y) vY - VY

X X

L{GF)Y + (¥BX - g(X,Y)VF}

where T = (log f) € F(M) (note that for each x € M, f(x) > 0) and VE
denotes the usual gradient of £ (with respect to g) - namely, vF is the

unique element of T'(M) satisfying g(Z, VF) = 2f for all 2 € TH(M),
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5 A Miscellanequs Result.

Theorem I.9: Let M be a differentiable manifold and ¢ § M- M =a

transformation of M of finite (positive integer) order k, 1i4e,
k.
¢ = idy

If moreover ¢ has a point p € M as an isolated fixed point, then the
linear transformation (d¢)p : Mp -~ Mp does not have +1 as an

elgenvalue.

Proof': Consider a coordinate chart (U', ¥*) with p € U', Define
————

Ui=U' no(U') n... ¢(k—1)(U') and ¥ := W'IU. Then because
ok = 1dy, ¢(U) = U; furthermore (U, ¥) is a coordinate chart with p € U,
U will now be considered as a manifold, with the manifold structure induced

on it as an open (non-empty) subset of M,

Now ¥(U) € BR" (n = dim U = dim M) and so ¥(U) admits the usual

n
Kronecker metric & (i.e. S(ei, ej) =5 if {ei}1 1 is the standard

i3

basis on ]Rn). Define the Riemannian metric g on U by:
g(X,¥) := ®(av(x), av(Y)) for X,Y e TH(U) ,
Consider also the Riemannian metric g defined on U by:
g8X,Y) = g(X,Y) + g(de(x), dao(¥)) + ...
oo+ gla0) 51 ), (a0) (1) yy)

for X,Y ¢ T(U).

Henceforth consider U as a Riemannian manifold with metric g; then

from the definition of g it follows that ¢ is an isometry of U,
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Assume now that for (d¢)P some vector X, € M, has elgenvalue +1,
i.e, d¢(xp) = xp. Let the curve 7y : (-€,e) —» M (for some sufficlently
small € > 0) be the unique geodesic defined on (-€,€) passirg through p
and having tangent vector xp at 7(0) = p. Then the curve ¢ 0oy has
tangent vector d¢(xp) = xb at ¢07(0) = ¢(p) = p, But ¢ is an isometry
of U, hence an affine transformation of U whence ¢oy t (-€,e) > M 1s
elso a geodesic (through p with tangent vector XP at 907(0) = p); by
the uniqueness of such a geodesic one concludes that ¢o 7(t) = y(t) for
all t € (-e,e). But 7(0) = p and p is an isolated fixed point of ¢;
hence »(t) = p for all t € (-¢,e), whence Xp = 0, Therefore there exists
no non-zero vector in Mp with eigenvalue +1 fof (d¢)p, 1€ (d¢)p does

not have +1 as &n eigenvalue,

This completes the proof of Theorem I,9.
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6, Jordan Algebras

The books "Jordan-Algebren" by Braun and Koecher [1]{ "Strugture
and Representations of Jordan Algebras" by Jacobson [1] and "Symmetric
Spaces" by Loos [1] serve as general references for this section; all
the theorems quoted below are proved in at least one of these references;

terminology and notation are basically those of Braun and Koecher [1],

In this section some bagic definitions and theorems cencerning

Jordan algebras are concisely presented:

Definition I,k

(a) A Jorden algebra is a commutative algebra A with unit element e,
defined on-a finite dimensional real vector space such that the
algebraic multiplicatidn (denoted by juxtaposition) satisfies

a®(ab) = a(a®b) for a,b € A (4)
2

where a* 1= aa.

(o) The "left multiplication by a € A" is the linear transformation

L{(a) : A = A defined by L(a)b:= ab for b ¢ A,

(c) The "quadratic representation of a ¢ A" is the linear

transformation P(a) : A = A defined by P(a) := 2L2(a) - L(a®),

Theorem I,10: Let A be a Jordan algebra.

For a,b € A : P(P(a)b) = P(a)P(b)P(a).

This identity is called the "fundamental formule',
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Definition I.5: An element a in the Jordan algebra A 1s said to be

invertible if det P(a) # 0; thus the set I(A) of invertible elements

is given by:
I(A) = {aeA: det P(a) £ 0},

Theorem I,11: For a Jordan algebra A, let a € I(A), Then:

1

1a = aa™t = e;

(a) Defining a™t! ;= P*(a)a, a~

() P(a) = P(a™).

Definition I.6: Let A be a Jordan algebra.

(&) For f ¢ A the f-mutation of A 18 the Jordan algebra Af defined on
the same real vector space underlying A but with the new

: n,on
multiplicatici. _%_ defined by:

al b = (af)b + a(bf) - (ab)f,
T
(b) If £ e I(A) the f-mutation is called the f-isotope of A,

Theorem I.12: Let A be a Jordan algebra, Then;
o~y T

(a) If £ e I(A) then £~ is the unit in the f-isotope Ag o

(b) Defining, for a,b € A, P(a,b) 3= & {P(a+b) - P(a) - P{b)},
then P(a,b) is bilinear in a and b and for f € As
P(a,b)f = al v,
£

(c) The quadratic representation P, of the f-mutation A, satisfies:

Pe(a) = P(a)P(f) for ac A .
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(d) For any f,g € A: Ap(f)g = (Af)g 5

i.e. for a,b € A:

a .....-L,.., h = (a-ﬁ‘_g)-fl_-b + a.% (h-fl-G) (a}l‘-b)-flg '

It is remarked (with regard to P(a,b) defined in {b) in this

Theorem I.12) that for t ¢ R and a,b ¢ A:
P(a,tb) = tP(a,b);

by contrast P(tb) = t3P(b),

Finally the following theorem (cf, Loos [1)) is quoteds

Theorem I,13: Let R" be the real vector space underlying a Jordan
o

algebra A, Then the set I(A) of invertible elements has a natural
differentiable manifold structure as an open subset of IRn, Let
I,(A) denote the component of I(A) containing the algebraic unit

e of A,

Endowed with the multiplication p ; Io(A) X Io(A) = I,(A) defined
by:

n(a,b) := Pla)b™t for a,b e I (A),
I,(A) is a symmetric space (of order 2), (Cf. Definition III,1

with k = 2).

This symmetric space I (A) will be called the "Jordan symmetric

gpace of A",
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CHAPTER II

HISTORICAL  BACKGROUND

PART A: SYMMETRIC SPACES

1. Symmetric Spaces_and Locally Symmetric Spaces

The npotion of symmetrib space evolved from the gtudy of
Riemannian manifolds on which the curvature tensor (of the Levi-Civita
connexion) remains invariant under‘parallel translation plohg any curve
in the manifold. The sfudy of these.manifolds may be sald to have been
initiated in 1926 in two notes by Harry Levy [1} and [2] in which he
offered an erroneous proof that the only such manifolds were the
Riemannian manifolds of constaﬁt sectional curvature and direct
products of Riemannian manifolds of constant sectional cprvature,
Apparently Elie Cartan, however, had already studied the question in
some detail and he was quick to point out (a little later in 1926) in
Cartan (1] examples of ﬂiemannian manifolds with curvature tensor
Invariant under parallel translation but with non-constant sectional
curvature. In a series of papers Cartan [1] through [12) expounded more
of the details of his work on these manifolds, exploring their geometric
properties and moreover demonstrating their unexpected but intimate

connection with the theory of Lie groups.

fongider now the following definitions;

Definition II,1;
(a) A (pseudo-)Riemannian locally symmetric space is a (pseudo-)

Riemannian manifold on whioh the curvature tensor R (of the Levl-
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Civita connexion V) is invariant under parallel translation along

any curve in the manifold (i.e, on which VR = 0)1

(o) An affine locally symmetric space is an affine manifold with a
torsion-free connexion V whose curveture tensor R satisfles

VR = O,

Definition IT,2t
(a) A (pseudo-) Riemannian symmetric space is a (pseudo-) Riemannian
manifold M which admits at each point p € M an isometry which is of

order two and which has p as an isolated fixed point,

(v) An affine symmetric space is an affine manifold which admits at
each point p € M an affine transformation which is of order two

and which has p as an isolated fixed point,

In statements valid equally for a Riemannian, pseudo-Riemannian and
affine (locally) symmetric space the adjective will be suppressed and the

simple term "(locally) symmetric space" will be used,

As observed in Cartan [6] the locally symmetric speces are

characterised as follows (see also Whitehead [1]):

Theorem IT.1:
™7 g
() A (pseudo-) Riemannian manifold M is a (pseudo-) Riemannlan locally
symmetric space iff for each point p € M there exlsts a neighbourhood

of p on which the geodesic symmetylc abput p is a local 1sometry,

(b) An affine manifold M with a torsion-free comnexion is an affine

locally symmetric space iff for each polnt p € M there exists a
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neighbourhood of p on which the geodesic symmetry about p is a

local affine transformation.

Borel and Lichnerowicz [1] gave a proof of this theorem in ;952
for the Riemannian casej; their proof was based on results of Ehresmann [}].
In the affine case the theorem folloﬁs from results of Ambrose [1) apd
Hicks [1] published in the late 1950's, (Further details may be found in

Wolf [1], chapters 1 and 2).

The extension of the local isometries (affine transformations) of
Theorem II.1 to global isometries (affine transformations) is not always
possible; nevertheless the global extension is possible on & complete,
simply-connected locally symmetric space - in particular therefore the
gimply-connected covering space of a éomplete locally symmetric space is
8 symmetric space. (Symmetric spaces themselves are always complete),
Most significant for the present purpose, however, is the following theorem
vhich shows that a complete locally symmetric space ig in fact locally
isometric (affinely diffeomorphic) to a symmetric space, thus Justifylng the

use of the term "locally symmetric" :

Theorem II,2:
e
(a) Let M be a complete (pseudo-) Riemannian lacally symmetric space
and p € M, Then there exist a neighbourhood V of n in M, a
(pseudq—) Riemannian symmetric space N, and a neighbourhood U in N

such that V is isometric to U.

(b) Let M be a complete affine locally symmetric space and p € M,
Then there exist & nelghbourhood V of p in M, an affine symmetria
space N, and a nelghbourhood U in N such that V is affinely

diffeomorphic to U.
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The results of this theorem seem impliecit in the work of Cartan and
appear in the work of Whitehead [1] in 1932 when Whitehead treated
loeally symmetric spaces, giving explicit proofs for certain resultslgtated
by Cartan about symmetric spaces but proved by him only in the case of a
Lle group manifold, A proof of the affine case of Theorem 11,2 was glven

in 1954 by Nomizu [21],

Cartan ([1] and [2]) essentially posed the problem of the classification
of all simply-connected Riemannian symmetric spabes,l The solution to this
problem, brilliantly worked out by Cartan, properly belongs to the Lie
group aspect of the subject and will be discussed in the next section,

Glven the clasgification of simply-connected symmetric spaces, one has

(by Theorem II.2) a local classification of the complete locally symmetric
spaces; the global classification of these manifolds 18 a covering space
problem: in this regard cf. Wolf [1] page 4+ and Wolf [2], Hence-
forth symmetric spaces wlll be the objectsof central interest, hut 1t lg
Important to bear in mind that the geometfical motivation for their study

arose from interest in the locally symmetric spaces,

Cartan's extenslve studies concerned Riemannign symmetric specess
his papers in this subject have been a source of inspiration for g greet
deal of work on the geometry of these manifolds in particular and of
homogeneous spaces in general. A comprehensive suryey cf the theory cof
Riemannian symmetric spaces was given by Helgason [1] in 1962, Treatmenbs
of affine synmmt?ic spaces are to be found in Whitehead (1], Nomizu [2],
Kobayashi and Nemizu [1], volume II, Toos [1], volume I, and alsgo in

Berger [1] where a classificalion is giyen,
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2, The Lie Group Characterisation, the Geometry"and the "Cartan"”

Classification of Symmetric Spaces.

(1) Lie_Group Characterisation

Cartan [3] demonstrafed that for a Riemannien gymmetric space M, the
gronp of isometries I(M) admits a Lie group structure (which in modern
terminology is compatible with the compact open topology on I(M)) and that
I(M) acts transitively as a Lie transformation group on My Thus (cf.
Theorem I.4) a Riemannian symmetric spece ig diffeomorphic to a
homogeneous space of Lie groups; this result 1s of great importance in the

study of these manifolds,

In the case of any Riemannian manifold work by van Dentzig and
ven der Waerden [1] of 1928 implies that the group of isometries admits
the structure of a topological transformation group of the manifold,
Extending these results Myers and Steenrod [1] showed that for any
Riemannian manifold the group of isometries in fact admits a Lie group
structure with which it is a Iiie transformation gnoup of the given
manifold, Nomizu [1] proved the analogous result for the group of afflne
transformations of an affine manifold, and from this the result folliows
far the group of isometries of any pseudo-Riemannlan manifold alsoT 8oy
in ﬁarticular, on a symmetric space the group of isometries (of affine
transformations in the affine case) 1is always a Lie transformatlion group;
that this group is transitive (on the symmetric space) follows for the
pseudo-Riemannian and afflne cases exactly as for the Blemanplan case
treated‘by Cartan, (An explicit proof is presented in Kobayashi and

Nomizu [11).

From the above results it follows (cf. Theorem T,t) that any

synmetrlc space M may be diffeomorphically represented by a homogeneous




364

space Go/H where G, can be taken as the identity component of the group
of isometries (or affine transformations) of the given symmetric space M;
the isotropy subgroup H in such a representation has the following
characterisation (implicit in Cartan's vork, but for an explicit proof

see Loos [11):

Theorem IT.3%:
With G, and H as introduced immediately above* consider the involutive

automorphism 6 of G, defined by 8(g):= B, © gosp for g € G, where p, is
o (o)

the point in M for which H is the isotropy subgroup and sP 1s the
o

isometry (or affine trangformation) gssociated to Po (sP having order
5 (o]

two and having p, as an isolated fixed paint), Then the set
- 6
Gg 1= {g € Gy : 6(g) = g} is a closed Lie subgroup of Go3  (Gg)o denotes

the identity compbnent of Gg . The §ubgroup H satisfies;
6 6
(Go ) (8] C I{ C GO .

Conversely, given a connected Lie group By, a continuous automorphism
T of Bp of order two, and a closed Lie subgroup C of B, satisfying
(Bg)O ¢ cC Bg (where the Lile group Bg 1= {b € By § T(b) = b} and
(Bg)0 denotes its identity component) then the homogeneous space B,/

admits the structure of an affine symmetric space,

This characterisation of the isotropy subgroup is very important
in the study ol symmetric spaces; it lies at the heart of the

classification theory (cf. part (iii) of the present section A,2),

(11) The Geometry of Symmetric Spaces

Following Cartan's penetrating analysis in the Riemannlan ease, thes

geometry of symmetric spaces has been developed in congiderable detail;
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the key factor facilitating an elegant description of various geometrical
jideas 1s the result that symmetric spaces are diffeomorphic to
homogeneous spaces of Lie groups as discussed in the preyious part (1)Y
Indeed by presenting a geometrical question as an equivalent problem in
Lie group theory, the solution ugually becomes more readily tractable and,
in many cases, can be reduced Lo simple algebraic consldemations in the

appropriate Lie algebras,

Emphasising the geometrical significance of Lie grpups, Cartan [10]
pointed out that geodesics on g Riemannian symmetric space are exactly the
orbits of the one-parameter subgroups in the Lie group of isometrles,
Cartan [2] (with thouten) studied'invariant affine connexions on
connected Ile groups, and Cartan [3] also showed how the (Levi-Civita)
connexion on a Riemannign symmetrlc space M cén be expressed in Lie
algebra terms. In more detail, representing the manifold as GO/H (as
above) the connexion on M gives a Go-invariant connexion on GO/H;
decomposing g = h @ m where g and h are the Lie algebras of G, and H
respectively and m is the {1)-elgenspace of (dG)e (the differential at e
of the automorphism 6 of Theorem II.3), then m may be ldentifled with
MPO under the projection m : Gy - GO/H where H is the isotropy subtwroup
of G, at, say, the point p, € M.  Thus X,Y,Z denote the vectors inm
corresponding to X,Y,Z ¢ Mp ; Cartan [3] showed that the curvature

o]
tensor R on M satisfies the following identitys

R(X,Y,Z) = - dn[[X,Y],Z]e '

In 1954 Nomizu [2] demonstrated that all the above considerations
extend directly tc the pseudo-Riemannian and affine symmetric spaces (the

group of isometries being replaced by the group of affine transformstions
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in the affine case). He introduced the notion of a "reductive" homogeneous
space Go[H as one for which the Lie algebra g of the connected Lie group Go
admits a direct sum decomposition g = h ®m (g being the Lie algebra of H)

such that Ad, (H)m ¢ m; symmetric spaces are a special class of
o :

reductive homogeneous spaces. Nomizu further showed that in the case of a
Gy-invariant connexion on a reductive homogeneous space GO/H the curvature
tensor could again be expressed in terms of the appropriate Lie algebra;
likewise for the torsion tensor., Mareover from his treatment of

invariant connexions it becomes clear that on a symmetric space Go/H the
affine connexion V (of Levi-Civita in the(pseudo-)Riemannian case and
necessarily torsion-free also in the affine case) is distinguished in the
senge that there is no other G -invariant torsion-free connexion on Go/ H

with the same geodesics as V.

Another important contribution to the theory of symmetric spaces was
Cartan's study of their totally geodesic subtmanifolds (cf,Cartan (3] and [%].)
In Cartan [4] he intrcduced the important nction of the "rank" of a symmetric
space - namely, the maximal dimension of flat, totally geodesic submanifoldé,
The significance of totally geodesic submanifolds of symmetric spaces may be
appreciated by the insight they afford of the very nature of symmetric
spaces: every symmetric space may be embedded as a totally geodesic zub-
mgnifold of a certain Lie group (viz. the corresponding "group of

displacements” defined in Cartan [4]; see also Loos [11),

An almost complex structure on a manifold M is a tensor fleld
Je Ti(M) such that (Jp)2 = --Ip for each p € M, A Riemsnnian manifcid M
is called Hermitfan if J preserves the metrlc tensor g of My i.e. LF
g(oX, JY) = g(X,Y) for all X,Y ¢ T*(M), and a Riemannian symmetric space with

such a Hermitian stricture is called a Hermitian symmetric space, The
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Hermitian symmetric spaces were investigated by Cartan [12], who described
their relationship with the bounded domains (1.e. bounded, open connected
subsets of Cn for vearious n). Further studieg of this relationship were

made by Harish-Chandra [1] and Borel [1], [2].

