W Durham
University

AR

Durham E-Theses

Priority queues

Reed, R. J.

How to cite:

Reed, R. J. (1971) Priority queues, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/8608/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8608/
 http://etheses.dur.ac.uk/8608/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

PRIORITY QUEUES

by

R. J. Reed,A.R.C.S.,B.Sc.

A thesis presented for the degree of Doctor of Philosophy

at the University of Durham.

September, 1971

Mathematics Department,
University of Durham.

EIE i‘.-;,-—-.=__ .
9 VEITES .
"\mnm;ne REAN

W24
W ¢




CONTENTS

Page
Acknowledgements (iid)
Abstract (iv)
CHAPTER 1. NON-PREEMPTTIVE PRIORTTY CLASSIFTCATION IN THE
M/G/1 QUEUE.
1.1 Introduction 1
1.2 Optimal Priority Classification in the M/G/1 Queue 8
1.3 Arrivals with Estimated Service Times 13
1.4 Examples 16
1.5 An Infinite Number- of Non-Preemptive Priority Classes 21
CHAPTER 2. DISCRETTONARY QUEUES -
2.1 Basic Results 24
2.2 Early Preemption: the Optimal Policy 29
2-3 late Preemption: the Optimal Policy 32
2.4 Discretionary Rule Based on the Estimated Remaining
Service Time 34
CHAPTER 3. AN E‘b/G/l PRIORITY QUEUE.
3.1 Introduction 47
3.2 The Ordinary Eb/G/l Queue 7
3.3 The Eb/G/l Priority Queue: the Distribution of Queue
Lengths 52
3.4 The Eb/G/l Priority Queue: the Waiting Time
Distributions ‘ 64
CHAPTER b, A GI/M/1 PRIORITY QUEUE,
b.1 The Ordinary GI/M/1 Queue 76
4.2 The GI/M/1 Priority Queue: the Distribution of Queue
Length 79
4.3 The GI/M/1 Priority Queue: the Waiting Time
Distributions 94
CHAPTER 5. INEQUALITIES.
5.1 Inequalities for the GI/G/1 Queue 96
5.2 Inequalities for the GI/G/1 Priority Queue 106

REFERENCES 116



(iii)

ACKNOWLEDGEMENTS

My thanks go to my supervisor Dr. A. G. Hawkes and to the Science
Research Council for financial support in the form of an S.R.C.

Research Studentship.



(iv)

ABSTRACT

Extensive research has heen carried out in the subject of Priority
Queues over the past ten years, culminating in the book by Jaiswal [ 8_].
In this thesis, certain isolated problems which appear to have been omitted
from the consideration of other authors are discuésed,

The first two chapters are concerned with thé question of how priorit-
ies should be allocated to customers (or 'units') armiving at a queue so as
to minimize the overall mean waiting time [:it is perhaps worth mentioning
at the outset that following current usage, the terms 'queueing time' and
‘waiting time' will be used synonymously throughout; both refer to the time
a unit waits before commencing service:ja In previous treatments of this
'allocation of prioritiesi problem it has always been assumed that on
arrival, the service time requirement of a unit could be predicted exactly;
the effect of having only imperfect information in the form of an estimated
service time is considered here. Chapter 1 deals with the non-preemptive
discipline; Chapter 2 with discretionary disciplines.

Priority queues in whilch the arrival epochs of different types of units
form independent renewal processes have only been solved under the assumpt-
ion of randem arrivals. However, if the following modified arrival scheme

is considered:

arrival epochs form an ordinary renewal process, and at any arrival
epoch, independently of what happened at all previous epochs, with
probability q; the arrival is a priority unit and with probability q,

-7\

a non-priority unit (where g,+gz=1)

then the priority analogues of the ordinary single-server queues Eb/G/l and
GI/M/1 can be solved (Chapters 3 and 4 respectively).

In conclusion, Chapter 5 is concerned with approximate methods:



(v)

section 1 1s a review of previous work on deriving bounds for the mean wait-
ing time in a GI/G/1 queue, section 2 extends this work to the GI/G/1 prior-

ity queue.

September, 1971



CHAPTER 1

Non-Preemptive Priority Classification in the M/G/1 Queue

1,1 Introduction

In this section the Laplace-Stieltjes transform of the distribution
function of the waiting time of customers or 'units’ in a non-preemptive
priority queue is derived; this haé been obtained before by many authors -
the derivation below is an adaptation of that given by Miller [:1u:] and
Takacs [:18:];'

The basic model to be considered is as follows:= units arriving for
service from a single server are of two different types with units of type
1 (or 'l-units') having non-preempfivé priority over units of type 2. It
is further assumed that k-units arrive at randem and independently of

arrivals of other units with rate x,_, and have service times which are in-

K?
dependently and identically distribﬁted random variables with mean l/uk and
distribution function Sk(t), t 3 0 (k=1,2). Let Py = J\k/uk and A = Ap + Ay
where necessarily p; + pp < 1 for stability.

The departure epochs t,',15',173", ... form a set of regeneration points
and therefore an imbedded Markov chain can be defined.

Ilet 14" = O,

and for n >0

aon = P[no 1-units and a non-zero number of 2-units waiting at
time LR O:]=

o, = P[k 1l-units waiting at time U 0] k31

Bon = P[ system empty at time Tt 0].

It follows that if

akl = P[:k l-units arrive during the service time of an i-unit:]e




and qi = A (>\1+)\2) i=1,2

then
o™+ g% 2 P[Tno l-units waiting at + 0]
o o g n+l

=y ao1 + oaon ao'2 + Bon Eq1a01 + qzaozj (1)
and for k > 1
n+l _ < n,_o» n 1 2
% % #l-i 8 T o At B, quak t Q28 | (2)

For |z| < 1, |w| < 1 define

0 P
o (z) = Z ain 2" n
i=0 -

W
o

alz,w) = m Hz) Wy B (w) = g 1
Z o) = 2 5

and

. n . n
ao(w) = o, W
n=

then equations (1) and (2) give

o (z)=a "
n?l(z) + B = §,(A;-7,2) ._'_Z.._Cl.. + aon So(A1=212)
+ BonEq1§1(>‘l_>‘IZ) + QS (0 ~a2) ] (3)
where
§l(“x“‘lz) = f: exp\:-x(,\l-ulz): d Si(x)
= i a'ki Zk i=1,2



Assuming the queue to be initially empty gives
a(z,w) = {z + W o (w) Lz 85(a=2:2) = Sy(ay=ny2) ] + 2 B, (W) Cway S;(x;-1y2)

4 WAy Sp(Ay=ayz) = li]}f{z W S (ny=ry2)} €

Clearly

: s th « s
= P[:no customers walting after the n"" departure 1n an ordinary
M/G.'1 queue, arrival rate i, service time d.f.

Q; Si(x) + qp Sp(x)7].

Therefore, by page 71 of Takacs [ 17 ]

B (W) = - {5)
where g(w) is the unique root in z within the unit circle of the equation
z = w_qy S:(x-az) + qp Sp(x-az)_]
Also

g(l) =1, g"(1) = 1/ (1=py=py)

The Lemma on page 47 of [ 17_] shows that the denominator of the right hand
side of equation (4) has exactly one root z = h(w) say in the unit circle,
and this must be a root of the numerator also. Therefore

h(w)[:1+Bo(w)(wq1§}(A1=A;h(w))+wq2§2(kl-Alh(w))—l):]

aO(W) z

- - - (6)
WES} (Xl-th(W))‘hCW) Sz().}-.}\.ih(‘ﬂ))J

where

h(1) = 1 and h'(1) = 1/(1-p;)



q(\

Equations (4), (5) and (6) determine a(z,w). For p; + p, < 1 the Markov

chain is irreducible and aperiodic and so the limiting probabilities

I ¢ T n
o = Lim G BO = Lim Bo

I>o Tt
always exist and are independent of the initial distribution. Using Abel's
theorem gives

a(z) = 2 a 2= Lim (1-0) alz,w)
k=0 w1

GO[:Z§2(A1=X12)=§1(Rl"llz):J+BOZE:q1§1(Rl‘K1Z)+q2§2(XI‘A1Z)-lj]

Z‘Sl{Kl-%]Z)

where

1]

B = 1lim (1l-w) so(w) 1 -907 =03

w1

and

‘(l=01)+30(l+qipz’QZp1)

A1/U}‘A1;ﬁ2'l

o = lim (1=w) ao(w) =
w1

= gp(py1tez)

a(z) is thus determined; clearly the joint distribution of the number of

th

1-units and the number of 2-units at the n™" departure epoch for any initial

condition could be determined in exactly the same mamner. If W; denotes the
P w . ] = - o= -SWI
waiting time of a l-unit in the steady state, and W;(s) = E|_e :I, then
i e N . o 3 ] 2
because o(s) + Bo = E[_s :I where N is the number of l-units waiting at a

departure epoch and q = P[:last unit served was an i-unit:j, it follows

that

a(s) + Bo = Qy EElej + Qo EESN2:

2 qp Wp(a-nys) §)(a=218) + g Sp(hy-iys)



where N, is the number of l-units arriving in W; + S; and N; is the number

in S,. Thus

u(l=s/xi)+80_q2§2(s)

Wi(s) = -
Q133 (s)

Substituting for a(s):=

(1-p1-p3)8+hy [1-85(s) 7]

WI(S\) = i) (7)
s+ LSy (s)-1_]
Therefore
_ MELS; 2]+ E[S,27]
EEWL—J T 2(1=py) (8)

More General Arrival Scheme

Suppose each unit arriving for service has a priority number Q: a
lower value of @ denoting non-preemptive priority over a higher value.
Arrivals occur at random with rate A and have priority numbers which are
i.i.d. positive random variables, independent of the arrival times. Let
Q(y) = P(arrival has priority number g y). Service times of arrivals with
Q =y are i.1.d. random variables with distribution function Sy(x), mean

l/uy, Laplace-Stieltjes transform §y(s) and

A fz (l/ux) dlx) < 1 (for stability)-

Group all units into two classes:
those with Q ¢ y called l=units

those with Q » y called z-units

Then by equations (7) and (8):-



. Ci-x 1] (l./'px)dQ(x)jSﬁ-)\Ef; dQ(x)-f; 8,(8)d90x) ]

Wy(s) = 7 = s
s=2 /2 aQ(x)-r7 § (s)dQ(x)]
(9)
and
» J7 E[CS 27]dq(x)
E[W,]] = ——= - X . (10)
2[1-» 7 E[Es, TJaax)]
When a unit with Q = y arrives, its waiting time can be decomposed into
two parts:

(1) the time to serve any unit already in service and all units already in
the system with Q £ y = this corresponds to W,, and
(ii) the time to serve all units with Q < y which arrive before its entry
into service.
Therefore W(y), the stationary waiting time of a unit with Q = y, has
the same distribution as the length of the busy period initiated by a wait-
ing time W, in an ordinary queue (i.e. without a priority discipline) com-

posed of units with Q < y. Thus

~sW{vy).
e sW{y)

E( ) = Wytsn ™0 qato [1 - By()) (11)

where Ey(s) is the Laplace-Stieltjes transform of the length of an ordinary
busy period in a queue composed of units with Q < y
i.e. Ey(s) is the root with smallest absolute value in z of the equation

33 5,Len(-2) 90 (0] &)

Z = § "y'_—o- ;
F%=0 dQ{x)

- the eqguation is z = EE:E + 1(l=z)j] for an ordinary M/G/l queue.

Equations (9) and (11) determine E[:exp(-sW(y)):]; the moments can be

obtained by differentiation:



y-0 =
1 7 (s, aay)

E[W(y)] =

A7 B[S, 20 dato

o Y0 g =1y Y
2[C1-» r77 E[Cs, ] QG0 J[[1-x /2 E[CS, 7T dQ(x0) ]

(12)

Two Special Cases

(1) Units are of k different priority types, qj- being the probability that
an arrival has priority number j(j=1,2,...,k). For this case (12) gives the

mean waiting time of a j-unit as
K
4 Z_.-L q ELs;" ]
i=
3T j
2[1—:\ 2 EES-ij]rla'A izl a3 EI:Si:I]

1=.

Eijj

k
P
igl Ay ELS;27]
= e : (13)
2r1-szJ|1- <&
- {1 Gl izl il
where >‘i = qi}\ and oy = 'Ai EESi:_ 1=1,2,::0,5k

(ii) Service times of 2ll arrivals are i.i.d. raJnddm variables, distribution
function S(x); x % 0. The priority number Q is identical with the service
time S: i.e. a customer with shorter service time has non-preemptive prior-
ity over a customer with longer service time.

1

i.e. Qly) = 8(y) and Sy('_x) =

X2y
0O x«y

Therefore



E[:Syj =y and E[sy2] = y?

Equation (12) gives, provided y is a continuity point of S(x),

N A Iy %2 dS(x)
E[W(y)] = — — (14)
2[[1-x 72 x asix) ]

Thus the mean queueing time taken over all arrivals is:

ECWT = & f5 x2 as(x) f dSly)

o 2[1- fg x dS(x)_]2

Both this equation and equation (13) can be found in Cox and Smith [5_],

pages 83 and 85,

1.2 Optimal Priority Classification in the M/G/1 Queue

Suppose that arrivals requiring service from a single server occur at
random with rate A and have service times, S, which are i.i.d. random vari-
ables with distribution function S(x), x 2.0, and mean 1/u where p = a/u < 1.
If every customer is to be assigned to one of two nén~preemptive priority
classes the problem arises of how to allocate priorities to arrivals on the
basis of their service time requirements so as to minimize the overall mean
waiting time.

Suppose a rule for 'allocating priorities is specified so that the

priority function

P(x) = PE:classifying a customer into class 1 |S = x:]

can be defined, where this probability is independent of the classification
of all previous arrivals. Let Sj(x) be the distribution function of the
service time of alj—unit corresponding to this rule (j=1,2). Then, by

Bayes! Theorem for continuocus distributions,
¥ 2



X ' X = n

I, P(w) dS(u) ro C1-P(w) ] as(w)
= and S,(x) = ~
Jo B(w dS(u) 1- / B(u) dS(u)

Sy (x) =

(where x30)

Also, customers of each class arrive at random with rates

Ay

[}

A f: P(u) dS(u) for class 1

and Ag T A = X f: P(u) dS(u) for class 2

Equation (13) gives the overall mean waiting time

ELS ] A
- l
E[W] 2 L 1';1 (l“pz)(i"pi_‘pz)n]

» B2 [D(1-p) 77 P(w) aS(w) + 1 = /7 P(u) ds(w)]

2(1=p) (1=a IZ u P{u) as(u))

» E[[827]
T oIy
where
1-0 fZ P(u) dS(u)
R = — (15)
1-2 jo u P(u) ds(u)
Note that

(1) R is the reduction factor:

if P(x) =0or P(x) =1 thenR =1 and

_ x E[[S2]]
E(W] = S
2(1-p)
This corresponds to an ordinary M/G/1 queue with all customers in a single
class and the first-come first-served discipline.

{(1ii) The case



10.

P(x) = ¢+ TS XL gry) a1 - ™™
0 otherwise

X 3 0, where ¢ 1s a non-negative constant, is considered in Cox and Smith
[57]. page 86, and it will be shown that this priority function (which
corresponds to putting all customers with service times less than some con-
stant into the priority class) is the optimum form for P(x) for any dis-
tribution of service times.

(iii) Allocating priorities in this way leads to an improvement in the mean
waiting time if and only if R « 1,

J_u P(u) dS(u)

>

i.e. iff 1
ad

O 2
f: P(u) das(u)
i.e. iff the overall mean service time > mean service time of l-units.
l & 3 3 .
The truth of the statement in note (1i) will now be established:-
Given any continuous priority function G(x), (x:C, QéG(X){l), it seems in-

tuitively reasonable to suppose there exists an optimum cutoff o such that

the priority function

G(x) Ogxge

P(x) = N\ G

0 otherwise
minimizes R. For any cutoff c,

1-p fg G(u) ds(u)

R = R{c) = (16)

1-3 /g u 6(u) dS(u)
Setting dR/dc = O gives an equation for Cgi=

c
Ci-a s uaw aswl -0 6ley) S'(ey)]

C
= 1= s 0 0w asw?] [- aeg 6ley) S'(ey)]]

Hence, if G(cG) Sf(cG) # 0,



1i.

uc =1 c o]
G~ a %
= = e /g G(u) ds(u) Joou G(u) 4as(u)
e a
= Cq jo G(u) ds{u) - ¢ o G(u) dS(u)

CG X
+ fo fo G(u) dS{u) dx

CG X
s 7o G(u) dS(u) dx (17)

It follows that c. > 1/v.

G
From (17)3

c Ch
uepLl = p IOG G(u) ds(u) | = 1 = 2 fou u G(u) das(u)

and hence, if the optimum R for this priority function G(x) is denoted by

RGs

2 (18)
and this can easily be seen to be a minimum value of R by considering the
behaviour of the second derivative. Equation (18) implies that the optimal

function for P(x) is one which maximizes Cqs the optimum cutoff.

