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(iv) 

Extensive research has been carried out in the subject of Priority 

Queues 0\'er the past ten years, cul.rninating in the boo!<: by Jaiswa.l [8], 

In this thesis, certain isolated problems which appear to have been o~tted 

from the consideration of other authors are discussed. 

The first two chapters are concerned with the question of how priorit-

ies should be allocated to customers (or 'units') arnti.ving at a queue so as 

to minimize the overall meaYJ waiting time [it is perhaps worth mentioning 

at the outset that following current usage, the terms 'queueing time' and 

i waiting time' 11Till be used synonymously throughout; both refer to the time 

a unit waits before commencing service:J. In previous treatments of this 

'allocation of prioritiesi problem it has always been assumed that on 

arrival, the service time requirement of a unit could be pred~cted exactly; 

the effect of having only imperfect information in the form of an estimated 

service time is considered here. Chapter l deals with the non-preemptive 

discipline; Chapter 2 with discretionary disciplines. 

Priority queues in whiich the arrival epochs of different types of units 

form independent renewal processes have only been solved under th~ assumpt­

ion of rand0m arrivals. However, if the foll011ling modified arrival scheme 

is consideredr. 

arrival epochs form an ordinary renewal process, and at any arrival 

epoch, independently of 111hat happened at all previous epochs, with 

probability q 1 the arrival is a priority unit and with probability q2 

a non=priority unit (where ql+q2 =l) 

then the priority analogues of the ordinary single-server queues EbiG/l and 

GI/M/1 can be solved (Chapters 3 and 4 respectively)" 

In conclusion, Chapter 5 is concerned with approximate methods: 



(v) 

section 1 is a review of previous work on derivin..g bounds for the mean wait­

ing time in a GI/G/1 queue, section 2 extends this work to the GI/G/1 prior­

ity queue, 

September, 1971 



C H A P T E R 1 

l:!gn-Preemptive Priorit:i._ Classification in the M/G/1 Queue 

1 o 1 Int·roduct-ion 

In this section the Laplace-Stieltjes transform of tpe distribution 

function of the waiting time of customers or 'units; in a non-preemptive 

priority queue is derived; this has been obtained before by many authors -

the derivation below is an adaptation of that given by Miller [14] and 

Takacs [i8J ~ · 

The basic model to be considered is as follows;- units arriving for 

service from a single server are of two different types with units of type 

1 (or '1-uni t s 1 ) having non-preernptl ve priority over units of type 2. It 

is further assumed that k-units arrive at random and independently of 

arrivals of other units with rate Ak' and have service times which are in­

dependently and identically distributed random variables with mean 1/~k and 

distribution function Sk(t), t 7 0 (k=l,2). Let pk = ).;k/~k and).; = Al + ).;2 

where necessarily p1 + p 2 < 1 for stability. 

The departure epochs <1 
1 ,T 2 •,, 3

1 , ,., form a set of regeneration points 

and therefore an imbedded Markov chain can be defined. 

Let •ov = o, 

and for n ~0 

a n = P[no 1-units and a non-zero number of 2-units waiting at 
0 

time Tny + 0], 

o.kn = P[k 1-units waiting at time 'n' + oJ k ~ l 

a
0 
n = P[system empty at time Tn' + o], 

It follows that if 

~ i = P[k 1-units arrive during the service time of an i-unit]. 



and qi = A./0·1 +A2) 

then 

i = 1,2; k ::, 0 

n+l + 8n+1 : 
C40 0 P[no 1-units waiting at '~+ 1 + o] 

and for k} 1 

For lzi ~ 1, lwl < 1 define 

00 

n = ~ a.n zi n ~ 0 ex (z) 
i=O .l. 

00 00 

a(zjw) ~ 
n n a (w) ~ B n wn ::; a (z) w ' = ' 0 0 n=O n=O 

and 

then equations (1) and (2) give 

where 

i i k 
= k=O ~ z i = 1,2 

(2) 

(3) 



Assuming the queue to be initially empty gives 

(4) 

Clearly 

s
0 
n = P[no customers waiting after the nth departure in an ordinary 

M/G/1 queue, arrival rate .'-., service time d, f., 

ql Sl (x) .,. q2 S2(x)J ,. 

Therefore, by page 71 of Takacs Ll'7J 

a fw) :: o' 
1 

1-g(w) (5) 

where g(w) is the unique root in z within the unit circle of the equation 

Also 

The Lerrnna on page 4·7 of [17 J shows that the denominator of the right hand 

side of equation (4) has exactly one root z : h(w) say in the unit circle, 

and this must be a root of the numerator alsoo Therefore 

a (w) : 
o· 

where 

h(w) [1 +13
0 

(w) (wql S :i (I. 1-\1 h(w)) +Wq2S2. (I. 1 -I. 1 h(w)) -1)] 

h(1)- land h'(l)- 1/(l-p 1 ) 

(6) 



Equations (4) 3 (5) and (6) determine a(z,w)o For p1 + p2 < 1 the Markov 

chain is irreducible and aperiodic and so the limiting probabilities 

always exist and are independent of the initial distribution, Using Abel 1s 

theorem gives 

110 

a(z) ·= !., ak zk = Lim (1-w) o;(z,w) 
k::O W-+1 

a
0
[zs2 ( >. 1 -J~. 1 z )-S1 (A. 1-t.. 1 z) J -t·S

0
z [q1S1 (A 1-A 1 z)-t-q2S2 ().:t -A 1 z)-1] 

-- -- .. 

where 

Bo - lim (1-w) S
0

(w) ::: l - P1 - P2 
w .... l 

and 

:: lim (1-w) ex ( w) 
-(l-pl)+8

0
(l+qlp2-q2pl) 

o; -
;•, l /J.l 1->. l /-t..i2-l 0 W+l o· 

:: q2(P1+p2) 

a(z) is thus determined; clearly the joint distribution of the number of 

l~units and the number of 2-units at the nth departure epoch for any initial 

condition could be determined in exactly the s~ue rr~~1er, If W1 denotes the 

waiting time of a l=unit in the steady state, and W1 (s) = E!:e-sWl:J) then 

because a(s) + s
0 

~ EC:sN:J ·where N is the number of 1-units waiting at a 

departure epoch and qi .:. P [last. unit served was an i -unit J , it follows 

that 



where N1 is the number of 1-~~ts arriving in W1 + s1 and N2 is the nwnber 

in S2 " Thus 

a(l-s/Al)+S0-q2§2(s) 
----

Substituting for ~(s);~ 

Therefore 

( 1-p 1-p 2. ) S+ i, 2 [1-S 2 ( s) J 

;.. 1E[S1
2] +l-. 2E[s/J 
2(1-pl r-----

MOre General Arrival Scheme 

(7) 

(8) 

Suppose each un:i.t arriving for servic.e has a priority number Q~ a 

lower value of Q denoting non-preemptive priority over a higher value .. 

Arrivals occur at random wi.th rate i.. and have priority numbers which are 

LLdc positive random variables 3 independent of the arrival times" Let 

Q(y) ~ P(arrival has priority number~ y). Service times of arrivals with 

Q -=- y are LLd. random variables with distribution function S (x), mea'1 
y 

1.tiiy 1 Lap1ace-St~el.tjes transform Sy(s) and 

(for stability) . 

Group all units into two classes: 

those with Q ~ y called l~units 

those with Q > y called 2-units 

Then by equations (7) and (8)~-



Ll-A 

and 

!~ (1/J.Jx)dQ(x)]s.+J. [!~ dQ(x)-/~ Sx( s)dQ(x)] 

s-AC:!~ dQ(x)=f~ §x(s)dQ(x)_j 

A 1~ E[S/]dQ(x) 
---

2 Ll-A !~ E[)x] dQ(x)] 

( 9) 

(10) 

When a unit with Q = y arrives, its waiting time can be decomposed into 

two parts< 

(i) the time to serve any unit already in service and all units already in 

the system with Q ~ y ·- this corresponds to Wi 1 and 

(ii) the time to serve all units with Q < y which arrive before its entry 

into service" 

Therefore W ( y), the stationary waiting time of a unit. with Q =- y) has 

the same distribution as the length of the busy period initiated by a wait-

ing time W1 in an ordinary queue (Le,. without a priority discipline) corn=-

posed of units with Q < y, Thus 

-sW(y). - . .y-0 - - J E{e · ') ~ W·1 (S'~'A I dQ(x) I 1 = B (s) ) . 0 -= y . (11) 

where B (s) is the Laplace-Stieltjes transform of the length of an ordinary 
y 

busy period in a queue composed of units with Q < y 

Le,. B (s) is the root with smallest absolute value in z of the equation 
y 

z = 

- the equation is z ::: SJ...s + A.(1-z)] for an ordinary M/G/1 queue, 

Equations (9) and (ll) determine ELexp(-sW(y))]; the moments can be 

obtained by differentiation; 



(12) 

TWo Special Cases 

(i) Units are of k different priority types, qj being the probability that 

an arrival has priority number j(j=l,2, •.• ,k), For this case (12) gives the 

mean waiting time of a j -unit as 

k 
A k q, E[S. 2J 

l.=l l. 1 

where ). . = q. ;;. and p . ::: A • E [s. J 
1 1 1 1 1 . 

(13) 

(ii) Service times of all ar.rivals are Li.d, random variables, distribution 

function S(x) .v x,. 0, The priority number Q is identica.l with the service 

time S: i.e. a customer with shorter service time has non-preemptive prior-

ity over a customer with longer service time. 

i.e. Q(y) " S(y) and Sy(x) " { 
1 

. L o 

x:,.y 

X < y 

Therefore 



E[S J = y and E[sy2J = y2 y 

Equation (12) givesl provided y is a continuity point of S(x), 

:\ J~ x2 d.S(x) 

2 [1-1. J~ x dS(x) J2 

Thus the mean queueing time taken over all arrivals is: 

ELW] - A r~ x' dS(xl [a d.S(y) 

2 [1->. !~ x dS(x)] 2 

(14) 

Both this equation and equation (13) can be found in Cox and Smith C:s:i, 
pages 83 and 85. 

1.2 OptimalPriority Classification in the M/G/1 Queue 

Suppose that arrivals requiring service from a single server occur at 

random with rate ~ and have service times, S, which are i. i. d. random vari-

ables with distribution function S(x), x ~ 0, and mean 1/~ where p = Ali-& < L 

If every customer is to be assigned to one of two non-preemptive priority 

classes the problem arises of how to allocate priorities to arrivals on the 

basis of their service time requirements so as to minimize, the overall mean 

waiting time. 

Suppose a rule for 'allocating priorities is specified so that the 

priority function 

P(x) ~ PC:classifying a customer into class 1 JS = x:J 

can be defined, where this probability is independent of the classification 

of all previous arrivals. 
, 

Let S.(x) be the distribution function of the 
J 

service time of a j-unit corresponding to this rule (j=l,2). Then, by 

Bayes 1 'Theorem for continuous distributions 1 



l~ P(u) dS(u) 
00 

f P(u) dS(u) 
0 

(where x)IJ) 

r~ [1-P(u)] dS(u) 

1- !~ P(u) dS(u) 

Also, customers of each class arrive at random with rates 

:>.. 1 :: :>.. J'~ P(u) dS(u) for class l 

and :>..2 = .A. ~ A !"" P(u) dS(u) 
0 

for class 2 

Equation (13) gives the overall mean waiting time 

A EC:s2:J [(1-p) !~ P(u) dS(u) T 1 - !~ P(u) dS(u):J 

2(1·-p)(l-J. !~ u P(u) dS(u)) 

where 

Note that 

:>.. E(S2J 
2(1-p) R 

1-p ~~ P(u) dS(u) 
R ::: 

1-:>.. !~ u P(u) dS(u) 

(i) R is the reduction factor: 

if P(x) = 0 or P(x) : 1 then R = 1 and 

A ELS2J 
E[w] = 2(1-p > 

(15) 

This corresponds to an ordinary M/G/1 queue with all customers in a single 

class and the first-come first-served discipline, 

(ii) The case 



P(x) ~ l ~ 0 ~ x ~ ~P, S(x) - 1 ~ e-~x 
otherwise 

10 .. 

x ~ O, where ~ is a non-negative constant, is considered in Cox and Smith 

[5] l page 86, and it will be shown t.hat 'this priority function (which 

corresponds to putting all customers with service times less than some con-

stant into the priority class) is the optimum form for P(x) for any dis-

tribu.tion of service times, 

(iii) Allocating priorities in this way leads to an improvement in the mean 

waiting time if and only if R < 1, 

i.e, iff 

"" .. J u P(u) dS(u) 
0 

J~ P(u) dS(u) 

Leo iff the overall mean service time > mean service time of 1-units. 
I 

The truth of the statement in note (ii) will now be established~-

Given any continuous priority function G(x) 1 (x)0 1 O(G(x)~1), it seems in= 

tuitively re~sonable to suppose there exists an optimun1 cutoff c0 such that 

the priority function 

0 ~ X ~ CG 

otherwise 

minimizes Rc For any cutoff c, 

R - R( c) ~ 
1-P fc G(u) dS(u) 0 . 

c 1-X !
0 

u G(u) dS(u) 

Setting dR/dc :;:; 0 gives an equation for c.0 ~= 

[1-
CG 

>. !
0 

u G(u) dS(u)] [- p G(c0 ) Sl(cG)J 

(16) 



lL. 

c c 
c0 J

0
° G(u) dS(u) - J

0
° u G(u) dS(u) 

c c 
- c0 1

0
° G(u) dS(u) - c0 !

0
° G(u) dS(u) 

_co 
t 1 

0 
J ~ G ( u) dS ( u) dx 

CG 
=- /

0 
!~ G(u) dS(u) dx (17) 

It follows that cG .~ lii" 

From ( 17) 3 

c c 
\.lCG [1 ·~ foG G(u) dS(u)J G dS(u) p -· 1 = >. i

0 
u G(u) 

and hence 3 if the optimum R for this priority function G(x) is denoted by 

q8) 

and this can easily be seen to be a minimum value of R by considering the 

behaviour of the second derivative, Equation (18) implies that the·optimal 

function for P(x) is one which maximizes c0 J the optimum cutoff" 

Consider the function H(x) = L The optimum cutoff cH for this funct­

ion satisfies the equation 

c u-1 
H" 

A 
(19) 

Tnen if K(x) is any other possible priority function with optimum cutoff cK' 

CKu=l cK . CK 
). = cK f 

0 
K(u) dS(u) - f 

0 
u K(u) dS(u) (20) 

Subtracting equation (19) and (20) gives 



12, 

'!here fore 

c 
= J

0
K (cH-u) K(u) dS(u) 

(21) 

Suppose cK > cW then the left-hand side is strictly positive whilst the 

right-hand side is equal to 

which is negative: a contradictiono It follows that for any other possible 

priority function K(x)) cK { cH. The optimum priority function must be 

therefore, 

P(x) - ~ ~ 0 <X~ C 
otherwise 

where c satisfies the equation 

- --- c ~ 
c !

0 
dS(u) - 1; u dS(u) 

Note: For exponential service times S(x) 

beco!'TEs 

C).: - 1 

(22) 

=px - l - e , x ~ 0 and equation (22) 

(23) 

At the optimum, the l'TEan waiting time equals 



13 .. 

E[w] 
A E[S2] 

- -2(l:p-)- RG - (24) 

This is the special case considered in Cox and Smith [5]. 

L 3 Arrivals with Estimated Serviee Times -

In most practical situations it is extremely unlikely that the service 

time of a custorrer can be exactly predicted on his arrivalJ and so the 

optimwn rule of the last section cannot be implemented, However it is quite 

plausible that on arrival an estimate Y can be made of a custo~er!s service 

time; the effect of having only this imperfect information will now be con-

sidered. 