At this point it seems natural to mention the followlng more general
investigations of complex manifolds, and of almost complex structures (on
"real" manifolds), The relationship between complex manifolds and almost
complex structures was developed by Eckmann and Fr8hlicher [1] and
Newlander and Nirenberg [1]; a classification of homogeneous complex
manifolds was given by Wang [1] in 195h, and the same results were

obtained by a different method by Tits [1] in 1962,

An almost complex structure J on & homogeneous spaqe_G/H is called

G-invariant 1f dgod = J od for each e G € M, Such
' 89% = Yelp) ° “p gt P

G-lnvariant almost complex structures have been stuydied by Hermann [1]

Passiencier [1], Gray [1] through [6], and Wolf and Gray [1],

(1i1) The fCartan" Classification of Symmetric Spaces

A very brief sketch of the classification of gymmetric spaces wlll
be given here; an excellent outline is to be found 1n Chapter XI oi
Kobayashi and Nomizu [1] and a complete treatment in Wolf [1] (see alsc

Toos [1] and Helgasen(1] ).

he classification may be reduced to finding the simply-connected
symmetric spaces amd their “"centres" (ef. Loos [1], chapter i), and
further reduced to finding those which are "irreducible" (cf, Helgason [1],
chapter 8). The classlfication depends on the Lie group characterisation

of symmetric spaces mentioned in part (i) ebove: viz, that a symmetric
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space is diffeomorphic to a homogeneous space of Lie groups GO/H where
the 1sotropy subgroup H satisfies the relation in Theorem II,3 in terms
of a certain involutive automorphism of Go. In fact the classification
of irreducible simply-connected symmetric spaces may be in turn reduced
to a study of involutive automorphisms of simple Lie algebras, Having
a list of the involutive automorphisms of the simple Lie algebras, one
finds the corresponding irreducible simply-connected symmetric spaces by
careful geomebtric and Lie group theoretic arguments to establish the
correct isotropy subgroups (knowing their Lie algebras); the centre of
tﬁe isotropy group is determined from well-known results of Lle group
theory ard there follows the classification of the symmetric spaces

covered by a given simply-connected one,

To determine which of the so classified affine symmetyrlc spaces are
in fact Riemannian or pseudo-Riemarnnian symmetric one applles nice
arguments involving geometry and Lie group theory. For the Rlemapnlan
case the arguments were presented in 1927 by Cartan [4]; the pseudo-
Riemannian case has been explicitly presented by Gray [6] in 1971, The
general classificétion of the affine symmetriq spaces was done by Berger

[1] in 1957,
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3. The "Algebraic" Definition of Symmetric Spaces
AL : = — 49205

Tn the 1960's Ottmar Loos ([1] through [5]) developed a novel
approach to the study of symmetric spaces, an approach which is algebraic
in flavour and by which the study of symmetric spaces proceeds in a fashion
elegantly analogous to the corresponding study of Lie groups, As is a Lie
group, 4 (Loos) symmetric space is defined as a manifold admitting a smooth
multiplication satisfying certain properties, The Lie triple system of a
(Loos) symmetric space is introduced and plays a role analpgous to that of
e Lie algebra in Lie group theory; similarly the notion of a semi-éimple
and simple symmetric space is considered and the concepts "rank" and
"centre" are defined, The centre Z(M) of a (Loos) symmetric gpace M is
an abelian Lie group acting freely on M; analogous to the case of the
centre of a Lie group, the importance of the centre of a symmetric space
is that the (Loos) symmetric spaces covered by M are exactly the quotients

of M by discrete subgroups of Z(M).

The full definition of a (Lioos) symmetric space is now glven;

Definition II.3: A (Loos) symmetric space 1s a differentiable manifold M
endowed with a differentiable (Cm) multiplication p ¢t M XM - M
(u(x,y) 1is also denoted by x.y) satisfying the following four propertiss

for all x,y,z € M:

(1) x.x=x
(2) x.(x.y)

(3) =x.(y.z)

¥y

(x.¥). (x.2)

and () there exists a neighbourhood Vv, of x such that for v ¢ Vx’

Xv=v iff v=x
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A symmetric space (as introduced in Section 1) always admits the
structure of a (Loos) symmetric space, the multiplication being determined
simply by defining u(x,y) to be the image of y under the (geodesic)
symmetry at x. The following theorem, a fundamental result established
by Loos ([1] and [3]) implies the converse, - namely that a (poog)

symmetric space always admits a symmetrie space structuret

Theorem II,l: Let M be a (Loos) symmetric space with multiplication u as
in Definition II.3 and define for x € M the map sx t M- M by

s (¥) = ulx,y).

Then M admits an affine connexion, with respect to which the map Sy (for

each x ¢ M) is an affine transformation of M.

From this theorem and the above remarks it is seen that the (Loos)
symmetric spaces are exactly the affine symmetric spaces;y 1i.e, the
existence of an affine symmetric space structure on a given manifold M is
equivalent to the existence of a smooth (i.e. Cw) multiplication on M
satisfying properties (1) through (4) of Definition IT.3. This equivalence
having been established, the study of symmetric spaces by Loos proceeds as
outlined in the two previous Sections.of this chapter; Loos's development
of the subject and his expositions of proofs are presented, hawever, with
a more algebraic flavour. Hig demonstration that the theory of symmetric
spaces so closely parallels that of Lie groubs reminds one of Cartan's
powerful insight into the structure of symmetric spaces, insight largely
gained it would appear from exhaustive studies of group manifolds, Also
one remarks that the Lie triple system, which appears significantly in
Loos's algebraic treatment, was in fact originally introduced by Qartan [3]

in connection with the totally geodesic submanifolds of symmetric spaces.
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Finally it is pointed out that the applications of Jordan algebras
to symmetric spaces (cf. Part B of this Chapter) are most naturally
discussed in the framework of this algebraic approach to symmetrlc spaces

developed by Loos.,
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b, Generalisations of Symmetric Spaces:

(i) X-gymmetric Spaces

The Definition II.2 of a symmetric space M involves the existence
at each point p € M of an involutive affine or (pseudo-)Riemannian symnmetry,
the symmetric spaces belng locally characterised by the vanishing of the
covariant derivative of the curvature tensor. The consideration of
manifolds admitting at each point a symmetry of some integer order k
different from two was iA%iated by A.J.Ledger in the 1960's; in 1967
Ledger [1] introduced "k-symmetric spaces" to the literature. For k = 3:

a local characterisation of 3-symmetric spaces in terms of the curvature
tensor was given in 1971 by Gray (6], who was led to the consideration of
these manifolds from quite a different point of view: namely, an interest
in manifolds admitting almost complex structures and in the existence of
invariant almost complex structures on homogenecus spaces1 Moreover,

Joint work by Wolf and Gray [1] essentially provides the classification for
3-gymmetric spaces and indicates the procedure for classifying k-symmetric
spaces for k > 3. Now a more detailed account of the theory of k-symuetric

spaces will be presented,

In 1957 Ledger [1] introduced the following definitions

Definition IT.k: A generalised Riemannian symmetric space is a connectad
Riemannian menifold M admitting at each point p € M an isometry SF such

that:
(&) p is an isolated fixed point of s,

and(b) the tensor field § defined.by-sp 1= (dsD)P ig differcntiable

(i.eq, 8 e T7(M) ).
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Ledger [1] also introduced essentially the next definitioﬁ:

Definition 11.5: Let k be an integer =2,

A Riemannian k-symmetric space is a generalised Riemannian symmetric
space (aus in Definition II.lt) for which the isometry 5, has order k

(for each p € M),

The important result presented by Ledger [1] was the proof that on
a generalised Riemannian symmetric space the group of isometries is
transitive; hence, of course, the manifold is diffeomorphic to a
.homogeneous space of Lie groups. An alternative proof of the tnansitivity
of the group of isometries is due to F, Brickell (cf. Ledger and Obata [1]);
this second proof makes no use of condition (b) of Definition IIk,
Consequently in Ledger and Obata [1] the following definition and theorem

are given:

Pefinition IT.6: A Riemannian s-manifold is a connected Riemannian

manifold M admitting at each point p € M an isometry 8, for which p 1s

an isolated fixed point.

Theorem II.5: On a Riemannian s-manifold the group of isometries is

transitive.

Ledger and Obata [1] and Graham and Ledger [1] made further studies
of these manifolds; furthermore the notions of affine and pseudo-Riemannian

s-manifolds were introduced;:

Definition II.T: An affine (resp. pseudo-Riemannian) s-manifold is a

connected affine (resp. pseudo-Riemannian) manifold M admitting at each

point p € M an affine transformation (resp. isometry) 85 such that;
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(a) for each p € M, p is an isolated fixed point of sp,

and (b) the tensor field 8 defined by sp 1= (dsp)p is differentiable

(i.e., S ¢ Ti(M) ).

The following analogue of Theorem II.5 is essentially proved in
Ledger and Obats [1] (cf. Graham and Ledger [1]); (unlike the
Riemannian case, the differentiability requirement of condition (b) seems

necessary in the affine case):

Theorem II.6: On an affine s-manifold M the group G of affine

transformations is transitive.

(From this result it follows that the group of isometries is transitive

on a pseudo-Riemannian s-manifold).

The following definition (fbund essentially in Ledger and QObata flf)

is glven for future reference:

Definition I1.8: Let k be an integer =2,

An affine (resp. pseudo-Riemannian) k-symmetric space is an affine
(resp. pseudo-Riemannian) s-manifold M such that for each p € M the

symmetry sp has order k.

Ledger and QObata further pointed out that for a compgct commecthed
non-abelian Lie group G and given intéger k > 2, the Lie group Gk (the
k-fold direct product of G with itself) admits a Riemannian metric with
which Gk i1s a Riemannian s-manifold (and, in fact, a Riemannian k-symmetyic
space), but with this metric Gk is not a Riemannian symmetric space (indeed

with the corresponding Levi-Civita connexion it is not even locally affine
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symmetric). Thus the notion of s-manifold is a non-trivial generalisation
of the notion of symmetric space. Ledger and Obata also discuss the
existence of almost complex structures on certain Riemannian k-symmetric

spaces (for k odd).

One mentions here some studies of k-symmetric (homogeneous) spaces
made by Field [1]; he considered related invariant affine connexions and

decompositions of the assoclated Lie algebras,

In Graham and Ledger [1] the notion of an s-regular manifold was

Introduced:

Definition II1.9: An s-regular Riemannian (resp, pseudo-Riemannian, affine)

manifold is a Riemannian (resp. pseudo-Riemannian, effine) s-manifold M

as in Definition IT.6 (resp. II.7) such that:

(a) 8,08, = 85 ()08, for all p,x € M,
b

and (b) the tensor field S defined by sp 1= (dsp)P is differentlable

(1.e., 8e T3(M) ).

reflnement (cf., Ledger and Obata [1] and Graham and Ledger [1]):

Theorem II,6' : Let M be an s-regular affine manifold, A(M,V? its grour

of affine transformations.,

Define the following closed Lie subgroup of A(M,V):

Gs=(ge A(M,V): sg(x) = gc)sxc)g'l for all x ¢ M} .

Then G is transitive on M,




L8,

Hence denoting by H the isotropy subgroup of G at some point of M, M is

diffeomorphic to the homogeneous space G/H,

Graham and Ledger furtﬁer introduced in a natural way the notion of
a locally s-regular manifold and showed that the relationship between
s-regulagr and locally s-regular manifolds is analogous to the relationship
between symmetric and locally synmetric spaces. They also obtained a
characteristation of locally s-regular manifolds in terms of conditions on
the curvature and torsion tensors and a tensor analogous to "S" in
Definition IT.9; this was accomplished by demonstrating (inter alla) that
a locally s-regular manifold always admits a new affine commexion ¥V vhose
curvature tensor R, torsion tensor T and difference tensor D (with respect

to the original connexion) satisfy 9T =0, VR=0 and VD = 0.

Before discussing the link bhetween s-regular manifolds and the
studies of Gray, two conjectures are presented; the first is due to
A, Deicke, the second to A.J.Ledger. These conjectures serve to emphasise

the significance of the s-regular manifolds in this subject,

Conjecture 1: Every s-manifold 1s k-symmetric for some k,

Conjecture 2: Every k-symmetric space is an s-regular manlfold.
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(11) A _Local Characterisation and the Classification of s-regular

pseudo-Riemannian 3-symmetric Spaces.

On a pseudo-Riemannian 3-symmetric space M a tensor field J € Ti(M)

may be defined in terms of the tensor field S (of Definition II,7) by

1
J = I + 28 for pe M
P .J;( P p) LA

J is in fact an almost complex structure on M (i.e. (Jp)a = - Ip for
all p € M) - cf. Gray [6] or Ledger and Obata [1]; J is referred to as

the canonical almost complex structure on M,

The following is essentially a definition due to Gray [6]y

Definition II.10: A pseudo-Riemannian holomorphleally 3%-symmetric space is

an analytic pseudo-Riemannian manifold M endowed with a pseudo-Riemannian
3-gymmetric space structure (as in Definition I1,8) such that the
multiplication p : M X M —» M is analytic and such that for each p € M
the left multiplication sp is "holomorphic" with respect to the cancnical

almost complex structure J on M: 1i.e.,

dspoJx = Jsp(x)()(dsp)x for all p,x € M,

It is observed that the manifolds of Definltion II,10 are exactly
the s-regular pseudo-Riemannian 3-symmetric spaces (of Definitions IT,9 -
IT,8 with k = 3): the holomorphic condition on the symmetries is
equivalent to the s-regular criterion (note the linear relationship between
S and J); the various analyticity requirements of Definition II,10 were
not specified in the definition of an s-regular pseudo-Riemannlan 3-symmetric

space, but such a manifold always admits an analytic structure for which they

are in fact satisfied (in this regard cf. Graham and Ledger [1]).
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One of the important results presented by Gray [6] 1s the following
local characterisation of pseudo-Riemannian holomorphically 3-symmetric
spaces in terms of their curvature tensors and canonical almost complex

structures:

Theorem II.7t Let M be an analytic pseudo-Riemannian manifold with
Y

analytic almost complex structure J which is almost Hermitian (i,e.
letting g denote the metric tensor on M, g(JX,JY) = g(X,Y) for all

X,Y e TH(M) ).

N
Define the tensor field § by 8 := -22 J, -4, forpel; in tems of
the metric tensor g and associated Levi-Civita curvature tensor R on M

define the tensor field R € Tg(M) by:

R(x,Y,2,W) := g(Z,R(X,Y,W)) for X,Y,Z,W ¢ T*(M).

Then there exists a pseudo-Riemannian holomorphically 3-symmetric:
space N such that M is locally isometric to N and such that J corresponds
to the canonical almost complex structure on N, if and only if the

following three conditions are satisfied on M (for all V,W X,Y,Z € (M) ):
(1) R(wW,x,Y,2) = R(w,3%,Y,2) + R(W,X,JY,2) + R(W,X,Y,J2),
(2) v (®)W,x,Y,2) + v (R)(oW,3%,9¥,3Z) = o,

and (3) all covariant derivatives (of all orders) of J are invariant

under S.

(Condition (3) is always satisfied on a nearly-Ksehler manifolds

i.e, when VX(J)X =0 for all X e TY(M).)

Gray [6] furthermore shows that the pseudo-Riemannian holomorphically

3-symmetric spaces (equivalently s-regular pseudo-Riemannian 3-symmetric
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spaces) admit a Lie group characterisation in analogy with Theorem II.3
for symmetric spaces; indeed using methods similar to those of Ledger

and Obata [1] and Loos [1], Gray established the following:

Theorem II.8:

(a) Let M be a pseudo-Riemannian holomorphically 3-symmetric space,
Go the largest connected group of holomorphic isometries of M and

H the isotropy subgroup of G, at a point p, € M. sp denoting the
(o}

holomorphic symmetry at P, » define 6 ¢ Gy = G, by

o(g) := s_ ogos. -
Po

for eG. .
Po € %

Define the Lie group Gg = {g € Gy : 6(g) = g} and let (Gg)o denote

the ldentity component of Gg .
Then: (1) € is an analytic automorphism of G, of order three,
2] 2]
(2) (69, < ¥ < ¢,

and  (3) M is diffeomorphic to G,/H.

(b) Conversely, given a connected Lie group Bo’ a continuous
automorphism T of Bo of order three, and a closed subgroup C of

B, satisfying (BZ)0 < ¢ < B; (where the Lie group

BZ 1= {beBy,: T(b) =b} and (B;)O denotes its identity component),
then the homogeneous space BO/C admits the structure of & pseudo-
Riemannian holomorphically 3-symmetric space provided that, with a
certain decomposition b = ¢ & m (see Gray [6] for details) with b

and ¢ the Lie algebras of B, and C resp., the vector space m admit
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a non~degenerate symmetric bilinear form invariant under

Ady (c) and (dT)e .

Moreover the following theorem of Gray [6] shows that the pseudo-
Riemannian holomorphically 3-symmetric spaces are reductive homogeneous
spaces, and neatly characterises those which are "naturally reductive":
i.e, for which the Levi-Civita connexion is the canonical connexion of the

first kind (cf. Theorem I.7(c) ):

Theorem II.9: With the notation of the preceding theorem (statement (a)),

the homogeneous space GO/H diffeomorphic to M is a reductive homogeneous

space,

GO/H is naturally reductive 1ff the canonicel almost complex structure

J of M is nearly-Kaehler,

Finally Gray [6] presents a classification of the pseudo-Riemannian
holomorphically 3-symmetric spaces. This classification depends on the
Joint work of Wolf and Gray [1] which treated the problem of finding for a
simple Lie group all (continuous) automorphisms of a given order k; in
the case k = 3 a complete 1list of the possible (continuous) automorphisms
- is given. Moreover for k = 3 Wolf and Gray examined the corresponding
homogeneous spaces Go/H (where as above (Gg)o C H O Gg for 6 an auto-
morphism of order three of a conniected Lie group Go); they also determined
which such spaces admit G,-invariant (pseudo-)Riemannian metrics and which

admit various types of G,-invariant almost complex structures.

