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CHAPTER ONE

S-Matrix Theory



1. Introduction.

Our approach to the problem of strong interaction
dynamics follows the S-matrix point of view, as emphasised
in recont years by notably Chew and his collaborators(l).
That is, we attempt to understand the propertisess of hadrons
as members of a "puclear democracy” (2) in terms of
assumption of analyticity, unitarity, crossing symmetry
and Regge(3) asymptotic behaviour of strong interaction
scattering amplitudes, without making any refersnce to an
underlying fisld concept.

In this introductory Chapter, we outline our
basic hypotheses, and dsvelop some of the formalism
necessary for thsir testing. This provides the foundation
for the dynmamical calculations presentsd in the following
Chapters.

We begin with a brief summary of ths gensral
principles of dynamical S-matrix theory (“), (such as they
are understood at present), and then go on to discuss
their implications for two-particle to two-particle
reactions.

The hypothesis that the scattering amplitudse
is analytic, unitary and crossing symmetric is smbodied
in an integral repressentation, which is unique up to
possible arbitrary subtraction constants that expross

unknown high energy behaviour. An analytic continuation
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hypothesis removes this uncertainty, and Regge poles
appear as the subtraction terms, giving dynamical content
to ths theory(5).

A means of calculation is to write down an
analytic, crossing symmetric amplitude whose high energy
behaviour is governed by Regge poles, and to enforce
unitarity upon it. We describe the N/D method(6) as a
way of doing this.

2. General Principles.

Taking a typical hadronic mass to be 1 GeV,
and assuming that YukaWa(z) forces operate, ons expects
strong interactions to be characterised by decay timess
~10~24 geconds ana by interaction ranges ~10"13 cms.
These estimates are consistent with experiment(s).
Because of the very short range of the strong forees,
it is possible to definse asymptotic initlal and final
states containing only free stable hadrons on their
mass shells. (Elsctromagnetic, weak and gravitational
forces are neglsctsd unless oxplicitly stated). These
physical configurations ars describsd by the usual
guantum mechanical state vectors(9), labelled by the
particle momenta and spin orientations - the
sxporimental observables. We assume that the set of
physical states obey the superposition principle(lo),

are orthonormalisable and are complets.




3.
Then we define an operator in the space of

physical states by

S = Z’ [m,m>L{m, out| :

(1.1)
where the summation runs over particle configurations.
Taking matrix slements, it is immediately found that
the assumptions of orthonormality and completensss imply
that S is unitary,
sst = 8% = 1. (1.2)

The matrix slements of S satisfy
<b,im S| a,im> = <b,out|a,in) = {b,out|s|a,out> , (1.3)
corresponding to the usual definition of S-matrix slements,
name ly : )
qu = <b,0wt|o,,lm.> . (1.1)
Because momentum measurements are experimentally
possible(1l) | the asymptotic states will bs taken to be
momentum eigenstates. We shall deal hers with physical
states containing only structureless hosons. The

(12) are in gemneral not nagliéibla(l3),

complications of spin
but for simplicity will be ignored since they do not

affect our conclusions in this section. A single particls
state will be written ]ﬁ> where F%_ is its four-momentum(lu).
The "in" and "out" labels are dropped, as permitted by
squation (1.3).

We use single particle statss with invariant

normalisation, viz.,

<PIPY> = (2n) 2p, $¥(pLp) | (1.5)




L.
where the corresponding phase space volume elsment is
_Lp.
(27")3:1'/’0
Multiparticle states are simply direct products
of singls particls ones, and their corresponding space
volume ¢lemsnt is the product of the single particle onss
(divided by appropriate products of factorials to take
account of any identical particilss in the intermediate
state in question(15).
Expression (1.6) may be replaced by

(2#53 S(p*m2) O (py) d*p

)

using the elementary propertises of the delta—function(l6),
so that manifest invariance under proper Lorentz trans-
formations is displayed. The unitarity relation (1.2)
may then be written in tsrms of general multiparticle
S-matrix slements as

2 (@™ T dta; 560D b0 <premelSlargy X

n=|
x 49| S ppuy = <piepil Py

(where identical particles are neglected for simplicity).
The relationship between the S-~matrix defined

above and a spatial description of a scattering process

requires some care (17), and we shall not enter into

details, except to say that the appearance of Planck's

(1.6)

(1.7)

(1.8)



constant in the Fourier transforms which take S from
momentum space to configuration space provide the
nocessary statemsnt that the theory deals with miero-
scopic phenomena. The transformations of the physical
observables from one inertial space-time frame to another
ars proper Lorentg transformations, under which the
S-matrix elements are assumsd to be invariant, as we have
already implied.

Among the consequences of Lorentz invariance
is the pressnae. on the right hand side of equation (1.4L)
of delta~functions of energy-momentum conservation.
Because strong interactions have a very short range, an
S-matrix element consists of '"connected parts"(la),
9ach corresponding to one of the possible reactions
which may occur hetwssn all, some, or none of the initial
particles. knergy and momentum are conserved overall,
and by each connscted part.

For exampls, the (two-particlse)—> (two-particle)

S-matrix slement bregks up as

S(?3)F4'; ‘PD'FZ> = <F37T’4] P15 Pz)

+ 4 (zm)* 8“”(p.+-;>z+f>3+r4)<[>s; Pl Alp, by,

corresponding to the particles proceeding unaffectsd or
. 4
scattering. The factor 162ﬂ) is conventional, and we

have chosen to labol all the extsernal four-momsnta as

(1.9)



incoming. The A-matrix element is the "four-line
connected part", that is, the scattering amplitude.

The assumptions introduced so far may be
summarised thus:

(1) The superposition principls of quantum
mechanics holds.
(ii) A unitary S-matrix exists.

(1ii) Ths S-matrix is Lorsntz invariant.

(1iv) The S-matrix has a disconnected
structure.

Thess postulates are rsolatively incontroversial,
and are almost cortain to be features of any succsssful
theory of hadrons. Of more debatable standing are two
postulates which give dynamical content to S-matrix
theory, and which underly the work presented here.

They are (using Chew's nomsnclature(l)),

(a) Maximal analyticity of the firet kind (hereafter
abbreviated to MAFK). This is the postulate that the
only singularities in the complsx energy variables of the
invariant amplitudes derived from the connscted parts of
the S-matrix are the poles corresponding to stable or
unstabls particles, and further singularitiss gensrated
from these poles by unitarity and crossing.(b) Maximal
analyticity of the sscond kind (MASK). This is the
postulate that the S-matrix is continuable throughout

the complsx angular momsntum plans, with only isolated

singularitises.




Te
The first of these, MAFK, is a statemsnt of

what was loossely referred to in the Introduction as the
assumption that hadron scattering amplitudes are analytiec,
unitary and crossing symmetric. The sscond, MASK, is a
generalisation of the assumption that scattering amplitudss
display Regge asymptotic bshaviour.

It would be inappropriate to give hers a lengthy
discussion of the implications and theoretical justification
for these two postulates for arbitrary scattering processes.
Detailed reviews ars given by Chew(l), by Eden(l) et. al.,
and by Collins & Squires(5), who give rsferences to the
original work. Instsad, we shall consider only their
implications for the four-lins connscted part, where their
conseguences are brought out most clearly, and where the

work of later Chapters is concentrated.

3. The Four~lins Connected Part.

The four-lins connected part is both experimentally
accessgible - in simple cases - and thaoretically tractable,
becauss of its small number of degrees of freedom. There-
fore its study has been, and will continue %o be, ons of
the most fruitful testing-grounds of theories of strong
interactions.

Most of the calculations deoscribed in the
following Chapters will be concernsd with the elastic

scattering of equal-mass gpinl ess particles, and therefore



the formulas developed here will be confinsd to this
simple case, and later extended if necessary.

In the abssence of spin, it is well-known(19)
that Lorentz invariance and the mass shell condition
confine the indepsndant variables of an n-line connsected
part to a set of 3n-10 invariants formed from the
n sxternal four-moments. For ths four-lins connscted
part wo dsfine as usual the thres ipnvariants g, t and u

to be, (see Fig. 1.1),

s = (p) + pp)?
t = (py + p3)°
u = (pp + Pu)%

The esquation relating these variablss is
s+ t+u-= umz,
where m is the external mass.

We write thse amplitude corresponding to the
connected part of Fig.l.l as A(s,t,u), to emphasise its
crossing symmetry, which has not besn proved in S-matrix
theory (as it has in quantum field theory)(zo), but 1is
a part of the postulate of MAFK.

Bacause of the CPT theorem(21), and crossing,
the amplitude of Fig.l describes the six processes

1 +2 — 34+ L 3+4 > T1T+2 (1)

1+3— 2 +14: 2+4 —>T+73 (2)

1+ 4 —73 +2: 3+42—14+T0, (3)

(1.10)

(1.11)



but with (1), (2) and (3) as physically permitted in
different regions of the s, t and u variables. For

process (1) we find from (1.10) that

8 = (centre of mass total snsrgy)?
2 (1.12)
= Ll-(mz + dg )9
thus defining qg, the centre of mass three-momentum.
Also we find
t = -(centre of mass momentum transfer)?
5 (1.13)
where 8 = cos O3 and Og 1s the centre of mass scattering
angle. Thus u is given from (1.11l), (1.12) and (1.13)
as
u = -2qg(l + sg5). (L.14)

Processes (1) are referrsd to as s-channsl processes,
and are respectively physically allowable if 'iuzs> o}
while -/ < Z </ .

Similarly, it follows from (1.10) that for
(2) and (3) the energy and momentum transfer variables
are (t,s) and (u,t) respectivsaly, and correspondingly
(qgr2¢) and (qys8,) are dsfinsd. These are called the
t- and u- channel processes, and are physical for
(+g9,>0, -l<=z=< [) and

(i1“>01—-l\<~zu$l)

respectively. The three physical regions are shown

on the symmetrical Mandelstam diagram(zz), Fig.l.2.
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MAFK asserts that a comnected part has only
thoss singularities in the (complex) energy variables
which are forced upon it by .unitarity in the channels
it links by crossing. For a general process, thse
nature and location of these singularities can bPs found
by using Landau's rules(23) and Cutkosky's rules(zu).
For the four-lins connscted part, it is intuitively reason-
able that singularities must occur in the energy
variables as a new procoss becomos allowsd by energy
and other conservation laws - i.e., at the threshhold
of sach "communicating channel"(l) - where the amplitude
suddenly acquires nosw dsgrees of freedom. Also it
is natural to carry over from (e.g.) field theory the
correspondence between poles and particles, and to
suppoese that multiparticle threshold singularitiss
should be branch points because a continuum of final-
state configurations are possible.

These conjectures are born out by detailed
analysis, (reviswed in ref. L4), and we take without
further comment the particle-pole correspondsence.

The appsarance of threshold branch points comes directly
from unitarity as follows. Writing for ths S-matrix
St = [+ 4 7:f - (corresponding to (1.9)), we

+ { +
T = Tie =2iz Ton Tug (1.15)

find from (1.2) that

+
( T is the Hermitian conjugate of | ). Since |




1l.
conserves four-momentum, the right hand side is non-zero
above the lowest threshold and changes discontinuously
at each higher one, corresponding to the presence of more
allowed intermediate states in the matrix product.

Equation (1.15) expresses the discontinuity
across the unitarity cut, drawn from threshold to + <,
but it is very difficult to handle except in the elastic
or quasi-elastic region where only two-body intermediatse
states are retalned. In this case, taking matrix
9lemsnts of (1.2) and using (1.9) and (1.8), we find
after a little algebra(25), that the discontinuity
agsociated with the (quasi-)elastic channel n in the

transition a—> b can be written

At~ A9 = 22 | g B ) dt, (e,
3
Qgp being the momentum in state n. We shall discuss
this equation in more detail below; hers we merely
remark that it may bes shown that for physical s-channel
processes, (t < o), the integral of (;.16) contains no.:
singularities which change the square root nature of the
threshold branch point, implied by the factor dgp» 8O
that all two-body normal thresholds are two-sheeted(zs).
MAFK further asserts that A{s,t,u) has a
"physical sheset" on which the analytic continuation
necessary to achieve crossing can be carrised out. On

this sheset thore are no complex singularities, and

~ /\

\)<_

(1.16)
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the physical amplitude is reached by continuation to the
appropriate ensrgy vélua from just above the threshold
branch cuts (according to the + 1€ prescription(“)).

All the physical sheet singularities of A(s,t,u) thereforse
appsar on the diagram of Fig.l.2, and equation (1.16)
relates the amplitude evaluated above (s, ) and below (s.)
the two-body cut.

At fixed s, the t-plans physical sheet has a
series of right-hand branch points at the g;channel
physical thresholds, a series of left-hand branch points
from the u-channel thresholds, and possibly some bound
state poles. (Resonance poles ars excluded from ths
physical sheet by unitarity, (equation (1.15)); they
must be near the physical region, therefore they lie on
the first unphysical shoet just below the regl axis.

Such a position corresponds to a wave function written
as W x exp (-« Ep t) , where the resonant
energy ER has a negative imaginary part and the + 1€
prescription dictates the choice of phass 1f the state
is to decay).

If A(s,t,u) is expressed as a Cauchy integral
in the t-plane, MAFK defines the positions of all the
singularities of which the path of integration must take
account. If this contour is spscified to run along
the uppsr and lowsr lips of both cuts, closing with

gemicircles at infinity, and if A goes to zero as /t;[
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goes to infinity, then the distant circle does not
contribute and a dispersion relation(27) follows in

the usual way,

H(S’,f."b() = ZPOGO + —I— Pﬁ‘_(_s_——-’t’u')dq’ + —I D (Slt,)u)d/tl.

t
™ u- ™ e £

In this expression
/
D, = z[ﬂ(s,tﬂu)—ﬂ(s,t_,u)j ;
D, 1s defined analogously.
Returning to (1.15), we have
—_ * *
e =T =22, T.T
af 4 4 e Tt J
and with time reversal invariance this becomss
T Top = 0 T
—m 1:{ a\jlu-I;f
That is, for real s and u,
D't (s,'(;)u) = IM ﬁ(s"t_”(/&) )
boecause (1.20) continued below ths first physical
threshold, implies that A(s,t,u) is real analytic in t.
Similar results hold in the othsr two channels(zs).

From (1.20) we can deduce ths optical theorem,
—_ 7z
TuTy = O [T |™ =« 62
W

which makes dispersion relations like (1.17) accessible
to experimental verification. At pressnt, the
dispersion relations are found to be in complete
agrssment with experimsht(29), and this constitutes

an important check of our analyticity assumptions, at

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(L.22)
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least to the extent that complex singularities on the
physical shest, if present, are weak.

In practice 1t is found 3% that for all

processes

{ .
5_;01. n~ s I Iq(s‘o, f+) _> constant

as t becomes large, so that apparently (1.17) has to be
written for a modified function (t-ty) T (t-t,) A(s,t,u),
and hance arbitrary constants appear in the "twice
subtracted" dispersion rslation. (Fortunately, in
cases of interest, thess can P9 eliminated or fixed by
exporiment(31)). In general, so long as
N-€
A'iéTt;—:;—> constant x T , (6>Q)‘, (1.23)
an N-times subtracted version of (1.17) holds.

We shall assume that the amplitude is indesed
bounded by a finite power of t, and in fact take N = O,
deferring further discussion for the moment.

The discontinuitiss D, Dt and D, are defined
by equations like (1.18), and in the elastic region
explicit expressions for them gre of the form (l.16).

The right hand sids of the latter squation certainly
has t and u singularitiss, and in fact MAFK requires Dg
to have only branch points at real values of these
invariants. Because of this, we can write simple

dispersion relations for the D's. Defining

‘)sfr (S't) = é%"[.pt (51-) - Dt (S_)} (1.24)
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and

P (8) = 2D, (uy) - Df_(u,)] , (1.25)

we can write
. A st A 't

In an exactly analogous way we can dsfins Bh(gu) and

/3+u (t,«) , and obtain

D, G tn) - 4| Loty o

=] |
= | —

j P ) s (127
Tt

The integrations in (1.26) and (1.27) sxtend
over the rsgions where the "double spsectral functions',
f)’ are non-zero. The boundaries of the wvarious double
spectrél functions will be determined when we discuss
the implications of eq.(l.16), and the calculation of
the elastic pieces of double spectral function.

Substituting (1.26) and (1.27) into (1.17),

we obtain
{ﬂu:'L “6W mm~+~% ﬂd%ﬂ)#%”
T G eYu- TR (W w)
(1.28)
_' e (s7¢") deder o L _KM: (v)tr) "
" /5 -<)(t*- t) T'Lj(u-—u”)(t—t) #)

neglecting bound state poles for simplicity.
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Hers we have remembsrsd that (1.17) is written

at fixed s, and that the rslation
S'+t'+ul = s+ t'+ u" = q-Mz' (1.29)
holds. Interchanging the primes on the second and fourth

terms of (1.28), and using crossing symmetry we get

/ | ' ’ 0((,4
1 . \ + ’ d/t’ "
J per (60 figosy o)

which simplifies, using (1.29), to

__/— o OUI'da /4
| fe ) Gmg

Therefore we obtain the Mandelstam representation(22’32)

for the scattering amplitude,

/ (S’ t Y
H(s,t,u) = _,—T',_ (S;/—%:)(;”-)t) de’dt

t’un
+ -, P CE 40)

T (‘tl_ t)(“”" M)

o' olu* (1.30)

vl P ) e
(= u)(s"-

as a consequsnce of the postulate of MAFK for the four

line connected part. We have assumed the absence of
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subtractions - N=0 in eq.(l.23) - and polss have bsen

excluded for simplicity. Howaver, both will appsar

in general. The existencs of g Mandelstam representa-
tion for the four-line connected part has bseen
established for a class of potential problems(33), but,
although some progress has bsen made(u), a comprehensive
proof is lacking(3u)Lw Pmoudl PLTQM,

The numbser of subtractions necessary to make
the integrals in (1.30) converge limits the dynamical
conteant given to this theory by MAFK. Froissart(35)
has used unitarity to show that if squations like (1.30)
exist, then only two subtractions are nseded. (Further,
Martin(36) has used crossing to show that (under
specific circumstances) even thess are fixed.) our
second dynamical postulate, MASK, which will be discussed
in the next Section, has the effect of removing
arbitrariness in a particularly satisfactory way. . Before
turning to this, however, we discuss the calculation of
ths double spectral functions in the region where (1.16)
is applicabls, by explicitly tauking the #-discontinuity
of the Dg(s,t) so defined.

