
Durham E-Theses

Con�guration spaces of thick particles on graphs

DEELEY, KENNETH

How to cite:

DEELEY, KENNETH (2011) Con�guration spaces of thick particles on graphs, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/862/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/862/
 http://etheses.dur.ac.uk/862/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Configuration spaces of thick

particles on graphs

Kenneth Deeley

A thesis presented for the degree of

Doctor of Philosophy

Pure Mathematics

Department of Mathematical Sciences

Durham University

2011



Abstract

Configuration spaces of thick particles on graphs

Kenneth Deeley

In this thesis, we study the topology of configuration spaces of particles of variable

radius r > 0 moving on a metric graph. Our main tool is a piecewise linear (PL)

Morse–Bott theory for affine polytope complexes, which extends the Morse theory

for such complexes introduced by M. Bestvina and N. Brady in paper [8].

As the size parameter r increases, the topological properties of the corresponding

configuration spaces vary. We show that there are finitely many critical values where

the homotopy type of these spaces changes, and describe these critical values in terms

of metric properties of the graph. This provides an upper bound on the number of

critical values in terms of the metric data. Moreover, we apply PL Morse–Bott

theory to analyse the change in homotopy type of configuration spaces of thick

particles when the radius transits a critical value.

Provided that r is sufficiently small, we show that the thick particle configuration

space is homotopy equivalent to the familiar configuration space of zero-size points

on the graph. We also investigate discrete models for configuration spaces of two

thick particles. Moreover, given a metric graph and the size parameter r, we provide

an algorithm for computing the number of path-components of the configuration

space of two thick particles.
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Chapter 0

Introduction

0.1 Background and motivation

0.1.1 Topological robotics

In this thesis we investigate topological properties of configuration spaces of thick

particles moving on a metric graph. This work is motivated by various problems

arising in the area of topological robotics. Topological robotics is “a new mathemat-

ical discipline studying topological problems inspired by robotics and engineering

as well as problems of practical robotics requiring topological tools” [20, Preface].

An excellent introduction is provided by M. Farber’s book [20]. Interesting topics

of topological robotics analysed in [20] include configuration spaces of mechanical

linkages, knot theory of robotic arms, and the motion planning problem (namely,

the control problem of safely scheduling a trajectory between an initial configura-

tion of robots and a desired configuration). As an example of the latter, consider

the problem of permuting the positions of the three groups of robots in a workplace

containing obstacles as shown in Figure 1. There are clearly many different solutions

to this problem.

Moreover, many mathematical and engineering problems involving mechanical

devices have important historical significance. For example, Archimedes’ screw (see

Figure 2)1 enabled agricultural expansion in early civilisations, and is still in use

1Image: Wikimedia Commons, public domain, from Chambers’ Encyclopedia (1875).
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0.1. Background and motivation 2

Figure 1: The motion planning problem

today. As mentioned in [20], the industrial revolution saw the development of many

Figure 2: Archimedes’ screw

important linkages. A famous example is James Watt’s linkage (see Figure 3) which

solves the problem of constraining the motion of a steam engine piston to an approxi-

mate straight line. Topological robotics may be viewed as a research area continuing

the historical practice of seeking mathematical solutions to practical problems aris-

ing from (and inspired by the construction of) mechanical devices.

0.1.2 Robots and autonomous guided vehicles

A robot is “a machine capable of carrying out a complex series of actions automat-

ically, especially one programmable by a computer” [55]. The word “robot” was

first introduced in 1920 by the Czech author Karel Čapek in his play “Rossum’s

Universal Robots”; he attributes the origin of the word to his brother Josef Čapek
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P

A B
`

Figure 3: Watt’s linkage: points A and B are fixed, bar ` rotates around A, and the

motion of P approximates a straight line

[55, 57]. The word “robota” literally means “work” or “labour”, and metaphorically

“drudgery” or “hard work” in Czech [53, 55, 57]. The term “robotics” was coined

by Isaac Asimov in 1940 [53] and is now viewed as “the branch of technology that

deals with the design, construction, operation and application of robots” [55]. An

excellent publication illustrating the multidisciplinary nature of modern robotics is

the Springer Handbook of Robotics [53] (see also [37]).

An important class of robots is the so-called autonomous guided vehicles (also

called automated or automatic guided vehicles – all abbreviated to “AGVs”). An

AGV is a mobile driverless robot (see Figure 4)2 generally used in large warehouses

or factories for transporting materials within the facility [37, 39, 52, 58]. The motion

of an AGV is usually constrained to a guidepath network consisting of electric wires,

magnetic tape or laser reflectors [39, 52, 58]. In this context the term “autonomous”

means “not dependent upon any link to the outside world” [48, §1]. In practical

terms, this means that AGVs carry an onboard power supply and computer and

are “not remote-controlled by a human, but interact with [their] environment ...

and determine [their] motion without external intervention” [48, §1]. Scheduling

the collision-free motion of AGVs is an important problem of practical robotics [39].

In the next subsection, we summarise how topological methods have been used to

2Images: public domain, courtesy of Transbotics Corporation and Hi-Tech Robotic Systemz

Ltd.



0.1. Background and motivation 4

Figure 4: Examples of AGVs: an outdoor laser-guided vehicle on the left, and an

indoor vehicle following a magnetic strip on the factory floor on the right

model certain aspects of this problem. An excellent survey of the application of

configuration spaces in industrial robotics has been written by A. Abrams and R.

Ghrist [4].

0.1.3 Configuration spaces of graphs

We now discuss the role of topology in the problems of practical robotics mentioned

in §0.1.1 and §0.1.2. Consider the engineering problem of safely organising multi-

ple AGVs moving without collisions on a fixed guidepath network. This problem

has been studied from a topological viewpoint by R. Ghrist in [33] (see also the

expository paper [34]) and by R. Ghrist and D. Koditschek in [35, 36]. Configura-

tion spaces of graphs arise intrinsically in this context. Indeed, the natural model

is to assume that the AGV guidepath network is a graph Γ; then the space of all

collision-free positions of n AGVs is precisely the n–point configuration space of Γ,

namely

F (Γ, n) := {(x1, . . . , xn) ∈ Γn : xi 6= xj for i 6= j},

topologised as a subspace of the product Γn. In papers [35] and [36], R. Ghrist and

D. Koditschek introduce the use of vector fields to construct control schemes which
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safely organise AGV motion on a planar graph.

Many interesting and relevant topological properties of F (Γ, n) have recently

been discovered. For example, R. Ghrist proves in [33, Theorem 3.3] that F (Γ, n)

deformation retracts onto a finite cw complex of dimension V , where V is the num-

ber of essential vertices (µ(v) ≥ 3) in Γ. A similar result was proved independently

by J. Świa̧tkowski in [54, Theorem 0.1], where the author shows that the homologi-

cal dimension of the unordered n–point configuration space F (Γ, n)/Sn is bounded

above by V . (Here, the symmetric group Sn acts freely on F (Γ, n) by permuting

coordinates). An important result of R. Ghrist [33, Theorem 3.1] states that the

configuration space F (Γ, n) is aspherical. More general configuration spaces have

recently been studied by A. Abrams, D. Gay and V. Hower; in [3, Theorems 1,2]

the authors explicitly determine the homotopy type of the following discretised con-

figuration space of ∆n:

Dk(∆
n) = {σ1 × · · · × σk : {σi} are pairwise disjoint closed cells in ∆n}.

(Here ∆n is the standard n–simplex.)

In the special case when Γ is a tree T , the configuration space F (T, n) of n points

on T has been studied by M. Farber in [19]. This paper describes an explicit motion

planning algorithm in F (T, n) and computes the topological complexity (see [20,

§4.2] for definitions) of F (T, n), also in terms of V . Configuration spaces of trees

have also been studied by other authors. For example, D. Farley and L. Sabalka

[26, 28] computed the fundamental group of the (unordered) n–point configuration

space of a tree (the tree braid group), using a discrete version of Morse theory due

to R. Forman [29]. Moreover, D. Farley has computed the homology of tree braid

groups in paper [24]. Presentations for the cohomology rings of tree braid groups

are also described in work of D. Farley [25] and D. Farley and L. Sabalka [27].

Such braid groups are also investigated in work of A. Abrams, see [1, Chapter 3]

and [2] (see also P. Prue and T. Scrimshaw’s paper [51]). The case of braid groups of

general graphs has been studied from a motion planning viewpoint by V. Kurlin [44].

Interesting computations of the braid groups of specific graphs have been carried out

by M. Doig [17], F. Connolly and M. Doig [11] and A. Neels and S. Privitera [47].

An important recent paper by Ki Hyoung Ko and Hyo Won Park provides general
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formulae for the first homology group of the n–point unordered configuration space

of a graph (see [42, Theorem 3.16]).

Many significant results have been obtained for the case n = 2, when the con-

figuration space models the collision-free motion of two particles on a graph. For

example, in paper [19] M. Farber explicitly describes the topology of F (T, 2) for a

tree T . In his book (see [20, §2.3]) M. Farber computes the Euler characteristic

χ(F (Γ, 2)) for a general graph Γ, making use of an elegant theorem of S. Gal (see

[30, Theorem 2]).3 This result was also obtained by K. Barnett and M. Farber using

a different method, see [7, Corollary 1.2]. Furthermore, in paper [7] the authors de-

scribe explicit generators for the second homology group H2(F (Γ, 2),Z). Paper [7]

also contains information on the cohomology algebra H∗(F (Γ, 2),Q) for any regular

planar graph Γ (see also K. Barnett’s thesis [6]). The results of [7] are continued

by M. Farber and E. Hanbury in paper [22], in which the authors determine the

Betti numbers of F (Γ, 2) for a large class of graphs. D. Farley and L. Sabalka

have studied explicit examples of graph braid groups on n = 2 strands, see [28,

§5, §6]. Importantly, Ki Hyoung Ko and Hyo Won Park [42, Theorem 3.25] have

shown that H1(F (Γ, 2)) is free for any finite connected graph Γ and have computed

rkH1(F (Γ, 2)) explicitly in terms of graph-theoretic invariants.

0.1.4 Metric graphs

A metric graph is a connected graph in which each edge e is labelled by a positive

number `e > 0. Such a labelling induces a metric on the graph, where the distance

between two points is the length of the shortest arc connecting them (see §1.2 and

§1.3 for full details). Metric graphs play an important role in this thesis (described

in §0.2). They have also been studied in various other contexts. For example, A.

Georgakopoulos [31] has related certain topologies on infinite graphs to the metric

topology induced by an edge-labelling. In paper [32], the same author uses metric

graphs to model electrical networks. In this case the label of each edge is interpreted

3This remarkable theorem provides an explicit formula for the Euler-Gal power series euX(t) :=∑∞
n=0

tn

n!χ(F (X,n)) of a finite polyhedron X in terms of local topological properties of X.
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as its electrical resistance. Moreover, O. Mermoud and M. Steiner [46] view labelled

graphs as point sets in some fixed Euclidean space with given distances between

certain pairs of points, and study the space of all possible realisations up to isometry.

In paper [15], B. Demir, A. Deniz and S. Koçak show that under certain assumptions,

two metric graphs which are sufficiently close (with respect to some metric) are

actually equivalent as graphs. We also mention the beautiful expository paper by

M. Baker and X. Faber [5], in which the authors study a special Laplacian operator

on a metric graph.

0.1.5 The main problem and related topics

In this thesis, we study configuration spaces of thick particles on a metric graph.

This means that we view the moving particles as metric balls of some positive radius

r > 0, instead of modelling them as zero-size points. It has been recognised in the

literature that regarding the moving objects as points is not completely realistic from

a modelling viewpoint. For example, in the context of modelling robots moving on

a factory floor, A. Abrams and R. Ghrist [4] acknowledge that “Of course, since

the robots are not truly points, and since no control algorithm implementation is of

infinite precision, we require that the control path reside outside of a neighborhood

of the diagonal ∆ in (R2)N .” Further, in paper [23], M. Farber, M. Grant and

S. Yuzvinsky compute the topological complexity (see [20, §4.2]) of the n–point

configuration space of Rk − F , where F is a finite set of points and k ∈ {2, 3}. In

[23, §1], the authors write “We believe that the conclusions of this paper will remain

valid in a more general and realistic situation when the objects and the obstacles are

represented by small balls, possibly of different radii, and the control requirements

are to avoid tangencies between objects and obstacles.” In this thesis we investigate

how some of these issues may be addressed by replacing zero-size point particles

with metric balls of positive radius.

There has also been fascinating recent progress with similar problems in a dif-

ferent context. For example, M. Kahle has constructed stable configurations of n

discs of radius r = O(1/n) in the unit square [0, 1]× [0, 1]. As mentioned by P. Dia-

conis [16, §4], the problem of packing solid discs in a box is motivated by the study
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of phase transitions in statistical mechanics. M. Kahle’s result [41, Theorem 1.2]

has consequences for the Metropolis algorithm, which is an algorithm for randomly

packing discs in (for example) the unit square.

0.2 The main objects of study

In this section we briefly introduce the configuration spaces {Fr(Γ, 2)}r>0 of two

thick particles moving on a metric graph Γ. These are our main objects of study

and the aim of this thesis is to study their topology.

Throughout this thesis, we work with a finite, connected graph Γ with edge set

E(Γ) 6= ∅. We assume that there is a map ` : E(Γ)→ (0,∞) labelling the edges of Γ

by positive numbers, see Figure 5. Such a labelling induces a metric d : Γ×Γ→ R,

1√
2 3/2

1/2

π

4/5

Figure 5: Labelling the edges of Γ

where d(x, y) is the length of the shortest path4 in Γ joining x and y.

Definition 0.2.1 (Thick-particle configuration space). For r > 0, we define

Fr(Γ, 2) := {(x, y) ∈ Γ× Γ : d(x, y) ≥ 2r} = d−1([2r,∞)).

In other words, Fr(Γ, 2) is the configuration space of two thick particles (robots)

of radius r moving on Γ, see Figure 6. Varying the radius r of these particles gives

a family of spaces {Fr(Γ, 2)}r>0. We view Fr(Γ, 2) as a model for the collision-free

motion of two robots on the guidepath network Γ. Each robot is modelled as a metric

ball of radius r, and tangencies between the robots are permitted. The following list

4Full details of this construction are given in Chapter 1, see §1.2 and §1.3.
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r r

Figure 6: Two objects of radius r moving on Γ

suggested by M. Farber [21] provides several important questions about the family

{Fr(Γ, 2)}r>0.

(i) For which values of r is Fr(Γ, 2) nonempty?

(ii) For which values of r is Fr(Γ, 2) path-connected? For a given Γ and r, how

many path-components does Fr(Γ, 2) have?

(iii) Is there an r0 such that for all 0 < r < r0, the space Fr(Γ, 2) is homotopy

equivalent to the configuration space F (Γ, 2) of two zero-size particles?

(iv) Are there intervals (a, b) such that the homotopy type of Fr(Γ, 2) is constant

for r ∈ (a, b)?

(v) Study “phase transitions”; that is, critical values of the radius r at which the

homotopy type of Fr(Γ, 2) changes.

Answering these questions forms the basis of this thesis. We begin in Chapter 2

by developing our main tools; this development extends the work of M. Bestvina

and N. Brady [8] (see also [9]). In Chapter 3 we answer questions (i) and (iv). In

Chapter 3 we also investigate problem (v) by using the tools from Chapter 2; we

study the change in homotopy type of Fr(Γ, 2) as r ranges over an interval (a, b)

containing precisely one critical value R.

In Chapter 5 we answer (ii) in the form of an algorithm for computing the

number of path-components of Fr(Γ, 2) given r and (Γ, `). We provide a solution to

(iii) together with some more general material in Chapter 4.
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The theory developed in Chapter 2 applies in more general contexts than those

arising from problems (i)–(v). This motivated an additional problem as follows:

(vi) Study the configuration spaces {Fr(Γ, n)}r>0, where n ≥ 3. (These spaces

model the collision-free motion of n robots of radius r moving on a metric

graph Γ).

Using the tools developed in Chapter 2, we investigate some properties of the family

{Fr(Γ, n)}r>0 (for fixed n ≥ 3) in Chapter 6.

0.2.1 Notation

Throughout this thesis the symbol ∼= stands for a homeomorphism and the symbol

' stands for a homotopy equivalence. The interior of a set A in a topological space

(X, T ) is denoted by A◦. The terminology “closed unit interval” means the topolog-

ical space [0, 1] equipped with the standard metric topology. We use the notation

b0(X) for the 0th Betti number of a space X (the number of path-components of

X). A discrete space containing m ≥ 0 points is denoted by Qm.

0.3 Thesis structure

In this final section of the introduction, we describe the structure of this thesis. The

chapter dependency is shown in the graph below.

0: Introduction

��
1: Background material

��
2: PL Morse–Bott theory

tthhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVV

3: Homotopy type //

�� **VVVVVVVVVVVVVVVVVV
Appendix A 6: The case n ≥ 3

��

4: Discrete models

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 5: Path-components
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In §0.2 we introduced the thick particle configuration spaces {Fr(Γ, 2)}r>0, the main

objects of study in this thesis. We cover the necessary background material on la-

belled graphs and metric geometry in Chapter 1. This includes the basic definitions

from graph theory (see §1.1) and the construction of the induced metric on a con-

nected graph with positive edge labels (see §1.2 and §1.3). In §1.4 and §1.5 we discuss

certain important classes of paths, define basic operations on a labelled graph, and

formulate a version of the triangle inequality for labelled graphs. This inequality is

needed in Chapters 2, 3, 4 and 6.

In Chapter 2 we develop a piecewise linear (PL) Morse–Bott theory (see §2.1)

for affine polytope complexes (APCs), extending the work of Bestvina and Brady

(see [8, 9]) who developed a PL Morse theory for affine Morse functions defined on

APCs. PL Morse–Bott theory is our main tool for studying the topology of the

configuration spaces mentioned in this thesis. In §2.2 we verify that the metric

d : Γ× Γ→ R on a metric graph is an affine Morse–Bott function, so that we may

apply our PL Morse–Bott theory to this metric.

Once the basic tools have been established in Chapter 2, we begin our study of

the family {Fr(Γ, 2)}r>0 in Chapter 3 by studying the homotopy type of Fr(Γ, 2);

this depends on the size parameter r > 0. The main result of this chapter is that

there are finitely many critical values (see Definitions 3.2.1) where the homotopy

type of Fr(Γ, 2) changes, see Theorem 3.2.3. This theorem also describes each of

these critical values in terms of metric properties of the graph, thereby providing an

upper bound for the number of critical values in terms of the metric data. We then

turn our attention to analysing the change in homotopy type of Fr(Γ, 2) as r varies

over an interval containing exactly one critical value. In §3.2 we apply PL Morse–

Bott theory to compute the relative homology groups of the pair (Fa(Γ, 2), Fb(Γ, 2)),

where the interval (a, b) contains exactly one critical value. In Appendix A we discuss

how Theorem 3.2.3 may be derived directly by constructing an explicit deformation

retraction.

In Chapter 4 we study discrete models for the configuration spaces {Fr(Γ, 2)}r>0.

A discrete model for Fr(Γ, 2) is a finite cw complex homotopy equivalent to Fr(Γ, 2).

We show that for sufficiently small r > 0, Fr(Γ, 2) is homotopy equivalent to the
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usual two-point configuration space F (Γ, 2), see Theorem 4.1.6. This result is ob-

tained by defining a cw complex which is a deformation retract of both spaces. We

then introduce a cw complex Dr(Γ, 2) and show that for each r, there is a sub-

division of Γ such that Fr(Γ, 2) deformation retracts onto Dr(Γ, 2) (see Theorem

4.2.4). This shows that for each r > 0, Fr(Γ, 2) has a discrete model which may be

constructed explicitly from Γ (possibly after further subdivision of Γ).

In Chapter 5 we study the path-connectivity of the spaces {Fr(Γ, 2)}r>0. We

begin in §5.1 by reviewing the path-connectivity of the 2–point configuration space

F (Γ, 2). After this, we develop an algorithm in §5.3 for computing b0(Fr(Γ, 2))

given Γ and r. The theoretical basis of this algorithm is provided by the general

tools developed in Chapter 2. To illustrate the general complexity of the family

{Fr(Γ, 2)}r>0 we refer to Example 5.3.12, where applying the algorithm from §5.3

shows that b0(Fr(Γ, 2)) need not be a monotone (or even unimodal) function of r.

Section §5.4 contains further examples of applying the algorithm to specific labelled

graphs. In Appendix B, we provide an implementation of the algorithm (written

in GNU Octave) applied to trees. The main results from Chapters 2, 3 and 5 are

contained in paper [14].

In Chapter 6 we study properties of the family of thick particle configuration

spaces {Fr(Γ, n)}r>0 for a general n ≥ 3. These configuration spaces model the

collision-free motion of n AGVs of radius r > 0 moving on a metric graph Γ. As in

the previous chapters, our tool is the PL Morse–Bott theory developed in Chapter

2. We study the analogues of Theorem 3.2.3 and Theorem 4.1.6 for the general case

of n thick particles on a metric graph.

Finally, in Chapter 7 we discuss some possibilities for future work. These mainly

consist of unsolved problems arising from studying the family {Fr(Γ, n)}r>0 in the

general case when n ≥ 3. Moreover, we present some ideas for studying different but

related configuration spaces arising from specific practical contexts, together with

some ideas for extending the work in Chapter 4.



Chapter 1

Background material on labelled

graphs

In this chapter we introduce the necessary definitions and background material on

labelled graphs. The main result is that a labelling of the edges of a graph by positive

numbers induces a metric, see Theorem 1.3.3. We begin in §1.1 with the basic defi-

nitions, and proceed in §1.2 and §1.3 with the construction of the metric. In §1.4 we

discuss special types of paths and their relationships to the induced metric. Finally

in §1.5 we define the basic operations of subdivision and amalgamation in a labelled

graph and state a version of the triangle inequality for labelled graphs. In partic-

ular, this inequality is required in Chapter 4 to ensure that a certain deformation

retraction is well-defined.

1.1 Basic definitions from graph theory

Throughout the thesis, we study the topology of configuration spaces of thick par-

ticles on a graph. We begin by giving the requisite definitions and notation from

graph theory. The main references are the textbooks by A. Hatcher [38], W. Massey

[45] and D. Burago, Y. Burago and S. Ivanov [10].

Definitions 1.1.1. A topological space Γ is a graph if there exists (a) a discrete

13
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space X0; (b) a collection of closed unit intervals {Iβ}β∈A, and (c) a map

φ :=
∐
β∈A

φβ :
∐
β∈A

∂Iβ → X0

such that Γ is the adjunction space

Γ = X0 tφ
∐
β∈A

Iβ,

see Figure 1.1. Let p : X0 qβ∈A Iβ → Γ denote the quotient map. The elements of

the set Γ(0) := p(X0) are called the vertices of Γ, and the sets {p(I◦β)}β∈A are called

the edges of Γ. The graph Γ is finite if X0 and A are both finite sets.

p

ΓX0

qβ∈AIβ

Figure 1.1: Γ is a quotient of X0 qβ∈A Iβ obtained by identifying the endpoints of

each interval Iβ with points of X0

Remark 1.1.2. A graph is a 1–dimensional cw complex. The 0–cells are the vertices,

and the open 1–cells are the edges.

Definitions 1.1.3.

1. We also use the notation V (Γ) and E(Γ) for the sets of vertices and edges of

Γ, respectively.

2. If e = p(I◦β) then we use the notation ∂0e := p(φβ(0)) and ∂1e := p(φβ(1))

for the endpoints of e. The topological boundary ∂e = e \ e of e is equal to

{∂0e, ∂1e} and is contained in V (Γ). A closed edge is the closure e of an edge

e.

3. A vertex v ∈ E(Γ) is incident to an edge e ∈ E(Γ) (or vice-versa) if v ∈ ∂e.
Edges e, f ∈ E(Γ) are incident if ∂e ∩ ∂f 6= ∅.
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4. An edge e ∈ E(Γ) such that ∂0e = ∂1e is called a loop. If e, f ∈ E(Γ) satisfy

∂e = ∂f and |∂e| = |∂f | = 2, then e and f are said to be multiple edges.

5. A graph that has no loops or multiple edges is said to be simple. This is

equivalent to the condition that Γ is a one-dimensional simplicial complex.

Indeed, Γ is simple if and only if every edge has two endpoints and no two

edges have the same set of endpoints.

6. Given a vertex v ∈ V (Γ), the degree of v is

µ(v) := |{e ∈ E(Γ) : ∂0e = v}|+ |{e ∈ E(Γ) : ∂1e = v}|.

Note that loops incident to v contribute 2 to µ(v). A vertex v is isolated if

µ(v) = 0, free if µ(v) = 1, non-essential if µ(v) = 2 and branched if µ(v) ≥ 3.

If x ∈ Γ \ V (Γ), then we set µ(x) = 2.

7. A subgraph of Γ is a cw subcomplex of Γ.

8. A cycle is a subgraph homeomorphic to S1. We use the notation Z(Γ) for the

set of cycles in Γ.

9. A basis B for the topology T on Γ is described as follows. A subset G ⊂ Γ lies

in B if and only if it contains a point x such that (G, x) is homeomorphic to

the wedge sum
∨
µ(x)([0, 1), 0), see Figure 1.2. This includes the case when x

lies in an edge and µ(x) = 2; in this case G ∼= [0, 1) ∨ [0, 1) is a copy of (0, 1).

G1
G2

Figure 1.2: Examples of basis elements G1, G2 ∈ B

Remark 1.1.4. Unless otherwise stated, all graphs are assumed to contain at least

one edge and be finite and connected.
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Example 1.1.5. Let Γ be the following subspace of R2.

Γ

A = (0, 1) B = (1, 1)

D = (1, 0)C = (0, 0)

This space has a graph structure as follows. In the notation of Definitions 1.1.1, let

X0 = {A,B,C,D}, a discrete set of four points. Set A = {1, 2, 3, 4, 5} and define

the map

φ =
5∐
j=1

φj :
5∐
j=1

∂Ij → X0

by

φ1(0) = A, φ1(1) = B,

φ2(0) = A, φ2(1) = C,

φ3(0) = C, φ3(1) = B,

φ4(0) = B, φ4(1) = D,

φ5(0) = C, φ5(1) = D.

It follows that Γ is the adjunction space X0 tφ
∐5

j=1 Ij. In this case, Γ is a simple

graph with four vertices and five edges. There are two non-essential vertices and

two branched vertices.

We continue with the definitions. Definition 1.1.6 is given in [7, §1] and will be

needed in this thesis when we study discrete models in Chapter 4.

Definition 1.1.6 (Support). Let Γ be a graph and let x ∈ Γ. The support of x is

the smallest subgraph of Γ containing x, namely

supp(x) :=

 {x}, if x ∈ V (Γ),

e, if x ∈ e and e is an edge of Γ.

Definition 1.1.7 (Star). Any point x ∈ Γ has a neighbourhood Ux homeomorphic

to the cone over a discrete set of µ(x) points. Such a neighbourhood of x will be

referred to as a star neighbourhood of x, see Figure 1.3.
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v

w

xUx

Uv

Uw

Figure 1.3: Star neighbourhoods Ux, Uv, Uw in Γ

Labelled graphs have an important role in this thesis.

Definition 1.1.8 (Labelled graph). A labelled graph is a pair (Γ, `) comprising a

graph Γ together with a map ` : E(Γ)→ (0,∞) assigning a positive number `(e) to

each edge e ∈ E(Γ).

Example 1.1.9. Let Γ be the graph shown in Figure 1.4. There are six edges

e1, . . . , e6 comprising E(Γ). The map ` : E(Γ)→ (0,∞) is given by `(e1) = `(e3) =

1, `(e2) = 1/2, `(e4) = 3/2, `(e5) =
√

2 and `(e6) = 5/6.

e1

e2

e3

e4

e5

e6

1

1/2

1
3/2

√
2

5/6

Figure 1.4: Assigning a label to each edge

In §1.2 and §1.3 we show that any labelled graph (Γ, `) has an induced metric

d : Γ× Γ→ R.
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1.2 The length of an edgepath

In this section we begin by defining a metric on each edge of a labelled graph (Γ, `).

We then define an edgepath sequence in a graph and show how to define its length.

Definition 1.2.1. Let e be an edge of Γ. There are two cases, namely when e is

homeomorphic to [0, 1] and when it is homeomorphic to S1.

1. Suppose that e is homeomorphic to [0, 1]. Let T : e → [0, 1] be the homeo-

morphism such that T (∂0e) = 0, T (∂1e) = 1 and e 3 y 7→ T (y) ∈ (0, 1) is the

identity map id : e→ (0, 1). We define ρe : e× e→ R by

ρe(x, y) = `(e)|T (x)− T (y)|, ∀x, y ∈ e,

where `(e) is the label of the edge e.

