

Durham E-Theses

A calculation of neutron-deuteron scattering using the su(3) basis
Beard, Alan Norman

How to cite:
Beard, Alan Norman (1972) A calculation of neutron-deuteron scattering using the su(3) basis, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8618/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

A CALCULATION OF NEUTRON-DEUTERON SCATTERING USING THE $\mathrm{Su}(3)$ BASIS

Thesis submitted to the University of Durham
by

ALAN NORMAN BEARD

For the Degree of Doctor of Philosophy
$\begin{array}{ll}\text { Department of Physics } & \\ \text { University of Durham } & \text { May } 1972\end{array}$

CONTENTS

Page
ABSTRACT i
CHAPTER ONE Introduction 1
CHAPTER TWO The Faddeev Formalism
Section A - The non-relativistic three-body problem 4
Section B - Faddeev equationsfor neutron-deuteron scattering
CHAPTER THREE Three-particle states in the $\mathrm{Su}(3)$ basis
Section A - The $\mathrm{Su}(3)$ classification of three-particle 11 states
Section B - The construction of $\mathrm{Su}(3)$ eigenstates 15
CHAPTER FOUR Solving the integral equations
Section A - Final integral equation using $\mathrm{Su}(3)$ states 23
Section B - Finding the T-matrix using the $\mathrm{Su}(3)$ basis 23
CHAPTER FIVE Numerical results 31
CHAPTER SIX Conclusion 41
APPENDIX ONE Spin and isospin U functions 44
APPENDIX TWO Explicit $\mathrm{Su}(3)$ eigenstates 46
APPENDIX THREE g Functions in Dalitz-Fabri co-ordinates 48
APPENDIX FOUR The integral equation 51
APPENDIX FIVE Normalization of the states 57
APPENDIX SIX Evaulation of F for each g function 58
APPENDIX SEVEN Numerical calculation 60
APPENDIX EIGHT The inhomogeneous terms 63
REFERENCES 64
ACKNOWLEDGEMENTS 66

ABSTRACT

The Faddeev equations for three particles are given a basis of representation according to the group $\mathrm{Su}(3)$. The usefulness of this representation is investigated by application to neutron-deuteron scattering.

CHAPTER ONE

INTRODUCTION

Investigation of the three-body problem has been found difficult partly because of the large number of degrees of freedom involved and partly because of difficulties with the formalism. Although the Faddeev equations put the problem into a clear framework ${ }^{(1,2)}$, the three particles are still treated as identifiable and the large nunber of variables still remain. Even after the Omnes ${ }^{(3)}$ angular momentum reduction three integrating variables still remain in the final equations. Osborn ${ }^{(4)}$ succeeded in reducing Omnes ${ }^{\text {a }}$ results for the Faddeev equations to two variables and actually solved the equations for the idealized case of three spinless bosons interacting through a Yukawa potential. However, the method is numerically complicated and it would be even more complicated and fambersome when generalized to nucleons interacting through spin and isospin dependant potentials. However, it was realized that it is possible to reduce the problem to the solution of a single variable integral equation by assuming that the particles interact in pairs through non-local separable potentials $(5,6,7)$. When attempting to classify multiparticle states it is impertant to diagonalize these variables which are known to be constants of the motion from general invariance: principles. Thus, plane waver states $\left.\mid p_{1} p_{2} p_{3} \ldots.\right)$ which are eigenstates of the individual momenta p_{i} and the total momentum, $f=\sum_{i} p_{i}$, are useful in exploiting translational invariance. To benefit from rotational invariance as well, we need to abandon plane wave states in favour of eigenstates not only of total momentum but also of the total angular momentun. For scattering problems which do not involve rearrangements it is perhaps best to carry out a relatively simple partial wave analysis corresponding to the angular momentum in the $C M$ system of the two incident bodies. Hetherington and Schick ${ }^{(5)}$ have done this for $k^{-}-D$ scattering.

However, for cases which go beyond the "effective two particle" situation then a more general three body partial wave anolysis should be considered.

A discussion of how such states may be constructed for three particles has been given by Wick ${ }^{(8)}$. He forms states $\mid . F J_{Z}, w j j_{z}$) which are eigenstates of the total momenturn and the angular momentum about the centre of mass. His states are also eigenstates of the total energy w and angular momentum j of particles 1 and 2 in their centre of mass frame. These states are partially localized and this is important when considering short range interactions. For example, states with moderate values of w and large j describe a situation in which particles 1 and 2 are almost always very far apart and therefore unlikely to interact. However, while the spatial correlation between particles 1 and 2 is well-defined, that between particles 1 and 3 or 2 and 3 has to be found using recoupling coefficients.

Three-body angular momentum states have also been constructed by Ahmadzadeh and Tjon (9) which were used by Chen, Ball and Wong (10) to study the (e, H) system. These states may be represented as $\left|p_{i} 1 M_{1}, q_{i} L M_{L}\right\rangle$ where p_{i} is the relative momentum co-ordinate for the two particles not specified by i and q_{i} is the momentum of particle i in the over-all GM system. The angular momenta 1 and L are the relative angular momentum of the two particles concerned and the angular momentum of the third particle in the three-body CM system. Again, the criticism of partial localization can be directed at the se states. It might be useful, therefore, to have a formalism which treats all three particles equivalently. That is, we should like to be able to construct states which have very simple symnetry properties.

The work of Smith (11) introduces a "Grand Angular Momentum Tensor", Λ^{2}, which plays a similar part for three particies as angular momentum does for two particles. The smaller is Λ^{2}, then the "closer" is the system. Thus, a partial wave analysis using Λ^{2} might converge rapidly
if we are considering a system where every thing is happening "close in" such as a three-particle strong interaction system. The method of Smith leads to a single six-dimensional vector providing the co-ordinates needed to describe the three-particle CM System. Thus, it involves a single integration over the length of the six-dimensional vector and summations over the discrete quantum numbers arising from a consideration of the angular dependences in this six-dimensional space. It would be possible, therefore, to use a local potential and still be able to reduce the problem to one involving a single integration. This would be an advantage of the formalism if the summation over the discrete quantun numbers were to converge rapidly enough.

Indeed the main concern of this present work is to test quantitatively the reasonableness of this speculation for a realistic calculation. We have therefore turned our attention to the problem of neutron-deuteron ($\mathrm{N}-\mathrm{D}$) scattering. As will be seen, there is indeed some convergence, but it is not rapid enough to be a practical means of studying $N-D$ scattering. Although certain simplications result in using these states, the calculation becomes rather cumbersome unless we can truncate the summation after only a few terms. Further discussion of this is left till later.

Chapter 2 provides a short account of the Faddeev formalism, while Chaper 3 provides a resume of the relevant work of Dragt ${ }^{(12)}$ who extended the studies of Smith to the three-dimensional case. In section A of Chapter 4 the relevant coupled equations are reduced to one single variable integral equation using the three-particle states ("Dragt States") of reference 12 , which have simple symmetry properties.

Section B of Chapter 4 gives the method of finding the three-body I matrix using the $\mathrm{Su}(3)$ basis.

Numerical results are presented in Chapter 5 and the conciusion in Chapter 6.

CHAPTER TWO

THE FADDEEV FORMALISM

Section A. The Non-Relativistic Three-body Problem.

The Lippmann-Schwinger (L-S) Equation for the T-matrix, which describes non-relativistic two -particle scattering, runs into trouble for the case of three particles $(1,13)$. The difficulties arise, in part, from the presence of disconnected diagrams corresponding to the possibility of a particle going straight through without interaction. The two-body L-S equation is:

$$
\begin{equation*}
\left.\left\langle p^{\prime}\right| T(E)|p\rangle=\left\langle p^{\prime}\right| v \mid p\right)+\int \frac{d p^{\prime \prime}}{\frac{1}{E-E}} p^{\prime \prime}\left\langle p^{\prime}\right| V\left|p^{\prime \prime}\right\rangle\left\langle p^{\prime \prime}\right| T(E)|p\rangle \tag{2.1}
\end{equation*}
$$

where p and f^{\prime} are the relative momentum vectors for the incoming and outgoing states respectively and E is the total energy in the CM System. For the three-particle case let us define channel α as that for which particle α is free while the other two particles form a bound state. Then the L०S equations for scattering from channel α to channel β are ${ }^{(14)}$

$$
\begin{align*}
\mathrm{T}_{\beta \alpha}^{+}(E) & =\mathrm{V}^{\beta}+\mathrm{V}^{\beta} \mathrm{G}_{\alpha}^{+}(E) \mathrm{T}_{\alpha \alpha}^{+}(E) \\
& =\mathrm{V}^{\beta}+\mathrm{T}_{\beta \alpha}^{+}(E) \mathrm{G}_{\alpha}^{+}(E) \mathrm{V}^{\alpha} \tag{2.2}\\
\mathrm{T}_{\beta \alpha}^{-}(E) & =\mathrm{V}^{\alpha}+\mathrm{V}^{\beta} \mathrm{G}_{\beta}^{+}(E) \mathrm{T}_{\beta \alpha}^{-}(E) \\
& =V^{\alpha} \notin \mathrm{T}_{\beta \alpha}^{+}(E) \mathrm{G}_{\alpha}^{+}(E) \mathrm{V}^{\alpha} \tag{2.3}
\end{align*}
$$

And $\alpha=0,1,2,3$ where $\alpha=0$ refers to the channel having all three particles free.

The quantities are defined for particles of masses $M_{\alpha}(\alpha=1,2,3)$ as:
(a) $\mathrm{V}_{\mathrm{o}}=0 \quad \mathrm{~V}_{1}=$ potential between particles $2 \& 3$
$\mathrm{V}_{2}=$ potential between particles $1 \& 3$
$V_{3}=$ potential between particles $1 \& 2$

$$
v=v_{1}+v_{2}+v_{3} \quad v^{\alpha}=v-v_{\alpha} .
$$

(b) $\mathrm{G}_{\alpha}^{+}(\mathrm{E})=$ Green's function in channel α

$$
=\frac{1}{\left(E-H_{\alpha} \pm i \epsilon\right)}, \quad \epsilon \rightarrow 0+
$$

with $E=$ Energy in the three-particle GM System.

$$
H_{\alpha}=H_{o}+V_{\alpha}
$$

Equations (2.2) and (2.3) lead to different off energy-shell extensions of the T matrix and describe the same scattering in the limit as $\in \rightarrow 0$. From now en we shall confine ourselves to the (+) -type of operator and omit the Superscript unless a distinction is important.

Equations of the type (2.3) can be solved by standard techniqques if the kernel, $v^{\beta} G_{\alpha}^{+}(E)$, is Hilbert-Scimidt, (H-S).

That is, in operator form,

$$
\text { trace }\left(\mathrm{K} \mathrm{~K}^{+}\right)<\infty
$$

where K is the kernel of the equation.
It fails to be H-S for three-body scattering because of the presence of delta-functions which arise in taking matrix elements of two-body potentials between three-body states. For example, the kernel $\mathrm{V}^{0} \mathrm{G}_{\mathrm{o}}^{+}(\mathrm{E})$ leads to terms such as

$$
\left\langle p_{1}^{\prime} p^{\prime}{ }_{2}^{p_{3}^{\prime}}\right| V_{1} G_{0}^{+}(E)\left|p_{1} p_{2} p_{3}\right\rangle
$$

where $p_{1}, p_{2} ; p_{3}$ are the momentum vectors for the three incoming particles and $p_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ likewise for the outgoing particles.

Particles 2 and 3 interact through V_{1}, but particle 1 is unaffected. That is, the matrix element gives

$$
\delta\left(p_{1}-p_{1}^{\prime}\right)\left\langle p_{2}^{\prime} p_{3}^{\prime}\right| v_{1} G_{o}^{+}(E)\left|p_{2} p_{3}\right\rangle
$$

This may be represented diagramatically as in Figure (2.1)

Figure 2.1

Therefore the kernel is not ($\mathrm{H}-\mathrm{S}$). There remains the possibility that it is compact, but in fact this is not the case ${ }^{(13)}$. The solution is then nonunique $(24,25,26)$. Faddeev overcame this by deducing coupled integral equations from the L-S equation which have connected kernels after one iteration ${ }^{(1)}$. Equations (2.2) may be written as

$$
T_{\beta a}=v^{\beta}+v^{\beta} \frac{+}{G} V^{\alpha}
$$

where $G^{+}=\frac{l}{E-H+i f}$ is the full Green's function.
$\mathrm{H}=$ the complete Hamiltonian.
This leads to the breakdown

$$
\begin{array}{ll}
T_{\beta \alpha}= & \sum_{\substack{i \neq \beta \\
j \neq \alpha}} T^{i j}+v_{\alpha} \bar{\delta}_{\beta \alpha} \tag{2.5}\\
\quad \delta_{\beta \alpha}=\left(1-\delta_{\beta \alpha}\right)
\end{array}
$$

with

$$
\begin{equation*}
T^{i j}=t_{i} \delta_{i j}+\sum_{k=1}^{3} t_{i} G_{o} \bar{\delta}_{i k} T^{k j} \tag{2.6}
\end{equation*}
$$

and $t_{i}=$ the two particle T matrix between the particles not denoted by $i_{\text {。 }}$
Equations (2.6) are the canonical Faddeev Equations and have connected kernels after one iteration. But even after an iteration the kernels are not H-S if we let $\in \rightarrow 0$. However, after five iterations the kernels are
compact and it then follows that the solution is unique even on the real energy axis, except for a discrete set of real values of $E^{(13)}$.

Section _B. Faddeev Equations for Neutron-Deuteron Scattering
It is our task to calculate the matrix element $T_{a b}$ for elastic N-D scattering,

$$
\begin{equation*}
T_{a b}=\langle a| T|b\rangle \tag{2.7}
\end{equation*}
$$

In particular we are dealing with a system of three identical particles, each with spin $\frac{1}{2}$ and isospin $\frac{1}{2}$. The states \mid ab \mid b) are made up of products of spatial wave functions, spinwave functions and isospin wave functions. Each spatial wave function is a product of a bound state wave function for the motion of the dueteron, and a plane wave for the motion of the third particle.

The state vector for a system of fermions must be anti-symmetric with respect to interchange of particles. Denote such a three particle state by $|123\rangle$ as, where the 1 includes space, spin and isospin information for particle 1 and likewise for particles 2 and 3.

In terms of states made up of direct products of single particle states, $|123\rangle_{\text {as }}$ may be written as (15)

$$
\begin{equation*}
|123\rangle_{a s}=\frac{1}{\sqrt{6}}\{(|123\rangle+|231\rangle+|312\rangle)-(|213\rangle+|132\rangle+|321\rangle)\} \tag{2.8}
\end{equation*}
$$

defining an anti-symmetric 2 -fermion state by

$$
\begin{equation*}
|12\rangle_{\mathrm{as}}=\frac{-1}{\sqrt{2}}\{|12\rangle-|21\rangle\} \tag{2.9}
\end{equation*}
$$

where $|12\rangle=|1\rangle \times 12\rangle$ then equation (2.8) may be rewritten in the form

$$
\left.\begin{array}{rl}
|123\rangle_{\mathrm{as}} & =\frac{1}{\sqrt{3}} \tag{2.10}\\
\text { with }|3\rangle_{\mathrm{as}} & \left.=|12\rangle_{\mathrm{as}}+|2\rangle_{\mathrm{as}}+|1\rangle_{\mathrm{as}}\right\}
\end{array}\right\}
$$

This is also true if $\| 12\rangle_{\text {as }}$ is any normalized anti-symmetric two-fermion state.

