

Durham E-Theses

The dynamical generation of symmetries

Gunson, James Russell

How to cite:

Gunson, James Russell (1968) The dynamical generation of symmetries, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8603/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-These
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details.

THEDYNAMICALGENERATION

ORSYMMETRIES

by

James Russell Gunson

A rhesis presented for the degree of Dector of' Philosophy at the University of Durhesn

Septamber 1968.

Department of Mathematics, University of Durham, Duricham, Englaad.

CONTENTS

Page No.
PRRFACE
INTRODUCTION
CHAPSER 1 "Bootstrap and Saturation of Sum Eunleb in 1.
the statio model.
1). Static Model 1.
2). Partial Wave Dispersion Relations 3.
3). N / D method 6.
4). Statio Model Bootstraps 9.
5). Superconvergenoe in the Static Model 14
6). Jses of the Bootstrap equations 19.
CHAPTER 2 "Strong Coupling Theory" 25.
Strong Coupling Theory 25.
Ropresentations of the Strong Coupling Group 28.
Group Contraction 29.
Bootstrap Coasiatenoy oandition for strong coupling 32.
Uses of the Bootstrap Conaltion 36.
Mass formulae 44.
Strong Coupling and Superconvergence 50.
CHAPTMR 3 "Bootstrap Modol of Puloo and Wong" 53
Spin and Statistios for Mosen exchanges 56.
Pseudescalar meson-baryon ootet scattering 59.
Psoudosoalar meson-baryon deouplet scattering 62.
Deouplet production 65.
eu(6) model of Udgaonicar. 67.
CHAPIRR 4 "Intermediate Coupling Theory" 69.
Charge Symmetric pseudescaler meson theory 69.
Unitary symmetrio pseudoscalar meson thoory 73.
Pulco-Wong Equation from the dymamical pestulate 74.
Fulco and Wong Ro-viaited 75.
Mesonruaryon scattering 76.
(1) $\operatorname{su}(4)$ 77.
(ii) $\mathrm{su}(6)$ 78.
Intermediate Coupling Theory and Pinite Raergy Sum Rules 79.
CHAPLi'R 5 "Superconvergence and Pinite Pnexgy Sum Rules" 82.
Rogge peles 82.
Finite Faergy Sum Rules 84.
Kinematis Factors and Spin 87.
Sum Rules and Symmetries 91.
Sum Hules in su(3) for $\Pi \mathbb{N} \rightarrow \pi N$ 97.
APPANDIX
RETRRKNCES

PRRPACE

The work performed in this thesis was performed at the University of Durham under the supervision of Dr. D.B. Feirlie. facept where indicated, the work is ariginal.

The author wishes to thank Dr. D.B. Fairlie for his continued help, guidance and encouragement. He would also like to thank his colleagues, particularly Dr. PoJ.S. Watson, for helpful conversations. The author's understanding of oertain aspects of strong coupling theory has benefited greatly from conversations with Drs.Cromstrom and Mega, and from the latter's leotures at the 1968 Finnish summer schoel.

The auther gratefully acknewledges the receipt of an S.R.C research atudentship.
nyanks urg also due to dirs. D. Anson for dacypherine the mansoript and to Krs. S. Cottle for dupliosting the thosis.

TNTRODUCTION

The fundemental bootstrap idea (1) is that it may be poseible to find a small set of dynamical easumptions which, with tho requirement that the nature be self oonsistent, imply that there is: only one or a fow possible worlas; this, or of one of these, being the one observed experimentally. As a workable dyamical soheme encompassing the whole field of physios, or oven strong interaotions, has yet to be found, it is necessary to soek an area of physios which is amenable to a bootstrap oalculation.

The idea of bootstraps arose from the work of Chew and Mandelataj (2) on $\pi \pi$ scattering. Thoy showed that the ρ resonance in $\pi \pi$ soattering could be produced qualititively by the exchange of a ρ in the other channols. Imposing the self consistency condition that the p has the same mass and couplings in each ohannel lead to the idea of a bootstrap, in whioh one considered a prooess involving a. few particles and obtain consistency conditions of a few parameters the masses and couplings. The next advanoe was performed by Chew whe showed using the N / D method that the N and \mathbb{N}^{*} bootstrapped oach other in πN seattering (3). The results for the oouplings ware in good agreement with experiment. With the discevery of su(3) symmetry (4), bootstraps were attempted using the baryon octet and decuplet (5). All these calculations were based on the Mandelstam
representation (6) which says that the soattering amplitude is as analytic fumotion of its variables apart from singularities at points corresponding to physical aystems. However the bootstrap idea is not tied to any particular dyapmical model and historically, as a new technique has temorged, so people have attempted to perform a boot? strap with it. This has been the case with the \mathbb{W} / \mathbf{D} mothod dispersion relations, superconvergence relationa (7) and most reoently finite onergy sum rules (8).

In chapter one, we review the static model bootstrap caloulatitapa and disouss the relation shlp between the \mathbb{N} / D statio model oaloulations and the consistency conditions imposed by saturating superoenvergence relations with bound statio and resonqnoes. It has bean observed (7) that the superoonvergence relations obtained by considering the . asympetic behaviour of an amplitude can be saturated quite well by the contributions from low-lying bound states and resonances, determined by experiment. Malding this asaumption gives relationship between the oouplings whioh are often in agreooment with the static model bootstrap results. We have investigated this situation in a more goneral modol than that oomyidored by Diu (9) in a recent papppe By considering the:stirat moment sum rule along with the superoonvergenge relation, we find an elegant mathematical equivalence between the twe methods which Din did not observe due to the ad hoo nature of his caloulation. We find that the bootatrap relation for the masses
is related to the first moment sum rule and the boing less likely to be true, or to be saturated by isobars, provides a reason why the statio model bootstrap calculations give bad or inconsis tent results for the miasses whilst giving good results for the oouplings. The use of the moment sum rule alse throws doubt on the validity of using a "miversal out-off".

In chapter two we present a review of strong ooupling theory and disouss its relationship to bootstraps and supereonvergence techniques. The strong ooupling oovidition is known to give the statio model bootstrap condition for a speoific process (10). We see how the moment sum rule again appaars as a condition on the masses, following the work of Crenatrom and Noge (11).

In ohapter three, we investigate the boostrap model of Fuleo and Woag (12), whioh attempta in a very ad hoc way to consider the effects of t - ohannel meson exchanges in mason-baryon scattering. We show that the model gives comaistent. results of all three processes involving the soattering of psoudoscelar mesons of the baryon ootet and deouplet in the limit of su(3) aymmotry. The oouplings agree with those ooming from the assumption of su(6) symmetry (13).

In ohapter four, we consider the intermediate coupling theory of Kuriyan and Sudarshan (14) whioh is a generalisation of the stfong soupling condition, writing the oommutation of the meson souroe
operators, not as zero, but as a linear combinetion of the generatops of the symmetry group for the systom. Prom this equation, the Puree and Woug equation can be derived, identifiying the generators of the symmetry group with meson exohenge terms. As the equations of the intermediat coupling group generate the algebra of su(6), it is olear why the model of Kuriyan and Sudarsham is obayed by the ootep and docupiet with couplings which agree with the assumption of ou(6) as a symmetry group. Thus the self consistency of the Pulco and Weng model for the various processes is explained, as is the appearanop of the results of su(6) and the consistoncy of Udgtomkar's mu(6) bootstrap calculation (15). We also present the calculation of Gleeson and Muste (16) which derives the Fulcomeng and Intermediate ooupling equations from finite energy sum rules.

In chapter five, we disouss the use of sum rules and the mechanism by which the results of higher aymotries appear from the saturation of superconvergence relations (17) We show how the Fulco and Wong equation can be split up inte sots of equations for each t- ohannel spin. Certain beliolty amplitudes are shown to have the same decomposition inte spin $\frac{1}{2}$ and $3 / 2$ parts as t-channel spin amplitudes in the Fuloo-Mong equation. . Regge pole phenomenalegy gives Reggo-pole terms in the finite onergy sum rules which the came ventribution to the Pulqo-Wong equation as do the exchange meson terms assumed by Puloo and Wonge The finite energy sum rules
give in a cortain ciroumstances the au(6) reaulte. In order to obtain these results it is acosasary to assume mass degeneracy: for the baryoms. Putting in the exporimantal maces gives the su(.6) breaking in a simple way. These results provide a possible explanation of why the results of higher aymetries appear,whilat these symmetries oannet be exact.

Bootstraps and the Saturation of Sum Rules in thi Btatio Yodel

1. Static Model.

The firsit suocessful model of $\pi-N$ scattering pas developad by chew and Low (21), usitg' the statio approximation. As much of this thesis is comaemped with the static model, we begin by disoisesing its virtues, and its vioess. We will make use of the stapdard Mandelstam variables s, t, u whinoh for the prooess $B+\pi \rightarrow B+\pi$ are:

$$
\begin{aligned}
& s=-\left(p_{1}+q_{1}\right)^{2}=u^{2}+m^{2}+2 x_{8}^{2}+2\left[\left(k_{s}^{2}+u^{2}\right)\left(x_{s}^{2}+m^{2}\right]^{\frac{1}{2}}\right. \\
& t=-\left(p_{1}-p_{2}\right)^{2}=-2 x_{8}^{2}(1-\cos 0 s) \\
& u=-\left(p_{1}-q_{2}\right)^{2}=2\left(u^{2}+m^{2}\right)-s-t \\
& \text { enir } p_{1}, p_{2} \text { are the } 4 \text { momenta of the baryons (mass } u \text {) }
\end{aligned}
$$ q_{1}, q_{2} are the 4 - momenta of the mesons (mass m) k_{s} and os the centre of mass momentum and soattering angle.

We will also make use of the variable $\nu=\frac{8-u}{4 \underline{M}}$.
The static model consists of negleoting the nucleon recoil effects, cand writing the energy of the system in the form $\sqrt{s}=\mathbf{M}+w$ where $w^{2}=m^{2}+q^{2} \operatorname{man}^{2}$, In this approximation $\sqrt{u}=M-w$, so that $v=4 \mathrm{Mw}$ and $\mathrm{s}-\mathrm{u}$ orossing consists of putting $w \rightarrow-W$. If we denote this operation by a prime (1), $s=u^{\prime}, u^{\prime}=s, t=t^{\prime}, t=t^{\prime}$ implies that $q^{2}(1-\cos \theta s)=q^{\prime 2}\left(1-\cos \theta^{\prime} a\right)$

As $q^{\prime}=-q$, this shows that $\cos \theta s=\cos \theta_{u^{\prime}}$. . Thus the partial wave expapaions in the siand 1 sinamels are identioal and under ts-u orossing, the $i^{\text {th }}$ partial wave amplitude wilii cross into itself. This property does not hold when rego\& effeots are taken into aonount.

The errox wauded by negleoting the recoil effects is of order \dot{q}^{2} / n^{2} amd hence the modai is sirpentod to work for $q^{2} \ll y^{2}$. Unfortunately the mupleon resonances lita $\begin{gathered}\text { सain outsits this range and the success of the station model } 10\end{gathered}$ in describing them milgint be regarded as fortuitous. DeB. Fairlie (22) has pointed out that a possible reason for the success is contained in the work of Carruthers (23), who shows that in the "quasi-static limit" the orossing of partial wave amplitudes retains a simple form. Fairlie auggesta that this simpliaity allows to solutions of certain bootstrap requifrepppits to be preserved bayond the statio limit.

The introduction of partioles with spin complioates the theory slightive but again sxessing ins much simpler in the static model. Considen a apin 0 meson interrasting in anlamave with a spin J partiole. Consideration of the recouping proisiem onmected with $s-u$ orossing reveals that the crosaing matrix, soinecting the various total angular momentum channels in the s-channel and u channel l - waves, is the same as for a apin l partiole scettering off a spin J partiole with zero oxbital angular momentum. Thus In the statio modis of wizeidonscalar mesons soattering off baryons, whare the interaotion is mainly p-wave, the angular monentum group assumes the role of an internal sfmatry, with the meson belong to the spin 1 represeptatiop,

3.

2．Partial Wave Dispersion Relations（24）

Consider a partial wave amplitude al（s）whioh has the following properties：
（1） $\mathrm{A}_{\rho}(\mathrm{s})$ can be anelytically continued into the entire at plane and is regular exoept for poles and outs corresponding（a la Mandelstam（25））yo physical systems in the direct and orossed ohannel．（The direct opannel wilil give a pole on（or near）the positive real axis for each bound state（or resonance ）and the unitarity out from threshold to $+\infty$ ．The aroṣsed ehappeq！ will give various outs and poles depending on the kinematios．The（out？． struoture for πN is given in Fig 1）
（ii）$a_{\rho}(s)$ is real analytic io．$\left.a_{p}^{\phi}(s)=a_{\rho} f_{f}^{\phi}\right)$
Using the ee groperties we oan apply Callohy＇s Theorem and obtatins $a_{\ell}(s)=\frac{1}{2 \pi i} \oint_{C} \frac{a^{2}\left(s^{\prime}\right)}{s^{2}}$ ds＇（1．1）whare C is a oontour enclosing ali the auts apd poles and aleseä by sectors $\%$ of a cirole at infinity．By propepty（id）p the contrikution from the oirole at infintty vanishes．If（iic）doesa＇t boppo It is nesessary to make subtraotions in the dispersion relation，which aotion Introduses further undetermined parameters into the proble⿻二丨冂刂灬．

Fig 1. Cut-Structure for $\pi N \rightarrow \pi N$. (26)

(a) unitarity cut for direct channel.
(b) direct channel nucleon pole
(o) crossed unitarity cut for $u=$ channel (also $\pi N \rightarrow \pi N$)
(d) out from crossed N pole in u - channel.
(e) out from $t=$ ohannel process $\quad(\pi \pi \rightarrow M \bar{N}$.

In order to discuss πN scattering, it is necessary to know about the precess $\quad \pi \pi \rightarrow$ iN., for which there is little data. In order to say something about this channel, it is necessary to consider models in which the process is dominated by the ρ resonance. After considering arch approximations, it seems likely that the effect of t- channel forces will be small, at least at low energies (27). We thus claim some justification for
neglecting the oirole out and writing
$a_{l}(s)=\frac{1}{\pi} \int_{R} \frac{I_{m} a_{0}\left(s^{\prime}\right)}{g^{\prime}-s^{\prime}} d s^{\prime}+\frac{1}{\pi} \int_{L} \frac{\operatorname{Im} a \rho\left(s^{\prime}\right)}{s^{\prime}-s^{\prime}} d s^{\prime}$
This comes from integrating round the contour in Fig 2 and using the realanalytioity of af (s) to write

$$
\underset{\hat{E} \rightarrow 0+}{ }\left\{a\left(s^{\prime}+i \dot{E}\right)-a\left(s^{i}-\dot{i} \bar{E}\right)\right\}=2 i \operatorname{Im} a(s)
$$

He, 2.
We remark here that if equations (1.2) hold for $l=0,1,2, \ldots$, one can combine them and obtain the $t=0$ dispersion relation for the total amplitude $a(s, t)$:
$a(a, 0)=\frac{1}{\pi} \int_{R} \frac{\operatorname{Im} a\left(s^{\prime}, 0\right) d s^{\prime}}{\sin ^{\prime}-s^{\prime}}+\frac{1}{\pi} \int_{L} \frac{\operatorname{Im} a\left(s^{\prime}, 0\right) d s^{\prime}}{s^{\prime}-s^{\prime}}$
Fere $a(8,0)$ to be dominantly p-wave and were the integrals also dominated by p-wave contributions, then one would be justified in deriving equation (1.2) from equation (1.3) for the p-wave (ie, $l=1$). Is this likely to be true? The principal low lying resonances are $p-$ wave, and so, if a $(4,0)$
deoreases rapidly as s increases, both the integrala and $a(s, 0)$ may be dominated by the po wave for smail s . The rapid deprease of $\mathrm{a}_{\mathrm{l}}(\mathrm{s})$ with onores is a prime requirement for the bootstrap oaloulations, whioh follop to work, so if Justifled in these celoulations, the sbpve dapivation of equation (1,2) for $l=1$ may be considered as reliable as the oariler onep The method has the advantage that one may select amplitudes with goed alymptotic behaviour, from experiment and legge phenomenology; and also test p-wave dominance experimontally.

3. R/D. Methge (28)

Que paluable properity of equation (1.2) is that the unitianity equation reiates Im al (ξ) to the amplitude on the riget hand oute $I_{m} e_{l}(s)=p_{R}(s)\left|a_{Q}(s)\right|^{2} B_{Q}(s) \quad 1 .(1,4)$ where $\rho_{R}(s)=q^{2 l} \frac{1}{\sqrt{L}}$. We note that $a(s)$ is relatad to the phase shift
 1 up to the inelastio threshold. $\mathcal{R}_{l}(\mathrm{~s})=1$ is thus known as elastic unftasity'. Thys is somptimes used as an approximation for the whole oute This approximation whll be good if $R_{l}(s) a_{l}(s)$ deaceascerapidily with energy.

Givan knowledge of Im a $\quad(\mathrm{s})$ on the left hand out, one has then to solve a npm-limpar qquation to find a $\rho(\mathrm{s})$. Chow and Mandelistap oppyeptod : this equation into a paix of coupled linear equations. This mathed has become knopmas the \mathbb{N} / D method because of the convantional motation.

 Df (s) a might hand oute The gap betwean thp left and fight hand out of a Is greatiy simpliffes the proopdure.

In mathomatioal form, the assumptions afes
$\operatorname{Im} \mathrm{H}_{\mathrm{l}}(\mathrm{s})=\mathrm{D}_{l}(\mathrm{~s}) \mathrm{Im} \mathrm{a}_{\mathrm{l}}(\mathrm{s}) \quad \mathrm{s}<\mathrm{S}_{\mathrm{L}}$ $=0$ otherwise
$\operatorname{Im} D_{l}(a)=B_{l} \operatorname{Im}\left(1 / a_{l}\right)$.

- $-\operatorname{Ml}_{l}(\mathrm{~s}) \mathrm{Pl}_{\mathrm{l}}(\mathrm{s}) \mathrm{R}_{\mathrm{l}}(\mathrm{s}) \quad \mathrm{s}>\mathrm{s}_{\mathrm{R}}$
- 0 othomaile.
 so that one may writite an riaubtraoted diaperaion relation for ${ }^{[n}$;

 cousidar the C.D.DP (29) ambiguity. It is possible to inseyt idpltypary poles into DR without phapging the left hand oute Thise oorrespands to insorting in the partial wave, a partifole not gameratod by thio fongeis There are two facets to the C.D.C. ambiguity whioh we sball piefor to as the clobal and logai problems. Firstly it may bp that there exfist "elemantary partioles" which are not genorated hy exohmage forpes, whise" is the negation of mingon bootatrap philosepheror Fiven if thore are ma elqmontary partioles and "global" C.D.D poleas are not requited, it may be neossaary to ipsert them in a "looal" oaloulation whiah aoppeippp itaplf with a mpall sub-aytem. For example a proess whioh is inolastio
my require particles to be inserted as Cad .C poles whereas in a full multirohamal enloulation they would be produced by the f prese

We assume that the system with which we are dealing is spfectofentiy elastic to allow us to negleot coupled systems and yet need no Copop poles. The normalisation of $I \mathrm{l}$ and D_{L} is still undetermined so we normalise $D_{0}(s O)=1$. In an exact calculation, the solution of the equation would be independent of So. However an approximate solution may, and gemereliy will, depend on So. We may now write the diaparation relation for $D:$

With knowledge of In $a_{f}(s)$ on the left hand out, equations (1.7) and $(1,8)$ squad be sol red and al (s) determined. In order to do priatapat calculations it is necessary to approximate the left hand out in pome way. Cue way, which is of particular value in the station model, is to replace the left hand out by a sum of poles.

Pole Apropatmations

The approximation is to set : $\operatorname{Im} a_{i}(s)=\quad \sum_{i} \gamma_{i} \delta\left(s-f_{i}\right)$ $5<5 b$
Then from equation (1.7): $H_{1}(s)=\frac{1}{T i} \sum_{i} x_{1-8} \quad D_{1}(s i)$
Substituting into equation (1.8) we find:

Putting $s=$ si in equation (1.1), one obtains a set of simultanpoys equations for the $D_{p}(s i)$ which can be solvedgand inserting the solutions into equations (1.10), one may obtain $a_{l}(s)$ in the physioal region; The left hand out comes from onossing the u- channel physical amplitude. In general, this orossing will be complicated and the approximation of the out by poles will be of little significance phyaleality However in the static model, as previously remarked, $\mathrm{s}-\mathrm{u}$ oxoseling merely oonsists of putting $w \rightarrow-W_{\text {. }}$ and $u=$ channel poles do not sppeqd out into outs in the s- obannel.

It is always possible to write a dispersion relation in γ ingtead of s . As $\nu=4 \mathrm{~L} m$ in the statio model, one can write the dispersion: relations in w. This we do in what follows.