2. Suppose that e is a loop. Let T : e → S1 be the homeomorphism such that

T (∂0e) = 1 and T (w) = e2πiw, for all y ∈ e = (0, 1). We define ρe : e× e→ R

by

ρe(x, y) =
`(e)

2π
min {|arg T (x)− arg T (y)|, 2π − |arg T (x)− arg T (y)|} ,

with the convention that arg z ∈ [0, 2π) for z ∈ S1. That is, we define ρe(x, y)

to be the length of the shorter of the two arcs joining T (x) and T (y) in a circle

with circumference `(e), see Figure 1.5.

T (x)

T (y)

Figure 1.5: The shorter of the two arcs joining T (x) and T (y)

Definition 1.2.2. An edgepath sequence is a finite sequence of points of Γ,

x = (x0, x1, x2, . . . , xn), n ≥ 1,

such that for each i ∈ {0, 1, . . . , n− 1}, there is a unique edge ei such that xi, xi+1 ∈
ei.
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Example 1.2.3. On the left of Figure 1.6, (x0, x1, x2, x3) is not an edgepath se-

quence because x1, x2 ∈ e1, e2 and e1 6= e2. On the right of Figure 1.6, (x0, . . . , x4)

is an edgepath sequence.

x0
x1 x2e2

e1

x3
x0

x1 x3

x2

x4

Figure 1.6: A sequence which is not an edgepath sequence and one that is

Definition 1.2.4. The length of an edgepath sequence x = (x0, . . . , xn) is

Lx :=
n−1∑
i=0

ρei(xi, xi+1).

Example 1.2.5. Consider the edgepath sequence x = (x0, x1, . . . , x9) in Figure 1.7.

We have Lx = 1 + 4× 1/2 + 1 + 2 + 2× 1 = 8.

x0

x1
x2

x3
x4

x5

x6

x7

x8

x9

1

1/2

1/2

1/2

1/2

1

2

1

1

Figure 1.7: The length of an edgepath sequence
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1.3 The induced metric

We proceed with the construction of the metric d induced on Γ by an edge-labelling

` : E(Γ)→ (0,∞).

Remark 1.3.1. Since Γ is path-connected, it has the following property: for any

x, y ∈ Γ there is an edgepath sequence x = (x0, x1, . . . , xn) with x0 = x and xn = y.

Let P (x, y) be the set of all such edgepath sequences.

Definition 1.3.2. For any x, y ∈ Γ, the set {Lx : x ∈ P (x, y)} is nonempty and

bounded below by zero. We define d : Γ×Γ→ R by d(x, y) := inf{Lx : x ∈ P (x, y)}.

Theorem 1.3.3. The map d : Γ× Γ→ R is a metric.

Proof. From the definition, d(x, y) ≥ 0 for all x, y ∈ Γ. If x = y, then x = (x, y)

is an edgepath sequence with Lx = 0, so d(x, y) = 0. Assume that x 6= y. We

distinguish four cases.

(i) If x, y ∈ V (Γ), then Lx ≥ mine∈E(Γ) `(e) for all x ∈ P (x, y).

(ii) If one of x, y is a vertex and the other is not, say x ∈ V (Γ) and y ∈ e, then

Lx ≥ ρe(y, ∂e) > 0 for all x ∈ P (x, y).

(iii) If x, y lie in distinct edges e, f , respectively, then Lx ≥ ρe(x, ∂e)+ρf (y, ∂e) > 0

for all x ∈ P (x, y).

(iv) If x, y lie in the same edge e, then

Lx ≥ min {ρe(x, y), ρe(x, ∂e) + ρe(y, ∂e)} > 0, ∀x ∈ P (x, y).

In all cases we obtain d(x, y) > 0. To prove symmetry, first define

xt := (xn, xn−1, . . . , x1, x0)

whenever x = (x0, . . . , xn) is an edgepath sequence. Then x ∈ P (x, y) if and only if

xt ∈ P (y, x), and

Lxt =
n−1∑
i=0

ρei(xi+1, xi) =
n−1∑
i=0

ρei(xi, xi+1) = Lx,
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from the symmetry of each ρei . This gives

d(x, y) = inf{Lx : x ∈ P (x, y)} = inf{Lxt : x ∈ P (x, y)}

= inf{Lw : w ∈ P (y, x)} = d(y, x).

To prove the triangle inequality, let

x1 = (x0, . . . , xn) ∈ P (x, y), x2 = (y0, . . . , ym) ∈ P (y, z)

be arbitrary. Define

x1 : x2 := (x0, x1, . . . , xn, y0, y1, . . . , ym);

then x1 : x2 ∈ P (x, z) and

d(x, z) ≤ Lx1:x2 = Lx1 + Lx2 .

Taking the infimum over all x1 ∈ P (x, y) and then over all x2 ∈ P (y, z) gives

d(x, z) ≤ d(x, y) + d(y, z).

This metric induces a topology τ(d) on Γ, so it is natural to ask if it is related

to the cw topology. The answer is given by the following statement.

Proposition 1.3.4. If (Γ, `) is a finite, connected labelled graph then the cw topol-

ogy T coincides with the metric topology τ(d).

Proof. We show that a basis for τ(d) is contained in T , and vice-versa. For T , we

use the basis B from Definitions 1.1.3, see Figure 1.2. For τ(d) we use the basis Bd
comprising the balls Br(x) for x ∈ Γ and r > 0.

(i) To show that Bd ⊆ T , fix x ∈ Γ, and define

r(x) :=

 1
2

min {`(e) : e ∈ E(Γ), x ∈ ∂e} , if x ∈ V (Γ),

d(x, V (Γ)), if x 6∈ V (Γ),

see Figure 1.8. For any 0 < r < r(x), the pair (Br(x), x) is homeomorphic to∨
µ(x)([0, 1), 0) and thus Br(x) ∈ B.
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x
r(x) x

r(x)

Figure 1.8: The definition of r(x)

(ii) We now show that B ⊆ τ(d). Let G ∈ B and choose x ∈ G such that

(G, x) ∼=
∨
µ(x)([0, 1), 0). If µ(x) = 2, then G is a copy of (0, 1) and contains

a metric ball around each of its points. If µ(x) 6= 2, then x ∈ V (Γ). For any

y ∈ G \ {x} we have µ(y) = 2 and so G contains a metric ball around y. If

y = x then we set r := minp∈∂G d(x, p) to obtain Br(x) ⊆ G, see Figure 1.9.

Hence G is τ(d)–open.

x

G

x

Gy

r

Figure 1.9: Sets G ∈ B, a typical y ∈ G and the definition of r if y = x

Corollary 1.3.5. Any two labellings `1, `2 : E(Γ) → (0,∞) induce homeomorphic

metric spaces (Γ, d1), (Γ, d2).

Remark 1.3.6. These metric spaces need not be isometric – for example, consider

two distinct labellings of Γ = [0, 1] with its minimal graph structure.
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1.4 Special paths and further metric properties

In this section we introduce terminology for different types of paths and then mention

some interesting properties of the induced metric on a labelled graph (Γ, `).

Definition 1.4.1. Let (Y, ρ) be a metric space. A path c : [0, 1]→ Y has constant

speed if

ρ(c(s), c(t)) = ρ(c(0), c(1))|s− t|, ∀s, t ∈ [0, 1].

Definitions 1.4.2. Let (Γ, `) be a labelled graph.

1. If x, y ∈ e and e is not a loop, then denote the unique constant-speed path in

(e, ρe) from x to y by p(x,y) : [0, 1]→ (e, ρe).

2. If e is a loop and ρe(x, y) 6= `(e)/2, then there is a unique constant-speed path

p(x,y) in (e, ρe) from x to y (following the shorter of the two geodesic arcs). If

ρe(x, y) = `(e)/2, then there are exactly two constant-speed paths in (e, ρe)

from x to y. Let p(x,y) denote the path that traverses e in the anticlockwise

direction.

We now define the path induced by an edgepath sequence.

Definitions 1.4.3. Let x = (x0, x1, . . . , xn) be an edgepath sequence. The path

γx : [0, 1]→ Γ induced by x is the concatenation

p(x0,x1) · p(x1,x2) · . . . · p(xn−1,xn) : [0, 1]→ Γ,

using the interval [ti, ti+1] ⊂ [0, 1] for p(xi,xi+1), where

tk :=
1

Lx

k−1∑
j=0

ρej(xj, xj+1),

provided that Lx 6= 0. If Lx = 0, then γx is the constant path with value x0. The

length of γx is L(γx) := Lx.

A path c : [0, 1] → Γ is an edgepath if there is an edgepath sequence x such

that γx = c. An edgepath γx, where x = (x0, . . . , xn), is minimal-length if L(γx) =

d(x0, xn).
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v2 v3

v4v1 e4

e1

e2

e3
1

1

2

3

Figure 1.10: The labelled graph structure on Γ

Example 1.4.4. Let Γ be the boundary of the unit square [0, 1] × [0, 1] with the

labelled graph structure shown in Figure 1.10. Consider the edgepath sequence x =

(v1, v2, v3, v4). We have Lx = 6 and the path γx induced by x is the concatenation

p(v1,v2) · p(v2,v3) · p(v3,v4) : [0, 1]→ Γ,

where we use [0, 1/6] for p(v1,v2), [1/6, 1/2] for p(v2,v3) and [1/2, 1] for p(v3,v4). This

gives the formula

γx(t) =


(0, 6t), t ∈ [0, 1/6],

(3t− 1/2, 1), t ∈ [1/6, 1/2],

(1, 2− 2t), t ∈ [1/2, 1].

Moreover L(γx) = 6 6= 1 = d(v1, v4), so γx is not minimal-length. On the other

hand, if y = (v1, v4), then γy(t) = (t, 0) for all t ∈ [0, 1] and γy is minimal-length

since L(γy) = 1 = d(v1, v4).

We now define a circuit. These are used in the proof of Theorem 4.2.4.

Definition 1.4.5. A circuit is the image of a path γx induced by an edgepath

sequence x = (x0, . . . , xn) such that x0, . . . , xn ∈ V (Γ), x0 = xn and such that any

given vertex appears at most twice in the sequence x0, . . . , xn.

We also have the following simple result which states that the infimum in Defi-

nition 1.3.2 is achieved.

Lemma 1.4.6. For all x, y ∈ Γ there is an edgepath sequence x = (x, . . . , y) such

that Lx = d(x, y).
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Proof. Choose edges e, f such that x ∈ e and y ∈ f . For each v ∈ ∂e and w ∈ ∂f ,

consider the edgepath sequences x(v, w) = (v, . . . , w) with vertex entries. Since Γ is

finite, these yield finitely many values Lx(v,w), at least one of which is d(v, w). Hence,

there are finitely many values L(x):x(v,w):(y) as v, w range over ∂e, ∂f respectively, and

together with ρe(x, y) if e = f , at least one of these is d(x, y).

Corollary 1.4.7. For any x, y ∈ Γ there is a minimal-length edgepath from x to y.

The following lemma is used in various contexts throughout the thesis.

Lemma 1.4.8. A minimal-length edgepath has constant speed.

Proof. Let x = (x0, x1, . . . , xn) be an edgepath sequence such that c = γx : [0, 1]→ Γ

is minimal-length. Seeking a contradiction, assume that c does not have constant

speed, so that there exist s, t ∈ [0, 1], s < t, such that

d(c(s), c(t)) 6= d(c(0), c(1))|s− t|.

Since

d(c(s), c(t)) ≤ |s− t|L(γx) = |s− t|d(c(0), c(1)),

we obtain d(c(s), c(t)) < |s− t|d(c(0), c(1)). Now choose edgepath sequences

y1 := (x0, x1, . . . , xp, c(s)), y2 := (c(s), xp+1, . . . , xq, c(t)),

and y3 := (c(t), xq+1, . . . , xn) such that L(γx) = Ly1 + Ly2 + Ly3 , see Figure 1.11.

We have

x0
x1

c(s) x2 x3 c(t) x4
xn

. . .

Figure 1.11: Construction of y1,y2 and y3

Ly2 = |s− t|L(γx) = |s− t|d(c(0), c(1)) > d(c(s), c(t)),
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so

d(c(0), c(1)) = L(γx) = Ly1 + Ly2 + Ly3

> d(c(0), c(s)) + d(c(s), c(t)) + d(c(t), c(1))

≥ d(c(0), c(1)).

We finish this section with two metric properties.

Lemma 1.4.9. (Γ, d) is complete.

Proof. (Γ, T ) is compact since it is a finite cw complex. Proposition 1.3.4 implies

that (Γ, τ(d)) is compact. A compact metric space is complete.

Definition 1.4.10. A metric space (Y, ρ) has the midpoint property if for all x, y ∈ Y
there exists z ∈ Y such that ρ(z, x) = ρ(z, y) = 1

2
ρ(x, y).

Lemma 1.4.11. (Γ, d) has the midpoint property.

Proof. Let x, y ∈ Γ be distinct, and let γ : [0, 1]→ Γ be a minimal-length edgepath

from x to y (such a path exists by Corollary 1.4.7). Lemma 1.4.8 shows that

d(γ(s), γ(t)) = d(γ(0), γ(1))|t− s|, ∀s, t ∈ [0, 1].

Taking z = γ(1/2) we obtain d(z, x) = 1
2
d(x, y) = d(z, y).
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1.5 Basic operations and the cycle inequality

In this section we describe the procedures of subdivision and amalgamation in a

labelled graph. Subdivision is the procedure of inserting vertices to create additional

edges, and amalgamation is the procedure of removing non-essential vertices. We

then define a version of the triangle inequality for a labelled graph, which we call

the cycle inequality.

1.5.1 Subdivision

The subdivision procedure for a labelled graph is similar to that given in [1, Defini-

tion 2.3] for graphs.

Definitions 1.5.1. Let e ∈ E(Γ) and let y ∈ e. The labelled graph (Γs, `s) obtained

from (Γ, `), e and y by subdivision is defined as follows.

(i) If e is homeomorphic to [0, 1], then V (Γs) = V (Γ)∪{y} and E(Γs) = (E(Γ)−
{e}) ∪ {f, g}, where the new edges f and g satisfy ∂0f = ∂0e, ∂1f = y = ∂0g,

and ∂1g = ∂1e. The labels of f and g are `s(f) = ρe(∂0e, y) and `s(g) =

ρe(y, ∂1e), and `s(h) = `(h) for all h ∈ E(Γ)− {e}.

∂0e ∂1ee
y

`(e) Subdivision

∂0e y
f

ρe(∂0e, y)

g

ρe(y, ∂1e)

∂1e

(ii) If e is a loop, then Γs has the same vertices and edges as in case (i). Let T :

e→ S1 be the unique homeomorphism such that T (∂0e) = 1 and T (w) = e2πiw

for all w ∈ e = (0, 1). If arg T (y) ∈ [0, π) then we set `s(f) = ρe(∂0, y) and

`s(g) = `(e)−ρe(∂0, y). If arg T (y) ∈ [π, 2π), then we set `s(f) = `(e)−ρe(∂0, y)

and `s(g) = ρe(∂0, y), see Figure 1.12.

A subdivision of (Γ, `) is a labelled graph obtained by subdividing (Γ, `) finitely

many times.

We have the following simple but important observation about subdivision.

Lemma 1.5.2. Suppose that (Γs, `s) is a subdivision of (Γ, `). If ds and d are the

induced metrics on Γs and Γ, respectively, then (Γs, ds) and (Γ, d) are isometric.
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ef

y

g

∂0e

Figure 1.12: Subdividing a loop: arg T (w) ∈ [0, π) above the horizontal line, and

arg T (w) ∈ [π, 2π) below

1.5.2 Amalgamation

Amalgamation is the procedure of removing non-essential vertices (µ(v) = 2) from

a labelled graph.

Definitions 1.5.3. Let v be a non-essential vertex with distinct incident edges

e 6= f . The labelled graph (Γa, `a) obtained from (Γ, `) and v by amalgamation is

defined as follows. We set V (Γa) = V (Γ)− {v} and E(Γa) = (E(Γ)− {e, f})∪ {g},
where ∂0g, ∂1g are the unique elements of ∂e − {v} and ∂f − {v}, respectively.

Further, `a(g) = `(e) + `(f) and `a(h) = `(h) for all h ∈ E(Γ) − {e, f}, see the

following diagram.

∂e \ {v} ∂f \ {v}
e
v

`(e) Amalgamation

∂0g ∂1gf
`(f )

g
`(e) + `(f )

An amalgam of (Γ, `) is a labelled graph obtained from (Γ, `) by performing finitely

many amalgamations.

We also have the analogue of Lemma 1.5.2 for amalgamation.

Lemma 1.5.4. Suppose that (Γa, `a) is an amalgam of (Γ, `). If da and d are the

induced metrics on Γa and Γ, respectively, then (Γa, da) and (Γ, d) are isometric.
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1.5.3 The cycle inequality

In this subsection we define the cycle inequality for a simple labelled graph. We first

make the following observation.

Lemma 1.5.5. Let (Γ, `) be a labelled graph. There exists a subdivision (Γs, `s) such

that Γs is simple.

Proof. A loop e may be removed by inserting two new vertices into e. Let v, w ∈
V (Γ) be distinct, and suppose that there are exactly N > 1 edges e1, . . . , eN with

boundary {v, w}. Insert a new vertex into ej for each j ∈ {1, . . . , N − 1}. This

removes the multiple edges connecting v and w. Since Γ is finite, there are only

finitely many loops and multiple edges to be removed.

Notation 1.5.6. If Γ is simple, then each cycle is the union at least three closed

edges. If C ∈ Z(Γ), then we use the notation C = (e1, . . . , eK) to indicate that

C =
⋃K
j=1 ej and that edge ej is incident to edges ej+1 and ej−1, for 1 ≤ j ≤ K,

subscripts being taken modulo K, see Figure 1.13.

C
e1

e2 e3

e4

e5

eK

Figure 1.13: A cycle C = (e1, . . . , eK) in a simple graph

Definition 1.5.7 (Cycle inequality). Let (Γ, `) be a simple labelled graph. A cycle

C = (e1, . . . , eK) satisfies the cycle inequality if

`(ej) ≤
∑

1≤k≤K
k 6=j

`(ek), ∀j ∈ {1, . . . , K}.

(Γ, `) satisfies the cycle inequality if every cycle C ∈ Z(Γ) satisfies the cycle inequal-

ity.
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We now give an equivalent condition for the cycle inequality to be satisfied in

terms of the induced metric. For e ∈ E(Γ), we use the notation de for the metric on

e obtained by restricting d to e× e.

Proposition 1.5.8. A simple labelled graph (Γ, `) satisfies the cycle inequality if

and only if de = ρe for each e ∈ E(Γ).

Proof. Suppose that de 6= ρe for some e ∈ E(Γ). Then there exist x, y ∈ e such that

de(x, y) < ρe(x, y). Write ∂e = {v, w} and assume without loss of generality that

v, w, x, y are as in the following diagram (otherwise, interchange x and y).

v x y w
e

Since d(x, y) < ρe(x, y), there exist e1, . . . , eN ∈ E(Γ) such that C = (e, e1, . . . , eN) ∈
Z(Γ) and

`(e1) + · · ·+ `(eN) + ρe(v, x) + ρe(y, w) < ρe(x, y).

This implies

`(e1) + · · ·+ `(eN) ≤ `(e1) + · · ·+ `(eN) + ρe(v, x) + ρe(y, w)

< ρe(x, y) ≤ `(e),

so C does not satisfy the cycle inequality. Conversely, assume that the cycle in-

equality fails for some cycle C = (e1, . . . , eK). This means that

`(ej) >
∑

1≤k≤K
k 6=j

`(ek),

for some j ∈ {1, . . . , K}. Write ∂ej = {v, w}, and let x = (v, . . . , w) be the sequence

comprising the vertices in C in cyclic order starting with v and finishing with w. This

is an edgepath sequence since Γ has no multiple edges. We have Lx =
∑

1≤k≤K
k 6=j

`(ek),

so

ρej(v, w) = `(ej) > Lx ≥ d(v, w) = dej(v, w),

showing that dej 6= ρej .

Corollary 1.5.9. If (T, `) is a labelled tree with induced metric d, then de = ρe for

each e ∈ E(T ).
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Proof. T contains no cycles, so trivially satisfies the cycle inequality.

We conclude this section by showing that a labelled graph satisfies the cycle

inequality given sufficient subdivision.

Lemma 1.5.10. Any labelled graph (Γ, `) admits a subdivision satisfying the cycle

inequality.

Proof. In view of Lemma 1.5.5, it may be assumed that Γ is simple. Suppose that

C = (e1, . . . , eK) does not satisfy the cycle inequality. This means that there exists

j ∈ {1, . . . , K} such that

`(ej) >
∑

1≤k≤K
k 6=j

`(ek).

Choose N ∈ N such that

1

N
≤ 1

2`(ej)

K∑
k=1

`(ek).

Now form a subdivision of (Γ, `) by inserting (N − 1) equally-spaced vertices into

edge ej, so that the N new edges each have label `(ej)/N . We obtain

`(ej)

N
≤
∑

1≤k≤K
k 6=j

`(ek) + (N − 1)
`(ej)

N
,

so the failure of the cycle inequality for C on ej has been eliminated. Repeat this

procedure for each edge of C on which the cycle inequality fails. Finally, repeat the

whole process for each cycle which does not satisfy the cycle inequality. There are

finitely many cycles, so the result is a subdivision of (Γ, `) which satisfies the cycle

inequality.



Chapter 2

PL Morse–Bott theory

We begin by developing our main tool for studying configuration spaces of thick

particles on graphs. This tool is a suitably modified version of the piecewise linear

(PL) Morse theory developed by M. Bestvina and N. Brady (see [8, §2] and the

expository paper [9]), which we call PL Morse–Bott theory. The main results of

this thesis in Chapters 3 and 5, as well as the results in Chapter 6, all follow from

application of this theory.

In §2.1, we extend Bestvina and Brady’s PL Morse theory to apply to a larger

class of functions, which we call affine Morse–Bott functions. We then verify in

§2.2 that the induced metric d on a metric graph belongs to this class. This en-

ables us to apply the general results from §2.1 to d and obtain information about

the preimages {d−1([y,∞))}y>0 (which are precisely the thick particle configuration

spaces {Fr(Γ, 2)}r>0, see §0.2). We apply the results of §2.1 in Chapter 3, see §3.2.

2.1 Developing PL Morse–Bott theory

In this section we establish PL Morse–Bott theory, the main mathematical tool of

this thesis. We begin with the basic definitions and examples, extending the original

results due to M. Bestvina and N. Brady [8, §2] on PL Morse theory to the Morse–

Bott case. The difference is that we allow our functions to be constant on cells of

positive dimension. This is the reason for choosing the terminology “Morse–Bott”.

32
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2.1.1 Definitions and examples

Definition 2.1.1 (see [9], Definition 2.1). An affine polytope complex of dimen-

sion m ≥ 1 is a cw complex X in which each closed cell F is equipped with a

characteristic function χF : CF → X such that:

(i) CF is a convex polyhedral cell in Rm for each F ;

(ii) χF is an embedding for each closed cell F ;

(iii) the restriction of χF to any face of CF coincides with the characteristic function

of another cell precomposed with an affine homeomorphism of Rm.

(An affine homeomorphism of Rm is a map h : Rm → Rm of the form h(x) = Ax+b,

for some invertible matrix A ∈ Rm×m and b ∈ Rm).

Example 2.1.2. The space X shown in Figure 2.1 is an affine polytope complex of

dimension three.

X

Figure 2.1: An example of an affine polytope complex

Let X be an affine polytope complex of dimension m.

Definition 2.1.3. A continuous map f : X → R is an affine Morse–Bott function

if f ◦ χF : CF → R extends to an affine function Rm → R for each cell F ⊂ X.
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Remarks 2.1.4. We emphasise that f ◦ χF may be constant on a cell F ⊂ X with

dimF > 0. The set of all affine Morse–Bott functions X → R forms a vector space

over R. In particular, if f is an affine Morse–Bott function then so is −f .

Let f : X → R be an affine Morse–Bott function.

Definition 2.1.5. A cell F of X is critical if f is constant on F .

Remark 2.1.6. In particular, all 0–cells of X are critical.

Definition 2.1.7. A number R ∈ R is a critical level of f if there exists a cell F of

X on which f is constant with value R.

Definition 2.1.8. The union of all critical cells is the critical subcomplex of f , and

is denoted by C(f).

Remarks 2.1.9.

(i) If f is constant on an open cell e ⊂ X, then by continuity f is constant on e.

Hence, C(f) is indeed a subcomplex of X.

(ii) C(f) = qRC(f,R) is the disjoint union of the subcomplexes C(f,R), where R

ranges over all critical levels of f and C(f,R) is the union of all critical cells

K such that f |K ≡ R.

(iii) Writing C(f) = qα∈AZα as the union of its connected components refines the

decomposition from (ii), that is, for each α ∈ A there is a critical level R such

that Zα ⊂ C(f,R).

Definition 2.1.10. A non-critical cell K of X is descending if f |K achieves its

maximum on a subcomplex of K ∩ C(f).

Notation 2.1.11. If f : X → R is an affine Morse–Bott function and c ∈ R, we

write Xc := f−1((−∞, c]).

Example 2.1.12. Consider the affine polytope complexX and the function f : X →
R shown in Figure 2.2. The space X has one 3–cell K, a 2–cell H and two 1–cells

e1 and e2. We see that f is an affine Morse–Bott function on X. The critical cells
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f

1

1/2

0

v

F

E

X

K

H
e1 e2

Figure 2.2: The function f : X → R

are v (a 0–cell), F (a 2–cell in the boundary of K) and E (a 1–cell in the boundary

of K). The critical levels are 0 (from E), 1/2 (from F ) and 1 (from v). The critical

subcomplex is C(f) = E t F t v, and C(f, 0) = E, C(f, 1/2) = F , C(f, 1) = v.

The descending cells are H (f |H achieves its maximum on v ⊂ H ∩ C(f)), e1 and

e2 (f |ej achieves its maximum on v ⊂ ej ∩ C(f), j = 1, 2) and K (f |K achieves its

maximum on F ⊂ K ∩ C(f)).

2.1.2 Descending sets and links

We now define the descending set D↓(Zα) and the descending link Lk↓(Zα) of a

connected component Zα of the critical subcomplex C(f). Suppose that f |Zα ≡ R.

Choose S < R such that the interval [S,R) does not contain any critical level of f .

Definition 2.1.13. The descending set D↓(Zα) of Zα is

D↓(Zα) := f−1([S,R]) ∩
⋃

K,

where the union is taken over the cells K of X such that f |K achieves its maximum

on K ∩ Zα.

Remark 2.1.14. D↓(Zα) is a closed subspace of X containing Zα.

Definition 2.1.15. The descending link Lk↓(Zα) of Zα is

Lk↓(Zα) := f−1({S}) ∩
⋃

K = f−1({S}) ∩D↓(Zα).
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Remark 2.1.16. Definitions 2.1.13 and 2.1.15 are independent (up to homeomor-

phism) of the choice of S (provided [S,R) contains no critical level of f), because

each cell of X is PL homeomorphic to a convex polyhedron in Rm.

f

1

0

S

Ru v w

X

F

K

L

E

Figure 2.3: The hexagon X

Example 2.1.17. Consider the hexagon X shown in Figure 2.3, comprising seven

0–cells, eleven 1–cells and five 2–cells. Let f : X → [0, 1] be the height function

as shown. The subcomplex C(f,R) has two connected components Z1 = F and

Z2 = {w}. The descending set D↓(Z1) and the descending link Lk↓(Z1) are the

following subsets of K ∪ L:

u v
D↓(Z1)

Lk↓(Z1)

On the other hand, D↓(Z2) ⊂ E is an interval, and Lk↓(Z2) is a single point.

Lemma 2.1.18. There is a deformation retraction of D↓(Zα) onto Zα.

Proof. The proof is very similar to that of [9, Proposition 2.4]. For j ∈ {0, . . . ,m},
let

Aj := Zα ∪ (D↓(Zα) ∩X(j)),

where X(j) is the j–skeleton of X. In particular, A0 = Zα and Am = D↓(Zα). It

suffices to show that Aj deformation retracts onto Aj−1 for each j ∈ {1, . . . ,m}.
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Let L be a descending j–cell. Identify L with the convex j–cell CL in Rm via the

characteristic map χL : CL → L. By possibly precomposing with a partial affine

homeomorphism of Rm, it may be assumed that f is a height function on L (since

f is not constant on L). Then f−1([S,R]) ∩ L may be identified with a convex

polytope K in Rm, and f−1({S})∩L is the lower face of K. The set f−1({R})∩L is

a convex polyhedron of dimension strictly smaller than dimK. The polytope K has

the following property: there is a deformation retraction of K onto its boundary ∂K

minus the lower (j − 1)–dimensional face. Combining these deformation retractions

over all such j–cells L of X gives a deformation retraction of Aj onto Aj−1.

Example 2.1.19. Consider the hexagon from Figure 2.3. The steps of the defor-

mation retraction of D↓(Z1) onto Z1 from Lemma 2.1.18 are shown as follows.

u v u v u v

Cell structure

The descending link Lk↓(Zα) of a connected component Zα of C(f) may be equipped

with a cell structure as follows. For each j ∈ {0, 1, . . . ,m−1}, the j–cells of Lk↓(Zα)

are the connected components of the intersection

Lk↓(Zα) ∩
⋃

(K(j+1) \K(j)),

where K(`) is the `–skeleton of K. Here, the union is over the cells K of X such

that f |K achieves its maximum on K ∩ Zα.