It is convenient here to introduce new momentum variables defined by

$$
\begin{align*}
& f=p_{1}+p_{2}+p_{3} \tag{2.11}\\
& q_{i}=p_{j}+p_{k} \tag{2.12}\\
& k_{i}=\frac{\left(M_{j} p_{k}-M_{k} p_{j}\right)}{\left(M_{j}+M_{k}\right)} \tag{2.13}
\end{align*}
$$

where $\mathrm{i}, \mathrm{j}, \mathrm{k}$ is a cyclic permutation of $1,2,3$ and

```
p= the total momentum
-q}\mp@subsup{q}{i}{}=\mathrm{ the momentum of particle i in the three particle CM system.
k}\mp@subsup{\textrm{k}}{\textrm{i}}{=}\mathrm{ the relative momenturn of particles j and k in the j k
        CM Subsystem.
m}\mp@subsup{M}{i}{}=\mathrm{ mass of particle i.
```

It is then found that the Jacobian for the transformation from ($p_{1} p_{2} p_{3}$) to $\left(\dot{p}, q_{i}, k_{i}\right)$ is one.

That is

$$
1\left|p_{1} p_{2} p_{3}\right\rangle=\left|p_{1}, q_{i}, k_{i}\right\rangle \quad i=1,2,3
$$

Including spin and isospin the state $\quad|\beta\rangle_{\text {as }}$ can now be specified as $\left|F, q_{\beta}, D_{\beta}, I, I_{z}, I_{\beta}, S, S_{z}, S_{\beta}\right\rangle_{\text {as }}=\int \mathrm{dk}_{\beta} \varnothing_{D}\left(\underline{k}_{\beta}\right)\left|F, q_{\beta}, \underline{k}_{\beta}, I, I_{z}, I_{\beta}, S, S_{z}, S_{\beta}\right\rangle_{a s}$

Where we have now introduced the deuteron wave function

$$
\begin{equation*}
\phi_{D}\left(\underline{k}_{\beta}\right)=\left\langle\underline{k}_{\beta} \mid D_{\beta}\right\rangle \tag{2.15}
\end{equation*}
$$

in its CM system, and the other quantities are
$I=$ total isespin of the three particle system
$I_{z}=Z$ component of I
$I_{\beta}=$ total isospin of the $\beta^{\text {th }}$ two-particle Subsystem
$S \quad$ total spin of three particle system
$S_{z}=Z$ component of S
$s_{\beta}=$ total spin of the $\beta^{\text {th }}$ two particle subsystem.

The deuteron isospin $=0$, so the isospin wave function consists of a singlet function for the deuteron coupled with the isospin $\frac{1}{2}$ of the third nucleon.

As the deuteron spin $=1$, we have two possible initial spin states; the quartet of total $\operatorname{spin}=\frac{3}{2}$ and the doublet of total $\operatorname{spin}=\frac{1}{2}$.

As we are considering only an S-wave non-local separable potential, we shall take the deuteron to be in a puire S-state. In this case the an'ti-symmetry is completely given by the isospin part of the deuteron wave function, using (2.10) then

$$
I_{a b}=\frac{1}{3} \sum_{\beta, \alpha=1}^{3}{ }_{a s}\left\langle P^{\prime} q_{\beta}^{\prime} D_{\beta}^{\prime} I^{\prime} I^{\prime}{ }_{z} I_{\beta}^{\prime} S^{\prime} S_{z}^{\prime} S_{\beta}^{\prime}\right| T_{\beta a}\left|P^{\prime} q_{\alpha} D_{\alpha} I I_{z} I_{\alpha} S S_{z} S_{\alpha}\right\rangle \text { as }
$$

the values of \dot{I}_{α}, in the above. summation will be 0,1 . For the spin quartet scattering the S_{α} values must $=1$. For an isospin independent interaction the functions

$$
\begin{equation*}
\left\langle I^{\prime} I_{z}^{\prime} I_{\beta}^{\prime} \mid I_{z} I_{\alpha}\right\rangle=\delta_{I[}, \delta_{I_{z} I_{z}^{\prime}} U^{\beta \alpha}\left(I_{\beta}^{\prime}, I_{\alpha}\right) \tag{2.17}
\end{equation*}
$$

may be extracted. (See appendix 1).
Taking out a delta-function f total momentum conservation on both sides, together with Kronecker delta-functions of isospin and spin conservation we find,

$$
\begin{align*}
& \delta\left(P-P^{\prime}\right) \delta_{I I}: \delta_{I_{z} I}, \delta_{S S} \delta_{S_{z} S_{z}^{\prime}} \frac{1}{3}\left\{\sum_{\alpha=1}^{3} \hat{T}_{\alpha \alpha}-\frac{1}{2} \sum_{\alpha, \beta=1}^{3} \hat{I}_{\alpha \beta \beta} \bar{\delta}_{\beta \alpha}\right\}(2.18) \\
& \text { where } \hat{T}_{\beta \alpha} \equiv\left\langle q_{\beta}^{\prime} D_{\beta}^{\prime} \quad S_{\beta}^{\prime}\right| T_{\beta \alpha}\left|q_{\alpha} D_{\alpha} S_{\alpha}\right\rangle \tag{2.19}
\end{align*}
$$

It may be seen in appendix I that for the quartet interaction the spin dependence of the T matrix becomes trivial and we shall therefore ignore it in dealing with the equations.

From equation (2.5)

$$
\begin{equation*}
\langle\beta| T_{\beta \alpha}|\alpha\rangle=\sum_{i j} \bar{\delta}_{i \beta} \bar{\delta}_{j \alpha}\langle\beta| T^{i j}|\alpha\rangle+\langle\beta| v_{\alpha}|\alpha\rangle \bar{\delta}_{\beta \alpha} \tag{2.20}
\end{equation*}
$$

Equation (2.20) may be written in the form

$$
\begin{equation*}
\langle\beta| I_{\beta \alpha}|\alpha\rangle=\langle\beta| \gamma^{\beta \alpha}|\alpha\rangle+\langle\beta| v_{\alpha}|\alpha\rangle \bar{\delta}_{\beta \alpha} \tag{2.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\langle\beta| \gamma^{\beta \alpha}|\alpha\rangle=\sum_{i j}\langle\beta| T^{i j}|\alpha\rangle \bar{\delta}_{i \beta} \bar{\delta}_{j \alpha} \tag{2.22}
\end{equation*}
$$

And, using (2.6) $\gamma^{\beta \alpha}$ must satisfy

$$
\gamma^{\beta \alpha}=\sum_{i j} \bar{\delta}_{\beta i} \bar{\delta}_{\alpha j} t_{i} \delta_{i j}+\sum_{i j} \bar{\delta}_{\beta i} \bar{\delta}_{\alpha j} t_{i} G_{o} \sum_{k} \bar{\delta}_{k i} T^{k j}
$$

which gives

$$
\begin{align*}
\gamma^{\beta \alpha} & =\sum_{i j} \bar{\delta}_{i \beta} \bar{\delta}_{j \alpha} t_{i} \delta_{i j}+\sum_{i} \bar{\delta}_{\beta i} t_{i} G_{o} \gamma^{i \alpha} \\
\therefore \quad & =\sum_{j} \bar{\delta}_{\beta j} \bar{\delta}_{\alpha_{j}} t_{j}+\sum_{i} \bar{\delta}_{\beta i} t_{i} G_{o} \gamma^{i \alpha} \tag{2.23}
\end{align*}
$$

In order to be able to solve these equations, we need to introduce a complete set of states such that the number of integration variables is reduced. The following chapter establishes such a set in the $\mathrm{Su}(3)$ basis.

CHAPTER IHREE

THREE PARTICIE STATES IN THE Su(3) BASIS

Section A. The Su(3) classification of three-particle states.

The purpose of this Ghapter is to obtain states which have simple symmetry properties. Since we know that rotational invariance leads to conservation of angular momentum and its z component, then we would expect these quantities to emerge from the present analysis as two of the quantum numbers needed to label the states.

In momentum space the state of a three particle system can be characterized by the vectors p_{i}, Let us make an orthogonal transformation such that

$$
\left(p_{1} p_{2} p_{3}\right) \rightarrow\left(p^{(1)} p^{(2)} p^{(3)}\right)
$$

with, for three equal mass particles

$$
\begin{align*}
& p^{(1)}=\frac{1}{\sqrt{2}}\left(p_{2}-p_{1}\right) \tag{3.1a}\\
& p^{(2)}=\frac{1}{\sqrt{6}}\left(2 p_{3}-p_{1}-p_{2}\right) \tag{3.1b}\\
& p^{(3)}=\frac{1}{\sqrt{3}}\left(p_{1}+p_{2}+p_{3}\right) \tag{3.1c}
\end{align*}
$$

These vectors span a 9-dimensional space, rotations in which are brought about by the erthogonal group $0(9)$.

However, because of translational invariance, the total momentum of the three particles plays a straight-forward role.

That is, in the CM frame, $p^{(1)}, p^{(2)}$ are the only vectors required to specify the state. We therefore introduce a six-dimensional space s:2 spanned by vectors

$$
\begin{equation*}
p=\left(p^{(1)}, p^{(2)}\right) \tag{3.2}
\end{equation*}
$$

where the scalar product is defined in the usual way. In particular, we have the relation

$$
\begin{equation*}
p^{2}=p^{(1)^{2}}+p^{(2)^{2}}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2} \tag{3.2a}
\end{equation*}
$$

Following Dragt, we now look for the linear transformations which leave invariant the form

$$
\begin{equation*}
2 M E_{o}=p^{2}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2} \tag{3.3}
\end{equation*}
$$

with

$$
M=\text { mass of each particle }
$$

$E_{0}=$ total kinetic energy in the CM System.
That is, we are looking for all orthogenal transformations in sixdimensional space, $O(6)$. If the Lie algebra for $O(6)$ is L_{o}, it will be characterized by the fifteen anti-symmetric 6×6 matrices.

$$
R_{i j}=|i\rangle\langle j|-|j\rangle\langle i| \quad i, j=1 \ldots 6
$$

where | i \rangle denotes a six-dimensional column vector in a real vector space whose $i^{\text {th }}$ component is unity whilst the others are zero. $\{i j$ is the corresponding row vector.

The algebra L_{o} is given by the commutation rules

$$
\begin{gather*}
{\left[R_{i j}, R_{m n}=0, \quad i \neq j \neq m \neq n\right.} \tag{3.33}\\
{\left[R_{i j}, R_{j k}\right]=R_{j k}} \tag{3.3b}
\end{gather*}
$$

with

$$
\begin{equation*}
R_{i j}=-R_{j i} \tag{3.3c}
\end{equation*}
$$

Not all the elements of L_{o} treat all threeparticles equivalently. But we may obtain a sub algebra of L_{0} which does. Define L_{1} to be the set of all elements F in L_{o} with the property

$$
\begin{equation*}
[C, F]=0 \tag{3.4}
\end{equation*}
$$

where G effects a cyelic permutation on three objects e.g. $123>231$. Then the effect of a cyclic permutation operation on the three-particle states we will construct is very simple. It is also found that the effect
of a transposition operation on the elements of L_{1} is to produce a sign change at most.

The subalgebra L_{l} has, therefore, very simple symmetry properties, and is in fact the algebra for $U(3)$, having the elements

$$
\begin{array}{ll}
J_{i j}=R_{i j}+R_{i+3} j+3 & i, j \leqslant 3 \quad i \neq j \\
K_{i j}=R_{i, j+3}-R_{i+3, j} & i, j \leqslant 3 \tag{3.5}
\end{array}
$$

As $R_{i j}=-R_{j i}$ then it follows that

$$
\begin{equation*}
J_{i j}=-J_{j i} \quad K_{i j}=-K_{j i} \tag{3.6}
\end{equation*}
$$

Therefore, L_{1} is nine-dimensional. If we extract from L_{1} the linear Casimir operator of $U(3)$.

$$
\begin{equation*}
S=\frac{1}{2} \sum_{i=1}^{3} K_{i j} \tag{3.7}
\end{equation*}
$$

then the remaining eight elements form the Lie algebra, L_{2}, which is isomorphicito $\mathrm{Su}(3)$. For a quantum mechanical system, we need realizations of these algebras as Lie algebras of Hermitian operators acting in the Hilbert space of three particle states. Let $\underline{\underline{r}}=\left(\underline{\underline{I}}^{(1)}, \underline{\underline{\underline{I}}}{ }^{(2)}\right.$) be the six-dimensional co--ordinate vector corresponding to (3.2). $T_{\text {hat }}$ is, p and \underline{r} are Hermitian and canonically conjugate, satisfying the commutation relation

$$
\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}
$$

The quantum analogue of the $R_{i j}$ is then a set of operators, $\Lambda_{i j}$, with the following preperties:

$$
\begin{align*}
& {\left[\Lambda_{i j}, \underline{r}\right]=i R_{i j} \underline{r}} \tag{3.8a}\\
& {\left[\Lambda_{i j}, p\right]=i R_{i j} p} \tag{3.8b}
\end{align*}
$$

That is, in an exactly similar way as for orthogonal transfermations in ordinary three dimensiqnal space, we take

$$
\begin{equation*}
\Lambda_{i j}=r_{i} p_{j}-r_{j} p_{i} \tag{3.9}
\end{equation*}
$$

By their definition in equation (3.9) the $\Lambda_{i j}$ are subject to the identity

$$
\begin{equation*}
\Lambda_{i j} \Lambda_{k l}+\Lambda_{i l} \Lambda_{j k}+\Lambda_{i k} \Lambda_{l j}=0 ; i \neq j \neq k \neq 1 \tag{3.10}
\end{equation*}
$$

The quadratic Gasimir operator Λ^{2} for $O(6)$, which is also the square of the "Grand angular momentum tensor" ${ }^{(11)}$ is

$$
\begin{equation*}
\Lambda^{2}=\frac{1}{2} \sum_{i, j}^{6}\left(\Lambda_{i j}\right)^{2} \tag{3.11}
\end{equation*}
$$

The elements of L_{l} in terms of the $\Lambda_{i j}$ are:

$$
\begin{array}{ll}
J_{i j}=\Lambda_{i j}+\Lambda_{i+3, j+3} & i, j \leqslant 3 \quad i \neq j \\
K_{i j}=\Lambda_{i, j+3}-\Lambda_{i+3, j} & i, j \leqslant 3 \tag{3.12}
\end{array}
$$

with $K_{i j}=K_{j i}$ and $J_{i j}=-J_{j i}$
Using (3.5), we obtain that

$$
\begin{gather*}
\Lambda^{2}=\frac{1}{2} \sum_{i j}\left(J_{i j}^{2}+k_{i j}^{2}\right)+\sum_{i, j}\left(\Lambda_{i, j+3} \Lambda_{i+3, j}-\Lambda_{i j} \Lambda_{i+3, j+3)}\right. \\
=\frac{1}{2} \sum_{i=j}\left(J_{i j}^{2}+K_{i j}^{2}\right)-s^{2} \tag{3.13}\\
S=\frac{1}{2} \sum_{i=1}^{3} K_{i j}
\end{gather*}
$$

Λ^{2} is the quadratic Casimir operator for L_{1} and together with S their eigenvalues specify an irreducible representation (I. R_{1}) of $\mathrm{Su}(3)$. The Lie Algebra of $L_{\text {I }}$ is

$$
\begin{align*}
& {\left[J_{j}, J_{k}\right]=i \varepsilon_{j k l} J_{1}} \\
& {\left[J_{l}, K_{k l}\right]=i \varepsilon_{j k m} K_{m l}+i \varepsilon_{j 1 m} K_{k m}} \tag{3.14}\\
& {\left[K_{i j}, K_{m n}\right]=i\left(\delta_{i m} J_{j n}+\delta_{i n} J_{j m}+\delta_{j m} J_{i n}+\delta_{j n} J_{i m}\right)}
\end{align*}
$$

where $J_{i}=\frac{1}{2} \sum_{i j k} J_{j k}$.
The J_{i} 占s form a vector given by

$$
\begin{equation*}
\underline{J}=\underline{\underline{r}}_{1} \times p_{1}+\underline{r}_{2} \times \underline{p}_{2}+\underline{\underline{r}}_{3} \times \underline{p}_{3}-\underline{\underline{r}}^{(3)} \times p^{(3)} \tag{3.15}
\end{equation*}
$$

In the centre of momentum frame $p^{(3)}=0$, and \underline{J} is then interpreted as the total angular momentum in that frame. The $K_{i j}{ }^{\prime} S_{f}$ form a symmetric
tensor, the physical interpretation of which is not obvious.