Gray [6] discusses the decomposition of pseudo-Riemannian
holomorphically 3-symmetric spaces into "primitive" ones using results of

Wu (1] which extend the de Rham decomposition of Riemannian manifolds to the
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pseudo-Riemannian case. From these results and further observations Gray
shows that the classification of pseudo-Riemannian holomorphically
3.gymmetric spaces may be reduced to (1) consideration of homogeneous
spaces GO/H where (Gg)° < H Gg for some (continuous) automorphism 6
of order 3 of a connected simple Lie group G, and (2) the question of
which such spaces admit Go-invariant pseudo-Riemannian metrics,
Consequently the results of Wolf and Gray [1lenable Gray [6] to give a
complete list of the "primitive" pseudo-Riemannian holomorphiecally .

3-gymmetric spaces (and to decide which are in fact Riemannian).
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(iii) Other Generalisations of Symmetric Spaces

Apart from the study of general reductive homogeneous spaces by
Nomizu [2] and those particular ones mentioned in the preceding parts
(1) and (ii) of this section 4, other specific generalisations of the

notion of symmetric space have been made.

(a) Firstly mention is made of the "reflexion spaces" studied by Loos (3],
[(4]; these are defined exactly as symmetric spaces except that the symmetry
at a point p is reguired simply to leave p fixed, not necessarily to have p
as an isolated fixed point, These reflexion spaces were shown to be fibre

bundles over symmetric spaces.

(b) In a similar fashion, Robertson [1] has considered foliated Riemannian

menifolds whichi admit for each leaf A a leaf-preserving isometry s, leaving

A
) pointwige fixed and such that at each point x € A, (ds)\)x does not have
+]1 as an elgenvalue. Robertson established that for a compact manifold
such a foliation is in fact a fibration over a Riemannian s-manifold

(cf. Definition II.6); s-manifolds themselves are considered, in this

context, ag the special casze of polnt leaves,

(¢) As pointed out by Helwig [6] the canonical affine connexion on certain
symmetric spaces gives rise tec a naturally associated Jordan algebra
(cf. Theorem IV.1 of this thesis)., Mcre generally on any reductive

"w:mXm- m" introduced by Nomizu (2]

homogeneous sgpace the maps
(¢f. Theorem I.7) also define algebras naturally related to affine
connexions, A. Sagle [1], [2] made further studies along these lines,

investigating the types of non-aasociative algebras related to connexions

on reductive homogenecus spaces; he also considered the relationship
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between Lie triple systems and totally geodesic submanifolds of these
homogeneous spaces (thus extending to a more general situation the results

obtained by Cartan [4] in the case of symmetric spaces).

(d) As noted in section 1 it is a restriction on the curvature tensor
(nemely VR = Q) which essentially characterises the symmetric spaces.
Anmbrose and Singer {1] and Singer [1] have presented a characterisation of
the curvature cn Riemannian homogeneous spaces (i.e. complete, connected
Riemannian manifolds admitting a transitive group of isometries), and they
have posed the general problem of classifying Riemannian homogenecus spaces.
In this spirit cne may consider the symmetric spaces (of Cartan) and the
holomorphically 3-symmetric spaces (treated by Gray) to be two families in
such a classification. As yet no other families have been studied so
thoroughly but the programme suggested by Ambrose and Singer provides a

broad geometrical framework for furthier generalisations of symmetric spaces.
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PART B: JORDAN ALGEBRAS

1. General Development of Jordan Algebras

Jordan algebras originally arose from investigations of possible
generalisations of the formalism of quantum mechenics; in the papers of
P, Jordan [1], [2] and [3] appearing during 1932-33 these algebras were
introduced into the literature. In 1934 a paper by Jordan, von Neumann
and Wigner [1] together with a paper by A.A.Albert [1] completely resolved
the classification of a family of Jordan algebras called formal-real (cf. the
next section concerning this classification). This early work formed a firm

foundation on which further studies have been based,

A.A.Albert and N. Jacobson have made lmportant studies of Jordan
algebras from a purely algebraic point of view; a German school led by
M. Koecher has developed a theory of Jordan algebras having a strong flavour
of geometry and analysis. Two excellent books treat these two approaches:
namely "Structure and Representations of Jordan Algebras" by N.Jacobson [1]
and "Jordan-Algebren" by H. Braun and M. Koecher [1]; in these books
extensive bibliographies are to be found for work on Jordan algebras carried
out prior to the mid-1960's. (The book "An Introduction to Non-associative

Algebras” by R.D.Schafer [1] is mentioned as a relevant general reference).

H. Freudenthal (e.g. [1]), T.A.Springer and J. Tits have made
contributions to the aspect of the subject concerning relations between the
exceptional Lie algebras and Jordan algebras, Also, Koecher has been
responsible for the development of calculus on Jordan algebras and of the
related connections with complex analysis, in particular automorphic
function theory. (For references to the work mentioned in this paragraph,

cf. the bibliographies of Jacobson [1] and Braun and Koecher [1].)
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The more geometrical approach to algebras over the real number field
is important in the context of this thesis, but it should be pointed out
that recently (during the last ten years) the study of Jordan algebras has
been based on a very general fornulation. Jacobson [5] and McCrimmon [1]
have developed a "quadratic theory" based essentially on properties of the
quadratic representation {c¢f. Definition I.h(c)), in particular the
fundamental formula in a Jordan algebra (cf. Theorem I.10); in this approach,
Jordan algebras over fields of arbitrary characteristic (including

characteristic 2) may be given a unified treatment.

It is the recent advances in the more geometrical theory which are of
interest here; these advances have been inspired by work of Koecher and
concern basically the intimate relationship between Jordan algebras and
differential geometry (in particular symmetric spaces) and the attendant
insight into certain aspects of complex analysis. A 1ot of Koecher's
results seem to be unpublished or relatively inaccessible (e.g. the 1962
"Lecture Notes" of Koecher [1]) ~ cf., however, Koecher [2]. Some of
Koecher's results, summarised in Loos [1] chapter VIII, explore the
connection between formal-real Jordan algebras and certain Hemmitian
symmetric spaces. Further studies made in this area by U. Hirzebruch,

0. Loos and K.~H. Helwig during the 1960's will be discussed in section k.

A school of Roumanian mathemeticians has also studied independently
connections between Jordan algebras &and differential geometry. - A recent
publication by Popovici, Jordanescu and Turtoi [1] gives a detailed survey
(in Roumanian) of their results. As in the case of the geometrical
applications to be discussed in Section 4, one application is the definition
of affine connexions (on differentisble manifolds) naturally related to

various Jordan algebras; this approach developed from work of
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G. Vranceanu [1] and [2]. Certain Wagner spaces are studied from the view-
point of Jordan algebras by Turtoi [1]; further references on his work and
that of other mathematicians in this Roumanian school are to be found in the

book by Popovieci et al, [1].

In closing this section, one mentions that K.-H. Helwig [1] presented
in 1967 (as his habilitations-schrift) certain results on semi-simple Jordan
algebras, elegantly demonstrating the analogy of their theory with the
corresponding one for semi-simple Lie algebras: in particular, he showed
that every semi-simple complex Jordan algebra is the complexification of a
formal-real Jordan algebra; (thus a formal-real Jordan algelra is the

analogue of a compact Lie algebra).




59.

2. Examples and Classifications of Jordan Algebras

A detailed presentation of the various classification theorems will
not be given here; an excellent treatment is to be found in Braun and

Koecher [1] chapter X - cf. also Jacobson [1] chapter V.

In the basic paper hy Jordan, von Neumann and Wigner [1] a complete
classification of the formal-real Jordan algebras was given, a "formal-real"
Jordan algebra A being one in which a2 + b® = 0 (a,b € A) implies a = b = O,
These authors deemed such algebras significant from physical arguments related
to the quantum mechanlcal questions which interested them; one remarks that
it is these same algebras which in recent years haée been shown to have &

central connection with the Riemannian symmetric spaces.

More generally, as for Lie algebras, the semi-simple Jordan algebras
have been classified: a notion of semi-simple algebra is introduced (in
terms of the non-degeneracy of a certain bilinear form) and these algebras
are then shown to be direet sums of ideals (the irreducible ones being the
simple algebras). The simple Jordan algebras (over the reals) are then
classified up to isotopy (due to Kalisch [1], and Jacobson and Jacobson [1] -
¢f. Braun and Koecher [1] chapter X, section 4); over the field of complex
numbers, the simple complex Jordan algebras may be classified directly up to
isomorphism (due to Albert [2], [3] and [4] and Jacobson [5] ~ cf. Braun
and Koecher [1] chapter X, section 3.3). Further details of these
classifications are also found in Chapter V of Jacobson [1]. (It is

pointed out that a formal-real Jordan algebra is always semi-simple).

Although further details of the classifications will be omitted, a
brief description of the types of algebras which occur will be given;
(reference to Braun and Koecher (1], especially chapter VI, provides a full

account of the examples given here).
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Given any assoclative algebra Iy (over the reals) with multiplication
denoted by Mo", a Jordan algebra A* may be defined on the vector space
underlying A by means of the multiplication (denoted by juxtaposition)
given by

aob + boa
ab itz eee———
2

A Jordan algebra A is said to be "special" if it is isomorphic to some
subalgebra of such an A*.,  The quadratic representation in such an
algebra is given by:

P(a)b = aoboa,

and the multiplication "| " in its f-mutation is given by

b +
a_]_b i ao fo bofoa
f 2

Several different "types" of Jordan algebras will now be defined:

Type {i!: Taking X above to be the algebra Mr of real r X r matrices with
the usual (associative) matrix multiplication, A* is then denoted M; .
The set of symmetric matrices in Mr forms a subalgebra of M; y denoted

Hr('JR). Hr(]R) is the Jordan algebra of Type (i).

Types (ii) and (iii): Type (ii): Hr(C) and Type (iii): Hr(]H) are defined

exactly analogously to Type (i) on the set of hermitean, resp. quaternionic

symmetric r X r matrices over the complex numbers C, resp.quaternions K.

e (iv): Consider a real vector space V (of finite dimension) together
with a symmetric real-valued bilinear form v on V and an element e € V

such that u(e,e) = 1; then V endowed with the multiplication:

ab = v(aye)b + v(b,e)a - v(a,b)e
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is a Jordan algebra (denoted [V, v, e]) with unit e. An element
a € [V, v, e] is invertible iff v(a,a) # O and in that case

-1 a

-~ . TFor o(f,f) # 0 the f-isotope of [V, v, el is
v(a,a)

[V, vg 1] where vo(a,t) = o(f,f) v{a,b).

Type (v): The Jordan algebras of Types (i) through (iv) are all, in fact,
special Jordan algebras (over the reals). There is one other essentially
different type which is not special: it is the exceptional Jordan algelmra
H,(Cay) whose definition is similar to that of Hy(R, C, or ). One thus
considers 3 X 3 matrices over the Cayley numbers; the Cayley numbers admit
an involution x —» % (the analogue of complex or quaternion conjugation)
and the set of 3 X 3 Cayley number matrices (xij) such that Xy = X,.

J Ji
form the algebra Hs(Cay) with the mittiplication

aob + boa
abh = .
2

Hs(Cay) maey be considered as a (27-dimensional) Jordan algebra over the
reals; it is an exceptional algebra in the sense that it iz (up to
isotopy) the only simple Jordan algebra over the reals which .is not
special, This algebra was discovered by Jordan, von Neumann and

Wigner [1]; that it is exceptional wus established by Albert [1] shortly

after its discovery.
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3. The Automorphism Group of a Jordan Algebra; the Structure Group

and Isotopes,

A number of Lie algebras (and corresponding Lie groups) may be
associated with a given Jordan algebra (see, for example, chapters VI and
VIIT of Jacobson [1]). Two particular Lie groups play an extremely
important role in the theory of Jordan algebras, and these will be discussed

now.

Consider the set Hom(A,A) of all linear transformations of the vector
space underlying a given Jordan algebra A, and consider the Lie group
GL(A) of all non-singular linear transformations in Hom(A,A). The

automorphism group Aut A of A is defined by:
Aut A := {W e GL(A): W(ab) = (Wa)(Wb) for all a,b € A} ;
as closed subgroup of GL({A), Aut A is a Lie subgroup of GL(A).
One can define a larger subgroup of GL(A) leaving the algebraic

structure of A invariant in a weaker sense than Aub A: namely, the structure

group I'(A) of A defined by:

T(A) := {W e GL(A): W(ab) = Wa_ﬂl_:?lb (with £_w= We ¢ T(A))
ﬁ“Q
for all a,b € A} ;
F'(A) is a cloged Lie subgroup of GL{A). The elements of I'(A) are
"automorphisms up to isotopy": i.e., W e I'(A) is an isomorphism of A onto

some isotope of A; the subgroup Aut A of I'{A) is neatly characterised thus:

Aut A = {We l(A): We =¢e}.

One remarks here that (essentially as a consequence of the

fundamental formula) P(a) € '(A) for a € I(A); consequently P(a) € Aut A
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iff Pla)e = e, i.e. iff 82 = e, The group Pl(A) < T(A) generated by all
the P(a) with a € I(A) is called the inmer structure group of A; Fl(A) N Aut A
is the group of inner automorphisms, Finally the special structure group

Sr'(A) is the subgroup of I'(A) of elements with determinant + 1.

It may be shown (cf. Braun and Koecher [1], chapter IX) that the Lie

algebra of Aut A is the derivation algebre Der A of A defined by:
Der A := {W ¢ Hom(A,A): W(ab) = (Wa)b + a(Wb) for all a,b € A} ;

moreover the Lie algebra of I'(A) is the direct sum Der A @ L(A) where L(A)
denotes the set of left multiplications L(a) for a € A.  (The Lie algebra
multiplication in Der A and L(A) is the usual Lie bracket [S,T7] = SoT - To S
defined for any S,T € Hom(A,A).) The Lie algebras Der A and Der A @© L(A)
were treated by Jacobson [6] in 1950 and Meyberg [3] in 1966; one very
interesting result in this area is the following realisation of two of the
exceptional Lie algebras (and hence of the corresponding exceptional Lie
groups). For the exceptional Jordan algebra Hi(Cay), the Lie algebra

Der (Hs(Cay)) of Aut (H,(Cay)) is the exceptional Lie algebra f, ; the Lie
algebra of SI(H,(Cay)) is the exceptional Lie algebra €g (One adds that
the derivation algebra of the Cayley numbers themselves is the exceptional

Lie algebra g,.)

An important property of the structure group is the following result

(cf. Braun and Koecher [1] Satz XI. 2.U4):

Theorem IT.10:  (Recall Theorem I.13 which asserts that the set I{A) of

invertible elements in a Jordan algebra A is a topological space - indeed

a differentiable manifold; I (A) denotes the topological component cf

1

T(A) which contains the algebraic unit e).
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For a Jordan algebra A, the identity component T (A) of the structure

group I'(A) acts transitively on I (A).

Mention is made of some work by Meyberg [2] on the relationship between
the structure group and isotopes: namely, he proved thaet a central-simple
Jordan algebra of given dimension is determined up to isotopy by its

structure group. (The centre Z(A) of a Jordan algebra is defined by:
Z(A) 1= {z € At L(a)oL(z) =L{z)oL) ¥or all a € A} ;

a simple Jordan algebrs is called central-simple if Z(A) = TRe. Simple

formal-real Jordan algebras are always central-simple.)

Further work on isotopes and mutations has been carried out by Helwig [1]

and [4] - ef. also Braun and Koecher [1], chapter V.
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L, Jordan Algebras and Symmetric Spaces

(i) Max Koecher discovered the relationship between formal-real Jordan
algebras and Hermitian symmetric spaces; details of his results are given
in Koecher [1]. A paper by Koranyi and Wolf [1lprovides a characterisation
of those Hermitian symmetric spaces realisgble by Koecher's construction in
terms of Jordan algebras, Related studies of certain Siegel domains were
made by C. Hertneck [1] and U, Hirzebruch [1]; cf. also Resnikoff [1],
Eirzebruch [3] also studied the description of the two exceptional

(Hermitian) bounded symmetric domains in terms of Jordan algebras.

A few results in this area will now be quoted. Consider a formal-
real Jordan algebra A: the complexification of A is defined by

AC := A+ J=1A; the map "exp" is defined on A (and on AC) by

expa:=e+a+-2-l-.,-a2+3-1Ta3+

the topological component of I(A) containing the algebraic unit e, Then

eee « I, (A) denctes, as in Theorem I.13,

exp \/TI-A is a compact Riemannian symmetric space whoge non--compact dual is
simply exp A = IO(A) (vith metrics naturally defined on thege manifolds

in terms of the Jordan algebra structure of A.) Moreover in this case

the "half-space" A + J-1 I,(A) admits a Riemannian metric with which it is
a non-compact Hermitian symmetric space; the work of Koranyi and Woili [1]
shows that, in terms of complex anelysis, exp J-1a may be interpreted as the
Bergmann-Shilov boundary of the bounded symmetric domain corresponding to

the half-space A + J=1I5(A).

The results Just mentioned are a sophisticated generalisation of the
following exceedingly special case: A = IR. exp \/:I R is the unit circle
whose non-compact dual is exactly exp R = Io(R) = {x ¢ R: x>0} ; the
half-space R + \/:IIO(]R) is just the usual "upper half" of the complex

plane. Via stereographic projection this upper half-plane is realised as a
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hemisphere (without equator), which may be mapped onto the interior of the
unit disc in the complex plane; the Bergmann-Shilov boundary of this (disc)

domain is exactly the unit circle, i.e. exp\/:f R.

(i1) 1In 1965 U.Hirzebruch [2] presented results on the correspondence
between formal-real Jordan algebras and compact Riemannian symmetric spaces
of rank one. For a formal-real Jordan algebra A consider the set Il(A)

of "primitive idempotents" in A defined by:

I,(A) :={cer: (1) PF=c
and (2) if e = ¢, + ¢, with c,c, =0,
2 _ i o2 -
e, =c and ci =c,,

then cl =0 or c. =0 } .

Hirzebruch showed that for a simple formal-real Jordan algebra the set

I,(A) is a connected differentiable manifold admitting a Riemannian metric
defined in terms of the "trace form" X on A (for a,b € A, A(a,b) :=TrL(ab));
on a formal-real Jordan algebra A is positive definite. Since, moreover, X
is Aut A-invariant, it may be shown that automorphisms of A are isometries

of the Riemannian manifold I,(A); furthermore, Il(A) is a Riemannian

symmetric space with multiplication p (in the sense of Loos) given by:
u(c,d) 1= Ple - 20)4,

j.e. the symmetry at c ¢ IlCA) is the automorphism P(e - 2¢). Hirzebruch
showed that Il(A) is in fact a compact Riemannian symmetric space of

rank one.

