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ABSTRACT

The basic theory of foliations is introduced in Chapter 1. Various
classes of affine connexions associated with a foliation are discussed, in
particular those which give rise to the notion:-of parallel foliation and
those which give a realisation of the 1-Jet holonomy group of C. Enresmann.

In Chapter 2, locally affine foliations are defined As parallel foliat-
ions for which the induced structure on each leaf is flat. A local charact-
erisation is given in terms of the existence of a special sub-atlas of co-
ordinate charts. Some results are obtained about the global structure of
such foliations when certain completeness assumptions are made.

Chapter 3 gives a description, in terms of grid manifolds, of the work
of S. Kashiwabara on the reducibility of an affinely connected manifoﬂa.

The work of the first three chapters is then used in Chapter 4 to dis-
cuss the question of parallel foliations on pseudoriemannian manifolds.

Some new examples are given. An elementéry proof of the De Rham-Wu decom
position theorem and some theorems about null foliations determined by sub-
mersions are obtained.

Chapter 5 is concerned with the properties of pseudoriemannian'manifolds
which admit systems of parallel vector fields. The problem is discussed in
terms of parallel foliations and some recently developed techniques in

foliation theory are used to obtain some strong global structure theorems.
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CHAPTER 1

FOLIATIONS

§1.1 Definitions

Iet K" be éuclidean m-space with coordinates z. Define B"at,eh) to
be the open subset of R consisting of those points whose coordinates satis-
f‘y.-m\<dl<z1<c1\< 40,

Let M be an m-manifold of class C°, 0 s ¢ »,w (see [ 1§._]). Then

a coordinate chart (U ,xl) on M is an open set U € M and coordinate functions

x' : U+R! i=1,,..,msatisfying

(1) If ¢; : U~ B" (di,ci) is defined by ¢(p) = (x‘(p),...,' X¥p)) for

p € U then ¢U is a homeomorphism.

(2) If (V,y*) is another coordinate chart and V A U # ¢ then

N ¢61 : B" > R™ is of class C° where defined.

VO

A C5-Atlas ® on M is a maximal collection of such coordinate charts s where

maximality is defined with respect to an ordering by inclusion.

Definition 1.1.1 If N is an n-manifold of class C° then a map £ : M+ N is

said to be
oK £l
(a) of class C. r » s if for all peM— — (p) exist and are con~
- ax?1...0x0k

tinuous for O & k < r where f is represented by

(X ey, X (BN, ey Xy veey PH(XY, e, X))

with respect to coordinate charts at p and f(p). Conditions (1) and (2)
above ensure that this definition does not depend on the particular co-

ordinate charts chosen.
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(b) a homeomorphism of class ¢ r < s if £ is a homeomorphism for which

both £ and £~! are of class C .

(¢) a local homeomorphism of class ' r < s if for all p € M there is a

neighbourhood U of p such that £ : U » f(U) is a homeomorphism of class cr.

Definition 1.1.2 The Standard Foliation of K" of codimension D.

This is the basic building block required for defining foliations on
manifolds.
If yl, i=1,...,mare coordinates for Rm then the (m-p) dimensional

p+l soe .,ym = constant determine a product decomposition

planes given by ym-
R" = R"P x RP, This is the standard foliation of R" of codimension p. If
the discrete topology is put on RP and the usual one on Rm-p, then, by tak-

ing the product toplogy (see [ 14 _] page 90) one obtains the leaf topology

To(Rm) on R". The leaves are defined as the connected components in this
topology.

Throughout what follows, uﬁless otherwise stated, late Greek suffices
A,u,0 will denote integer values in the range 1,2,...,m-p, early Greek,

a,B,y in the range m=-p+l,...,m, and Roman i,j,k,% in the range 1,...,m. -

Definition 1.1.3 A homeomorphismh : U« R"P x R® » h(U) « R™P x RP of

alass C' is said to be leaf preserving (L.P.) if

h(yt,eesy™ 2,00, 9™ = (RAY), ... 0P, PGy L aM ™)

Definition 1.1.4 A Foliation ?of codimension p and class cr (0grgs) on

an m-manifold M of class CS, is a collection of leaf charts

A - {(Ua,ha) : a € J}, maximal with respect to:

(i)Uu e M, TJ U_ =M.
a aed &



(ii) ha : Ua - Bm(dal,cal) a homeomorphism of class CF.

v . -] . .
(iii) if Ua N Ub # ¢ then hao hb : hb (Ua/\Ub) > ha(UaI\Ub) is an L.P.
homeomorphism of class ct.

¢* will be called a leaf atlas for the foliation ?;T

If (Ua,ha) is a leaf chart then one may consider the coordinate

functions xal : U, *+R' i=1,...,mdefined by

i _d
X, (z) =y o ha(z) for z € Ua
i i i
clearly da < Xy < s

If Ua n Ub # ¢, the coordinates xal and xb1 are related on the overlap

by equations of the form

be = Pga(xal) where P, Q are of class cF
Ay o]
P, _ - d
axa axa
xba = an(xas) are non singular matrices

Conversely, given coordinate charts (Ua,xal) with overlap equations of

the above form, one may recover ha by defining

h,(z) = (x}(z)y...,X(2z)) for z € U,

The alternative form (Ua,xai) for a leaf chart will often be used in
what follows. If z ¢ Ua’ then the points of Ua with coordinates
xa“ = xaa(z) are called the plague of the chart through z.

In the general theory of differentiable manifolds it is well known (see
[[287]) that a C'-atlas always contains a C -sub atlas. However, little

appears to be known about the corresponding question for foliations. Andrie



Haefliger has proved in [_ 8 7] that if a compact CW-manifold M admits a
codimension one foliation with C° leaf atlas then the fundamental group of
M, . (M) is infinite. Thus, the codimension one foliation of S® the three
dimensional sphere given by G. Reeb in Ele , does not admit a cv

structure.

Definition 1.1.5 The Leaf Toplogy.

The leaf topology TO(Rm) on R® induces a topology 'I‘O(Bm) on B® by the
inclusion map. A leaf atlas P = {(Ua,ha) : a e J} can now be used to put

the leaf topology on M.

Consider the collection h';l(V) :aed, V=open set of TO(Bm)‘
contained in ha(Ua).
This collection defines a base for a topology TO(M) on M (see Kelley

C i 7] page 47) because
(1) Un'(v) = M.

(ii) If z ¢ h;l(V) N hgl (V), then ha(z) evVah hBI(V).
But h_ hgl is an L.P. homeomorphism
LT h () e T_(BY)
thus there is W < V A h jh-'(7), W # ¢, We T (B") and h(2) e W

.z € h: (W) and h;I(W) < ha'1 V) a hgl(\'f).

The leaves of ’3- are defined as the connected components of M in the
leaf topology TO(M) and are clearly (m-p) dimensional submanifolds of class

" in the sense of [ IS TJ.

Definition 1.1.6 A map f : M+ N of class c® between two C°-manifolds M and

N with foliations, is said to be foliation preserving if f is continuous with

respect to the leaf topologies TO(M) and TO(N).



Definition 1.1.7 Induced Foliations.

Let N be a C°-manifold with a C'-foliation ?ﬁ of codimension p and leaf
atlas f = {(Ua,ha) :aedJ}t. Suppose f : M+ N is a local homeomorphism
of class C°.

let p € M. Pick a neighbourhood U of p such that £(U) is contained in
some Ua and £|U is a C®-homeomorphism. It is not difficult to prove that
there is an open set W< hh o f(ﬁ) such that there is an L.P. homeomorphism
of class C', g : W~ B" 2 x B” and f(p) ¢ B! (W),

Consider the pair ((f|0)™" o h;’ o g (W), g, h, , ). It can be shown
that the collection of such pairs for all points p € M satisfies conditions

(1), (ii), (iii) of definition 1.1.4 with respect to M, and so will gener-

ate a maximal leaf atlas. This gives the induced foliation f‘léf on M.

The leaf atlas will be denoted by £~'¢ . With respect to £~ F and F,

f is foliation preserving.

81,2 The Ehresmann Holonomy Group

Let X and Y be two topological spaces and f : X - Y a map defined on
some open subset of X such that f(xo) = Vo Then amap g : X+ Y is in the

same germ as f at X if
(1) g(x)) =y«
(ii) There is an open set U containing X, such that g|u = f|U.

This clearly defines an equivalence relation on the set of such maps
f. The equivalence class of f is called the germ of f at X, and will be
denoted by G(xo,f).

Consider the seté? p-of maps f : RP + RP each defined on a neighbour-
hood U(f) of the origin such that £ : U(f) » f(U(f)) is a homeomorphism of

class C* leaving the origin fixed.



Denote by § r.p the set of germs of such maps at the origin.
J

This set gives a group under the following multiplication

G(o,f) x G(oyg) = Glo,f &)

1f RP has coordinates yi , and e:§ P has the coordinate representation
£y, ee,y®) = (fl(yi),.. .,fp(yi)) on U(f), then the partial derivatives of
f are defined at yi = 0, up to order r. Furthermore it is clear that if
g € G(o,f) then the partial derivatives of g agree with those of £ up to
order r. Thus the derivative of a germ G(o,f) is well defined at the origin.
Consider the subset Fq of §r,p consisting of those germs whose deriv-

atives at the origin, up to order q are the same as the identity.

. 5t i oK i
Thus if f € F then[——.] =6.,—i———i—- =0forl<kgaq

¥ (y?) is another

- n

Fq does not depend on the choice of y‘-L for if §l

coordinate system with the same origin, then

i -3 ; L .
.a.f_ =3 (r(0)) . a—fi (o) . _3.‘__{1_{ (o) = 6kl since f(o) = O
o ay? dy 3

Similarly for higher derivatives.

3

Fq is a normal subgroup of Sr_ D because if G(o,f), G(o,g) € Fq then

o(f g)i i k .
o - 3fk (2(0)) . &, (o) = 5.* etc.

sy Jo dy ay? J

R i )
5. b s || =23 (o)) L AL (o)
J 3y  Jo oy 3y?

)
8(f7) (o) = 6.2 etce.

and .if G(o,h) ee\l r.p then

a(h T h“)i i 2 -1k .
{ oo = 2 (£ 17 (0)) L 2 (o)) VAT oy = 6.8 ete.
9y° o 3y ° 3y ayY J
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Put q_g /F_ and let q Ciert homo—
ryD r,p''q Vg ° r,p Qj be the quotient hom

morphism.

For each f, wq G(o,f) is called the g-Jet of f.

q r(,lp could have been obtained by factoring C.Tr',p by the equivalence
relation : G(o,f) ~ G(o,g) if £ and g have the same derivatives up to order
r at the origin.

Let M be an m-manifold of class C° admitting a class ¢’ foliation ?
of codimension p with leaf atlas A .

Let L be a leaf of 3'* z € L a given point and (w sy ) a given leaf chamt
such that z ¢ Wand y (z)

One may identify RP with the transversal set

T = {(O,...,O,ym_p+1,...,ym): Iyil < 1}.

let o : [0,1] + L, 0(0) = 0(1) = z be a loop in L at z.

Since o([[0,17]) is compact it admits a finite cover
= {(Ua,xai) :a=0,1,...,n-1} of charts of & with the following propert-
ies:

(1) There is a subdivision A of EO,l___[ namely Eo,tlj,-...,Eta,ta+lj,...
Ctps11s £, = 0,

o([t,_1,1) < U,

1, such that O(Eta,ta+lj) <u,

(i1) xa“(o(t)) =0forte Eta,ta+l:l, and xaA(O(ta).) =

To construct such a cover, take any finite cover and choose a sub-
division A so that of Eta,t a +lj) is contained in the interior of a chart.
Now index the charts so that (i) is satisfied and modify the coordinates by
suitable affine transformations so that (ii) is satisfied.

Candition (i) ensures that there is a § > O such that the overlap
transformations x_ O, = (x B) a,B = m-p+l,...,m are defined for

a+l a+l a
0 g IxaBI < § for each a = 0,1,...,n-1. Put



V_(8) = {(0,...,0, mp“‘l,...,xam) e Ut |x°] < 6.
Define fa+1,a v, (8) » +1(1) by
m-p+1 o -p+1 o B
a+l a(O,.., sXy sresXseesX ™=(0,..,0, Qa+l Iy a)’ ‘s a+l,a(xa)"" a1, a(x ))
Clearly f‘a 1,2 is a C¥ -homeomorphism into Va +l(l) which sends the orig-

in to the origin.
It is easy to see that there is an €,, 0 < g; £ § such that

. r . .
£ V,-1{e1) >V (8) is a C homeomorphism into V_(8).

a,a-1 :

By induction there is €, O < g & § such that

b,

fobe1,a-b * Vab (Bp) ™ Vape (€

b+l)

is a C'-homeomorphism into V ) for all b, 0K b g a.

a-b+l (Eb+l
. Thus there is €, > O such that

fa - fa,a—l 0 fa—l,a—2 o """o fi,o : Vo(ea) ” Va(G)

is a c¥ homeomorphism into Va( 8).

\V% LEAVES



. iy _ i . . r
One can define (Uﬂ,xn ) = (Uo,xO ) and thus f‘n : Vo<En) > Vo(l) isaC

homeomorphism into V_(1). Define a map ¢ : Q (L,z) ~ q by

r,p

®(o) = G(O,n £ ngl), where Q (L,z) is the loop space of L at z and
)
Ny Vo(e) + T is the C". ~homeomorphism sending the origin to the or\igin

. -p+1 -p+
given by (0,... ,O,xgl P gess ,xom) P (0,... ,O,;ym p l(Xch)’ . ,ym(xoa))
defined for € > O. To show that ¢ is well defined it will suffice to show
that a different choice of subdivision A' and cover I' satisfying conditions
(1) and (ii), give a C -homeomorphism gt o fn' o
Let A be a subdivision of [[0,17] for which A' < A and A < A,

Suppose A has the form Eta,ta’l],...,]:ta’s, ta,s+l]""’Eta,k , ta+1]
a

with t =t , t t
a a

ni y with the same germ.

a+l,0 - 1-’a+1'

7]) is contained in the interior of a chart of I

e
Then o([_t

a,ka+l )

t

a,s’ “a,s+l

and of a chart of z'.

A re-indexing of T gives a finite cover T of o with leaf charts

i -
(Ua,s’xa,s)’ where Ua,s = Ua
Ao LA U
Xas = % " %y (O(ta,s))
xa‘i‘s=xa°‘ for 0g s sk, ., a=0,...,n"1

Clearly O(Eta,s’ ta,s+l:l) < U, g and

o _ A _
xa’s(c(t)) =0 for t. eEta,S, ta,s+l:] , xa’s(c(ta,s)) =0

Put

Va’s(ﬁ) = {(O,...,O,xgzls)ﬂ,...,xaI:ls) € Ua,s : |xafs| < 8}
Define

fa,s,s-l : Va,s-l (6) > Va,s L
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m-p+1 m m=-p+1 m
by (Oy... ’O’xa,s-l’ coe ’xa,s-l) = (0,... ’O’xa,s yone ’xa,s)

for 0 s & ka—l

For s = ka define fa’ka+l’ka : Va,ka > Va,ka+l = Va+1,O = Va+l
m=-p+1 m m-p+l, o m o
by (O"'"O’xa,ka """xa,ka) - (O"""O’Qa+l,a(xa Yssens a+l,a(xa ))

It is easy to see that on some neighbourhood of the origin in Va

farl,a ™ Ta,k +1,k 0 " 0 1a,1,0

and moreover n. = 1n .
2
Thus the germ obtained from I and A is the same as that from £ and A.

Hence there is no loss of generality in assuming that the subdivisions

A and A' are the same.

{(Ua,x 1y :a=0,1,...,0-1}

Let X a

Z'

{(Ué,x;) : a = 0,1,...,n-1}
For a given b ¢ 1,...,n-1 one may obtain a new cover Zy from £ by replacing
i i . o - . vay
(Ub’xb_ ) by (Ut'),xé ). Clearly, Ly satisfies conditions (i) and (ii) with
respect to the subdivision A.
S S S :
If on the overlap of Ub and Ub » ¥y T8y (xb ) then if

g, Vb(e) > V'b(l) is defined by

m-p+1

m-p+1
(054 +0,0,% P

,...,xbm)\+ (O,,..,O,gb (xbj),...,gbm(xbj))

there is a sequence



oV T Vg Vopl > +oe
&,
Ty ,0-1 v fo41,0
]
V'

The nature of the coordinate transformations gives

- = -1
541,60 0 Tb,0-1 = Fo+1,0 0 8 ) o B 4 Ty p-1)

* Th41,b o Tb,b-1

on a neighbourhood of the origin in V. .. Thus

b-1
fn © fn,n—l o """ o fb+1,b 0 fb,b-l o "'t o f1y0
- fn,n—l o """ o fb+l,b 0 fb,b-l 0 "o Iy

furthermore

- -1 - -
Ny = ”zb and so G(O’nz ofhoM ) = G(O’”z 0 n 0

If b = O then n. =n. ggl and T = & o f ggl
. G(0, f ng') = GO,ny ;')

By replacing each chart in turn it follows that

G(O,nz o) fn 0 nzl) = G(0, nZ' o] fn' o} ngt

£, on some neighbourhood of the origin in Vb
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and so ¢ is well defined.
Let o' be another loop at z, homotopic to ¢ in L, relative to z.

Then there is a continuous map £ : [[0,1_] x [[0,1_] -+ L satisfying

£(0,t) = o(t), £(1,t) = o' (t), £(s,0) = E(5,1) = 2

Since £([£0,1]x[[0,17]) is compact, it may be covered by a finite

number of charts of )5( There is a subdivision of EO,l] say

Coui]seens Eub’ub+1] yeens EuN_l,l] such that
F’(Eub’ubﬂj ) Euc,uc+1:])

is contained within one of these charts., Using this subdivision it is easy
to obtain a sequence ¢ = 0,,02,.. 0301505 15 .,ok=o' of loops at z so that
o3 differs from 044 only within a single plaque of a chart. It is straight-
forward to prove that <I>(ci) = <I>(o:.L +l) and thus by induction that
¢(o) = o(a').

Also, if O, T is the composition of two loops, it is clear that
<I>(oo 1) = 8(o) x ¢(t) where x is the multiplication in gr,p'

Thus ¢ determines a hom omorphism ¢ : m(L,z) —>Cj Ir

r,p’
H(L,z) = ¢(m;(L,z)) then it is not difficult to prove that a different
choice of initial point z, or initial chart (w,yl) will give an isomorphic

group, where the isomorphism comes from conjugation by an element of ?r p°
. 3

Definition 1.2.1 The Fhresmann Holonomy Group H(L) of a leaf L is the group,

determined up to isomorphism by H(L,z).