Consider the function H{x) 1. The optimum cutoff Cy for this funct-

ion satisfiles the equation

¢ u=-1 c c

e =gy s M asw

o H
A " “H

fo u dS(u) (19)

Then if K(x) is any other possible priority function with optimum cutoff Cys

C =1 c ¢
X  kow) asw) - r X u ko) das(u) (20)

Subtracting equation (19) and (20) gives



12.

uleg-cy ) ¢ °x

s (epmey) fOK K(u) dS(u) + J_° (ey=u) K(u) aS(u)

°H
+ [ (umey) dS(u)

Therefore

1 % k
(_cK-cH) (B— - fo K(u) dS(u)) = J'O ' (cH=u) K(u) das(u)

H
t 7, (u=cH) as(u) (21)

Suppose g > Cpp then the left-hand side is strictly positive whilst the

right-hand side is equal to

c c
fOH (emu) Tk - 17] as(u) + ICE (cy=u) K(u) ds(u)

which is negative: a contradiction. It follows that for any other possible

prierity function K(x), c c The optimum priority function must be

K< °H

therefore,
P(x) = zé 0% X

othe: se

where ¢ satisfies the equation

cu=1 L= c _ c
= =e S ds(u) Jou ds(u) (22)
Note: For expenential service times S(x) = 1 - e=ux, X > 0 and equation (22)
becomes
‘UE
sl- :pe
ou - 1= S (23)

At the optimum, the mean waiting time equals



13.

» E[[8?77]
= L I— et e o
ECW]] sy Ro ?Eigia - (24)

This is the special case considered in Cox and Smith [(5_].

1.3 Arrivals with Estimated Serviee Times -

In most practical situations it is extremely unlikely that the service
time of a customer can be exactly predicted on his arrival, and sc the
optimum rule of the last section cannot be implemented. However it is quite
plausible that on arrival an estimate Y can be made of a customer's service
time: the effect of having only this imperfect information will now be con-
sidered. |

The model is assumed to be the same as before: arrivals at random with
rate i, service time p.d.f. f(x), x 3 O with mean 1/u and p = A/ < 1.
Suppose that all customers with estimates Y g c are given'non-preemptive

priority over all other customers. Then

P(x) =P[Ygc| x]

= [ fy|s (y3x) dy
where fYIS (y3;x) is the conditional distribution of the estimate given the
true service time S. Equatign (15) gives

1-p f; f(x) P(x) dx

R =
1-A S X f(x) P(x) dx
.C o

_ 1=-p J=w fO fSY(xsy) dx dy (25)

_ c \

=X S 2, [ ¥ fqy(x,y) dx dy

1-¢ fc fY(y) dy

i.e. R(e) = (26)

1-x S B v £u(n) dy



14,
By differentiation, the optimum cutoff c satisfies the equation
[:1 - A J'fmf; X fSY(x,y) dx dyj E= P IZ f‘SY(x,E) dx:]
=T1-o0 fif: Foy(%,¥) dx dyj. C-a J‘: X foy(x,8) ax_]

and therefore the minimum value of R(c) is given by

= . o/ SY(X c) dx
AP < SY(X’C) dx
E{ S
- L :I c.f. equation (18)
EL_S[Y"cj

A sufficient condition for a reduction in the mean waiting time by this
method of giving non-preemptive priority to certain customers on the basis
of their estimated service time requirements can easily be found:

If E[S|y_]_increases monotonically with y then

(a) R« 1 for any ¢

(b) R has a unique minimum provided E[ S|y | # M/u
Proof of (a):-

As E[:Slyj increases menotonically with y, for any cutoff c

12, ECSly] fyly) dy
(e}

17 BCsly] £ty ay -

S Tyly) dy

S E[S|lc] p[Y>c 1 - =-J“_‘_",OEI':.S'!y fo(y) dy
ool s> oT 0 [1- | 1y

o B0y » 0T - SE2 e ey )
=E[S|le ] PLY>c] -~ —— Jj__ E[Sly] fi(y) dy

LSle] P Yse ] !
/ . —
E[S|ly] F(y)le
= P[CY» ¢ ] LE[S|c] - Sy +
P[Y¥ge ] o
1 C d

P[ vsc] "



15.

Pl Y>c
_;E;___;_ fc d. E‘Esly] F(y) dy > O

- P[] ™ W

where F(y) = fﬁ_’w fy(u) du

As L - 1 LS|y fy(y) dy, it follows that

1-p /2 £y(y) dy
( -
R(ec) = 5 < 1
12 2, ELSly]) f£y(y) ay

Proof of (b):-

From equation (26)

f(c)
dR Y . c
= = : (-0 +a0 J_ £ (y) E[S|y_]ay
de (-x s2) r(y) ECCS|yay)? ¥

+ A E[(S]e] - a0 E[(S|e] PLY g c]}

v (c)
- 2 H ¢} Sa.y:
c
{1-x /2, £,(y) E[s|y_Jay}?

At any root of dR/dec, H(c) = O.
Also for any c;

dH(c) . d

dc ‘A{l‘chiéc:}a—c‘EESICj>O as p < 1

- Therefore dR/dc has at most one root. Either EEﬁlcj = 1/u for all c, in
which case R(c¢) = 1 and H(c) = O, or for c sufficiently large negative

E:SICJ < 1/u; but
52, £o(») ECslyJdy < ECsle] PLY & o]

and therefore

Now



16.
H(e) = a E[8le] - p + 02 - 2 (E[S[c]] PLY g cJ + /s £y(y) ELS|yJay)
> (VE[S[e]] - o) (1 - 0} =20/, £,(y) E[S|yJay  (27)

For E[:S|y:] Z 1/n, there exists a c' sufficiently large such that

1
] oy
E S]c [ > . and then
{(x E| Slet ] = p} {1 =-p}>0

The last term on the right-hand side of (27) can be made as small as desired.
Thus, for sufficiently large c, H{c) > O and hence dR/dc > O (provided
EE:Siy:] 2 1/u). The function R(c) has therefore exactly one turning point

which must be a point of minimum value.

1.4 Examples

a) Exponential Service Times Estimated with a Normally Distributed
Error '

Suppose that service times are independently and identically distribut-

ed random variables with distribution function S(x) = 1 ~ e-ux, X 2 0 and
that the estimate Y of the service time requirement of a unit made on its

arrival is equal to S + Z, where

S is the true service time of the unit
S and Z are independent
and Z is distributed as N(0,02)

Then

and

2T o

)2
fSY(x,y) = 1 exp(-ux) exp ¢~ %ﬁ)——}
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Using this distribution gives

c ® (y=x)?
o 1o fSY(x"y) dx exp {- —%—’f——? dy dx

/

[e3

y = 57w exp(mux) s —==

v2n o o

(e 2
z f u exp(~ux) /.o e L EXP% QZL'id‘y dx
. 2 cm
e wl FL e
c/o _1 - ¥ i
= [I7 —= exp 5 {1 - exp(-uc+uey)!} dy

= ¢ (c/o) = exp i 20 - uc} ¢ (c/o~uo)
(28)

where

1 £2
o(y) = f‘?’_w —— expi 5=
S 2

Similarly

o0 .1l S /c
f_wloxf‘s.y(x,y)dxdy- . @(

Substituting in (25) gives
2,2
=i 4>( )H\ expi}‘-é-(l— =uC~I( ¢<% -uo)
R(c) =
u=a ¢Z )-A(u202=uc=1)expi-—-—-—- -uc} Z-— —pc) + Aug exp{ {

Setting dR/dc = O gives an eguation for the optimum cutoff c:-

0 = a{d(c/o=uo)}? + {u = Ad(c/0)} {(l=pc+u202) ¢(c/o~uo)

Uug

V=

exp(~Y(c/o-u0)?)} expluc-u2g2/2)

al
S
+
V
-
Q
)
]
Q
]
i
~—
g
k=
SN
Q
N
]
c
le)
w
o
Slo
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Without loss of generality, A can be taken to be unity. Numerical values of
¢ and the minimum mean waiting time W for various values of 1/u (the traffic
intensity) and o are given in Table 1. (The special case ¢ = O is covered
in Cox and Smith [ 5_]). From Table 1 it can be seen that quite consider-
able reductions in the mean waiting time are possible when the traffic in-
tensity is large when even very rough estimation is valuable. Clearly fbr
any particular problem, costs could be assigned to the method of estimation
and to the waiting time of customers and the optimum ¢ to miéimize costs
obtained. It is perhaps worth mentioning that the restriction to unbiased
estimates is unnecessary: a monotonic function of Y would yield the same

minimum value of R.



TABLE 1
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The lower value in each classification is the minimum mean waiting time;

the upper value is the optimum cutoff, c.

Analogous tables for the
various preemptive disciplines could also be constructed.

first come Non=-preemptive priority: 2 priority classes
p
first=served =0 0=0.01 | 0=0.1 0=0.3 0=0.5 0z].0
.34 0.34 0.37 0.50 0.59 Q.71
0.3
0.129 0.113 0.113 0.114 0,117 0.120 0.124
0.6l 0.64 0.66 0.79 0.93 1.19
0.5
0.5 0.391 0.391 0.392 0.402 0.416 0,443
1.06 1.06 1.07 1.17 1,33 1.73
0.7
1.633. 1.079 1.079 1.082 1.101 1.139 1.248
1.89 1.89 1.90 1.96 2.10 2.61
0.9
8.1 3.855 3,855 3,861 3.909 4,007 4, uy7
2,40 2.40 2,40 2.U6 2.58 3.10
0.95 _
18.05 7.153 7.153 7.162 7,239 7.395 8.160
3,59 3,59 3.60 3.65 3.75 4,24
0.99
98.01 27.C10 { 27.010 } 27.038 { 27.259 | 27.712 30.0
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(b) A Bivariate Exponential Distribution for the Service Time and
Estimate

In Downton [6] a bivariate exponential distribution (S,Y) which seems
suitable for the joint distribution of the service time and estimate is con-

sidered. Some of its properties are as follows:

(1)

- = 5. i
W(s1,8p) = B e 1% L
(u+81) (u'+8y)=a 878,

where u, u' are strictly positive and a, the correlation coefficient, is

restricted to 0 g a ¢ 1.

<

~
-y - !

(ii) the marginal distributions of S and Y are pe ** (x20) and u'e™ Y (y20)

respectively.

(iii)

v

E[s|ly] = éig + au“ y i.e. E[S|y_] increases

monotonically with y,

(iv)

var[ Y|x_] = ﬁ:a [:ﬁ:a +..?3Exi]

i.e. var[:le:] increases with X, and in this respect this distribution is
more realistic than that considered in example (a).

Substituting in equation (26) gives

R(c) = 1-p+p exp(-u'c)
1-p+p exp(=~u'c)+cpa n' exp(-u'e)

Setting dR/dc = O gives an equation for c:
o exp(-u'c) = (1-p) (p'c-1) - (30)

This is a natural two dimensional generalisation of the eguation in Cox and
Smith 5:], page 86 (and glven as equation (23) above) for the case of

perfect information.
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It follows from (30) that the optimum cutoff c is independent of the
correlation a, and the minimum reduction factor is 1/(l=a+a u'c).
For a = 1, this reduces to 1/u'c c.f. equation (18).
For o = O, it takes the value 1 - the estimate Y then giving no information

about the value of S.

1.5 An Infinite Number of Non-Preemptive Priority Classes

Proceeding as in Section 1.3, suppose arrivals occur at fandom with
rate A and have service times which are independently and identically dis-
tributed random variables with p.d.f. f(x), x 3 O and mean 1/u, where
p = A/u < 1. On arrival an estimate Y is made of the service time require-
ment of a unit, and at every departure epoch the server selects for service
that unit waiting in the queue with the lowest estimate. Let fSY(x,y)
(x30, ~=<y<+=} denote the joint distribution of the service time S and

estimate Y. Then

u

Qly') = P[arrival has estimate g y']

I AR Y
= [ fo fSY(x,y) dx dy = /7 _ fY(y) dy
Sy(x’) =P(Sgx' | Y=y

13

X!

IH

E[8 2] =/ %2 ¢

SIY(X;y) dx

e[S 2] dly) = 17T T %2 £ (x,y) dx dy
J v ML

e

Thus equation (12) becomes

Ajf;:fo x? Loy (x,y) dx dy

T e
2010 1Y 707 x fgu(xoydaxdy ] -0 1Y 17 x £y (x,y)dxdy ]

E[W(y"] =
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Provided y' is a continuity point of F(y) = fs_’m fY(u) du,

; »ECs2]
EEW(Y!)J = T o (31)
2C1-r Y 1% % £oy(x,y) dx dy]?

The overall mean waiting time is, therefore

ECW] = /70 EQWGy) ] £y,(v") dy

o EESZj j f fSY(x,y ) dx
C1x /2 f X foy(X,y) dy dx_]2
(32)

f(x) . y=x

0] otherwise and (31)

For the case of perfect information fsv(x,y) = i
reduces to (14).
Numerical results for either of the two joint distributions discussed

in the last section could be calculated. In the case of example (a), (32)

y2a2
exp (ié-c- ---..az) ¢ (E ﬂf) dz

becomes

ElL W .
E j j Ll-p 8(z/0)=2(uo2=-1/u~2)exp(+ -uz) (— -l@ + Ao exp( )

For ¢ = O this has been tabulated by Schrage and Miller ]:16] » Values for
various non-zero values of ¢ are given in Table 2. Without loss of general-

ity ) has been set equal to unity, the traffic intensity p» then being 1/u.



TABLE. 2

Values of the mean waiting time for a continuous number of

non-preemptive priority classes; priority classification is

on the basis of an estimate with normal error.

The format

is the same as for Tsble 1 for two priority classes with

which it should be compared.

’ 0 0.01 0.1 0.3 0.5 1.0
0.3 0.108 0.108 0,109 0.113 0.117 0.121
0.5 0,356 5;356 0.359 0.372 { 0.388 0.421
0.7 0.919 0.919 0.923 0.951 d=§9u 1.116
0.9 2.877 2=é77 2né86 2.947 3.057 2.482
0.95 5.001 5.001 5.013 5.099 5-259 5.945
0.99 | 17.276 | 17.276 | 17.300 { 17.483 | 17.841 | 19.553

25.
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CHAPTER 2

Discretionary Queues

2.1 Basic Results

The discretionary discipline was first introduced by Avi-Itzhak, Brosh
and Naor [:l:] who gave a solution for the case of constant service times;
the first published solution for general service times for thé special case
of early preemption is in Jaiswal [:8:]. By considering the-genefal stoch-
astic process as a sequence of alternating busy and idle periods, Jaiswal
derives all the main properties of the process including the Laplace-
Stieltjes transforms of the busy period distribution, the waiting time dis-
tribution and the transient generating function of queue length probabilit-
ies. Since the work for this chapter was completed, Balachandran [:2:] has
given a method for deriving the mean waiting time of units in more general
discretiongry queues. A.simple method will be given in this section for
deniving the Laplace-Stieltjes transform of the waiting time of units in
such queues and this is extended in Section 2.4 to derive properties of a
discretionary queue based on estimated remaining service time.

Suppose all arrivals belong to one of two types and that type i-units
(i=1,2) arrive at random with rate A; and have service times which are i.i.d.
random yariables with distribution function Si(x), x 20, mean 1/u,. lLet

i
Py = Ai/ui where p; + py < 1. If E(S,;~2|S,>z) regarded as a function of z
has the shape shown in Figure 1 (which could happen if S, is the mixture of
two distributions with differing means for example), then the server may

conform to the following discretionary rule with regard to a l-unit arriving



?E(sz‘z 1S,>2) -

FIGURE 1

Z, 2

to find a 2-unit in service:-

if S;' g 21 or S;' > z; thefl-unit preempts the 2-unit from service,
the 2-unit resuming its service when there are no l-units left in the
system.

if zy < S3' & 22 ‘the non-preemptive rule is followed. (Where Sy!
denotes the time the 2-unit has already spent in service when the l-unit
arrives).

The discretionary rule is thus a mixture of the non-preemptive and

preemptive resume priority disciplines.

Waiting Time of l-units

Suppose a 2-unit arrives at time t and has service time S,; then with-
out affecting W,;, the waiting time of l-units,
if S5 & 7y the 2-unit can be ignored (because any l-unit arriv-
ing would preempt it from service).
if z; < S; & 2 the 2-unit can be replaced by an ordinary non-
preemptive 2-unit arriving at time v + z; and having
service time S; - z;.

if 2z, <« Sy the 2-unit can be replaced by an ordinary non-
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preemptive 2-unit arriving at time 1t + z; and having
service time z, - 2;.
Thus W, can be evaluated from the results for an ordinary two-class non-
preemptive queue in which:
l-units arrive at random with rate A; and have service times which are
i.i.d. random variables with distribution function 8,(x), x 3 0.
2~units arrive at random with rate A,P ESZ > le and have service
times T, which are i.i.d. random variables with distribution function T, (y)

given by

T, (y) = So(y+z1)=So(z;) 0<y< 2 -2

PESz>le
P[CSy2, ]
with the remaining probability ————————— 1in a spike at Ty = 2z, - 2;.
PESz>Z1]

Therefore

e“21 f:f e X 4S,(x) e~8(22721) p Sp>25 ]

+ ~
P[(82>21] PS>z

EEe-Ssz =
(1)

and
I (x2,) 48,(x)+(2p-21) P[22,

PS>z, ]

The traffic intensity for units in this modified queue is

[T, -

(2)

Az.PESz > leoEETZ] = Ag fﬁf (x~21) 4Sy(x) + Ax(22-2,) PESz > sz

Therefore, by the usual formula for the Laplace-Stieltjes transform of the
waiting time of l-units in a 2-class non-preemptive queue (see equation (7)

of Chapter 1)
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{s + Al §1(S) - -)\1} EEe'SWIj =
{1-p1-%7 fzf (X-zl)dsz(x)—xz(zz-z])P[:Sz>z2:]}s+A2{P[:SZ>zl:]-e 523 fZ? e %48, (x)

and

\ E[8)2 ]+ f§2 (x=21)2 dSy(x)+r5(25-21)2 P[[Sy>z5 ]
EEle = _ 1 5(To7T)

(5)

Waiting and Completion Time of 2-units

Clearly the waiting time of a 2-unit W, in a discretionary queue is the
same as in other priority queues in which the priority discipline does not

affect the length of busy periods (i.e. non-preemptive and preemptive resume).