Re-writing (1.16) for elastic intermediate

states, we have,

D, (st) = j;z,?:/; Als,t) Als,e") dl(¢t)

—

(1.31)
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where t'=t'(z',8), z'=cos®p e, corresponding to the
esntre of mass angle between the intermsdiate and final
particles, and t"=t"(z",s), &=c080ip. Thess
angles are rslatsd to that corresponding to t=t(sg4,s),

Bg= c080ip, by, (ses Fig.l.3),
2= gz s [C1-2)()-2) s (1.32)

Also
dfl = dz’d;é. (1.33)
If ws now substitute fixed-s dispersion
relations, (1.17), for the two amplitudes on the right-
hand sids of .(l.31), and change their variables of
integration from t, u, and to, 1y respectively to ths

corresponding scattering angle cosines &, and sp, we

obtailn

:Dt(%,t/) n(z, (t)

2'({:‘)_ =z

(1.34)

l]la(5+;u1)CL%(W) X

Z,(w) - 2*

Z, (t,) - 2' 2 (u,) - 2/
J

. 1
(‘ "D, (s, t.) oz, (ta) D.(s,u) de,(uy
e +
| .
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Interchanging orders of integration, we obtain
the angular integration
/ & 0(¢
f, oz fo el

Substituting for Z"(ZS,Z’, 45) from (1.32), and doing

the 75 integration first, a straightforward calculation

; gives L
| QW 22— £ E, 'f"éz'
/éi‘h 2z, — 2,2, -t ( Y,

where

k(ﬁl,az,zs) = 532*512+522 - 8g8|80-1,
and the branch of the logarithm which is real must be
taken for -] < % <[,

Converting back to the t variables, and
remembering that we are dsaling with slastic scattering,

we find

Ds (s, t) = | (3°?ﬂ3%\]§5f0(361f0("’1 [Dt (s‘ht,) + D, (s¢,h )] X

X [Dt (s—)'tz) "'Du (5—)1:1)__{ K."(s,'t)-t) J't_z) X (1.35)
t,t /, -
t-t -t, — 4= + K=z
X /a«, o ] _b_’t_; v, >
t - tl - tz- T K
where
tE, t,

s Y g2 L. 4,2 VY11
K(slt,t,)t;_)= T+ *’tz‘d(f'cl"’

-

Lttt t) - ﬂ: - (1.36)
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The double spectral functions /Qt(ét) and

/qh(gu) ars the t-discontinuitiss of (1.35). To
simplify matters we shall neglect the u-channel

discontinuities for the present and consider
od

[ St (S; f/) /
.Ié(ﬁt) = ;ij\‘lzjt—q?’ (xt

b(s)

~00 0 _
N 44 D St .
i (33”343\/E)J‘M'J0&7_ D, (s, ) De( )/&g } ‘ (1.37)
Yo

K%t 4, t, 5)

Here wa explicitly show t,, the t-channsl threshold, and
b(s), the boundary of the double spectral function.

The t-discontinuity of the right-hand sids of
(1.37) arisss when K=0. The smallest values of tl and
Ty in the integration are t1=t,=t,, when

K( 8y by gy By) =t( t-Lto-1t92/q%) -
The point t=o0 corresponds to 4=l which is not a
singularity of the product Kf%(fft,t:;tz)/el E"”_} )
therefore we deduce b(s)=t=Lt,(létofag2) . (1.38)
For a given gg?, higher values of t, and to cause K to
vanish for a higher t-valus. Therefore we havs for
thes elastic double spectral function the expression

K=o

:Dt (-"-r,'b/) D¢ (3 / t?.) ‘ (1.39)

k:a(sitkt}Etl)

ﬂw:é3¢) - (”m%%V?) dt, | dlt,
J

A

-
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If we had kept the u-channel terms, we would
have found the product DﬁD;( to be replaced by
DﬁDt *DuD , and have derived an expression for /%u
containing the products DfD ﬁDt D

The three regions of non-zero double spectral
function are marked on Fig.l.2, for the exactly symmetrie
cas® of the scattering of scalar bosons. (Bscause the
elastic threshold is the lowest, the boundary of the
elastic double spectral function is the boundary of it
all).

The fact that eq.(1.39) contains only finite
integrations will be found important for developing an
approximation scheme for ths calculation of strong
interaction scattering amplitudes, as we shall discuss

in Chapter Two.

L. Partial Wave Amplitudes and Regge Poles.

In the previous Section we discussed some
implications of the postulate of MAFK for the four-line
connected part, and wrote down the resulting Mandelstam
representation, €q.(1.30). In this Section we shall
discuss continuation in angular momentum and show how
the postulate of MASK removes the necessity for
arbitrary subtractions in eq.(1.30), and so gives
dynamical content to the theory. In particular, the
Rogge pole concept will lead to the formulation of a

bootstrap hypothesis(z).
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The amplitude A(s,t,u) can be expanded on any

basis of orthogonal function, but a convenient choics is

the set of angular momentum eigenfunctions in ons of ths

channels, because the conservation law leads to

congidersble simplifications. (For example, a resonance
has definite angular momentum, and therefore a corresponding
pole will occur in just ons angular momentum partial wave).

An s-channel partial wave amplitude is defined by the

. /
projection. A, ) - [3‘er)_lj; A (s, t(s,2) B (=) o= (1.10)
for\j?:o, l, 2 ..., where gl(as) is a Lisgendre polynomial
of the - -first kind(37>. The corresponding partial wave
series is o0
Hlstu) = /erg(w:) A(s) R (&) . (1.41)
=0

(The factor ( /b ) is needed to simplify the unitarity
expression for the %I(B))' Bscause ?z(zs) is an entire
function of 58(37), it can have no singularities in t or
u. Therefore we note that the series (1.41) cannot
represent the amplitude over the whols s-f—u plans, (Fig.l1.2),
but must diverge at the nearest t. or u singularity(zz).

We shall sse later that a unique continuation
in J? is not possibls for the Aﬂ(s) defined by eq.(1.40);
instead we have to deal with "amplitudes of definite
signature". Re-writing eq.(1.17) (neglecting poles) as

A(s,t,u)=Ap(s,t)+Ag(s,1), (1.42)
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we definse amplitudes of definite signature by

Ai(s,t)=AR(s,t(ss,s))*AL(s,t(-ss,s)), (1.43)
each of which has only right-hand singularitiss in t.
In fact ws can writs o0
+ ¥ 2) (s,t‘) ot
A (S,t’) M o t/ ? (1.44)
{‘—O

and so the analogus of (l.30) is found to be

4 _I_ ﬁ%(g -t") + 1054,\(5 ”) ,
/q (S,f) = f|7— (S/ (t ) DLt’/
- S ) (1.45)
+ -—f fu(t')“’) + Pﬁ.\ (“l)tv d lauo
T 7 A )
(u - ui)iﬁ —-t‘)
where we note the lack of symmstry in s,t and u. (The
derivation of eqg.(l.45) is given in the Appendix).
The partial wave expansion of thig amplitude
is | ol
. 4 .
A% (e) = u,r.g’ (2+) Ar(s) Pl ) (1.46)
d=0
and the projection is
ozc - (1.47)
Aj (s) = (SQ,,) j A (S t)H (a.(s,8)) dzs |

The formula of Neumann(37)
f"/ 4 P I.nn)
/ az’ = 7 o il.40
(Qy2) = 5) ;R , £Toh2

Z- Z
-
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allows us to insert (l.44) into (1.47), and, if the
former integral converges, reverss the order of

integration to obtain

A (s) = (l6n?) f D, (b)) Qyla) olz - (1.49)

(5)t5)
The situation when (l.44) requires subtractions

will be dealt with below, and will lead dirsctly to the
postulate of MASK. Eq.(l.49) is called the Froissart-
Gribov formula(38). Because of (l1.48), expressions

(1.47) and (1.49) can be written in the combined form

/q;(s) = (321&')1[ Q@(i‘:) Ai(s)t(ﬁ)) oz (1.50)
(;°'Cb
forﬁ:o,l,Z..., where the contours C‘ and Cz are
defined in Fig.l.4ha.
We note that (1.43) implies that A*(s,t)(A”(s,t))

contains the even (odd) part in a_ of the amplitude,

8
although in general not even (odd) itself. Because
E}(-z):(él)jéﬂ(s) for {=0,1,2..., we deduce

A':a_ (s):Al(s) for sven/Z,

AJ@(S):%z(s) for odd /,
These are the "physical signature" partial waves.

The singularities of partial wave amplitudes

derived from the Mandelstam representation are as

follows(D). 1In the s-plane, Aﬂi(s) has the sams

right-hand singularities as At(s,t), and a series of

-
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left-hand singularities generated by branch points in t
of A*(s,t) "pinching"{) with the singularities at
g=*]1 of Ql(z). If MAFK holds, these lis on the real
axis. We note that becausse 5B=1+t/2Qs2, (for equal
mass kinematices), using (37)

@e(z),-_:;? Conat. 25
gives, from (1.49)

20

A,l (S)q}——;_c? Gt % ?
if the Froissart-Gribov projection convergses. It is
usually conjectured(l) that this will hold in general,
a8 1t does in non-relativistic scattering from well-
behaved potentials (1s41).  Thersfore, when %/*(s) is
defined for non-integer,[, the extra kinematicél branch
point (1.53) must bs taken into account.

The dispersion relation (l.4L) for A¥(s,t)

may not convergs as it stands, but if Dgf is power

bounded, i.e. N(s)— £
g)— s
Di(g‘t) —> cowal . Z
t [Z[> oo

where N(s8) is intsgral and D < g(¢s) < / , We
can make N subtractions at &g=0 to give the convergeni

exprossion SN
2N D (s, t@ED)
A (S,t) = ,i.-, (S, ES) t _7_: ( ’_

N
' 2/ -2, ) . &

o=z,

(S’tﬁ)

where Fy , 1is a polynomial of degree N-l in 8.

Inserting this expression into the projection (1.47),

(1.52)

(1.53)

(1.54)

(1.55)
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and using fa(x-) x™Mdx = 0 for H>M , the
first term vé._n’ilhes for _{+/>N . TWriting
(= /zs)N (l+"'§""'s)N and 9xpanding in powers of
(8g-8L)/85, we find the integral

d%s
igfﬁ ( %) ( 2/ - Zs
! [ N~
b z)d i
s B e[S e

el el

= (Qe(zf) /7f1 Az N(9) .

So the Froissart Gribov projsction (l.49) exiéts as it
stands for ,[ 2 N(8) because of the asymptotic behaviour
of the Q-function, q.(l1.52). This means that
provided the Mandelstam representation is power bounded,
the higher partial waves Aﬂi(s) for _{ = N(&) are
completely determined by the double spsctral functions,
and only the lower ones need subtractions.

The postulate of MASK is essentially that the
%li(s) dsfined by the Froissart Gribov projection can
be continued to _¢ < N(s) to eliminate all remaining
arbitrariness. This will becoms moers explicit when we
discuss Regge polss. Wo note that bscauss of ths

asymptotic behaviour(37)

) ——————> Cerrut . -———::————
i (= 21> % VL

(1.56)
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where ?C‘Z“) =_bn (Z+\/_Z_"t_1.) , the /4;:(5)
defined by (1.50) satisfiss the conditions for Carlson's
theorsm(39) to be applied, and so defines a unigue
continuation to arbitrary_£7. It 1s apparent that
bscause the Froissart-Gribov projection for the
unsignatured amplitude Al(s) involves an integral over

negative &, (i.e. the u-channel cut), and because

Q,(-8)=5""q (s) 37

, Carlson's Theorem sxcludes the
possibility of using it to continue meaningfully in (.
Also the poor asymptotic bshaviour of Ef(z) at 1arge#ﬂ
excludes projections 1like (1.40) and (1.47). For
non-integar.f, the Qﬂ function has a cut which gives
rise to the singularity structurs shown in Fig.l.4b
for the integrand in (1.50), and ths contour C, must
be extended accordingly.
As we have already mentioned, Froissart has

used unitarity, and analyticity of the amplitude in a
small region of ths 8y plane, to obtain the following
bounds: )

[ Bls,t(z0) | < comt. s (bns)® (1.57)
and 3 3/
[A(,€(x+21))] < coml. s (L s)z, (1.58)
at large s. A simple version of his proof is given
by Chew(1’5). By crossiné symmetry, for $S£ 0O we
have N (s) £ | in eq.(1l.54). So that for

negative s only the S and P waves are undstermined by

-
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the Froissart-Gribov projection, and have to be defined
by some outside means.

According to the postulats of MASK, ALt(s)
is an analytic function of,jg apart from isolated
singularitiss, at least in the right-half /-plane‘l’,
so that continuation to _/< N(8) gives the physical
partial waves at the lower intsgers. This ailows us
to write a representation of the partial wave series (l.46)
which can not only be used outside the latter's limited
region of convergence, but ths isolated singularities
which may bs present will give contributions to this
expr2ssion which can be identified with ths subtraction

terms in ths Mandseslstam representation.

Eq.(l.46) is re-written as(hO)
4 . . | + BC—Z‘(S't))
Flet) = Smi | (e) fommm A2 (1.59)

c,

whers the contour C1 is chossen to encircle clockwise

all the integers J{=0,1,2... and avoid the singularities
of %lt(s). (See Fig.l.5a). Using Cauchy's Thsorem,
it is sasy to see that (1.59) and (1l.46) are equivalent.
41)

If the contour is deformsd in the usual way( , (see
Fig.l.5b), to include a line parallsl to the imaginary
axis at Rq/ =L, and closs via a loop at infinity, as

L is decreassd below Ref =N(s) the singularitiss

responsible for the non-convergence of the Mandelstam

-
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reprosentation are expossd. According to the postulate
of MASK these are isolated poles and branch points,
called Regge(3) poles and cuts. Hereafter we ignore
cuts for simplieity, unless the possibility of their

presence is particularly relsvant. Eq.(1.59) becomes

L +400
B‘%ﬁﬂ
Wer) = Sm (2240) A56) FRRy) a
_Lﬁda)l
A Cz
ANGES)
- /é-rrLZ (Zx (S)-f—l)/@t(g) e b
: L 0L (S)

where @y(s) 1s ths position of the 1%0 ., pegge pole, and
/6;QD is its residue in Al#(s). Bscause (37)
/ F@kr

we deduce
+ % ()
H (S,f.’) —> Coval. Zg

Z > 00
where(x (s) is the Regge pole furthest to the right
in the ,L—nla The first term in 6q.{1.60) is
minimised by taking L==% (P(E) P (2‘) ) (37), and

ths eecond term, which dominates at high t (xe;), is an

(1.60)

(1.61)

(1.62)
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oxplicit statement of the power bound, and the subtraction
toerms necessary to make the Mandelstam representation
convergs. We note that the Froissart bound (1l:57) ssts
a condition on all the "trajectory functions" oi(s) : Réx@)sl
for £ 0.

The Regge poles in eq.(1.60) give rise to poles
in A¥(s,t) at s=8p Where d(sR) is an integer, and these
are identified with dynamical bound states and resonances.
This paralleds the situation in potential scattering where
the partial wavses are meromorphic in J? and MASK 1is
establighed{lt2)

The partial wave projection of a Regge pole
term in (1.60) is found by using(37)

2 Sin TR

-
J reor@dr - F e
=t

to be
. Bls) (2etr+1)
) = (4-ut> ) (L4 wtc) # 1)
Assuming MAFK, the functions ol (S) and
p@)/qu“) can be shown{™*) to be real analytic in
s

8 cut from ths physical threshdld to infinity.

Unitarity will not permit Iwm 2s)=0 , and causality
requires I x(s)> O . If we choose S~ mt
and assume _Ima'(s) << Re o'(s) , 6q.(1.6L4) becomes

_ — A(m?#)
D) = £  Reatnd) = £
He ) Rowt 'tm) (s-m2) 44 Ima(w®) ’ /

(1.63)

(1.64)

(1.66)
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which for In”B(m?) small corresponds to a Breit-Wigner
rasonance of mass m and full width at half height

V = -I'V‘d("‘z) /7"- Re ot'(mz) . Each trajectory
ig then expscted to give rise to a series of bound
states and resonances spaced apart by two units of
angular momentum, (remembering eq.(l.51)). Evidently
all poles of the S-matrix must b9 Regge poles - if they
were not they would be Kronscker delta singularities
in _}f, contrary to MASK.

The postulate of MAFK states that given a
88t of particle poles, unitarity determinss the
singularity structure of the amplitude completely - i.e.,
the doubls spectral functions. The postulate of MASK
states that thess in turn enable a complete determination
of the particle polss, which must be Regge poles. In
the face of this violently non-linear situation, the
hypothesis of Chew and Frautschi(l’z) is now a natural
one: the only set of particles consistent with MAFK
and MASK is the set observed in nature. Each particle
is a composite of all others; they "bootstrap" themselves.
In this thesis we shall present some cealculations

designed to test whether these hypotheses are likely to
give an adequate dsscription of strong interactions.
Of course, anything approaching a complete treatment of
the infinits set of coupled non-linsar equations simplified

by maximal analyticity is impossible at present. In
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the next Chapter we shall approach the problem of
constructing an amplitude for a simple (two-particle)
—> (two-particle) process which is analytic, crossing
symme tric, and displays Regge asymptotic bsehaviour.

A dynamical calculation will then consist of enforeing
unitarity upon it, and seeing if the result corresponds
to experiment. In the last Section of this Chapter

we describe the N/D method, which gives one way of

carrying out such a procedure.

5. The N/D Method.

It is simpls to verify that the gquasi-slastic
unitarity condition (1.16) is satisfied in the same form
by the signatured amplitudes, AX(s,t). Taking into
account all two-body channols open at a given energy

abi ob +
}t becomes (s,,t) — A (s ,t)

(6 "'\/'— Z q’s“'tj (Sht') Am*(s—;g) A_D.“ (t t)
L

Expressing ths amplitudes as partial wave sums, eq.(1l.47)

and using the addition theorem for Legendre funetions(37),

the integral in (l1.67) can be carried out to yiéld the

unitarity condition for partial wave amplitudes.

abs aks L4 bt a4
Ay @y - By G =7z ) B Gog B )

(1.67)

(1.68)
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It is clearly far easier to impose unitarity upon
individual partial waves with eq.(1.68) than to deal
with the full amplitude using the mors complicated
expression (1.67). Wse note that, in accordancs with
MASK, if a unitary partial wave amplitude can be
constructed for one positive ,/ -valus, the rest of
the series can be found by analytic continuation.

Because we wish to consider non—integral.ﬁ,
it is better to use thes "reduced" partial wave

amplitude
+ - nt
B, (s) = ‘lsﬂ H/Q(S) ; (1.69)

which from eq.(1.53) has no kinematical branch point
at threshold. The slastic unitarity equation,
(i=n=Ff in (1.68), for this amplitude is

Im B/L(-S) = /01,(5) l Bl(s>ll b} (1.70)

where

2w+l
ﬁ@) = = 9% , (1.71)

The superscript # has been dropped and is to
be understood hereaftsr unless otherwise spsecified.

Eq.(1.70) can be linearised by the decomposition

BX (s) = Ny (S)/-D,g_ (<) , (1.72)
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where the N-function carriss the left-hand singularities.
of By(e), and the D-function carries its right-hand
singularitiss. Both N and D are real-analytic in s,

and can bs normalised.
Mg le) —> O
J]9— o0

(1.73a)
Do — | . (1.73b)
[s{ >
Elastic unitarity, eq.(l.70) gives
Iw.De(S) = — 0 N, (s
'/?.H.oth /& ) Nel(s) (L.74)
so that .
L[ _Pals) Nels) ot
Dy (s) = [ - Wf T st g ' (1.75)
SO
We now introducs
o6
L 1 ImBl) | |
Byls) = Byls) - ‘ITJ —ems (1.76)
SD
which has the same left-hand cut as BL(B). Thersefore
the combination Ny (<) —-Bzfs)llg(s) has only a
right-hand cut, and so, using (l.74), we have
x® L
By (s) pi(s’) Nels)
Nl(i): BLL(S)D,((‘S) + :,,( L ,./_/_)/t,- D(.S'/ . (1-77)
Se
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Substituting for D,(s) from (1.75) we obtain

the standard(u5) equation
(%]

B, (s)— B )
S'— s

(1.78)

Ng(S) = B;(S) + 7: (Jl(sf) N,y (s7) ds” .