Definition 1.2.2 The Jet Gmoup of order q,J (L) of a leaf L is the group,
hr |
determined up to isomorphism by wq(H(L,z)). H(L) and Jq(L) are isomorphic

to factor groups of the fundamental group of L.
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§1.3 Orientation of Foliations- -

Let M be an m-manifold of class C° with a C*, r » 1 foliation F and
leaf atlas % = {((U_,x 1y a e J},
a’ a ol

X

a
Bxbs

Definition 1.3.1 ? is said to be transversally orientable if there is a

If Ua N Ub # ¢, then det is defined on the overlap.

éover of M by charts 8f A’ , such that on-the overlap of two charts (Ua ,xal)

X
a

(9%,

and (Ub,xbl), det 3 is positive

LEMMA 1.3.1. Let M be an m-manifold of class C°, witha C, r » 1

foliation ‘3’ Then there is a two fold cover M of M such that, if

T : M > M is the projection map, the induced foliation m~! ?’ on M is trans-

versally orientable.

Proof see Haefliger [ 8 J.

§1.4 Integrable and Involutive Distributions

From now on, only manifolds and geometric structures which are smooth

(that is, of class Cm), will be considered.

Definition 1.4.1 A g-dimensional distribution D on an m~manifold M is a

g-dimensional, smooth sub-bundle of the tangent bundle ™ (see [_15 T]).
If M(x) denotes the tangent space of M at x € M, then the fibre D(x)
of D at x will be a g-dimensional subspace of M(X). Furthermore the local
triviality of D implies that for each x € M there is a neighbourhood U of
x and smooth vector fields X;,. ..,Xq defined on U, such that D(x) is sparned

by X1(x)y...,X (x) for each x ¢ U.

fle]

]

A vector field X defined on a set V< M, will be said to lie in D if

X(x) € D(x) for each x € V.
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Let ?} be a smooth foliation of M, of codimension p, with leaf atlas
& . ILet (U,xl) be a chart of ¢V. Consider the smooth -vector fields

d
—‘T 3 A = l,-.-,m_pn

oX
For each point z € U"EQX (z), A = 1,...,m=p span an (m-p) dimensional
. 93X
subspace of M(z). If (T,%") were another leaf chart with z e,0y then
3 a2 x> o
Y (z) el (z) Sil’lCG-_-'—' 0.
X ax axH 3

Hence this subspace does not depend on any particular leaf chart. Thus

one obtains a smooth (m~p) dimensional distribution, the tangent distribut-

ion to F.

Definition 1.4.2 A distribution D is integrable if it is tangent to a foli~

ation,

Definition 1.4.3 A distribution D is involutive if given two smooth vector

fields, with common domain, lying in D, then the Lie bracket [:X,Y:] lies

in D.

The classical Frobenius Theorem can be used to prove the following

results (see Hicks [ 9 _] page 128).

LEMMA 1.4.,1. A distribution is integrable if and only if it is in-

volutive.

LEMMA 1.4.2. Let Mbe a smooth m-manifold, and let X1,..[1XT be a set

of independent smooth vector fields on a neighbourhood U of z € M. Then

there is a coordinate chart (Vixl) with V € U such that Xi = a/ax1 on V for

all i if and only if [xi,xjj = 0 for all i and j.

§1.5 Comnexions Associated with a Foliation

The material in this section stems directly from the work of A. G.
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walker "3 ], (32, [33_] and shows how a foliated structure on a
manifold gives rise to certain special classes of commexions. One such
class,.the'Jet Connexions, of which the D-connexions of Walker, form a sub-
class, can be used to define another foliation holonomy group. The main
result of this section says that this holonomy group is always isomorphic
to the 1l-Jet group.

Again, only smooth structures will be considered, and in addition all

manifolds will be assumed to admit a positive definite riemannian metric.

Definition 1.5.1 A distribution D is said to be parallel with respect to

an affine comnexion I', if the action of parallel transport preserves D.
That is, if X(x) € D(x), then parallel transport of X(x) along any piecewise
differentiable path from x to y yields a vector in D(y). (This vector will

depend on the path in general).

Definition 1.5.2 A foliation ?} is said to be parallel with respect to an

affine connexion I' if its tangeﬁt distribution is parallel. The following

result was proved by T. J. Willmore [_39_], and A. G. Walker [ 3) ].

LEMMA 1.5.1. A distribution is integrable if and only if it is parallel -

with respect to a torsion free affine connexion.

Proof Let D' be the distribution on the smooth manifold M.

By considering the orthogonal complement of D'(x) for each x € M, with
respect to the metric, one obtains a smooth complementary distribution D"
such that M(x) = D}(x) ® D"(x). |

Associated with the structure (D',D") there are two smooth projector

tensor fields of type (1,1) defined by
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a'(X) (x) = X'(x)

for each x e M
a"(X) (x)-

X!_I (X)

where X is a vector field on M and X'(x) is the component of X(x) lying in

D'(x) and X"(x) is the component in D"(x). Clearly

a'a' = a', a"a" = a", a'a" = a"a' =0, a' +a" =1 (1)

where I is the identity tensor of type (1,1).
Take any smooth atlas of coordinate charts on M, and if (U,xl) is one
such chart, denote the basis vector fields _ET by e;.

9X
Lemma 1.4.1 implies that D' is integrable if and only if

a" [:a.":jL X CHR a'ﬁ ‘e e =0 for all vector fields X, Y

expanding

é"i{a‘§ X! Yh a'ﬁ_i - gl yh X a‘k

|i 1k j - 'i 'k j =
b jep talyal X Y?i a'y a'y v Xﬂi} 0

h

where a dot denotes partial differentiation.

Using (1), one obtains

j nSeal ok i ik - .
and ‘
0 = (ans avk) — _qtS avk + ans alk (3)

k& hn'i T @ ki n k & hei

Substituting in (2) and noting that X, Y were arbitrary, one deduces that

D' is integrable if and only if

1ok 08 _48 -
a'y a'y (@l jmalyy) = 0
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which will be written as

a'% ats ats =0 )

k
S
Suppose a vector field X is parallel along a differentiable curve

o : [[0,17] » M, with respect to a connexion L. Then if a bar denotes

covariant differentiation

XTJ g%i =0 along o
Thus
. . k . . k
ul J do | _ul J do
@ X e =2k ¥ &

For parallelism, this expression must vanish if X (g(0)) = a"g YS for
some Y°,

Hence a necessary and sufficient condition for D' to be parallel is

nl

But since 0 = (a 3 a'g)'k, this condition is equivalent to

Ili hj -

The idea now is to find a connexioﬁ L for which (5) is satisfied, and which
is torsion free if (4) is satisfied. Let T be any torsion free connexion
on M (for instance the metric connexion).

Then L must have coefficients of the form Lik = P?k + T§k where T is

a tensor field of type (1,2). If a comma denotes covariant differentiation

with respect to I', then

P g g QP 0P 6
Tk Tkt Cak aqT?k | (6)
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From (5), it follows that D' is parallel with respect to L if T satisfies

ni 'ad rIP - _ ni 1P - _ 1 1P -
a’ s = a a' . = a a'’s.
&p 4§ “ak P Jsk P,k (7)
But
| q _wp S S« T « I yi @ 4P
Oza' (a'? a =a'"a'’ a = -a'~a'? a! 8
p( J q),k P J T a.k P J A,k ()

thus one solution of equations (7) is

i _ _ _nil s
ik T T s Mk

The general solution of (7) is thus

i - - "i 'S i
T?k =-a" a R + ij (9)

where V is any symmetric tensor satisfying

g1 3P 2o 10
p 2§ Yak (20)

Now, V has to be chosen so that T is symmetric when (4) is satisfied.

It is straightforward to show that (4) is equivalent to

i I 1 1P 04
a's - a a a'> =0 1
®pa®i %k %p,q?k?; (1)

Thus for T to be symmetric

V% - Vi. z a"i atP —gtP |
J kJ p( Jok T Kk,

) (12)
Using (8) and (11), a solution of (10) and (12) is

Vj.' - - a‘ui a'P 4 a'i a'P g4
Jk P k,J pP,a k]

Thus the connexion L defined by the coefficients
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=T+ - avl a'P - avl avI? + avl atP av(_l

Jk " Jk psd k p,k " J p,a kT
is a torsion free connexion for which D' is parallel.
Conversely, given a torsion free conmnexion L, with covariant derivat-

ive V, then

0= Vyuxy @' (YD) = oy ') = [ar@), a' ()]

for all vector fields X and Y.
It is not difficult to prove that condition (5) is equivalent to
a"(VX a'(Y)) = 0 for all vector fields X and Y.
Thus a"[a'(X), a'(¥)] = O and so D' is involutive and hence
integrable. ‘ Q.E.D.
This result implies that foliations can be characterised by distribut-
ions which are parallel with respect to torsion free connexions. The class
of torsion free connexions which make the tangent distribution of a foliat-
ion g’on M parallel will be denoted by C(M,'?).
Let B ve a leaf atlas for 5(' and (U,xi) a chart of B.

Then it can be shown that a', a" have compenents

a'ﬁ = 6;‘, a'g = 0, a'g = bi
A
. ' for b 1
a"i = 0, ?i"g = 5%, am = —p? o SO Py W
a o

Let L € C(M, 3‘), and suppose a bar denotes covariant differentiation with

respect to L. Parallelism implies

vl 0d
ajaslk 0]

expanding

a"J% (a'g-kﬂ‘%k a'g-Lgk a"é) =0



20.

From (1) this reduces to a"; a': Lﬁk = O which is equivalent to
a
Luk =0 (2)

Iet (U,X') be another chart ofqﬂ’ such that U n U # 4. Then, on the over-
3

lap

S A S S 4
MOt R aR

=\ o

3x"  ax®  ax' P 32 x 9x

5x® o axd 9T ¥ R oyt

fitm1§§x =0 and (2).

X

Thus L induces a torsion free comnexion on each leaf of E}‘and each leaf is
a totally geodesic submanifold.

This raises two interesting questions:

(A) What can be deduced about the global properties of 3’ if C(M,?‘) con-

tains a complete connexion?

(B) What can be deduced about local or global properties of ?f if C(M,E}O
contains a connexion for which the induced comnexion on each leaf has
special properties,

e.g. flat, locally symmetric, constant curvature, etc.

In Chapter 2, a partial answer to (B) is given when the induced connex-
ion is flat. In Chapters 3 and 4, question (A) is discussed for the case of
a complete riemannian and pseudo-riemannian metric connexion. However, the

general question appears very difficult and must remain for future con-

sideration.

Another class of connexions associated with a foliation is now defined.
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Let (U,xl) be a chart of f. A basis for D' at each point of U is

_d - _ s n o3 - ah - _nH
e, = ,axA A=1,...,mp, and a basis for D" is E, = a (ea) =e, -by e

A

o = mpt+tl,..,,m.

u’

Definition 1.5.3 A Jet-Connexion I' on a foliated manifold is a torsion free

affine connexion for which the covariant derivative V satisfies Ve EB =0
A

in each leaf chart.

This condition does not depend on the particular leaf chart used, for if

(3,%") is another chart, then on the overlap

- H o

e = EA = afA . au since §§X =0
0X oX oX 9X
=i o . A S .

By = X, 3§§ . "g ng e since a"i =0
ax) 3% 3%

a o
oX oX
Thus
_ o 2. [0 u a
Ve, B =V 2¥§ By —%Tiz:_ By * fo : B)-{B Ve Ey
A EZE e OX ox" 9x oX oX u

2% v

To show that the class of Jet Connexions is non-empty, it will be proved
that the D-connexions of A. G. Walker [ 33_] are contained in the class.
Following Walker, some special parallelism conditions for a comnexion

are now defined.

(1) D' is said to be parallel relative to D" if parallel transport of

vectors in D' along differentiable paths whose tangent fields lie

in D", yields vectors in D'.
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(2) Similarly, one may define D" parallel relative to D'.

(3) .D' is said to be path parallel if geodesics with initial vectors

in D' have their whole tangent field in D'.

(4) Similarly, D" path parallel.

Definition 1.5.4 A D-connexion is a torsion free connexion satisfying con-

ditions (1) - (4).

If L is a given torsion free comnexion then it can be shown [ 33_] that the

most general D-comnexion is given by

i = i - P vq
- g"P nq 1 S 1% SRS < B o T S oI e |
a 3 a (pq) (L) + Cpq_(a S a 3 a'p+al' a 3 a k)
i i i 1 i _,s i .8
. = a.. + ] (L) = a! ' + g" nS
where a(Jk) a.Jk akg and aJk( ) = a 52 31k a"_ a 3|k and CJk

is any symmetric tensor field of type (1,2).
In fact, conditions (1), (2) are sufficient to give a Jet connexion.
To prove this it will be necessary to obtain equivalent algebraic conditions.
It is not difficult to prove that the following conditions are respect-
ively equivalent to (1) » (4), where a semi colon denotes covariant differ-

entiation with respect to T.

1) ani aP g - o
() pa J K

i P _.Q
2! al a™ a'* =
() p;a J "k

!
o

||:L

(3)' a"(5sq

D 4
)ajak 0

anl_) a" = o

()" 1

(p,q)

Y S ,nd 4P ond _
In a leaf chart (1)' reduces to qu a a'i a'p 0
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o an.j a|>\ a" - o

1.e. FAq o 1 8

o}

which is equivalent to FAB b; I‘>\u =0 (*)
(2)' reduces to (a'p o FEA a'g) a"g a'ﬁ = 0
i.e. a'ﬁ npP (a'p A-P;A a'g) =0
i.e. a'y (b0 b? rf % w! b$ ¥ +ol 10) = 0
which is equivalent to
Ogex * O Toa = o * By (0 THoT5) = 0 e

If V is the covariant derivative of T

- —pH -ri - M _mAd

VeA EB = Vex(eB bB eu) FAB e; - (bB) e bB FXU e;
- o H L0 _ 6 T 6 _..0
= (Mlg=og TY) &, = (bg y#bg Ty ~T o)

0O+ 0 if (*) and (**) are satisfied.

Thus (1) and (2) are sufficient for T' to be a Jet-connexion. It follows
that every D-connexion is a Jet-comnexion. The most general Jet-connexion
will be of the form F§k Dbk + a'? "E Vbq where V is any symmetric tensor
of type (1,2) and D is a D-connexion.

Let x  be a given point in a leaf L of ‘3—and g EO._,l:l + L a differ-
entiable path in L such that ¢(0) =

If (U,xl) is a leaf chart containing X, and T is a jet connexion with

covariant derivative V, then

(v Y? ) =— = 0, yields a solution YB(o(t)) = YB(xo)
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and so parallel transport of vectors in D"(xo) is independent of path in L
locally. Furthermore, the translation does not depend on the particular
choice of Jet comnexion. It follows that if o, 1 are homotopic, piecewise
differentiable loops at Xy then parallel transport of a given vector in
D"(xo) around ¢ yields the same result as that around T.

Thus by transporting a given basis for D"(xo) one obtains a homomorphism
w o NI(L,XO) + GL(p3;R) the general linear group of order p if EF is of co-
dimension p.

Let W(L,xo) = W(ﬂl(L,XO)). A different choice of base point, or basis
yields an isomorphic group. Similarly, for a different complementary dis-
tribution D" say, the vector bundle isomorphism defined by
v* a"(e,) (x) el 5"(ea) (x) for x € M shows that one again obtains an

isomorphic group.

Definition 1.5.5 The Walker Holonomy Group W(L) of a leaf L is the group

determined up to isomorphism by W(L,xo).

THEOREM 1.5.2 Let‘gf be a smooth foliation of codimension p on a

smooth m-manifold M. Then for each leaf of 5’ , the Walker Holonomy group

and the 1-Jet group are isomorphic.

Proof
Let L be a leaf of Sf'and x, € L a given point.
Recall that ¢, : ‘5 @,p > ﬁ;,p was essentially obtained by taking
equivalence classes of first derivatives at the origin. Thus, since the

matrix of partial derivatives of a local homeomorphism of class C” (that is,

a local diffeomorphism) is non-singular at the origin, and moreover the
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derivative of a composition i$ the matrix product of the derivatives it
follows that one may identifyg ;,p with the general linear group GL(p;R).

Thus 1 ¢ : nl(L,xO) + GL(p;R) yields the 1-Jet group Jl(L,xO).

Take D' to be the tangent distribution to ‘a’and D" a complementary
distribution. Let T be a Jet-connexion.

If ¢ : [[0,1_] + L is a piecewise differentiable loop at X, L. Then
there is a cover I = {(Ua,xb :a=0,1,...,n-1} of o by leaf charts and a
subdivision A of EO,l] satisfying conditions (i) and (ii) of §1.2.

Change coordinates in each chart (Ua,x;) by the rule

A_ A LA o
Yo = %3 ba(o)x
a _ .0
g = %3

Then {(Ua,y;)} is easily shown to be a collection of leaf charts and further-

more
i
90X
aa“ ) 3 2 ' ai? ) ai“ ) bg(O) ;ii
Ya Ya a a a
Thus

d
5;& IG(Eta’taﬂj) ) Eal O(Eta.’taﬂ:l)
a

Hence if Y° —& is a vector in D"(o(ta)) then parallel transport along o

ByP

from c(ta) to g-(ta +1), with respect to I' will yield the vector

Bya
v Tatl 8 g L.
3 B 5 at+l)

This is clearly the same as the action of (f )« and so parallel

atl,a
transport around o from X, to X will yield the same result as the action
of

(fn,n-l)* 0 (fn—l,fné2)* o "° o (fl,o)* = (fn)*
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which is the derivative of ¢(d).
Thus w([[o_]) and ¥1 ¢(on) give precisely the same linear maps of
RP to RP (where Eo] is the homotopy class of ¢) and hence the groups
W(L,xo) and JI(L,xo) are isomorphic
Q.E.D.
The following example shows that the Walker Holonomy group and the

Ehresmann Holonomy group are distinct in general.

EXAMPLE 1.5.1

Take R? with coordinates (x,y). Consider the smooth vector field
X = =x -g—x + g—y— »

X generates a one dimensional distribution, and since EX,X] = O this
distribution is tangent to a one-dimensional smooth foliation 5" A simple
calculation shows that the leaves of j consist of the y-axis and the curves
N = - log|x| + ¢ where ¢ is an arbitrary constant.

The integers Z act on R? by n(x,y) = (x,y+n), and X is clearly invari-
ant u;ldér' this action.

By taking the quotient structure, one obtains a smooth vector field on
the cylinder R x S}. Let 5’ be the smooth foliatipn determined by this
vector field.

The leaves of 3’ are homeomorphic to R except the image of the y-axis

which is homeomorphic to S'. Call this leaf L.

From the picture it is clear that

H(L) is generated by the germ of the

| j=’ map f which sends X, tox.
1 \se

X
S __ 5 But x; =

-2
o =, —>x T¥x _
Thus H(L) = < G(O,f) : £(x) = —= >

1+x
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and is infinite cyelic.

However J,(L) is generated by % (0) = 1, and this is the identity.

i.e. H(L) 27, W) = {1}
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CHAPTER 2

Locally Affine Foliations

Throughout this chapter only smooth manifolds and maps will be con-

sidered.