Therefore
EEe-SWZJ - -(l-pL_gQ)(s'f}\]'il El(s)) - (6)
S+A1=Ay Bl(S)"Z AiEl-Si(S+}\1-)\1 Bl(S))]
i=1
and
M E[S12.]+xs E[C8,2]]
LW, ] = 2(1-p1)(1-p1-p2) (7)

where B; equals the length of a busy period in a queue consisting of l-units
only.

. -SBI - . . . .

l.e, E[:e :] = B, (s) is the root with smallest absolute value in z of the

equation

W]
1

1{sth1-212) (8)

and hence E[ B, ] = (1/u1)/(1-py).
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Let C denote the completion time of a 2-unit (this term was introduced
by Gaver [_7_] and denotes the time from the commencement to the termination
of the service of a 2-unit including interruptions). The length of an in-
terruption or preemption equals B; (the length of a busy period in a queue
of 1-units only) and the times from the end of an interruption to the next
l-arrival are i.i.d. random variables, density A;exp(-iix), x > O. Thus,

if N denotes the number of interruptions during the service time of a 2-unit,
ECe™C | N, 5,7 = e 52 By (e) Y

There are three cases to consider:

if S; € 23 preemptions can occur throughout S,.

if zy; < S, & 2, preemptions can only occur during the initial period
of length z; of the 2-unit's service.

if Sy > zy any l-units arriving during the nen-preemptive part
of a 2-unit's service will queue up and preempt the
2-unit after it has spent a time z, at the server.
The total completion time for this case is therefore
just the same as if the 2-unit behaved as an ordinary

preemptive resume unit.

Therefore
(e'tsz Z B, ()" -A.ll-s-z')— e~A152 S, € 7
n=0 '
co n
- - = -
ELe™%|s,] = ) 72 Zb CBi()]" Q#?'LL e 171 2] < 82 € 22
n=

n=0
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exp_-t S - Ay Sp(1-By¢eN7] Sz & 2y
= Yexp[[-t S; = Ay 21(1-By ()] z] < Sy & 22
exp[_ -t S; = Ay Sp(1-B, (£))7] z2y < S

Unconditionally:

ELe™™T = /21 exp[l-tx - 1yx(1-By (£1) ] dS,(x)
+ exp[_- Az (1-By (£))] igf exp(-tx) dS,(x) (9)
+ fzz exp[_- tx - ,x(1-B; (£))7] dS,(x)

and similarly, or by differentiating (9),

ECc] = /2 [x + %_‘EJJ dS,(x) + fgf [x + %J:EJ{] ds, (x)

+ r= 5__lf1 aS, (x)

P

= L Ll 2 22 %

= Lt T [/a! x dSa(x) + [2 21:85(x) + 1, X aSz (x)_]
R VATT S 3 Zy o

= I, T-07 le (x-2z1) dS,(x) (10)

2.2 Early Preemption: the Optimal Policy

Letting z, + = gives the particular discipline considered by Jaiswal
[8]:-

if the service time already received by a 2-unit is less than or egqual
to z, a l-unit arniving preempts the 2-unit from service.

if the service time received by the 2-unit is greater than z, the non-
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preemptive rule is followed.

By equations (4) and (5)

. © - ) N _ SZ 'm -SX
eLeoy . (i fy () (0len LS e] e /) e e, (00)
s+A1 S1(s)=-)\
(11)
and
_ r E[[8)2 ]+, f°z° (x~2)2 dS,(x)

E[w] = 5(T=07) - (12)

By equations (7) and (10)

% E[5:2 ]+ B[S, ]

E[:Wz:] = 2(1=py ) (1=p,=p5) (13)
E[¢] - %{-‘%2:. - B 7y (xme) 45 (0) (14)

The overall mean time in the system FZ(DE), (where DE refers to the disci-
pline: discretionary with early preemption) is therefore

A2 ELS12 ] #a1h, S (x=2)2 dS,(x)

- P2 _
FZ(DE) = pp + T-p7 + — 5(T557)
MAz E[(812+422 E[(S,%7] o1h, o
+ -~ = 220 7 (x-z) dS,(x)
2(1-p1)(1=py=p>2) l-p) "z
- . A A 1 . -2 §q, _ _1.__ @ -
F(PR) + -J-Jnl_p] {% S, (x-2)% dSy(x) > I, (x-2) dS;(x)}
(15)
where
M2 E[S,2] ‘A E[[S127 4202 E[[82%]]
F(PR) = p; + P2 4

2(1=p;) ¥ 1-p) 2(1=p1)(1=p)-p2)

is the overall mean time in the system in an ordinary preemptive resume (PR)

queue.
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Note that FO(DE) = F(NP) and Lim FZ(DE) = F(PR) where NP is an abbreviation
Z—)-OO
for non-preemptive.

Differentiating (15) with respect to z gives

d F_(DE) .
Z - M [ Lo B
= L IZ (X Z) dSZ(X) + o jZ dSZ(X)J

dz 1-p 1

- MAr p i . -
l‘D] PL_Sz > Zj %Ui EESZ ZISZ > Z: }
Therefore, at a stationary point of FZ(DE), z satisfies the equation
1/uy = E[S; - 2|8y > z_] (16)

Differentiating again

d* F,(DE) Ahg . 1

A solution z of equation (16) is therefore a point of minimum value iff

fg dSz(X) fz (X-E) dSz(X)

1

1 - -
= s D = 2

¢2(2) <, (z) N PS>z -

(where ¢2(E) is the age specific failure rate of the service time of a 2-

unit).

[N ]

. . d
i.e. 1iff & EE:SZ - z|S; » z:] <0 at z =
Similarly it is a point of maximum value iff
L g[S, - 208, > 27 » O at z =z
dz, 2 122 -

The solution of equation (16) for the distributiens E. D, Mand
rectangular is discussed in Jaiswal [:8:]: It is perhaps worth mentioning

that for the exponential distributian Sp(x) = 1 - exp(-uzx), x > O,
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E[S; - z|S; > z_] equals 1/u, for all z; the optimum discipline in this
case is therefore either preemptive resume (z==) or non-preemptive (z=0)

depending on the relative mean service times of the two types of units.

2.3 Late Preemption: the Optimal Policy

If E[S; - z|S; > z_] is a monotonic increasing function of z then
equation (16-) gives as its only finite selutien a point of maximum of FZ(DE).
This suggests that for such a situation the optimum discretionary rule is
the converse of that discussed in Section 2.2: 1i.e. the l-unit preempts the
2-unit only if the service already received by the latter is GREATER than
z. The properties of this model can be obtained by setting z, = O in

Section 2.1. From eguations (4) and (5)

{8+ §y(s) - 0} E[e™17)
= {1l =p; =Xy fﬁ X dSy(x) = Azz f: ds,(x)} s

+ g (1= /2 ™ a5,(x) - 77217 d5,(x)) (17)

A EDS120 + ag /2 x2 aS,(x) + 2 22/, dSp(x)
Ecwlj =. 2(1-01) (18)

From equation (10)

- Ll _ _p1 z
EEC] i Too7 fOdez(X) (19)

combining these equations gives the overall mean residence time in the

system



33.

M2 E[812 #0415 %2 dSp(x)4h 12022 /7 dSp(x)

- P2
FZ(DL) et 1-p, * ) 2(1-p;)
Al)‘Z EES]2]+'}\22 EESZZZ 01A 2
* (157 (15 1-53) - Ty fox 8™

A
=01

(20)
where DL is used as an abbreviation for 'discretionary rule with late
preemption'.
Note that FO(DL) = F(PR) and Lim FZ(DL) = F(NP).

70

Differentiating (20) gives

d F (DL)
2 - Mo o _ 2 89(z)
iz T p) { z/, ds, (x) ——Tﬁ?—-—

Therefore dFZ(DL)/dz = 0 implies

z2=0,2=m® .or ¢2(Z) = _._.S.Zg.ﬂ.. = (21)

P[:Sz>z:J

(¢2(z) is the age specific failure rate of S,. This compares with equation

(16). Note that

1 = . o o N l_
[t - 75 axan - )

d2F (DL)
4 = Mo . - - L -z 4
dz? T 1-py i [y 882(x) = 2 82(2) M) 52(2) up dz
At the third solution, z, say, ¢2(zo) =y and
dZFZ(DL) Al)\zzo 1 d
37 = - T, §52(ZO) + -u—l- az SZ(ZO)}
- /
~p1A22 fw dSz(X)
oz d ¢2(z,)

1-p, ' dz

{n
N

2 ©
F(PR) + -%1-2 i}& fz x2 dSp(x) + %— I, ds,(x) - %T -I§ x dSp(x)

~~
s

S

|
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because

doy(z) . dsp(z)/dz . __{s5(z)}?

dz P[TS,527] {P[Sy>z_]}2

dSz(ZO)/dZ + 1 Sz(zo)
= atz=zo

P ESz>Zoj

Therefore, if ¢,(z) is decreasing at the third solution it gives a point of

minimum value of FZ(DL)°

2.4 Discretionary Rule Based on the Estimated Remaining Service Time

Consider the alternative discretionary rule: whenever a l-unit arrives
to find a 2-unit in service

if the 2-unit still requires time greater than z to complete its service
the l-unit preempts the 2~unit, from service.

if the 2-unit still requires time less than or equal to z to complete
service the non-preemptive rule is fallowed. |

Suppose-a 2-unit arrives at time t and has service time S,; then, with—
out affecting W, the waiting time of a l-unit

if S, > z, the 2-unit can be replaced by an ofdinary non-preemptive
2-unit arriving at time 1t + S, - z and having service time z.

if S; ¢ z, the 2-unit behaves as an ordinary non-preemptive unitﬁ

For this situation it is slightly more difficult to check that tﬁe
modified 2-units still arrive at random: the procedure below utilizes the
results of Vere-Jones [ 22].
Definitipn: For a stochastic peint precess mn, characterised by the counting
measure N(.), the PROBABILITY GENERATING FUNCTIONAL GI:rC] is defined by the
equation

6[Ch] = Efexp s log h(t) aN(t)} = E{n h(t,)}
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where the {ti} are the epochs of events and, to ensure convergence,
1- h(t) e L(n), the class of functions g satisfying O ¢ g(t) < 1 for every

t and

/ g(t) M(dt) < =

(M(+) denotes the first moment measure of =, i.e. M(I) is the expected number
of events during the interval I). Theorem (Vere-Jones [_22_], page 327).
If m;, 7o are the input and output streams for the queue GI/G/«, the corres-

ponding p.g.fls. are related by the equation
6o (Ch] = 6 Ce] (22)

where

g(t) = f: h(t+x) dR(x) (23)

and F(x) is the distribution function of the service time. Both sides of
(22) are well defined provided 1 - h(t) & L{r,) and f: M(I-x) dF(x) is con~
vergent for all finite intervals I. (I-x denotes the interval I translated
to the left by a distance x).

Proof: An arrival at 1; generates a departure at ri’ = 1; + 3; where Si has

distribution function F(x). The p.g.fl. of the departure is

fo08 — o T i (S ) N . Ny
g(t3) = G hl1, ] = 7 (%) dF(x) = EJ[h(x;+85) ]

- Es denoting expectation taken over the variable Sia Thus

G,[n7] = E {g h(z;")}

1

u

E {m g(z:)}
i 1

¢ Ce]

1]
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It remains to check that 1 - g(t) ¢ L(w;). As

1 - g(t) = /5 {1 - h(t+x)} dF(x)

this condition is satisfied provided that 1 - h(t) is integrable with respect

to the measure which assigns to the interval I the value

f: M(I-x) dF(x)

Corollary (first proved by Mirasol E'lsj)... The output of the M/G/= queue

is Poisson with rate equal to the input rate A.

Proof:
¢ e = expl- s (1-g(t)) A dt}
Therefore
6;[h] = 6]

= exp{- /, C1- f: h(t+x) dF(x)_] A dt}

= exp{- /, /o [C1 - h(t+x)] A dF(x) db}

= expl= /. /o [1 - h(t)] A &F(x) at)

= expl- s/, 1 - h(t)] A at}
As the p.g.fl. uniquely determines the process, the output is a Poisson
process, rate \. Q.E.D.

Using this corollary it follows directly that the medified 2-units
arrive in a Poisson process rate A and have service times 1, which are i.i.d.

random variables with distribution function T,(y) given by

To(y) = Sy(y) Ogy«<z
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with the remaining probability f°Z° dS,(y) in a spike at T, = z. Therefore
Z N
E]:sz = fo X dSy(x) + z PESz > z:

From equations (8) and (13) of Chapter 1

M E[8:12] #2172 x2 a8, (x)+22 P[[Sp>2]}
2(1-p1)

ECwW, 7]

>\1 EESlzj'f')\z EESzzj
EEWZ.] - 2(1‘91)(1'91"92)

The Laplace-Stieltjes transforms could also be written down. The completion

time C can be found in the usual way:=-

exp_-tS;_] 0g S sz

exp[_-tSy; - M (S3~2)(1-By(¢))] = Sy > z

Ete_tc 1S,] =

EEe_th = fg exp(-tx) dSy(x) + f: exp[C- tx = ay(x-2) (1-By(£))] dSz(x)
Also

E[c] = &= + T—'L' I, (x=2) dSa(x)

The overall mean time in the system is, therefore (where DR is &n abbreviat-
ion for 'discretionary rule based on remaining service time'):-

A12 EE312]+)‘1}‘2 {f(z) x2 dSZ(X)+Z2 f: dSz(X)} .
+ +
Pl 2(1-p7) P2

FZ(DR)

EE 23 +:&22 EESZZ:I
2(1=py)(1=p1=p2)

T An
l. L

+ %J_AZ f (x-z) dSp(x) +

: 2
A1 A Z 5 z ® _ oz w
F(PR) + —L"’-l_pl iyz Jo X dSs (x) + 5 /, ds, (x) o I, ds, (x)

- %‘T fzxdsz(x)i -2
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Note that FO(DR) = F(PR) and Lim FZ(DR) = F(NP). The optimum value of z is
Z—)OO
obtained from

d F_(DR)
Z - Mo _ 1 L -

ie. z2=1/py; oOr 2z = e

d2 F_(DR)
z LY - -1 o
dz? T 1-p, 1 (Z ul) s2(x) + f, dS3(x)

which is positive at z = 1/y;.

z = 1/u; is therefore a point of minimum value of FZ(DR)Q

Consider now the situation of Section 1.3: on arrival an estimate Y,
independent of all previous estimates, is made of S, the service time of a
2-unit, Let g(x,y) denote the joint density function of (S,,Y). The dis-
cretionary rule discussed above now becomes:

whenever a l-unit arrives to find a 2-unit in service, if the time al-
ready spent in service by the 2-unit subtracted from its estimated
total service time Y is greater than z, then the l-unit preenmpts the

2-unit from service; otherwise the non-preemptive rule is followed.
Note: this correspoéds to a discretionary rule based on the estimatéd
remaining service time of a 2-unit. In practice it is mere likely that as
the service of a 2-unit broceeds, the variance of the estimate of the re-
maining service time will decrease and that for a given 2-unit the estimat-
ion procedure will be carried out mere than once - in fact, as many times
as the number of l-units which arrive during its service. However, this

problem does not appear amenable to solution.

Properties_of l-units

Assuming that after an interruption a 2-unit resumes its service at the
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point it was interrupted, the distribution of W, is the same as in an ordin-

ary priority queue

A E[8,27]+x; E[0S,2]

ie. BLW] - 2(1-py)(1-py=pp) (25)

To evaluate the completion time C of a 2~-unit with service time S, and

estimate Y, note that

if Ygz C=35,
if z <Ygz+ S, interruptions occur during ¥ - z
if z+8, <Y interruptions occur during the whole service time
S2
Therefore, if as before 5,(t) = E[e™BY] where B, is the length of a busy

peried in a queue composed of l-units only,

expE-tSzj Ygz
EEe‘tClsz,Y] = Cexp[ -tS; - A (Y-2) (1-B,(£))]] z<Y¥gz+S
exp[_-tS; - Ay Sp(1-By(£))]] zZ + S, < ¥

Unconditionally: -

'
[
—

EEe-th o exp(-tx) g(x,y) dy dx

+ f°o° f?'x exp[_-tx - Ay (y-z) (1-B) ()] &(x,y) dy dx
+ ;; j:+x exp[_-tx - Ax (1-B; ()] elx,y) dy dx

and

= L P1 [ ZHX o o
ELC] = &+ g8 U5 7 m) ety dy ax + sg S x g(xy) dy dxd

(26)
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Eroperties of 2~units

Suppose a 2-unit arrives at time 1, then without affecting Wy,

(1) if Yg¢ z it can be replaced by an ordinary non-preemptive
o unit.
(ii) if 2z < Y ¢ z + 8, it can be replaced by a non-preemptive unit with

service time S, - Y + z and arriving at epoch
T +Y -z

(iii) if z + 8, < ¥ it can be ignored as it behaves like an ordinary

preemptive resume unit.