Conversely, by explicit construction he demonstrated that each compact
Riemannian symmetric space of rank one could be represented as Il(A) as

above for some simple formal-real Jordan algebra A, Hirzebruch makes some
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remarks about the geodesics of these particular symmetric spaces, using the

Jordan algebraic representation to expliclitly study a given geodesic,

To give one example of the correspondence just discussed, consider
for r 2 3 the simple formal-real Jordan algebra Hr(IR) defined on the set
of symmetric r X r real matrices (cf. "Type (i)" in Section 2); by standard
results on Jordan algebras the ccrresponding compact Riemannian symmetric
space of rank one Il(Hr(IR)) is the (n-1)-dimensional real projective space

P _,(R).

(ii1) An elegant and comprehensive investigation of the interplay between
Jordan algebras and symmetric spaces is given in a paper by Karl-Heinz
Helwig [6], who inter alia constructs in a unified way via Jordan algebras
all the Riemannian symmetric spaces treated by the authors mentioned in
parts (i) and (ii) above (with the exception only of the two exceptional
bounded symmetric domains considered by Hirzebruch [3]). Indeed Helwig
realises (in a manner to be explained in more detail below) all the

clagsical Riemannian symmetric spaces of non-compact type, all compact spaces
of rank one, all the Grassmannians, the compact dusls of the Siegel domains
of types I, II and IIT, and the (compact) unitary, orthogonal and

symplectic groups.

The method of Helwig's construction is as follows: given a Jordan
algebra A together with an involutive automorphism J of A (i.e. J € Aut A
and J2 = idA), one defines the following subset of the set I(A) of
invertible elements in A:

T(A,T) := {a e I(A): a™t =Ja} .

It may be shown that I(A,J) is equivalently defined by the zeros of a certain
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set of polynomials (naturally related to the Jordan algebra structure of A),
whence I(A,J) is shovm to be a differentiable manifold - indeed an algebraic
variety in the real vector space underlying A. The topological camponent
of I(A,J) containing the unit e of A is denoted I (A,J). In terms of the
quadratic representation (cf. Definition I.t(c)) a smooth multiplication p
is defined on I_(A,J) by p(a,b) = P(a)b™t, and I, (A,J) endowed with W is
in fact a symmetric space in the sense of Loos (cf. Definition II.3; also

Theorem I.13).

Consider now an element W € I'(A), the structure group of A (cf.
‘Section 3); then, defining w := (We)™®, W is an isomorphism of A with its
isotope Aw; also JW }= JP(w) is an involutlve automorphism of Aw' Now

the following natural Lie subgroup of I'(A) is introduced:
r(a,g) := {Wwerl(A): WoJ = onw} ;

L (A,J) denotes the identity component of I'(A,J).

One recalls that Der A @ L(A) is the Lie algebra of I'(A) (cf.
Section 3); 1ts subalgebra which is the Lie algebra of I, (A,J) turns oaut
to be the following:

Der(A,J) @ L(A-)
where Der(A,J) := {D e Der A: DJ = JD}

and L(A-) := {nL(a) e L(A): Ja = -8} .

Helwig establishes that I (A,d) is a transitive Lie transformation
group of I,(A,J), the isotropy subgroup at e being K := Aut A N I_(A,J),
and IO(A,J) is diffeomorphic to the homogeheous space of Lie groups
I (A,J)/E. This representation plays a useful role in studying the

symmetric space I (A,J).
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Being a symmetric space in the sense of Loos, IO(A,J) admits a
canonical affine connexion (cf. Section A.3, Theorem IT.L), Helvwig
proceeds to show how this connexion V, its curvature and geodesics may be
expressed in terms of isotopes of A; 1in particular, his interpretation of
V is exactly that presented in Theorem IV.1 of this thesis (cf. remarks on
Chapter IV in the INTRODUCTION). One remarks that for a € I (A,J) the

(geodesic) symmetry s, is given by:

sa(b) = P(a)o™ = P(a)db = JP(a)™ = J _, (b).
a8

In general, of course, IO(A,J) is not a Riemannian symmetric space;
but further restrictions msy be placed on the algebra A such that IO(A,J) does
admit a Riemannian metric with which it is Riemannian symmetric, The
Riemannian metricsconstructed by Helwig are defined in terms of the trace
form A - namely, the symmetric bilinear form defined on A by
A(a,b) := Tr L(ab); the analogous form on the f-isotope Ap is denoted A :
in fact Xf(a,b) = Ma,P(f)b). A Jordan algebra is semi-simple iff A is
non-degenerate; in particular, for a formal-real Jordan algebra A is positive
definite. Therefore, for example, given a formal-real Jordan algebra A, a
Riemannian metric g on I (A,J) may be defined as follows: for a point
q € I,(8,0) < 1I,(A), the tangent space to I (A) at q is identified
naturally with Aq‘l and the tangent space to I (A,J) at g is identified

with the (-1)-eigenspace of A _. under the involutive linear transformation
q

1
J ., = JP(g"*); then
q
gq(X,Y) = xq_l(x,y) for X,Y € (I (A,J) )q
defines the Riemannian metric g on I (A,J). I,(A,J) endowed with g is then

& Riemannian symmetric space: for each a € I_(A,J) the (geodesic)symmetry

J .; 1is an isometry with respect to g (this follows from standard properties
a
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of At c¢f. for example Chapter V of Braun and Koecher [1]). Actually a
construction similar to the above may be applied to yield a Riemannian
symmetric space structure on IO(A,J) for a wlder c¢lass of algebras than the

formal-real cnes; the details are given in Helwig [6].

Helwig [6] studies extensively the Riemannian symmetric spaces of the
form I (A,J). He presents algebraic conditions sufficient that I, (A,J)
be an irreducible symmetric space and conditions sufficient that it be
simply-connected; he also gives a (Jordan) algebraic characterisation of
those Riemannian symmetric spaces IO(A,J) which are Hermitian symmetric.
From its definition IO(A,J) is shown to be a submanifold of & sphere; Helwig
considers the question of when IO(A,J) is minimally embedded in this sphere
(in this regard cf. the occurrence of Jordan algebras in minimal immersion
problems considered by Kuiper[1]). Finally Helwig shows by explicit
construction that all the Riemannian symmetric spaces mentioned in the first
paragraph of this part (iii) can indeed be realised in the form I,(A,J) for

some Jordan algebra A and some involutive automorphism J of A.




71.

CHAPTER III
SYMMETRIC SPACES OF ORDER k

1, Basic Definition and Statement of Results

Generalisations of the notion of symmetric space have been made by
several mathematicians, as discussed in Section A.t of the previous chapter,
It will be noted, however, that generalisations of the algebraic treatment
devéloped for symmetric spaces by Loos (cf. Section IT A.3) have not been

examined; the present chapter develops this hitherto unconsidered topic.

Throughout this chapter k denotes a fixed integer =2. The following

bagic definition is introduced:

Definition IIT.1: (k is an integer =2).

A symmetric. space of order k is a connected differentiable (Cm) manifold M
endowed with a smooth (Cm) multiplication p «:t M X M —» M satisfying
(with the definition of 5 M - M by sp(q) := p(p,q) for p,q € M) the

following four properties for all x,y € M:

(1) s, (x) = x

(2) s;f(y) =y (where si denotes the k-fold composition of sx)
08 = oS

(3) 5, y Ssx () ° ®x

(4) x is an isolated fixed point of S, -

Definition IIT.1 encompasses as the special case k = 2 the (connected)

symmetric spaces as treated by Loos [1], [3] (cf. Definition II.3); indeed,
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all the definitions and results of this chapter reduce in the case k = 2
elther to simple observations on symmetric spaces or to the corresponding
important definitions and results appearing in the works of Loos. The
preceding comment having been made, it will not be repeated throughout the

subsequent pages.

. Before stating the results to be proved in this chapter, some remarks
and definitions are in order; throughout the whole chapter, M denotes a
symmetric space of order k with multiplication u, as in Definition III.1.
Pirstly, the definition of the "left multiplication by p", sp, introduced in
Definition IITI,1, will be restated together with the corresponding definition

of the "right multiplication by p":

Definition TIT,2: With the notation of Definition III.1 for a symmetric space

of order k:

(a) For p € M the "left multiplication by p" is the map sp t M- M

defined by sp(q) := u(p,q) for q € M,

(b) For p € M the "right multiplication by p" is the map rp': M- M

defined by rp(q) 1= u(q,p) for q € M,

It follows from property (2) of Definition IIT.1 that for each x € M

the left multiplication B is an invertible mapping; its inverse sxl is

(k-1)

givgn by Sy

, the (k-1)-fold composition of s,e By the ¢” nature of the

multiplication u, s (for each x € M) is a (C”)differentiable map; so,

therefore, is sik_l)

and hence s_ is a transformation (i.e., ¢ diffeo-
morphism) of M. A conseguence of the preceding remarks is that for a

glven x ¢ M the differential (dsx)p : Mp - Msx(p) is defined at each point
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P € M, and the following definition is made:

Definition IIT,3: The (C”) tensor field 8 e TT(M) is defined by

8, = (dsx)x for x € M,

By property (1) of Definition III.1 (namely, sx(x) = x), (dsx)x is
indeed a linear transformation of Mx into Mx ; moreover, (dsx)x is
¢” in x because the multiplication is Cw. Thus 8 is well-defined as an

element of Ti M).

Notice further that Sx is non-singular for each x € M; 1in fact,

property (2) of Definition III.l1 implies that (sx)k =I_, the identity

1inear transformation of M,, and hence (Sx) (k-1) is the inverse (Sx)'l

of Sx' From property (4) of Definition III.1 and Theorem I.9 it follows,
moreover, that (for each xe M) Sx has no eigenvalue +1; hence

(Ix - Sx) : Mx - Mx is & non-singular linear transformation and the following

definition is made:

Definition ITT.M: Tet xeM and Z ¢ Mx'

Define Z := (Z)~ := (I, - sx)'l(z).

Analogously to the case of the left multiplications, it follows from

the ¢ nature of the multiplication p that (for each x € M) the right

differentinble wmap,
multiplication ro is a I—;t!zms#@mtmn:oﬁd; and hence the differential
(dr.x)q : Mq - er(q) is well-defined for each q € M.

The next definition introduces, for any given vector in any given

tangent space of M, a related vector field on the (whole) manifold:
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Definition IIL.5: Let ZeM . Define the vector field Z* e TL(M) vy
Z* t= {dr - z) ¢ € M.
(2*)y { sxl(y)} (z) for y

Z* is indeed a well-defined ¢ vector field: firstly (z*)y as defined

i1s an element of M hecause r _ x) = plx, st
. . le<:V)( ) = ulx, 5" (v))

s (57 (¥))

Y
and secondly (Z'*)y is ¢ in y because the multiplication p is ¢ .
In order to demonstrate the validity of the next definition, now it

will be shown, as a lemma, that given Z ¢ Mx the eveluation of the vector

field (Z)* at x yields exactly Z itself:

Lemma: TLet xeM and Ze M. Then ((%)*)x = Z.
Propf: First it is shown that for eny We M :

SPirenpoman X

N
Let n denote the dimension of M and chocse local coordinates {u1 }
1=

defined on & coordinate patch U containing x (ef. Section I.1) and define

WJ t= Wuj for j = 1,25...,n; then W = W ( 5—8-{ > . Now for any f € F(M):
ut /x

{sx(w) + d.rx(W)}f = {dsx(w) + drx(W)}f

W(fo sx) + W(forx)

[

--Wj'<-—a-?> (fos_ + for)
aul x X - X
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() e en () w

But recall that u(y,y) = y for all y € M by property (1) of Definition III.1;

that is, defining the C" map A : MXM - M by A(y) := (y,y) fory e M,

HoA = J‘.dM.

For y e Uy, poA(y) =y e U, so that u oAIU maps U onto U and, the

coordinate functions u’ (for j = 1,2,...,n) being defined on U, one
obtains:
J = wlad
u oquIU = u on.dMIU
= wo id.U 5
3 . i
hence <—-—> (wWopoa) = 8
du™ 1
x

(where 5‘2 =0 if i#£j and 5; =1 for i=1,2,...,n).

It now follows from the differentiability of u s K and A that:

k) . . j
— J(Wos +wor) = & ; (2)
dut 7 x X :

1

in more detail, observing that u’ opoA(y) = w ou(y,y) for y € M and

recalling that w(x,y) = sx(y) and p(y,x) = rx(y), the term

<"'j'_' > (v’ o sx) in (2) arises from differentiating the expression

u? ou(y,y) with respect to the "second y" leaving the "first y" fixed at the

P .
value x and the term ( -3 > (u'J o) rx) arises from differentiating the same

expression with respect to the "first y" leaving the "second y" fixed at the
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value x; that the sum of these two partial derivatives glves the value of

)
( -3 ) (u'j opoA) follows from the theory of differentiable functions of
du
X

several variebles (cf., for exasmple, Burkill [1]).

Using identity (2) in (1) it is immediate that:
. of
ACD
1
ou x

. of
W'J(-'—-.'>
Bu']
X

= Wf .

{s (W) + ar (w)}£

But this last result holds for each f € F(M) and so indeed:

sx(w) +dr (W) = W forall We M, . (3)

This result having been established, the proof of the lemma proceeds
as follows: from (3) it is clear that:

(Ix - Sx) (W) = d.rx(W) for all We M . ()

Recalling now that (Ix - Sx) is a non-singular linear transformetion of Mx
and that Z¢ M, put W= (Ix - sx)"l(z) in (%) to obtain:

Z dr {(1_-8.)7*(2)]

dr_ (Z) by Definition ITI.h4

((2)*)x by Definition TII.5 and the fact that

sx"l (x) = x.

'J."his completes the proof of the lemma.

In the following definitlion juxtaposition of wector fields has the
{conventional)meaning as described in Section I.l. The notation introduced
in this definition is suggestive of an affine connexion: this is justified

in Theorem III.1.




e

Definition IIT.6: Let X,Y € L (M).

Define VY e (M) by:

(VxY)x = XY - Yx((xx)")* for x € M,

Using the above lemma, it is now shown that V&x is well-defined as
en element of T'(M). Firstly it is shown that for X,Y € T*(M) and x € M,

{.n
(V&I)x € Mk. As in the proof of the lemma choose local coordinates {ul}. 1
ie=

on a coordinate patch U containing x, and define for i = 1,2,,..,n the

functions X* : U~ R, Y :U—> R, A': U > R by X*(u) := X u',

Yi(u) = Yuu1 and A'(u) := (((Xx)'")*)uui for u € U; then:

- r ()
u
u ﬁm(%)

~\K i / _é_ .
(M, = 8w (= >u for ue U

”~
it

<
]

Because X,Y and ((Xx)N)* are elements of T1(M), the functions Xi, Yi, al

are elements of F(U) for i = 1,2,...,n.

Observe (cf. Section I.1):

=) 0 (R) ()

X

)0 (5) (51)

X

i J
XY X (x)Y (x)< 3

v ()% (x) (
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because the "dummy" indices "i" and "j" in the first term can be inter-
changed without altering the value of the first term itself; +this is the

case because, considered as differential operators on F(U),

( du' du > < duldut >

Also:

“oner () w0 (3) ()

X

v ()% (x) < 3 > v (x) < and > <aua >

(((x))¥), o

¥ ((X)7)*

it

because AY (x)

= Xx u? by the lemma

xJ(x) .

Hence as defined in Definiticn III.6 (ka)x is given by:

(V¥), Xy - ¥ ((x)7)*

- vHxd (x) < 5;;;3 ) + % (x) ZE; ) (53 >
X ) X
- v ()% (x) < _;—S;— ) - YH(x) < zgg :l ( 523 )

{eor (), 2 (32 )} (55)
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Thus (V&X)x is seen to be an element of M_ .

Moreover, as pointed out above, the functions Xi, Yi and Ai are
in F(U) for i = 1,2,...,n, and therefore from the expression just derived
for (VkY)x it is seen that (V&X)x depends on x in & C fashion. Thus
V.Y is well-defined by Definition ITI.6 as a ¢” vector field on M -

X
i.e. a8 an element of T1(M).

The basic definitions and notation for this chapter have been
introduced in the preceding few pages; the results to be established are
now stated in the form of two theorems, the proofs of which occur in the

subsequent sections of this chapter.

Theorem ITI.1: Let M be a symmetric space of order k. Then:

(a) M admits an affine connexion V defined (by Definition III.6) in
terms of the multiplication u on M; moreover for each p € M the
left multiplication sP is an affine transformation of M with

regpect to V .,

(b) M endowed with the affine connexion V is an s-regular affine
k-symmetric space; conversely, every s-regular affine k-symmetric

space admits the structure of a symmetric space of order k.

(c¢) M endowed with the affine connexion V is affinely diffeomorphic
to a reductive homogeneous space of Lie groups GO/H endowed with
the canonical cornnexion of the second kind; hence, in particular,

V is a complete affine connexion on M.

In the proof of part (c) of Theorem III.1 the group Gy is explicitLy

taken to be the identity component of the Lie group of those V-affine
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transformations of M whose differentials commute with the tensor field S
(of Definition III.3); this group G, acts transitively on M (ef. the
proof of Theorem III.1(c)) and H denotes the isotropy subgroup of G, at
some point p, € M, Congider now the automorphism 6 of GO defined by

for g ¢ G 6 is an automorphism of order k.

o(g) := s, 0&0 s;l o}

(o] o]

Gg = {g e Gy : 6(g) = g}, called the "fixed point set of 6", is a closed
Lie subgroup of G,; let (Gg)o denote the identity component of Gg .

Then in the repfesentation of the symmetric space of order k as the
homogeneous space GO/H, the isotropy subgroup H is characterised by the

second theorem thus:

Theorem III.2:

(a) Let M be a symmetric space of order k. Then with the notation
introduced above:

(Gg)oc H < Gg .

(b) Conversely, given a connected Lie group B, a continuous automorphism

T of By of order k, and a closed Lie subgroup C of By satisfying
T
(By)g < C < B
(where the Lie group B; i= {b e By : 7(b) = b} and 6B;)oldenotes the

identity component of Bg), then the homogeneous space Bo/C admits

the structure of a symmetric space of order k.
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2, The Affine Connexion V Admitted by M.

(Proof of Statement (a) of Theorem III.1).