There is also a surjection

hα : Lk↓(Zα)→ Zα

defined inductively on the skeleta of Lk↓(Zα) as follows.

(i) Let v be a vertex of Lk↓(Zα). There exists a unique 1–cell of X connecting v

to a vertex v′ in Zα (this 1–cell is unique because there are no critical levels

of f in the interval [S,R)). Define hα(v) = v′.
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(ii) The map hα is cellular, and on each j–cell of Lk↓(Zα), hα is either constant or

maps linearly onto a cell of Zα of dimension at most j.

In general, the map hα : Lk↓(Zα) → Zα satisfies the following property. The de-

scending set D↓(Zα) is a copy of the mapping cylinder M(hα), with base f−1({S})∩
D↓(Zα) = Lk↓(Zα) and top f−1({R}) ∩D↓(Zα) = Zα.

Example 2.1.20. Let T be the solid tetrahedron in Figure 2.4. It is an affine

polytope complex with four 0–cells, six 1–cells, four 2–cells and one 3–cell K. Let f :

T → R be the affine Morse–Bott height function as shown. The critical subcomplex

C(f) has three components, one of which is Z1 = C(f,R) = F . The descending

link Lk↓(Z1) is a 2–dimensional convex polyhedron with four vertices v1, . . . , v4, four

1–cells e1, . . . , e4 and one 2–cell. The map h1 : Lk↓(Z1)→ Z1 is specified as follows:

h1 maps e1 to v and e2 to w, whereas e3, e4 and every segment parallel to e3, e4 is

mapped linearly onto F .

0

S

R

f

F
v

v1
v2 v3

v4

w

T

K

e1

e4

e3

e2

Lk↓(F )

Figure 2.4: The solid tetrahedron T

2.1.3 Morse–Bott theory for affine polytope complexes

Let f : X → R be an affine Morse–Bott function. We now study the homotopy type

of the sets {Xc}c∈R. First, we consider the case when there are no critical levels in

an interval.
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Proposition 2.1.21. Let R < R′ be such that there are no critical levels of f : X →
R in the interval (R,R′]. Then XR′ deformation retracts onto XR.

Proof. For j ∈ {0, 1, . . . ,m}, let

Aj = XR ∪ (XR′ ∩X(j)),

so that A0 = XR and Am = XR′ . It suffices to show that Aj deformation re-

tracts onto Aj−1 for each j ∈ {1, . . . ,m}. Consider a j–cell L of X such that

L ∩ f−1((R,R′]) 6= ∅. Identify L with the convex j–cell CL in Rm via the charac-

teristic map χL : CL → L. By possibly precomposing with a partial affine homeo-

morphism of Rm, it may be assumed that f is a height function on L (since f is not

constant on L). Then f−1([R,R′])∩L may be identified with a convex polytope K in

Rm. The set f−1({R′})∩L is the top face of the polytope K. The set f−1({R})∩L is

a convex polyhedron of dimension strictly smaller than dimK. The polytope K has

the following property: there is a deformation retraction of K onto its boundary ∂K

minus the top (j − 1)–dimensional face. Combining these deformation retractions

over all j–cells L of X with L ∩ f−1((R,R′]) 6= ∅ gives a deformation retraction of

Aj onto Aj−1.

X

R = 0

R′

1

f

Figure 2.5: The pyramid X and the affine Morse–Bott function f

Example 2.1.22. Consider the solid pyramid X in Figure 2.5. It is an affine

polytope complex with five 0–cells, eight 1–cells, five 2–cells and one 3–cell. Let

f : X → R be the affine Morse–Bott function as shown. Here R′ ∈ (0, 1), and the
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base of X is at level R = 0. In this case, dimX = 3 and the steps of the deformation

retraction from Proposition 2.1.21 are shown in Figure 2.6.

XR′

XR

Figure 2.6: The steps of the deformation retraction from Proposition 2.1.21

We now consider the case when there is exactly one critical level in an interval.

Let a < R < b be such that R is the only critical level of f in [a, b], and write

C(f,R) = qni=1Zi as the disjoint union of its connected components.

Proposition 2.1.23. (Xb, Xa) is homotopy equivalent to the pair (Q,Xa), where

Q ⊂ XR is the space obtained from Xa by attaching the mapping cylinders {M(hi) =

D↓(Zi)}ni=1 as follows:1 for each i ∈ {1, . . . , n}, identify the copies of Lk↓(Zi) con-

tained in M(hi) and Xa.

Proof. In view of Proposition 2.1.21, Xb deformation retracts onto XR. It suffices

to show that f−1([a,R]) deformation retracts onto its subspace Q∩ f−1([a,R]). For

j ∈ {0, 1, . . . ,m}, let

Aj = (Q ∪X(j)) ∩ f−1([a,R]),

so that A0 = Q ∩ f−1([a,R]) and Am = f−1([a,R]). Again, we show that Aj

deformation retracts onto Aj−1 for each j ∈ {1, . . . ,m}. Let L be a j–cell of X

such that f−1([a,R]) ∩ L 6= ∅ and L does not contain a (j − 1)–cell of C(f,R)

in its boundary. Identify L with the convex polyhedral cell CL in Rm; it may be

assumed that f is a height function on L. Then f−1([a,R]) ∩ L is a j–dimensional

convex polytope in Rm, with top face f−1({R}) ∩ L not a cell of C(f,R). There

is a deformation retraction of this polytope onto its boundary minus the top face.

Hence, Aj deformation retracts onto Aj−1.

1The mapping cylinder M(hi) is equal to D↓(Zi) up to canonical homeomorphism.
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Example 2.1.24. Consider the Morse–Bott function f : X → [0, 1] from Figure

2.3. Let a < R < b be as shown in Figure 2.7. The subcomplex C(f,R) has two

connected components Z1 = F and Z2 = {w}. The mapping cylinders M(h1) and

M(h2) coincide with D↓(Z1) and D↓(Z2), respectively. The space Xb deformation

retracts onto XR, and the pair (XR, Xa) deformation retracts onto (Q,Xa) as in

Figure 2.8.

f

1

0

Ru v w

X

F

K L

b

a
M(h1) M(h2)

Figure 2.7: The mapping cylinders M(h1) and M(h2)

u w

(XR, Xa)

K L

v u w

K L

v
(Q,Xa)

Figure 2.8: Deformation retraction of (XR, Xa) onto (Q,Xa)

Remark 2.1.25. There are analogues of Propositions 2.1.21 and 2.1.23 for the family

{Xc}c∈R, where Xc := f−1([c,∞)) for each c ∈ R. In fact, if f : X → R is an affine

Morse–Bott function on X, then so is −f : X → R.

Corollary 2.1.26. Assume that C(f,R) = Z is connected, and let h : Lk↓(Z)→ Z

be the map defined in §2.1.2 (in particular, M(h) = D↓(Z)). Then the inclusion

(M(h),Lk↓(Z)) ↪→ (Xb, Xa) induces homology isomorphisms.
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Proof. The map (Q,Xa) ↪→ (Xb, Xa) is a homotopy equivalence from Proposition

2.1.23. By excision, the inclusion (M(h),Lk↓(Z)) ↪→ (Q,Xa) induces isomorphisms

on homology.

Corollary 2.1.27. Under the assumptions of Corollary 2.1.26,

rkHj(X
b, Xa) = rk coker[ι∗ : Hj(Lk↓(Z))→ Hj(D↓(Z))]

+ rk ker[ι∗ : Hj−1(Lk↓(Z))→ Hj−1(D↓(Z))]

for each j ≥ 0.

Proof. By replacing Hj(X
b, Xa) with Hj(D↓(Z),Lk↓(Z)), the long exact sequence

of the pair (D↓(Z),Lk↓(Z)) = (M(h),Lk↓(Z)) becomes

· · · → Hj(Lk↓(Z))
ι∗→ Hj(D↓(Z))→ Hj(X

b, Xa)

→ Hj−1(Lk↓(Z))
ι∗→ Hj−1(D↓(Z))→ . . .

Remark 2.1.28. Now suppose that C(f,R) = qni=1Zi has n connected components

Z1, . . . , Zn. The analogues of Corollaries 2.1.26 and 2.1.27 are as follows.

(i) The inclusion qni=1(M(hi),Lk↓(Zi)) ↪→ (Xb, Xa) induces isomorphisms on ho-

mology.

(ii) For each j ≥ 1,

rkHj(X
b, Xa) =

n∑
i=1

(rk coker[ι∗ : Hj(Lk↓(Zi))→ Hj(D↓(Zi)]

+ rk ker[ι∗ : Hj−1(Lk↓(Zi))→ Hj−1(D↓(Zi))]) .
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2.2 The metric is an affine Morse–Bott function

In this section we verify that the metric d is an affine Morse–Bott function on

Γ × Γ (see §1.3 for the definition of the metric d on an edge-labelled graph). This

enables us to apply the general statements from §2.1 and obtain information on the

homotopy type of the configuration spaces {Fr(Γ, 2)}r>0 (we perform this application

in Chapter 3, see §3.2).

With respect to some cw decomposition of Γ× Γ, we need to show that:

(i) Γ× Γ is an affine polytope complex, and

(ii) for each closed cell F of Γ× Γ, the composition

d ◦ χF : CF → R

extends to an affine map R2 → R. Here, χF : CF → F is a characteristic

function of F (see Definition 2.1.1), and CF is a convex polyhedral cell in R2

of dimension dimF .

In the remainder of this section we verify the following statement.

Proposition 2.2.1. The product cw structure on Γ× Γ admits a subdivision such

that (i) and (ii) hold.

Proof. Since Γ is simple, it is a cube complex of dimension one. Hence, the product

Γ× Γ is a cube complex of dimension two. Any finite-dimensional cube complex is

an APC,2 so Γ× Γ is an APC with respect to the product cw structure. Hence (i)

holds.

We now show that Γ × Γ admits a subdivision such that (ii) holds. We recall

from §1.1 that in a simple graph, we have an identification ψe : e → [0, 1] of each

closed edge e with [0, 1]. For i ∈ {0, 1}, we write ∂ie = ψ−1
e ({i}) (see Definitions

1.1.3). A closed 2–cell F of Γ×Γ has the form F = e× f , where e and f are edges.

Set CF = [0, 1] × [0, 1] and χF (i, j) = (∂ie, ∂jf) for all i, j ∈ {0, 1}. If e = f , then

since the cycle inequality is satisfied, d|F has the form

d(x, y) = `(e) |ψe(x)− ψe(y)| , (x, y) ∈ F,

2See the remarks after [9, Definition 2.1].
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where `(e) is the label of e. In this case, add a diagonal 1–cell to F = e × e as

shown in Figure 2.9, creating two triangular 2–cells F1 and F2. If χFj : CFj → Fj is

a characteristic function of Fj for j ∈ {1, 2}, then d ◦ χFj extends to an affine map

R2 → R, for j ∈ {1, 2}, see Figure 2.10. Now assume that e and f are distinct.

e
F F1

F2

e

e

e

Figure 2.9: Subdividing a diagonal 2–cell F = e× e

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

x

2 abs(x−y)

y

Figure 2.10: The metric d on a diagonal 2–cell F = e× e with `(e) = 2

There are several cases to consider, arising from the positions of minimal-length

edgepaths joining points of e to points of f .

Case 1. Suppose that there exist vertices v ∈ ∂e and w ∈ ∂f such that every

minimal-length edgepath from e to f passes through v and w, see Figure 2.11. Let

a := d(e, f) be the distance between e and f . Without loss of generality, assume

that ∂1e = v and ∂0f = w. Then

d(χF (0, 0)) = a+ `(e), d(χF (1, 0)) = a,
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e
v

w
f

a

Figure 2.11: The situation in Case 1

d(χF (0, 1)) = a+ `(e) + `(f), d(χF (1, 1)) = a+ `(f)

and d ◦ χF extends to an affine map R2 → R, see Figures 2.12 and 2.13.

a+ `(e) + `(f) a+ `(f)

aa+ `(e) e

f
F

Figure 2.12: d ◦ χF extends to an affine map R2 → R

Case 2. Now suppose that we are not in Case 1. This means that for all v ∈ ∂e
and w ∈ ∂f there is a minimal-length edgepath from e to f not containing v or not

containing w. We identify three subcases illustrated in Figures 2.14, 2.17 and 2.20.

(i) Assume that there is a vertex v ∈ ∂e such that every minimal-length edgepath

from e to f passes through v, see Figure 2.14 (the argument is the same if

there is a vertex w ∈ ∂f such that every minimal-length edgepath from e to

f passes through w). Write a = d(v, ∂0f) and b = d(v, ∂1f). By assumption,

there is a point x ∈ f such that

d(v, ∂0f) + d(∂0f, x) = d(x, ∂1f) + d(∂1f, v).

Moreover,

d(χF (0, 0)) = a+ `(e), d(χF (1, 0)) = a
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Figure 2.13: The graph of d ◦ χF with a = 0, `(e) = 1 and `(f) = 2

e
v

a
b

x
f

Figure 2.14: Case 2(i)

and

d(χF (0, 1)) = b+ `(e), d(χF (1, 1)) = b.

The line e × {x} separates F into two closed 2–cells F1 and F2. If j ∈ {1, 2}
and χFj : CFj → Fj is a characteristic function of Fj, then d ◦ χFj extends to

an affine map R2 → R, see Figures 2.15 and 2.16.
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b+ `(e) b

aa+ `(e) e

f

(∂0e, x) (∂1e, x)

F1

F2

F

Figure 2.15: The separating line e× {x}
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Figure 2.16: The graph of d ◦ χF with a = b = 1 and `(e) = `(f) = 1

(ii) We now assume that (i) does not hold, and that all minimal-length edgepaths

from ∂0e to ∂0f are disjoint from all minimal-length edgepaths from ∂1e to

∂1f . Write a = d(∂0e, ∂0f) and b = d(∂1e, ∂1f). Without loss of generality,

there is a point x ∈ e equidistant to ∂0f along two distinct edgepaths, see

Figure 2.17.
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e

f

x

a
b

Figure 2.17: Case 2(ii)

We have d(χF (0, 0)) = a and d(χF (1, 1)) = b. There is also a diagonal line in

F on which d is constant with value (`(e)+ `(f)+a+ b)/2. This line separates

F into two closed 2–cells F1 and F2. If j ∈ {1, 2} and χFj : CFj → Fj is a

characteristic function of Fj, then d ◦ χFj extends to an affine map R2 → R,

see Figures 2.18 and 2.19.

b

a e

f

(x, ∂0f)

F1

F2

F

Figure 2.18: The separating line on which d is constant



2.2. The metric is an affine Morse–Bott function 49

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

2

x

2−abs(x+y−1)

y

Figure 2.19: The graph of d◦χF with a = b = 1 and `(e) = `(f) = 1; it is symmetric

about y = 1− x

(iii) Finally, we assume that (i) does not hold and that at least one minimal-length

edgepath from ∂0e to ∂0f intersects a minimal-length edgepath from ∂1e to

∂1f , see Figure 2.20. There are points x ∈ e, y ∈ f equidistant from the

intersection of these edgepaths (otherwise we are in Case 2(i)). The lines

{x} × f and e × {y} separate F into four closed 2–cells F1, F2, F3, F4. If

j ∈ {1, 2, 3, 4} and χFj is a characteristic function of Fj, then d ◦ χFj extends

to an affine map R2 → R, see Figure 2.21. The graph of d ◦ χFj resembles the

graph in Case 1 (Figure 2.13) for each j ∈ {1, 2, 3, 4}.

e

x u1

u2

f
y

a1

a2

a3

a4

a5

Figure 2.20: Case 2(iii)
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a2 + a3 + a4

a1 + a3 + a5 e

f

F

a2 + a3 + a5(x, ∂0f)

(∂1e, y)

a1 + a3 + a4

a3 + a5 + p

a2 + a3 + q

p+ q + a3

a3 + a4 + p

a1 + a3 + q

F1 F2

F3

F4

Figure 2.21: The graph of d in Case 2(iii). Here, p = (a1 + a2 + `(e))/2 and

q = (a4 + a5 + `(f))/2.

Finally, we note that under the subdivisions in Figure 2.9 and all subcases of

Case 2 (see Figures 2.15, 2.18 and 2.21) Γ× Γ remains an affine polytope complex.

This establishes Proposition 2.2.1.



Chapter 3

Homotopy type of the

configuration spaces {Fr(Γ, 2)}r>0

In this chapter we study the homotopy type of the thick particle configuration

space Fr(Γ, 2) as r varies. The main result is an upper bound for the number of

critical values of r where a homotopy type change occurs, see Theorem 3.2.3. This

is achieved by describing each critical value explicitly in terms of metric properties

of the graph Γ.

We begin in §3.1 by recalling the definition of the thick particle configuration

spaces {Fr(Γ, 2)}r>0 and discussing some basic properties and examples. Next, in

§3.2 we apply the PL Morse–Bott theory developed in §2.1 and obtain the main result

of this chapter, Theorem 3.2.3. In §3.2 we also address the important question of

how the homotopy type of Fr(Γ, 2) changes as r ranges over an interval containing

exactly one critical value. The PL Morse–Bott theory from §2.1 provides a general

answer to this question, which we quantify in §3.2 by calculating the ranks of the

relative homology groups of the pair (Fa(Γ, 2), Fb(Γ, 2)), where the interval (a, b)

contains exactly one critical value.

3.1 Definitions and examples

We first recall the definitions from §0.2. We work with a finite, connected graph

Γ and a labelling ` : E(Γ) → (0,∞) of the edges of Γ. Such a labelling induces a

51
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metric d on Γ, where d(x, y) is the length of the shortest path connecting the points

x and y. The details of this construction are in Chapter 1, see §1.2 and §1.3. The

main definitions are as follows.

Definition 3.1.1. The two-point configuration space of Γ is

F (Γ, 2) := {(x, y) ∈ Γ× Γ : x 6= y}.

Equivalently, F (Γ, 2) = d−1((0,∞)) = Γ× Γ \∆, where ∆ is the diagonal in Γ× Γ.

Definition 3.1.2. For r > 0, we define

Fr(Γ, 2) := {(x, y) ∈ Γ× Γ : d(x, y) ≥ 2r}.

Remark 3.1.3. We observe that F (Γ, 2) =
⋃
r>0 Fr(Γ, 2).

In the context of topological robotics, Fr(Γ, 2) models the collision-free motion of

two robots of radius r on Γ such that tangencies between the robots are permitted.

We need only consider sufficiently small values of r, as the following lemma shows.

Lemma 3.1.4. Let R := 1
2

diam Γ. We have Fr(Γ, 2) 6= ∅ ⇐⇒ r ∈ (0, R].

Proof. If r > R and (x, y) ∈ Fr(Γ, 2), then d(x, y) ≥ 2r > 2R, a contradiction. Thus

Fr(Γ, 2) = ∅ for all r > R. Conversely, Γ × Γ is compact and d is continuous, so

there exists (x, y) ∈ Γ× Γ such that d(x, y) = diam Γ. Hence (x, y) ∈ FR(Γ, 2) and

so Fr(Γ, 2) 6= ∅ for any r ∈ (0, R].

We now discuss examples of the families {Fr(Γ, 2)}r>0. These examples illustrate

the general phenomenon that for a given graph Γ, the configuration space Fr(Γ, 2)

assumes only finitely many homotopy types as r varies over
(
0, 1

2
diam Γ

]
.

Example 3.1.5. Let Γ = [0, 1] have the graph structure with two vertices 0, 1 and

one edge e = (0, 1), the latter equipped with label 1.

(Γ, `) 1
10 e

For r ∈ (0, 1/2), Fr(Γ, 2) comprises two triangles, see Figure 3.1. Moreover,

F1/2(Γ, 2) = {(0, 1), (1, 0)}

is a two-point space and Fr(Γ, 2) = ∅ for r > 1/2.
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(0, 1) (1, 1)

(1, 0)(0, 0)

Figure 3.1: The configuration space Fr(Γ, 2) for r ∈ (0, 1/2)

Example 3.1.6. Let Γ = S1 have the graph structure with one vertex v and one

edge e, the latter given label 1. For x 6= y, d(x, y) is equal to the length of the shorter

of the two arcs joining x and y, see Figure 3.2. With this metric, the diameter of

v

e

y

x

d(x, y)

1

Figure 3.2: The metric on S1

Γ is 1/2. For each r ∈ (0, 1/4], the configuration space Fr(S
1, 2) has the homotopy

type of S1. To see this, consider S1 ⊂ C as the unit complex numbers; the metric is

d(z1, z2) =
1

2π
min{|arg z1 − arg z2|, 2π − |arg z1 − arg z2|}, for z1, z2 ∈ S1,

where we take arg z ∈ [0, 2π) for z ∈ S1. For r ∈ (0, 1/4], define

h : Fr(S
1, 2)→ S1 × (S1 \B2r(1))

by

h(z1, z2) = (z1, z2/z1), ∀(z1, z2) ∈ Fr(S1, 2).

Here, B2r(1) is an open ball of radius 2r about 1 ∈ S1. It is easy to check that

h is a homeomorphism, using the property that d(ωz1, ωz2) = d(z1, z2) for any
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ω, z1, z2 ∈ S1. Therefore Fr(S
1, 2) is homeomorphic to S1 × (S1 \B2r(1)), and so is

homotopy equivalent to S1, since S1 \B2r(1) is contractible.

Example 3.1.7. Let Γ be the Y –graph comprising three edges e1, e2, e3 incident to

a central vertex v, and assume that all three edges have label 1.

(Γ, `)
e1 e2

e31

11

v2v1

v3

The configuration space F (Γ, 2) is described by Abrams and Ghrist in their expos-

itory paper [4, Example 1], see also [33, Lemma 1.1]. It embeds in R3 as shown in

Figure 3.3. The base comprises the six 2–cells ei × ej, for i 6= j. The remaining six

triangles (of length and height 1) come from removing the diagonals from the three

squares ei × ei, i = 1, 2, 3. The vertex in the centre is missing, and the dashed lines

on the six triangles represent the missing diagonal ∆ of Γ× Γ. For r ∈ (0, 1/2), the

corresponding configuration space Fr(Γ, 2) is shown in Figure 3.4. The hole in the

centre has been replaced with a missing hexagon, and the six triangular fins now

have length and height 1 − 2r. When r = 1/2, the six triangular fins have shrunk

to the six non-convex points on the outer boundary of the base, see Figure 3.5. For

values of r ∈ (1/2, 1), Fr(Γ, 2) is disconnected, with six path-components, see Figure

3.6. Finally when r = 1, the space Fr(Γ, 2) comprises six points, namely the convex

points on the outer boundary of the base, see Figure 3.7.
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(v1, v2)

(v1, v)
(v1, v3)

(v, v3)

(v2, v3)
(v2, v)

(v2, v1)

(v, v1)
(v3, v1)

(v3, v)

(v3, v2)
(v, v2)

(e1, v3)

(e2, v3)

(v2, e3)

(v2, e1)
(e2, v1)

(e3, v1)

(v3, e1)

(v3, e2)

(e3, v2) (v1, e3)

(v1, e2)(e1, v2)

(v, e2)

(e3, v)

(v, e1)

(e2, v)

(v, e3)

(e1, v)

(v1, e1)

(e3, v3)

(v2, e2)(e1, v1)

(v3, e3)

(e2, v2)

Figure 3.3: The configuration space F (Γ, 2)
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(v1, v2)

(v1, v)
(v1, v3)

(v, v3)

(v2, v3)
(v2, v)

(v2, v1)

(v, v1)
(v3, v1)

(v3, v)

(v3, v2)
(v, v2)

(e1, v3)

(e2, v3)

(v2, e3)

(v2, e1)
(e2, v1)

(e3, v1)

(v3, e1)

(v3, e2)

(e3, v2) (v1, e3)

(v1, e2)(e1, v2)

Figure 3.4: The configuration space Fr(Γ, 2) for r ∈ (0, 1/2)
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(v1, v2)

(v1, v)
(v1, v3)

(v, v3)

(v2, v3)
(v2, v)

(v2, v1)

(v, v1)
(v3, v1)

(v3, v)

(v3, v2)
(v, v2)

(e1, v3)

(e2, v3)

(v2, e3)

(v2, e1)
(e2, v1)

(e3, v1)

(v3, e1)

(v3, e2)

(e3, v2) (v1, e3)

(v1, e2)(e1, v2)

Figure 3.5: The configuration space F1/2(Γ, 2)
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(v1, v2)

(v1, v3)

(v2, v3)

(v2, v1)

(v3, v1)

(v3, v2)

Figure 3.6: The configuration space Fr(Γ, 2) for r ∈ (1/2, 1)
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(v1, v2)

(v1, v3)

(v2, v3)

(v2, v1)

(v3, v1)

(v3, v2)

Figure 3.7: The space F1(Γ, 2)
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Example 3.1.8. (see [33, Example 4]). Let P = S1∨ [0, 1] be the P–graph shown in

Figure 3.8. Since P is the quotient of the Y –graph (see Example 3.1.7) obtained by

vv1 V

e3

e2

1

1

1

(P, `)

e1

Figure 3.8: The labelling on the P–graph

identifying two free vertices, we can obtain F (P, 2) by performing the appropriate

identifications on the configuration space F (Y, 2), where Y is the Y –graph (see

Figure 3.3). This computation was first performed by R. Ghrist, see [33, Example

4].

Starting from the Y –graph, we identify the vertices v2 and v3 to form the P–

graph. To obtain F (P, 2) from F (Y, 2), we implement the following six edge identi-

fications:

• identify (v2, e1) with (v3, e1) and identify (e1, v2) with (e1, v3);

• identify (v2, e2) with (v3, e2) and identify (e2, v2) with (e2, v3);

• identify (v2, e3) with (v3, e3) and identify (e3, v2) with (e3, v3).

This gives the space shown in Figure 3.9; it deformation retracts onto a graph

homotopy equivalent to S1 ∨ S1 ∨ S1. We write V = {v2, v3} for the vertex of the

P–graph obtained by identifying v2 and v3 in the Y –graph.
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(v1, v)

(v1, V )

(e1, V )

(v, V )

(V, v1)

(v, v1)

(v1, e1)

(e1, v1)

(v1, e2)

(v1, e3)

(e1, v)

(v, e1)

(e2, v1)

(e3, v1)

(V, v)

(V, e1)

(e2, v)

(v, e3)

(e3, V )

(V, e2)(V, e3)

(e2, V )

Figure 3.9: The configuration space F (P, 2)

Given the space F (P, 2), we now deduce the structure of the thick particle con-

figuration spaces {Fr(P, 2)}r>0. Firstly, as r ranges over (0, 1/2), the triangular fins

of F (P, 2) become smaller and the three holes expand in size. For r ∈ (0, 1/2), the

configuration space Fr(P, 2) is homotopy equivalent to the space shown in Figure

3.10, and thus Fr(P, 2) ' S1 ∨ S1 ∨ S1.
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(v1, v)

(v1, V )

(v, V )

(V, v)

(V, v1)
(v, v1)

(v1, e2)

(v1, e3)

(e1, V )

(V, e1)

(e2, v1)

(e3, v1)

Figure 3.10: A space homotopy equivalent to Fr(P, 2) when r ∈ (0, 1/2)

When r = 1/2, the triangular fins have disappeared and the holes have expanded

to reach the pairs of vertices at distance one apart (namely (v1, v), (v, v1), (V, v) and

(v, V )), see Figure 3.11. Next, for r ∈ (1/2, 1), the configuration space Fr(P, 2) is

disconnected with two contractible components, as shown on the left of Figure 3.12.

Finally, F1(P, 2) comprises the two vertex pairs (v1, v2) and (v2, v1), and Fr(P, 2) = ∅
for r > 1.
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(v1, v) (v1, V )

(v, V )

(V, v)

(V, v1)(v, v1)

(v1, e2)

(v1, e3)

(e1, V )

(V, e1)

(e2, v1)

(e3, v1)

Figure 3.11: The space F1/2(P, 2)

(v1, V )

(V, v1)

(v1, V )

(V, v1)

Fr(P, 2) for r ∈ (1/2, 1) The space F1(P, 2)

Figure 3.12: The spaces Fr(P, 2) for r ∈ (1/2, 1]

Remark 3.1.9. If we wish to study the collision-free motion of two robots of different

radii r1, r2 > 0 on a metric graph Γ, then a suitable configuration space is

Fr1,r2(Γ, 2) := {(x, y) ∈ Γ× Γ : d(x, y) ≥ r1 + r2},

see Figure 3.13. However, Fr1,r2(Γ, 2) is actually equal to the thick particle config-
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r1

r2

Figure 3.13: Two robots of different radii r1, r2 > 0

uration space F(r1+r2)/2(Γ, 2), so it suffices to study the family {Fr(Γ, 2)}r>0. I am

grateful to M. Farber and V. Kurlin for raising this question.

