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ABSTRACT

The Faddeev equations for three particles are given
a basis of representation according to the group Su(3).
The usefulness of this representation is investigated by

application to neutron-deuteron scattering.



CHAPTER _ONE

INTRODUCTION

Investigation of the three-=body problem has been found difficult
partly because of the large number of degrees of freedom involved and
partly because of difficulties with the formalism. Although the
Faddeev equations put the problem into a clear framework(l’z), the
three particles are still treated as identifiable and the large
(3)

nunber of variablass still remain. Even after the Omnes angular

momentum reduction three integrating variables still remain in the

(4)

final equations. Osborn succeeded in reducing Omnes® results for

the Faddeev eguations to two variables and actually solved the equations
for the idealized case of three spinless bosons interacting through a
Yukawa potential. However, the method is numerically complicated and it
would be even more complicated and gumberscme when generalized to nucleons
interacting through spin and isospin dependant potentials. However, it
was realized that it is possible to reduce the problem to the solution

of a single variable integral equation by assuming that the particles

(5’6’7). When

interact in pairs through non-local separable potentials
attempting to classify multiparticle states it is impertant to diagonalize
these variables which are known to be constants of the motion from general
invariance: principles. Thus, plane waver states |plp2p3 eess) which are
eigenstates of the individual momenta P and the total momentum, P ﬁzipi,

are useful in exploiting translational invariance. To benefit from ‘
rotational invariance as well, we need to abandon plane wave states in

favour of eigenstates not only of total momentum but also of the total

angular momentum. For scattering problems which do not involve rearrangements
it is perhaps best to carry out a relatively simple partial wave analysis

corresponding to the angular momentum in the GCM system of the two incident

. : (5) : - .
bodiess Hetherington and Schick have done this for k =~ D scattering.



However, for cases which go beyond the "effective two particle" situation
then a more general three body partial wave analysis should be considered.
A discussion of how such states may be constructed for three particles

has been given by Wick(s)

. He forms states LE J JZ, wj jz) which are
eigenstates of the total momentum and the angular momentum about the
centre of masse His states are also eigenstates of the total energy w and
angular momentum j of particles 1 and 2 in their centre of mass frame.
These states are partially localized and this is important when considering
short range interactions. For example, states with moderate values of w
and large j describe a situation in which particles 1 and 2 are almost
always very far apart and therefore unlikely to interact. However,; while
the spatial cormlation between particles 1 and 2 is well-defined, that
between particles 1 and 3 or 2 and 3 has to be found using recoupling
coefficients.

Three-body angular momentum states have also been constructed by

(9) (10)

Ahmadzadeh and Tjon which were used by Chen, Ball and Wong to study
the (@,H) system. These states may be represented as |pilMl,qiL ML> where
Py is the relative momentum co-ordinate for the two particles not specified
by i and q; is the momentum of particie i in the over-all CM system. The
angular momenta 1 and L are the relative angular momentum of the two
particles concerned and the angular momentum of the third particle i in
the three-body CM systems Again, the criticism of partial localization
can be directed at these states. It might be useful, therefore, to have
a formalism which treats all three particles equivalently. That is, we
should like to be able to construct states which have very simple symmetry
properties.

The work of Smith(ll) introduces a "Grand Angular Momentum Tensor",

/\2, which plays a similar part for three particles as angular momentum

does for two particles. The smaller is /(2, then the "closer" is the

system. Thus, a partial wave analysis using A? might converge rapidly



if we are considering a system where every thing is happening "close in"
such as a three-particle strong interaction system. The method of Smith
leads to a single six-dimensional vector providing the ¢co-ordinates needed
to describe the three-particle CM System. Thus, it involves a single
integration over the length of the six-dimensional vector and summations
over the discrete quantum numbers arising from a consideration of the
angular dependences in this six-dimensional space. It would be possible,
therefore, to use a local potential and still be able to reduce the
problem to one involving a single integration. This would be an advantage
of the formalism if the summation over the discrete quantum numbers were
to converge rapidly enough.

Indeed the main concern of this present work is to test quantitatively
the reasonableness of this speculation for a realistic calculation. We have
therefore turned our attention to the problem of neutron-deuteron (N-D)
scattering. As will be seen, there is indeed some convergence, but it is
not rapid enough to be a practical means of studying N-D scattering. Although
certain simplications result in using these states, the caleulation. becomes
rather cumbersome unless we can truncate the summation after only a féw
terms. Further discussion of this is left till later.

Chaﬁter 2 provides a short account of the Faddeev formalism, while

(12) who extended

Chaper 3 provides a resume of the relevant work of Dragt
the studies of Smith to the three-dimensional case. In section A of Chapter 4
the relevant coupled equations are reduced to one single variable integral
equation using the three-particle states ("Dragt States") of referance 12,
which have simple symmetry properties.

Section B of Chapter 4 gives the method of finding the three-body
T matrix using the Su(3) basis.

Numerical results are presented in Ghapter 5 and the conclusion in

Chapter 6.



CHAPTER TWO

THE FADDEEY FORMALISM

Section A. The Non-Relativistic Three-body Problem.

The Lippmann-Schwinger (L-S) Equation for the T-matrix, which

describes non~relativistic two=-particle scattering, runs into trouble

for the case of three particles(l’l3). The difficulties arise, in part,

from the presence of disconnected diagrams corresponding to the possibility
of a particle going straight through without interaction. The two-body

L-S equation is:

G lTE) [p) =t [VIp) + j—P" A Cet [V [emy (plT®) )
P
(2.1)

where p and p' are the relative momentum vectors for the incoming and

outgoing states respectively and E is the total energy in the CM System.

For the three-particle case let us define channel X as that for

which particle ¢ is free while the other two particles form a bound state.

Then the L®S equations for scattering from channel x to channel B are(l4)

Th (B) = vP+ vF L (8) T, (B)
= vE + Th.(E) Gk (B) v (2.2)
T, (E) = v+ vA Gl (E) T, (E)

- v TE“(E) Gh () v¥ (2.3)

And X = 0,41,4243 where X = o refers to the channel having all three

particles free.



The quantities are defined for particles of masses M, (X = 1,2,3) as:

(a) v, = 0 V) = potential between particles 2 & 3
V2 = potential between particles 1 & 3
V3 = potential between particles 1 & 2
o
V= Vl+ V2+ V3 V= V=, .
(b) Gt (E) = Green's function in channel «
(E-H, ti€)

with E = Energy in the three-particle CM System.

Hy = H_+ V

Equations (2.2) and (2.3) lead to different off energy-shell extensions
of the T matrix and describe the same scattsring in the limit as € » O.
From now en we shall confine ourselves to the (+) -type of operator and
omit the Superscript unless a distinction is important.

Equations of the type (2.3) can be solved by standard techniques if
the kernel, VP G (E), is Hilbert-Schmidt, (H-S).

That is,s in opefator form,

trace (K K+) <°0
where K 1is the kernel of the equation.
It fails to be HTS for three-body scattering because of the presance
of delta-functions which arise in taking matrix elements of two-body
potentials between three-body states. For example, the kernel v° GZ(E)

leads to terms such as

<F’1'-P'2P§ Ivl G: (E) | 1’1-P293>

where,pl,Pp,p3 are the momentum vectors for the three incoming particles

and.pi,Pé,pé likewise for the outgoing particles.



Particles 2 and 3 interact through V., but particle 1 is unaffected.

1

That is, the matrix element gives

Otpyp)) (pipy 1Y) G5B Ipops)

This may be represented diagramatically as in Figure (2.1)

Figure 2.1

Therefore the kernel is not (H-S). There remains the possibility that it is

3
compact, but in fact this is not the case(l ). The solution is then non-

(24,25,26)

unique Faddeev overcame this by deducing coupled integral

equations from the L-S equation which have connected kernels after one

(1)

iteration' /. Equations (2.2) may be written as

Tpa = v VB Gy  (2.4)

where G+= 1 is the full Greens function.
E-H+ie

H = the complete Hamiltonian.

