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INTRODUCTION

The fundamental bootstrap idea (1) is that it may be possible
to find a small set of dynamical assumptions which, with the
requirement that the nature be self consistent, imply that there 1s
only cne or a few possible worlds; this, or of one of these, being
the one observed experimentally. As & workable dynamlocal scheme .
encompassing the whole field of physios, or even strong interaotions,
has yet to be found, it is necessary to seek an area of physics wlu.ol’s S
amenable to a bootstrap calculation.

The idsa of bootstraps aross from the work of Chew and Mandelatapm
(2) enTW soattering. They shewed that the § resonance in T
soattering could be produced qua.]_.:_l.titivol;v by the exchange of a p -
in the other channels, Impesing the self consistency condition that
the p has the same mass and ocouplings in each channel lead to the
idea of a bootstrap, in which one considered a process involving a.
few particles and ebtain consistency c_onditions of a few parameters
the masses and couplings. The next advanoce was performed by Chew
who showed using the N/D method that the N and N® beotstrapped
each other in W N scattering (3). The results for the couplings were
in good agreement with experiment, With the discevery of su(3)
symmetry (4), bootstraps were attempted using the baryon octet und

decuplet (5). All these caloulations were based on the Mandelstam
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representation (6) which says that the scattering amplitude is ay
analytic funotion of its variables apart from singularities st pointa
corresponding to physical aystems. However the bootsirap idea is ne§
tied to any particular dynamical model and historically, as a new
technigue has énerged, 80 people have attempted to perform a bogt-
strap with it, This has been the case with the N/D method dispersicn
relations, superconvergence relations (7) and most recently finite
energy sum rules (8).

In chapter one, we review the static model bootstrap caloulations
and disouss the relation ship betweem the IVD statio medsl oalcﬁla,tw
and the consistency conditions imposed by saturating superoonvergenoe
relations with bound statio and resomances, It has been obt-!amd. (7)
that the superconvergence relations obtained by considering the
asynpetioc hehaviour of an gnpl:it\ﬂ. can be saturated quite well by
the contributions from low-lying bound ste.t;l and resonances,
determined by experiment., Making this assumption gives relationship
between the oouplings whioch are often in agreement with the static
model bootstrap results, We have investigated this situation in a
more general model than that considered by Diu (9) in a recent papep.
By consldering the:first moment sum rule aleng with the Buperoonvergenne
relation, we find an elegant mathematical equivalence between the
twe mothods which Diu did not ebserve dus to the ad hooc natyre of
his oaloulation. We find that the bootstrsp relation for the masses
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18 related to the first moment sum rule and this being less likely
to be true, or to be saturated by isobars, provides a reason why
the statio model bootstrap caloculations give bad or inconsis teant
results for the masses whilst giving goed results for the couplings,
The use of the moment sum rule alse throws doubt on the validity
of using a "universal out-off",

In chapter two we present a review of strong coupling theory
and disouss its relationship to bootstraps amd superoonvergence
techniques. The strong coupling oondition is kmown to give the
statis model bootstrap condition for a specific process (10). We
see how the moment sum rule again appears as a condition on the
masses, following the work of Cronstrom and Noga (11).

In ohapter three, we investigate the boos'trap model of Fuloeo
and Wong (12), whioh attempts in a very ad hoc way te comsider the
effects of t- channel mesen exchanges in meson-baryon scattering.
We show that the model gives consistent. results of all three
processes involving the scattering of pseudoscalar mesone of
the baryen cotet and decuplet in the 1limit of su(3) ayumetry.

The ceuplings agree with those ceming from the assumption of su(6)

’ symmetry (13).

‘ In chapter four, we consider the intermediate ooupling theory
of Kuriyan and Sudarshan (14) whioh is a generalisation of the strang

voupling condition, writing the commutation of the meson source
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operators, not as sero, but as a linear cembination of the generators
of the symmetry group for the system, From this equation, the Fu)ee
and Wong equation ocan be derived, ldentifiying the genmerators of the
symmetry group with meson exchange terms, As the equations of the
intermediate coupling group gemerate the algebra of su(6), it is
clear why the medel of Kuriyan and Sudarsham is obeyed by the octet
and deouet with couplings which agree with the assumption of au(6)
as a symmetry group., Thus the self consistency of the Fulco and
Wong model for the various processes is explained.as is the appearance
of the results of su(6) and the opnsistency of Udg&mmkar's su(6)
bootstrap calculation (15), We also present the calculatiap of
Gleeson and Musto (16) which derives the Fuloe-Weng and Intermediate
coupling equations from finite emergy sum rules.

In chapter five, we disouss the use of sum rules and the
mechanism by which the results of higher symmetries sppear from the
saturation of superconvergence relations (17) We show how the
Fulco and Wong equation can be apl:l.-t. up into sets of equations for
each t-~ channel spiﬁ. Certain heliocity emplitudes are shown to haye
the same decomposition inte spin % and 3/2 parts as t- channel spin
amplitudes in the Fuloo-Wong equation. . Regge pole phenomenalogy
givea Regge-pole terms :lnﬂm.e finite ensrgy sum rules which the
same ventribution to the Fulge-Wong equation as do the exchange

meson terms assumed by Fuloo and Wonge The finite energy sum rules
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give in a oertain cirocumstances the su(6) results. In order to
obtain these results it is mecessary to assume mass dngenemy:fog
the baryons. Putting in the experimental n&l‘!! gives the su(6)
breaking in a simple way. These results provide a possible
explanation of why the results of higher symmetries appear,whilst

thess symmetries cannet be exact.




CHAPTER _1

Bootstraps and _tha Sat_urat;on._of Sun_R_ule_a_ in the 1;51:19 Model

1. Static Model.

The first successful model of N-N scattering was developed by Chew m
Low (21), usiﬂg‘ the statioc approximation., As much of this thesis is goqo._md-
with the static model, we begin by discussing its virtues, and its .;vioép.

We will make use of the standard Mandelstam variables s,t,u wl';;;oh for
the process B +7 4 B +T are:
3='(P1+‘11)2 Hz+n2+2k + 2 [(k +H2)(k 2ﬂi‘
)2 a - 21: (4 ~cos@s)

158.'(1’1'1’2

w=-=-(p -4q, 2 =208 4+ n?)-5-¢

“0sit: Pgy Pp 876 the 4 momenta of the baryons (mass M)
Qqs Qp 8re the 4 - momenta of the mesons (mass m)
- k ‘and 08 the oentre of mass momentum and scattering angle. ’
We will also make use of the variable vV = —&-‘-‘- .-
The static model consists of negleocting the nucleon recoil effec_ts,
iand writing the energy of the gystem in the form S; aM +w where
_ wza m2 + qz,ﬁ,‘ft;';u" =“~'Q #1s the square of the 3-momentum of the meson.
In this approximation Yuau- w,80 that ¥ = 4 Mw and 8 = u orossing
consists of putting w =» =W, If we denote this operation by a prime (')?

. / :
s=u',u =8, tast', ta=t*implies that q2(1 -co5@ 8) a q 2(1 -8 O'a?
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As g = - g, this shows that cos @8 = cos @y Thus the partial wave expansions
in the s:and u chanuels are identical and under ¥%- u orossing, the Q"' partial
wave amplitude willi cross into itself. This property does not hold when re,qoqu
effeots are taken Znto account,

The errur maused by neglecting the recoil effects is of order .ilaﬂz 044
hence the modai is axpected to work for q2<< 112. Unfortunately the nuplpon
resonances lis wail outside this range and the success of the stgti,g model
in describing thez;l z;ﬂ.ght be regarded as fortuitous. D.B. Fairlie (22) has
pointed ou% that a possible reason for the success is contained in the
work of Carruthers (23), who shows that in the "quasi-statioc 1imit" the
orossing of partial wave amplitudes retains a simple form., Fairlie suggests
that this simplicity allows to solutions of certain bootstrap roc'g_u}remt_n
to be preserved bayond the statio limit. .

The introduction of particles with spin complicates the theory ﬂlis.ht,.ly',
but again oressiug is much simpler in the static model, Consider & spin 0
meson interacting ia an.l -wave with a spin J particle, Consideration of
the reccupling proviem comected with § —u orossing reveals. that the
orossing matrix, soudnectiag the various total angular momentum channels in
the s-chanmel and u- chamnel - waves, is the same as for a spin ( partiocle
scattering off & spin J ,particle with zeroc orbital angular momentum. Thus
in the static modsnl of igﬁ,gcau‘.ul.O-sma.l&r mesons soattering off baryons, where tho
interaction is mainly p-wa.vé, the angular momentum group assumes the role

of an internal fymistry, with the meson belong to the spin 1 representationg
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- 2+ Partial Wave Dispersion Relations (24)

Consider a partial wave amplitude 8y (s) whioh has the following
properties: .

(1) a ? (3) can bes anslytically continued into the entire s+ pi&ne and
is regular except for poles and outs corresponding Cq la Mandelstam (25)) to

physioal systems in the direot and orossed ohannel. (The ,direcf ol unel will

give a pole on (or near) the positive real axis for each bound state [or

resonance) and the unitarity ou'!; from threshold to + o0 « The ofo,ned channe)s
will give various outs and poles depending on the kinematics, The (cut~
structure - for TN is given in Mg 1)

(11) ay (8) is real analytic ie. at_(s) = &) 6‘:)

Using the ge propérties we can apply Caslchy's Theorem and obtains

LY) (s) = Q:rif':,(:'g ds® (1,1) where C is a oontour enolosing a)l the c\ltp
> c . A . " »

and poles and cl~osed by sectors Fof a circle at infini,ty. By. property (u), )

" the contritution from the oircle at infinity vanishes. If (ii) doesa't ha}d,

it is nessssarv to make subtractions in the dispersion relation, whioh

aotion Introduses further undetermined parameters into the problem.



Pig 1. Cut-Structure for Jr N—» N. (26)

(a) unitarity cut for direct channel.

(b) direct channel nucleon pole

(¢) orossed unitarity cut for u = channel (also 1 N—>wN)
(d) out from .u.\rossed N pole in u = chamnel,

(e) out from t - ohannel process  ( YTTT->NK.)

In order to disouss nN scattering, it is necessary to know about the
precess TTm-»NN, for which there is little data, In order to say _
something about this channel, it is neoein:se:y to oonsider models in whieh -
the process is dominated by the /o resonance, After oons:l.d.er:ll.ns such

' approximations, it seems llkely that the effeot of t- channel forces will

be small, at least at low emergles (27). We thus olaim some justifioation for




s,

nogleoting the oirole cut and writln;

G« 3 BArlD . ff Bpliet g

"This comes from integrating round the contour im Fig 2 and using the real-
analytioity of a (s) to write

13; o; f‘i“ 1€) -'é(ﬂi-:'ié)}ﬂ;z 1 Im a(s)

Heg 2. -
We remark here that if equations (1.2) hold forl= o, 1,2,,.., one can

combine them and obtain the t = o dispersion relation for the total amplitudse
a(s,t).

a(s,0) = 'l"[n m—‘-,-L‘_';’°) ast "':T.SL —1-(—I: ‘_';'°) ds! (1.3)

Wore a(s,0) to be dominantly p- wave and were the integrals also dominated
by p- wave contributions, then one would be justified in deriving equation
(i.z). from equation (1.3) for the p- wave (i,e., f =1). Is this :,L:Lkg].j to be
trus? The principal low lying reasonances are p- wave, and 50, if a (s,0)
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decreases rapidly as s increases, both the integrals and a(s,0) may be
dominated by the p= wave for small s, The repid deorease of &) (s) with \
enexrgy is a prhn requirement for the bootstrap caloulations, whioch folloy
to work, so if Justified in thesq caloulations, th.e' above depivation of
equation (1-92) for { = 1 may be oonsidered as reliable as the earlier one,
The method has the ajvantage that one may select amplitudes with sM.
adymptotio behaviour, from experiment and Regge phenomenology, and. alpo

test p- wave dominance experimentally. a

3 WhNewhod (28)

One nlmbh proper'ty of equation (1.2) is that the unitarity

equation re:l.ate- Ina) (q) to the amplitude on the r.l,qht hand cut.

In ag () mpe) oy (o)l 3ta) . (1)

where f’ (s) = q—lﬁl o Ve note that ag(s) s relatsd to the phne shifs
by f(s) () = %t Ry (o) = TERERER,) 1s ot 0

1 up to the inelastic threshold. R ((8) = 1 18 thus imewn as elastie

undtarity. This 15 gomgtimes used as an approximation for the whole out,

This approximation will be good if R (s) a, (_é) degreasesrapidly with

energy.

Given hqwl:ogieo of Im a(s) on the left hand cut, one has then to
solve & nou-lduear equation to find a g(s). GChew and Mandelstam couverted:
this equation into & pair of coupled linear equations. !hil methad has
become hwwn as the N/D method because of the conventional notation.
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The ﬁmdauntal tenet of the method is tha.t‘ one may write &g (s) R L (..,/‘M (q_’
where N Iy are real analytio and Ng (s) has & Jeft hend cut enly aud
Py () & right hand oyt, The gHp Datween the left and right hand outs of &
is greatly simplifies the prooqd.ure ‘
In mathematical forw, the nsqut:lom ares
In Ng (8) = Dy (s) In n.(p) 8<8, | (1.5)
=0 othorw:l.u
In Dg (8) =Ny In (1/a.° )
| c-Np(s) pe(s)Ro(s) 8>3, . (146)
= O otherwise, ' :
It is further assumed that N ) (3) can be ohosen to go to sero e’ WW
80 that one may write an \iuubtraoted gtsporq:l.on relation for X , -

Using eguation (1.6‘.)3 l‘ (=) -11;. ‘( ) 4a® (1.7)
5.

nerm n oan write a dispersion relation ror D¢ ’ FU) tq Daqessary to

.consider the C.D.D, (29) mbisuity. It is possible te insept .u,tnry
poles into Dg without changing the left hand out. This correppends 30
inserting in the partial wave, a partifocle not mntod. by -the tpr;,qe_o,,
There are two facets to the C.D.C. ambiguity which we shall refer to as
the global amd laad prodlems, Firstly it may be that there oxist
"o].ountal'y pu'tiolu" uhioh are not 5mratad. by mhnp romu. rhh
1s the negation of “tre® bootstrap philomm. Bven if there are no
e_:l,quntuv partioles and “global® C.D.D poles are not required, ,17 pay

be necessary to imsert them in & "looal® caloulation w'hi.;ah Qonoarns

itself with & llllll sub-pystem. For example a pmﬁa which 38 ipelastig




q‘ .

aay require partioles to be inserted as G.D.C poles whereas in a full
pulti-channel oaloulation they would be prodused by the £ orves,

We assumq that the system with whioch we are dealing is suffisiontly
elastic to allow us to negleot coupled systems and ﬁt need no Gepod
poles, The normalisation of Ng and D) is still undeternined se we
aormalise DQ (s0) = 1. In an exact caloulation, the solution of thq
equation would be independent of 8o, However an approximate solution
may, and generally will, depend on So, We may mow write the dispersion
..ulationtorn s . S
| Dy (9) =1 - (2220) I. “H Ledmfe) (1)

- (s' - a)(n' - 8¢) - o
With knowledge of In &g (8) on the left hand out, equations (1.7) apd
B (1.8) oquid be l,olvod_. and ag (s) determined, In ordor'-t.o.'@ practiosl |
calculations :l.t is necessary to approximate the hrt hand out !,n pm
way. One way, which 1s of partioular value in the statio mﬂel, is to
replace the lett Iumd out by & sum of poles,
Fole Approximations

The approximation is to set : Im &y (s) = 2‘3«6(' - 'no

- ‘s& ‘1,9’
Then from equation (1.7): N, (s) -':-i" 2 ';L Dy (s1) - (1,10)
i 51-3 )

Substituting into equation (1.8) we fipd:
=Y
EXCII R oA

(et - 8')(s" = 8)(s! = 80) (1:41)
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Putting s = 51 in e quation (1.,1), one obtains a set of s:l.multmo.qn
equations for the D (s1) which oan be solvedsand inserting the solutiong
into equations (1.10), one may obtain ay (s) in the physiocal region;

The left hand out comes from crossing the u~ channel physiocal
amplitude. In general, this orossing will be complicated and the
approximation of the out by poles will be of little significance ptwc;.gs]_.}y,
However in the statioc model, as previously remarked, s— u orosging
merely oonsists of putting w -+ -w, and u=- channel poles do not spread
out into cuts in the s- olannel, |

It is always possible to write a dispersion relation in Y instead _.
of 8. As ¥ = L4Mw in the static model, one can write the dispersion
relations in we This we do in what follows, .