(1) To prove the first part of Statement (a) of Theorem ITI.1 it must
be shown that Definition III.6 defines an affine connexion on M, Since
VY e T+(M) for X,Y € T1(M), it remains to show that conditions (1)
through (4) of Definition I.2 are satisfied; these conditions on V are
successively checked and shown to be satisfied by showing that for all

Xy X35 Xpp ¥, ¥y, Y, € T!(M) and all f € F(M) the appropriate vector

fields coincide at each x € M:

Condition (1):

(T (v, + Y0}, = X (¥, +71,) - (¥, + 1) ((x))*

= XY +XY - (Yl)x((xx)f)* - (Yz)x((xx)N)*

|4

1
vy}, + (%Y1 .

gondition (2): Using the fact that the operations signified by "~"

and "*" (of Definitions III.4 and III.5) are IR-linear one obtains:

1§

fV(xl+x2)Y}x (x, + x2)xY - Yx(((xl * Xz)x)N)*

i

(%)Y + (k)Y -y (((x) )7+ ((x,),)7)*

(%) X + () ¥ = ¥ (((x))7) - ¥ (((x;) )™)*

it

{vxly}x + {VX2Y}x .
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Condition (3): Again using R-linearity of the "~" and " *" operations:

{(Vedt, = ()Y - ¥ (((£x) )7)*
= {e(x)x v - ¥ [£0c)(x )™ ¥

= £EXY) - ¥ {£(x) (X )™)*)

i

£(x) (X, ¥) - £(x){r, ((x)7)*)

= f(x){va}x .

Condition (4): The derivative nature of juxtaposition of vector fields
(cf. Section I.1) implies the required derivative nature of V&Y in Y,

as follows:

(g (e0)} = X (£Y) - (£7)_((x )7)*

]

(X O, + 20X Y] - (26, H(x )7

it

(x£) ¥, + £ X ¥} - ey ((x )7)*)

{(Xf)Y}x + f(x){vky}x .

This completes the verification that conditions (1) through (4) are
satisfied, so completing the demonstration that Definition ITI.6 defines

an affine connexion V on M,

(11) To finish the proof of Statement (a) of Theorem IIT.1l it must be
shown that for given p ¢ M, sp is an affine transformation of M with

respect to V.

Given two vector fields X,Y € T*(M) the differential operator I'(X,Y)

(acting on elements of F(M)) is defined in terms of the affine connexion V
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by ['(X,Y) := VY - X¥; as remarked after Definition I.2 a transformation
¢:M - Mieg an affine transformation of M with respect to V if and only if

{rx, )} foo = {r(ae(x), d¢(Y))}¢(x)f (5)

for all X,Y € T1(M), all £ ¢ F(M) and all x € M. Explicitly in the

present case:
v o ~y %
raonl, = -y (X)),

and now the identity (5) will be verified for ¢ = sp .

The left-hand side of (5) is given as follows for ¢ = s
~y R
=¥ (X)) *}(5o s5)

- 4 ~AM 2
Y (X )")*(fosp)) .

D :

{I‘(X,Y)}xfo sp

The function enclosed in the braces will now be examined; its value at 2
point y € M is given as follows:

(((Xx)”)*)y(fo 5p)

i

)

(Xx)"'(fo 85,0 rs;l(y)

~ f ..
(Xx) ( °Tstlos y)

os_) (where q := s (x))T
q p P P

it

dsp((Xx)N) (for ).

1
Sq os.p(_y)

T The Definition ITI.2(b) of right multiplication and repeated application
of property (3) of Definition III.l show that for all z e M:

(z)

_.l,
s or _ s _os_os ty)
P st (y) Pz X

= a8, ¢, 70 s_os_*(y)
sp\z) P~ Sx

ssp(z) © 8,0 s)(ck'l) (v)

- (k-1)
= 8 08y

s, (2) osp(y)  putting q := s (x)

P '-1 o
= Ssp(z)o sq. © DP(Y)

= r, SP(y)osp(z) ;

that is s or = r o _ 08 .
© R sy) T sgtosy(y)

.
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Thus defining o ¢ F(M) by

aly) = as (K ))(for ) (6)

1

85" © 8p(¥)
for y € M, the left-hand side of (5) with ¢ = 85 takes the form:

{P(X’Y)‘}X fo SP = u--'f[x(x. (7)

Computing now the right-hand side of (5) with ¢ = g

s g (v))
{r(d.banJ,d pf_i).}

it

£ - h! s ( ~\H
s ()" dsp<Yx,{((d<p(xx)) )% £

= -ds (v ){(((as (x,)))7)¢}
= - I ((as,(x )" ¥)ttos }

The funection enclosed in the outer braces will now be examined: its

value at a point y ¢ M 1s given as follows:

I

{(((as,(x,))7)) e} o s (v)

{({as (%))~

spy) ™

- a K A Y P -
= dr ., p(y)((dap(xx,) )f by Definition IIT.5

84 08
of "*™ and

recalling g= gp(x),

).

({ds (X ) (for
2\ P x). )( salosp(_y_)

Thus, defining B ¢ F(M) by

: e e s (X V)9 for
Bly) = ((as (X ))"){for

Lot )) for y e M, (8)
q °85p\Y

the right-hand side of (5) with ¢ = s, takes the form:

,i"" - 3 v ~ ’-
[r‘uap(x),asp(f,,*sp(

—

i

f
W

o]

™
\C‘
~

x)

Now sp is an affine transformation provided that the left- and

right-hand sides of (5) are egual {for ¢ = sr); from (7) and (9) it follows

.
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that this is indeed the case provided that o and B denote the same function
in F(M). From the definitions of @ and B in (6) and (8), this is seen to

be the case if it can be shown that
as ((x)7) = (as (X, )7

a proof of this identity is now givern.

More explicitly (recalling the Definition III.4 of "~") what must be
shown is that:

: fv @ V=lf{y = (T _a -1 )
dsp{\Ix s.) (xx)} (.LS (x) 8 (x)) odsp(Xx)
D P
In fact the following (stronger) identity will be established:

dspr.; (Ix - sx)“l = (J:S (x) ~ 8, (x))'lo (asp)x .
D je

Because (IZ - SZ) is a non-singular linear transformation of MZ
(for each z € M), its inverse (IZ - SZ)'l can be represented as a linear
combination of the identity linear transformation IZ and the first (n-1)
positive powers of (IZ - SZ); this follows from the Cayley-Hamilton
Theorem (cf. Birkhoff and MaclLane [1]). Hence (Iz - Sz)'l can be
represented as a linear combination of Iz and the first (n-1) positive

powers of Sz’ thus:

(I, ~ 8,07 = og(2)I, + o (2)8, + .00 + anml(z)sgn_l), (10)

where the coefficients aj(z) depend upon z; it will now be shown, however,

that for z = x and z = s _{x), S_and 8 each satisfy (10) with

P X sp(X)

(XJ.(X) = CXJ(SP(X)) for ,j = 0,1,2,-0-,(1’1"1)1

Because (ds_ ) : M - M , .is non-singular (notice that indeed
p’x x sp\x)

-1 _ - (1’{—])\'
((ds,), )7 = (as{V)) .

n
)), therafore a basis {Fi) of M_ is mapped

sp(x

m
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,
under (dsp)x into a basis {dsp(Fi)}; of Msp(x)' Furthermore notice

=

that property (3) of Definition III.1 implies that rlsPoSx = Ssp(x)cn(dsp)x,

-1 _ ]
i.e. dspo S, 0 (dsp)x Ssp(x) (11)

From (11) it follows that if the linear transformations Sp and Ss (x) be
P
5 e e n n
expressed in matrix focrm relative to the bases {Fi}1=1 and {dsp(Fi)}1=1

respectively, then they are in fact represented by the same matrix, It is
manifest that if sp satiafies (10) with z = x with coefficients aj(x) then
8o does its matrix, but moreover this shows that the matrix representing

ssp(x) and hence ssp(x) itself satisfies (10) with z = Bp(x) with

coefficients aj(sp(x)) = aj(x). Thus, setting aj(x) = ad(sp(x)) = 8y,

J = 0,1,2,.-.,(1‘1—1),

1)

- . (n-1)
(Ix o~ Sx) a,on + alsx + aee t an"‘l(sx) (12)

(Isp(x) ) Ssp(x)rl i aoIsp(x) ¥ alssP(x) T ¥ an'.1(ssp(x))(n“1).

(13)

The following computation is now made:

- -1 _ (n-1)
dspo(Ix Sx) = dspc>(aon + a8, toees ¥ an—l(sx) ) by (12)

f

(n-1)
(aOIs (x) + alss (x) + see t an_l(ss (x)) )0 (dsp)x
P D P
by repeated application of (11),

" (ISP(X) - ssp(x))“lr;(dsp)x by (13).
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Thus the desired identity has been established, completing the proof
that spvis an affine transformation of M with respect to the affine

connexion V ,

This completes the proof of Statement (a) of Theorem III.1.
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3, The Relationship with s-regular Affine k-symmetric Spaces

(Proof of Statement (b) of Theorem ITI.1)

(i) First it will be shown that M endowed with the affine connexion V
(defined in Definition ITII.6 and examined in the previous section) is an

s-regular affine k-symmetric space.

By the results of the preceding section (summarised in Statement (a)
of Theorem III.1), the connected manifold M admits at each point p € M an

affine transformation, namely sp, with the following two properties:
(1) Sy has order k (by property (2) of Definition III.1)

(2) s, has p as an isolated fixed point (by property (4) of

Definition ITI.1).

Moreover, the tensor field 8 defined by Sn = (dsp)n for p € M is indeed a
differentiable (¢ )tensor field (cf. Definition III.3 and the remarks
immediately following that definition.) Hence M endowed with the affine

connexion V is an affine k-symmetric space (cf. Definitions II.8 and II.T7).

Furthermore condition (%) of Definition 1II.1 is exactly the
characteristic property of s-regular manifolds (cf. Definition II.9), and

so M endowed with V is indeed an s-regular affine k-symmetric space.

(ii) Conversely, consider a given s-regular affine k-symetric spaca M.

As follows from Theorem II.6', M is diffeomorphic to a homogeneocus
space G/H of Lie groups, where the isotropy subgroup H is a closed lLie

subgroup of & and G := {g € A(M,V) : Se(x) = B° sxcag"l for all x ¢ M},

|
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A(M,V) being the group of affine transformations of M, Identifying M

and G/H, G being a Lie transformation group of G/H (cf. Sections I.2 and

I.3(i)), one observes that the symmetry s 5 at a point a € G/H acts on
a

G/H as follows:

s _(vH 8 , = (vH here id- = identity e of G,
aH( ) a(eH)( ) v M v ?

i

ao Eef_ioa'l(bﬁ) because a € &,
= ao0f _oa tob(eH)
eH

= (a8 i a” )i for bWH ¢ G/H .
e

Define 7 : (G/H) x (G/H) -» G/ vy:

i (a, bit)

5 i (bH)

(a8 i a )i for aﬁ,bﬁ € a/ﬁ; (14)
e

it will now be proved that M endowed with this multiplication g is a

symmetric space of order k.

Properties (1), (2) and (4) of Definition III.1 are immediately
verified by a glance at Definition II.8 of an affine k-symmetric space;
M being s-regular, property (3) of Definition III.1 is satisfied because it
18 exactly condition (a) of the s-regular criterion in Definition II.9.
The manifold M is connected (cf. Definition II.8 of an affine k-symmetric
space and Definition II.7); so to complete the proof that M endowed with
is a symmetric space of order k it remains to show that the multiplication

ii is a differentiable map.

To show that 1 is differentiable at a point (af,bH) € (G/H) x (G/H)

consider local € cross-sections Wa : Va -» G and wb : VB - G wvhere
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Va, Vb are neighbourhoods in G/ of aH, bH respectively and Wa, Wb are

such that moVy =1 oV, =1 where % : G —» G/H is the C” map
a d‘Va ? b dVB

defined by 7(g) := g for g € G; such cross-sections exist (cf. Theorem
I.3(b)). It follows from (14%) that on v, XV (a neighbourhood of

(aff, vH) in (G/H) x (G/H)), @ is given thus:

ﬁlvava = ToBo (¥, X ¥) (15)

vhere ©: G xG — G is defined by B(c,d) := cEeﬁ c¢”d for c,d € G.
Observing that 0 is differentiable and recalling (as noted above) that T
and ¥ , ¥ are differentiable (c®), it follows from (15) (and from the
fact that the composition and direct products of differentiable maps are

differentiable) that ﬁlv y. 1s differentiable, and hence that [ is
a b

differentiable at (aﬁ, bﬁ). Therefore i is a differentiable
(c® = "smooth") multiplication, and the proof that M endowed with I is a

symmetric space of order k is completed.

This finishes the proof of Statement (b) of Theorem III.1.
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4, Symmetric Spaces of Order k as Reductive Homogeneous Spaces

(Proof of Statement (c) of Theorem III.1)

(i) It is first shown that M is diffeomorphic to a homogeneous space of

Lie groups.

A(M,V) denctes the group of all affine transformaticns of M endowed
with the affine connexion V discussed in Section 2; A(M,V) has the Lie
group structure (mentioned in Section I.3) with which it is a Lie
transformation group of M, Consider now the subgroup G of A(M,V) defined
by:

G = e A(M,V) :(a oS =S o (d for all € M} ;
{g € A(M,V) :( g)p a () ( g)p or all p };

b

since (cf. Theorem I.6) two affine transformations of a connected manifold
coincide if their differentials have the same action on at least one tangent
space, it follows (recalling that 8, 1= (dsx)x) that ¢ may also be deseribed
thus:

= c AM,V) : gos = og forallpe M}.
G {gca(M,V) : g 5, = Sy(p) 08 forallp }

From this description of G, condition (3) of Definition ITI.1 and the

result of Theorem III.1(a) proved in Section 2, it is clear that for sach

X € M the left multiplication S, ig a member of G. Moreover it follows,
because A(M,V) is a Lie transformation group of M, that G is a closed sub-
group of A(M,V); by remarks in the last paragraph of Section I.2({ii) snd the
first paragraph of Section I.2(iii), G therefore admits a ratural Tile group
structure with which, as a Lie subgroup of A(M,V), it ig a Lie transformation

group of M: from now on G will be considered a Lie group with thait structure.

It will now be shown thet G is locally transitive on M; i.e. that for

given p € M there exists a neighbourhood (of p) which is contained in C(p),
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the G-orbit of p. Given a point p € M consider the right multiplication rp;
as shown in the proof of the Lemma in Section 1 (cf. identity (4)):

(drp) I -~ Sp, & non-singular linear transformation of M.p (cf. the

P D
remark preceding Definition IIT.L). Hence, by the inverse function
theorem (cf. Theorem I.1) there exist neighbourhoods V, and V, of p such that

r|_ :V - V_ is a diffeomorphism.
py, 1 e

But observe that:

v, = rp(Vl)

Il

{rp(x) t X € Vl}

{sx(p) : x € Vl} because rp(x) = u(x,p) = sx(F)
< ¢(p) because 8, € G for each x ¢ V. < M,

So V, is a neighbourhood of p and V, < G(p); i.e., G is locally

trangsitive on M,

Now Theorem I.2 implies that therefore G is trangitive on M. Moreover
Theorem I.4 implies that in fact Gy, the ldentity component of G, is a
transitive Lie transformation group of M. Selecting a point py € M, define

the isotropy subgroup H of Go at p, by :
H:= {he G, : h(p,) = Pol s

because G ig a Lie transformation group of M it follows that H ig a closad
subgroup of G, and H will be considered as a Lie subgroup of Gb (with the
natural Lie group structure mentioned in Section I.2(ii) for a closed sub-
group of a Iie group). Then Theorem I.l implies that M is diffesmorphic to
the homogeneous space GO/H (endowed with the differentiable structure

described in Theorem I.3).
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From now on M and GO/H will be identified under this diffeomorphism,
which is explicitly given (cf, Theorem I.L) as the map 71 : Go/H - M

defined by:
n(gi) = glp,) for gHe G,/H ;

74(x) = g'H for x € M where g' is an element

of G such that g'(po) = X.

With M and GO/H so identified, the various structures on M are transferred
to Go/H; in particular, Go/H is thus endowed with the structure of a
symmetric space of order k (given already on M). The various maps, tensor
fields, the affine connexion, etc. thus induced on G,/H by the
corresponding obJects glven on M will be denoted by the same symbols; for

example, if 7n(gH) = g(py) = p for g € Gy/H, p € M, then

17tos o1 will be simply denoted by s

p gH ’

an"to SP odn will be simply denoted by SgH ’

and dn~t {Vdn(x)dn('f)} for X,Y € T*(G,/H) will be simply denoted by VXY.

~

(i1) It will be shown in this part (1i) that the homogeneous space G, /H
introduced in part (i) is in fact a reductive homogeneous space

(cf. Definition I.1).

Consider the Lie algebras g and h of G, and H respectively; since
H is a cloged Lie subgroup of Go, it follows that h is a subalgebra of g
and that in fact:

h = {X€g=exth€H for all -« <%t <=}, {17)
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Recalling that p, is the point in M = GO/H for vhich H is the

isotropy subgroup of G, and that sp is the left multiplication by p,, one
0

defines the following group automorphism of G,:

Definition III,T: With G, and s_  as above, define 6 : G, = G_ Dby:
Po o) o

1l

for ge G_ .
o o

) =85 0gOS_
(g) py © 80 5y

Clearly 6 = AdG(Sp )[Go (cf. Section I.2(iv)); because AdG(sP ) is
o o

a diffeomorphic group automorphism of G (and maps the group identity e into
e itself and consequently maps the identity component G, onto G, itself),
therefore 6 is a diffeomorphic group automorphism of Go. @ is of order k,
becsuse s is of order k. Notice also that 6 leaves the subgroup H

Po
pointwise fixed; for if h € H, then:

hos = 8 oh Dbecause he¢ G, G
Po h(pe) . o™
= 8 oh because h € H = h{py) = Dy »
o
-1
whence s. ohos = h;j
o Po
ipe- e(h) = ha

Before proceeding further notice that h mey be characterised in terms

of @ as follows:

h = {Xeg: de(xe) = xe} (18)

For if X € h then exp tX, the integral curve of X (defined for all
-0 <t <o), lies completely in H by (17); therefore, by the remark ir the
preceding paragraph, exp tX remains pointwise fixed under 0, and consegquently

dG(X’e) = Xz  Conversely if for X e g, de(X,) = X, consider the integral
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curve exp tX in G,; the action of sp on the curve {exp tx}(po) in
o]

M= G,/H is given by:

s o{exp tX s o {exp tX}os™* because s~ * =
oo {exp X} (p,) - {exp tx} po(po) a po(pg) Pos

{6(exp tX)} (p,)

{expt a6(x)} (p,)

{exp tX}(Po) because d8(X) = X,

where the lagt two equalities are obtained by noting that because 6 is an
automorphism of Go, a6(X) is an element of g, and recelling that such a
left-invariant vector field is determined by its value at e (and in this case
d6(X,) = X

o by hypothesis, whence d8(X) = X). So the above equality shows

that the curve {exp tX}(po) is pointwise fixed under Iy whence by the
o

fact that py, is an isvlabed Ffixed point of s, (¢f. property (4) of

o
Definition ITL.1) it follows that {exp tX} (po) = p, for -w <t <o and
consequently {exp tX} e H for -= <t < ; therefore, by (17), X € h.