§2.1 Locally Affine Manifolds

Definition 2.1.1 A locally affine (L.A.) manifold is a pair (M,T) where M

is a smooth manifold carrying a smooth affine connexion I' whose curvature

and torsion tensors vanish identically.

Such (M,I') can be characterised by the existence of an atlas of affine
coordinate charts. That is, an atlas in which the coordinate transformations

have constant jacobian.

LEMMA 2.1.1 [[{ 7] Let (MI') be an L.A. m-manifold then there is an

affine atlas on M. Conversely, if M admits an affine atlas f* then there

is a uniquely determined cormexion F(ﬂ*) for which (M,T(®)) is an L.A.

manifold and g;h = 0 in each chart.

Proof

Let (U,xl) be a coordinate chart on M. From the classical Frobenius

theorem (see Hicks [_9 _] page 126) the equations

i .
gfj + F;j X =0 (1)

one completely integrable if Rj;h’ the components of the curvature tensor
vanish on U.

Thus it follops that parallel transport of vectors in U between two
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points is independent of the choice of path between the points.
let p € U, Xl(p),...,Xm(p) be m~independent vectors at p and XigeensX

the corresponding vector fields on U obtained by parallel translation. ILet

i 9
. = X, —r X. -
X; =% =3, then [X;,X,7] = [ —~ xh ax] v

9x

Substituting from (1), one obtains

- °_ -
Cx;.x,] [xh xf-x} xJ) =0

L X

Hence, by lemma 1.4.2 there is a coordinate chart (V,yl) such that p € V and

_ 3
V € U and Xi"——I on V.

If i? and :rij are the respective components of X and I' in (V,yl)
then, % = 6% and from (1),
i i
—-r(sJ)m 82 =0
ay i is "k
» )
o Flk 0 onV (2)

Since one may find such a chart (V,yi) about every point of M it follows
that there is a cover S of M by coordinate charts in which the connexion co-
efficients of I' vanish, From the transformation law for those coefficients
it is clear that the coordinate transformation between two overlapping

charts (V,y") and (V,y%) must satisfy

32
_.q_l_l_(.:o
ayJ oy
The required affine atlas will be the collection of coordinate charts con-
taining S and maximal with respect to (2).

Conversely, if M admits an affine atlas¢s( then one may define a

comnexion I' on M by putting P;k = 0 in each chart. Q.E.D.
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COROLLARY If (M,T') is an L.A. manifold, and M is compact and

connected then m; (M) is infinite,

Proof

Assume m, (M) = {1}, then from the proof of the theorem there are m-
independent vector fields Xi,.». ,Xm defined over all of M satisfying

[xi,xj_. = 0.

Thus there is an affine atlas # = {(Ua,x;) : a € J} for which
0x

—& - 6% on the overlap of U_ and U _.
3 J a b

Consider the l-form w, defined by w = dxg in Ua' Then w is clearly
defined globally and is non-vanishing.

If d is the exterior derivative (see [[1G _]) then dw = O and w is
closed.

Now, any smooth real valued function f, on a compact manifold has at
least two critical points (i.e. where df = 0), namely at the maximum and
minimum values. Thus w # df for any f, and so w represents a non-trivial
element in the first de Rham cohomology group (see E 7 :]). It follows
that the first singular homology group with integer coefficients is non
trivial [27_]. But this is just (M) made abelian and so m (M) # {1} a
contradiction.

If 7, (M) were assumed finite, then the simply connected cover M of M
would be compact. The locally affine structure lifts in a natural way to
IT/Iand SO m(IT/I) # {1} a contradiction. Thus m;(M) is infinite. Q.E.D.

So far only local properties of the comnexion have been used. However,

with an assumption of completeness, very strong global results may be

obtained.

Definition 2.1.2 A connexion preserving map f between two manifolds M and
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M' with affine connexions I' and I'' is a smooth map satisfying

£, V.Y = VL o £.Y

X o

where V and V' are the respective covariant derivatives and X,Y are any two

vector fields on M.

The following result is due to Hicks [ 10 _].

LEMMA 2.1.2 Let M, M' be m-dimensional connected manifolds each

carrying affine connexions. Let M' be complete and let £ : M' - M be a

connexion preserving local diffeomorphism of M!' into M. Then f is a cover-

ing map.

Proof'

To show that £ is onto it will suffice to show that f(M') is both open
(which is trivial since f is a local diffeomorphism) and closed. Let
p e T(M') (the closure of £(M')). Though M is not assumed complete, the
existence of a simple convex neighbourhood at p (see Whitehead [~ 49_]),
ensures that the map expp is defined and non-singular in a neighbourhood U
of o€ Mﬁ, Such that if pe Uthentpe Uforallt O0< t 1. ILet
V = expp U be the corresponding neighbourhood of p. Since p is a limit
point of £(M'), there is a p1 € V.n f(M'). Let p = (expplU)’1 (p1). Then
g [:O,l:] -+ M defined by o(t) = exp, tp is a geodesic ffom p to p1 with
initial vector TB(O) = p. Let a(t) = o(1-t), then o is a geodesic from p1
to p» Choose any p' € M' such that f(p') = pi, Let q = £} Ta(O) € Mﬁ,.
Define vy : [:O,l:] + M' by y(t) = expp, tq. : Then vy is a geodesic in M', and

hence fo v is a geodesic in M since f is connexion preserving. Moreover,

fo vy(0) = a(0) = py«
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Also, Tf Y(O) = f,.(q) = T&(O), which implies on = a. Hence £, v(1) = p
and so f is ogtov This argument also shows that M is complete.

To show that f evenly covers any p € M, let U,V be as before. Then it
can be shown that f evenly covers V, that is to say, f~' V consists of a

union of disjoint sets each diffeomorphic by f to V. Let p' € M' such that

f(p') = p. Since f is a local diffeomorphism, f,' maps M.p isomorphically

onto Mé,.
Define ¢ : V> M' by ¢ = P 1 £t o (expplU)'l and let ¢(V) = V',
Clearly ¢ is smooth, since it is a composition of smooth maps. fo¢ = ident-

ity map on V because ¢ 1lifts geodesics in V that emanate from p into geo-
desics in V' that emanate from p'; moreover, since f is comnexion preserv-
ing, f projects these geodesics back into geodesics that have the same
tangent vectors at p and hence for such geodesics g, fo¢oo = O,

Similarly ¢o (£]Vv') = identity map on V'. Thus f is a diffeomorphism
of V' onto V and it follows trivially that V' is the connected component of
p' in £71(V), Q.E.D.

This result will be used several times in what follows.

Definition 2.1,3 An L.A. manifold (M,T) is complete if I' is a complete

connexion.

THEOREM 2.1.1. lLet (M,I') be a complete L.A. m~manifold. Then for

eachpeM, exp : M - Mis a covering map.
| 4 M

Proof

One can make Mp into a complete L.A. manifold as follows.
Pick a basis C1yeney€ for Mp. This defines a global coordinate chart

(Mp,kl) for Mp’ where if X ¢ M.p and X = At e; then X has coordinates
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The coefficlents L?k = O define a connexion L on Mp. Geodesics are
just affine lines and the cornexion is complete.
By Lemma 2.1.1 there is an atlas ¢V = {(Ua,x;) i a € J} of affine
charts on M -puch that the connexion coefficients of T' have the form
It = 0 in each chart.
Jk
Now, let X € M, and o : [0,17] ~ M be the geodesic at p with initial
vector X. i.e. 0(0) = p, TB(O) = X.
i i i &
Let (Ui,xy ),a,a,(Ua,xa),:o:,(Un,xn) be a cover of & by charts of
for which there is a subdivision EO,tlj sesny Eta’ta+lj goos Etn_l,lj of
[0,1] satisfying O(Eta,ta+l:]) < Ua There is no loss of generality in
assuming that —E—I (p) = e i=1,...,m
8x1

It follows by induction that in the chart (Ua,x;), 0 has coordinates

of the form

Loy - al j i
o,(t) = Aj(a) ¥ ¢ + B (a), t e [t

where (A?(a)) is a constant non singular mxm matrix and Bi(a), i=z1,...4m
are m-constants.

Thus oril(l) = AJ%(n) Xj + Bi(n)n These are the coordinates of expr in
the chart (Un,xi)a Thus exp, has the form X‘j + Ag(n) Xi + Bj (n), which has
jacobian (Ag (s)) and so is non-singular, showing that expp is a local diffeo-
morphism, But the connexion LOrl Mp is also preserved .

k
map - Q.E.D.

i

(i.e. LJ% =0~ F}k = 0). Hence, by Lemma 2.1.2 expp : Mp + M is a covering

COROLLARY. Let (M,T) be a complete, L.A. m~manifold. Then with

-1 —~ [P, JL S - . i - T 1. - Fa L
respect to the coordinate chart (M ,A7) on M , the group of covering trans-
M 15
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formations of the covering map e;cp_ is a subgr'oup of the group of affine

transformations A(m R) of R" (see [:l5"§]).

Proof

et T 1\’[p > Mp be a covering transformation (see ]:17:] ). Then by

definition f is a homeomorphism and

expp o f= expp

Now, since expp is a connexion preserving local diffeomorphism it follows
that f is a diffeomorphism and preseh’es the connexion L.

Thus if V is the covariant derivative of L then

J /.53 h

f*{(va/akl ‘ady ) =@ £y oyt To ) 0
Thus

s otk afs(a2 &, " Lﬁ)

1 938 ol \gaS A 1S

2
which gives -is—fl{— =0
3,5 and

and hence f is an affine transformation. Q.E.D.

Thus a complete, L.A. m-manifold can be considered as the quotient space
of R" by a subgroup of the affine group. This result was first proved by

Auslander and Marcus in [ 1 _] using a different method.

§2.2 ILocally Affine Foliations

ILet M be a smooth m-manifold with a smooth r-dimensional (i.e. co-

dimension m-r) foliation 3’ ‘

Definition 2.2.1 A locally affine (L.A.) foliation on M is a triple
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(M, #,T) where I' is a connexion in C(M,%) which induces a locally affine

structure on each leaf of 3?: (See §1.5).

Several results, which generalise those in the previous section can be
proved about such follations.

Throughout what follows late greek suffices A,u,0, etc. will denote
integral values in the range 1,...,r early greek o,B,y, etc. in the range
r+l,...,m and roman i.j,k, etc. in the whole range 1,...,m.

The following result is due to A, G. Walker ESS] and is quoted in

a form suitable for use in the proof of the next theorem.

LEMMA 2.2.1. let XkL,A = 1,..., r be independent smooth vector fields

defined on a neighbourhood U of a point p € M, satisfying

- 40
Cx.X, 0 = & X

for some smooth ¢§h’ and let QA be r-smooth real valued functions defined

on U. Then the system of equations

for f admit a smooth solution on a neighbourhood V< U of p if and only if

g
Xy ¢ e ®

- X9 T8 9

u

The next theorem is a direct generalisation of Lemma 2,1.1 and gives a local

characterisation of an L.A. foliation.

THEOREM 2.2.1. Let (M, &.T) be an L.A. foliation. Then there is an affine

leaf atlas Prs {(U ,x7) : a € J} of charts for the foliation Ef; such that

in the overlap of two charts (qugi) and (szzélrthe coordinates are related
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by equations of the form:

Aﬁ(xi) . x +-BA(X§)

A
o

c“(xg)

oo

Furthermore the connexion coefficients Fi, satisfy Fﬁc = 0 in each chart.

Conversely, if M is paracompact and admits an affine leaf atlas #¥ of the

above form then there is a I' € C(M,"$) such that QWLﬂLLI) is an L.A. foli-

A
o

ation and T = 0 in each chart of ¢¥ﬂ

Proof

Let D be the tangent distribution to E}'and (U,xi) a deaf chart from
a smooth atlas. Iet p € U, |
Consider the transversal neighbourhood at p consisting of those points
of U whose coordinates satisfy xA =0, A = 1,u..,r. W,
The smooth vector fields-;gx s A= 1,...,r give a basis for D at each
X

point of U, in particular along W.

The system of equations

ax: u 8 .a g _ W
— T (x7,x (w)) %& =0 we (1)

BxT

with boundary condition XK(O,xa(w)) = 6&, admits a unique solution

X;(xe,xa(w)) for each w because RUQT = 0. Standard arguments (see for
example ]:2, ]) show that the solution varies smoothly with xiL , if w is
regarded as a pgrameter.

Thus one obtains smooth vector fields XA = Xk(x.

U. Furthermore
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0

Bxc

EX)\ ’XIJ] =

T
H axT

ax° ax‘;]

T 6 o o
X, X [rlg - Tged from (1)

O since T is torsion free.

Thus by Lemma 2.2.1 there is a neighbourhood V < U of p for which there

are + smpoth functions fA, A =1,...,r satisfying

X, ! = &¥ (2)

These functions are independent, for consider a functional relation

F(f*) = 0. Then

0=X Fs= 2 i’%xxf‘%% by (2)
uzl,...,r of oF

which is a contradiction.

Consider the transformation of coordinates defined by

By suitably restricting the coordinate ranges one may obtain an open

set V' € V such that p € V', and (V',y") is a leaf chart.

From (2)
u 6
X0 A - ¥ pus X0 - 2
A 3 ] A A A
X oy
differentiating
aXG 2 M
0 = A 9y Xe 0Ty
T A LT L0
X ax dX 99X
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which implies that 1"‘;0 = 0, (3)

where T}k are the conmnexion coefficients of T' with respect to the chart

(V',yl), Since p was arbitrary it is clear that one may cover M with such
charts and thus generate a maximal atlas with the property (3). The affine

nature of the coordinate transformations follows immediately from the trans-

u
Xo®

Conversely, let ® be an affine leaf atlas. The assumption of para-

formation rule for the T

compactness guarantees the existence of a postive definite riemannian metric
on M (see [:IS':]). Such a metric may be used to define a complementary
distribution D to D.

The structure (D,ﬁ) determines two smooth projector tensors a, a see
§1.5.

Let L € C(M,5), and let (U,xi) be a chart of & . 1In this chart the

A

components of a satisfy aﬁ = Gu, ag = 0. Define m® functions ng in each

chart by
A
(i) Fuo =0
vy wY Y e ae O _
(ii) Pij = Lij (note that L ¢ C(M,ﬂp) implies L;, = 0).
ciiyv 0 _ 0 _ T _p .0 _ 10 _.p 0
(iii) Tax = Loy = 3, &) Lrp’ ( Ly o2 pr).
sy 0 _ 0 A U .0
(iv) FaB = LaB &, 2 L)m=

To verify that these functions define a connexion on M, let (V,yl) be

another chart of?k' such that U N V £ ¢ and let E;k and 53 be the components

of L and a in this chart. Then



(i)' . | &0 | xS pio, 92 x* .BY%

axt oyt o’ T M ay®
3y A axY T i 0 oo
- ) , ' .
ax' oy oy’ °® oy 95° o
B, _ B _
and Fev = Lgy = O
=0
..A _
© Fuo - o:
Giy L oY A ad o 22 Y
1) 1) Bxa ayl By‘] Byl ayJ' axo‘
Y
since 2L = 0
ax™
o0 o
?Ht Lkh*‘ th
v .. 1 —O’ _ _0 _ -T —U
(iii) Ty = qu ar I7
AT S T S GIb S i
ot et gy
- [?..Y_ X v,y x ][ay. 0 af
ax ayu g ax” .Byq' axH ay'!-' ay)\ 9p
ax”  ay® ayx 1T gt ay® ayA VT
RN S S N b i
A S S R TRV 2 b y°
TR R | ELBT aB L\)Tj = .
oW 3y> dy"  ox

u

But from (iii) the bracketed term is FBT
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(i)' Tog.= Loy - &, a Iy

|
ol
+

ax? ay® ax® oy lax® gy ay? P
_yY o a iy BxL\)+32xl 5y°
ot oy oy 9K Y oy P 0T ay% ayB T ot

e v
T8 v 8xa ayv‘ axB
Y y ax  dy
-t %" Byg oX
e 18 aya' Y ayB
- gtV axe oy ox"
e ot 4o ° LB

5x" ay“ oy =Y oy 9y ox
oy 9X 9X v T .V
+ . 2L a_ Ly ]
oY Byu B o€ e 0T
+ ay? axe axt v - at LV :]
Ay ByB aya €6 0
Byc ax!  3x )
Y3 o B L €
9X 9y oy Y
o J k - 2 i g
- 2 T . ﬁﬁa o axB . F%k + aa X g - ayi, as- required.
ox oy 3y - M dy 9y X
Thus the Fék define-a torsion free affine comnexion I' on M. ' *The condition
F?A = 0 implied by (ii) ensures that I' e C(M,%").  Purthermore since
Pﬁd =0, it follows that Rﬁdi-=-0-and so[" induces:a- L:A::structure on each
leaf.

‘Thus (M,%F,T) is an L.A. foliation. Q.E.D.
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This result leads to the following conjecture.

CONJECTURE 2.2.1 Let (M,Ef) be a smooth foliation of:a paracompact mani-

fold M, in which each leaf is diffeomorphic to an L.A. manifold (where each

leaf has the differentiable structure induced from a leaf atlaéL Then there

is a connexion I on M such that (M,Z.T) is an L.A. foliation.

The following result shows that the conjecture is indeed true for the

case of one dimensional foliations.

THEOREM 2.2.2. Let M be a smooth paracompact M—manifold admitting a smooth

foliation %~ of dimension r, with leaf atlas # = {(Ud%zi) : a € A}, Then

there is a sub—atlas\iﬂ" < 95? for which the partial r x r jacobian determ-

a xl\
inants J = det |—2| are *1 (+#1 if Ji' is always positive).
J

ab u
abe

Proof

The assumption of paracompactness guarantees the existence of a posit-
ive definite metric g. Let D' be the tangent distribution Uaff’and D" the
orthogonal distribution. As before (D',D") determines smooth projectors a'

and a". In the chart (Ua,x;), D' is spanned by*-ax A=1l,,..,r, D" by
0X

)

) A 3 =
[._0!.- -a'd _—_X] o= r+l, ...,
axa

For the cotangent bundle there are the corresponding dual bases

w; = dx; + a'g dxs, A=1,...,r and dx: a = r+l,...,m respectively.

Then it is easy to show that g has a line element of the form

U o . B
) \3; + Eouf dxa dx

2 . !
ds® = ga%r a a

where
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a T
Bxa axa
AT o e (1)

on the overlap of Ua and Ub'

Moreover: dEt(ga%p ) # 0.

From (1) |det(g ap )| = I%p ldet(g )|

Writing J, = /]det(géxﬂ_f] it is clear that

J
b
J ., =t (2)
ab Ja

Now re-choose coordinates as follows

1

y = foa Tt ., x:) dt
e

m m

Ya = %3
By; Byx ax; Bxg

Then det|—={ = det g 5

ayH x> 3 Byu
Yo a % b

3ince Ja is always positive, one must obtain +1 if Ja

p 1S always

positive.
By suitably restricting the coordinate ranges one can obtain an open
iy .
set Va c Ua such that (Va,ya) is a leaf chart.