Section_B. The Construction of Su(3) Eigenstates.

In reference 12 Dragt has shown that there is a one to one correspondence between the irreducible representations of $O(6)$ carried by three-particle states and those of $\mathrm{Su}(3)$. In order to construct representations for $\mathrm{Su}(3)$, we need a convenient system of co-ordinates. Since Su(3) treats the three particles equivalently, the co-ordinate system should do also. In the CM frame a system of three equal-mass particles with total kinetic energy E_{0} poses the constraint

$$
\begin{equation*}
p_{1}+p_{2}+p_{3}=0 \tag{3.16}
\end{equation*}
$$

with

$$
2 m E_{0}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=p^{(1)^{2}+p^{(2)^{2}}=p^{2} . \quad \text { (3.27). } . .20}
$$

We shall use the Dalitz-Fabri co-ordinates $(18,19)$. Gonsider the 'momentum triangle' whose vertices are the end points of the three momentum vectors directed from a common origing the centre of momenturn. The three Euler angles α, β, γ required to transform the triangle from a reference orientation to its actual orientation, may be conveniently taken to specify the orientation of this triangle in space. Then we need to parametrize the triangle itself.

Consider a second, equilateral, triangle of unit altitude. (See fig. (3.1)) This second triangle must not be confused with the first one, being constructed in a totally different space. For such a triangle the sum of the three distances from an interior point to each of the three sides is the same for each interior point and equal to 1 .

Identify the three distances with the quantities $\frac{p_{i}^{2}}{2}$; then equation (3.17) is automatically satisfied. The polar co-ordinates ρ, \varnothing may then be taken as the remaining two co-ruinates needed, and we have the relationships,

$$
p_{i}^{2}=\frac{1}{3} p^{2}\left(1+P \xi_{i}\right)
$$

FIG (3.1)
with

$$
\begin{align*}
& \xi_{1}=\operatorname{Cos}\left(\varnothing-2 \frac{\pi}{3}\right) \tag{3.1.8a}\\
& \xi_{2}=\cos \left(\varnothing+2 \frac{\pi}{3}\right) \tag{3.18b}\\
& \xi_{3}=\cos \varnothing \tag{3.18c}
\end{align*}
$$

In order to be able also to satisfy equation (3.16) we find that the kinematically allowed region for our new coordinates is that given by the disc inscribed within the Daltiz triangle, ie. such that

$$
e^{2} \leqslant 1
$$

The choice of Dalitz-Fabri position coordinates can be made in complete analogy to the momentum case.

We need now to determine a complete set of three-pariticle states $\left|\mathrm{f}^{(3)}, \mathrm{p}^{2}, N\right\rangle$ which form a carrier space for irreducible representations of L_{2}. An index, N, is used to distinguish between states having the same energy and momentum, but different properties under L_{2}.

If $\quad\left|\underline{\underline{r}}^{(1)} \underline{\underline{r}}^{(2)} \underline{\underline{I}}^{(3)}\right\rangle$ denotes the eigenstate for the position operators $\underline{I}^{(1)}, \underline{\underline{T}}^{(2)}, \underline{x}^{(3)}$ then the state $\left|{\underset{p}{ }}^{(3)} p^{2} N\right\rangle$ is specified by

$$
\left\langle\underline{I}^{(1)} \underline{\underline{r}}^{(2)} \underline{\underline{r}}^{(3)} \mid \underline{p}^{(3)} p^{2} N\right\rangle=\exp \left(i{\underset{p}{ }}^{(3)} \cdot \underline{r}^{(3)}\right) \psi
$$

where $\psi=\left\langle\underline{\underline{r}}^{(1)} \underline{\underline{r}}^{(2)} 0 \mid 0 p^{2} N\right\rangle$
must satisfy the six-dimensional Schrödinger equation:

$$
\begin{equation*}
-\nabla_{6}^{2} \psi=p^{2} \psi \tag{3.19}
\end{equation*}
$$

where $\left(\nabla_{6} / i\right)$ is the differential operator analog of $p \cdot p^{2}$ is related to the operator Λ^{2} by

$$
p^{2}=\frac{\Lambda^{2}}{r^{2}}+p_{r}^{2}-\frac{5 i}{r} p_{r}
$$

where $p_{r}=\frac{1}{r}$ r. p.
ψ may then be written in the form $\psi=f(r) g(p \phi \alpha \beta \gamma)$.
with f and g satisfying the equations:

$$
\begin{align*}
&\left\{\frac{\partial^{2}}{\partial r^{2}}+\frac{5}{r} \frac{\partial}{\partial r}=\frac{\lambda(\lambda+4)}{r^{2}}+p^{2}\right\} f=0 \tag{3.20}\\
& \hat{\Lambda}^{2} . g=\lambda(\lambda+4) g \tag{3.21}
\end{align*}
$$

($\rho \phi \alpha \beta \gamma$ here refer to position Dalitz-Fabri coordinates).
$\hat{\Lambda}^{2}$ is the differential operator analog of Λ^{2}.
Demandirg that f be regular at the origin then we find

$$
\begin{equation*}
\left\langle\underline{\underline{r}}^{(1)}, \underline{r}^{(2)}, \underline{r}^{(3)} \mid \dot{f}^{(3)}, p^{2}, N\right\rangle=g \exp \left(i p^{(3)} \underline{r}^{(3)}\right) \frac{1}{r^{2}}{ }^{J} \lambda+2^{(p r)} \tag{3.22}
\end{equation*}
$$

And the $J_{\lambda+2}$ is a Bessel function of the first kind.

$$
\begin{equation*}
\therefore \psi=\mathrm{g} \frac{\mathrm{l}}{\mathrm{r}^{2}}{ }^{\mathrm{J}} \lambda+2(\mathrm{pr}) \tag{3.23}
\end{equation*}
$$

We can find g by looking at the 'harmonic oscillator' generalization of equation (3.19) i.e.

$$
\begin{equation*}
\left(-\nabla_{6}^{2}+r^{2}\right) \psi_{1}=2 E \psi_{1} \tag{3.24}
\end{equation*}
$$

As before we also write the solution as

$$
\begin{equation*}
\psi_{1}=f_{1} g_{1} \tag{3.25}
\end{equation*}
$$

with f_{1} satisfying the equation

$$
\begin{equation*}
\left\{\frac{\partial^{2}}{\partial r^{2}}+\frac{5}{r} \frac{\partial}{\partial r}-\frac{\lambda(\lambda+4)}{r^{2}}-r^{2}+2 E\right\} f_{1}=0 \tag{3.26}
\end{equation*}
$$

and g_{l} satisfying the same equation as g. Tnerefore we can find g by determining the radial part of the solution of the harmonic oscillator problem.

Define vector creation operators \underline{A}^{\dagger} and \underline{B}^{+}by the relations

$$
\begin{align*}
& \underline{A}^{+}=\frac{1}{\sqrt{2}}\left(\underline{\underline{r}}^{(1)}-i \underline{p}^{(1)}\right) \tag{3.27}\\
& \underline{B}^{+}=\frac{1}{\sqrt{2}}\left(\underline{\underline{r}}^{(2)}-i \underline{p}^{(2)}\right)
\end{align*}
$$

with their conjugate annihilation operators they obey:

$$
\left[A_{i}, A_{j}^{\dagger}\right]=\delta_{i j} \quad \text { etc. }
$$

A simplification results if we pass to new variables \underline{a}^{+}and \underline{b}^{+}by the transformation

$$
\begin{align*}
& \underline{a}^{+}=\frac{1}{\sqrt{2}} \quad\left(\underline{B}^{+}+i \underline{i}^{+}\right) \tag{3.28}\\
& \underline{\underline{b}}^{+}=\frac{1}{\sqrt{2}} \quad\left(\underline{B}^{+}-i \underline{a}^{+}\right)
\end{align*}
$$

The operators J and K together with the Hamiltonian H, now take the form

$$
\begin{align*}
& H=\left(\underline{a}+\underline{a}^{+}+\underline{b}^{+} \cdot \underline{b}\right) \tag{3.29}\\
& \underline{J}=i \underline{a} \times \underline{a}^{+}+i \underline{b} \times \underline{b}^{+} \tag{3.30}\\
& K_{j k}=b_{j}^{+} b_{k}+b_{k}^{+} b_{j}-\left(a_{j}^{+} a_{k}+\dot{a}_{k}^{+} \dot{a}_{j}\right) \tag{3.3i}
\end{align*}
$$

We need eigenstates of H which simultaneously transîorm irreducibly under L_{2}. To this end the following everators which commute with \underline{J} and K are constructed:

$$
\begin{align*}
& N_{a}^{c \dot{p}}=\underline{a}^{+} \cdot \underline{a} \tag{3.32a}\\
& N_{b}^{c p}=\underline{b}^{+} \cdot \underline{b} \tag{3.32b}\\
& \Delta_{+}=\underline{a}^{+} \cdot \underline{b}^{+} \tag{3.32c}\\
& \Delta_{-}=\underline{a} \cdot \underline{b} . \tag{3.32d}
\end{align*}
$$

$\mathrm{N}_{\mathrm{a}}^{\text {of }}$ and $\mathrm{N}_{\mathrm{b}}^{\text {dt }}$ are number operators measuring the number of excitations of
 we may require that our states be simultaneous eigenstates of $N_{a}^{e p}$ and $N_{b}^{d p}$ with eigenvalues N_{a} and N_{b} respectively. As for the $\Delta_{ \pm}$it may be shown that if we have a representation of L_{2} labelled by N_{a}, N_{b} than applying $\Delta_{ \pm}$produces another one labelled by $N_{a} \pm 1, N_{b} \pm 1$. Further since $\triangle_{ \pm}$conmutes with L_{2} this leaves us in the same representation. The only exception is the case for which $\Delta_{\text {_ }}$ annihilates all the vectors in a representation. We will therefore impose the condition that all our states be annihilated by \triangle_{0}, because we want the N_{a}, N_{b} to uniquely label a representation. Further, $\Delta_{\text {_ }}$ lowers the energy of a "harmonic oscillator" state. Since it also commutes with Λ^{2}, the radial part of Ψ_{1} must be that solution to equation (3.26) which has the lowest energy compatible with a given value of λ.

Therefore it can be shown that:

$$
\begin{equation*}
f_{1}=r^{\lambda} e^{-\frac{1}{2} r^{2}} \tag{3.33}
\end{equation*}
$$

Using equations (3.13), (3.30) and (3.31) we find that

$$
\begin{equation*}
\Lambda^{2}=\left(N_{a}^{\phi \phi}+N_{b}^{\alpha+}\right)\left(N_{a}^{\circ \phi}+N_{b}^{\dot{p}}+4\right)-4 \Delta_{+} \Delta_{-} \tag{3.34}
\end{equation*}
$$

As \triangle_{-}has zero eigenvalue for our states tinen Λ^{2} has eigenvalues of the form
$\lambda(\lambda+4)$ with

$$
\begin{equation*}
\lambda=N_{a}+N_{b} . \tag{3.35}
\end{equation*}
$$

Also

$$
\begin{equation*}
S=\frac{1}{2} \sum_{i} K_{i i}=N_{b}-N_{a} \tag{3.36}
\end{equation*}
$$

Therefore S has eigenvalues $N_{b}-N_{a}$. Consequently the numbers N_{a} and N_{b} for a representation can be obtained completely in terms of operators constructed out of elements of L_{1}.

Now, each I.R of $S u(3)$ is characterized by the two Gartan (20) indices λ_{1}, λ_{2}. The states we have constructed are eigenstates of Λ^{2} and s, and since both these perators commute with all the elements of L_{2}, the rumbers N_{a} and N_{b} must be related to λ_{1} and $\lambda_{2} \cdot N_{a}$ and N_{b} are, in fact, identical to the Gartan indices. Once onenas a given representation it is necessary to have further indices in order to specify the different vectors within a representation. The situation is analogous to the rotation group where one uses the angular momentun j to specify the representation and the additional index j_{z} to specify a state within the representation.

For $\mathrm{Su}(3)$ we need three additional indices. At this stage we have to consider the ways in which $S u(3)$ contains $S u(2)$ as a subalgebra. It is contained in two algebraically distinct ways, with elements, say $X_{ \pm}, X_{o}$ and and $Y_{ \pm}, Y_{0}$. For the X set we find that there is a fourth element, X_{4} of $\mathrm{Su}(3)$ which commutes withall the elements of the X -type of $\mathrm{Su}(2)$. However, for the Y set there is no fourth commuting element. Further, X_{o} has integral and half-integral eigenvalues, while Y_{0} has only integral eigenvalues. The Y-type is that used for the classification of three-particle states. In this case one gets with relative ease only the two labels provided by the eigenvalues of Y^{2} and Y_{0}. For the three-body problem these operators represent the total angular momentum in the $C M$ system and its Z component.

The third index is much harder to obtain. The question is, in a representation characterized by λ_{1} and λ_{2}, how many states have the same J and J_{z} ? Racah ${ }^{(16)}$ has tackled the problem and his results are sumnarized in Table 1.

Table_1. Multiplicity within Su(3)

J.	λ_{1}, λ_{2}	Multiplicity
even	both even. one or both odd.	$\frac{1}{2} \mathrm{~J}+1$ $\frac{1}{2} \mathrm{~J}$.
odd	both even one or both odd	$\frac{1}{2}(\mathrm{~J}-1)$ $\frac{1}{2}(\mathrm{~J}+1)$

Te produce a third index, say ω, it is necessary to construct a cubic operator, Ω, which is sufficient to break all degeneracies. However, from table 1 , we see that a third label is only necessary for the states with $J \geqslant 2$. Further, we see that the degeneracy is basically determined by J .