SD

This is a Fredholm equation if its kernel is
square-integrable. That is, given a suitably bshavsd
"potential function" BQL(B), it may be solved for N,(s)
by standard msans. pl(s) is then found from eg.(l.75).

We note that with a well-bohaved potential
function, Nl(s) is regular at threshold. Similarly
Dﬁ(s) is regular at threshold, and so is B,(s).
Therefore, from eq.(1.69), Al(s) always has correct threshold
behaviour. Had we written N/D squation for ﬁl(s)
directly, with phase space factor /Jh)=5hs/vi there
would be no guarantes that the corrsct threshold
bshaviour would result, unless ths potential function
were conatrained by moment conditioné“6).

Equation (1.76) for B,l(s) is of little
practical use, and several more convenient expressions
can be written down(5). One follows simply from the

Froiseart-Gribov projection, (1.50), and is

0
L 2 - +2T’ \ \t/ \ s
Bl (S) = (QQ]T"LL(Q! }j IMEQ'Q(ZS)} V(Sﬂ'} dt ) (1.79)
— 00
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where Vi(s,t) is A*(s,t) less that part which
contributes to the right-hand cut. Another is found
by inserting into eq.(l.49) the expression, implied
by eq.(1l.45), for th(s,t) in terms of the double

spectral function. This gives

(<] t") us (580
B (S) (3‘2“_ 7,?&1)ﬂ{f“ + /D

Pulthw) £ pr, (wie) ,,M} Qe (2:6,t) ot ”

l"’_“"

(1.80)

The right-hand discontinuity in s is sasily recognised,

and removed, to give

TG ity 2 pulesen
gt - (san) || 9 L

X Qﬂ (Z-‘ (s,t") &_Q (Zs (S/)t”)) | ds’ olt” (1.81)
Y 7 S

9" %

_ﬁbu (thu) + Iﬁh (uity &1 (st du'dt”

(/(,’ —_— M”

+ (3Qn{r

We shall find both these forms ussful.
If the partial wave contains a bound state

or resonance, it will occur at s=sR where

DJ/(SR):O (1.82)

.
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In practice the N/D equations are solved only for real s,
and so a resonancs position m? is determined by the
approximate squation

ReD (m }=0. Then the (Breit-Wigner)

rasonance has width

I7 NQ(MZ)
mz _
— m /D’q RLD[(MZ) ) (1.83)

tt

and residus equal to N, (m?2 ) /ReD ;' (m2). At s=m2, we

may take _{ o= Kax(s) where ol(s) is ths trajectory on

which the state liss, because we are dsaling with correctly

signatured amplitudes. We note that (1.82) implies that
ol(s) has the same analyticity properties as (s).

Therefors wes write

@) + ) Ima(s') ds’
X=X+ 5 o (1.84)
where we assume that the integral'convergss. Also, a

simple-minded continuation of (l.83) to threshold
implies, (s2e ©q.(l.66) etc.),

(o) + | 1.8
T cts) ———> Comat. 4, . (1.85)

qs-+ o)

From ogs.(1.66) and (1.68), Imols) cannot change sign.
Thersfors Imdls) and Kew/(s) have ths same sign,

( "> 0 abovse threshold). Experimentally(5),
trajectories risse through resonances, and in fact in

potential scattering(l?), (to which appeal is frequently
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made {41) to resolve uncertaintiss by analogy),

d?g)OC‘Range of potential |° below threshold.

Hence JIm wi(s) > D.

Our statemsnts in the preceding paragraph are
bassd at most on plausipility arguments, but all can be
given rigorous proof based on MAFK(“u). Because we
have asgsumed 'b’(S) = /B('S) q,—sm“ to be real at s=m?,
(8q.(1.66)), we cannot give similar argumsnts for it.

But it can be shown(44) that Y(s) is real andlytic

in s cut from threshold to infinity, and

: dato)+1
Im Y ‘{3—_;—0“% comel. 9
A dispersion relation like (1.85) holds for ]15) also.
We have assumed that the N/D equation can be
continued in ,f . This has bsen proved to bs so by
Mandelstam(u7), who goes furthsr to show that this
property means that the only solution of eqa.(l.75) and
(1.77) consistent with MASK is that containing no cop (48)
polss. The CDD ambigulty, of course, corresponds to
the possibility of the pressncs of slsmontary particles
in the theory, and is speciflecally sxcluded by MASK.
(Strictly we should distinguish betwesn one-channsl and
multi-channel CDD poles(5o) and cuts<5l), but such

considerations are psriphsral to the pressnt discussion).

(1.86)
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6. Summary.
To summarise, our dynamical postulates for
the four-line connected part are:
(a) the amplitﬁde obeys the Mandelstam representation;
(b) continuation in angular momentum removes arbitrary
subtractions.

In addition, the bootstrap hypothssis states
that the result is unique and describses nature.

A dynamical calculation within this framework
consists of constructing an amplitude from double spectral
functions which have Regge asymptotic bshaviour, and
snforcing unitarity upon it. The non-linsarity of the
unitarity equations "drives" the dynamics and allows the
caleulation of numbsrs up to a scale factor dsotermined
for sxample by the external masses in the problem, in much
the sams way as the non-linsarity of current commutators
allows ths derivation of non-trivial sum rulses. The
N/D method is convsenient for practical calculations
because of its simplification of unitarity.

In Chapter Two we discuss the construction of

a suitable form for thse scattering amplituds.

-



Fig.(l.1). Schematic repressntation of
the four-line connscted part. Ths
particle four-momsnta are labslled 1< to
P> and are conventionally taken all to

be ingoing.







Fig.(1.2). The Mandelstam diagram for

the scattering of squal mass scalar
particles. The physical regions for
the thres channels are shown shaded,

and the doubles spsctral functions are

indicated.







FPig.(l.3). Diagram to define the angular

varisbles used in egs.(l.31l) and (1.32).




FIG. 1.3




Fig.(1l.4).

The s_ plane for the integrand

on the right of eqg.(1.50). The cuts are

shown for (a) integralMZ and (b) generalJ{,

and Cl

and C

contours.

2

are the appropriate integration
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Fig.(1.5). The [ ~plans contours
(a) C1 (for eq.(1.59)). and (b) Cy
(for eq.(1.60)).
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CHAPTER TWO

A Model for the Scattering Amplitude



Ll.

1. Introduction.

In this Chapter we describe a particular
approximation to A(s,t,u) which displays broad features
in agreement with expsrimental observation, and which
can be cast in a form sultable for the sort of
dynamical calculations we have outlined. In the next
three sectlons we introduce the model and discuss its
general validity, paying particular attention to some
criticism which has recently arisen against it. In
Section Five we give a mathematical formulation of the
approximation and in Section Six describs some of its
drawbacks which have appeared in practice, suggesting

how thsy could be rectified.

2, The Interference Model.

In general, scattering amplitudes for two-body
processes disgplay the following prominent features:(52)
(a) At high energies, (energy > characteristic
mass involved), the amplitude is coneentrated
into forward and/or backward peaks;

(b) at lower snsrgies, (energy ~— characteristic
mass involved), it appeare to be dominated by
resonance structurs;

(e) the appearance of high energy peaks is
corrslated with the occurrence of crossed-

channsl particlss.
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The simplest approximation to the four-line
connacted part would be, on this basis, to write it
as a direct sum of the few leading Reggs poles in each
channsl, with analytic properties consistont with the
Mandelstam rspresentation.

A t-channel Regge trajectory o{(t) cortainly
represents a seriss of t-channel resonances, (2q.(1.66)),
and at large s gives an asymptotic bshaviour proportional
to e*(%), (8g.(1.62)). So, describing at t=t, a low
snergy t-channsl pols, the trajectory gives the amplitude
nearby a behaviour roughly proportional to (t-tp)-l.

This accounts qualitatively for ths rapid variation in
the s-channsl close to the forward direction at high
snergies where the sffects of dirsect-channsl resonancses
have died away(53).

We shall refer to the approximation of adding
.the effects of the resonances in the three channels as
"the interfersnce modsl'". It includes as a special case
the model of the sams namse introduced(5u) to parameterise
pion-nucleon scattering data at intermediate energies,
and generalises the pseripheral model(55) ideas underlying
fits to high energy date using a few crossed channel
Regge poles(56),

We sxpect this model to be a good approximation
to A(s,t,u) only in the resonance region and in the

forward and backward psaks at high energy. In particular




L3.

we should not anticipate good results from it when two
of the variables s,t,u are both largs.

In the next two Sections we shall consider
the validity of the interference model, with spscial
atteontion to the question of double counting, which has

recently aroused interest(57).

3. Validity of the Interference Model.

An amplitude A(s,t,u) can be expressed in
any ons of the thres channels as a background integral
plus a sum of Regge® pole terms. Symbolically

A(s,t,u) B8(s,t,u) + R8(s,t,u)

B¥(s,t,u) + RY(s,t,u)

BY(s,t,u) + R*(s,t,u).
The interference model which we contemplate ssts

A(s,t,u) &~ R8(s,t,u)+R%(s, t,u) +R*(s,t,u)+possibls
background.

It is not clear that this is a wvalid procedure,
for there appears to be no guarantee that all parts of
ths scattering amplitude are counted only once. For
example, if for somé values of s,t,u the background
parts B in sach channsl were very small compared with
the Regge pols parts R, then each of RS, RY and RY
would alone be a réasonable approximation to A(s,t,u)
and the representation (2.1) would break down. We

contend, however, that with proper carse, such

(2.1)
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ambiguities can be avoided, and that the interference
model can give a reasonably faithful representation of
at least the overall features of the amplitude, as
outlined in the previous Section.

First of all, we note that if in the
decomposition A=Bbt+R% (for example) the Rsgge part RP
contains a finite numbsr of terms, then it is regular
in the variables s and u, (ses eq.(1.60)), and so
cannot contain the crossed channel resonance poles.

In this sense the replacemsnt of BY by RB+RY is not
inconsistent. The quastion is now whether R contains
some parts of RS and RY, without having necessarily the
pole-like behaviour. There is no clear-cut answer to
this problem at present, but it is probably true that
the degres of doubls counting can bs mads negligible

if the model is used judiciously.

The crucial requiremsnt is that each term
R(s,t,u) must contain only the highest-lying trajectories,
i.s. thoss with the largsest value of Re . Each term
in R? gives a characteristic emymptotic behaviour in the
crossed channel like s°4 %), and so provided Rea(t) are
confined to (say) values above -1, there is a minimum
chanes of including effscts of low energy crossed channel
resonances, which, on ths basis of a simple pols form,

are oxpscted to dis away at least as fast as s'l.
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The 1interference model has besan criticised
on the grounds of calculation with finite energy sum
rules(58) (FESR). A full discussion of FESR is outside
our scope - details havs besn given by Dolen, Horn and
schmid(58) - but the basic idea is as follows. Consider
an amplitude antisymmetric undsr s-u crossing,
(i.e.~A(B,,t,u)=A(u,,t,8)), and use this property to
write a fixed t dispersion relation for it as an integral
over the s-discontinuity only. Then if an ensrgy 81

sxists above which A(s,t,u)=RY¥(s,t,u), one can derive
S

{ ) )
AT B (s ,t,0) = ). G le) 55

The right-hand side is ths asymptotic form of RY (sse
eq.(2.9) below), This squation is expected to be valid
in a range of t whers Regge pole exchange is a valid
approximation.

The following example is quoted(60): "considsr
an 9lastic amplitude A(s,t,u) at t=0 where the optiecal
theorem (eqg.(1.22)) constrains its imaginary part to be
positive definite. Egq.(2.2) expresses the fact that
for 8< 8 the imaginary part must average cut to a curve
(roportional to) s*{t), whereas the interference model
suggests that all the nscessarily positive resonance
contributions (RS) should be added to s %), so yielding
a curve evsrywhers above s“(t)." This example clearly
sets forth limitatiomsfor the model, but by no means

demolishes 1it.

(2.2)
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The first point is that at low energiss the

asymptotic form s“(t) is not a unique representation
of RY, The second is that below s; thers are
important contributions to the amplitude from low-lying
t-channel trajsctories not included in RY. Thess are
buried in BY, which we replace by RS. (The term RY is
"folded over" into R® by crossing symmetry in eq.(2.2)).
Therefore the implicationsof FESR ars that the Regge
terms must be constructed to die away quickly at high
snergy in their own channel, since they replace the
low-lying crossed channel Regge poles ~ which are 1o be
oxcluded from R8, R? and RY, as we have already
amphasised. A reasonabls practical restriction is
probably that o(o) should exceed zero for each pole
included in any R, and so this will generally describe
only prominent resonances which give unmistakable
structure to the cross section. However, provided
that o{{o) exceeds -1 there is probably little danger
of double counting.

Recently it has been observed(6l) tnat if
RY is decomposed into s-channsl partial wave amplitudes
the latter display characteristics usually associated
with the presencs of resonance. Thersfore, it has
been asserted, RY must contain large parts of RS, and

u.(61)

"the interference model commits severs double counting
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This criticism will be discussed at length in the next
Section, and some of ite interesting 1mplications(62)

for phenomenological analysis will be polinted out.

4. Regge Pols Exchange and Direct Channel Resonancss.

We write

A ) = 1 S

auP@) (2.3)

as a formal solution to eq.(1.68), wherse Sk(g) is
a real phase shift, F(e)=2qss'%, and 0 € Myls) < |
¥» paramsterises inelasticity. Plotting a graph of
2'0 ReA} versus 2,0 Ima, as functions of s, one obtains
an Argand diagram(63) as shown in Fig.(2.1). The vsctor
is confined inside the circls by unitarity. The presence
of a resonance implies a bump in the cross-section, that
is, a maximum in Imﬁﬂ (8), which is correlated by causality
(a dispersion relation) with a sharp dip in ReAﬂ‘(s).
Thus a typical resonance structure is a rapid (with s) anti-
clockwise loop in the Argand diagram.

Schmid(6l) observed that if one extrapolates
to low energy the F>-meson Regge pole exchange term

which fits ths process ﬁ}-)nan at high ensrgy(6h)’

using / ‘
ey(s) = | Flz) Rf,(s,-t(%,)) dz; |
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the Argand plot of gﬂ(s) displays just this behaviour.
Schmid identified his loops with well-sstablished(65)

N* resonances.

To understand Schmid's results, we must examine
the form of RY in detail. In the preceding Chapter, we
emphasised that a Regge pols couples to a signatured

amplitude, each giving a contribution of the form

P-2)

Sin T

— lon* (20+1) P

From (l.42) and (1.43) the physical amplitude
is given by A = (a+(8)+A~(8)+A+(-8)-A—(8)), so0 that a
t-channel Regge pole gives a contribution to the
physical amplituds
B(t)(-zf) + ’Em.) (zt)

St Tot(£)

Rt(s,t, u) = -lbrr"(ﬂo((t)*'l)fs(t)

where a positive or negative sign is taken according

to whether the pole couples to A* or A~. Using(37)

R(’"Z) - 6“4',110( B(,z_) - % Sc;u'lToL.C\)K (’Z) ;

we deduce
ATAle)

t SN |+ e
= ~{bw (2 1) Bl :
R ¢ o([t)‘f')F R

?x(c) ) + O(Z;H}‘ :

(2.4)

(2.5)

(2.6)
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The last torm comes from the Q—function(37), and will

be neglected. For slastic scattering Z, = | + 5/21’; ,
so using (1.61) we have
t emlrro((t)‘ o \o®)
R_ —> — Cenat. F(‘t)——*<— 2
S_) 00 SAA«TTo((t) q’t '
Introducing

s o (t)
g = o (5
t

which has no kinematical cut, and which bscauss of

the scale factor s, has constant dimensions, we finally

have

-1 & (%
B (s ,t,u) o L) F /.- oA (i) )
St TalX)

This is essentially the form’used by Schmid(sl). We
note immsdiately that it is an aymptotic expression
and its extrapolation to low s is almost completely
arbitrary(5).

A large amount of high energy small angle data
can be fitted satisfactorily using the expression (2.9)
for Rt, with o(%) linear with t(56).  Although linsar
trajectories are dynamically puzzling (as we shall
discuss later), they are certainly consistent with
observed rosonances which almost always appoar well-
placed to be their recurrences(66). The appsarance of

loops depends crucially on the (near) linsarity of of(t)

(2.8)

(2.9)
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out to large nagative t, as will become eobvious.

We consider as an example the scattering of
equal (unit) mass scalar particles, whose high snergy
amplituds is well representsd by a single Regge pole
term of the form (2.9). Projecting out s-channel

partial waves we havse
0

+
Ry ) = .s'j"l;_ &(H%J R (s,t,u) ot . (2.10)

4_'5

The lower limit is proportional to s, so that
at a given valus of this variabls the linsar trajectory
o\(t)=a+bt pass9s through proportionatly many negative

integers in the rangs of integration. At these points

K(t) must vanish to avoid "nonsense" states in the
crossed channel(67). Therefore we could rewrite Y(t)
as 'K(t)/["(o{(t)) , but, noting that(37) F(Z)F{l—a) =7T/SM:.1T%
which would imply an sxponential divergence of Al(s)
at high s, we prefer to "kill the ghosts" by simply
lsaving out as appropriate the Siwwoa(t) denomination
of (2.9).
In the integral (2.10) the signature factor

G;&Nd&) has oscillatory real and imaginary parts

Fl -
that interfers with the Legendre polynomial 3{ which
changes sign ,l times in the rangse of integration. AsB
8 increases the relative number of oscillations changes,

and the net result is that ReAj(s) increases from zero,
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passes through a maximum, and changes sign to reach a
minimum, eventually returning to zero. At ths same
time Imﬁl(s) increases to a maximum and falls back.
Thus a counterclockwise loop is induced in the Argand
plans. At successivealy highsr values of Jg the
Legendre function has mors nodes in the rangs of
integration and as a result the loops appsar at higher
s-values. Therefore an s-channsl "Regge tra jectory”
is broduced, and can be followsd as high as we plseasse.
A number of sxamples, upon which these dsductions are
based, ares given in Fig.(2.2).

The cholce of ghost killing factor in the
regidue affects to soms extent the results - if instead
of a function which changes sign at its zeroes (like

l/F(m(H) or S TxX(t) ) we used one that did not,
(like Sm2u(t)T ) only at low Jfldo loops appear,
and then rather weakly. We note that input (t-channel)
and output (s-channel) trajectories always have the same
slope, and that if the input trajectory is raised
parallel to itself the output ons is correspondingly
lowered, and vice vsrsa.

We have used the asymptotic exprsssion (2.9)
for our discussion bacauss of its simplicity but it is
found that our results remain essentially unaltered

for other extrapolations to low energy.
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Our general conclusion from these examples
is that Schmid's loops are an inevitable rssult of a
single Regge pole exchange amplitude, extrapolatsd

from high ensrgy and to wide anglses. Whsre sevsral

poles are allowsd with comparabls strength and different
slopes and/or signatures, intsrferencs betwesn them may
produce either no loops at alll{®l), or loops which
execute clockwise motion and which are acausal(69).