The model is assumed to be the same as before~ arrivals at random with 

rate ;., service time p,d.f. f(x), x ~ 0 with mean lh.1 and p = A.i\J < 1, 

Suppose that all customers with estimates Y ~ c are given non-preemptive 

priority over all other customers" Then 

P(x) - P[Y ~ c I x] 

where fyls (y;x) is the conditional distribution of the estimate given the 

true service time S. Equatiqn (15) gives 

l-p !~ f(x) P(x) dx 
0 R ·:: 

1·-). !~ x f(x) P(x) dx 

1-p i:.., !~ fsy<xay) dx dy 
= 

1-). 1:~ !~ x fsy<x,y) dx dy 
(25) 

i.e. R(c) - (26) 



14, 

By differentiationJ the optimum cutoff c satisfies the equation 

-
[1 - >. I~ .. J~ x fsy<x,y) dx dy] [- P r~ r 8y(xJc) dx] 

-
-= [1 - P 1:.,/~ r8y(x 3 y) dx dy J [- ;.. ~~ x fsy<x,c) dx] 

and therefore the minimum value of R(c) is given by 

R = 

::: 
E[sJ · 

E[Sl Y=c] 
c ,L equatjon ( 18) 

A sufficient condition for a reduction in the mean waiting time by this 

method of giving non-preemptive priority to certain customers on the basis 

of their estimated service time requirements can easily be found~ 

If E[SjyJ increaf?es monotonicall~ with if. then 

(a) R ~ l for ~ c 

( b:J) R has a unisNe f!!in~rrrum p_rovided E[~ I y J. ;1. U ll 

Proof of (a):~ 

As EC:sjy:J increases menotonically withy, for any cutoff c 

~ E[Sic] PCY > cJ + [1- !:., f:(y) ely] i:., E[SiyJ fy(Y) ely 

P[Y>cJ 
::: E[Sjcl P[Y > cJ - j:co E[SiyJ fy(y) dy 

P[Y~cJ 

- P[Y > cJ 
E(SjyJ F(y) c 

P[Y~c] -co 

+ 

E[SJyJ F(y) dy 



where F(y) ~ 1:~ fy(u) du 

As ~ :: r~: E[SiyJ fy(Y) dy, it follows that 

l-p ~=~ fy(y) dy 
R(c) =· --- { 1 

l-1. r:ao E[s I y J fy(y) dy 

Proof of ( b ) : -

From equation (26) 

15. 

dR 
de :: 

fy(c) 
{ - p + A p j :co f y ( y) E [ s I y J dy 

{l->. /:co fy(y) E[Siy]dy} 2 

1- I. E[SicJ - >.p E[SicJ P[Y ~ cJ} 

At any root of dR/dc, H(c) z 0. 

Also for any c, 

~~c) = >. {l- p P[Y.,;. c]} ~c E[Slc] > 0 asp < 1 

Therefore d.R/dc has at most one rooL Either ~[$1 cJ = 1/li for all c, in 

which case R(c) = 1 and H(c) = Oj or for c sufficiently large negative 

E (s I c J < 11 ~; but 

and therefore 

d.9./dc < 0 

Now 



H c c) = ~- E [ s I c J - P + P 2 - x. P m-[ s 1 c] P [Y ~ c] + ; ~ f Y c y) E [s 1 y J dy} 

~{A E(Sic] - p} {1- p} - X.p J"~ fy(y) E(Siy]cty (27) 

For EC:Siy:J t 1/wl there exists a c' sufficiently large such that 

E[slc'J > ~ and then 

fA. E[slc'] - p} {l- p} ;.. o 

The last term on the right-hand side of ( 2·7) c.an be made as small as desired, 

Thus, for sufficiently large c, H(c) > 0 and hence d.R/dc > 0 (provided 

E [s i y J i. l/iJ), The function R( c) has therefore exactly one turning point 

which must be a point of minimum value, 

l, 4 Ex<3!!I?les 

a) Exponential Service Times Estimated with a Normally Distributed 
Error 

Suppose that service times are independently and identically distribut­

-wx ed random variables with distribution func.tion S(x) = 1 - e , x ~ 0 and 

that the estimate Y of the service time requirement of a unit made on its 

arrival is equal to S + Z, where 

S is the true service time of the unit 

S and Z are independent 

and Z is distributed as N(O~o 2 ) 

Then 

l 

and 

w exp(-wx) exp l-
./2; cr 



Using this distribution gives 

f c !00 f ( ) d - ·"" ( ) /(; 
Sy x,y x cy ~ 1 ~ exp -~x 

-oo 0 0 -oo 

1 

-/2; 

l 

12n a 

1 exp (_ f 1 {1 - exp(-uc+)Joy)} dy 
& l \ 

where 

!l>(y) 

Similarly 

Substituting in (25) gives 

R(c) -

1 

./2; l t 2 1 exp = 2 ) dt 

a --

Setting dR/dc = 0 gives an eq.uation for the optimum cutoff c~-

(28) 

(29) 



18. 

Without loss of generality 1 A. can be taken to be unity. Numerical values of 

c and the minimum mean waiting time W for various values of 1/p (the traffic 

intensity) and a are given in Table L (The special case a = 0 is covered 

in Cox and Smith [5]). From Table 1 j_t can be seen that quite consider­

able reductions in the mean waiting time are possible when the traffic in= 

tensity is large when even very rough estimation is valuable" Clearly for 

any particular problem~ cost.s could be assigned to the method of estimation 

and to the waiting time of customers and the optimum a to minimize costs 

obtained. It is perhaps worth mentioning that the restriction to unbiased 

estimates is unnecessary~ a monotonic function of Y would yield the same 

minimum value of R~ 



TABLE 1 - . 

The lower value in each classification is the minimum mean waiting time; 
the upper value is the optimum cutoff, c, Analogous tables for the 
various preemptive dis·ciplines could also be· constructed. 

first come Non-preemptive priority: 2 priority classes 
p 

first-served cr::O o=O.Ol cr=O.l o=0.3 cr=0.5 o:.:J .• O 

0.34 0.34 0.37 0:.50 0.59 0.71 
0.3 

0.129 Ooll3 0.113 0 .. 114 0.11? 0.120 0.124 

- -
Oo64 0.64 0,66 0.79 ' 0.93 L19 

0.5 
0.5 0:391 0.391 0 ... 392 0.402 0.416 0,443 

1.06 L06 1.07 1.17 1.33 L73 
0.7 

1.633- 1.079 1.079 1.082 L101 1.139 L248 

L89 1.89 1..90 L96 2.10 2.61 
0.9 

8.1 3.855 3.855 3.861 3o909 4,007 4 .. 447 

2.40 2.40 2.40 2.46 2.58 3.10 
0.95 

18.05 7.153 7.153 7.162 7.239 7.395 A.160 

3.59 3.59 3.60 3.65 3.75 4.24 
0.99 

98.01 27.010 27.010 27.038 27.259 27.712 30.0 

! 
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(b) A Bivariate Exponential Distribution for the Service Time and 
Estimate 

In Downton (6] a bivariate exponential distribution (S,Y) which seems 

suitable for the joint distribution of the service time and estimate is con-

sidered: Some of its properties are as follows; 

(i) 

where ~j ~' are strictly positive and a, the correlation coefficient, is 

restric.ted to 0 ~ a ~ l, 

(ii) the marginal distri~utions of SandY are ~e-~x (x~O) and ~'e-~'y (y~) 
respectively. 

(iii) 

E[sly] = 
1-a: .._ 

)j 

a u v 
.,. -·-y 

~ 
ioec EI:Siy:J increases 

monotonically with y, 

(iv) 

var[Yix] = 
1-a 
T [

1-a ~] i7' + ... ~-' 

i.e. varC:Yix:J increases.with x, and in this respect this distribution is 

more realistic than that considered in example (a), 

Substituting in equation (26) gives 

R(c) = 

Setting dR/dc = 0 gives an equation for c~ 

(30) 

This is a natural two dimensional generalisation of the equation in Cox and 

Smith [5] _, page 86 (and given as equation (23) above) for the case of 

perfect information, 
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It follows from (30) that the optimum cutoff c is independent of the 

correlation a, and the rtinimum reduction factor is 1/(1-a+a u'c), 

For a - lJ this reduces to 1/u'c c.,fo equation (18). 

For a - 0, it takes the value 1 - the estimate Y then giving no information 

about the value of S, 

1.5 An Infinite _Number o~·Non-Pre~tive Pr·iori~l Classes_ 

Proceeding-as in Section 1.3, suppose arrivals occur at rando~ with 

rate I. and have eervice times which are independently and identiqally dis-

tributed random variables with p.d.f. f(x) J x ~ 0 and mean 1/u, where 

p = A!u < la On arrival an estimate Y is made of the service time require-

ment of a unit) and at every departure epoc.h the server selects for service 

that unit waiting in the queue with the .lowest estimate" Let f8y(x,y) 

(x~, -co<y<+oo) denote the joint distribution of the servic.e time S and 

estimate Y. Then 

Q(y!) ::. PC:arrival has estimate ' y':J 

y' 00 dx dy 
yl 

fy(Y) dy .. !_"" fo fsy(x,y) - f _.., 

S (x') P[s ~ xl I -- y - Yj y 

X~ 

fSIY(x,y) dx =- Jo 

Ef~s 2 ] ::: ~~ x2 fsjy(x;y) dx --- y 

+oo 
E[s, 2 ] dQ(y) 

+oo co 
2 fQv(x,y) J .:: l !,.., X dx dy 

-co ·-t-:o 
J v UJ. 

Thus equation (12) becomes 

E[W(y' )] -



Provided y' is a continuity point of F(y) = JY f (u) qu, 
-<XI y 

E[W(y' }] :: 

The overall mean waiting time is, therefore 

22, 

(31) 

(32) 

For the case of perfect information r5y(x,y) = ~f6x) 
reduces to (14). 

. y =:.X 
otherwise and (3l) 

Numerical results for either of the two joint distributions discussed 

in the last section could be calculated" In the case of example (a), (32) 

becomes 

E[WJ = p J: [l-p 
For a ::. 0 this has been tabulated by Schrage and Miller [16]. 

dz 

>..a +- exp 
/2; 

Values for 

various non-zero values of a are given in Table 2. Without loss of general-. 

ity >.. has been set equal to unity, the traffic intensity p then being 1/~. 



TABLE. 2 

Values of the mean waiting time for a continuous number of 

non-preemptive priority classes; priority classification is 

on the basis of an estimate with normal error" The format 

is the same as for Table l for two priority classes with 

which it should be compared" 

-

;~ 0 0,01 0,1 0" 3 0,5 LO 

--1--
I 

Oo3 0,108 0,108 Ool09 0, 11_3 j 0,117 0,121 .. l 
r-....... - :..----·.,..,... 

0.5 0,356 0,356 0,359 o, }7_2 0,388 0 .. 421 
. - -· 

0,7 0 .. 919 0,.919 o, 9_23 0,951 0,994 Lll6 
-~ 

0,9 2,877 2,877 2.886 2 ,_9_4_7 3,057 3,482 
... 

0,95 5,001 5,001 5,013 5-.099. 5 .. 259 5,.945 
-

0,99 17,276 17.276 17.300 17' 483 17,841 19,55-=_j 
-· ·-
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CHAPTER 2 

Discretioncuy ~1eues 

2 .• 1 Basic Results 

The discretionary discipline was first introduced by Avi-Itzhak, Brosh 

and Naor I:1:J who gave a solution for the case of constant service times; 

the first published solution for general service times for the special case 

of early preemption is in Jaiswal [8] . By considering the general stoch­

astic process as a sequence of alternating busy and idle periods, Jaiswal 

derives all the main properties of the process including the Laplace-

Stieltjes transforms of the. busy period distribution, the waiting time dis-

tribution and the transient generating function of queue length probabilit­

ies. Since the work for this chapter was completed, Balachandran [2] has 

given a method for deriving the mean waiting time of units in more general 

discretionqry queues. A simple method will be·given in this section for 

de~iving the Laplace-Stieltjes transfo~ of the waiting time of units in 

such queues and this is extended in Section 2.4 to derive properties of a 

discretionary queue based on estimated remaining service time. 

Suppose all ~rivals belong·to one of two types and that type i-units 

(i=l,2) arrive at random with rate >... and have se~Jice times which are i.i.d. . l 

random variables with distribution function S.(x), x ~0, mean 1/u .. Let 
. l l 

p. = >.../u. where Pl + p 2 < 1. If' E(S2-zjS2>z) regarded as a function of z 
l l l 

has the shape shown in Figure l (which could happen if S2 is the mixture of 

two distributions with differing means for example), then the server may 

conform to the following discretionary rule with regard to a 1-unit arriving 



FIGURE 1 

z, z 

to find a 2-unit in service:-

if S2 1 ~ z1 or S2' > z.2 the ·'1-unit preempts the 2-unit from service, 

the 2-unit resuming its service when there are no 1-units left in the 

system. 

if Z1 _,. S2 I ~ Z2 the non-preemptiVe rule iS fOllOWed. (Where S2 I 

denotes the time the 2-unit has already spent in service when the 1-unit 

arrives). 

The discretionary rule is thus a mixture of the non-preemptive and 

preemptive resume priority disciplines. 

Waiting Time of 1.-units 

Suppose a 2-unit arrives at time r and has service time S2; then with­

out affecting W1 , the waiting time of 1-units, 

if S2 ~ z1 the 2-unit can be ignored (because any 1-unit arriv­

ing would preempt it from service). 

if z 1 < S2 ~ z2 the 2-uni t can be replaced by an ordinary non­

preemptive 2-unit arriving ·at time r + z1 and having 

service time 82- Zl• 

the 2-unit can be replaced by an ordinary non-



preemptive 2-unit arriving at time -r + z1 and having 

Thus W1 can be evaluated from the results for ar1 ordinary two-class non-

preemptive queue in which: 

1-uni ts arrive at random with rate >. 1 and have service times which are 

i.i.d. random variables with distribution function Si(x), x ~0. 

2-units arrive at random with rate >. 2PC:s2 > z 1:J and have service 

times T2 which are i.i.d. random variables with distribution function T2 (y) 

given by 

Therefore 

and 

= ~(y+zJ)-S,(zJ) 

P[S2>z1J 

+ 
e -s(z2-zl) P [S2>z2J 

P[S2>z/J 

!~2 (x-zl) dS2 (x)-t-(z2-zl) P[S2>z2J 

P[S2>z1J 

The traffic intensity for units in this modified queue is 

(1) 

(2) 

Therefore, by the usual formula for the Laplace-Stieltjes transform of the 

waiting time of 1-units in a 2-class non-preemptive queue (see equation (7) 

of Chapter 1) 
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(4) 

and 

(5) 

Waiting and Completion Time of 2-units 

Clearly the waiting time of a 2-unit W2 in a discretionary queue is the 

same as in other priority queues in which the priority discipline does not 

affect the length of busy periods (i.e. non-preemptive and preemptive resume). 

'Iherefore 

and 

X.1 E(S1.2J +X.2 E[S2 2J 
2(1-pl)(l-pl-pz) 

(6) 

(7) 

where B1 equals the length of a busy period in a queue consisting of !-units 

only. 

i.e. EI:e-sB1:J = B1 (s) is the root with smallest absolute value in z of the 

equation 

(8) 
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Let C denote the completion time of a 2-unit (this term was introduced 

by Gaver [7] and denotes the time from the corrnnencement to the termination 

of the service of a 2-unit including interruptions). The length of an in­

terruption or preemption equals B1 (the length of a busy period in a queue 

of 1-units only) and the times from the end of an interruption to the next 

l~arrival are i.i.d. random variables, density A1exp(-A 1x), x ~ 0. ~us, 

if N denotes the number of interruptions during the service time of a 2-unit, 

There are three cases to consider: 

if S2 { z 1 preemptions can occur throughout S2 • 

if z1 < S2 { z2 preemptions can only occur during the initial period 

of length z1 of the 2-unit's service. 

Therefore 

E[e-tcls2J 

( 

=l 

any 1-units arriving during the non-preemptive part 

of a 2-uni t ' s service will queue up and preempt the 

2-unit after it has spent a time z2 at·the server. 