3.2 Critical values and homology groups

In this section we apply the PL Morse–Bott theory from §2.1 to obtain information

on the homotopy type of the configuration spaces {Fr(Γ, 2)}r>0. From Proposition

2.2.1, d is an affine Morse–Bott function on Γ × Γ with respect to a suitable cw

structure. Since Fr(Γ, 2) = d−1([2r,∞)), we work with the sublevel sets of g := −d,

which is also an affine Morse–Bott function (see Remark 2.1.4).

3.2.1 Critical values of the family {Fr(Γ, 2)}r>0

In this subsection we define the critical values of the family {Fr(Γ, 2)}r>0, and derive

an upper bound for the number of critical values in terms of metric properties of Γ

(see Theorem 3.2.3).

Definitions 3.2.1 (Regular and critical values). A number R > 0 is a regular value

of the family {Fr(Γ, 2)}r>0 if there is an open set UR ⊂ (0,∞) containing R such

that Fr2(Γ, 2) is a deformation retract of Fr1(Γ, 2) for all r1, r2 ∈ UR with r1 ≤ r2.

A number R > 0 is a critical value of {Fr(Γ, 2)}r>0 if it is not a regular value.

Examples 3.2.2.

1. Let Γ = [0, 1] be the labelled graph from Example 3.1.5. We see that Fs(Γ, 2) is

a deformation retract of Fr(Γ, 2) for all r, s ∈ (0, 1/2] with r ≤ s. In particular
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F1/2(Γ, 2) = {(0, 1), (1, 0)} = Q2 is a deformation retract of Fr(Γ, 2) for all

r ∈ (0, 1/2], and Fr(Γ, 2) = ∅ for all r > 1/2. Hence r = 1/2 is the only

critical value of the family {Fr(Γ, 2)}r>0; all other numbers r > 0 are regular

values.

2. Let Γ = S1 be the circle from Example 3.1.6. Then Fs(Γ, 2) is a deformation

retract of Fr(Γ, 2) for all r, s ∈ (0, 1/4] such that r ≤ s. We have Fr(Γ, 2) ' S1

for all r ∈ (0, 1/4], and Fr(Γ, 2) = ∅ for all r > 1/4. Hence, r = 1/4 is the

only critical value of the family {Fr(Γ, 2)}r>0.

3. Let Γ be the Y –graph from Example 3.1.7. Here, Fs(Γ, 2) ' S1 is a deforma-

tion retract of Fr(Γ, 2) for all r, s ∈ (0, 1/2] with r ≤ s. For r, s ∈ (1/2, 1] with

r ≤ s, Fr(Γ, 2) deformation retracts onto Fs(Γ, 2) ' Q6. We have Fr(Γ, 2) = ∅
for all r > 1. Hence, the critical values of the family {Fr(Γ, 2)}r>0 are 1/2 and

1; all other numbers r > 0 are regular values.

4. Let Γ be the P–graph from Example 3.1.8. We have Fr(Γ, 2) ' S1 ∨ S1 ∨ S1

for all r ∈ (0, 1/2], Fr(Γ, 2) ' S0 for r ∈ (1/2, 1] and Fr(Γ, 2) = ∅ for all r > 1.

The critical values of the family {Fr(Γ, 2)}r>0 are 1/2 and 1; all other positive

numbers are regular values.

Recall that Z(Γ) is the set of cycles in Γ (subgraphs homeomorphic to S1) and

`(C) is the length of C ∈ Z(Γ). We also write Z := |Z(Γ)| and E = |E(Γ)|. The

following theorem is the main result of this chapter.

Theorem 3.2.3. Each critical value of the family {Fr(Γ, 2)}r>0 has the form

1

2

1

2

∑
C∈Z(Γ)

εC`(C) +
∑
e∈E(Γ)

εe`(e)

 , (1)

where at most two of εC ∈ {0, 1} are non-zero and εe ∈ {0, 1}, ∀e ∈ E(Γ). In

particular, there are fewer than 2E max{2Z(Z − 1), 1} critical values.

Proof. Let Γ×Γ be equipped with the subdivision from Proposition 2.2.1, so that d

(and hence g) is an affine Morse–Bott function. Since Γ× Γ has finitely many cells,

Proposition 2.1.21 implies that the family of sublevel sets {g−1((−∞, c])}c∈R has

finitely many critical values. Hence, the family {Fr(Γ, 2)}r>0 has the same property.
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To obtain formula (1), we refer to the proof of Proposition 2.2.1. Critical levels of

d arising from Case 1 are contained in the set {d(v, w)}v,w∈V (Γ) of distances between

vertices. Such distances have the form
∑

e∈E(Γ) εe`(e) for some coefficients εe ∈
{0, 1}.

Case 2(i) contributes critical levels of the form

ε1`(e) + ε2`(C),

for some edge e, cycle C and coefficients ε1, ε2 ∈ {0, 1}, the latter not both zero.

Critical levels of d arising from Case 2(ii) have the form `(C)/2 for some C ∈ Z(Γ).

Case 2(iii) contributes critical levels of the form

1

2
(ε1`(C1) + ε2`(C2)) +

∑
e∈E(Γ)

εe`(e)

for some coefficients ε1, ε2, εe ∈ {0, 1}, not all zero, see Figure 2.21. Finally, we

combine these observations to obtain formula (1). The factor of 1/2 appears because

a critical value of the family {Fr(Γ, 2)}r>0 is a critical level of d divided by two.

Remark 3.2.4. Let Γ be the Y –graph from Example 3.1.7. Excluding numbers

exceeding 1
2

diam Γ (this may be done in view of Lemma 3.1.4), formula (1) yields

two possible critical values of the family {Fr(Γ, 2)}r>0, namely 1/2 and 1. Hence

part 3 of Examples 3.2.2 shows that the number of possible critical values given by

(1) is exact for this graph.

Example 3.2.5. Let Γ be the 1–skeleton of the 3–simplex ∆3, and equip each

edge with label 1, see Figure 3.14. Cycles in Γ have length 3 or 4, depending

1

1

1

1

1

1

Figure 3.14: The labelled 1–skeleton of ∆3

on the number of edges they contain. From Theorem 3.2.3, the critical values of
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{Fr(Γ, 2)}r>0 have the form

R =
1

2

(
1

2
λ+K

)
,

where λ ∈ {0, 3, 4, 6, 7, 8} and K ∈ {0, 1, . . . , 6}.

Example 3.2.6. Consider the labelled graph shown below.

C

B

A

D E1

1

2

1

1/2

1/2

(Γ, `)

The cycles are (i) ABCDA, of length 4; (ii) DCED, of length 5/2, and (iii)

ABCEDA, of length 11/2. Three edges have label 1, two have label 1/2, and

one has label 2. From Theorem 3.2.3, each critical value of {Fr(Γ, 2)}r>0 has the

form

R = 1
2

(
1
2
λ+K

)
, where λ ∈

{
0, 5

2
, 4, 11

2
, 8, 5, 11, 13

2
, 19

2

}
,

and K = ε1 + ε2 + ε3 + 1
2
(ε4 + ε5) + 2ε6 for some εi ∈ {0, 1}, 1 ≤ i ≤ 6.

3.2.2 Behaviour across a critical value

We now focus on the change in homotopy type of Fr(Γ, 2) as r transits a critical

value. The results of PL Morse–Bott theory (see §2.1.3) provide a complete answer

to this question, which we quantify by computing rkHk(Fa(Γ, 2), Fb(Γ, 2);Q) for

k = 0, 1, 2 and calculating explicit generators for H2(Fa(Γ, 2), Fb(Γ, 2);Q).

The critical subcomplex, descending sets and descending links

Suppose that 0 < a < D/2 < b are such that D is the only critical level of the metric

d in [2a, 2b]. Since there are no critical cells of dimension two, the critical subcomplex

C(d) is a graph. In particular, C(d,D) is a graph. Let Z be a component of C(d,D).
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From the previous section (see Figures 2.15, 2.18 and 2.21) only the 0–cells of Z

need be considered to determine Lk↓(Z), via the disjoint union

Lk↓(Z) =
∐

(v,w)∈Z(0)

Lk↓(v, w).

Let (v, w) be a 0–cell of Z. This means that (v, w) is a vertex of Γ×Γ with respect

to the subdivision from Proposition 2.2.1. The g–descending cells F such that g|F
achieves its maximum on (v, w) are found as follows.

(Case 1). Suppose that both v and w are vertices of Γ. Let e1, . . . , ep be the edges

incident to v such that y 7→ d(y, w) increases on ei as we move away from v.

Let f1, . . . , fq be the edges incident to w such that y 7→ d(y, v) increases on

fj as we move away from w, see Figure 3.15. Then the above cells F are the

largest cells of Γ× Γ containing (v, w) and contained in the products ei × f j.
The subset Lk↓(v, w)∩F of Lk↓(v, w) contained in F is shown in Figure 3.16.

v w
e1

e2

f1

f2

f3

Figure 3.15: Finding the g–descending cells incident to (v, w)

ei

fj

(v, w)

Lk↓(v, w) ∩ F

(v, w)

Lk↓(v, w) ∩ F

ei

fj

(v, w) ei

fj

Lk↓(v, w) ∩ F

F
F

F

Figure 3.16: g–descending cells F incident to (v, w), with Lk↓(v, w) ∩ F shown in

each case

It follows that Lk↓(v, w) = Kp,q (the complete bipartite graph of type (p, q)), where

we set K0,m := Qm to be a discrete set of m ≥ 1 points and K0,0 := ∅.
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(Case 2). Now suppose that one of v, w is a vertex of Γ and the other is equidistant (at

distance D) along at least two distinct paths, see Figure 3.17.

e1

e2

v
f
w

Figure 3.17: The situation in Case 2

Let e1, . . . , em be the edges incident to v satisfying the same property as in Case 1

above. Then the cells F such that g|F achieves its maximum on (v, w) are precisely

ei × {w}, for 1 ≤ i ≤ m. Hence Lk↓(v, w) = Qm (a discrete set of m points). If v, w

are both not vertices of Γ, then (v, w) is a vertex of the subdivision of Γ × Γ from

Case 2(iii) in §2.2, see Figure 2.21. In this case Lk↓(v, w) = ∅, since (v, w) is a local

maximum of d.

The map h : Lk↓(Z)→ Z

It is easy to determine the map h : Lk↓(Z) → Z for Z a component of C(d,D).

Indeed, Lk↓(Z) is the disjoint union
∐

(v,w)∈Z(0) Lk↓(v, w) and for each (v, w) ∈ Z(0),

h|Lk↓(v,w) is constant with value (v, w). In particular, for j ≥ 0,

ker[h∗ : Hj(Lk↓(Z))→ Hj(Z)] = Hj(Lk↓(Z)) =
⊕

(v,w)∈Z(0)

Hj(Lk↓(v, w)),

and

coker[h∗ : Hj(Lk↓(Z))→ Hj(Z)] = Hj(Z) for j ≥ 1.

From above, Lk↓(v, w) = Kp,q, where p = p(v, w), q = q(v, w) ≥ 0 are as previously

defined. Thus,

Hj(Kp,q) =


Z, j = 0

Z(p−1)(q−1), j = 1

0, j ≥ 2,

for p, q ≥ 1, (1)

and

Hj(K0,n) =

 Zn, j = 0

0, j ≥ 1,
for n ≥ 0. (2)
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Applying the main result

Let Z1, . . . , Zn be the components of C(d,D). Applying a corollary of Proposition

2.1.23 (see Remarks 2.1.28(ii)) gives the following statement. (In the following

material we write Fs ≡ Fs(Γ, 2) for clarity.)

Theorem 3.2.7. For each j ≥ 0,

rkHj(Fa, Fb;Q) =
n∑
i=1

(rk coker[(hi)∗ : Hj(Lk↓(Zi))→ Hj(Zi)]

+ rk ker[(hi)∗ : Hj−1(Lk↓(Zi))→ Hj−1(Zi)]) .

We now analyse this statement for j = 0, 1 and 2 separately. When j = 0, we

have

rk coker[(hi)∗ : H0(Lk↓(Zi))→ H0(Zi)] = rkH0(Zi) = 1,

since (hi)∗ = 0 and Zi is connected. Hence we find that rkH0(Fa, Fb) is the number

of path-components of C(d,D).

For j = 1, we have

rk coker[(hi)∗ : H1(Lk↓(Zi))→ H1(Zi)] + rk ker[(hi)∗ : H0(Lk↓(Zi))→ H0(Zi)]

= rkH1(Zi) + rkH0(Lk↓(Zi)) (since (hi)∗ = 0)

= rkH1(Zi) +
∑

(v,w)∈Z(0)
i

rkH0(Lk↓(v, w)).

For each (v, w) ∈ Z
(0)
i , rkH0(Lk↓(v, w)) may be computed explicitly from formu-

las (1) and (2). Moreover, Zi is a connected graph, so we have an algorithm for

computing rkH1(Zi) and thus also for computing rkH1(Fa, Fb).

For j = 2, we use the facts that H2(Zi) = 0 and (hi)∗ = 0 to obtain

rk coker[(hi)∗ :H2(Lk↓(Zi))→ H2(Zi)] + rk ker[(hi)∗ : H1(Lk↓(Zi))→ H1(Zi)]

= 0 + rkH1(Lk↓(Zi)) =
∑

(v,w)∈Z(0)
i

rkH1(Lk↓(v, w))

=
∑

(v,w)∈Z(0)
i

p(v,w),q(v,w)≥2

(p(v, w)− 1)(q(v, w)− 1). (3)
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v w

p1
p2

p3

q1
q2

q3

Figure 3.18: p(v, w), q(v, w) ≥ 2

Finally, we describe explicit generators for H2(Fa, Fb). Suppose that (v, w) ∈ Z(0)
i

contributes to the sum (3). We have p(v, w), q(v, w) ≥ 2, see Figure 3.18. The g–

descending link of (v, w) is Lk↓(v, w) = Kp,q, see Figure 3.19. Choose the maximal

p1 p2 p3

q3q2q1 q1 q2 q3

p1 p2 p3

TKp,q

Figure 3.19: The descending link Lk↓(v, w) = Kp,q and the maximal tree T

tree T in Kp,q as shown in Figure 3.19. There are (p − 1)(q − 1) edges of Kp,q not

contained in T . The generators of H1(Kp,q) are the cycles in Kp,q defined by the

sequences (p1, q1, pi, qj, p1) for i, j ≥ 2. From the exact sequence of the pair (Fa, Fb),

H2(Fa, Fb) is isomorphic to a subgroup of H1(Fb). We interpret the generators of

H1(Kp,q) as generators of H1(Fb) which lie in the kernel of the inclusion-induced

homomorphism H1(Fb)→ H1(Fa), see Figure 3.20.
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v w v w

v w

v

w

v w

Figure 3.20: Generators of H1(Kp,q) interpreted as cycles in H1(Fb)

3.3 Further examples of applying PL Morse–Bott

theory

In this section we discuss some examples of applying the theory from §2.1 to families

of configuration spaces {Fr(Γ, 2)}r>0 for specific labelled graphs (Γ, `).

We know from Theorem 3.2.3 and Lemma 3.1.4 that Fr(Γ, 2) assumes finitely

many homotopy types as r ranges over
(
0, 1

2
diam Γ

]
and that Fr(Γ, 2) = ∅ if and only

if r > 1
2

diam Γ, respectively. PL Morse–Bott theory also tells us how to compute the

change in homotopy type as r passes a critical value (see Proposition 2.1.23). Re-

ferring ahead to Theorem 4.1.6, there is a homotopy equivalence Fr(Γ, 2) ' F (Γ, 2)

for sufficiently small r. Combining these results, we could in principle start with the

space FR(Γ, 2) for R = 1
2

diam Γ and construct a space homotopy equivalent to the

2–point configuration space F (Γ, 2). This is precisely what we do in this section.

Example 3.3.1. Let (Γ, `) be the labelled Y –graph as shown, and let Γ × Γ have

the product cw structure.
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(Γ, `)
e1 e2

e31

11

v2v1

v3

Since Γ is a tree, the metric d is an affine Morse–Bott function without any further

subdivision of Γ×Γ (see the proof of Proposition 2.2.1 – for a tree we are always in

Case 1). The critical levels of d are 1 and 2, corresponding to the distances between

distinct vertices. We compute the homotopy type of d−1([1,∞)) = F1/2(Γ, 2) using

PL Morse–Bott theory. Note that Theorem 4.1.6 shows that there is a homotopy

equivalence F1/2(Γ, 2) ' F (Γ, 2). Firstly, d−1([2,∞)) = C(d, 2) comprises the six

points

{(vi, vj) : i, j ∈ {1, 2, 3}, i 6= j}.

Moreover, C(d, 1) comprises the six pairs of vertices at distance one apart:

C(d, 1) = {(v, vi), (vi, v) : i ∈ {1, 2, 3}}.

The following table shows the ascending cells incident to the cells of C(d, 1). (We

now work with d–ascending cells and links rather than using g = −d and finding

g–descending cells.)1 We use the notation Qm for a discrete set of m points.

Cell of C(d, 1) Ascending Cells Ascending Link

(v1, v) (v1, e2), (v1, e3) Lk↑(v1, v) = Q2

(v2, v) (v2, e1), (v2, e3) Lk↑(v2, v) = Q2

(v3, v) (v3, e1), (v3, e2) Lk↑(v3, v) = Q2

(v, v1) (e2, v1), (e3, v1) Lk↑(v, v1) = Q2

(v, v2) (e1, v2), (e3, v2) Lk↑(v, v2) = Q2

(v, v3) (e1, v3), (e2, v3) Lk↑(v, v3) = Q2

The cone over Q2 is an interval, see Figure 3.21. From this data and the statement of

1Ascending cells and links are defined in the obvious way, see Definition 2.1.10 and Definition

2.1.15.
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CQ2

Q2

Figure 3.21: The cone CQ2 over Q2

Proposition 2.1.23, F1/2(Γ, 2) is homotopy equivalent to the space shown in Figure

3.22. We obtain F1/2(Γ, 2) ' S1 and thus F (Γ, 2) ' S1.

(v2, v3)

(v, v3)

(v1, v3)

(v1, v)

(v1, v2)

(v, v2)

(v3, v2)

(v3, v)

(v3, v1)

(v, v1)

(v2, v1)

(v2, v)

Figure 3.22: A space homotopy equivalent to F1/2(Γ, 2) when Γ is the Y –graph

Example 3.3.2. Let (Γ, `) be the labelled P–graph shown in Figure 3.23. We

subdivide the product cw structure on Γ × Γ so that d is an affine Morse–Bott

function (see the proof of Proposition 2.2.1, Cases 1 and 2(ii)). The critical levels

of d are 1/2, 1, 3/2 and 2. Since removing vertices of degree two does not change

the metric space (Γ, `) (see Lemma 1.5.4), Theorem 3.2.3 shows that 1/2 and 1 are

the only critical values. In particular, we have a homotopy equivalence F (Γ, 2) '
F1/2(Γ, 2). We now compute the homotopy type of F1/2(Γ, 2) using PL Morse–Bott
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(Γ, `)

x C
y ze

f1

f2
1/2 1/2

1/21/2

1

Figure 3.23: The labelling on the P–graph Γ = S1 ∨ [0, 1]

theory. We have

C(d, 2) = d−1([2,∞)) = {(x, z), (z, x)}.

Moreover, C(d, 1) comprises the antipodal configurations on the cycle C together

with the configurations (y, z) and (z, y). The following table shows the ascending

cells incident to the cells of C(d, 1).

Cell of C(d, 1) Ascending Cells Ascending Link

(x, y) (x, e) Lk↑(x, y) = Q1 = {?}
(y, x) (e, x) Lk↑(y, x) = Q1 = {?}
(y, z) (f1, z), (f2, z) Lk↑(y, z) = Q2

(z, y) (z, f1), (z, f2) Lk↑(z, y) = Q2

From this data and Proposition 2.1.23, F1/2(Γ, 2) is homotopy equivalent to the

space shown in Figure 3.24, and hence F (Γ, 2) ' F1/2(Γ, 2) ' S1 ∨ S1 ∨ S1.

(x, z) (z, x)

(z, y)(y, x)(x, y)(y, x)

Figure 3.24: A space homotopy equivalent to F1/2(S1 ∨ [0, 1], 2)

Example 3.3.3. Let (Γ, `) be the labelled wedge of two circles shown in Figure

3.25. As in Example 3.3.2, we subdivide Γ × Γ so that d is piecewise affine. The
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(Γ, `)

x
e3 e4

e1e2

C1 C2

f1 f2

f3f4

w1

w2

w3

w4

yv

1/2 1/2

1/2
1/21/2

1/2
1/2

1/2

Figure 3.25: The labelling on Γ = S1 ∨ S1

critical levels of d are 1/2, 1, 3/2 and 2; as in Example 3.3.2, 1/2 and 1 are the

only possible critical values and thus F (Γ, 2) ' F1/2(Γ, 2). We now compute the

homotopy type of F1/2(Γ, 2) using PL Morse–Bott theory. We have

C(d, 2) = d−1([2,∞)) = {(x, y), (y, x)}.

Moreover, C(d, 1) comprises two circles corresponding to antipodal configurations

on the two cycles C1 and C2, together with the eight configurations

(w1, w3), (w1, w4), (w2, w3), (w2, w4), (w3, w1), (w3, w2), (w4, w1), (w4, w2).

The following table shows the ascending cells incident to the cells of C(d, 1).

Cell of C(d, 1) Ascending Cells Ascending Link

(x, v) (x, f1), (x, f4) Lk↑(x, v) = Q2

(v, x) (f1, x), (f4, x) Lk↑(v, x) = Q2

(v, y) (e1, y), (e4, y) Lk↑(v, y) = Q2

(y, v) (y, e1), (y, e4) Lk↑(y, v) = Q2

(w1, w3) e2 × f2 Lk↑(w1, w3) = [0, 1]

(w1, w4) e2 × f3 Lk↑(w1, w4) = [0, 1]

(w2, w3) e3 × f2 Lk↑(w2, w3) = [0, 1]

(w2, w4) e3 × f3 Lk↑(w2, w4) = [0, 1]

(w3, w1) f2 × e2 Lk↑(w3, w1) = [0, 1]

(w3, w2) f2 × e3 Lk↑(w3, w2) = [0, 1]

(w4, w1) f3 × e2 Lk↑(w4, w1) = [0, 1]

(w4, w2) f3 × e3 Lk↑(w4, w2) = [0, 1]
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Using this data and Proposition 2.1.23, F1/2(Γ, 2) is homotopy equivalent to the

space shown in Figure 3.26, and hence F (Γ, 2) ' ∨7
i=1 S

1. This confirms the cal-

culation performed in Example 4.2.3, where we obtained the homotopy equivalence

F (Γ, 2) ' ∨7
i=1 S

1 using Abrams’ deformation retraction of F (Γ, 2) onto D(Γ, 2)

(see [1, Theorem 2.4]).

(x, y)

(x, v) (v, x)

(y, x)

(y, v)(v, y)

(w1, w3)

(w1, w4)

(w2, w3)

(x,w3)(w1, y)

(w2, w4)
(w2, y)

(x,w4) (w4, x)

(y, w2)
(w4, w2)

(w3, w2)

(w3, w1)

(w4, w1)(y, w1)(w3, x)

Figure 3.26: A space homotopy equivalent to F1/2(S1 ∨ S1, 2)

Example 3.3.4. We now generalise the results from Examples 3.3.1, 3.3.2 and 3.3.3.

Let Tk,` be the graph comprising k intervals and ` circles incident to a central vertex

v, see Figure 3.27. We allow k, ` ≥ 0 provided k2 + `2 6= 0, and we equip each

edge with label 1. In this example we use PL Morse–Bott theory to compute the

v

u1

u2

uk

... ...

f1

f2

fk

w1

w2

w`

e11 e12

e21

e22

e`2 e`1

Tk,`

Figure 3.27: The graph structure on Tk,`

homotopy type and Euler characteristic of F (Tk,`, 2). This calculation was first done

by M. Safi–Samghabadi (a PhD student of V. Kurlin) who generalised a method

due to R. Ghrist [33, Proposition 4.1] to compute the homotopy type and Euler

characteristic of F (Tk,`, N) for any N ≥ 2.
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Although Tk,` is not simple, we observe that Γ×Γ admits a subdivision such that

the metric d is piecewise affine (we are in cases 1 and 2(ii) of the proof of Proposition

2.2.1). The critical levels of d are 1 and 2, and the possible critical values are 1/2

and 1. In particular, we have a homotopy equivalence F1/2(Tk,`, 2) ' F (Tk,`, 2). The

complex C(d, 2) consists of the vertex pairs

(i) (ui, uj) for i, j ∈ {1, . . . , k} with i 6= j;

(ii) (wi, wj) for i, j ∈ {1, . . . , `} with i 6= j;

(iii) (ui, wj), (wj, ui) for i ∈ {1, . . . , k}, j ∈ {1, . . . , `},

giving a total of k(k−1)+ `(`−1)+2k` pairs. Moreover, C(d, 1) comprises ` circles

corresponding to antipodal configurations on the ` distinct cycles in Γ, together

with the vertex pairs (ui, v), (v, ui) for 1 ≤ i ≤ k. The following table shows the

ascending cells incident to the cells of C(d, 1).

Cell of C(d, 1) Ascending Cells Ascending Link

(ui, v), 1 ≤ i ≤ k (ui, est), s ∈ {1, . . . , `}, t ∈ {1, 2} Q2l+k−1

(ui, fj), j ∈ {1, . . . , k} − {i}
(v, ui), 1 ≤ i ≤ k (est, ui), s ∈ {1, . . . , `}, t ∈ {1, 2} Q2l+k−1

(fj, ui), j ∈ {1, . . . , k} − {i}
(wj, v), 1 ≤ j ≤ ` (wj, est), s ∈ {1, . . . , `} − {j}, t ∈ {1, 2} Q2`−2+k

(wj, fi), 1 ≤ i ≤ k

(v, wj), 1 ≤ j ≤ ` (est, wj), s ∈ {1, . . . , `} − {j}, t ∈ {1, 2} Q2`−2+k

(wj, fi), 1 ≤ i ≤ k

We know from §5.1 that F (Tk,`, 2) is path-connected unless Tk,` is an interval (which

occurs if and only if (k, `) ∈ {(1, 0), (2, 0)}). In the case (k, `) = (1, 0) there are no

ascending cells and we obtain F (T1,0, 2) ' S0 and χ(F (T1,0, 2)) = 2. In the case

(k, `) = (2, 0) we obtain F (T2,0, 2) ' [0, 1] t [0, 1] ' S0 and χ(F (T2,0, 2)) = 2. If

(k, `) 6∈ {(1, 0), (2, 0)} then Tk,` 6∼= [0, 1] and so F (Tk,`, 2) is path-connected. Propo-

sition 2.1.23 and the data from the table yield a graph G homotopy equivalent to

F1/2(Tk,`, 2) ' F (Tk,`, 2); in particular, G is connected. Hence F (Tk,`, 2) is homo-

topy equivalent to the wedge sum of 1− χ(G) circles and χ(F (Tk,`, 2)) = χ(G). We
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compute

χ(G) = k(k − 1) + `(`− 1) + 2k`︸ ︷︷ ︸
0–cells of C(d, 2)

+ 2k + 2`︸ ︷︷ ︸
0–cells of C(d, 1)

− 2`︸︷︷︸
1–cells of C(d, 1)

− (2k(2`+ k − 1) + 2`(2`− 2 + k))︸ ︷︷ ︸
ascending 1–cells

= −k2 + 3k − 3`2 + 3`− 4k`.

The first three rows of the following table confirm Examples 3.3.1, 3.3.2 and 3.3.3.

(k, `) χ(F (Tk,`, 2)) F (Tk,`, 2) '

(3, 0) 0 S1

(1, 1) −2 S1 ∨ S1 ∨ S1

(0, 2) −6
∨7
i=1 S

1

(k, 0) −k2 + 3k
∨
k2−3k+1 S

1

(0, `) −3`2 + 3`
∨

3`2−3`+1 S
1

The penultimate row agrees with M. Farber’s work on F (T, 2) for a tree T : in paper

[19, Theorem 12] it is proved that F (T, 2) ' ∨nT
S1, where nT =

∑
v∈V (T )(µ(v) −

1)(µ(v) − 2) − 1. When T = Tk,0 we have nT = (k − 1)(k − 2) − 1 = k2 − 3k + 1.

This formula also agrees with the result of [33, Proposition 4.1] (in the case N = 2)

where R. Ghrist computes χ(F (Tk,0, 2)) using a different method. Additionally, row

2 agrees with [33, Example 4] (see Examples 3.1.8) where R. Ghrist constructs the

configuration space F (T1,1, 2) ' S1 ∨ S1 ∨ S1.

3.4 Open thick particle configuration spaces

In this section we briefly discuss another family of thick particle configuration spaces,

which we refer to as the open thick particle configuration spaces. We find it more

convenient to work with this family for the majority of Chapter 4. As the following

remarks show, the two families have the same critical values and assume the same

set of homotopy types.