This leads to the break-down

T = DT+ v b (2.5)
i#p
J# -
with 3 _
ij . . \ kj
™=t d v 2 G <Sik T (2.6)
k=1

and ti = the two particle T matrix between the particles not denoted by i,
Egmtions (2.6) are the canonical Faddeev Equations and have connected
kernels after one iteration. ‘But even after an iteration the kernels are

not H-S if we let € 20. However, after five iterations the kernels are



compact and it then follows that the solution is unique even on the real

3
energy axis, except for a discrete set of real values of E(1 ).

Section B. Faddeev Equations for Neutron-Deuteron Scattering

It is our task to calculate the matrix element Ta for elastic

b
N-D scattering,

T, = {alT|b) (2.7)
In particular-we are dealing with a system of three identical particles,
ecach with spin & and isospin 4. The states |a) ]b) are made up of products
of spatial wave functions, spinwave functions and isospin wave functions.
Each spatial wave function is a product of a bound state wave function for
the motion of the dueterone and a plane wave for the motion of the third
particle.

The state vector for a system of fermions must be anti-symmetric with
respect to interehange of particles. Denote such a three particle state
by |123 > as? where the 1 includes space, spin and isospin information
for particle 1 and likewise for particles 2 and 3.

In terms of states made up of direct products of single particle

states |, |123 >as may be written as (15)
123} = J—éﬁ- {( |123) + 1231} + [312) ) -(]213 )+ 132 +321) )}

(2.8)

defining an anti-symmetric 2-fermion state by
2y = £ p2) - |21)} (2.9)
as ,I2
where |12> = ]1) x 12> then equation (2.8) may be re-written in the form

1) = R Rt ] 29

1 \ = j ) \
with [3 ) as |l2,>as x [3) etc.



This is also true if ﬂl2>as is any normalized anti-symmetric two-fermion
state.

It is convenient here to introduce new momentum variables defined

by
P=py+p,tp; (2.11)
9= Pj+Pk (2.12)
k= Ulipy = Mpy) (2.13)

(Mj + Mk)

where i,j k is a cyclic permutation of 1,2,3 and

p= the tetal momentum
~q;= the momentum ef particle i in the three particle CM system.
hi= the relative momentum of particles j and k in the j k
CM Subsystem.
mi= mass of particle i.
It is then found that the Jacobian for the transfermation from (919?93)
to (p,gi,Ki) is one.
That is
Hpy Py p3)y = IRk ) 1=1,2,3
Including spin and isospin the state lF)as can now be specified as
| Bsqps D 511,510 555,55, ) = jdgﬂ Bolks ) [Prgas kg I51,5145555 55,
(2.14)
Where we have now introduced the deuteron wave function

Bylk) = (k| Dp) (2.15)

in its CM system, and the other quantities are

—
!

total isespin of the three particle system
I = Z component of I
Ip = total isospin of the pth two-particle Subsystem

S = total spin of three particle system

wn
1}

” Z component of S

i

total spin of the @ th two particle subsystem.



The deuteron isospin = O, so the isospin wave function consists of
a singlet function for the deuteron.coupled with the isospin % of the
third nucleon.

As the d euteron spin = 1, we have two possible initial spin statesy
the quartet of total spin = g and the doublet of total spin = 4.

As we are considering only an S=wave non=local separable potential,
we shall take the deuteron to be in a pure S=state. In this case the

anti-symmetry is completely given by the isospin part of the deuteron

wave function ,busing (2.10) then

T, =% 5 < P'ql D 11,10 8'8!88 | T | P g, BILLSS,S)
(2.16)
thé values of fx » in the abovg.éummation will be O,1. For the spin
quartet scattering the S, values must = 1. For an isospin independent

interaction the functions '

<I'I'ZIf_'; |11, Ix> - 51[.5121; U’?Iig,tw) (2.17)
may be extracted. (See appendix 1).
Taking out a delta=function ef total momentum conservation on both
sides,y together with Kronecker delta=functiens of isospin and spin
conservation we find,

S (p-p") &y chZI; <Sss' észs; jpb

a

3 3 <
5 (p-p") $ s $ec & 1 2 -
P-F ) ©qpt 111955 055! = ¢ 5 T, — % 2 ﬁ‘ﬂgﬂq (2.18)
o=]1 «p=1
here Ty = (q' D! S |1 D, S (2.19)

:w Te lpa F(Gp “» °p I «Iq“ % Ou *
It may be seen in appendix 1 that for the quartet interaction the spin
dependence of the T matrix becomes twrivial and we shall therefore ignore it
in dealing with the equations.

From equation (2.5)

<P]T,|°(> = % Si‘s Sj“<§s|rij'u>+<(s]vq[m>jpu (2.20)



Equation (2.20) may be written in the form

R QUG (.01)
<H2§"°"loc>-— % <'(5|Tij’o(>jm ij (2.22)

And, using (2.6) X#ﬁmust satisfy

with

Xp“= ..S.J.t.éij+ iZjSiSthiso ngirkj

k

which gives

% gi(& "(ju ty Sij * Z,:S(si t; 6, 8
57, 5.
J

- ix
+ .23
ts }1: épi t, 6 ¥ (2.23)
In order to be able to solve these equations, we need to introduce a
complete set of states such that the number of integration variables

is reduced. The following chapter establishes such a set in the Su(3)

basis.



CHAPTER THREE

THREE PARTICLE STATES IN THE Su(3) BASIS

Section A. The Su(3) classification of three-particle states.

The purpose of this Ghapter is to obtain states which have simple
symmetry properties. Since we know that rotational invariance leads to
conservation of angular momentum and its z component, then we would
expect these quantities te emerge from the present analysis as ' two of
the quantum numbers needed to label the states.

In momentum space the state of a three particle system can be

11

characterized by the vectors_pi, Let us make an orthogonal transformation

such that

(pypop3) ™ cp(l) F(Z) 9(3))

with, for three equal-mass particles

Pﬁl) ={__§"— (p, - p,) (3.1a)
(2) . L.

o —,IE“ (2p3 = p; - B, (3.1b)

p(3) S (-P]_ + 92 + P3) (3.1c)

4 3!
These vectors span a 9-dimensional space, rotations in which are broﬁght

about by the erthogonal group 0(9).

However, because of translational invariance, the total momentum of

the three particles plays a straight-forward role.

(2)

That isy in the CM frame, P(l), p are the only vectors required

to specify the state. We therefore introduce a six=-dimensional space

SNy

<A

spanned by vectors

P(l), P(z))

p=( (3.2)



12

where the scalar product is defined in the usual way. In particular,
we have the relation

2
)

2 2 2

2
2 _ (1) (2)° _
p- =P tp =P tpr, Ty

(3.2a)

Following Dragt, we now look for the linear transformations which leave

invariant the form

2
with M = mass of each particle
Eo = total kinetic energy in the CM System.

That is, we are looking for all orthogenal transformations in six-
dimensional spaces O0(6). If the Lie. algebra for 0(6) is L,» it will be
characterized by the fifteen anti-symmetric 6 x 6 matrices.

=-.\/'. - . < s s e
Rij | 1M(3 | | Jl> i ij=1 6
where | i>denotes a six-dimensional column vector in a real vector space
whose ith component is unity whilst the others are zero. <i ] is the
corresponding row vector.

The algebra Lo is given by the commutation rules

-
[%ij’ R"TJ =0 . i#+j#m#n (3.33)
M
R.., R. = R, 3.3b
with R,. = - R.. (3.3¢)
ij ji

Not all the elements of LO treat all threeparticles equivalently.
But we may obtain a sub algebra of L0 which does. 2fine Ll to be the

set of all elements F in Lo with the property

E:{I =0 (3.4)

where G effects a cyelic permutation on three objects e.g. 123> 231.
Then the effect of a cyclic permutation operation on the three-particle

states we will construct is very simple. It is also found that the effect
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of a transposition operation on the elementsof L, is to produce a sign

1

change at most.

The subalgebra L, has, therefore, very simple symmetry properties,

1
andis in fact the algebra for U{(3), having the elements

Ji5 = Bi5 Y Riys 5 i€ 3 143
.. (3.5)
Kij Ri,j+3 Ri+3,j i,y 3
As R.. = =R.,. then it follews that
ij ji
J..=~J., K.. = - K.. (3.6)
1] Ji 1] Ji

Therefore, Ll is nine-dimensional., If we extract from Ll the linear

Casimir operator of U(3).