Units in group (i) arrive at random with rate

r 10 1% e(x,y) dy ax

and have service times which afe i.i.d. random variables with density

/% glt,y) dy

s(t) = =

75 52, Elxy) dy ax b0 en

W

Using the result of Mirasol, units in group (ii) arrive at random with

rate

(@ Z+X

AZ Jo fZ g(x,y) dy dx

and have service times which are i.i.d. random variables with density

I, &s, |y (t+y-z3y) gY(y) dy

s(t) = t 20
) + ,
fo fz X g(x,y) dy dx
S, glt+y-2,y) dy
= -} 5z+x t >/ o (28)
fo fz g(x,y) dy dx

Therefore, the distribution of Wy is the same as in a 2-class non-preemptive

queue in which
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l-units arrive at random with rate A, and have service times S, which
are i.i.d. randem variables, d.f. S;(x)

2-units arrive at rapdom with rate

)\zfm Ztx

o Juw E(X,¥) dy dx

and have service times T, which are i.i.d. random variables with density

1% 8(u,y) dy+f, gluty-z,y) dy

55 2 glx,y) dy ax

tz(U-) =

By equation (8) of Chapter 1

2(1-py) ECW ] =y EL$127] + a200% 1%, u? glu,y) dy du

+ IZ f: u? g(uty-z,y) dy du}

A EE312: + A f: fi» u? g(u,y) dy du

+ Ap f; f§+x (x-y+2)2 g(x,y) dy dx
(29)

If the notation DRE is used to refer to this discretionary rule based on
estimated remaining service time, then by combining equatiens (25), (26) and

(29), the overall mean time in the system can be written as

C

ME[S12 ]+ a0{r77% x2g(x,y)dy dx+f;f:+x(x-y+z)2g(x3y)qy ax?}

F,, (DRE) T

p1 +

<+

1-p7 Ju o’ z

A1A2 EE312]+>\22 E:SZZZ

2(1-p1)(1-p1-p2)

1 o
P2 + MAo S sopErx (y=-z)g(x,y)dy dx +-¥— f;f +x X g(x,y)dy dx.}

LTV O x2
F(PR) + oo { TS %f 12 %2 g(x,y) dy dx
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y (22K )2 Lo o
AT, Geyiz)® g(xy)dy dx + T T (y-2) g(x,y)dy dx
+ L 27 x g(x,y) dy dx (30)
'8 0 " zZ+X ’
Note that
i) Lim F (DRE) = F(PR) 5 Lim FZ(DRE) = F(NP)
Z=—00 2 7%+

ii) 1In equation (30), setting g(x,y) = §(x,y) gx(x) where

N
AW\

Z _ {f(x) X
Io 8(x,y) £(y)dy = { 0 X

for any continuous function f, gives equation (24) the case of perfect in-

formation.

Differentiating equation (30) leads to

(x-y+z) glx,y) dy dx

dFZ(DRE) N A1A2 fw fZ+X
dz 1-p; o'z

1 o 7+X

al fo /s g(x,y) dy dx %

which vanishes at z = = agand

© zZ+X
1 fo fz (x=y+z) g(x,y)dy dx
M1 f: f§+x g(x,y)dy dx (31)

E[[S; - (Y-2) | 2 < Y { Sy + 2]

giving the optimum values for z.
Example
Consider the special case considered in Section 1.4(a):

S, has density wp exp(=-usx) X 30

Y=8,+U
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where S, and U are independent
and U has the distribution N(0,02).

Define V(NP), Vé(DR), VZ(DRE) by the general equation

F( . ) = F(PR) + 22 y( . )

1-p,
Then
E[S;2_]
1
V(NP) = -
(NP) 2 H1H2
o1 fi L -7 - -
= uz(ku ™ for S,(x) = 1 - exp(-usx)

(32)

2
-1y 2 2 z- > - &~
V,(DR) =} 1% x2 aSy(x) + &= 57 dSy(x) - Z= /7 dS;(x)

1 A
- ET fO X dSZ(X)

- the optimum z is 1/u;; denote the corresponding minimum value of VZ(DR)

by V(DR). It follows that

K - l/ul 2 _ 1 oo - 1 l/ul

V(DR) = ¥ 5Tt %2 dS,y(x) Ev fl/111 das, (x) o 5Tt x dSp(x)
S Y A S O - -1
= uz(u2 ™ exp(=uy/uy) ux) (33)

A

O for any up, uz

Similarly
- - - © 7 2
V(DRE) = el ¥ o 1o ¥ 8(x,y) dy dx
T SEE (xeyiz)2 g(x,y) dy dx + Lo g (y-z) g(x,y) dy dx
2 0’z y 3 ™ o’z gLX,
= S0 x alxy) dy ax (34)

My O Z+X

where z satisfies the equation
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© o 1
IO fz (’C- u—l') g(t+y-z,y) dy dt = O (31)

Substituting for g(t+y-z,y) in equation (31) leads to the following equation

for the optimum =z

H(z) = —— exp(=22/202) + (z=p,02-1/yy) B(z) = O (35)
/on

where B(z) = exp(-usz+uy202/2) ¢(z/0-uy0).

Also

. _H(z) _ B(2) 1{1 1. <?§)
VZ(DRE) = i s t Uz(uz Ul) A (35)

Numerical values of V(NP), V(DR) and V(DRE) calculated from these

equations are given in Table 3 which shows

(1) if 1/uy > 1/u; the optimum z first increases and then decreases as
o increases
(in this case V(PR) < V(NP)).
if 1/uy g 1/u; the optimum z increases
(in this case V(PR) 3 V(NP)).

(ii) as o increases, V increases.

(iii) if 1/u; is large, the reduction obtained in the mean waiting time is
less sensitive to changes in o.



55,

Table 3. Discretionary Rule based on the Remaining Service Time

In each classification the upper figure is the optimum z, the lower
figure is the minimum V where
F = F(PR) + 22
l"'p 1

(F is the overall mean time in the system).

(a) 1/p; = 0.5

] NON DISCRETIONARY
I PREEMPTIVE 0=0 0=0.1 0=0.5 0=1.0
0;5 0.5 0.520 0.741 0.869
0.0 -0.092 ~0.090 -0.064 -0,042
0.9 0.5 0.511 0.518 -0,020
0.36 -0.105 -0,102 -0.058 -0.021
0.95 0.5 0.511 0,504 ~-0.079
' 0.4275 -0.106 -0.103 -0.057 -0.020

(b) 1/u; = 0.9

0.5 0.9 0.920 1.351 2.260
0.2 - -0,241 ~0.241 -0.226 -0,210
0.9 0.9 0.911 1.129 1.371
' 0.0 -0.298 -0.296 -0.258 -0,197
0.95 0.9 - - 0.911 1.114- 1.312
0.0475 -0,302 -0,301 ~0.260 -95195

continued ... /



Table -3 continued ...

(C) 1/U1 = Ou95

0.5 0.95 0.970 1.411 2,374
-0.225 -0.262 -0.262 -0.248 -0.233
0.9 0.95 0.961 1.188 1.485
~0.045 -0. 327 -0.325 -0.288 -0.228
0.95 0.95 0.961 1,174 1.427
0.0 ~0.332 -0.330 -0,291 -0.226

46,
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CHAPTER 3

An E /G/1 Priority Queue

3.1 Introduction

Apart from a paper by Jaiswal and Thiruvengadam [:9] , ho attempts
appear to have been made at solving priority queues in which arrivals do not
occur at random. The assumption that non-priority and priority units arrive
in two independent renewal processes seems to prohibit any simple analysis -
see [:9:]; however, if the following simplified arrival process is consider-
ed:

arrival epochs form an ordinary renewal process (in the terminolégy of

Cox [:4:])'and at any arrival epoch, independently of what happened at

all previous epochs, with probability q, the arrival is a l-unit and

with probability q, a 2-unit
then the priority analogues of the ordinary single-server queues Eb/G/l (the
subject of this chapter) and GI/M/1 (Chapter U4) can be solved.

3.2 The Ordinary E /G/1 Queue

Consider an ordinary single-server first-come first-served queue in
which:
interarrival times are i.i.d. random variables with density

A (ax)P7L A \ ces s
—~ “(b-l)'u (x20, b is a pesitive integer)

and service times are i.i.d. positive random variables with distribution
function S(x) and independent of the interarrival times.
Erlang's phase device will be used.

let 1,'y 7', ... be the epochs of successive departures.
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)(1= queue size at rn" + 0
R" = phase of the arrival mechanism at rn' +0 (1 g i < b)
1l _ =
-u'-fode(x)
o = A/bu, the traffic intensity _
A, = P[[j phases arrive in S_] = s 00! das(x)
J J B o T !
Pl=pP[X=mR =r]|x =0 R =1
n < bm 1
"r(Z):m_ZOP?nI'Z lz] < 1

(omission of the superscript n will denote

The basic equations are, for 1 & r

n+l
wr(

© b
v 35 B

m=1 k=1
where
Define
- bi
Pv(z) - z z Abi+v
=0
Substituting in (1) gives, for 1

z) = {z PP (2) s

Notice that for -(b-1) g v ¢ -1

1]

"3 hy

m=1 k

e'Ax(Ax)b1+b+“ Zb(1+l)

the equilibrium distribution).

D,

<
~

o ph < bi
) = {kzzl ok? Eo 27 Apiap-1

,0(3-1)
i+p-k 2

(1)

(2)

S Vg

(3)

§rghb

S ()

i
[

(bi+b+u)!

e_Ax(Ax)bJ+v 2

as(x)

(bj+v)!

ds(x)
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J=0
= P (z) )
Also
z"; P(2) 2 = 5 :; 2 e asto
srge ijzo ??1) (?blif astx)
= §(x-rz) : (&)

where S(s) denotes the Laplace-Stieltjes transform of S(x). Finally, for

any finite constants aj; ..., o

Kk
b b b b=k
-1 k=1+]
zzla 27" P (z): & a z P, (z)
r=1 Ko1 K r-k k=1 jSok K J
b N bk
=Zakz { £ 22 P.(z)+ J 27 P.(2))
k=1 j=l-k J e J
-1 b-k .
= oy KL S 7 *P Pb+-(z) + S 23 P.(z)}
k=1 jil-k J jo Y
using (5)
b - b-1
= % o 2 E 2 P(2)
k=1 j=0 J
b
= 2_ ak Zk 1 S(}\-)\Z) (7)
n+l 2 n+l r=1
Define » ~(z) = § n, ~(z) 2
r=1 -~
Then, from (4) and (6):-
n+l b =
m(z) = {3 PL ) SG-az)
k=1 °
b b
1l n ol r-1
+ ;6 kgl (m " (2)=P) r§1 z P (2)
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Using (7)

"n+l(

b
n —
z) {kzi P} SG-az)

b
1 =,. n n k-1
+ = S(i-i2z) Z (m, (z)=P,) 2z
Zb k=1 k ok

b
—1-5 m(z) S(a-az) + '1'6 b ng(zb-zb'l) S(x-Az)
Z z k=1

Define n(z,w) = 2 ' (z) w", |w| < 1; then as n°(z) = 1, it follows that

n=0
-b b - b k=1, 3
1+wz 2 P (w(z'-z" ) S(i-Az)
- ok
a k=1
m(z,W) = 5o
1-wz = S(x=rz)
b = b b k-1
z +w S(A-xz) Z P (w)(z"-z" ")
- - (8)
Z -W S(A-Arz)
e 1 .n .
where Pok(w) = néo Po W kK = 1,2,...,b.

LEMMA (Takacs [_17_], pages 82-83). If |w| < 1 or |w| ¢ 1 and A > by then

the equation

zb = w S(A-12)

has exactly b roots (which are distinct for w#0), z = Yr(W) (r=1,2,...,b)
in the unit circle |z| < 1.

If A g by, v, = v,.(1) (r=1,2,...,b-1) are the b-1 roots of the equation

22 = 3(r-1z)

within the unit circle and Yy, = L. Also
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l/(b-;\/L) A< b}.l
Yb’(l) 2

o A = bu

If x>by vy = Yr(l) (r=1,2,...,b) are the b roots of the equation

r
zb = §(a-az)
within the unit circle.

This lemma is proved by using Roucheés theorem - a generalisation will

be given in the next section.

As n(z,w) is a regular function of z for jz| ¢ 1, |w| < 1 the Y (W)

must be roots of the numerator of (8) also. It follows that
b
2 Pok(w) (zknl-zb)
k=1

a polynomial of degree b in z is completely determined as it takes the

values O at z = 1 and +l at z = y, (W)  (r=1,2,...,b). Thus

b _ b [[z-v (w)]
Zl Pok(w) (Zk l—zb) =1- "“—I"—": )
k= r=l [l-y,(w)_]
Substituting in (8):-
b z=y_(w)"]
w S(r-rz) ; -

r=1 [:1¥y;(w).
m(Z,W) = 1 + ———= r j (10)

2%-w §a-22)

- determining the distribution of queue length at epoch n. The Markov chain

(Xn,Rn) is irreducible and aperiodic and therefore the limits
Lim P

el
mr

always exist.
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If A > by IYrI <1 (r=1,2,...,b) and therefore

Lim (1-w) w(z,w) = O
w1

Ifrgbe |y, <1 (r=1,2,...,b-1) but vy = 1; therefore

r

- b-1 (z-yr)

b(1-p)(z-1) S(r-rz) TT T
— r:l )} r A < by

. z =S(A-Az)
Lim (1-w) w(z,w) =
w-+1 k O A= le
(11)

determining the equilibrium distribution of queue length.
The above approach is an adaptation suitable for generalisation to the
corresponding priority queue of that given by Takacs 1:17:] for the M/G/1

queue with batch service.

3.3 An E /G/1 Priority Queue: the distribution of queue length

The basic model is as follows:

arrival epochs form an ordinary renewal process with density

CEY (x30, b a positive integer);

at each arrival epoch the probability that the arrival is an i-unit is
qi(i=1,2) and this probability is independent of events at all previous
epochs; all service times are independent (and independent of the inter-
arrival times), and there is one server cbeying the norn-preemptive disci-
pline.

Erlang's phase device will be used.

Let Si(x) (x30, mean l/ui) denote the distribution function of the
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service time Si of an i-unit (i=1,2). The departure epochs {rn"}, nsl,

form a set of regeneration points.

Let -ro' 0, and for n 3 0

X, = number of i-units waiting at Tn? + 0 (i=1,2)

=
n

phase of the arrival mechanism at T‘ni +0 (lan;:b)

A, = P[[j phases arrive in an S;_]

J
=AX J
o ( _
= 7 X g5 (x) (320)
) gt
Bj = P[[j phases arrive in an S, ] (jz0)
i+j i+j i j . .
Ty s ( iJB a’ g’ (130, §30)
e TUATR R VYATD) . .
p = o7 > the traffic intensity
Po. = PX " =k, X" = m, K = r[X,° =0, ° =0, R = 1]
(k20, my0, lgrgb)
n < < n k.,m . i
n P(s,b)z P S © Is|] ¢ 1, It] g1
k=0 m=

Then, for 1 g r g b,

b o )
n+l n
M, (syt) = { Pook! z 2

. i+] i,
(qy A ;. _q 142 B s ys. . q) T. s ¢
K i70 {=0 Ab1+PJ+r- 1 bi+bj+r-1 1
+ 2 S p i iB.. ijp, g gm14
m=l k= Omk i=O j=o bl'be +l""k 1
b o o © @ . L . .
+] 2=1+1 _m+j]
+ 2 2 2% 3 3o .. D t
K=l 21 m=0 mk 20 520 Ab1+bJ+r' k 1

(12)

P (s,t) = J & sttda

Z 1*JTi -(b-1) ¢ v ¢ (b-1)
i=0 j=0

bi+bj+v
(13)
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- s 1.3 i+] ~(h- -
Q,(s,t) = i§0 . STt Bujupgey Ty ~(0-1) g v g (0-1)

J

(1)
b , . s .
Z = Q18'+ gyt i.e. 2z 1s a function of s and t.
Using equation (3), for any v = =(b-1), ..., b=1
P (z) = T (qs+qt)~
v 1 2 Abk+\)
k=0
. z 5_ a’ Siqzkg? ‘gkﬂ kI,
& 5 it (k-1)! bk+v
s s ki
= sT t : i
i: k=i 1 Abk+\)
.3 3 i
= s t T. s s
170 j=0 1 Abl+bJ+V
= Pv(s,t) (15)
It follows from equation (5) that
P (s,t) = zb P, (s,%t) 1&vg b=l (16)
—v 5ot b=y >3 SV
and from (6) that
bl . B
2z P(s,t) = §1(3-rz) (17)

=0

with similar relations for the Qr(s,t)u Recall that §i( s) denotes

f‘; e 5% as; (x) i =1,2; Re(s) O

Substituting (13) and (U-” in (12) gi\_res

1 .
1Tr_n+ (S,t) = {kiil Pogk} {ql Pl""l(z) * ds QI'-].(Z)}

« b
n m-1
+Z .ZiPomkt Q. (2)
m=1 k=

54,
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+ 2z 2l st M P (2)
L
b .
= {gi Poox! fan Pr_;(2) + qz Qr-l(Z)}

b
1 [ n n .
"t éél e (0,8) - Pool«::1 (2

b
1 - n, . n,. ..-—
+2 Z [ (s,8) =W (0,6) ] P (2) (18)
k=1
ol 2 e .
Define = ~(s,t) = 2 1, (s,t) z ~. Using (17), (18) and (7) give
r=1 .
n+l 2 n
mo(s,t) = { 2 Pook} {q; Sy(a=2z) + g2 S;(a=Arz
k=1
b
1 n I -1
+ Z [nk (0,8) =~ B\ ] S, (x-2z)
k=1
1 b n n. = k=1 = ,.
+ [nk (s;8) = n, (0,8) ] 2 ~ Si(a=rz) (19)
k=1

If n(s,t,w) = 2 w(s,t) W', |w| < 1 then as n°(s,t) = 1, we have
‘n=0

{s = w 5;(A=A2z)} n(s,t,w)

b
=8 +sw {qy S1(A-22) v @ S;(A-a2)} ZL P (w
k=1
SwW g k=1 =
- = (w) = Sy (A=iz)
t K=l ook |
o . k-1 Y 3, (a-az) S, (A=2z)
+ SW Zi k(_O,t,w) Z ,JLj;____ - —Jm?;===— (20)
1=
¥=1 k j

The only unknowns in this equation are the wk(o,t,w) (1ckgb) because

Pook(W) = Pok(W) (1gkgb) where the P (w), from the results for an ordi

Eb/G/l queue are given by (9). In particular
b

1
Z P ‘-lT—=-=<-——.,
oul ook 1 Yp w)

55
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and b

b 2°- T (2o ()
- r= -
é; Pook(W) 27 7 =1+ —5
1 (1‘Yr(W))
r=1

56.

where the Yr(w) are the roots in z within the unit circle of the equation

Zb S WOy §1(>\-AZ) + W Qo gz()\—)\Z)

Consider the denominator of w(s,t,w) in (20) - it can be written

Zb = th + QW gl(}\‘)\Z)

LEMA If |w| < 1 or |w] ¢ 1 and qyA > by, then the equatien

2° = at + qw. Sy (A-Az)
has exactly b roots
z = Gr(t,w) lgr

in the unit circle [z| < 1.