In the statio modole; a pole in a partial wave at $w=$ wic will apese into a pole (with the same residue) at $\bar{m}=-W_{i}$ in the same partial wave. This a set of resonances, with oouplings γ_{i} and energies wif in the ψ_{1} chanmel process, will generate poles at $w=-W_{i}$, with residues $X_{i, g}$ on the left hand out of the a- channel process.
4. Statio Yodel Bootstreps (30)

We consider a model of mesons scattering of baryons in an la wave. Thare is a symmotry group for the system and the invariant ohennola are labeled by Greok letters. We allow for some of these obamnels to cantain particles and we label such channels, and the partioles in them; by primed Greek letters. We rule out the possibility of there being, mpre than one partiole in each invariant channel. The partiole o ' will have epereay
w_{α}^{\prime} and couple with strength $\gamma_{\alpha^{\prime}}$ to the aystem.
The introduotion of symmetries adds only a slight oomplication. gach invariant channel α in the s - ohannel will receive a oontribution to its, left hand out from each invariant channel. β^{\prime} in the owannel. In our model, we approsedmate $\operatorname{Im} a_{\alpha}(s)$ (on the left hand out) bys: $\operatorname{Im} a_{\alpha}(x)=\sum_{\beta^{\prime}} C_{\alpha \beta^{\prime}} \delta\left(\omega+\omega_{\beta^{\prime}}\right) \gamma_{\beta^{\prime}}$
where C is the s - u orossing matrix for our symmetry group. Then srop. equation (1.10): $N_{\alpha}(\underline{W})=\sum_{\beta^{\prime}} C_{\alpha \beta^{\prime}} \frac{\gamma_{\beta^{\prime}} D_{\alpha}}{\omega+\omega_{\beta^{\prime}}}\left(-\omega_{\beta^{\prime}}\right)$
How from equation (1.11) we obtain:

where we allow ourselves to ohoose a different subtraction point for aqu α Le we so desire.

We are now faced with one of the oentral problems of the W / D method fop if l>1, the integral in equation (1.14) will diverge. In order top papa It converge a out-off function $V(w)$ must be introduoed into the integreate whare $\quad V_{9}$ (w) has the property of being 1 up to large values of w and thave after tend to sero in suoh a way as to make the integral converge. Thise ad hoc introduction of a out-off is necessary beoause we are integrating over the range ($m_{2}+\infty$), whereas the model is only valid for small w. With the correct relativistic kinematio factors the integral will oonyerge
converge, and is in fact tractable (31). Taking the static approximation. ${ }^{\text {p }}$. this point gives D : linear for $W \ll M$. Din (32) argues that the the intima is initially divergent, with a proper cutoff the main oontiubution to the integral will come from the high energy region. Thus the integral will be independent of W and hence may be written as a constant, thus allowing us to consider D as linear. Experience of calourtions in which D osotilates at high energy (33), makes this argument rather shaky api we prefer the former argument. Also it should be remarked that again experience in calculations shows that D tends to be linear in the respappg region (34). We write the linear D approximation in the f arm:

$$
\begin{equation*}
D_{\alpha}(w)=1-\left(\omega-w_{0 \alpha}\right) \lambda_{\alpha} K_{\alpha} \tag{1.15}
\end{equation*}
$$

where $K_{\alpha}=\sum_{\beta^{\prime}} C_{\alpha \beta^{\prime}} \gamma_{\beta^{\prime}} D_{\alpha}\left(-w_{\beta^{\prime}}\right)$
and λ_{α} is related to the integral as described above.
If we believe Diu's argument:

$$
\begin{equation*}
\lambda_{\alpha}=\int_{m}^{+\infty} \frac{p\left(\omega^{\prime}\right) R\left(w^{\prime}\right) v_{\alpha}\left(w^{\prime}\right) d w^{\prime}}{\left(w^{\prime}-w\right)\left(\omega^{\prime}-w_{0 \alpha}\right)\left(\omega^{\prime}+w^{\prime} \beta^{\prime}\right)} \tag{1.17}
\end{equation*}
$$

In any case we allow λ_{a} to depend on α. We discuss the possibility that the $\lambda_{\text {as are equal (the "universal out-off assumption") later We }}$ note that equations (1.15) and (1.16) are interdependent. Substituting equation (1.15) into equation (1.16), we obtain consistency comditons:

$$
\begin{equation*}
K_{\alpha}=\sum_{\beta^{\prime}} C_{\alpha \beta^{\prime}} \gamma_{\beta^{\prime}}\left\{1+\left(w_{\beta^{\prime}}+w_{\sigma \alpha}\right) \lambda_{\alpha} K_{\alpha}\right\} \tag{1.18}
\end{equation*}
$$

which may be re-wilitten ais:

$$
\left[1-\sum_{\beta^{\prime}} C_{\alpha \beta} \gamma_{\beta^{\prime}}\left(\omega \beta^{\prime}+\omega_{o \alpha}\right)^{\prime} \lambda_{\alpha}\right] K_{\alpha}=\sum_{\beta^{\prime}} C_{\alpha \beta^{\prime}} \gamma_{\beta^{\prime}} \quad(1,19)
$$

The bootstrap requirements are that each channel β^{\prime} (into whit ah we inserted a pole in the u - channel) should contain a direct channel pole. corresponding to a particle with the same coupling and mass as the u-channel particle. Thus the condition is that each channel contain a pole at $\omega_{\beta^{\prime}}$ with residue γ_{β}. In mathematical terms:

$$
\begin{align*}
& \text { Re } D_{\beta^{\prime}}\left(\omega \beta^{\prime}\right)=0 \tag{1.20}\\
& \text { and }-\gamma_{\beta^{\prime}}=\frac{N \beta^{\prime}\left(\omega \beta^{\prime}\right)}{\left[\operatorname{Re} D_{\beta^{\prime}}\right]_{\omega=}^{\prime}=\omega_{\beta^{\prime}}} \tag{1.21}
\end{align*}
$$

Using equation ($1 \cdot 45$), equation (1.20) gives:

$$
\begin{equation*}
1-\left(w_{\beta^{\prime}}-w_{\beta^{\prime}}\right) \lambda \beta^{\prime} K_{\beta^{\prime}}=0 \tag{1.22}
\end{equation*}
$$

Using the consistency condition, equation (1.19), we obtain , defter some simple algebra:

$$
1 / \lambda_{\beta^{\prime}}-\sum_{\gamma^{\prime}}^{\prime} c_{\beta^{\prime} \gamma^{\prime}} \gamma_{\gamma^{\prime}} w_{\gamma^{\prime}}=\sum_{\gamma^{\prime}} \sum_{\beta^{\prime} \gamma^{\prime}} \gamma_{\gamma^{\prime}} \omega_{\beta^{\prime}}^{\prime} \quad ;(1.23)
$$

Using equations (1.13) and (1.15), equation (1.21) gives

$$
-\gamma_{\beta^{\prime}}=\sum_{\beta^{\prime} \prime^{\prime}} C_{\beta^{\prime} \gamma^{\prime}} \frac{\gamma_{\gamma^{\prime}} D_{\beta^{\prime}\left(-\omega_{\gamma^{\prime}}\right)}^{\left(\omega_{\beta^{\prime}}+\omega_{\gamma^{\prime}}\right)\left(-\lambda_{\beta^{\prime}} K_{\beta^{\prime}}\right)}}{}
$$

Substituting for $D_{\beta^{\prime}}\left(-w_{\gamma^{\prime}}\right)$ from equation (1.15) we obtains

$$
\gamma_{\beta^{\prime}} \lambda_{\beta^{\prime}} K_{\beta^{\prime}}=\sum_{\gamma^{\prime}} C_{\beta^{\prime} \gamma^{\prime}} \frac{\gamma_{\gamma^{\prime}}\left\{1+\left(\omega_{\gamma^{\prime}}+\omega_{\beta^{\prime} 0}\right) \lambda_{\beta^{\prime}} K_{\beta}\right\}}{\omega_{\beta^{\prime}}+\omega_{\gamma^{\prime}}}
$$

Substituting for $\cdot \lambda_{\beta} k^{\prime} \beta^{\prime}$ from equation (1.22) gives:

$$
\begin{equation*}
\gamma_{\beta^{\prime}}=\sum_{\gamma^{\prime}} \frac{C_{\beta \gamma^{\prime}} \gamma_{\gamma^{\prime}}}{\omega_{\beta^{\prime}+\gamma^{\prime}}}\left\{1+\frac{\omega_{\gamma^{\prime}}+w p^{\prime o}}{\omega_{\beta^{\prime}}-w \beta^{\prime} 0}\right\}=\sum_{\gamma^{\prime}} C_{\beta^{\prime \prime}} \gamma_{\gamma^{\prime}} \tag{1.24}
\end{equation*}
$$

Wading thine result, equation (1.23) yields:

$$
\begin{equation*}
\gamma_{\beta}^{\prime} \omega_{\beta^{\prime}}+\sum_{\gamma^{\prime}} C_{\beta^{\prime} \gamma^{\prime}} \gamma_{\gamma^{\prime}} \omega_{\gamma^{\prime}}=1 / \lambda_{\beta^{\prime}} \tag{1.25}
\end{equation*}
$$

We have, as yet, imposed no condition on the channels into which. When inserted no taut pole. Were such a ohapinel to have a pole in fid i dreot: channel, our bootstrap programme would be marred. We theodore wish to exclude this possibility.

- Iron equations (1.15), the smaller $\lambda_{\alpha} K_{\alpha}$ the further away the pole will be in the α-channel. For no pole to odour in the low energy region, therefore, $\lambda_{\alpha} K_{\alpha}$ must be numerically appall. If that is so, it may be hoped that second order terms will beopme.
 channel altogether. If $\lambda_{\alpha} K_{\alpha}<0$. the pole would occur at unphyastoal values of w and correspond to a "ghost" state. Such states are physically not allowed. For the above reasons, it seams proper to impose the condition $\lambda_{\alpha} K_{\alpha}=0$ or <1 which will not allow the pole to pour at:N;ieference (31) suggests that λ_{α} is of order $1 / M$, so this condition becomes $K \propto \ll 1$ This gives, ug̣ige equation (1.18)

$$
\begin{equation*}
\sum_{\beta^{\prime}} \dot{C}_{<\beta^{\prime}} \gamma_{\beta}=0 \text { or }<1 \tag{1.26}
\end{equation*}
$$

Combining equations (1.24) and (1.26), we obtain the standard bootstrap equations (35): $\quad \gamma_{\alpha}=\sum_{\beta} C_{\alpha \beta} \gamma_{\beta} \quad(1.27)$ (with the colarention that $\gamma_{\alpha=0}$ if there is no particle in that ;
ohanpal) or, $\bar{\gamma}_{\alpha}=\sum_{\beta} C_{\alpha \beta} \gamma_{\beta}$, where $\bar{\gamma}_{\alpha}$ is mall if $\gamma_{\alpha}=0$
5. Supereonrerfenoe in the Static Model.

Wo have seen how, using the W / D equations and the pole approximatilaps, a bootstrap calculation may be performed. As this method is based on the use of dispersion relations, it is interesting to see if super oonvergemeas relations, another extension of dispersion relations, yield anear information about the oouplinge and masses in the mm pole appedimation. From many oqloulations it is known that the saturation of supapeonvergence relations with aipgle particle states gives rolatitions betiwë̈n couplings. Also moment arm poles yield information about the particle masses.

The prime faerie similarity between the two methods prompts and to look more closely to see if the methods are in foot equivalent in som way. Dice (32) looked at this problem and bass shown how the soilage spoputa oman be derived in a model with only two particles. ${ }^{\circ}$ The work in this section and the deviation of the canonical method of sapping the $W(D$ equations was valertaken in order to find the mathematical relation between the two meithuins. The insight provided by this work enables one to see a oloperprequivalemoie between the five methods then Div found. Indeed oonolusions can be drawn which throw light on the use of the bootstrap equations.
 diepperalen pelationa. The modol we use is the sape as in the seotion of this ohaptor on 8tatic Model Bootstryapsp
ip molistude $\mathrm{an}_{\mathrm{n}}(\omega)$ in said to sipperocanverge (37) if $a_{n}(w) \rightarrow \frac{1}{\omega+6}, \in>0$, as $\omega \rightarrow \infty$ in any direation chit enintan ip aurciofat for $a_{\alpha}(w)$ to obey ap unaber treacted dlapeprafon selation:

If we expand a (w) in inverse porrers of m , the supersonverempo oonalitions tells us that the $1 / \omega$ teras aust vanisen.

Thus:

$$
\rightarrow \int_{m}^{\infty} d d_{m} a_{a}\left(w^{\prime}\right)+\int_{m}^{\infty} d \omega i \sum_{p} C_{\alpha \beta} \cdot d_{m} a_{p}(\omega)=0
$$

Fine aspupption we make to dorive colations yotween the (1: (29) coupilinges is that the amplitudes $a_{x}(\omega)$ are aupereonvergentand that the entegrais in equation (1.29) onem be saturuatiod by the epintcributiona of the sincle partiolose atates $\left\{\beta^{\prime}\right\}$. This

 aspele partiole state in the α-chanagl. The aum pules,

$$
\begin{equation*}
\gamma_{\alpha}=\sum_{\beta} C_{\alpha \beta} \gamma_{\beta} \tag{1.30}
\end{equation*}
$$

mhioh axe the bootstrap oonditions, equation (1-27).
Wo moxt difoines the firat moment sum rule. This may pe dorived from the disperation relation in an andicyous way to the superompergence relation, on the assumption that

$$
\int_{\infty}^{\infty} \omega \operatorname{din}^{\prime} g_{m} a_{\alpha}(\omega)+\int_{\infty}^{\infty} \omega^{\prime} d \omega \prime \sum_{\beta!} C_{\alpha \beta} g_{m} a_{\beta}\left(\omega_{0}\right)=0 \quad(1.31)
$$ I5 these rolations hold, whitoh is intrinsieplly fess . H ikely

 pitil ponatile, oven propable, that it will not be pesiaple to aitursite with the aingle partiole atates as the molehting $\Rightarrow \quad$ ractor \boldsymbol{q}^{\prime} whl aphance the ooptributions from highor onergies. Bocause of this we allow for othar aontriputions by worthe

$$
\int_{m}^{\infty} \omega^{\prime} d_{\omega^{\prime}} i_{m} a_{\alpha}(\omega \prime)=\omega_{M} \gamma_{\alpha}+I_{\alpha} \quad(1.32) ; \text {, pare }
$$

Wa Xel is the opentribution to the intocreal from the pole terimp Whth this, the first moment sum sule gives:

$$
w_{\alpha} \gamma_{\alpha}+\sum_{\beta} C_{\alpha \beta} \omega_{\beta} \gamma_{\beta}+\left(I_{\alpha}+\sum_{\beta} C_{\alpha \beta} I_{\beta}\right)=0\left(1 \varphi_{\varphi} 33\right)
$$

If the relaticins do mot hold, it may be poasible to mpite a finite emarey sum sule (38) which has the same fosie as equation
 sumpules in obapter five) It fo thmb reasomable to assum an
equation of the form of equation (1.33) holds, where T_{α} in qu integral over the unitarity out or a Regge pole term. In atthep cace we oan say littie about the teras I_{α} without Introdupling assumpticas, whitoh would mean that our calculation would no louger be a "bootstrap". In ohaptor five, we introduce qutra asaumptranis in an attempt to explain the axiatence of aymatioias in a more remilable model.

Cemgluaticas

We are now able to disouse the copneotica between the bootatrap and superconyergence methods. We list soppral romarlef to thie ond, belom:
(i) The results of the standard statio model beotatrap caloulaticn are identical in almost all respects to those dexived from talims single partiole saturation of supereonvieggnee rolations written for the various amplitudes, and friom a. stmilar oopisidaration of the first moment sum rules.
(ii) Uaing the atronger conditi ons in equation (1.26), both methods give the bootstrap conaistonoy oonditions for channels. If the weaker the condition is used, the bootstrap: method yiolde the conditions only for ohemels containing particies, webilst it says that the elemente correaponaing to particles with no partiole shoilld be small.
(iii) In the bootstrap oaloulation, the left hand out is taken to oontain only poles, whereas in the superoonvergonce oaloulation we allowed the momont sum rule to meiceive a contribution from the u - ohannel witarity out. If we are to be solving the sama problem by each method we must negleot this out oontribution and take the same left hand out for both oalculations. Then, with the identification of I_{α} with ${ }^{-1} \lambda_{\alpha}$ equations (1.25) and (1.33) are the same for the ahannol whioh contains a partiole. The first momont sum rule gives a mass relation for the oase where the channel has no particle whereas the bootsitrap does not.

We oan see no reason for equating the $\lambda \alpha s$ in any way and this oasts doubt, via the above identification, on the assumption of a universal cut-off. As this assumption leads to inconsisteppeips in, for example, Diu's oaloulation (32) we are happy to disoard it. As the mass relations all oontain arbitrary paramoters (I ${ }_{\alpha}$ or λ_{α}) they are of ilttis value and this situation puts the two methods on a par as far as maṣses are concerned.
(iv) It should be pointed out that the reasons that we diffor from Din in our conclusions are that Dill fails to look at the moment sum rule, puts no conditions on a bootstrap amplitude which should contain no pole, and assumes a universal out-off. His. ad hoo method of solving his two particle model obsoures the simple mathematioal relation between the two methods, whioh
naturally leads to consideration of the moment sum rule. His use of a universal cutoff, against which usage we have argued, lends to the breakdown of his bootstrap equations. in the $\boldsymbol{T} \boldsymbol{H}$ case, where the internal and external nucleons are given equal masses, because there are insufficient parameters to satisfy the equations. Without the universal out-off, one has no such problems.

6. Uses of the Bootstrap equations.

(a) $N-y^{(}$bootstrap (3:)

At low energies the πN scattering amplitude in largely . p - wave and dominated by the existence of the nucleon and the 2433 reasonance. Labelling states by their isospin and spin (I and J) we have the $\mathbb{N}\left(\frac{1}{2}, \frac{1}{2}\right), \mathbb{N}^{\boldsymbol{*}}\left(\frac{3}{2}, 3 / 2\right)$ and the p - wave pion Is effectively a (1,1) particle.

In this case the isospin and spin crossing matrices are equal (39)

$$
C(s u) \equiv\left(\begin{array}{cc}
\left(\frac{1}{2}\right) & \left(\frac{3}{2}\right) \\
-\frac{1}{3} & 4 / 3 \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right) \begin{aligned}
& \left(\frac{1}{2}\right) \\
& \left(\frac{3}{2}\right)
\end{aligned}
$$

where the bracketed numbers beside the matrix indicate the channels.

If we assume that the \mathbb{N} and $\mathbb{N}^{(4}$ are the only single particle states which exist we have four equations:

$$
\left(\begin{array}{c}
\gamma_{\frac{1}{2}, \frac{1}{2}} \\
0 \\
0 \\
\gamma_{2}, \frac{k}{2}
\end{array}\right)=\left(\begin{array}{lll}
C_{8 u}^{I} & 0 & c_{\mathrm{su}}^{J}
\end{array}\right) \quad\left(\begin{array}{c}
\gamma_{\frac{1}{2}}^{2} \\
0 \\
0 \\
\gamma \\
3_{2}, 3_{2}
\end{array}\right) .
$$

Due to what might be desoribed as good fortume, these equations have a solution: $\gamma_{\frac{1}{21}}=2 \gamma_{3 / 2} 3 / 2$

If we identify the γs with couplings as follows:

we obtain: $\quad g \pi N N=2 g \pi N N^{+}$, which is close to the experimental value.

The above solution is unique only beoause we put $\gamma_{V_{2} / 2}=\gamma_{y / 2} y_{2}=0$
It is however in some sense the simplest solution, requiring as it does a minimal number of partioles. In genersl the boptatriap equation will not be exactly soluble with only the desired partiqles. and it will be necessary to introduce other particles which ane hopes will have small γ s thus corresponding to high lying resonances. Twa and Patil (40) used this condition of using a minimal number of particles in an attempt to produce a meaninefut bootstrap prograume.
(b) Baryon ootet - dearplet bootstrap in SU(3) (6))

After the suocess of the $N T$ - N^{\dagger} bootstrap, it was natural with the advent of unitary aymmetries to attempt to extend this success to the $\mathrm{SU}(3)$ case of the pfectido-soalar meson ootet soattering off the baxyon octet, using, if possible, the baryon ootet and deouplet as the internal states.