The total completion time for this case is therefore 

just the same as if the 2-unit behaved as an orctinary 

preemptive resume unit. 

co 
(AlS2)n -ts2 ~ [81 (t)]n e-A1S2 e n! n::O 

co 
(AJZJ)n -ts2 

n~ [Bl(t)]n -AlZl e 
n~ 

e 

( e-ts2 
co n -AlS2 ~ [81 (t)Jn (AlS2) 

n! e 
n:::(} 



Unconditionally: 

expi:-t S2 - >.. 1 S2(1-B1(t)):J 

= expL -t S2 >.. 1 z1 (l-B1 (t) )] 

exp[-t S2 - >.. 1 ~ 2 (l-B1 (t))] 

and similarly, or by differentiating (9), 

E[c] = fzl [x + ~-] dS2(x) + 1z2 [x + ~lzl] dS2(x) 
0 l-p 1 Zl -pl 

co 

[x + 
u.tl dS2(x) + J 

Z2 1-plJ 

1 _£U_ [!~1 X dS2(x) + JZ2 co 

- + Zl ,dS2 (x) + f 
112 1-pl Zl Z2 

2.2 Early Preemption: the Qptimal Policy 

29. 

xdS2(x)J 

(10) 

Letting z2 ~ co gives the particular discipline considered by Jaiswal 

[8]:-

if the service time already received ·by a 2-u.11it is less tb.a..'1 or equal 

to z, a 1-uni t arrii ving preempts the 2-uni t from service,. 

if the service time received by the 2-unit is greater than z, the non-



30. 

preemptive rule is followed. 

~ equations (4) and (5) 

(11) 

and 

(12) 

By equations (7) and (10) 

>q E[S1 2] +.\ 2 E[S2 2] 

E[w2] =- 2(1-pl)(l-pl-p2) (13) 

E[c] (14) 

The overall mean time in the system F (DE), (where DE refers to the qisci­z 

pline: discretionary with ear.ly preemption) is therefore 

>. 1
2 E[S1

2]+A 1il. 2 !; (x-z) 2 dS2(x) 
F (DE) = p 1 + __h_ + 

z 1-pl 2(1-p1) 

+ 
lq>-2 E[S1 2J +A2 2 E[S2 2] 

2 ( 1-p 1 ) ( 1-p 1 -p 2 ) 

- F(PR) + ~ { 11 Ioo (x-z) 2 dS2 (x) - 1 !
00

z (x-z) dSz(x)} 
l-pl ~ z ~1 

where 

F(PR) = Pl + 
>qz E[siz] 

2 ( 1-p 1) 

(15) 

>-1>-2 E[S1 2]+>.2 2 E[Sz 2] 

2(l-pl)(l-pl-P2) 

is the overall mean time in the system in an ordinary preemptive resume (PR) 

queue. 
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Note that F (DE) = F(~W) and Lim F (DE) = F(PR) where NP is an abbreviation 
o z~ z 

for non-preemptive, 

Differentiating (15) with respect to z gives 

d F (DE) z 
dz 

1 
1" -

lJl 

- f-~ ~ P [ 82 > z] i ~I - E [ 82 z i 82 > z] ~ 

Therefore, at a stationary point ofF (DE), z satisfies the equation z 

1/~-'1 = E[S2 - ziS2 > z] 

Differentiating again 

d2 F (DE) 
z 

dz 2 l co 1 
I dS2 (x) - -
z J.il 

(16) 

A sol~tion z of equation (16) is therefore a point of minimum value iff 

1 
co 1-z dS2(x) 

= 
~2<z) 

1 
> - -

J~ (x-z) dS2(x) z 

(where ~ 2 (z) is the age specific failure rate of the service time of a 2-

unit). 

i.e. iff ~z E[S2. - ziS2 > zJ < 0 at z = z 

Similarly it is a point of maximum v~lu~. iff 

at z ::: z 

The solution of equation (16) for the distributions Ek' D, M a."ld 

rectangular is discussed in Jaiswa1 C:B:J , It is perhaps wortn mentioning 

~hat for the exponential distribution S2(x) = 1- exp(-~2x), x ~ 0, 
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EI:s2 - ziS2 > z:J equals 1/~ 2 for all z; the optimum aiscipline in this 

case is therefore either preemptive resume (z=~) or non-preemptive (z=O) 

depending on the relative mean service times of the two types of units. 

2. 3 Late Preemption: the Opt1mal Policy 

If EL:S2 - zls2 > z:J is a monotonic increasing function of z then 

equation (1~) gives as its only finite solution a point of maximum of Fz(DE). 

This suggests that for such a situation the optimum discretionary rule is 

the converse of that discussed in Section 2.2: i.e. the 1-unit preempts the 

2-unit only if the service already received by the latter is GREATER than 

z. The properties of this model can be obtained by setting z1 = 0 in 

Section 2.1. From equations (4) and (5) 

z -sx -sz ~ + ).2 {1 - I e. dS2(x) - e · J dS2(x)} 
0 z 

).1 E!:S1 2:J + ). 2 /~ x2 dS2Cx) + ).2 z2 1; dS2(x) 
2(1-pl) 

From equation (10) 
I . 

(17) 

(18) 

(19) 

combining these equations gives the overall mean residence time in the 

system 



F (DL) z 

= F(PR) + ~=-~~ 

33-

- · f X dS2(x) 1 z ~ J.ll 0 

(20) 

where DL is used as an abbreviation for 'discretionary rule with late 

preemption' • 

Note that F
0

(DL) = F(PR) and Lim Fz(DL) = F(NP). 

Differentiating (20) gives 

d F (DL) 
z 
dz 

z~ 

Therefore dFz(DL)/dz = 0 implies 

z = 0, z = co or = lJl (21) 

(~ 2 (z) is the age specific failure rate of 82 • This compares with equat~on 

( 16) • Note that 

E[~2zs2>] 
d2F (DL) z 

dz2 

=!co !co_ s2 (x) dx dz ·= L) 
0 z. ~1 

At the third solution, z say, ~ 2 (z0 ) = ~ 1 and 
0 

z d 
~1 dZ 



because 

at z = z 
0 
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Theref0re, if ~ 2 (z) is decreasing at the third solution it gives a point of 

minirm.un value of F (DL). z 

2.4 Discretionary Rule Based on the Estimated Remaining Service Time 

Consider the alternative discretionary rule; whenever a 1-unit arrives 

to find· a 2-unit in service 

if the 2-unit still requires time greater than z to complete its service 

the 1-unit preempts the 2-unit, from serviceo 

if·the 2-unit still requires time less than or equal to z to complete 

service the non-preemptive rule is followed. 

Suppose a 2-unit arrives at time ' and has service time S2 ; then, with-

out affecting W1 the wait~ng time of a 1-unit 

if S2 > z, the 2-unit can be replaced by an ordinary non-preernpt~ve 

2-uni t arriving at time T + S2 - z and having service time z. 

:Lf S2 ~ z, the 2-uni t behaves as an ordinary non-preen:pti ve unit" 
! 

F0r this situation it is slightly more qifficult to check that the 

modified 2-units still arrive at random: th~ procedure below utilizes the 

results of Vere-Jor.~.es [22] • 

Definiti0n: For a stochastic point precess n, characterised by the counting 

measure N(.), the PROBABILITY GENERATING FUNCTIONAL G(n] is defined by the 

eq~ation 

GC:h:J :: E{exp J log h(t) aN(t)} :: E{~ h(ti)} 
l. . 



where the {ti} are the epochs of events and, to ensure convergence, 

1- h( t) e: L("), the class of functions g satisfying 0 ~ g( t) < 1 for every 

t and 

f g(t) M(dt) < co 

(M(•) denotes the first moment measure of n, ioe. M(I) is the expected number 

of events during the interval I), Theorem (Vere-Jones [22], page 327) .. 

If n 1 , n 2 are the input and output streams for the oueue GI/G/co, the corres-

ponding p.g.flso are related by the equation 

(22) 

where 

g(t) 
co 

~ !
0 

h(t+x) dF(x) (23) 

and F(x) is the distribution function of the service time. Both sides of 

(22) are well defined provided l - h(t) e: L(rr 2 ) and !~ M(I-x) dF(x) is con­

vergent for all finite intervals I" (I-x denotes the interval I translated 

to the left by a distance x)o 

Pl;'oof: An arrival at r. generates a departure at 1. 1 = r. + s. where s. has 
l l 1 1 ~ 

Qistribution function F(x)" The pog,flo of the departure is 

- E denoting expectation tal<en over the variable S.o Thus s 1 

G2[h] - E {TI h(1'. I)} 
. 1 
1 

- E {TI hh. +S.)} 
i 

. 1 1 

= E {TI g( T l)} 
i 

= G1 [gJ 



It remains to check that 1- g(t) £ L(~ 1 ). As 

1 - g(t) = I= {1 - h(t+x)} dF(x) 
0 

36. 

this condition is satisfied provided that 1 - h(t) is integrable with respect 

to th~ measure which assigns to the interval I the value 

I~ M(I-x) dF(x) 

Corollary (first proved by Mirasol [i5]), The output of the M/G/= queue 

is Poisson with rate equal to the input rate A• 

Proof: 

a1[g:J = exp{- 1 (1-g(t)) A dt} 

'l,berefore 

= exp{- It C:l - I~ h(t+x) dF(x):J _A dt} 

= exp{- It 1; C:1 - h(t+x):J A dF(x) dt} 

= exp{- It 1: r:1- h(t):J A dF(x) dt} 

= exp{.- It [1- h(t)J A dt}· 

As the p.g.fl. ~~iquely determines the process, the output is a Poisson 

process, rate A. Q.E.D. 

Using this corollary it follows directly that the msdified 2-units 

arrive in a Poisson process rate A and have service times T2 which are i.i.d. 
' 

random variables with distribution function T2 (y) given by 
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with the remaining probability !
00 

dS2(y) in a spike at T2 = Zo Therefore z 

From equations (8) and (13) of Chapter 1 

>.1 E[S1 2] +A 2 {!~ x2 dS2 (x)+z2 P[S2>z]} 
2(1-pl) 

A1 E[S1 2J+A2 E[S2 2J 
2 ( 1-p 1 ) ( 1-p 1 -p 2) 

The Laplace-Stieltjes transforms could also be written down. The completion 

time C can be found in the usual way:-

Also 

The overall mean time in the system is, therefore (where DR is an abbreviat-

ion for 'discretionary rule based on remaining service time'):-

1 
lll 

:~.1:>..2 E[SI 2]Hz2 E[Sz 2 ] 

2 ( 1-p 1 ) ( l-p 1 -p 2 ) 

(24) 



Note that F (DR) 
0 

= F(PR) and Lim F (DR) = F(NP), 
z-+co z 

obtained from 

d F (DR) 
lili tz- q z 00 

= f dS2 (x) dz 1-pl z 

i.e. z = 1/fll or z = 00 

which ~s positive at z = 1/f.1 1 , 
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The optimum value of z is 

= 0 

z = l/f.1 1 is therefore a point of minimum value of Fz(DR) ., 

Consider now the situation of Section 1,3~ on arrival an estimate Y, 

independent of all previous estimates, is made of S2 the service time of a 

2-unit. Let g(x,y) denote the joint density function of (S2 ,Y). The dis-

cretionary rule discussed above now becomes; 

whenever a 1-unit arrives to find a 2-unit in service, if the time al­

ready spent in service by the 2-unit subtracted from its e9timated 

total service time Y is greater than zJ then the 1-unit preempts the 

2-unit from service; otherwise the non--preemptive rule is followe~. 

N9te: this corresponds to a discretion~J rule based on the estimated 

remaining service time of a 2-unit. In p~actice it is more likely that as 

the service of a 2-unit proceeds, the variance of the estimate of the re-

maining service time will decrease and that for a given.2-unit the estimat-

ion procedure will be carried out more than once - in fact, as many times 

as the number of 1-units which arrive during its service" However, this 

problem does not appear amenable to solution,. 

Properties of 1-units 

Assuming that after an interruption a 2-unit resumes its service at the 
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point it was interrupted, the distribution of W2 is the same as in an ordin­

ary priority queue 

i.e. 
A 1 E(S 1

2] +A2 E[s/J 
2(l-pl)(l-pl-p2) (25) 

'Ib evaluate the completion time C of a 2-uni t with service time S2 and 

estimate Y, note that 

if Y ~ z c = s2 

if z < Y ' z + S2 interruptions occur during Y - z 

if z + S2 < Y interruptions occur during the whole service time 

s2 

- [ -tBrJ Therefore, if as before B1 (t) = E e where B1 is the length of a busy 

period in a queue composed of 1-units only, 

exp[-tS2] y ~ z 

E[e -tc I S2, YJ = exp[ -ts2 - A 1 (Y-z) (1-BI (t) )] 

expr:-tS2 - Al S2Cl-B1(t)):J 

Unconditionally~-

E(e-tCJ = !~ Jz exp(-tx) g(x,y) dy dx 
0 -~ 

~ z+x [ - J + I
0 

f z exp -tx - A1 (y-z) (l-B1 (t)) g(x,y) dy dx 

+ !~ J~+ exp[-tx- AlX (1-Bl(t)):J g(x,y) dy dx 
0 Z X 

Et:c:J = ~2 + 1~~ 1 {!~ J~+x (y-z) g(x,y) dy dx + !~ J:+x x g(x,y) dy dx} 

(26) 
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Properties of 2-units 

Suppose a 2-unit arrives at time •) then without affecting W·1 , 

(i) if y ~ z it can be replaced by an ordinary non-preemptive 

unit. 

(~i) if z < Y ~ z + S2 it can be replqced by a non-preemptive unit with 

service time S2 - Y + z and arriving at epoch 

T + Y - Zo 

(iii) if z + s2 < Y it can be ignored as it behaves like an ordinary 

preemptive reswne unit" 

Units in group (i) arrive at random with rate 

anq have service times which are i.i.d. random variables with density 

s(t) = 
fz g(t,y) dy 

-oo 

00 z 
jo !_co g(x,y) dy dx 

t ); 0 (27) 

Using the result of Mirasol, units in group (ii) arrive at random with 

rate 

A2 J~ J~+x g(x,y) dy dx 

and have service times which are i.i.d,. random variables with density 

s(t) = 
!; g82 IY (t+y-z;y) gy(Y) dy 

"" z+x . 
!

0 
fz gtx,y) dy dx 

t >,. 0 

= 
.1; g(t+y-z,y) dy 

t~O (28) 

Therefore, the distribution of W1 is the same as in a 2-class non-preemptive 

queue in which 
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1-units arrive at random with rate A1 and have service times S1 which 

are i.i.d. random variables, d.f. S1(x) 

2-units arrive at rBfldom with rate 

oo z+x A2 !
0 

!_
00 

g(x,y) dy dx 

and have service tirres T2 which are i..Ldo random .variables with density 

= 

z 00 

1_
00 

g(u,y) dy+!z g(u+y-z,y) dy 
oo z+x 

1
0 

/_
00 

g(x,y) dy dx 

By equation (8) of Chapter 1 

00 00 2 
+ !

0 
fz u g(u+y-z,y) dy du} 

(29) 

If the notation DRE is used to refer to this discretionary rule based on 

estimated remaining service time, then by combining equations (25), (26) and 

(29) 1 the overall mean time in the system can be written as 

lJl.2. ( 1 oo Z+X 1 oo oo ~ 
+ P2 + l-pl ~~ ! 0 !z (y-z)g(x,y)dy dx + ~ ! 0 !z+x x g(x,y)dy dx j 

A1A2 E[S1 2J +A2 2 Ec;s22J 
+ 2(1-pl)(l-pl~P2) 

= F(PR) + i:~~ { .1 
1.- ~ 
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+ ~ J~Jz+x (x-y+z)2 g(x,y)dy dx + 1_ f~fz+x (y-z) g(x,y)dy dx 
0 z ~1 0 z 

+-
1 !~ J;+x x g(x,y) dy dx 
~1 

Note that 

i) Lim Fz(DRE) = F(PR) Lim Fz(DRE) = F(NP) 
z~~ z++m 

ii) In equation (30), setting g(x,y) = o(x,y) ~(x) where 

~~ 6(x,y) f(y)dy = { fbx) Z ::, X 

Z < X 

(30) 

for any continuous function f, gives equation (24) the case of perfect in-

formation. 

Differentiating equation (30) leads to 

dF (DRE) 
z 
dz 

1 
!Jl 

m z+x l 
10 rz g(x,y) dy dx \ 

which vanishes at z ~ ±m and 

m z+x 
1 !

0 
fz (x-y+z) g(x,y)dy dx 

= 
~1 m z+x 

!
0 

Jz g(x,y)dy dx 

= E[s2 - (Y-z) I z < Y \. S2 + z] 

giving the optimum values for z. 