A

If qix g by, 8.

r Gr(l,l)

of the equation

N
I

= qp + Q) 5(A-2Az)

within the unit circle and 8y = 8,(1,1) = 1.
Also
d I'4 7 - GA\
e 8 {(14W) = q/bf 1= ==
dw o't/ wel Q1 (: bu;
If QA > by 6., =8 (1,1) T =1,2y000,5b

lt] 1, qp +qp =1

(21)

are the b-1 roots

are the b roots
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of the equation
b -
z° = Qqp +Qqp S3(A-az)
within the unit circle.

PROOF lazt + @uw §1(x-22)| & @2 + a1 |w| |53 (a=r2) ]
< @ +aqrwl S;(a=Az])

§ az + qp|w| Sy(xe)

for |z| = 1-¢€. If |w| < 1, then clearly ¢ > O can be chosen sufficiently

small so that
a3 b
qz + qi|w] S;(xe) < gy + q|w] < (1=¢)

If |w| ¢ 1 but q;A > bu; then for 0 g e ¢ 1, (l-s)b andlqz + q; S7(xe) are
both monotonic decreasing functions of ¢ which agree at ¢ = 0 and their
derivatives at ¢ = O are -b and -q;A/u; respectively. As q;A > bu,, for ¢

sufficiently small
= 3 b
qx + a1|w| S1(xe) gz + Q1 Sy(xe) < (1~¢)
Thus in both cases
laot + quw S;(A-2z)| < {1-¢)

and ¢ is sufficiently small. Hence by Rouch@s theorem (21) has exactly b

roots

}._l
A

3
In

o

z = 6r(t,w)

in the unit circle |z] < 1, and these roots are distinct for w # O.
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If g2 > bu;, then it follows immediately that

§,=8,(1,1), iar[ <1 r=1,2,...,b

are the b roots of the eguation

z° = Q2 + q; S;(a=2z)

within the unit circle.

Suppose qiA g buy, then the functions zb and Qo + q; 31(r-az) coincide at
z = 1 and have derivatives b and q:i/u, respectively at that point. If b
is even then zb = +1 at z = =1 and hence only an odd number of roots can

D . -1 whilst

occur in (-1,+1). Similarly if b is odd then z
az + q; S;(A-az) > =1 at z = =1 and hence only an even number of roots can
oceur in (-1,+1). It follows that &, = & (1,1), lsri <lr=1,2,...,b-1

are the b-1 roots of the equation

zb = Qo + q; Sy(A=Az)

within the unit circle and Gb = 1,

Finally

d . .
aﬁ 5b(l,W) el = ql/b (l‘Ch?\/bLil_)

As 7(s,t,w) is a regular function for |s| ¢ 1, |t| ¢ 1, |w| < 1 the
Gr(t,w) must be roots of the numerator of the expression (20) for w(s,t,w).

It fellows that

b

b M (Ost ;W) K1
k=1 ~

a polynomial of degree b-1 in z is completely determined as it takes the

v ks
X A .
2

! ) yl d'p_\rR'n‘m

~ LIBRARL
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values

am b —
8, (tsw) = {w 8, (A6 _(,w)) k=Zl P (W) (6, (6, ™t = 6 - 66 (t,w))°

b
- Qot + wqp SZ(A-AGr(t,w)):] égi Pook(w)}/{w SZ(A-AGr(t,w)) -t}

(22)
at z = Gr(t,w) lgrghb
Thus
b b z=8 (t,W)
k-1 v ?
Z 7 (0,t,w) z = 2 a_(t,w) T\ e (23)
k=1 ko r=1 © ’ VAr sr(t’w) 6v(t’w)

and hence n(s,t,w) has been determined.

Special Case (A) Sy £ 8§, = S. Equation {20) then simplifies to

_l)

b
t{s - w S(a-rz)} 1(S,t,wW) = tS + sSwW S(A=~hz) 25 P, (w) (t-zk

eyl ook

+ (s=t)w S(a-rz) Z m, (05t,w) 2

k=1

and (22) becomes
g b - k-1 .
A (tsw) = {w S(a=h §,(t,w)) kél P (W) C(8,(6,w)" ™ - t_] - t¥

{w S(x=a dr(tsw)) - t]

STATIONARY DISTRTIBUTION

If p = ¢ %+%’Z’)<lther
3 3 =
Z P . = Lim (1-w) ;1 P (w) = - 1 L
ot ook ol —~ ook Yb'(l) k=1 (1 o
_b(l-p) (21)

b=1
—n (l-Yk)
k=1
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and

0‘
:jo-

b
b=1 - _ k:
kga Pooic 2~ = b(l-p) —p3 (25)

Tr (1-=Yk

k=1

where Yy (k=1,2,.:.,b=1) are the b=l roots within the unit circle of the

equation
b - . . . .
z = q SI(A‘AZ) + Qs Sz(R=AZ)

arld Yb = lc

From equation (22)

) (s ) - 1= Ces ) -

b
Ar(l,w) = {w Sy (A=x 5r(w)) kZ; POok

b
+way Sp(A-x 8, (W) ] éZi P oo (W)W Sp(x=a 8 (w)) = 1]

where Gr(w) = dr(l,w), 1l ¢ rg b, are the b roots within the unit circle of

the equation

zb = qp + qW S;(A-rz)

As q;A/bup < 1, IGr] <lforr = 1,2,,..,b-1 and & = 1 (where 6, = 8 (1),

b
lgrgh).
Also Gb'(l) = ql./b(l‘Q'i)\/.bU])a

Therefore, for r = 1,2,..-,b0-1

. Ar = Lim (1-w) AL (1,w)
w1l
( b - 0
Sz()\ A6 ) kzl POOk r -q2+q2 Sy (A=A 61")} k_il P

8o (A=A Gr)—l

For the special case r = b, note that
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b b
7 (l=Yk(w)_)+(6b(w))b Qr=w Sy (A= db(w)){q2+ v (Gb(w)-yk(w))}
b (Lyw) = KA . =1
;I:[l' (L-y, () w5y (a-a 8 (W))=1} ;ﬂ; (1=y, (W)
ghd hence
o b1
| —@=az) 8t (1)/up= (8, (1)=vy (1) T (1-v,)
Lim a, (1,w) = . . - k=1
wrl Yb?(l).:Ti (1=y,) ng(l)?;}: (1~v, ) {1+48, " (1)/uz}
l.€.
b-1
Q;+q1A Gb'(l)/U2-{6b’(l)-ybf(l)}'111 (1=Yk)
B * 51
Yy (1) ;\':Il‘ (1my, ) (1#38, " (1) /u3)
b
= q kél Py t @ (27)

using the relations

Yb“(l) 1/b(1-p)

and

5b?(l) Q1fb (l=q1A/bu1)

From equation (23)

k-1 -1

b
. k
Lim (1-w) 2 Trk(O,l,w) Z
w1 k=1
(z2=6 )
v

b
r{'l °r i &,-5))

vZr

b
2 m(01) z
k=1

b .
- note that Z. m,(0,1) = A
k=1 k b
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Therefore, from equation (20),

(s - 5 0-2)) n(s,1) = Rzl $0a)g, S0)
TT (1-v,)
r=1

b b
z>- TV (z-v,)
- 5 §,(0-xz) b(l-p) —pEt
T (1-v)
r=1
_ - b -t (z-6) 5
+ {s S5(x=az) = §;(x-r2)} A (28)
2 P er T ooar (8p78)

where zb now equals gis + Q.

Special Case (A) S; =S, = S

If Yy (k=1,2,.,:,b~1) are the b-1 roots within the unit circle of the
equation zb = §(x-rz) and Yy 1; also, if 8y (k=1,2,:0.,b=1) are the b=-1

roots within the unit circle of the equation
b 30y
z = Qg + q; S(A=Az)

and 6, =1, then for 1 ¢ r g b-1

b
b
=,. . k-1
S(i=a Gr) & POOk (Gr =-1)
4, = Lim (1=-w) Ar(l’W) = —
w1 S(A-A Gr)-l
b b k-1
(Gr -qz) égé P ook (1_6r )
i.e. Ar = = 5
1-6.
r

and

b
o, = Lim (1-w) Ao (l,w) =g 2 P + Qy
b wl b K=l o0k

Finally, equation (28) becomes
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b
5 é(l*AZ)b(l“D){ql(l-S)+-'TT— (zayr)}
{s - §(x-Az)} 7(s,1) = — r=1
TT Qv
r=1
Q 5 k=1
+ (s-1) S(x-xz) Z m (0,1) z
k=1

where zb = Q8 *+ Qy.

Special Case (B) b = 1, i.e. random arrivals

b=

I (l‘Yr) =1 and y; = 1
r=1

b

kzl Pook = Poor =1 -

4, = 8y = Q1 Pooy # Q2 =1 - qyp

b
kzl m (0,1) = m(0;1) = 5 =1 - qyp

Equation (28) becomes

{s = 51(q11(l—s))} ﬂ(S,l)

s(1-p) {q; §1(q1k(1-s)) + Q3 §2(Q1A(l=5))}

(1=p)s Sp(q1a(1-8)) + {s S;(q;A(1-8)) - §;(q3a(1-8))} (1-qip)

sq; S1(qia(1-8)) (1-p) + qos Sy(q1a(1l-s))

- (1-qip) §1(qxl(l-s))

and m(s,1l) then agrees with the expression for o(s) + 8 o found in Chapter 1.
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3.4 The E /G/1 Priority Queue: the Waiting Time Distributions

Stationary Waiting Time Distribution -of & 2=unit

Let' W, denote the waiting time of a l-unit in the stationary state.
Then for 1 ¢ r < b (recall R denotes the phase: of- the- arrival mechanism).

P[n 1-units waiting and R = r at a departure epoch ]

= P[departure is a l-unit"] Z. P[nb + jb + r - 1 phases and n
j=C
l-units arrive in Wy + Sy_]

b w

. . - N o n+j
+ k7:.1 PEdeparture is a 2-unit and at last epoch R = k_| j=ZO B +ibir-k T,

Therefore, if the symbol * denotes convolution;

n+j n e=.?'-.x O‘X)'nb«rjbﬁ'-l ‘
m.(8,1) = q s ;i T, 8" Iy et 40078 (0)
n=0 j=0 ' )
b oo -] e
- Y n+j n
¥ L:Ll L='"k(o’l) - % Py ZO Z‘ nb+jb+r-k T 8
= n= J:

and therefore,

2 I%l“ 2 2 n+j n e=>\x()\x)nb+jb+r-l'
m(s,1) = q (gys+qy) T s J R d(Wy (x)*S; (x))
, r;l n=0 j=0 n o (nb+jb+r-1)*
7 T b 2
+ kZ:1 Cm (0,1) =y P, ] Z (5D (@ysar)

Then using equation (7) and an analogue of (6) for W;*S; gives

i 1/ iV
m(s,1) = q; S1[A = alays+az) ) W - alqistar) ]

E (k-1)/b 7 1y,
+ 2 [m(0,1) - P, (@5+q;) S Cr - Magstay) ]
k=1

1/
If z = (q;8+q3)
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k-1

b
n((2°=ay)/qy,1)- k_zl Enk(O,-l)-ql Pooxd?z  S2(r-2rz)

WI(A-AZ) = -
d; Sl(A-AZ)

In particular, by differentiating

b
QA e A - 0 - - -1+
2+ E[ W] = & n(s,l)|s=l Z [m 0,1 -q Pooxd| kK -1+4 -

k=1

i.e.

air E[w ] =-:;—1 (s, 1)‘ 2_ L, (0,1) - k][k-l+— - a

K=1 H1

(29)

where n(s,1) given by (28) is probably best differentiated numerically, and

b . (z=8_)
k=1 v
kzz—l Trk(O,l) Z %_ Ar-ﬂ- T—-—sr_sv)

r=1 VAP
b
l/b
2 o gL E(S 'r’
1; ook - P b-1
' N (l_Yr-)
r=1

Although the results are complicated, numerical values for ECW1] could

easily be obtained with the aid of a computer.

Mean Waiting Time of a 2=-unit

For a GI/G/1 priority queue of the type considered in the last section
consider the corresponding pooled queue: 1i.e. an ordinary GI/G/1 queue in
which service times are i.i.d. with distribution functien S(x) = q; S;(x) +
Q2 Sp(x) and independent of the interarrival timeso

Let V(t) dencte the virtual waiting time at time t in this pooled queue,

and

E [:Vj

T E[V(t)Jat = time average of E[V(t)]

i

Lim
Mo



66.

Then
E[V] = EL’vqj + E[V_]

where the suffix s denotes the contribution due to the unit already in
service and q denotes the contribution due to remaining units in the queue.
Now EEVq:j = (1/p) EEqu

where EI:Nq:] is the time average of the number of units in the queue.

Using Little's "L = aW" result
sCv] - o B0V

where p = (qyA)/uy + (qy2)/u, and E[W_] is the mean waiting time in this
pooled GI/G/1l queue.
The GI/G/1 priority queue clearly has exactly the same value for E[:Vq:],

and for this queus

E[vqj

(L/uy) E[quf_] + (1/uy) EENq2]

o1 E[ W] + 0y E[ W, ]

1]

where 0

5 = Q)7 i=1,2

and E[:qu:] is the time average of the number of i-units in the queue

excluding the one being serviced. Thus
o ELW] = oy E[Wi_] + pp E[Wp_] (30)
and E[ W, ] can be found from & knowledge of E[W_] and E[_W,_].

Distribution of the Stationary Waiting Time of a 2=unit

Wy, the waiting time of a 2-unit in the stationary state can be express-

ed as the sum of two random variables:~-
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W, the waiting time of a unit in the pooled queue in the stationary
state, and

T(W), the time to serve all l-units arriving in the queue after the
arrival of the 2-unit in question but before its entry into service.
The problem is therefore to find T(w), which corresponds to the length of
the initial busy period initiated by a waiting time w in a queue composed
of l-units only. The determination of the distribution of the supremum of
a compound recurrent process has been considered by Iakacs_f:20:] and his
method can be readily adapted to give a solution for the particular problem
treated here,

‘Define Z(t), t 2 O, to be the following stochastic process:-

2(t) 1

P

A Ay

A
A,
§n=W 1 S, { SL K 33 \
T, T T. Tg Ita t7
Z(t) =t - Z A,
0Tt i

where Ai (i21) has distribution function A,(x) with Laplace-Stieltjes trans-

form

- : b
A (s) = A and i(s) = -—*—->
1-q, A(s)

(i.e. Ai is an interarrival time between two l-arrivals).

L has d.f. W(x)
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and T 9 - T, S

Moreover all these random varishles are independent.

If I(t) = Inf Z(u) , ther: as the time at which Z(t) first
O<ugt

becomes negative corresponds with the length of W,, it follows that

P[W, ¢ t_] = PLI(t) <0, t>0

P[TW, = 0 = P[W = 07] (31)
Define
T3 =0, Sy = Wy Ia; =0, Zuy 2 0
Cp =S, = Ay n=o0,1,2,...
Z, =C +C +...+C ns= 0,1,2,-.
In = Inf {Zo,lennu,Zn} n=0,1,2,.:-
Then for te [:Tn’Tn+l> (np=1)
I(t) = In
Z(t) = Z o+ (t=rn)
- It follows that for n 3 =1, Re(q) > O, Re(s) ¢ O
q ,_:n+l emat-s I(6) 4o . j:n-'rl omat s In
n n
=qe® fa fzn+1 e-qthdt
n
= e-q TS I C1- A;q(Tn+l-Tn):]

Therefore

w0 T v : © g 1. ~s I -q(t_, ;=1_)
q Z fTI’I*l o~at-s I(t) at = Z n n El - e n+tl 'n ]
n=-1 n ns=1
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t-s I(t T aTsl atpyTy)
qs e ()dt-nz:le N Af1-e ™ 17

Taking expectations,

-qT-SI

Q f; e g[8 I(-t):[dt = {1 -E[e ™) + {1 - §,(a)} ZO E[e 7

_ _ ~qT1 =81 ©
=0 -efe ™ v -5 Efe ° 0 7 U(s,)
n=0

(32)

where U_(s,q) =.E[:exP(_Q(Tn'To) - s(In--IO)):]n
Suppose the sequence of random variables {Cl,Cz,noo,Cn} is replaced by the

sequence {Cn,Cn_l,pza,Cl} then Un(s,q) is unchanged. For this new sequence

define
I* =0
o
1k = Min {0, I* + C, 4} Ogkgnl
Thel’l In* = Min {O, Cn’ 200y Cn + oo e + Cl}
= I -1I
n o}
Therefore

n-Z:O Un(SsQ) = ZO ELexp(-q(Tn—To) - s In*)]

=
where Uo(s,q) =

The Ln can, in principle, be fourd recursively. The procedure below

however utilizes a technique developed by Takacs [:19,21:]:-

Definition. If Le is the path of integration from -i~ to -ie and again from

+ie to +i» (e>0) then the operator B is defined by



70.