Acausal loops are simply undsrstood. Consider
two t-channsl trajectories of different slopes which
contribute with opposite sign residuses to Al(s). They
sach produce a counterclockwise loop, but because of
tholr different slope thoss are executed at different
spseds with respsct to s. Because the contributions
are opposite in sign, a nat clockwise loop is possible.
In gonsral, a combination of different signature factors
with different trajoctory slopss may add to give a net
function hardly ressabling a simpls efw““d at all,
and so Schmid's loops are not always to be expectsd.
Farther, there is no reason to expect partial wave
anitarity ( ImBp(s) > O ) to be always obeyed whsn
there are trajectoriss of different couplings, and indeed
in a simple scalar mason model with two opposing
trajectories this is the case. (Partial waves
projected from fits to high energy data(7l) gensrally
obsy unitarity at low energies, as they do at high

energies(7l)).
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Turning now to the interpretation of Schmid's
loops, it is at once clear that they cannot be associated
with resonance poles bocause there are manifestly no
second shest singularitiss in s in eq.(2.10). Other
propsrties of the partial waves l9ad one to the coneclusion
that indeed the loops have nothing at all to do with the
presence of s-channel resonances or parts thereof. Firstly,
while one partial wave has structure, the remaining ones
conspire to conceal it in the total which is smoothly
proportional to s“«t). Such a correlation is most
uncharacteristic of a resonance, which should appsar
clearly in one partial wave. Secondly, the loops dspend
on crossed channel quantum numbers and not on dirsct
channel ones. The procosses T —>TN and Tm > NN
have the same direct channels and so should share a numbser
of resonances. Their crossed channels differ, however,
and if Schmid's loops correspond to resonances, there is
no a priori reason why they should appear in ths same
place in each process. As Alessandrini and Squires
have pointed out(68), in the processes ﬁ?:-e n  and

Tp - KT where the direct channsls should havs
identical resonances with comparable strengths (if SU3
gives a religble order of magnitude estimate), the
t-channels are completely different. Neglescting the
u-channels, which are roughly the same - N*'s in one
cass, v¥'g in the other - we see that the presence of

the.? in the t-channel for the charge exchange procoss
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will give Schmid loops, whereas the absence of any known
trajectory in the t-channsl of the associated production
process will lead to no s-channel loops at all. Finally,
with a combination of several trajectories of different
slopss and signatures it appears quite possible to
contrive to produce acausal, clockwise loops(69), as we
have alrsady remarked.

Thess conclusions are at present under furthsr
investigation by explicit numerical calculation of
partial wave amplitudses for the processes pp-—>ppP and
PP —> DD whers high energy fits with P,P' and
tra joctories exist(71). Preliminary results are in
good agreement with qualitative expectations. In
particular, Schmid's loops appsear in both processes,
whereas if they were manifestations of resonances, they
should bs confined to pp.

If Schmid's loops are not to be interpreted
a8 resonances, we are led to0 look afresh at the criteria
currently used for identification of resonances in
phass shift analysis. The usual method is well
sunmarised by Lovelace(65): "in the present paper, I
shall'call a resonance anything which when . . . plottsd
describes a considerasble part of a circle, making some
allowanée for distortion by background." In recent
ysars a large number of such resonances have been

jdentified in the WN system using this criterion(65!702
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but we now ses that there 1is another mschanism in naturs,
namely the crossed chamnsl Rsegge pole contribution,

which has nothing to do with dirsct channsl resonancss
but which is capable of generating such circles.

To axplore this situation further(sz) we have
taken the Regge pole fit to the forward and small angle
"N data at high energies from Rarita st al.(71), using
the P, P' and 3» trajectories taken from solution I,
and the fit to the backward data, using the N and A
trajectories of Barger and Cline(72). A factor swmx(t)
was incorporated into the residue functions given by
these authors in such a way as fo fit smoothly onto
the bshaviour in the fitted ranges of t and u respsctively.
Therefore we were able to make a partial wave projection
squivalent to (2.10) using the formalism given by, 9.g.,
Donnachie(63) to take account of external spin and
unequal mass kinsmatics. We find several Schmid loops,
and collect the results in Table (2.1) and Fig.(2.3).
Most circles occur in the I=% channel, and in the
I=3/, channel, which differs mainly in the sign of the

P contribution, there ére fewer large circlss because
the contributions of the ? and P' trajectories more
or less cancel. In fact in the lattsr case the
circles stem mainly from the baryon sxchange in the

backward peak.
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Evidently we find loops in most of the partial
waves, and soms are in positions which correspond rather
clossly to those found in phase shift analyses(65s70)
In visw of the manifest uncertaintiss in Regge pole fits
we would certainly not jump to a conclusion that any
such loop was wrongly interpreted, but we do fesl that
the criteria used for resonance interpretation are
rather inadequate since there ars clearly other mschanisms
apart from resonance poles which can produce circles in
the Argand diagram. Of course, where a resonance leads
to a bump in soms cross ssction (which includes our
interference model), we can be reasonably confident it
really does correspond to a pole on an unphysical shest,
but very inelastic reosonances may be difficult to
distinguish from Schmid loops reflecting the Regge
nature of the amplitude's asymptotic form unless we can
find processes to which they are more strongly coupled.

It is obviously desirable(78) from an
S-matrix point of view to be able to distinguish
betwssn genuine resonancezpoles and othsr loops in the
Argand diagram, and it is particularly important for
ths quark model where it is natural to corrslats
resonances with bound states of quark systems(7u).

Our conclusions from this discussion are
quite clear - Schmid's results in no way invalidate

the interference model, particularly the form we shall
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use for numsrical work, when the trajectoriss will not
be linsar. In the next Section we describe a formulation
of the model dus to Chsw and Jones(75) which is our

starting point for a dynamical calculation.

5. The Chew-Jones Repressntation.

We wish to construct doubls spsctral functions
for A(s,t,u) which give the amplituds in the interference
model form of 8q.(2.1). We shall start with the
prescription of Chsw and Jonss(75), who parameterised
"strips" of double spsctral function such that sach Raggs
term R in eq.(2.1) is given by an expression similar
to 8q.(2.4). This is a first approximation to the
amplitude which has been shown to be unsatisfactory in
detail, and which needs augmenting if a dynamical
calculation is to give satisfactory quantitative results.
Thers is a well-definsd way of doing this, as we shall
discuss in the next Section, calculating extra pieces
of double spectral function using the "Mandslstam
1teration". (22),

The regions of doubls spectral function which

Chew and Jones retain are shown in Fig.2.4, where sach
term R®, RY anda R%of eq.(2.1) is given by a pair of
strips as indicated. Each is characteristic of the

regions of the s-t-u plane dominated by the Regge poles

it contains. Ws shall deal sxplicitly with Rt(s,t,u)
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- similar results will hold for the other terms by
appropriate permutation of the variables.
The prescription for the piece of double

spectral function labslled RT in Fig.2.4 is

f) = j A, ir’(t) E“t)(—zt)} D (s-5,) (2.11)
where  I"(E) = —jbm (Wmw+) y(t) (- /so)m) , S

is the "strip width", and the symbol th indicates
that the discontinulity with respect to t must be taksn.

This gives a contribution to the s-discontinuity of Rt

of P(t)?;w)(—ib) B (s-s,) and a contribution
to R? itself of 00 >
_ )
- r(t)j oue)( 2, (s)t)) ds -
Qﬂ' s’__s °
S|
Using the formula(37)
) o0 :
ST TL(%U !
Re2) = - j: o 47 , (2.12)
we may re-write this in an squivalent form which converges
for «(t) > o as
Sl
1p § D LJ P €20 4, 1
2 IR 1) ) s-s J (2.13)
.,q_q’t

Including in a parallel way the strip Rg of Fig.2.3,
we deduce the Chew-Jones squivalent of eq.(2.5):

t t t
K (S,.t)M) - E.li Q\z g,

_ ’ ) I. (2'1,4')
: ér(t>32‘“’(zt)ta“’w gl

S TX(8) L
| “hqe
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where in the integral we have made a simplifying change
of variabls using 5t=1+s/2q%=-l-u/2q%. Eq.(2.14) is
identical to (2.5) up to Q-functions, except that the
analytic propertiss havs been adjusted according to

the strip approximation.

This repreosentation was developed specifically
within the context of N/D calculations, and a modified
form of the squations set out in Chapter Ons are relevant.
Within this framework one can draw an analogy betwseen
relativistic scattering and potential theory. The N/D
equations taks the place of Schroedinger's equation, and
the potential is the function %}(s) derived from
R¥_R¥4RY, with some contributions from RS acting as a
reaction to the potential. Unitarity is snforced in
the strip betwesn s, and s, which is dominated by the
dirsct channsl poles that we wish to calculate. There-
fore Dﬂ(s) is taken to be cut only from threshold s, to

the strip boundary sy, and Ny(8) carries, besides a
left-hand cut, the remainder of the right-hand cut.

The potential function Bf(s) is equal to %f(s) except
that the portion of the physical cut from s to 8 is
removed. Equations (1.75), (1.76), (1.77) and (1.78)
carry over immsdiately, unchangsd except that the

jnfinite upper integration limit is replaced in each

case by 83-.
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A slight complication arises because in general
the dispersion numerators in these squations do not
vanish at 81 and so logarithmic singularities are
introduced by this cutoff. It has bsen shown (76) that
despite this the equations can be handled by straight-~
forward means, and yield a unigues solution provided
that }‘,L = ﬁ(S,) Im BIL(S/) < |. Othsr
important properties of the N/D esquations, such as
analyticity in J[ » have also been Bhown(77) to hold
in the cutoff form, and all the conclusions reached
previously are still valid.

The derivation of B}'(s) in the Chew-Jonss
approximation is straightforward. Firstly, one must
construct amplitudes of definite signature in the
s-channsl. The expression for this follows straight
from eq.(1.45) giving A¥(s,t) in terms of the double
spsctral functions. The function fst is made up of
the two strips Rf and R{ of Fig.2.L4, fsu contains
R} and R§, and ftu has R} and RE. These torms are
of the form (2.1l1) with appropriate psrmutation of
variables s, t and u (see Appendix). Ths portion of
A*(s,t) which comes from R%I(s,t,u) by construction
has no cut in s between s, and s;, and so contributes
unsubtracted to g%(s). The so-callsd "Wong projection"(78)
eq.(1.79) is thus appropriate for this pisece of

potential, and, because it contains an integration
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over only negative t-valuss, involves only rsal values
of the trajsctory and residue function. (The motive
for extracting the factor (—q%)d(t) is thus apparent).

The direct channsl poles RS make a contribution
to gli(s) in the j’st and f’su term of eq.(l.80) and
it is clsar that they give riss to a function cut in s
between -o00 and sy-t, dus to the s discontinuity of
qubl(l+t/2q§), and also cut betwsesn 8y and o0 due to
the s-discontinuity of the poles thamselves. Thasrafore
their contribution to Ef(s) is simbly calculated by
sxpressing it as a dispefsion integral over its lsft cut
only (thus using «(s) and Y(s) only where they are real),
And upgFedting the out Shgre Jayy Wirbchn 33 2xbeddsd bo-be
mall_fn. §eSsDREe e ot Fodhy (7).

More detalled algebra is not very llluminating

and therefore is set out in the Appendix for the special
case of T slastic scattering,where it will be used
for ecalculation in Chapter Four.

Jones(79) has analysed the strip approximation
in detail, and demonstrated its internal consistency.
He found from the form of the N/D equations that becauss
calculated residuses are given by the eqguation

“Q(M‘L/ (2.15)

’ = /
b’ (_"17’) = Re, %/ (m?) 'Q‘?’:D.L (hni)

7

ths asymptotié behaviour

LG (2.16)
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is foresd upon them. Here of(cs) 1is the dynamically
determined asymptots of %(s), and provided O((oo)S"i
the term R® has high-s bshaviour consistent with its
being part of the t-channsl background B, Such a
restriction is obseyed in practice(so), and so this form
of the interference model should commit no double

counting.

6. Higher Born terms.

The Chew-Jonos representation has been uged
for numerical calculation of pion-pion slastic

scattering(so’Bl),

with appropriate modifications to
the formalism for these isospin onse, 0dd G-parity
particles. Prominent tra jectévws which couple to

two pions(“3) are the even signature P and P' of zero
isospin, and ths odd signature f’ moson of isospin onse.

(80) was successful to the extent that

A rho bootstrap
the input t and u channel trajectory could bs reproduced
in the s-channsl below threshold. The output trajectory
however did not pass through Re x=l at s:m%, and although
the I=1, {¢=1 cross section showed a peak at roughly the
correct mass, it had a width above five times that seen
experimentally(66). Further, the ovsrall slope of ths
Belf-consistent trajoctory was very small, and the

residues were large and in shape were not at all like

those which are needed to fit high snergy datal7l).
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In this calculation an I=0 s-channel tra jsctory
appeared which had not been insserted in the input, and
80 a furthsr investigation(el) included both P and P
trajectoriss in a search for a completely sslf-consistent
crossing symmetric amplitude. However, in this situation
it was found that the attractive force coming from ?
exchange was completely swamped by a repulsion from the
P. As a result, a dubious '"'normalisation" procedure
suggested by Chsw and Teplita(82) to be used to obtain
sensible results. Nevertheless, the self-consistent
trajectories and rosidues thus calculated displayed just
the same unsatisfactory'features as the f: trajectory of
the first problem, because the normglised P contribution
was 9ssentially negligiblse.

The reason why the P gives a repulsion has
bsen explainsd by Chew(83) on the basis of the Khuri-
Jones(au) representation for a Regge pole. If only
ons trajectory o contributes to Rt, we can approximate
it by a t-channel partial wave seriss.

+ t,.
s 6y = ;’ (22,+1) Ry (8 By 2y
t

with

t Q((b) s () _ [Q ~d(t)] b { F () - [2,10:) - \] Lz}
Re 0 = 3 -are (%) ™ 3

where #1(t)=1l+g5/29% . It is evident from (2.18) that
if (%), which is constrained by the Froissart(35)

(2.17)

~~

N

'—l
Ne”



6L.

bound to be less than 1 in the s-channel physical region,
is greater than a given value of_[t, then we can sxpect
a nsgativse contribution to ??(s) -~ a repulsion - from
that partial wave. The lowest allowed valus of ,j% is
zero for an even signature trajectory and ons for odd
signature, and the contribution of sach succesding (even
or 0od8 respectivsly) partial wave will be much reduced
over its predecossor by the exponential factor in (2.18).
Thus, an even signature trajectory with (t) above zero
can bs expected to give a repulsion, while an odd
signature trajectory will give an attraction, if the
relevant crossing matrix (t — s) element is positivs.

Where the seriss (2.17) convergss (away from
ths doublse spectral function), ImR}t is constrained by
unitarity to be positive, so that as this is not the
cas9 for P exchange alons, lower lying trajsctoriss
could be invoked to provide a cancellation. The
normalisation procedure of Chew and Teplitz(sz) was
based on this idsa and consistsed of subtracting from
the P sxchange term RY(s,t) the pisce Rf(o,t), and
adding back the latter partial wave by partial wave.
Each partial wave was to be detsrmined in a self-
consistent way in sach channel by a cycling process.
The normalisation procedure is rather arbitrary, since
the required cancellation could be provided by neglected

pisces of doubls spasctral function. Also, the
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inclusion of low-lying trajectories may be in principle
open to objsction on grounds of double counting.

The Pomsranchuk repulsion has an important
physical interpretation, as Chew(83) has discussed,
and if a dynamical calculation is to give sensiblse
results, it must be handled propsrly. To the extent
that P e9xchange controls the diffraction peak, it models
the effect of many channels opsning at high energy.

Thus, in analogy with the situation in nuclear physics,
it is ekpectsd to narrow resonances and produce Reggse
trajectories rising teo highsr wvaluss of angular momentum.
The important point is that ths repulsion is of a longsr
range than most particls sxchangse forcses, if the rangs
for a given process is msasured by the inverse of the
logarithmic derivative of RB with respesct to t at £=0(83).
In a rough way the P repulsion, suporposed on a shorter
rang® attraction from ths exchange of other guantum
numbers, adds a lip to the potential well which traps
particles longer and increasss the changes of higher
partial waves resonating.

A slight paradox arises here, becauss in
potential scattering the pressance of inelasticity
always results in an effective force which has the
propsrtiss of an attraction, increasing the binding
of a bound state. (It is proportional to the absolute

square of the off-diagonal elsments of the potential

-
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matrix) (85,  To the extent that potential scattering

has been a reliable guide to hadron dynamics, one
might expect a closely similar effect from the P, but
this is not manifestly so. Howsver, upon clossr
examination the point is reeoived in an illuminating
way.

Consider a Regge trajectory function with a
dispersion rspreosentation of eq.(1l.8L). Since Imd(s)

is positive, o(s) is a Herglotz (86) function and

thersfore all its derivatives below threshold are positive.

Using the identity
(2) () 2) --
94}2 ’azx az’?{ -
in the form

D™ ds
2 Frvee )

we deduce

)
(

S

In this expressio x(n)(s) is the n®P derivative of
the trajsctopy¥ funection, (n=0,1,2,3...), and s 18 a

on the trajesctory below thresho%g, sBay that of

7 Tthel
a bednd stats. Eq.(2.19)/éta§£s\jhd¥9€nycforce (such
A

as inslasticity) which perturbs a bound state so as to

increass its binding must not only raiss the trajectory,

but unless it is linear must also steepen it and make it

attain higher valusgs.

(2.19)
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The sort of effect we envisage on this basis
is for the raising of the trajectory to be accompanied
by an increase in Imd(s) at highsr ensrgies, to reflsesct
that region's increassd dynamical important. Further,
the steepening will psrsist above threshold in the
resonance region, to give more, narrower, recurrences.

We must expect that if the P is to rspressnt
the effects of inslasticity it must have not only a long
range ropulsive component, but a short rangs attractive
one, so that bound states at lsast do not becoms less
bound. A pure repulsion, which "unbinds" bound states,
will not increase trajsctory slopses.

From this discussion it is clear that the
defscts of the Chew-Jones reopresentation ars the lack
of strength of the forc9s coming from crossed channel
Regge poles (which means that calculated trajectories
do not rise high enough), and the simultaneous lack of
ability to handle the P repulsion in a satisfactory way.
Another defect is the width of diffraction psaks
calculated in this approximation is always too pig(87)

- the amplitude always falls away like t ' (as compared
with the observed possibly exponential decrease(as)).

A possible remedy for all these complaints
may bs achieved by including not only the Chew-Jonses
strips in ths amplitude, but also the corners of the

doublse gpectral function betwsen them (compars Fig.l.2

-
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and Fig.2.4), whsre the latter are calculated using
8lastic unitarity according to Mandelstam's iteration
method.

Before deoscribing this we should point out
that the explicit inclusion of several two-body channsls
in a strip approximation calculation (e.g.TW)KE}Fw,nP,NN—
etc.) has bsen tried(89) with rathsr disappointing
results, so that bsfore going on to tackls vastly
complicated multichannsl situations, we should make
sure that a single channsl calculation has besn explored
fully.

Equation (1.39) can be re-written in terms of

D%(s,t) defined by (c.f. egs.(l.L4ly) and (1.45))

fﬂ_ls t)ilDMS(s L) 1_1 Pﬁn(b u )ipbd(u t)o(«’

\
:D le,t) = = (2.20)
N $— s ! W— o )
whersupon it becomes
& +
D (s t) D (s, )
~1 t '\ it )
(1) = (67 E) - B(k) db, ok, . (2.21)
e ! ( ‘is K"(;,t) &, tz,)
The theta-function defines a region of
integration in the t)-t, plane which eq.(l.36) for K
gives as
s
t2 1?12+“52 (2.22)

at B= o®, and as a smallsr rsgion with a curved boundary

for finite s'#9). Therefore an iterative procedure
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for calculating the slastic doubls spsctral function
f)(s,t) using (2.20) and (2.21) emerges. For (2.22)
states that to calculate f)(s’t) sxactly at t=%, we need
to know D%(s,t) only for t+ < . Thus given a first
approximation to D%(s,t) from the Chsw-Jones representation,
we may "fill in" ths corners betwsen the strips with thse
extra doubls spectral function implisd by the presence
of the original strips via elastic unitarity.