3
s=% 2. K. (3.7)
=1 33

then the remaining eight elements form the Lie algebra, L., which is

2
isomorphicito Su(3). For a quantum mschanical system, we need realizationg
of these algebras as Lie algebras of Hermitian operators acting in the
Hilbert space of three particle states. Let r = (;(1),;(2)) be the
six-dimensional ce-ordinate vector corresponding to (3.2). That is,

p and ¢ are Hermitian and canonically conjugate, satisfying the

commutation relation

[ri, pi = 1?‘513'
The quantum analogue of the Rij is then a set of operators,AAij, with

the following preperties:

Eaij’ %] = i Rij I (3.8a)

Ehj, %ﬂ =i Rij'P (3.8b)
That is, in an exactly similar way as for orthogonal transfermations
in ordinary three dimensiqnal space, we take

/11j = T;Py T IR, (3.9)
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By their definition in equation (3.9) the Aij are subject to

the identity
A‘ij Akl +Ail /ljk +/\ik Alj = 0 ; i#jtkzl  (3.10)

The quadratic Gasimir operator A? for 0(6) which is also the sjuare
of the "Grand angular momentum tensor"(ll) is
2 6 2 |
N =t = (/\ij) (3.11)
i,
The elements of Ll in terms of the Aij ares
PR VAP P 133 14

K13 As 23+3 7 Ai+3,s 153 é?’ (3.12)

with K,, = K,, and J,. = =J,,
1] Jji 1] Ji

Using (3.5), we obtain that

2 2 2 /]
A =2 12 U5 + K5 F Z (li,j+3Ai+3,j Ass Misa,54a)
3 1s]
-3 > (312 +x2) -¢2 (3.13)
L ij ij
i
3
S=%2 K..
, =1}

/\2 is the quadratic Casimir operator for Ll and together with S their
eigenvalues specifyan irreducible representation (I.R) of Su(3).

The fie Algebra of L, is

. _ e

E’Tj’ Jk] T

[Jl ,Kkl:l =1 £:jkm Kml 1 ZEj'lm Kkm (3.14)

[K..,K] 1 (S T +d, T, +& 7. +8. 3 )
ij’ “Tmn im T jn in 7 jm

jm in '|n im
= 4 E
where J, = P 4 Jl-

The J. Ys foem a vector given by

J=1z xp I, X Pyt L3 xpy- ;(3) X p(a) (3.15)

In the centre of momentum frame P(3) = 0, and J is then interpreted

as the total angular momentum in that frame. The K, .’ symmetric
1

j ¢ form a
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tensor, the physical interpretation of which is not obvious.
Section B. The Gonstruction of Su(3) Eigenstates.

In reference 12 Dragt has shown that there is a one to one cGorrespondence
between the irreducible representations of 0(6) carried by three=particle
states and those of Su(3). In order to construct representations for
Su(3), we need a convenient system of co-ordinates. Since Su(3) treats
the three particles egquivalently, the co-ordinate system should do also.

In the CM frame a system of three equal-mass particles with total kinetic
energy Eo poses the constraint
Pl+;)2+¥)3 =0 (3.16)

with

2 v 2
2 2 2 _ (1), (2)°_ 2
2mE0 =P + P, + p3” = p +p = p-. (3.17).

(18’19). Gonsider the

We shall use the Dalitz-Fabri co-ordinates
*momentum triangle' whose vertices are the end points of the three
momentum vectors directed from a common origin, the centre of momentum.
The three Euler angles'u,ﬁ,x required to transform the triangle from

a reference orientation to its actual orientation, may be conveniently
taken to specify the orientation of this triangle in space. Then we
need to parametrize the triangle itself.

Gonsider a second, equilateral, triangle of unit altitude. (See
fig. (3.1)) This second triangle must not be confused with the first one,
being constfucted in a totally different space, For such a triangle
the sum of the three distances from an interior point to each of the
three sides is the same for each interior point and equal to 1.

2
Identify the three distances with the quantities Pi ; then equation

— 2
2
(3.17) is automatically satisfieds The polar co-ordinftes G,ﬁ may then
be taken as the remaining two co-eruinates needed, and we have.the

relationships,

pf =2 p% (1+ P3;)



FIG (3-1)
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with
§,=Cos (B -2T) (3.18a)
3
%,=Cos (+2T) (3.18b)
2 e
§; = Cos & (3.18¢)

In order to be able also to satisfy equation (3.16) we find that the
kinematically allowed region for our new co-ordinates is that given
by the disc inscribed within the Daltiz triangle, i.e. such that

e* <1
The choice of Dalitz~Fabri position co-ordinates can be made in complete
analogy to the momentum case.

We need now to determine a cbmplete set of three-particle states

(3)

I-P ’ p2, N > which form a carrier space for irreducible representations
of-Lé. An index,s N, is used to distinguish between states having the
same energy and momentum, but different properties under L2.

If l ;(l) ;(2) ;(3) >denotes the eigenstate for the position

(1)

operators T 2(2), ;(3) then the state Ip(3) p2 N> is specified by

1 3 3) 2 3
<() <>l(> N>_exp(1$ £y
where "L// < ; 0 ' 0 p N>
must satisfy the six~dimensional Schrodinger equation:
2 2
-v K// =p '\./f (3.19)
6
where ( 6/1) is the differential operator analog of pe P is related
to the opérator/\2 by
p- = —é + P - =" pr
where p_ = 1 r. p-
r r &P
'\l/ may then be written in the form W= f(r) g (QZSOK[SX )e

with f and g satisfying the eqguations:

1.2 1 .52 Q -— m--ﬁ) 2 £ - 2 N\
32 Tt oer 2 tp £=20. (3.20)
R? 9= A+a)g (3.21)

(QQ‘“@X bere refer to positicn Dalitz-Fabri co~crdinates).
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i)
ﬂ" is the differential eperator analog of /\2.

Demanding that f be regular at the origin then we find

) (2 (3 ) 3
<£(l)’ l,\A)’ l\ ) p( )’ p ,N> g PXp(l,P( ) ( )) 2 \+9(0T)
(3.22)
And the JM_,) is a Bessel function of the first kind.
. 1

We can find g by looking at the 'harmonic oscillator' generalization

of equation (3.19) i.e.

2 2 o
(_z -+ T )’*’: 2E‘\P’ (3' 24)
As before we also write the solution as
¥, = 9, (3.25)

with f. satisfying the equation

1
:2' &ﬁi;ﬁl - r2 +2E fl
T

32 r

i

0 (3.26)

and 9 satisfying the same equation as g. Therefore we can find g
by determining the radial part of the solution of the harmonic
oscillator problem.

Define vector creation operators AT and_l_B_+ by the relations

é+ _ é (2(1) - P(l)) ( |
3.27
§+ I (2(2) - 1_9(2))

with their conjugate annihilation operators they obeys

E\. ’ A.—I-J = cg . etce.
1 J 1]
. . . . . + +
A simplification results if we pass to new variables a and b by

the transformation

{2 - (3.28)
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The e¢nerators J and K together with the Hamiltonian H, now take the form

+
H=(a.a+b.b) (3.29)
J = iaxa + ibxb (3.30)
+ + + + .
Kjk = bJ b + bk b. - (aj “k“‘k aj) (3.31)

We need eigenstates of H which simultaneously transform irreducibly under

L2. To this end the following eperators which commutz with J and K are

constructed:
NFP= 2.z (3.32a)
Nk = bh.b (3.32b)
Zﬁ§+ = _+-D+ (3.32¢)
(3.324)

N?‘and Nﬂ"are number operators measuring the number of excitations of

types a and b, Since Nj and Nﬁ’commute with H and the elements of Ll

we may require that our states be simultaneous eigenstates of Ng’and'N;f

with eigenvalues Na and Nb respectivelys As for theA~+ it may be shown

that if we have a representétion of L2 labelled by Na,Nb than applying
o

with L this leaves us in the same representation. The only exception

zﬁ;+ produces another one labelled by Nai 1, N +1. l'ur‘l'._her ainceZS% commutes
is the case for which/\ annihilates all the vectors in a representation.
We will therefore impose the condition that all our states be annihilated
bXﬁX-’ begause we want the Na’Nb to uniguely label a representation.
Further,/\_ lowers the energy ef a "harmonic oscillator" state. Since
it also commutes with ,«2, the radial part efqii must be that solution
to equation (3.26) which has the lowest energy compatible with a given
value of A .