Such charts will generate the required leaf atlas. Q.E.D.

COROLLARY. Any l-dimensional foliation'%f on a paracompact manifold M admits

an L.A. structure (M,7.T).
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Proof

From the theorem there is a leaf atlas ?*’on M for which

ax? ax’
det|—2| = 1 = —2
2N 3%,

Thus‘ﬁk is an affine leaf atlas, and so by theorem 2.2.1 there is a

connexion I' on M for which (M,F,I) is an L.A. foliation. Q.E.D.

EXAMPIE 2.2.1 Affine Bundles

Let:B = (E,n,B,F,G) be a fibre bundle in the sense of Steenrod E.’L‘\j,
with total space E, projection m, base space B, fibre F and structure group

G, with the following properties:
(i) E,B,F are smooth manifolds,
(ii) m is a smooth map.

(iii) There is a connexion L on F such that (F,L) is a complete locally

affine manifold.

(iv) G is the lie transformation group of connexion preserving diffeo-

morphisms of (F,L) (see Nomizu [_18 _]).

(v) There is an atlas of coordinate charts #(B) = {(Va,y;) :a€J} on
B and diffeomorphisms ¢_ : V_ x F > ! (Vé) satisfying
(a) LN (yo,x) =y for all (y,x) € Va x F

- (b) if ¢ y F + 1 '(y) is defined by

3

¢a,y(x) = ¢a(y,x)

Then the diffeomorphism ¢6ﬂy o 9 g F + F defined on v N Vi
] H

coincides with the operation of an element of G.

(¢) For each a,b € J, the map A Va n Vb -+ G defined by

- -1 .
gba(y) = ¢b,y ¢a,y is smooth.

Such a bundJEeES‘will be called an affine bundle. Condition (v) shows
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morphic to F. Moreover the connexion L-induces a connexion Ii{y).on each
leaf 7~ '(y) via the maps ¢a which does not depend on the particular choice
of ¢a.

If I&(F) is an affine atlas on F for L, then the maps ¢a together with
#(B) and &(F) give a leaf atlas for ?}'such that the induced atlas on each
leaf m~'(y) is an affine atlas for the comnexion L(y). Hence by theorem
2.2.1 there is a connexion I' on E which induces L(y) on each leaf n !(y) and
such that (E,E};P) is an L.A. foliation. Clearly I' induces a complete L.A.
structure on each leaf,

This motivates the following definition.

Definition 2.2.2 An L.A. foliation (M,*,r) is leaf-wise complete if I' in-

duces a complete connexion on each leaf. (Of course, if I' is-complete then

(M,2~,T) is necessarily leafwise complete).

It might be hoped that a leaf-wise complete L.A.- foliation'always admits
an affine bundle structure.” However, the next result shows that this is
certainly not. true in general, even for simply connected manifolds. Thus,

theorem 2.1.1 does not generalize in this direction.

THEOREM 2.2.3. Any l-dimensieonal foliation E}'on a compact manifold M

admits a leaf-wise complete, L.A. structure (M,%tir).

Proof
By theorem 2.2.2 there is an atlas #v = {(Ua,x;) : aedJ} onM such

that the leaves of gf’are given locally by

2 m _
XgseeesXy = constant
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Bxé
IfUa N Ub # ¢ then — = #].
¥,
1
By theorem 2.2.1 there is a comnexion I ‘'on M such that I';; = 0 in each

chart of ¥ and such that (M,%T) is an L.A. foliation.

. i i _
Clearly, if (Ua,xa) e & then (Ub,xb) efr where U, = Ups

xi = -xt . 1= 1,...,m
- X o lyeea,m.
Consider the set M = ( (p,X(p))  X(p) € M, X(p) = i‘- (p)
a
for some a € J
Consider the subsets of 1\71, Ga = g(p,a—i1 (p)) :pe Ua)]'
a

It is straight forward to check that these give a base for a topology
on M such that 7 : M > M, defined by m(p,X(p)) = P, is a 2-fold covering
map.

Let S = {(Ela,x?il) : a€eJ}. This is a smooth coordinate cover for l‘~/l and
generates a smooth atlas for which m is smooth.

Moreover, if ﬁa N EJ # ¢ then it is easy to see that

b

1
a

?x_g

(a4
Hence S generates a smooth leaf atlas & (satisfying (1)) for a foliation

X
= +] (1)

% on M. Ooviously, F =13,
~ ~ ~1
The induced comnexion I' on M clearly satisfies I'y; = O in each chart

[ and

of A’, and makes (M,?’,I‘) an L.A. foliation. Also, (M,? ,I') is leaf-wise
complete if and only if (M,4,I') is leafwise complete. Since M is a 2-fold
cover of M it is compact.

Because of (1), the vector field X = 2 on Ua’ is defined globally on

1
~ axa

Since M is compact, X is a complete vector field (see EIS :]), that

is to say, there is a smooth map ¢ : M x R + M, such that o(p,0) = ﬁ and
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T

O'(f)', )(O) = X(ﬁ)-

But, in a chart (U,x*) for which § € U, one has

ol(F,t) = x'(P) + ¢t

ca(

> (B,t) $,0) a=2,...,m
But these are the geodesic equations for I' along the leaves. Thus geo-
desics in the leaves can be extended for all values of the parameter and so

(M,%,T) is a leafwise complete. Q.E.D.

COROLLARY. There. is l-dimensional leafwise complete L.A. foliation on the

3-sphere S® which does not admit an affine bundle structure.

Proof

It is well known that there 1S a complementary vector field X to the
2-dimensional Reeb foliation of S*(see [_20_]) which has some integral
curves homeomorphic to R and at least one which is homeomorphic to S'. Thus
the foliation determined by X cannot admit a bundle structure of any type.

Q.E.D.

EXAMPLE 2.2.2

Although one may alwgys find a leafwise complete structure on a compact
M in this way it is not true that any given L.A, structure is necessarily
complete. For instance, consider the Christofel connexion ', on the plane
R? defined by the Riemann metric ds? = dx? + e’ dy?. Here
1 1 1 1 2 2 2 2
F]l = Plz = F21 =Ty =T, = I'is = Ty = 0 and T2 = 1/2. A short calculat-
ion shows that curvature and torsion tensors are zero. The metric is not

complete since geodesics do not have infinite length. On the  torus

(x,y)(mod 1), the connexion I' can be projected since the coefficients F§k
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are periodic.

This defines a non-complete L.A. structure on'the-torus T?. By taking
the affine product with itself (see exampile 3.1.1) one obtains a trivial
foliation of-T* by the T? factors with a non-leafwise complete L.A. struct-
ure.,

The next result throws some light on the behaviour of these follations

in the large.

THEOREM 2.2.4. Let (M,g.) be a leafwise complete, r-dimensional L.A.

d**;) : aeJ} of affine leaf charts, If

V ={peU : xA(p) =0, A=1,...,r}. Then for each a € J there is a

foliation with an atlas o = {(U

local diffeomorphism.

. r
Ea : Vé x RW =+ M

such that.

(a) There is a neighbourhood W_of O € R' for which
£
€

: V. x W_-+U_ is a diffeomorphism and
a a a a

: V. x 0 -»V_is the inclusion map.
a a a

(b) ForeachveV,E& | vxR » [:leaf through v:] is ‘a covering map.
(=1 [«

(¢) Ifw : U >V is the obvious projection, and if Ua N1 U _ is non-null
a a &}

@

and connected, then there is a diffeomorphism.

r r
%a.né%n%QXR +%Ug\%)XR
such that: Eb o Moa = Ea
Nag = identity
Ny = N
ab ba

= i n N .
ncb 0 nba nca 1f Uc Ub Ua 0
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Two lemmas are required:

LEMMA 2.2.2. Let N be a smooth manifold with a complete connexion then

the map Exp : T(N) > N, defined by (p,X(p)) I+ expprszfor'each p e Mis

smooth.

Proof

The theory of ordinary differential equations (see ]:l :[ page 22) can
be used to show that this is true locally, in the sense that there is a
neighbourhood U of p and a neighbourhood W of the zero section in T(N)|U

such that Exp i W~ U is smooth.

Let 0 : [0,1] + N be a geodesic starting at p with initial vector
TG(O) = X(p). Then by definition Exp (p,X(p)) = o(1).

If 0,61 1yeees Etk;lj is a subdivision of [[0,1_]

then = o(1)

Exp (c(tk), (l-tk) To(tk))

B (Bp(o(t,_p), (b=t 1) T (t, 1)), (1-t) T_(t,))

etc.

Thus, by choosing the subdivision in a suitable way it is clear that
there is a neighbourhood of (p,X(p)) in T(N) such the Exp can be expressed

as a composition of smooth maps, and hence is smooth. Q.E.D.

LEMMA 2.2.3. Let (N,I') be an L.A. n-manifold and (U.xl) an affine

chart on N. Iet e;,...,6 be a basis for N p e U, and f},...,f a basis
o P m—

for N, ge U. Ife;(z),...,e () and fl(z),Qa.,fl(z) are the corresponding
Li 11 I

bases at 2z € U obtained by parallel translation along paths in U, and if

e.(z) = A%_g.(z) then Ai does not depend on z.
J
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Proof

N _ 38, . 39, .
if e; = €} /axJ (p) and fi z fi /3XJ (q)

then &,(2) = e} %/, § (2) and £,(2) = £ ¥ 5 ()

clearly Ai fg = eg » and since (fg) is invertible, the result follows
Q.E.D.

Let D be the tangent distribution to Eff' Consider the map

£ Vé x RY + M defined by Ea(v,(Xl,..,,Xr)) = exp, XA EEX (v). Clearly

Ea = Exp ](DIVa) and hence is smooth by lemma 2.2.2. To zgow that Ea is a

a

local diffeomorphism let o(v) : [[0,1_] + M be the geodesic starting at v
with initial vector XA _27 (v). Since the leaves are totally geodesic sub-

X
manifolds, o will lie - %ntirely in the leaf through v.

There is a subdivision EO,tl:],...,[tb,tb+1],...,Etk,l] of [0,17],
and a cover {(Ub,x;) : b = 0,1,...,k} of o(v) ([[0,1]) by charts of & such
that o(v) ([t,.,tp,,]) < Up.

It is not difficult to show that in the chart Uk’ o(v) has coordinates

of the form
o (v) (8) = PA(v) W+ Q1)
o (V) (£) = F(v)
A oF" ¥ . :
where (Pu(v)) and 3 (v(xo)) are non-singular matrices. But
(ox

a1 i . i .
(Ea(v,(Xl,.,.,Xr))) = ok(l) with respect to (Uk'xk) and hence (Ea)* is non-
singular, i.e. Ea is a local diffeomorphism. If the XA are sufficiently

small then o(v) (1) will lie in Ua with, coordinates

X + oM v) (0)

c>‘(v) (1)

() (1) = o*(v) (0)

then (a) follows with
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W= (X e B pdl - ot (0) < ¥

< cg + oA(v) (0)} (see definit-
ion 1.1.4).

By fheorem 2.1.1,expp ID(p) : D(p) ~ [:leaf through v:] is a covering
‘map, and so (b) follows.

Put Q =V, x W < V_x R", then £,(Q) = U

Suppose now that Ua N Ub # ¢ and is connected.

If z ¢ Qa and ga(z) 3 Ua N Ub define

Noa(?) = (& 1Q)7" - £ (2) | (1)

- -1 . . . _
Put Nab = (EalQa) (Uéf\Ub) then clearly n,_ : Nab > Nba is a diffeo

morphism.
The idea now is to extend linearly along the R" fibres using the L.A.
structure on the leaves.

For convenience, let e,, A = 1,...,r be a basis for R" so that

A’
(X!,...,X") may be represented as x* e, -

Ay = A -
and oa (V,Xo &) = (v,Yo e), ve v

_ A
Suppose z = (v,XO ex) e Ny

let q = Ea(z). Then —EX (@), » = 1,...,r is the basis for D(q) obtained
9X

from —QX (v) by %arallel translation within the leaf through v and
9X .
vV (in 2the plaque of U, through q). This is because (Ua,x;) is an affine

leaf chart. But

(q) = A‘; — (a) (1)

(where (A&) will be a non-singular r x r matrix).

By Lemma 2.2.3 AK will not depend on the choice of z: € Qa’ provided q lies
in the leaf through v and v (see picture) and hence is a function of v only.
Now since Nab is open, there is a neighbourhood V' of v in Va such that the

transverse neighbourhood S at q lies inENab, where
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S=(q' Eéyab : x;(Qf) = x;(q) A=1,...,r, xg(q') = xg(v') a = r+l,...,m

vl e V!

4 L

TLEAF

2
o,

smooth, and hence it is smooth on na(Ua(\Ub),

(q') shows that AY : V! > R is

lation —9— (af) = aM
The equation 5 (@) = AA(V') . A

X
a

The domain of nba can be extended from Nab to ﬂa(Uaﬂ Ub) x Rr as follows.

If

A

A . o A
(V,XO eA) e N, and if nba(V,Xo ex) = (v,YO eA) (2)

put

e (V2 &) = (7, (el () (Z*-)) e)) (1T)
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This does not depend on the choice of Xo because if

A - A
Moa, (v,X] eA) = (v,Y} ex)

then
A -
exp,, X>1\ L}\ (v) = exp; Y1 i}\ (v) = q say.
Bxa axb
But
ASA 9 _ A D . .
expv(X1+Z ) — (v) = exp, 2" — (a) Since v,q are in U, and N
Bxa axa is connected.

expy 2t ) L= (@

%y
= expp (142 K () 25 @)
9%,
.oexp 7t —ET (v) = exp;(Yé+Aﬁ(V){Zu-X¥}) —Ex (v)
Bxa Bxb
thus nba(v,ZA ex) = (5,(Y¥+Aﬁ(v){ZU-XE}) ek)

and so Nba is well defined.
By a similar argument one can show that definition (II) does in fact
agree with definition (I) on Nab'

is smooth because Aﬁ is smooth, and is a diffeomorphism because the

Mba
correspondence v + v is a diffeomorphism and the correspondence
ZA -+ Yé + Aﬁ(v) {z" - Xg} is a diffeomorphism. R® > R,

It is stralght forward to show that ga = Eb o nba'
Obviously Mg = identity.

Suppose Ua N Ub N UC ¢ forze Qa
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Neb o Moa = LEIQI™ | &1, {EIQ)™ | &}

-1 -
(E}Q)™" L B, = Ny

By linearity it follows that

- . r r
Neb 0 "va = Mca Tra(Uan Uanc> xR~ “c(UaAUb"Uc) x R

One can deduce immediately that ng; = n Q-E.D.

ab’
The maps Ea’ Noa closely resemble the structure one would expect from
an affine bundle. However, since Ea is only a local diffeomorphism one
camnot hope to obtain a bundle in general. It is hoped that this result
may be used to study the existence or non-existence of codimension one,
leafwise complete L.A. foliations on compact simply connected manifolds.

In Chapter 4 it will be seen that the foliation determined by a parallel

field of null planes on a pseudo-riemannian manifold has an L.A. structure.
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CHAPTER 3

Generalised- Grid -Manifeolds:

The work of this chapter has been inspired largely by the work of
S. A. Robertson [_22-], S. Kashiwabara [ 43 _] and H. Wu [41]. The main
stiuicture theorem of §3.2 is due to Kashiwabara, although the proof given

is more direct than the original.

§3.1 Equivalent Definitions

In [:11:] , 3. A. Robertgon defined a grid as a set of complementary
foliations, parallel with respect to a riemannian structure.

For our purposes it will suffice to consider only pairs of such foliat-
ions as all the results generalise easily to the more general situation.
In Chapter U4 it will be seen that the following generalised definition of
grid manifold reduces to Robertson's definition when the comnexion is the

Christoffel connexion of a riemannian metric.

Definition 3.1.1 A grid manifold M- (M,Dy,D,,T) is a smooth m-manifold

M, a pair of smooth complementary distributions D, and D, of dimensions
‘r > 0 and m-r > O respectively, and a torsion free affine comnexion I' on M

satisfying

(1) D) and D; are parallel.

(ii) If a, and a, are the projector tensors associated with the pair

o

(Dy,D;), and if R is the curvature tensor of ' then R(a;X,a,Y)Z =

for all smooth vector fields X,Y,Z on M.

Condition (i) implies that D; and D, are integrable (by Lemma 1.5.1)
and thus generate smooth foliations é}j and Er} say, of dimensions r and

(m-r) respectively.
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This is essentially a local definition and hence it is not surprising
that a grid manifold can be characterized by a special atlas of leaf charts
in whi¢h the connexion coefficients F?k'have a special form.

As in previous chapters, late Greek suffices A,u,0,T etc. will denote

integer values in the range 1,2,...,r, early Greek o,B,Y,8 etc. in the

range r+l,...,m and Roman i,j,k in the range 1,2,...,m

THEOREM 3.1.1. Let JK.= (M,D;,D,,T') be a grid manifold. Then there is an

atlas Py = {(Ua;E}) : a e J} of coordinate charts on M such that on the

overlap of two charts the coordinates 7> and z} are related by equations of
the form
A _ AA u
2y = Aba (za)
(I)
o _ o0 B
Zy T Bba (Za)

In the chart (U ,x') the connexion coefficients satisfy

A
ar%*  ar
o= ® oo, —BY - _HI . g
io Al 3 A o
dZ 092z :

and D,, D, are respectively spanned by —EX A=1,...,r and —ga o = r+l,,..,m.

aza aza

Conversely given a torsion free connexion I' on M and an atlas‘ﬁV with the

above properties then there are smooth distributions D; and D, for which

(M,D,,D,,T') is a grid manifold.

Proof

By Lemma 1.5.1 there is an atlas #, of leaf charts for %F; {(Ua,x;)}

so that D, is spanned by 'QX A =1,...,ron U,

Bxa

Similarly there is an atlas #ﬁ

{(Vh,yg)} so that D, is spanned by —éa

ayb
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o = r+l,...,m.

Let p € M and U ‘a neighbourhood of p on:which' coordinates xi'and yi are de-
fined, and for which each plaque of ?’1 intersects each plaque of ¥, exact-
ly once. There is no loss of generality in assuming that the charts have

a common origin O.

For each q € U, denote by P(q), Q(q) the plaques of %fl and Ef} through q
in U.

Define new coordinates z= on U by

2M(@) = ¥ Q@) N PO))

2%(q) = y*(Q(0) N P(g))

It is not difficult to prove that this defines a coordinate chart (U,zl).
Moreover, on U, D, is spanned by

=, A =1,...,rand D, by—aa,oc=r+l,...,m (1)
9z 9z

This procedure can be carried out for each p € M to obtain a cover
S = {(Wc,zi) : ¢ € J} by such charts.

It follows immediately from (1) that in the overlap of two charts
(w,zi) and (W,Ei) of S the coordinates 1 and 7+ are related by equations

of the form (I).