~'C~le 

Consider the special case considered in Section 1~4(a): 

X~ 0 

(31) 



where S2 and U are independent 

and U has the distribution N(O,a2). 

Define V(NP), Vz(DR), Vz(DRE) by tne general equation 

'!hen 

F( • ) = F(PR) + lAJA? V( • ) 
-p 1 

V(NP) 
E[S22J 1 

= - --2 llll-12 

= 1 c 1) ~ ~-~ for S2 (x) 

1 z 
- -- f X dS2 (x) 

lJ 1 0 

= 

z 
ll} 

43. 

1 - exp(-ll2x) 

(32) 

-the optimum z is 1/l-1 1; denote the corresponding minimum value of V (DR) z ' 

by V(DR). It follows that 

V(DR) = 11 f; 1
ll 1 x2 dS2(x) - 2~ 1 2 J~1 ll 1 dS2(x) - ~ 1 1;/lll x dS2(x) 

= L(L- 1.. exp(-ll2lll1 )-J:-) 
l-12 l-12 l-12 'Ill 

(33) 

< 0 for any 'Ill, l-1 2 

S;i.milarly 

V(DRE) = 1 

+ ~ !~ f~+x (x-y+z) 2 g(x,y) dy dx + ~ 1 
~ z+x 

!
0 

fz (y-z) g(x,y) dy dx 

1 co co 
+ ~ f 

0 
f·z+x x g(x,y) dy dx (34) 

where z satisfies the equation 



1 f t- -- g(t+y-z,y) dy dt = 0 """"( 1) 0 z !Jl 
(31) 

Substituting for g(t+y-z,y) in equation (31) leads to the following equation 

for the optimum z 

where B(z) = exp( -JJ 2 Z+!J 2
2 cr 2 /2) Hz/a-1-1 2a)" 

A], so 

V (DRE) = - H(z) 
z !J2 

B(z) - -:-r­
IJ2 

(35) 

(36) 

Numerical values of V(NP), V(DR) and V(DRE) calculated from these 

equations are given in Table 3 which shovJS 

(i) if l/JJ 2 '> liJ..1 1 the optimum z first increases and then decreases as 

a increases 

(in_ this case V(PR) < V(NP)), 

if l/JJ 2 ~ l/JJ 1 the optimum z increases 

(in this case V(PR) } V(NP))o 

(ii) as a increases, V increases. 

(iii) if l/JJ 1 is large, the reduction obtained in the mean waiting time is 

less sensitive to changes in a. 



I 

Table 3. Discretionary Rule based on the ·Remaining Service Time 

In ·each classification the upper figure is the optimum z, the lower 

figure is the minirm.:un V where 

F = F(PR) + ~ V 
1-p 1 

(F is the overall mean time in the system)" 

(a) l/1J1 = 0~5 

1 NON DISCRETIONARY 
-
ll2 PREEMPTIVE a=O a=O.l a=0.5 a=LO 

o;s 0,5 0.520 0.741 0,869 

0.0 -0.092 -0.090 -0.064 -0.042 

0.9 0.5 0.5ll 0<518 -0,020 

0.36 -0.105 -0.102 -0,058 -0.021 

0.95 0.5 0.511 0,504 -0.079 

0.4275 -0.106 -0.103 -0.057 -0.020 

(b) 1/IJl = 0.9 

0.5 0.9 0.920 L351 2.260 

-0.2 -0.241 -0.241 -0.226 -0.210 
. . . 

0.9 0.9 0.9ll Ll29 1.371 

o.o -0.298 -0.296 -0.258 -0.197 
.,. 

0.95 0.9 0.911 1.114. 1.312 

0.0475 -0.302 -0.301 -0.260 -0.195 
I. 

continued . " . I 
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Table ·3 continued 

(c) l/JJ1 = 0.95 

~ ....._ ... 

0.5 0,95 0.970 L4ll 2,374 

-0,225 -0,262 -Oo262 -0,248 -0.233 

-· 

0,9 0.95 0,961 1,188 1,485 

-0,.045 -0,327 =0.325 -0,288 -0.228 
-

0.95 0,95 0,961 Ll74 L427 

OoO -0.332 =0u330 -0,291 -0-.226 
.. 
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C H A P ~' E R 3 

An ~/G/1 Priorit~ Queue 

3.1 Introduction 

Apart from a paper by Jaiswal and Thiruvengadam [9], no attelfl)ts 

appear to have been made at solving priority queues in which arrivals do not 

occur at random. The assumption that non-priority and priority units arrive 

in two independent renewal processes seems to prohibit any silfl)le analysis -

see C:9:J; however, if the following simplified arrival process is consider-

ed~ 

arrival epochs form an ordinary r-enewal process (in the terminology of 

Cox I:4:J).and at any arrival epoch, independently of what happened at 

all previous epochs, with probability q1_ the arrival is a l-unit and 

with probability q2 a 2-unit 

then the priority analogues of the ordinary single-server queues ~/G/1 (the 

subject of this chapter) and GI/M/1 (Chapter 4) can be solved. 

3.2 The Ordinary §o/G/1 gueue 

Consider an ordinary single-ser•ver first-come first-served queue in 

which: 

interarrival times are i.i,do random variables with density 

b-l -:>.x 
;l.(AX) e 

(b-1)! (x~O~ b is a positive integer) 

and service times are i,i.d. positive random variables with distribution 

function S(x) and independent of the interarrival times, 

Erlang's phase device will be used, 

Let T1 ', T2 ', ••• be the epochs of successive departures. 

•o' = o 



~ = queue size at Tn 1 + 0 

~ = phase of the arrival mechanism at 

1 = /» x dS(x) 

1" i 
n + 0 (l ~ ~ ~ b) 

~ 0 

p = Alb~, the traffic intensity 

A. = 
J 

e -AX(AX)j 
P[j phases arrive in s] = !~ j: 

~ = P [ 'f!l = m, ~ = r I = 1] 
co 

1T n( z) = ~ r zbm 
r m=O mr 

lzl ~ l 

dS(x) 

48. 

(omission of the superscript n will denote the equilibrium distribution). 

The basic equations are, for 1 ~ r ~ bJ 

b co • 

= { l ~k} 5 zbl Ab, . -1 
k=l o i~ l+r 

where 

Define 

A = 0 
\) 

for v < 0 

co bi 
P (z) = 2: z A- • . 

v i=O -ol+v 
=(b-l) " \) ~ (b-1) 

Substituting in ( 1) gives, for l ~ .r ~ b 

Notice that for -(b-1) ~ v ~ -1 

co 

= !co 2. 
0 j=l 

co • 

e -AX{ AX)bj +v Zbj 
(bj t-v) X 

= ~ zbJ 
&... ~J'+v 

j=l 

dS(x) 

(l) 

(2) 

(3) 

(4) 



Also 

00 

<: zbj ) = ~ ~J'+v using (2 
j=O 

= P (z) 
\) 

b-1 r oo -!.x b~l < zr+bi(Ax)bi+r 
1... P (z) z = f e .c. , (bhr)! dS(x) 

r=O r 0 r=O i=O 

00 
b-1 

- roo e -;:..x ~ i'.. 
0 

i=O r=O 

= S(!.-AZ) 

(AXZ)bi-rr 
(bi+rH dS(x) 
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(5) 

(6) 

where S(s) denotes the La.place-StieJ.tjes transform of S(x). Finally, for 

any finite constants a 1 , ,.", ak 

b b r-l b b-k k-l-rJ' 
E 5 ak z Pr-k(z) = ~ _L ak z P.(z) 
r=l k~ k=l j=l-k J 

b k-1 -1 ' b-k . 
= ~ a. Z { E. ZJ P , ( Z) + !. ZJ P - ( Z) } 

k=l K j=l-k J j=O J 

b 

l k-1 
-1 - b-k . 

f 'i, zj +b P . ( z) + ~ zJ P . ( z) } - a z 
- k=l k -j-:::1-k b+J j=O J 

using (5) 
b b-1 ' 

= I_ a zk= 1 ! I,. zJ P. ( z) 
k k " 0 J =1 J= 

b k-1 -
= ~ a z 8(1.-!.z) 

k=l k 

+l __ ~ 1T~+l(z) 2r-l Define 7Tn (z) '- ·-
r=l ~ 

Then, from (4) and (6):­

b 
{I. rk} sc!.-AZ) 
k=l 

0 

1 b n n 
+ b I ('1Tk (z)-Pok) 

l1: k=l 

b r-1 I. z p r-k(z) 
r=l 

(7) 



Using (7) 

Define n(z,w) 

n(z,w) = 

= 

b 
= { l. Pn} S(J.->.z) 

k=l ok 

b 
1 - < n n + b S ( i.-A z ) L ( n k ( Z)-P ok) 
z k=l 

k-1 z 

n 
w ) j w I < 1; then as ·rr 

0 
( z) = 

b b b k-1 l+wz- l, P 
1 

(w) (z -z ) S(A-A.z) 
k=1 Q{ 

-b - -. 
1-wz S(J.~J..z) 

b 
b - ~ b k-1 z +w S(A-AZ) ~ P k(w)(z -z ) 

k=1 ° 
b _s.c· · ) Z -w A-AZ 

co 

h p ( ) = <" pn wn w ere ok w n~ ok k = 1,2,.,,b. 

50. 

1, it follows that 

(8) 

LEMMA (Takacs C:l7:J, pages 82-83)< If lwi < 1 or lwi ~ 1 and A > b~ then 

the equation 

b -z = w S(J.-Az) 

has exactly b roots (which are distinct for Wf0), z = yr(w) (r=l,2, •.. ,b) 

in the unit circle lzl < 1o 

If A~ b~, Y~ = y~(l) (r=l,2, •.• 1 b-l) are the b-1 roots of the equation 
.._ .._ 

b -z = S(A-AZ) 

within the unit circle and yb = L Also 



51. 

/.. - bi-i 

(r=l,2,.,,,b) are the b roots of the equation 

within the unit circle, 

This lemma is proved by using Rouche's theorem - a generalisation will 

be given in the next section, 

As n(z,w) is a regular function of z for jzl ~ l, lwj < 1 they (w) 
r 

rrpst be roots of the numerator of (8) also. It follows that 

b k-1 b I P k(w) (z -z ) 
k=l 0 

a polynomial of degree b in z is completely determined as it takes the 

values 0 at z = 1 and +1 at z 

~ k-1 b k~ P0k(w) (z -z ) = 1 -

= yr(w) (r=l,2, .•. Jb), 

b [z-y (w)] 1T ~r'-~ 
r=l [1-yr(w).J 

Substituting in (8)~-

-(" ..,, = .L, II ~JVY/ 

b 
w S(t..->.z) 1T 

r=l 

[z-yr(w)] 

[i~y~(w):J 
+ ---· ~-~-------'=-..----

zb-w s[t..-t..zJ 

Thus 

(9) 

(10) 

- determining the distribution of queue length at epoch n. The Markov chain 

(Xn,Rn) is irreducible and aperiodic and therefore the limits 

always exist. 

r· pn ... a.m mr 
n-+<lO 



If A > bJJ 

Lim (1-w) n(z,w) = 0 
w-+1 

(r:::l,2,, ,, , ,b-1) but yb - l; therefore 

Lim (1-w) n(z,w) 
w-+1 

( b(l-p)(z-1) S(A-Az) ~ 
) zb-S(A-A.z) 

-( 0 

determining the equilibrium distribution of queue length, 

A < b~ 

52, 

(ll) 

The above approach is an adaptation suitable for generalisation to the 

corresponding priority queue of that given by Tru{acs I:l7:J for the M/G/1 

queue with batch service, 

3. 3 An ~ !G I 1 Priority Queue; the distribution of gueue len..B!ill 

The basic model is as follows: 

arrival epochs form an ordinary renewal process with density 

A e-Ax (Ax)b-1 
(b-1): (x~O, b a positive integer); 

at each arrival epoch the probability that the arrival is an i-unit is 

qi(i=l,2) and this probability is independent of events at all previous 

epochs; all service times are independent (and independent of the inter-

arrival tirres), a:1d there is one server obe;ying tl1e non-pr-eemptive disci-

pline. 

Erlm1g's phase device will be used, 

Let Si(x) (x~O, mean ll~i) denote the distribution .function of the 



service time Si of an i-unit (i=1,2). The departure epochs {Tn 1.}, n ;. 1, 

form a set of regeneration points, 

Let T I 
0 

x.n 
l 

Rn 

A. 
J 

B. 
J 

= 0, and for n ~ 0 

= number of i-units waiting at 1 1 + 0 (i=1,2) 
n 

= phase of the arrival mechanism at -r i + 0 (~Jf~b) n 

= P[j phases arrive in an S1] 

= co e ->..x (A.x)j 
fo , ' dSl (x) .1 0 

= P [j phases arrive in an S2 J 

(j~O) 

(j~) 

P~ = PC:X1n = k, X2n = m, If= riX1° = 0, X2° = 0, R0 = 1] 

(k~O, m~O, 1~r,::b} 

n co co n k m 
1rr (s, t)= 5 5 Pkmr s t 

k~m~ 
Is I ~ 1, It I ~ 1 

Then, for 1 ~ r ~ b, 

co b co co 

+ !, S p n l.. I. B . . . l + J T, si tm-1 + j 
m=1 ~ omk i=O j=O blTbJ+r-k 1 

+ l I i P n i i ~·. ·. _ i+jT. sJI.-1+i tm+j 
k=1 J/.::1 m=O Jl.mk i=O j=O lTbJTr k l 

where A = B = 0 for v < 0, 

Define 

P (s,t) 
v 

v v 

co co 

:: z. l. 
i=O j =0 

-(b~1) { v ~ (b-1) 

(12) 

(13) 



Q (s,t) 
\) 

-(b-1) < \) < (b~l) ..... .... 

i,e. z is a function of s and t. 

Using equation (3), for any v = -(b-1), ,,., b-1 

00 

P (z) = L (q1s+q2t)k ~k+v 
v k=O 

00 k i i k-i tk-i k~ 
= 1_ < .s.1 s 9~ • 

k=O ~ i!k-i)~ 

00 00 • k . 
= ~ L sl t -l ~. A_k+ 

. k . l -0 \) 
l =l 

= ~ ~ i tj i+jT A_ 
'- l- s i --bi+bJ'+v 

i=O j =0 

= P (s,t) 
\) 

It follows from equation (5) that 

and from ( 6) that 

1 .:;,. \) ~ b-1 

(14) 

(15) 

(16) 

b-1 
1, zr Pr(s,t) = Sl(;\~;i.z) (17) 
r=O 

with similar relations for the ~(s,t)" Recall that Si(s) denotes 

}·"" e-sx dS. (x) · 1 .- R ' ) 0 l = ,~; e\S ~ 
0 l 

Substituting (13) a.nd (14) in (12) gives 

54. 