Before we perform the caloulation, we must do a little group theorys

$$
\text { In } \operatorname{su}(3): 808=108 \mathrm{~s} \cdot 8 a \cdot 10 \cdot 10 .
$$

We have ohosen linear combinations of the octet states which couple symmetrically and antisymotrically to the 8 - 8. There :
are now eight channels for the process 8 - $8 \rightarrow 8$ 88 $1 \rightarrow 1,8 \mathrm{~s} \rightarrow 8 \mathrm{~s}, 8 \mathrm{~s} \rightarrow 8 \mathrm{~A}, 8 \mathrm{~A} \rightarrow 8 \mathrm{~s}, 8 \mathrm{~A} \rightarrow 8 \mathrm{~A}, 10 \rightarrow 10,10 \rightarrow 10,27 \rightarrow 27$ of which $8 s \rightarrow 8 A(8 s A)$ and $8 A \rightarrow 8 s(8 A s)$ are equal by time reversal, The su(2) crossing matrix is the same as for the and cases

$$
C_{J}=\left(\begin{array}{cc}
\left(\frac{1}{2}\right) & (3 / 2) \\
-\frac{1}{2} & 4 / 3 \tag{63}\\
\frac{3}{3 / 3} & \frac{31}{3} / 3
\end{array}\right) \begin{aligned}
& \left(\frac{1}{2}\right) \\
& (3 / 2)
\end{aligned}
$$

The su(3) matrix is

We sock a solution containing only the ($10,3 / 2$) and $\left(8, \frac{1}{2}\right)$ sharif. To do this we attempt to solve the bootstrap condition for the sub-matrix (G') which contains only these channels and then see if this solution also yields a solution of the complete bootstrap. equation. The sub-matrix in question is:

$$
\begin{aligned}
& (10,3 / 2) \quad\left(8 \mathrm{ss}, \frac{1}{2}\right) \quad\left(8 \mathrm{sa}, \frac{1}{2}\right) \quad\left(8 \mathrm{aa}, \frac{1}{2}\right) \\
& c \cdot=\quad\left(\begin{array}{cllc}
1 / 12 & 4 / 15 & 4 / 3 \sqrt{5} & 0 \\
\frac{\pi}{3} & 1 / 10 & 0 & 1 / 6 \\
5 / 3 & 0 & 0 & 0 \\
5 /\left(8 \mathrm{ss}, \frac{1}{2}\right) \\
0 & 1 / 6 & 0 & -1 / 6
\end{array}\left(8 \mathrm{sa}, \frac{1}{2}\right)\right.
\end{aligned}
$$

C' has an eigenvalue 0.85 which is near 1. However the coupling e to the three octet channels are not independent, there being only two free parameters, an overall normalisation and the 2/d ratio.

The best solution corresponds to $\gamma 10 / \gamma 8=1.06, \alpha=0.70$ where α is the f / α ratio. This gives

$$
\gamma^{\prime}=\left(\begin{array}{l}
\gamma_{10} \\
\gamma_{s s} \\
\gamma_{s a} \\
\gamma_{a s}
\end{array}\right) \equiv\left(\begin{array}{c}
\gamma_{10} \\
20 / 9 \alpha^{2} \gamma_{8} \\
4 \sqrt{5} / 3 \alpha(1-\alpha) \gamma_{8} \\
4(1-\alpha)^{2} \gamma_{8}
\end{array}\right)=\left(\begin{array}{l}
1.06 \\
1.09 \\
0.626 \\
0.0360
\end{array}\right)
$$

whilst

$$
\operatorname{c'~}^{\prime}=\left(\begin{array}{l}
0.752 \\
0.876 \\
0.790 \\
0.122
\end{array}\right)
$$

It is open to argument whether the above represents a reasonable solution of the problem.

We now look at the complete bootstrap equation and put X equal to γ ' plus ten vanishing components. We already know $\because \quad$ four components of $C \gamma$ from the above. The remaining ones

$$
\begin{array}{r}
\text { are: }(27,3 / 2)\left(27, \frac{1}{2}\right)\left(10, \frac{1}{2}\right)(10,3 / 2)\left(10, \frac{1}{2}\right)(8 \mathrm{ss}, 3 / 2)(8 \mathrm{sa}, 3 / 2)\left(8 \mathrm{as}, \frac{3}{2}\right) \\
0.255 \quad 0.0050 .0210 .006 \quad 0.395-0.1610 .97 \quad-0.243 \\
0
\end{array}
$$

These elements are small or of the same order of magnitude as the error in solution of C' $^{\prime}=\gamma^{\prime}$, apart from the $\left(1, \frac{1}{2}\right)$ element

(0) $\operatorname{su}(6)(13)$

In the $\operatorname{SU}(6)$ modsl of the baryons, the ootet and decuplet are put in one representation of the group, the 56. In assuming this assignment we are disoarding the idea that the baryons and the resonances bootstrap eaoh other and assuming that both exist a priori.

The mesons are assigaed to the 35 represiantations and one may ask whethor the 56 aan bootstrap itself in the meson-baryon soattering process. If this should prove oorrect and it is not the Oase for other multipiets such as the 20 or 70 , it would provide a bootstrap argument for the existence of the 56 plet and not the other representations. The dynamical problems of $\mathrm{SU}(6)$ are avoided by letting the psendo-scalar mesons act in a p- wave.

Balazs, Singh and Uagaonkar (1.8) carried out the above programme. Indeed the 20 plet is unlikely to bootstrap either singly or reciprocally However in 35-56 seattering, the diagonal 56 crossing-matrix element is very nearly one, which suggests that the 56 could bootstrap itself. This is also true for the 113_{4} in the same process, but a large megative 56-1134 crosaing matrix elements suggests that the multiplets are unlikely to co-exd.st. If one belteves in SU(6) as a symnetry group, the above may provide some reason for the 26 assignment of the baryons. (d) Isobar ohains ($1.9,9$)

With the success of the $N-\mathbb{N}^{*}$ bootstrap, people wondered whether there might not axists infinite shains of partisles which could bodstrap each other in some way. The most interesting suocess in this field is the

24 .

result of Abers, Balazs, and Hara (1.9); that in πN^{*} scattering the $N *$ and $N^{* *}(I=J=5 / 2)^{\circ}$ bootstrap each other, and so on. Thus the chain of nucleon isobars with $I=J$ bootstrap each other. As will appear in chapter II, this fact is no acoident but derives from the existence of a non-invarianoe group for the system.

CHAPTER 2

Strong Coupling Theory

Strong Coupling Theory, as developed by Cook, Goebel and Salta (41,42) from the early work of Pauli it al. (43), sots out to describe, by means of the Chem-Low Equation, the spattering of psesudo-soalar mesons off baryons in a p-wave.

It is assumed that there exists an internal symmetry group (B) for the system, such that the mesons and isobars form representations of the group and such that the meson- baryon interaction is invariant under the group. As we will be working In the static model, $80^{\top}(2)$, the spin symmetry group, may be combined into the internal symmetry group K. Let us consider processes $\dot{M i}+\Pi_{\alpha} \rightarrow \mathbb{N J}+T_{\beta}$, (45) with scattering amplitudes (fear $)^{j i}$ where i,j label isobar states and $\alpha, \beta, \ldots a$ set of mesons. $f_{\beta \alpha}$ and the A_{α} is which we define later are operators in isobar space with the notation $\left(f_{\beta \alpha}\right)^{j i}=\langle j| f_{\beta \alpha}|i\rangle$ and

$$
\left(A_{\alpha}\right)^{j i}=\langle j| A_{\alpha}|i\rangle
$$

The operation λA_{α} is defined as the Yukawa coupling for the absorption of the meson component α. Thus $\lambda\left(A_{\alpha}\right)^{i i}$ is the coupling corresponding to the isobar i absorbing the meson component and producing the isobar j. Diagrametioaily.

The Born terms for the process $N i+T_{\alpha} \rightarrow N_{j+T_{\beta}}$ corresponds to possible isobar intermediate states in the process and in the $s \rightarrow n$ crossed process. Thus:

$$
\left(f_{\beta \alpha}^{B}\right)^{j i}=-\lambda^{2} \sum_{k}^{\prime}\left[\frac{\left(A_{\beta}^{+}\right)^{j k}\left(A_{\alpha}\right)^{k i}}{M_{k}-M_{i}-w}+\frac{\left(A_{\alpha}\right)^{i k}\left(A_{\beta}^{+}\right)^{k i}}{M_{k}-M_{j}+\omega}\right]
$$

(2.1)
where the sum over k is over all isobar states.
We cen represent the Born term diagramatioally as below:

The Chew - Low form for f, which satisfies analytioity, unitarity
ind-arissing symmetry, is:

$$
\begin{aligned}
& \left(f_{\beta \alpha}\right)^{j i}=\left(f_{\beta \alpha}^{\beta}\right)^{j i} \\
& +\sum_{k, \gamma} \int_{m}^{+\infty} \rho\left(\omega^{\prime}\right) d \omega^{\prime}\left[\frac{\left(f \gamma \rho\left(\omega^{\prime}\right)\right)^{k_{j}^{*}}\left(f_{\gamma \alpha}\left(\omega^{\prime}\right)\right)^{k_{i}}}{M_{k}-M_{i}+\omega^{\prime}-w-i \epsilon}\right. \\
& \left.+\frac{\left(f_{\left.\gamma \alpha\left(\omega^{\prime}\right)\right)^{k j}}^{k_{j}^{*}}\left(f_{\gamma \rho}\left(\omega^{\prime}\right)\right)^{k i}\right.}{M_{k}-M_{j}+\omega^{\prime}-\omega}\right]
\end{aligned}
$$

+ (two or more meson : intermediate states) (2.2)
where $M 1$ is the mass of the isobar i and $\rho(w)$ is a kinematic factor,

We have in the theory an undetermined parameter λ, which measures the overall strength of the meson couplings. Experience suggests that if λ is increased, the isobar masses tend to a common limit. We make this assumption and set:

$$
\begin{equation*}
M \pm=w+\Delta 1 / \lambda^{2} \tag{2.3}
\end{equation*}
$$

where Δ_{1} remains finite as $\lambda^{2} \rightarrow \infty$.
The limit $\lambda^{2} \rightarrow+\infty$ is the strong coupling limit and the strong souping model is derived on the assumption that the equations of the sborroLow model are in some san se "Manalytion in λ^{2} in the limit $\lambda^{2} \rightarrow \infty$. Unitarity requires the scattering amplitude to be finite in the physical. region. By equation (2.2.) the Born terni is also constrained to be finite.

Using equation (2.3), the Born term can be expanded in terms of $1 / \lambda^{2}=$

$$
f_{\beta x}^{\beta}=\frac{\lambda^{2}}{\omega}\left[A_{\beta}^{\dagger}, A_{\alpha}\right]-\frac{1}{\omega^{2}}\left[A_{\beta}^{\dagger},\left[M, A_{\alpha}\right]\right]+\underset{(2.4)}{0\left(1 / \lambda^{2}\right)}
$$

where m is the mass operation defined by $\left.m|i\rangle=M_{i} i i\right\rangle$
Thus the finiteness of the Born term for all processes implies that

$$
\left[A_{\beta}^{\dagger}, A_{\alpha}\right]=0
$$

This equation, being true for all α, β, oan be re-written in the atandard form $\left[A_{\alpha}, A_{\beta}\right]=0$. (2.6) This oondition, derived. from the dymamics of the problem, is aufficient to ensure that the algabra generated by the As and Js (the Js being the generators of the symmetry group X) oloses. The problem of finding the isobars is thus reduced to the algebraio one of finding unitary irreduoible representations of this algobra. The additional assumption refidilired 1s that the mesons sources A α transform the tensor operators of E. This gives an equation of the form!

$$
\begin{equation*}
\left[J 1, A_{\alpha}\right]=\operatorname{Di\alpha } \beta A_{\beta} \tag{2.7}
\end{equation*}
$$

The ganerators of \mathbf{X} odey an equation of the filimim

$$
\begin{equation*}
[J 1, J j]=C_{1 j k} J k_{1} \tag{2,8}
\end{equation*}
$$

whẹre Cijk and pijk are structure oonstants. Rquationa (2.6), (2.7.7) and (2.8) define the algebre of the strong ooupling group G for the system. Inspection shows that G is the semidireot product of K with T, the trqmslation or Abelian group generated by the \mathbb{A}_{α}. O-IXT. T is the translation group: n n dimensions, where n is the dimension of the space spanned by the $A \alpha$. As G is non-compaot its unitary irreduaible representations are infoyte dimensional.

Ropresentatiops of the Strong Gouling Group

The mothode used for deriving representation of the strong coupling group are mostly of a teohnioal nature and physioally.
unenilightening. The techniques of group contraction, used by Cof. 8 In their original paper, and method of induced representations are both standard group theory procedures. The methods derived by Fairlie (46) and also Udgoankar and Singh (47), are however of physioal interest as they not only solve the problem in hand but also exhibit the olose relationship between the strong coupling equations and the bootstrap consistenoy condition.

We therefore discuss these latter methods in some detail whilst contenting ourselves with a brief outline of the former: Group Contraction

Given a strong ooupling group G, the idea is to find a group if with the property that one may take linear oombinations of the semerators of H and by taking the coeffioients to some limit obtain operators which obey the algebra of G. By seeing the effeot of this limit on the parameters specifying a representation of H , one may find a corresponding representation of G. Naturally ono tries to find a group H whose irreduathio unitary representations are particularly simple and easy to find. Usually H will be ohosen to be compact, thus enabling one to deal with finite representations. Of course, after contrection suoh representations will beoome infinite as is be non-aompaot.

A group H, related to the strong coupling group G, as apeciflad above, is referred to as an intermediate ooupling group.

As en example of the use of this method consider the scattering of scaler mesons with isospin symmetry (42) This is the case where $K=80^{I}(2)$ and $G=\operatorname{su}(2) \times T_{3} H$ is chosen to be $\operatorname{su}(2) \operatorname{su}(2)$ with. generators $L_{i}^{!}$and L_{i}^{2} which obey:

$$
\begin{array}{ll}
{\left[L_{i}^{r}, L_{j}^{r}\right]=i \epsilon_{i j k} L_{k}^{r}, r=1,2} \\
{\left[L_{i}^{i}, L_{j}^{2}\right]=0} & i, j, k=1,2,3
\end{array}
$$

Put II $=L_{i}^{\prime}+L_{i}^{2}, A 1=\in\left(I_{i}^{\prime}-L_{i}^{2}\right)$ In the limit $\in \rightarrow 0$ keeping 4 finite, the $I 1$ and Ai generate the algebra of $s u(2) \times T_{3}$ The irreducible unitary representations of su(2) esu(2) are specified. by $\left(l_{1}, l_{2}\right.$)where $l_{P}\left(l_{r}+1\right)$ is the value of the Casimir operator $\left(L^{n}\right)^{2}$ acting on the iffotitientation.

Putting $I^{2}=t(t+1)$, t will assume the values $t=\left|p_{1}-\ell_{1}\right|_{1} \ldots, f_{1}+f_{2}$; by the usual result for coupling time angular momenta. Thus for a useful representation of $\operatorname{su}(2) \times \mathrm{T}_{3}$ to emerge from our calculation we must keos $t \epsilon_{0}=\left|P_{1}-l_{2}\right|$ finite.

$$
A \cdot I=\in\left\{\left(I^{\prime}\right)^{2}-\left(I^{2}\right)^{2}\right\}=\in\left(l_{1}-l_{2}\right)\left(l_{1}+l_{2}+1\right)
$$

Thus in order than A does not vanish we must choose $\left(l_{1}+l_{2}\right)$ to become infinite. Thus we must contract su(2) su(2) by making $l_{1}+l_{2} \rightarrow \infty$ whilst keeping $\left(l_{1}-l_{2}\right)$ finite.

Ir fact th specifies the representation, and such a representation contains on infinite number or irredicikie representations of the group sur ${ }^{I}(2)$ with I au $\underset{\sim}{t}(t+1), t=t 0_{0} t o+1$,

The use of this method is tedious for larger groups G. The details may be focus in the literature.

At the end of their paper, CoGs remark that the connection. between group contraction and taking the strong coupling limit might have physical signifinance. They suggest that for finite couplings, the precontrented intermediate coupling group might serveasanoninvariance group for the system. In chapter 4 , we discuss the theory of intermediate coupling built on this idea. by Kuriyan and Sudarshan (24)。

For completeness we list below various processes with the corresponding symmetry groups (K), strong coupling groups (G) and intermediate coupling groups (H)

Bootstrap consistency condition for atrong ooupling (10,47)

The diagram illustrating equation 2.1 shows how the strong coupling oondition links the couplings of isobar intermediate atates in the areot and orossed ohannels. It is thus not aurprising to find that, using Clebsob-Gordon cooffioients to project out apeapifie invariants in the direot ohamel, the bootstrap consistenoy ocndititm may be derived from equation (2.5,). We use equation (2.5) rather than the more commonly used equation (2.6) because the analysis uped. for equation (2.5) is identical with that required later to deal with the total amplitude.

To illustrate the teohnique sketohed out above, we take a simple case where $X=\operatorname{su}(2)$ and the mesons belong to the "spin 14 representations. Axmed with this calculation, it is relatively easy job to construct the calculation for any group K.

To simplify the algebra, we take the meson operators $A \propto$ to form the spherical basis of the spin 1 representation. That is, \propto 1s the a- component of the meson concerned. $(49,50)$. We label isobars by their spin and its $\mathrm{g}:=$ oomponent. We may use the WienorRokairt theoram for the aymmetry group su(2) to write the matrix - ilement of A between two isobar states as the product of an au(2) Clebath-Gordon coefficient and a reduoed matrix elemont, which is independent of the s-components. Thus:

$$
\left\langle I I_{2}\right| A_{\alpha}\left|J J_{2}\right\rangle=c\left(\begin{array}{lll}
J & 1 & I \tag{2.9}\\
J_{2} & \alpha & I_{2}
\end{array}\right)\langle I \| \text { All } J\rangle
$$

for convenience we write $\langle I\|A\| J\rangle=\frac{\varepsilon_{i}^{*}}{J}$
Inserting equation (2.5) between the bates $\left\langle I I_{2}\right|$ and $\left|J J_{2}\right\rangle$ gives:

$$
\begin{aligned}
& \sum_{k} C\left(\begin{array}{ccc}
k & 1 & j \\
k= & -\beta & j
\end{array}\right) E_{j}^{k} \quad C\left(\begin{array}{ccc}
I & 1 & k \\
I & \alpha & k
\end{array}\right) B_{k}^{J} \\
& =\sum_{k^{\prime}} c\left(\begin{array}{lll}
k^{\prime} & 1 & J \\
x_{2}^{\prime} & \alpha & J
\end{array}\right) \delta_{J}^{k^{\prime}} \quad C\left(\begin{array}{ccc}
I & 1 & k^{\prime} \\
I & -\beta & k_{2}^{\prime}
\end{array}\right) \quad E_{k \prime}^{I}
\end{aligned}
$$

(2.10)
 Equation (2.10) holds for all $I_{,} I_{2}, J, J_{2}$ and the summations are over. 41 isobars E and $\mathbf{E '}_{\text {a }}$. Charge conjugation invariance implies that:

$$
\begin{equation*}
\left\langle I I_{2}\right| A_{\alpha}\left|J J_{2}\right\rangle=I_{\vartheta}(-1)^{\alpha}\left\langle J_{2}\right| A_{-\alpha}\left|I I_{2}\right\rangle \tag{2.11}
\end{equation*}
$$

Using the Wigner-Eichart Theorem, this gives the vertex symmetry relation: $\mathrm{g}_{\mathrm{J}}^{\mathrm{I}}=(-1)^{\mathrm{I}-\mathrm{J}}\left(\frac{2 \mathrm{I}+1}{2 \mathrm{q}+1}\right)^{\frac{1}{2}} \mathrm{~g} \frac{\mathrm{~J}}{\mathrm{I}}$
Using equation 2.11, equation (2.10) gives:

$$
\begin{gathered}
\sum_{k} g_{k}^{I} B_{k}^{J} c\left(\begin{array}{lll}
I & 1 & k \\
I & \alpha & k
\end{array}\right) c\left(\begin{array}{lll}
J & 1 & k \\
J & \beta & k
\end{array}\right)(-1)^{\beta}=\sum_{k^{\prime}} g_{k}^{I} B_{k^{\prime}}^{J} c\left(\begin{array}{ccc}
I & 1 & k^{\prime} \\
I & -\beta & k^{\prime}
\end{array}\right) . \\
c\left(\begin{array}{ccc}
J & 1 & k^{\prime} \\
J & -\alpha & k^{\prime}
\end{array}\right)(-1)^{\alpha}
\end{gathered}
$$

To project out the K channel we multiply by

$$
C\left(\begin{array}{lll}
I & 1 & K \\
I_{2} & \alpha & k_{2}
\end{array}\right) \quad C\left(\begin{array}{lll}
J & 1 & K \\
J_{2} & \beta & k_{2}
\end{array}\right) \quad(-1)^{-\beta}
$$

and sum over I_{z} and β looping α fixed.
For the left-hand side of equation (2.13), we can sum over with k_{2} fixed and then sum over k_{2} which 1 s equivalent to summa ns over I_{2} From this we obtain Prod the left hand side.