If j is the total angular momentum in the $C M$ system and m is its Z component then a state may be represented by

$$
\left|N_{a} N_{b} j m\right\rangle
$$

For $j<2, N_{a} N_{b}, j, m$, will be sufficient to label our states and these will satisfy:

$$
\begin{align*}
N_{a}^{o p}\left|N_{a} N_{b} j m\right\rangle & =N_{a, b}\left|N_{a} N_{b} j m\right\rangle \tag{3.37a}\\
J^{2}\left|N_{a} N_{b} j m\right\rangle & =j(j+1)\left|N_{a} N_{b} j m\right\rangle \tag{3.37b}\\
J_{z}\left|N_{a} N_{b} j m\right\rangle & =m\left|N_{a} N_{b} j m\right\rangle \tag{3.37c}
\end{align*}
$$

Also we have the annihilation condition:

$$
\begin{equation*}
\Delta_{-}\left|N_{a} N_{b} j M\right\rangle=0 \tag{3.38}
\end{equation*}
$$

Equations ($3.37 \mathrm{~b}, \mathrm{c}$) are equivalent to the conditions

$$
\begin{align*}
& J_{+}\left|N_{a} N_{b} j j\right\rangle=0 \\
& J_{z}\left|N_{a} N_{b} j j\right\rangle=j\left|N_{a} N_{b} j j\right\rangle \tag{3.39}
\end{align*}
$$

Where J_{+}is the raising opepator as known in the theory of angular momenturn. Remaining states may be found by using the lowering operator J_, where

$$
J_{ \pm}=J_{x} \pm i J_{Y}
$$

The construction of explicit solutions to equations (3.37) is dealt with in Appendix 2. We now set out to find the explicit angular wavefunctions.

The harmonic scillator states are of the general form

$$
\begin{equation*}
\left|N_{a} N_{b} j m\right\rangle=P\left(\underline{a}^{+}, \underline{b}^{+}\right)|0\rangle \tag{3.40}
\end{equation*}
$$

where p is a polynomial in \underline{a}^{+}and \underline{b}^{+}. From equations (3.25) and (3.33) the angular functions, g, may be written

$$
\begin{equation*}
g=r^{-\lambda} e^{\frac{1}{2} r^{2}}\left\langle\underline{\underline{r}}^{(1)} \underline{r}^{(2)}\right| P\left(\underline{\underline{a}}^{+}, \underline{b}^{+}\right)|0\rangle \tag{3.41}
\end{equation*}
$$

If we specify each g function with a label n, then it may be show that

$$
\begin{equation*}
\left.g_{n}=A_{n} r^{-\lambda} p \underline{\underline{r}}^{(2)}+i \underline{\underline{r}}^{(1)}, \underline{r}^{(2)}-i \underline{r}^{(1)}\right) \tag{3.42}
\end{equation*}
$$

with $A_{n}=a$ constant

$$
g_{n}=g \text { function for }\left(N_{a} N_{b} j m\right)
$$

In the momentum representation then we have a similar expression for the corresponding g_{n}. Therefore, replacing the variables by their momentum counterparts,

$$
\begin{equation*}
g_{n}=A_{n} p^{-\lambda} p\left(p^{(2)}+i p^{(1)}, p^{(2)}-i p^{(1)}\right) \tag{3.43}
\end{equation*}
$$

Each g function now needs to be converted inte Dalitz-Fabri variables. The details of this for the first few states are contained in Appendix 3.

Finally, we give the momentum counterpart of the equation (3.22). The exponential and radial wave functions are replaced by momentum and energy delta functions. From equations (3.8) and (3.9), the operators $\bigwedge_{i j}$ treat momentun and position operators on equal footing. Therefore the angular function, g, remain unchanged. One simply has to replace the position Euler angles and position Dulitz-Fabri comordinates by their momentum counterparts. One then obtains,

$$
\begin{gather*}
\left\langle p^{(1)^{\prime}} p^{(2)^{\prime}} f^{(3)^{\prime}} \mid q^{(3)} p^{2} N_{a} N_{b} j m\right\rangle=c_{1} \delta\left(q^{(3)^{\prime}}-p^{(3)}\right) \delta\left(p^{2}-p^{2}\right) \\
\cdot g\left(N_{a}^{2} N_{b} j m ; \rho \phi \alpha \beta \gamma\right) \tag{3.44}
\end{gather*}
$$

with C_{I} a constant.

Here, the states $\left|p^{(3)} p^{2} N_{a} N_{b} j m\right\rangle$ are defined for a particular channel. However, channels are related by cyclic permutations, brought about by the operator C,

$$
\begin{equation*}
C\left|N_{a} N_{b} j m\right\rangle=\exp \left(i \frac{2 \pi}{3}\left(N_{b}-N_{a}\right)\right)\left|N_{a} N_{b} j m\right\rangle \tag{3.45}
\end{equation*}
$$

That is, there is only a phase factor difference between corresponding states in the different channels. We also note that the operator P_{3} which transposes particles 1 and 2 has the effect

$$
\begin{equation*}
P_{3}\left|N_{a} N_{b} j m\right\rangle=\left|N_{b} N_{a} j m\right\rangle \tag{3.46}
\end{equation*}
$$

More details are given in Appendix 4.

CHAPTER FOUR

SOLVING THE INTEGRAL EQUATIONS.

Section A Final Integral Equation Using Sud) States

We are now in a position to conduct a decomposition of the elements of equation (2.18) using the $\operatorname{Su}(3)$ states $\left|p^{2} N_{a} N_{b} j m\right\rangle_{\beta} \equiv\left|p^{2} N_{\beta}\right\rangle$ corresponding to the cha noel β. The closure relation for these states is (see appendix 5)

$$
\begin{equation*}
\sum_{N_{\beta}} \int\left|p^{2} N_{\beta}\right\rangle\left\langle p^{2} N_{\beta}\right| d p^{2}=1 \tag{4.1}
\end{equation*}
$$

It is easily seen that $\left\langle p^{2} N_{\beta} \mid \beta\right\rangle$ is invariant for $\beta=1,2$ or 3 so that equation (2.18) can be cast into the form

$$
\begin{align*}
& -\frac{1}{6} \sum_{\beta \beta} \delta_{\alpha \beta}\left\langle\langle | V_{\alpha} \mid \alpha\right\rangle \tag{4.2}\\
& \eta^{\beta \alpha}=\left\langle p^{2 \prime \prime} N_{\beta}^{\prime \prime}\right| \quad \gamma^{\beta \alpha}\left|p^{2 \prime \prime \prime} N_{\alpha}^{\prime \prime \prime}\right\rangle \tag{4.3}
\end{align*}
$$

where

Because of the simple symmetry properties of these $S u(3)$ states, we are able to reduce the problem to the solution of a single integral equation except for later terms in the expansion in $N_{a} N_{b}$ when angular momentum then allows two or more contributions to couple together. In otherwords, we can now go to integral equations which do not involve the index \mathcal{Q}

Details of the procedure are given in Appendix 4.

Section B Finding the T matrix using the $\mathrm{Su}(3)$ Basis.

From equation (2.23) we see that we need to determine transformation expressions such as

$$
F_{\alpha} \equiv\left\langle q_{\alpha}^{\prime} D_{\alpha}\right| p^{2 "} N_{a}^{\left." N_{b}^{\prime \prime} j " m "\right\rangle \quad \text { in basis } \alpha . ~}
$$

Because of the identity of the particles then

$$
\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=\mathrm{F}
$$

Let us then do the calculation for F_{3}. Introducing a complete set of states $\left|p^{(1)} p^{(2)}\right\rangle$ for the three-particle CM. system, we find

$$
\begin{equation*}
F=\int\left\langle q_{3} D_{3} \mid p^{(1)^{N}} p^{(2)^{N}}\right\rangle\left\langle p^{(1)^{N}} p^{(2)^{N}} \mid p^{2} N_{3}^{\prime \prime}\right\rangle d p(1)_{d p}^{N}(2)^{N} \tag{4.4}
\end{equation*}
$$

From equations (2.12), (2.13) and (3.1) we obtain

$$
\begin{equation*}
\underline{k}_{3}=\frac{p^{(1)}}{\sqrt{2}} \quad q_{3}=-\sqrt{\frac{2}{3}} f^{(2)} \tag{4.5}
\end{equation*}
$$

and

$$
\left\langle p^{(1)} p^{(2)}\right|=\frac{1}{c^{3}}\left\langle q_{3} \underline{k}_{3}\right|
$$

with $\quad c=3^{\frac{1}{4}}$
Therefore

Before we can put this expression completely into Dalitz-Fabri co-ordinates we need to specify the body-fixed set of axes that we are using for the momentum triangle as introduced in Section 3B.

Consider a body-fixed set of axes (x, y, z) such that the positive axis is along the vector q_{3} and the momentum triangle is in the x plane. Initially, the x, y, z axes coincide with the space-fixed set x, . orientation of the final momentum triangle, that is for which quies along the \mathbf{Z} axis, may be specified by the Euler angles:

$$
\begin{array}{lll}
\text { First, a rotation of angle } \gamma^{\prime} \text { about } z & \gamma^{\prime} \leqslant 2 \pi \\
\text { Second, a rotation of angle } \beta^{\prime} \text { about } \neq & \beta^{\prime} \leqslant \pi \\
\text { Third, a rotation of angle } \alpha^{\prime} \text { about } z & \alpha^{\prime} \leqslant 2 \pi
\end{array}
$$

(see Fig (4.1)).

Figure _(4.1)

One of the delta-functions in equation (4.7) may now be written

$$
\delta\left(q_{3}^{\prime}-q_{3}^{\prime \gamma}\right)=\frac{2}{q^{\prime}} \delta\left(\cos \beta^{\prime}-\cos \beta^{\prime \prime}\right) \delta\left(q_{3}^{\dot{2}^{\prime}}-q_{3}^{2^{\prime V}}\right) \delta\left(\alpha^{\prime}-\alpha^{\prime \gamma}\right)
$$

We use an S-wave non-local separable potential of the Yamaguchi type ${ }^{\text {(17) }}$ with strength parameter χ,

$$
\begin{gather*}
V_{\alpha}\left(\underline{k}_{\alpha} ; \underline{k}_{\alpha}^{\prime}\right)=\chi_{v_{\alpha}}\left(k_{\alpha}\right) v_{q}\left(k_{\alpha}^{\prime}\right) \tag{4.9}\\
\text { with } \quad V_{\alpha}\left(k_{\alpha}\right)=\frac{1}{\left(k_{\alpha}^{2}+\beta_{n}^{2}\right)} \tag{4.10}
\end{gather*}
$$

The deuteron wave function for this potential is then

$$
\begin{gather*}
\phi_{D}(k)=\frac{A}{\left(\alpha_{D}^{2}+k^{2}\right)\left(\beta_{n}^{2}+k^{2}\right)} \tag{4.11}\\
\text { where } A^{2}=\frac{\alpha_{D} \beta_{n}\left(\alpha_{D}+\beta_{n}\right)^{3}}{\pi^{2}} \quad \text { and } \quad B=+\frac{\alpha_{D} 2}{2 \mu}
\end{gather*}
$$

Here 2μ is the mass of the nucleon and B the deuteron binding energy. From equation (4.5) we see that

$$
\begin{align*}
& p^{\prime v}=2 k_{3}^{\prime v}{ }^{2}+\frac{3}{2} \mathrm{q}_{3}^{2} \tag{4.12}\\
& =2 k_{3}^{v^{\prime 2}}+\frac{3}{2} \cdot \phi_{3}^{\prime v^{2}} \cdot\left(1+\rho^{w} \cos \phi^{w}\right) \\
& \therefore \quad k_{3}^{\prime N^{2}}=\frac{0^{\prime N}}{4}\left(1-\rho^{\prime \prime \prime} \cos \phi^{\prime \prime}\right) \tag{4.13}
\end{align*}
$$

This enables us to put equation (4.7) entirely into Dalitz-Fabri coordinates, with the volume element

$$
\begin{equation*}
d p^{(1)} d p^{(2)} d p^{(3)}=\frac{1}{8} d p^{(3)} p^{5} d p d R p d \rho d \varnothing \tag{4.14}
\end{equation*}
$$

$$
\text { where } d R=-d \alpha d(\cos \beta) d \gamma
$$

The final evaluation of F for each g function is shown in Appendix 6.
The next task is to find the inhomogeneous term (the two particle T operator, t_{i}, between 'Dragt' states). It is easily verified that the two particle T-matrix at energy E in the three-particle CM space defined by vectors $q_{\alpha}: k_{\alpha}$ is related to the two-particle T-matrix in the two-particle CM space defined by $\underline{k}_{\mathrm{i} \mathbf{~}}$ according to

$$
\begin{align*}
& \quad\left\langle q_{\alpha}^{\prime} k_{\alpha}^{\prime}\right| t_{\alpha}(E)\left|q_{\alpha} k_{\alpha}\right\rangle=\delta\left(q_{\alpha}-q_{\alpha}^{\prime}\right)\left\langle\underline{k}_{\alpha}^{\prime}\right| t_{\alpha}\left(e_{\alpha}\right)\left|\underline{k}_{\alpha}\right\rangle \quad \text { (4.15) } \tag{4.15}\\
& \text { where } e_{\alpha}=E-\frac{q_{\alpha}^{2}}{2 \mu^{\alpha}} \quad \mu^{\alpha}=\frac{M_{\alpha}\left(M_{\beta}+M_{\beta}\right)}{M} \quad M=M_{\alpha}+M_{\beta}+M_{\gamma}
\end{align*}
$$

and $\frac{q_{\alpha}^{2}}{2 \mu^{\alpha}}$ is the energy of the particle α in the three particle $6 M$ system.
For the separable potential of type (4.9) then one obtains (14)

$$
\begin{equation*}
\left\langle\underline{k}_{\alpha}^{\prime}\right| t_{\alpha}\left(e_{\alpha}\right)\left|\dot{k}_{\alpha}\right\rangle=v_{\alpha}\left(k_{\alpha}^{\prime}\right) \mathcal{C}_{\alpha}\left(e_{\alpha}\right) v_{\alpha}\left(k_{\alpha}\right) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{X}{1-X \int \frac{4 \pi k_{\alpha}^{2} v_{\alpha}^{2}\left(k_{\alpha}\right) d k_{\alpha}}{\left(e_{\alpha}-\frac{k_{\alpha}{ }^{2}}{\mu_{\alpha}}+i \eta\right.}} \tag{4.17}
\end{equation*}
$$

and

$$
\mu_{\alpha}=\frac{M_{\beta} M_{\gamma}}{M_{\beta}+M_{\gamma}} \text { i.e. reduced mass of particles } \beta+\gamma \text { in the two }
$$

particle subsystem.
We may norw write

$$
\begin{align*}
& \left\langle p^{2} N_{\alpha}^{\prime \prime}\right| t_{\alpha}\left|p^{2 \prime \prime \prime \prime N_{\alpha}^{\prime \prime \prime}}\right\rangle=\int\left\langle p^{2^{\prime \prime}} N_{\alpha}^{\prime \prime} \mid \hat{q}_{\alpha} \hat{\underline{k}}_{\alpha}\right\rangle\left\langle\hat{q}_{\alpha} \hat{\underline{k}}_{\alpha}\right| t_{\alpha}\left|\hat{q}_{\alpha}^{\prime} \hat{\mathrm{Q}}_{\alpha}^{\prime}\right\rangle\left\langle\left\langle\hat{q}_{\alpha}^{\prime} \hat{k}_{\alpha}^{\prime} \mid p^{\left.2^{\prime \prime \prime} N_{\alpha}^{\prime \prime \prime}\right\rangle}\right\rangle\right. \text {. } \\
& d \hat{q_{\alpha}} d \hat{k}_{\alpha} d \hat{q}_{\alpha}^{\prime} d \hat{k}_{\alpha}^{\prime} \tag{4.18}
\end{align*}
$$

and from (4.14) and (4.5)

$$
\mathrm{d} q_{\alpha} \mathrm{dk} \underline{k}_{\alpha}=\frac{1}{8} \frac{1}{\mathrm{c}^{6}} \quad \mathrm{p}^{5} \mathrm{dp} \mathrm{dR} \rho \mathrm{~d} \rho \mathrm{~d}
$$