This completes the verification of (18).

Denote by gc and Qc the complexifications of g and h respecitiwvely,
(de)e, the differential of 6 at e € G, may be considered as a linear
transformation of g by the standard identification of g with (Go)e;
interpreting (de)e in that way, denote its C-linear extension to §C by ©:
thus for a typical elementtX~F J:iY) € gc (vhere X,Y ¢ 5),

o(x + V-1Y) = (de)e(x) + =1 (de)e(Y). Observe that the results of the
preceding paragraph imply that:

0 = [z g8 :o2) =2l
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Because 8, and therefore (de)e, is of order k, it follows that

6" = I, the identity linear transformation on g . Note that

k

6 -I=(0~-1)(6-aJI)... (8- akI) where «

29 Ogr eeey O are the

distinet kth roots of unity different from + 1; it is then clear that:

(6 -1)(6 - a,I) ... (8 - akI) = 0;

therefore (cf. Birkhoff and Maclane [1]) gC is the direct sum of the
eigenspaces corresponding to the eignevalues +1, Uy gy seey & of ©.
From the remark in the previous paragraph, Qc is exactly the (+1)-eigen-

space; the following notation is introduced for the other eigenspaces:

Definition ITI.8: With g€, @ and @, (£ =2,3,...,k) as above, define the

vector subspaces m, of gc by

m, = {2egl:o0(2)= a2} for f£=2,3...,k

Then the ©-eignespace decomposition of gc described above is expressed

by the identity:

Hence, since h = QC Ng and g =_gc ng:

g =h®{@me..omn)ngl,

and the‘following definition is introduced:

Definition ITI.9: With the above notation define the vector subspace

m of g by:

m = (m, ® ... ® Qk) Ng.

Then g = h © m; it will be shown now that Ad, (H)m € m, thus
o

establishing that GO/H is a reductive homogeneous space {cf. Definition I.1).
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Consider a vector X € m; 1t is (uniquely) expressible as:

X = X2+...+x.k

where Xz em, Ng for ! =2,3...,k. Now for a fixed value of / and for
a given h ¢ H the action of Ad, (h) on X, will be examined: exp tX, is a
o

ourve through e (at t = 0) with (Xz)e as tangent vector at t = 0.

Now Ad, (h)(exp tX,) = h{exp tX,)h™?%;

4

therefore G{AdG (h) (exp tXZ)} 6(h)6(exp txz)e(h)'l because 6 is an
o

automorphism of Go ’

AdGo(e(h)){e(eXP tX,) }

AdGé(B(h)){exp t.46(X,) }

AdGo(h){exp t.dG(Xz)} because 8(h) = h.

Consequently:

(a0) oady (h){(X,) } = Ad; (n)o (a0) {(x,) ]

whence  ©{Ad, (h)X,} AdGO(h){G(XZ)}

AdGo(h){ale} because X, € m,

whence AdGo(h)xl €cm, .

Of course AdGo(h)Xz € g, 5o that:

AdGo(h)Xz em, Ng for each £ =2,3,...,k,
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It follows that:
k

Ady ()X = Z Ad, (h)Xz em for each he¢H and X € m;
) o} -
=P

i.e. Ad, (H)m C m.
J'o - -

Thus a subspace m of g has been defined such that g=h @ m and

Ad, (H)m < m; .therefore G /H is a reductive homogeneous space.
o

Rgmgrk:

Notice firstly that the restriction elg of @ to g 1is given by:
el-g = (a0), = AdG(spo) i g g

notice glso that the restriction elm of © tom € g preserves m (g consisting

off sums of eigenvectors of © lying in g). Consequently Ad,,(sp ) preserves m;
_ . G P, L

lee. Ad (s Jm < m.,
i.e G( po)__ m

(0f course in the case when sp € H < G, this latter result follows
o

directly from the AdG (H)-invariance of m established just above).
o]

(1i1) In this part (iii) the proof of Statement (¢) of Theorem IIT.1 will

be completed.

Under the diffeomorphism 1 : GO/H -» M  the affine connexion %/
defined on M induces an affine connexion (also denoted V) on Goﬁi
(cf. remarks at the end of part (i) of the present section); G /H sand
M are then affinely diffeomorphic, It will be shown here thut this

connexion on Go/H is in fact the canonical connexion of the second kind on
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GO/H, a reductive homogeneous space with the A‘dG (H)-invariant
o

decomposition g = _Y_l ® m of the Lie algebra g of Go as introduced ir}

part (ii) above,

In order to examine the connexion V on GO/H it is necessary to obtain
explicit expressions for the left and right multiplications and the tensor
fleld S on GO/H related to ils strucbure as a symmetric space of order k.

For notation refer to the concluding remarks in part (i) above. Firstly the

left multiplication Sali by a point aH € GO/H maps & point bH € G, as

follows:
T — ~1 y .
saH(brI) = 1 Oba(po)OT](bH)
= N *oaos oa"to n(bH) because a € G < G
Pg 0
—> s =ao0s_ oa
a(p,) Po ’
= N toao 5. oa ™t ob(p,) because 7{vH) = b(p.) ,
0 =
_ -l -1 -1y, e ol ~
= 1 oaospooa obospo(po) because bpo(Pg) =Dy
-1 -1 AR
= (as a “bs H R
( po PO-). A . )

vecause Nt og(p,) = g for g« G,; with regard to the last line notice

that (as_ a™*bs’!) is indeed ap element of G, even if s_ (€ G) is not an
Po Po pO

element of G,: for the map AdG(sp ) 1 ¢ » ¢ is differentiable and
o]
consequently maps the connected component G, into itself (es pointed out

after Definition ITI1.7), whence Ad (s_ )(a™*b) = s_a™* s is in G
(a and b being in G_) and so therefore is (& s_ a™*b s8~*) in G_.
’ o Po Po

Q
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In particular, therefore, for a = e, b =y in (19):

s (yH) = (s_ ys ')d for yH € Gy/H ; 20
oy (VH) (s, ¥ 8p JH for yH & Go/H ; (20)
consequently:

2 2 -2

s H) = (s s “)H

eH(Y ) (poy PO) J
and indeed by induction:

m m -m
s H) = s s JH for a integer m = 0,
() = () ys.) ny integ

k=1) _ 41 it follows that:

Hence, recalling that s(
Py Po

-1 - -1 _
seH(yH) = (spoy'spo)kl for yH € G /H . (21)

Also from (19) it is seen that:
rbH(a.H) = saH(bH)

= (as_ a”bs™')H for aH,bH ¢ G_/H. {22)
Ps Do o

Before examining the tensor field 8 on GO/H some notation to describe
the relationship between G, and Go/H is needed; reference to Section I,2
will further elucidate the remarks asbout to be made. By definition i the
differentiable structure on G,/H, the map = : Gy = G,/H (defined by
n(g) = g for g ¢ Go) is differentiable; moreover it has a differentiatle
local inverse: in particular there exists a neighbourhood V of eH in GO/H
and a differentisble map o : V - G, such that o(eH) = e, dc((Go/H)eH) = m,
and woo = idy (m is the vector space defined in Definition IIT.9). Under

the linear transformation (dc)eH and its inverse ((dn)e)lm, the vector

-

spaces (GO/H)eH and m are identified.

S = (dseH)eH will now be computed. For a vector Z € (Go/H)eH,

consider in G /H the curve n(exp t.do(z)) = {exp t.do(Z)}H which has tangent
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vector 2 at t = O (beeause (dnodo) = IeH); the image of this curve

under the left multiplication s .. is given by (20) thus:

eH

seH(n(exp t_.dc(Z))) {spo(exp t.dr;(z))s;:}H

n{spo(exp t.do(Z) )SI:; } o,

whence:

(dseH)eH(Z) = dnoAdG(spo)odo(Z) for each Z € (GO/H)eH,

therefore:

Sy = d'noAdG(spo)Q (du)eH . (23)

Recalling that (da)eH : (GO/H)eH - m has inverse ((dn)e)lg and
recalling also the remark at the end of part (ii) asserting AdG(sp m < m,
o
it follows that:

dcrodnoAdG(rspo)lm = AdG(spo)lgt’

whence together with (23) the following useful identity is obtained:

(da)eHoSeH = AdG(spo)°(d°)eH . (24)

Finally before coming to an examination of the connexion on G(._.,/H,
the operation "*" of Definition III.5 must be translated expl‘.‘z.éi'?;].y as
an operation on tangent vectors to (GO'/H).. Let Z € (GO/H)eH.. Now
7(t) := n(exp t.do(Z)) is a curve in Go/H which has tangent vector Z at
t = 0 (because (dnodc)eH = IeH)' Also, by Definition IIL.5 the

vector field Z* on Go/H is given as follows:

(Z*)yH = {ar }z)  for yH e G./H ;

g (vH)

consequently (z*) VH is the tangent vector at t = O to the following curve,

HHNE ‘/);,
3 ¥ MAY 1972

E
Bnnﬂﬂn Y
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defined for t in some neighbourhood (-€,€) of 0 in IR (¢ > 0):

(a(y(t))H) (because a(y(t))H = 7(t)
for t € (-€,€)),

oy (t) =

r -1 r .,
s g (vH) 8 g (VH)

ar, . (o7 (6))E) by (21),
(spoy'spo)H

{(cor(t))sp (o0 r(t))'ls;ly}H vy (22),
(o} o]

n{ (ooy(t))sp (coy(t))"lsl')ly} by definition of m;
o o

evaluating the tangent vector to this curve at t = O one obtains (with the

differentisble map Ry : G

o — G, defined by Ry(g) = gy forge Go) :

H(z)

{drs;}{ (vH)

(Z*)YH
= dmo dRy{dc(Z) - AdG(spo) oda(z)}
= dmo dRyo_ {Ie - A,dG(spD)} o da{z)

= dno dRyodoo{IeH - SeH_}(Z), (25)

vy (24).

. 4 -1 . PR ] [
Now for Z_ € (GO/H)eH, 7. = {1 . - SeH} (Zl) by Definitior ITI.U

1 eH

and from (25) with Z = 'Zl one obtains for yH e G, /H:
~ e } .
((Zl) )yH dn o dRyo du(Zl)
= an(((ao(z)))"),), (26)

where ((':lo(Zl))R is the right-invariant vector field on G, which nhes the

same value as dc(Zl) at the identity e € G.
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By means of Definition III.6 and (26) the expression for V on G /H
is now derived: for vector fields X',Y' € T!(Go/H), the vector field

V&,Y' e T+(G,/H) is given bhy:
' e X! t) _ v 1 y™~)% .
(vk,y )xH XxH(Y ) YxH((xxH) ) for xH € G /H
where in the particular case xi = eH (as needed below): (27)

(e = an((ao(, N®) vy (26),

To show that this connexion on the reductive homogeneous space GO/H is the
canonical connexion of the second kind, one proceeds as follows, utilising
the results and notation described in Section I.3(ii): the neighbourhood V
of eH in GO/H will be considered as a manifold with the affine connexion V*,
the restriction of V to vector fields in T*(V) (the neighbourhood V has
already been mentioned in the paragraph following (22) above), To show
that V is the canonical connexion of the second kind it suffices (cf.
Theorem I.T) to prove that for any two vector fields X,Y e m & g C (&)

the following identity holds:
(V;} Y+)eH = 0, vwhere X',Y" € T (V) are defined

in terms of X and Y as in Section I.3(ii), explicitly:

(xf)p dn(xc(p))

}- for p eV,

where o : V - o(V) < G, is the diffeomorphism of V onto the submanifold
a(V) in G, defined by the local cross-section we Voo Gy (for p € V¥,

a(p) =¥ _(p)). (For details refer again to Section I.3(ii)).
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Congider the action of (v Y ) en a function £ € F(V); by (27):

~
I-<’

enf = (X) g(Te) = () LX) )™)*e) o (28)

Noting that the value of the function (Y*f) at p € V is given by:

[t}

(¥*£) (o) (¥"),F

an{yY £
Fo(p))

I

Yc(p) (fomn)

(¥(fon))oa(p),

]

the first texm in (28) is computed thus:

()C+) (-r+f) : d'frlx (el-{) {(Y(ffj ‘n;))oo‘}

1]

dn"{xp){ (¥(fomn))oa)

d0 o d-nf(XP){Y(f o)}

= X (V(£om)) because for X € m,

doodn(¥.) = X_

i

—~
n

\n

~

(XeY) (£fon).

Noting that the value of the fuastion ({{{X ‘Ei/"’}*tl at p € V is gilven hy:
(") M) () = (S 1)
= {_(_(-éijr(_xe) }“".r*-)pf

by (26) and noting
that p = o(p)H,

= "- I’I \‘(
@ {a ithX 1)) ),_, p)
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’, R\ Y - o
e { (X £ becage for X € m
d ((.Une> )o(p)) ge X &m
doodnX ) =X ,
(&} e

(Xh)("('p)(f o) renalling the definition of
IR
KR for X « mco g

(ef. Section 1.2(i) ),

t

(XR(fo TL‘)) 0 U(’p),
the secoud term of (23) is canputed bhus:

dn(YU,\,eH),‘:{C‘:R(i‘ cn))oo)

i

(r4) ({5 1))
= dn(Ye){ (xB(fcn))o o}

= doo d'lt(Ye){XR(fO ) }

L}

YE{XR<I'G'![)} becauge for Y € m,
doo dn(Ye) =Y

e b
(v, xB)(£om), (20)
Combining (28), (29) and (30) one obtains:
+ + _ - A R P oo
(vx+ Y )er = (Xe!)(fo m) - (T XY (Fon)
— v . {..( .
= (xe_ YEXR)Ef ) )
- [kR,Y]e(faan) for all f ¢ F(V) (31)

because (X¥) =X and (Y) =Y .
e e e €
But (cf. Theorem T.5) the Lie bracket of the left-invariant vector
field Y and the right-invariant vector field ¥R necessarily vanizhes ab e;

therefore from (31):
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(vxf“+ Y+)er = 0 forall f e F(V),

. + ot _
i.e. (VX+ Y )eH = 0 (for all X,Y € m).

Consequently the connexion V is indeed the canonical connexion of the

second kind on GO/H.

From Theorem I.7 it follows that V is a complete affine connexion on
GO/H; the corresponding affine connexion V on M is therefore also complete

(M and G,/H being affinely diffeomorphic).

This completes the proof of Theorem III.1.
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5. A Characterisation of the Isotropy Subgroup H.

(i) Proof of Statement (a) of Theorem ITI.2

Let M be a symmetric space of order k and its associated structures

and notation be as in the preceding sections of this chapter.

Cocnsider the automerphism 6 of Definition III.7T and define the subgroup

o
Go of Go by:

Gy := {g e Gg ¢ o(g) = gl.

Because 6 is a (differentiable) transformation of G, (and hence in
particular continuous), it follaws that Gg is a topologically closed subset

of G Gg will therefore be considered as a Lie group, endowed with the

o ?
natural Lie group structure mentioned in Section I.2(ii) for a closed
subgroup of a Lie group. Let (Gg)o denote the identity component of Gg .

Qbserve that the Lie algebra 59 of (Gg)o (and of Gg) 1s given by:

{Xeg: exptXe Gg for —o <t <w}

1]
i

{xe g O(exp tX) = exp tX for -w <t < 9}

it

Xeg: de(xe) = xe} .

Recall that H denotes the isotropy subgroup of Go at the point P, € M;
in Section 4(ii) it was shown that the Lie algebra h of H is given by:

h o= {Xeg:ao(x)=x1,

whence h = ge. Consequently (cf. Section I.2(ii) ) the identity compon:nt

. 2]
Ho of H coincides with the identity compcnent (Gg)0 ol Go. Theratora:
2]
(6)), € H.
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But, as remarked following Definition ITI.T (in Section 4(ii) ),
6(h) = h for h ¢ H, i.e. HC Gg; therefore:

6 8
(6)g < H < Gg.

This completes the proof of Statement (a) of Theorem III.2.

(1i) Proof of Statement (b) of Theorem III.2

Consider a connected Lie group Bo with a continuous group automorphism
T : By =@ B, of finite order k; recalling the remark at the end of
Section I.2(i), observe that T is a diffeomorphism (in fact an analytic
diffeomorphism) of Bge Consider also a closed subgroup C of B,
satisfying (Bg)o < C < Bg where Bg i= {beBy: T(b) =1} - (Bg is a
Lie group as a closed subgroup of By: cf. the remarks in part (i) just
above concerning Gg) - and where (BZ)0 denotes the identity component of B;.
Considering the homogeneous space BO/C as a differentiable manifold with
the natural differentiable structure as described in Section I.2(iii),
observe that the manifold BO/C is connected because B, is connected and
the projection % : By - B,/C (defined by %(b) = bC for b € Bo) is a

differentiable (hence continuous) map.

Define on the connected manifold BO/C the multiplication

t (Bo/C) x (Bo/C) - Bo/C by:

=

i(ac,bC) := {at(a)™lr(b)}c for aC,bC e B,/C: - (32)

E is well-defined because T is an automorphism and T(c) =c¢ for c & C:

for if (ac')C = aC and (bc")C = bC for c',c" € C, then

R((ac')c,(be")c) = {(ac')t(ac')™7(vc")}C
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= f{ac'7(c') t1(a) " 1(0)T(c")}C
= {ac'(e') t1(a) Lt (b)c"}C
= {at(a)™1(p)}C

= [(aC,bC).

To show that I is a differentiable map first consider the map

~

T : Bp X Bg » By defined by B(a,b) := at(a) t1(b) for a,b € B, and the
projection % : Bo -3 Bo/ C as defined above; U is a differentiable map
because T, group multiplication in B, and the operation of taking the
inverse in B, are each differentiable maps, and ® is differentiable by the
definition of the differentiable structure on By/C (ef. Section I.2(iii)).
Now the proof that [ is differentiable is exactly the same as the proof

in Section 3(ii) with the substitutions @ »{, ® - ¥, G, - By, H = C,

- 7.