00 co b 
+ l_ l. L p £~ s9..-l tm p r-k(z) 

£=1 m=O k=1 

b 
= { ~ p nok} { q 1 p 1 ( z ) + q2 Q 1 ( z ) } 

k=1 o r- r-

1 b 
1"- l [nkn(O,t) ·- P n J ~ (z) t 

k=1 
oak -k 

1 
b 
z... - n ~...r1 n(O~t>l pr-k(z) -r- Lnk (s,t) s 

k=l K -

b 

(18) 

Def . n+1( . ) ~ . n-rl( . ) r~1 1ne n s,t = w s t z 
r ' " 

Using (17), (18) and (7) g1ves 

n+1( . ) n s,t 

r=1 

b 
- { L P nk} {ql Sl(A-\z) + q2 §2(1.-Az)} 

k=1 00 

00 

b 
+ t L [nkn(O,t) -· po~kj zk-1 §2(>,->.z) 

k=1 

l +­
s (19) 

If n(s,t,w) = L nn(s 3 t) wn, lwl <. 1 then as ·rr
0 (s,t)- 1, we have 

·n=O 

{s- w S1(>.->.z)} n(s,t,w) 

b 
= s + sw {q1 S1 (1,-A.z) T q2 S2 (A.-/,z)} L P ook(w) 

k=1 

b 
sw oc; p k(w) zk-1 §? (:A-J..z) -t L oo -

k=1 

+ sw ~ n (O t w) zk-1 ( S2(A-AZ) 
L k· '' ~ t 

k=l ~ 
(20) 

The only unknowns in this equation are the nk(O,t,w) (~<k(b) because 

P ook(w) = P ok(w) ( l~~b) where the P ok(w):; from the results for ar1 ordina .. ·• .... .i 

E1,/G/l queue are given by (9), In particular 

·b b 
L P (w) = "IT 

k=l oak r=l 

1 
1-y (w) 

r 



and 

b k-1 
~ Pook(w) z = 1 + 
k=l 
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b 
zb~ 1T. (z-y (w)) 

r=:l · ·r 

where the yr(w) are the roots in z within the unit circle of the equation 

Censider the denominator of ~(s,t,w) in (20) - it can. be written 

LEMMA If lwl < 1 or lwl ~ 1 and q1A > b~ 1 then the equation 

has·exactly b roots 

1·~ r ~ b 

in the unit circle lzl < 1. 

rr· qlA ~ biJ 1 r = 1, 2 , •.•• , b-1 

of the equation 

within the unit circle and ob - ob(l,l) = l, 
Also 

r = 1,2, ••• ,b 

(21) 

are the b-1. roots 

are the b roots 



of the equation 

within the unit circle. 

for lzl = 1 - e~ If lwl < 1, then clearly e > 0 can be chosen sufficiently 

small so that 

I I b I -

If w. ~ 1 but q1 A. > b~ 1 then for 0 ~ e ~ 1, (1-E) and q2 + q1 s·1 (A.e) are 

bOth monotonic decreasing functionS Of € WhiCh agree at E : 0 and their 

derivatives ate = 0 are-band -q 1 A./~ 1 respectively. As q1 A. > b~ 1 , fqr e 

sufficiently small 

Th~s in both cases 

b . I 
< ( 1 =£) if I z I = 

and £ is sufficiently small. Hence by Roucnes theorem (21) has exactly b 

roots 

z = r5 (tjw) 
r l ~ r..,:: b 

in the unit circle lzl < 1, and these roots are distinct for w # 0. 



If q1A > b~ 1 , then it follows immediately that 

lo I < 1 r 

are the b roots of the equation 

within the unit circle. 

Suppose Q1A ~ b~1, then the functions zb and q2 ~ ql §1().-).z) coincide at 

z = 1 and have derivatives b and q1>./f.1 1 respectively at that point" If b 

. h b 1s even t en z = + 1 at z - -1 and hence only an odd number of roots can 

occur in (-1,+1). Similarly if b is odd then zb :.: -1 whilst 

q2 + q1 S1 (A-AZ) > -1 at z = -1 and hence only an even number of roots can 

occur in (-l,+l)o It follows that or:.: or(lJl), Iori < 1 r = 1,2,oo,b-l 

are the b-1 roots of the equation 

within the unit circle and ob = 1. 

Finally 

As 1r(s,t,w) is a regular function for I sj ~ 1, it I ~ 1, lwl < 1 the 

o (t,w) mtist be roots of the numerator of the expression (20) for 7r(s,t,w). 
r 

It follmm that 

a polynomial of degree b-1 in z is completely determined as it takes the 

-~:<·';::.:. \~·::;'!f~·:,:~:. 
~ 2 4 t.'PR,97l 

;,1,•111 

-...._ -~~)l~~.'i 



values 

at z - o (t,w) 
r 

'rhus 

1 ~ r ~ b 

b k-1 L 'ITk(O, t,w) z 
k=l 

and hence TI(s,t,w) has been determined" 

(22) 

(23) 

Special Case (A) S1 = S2 = S. Equation (20) then simplifies to 

t{s - w S(A-AZ)} 'IT(S,t 3 w) = ts + 

and (22) becomes 

+ (s-t)w S(A-AZ) 

{w S(A-A o (t~w)) ~ ti 
r 

STA~ONARY DISTRIBU~ON 

If p = ~ ( %i + ~; J ~ 1 then 

b b 
'7 P k = Lim ( 1·-w) /= P ook ( w) 

k=1 °0 w-+1 . ~ 

= b(1-p) 
b-1 
1T (1-yk) 
k=1 

(24) 

59. 



and 

b 

l. P 
h~l 

z~ - -
k=l ook 

b(l-p) 

b b 
z - TT (z-y ) .. k 

k -1 
-.L 

60 .. 

(25) 

where yk (k=l,2, ••• ,b-l) are the b-1 roots within the unit circle of the 

eq~ation 

b s- ( ). s- (' · ' Z = ql 1 A-AZ + q2 2 ~-AZ; 

and yb = 1. 

From equation (22) 

b k l - b 6r(1,w) = {w S2 (A-A o (w)) L P (w) (o (w))- - 1- L(or(w)) - q2 r k=l ook · r 

b 
+ wq2 S2 (A-A o (w))] L P k(w)}/{w S2 (A-;\ o (w))- 1} 

r k=l oo r 

where or(w) = or(l,w), 1 ~ r ~ b, are the b roots within the unit circle of 

the equation 

As qlA/b~l < 1, Iori < l for r = l,2,ooo,b-l and ob;: l (where or;: or(l), 

l{r{b). 

Also ob'(l) = q1 /b(1-q 1 A/b~ 1 ). 

Tnerefore, for r = 1,2, •• ,,b-l 

. 6 = Lim (1-w) h.r(l,w) 
r w+l 

= 

For the special case r = b, note that 

b 
§2' (I.-A o )I 'S' P 

r· k~ ook 
( ')h\ 

C...V/ 
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b 

+ 

q2-w §2 (>..->.. ab(w)){q2+ lnr (ab(w)-yk(w))} 
k=l 

b b 
1T (1-yk(w)) 
k=l 

. {w Sz (A.-A ob (w) )·~1} ,- ( 1-yk(w)) 
: k=l 

~<! hence 

1 + b-1 
yb 1 (1) -r\ (1-yk) U+Aab' ( l)/J.i 2 } 

k:.:l 

i.e. 

b-1 
q 1+q1 >.. ab'(l)/J.i 2 -{ab~(l)-'Ybw.<l)} ,- (l~yk) 

k=l. 
b-1 

'Yb' (1) -n- (1-yk)(l+>..ab ~ (l)h.!z) 
k=l 

b 
= ql 2:. P k + qz 

k=l 00 

usin~ the relations 

and 

From equation (23) 

b k-1 1_ 7rk(O,l) z = Lim (.1-w) 
k=l w~l 

b 
~ 1Tk(O,l,w) 

k=l 

b 
= l.. t:. 1T 

r::.l r vzr 

(z-o) 
rr-::n· 

b 
- note that Z.. 1Tk(O,l) = t:.b 

k=l 

r v 

k-1 
z 

(27) 
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Therefore, from equation (20), 

b b 
z -If (z-y ) 

r=l r 
b-1 
1T (1-y ) 
r=l r 

Special Case (A) S1 := S2 := S 

If yk (k=l,2,.,.,b-l) are the b-1 roots within the unit circle of the 

equation zb = S(A-AZ) and yb = 1; also, if ok (k=l,2, ••• ,b-l) are the b-1 

roots within the unit circle of the equation 

b -z = q2 + ql S(A-AZ) 

and ob = 1, then for 1 ~ r ~ b-1 

and 

6r = Lim (1-w) 6r(l,w) = 
w-+1 

i.e. 6 = r 

b 
S(A-A or) Z P ( ok-1-1) 

k=l ook r 

1-o b 
r 

S(A-A 0 )-1 r 

b 
6b = Lim (1-w) 6b (l,w) = ql L P ook + q2 

W+l k=l 

Finally, equation (28) becomes 



b 
s S(A-AZ)b(l=p ){ql (1-s)+ rr (z-yr)) 

r=l 

Special Case (B) b - l) ioe, random arrivals 

b-1 -rr ( 1-y ) = l and Yl = l 
r=l r 

b 
~ P ~ Poo1 == l -· P 
k=l ook 

b 
z.. 1T k ( 0.) l ) :: 1T l ( 0 l l) - lib ::: 1 - q 1 p 

k=l 

Equation (28) becomes 

and 7T(s,l) ·then agrees with the expression for a.(s) 1 8
0 

found in Chapter L 
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3. 4 The EbiG/l Priority Queue: the Waiting Time Distributd.ons 

Stationary. Waiting Tim:! Dist-ribu·:.l.on ·oi' a ~-.-·...tni l 

Let" wl denote the wai t":ing time of a 1-uni t in the .. stationary ··state u 

Then for 1 ~ r ~ b· (recall R denotes· the· ·phase· of· the· arrival mechanism) c 

P[n 1-:-~~ts wa~:t.~ng __ <3.!1d R :.::_ r at a departure epoch] 

co 

:: P [departure is a 1-unit J 1_ P[nb + jb + r - 1 phases and n 
J=O 

1-units arrive in wl + sl:J 
b co 

+ Z. P[departure is a 2=unit and at last epoch R =: k I 2.. B n+jT 
k=l ~ j=O nb+jb+r-k n 

Therefore, if the symbol • denotes convolution; 

1T (s,l) 
r 

< ~ n+jT sn "" e =lex jt.x)_nb+jb+r-1 
= ql £.. L n ! o (nb+jb+r-1) r d(Wi (x)*Sl (x)) 

n=O j=O 

and therefore, 

'Ihen using equation (7) and an analogue of (6) for W1*S1 gives 

7T(s,l) 

If z 

+ t 
k=l 

1/b 
= (q1s+q2) 



In particular, by differentiating 

i.e. 

(29) 

where 1T(s,l) given by (28) is probably best differentiated numerically, and 

! (z-o ) 
- 8 1T v - r [o -o ) 

r=l v~r r v 

~ P s(k-1)/b = b(l-p) 
~ ook . 

b lib 
s- 1T (s · -y ) 

r=l r 
b-1 ;x- (1-yr) 

Although the results are complicated, numerical values for EC:w1:J could 

easily be obtained with the aid of a computer, 

Mean Waiting Time of a 2-unit 

For a GI/G/1 priority queue of the type considered in the last section 

consider the corresponding pooled queue~ i.e. an ordinary GI/G/1 queue in 

which service times are i.i,d. with distribution function S(x) = q1 S1 (x) + 

q2 S2 (x) and inqependent of the interarrival times, 

and 

Let V(t) denote the virtual waiting time at time t in this pooled queue, 

E[VJ :: Lim ~ 1; E[V(t)]dt = tirre average of E[V(t)J 
~ 



Then 

E[Vj = E[V ] + E[V J q s 

where the suffix s denotes the contribution due to the unit already in 

service and q denotes the contribution due to remaining units in the queue. 

Now 

where El:N :J is the time average of the number of units in the queue. q 

Using Little 1 s "L = J..W" result 

E[V] = p E[WJ q 

where p = (q1 A)/J.q + (q2:>.)/1J 2 and E[w] is the mean waiting time in this 

pooled GI/G/1 queue. 

The GI!Gil priority queue clearly has exactly the same value for E[V J, 
q 

and for this queue 

where P· = (q,A.)/lJ. 
]. ]. ]. 

and E[N i] is the time average of the number of i-units in the queue 
q 

excluding the one being serviced, Thus 

(30) 

and. E[W2 ] can be fcu..v:1d from a knowledge of E[w] and E[W1]. 

Distribution of the Stationacy ltJaiting Time of a 2=unit 

W2 , the waiting time of a 2-unit in the stationary state can be express­

ed as the sum of two random variables;-



w, the waiting time of a unit in the pooled queue in the stationary 

state, and 

T(W), the time to serve all 1-units arriving in the queue after the 

arrival of the 2-unit in question but before its entry into service, 

The probJem is therefore to find T(w), which corresponds to the length of 

the initial busy period initiated by a waiting time w in a qu~ue composed 

of 1-units only. The determination of the distribution of the supremum of 

a compound recurrent process has been considered by Takacs .[20] and his 

method can be readily adapted to give a solution for the particular problem 

treated here. 

':Define Z(t), t ~ 0, to be the following stochastic process:-

Z(t) 

Z(t) = t - L A. 
0<-T..~t 1 

l 

t 

where A. (i~) has distribution function A1 (x) with Laplace-Stieltjes trans­
l 

form 

ql A(s) 

l-q2 A(s) 
and A(s) =(.:. Y 

(i.e. Ai is an interarrival time between two 1-arrivals). 

' has d.f. W(x) 
0 
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and • +l- • ~ S 1 (n~O) has d,f, S1 (x). n n n+ 

Moreover all these random variables are independent. 

If I(t) ~ Inf Z(u) , then as the time at which Z(t) first 
O<u~t 

becomes negative corresponds with the length of W2 , it follows that 

PLI(t) < o], t > o 

P[w = o] 

Define 

'-l = O, S = W~ I-l = 01 z_1 = 0 
- 0 

z = c + c1 + ••• ~ c n o n 

n = O,l,2_,o,. 

(n~-1) 

I(t) - In 

Z(t) = zn + (t-Tn) 

It follows that for n ~ ~1, Re(q) >- 0, Re(s) " 0 

= q e-s In /'n+l e-qt"dt 
T n 

(31) 

-q • -s I ~q(• -• ) n n - n+l n = e Ll ~ e J 

Therefore 

ca T 
~ n+l ~qt-s I(t) dt 

qn~l 11n e 
ca -q T -s I q(T ) 

= L e n n [l _ e- n+l-'n J 
n~-1 



i.e. 

1~ e-qt-s I(t) dt 
q 0 

Taking expectations, 

where U (s,q) = E[exp(-q(t -7 ) - s(I -T ))j, n - n o n o 

69. 

(32) 

Suppose the sequence of r~~dom variables {C1 ,c2 , ••• ,c} is replaced by the 
n 

sequence {Cn,cn_1,.,.,C1 } then Un(s,q) is unchanged. For this new sequence 

define 

Then 

Therefore 

I * = 0 
0 

I * n 

~ 

= Min {0, C , 
n 

- I - I n o 

'[_ Un(s,q) ::. 
n=O 

where U (s,q) = ln 
0 

c + c •• 

n 

0 ~ k ~ n-1 

The Un can, in principle, be found recursively. T"ne procedure below 

however utilizes a technique developed by Takacs C:l9,2l:J~-

Definition. If L is the path of integration from -i~ to -it and again from 
€ 

+i£ to +i~ (£>0) then the operator B is defined by -



B cp(s) = X cp(O) + Lim _s~ 1
1 - e:.....O 2n i e: 

where Re(s) < o. 

rz) dz zz-s) (33) 
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Suppose X,Y are two random variables such that X is real, E {jYil <co 

and E[Y e-sX:J exists for Re(s) = 0, then if Re(s) < -e: < 0 

E[Y exp(-z Min(X,O))] -
----z ("r'z __ ....,s )...---- dz = E [Y esX J 

where C is the path consisting of L and the semicircle - e: eia 
e: e: 

(-n/~a~n/2), and 

Also, if Re(s) < 0 

x- - ~ Min CX,O) 

E[Y e -zXJ -E[Y ezX-J 
z[z-s) dz = C 

where C 
e: 
+ is the same path as C 

e: 
but with the semicircle e: eia 

Taking the limit in these two equations and adding gives 

E[Y esx J = Lim s 
27Ti 

e:.....O 

= ~ E[Y] 

i.e. 

[ -zx] E Y e sni E[YJ 
JL 

e: 

+ Lim 
e:~ 

z(z=sJ dz + 21riS 

s 
E[Y e -zX]dz 

21fi JL z(z-s) 
e: 

[ -sx] ·=~EYe 

Clearly the operator B is linear and·B B = Bo For n ~ 0 
\I'll "' ........ V' 



= B E[exp(s A 2-q S 1-s S 1-q ' +q T -s In*)] 
~ n~ n~ n~ n o 

= B E[exp(-s cn+1-q T +q T -s I *-q s '1)] ..-.. n o n n.,. 

= B E[exp(-s C +1-s I *-q T 1+q T )] 
- n n ~ o 

= B E[exp(-s(C 1.,.I *)-q(T +1-T ))] 
- n~ n n o 

= u·.1 (q,s) n. 