If in potential scattering (for a potsntial
satisfying the Mandelstam representation) we were to
calculate f)(s,t) using this procedure, given the first
Born approximation to the amplitude as a starting point,
at successive steps in the iteration we would in fact
bs calculating succsessive terms in the Born series(33).
We can regard the Chew-Jones approximation analogously
as the first Born terms in an expansion whose highser
terms we propose to calculate, and thersefore gain more
insight as to why its initial applications failed.

We can see in a qualitative way that including
ths extra terms may go a long way towards remedying the
defeocts we have described. In wmx scattering for
example, the inclusion of sextra powers of the offectively
positive F—nmson coupling will increase its strength,
whils the extra powers of the effsctively negative P
coupling will have alternating signs, so that there is

some hope its fierce repulsion would be cancelled, and
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its proper offects show as 9xpected in the narrowing

of resonances and steepening of trajectorises. Also,

if with the iterated P contribution included Di(s,t)
changes sign for t,¢t {t, A(s,t) would fall off

faster at negative t and a narrower s-channel diffraction

peak, closer to sxperimsnt, would result(87).

7. Summary.

We have discussed ths construction of an
amplitude in accordance with the hypotheses of MAFK
and MASK as an input to a dynammical calculation using
the N/D method. The basic approach is through the
interference model, which at present seems to contain
no glaring inconsistenciess, but which must be used
with cars. There is some hope of obtaining reasonabls
quantitative results if a formulation of the model
dus to Chew and Jonss 1is augmsnted by adding to the
Regge pole terms a "background" pisce of doubls spsctral
function calculated by the Mandelstam iteration.

The ipadequacy of the simpls Chew-Jonss
approximation has caused a renewal of interest in the
"old" form of the sitrip approximation(99’ 109), in
which elastic unitarity is used to calculats the complete
double spectral function by iterating the discontinuity
of the crossed-channel poles out to asymptotic valuss

of t and then identifying the s-channel poles from
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the asymptotic behaviour of the amplitude,

The numerical accuracy required to calculate trajesctories
in this way is very great, howsver, particularly in
situations where s9vsral trajsctoriss occur ons below

the othsr. Our alternative proposal will be advantageous
if only a few iterations are nesded to get a good
approximation to the potential. To test whether our
approach is likely to succsed ws shall describe in the
next Chapter a calculation in potential scattering

using similar techniques to attack a solubls problem(9o).
This is a preliminary to calculations of pion-pion

scattering, which will be described in Chapter Four.




TABLE 2.l. Pion-Nucleon Resonancss. Positions and widths are in
MeV. Positions with a gquestion mark refer to
structures not plainly '"resonant'.

This calculation Phase shift Analysis
Partial Position Width Elast- Position width Elast-
Wave leity ieity
S11 2100 ? - - 1535 120 0.35
1710 300 0.8
P11 1450 250 0.55 1470 210 0.65
2000 % - - 1750 330 0.32
P13 1860 300 0.3 1863 300 0.21
D13 1550 300 0.55 1520 115 0.55
2057 290 0.26
D15 1700 250 0.45 1680 170 0.40
Fi5 1530 250 0.2 1690 130 0.65
F17 1500 300 0.25 1983 225 0.13
G17 2010 200 0.2 2200 300 0.35
Glg 2150 250 0.15 - - -
S31 1320 150 0.4 1640 180 0.3
P31 1700 300 0.35 1934 340 0.3
P33 1300 200 0.4 1236 125 1.0
1688 280 0.1
D33 1700 300 0.15 1691 270 0.14
D35 1700 200 0.1 1954 310 0.15
F35 1550 300 0.1 1913 350 0.16
F37 1550 400 0.1 1950 220 O.h4
@37 1350 150 0.01 - - -
G3g 1500 300 0.01 - - -




Fig.(2.1). The Argand diagram

of Al(s) of 8q.(2.3)
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Fig.(2.2). Trajectories for the scalar

meson sxample, with a linsar input
trajectory of the form a+bt. "Resonance"
energy on the output Schmid loops is

taken to be whers the phase sghift moves

fastest with s.







Fig.(2.3). The Schmid loops for the

partial waves which correspond most closely
to the phase shift results. The full
linss are our calculated curves, and the
dashed lines are the curves deducsd by

the CERN analysis, Ref.65. We take the
"pagonance" point to bs where the phass
shift moves fastest with s, and we

indicate energiss in the centre of mass

system in MeV.







Fig.(2.4). The Mandslstam diagram showing
the strips of double spsctral function
parameterised by Chew and Jonss. The

notation is explained in the text.




FIG.24




CHAPTER THREE

The Use of Born Approximations

in N/D Calculations.
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1. Introduction.

We have seen that the forces which generate
strongly interacting particles are likely to contaln
both attractive and repulsive components. This has
croated difficultiss in dynamical calculations where
the potention function 3}(5) used as input to the N/D
equations has been known in only what is essentially
the first Born approximation.

It has besn found(al) that if a repulsive
force is combined with an attractive one in this
approximation the effect of the repulsion is often to
give stronger bpinding, i.e., to act as an attraction,
in a situation where the opposite should occur.

This fact has been commented on by Kayser(gl),
and has besen notsd since by many authors(92'95>,
particularly in the context of the Dashen-Frauwtschi
type of perturbation calculation.

What is worse, if ths repulsion is really
strong, it is possible for "ghosts" - in this context
resonances with negative residues - to appsar(sl).
These violate causality, and, liks the unexpected
attraction, must be due to the inadequacy of the
approximation used.

We have described similar defects of the
Chew-Jones rapresentation as an approximation to the

full potential, and have suggested that a remedy
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lies in the inclusion of extra double spectral function,
i.e., higher Born terms.

The full Born series for the left-hand cut
is of course prohibitively difficult to calculate, and
80 the question arises as to the order of approximation
which is needed to give satisfactory accuracy in an N/D
calculation. In other words, wo wish to gain somse
ldea of how much doubls spectral function must be
calculated via (elastic) unitarity. The best way of
trying to assess this is to sxamine the situation in
single channsel potential scattering where we can compare
the solution of the N/D equations for various types of
potentials treated in various Born approximations with
the exact solution of the corresponding Schroedinger
aquation. We know of course that if we were abls to
use the exact left-hand cut, the N/D squation would
give the exact answer.

Luming (97) has examinsed the problem for
a slngle attractive potential in the first and second
Born approximations, and here we sxtend his work to
include the third Born approximations and also to
consider combinations of potentials of different signs
and ranges. It is anticipated that this will give us
guidance as to the likelihood of obtaining reasonabls
results with similar approximations to the double
spectral functions and left-hand cut in strong inter-

actions.
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In the next Section we give soms necessary
formalism, and in the following one explain how one
is able to calculate the lowsst orders of approximation
to 3%(3). In Section 4 we give numerical examples
which demonstrate how varvious approximations break down.
Section 5 contains an sexamination of an instructive
analytically soluble model, and in the final Ssction

are our conclusions.

2. Formalism of Potsntial Scattering.

The numerical calculations are made for
the nonrelativistic scattsring of sequal mass scalar
particles dues to a superposition of N simple Yukawa
potentials. Taking fi=c=l and choosing the external
mas m=l, in the centre of mass system (CMS), the

radial Schroedinger equation is
W) b § G- VE) A U)o - D, (3.1)

where g 1s the magnitude of the momsentum of the

particles. The potential is

Vile) = 4, e ™ (3.2)
™
where
V() = ) V) (3.3)
1=
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Defining the CMS scattering angle to be ©, we introduce

variables (corresponding to the invariants of egs.(1.12)
and (1.13)),
s=l4(1+q3)
t=~(CMS momentum transfer)?
=-2q5(1-coe6)

Thers is of course no crossing symmetry and
we do not consider exchange potentials. The
appropriately modified hypotheses of MAFK and MASK hold
for the scattering amplitude(“z), which therefore has a
Mandelstam representation with s and t cuta(33), and
displays Regge asymptotic behaviour in t(3). We can
then write a fixed snergy dispsrsion rslation of the

form (l.44) © oo

D, (st!)
L t dt{
H(sle) = ’T {:l_t 7
and separating out the poles in t(49) we also have
ol

N o
D6s) = w) g, 5lmi-t) + 1 PEO e

e st g b

b 5, (6)
where s (t) is the boundary of the double spsciral
function‘P(s,t) in the s-t plane.

The partial wave seriss for A(s,t) is of
the form (1l.41), and “reduced" partial wave amplitudes
are defined as in (1.69) and uniquely interpolated
iJ))ﬁ by the Froissart-Gribov formula (c.f.eq.(1.49))

(3.4)

(3.5)

(3.6)

(3.7)
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R

(3%
B ) - (33Wzif1+2)" f Q,(w86) D, (5t)dk (3.8)

Because there is no u-cut there is no problem of

signature.

The N/D equations for B (s) follow exactly
as 1n Section 5 of Chapter One, except that noﬁ the
phase gpace factor is

fl( 8) =q821+1 ] (3.9)
Using the formula (3.7) the analogue of

eq.(1.81) is

N 2
B () - (32r @) ) g0 (14 35 )
) ) = (, L2 & X 24",
o0 v
- t +
< (s'e)y O (14 /'“r) R, (1+ %
+(32r%) ! , )¢ O qu‘ — _“( 2027-‘) dsdt |
$-s 95 Tl (3.10)
|
For our approximations to ?(a,t) it will
t be evident that the integrals in (3.10) converge and
L s
Bls) —— comat, —3, (3.11)
S oo 2
From (1.70)(97),
Ny ls) —> CL’:*— (3.12)

S »
neglecting now logarithmic factors (c.f.sq.(1l.73a)),

8o that the N/D equations are well-defined for ——[<,(<3/2,
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In practice, for numerical calculation the
infinite upper limits of the N/D equation are replaced
by a cutoff &7, and, as we have already mentioned, this
introduced no essential difficulty(76). The equation
can be solved by standard matrix inversion techniques(81’98),
and the solution is found to b9 practically indsependent

of sy, if this is taken sufficiently large.

3. Calculation of Double Spectral Function.

We now turn to the problem of calculating
P(s,t) using the Mandslstam iteration.

When we rofer to the potential function as
determined in the n®h Born approximation, we mean that
it is derived from gi, my and from ?(s,t) correct to
order g¥, for all i=l...N. If we were to uss this
p(s,t) in (3.7) to calculate Dy(8,t), and then
applied (3.6) to find A(s,t), this would be equivalent
to summing the first n terms of the Born series(33).
The amplituds would not of course be unitary. What
we shall in fact do is to solve the N/D equations, as
described above, with %?(g) known to the n%R Born
approximation, and this of course will not give the
same results bscause we shall be senforcing unitarity
on our amplituds.

The potential in the first Born approximation

is found by setting P(s,t,):O and keeping only the
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pole terms in eq.(3.10). Highsr Born terms are
calculated using eq.(3.7) (ec.f.9q.(2.20) and the
analogue of eg.(2.21), which in this nonrelativistic

situation is (c.f. €gs.(3.9) and (1.71))

P(S,t) _ (32{_%-)—! Dt fﬂ,t)) Dt (S_,,tz) B(K) 0{/‘:, at,
' K% (s,t, t, ,t;)

Eq.(1.36) dsfines K.

As outlined in the previous Chapter, it is
possible to use this equation to calculate the nth
Born term from the previous n-1. If we rogard Yukawa
potential scattering as representing the exchange of
a particle, this is analogous to calculating a given
ladder graph from a knowledge of the lower ordsr onss,
beginning with ths singls particls exchange diagram
- the pols term. For esxample, when we calculate to
order n=3 for N=2 diffsrent Yukawa potentials, we sum
the graphs depicted in Fig.3.l.

We can find f)(s,t) gxplicitly for n=2
and n=3 as follows. Ueing only the pole term of (3.17)

for Dy in (3.13) we derive

N
@ e
P - et

1/95!

(3.13)
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where )
@ YN
P'tg (_S',t) = TTO.JLa(t) g S SO (b)} ) (3.15)
and
343‘4 & [t 4 (”";'M;)'IJ ;2(1“11_7”3_)] } z'
Aylt) = TN 3 “T Tt (3.16)

There are iN(N+1) distinct terms in the double sum of
(3.14) because of the i-j symmetry. (This is evidsnt
from the graphs of Fig.3.l).
Each distinct pisce of double spectral
function j?f%(s,t,) has a boundary in the s-t plans
given by s=sld(t)=l(1+(mjmy)2 [1-.+(m§t-m23>2 -2(m:2L+m%)] by, (3.17)

Using (3.7) we then derive

N
2) ()43
:Dé)ﬁ.t)‘ pobe anmeo *Z D, (5,6, (3.18)

1,31

(3.19)
Im D) = 0
for s & SO&Uﬂ 5 and
RQ-:D:W(;,G) =0 ,
(3.20)

- @y 2 , -
LD TGt) = "/04'5 (%)
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Using (3.13) again we find
N

G) ) 3
PB(S.b) = f”(S,t) + Z F(«;;k (s¢) , (3.21)

k=1
where terms of order g3 are given by
(@)
o . [ 36-5) & D0, Bik
ot BiY = L .
) 327\'% |<'L(s,‘t)‘t,) ’l)

o, dt; . (3.22)

Using (3.19) this becomes
L(s,®)

(3) ) 34%1 ?k Z( 07(, + 25 x tC, )(ax + Q,b At CL)§ dot (3'23)
‘Wl'

S 1 (s,

where ws write

1
+ My

a=8-4
b1=a(m%+t)+2tmi
cq=a(mg-1t)2 o (3.24)
- 21m? 202
b2_a(mj+mk)+2mjmk
— 2
02_a(m%_mﬁ)
We see that symmetry in j and k leaves only
N(N+1) distinct terms in the triple sum of (3.21), as
might be expected from the graphs of Fig.3.l.
The upper limit of the integral in (3.23)

is given by the lowest zero of the denominator

/ \ L( 2, . _1_..,1.—]‘/?- 'I\?
S e St L0 —at)q o))~ - g (3.25)



82.

and the boundary of ?ggi(s,t) in the s-t plane is
given by

L(s, t)=(ms+m)?,
which has a solution which we write as

s=s,1 K () .

In Fig.(3.2) we dspict the s-t plane and
show the boundariss of ﬁ)(%)j(s,t) and eigf{(s,t) for
the case N=2.

The general featurss of g?&g&(s,t) are easily
found from the exprsession of .(3.24). We find that

P4 3k(s33(5) 1) =0,
and that all the derivatives of gagg%(s,t) at s=s,13K(1)
are infinitse. Thersefore, from its boundary, the
function rises sharply to a peak, and then falls away,

1l .t fixed t and

going sventually proportional to s~
to t°3/2 gt fixed s. Its main featurss are sketched
in Fig.3.3. This behaviour is to be contrasted with
that of P(%%(s,t), which has an inverse square root
singularity at its boundary, and falls monotonically
in both s and t, being asymptotically proportional to
62 at fixed t and to t~1 at fixed s. |

The doubls spectral function cannot readily’

be calculated to higher order, but the gensral features

are clear. Suocoessively higher terms would have

less pronounced peaking close to thoir boundary, and

would fall away fastor at high s and t.

(3.26)

(3.27)

(3.28)
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The first point agrees with the findings of
Ba11(99) and of Bransden et al.(loo), whose double
spectral functions were calculated from the exchange
of a Breit-Wigner shape for the F—n@son in w7
scattoring. They found oscillations correspvonding to
the boundary peaks which disd away quickly with
increasing t. We obtain more severe oscillations
since we gre iterating a S-TUnction, but the singularity
at the boundary disappears by the time the third Born
term is reached. The oscillations make it extremely
difficult to calculate (numeriecally) higher Born tsrms
for more than one Yukawa potential(lol).

The second point follows by inspection of
(3.13) and it is clear that successive terms in the
itsration have improved asymptotic beshaviour by a
factor rv(St)-% over their predecessors. We note,
however, that the sum of the infinite ssrises - the
total double spsctral function - must have asymptotic
behaviour proportional to t°(8) when it is calculated
completely. It is5 clear that in this case, including
terms up to order g3 only, all our infinite lntegrals
(egs.(3.20), (1.75) and (1.78)), will converge, and

we can solve ths N/D equations.

-
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L. Numerical Examples.

In this Section we present, mainly in
graphical form, ths results of solving the N/D equations
with potentials calculated in thes manner Jjust described,
and compare them with the solution to the corresponding
Schrosdingsr equation(1°3). We ars mainly interested
in potential strengths which are similar to those found
in strong interaction physics. The rselevant parameter
is g/m, where m is the mass of the exchanged particle in
units of the reducsed mass of the scattering system.
According to the calculations of Finkelstein(lou), the
equivalent, energy-depsndent, potential due to the
exchange of the P—ﬂmson in T-T1 scattering
will correspond to g/m & 3, over the rangs of energiss
betwsen threshold and 100m?, and this is a fairly
typical order of magnitude for such forces.

Firstly, in Fig.3.4, we plot the position
of an S-wave bound state resulting from a single unit
range (m;=l) Yukawa potsntial of the form (3.3) as a
function of the strength of ths coupling, gj.
Corresponding curves (except for the inclusion of the
"third Born approximation) are to bs found in Refs. 97
and 102. We s9e that the first Born approximation
is not really satisfactory if the potsntial is strong
enough to produce a bound state, but that the third

Born approximation is quite good sven for large
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couplings, and also gives gquite a satisfactory account
of the secondary bound state which appsars for g 3 6.5.

The corresponding trajectories for two
different couplings are given in Fig.3.5, and again
for the weaker force, the third Born approximation is
very good.

Evidently a very strong force is needed to
produce a P-wave resonance. If we arrange combinations
of attractive and repulsive potentials to produce the
same S- or P-wave states, as in Fig.3.6, we gset a
somowhat Btesper and certainly higher-rising trajectory
the larger is the repulsion. It is also found that
the width of the P-wave resonance is smaller with a
larger repulsion, and this is exactly the effaect which
we hope for from the P repulsion in dynamical
calculations.

Next we want to see how good ths various
Born approximations ars for producing trajectoriss
when both attractive and repulsive forces are present.
In Fig.3.7 we show the results for a comparatively
weak attractive force and various long-range repulsicns.
Evidently the lower Born approximations are much less
accurate than they are when there is only one
attractive forecs. Indeed we see in Fig.3.8& that the
lower Born approximations give trajoctories that are

in the wrong order - i.e., the trajectory 1is more
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highly bound the stronger is the attraction. This

effect ie shown with greater clarity in Fig.3.9 where

we plot ths change in the position of an S-wave bound
state due to the presence of a fixed repulsion. against
the coupling strength of the attractive fores. The
responss of the 9xact solution to the repulsive
perturbation is almost independ&ht of how deeply ths
state 1s bound, but this is certainly not true of the
lower approximations. Only the third Born approximation
is able to give reasonable results for a wide rangs of
couplings.

In Fig.3.10 we plot the same effect the
other way round, that is, we fix the strength of the
atbraction and vary the repulsion. We have choassn a
case where none of the Born approximations giveﬁia
satisfactory result in that the response in each case
is in the wrong direction. The important thing is
that as the repulsion is increased, there comes a point
at which the position of the bound state has moved off
to s=-od. If the repulsion is lncreased beyond this
the '"ghost" phenomenon, mentioned above, appears.