It will now be verified that [ satigfies the properties (1) to (4) of

~

Definition III.1. The map s for aC € By/C is defined by:

&aC
Eac(bc) = n(aC,ol)
= {at(a) r(pv)}Cc for bC € By/C.
Property (1):
§,.(a0) = fav(a)7iv(a))c

= aC for aC € B,/C.

Property (2):

52,000) = F (8 ,(0C))
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3,c(latt@) 2 (m) )

{at(a)2t(at(a) 1 (n))}c

]

= {ar(a)™r(a)(3(a)) ™12 (b) ]c

= {a(+2(a)) " t2(v))C for aC,bC € Bo/C;

and by induction:

e 0) = {a(r(a)) (b))
= {aa™1b} ¢ because T has order k,
= bC for aC,bC € By/C.
Property (3):
Eacc,Ebc(dc) = E’ac({b'r(b)'l'r(d)}c)
= {at(a) ™ 7(bt(b)"27(d))}c
= {at(a) (o) r(r(o)™2)7(r(a))}C
= {{af(a)'lT(b)}{T(T(b)'l)}{T(T(a))T(a)'lT(a)T(T(a))'1}
x {r2(a)}}c
= {{at(a)™t2(b)} t{at(a) v (b)} ~*x{at(a) tr(a)}}C
= E{aT(a)_lT(b)}C ({HT(a)_lT(d)}c)
= “s‘,gac(bc)osac(dc) for aC,bC,dC € B_/C ;
i.e. F 08 . = E‘é‘ac(bc)ogac for aC,bC e B,/ C .
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Property (4):

To show that aC is an isolated fixed point of Ea for each aC ¢ BO/C

C

for, consldering B, as & Lie

it suffices to prove the result for Eec :

trensformation group of B,/C and observing that:

{at(a)™tr(b)}C

fl

Eéc(bc)
= {at(a™b)}C

- ao% (fa-t
= ao sec({a bla)

aos
eC

oa "t (bq) for aC,bC € B,/C,

it follows that if a neighbourhood U, of eC contains no fixed points under
Eec except eC itself, then the neighbourhood a(l,) of aC contains no fixed

points of Eac except aC itself,

It will now be shown that such a neighbourhced U, does indeed exist.
Observe first of all (cf. Section I.2(i)) that there exists a neighbourt:cod
U, of e in B, such that:

if an element d € U, satisfles dk = e, then 4 = e,

Also there exists a neighbourhood Ul of e in By, such that:
b~!t(b) € U, for all be U ;

the existence of such a neighbourhood U, follows from the differentisbilify
(and hence continpity) of' T, group multiplication in B, and the cperaticn

of taking the inverse in Bg.

Also because (cf. Theorem I.3) there exists a differentiatle cross-
section o, from a connected neighbourhood Vé of e in Bo/C into a (connected)
neighbourhood of e in B, it follows that there exists in BO/C a connechted

neighhourhood Uy < V; of p, = eC such that there corresponds to each
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point p € U, a unique point oB(p) € UB(UO) < ?1 for which p = {OB(p)JC.

Consider now a given point p &€ Uo and suppose that:

5 (p) = ;
Po(‘) P

 that is, defining b : oq(p) (whence p = bC):

Eec(bc) = bC,
i.e. {z(v)}c = nC (for (32) implies that
§,(0C) = u(ec,b0) = {r(bv)}C)
therefore b ™1{b) = ¢ for some ¢ € C, where in fact c¢ € U,

because by the above remarks p e U, = b = qB(p) e U,
= b7 1(b) e U
But because ¢ € § == 7(c) = ¢ therefore:

(1e_1}
e =1{c) =13(c) = ... = oK 1)(0) :

consequently:

& o erle)(e) ... (e
= b (o) (b e (6))rE (b 0 (6)) ...t 2e(n))
= B le(n)r(6) R e 2 () " (o) ... N (n)1eK )

= .b-l‘f-'k (b )
= b 1p

= e,
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Thus the point ¢ € U2 satisfies ck = e, whence by the definition of

U, one concludes that ¢ = e; i.e., T(b) = b, therefore b € B

o Thus

b€ BZ N oB(Uo); but because U, is connected GB(UO) is connected, and
because'ﬁg (as & closed Lie subgroup of Bo) lias the subspace topology, so
also is Bg n aB(Uo) connected in BZ - whence b € (B;)O, the identity
component of B;. Becguse (B:LJCZ C, ‘therefore b.E C which implies that

p =bC = eC =.po. Consequently it has been shown that for the neighbourhood
Uy of ﬁo_:

if an element p e U, satisfies Ep (p) = p, then p =p, ;
. : : O .

that 1s, p, = eC 1g an isolated fixed point of the map Ep = Eec .
o

This completes the proof that, endowed with the multiplication g of

(32), Bo/C 1is a symmetric space of order k.

This completes the proof of Theorem IIi.2.
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CHAPTER IV

SOME OBSERVATIONS CONCERNING JORDAN ALGEBRAS AND

DIFFERENTIAL GEOMETRY

1. The Canonical Connexion on a "Jordan Symmetric Space"

The notation introduced in Section I.6 will be assumed here: in
particular, A denotes a Jordan algebra with unit e defined on the real
vector space ", I(A) dehotes the set of invertible elements of A, P(a)
denotes the quadratic representation of the element a € A, and Af denotes the
f-mutation of A with respect to an element f € A (A P is called the f-isotope
if £ ¢ I(A) ). By Theorem I.13 I(A) is naturally a differentiable
manifold; moreover, the topological component I (A) of I(A) containing
the unit e may be endowed with the multiplication p defined by
uw(p,q) := P(p)q'l for p,q € I _(A), and I, (A) so endowed is a symmetric space

(of order 2) - called the Jordan symmetric space of A.

IO(A) admits two affine connexions. Firstly, as an open subset of
R" (ef. Theorem I.13), I (A) admits the affine connexion ¥ induced by the

standard flat connexion on IR'. In terms of the standard basis {ei}lf1 ; °f
i=

o
IR® the vector field <5-I > € Tl(IRn) is defined for 1 = 1,2,.,.,.,n:
u

9
as a differential operator on F(R" ), < S——I le (R’ )x is simply the
u .

partial derivative in the direction e evaluated at the point x € IRn;

o
the restriction of —t to I (A) glves a vector field in T+ (1,(a)),
du

denoted E;, for i = 1,2,...,n. Now ¥V on I (A) is given by:
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(V,Y)

xi(p)(Ei I Jp(Es), for XY e TH(I (4))
“and p e I (A),

. J
xlfp>(§}>p<£s>p , o)

where X (q) := Xqul and Y (g) := Yqu1 for g € I_(A) and i = 1,2,...,n,

Secondly, as a symmetric space (of order 2), I (A) admits the
(canonical) affine connexion V defined in Definition IIT.6 (cf. Theorem
IJI.1). Because IO(A) is a symmetric space of order k = 2, the tensor field
S of Definition III.3 is given by sp = —Ip at each p € IO(A); for since
in this case (Sp)2 = Ip and SP has no eigenvalue (+1) (cf. remarks preceding
Definition III.4), SP is diagonalizable over the reals, all its eigenvalues
being (-1) (cf. Birkhoff and MacLane[1]), whence Sp = - IP as asserted.

Hence from Definition IIT.6 it follows that V is given by:
VY) = XY -3Y (x)* 2
), = XY -1 (x) (2)
(where "* " denotes the operation of Definition III.5).
Consider now the difference tensor D € T:(IO(A)) defined by:

D(X,Y) := vxy - VY for X,Ye T+ {I, () ;

P
N
~—

the following theorem provides an interpretation of D (and hence of V) in

terms of the isotopes of the algebre A:

Theorem IV.1: Let Bx : BT - (IRn)x be the natursel identification of
I]" with the tangent space (IRn)X at x ¢ " Bx is a linear

isomorphism with inverse denoted by B;l : (Ifl)x - R,

Then the tensor field D defined above admits the following descriptions

|
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given a point a € Io(A)’ then
- -1 -1
D, (X,,Y,) = B, (B (xa)';LI'Ba (¥,)) for X,Y e (I (A)), ,

where _ | . denotes the multiplication in the a'l-isotope A _1 of the
a_ a

Jordan algebra A.

Proof: Because D € T;(IO(A)), D, is completely determined by its action

on a basis of the tangent space (IO(A))a: considering the vector fields E,
n
defined above {(Ei)a}i=1 is such a basis of (Io(A))a3 Da(<Ei)a’(Ej)a)

will now be computed for 1 € 1i,j < n,

Notice firstly that for the connexion V :
(ﬁE- E.)a = O, (h)

because (Ei)a Ej = 0: cf., (1) and the definition of Ey» E_j ;  thus:

[ ¥

Da((B;)gs(E4),) (D(E;,E,)),

1}

- (%, EBy)a by (3) end (%),

= (E;) B + 2(E5), ((B) ) vy (2),

= %(Ej)a((Ei)a)* again because
(Ei)an = 0}
Jok
° dud /o KB ’

where oF ¢ F(I (A)) for k = 1,2,...,n 1is the k*" component of the vector

. . X th
field ((Ei)a)*: namely of = ((Ei)a)* uk, u" being the k= coordinate

function,
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d
i.e.. ok(y) = <g:]- >a(uk°ru(a,y)) for y ¢ IO(A);

this last step follows from Definition III.5 (of "*"), the remark that

because I (A) is a symmetric space: s;l(y) = sa(y) = u(a,y), and the fact

d
that (B,) = ( —— > as differential operators on F(T (A)).
i‘a Sat /a o

Using the definition of partial derivative and other basic analysis

n ! .
on IR one obtains:

o
k
¢k(y) < g;z >a U o ru (a,y)

1 k k
= 1ir - 4 a+t . - u
t:no T {u oru(a,y)(a el) Oru(a,Y)(a)}
. 1 k ) k )
= 1lim e {utop(a + te,, nla,y)) - u oula, lJ-(U-.,'.Y))}
i
t-0
by Definition III,2(b) for i (a,y)’
. 1.k 5 k Ayl
= lim {vioP(a + te,) - u oP(a)}(it(a,y))
t— 0 b

by definition of w on I_(A),

u® o 1im % {2P(a,te,) + P(te,)}(n(a,y))™?
>0 i i

ef. Theorem I.12(b),

il

u® o 1im % {2t(Pla,e,) + t3P(e, )} (u(a,y)) ™t
£ 0 i i

by the remark following Theorem I. 12,

i}

QukOP(a,ei)(u(_s,,y))'l . (6)

Recall that p(a,y) = P(a)y™?,
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whence

(u(a,y))™

P"L(P(a)y ™) o P(a)y™* by Theorem I.11(a)

= P (a)P™(y )P (a) o Pla)y™?

cf. Theorem I.10

= P(a"t)P(y)y* by Theorem I.11(b)
= P(a™Y)P(y)P (y)y by Theorem I.11(a)
= P(a™t)y. (7)

Substituting (7) into (6) one obtains:

d>k(.V) = EukoP(a,ei)P(a"l)y for y e I (A). (8)

Now the partial derivative < > may be evaluated:

i

( > - Lin 3 {0+ te,) - (o))

t=0

i

o oP(a,e Yo P(a™*) o lim %{(a + te.) - a}
£=0 J

by using (8),

il

20 o P(a,ei) o P(a'l)ej . (9)

Therefore, substituting (9) into (5) one obtains:

[t}

D,((8,),s(Ey),) = (20P(a,e;)oP(a)e,). (B),

k -1 g
£ E + i
Ba{u oP(J,ei) oP(a )ej)ek} by definition of Ba s

B (F(ase,) o P(a'l)ej} . (10)
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Now P(a,ei)oP(a'l)e. = a8 :____,.,m e where l denotes
o Pla™t)e, * P(a™t)e.
J J
the algebraic multiplication in the P(a'l)ej—mu'tation of the Jordan algebra

A (cf. Definition I.6(a) and Thecrem I.12(b)). But by Theorem I.12(d),

= = 41 —mibatd ~1_ s .
AP(a'l)ej = (Aa'l)ej = the e mutation of the a”*~isotope of A; so
denoting the algebraic multiplication in A.a_l by @ (for convenience, in

place of e ):
a1

-1 7. - . - -
P(a,ei)oP(a )ej. = {a @ ej) e, *tae (ei F ej) (a @ ei) @ e,

ef. Theorem I.12(d),

= . e, + e, . -, e,
ea@l 1@eJ LI@J’

because a is the unit in A -1 Because A _, is a commutative algebra,
a

a
therefore e'j @e;, = e, @ ¢ i and consequently:
{. ] it = . 1
P\a,,ei) o P(a )eJ. e; @ &y (11)

Substituting (11) into (10) one obtains:

Da((Ei)a,(Ej)a) B,le; @ ej}
B {B72((E,).) @ B;l((Ej)a))},

because B;J‘((Ei)a) = e, and B;l((Ej)a) =25 .

Because D, is bilinear (over the reals) and B, and B;l are R -linear,

it follows that:

D (X,¥,) = BIBM(X ) e B (y,)]
ie. D (X,Y) = B{BI*(X) ;ii ByL(Y,)] for all X,¥_ e (1 ,(A)), .

This completes the proof of Thecrem IV.l1.

L
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2, Conformal Transformations and Jbrdan Algebras of Type (iv)

In this section it will be shown that Jordan algebras of type (iv)
arise naturally in differential geometry when one considers conformal

transformations.

Recall the remark at the end of Section I.k: given two conformally
related Riemannian metric tensors g and g on a manifold M (say
g = fg with £ € F(M) ), then the difference tensor D of their respective

Levi~Civita connexions ¥V and V satisfies:

D(X,Y) = H &Py + B - alx,Y)VE)

where f = (log f) € F(M) (note that for each x € M, £(x) > 0) and VE
denotes the usual gradient of ¥ (with respect to g) - namely 15? is the
unique element of T*(M) satisfying g(2,VE) = Z% for all 2 e TH(M).
Thus:

D(X,Y) = 3a(x, VE)Y + g(Y, VEX - g(x,Y)VF} . (12)

Consider now a point p ¢ M for which (<7?)p # 0 (such points
exist provided f is not constant on some connected component of M); then

in terms of the symmetric positive-definite bilinear form gp: MP X MP - M_P

define: .
HEB I = e (T, (V8) )1 (13)
and
(VE)
E  := —5 . (1)
P 1VE)|
Then:
D (X, Y)
P en - By B T &l B gy Y, - (1)
P




122.

By glancing at the definition of Jordan alebras of type (iv) in
Section II.B.2, it is seen that (15) defines on Mp a Jordan algebra of
type (iv): namely [Mb,g ,Ep] where Ep given by (14) is the algebraic

p
unit.

Thus, given two conformally related metric tensors on M as described

above (g = fg), then at each point p € M for which (37?)P # O the Jordan

algebra [M ,g ,E_] with unit E_ = —«1::72— is defined by (15) in terms
v TN

of the difference tensor D of the two Levi-Civita connexions for the two

conformally related metric tensors.
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CHAPTER V
CONCLUSION AND FINAL REMARKS
In this chapter I shall briefly summarise the results obtained and
suggest those directions in which further research shculd be pursued in

this subject,

1. Brief Summary of Results

. The main result of Chapter III on symmetric spaces of order k
(namely, Theorem III.1) establishes that basically the "algebraic" approach
which Loos applied to symmetric spaces may be successfully applied to the
s-regular k-symmetric spaces, . In view of Conjectures 1 and 2 of
Section ITI.A.4(i) it is very interesting to notice that the s-regular condition
arises naturelly in this sapproach, It was also proved in Chapter III
(Theorem III.2) that in a homogeneous space representation G /H of a
symmetric space of order k the isotropy subgroup H may ﬁe characterised in
terms of an automorphism of G, of order k; this result (as do all the
. results of Chapter III) generalises the analogous result for symmetric

spaces,

The main result of Chapter IV (namely, Theorem IV.l) presents an
interpretation of the canonical connexion on a "Jordan symmetric spaca"
I,(A) in terms of the isotopes of A. The observation in Section 2 of
Chapter IV indicates how Jordan algebras are associated with certain

conformal transformations oi Riemanmian manifolds,
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2., Programme for Further Research

(i) Although the relationship between Jordan algebras and symmetric spaces
has been developed extensively the following two studies remain to be

pursued,

Firstly, the work that the Roumanian school of differential
geometers has done concerning applications of Jordan algebras to differential
geometry seems to be little known and its connection with the other recent
studies discussed in Section II.B.4 has not been examined. Investigation of
the extent to which the various results overlap or complement one another

would be a useful and probably fruitful endeavour.

Secondly, it should be determined whether the observation in
Section IV.2 (which associates Jordan algebras of the type [X, v, e] with
certain conformal transformations) gives rise to any significant information

about conformel transformations.

(i1) 1In Chapter IIT the fundamental aspects of an "slgebraic" approach to
symetric spaces of order k have been established; it remains, however, to

pursue further studies in this context:

(a) For example, it should be investigated whether a meaningful “centre"
of a symmetric space can be defined, generalising the notion of the
cenfre of a Lie group or symmetric space (of order 2) - cf, Section II.A.3%.
There also remein the Conjectures 1 and 2 of Section IT.A.4(i). These
questions would entail examination of the homogeneous space
representation of a symmetric space of order k, particular attention

being paid to the structure of the isotropy subgroup.
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(b) A fascinating problem is the searchfor a construction of symmetric
spaces of order k (for k > 2) in terms of Jordan, or possibly other
non-associative algebras, in analogy of course with such a construction
for symmetric spaces as ocutlined in Section II.B.4(iii); 4in this regard
the work of Sagle [1], [2] 1is of interest. At first sight it might
appear that the methods of Helwig [6] would naturally generalise for
symmetric spaces of order k > 2, but this does not seem to be the case;
a heurisgtic approach to the problem probably lies in developing the
"algebraic” approach to symmetric spaces of order k. The
Justification for such a suggestion is the following: Loos's
"algebraic” approach to symmetric spaces reveals an intriguing fact;
namely, the embedding @ : M - G of a symmetric space into its group of
displacements (cf. Section IT.A.2(ii)) satisfies Q(Q(x)y) = Q(x)Q(y)a(x)
which is formally the "fundamental formula", satisfied by the
quadratic representation of a Jordan algebra (cf. Thecrem I.10) and on
which the whole theory of Jordan algebras can essentially be based
(ef. Section II.B.1, fourth paragraph). (That Q satisfies the above
identity is proved in Loos [1], chapter 2)., Consequently I suggest
that further study of the "algebraic" approach to symmetric speces of
order k might well provide insight into the type of algebra appropriate

to the study of these spaces.