If o, p ~ 1, Re(s) < 0, define h(s) by the equation 

hts) = exp {- 1og(l-pcj>(s)) +!! 1og(1-pljl(s))} 

IJ:herefore B h( s) = 1 

Define T(s,p) to be exp {- B 1og(1-pljl(s))} 
"" 

and then B (1-pljl(s)) T(s,p) ~ 1 ..... 
Expanding T(s,p) in a power series 

gives T
0

(s) = 1 

and Tn+1(s) = ~ Tn(s) ~(s) 

i.e. the Tn satisfy the same defining r~lations as the Un. Therefores 

co 

U(s,p) = L U (s,q) pn = exp{-B 1og(1-pljl(s))} 
n=O n "" 

71. 
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and 

CX> 

L U (s,q) = exp{-B log(l-rp(s))} 
n=O n - ' 

- exp{-B log(l=A1 (-s) Sl(q+s))} (34) 

"' 

This equation, together with (32) gives a complete formal solution i.e. 

co 

+ {l- Sl(q)} E[e-(q+s)WJ A1(-s) exp{ L ~ ~ ¢n(s)} 
n=l 

where 

B ¢n(s) = ~ {!~ e8 x d Hn(x) J~ e-(q+s)u d Fn(u)} 
W' 

= Jco e-qu {fu esx~su d H (x) + / 00 d H (x)} d F (u) 
o o n u n n 

and F , H are the distribution functions of then-fold convolutions of S1 , n n 

A1 respectively. 

These formulae are valid for the GI/G/1 priority queue, but they are too com-

plicated to be of much use. In certain special cases however, it is possible 

to obtain some simplifications. 

Theorem. Let IPI < 1 and suppose that for Re(s) - 0 

where ct>+(s,p) is a regular function of s in the dcrr.ain Re(s) 

and free from zeros in Re(s) ~ 0 and 

Lim 
!sl-+oo 

- 0 Re(s) > 0 

' 1"1 ,._ v, 

(35) 

continuous 
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Similarly for ~-(s,p) but with Re(s) > 0 changed to Re(s) < 0 and Re(s) ?0 

changed to Re ( s ) ~ 0 • Then 

Re(s) ~ 0 

or 

+ 
£:1 - p ~(s):J U(s,p) = ~ (s3p) 

~+(O,p) 
Re(s) ~ 0 

Proof: If Re(s) < -E ·< 0 (E>O) 

s 
J 

log ~- (z~Q.) dz = log ~-(s,p) 27Ti c - z(z-s) 
E 

If Re(s) < 0 

+ s 
J + 

log ~ (z 2p) dz = 0 27Ti z(z-s) c 
E 

Let E -+ 0 in (36) and (37), giving 

Lim s 
JL 

log ~-~zJp) dz + X log ~- (O,p) 27Ti z(z-s) = log ~ 
E-+0 E 

and 

Lim 8 J 27Ti L 
+ 

log~ (z 3 el dz - ~ log ~+(O,p) = 0 
z(z-s) '~ e:-+0 E 

Hence, for Re(s) < 0, 

log{l-pcp(s)} dz 
z(z-s) 

= B log {1 - p ~(s)} 
""" 

and for Re(s) = 0 by continuity, 

Therefore 

-

(36) 

(37) 

(s,p) 
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U(s,p) = expi_~ B log {l - p ~(s)}:J -

proving the theorem. 

For the special case of this chapter 

and 

1 - p cp(s) = 
b -

(1-s/ Al._ -qrPq_~ S;_(_g+s) 
b (l-s/1.) -qz 

~ Rouches Theorem, 

( -. )b - ( ) 1-s/A - q2 - pq, S1 q+s 

has b roots s = yr(q,p) if Re(s) ~ 0, IPI ~ 1 (which all lie within the 

circle js/>.-11 = l), 

Therefore, let 

+ 
<I> (s,p) = 

and 

then these functions satisfy the conditions of the theorem and therefore, 

for IPI < 1, Re(s) ~ 0 

U(s,p) 



Substituting in equation (32) gives for Re(s) ~ 0 

q /~ e-qt E[e-si(t)J dt = {1- E[e-qW]} 

b 
-rf yr(q,l) E[e -(q:s)w:J 

r=l ·-·· · ··-
+ b 

11 [ yr(q,l)-s] 
r=l 

75. 



CHAPTER 4 

A GI/M/1 Priority Qqeue 

·s\.tppose arri vais occur at epochs T • , i -, 1 where the interarrl. val times 
1 

Tn~l·-...:····~n· (n?O, 1'0;:;0) are LLdo positive random variables with distribution 

functi'on A(x)',· rriean 1/A.o Service times of customers are assillned to be Li.de 

random· variables which are independent of the -r and have distribution n 

function 

S(x) ~ 
-)JX 

1 - e = 
0 

Let p ="Ito" the traffic intensity 

-·)JX k 
and ~ = !~ e ~Y~)- dA(x) 

X ~0 

X < 0 

= P(k services completed during an interarrival time]. 

Then 

00 . k 
L ~ z = !~ exp( -)JX (1-z)J dA(x) 

k=O 

(1) 

where A(s) is the Laplace-Stieltjes transform of A(x), Tne arrival epochs 

form a set of regeneration points and therefore an :imbedded Markov chain can 

be defined. Let X 
n = number of custome.rs in the system at epoch T."' - 0 

00 

1Tn ( z ) = Z.... 1T k n zn, convergent for I z I ~ 1 
k=O · 

.. 
(n~O) 



'Ihe basic equations 

00 00 

n+l L ~ 7f,n 7T = a .. 
0 . 0 . 1 l l+J l= J = 

co 

and n+1 z a. 7To k 1 k 'll 7Tk = . 0 l l+ -l= 

lead, for lzl· = 1, to the recurrence relation 

where 

00 

= z 7Tn(z) A(~-~/z) 1- Z.. Cl-1/zj) c.n . . J 

00 

Cjn = i~O 7Tin ai+j+l 

00 

j=O 

00 

and 1 C.n < 1 
j=O J 

(2) 

(3) 

(4) 

Define 1T ( z, w) = Z. 1Tn ( z) wn : a regular function of z for I z I ~ 1, I w I < 1. 
n=O 

Equation ( 4) gives, for I z.l = 1 

00 co • 

1T(z,w) - 1T0 (z) = zw A(]J-]..1./Z) 7T(z,w) + "} L _(1-1/zJ) wn+l c.n 
n";b j =0 J 

As X
0 

o, 0 1 and therefore, for Jzl lwl = 1T (z) = :: l, < l 
00 00 

( 1-l/zj) l+w 2.. 1. n c.n w· 
n=O j=O J 

1T(z,w) = (5) 
1-wz A(]J-]..1/z") 

Define TI(z,w) for lzl > l by this expression also •. As it is known that 

7T(z,w) is a regular function of z for lzl ~ 1, its only singularities in the 

whole complex plane are the zeros of the denominator outside the unit circle 

1
_1 ~ J.~ 
~I - • 

lemma (Takacs [17], Page 47) If lwl < 1, or lwl ~land p >_1, then the 

equation 



z = w A (~-~z) 

has a unique root z = cS ( w) in the unit eire le I z I < 1. In particular 

cS = cS(l) is the smallest positive real root of the equation 

z = A (~-~z) 

If p = A./~ < 1 then o < 1.; if p ? 1 then cS = L 

78, 

Using this lemna. shows that the only root of the denominator of (5) outside 

lzl = 1 is 

z = 1/o(w) 

Define ~(z,w) = {z - 1/cS(w)} TT(z,w), a regular function of z in the whole 

conplex plane. As 

it follows that ~(z,w) is independent of z and 

i.e. 

-rcz,w) - ~(l,w) -'= {1 - 1./cS(w)} {1 - w}-l 

TT(z,w) : O(W) ~(z,W) 
z cS w)-1 

= 1-o(w) 
fl-z o(w)Hl-w1 (6) 

The Markov chain is i..-r>reducible a.."'ld aperiodic, and therefore the limiting 

prQ,t?abilities 
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1r. -·Tim rr n J '-J - j 
n-ooo 

always exist; either every 1L::. 0, or every TT. > 0 and {TI.} is a probability 
J j J 

distribution, Using Abel's Theorem, 

1T(Z) = 

::. 

00 

L. 
j.:::Q 

( 0 

·rr , 
J 

zj - Lim (1-·w) TI(z,w) 
W-"·l 

) (1-·c)/(1-zo) 
p ~1 
p < 1 

·~ 

Therefore, if p < l a stationary solution exists and is given by 

(7) 

TI. = (1-o) oj where o is the ur1ique root in z within the unit circle of the 
J 

equation z = A(~-~z), 

The above method is an adaptation of the method used by Takacs to derive 

the queue length probabilities in a GI/Ek/1 queue" {see [17 [, pages 127-

133}. 

4.2 The GI/M/1 Priorit~ .Queue: the· Distribution· of Queue Length·· 

As before~ the arrival epochs (r n} n:U form an ordinary renewal process, 

distribution function A(x), x 3· 0, mean 1/>... Let -r
0 

= 0. At any arrival 

epoch, independently of events at all previous epochs, the arrival is with 
~-

probability q 1 a 1-unit, and with probability· q~ a 2-unit, where 1-units 

have non-preemptive priority over 2-units, Service times of all w1its are 

assumed to be ioi,d. random variables with distribution function F(x) = 

l- exp(-~x), x ~ 0 .. Let p = A.iu 

ak = P [. k services completed in an interarri val time J 

= oo e-]JX (~x)k 
J o k! d.A(x) k ?.. 0 

The arrival epochs form a set of regeneration points: 



let Xn = number of 1-units in the system at Tn - 0 

Y = number of 2-units in the system at T - 0 n n 
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l+l if a 1-unit is being served·at·Tn- 0 or the system is 
empty at T - 0 n 2n : +2 if a 2-unit is being served at Tn - 0 

1r. Z:k = P [x =i. Y =j , z =k I X =O Y =O Z
0

=1J · 1J ·n '· n · n o ' o ' 

For I y I ~ 1, I z I ~ 1, n ~ 0 define 

n ri (z) 

n r (y,z) 

n 7T (y,z) 

00 

= 1: 1T • Z:2 zj 
j=l 1J 

00 • 

=~Tin zJ 
L- ''1 j=O 1J 

00 

= z.. 
i=O 

n i r. (z) y 
1 

i~O 

For lwl < 1 define 

00 

r ( y, z , w) = [ rn ( y, z) wn 
n=O 

-regular functions of z for IYI ~ 1, lzl ~ 1, lwl < 1. The basic equations 

are as follows:-

n+l n 
1Too1 = 1Too1 

co 

Z.. a. 
' 1 1 1= 

w 00 00 (_ r t n + 7T. . a. . 
s=O i=l j=O 1Jl 1+J+s+l 

oo oo oo n 

+ 8~ ~ ~l 7Tij2 ai+j+s+l 
(8) 



For i >, 1, j >? 2 

n+l 
'ITij2 = 

For i ~ 1, j = 1 

For j "?· 1 

n+1 
'IToj2 = 

00 00 ,.... n .,- n 
+ q, l 'JT, .-2 a. 1 + q2 7 a. 'ITl.J'-11 .-- lJ l+ .t- l 

1=0 1=1 

+ 
5 i_ n1, kn2 a1. +k~1-J- + Z. l_ n1. nk1 a1. +. k+1-J' ~0 k=j+1 ' i=1 k=j 

n (where the first term in (11) is q2 a 1To o 1 if ,j =1), 
0 

For i ~ 1, j ~ 0 

00 00 

n+1 ·- n <;. n 
'ITl.J-1 = q 1 Z~ lTkj-1 ak-· 1 "'"q; L nk _. ·1 2 a · 2 

k=i-1 1+ k=i-1 J+ ~-1+ 

(where the last two terms in (12) are zero if j =0). 

From equations (9) and (10)) for i ?..· 1 

00 

rr:+1 (z) L n+l ZJ = 1Tij 2 l 
j=1 

n z r.n(z) :: ql a L 
1 

(z) + q2 a 
0 1- 0 l 

Therefore 

(9) 

(10) 

(11) 

(12) 



82, 

rn+l(y_.z)- rno+l(z) -- rn( ) {rn( ) r n( )} ~ q1 a
0 

y y,z + q2 a
0 

z y,z -
0 

z 

i.e. f(y,z,w) - r(O,z,w) - f(y,z,O) + f(O,z,O) 

i.e. r(y,z,w) {1 - a
0 

w(q1y+q2z)} = f(O,z,w) {1 - q2 a
0 

zw} (13) 

using the fact that the initial state is (0,0,1)" 

From equation (11), 

co 

rn+l(z) = 7 7Tn;l zj 
0 Fl OJ2 

= q2 a
0 

z r
0
n(z) + q2 z 2_ a. 7T.n(z) + q2 l_ r.n(z) a

1
.+l 

i=O 1 1 i=O 1 

Now 

co 

zj l... 
j=l 

co co co 

+ L zj L L TI i~2 a· k 1 · 
·-' j =1 i=O k=Jt 1· 1 + + -J 

+ Leo zj ~ 5_ n 
L L 7Tikl ai+k+l-J' 

j =1 i=l l<:=j 

co co 

L 1T.~2 a. k 1 ' L. = 
k=j+l l_ l+ + -J \):0 

00 

= l 
\)::0 

co 
5 = 1..-

\)=0 

co 

= 5 
~­

\):0 

.... 
o.i+\)+2 n 

\)+1 {r. (z) 
1 . 

z 
n 

ai+\)+2 ri (z) 
\)+l z 

a. 2 f'.n(z) 
J.i"\)t 1 

\)tl 
z 

ai+\)+2 co 

L n 
7T. . 1 2 \)+1 j=l l ,\}+J + ' z 

v+l n k - z._ 7T.k2 z } 
k=l 1 

co \)+1 
< L.: 

- ~ k=l 

co co 

z_ Z... 
k=l \)=k-1 

n 
a. ::> 7T.k::> , t\lt_ l ·~ 

\)-k+l z 

n 
a. 2 rr.k2 1-t\)+ l 

\)-k+l z 

z \)+j+l 



=to 
Similarly 

Therefore 

co co 

+ z_ z_ 
i=O k=l 

+ z Li. 
i=l k=l 

n( -a._ 
2 

r. z) ~ 
1 11"\1+ J. l 

v+l -- - - s 
z s=O z 

00 
<' 

L 
v=-1 

n 
ai+v+2 1Ti (z) 

v+l z 

n 
a. k 1 r. (z) J.+ + J. 

k z 

k z 

00 

< 1 
- L s 

s=O z 

co 

k~ 1Ti~2 ai+s+k+l 

i_ 
s=O 

co 

~s k~ 1Ti~l ai+s+k+l 

co co 

2.1... 1T.nk2 a. k 1 
i=O k=l 1 J.+S+ + 

co co 

.L Z.. 1T i~l ai +s+k+ 1 
1=l k=O 

From equation (8):-

n :; .'?1 .S ~ n 
= 1To (z) '-. ai + L f-- L 1Tikl ai+k+s+l 

i=l s=O 1=l k=O 

00 00 00 

+ !... 2_ 2_ n.~2 ai+k+s+l 
s=O i=O k=l 1 

Adding these two equations gives: 

+.9J. 
z 

00 00 co 

+ L (1-1/zs) L L n.nk2 a. k 1 
s=O i=O k=l 1 J.+s+ + 

00 00 00 
< - C!. c:- ~ n 

+ L U-1/z~) L Z.. 1Tikl ai+s+k+l 
s=O i=l k=O 

..:0 00 

L. l_ 
i=O v=O 

P· n. , 
a. 

2 
1 • ~z) J.+\1+ J. 