In the statio modele, a pole in a partial wave at w = wi will oposs
" into a pole (with the same residue) at w = =w; in the same partial wavj; I
Thus a set of resonances, with couplings Y 1 and energies wi in the u= ch&nnall.
process, will generate poles at w = =wy, with residues XZ.,_ on the left m

out of the s= channel process,

be Btatioc Model Bootstraps (30)

We oonsider a model of mesons socattering of baryons in an t- wave,
There is a symmetry group for the system and the invariant chamnels are
labeled by Gresk letters, We allow for some of these o!mmels to ogntain
particles and wa label such channels, and the partioles in them, by
primed Greek letters. We rule out the possibility of there being, npre t.han
. one particle in eaol-; invarient channel. The partiocle o ' will. th oqm:q
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w.: and couple with strength X.g’ to the system, -
The introduction of symmetries adds only a slight complication, Bach
invarisnt ohannel o in the s~ channel will receive a oontribution $o its
left hand out from each invariant chamnel P’ in the u~ chammel, In
our mdd.el, we appmxi.mate‘ Im 8,(s) (on the left hand out) by: .

In sy (W= % Q‘P' g lw+wp) Bp? (fa12)

where C 1s the 8 = u crossing matrix for our symmetry group. Then !'8‘0. :

equation (1.,10): N, (w) = 2 C ('“’F') (1.13)
wfwP

Now from equation (1.11) we obtain

D (s) mla- (o )Zg amtp(w') B(w') Cup ! ¥y Du(-wg')

(W = w) (w* = weee Nw' & wpr )
(1)
phu'e we allow ourselves to ohoose e different subtraction point for eaoh 4
u we 80 desire,

We are now faced with one of the central problems of the N/P method fop
if (31, the integral in pguation (1.14) will diverge. In order 9 make
it oonverge & out-off funﬁtion V(w) must be introduced into the integral,
where V, (w) has the property of being 4 up to large values of w and t.hgr_o
after tend to zero in such a way as to make the integral converge, 'thl.l
ad hoc introduction of a out-off is necessary because we are mhé;';tm
over the range (m, + e ), whereas the medel is only valid for small g;. _
With the oorrgot relativistic kinematic factors the integral will oonyerge
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converge, and i1s in fact tractable (31). Taking the statio approx:l.m.ﬁpn.*_
this point glves D’ lhe& for we< M. Din (32) argues that = the M'm '
is initally divergent, with a proper cut-off the main contiubution to
the integral will come from the high energy region, Thus the integral
will be independent of w and hence may be written as a constant, th.u_q
" allowing us to consider D as linear., Experience of caloultions in whish
D osoillates at high energy (33), makes this argument rather shaky apd qlq
prefer the former argument. Also it should be remarked that again
experience in ocaloulations shows that D tends to be linear in the ru_mq :
region (34). We write the linear D approximation in the forms |
Py (W) =1=(W-w)haKe - (1415)
where Ke = Z. qu KP Da((-wp’) ' (1.16)
and M\ is related to the integral as described above.

If we belleve l)iu's argument :

4o ' .
A= (PRl vt (147

{u'- w) (u'-wu)(u#uy)

In any case we allow Axto depend on « , We discuss the possibility
that the Axs are equal (the "universal out-off assumption") later. \'lo :
note thall Squitions (1 15) and (1.16) are interdspendent, Substituting
equation (1.15) into equa.tion (1.16), we obtain oons:latency conditonss

AP {1+ (prewea) hakal (1,19

which may be re-written .asi

[ -z CupYpr (w9+wu\}\ Ve = Zc.qm (1419)
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The bootstrap requirements are that each channel P' (into whigh
we inserted a pole in the u- oha.nnel). should contain a direot ohannel
pole. corresponding to a particle with the same ooupling and mass ap
the u= channel particle. Thus the condition 1s that each channel p'

contain a pole at W P' with residue .8‘;’. In mathematical terms:

Re Dyt (wy? ) = o ' (1.20)
and - By = AE(HED)
P " [re0p =, y (1.21)

Using equation (1415), euption (1,20) givess
1= (wy -wpe) Ap'Kg? =0 (1.22)

Using the consistency oondition, equation (1.19), we obtain , after

some simple algebra:

1/ / - .c ‘ ,K Wy = C _"':'-:8 PEAYY) ' ' (1.‘ )
Ap é pae Ug' Wy é’ s 08 wp . ?3)
Using ;quat:l.ons (1.13) and (1.15), quatior'l (1.21) gives:

-y = 2 C 8% 8y Dpel-ws)
(Up"' wg) (- -AprKp)

Substituting for DP’ (= wy’) from equation (1.15) we obtains

KF’AP'KP, 2 CP"I X‘l‘ { l + (""\""'WPO) /\J'KL‘}

WP’ +wy’

Substituting for- - >\P/ KP' from equation (1.22) glves:

X'z-é‘.c’s’ 1+ wWerwpho =3 et Q!
P : #_‘J;,—{._‘ ;L_} z.;': Cf'v Y"‘

¥’ W’ - W'
(1.24)
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Using this result, e quation (1.23) yields:

r Wy + 5 Congt Yerwg = Ypp .
by oy + Z Cpoow = Ay )

W_o, have,as 'yot, imposed no condition on ﬁe channels into which
¥ dnserted no imput pole. Were suh & ohayinsl to have a pole in
Qﬁi direot: channel, our bootstrap programme would be marred. We
thenfore wish to exolude this possibility.

. Prom equations (1.15) , the -s'uller M Kx  the further away
" the pols will be in the « chamnel. For mo pole o ogour in the
low energy region, therefore, MW« must be mumerically inl__l_.l,
If this is ao.,. it may be hoped that seocond order terms will become.
-:l.npottant for 1&31- energies and remove the pole from the é
channse) a:l.togethor. If A« Ka<o -the pole would ooour at unpbys:.oa;
nluu or w and oon'espond. to a "ghost" state. Such states are
physigally mot allowed. For the above reasons, it seems proper to -
l.npou the eoud.ition MKa=0 o ¢ 1 whioch will not -
" allow the pole %o coour at: A%eferenoe (31) suggests that A is
of order 1/M, so this oondition becomes K ¢ << 1 This gives,
using equation (1,18)

2 C.‘ftv"zo or << i

B’ (1.26)
Combining equations (1.24) and (1.26), we cbtain the standard -
bootstrap eiiiaticns (35):  Y¥u-= 2 Cup U (1.27)

(with the 6okvention that ¥x=o0 if there is no particle in that
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ohannel ) or; Yu * ZP: C«rVP s wheve.  BK is small if Ya=0

5 eroonnz.‘nl noe in the Static .Hodelo

Ve Ii_a.vo ugn. how, using the N/D equaticne 'aqql the pole approximatioens,
a bootn_trap caloulation may be performed, ‘ As this method is hased on
the un of dispersion relations, it -13 Anteresting to see if superw
' convergenoes ro].aﬁons, another extension of dispersion relations,
yisda l_q.li,ls_lr_':l.:n-.-foi-nation about the oouplings and masses in the same
pole. appzdﬁnﬁ.bn. From many oaloulations it is known that the |
saturation of superoonvergence relations with s:lngle pa.rtiolo atg_tea
gives rll.utioua between oouplings. -Also mopt sum poles y:l.eld, |
infornation about the particle masses, ' ' S

The prime facie similarity between the tw6 mothods prompts onp
to ook m. olosely to see if th; methods are in __t-"aot aqd,vqlq'git_ in
somp way, Diw (32) looked at this problem and kas shown how the
similge l'.ﬂl].tl oan be dorived in & mpdel with only two partioles.
The work in this section and the derviation of the aanonioa.‘l. method
of lgl.v:l.ng the N/D equations was undertaken in order to f:l.ml the
u%tuﬂ relation between tho tWo moih.us. The in-sight
provided by this work enables cne to see a ologgr equivalence
botween the twe methods than Dim found. Indsed conglusions

can be drawn whioh throw light on the use of the"bootstrap
equatifns,
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bet us first derive superocuvergepoe relations from the.:
gﬁjpe;doq ‘pelations. The model u"u,,u is the sape a_a. !,n the
seotion of this ohapter on Static Modsl Bootstraps, '
ip smplitude G {w)4s said to superoonverge ( (1) §
qu(“)"";"'uc ,evo ) RS W e hwdlnotion

m uuw,on is anmom for Qulw) to obey an msubw
tracted myc;'s‘*_on Pelation:

. | -gulﬂ)- ‘#‘:g-"'::a— Llldu:o)' *+ i 2. C"f Lﬂ'(.,.)

(1028) .

I!' we oxpa.nd e (w) ;Ln inverse powers of. 'w, thg'

-s\mnonnmoo oond:l.t:lous tells us that the w tem mt
vanish, - -
ium | .
S\dp‘ N Qelw) + S dn‘ 2 (-«r 1'- ap du‘) *0

ﬂu upwtun we make to derive rohtim lptwogn the( '29)

'mp;l.tus, u that the amplitudes Q (w) are lupqrooumsent .
u¢ that the htomh in equation (1429) o be saturated by

tlu mtrlbntiqa of the single particles atates i pE i
latter muptim corresponds to pnttu; L Qqlw) = W¥ d‘ "v’-‘“)
'where agsin we use the copvention ¥« 0 . 3f there is no
lgnclo: particle state in th._w-ohsnue,l,... '!hn sun rulo‘.

qqﬁnti.on (1.29), now become:: simple a]gebrils relstionss .

.xq.-_' Zp‘c"xp | | (1.3.(13)
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which are the beotstrap oonditions, equation (1.27).

W next -d,i,.i;iu_u the. first momnt sun rule, This may be
derived fyom the dispersion relation in an analpgous way
to the lwoqnve_r:um.e relatio,on the nnmt;lon that
ﬂulw)"-!- “5ee 620 w-ha The relation iss

- S wdis! B aglud) +§ ! E Caplmaptui=e (139

38 theu relations hou. wh:l.oh is l.ntriqsiépu.v lesa likely
- thay the case ottho lupqroounrgom ulnim,it is -
#t411 possible, even probable, thet it wil} mot be possible
$o satwste with the aingle partlole states as the -.;;gf;u
' ‘faotor @' will enhance the contributions from higher emrgies,
Because of Shis we sllow for ather cantriputions by writing

S:w’b‘s‘@ql“‘) = walu +Ta (1.3.2)..' uhere

W« Yu 4s the contribution to the integral from the pole term
With this, the first mopent sum rule givess

u.!. % qu u‘;?fp w (Tuw ?Cg(fﬁ*q (1433) -
I the nlatm do mot hold, it may be possible to w:l.to 8.
finite energy sum rule (38) which has the same form as equaticn
' (1.33) wAth Ty Qs & Regge pole-termy- (Ve deal with Cinite snepey
" sup rules in chapter five) It is timp reasonable to assume an
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equation of the form of equation (1.33) holds, whers I« 48 an
~ integral over the un:l.ta.rity_ out or a Regge pole t,erq. In oaw
case we can say little about ¢he terms T Iw:l.thout htrodupuq
| ‘assumptions, whioh would mean that our caloulation would mo
longer be a "bootstrap”. In chapter five, we introduce extre
assuzmptions in an attempt to expla.tn the existence of symtriql
_in & more re~liable model.

‘We are now able to disouss the connection between the
bootstrap and éllperooqyorsonop methods. We list seyeral
. vemarky to this end, belam: _
| (1) The results of the standard static modsl beotstrap
| oaloulation are :idpntiisal_ in almost all respects to thope -
.Q'O.l'lnd‘trcl taking single particle saturation of _l,upemnvw.' :
'. .lnlq;ionl written for the various amplitudes, snd fiom & .
similar oq:'ni«inpt;l.cn of the first moment sum rules.

(11) Using the stromger oonditions im equation (1.26),
both methods give the bootstrap conaistency oond;!.tious Lor 111
channels. -If the weaker the oondition is used,the bootstrap -
method Yields the conditions only for ohammels oonﬁ;lni.n; '
paretohs'-,wbust it says that the clements oorrespgnd:lps',to
particles with no partiocle should be small,
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(4i1) In the bootstrap caloulation, the left hand out is takep
to oontain only poles, whereas in the superconvergence caloulation
we allowed the moment sum rule to.xeseive a contribution from
the u~ channel unitarity cut, If we are to be solving the same
problem by each method we mth negleot this ocut contribution |
and take the same lJeft hand out for both calculations, Then,
with the identification of Tx  with /A« equations (1.25)
and (1.33) are the same for the channel which contains a
partiocle. The first moment sum rﬁlo gives a mass relation for
the ocass where the chamnel has no partiocle whereas the bootstrap
does not. |

We can see no reason for equating the A«s in any way end .
this oasts doubt, via the above ldentifiocation, on the a,as.umpﬂ_,.o;n
of a universal cut-off, Aa_ this assumption leads to inoonsistepcips
in, for example, Diu's caloulation (32) we are happy to discard .
it. As the mass relations all contain arbitrery pargmeters
(T« o A« ) they arve of 1ittle value and this situation puts the
two methods on a par as far as masses are ooﬁoerned. | _

" (4v) It should be pointed out that the reasons that we differ
from Div in our conclusions are that Diu fails to look st the
moment sum rule, puis no conditions on & bootstrap mplﬂudp whioh
should oontain no pole, and assumes a universal outwoff, His . |
ad hoo method of solving his two particle model obsoures t&

simple mathematical relation between the twe methods, whioh




naturally leads to consideration of the moment sum rule, His |
-use of a universal cut-off, agalnst which useage we have argued,
lends to the breai:dovm of h:l.s bootstrap equations.in the mN
case, where the internal and external nucleons are given

equal masses, because there are insuffiolent parameters to

. satisfy the equations, Without the universal cut-off, one

-has no such problems.