A second means of tackling the question of which algebras are relevant
is suggested by Theorem IV.1. Thus a study of difference tensors
between the canonical connexion on a symmetric space of order k (as
defined in Definition IIT.6) and the connexion induced when the space is
embedded into various Euclidean spaces may well provide a clue as to the

type of algebras sought.
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(¢) I point out that a comparison of Table V in Gray [6] and the
classification by Boothby [1] of certain compact homogeneous complex
contact manifolds reveals that the manifolds in Boothby's classification
are Riemannian symmetric spaces of order 3. Further exploration of
this phenomenon (for example, a classification-free proof of this very
qbservation) would shed further light on the geometry of symmetric
spaces of order 3 (and of homogeneous complex contact manifolds); also
the existence of weaker structures (e.g., almost contact) should be
investigated on the other symmetric spaces of order 3. Moreover
analogous inquiries can be made for symmetric spaces of order k in

general.

The reslisation of gymmetric spaces of order k aé fibre bundles should
be examined; in the case k = 2, for instance, every symmetric space is a
vector bundle over a compact symmetric space (cf. Loos [1], chapter L),
Furthermore along these lines one can examine generalisations of the notion
of reflexion spaces (cf. Section IT.A.L(iii)) - obtained by relaxing the
condition in Definition III,1 that x be isolated as a fixed point of the

left multiplication Sy

ﬂ;&\““ oy i
T
3 1 MAY 1972
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N e




127.
BIBLIOGRAPHY

ALBERT, A.A.

1. "On a certain algebra of guantum mechanics"

Ann. of Math. (2) 35 (1934), 65-73

2, "On Jordan algebras of linear transformations"
Trans. Amer. Math. Soc. 59 (1946), 524-555,

3, "A structure theory for Jordan algebras"
Ann. of Math. (2) 48 (1947), 546-567

L, "A theory of power-associative commutative algebras"
Trans. Amer. Math. Soc. 69 (1950), 503-527.

AMBROSE, W.

1. "Parallel translation of Riemannian curvature"
Ann, of Math. (2) 6 (1956), 337-363,

AMBROSE, W. and SINGER, I.M.

1. "On homogeneous Riemannian manifolds"
Duke Math. J. 25 (1958), 6L7-670.

BERGER, M.

1. "Les espaces symétriques non compacts"
Ann, Sci. Ecole Norm. Sup., T4 (1957); 85-17T.

BIRKHOFF, G. and MACLANE, S.
1. "A Survey of Modern Algebra"
Macmillan, New York, 1953
BOOTHBY, W.M,

1. ‘"Homogeneous complex contact manifolds™

Proceedings of Symposia III: Differential Geometry, Amer. Math.
Soa., 1961,

BOREL, A.

1. "Les fonctions automorphes de plusieurs variasbles complexes"
Bull. Soc. Math. France 80 (1952), 167-182,

2. "Les espaces hermitiens symétriques"”
P

Seminaire Bourbski, 1952,




128.

BOREL, A. and LICHNEROWICZ, A.

1. "Espaces riemanniens et hermitiens symétriques"
C.R.Acad. 8ci., Paris 234 (1952), 2332-233L,

BRAUN, H. and KOECHER, M.

1. "Jordan-Algebren"
Springer-Verlag, Berlin, 1966,

BURKILL, J.C.

1. "A First Course in Mathematical Analysis"
Cambridge University Press, 1962,

CARTAN, E.

("0.C." Dbelow refers to Cartan's "Oeuvres Compldtes" Gauthier-Villars,
Paris, 1952, Numbers following "0.C." below denote the number assigned
to the work as in the Liste Chronologique in Partie I, Volume 1 of 0.C.)

1. "Sur les espaces de Riemann dans lesquels le transport par
parallélisme conserve la courbure"
2., "On the geometry of the group-manifold of simple and semi-gimple
groups" (with J.A.Schouten).
Proc. Akad. Wetensch,, Amsterdam 29 (1926), 803-815. 0.%. 91

3, "Sur une classe remarquable d'espaces de Riemann"
Bull, Soc. Math, France 5k (1926), 214-26h
and 55 (1927), 114-13h4,
0.C. 93 and 94,

. "Sur certaines formes riemanniennes remarquables des géométries &
groupe fondamental simple®

Ann. Sci. Ecole Norm. Sup. b4 (1927), 3b5-L67. 0.C. 107
5. "Sur les formes riemanniennes des géométries a groupe fondamental
simple"
C.R.Acad. Seci., Paris 185 (1927); 96.
0.C. 100,

6. "La géométrie des groupes de transformations"
J. Math. Pures et Appliquées 6 (1927), 1-119.
0.C. 101




129.

7. "La géométrie des groupes simples"
Ann. Mat. Pura Appl. b (1927), 209-256.
0.C. 103,
8. "Sur certaines formes riemanniennes remarquables des gfométries &
groupe fondamental simple"
C.R. Acad. Sci., Paris 184 (1927), 1628.
0.C. 99.

9. '"Groupes simples clos et ouverts et géométrie riemannienne”
J. Math. Pures et Appliquées 8 (1929), 1-33.
i OIC. 116.

10, "La théorie des groupes finis et continus et 1'Analysis situs"
Mem, Sci. Math., fase. XLII (1936), Gauthier-Villars.
0.C. 128.

11. "Les espaces riemanniens symétriques"
Verh. Int, Math. Kongr. Zlriech (1932), I, 152-161.
0.Cc. 138. |
12. "Sur les domaines bornés homogénes de 1'espace de n variables
complexes"
Abh. Math. Seminar Hemburg 11 (1935), 116-162.
0.C. 1k5,

13, "Les groupes réels simples finis et continus®™
Ann. Sei. fcole Norm, Sup. 31 (191k), 263-355,
0.C. 38,

CHEVALLEY, C.

1. "Theory of Lie Groups"
Princeton, 1946,

CHEVALLEY, C. and SCHAFER, R.D.

1. "The exceptional simple Lie algebras F, and E;"
Proc, Nat. Aced. Sci. U.8.A. 36 (1950), 137-1k1,

ECKMANN, B and FRULICHER, A.

1. "Sur 1l'intégrabilité de strucbures presques complexes"
C.R.Acad. Sci. Paris 232 (1951), 228L-2286.

Q—i




1_7)00

EHRESMANN, C.

1. "Sur certaines espaces homogénes de groupes de Lie"
Enseignement Math. 35 (193%6), 317-333.

FIELD, M.J.

1. "On 'k-symmetric spaces' "
Notes, Math. Institute, Univ. of Warwick, 1971.

FREUDENTHAL, H.

1., "Zur ebenen Oktavengeometrie"
Nederl. Akad. Wetensch. Proc. Ser. A56 (1953), 195-200.

GRAHAM, P.J. and LEDGER, A.J.

1. "s-regular manifolds"
preprint, Univ. of Liverpool, 1971.
(revised version of earlier preprint: "A class of affine or
riemannian s-manifolds” by the same authors).
2. "Sur une classe de s-variétés riemanniennes ou affines"
C.R.Acad. Sci. Paris 267 (1968), 105-107.

GRAY, A.

1. "A note on manifolds whose holonomy group is a subgrovp of
Sp(n) . Sp(1)"

Michigan Math. J. 16 (1969), 125-128,

2, "Almost complex submanifolds of the six sphere"
Proc. Amer. Math. Soc. 20 (1969), 277-279.

3, "KHhler submanifolds of homogeneous almost Hermitian manifolds™
T6hoku Math. J. (2) 21 (1969), 190-19k.

L, "Six dimensional almost complex manifolds defined by means of three-
fold vector cross products®

T8hoku Math. J. 21 (1969), 614-620.

5. "Nearly Kihler manifolds"
J. Differential Geometry 4 (1970), 283-309.

-




131.

6. "Riemannian manifolds with geodesic symmetries of order 3"

preprint TR 71-29 (revised version "II"), Math. Dept., Univ. of
Maryland 1971,

HARISH-CHANDRA

1. "Representations of semi-simple Lie groups, VI"
Amer. J. Math. 78 (1956), 564-628.

HELGASON, S.

1. "Differential Geometry and Symmetric Spaces"
Academic Press, New York, 1962,

HEIWIG, K.-H.

1. "Halbeinfache reelle Jordan-Algebren"
Math. Zeit. 109 (1969), 1-28.

2. '"Involutionen von Jordan-Algebren"
manuscripta math. 1 (1969), 211-229,

3. "BEine Verallgemeinerung der formsl-reellen Jordan-Algebren'
Invent. math. 1 (1966), 18-35.

4, "Uber Mutationen von Jordan-Algebren™
Math. Zeit. 103 (1968), 1-7.

5. "lber Automorphismen und Derivationen von Jordan-Algebren®
Indag. Math. 29 (1967), 381-39k.

6. "Jordan-Algebren und symmetrische RHume, I"
Math. Zeit. 115 (1970), 315-349.

HERMANN, R.

1. "Compact homogeneous almost complex speces of positive charscteristic”
Trans. Amer. Math. Soc. 83 (1956), L71-481.

HERTNECK, C.

1. "PositivitHtsbereiche und Jordan-Strukturen®
Math. Annalen 146 (1962), 433-h55.

a——-




132,

HICKS, N.

1. "A theorem on affine connexions"
Illinois J. Math. 3 (1959), 2k2-25k,

HIRZEBRUCH, U.

1. "Halbriume und ihre holomorphen Automorphismen"
Math. Annalen 153 (196k), 395-417.

2. "Uber Jordan-Algebren und kompakte Riemannsche symmetrische Rfume
vom Rang 1."

Math. Zeit. 90 (1965), 339-35L.

3, "ber Jordan-Algebren und beschrinkte symmetrische Gebiete"
Math., Zeit. 94 (1966), 387-390.

HOCHSCHILD, G.

1. "Phe Structure of Lie Groups”
Holden-Day, San Francisco-London-Amsterdam, 1965.

JACOBSON, F.D., and JACOBSON, N.

1. "Classification and representation of semisimple Jordan algebras"
Trans. Amer. Math. Soc. 65 (1949), 141-169.

JACOBSON, N.

1., "Structure and Representations of Jordan Algebras"
American Mathematical Society Colloquium XXXTX, Providence,
Rhode Island, 1968.

2, "Some groups of btransformations defined by Jordan algebras I"
J. Reine Angew. Math. 201 {1959), 178-195.

3, "Some groups of transformations defined by Jordan algebras II"
J. Reine Angew. Math. 204 (1960), 74-98,

L, "Some groups of transformations defined by Jordan algebras ITI"
J. Reine Angew. Math. 207 (1961), 61-85,

5. "Structure theory for a class of Jordan algebras"
Proc, Nat. Acad. Sci. U.S.A. 55 (1966), 243-251,




133,

6. "Derivation algebras and miltiplication algebras of semi-gimple
Jordan algebras”

Amn. of Math. (2) 50 (1§h9), 866-847.

JORDAN, P.

1. "Over eine Klasse nichtassoziativer hyperkomplexer Algebren"
Nachr. Ges. Wiss. G8ttingen (1932), 569-575.

2. "Uber Verallgemeinermgsmbglichkelten des Formalismus der
Quantermechanik"

Nachr. Ges. Wisg. G8ttingen (1933), 209-21k,

3, "Jber eine nicht-desarguesches ebene projektive Geometrie™
Abh. Math. Sem. Univ. Hamburg 16 (1949), Th-76.

JORDAN, P., von NEUMANN, J. and WIGNER, E.

1. "On an algebraic generalization of the quantum mechaniecal formalism"
Ann, of Math. (2) 35 (1934), 29-64.,

KALISCH, G.K.

1. "On special Jordan algebras”
Trang., Amer. Math. Soc, 61 (1947), 482-hol,

KLINGENBERG, W., GROMOLI, D. and MEYER, W.

1. "Riemannsche Geometrie im Grossen™

Springer-Verlag, Berlin, 1968.

KOBAYASHI, S. and NOMIZU, K.

)
i

1. "Foundations of Differential Geometry™ Volumes I and

Interscience, New York, 1969,

KOECHER, M.

1. "Jordan Algebras and their Applications”
Lecture notes, Univ. of Minnesota, 1962,
2, "Pogitivitdtsbereiche im " "

Amer, J. Math. 79 {1957), 575-596.




134,

KOH, S.S.

1. "On affine gymmetric spaces"
Trans. Amer. Math. Soc. 119 (1965), 291-309.

KORANYT, A. and WOLF, J.A.

1. "Realization of Hermitian symmetric spaces as generslized half-
planes®™

Ann. of Math. (2) 81 (1965}, 265-288,

KUIPER, N.

1., "Immersions with minimal absolute total curvature"

preprint Univ., of Amsterdam, The Netherlands and Inst. for
Advanced Study, Princeton, N.dJ.

LEDGER, A.J.

1. "Espaces de Riemann symétriques généralisés"
C.R.Acad. Seci. Paris 264 (1967), 947-948,

LEDGER, A.J. and OBATA, M.

1, "Affine and Rlemannian s-manifolds"
J. Differential Geometry 2 (1968), k51-459,

LEVY, H.
1. "Forma cancnica dei ds® per i quall #i annullano i simboli di
Riemann a cinque indiei”
Rendiconti Accad. Lincei (6) 3 (1926), 65-69.
2, "Sopra alcune proprieta degli spazi per i quali si annullano i
simboli di Riemann a cinque indici
Rendiconti Accad. Lincei (6) 3 (1926), 12k-129.

3. Levy's thesis.
Trans. Awmer. Math. Soc. 28 {1925}, 690.




135,

LOOS, O.

l. "Symmetric Spaces" Volumes I and II
Benjemin, New York-Amsterdam, 1969.

2. "Spiegelungsrdume und homogene symmetrische Mannigfaltigkeiten"
Dissertation, Minchen, 1966,

3. "Spiegelungsrfume und homogene symmetrische RHume"
Math., Zeit. 99 (1967), 141-170,
l, "Reflexion spaces of minimal and maximal torsion™

5. "Reflexion spaces and homogeneous symmetric spaces"”

Bull. Amer. Math. Soc. 73 (2) (1967), 250-253,

McCRIMMON, K.

1. "A general theory of Jordan rings"
Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072-1079.

MEYBERG, K.
1, "{ber die Killing-Form in Jordan-Algebren"
Math. Zeit. 89 (1965), 52-T3.
2, "Bin Satz llber Mutationen von Jordan-Algebren”
Math. Zeit. 90 (1965), 260-267.

3, "Jber die Lie-Algebren der Derivationen und der linksregullren
Daratellungen in zentral-einfachen Jordan-Algebren”

Math. Zeit. 93 (1966), 37-47.

MYERS, S.B. and STEENROD, N.

1. "The group of isometries of a Riemannian manifold"
Ann. of Math. (2) 40 (1939), 400-416.

NEWLANDER, A. and NIRENBERG, L.

1. "Complex analytic coordinates in almost complex manifolds"

Ann. of Math. (2) 65 (1957), 391-kok,




136.

NOMIZU, K.

1. "On the group of affine transformations of an affinely connected
manifold"

Proc. Amer. Math. Soc. 4 (1953), 816-823,

2. "Invariant affine connexions on homogeneous spaces"
Amer. J. Math. 76 (1954), 33-65.

PASTENCIER, S.

l. "Homogeneous almost complex spaces of positive characteristic"
Proc. Amer. Math. Soc. 15 (1964), 601-606,

POPOVICI, I., IORDANESCU, R. and TURTOI, A.

l. "Graduari Simple Jordan si Lie Considerate in Geometria Diferentiala”

Editura Academiei Republicii Socialiste Romania, Bucharest, 1971.

RESNIKOFF, H.L.

1. "The maximum modulus principle for tubes over domains of positivity"
Math, Annalen 156 (1964), 340-3u46.

ROBERTSON, S.

1. "Symmetric Foliations"
preprint, Univ. of Liverpool, 1970,

SAGLE, A.A.

1. YA note on triple systems and totally geodesic submanifolds in a
homogeneous space"

Nagoya Math. J. 32 (1968), 5-20.
2, "On homogeneous spaces, holonomy, and non-associative algebras"
Negoya Math. J. 32 (1968), 373-39L.
SCHAFER, R.D.

1. "An Introduction tc Non-assocciative Algebras"

Acedemic Press, New York, 1966,

SINGER, I.M.
1. "Infinitesimally homogeneous spaces"
Comm. Pure Appl. Math. 13 (1960), 685-697.




TITS,
1.

157,

Je

"Espaces homogénes complexes compacts"
Comment. Math. Helv. 37 (1962-63), 111-120,

TURTOI, A.

1.

"Espaces de Wagner et formes réelles de Jordan de type D"
Rev. roum, math. pures et appl. 16 (1) (1971), 111-119,

van DANTZIG, D. and van der WAERDEN, B.L.

1. "{ber metrische homogene RHume"
Abh. Math. Sem. Univ. Hamburg 6 (1928), 367-376.
VRANCEANU, G.
1. "Sur la représentation gdodésique des espaces de Riemann"
Rev. roum. math. pures et appl. 1 (3) (1956), 147-165.
2, "Asupra spatiilor lui Riemann cu conexiune constanta”
St. cerec. mat. 13 (2) (1962), 209-22k,
WANG, H.C.
1. "Closed manifolds with homogeneous complex sbructure”

Amer. J. Math. 76 (1954), 1-32.

WHITEHEAD, J.H.C.

1.

WOLF,

1.

2.

"Affine spaces of paths which are symmetric about each point"
Math. Zeit. 35 (1932), 64L-659.

JeA.

"Spaces of Constant Curvature"
McGraw-Hill, New York, 1967.

"The manifolds covered by a riemannian homogeneous manifold"

Amer. J. Math. 82 (1960), 661-688,
"On locally symmetric spaces of non-negative curvature and cerbtain
other locally homogeneous spaces"

Comment. Math. Helv. 37 (1963), 266-295.,




138.

WOLF, J.A. and GRAY, A.

1. '"Homogeneous spaces defined by Lie group automorphisms. I and II"
J. Differential Geometry 2 (1968), 77-114 and 115-159.

WU, H.

1. "On the de Rham decomposition theorem"
Illinols J. Math. 8 (1964), 291-311.

- AR 3\1‘!,’,{:,.,E
N .3 1.;';'-’05' 2