Remarks 3.4.1. Consider the family of spaces {FOr (Γ, 2)}r≥0, where we define

FOr (Γ, 2) := d−1((2r,∞)) = {(x, y) ∈ Γ× Γ : d(x, y) > 2r} for r ≥ 0.
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(Note that FO0 (Γ, 2) = F (Γ, 2)). The space FOr (Γ, 2) models the collision-free motion

of two objects (robots) of radius r moving on Γ, where tangencies between the objects

are not permitted.

We now refer to the proof of Proposition 2.1.21. The deformation retraction

defined there restricts to a deformation retraction of f−1((−∞, S)) onto XR =

f−1((−∞, R]) for any S ∈ [R,R′), so in particular we have f−1((−∞, S)) ' XR.

Now let 0 < r1 < r2 < · · · < rk = 1
2

diam Γ be the critical values of the family

{Fr(Γ, 2)}r>0. The previous fact immediately implies that FOs (Γ, 2) ' Fr1(Γ, 2) for

all s ∈ (0, r1) and

FOs (Γ, 2) ' Fri(Γ, 2), ∀s ∈ [ri−1, ri), ∀i ∈ {2, 3, . . . , k}.

We therefore obtain the following properties:

(i) if r is a regular value of the family {Fr(Γ, 2)}r>0, then Fr(Γ, 2) ' FOr (Γ, 2);

(ii) if r is a critical value of the family {Fr(Γ, 2)}r>0, then ∃ε > 0 such that

FOs (Γ, 2) ' Fr(Γ, 2) for all s ∈ [r − ε, r).

(iii) the two families {Fr(Γ, 2)}r>0 and {FOr (Γ, 2)}r>0 have the same critical values

and assume the same set of homotopy types as r varies over
(
0, 1

2
diam Γ

]
.



Chapter 4

Discrete models for the

configuration spaces {Fr(Γ, 2)}r>0

In this chapter we continue our study of the homotopy type of Fr(Γ, 2) for variable

r. A discrete model for a space W is a finite cw complex homotopy equivalent to

W , and here we study the existence and structure of discrete models for the thick

particle configuration spaces {Fr(Γ, 2)}r>0. Firstly, Theorem 3.2.3 implies that there

is a space X and λ > 0 such that Fr(Γ, 2) ' X for all 0 < r ≤ λ. Not surprisingly,

in §4.1 we show that X is the familiar configuration space F (Γ, 2) of two zero-size

points moving on Γ. We also provide a lower bound for λ valid for all sufficiently

subdivided graphs, see Theorem 4.1.6. We generalise these ideas in §4.2 to show

that Fr(Γ, 2) admits a discrete model for each r > 0.

4.1 Thick particles of small radius

Throughout this chapter we assume that (Γ, `) is simple and satisfies the cycle

inequality. These conditions hold provided that Γ is sufficiently subdivided, see

Lemmas 1.5.5 and 1.5.10. Following the notation from [6, Definition 2.2.2] and [7,

§1], we begin with the definition of D(Γ, 2). This is a finite cw complex proved by

A. Abrams [1, Theorem 2.4] to be a deformation retract of F (Γ, 2). It is useful to

have a discrete model such as D(Γ, 2), because F (Γ, 2) cannot be given the structure

of a finite cw complex. Indeed, F (Γ, 2) is not closed in Γ× Γ (its closure is Γ× Γ),

81
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so it is not compact.

Definition 4.1.1. We define

D(Γ, 2) := {(x, y) ∈ Γ× Γ : supp(x) ∩ supp(y) = ∅}.

(The support of w is the smallest subgraph of Γ containing w, see Definition 1.1.6).

Remark 4.1.2. The natural cw structure on D(Γ, 2) as a subcomplex of Γ× Γ is as

follows. The 0–cells are ordered pairs (v, w) of distinct vertices of Γ. The 1–cells are

pairs (v, e), (e, v) comprising an edge e and a vertex v such that v 6∈ ∂e. A 1–cell

(v, e) is attached to (v, ∂0e) and (v, ∂1e), and similarly for (e, v). The 2–cells are

ordered pairs of edges (e, f) such that ∂e∩∂f = ∅. A 2–cell (e, f) is attached to the

1–skeleton of D(Γ, 2) along the four 1–cells (∂0e, f), (∂1e, f), (e, ∂0f) and (e, ∂1f).

There are no cells in higher dimensions, so dimD(Γ, 2) ≤ 2.

Example 4.1.3. Let Γ = [0, 1] be the labelled graph from Example 3.1.5. In this

case D(Γ, 2) comprises the two points (0, 1) and (1, 0) and is an obvious deformation

retract of F (Γ, 2) = [0, 1]× [0, 1] \∆.

Example 4.1.4. Let Γ = S1 have the graph structure with three vertices u, v, w

and three edges e, f, g as shown in Figure 4.1. In this case D(Γ, 2) is also a circle,

subdivided with six vertices and six edges. It has no 2–cells because no two edges

have non-intersecting boundaries.

u

w v

e

f

g (u, v)

(g, v)

(w, v) (w, e) (w, u)

(f, u)

(v, u)

(v, w)

(v, g)

(e, w)(u,w)

(u, f)

Figure 4.1: The minimal simple graph structure on Γ, and D(Γ, 2) on the right

Example 4.1.5. Let Γ be the Y –graph from Example 3.1.7. In this case D(Γ, 2)

has twelve 0–cells comprising the pairs of distinct vertices of Γ, and twelve 1–cells
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comprising the edge-vertex pairs (f, w), (w, f) such that w 6∈ ∂f . The configuration

space F (Γ, 2) is shown on the left of Figure 4.2 and D(Γ, 2) is shown on the right.

(v1, v2)

(v1, v3)

(v, v3)

(v2, v3)(v2, v)

(v2, v1)

(v, v1)(v3, v1)

(v3, v)

(v3, v2) (v, v2)

(v1, v2)

(v1, v3)(v1, v) (v1, v)(v, v2)(v3, v2)

(v3, v) (v, v3)

(v2, v3)(v2, v)

(v2, v1)

(v, v1)(v3, v1)

Figure 4.2: D(Γ, 2) is a deformation retract of F (Γ, 2)

Some further examples of D(Γ, 2) are as follows (see [1, Examples 5.1,5.2]): if

K5 denotes the complete graph on 5 vertices, then D(K5, 2) is the closed orientable

surface of genus 6. If K3,3 denotes the complete bipartite graph on two sets of three

vertices, then D(K3,3, 2) is the closed orientable surface of genus 4. A fascinating

theorem due to A. Abrams (see [1, Theorem 5.1]) shows that if Γ is connected and

has no loops, then D(Γ, 2) is a closed 2–manifold only when Γ = K5 or Γ = K3,3.

The following theorem is the main result of this section.

Theorem 4.1.6. There is a homotopy equivalence Fr(Γ, 2) ' F (Γ, 2) for each r ∈
(0, r0], where r0 := 1

2
min
e∈E(Γ)

{`(e)}.

Proof. If supp(x)∩ supp(y) 6= ∅, then d(x, y) ≥ 2r0, so D(Γ, 2) ⊂ Fr(Γ, 2). We show

that the deformation retraction of F (Γ, 2) onto D(Γ, 2) given in [1, Theorem 2.4]

restricts to a deformation retraction of Fr(Γ, 2) onto D(Γ, 2). We first deformation

retract Fr(Γ, 2) onto its subspace

Y := Fr(Γ, 2)−
⋃

e∈E(Γ)

e× e.

If (x, y) ∈ Fr(Γ, 2) − Y , then x, y are distinct points lying on an edge e. Push

x and y apart at constant speed until at least one of the points reaches a vertex,
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e

x

y

Figure 4.3: Deformation retraction of Fr(Γ, 2) onto Y

see Figure 4.3. Since (Γ, `) is simple and satisfies the cycle inequality, the distance

between the points under this motion increases with time t ∈ [0, 1]. Therefore, this

procedure defines a continuous map Fr(Γ, 2) × [0, 1] → Fr(Γ, 2) starting with the

identity, finishing with a retraction Fr(Γ, 2)→ Y and leaving each point of Y fixed.

The second step is to deformation retract Y onto its subspace D(Γ, 2). If (x, y) ∈
Y −D(Γ, 2), then one of the following conditions holds.

(i) One of x, y is a vertex v and the other lies in an edge e incident to v.

(ii) The points x and y lie in distinct edges incident to v, see Figure 4.4.

x = v

e
y v

x
y

Figure 4.4: A pair (x, y) ∈ Y −D(Γ, 2)

Now move the points x and y away from v at speeds proportional to their distance

from v. (This distance is zero for one of the points in case (i)). In case (i), proceed

until the point which is not v reaches the other vertex of e. In case (ii), proceed

until at least one point reaches a vertex, see Figure 4.5. In case (i), the distance

x = v

e
y v

x
y

Figure 4.5: Deformation retraction of Y onto D(Γ, 2)

between the points under this motion increases with time t ∈ [0, 1], because they lie



4.1. Thick particles of small radius 85

in the same closed edge and the cycle inequality is satisfied. In case (ii), the pairs

(xt, yt), t ∈ [0, 1], joining (x0, y0) = (x, y) to (x1, y1) ∈ D(Γ, 2) under this motion

satisfy d(xt, yt) ≥ 2r for all t ∈ [0, 1]. Indeed, if d(xt, yt) < 2r for some t ∈ [0, 1],

then we have either

d(x, y) ≤ d(xt, v) + d(v, yt) ≤ d(xt, yt) < 2r,

or the existence of an edge with label strictly less than 2r, both of which are impos-

sible. Therefore, this procedure defines a continuous map Y × [0, 1] → Y starting

with the identity, finishing with a retraction Y → D(Γ, 2) and leaving each point of

D(Γ, 2) fixed.

Remark 4.1.7. If Γ is the Y –graph from Example 3.1.7, then r0 = 1/2 and Fr(Γ, 2) '
F (Γ, 2) ' S1 for all r ∈ (0, r0] and Fr(Γ, 2) 6' S1 if r > r0. Hence r0 is sharp,

meaning that if we increase it above 1
2

min
e∈E(Γ)

{`(e)} then Theorem 4.1.6 is false for

some labelled graphs.

4.1.1 Corollaries of Theorem 4.1.6

We now discuss some corollaries of Theorem 4.1.6, applying known results on the

topology of F (Γ, 2) from the literature. This material is not needed elsewhere in

this thesis and is included purely for interest. In view of Theorem 4.1.6 and [1,

Theorem 2.4], we have χ(Fr(Γ, 2)) = χ(D(Γ, 2)) for all r ∈ (0, r0]. The computation

of χ(D(Γ, 2)) is given in [7, Corollary 1.2]. It is also a consequence of a theorem

of S. Gal [30, Theorem 2] determining χ(F (X,n)) for any finite polyhedron X and

any n ≥ 1 (see also [20, Corollary 2.7]).

Corollary 4.1.8. For r ∈ (0, r0] we have

χ(Fr(Γ, 2)) = χ(Γ)2 + χ(Γ)−
∑

v∈V (Γ)

(µ(v)− 1)(µ(v)− 2).

Proof (after [7], Corollary 1.2). Write V := |V (Γ)| and E := |E(Γ)|. There are

V 2 − V 0–cells of D(Γ, 2), since each 0–cell is a pair of distinct vertices of Γ. Each

edge e of Γ contributes the 1–cells (e, v) and (v, e) to D(Γ, 2) for v 6∈ ∂e. Hence

D(Γ, 2) has 2E(V − 2) 1–cells. The product Γ × Γ has E2 2–cells, and E of these
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are the diagonal cells (e, e) for e ∈ E(Γ). The number of 2–cells (e, f) of Γ×Γ such

that e 6= f and ∂e∩ ∂f 6= ∅ is
∑

v∈V (Γ) µ(v)(µ(v)− 1). Hence the number of 2–cells

of D(Γ, 2) is

E2 − E −
∑

v∈V (Γ)

µ(v)(µ(v)− 1).

Hence

χ(D(Γ, 2)) = V 2 − V − 2E(V − 2) + E2 − E −
∑

v∈V (Γ)

µ(v)(µ(v)− 1),

and since χ(Γ) = V − E and 2E =
∑

v∈V (Γ) µ(v), we obtain

χ(D(Γ, 2)) = χ(Γ)2 + χ(Γ)− 2V + 4E −
∑

v∈V (Γ)

µ(v)(µ(v)− 1)

= χ(Γ)2 + χ(Γ)−

 ∑
v∈V (Γ)

(2− 2µ(v) + µ(v)2 − µ(v))


= χ(Γ)2 + χ(Γ)−

∑
v∈V (Γ)

(µ(v)− 1)(µ(v)− 2).

The path-connectedness of Fr(Γ, 2) is addressed fully in Chapter 5, but Theorem

4.1.6 together with results from the literature gives the following statement.

Corollary 4.1.9. If Γ is not homeomorphic to the interval [0, 1], then Fr(Γ, 2) is

path-connected and aspherical for all r ∈ (0, r0].

Proof. Provided that Γ 6∼= [0, 1], S. Eilenberg [18, Theorem III] has shown that

F (Γ, 2) is path-connected, see also [50, Theorem 2.4], [1, §2.2] and §5.1. Under

the same assumption, C. W. Patty ([49, Theorem 2]) has shown that F (Γ, 2) is

aspherical, that is πk(F (Γ, 2)) = 0 for all k ≥ 2. Applying Theorem 4.1.6 gives the

same conclusions for Fr(Γ, 2) for any r ∈ (0, r0].

We also mention the following useful result which follows from [7, Proposition

1.3].

Corollary 4.1.10. Assume that Γ is not homeomorphic to [0, 1] or S1. For any

r ∈ (0, r0], the inclusion Fr(Γ, 2) ↪→ Γ× Γ induces an epimorphism H1(Fr(Γ, 2))→
H1(Γ× Γ).
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Proof. Consider the sequence of inclusions

D(Γ, 2) ↪→ Fr(Γ, 2)
ι
↪→ F (Γ, 2)

α
↪→ Γ× Γ.

The maps D(Γ, 2) ↪→ Fr(Γ, 2), D(Γ, 2) ↪→ F (Γ, 2) are homotopy equivalences by

Theorem 4.1.6 and [1, Theorem 2.4], respectively. Hence ι : Fr(Γ, 2) ↪→ F (Γ, 2) is a

homotopy equivalence and ι∗ is an isomorphism on H1. Further, [7, Proposition 1.3]

shows that α∗ is an epimorphism on H1. The inclusion j = α ◦ ι : Fr(Γ, 2) ↪→ Γ× Γ

satisfies j∗ = α∗ ◦ ι∗, so j∗ is an epimorphism on H1.

We finish this section with the following interesting statement about thick par-

ticle configuration spaces of trees. It follows directly from the corresponding result

for F (T, 2) proved by M. Farber in [19, Theorem 12].

Corollary 4.1.11. Let (T, `) be a labelled tree containing at least one branched

vertex µ(v) ≥ 3. Then Fr(T, 2) ' ∨nT
S1 for any r ∈ (0, r0], where

nT =
∑

v∈V (T )

(µ(v)− 1)(µ(v)− 2)− 1.

Proof. M. Farber’s work ([19, Theorem 12]) shows that F (T, 2) ' ∨nT
S1. Since

T is a tree, it is simple and vacuously satisfies the cycle inequality, so applying

Theorem 4.1.6 gives the result.
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4.2 Discrete thick particle configuration spaces

In this section we generalise the ideas from §4.1. The main result is that Fr(Γ, 2)

is homotopy equivalent to a finite cw complex of dimension at most two. In this

section, it is more convenient to work with the family {FOr (Γ, 2)}r>0 (see §3.4). For

a fixed r, we may replace Fr(Γ, 2) with a homotopy equivalent space

FOs (Γ, 2) = {(x, y) ∈ Γ× Γ : d(x, y) > 2s} for some s.

Namely, if r is a regular value we take s = r, and if r is a critical value we choose

s < r sufficiently close to r such that (s, r) contains no critical value, see Remarks

3.4.1. We show that for each s, Γ admits a subdivision such that there is a finite

cw complex embedded in FOs (Γ, 2) as a deformation retract, see Theorem 4.2.4.

Definition 4.2.1 (Discrete thick particle configuration space). For r ≥ 0, we define

Dr(Γ, 2) := {(x, y) ∈ Γ× Γ : d(supp(x), supp(y)) > 2r}.

Remarks 4.2.2.

1. Note that d(x, y) ≥ d(supp(x), supp(y)) for all (x, y) ∈ Γ × Γ, so Dr(Γ, 2) ⊂
FOr (Γ, 2) for all r ≥ 0.

2. We have Dr(Γ, 2) = D(Γ, 2) for all r ∈ [0, r0), since d(supp(x), supp(y)) ≥ 2r0

if supp(x) ∩ supp(y) = ∅. In general, Dr(Γ, 2) ⊆ D(Γ, 2).

3. Subdividing Γ does not change the induced metric space (Lemma 1.5.2) and

hence does not change FOr (Γ, 2). However, we emphasise that Dr(Γ, 2) depends

on the subdivision of Γ.

4. The natural cw structure on Dr(Γ, 2) is as follows. The 0–cells are ordered

pairs (v, w) of vertices of Γ such that d(v, w) > 2r. The 1–cells are pairs (e, v),

(v, e) comprising a vertex v and an edge e such that d(v, e) > 2r. The 2–cells

are ordered pairs (e, f) of edges such that d(e, f) > 2r. The 1–cells and 2–cells

are attached in the same way as in D(Γ, 2), see Remark 4.1.2. We note that

Dr(Γ, 2) is a finite cw complex of dimension at most two.
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Example 4.2.3. Let Γ = S1 ∨ S1 have the labelled graph structure as shown in

Figure 4.6. It is simple and satisfies the cycle inequality. In this case, D(Γ, 2) has

twenty 0–cells, thirty-six 1–cells and ten 2–cells and is shown in Figure 4.7. Now,

[1, Theorem 2.4] and Theorem 4.1.6 imply that F (Γ, 2) ' D(Γ, 2) ' Fr(Γ, 2) for all

r ∈ (0, 1/2]. Hence these spaces have the homotopy type of the wedge sum of seven

circles
∨7
i=1 S

1.

v

w1 w2

w3 w4

e1

e2

e3

e4

e5

e6 1
1

1
1

1
1

Figure 4.6: The labelled graph structure on Γ = S1 ∨ S1

(w3, w4)

(w3, w2)

(w1, w4)

(v, w4)

(w1, w2)

(w3, v)

(w1, v)

(w1, w3)

(v, w2)

(w2, w4)

(w4, w2)

(v, w1)

(w3, w1)

(v, w3)

(w2, v) (w4, v)

(w4, w1)(w2, w1)

(w4, w3)

(w2, w3)

Figure 4.7: The cw complex D(Γ, 2) when Γ = S1 ∨ S1 has the graph structure in

Figure 4.6
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The non-zero distances between subgraphs of Γ are 1 and 2. We have Dr(Γ, 2) =

D(Γ, 2) for all r ∈ [0, 1/2), and Dr(Γ, 2) comprises the two squares shown in Figure

4.8 for r ∈ [1/2, 1). If r ≥ 1 then Dr(Γ, 2) = ∅.

(w2, w3) (e5, w3) (w4, w3)

(w4, e1)

(w4, w1)(e5, w1)(w2, w1)

(w2, e1)

(w1, w4) (e1, w4) (w3, w4)

(w3, e5)

(w3, w2)(e1, w2)(w1, w2)

(w1, e5)

Figure 4.8: Dr(Γ, 2) for 1/2 ≤ r < 1

In the rest of this section we prove the following main result.

Theorem 4.2.4. For each r ∈ [0, diam Γ/2), there is a subdivision of Γ such that

Dr(Γ, 2) is a deformation retract of FOr (Γ, 2).

To prove this statement, we first define two conditions (C1) and (C2) depending

on r. We then show that (Γ, `) admits a subdivision satisfying (C1) and (C2).

Finally, we construct a deformation retraction of FOr (Γ, 2) onto Dr(Γ, 2) for any

subdivision of Γ satisfying (C1) and (C2).

Definitions 4.2.5 (Conditions (C1) and (C2)). For r ∈ [0, diam Γ/2), write

∆r := {(x, y) ∈ Γ× Γ : d(x, y) ≤ 2r}.

Condition (C1) is that for any e1, e2 ∈ E(Γ) such that

(e1 × e2) ∩∆r 6= ∅ & (e1 × e2) ∩ FOr (Γ, 2) 6= ∅,

there exist v1 ∈ ∂e1, v2 ∈ ∂e2 such that d(v1, e2) = d(v2, e1) = d(v1, v2) > 2r.

Condition (C2) is that for any v ∈ V (Γ) and e ∈ E(Γ) such that

d(v, e) ≤ 2r & ({v} × e) ∩ FOr (Γ, 2) 6= ∅,

there exists w ∈ ∂e such that d(v, w) > 2r.

Lemma 4.2.6. (Γ, `) admits a subdivision satisfying conditions (C1) and (C2).
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Proof. If there are no circuits C such that `(C) > 4r, then conditions (C1) and (C2)

are satisfied. Indeed, if (C1) or (C2) does not hold, then there is a circuit of length

exceeding 4r. Suppose that there is at least one circuit C such that `(C) > 4r, and

define

µ = min
`(C)>4r

{`(C)} − 4r.

Now subdivide (Γ, `) so that every new edge has label in (0, µ/3). This can be done

as follows. Set `max := maxe∈E(Γ){`(e)}, and choose N ∈ N such that `max

N
< µ

3
. Now

insert N − 1 equally-spaced new vertices into each edge e ∈ E(Γ), so that the N

new edges obtained from e each have label `(e)/N .

We now check that (C1) and (C2) are satisfied for this subdivision.

(C1) Suppose that e1, e2 ∈ E(Γ) are such that

(e1 × e2) ∩∆r 6= ∅ & (e1 × e2) ∩ FOr (Γ, 2) 6= ∅.

Since (e1 × e2) ∩ ∆r 6= ∅, there exists v′1 ∈ ∂e1 and v′2 ∈ ∂e2 such that

d(v′1, v
′
2) ≤ 2r. Seeking a contradiction, assume that d(v1, v2) ≤ 2r, where

{v1} = ∂e1 − {v′1} and {v2} = ∂e2 − {v′2}.

Let C be the circuit defined by C = (e1, c1, e2, c2), where c1, c2 are minimal-

length paths from v′1 to v′2 and v2 to v1, respectively, see Figure 4.9. We have

v1

e1

v′1
c1

v′2

e2

v2

c2

Figure 4.9: The circuit C = (e1, c1, e2, c2)

`(C) > 4r since (e1 × e2) ∩ FOr (Γ, 2) 6= ∅. On the other hand,

`(C) ≤ 2r + 2r +
µ

3
+
µ

3
< 4r + µ,

contradicting `(C) ≥ 4r + µ.
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(C2) Suppose that v ∈ V (Γ), e ∈ E(Γ) are such that

d(v, e) ≤ 2r & ({v} × e) ∩ FOr (Γ, 2) 6= ∅.

Since d(v, e) ≤ 2r, there exists v′ ∈ ∂e such that d(v, v′) ≤ 2r. Seeking a

contradiction, assume that d(v, w) ≤ 2r, where {w} = ∂e−{v′}. Let C be the

circuit defined by C = (e, c1, c2), where c1, c2 are minimal-length paths from

v′ to v and v to w, respectively, see Figure 4.10. We have `(C) > 4r since

v

c1

c2

e

v′

w

Figure 4.10: The circuit C = (e, c1, c2)

({v} × e) ∩ FOr (Γ, 2) 6= ∅. On the other hand,

`(C) ≤ 2r + 2r +
µ

3
< 4r + µ,

contradicting `(C) ≥ 4r + µ.

We now assume that (Γ, `) is subdivided such that (C1) and (C2) hold.

Proof of Theorem 4.2.4. The argument is similar to the proof of Theorem 4.1.6. We

first define a deformation retraction of FOr (Γ, 2) onto its subspace

Y := FOr (Γ, 2)−
⋃

e,f∈E(Γ)
(e×f)∩∆r 6=∅

e× f.

If (x, y) ∈ FOr (Γ, 2) − Y , then (x, y) ∈ e × f for some e, f ∈ E(Γ) such that

(e × f) ∩ ∆r 6= ∅. Choose (x′, y′) ∈ (e × f) ∩ ∆r, and let v ∈ ∂e, w ∈ ∂f be the

vertices provided by (C1). At constant speed, push x and y away from x′ and y′

towards the vertices v, w respectively, until at least one point reaches a vertex, see

Figure 4.11. This procedure defines a continuous map FOr (Γ, 2)× [0, 1]→ FOr (Γ, 2)
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e

v

x
x′

y′

f y

w

Figure 4.11: Deformation retraction of FOr (Γ, 2) onto Y

starting with the identity, finishing with a retraction FOr (Γ, 2)→ Y and fixing each

point of Y .

We now define a deformation retraction of Y onto its subspace Dr(Γ, 2). Let

(x, y) ∈ Y −Dr(Γ, 2). If x and y lie in edges e and f respectively, then (e×f)∩∆r = ∅
since (x, y) ∈ Y . Thus d(x′, y′) > 2r for all (x′, y′) ∈ e×f , implying that d(e, f) ≥ 2r.

Since d(supp(x), supp(y)) = d(e, f) ≤ 2r we have d(e, f) = 2r. Let v ∈ ∂e, w ∈ ∂f
be the vertices provided by (C1). At constant speed, push x and y towards v and

w, respectively, until at least one point reaches a vertex.

Next assume that at least one of x and y is a vertex. They cannot both be

vertices, since otherwise

2r ≥ d(supp(x), supp(y)) = d(x, y) > 2r.

Without loss of generality, assume that x ∈ V (Γ) and y 6∈ V (Γ). Let e be the

edge containing y; since supp(y) = e we have d(x, e) ≤ 2r. In particular, there

exists v ∈ ∂e such that d(x, v) ≤ 2r. From (C2), let w ∈ ∂e be the vertex such

that d(x,w) > 2r. Push y at constant speed along e towards w, so that the final

configuration is (x,w).

Corollary 4.2.7. Assuming that Γ is subdivided so that conditions (C1) and (C2)

hold, the Euler characteristic χ(FOr (Γ, 2)) is given by the formula Vr−Er+Fr, where

(i) Vr is the number of ordered pairs of vertices (v, w) such that d(v, w) > 2r;

(ii) Er is twice the number of pairs (e, v) ∈ E(Γ)× V (Γ) such that d(e, v) > 2r;

(iii) Fr is the number of ordered pairs of edges (e, f) such that d(e, f) > 2r.



Chapter 5

Path-components of the

configuration spaces {Fr(Γ, 2)}r>0

In this chapter we study the path-connectivity of the spaces {Fr(Γ, 2)}r>0. We

begin in §5.1 by giving Abrams’ proof (see [1, §2.2]) that the classical two-point

configuration space F (Γ, 2) is path-connected unless Γ is an interval. However,

given (Γ, `) and r > 0, Fr(Γ, 2) is generally not path-connected (for example, see

Example 3.1.7). In §5.3 we design an algorithm for computing the number of path-

components of Fr(Γ, 2) given (Γ, `) and r. This algorithm constructs a finite graph

Gr which embeds in Fr(Γ, 2) such that b0(Gr) = b0(Fr(Γ, 2)). In §5.2 we introduce

critical and index zero configurations. These are special classes of configurations

that play a crucial theoretical role in our algorithm from §5.3.

5.1 Path-connectivity of F (Γ, 2)

In this section we provide Abrams’ argument (see [1, §2.2]) showing that F (Γ, 2) is

path-connected unless Γ ∼= [0, 1].

Proposition 5.1.1. F (Γ, 2) is path-connected if and only if Γ is not homeomorphic

to the interval [0, 1].

As a first step towards proving Proposition 5.1.1, we will write down the proof

of [1, Theorem 2.5] for the case n = 2. This result is as follows.

94
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Lemma 5.1.2. The orbit space B(Γ, 2) := F (Γ, 2)/S2 is path-connected, where S2

acts freely on F (Γ, 2) by permuting the factors: (1 2) · (x, y) = (y, x).