Therafore it can be shown that:
A _1 2
£.= Me? (3.33)

1
Using equations (3.13), (3.30) and (3.31) we find that
2 - (n?t 1+ wo P 1 Ntra) - -
A= N+ Nb") (NT + NY+4) AW (3.34)

As/\_ has zero eigenvalue for our states then AL has eigenvalues of the form
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A(A+4) with

A = N +N (3.35)

b.
Also

5<% Z K = N - N (3.36)
Therafore S has eigenvalues Nb-Na. Gonsequently the numbers Na and Nb
for a representation can be obltained completely in terms of operators
constructed out of elements of Ll'

Now, each I.R of Su(3) is characterized by the two Gartan(zo) indices
Al’ AZ' The states we have constructed are eigenstates of Aﬁ and S, and
since both these bperators commut2 with all the elzments eof L2, the

mmbers Na and N. must be related to A and AZ' Na and N

b 1 arey in fact,

b
identical to the Cartan indices. Once onehas a given represéntation
it is necessary to have further indices in order to specify the different
vectors within a representation. The situation is analogous to the rotation
group where one uses the angular momentum j to specify the representation
and the additional index ji to specify a state within the representation.

For Su(?) we need three additional indices. At this stage we have to
consider thé”&ays in which Su(3) contains Su(2) as a subalgebra. It is
contained in two algebraically distinct ways, with el=ments, say X+, Xo and
and Yi’ Yo. For the X set we find that there is a fourth element, X4
of Su(3) which commutes withall the elements of t he X=type of Su(2). However,
fer the Y set there is no feurth commuting element. Further, X has integral
and half-integral eigenvalues, while Yo has only integral eigenvalues. The
Y-type- is that used for the classification of three-particle states. In
this case one gets with relative ease only the two labels provided by the
eigenvalues of Y2 and YO. For the three-body problem these operators représent
the total angular momentum in the CM system and its Z component.

The third index is much harder to obtain. The question is, in a
representation characterized by)\1 and.Az, how many states have the same
J and JZ? Racah(lé) has tackled the problem and his results are summarized

in Table 1.



Table 1. Multiplicity within Su(3)

J. /\l s )\2 Multiplicity
even both even, + J +1
ene or both odd. %J.
odd both even %ﬁJ-l)
one or both odd +(J+1)

Te preduce a third index, say &), it is necessary to construet a cubic
operator,fL , which is sufficient to break alldegeneracies. However,
from table 1, we see that a third label is only necessary for the states
with J;zz. Further, we see that the degeneracy is basically determined
by J.

If j is the total angular momentum in the CM systezm and m is its
Z combonent then a state may be represented by

NaNb J m>

For j<:2, NdNb’ jams will be sufficient to label our states and these

will satisfys

op -\ L .
Na’blNaNbJ6> - Na,b INaNb Jm>‘ (3.37a)
2 . feany .
J ,NaNme> = (5+1) |NaNme/\ (3.37b)
5, I in = n s in 57

Also we have the annihilation condition:

A [N NSRY =0 (3.38)
Equations (3.37b,c) are equivalent to the conditions
J+ INaijj> =0
3, INaNbJJ> =3 lNaNbJJ> (3.39)

Where J+ is the raising operator as known in the theory of angular
momentum. Remaining states may be found by using the lowering operator

J_, where
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The construction of explicit solutions to equations (3.37) is dealt
with in Appendix 2. We now set out to find the explicit angular wave-
functions.

The harmenic escillator states are of the general form

iNaijm> =P (a" o) | o> (3. 40)
where P is a polynomial in g+ and p+a From equations (3.25) and (3.33)

the angular functions, g, may be written

1.2 4
g = r-)‘eEr <r(l) ;(2) ,P (g+, L)+) , O> (3.41)

If we gpeeify each g function with a label n, then it may be shown that

- ; 1
9= A, T O T I )
with An = a constant
g, = g function for (NaNme).

In the momentum representation then we have a similar expression for the
corresponding 9 Therefore, replacing the variables by their momentum

counterparts,

9, = An p-AP(p(2) + ip(l) s 9(2) - ip(l)) (3.43)

Each g function now needs to be converted inte Dalitz-Fabri variables.
The details of this for the first few states are contained in Appendix 3.
Finally, we give the momentum counterpart of the equation (3.22).
The exponential and radial wave functions are replaced by momentum and
energy delta functions. From equations (3.8)and (3.9), the operators
/\ij treat momentum and position operators on equal footing. Therefore
the angular function, g, remain unchanged. One simply has to replace the
position Euler angles and position Dalitz-Fabri co-erdinates by their

momentum counterparts. One then obtains,

’ 9(NaNbJ'm; (’V-‘(X‘SX) (3.44)

ith G.
wit 1 a constant.
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(3) 2

Here, the states P p Naijm> are defined for a particular channel.

However, channels are related by cyclic permutations, brought about by

the operator G,
C lNaNme> = exp (i g%r (N,-N) ,NaNme> (3. 45)
That is, there is only a phase factor difference between corresponding

states in the different channels. We also note that the operator P3

which transposes particles 1 and 2 has the effect

P, lNaNme> = |NbNaJm> (3.46)

More details are given in Appendix 4.
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"CHAPTER FOUR

SOLVING_THE INTEGRAL EQUATIONS.

Section A Final Integral Equation Using Su(3) States

We are now in a position to conduct a decomposition of the elements
of equation (2.18) using the Su(3) states |p2 Naijmjé = |p2 Né>
corresponding to the channel F « The closure relation for these

states is (see appendix 5)

3 J|p2N9><p2NFl dp® =1 (2.1)
N

It is easily seen that <p2 NF Ip>is invariant for g$= 1,2 or 3 so that
equation (2.18) can be cast into the form
' ‘ 3 3
j 1 2" ) 2m Bhadiy q@_ 2!" " \
AR S S DI T AR
n ITH « 0(‘5
N NF ) '
;éﬂs\plv |y (a.2)
ﬁﬁ /7 on r:u om \
where [7 =P NG X ,p '\I'> (4.3)
Because of the simple symmetry properties of these Su(3) states, we are
able to reduce the problem to the solution of a single integral equation
except for later terms in the expansion in N_N

ab

then allows two or more contributions to couple together. In otherwords,

when angular momentum

we can now go to integral equations which do not involve the index &

Details of the procedure are given in Appendix 4.
Section B Finding the T matrix using the Su(3) Basis.

From equation (2.23) we see that we need to determine transfermation

expressions such as

<q.w - l p nr\] "J"m> in basis M-
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Because f the identity of the particles then
Fl F2=-F3 F.
Let us then do the calculation for F3. Introducing a complete set of

states ,p(l) p(z)>for the three-particle CM.system, we find

J<q3. ; |P<1> <2>>< ) MO 1) gl >dp< 2

(4.4)
From equations (2.12), (2.13) and (3.1) we obtain
£_(_l) % P(?—) (4.5)
and {_2.\

/7 (1) (2) 1.
VR 5 (| (4.6)
with ¢ = 3%

Therefore
N

F= dp'llgp? 3JS(O‘3 qw () S (62-5"2) ) g (s 9B
p

¢ (4.7)

Before we can put this expression completely into Dalitz-Fabri co-ordinates
we need to specify the body-fixed set of axes that we are using for the
momentum triangle as introduced in Section 3B,

Consider a body-fixed set of axes(x’Y’Z)

such that the positive
axis is along the vector % and the momentum triangle is in the x plane.
Initially, the xsv,2z axes coincide with the space-fixed set x,y#. The

orientation of the final momentum triangle, that is for which qé lies

along the 2 axis, may be specified by the Euler angles:

' /
First , a rotation of angle X about =z X \<2"“_
- [}

Second, a Totation of angle[f)about y (5 LT
Third, a rotation of angleO('about z °(I\<21T

(see Fig (4.1))
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Figure (4.1)

V<

One of the delta-functions in equation (4.7) may now be written

W

1 i él ! )
$(q4-q3) = %.' d (cosp’ - cosg') §(q S qj ) S« - (4.8)
: 3
We use an S-wave non-local separable potential of the Yamaguchi type(l7)
with strength parameter x s
Vo (ko 5 Koo ) =K (ko) ks ) (4.9)
with  AL(ka) = 1 (4.10)
i 2 2
(ki +p)
The deuteron wave function for this potential is then
B k) = A (4.11)

2 2
(0G+*) (B
2 .« ﬁ 3 o2
where AT = % Pa®s +Pn)” and B= + %~
1T2 %/A
Here %ﬁ‘ is the mass of the nucleon and B the deuteron binding energy.