This is readily explained if we sexamine
the beshaviour of the corresponding N- and D- functions
with, for example, the first Born approximation to
B?(s) (see also ref.8l). Fig.3lla shows the form of

N- and D- functions when a normal bound state is
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produced. In Fig.3.1l1lb more repulsion has bsen added
and the bound state becomes more tightly bound. A
further increass in ths repulsion resuits is the
development of a pols in the N-function at threshold,
as the position of the bound state moves ;o - 00, and
the N- and D-functions flip their signs near threshold.
The first zero of the D-function, shown-in Fig.lle,
corresponds not to a resonancs but to a ghost. An
examination of (1.78), the equation for N, shows why
this happens. The sign change occurs at the point
where the integral vanishes at threshold, and we get
N & BL. Increasing the repulsion further results
in the ghost moving first a littls closer to threshold,
and then further away, finally to vanish as the dip
in the D-function fails to reach zero (as in Fig.3.12).
Ghosts thus arisse only after the bound state has moved
off to —o0 .

It is evident from Fig.3.9 that the way to
check that the order of Born approximation used is
adsquate is to ensure that when a suitable repulsion

is added the bound stats is really repslled,; and

MY

(Fig.3.10) that the amount by which it moves is roughly
proportional to the strength of the repulsion. If it
is not, a higher approximation is needed. We can
anticipate from these examples that whsreas the first

Born approximation, which is usually used, will nearly
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always be unsatisfactory unlsss the coupling is very
woak, the third Born approximation is likely to be
good for most of the types of forces gncountered in
strong interactions, and indsed for rathsr stronger

onss.

5. A Solublse Model.

It is interesting to look at soms of the
anomalous propertiss of repulsive forces in a simple
soluble modsl.

Following Kayser(9“), we consider S-wave
scattering with nonrelativistic kinematics, replacing
the left-hand cut by simple polss. With ons pols the
potential function is

B (o) s
(a real and positive), whichsis well-known(lo5) to be
the first Born approximation to the potential
V(r) = = 4ra &2

For A > 2a, the potential function (3.29)
gives rise to a bound state on the physical shset.

If a small long-range perturbation is added, in the
form of a second pole at qgﬁbQ, (b < a), the small
shift in the bound state position is easily calculated
by ths Dashen-Frautschi(96) method. Kayser(gu) has
shown that for weak binding, such that the bound state

liss to the right of g2=-b2, a repulsive perturbation

(3.29)

(3.30)
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moves the bound state towards threshold, in the correct
manner., For a stronger binding force, however, where
the bound state liss between the two left-hand poles,

a repulsive perturbation appears to act like an extra
binding force, moving the bound state to the left.

The reason for this is easily found. The
potential function (3.29) is the full lsft-hand cut for
ths potential(l06).

—uN&* o
’ 303
+:hx
The addition of the second pole at g3=b2,
of residus X gives the first Born approximation to
the potential
. - . 32
V1) = =l hae P — 4 NbL e (3.32)
or the full left-hand cut for ths potential(loi)
1
[£ Fen)]* - Fi) f Fl0) (3.3)
V() = 2 E .
[Fe)]
where
2 N _ape M ~(atb)r
Flr) = ’+i\f’€/ + 5. ¢ r__;;—k;e, ' (3. 3L)

/
For small X,) the potentials (3.32) and
!/
(3.33) are quite similar, and as X,)\ approach zsro

(3.33) approaches (3.32).
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For large X i.8., a strong attraction,
expressions (3.32) and (3.33) are very different, and
it is evident that A'<.O can no longer be interpreted
as corresponding to a simplses repulsive force.

The conclusion to bs drawn from this example
is that a given potential function q%(s), which
corregponds to soms Born approximation to a given forecs,
also repreosents the complete Born series for an often
completely different force, which coincides with the
first only in the limit of wsak coupling. This gives
us somg insight into the qualitative features of the
numerical results presentsd in Section L4 (although,
unlike this gxample, our rssults 4o not depsnd on the
bound state being inside the left-hand cuat).

Kayser(9“) has shown that these considerations
enable us to understand a similar problem, presented
by Sawyer(93), in connsction with the Dashen-Frautschi
method. If ths force producing a bound state is
approximated by a simple pole, and if thse pole is moved
slightly to the left, leading, according to (3.29)
and (3.30), to a weakening of the binding force bscause
of the decrease of its range, a Dashen-Frautschi
calculation predicts that the bound state bscomes
more tightly bound. By inspection of (3.3l),
however, it is clear that an increase of a does not

correspond simply to a decrease in the range of V(r);
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the changs is more complicated, and as Kayser has
shown, lsads not to a weakening but to a strengthening
of the binding force. Therefore the result of the
perturbation calculation of Sawyer is in no way
anomalous (c.f. ref.95).

Unfortunatsly this simple model is unablse
to encompass the ghosts which our numerical calculations
have produced. The leftfhand poles correspond to & o
potential V(r) that satisfguthe conditions for thse
amplitude to have a Mandalstam representation(33).
Therefore causality will not be violated and ghosts
cannot be produced. The potentials V(r) corresponding
to the functions %%(s) used in our numsrical calcula-
tions must violate the Mandelstam rspressntation.
Our approximations have mutilated the analytic propertiss
of the potentials to such an 9xtent that thsy ceass
to begar any relation to the forces they ars suppossd
to approximate, and therefore nonsensical results

occur.

6. Summary.

We have solved ths N/D equation for potential
scattering with various Born approximations to the
left-hand cut, and compared the results with the
corresponding exact solutions. It turns out that the

first Born approximation, which is most commonly used,
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is often quits inadesquate, especially when we have to
deal with combinations of attractive and repulsive
foress. In this situation repulsions may have anomalous
effects, loading to spurious attractions, and possibly to
ghosts. Both of these unpleasant featurss ars removed
for a wide variety of potential strengths, including
thoss likely to bs encountered in particle physics, if
the third Born approximation is used.

We thersfore have good reason to hope for
considearsble improvement over previous work in a
calculation of strong interaction dynamics bas2d on the
Chew-Jones rspresentation augmented by highsr Born
terms in the form of extra "corner'" pisces of double
spectral function. We have a little reservation,
however, becauss these sxamples have not thrown very
much light on the way to handls the peculiar featurss
of the P repulsion, bscause this force is hardly
likely to bear much ressmblance to a simple snsrgy-
indepsndant Yukawa potential.

In ths next Chapter we describe some
calculations of pion-pion elastic scattering, using

the augmented Chew-Jones reprsesentation for the

scattering amplitude.




Pig.(3.1). The anitarity diagrams for two

differsnt Yukawa potentials up to the third

Born approximation.
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Fig.(3.2). A sketch of the s-t plans

singularities for two Yukawa potentials,
showing the positions of the polss at
t=m%, and t=m§, and the curved boundaries
of the double spectral function for the

gecond and third Born approximations.







Fig.{(3.3). A piece of double spectral
function (3) B, 1t lotted against t
Pijk( ’ ) p g

for thres values of s.
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Fig.(3.4). S-wave bound state positions

plotted against coupling constant for a
single unit range attractive Yukawa potential.
Here and throughout the symbols E, B3, B2,

Bl denote the exact, third Born, sscond Born,
and first Born approximations respectively,
and the primary and secondary bound states

are indicated in each case.



16 o d2 -8 -4 O 4
FIG.34 | S |



Fig.(3.5). Regge trajectories for a

single attractive Yukawa potential;
(a) V==30"T/pr; (b) v=-8¢"Y/r. The

notation is as for Fig.(3.L4).







Fig.(3.6). An S-wave bound state and a

P-wave resonance produced by various
foress.
The potentials for the P-wave resonance
are :-
(a) V=—24.3¢"T/r + 7.5¢~0-3r/p,
(b) V=-180"T/r + 56=0.3r/pn,
(¢) V=-86"Y/pr;
and for thes S-wave bound stats:-
(d) v=-14e F/r + 3.8¢0:3/p,
(e) V=—70"T/r + 2070:3T/p,

(£) V=-3e"%/r.
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Fig.(3.7). Regge trajectoriss for
attractive forces combined with various
longer range repulsions. The
potentials are:-

(a) V==3e"T%/r,

(v) V=-3e~T/r + 0.560:3%/p,

(¢) V==36"T/r + 1.0879-3T/p,

The notation is as for Fig.(3.4).
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Fig.(3.8). Regge trajsctories as for

Fig.(3.7) but with a stronger attraction.
The three cases ars:-

(a) =-86""/r,

(b) V=-8e~T/r + 1.56"0:3%/p,

(¢) V=-86"T/r + 3.0070:37/p,
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Fig.(3.9). The shift gsb of the

bound state position whsn the potential
V=-5Ae'r/r is changed to V=-gAe'r/r +
0.1870+3T/n. The notation is as for
Fig.(3.4).
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Fig.(3.10). The shift 553 of

bound state position when the potential

=-11le"T/r is changed to V=-lle T/r +
gKe'0'3r/r. The notation is as for
Fig.(3.4).







Fig.(3.11). A sketch of the potential

function B%(s), and the N- and D-
functions, for the potential
V=-11l8"T/r + gRe'°°3r/r in first Born
approximation. The three cases ars:
(a) 8g = 2.7,

(v) g = 3.0,

(e¢) g = 3.3

Over this range, BB(S) changes only

slightly.



~

B- (s

o

(@)

by

(©)

V

Y
®
v
(o)
o
~.
7z




Fig,(3.12). A sketch of the S-wave

D-functions for the potential
V=-116"T/r + gKe'o'3r/r in first Born
approximation. The two cases have:-
(a) eg = 3.3

(b) gg = 8.0.
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CHAPTER FOUR

Calculations of pion-pion scattering



olL.
l. Introduction.

In this Chapter we describs some calculations
of pion-plion elastic scattering according to the maximal
analyticity postulates set out in Chaptsr One. We use
a géeneralised interference model for the scattering
amplitude, namely the Chew-Jones approximation, described
in Chapter Two, augmentsd by extra pieces of doubls
spectral function calculated from the slastic unitarity
equations. We eonforece unitarity on partial wave
amplitudes using the N/D method. From the results of
Chapter Three we suspect that inclusion of the third
Born term will be sufficient to guarantse more reliable
(if not more realistic) results than hitherto achieved.

In the next Section we give the necessary
formalism (relegating some detailed algebra to the
Appendix), and in Section Three present results of a
rho-meson bootstrap. We obtain an s-channsl vacuum
tra jectory not included in the input, which we identify
with the P. In Section Four we begin to investigate
the Tw gystem with both P and % trajectories in
the crossed channel, and find some indications that a
reasonable account of the vacuum repulsion may be

possibls. It does not sesm likely, however, that the
present calculational schems will give results that

agres very closely with experiment.
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2. Formalism of pion-pion scattering.

The pion has zero strangeness, 1G=0",
JP=1", positive change conjugation parity, and a mass
of about 140 Mev(66). Its simple quantum numbers and
low mass mean that it is copiously produced in strong
interaction, and plays a large part in carrying the long
range component of the nuclsesar force. If we approach
the problem of strong interactions with at first
necessarily limited objectives, and try to isolate one
system for study, the pion-pion interaction is a
natural choice bscause of 1ts simplicity and importance.
The overall structure of the low ensrgy dynamics
appears to be dominated by the S)—msson at about 750 MeV,
and since this has predominantly elastic decay(®®)it
would not bs a totally hopeless first approximation to
treat the problem as completely elstic using the N/D
techniques so far employed. We shall see, however, that
some inslasticity is implied in our dynamical schems,
and we shall modify our approach accordingly.

We neglect electromagnetic effects and deal
throughout with amplitudes of definite isospin,
Al(s,t,u), I=0,1,2. The process of crossing is thus

complicated by the necessity to useé a crossing matrix

to relate t and u channel amplitudes to those 1in the

s-channel. We have, as is well known,(6)




Al(s,t,u) = PII'AI'(t,s,u)
('l)I PII '(-1)I'AI'(u’t’ 5),

where

1/3 1 5/3 )
PII' = 1/3 1/, -5/¢

/5 -1/, 1/g
and the index I' is summsd from O to 2.

Each amplitude Al obeys the Mandelstam
representation, and becauss the pion is pssudoscalar
(a three-pion vertex is thus forbidden), has double
spectral regions as shown in Fig.4.l (where the Chew-
Jonss strips are also depicted). Bach of the six
curved boundaries has an asymptots: at um% in ons
dirsction and l6m$ in the other, corresponding to
the lack of a thres pion intermediate state in the
unitarity sum, e.g. (1.20), and the impossibility of

the simple box diagram:

T -

We bsgin by constructing s-channel
amplitudes of definits signature, and in this

connection we nots that the interchange t &> u,

96.

(L.1la)
(4.1v)

(4.2)
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(85 ¢ -8g), corresponds to an interchangs of (identical)

pions. Therefore to preoserve Bosge statistics the
signaturs factor ¥ is equal to (-1)I, and so only even

angular momentum states contribute to I=0, 2 amplitudes
and only odd angular momentum states to the I=1 amplitude.
Wa gplit sach of the three double spsctral
regions into two contributions, each slastic in a differsnt
channsl. What in the scalar meeson case of Chapter Ons
was labslled fﬁt now consists of Pst and Pts, the
former elastic in s, the latter in f. Similar
decomposi tions are made for what werse (DSu and -etu,
see Fig.L.1l. This re-lagbelling facilitates the
introduction of the Chqw—Jones represeantation, where
Ryt contributes to  Qid, RpY to Pyg ote.
Using eq.(1.45) for AX(s,t), and remembering

(4.1) etc., we. have in this convention (see Appendix),

AT ) = j#"ﬂ DL (st

where
D{(s,t)=v1(s,t)+dl(s,t),
T, 1 t
d (S'f) = .“_S < r)si- (S ))
and
'C
N d T
v (s k) = T\'Z)SISE{;S )

+ (—()I( gu—f{%[f{: (‘:“’)*‘('l)lﬁfé (3;"")] } -

(L.3)

(L.l)

(4.5)

(4.6)
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Re-labelling again, we reserve the symbol

fjst for only that portion of the s-elastic double
spectral function in the corner betwesn the strips

Rf and Rf, and similarly use the othsr five symbols f)'
Then our interference model approximation to AI(s,t)'
consists of replacing in eqgs.(4.5) and (4.6) the double
spectral.funcﬁion by the appropriate strips plus the
corresponding cornsr pieces.

To calculate ths corner pieces, we concentrate
on f)st’ which we obtain from s-channel elastic unitarity

in the form of eq. (2.21),

L I
j)t (S:(-)t') Db (S')tz.
K*(s:t) % > %2)

I -l )
=
(s, t) = ((bw 3,\%) OE) dt,dt,. (4.7
Other pieces ars obtained by a simple
permutation of wvariables s,t and u. That is, because
gach channel contains an identical procsss, for a given

isospin f’ts is the same function of t as est is of
8, and so on. We note that whsn (Ost is known out
to a given t, Ptu! (which is the same function of u.
as Pst is of t), is known only to ths sams limitsd
valué of u, 50 that the integral over it in (L.6) has
to be cut off. The error thus introduced was found
pumerically to be negligible, sincs the whole
contribution of any reasonable (’tu is 1tself very

small, and was in fact neglected.
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If the doubls spectral function est
calculated from (4.7) is important to the dynamics, the
implication is that (Jts is squally so, and of course
the integral over it in eq.(4.6) is uncertain for an
exactly similar reason. The only way to estimate it
would be to carry out a "macro-iteration", using the
results of one iteration to begin anothsr, and, with
the not unrsasonable sxpectation of convergsncy, carry
on until Pﬁs was unchanged. The consistency of this
procedurs as stated is questionable, however, as the
presence of Pst implies t-channsl inelasticity (e.g.,
multiple 9'-meson exchange), and therefore the presence
of Pts implies an equal degres of s-channsl inelasticity
which renders invalid ths slastic unitarity assumption
underlying eq.(4.7). A solution would bs to modify
(47) in soms way to taks account of inelasticity at the
second and subsequent steps in the "macro-iteration".
However, such a procedure involves immense numericszl
effort, and it is not clear that it would yield any ussful
improvement over the simpler approximation that was in
fact used.

Our approach was to nsglect altogoathsr the
contribution of (44 %o (4.6) in the iteration, but
estimate for the effects of its implied presence by
using N/D equations modifisd according to the method

of Frye and Warnock(u6), with the inelésticity parameter

B
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’Yl calculated from Ets (obtained by permutation of
s and t from est) as we shall describe.

To determine est ws need D%(s,t) evaluated
in the cornsr where th; ¢ s,t ¢ S, ,and clearly
Rf(s,t), which is containsd in daI(s,t), eq.(4.5), does
not contribute here. To begin the iteration we thus
s9t D%:vI, where the latter contains only ths
contribution of ths strips Rf and RE, since R% has no
t-discontinuity in the relevant region. Therefore

our starting t-discontinuity is given by, (ses Appendix)

Dy ) = B A, { p (e | €2 +E07 Ry (&)

S TToL(t)

5
(- )
tor | T )[ ds! ’

Uiy

where oi(t)

((t) = — 6w (2xte)t1) ¥(8) (%/s,)

and a summation over isospin I', and t-channel trajectoriss
is implied. We have altsred (2.14) into a form suitable
for q% > 0, and neglsected Q-functions. We shall describs
our parameterisations of o(t) and X(%) - both needed
above threshold where they are complex - in the next
Section.

The numerical computations were carried out
by calculating D%ﬁs,t), as given by eqs.(4.4)-(4.6) for

s-values between hm%. and s, at successively greater

(4.8)
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t-values, with the corner piecs of doubls spsctral
function Pst given by (L.7) in terms of D%(s,t) at
logser t-values. The contributions from ftu and

f)ut werse small, and were thus ignored because their
inclusion increased tenfold the computer time rsquired.
was
The contribution of Qg Wexe neglected to the extent
describsd above. Thus the entire contribution of v
is given by the starting discontinuity, eq.(L.8).

In gensral the starting discontinuity D, of
8g.(4.8), which has a large-s behaviour proportional
to 5““’ s may increase with s, and so it is evident
from egs.(L.4) - (L.7) that,unless very delicate
cancellations occur in the iteration procedufe,as 8
is increased the contribution to the amplitude of

gt calculated in this way could be made arbitrarily
large(los), in contradiction to the spirit of the
interference model(lo9). To overcome this difficulty
we followed the prescription of Bali et al.(log), and
multiplied ths doubls integral of (L4.7) by a factor

(l + exp ((9’51)/A>)_1 ) (670)) to damp
down E)st at large s.

The calculation of ths contribution to the
potential function Bi(s) of the Chew-Jonss asymptotic
strips is straightfarward (see Appsndix), and has

been given in detail by Collins and Teplitz(80) .

Like these authors we found numerically that the

URIYERS
QQ\\\“:QH.HGE 13
11 ocT 196
ok
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contribution of the direct channsl strip Rf to ?} was
sntirely negligible, as ware the terms involving
integrationsover F(t) for t > s;. Ignoring these

terms, we find

B;( .d:nps F, (_3211" ”’1)J [lrn f} (%] [ ({’

S,
- : /-
X ! / ._’_. : (bl) ’
_E (Pcllt)(zt) [SI’S + T J Ols
i ,_q_?:;
sither . Po(((:) (;_ ) + (,,) _n ('-Z,t)

if z*,>-f

A Tlt)

+ l:g (w16)) E!(t) Gzt) - ‘.,% &d(t) (’%c) W z <~

Ta(t)
where g ()= Cot =% for T’ D)Z )
Tom T ! (
and — > for I'=l. As in (4.8), a:

summation over isospin I' and trajectories is

understood.