R9) f Q)

[ — QPO n Ply)

P)

P

7
QN P(o)
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D, is spanned by —QX A=1,...,r and D, by —éa a = r+l,...,m
. b4 0z
With res_pec_:t,to”z1 the projector tensors a; and a, have components

A A o o. o A
a U f Gu, az g = GB, ar § = 0, a; ; F 0
The parallelism of D; and D, implies that F?X = F;a = 0. Thus the curvature
condition (ii) is-equivalent to RiaA;=.O._ Thus
. R O .
r . .
A A S G|
ByA axA axY ix By 1y “BA
o
oT
- —BY
A
9z
2 T
Similarly, one can deéduceé that —== = O,
oz

Thus the cover S will generate the required atlas.
Conversely given such an atlas, and torsion free comnexion I' the required

smooth distributions D;, D, are defined locally by _QX A=1,...,r, and
oz

—Ea a = r+l,...,m respectively and the overlap equations (I) ensure that
02
they are defined globally and are parallel.
. . o _ ol W B

Also, Fhe atlas structure implies RBKY = RoAY = 0 and RBXY = RUXY = 0 and
thus Rt . = O,

JoA
Hence (M,D,,D;,I') is a grid manifold. Q.E.D.

EXAMPLE 3.1.1 The Affine. product- (see EB ]).

Let M,N be smooth manifolds of dimensions m and n carrying torsion free
affine connexions I' and L.

Let (U,xx) A=1,...,m be a coordinate chart on M and'(V,ya)
o = 1,...,n a chart on N.

If E = M x N is the smooth product then (UxV, (x*,y%)) will be a

coordinate chart on E. Such charts generate the product atlas on E.
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Define (m+n)?® functions P?k on this chart by

Moo p% o opr o
A ™ Papy ™ Fop 7 O

a -
PAB

(o4 o A A
P = P =
BY PBY? ué TLe

It is not difficult to show that Pﬁk give the connexion coefficients
of a torsion free affine connexion P on E (defined globally by the product

atlas).

B ad |
Since AY = g = 0 it follows from Theorem 3.1.1 that P gives rise
0x a9y

to a grid structure on E where the parallel distributions S; and S, are given
by the product structure.

Let pp : E+ M, p2 : E > N be the projection maps. It is clear that
p1 and p; are connexion preserving (see Definition 2.1.2).

Let o,T [:O,l:] + M,N be respectively geodesics on M and N, then
(o,7) : [[0,17] + E will be a geodesic on E. Conversely if h : [0,1] + E
is a geodesic on E then one can write h = (pih,p2h). Thus if T and L are
complete then P will be complete.

This grid manifold will be denoted by (MxN,S,,S,,I'xL).

EXAMPLE 3.1.2. Take R?® with coordinates (x;y,z). Let I be the complete,
flat Christoffel connexion of the standard metric ds? = dx? + dy? + dz?.
The distributions D, and D, determined by the vector fields (a/ax,a/ay) and
(a/az) respectively are parallel. Since the curvature of T vanishes it is
clear that (R®,D,,D,,I') is a grid manifold.

Consider the smooth embedding f : S% x (0,1) + R?® defined as follows:
Let g : S?2 +» R® be the standard embedding of the 2-sphere with radius 1

relative to the above metric

if pe 82 and t € (0,1), define f(p,t) to be the point distant (t+l)
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from the origin along the line joining the origin and g(p).

This embedding gives rise to a natural grid manifold structure on
S? x (0,1) induced from that on R®.

The foliations 3’1 and E}E on R? are given by the planes z = const and
the lines x = const, y = const. The foliation on S? x (0,1) induced by 2}1
has leaves homeomorphic to R? and to S! x R and so the structure cannot arise

from a product.

Az

2
L,

>l

Loty

2

o 1

It should be noted that although the connexion I' on R?® is complete, the
connexion induced on S x (0,1) is not.
This example shows that, even in the case of simply connected manifolds,
little can be deduced about the global structure of a grid without some
extra conditions. In the next section it will be shown that if the connex-

ion ' is complete then vktz (M,D,,D,,I') is covered by an affine product.

§3.2 Complete Grid Manifolds

Definition 3.2.1 A grid manifold M, = (M,D,,D,,I') is complete if I' is com-
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plete.

Definition 3.2.2 A grid morphism f : J«.+ Jq-between two grid manifolds

M= (M,D,,D,,T), M= (M,D:,D;,T) is a smooth connexion preserving map
£ : M > M such that-D;- = £*D; and D, = £* D, as bundles (i.e. f preserves
the foliations %f1, 2}1 and {Fz, &2,

If in addition f is a diffeomorphism then f is a grid isomorphism.

THEOREM 3.2.1 [[13 ]. Let M= (.D,.D,.T) be a complete grid manifold

for which M is connected and simply connected. Then|jL is grid isomorphic

to an affine product.

Proof

Let 31 and J> be the foliations determined by the parallel distribut-
ions D, and D,. Let p € M and suppose L, and L, are the leaves of %Ll and
%, through p.

Let ¢¥ = {(Ua,xi) : a € J} be the specially related atlas of leaf charts
given by theorem 3.1.1. This atlas induces a smooth structure on L; and L,
as submanifolds (via the leaf topology, see Definition 1.1.5) T induces
comexions 'y and T'; on Ly and L,. Since Ll.ahd L, are totally geodesic
(see §1.5) T: and T, will be complete.

Let il and iz be the simply connected covers with smooth covering maps
m, and T, and let 51 and 52 be the lifted (complete) connexions.

~/

Consider M = (LyxLp,S;,32,I'1xT"y) the affine product grid manifold.
The idea now is to construct a grid morphism f :/t)-*aﬂ,for which
f : L; x L, »Mis a covering map.

Let o,T1 : [O,l] + be broken geodesics emanating from p and lying in L; and

L, respectively.
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Take a subdivision [0 = to,t:1],. s [t s 47 15000s b g5t = 1] of
[[0,17] for which o | t,st,,1] is a geodesic.
If o passes through the chart (U,x") of # then the differential

equations for ¢ reduce to

z}\ H e
d°o A(Tdo d":o

aer o dat * at
(1)

o
g = constant

Let X, be the tangent vector at o(t,) such that
o(t) = expo(ta)(t-ta) X, forte [t ,t 7]

(note that X €D (c(ta))).

A broken geodesic ¢ corresponding to ¢ but emanating from t(1) and lying in
the leaf L, of %}] through 1(1), is now defined inductively.

Parallel translate XO along Tt from t(0) to t(1l). Denote by Yo(s) the vector
so obtained at 1(s). i
d Yo(s)
___—ds =0 (2)

since 1 lies in a leaf of 4’2:.

Locally, Yo(s) satisfies

Define
Ti(s) = €XPr(s) YO(S)

a(t) = eXP (1) t Yo(l) for t € EO,t1]

by virtue of equations (1) and (2) it is clear that T, lies within a leaf
of ¥,. Assume o |’ EO,ta] is defined and that T, : [0,1] + M joining
o(ta) to E(ta), lying in a leaf of %5, is defined.

Denote by Ya(s) the vector at Ta(s) obtained by translating Xa along T,

It satisfies (2) locally.
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Define
Ta+1(S) ) exPTa(s) Ya(s)

a(t) = expTa(l)(t-ta).Ya(l) for t e [t ,t ]

Again by virtue of equations (1), (2), T will lie entirely in a

at+l
leaf of 2%;, o | [:O’ta+l:] is clearly a broken geodesic. Thus by induct-

ion o is defined on [0,17].

Put o(1) = F(o(1),7(1)).

F has the following property : If o' and t' are broken geodesics at p,
lying in L; and L, respectively with o'(1) = o(1), 1'(1) = (1), and ¢
homotopic to o', t homotopic t' relative to their respective end points,
then F(o'(1),t"(1)) .2 F(o(1),1(1)).

Since equations (1), (2) do not depend on coordinates X q = r+l,...,m

it is clear that if o' differs from o only within a single chart of¢&1, then
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the property holds.

X

In general, if H : [0,1] x [0,17] + L, is a continuous map satisfying :

H(O,t) = o(t)

H(1,t) = o'(t)

H(s,0) = p

H(s,1) = o(1) = ¢'(1)

then, one may subdivide EO,l] as EO,ulj,n.,Eub b+l]’°"”]:u ,1:[ so

b
that H([Cu ,u . ] * [Cu,su,,-1) is contained within a simple convex
neighbourhood U of T; in L; with U < Ua’ (Ua,x;) € SA( One can now use
this subdivision to obtain a sequence o = 01502500¢30; 5000 O = o' of broken
1,...,2 and such that o

geodesics satisfying ci(l) = o(l) = ¢'(1) for i

differs from I only within one chart of CA’

1
It follows by induction that F(o'(1),t(1))

F(o(1),7(1)). But since

the homotopy argument did not depend on ®

Fo'(1),1'(1)) = F(O(l),T'(l)j

One may use similar arguments to show that F(o(1l),t'(1)) = F(o(1),t(1)).

Hence

F(o'(1),7'(1)) = F(o(1),t(1))

Now fix o,T. Let (Uo,x(i)),“.,(Ua,x;),”, (Ud,xé) be a cover of 6([0,1])
by charts of A’ satisfying
(1) There exists a subdivision Eo,vlr_],.,.,Eva,vaﬂ:[,.,.,]:vd_l,lj
of [[0,1_] for which G(Eva’vaﬂj) < U,.
(ii) For all a = 1,...,d xg (o(t)) =0 if t ¢ Eva’va+l:l A= r+l,... M.

The plecewise smoothness and compactness of 5([0,1]) guarantees the exist-
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ence of such.a cover.
Let P be the plaque of L, in U, through t(1). Let L, be the leaf of ?}z

which passes through o(1), and P be the plaque of L, through o(1) in Uy
It may be assumed without loss of generality that P is given by

XX =0 A=1,...,r and B by x.

q° O, A =1,...,r. Suppose

o Ol

- B8
Xge1 = Ba+1,a (x) (3)
on c((:va,va+l__|) nu, N0 4
r+l m pr+l B
Then the map (0,...,0,X "5eeesXy) 1> (0,...,0,B ey e ),.,,,,Br;ﬂ a(xa))

defines a diffeomorphism of a neighbourhood of q(x =0) € U in the plague

--O)eU

. Ao - i
given by X, = O, A = 1,...,r, onto a neighbourhood of q(x arl a+1 N

the plaque given by x>‘ +1 =0, XA = 1,...,0.
Furthermore by (ii) q(x =0) Q(Xa;l 0).
Then by an inductive argument one obtains a diffeomorphism & of a neighbour-
hood W of t(1) in P onto a neighbourhood W of o(1) in P.

Let us suppose that with respect to the charts (Ul,x%) and (Ud’x<ii) that &

has the form

(QO,.. .,,xrlwl, . ”,xT) = (0, ”,O,grﬂ(x%),." ,,gm(xff)).
By virtue of equations (1) it is clear that if t' : EO,2:[ + L, is a broken
geodesic satisfying t' | [[0,1_] = 1 | [0,17] and t'([[1,2]) < W then
Flo(1l),t'(2)) = £(1'(2))>-
Since T, lies entirely in I, one may do an exactly similar analysis to
obtain a diffeomorphism n of a neighbourhood V of ¢(1) in L; onto a neigh-
bourhood V of (1) in L.
If (Uo,x(i)) is a chart of A’with o(l) € UO and x(j;(o(l)) =0 i=1,...,m,

then with respect to (U ,x 1) and {u ,x(]i‘)'n will have the form

d
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(], 0 03X0,0,000,0) b (n1<xg),.,..,nr‘(x‘;),o,...,0)

Furthermore, if o' : [:0,2:] + L) is a broken geodesic satisfying

o' | [0,1] =0 | [[0,1] and o'([[1,2]) < V.

Then F(o'(2),7'(2)) = (nd(0"(2)),...,n"(0"(2)),E"* (11 (2)),...,.E™(1 " (2))
with respect to (Ud,xé),

Thus for fixed o,t there is a diffeomorphism

g :VxW- Ud < M defined by

g(a,0) = (nda),...,nT@), e o), ... ,E(b))

If V x W has the product connexion defined by TI'; and T, then equatiors (3),
together with the corresponding equations used to define n, show that g is
connexion preserving and foliation preserving.

Let p, : il X iz > LI, py il x iz > iz be the projections.

~

Choose p; € L; and p; € L, such that o p1(p1) = p =72 _ pa(p2).

0
Iet p = (p1,p2) € Ly X Ly,

Take any point q € L; x L, and let h : [:O,l:] + L, x L, be a broken geo-
desic from p.to q (which always exists because any path from p to g can be

covered by a finite number of simple convex neighbourhoods).

Define f : L; x L, = M by

f(q) = F(m o P1 o h(1l),m2 _ p2 o h(1))

o]

The various properties of m;,m;,01,02,F and g show that this does not
depend on the choice of h and is a smooth connexion preserving, foliation
preserving, local diffeomorphism.

Thus by Lemma 2.1.2 £ is a covering map.

Since M is simply connected it follows that f is a diffeomorphism and thus
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Avs

f: N+ Mis a grid isomorphism. Q.E.D.

This theorem shows that simple connectivity plus completeness is
sufficient for a global product decomposition. Example 3.1.2 showed that
the assumption of completeness cannot .in general be dropped.

Thus the general problem of- classifying complete grid manifolds reduces
to an algebraic one, namely the classification of certain groups of covering
transformations.

Let G be a properly discontinuous group of diffeomorphisms (see
Spanier [_27_] page 87 ) of a smooth m-manifold M. Then one may take the
quotient space M/G. M/G inherits a smooth hausdorf manifold structure from
the quotiént map p : M > M/G., Furthermore, with respect to these structures
p is a regular covering map (see [_ {1 ] page 92 ) and if M is simply
connected then m (M/G) = G.

If M has some geometric structure which is invariant under the action
of G then there is a corresponding structure induced on M/G. Thus if
M= mM,D;,D,,T) is a grid manifold and G is also a group of grid auto-
morphisms then there is a grid structure on M/G for which the quotient map
p induces a grid morphism. This grid manifold will be denoted by JG.

This leads to the following result.

THEOREM 3.2.2. Let JL = (M,D,,D,.I') be a complete grid manifold. Then

there is an affine product JY'= (MyxM5 ,S7.3,,'1xI',) and a properly dis-

continuous group G of grid automorphisms oftAr such that//t is grid iso-

morphic toJV'/G; Futhermore m,(M) = G.

Proof’

Let M be the simply connected cover of M. Then the grid structure on

M 1lifts to one on M in such a way that the covering transformations act as
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a properly discontinuous group G of grid automorphisms. But G = w,(M) and
so the result follows by theorem 3.2.1. : Q.E.D.
It is possible that a global product decomposition might result even
if M is not simply connected.
Suppose that G decomposes as the direct product of two normal subgroups

G, and G, such that for all (x,y) € M; x M,

ge G =>glx,y) = g18(x,y) g1 € G, g € G

where g1 (x,y) (EI(X),y)

and g (x,y) = (x,gz'(y))

where gi' i = 1,2 is a connexion preserving diffeomorphism of (Mi ,I‘i).
If Gi' = < gi' : g € G> then G;L will be a properly discontinuous group of
diffeomorphisms of Mi"
It is not difficult to show that Ml]Gl' x Mz /G; admits an affine product
structure JL' induced f‘r'om.)f , and J/Lis grid isomorphic to ‘/L'.

Conversely if M is grid isomorphic to a product then G will factor in
this way.

This motivates the definition (due to A. G. Walker [ 34_]) of the
multiplicity p(z) of the point z € M as the number of intersections of the
leaf of 5‘1 through z with the leaf of %% through z. p(z) is obviously

closely related to the action of G.

THEOREM 3.2.3. Let <M)= (M,D,,D,,I') be a complete grid manifold. Then M.

is grid isomorphic to an affine product if and only if p(z) = 1 for all

z € M.
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Proof necessity is obvious.

Let UV~= (MyxM,,81,32,T1xI'2) be the covering -affine product of theorem 3.2.2
and G the covering group of grid automorphisms.

Let (x,y) e M; x M; and g € G,

Since G preserves the product structure one may write g(x,y) = (A(x),B(y))
where A,B are connexion preserving diffeomorphisms of M, and M, respectively.
If m : M, x M, + M is the covering map then p(m(x,y)) = 1 tells us that if
(a,b) = g(xxMp) N (Myxy) then there exists g; € G such that g (x,y) = (a,b)

((a,b) will always exist because g preserves the product).

xx M, ’(1D<P4z)

%,4) @a,b) Mix i
now, (a,b) = (A(x),y)

e g (x,y) = (Ax),y)

Put Gy = < g1 : g € G > then it is easy to show that G; is a normal subgroup

of G.

Similarly, one may construct a normal subgroup G, such that
8=81 ,82 "€ , 8, & €01, B2 €0

The representation is obviously unique. Thus G 2 G; x G, and so J%,is an

~1

affine product. Q.E.D.
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EXAMPLE 3.2.1. A complete grid structure is now constructed on the torus

T2 which has infinite multiplicity and hence is not isomorphic to an affine
product .

Take R? with coordinates (x,y). Let T be the Christoffel connexion of the

standard complete metric ds? = dx? + dy?. Clearly I'n, = O and so T is in-

Jk
variant under the usual action of Z x Z. Consider the distributions D; and
D, spanned by the smooth vector fields %; + /2 %§ and %; . These are

r

parallel, and invariant under Z x Z and so give rise to a conplete grid
structure on T2 = R? / Z x Z,

Let L, and L, be the leaves on R? through (0,0). L, is the liney = v2 x
and L, is the line y = O, If (myn) € Z x Z then (myn)(L;) is the line y = n.
This intersects L, at the point -with coordinates (n, "/v2). Since v2 is

irrational, "//3 is never an integer and so there is no g € Z x Z such that

(n,"//2) = g(0,0)

Furthermore it is easy to show that if n # n' then there is no

g € Z x Z such that

(n,n'/v2) = g(n,n/v2)

Thus if m : R* » T? is the projection then m(L,) and w(L;) must inter-

sect infinitely many times.
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CHAPTER 4

Parallel Foliations on Pseudoriemannian Manifolds

§4.1 Pseudoriemarmian Metrics

Let M be a smooth m-manifold. A niemannian metric g on M is a smooth

symmetric tensor field of type (0,2) which is positive definite as a bilin-
ear form on the tangent space at each point of M.
If the positive definite condition is relaxed to non-degeneracy then one

obtains:

Definition 4.1.1. A pseudoriemannian metric g on M is a smooth symmetric
tensor field of type (0,2) which is non-degenerate as a bilinear form on the

tangent space at each point of M.

A pseudoriemannian manifold will be denoted by the pair (M,g).

Let x € M, then the signature of g at x is the pair (k,m-k) where k is the
number of negative eigenvalues of the bilinear form.

A simple continuity argument shows that the signature of g is constant over
a neighbourhood of x and hence is constant on M if M is connected.