6. Uses of the Bootstrap equatioms.

(.a) N - N* bootstrap (3:')

At low energies the TN scattering amplitude in largely .
p- wave and dominated by the existence of the nuocleon and the
,ll‘}} reasonance, quellins Istates by their isospin and spin
(I and J) we have the N(%,%), N*(%,%) and the p- wave pion
is effeotively a (1,1) particle,

In this case the isospin and spin orossing matrixes are
equal (39)

(%) (Z)
W) o ()
oo ( PR )(X)

" where the bracketed numbers beside the matrix indicate the -
ochannels,
If we assume that the N and N® are the only single partiocle

states which exlist we have four equations:
8 4,4 Big |

AR CRTA S 1 (1,34)
B x X %




Due to what might be desoribed as good fortune, these
equations have a solutiont J4f = 2 %%

If we identify the 8 s with couplings as follows:

Vit = o Quwew,  ¥pya quEN* g e
we .obtain: g'lTNN = ng',whioh is close to the experimental
value,
The above solution is unique only because we put XV,M'X'LQ s 0
It 1s however in some sense the simplest solution, requiring

as it does a minimal number of particles., In general the 'bopta@x_‘pf -
equation will not be exactly soluble with only the desired pantiqles:
and it will be necessa'ry to introduce other particles which one
hopes will have small ¥ s thus corresponding to high lying
resonances. Hwa and Patil (40) used this condition of using a
minimal number of particles in an attempt to produce a mnnindul,
bootstrap programume. ' ' .
(b) Baryom cotet - decuplet bootstrap in SU(3) (52)

. After the suocess of the N - N* bootstrap, it was natural
with the advent of unitaz;y symmetries to attempt to extend thil
sucoess to the SU(3) case of the pgesddo-soalar meson octet
soattering off the baryon ootet, using, :I.f'"pou:l.ble_,. the ba.ryon
oote_t and deouplet as the internmal states, _ . i

' Before we perform the caloulation, we must do & little group
theory: . _
InSU(3) :808=108:0806 10 @ 10 o 27.
We have ohosen linear combinations of the octet states which

{
couple symmetriocally and antisymmetrically to the 8 ® 8, There -
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are now eight channels for the process 8 ® 8—>8 @ 8:

1 -1, 8s —8s, 8584, 8A—8s, 8A-»8A, 1010, 10210, 27— 27
of which 8s -84 (8sA) and 8A —>8s8(8As) are equal by time reversal,
The su(2) orossing matrix is the same as for the NN* case:

® )
cJ = --!% :4’5\ (&)
Yok (%)
The su(3) matrix 1s (63)
AW WY
- sw % % 2/5 Y5 o -§|(10)
Dol 3 & 5 ¥F o 3| (H)
27/v0 & & -3/10 0 -+ ¥ (8es)
o %4 -B/a o 0 © 0 (8ga)
Y8 0 0 o 0 ¥ -4/ (Gaa)
27/8 -5/ 5/ 1 0 o (1)

We seek a solution containing only the (10, % ) and(8,%) ohamdls,
To do this we attempt to solve the boot_strap condition for the
sub-matrix (C') which contains only these chamnels and then see if

this solution also ylelds a solution of the complete bootstrap. _
equation, The sub-matrix in question is: '

(10, %) (Bos,d) (Bea,d) (Bas,3)

/12 uf5 w313 o) (10,%")

. g 1/10 0 1/6| (8ss,%)

6! = 5/3 0 0 0 | (8sa,})
0 1/6 0 -1/6| (8aa,) :
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C' has an eigenvalus 0.85 which is near 1, However the couplings
to the three ootet channels are not independent, there being |
only two free parameters, .an overall normalisation and the

f/d. ratio, . '

The best solution corresponds to 610/ ¥8 = 1406, « =0,70
.lhore ™ is the f/d ratio, This gives _.

¥10 % 10 1,06
x'= ¥ss - 20/9 o2 ¥ 8 (1409
Ysa | ~ | & 55/3 o((1-o£)x8 "|0.626
Saa W(1-R | |0.0360
whilst C'E'a [0.752
0.876
0,790
0.122

It 1s open to argument whether the above represents a
reasonable solution of the problem,

We now look at the complete bootstrap equation and put §_
equal to ¥ ! plus ten vanishing components. We already know
four components of C¥ from the above, The remaining ones
are: (27, %) (27,%) (10,%) (13, %) (15,4) (8ss, %)(8sa,% )(8Bas, % )

0,255 0,005 0.021 0,006 0,395 =0.161 0.97 =0.2%%3
| (1, %) (1,)
0,045 ~2,01

These elements are small or of the same order of magnitude

as the error in solution of C'¥ ! =¥ !, apart from the (1,%) element




(o) S (13)
In the SU(€) modsl of the baryons, the octet and decuplet are put
i!_l one representation of the group, the 56, In assuming this assignment _

we are discarding the idea that the baryons and the resonances bootstrap
eaoh other and assuming that both exist a priori.

The mesons are assigned to the 35 reprei_antations and one may ask

whether the 56 can bootstrap itself in the meson~baryon
soattering process, If this should prove oorrect and it is not the
oase for other multiplets such as the 20 or 70, it would provide a
bootatrap argument for the existence of the 56 plet and not the other
representations., The dynamical problems of SU(6) are avoided by letting
the psendo-scalar mesons act in a p- wave, -

Balass, Singh and Udgaonkar (A8) carried out the above programme,
Indeed the 20 plet is unlikely to boelstrap either singly or reciprocally
However in 35 - 56 scattering,the diagonal 56 crossing-matrix element is
very nearly one,which suggests that the 56 could bootstrap itself, | This
is also true for the 113%i ia the same process, but a large negative |
5_6_ - _1}_4 crosaing matrix elements suggests that the multiplets are
unlikely to co-—exist., If one believes in SU(6) as a symeetry group, the
abov_.e may provide some reason for the 56 assignment of the baryons,

(d) Iscbar chains (49,"%)

With the success of the N - N* baotstrap, people wondered whether
there might not exists infiaite shains of partisles which could bodstrap

eaoch other in some way. The most interesting success in this field is the

I. _' o




result of Abers, Balazs, and Hara (19), that in wN*scattering the N*
and N* (I = J - 5/2) bootstrap each other, and so on. Thus the
chain of nuocleon isobars with I = J bootstrap each other, 4s will
appear in chapter II, this fact is no accident but derives from the

existence of a non-invariance group for the system.




OHAPTER 2
Strong Coupling Theo:

Strong Coupling Theory, as developed by Cook, Goebel and
Sakita (41,42) f-.ron' the early work of Pauli etel. (43), sets out
to desoribe, by means of the Chew-Liow Equation, the soattering of
pbeudo--soshr mesons off baryons in a p- wave.

It 1s assumed that there exists an internal symmetry group
(K) for the system, such that the mesons and isobars fora
representations of the group and such that the meson- baryon
Anteraotion is invariant under the group. "As we will be world.p;g
in the statio model, SU'T(Z), the spin aymmetry group, may be .
comb:lned into the internal symmetry group K, Let us consider
processes Ni + Tlu —» NJ + Tl'f (45) with soattering ampl:ltudes
( 'SP )'" where i,] label isobar states and & ,f,..0 set of
mesons, 'S'P“ and the Ax 's which we deﬁ.ne later are operatorl
in isobar space with the notation ('SP“ s < Ihul > and

(A“)J‘ = <) ali>

The operation \Ax is defined as the Yukawa coupling for the
absorption of the meson 'oomponen-t ® o Thus AlA" 4s the
| oqupli.ns corresponding to -tlie isobar 1 absorbing the meson component

and producing the isobar Jj. D:I.asremtioal].v
1\ X

\
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The Born terms for thke process Ni ¢+ 1l —» N“,mr corresponds to
possible lsobar intermediate states in the process anl in the s—u

erossed process., Thuss

R gt war)

Upe C LMo Hiow | M

(2.1)

where the sum over k is over all isobar states.

. ?.,
We can represent the Born term diagramatically as below:

(8.“3;;2\“ B 4P+ L, -
P h{ }\ f " \3_

The Chew - Low form for f, whioh, satisfies enalytiocity, unitarity
ind.—crbu:lng symetry, is;

(g0 = (g

+ Z g plo L,,[(g,f_m)‘f(gntuv)')‘"‘

Mp-Mitw=w~i€

, (o (‘r*e‘“'))h;]

My~ HJ tw/cw . i
+ (two or more meson . Antermediate states) (2.2)
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where Mi is the mass of ths iscbar i and P(w) is a kinematic factor,

We have in the theory an undeiermined parameter A , which
measures the overall strength of tle mesomn couplings. Experience
suggests that Aif X is increased, the isobar masses tend to a

comnon limit., We make this assumption and set:

ML w M +Ai/,\a. (2.3)

where B i remains finite as A —» oo .

The limit A'-»+= is the strong coupling limit and the
strong soupling modsl is derived on the assumption that the
eyuations of the fSheW-Low model are in some sense '“analytic" in

A" 4in the limit A'-> . Unitarity requires the scattering
amplitude to be firite in the physical region. By equation (2.2)
the Born term is also constrained to be finite.

Usiag squation (2,2), the Borm term can be expanded in terms
of '/A‘ 4

fro = 2 T L DA D)« o)

where m is tl® mass cperation defined by Ml¢> = M; ie>

Thus the finiteness of the Born texrm for all processes implies

[.A;;A“'] =0

that

(2.5)



This equation, being true for allw, P » 0an be re-writtem in
the standard form [, Ao )= 0. (2,6) This oonition, derivea.
from the dynamios of the problem, is sufficient to emsure that the
.algebra gemerated by the As and Js (the Js being the generators of
the symmetry group K) oloses. The problem of finding the 1schars
is thus reduced to the algebralo one of finding unitéry 1md.uo:l.bi9
representations of this algebra, The additional assumption réiiidred
is that th» mesons aouroo:n Ax transform 1ike tensor operators of K.

This gives an equation of the form:

(4, 4w ] = naup 4 (2.7)
The generators of K obey an equation of the £¥in s

f78,75] = cagx . th.8)
where Cijk and Dijk are struoture constants, Eqistions (2.4),(2.7)
and (2,8) define the algebra of the strong coupling group G for -
the system., Inspeotion shows that G is the sémidireot product of -
K with T, the tremslation or Abelian group generated by the A .
GuKkxT, T is the iranslation-grom-):.n n dimensions,where n is
the dlmension of the space spamned by the A« . As G is non~compaot
its unitary irreducible representations are infigite dimensional,

sentat the Btrong Coupling Group

The methods used for deriving repreaéntation of the strong
ooupling group are mostly of a teohnical nature and physically-
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unenlightening. The techniques of group contraction, used by C.6.8
in their original paper, and method of induced representations are
both standard group theory procedures. The methods derived by
Fairlie (46) and also Udgoankar and Singh (47), are however of
physical interest as they not only solve the problem in hand but
also exhibit the oclose relationship between the strong coupling
equations and the bootstrap consistenoy conditdhon,

We therefore discuss these latter methods in some detail

whilst contenting ourselves with a brief outline of the former,

éroup Contraction

Given a strong ocoupling group G, the idea is to find a
group H with the property that one may take linear combinations
of the gemerators of H and by taking the coeffiolents to some limit
'obta:l.n operators which obey the algebra of G, By seeing the effeoct of
this limit on the parameters specifying a representation of Ii, one
may find & corresponding representation of G. Naturally ane triss
to find a group H whose irredwsibls unitary repre-sentations are
particularly simple and easy to find. Usually H will be chosen to
be compact, thus enabling one to deal wit? finite representations,
Of course, after contraction such representations will become infinite |
as G is bde non-compact.

A group H, related to the strong coupling group G, as specified
above, is referred to as an intermediate coupling group.
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As an example of the use of this method consider the soattering
of scal@ mesons with isospin aymmetry (42) This is the oase whu'o :
Ka 801(2) and ¢ = su(2) x 1'3 H is chosen to be su(2) @ su(2) with:
generators L; and L} whioh obey:

[LY ,L;] = L €ijh Lt ,r=h2

[Li15]=0 Lk = e

Put I = L1 + L1, Al = € (L1 = Ii ) In the limit €->O Leeping Al

finite, the I1 and Ai generate the algebra of su(2) x Ty The -

irreducible unitary representations of su(2) @ su(2) are specifﬁq_'

by (1,8, Jwhere {r(f+ +1 ) 4s the value of the Casamir operatop
VIR | ik

(L~ ) aoting on the Gentation.

Putting I* = £ (€ 41 -),.‘.t will assume the values t = {0:-4\,.... ;l.q_f;',
by the ‘nsual result for ocoupling time angular momenta, Thus for &
useful repz-eaentai-;ion of su(2) x T, to emerge from our caloulation
we must keep t &, =0 -L\ginite.,

AL =ef@)t =@ S} = € (h- B4+ La1),

Thus in order than A does not vanish we must choose (0, + §, ) to
begome infinite. Thus we must contract su(2) ¢ su(2) by making
0,+ 0. > » whilst keeping ( ! -, )finite,
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In fact to apecifies thé representation, and such a representq_tw |
oontains an infinite awiké? of irvedicikle representations of the l}_llh
group su™(2) with I m #(te1), t=to,tost, | N

The uae of this metl:ml iz tedlous for larger groups G. The
details may be frumd Ia the literature.

At the snd of their pai)er, C.G.S, remark that the connection .
between group comtraction and ta.l;:'ing the strong coupling limit might - p
have physisal signifirance. They suggest that for finlte couplings, -
the precontranted intermediate coupling group .might serveasanon-
invariance greoup for the system. In chepter 4 , we discuss the
theory of iatermediate coupling built on this idea.by Kuriyan and
Sudarshaa (24).

For completeess we list below various processes with the
corresponding symmetry groups (K), strong coupling groups (G) and

intermediate cauwplicg groups (R)

K b H (ompect) | H{nem-compect)
u(2) SU(L) % T3 SU) @ W) | SLI2,0)
Sw2) @ W) Ski2)@ sud) 1+ Tq U 14) St 4,R)
UL Bsud) (S @suw) « Tog | SUL4) SL (¢, R)
Su(4) Suty) x Tig i) ®SME) | SL(4,¢)
SMIE) | Suie) = T Sul() ®su) | SLI(g,C)
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Bhotstrap consistenoy condition for strong coupling (10,47)

The diagram illustrating equation 2,1 shows how the stron-c
coupling condition links the couplings of isobar intermediste states
in the direot and orossed ohannels, It is thus not aurpr:l-.si.n; to
find that, using Clebsch-Gordon coefficients to project out specific
invariants in the direot chammel, the bootstrap consistency ocmditiem
may be derived from equation (2.5 ). We use equation (2.5_.) rather
than the more commonly used eguation (2.6) because the analysis md
for equation (2.5) is identical with that required 1later to deal
with the total amplituds;

To illustrate the technique sketohed out above, we take a
simple case where K = su(2) and the mesons belong to the "spinm 1"
representations., Amed with this calculation, it is relatively
easy Job to oconstruct the calculation for any group K.

To simplify the algebra, we take the meson operators A | to
form the spherical basis of the spin 1 representation., That 1s, o -
is the s~ component of the meson .concerned.. (49,50), We label |
isobars by their spin and its s- oomponen;:. We may use the Wipoh
Eokart theorem for the symmetry group su(2) to write the matrix
element of A between two isober states as the product of an su(2)
Clebath - Gordon coefficient and a reduced matrix element, which
is independent of the s- components, Thus:

Jg 1 I

Tl aal 30> = of; o )<x o 3> (2.9)
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J
for gonvenience we write < Il All J> = 83
Inserting equation (2.5) bétween the btates<IIz| anda |JJ2>

Zc(k,-f i ¢ (:It « 1) &

g(oxasa'.c(x-pk- B

8ives:

(2410)
using A:-@‘l)..luand where k= I, +o = Tz +f, Re =Tz-f = Ta-
Bquation (2,10) holds for all I,I,,J, J, and the sumations are
over.dl isobars X and K', Charge conjugation invariance implies thats

<II: lAql JJz) 2. (-1 )“<JJZ|A""| II2> (2.11)
Using the Wigner-Echart Theorem, this gives the vertex aymmetry
- 1
relation: 33: =(=1) 7 (%:T)% ; ']T; : (2.12)

Using equation 2,11, equation (2.10) gives:

s e
2 ‘k (1 x k) c('; ; :) =1) ‘é‘i"i-- °(§ i;s :')
o3 Lx) et

(2.13)
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To projeoct out the ¥ channel we mult:l,.ply by
¢ (I 1 x\ G(J 1 x\ (_1)_,8
Lxkl \% pK

and sum over I, andf keeping « fixed,

Por the left-hand side of equation (2,13), we ocan sum over
with k, f£ixed and then sum over )r.z which 13 éguivalent to sumning
over I, From this we obtain frofl the 186t hand side.