The contribution of the corner piscss of

doubls spectral functions to Bl (&) follows immediatsl

from (1.81), and is

(L4.9)
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Sl T c
(_") ES{: (st) ( (DQ (EJ) _ (Ql(is.) Gh/
s'-5

Qi

Us

Here ths boundaries of the pisces of doubls

spectral functions ars so(t)=u(1+16//(t-l6)) and

uo(t)=16(l+u//(t-u)), in units where m%_:l;

All ths

riscoss of doubls spsciral function ars included in

this expression, where their contribution is not

\
sma11{110)

(4.10)
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Equations (4.9) and (L.10) give ths input
for the Frye—Warnock(MG) N/D equations. To derive

these equations, we write (c.f. eq.(2.3))
Q&yls) .
By (s) - [W‘)@ - l:( {Qnefxls) \ (L.11)

where {J‘Q(s) = fm /\E , In the dscomposition
B=N/D, D now carried an elastic unitarity cut from
threshold to 81> and N has a left-hand cut, a right-
hand cut above 87, and the inslastic part of the
unitarity cut from sy (=16m% ) to 8;. Ths derivation

of ref.(5) for s;= od carries over to give

S, ~ ~
~ _ BeC)-Brl) — o~ o,
Ny (‘) = Bll.-ls) + ‘%r s'- s - Pals? Ny (5 dis (4.12)
4y
where i
~ ) I'ﬂl(y) ols’
B ls) = B+ P ) 55 (1-13)
SN

(P denoting Cauchy principal value),

Re Ny (c) (L. 1)

and
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Also S _—
L PN
:Dl (:{) - ’ - - v UIS .

Given B%(s) and ’neéﬂ thess equationse can

bs solved for ﬁl(s) and D](s). Because
Im Nyls) = 1=mqls) -R,;D{(s) ) S>8,y )
Qfx(ﬂ

we can form a dispersion relation for ql(s) tneplecting
SII{E s fa- e, and so calculate residuss 'X(s) and
trajectories ol(s) in the way outlined in previous
Chapters.
To calculate ‘ql(s), we write for the
(reduced) partial wave amplitude (L4.1ll) the unitarity
squation (e.f.(1.70)),

T By) = p|B@[* + TwB ()
where | - lﬁﬂ
TmB, () = e
Z}ﬁkﬂﬁ

The inelastic cut (i.s. Imggm(s)) comse s
from the term {Dts(s’t) in the equation that corresponds
to (4.10) for Bl( 8). Therefore

M) = § 1= Gputs) Tm 8O § h )

(4.15)

(1.16)

(4.17)

(4.18)

(4.19)
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where S
T g - (52| R GEE e
4m’

In the next Section we apply this msthod

to a bootstrap of the f’-meson trajectory(lll).

3. A rho-meson bootstrap.

It has heen shown in previous pion-pion
calculations(80’81) that the force from rho exchangs
gensrates not only an I=1 s-channel trajectory but
also a highsr-lying I=0 trajsctory. The reason is
9gsentially that the crossing matrix element from I=1 to
I=0 is twice that to I=1, see sq.(4.2). The second
tra jectory we identify with the Pomeranchon, P, and in
this Ssction.we ignore its presence and concentrate on
finding a self-consistent rho. Inclusion of only ons
trajectory enables us to make a comprehensive ssarch
for self-consistency and to examine thoroughly the
affect of the cut-off parametsrs ( z& and s1) on our
solution.

To calculate the starting discontinuity for
the Mandelstam iteration we need a parameterisation
of £(t) and  Y(t) above threshold, t > Lm? .
Within the contsxt of this calculation both are real

analytic in t cut from 4m?2 %o o6 along the positive
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real axis. We writs dispsrsion relations (eq.(1l.8L4)),

Imo ()t
oe(t) = () + = s )
4my
and
= - ')()W
dm Y (t
X(t) = ;‘_S' ""_————_g'— T }
4mk

and use parameterisations of the types introduced by

Ahmadzadsh Sakmar(112) for the imaginary parts:

A
| G x
IVI 0(“7) = ( —a,)lf b‘:—-
and e 30)\ (I—d)
Imyty) = (x—-a, )" + L;_'

wherse x=t-L;hi2. Inserting these forms into eqs.(4.21)

and (4.22), ths integrals may be evaluated by choosing

a suitable contour to give

C, Cosec (~T)) —{mr AA
ol(t) = e x +

(ql "z) [(x—q'\w)\g + b cos AP _,?

for ~ |

Pl

-~

an

2
Yt) = - i _ L§ '”)(1 4) +

(e v

lp‘)

l

. [((d—a;)(?t*ﬁ)* b:) $i A8, - b, (%-9,) cos )\ 97_] }

(4.21)

(4.22)

(4.23)

(L.24)

(4.25)

(4.26)
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for —l4>\<l) where O = tan! (b't/a,-t). The form of
thess functions is shown in Fig.U4.2 (sse also Fig.5.2).
Note that Im« must be positive by unitarity, but there
is no such restriction on Imy . Both imaginary parts
must vanish at threshold for ol(4-m'zv') > -‘(?: : We are
also assuming that o((s) approachss a constant at
iarge 8, as it does in potential scattering. If
ol(s) —> &  we cannot expsct our single-channsel
bootstrap to work, although it may still give a reasonable
approximation to the trajectory over a limited region
of 8 near s=0. (Ses the next Chapter'for a discussion
of this, also ref.130). The input width of ths rho

meson corresponding to these functions is given by

Tm N Z
ro- u(m?) ~ M i FQ(MF) _ (L.27)
""‘ m Re «'m?) m, Eeo&’(mf}) |

Those parameterisations wers used in the
iteration to find the slastic double spectral function
for a given value of 8y and A . It is svident
that the pumber of itsrations needed to find 8%
depsnds on how large is 8y - The main weight of the
starting t-discontinuity is at the point whesre Im o{(t)
is a maximum, and since this must bs abovs the e mass
(through which the trajectory rises) ths number‘of

iterations nseded for, say, sl=2000m$ is only 6 or 7.

(The results of Chapter Thres indicate that three
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iterations should be sufficisnt for a reliable
approximation to the potential). The calculatsad
double spsctral function is then used to calculatse
the potential and inslasticlity functions for the
N/D squations.

There are thus eleven input parameters for
the calculation, a, b, ¢, «(®) , d, ap, bs, o, Bps
s1 and Z& . The first sight of these are to be
ad justed to make the input and output trajeétories
and residuss sslf-consistent for given values of A )So
and sy. Our bootstrap is only really self-consistent
if the depsndence on the choics eof [S and s; 1is
small. Since A only determinss the width of the
cutoff function of the iterstion the results are in
fact only trivially dspendent on it, as Fig.h4.3
shows. In the rest of the results we guote, A is
fixed at SOmiv. Also the scals factor in the residus
function which is suppossed for consistency to be about
%8s to %51(113) we fixed at é;t",=200m,|2v .

A so9lf-consistent rho trajsctory is shown
in Fig.4.2. It has been chossn so that its parametsrs
correspond to the physical rho-meson by having
(30)=1, and the experimental input width I, =1h7vev(llL)
The trajectory is not gqualitatively differsnt from

thoss obtained in prrious work(ao’ 81), where ths

second and higher Born terms wers not included, but
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a good deal of extra force has been obtalned.

Part of this extra force 1is dus to the
inclusion of inelasticity, as shown by Fig.L.L,
which includses the tra jectory with ‘qa(s)=l, as
well as with the calculated valuss. The variation of

”4(5) with & for various {-values is shown in
Fig.4.5. The corresponding valuss above sp (calculated
by using Imq%(s) as given by the asymptotic strip) ars
also indicated in the figurs. They do not match
completely, of course, sines nothing has besn done to
maks them consistent, but ths discrepancy is not too
bad, sxespt that for £ £ 0-2 unitarity is violated
above B]. This problem has been notsd previously(al),
and is dus to the fact that the self-consistent residues
tend to hagve too large a value of fYUﬂ for T<o.
This is compensated by having a large o’(t) in the
region of the p ~meson by putting the psak of Imu«(t)
not too far abovs the particle (see Fig.4.2). Ths
-problem(Bl) of a large input width to generate snough
force to produce a reasonabls output trajectory is thus
circumventsd.

The depsndence of the results on the choice
of 81 is shown in Fig.L.6. We see that the position
of ®(o) is little affected by the value of this
parameter provided we take slj£'800m§ . and is much

reduced by the inclusion of higher Born approximations.
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The slope «'(0) tends to decrease with increasing
B1s but again the highsr Born approximations maks
the results almost independsnt of this arbitary
paramster if it sufficiently largs. The degpeandence
ig esrtainly not so great as to make ons fesl that
it is playing a dominant role.

In Fig.4.7 we show the variation of Pst
with t for some values of s. The first peak
corrosponds to the first iteration of those in Dt(s,t)
due to ths particle at t=m% and the maximum of
Imd(t) above it, and the subsequent maxima are dus to
the further iterations. Ths doubls spectral function
has g9ttled down to its asymptotic behaviour at

t = looo m%? , and so we take this as our preferred
value of s3. Ths doubls spectiral function calculated
in this way matches smoothly on to the asymptotic strip
rogion above s).

The chisf problem in this type of calculation
is ths range of parametersover which "rsasonabls"
self-consistency can be obtainsd. We have found that
at the unitarity limit (0)=1.0, it is possible %o
obtain such a solution, and for lower values down to
X(0)=0.17. Some examples are shown in Fig.l.S8.

It will be notsd that ths basic shape of the

residue function is always the same, agreeing wit

o
ct

he

Chew-Teplitz form(113)v
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2m? —_
&) = et (t) (’E—t) Q«(c)(‘ +;Ej‘:), t ~

Nl

(4.28)

which can be seen to be an inevitable consequsnce of
the N/D equationsfor slowly-varying (with s) potential
functions%?(s). 0

Ws have Renx(s)(m2)=0, and eq.(2.15),

If B%(s) is slowly varying, the integrals for N and

ReD' both\can be approximately svaluated at t=%.

Using a delta-function approximation for ths crossed
channsl resonance (at m%), its partial wave projection
is a Q-function, givingleq.(u.28). There is striking
agreemsent bsestween this prediction and explicit numerical
calculations(so’ 81).

The only way for the Chew-Teplitz form to bs
avoided is for %}(s) to vary rapidly, perhaps changing
sign, between threshold and sj. The nsed for such
oscillations if we are to find residues with a rapid
decrease for negative t, like those found in many fits
to the gxperimental data(56), ha:~ been discussed by
Collina(87) With only the aitractive rho-sxchangs
potential we cannot sxpsct sign-changss, although we can hops

that thsy will result in a satisfactory treatment of the
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vacuum repulsion. The form of Imx(t) in (4.24) has
been chosen to reproduce (L4.28) for nsgative t, and
the change of sign at t=hm$uleeems the easisst way to
do this.

Since the output shape of *X(s) is always
much the samse, the valuss of d,ap and b, are more or
less fixed. The values of A should correspond to
the known threshold behaviour of Imy(t) which is
(s98 8q.(1.86))

~ (t-t, .
Im y(t) % ( )

In practice we have fixed  A=0.5 for all «(0).
This has been found to make rather likttle difference
s0 long as A does not approach one too closely, whsn
the dispersion intesgral for !Y diverges. The only
really fres parameter, which is not determined by the
shaps of the output residue, is the overall magnitude,
Cy- It is this which is determinsd by demanding
self-consistency of input and output, and ranges from
e,=0.093 for ol(0}=l to ¢5=0.028 for of0)=-.17.
Similarly the range of shapss of the output
trajectories exhibited in the solution of Fig.L.8 is
very limited, and the only rsally significant frese
parameter in (u.zé) is the absolute height of the
trajectory dstermined by o(os) . Again \ was

fixed at 0.5, although in this case the integral (4.21)
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converges for A< 2. The values of a;, by and ¢y
ars 9ssentially fixed by the form of the output.
As far as we have been able to discovsr, the trajectories
shown in Fig.4.8 span the full rangs of paramsters for
which reasonable self-consistency can b9 achiseved. It
has not proved possible to geot a self-consistant solution
with o) < O for any choice of input parameters, since
such trajectories produce much too littls fores. To gst
a trajectory like the expsrimental rho(6h) we would like
a much smaller curvaturs, but Fig.4.8 shows that the
amount of curvature is always about the sams.

It is ss%9n from Fig.4.2 that, as in earlisr
calculations(So’ 81), although the input and output
tra joctories agres very closely for T<0O it is not
possible to make them agres for C>» 0 , and in fact
ReDﬂ(s) for £ > 0-9 does not have a zero in the solution
shown in Fig.L.8. The output widthe quoted in Figs.L.lL
and 4.8 were obtained by plotting ths partial wave
cross-section. They show somsthing of an improvemsent
ovaer previous calculations(ao’ 81, 89, 115), but the
problem of achisving a satisfactorily narrow rho width
has certainly not besn solvsed.

There is a related difficulty in that, because
of the bunching of Ima(t) in a psak just above thghgéss,

A
nd hgs

Dt calculated from (4.8) also has a peak there, a

the gsort of shape plotted in Fig.4.9. Normally ons
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would expect the maximum of Dy to be at t=m§ , (there
is a secondary peak there), corresponding to the
vanishing of s wa(t). A large Ima(t) of this
sort is 9ssantial to our paramsterisation if we are
to obtain a trajsctory with a curvature like that of
the output. This peak implies that there 1s a psak
of the t-channel cross-sectlion, but no such peak is
found in the s-channel. Full crossing symmetry has
thus not been achisvsd. Ip Bali's calculations(99),
(see Fig.8 of his paper), Imu«(t) was a continuously
increasing function right up to t=s;, and the
iteration of such an input would not settle down to
its asymptotic form until t D) s;- We can hope to
improve the satisfaction of crossing symmetry by
choosing our parameters to ensure that the t- and
s-channel partial wave cross-sections are consistent,
but it is probably not worth worrying about this until

the Pomeranchon has been includsd as wsell.

L. Pomeranchuk Exchangs.

Within the confines of the present
calculation, the lsading vacuum singularity is a
simpie pols. On the basis of phenomenological fits
to data(Tl’ 56), which seem to require an unusually
flat offective Pomeranchon trajsctory, and in the

sxpectation that branch points are present in the
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_[—plane(llo), other, somotimes more complicated,-
structures coupling to the wvacuum gquantum numbers
havs been suggested(ll7) to explain the apparent
tendency of total cross~-ssctions eithsr to approach
a constant(30) or to dscrsass very slowly(lla) at
large snsrgilss. In addition there is firm evidence(ll9)
of a second pole, the P', énd recently ths presencs
of a third pole has bsan suggested(lzo). There has
been no sign in this or previous work(al) of lower-
lying poles in the dirsct channel, and to begin with
we shall insert only a single I=0 pole in the crosssd
channel.

The first results of putting in the P ars
given in Fig.4.10. Ws began with the self-consistent
solution of Fig.lh.2, and fitted, to ths output I=0
trajectory and residuses, formulae of the form (4.25)
and (4.26). Using the rsesulting oxpressions for

X(t) and Y(t) for the crosssd P pols, and the
self-consistent parameters for the rhd, wa obtainsd
solutions for the direct channsl P and e' as indicated.

The first satisfactory festure of thse
results is that solutions have appsared at all. In
praevious work(81) using the simples Chew-Jonses
approximation - the first Born term - ths sffect of

the P was to give a repulsion large enough to

completely swamp the rho attraction, and, as we have
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oxplained, 1ed to the us9 of the Chew-Toplitz
normalisation procedurs.

Two further polnts are immediatsely apparent;
firstly the outpat trajectoriss are steepgned, and
secondly the residues are decreassd. Bvidently
inclusion of the extra Born terms has bssn sufficient
to compesnsate for the unrsalistic repulsion of ths
first, and it is clear that the hopsd-for narrow rho
rgssonance may wesll appear in a fully self-consistent
solution. Howsver, with the parameterisations
used for input Regge poles thers is no large changs
in the shapss of the solution for o(s) and (s),
and so the ovsrall agreemsnt with oxperiment may be
only marginally improvad. Further calculations arse

in progress.

5. Summary.

The preliminary applications of our
dynamical scheme to slastic pion-pion scattering
show that it gives some (not unexpscted) improvement
over previous work. Inclusion of the P contribution
seems to have been achieved in a more meaningful way
than bsefore, and soms of its sxpscted important
offects promise to appsar.

Use of the N/D method has not allowed

trajsctories to be followsd propsrly above threshold,




118.

but the indications ars that the trajectory turns
over rather quickly, possibly without reaching ,K=1,
and certainly nowhere near #=2. Similarly, since
there are no superconvergsncs conditions built into
our potential(lzl), the trajsctory endpoint, () ,
must bs above f=-1, and in fact ends up above _£=0.
There is little tendency towards anything approaching
exponential form for (t) at € <0 , but addition
of the P gives a sharper fall-off because it makes
g?(s) vary more within the strip.

A good dsal of further work remains to bs
dong, but, as we éxplain in the next and last Chapter,

it may well bs fruitless.




Fig.{(L.1l). The Mandelstam diagram for

pion-pion scattsring, showing ths
Chew-Jones strips, and the cornar pisces
of doubls spsctral funetion calculated
from unitarity. The notation is

explained in the text.






Fig.(L.2). Self consistent rho

trajectory, and residus, functions
(input Re9¥ = ——, input Img = — —,
output Re 0(9 and Rs 0(,,= -——--=), The
parameters (ses text) are s;=1000,
A =50, 5,=200,83=47.0,b1=3.94,c1=1.05,

ap=5L0.0,05=392.5,c0=0.068,8=420, all

2
w

-q
input rho width lh =147 MeV, but the

inm upnits. This corrssponds to an

output width E;,=3uo MeV.
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Big.(4.3). The output rho trajectoriss

which result with the indicated values
of [& . All ths other parameters ars

as in Fig.(4.2).
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Fig.(L4.4).(a)The self consistent rho

trajectory of Fig.(4.2), (b) is the
output trajectory obtained whsn 71 is
sst squal to 1, and (c) that obtained
whon only ths strip contributions are
included in the left-hand cut, i.q.

the first Born approximation.
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Fig.(4.5). A plot of the inselasticity

”7{ (8) against s with the paramesters
of Fig.(L4.2), for (a) / =1.0, (b) /£ =0.2,
and (c) [ =0.0. The valuss calculatsd
from ths strips above s7(=1000) are also
shown and ws wse that for_ﬂ<-2|1nitarity

is violatsed at 87 .
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Fig.(L.6). Plots of ofo) and «'(0)
against s; with all the other parameters
fixed. The thres casas ars (a) the
complets calculation, (b) N s9t squal

to 1, and (c¢) only the strip contributions
included in left-hand cut. The dependence
on the choice of 81 1s much reduced by

including ths elastic double spsctral function.
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Fig.(4.7). A plot of éﬁlks,t) against

t for two valuses of s. The dashad lins is
the asymptotic strip for t<s;, and matchss
on rather well showing that wes have inde=d

reached the asymptotic region for

.