Proof (after [1], Theorem 2.5). Let x = (x1, x2), y = (y1, y2) ∈ F (Γ, 2). We wish to

construct a path in B(Γ, 2) from {x1, x2} to {y1, y2}. Define r(x,y) = |{x1, x2} −
{y1, y2}|. If r(x,y) = 0, then {x1, x2} = {y1, y2} and there is nothing to prove. The

remaining cases are when r(x,y) ∈ {1, 2}. Assume r(x,y) = 2, and let γ : I → Γ be

a minimal-length edgepath from x1 to y1. There is at most one time t ∈ (0, 1) such

that γ(t) = x2, see Figure 5.1. Suppose that x2 ∈ Im γ. Define a path in F (Γ, 2)

t = 0

x1 γ(t) = x2

y1
t = 1γ : I → Γ

Figure 5.1: An edgepath γ from x1 to y1

from x to (x2, y1) as follows. Start at x and move x2 to y1 along γ|[t,1], keeping x1

fixed throughout. Now keep y1 fixed and move x1 to x2 along γ|[0,t]. If x2 6∈ Im γ,

define a path in F (Γ, 2) from x to (y1, x2) by t 7→ (γ(t), x2). In either case, we

compose with the projection map F (Γ, 2) → B(Γ, 2) and obtain a path in B(Γ, 2)

from {x1, x2} to {x2, y1}. Hence, we may assume that r(x,y) = 1 and that we need

a path from {x2, y1} to {y1, y2} with x2 6= y2. Let δ : I → Γ be a minimal-length

edgepath from x2 to y2. There is at most one point t ∈ (0, 1) with γ(t) = y1. If

y1 ∈ Im δ, define a path in F (Γ, 2) from (x2, y1) to (y1, y2) as follows. Hold x2 fixed

and move y1 to y2 along δ|[t,1], and then hold y2 fixed and move x2 to y1 along δ|[0,t].
If y1 6∈ Im δ, define a path in F (Γ, 2) from (x2, y1) to (y2, y1) by t 7→ (δ(t), y1). In

either case, composing with the projection F (Γ, 2) → B(Γ, 2) gives a path from

{x2, y1} to {y1, y2}.

We can now prove Proposition 5.1.1.

Proof of Proposition 5.1.1. If Γ is homeomorphic to [0, 1], then F (Γ, 2) ∼= [0, 1] ×
[0, 1] \ ∆, where ∆ = {(x, x) ∈ R2 : x ∈ [0, 1]}, so F (Γ, 2) has two contractible
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path-components. If Γ 6∼= [0, 1], then either Γ is a circle or Γ contains a vertex v with

µ(v) ≥ 3. Given (x, y) ∈ F (Γ, 2), it suffices to show that there is a path in F (Γ, 2)

from (x, y) to (y, x). Indeed, Lemma 5.1.2 shows that B(Γ, 2) is path-connected,

and we can lift paths in B(Γ, 2) to F (Γ, 2) by the path-lifting property of covering

spaces.1 If Γ is a circle, we may use the path shown in Figure 5.2 to connect (x, y)

to (y, x) in F (Γ, 2). If Γ contains a vertex v with µ(v) ≥ 3, then we may assume

x

y
rotate move y

x

y
anticlockwise

x
y

Figure 5.2: A path in F (S1, 2) from (x, y) to (y, x)

(by Lemma 5.1.2) that x and y lie on distinct edges incident to v. We may use the

path shown in Figure 5.3 to connect (x, y) to (y, x) in F (Γ, 2).

v
x

y
v
x

y
v
x

y

v
x

y

Figure 5.3: A path in F (Γ, 2) from (x, y) to (y, x)

The path shown in Figure 5.3 is represented by the animation in Figure 5.4.

5.2 Critical and index zero configurations

We now study the path-connectivity of the spaces {Fr(Γ, 2)}r>0. In contrast to the

classical configuration space F (Γ, 2), the thick particle configuration space Fr(Γ, 2) is

often disconnected. However, by combining Theorem 4.1.6 with Proposition 5.1.1,

we deduce that Fr(Γ, 2) is path-connected for sufficiently small r, provided that

1The projection F (Γ, 2)→ B(Γ, 2) is a covering map since S2 is a finite group acting freely on

the Hausdorff space F (Γ, 2).
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Figure 5.4: Interchanging two thick particles on the Y –graph

Γ 6∼= [0, 1]. Moreover, Theorem 3.2.3 implies that as we vary r over
(
0, 1

2
diam Γ

]
, the

number of path-components of Fr(Γ, 2) can only change finitely many times (since

a change in b0(Fr(Γ, 2)) implies a change in homotopy type). In this section we

define critical and index zero configurations and show that every path-component of

Fr(Γ, 2) contains an index zero configuration (Proposition 5.2.15). This result plays

a major theoretical role in our algorithm in §5.3 for determining b0(Fr(Γ, 2)) given

(Γ, `) and r.

5.2.1 Critical configurations

Definition 5.2.1. Given distinct points x, y ∈ Γ, the positive index of (x, y), written

ind+(x, y), is the number of branches in a star neighbourhood around x on which

w 7→ d(w, y) increases as we move away from x. We define the negative index

ind−(x, y) analogously, with “increases” replaced with “decreases”.

Remark 5.2.2. For distinct points x, y ∈ Γ, we have µ(x) = ind+(x, y) + ind−(x, y).

Example 5.2.3. In the graph in Figure 5.5, ind+(x, y) = 2 and ind−(x, y) = 1,

whereas ind+(y, x) = 3 and ind−(y, x) = 1.

Definition 5.2.4. A configuration (x, y) ∈ F (Γ, 2) is critical if ind+(x, y) 6= 1 and

ind+(y, x) 6= 1.
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x y

1

1

2 3
1/2

1/3

1

Figure 5.5: Calculating the positive and negative indices

Definition 5.2.5. A number R > 0 is a critical radius of (Γ, `) if there exists a

critical configuration (x, y) such that R = 1
2
d(x, y).

Example 5.2.6. Let (T, `) be the following labelled tree.

(T, `) a1
a3

a4

a2 a5e5

e4
e3

e2

e1

The critical configurations are precisely the pairs of distinct vertices in T , indepen-

dently of the edge labels a1, . . . , a5 > 0. Indeed, each pair of distinct vertices (v, w)

satisfies ind+(v, w), ind+(w, v) 6= 1, and if x is not a vertex of T then ind+(x, y) = 1

for any y 6= x. The critical radii are ai/2 for 1 ≤ i ≤ 5, (ai+aj)/2 for incident edges

ei, ej, and (a3 + ai + aj)/2 for i ∈ {1, 2}, j ∈ {4, 5}.

Example 5.2.7. Consider the circle Γ = S1 from Example 3.1.6. The set of all

critical configurations is

{(z,−z) ∈ S1 × S1 : z ∈ S1},

comprising all pairs of antipodal points (d(x, y) = 1/2). There is exactly one critical

radius R = 1/4. In particular, there are infinitely many critical configurations, but

only one critical radius.

Example 5.2.8. Let Γ = S1 ∨ [0, 1] have the labelled graph structure shown in

Figure 5.6. Here, x is the point on the loop antipodal to the vertex y. The critical
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C

y
b

a

zx

Figure 5.6: The labelled graph structure on Γ = S1 ∨ [0, 1]

configurations are (y, z), (z, y), (x, z), (z, x) together with all antipodal pairs on the

cycle C except (x, y) and (y, x) (since ind+(y, x) = 1). The critical radii are a/4,

b/2 and (b+ a/2)/2.

Remarks 5.2.9. From the definition of a critical configuration and the proof of Propo-

sition 2.2.1, we may describe the critical configurations in F (Γ, 2) as follows. Any

minimal-length edgepath c such that (c(0), c(1)) is a critical configuration has the

following form: a half-cycle concatenated with finitely many edges, followed by an-

other half-cycle, see Figure 5.7. [For completeness, we allow a half-cycle to be a

single point.] In particular, from the proof of Theorem 3.2.3, any critical radius

c(0)

c(1)

Figure 5.7: A critical configuration and a minimal-length path

R > 0 has the form

R =
1

2

1

2

∑
C∈Z(Γ)

εC`(C) +
∑
e∈E(Γ)

εe`(e)

 ,

where εC , εe ∈ {0, 1} for all cycles C and edges e, and at most two of {εC}C∈Z(Γ)

are non-zero.

Remark 5.2.10. There may be infinitely many critical configurations (x, y) ∈ F (Γ, 2)

(see Example 5.2.7), but Remarks 5.2.9 show that only finitely many critical radii

arise from these configurations.
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5.2.2 Index zero configurations

Definition 5.2.11. A configuration (x, y) ∈ F (Γ, 2) has index zero if ind+(x, y) =

ind+(y, x) = 0.

Remark 5.2.12. An index zero configuration (x, y) is critical.

Example 5.2.13. Let (Γ, `) be the labelled graph as shown in Figure 5.8. All pairs

of antipodal points (w1, w2) on the cycle C are index zero configurations, except

(x, y) and (y, x) (since ind+(y, x) = 1 6= 0). These index zero configurations are not

isolated2 in F (Γ, 2). The remaining index zero configurations are (x, z) and (z, x),

which are both isolated.

x y z

C
2

2

1

(Γ, `)

Figure 5.8: Isolated and non-isolated index zero configurations

We now characterise index zero configurations in terms of the metric d. This

result is not needed in subsequent material, but we include it for completeness.

Lemma 5.2.14. A configuration (x, y) has index zero if and only if it is a local

maximum of d.

Proof. See Appendix A, Lemma A.3.1.

The next statement is the main result of this section; it provides an upper bound

on b0(Fr(Γ, 2)).

Proposition 5.2.15. For any r ∈
(
0, 1

2
diam Γ

]
, b0(Fr(Γ, 2)) is bounded above by

b0(Zr), where Zr is the set of index zero configurations (x0, y0) with d(x0, y0) ≥ 2r.

2A point a ∈ A ⊂ Y is isolated if it has a neighbourhood U ⊂ Y such that U ∩A = {a}.
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Proof. Let P be any path-component of Fr(Γ, 2), and fix (x, y) ∈ P . Suppose that

(x, y) is not an index zero configuration, and let γ be a minimal-length edgepath

from x to y.

(a) If ind+(x, y) > 0, choose a branch incident to x on which w 7→ d(w, y) increases

as we move away from x. Now push x along this branch, stopping if we

reach a point x0 with ind+(x0, y) = 0. By continuing to choose branches in

this way if necessary, this procedure terminates with a point x0 such that

ind+(x0, y) = 0, see Figure 5.9. Let γ1 be an edgepath from x0 to x obtained

from this procedure. By construction, the concatenation γ1 · γ is a minimal-

length edgepath from x0 to y.

(b) If ind+(x, y) = 0, then we have ind+(y, x) > 0, so apply the above procedure

to obtain a point y0 such that ind+(y0, x) = 0.

x y

y0

x0

Figure 5.9: Finding an index zero configuration (x0, y0)

If case (a) applies and if ind+(y, x0) > 0, use the same procedure to push y away from

x0 until we reach a point y0 with ind+(y0, x0) = 0. Let γ2 be an edgepath from y to y0

obtained from this procedure. Then by construction, (γ1 · γ) · γ2 is a minimal-length

edgepath from x0 to y0. Seeking a contradiction, assume that ind+(x0, y0) > 0. Then

there exists a branch of a star neighbourhood Ux0 on which w 7→ d(w, y0) increases as

we move away from x0. Choose a point x′0 on this branch with d(x′0, y0) > d(x0, y0).

There exists an edgepath p connecting x0 with y and passing through x′0 which

does not pass through x0, see Figure 5.10. Indeed, if such an edgepath does not

exist then we have ind+(x0, y) > 0, a contradiction. We can also assume that p has

minimal-length. Indeed, we do not have Lp < Lγ1·γ, since γ1 · γ is a minimal-length

edgepath from x0 to y. If no minimal-length edgepath with the properties of p exists,
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p y

x
x0

x′0

y0

Figure 5.10: The point x′0 and the edgepath p

then Lp > Lγ1·γ and we can move x0 away from y along p in the direction of x′0,

contradicting ind+(x0, y) = 0. Hence Lp = Lγ1·γ. In particular, d(x′0, y0) is equal to

Lγ2+Lp|[ε,1] for some ε ∈ (0, 1). Thus d(x′0, y0) < d(x0, y0) = Lγ2+Lp, a contradiction.

Therefore ind+(x0, y0) = 0 and so (x0, y0) is an index zero configuration. If case (b)

applies and if ind+(x, y0) > 0, push x away from y0 as above to obtain a point x0

with ind+(x0, y0) = ind+(y0, x0) = 0. This defines a continuous path in Fr(Γ, 2)

from (x, y) to an index zero configuration (x0, y0). Hence, P contains at least one

configuration (x0, y0) ∈ Zr, and so contains at least one path-component of Zr.

Example 5.2.16. Let T be the labelled tree shown in Figure 5.11. The index zero

x

y

wu

v

1
1

1
1

1 1/2

Figure 5.11: The labelling on T

configurations are (x, y), (x, u), (x, v), (x,w), (y, w), (y, u), (y, v), (w, u), (w, v) and

(u, v), together with their images under the involution τ : T 2 → T 2, (x1, x2) 7→
(x2, x1). Applying Proposition 5.2.15 gives the following table.

Interval Upper bound on b0(Fr(Γ, 2))

0 < r ≤ 3/4 20

3/4 < r ≤ 1 16

1 < r ≤ 5/4 12

5/4 < r ≤ 3/2 8
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5.3 An algorithm for computing b0(Fr(Γ, 2))

In this section we provide an algorithm for computing b0(Fr(Γ, 2)) given (Γ, `) and

r ∈
(
0, 1

2
diam Γ

]
. Our method is to construct algorithmically a graph Gr = Gr(Γ)

embedding in Fr(Γ, 2) such that there is a bijection between the path-components

of Gr and the path-components of Fr(Γ, 2).

5.3.1 Constructing the graph Gr

We view Gr as a one-dimensional cw complex, so that Gr is permitted to contain

loops and multiple edges.

Definition 5.3.1. We write Crit(r) for the set of all critical configurations (x, y)

such that d(x, y) ≥ 2r.

The construction of Gr is as follows.

1. Find Crit(r). For each isolated configuration (x, y) ∈ Crit(r), construct a

corresponding vertex (x, y) ∈ Gr.

2. For each cycle C which contains non-isolated configurations in Crit(r) (namely,

antipodal points on C) construct a copy of C = S1 in Gr, realised as the pairs

(x, y) of antipodal points on C. If there are common pairs of antipodal points

between cycles, then identify these in the copies of the cycles in Gr.

3. To construct the remaining edges of Gr, let (x, y) ∈ Crit(r) be an isolated

configuration which does not have index zero. There is a path in Fr(Γ, 2) from

(x, y) to an index zero configuration, which need not be unique, see Proposition

5.2.15. For each point V = (x, s) or V = (t, y) of Gr which is joined to (x, y)

via such a path, construct edges in Gr from (x, y) to V , one for each distinct

path and making the appropriate identifications if the paths overlap. If V is

not index zero, repeat this procedure for V .

4. Apply step 3 to any pair (x, y) not of index zero lying on a cycle C from step

2. If (x, y) ∈ C is not critical, it may be necessary to move both x and y

to reach a configuration V in Gr. In this case, insert edges in Gr from (x, y)
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to V as in step 3. Also apply step 3, if no corresponding edge has already

been constructed, to any isolated index zero configuration joined by a path in

Fr(Γ, 2) to elements of Gr from steps 1 and 2.

5. If any circle from step 2 is left isolated after these steps, then designate one of

its points to be a vertex of Gr. This is simply to ensure that Gr is a graph.

Remarks 5.3.2. We emphasise that Gr is dependent on r. If r, s ∈
(
0, 1

2
diam Γ

]
and

r < s, then Gs is a subgraph of Gr, possibly equal to Gr. By construction, a change

in Gr may occur only as we pass a critical radius (Definition 5.2.5).

We now present several examples of constructing the graphs {Gr}r>0 for specific

labelled graphs (Γ, `).

Example 5.3.3. Let Γ be the Y –graph as shown.

(Γ, `)
e1 e2

e31

11

v2v1

v3

The critical configurations are precisely the pairs of distinct vertices, so the critical

radii are 1/2 and 1. For 0 < r ≤ 1/2, Crit(r) comprises the 12 pairs of distinct

vertices (all critical configurations), so Gr has 12 vertices, see Figure 5.12. For each

i ∈ {1, 2, 3}, v can be pushed away from vi in two distinct directions, so Gr has 12

edges. If 1/2 < r ≤ 1, then Gr comprises the six vertices (vi, vj), for i 6= j, shown

in Figure 5.12.

Example 5.3.4. Let Γ = S1 be equipped with the graph structure comprising one

vertex v and one edge e with label 1, see Figure 5.13. The only critical radius is

1/4. For any 0 < r ≤ 1/4, Gr is a copy of S1 consisting of the antipodal pairs (x, y)

on Γ.

Example 5.3.5. Let Γ = S1 ∨ [0, 1] have the labelled graph structure shown in

Figure 5.14. The critical radii are 1/4, 1/2 and 3/4. The graph Gr for r ∈ (0, 1/4]
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(v, v1)

(v3, v1)
(v3, v)

(v3, v2)

(v, v2)
(v1, v2)

(v1, v)

(v1, v3)

(v, v3)

(v2, v3)

(v2, v)

(v2, v1)

Figure 5.12: Gr for 0 < r ≤ 1/2

v

y

x

e

1

(Γ, `)

Figure 5.13: Antipodal points x, y ∈ Γ

is shown at the left of Figure 5.15. As we pass the critical radius 1/4, Gr loses the

circle corresponding to the antipodal configurations on the cycle in Γ, as well as its

incident edges. These edges correspond to extending (x, y) or (y, x) to the index zero

configurations (x, z) and (z, x), respectively. We obtain that Gr is the disjoint union

of two circles shown in the middle of Figure 5.15. As we pass the critical radius 1/2,

Gr loses the configurations (y, z) and (z, y) as well as their incident edges. These

edges correspond to the possible ways of extending (y, z) and (z, y) to the index zero

configurations (x, z) and (z, x), respectively (there are two such possibilities for each

of (y, z) and (z, y)). It follows that for r ∈ (1/2, 3/4], Gr comprises the two points

(x, z) and (z, x) as shown at the right of Figure 5.15.
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1/2

1/2

x
y 1 z

(Γ, `)

Figure 5.14: The graph structure on Γ = S1 ∨ [0, 1]

Gr for 0 < r ≤ 1
4

(y, z)

(x, z)

(x, y)

(y, x)
(z, x)

(z, y)

(z, x)

(z, y)

(x, z)

(y, z)

Gr for
1
4
< r ≤ 1

2

(z, x)

(x, z)

Gr for
1
2
< r ≤ 3

4

Figure 5.15: Evolution of Gr with r

Example 5.3.6. Let Γ = S1 ∨ S1 have the graph structure shown in Figure 5.16.

The critical configurations are the pairs of antipodal points on either of the two

x v y

1/2

1/2 1

1
(Γ, `)

Figure 5.16: The graph structure on Γ = S1 ∨ S1

cycles, together with the configurations (x, y) and (y, x). Hence the critical radii

are 1/4, 1/2 and 3/4. Figure 5.17 shows the three possibilities for Gr. On the left,

we have all critical configurations together with edges connecting (x, v) and (v, y)

to (x, y) and (v, x) and (y, v) to (y, x). There are two edges in each case since there

are two ways of extending to the index zero configurations (x, y) and (y, x). As we

pass the critical radius 1/4, Gr loses the circle corresponding to the antipodal pairs
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on the shorter cycle in Γ, together with its incident edges. This gives the graph Gr

shown in the middle of Figure 5.17. As we pass the critical radius 1/2, Gr loses the

circle corresponding to the antipodal pairs on the larger cycle in Γ, together with its

incident edges. This leaves us with the two configurations (x, y) and (y, x), shown

on the right of Figure 5.17.

(x, y)

(v, y) (y, v)

(y, x)

(v, x)(x, v)

Gr for 0 < r ≤ 1
4

(x, y)

(v, y) (y, v)

(y, x)

Gr for
1
4
< r ≤ 1

2
Gr for

1
2
< r ≤ 3

4

(x, y) (y, x)

Figure 5.17: Evolution of Gr with r

Example 5.3.7. Let (T, `) be the labelled Y –graph shown in Figure 5.18. The

1 2

3

x

v

y

z

(T, `)

Figure 5.18: The labelled graph (T, `)

critical radii are 1/2, 1, 3/2, 2 and 5/2. The following table describes Gr for r ∈
(0, 5/2]. We use the notation Qk for a discrete set of k points.

Interval Gr b0(Gr)

0 < r ≤ 1/2 S1 1

1/2 < r ≤ 1 [0, 1]q [0, 1] 2

1 < r ≤ 3/2 [0, 1]q [0, 1]qQ2 4

3/2 < r ≤ 2 Q4 4

2 < r ≤ 5/2 Q2 2

For 0 < r ≤ 1
2
, Gr = S1 is subdivided with 12 vertices and 12 edges. For 1

2
< r ≤ 1,

both intervals in Gr = [0, 1]q [0, 1] are subdivided with 5 vertices and 4 edges. For
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1 < r ≤ 3
2
, both of the intervals in Gr = [0, 1] q [0, 1] q Q2 are subdivided with 3

vertices and 2 edges. For 3
2
< r ≤ 2, Gr = Q4 comprises the four configurations

(x, z), (y, z), (z, x) and (z, y). Finally, for 2 < r ≤ 5
2
, Gr = Q2 comprises the two

configurations (y, z) and (z, y).

Example 5.3.8. Let Γ be the θ–graph shown in Figure 5.19. It has two vertices v

and w and three edges, each with label 1. The only critical radius is 1/2. For 0 < r ≤
1/2, there are three distinct cycles contributing non-isolated critical configurations

to Crit(r). The graph Gr is shown in Figure 5.20.

v

w

1 1 1

(Γ, `)

Figure 5.19: The labelled θ–graph Γ

(v, w)

(w, v)

Figure 5.20: Gr for 0 < r ≤ 1/2

5.3.2 The main result and algorithm

We now prove the main result of this chapter, establishing a bijection between the

path-components of Fr(Γ, 2) and the components of the graph Gr from subsection

5.3.1, see Theorem 5.3.10. We first make the following simple observation.

Lemma 5.3.9. There is an embedding Gr ↪→ Fr(Γ, 2).

Proof. From the construction of Gr, the isolated configurations from step 1 and the

circles from step 2 are included in Fr(Γ, 2). Suppose that E is an edge from step
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3 or step 4, joining two configurations (x, y) and (x′, y′). Let γ : [0, 1] → Fr(Γ, 2)

be the constant-speed path from (x, y) to (x′, y′) corresponding to E. Identifying

(E, ∂0E) with ([0, 1], 0) gives an embedding E → Fr(Γ, 2). Patching together these

embeddings over all edges of Gr gives an embedding Gr ↪→ Fr(Γ, 2).

Theorem 5.3.10. We have b0(Fr(Γ, 2)) = b0(Gr).

Proof. We show that the inclusion map ι : Gr ↪→ Fr(Γ, 2) induces a bijection

ι∗ : π0(Gr)→ π0(Fr(Γ, 2)).

By Proposition 5.2.15, each path-component of Fr(Γ, 2) contains an index zero con-

figuration (x0, y0) with d(x0, y0) ≥ 2r. Since (x0, y0) ∈ Gr, ι∗ is surjective. Now

suppose that ι∗([x, y]) = ι∗([x′, y′]), so that there is a path in Fr(Γ, 2) from (x, y)

to (x′, y′). By Proposition 5.2.15, we may assume that (x, y) and (x′, y′) are index

zero configurations. By the construction of Gr, any pair of index zero configurations

joined by a path in Fr(Γ, 2) are joined by a path in Gr, so [(x, y)] = [(x′, y′)] in Gr.

Hence, ι∗ is injective.

Corollary 5.3.11. An algorithm for computing b0(Fr(Γ, 2)) given Γ and r is as

follows. We construct Gr using the algorithm described in subsection 5.3.1 and

compute the Betti number b0(Gr).

Example 5.3.12. Let T be the labelled tree from Example 5.2.16, see Figure 5.11.

Constructing the graphs {Gr}r>0 and applying Theorem 5.3.10 gives the following

table (compare with the table from Example 5.2.16).

Interval b0(Fr(T, 2))

0 < r ≤ 1/2 1

1/2 < r ≤ 3/4 10

3/4 < r ≤ 1 6

1 < r ≤ 5/4 12

5/4 < r ≤ 3/2 8
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5.4 Further examples of computing b0(Fr(Γ, 2))

In this section, we give further examples of computing b0(Fr(Γ, 2)) for specific la-

belled graphs (Γ, `).

Example 5.4.1. Let Γ = S1 ∨ S1 be equipped with the labelled graph structure

shown in Figure 5.21. (It is useful to compare this example with Example 5.3.6).

The critical radii are 1/4 and 1/2. For 0 < r ≤ 1/4, Gr is shown in Figure 5.22.

x v y

1/2

1/2

1/2

1/2

(Γ, `)

Figure 5.21: The labelled graph structure on Γ = S1 ∨ S1

The two circles in Gr correspond to the pairs of antipodal points on the two cycles

(x, v) (v, x)

(y, x)(x, y)

(v, y) (y, v)

Figure 5.22: Gr for 0 < r ≤ 1/4

in Γ. We have two edges from each of (x, v) and (v, y) to (x, y), since we can extend

(x, v) and (v, y) to (x, y) using two distinct paths. Similarly, we have two edges

from each of (v, x) and (y, v) to the index zero configuration (y, x). To obtain Gr

for 1/4 < r ≤ 1/2, we remove everything from G1/4 apart from the two index zero

configurations (x, y) and (y, x). Thus Gr = {(x, y), (y, x)} for 1/4 < r ≤ 1/2.
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Applying Theorem 5.3.10 gives the following table.

Interval b0(Fr(Γ, 2))

0 < r ≤ 1/4 1

1/4 < r ≤ 1/2 2

Example 5.4.2. Consider the labelled graph shown in Figure 5.23. The critical

x yu v1 1

1

1

(Γ, `)

Figure 5.23: The labelled graph (Γ, `)

configurations are the pairs of antipodal points on the cycle in Γ, apart from (x, y)

and (y, x), together with (u, x), (u, v), (y, v), (x, u), (v, u) and (v, y). Hence, the

critical radii are 1/2 and 3/2. For 0 < r ≤ 1/2, Gr is shown in Figure 5.24. For

(x, y) (y, x)

(y, u)

(v, u)

(x, u)

(v, x)

(v, y)

(u, x)

(u, y)

(u, v)

(x, v)

(y, v)

Figure 5.24: Gr for 0 < r ≤ 1/2
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1/2 < r ≤ 3/2, Gr = {(u, v), (v, u)}. Theorem 5.3.10 gives the following table.

Interval b0(Fr(Γ, 2))

0 < r ≤ 1/2 1

1/2 < r ≤ 3/2 2

Example 5.4.3. Let Γ be the labelled graph shown in Figure 5.25. The critical

x y vu

(Γ, `)

1

1/2

1/2 1/2

1/2

Figure 5.25: The labelled graph (Γ, `)

radii are 1/4, 1/2, 3/4 and 1. For 0 < r ≤ 1/4, Gr is shown in Figure 5.26. To

C1

C2

(u, v) (v, u)

(u, y) (y, u)

(u, x) (x, u)

(v, x)

(v, y)(y, v)

(x, v)

(x, y) (y, x)

Figure 5.26: Gr for 0 < r ≤ 1/4

obtain Gr for 1/4 < r ≤ 1/2, we remove the cycles marked C1 and C2 from Figure

5.26. These correspond to antipodal pairs of points on the two distinct cycles in

Γ. We also remove the edges incident to C1 and C2. The result is shown in Figure

5.27. To obtain Gr for 1/2 < r ≤ 3/4, we remove the critical configurations at
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(u, v) (v, u)

(u, y) (y, u)

(v, x)(x, v)

(x, y) (y, x)

Figure 5.27: Gr for 1/4 < r ≤ 1/2

level 1, namely (x, y) and (y, x), together with their incident edges. This gives the

graph shown in Figure 5.28. To determine Gr for 3/4 < r ≤ 1, we remove the

(u, v) (v, u)

(u, y) (y, u)

(v, x)(x, v)

Figure 5.28: Gr for 1/2 < r ≤ 3/4

critical configurations at level 3/2, namely (x, v), (v, x), (u, y) and (y, u), together

with their incident edges. We obtain Gr = {(u, v), (v, u)} for 3/4 < r ≤ 1. Applying

Theorem 5.3.10 gives the following table.

Interval b0(Fr(Γ, 2))

0 < r ≤ 1/4 1

1/4 < r ≤ 1/2 2

1/2 < r ≤ 3/4 2

3/4 < r ≤ 1 2

Example 5.4.4. Let Γ be labelled graph shown in Figure 5.29. Here, w is the point

on the cycle C antipodal to y, and z is the point antipodal to x. The cycle C has
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(Γ, `) w z

x y

u v
11 1

11

1

C

Figure 5.29: The labelled graph (Γ, `)

length 4 and Γ has 6 vertices and 6 edges. The critical radii are 1/2, 1 and 3/2.

For 0 < r ≤ 1/2, Gr is shown in Figure 5.30. To obtain Gr for 1/2 < r ≤ 1, we

(x, z)

(y, w)(w, y)

(z, x)

(v, w) (v, y)

(v, x)

(v, u)
(y, u)

(x, u)
(z, u)

(y, x)

(w, v)(y, v)

(x, v)

(u, v)

(u, y)

(u, x)
(u, z)

(x, y)

Figure 5.30: Gr for 0 < r ≤ 1/2

remove the critical configurations (x, y), (y, v), (u, x), (x, u), (v, y) and (y, x) at level

1, together with their incident edges. The resulting graph is shown in Figure 5.31.