$$
\begin{aligned}
& \sum_{k} g_{z}^{I} g_{z}^{J} \sum_{I_{z}} c\left(\begin{array}{lll}
I & 1 & k \\
I_{2} & \alpha & k_{z}
\end{array}\right) c\left(\begin{array}{lll}
I & 1 & k \\
I_{z} & \alpha & k_{z}
\end{array}\right) \sum_{\beta} c\left(\begin{array}{lll}
J & 1 & k \\
J_{2} & \beta & k_{z}
\end{array}\right) c\left(\begin{array}{lll}
J & 1 & \frac{\pi}{x} \\
J_{2} & \beta & k_{z}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E_{L}^{I} E_{X}^{J} \quad\left(\frac{2 K+1}{3}\right) \sum_{I_{2}} c\left(\begin{array}{ccc}
I & K & 1 \\
I_{2} & -k_{2} & -\alpha
\end{array}\right) \quad c\left(\begin{array}{ccc}
I & K & 1 \\
I_{2}-k_{2} & -\alpha
\end{array}\right) \\
& =E_{x}^{I} E_{k}^{J}\left(\frac{2 k+1}{3}\right)
\end{aligned}
$$

where we have used the relation

$$
\sum_{x} c\left(\begin{array}{lll}
1 & j & k \\
i_{2} & j_{2} & k_{2}
\end{array}\right) c\left(\begin{array}{lll}
1 & j & k^{\prime} \\
i_{2} & j_{2} & k_{2}
\end{array}\right)=\delta_{k k^{\prime}}
$$

i_{2}, k_{z} fixed
and well known symmetry relations for C-G coefficients.
Under the same operation, the right hand side of equation (2113)
gives:

Using the symmetry relations for C-G coefficients, the sum can be re-wititen as:

$$
\begin{aligned}
& \sqrt{\frac{(2 k!+1)(2 k+1)}{3}} \quad(-1)^{2 J}
\end{aligned}
$$

The sum over C-G coefficients is simply related to a 6 J symbol and we may write the term as:

$$
\begin{aligned}
& \sum_{k^{\prime}} g_{k^{\prime}} I g_{k^{\prime}} J \frac{\left(2 k^{\prime}+1\right)(2 K+1)}{3}(-1)^{2 J}\left\{\begin{array}{lll}
I & 1 & k^{\prime} \\
J & 1 & K
\end{array}\right\} \\
& =\sum_{k^{\prime}} G_{K k^{\prime}}\left(\frac{2 K^{\prime}+1}{3}\right) \quad g_{k \prime^{\prime}} I g_{k^{\prime}}^{J}
\end{aligned}
$$

where $C\left(k^{\prime}=(-1)^{2 J}\left(2 k^{\prime}+1\right)\left\{\begin{array}{lll}I & 1 & k^{\prime} \\ J & 1 & \mathbf{K}\end{array}\right\}\right.$ is by definition the

Thus we have the equation.

$$
\begin{equation*}
\left(\frac{2 k+1)}{3} \varepsilon_{k}^{I} \varepsilon_{k}^{J}=\frac{(2 k+1)}{3} \sum_{k^{\prime}} C_{K k^{\prime}} \varepsilon_{k^{\prime}}^{I} g_{k^{\prime}}^{J}\right. \tag{2.14}
\end{equation*}
$$

and honce obtain the bootstrap consistency condition

$$
\begin{equation*}
\Gamma_{k}=C_{k k^{\prime}} \Gamma_{k^{\prime}} \tag{2.15}
\end{equation*}
$$

where $G_{k}^{I} g_{k}^{J}=\Gamma_{k}$ and the summation over k is assumad.
As remariced earlier, the bootstrap conditions may be derived from the strong coupling condition for any symmetry group Ko Alpe the bootstrap conditions hold for any process $N i+T \rightarrow N_{j}+T$ where $M i, N j$ are isobars in the representation of the strong coupling group. Consideration of equation (2.1) quickly shows why thets should be the case. We see that the Born term has direot ohqunel. poles and erpesed ohannel poles. Moreover we notioe that the strong coupling condition is also the condition that the Borp term superconverges. Thus the residues at the poles for a particular process must obey the bootistrap conditions, as was shown in ohaptep 1 , in the section on superconvergence. We will return to the topio of. superconvergence and strong coupling theory later.

Usas of Bootstrep Condition

The fact that the bootstrap consistency condition halds for all processes withing the isobar chain can be used to derive the meson deobar couplings, onse the composition of the isobar ohain (ie the representation of the strong coupling group) is known. Depe
merely writes down the bootstrap equations for all processes (or as many as necessary) and puts in the isobars as intermediate statẹa, The equations so derived are sufficient to determine the couplings, Indeed one could show that the fact that all the bootstrap equationa hold with intermediate states from the isobar ohain, is suffioient to guarentee the veracity of the strong coupling equation, acting between isobars within the chain.

The procedure outlined above is particularly suitable for use in a oase where the isobars ohain has a particularly simple struoture, such as the su ${ }^{I}(2) u^{J}(2)$ ohain with $I=J$. In this. case one need only consider two processeste cover all possible processes. Clearly the more complicated and the larger, the isobar ohain iss the harder this method becomes.

The $I=J$ nucleon iso-bar chain is particulariy suited to the above teohnique because we need only consider two processes:
$(1)(I, I)+$ pion $\rightarrow(I, I)+$ pion and
$(i i)(I, I)=$ pion $\rightarrow(I+1, I+1)+$ pion
Consideration of the prooess $(I, I)+$ pion \rightarrow ($I-1, I-1$) + pion gives no axtra information, as it is the time reversed process to (I-1, I-1) + pion $\rightarrow(I, I)+$ pion which is a process of type (14)
D.B. Pairlie (46) has an elegent solution to the bootstrap problem for this oase which makes use of the orthogonality properties of the orossing matrixes. The bootstrap equation for
the invariant amplitude $(I, J)=(a, b)$ for the process $(i, j)+$ pion \rightarrow (1', j') + pion is:

$$
\left(\delta_{a a^{\prime}} \delta_{b b}{ }^{\prime}-C_{a a} \cdot C b b^{\prime}\right) g_{a b}^{i j} g_{a b}^{i \prime j \prime}=0
$$

Where the Cs are the appropriate isospin and spin crossing matrices. The properties of Raced coefficients allow us to write Caa' $=$ Oas. $\left(\frac{2 a \cdot+1}{2 a+1}\right)^{2}$ and Oas'orthogonaj and symmetric, for both of crossing matrices. We oran use this fact to write our equation es:

$$
\left(\delta_{a a^{\prime}} \delta_{b b}-O_{a a^{\prime}} O b b b^{\prime}\right) G_{a^{\prime} b}^{i j} G_{a b^{\prime}}^{i \prime j^{\prime}}=0
$$

where $G_{a b}^{i j}=\{(2 a+1)(2 b+1)\}^{\frac{1}{2}} g_{a b}^{\frac{2 j}{j}}$

If we now restrict ourselves to isobars with $I=J$. The above equations gives: $\left(\int_{a a^{\prime}}-0_{a a^{\prime}}^{2}\right) G_{a^{\prime} a^{\prime}}^{I 1} G_{a^{\prime} a^{\prime}}^{I^{\prime}}=0$ It is easy to see that if $G_{a a}^{i 1}$ is independent of a, the equation is satisfied. With this condition

as 0 is symmetrical and orthogonal. Also $\delta_{a A^{\prime}} G_{a^{\prime} a^{\prime}}^{I i} G_{a a}^{1 i^{\prime}}=G^{2}$ (i) for completeness we give the isospin orossing matrix (Cu) for the process i + $1-1+1$. (51)

$$
\text { C Bu }=\left(\begin{array}{ccc}
i-1 & i & i+1 \\
\frac{1}{2 i+1} & -1 / i & \frac{2 i+3}{2 i+1} \\
-\frac{(2 i-1)}{i(2 i+1)} & \frac{i^{2}+i-1}{i(i+1)} & \left(i+\frac{2 i+3}{1)(2 i+1)}\right. \\
\frac{2 i-1}{2 i+1} & \frac{1}{i+1} & \left(\frac{1}{1+1)(2 i+1)}\right.
\end{array}\right) i-1
$$

The crossing matrix for the process $1+1 \rightarrow(1+1)+1$ is: (51)

1
$1+1$

$$
\text { Gu: } \left.\left(\begin{array}{cc}
\frac{-1}{(i+1)} \\
{\left[\frac{1(i+2)(2 i+1)}{2 i+3}\right.}
\end{array}\right] \frac{\frac{1}{2}}{\frac{1}{i+1}} \quad\left[\begin{array}{cc}
\frac{1(1+2)(2 i+3)}{2 i+1}
\end{array}\right]^{\frac{1}{2}} \frac{1}{i+1}\right)_{i+1}^{i+1} \quad i
$$

Inserting our solution $g_{\text {di }}^{i d}=\frac{G(i)}{2 a+1}$ gives, using vertex symmetry, $G(1)$ to be a constant (ie independent of i) Thus the couplings are: $\dot{g}_{1 i}^{i j}=1$ (with a partitiouar normalisation), and $g_{1+1, i+1}^{1 i}=$ $\left(\frac{21+1}{2 i+3}\right)^{\frac{1}{2}}$ and $\dot{g}_{1-1, i-1}^{1 i}=\left(\frac{2 i+1}{21-1}\right)^{\frac{1}{2}}$ from the vertex symmetry relation.

The above method seems not to be agplisoable beyond this simple oxamplay an we now turn to another method of obtaining the coupling for the $I=J$ isobar chain, which method was discovered by Fairies, (46)
and also by Udgeonkor and Singth (47) This aaloulation exemplifies the widely applicable techniqua of expanding Γ in terms of the Qigen vectors with eigen velue +1 , whioh are the even column of dst (see appenaix 1).

Briefly the method is as follows. Write $\Gamma=$ Cst $\Gamma^{\prime \prime}$ where $\Gamma^{\prime \prime}$ multiplies only the even oolumns of Cst, as Γ obeys (1 - C) $\Gamma=0$ and hence is even under s- u orossing; $\Gamma^{\prime \prime \prime}$ bies mièo elements corresponding to the odd columns. Γ also has zeros corresponding to channels which do not contain a member of the isobar ohain. The contraints the zeros of Γ put on Γ^{n} can be read off from Γ = Gst $\Gamma^{\prime \prime}$. If $\Gamma^{\prime \prime}$ is determined, one oen now read off the values of the products of couplinge whioh make up Γ. If $\Gamma^{\prime \prime}$ is undetermined, but contains only a few arbitary parameters, the equation may be inverted to find the constratata whioh the theory imposes on the elements of Γ. A little thought reveals that the above method of solving the bootstrap equations is, in general superior to the direct method. If the orossing matrix is of order $m \times m$, the expansion $\Gamma=0$ ost $\Gamma^{\prime \prime}$ immediately gives in terms of roughly $\mathbb{N} / 2$ parameters, oorresponding to the number of even eigenvectors of Csu. In most problems Γ has half or more of its elements zero, so that Γ "is determined or contains only a few parameters. The effort involved thus compares very favourably with that required to solve the m linear simultaneous equations
of the direot method. As an example of this technique we follow the calculation of Fairies, again for the isobar obtains $I=J$ and $|I-J|=\frac{1}{2}$.

The isospin crossing matrix for $1+1 \rightarrow 1+1$ has one odd eigenvector ($i+1,1,-i$) and the even eigenvectors span a two dimensional apace. For convenience we take ($0,1 / 2 i+1,1 / 2 i+3$) and $\left(\frac{1}{2 i}-1, \frac{-(i+1)}{2 i+1}, 0\right)$ as our basis. Thus the crossing matrix for the process $(i, j)+$ pion $\rightarrow(i, j)+$ pions has five even and four odd eigenvectors. If we consider the scattering of pions off isobars with $I=J$ or, for definiteness, $I=J+t_{k}$ the Intermediate states, $(I, J-1),(I+1, J),(I+1, J-1)$ and ($I-1, J+1)$ cannot exist. Putting the corresponding elements of to exp constrains Γ to be a particular linear combination of the five oven eigenvectors whit h h gives:

$$
\begin{aligned}
& (I-1, J-1|A| I J)^{2} \\
& =I \frac{(J+1)(2 I+1)}{2 I-1} a \\
& (I J|A| I J)^{2}=\frac{(J+I)(I-J)[2(I+J)+1] a}{(2 I-1)(2 J+1)} \\
& \text { (I J |alI J })^{2} \\
& =\frac{J(I+1)}{(2 I-1)}\left\{\begin{array}{l}
J(2 J+3)+(I+1)(2 I-1)+2\} a \\
2 J+1)
\end{array}\right. \\
& (I J+1|A| I J)^{2}=\frac{I(I-J)\{2(I+J)+3\}}{(2 I+1)(2 J+3)} a \\
& (I+1 J+1|A| I J)^{2}=I \frac{(J+1)(2 J+1)}{2 J+3} a
\end{aligned}
$$

where a is some normalising function.

Vertex symotry for the flrst and fifth relations gives the dependence of a on I and J as $\left.a=\frac{1}{I(J}+T\right)$, and wo put $a=$ $\frac{1}{I(J+1)}$ as we are free to choose the overall noxmalisation. Consider now the process $(I, J)+$ pion $\rightarrow(I+1, J+1)+$ pion. U:aing the orossing matrix gives, one can derive, in the same way, couplings which are consistent with the above with respeot to the factor $a, p r o v i d i n g(I-J)[2(I-J)-1]=0$.

Thus the above equations give the solution for the $I=\mathbf{J}$ chain. They are also consistent for the processes

$$
\begin{aligned}
& \left(J+\frac{1}{2}, J\right)+\text { pion } \rightarrow\left(J+\frac{1}{2}, J\right)+\text { pion and } \\
& \left(J+\frac{1}{2}, J\right)+\text { pion } \rightarrow(J+3 / 2, J+1)+\text { pion }
\end{aligned}
$$

within the isobar ohain $(I-J)=\frac{1}{2}$. Thare is also a third independent process not inoluded in the previous osse:
$\left(J+\frac{1}{\text { i }}, J\right)+$ pion $\rightarrow\left(J+\frac{1}{2}, J+1\right)+$ pion. Inspeotion shows that the above solution is consistent for the prooess. As the theory is unohanged by-alteerohenging.' I and J, the above gives a consistent solutiti for all prooesses for the ohain $|I-J|$ m

The recent work of Nogr (52) has provided fresh insight into finding the raprosentations of the strong coupling group. Uaing the identities relating $3-J, 6-J$ and $9-J$ aymbols, Noga is able to Find solutions of the problem for the oase $\mathrm{K}=\mathrm{au} u^{I}(2) \quad \mathrm{au} u^{J}(2)$. Pepresentations of the strong coupling group are olasaified by the value of $p=\max |I-J|$. For the soattering of pions ofe baryon
isobars, Nog obtains the solution:

$$
E^{i j}=(+1)^{i+j+p}((2 i+1)(2 j+1))^{\frac{1}{2}}\left\{\begin{array}{lll}
1 & 1 & I \\
p & j & j
\end{array}\right\} \Delta 0(p)
$$

A process involving strange mesons will change the p values of the isobars Mega considers such inelastic processes of the type $\pi+B\left(i^{\prime}, j^{\prime}, p^{\prime}\right) \rightarrow I+B(i j p)$. Equating the and μ channels gives a solution for the couplings of strange mesons, since one vertex in each diagram is already known, being between isobars with the same p values. solution is:

$$
G_{I}^{1} 1 \begin{aligned}
& 1 \\
& J
\end{aligned} p=((21+1)(2 j+1))^{\frac{1}{2}}\left\{\begin{array}{lll}
\left\{\begin{array}{lll}
\frac{1}{2} & 1 & I \\
1 & j & J \\
q & p & P
\end{array}\right\} \quad G(p, \varphi)
\end{array}\right.
$$

where

$$
q=(I+J-i-J) .
$$

The symmetry properties of the 9-J symbol lead to invariance under a further su(2) group depending on the variable p. Postulating this invariapoe to exist for the scattering of i -wave apus, Nogs, again equating and u channels (this time for a process invelippes arbitrary wave mesons) obtains the coupling

$$
G_{i}^{k} \begin{array}{lll}
k & q & q \\
i & j & p
\end{array}=\left\{\begin{array}{lll}
x & i & I \\
l & j & j \\
q & p & p
\end{array}\right\}((2 i+1)(2 j+1)(2 p+1))^{\frac{1}{2}} a(k, l, q)
$$

for the vertex

where the meson has $I(J, P)$ spin $K(\ell, q)$.
By moans of this sequence of bootstraps, Nogs is able to obatip the solution for the soattering of masons in an arbitrary wave whig Salta (53) obtained by group theoretical means. It should be mentioned that Bishari and Sohwinmer (57) obtain the same solution for p-waye mesons using a similar method to Noga's. They do not however appear to sea the significance of their result.

Mass formulae

Strong coupling theory also enables one to make statements about the masses of the isobars. Using the unitarily equation, constraints are imposed on the isobars masses sufficient to determine them, apaptis from a small number of arbitrary constants which may bi fired by setting the masses of the lowest isobars equal to their experimental values. The masses of the higher isobars are now fixed and appears in remarkable agreement with the experimental data, as remarked by Lovelace (54) at the Heidelberg conference.

The first stop is to find a solution the Chow-Low equation wi the oorreot pole term as given by the strong coupling condition. The pole term is: $-\frac{D \beta \alpha}{\omega^{2}}$
where

$$
D \beta \alpha=\left[A_{\beta}^{*},[M, A \alpha]\right]
$$

For s-waves, the solutions is: $f_{\beta a}(v)=\frac{\Lambda_{p} x_{i}}{2 m\left(-\pi^{2}-x^{1 k}\right)}$
where m ia the meson mass. The unitarity equation iss

$$
\begin{equation*}
\text { mm } D_{\beta \alpha}=\sum_{\gamma} D_{\beta \gamma} \quad D_{\gamma \alpha} \tag{2.16}
\end{equation*}
$$ For this to be valid in the physical region W>M, the mass diffarempes must be small compared te the meson maser. This means that the couplings must be large:

For p or waves, a out-off is necessary. In this ouse the solution . is: $\quad \rho_{\beta \alpha}(w)=\frac{D \beta a}{-w^{2}-1 R r^{3}} \quad$, where R is the out-off radius. This gives the unitarity equation:

$$
2 R D_{p a}=\sum_{r} D_{p r} \quad D_{r a}
$$

The condition for this solution to be valid for $\nabla>\mathbb{R}^{-1}$ is that the mass differences be small compared to R^{-1}. This implies that the couplings must be large compared to the out-off radius R.

The above deviations of the unitarity equations (2.16), (2.17) ip not seem very satisfactory. Perhaps a bettor argument is that used by Salta (53) who shows that a formal solution of the Chew-Low equation may le obtained in the strong coupling limit, with ne extraneous singularities except at infinity, provided.

$$
D_{\beta \alpha} \beta_{\alpha}=\sum_{\gamma} D_{\beta \gamma} \text { D.s } \quad \text { (K), where } K \text { is some kinematic }
$$

factor which will be related to the out-off.
Whether one takes equation (2.16), (2.17) or (2.18), one may divided D by $2 m, 2 R$ or X to obtain the same fig for the unitarily -quation:

$$
\Lambda_{\beta \alpha}=\sum_{\gamma} \Lambda_{\beta \gamma} \Lambda_{\gamma \alpha}
$$

where for s- wave a $2 m \Lambda_{\beta i}=D_{\beta a}$, for p waves $2 R \Lambda_{\beta \alpha}=D_{\beta \alpha}$ We take as our fundamental relations equation (2.19) and

$$
\Lambda_{\beta \alpha}=\left[A_{p}^{+},\left[\eta, A_{\alpha}\right]\right]
$$

(2.20), where
$\eta=W / m$ for s waves and $\eta=\boldsymbol{W} / \mathbf{R}$ for p waves.
Let us consider the case where the symmetry croup X is $\mathrm{su}^{I}($ ($)$ and the process $I+\pi \rightarrow J+\pi$.
The deompeaition of the matrix elements of λ in terms of invariant channels can easily be effected, using the techniques used earlier to obtain the bootstrap equation.

$$
\begin{aligned}
& \left\langle J_{z}\right| \lambda_{\beta \alpha}\left|I I_{z}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& \sum\left(M_{x}-M_{I}\right) \quad E_{I}^{I} \quad E_{X}^{J} \quad C\left(\begin{array}{lll}
I & 1 & X_{1} \\
I_{2} & \alpha & X_{2}
\end{array}\right)^{C}\left(\begin{array}{lll}
J & 1 & K \\
J_{2} & \beta & X_{p}
\end{array}\right)(-1)^{\beta} \\
& \text { E } \\
& +\sum_{K^{\prime}}\left(M K^{\prime}-M J\right) E_{K^{\prime}}^{I} \quad J \quad C\left(\begin{array}{ccc}
I & 1 & \frac{1}{K} \\
I_{2}^{\prime} & -\beta & K_{2}^{\prime}
\end{array}\right) \quad\left(\begin{array}{ccc}
J & 1 & I^{\prime} \\
J_{2}-\alpha & K_{2}^{\prime}
\end{array}\right)(-1)^{\alpha} \tag{2.22}
\end{align*}
$$

$R(J I ; K)$ is the projection of Λ into the X invariant channel.
Using the bootstrap condition, one may rewrite equation (2.23). to give:

Note that $\mathrm{R}(\mathrm{JI} j \mathrm{X})$ is the contribution the pele terms would give to the first moment sum rule for the process.