LA LIS A VL 1)
eZ TSR (i,.l N ds

- ‘: (am)z I-;'k “(i;i,j«)

- § % (%)

where we have used the rclation

1§ K ( 13 k') |
c kk!
Zc(:.,,a,,k‘ i, J, k = d
and well known symmetry relations for C-G coefficients,
Under the same operation, the right hand side of equation (2113)

glves:
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Lntal £olip 1)t o) P e
In,f |

Using the symmetry relations for C-G coefficients, the sum can be

re-written as:

£éd ZelLyg) o5 4 DelpRE AL

I(2_kg+1)(g+1) (-1)%
3

The sum over C-G ooeffiocients is simply related to a 6T aymbol
and we may write the term as:

- I 7 (2k41)(Ze1) ()% {1 4 k'}
‘k' skl J 1 K
H Y 3

- Lo (34 &' &'

I 1 k

71K } is by definition the

where Okt u (<1)2(2141) {

s~u orossing matrix,
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Thus we have the equations

e J = + » J'
() & (2t écxw bt & (2:1)

and hence obtain ths bootstrap consistency condition

P e Coele (2.15)

where é 31 = ﬂ and the summation over k' is assumed,
As remarked earlier, the bootstrap conditions may be -derilvo'd-
from the strong coupling condition for any symmetry group i. n"
the bootstrap oonditions hold for any process Ni + T~ Nj+TT
where Ni,Nj are isobars in the representation of the strong oouéih‘
group. Consideration of equation (2.1) quickly shows why this
should be the cases We see that the Born term has direct channe)}.
poles and-@popssed channel poles. Moreover we notice that the
strong oouplil;g condition is also the condition that the Born term
superconverges. Thus the residues at the poles for a particular -
process must obey the boohstrap conditions, as was shown in ol_'wptel,' 1,
in the section on superconvergence. We will retum to the topioc of

suberconvorsenoe and sfrong coupling theory later,

Uses of Bootstrap Condition
The fact that the bootstrap consistency condition holds for

all processes within; the isobar chain can be used to derive the
meson isobar oouplings, onee the composition of the isober chain

(ie the representation of the strong coupling group) is known., One
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merely writes down the bootstrap equations for all processes (or
a8 many as necessary) and puts in the isobars as intermediate states,
The equation; 8o derived are sufficient to determine the ceuplings_.
Indeed one could show that the fact that all the bootstrap equations
hold with intermediate states from the isobar ohain, is suffiolent
to guarantee the veréoity of the strong coupling equation, actip';
between isobars within the chain.

The procedure outlined above is particularly suitable for
use in a oase where the isobars chain has a particularly simple
struoture, such as the suI(Z) ) auJ(Z) chain with I = J. In this
case one meed only consider two processeste cover all possible
processes, Clearly the more complicated and the larger, thé iscbar
chain is: the harder this method becomes. |

The I = J nucleon iso-bar chain is particularly suitdd to the

above teohnique because we need only consider two processes:

(1) (1,I) + pion — (I1,I) + pion and

(11) (1,I) = pion —> (I1,I+1) + pion
Consideration of the process (I,I) + pion —» (I-1,I-1) + pionm
gives no extra information, as it is the time reversed process to
(x -1, I-1) + plon — (I,X) + pion which is a process of type (i)
D.B. Fairlie (46) has an elegent solution to the bootstrap
problem for this case which makes use of tﬁe orthogonality

properties of the crossing matrixes, The bootstrap equation for




38,

the invariant amplitude (I,J) =(a,b) for the process (i,j) + pion ~»

(11,3") + pion is:

iJ 1141

(Gear dub - Caa® cob') gl &7,

=0

where the Os are the appropriate izospin and spin orossing matripes,

The prorer tilas of Racah coefflolents allow us to write Caa' = Oaal
( 2a's1

2a +1
matrices, Wo oun use this fact to write our equation as:

] &nd O0aa'orthogonal and symmstric, for both of orossing

(Jear fobr - ot awvr) ¢ld | ¢l

where e = {(2a + 1)(2041)} bl s

if we now restrict ourselves to isobars with I = J. The above

i’
equations gives:( aa! -053') Ga'a' Gorar =
il

It i8 oasy to see that if G'aa is independent of' a, the equation
is satisfied. With this condition

2 Oaa. ol @::z: a 5 0aat Gate G (1) =Gt (1)

a'

1310
as 0 is symmetriocal and orthcgonal. Also J ea’ Gﬂa' G:'ai

2
=G (1)
For completeness we give the isospin orossing matrix (Csu)

for the process 1 + 1 -+ & 41, (51)
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i-1 i 1+1

1 i+

ey KE 5| -

Csu =
2:I.-1 2
1" ei-1 21+
1(2’“’) (1e7) (1eT)(2041) | 4

%= 1 ] 1-1

* i (T+T)(2e41) * °

The orossing matrix for the process 1 + 1 —> (1+41) +1 1s: (51)

i 14
-1 . %
1(1+2)(2143) q
oou & o) [L_z.é.{_z] wrf *
- 4(1e2)(Rde1) iﬁ_ ' 1
2443 i1 T 149

Inserting our solution su =-L+=3 glvea, using vertex symmetry,

@(1) to be a constunt (ie independent of 1) Thus the oouplings

ares1 ;:l..t a1 (vr.l.th a pa.::i:ular normalisation), and B141,401 ™
21 2+
( 2_121-3) and g 1_1 11 =\ 3 from the vertex symmetry relation.

The abovée method seems not to be appliocable beyond this simple
exaiipls, & we now turn to ancther method of obtaining the oouplings

for the I = J isobar chain, whioh method was disocovered by Fa:l.rl:l.e,(!"s)




and also by Udgaonkor and Sing{h (47) This calculation exemplifies
the widely applicable technique of expanding \: in terms of the
h_:l.gon veotors with sigen value +1, which are the even columms of
(‘jt (see appendix 1).

Briefly the method is as follows. Write f = Cat [' ¢
where [' ‘ multiplies only the even ocolumns of Cst, as [‘ obeya
(1 - 0).[' =0 and hence is even under s- u orossing, 1 hL&s #bio
elements corresponding to the odd columns, [' also has zeros
corresponding to channels which do not contain a member of the
isobar chain, The contraints the zeros of .r' put on.r “can be read
off from r a cstr: Ir V'"1s determined y one can now read off the
values of the products of couplings whioh make up [‘ Ie ' s
undetermined, but contains only a few arbitary parameters, the
equation may be inverted to find the constraints whioh the theory
imposes on the elements of [‘ . A little thought reveals that
the above method of solving the bootstrap equations is, in

general superior to the direct method. If the orossing matrix

')
" 18 of order m x m, the expansion [' = Ostr immediately gives

in terms of roughly n/2 parameters, ocorresponding to the number

of even eigenvectors of Csu, In most problems [‘ has half or more
of its elements zero, so that f “Js detecrmined or contains only a
few parameters. The effort involved thus compares very favoura;bly

withthat required to solve the m linear simultaneous equatlons



.

of the direot method, As an example of this technique we follow
the caloulation of Fairlie, again for the isobar chains I = J
and |1 - J| = 4.

The isospin orossing matrix for 1 + 1 =» 1 + 1 has one o0dd
elgenvectar (1 +1, 1, =1) and the even eigenvectors span a two
dimensional space. For convenience we take (0, 1/2i+1, 1/2143)

-f 9

and (21—_1, %Eﬁ), 0) as our basis. Thus the crossing matrix

for the process (1,J) + pion -> (1,3) + pions has five even and
four odd eigenveotors. If we consider the scattering of pions
off isobars with I = J or,for definiteness, I = J +], the
intermediate states, (I, J-1), (I+1,J), (T+1, J=1) and (X=1, J41)
cannot exist, Putting the corresponding elements of to sero
oonstra.insr to be a particular i:l.nea.r ocombination of the five

oeven eigenvectors whioh gives:

(T=1,3-11a]13 ) e I(221)(2141) =
| " 21 -1
(3 lalzy)? . Tz -n)(a(z43) +a
' (21 -1)(27 « 1)
(z7lalzd )? =Y g;: &ﬁiﬁb) + (Ie1)(20-1) + 2} &

(17 +1lalzs ) XEi2G0) 5t a

(21 + 1)(27+ 3)

(Te13(al17)® = 1(Ie1)(2341)

2 +3

where a is some normalising function.

| .
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Vertex symmetry for the first and ﬁfth relations gives the
dspendanoe of aonlIandd as a:-(— f),andwe puta-
—(J ) as we are fres to choose the overall normalisation,

Consider now the process (I,J) + pion —=(I+1,J+1) + pion.
'&:a:lng the orossinp matrix gives, one can d.éi:l.ve, in the same
way, couplings whioh are oonsistent with the above with respect
to the factor a, providing (I-J) [2(1-.1) - 1] =20,

Thus the above equations give the soclution for the I = J
chain, They are also oconsistent for the processes

(T+%,3)+pion >(J +4%,7 ) + plon amd

(T +4, 3) + pdon =(J +3/2, T +1) «+ pion
within the isobar chain (I =J) = 4. There is also a third
independent process not inocluded in the previous case:

(T + 4, J)+ plon —>(J+ %, J + 1) + plon., Inspeotion shows
that the above solx.ztion .ia consistent for the proocess, As the
theory is unchanged by-aifterchanging I and J, the above gives
& oonsistent solutiai for all proocesses for the chain [I - J| =} '.

The recent work of Noga (52) has provided fresh insight into
finding the representations of the strong coupling group. Using
the identities relating 3-J, 6-J and 9-J symbols, Noga is able to
£ind solutions of the problem for the case K = asu (2) o su (2)
Bepresentations of the strong coupling group are clasasified by the
valus of p=max |I - J| . For the soattering of pioms offbaryom
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isobars, Noga obtdins the solution:
) .
37 = (1) 2% (21 41)(25 o)) ; 3 i} as(p)

A process involving strange mesons will change the p values
of the isobars Noge oonsiders such in-elastic processes of the
type T + B (4%,3',p')~>K + B (1 J p)s Bquating the s and n
ohannels gives a solution for the couplings of strange mesons,
pince one vertex in each dlagram is already knomn, belng between
isobars with the same p values, The solution is:

S LR (HHEL
Qr

where q=(I +J~-4-}).

The gymmetry properties of the 9-J symbol lead to invariance
under a further su(2) group depending on the variable p. Post~
ulating this invariance to exist for the scattering of 1 - wave mesons,
Noga, again equating s and u channels (this time for a process !.nvﬂm
arb:l.t:mry wave mesons) obtains the coupling

k! Kil
G. Lip = gﬂ §J } ((21#" )(23+1)(2p+1 )) ¥ o (kha)
IJP qp P
for the vertex N k,l,,
Y

~
~

v

T7¢
W )
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where the meson has I ( J,P) spin K({ ,q).

By means of this sequence of boatstraps, Noga is able to oham
the solution for the soattering of mesons in an arbitrary wave whigh
Sakita (53 ) ebtained by group theoretical means. It should be mentioned
that Bishari and Sohwinmer (57) obtain the same solution for p-wa.qo
mesons using a similar method to Noga's. They do not however appear
to seo the significance of their result,

lla.ap formulae

Strong coupling theory also enables one to make statements abpm,i,'
the masses of the iscbars, Using the unitarity equation, constraints
are imposed on the isobars masses sufficient to determine them, lpqqt
from a smell number of arbitxary constants which may by fixed by
setting the masses of the loweat isobars equal to their exper:‘m_n_nm
values. The masses of the higher isobars are now fixed and a.ppea-u'.
in remarkable agreement with the experimental data, as remarked by
Lovelace (54) at the Heidelberg conference.

The first step 1s to find a solution €f the Chew-Low equation with
the correct pole term as givem by the strong coupling ocondition, ‘gho

pole term is: - 2&’%
where Dpu = [AF' [Il > A"]]

For s-waves, the solutions is: JP“(w)a AF"'.

2n(-z~1k)
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where m ia the meson mass, The unitarity equation is:

2 Dyy = 28 Dpy Dy« (2.16)
For this to be wvalid in the physical region wrm, the mass differeanges
must be amall ocompared to the meson mass m, This means that the
ocuplings must be large.
For p- waves, a.out-off is nooo;sary. In this oase the solution -

iss £ pa (w) = —Df"m— » Where R is the cut-off radius. This
-' - i
gives the unitarity equation:

2 RDpa anf'r Dya (2.17)
The condition feor this :olut:l.on to be valid for w > 8-1 is that the
mass differences be small compared to 2-1. This implies that the
ocouplings must be large compared te the cut-off radius R,

The above deviations of the unitarity equations (2.16), (2.17) @p
not seem very satisfactory. Perhaps a better argument is that useqd
by Sakita (53) who shows that a formal sclution of the Chew=Low
equation may ' ebtained in the strong coupling limit, with ne

extraneocus slngularities except at infinity, provided.

(2.18)
Day= % Dgy Dsa (K),where K is scme kinematio

faotor which will be related to the cut-off,
Whether one takes squation (2.16), (2.17) or (2.18), one may
divided D by 2m, 2R or K to obtain the same fprm for the un:l.tarity

squation:

.Apet = % /\P‘d/\xu (2.19)




where for s~ waves 2m AP"" = DPQ. p for p- waves ZR/\P“ = D‘gu_

Wo take as our fundamental relations equation (2.19) and

Apa [A’."',[Oz ,Aq]] (2.20), where
’)?. s M/m for s~ wayes and 71 = ¥/R for p- waves,

Lot us conasider the case where the symmetry greup K is auI(g)
and the process I +TNi > J + W , |
The deoompositlon of the matrix elementsa of A ip terms of invariant
channels can easily be effected, using the techniques used earlier tq
obtain the bootstrap equation, -

<z | Apa \ 112>

=Sk A1) <338 |4} | KEp><xxg laal 12>
K

+§(f{x' -M3) <338 Aol K> <KXz |a}b| 112>
i} ) J C(T1E\C[T 1K\,
G- g C(LLE) (55 E) «f
K

| +2:(DIK'-%)4. AL izhﬁ-) (=)™

(2.22)
Pusting BUT3E) = (ME-1) &f & 450, Wx-03) &6, (2.23)
one obtains <y |Apw |T1p> S C[T LK\ [T4K (1)t R(JTK)
pe > -2 3 ) (g, ) 0 emo

R(JI;K) 1s the projsction-of A inte the X invariant-chamnel.
~Using -the bootstrap conditicn, one may re-write equation (2.2}) '

to glve:
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R(o7ix) <= L) §d oo A Lalls) 4.4
X (2.25) .
Note that R(JIK) is the oontribution the pole terms would give to 1';ho
first moment sum rule for the process.
In terms of the Rs, the unitarity equation (2.19) becomes:
R(IT;K) =SR(ITX) Hy'I5K) (2.26)
! '
where the summation is over J'=K-1,K,K+1.
These two facts are the sssential ingredients in the oal,oulaqip?’
of Cronstrom and Noga, which we will discuss later.
Having obtained the unitarity equation in various Forms, it ia
possible to put limitations on the form of T)z e HMrstly a.anz is
an invariant of the symmetry group K, must be a funotion of the
Casimir cperators of K. The early strong coupling papers (41,42)
assumed that "Z was & linear combination of the s econd order Casimir
operators of K. Goebel (45) gives an argument for this: '
Expandq- @ +blJi+CijJid) ¢ dijk JiJJ Ik
(2.27)
where Ji are the gensrators of K and a, b,.... are invariants
of X, Then substituting gives: |
Aap = - c1J )xp (Qidps  4p 2g= Lik (I)wp (FA)po ApheThp ...

(2.28)
where |A o, J1] COM'Y
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!

Goebsl argues that as a representation of the s trong coupling
group oentaina iscbars with arblitrary high values of the Casimir
operators, the matrix elements of A can ve made arbitrarily large
by taking them between sufficiently high isobars. This will oontrad:l,gt
the wnitarity condition, equation (2.19) which, being nen-linear,
1imits the size of A , To prevent this happening, it is necessary for
all terms beycd the CiJ term to vanish, thus 'givins the required fornm
forWI o Were the matrix elements of the As to dsorease for highen
isobars, it would be possible to retain some additional terms in the
expansion (2.27). The present 'author can ses no a priori reason why
this dexwase should not oocur, However in the caloulations perromd,.
it does mot c¢xour and Goebels argument holds,

Bangwala (55) gives a method by whioh a difference equati on nay
be found for 'VI As A is idempetent, it must have eigenvalues O or 1,
Thus the trace of A 48 & I (I is the identity operater in isobar space)
where k is an integer betwsen sere and N, the dimension of the regular
representation of K, which contains the mesons, i.e 2 /\ma kI (2 49)
Putting = 720% whers 4% o 21». Ay and £ 4s & function of the

Casimir eperaters of K, one obta.:lns-

f { Kx _puxr (2.30)

This ylelds a linea.r dif'ferense equation for §, The solutiona of 1_:;4‘;

equation are not necessary solutions of equation (2.19) as taking the
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trace introduses spurious soluticons., Suvbstituting back, Rangwala obtains
the usual mass formulas for the cases where K = suI(z) and K = -ul(a)
oeu’(2).