From equation (4.5) we see that

2 2

W W §\v2
PP o= 2ky +3 45 (4.12)
2 2 o v
= 2 kj +g-9%-(1+(>cos¢')

W 4

3 2, (1 - ¢'cos 8) (4.13)

.

.

~.
1}
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This enables us to put equation (4.7) entirely into Dalitz-Fabri co-ordinates,

with the volume element

(1),,(2) (3)

1 3
dp™"dp™ dp =8 d-P()

0° dp dR pdp d @ (4.14)
where dR = -dxd (cosp) d¥
The final evaluation of F for each g function is shown in Appendix 6.

The next task is to find the inhomogeneous term (the two particle
T operator, t, » between 'Dragt' states). It is easily verified that the
two particle T-matrix at energy E in the three-particle CM space defined
by vectors qu;gmis related to the two-particle T-matrix in the two-particle

CM space defined by k# according to

<q« ks |t (E) Iq“k«> d (4o 9a) \.lsu [t (8)] ke) (4015)

where ¢,=E = qx /uu = -I\_A:_EE_I\_AE)
“ K
2 A M Me M, + Mg+ M,

5 p
and Sﬁ“ is the energy of the particle & in the three particle GM system.

2})\"‘

s . (14)

For the separable potential of type (4.9) then one obtains

\ | tu(eu)] k,, = oflkh ) Tlen) Ylk,) (4.16)
where TClg) = A (4.17)

1= X | an®a? (ke)dk,

2
(o- k4
and /U\‘ = Mg M, i.es reduced mass of particles F*X in the two
M My |
particle subsystem.

We may now write

-/ - tmom /' o A A " P " ™
G e #0)- [¢F0 1 . axAR [ lia)ERL )

- dge, dydk, (4.18)

ta

and from (4.14) and (4.5)
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dq, dke = 3 b P dp R > dp )

Using (3.44) this produces

<p N" lt |p N"I> ___;__ Bodp d®& d (cos [5.,( )db’ 13 dp' da! d(cosﬁ,,")dgo'r
64 €12
A A A A A A n2 ! A Al A i
Ldp dg ()de ag J(‘D_Tiég) an glr'f _2__5(3[02( - axz)é &, -, ) g(cospu -cosﬁu )
P q
NLRD TE R § (8% - g L (4.19)

"l2
p

The calculation is facilitated by changing from the circular variables
((’Qf) to the Cartesian variables (x,y) as defined in Figure (4.2) for

«
the Dalitz-Fabri triangle. Then integrating over &, and cos[?d equation

(4.19) becomes

] N
-_%/2_], \
ogidh )
J
-~
Figure (4.2)
n " m " -2 a .
<p? N“l*ca(,p2 NK> - - 9 8° dp d¥, 8> dapra® 'd(Gos B, )d){'
64 &2
¥ dp ad'aft. L S(p"p2) grat 2 8(a%-4%) WRITE) G (R
p"2 C]d
§( 2p?) L (4.20)

This equation is invariant with respect to cyclic permutations of particles

1,2,3 and so we may take K= 3.
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We have, therefore, qg =3p° (1L +vy)

and kg %pz (1 -vy)

28

Caution is needed when integrating over the x and y variables in equation

(4.20). The function J(af -

(63

3

a9 - 5.2 (15")

axz) becomes

(4.21)

which imposes restrictions on the limits of the ? & ? integrations.

Two cases need consideration, (a) P">p" (b) p" <P

(a)

The limits of the §' integration are +1 and -l. Then the limits

of the 9 integration are

2
P

"
-1{v£2 - 1.

(o)

The limits of the ¥ integration are +1 and -l.

of the §' integration are

The 1imits of the x varibles are given

SRS ierd

See figure 4.3

Then the limits

Range of ? integration.
(Likewise for (b) but with

pn2 o4 ﬁnz interchanged).

by
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Therefore, we may easily carry out the integrations over {, P's X, X', and
the integration over V' removes the é function (4.21). Equation (4.20)
becomes
. "o, o w4 ol n .
<p2 N® |t3|p2 M) =-S5 . B B J a¥, di;* d(cos P 3) d¥," o
64

3 V) A2l 1, o n A "
22 197 2 17 2 w2 % % 2, Va®G &) Ry
p

p

with G'Q now = ‘li‘ p +p y=-p )
in

p

vl A " Al u|2

€ -p_ 08 K=o __ 09 k2 =p . -9
33 ‘ 4 4

To go further, we need to introduce explicit expressions for the gn,'vé
and ‘CS.

One finds

~
[}
ja sy

w

3 ——————
§ - 7,).
where 4 Mim - o8 ){2 py €3 + i)
p"2 (\i2/u3%' - ifs,\)z er2, - 1\12}:\383')
s §oe AXD L BRE

P n2 "2
p p

Zf:a exhibits a pole in the ? range, the position of which depends
Ill2
upon P . The pole may be physically interpreted as the deuteron

bound state as one can see from Figure (4.4).
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Figure (4.4) Graph ef Real part of 133 for varyigg_j§3.

(Using<33 = E-g% (14y) with M_ = mass of nucleon, then the

) 4
range of the y integrgtion is given by the horizontal double headed
arrow for p" = p™ . - B is the position of the deuteron pole).

The infegration over the pole was carried out using the Gawmchy

relation.

lim —1 P 1 iy i‘ﬁé(z—zo) ) 2, ® constant.

[l-v 0 (z-zéiiq)‘ (;:z:)

which gives

bm | £(z) gz =p f(f.iz_l dz IJ'i'ﬂé(z-z ) £(z) dz.
z-zo) )

12 J (z-2 &in)

here P indicates a principal value integration. The integration over

¥ could then be carried out numerically. The above relation was also

used to "extract" the Green's function pole in the kernel of the integral

equation; Using a matrix inversion sub=program  then the "Dragt T matrix"

(i.e. between poN:>states) could be found and finally :fab. Further

details of the numerical calculation are given in appendix 7.
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CHAPTER _FIVE

—

NUMERICAL RESULIS

Our results fall into two parts.e That is, calculstions for

(a) The quartet scattering length, a,

and (b) The guartet contributions to elastic neutron-deuteron
differentizl crogss-sections.

(2) TIhe guartet scattering length
Of the lowest A terms s those containing zero angular momentum

contributions are A= O,A= 2 and A » 4, Therefore; a, was initially

4
calculated using only A= O, then including A= 2, The results are

summarized in table 2, where they are also compared with those of

Phillips Q7), Aarcn, Amado and Yam(él)

(22).

and Zaskharyev, Pustovalov and

The latter reference adopts a method similar to our own

(23)

Efros
developed by Simonov s but uses a square-well potentials We are
able to compare with the results of Amado et al. for wiich the renorm=
alization constant, Z, is zero as this is the separable potential limit
of the model of reference 2l. Phillips also introduces a three-body
force, V4, but we are able to compare with his result for V4=O. We see
that our result for a3, is quite good and in keeping with the other

theoretical results.

Igble 2
Quartet Scattering
length, a,. (Fermis).
Experimental 6,38 + 0.06
2.6 + 0.2
Phillips (v4=o) 6.28
Aaron, Amado & Yam (z=0) 6.8833
Z.y P and Efrose. 6.71
This work (A =0) 5.05
This work (A=0) + (A=2) 6.59
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(b) The quartet differential gcross-sections

The quartet contribution to elastic n-D scattering has been found
at two values of the laboratory energy (EL)a As Aaron, Amado and Yam
are the only ones to present the quartet contribution to the differential
cross-section explicitly, we naturally make the comparison with their

work. Therefore, the two values of E. chosen are 2.45 MeV: and 14.1 MeV,

L
which are the maximum and minimum values studied by Aaron, Amado and Yam.