\) 
z 

l! 
i=O v=O 

a. 1 r.n(z) J.+V+ J. 
\) 

z 



a.+ 1 TI.n(z) J. V+ J.. 
a. 7T. n(z) J.+V J. 

v 
z 

The final equation, eq~tion (12), gives for every i # 1:-

00 

n+1c ) L n c ) .f4 7Ti z =·ql ~ 7Tk+i-1 z + z 
k=O 

00 00 

+ q2 z ~ ~ 7Tk~i(z) + q2 ~ ~ r~+i-1(z) 

Thus 

5 n+1( ) i Loo ak { n · ) k,s1· i n( ) } 
~ 7f, z y = ql k-1 7T (y,z - ~ y 7Ti z · 
i=1 J. k=O y J.=O 

00 

~ 
00 

= 7Tn(y,z) Cq1y+q2z) k + Y.. rn(y,z) (q1y+q2z) L k z y k=1 

k-1 n n 
00 ~ 7Tk-v-1(z) 00 [_ ~ 7Tk_)z) 

- ql z.. L. - q2 z 1-v v k=1 v=O y k=O v=O y 

00 k-2 n 
00 k-1 ~ r~-v-1(z) _.9J.. kk ~ rk-v-2(z) Ll-z v - q2 v y k=1 v=O y 

00 

~ 
00 

n 
(q1y+q2z) k Y.. rn(y,z) Cq1y+q2z) L = 7T (y,z) k + z lr-1 y .l"L-..L 
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(14) 

~ 
k y 

~ 
k 
y 



co co co co 

L. 1 L: ~< 'IT~-v-1 (z) L: 1 L ~ Til.~V(z) - ql v - Q2Z v 
v=O y k=V+2 v=O y k=\1+1 \. 

co co 00 co 

_.9J.. 2: 1 '2:, a rn (z) L: 1 2:.. f'n ( ) - C!<. .... v . J.:: k~v-2 \) ~-: k-V-1 Z '"' v=O v=O lFV+1 y k=v+2 y 

(15) 

Adding equations (14) &~d (15) gives 

+91. 
z 

1r1here 

n n ~ i 
+ q2 a

0 
z r (O,z) + q\ 1r (z) J!.- a_, 

1
(1-1/y ) 

0 ' 0 .i+ l= 

co 00 

+ Q2 1T n(z) ~a. 
1 

(1-1/zi) + L (1-l/z8
) C n 

0 i=O l+ s=O s 

+ q, ?d ( ~v - ~v) ?~l '1c r;;-v-l(z) 

This can be written 
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where 

It follows that for IYI = 1, lzl = 1, lwl < 1 (recall that the initial state 

is (0,0,1)):-

~ ~ 
n(y ,z,w) + r (O,z ,w) - 1 = v1(q1y+q2Z) n(y ,z,w) L k 

k=O Y. 

where 

i.e. 

~ ~ 
+ J:!1. r(y,z,w)(q1y+q2z) L -k ~ q2 a

0
z w r(o,z,w) 

z k=1 y 

~ 

5 i + q2w n(O,z,w) ~ a. 1 (1-1/z ) . 0 J.+ J.= 
+ I.01 -~) . ' J. J. J.=O y 

D. (z,vl) J. 

+!!il. z 

00 

and DJ..(z,w) = w ~ D.n(z) wn 
n=O J. 

~ m 
S' i 5 i + q1w n(O,z,w) f;Q ai+l (1-1/y ) + q2w n(O,z,w) !;o ai+1 (1-1/z ) 

+ ? c~ _ ~ \ Di ( z. w) 
f;o z Yj 



Using equation (13) gives for IYI = 1, lzl = 1, I tv I < 1 

00 

~} 7r(y,z,w) {1 - w(q.y-t-q2z) z k k=O y 

00 

~ = 1 + f'(y,z,w) {a
0
w(q,y+q 2z) + ~ (q1y+q2z) Zr -1} z k y 

00 00 

+ q1w 7r(O.z,w) S" a (1-1/yi) + q2w 1T(O,z,w) ~ a (1-1/zi) • ~- i+l 0 i-t-1 
1=0 1= 

00 00 

.,.. s 5 i i 
+ ~ (1-1/z ) C (w) + ~ (1/z -1/y ) D

1
.(z,w) 

0 s . 0 s= 1= 
(16) 

00 00 

Note that 7T(O,z,w) = l_ 1Tn(O,z)vP :.: L n n 
7To Oi w = 1T(O,O,vJ) which is independ-

n=O n=O 
ent Of Zo 

Define 1T(y,z,w) by this expression for !Yl > 1 also, As it is known that 

TI(y,z,w) is a regular function of y for IYI ~ 1 (jzl:l, lwl<l), its only 

singularities in the whole complex plane are the zeros of the denominator 

and the singularities of the numerator outside the unit circle IYI = L 

From equation (13), the numerator has its only singularity at 

q, y = ( 1/a w) - q2 z 
0 

which is outside the unit circle, 

Lemma The equation 

(17) 

has a unique root in y within the unit eire le I y I < 1 if I w I < 1 and I z I ~ 1, 

or lwl ~ 1 and lzl < 1, or lwl .~ 1 lzl ~ 1 and )1/Aq" < L If this root is 

denoted by y(z,w) then y = y(l,l) is the smallest positive real root of the 

equation 
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If ~/Aq 1 > 1 then y < 1; if ~/Aq" ~ 1 then y = 1, 

Proof If I w I < 1 and I z j ~-- 1, or I w I ·~ 1 and I z I < 1 then 

and E is a sufficiently sma.ll positive number,. 

If lwl ~ 1, lzl ~ 1 and ]J/Aq1 > 1 

and ~/A + q2 > 1 as ]J/Aq 1 > L Therefore, if E is a sufficiently small 

positive number 

Hence, by Rouche 1s theorem, (17) has exactly one root in the circle 

lzl < 1 - E where g is a sufficiently small positive number. 

If z = 1 and w = 1 consider the equation 

where f:.(y) = y and f 2 (y) = (q 1 -tq2y) A(]J-]..1~7 ),. 

Now 
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fi (0) = 0 and f2(0) = ql A(JJ) > 0 

fl(l) = l and f2 (1) = A(O) ·= l 

Also fl 1 (y) = l f2!(y)·=·q2 ACJJ-JJy) -· (ql+Q2Y)JJ A'(JJ-JJY) 

'lhus fl '(1) ~ 1 and f:2'(l) = q2 + jJ i), 

Also for IYI ~ 1 

i.e·. if JJ/Aq 1 ~ l then f 2 i (y) {- f1 '(y) for every IYI ~ 1 with equality 

at y = 1. 

It follows that 

if IJ/qA, ~ l then y = 1 

then y < 1 

'lhis completes the proof of the lernrra" 

Using this lemna. shows that the only root of the denominator of (16) 

outside lYI = 1 is 

y - 1/y(z,w) 

Define 

-1-Cy,z,w) = {y - 1/y(z,w)} {q 1y -t- q 2 z - l/a
0

w} rr(y,z,w) (18) 

- a regular function of y in the whole complex plane" As 

...,, . 
Lim -·~~ :i ~~..a. \r.T J = 0 

IY!·.,OO IY I 

it follows that -f·(y ,z$w) is a linear function of y; Le, 

}.~y,z,w) =- )(.<o,z,w) + y *;.(z,w) (19) 
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From equation (18), 

lt(O,z,w) = 

(20) 

From equation (16), setting z = y gives 

n(y,y,w) + r(y,y,w) -

00 s i 
1+ L (1-1/y ) ··~i (w) 

i=O _, __ .;;,_. __ -----
00 

1-wy l_ (~/Yk) 
k~o 

- the same equation as that for the· ordina.ry·-GI/M/l·queueo Hence 

. 1-o(w) 
- TI:y o(w)J{l-Wl (21) 

where o(w) is the unique root ir1 z within the unit circle of the equation 

Setting y = 0 and noting that f'(O,O,w) = 0 gives 

1-o(w) 1T(O,O,w) = - 1-­-w 

Substituting in (20) gives 

' ' y(z w) a w 1-w *<o z w) = l- _1_1.1q.2z - _1_~ 1-o(w) 
, . 0 

(22) 

Consider ~(y ,z,w) where q;.y = lta w - q 2z, y being a function of z and 
0 0 0 0 

w. Using (18), (16) and (13);~ 

~y ,z,w) = 
0 

{y -l/y(z,w)}{l-a 2a zwj f'(O,z,w)} ..!..£_ 
0 e 0 ( z ao 

-a wtl- .L o a 
0 

l_ ~kJ 
k=O y 

0 

00 

L. 
k=1 



Now 

Thus 

:: 

{1-o(w)} ql(y -y) 
0 

11-w.l y""(z,w) 
y{y

0 
y(z,w)-1} r(O,z,w) q1 y

0 
+ z y(z,w) 

y y r(o,z$w) {y y(z,w)-1} = 1-o(w) + o o 
{l-wH1-y yrz;wD z{y y(z,w)-1Hy-y

0
} 

Using (13), 

y r(y,z,w) {1-y y(z,w)} ( ) = 1~o(w) . + . o (23 ) 
TI y,z,w {1-w}T1-y y(z,w)J z{y y(z,w)-1} 

Setting z = y gives 

91. 

( 1-o(w) r(y,y,w) {qla w-(1-q2a wy) y(y,w)} 
. 0 0 

TI y,y,w) = TI=wH1-y .. y(z,wH -

But by (21) we also have 

n(y,y,w) = 1-o (w) 
n-wH1-y oCw)} - r<y,y,w) 

It follows that 

r(y,y,w) t 1 -



i.e. 

Using 

i.e. 

= ~{1-0(w)}{o(wtr<:i..t.w)} 
11-w}U-y 6(\·if} 1-y -y(y,w)} 

q,a wy {1-o(w)}{o(w)-y(y,w)} 
r(y,y,w) 0 = TI-w1t1-y o1w)}U-a

0
wy} y(y,w) 

(13) :-

l-q2a zw 
f'(y,z,w) 0 rco,z,w) :::; 

1-a ·w(q,y+q2Z} 
0 

{l-qza
0

zwH l-a
0

wz} rc z ,z ,w) 
= 11-a Wlq1~q2z}J{1-q2a zw} 

0 ' 0 

r(y,z,w) 
q1a

0
wz {1-o(w)}{o(w)-y(z,w)} 

= 11-\'d{ 1.:z 6 (w) }h-a
0
w(ql y+q2z)} y(z,;.wJ (24) 

(23) and (24) give a complete solution for the generating functions of queue 

length probabilities. 

Stationary Distribution 

The Markov chain is irreducible and aperiodic, and therefore the limit-

ing probabilities 

L
, n 

7TiJ'k ::: :un 7T. 'k n-+00 lJ 

always exist; either every nijk = 0 or every ·1rijk > 0 and {nijk} is a prob­

ability distribution, Using Abel 1 s theorem, if p =AI~ ~1 

f(n ,..\ 
'ol J u I = Lim (1-w} r(y,ziw) = 0 

w-+1 

and 

n(y,z) = Lim (1-w) n(y,z,w) = 0 
w+l 



If p = A./~ < 1 

and 

f(y,z) = Lim (1-w) f(y,z,w) 
w-o-1· 

1-o y{qta -(1-a q2z) y(z,l)} rcy,z) 
0 0 7T(y,z) = 1-y(z,l)y_ + 

93. 

Setting z = 1 gives the generating ·functions of the number of 1-units in the 

system 

r(y,l) 

and 

7T(y,l) 1-o = 1-yy -
y{qlao-(l-aoq2)y} r(y,l) 

q1a {1-yy} 
0 

Note that as p < 1, so A.q,l~ = qlp < 1 and hence y < 1. 

SEecial Case M/M/1 

Suppose A(s) = A./(A.+s) 

Then o is a solution of the equation z = A(~-~z) 

i.e. zA. + z~ - z 2 ~ = A leading to z = p or 1 

(25) 

(26) 

Therefore, for p < lj o = p (27) 

y is a solution of the equation y = (q 1+q 2y) A(~-~y) 

i.e. 

leading to y = 1 or /..qJi-1 

'Iherefore (28) 
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4.3 The GI/M/1 Priorit~ Queu~be.Wait~TLme Distributions 

The Stationary-··· Haitin,g·· Time· Distribut·ion·· of··· a· l-unit 

Let W1 denote the waiting time of a l-unit in the stationary state, 

Then the state of the system at the arrival epoch, 1, of the 1-unit can be 

partitioned into a number of mutually exclusive events: 

A - the_ ~ystem errpty at r 
0 

A. - i -1-units in tl1e· system,- one· of- which ·is being· -served· (i~l) 
]. 

B. - i 1-units in the system, but a 2-unit is being served (i~) 
]. 

Therefore 

= 7Tc-~- ,1) + )J+S 
~­
)J+S 

r(L. 1\ 
)J+S ' ) 

From (25) and (26), 

l-o ) q1a0 -(1-a0 q2 )y ~ 
~(y,l) + y r(y,l) = l-yy + y r(y,l) ( l - q,a

0
(l-yy} J 

1 __ 
0 

( (1-a Q2 )-q1a y 1 

Therefore 

= --- + vy r (u 1) J 0 0 
( 

1-yy ' - .Jj ' ( Qta
0

(1-yy)- J 
= 1-o _ + 1 ia-y} 

1-yy 1-yy 

)J(o-:r) 
()J+S-y)J) 

(29) 



Special Case: IvJ./JI'it l 

Using ( 27) and ( 28), ( 29) -·simpli-fies to 

agreeing with Miller [i 4l '· 
Differentiating (29) gives 

Mean Waiting Time of 2-uni~~ 

Using equation (30) of Chapter 3; 

Now E(WJ -- o I (JJ-Jlo) 

Thus 

E[W2] 0 ~_!_ ~J -:: -
q;<]J 1-o 1-y 

i.e, E_[tv2J - _§ .. J.SJ.~~ 
q2·il u .. -o 1 u-y 

'lhe Stationary Wait:i!Jg Time Distribution of a 2-unit 

(30) 

(31) 

The results of the last section of Chapter 3 can be used with 

1 - p <b(s) = ].l+q+s~pJJ A1(-s) 
JJ+q+s 



96. 

CHAPTER 5 

Inequalities 

5 .1 Ineguali ties· ·for· ·the· GI/G/1 Queue· · 

The problem .. of .. obtaining bounds for the. mean waitmg time in a GI/G/1 

queue has been considered by Kingman 'C:iO,ll where references are also given 

to earlier work] and Marshall C:l2,13]. A summary of their work will now 

be given arid then in the next section this will be extended to derive bounds 

for the GI/d/1 priority queue. 

Suppose customers C0 1C1 ~C 2 , ••• arrive at a single server queue '!!here 

they are served in the order ·of their arrival. For n ~ 0 let · 

A . t ... t' b t th ( )th . = ln erarrlval lme e ween the n and n+l arrlva~ epochs; n 

sn = service time of en; E[sn] < oo 

Wn = waiting time of Cn; initial condition hT
0 

with E[W
0
J < oo 

U = S - A n n n 

where the A and S (n;.O) are all rutually independent. Then n n 

where 

X+ = Max(X,O) = ~ ~. if X> 0 
if X~ 0 

If the traffic i.'1tensity p = E[S]/E[A] < l then it is well 1cnmm 

(Lindley's Theorem) that the distribution of W converges to that of a finite 
n 

~1andom variable i·v :r·egar'dless of \·!
0

• 

Now, for any n 7 0 



lifhere 

X- = - Min(X,O) 

= x+ - x 

t-Y 
" = 0 

if X~ 0 
if z > 0 

Tav..ing t:,e lirni t as n -~ oo g:i ves, on using ( l) 

= - E[v] (2) 

If Z is any r&"'ldom '.ra.ri.:::1b le 1.·'Ji th fir1i t.e ·variance, tl'-1er: a.s 

and 

we have 

and E[z 2 ] = E[<z+-) 2 ] + E[(Z-) 2 ] 

i.e. var[z+] + var[~-j = var[z] - 2 E[z+] E[z-] 

Assuming var [H] is finite 

vac [ (W+-\J) +] + var [ (W+U) -] 

= var[vJ+U] - 2 E[(H+U)+] E[(H+U)-] 

= var [1t1] + var[u] - 2 E[H] E[(H+U)-] 

97. 



i.e. 

and hence 

E[w] = 
var[u] -var[ (\IJ+U)-] 

2{E[A]-E[S]} 

· var[u] 

2{E[A]-E[S]} 

var[s] +var[A] 
E[WJ ~ 

2{E[AJ -E[SJ} 

= J say 

the errQr being caused by neglection of the variance· of (W+U)-. 