In terms of the Rs, the unitarily equation (2.19) becomes:
where the summation is over $J^{\prime}=\mathbb{K}-1, \mathbb{K}, \mathbb{K}+1$.
Those two facts are the essential ingredients in the oaloulatiop. of Cronstrom and Nogs, which we will discuss later.

Having obtained the unitarily equation in various forme, it is posable to put limitations on the form of M. Firstly as M is an invariant of the symmetry group $\mathrm{K}_{\text {, }}$ must be a function of the Casimir operators of X. The early strong coupling papers $(41,42)$ assumed that η was a linear combination of the second order Casimir operators of K. Goebel (45) gives an argument for this:

Expand $\eta=a+b i J i+G i j J i J j+d i j k J i J j J k$

$$
(2.27)
$$

whore $J i$ are the generators of K and $a, b, \ldots . . \quad$ are invariants of X . Then substituting gives:

$$
\begin{equation*}
A_{a \beta}=-C i . j(J i)_{x p}(J j)_{\beta \sigma} \quad \text { Ap } A_{\sigma}-d i j k(J i)_{a p}(J j)_{\beta} \sigma A_{p} A_{\sigma} d k_{p} \ldots . \tag{2.28}
\end{equation*}
$$

where $\left[A_{a,}, J i\right]=I(J i)_{\text {sp }} A g$.

Goebel argues that as a representation of the strong ooupling group oentains isobars with arbitreany high values of the Casimir oporaters, the matrix elements of Λ can be made arbitrarily large by taking them between aufficiently high isobars. This will contradiot the unitarity condition, equation (2.19) whioh, being non-linear, limits the siso of Λ. To prevent this happening, it is necessary for all terme boycuici the Gis term to vanish, thus giving the required form for ' If Were the matrix elements of the As to deorease for highen isobars, it would be possible to retain some additional turms in the expansion (2.27). The present author can see no a priori reason why this decsesese should not oocur. Howevor in the caloulations performod, it does not oasur and Goebels argument holda.

Rangwala (55) gives a mothod by whioh a difference equation may. be found for η. As Λ is idempotent, it must have oigenvalues 0 of 1. Thus the trace of $\hat{\Lambda}$ is $x I$ (I is the identity operater in isobar space) where k is an integer between sere and N, the dumension of the regular
 Putting ${ }^{\prime \prime}=8 / 2 A^{2}$ where $A^{2}=\sum_{\alpha} A_{\alpha}^{+} A_{k}$ and f is a funntion of the Casimir operators of K , one obtains:

$$
\begin{equation*}
\sum_{\alpha}^{S} \frac{A \alpha}{\sqrt{\Lambda^{2}}} f \frac{A^{+} \alpha}{\sqrt{A^{2}}}-P=\ln I \tag{2.30}
\end{equation*}
$$

This yields a linear differense equation for \$. The solutions of thats equation are not necessary solutions of equation (2.19) as taking the
trace introduce spurious solutions. Substituting back y Rangwala abṭajn! the usual mass formulas for the cases whore $K=a u^{I}(2)$ and $X=a u^{I}(2)$ Qu ${ }^{J}$ (2).

We reproduce here Goober's mass formulae for the case $K=a u{ }^{\mathrm{J}}(2)$ - Bu (3) (9,8). It can be seen that fixing the mass formula c by two experimental masses, the other masses are approximately correct, and that the ordering of the isobars with respect to their masses is the sap for both experimental and theorectioal masses. Ae Lovelace remariced (54), this success cannot be repeated by, for example, the quark model:

Strong Coupling and Superupnvergenve

Pandó: (58) showed how saturating auperoonvergence relationṣ leq̣ to solving the $I=J$ isobars sories for $K=s u^{I}(2) 0 \mathrm{su}^{J}(2)$. Knowing the similarity between boetatrap and auperconvergence methods, and the relationship between the strong coupling equation and the bootetrap -quation, this result comes as no aurprise. Hewever, strang couphing theory embraces more than the equation for the couplings and so it in . worth while looking in greater detail at the connection between strong coupling and the saturation of superconvergence relations. Consider a process $N_{1}+$ meson $\rightarrow N_{2}+$ meson whore N_{q}, N_{2} form representations of X_{p} Conaider the invariant abannel k.
where the pole tarm contains only bound state terms. If $f_{k}(w)$ superconverges, we obtain: $+\infty$

$$
0=\lambda^{2}\left[I-\operatorname{crc} \cdot{ }^{\prime}\right] d^{f} \operatorname{ggx}^{N \prime}+\int_{m}^{+\infty} \operatorname{Im}\left[\mathrm{fk}(w)-\operatorname{ckx}^{\prime} f^{\prime} x^{\prime}(w)\right] d w^{\prime}(2,32)
$$

If the integrai can be saturated by resonances we obtain λ^{2} [I-Clek 1] $8_{\mathrm{K}}^{\mathrm{IN1}} \mathrm{E}_{\mathrm{K}, 1}^{\mathrm{N} 2}=$ whore the assumed summation is over both bound states and resonances. We thus obtain the statio bootstrap, and henge the stroas ooupling oendition.

If we turther ssaume that the 1st moment of $f k\left(\begin{array}{l}\text { (F) } \\ \text { superoenverges }\end{array}\right.$
we obtain

It is not possible to saturate this integral with resonanoes, it mupt have contributionsfoentho two partiole rnitarity cut. If we asaume oniy these contributions we are in a position to obtain information from the
 e \boldsymbol{e}, one obtains

$$
-R\left(X_{2}, N_{2} ; k\right)+\frac{D k}{2 m+e}=0
$$

In the limit $E \rightarrow 0$, one obtains the usual conditions $2 \mathrm{~m}=\mathrm{m}=$ $R\left(\mathrm{~N}_{2} \mathrm{~N}_{2}\right.$; x$)$ and the unitarity conditien,

In the po wave case, one rums into trouble beoause of the kinomatefo factors and it is not possible to find a simple solution. For fle to superconverge in this case, it must also oboy superoenvergence rela tione for its first moment and a conditian on its socond moment. These do not in general hold for strong ooupling theory solutions. Hewever Cronstróm ani Noga (59) found a situation in which one may apply these techniques.

Considex $K=s u^{I}(2) \otimes u^{J}(2)$ and the $I=J$ isobar chain. The ohanne. $(I+1, I-1)$ for the process $(I, I)+\pi \rightarrow\left(I_{0} I\right)+\pi$ oontains no 1sobar sand obeys axact elastio initarity. This means that $f_{k}(w)=0$ is a pessibility on the unitarity out. Then using the moment sum

orossing matrices for the process. This ylialids a difforence equation for the masses which leads to the sam solution as Rangwala. Cronstrom and Noga, use an W / D mothod and argue on the oreder of macnitudes of the mand difforences of the difforent terms. The meohanism is assentially that given above.

The point at whioh the strong coupling oondition can be of use in is the case of sum rulesnin allowing ene to negleot all termis in the unitarity integral apsert from the terms required to unitarise the Born term. This can be used to justify the simplified form of the unitarity condition.

CHAPtER 3

Bootstrap Model of Filo and Wong

The work in this section is concerned with a bootstrap model, including all three channels (s, u and t), which was developed by Pula and Wong (60) and modified and extended by Patin (61). The motivation for this work was a desire to obtain higher symmetries from a dynamical model, as happens with current algebra, and avoid the problems associated with the use of su(6) as a symmetry groups As the main conagrn of the authors seems to have been to indicate. a rough model, the dynamical assumptions are rather tenuous (67)

Fulco and Wong obtain their bootstrap equation by representing the effect of crossed channel processes by effective poles in the partial wave amplitudes using the static model. Following the work in chapter one, if there is a particle in an invariant channel of the direct ohannel, one may write down the condition for it to exist, with res m_{\propto} and coupling with strength γ_{α} to the system:
(3.i)
where $\mathrm{C}^{\text {au }}$, $\mathrm{G}^{\text {st }}$ are the crossing matrices for some internal symmetry group, $\frac{X_{3} 3^{4}}{3+{ }_{\beta}^{9}}$ is the pole representing the effect of the invariant channel β in the u-channel and $\frac{X_{p}}{S_{t}}{ }_{\rho}$ represents
54.
the efirect of the invurisat ohannel P in the t-ohannel. Making the Linear D approximation one obtains:

$$
\gamma \underset{s i n}{s}=\left(\begin{array}{l}
4 \omega \tag{3.2}\\
\beta
\end{array}+\left(\begin{array}{c}
s i \\
\beta
\end{array}\right.\right.
$$

The argument used to give meaning to this equation is that the u and t - ohannel poles oorrespond to the exchange of single pertinals states and the $\%$ are the products of the couplings at thase particles to the system. from ohapter one, we believe that this may be a reasonable asuimption for the u-channel poles, which sorreaponds to the heavy partioles in the static approximation; It zeems doubtioul that this is also true for the t- obannel poles, as in reality the t- channel gives a compliatied cut structure. Kiven if the use of effective poles is permis sible for the t - ohanel nontributions, it may not be passible to attach bilginificance to the xasidues. For the u ohannel, the higher mass exohange poles are fiurther from the physioal region which may allow the neglect of highar masses exchanges without too much error. This is not trice of the to channel whioh contributes within a small finite vergiong and wa have no guarantee that the lowest mass oxahanges dungy,ate to the extent that the effective poles have residues glyen ly tich souplings of the lowest mass exchanges.

With these assumptions we obtain, equating the s and u
akarmeis: $\Gamma^{-1}=$ Csu $\Gamma^{-7}=$ Cstit (3.3)

the conventional bootstrap equation.
Patil, in his analysis, imposes less constriants on $\mathbb{I}^{\text {pl }}$ which still allows one to derive useful relations between the mesonbaryon couplings in Ir: From dispersion relations he obtains:
where the Da and As are . dynamical factors. He argues that in the static model it is reasonable to approximate the u - channel contribution by the crossed physical poles of the particles in that ohannel. Hence he obtains

$$
\begin{equation*}
\Gamma_{\alpha}-C_{\alpha \beta}^{\sin } \Gamma_{\beta}^{1}=A_{\alpha p} C_{\alpha p}^{S i s} \gamma_{p}^{c} \tag{3.4}
\end{equation*}
$$

So far we have not mentioned spin. If we deal with particles with spin, it is again reasonable in the static limit to use static spin crossing to give the contribution of the p-channel poles. The concept of spin is not well defined in the station model of p- wave scattering and again there is trouble with the t - channel exchanges. Allowing the dynamical factors in A to commute with the internal symmetry group gives:
where $I(J)$ refers to the internal (spin) symmetry group. From equation (3.5) it is possible to put constants on A from consideration of the spin and parities of the particles exchanged.

Syin and Statisties for mespn exohaness

We forget for a-mpment the static model and simply consider the diagram for meson exchange in meson-baryon soattering and its symmotry under s- u arossing whioh if dpfinad as the interohange of the external mesons.

The external mason have apin and parity $\mathrm{JiP}^{P 1}$ and the internal ape J. Fop what follows the baryon vertex is of no importange.

Lot the externai masons be in" an i wave in the t- ohannel. Then conservation of spin implies that

JCJ! J! OR (3.6)
Parity conservation at the vartar implies that $P F(-1)^{l} P^{\prime} P^{\prime}=(-1)^{\prime}$
(3.7) Bose statistios implies that the threa meson vertex is symmetyicail under the thterohange of the external misons. Thus $(-1) \mathcal{S}_{I} I=1$, (3.8) where $\eta_{I} \because$ is $w,+1(-1)$ according as the vertex is symmetrical (anti-) under the internal symmetiry arosesinge Equations (3.7) and (3.8) imply that $7 I=P$. Enowledge of the internal symmetry representation to which the exchangepblonge usually deteraines MI (This is not the case where the extempali mepons are su(3) ootets, as 88 containg ootets whioh couple both: aymmetrically and antipymetricaily), and hanoe deternimes P. Bquations: (3.6)
and (3.7) omatrain $贝$ and there pay not be a value of k to satisfy both. Equation (3.7) oniy determines whother k is odd or even and it is easy to see that as fonges J jo 0 , there will exiat both odd and even values to l to satisfy equation (3.6). If $J^{\prime}=0$ $J=\ell$ and hepoe only exohanges of zestural uirity, with $P=(-1)^{\top}$, are allowed.

Returning to equation (3.5), we see that the left hand side ohanges siep when operated can by Gaú civie jhenoe the might hand side must be an odd elgenvector of cifu odic An exchange of positive (negative) parity will hava $\eta_{\bar{j}}$ a, $+1(-1)$. Expanding A in terms of the oolumpsof Cat ahpws thet oxphinge with $\eta_{i}=1(-1)$. oan oaly multiply odd (oven) colume of cat. 9 When the spins are jow, this result may be sufficte at to dotepminp A_{p} apart from an arbifary normalisation multiplying eaph fadioldual exphange term of $\Gamma^{\prime \prime}$. We now indidoate the differences betwean the approaches of Fulao and Wong, and Patil. The former opasider acial veotor mesons soattering off baryons. This epablas them to obtain a consistant solution to their equations with the exphange of a vector ootet and singlet and of an axial vector octot which may be identified with the exteryal mesons. This identification, as we shaill see, is oonsistent aqd leads to a podel with a smaller number of mesone than reyuired by Patil. He oonsidars the p-wave soattering of pse: dososiar mespas, whioh is a physiohlly pbaseqfed prooess,
whereas axial veotor mesons have not beep tapentified physically. The p.s potet cannot be exchanged, menting wanatusal parity and the external pa \rightarrow mesons are spin 0 . Patil introduces a tensor (2^{+}) ootot which having natural parity, cap be exphanged and will contribute in the same way as an A.V potet exchange.

In the direot-ohannel p- wave p.e. peson soattering is mathomatically identical with A-V meapp scattering. In the t- obannel, Fuluco and Woug's $\left(8,1^{\dagger}\right),\left(8,1^{-j}\right),\left(1,1^{+}\right)$exahanges contribute to the same elements of $\Gamma^{\prime \prime}$ as the $\left(8.1^{-}\right) ;\left(1,1^{-}\right)$ and (8.2^{+}) exchanges of Patil. Thus the two oaloulations aro mathomatically equivalent, oxiopt. in so far as we are requifed to identify the internal and exterpal ($8.1^{\boldsymbol{t}}$) mesons in the F.W. calounktion. Thete constrade impose; the oppaition that the f/a ratios of the coupling to the bapyop optet mupt be equal As both f and d contributions to $\Gamma^{7 \prime}$:aryfrom (8.1^{+}) terms, the effect of 4 shouid be juat an overall noxmalisation faotor for the two texpes, so diviaing tham should give the same as the ratio of the direot ohamsel f and a oontibutions.

In the case when Gat has only one odd and oven columen and the contribution of a speoific exohange is fixed, Fuloo and tiong put the nomealising feotor derived from A_{5} to unity. This gives significance to the e2ements of Γ^{\prime} as produots of couplings, The resuits for the mesonibaryon ooupligg (63) are consistent for all processes involving the $\left(8, \frac{1}{2}\right)$ and $(10,3 / 2)$ iso-bars. As we.
shall see in chapter 4, this reflects the use of su(6) as a poxinvariance group.

After this discussion, a brief remark on how to solve the mathematical problem. We have shown that the equation can be reduced to: $\Gamma^{\top}-\mathbf{G s u p} \Gamma^{7}=$ Cst $\Gamma^{\prime \prime} \quad$ (3.3), where $0=C^{J} 0 C^{I}$, and Γ is related, as indicated previously, to the the channel exchanges, which fact imposes constants, in the form of zero elements, on Γ^{\prime}. . Γ alpo has zero elements corresponding to Leo-bars not in the chain oppsidoped.

The solution of equation ($3: 3$) has most easily been effected by writing $\Gamma=$ Cst $\Gamma^{\prime \prime}$ (3.9), Then operating with Csu, we see that the non sere elements of Γ^{71} equal twine the corresponding elements of $\Gamma^{\prime \prime}$ - Thine constraints on Γ^{Γ} and $\Gamma^{\prime \prime}$ can bo imposed on Γ and $\Gamma^{\mu \prime \mu}$ in equation (3.9). The elements of ["eprrecipariding to even columns. of Cat an be considered as frae parameters with no physical Bfgnificamce. Using equation (3.9) and its inverse, the effects. of the constants of Γ^{\prime} on Γ^{\prime} and vice versa, may be found.

1. $\left(8, \frac{1}{2}\right)+(8,1) \rightarrow\left(8, \frac{1}{2}\right)+(8,1)$

As in previously we have chosen linear combinations of the octets which couple symmetrically anil antimymetrioally.e The anon p
 the ($8, \frac{1}{2}$) state and $\Gamma 10$ ocrepeponding to the $(10,3 / 2)$ state. The
expansion of the Γ s as pairs of couplings shows that Γ As $=\Gamma 8 A$

Let us now consider Γ^{7} !. In the a ohapnel it does not matter which vertex we name first, as Γ hs and $[s f$ are quid. In the to channel we must pay attention to the point:, as ode vertex is a the se meson vertex and the other a baryon-meson vertex. Wii defer to the three mason vertex by the first index. As we have defined $s \rightarrow u$ crossing as ercobarithy the mesons, this first index determines the aymotry of the chanel wader $B \rightarrow$ crossing. Thus the Sis, 8 an columns of cat are odd and the $8 \mathrm{st}, 8 \mathrm{sm} 001 u m a s$ are oven under $t+4$ su(3) dressing.

With $P=-4$, the rector octet contributes to ($8 \mathrm{AS}, \mathrm{O}$) and (8 an, 0) t the ratio of these tara giving the f / d ratio of the vector coupling to the $B \bar{B}$ system, The aril octet contributes
 axial singlet to $(1,1)$.

The spin orossing metripoes are: (ina)

$$
C_{s c}^{s}=\left(\begin{array}{cc}
0 & 1 \\
\sqrt{7 / 6} & 1 \\
\pi / 6 & -1 / 2
\end{array}\right) \frac{1 / 2}{3 / 2} \quad C_{E S}^{5}=\left(\begin{array}{cc}
\sqrt{2} & 3 / 2 \\
c \sqrt{4 / 3} & 2 \sqrt{4 / 3} \\
2 / 3 & -2 / 3
\end{array}\right) 0
$$

The odd column is the spin 1 column. For the sui) orosging cts F Gat and: (63)

The odd 001 un are: Bes, Baa, 10, To
We now have to solve P a($\left.\mathrm{Gat}^{\top} \theta \mathrm{cs}^{\boldsymbol{T}}\right) \Gamma^{\prime \prime}$
where $\Gamma=\left(0, X^{2} \Gamma, \forall \Gamma, X \Gamma, \Gamma, 0,0,0 ; 0,0,0,0,0, \Gamma(0,0,0)\right.$
and

$$
\Gamma^{\prime \prime}=\left(x_{1}, x_{2,}, x_{3}, y_{2 d}, y_{2}, f_{v}, c, 0, x_{4}, y_{2} A, y_{2} d n, y_{2} f_{A}, x 5, x 6 ;\right.
$$

where $x_{1, \ldots}^{i s}$ are free parameters corresponding to even columns and the zeros of $\Gamma^{\prime \prime}$ correspond to these being no exchanges of $10, \overline{10}$ and 27 plats of mesons. The way to solve this problem is to invert the equation and find the sere or Γ "in terms of Γ The 10 and $\bar{T} \mathbf{0}$ equations are the same for our choice of Γ and we have $\gamma_{1:}^{\prime}=\gamma^{2}$ in/ er and $Y=\sqrt{5 / 4}$.
Thus $\partial_{10}=\Gamma$ and $\gamma=\sqrt{5 / 4}$
This gives $\mathrm{fA}=+\sqrt{5} / 4 \Gamma, d A=5 / 6 \Gamma, A_{i}=4 / 3 \Gamma$. $d r f_{i f}=J \overline{3}$ $\alpha A / P A=\sqrt{5 / 4}$ which shows that the coupling of the $A-V$ mesons
to the baryons has the same fid ratio for the internal and external mesons. This corresponds to an fld ratio of $3 / 2$ which is the su(6) value. Since $d_{v}=0$, the vector octet couples antisymmetrically to the baryons which is

If we refer to the mesons as A, V and 1, we have:
$g^{2}{ }^{2} B \beta B=g^{2} A B 10, g^{2} A \beta \beta B=5 / 4 g^{2}{ }^{2} A \beta 10$. These give $g^{2} A B \beta=$ $9 / 4 E^{2}{ }^{2}$ A $_{f} 10$. Identifying the elements of Γ with t-ohannel couplings gives:

88B8ay gA AY $==\sqrt{27 / 8} \mathrm{c}^{2}$ Apps

These results are consistent with su(6). Fulco and Foin olaim that this is also true for their results for the process $A+B 8 \rightarrow$ $A+B 10$ (ie deauplot production). Patin finds the results for baryon couplings for $\mathrm{PS}+\mathrm{B1O} \rightarrow \mathrm{PS}$. + B10 are also consistent with sur) We have performed both these calculations in Pulco and Wong's model and have found results consistent with su(6) for both meson-baryon and meson-meson couplings:
2. $(10,3 / 2)+(8,1) \rightarrow(10,3 / 2)+(8,1)$

8 - $10=8$ - 10 © 27 (+35 .
$8 \oplus 8=1 \oplus 8 s \oplus 8 A \oplus 10 \oplus \overline{10} \oplus 27$

$$
10 \oplus \overline{10}=1.8 \oplus 27 \oplus 64
$$

63.