We reproduce hers Goetsl's mass fermulae for the case K = luJ(Z)
@ su(3) (3%)e It can be seen that fixing the mass formulae by two
experimental masses, the other masses are approximately cerrect, and
that the ordering of the isobars with respect to their masses is the samg
for beth experimental and thsoreotical masses., As Lovelaoce romarhip
(54), this success sannot be repeated by, for example, the quark

modsl 3

_ p | M=Tay had oingl Olsnd Hess | Obher
M) | I Hiog-Hay| Hus () | ™ .

3 V; 0 Liis2] N [q38) | Aw

vo | ZT1 1 |Lize3] | b (ian)| Au

TS ‘/z*' 3/3 1763 | N (14 66) | 2o (185X
2 5] % |1 || 2o
3c 54* 31/0; 1474 2:’:&’, Nan { 165oR
A NENE
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Btrong cmﬂlgg and Supergenvergence

Pands® (58) showed how saturating superacnvergence relations lead
to solving the I = J iscbars series for K = auI(Z) ) luJ(Z). Knowing
the similarity between besotstrap and superconvergence methods, uild
the relationship between the strong coupling equation and the boot_l‘tpq_p
oquation, this result comes as no surprise. However, strong coupling
theory embraces more than the eyuation for the couplings and so it ia
worth while looking in greater detail at the comnection between astromg
coupling and the saturation of superconvergence relaticns, Consider s
process N, + meson -->N2+ meson where Ni’ N2 form repreaontatioziq of Ky

Consider the invariant channel k.

f‘(W) )\ (I = ckk') 5k|42 i N2 ".“ ckk'ak' Bk' 'k.

m(#) + g [fk(") - Ckk* &"w)] dw* (2.31)

a wew!

where the pole term contains only bound state terms,
If £y {w) auperfaonvsrges, we obtains _

0=\ [x- Ckk! | didh . S Im[fk(w) - Ckik® fk'(w)] aw* (2.32)
If the intsgral can be saturated by resonances we obtain Az [I—ckk']
3;:‘:4? = @ where the assumed summation is over both beund states and
resonances, We thus sbtain the statlo bootstrap, and hence the strong
ocoupling condition, |

If we tfurther assume that the 1st moment of £ h(w) supercenverges,
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we obtain .
“+s0

<R(N, ,N, ;%) + S w'{ m(w')'-ckk'm'(w_)} aw' - 0 (2.33)
It is not poessible to s:;urato this integral with resonances, it must have
oontributions fegwthe two partiocle umitarity out, .If we assume °n]."7
these contributions we are in a position to obtain information from ﬂl,
equation. In the - wave case, putting fk(w) = resonance terms + %

w'i
€>0, one obtains '

~R(Nj, N, k) + 2“-“-‘e =0
_ 2n

In the limit €-~» 0, one obtains the usual oenditions 2m Dk =
R (Ng,Nq 5 k) and the unitarity conditiem,

In the p- wave case, one runs into trouble because of tho‘k:l.mqé\.tq',e :
factors and it 1s net possidble to find a simple solution. For £k te
superconverge in this case, it must alsc obey superconvergence rela t*oﬁ,
* for its first moment and a condition its second m;mont. "These do
not in general hold for strong coupling theory solutions. Hewever
Cronstrém ani Noga (59) found a situation in which one may apply
these techniques, ‘

Consider K = suI(Z) ® luJ(Z) and the I = J isobar ch.ain. The
ohannel (I+1,I-1) for the process (I,I)+W->(I,X) +Woontains no -
1sobarand cbeys exact elastic umitarity. This means that £,(w) = 0
is a possibility on the unitarity cut. Then using the moment sum

I .
rule ene obtains Cr. x CI=1 x si &%, = 0 where the Cs are the su(2)
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orossing matrices for the process, This ykalds a difference equation rqr
the masses which leads to the same solution as Rangwala, cronatrgm and
Noga, use an N/D method and ergue on the order of magnitudes of the mass
differences of the different terms, The mechanism is essentially that
given above,

The point at which the strong coupling oonditicn can be of use in
the case of sum mlea'::l.n allowing ene to neglect all terms imn the
unitarity integral ap:art from the terms required to unitarise the
Born term. This can be used to justify the simplified form of the
unitarity condition,
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CHAPTER °

Baotstrag Model of Fulco and Wong

The work in this seotion 1s concermed with a bootstrap model,
including all three channels (s,u and t), which was developed by
Fulvo and Wong (60) and modified and extended by Patgl (61). The
mativation for this work was a desire to obtain higher symmetries
from e dyna.m.i_oal model, as happens with current algebra, and avoid
the problena associated with the use of su(6) as a symmetry group.
As the main concérn of the authors seems to have been to indicate -
& rough model, the dynamical assumptions are rather tenuous (67)

Fulco and Wong obtaim their bootstrap eyuation by representing
.the effect of croased channel processes by effective poles in the
partial wave amplitudes using the static model, Following the
work in chapter one, if there is a particle in an invariant channel
of the direct channel, one may write down the condition for it
to exiat, with mass m,, and coupling with strength ¥« to the

system:
IR im "
PEEL ) EER (= o2

s+ n5.| D(s)

where Gm, GM are the orossing matrices for some internal

u .
syumstry group, E.,S__ﬁ, is thé pole représenting the eff'ect of the

448 v
invariant channel g in the u-chamnel und X,g represents

8+8ﬁ-,
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t%e eaffaoct of the Iinvariant chamnel f in the t-channel. Making

thw linear D approximation one obtains:

. B -

yo- pvi - e

The argument used to give meaning to this equation is that
*he w and ¥~ chaunnel poles correspond to the exchange of single
particls states and the U3 are the products of the couplings
of these particles to the system. From chapter one, we believe
that %his may b a reasonable asudﬁption for the u-channel poles,
vhich sorresponds to the heavy partiocles in the static approximation,
It 2eoms doubtful that this is also true for the t- channel poles,
as in reality the t= channel gives a complicated cut structure,
Even if the use of effective poles is permis siblé for the t- chanel
nontributions, it may not be pessible to attach Bignificance to
the rasiduwes., For the u channel, the higher mass exchange poles
arz turther from the physiocal region which may allow ihe neglect
of highar nasses exchanges without too much error. This is not
tyus of the % channel whioh contributes within a small finite
rexicn, and we have no guarantee that the lowest mass exchanges
dominste to the extent that the effective poles han residues
glven by the oouplings of the lowest mass exchanges.

¥ith these assumptions we obtain, eguating.the s-and u
ohamelss 1 = Csuf® = CetT'  (3.3)
where Ii& 3‘g§;=$ 2{51 and[ﬁg SE:EE% This-is: the:.

howtstrap eguation of Fulco and Wong. We meSs that. [ '=o gives.
\ ]

FRSETIET Y W YR AT
. it
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the conventional bootstrap equation,
Patll, in his analysis, imposes less oonstnante on I” ' which
still allows one to derive useful relations between the meson=

baryon oouplings in I” From dispersion r_olations he obtains:

5. = Dan ‘.;p\b/(_:. +Hu¢f(, I’ff:.

where the Ds and As are . dynamical factors. He argues Ltha.t in
the statio model it is reasonable to approximate the u- channel
contribution by the orossed physical ﬁolos of the particles in
that channel. Hence he obtains |

Ij'""' Lsu P ﬂokr CﬂLf XF (34.)

8o far we have not mentioned spin, If we deal with partioles w:l.th
spin, 1t 1s again reasonable in the static limit to use static
aspin crossing to give th_e oontribution of the w-channel poles.

The oonoept of spin is not well defined in the -statio model of

p- wave soattering and egain there is troubls with the t~ channel
exohanges, Allowing the dynamical factors in A to commute with

the internal symmetry group gives:
) -z e
P-- C %Iw @ Cso Eﬂ = (:(.‘St‘. @1 }_f (3.5)

where I(J) refers to the internal (spin) symmetry group, From

equation (3.,5) it is possible to put oonltu:ets on A from
consideration of the spin and parties of the partiocles exchanged.

I
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We forget for a moment the statio model and simply consider
the diagram for meson exchange in meson-baryon acattering and its
synmetry under s~ u orossing whioh is dpﬁ.ud. as the interchange
of the extermal mesons,.

e
~ .’.f "f
P L WP | The external meson have apin and
. ]
parity J ®' ana the internal cpe
< Y \
JP, For what follows the baryon
8. vgrtoi is of no importance.

] . ) -
Let the external mesons be in an { ~wave in the t- channel. Then
oonservation of spin hpl:l.oa_ that ' '

- JeJdr e Y. (3.6)

Parity oonservation at the vertex :i.npl,ig__s that P = (=1)Z PP 'u(-1)¢
Bose statistios implies that the threq meson vertex is aynmot,rio_ai
under the interchange of the oxte;'na]'. 'm'aons.. Thus (-1)‘&[2'- 1, (5.-3)
where *z'l‘. 48 .- #1(=1) according as the vertex is symmetrical |
(anti~) under the internal symmetry crossing. Equations (3.7)
and (3.8) imply that QI' a P, Knowledge of the internal symmetry
representation to which the exchange.belongs usually determines
t'{& (This 1is not the case where the external mesons are su(3)
octets, as 8 6 8 ocontains ootets whioh couple. both: aymmetrically

and antisymmetriocally), and henoce (_iptomhel i’. Equations. (3.6)
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and (347) demstrain £ and there mey ngt be a value of L to satisfy
both. Equation (3.7) only determines whether £ is odd or even and
it 13 easy to gee that as longas J 'f 0, thers will exist both
odd and even values to £ to ,ssth_fy equation (3.6)e I£J* =0
J = £ and hence only exchanges of maburel ,irity, with P = (=1)7,
are allowed. | | .
Returning to equation (3.5), we seé that the left hand side
changes sign when operated on by ca: ‘ clfl- I!moo the right
hand side mst be an-odd eigenvector of cau o 0:?:. An exoha.nso
of positive (negative) parity will have 'LI +1(-1). kpandin;
A in terms of the polumpsof cat ahows tHét- ‘ezphange with 01,1.-»1(-1)
can only- multiply odd (even) columsof Gl{ When the sp:l.ns are low,
this result may be sufficknt to d_ate_mim A* apart t-‘rom an arb+m
normalisstion multiplying each individusl exchenge term of /71,
We now indiocate the differences bbtuoop the approaches of Fuloo
and Woﬁs, end Patil. The fommer oonsider axial veotor mesons
scattering off baryons. This enables them %o obtain & consistent
solution to their equations with the exchange of a vector octet
and singlet and of an axial vector ootet which may be identir:l.od.
with the exturnal mesons. 'l!hia :Ld.oqti.ﬂoat.ton. as we shall lee,
is ognsistent and leads te a md_nl w:l.tgh & smaller number of mesons
than req}u.ro,d by Patil, He considers itho p= wave scattering of
pse. dosoalar mesons, which is a phws:l.ohl,.y observed process,
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whereas axial veotor mesons have mpt been identified physically.
The p.s oot-et cannot be emhansed_..llnm unnateral parity and the
external ps- m.:sare spin 0. Patil utrqdube.s a tensop (2’)
eotet whioh,having natural parity,can be exohanged and will
contribute in the same way as an A.V potet ox_c’hupg'e.

In the direct. channel p- wgive pP.8. meson soattering is |
mathematiocally identical with A~V meson scattering. In the
t- channel, Pulco and Wong's (8.1‘:"), (Q,1'$,'|1,1’) exchanges
oontribute to the same elements o!-'f" as tbe (8.17), (1,17)
and (8._2’) exchanges of Patil, Thus the two calculations are
nthonptien;l:.,v equ:l_;valent, exdept in 80 far as we are required 1_:0
identify the internsl and exterpsl (8.1*) mesons in the P.¥
oa.lount:l.on. This constratt :hnpou, ';be oopdition that the
£/4 ratiol of the ooupld.ns to the baryom ootet must be eyual
As both £ and d contributions to["! sarefrom (8,1%) terms, the
eﬂ'oot of A should be just an ovez;gl.l normalisation factor for
the two terms, so dividing them ahonld give the same as the rat:lo
of the direct ohannel f and d oontibutiona.

In the case when Ga{ has only ocne odd and even column, and
the oontt:l.bution of a spoo:l.f:l.o exohanso is fixed, Fulco and Wong_
put the normalising faotor derived from A, to unity. Tnia glves |
significance to the elements of [“ as products of oouplings, rho
results for the mesonsbaryon couplings (63) are consistent for
all processes involving the (8,§) end(10,3/2) iso-bars., As we
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shall see in chapter 4, this reflects the use of su(€) as a non-
invariance group.

| After this disocussion, a brief remark on how to solve the
mathematiocal problem. We have s&m that the equation can be
reduced to: I7~Csn [7=Cat [’ (3.3),
where C = c'J 0 GI, and [7'is related, as indipated previously, to.
the ta channel sxchanges, which fact imposes constmdats, in the
form ;’f sero elements, ‘og!" ! .T Alpo has zero elements oorrespopding
to-iso-bars not in the chain oonsideyed. _

The solution of equation (3:3) has most easily been effeoted

by writing M= Cst 7' (3.9), Then operating with Csu, we see |
that the non géro elements of .‘,m__oqml“.tﬂ.oo the oorrespdndin;__ﬁéppt\a .
of ﬂ" o The oonstraints onF ang I’ 'eau,. be imposed on r andf “i.p |
eéuatiqn _(5._9). The elements of [° 'cpmijgp@ins to -even ocolums
o‘f Cst can be considered as free pu,‘anét_era with no pm\(doal .
significance. Using equation (3.9) and its inverse, the effects .
of the constants of J” on'[’ and vice versa, may be found,

8o8=10808 01007 ¢ 27.

As :in previously we have chosgn linear conbinatlions of thg
octets which ooupl-o symmetrically and anti=-symmetrically. The &!bm
sero elements of [ are [ ss, ['sa, 'Asy ["Aa corresponding to
the (8,4) state and [ 10 correspondipg to the(10,3/2) state. The
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expansion of the f' 8 as pairs of couplings ‘shows that f A8 = j‘ 8A
and ("8 ['as «['iS. Ve may thus write [3s <3 A [%a =Las=¥ [ a2l
Let us now consider L ". In the s chapnel it do‘es..not matber

whioh vertex we name first, as [hs and [34 are equil. In the t=
channel we must pay attention to wils. point: , as oné vértéx is a thive
meson vertex and the othe_r.a baryon-meson vertex. 'Vli".'i'o_ror to the .
three meson vertex by the first index. As we have defined s —>u
orossing n-m the mesons, this first index determines the
aymmetry of the éhmol under s ->u orossing, Thus the Jas , Fan
colunns of Cst ere odd and the Sss, 54 columns are even under s ¢ u
su(3) orossing. . | | |

© WAth P = =1, tho' veotor ootet contributes to (8as, O) and
(8an ,0)t the ratio of these terms giving the £/d ratio of the
veotor ooupiins to the BB system, The axial ootet ocontridbutes
to (853,1) and (8%a, 1) (again with uu '_r/a ambiguity) and the
axial singlet to (1,1). |

The spin orossing metrices are: (31)

o 4 - % W
C %Sc = ﬁh “ ) Z. es-= 2 3
Y -h /% s “y It

The odd column is the spin 1 ooluan.,
Por the su(3) orossing Cts « Cat ands (63)
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8ss 8sa 8as 8aa 10 10 27

0o o 0 1 5/ 5/k _27/8
-3/10 0 0 -+ - 27/40
0 -4 -+ -G B o
0 -+ -+ f5/6 <[5/ o

-2o/5 =[5 /5 $ 3 -0
-2/5 +/ 5 -5 ¥ 1 -9/ |
1/5 0 - o -1/12 =1/12 /40 ;l

¥
0
0
¥ (] (] % 0 0 -9/8
0
0
.