To obtain Gr for 1 < r ≤ 3/2, we now remove the central circle corresponding to

the antipodal pairs on C in Γ, the configurations (u, y), (x, v), (v, x) and (y, u) and

all their incident edges. This leaves six isolated points, see Figure 5.32.



5.4. Further examples of computing b0(Fr(Γ, 2)) 115

(x, z)

(y, w)(w, y)

(z, x)

(v, w)

(v, x)

(v, u)
(y, u)

(z, u)
(w, v)

(x, v)

(u, v)

(u, y)

(u, z)

Figure 5.31: Gr for 1/2 < r ≤ 1

(v, w)

(v, u)

(z, u)
(w, v)

(u, v)

(u, z)

Figure 5.32: Gr for 1 < r ≤ 3/2

Applying Theorem 5.3.10 yields the following table.

Interval b0(Fr(Γ, 2))

0 < r ≤ 1/2 1

1/2 < r ≤ 1 1

1 < r ≤ 3/2 6

Example 5.4.5. Let Γµ be the tree comprising µ ≥ 3 edges incident to a central

vertex v, see Figure 5.33. The free vertices are v1, . . . , vµ and all µ edges have label

1. The critical configurations are precisely the pairs of distinct vertices, so there

are µ(µ + 1) vertices in Gr for 0 < r ≤ 1
2
. Each pair (v, vi) (respectively, (vi, v))

extends to a pair (vj, vi) with j 6= i (respectively, (vi, vj)) in (µ− 1) possible ways,

so Gr has 2µ(µ − 1) edges for 0 < r ≤ 1
2
. There is one edge from (v, vi) to (vj, vi)
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... v

v1 v2

v3

v4v5

vµ 1

1

1
1

1
1

Figure 5.33: The graph Γµ

for each j 6= i, and similarly for (vi, v) to (vi, vj). For 1
2
< r ≤ 1, Gr comprises

the µ(µ − 1) isolated vertices (vi, vj) for i 6= j. Applying Theorem 5.3.10 gives the

following table.

Interval b0(Fr(Γµ, 2))

0 < r ≤ 1/2 1

1/2 < r ≤ 1 µ(µ− 1)

Remark 5.4.6 (Evolution of Gr with r). Suppose that R is the only critical radius in

the interval (a, b) ⊂
(
0, 1

2
diam Γ

]
. We describe how to obtain Gb from Ga (recall that

Gb ⊂ Ga). Firstly, remove all vertices (x, y) of Ga comprising a critical configuration

with d(x, y) = 2R. Next, remove all circles in Ga arising from cycles containing

antipodal pairs (x, y) with d(x, y) = 2R. Let S ⊂ Ga be the points of Ga removed

in these two steps. Finally, remove any edge E such that E ∩ S 6= ∅. We obtain

the graph Gb. These remarks follow directly from the construction of the graphs

{Gr}r>0 in §5.3.1.



Chapter 6

Configuration spaces {Fr(Γ, n)}r>0

for n ≥ 3

In this chapter we study configuration spaces of three or more thick particles on a

graph. In §6.1 we begin with the definitions and then apply PL Morse–Bott theory

to derive statements about the family {Fr(Γ, n)}r>0 analogous to Theorems 3.2.3

and 4.1.6. In §6.2 we discuss the special case when Γ is a tree. We obtain further

information about the critical values of the family {Fr(Γ, n)}r>0 in this case.

6.1 Homotopy type

Throughout this chapter, we fix n ≥ 3 (the number of thick particles in the config-

uration space).

6.1.1 Definitions and basic properties

Definition 6.1.1. For r > 0, we define

Fr(Γ, n) := {x = (x1, . . . , xn) ∈ Γn : f(x) ≥ 2r} = f−1([2r,∞)),

where f : Γn → R is the function

f(x1, . . . , xn) := min
i<j
{d(xi, xj)}, ∀(x1, . . . , xn) ∈ Γn.

(Here, d is the metric on Γ as defined in §1.3).

117
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Remarks 6.1.2. We topologise Fr(Γ, n) as a subspace of the product Γn; it is a

closed subspace since f is continuous. In the context of topological robotics, Fr(Γ, n)

models the collision-free motion of n robots of radius r on Γ such that tangencies

between robots are permitted, see Figure 6.1.

r

r

rr

r

r

Γ

r

tangency

Figure 6.1: n robots of radius r moving on Γ

We begin with a simple result analogous to Lemma 3.1.4 from §3.1 which dealt

with the case n = 2. However, I have been unable to improve the following statement

(see Chapter 7, Problem 1).

Lemma 6.1.3. Fr(Γ, n) 6= ∅ if r ≤ R := 1
2(n−1)

diam Γ.

Proof. Choose (x, y) ∈ Γ× Γ such that d(x, y) = diam Γ, and let γ : [0, 1]→ Γ be a

minimal-length edgepath from x to y. The configuration

(γ(0), γ(1/(n− 1)), γ(2/(n− 1)), . . . , γ((n− 2)/(n− 1)), γ(1))

(see Figure 6.2) lies in FR(Γ, n) since d(γ(s), γ(t)) = |s − t|d(x, y) = |s − t| diam Γ

for all s, t ∈ [0, 1]. Hence Fr(Γ, n) ⊇ FR(Γ, n) 6= ∅ for all r ∈ (0, R].

Example 6.1.4. Let Γ be the Y –graph from Example 3.1.7, and let n = 3. The

configuration (v1, v2, v3) comprising the three free vertices lies in F1(Γ, 3), whereas

1
2(n−1)

diam Γ = 1
2(3−1)

× 2 = 1
2
< 1. Thus, the number R from Lemma 6.1.3 is not

sharp for general n, as it is for the special case n = 2 (see Lemma 3.1.4).
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x

y

Figure 6.2: Illustration of the proof of Lemma 6.1.3

6.1.2 Examples: the interval and the circle

In this subsection we study the configuration spaces F (Γ, n) and Fr(Γ, n) when Γ is

the interval [0, 1] or the circle S1.

The interval [0, 1]

Let Γ = [0, 1] have the minimal graph structure comprising two vertices v1, v2

and one edge e, see Figure 6.3. Let x = (x1, . . . , xn) ∈ F (Γ, n) be an arbitrary

v1 v2e

0 1

Figure 6.3: The interval X = [0, 1]

configuration of n distinct points in X. Write the points in order from left to right,

producing a configuration (xσ(1), . . . , xσ(n)) for some unique permutation σ ∈ Sn.

There is a path

[0, 1] 3 t 7→ Hx(t) ∈ F (Γ, n)

connecting x with the equally-spaced configuration

(0, 1/(n− 1), 2/(n− 1), . . . , (n− 2)/(n− 1), 1) ∈ F (Γ, n),

moving xσ(i) to (i − 1)/(n − 1) for each i ∈ {1, . . . , n}, see Figure 6.4. Moreover,

each Hx can be chosen so that the associated map H : F (Γ, n) × [0, 1] → F (Γ, n)

is continuous. Hence, each path-component of F (Γ, n) deformation retracts onto a

point space. There are n! such path-components, each corresponding to a different
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xσ(1)

xσ(2)

xσ(3)

xσ(4)

xσ(5) 0

1/4

1/2

3/4

1

Figure 6.4: Moving x to an equally-spaced configuration

permutation of the points on [0, 1]. Thus F (Γ, n) ' Qn!, a discrete set of n! points.

Let R := 1
2(n−1)

`(e), where `(e) is the label of e. Using a similar argument, there is a

deformation retraction of Fr(Γ, n) onto the same set of n! points for each r ∈ (0, R].

The case r = R is the degenerate case when FR(Γ, n) comprises the n! points

{σ · (0, 1/(n− 1), . . . , (n− 2)/(n− 1), 1) : σ ∈ Sn}

and the deformation retraction is the identity map for all time. We have Fr(Γ, n) = ∅
for r > R.

The circle S1

Let Γ = S1 have the graph structure shown in Figure 6.5. We can apply a similar

v1

v3v2

e3e1

e2

Figure 6.5: The graph structure on the circle X = S1

argument as used above for the interval to compute the homotopy type of F (Γ, n).

Let x = (x1, . . . , xn) ∈ F (Γ, n). Starting from x1 and moving anticlockwise, write

the remaining n − 1 points in order, producing a configuration (xτ(1), . . . , xτ(n−1))

for some unique τ ∈ Sn−1. There is a path

[0, 1] 3 t 7→ Hx(t) ∈ F (Γ, n)

fixing x1 and connecting x to the equally-spaced configuration

(x1, x1e
2πi/n, x1e

4π/n, . . . , x1e
2πi(n−1)/n),
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such that xτ(k) moves to x1e
2πik/n for 1 ≤ k ≤ n− 1, see Figure 6.6. As before, each

map Hx can be chosen so that the associated map H : F (Γ, n) × [0, 1] → F (Γ, n)

is continuous. Hence, each path-component of F (Γ, n) deformation retracts onto a

x1 x1

xτ(1)

xτ(2)xτ(3)

xτ(4)

x1e
2πi/5

x1e
4πi/5

x1e
6πi/5

x1e
8πi/5

Figure 6.6: Moving x to an equally-spaced configuration

circle S1. There are (n − 1)! such path-components, so F (Γ, n) ' ∐(n−1)! S
1. Let

R := 1
n

diam Γ. As above, we have a deformation retraction of Fr(Γ, n) onto the

disjoint union of (n− 1)! circles for each r ∈ (0, R]. The case r = R is the degener-

ate case when FR(Γ, n) comprises the (n − 1)! disjoint circles and the deformation

retraction is the identity map for all time. We have Fr(Γ, n) = ∅ for r > R.

6.1.3 Critical values

In this subsection we prove the main results of this chapter, which are the analogues

of Theorems 3.2.3 and 4.1.6 for the general case n ≥ 3. We assume that Γ is simple

and satisfies the cycle inequality (see §1.5).

Definitions 6.1.5. A number R > 0 is a regular value of the family {Fr(Γ, n)}r>0 if

there is an open set UR ⊂ (0,∞) containing R such that Fr2(Γ, n) is a deformation

retract of Fr1(Γ, n) for all r1, r2 ∈ UR with r1 ≤ r2. A number R > 0 is a critical

value of {Fr(Γ, n)}r>0 if it is not a regular value.

The following theorem is the analogue of Theorem 3.2.3.

Theorem 6.1.6. For each n ≥ 3, the family {Fr(Γ, n)}r>0 has finitely many critical

values.
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Proof. The statement follows immediately from Proposition 2.1.21 provided that

f : Γn → R is an affine Morse–Bott function. To justify the latter, we construct a

finite subdivision S of Γn such that f is piecewise affine on S (that is, on each cell

K of S, f |K extends to an affine function Rn → R).

For each unordered pair {i, j} ⊂ {1, . . . , n}, i 6= j, let f{i,j} : Γn → R be

the map f{i,j}(x1, . . . , xn) = d(xi, xj). (There are
(
n
2

)
different functions f{i,j}, and

f = mini<j{f{i,j}}). We note that f{i,j} is the composition of the projection

Γn 3 (x1, . . . , xn) 7→ (xi, xj)

(a piecewise affine function with respect to the product cw decomposition of Γn)

followed by the metric d : Γ2 → R (a piecewise affine function with respect to some

subdivision of the product cw structure on Γ2, see Proposition 2.2.1).

Write Γn = Γ1 × · · · × Γn, where Γi = Γ for each i = 1, . . . , n.1 We subdivide

Γn as follows. Take the first two factors Γ1 and Γ2 and subdivide Γ1 × Γ2 so that

d : Γ1×Γ2 → R is piecewise affine. Extend this to a subdivision S1 of Γn by defining

new cells (F ×K)×L, where F ×K is a cell of the new subdivision of Γ1×Γ2 and L

is a cell of Γ3 × · · · × Γn. This subdivision ensures that f{1,2} : Γn → R is piecewise

affine. Now repeat this process of subdivision, starting with S1 and subdividing

factors 1 and 3, resulting in a subdivision S2 of S1 such that f{1,2} and f{1,3} are

both piecewise affine with respect to S2. Repeating this process over the remaining

pairs of factors given by the sequence

(1, 2) (1, 3) (1, 4) . . . (1, n)

(2, 3) (2, 4) . . . (2, n)

(3, 4) . . . (3, n)
. . .

...

(n− 1, n)

results in a subdivision S(n2)
of Γ such that f{i,j} is piecewise affine on S(n2)

for each

pair {i, j} with i < j.

Write g1 = f{1,2}, g2 = f{1,3}, . . . g(n2)
= f{n−1,n}. Take a cell of S(n2)

of dimension

n, and subdivide it such that min{g1, g2} is piecewise affine on K. For each cell from

1Note that Γn is a cube complex and therefore an APC with respect to the product cw structure.
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the resulting subdivision of K, do the same for min{g1, g3}. Continue the process

over all pairs of functions {gi, gj}, working with all pairs {i, j} ⊂
{

1, . . . ,
(
n
2

)}
in the

order

(1, 2) (1, 3) (1, 4) . . .
(
1,
(
n
2

))
(2, 3) (2, 4) . . .

(
2,
(
n
2

))
(3, 4) . . .

(
3,
(
n
2

))
. . .

...((
n
2

)
− 1,

(
n
2

))
.

Now repeat the process on the remaining cells of S(n2)
of dimension n. This results in

a subdivision S of Γn such that min{gi, gj} is piecewise affine for each pair {i, j} ⊂{
1, . . . ,

(
n
2

)}
. Hence, we have a subdivision S of Γn such that f : Γn → R is piecewise

affine.

Remark 6.1.7. Theorem 6.1.6 implies that there is a space X and ε > 0 such that

there are homotopy equivalences

X ' Fr(Γ, n), ∀r ∈ (0, ε].

The next theorem is analogous to Theorem 4.1.6.

Theorem 6.1.8. We have Fr(Γ, n) ' F (Γ, n) for all r ∈ (0, ε], where ε is the

number from Remark 6.1.7.

Before proving Theorem 6.1.8, we first establish the following two simple results.

Lemma 6.1.9. Choose M ∈ N such that 1
M
< ε. We have

F (Γ, n) =
∞⋃

m=M

F1/m(Γ, n).

Proof. We have Fr(Γ, n) ⊂ F (Γ, n) for all r > 0, so
⋃∞
m=M F1/m(Γ, n) ⊂ F (Γ, n).

On the other hand, if (x1, . . . , xn) ∈ F (Γ, n), then xi 6= xj for all i 6= j. Hence

f(x1, . . . , xn) > 0 and so f(x1, . . . , xn) ≥ 2/K for some K ≥M . Thus (x1, . . . , xn) ∈
F1/K(Γ, n) ⊂ ⋃∞m=M F1/m(Γ, n).

Lemma 6.1.10. Suppose that ((Xn, dn))n≥1 is a sequence of metric spaces such that

for all n ≥ 1,
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(i) Xn+1 deformation retracts onto Xn and contains an open neighbourhood Un of

Xn, and

(ii) dn+1|Xn×Xn = dn.

Then X∗ :=
⋃∞
n=1Xn deformation retracts onto X1.

Proof. Define F : X∗× [0, 1]→ X∗ as follows: for each n ≥ 1, perform a deformation

retraction of Xn+1 onto Xn in the time interval [1/2n, 1/2n−1], and set F (x, 0) = x

for all x ∈ X∗. Then F (y, s) = y for all y ∈ X1 and s ∈ [0, 1], so F is a deformation

retraction of X∗ onto X1 provided that it is continuous. It is continuous on X∗×(0, 1]

by construction, so it suffices to show continuity on X∗ × {0}. To this end, fix

x∗ ∈ X∗ and choose a sequence {(xk, tk)}k≥1 in X∗ × [0, 1] converging to (x∗, 0).

Choose the smallest n ≥ 1 such that x∗ ∈ Xn \ Xn−1 (setting X0 := ∅), and let

ε > 0 be arbitrary. Since xk → x∗ and tk → 0 as k → ∞, there exists K ∈ N

such that xk ∈ Un, dn+1(xk, x∗) < ε and tk < 1/2n for all k ≥ K. Hence, we have

F (xk, tk) = xk for all k ≥ K and so

dn+1(F (xk, tk), F (x∗, 0)) = dn+1(xk, x∗) < ε, ∀k ≥ K,

showing that F (xk, tk) → F (x∗, 0) in X∗ as k → ∞. Hence F is continuous on

X∗ × {0}.

Proof of Theorem 6.1.8. Proposition 2.1.21 implies that for a < b < ε, there is

a deformation retraction of Fa(Γ, n) onto its subspace Fb(Γ, n). In particular,

F1/(m+1)(Γ, n) deformation retracts onto F1/m(Γ, n) for all m ≥M . Further, Fa(Γ, n)

contains the open neighbourhood{
(x1, . . . , xn) ∈ Γn : min

i<j
{d(xi, xj)} > a+ b

}
of Fb(Γ, n). For each m ≥ M , F1/m(Γ, n) is a metric subspace2 of the product Γn,

so conditions (i) and (ii) of Lemma 6.1.10 are satisfied. Applying the statement of

Lemma 6.1.10 and using Lemma 6.1.9 shows that F (Γ, n) deformation retracts onto

F1/M(Γ, n). The homotopy type of Fr(Γ, n) is constant as r varies over (0, ε], so

F (Γ, n) ' Fr(Γ, n) for all r ∈ (0, ε] since 1/M < ε.

2With respect to a metric on Γn such as ρ(x,y) =
∑n

i=1 d(xi, yi).
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6.1.4 Remarks on path-connectedness

A result contained in A. Abrams’ thesis (see [1, Theorem 2.7]) shows that if Γ is not

the interval or the circle, then F (Γ, n) is path-connected for any n ≥ 3. We deduce

from Theorem 6.1.8 that Fr(Γ, n) is path-connected for sufficiently small r, provided

that Γ 6∼= [0, 1], S1. However, Fr(Γ, n) is generally disconnected (see §6.1.2) as it is

for the case n = 2 (see Chapter 5). It would be interesting to have an algorithm for

computing b0(Fr(Γ, n)) for given Γ, n ≥ 3 and r > 0 (see Chapter 7, Problem 2).

6.2 Thick particles on trees

In this section we study configuration spaces of thick particles on trees. We assume

that T is a tree containing no vertices of degree 2. The main result is Theorem 6.2.11

which explicitly describes all possible critical values of the family {Fr(T, n)}r>0 in

terms of the metric data.

6.2.1 Definitions and terminology

The following definitions are valid for a general labelled graph (Γ, `).

Definitions 6.2.1. A configuration x = (x1, . . . , xn) ∈ F (Γ, n) is expandable if

there exists i ∈ {1, . . . , n} and a unique branch ([0, 1], 0) of a star neighbourhood

(Uxi , xi) such that the function

[0, 1] 3 y 7→ min
j 6=i
{d(y, xj)}

increases as we move away from xi. (Using the notation of §5.2.1, this is equivalent

to the condition that ind+(xi, xj) = 1 for at least one index j 6= i.) A configuration

x is critical if it is not expandable.

Examples 6.2.2. The configuration (x1, x2, x3) on the left of Figure 6.7 is expand-

able, because there is a unique branch of Ux3 on which y 7→ min{d(y, x1), d(y, x2)}
increases as we move away from x3. In particular ind+(x3, x1) = ind+(x3, x2) = 1.

However, the configuration (x1, x2) is critical. On the right of Figure 6.7, the con-
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x1

x3

x21 1

3/2

y2

y3y7

y8
y1

y4
y5

y6

Figure 6.7: Expandable and critical configurations

figuration

y = (y1, . . . , y8)

is critical because y 7→ min1≤j≤8
j 6=i
{d(y, yj)} decreases as move away from yi on both

branches of Uyi for each i ∈ {1, . . . , 8}. On the other hand, if we remove any

point of this configuration, say y1, then the resulting configuration (y2, . . . , y8) is

expandable. Indeed, there are now unique branches of Uy2 and Uy8 on which y 7→
min3≤j≤8{d(y, yj)} and y 7→ min2≤j≤7{d(y, yj)} increase as we move away from y2

and y8, respectively.

Definition 6.2.3. A critical configuration x = (x1, . . . , xn) is weakly essential if for

each i ∈ {1, . . . , n}, the (n− 1)–configuration

(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)

obtained from x by deleting the point xi is expandable.

Definition 6.2.4. A critical configuration x = (x1, . . . , xn) is essential if for each

subset S of {x1, . . . , xn} with 1 ≤ |S| ≤ n− 2, the (n− |S|)–configuration obtained

from x by deleting the elements of S is expandable.

Remark 6.2.5. An essential configuration is weakly essential.

Examples 6.2.6. Consider the circle from Example 3.1.6, and let yk = e2πi(k−1)/p

for k ∈ {1, . . . , p}, where p is an odd prime. It follows that the configuration
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y = (y1, . . . , yp) is essential. The configuration y = (y1, . . . , y8) on the right of Figure

6.7 is weakly essential but not essential. To see that it is not essential, note that

deleting y2, y4, y6 and y8 from y results in the critical 4–configuration (y1, y3, y5, y7).

In fact, for equally-spaced configuration points y1, . . . , yn on S1, y = (y1, . . . , yn) is

essential if and only if n is prime.

For equally-spaced points

{
xi = i−1

n−1
: 1 ≤ i ≤ n

}
on the interval [0, 1], the critical configuration x = (x1, . . . , xn) is essential if and

only if n = 2. Indeed, if n ≥ 3 then deleting S = {x2, . . . , xn−1} from x leaves the

critical configuration (x1, xn). The configuration x = (x1, . . . , xn) is weakly essential

if and only if n 6= 3, since if n ≥ 4 then deleting any xi from x leaves an expandable

configuration.

Remarks 6.2.7. If x is expandable at xi such that

[0, 1] 3 y 7→ f(x1, . . . , xi−1, y, xi+1, . . . , xn)

increases as we move away from xi, then R := f(x) is not a critical value of the

family {Fr(T, n)}r>0. Indeed, since we are working with a tree T , we need only

perform the second subdivision from Theorem 6.1.6 to ensure that f : T n → R is

piecewise affine on T n. The proof of Proposition 2.1.21 then shows that FR(T, n)

deformation retracts onto FR′(T, n) for some R′ > R sufficiently close to R. In

particular, any critical value occurs as a distance d(x, y) between two points of a

weakly essential configuration y (we emphasise that this is for the special case when

T is a tree).

6.2.2 Components of configurations

We now focus on classifying weakly essential configurations in a tree T . We need

the following concepts for the proof of the main result (Theorem 6.2.11).

Definitions 6.2.8. Let x = (x1, . . . , xn) ∈ F (T, n), and write [x] = {x1, . . . , xn}.
Define a relation ∼ on the elements of [x] as follows. For x, y ∈ [x], say that x ∼ y
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if and only if x = y or there exists a sequence x = w0, w1, . . . , wk = y in [x] such

that d(wi, wi+1) = f(x), for all i = 0, 1, . . . , k. Then ∼ is an equivalence relation;

call the equivalence classes of [x] the components of x. A component is proper if it

has size at least two. A point x ∈ [x] is isolated if its component is not proper.

Remark 6.2.9. Every configuration contains at least one proper component.

Lemma 6.2.10. If x ∈ F (T, n) is critical, then the proper components of x are also

critical configurations.

Proof. Let C ⊆ [x] be a proper component and choose x, y ∈ C such that

d(x, y) = max
w1,w2∈C

{d(w1, w2)}.

Since T is a tree, there is a unique minimal-length edgepath γ from x to y. Since

x ∼ y, there is an equally-spaced sequence x = w0, w1, . . . , wk = y of points of C

lying on Im γ =: I1 from x to y, see Figure 6.8. If any elements of C do not appear in

x = w0 w1

w2

w3

w4

wk = y

Imγ = I1

Figure 6.8: The points x, y and the path γ

this sequence, repeat the argument for C−{w0, . . . , wk}. Continuing until all points

of C are accounted for, we obtain unique intervals I1, . . . , Iq such that C ⊂ ⋃q
j=1 Ij,

the points of C∩Ij are equally-spaced on Ij and |Ij∩Ik| ≤ 1 for all j 6= k, see Figure

6.9. Write 〈C〉 =
⋃q
j=1 Ij. We can give 〈C〉 a tree structure as follows. The vertex

set V comprises the endpoints of Ij, j = 1, . . . , q, and the points of intersection of

Ij and Ik for j 6= k. (The edges are the components of 〈C〉 − V .)

Let xi1 , . . . , xiK be the points of C. We now show that the K–configuration y =

(xi1 , . . . , xiK ) is critical. If xij is not a free vertex of 〈C〉, then y 7→ mink 6=j{d(y, xik)}
is decreasing on all branches of Uxij as we move away from xij , so y is not expandable
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Figure 6.9: The intervals I1, . . . , Iq in T

at such xij . If y is expandable at a free vertex xij of 〈C〉, then x is expandable at

xij , a contradiction.

6.2.3 The main result

In this subsection V (T ) and E(T ) are the vertex and edge sets of T , respectively.

Theorem 6.2.11. For a tree T , the critical values of the family {Fr(T, n)}r>0 are

contained in the set

F :=

{
1

2(m− 1)
d(v, w) : 2 ≤ m ≤ n, v, w ∈ V (T ), v 6= w

}
. (1)

Remark 6.2.12. Since we can write d(v, w) =
∑

e∈E(T ) εe`(e) for some coefficients

εe ∈ {0, 1}, each critical value has the form 1
2(m−1)

∑
e∈E(T ) εe`(e), for some m ∈

{2, . . . , n} and {εe}e∈E(T ) ⊂ {0, 1}. In particular, given the metric data (T, `), we

can write down a finite set of size less than (n−1)2|E(T )| containing all critical values.

Proof of Theorem 6.2.11. Let x be a critical configuration. From Lemma 6.2.10, we

may assume that x has one proper component, namely C = {x1, . . . , xn}. Form the

tree 〈C〉 as in Lemma 6.2.10. The free vertices of 〈C〉 are vertices of T , otherwise

x is expandable. Hence 〈C〉 is a subtree of T , and points of x are distributed

equally on each of a finite set of intervals {I1, . . . , Iq} such that 〈C〉 =
⋃q
j=1 Ij and

|Ij ∩ Ik| ≤ 1, for all j 6= k. We now identify the weakly essential configurations from

this description. If x is weakly essential then there is a pair x, y ∈ C with

d(x, y) = max
w1,w2∈C

{d(w1, w2)},

and the remaining points of C either
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(i) lie (equally-spaced) on the unique interval I from x to y, or

(ii) lie on the endpoint of an edge e incident to U such that `(e) = f(x).

In the latter case, e ∩ I is a configuration point and a vertex of T , see Figure 6.10.

Hence if x is a weakly essential configuration, then f(x) = 1
m−1

d(v, w) for some

x y

Figure 6.10: Points of a weakly essential configuration

m ∈ {2, . . . , n} and v, w ∈ V (T ) with v 6= w. The factor of 1
2

in formula (1) comes

from the definition of Fr(T, n).

Corollary 6.2.13. We have Fr(T, n) ' F (T, n) for all r ∈
(

0, 1
2(n−1)

min
e∈E(T )

{`(e)}
]

.

Proof. Combine Theorems 6.1.8 and 6.2.11.

Corollary 6.2.14. The essential configurations in a tree T are precisely the critical

2–configurations, and therefore comprise pairs of distinct vertices in T .

Proof. The proof of Theorem 6.2.11 describes the weakly essential configurations;

from this description, the essential configurations have size two. Every pair of dis-

tinct vertices in T is a critical configuration, since we have assumed that T has no

vertices of degree two.



Chapter 7

Possibilities for future work

In this final chapter, we discuss some possibilities for future work extending the

results contained in this thesis. We focus mainly on unsolved problems arising from

the study of the configuration spaces {Fr(Γ, n)}r>0 for n ≥ 3 (see Chapter 6). We

also discuss some ideas for studying different configuration spaces related to those

studied in this thesis. These configuration spaces may be useful for modelling other

problems of practical robotics. Finally, we also mention some possibilities for ex-

tending the work of [7, 22] and Chapter 4 to obtain further homological information

about the family {Fr(Γ, 2)}r>0.

Questions arising from the family {Fr(Γ, n)}r>0 for n ≥ 3

problem 1. We know that Fr(Γ, n) 6= ∅ for 0 < r ≤ 1
2(n−1)

diam Γ (see Lemma 6.1.3). Find

R = R(Γ, n) such that Fr(Γ, n) 6= ∅ if and only if r ∈ (0, R] (for n = 2 we have

R = 1
2

diam Γ, see Lemma 3.1.4).

problem 2. Find an upper bound on b0(Fr(Γ, n)) as a function of (Γ, `), n and r. Develop

an algorithm, similar to that described in §5.3, for computing b0(Fr(Γ, n)).

problem 3. There is a homotopy equivalence Fr(Γ, n) ' F (Γ, n) for sufficiently small r

(see Theorem 6.1.8). For trees, we have a sharp upper bound for rn such

that Fr(Γ, n) ' F (Γ, n) for all r ∈ (0, rn], namely rn := 1
2(n−1)

min
e∈E(T )

{`(e)}
(see Corollary 6.2.13). For the case n = 2, the same upper bound holds for a

general graph Γ (see Theorem 4.1.6). For n ≥ 3, do we have Fr(Γ, n) ' F (Γ, n)

131
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for all r ∈ (0, rn] for a general graph? If so, is

sup{r > 0 : Fs(Γ, n) ' F (Γ, n), ∀s ∈ (0, r]}

equal to rn?

problem 4. Find the essential critical configurations in a general graph, generalising the

result for trees stated in Theorem 6.2.14.