As W? o, [(W+U)-] z ~ (U-)2 

and therefore 

From equation (3) 

E()r] 3:-
2{E[A]-E[s]l 

Surmnarizing 

( ~\ .-~) 

(4) 

(5) 

98. 

Note that the lower bound is necessarily more complicated th~ the 
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upper one, because if i_t depended only on the pa;ameters E E S J , E [ ~ J , 
var[s:J, var[AJ subject only to E[s] < E[A] it would have to be zero 

[consider the queue D/D/1 with sn = E[s], An = E[A], E:[s] · < E[A] 

and W = 0; then U = S - A < 0 for all n and hence W = 0 for all n. o n n n n · 

Note that equality holds for the upper bound for this queu~:J. 

'Ihe above . inequalities are due to J . F. C. Kir1@118l1. Another more com­

plicated lower bound has been given by Marshall [12]. For all w ~ 0, 

E[W ., W = w] = E[(w+Un)+J . n+l · n 

= foo P[U > x]dx -w n 

= g(w) say 

and therefore 

or, in the limit 

E [tv] = E[g<tv)] 

As g' ~,x) = P"(U > -x] which increases monotonically as x increase~ (x>O), 

g(x) is a convex function. Using Jensen's inequality, it follows that 

i.e. 

ECwJ = E[g(W)] 

~g<ECw]) 

E[t-1] ~ ! 00 

P[U > xjdx 
-E[w] · 

Consider the equation 

X = /:X P[U·> u]du 

= E[U+] + !~x P[U·> u]du 

as 

(6) 

(7) 



If E[u+] = 0 then x :: 0 is a solution of (7). 

If E[u+J > o and E[s] < E[A] then 

i.e. 

E[uJ = E[u+J - E[u-] < o 

E[u+] < E[u-] 

Therefore, for x sufficiently large, 

< x - !~x P[U > u]du 

i.e. 

100. 

and hence (7) has a solution. Similarly if E[s] > ECA.J then (7) has no 

solution. 

If x is a solution of ( 7) o.ver some range [a, b] say_, then 

g' (x) = P[u· > -x] = l for xE [a,b] 

and hence g'(x) = l for XEC:a,m), and therefore the curves never cross, only 

meet. As g(x) is convex, it follows that if E[s] < E[A], equation (7) 

has a unique root R., say . 

If R. = 0, then trivially E [w] :.... R. 

If R. > o, then E[u+J > o and for all xE [o,.o 

Hence if E [w] < R., then 



lOL 

= /J P[u > u]du 
-E[vJ] _ 

contradicti.ng (6). Therefore E[\v] ~ Ji. 

Sunrnarizing, if E[s] < E[A] then E[W] ?:.. !1. where !1. is the unique root 

of the equation 

(x~) (8) 

~lla.rshall has also given improvements of this lower bound Nhen rest:r:_ict­

ions are placed on the distribution of interarrival times, Tnere are three 

possible assumptions:-

(i) Suppose A has its mean residual life bounded above by·y (y<oo) 

f~ P[A>u]du 

P[A>t] 
for every t ~ 0 

Let I denote the length of an idle period; then I can be expressed in the 

form I = A - X where X > 0. Using the notation f 7 (t) to denote the density 
'--' 

function of any random variable Z and Z(t) to denote its distribution 

function:-

.p (+-' 

.._I'"'' 

P(I>t] 
= 

1 

P[I>t] 

00 

!
0 

fA (t+x) dX(x) 

r; P[I > u]du = f~=t P[A > X + u]du 

= J:=t !~ P[A > u + x] dX(x) du 
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/~ oo P[A>v]dv 
= x=O P [A > t + x] f v=t+x dX(x) 

P[A>t+x] 

i.,e, 
I; P[I>u]du 

~y 
E[IJ 

Integrating over t gives 

P[I>t] 

E[I] 
for every t -, 0 

(ii) Suppose A has decreasing mean residual life 

(9) 

Le. 
f; P[A>u]du 

P[A>t] 
decreases monotonically as t increases 

(t ~ O, Pf:A > t:J > 0), Note that decreasing mean residual life implies 

mean residual life bounded above by E[A::J. 

As for (i) 

00 
P·[A>u] 

foot P[I > u]du = [
00

x=O P[A > t + x] f du dX(x) 
v=t+x P£:A>t+x:J 

oo P[A>u]. . 
~ f~=O P[A > t + x] fv=t P[A>t] du d.X(x) 

i.e., 
1; P(I>u]du oo P[A>u]" 

C 
~ f v-'"" du, .for every t ~ 0 

P -T;tJ -v P(A>t] 
(10) 

(iii) Suppose A has increasing failure rate 
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:i_t1crea.ses :nonotonically as t increases ( t ~ 0, 

P [A > t J > 0) and he:1c.e 

Jttu f' ( )d t •A X X 

P[A>t] 

increases monotonically with t (u)O). 

l_Note that this implies 

and hence for every t ~ v 

and 

Adding (ll) and (12) gives 

for ever-y z ~ u 

P[A > t] !~ P[A > uJd_u ~ P[A > v] f;=t P[A > z]dz 

L e. A has decreasing JTEan residual life J , 

(ll) 

(12) 

.With this asswnption of increasing failUre rate, fof every v ~ t ::;... 0 

f~ r1 (u)du __ l rv co 

= 1
0 

fA (u+x), dX(x)du 
P[I>t] P[I>t]. · u=t 

l f (u+x' v co A I 

P[A > t + x] dX(x)du = 1u=t Jo 
P[I.>t] P[A>t+x] 



>. - --::;;1'----., 
P[I>t] 

fA(u) 
P[A > t + x] d.X(x)du 

P[A>t] 

i.e. 

!~ fA(u)du 
= 

P(A>t] 

P[I>t]-P[I>v] 

P[I>t] 

P[I>v] 

P[I>t] 

P[A>t] -P[A>v] 

P[A>t] 

P[A>vJ 
~ 

P[A>t] 
for every v ,>;.. t ::;... 0 

As A has also decreasing mean residual iife, from equation (10) for every 

1; P[I>u]du P[I>t] P[I>v] 
~ ~ 

!~ P[A>u]du P[A>t] P[A>v] 

i.e. P[A > v] !~ P[I > u]~u ~ P[I > v] !~ P[A > u]du 

Integrating over v 

1; P[A > v]dv !~ P[I > u]du"' 1; P[I > v]dv !~ P[A > u]du 

Le. E(AJ j~ P(I > u]du -~ E[IJ !~ P[A :> u]du 

and therefore 

To apply these inequalities, note that equation ·(3) gives 

var [u] -var [ (v.J+U) -:] 
E(H] = 

-2E[UJ 

(13) 



On using (2) this becomes 

If (\v+U) > 0 then (t.V+U):- = I. Therefore·;·· if · 

then 

a
0 

= PI:arrival· finds system empty:J 

= P[\v + u < o] 

= 

= 

'£[u2J. 

-2E[u] 

var[S]+var(A] 

2{E[A] -E[S]}. 
+ 

E[A]-E[S] 

2 

Thus if A has mean residual· life bounded· above by y 

{E[A] -E[SJ} 
E[w] ~ J + . 2 - y 

If A has decreasing mean residual life, y = E[A] and 

E[A]+E(S] 
E [w] 3;- J -

2 
· 

If A has increasing failure rate 

E[A]-E[f?] 
E[WJ ~ J + 2 ....,Eio'l . . . c. LJ-\..:..1 .. 

= J -
var[A] +E[SJE[A] 

2 E[A] 

Recall that J denotes the upper bound- see equation (4). 
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l.n ·-Gn:i.S. section the superscripts NP and PR will be used to denote the 

non-preerrptive and preemptive resume disciplines, Therefore 

and from Chapter 3, equatiof!- ( 30) 

(14) 

where VJ is the equilibriwn waiting time in the pooled queue and W. IIJF is the 
l 

equilibrium waiting time of an i-unit (i=l,2) in a non-preemptive priority 

queue,. 

The problem of obtaining approximations for E[H_f and E[w.PRJ 

reduces to that of the last section, the results of which can be used to 

give simple bounds A, B, Ai, B1 such that 

A ~ E[H] ~ B 

A1 ~ E(\'11 PI!] ~ B1 

. NP . PR 
Clearly E[W1 J. ~ E[Wt. J ~ A1 • Equation (14) thep gives 

,_ T\TP-
To obtain a lower bound for ELW2 ··~ J (and hence, by equation (14) an upper 

bound for E [w 1 NPJ note that 

W2 =To+ T1 + T2 + .• , 

where 

T0 = ti.Ine to clear sys tern of all units vJhich arrived before the 2-uni t. 



T, = time to clec.r system of all 1-units which arrived dill'ing T. 1 l ~ 

Therefore 

where 

(i~l), 

00 

= E[H] + l_ E[T.] 
' l 1 1=-

= E[w] + 
Jl! 

1 
00 

L E[N.] 
. 1 1 1= 

l/J.11 = E[s1l =mean service time of a 1-Lmit, and 

N, = number of 1-Lmi ts arriving during T. 1 .· l 1--

Therefore, using the result on p~ge 53 of r-3:J, 

Thus 

1 
Jll ' 

1 2 
P.1--, '"'} 

J.l ~ Jll 

giving a lower bound for E[~12NP]·~ 

Note that the second term is better (i,e, greater) than the first if 

P1 E[W] >.- 1/J.l 

Le. A.r E[w] >... 1 

and the third. term is better tha~ the second if 

Clearly this method is very crude &'1d better methods are needed: if, on 
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inspection) the distribution of the interarrival time between tvm 1-units 

can be bounded by a distribution for which results are 1mown [Le, Eli: or 

!VI] or alternatively if the service tirne distribution function c.=s.n be bound-

:=d by exr:onential distribution functions, then the following results can be 

used: 

H 2 , the Ivai ting time of a 2-uni t in the stationa_ry state, has t!le sa.rne 

distribution as the first passage time to 0 in the follmving stochastic 

process, V(t) 

V(t) = W - t + l: S. 
l 

where the surmnation is taken over all 1 such that '1::. ~ t and H is the vlait­
l 

ing time in the pooled queue 

s. ,S 2 ,,, o, are the service times of 1-units. 

A = T - T 1 , n ) l are interarrival times of 1-units and all these n n n-

random variables are independent" 

Compare two such processes: vl (t) in \"Ihich the A have distribution n 

function F1(t) = P[A~->; tj, den'3ity f1Ct) and V2(t) in which the An have 



distribution function F2 (t) = P[A~ t], density f2(t), 

Suppose F1 (t) ~ F2 (t), for all t ~ 0. 

Then if for i = 1,2, 

F. ( t) = 1 - F. ( t) and F. ( n) ( t) denotes the distribution function of the 
1 1 1 

n-fold convolution of F.(t) 
1 

and by induction 

= P[A1 + A2 > t in the first process] 

()() -
= f F1(t-u) fr(u) du 

0 

for every n ? 1, t ~ 0 

If Ni{t) denotes the number of arrivals in C:o,t:J in the Vi(t) process 

(i=l,2) then 

P[N1 (t) < nJ + A > t in the first process:} 
n 
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Le. P[Ndt) ·~ n] ? P[:·.Jl(t~ ¢ nJ for every n ~ 0, t 1 0 

Now 

V.(t) = H- t + X.(t) 
l l 

i = 1,2;t ~ 0 

where X1.(t) = E S. 
J ' 

. th .th 

the summation being taken over all j such that 

1. ~ t 1n e 1 process. 
J 

Therefore 

\II here 

and 

Thus 

P[V1Ct) >OJ = P[Xdt) > t- w] 
00 

= L P[s1 + 
k=O 

00 

=·1.. pal 
k=O k K 

k ?- 0 

0 ~ Po ~ PI -E ••• ~ 1 

00 

= L P a 
k=O k K 

which is absolutely convergent. 

Now 

00 

~ !:> =: Prl\Lfi-\ ~ .,..-, _ orl-, 1+-) '~I 
~ ~k •J._>.'[\VJ ;;,.- "-' L L,_Joi2\V .,. ''-' 

k=n 
3-0 

Also 

for all n :;.. 0 



00 

l. I~ I converges (and is ~ 2) 
k=O 

Hence, there exists an m such that 

Similarly, 

and so on, giving 

But 

00 

l 1~1 < £ 
l<=m 

00 

as L ~ 'l 0 , p ;:;:. 0 
k=O 0 

00 

= S" P l a f:-1 k K ' 

for every £ > 0 

llL 

... ~ 1 



Le, for every E > 0 

i.e. 

and therefore 

for every t ~ 0 

It follows that, for every t ~ 0, 

P[Vl(U) > O, 0~ u~ t] 9P[V2 (u) > 0, 0~ u,< t] 

for every t >,.. 0 

where T. denotes the first passage time to zero in the ith process. 
1 

Integrating gives 

112. 

This result shm1s that for two arrival processes with distribution 

functions satisfying 

for every t ~ 0 

then the mean waiting time of a 2-unit in the first process is not less than 

the mean waiting time of a 2-unit in the second process. 

Example< Suppose the age specific failure rate ~(t) of the distribution 

function of the intera.rTival time betvteen two 1-units satisfies 

1 1 
/a ~ ~(t) ~ IB for all t 

then 

and using the above results gives 



E[vfl 
1={1/~;a;J 

E [t~J referring to the pooled queue,. 

Similarly for two processes with service time distribution functions 

satisfying 

for every. t "J,. 0 

pk 1 = P[Sl + . ,. , + Sk > t - W for the first process] 

and hence 

and the mean waiting time of a 2-unit in the first process is not greater 

than the mean waiting time of a 2-unit in the second process. 

Unfortunately the above method requires knowledge of the whole dis-

tribution of either the interarrival times or the service tlines of 1-units 

and so particular values obtained may be very sensitive to small char~es in 

the distributions, To obtain more robust inequalities it seems necessary 

to place restrictions on the distribution of the service time of a 2-unit: 

suppose S2 has mean residUal life bounded above by ~. Then, for a 2-class 

non-preemptive queue: 

Wn+l = Waiting Time of (n+l)n 1-unit 

= Wn ~ S - A + X n n n 

where 

Sn - service time of nth 1-unit, mean l/J..11 

(15) 



A = interar·rival time betvreen nth and (n+l)th 1-units, mean l/A 1 n 

+ R 
n 

if W + S - A ~ 0 n n n-

if W +·S· ·-·A =-I < 0 n n n n 

114, 

I = time from departure of nth 1-unit to arrival of (n+l)th 1-unit 
n 

R = time (n+l)th 1-unit must wait before commencing service due to 
n 

2-unit in service,. 

Therefore 

l!J ·i. :. lr.J :< + (S -A ) ·z + X 2 + 2\tJ (S -A +X ) 
'n-t-1 'n n n n n n n n 

-t- 2 X (S -A ) 
n n n 

:: Wn 2 
-t- ( S -A ) 2 

-t- X IX +· 28 - 2A + 2W ] n n n- n n n n 

Taking expected values and assuming stationarity, 

where 

i-e~ 

p = P ( \v;. NP -t- S - A < 0] 

= PI 1-uni t finds server idle J 

E[(S-A) 2 ]-t-g E(R2]-p E(I2
] 

2(1/A-~..:1/J.ll) 

~om equation (15) 

ELXl :: p E[I 1" R] ·- E! A] - ELS] = 1/Al - 1/).lj 

i.e,. f E[Ij :: l/A. 1 - 1!).1 1 - f E[R] 

(16) 
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Novr S2. ha::; moan residual life bounc:led above by ct, and therefore E[R] ~ ct 

j,,e .. p E [I _j ~· 1/ A·. •· 1/~ 1 - a 

Also 

~ {p E[riF 

\"'here 

- l/l-!1 - a 

Substituting in (16) gives 

if 1./)q - 1._ < Cl 
lli 

if 1/)q l -->a 
lll ,. 

Finally R = S2 - B where B is a strictly positive random variable and there-

fore, as for equation (9) aqove 

giving the final inequality 

_ NP- EL(S-A) 2·]t2a/lJ 2 -b 
E LW ~ -' ~ . ;- I ) 2(1 )q-l llt 

Van Mildert College, Durham 

.~:~~~~-' ,.~:·1.. .• 

(i 4 'Ard;;7i· 
--~i!l·n:vu. -

September, 1971 
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