The odd columns are: 8as, 8aa, 10,'1I3
We now have to solve f-(c-’l 6 cai)f"
vhers I* = (0, ¥*" ¥ P, ¥, P 6,60, 66608, 00)

and o : :

= Cry, ke, 03,240, "8y, €, ke, 2R 2da 2¥a, 6,00,
_ %1, %8, 0) .

where xi,......, L5 are free parameters ocorresponding to even

columns and the zeros of 1— )E:orrupon,d to these being no exchanges

of 10, 70 and 27 glets of mesons. The way to solve this problem

1s to invert the equation and find the serc of [ in terms of [

The 10 and 10 equations are the same for our choice of f and

we have yic P Wﬁ’ © oma Y = JF-S"I--

Thus e = Comd &=, J 0,

This gives fA = -o.-J")?'/a'r , A = 5/‘ _}:I"., A= T 4, -Fi,_r.- J-ﬂ;:»
an/fa = jg/u which shows that the coupling of the A-V mescns

|
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t% the baryons has the same f/d ratio for the internal and external
wesons, This corresponds to an £f/d ratio of 3/2 whioch is the su(6)
value. Since dv.-;o » the vector eote;t couples. antisymmetrically to
the baryons which 1s

If we refer to the mesons as A,V and 1, we have:

szAapa = szA,e;o, 52Apps = 5/h gznpao. These give gzmp =
/4 52%10. Identifying the elements offr7 :ni_.fh t-channel couplings .
gives:

88! sl = 43 g ABfe

ey euy = = J27/8 & agpe

s88sh eMph = 5/6  gABpe

eifas epn = f5/9 & agpe

These results ars consistent with su(6). Fulco and Wons olaim

N NN N

that t-his is also true for their results for the process A &+ B8 —D
A + B10 (4ie deouplet production). Patil finds the results for baryon
couplings for PS + B10-3PS, + B10 are also consistent with su(G)'
We have performed both these calculations in Fulco and Wong's model
and have foumd results' oonsistent with su(6) for both meson~baryon
and meson—~meson couplings.,
2, (40,372) + (8, 1) =» (10,3/2) + (8,1)

8.010 =8@10€ 27@ 35.

808 =108d8AP10D®T0® 27

100T0=1 98 @ 27 & 6
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Thus the t- channel invuriants are: 1,8, 8A and 27 where again

the index of the ootets refers to the 3- meson coupling. The ,lu(‘!)_

orossing matrices are (63)

Cst =

8sA
Cts =

Jio/5

\23

8a
27

8s 8A
515 Jys
BB
10 27
Ss/2 27/4 55
3§28 -g%d‘“z_
Jo/s 9 .Jio

: 80
-JUe -J20

The only odd column of Cat is 8A,

The su(2) crossing matrices are (39):

0

'y (3.5/5

32| -Jy/6
b % —.ﬁ/ 6

Cat =

1 2
Sy Jr\}
i
sJ -fg /

20 2

"‘T-
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) 3 32 5/2
0 -J‘g’. -2j;. $
Cte = 1 -f1z9_ -2 -J%)__ 3.3";%
2 -‘J’g ug{fg_' -J% ;

The odd ocolumn: of Cat is the spin 1 ocolumn,
Thus the odd t- chaunel invariants are (84,0), (84,2),(1,1)(8s,1)
and (27,1). The axial veotor mesons may contribute to the (1,1) 3
and (8s,1) elements, The vector ootet may contribute to the |
(84,0) and (84,2) elements. The (27,1) element is sero as lm'
allow no 27= plet exchange. This is the only constrant onf',"
Henoe it is not surprising that we can solve forj’,where P has
contributions for the (8,4) and (10,3/1) channels omly.

j_ 27 =0 --.'?f& f“O
Then: ['84,0 = -3J}§_ R +J3/5, [est = 53/

and ['8A,2 = 0. It is interesting to mote that if we had allowed
for a spin 5/2 ootet to comtribute to J (this ootet being the
Regge recurrence of the spin % ootet), the vanishing of the 1”61[,2
would imply that its oontr:l.but:l.o:.x va_nishod,.- Inoreasing the number
of baryons in 1.;he theory seems in this case to imply & need for
further mesons and vice versa.

The resulting implications for the couplings are:



10, Tr aay = =3J30/10  g2A1090
- J3/3  &fasog0
-J5/3  gap0t0

£10,70) gaa)
810,700 eapp
€408 = g241010

which are again ccnsistent with su(6)

20 ‘8.&) #‘8.1) "’(10.222 + ‘8.1!
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For this process all ohannels oontain two 8s, 10, 27. The

su(3) orossing matrices are (6i)

8s 8a 10
o (s  Jis J2/u
Cat= SA l'ﬁ” 0 - A
10 i"% J/5 -
27 \-2/5 5'21"5' 3 J3
8s 8a 10
8s _{” %/5 /55 S
Cts= Ba 5’ Ji/s 0 - fo/
10 \e‘ﬁ/s -Jé/5 -+
27 ©12/5

2 -q
s 13J%

27

P \

% J75
Tt

-1/10 ¢

Note that as all three channels contain the same invariants, the_'

above matrices differ only by phase factors.

Cst m--&a, 10.

The odd ocolumns of
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The spin orossing matrices are (39)

1 2 % 32
&{-’& 5ﬁ/s\) of & S
Cet = 3/2 [0/ -f?% / Cts = 2 (_%ﬁ/; -J;"g_ }

The spin 1 column of Cst is odd.
Thus the odd t- olnmel imvariants are (8s,2), (27,1), (8a,2),(10,2).
As we have no such mul?::l.plots we oan put the 27 and 10 contributicns
to fﬁi, to sero. Inserting only the (8,%) and (10,3/2) elements
into P »We obtain: |
88 = Jo/u [Baena [Ba = Mo
This gives: | 8s = 1%5/6 and (8a =0
This gives for couplings:
The £/d ratio for the baryons ootet - A V coupling is asa..ﬁx 3/2
gh,8,8a gA,10,80 w gA,8,10 gA,8,10
, eA,T0,A  gAA,A = j5/3 gA,8,10 gA,10,10
Again these are consistent with su(é). The ratio of the meson-
baryon and meson-meson couplings is given using su(6) notation as
gMBB/ g = 8*3-5/1!:. This ties irn with the results of Udgaonkar
(65), for his su(6) bootastrap caloulation.

We note, as do Fuloo and Wong, that 1f one considers the
soattering of the axial veotor singlet off the baryons one obtains
results oonsistent with the previous results, In faot, the soattoring
off the (8.2) gives, g8,8,1g1,1,1 = 4/3 321,85 and scattering off
the (10,4) gives, g10JG1 gl = -4 JT0/15 g°1,10,10,
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The previous work would still be valid if the vector mescn
were instead aocalar, as beth partiocles have natyrsl parity. In
3his case ome could scatter the scalar -cotet off the baryons and
obtain:

585'3.8 8888 = 325,8,85
810708 gess =.F5/l+ szll,10,10

The results obtalned above for the scattering of the axial
vector am_glot and the suggested scale: octet are a simple
consequence of su(3) and qu(Z) aymme try, ‘The axial veotor
singlet belongs to the reguler representation of su(2) and the-
scalar ostet to the regular representation of su(3). The reguiar
representation transforms like the generators of the group and the
above results reflect the commutation relations of the generators
of aua(a) and su(3).
au(6) Model of Udgaonkar, (65)

Udguonkar takes the Fulco and Womg bootstrap equation and
applies it t& meson-baryon and meson-meson scattering in su(6).

Por scattering of the meson 35 plet off the baryong 56 plot,
ths crossing matrices are (66)

() (1134) (56) (700)

!f i =27/20 -2/5 2\ (70)
Couw | =1/12 17/20 . =2/45 5/18  1(1134)

\;\ -3 -9/10 11/15 53 | (56).

Y

X Y0 15 . Y6 [ (700)
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and
(405) (358) (35a) 1
%ﬁho fere /0 ﬁo\ (70)
Gst=| -5/28 [1/10 -{6/2 33/36 74_11"'6 (1134) -
w [T feve fiss wre | ©9
\-9/28‘@0 fera -{3/12 W1T17> } (700)

The simplest solution of I' - csur a GstI" is having only
tho 56 plet in [ and the 35 pret in I’ This gives GMBR/gHMM =
%j_rj which is the result of Fulco and Wonge This agreement of the
two salculations will be explained in chapter 4.,

We note in passing that Udgaonkar applies the P-W equation to
meson~-meson scattering, where the static model camnot be used to
Justify it.

All three channels are ejual and L= I". The equation has -a
sclution with sontaining only 35 plet. As the 35 plet forms
the regular representation of su(6), this results is similar to
these for axial wveotor singlet and scalarnr ootet scattering in
tha previous section. It follows from the commutation relations

of 8u(6)e

|
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CHAPTER &

Intermediate Coupling Theory

Kuriyan and Sudarshan (14) point out that the work of Cook,
Goobel and Sakita (42) on the strong coupling model contains an
axrore There is an implicit assumption that the meson souroce
opsrator 1s given by )A.. where A« contains no further dependance
' v A o The strong ooupling- ocondition, then implies that
(Aw,pJ=0. Without the assumption thet Ay is independent of A
one cannot extrapolate this eyuation to finite values of A.
Expanding Ay in terms of 1/ b 2, 1;ho strong coupling ocondition
implies that the 'oonstant terms' commute, but says nothing about
the higher order terms., Thus, if Ay = A(: + 1/ ZA’:‘ +1/)\% Az’-t-v-

eoeg(leel) [A.( ) Af] =0 (4.2)_. Unfortunately this
weaker condition does not lead to the ldentification of a nen-
invariance group.

In order to obtain a non-invardance group for the .syst.em, it
is necessary to identify the As with the non-lnvariant generators
¢f such a group. The choice made follows the suggestion of
Cueok, Goebel and Sakita , and identifies the As with the aon-
invariance generators of the intermediate coupling groups,

Gharge Symmetric Pseudo scalar Meson Theory
In thecase of K = suI(Z) 0 auJ(Z), the dynamical postulate

iss

|
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[ A, AQ)PJ =101 dep e Ty + dy éwpt Ir](u.s)

Putting @ = O gives the strong coupling condition, -6 > 0 the
sompact intermediate coupling group su(i) and © < 0 the non-
sompact SL (4R Thiss Bariyan and Sudarshan's model contains
a2trong ocoupling theory as a partioular case. The siraig coupling
sclution may be d erived from the su(4) or SL(4,R) solutions by the
Weual procsss of group contraction which correspends to putting
8 to zero, |

The use of su(k) as a non-invarianne group differs in
aeoveral ways from its use as a symmetry group, In ord.r. to
aatisfy the dynamiocal postulate, the iscbars must form a
representation of su(4). This is not true of the mesonS,which
are nine in number, and not fifteen, as in conventional su(4). Also
there is ﬁo requirement that the meson-baryon states form a
representation of su(4). In conventional su(4), there is mo su(4) -
jnvariant BBM vertex for p—- wave pilons, and hence such processes
a8 N®»>7N are forbidden, We have no such problem. ‘ In oonvéntional
su(k), the mesons belong to the regular representation énd transform
1ike the generators of the group. The isobars in the intermediate °
coupling model form representations of su(4). Aoting within the
Asabars,our mesons transform as the non-invariant gﬁnera_tors, as
d» 8 subset of the mesons in conventional su(4), Thus the oouplings
for these mesons must be the same. For this reason using su(4)

as a non-invarliance group gives results consistent with ortho.doi :
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su(4) symmetry. The use of su(6) as a non-invariance group differs
from 1ts use as a symmetry group in an exactly egdvalent way., After
this digression we return to the calculation in hand.

Firstly we note that the solution of the equations for SL(4,R)
and the s trong coupling group may be obtained from those for su(la-)
using a method discovered by Kuriyan, Mukunda and Sudarshan(68)
which depends on using Weyl's trxisk and introducing 'i' s into the
oommutation relations and using analytio continuation, We therefore
derive the solution for the su(L) case, which is perhaps physiocally
more interesting and present, without proof, the corresponding results
for the other groups., We need anly consider the casedal, as this
differs from the other cases where 6> 0 by an arbitrary factor
which represents the overall strength of the meson couplings.

Consider as an example the nucleon isobars with I =J = A
Inserting (4.3) between stutes with different values of A , the
right hand side vanishes, as each term may ohange I or J but not
boths Thus the relations betweon ooupling derived from this
egquation are the same as the relations derived in chapter 2. i.e

ZAMRAUNS> = v (constant) (bols)
Inserting the commutator between atates with équal A, we obtain

<)\+|lMIl)‘> = 52%};_*;\3 J 2 \GOH—\\" (45).

Thus the represgntations are labelled -'by & non-negative even

integer r: This allows A to go in integer steps from O or % to
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/4 -1, BEquation (4.5) means that a state with A r/4~1 odnnot
oouple to the isobar chain and we have a finite representation,
By sppropriate ochoice of r one can include as many isobars in thq:

chain as one wishes.

The oorresponding results for SL(4,R) are:

ZAlRIN> = R (4+6)

CAHIAIN> = JB T e

Bquations (4.4) and (4.5) give: gzvml'-"/'szw_NN = 2(1 -56/1-2)

. which ratio gives an N® width of 80 MeV when r = 10, so that the
representation includeg the N and N* only. r ->»oc gives the
strong coupling values for the ratios of couplings. In the limit :
r o, 321-rm'/521rm = 2 which gives an N* width of 125 MeV |
which is very close to the experimental walue of 120MeV.

Por the group SL(4,R), 52 'n‘m\l"/gszN =2 (1 + 56/32) .

Thus for this non-invariance group, the N* width is always greater ‘
than 125MeV. Again as the number of isobars growa, the N* width 3
approaches 125MeV. _

One interesting conseguence of this theory is that g Tr N®+N%/
ew'pp = 1/5 for su(4)y8L(4,R) and the strong coupling group,
independent of r and R. This may justify the models of the m-N-N*
aystem which meglect the TIN®*N® coupling in ;;»mpariso_n with
g TINN and g WNN**
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Unitary symmetric psendoscalar theory
Consider the p- wave scattering of the vstet of pseuioscalar -

mesons off baryon isobars which contain the usual baryon ectet,
The symmetry group K = su(3) @ auJ(Z).
' The dynamical postulate for the compact intermediate coupling
group su(6) is: -
LK;«, ‘TD(‘} = 0 {J;-‘\ Exps Ty + dxp fije Fr +Jajhe.<pfl\_u
Where K‘:u is a definite multifle of Aix , chosen so that (4.8
the commutation relation may be written in the usual form. This
is necessary because of the linear term in Aix in equation (4.8)
For the same reason one cannot use the Weyl trick to obtain a
non=compact intermedliate coupling group. .
We oontent ourselves with considering the 56 representation
of su(6) which contains the 4* octet and 3/2" decuplet The
couplings derived from this are the standard su(6) ones ( 62.).

<1ohal 103 «

L8 |Al8 8> = %/53
<8 “A 18 a> = ¢ J—275-
<tollA N8> = - NS%: (by vertex qymmotry)



[

Consider the case whers K = su(2). The dynamical postulate
can be written as:
-4 ¢c({111\ 3
‘ ae A" B = ( _ ) Y
[ f] r}- oc f(
Inserting these between isobars and using the projection operaters.
a8 in chapter II, one obtains for the left hand side

I J cBu

I J
& &~ “rx' S &
The right hand side is again a sum of four C- G. ceceffiocients.
Performing this sum one obtains c;f ri where [1' = 5'; ¥ where X 1,.;.

a oonastant, Thus one obtains the Fulco-Wong equation:

f - cnar = cutfl' where _[” is zero, .
apart from the isospin 1 elememt., This calculation may be performed
for ; general symmetry group and shows the equlivalence of the Fulco
and Wong and intermediate coupling methods for a specific process ,-
where the terms on the right hand side of the dyily.emioal postulate
are identified with t- channel exchanges. As we shall see, the
meson exchanges assumed by Fuloo and Wong correspond to the

non=-invariant generators of the intermediate coupling groups used
by Kuriyan m-md. Sudarshan,

| ' :
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Rulag gn_d_ .Wm Re-vislited

In the su(6) oase the dynemical postulate which gives- the
intermediate ooupling group su(6) leads to the l;'ulo'p and Wong
Bootstrap condition, .[' - cau[' = Cat ! ' where [ contains
the i"' octet and 3/2"' decuplet as intermediute states and r ‘
contains the follmwhg t-channel exchange contributionss
1) J‘) qu] Js glves an su-(j) singlet (from (r“) spin 1
exchange (as J belongs to the spin 1 representation: Eeﬂw
l‘o_pz.'eaent_s the coupling of a spin 1 particle ¥ to two spin 1
particles ,f ) |
2) -crgf 5-'.3& Fr  gives a scalar (from rf,((s ), 8u(3) octet
exohange (Fk belongs to the octet representation and fijk
represents the antisymmetric ooupling of an ootet k to the ootet .
1,J)e Note that as the exchange meson transforms like Mk, its
co‘up:;l,_i_ing to two baryon eotets must e totally antisymmetrio.