Bo(s) = 45 0(0) + Lin 52 s L g (33)
>0 '3

where Re(s) < O,

Suppose X,Y are two random variables such that X is real, E {|Y|} < =
and E[_Y e-sX:1 exists for Re(s) = O, then if Re(s) < - < O

E[Y exp(-z Min(X,0))]

s - sX
=7 Jo- (55) dz = E[[Y ™ ]

where Cs- is the path consisting of LE and the semicircle - ¢ e™®

(=n/2g0agm/2), and

X = - Min (X,0)
Also, if Re(s) < O
-z X zX
_ETI+E[Ye 1-E[Y e :]dz:o
2ni CE z(z~8)

where CE+ is the same path as CE= but with the semicircle ¢ e®

Taking the limit in these two equations and adding gives

- ECY e7%%7] smi E[TY]
sX S
EE:Y € :1 erO 2nl ILE z(z=S) dz + 2ris

1]
[
[
3

E[Y e 7z
L, z(z-s)

i
X
&l
rl
<
L
+
=
o]
3
|
—

E[Y 7S Min(X,O):j = B[Y eSX-i]

BE[Y ™57

Clearly the operator E is linear ahd'glg =B, Forn: 0



E{TH(-S) Si(qts) U (q,8)}

E EEexp(s An+2-q Sml-s Sml—q Tt TS In*)j

B E[Cexp(-s Coe1-Q Tfa T8 I *-a S ;)]

EEEexp(-s Cne1™8 I3""2 T *a To)j

B E[exp(-s(C, 1T, *)-a(r_ ;-7 .))]

Ul 4q(a58)

i.e. Un+l(q,s)

13 {¢(s) Un(q,s)}

i

where ¢(s) = A;(-s) S,(qg+s)
If 0 p g 1, Re(s) < O, define h(s) by the equation

1
h(s)

1]

exp {~ log(l-p¢(s)) + B log(l-p¢(s))}

) n
exp (2 & (4"(s)-B ¢"(s)))
n=1 e

Therefore I\BAh(s) = 1
Define T(s,p) to be exp {- B log(l-p¢(s))}
and then 11(1—p¢(s)) T(s,p) = 1

Expanding T(s,p) in a power series
% T (s) o
n=

(s) = ng(S) ¢(s)

gives To(s) =1

and Tn+1

i.e. the T, satisfy the same defining relations as the U,- Therefore,

U(s,sp) = Z U (s,q) o' = exp{-B log(1l-p¢(s))}
n=0 v

71,
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and

?i Uh(s,q) = exp{-B log(l-9(s))}
n=0 w

= exp{-B log(l-4;(~s) §;(g+s))} (34)
w
This equation, together with (32) gives a complete formal solution 1i.e.
a f; e E["e™S 184t = 11 - B[y

+ {1 - 3(@) BL MY K (=) et 2 2B ¢(s))
- n=1

where

B ¢(s) = B {f: ™ g H_(x) fz glatsiu 4 F ()

vy v

® ~qu ..U SX-Su oo
fo e {fo e d Hn(x) + fu d Hn(x)} d Fn(u)

and Fn’ Hn are the distribution functions of the n-fold convolutions of 8,,
A, respectively.

These formulae are valid for the GI/G/1 priority queue, but they are too com-
plicated to be of much use., In certain special cases however, it is possible

to obtain some simplifications.

Theorem, Let |p| <1 and suppose that for Re(s) = O

1 - po(s) = ¢7(s,0) ¢ (s,p) (35)

and free from zeros in Re(s) = O and

Lim E;Lzﬂil = 0 Re(s) > O

8]
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Similarly for ¢ (s,p) but with Re(s) > O changed to Re(s) < O and Re(s) » O

changed to Re(s) ¢ O. Then

U(s,p) = [:¢+(O,p) ¢ (s,0) ]! Re(s) £ O
or
0" (s,0)
[1-0¢(s)] Uls,p) = -—;—§*9- Re(s) g O
¢ (0,p)
Proof: If Re(s) < -e< O (e>0)
s log ¢ (z.p) : -
ot - el 42 = 1o ¢7(s,0) (36)
€
If Re(s) < O
== s, B2 1ka0) 0°(2:0) g - o (37)
2ri ot z(z-s -
€

Let € » 0 in (36) and (37), giving

Lim 5%{ I log g_éz,el dz + ¥ log ¢ (0,p) = log & (s,p)
20 €
and
+
Lim wr /) ‘l‘gozLZ‘:’-‘Y‘p‘éz L az - ¥, 108 ¢%(0,0) = ©
>0 €

Hence, for Re(s) < O,

log & (s,p) + log ¢ (O,p) = ¥ {log & (O,p) + log ¢+(O,p)}

.S log{l-po(s)}
tlim o fLE z(z-s) 02

= B log {1 -p ¢(s)}

and for Re(s) = O by continuity.

Therefore



4.

U(S,p)

exp[ - B log {1 ~ o ¢(s)}]]

Ce (s,0) ¢7(0,0) ]!

proving the theorem.

For the special case of this chapter

A (s) = ____QA_B_.m
(l+S/A) =q2
and

b =
- -2 =Pq; ﬁ(q
(1-s/X) -q2

By Rouch@s Theorem,

(l-s/A)b - Qs ~ pq; Si(gts)

has b roots s = Yr(q,p) if Re(s) 2 0, |p| € 1 (which all lie within the
circle |s/i-1] = 1),

Therefore, let

¢+(s,p) = (l‘séx)b‘Q1”pgl S, (g+s)
Tr ES_YPCQ3 p )]
r=1
and 5
T Csv(a,0) ]
Q_(S,p) = r=l

(l-S/A)b“Q2

then these functions satisfy the conditions of the thecrem and therefore,

for |p] < 1, Re(s) g O

U(S,p) - X r=1

™
Q
1
©
Q
i
o
I
:46
1
<
}-s/'\
L
-
o)
]
n
t



Substituting in equation (32) gives faor Re(s) € O
a /] et EEe-SI(t):I dt = {1 - E[e" T}
“TT v.(q,1) B (@30
1 Yp q’ e .
b
” EYr(q,l)-s]
r=1

+

75.
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CHAPTER 4

A GI/M/1 Priority Queue

4.1 The-Ordinary-GE/M/1-Queve

‘Suppose arrivals occur at epochs ;5 1 > 1 where the interarrival times

T n+l"[ (np0, T =O)' are i.i.d. positive random variables with distribution

function A(X), mean 1/\. Service times of customers are assumed to be i.i.d.
random variables which are independent of the T and have distribution

function

. L TMX
S(x) = l-~e x »0
0 x <0

Let po = A/“, the traffic intensity

and a = T ——-—EC-Z- dA(x) k20)

lo] -

= PEk services completed during an interarrival ‘cime:[e

Then
Z ak zZ = f: expE—ux (l—z)j dA(x)

A(u=uz) (1)

where A(s) is the Laplace-Stieltjes transform of A(x). The arrival epochs

form a set of regeneration points and therefore an imbedded Markov chain can

be defined. Let Xn nunber of customers in the system at epoch t_ - O

¥

(nz0)

3
1]

. PLX, =k | X =0]

o0

Z_ 2", convergent for |z| <

(z)
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The basic equations

oo >}
n+l n
m =7 2 mnla... (2)
o} {20 ;31 i “i+j
n+l _
and m = Z 8y mi o k31 (3)
1=0
lead, for |z| = 1, to the recurrence relation
1rn+.l(z) zz mz) Alu-u/z) + Z_ (l-l/z‘J) CJ (4)
J:
where
n < n s n
uJ = iZ=O it ai+j+l and J'% Cj <1

©0
Define m(z,w) = 2 7°(z) w" : a regular function of z for |z| ¢ 1, [w| < 1.
Equation (4) gives, for |z| =

©o

m(z,w) = 1°(z) = zw A(u-p/z) m(z,w) + ZO z (l—l/zJ) ptl o

=0 =0 J
As X =0, m°(z) = 1 and therefore, for |z| = 1, |w| <1
© o .
1w 2. 2 (1-1729) Wt e
. 0% §=0 J

T(Z,W)

- : (5)
1-wz Alp-u/z)

Define m(z,w) for |[z| > 1 by this expression also.  As it is known that
n(z,w) is a regular function of z for |z| g 1, its only singularities in the

whole complex plane are the zeros of the denominator outside the unit cir'cle

lz| = 1.

Lemma (Takacs [[17_], Page U7) If |w| <1, or [w] g1 and p >.1, then the

equation
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z =wA (u-uz)

has a unique root z = §(w) in the unit circle |z| < 1. In particular

6 = 8(1) is the smallest positive real root of the equation

z = A (u-uz)

Ifp=A/u<1l thend <1l; if pp 1 thend = 1.
Using this lemma shows that the only root of the denominator of (5) outside
|z] =1 is

z = 1/8(w)

Define ¥(z,w) = {z - 1/8(w)} m(z,w), a regular function of z in the whole

complex plane. As

X(z,w) _

Lim —-r-r» =
lz]>e 1P
it follows that % (z,w) is independent of z and

F(z,w) = Fk(1,w) = {1 - 1/8(w)} {1 - w}™?

§(w) Ye(z,w)

m(z,w) = z 6(w)-1

1-8(w)
Iy ) B ¥ G Ot (6)

e and aperiodic, and therefore the limiting

1
LV A

l..l-

The Markov chain is irreduc

pmpabi lities
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. n
. = Lim m.
n-IOO

always exist; either every M= 0, or every ms > 0 and {wj} is a probability

distribution. Using Abel‘s Theorem,

o
o

w(z) EL m. 20 = Lim (1-w) m{z,w)

j.::o J w=-1
Lo ol (7
} (1-8)/(1-28) p <1

Therefore, if p < 1 a stationary solution exists and is given by
ﬂj = (1-8) Gj where § is the unique root in z within the unit circle of the
equation z = A(u=pz).

The above method is an adaptation of the method used by Takacs to derive
the queue length probabilities in a GI/Ekfl queue. {see [:17:1, pages 127-

133},

4.2 The GI/M/1 Priority Queue: the Distribution-of Queue  Length- -

As before, the arrival epochs {%n}nzl form an ordinary renewal process,
distribution function A(x), x 2 O, mean 1/A. Let T, = 0. At any arrival
epoch, independently of events at all previous epochs, the arriva% is with

probability q: a l-unit, and with probability g, a 2-unit, where 1-units

nits are

have non-preemptive priority over 2-units. Service times of all
assumed to be i.i.d. random variables with distribution function F(x) =

1 - exp(-px), x 3 0. Let p = A/u

a, = P[_k services completed in an interarrival time)
@ M ()~
= fo R dA(x) k>0

The arrival epochs form a set of regeneration points:
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let Xn = nurber of l-units in the system at T 0]
Yn = nurber of 2-units in the system at T, " 0]
+1 if a l1-unit is being served -at- T - 0 or the system is
empty at Ty~ 0
2o = +2 if a 2-unit is being served at T _ - O
n _ a i _ - - _
LI P[X =1, Y =j, 2 =k | X_=0, ¥ =0, zo_l‘_']
For |y| € 1, |z| § 1, n » 0 define
n _ ~ n j .
Fi(z)-ZNiJ?z i30
J=1
n n
M (2z) = Z"TTlJl i30 {r " (2) = mo01}
My,z) = L r;"(2) y*
i=0
™ (y,z) = 2 'rrin(z) v
i=0

For |w| < 1 define

T(y,z,w) = Z M(y,z) W
n=0

T(y,2,W) = ZO wn(y,z) W'
n=

- regular functions of z for |y| & 1, |z] ¢ 1, |w| < 1. The basic equations

are as follows:-

o w [o ] (o]
n+l n n
Too1 = Mool Z a; ¥ Z z z Ti351 i+ 4541

oo 00 n
B & E e men ®



For i 21, j » 2

n+l _ n o n
Tisp = @ & ﬂi‘1;$2 ta:ag Wi,j-%Z (9)

For i »1, j =1

n+l _ n
Ti12 9 % M1 (10)
For j » 1
n+l n el n = n
= / L . s
oj2 = 92 85 Toy.1p T Q2 i 192 8i41 ' Qe izi 4 Ti5-11
< Ei n j% $ n
+ Tovm @s o1 2t [  Maye @syq_s
ézb ke +1 ik2 “i+k+1l-j 71 k=3 1kl Tik+1-]
(11)
(where the first term in (11) is q, a_ no?g if j=1).
Fori21, j=20
'n'n+l = 3 m 1’1 a, + Q: %’ 'n'n ak
ijl koiog K1 k-1l Y= k j+1 2 "k-1+2
2 n 3 n
Rt é;i M j=1 1 %=1 7 92 £ Tij2 F-dal (12)

(where the last two terms in (12) are zero if j=0).

From equations (9) and (10), for i > 1

P?+1(
1

L3

z) = ije

m
j=1

. ) . n
Qi oa, sy 1(2) +a2a 2T, (2)

Therefore

C1l.
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n+l

P2+l(z)

(y,2) - Qoayy Pn(y,z) +q2 a2 {I‘n(y,z) - I‘On(z)}

n n
a (q1y+qz2) T'(y,2) - a2 aj z T (z)

i.e. I'(y,z,w) - I'(0O,z,w) - I'(y,z,0) + I'(0,z,0)

a, w(q,y+q22) T'(y,z,W) - Q2 a zw I'(0,z,w)

i.e. I'(y,z,w) {1 - a, w(q.y+q22)} = I'(0,z,w) {1 - q2 a zZw} (13)

using the fact that the initial state is (0,0,1).
From equation (11),

[0}
n+1 - Z n+l J
I’o (z) = = 0J2

oP) aozr‘on(z)+q2z z (z)+q2 ZI‘ (z)a

ohh

__.+ Z— ZJ 2' 2— ,ﬂill?<2 ai+k+l-j

o0 o] [>2]
* ZJ Z- Z— TT1kl i+k+1-]

Jj=1 i=1 k=j
Now
Z z‘j 3 o - i 4i4+vi2 3 n v+j+l
5= k=3 +1 k2 Titk+l-g ST VL j=1 i,v+j+1,2
e a. vil
1+V+2 n n k
= 7 A2 M) - J a2
vio 2V 1 &
n n
03 i) 2l A Ty,
= L - - BT Ty
v=0 le \)% k=1 z\) e+l
a F.n(z) a. m. B

3 1+v+2 "1 S s 1+v+2 1k?2
4_1- v+l B ; Z_ V-Kk+1
v=0 z k=1 v=k-1 Z
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1’1(-

. io 85.v+2 13 (3) 3 L i
NE LVt S;@ .S oy k2 41 +s+k+l
Similarly
00 . a W-n(z) o o
Z_ . i, Z i+v+2 i Z 1 5 on
J'= k= J lkl l+k+l"J \).:—l Z\)+l s=0 Zs =0 kl l+S+k+l
Therefore
Pg+l(Z) Q2 a 2 P (Z) + g2 2 Z_ a -n' (Z) + Q2 Z r (Z) a
1=0 i=0
f_ z 1+k+l Ijln(Z) i 1 z Z”_ n
¥ - = Ta ~ 8
i=0 k=1 S S0 25 170 k=1 k2 Titstk+l
33 4@ 3L 33,0
te - L S , Tay . 8
i=1 k=1 oK o 3B {5 o T Cieskel
From equation (8):-
n+l 9 “ n
mo(z) = (z) ji_ a; + r. 4.
© gz O iz l =0 ikl “i+k+s+1

k=1 1k2 1+k+s+1

v 2
=0

S

&N

i
Adding these two equations gives:

n+l

O n+l(z)

(z) + 7

=d2 8, 2 Fon(z) + non(Z) {féé a; + Q2 @, z}

00

* Z (1-1/2°) 2_2_ 1T1k2 i+5+K+1

s=0 i=0 k=1
s s. = & 5
+ £ (1-1/2°) & Z. ., a.
s=0 121 k=0 ikl “i+s+k+l
s S v I.:’Ln(z) S S vl Pin(Z)
t+ %L Zi 21 > + Qe Zi. Zi v
i=0 v=0 z i=0 v=0 Z



' n n
© @ g, ., (z) © @ a, 7. (z)
i+v+l 1 i+v 1
+ Qi Z Z; ' + Q2 2 QE; Zi
i=] v=0 2’ 1=1 v=0 v

The final equation, equation (12), gives for every i » 1:-

n+l . S n . n
T"i (Z> = Q) k=zo a’k ﬂk"'i"l(Z) + %L kél ak Fk+i—2(Z)