Thus the t - channel invariants are: $1,8,8 A$ and 27 where again the index of the octets refers to the 3-meson coupling. The eu (3) crossing matrices are (63)

The only odd column of Cat is 8A. The su(2) oroseing matrices are (39):

$$
\text { Cts }=1\left(\begin{array}{ccc}
\frac{1}{2} & 3 / 2 & 5 / 2 \\
-\sqrt{\frac{3}{3}} & -2 \sqrt{3} & -\sqrt{3} \\
-\frac{\sqrt{10}}{6} & -2 \cdot \frac{\sqrt{10}}{15} & 3 \cdot \sqrt{\frac{510}{10}} \\
-\sqrt{6} & 4 \cdot \frac{\sqrt{6}}{15} & -\frac{\sqrt{6}}{10}
\end{array}\right)
$$

The odd oolumis of Cat is the apin 1 columne
Thus the odd t- ohannol invariants are ($8 \mathrm{~A}, 0$) $,(8 \mathrm{~A}, 2),(1,1)(8 \mathrm{~s}, 1)$ and (27,1). The axial veotor mesons may contrefbute to the (1,1) and (8s,1) elements. The veotor ootet may contribute to the ($8 \mathrm{~A}, 0$) and $(8 A, 2)$ elements. The $(27,1)$ element is sero as we allow no 27- plet exohange. This is the only oonatrant on Γ ". Hence it is not gurprising that we oan solve for Γ, whore Γ has contributions for the ($8, \frac{1}{2}$) and ($10,3 / 2$) ohannels only.

$$
\Lambda^{3} 27=0 \Rightarrow 8=\Gamma 10
$$

Then: $\Gamma^{\prime} 8 \mathrm{~A}, 0=-3 \sqrt{\frac{30}{10}}, \Gamma_{1,1}^{\prime}=-4 \sqrt{2} / 3, \Gamma_{81}^{\prime}=-\sqrt{5} / 3$ and $\mathbb{F}^{8} 8 \mathrm{~A}, 2=0$. It is interesting to note that if we had allowed for a spin $5 / 2$ ootet to oontribute to Γ (this ootet being the Hegge reourrenioe of the apin $\frac{1}{2}$ ootet), the vanishing of the $\mathbb{P}^{\prime} 8 A, 2$ would imply that its contribution vanishede Inoreasing the number of baryons in the theory seems in thils aase to imply a need for further mesons and vice versa. The resulting implications for the oouplings are:

$$
\begin{aligned}
& \text { g10, } 10, \mathrm{~V} \text { lAV }=-3 \sqrt{30 / 10 \quad 8^{2}{ }^{2} 10,10}
\end{aligned}
$$

$$
\begin{aligned}
& g^{10, \text { TAm }} \quad \text { AAA }=-55 / 3 \quad 8^{2} A j 010 \\
& g^{2}{ }^{2} 108=g^{2}{ }^{2}{ }_{10,10}
\end{aligned}
$$

which are again consistent with su(6)
3. $\left(8, \frac{1}{2}\right)+(8,1) \rightarrow(10,3 / 2)+(8,1)$

For this process all channels contain two 88, 10, 27. The mu (3) crossing matrices are (64)

Cat= | 8 c |
| :---: |
| $8 A$ |
| 10 |
| 27 |
| $2 / 5$ |
| $-\sqrt{1 / 5}$ |
| $\sqrt{2} / 5$ |
| $-2 / 5$ |

Note that as all three channels contain the same invariants, the . above matrices differ only by phase factors. The odd columns of Cst are. $8^{\mathrm{e}}, 10$.

The spin orossing matrices are (39)
Cat $=3 / 2\left(\begin{array}{cc}1 & 2 \\ \frac{1}{2}\left(\frac{1}{2}\right. & 5 \sqrt{3} / 6 \\ 10 / 4 & -\sqrt{30} 12\end{array}\right) \quad C t s=2\left(\begin{array}{cc}\frac{1}{2} & 3 / 2 \\ \frac{1}{3} & \sqrt{10 / 3} \\ \sqrt{3} / 3 & \sqrt{\frac{30}{30}}\end{array}\right)$

The spin 1 colum of Cat is odd.
Thus the odd t - channel invariants are $(8 a, 2),(27,1),(8 a, 2),(10,2)$.
As we have no suah multiplets we oan put the 27 and 10 oontributiona to $\int^{-3 i}$, to zero. Inserting only the $\left(8, \frac{1}{2}\right)$ and $(10,3 / 2)$ elements into Γ, we obtain:

$$
\Gamma_{8 B}=\sqrt{5 / 4} \Gamma_{8 A} \text { and } \quad \Gamma_{B A}=\Gamma_{10}
$$

This gives: $\Gamma_{8 s}^{\prime \prime}=75 / 6$ and $\Gamma^{\prime \prime} 8 a=0$
This gives for couplings:
The $1 / \mathrm{d}$ ratio for the baxyons ootet - A V coupling is again $3 / 2$

$$
\begin{aligned}
& B A, 8,8 B \quad B A, 10,8 B=B A, 8,10 \quad E A, 8,10 \\
& B A, \sqrt{0}, A \quad B A, A, A=\sqrt{5} / 3 \quad B A, 8,10 \quad B A, 10,10
\end{aligned}
$$

Again these are consistent with su(6). The ratio of the mesonbaxyon and meson-meson couplings is given using su(6) notation as gMBB/ gim $=8 \sqrt{3} / 15$. This ties in with the results of Uageonkar (65), for his su(6) bootstrap caloulation.

We note, as do Fuloo and Wong, that if one considers the soattering of the axial veotor ginglet off the baxyons one obtains results consistent with the previous results. In faot, the soattering off the (8.2) gives, $68,8,1 \mathrm{~g} 1,1,1=4 / 3 \mathrm{~g}^{2} 188$ and sattering off the $(10,4)$ gives, $g 10,0,1$ g1,1,1 $=-4 \sqrt{10 / 15 ~} \mathrm{E}^{2} 1,10,10$.

The previous work would still be valid if the veotor mesep were instead soalar, as beth partioles have natural parity. In thds anse one could scatter the scajar ootet off the baryons and obtain:

$$
\begin{aligned}
& { }_{885}^{\mathrm{a}} \mathrm{~s} \text { gass }=\mathrm{g}^{2} \mathrm{~g}, 8,8 \mathrm{a} \\
& g^{1070 s} \text { gses }=\sqrt{10 / 4} \quad 8^{2} \mathbf{M , 1 0 , 1 0}
\end{aligned}
$$

The results obtained above for the scattering of the axial Vector singlet and the suggested soale: ootet are a simple sonsequence of $\mathrm{su}(3)$ and $s u^{\mathrm{J}}(2)$ symmetry. The axial veotor singlet belongs to the regular representation of su ${ }^{\mathrm{J}}(2)$ and the soalar ootet to the regular representation of su(3). The regular representation transforms like the generators of the group and the above results reflect the commutation relations of the generators of su^{J} (2) and $\mathrm{su}(3)$.

Au(6) Model of Uagaonkar. (65)
Udguonkar takes the Yuleo and Wong bootstrap equation and applies it to meson-baryon and meson-meson scattering in su(6).

For scattering of the meson 35 plet off the baryong 56 plet, the crossing matrices are (66)
Csu $=\left(\begin{array}{cccc}(70) & (1134) & (56) & (700) \\ \frac{1}{4} & -27 / 20 & -2 / 5 & 5 / 2 \\ -1 / 12 & 17 / 20 & -2 / 45 & 5 / 18 \\ -\frac{1}{2} & -9 / 10 & 11 / 15 & 5 / 3 \\ \frac{1}{4} & 9 / 20 & 2 / 15 & 1 / 6\end{array}\right)\left(\begin{array}{c}(70) \\ (1134) \\ (56)\end{array}\right.$
asad
$G_{B t}=\left\{\begin{array}{l}\frac{135}{28} \sqrt{1 / 10} \\ -5 / 28 \sqrt{1 / 10} \\ -45 \sqrt{\frac{1}{10}} \\ -9 / 28 \sqrt{\frac{1}{10}}\end{array}\right.$
(358)
$\sqrt{6 / 8}$
$-\sqrt{6 / 24}$
$\sqrt{6 / 6}$
$\sqrt{6 / 24}$

$(35 a)$	1	
$\sqrt{3} / 4$	$\frac{1}{14 \sqrt{10}}$	(70)
$\sqrt{3} / 36$	$\frac{1}{14 \sqrt{10}}$	(1134).
$\sqrt{3} / 6$	$\frac{1}{14 \sqrt{10}}$	(56)
$-\sqrt{3} / 12$	$\frac{1}{14 \sqrt{10}}$	(700)

The aimplest solution of Γ - cau $\Gamma=$ Cst $\Gamma^{\prime \prime}$ is having oniy the 56 plet in Γ and the 35 plet in Γ^{\prime} This gives grabs/gioni $=$ $\frac{15}{8} 53$ which is the result of Fulco and Wong. This agresment of the two oaloulations will be explaịned in ohapter $4 \cdot$

We note in passing that Uagaonkar applies the \mathbb{P} W equation to meson-meson scattering, where the statio model cannot be used to justify it.

All three channels are equal and $\Gamma_{2} \Gamma^{\prime}$. The equation has a selution with sontaining only 35 plet. As the 35 plet forms tine regular representation of au(6), this results is similar to those for axial veotor singlet and soaliarir ootet soattering in tha previous section. It follows from the oommutation relations of su(6).

CHAPTER 4

Intexmediate Coupling Theory

Kuriyan and Sudarshan (14) point out that the work of Cook, Goebel and Sakita (42) on the strong coupling model contains an exreor. There is an implicit assumption that the meson source operator is given by $\lambda^{\prime} A_{\alpha}$ where A_{a} contains no further dependence wiz λ - The strong coupling oondition, then implies that $\left[A_{w}, A_{j}\right]=0$. Without the assumption that A_{K} is independent of $\boldsymbol{\lambda}$ one cannot extrapolate this equation to finite values of $\boldsymbol{\lambda}$. Expanding A_{α} in terms of $1 / \lambda^{2}$, the strong coupling condition implies that the 'oonstant terms' oommute, but says nothing about the higher order terms. Thus, if $A_{\alpha}=A_{\alpha}^{(0)}+1 / \lambda^{2} A_{\alpha}^{(1)} \quad+1 / \lambda^{4} A_{\alpha}^{(a)}+\ldots$ $\ldots . .(4.1)\left[A_{\alpha}, A_{P}\right]:=0$ (4.2). Unfortunately this weaker condition does not lead to the identifioation of a non-invar-Lance group.

In order to obtain a non-invariance group for the systam, it is nesessary to identify the As with the non-invariant generators of suah a group. The ohoice made follows the suggestion of Gwok, Goebel and Sakita, and identifies the As with the noninvariance generators of the intermediate coupling groups. Charge Symmetrio Pseudo scalar Meson Theory

In the case of $K=s u^{I}(2)$ e $u^{J}(2)$, the dynamical postulate

$$
\left[A_{i \alpha}, A_{j \beta}\right]=i \theta\left\{\delta_{\alpha \beta} \epsilon_{i j k} I_{k}+\delta_{i j} \epsilon_{u \beta \gamma} J_{\gamma}\right\}_{(4.3)}
$$

Putting $\theta=0$ gives the strong coupling oondition, $\theta>0$ the sompact intermediate coupling group su(4) and $\theta<0$ the non-
 atrong ooupling theory as a partioular oase. The erorg coupling sclution may be derived from the su(4) or $S L(4, R)$ solutions by the iumal process of group contraction which corresponds to putting 3 to zero.

The use of $\operatorname{su}(4)$ as a non-invarianiae group differs in weraral ways from its use as a symmetry group. In order to astiney the dynamioal postulate, the isobars must form a representation of su(4). This is not true of the mesons, whioh are nine in number, and not fifteen, as in conventional su(4). Alap there is no requirement that the meson-baryon states form a repressutation of su(4). In conventional su(4), there is no su(4) dayariant BBM vertex for po wave pions, and hence suoh prooesses as $N^{+}-\pi N$ are forbidden. We have no such problem. In oonvëntional su(4)y the mesons belong to the regular ropresentation and transforpp Ijke the generators of the group. The isobars in the intermediate anpling model form: representations of su(4). Aoting within the inabarg, our mesons. transform as the non-invariant generators, as do a subset of the mesons in conventional su(4). This the oouplimgs for these mesons must be the same. For this reason using au(4) a4 a non-invariance group gives resiltes consintent with orthedox
su(4) aymmetry. The use of su(6) as a non-invariance group diffars from its use as a symmetry group in an exactly eqdivalent way. After this digression we return to the oaloulation in hand.

Firstly we note that the solution of the equations for $\operatorname{SL}(4, R)$ and the atrong coupling group may be obtained from those for $\mathrm{su}(4)$ using a method discovered by Kuriyan, Kukunds and Sudarshan(68) which depends on using Weyl's triak and introduoing 'i's into the oommutation relations und using analytio continuation. We therefore derive the solution for the su(4) oase, which is perhaps physioaily more interesting and present, without proof, the corresponding results. for the other groups. We need only consider the casoesi, as this differs from the other oases where $\theta>0$ by an arbitrary factor which represents the overall strength of the meson couplings. Consider as an example the nuoleon isobars with $I=J=\lambda$ Inserting (4.3) between states with different values of λ, the right hand side vanishes, as each terim may ohange I or J but not both. Thus the relations betweon ooupling derived from this equation are the same as the relations derived in chapter 2. 1.e

$$
<\lambda\|A\| \lambda>=r(\text { constant })
$$

Inserting the commutatoe between states with íqual λ, we obtain

$$
\langle\lambda+1\|A\| \lambda\rangle=\sqrt{\frac{2 \lambda+1}{2 \lambda+3}} \sqrt{r^{2}-16(\lambda+1)^{2}}
$$

Thus the represpatations are labelled by a non-negative even integer r: This allows λ to go in integer steps from 0 or $\frac{1}{2}$ to
$x / 4-1$. Equation (4.5) means that a state with $\lambda>x / 4-1$ odinot couple to the isobar chain and we have a finite representation. By appropriate ohoioe of r one can include as many isobars in the chain as one wishes.

The corresponding results for $\operatorname{SL}(4, R)$ are:

$$
\begin{aligned}
& \langle\lambda\|A\| \lambda\rangle=R \\
& \langle\lambda+1\|A\| \lambda\rangle=\sqrt{\frac{2 \lambda+1}{2 \lambda+3}} \sqrt{R^{2}+16(\lambda+1)^{2}}(4.7)^{-\cdots}
\end{aligned}
$$

Equations (4.4) and (4.5) give: $g^{2} \pi \mathrm{NDW}^{4} / \mathrm{g}^{2} \pi \mathrm{NN}=2\left(1-36 / r^{2}\right)$ which ratio gives an \mathbb{N}^{*} width of 80 MeV when $r=10$, so that the representation included the N and \mathbb{N}^{4} only. $x \rightarrow \infty$ gives the strong coupling values for the ratios of couplings. In the limit: $r \rightarrow \infty, \varepsilon^{2} \pi N^{*} / 8^{2} \pi N N=2$ which gives an \mathbb{N}^{*} width of 125 MeV which is very close to the experimental value of 120 MeV .

For the group $\operatorname{SL}(4, R), 8^{2} \mathrm{mNN} / \mathrm{g}^{2} \pi N N=2\left(1+36 / \mathrm{R}^{2}\right)$. Thus for this nox-invariance group, the $\mathbb{N}^{\boldsymbol{\omega}}$ width is always greater than 125MoV. Again as the number of isobars grows, the $\mathbb{N}^{\boldsymbol{\phi}}$ width approaches 125MoV.

One interesting consequence of this theory is that $E \pi^{\circ} \mathbb{N}^{\top}+\mathrm{N}^{\mathrm{F}} / \mathrm{/}$ $6 \pi^{\circ} \mathrm{PP}=1 / 5$ for $\mathrm{su}(4), \mathrm{sL}(4, R)$ and the strong coupling group, independent of r and R. This may justify the models of the $\pi m-N \mathbb{N}^{+1}$. say stem which megleot the $\pi \mathbb{N}^{\omega} \mathrm{N}^{\boldsymbol{*}}$ coupling in comparison with 6 TMN and g TAN

Unitary symmetric psandoscalar theory

Consider the p- wave scattering of the caret of psensioscalar mesons off baryon isobars which contain the usual baryon octet. The symmetry group $K=s u(3)$ © au ${ }^{J}(2)$ 。

The dynamical postulate for the compact intermediate coupling group su(6) is:

$$
\left[\tilde{A}_{i \alpha}, \tilde{A}_{j \beta}\right]=i \theta\left\{d_{i j} \epsilon_{\alpha \beta \gamma} J_{\gamma}+\delta_{\alpha \beta} f_{i j k} F_{k}+d_{i j k} \epsilon_{\alpha \beta \gamma} \tilde{A}_{k \gamma}\right.
$$

Where $\tilde{A}_{i \alpha}$ is a definite multiple of Aid, chosen so that (4.8) the commutation relation may be written in the usual form. This is necessary because of the linear term in Aid in equation (4.8) For the same reason one cannot use the Well trick to obtain a non-compact intermediate coupling group.

We content ourselves with considering the 56 representation of sur) which contains the $\frac{1}{2}^{+}$octet and $3 / 2^{+}$deouplet The couplings derived from this are the standard su(6) ones (62).

$$
\begin{aligned}
\langle 10\|A\| 10\rangle & =\alpha \\
\langle 8\|A\| 10\rangle & =-\alpha \\
\langle 8\|A\| 8 \text { B }\rangle & =\alpha / \sqrt{2} \\
\langle 8\|A\| 8 a\rangle & =\alpha \sqrt{2 / 5} \\
\langle 10\|A\| 8\rangle & =-\alpha \sqrt{\frac{2}{5}} \quad \text { (by vertex symmetry.) }
\end{aligned}
$$

Rupop-Weng equation from the dypamioal postulate

Consider the oase where $K=s u(2)$. The dynamical postulate can be written as:

$$
\left[\begin{array}{cc}
A_{\alpha}, & A_{-\beta}
\end{array}\right]=\frac{-1}{\sqrt{3}} C\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & -\beta & \gamma
\end{array}\right) J_{\gamma}
$$

Theerting these between isobars and using the projection operatars. as in ohapter II, one obtains for the left hand side

$$
\mathcal{E}_{\underline{K}}^{I} g_{K}^{J}-C_{K_{k}}^{\mathrm{Bu}} \mathcal{E}_{k^{\prime}}^{I} \mathcal{E}_{k^{\prime}}^{J}
$$

The fight hand side is again a sum of four C- G. cooffioients. Porforming this sum one obtains $C_{K 1}^{\text {at }} \Gamma_{1}$ where $\Gamma_{1}=\mathcal{E}_{I}^{J} \gamma$ where γ is a constant. Thus one obtains the Pulco-Wong equation:

$$
\Gamma-\operatorname{cus} \Gamma=\operatorname{cst} \Gamma^{\prime} \text {, where } \Gamma^{\prime} \text { is zore. }
$$

apart from the isospin 1 element. This calculation may be performod for a ganeral symmetry group and shows the equivalence of the Fupac and Wong and intermediate coupling methods for a specific procesa, where the terms on the right hand side of the dyamioal postulate are identified with t- ohannel exchanges. As we shall see, the meson exchanges assumed by Fuloo and Wong correspond to the non-invariant generators of the intermediate coupling groups used by Kuriyan and Sudarshan.

glop and Wong Revisited

In the su(6) case the dynamical postulate which gives the intermediate coupling group su(6) leads to the Fuloo and Wong Bootstrap condition, Γ - Cu $\Gamma=\operatorname{Cat} \Gamma^{\prime}$ where Γ contains the $\frac{1}{4}^{+}$octet and $3 / 2^{+}$decuplet as intermediate states and $\Gamma^{\prime \prime}$ contains the follentag t-channel exchange contributions: 1) $\delta_{i j} E_{\alpha \beta s} J_{y}$ gives an sui) singlet (from $\delta_{i j}$) spin 1 exchange (as J x belongs to the spin 1 representation: Exp represents the coupling of a spin 1 particle γ to two spin 1 particles α, β)
2) $\mathcal{S a p}_{\text {fiji }} F_{k}$ gives a scalar (from $\mathcal{U}_{\alpha \beta}$), su(3) ootet exchange (Hic belongs to the octet representation and pick represents the antisymmetric coupling of an octet k to the octet 1.9). Note that as the exchange meson transforms like Mc, its coupling to two baryon motets must be totally antisymmetifio. 3) $d_{i j} E_{\alpha \beta} \check{A}_{k \gamma}$ gives a spin 1 octet exchange with α coupling to the mesons, and coupling to two baryon octets with the same fda ratio as the direct channel mesons.