3.) d;!:‘gg."‘ Kh!’ &lves a spin 1 ootet exohaxige_ with 4 6oupl:|.n_3
to the mespns, and coupling to two ‘:;a.lyon cotets with the same £/a
rau.._é_ as the direct channel mesons.

Fulco and.Wong made exagtly these assumptions in their model,
and benoe arrived at the 8u(6) results found byEKuriyan and Sudarlha_ﬂ,
This mathematiocal equivalence also explains the fact that the relqltu
for exial veotor a:,l;nsiet scattering, and for the scattering eof the

goalar ootet we proposed in chapter 3, are consistent wih su(6)
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The baotstrap equations for these process may be derived :I.dont:itym
the singlet with J and the scalar octet with F and using the

equations for the gemerators of the symmetry group i.e

[3«,Tp) = c€xpr Tx

: B A PR N

Were Fuloo and Wong to have proposed the exchange of a
soalar ootet lnstead of a vector ocotet, one might argue that the:
two models were equivalent physically. However, what they have ;.l
& veotor exchange which in their model for axial-vector meson
'soattering acts like a scalar particle. In another oontext, this
particle will behave as a veotor and the simple eyivalence of tho
two models will not be so evident,

i _ loix_n aryon Scatterin

In order to derive any relationship between scattering
ampjitudes, it is necessary to make a additional assumption.
Consider the amplitude 'r“?(..n for the process My +B-» Hf+ B“.
where or,f refer to a general symmetry group K, The amplitude
has. wollr defined transform tion propexrties under K, but none Bel'
the intermediate coupling group.

The assumption mede by Iér:lya.n and Sudarsha that

'Txflw)—Tp.«(W) = 'S"”) L A«.AF.] (4o 14)

where £(w) is some function. This can be made plausible by the

!:Llpwins arguments:




g

(1) T.(,F.(w) -Tp ya (w) and ZA,‘ ,A{;] transform in the same wey
under K and are both antisymmetrio in o and P .
(11) The Born Term for the Chew-Low amplitude is given by:
'1'- [A“_ , Af] to lowest order in :7 s which agrees with the
assumption. However it should mot be infered that the amotl.y
of the Born term is necessarily a symmetry of the amplitude.
Bxpanding T as the sum of non-spin-flip and spin-flip terms,
faclilitates the discovery of relations between amplitudes.
Put T af e+ E',;g and define
X(1B:JB') = £(iB jB') - £(J B 4B')
¥(4B;JB') = g(iB JB') - g (JB  1B')
where 1 and J refer to the internal symmetry group only, as we
h_a_yo‘.,oxtraoted the spin behaviour. We now -oonsider the impliocation
o:f_ the above for the su(k) and su(6) theories, '
‘1! l\i‘h—! theory
| X,Y are both proportional to the matrix elements of the .

commutator of two non-invariant genmerators of s.u(h) been baryon °
states.

ds X'is a non spin-flip amplitude, it can receive no
contribution from the temm o i) Caps Ty Thust

X(18;381) = < B* |[atw, ][> |
=  <B’leijk TrIBD (485)

Isospin implies that X(4B,jB') can be expressed as a linear
| conbination (giver by C-G coefficients) of amplitudes for apoo#;q
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t- channel invariants. In the processes we are considering there
is only ome such invariant, the isospin 1 ohannel, This equation
sk.15) glves us no information that could not be obtained from
isospin symmetry,

The spin flip term Y oan only have contributions from the
tern J' i) €xps Jv  which, being an isospin singlet, gives sero,
contribution if B 4 B!, This one may obtain relations of th-e_
form g(pfi »n 1°) = g{pn® = n{* ) Interms of isospin % and 3/2
amplitudes, AdaA3/2 which result is not well satisfied by
experiment (69)

In the case of baryon resondmce production, the comutat&.
pust vanish between the external baryons. This gives, for examples
?(I*f = mNrt) = T TP >wN*T) In terms of the
ispspin § and 3/2 amplitudes, A = 10 A3, which compares well wAfh -
1.;ho relation A = 53,3443 obtained by Olsson from experimental
data (70)

"-p.) gg' 6) theory

Only the first term is a spin singlet and hence:

X(ix B 1p87) = <8/ [A,Kpl8> = ¢ {ije <B’I Fe1gy (4-16)
If B = B' 1s the baryon cotet, there are from su(3) invariance,

four odd invariants in the t- ohannel. Equation (4./) writes X

in terms of only one and hence gives information additional to

that derived from su(3). The results involve the Johnson-Trieman.:




relation ..:'1. (71) for the non-spin-flip amplitude., Seme of tﬁg
realtions obtained are in agreement with expcriment andsome not,
The relations obtained for baryon resonance production give
the result A1 = 10A3, already derived in su(i). Alse
MKp <k’ F7) - HE% -k ) = 0,
As su(3) aymmetry is broken, it is diffiocult to say whether
the successes and failure of _the above relations give any

;,pﬂicat:l.on as to the validity of the theory as a whole,

ntemegatq Coupling Theory and Finlte Bnergy Sum Rules

Gleeson and Muste (72), use the theory of finite energy sum _
rules th provide a mechanism for deriving the non~invariance groyp,
. ije shall disouss these sum rules fully in Chapter 5 but it is
worth while considering this particular model as it relates to_. the |
intermediate coupling methed as the saturation of superoonvergmqq
l?'.],.atipns d;oes to strong coupling theory.

zot #(*') be the fervard amplitule for isespin 1 in the t-
channel for a process i + T~ J +T where :ﬁ,..j are nucleen igobars,
This amplitude is dominated by the P Regge trajectory at high mr_ﬂ.ﬂ,
One is lead (see chapter 5) to & finite energy sum rule of the fopmy

T ) e o %p(e) +1 .
Smr ( "‘”‘o'rr‘%g')'n S (5417)

where ot'r(t) is the p trejectory and b is & produst of couplings. In
torma of direct ohannel isospin indices, -f( -) is antisymmetric and




.
ona £F - 2P «1 €ugy¢ <3i|14l 3> £(-) (4.8)

where  , F are meson isospin indices. Thus if equation ("'01.3)f

can be saturated lsobar states, one obtains,

él(‘:n ‘:‘:.1 '512 ‘:;) =<1 |[aa, 2p] 3>

a
slGuy<t | Iy 3> © (&419)

where C = bNNprw (o) ﬁ“)“

and 9, =<Al Axln> 1
xfo)+ '
we assume that the p oouples universally te the isospin current and
that it is possible to take a fixed K for all processes, C is
independent of the process and we obtain the purely algebraicg e,zp;.v”qiqn
[ a«, J{f] = 1€,gy I betwesn izobars, which is the usual "
dynamioal postulate for K = suI(2). One ocan extend this to su(3) by
a.u_uning the existence of Regge poles corresponding to the various
‘terms on the right hand side of the dynamical postulate equatiam,
?ho same technique cannot be applied te an amplitude even under '
crossing,as this invelwss an antlcommuSator on the left hand side
of equetion (4.19), and its valus depends on the representation sunlile .
the ... : commutator,
If eyuation (4.13) holds enly for a epecifio process, thah it
is possible to derive the Fulco-Vong equation for that process, “
In fact, the above is mlerely a sophisticated way of deriving ?ulo?
end Wong's model using sum rules and Regge poles instead of looge
arguments. about meson exchanges. In chapter five, we look at the

relationship betwesn saturating sum rules and symmetries in & more
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yealistic situation. We shall see that there are mechanisms te
¢xplain the appearance of higher symmetry: results. It will net bo
possible, however, to elevate these mechanisms into what might be

termed a modsl.




imgmvozjgenoe and Finite Eaergy Sum Rules
&m Poles

Dospite the various difficulties whioh exist in the theory,
Regge poles have been remarkably suncessful in describing the h‘\l‘gh
energy beha,ﬁour of scattering ampl:l.tudea. We consider first .
particles without spin, whioh will enable us te introduce the
ooncept of signature with ;11 essential details without gettin;'.'
entangled in a mass of spin idices. : |

The idea behind Regge theory is that the partial wave .a#lﬁ,tu(}q'_ T
a,"(s) for some scattering processes may be "repreaented by a fugﬁm
a(J,8), which equals aJ(s) for phwsicﬁ.l values of J and 1is mmprphto
(1'._0 only has poles) in the J- plane. (This is possible for potonﬁ.nl .
goattering but probably not otherwise where there are probably ”'W
outs.) The attraction of this scheme is that as the podtien of these
Regge poles &(s) varies, X (s) will sometims pass thiough or by an
dnteger point Jo which will give a pole in a‘n(s) whioh will oo';.u.'g,lpoq
to a particle of spin Jo. Thus Reggs poles may link up particlea with
the same quantum numbers but different spins, Ror simpliocity we
oonsider the scattering of spin less equal méas in particles. : e
expand the scattering amplitude in a partial vwave series in the t- |
ohaanel,
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a(m,t) .2;(2.1',1) & () B.{2t) (5.1)

where Bt = s - u, = 22 This series converges in an ellipse
t-4m qd
which inocludes the physical reglon. The sories may be inverted te

glve. .
+

o(6) = 4 { aspy(s,) & (5,%) (5.2)
-1

As pJ(lt) is nok well behaved fur large J, equation (2) will not
serve to define our interpulsling functien. To get round this
§ifficulty, we write a fixed %+ dispersion relation for a(s,t), whiqh .
we assume to be free of kinématic aingularities. (We will disouss this

point when we come to consider partisles with spin).

a(s,t) = 1 .‘S‘*Q;' agiatt) = 1 gﬂoﬂ' a (s%t) (5.3)
T oo 8luwp w i uf=u

where q-;..(s,t) is the abserptive part of a(s,t) in the i channed.
Substitusing equation (5.3) into equation (5.4):

6y = 1 (g8 q (2500 § au(s%t) + (=1) a(s®,8)}
.a() _175.2_;? 3 3 %ss + aus(s._‘..

where Xo = min (Se,Uc) and
|

Q J(2) =% 5 ax PJ(E) is a Legendrs function

of the second kind., For large 7,

QW () -« fﬁ/ZJ ‘E__“’J*’E)ﬁ where § = 004-13_.
(adzh B)
Pollowing Froissort and Gribev, we define
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T ze R

This removes tho _q;_lpiu.l_'mt (-ﬂJ faotor dnd the functions are
suitd le- for uﬁrpdlatins bot!e‘on.:l.nto J. v&J,t) are called evep
and odd n.mtnrod auplitudes. Por even (0dd) J the even (0dd)
signatured. qnputulo which gives tho plwsiosl anpl:l.tud.o. It is .
these li.mturﬂl uputndn whioh are bpl:l.vod. to contain the
Regge- poles. - |

' muw that b'ogops. egoiu'-_ ina a_y_ﬁatr:l.c state, Thup
_4f the llnmooupuns to a 'Rpuo. pole are in F“. even (odd) wave, .
they must '»bp in u.-iym_eﬁricql (snti-) state of the internal sym.t;-y |
group, I'hlu even (od.q.) a:lsqatured. Rnggo polen oomspond to
qymotrlul (mt-) rapruentat.tons of tho utoml symmetry groups

The Mnthn of n.ggo polea q'en oquation (5.4) appears in
ltmd toxtl on the aub.ioot (7}) o shall not perform thiy

tuk. A in;p "19, which has tlp fora. Q-« -1(V), can be expanded as &
scries of W poles of the rorm v o Jor convenience we shall
expand .-np;.!.-tu@a ip terms of Khli poles,

e; (7‘05 |

Gouudpr maon-ba.ryon aoatterins and an mpl:l.tude oorresponaug
to a cpqomo tr channel :anar:l.nt, whigh 1.: antisymmetric, Then
the u_mp]_.:l.tq@o,wﬂl ‘have ‘odd signature as will the Regge Poles
pontributing i'o the aaymptetio .\,\,ohaﬁﬁn. e ,sim that sufficiently




large snergles, the amplitude is glven by a sym of pqléll

. -«4( ) oi(4)
;(o)F 2; (10 ? i) R = Sn
(5.5)
t‘be;].ns nt;qm%o undey v-z- will ohey Q q,uperliqn relati,m
f(v)- & g e  (5.6)

If the leading trajectory hal ‘oeg -1, taen.£(») will obey the
usual wpquonwvmco l'elattom

Suc(w)w 20 , - (547)

3¢ o Bagge term has -1 € o & L it alse qmmu the u-pu-u,on
relation '

’ . V" : -l - .-: :
. Kv) ‘ \’"-' T | (5 )
Thus if the leading hgq tu.‘boot.w !)M " <1, pne may . pubtraqt

nq,t‘t,_}c&apt_ Begee pples tm_u £ $_o ctv‘e & funetion wh_ioh Buper=
,.mm,.,, () En)omatm

dispersion ro,lnuq\ m#’u down fasteyr than 1/, as y-» = ., Thus

([x- av-2m] eveo  69)
Thens [Ina- é Rt] v = f (5a10)

M' is the nle of tho mo at «1, if puoh qmu. Assuming

the Regsze upqupn j.l oxaot rPrND l' wq ogn ppnt up the :hteg_rp.l
as}

‘[‘lﬂ' 2 eg]"‘ *s lég ] d‘g ‘.’-P
Porforming. the intomls et" the P“q yem wuquy:
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loto that she final result ﬁcﬁa a,u't;u_i Ragge terms on an
equal tmm.. deapite the d:lfro'mt ways p wh:!.eil th; Regge terms
with & 9l and o< +1 entered the equatiops.. The peint X w=1
po longer plays the spegial rele it Im s in superconvergence relations, |
B e %<, ono can Jet N rw yo and ghtain the usual |
lmmmu ulat:l.oa. ;t m mt bpqp m,ssw to ulwu thpt
the qutm has the logso fora bolgw Ko ' o

I8 45 008y $0 o0 tint 40 the umpubSractsd n.peum relation
holds for V' {"\!l(n htesrqr) as Jong as the furp tlons gees te som
ap Vom ﬂnu onp may dsrive finite epergy sum rules for the even '
momsnts of the qqputwh. Por msqt“e n, ap oxtys tom appears .
qgwumndug to the poh at v -0. The @dd mouta of £ w:l.u not "
obey the d_ilper,liqn relation, It is however peasible to write sum
rules for these azplitudes if there arq no fixed .pcp.lo_u at wrong
signature points, However auch peles may exist (75). The positien
for aymmetyio amplitudes is the Qpp’“t’ e; that for the antisymmetrie
ones, ﬂn 9dd mpment sym rules will held q,vou the correct qaynptatio
bohavtour but the om ones wul only held u; the absence of the fixed
poeles. The value of superoonvergenoe ;,'el,ati,qggg. and finite energy
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pun rules lies in the sasymption that the integrals oan be saturated
W the contribytiens. frem bound states and resonances. We note that
this agpumption 1s leps 1likely %o be valid for the higher moments as
the htl?'ﬂ’;t;lll beoome inorensingly senpitive so ﬂp behaviour of £ just
below Ne The sgturation asaumption 1s ploéry only .an approximation
uu.qhnqy be valid for a partioular sums yule, It will, fer example, .
ot be possible to fit the sum ruyles for d:l.ttemt valugs of t wigh
s finite nusber of Teasnanoes, We oqyuuer the tz0 sum rules whioh

es the bouml states and reaonanou 13 arpund t=9, m:l.ght be thwd:
%o l_u Ahe sup rules most likely te be sptumated by pele termso |
Secondly we oonsider the li.opéat moment éum: rules (4.0 the sero momont |
for '.u and the first mement for qvou..gqp_]',j.tudog).,u off all the |
mtl. these m nost J.ikol.v to uuou saturetion with lew lying
sates. ' -