It is well known that a paracompact manifold always admits a piemannian
metric. The situation in the pseudoriemannian case is more complicated.

The following result is proved in El'i] .

"LEMMA 4.1.1. A compact smooth m—manifold-admits a pseudoriemannian

metric of signature (y,m-k) if and only if it admits a smooth k-dimensional

distribution.

Hence the 2-sphere S? admits a riemannian but no pseudoriemannian structure
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of signature (1,1).
A pseudoriemannian manifold is said to be complete if the Christoffel

connexion is complete.

Subspaces at a point..

let x € .M and suppose E; and E, are two vector subspaces of Mx' Ei n E;
will denote the intersection subspace and E, + E; the sum.

Then dim(E,+E;) = dim(E;) + dim(E;) - dim(E;NEz).

E, is said to be orthogonal to E, if g(X,¥) = O for every X € E,, Y € E,.
The conjugate subspace E; to a subspace E of Mx is defined as the collection
of vectors which are orthogonal to every vector of E. -

It can be shown that dim(E;) = m~dim(E). Clearly, if E, is orthogonal to

E, then E; is orthogonal to E; and so (Ep)y = Ev

The null part E, of E is.EnE; and consists of vectors X for which

g(X,X) = 0. If E5 = {0} then E is said to be non-null. If dim(E.) > O

then E is said to be partially null.

The subspace E + E, will be denoted by E. It is not difficult to prove
that E_ = (Ep ')y and hence djim(E+) = m-dim(Ep ). -
Since E, contains E, , it follaws that (m-dim(E)) > dim(En) < dim(E).

Hence dim(E,\) < Yem.

Parallel Foliations.

Let T be the torsion free Christoffel connexion-of g and suppose that %L'is
a parallel foliation on M of dimepsion r in the sense of definition 1.5.2.
Denote the tangent distribution to 3‘ by T?’.

By taking the conjugate subspace at each point one obtains a conjugate dis-
tribution (T%), say. (T% ). is a parallel distribution because parallel

translation preserves orthogonality. The corresponding parallel foliation
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is denoted by 41 Parallel translation also preserves. the null part of
T%at each point and hence one can define 9’ n to be the foliation with
tangent distribution (Tgv) n (TFD.

% will be called a parallel foliation of type (r,s) if-dim(%) = r + s and

dim(ﬁ—“ ) = r. This implies that dim(¥,) =m - r - s and dim({) = m - r.

Definition 4.1.2. A parallel foliation of type (r,s) is said to be

non-null ifr=0

partially null if r > Oand s 2O

1]
O

null if s

Clearly, 3" is non-null if and only if ﬁ‘_]_ is non null.

§4.2. Parallel Non-null Foliations. -

In this section an alternative proof of the De-Rham, Wu decomposition
theorem [ 3 _], ([41_] is given, using theorem 3.2.1. The proof is

simpler than that given by Wu in [ 417].

THEOREM_ 4.2.1. Let ﬁj- be a parallel non-null foliagtion -on a pseudoriemann-

ian manifold (M,g). Then M= M, 4. 7F,.T) is a prid manifold: (see §3.1).

Furthermore, each leaf of q’ has an induced pseudoriemannian structure.

Proof.

For convenience put D = % .
Since Dy D, = {0} it is clear that D and D, are complementary.:
Suppose dim(D) = r. From the proof of theorem 3.1.1 there is a leaf atlas

‘A’= {(Ua,x;) : a € J} such that on Ua’ D is spanned by'——a—x A=1,...,r and
X
D, is spanned by —aa o = r+l,...,m. The orthogonality of%D and D, implies

oX
a
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that

=g =g =0 (1)

in each chart. The parallelism of D and D; implies that

r-.=T", =0 (2)

If a comma denotes partial derivative then from (1) and (2)
0=1Y% gaBEgB)\’i + gBi,)\ - g)\i,ﬁ]
Bao.n = Baup = O (3)
Also

; o€ _
gy =22 8 LBepy * By g ™ Bgy,e

and thus from (3)

O.

A
FBY,R

0, similarly Pue,a =0

Hence by theorem 3.1.1 M (M,D,D,,I') is a grid manifold.
The components 88 a,B = 1,...,r induce the required pseudoriemannian

structure on the leaves of Eff Q.E.D.

In particular, if g is riemannian then any parallel foliation is non-null
and thus the grid manifold definition due to S. A. Robertson [:Qigj_is a

special case of definition 3.1.1.

EXAMPLE 4.2.1. The Pseudoriemannian Product.
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Let (M,g) and (N,h) be pseudoriemannian manifolds of dimensions m and n.
Consider the smooth product P = M x N. Let (U;XXD and (V,yu)

A =1,...,m a=1,...,n be coordinate charts on M and N respectively.
Then (UXV,(xA,ya)) gives a chart of the product-atlas on P.

Define (m#n)? functions kij in each such chart by

= k =0

k aA

AU ) gAu’ kaB B haﬁ’ kAa

These define a pseudoriemannian metric on P. Moreover the distribution D

determined by the field _EX A =1,...,m in each product chart, is parallel

9x
and non-null.
By similar arguments to example 3.1.1 the structure is complete if and only

if both (M,g) and (N,h) are complete.

LEMMA 4.2.1. (Wolf [407]). Let f : M'>M' be a map of connected

pseudoriemannian manifolds. Then the following are equivalent.

(i) f is an isometry.

(ii) £ is connexion preserving and f, : M -+ M%(x) is a linear isometry for
A

every x € M.

(iii) f is connexion preserving and there exists x € M for which

. 1 3 1 3
£, MA > Mf(x) 1s a linear 1sometry.

Proof

(i) implies (ii) implies (iii) is trivial.

Assume (iii), given z € M choose a smooth path ¢ in M from x to z and
let o' = fo 0. If T and T' denote parallel translation along o and ¢', then

because f is connexion preserving (f‘*)Z T M > M%(é)'is given by

z
(£,), = T (£,), T™. But T and T' are linear isometries thus (fy), is
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a linear isometry. Thus (iii) - (i). Q.E.D.

THEOREM 4.2.2. Let (M,g) be a connected, simply connected; complete

pseudoriemannian m-manifold which admits a paratlel non-null foliation‘y'

-of dimension r. Then there is a foliation preserving isometry from (M,g)

onto the pseudoriemannian product of an r-manifold and an (m-r) manifold.

Proof

Let x € M and suppose M; is the leaf of %f through x-and M; is the leaf of
gjL through x. By theorem 4.2.1 g induces metrics g, and g, say, on M; and
M,. The Christoffel connexions I'; and I'; determined by g; and g are
clearly the connexions induced on M; and M, by T.

Denote the pseudoriemannian product by (M;xM;,g21%Xga).

Obviously the Christoffel connexion of g, X g is 'y x I'; (the affine
product connexion). By theorem 3.2.1 o}L= (M, T4,T%,,T) is grid isomorphic
to (M;xM,S;,Ss,T1xI2).

Hence there is a connexion preserving diffeomorphism.

£ (MlxMz,ijrz) > (M,F)

But f is clearly an isometry at the point (x,x) € M; x M, with respect to
the metrics g, % g, and g. Hence by Lemma 4.2.1 f is a global isometry.

Q.E.D.

COROLLARY Let (M,g) be a connected, complete pseudoriemannian m-manifold

which admits a parallel non-null foliation. Then there is a pseudoriemann-

~

ian product (M,g) and a properly discontinuous group G of isometries of

~ ~ o~

(M,z) such that (M,g) is isometric to (M,g)/G. Furthermore m, (M) = G.
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Proof immediate.

The theorem determines completely the global structure of a parallel non-

null foliation on a complete simply connected, pseudoriemannian manifold.

§4,3. Parallel Partially-null .Foliations

Whereas the global structure for the non-null case is well understood,
the situation for parallel partially-null foliations'is far more complicated.
The reason for tls seems to be the loss of a local  product .structure.
However, it will be seen that the null part of a parallel foliation is in
fact a locally affine foliation in the sense of definition 2.2.1. This
property is used to deduce several global results.

The next result is due to A. G. Walker ESS j , |:36 :[ and gives a

local characterisation of the structure.

LEMMA 4.3.1. Let ﬁk;be a parallel foliation of" type (r.s) on a

connected pseudoriemannian m-manifold (M,g). Then there is an atlas & of

coordinate charts on M such that in each chart (lel) the metric has the

canonical form.

(gij) =[O0 O 0 I
O A O F
O 0 B G

I F' G C]

where the non-zero submatrices satisfy the following conditions.

(i) I is the unit r x r matrix and A,B are non-singular and symmetric of

of orders s X s and (n—-2r-s) x (n-2r-s) respectively. C is symmetric

of order » x r. F and G are of order s X r and (n-2r-s) X r
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respectively with transposes F' and G'.

(ii) A and F (and thus F') are independent of the coordinates xlt....xr and

xr+s+l,...,xm—r;4and B and G (and thus G') are independent of

r r+l r+s
x#,...,x and X e oo X .

Furthermore the tangent distributions to F. q}A,J;JA %~ are spanned

. d 3 d d
respectively by TxL 2700 s |BoT 5eees —=|

axr'+s X er
) a ) ) 0 9
'a—xT PRI T 3 "1"+S+l geeey “mer] ? 3XI EI I m-r
X Ox 9X 0X

Conversely, given such an atlas with a canonical form, then the above dis-

tributions are parallel.

Definition 4.3.1. An atlas f of the above form will be called a Walker

atlas.

THEOREM 4.3.1. Let %f be a parallel foliation on a pseudoriemannian m

manifold (M,g), then (M, ?;‘,F) is an L.A. foliation (where I is the

Christoffel connexion of g).

Proof

Let & be a Walker Atlas and (U,x*), (U,x*) be overlapping charts.
ax° x>

o

Then on the overlap gij = aii .

If 0,A,u,8,T €(1,...,r); p',A",u',08", 1" e(m-r+l,...,m) then from the lemma

1
oLaf ad e el o
| L N | S | 1
Au BxA ax” gpq axA X 81
Differentiating
1]
52 x0 ax"

O=__-_|gv
ax? axx 90X 01
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thus
32 «?

—_—— =0
BEQ axA

U o_ 1 ui - -
Furthermore FBA = 4 g (gie’>\+gi>‘,e gex,i) = 0.

Thus by theorem 2.2.1 (M, & ,I') is an L.A. foliation. Q.E.D.

In E37], E. M. Patterson and A. G. Walker exhibit a pseudoriemarnnian
structure on the cotangent bundle of an affinely connected manifold. This
structure makes the foliation determined by the vector space fibres, null
and parallel.

A similar structure is now put on the sub-bundle of the cotangent bundle

which is canonically determined by a foliation.

Definition 4.3.2. The Co-normal Bundle.

Let E} be an arbitrary codimension p foliation on a manifold:M and

& = {(Ua,xi) : ae J} a leaf atlas for'aL. The leaves are determined
locally by xg = const., oo = mp+l,...,m.

Consider the 1l-forms wg = dxg. These span a p-dimensional subspace of the

cotangent space of M at each point of Ua' Moreover, since

faa

dxg = {—f%} . dxg it is. clear.that. this .subspace does not depend on the
ax
a

particular choiée of chart. Thus one obtains a smooth p-dimensional sub-
bundle of the cotangent bundle T*M.

This is the co-normal bundle of é}'and is denoted by v* ¥ .

THEOREM 4.3%.2. Let ??’be a smooth codimension p foliation on a paracompact

m-manifold M. Then there is a nseudoriemannian structure on the conormal

bundle v* é*'which makes the foliation by the vector space fibres, parallel

and null.
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Proof

Let A be a leaf atlas for F and T ¢ C(M, %) (which is non-empty by
theorem 1.5.1).
If (U,x*) ¢ A, then o* = &x® a = m-p+1,...,m span v*'F [U.
Thus one may take coordinate functions (Eu,xi) on v* ¥|U where
Vv g V¥ Ef?x) has coordinates (51,...,£p,x1(x),...,xm(x)) and V“='£&-wa(x).
Put W = v* ??1U, then (W,(Ea,xi)) is a coordinate chart on-v*‘?L (since W

is diffeomorphic to UXRp). Such a chart will be called a bundle chart.

Let h be a positive definite metric on M. This can be used to determine a

complementary distribution to T'?; and projector tensors a and I - a. With

respect to (U,xl), a has components aﬁ = Sﬁ, ag = 0, ag and h has the form
ds? = h, w o + h . dx® axP where w* = ax + 2" ax®.
Al of o

Define

A= (Axu) = (hxu)
- _ (M

H = (Hxa) = (aa huA) (1)
- — (n 1Y WA

B = (BaB) = (=2 IaB £Y+aa a3 huA)

Consider the following (mtp) x (m+p) matrix defined on W < v* F

(g,g) = [0 0 I ryse(l,s.c;pslyee.,m)
l
| O A H where I is the unit

I
| I H' B p xp matrix.

For (grs) to define a pseuodriemannian metric tensor globally on v* Ef‘it
is not difficult to show that the following conditions must be satisfied on
on the overlap of two bundle charts (W (Ea,xl)), (W,(Ea,il)). (For conven-

ience o' will denote components with respect to ga).
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(1) Bygr = Byg
_ 0 T of
(i) A, = §§X . 2%‘ - By [note that —:% = O]
Hooaxt ek ax
8 B
' ax” X X
(iii) H, = =% [ = +— . H ]
Ao BxA ax“ WO Bxa uB
; - 366 ax! . ax' BEE BxA ax"
(iv) BaB =1 o ' B =a " =B Byt o B Axu
€ ‘ox . X ox X /. , oX 9x
) [axA ox’ , 3x" BxA] A s
x® . axt  ax® axP) MY ax% xR e
These conditions are now verified in turn.
-
(i) clearly &B =& EEE (2)
X
- TS ]
Thus -a " = . €Y -0 —_Y' . gSBI = gan
Y 9x 366 X ax
3] T G T
o _9x X ax 9X
1) Ay = by, = ==x -~ -« g % =n c Per
X X X X
= € =u 6 T p
- _Tur L [9x.  3x 8 , 9x 90X | [9X oX
(1) fra o Bua © 6" o VT 8" -u][ L . T Arp
X 39X X X / 09X oxX
_ ax" axe A ax® axT
B W T -0 .=A TE
X X X X
_ _»3TY f U A &
(iv) BaB = =2 raB ;Y tay aB huA
-2k [Pé ax®  ax' , 92 «° .
- § l"ey =0 ° =B -0 =B
\ X X Ix ~ ox
) {ggﬁ o o, % ax [aiA X 0, % ad) o’ A
Lox® T aR® f v a® e Un® ax® % ax® aX ot T R
(noting that ng = O because I' € C(M,3)).
€ Y
9X 90X o _T 8
= 2X oX - r
3% BEB (ae ay hor 2 EG EY)
T € T € o T
* afB afu * afu afs] ag th + Q§E ) §§§ hUT
\ax~  ox ax . ox / X 39X
2 .6
-2 g, X (3)

. h

o418
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now, from (2)

O . e & oY 52 %8
- 1 -
x> R B ~d8 ax*  ax’ axt
thus
98 axY ot axY a2 8 =
L= T Bty Tp o o -
E oX. ox ©X X ax' 9x
. oyl Y :
and by differentiating &, =—g - _gone obtains
R D' X
S S Y P P CE S
% ex® B R axf Y 8
Hence
52 8 - % axY  axY %
"2 B o * =B T sa. 2B) Bey
9X . 9X>. . g ‘9x. . X . IX 9X

Substituting in (3) one obtains thé required form for EuB‘"'
Thus (grs) defines a pseudo-riemannian metric on v* QF. By Lemma 4.3.1 it

makes the foliation by the vector space flibres, parallel and null. Q.E.D.

This theorem enables one to construct on simply connected manifolds,
parallel foliations which do not admit a global product ‘structure.

For instance the cotangent bundle of S2, T*S? isa:-simply.connected UY-
manifold with such a metric. However T*S? is not homecmorphic to S? x R2.

Also, by considering the co-normal bundle of the 2-dimensional Reeb
foliation of S* (see [[20_]) one can use the theorem to ebtain.a metric on
R x S® which makes the l-dimensional foliation by the R factors, parallel
and null. The conjugate 3-dimensional foliation does not' even-admit- a
fibred structure, because the Ehresmann holonomy group of at least one leaf

is non-trivial.
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Definition 4.3.3. A pseudoriemannian co-normal bundle (E,g) is a co-normal

bundle E and a pseudoriemannian metric g which makes the foliation by the

vector space fibres, parallel and null.

It might be hoped that,- just as the pseudoriemannian product was the
'canonical' example for i)arallel non-null foliations, so the co-normal
bundle might be the 'canonical' example for parallel null foliations.
However, little appears to be known on the subject. In the next section
some special cases are discussed.

The next result is due to S. A. Robertson.

THEOREM " 4.3.3. let 3 be a parallel foliation of type (r,s) on a connect-

ed, pseudoriemannian m-manifold M. Then there is a natural vector bundle

isomorphism f : T%’\"A > v F T

Proof

Let P¢ = {(Ua,xé-)- :-a € J} be a Walker atlas for . Then v* ?‘+ is

spanned on U_ by the 1-forms dx:—rﬂ

,...,dx: and T%;, 1is spanned by the
vector fields a—i-r sreey —= .
a 9X

Define £ on T, |U_ by f‘[X}‘ 2y
N a x>‘

- a ol
= X 8o dxa where o runs from (m-r+l)

tomand A from 1 to r.
From Lemma 4.3.1 (gm) is the unit r x r matrix.

If U, N Uy # ¢ then

[ ax” ax”
plx* 2| = plxt B, 3| - x 2 ax®
YA 3 axt w8 Ta
s b a b
u 3]
90X 90X
_yA_a _a O _ LA a
..Xax.g.axg.gusdxh—x gmdxb
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and thus f does not depend orv the particular chart used and so is defined

globally. It is easy to see that f is a vector bundle isomorphism. Q.E.D.

COROLLARY. Let 3’ be a parallel null foliation of dimension m on a para-

campact connected pseudoriemannian 2m-manifold M. Then

(1) M=T% 6 TH% (Whitney sum).

(ii) M admits an almost complex structure.

(iii) The Stiefel Whitney classes of M are given by

(M) = 0, Wy, (M) = (W (TF))2.

W2i+l

Proof

Since ¥ = %’r\ it follows that T%z v % .
But ™ = T4@ v} where v¥ is any normal bundle (determined by some
positive definite metric).
Also v¥ = v* & and hence ™ =740 v:§ = TH e TF.

The almost complex structure J is defined by

J(a,b) = (-b,a)

(iii) follows directly from the product formula W(A&u) = W(A).W(u). (See
C1e ). Q.E.D.

As a consequence of theorem 4.3.2 and this corollary it follows that
the cotangent bundle (and hence ‘the tangent bundle) of a paracompact mani-

fold admits an almost complex structure.
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§4.4 Submersions

Definition 4.4.1. A submersion f : M + N between--two..smooth manifolds is

a smooth surjective map such that f, is surjective on each tangent space.