Pupoco and Wong made exqetily these assumptions in their model. and ponce arrived at the su(6) results found by frisian and Sudarshapp This mathematical equivalence also explains the fact that the result as for aral vector singlet scattering, and for the scattering of the gosiap octet wo proposed in chapter 3, are consistent with su(6)

The bootstrap equations for these process may be derived identifydas the singlet with J and the scalar octet with F and using the equations for the generators of the symmetry group ie

$$
\left[J_{\alpha}, J_{\beta}\right]=i \epsilon_{\alpha \beta \gamma} J_{\gamma}
$$

and

$$
\left[F_{i}, F_{j}\right]=i f_{i j k} F_{k}
$$

Were Full and Wong to have proposed the exchange of a solar octet instead of a vector octet, one might argue that the two models were equivalent physically. However, what they have if a vector expobenge which in their model for axial-veotor meson scattering acts like a scalar particle. In another context, thea participle will behave as a vector and the simple equivalence of the. two models will not be so evident.

MaconmBeryon Soattoring

In order to derive any relationship between scattering amplitudes, it is necessary to make a additional assumption. Consider the amplitude $T_{\alpha \beta}(w)$ for the process $u_{\alpha}+B \rightarrow \bar{M}_{\beta}+B^{\wedge}$. where α, β refer to a general symmetry group K. The amplitude has. well defined transformation properties under K , but none fer the intermediate coupling group-

The assumption made by $\mathrm{Kif}_{1} 1$ yon and Sudarshen that

$$
\begin{equation*}
T_{\alpha \beta}(w)-T_{\beta, \alpha(w)}=f(w)\left[A_{\alpha}, A_{\beta}\right] \tag{4,14}
\end{equation*}
$$

where $f(w)$ is some function. This can be made plausible by the following arguments:
(1) $T_{\alpha, \beta}(w)-T \beta, \alpha(w)$ and $\left[A_{\alpha}, A_{\beta}\right]$ transform in the same way upder X and are both antisymmetric in α and β.
(ii) The Born Term for the Chew-Low amplitude is given by:
$\frac{1}{\mathbf{w}}\left[A_{a}, A_{\beta}\right]$ to lowest order in $\frac{1}{w}$, which agrees with the assumption. However it should not be infered that the symmetryr of the Born term is necessarily a symmetry of the amplitude. Bxpandiag T as the sum of non-spin-flip and spin-flip terms, fecilitates the discovery of relations between amplitudes.
Put $\quad T=f+\bar{\sigma}_{0} \bar{F} g$ and define

$$
\left.\begin{array}{l}
X\left(i B ; j B^{\prime}\right)=f(i B \\
y\left(1 B ; j B^{\prime}\right)=g(i B
\end{array} \quad j B^{\prime}\right)-g\left(\begin{array}{ll}
(j B & i B^{\prime}
\end{array}\right)
$$

where i and J refer to the internal symmetry group only, as we have:extracted the spin behaviour. We now oonsider the implication of the above for the su(4) and su(6) theories.

(1) su(4) theory

Z. Y are both proportional to the matrix elements of the. oommutatar of two non-invariant generators of su(4) been baryon states.

As X is a non spin-flip amplitude, it can receive no oontribution from the tern $\delta_{i j} \epsilon_{\alpha \beta \gamma} J_{\gamma} \quad$ Thus:

$$
\begin{align*}
X\left(i B_{j} j B^{\prime}\right) & =\left\langle B^{\prime}\right|\left[A_{i}, A_{j p}\right]|B\rangle \\
& =i\left\langle B^{\prime}\right| \epsilon_{i j k} I_{k}|B\rangle \tag{4.15}
\end{align*}
$$

Isospin implies that $X\left(1 B, j B^{\prime}\right)$ oan be expressed as a linear oqnbination (given by C-G coofficients) of amplitudes for speoiffic
t- channel invariants. In the processes we are considering there is only one arch invariant, the isospin 1 channel. This equation (4.15) gives us no information that could not be obtained from iạospin symmetry.

The spin fling term Y an only have contributions from the term $\delta_{i j} E_{\alpha \beta} J_{\gamma}$ which, being an 1sospin singlet, gives zero: contribution if $B \neq B^{\prime}$. This one may obtain relations of the form $g\left(p \pi^{-} \rightarrow n \pi^{0}\right)=g\left(p \pi^{0} \rightarrow n \pi^{+}\right)$In terms of isospin $\frac{1}{2}$ and $3 / 2$ amplitudes, $\frac{1}{2}$ ma $3 / 2$ which result is not well satisfied by experiment (69)

In the case of baryon resonance production, the commutate ${ }^{\text {of }}$ must vanish between the external baryons. This gives, for examples $T\left(\pi^{+} \rho \rightarrow \pi^{+} N^{*+}\right)=T\left(\pi^{-} p \rightarrow \pi^{-} N^{*+}\right) \quad$ In terms of the iepapin $\frac{1}{2}$ and $3 / 2$ amplitudes, $A=10 \mathrm{AB}$, which compares well with the relation $A=3,34 A 3$ obtained by Olson from experimental data (70)

(iii) sur) theory

Only the first term is a spin singlet and hence:

$$
X\left(i \alpha B ; j \beta B^{\prime}\right)=\left\langle B^{\prime}\right|\left[A_{i \alpha}^{\prime}, \hat{A}_{i \beta}|B\rangle=i f ; j h\left\langle B^{\prime}\right| F_{k}|B\rangle(4.16)\right.
$$

If $B=B^{\prime}$ is the baryon octet, there are from sup) invariance,
four odd invariants in the t - channel. Equation (4.14) writes X In terms of only one and hence gives information additional to that derived from sup). The results involve the Johnson-Triemen.:
relation : $\therefore l$ (71) for the non-spin-flip amplitude. Some of the realtions obtained are in agreement with experiment andpome not.

The relations obtained for baryon resonanoe production give the result $\mathrm{Al}^{1}=$ 10A3, already derived in su(4): Also $T\left(X^{-} p \rightarrow K^{0} \bar{E}^{x 0}\right)-T\left(\bar{K}_{p}^{0} \rightarrow \mathbf{K}^{+} \bar{E}^{x^{0}}\right)=0$.

As su(3) aymmetry is broken, it is diffioult to sey whether the successes and failure of the above celations give any indication as to the validity of the theory as a whole.

Thtormediate Coupling Thoory and Finite Bnergy Sum Rules

Gleeson and Muste (72), use the theory of finite energy sum zules to provide a mechaniam for deriving the non-invariance groype He shall disouss these sum rules fuily in Chapter 5 but it is Forth while considering this partiaular model as it relates to the intprmediate coupling method as the saturation of superconvergenge shations does to strong coupling theory.

Let $f^{(-)}$be the forward amplitude for isospin 1 in the $t-$ channel for a procesa i $+\pi \rightarrow j+\pi$ where i,d are nuoleon isobarap This amplitude is dominated by the ρ Regge trajectory at high energapap One is lead (see chapter 5) to a finite energy sum rule of the forms

$$
\begin{equation*}
\int_{0}^{\infty} \operatorname{Im} f^{(-i)}\left(\nu j a v=\frac{\dot{b}(0)}{\alpha_{p}(0)+1} x^{\alpha p(0)+1}\right. \tag{5.17}
\end{equation*}
$$

where $\alpha_{\rho}(t)$ is the ρ traiectory and b is a produgt of couplings. In terma of direct ohannel isospin indices, $f^{(-)}$is antibyrmetria and
and $f^{\alpha \beta}-i^{\beta \infty}=i E_{\alpha \beta \gamma}\langle i| I_{\gamma} \mid j>f^{(-)} \quad$ (4.8)
where α, β are meson isospin indices. Thus if equation (4.18),
can be saturated isobar states, one obtains.

$$
\begin{aligned}
& \sum_{n}\left(g_{i n}^{\alpha} E_{n j}^{\beta}-E_{i n}^{\beta} g_{n j}^{\alpha}\right)=\left\langle i \mid\left[A_{\alpha}, A_{\beta}\right] j\right\rangle \\
& \quad=1 \epsilon_{\alpha \beta \gamma}<i \mid I_{\gamma} \| j>\quad c
\end{aligned}
$$

where $C=$ bNNpTir (o) $\frac{\mathrm{K}^{\alpha_{p}}(0)+1}{\alpha_{p}(0)+1}$ and $g_{i n}^{\text {a }}=\langle i| A \alpha|n\rangle \mathrm{If}$. we assume that the ρ couples universally to the isospin current and that it is possible to take a fixed K for all processes, C is independent of the process and we obtain the purely algebraic expipasipn $\left[A \alpha, A_{p}\right]=i \epsilon_{\text {op } \gamma} I_{6}$ between isobars, which is the usual dynamical postulate for $K=s u^{I}(2)$. One can extend this to $s u(3)$ by assuming the existence of Regge poles corresponding to the various terms on the right hand side of the dynamical postulate equation, The same technique cannot be applied to an amplitude oven under p crossing, as this invelwas an anticommuator on the left hand side of equation (4.19), and its value depends on the representation , upliyp the : .commutator.

If equation (4.13) holds only for a spocitio process, that it is possible to derive the Fulcowing equation for that process. In fact, the above is merely a sophisticated may of deriving Julep and Wong's model using sum rules and Rage poles instead of loose arguments, about meson exchanges. In chapter five, we look at the relationship between saturating sum rules and symmetries in a mope

Fralistio situation. We shall see that there are mechanisms to emplain the appearance of higher symmetry: results. It will not be possible, however, to elevate these mechanisms into what might be tormed a model.

CHAPTER 5 .

Superocavergence and Finite Enapgy Sum Rules

Rarre Poles

Despite the various diffioulties whioh exiat in the theory, Page poles have been remarkably successful in describing the high energy behaviour of soattering amplitudes. We consider first particles without spin, which will enable us to introduce the ooncept of signature with all essential details without getting entangled in a mass of spin idices.

The idea behind Regge theory is that the partial wave amplofturp. \$(s) for some scattering processes may be represented by a funotifa $a(J, s)$, which equals $a^{J}(s)$ for physical values of J and is meramprphiti (1.0 only has poles) in the J- plane. (This is possible for potenting poattering but probably not othorwise where there are probably moying outs.) The attraction of this soheme is that as the position of thpse Regge poles $\mathcal{X}(\mathrm{s})$ varies, $\mathcal{X}(\mathrm{s})$ will sometim pass through op by an integer point Jo which will give a pole in $a^{J 0}(s)$ whioh will copragpand to a particle of spin Jo. Thus Regge poles may link up particlea with the same quantum numbers but different spins. Fer simplicity we oongider the soattering of apin less equal mäss in particles. Wo expand the scattering amplitude in a partial wave series in the to phamel.

$$
\begin{equation*}
a(a, t)=\sum_{J}(2 J+1) a^{J}(t) F_{y}(2 t) \tag{5.1}
\end{equation*}
$$

 which includes the physical region The series may be inverted te give.

$$
\begin{equation*}
a^{J}(t)=\frac{1}{2} \int_{-1}^{+1} d x_{t} P_{J}\left(x_{t}\right) a\left(a_{y} t\right) \tag{5.2}
\end{equation*}
$$

As $P_{J}(\pi t)$ is note well behaved for large J, equation (2) will not serve to define our intarjulainiag function. To get round this difficulty, we write a fired t dispersion relation for $a(s, t)$, whiting we assume to be free of kinematic singularities. (We will discuss that joint when we come to consider particles with spin).

$$
\begin{equation*}
\left.a(s, t)=\frac{1}{\pi} \int_{s 0}^{-\infty} \frac{d g}{s^{\prime} w^{\prime}} \quad a_{s} s^{\prime} s^{\prime} t\right)=\frac{1}{\pi} \int_{w_{0}}^{+\infty} \frac{d u^{\prime}}{u^{\prime}-u} a_{i}\left(s^{\prime}, t\right) \tag{5.3}
\end{equation*}
$$

where $a_{i}(a, t)$ is the absorptive part of $a(s, t)$ in the i channel,
Substituting equation (5.3) into equation (5.4):

$$
a^{J}(t)=\frac{1}{\pi} \int_{x_{0}}^{+\infty} \frac{d \beta^{\prime}}{2 q \underline{t}} \quad \theta_{J}\left(2 z^{\prime}\left(s^{\prime}\right)\right)\left\{a_{s^{\prime}}\left(s^{\prime}, t\right)+(-1)^{J} a_{u^{\prime}}\left(s^{\prime}, t\right)\right\}
$$

where $X_{0}=\min \left(S_{0}, U_{0}\right)$ and
$Q J(z)=\frac{1}{2} \int_{-1}^{+1} \frac{d x}{z=x} P_{J}(x)$ is a Legendre function of the second kind. For large : $\%$

$$
Q_{V}(z) \sim \sqrt{\pi / 2 J} \quad \frac{e^{\left.-i J+\frac{1}{2}\right) \phi}}{\left(x^{2} x h \phi\right)^{\frac{1}{2}}} \text { where } \phi=\cosh ^{-1} \frac{g}{2} \text {. }
$$

Following Preissert and Gribov, we define

$$
d^{+}(J, t)=\frac{1}{\pi} \int_{x}^{+\infty} \frac{d^{\prime}}{2 q_{t}^{\prime}} \quad Q_{j}\left(z_{t}\right)\left\{a_{j}\left(s^{\prime}, t\right) \pm a_{i}\left(s^{\prime}, t\right)\right\}
$$

This rompers the 4 upioasiant $(-1)^{\top}$ factor apd the functions are suitep lo for intrangolating between fnte \mathbb{A}. bt(J,t) are oalled ovep and odd sifereturea emplitudos. Fpr even (odd) I the ovon (odd) sicnatured amplitude which gives the physioal ampititude. It is those elamatyped amplitudes which are bilived to oontain the Pagespelps.

8epticherinmina that besons acour in a symatric state. Thus If the moseps poppling to a Dogge pole axe in an oven (odd) wave, chay must bp in a ajumetrical (rniti-) stete of the internal symetrar.. group. Thus oven (odạ) aignatured Degge poles coprrespond to aymmetrfoal (aptici) coprosentations of the intermal aymmotry groupp The definetion of loge poles ffor oquation (5.4) appears in the stagagardytarite on the aubjoot (73) vie shafl not perform this
 series of ghith poles of the form ν^{α}. for convenience we shall oxpand amplitudes in torms of ximed poles.

Pindte Pipiry 8us Rules (74)
Comsitipr meson-baryon scatterling and an amplitude oorresponding to apacifle to ohannel invariant, which is antisymmatric. Then the amplitude, will have odd signature as will the Regge Poles pontretbuting to the aaymptotio hohavioung. We acsume that auffioionthy

2boing antiaymetyato upder $\nu \rightarrow-\nu$ upll abay a diaperaion rolatian

$$
\begin{equation*}
x(v)=\frac{2 x}{\pi} \int_{0}^{\infty} \frac{\sin v^{2}}{x^{2} v^{2}} \quad \text { dvo } \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} x(x) d v=0 \tag{5.7}
\end{equation*}
$$

If a मogge teran has $-1 \lll<1$. it ale aqtastion the dipporstion. relation

$$
\begin{equation*}
x(v)=\frac{2 v}{t} \int_{0}^{\infty} \frac{\beta}{\gamma(x+y} \frac{y^{\prime} \psi^{1}}{y^{\prime \prime}-y^{2}} d v^{\prime} \tag{5.8}
\end{equation*}
$$

 as:

$$
\int_{0}^{\infty}\left[\sum_{n} \sum_{i=p i} P_{i}\right] d v+\int_{0}^{+\infty}\left[\sum_{i<1} P_{i}\right] d v=\beta
$$

Poxformipe the integrals of the proget ferme expliqitiys.

$$
\begin{aligned}
& =\sum_{\omega i i} \frac{\beta_{i} N^{\alpha i}}{\Gamma\left(\omega_{i}+2\right)}
\end{aligned}
$$

Vote that the final resurt tivpats all the Ragge terms on an equal footifary deapite the difforeat waya in whinch the Begge terme with $\alpha \geqslant-1$ and $\alpha \lll 1$ eptered the equatipops. The point $\alpha-1$ po longer plays the apogial role it he in auperconvergenoe relationsp

It is oany to seo time if the mankeraotica dinperiion relation

 sules fop these applituden if there ara no fined pelep at wrons sienature poipts, Hemever augh poles may axap (75). The pesititen
 opes. The odd mpmant asm rules will hold edven the oovreot agymptatio bebavfour hut the ovan opes will onhy hold in the absenoce of the fixpd polese The vilue of eupergonvergenoe melatiopes end finite energy.
bum cules lies in the easumption that the integrals can be seturatod hy the conacrelbytions. frem bound atates and resonamogs. We note that thits appumption is leps lifenly to be velif for the highor momonts as the intagpels bacome inoreasingly sqapititve to the behpriour of I just below I. The saturation essumption is plaariy only an approximation which may be valid for a partioular aum mule. If willy, for example, not be posaible to flet the aum rulea for different valuas of t with
 as the bound statep and resonapoes lifo arpund top, might ba though to be the alp pules most likely to be matupated by pele terpas. Secondiy we considep the lopest mament sum rulas (ifee the zero momant for pad and thpe first pompnt far quan amplithudes)s as off all the momemata, thase are moot likely to allow aaturation mith low. Iying -states.

Kinamatio factors and enip

The introduotion of partiqles with spin mpablas one to find mope sum sulas than in thep spinlose gese. The adiditional amplitudos pontelandinpmatife faotors which way lopd to those amplitudes having a better asymptotic mohaviqur than the toptel applitude. If one is warking in invanient appiltudes, the maymptitio bohavitour of an anplitude can be read off frem the prpanaion of the total amplituade
 6
pogadble aum rules! those exqutily true at $t=0$ (what Gilman and Barari (78) oall "Glass I" sum rułen) Othors ("chass 2") ọould be obtainod by taking gut oortain faotors phioh go to sere as $t \rightarrow 0$. Thise oocrespende to taling the aum rules fap small t and extrapolating to tmo. As atiman and Haraprif pedpted out (78); it is the alass 1 sum sulay whioh lead to the results of hischer symatripe and it is thepe
 amplitudea at the point tup. We alae make the approximations of oilmain and Hapert that the mescas have sepio mase and that the baprones are mase degenorato. In this limit the oposing matrix fs a coistant and ita funp tional deppeqdemee ap the passeps of the nätupatiop iepobars deep not appear. It is oniy in this equal mass pase that su(6) Lite results amorge from the sum mules. This is net ypaxpeoted as au(6) iteolf inplias mage degonaraoy for the ootot and deouplet. If the physioal massees of the partioles are used, the seaults wdil of oourse diffor aomamat from arp(6). This is epmparable with the bxacking of arpots au(6) due to mase difforanceip

 are equal apart from a muptiplionefive constant. In the oase of
 and akj步. Thue the t - ohannel ampiltupes must be linear combinations. of these amplitudes. We tabulate the varioue quplitudes for the proceapees mantionge above. The flarfes in breokptes maxt to the helioity
amplitude give the invardapt ampliftude which has the same asymptatio boheviour. The eptries Indioste where superoonvergence relations hold and the mompat of the sum vule.
(i) $I N \rightarrow \pi N$

$\Delta=0$	$\Delta=1$		
	$a y_{2} y_{2} ; 00(h)$	$a y_{2}-v_{2} ; p 0$ ($)$	
$-1<\alpha<0$		1	

$$
a_{1 / 2} ; y_{2}(s, 0)=\sum_{J}(25+1) d_{y_{2} y_{2}!}^{J}(0) a_{y_{k} Y_{2}}^{J}(s)
$$

Using the wellunewn relations between heliofty amplitudes and
those betwean arbital angular momantum atates (79), it is possibie to expand etisi in terze of engular momentum traneqotions.
Porforming this oporation and retaining only the tranaitions betwocr per mayes: $e^{\frac{1}{2}} \frac{1}{4}=2 / 3\left(a^{\frac{1}{2}}+2 e^{3 / 2}\right)$ whare a^{J} is the amplitude for toital apgular momintume We do this at wo wish to saturate the sum sules with p wave resenanges anly.
(11) $\pi{ }^{2} \rightarrow \boldsymbol{T}^{4}$

$(111) \pi N^{+} \rightarrow \pi N^{*}$

$$
a 3 / 2-\frac{1}{2} i 00 \sim\left(8 / 5 a_{i / i}^{x}<-a_{1}\right)
$$

Sym Rules and Bympotrios
Consider the pinite energy sum rules for all the odd t- channel invariants, $\int_{0}^{\mathrm{NI} \mathrm{I}_{\mathrm{I}} f^{1}(\nu) \mathrm{d} \nu \quad \rho^{f}(\mu i)}$

In terms of the direot opapnel ones. $f^{2}(\nu)=G_{t s}^{i j} \bar{F}^{j}(\nu)$ (5.14)
If we pan choose the same out-off Mi f for all the t- invariants, one can combine these equations.

$$
f^{2}(N)=\int_{0}^{N} c_{t \leq}^{I j} \operatorname{Im} r^{j}(\nu) d \nu
$$

Dating the results in Appendix 1, it aam be mean that this equation is equivalent to

$$
\begin{equation*}
(1-\operatorname{cus}) \Gamma=\operatorname{cst} \Gamma^{\prime} \tag{5.16}
\end{equation*}
$$

where $\Gamma t=\int_{0}^{N} I_{m} F^{J}(\nu) d v$ and $\Gamma^{\prime} l^{\prime}=\rho^{1}(N)$ for odd invariants and zero otherwise. Thus the Fuloo-Wemg beotatzap equation is
obtained from the sum rules. If the Lptagrale are saturated by teas from bound states and resonances, we have the Pule and Wens model provided the terms in Γ ! correspond to the appropriate meson axalpages. The oroseing matrices ip equation (5.16) are these for the internal symmetry group. The quogtipa sem arises as to how apis symmetry comes into the theory.