S n 3 n
t a2z é;O 8 Moy (2) + Q2 ﬁ;i 8 Thas-1(2)

Thus
EEI ﬂ2+l(z) yi = q, ﬁZG ';;¥I {("(y,z) - ;é%-yi ﬂin(z)}'
+ Q2 2 fi f% {1 (y,z) - éi yt m."(2)}
k=0 y i=0
+ & kEi yfgle r'(y,z) - lzz; v 1)

s n kL i o n
ta: 7 =g (T (y’Z)'lz:'oy r,"(z)}

k=l y
= il s % y mn S
=1 (y,2) (q1y+q2z) EZD - t L T (y,2) (qy+qzz) ZZ;
k= y =
© k=1 m (z) @ ™ (z)
Kk=v- k-
‘w2 S -l _qzzzf_ik__vz_
k=1 v=0 y k=0 v=0 y
n n
~a 5 k2 oy Neyo(?) 3 ki 2 Tey-1(2)
z - JZD Y a2 - - v
k=2 V3 y k=1 v=0 y
= 1(y,2) (Q,y+q22) % f-klz + % M(y,z) (Q:y+q22) ZT

Sl

XP)

—

<
~

84,



853

-a 2L S 2, (2) > L 1 (2)
v=0 y\) k=y+2 " Mev-1 V= y\) KV+1 "k "k-v
= Y a I _ (z) - a: — ; rlo (z)
“ v=0 y\l k=v+2 k-v-2 v=0 y\) Kk=v+l a‘l-. Ji=v-1
(15)

Adding equations (14) and (15) gives

“n+1(y,z) + I‘2+l(z)
= Trn(y,z) (q1y+q:2) ; i}—z + -*‘é I (y,z) (q1y+q22)Z
0y k=1 y
* Q2 a,z Fn(O,z) + Q3 .Tron(z)i ‘+l(1 l/y )
i=0
+ Q2 non(z) 2 , 8,1 (1-1/z%) + 2 (1-1/2°) CSn
i=0 s=0
aSOLJ1NS M > ;__1_) n
+ o z) + Qe re,_.{(z)
2 V30 (z\) vV ) k=gie M kev-2 v=0 \ z” 3\) k=W+1 K kev-l

where

00 o @K
z Z‘ ﬂlk2 i+gikrl T z Z Tl'j

'TJ.r:fJ.lr.al_l
i=0 k=1 iz1 k=0 1kl “itstk
This can be written
n+i n e
1 (y,2) + To+ (z) = 1 (y,2) (Q:y+q.2) 2_ g <
k=0
+ l r (y,Z) (q1y+Q2Z)Z *d2agz Tn(O,z)

lcly
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+ 7 (1-1/2%) ¢.™ + qu 7 (z) 7 a, (l—l/yi)
s=0 S © 17-70 1+l

n S i s 1 1 n
+ Q2 My (z) ; 8:.1 (1-1/z") + Z; (-—i- - _:f) Di(z)
i=0 1=0\ 2z y

where

n, \ _ 5 n S n
D;(z) = @ §+2 2y Myeso(2) + Q22 kZ=I-ak e (2)

It follows that for |y| = 1, |z| = 1, |w| < 1 (recall that the initial state

is (0,0,1)):-

m(y,z,w) + I'(0,z,w) - 1 = w(qiy+q2z) T(y,z,w) Z :a-kl-{-
' k=0 y
+ !z*”l M (y,z,w) (my+aaz) Z. ik-k +q2 az w I(0,z,w)
k=1 y

(l-l/yi)

4+ Z_ (l-l/zs) Cs(w) + qiw m(0,z,w) 1Z=b ai

s=0
+ qow m(0,z,w) Z_ as.1 (1-1/z) + 2 -1 D.(z,w)
i=0 * 0\zt y /) *
where
S .n.n - n n
Cow) = w nZ=O C,ow and D;(z,w) =w néé D, (z) w

1le°
T(ys2,w) {1 - w(qiy+qzz) ZO ikg} = 1 + I'(0,z,w) {q. a.zw - 1}
k=0 y
+lz"'1 I'(y,z,w) (q1y+Q22) Z a—g + Z_ (1-1/2%) Cs(w)
k=1l vy s=0

oo

+ qw m(0,z,w) Z s, (l-l/yl) + oW (0,2 ,W) é 5,1 (1-1/z0)
i=0 1=

s /1 1
+ - = -7 D.(Z,W)
J'é) (zl yl> 1
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Using equation (13) gives for |y| =1, |z| =1, |w] <1

%

00
m(y,z,w) {1 - w(q,y+q.2) 2?; ‘E}
k=0 vy

- 1}

s %
k
y

1+ I(y,z,w) {a wlq:y+qzz) + -‘éﬂ (q:y+q22) Z{

[+ -]

+ qiw m(0,z,w) Z a: . (l-l/yi) + qaw T(0,z,w) % a1 (l—l/zi)
i=0 i=
+ 2 Q-172% ¢ ) + 2 (1/et-1/y) D (z,w) (16)
s=0 i=0

Note that m(0,z,w) EZ; nn(O,z)wn = ZZ_ ooy W= m(Q,0,w) which is independ-

_ ) n=0 n=0

ent of z.

Define m(y,z,w) by this expression for |y| > 1 also. As it is known that
m(y,z,w) is a regular function of y for |y| < 1 (jz|=1, |w|<l), its only
singularities in the whole complex plane are the zeros of the denominator

and the singularities of the numerator outside the unit circle |y| = 1.

From equation (13), the numerator has its only singularity at

q. vy * (l/aow) - qp 2

which is outside the unit circle.

Lerma The equation

y = w(q;+q2zy) A(u-uy) (17)

has a unique root in y within the unit circle lyl < 1if |w| < 1 and |z] €1,

or |w| g 1and |z] <1, or |w

$1 |z| £1and u/rAq. < 1. If this root is
denoted by y(z,w) then y = y(1,1) is the smallest positive real root of the

equation
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y = (Q:1+qzy) A(u-py)

If u/Aq; > 1 then vy < 1; if u/Aq. < 1 then y = 1.

Proof If |w| < 1 and |z]| <1, or |w| « 1 and |z| < 1 then

lw(q:+Qo2y) A(u-uy)j <1-€ if |y| =1-¢

and € is a sufficiently small positive nunber.

If |w| €1, |z] € 1and u/aq; > 1
lw(qi+qazw) A(u~uy)| < JAGu-uy)| {qu + qzlyl}
& Au-ulyD {a: + qelyl}
= Alep) {1 - que} if Jy] =1 -¢
= {1 - ue/x + 8(e)} {1 -~ qae}

= 1 - ¢ (u/A+q2) + O(e)

and u/A + g2 > 1 as u/Aq; » 1. Therefore, if € is a sufficiently small

positive number

[w(qi+qzzy) Alu-uy)| < 1 - ¢

Hence, by Rouche's theorem, (17) has exactly one root in the circle
|z] < 1 - € where ¢ is a sufficiently small positive number.

If 2z =1 and w = 1 consider the equation

f‘;(y) = fz(y)

where £.(y) = y and £,(y) = (q:+q2y) A(u-py).

Now
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£,(0) = 0 and £,(0) = q, A(u) > O

£1(1) = 1 and £a(1) = ACO) = 1
Also £1'(y) = 1 f2r(y) =-q2 Ap-uy) ~ (Qu+qzy)u A' (p-uy)
Thus £3'(1) = 1 and £ (1) = g2 + U/
Also for |y| <1 f20(y) € qz +u/x = 1 + (u/r-aq1)-

i.e. if u/Aq; € 1 then f,%(y) ¢ £1'(y) for every |y| & 1 with equality
aty = 1.

It follows that
if w/ghi g1 then y =1

if w/gry > 1 then v <1

This completes the proof of the lemma.

Using this lemma shows that the only root of the denominator of (16)

outside |y| = 1 is

y = 1/y(z,w)

Define

¥(y,z,w) = {y - I/y(z,w)} {qiy + Q.2 - l/aow} m(y,2,w) (18)

- a regular function of y in the whole complex plane. As

Lim -X\Y,Z.W) . o
yle Y

it follows that ¥(y,z,w) is a linear function of y; i.e:

y,z,w) = ¥O0,z,w) +y *.(z,w) (19)
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From equation (18),

1}
—~—
¥

¥O0,z,w) 1/y(z,w)} {q;2 - l/aOW}'TT(O,Z,W)

n
~—
]

1/y(z;w)} {q.z - l/aow} m(0,0,w) (20)

From equation (16), setting z = y gives

1+ 2. (l-l/yl)-Ei(w)
120

1wy 7 (a /59

k=0

n(y,y,w) + P(Ys:)’:w) =

where Ei(w) = wag 4 m(0,0,w) + Ci(W)

- the same equation as that for the ordinary-GI/M/l-queue. Hence

m(y,y,w) * T{y,y,w) = {1-y15?§¥i{1-ﬁi (21)

where §(w) is the unique root in z within the unit circle of the equation
z = w A(p-pz)
Setting y = O and noting that I'(0,0,w) = O gives

m(0,0,w) = —l:igﬁ-vl-)f

Substituting in (20) gives
¢ 1 ) o1 1-6 (w)
#(0,2,u) = g{ Y(Z,w)} iqzz aw 1-w (22)

Consider x—(yo,z,w) where Ly, = l/aow - Q225 Y being a function of z and

w. Using (18), (16) and (13):~
y [ o]
{yo—lfy(z,w)}{l-qzaozw} F(O’Z’W)Zz 2 k—Zi ;al-{}-e g
*(yo,z,w) = ) = - ¥
: -a wil—-l'-— Z :-al—(-}
o a

o k=0 Yo

=
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yo{yo Y(zsw)-l}{l—qzaozw} r(0,z,w)

Wz a yY(z,w)-

{yo y(z,w)=1} T(0,z,w) yo2 Q

z y(z,w)
Now
Hy,z,w) = { ¥(0,z,w) (y-¥) +y ¥y ,z,wl /y
{1-8(w)} a:(y -y) yly, ¥(z,w)-1} T(0,z,w) a1 ¥
{1-wl y(z,w) * z y(z,w)
Thus
. o My,z.w) y(z.w)
m(y,z,u) = iy v(z,w)-11 a: (y-y )
1-8(w) Yy ¥, I(0,z,w) {y_ v(z,w)-1}
(T i1~y y(z,w)} 21y Y(zW)-1Hy-y )
Using (13),
) 1-8(w) y [(y,2,w) {l—yO v(z,w)}
m(y,z,w) = TTwHi-y y(zw)J * z{y y(z,w)-1} (23)
Setting z = y gives
1-8(w) I(y,y,w) {qxaow-(l-qzaowy) y(y,w)}
Ty = IRy YT STERTSERTCADY:

But by (21) we also have

- 1-6(w) - '
Tsys) = TSy $tw)) F(y,y,w)

It follows that

qxaow-(l-qzaowy) y(y,w)
T(y,y,w) 21 -
aia wll1l-y v(y,w)]
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y{1-8(w) 8 (w)-y(y,w)}
{1-wi{l-y 3(w)I {1~y y(y,w)}

Q.2 Wy {1-8(w) HS(w)=y(y,w)}
P(ysysw) = Ti-W}{l-y Szwjle—aowy} Y(y,w)

Using (13):-

l-qzaozw

l-aow(q1y+qzé7

I'(y,z,w) = r(0,z,w)

{l-qzaozw}{l-aowz} ['(z,2z,w)

Tl—aow(q]y}qgz)}{l—qzaOZW}

qi1a_wz {1~8(w)Hsw)=-y(z,w)}
{1-wH1-z G(W)}{l-aow(q1y+qzz)} Y(z,w)

I'(y,z,w) = (24)

(23) and (24) give a complete solution for the generating functions of queue

length probabilities.

Stationary Distribution

The Markov chain is irreducible and aperiodic, and therefore the limit-
ing probabilities

“ijk = Lim .

ist; either every m,.. = O or ev Tes 1 {m. . i -
always exist; either ev ijk O or every nle > 0 and tnle} 1s a prob

ability distribution. Using Abel's theorem, if p = A/u 21

T(y,z) = Lim (1-w) I'(y,z,w) = O
wrl
and
n(y,z) = Lim (1-w) ﬂ(y,Z,W =0

w+1 :
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If p=Auc<l

I'(y,z) = Lim (1-w) T(y,z,w)
w1l
Q8 z {1-6}{6-Y(z,})}
{1-8zH1-a (qiy+q22)} v(z,1)
and
1-6 y{qlao—(l-aOQzZ) v(z,1)} I'(y,2z)
m(y,2z) = =z, 107 t Qa z ly v(z,1)-1}

Setting z = 1 gives the generating functions of the number of l-units in the

system

qia {8-v}
Tl—aé(Q1y+Q2)}Y

F(y,1) = (25)

and

1-8 y{QIao‘(l-aOQ2)Y} r'(y,l)

") = Iny - qia, 17y} (26)

Note that as p < 1, so Ag:/n = q.,p < 1 and hence y < 1,

Special Case M/M/1

Suppose A(s) = A/(A+s)
Then § is a solution of the equation z = A(u-uz)

hY

A leading to z=porl

i.e. zZ\ + zu - z?u

Therefore, for p < 1, § = p (27)

Y is a solution of the equation y = (q;+q2y) A(u-uy)

i.e. YA+ yu - yiH o= AQn * Ay
i.e. py(1-y) = Aq,(1-y)

leading to y =1 or iq:/u

Therefore Y = A, /U = qip (28)
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4,3 The GI/M/1 Priority Queue: the Waiting Time Distributions

The Stationary-laiting- Time- Distribution-of-a- 1-unit

Let W, denote the waiting time of a l-unit in the stationary state.
Then the state of the system at the arrival epoch, T, of the l-unit can be

partitioned into a number of mutually exclusive events:
AO - the system empty at v
A; - i -1-units in the- system,  one- of* which -is being served -(i>1)

B, - i 1l~units in the system, but a 2-unit is being served (i>0)

Therefore

EEe—SWl] - Z 4{: -SH1|A j PEA j ?O_O EE -SW1|B 3 PEBij

s

(%) rad» Z, (—H—)l S

1=

n
N
+ 1
wl
w
l—.l
S’
4.
%

+ =
« |

Lo |
N
=

+ |
n

-
\~::/

From (25) and (26),

1-8 qlao-(l-aOQ2)Y
ﬂ(yal) ty r(y,l) - l_Yy Ty P(y’l) L- QLaO(l_YyS——
1-6 (1-a_q2)-quay ?

= - 4 r 1)
l'-Yy + Yy = (3]7,-1-, ( qlao(l_Yy) J

Therefore

-sW; (1-5) u(s=y)
R PR =) (29)
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Special Case: N/M/1

Using (27) and (28), (29)-simplifies to

~sWi— _  (u+s)(l-p) Hg 20
E[e™7] - (Wis-q.pn)  (p*s-qipH)

agreeing with Miller [ 14" ].

Differentiating (29) gives
= = S
Efw, ] = MeED] (30)

Mean Waiting Time of 2-units

Using equation (30) of Chapter 3:

p E[ W] =.q1p E[ W, | + qepo E[ W]
Now ECW] = 6/(p-us)
Thus
sl = 22 %;S : .31:;73
1e W] = qf'u{%i:calj%-l'ﬁr} (31)

The Stationary Waiting Time Distribution of a 2-unit
The results of the last section of Chapter 3 can be used with

u+g+s-pu A, (=s)
U+Q+s

1=-p d(s) =
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CHAPTER 5

Inequalities

5.1 Inegualities:for -the GI/G/1 Queue

The problem of obtaining bounds for the mean waiting time in a GI/G/1
queue has been considered by Kingman 'E'lO ,11 where references are also given
to earlier work_] and Marshall [ 12,13_]. A summary of their work will now
be given and then in the nexf section thi; willil'ae extended to derive bounds
for the GI/G/1 priority queue.

Suppose customers Cp,C,,C2,... arrive at a single server queue where

they are served in the order -of their arrival. For n > O let -

An = interarrival time between the nth and (1r1+l)th arrival epochs;
EEAnj < o

S, = service time of C_; E[S ] <=

W = waiting time of C_; initial condition W with E[W ] <=

U =8 -4

n n n

where the A and S_ (n30) are all mutually independent. Then
) +
W, = [w +u ] (1)

where

X" = Max(X,0) = 2

O >
He o
Hy
bl et
NV
QO

If the traffic intensity ¢ = EL S J/E[AT] < 1 then it is well known

(Lindley's Theorem) that the distribution of Wr1 converges to that of a finite
random variable W regardless of W -

Now, for any n > O



EC+0 )" - (W +0)"] = E['i\,-.,rn + Un] = EJ]':'_\H__J + EIs 7] - 1;,?:&']:1
where
X" = - Min(£,0) - 20 irx<o
=X - X

Taking the limit as n + « gives, on using (1)

E[ eru)™]

ECa] - E[Cs]
- e[ U]

If 7 is any random variable with finite varisnce, then as
Z =7 -2

and 72 = (252 + (27)2

we have
Ez]
and E[z*7]

E[z"] - (2]

e[ z"H?] + eC )]

(2)

i.e. var[ z"7] + ygrfz"_'] = var[[2] - 2 e[z ] (2]

Assuming var[ W_] is finite

o+ varC W)

var[W+U7] - 2 E(w+0) "] B[ (W)
var (W] + var[ U] - 2 E[ W] E[(w+U)"]

3



var[_U_]-var[ (W+U) _]

e =0 - 2(E[A]-E[(s]}
(33
<  var[ U]
2(e[(AJ-E[s]]}
and hence
e < var [[S7] +var[CA]

2{E[AT]-E[[s]]}
(4)
=Jd say

the error being caused by neglection of the variance of (W+U) .