Using (3.44) this produces

$$
\begin{aligned}
& \left\langle p^{\prime 2} N_{\alpha}^{\prime \prime}\right| t_{\alpha}\left|p^{\prime \prime 2} N_{\alpha}^{\prime \prime \prime}\right\rangle=\frac{C_{1}^{2}}{64 c^{12}} \int \hat{p}^{5} d \hat{p} d \hat{\alpha}_{\alpha} d\left(\cos \hat{\beta}_{\alpha}\right) d \hat{\gamma}_{\alpha} \dot{p}^{5} d \hat{p}^{\prime} d \hat{q}_{\alpha}^{\prime} d\left(\cos \hat{\beta}_{\alpha}^{\prime}\right) d \hat{\gamma}_{\alpha}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& v_{\alpha}\left(\hat{k}_{\alpha}\right) \zeta_{\alpha}\left(\hat{e}_{\alpha}\right) v_{\alpha}\left(\hat{k}_{\alpha}^{\prime}\right) \delta\left(\dot{p}^{2}-\frac{p^{\prime \prime 2}}{}\right) \frac{1}{p^{\prime \prime \prime 2}} \tag{4.19}
\end{align*}
$$

The calculation is facilitated by changing from the circular variables (ρ, \varnothing) to the Cartesian variables (x, y) as defined in Figure (4.2) for the Dalitz-Fabri triangle. Then integrating over $\hat{\alpha}_{\alpha}$ and $\cos \hat{\beta}_{\alpha}$ equation (4.19) becomes

Figure (4.2)

$$
\left\langle p^{2} N_{\alpha}^{\prime \prime}\right| t_{\alpha}\left|p^{2} N_{\alpha}^{\prime \prime \prime}\right\rangle=-\frac{G_{1}^{2}}{64 c^{12}} \int \hat{p}^{5} d \hat{p} d \hat{\gamma}_{\alpha} \hat{p}^{5} d \hat{p}^{\prime} d \hat{\alpha}_{\alpha}^{\prime} d\left(\operatorname{Cos} \hat{\beta}_{\alpha}^{\prime}\right) d \hat{\gamma}_{\alpha}^{\prime}
$$

$$
\begin{equation*}
\delta\left(\hat{p}^{\prime}-p^{\prime \prime 2}\right) \quad \frac{1}{p^{\prime \prime \prime}} \tag{4.20}
\end{equation*}
$$

This equation is invariant with respect to cyclic permutations of particles $1,2,3$ and so we may take $\alpha=3$.

We have, therefore, $q_{3}^{2}=\frac{1}{3} p^{2}(1+y)$

$$
\text { and } \quad k_{3}^{2}=\frac{1}{4} p^{2}(1-y)
$$

Caution is needed when integrating over the x and y variables in equation (4.20). The function $\delta\left(a_{\alpha}^{2}-\partial_{\alpha}^{\prime 2}\right)$ becomes

$$
\begin{equation*}
\delta\left(\frac{p^{\prime \prime 2}}{3}(1+\hat{y})-\frac{p^{\prime \prime 2}}{3}\left(1+\hat{y}^{\prime}\right)\right) \tag{4.21}
\end{equation*}
$$

which imposes restrictions on the limits of the $\hat{y} \& \hat{y}$ integrations. Two cases need consideration, (a) $\left.\mathrm{p}^{\prime \prime}\right\rangle \mathrm{p}^{\prime \prime \prime}$, (b) $\mathrm{p}^{\prime \prime}\left\langle\mathrm{p}^{\prime \prime \prime}\right.$.
(a)
. The limits of the \hat{y}^{\prime} integration are +1 and -1 . Then the limits of the \hat{y} integration are

$$
-1 \leqslant \hat{y} \leqslant 2 \frac{p^{\prime \prime 2}}{p^{\prime 2}}-1 . \quad \text { See figure } 4.3
$$

(b)

The limits of the \hat{y} integration are +1 and -1 . Then the limits of the \hat{y}^{\prime} integration are

$$
-1 \leqslant \hat{y}^{\prime} \leqslant 2 \frac{p^{\prime \prime}}{p^{\prime \prime}} \quad-1
$$

Figure (4.3)

Range of \hat{y} integration. (Likewise for (b) but with $p^{\prime 2}+p^{\prime \prime \prime}{ }^{2}$ interchanged).
(a)

The limits of the x varibles are given by

$$
-\sqrt{1-y^{2}} \leqslant x \leqslant \sqrt{1-y^{2}}
$$

Therefore, we may easily carry out the integrations over $\hat{p}, \hat{p}^{\prime}, \hat{x}, \hat{x}^{\prime}$, and the integration over \hat{Y}^{\prime} removes the δ function (4.21). Equation (4.20) becomes

$$
\begin{aligned}
& \left\langle p^{2 \prime} N^{\prime \prime}\right| t_{3}\left|p^{2 " \prime} N^{2^{\prime \prime \prime}}\right\rangle=-\frac{C_{1}^{2}}{64 c^{12}} \frac{p^{\prime \prime}}{2} \frac{p^{m^{\prime \prime \prime}}}{2} \int d \hat{\gamma}_{3} d \hat{\alpha}_{3}^{\prime} d\left(\cos \hat{\beta}_{3}^{\prime}\right) d \hat{\gamma}_{3}^{\prime} d \hat{y} .
\end{aligned}
$$

with $\hat{y}^{\prime 2}$ now $=\frac{-\frac{1}{\mathrm{~m}^{\prime 2}}}{\mathrm{~m}^{2}}\left(\mathrm{p}^{\prime^{2}}+\mathrm{p}^{\prime 2} \hat{y}-\mathrm{p}^{\mathrm{m}^{2}}\right)$

$$
\hat{q}_{3}^{2}=\frac{p^{n^{2}}}{3}(1+\hat{y}) \quad, \hat{k}_{3}^{2}=\frac{p^{n^{2}}}{4} \quad(1-\hat{y}), \hat{k}_{3}^{\prime 2}=\frac{p^{m 2}}{4}\left(1-\hat{y}^{\prime}\right)
$$

To go f uther, we need to introduce explicit expressions for the g_{n}, v_{3} and ℓ_{3}.

One finds

$$
C_{3}=\frac{H_{3}}{\left(\hat{y}-\hat{y}_{p}\right)}
$$

where

$$
\begin{aligned}
H_{3} & =\frac{4}{p^{\prime 2}} \frac{x\left(i \sqrt{2 \mu_{3} e_{3}}-\alpha\right)\left(\sqrt{2 \mu_{3} e_{3}}+i \beta_{n}\right)^{2}}{\left(\sqrt{2 \mu_{3} e_{3}}-i \beta_{1}\right)^{2}\left(\alpha_{3}+2 \beta_{n}-i \sqrt{2 \mu_{3} e_{3}}\right)} \\
\text { and } \quad \hat{y}_{p} & =\frac{4 \alpha_{D}^{2}}{p^{\prime 2}}+\frac{8 \mu_{3} E}{p^{\prime 2}}-1 .
\end{aligned}
$$

C_{3} exhibits a pole in the \hat{y} range, the position of which depends upon $\mathrm{p}^{\prime 2}$. The pole may be physically interpreted as the deuteron bound state as one can see from Figure (4.4).

Figure (4.4) Graph of Real part of C_{3} for varying_ e_{3}.

(Using $e_{3}=E-\frac{p^{2}}{4 M}(1+\hat{y})$ with $M_{n}=$ mass of nucleon, then the range of the \hat{y} integration is given by the horizontal double headed arrow for $\mathrm{p}^{\prime \prime}=\mathrm{p}^{\prime \prime}$. - B is the position of the deuteron pole).

The integration over the pole was carried out using the Cauchy relation.

$$
\lim _{\eta \rightarrow 0} \frac{1}{\left(z-z_{0} \pm i \eta\right)}=P \quad \frac{1}{\left(z-z_{0}\right)} \mp i \pi \delta\left(z-z_{0}\right), z_{0}=\text { constant. }
$$

which gives

$$
\left.\lim _{\eta \rightarrow 0} \int \frac{f(z)}{\left(z-z_{0} \pm i \eta\right.}\right) \quad d z=P \int \frac{f(z)}{\left(z-z_{0}\right)} d z \mp\left(i \pi \delta\left(z-z_{0}\right) f(z) d z .\right.
$$

Where P indicates a principal value integration. The integration over \hat{y} could then be carried out numerically. The above relation was also used to "extract" the Green's function pole in the kernel of the integral equation. Using a matrix inversion sub-program, then the "Draft I matrix" (i.e. between $\left|p^{2} N\right\rangle$ states) could be found and finally $J_{a b}$. Further details of the numerical calculation are given in appendix 7 .

GHAPIER_EIVE

NUMERICAL RESULTS

Our results fall into two parts. That is, calculations for
(a) The quartet scattering lengtri, a_{4}
and (b) The quartet contributions to elastic neutron-deuteron differential cross-sections.
(a) The guartet scattering length

Of the lowest λ terms, those containing zero angular momentum contributions are $\lambda=0, \lambda=2$ and $\lambda=4$. Therefores a_{4} was initially calculated using only $\lambda=0$, then including $\lambda=2$. The results are sumarized in table 2, where they are also compared with those of Phillips (7), Aarcn, Amado and Yam (2l) and Zakharyev, Pustovalov and Efros ${ }^{(22)}$. The latter reference adopts a method similar to our own developed by Simonov ${ }^{(23)}$, but uses a square-well potential. We are able to compare with the results of Amado et al. for which the renorm alization constant, $Z, i s$ zero as this is the separable potential limit of the model of reference 2l. Phillips also introduces a three-body force, V_{4}, but we are able to compare with his result for $V_{4}=0$. We see that our result for a_{4} is quite good and in keeping with the other theoretical results.

	Table_2. Quartet Scattering length, a_{4} (Fermis).
Experimental	6.38 ± 0.06
2.6 ± 0.2	
Prilli.ps $\left(V_{4}=0\right)$	6.28
Aaron, Amado \& Yam $(z=0)$	6.332
Z., P. and Efros.	6.71
This work $(\lambda=0)$	5.05
This nork $(\lambda=0)+(\lambda=2)$	6.59

(b) The quartet differential cross-sections

The quartet contribution to elastic n-D scattering has been found at two values of the laboratory energy (E_{L}). As Aaron, Amado and Yam are the only ones to present the quartet contribution to the differential cross-section explicitly, we naturally make the comparison with their work. Therefore, the two values of E_{L} chosen are 2.45 MeV : and 14.1 MeV , which are the maximun and minimum values studied by Aaron, Amado and Yam. The differential cross-section is related to the I matrix by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{2 \pi}{\hbar}\right)^{4} \quad \mu_{n D}\left|T_{a b}\right|^{2} \tag{5.1}
\end{equation*}
$$

where $\mu_{n D}$ is the reduced mass of the neutron-deuteron system. The effects of adding contributions corresponding to successive values of λ are shown in figs. (5.1a) and (5.2a). The quartet part of d σ, say $\left(\frac{d \sigma}{d \Omega}\right)_{Q}$, including terms less than $\lambda=3$, are compared with the quartet contributions given in reference 21.

In order to see more clearly the nature of the convergence we are getting, we haveplotted also $\left(\frac{d \sigma}{d \Omega}\right)_{Q}$ against the maximun λ term taken into account, at each of the scattering angles $\theta=0, \pi$. These results are given in figs. (5.1b) and (5.2b) where the points have been joined in order to indicate trends.

Evidently there seems to be some convergence, but not as much as we had hoped for or were led to believe might occur from the scattering length result. But we should remember that because of the awkward 6 multiplicity we have not included the $J=2$ states, (2A.14) and (2A.15) of Appendix 2, in the $\lambda=2$ contribution considered. However, because of the disappearance of the $J=2$ contribution at scattering angles given by $\operatorname{Cos} \theta= \pm \frac{1}{\sqrt{3}}$, then at these angles the $\lambda=2$ contribution we have found must be the total $\lambda=2$ terin. We have therefore plotted
$\left(\frac{d \sigma}{d \Omega}\right)_{Q}$ against the maximun λ term taken into account for these two angles. The graphs are presented in figs. (5.1c) and (5.2c).

By projecting out the $J=0$ and $\mathcal{J}=1$ parts of the potential terin, we are able to compare more directly with the results of Amado at al. by looking at the T -matrix contributions they give. The results are compared in table 3.

TABLE 3. $T=t P_{3}(\cos \theta)$.

	$\mathrm{J}=0$		$\mathrm{J}=1$		E
	$10^{7} \times \mathrm{Real}$ (t)	$10^{7} \mathrm{xImag}(t)$	$10^{7} \times$ Real (t)	$10^{7} \times$ Imag (t)	(MeV)
This work	-1.16	-2.41	1.90	-5.51	
Amado et al.	-1.04	-2.39	-3.66	-2.12	
This work	3.20	-5.92	3.95	24.2	
Amado et al.	2.88	-6.12	-7.82	-3.26	

We see that the comparison with the results of reference 21 is fairly good for $J=0$, as expected, but surprisingly poor for $J=1$. Indeed there seems to be no sign of convergence at all for $\mathrm{J}=1$.

CM . angle in radians
—— $(\lambda=0)+(\lambda=1)+(\lambda=2)$
FIG(5.1a) $E_{L}=14.1 \mathrm{mev}$. (excluding states (2A.14) and (2A.15) and including the full $\cdots \equiv(\lambda=0)+(\lambda=1) \quad$ potential contribution.)
$\cdots \cdots \cdots \cdots(\lambda=0)$

FIG (5.2e) $E_{L}=2.45$ mev. (excluding states (2A-14) and (2A.15) and
$\cdots-\equiv(\lambda=0)+(\lambda=1)$
$\cdots \cdots \cdots \equiv \lambda=0$
including the full potential contribution.
$\longrightarrow \equiv(\lambda=0)+(\lambda=1)+(\lambda=2)$

FIG(5.2b). $\theta=0, \pi E_{L}=2.45$ mev. (excluding states (2A.14) and (2A.15),
and including full potential contribution)

maren V unumxen
AMADO et a! $\operatorname{COS} \theta=\frac{-1}{\sqrt{3}} \quad A M A D O$ et al $\operatorname{Cos} \theta=\frac{1}{\sqrt{3}}$

CHAPTER SIX

CONCLUSION

Our prime concern in this work has been to ascertain how useful Su(3) three-particle states really are in a practical calculation, that of the quartet contribution to neutron-deuteron scattering. It was hoped that contributions from successive λ terms would decrease rapidly enough to make this method of solution preferable, or at least a reasonabie alternative to other methods for systems of short-range interaction, especially sinceusing the Su(3) formalism means that local potentials can be used instead of the usual non-local separable potentials. If the calculation had been successful we would then have had a useful method for studying this important problem of $n-D$ scattering.

In fact, although a good value for the scattering length has been obtained, the results for the quartet contribution to the differential cross-section, $\left(\frac{d \sigma}{d \Omega}\right)_{Q}$, are disappointing. At the higher energy there seemed to be some hope of there being reasonably good convergence in λ, although already a fair number, nine to be exact, of different Dragt states have been brought into play. When we look more closely at the T-matrices and compare these with the results of Amado et al, as in table 3 of chaper 5, we find that there is good cor rrespondence for $J=0$, but for $J=1$ the comparison is very poor indeed. The apparent convergence in $\left(\frac{d \sigma}{d \Omega}\right)_{Q}$ is now seen to be due to chance cancellations. Perhaps this is not really so surprising since an examination of the next higher Dragt states, given by $\lambda=3$, shows that of the ten states (not counting the awkward $\omega_{\text {) }}$ multiplicity of some of these states) there are four with $\mathrm{J}=1$. Furthemore, no attempt was made to include in the $\lambda=2$ contribution the $J=2$ terms of $\dot{\omega}$ multiplicity 2. This was partly due to an uncertainty as to how to deal with these terms, at least within the formalism as given by Dragt, and partly because there seems to be no point in doing so, since there is no real convergence in sight for the
$J=1$ contributions. It was originally hoped that because Su(3) states for small λ describe "close-in" particles then this might imply good convergence in λ. This also seemed to be implicit in previous calculations. From the results we have obtained, though, it would appear that this hope is without any foundation.