The differential cross-section is related to the T matrix by

4 2
%g_: (%2_“-) }AnD 'Tabl (5.1)

where}lnD is the reduced mass of the neutron-deuteron system. The
effects of adding contributions corresponding to successive values
of’h are shown in figs. (5.la) and (5.2a). The quartet part of dg ,
do . d.JL
say (EEL)Q’ including terms less than7\= 3y are compared with the
quartet contributions given in reference 21.

In order to see more clearly the nature of the convergence we are
getting, we haveplotted also (%%)Q against the maximun )\term taken
into account, at each of the scattering angles & = 0, M, These results
are given in figs. (5.1b) and (5.2b) where the points have been joined
in order to indicate trends.

Evidently there seems to be some convergence, but not as much as
we had hoped for or were led to beliszve might occur from the scattering
length result. But we should remember that because of the awkward ()
multiplicity we have not included the J = 2 states, (2A.14) and (2A.15)
of Appendix 2, in the'x= 2 contribution considered. However, because
of the disappearance of the J = 2 contribution at scattering angles

given by Cos © = + —L... » then at these angles the A = 2 contribution we

\EL

have found must be the total 7\= 2 terms We have therefore plotted



a0,

dfQ

against the maximum X term taken into account for these two

angles. The graphs are presented in figs. (5.1c) and (5¢2¢).

By projecting out the J=0 and J=1 parts of the potential term,

we are able to compare more directly with the results of Amado et al.

by looking at the T-matrix contributions they give.

compared in table 3.

The results are

TABLE3.,  T=t [ (Gs®).
J=20 J=1 E,

10 xReal (t) 107xImag (t) 10" xReal (t) lO7xImag (t) (Mev)

This work -1.16 -2.41 1.90 -5.51
14,1

Amado et al. -1.04 -2.39 -3, 66 -2.12

This WOI‘k 3. 20 "5- 92 3. 95 24- 2
2. 45

Amado et al. 2. 88 "6- 12 "7. 82 "'3c 26

We see that the comparison with the results
good for J=0, as expected, but surprisingly poor

seems to be no sign of convergence

at all for J = 1.

for J = 1.

of reference 21 is fairly

Indeed there
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CHAPTER SIX

ONCLUSION

Our prime concern in this work has been to ascertain how useful
Su(3) three-particle states really are in a practical calculation,
that of the quartet contribution to neutron-deuteron scattering. It
was hoped that contributions from successive A terms would decrease
rapidly enough to make this method of solutionh preferable, or at least
a reasonable alternative to other methods for systems of short-range
interaction, especially sinceusing the Su(3) formalism means that local
potentials can be used instead of the usual non-local separable
potentials. If the calculation had been successful we would then have
had a useful method for studying this important problem of n-D scattering.

In fact, although a good value for the scattering length has been

obtained, the results for the quartet contribution to the differential

do

cross-section, (dﬂ)Q

s are disappointing. At the higher energy there
seemed to be some hope of there being reasonably good convsrgence in A )
although already a fair number, nine to be exact, of different Dragt
states have been brought into play. When we look more closely at the
T-matrices and compare these with the results of Amado et al, as in
table 3 of chaper 5, we find that there is good cor rrespondence for

J =0, but for J = 1 the comparison is very poor indeed. The apparent
convergence in (g% Q is now seen to be due to chance cancellations.
Perhaps this is not really so surprising since an examination of the
next higher Dragt states, given by A = 3, shows that of the ten statese
(not counting the awkward @ multiplicity of some of these states) there
are four with J= 1. Furthermore, no attempt was made to include in the
A= 2 contribution the J = 2 terms of @ multiplicity 2. This was partly
due to an uncertainty as to how to deal with these terms, at least within

the formalism as given by Dragt, and partly because there seems to be no

point in doing so, since there is no real convergence in sight for the



42

J = 1 contributions. It was originally hoped that because Su(3)
states for small A\ describe "close-in" particles then this might
imply good convergence in A« This also seemed to be implicit in
previous calculations. From the results we have obtained, though,
it would app-ar that this hope is without any foundation.

A further contributing factor to the poorness of the results
is probably the "looseness" of the deuteron itself. It might have
been interesting,although purely academic, to have repeated the
calculation with a much greater deuteron binding energy. However,
as there is nothing similaer to the Aaron; Amado and Yam results to
compars with, the calculation would alss have to be done by one of
the usual methods.

We note that although there is a simplicity in using the Su(3)
states (because of the symmetry properties, equations (3.45) and (3.46))
it however gets quits involved because conservation of angular momentum
allows coupling of two or more simultaneous integral equations. That

is, states with different values of Na and N, are linked if they have

b

the same values of J. In addition the () multiplicity causes trouble.

(27)

According to Lee » W is in general irrational and it is difficult
to express the eigenfunctions in closed form. However, he does construct
states which, although they are not eigenstates of the operator () ,
are nevertheless a complate set for a three-particle system.
To summarize, looking at specific angular momentum contributions
we have found that those with J = O for both the scattzring length
and the differential cross-section at both energies are well represented,
but the J = 1 contribution to (g%jQ farh}S must still make an appregiable

difference. This feature of J = O calculations seems to be bern out

by Lee's calculation of the triton binding energy and Dragt's discussion
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+ *. -
of the decay process K+—9 T +% +T 1in reference 12. Thus it
would seem that the Dragt states are really only useful when we
are simply after the J=0 part of a three-body system in nuclear

physics.
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APPENDTZX ONE

SPIN AND ISOSPIN U _FUNCTIONS,

In this appendix we look at the spin functions, although isospin
mav be treated in a similar manner. Each of the nucleons has spin‘%,
so that we expect one quartet group of spin states (S =§) and two
distinct doublet groups of spin states (S=3). If we denote products
of spin-functions as e.g. (+ - +) etc. where + indicates +§ and

- indicates -%, then the quartet states may be expressed as(28)

(+ + +)

\]%1 {(++ )+ (F =) F (- ++ )}
(-0 v+ -]

(- - -)

A

One then finds that the U functions are 1 for S =

N W

The doublet states may be denoted as
{(+ + =)+ (+-+) -2 (- +.v+)}

{(— -8 F (e o) -2 (4 ~-)}

- S

{(+ k=) - (- +)}

— [\)!h—J

PR

where the sltates have been chosen so that the {irst pair is symmetric
with respect to interchange of particles 2 and 3 and the second pair
are anti-symmetric with respect to interchange of particles 2 and 3.
It may be shown that the ¥ (IP,IN) functions for S = & are,
G- @3y o 2o (12t L B . (3T
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o

where one goes from one channel to another by a cyclic permutation.
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APPENDIX TWJQ

EXPLICIT SU(3) EIGENSTATES

In this appendix we give the forms of the eigenstates usad. It
is ohly necessary tc have the states with j = jz as the remaining states
can then be obtained by successive applications of J_. Equations (3.37)

may then be replaced by the conditions,

N Nss) =

3, | MNii) =o. (2A.1)
\I ;].-\ = . = - . \

lelal.JJ/ J ,NaNbJJ> (2A.2)

It is helpful to define creation and desttuction operators in a

spherical basis, according to

+ 1t ¥
a, == = (a,+1a ) (2A.3)
1 V2! Y
+ 1 + +
a_, = = f(a,-1ia ) (2A. 4)
+ + ++
a, =a, a = (a_')

Likewise for b. the commutation rulss are,
+
@m’an J —émn (2A.5)

The states of concern to us are:

(1) A=o0

Then Na = Nb= 0. This is the vacuum state,

\ -

|oooo )= | 0) (2a.6)
That is, the state has zero angular momentum.

(2) A=1

" Here we have the two possibilities,
, + -
|1011} = a; |0) (24.7)
.I..
o111y = b; | 0) (2.8)

Both states have angular momentum = 1.
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(3) A=2

The possibilities are, for P2=Nb=1.

l1100) = a".p" [0) (2A.9)
|1111> =(a"xpt ), | 0) (2A.10)
|1122) = &} b |O) (2a.11)

That isy we have angular momznta Oyl 42.