T
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Fig.(L.8). Self consistent ruo

(1) trajectori=s, and (ii) residuss, with
(a) o(0)=1.0. o{®)=0.49, (b) ®(0)=0.57,
(@) =0.17, and (c) (0)=0.17, «()=0.03.
Ths dash=d lines are the output, and the
full linss the input Regge functions.

Once of{®) has bsen decided upon the

demand for self consistency fixes the
shape of the trajectory. The width of

thse .[ =1l resonancgs in the thres casss
are (a) bound state, (b) 350 MeV,

(e) 630 MeV. Note that cass (b) is similar
to, but slightly different from, Fig.(4.2).
The paramsters which have besn changed ars
b,=400 and Cp=0.76. This indicates the
amount of variation which can be tolerated

in thess paramstors.
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Fig.(4.9). A plot of log;y Di=1(s,t)
against ¥ for s = l5m2“_ . It shows
the first peak of Dy dus to the particlse
at t=30m%r and the second and larger

peak due to that of Imo at t=u7m2,".

e






Fig.(L.10). Trajectory and rssiduse

functions for ths case when P sxchange
is includsd. The full linss ars the
input (t-channel) functions, and the
dashed linss the output (s-channsl)
ones. Shown also as a dotted lins
are the output trajectory and residus

functions for ths self consistent

solution of Fig.(L.2).
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CHAPTER FIVE

Linsar Regge Trajectories
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1. Introduction.

The nature of a particular Regge trajectory
for negative valuss of s (=(ensrgy)?) can be
determined by fitting the near-forward angular
dependence of the high energy power bshaviour of the
amplitude for the crossed channsl process with (a sum
of) formulae like (2.9). A particularly clsar-cut
case 1s the rho msson trajsctory in 7FP charge
exchange(su), where it is ths only prominent t-channsl
contribution. The trajectory so deduced(6u) is
approximately of the form &(s8)=0.57+s batween
§==0.9 GeVZ and s=0. Linear trajectories (with s)
for both baryons and mesons fit a wids range of
processes(5), and, if they are soxtrapolated to positive
8, there appear in many cases(5) resonances sultably
placed to be their recurrencss. Particular sxamples
ares the nuclson isobars(73), and the R, S, T, U mesons(lzz)
seen in missing mass expariments(125). It sesms that
the linearity may persist up to at least 6GeV2.

The rho meson trajectoriss calculated in
the previous Chapter had completely different bshaviour,
being much shallower below threshold and turning ovser
quickly above it. The mors or less corrsct bshaviour
close to zero was achieved at the cost of bunching
Ima(t) into a large splke at about s=L5m2 (energy ~

950 MeV), so that the recurrence at Re x =3 was very
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light. We are now faced with the question of what
modification our model nseds to reproduce gxperiment
more closely.

Ths defect of all models bassd on elastic
unitarity is that Levinson's Theorem(lzu) constrains
the calculated trajsctories to turn over. However
it is sasy to imagine that as we 1incrsase the energy
the trajectory could beacoms strongly couplsd to the
new channels that open up, and so continugs to rise.(125>

Models have besn proposed on this basis(lzs)

s and we
note the similarity to the P-repulsion modsl. If
lingar behaviour were to persist indefinitely so that
o¢(8) ~ B8 a8 8 ® , then ths amplituds A o t8)
would not be uniformly power bounded and the Mandelstam
representation for A would not hold, unless the
residues Y (s) were sxponentially damped(127). (A
bshaviour ‘Y(s)—ﬁ-const.d(s)'“(s) has bsen :uggested;(l28)
preliminary comparisons with experiment(129) are
favourable). Nsither indefinitely rising trajectoriss
nq;jexponentially damped residuses ars liksly to be
producsd in our model with a finits number of channels,
but ons might hops that by including several low-mass
ones reasonabls agreemsnt might result in a corresponding
snergy region close to s=0, where interest lies.

In ths next Ssction we shall show(l30) that
such a hope is untenable if the currently accepted

linear oxtsnsion of the rho and Ap trajsctoriss are correct.
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2. Dynamical consegquences of a linear trajectory.

From eq.(l.64) a Rogge poles «&(s) gives to
the %1 g-channel partial wave a contribution of the
form R(s)( [ - ot(s))_l, and if Ino'(8) & Re«'(8) we
derive eq.(1.65), which, by comparison with the Breit-
Wigner form (m2-s-im[')~l, gives for the full width at

half-height of the resonance at s=m? the expression

rl ~ Imo(my) /m. Re '(m?) (5.1)

We consider the () and A, trajectories, upon

2
which are supposed to bo the e, R, and T, and the Ao,
S, and U mesons respectively: see Fig.5.l. From
eg.(5.1), using the widths given by Rosenfeld et al.,(66)
we derive the values of Imx given in Fig.5.2. The
important point to nots is that the high mass states
are vsry narrow, so that Im o(8) must be small at

high snergy. This would not be so if the trajectoriss
were strongly_coupled to higher threshold chaunsls.

We assume that wn(s) obsys a dispsrsion

relation of the form (1l.8Y),
[» 3]
e N L p Im x(s’) ds’
X(s) = + -
e x(s) s s'—¢ ' (5.2)

%o

where sg=threshold (=(2m, )2 for ®, ; and =(3m, )2for ).
A reasonabls fit to Im x(s) is obtained using the

parameterisation of Abmadzadeh and Sakmar(112) (e.f.eq.(4.25),
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C o
Im x(s) = (1_04)7_+ ot

where X =s-s,, and A =0.0001, d=2.0 (GeV)2,
e=1.0 (GeV)2, and C=0.31 for the rho trajectory and
0.145 for the A,. The slope of Re ®(s) is not very
sensitive to the choice of A The trajsctoriss
found from eq.(5.2) using (5.3) are shown in Fig.5.2,
and we B899 that ths contribution of the integral is
negligiblse. So although with a suitable choice of a
ws can maks sither trajectory pass through any given
point, there is no hope of obtaining ths correct slops
if eq.(5.1) holds good.

If we do not neglect Im «'(s) in comparison
with Re o'(s), the Regge pols gives a partial wave

amplitude proportional to(%h2)
-1
X oty (m>) o (m2) 4 otz (m2) o] ()
m — S + - 1 - v b
| " (m) |7 | ot (m¥) |

where o =ImX, op=Reo, If Imo' = Re«', it is

clear from (5.4) that a larger Im dﬁwould be possible

for a fixsd Widt2c£;' The third term, proportional

to Imoec'(m2), isZthe so-called "rssonance shift"(IBl).
For the N*Kl238), for exampls, it is well-understood(ljl),
and is squal to about 13 MeV,(x 1238 MeV). The width

of this resonance is about ten times as big(66)

(5.3)

(5.4)
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indicating o('I/ «'ge0.1 at s=M1%*. The rssonance shift
for mesons is less well-understood, but ons might

. 131)
gxpect a similar order of magnitude( - In any cas9,
B ek Im ot fzﬁ q}t’ﬂows ,uwe,/h I'Mo(/

it is difficult to nd Im o' baing
w C\,aA,o ; .
) but—not—soparatety-tfoeq {527 ts—tobe

saticfied. (To check this point we attempted to fit -
by a least squares method - the linsar rho trajsctory
of Fig.5.1, and the widths of the rscurrences (Fig.5.2).
using (5.2) and (5.4) to calculats Re (&) and [ for
various paramsterisations of Im x(s). Ws wers not
able to find any satisfactory solutions; always
Im '(s) &K Re o«'(8), and to achisve Re «(s)~51it was
necessary to have Im o{s)~ s over the sams region).

Another possibls flaw in our argument liss
in the assumption that (5.2) holds. It is possible
for trajectory functions to develop left-hand cuts if
two of them cross(5), but it is doubtful if these can
play an important role in the dynamics sinee the sum
of the two discontinuitiss have to vanish. Thers is
no svidsnee for crossing trajsctoriss, sxcept that the
vary poor polarisation data in ths process ﬁﬁ>~>ﬁqn
is consistent with no decrsase with energy, and the
trajectory-crossing modsl is the only simple one that
doss not predict a powsr dscrease(5). Howevsr the
data has very big srrors.

We now consider ths implications of our

result and ths possibilities of solving ths difficulties
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it raises. First of all ws note that it does not

help to changs the form of Im «(s) so that it tails

off slowly, i.e., like & % where € is small and
positivse. This would allow us to make the contribution
of the integral of (5.2) as large as we liks, but

the contribation to dd/ds for small s would still be
negligibls.

Wa appsar to be faced with three alternatives:

(a) Eq.(5.2) for o(s) requires an additional
subtraction,
(3]
R b , Im os)ds'
x(s) = a+t 5+“;P L < )
S

where the arbitrary constant b is responsible for the
slops of the trajsctoriss in the low snergy region.
This is a very unpalatable suggsstion in ths present
context, for it means that, unlike potential scattering,
the “foress", (doubls spectral functions) do not
détermins the important parameters of ths trajsctories
and hence are not responsible for the existeonce of
particlss. In fact this would kill the whols
bootstrap philosophy, *Rof it ssBsutigldy rtmphies—that
MASK~dossMptsholdaswo~have~Stated THE< - Woutd e
ngragbary~to_stntedree stemsdtary pat tiches~to~Lontinge
corrgetly cin~angdarJmonaniany.

(b) The curve for Im X(s) rises again at higher

eénsrgiss. This would seem to imply that thsre was

(5.



126.

some other mass "scale" in the problsam. This would

bs the cass if, for sxample, the mesons were made up

of very heavy particlss, e.g., ”quarks“(l32) - although
Su(3) propsrties are irrslevant. It is then found
that if we aassume that the trajectories are (at lsast
to a good approximation) bound states of these guarks

(i.s., of a gq pair), then the straightness of the

trajectoriss is insvitable, and independent of any

further assumptions about the qg potential.

To see this we re-write 8q.(5.2)

00
P ) / Im x(s') ds’
s) = (D) + —
e X(s) ( TI’F s s

St

where now the integral begins at B the qq threshold,
and we assume that it convergss. Since Sp is very

(133), and Im x(s) has to bs positive, ws can

largse
approximate it by a dslta function at s=8p > Sp if

we are concernsd only with 8 & B

oK(o0) + _F_ )

SP~S

Thus

0((5) =

(s << Sps 8 > ST)’ which can be written

as qs?
((s) = x(w) + £ . 4 ot e+
Sp Sp S5

(5.6)

(5.7)

(5.8)
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Since the trajectory passss through (say) the rho,

we muast have

[ = o(e0) + _qg;'

= - - .9
so that
~ - ii . 10)
O((w) Ve % , S * (5.
,)

The slope of the trajectory at s=0 is g/s%,
which according to Fig.5.1 is about 1 GeV'2, s0 that
(5.10) gives

x(o0) = | — sp/((é’r@V)L. | (5.11)

Hencs the trajsctory must pass through many
(f--sp /YlGeV)2) negative integers, which requires that
the qg potential be such that a large numbsr of
superconvergence relations(l3L) (SCR) are satisfied.
There is no obvious objsction to this, as similar SCR
must also obtain when the external particles involved
have spin{135) but it means that the qq potential must

bs quite unlike the simple forms which have somstimes
besn used in the literature(136), and which force
X(od)==1. We note that the guadratic and highsr

term in eq.(5.8) are negligiblse in the physically
interesting region.
(e) The interpretation of the neavy mesone as

recurrences of the e and As 1s wrong. In this
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connection it is worth noting that the missing mass
axperiment(123) was biassed against the detection of
broad states, which may have been pressnt as
recurrences of those trajectoriss, but which sscaped
undetected. There is however, soms recsnt evidence(l37)
that the R (somstimes called the g meson) does in fact
have J¥=3" and isospin I=l, as required if it is to be

on the rho trajsctory.

3. Conclusion.

Unfortunatsly there-ars at present no other
meson trajectories where recurrences cah bse identified
or reasonably speculated(66). For baryons there is
the complication that the trajectory function has a
left-hand cut, and ths possible N”* recurrences(33)
show widths if anything increasing with energy(65’66).
However it is interssting to note that two heavy and
vory narrow (masses 3690 and 3245 MeV, widths 50 and
35 MeV) N”*'bumps have bsen rsportsd(l38’l39). Those
are well above the limits of presently feasible phass
shift analyses, and so there is no evidence of their
spins, but thsy are possibly high, and thus could mean
that Im& for their trajectories is small at high
energy. It would b9 very intsresting to know if small

widths are a general feature of heavy, high-spin
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resonancés lying on steep linear Regge trajsctories.
If they are, 1t is difficult to see how the bootstrap

model could succseed.




Fig.(H.1). The boson rssonances

interpreted as lying on linear Regge

trajectories. The straight lines

are

D‘P (8)=0.43+0.948s
“A2(3)=0.26+1.0115



RSy

.\\o\\ vt .




Fig.(5.2). The valus of Im o«(s) obtained

from 6qg.(5.1), and fitted by eq.(5.3) for
the (? and A2 trajectories. The real
parts of «(s) are obtainsd from eq.(5.2)

with a taken arbitrarily to be zsero.
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131.
a. General.
We wish to construct pion-pion amplitudes

of definite s-channel signature. We have sg.(l.42),

A(e,t,u) = Ap(s,t,u) + Ap(s,t,u), (A.1)
and eq.(l.43),
A¥(s,t) = AR(s,t,u) torap(s,u,t). (A.2)

We have us9d the fact that for elastic scattering ths
interchange Bg <> -85 is 9quivalent to the interchange
t <> u. Writing a fixed ~-s dispersion relation for

A(s,tyu) (neglecting poles) we have eq.(l.17),

A(s,t,u) = J‘ t(s t'\ + f \1(8 t\’u ) (A.3)

Note that we are giving ths following significance to
the order of argumsnts. The symbols (x.y,8) denote

((c.m.snergy)2,—(c.m.momentum transfer)z,-(c.m.crossed
momentum transfer)2). The two term on the R.H.S. of

(A.3) are Ap and A;, of (A.l) respectively. Using (A.2),

Jﬁ tDt(B t Ne )f tDu(s u u')

='; [Dt(s t *) *p (8, \\t )] (A.Y4)

the second equality following from a simple re-labelling

A¥(s,t)

of dummy variables. Note that for clarity we are
giving some indepsndent significance to the third

argumaent of the discontinuity functions, although,

of course, there is always the constraint s+t+wnzzm2.
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Prom oqgs.(1.26) and (1.27) we have, rseferring
to Fig.l.2,

| ) du . | w
Dt (Slt,m) = ;SF%S— (H_(S)t)\u\) + ;j d ftu b\ﬂs u) ) (A.5)

and

\

A ) L] A’t" \ ]

Therefore

J ds”

)h (S-I “ {) Tt ST_ €$M(5 u w + :,-‘.T— t";d-t:; etu (}\t”) t)

\)

: ' dsu " _’- d&\" o
R s s'-< fSu (S)U,\»\ * ﬁj (Jb"( )t)l (A.?)

upon ro-labslling ths dummy variable. Substituting
(A.5) and (A.7) into (A.4) we have

A (s,t) - T—J (B o w4+ pu (52 )]

o [ Lon G £ pu Gt e] | .

J i -u'

~~
o>
L]
o

g

which is just eqg.(l.45).
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b. Pion-pion scattering.

For pion-pion amplitudes we rsfer to Fig.lL.l,

and write

n(sﬁ)“) = RT (Slt)u) + (")I Ri (S)H,b)

N FIJ‘.I [RY(t,5,%) 0 R (£, 6)]

L T LRI ms) ¢ EVT R (s )]

where I', the crosssd channsl isospin is summed from
0 to 2. Here sach term R is to be understood to
contain not just the appropriate Chsesw-Jones strip, but
also the associatgd corner pisce of doubls spogctral
function.  For example, R} has Psts RS has @gy,
R; has € tu ostc., whsre now these symbols have a
differsnt msaning from that in sq. (A.8), as is svidant
from Figs.4.1l and 1.2.

Eqg. (A.9) makes transparent ths corrsct way
to replacs the double spsctral functions of 2q.(A.8)

with the pion-pion double spsctral funciions. We have

eﬁ:(st\)-—e eﬂ (st\) + p‘l il (t, s)\)
e-ﬂﬂ(‘l\t\)“‘)“—> (")Ieslu (Sv“ﬁ{) + ("')Iﬁlile:s’(“)s)i) )

o i) > B0 RE (61 + T (07 (1)

(A.9)

(A.10)
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Bubstituting (A.10) into (A.8), and putting

(-1)I for the (%) signs in that squation, gives

A*(s8) = f e ESSO‘ ~[es(sinl *ﬁn i (51

t-t

Pp5 (s 64) + BT (es [ 4 L "\)

P pE ey + C0T pTETe (0 6
T @0 (t‘.u'xk)]} ) -

from which the final result is

I ,t = 1) :‘: - 4 S ]) (S,t;\‘\‘) 1
A=A =0 ) =22, (A.12)
wharse

:Df(s,t,'\) T—'J ds’ [fsb (s t,\) +’s 6 (t s’ "ﬁ)]

xx! : z’ ol ) ' ’
s J oov Lo e ren®el (] (8.1

|__________ffass't;woequatioms are Just eqs.(l4.3) -(1.6)
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c. The Chew-Jones Approximation.

. 7 In ths Chew-Jonss approximation, we have from

eq.(A.9),

AI(g"b’u) = HI(S' t, n) + FII'KI,(t)s)u)

+(?;I:|:l(_')1/ [Rzl‘(t’|u,s) + (—,).T. RI,(u)t)S)] )

(A.1L)
where BRI now stands for any strip on Fig.4.1l; the order
of arguments differsntiates them. Eq.(2.13) gives
<
/
r (’-) q(w(’*%w) : -—’tl— (- H—L)dd
R (":‘3:2) — d(x) -tk
STl ")y (4.15)
4mp—at Aty tz = bm>

The starting discontinuity for ths Mandslstam
iteration is that piscs of D%(s,t,u) which is non-zero
for um?® <s,t £ s1. By inepection of (A.llL) and
(A.15) this is %Ijl[hli(t,s,u)+(-l)I'RI'(t,u,sl] , or
9q.(2.13).

d. The potential function.

In sq.(A.14), only RY(s,t,u) is cut in s
between so=um§ and s1.  Therefore the rest of the
amplitude contributes unsubtracted to g%(s), giving a

contribution, (using eq.(1l.79)),
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"

B (S) (39“,2 Qh!—) J\ Im Q,@ (2- (s, t))}

(Ro8SED
"FII'f RE (,5,) + ()TRT (%49

@RI (wh ) } dr - (4.16)

The contribution of RI(s,t,u) is calculated
by projscting out its contribution to gi(s), identifying
the left-hand cut discontinuity of this function, and
dispersing over it, nsglecting the right-hand cut
altogether. The Froissart-Gribov projection, eq,(1.49),
givss

e0
I
8,6, - (30| Q) B, (e, | ot
Al

i (a.17)
whose left-hand cut runs from s=- of to a=hm2-sl, and
is due to the cut in QI(ES)'

Hars

I Ql(e) = -ZE B({') ) (A.18)




ds

max t(s’)

< | B At{ﬁs:c,u)} de

Sy
where the t-integral starts at s; whers the t-cut of
Rl begins, and finishes at the highest valus allowsd
by the value of &' in the outsr integral. Using
(A.15) for the various terms R in (A.17) and (A.19),
with some effort ons derives the explicit expression
for g}(s) that is eg.(l0) of ref.80, which reduces,

as explained, to eq.(L4.9), when numsrically small

terms ars neglscted.
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