A further contributing factor to the poorness of the results is probably the "looseness" of the deuteron itself. It might have been interesting, although purely academic, to have repeated the calculation with a much greater deuteron binding energy. However, as there is nothing similar to the Aaron, Amado and Yam results to compare with, the calculation would al 30 have to be done by one of the usual methods.

We note that although there is a simplicity in using the $\operatorname{Su}(3)$ states (because of the symmetry properties, equations (3.45) and (3.46)) it however gets quite involved because conservation of angular momentum allows coupling of two or more simultaneous integral equations. That is, states with different values of N_{a} and N_{b} are linked if they have the same values of J. In addition the ω multiplicity causes trouble. According to Lee ${ }^{(27)}, \omega$ is in general irrational and it is difficult to express the eigenfunctions in closed form. However, he does construct states which, although they are not eigenstates of the operator Ω, are nevertheless a complate set for a three-particle system.

To sununarize, looking at specific angulas momenturn contributions we have found that those with $J=O$ for both the scattering length and the differential cross-section at both energies are well represented, but the $J=1$ contribution to $\left(\frac{d \sigma}{d \Omega}{ }_{Q}\right.$ for $\lambda \geqslant 3$ must still make an appreciable difference. This feature of $J=0$ calculations seems to be born out by Lee's calculation of the triton binding energy and Dragt's discussion
of the decay process $\mathrm{K}^{+} \rightarrow \pi^{+}+\pi^{+}+\pi^{-}$in reference 12. Thus it would seem that the Dragt states are really only useful when we are simply after the $J=0$ part of a three-body system in nuclear physics.

A_P PEND_X_ONE

SPIN AND ISOSPIN U FUNGTIONS.

In this appendix we look at the spin functions, although isospin may be treated in a similar manner. Each of the nucleons has spin $\frac{1}{2}$, so that we expect one quartet group of spin states ($5=\frac{3}{2}$) and two distinct doublet groups of spin states ($\mathrm{S}=\frac{1}{2}$). If we denote products of spin-functions as e.g. $(+-+)$ etc. where + indicates $+\frac{1}{2}$ and - indicates $-\frac{1}{2}$, then the quartet states may be expressed as (28)

$$
\begin{gathered}
(+++) \\
\frac{1}{\sqrt{3}}\{(++-)+(+-+)+(-++)\} \\
\frac{1}{\sqrt{3}}\{(--+)+(-+-)+(+--)\} \\
(--)
\end{gathered}
$$

One then finds that the U functions are 1 for $S=\frac{3}{2}$.
The doublet states may be denoted as

$$
\begin{gathered}
\frac{1}{\sqrt{6}}\{(++-)+(+-+)-2(-++)\} \\
\frac{1}{\sqrt{6}}\{(--+)+(-+-)-2(+--)\} \\
\frac{1}{2}\{(++-)-(+-+)\} \\
\frac{1}{2}\{(--+)-(-+-)\}
\end{gathered}
$$

where the states have been chosen so that the first pair is symnetric with respect to interchange of particles 2 and 3 and the second pair are anti-symmetric with respect to interchange of particles 2 and 3.

$$
\text { It may be shown that the } U^{\beta \alpha}\left(I_{\beta}, I_{\alpha}\right) \text { functions for } S=\frac{1}{2} \text { are, }
$$ $u^{31}=\left(u^{13}\right)^{+}=u^{12}=\left(u^{12}\right)^{+}=u^{23}=\left(u^{32}\right)^{+}=$

$$
\left\{\begin{array}{l}
-\frac{1}{2} \\
-\frac{\sqrt{3}}{2}
\end{array}\right.
$$

where one goes from one channel to another by a cyclic permutation.

APPENDIX TWO

EXPLICIT SU(3) EIGENSTATES

In this appendix we give the forms of the eigenstates used. It is only necessary to have the states with $\mathrm{j}=\mathrm{j}_{\mathrm{z}}$ as the remaining states can then be obtained by successive applications of J_. Equations (3.37) may then be replaced by the conditions,

$$
\begin{align*}
& J_{+}\left|N_{a} N_{b} j j\right\rangle=0 . \tag{2A.1}\\
& J_{z}\left|N_{a} N_{b} j j\right\rangle=j\left|N_{a} N_{b} j j\right\rangle \tag{2~A,2}
\end{align*}
$$

It is helpful to define creation and destruction operators in a spherical basis, according to

$$
\begin{align*}
& a_{1}^{+}=-\frac{1}{\sqrt{2}}\left(a_{x}^{+}+i a_{y}^{+}\right) \tag{2A.3}\\
& a_{-1}^{+}=\frac{1}{\sqrt{2}}\left(a_{x}^{+}-i a_{y}^{+}\right) \tag{2A.4}\\
& a_{0}^{+}=a_{z}^{+} ; \quad a_{m}=\left(a_{m}^{+}\right)^{+}
\end{align*}
$$

Likewise for b. the comnutation rules are,

$$
\begin{equation*}
\left[a_{m}, a_{n}^{+}\right]=\delta_{m n} \tag{2A.5}
\end{equation*}
$$

The states of concern to us are:
(1) $\lambda=0$

Then $N_{a}=N_{b}=0$. This is the vacuum state,

$$
\begin{equation*}
|0000\rangle=|0\rangle \tag{2A.6}
\end{equation*}
$$

That is, the state has zero angular momentum.
(2) $\lambda=1$

Here we have the two possibilities,

$$
\begin{align*}
& |1011\rangle=a_{1}^{+}|0\rangle \tag{2A.7}\\
& |0111\rangle=b_{1}^{+}|0\rangle \tag{2A.8}
\end{align*}
$$

Both states have angular momentum $=1$.
(3) $\lambda=2$

The possibilities are, for $\mathrm{N}_{\mathrm{a}}=\mathrm{N}_{\mathrm{b}}=1$.

$$
\begin{align*}
& |1.100\rangle=\underline{a}^{+} \cdot \underline{b}^{+}|0\rangle \tag{2A.9}\\
& |11.21\rangle=\left(\underline{(\underline{a}}^{+} \times \underline{b}^{+}\right)_{1}|0\rangle \tag{2A.10}\\
& |1122\rangle=a_{1}^{+} b_{1}^{+}|0\rangle \tag{2A.1.l}
\end{align*}
$$

That is, we have angular momenta $0,1,2$.
However we must also conform to the rule that $\Lambda_{\text {- annihilates }}$ the states, and this is not the case for state (2A.9). This means, in fact, that states $|1100\rangle$ and $|0000\rangle$ differ only in the radial part.

$$
\text { For } \lambda=2 \text { we may also have states, }
$$

$$
\begin{align*}
& |2000\rangle=\underline{a}^{+} \cdot \underline{a}^{+}|0\rangle \tag{2A.12}\\
& |0200\rangle=\underline{b}^{+} \cdot \underline{b}^{+}|0\rangle \tag{2A.13}\\
& |2022\rangle=a_{1}^{+} a_{1}^{+}|0\rangle \tag{2~A.14}\\
& |0222\rangle=b_{1}^{+} b_{1}^{+}|0\rangle \tag{2A.15}
\end{align*}
$$

which have angular momenta 0 and 2. States (2A.14) and (2A.15), having multiplicity two , have not been included in the present calculョtion.

We note that the maximum value of j occuring in any given representation is restricted by the inequality

$$
\begin{gathered}
j \leqslant \lambda \\
\text { with } \lambda=N_{a}+N_{b}
\end{gathered}
$$

APPENDIX THREE

Q FUNCTIONS TN NALITZ-FABRI CO-ORDINATES.

Using equ. (3.43) we are able to determine the explicit forms of the g functions.
g_{1}. This corresponds to state (2A.6)
We find $g_{1}=A_{1}=\frac{1}{\sqrt{(2 \pi)^{3}}}$
$g_{2} \quad$ This corresponds to state (2A.7)
We find $g_{2}=A_{2} \frac{1}{p}\left(\underline{p}^{(2)}+i \underline{p}^{(1)}\right)$, '

$$
=A_{2} \frac{1}{p} N_{M^{\prime}} \cdot\left(\underline{p}^{(2)}+i \underline{p}^{(1)}\right)
$$

where N_{M} denotes a spherical space-fixed triad defined by:-

$$
\begin{gathered}
N_{1}=-\frac{1}{\sqrt{2}}\left(N_{x}+i N_{y}\right) ; N_{0}=N_{z} ; N_{-I}=\frac{1}{\sqrt{2}}\left(N_{x}-i N_{y}\right) \\
\text { and } N_{M} \cdot N_{M}=(-1)^{M} \delta_{M,-M^{\prime}}
\end{gathered}
$$

We also define a spherical body-fixed triad by:-

$$
\begin{aligned}
& E_{1}=-\frac{1}{\sqrt{2}}\left(E_{x}+i E_{y}\right) ; E_{0}=E_{z} ; E_{-1}=\frac{1}{\sqrt{2}}\left(E_{x}-i E_{y}\right) \\
& \text { with } E_{x}, E_{y}, E_{z} \text { all unit vectors. }
\end{aligned}
$$

Let I be the unit dyad given by

$$
I=\sum_{M}(-1)^{M} E_{M} E_{-M}
$$

Then one finds

$$
g_{2}=A_{2} \frac{1}{p} \sum_{M}(-1)^{M} N_{M} \cdot E_{-M} E_{M} \cdot\left(p^{(2)}+i \underline{p}^{(1)}\right)
$$

If we go from a space -fixed triad to a body-fixed triad by a rotation

$$
E_{i}=R N_{i} \quad(i=1,2,3)
$$

then we find $\left.g_{2}=A_{2} \frac{1}{p} \sum_{M} D_{M^{\prime}, M}^{1 *}(\alpha, \beta, \gamma) E_{M} \cdot \underline{p}^{(2)}+i \underline{p}^{(1)}\right)$
where $D_{M^{\prime}, M}^{l^{*}}(\alpha, \beta, \gamma)=(-1)^{M} N_{M^{\prime}} \cdot E_{-M}$

Using a body-fixed set of axes such as is described in Clapter 4, we find

$$
\begin{gathered}
g_{2}=A_{2} \frac{1}{p}\left\{\begin{array}{l}
i p^{(1)} \\
\sqrt{2}
\end{array}\left\{\frac{1-\rho^{2}}{1-\rho^{2} \cos ^{2} \phi}\right]^{\frac{1}{2}}\left[\begin{array}{cc}
D^{1 *} & (\alpha, \beta, \gamma) \\
M^{\prime}-1 & -D^{1 *} \\
M^{\prime}, 1
\end{array}(\alpha, \beta, \gamma)\right]+\right. \\
\left.D_{M^{\prime}, o}^{1 *}(\alpha, \beta, \gamma)\left[p^{(2)-i p}{ }^{(1)}\left[1-\sin ^{\left(1-\rho^{2} \cos ^{2} \phi\right.}\right]^{\frac{1}{2}}\right]\right\}
\end{gathered}
$$

$$
\text { with }\left(A_{2}\right)^{2}=\frac{3}{8 \pi^{3}}
$$

$g_{3} . \quad$ This corresponds to s tate (2A.8). By using a similar method to that which was used for finding g_{2}, one obtains

$$
\begin{aligned}
& g_{3}=A_{3} \frac{1}{p}\left\{\frac{i^{\prime} p^{(1)}}{\sqrt{2}}\left(\frac{1-\rho^{2}}{1-p^{2} \cos ^{2} \phi}\right)^{\frac{1}{2}}\left[D_{M^{\prime}, 1}^{1 *}(\alpha, \beta, \gamma)-D_{M^{\prime},-1}^{i *}(\alpha, \beta, \gamma)\right)+\right. \\
& \left.D_{M: 0}^{1 *}(\alpha \beta, \gamma)\left[p^{(2)}+i p^{(1)} \quad\left(\rho-\sin \phi 0^{2} \cos ^{2} \phi\right)^{\frac{1}{2}}\right]\right\}
\end{aligned}
$$

And $A_{3}=A_{2}$
9_{4}. This corresponds to state (2A.9) and is omitted
g_{5}. This corresponds to state (2A.10). We have

$$
\begin{aligned}
g_{5} & \left.=A_{5} \frac{1}{p^{2}} N_{M^{\prime}} \cdot\left(p^{(2)}+i p^{(1)}\right) X p^{(2)}-i_{p}^{(1)}\right) \\
& =A_{5} \frac{1}{p^{2}} \sum_{M}(-1)^{M} N_{M^{*}} \cdot E_{-M} E_{M} \cdot\left(p^{(2)}+i_{p}^{(1)}\right) X\left(p^{(2)}-i p^{(1)}\right) \\
& =A_{5} \frac{1}{p^{2}} \sum_{M} D_{M^{\prime} M}^{1 *}(\alpha, \beta, \gamma) E_{M} \cdot\left(p^{(2)}+i p^{(1)}\right) X\left(p^{(2)}-i_{p}^{(1)}\right)
\end{aligned}
$$

leading to

$$
g_{5}=-A_{5} 2 \sqrt{2} p^{(1)} p_{p}^{(2)}\left(\frac{1-p^{2}}{1-\rho^{2} \cos ^{2} \phi}\right)^{\frac{1}{2}}\left(\begin{array}{ll}
\left(D^{1 *}\right. \\
M, 1
\end{array}(\alpha, \beta, \gamma)+D_{M^{2},-1}^{1 *}(\alpha, \beta, \gamma)\right)
$$

9_{6}. This corresponds to state (2A.12)

$$
g_{6}=A_{5} \frac{1}{p^{2}}\left(p^{(2)}+i p^{(1)}\right) \cdot\left(p^{(2)}+i p^{(1)}\right)
$$

giving

$$
\begin{aligned}
g_{6} & =\rho e^{i \emptyset} \\
\text { and } A_{6}^{2} & =\frac{1}{4 \pi^{3}}
\end{aligned}
$$

97• Corresponds to state (2A.13)
We obtain $g_{7}=\rho e^{-i \phi}$.

$$
\text { and } \quad A_{5}=A_{7}
$$

g_{8}. Corresponds to state (2A.11)
Although this state has $J=2$, the ω multiplicity is 1 .

$$
\begin{aligned}
& g_{8}=A_{8} \frac{1}{p^{2}}\left\{\frac { i p ^ { (1) } } { \sqrt { 2 } } (\frac { 1 - p ^ { 2 } } { 1 - p ^ { 2 } \operatorname { c o s } ^ { 2 } \phi }) ^ { \frac { 1 } { 2 } } \left(D_{M^{\prime},-f^{1 *}}^{\left.(\alpha, \beta, \gamma)-D_{M, 1}^{1 *}(\alpha, \beta, \gamma)\right)+}\right.\right. \\
& \left.D_{M ; 0}^{1 *}(\alpha, \beta, \gamma)\left[p^{(2)}-i p^{(1)}\left(\frac{\rho-\sin \phi}{1-\rho^{2} \cos ^{2} \phi}\right)^{\frac{1}{2}}\right)\right\} \text {. }
\end{aligned}
$$