However we must also conform to the rule that‘cx- annihilates
the states, and this is not the case for state (2A.9). This means,
in fact, that states i1100> and IOOOQ> differ only in the radial
parte

FoI‘A = 2 we may also have states,

12000 = a+ﬁa+| 0) (2A.12)
10200) = b'.b'| 0) (2A.13)
12022) = a 1|o> (2A.14)
[0222) = b b |o) (2A.15)

which have angular momenta O and 2. States (2A.14) and (2A.15),
having multiplicity twos have not been included in the present

calculation.
We note that the maximum value of j och}ing in any given
representation is restricted by the inequality

i<
with A\ = N H N
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APPENDIX THREE

g FUNCTIONS PN DALITZ-FABRI CO-ORDINATES.

Using eque (3.43) we are able to determine the explicit forms

of the g functions.

9y This corresponds to state (2A.6)
We find 9, = Al = 1
4(21r)E

doe This corresponds to state (2A.7)

<

We find g, = A, 1
B “op

=Ay 1 NI‘A"(Q( +ip
p
where NM' denotes a spherical space=fixed triad defined bys:-

. . - . 21 .
(NX+1Ny) 3 N =N 5 N, Jﬁ (1\1X 1Ny)

-
-t
hﬂlh

M
and N, .N,, = (=1) éM,_M.

We also define a spherical body-fixed triad bys=

= =- l T E . = ° = 'l - iE
E, = (Ex + 1'\_/) 3 B =E ; E I (Ex 1-\/)

with E , E , E all unit vectorse
x° Ty’ Tz

Let I be the unit dyad given by
M
Z (-1)" E, E_y
M

Then one finds

9 = Ay f]a‘ > (1" Ny By By @ + 1)
M

If we go from a space-fixed triad to a body=fixed triad by a

rotation (29)

E. = RN, (1 = 1,2,3)
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where DW' M

Using a body-~fixed set of axes such as is described in Chapter 4,

we find
1 i (1) 2 + (1% 1%
RN A P {D. @) oM @p |+
{T 1 - QZCOS% M “l M,i
(2 sin
it ) [p) Poing 3
1l - P cos ¢
with (A2)2 = —§-3
8
93- This corresponds to s tate (2A.8). By using a similar method

to that which was used for finding gy One obtains

p {51 l-pzcos2¢ )

Dnl/la',eo ) | pl) 4 plt) P__ayu_f 3
’ ' [l - Q cos ﬁJ

And A3 = A

N

g9, This corresponds to state (2A.9) and is omitted

g5+ This corresponds to state (2A4.10)s We have

95 = A i‘z e )+ 18 X - 1p1))
- A iz Z( -1y N - (p (2) 19(1)))«9( ) -ip(l))
= A5 l? S; Dl* @&?J) EM . (9(2) + ip(l)))< cp(2) - ip(l))

=

M'M
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leading to

2 x -
g = - A5 2{2—1 P(l) P(2) [.:.L_'_'_Q_ ] [(Dl (”‘\‘5:‘6) + D.I. (“-Q'X)J

r M® -
1 - Gzcoszﬁ M -1

ol

g¢+ This corresponds to state (2A.12)

=A, 1 (p (2) 19( ). (p(z) + ip(l))

g
6 5 5
p
giving EF g8
9% = Q
and Aé = —l*3
&

g4+ Corresponds to state (2A.13)

Q’e:iﬁ

6 = By

We obtain 9

and A

gg: Cerresponds to state (2A.11)

Although this state has J = 2, the & multiplicity is 1.

(1) 2 YF o Tk
g = Ag L, | LP [1_:_9__ J [oh ) - LY gy ] 4

7

1 ) [ p?) 4 1p(1) {p_mﬂ_f , FJ
1 -P cos“@
giving

93

g ‘{_\_l._2 { 2 p2) 2, () 2[ [I_E:E(;ﬁlﬂ_gﬁ) - 1”132* (p.¥)
6 p cOoSs

with A = =
o1


http://2A.ll
ftp://ftp.*
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APPENDIX FOUR

THE INTEGRAL EQUATION

The permutation group on three objects, §? has six elements
which may be taken to be the transpositions, Pl, P2, P3, which
interchange particle pairs, the cyclic permutations C and 02 and the
identity operation I. These elements may be represented by the group
of 6 x 6 orthogonal matrices acting on the vector space spanned by the
six-component vector p. As G and P3 generate all of S;, we need only

look at these. P3 has the matrix representation

Py=(51)

And G may be expressed as

C=cexp (8T S) = I cos 2 + S sin 2T
3 3

@1

with S = 10

The unitary analogue for Ggives equ. (3.45) i.e.

GlNaNme> = exp [1 %]‘(Nb-Na)] INaNbJﬁ>
Therefore a state which is symmetric with respect to interchange of

the two non-f> particles may be constructed.
,P(s)> - 'NaNme> * % l NaNme>
= lNaNme> + leNaJm>
We now set about casting the integral equations into a convenient

form for solutione.

From equ. (2.23) we find, symbolically,

- = il
o2 S Qi 28 (el T e
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AlSO,

M1 - = -,
- 2 ome M [ 1)+ 2 qu M Itho q>f‘qx (44.2)
q

k

with {M,n a cyelic permutation of 1,2,3. (For convenience the primes
are being omitted).

A third equ. is

Y -7 _ - ,
-2 S éMk'\/thk' [ )+ % (ggq'QQItq'Golq'N"qﬂ(m.s)

kl

. W <r I
Using the property that r\ ) PRM, PMR and RItM(JOl n> are
invariant with respect to eyclic permutations of f£,M,n, equation

(4A.1) then becomes

P2 Ay e el D e
i.e. using "‘\nQ___ PQM.

Also (4A.2) becomes

r = <M | %,n‘x>+ <X ItMGo | M> F'QM +<9|tnG0| n>]_lu (4A.5)
i.e. using <M ltn GOI n>=<Q,tMGo l M>5
P“& F‘M; <M |£4Gy|2)= <XltnG°l n> .

MR

And (4A.3) is
_ . . MR
P =Gty + g | 0 | 2 (ar.6)
i.es using rlﬂ= PMM 3 r‘nM = T‘Mg‘.

To proceed further we need to ldok more closely at the sum over Ni.
The summation will include such terms as (Naijm) and (NbNajm), for
specific values.

If a state |1> in the equs. above corresponds to the combination

(Naijm), then a state ,R>§ may be defined corresponding to (NbNajm)'
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Each of equations (4A.4), (4A.5), (4A.6) above will become four

equations because of the possibilities:

(NaNb. ceo) -~ (NaNb. ves)
(NN eoeue) == (NN vo0e)
b a b a (4h.7)
(NaNb....) - (NbNa....)
(NbNa....) - (NaNb....)

We are looking for a combination of the F’s which will give us the
same combination of ['s within the homogeneous term of an integral
equation,
Examine the combination
M2
M- (7

for each of the possibilities (4A.7) aboves:

(1) (NaNb....) - (NaNb....).

From equations (4A.4), (4A.5) and (4A.6), the homogeneous term

is

-1 {<1|tMGO| M>. + <n|tnGO j n\/\] Fi‘l +[<5{|tneo ] n>-% <l|tMGo| M>]Flm
+[<x |ty | M-3Rt 6, ") s
Introduce now the transformation factor U by defining
(Rl 1) = Galag, | )
<X|tG n = U <n|tnG0|n>

in

The homogeneous term therefore becomes

-+ [U" U"] <M[tG M>P“ (U" + Uy J<M|tMG | >I’li"‘
(S 4 0] O Con-0)

Where we have used the condition <M,tMG iM\s= <h)t G ,n>.
ol / no
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(2) (NaNb...

Adopting a similar procedureas in (1), the homogeneous term is

F () il |9 T+ (40 4 ] Gl )™ o,

b E w e G BT (aan9)

(3) (NbNa....)-—-—v- (NbNa....)

o) = (NbNa....)

Gives an inhomogeneous term

- [u;“* + UM*J XU XC IIS”M)I e [U;*-cﬁ— u,,ff J { £, G | M); -
Q)
+ [U,M - ](M [ £, | wy 38 (aa.10)

(4) (NN .oos) = (NN ....)