N will be called the base of the submersion.

In this section some global results will be obtained about parallel foliat-
ions by assuming that there is a submersion f* for-which

T ?}A(x) = kernal (f,)(x) i.e. the inverse image of a point of N is a union
of leaves of 97\ .

In the corollary to theorem 2.1.1 it was proved' that-complete L.A. manifolds
could be considered as the quotient space of R™ by a group of transformat-

ions contained in the affine group A(m;R).

Definition 4.4.2. A euclidean cylinder is a complete L.A. manifold for

which the group of covering transformations is a group of translations.

THEOREM 4.4.1. Let ¥ be a parallel foliation of type (r,0), given by a

submersion, on a complete, connected, ' pseudoriemannian m-manifold (M,g).

Then each leaf of 3’ with the induced comnexion is affinely equivalent to

a euclidean cylinder.

Proof

Let £ : M > N be the submersion and A‘ a Walker atlas for 3’
Let L be a leaf of ¥ and w = £(L) € N. Take any point p € L and let
(U,xi) e ?¢ such that p € U.
Put V = {p!' e U : xA(p') = xA(p),‘A = 1,...,r}. Because Kernal

(f)(p) = T?afp) it follows that there is a neighbourhood U' € U of p such
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that

£f: V' > (V') is a diffeomorphism.

Let W= f(V'). Let E = union -of leaves of g’ through V'.

Then f(E) = W .'. E is open. Now because each leaf of 4, is a union of
leaves of '4’,\ it follows that f|E induces a foliationﬁ say on W where
T(g(f(x)) = £, (T3 (x)) for x € E. -

Define coordinates yl i=1,...,mr on Why

yi(z) = V) T ()

YT (z) = e[V (=)

It is clear that (w,yl) is a leaf chart for g (leaves are

yr‘n—2r, ym—r=constant ).

Now, let g be any other point of L and (Uo,x—g) e @ such that q ¢ U,- Then

there is U(') < Uo such that
f :-Vc') - f(V(')) < W and is a diffeomorphism.

r+l

Change to new coordinates )'(o yes .,irg by the rule

~r+l
X

o @) =y'(f@")

% (') =y (f(a'), a' € U

It follows directly from Walker's original construction (see ESS’ j
Theorem 1) that one may find coordinates ?cé seas ,)'cg (defined in terms of

r ~r+l < .
a5+ esXe and X ,...,xo) and a neighbourhood U'o' < U} of q such that

(Ug,)?i) e .

X
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Llet S = {(Ua,x;) : ae J} be acover of L by such charts.

From the construction it is clear that if Ua N Ub # ¢ then

o

Bxa o

—g - 68 , O,B =r+l,...,m

oX

b A
. 90X 2
Thus from equation (1) of theorem 4.3.1 it follows that ——% = Gu
d

"o

A,u = 1,...,r and so S gives rise to a cover of L. by affine charts in which
the coordinate transformations are translations.: It is now easy to show
that the group of covering transformstions of L with respect to the covering

map, expp : T‘ﬁ(p) + L, is a group of translations of R, Q.E.D.

Definition 4.4.3. A submersion f : M > N is injective if £7'(y) is connect-

ed for all y € N.

THEOREM 4.4.2. Let Ef be a parallel foliation-..of type (r,0) given by an

injective submersion, on a complete, connected:;-paracompact pseudoriemannian

m-manifold (M,g). If each leaf of Q# is simply connected then (M,g) is
\*4

isometric to a pseudoriemannian cornormal bundle.

Proof

Let £ : M > N be the injective submersion.  Because each leaf of 44_
consists of a union of leaves of J it follows that Eh*binduces a foliation
SJ, on N given by Tg_l_(f‘(x)) = £, (T %_L(X‘)')". - (Ther injectivity ensures that
images of the leaves of ?F;_do not have self intersections) see picture.(p88)
Let Pbe a Walker atlas. Let (U,xi) € #* such that if
V={geU:x(a)=0 A=1,...,r} then £ :-V » £(V) is a diffecmorphism.

By theorems 4.3.1 and 2.2.4 there is a local diffeomorphism
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£ : V x R' + M which is leaf preserving and is a covering space of each
leaf. Thus, since each leaf is simp%y connected

£ :v xR ~+ (leaf throﬁgﬁ v) is a diffeomorphism.

Also, if £(v,X) = E£(v,X) then £(v) = £(v) which gives v = v and so X = X.
Hence £ is 1-1 and so is a diffeomorphism.

Consider ¢ : £(V) x R* + M defined by w(£(v),X) = £(v,X).

Y is clearly a diffecmorphism. The collection of all such Y together with
the transition maps nbfi of theorem 2.2.4 show that M adnﬁts an affine
bundle structure with projection f, fibre Rr, base N and structure group
A(r,R) (see example 2.2.1).

Now it is well known (see [ 15 _] and [ 24_]) that any smooth fibre
bundle with fibre R® over a paracompact base manifold, admits' a smooth cross
section. It follows that the affine bundle structure can be reduced to a
vector bundle structure, with structure group GL(r;R). (The general linear
group).

It iSIAOt difficult to show that there is a cover of M by'cbordinate charts
of the form (w(WXRr),xi) where x!,...,x" span the fibres,'(w,xr+1,...,xm)

is a leaf chart on N for the foliation q 1, and on the overlap of

. . =\ .
(w(WXRr),xl) and (w(WXRr),xl); xA = §Z§ xH A,u = 1,...,r.
X
Thus T?’,Tﬂ’; are spanned by %r ey __3_; and -
9X
0 .
I e ST respectively.

Also By = 0O x=1,...,r, 1 = r+l,...,mr.

Consider now the- map h : M -+ v* S 1 defined by

: r r+l m Ao r+l m
h{x!,. o)X 43X “,0..,X ) = (gaxx dX " ,X s eeesX )

where o = m-r+l,...,mand A = 1,...,r.

_v. hr -i\ L. ., b £ : ]
If (Y(WxR ),x ) is an overlapping chart then
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B u -A -0
- =\ -0 X X 98X T 9X Y
g, x dx =" . 75 .8, «—— . X — . dx
A x> BxA Bu ax" axY
= gBu s de

This shows that h does not depend on any particular chart and-sp is indeed

defined globally. It is easy to show that h is a diffeomorphi%mfﬂ'

The required metric on v* S;_ is given by (h™!)*g. Q.E.D.

. |

) r
\f?ﬂ l ?.;L

|

9p |'

/}

//
| 1z

sy
J

This theorem shows that if the null part E}h of a parallel, partially

null foliation ?L of type (r,s) is given by an injective submersion then it
can be considered as a co-normal bundle v* CS+ where §3+ is the foliation
on the base induced from %f+. By looking at the canonical form for the
metric given in Lemma 4.3.1 it can be shown that each leaf L of Z;+ admits
a complete pseudoriemannian structure for which the foliations induced on
L by €5 and fEJ_are parallel, non-null and complementary. Thus, by
theorem 4.2.2 L is covered by the product of an (m-2r-s) manifold and an

s-manifold.
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It would seem reasonable to conjecture that the submersion assumption is

ﬁnnecessary if M is simply connected.

CONJECTURE U4.4.1. Let Ef be a parallel foliation of type (r,0) on a com-

plete, connected, paracompact, simply connected, pseudoriemannian m-manifold

(M,g). If each leaf of F is simply connected then (M,g) is isometric to

a, pseudoriemannian co-normal bundle.

§4.5 Parallel Fields of Lines

In (23], S. A. Robertson proved that a compact, connected, complete,
3-dimensional pseudoriemannian manifold which admits a parallel 1-dimension-
al foliation (i.e. a parallel field of lines) has infinite fundamental
group. His proof for the null case used a deep theorem of Novikov [:1ﬂ :J.
In [ 5 _], it was claimed that the result generalised to n-dimensional
manifolds. Unfortunately, there is a gap in the proof of the null case and
it only works for a strictly parallel field of lines (see Chapter 5).
However, the proof of the non-null case is valid, and in fact does not make
use of completeness. In this section a much stronger result is obtained by

using a theorem of Reeb [ 207].

LEMMA 4.5.1. Let w be a closed non-vanishing smooth 1-form on a smooth

m-manifold, then the smooth co-dimension-1 distribution D defined by w|D = O

is integrable.

Proof’

If X,Y € D then in the chart (U,x™)
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N
[x,v] - [Xlzzf__ _ oyl 8x) 3

ax* axt axd
- i ayd ;o
W XY ] = X 5w, - v 2,
g axl J BxJ 1
. . . . . . rOW. ow,
= xt il (w, Y - v 2 (w; X + xtyd [—-l - ———l]
X J BXJ Bxl axJ

= 0 since w(X) = w(¥) = 0 and dw = O.

*. [X,Y] € D and so D is involutive and hence integrable by Lemma

1.4.1. Q.E.D.

LEMMA 4.5.2. (Reeb [[207]). Let M be a compact riemannian manifold

and w a closed non-vanishing 1-form satisfying |lw|]| = 1. Let F be the

foliation of M defined by wiz O (see lemma 4.5.1). Then the leaves of F

are homeomorvhic and if L is a typical leaf, there is a covering map

f : R x L -+ M which preserves the foliation and for which f|txL i a homeo-

morphism for each t.

THEOREM 4.5.1. Let 3 be a parallel foliation of type (0,1) on a compact

connected, pseudoriemannian m-manifold (M,g). Then M is covered by R x V

for some (m-1) manifold V.

Proof

By lemma 4.3.1 there is a Walker Atlas A of charts for which the metric

g has the canonical form.

matrix function of the coordinates

(gij) =la O where B is a non-singular, symmetric (m-1) x (m-1)
O B

m
X2, .. .,X .
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and a is a non-vanishing function of x' only.
It follows that on the overlap of two charts (U,xl), (ﬁ,il) the

jacobian matrix has the form:
=i
FDL% =l r O
%
0O S
. 1 - X1 —yz i _ .
Change coordinates by the rule y' = fo la(u)| du, y- = x i >»2.

)

By using similar arguments to theorem 2.2.3 it is possible to show that

where a = r?a.

Then

there is a 2-fold covering map ¢; : M - M such that M admits a cover by co-

ordinate charts (w,ul) with jacobian matrices of the form

(ﬁ,]z L o
au [: :] (1)
0 S

There is a globally defined closed non-vanishing 1-form w on M given by

w = du! in each chart. Let h be any positive definite metric on M. Then
Tq%hTT is a riemannian metric for which w has unit norm. Let ﬁ be the (m-1)
dimensional foliation on & determined by w = O. By lemma 4.5.2 the leaves

of 6% are homeomorphic, and if V is a typical leaf there is a covering map

¢2 : Rx V~>Mt¢thus f = ¢, o ¢, : Rx V~+Mis a covering map. Q.E.D.

COROLLARY. If (M,g) is a compact, pseudoriemannian manifold which admits

a parallel field of non-null lines then w; (M) is infinite.
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See also [ § ].

It should be noted that if (M,g) is complete then the theorem follows from
theorem 4.2.2.
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CHAPTER 5

Parallel Framings on Pseudoriemannian Manifolds

§5.1 Related Atlases

Let M be a smooth, connected, pseudoriemannian m-manifold.

An orthogonal k-frame at x € M is an ordered set A = (A;,...,Ak) of mutually

orthogonal, linearly independent tangent vectors to M-at x. The set of all
orthogonal k-frames at x € M forms a Stiefel manifold Si'(see [29 ) which
is 'the fibre over x of the Stiefel bundle SkM. A smooth section ¢ of SKM
is called a k-framing of M and determines an ordered set (01,...,0k)'of
smooth, linearly independent, mutually orthogonal vector-fields 0, The -

section o also determines a sub-bundle Z of ™ generated by O1seee50, -

Definition 5.1.1. The framing is said to be parallel of type (r,k-r) if

and only if:

(1) For all i = 1,...,k, o, is a parallel vector field.

(2) O1s..+,0, are null.

(3) o .,0, are non-null and unit (i.e. g(o,0)=%1).

k

(4) O1,+..,0,, generate YA Z;'

P41’

There is no loss of generality in assuming condition (4), because if some

linear combination of o ..,0, say X were null then since parallel trans-

k
lation preserves nullity the system could be reduced to one of type

r+l’°

(r+l,k-r-1).

If o is parallel, then Z is a strictly parallel field of k-planes of nullity

r, in the terminology of [ 35_]. The results of Chapter 4 can now be
strengthened considerably for such parallel fields.

As before the foliations determined by 2’2;32 ZL-and Z+2L will be denoted
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by & F, '5('+, 3,-\ respectively.

Suppose that o is a parallel k-framing of M of. type (r,k-r). Then by
a result of Eiserhart [_4 _] (see also Walker [ 36_]), in the notation of
§4.3 there is a Walker atlas & on M such thatin.each chart (with coordin-
ates (x,y,z,t) € R" x R° x R x Rr, u=m-k=r) the matrix of the metric- tensor

has the form

(gij) =[o o o = I
0 A ) 0
0 0 B(z,t) =~ G(z,%)
I, 0 G'(z,t) C(z,t)

where Ir' is the unit r x r matrix and A,B,C are symmetric matrices of order
s xs, uxuand r x r respectively, where r + s'= kand u + r=m - k.
Also, A and B are invertible and A is a constant diagonal matrix with

entries of the form #1. ,
p)

r 3
If x = (x!',...,x ) etc. then o, = 5T e e a0, =§

O el © %r seres0) -f-g It follows that the coordinates (X,,VxsZxsts)
y
and (x,y,z,t) on the overlap of two charts are related by equations of the

form

X, = X + a(z,t)

Y« =Y * B
z, = 2(2,t)

tey =t +y

where B € R® and Y € R" are constants and Z,0 are smooth: functions of the
coordinates z,t.

The existence of ¥ leads to the following result.
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THEOREM 5.1.1. Let (M,z) be a comnected, pseudoriemannian m-manifold with

a parallel k-framing of type (r,k=-r), then:
k

(i) ™M=zc T g £ for some sub bundle £ of ™ (where ‘¢ is the trivial line

bundle.

(ii) If M is compact then the leaves of F and P are: affinely equivalent

in the induced structure to euclidean cylinderS'and there . is a'k-qimensional

subspace in H! (M;R). Furthermore M is a bundle over Tk (the k-torus).

Prqof

(1) follows from theorem 4.3.3,
(i1) The atlas ¢ induces a locally euclidean structure on the leaves of ?f'

and 4}}\. Since M is compact the integral curves of o,,...,0, are complete

k
and so this induced structure is complete+w- Hence the leaves are affinely
equivalent to euclidean cylinders (see ‘theorem-l4.4,1). dt = (dtfs.:w,dtr)
determines globally, r-independent closed non-vanishing l-forms and thus

gives an r—-dimensional linear subspace  in- H*{M;R) (see corollary to lemma

2.1.1). It follows also that M is a bundle over Tk by theorem 1 of Tischler

[[307] (see lemma 5.3.2). Q.E.D.

§5.2 Parallel Framings of Maximum Nullity

The extreme case of parallel framings' of type (r,0) on manifolds-of
dimension m = 2r or (2r+l) is now considered. The metric of M has signature
(r,r) if m is even and (r+l,r) or (r,r+1) if m is odd. If m iseven it
follows immediately from theorem 5.1.1 that M is parallelizable (and hence

orientable).

THEOREM 5.2.1. Let (M,g) be a complete, connected, pseudoriemannian 2r or
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(2r+l)-manifold with a parallel framing of type (r,0). Then, for all

XxeM exp : M »Mis a covering map.
A N

Proof. Case (1). M is even dimensional.

There is a Walker Atlas ® on M such that in each chart the metric

(gij) = [O Ir:[
Ir C(t)

Each chart has coordinates (x,t) € R* x R* and on the overlap of two charts

tensor has the form

the coordinates (x,,t,), (x,t) are related by equations of the form

X, = X + alt)

(1)

te =t ty where y € R* is constant

For ease of notation x will be denoted by xA A=1l,...,rand t by

tl = ,...,tr = x2r' Late Greek suffices A,u,T,... will denote integers

in (1,...,r) and early Greek o,B8,Y,... integers in (r+l,...,2r). Roman

suffices i,j,k will denote integers in (1,...,2r). The coefficients of the

Levi-Civita connexion satisfy

A
% =1+ =0, T =Y g )

T By g a8,y By, 8 8By,

The equations for a geodesic 6 : [:O,l:] + M reduce to

A
-g—z%w ©%w) ¥% = 0
2 (2)
£

where 2= (0) = ¥ and— ©0) = X%,
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Let x € M and Xo € Mx' Let 6 : [:O,l:] + M be the geodesic determined by

X, such that 6(1) = exp, X_. Cover 6([0,1]) with charts

(Uo,xg),...,(UN,x%) of H¢ for which there is a subdivision

[:O,u1:1,...,[:ui,ui+l:],... [:uN_l,l:] of [[0,17] satisfying

G(E:ui,ui+l:]) < Ui' Suppose that XO has components Xg with respect to
J

(Uo,xo).

It follows from (2) that in the chart (Ui,xi), 8 has components

Bg(u) = Xg(u—ui) + e;(ui) - ngg fzi fZl iTop (eY(s)) ds dv
8F (W) = X (u-uy) + 6 (u;)

By using an inductive argument with (1), one can obtain

eQ(u) = X% + A
1 @] 1
(3)
A X Yo enY g1 Yo onY
Bi(u) = x - X X2 f u i B(x s+A Yds dv + JZO fuJ fuJ ; ocB(X s+A )ds dv
Yy 4nY
A
+ JZO ; J+1(X'O ; )

where A? is constant and K; is a smooth real valued function defined on

j+l

the overlap of Uj and Uj+i: Thus, in the chart (UN,X%), one can represent

expX XO by

o] Qo
(expx Xo) eN(l)

A _ A
(exp, XO) oy (1)

It is clear from (3) that the Jacobian of this map has the matrix form

I Q(Xg)
) (H)

L_O lr N for some smooth Q
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This matrix is non-singular and so exp,, is a local diffeomorphism. It
follows that there is a neighbourhood W of Xo in Mx and an open set U CZ-UPJ
such that exp,, ! W~ U is onto. It will now be shown that exp,, is onto U
(the closure of U in UN).
let z = (xk,xa) be a limit point of U in UN and let X(p) e W p = 1,2,3,...,
be a sequence such that exp, X(p) converges to 7.