- $\left\{\begin{array}{l}\underline{i} p^{(1)} \\ \sqrt{2}\end{array}\left(\frac{1-\rho^{2}}{1-\rho^{2} \cos ^{2} \phi}\right)^{\frac{1}{2}}\binom{D^{1 *}(\alpha, \beta, \gamma)-D_{M^{\prime}, 1}^{1 *}(\alpha, \beta, \gamma)}{M^{*},-1}+\right.$

$$
\left.D_{M^{\prime}, 0}^{1 *}(\alpha, \beta, \gamma)\left(p^{(2)}+i p^{(1)}\left(\frac{\rho \sin \phi}{1-\rho^{2} \cos ^{2} \phi}\right)^{\frac{1}{2}}\right)\right\}
$$

giving

$$
\begin{aligned}
& g_{8}=A_{8} \sqrt{6}^{1} \frac{p^{2}}{}\left\{2 p^{(2)^{2}}+p^{(1)^{2}}\left[\left(\frac{3 \rho^{2} \sin ^{2} \phi}{1-\rho^{2} \cos ^{2} \phi}\right)-1\right)\right\} D_{M^{2}, 0}^{2}(\alpha, \beta, \gamma) \\
& \quad \text { with } A_{8}^{2}=\frac{3}{2 \pi^{3}}
\end{aligned}
$$

APPENDIX_FOUR

THE INTEGRAL EQUATION

The permutation group on three objects, S_{3}, has six elements which may be taken to be the transpositions, P_{1}, P_{2}, P_{3}, which interchange particle pairs, the cyclic permutations C and C^{2} and the identity operation I, These elements may be represented by the group of 6×6 orthogonal matrices acting on the vector space spanned by the six-component vector p. As C and P_{3} generate all of S_{3}, we need only look at these. P_{3} has the matrix representation

$$
p_{3}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

And C may be expressed as

$$
\begin{aligned}
C & =\exp \left(\frac{2}{3} \pi S\right)=I \cos \frac{2 \pi}{3}+S \sin \frac{2 \pi}{3} \\
\text { with } \quad S & =\binom{0}{-10}
\end{aligned}
$$

The unitary analogue for Gives equ. (3.45) i.e.

$$
C\left|N_{a} N_{b} j m\right\rangle=\exp \left(i \frac{2 \pi}{3}\left(N_{b}-N_{a}\right)\right]\left|N_{a} N_{b} j m\right\rangle
$$

Therefore a state which is symmetric with respect to interchange of the two non- β particles may be constructed.

$$
\begin{aligned}
|\beta(s)\rangle & =\left|N_{a} N_{b} j m\right\rangle+p_{\beta}\left|N_{a} N_{b} j m\right\rangle \\
& =\left|N_{a} N_{b} j m\right\rangle+\left|N_{b} N_{a} j m\right\rangle
\end{aligned}
$$

We now set about casting the integral equations into a convenient form for solution.

From equ. (2.23) we find, symbolically.

$$
\Gamma^{l \ell}=\sum_{1} \bar{\delta}_{\ell j}\langle\ell| t_{j}|\ell\rangle+\sum_{i} \bar{\delta}_{\ell i}\langle\ell| t_{i} G_{o}|i\rangle \Gamma^{i \ell} \text { (4A.1) }
$$

Also,

$$
\Gamma^{M l}=\sum_{k} \bar{\delta}_{M k} \bar{\delta}_{l k}\langle M| t_{k}|l\rangle+\sum_{q} \bar{\delta}_{M q}\langle M| t_{q} G_{o}|q\rangle \Gamma^{q \ell}(4 A, 2)
$$

with $\ell, \mathrm{m}, \mathrm{n}$ a cyclic permutation of $1,2,3$. (For convenience the primes are being omitted).

A third equ. is

$$
\Gamma^{l M}=\sum_{k^{\prime}} \bar{\delta}_{l k^{\prime}} \bar{\delta}_{M k},\langle\ell| t_{k},|M\rangle+\sum_{q^{\prime}} \bar{\delta}_{l q^{\prime}}\langle\ell| t_{q^{\prime}} G_{o}\left|q^{\prime}\right\rangle \Gamma^{q^{\prime} M}(4 A .3)
$$

Using the property that $\quad \Gamma^{l l}, \Gamma^{l M}, \Gamma^{M l}$ and $\langle l| t_{M} G_{0}|n\rangle$ are invariant with respect to cyclic permutations of ℓ, M, n, equation (4A.1) then becomes

$$
\begin{gather*}
\Gamma^{l l=} \sum_{j} \bar{\delta}_{l j}\langle l| t_{j}|l\rangle+\langle l| t_{M} G_{o}|M\rangle \Gamma^{M l}+\langle\ell| t_{n} G_{o}|n\rangle \Gamma^{l M} \tag{4A.4}\\
\text { i.e. using } \quad \Gamma^{n l}=\Gamma^{l M}
\end{gather*}
$$

Also (4A.2) becomes

$$
\begin{gather*}
\Gamma^{M \ell}=\langle M| t_{n}|\ell\rangle+\langle\ell| t_{M} G_{o}|M\rangle \Gamma^{l M}+\langle\ell| t_{n} G_{0}|n\rangle \Gamma^{l l} \\
\text { i.e. using }\langle M| t_{n} G_{o}|n\rangle=\langle\ell| t_{M} G_{o}|M\rangle ; \\
\Gamma^{n \ell}=\Gamma^{l M} ;\langle M| t_{l} G_{o}|\ell\rangle=\langle\ell| t_{n} G_{0}|n\rangle
\end{gather*}
$$

And (4A.3) is

$$
\begin{gather*}
\Gamma^{\ell M}=\langle\ell| t_{n}|M\rangle+\langle\ell| t_{M_{0}} G_{0}|M\rangle \Gamma^{\ell \ell}+\langle\ell| t_{n} G_{o}|n\rangle \Gamma^{M \ell} \tag{4A.6}\\
\text { i.e. using } \Gamma^{l \ell}=\Gamma^{M M} ; \Gamma^{n M}=\Gamma^{M \ell} .
\end{gather*}
$$

To proceed further we need to look more closely at the sum over N_{i}. The summation will include such terms as ($N_{a} N_{b} j m$) and ($N_{b} N_{a} j m$), for specific values.

If a state $|\ell\rangle$ in the equs. above corresponds to the combination $\left(N_{a} N_{b} j i n\right)$, then a state $|\ell\rangle_{I}$ may be defined corresponding to ($N_{b} N_{a} j m$).

Each of equations $(4 \mathrm{~A} .4),(4 \mathrm{~A} .5),(4 \mathrm{~A} .6)$ above will become four equations because of the possibilities:

$$
\begin{array}{lll}
\left(N_{a} N_{b} \ldots\right) & \leftrightarrow & \left(N_{a} N_{b} \ldots\right) \\
\left(N_{b} N_{a} \ldots\right) & \leftrightarrow & \left(N_{b} N_{a} \ldots\right) \tag{4~A,7}\\
\left(N_{a} N_{b} \ldots\right) & \leftrightarrow & \left(N_{b} N_{a} \ldots\right) \\
\left(N_{b} N_{a} \ldots\right) & \leftrightarrow & \left(N_{a} N_{b} \ldots\right)
\end{array}
$$

We are looking for a combination of the Γ^{\prime} s which will give us the same combination of Γ 's within the homogeneous term of an integral equation,

Examine the combination

$$
\Gamma^{l l}-\frac{1}{2}\left(\Gamma^{M l}+\Gamma^{l m}\right)
$$

for each of the possibilities (4A.7) above:
(1) $\left(N_{a} N_{b} \ldots ..\right) \leftrightarrow\left(N_{a} N_{b} \ldots .\right.$.

From equations $(4 A .4),(4 A .5)$ and $(4 A .6)$, the homogeneous term is

$$
\begin{aligned}
-\frac{1}{2}\left[\langle l| t_{M_{0}}|m\rangle+\langle l| t_{n} G_{0}|n\rangle\right] \Gamma^{i l} & \left.+\left\langle\langle l| t_{n} G_{0} \mid n\right\rangle-\frac{1}{2}\langle l| t_{M_{0}}|M\rangle\right\rangle \Gamma^{l m} \\
+ & \left.\left\langle\langle l| t_{M^{\prime}}{ }_{0} \mid m\right\rangle-\frac{1}{2}\langle l| t_{n} G_{0}|n\rangle\right\rangle \Gamma^{m l}
\end{aligned}
$$

Introduce now the transformation factor U by defining

$$
\begin{aligned}
& \langle\ell| t_{m} G_{0}|M\rangle=U_{l}^{\prime \prime \prime}\langle M| t_{M_{o}}|m\rangle \\
& \langle\ell| t_{n} G_{o}|n\rangle=U_{l n}^{\prime \prime}\langle n| t_{n} G_{o}|n\rangle
\end{aligned}
$$

The homogeneous term therefore becomes

$$
\begin{aligned}
-\frac{1}{2}\left[U_{l M}^{\prime \prime}+U_{l n}^{\prime \prime}\right]\langle M| t_{M} G_{0}|M\rangle \Gamma^{l l} & +\left(\begin{array}{lll}
U_{l n}^{\prime \prime}-\frac{1}{2} & U_{l M}^{\prime \prime}
\end{array}\right)\langle M| t_{M} G_{0}|M\rangle \Gamma^{\ell M} \\
& +\left[\begin{array}{ll}
U_{l M}^{\prime \prime}-\frac{1}{2} & U_{l n}^{\prime \prime}
\end{array}\right]\langle M| t_{M} G_{0}|M\rangle \Gamma^{M \ell} \quad(4 A .8)
\end{aligned}
$$

Where we have used the condition $\langle M| t_{M} G_{0}|M\rangle=\langle n| t_{n} G_{0}|n\rangle$.
(2) $\left(N_{a} N_{b} \ldots ..\right) \rightarrow\left(N_{b} N_{a} \ldots ..\right)$

Adopting a similar procedure as in (1), the homogeneous term is

$$
\begin{align*}
-\frac{1}{2}\left[U_{l m}^{\prime \prime}+U_{l n}^{\prime \prime}\right]\langle M| t_{M} G_{0}|M\rangle & \langle\ell| \delta^{l l}|\ell\rangle_{I}+\left[\begin{array}{lll}
U_{l n}^{\prime \prime} & -\frac{1}{2} & U_{l m}^{\prime \prime}
\end{array}\right]\langle M| t_{M} G_{d}|M\rangle\langle l| \gamma^{l M}|M\rangle_{I} \\
& +\left(U_{l m}^{\prime \prime}-\frac{1}{2} U_{l n}^{\prime \prime}\right]\langle M| t_{M} G_{0}|M\rangle\langle M| \gamma^{M l}|l\rangle_{I} . \quad(4 A, 9) \tag{4A,9}
\end{align*}
$$

(3) $\left(\mathrm{N}_{\mathrm{b}} \mathrm{N}_{\mathrm{a}} \ldots ..\right) \rightarrow\left(\mathrm{N}_{\mathrm{b}} \mathrm{N}_{\mathrm{a}} \ldots . ..\right)$

Gives an inhomogeneous term

$$
\left.-\frac{1}{2}\left[U_{l m_{m}^{*}}^{* *}+U_{l n}^{*}\right]_{I}\langle M| t_{M} G_{0}|M\rangle_{I}\langle\ell| \gamma^{R l}|l\rangle_{I}+\left[U_{l n}^{*}{ }^{*}-\frac{1}{2} U_{l m}^{*}\right] I_{M}\left|t_{M} G_{0}\right| M\right\rangle_{I} .
$$

$$
\begin{gathered}
\left.\cdot\langle\|| \gamma^{l m}\right|_{M / I} \\
+\left[U_{\ell M}^{\prime \prime}-\frac{1}{2} U_{l n}^{* *}\right]_{I}\langle M| t_{M} G_{0}|M\rangle_{I}\langle M| \gamma^{M l}|l\rangle_{I}(4 A, 10)
\end{gathered}
$$

(4) $\left(N_{b} N_{a} \ldots.\right) \leftrightarrow\left(N_{a} N_{b} \ldots\right)$

Produces

Using the conditions, $\operatorname{Re}\left(\mathrm{U}_{\mathrm{MQ}}\right)=\operatorname{Re}\left(\mathrm{U}_{\mathrm{n} \ell}\right)$
and $\langle M| t_{M} G_{o}|M\rangle={ }_{I}\langle M| t_{M} G_{o}|M\rangle_{I}$ then the
contributions (1), (2), (3); (4) to the total homogeneous term give
$-2 R e\left(L_{l M}^{\prime \prime}\right)\langle M| t_{M} G_{0}|M\rangle\left[\begin{array}{ll}\nabla^{l l} & -\frac{1}{2}\end{array} \nabla^{\ell M} \quad-\frac{1}{2} \nabla^{M l}\right]$
$\left.-2 \operatorname{Re}\left(U_{l M}^{\prime \prime}\right) \quad\langle M| t_{M} G_{0}|M\rangle\langle l| \gamma^{l l}|l\rangle_{I}-\frac{1}{2}\left\langle l \mid \delta^{l m_{M}}\right\rangle_{I}-\frac{1}{2}\langle M| \gamma^{m l}|l\rangle_{I}\right] \quad$ (4A.12)
with $\left.\langle l| \gamma^{l l}|\ell\rangle_{I}=I_{I}\left|\gamma^{l \ell}\right| \ell\right\rangle$ and similarly for the $\gamma^{l m}$ and $\gamma^{m l}$ cases.

$$
\begin{aligned}
& +\left[U_{M M}^{* *}-\frac{1}{2} U_{l n}^{* *}\right]\langle M| t_{M} G_{o}|M\rangle_{I} \quad\langle M| Y^{M Q}|Q\rangle \quad\left(4 A_{0}, 11\right)
\end{aligned}
$$

We have, therefore, the expression

$$
\begin{equation*}
\Gamma^{l l}-\frac{1}{2} \eta^{l m}-\left.\frac{1}{2}\right|^{m l+}\langle l| \gamma^{l l}|\ell\rangle_{I}-\frac{1}{2} \quad\langle l| \gamma^{l m}|m\rangle_{I}-\frac{1}{2}\langle m| \gamma^{m l}|l\rangle_{I} \tag{4~A,13}
\end{equation*}
$$

on both sides of the equation that we have constructed.
The inhomogeneous term is made up by adding the four contributions as has been done for the homogeneous tern. This gives a total inhomogeneous term of

$$
\left.\begin{array}{rl}
2\langle M| t_{M}|M\rangle & \left(\operatorname{Re}\left(U_{l M}^{\prime \prime} U_{l M}^{* " \prime}+U_{l n}^{\prime \prime} U_{l n}^{\prime \prime \prime *}-\frac{1}{2} U_{l n}^{\prime \prime} U_{M n}^{\prime \prime *}-\frac{1}{2} U_{M N}^{\prime \prime} U_{\ell n}^{\prime \prime \prime *}\right)\right. \\
& +\left(U_{l M}^{\prime \prime} U_{l M}^{\prime \prime \prime}+U_{l n}^{\prime \prime} U_{l n}^{\prime \prime \prime}-\frac{1}{2} U_{l n}^{\prime \prime} U_{l n}^{\prime \prime \prime}-\frac{1}{2} U_{l n}^{\prime \prime} U_{n n}^{n}-\frac{1}{2} U_{M n}^{\prime \prime} U_{l n}^{\prime \prime \prime}\right)
\end{array}\right)
$$

And taking

$$
U_{l M}=U_{M n}=U_{n l}=U_{l n}^{*}=U_{M n}^{*}=U_{M l}^{*}, \quad \text { then }
$$

the inhomogeneous term becomes

$$
\begin{align*}
&\langle M| t_{M}|M\rangle \operatorname{Re}\left\langle U_{l M}^{\prime \prime} U_{l M}^{* \prime \prime \prime}+U_{l n}^{\prime \prime} U_{l n}^{* \prime \prime \prime}+U_{l M}^{\prime \prime} U_{l M}^{\prime \prime \prime}+U_{l n}^{\prime \prime} U_{l n}^{\prime \prime \prime}\right) \\
&= 2\langle M| t_{M}|M\rangle \operatorname{Re}\left(U_{l M}^{\prime \prime} U_{l M}^{* \prime \prime}+U_{\ell M}^{* "} U_{l M}^{\prime \prime \prime}\right) \tag{4~A,14}
\end{align*}
$$

Denoting the expression (4A.13) by \mathcal{J}, we have a final iterative equation represented by

$$
\begin{equation*}
\mathcal{J}=E_{N}\langle M| t_{M}|M\rangle+D_{N}\langle M| t_{M} G_{o}|M\rangle \mathcal{J} \tag{4~A,15}
\end{equation*}
$$

with

$$
\begin{aligned}
E_{N} & =2 \operatorname{Re}\left(U_{l M}^{\prime \prime} U_{l M}^{* \prime \prime \prime}+U_{l M}^{\prime \prime} U_{l M}^{\prime \prime \prime}\right) \\
\text { and } D_{N} & =-\operatorname{Re}\left(U_{l M}^{\prime \prime}\right)
\end{aligned}
$$

We note that for terms with $N_{a}=N_{b}$, this equation will give four times the necessary contribution. Also \mathcal{J} gives onethird of the contribution from the Γ functions. The transformation functions have the explicit expression

$$
U_{l M}^{\prime \prime}=\exp \left[i \frac{2 \pi}{3}\left(N_{b}^{\prime \prime}-N_{a}^{\prime \prime}\right)\right]
$$

Equation (4A.15) may be expressed diagramnatically as in Fig. (4A).