Produces

_%[ U m] {Mlt G |M>I<|Ki€|i'> Ugn -% Unm] I<M|t G |M>§Q | ]$”|M>
[ ]{Mlt o [ QD (aan)

Using the conditions, Re(UM{) = Re (Unl)

and (M [t,G M) = Mt MY then the
contributions (1), (2), (3); (4) to the total homogeneous term give
" i ) [iEm Ll
~2Rs (Y,) (M ltrGy | M) [P 4] -+ J
“2Re (U) <MltMGolM>KRMWIQ/\I -+ Qm;  GyY 1}] (ah.12)

with <Q'}SQR,Q>I = I@!X“),@ and similarly for the Xﬁm and XMQ

Caseés.


http://4A.11

35

We have, therefore, the expression

(,u an_% PMHQ]X“[,Q}I -+ <ih§lm|f'% -3 <M'XMQ,9~>I (4A.13)

-l
2

on both sides of the eguation that we have constructed.
The inhomogeneous term is made up by adding the four contributions
as has been done for the homogeneous term. This gives a total

inhomogeneous term of

1" ¥xm n L™ 1 n e 1 1 e
2 <MltM |M> [Re Wen Ym ¥ Y4n Y0 % Yn a2 UnVen

i t

1" 1] 1 " m 1 1" M_L " m
+ (U UQnUQn 2 UQnUgn 2 Umhk“g UMnUQn)]
And taking

U, =U,=U _ =U =0 =U

W= U Ve T Ve T Ut Ym0 then

the inhomogeneous term becomes

AL n Fall "n " n (11

n
|ty fM> Re Wy U * Y Uen * U Vi * Ypn Ve
. " Fal Al "
=2 (M Ity M) Re (U Vg * Upm Ypnt) (4A.14)
Denoting the expression (4A.13) by :f » we have a final iterative

equation represented by

NIEES Qi Ty 1) + D <M,tMGo IM>j (4A.15)

with
n .x.l" 1 L1}

Ey = 2 Re (ULM U * UQM U w )

and D, = - Re (UKM)

N

We note that for terms with Na=Nb, this equation will give four times
the necessary contribution. Also :f gives onethird of the contribution
from the [1 functions. The transformation functions have the explicit

expression

o o g

A
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Equation (4A.15) may be expressed diagrammatically as in Fig. (4A).

-

Vs

s

/
{7
AN

Figure (4A). Diagrammatical representation of equation (4A.15)



APPENDIX FEIVE

NORMALIZATION OF THE STATES

Here we summarize the normalization conditions.
1.

G . $(p,-p,) S(pip,) Ilps py)

d

!
| R ) S8
a a

pNy, "33 Tm'm

This may be written more neatly as
2! 2 2 2y &
<p N' ’P N> = (S(P' -p ) C)N'N

which leads to the closure relation (4.1)

The constant Cl of equation (3.44) is found to be 4.



APPENDIX STIX

EVALUATION OF F FOR EAGH g FUNCTION

The F functions for eagh g are given in this Appendix.

starting point is equation (4.7). The integrations involved

58

The

are made

more tractable by changing from variables (e, ¢) to (x,y) as indicated
in Fig. (4.2).
We then find for the variocus 9, functionss
3 w2 _ 3 2
9;° 8c Al [aD ﬁn(o‘D-'an) ] [p 2 q3]
F=FQ) - 2 2 3 2 2 2 3 2
1] J—— " - -
(f, + p"" -5 a3) &G+ 9" -5 o)
ne A q .
> F=F@) = 2 3 = F) 0 («f0)
1 p M0
Gonsidering the F function gorresponding to p"™ and using
J* J
M0 _
M
where PJ(cos 8) is a Legendre polynomial and © = el— 92,
then a ¢os 6 factor emerges, where 6 is the GM. scattering
angle.
gge This produces the same F function as ‘gye

940 Omitted

9se One finds for this case that F = O.

2
6 F=F(6) = A—E’- ——3 1| FQD)
l p"

Qe This produces the same F function as 9



2 —

Z M0

1 pnZ >

We find that a P, (cos ) factor emerges; when also

considering the F function for p™ .

F(1) 02 («,f,0 ).

29
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APPENDIX SEVEN

NUMERICAL CALCULATION

In this appendix we give the computational techniques used
in evaluating the T-matrices. Symbolically the "Dragt integral

equation”" may be represented by
2 2 P 2 2 2
T(p" P") =t (pn2 p* Y +K (pn2 pI ) T (pI p"°) -

The integral equations were solved ﬁsing a Simpson's Rule procedure.
That is, they wereapproximated by matrix equations and matrix inversions
carried out with the use of the IBM Subiroutine MINV. In order that
points could be effectively taken to infinity, a change of variable
was made from p2 to R such that

p°= W R

(1I-R)

and R varies between O and 1. W is a constant determining the varying
concentration of points throughout the range p2 = 0 to©®. The
optimum value of W was found to be 2 qg. The R range was divided into
LO equal intervals, which was found to represent with reasonable accuracy
the meshes involved.,

In order to be able to determine the matrix elements for the
inhomogeneous and kernel parts then integrations over y variables have
to be completed. TFor this a 12-point Gaussian quadrature integration
subprogram was used which had a built-in convergence criterion. Doubling
the number of Gaussian points made no difference to the matrix elements
obtained to within 0.l per cent for thereal part and 0.2 per cent for
the imaginary part.

The technique therefore mainly involved L1 by L1 point meshes,
each point of which is a complex number. This becomes then a 82 by 82

point real mesh.
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Because the states (2A.6), (2A.12) and (2A.13) are coupled this
involves the solution of three simultaneous integral equations. However,
because of the symmetry properties, it is possible to effectively reduce
this to the solution of two simultaneous integral equations. The
solution then involves the inversion of a 164 by 164 point matrix.

One finds from Chapter l, section B, that the lower limit for
each of the integrations over p"2 and p"l2 is % qg. The final
integration was therefore taken over 23 points in the R variable.

In order to obtain an estimate of the errors involved in the
values obtained for the T-matrix, then the number of points for the
solution of a single integral equation was doubled. Specifically,
the A = O contribution was found with just one Dragt term in the
kernel part both by the inversion of an 82 by 82 point mesh and then
using a 16L by 164 point mesh.

The error at the higher energy in the real part was found to be
about L per cent and the error in the imaginary part about 1 per cent.
The greater error in the real part is perhaps to be expected as there
is a good deal of cancellation involved in the calculation of this part.
At the lower energy the corresponding values for real and imaginary
parts were approxmately 5.5 per cent and 1.5 per cent.

The potential contributions were determined using a 12-point
Gaussian sub-program as was used to determine the elements of the meshes.
Doubling the number of Gaussian points produced a difference of less
than 0.3 per cent, at both energies. The partial wave projections of
the potential parts were determined using Simpson's Rule, and doubling
the number of points produced a difference of less than 1 per cent at
both energies.

Error estimation for the two parts contributing to a,_L produced
approximately 6 per cent for the T matrix part and 0.8 per cent

for the potential part.



We might expect more realistic values for the errors to be
not a lot greater than those figures quoted.
The computing was carried out on the I.B.M. 360/67 machine

in the University of Newcastle upon Tyne.
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APPENDIX EIGHT

THE TINHOMOGENEOUS TERMS

The inhomogeneous terms, denoted by t, are given. They are
determined from equation (4.20). In each case the final integration
over 9 needs to be carried out.

t (i,j) indicates that g, is taken on the left and

g'j on the right.

(1) ) L
6(1,2) = 8K pv 192 (1-09)7 vy (30,5) Tyom8) v (omQ)
where Q = LZ (pu2§_ + pn2 - p"'2).
p"
(2) 2
1 A2 Avs L
t(2,2) = 7 KE (1+3)% (1+Q)% t (1,1)
) 1,6 - 5 q 4 1)
t (1,6) = = 1,1).
3 Al 3
(L) Ao,
t (631) = q y t (131)
22
#(6,6) = — F @ t(1,1)
ot
(6)
t(1;7) = t(l,é)
(7)
t(7,1) = t(6,1)
(8)

t(7,7) = £(6,6)
(9)

L ) (1+Q)

+(8,8) 30

t (1,1).

[t I >
= Njoo o
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