Consider the Full and Wong equation for the gymatry group $\operatorname{su}^{J}(2)$ © $\mathbb{E}, E=\operatorname{su}^{\mathrm{I}}(2)$ or $\operatorname{su}(3)$
chat can be rewritten as:

Mow

$$
\begin{aligned}
& \left(G_{a s}\right)^{i j}\left(G_{s} t\right)^{j k}=q_{h}\left(G_{s}\right)^{i k}
\end{aligned}
$$

where $\eta k= \pm 1$ depending on whelthethe $k^{\text {th }}$ equumpe? Cst corresponds to an evan or odd invariant. Using this pirgpaitys:

$$
\begin{equation*}
(I-\eta k \text { cuss })\left[(0 t s)^{k} \Gamma_{\ell}\right]=\cot ^{k} \Gamma_{1}^{\prime} \tag{5.18}
\end{equation*}
$$

were $I^{\prime}=\left(\Gamma_{1}, \Gamma_{2}, \ldots\right)$ and $\Gamma^{\prime}=\left(\Gamma_{1}^{\prime}, \Gamma_{1}^{\prime}, \ldots ..\right)$ are the decompositions of Γ and Γ^{\prime} into representations of sur' ${ }^{J}(2)$ Fer the case of masom-baryon soattering where

$$
\begin{align*}
& \text { Cts }=\left(\begin{array}{cc}
\sqrt{6} / 3 & 2 \sqrt{6} / 3 \\
2 / 3 & -2 / 3
\end{array}\right) \quad \text { obtain the two equations } \\
& (I-G u a)\left(\Gamma \frac{1}{2}+2 \Gamma 3 / 2\right)=3 / \sqrt{6} \text { Gatt } \Gamma_{01}^{\prime} \tag{5.19}\\
& (I+\text { Gus })\left(\Gamma \frac{1}{2}-\Gamma 3 / 2\right) \text { (5.19). } \\
& \text { (I } 3 / 2 \text { Gat } \Gamma_{1}^{\prime}
\end{align*}
$$

where $\Gamma \frac{1}{2}(3 / 2)$ are the spin $\frac{1}{2}(3 / 2)$ terce in Γ and $\Gamma_{0}^{\prime}:(1:)$ are
the apin $0(1)$ contribution to Γ^{\prime}.
For the case of ΠN soattering, the Γ in equation (5.16) indead has the form ($\Gamma \frac{1}{2}+2 \Gamma 3 / 2$). Thus for thils case the equation derived from the aum rules is identical with one of those dorived from the assumption of apin aymmotry. Thus, if the t- channel exchange terms are the same as in the Puloo and Wong model, we obtain from the sump rules the same solution as Puloc and Wong, which, as we have segn, is the same as that coming from the assumption of su(6) or au(4) ayiqnetry. Furthor investigation reveals that the amplitude a-1, $3 / 2$ for $T \mathbb{N} \rightarrow \pi \mathrm{~K}^{\text {e }}$ and $-\frac{1}{2} \cdot 3 / 2$ for $\pi \mathbb{N}^{\boldsymbol{\omega}} \rightarrow \pi \mathbb{N}^{+}$correspond to those for $t-$ channel spin 2. In their respeotive prooesses. Thus for these amplituides the su(k) © $\mathrm{a}(6)$ results may be obtainpd again assuming the same t- ohannel termb. Gilman and Harari (78) ahow that all oiass one superoonvergence reiations for $\Delta=2$ ampltidudes agree with the results derived from the algebra of ohanges. This agress with our results, which show how for a small number of processes the results of higher aymmotries oome from sum rules. Numerous people (80) have found the superconvergenoe relations whioh as we indioated above give su(6) results. Howaver, as far as we know, no one has looked at all the sum rules for the different invariants at once. As we shall see, the sesults of this investigetion are copsistont with what is
beliave, at present, about Regge poles.

8um Rules in su(3) for π it $\rightarrow \pi H$

From presont knowledge about meson apeotra :; where ne 10, 10 or 27 plet of mesons are known, it was asaumed by Sacita and Wali (81) and by Babu, Gilman and Susukd (82), that $\alpha(t)<0$ for the leading 10, $\overline{10}$ and 27 plet trajectories. As the 27 is a symmotric invariant, this will lead to a superoonvergence relation for $B^{27}(y)$ (Using the invariant amplitudes defined by $T=A+1$ gig B for $\pi \mathbb{I} \rightarrow \pi N$)

$$
\int_{\varepsilon}^{\infty} \mathrm{B}^{27}(\nu) d \nu=0
$$

whioh is reasonably well satisfied, though it is impossible to test it exaotiy (81,82). There is ne oorrespopding sum rules for the 10 and \bar{T}, because, being anti-symmetrio invariants, they oan only appear in sum rules for A or B which have the asymptotio beberviour

If one assumos, as Palmor does (83), that $\alpha_{10}, \mathbf{T O}<-1$,
it is possible to write superoonvergence relations for the 10 and $\overline{T 0}$ amplitudes. In the forward direotion A and νB are proportional so one has the relations:

$$
\int_{0}^{\infty} A^{10}(\nu) d \nu=\int_{0}^{\infty} A^{T 0}(\nu) d \nu=0
$$

Palmor saturates these three superconvergance rolations with the ootet and decuplet assuming degenorate mase. With mass
degenerecy, the two Puloo-Wong equations, of whioh these relations are part, are for the same I. The result is that the oouplings are thoge of su(6). We have seen how the 10 and $\overline{T 0}$ relations should agree with su(6), but the faot that the 27 relation gives the same neods to be explainad. The 27 equation is part of the Fuloo-Wong equation $\Gamma+$ Gus $\Gamma=\mathrm{Cast}_{\mathrm{t}} \Gamma^{\prime}$. The left hand side is related to the anti-commutator of the non-invariant generators of su(6). This pontaine no 27 part in the 56 representation of su(6). which acoounts for Palmer's result.

Wo now oonsider the antiaymmetric part of the amplitude corresponding to the $10, \overline{10}, 8 a a$, sas t - ohannel amplitudes. Assuming we can ohoose a common out-off which allows us to saturate with just the octet and deouplet, we haves

$$
\Gamma-\text { cus } \Gamma=\operatorname{cst} \Gamma^{\prime}
$$

Where Γ contains just the optet and deouplet torme and Γ^{\prime} is soro apart from the $10, \overline{\mathbf{T 0}}$, Baa, bas term.

$$
\Gamma^{\prime} 1=p^{1}(N)
$$

We know from our assumptions that in the iimit $N \rightarrow \infty, \rho^{10}=$ 10 $\rho^{90}=0$. We have ne guarantee that this is so when N is finite. Howprer as saturation of superoonvargence relations by reasonànoés mema sucoesaful we feel justified ,in assuming that mean obece the out-aff N to make $\rho^{10}=\rho^{T \overline{0}}=0$ a good approximation. With
this saturation scheme, $\rho{ }^{8 a s}=0$ which tells us that the ρ Regge pole which we associate with the ootet exohange, oouples antisymmetrical to baryons.

We now look at the symmetrio part of the amplitude. In the limit of degenerate mass saturation, the first moment sum rule for at ; $\frac{1}{2}$ is the same as the sero moment.ene, whioh for the symmetric invariants is only valid in the absence of fired peles. Thus the results from this prooess are shakier than those for the odd invariants. Hewever it is interesting to saturate the sum rules with the octet and deouplet. The results of invarting the process and finding the Rogge terms from the resonances, is that the 27 plet contribution is sero as already stated. $\rho 1=19 / 4, p 8 s s=-7 / 8, p 8 s a=-\sqrt{5}$ (sc) This corresponds to a large ainglet contribution from a Regge pole which we identify with the Pemeranchon and a siseable one from a Regge pele which we identify with the A2. These results are quantitatively in agreement with present knowledge. Similer cesults are produced if onc looks at the appiopriate $\pi \mathbb{N} \rightarrow \pi \mathrm{N}^{\boldsymbol{\omega}}$ and $\pi \mathrm{N}^{+} \rightarrow \pi \mathrm{N}^{+}$amplitudes in the same way.

The above reugh and ready caloulations points to the way in which higher symmetry results can be produoed from sum rules. Similar work could be performed for meson-mason scattering and

Fuloo-Weng type solutions obtained in a place where the static model could not be used to justify the equations. Indeed work has been performed to justify the equations. Indeed work has been parformed which uses the fact that all three ohannels are similar in meson-meson soattering to effeot a new type of bootstrap (84; 8) More exact oaloulations on sum rules may well provide further insight inte why higher aymmetry results emerge from dynamioal oaloulations.

Appendix 1 Crossing Matrices of Mesen-baryon soattering

Te obtain the properties of the oressing matrices for a process assuming a symmetry group X, we first define the operator F which is related to the e- channel amplitude by $f_{\alpha}^{s}(w)=$ $\left\langle\alpha 1 F^{8}(w)\right| \alpha>(A .1)$ where $|\alpha\rangle$ is a representation of $K, P(w)$ is expanded in terms of t - channel invariants

$$
\begin{equation*}
F^{E}(w)=\sum_{T} A_{T}(w) P_{T} \tag{A,2}
\end{equation*}
$$

where P_{T} is the operator which projects out the t - channel state T. Now combining A. 1 and A. 2 :

$$
\begin{equation*}
f_{\alpha}^{s}(w)=\sum_{T} A_{T}(w)\langle\alpha| P_{T}|\alpha\rangle \tag{4.3}
\end{equation*}
$$

By definition Cst, defined by (Cst) $\alpha_{T}=\langle\alpha| P_{T}|\alpha\rangle_{\mathcal{A}}$ (Aol) is the s to t oresaing matrix. Crossing from s to u consists of sending to $-w$ and exchanging the two mesons. Under this operation each P_{T} has well definded properties:

$$
P_{T} \rightarrow \eta_{T T} P_{T}(A .5) \text { where } \eta_{T}= \pm 1 \text { according as } T \text { is }
$$

a symmetric or antiaymmetitio state of the mesons.
Thus: $F^{u}(w)=F^{B}(-w)=\sum_{T} A_{T}(-w) \eta_{T} P_{T}$
As the a and t channels are equal, one has

$$
\begin{equation*}
A_{T}(w)=\eta_{T} A_{T}(-w) \tag{A.7}
\end{equation*}
$$

Thus $f_{\alpha}^{u}(w)=\sum_{T} A_{T}(w) \eta_{T}\langle\alpha| P_{T}|\alpha\rangle$

Thus the u te t ores sing matrix Cut is given by

$$
\begin{equation*}
\text { (cut) } \alpha_{\alpha \tau}=\eta_{T}\langle\alpha| P_{T}|\alpha\rangle \tag{A.9}
\end{equation*}
$$

From (A.4) and (A.9): (Cut) $\alpha_{\alpha \tau}=\left(C_{s t}\right){ }_{\alpha \tau} \eta_{\tau}$
Expanding the u channel invariants in terms of t - channels invariants and then expanding these in terms of channel invariants gives the expansion of u. channel invariants in terms of sw channel invariants. Thus Cut Cts $=$ Gus. Thus from A. 10

$$
\begin{equation*}
\text { (Cuss) } \left.)_{\alpha \beta}=(\text { Cst })_{\dot{\alpha} T} \eta_{T} \quad \text { (Cts }\right)_{T \beta} \tag{1.10}
\end{equation*}
$$

From (A.10, we see immediately that C^{2} as $=1$ (A.11) Moreover

$$
\begin{align*}
\left.(\text { Gus })_{\alpha \beta} \text { (Cst) }\right)_{\beta T} & \left.=\text { (Cst) } \alpha_{\mu} \eta_{\mu} \text { (Cts) }\right)_{\mu \beta} \quad \text { (Cst) } \beta_{T} \\
= & \eta_{T} \text { (Cst) } \alpha_{\alpha T} \tag{A.12}
\end{align*}
$$

Thus the column of Cst corresponding to the invariant T is an eigen-vecter of Gus with eigenvalue η_{T}, where $\eta_{T}= \pm 1$ according as T is a symmetric or antisymmetric respresentation.

BETFGRENCRS

1) Soe the leotures on "Boptsyraps" in leoture notes of the Sominar on High Rnergy Physios and Blementary Partiolos, Trieste, 1965, published by the International Atomio Emergy Agency, Vienna.
2) Chow and Mandolstam, N.C. 19, 752 (61)
3) G.F. Chow, P.R.L., 2, 233, (62)
4) MThe Eightfold Way", by Gellman and Ne'eman (Pub.d Bonjamin).
5) Y. Hara, P.R. 135B, 1079, (64)
6) S. Mandelstam, P.R. 112, 1344 (58)
7) See Pubini, Proc. 1965. Coral Gebles Conforezos.
8) K. Ig1, P.R.L. 21, 184 (68) Contains eevaral references to this woxh.
9) B. Din, N.C. 54A 750 (68)
10) D.B. Fairlio, P.R. 155, 1694 (67)
11) C. Cronstrom and M. Noga, "Bootetrap Theory of Static Plona Baryon Soattering, Conneotions with Strong Coupling Theoty". Research Institute of Theoretional Physics. University of Helainki preprint No 4-68.
12) J.R. Fulco and D.Y. Wong, P.R.L. 15, 274
13) F. Dyson, "Symmetry Groups". (pubd. Benjamin)
14) Furisan and Sudarahan: "Non-invariance groups in partiole physios". Inatitute of Advanoed Study proprint. aliso P.L. 21, 106 (66) and P.R.L. 16, 825 (66)
15) BoM. Udgaonkar, "A simple olosed bootstrap of mesops and baryons in an su(6) model". Inst. for Advanced Study preprint.
16) Gieeson and Musto P.R.L. 19, 175 (67)
17) Fg. Fubini and Sogre, N.C. 45, (A), 641, (66) Soadron and Jomes N.C. 48, 545 (67), Ref. 83.
18) Balass, Singh and Uageonker. P.R. 139, B1313 (65)
19) Abars, Balass and Hara, P.R. 136, B1328 (64)
20) Chew and Low P.R. 101, 1590 (66) F.E. Low P.R. 27, 1392, (65)
21) D.B. Fairlie, "Bootatrap Conditions for Complei Partial Waves". Durham preprint 1967.
22) P. Carruthers, P.R. 154, 1399.
23) See, for example, "The Interaotions of Hadrons" - H. Pulkuhn, (Pubd. North-Holiand) whioh has a ohapter on low cenergy Π \#.
24) 8. Mandelstam, P.R. 112, 1344 (58)
1) S. MaoDowell, P.R. 116, 774 (60) J. Hamiliton and T.D. Spparminn A.P. 12 172 (61) aiso Hemilton, Spearman and Woiloook A\&P. 17, 1,62)
2) Fraser and Fulco, P.R. 117 1609 (60)
3) Chew and Mandelatam, P.R. 119, 467.
4) Castilego, Dalitz and Dyson, P.R. 101, 453
5) For a reviow, see Uagaonkar in reference 1.
6) I am grateful to Dr. PoJ.s. Watson for opmunioating the result of his unpublishod work. Th, integral was also avaluated by J. Dilley, J. Math. Fhys, 8, 2022 (67) Taking the static limit in his equation 22, ahows that D will be linear for bmall w.
32). Soe reforence.9.
7) This is not meant to imply that D does in fact osecillate in reality but that in an approximate scheme anomolous behaviour might ooour.
8) Again this maiy be result of the approximations made.
9) Soe reference.
10) D'AlParo, et al. PoL. 21, 576 (66)
11) See reference 74.
12) P. Carruthors and Krisoh A. Phys. 33, 114 (65)
13) Hra and Patil, P.R. 138, B, 1313
14) C. Goebel - Midwast Conference on Non-Compact groups (65)
4.2) Cook, Goebel and Sakita, P.R.L. 15, 35 (65)
15) W. Pauli and S.M. Dancoff, P.R. 62, 85 (42) G. Wentzel, Helv. Phys. Aota. 16, 222 \& 551, (43)
16) B. Sakita, Proo. 1966 Coral Gables Conference (pub. Preaman and Co.)
17) C. Goebel, Proc. 1966, Conference on Non compact groups at Thiversity of Wisconsin-Milwaukeo (pub. Benjamin)
46). See reference 10.
18) V. Singh and B.M. Udgaonkar, P.R. 149, 11 64 (66)
19) C. Goebel, P.R.L. 16, 1130 (66)
49). A.R. Eamonds "Angular Momentum in quantum Mechanics". Prinoeton University Press.
20) M.E. Rose "rilementary Theory of Angular Momentum", John Wilioy.
21) These oan be found from tables of Racah ooefficients see D.B. Fairlie, J. Math. Plays. 130, 1585, (63)
22) M. Noge: Proceeding of 1968 Finnish Summer Sohool in Theoretical Physios (to be published).
23) B. Sakita: "Strong Coupling of Nultipartial Wave Meson Isotriplet" - Uaiversity of Wisconsin proprint, Nov. 67
24) C. Lovelaoe: Proc. Heidelberg Conference (67) North Hollama Pub. Co.
25) A. Rangwala, P.R. 154, 1387 (67)
26) C.J. Goobel, P.R.L. 16, 1130, (66)
27) K. Blahari and A.Y. Sohwimmer, MoP. B5, 641 (68)
28) L LK. Pance, P.L. $24 \mathrm{~B}, 243$ (67)
29) 8ee reference 11.
30) Soe rafarence 12.
31) S.H. Patil, "Bootstrap Algẹras for Baryons and Mesons" U.C.L.A. preprint Th.R. No 28.
32) Cook and Murtasa, N.G. 39, 532 (65)
33) J.J. De Swart, N.C. 31, 420 (64)
34) These may be oalculated using reforence 63.
35) See reference 15.
36) Singh and Udgaonicar, P.R. 139, B 1585 (65) Murtasa NT. C. 39, 195 (65)
37) See reforence 16:
38) Kurfyan, Mukunda and Sudarsham, Mothod of Mastar Analytio Reprecentation" (P.R. to be published).
39) \because Hamilton and Woolcook, Dev. Mod. Bhys, 35, 737 (63)
40) M.G. 01seon, P.R.L. 15, 710 and 768 (65)
41) Johnson and Triaman, PoA.L. 14, 189 (65)
42) Soe reference 16.
43) "Rogge poles in Partiole Physics" - Coilins and Squires (pubd. Springer).
44) Dolen, Horn and Sohmid, P.R. 166, 1768 (68)
45) J.H. Sohuars, P.R. 159, 1269 (67), S. Mandolatam and L. L. Wang P.R. 160, 1490 (67), Jones and Teplity, P.R. 159, 1271 (67)
46) Ling-Lie Chan Wang, P.I. 142 , 1187 . (66)
47) T.L. Trueman, PoRsL. 17 1198 (66)
48) F.J. Gilman and H. Harari, PoR. 165, 1803 (68)
49) U. Jacob and G.C. Wiok, Ann. Phys. 7 404 (59)
50) See reference 17.
51) B. Salcita and K.C. Wali, P.R.L. 18, 29 (67)
52) Babu, Gilman and Susuki, PoL. 24B, 65 (67)
53) W.F. Palmor - "Docunglet Sum Rules for Pseudoscalar-meson-hadron scattering in exset and broken su(3) symmetry". Argonue National Laboratory preprint January '68.
54) 8oe particulariy the recent work of Rubinstein et al. (Weismann Institute preprints)
55) These are in oomparison with a $p-$ oontribution of $9 / 4$. The trajectories are labelled by the non-strange menber of the ootet.