Clearly X*(p) converges to x* - Aﬁ. Using éqﬁations (3) is is not difficult
to show that‘exp*l{x~e~Mx P x* s x%- Ag}f+ (leaf throligh z) is a covering map.
It follows that lim (xA4XA(p)) exists.};Thus X% = iim'Xi(p)‘exisﬁs.

pre .. ; : P

Clearly, z = eicpx X, and so exp is onto U and hence the whole of Uy It

is easily seen from (3) that there is a neighbourhood W' of X such that

L

exp, ! W' - Uy is 1-1. A straightforward induction shows that

exp. : Mx + M is onto.

e
The connexion on M can now be pulled back to a connexion on Mx so that exp,
is connexion preserving.

let o0 : [:O,ul) - MX be a geodesic and let T = exXp, o © be the corres-
ponding geodesic on M. Since M is complete, t(u,) is defined. One may pick
a chart (U,xi) around t(u;) so that 2 has the form (3) for a neighbour-
hood W of o(uy), uz < u, O(E:uz,ul)) <. W and exp, ! W~ U is a diffeo-
morphism. Put o(u;) = (eprIW)-l T(u;). Thus o is defined on the whole of

R and hence Mx is complete.

By lemma 2.1.2 exp, : Mx + M is a covering map.

Case (2). M is odd dimensional.

There is a Walker atlas v on M (see Walker [ 35_]) such that in each

chart the metric tensor has the form

(gij)= 0 0 I
0

I, O c(t)

I+
|_J
o
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Each chart has coordinates (x,z,t) € R x R xR -.and on the overlap of
two charts the coordinates (x,,z,,t,) and (x,z,t) are related by equations

of the form

Xe = X +0a;(t)z + ap(t)
Z* =tz + B(t) (5)
te st +y

- r.
where vy € R° is constant.

The result now follows by an exactly analogous method to case (1). Q.E.D.

COROLLARY. If M" is simply connected and connected, with a parallel framing

of maximum nullity then M" is diffeomorphic to R",

§5.3 Parallel Framings of Maximum Nullity on Compact .Manifolds.

The results of the previous section can be strengthened considerably

if M is assumed to be compact.

LEMMA 5.3.1. If (M,g) is a compact, pseudoriemannian m-manifold with

a parallel framing of maximum nullity of type (r,0), then (M,g) is complete.

Proof

Only the case m = 2r is proved. The proof for the odd .case is exactly
analogous. It will again be convenient to work with closed charts. By the
nature of equations (3) of theorem 5.2.1 it is clear that normal coordinate
systems are compatible with the Walker Atlas #. By using proposition 8.1

of Chapter III of [ 15 _] and the compactness of M it follows that there
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exists an € > O and a Walker chart centred at each point of M whose coordin-
ate ranges are greater than €. That is to say, for each p € M there is
(U,x%) € ﬁr such that x (p) = O and lmax(xl)-min(xl)l >e, i=1,...,m.

Denote this collection of charts by S. It is clear that there is a K> O
el
af
Fix pe M and let o : [33,1) + M be a geodesic emanating from p with initial

such that in every chart of S, |T < K.

vector X € M so that o(u) = XD, uX for u e [ 0,1).

Let (Uo,xi) be a chart at p and X* the components of X with respect to
2
ax; .
fori=1,...,m. a,B = r+l,...,m. Let (U,xl) € S be a chart at o(u,) then

. o \2
(p) pick u; € [0,1) such that |(1-u, X < % and I(—l-—lz‘l-l-l— x%xBx <%

o has coordinates

Xu(u‘u1)

a®(u)

. u (v
oA(u) XA(u—ul) - x%B Jul ful P;B(OY(S)) ds dv

The conditions on u; ensure that for u € [u;,1 |, the right hand sides
of both equations are within the respective coordinate- ranges.
Thus o(1) is defined. It follows easily that o is defined on the whole of

R, and hence (M,g) is complete. Q.E.D.

LEMMA 5.3.2. (Tischler [30_]). Let M be a compact m-manifold which

admits r-independent, closed non vanishing l-forms w‘,...imr. Then there

is abundlemap £ : M+ T and if {(8* : 6% + 1 . 6% a =1,...,r} are

standard coordinates on T° then for any € > O there exists a rational

number g such that |[£*(d8%) - q w®|| < e (where the norm is induced from

some riemannian metric on M).

This result can be strengthened as follows.
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THEOREM 5.3.1. Let M be a smooth, compact, connected m—manifold which has

a foliation 9"of codimension r, determined by r independent closed non-

vanishing 1-forms, wmrr+li...lwm. Then all the leaves.ofﬁ;'gge homeomorph-

ic, and there is a bundle map f : M » T such that if F.is the fibre and L

is a typical leaf then F x R- and L X Rr_bave the same universal cover and

7, (F) is isomorphic to an extension of a subgroup of (L) by Z" (where Z"

is the free abelian group on n generators). Furthermore, if L is simply

connected then m, (M) is abelian.

Proof’

Let A = {(U,x")} be a leaf atlas for ¥ so that the leaves are given
locally by = constant, o = mr+l,...,m.

o

dw = O implies that there are r smooth functions ya defined on U such that

There exists a leaf chart (U,z") such that z% = v, o= m—r¥l;.;.,m:' ‘
Let h be a riemannian metric on M. Then, by defining an orthogonal com-"

plementary distribution to T°F one can obtain projector tensors a and Elin

the usual way.

Suppose h has line element ds? = hAu WP+ haB dz%dz® where
wA = dzA + ag az%.
. . 2 . A : Olya.
Define a new metric g by ds® = h, w'w + I (dz)*.

Au
Now, because w* = dz* it follows that g isgdefined globally and is
bundle like in the sense of Reinhart [“21]. |
If g has components gij with respect to the new chart (U,zi) then the
vector fields Xa = wg gij a/azj are defined globally and satisfy
wB(Xa) = 62 and g(Xa,Xa) = 1. Let X = g“xa be a non zero combination with

£* = constant. Then the one parameter group of diffeomorphisms
Y

R x M + M associated with X (the flow of X) corresponds to a geodesic
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flow normal to the leaves. But g(X(x),X(x)) is constant as x varies over
M and thus because g is bundle like (and complete since M is compact),
Y(s, ) : M+ M sends leaves to leaves for each s € R. It follows easily
that all the leaves are homeomorphic.
m-r+l m . .
Denote the r-tuple of 1-forms (w yeeesW ) by w. Thus TH is defin-
ed by w|T# = 0. Operations on w are carried out component-wise.
Let a € M and consider H_ = {[o_] : [o] € m (M,a), o smooth loop,
J w = O},
o}
Clearly Ha is a normal subgroup of m; (M,a), and moreover it contains the
commutator subgroup C.
Let M be the connected covening space of M with respect to the group Ha (see

Rosenburg E2_5:|) then M is a regular covering space of M with covering

group m,; (M,a)_/Ha. Denote the covering projection by p.

Defined on M is the r-tuple w* = p* w = (p* wm—r'+l,. ..,p* W

m).
w* is never zero, and dw* = 0. Let * be the foliation determined by
w*|TF* = o.

Let o be a closed curve in M based at some pqint & in p~i(a).

Now, S/ w* = J w and because Epocr:[ represents an element in Hy (from the
g PO ~
construction Of M) it follows that S w* = 0.
o ~

Thus the integral of w* about any closed curve in M is zero and so

m-r+l1

w* = d & where & is an r-tuple (% N ,SLm) of smooth real valued funct-

~

ions on M. The level surfaces of § are precisely the leaves of F =,
o
S,
B
Thus XE(JLO‘) = Ga, and so if 2% = ¢%, a = mr+l,...,m is a leaf of F* then

The vector fields X 1ift to X* on M so that w“*(xg) =

the flow of EXE for a real number & takes 1_:his leaf to the leaf

mer+l cm_ml,...,ll,‘3 = F,+cB,...,Rm = ¢™, It follows that if Y € R" then

2
£ = vy is a leaf of '3’*.

Thus M is diffeomorphic to Lo x R* where LO is a leaf of ﬁ'*. For each
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Y € Rr, LO X y corresponds to a leaf of F*. It may be assumed without loss
of generality that p(L_) = L the leaf of F through e.

Define amap q : L~ L_as follows. LetbeLandt : [0,1] *La
path from a to b. Lift T to a path  in LO with initial poigt a. Put
a(b) = T(1). This map does not depend on T because closed paths in L are
represented in Ha and so 1lift to closed paths in LO.
Thus p : Lo + L is a diffeomorphism and lcl can be identified with L x R'.
p: Lx RC + Mis a regular covering with coverih‘g group G, isomorphic to
Trl(M,a)/Ha. Now because p’gg is a monomorphism it follows that Ha may be
identified with iy (L,a) « m (M,a) (where i : L>Mis the inclusion
map). Thus G 2 Trl(M,a)/i# m(L,a) and is abelian because C < Ha' To show

that G is free abelian a further lemma is required.

Definition 5.3.1. An oriented closed transversal to ff is a smooth path

j + 8' =+ M such that wa(j*-(a/at)) o = mr+l,...,m are not all zero and all

have constant sign for t € S! (= {t € R : t-t+l}).

LEMMA 5.3.2. Under the hypotheses of the theorem an element of m;(M,a)

can be represented by an oriented closed transversal if and only if it

belongs to m;(M,a) - i#m(L4a).

Proof

This result is a direct generalization of a theorem of Moussu [_17 _]
for the case r = 1.

If T is a closed oriented transversal then obviously S . # 0 and thus
E’l‘j ¢ Ha = i# m(L,a).
Conversely, let o be a loop at a such that Eo:l e m (Mya) - 1# m (L,a).
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Iet § be the lift of o in L x R* with initial point & = (ax0) say. Put

él. = (ay,t1) = 6(1), t1 € R" and L, = L'x.£;. Now, since

(o] ¢ i# m (L,a), t, is non zero. The path ¥ : [ 0,1 | + L x R* defined
by T(u) = (a,u t:) is a transversal segment, oriented with respect to W
for o = m-r+l,...,m, with end point 8, = (a,t;) € L,.

Let U, be a smooth path in L, which joins a; to &;. Since

nl(Ler,’é) = i# ™ (Lo,é), the loop &~! o B o T is homotopic relative to a
tb a loop Gn in LO. Let 6,,1,0, a' be the projections under p of

81,7,8, (a,t1). Then it is clear that [[0_] = [6: T, 85 1. Bya
suitable deformation along one of the flows, one may construct an oriented

closed transversal t' homotopic to 8, o %o 8., and oriented with respect to

each w* in the same sense as T. Q.E.D.

COROLLARY. M(Mia)/i# my(L,a) is f‘r'ee_abelian.

Proof

It is abelian because C < Ha'
To show it has no torsion let [0 ]| € m (M,a) and let [o_] # O be its coset
in m, (M,a)/i#= m (L,a). By the lemma [_o_| is representable by an oriented

closed transversal t say. Tk is always an oriented closed transversal and

thus (1] = [oJ¥ ¢ iy m(La) ie. [ ¢ o. Q.E.D.

Hence G is free abelian, and moreover is finitely genérated because M
is compact (see ([27]).

Now, by lemma 5.3.1 there is a bundle map £ : M » T, If F is the .
fibre, then F is compact and there is no loss of generality in assuming that
F is connected - because if it were not then one -could construct a k-fold

cover (k=number components of F) of T (which is diffeomorphic to ) and
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a new bundle map onto this covering manifold, with connected fibre and the
same properties.

Let M be the universal cover of M, then there is.a regular covering

o : M > L x R* such that P, ¢ : M= M is the projection.

Let F(a) be the fibre of f through a and P the. component of p™ (F(a))
through a2. Then p : % + F(a) is a regular covering with covering group G',
a subgroup of G. Clearly G' is free abelian and finitely generated, i.e.
G' = 7" for some n.

Since m (IxR') = m (L) it follows that the covering group of ¢ is iso-
morphic to m (L), .

Let % be a connected component of ¢'1(§), then ¢ : % > % is a regular
Eovering with covering group isomorphic to a subgroup A of ™ (L). Then, if
% is simply connected, m; (F) will be isomorphic to an extension of A by G'.

If T° has coordinates {6% & R = 6% ~ 8%41, o = mr+l,...,m}, let
£ RY + 7% be the regular covering induced by the standard 7¥ action. Then
£ induces a pull back bundle on R" with fibre F. But since R' is contract-
able this bundle is reducible to the trivial bundle and so there is a cover-
ingmap n : F x R® = M such that for each te Rr, n|F x t is a diffecmorphism
onto a fibre of f in M.

Let F be a simply connected cover of F, then there is a covering map

¢' : F x R* »F xR, Clearly n o ¢t : Fx R +Mis a simply connected
cover. Hence by the uniqueness of simply connected covers (see [;E7:])
there isﬁg homeomorphism A : F x Rr': M such that (po¢) o A= ¢'. Thus

A B 5 is a homeomorphism and so ; is simply connected. This proves the
first part of the theorem.

The second part follows immediately from the fact that C < i# T, (L,a)

and so if L is simply connected, C is trivial. Q.E.D.

The next theorem uses this result to show that there are very strong
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topological restrictions on compact manifolds with parallel framings of

maximum nullity.

THEOREM = 5.3.2. let (M,g) be a compact, connected, pseudoriemannian m-

manifold with a parallel framing of type (r,0) and .maximum nullity. Then

the leaves of-ﬁb'are all homeomorphic to T xR for some fixed g rand

M is a bundle over T°. The fibre F is a compact, connected (m-r) manifold

for which F x R’ is covered by R". If m = 2r then a1 (F) is isomorphic to

an extension of Zk by Zh for some k and h with k € q. Furthermore, M is

covered by,Rm and if m = 2r then m; (M) is isomorphic to an extension of 74

by 73 for some s.

Proof

By theorems 5.1.1 and 5.3.1 the leaves of 3L are homeomorphic euclidean

cylinders and hence are all homeomorphic to T x R 2 for some q (see C15 ]

page 210).

(i)m=2r
There is a Walker Atlas ¥ on M such that on. the overlap of two
charts (U,xi) and (U*,xi) the coordinates are related by equations of
the form

A
Xy

K 4 aA(xa) Az l,...,r

xi = x* + c*  where ¢* is constant, a = r+l,...,m=2r

Put w® = dx* in each chart. This defines r independent closed
non-vanishing 1-forms which determine ffi The result now follows from

theorem 5.3.1.

(i) m=2r + 1

There is a Walker Atlas with coordinates related by

\
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A A r+l

+ aé(x

X, = X + a} (x*) x *) A= 1,...,r
x£'+1 -+ xr'+1 + br+1(xa)
xg =x*+ % = r+2,...,m=2r+l, c® is- constant.
Then w* = dx” define r-independent, closed non-vanishing 1 forms on M.

Again the result follows by theorem 5.3.1.

That M is covered by K" follows from lemma 5.3.1 and theorem 5.2.1 (in
the case m=2r it also follows from the fact that M is covered by
TR xR T)
Now, 11 (TR IR™ ") = 79 and so, if m = 2r then m; (M) is isomorphic to an
extension of Zz% by 7% where Z° is isomorphic to the group G in the proof of

theorem 5.3.1. Q.E.D.

COROLLARY 1. Suppose m = 2r. If g = r then F ig diffeomorphic to T and

if @ = O then M has the homotopy type of T and is homeomorphic to ™ if

m#£ 4.

Proof

It is easy to prove that the Ehresmann Holonomy group of each leaf of
% 1s trivial. Thus, by results of [_21 ] and [[30_] it follows that 4 can
be given a bundle structure if the leaves are all coypact (i.e. @ = r).
Thus if q = r then one may assume that F is diffeomorphic to .

If q

O then theorem 5.3.1 shows that m (M) is abelian. Let
h:R'+>Mbe a covering map and K the group of covering transformations.

A theorem of P. A. Smith [:26:] sayé that any homeomorphism { of R" of
finite order a prime has a fixed point. Thus if ¢ € K were of finite order

then some power of ¢ would have a fixed point, contradicting the fact that
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K is properly discontinuous. Hence m,(M) is free abelian, and is finitely
generated because M is compact i.e. m; (M) z Zk'for some k.

Also ni(M) = O for i > 1 because M is covered by-Rm.

Hence M has the homotopy type of Tk. Homology considerations (see [:I\ :])
and the compactness of M show that k = m.

A theorem of Rosenburg [ 24 | says that M is irreducible if M is covered
by R". Hence by results of C. T. C. Wall [:38:], M is homeomorphic to i

if m# 4. Q.E.D.

COROILARY 2. Let (M,g) be a compact, connected, pseudoriemannian’ Yrmanifold

with a parallel framing of type (2,0) then M is a T? bundle over TZ2.

Proof

There are three cases, q = 0,1,2. Since F x R? is covered by R* it
follaws that F is covered by R®. If q = O then M is a homotopy T*, m; (F)
is free abelian and so F is diffeomorphic to T2.

If g

2 then the result follows immedlately from corollary 1.

h

If q = 1 then 7, (F) is at worst isomorphic to an extension of Z by Z'° for

some h. Thus there is a regular 7h cover p §=+=F where ﬂ1(§) z Z. It can
be shown that % is homeomorphic to S! x R.asF is orientable(because Hy (M;2)
has no torsion) Let x € 8' x 0 & 8! x R" and 0 : S x 0 > S! x R be the
inclusion map. Then [:c:]'represents a generator of wl(i,x). Let Y be any
orientation preserving homeomorphism of S! xR. Then ¥ 0O is an embedded

S! and hence if x € S x 0, y = y(x) and T : [0,1_] + 8! x R' is a path
joining x to y then [[t~* o W9) 1] = [o].

Thus ¢~} o 771 o (woo) o T is null homotopic. It follows easily that the
commutator subgroup of m, (F) is trivial and hence F is diffeomorphic to T?.

Q.E.D.
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The following example shows that this bundle structure is non-trivial

in general.

EXAMPLE 5.3.1. Take R* with coordinates (x,y,z,t) and pseudoriemannian
metric ds? = 2dx dz + 2dy dt. With respect to this metric the vector fields
Xy = a/3x and X, = a/ay are mutually orthogonal, parallel and null. Consid-
er the group G of transformations of R* generated by A,B,C,8 defined as

follows:

A(x,y,z,t) = (x+l,y,z,t),
B(x,y,z,t) = (x,y+l,z,t),
C(x,¥,2,t) = (X,y,2,t+1),
B(xX,y,2,t) = (x+t,y-z,z+1,t).

It is not difficult to show that G is a properly diseontinuous group of
isometries leaving X; and X; invariant. Since 8 does not commute with C,
G is non-abelian.

y
Let M = N /G. Then M admits a parallel framing of type (2,0).

. - : 3,3 3 _ 3 . g
Furthermore, M is compact and the fields X;,X., 2z % + 5t 57 2 3y on R
are invariant under G, showing that M is parallelizable-

The projection m : R* » R? defined by (x,y,z,t)# (z,t) is equivariant
with respect to the action of G on R* and the usual action of Z? on R? and

SO
R, _ R? 2 _ m2 = .
T o /G =M=~ /Z° = T° is well defined
It is not difficult to show that 7 gives a fibre bundle projection with
fibre T? and structure group a subgroup of T2,

M is not the trivial bundle because m, (M) = G # Z*.
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It would be interesting to know whether, in higher dimensions, the
fibre of theorem 5.3.2 is always a torus. A good problem would be to try
and use the general technique of this example to find a bundle which admits

a framing of maximum nullity but whose fibre has non-abelian fundamental

group.
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