The hmdpow of partigles with apin l_uhhp one te £ind
wore sym rules then in the spinless case. The additional amplitudes
Ioo;;_tq_l_ kingmatic fagtors whichmy lead to these .m:mntqdes hav;.ng
a better asymptetic hehavigur than tlp tatal ulplitudn. If one ia
wox'kl.u in i.nvamimi amplitudes, the payﬁpotitio behaviowr of an
a.nplitudo can ‘be mad off from the pxpans:lou of the tetal amplitude
in terms of lgPl'ﬂ}“ ipvariants. In the case gt' helicity amplitudes,




the factow arise beoawss, in erder te write a dispersion relation
for an amplituds it must op,n,tgh no kinematieo singwlarities. In
_yemoving these singularities from the heligity smplitudies (76),
faqtors ave. intredased which 1sprove the saywphtio bebaviour,
- ¥e W11 dead with the helicity formalism as it atighles one to
show sdmply how higher !.vqmtr.v Fesulta arim fyen aypmles.
The t~ ohannel hououy applitude £ AqM,,lp)b (s,t) for
the process a _o,b.-j-q + & has pqrt wave expanajon:

fre aan50 = E30d7 60 P

where A\ -)Q-Xb', M ;Ao Xd and . 'Qt.h the t- channel lésttoﬁn;
- angle. Bach 4 ,\,. (et) oqunh a fagtor ln” s | cos 6t/2 lu*'d
‘th Wz(“ wl times a Jacebi pel,ynouloql. -4n Ot. f has ld.nmt:l.o
mumuea which we must remave tn erder to writ_e a dispersion
pelations In Qho high ensrgy ro;:l.on IH,.v- a . where ‘B = max |
ﬂM lﬂ} Opc oan now show that s!'-% v-s & whont((t) is the
leuﬂn‘ Reggo trajeotory.. Detailed proofs of tpes? atatenentl may
be roum in the literature (73.77).

Let us now coulider ptonl scattering off buwm. ‘The pions
boing spinless, have sero helicity so we may put A_b-' )\ap Qo
* Jn the forward direoticn, there can be ne hedicity flip in ths
direct Ml and 80 £, =0 wnless M qpme Thus :l.r we deal
with helioity suplitudes ot ¢ = 0, we find enly a subset of the
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possible sum rules; those exqstly true at ¢ = 0 (what Gilman and
Havari (78) call "Class I" sum ru.lﬁ) Others (“"Class 2") aould be
ebtained by taking eut osrtein facters which 89 fo sere as t—»0.
This corresponds to taking the sum rulesfar spall t and extrapoleting
to t=Q, As G{lman and Hargri peipted out (78), it is the olass 1 sun
rules which lead to the regults of higher wmtﬁ.-én and it is thepq
that we will consider. We thus losp mothing by taking helicity
amplitudss at the point taQ. We alsy mike the approximations of
@liman and Hayeri that the mesens have uyo mass and that the
boryens are mass degensrate.. In this limdt the orossing matrix
is a constant and itz funptiopal dependence ap the masses of the
paturatiop _:I,.l_dbinrl dees not appear, It is only in this equal mass
pase-that au(6) like results emerge from the sum rules. This 1s mot
'l_lit._xpdl-!tod as su(6) ;faglf i;l_.p,;l;‘hl-ms degenerany- hr the sotet
and deouplet. If the physical m-ﬁ of the partioles -r.e'n-.é.d,'
tho ru:t.n,,tp will of course dift-‘_t'or's'e_mlhat from gu(.é').:' m-' :Ln. S
apmparable with the breaking of-exact #u(6) dus % nass aiffercnces,
IniN>nNand TN — n-l', ther is only ene no:j-vanhhli,ns
s~ chamne]l heliocity mplitup:-&i;i; Thus al) t- channel amplitudes
are equal apart from a m\n‘.tipl:l.oﬂ,;‘n constant. In the case c.:f

AN® - WN®, hewever, there are. two non-vapishing amplitudes: e};#
and ayk. Thus the t- channel amplitudes must be linear cowbinations
of these amplitudes, ‘Wo tabulate the varicus gmplitudes for the
proceases meptioned above. The figures in braokets mext to the helioity
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amplitude give the invariant amplitude whioh has the same asymptatic
ﬁohav:l.our. The entries indjoate where superconvergence relations

! ' hela and the moment of the sum rule. :
- UM WN . A=o - b4
Ay 00 (D] Ay ;00 (8)

~“1%2& <o ' 1

L8 Bhat) AR A

v
w<-1 !

ﬂlﬁ v. (5 0) = 2 (u’-ol)dv‘u‘lo\ ﬂy V(S)

| Usins the wellknown rolat:l.ena botween ho:u,cit.v amplitudes and

- . those between arbital angular momentum atates (79), it is possible
to oxpnnd ok in terms of mguhr Mntm transsotions .

| Por!’oming this operation and retaining only the trensitions betwecm
p- waves: eofif = /3 (ai + 305/2) whnro a u the amplitude for
tqmmgular mt\i-o_ We do this as wg__ﬂgh ta sutqr.a__to the sum

rules with p- wave rosonances anly,.

Aeo DL ut Aaz
iy (A1) | ok (a2) ¥ (B2)
. sy (39
«»0 |
~t€wg 0 ' R \
e TS

The non-vanishing saplitude whik v (w~ (%5 aj;:)




9,

(M) THe» wye
b at A a2 A 23
oif (app) (b= (Bpp) | a-idy (M) 03/2-3/2(Beg)
..... | W/ AMhedk (Be) | | -+
x>0 1 '
Err N N N 3
— — T e

S pr— 0 — T e

a2 ki 0o (5 agy2 - ay)
un Rules . ies
Conaider tﬁe fin:l.te energy sum rules for all the odd t- chagmel ._ |
Ctawctants,  [Miwet (9)av @ ptm) (5.13)
Ihll‘. [ (l!:l.) 1- the Regge term. Expand the t- ohannel amplitudes.
30 'terms of the direct ohamnel anes.  £(¥) = G F(v) - (5.)
If we oan ohoose the same aut-off Ni fer sll the t- invariants, one
. oan combine these equations. ' |

ph(N) = SN cHmr(v)aw (5.15)

o
Using the results in Appendix 1, it oan he seen that this

equation is eguivalent te
H . (1= Gus) [’ = Cst F" . (5416)

where ,rt j InPJ(v) dv end [‘1 -?(N) for odd imvarients
and sero othemise. Thus the Fuloco~Wong begtatrap equation is
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obtained frem the sum rules. If the integrals are saturated by terms
troq bound states and resonances, we have the Fuloo and Wong model -
provided the terms :Ln.[' ' ocorrespond to the appropriste meson
exchenges. The orossing matrices in equation (5,16) are these
for the internal symmetry group. Tin question new arises as to
how spin symmetry oomes into the theery.
Consider the Fulco and Wong equai,::l.o.n for the aymmetry group

m"(z) 8Kk ,K= qu(z) or su(3)

(X = cus @ cu':)[' - (G5t c-'é)f' ’ (5.17)
.This can be re-written as:

63s | I - cus @ cual cat (cga ')« cts (cas o cag)"’
" Now (cus)H(cat)’* « 9, (m)
'_whu'o Yl k = 1 depending on whekbe-the A oslumnof Cat corresponds
.to an even or ¢odd invariant. Using this proporwn

(2 =Yk Cus) [(Ots)kt{“] - one [k (5,18)
- where Yo (B0 )ema [ (P,,F.,.-—- ) are the
dpqonhuitioqs_ of ' and [" into representations ef uu‘T(z)

For the case of meson~baryen scattering whexe

Cts = (')?/5 -2 ."-6_'/_} ) we obtain the two equations
5 =2/3

(x-cus) (M§+2]52) « ¥ [T oot e (5.19).
(xecus) ([3-Cwz) & w2 cael't
Ihere.['i(j/z) are the spin #(3/2) terms in .[' and - fo :( 1:) are
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the spin 0(1) centribution teo Y".
~ Por the case of T N socattering, the [y in equation (5.16)
Lo : indeed has the form P 2y 3/2)s Thus for this case the
equation derived from the sum rules is d..dentical with one of
those derived from the assumption of spin symmetry. Thus if
the t= channel exchange terms are the same as in the Fuloe
and Wong 'm-»m, we ebtain from the sum rules the same solution
@s Puloe and Wong, which, as we have seen, is the same as that
. ooming from the assumption of sw(6) or su(k) symmetry, Further
. investigation reveals that the emplitude u—%,}/a for1T N—~>n N*
and a~}.3/2 for T N®~» 7 N* correspond to those for t- channel
8pin 2. in their respective processes. Thus for these amplitudes
the su(h) ér su(f) results may be obtained again assuming the
" same t‘ohamnel terms. Gilman snd Harard (78) show that all
o.'i,ass one superconvergence relations for & =2 ampltidudes agree-
with the results derived from the algebra of ohaNges. = This
agress with our results, which show how for a small number eof
processes tho results of higher symmetries come from sum rules.

Numerous pecple (80) have found the superconvergence

_ relations which as we indicated above give su(6) results..
However, as far as we know, no' one has .looked at all the sum
rules for the different invariants at once. 4As we shall see,

the results ef this investigation are cepsistent with what is
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believe, at present, about Regge poles.

fus Bules in su(3) forml —» WH

From present lmowledge about meson spectra:, where ne 16, L 1)
or 27.plet of mesons are known, it was assumed by Sakita emd
Wald, (81) end by Babu, Gilman and Susuldi (82), tha;t o(t)< 0
for the leading 10, T0 and 27 plet trajectories. As the 27 is
a symmetric invariant, this will lead to a superoonvez;gonco
relation for B2/(Y ) (Using the inverisnt amplitudes defined by
Tod+dQ¥B foryN->mN)

-
{ 32%v)av =0

whioch is rouonabl; well satisfied, though it is imposaible to
test it exaotly (81,82). There is no ocorrespopding sum rules for
the 10 and TG, because, being anti-aymmetric invariants, they can’
only appear in sum rules for A or B which have the asynptotio.
behaviour

If ons assumes, a8 Palmer dees (83), that %€10,T0<¢-1,

it 1s possible to write superconvergenoe relations for the 10

and T0 amplitudes. In the forward direction A and VB are

proportional so ene has the relationss
oD [ ]

j A% )ay e SAﬁ(v)dv 0
o ]
Palmor saturates these three superoonvergence relations with the

_ eotet and dee&plet assuning degenerats mass. With mass
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degeneracy, the two Fuloe-Wong equations, of which these relations
are part, are for the same ,[' e The result is that 1_;h,e oouplings are
those of su(6)s We have seen how the 10 and 10 relations sheuld
agree with su(6), but the fact that the 27 relation gives the same
neods to be explained. The 27 equation is part of the Fulco-Wong
equation f+ Cus | = Cot [ /. The left hand eids is related to the
anti-commutator of the non-imvariant generaters of su(é). This
oontains no 27 part in the 56 representation of su(€). whioh
noo@ts for Palmer's result,

We now consider the antiaymmetric part of the amplitude
oorresponding te the 10, 10, 8aa, 8as t- ohannel amplitudes.
Assuming we can choosé a common out-off which allows us to

saturate with just the ectet and dsouplet, we have:

)
f ~Cus |' = Cst X

Where \" contains just the ostet and decuplet terms -and F ’

is sero apart frem the 10, 10, 8aa, 8as term.

Yli = pi(N)
We lmow from our assumptions that in the limit N-»w, Pm =
’13 = 0, We have ne guarantee that this is so when N is finite.
Howgver as saturation of superoconvergence relations by reasondnces
seems successful we feel _Jus't:lfied -dn. assuming that we, can chese

1
the out-eff N to make P 0 = ?TB' = 0 a good approximation. With.

%
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this saturation scheme, 98“130 whioch tells us that the p Regge
pole which we assoolate with the eotet exchange, couples anti-
synmetrical to baryons,.

We now look at the _symmetri,o part eof the amplitude. In the
1limit of degenerate mass saturation, the first moment sum rule
for af;} 1s the same as the zere moment .ene, whioh for the °
symmetric invariants is only valid in the absence of fixed
poles, Thus the results from this process are shakier than

. those for the odd mve;.rianta. However it 1s interesting to
saturate the sum rules with the octet and decuplet. The results

~ of inverting the process and finding the Regge terms from the
resonances, is that the 27 plet contribution is sere as already
stated, f" = 19/4, I@le =-7/ 8, fssa. = - S; lw)i‘h:l.s corresponds
to a large singlet contribution f'om & Regge pole which we
identify with the Pemeranchon and a siseable one from a Regge pole
which we identify with the A2, These results are quantitatively in
agreement with present lknowledge, Simllar results are praduced if
one looks at the® appropriate 'rrn.-, «N* andv N*-> w N* amplitudes
in the same way.

The above reugh and ready caloulations points te the way in

which higher symmetry results can be produced from sum rules,

Similar work could be performed for meson-meson scattering and
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Fuloo=Wong type solutions obtained in a place where the statie
model could net be used to Jjustify the equations. Indeed werk
has been performed to justify the equations., Indeed work has
been performed which uses the fact that all three channels are
similar in meson-meson scattering to effeot a mew type of
beotstrap (M.'-, 8) More exaot calculations on sum rules nay
woell previde further insight inte why higher aymmetry results
emerge from dynamical oaloulations.
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Appendix 1 Cressing Igtrioes o;‘ _llesen-\;g_zzon soatt_erg

To obtain the properties of the cressing matrices for a
process assuming a symmetry group K, we first define the operator
F which is related to the s- channel amplitude by -5-,:(11) =
< 12%(w)l>(A.1) where lo> 18 a representation of K. P(w) is
expanded in terms of ¢t~ channel invariantsy '

o (w) 'g‘m(") Py (A.2)
where PT is the operator which projects eut the t- ochannel state
T. Now cembining A.,1 and A.2

£ () ZA.I(w)<«|PTl«> (he3)
By definition Cst,dnf:l.ned by (Ost)y = <elifria>, (A.k)
is the 8 to t oressing matrix, Cressing from s to u oconsists
of aend“:v’l to - w and exchanging the two mesons. Under this

operation each P'l‘ has well definded properties:

Py ._;,)Z.TPT(A.S) where )l" a2 $ 1 accerding as T is
a8 symmetric eor a.nti.lymmnﬁ;"io state of the mesens.
Thus: ¥ (w) = F°(w) 5 Ay (- pr Py (4.6)

As the s and w channels are equal, ene has -

Ax(w) = 1 Ay(-w) (A.7)
Thus £ (W) =JA (W) Ny <axlPriad (4.8)




Thua the u te ¢t oressing matrix Cut is given by

(Cut),p= Dr <«lbrix> (4.9)
From (A.4) and (Ad9): (Cut),, = (C;e),,.t N< (4.10)
Expanding the u channel invariants in terms of t- channels
invariants and then expanding these in terms of s channel
invariants gives the expansion of 'u channel invariants in terms

of = channel invariants. Thus Cut Cta m Cus. Thus from A.10

(Cus)up = (cs__f)uv N+ (Cta)rp (a.10)
from (A.10, we see immediately that Cus = 1 (A.11) Moreever
(Cua)o‘-P(c:t)f-r = (Cst)xp Pp (cta),u‘, (Gnt)F-r
= 7,-(0:1;),,..,. (A.12)
Thus the column of Cst correspomding to the invariant T is
an eigen-vector of Cus with eigeavalus /), wherc; 7.,.= £! according

as T 1s & symmetrioc or antisymmetric respresentation.
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