As W > 0, E(W"’U)-]Z < (U')Z

and therefore

var[_(w+U) ] = E[C(w+0) 1% - {E[(AT] - E[Cs]}?
EC@W) T - ELU]
E[u? ) w")?] - E[U7])?
var[U]] - e[ w2

In

From equation (3)

e[t
E[W] > Lo (5)
‘ 2{E[AT]-E[(s]}

Surnmarizing

E[ (%] var[ S7] +varEA:]
< E[W] < ———
2{E[[A]-E[s]} 2{eCaJ-E[s]1

98.

Note that the lower bound is necessarily more complicated than the



99.

upper one, becé.use if it depended only on the parameters EFs], EEA:[ s
var[_S7], var[CA_] subject only to EES':[ <E[CA] it would have to be zero
[consider the queue D/D/1 with S = E[CS]], A = E[AT], EES] < E[A]
and W, = 0; then U =8 - A < O for all n and hence W, =.0 for all n.
Note that equality holds for the upper bound for this queuej.

The above.inequalities are due to J. F. C. Kingman. Another more corm-

plicated lower bound has been given by Marshall ElZ], For all w 3 O,
+
EE(w+Un) ]

;7 e, > .x:[dx

ECW ., T W, =w]

g(w) say

and therefore . ELw ..

ECgW, )]

or, in the limit

e W]

ECe()_]

As g'(j_x) = P'EU > -xj which increases monotonically as x increases (x>0),

g(x) is a convex function. Using Jensen's inequality, it follows that

eCWT = ECgn]
> g(E[W])

i.e. Efw] »/° _ _ PLU> xJax (6)

E[ W]

Consider the equation

b
1]

;Z PLu> u:[du

ECUTT + 12, P[U> u]du (7)

as
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E[U"] = /7 PCU > uJau

If E[U%] = 0 then x = O is a solution of (7).
1r ELU"] >0 and E[[ST] < E[[A]] then
E[u] = E[U"] - ECu] < 0
i.e. ECU"] < ECU]
ECUT] < /2. PLU < uwJau

Therefore, for x sufficiently large,
+ o
E[U] < /2, PLU< wJdu
o
<x= Sl PCU > u_]du

i.e. X > EEU+] + f_c_)_x P[U> u_Jdu

and hence (7) has a solution. Similarly if E[ZS_] > E[CA] then (7) has no
solution.

If x is a solution of (7) over some range [_a,b_] say, then
g'(x) = PEU'> -x:[ =1 for xe[:a,b:[

and hence g'(x) = 1 for xe Ea,W), and therefore the curves never cross, only
meet. As g(x) is convex, it follows that if E[_S_| < E[(A_], equation (7)
has a unique root %, say.

If £ = O, then trivially E[ W] >2

If & > 0, then E[U™] > 0 and for all xe[[0,2)

x < ELU"] + 2 PLU > uJau

Hence if E[ W] < &, then



contradicting (6). Therefore E[LW_] 2 %.
Sumarizing, if E[[S_| < EEA] then E[W_] > & where & is the unique root

of the equation
X = fojx PU > u_jdu (x>0) (8)

Marshall has also given improvements of this lower bound when restrict-
ions are placed on the distribution of interarrival times. There are three

possible assumptions:-

(1) Suppose A has its mean residual life bounded above by y (y<w)

r5 PCAuJau
i.e. Y, for every t > O

PA>tT]

Let I denote the length of an idle period; then I can be expressed in the

form I = A - X where X > O. Using the notation f,(t) to denote the density
function of any random variable Z and Z(t) to denote its distribution

function;:-

f: fA (t+x) axX(x)

1
P I>t]

¢ PCI > uldu fzzt PCA> X + u_]du

co CO

Just {0 PA > u + x_] dX(x) du



- fx=O PEA >t x:l fv=t+x
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PCA>v_Jav

P EA>‘c+x:]

dX(X)

<Y ’i:o PLA >t + x| dX(x)

f‘: P I>u_]du

E[I]]

P[1>t]]
ECT]

for every t » O

Integrating over t gives

E[12]]

—_— Y (9)
2 E[1] b

(1ii) Suppose A has decreasing mean residual life

f: PCA>u_Jdu

PAt]

(t 20, PEA > tj > 0). Note that decreasing mean residual 1life implies

decreases monotonically as t increases

mean residual life bounded above by ELATT.

As for (i)

PCA>u]]

o PL1>uwJdu= /. P[A>t+x] fo_ du dx(x)
t E j x=0 E j v=t+x PEA>t+x:I
PEA>u]'
P ol a IS 7l )
< erzo PlLA> ¢t + x| fv=t ——_PEA>t:| du dX(x)
f: P[_I>u_]du - P[muTJ
i.e. fv=t du, for every t 2 O (10)

PLI>t]

P_A>t_]

(iii) Suppose A has increasing failure rate
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L8
P A>t ]

PA > t_] » 0) and hence

inereases monotonically as © increases (t > O,

+
ft_u

.P
g fplx)ax

P A>t]]

increases monotonically with t (uz0).

[Note that this implies

£,(2) PCA > u] g £, (w) P[A > 2] for every = & u

and hence for every t g v

f;:t £, (z)dz f?; P[A > uJaus PLA> v ] J"Zf:t P[A > z_dz
(11)
and
£y Ta@dz /5 PCA > uwlau = PLa > v f,_ P[A > z]dz
| (12)

Adding (11) and (12) gives
pCa> ] /5 P[A>uJaus P[A>v] £, P[A> 2z ]dz

i.e. A has decreasing mean residual lif‘e] .

With this assumption of increasing faillre rate, for every v > t > 0

V o ¢ o
S, fo{uwdu -
t T - o=l ,rX_t I, £ (utx), aX(x)du
P[1>t7] PCee ]
- \
1 v o0 fA(u+X’

—— [ ——=——— P[A >t +x_] &X(x)du
PI>tT] W0 ° p[astex]]
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1o W [ T ax(x)
> - _ A>t + x| dX(x)du
S B |
_ IX fA(u)du

P A>t7]

PCI>t_]-P[I>v ] P A>t]-P[A>v]
P[T>t] i’ P A>t ]

P[I>v]] ) P A>v_]
PLI>t7] ) P>t ]

for every v.>t 20

As A has also decreasing mean residual life, from equation (10) for every

Osvgt

s¢ PLru]au ) P>t ] ) pLI>v]
) N N
/. PLAuJau P A>tT] P A>v]

i.e. P[a>v] f, P[T> uJdug P[I>v] /L P[A > uJau
Integrating over v

5 pCa > vJav /7 PCT > uJau < /5 PLT > viav /5 PLA > uwau

i.e. E[A] /5 P[> uJau < ECT] /5 PLA > w]au

ECI2] E[A%]]

< (13)
2E[17] 2E[A]]

To apply these inequalities, note that equation (3) gives

var[_U_]-var[_ (W+U)~ "]

"L - -2E[[U_]
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On using (2) this becomes

ECUJ-EC{(w+0)71 ]
-2E[ U7}

If (W+U)~ > O then (W+#U)” = I. Therefore;- if -

E[W] =

a = P[:arrivél-finds system empty:]
:PEW-&-U<O]
then '
E[U*]-a_E[ 1
W] = Lvd-s=Lr'].

-2

E[uv?] E[1%7]

-2E[ U] ] 2E]:Ij

var[[S7]+var[[AT] ECA]-E[S7] E[1*]]

2{E[ATJ-E[sT}. 2 2E[17]
Thus if A has mean residual life bounded above by ¥y
{E[A]]-E[[s_]}
ELW] >J + _Ejz J -y

If A has decreasing mean residual life, vy = E[A_] and

e 57 - E[A]] ;EES]

If A has increasing failure rate

sCAJsCs]  ECA]
2

EfW] >J+

var[ A_J+E[S_JE[A_]
2 E[A]]

Recall that J denotes the upper bound - see equation (4).

=J -
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5.2 Inequalities for -the- GL/G/1 Pricrity Queue

1n this section the superscripts NP and PR will be used to denote the

non-preemptive and preemptive resume disciplines. Therefore
P
ECW, ] = E[W, 0]
and from Chapter 3, equation (30)

o ELWT = o1 ECW] + pp W, ] (14)

where W is the equilibrium waiting time in the pooled queue and W'iNP is the

equilibrium waiting time of an i-unit (i=1,2) in a non-preemptive priority
queue.
o s . . — — . PR
The problem of obtaining approximations for EEW_] and E|_W,~ :]
reduces to that of the last section, the results of which can be used to

give simple bounds A, B, A;, B; such that

A <E[W] <B
A g E_[_wfﬁlj < B
- NP— PR~ . i
Clearly E[wl j > EEW1 : :[ > A1. Equation (14) then gives

: o E[W ]-p1 Ay _
BV ] < P2 < & szl =

= NPama .
To obtain a lower bound for E| W, _| (and hence, by equation (14) an upper

bound for E[ W, '] note that
Wo =Tog + T + Ty + ..
where

Ty = time to clear system of all units which arrived before the 2-unit.
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T, = time to clear system of all l-units which arrived during T,
(iz21).

Therefore

E[ W, ]

E[W] + :Zl ECT; ]

[eo]

=E[W] + = 2 B[N

boiEl

where 1/ur = E[ S:1_] = mean service time of a l-unit, and

N. = number of l-units arriving during T,

1 -1

Therefore, using the result on page 53 of [ 3_],

E[N.-] 2 A: E[W_| -1
E[N. ] 24 E[Th ] - 1 ete.

EEWZNP] 2 Max{E[ W], E[W_](1+p1) - -ﬁ- ,

- _ ey 1 2
E!_W] (1+p1+p1°) ™ Pr =TT s e }

giving a lower bound for E[:WZNP:],

Note that the second term is better (i.e. gréater) than the first if

o1 E[ W] 2 1/u

i.e. A E[W] 21
and the third term is bhetter than the second if
}\12 EEW] 2 Hy + )\1 ete.

Clearly this method is very crude and better methods are needed: if, on
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inspection, the distribution of the interarrival time between two l-units
can be bounded by a distribution for which results are kmown [ i.e. E or
M:] or alternatively if the service time distribution function can be bound-

=d by exponential distribution functions, then the fellowing results can be

used:

Wy, the waiting time of a 2-unit in the stationary state, has the same
distribution as the first passage time to O in the following stochastic

process, V(t)

V(_t)=w—t+ZSi

vhere the summation is taken over all i such that . € t and W is the wait-

ing time in the pooled queue

S1532,-¢., are the service times of l-units.
A = T, = T2 N2 1are interarrival times of l-units and all these
random variables are independent.

Compare two such processes: V:(t) in which the An have distribution

function Fi(t) = P[ LA < t7], density £1(t) and V,(t) in which the A have
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distribution function F,(t) = P[CA < t_], density fa(t).
Suppose F,(t) 2> F,(t), for all t > O,

Then if for i = 1,2,

Fi(t) =1 - Fi(t) and Fi(n)(t) denotes the distribution function of the

n~-fold convolution of Fi(t)

5, @y =1 -7,@ )

P[CA, + A, >t in the first process_]

/2 PCAr > £ - u] fifw) du

f°o° By (t=u) £,(u) du

N

f: B, (t-u) £1(u) du

f: Fi(t-u) fa(u) du

/7 Fa(t-u) £2(u) au

n

Fz(z)(t)

and by induction
ﬁl(n)(t) < ﬁz(n)(t) for every n » 1, t > 0O

If N;{(t) denotes the number of arrivals in [[0,t”] in the Vv, (t) process

(i=1,2) then

PNi(t) <n) = PLA + Az + ... *+ A >t in the first process_]
= 7, (o)

< Fz(n)(t)
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P[M(t) < n ]

i.e. PEN;(t) 2 n:] p] PEI'-IZ(t) > nj for everyn 3 O, t 3 O
Now
Vi(t) = W-t+ Xi(t) i=12;t20
where Xi(t) =z Sj s the summation being taken over all j such that

Tj < t in the ith process. Therefore

PLVi(t) > 0] = P[Xi(t) > t - W]

=Z P[Si+ ... +8 >t -WJ]PCNi(t) = 1]

= Zm 1
<, Px 2
where ak1 = P[Ni(¢) = k| k 20
and B, = BCS: + oo+ 5 > 6 - W]

Thus
PEVI(t) > Oj - PEVz(t) > O_l = Z p (akl_akz)
-~ {0 k
- Z D
= P 4y
which is absolutely convergent.
Now
'ki 2, = PLNi(e) > n] - P[M.AE) > n] >0 for all n 2 O
=n

Also
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s <]

VA Iakl converges (and is £2)
k=0

Hence, there exists an m such that

7 eyl <e
=m‘
[+ +] o] 2
2 o a, %(p-p) + /D
0 k ak re k o ak o o) ak
>,Z(pk-po)ak
k=1
as >0 p.>0
ko k7~ o
1 1
=7 p p,' = p, =D
& % % k T Pe " P
OCspr  &p2 £ - &1
Similarly,

k=1 k=2 =1
w0
>Zzpk2ak Osp2” ¢ ps? §.el
and so on, giving
s S _m m m
ch—op*‘ak"k- P 2 0€ P, € Py & ov- €1
But
'm m [+,c]
2. o $ 2 ol <
.k=m k %k S L
00
i.e. Zz_ ka a > -€ for every € > O

k=m
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i.e: Zi Dy & > "€ for every € > O

ie. Ly Pic 3% 70
(=

and therefore

P[Vi(t) > 0] > P[[Vo(t) > 0] foreveryt >0

It follows that, for every t 2 O,

P[Vi(u) >0, 05 ust ] >»P[Vo(u) >0, 05 ug t]
i.e. P[Ty >t ] »P[T2 >t ] for every t %0

where Ti denotes the first passage time to zero in the ith process.

Integrating gives E[T. ] »E[T,]
This result shows that for two arrival processes with distribution

functions satisfying
Fi(t) 2 Fa(t) for every t 2 O

then the mean waiting time of a 2-unit in the first process is not less than

the mean waiting time of a 2-unit in the second process.

Example. Suppose the age specific failure rate ¢(t) of the distribution

function of the interarrival time between two 1-units satisfies
/o & ¢(t) & /B for all t
then exp(-t/B) & F(t) g exp(~t/a)

and using the above results gives
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i 2]
-t ) NP El
-i:( l/'U 3 &-)' < E Ew2 j S ‘l_ (1—/,—“1—8—7

E[W_] referring to the pooled queue.

Similarly for twc processes with service time distribution functions

satisfying
Si1(t) > S, (t) for every t 2 O
p =P[S: + ...+ S, > t - W for the first process_|
<;pk2
and hence

PLVi(t) » 0] - P[V,(t) >0 ] O

and the mean waiting time of a 2-unit in the first process is not greater

than the mean waiting time of a 2-unit in the second process.

Unfortunately the above method requires knowledge of thg whole dis-
tribution of either the interarrival times or the service times of 1-units
and so particular values obtained may be very sensitive to small changes in
the distributions. To obtain more robust inequalities it seems necessary
to place restrictions on the distribution of the service time of a 2-unit:
suppose S, has mean residugl life bounded above by a. Then, for a 2-class

non-preemptive queue:

wn+l =z Waiting Time of (n+1)? 1-unit
=W +S ~A +X | (15)
where
S = service time of nth 1~unit, mean 1/u,;
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An = interarrival time between nth and (n+1)lCh l-units, mean 1/,

‘o if W +S -A 20
X = n n n-
N J1 +R if W +S--=-A =-I <O
n n n n n n

I = time from departure of nth 1-unit to arrival of (n+l)"h 1-unit

R = time (n+l)th'l-unit must wait before commencing service due to
2-unit in service.

Therefore

1 3
A]Tl‘?'l

W Z A )? 2 4 oy (S -
Nn + (Srl An) + Xrl + ZNH(Sn An+Xn)

+2 X (S -A )
n'"n n

1}

4 - 2 Faat . -
Wt (Srl An) + XnLuxn + ESn 2An + 2Wh:]
v [Cs, - A]

Taking expected values and assuming stationarity,

2 E[W."7] B[CA - 87 = B[(5-A)2] + p E[L(I+R)(R-I)"]

PEW;NP + 8 ~-Ac< oj

where P

P[_1-unit finds server idle ]

Np—  EL(S-A)*J+p E[R*J-p ECI*]

_ (1A ~1711)

ECW. (16)

Brom equation (15)

=pE[T+R] =E[A] -E[S] = I/n = 1y

i

/Ay =~ L/uy - p E[[R]

=
®
-
=
K
H.
L
it
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Now S; has mean residual life bounded above by a, and therefore E[ R_] & o

i-e. PELI] 2 /A - 1/ -«
Also
™2™ . I 2
p ELT*] »pE[T]}
» p ELI])?
>t
where 0] ift 1/a; - %7 <
b = 1
l/)\l - 1/u; - o if 1/x, - -\-Tl. 2 Q

Substituting in (16) gives

E[(s-8)*_J+E[R*_]-b

NP—
B[ T < S/ =171 )

Finally R = S; - B where B is a strictly positive random variable and there-

fore, as for equation (9) above
E[R’_] < 20E(R)

giving the final inequality

E[ (S-A)*T]+20/u,=b
ELw. I+ 2(1/ X =1/uy)

Van Mildert College, Durham September, 1971

( 24 Ami 1975
Namagl -
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