Different configuration spaces

In practical situations involving AGV motion (see §0.1.2), there will be restrictions

on the guidepath network Γ. For example, Γ will be planar if the robots are con-

strained to move on one level of a factory. It may be useful to study a thick particle

configuration space modelling the collision-free motion of n AGVs such that at most

k vehicles are permitted in a subgraph K ⊂ Γ. For example, K may simply be a

closed edge in the graph, or a cycle.

problem 5. Investigate the topology of the configuration spaces {Fr(Γ, n,K, k)}r>0, where

Fr(Γ, n,K, k) is the space{
(x1, . . . , xn) ∈ Γn : min

i<j
{d(xi, xj)} ≥ 2r, |K ∩ {x1, . . . , xn}| ≤ k

}
.

Questions arising from [7, 22] and Chapter 4

In paper [7], K. Barnett and M. Farber compute explicit generators for H2(F (Γ, 2))

(for a planar graph Γ) in terms of disjoint cycles in Γ. The main tool of paper [7] is

an intersection theory for cycles in graphs.

problem 6. Generalise the theory from paper [7] to compute explicit generators for the

second homology group of Fr(Γ, 2) (for planar graphs Γ), working with the

discrete model Dr(Γ, 2) for Fr(Γ, 2). Can H2(Fr(Γ, 2)) be expressed in terms

of pairs of cycles (C1, C2) in Γ such that d(C1, C2) ≥ 2r?

Moreover, E. Hanbury and M. Farber [22] compute the Betti numbers of F (Γ, 2) for

a large class of graphs (known as “mature” graphs – see [22]).

problem 7. Generalise the results from paper [22] and compute the Betti numbers of

Fr(Γ, 2) for mature graphs.
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Alternative proof of Theorem 3.2.3

In this appendix we show how the main result of Chapter 3 (Theorem 3.2.3) may be

proved without PL Morse–Bott theory. This is achieved by constructing an explicit

deformation retraction. We also include the proof of the characterisation of index

zero configurations (see §5.2.2) in terms of the metric d (see Lemma A.3.1).

A.1 Critical radii revisited

We begin by showing that a finite labelled graph has finitely many critical radii (see

Definition 5.2.5) without using PL Morse–Bott theory.

Proposition A.1.1. The set of critical radii is finite.

Proof. It suffices to show that any minimal-length edgepath c such that (c(0), c(1)) is

a critical configuration has the following form: a half-cycle concatenated with finitely

many edges, followed by another half-cycle, see Figure 5.7. [For completeness, we

allow a half-cycle to be a single point.] This suffices because in a finite graph there

are finitely many distances d(c(0), c(1)) arising from such paths. Let c be such a

path and write (x, y) = (c(0), c(1)). If µ(x), µ(y) 6= 2 then both x and y are vertices

and c has the above form with both half-cycles trivial. Suppose µ(x) = 2, so that x

lies in an edge e. Since (x, y) is a critical configuration, w 7→ d(w, y) decreases on

both branches of a star neighbourhood Ux as we move away from x. Hence, there is

a point x′ ∈ Im c and a cycle K ⊂ Γ such that x, x′ are antipodal on K, see Figure

A.1. The same argument applies if µ(y) = 2.

133
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e
x

K
x′ y

Figure A.1: The point x′ and the cycle K

Corollary A.1.2. Let E(Γ), Z(Γ) denote the sets of edges and cycles in Γ, respec-

tively, and let `(C) := `(e1)+· · ·+`(eK) denote the length of a cycle C = (e1, . . . , eK).

Any critical radius R has the form

R =
1

2

1

2

∑
C∈Z(Γ)

εC`(C) +
∑
e∈E(Γ)

εe`(e)

 ,

where εC , εe ∈ {0, 1} for all cycles C and edges e, and at most two of {εC}C∈Z(Γ)

are non-zero.

Next, we show that every path-component of Fr(Γ, 2) contains a critical con-

figuration. The proof is very similar to that of Proposition 5.2.15 and, in view of

Remark 5.2.12, the result is actually implied by Proposition 5.2.15.

Proposition A.1.3. For any r ∈ (0, diam Γ/2], every path-component of Fr(Γ, 2)

contains a critical configuration.

Proof. Let P be any path-component of Fr(Γ, 2), and fix (x, y) ∈ P . Suppose that

(x, y) is not a critical configuration, and let γ be a minimal-length edgepath from x

to y.

(a) If ind+(x, y) = 1, move x along the unique branch incident to x on which

w 7→ d(w, y) increases as we move away from x. Stop when we reach the

unique point x0 obtained in this way such that ind+(x0, y) 6= 1, see Figure

A.2. Let γ1 be an edgepath from x0 to x obtained from this procedure. By

construction, the concatenation γ1 · γ is a minimal-length edgepath from x0 to

y.

(b) If ind+(x, y) 6= 1, then ind+(y, x) = 1, so apply the procedure from (a) to

obtain a point y0 such that ind+(y0, x) 6= 1.
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x
x0 y0y

Figure A.2: Extending to a critical configuration (x0, y0)

If case (a) applies and if ind+(y, x0) = 1, use the same procedure to push y away

from x0 until we reach a point y0 with ind+(y0, x0) 6= 1. Let γ2 be an edgepath

from y to x0 obtained from this procedure. Then, by construction, (γ1 · γ) · γ2 is

a minimal-length edgepath from x0 to y0. Seeking a contradiction, assume that

ind+(x0, y0) = 1. Then there is a unique branch of a star neighbourhood Ux0 on

which w 7→ d(w, y0) increases as we move away from x0. Choose a point x′0 on this

branch with d(x′0, y0) > d(x0, y0). There exists an edgepath p connecting x0 with y

and passing through x′0 which does not pass through x0, see Figure A.3. Indeed, if

such an edgepath does not exist then we have ind+(x0, y) = 1, a contradiction. We

p y

x
x0

x′0

y0

Figure A.3: The point x′0 and the path p

can also assume that p has minimal-length. Indeed, we do not have Lp < Lγ1·γ, since

γ1 · γ is a minimal-length edgepath from x0 to y. If no minimal-length edgepath

with the properties of p exists, then Lp > Lγ1·γ and we can move x0 away from y

along p in the direction of x′0, contradicting ind+(x0, y) 6= 1. Hence Lp = Lγ1·γ. In

particular, d(x′0, y0) is equal to Lγ2 + Lp|[ε,1] for some ε ∈ (0, 1). Thus d(x′0, y0) <

d(x0, y0) = Lγ2 +Lp, a contradiction. Therefore ind+(x0, y0) 6= 1 and so (x0, y0) is a

critical configuration.

If case (b) applies and if ind+(x, y0) = 1, push x from y0 as above to obtain a
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point x0 with ind+(x0, y0), ind+(y0, x0) 6= 1. This procedure defines a continuous

path in Fr(Γ, 2) from (x, y) to a critical configuration (x0, y0) ∈ P .

We now introduce some notation which is useful for the proof of the main theorem

in §A.2.

Definitions A.1.4. The proof of Proposition A.1.3 defines a map Θ : F (Γ, 2)→ C,

where C ⊂ F (Γ, 2) is the set of critical configurations. Let X1, X2 : F (Γ, 2)→ Γ be

the components of this map, so that

Θ(x, y) = (X1(x, y), X2(x, y)), ∀(x, y) ∈ F (Γ, 2),

see Figure A.4. Furthermore, for each (x, y) ∈ F (Γ, 2) there is a unique constant-

x

X1(x, y) X2(x, y)y

Figure A.4: The components of the map Θ

speed path c(x,y) : [0, 1] → F (Γ, 2) defined by the proof of Proposition A.1.3 such

that c(x,y)(0) = (x, y) and

c(x,y)(1) = Θ(x, y) = (X1(x, y), X2(x, y)).

It has the property that d(c(x,y)(t1)) ≤ d(c(x,y)(t2)) for all t1, t2 ∈ [0, 1] with t1 ≤ t2.

Example A.1.5. Let (T, `) be the labelled Y –graph from Example 3.1.7, and let x, y

be the midpoints of e1, e2 respectively. In this case, X1(x, y) = v1 and X2(x, y) = v2.

v1 v2

v3

e3

e2e1

x y

1

11

Figure A.5: The labelling on the Y –graph T
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Regard (e1, v1) = ([0, 1], 0), (e2, v) = ([0, 1], 0) as copies of [0, 1]. The map c(x,y) is

given by

c(x,y)(t) =

 ((1− 2t)/2, y), t ∈ [0, 1/2]

(v1, t), t ∈ [1/2, 1].

Example A.1.6. Let Γ = S1 be the circle from Example 3.1.6, and let x = i, y = 1.

Then X1(x, y) = −1, X2(x, y) = y = 1 and c(x,y) : [0, 1]→ Γ is given by

c(x,y)(t) =
(
ieiπt/2, 1

)
, ∀t ∈ [0, 1],

see Figure A.6. We have d(x, y) = 1/4 and d(Θ(x, y)) = 1/2. For each r ∈ (1/4, 1/2),

y

x

X1(x, y)

Figure A.6: The map c(x,y)

there is a unique t0 ∈ (0, 1) such that d(c(x,y)(t0)) = r.

Remark A.1.7. In general, for each r ∈ (d(x, y), d(Θ(x, y))), there exists a unique

t0 ∈ (0, 1) such that d(c(x,y)(t0)) = r.

Remark A.1.8. We observe that Θ : F (Γ, 2) → C is not continuous in general. For

example, in Figure A.7, choose sequences (xn), (yn) ⊂ e1 and (y′n) ⊂ e2 such that

xn → x and yn, y
′
n → y. Then (xn, yn), (xn, y

′
n)→ (x, y), but Θ(xn, yn) = (x, y) and

Θ(xn, y
′
n) = (x, y′) for all n ∈ N.

x
y

y′

(xn) (yn)

(y′n)e1

e2

Figure A.7: The map Θ is discontinuous in general
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A.2 Critical values of the family {Fr(Γ, 2)}r>0

We are now in a position to derive Theorem 3.2.3 by constructing an explicit defor-

mation retraction.

Theorem A.2.1. The set of critical values of the family {Fr(Γ, 2)}r>0 is finite.

Proof. We show that the set of critical values is contained in the set of critical

radii. The result then follows from Proposition A.1.1. Suppose that r > 0 is not

a critical radius, and let Ur ⊂ (0,∞) be a connected open neighbourhood of r in

the complement of the set of critical radii. Let r1 < r2 be any two elements of

Ur. We define a deformation retraction H of Fr1(Γ, 2) onto Fr2(Γ, 2) as follows. If

(x, y) ∈ Fr1(Γ, 2) \ Fr2(Γ, 2), that is, 2r1 ≤ d(x, y) < 2r2, then there is a unique

t0 ∈ [0, 1] such that d(c(x,y)(t0)) = 2r2, see Definitions A.1.4 and Remark A.1.7.

Define H((x, y), s) = c(x,y)(st0), for all s ∈ [0, 1]. In other words, we push x and y

away from each other until the distance between them reaches 2r2, subject to the

following rules: one point moves at a time and x moves first if possible, and the

motion takes place at constant-speed in unit time. If (x, y) ∈ Fr2(Γ, 2) then we set

H((x, y), s) = (x, y) for all s ∈ [0, 1].

The map H is continuous because there is no critical radius between r1 and r2.

Moreover, H((x, y), 0) = c(x,y)(0) = (x, y) and H((x, y), 1) ∈ Fr2(Γ, 2) for all (x, y) ∈
Fr1(Γ, 2). Hence, H is a deformation retraction. In particular, Fr1(Γ, 2) ' Fr2(Γ, 2)

and so r is a regular value of the family {Fr(Γ, 2)}r>0.

Corollary A.2.2. Each critical value R of the family {Fr(Γ, 2)}r>0 has the form

R =
1

2

1

2

∑
C∈Z(Γ)

εC`(C) +
∑
e∈E(Γ)

εe`(e)

 ,

where εC , εe ∈ {0, 1} for all C ∈ Z(Γ), e ∈ E(Γ) and at most two of {εC}C∈Z(Γ) are

non-zero.

Proof. Theorem A.2.1 shows that each critical value is a critical radius, so Corollary

A.1.2 gives the result.
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A.3 Characterisation of index zero configurations

We characterise index zero configurations in terms of the metric d.

Lemma A.3.1. A configuration (x, y) has index zero if and only if it is a local

maximum of d.

Proof. If (x, y) is a local maximum of d then there are star neighbourhoods Ux, Uy

of x and y, respectively, such that

d(x′, y′) ≤ d(x, y), ∀(x′, y′) ∈ Ux × Uy.

If (x, y) does not have index zero, say wlog that ind+(x, y) > 0, then there is

a branch of Ux on which w 7→ d(w, y) is increasing as we move away from x. In

particular, there exists x′ ∈ Ux such that d(x′, y) > d(x, y), a contradiction.

If (x, y) has index zero, then it is critical (Remark 5.2.12) so by Proposition

A.1.1 any minimal-length edgepath from x to y has the following form: a half-cycle

concatenated with finitely many edges, followed by another half-cycle, see Figure 5.7.

We consider two cases. Firstly, if x, y are antipodal points on a cycle, then (x, y) is

a local maximum of d. If we are not in this case, choose star neighbourhoods Ux, Uy

such that w 7→ d(w, y) decreases on each branch of Ux as we move away from x, and

similarly for Uy. Let x′ ∈ Ux, y′ ∈ Uy and choose a minimal-length edgepath c from

x to y passing along the branches of Ux and Uy containing x′ and y′, respectively,

see Figure A.8. Such a path exists since we have a complete description of minimal-

Ux

Uy

yx x′
y′

c

Figure A.8: A minimal-length edgepath c of the required form

length edgepaths from x to y from above and x,y are not antipodal points on a

cycle. There exist unique s, t ∈ [0, 1] such that c(s) = x′ and c(t) = y′. Since c has

constant speed (Lemma 1.4.8) we obtain

d(x′, y′) = d(c(s), c(t)) = |s− t|d(x, y) ≤ d(x, y).
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Computing path-components in

Octave

B.1 Introduction

In this appendix we describe an implementation of the algorithm from §5.3 for

computing the number of path-components b0(Fr(Γ, 2)) of Fr(Γ, 2), given Γ and r. I

give special thanks to A. Hayden [40] for his invaluable help with this programming

project; he was also the first to implement the algorithm, using Python.

We assume that Γ = T is a labelled tree, to be entered by the user in the form of

a distance matrix D = [dij]. This is defined as follows: we assign labels 1, . . . , V to

the V vertices of T . If there is an edge e from vertex i to vertex j, then dij = `(e);

otherwise dij =∞.

Example B.1.1. Suppose that T is the Y –graph from Example 5.3.7 as shown

below.

1 2

3

x

v

y

z

(T, `)
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The distance matrix of (T, `) is

D =


∞ ∞ ∞ 1

∞ ∞ ∞ 2

∞ ∞ ∞ 3

1 2 3 ∞

 .

The output of the program is a list of the critical radii of (T, `), together with a

list of the number of path-components of Fr(T, 2) for each critical radius r.

B.2 Implementation and listing

Throughout, our programs are written in GNU Octave. We begin by writing a func-

tion Dijkstra to implement Dijkstra’s algorithm. This is an algorithm for finding a

shortest path between two vertices in a labelled graph. Further details can be found,

for example, in [43, §22.3] and [56]. We then have a function critical radii which

computes the critical radii of a given labelled tree. Provided that there are no ver-

tices of degree two, such critical radii are precisely the distances between distinct

vertices, divided by two (see Corollary A.1.2). Next, we implement the algorithm

for constructing the graph Gr from §5.3 in the function construct Gr. This func-

tion actually constructs the adjacency matrix of the graph Gr. Finally, the script

PathComps prompts the user for the distance matrix of a labelled tree (T, `), then

calls critical radii to compute the critical radii of (T, `). Next, it uses the Oc-

tave built-in function dmperm to calculate b0(Gr) = b0(Fr(Γ, 2)) from the adjacency

matrix of Gr (which is computed by construct Gr). Finally, it displays the results

to the user.

We now provide our programming code.

B.2.1 Function Dijkstra implementing Dijkstra’s algorithm

# Function implementing Dijkstra’s algorithm. Inputs are the initial

# vertex, final vertex and distance matrix and the outputs

# are a shortest path from the initial vertex to the final vertex
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# (given by a sequence of vertices) and the length of this path.

function [edgepath,minimum_distance]

= Dijkstra(Initial_Vertex,Final_Vertex,Distance_Matrix)

[V,W]=size(Distance_Matrix);

# The number of vertices of the graph is V (the number of rows

# of the distance matrix).

# Initialise two vectors "parent" and "distance". "Parent"

# will list the previous vertex in the sequence, and

# "distance" will contain the distance from each vertex

# to the Initial_Vertex.

for i=1:V

parent(i)=0;

distance(i)=Inf;

end

queue=[];

# Initialise "queue". This vector holds the list

# of children vertices.

for i=1:V

if Distance_Matrix(Initial_Vertex,i)~=Inf

# Finds all vertices incident to Initial_Vertex.
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distance(i)=Distance_Matrix(Initial_Vertex,i);

# Update "distance".

parent(i)=Initial_Vertex; #Update "parent",

queue=[queue i]; #Update "queue".

end

end

while length(queue)~=0

# (As long as there is a child vertex to check).

hop_start = queue(1); #Try the first child vertex.

queue = queue(2:end); #Update "queue".

for hop_end=1:V

# Try all vertices for "hop_end" and implement Dijkstra’s algorithm.

if distance(hop_end)>distance(hop_start)

+Distance_Matrix(hop_start,hop_end)

distance(hop_end)=distance(hop_start)

+Distance_Matrix(hop_start,hop_end);

parent(hop_end)=hop_start;

queue=[queue hop_end];

end # if
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end # for

end # while

# Now we construct the sequence of vertices giving a shortest path.

edgepath=[Final_Vertex];

i=parent(Final_Vertex);

while (i~=Initial_Vertex && i~=0)

edgepath=[i edgepath];

i=parent(i);

end

if (i==Initial_Vertex)

edgepath=[i edgepath];

else

edgepath=[];

end

minimum_distance=distance(Final_Vertex);

B.2.2 Function critical radii computing critical radii

function critical_radii = critical_radii(A)

[Number_of_vertices,b] = size(A);

# Finds the number of vertices of the tree

# (equal to the number of rows of the adjacency matrix)

critical_radii=[]; #Initialises the vector critical_radii
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# Now calculate the critical radii of the

# tree from the adjacency matrix A.

for i=1:Number_of_vertices

for j=1:Number_of_vertices #Loop over all entries of A

if i<j

[b,distance]=Dijkstra(i,j,A);

# Calculates the distance between vertex i and vertex j

critical_radii=[critical_radii,distance/2];

# Updates the list of critical radii

end # if

end # for

end # for

critical_radii=unique(critical_radii);

# Removes the repeated critical radii and sorts them into order

B.2.3 Function construct Gr constructing the adjacency ma-

trix

function [Gr_Adjacency_Matrix]=construct_Gr(A,r)

[V,W]=size(A);
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# We need V, the number of vertices of the tree

# (equal to the number of rows of A).

Matrix_of_pairs=zeros(V); #Constructs VxV matrix of zeros

#Now construct Matrix_of_pairs, the matrix with (i,j)th

# entry equal to the distance between vertex v_i and

# vertex v_j for i~=j, and zeros on the diagonal.

for i=1:V

for j=1:V

if i~=j

[edgepath,minimum_distance]=Dijkstra(i,j,A);

# Calculate the distance between vertex i and vertex j

Matrix_of_pairs(i,j)=minimum_distance;

end # if

end # for

end # for

Gr_Vertices=[]; #Initialise vector of vertices of G_r

# Now construct the vertices of G_r. A pair of

# distinct vertices (v,w) of the tree T is included

# in G_r if and only if d(v,w)>=2*r.

for i=1:V
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for j=1:V

if (Matrix_of_pairs(i,j)>2*r || Matrix_of_pairs(i,j)==2*r)

Gr_Vertices=[Gr_Vertices,[i,j]’];

end # if

end # for

end # for

[C,v]=size(Gr_Vertices);

# We need v, the number of vertices of G_r

# (equal to the number of columns of Gr_Vertices).

Gr_Adjacency_Matrix=zeros(v);

# Initialise the adjacency matrix of Gr.

# Construct the adjacency matrix of G_r. A pair ((v,w),(v’,w’))

# of vertices of G_r is connected by an edge in G_r if and

# only if (v=v’ or w=w’) and there is an edge

# between the other two coordinates in T.

for i=1:v

for j=1:v

if ((Gr_Vertices(1,i)==Gr_Vertices(1,j)

&& A(Gr_Vertices(2,i),Gr_Vertices(2,j))~=Inf)

|| (Gr_Vertices(2,i)==Gr_Vertices(2,j)
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&& A(Gr_Vertices(1,i),Gr_Vertices(1,j))~=Inf))

Gr_Adjacency_Matrix(i,j)=1;

end # if

end # for

end # for

B.2.4 Script PathComps implementing the algorithm from

§5.3

disp("\n")

disp("Welcome! This program computes the number of

path-components")

disp("of the thick particle configuration spaces

F_r(T,2) for a given")

disp("labelled tree T and all values of r>0.\n")

disp("The program takes as input the distance matrix of T")

disp("and outputs a list of all critical radii together")

disp("with the corresponding numbers of path-components

of F_r(T,2).\n")

disp("Please press enter to continue.")

pause

disp( "The distance matrix D is a symmetric matrix

defined as follows:")

disp("if there is an edge from vertex i to vertex j

with label d>0, ")

disp("then D_{i,j}=d. If there is no edge from vertex i

to vertex j, ")

disp("then D_{i,j}=Inf (logical infinity).\n")

disp("Example: if T is the Y-graph with edge labels

1,2 and 3, then")
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disp("D=[[Inf,Inf,Inf,1];[Inf,Inf,Inf,2];

[Inf,Inf,Inf,3];[1,2,3,Inf]].\n")

disp("Please press enter to continue.

You will be prompted")

disp("for the distance matrix of your labelled tree.

Please ensure that")

disp("your tree has no vertices of degree 2 and at

least one edge.")

pause

A=input("Please enter the distance matrix of the tree T: \n");

#Error checking.

[m,n]=size(A);

if (m~=n || m==1 || m==0)

error("It appears that you have not entered

a valid distance matrix.\n");

end

for i=1:m

for j=1:n

if (abs(A(i,j))~=A(i,j) || A(i,j)==0)

error("It appears that one of your matrix entries

is neither Inf nor a positive number.\n");

end
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if (A(i,j)~=A(j,i))

error("It appears that your matrix is not symmetric.");

end

end

end

counter=zeros(1,n);

for i=1:m

for j=1:n

if A(i,j)~=Inf

counter(i)=counter(i)+1;

end

if (i==j && A(i,j)~=Inf)

error("It appears that one of your diagonal elements

is not Inf. \n");

end

end

end

E=sum(counter)/2;

Euler=m-E;

if Euler~=1

error("It appears that you have not entered the distance

matrix of a tree (the Euler characteristic is not 1).\n");

end
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chck=counter-2*ones(1,n);

if all(chck)==0

error("It appears that your tree contains a vertex of degree 2. \n");

end

tic; # Start timer.

criticalradii=critical_radii(A);

# Calculates the critical radii of T by invoking

# the function "critical_radii".

L=size(criticalradii,2);

# The number of critical radii (equal to the number

# of columns of criticalradii).

components=zeros(1,L); #Initialise vector "components".

#Now we construct the graphs G_r and compute their

# zero-dimensional Betti numbers.

# We invoke the function "construct_Gr" to construct the

# adjacency matrix of Gr and the built-in function "dmperm"

# to compute b_0(G_r) from this adjacency matrix.

for i=1:L

Gr=construct_Gr(A,criticalradii(i));

[a,b]=size(Gr);

B=Gr+eye(a);
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[p,q,r,s]=dmperm(B);

components(i)=length(r)-1;

end

elapsed_time=toc; #Stop timer.

#Now display the results.

disp("\n")

disp("Finished! It took me")

disp(elapsed_time)

disp("seconds. Please press enter to display the critical radii. \n")

pause

disp("The critical radii of your labelled tree are: \n")

disp(criticalradii)

disp("\n")

disp("Please press enter to continue.")

pause

disp("The corresponding numbers of path-components are:\n")

disp(components)

M=criticalradii(L);

disp("\n")

disp("Also, F_r(T,2) is empty for r>")

disp(M)

disp(". Thank you!")

B.3 Sample program output

In this section we run our program on two specific labelled trees and display the

program output.

Example B.3.1. We first consider the labelled tree (T, `) from Example 5.3.7,



B.3. Sample program output 153

namely, the Y –graph with edge labels 1, 2 and 3. A distance matrix for (T, `) is

D =


∞ 1 2 3

1 ∞ ∞ ∞
2 ∞ ∞ ∞
3 ∞ ∞ ∞

 .

We display the program output below.

Welcome! This program computes the number of path-components

of the thick particle configuration spaces F_r(T,2) for a given

labelled tree T and all values of r>0.

The program takes as input the distance matrix of T

and outputs a list of all critical radii together

with the corresponding numbers of path-components of F_r(T,2).

Please press enter to continue.

The distance matrix D is a symmetric matrix defined as follows:

if there is an edge from vertex i to vertex j with label d>0,

then D_{i,j}=d. If there is no edge from vertex i to vertex j,

then D_{i,j}=Inf (logical infinity).

Example: if T is the Y-graph with edge labels 1,2 and 3, then

D=[[Inf,Inf,Inf,1];[Inf,Inf,Inf,2];[Inf,Inf,Inf,3];[1,2,3,Inf]].

Please press enter to continue. You will be prompted

for the distance matrix of your labelled tree. Please ensure that

your tree has no vertices of degree 2 and at least one edge.

Please enter the distance matrix of the tree T:

[[Inf,1,2,3];[1,Inf,Inf,Inf];[2,Inf,Inf,Inf];[3,Inf,Inf,Inf]]
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Finished! It took me

0.13341

seconds. Please press enter to display the critical radii.

The critical radii of your labelled tree are:

0.50000 1.00000 1.50000 2.00000 2.50000

Please press enter to continue.

The corresponding numbers of path-components are:

1 2 4 4 2

Also, F_r(T,2) is empty for r > 2.5000. Thank you!

Example B.3.2. Let (T, `) be the labelled H–tree shown in Figure B.1. A distance

v1 v2 v3

v4 v5 v6

1

2

3

4

5

Figure B.1: The labelled H–tree (T, `)
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matrix for (T, `) is

D =



∞ 5 ∞ ∞ ∞ ∞
5 ∞ 1 ∞ 3 ∞
∞ 1 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 2 ∞
∞ 3 ∞ 2 ∞ 4

∞ ∞ ∞ ∞ 4 ∞


.

We display the program output below.

Welcome! This program computes the number of path-components

of the thick particle configuration spaces F_r(T,2) for a given

labelled tree T and all values of r>0.

The program takes as input the distance matrix of T

and outputs a list of all critical radii together

with the corresponding numbers of path-components of F_r(T,2).

Please press enter to continue.

The distance matrix D is a symmetric matrix defined as follows:

if there is an edge from vertex i to vertex j with label d>0,

then D_{i,j}=d. If there is no edge from vertex i to vertex j,

then D_{i,j}=Inf (logical infinity).

Example: if T is the Y-graph with edge labels 1,2 and 3, then

D=[[Inf,Inf,Inf,1];[Inf,Inf,Inf,2];[Inf,Inf,Inf,3];[1,2,3,Inf]].

Please press enter to continue. You will be prompted

for the distance matrix of your labelled tree. Please ensure that

your tree has no vertices of degree 2 and at least one edge.

Please enter the distance matrix of the tree T:
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[[Inf,5,Inf,Inf,Inf,Inf];[5,Inf,1,Inf,3,Inf];[Inf,1,Inf,Inf,Inf,Inf];

[Inf,Inf,Inf,Inf,2,Inf];[Inf,3,Inf,2,Inf,4];[Inf,Inf,Inf,Inf,4,Inf]]

Finished! It took me

0.71290

seconds. Please press enter to display the critical radii.

The critical radii of your labelled tree are:

Columns 1 through 8:

0.50000 1.00000 1.50000 2.00000

2.50000 3.00000 3.50000 4.00000

Columns 9 and 10:

5.00000 6.00000

Please press enter to continue.

The corresponding numbers of path-components are:

1 1 2 2 4 8 2 4 4 2

Also, F_r(T,2) is empty for r > 6. Thank you!
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