Figure (4A). Diagrammatical representation of equation (4A.15)

APPENDIX FIVE

NORMALIZATION OF THE STATES

Here we summarize the normalization conditions.
1.

$$
\left\langle p_{1}^{\prime} p_{2}^{\prime} p_{3}^{\prime} \mid p_{1} p_{2} p_{3}\right\rangle=\delta\left(p_{1}^{\prime}-p_{1}\right) \delta\left(p_{2}^{\prime}-p_{2}\right) \delta\left(p_{3}^{\prime}-p_{3}\right)
$$

2. $\left\langle p^{2} N_{a}^{\prime} N_{b}^{\prime} j^{\prime} m^{\prime} \mid p^{2} N_{a} N_{b} j m\right\rangle=\delta\left(p^{2}-p^{2}\right) \delta_{N_{a}^{\prime} N_{a}} \delta_{N_{b}^{\prime} N_{b}} \delta_{j \prime j} \delta_{m}{ }^{\prime} m$

This may be written more neatly as

$$
\left\langle p^{2} N^{\prime} \mid p^{2} N\right\rangle=\delta\left(p p^{2}-p^{2}\right) \delta_{N^{\prime} N}
$$

which leads to the closure relation (4.1)

The constant G_{1} of equation (3.44) is found to be 4.

APPENDIX_SIX

EVALUATION OF E FOR EACH G FUNCTION

The F functions for each g are given in this Appendix. The starting point is equation (4.7). The integrations involved are made more tractable by changing from variables (ρ, ϕ) to (x, y) as indicated. in Fig. (4.2).

We then find for the various g_{n} functions:
g_{1}.

$$
F=F(1)=\frac{8 c A_{1}\left[\alpha_{D} \beta_{n}\left(\alpha_{D}+\beta_{n}\right)^{3}\right]^{\frac{1}{2}}\left(p^{\prime 2}-\frac{3}{2} q_{3}^{2}\right)^{\frac{1}{2}}}{\left(2 \beta_{n}^{2}+p^{\prime 2}-\frac{3}{2} q_{3}^{2}\right)\left(2 \alpha_{D}^{2}+p^{\prime 2}-\frac{3}{2} q_{3}^{2}\right)}
$$

$g_{2^{*}} \quad F=F(2)=\frac{A_{2}}{A_{1}} \sqrt{\frac{3}{2}} \quad \frac{q_{3}}{p^{\prime \prime}} F(1) \underset{\cdot M^{\prime \prime} ; O}{D^{1 *}}\left(\alpha^{\prime}, \beta, 0\right)$
Considering the F function corresponding to p "' and using

$$
P_{J}(\cos \theta)=\sum_{M} D_{M, 0}^{J *}\left(\phi_{1}, \theta_{1}\right) D_{M, 0}^{J}\left(\phi_{2}, e_{2}\right)
$$

where $P_{J}(\cos \theta)$ is a Legendre polynomial and $\theta=\theta_{1}-\theta_{2}$,
then a $\cos \theta$ factor emerges, where θ is the CM. scattering angle.
g_{3}. This produces the same F function as g_{2} •
$g_{4^{\bullet}} \quad$ Omitted
g_{5}. One finds for this case that $F=0$.
$g_{6} \cdot \quad F=F(6)=\frac{A_{6}}{A_{1}}\left(\frac{3 q_{3}^{2}}{p^{\prime 2}}-1\right) F(1)$
g_{7}. This produces the same F function as g_{6}.
$9_{8^{*}} \quad F=F(\varepsilon)=\frac{A_{8}}{A} \sqrt{\frac{3}{2}} \frac{q_{3}^{2}}{p^{n^{2}}} \quad F(1) D_{M^{\prime \prime}, 0}^{2^{*}}\left(\alpha^{\prime}, \beta^{\prime}, 0\right)$.

We find that a $P_{2}(\cos \theta)$ factor emerges; when also considering the F function for p "'

APPENDIX SEVEN

NUMERICAL CALCULATION

In this appendix we give the computational techniques used in evaluating the T-matrices. Symbolically the "Dragt integral equation" may be represented by

$$
T\left(p^{\prime 2} p^{\prime \prime \prime}{ }^{2}\right) \simeq t\left(p^{\prime \prime} p^{\prime \prime \prime} \mathbb{R}^{2}\right)+K\left(p^{2} p_{I}^{2}\right) T\left(p_{I}^{2} p^{\prime \prime \prime}\right)
$$

The integral equations were solved using a Simpson's Rule procedure. That is, they were approximated by matrix equations and matrix inversions carried out with the use of the IBM Subroutine MINV. In order that points could be effectively taken to infinity, a change of variable was made from p^{2} to R such that

$$
\mathrm{p}^{2}=\mathrm{W} \frac{\mathrm{R}}{(1-\mathrm{R})}
$$

and R varies between 0 and 1 . W is a constant determining the varying concentration of points throughout the range $p^{2}=0$ to ∞. The optimum value of W was found to be $2 q_{3}^{2}$. The R range was divided into 40 equal intervals, which was found to represent with reasonable accuracy the meshes involved.

In order to be able to determine the matrix elements for the inhomogeneous and kernel parts then integrations over y variables have to be completed. For this a l2-point Gaussian quadrature integration subprogram was used which had a built-in convergence criterion. Doubling the number of Gaussian points made no difference to the matrix elements obtained to within 0.4 per cent for thereal part and 0.2 per cent for the imaginary part.

The technique therefore mainly involved 47 by 41 point meshes, each point of which is a complex number. This becomes then a 82 by 82 point real mesh.

Because the states (2A.6), (2A.12) and (2A.13) are coupled this involves the solution of three simultaneous integral equations. However, because of the symmetry properties, it is possible to effectively reduce this to the solution of two simultaneous integral equations. The solution then involves the inversion of a 164 by 164 point matrix.

One finds from Chapter 4, section B, that the lower limit for each of the integrations over $p^{\prime \prime}$ and $p^{\prime \prime \prime}$ is $\frac{3}{2} q_{3}^{2}$. The final integration was therefore taken over 23 points in the R variable.

In order to obtain an estimate of the errors involved in the values obtained for the T-matrix, then the number of points for the solution of a single integral equation was doubled. Specifically, the $\lambda=0$ contribution was found with just one Dragt term in the kernel part both by the inversion of an 82 by 82 point mesh and then using a 164 by 164 point mesh.

The error at the higher energy in the real part was found to be about 4 per cent and the error in the imaginary part about 1 per cent. The greater error in the real part is perhaps to be expected as there is a good deal of cancellation involved in the calculation of this part. At the lower energy the corresponding values for real and imaginary parts were approxmately 5.5 per cent and 1.5 per cent.

The potential contributions were determined using a l2-point Gaussian sub-program as was used to determine the elements of the meshes. Doubling the number of Gaussian points produced a difference of less than 0.3 per cent, at both energies. The partial wave projections of the potential parts were determined using Simpson's Rule, and doubling the number of points produced a difference of less than 1 per cent at both energies.

Error estimation for the two parts contributing to a_{4} produced approximately 6 per cent for the T matrix part and 0.8 per cent for the potential part.

We might expect more realistic values for the errors to be not a lot greater than those figures quoted.

The computing was carried out on the I.B.M. $360 / 67$ machine in the University of Newcastle upon Tyne.

APPENDIX EIGHT

THE INHOMOGENEOUS TERMS

The inhomogeneous terms, denoted by t , are given. They are determined from equation (4.20). In each case the final integration over \hat{y} needs to be carried out.
$t(i, j)$ indicates that g_{i} is taken on the left and g_{j} on the right.
(1)

$$
\begin{aligned}
& t(1,1)=8 \pi^{3} A_{1}^{2} p^{\prime \prime}(1-\hat{y})^{\frac{1}{2}}\left(1-Q^{2}\right)^{\frac{1}{2}} v_{3}\left(p^{\prime \prime}, \hat{y}\right) \mathcal{C}_{3}\left(p^{\prime \prime}, \hat{y}\right) v_{3}\left(p^{\prime \prime \prime}, Q\right) \\
& \text { where } Q=\frac{1}{p^{\prime \prime}}\left(p^{\prime \prime} \hat{y}+p^{\prime \prime}-p^{\prime \prime \prime}\right)
\end{aligned}
$$

(2)

$$
t(2,2)=\frac{1}{6} \frac{A_{2}^{2}}{A_{1}^{2}}(1+\hat{y})^{\frac{1}{2}}(1+Q)^{\frac{1}{2}} t(1,1)
$$

(3)

$$
t(1,6)=\frac{A_{6}}{A_{1}} \quad Q \quad t(1,1) .
$$

(4)

$$
t(6,1)=\frac{A_{6}}{A_{1}} \quad \hat{y} \quad t(1, I)
$$

(5)

$$
t(6,6)=\frac{A_{6}^{2}}{A_{1}{ }^{2}} \quad \hat{y} \quad Q \quad t(1,1)
$$

(6)

$$
t(1,7)=t(1,6)
$$

(7)
$t(7,1)=t(6,1)$
(8)
$t(7,7)=t(6,6)$
(9) $t(8,8)=\frac{1}{30} \quad(1+\hat{y})(1+Q) \frac{A_{8}^{2}}{A_{1}^{2}} \quad t(1,1)$.

REFERENCES

1. L.D. Faddeev, Soviet Physics, JETP 12, 1014 (1961)
L.D. Faddeev, Soviet Physics, Doklady 6, 384 (1961)
L.D. Faddeev, Soviet Physics, Doklady 7, 600 (1963)
2. L.D. Faddeev, "Mathematical Problems of the Quantum Theory of Scattering for a three-particle system". (translation by A.E.R.E., Harwell, 1964).
3. R.L. Omnes, Phys. Rev., 134, B1358 (1964)
4. T. Osborn, S.L.A.C. Report, No 79, (1967)
5. J.H. Hetherington and L.H. Schick, Phys. Rev. 137, B935 (1965)
6. C. Lovelace in "Strong Interactions and High Energy Physics" Edited by R.G. Moorhouse (Oliver \& Boyd) (1964)
C. Lovelace, Phys. Rev. 135, No5B, 1225 (1964)
7. A.C. Phillips, Phys. Rev. 142, 984, (1966)
8. G.C. Wick, Ann. Phys. 18, 65 (1962)
9. A. Ahmadzadeh and J. Tjon, Phys. Rev. 139, B1085 (1965)
10. J.S. Ball, J.C.Y. Chen and D.Y. Wong, Phys. Rev. 133, 202 (1968)
11. F.T. Smith, Phys. Rev. 120, 1058 (1960)
F.T. Smith, J.M.P. 3, 735 (1962)
12. A.J. Dragt, J.M.P. 6, 533 (1965)
13. K.M. Watson and J. Nuttall, "Topies in several Particle: Dynamics". (Holden-Day, 1967).
14. R.G. Newton, "Scattering Theory of Waves and Particles", (MeGraw-Hill, 1966)
15. M.L. Goldberger and K.M. Watson, "Collision Theory", (Wiley, 1964)
16. G. Racah, Rev. Mod. Phys. 21, 494, (1949)
17. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954)
18. R.H. Dalitz, Repts. Prog. Phys. 20, 163 (1957)
19. E. Fabri. Nuovo Cimento, 11, 479, (1954)
20. C. Fronsdal in "Elementary Particle Physics and Field Theory" Brandeis University Summer Institute. Lectures in Theoretical Physics. (Benjamin, 1963, Vol. I)
21. R. Aaron, R.D. Amado and Y. Yam. Phys. Rev 140, Bl291 (1965) See Also:
R. Aaron, R.D. Amado and Y. Yam, Phys. Rev. 136, B650 (1964)
R. D. Amado, Phys. Rev. 132, 485 (1963)

The review by Ian Duck, "Advan. Nuc. Phys", 1, (Plenum Press, New York, 1968)
22. B.N. Zakharyev, V.V. Pustovalov and V.D. Ffros. Soviet J.N.P., $\underline{8}$, 234 (1969)
23. Yu. A. Simonov, Soviet J.N.P. 3, 461 (1966)
24. F. Riesz and B. Sz. Nagy "Functional Analysis", (Ungar Co. 1955)
25. R. Courant and D. Hilbert, "Methods of Mathematical Physics". (Interscience Inc. 1962)
26. F. Smithies, "Integral Equations" (Cambridge University Press, 1958)
27. S.P.Y. Lee, Ph.D Thesis, Imperial College, 1969. Details of Triton calculation are in an Imperial College preprint "Faddeev's Equations in the $\mathrm{Su}(3)$ Representation of Three-Particle States, II" by S. Hochberg, R. Sibbel and S.P.Y. Lee.
28. L.I, Schiff, "Quantum Mechanics" , (McGraw-Hill, 1955)
29. M.E. Rose, "Elementary Theory of Angular Momentum", (Wiley and Son, Inc., 1957).

ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor, Dr. R. Fong, for his continued help and guidance during the course of this work.

I am also indebted to Dr. K. Kowalski for his original suggestion of the subject of this thesis.

Further acknowledgements are due for useful discussions with Professor B.H.Bransden and Dr. P.D.B. Collins.

I am grateful as well to Mrs. Dorothy Anson for typing the thesis and to Miss Flizabeth Kemp for preparing the figures.

Last but not least my thanks go to the Staff of the Durham University Computer Unit for their help during the course of the computational work.

25 AUG 9972

